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II Abstract

Abstract

Automatic speech recognition (ASR) has become one of well-known machine learn-
ing technologies nowadays integrated in various consumer SW products. Although
history of pursuing ASR is spread across many decades, recent improvements have
enabled its potential integration in more critical applications such as air-traffic man-
agement (specifically automatic processing of spoken communication between air-
traffic controllers and pilots). This thesis summarises our contributions towards solv-
ing generic ASR problems and demonstrates the capabilities of recent speech rec-
ognizers on typical applications with a particular focus on analysing air-traffic com-
munication with the aim of supporting humans to be more efficient while reducing
their workload.
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Heřmanský.

Second, I would like to thank all my co-authors from Idiap (CH), BUT (CZ) and DLR (DE) (alpha-

betically ordered): Ajay Srinivasamurthy, Amrutha Prasad, David Imseng, Esaú Villatoro-Tello,

Gwénolé Lecorvé, Hartmut Helmke, Iuliia Nigmatulina, Juan Zuluaga-Gomez, Lukáš Burget,

Matthias Kleinert, Oliver Ohneiser, Seyyed Saeed Sarfjoo and Srikanth Madikeri.

Last but not least, I would like to thank Daira, Karlík and Andrejka for supporting me, as well as

my parents Štefánia and Vlastimil.

Over the time, I have been supported by a number of funding sources for research and innova-

tion, in particular, by European Commission FP5, FP6, FP7 and H2020, IARPA U. S., ICT and

Innosuisse (CH) as well as by numerous industrial funds.



IV Contents

Contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III

Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Note on the author’s contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Focus and structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Domain transfer learning in ASR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Acoustic modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Generative models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Hybrid models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Language modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Domain and language transfer learning for acoustic and language modeling . . . . . 14

2.4.1 Cross-lingual acoustic modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.2 Multi-lingual acoustic modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.3 Domain adaptation and multi-lingual training of LMs . . . . . . . . . . . . . . . . . . . . 20

2.5 Sequence discriminative training for AM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.1 Extension to multi-lingual acoustic modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.2 Extension to multi-lingual acoustic modeling and language transfer . . . . . . . 23

2.6 Semi-supervised training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6.1 Data selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6.2 Semi-supervised training using LF-MMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6.3 Incremental semi-supervised training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6.4 Semi-supervised training for language modeling . . . . . . . . . . . . . . . . . . . . . . . 26

2.7 Self-supervised acoustic model training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.8 Application of ASR in air-traffic management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Boosting contextual information in ASR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Boosting of OOV words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Boosting by a prior from another modality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Context-based re-scoring of ASR output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 Contextual data in ATC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.2 Context-based rescoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Two-stage boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.1 List of call-signs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.2 Lattice boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.3 HCLG boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 Application of contextual boosting in air-traffic management . . . . . . . . . . . . . . . . . . . . 39

4 Natural language understanding on automatically generated textual data . . . . . . . . . . . . . 40



Contents V

4.1 Joint ASR and NLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Supervised and unsupervised language model adaptation . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 N-gram LM adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Conversion of RNN based LM to WFST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Boosting of NER for air-traffic management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.1 Re-ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.2 BERT - as speaker role detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Selected papers underlying this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 Paper 1: [Ims+13b] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Paper 2: [Ims+13a] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Paper 3: [Mad+20a] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4 Paper 4: [MMB21] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Paper 5: [Sri+17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.6 Paper 6: [BMM21] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.7 Paper 7: [MVG10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.8 Paper 8: [Oua+17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104

5.9 Paper 9: [Koc+21b] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110

5.10 Paper 10: [Lec+12] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116

5.11 Paper 11: [LM12] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121

5.12 Paper 12: [Nig+21] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126



VI Figures

Figures

1 The author’s most significant scientific contributions – 25 publications. Black

denotes an essential contribution, grey denotes an important contribution,

white denotes minor or no contribution, and crosses denote non-applicability.

Out of 25 papers, 12 are selected (see those highlighted in red in Table 1)

and commented on in this thesis. These 12 papers are also attached to this

thesis (see Section 5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Illustration of a typical HMM-based ASR system (source: [Bou+11]). . . . . . . . . . 7

3 HMM/GMM acoustic model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 SGMM acoustic model (source: [Ims+13b]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 Tandem acoustic model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6 HMM/DNN acoustic model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

7 KL-HMM acoustic model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

8 Tandem - the emission probabilities of the HMM states are modeled with

Gaussian mixtures and the MLP output is postprocessed (source: [Ims+13b]). . 16

9 KL-HMM - the emission probabilities are modeled with categorical distribu-

tions and the MLP output can directly be used (source: [Ims+13b]). . . . . . . . . . . 17

10 Cross-lingual adaptation in DNN (source: [Mot+15]). . . . . . . . . . . . . . . . . . . . . . . . 18

11 Single-task and multi-task adaptation for acoustic modeling (source: [MMB21]). 20

12 LF-MMI training for multi-lingual acoustic modeling (source: [Mad+20a]). . . . . . 23

13 Incremental approach for semi-supervised training. Model100 means acous-

tic model developed using 100 hours of untranscribed data, etc. . . . . . . . . . . . . . 25

14 Overview of air-traffic management system incorporating automatic speech

recognition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

15 Output of ASR system developed for air-traffic management. . . . . . . . . . . . . . . . . 29

16 Automatic transcription and annotation of ATC speech data with possible

manual verification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

17 Overall EERs of spoken-term detection when additional prior information is

exploited: (a) STD system without OOL module, (b) STD system with OOL

module (source: [MVG10]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

18 Schematic view of an automatic speech recognition-based ATC system

(source: [Oua+17]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

19 Expected landing sequences and trajectories for different aircraft approaching

Prague airport. (source: [Oua+17]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

20 Command extractor and corrector - steps described in Section 3.4.2. . . . . . . . . . 37

21 Use of context-free grammar to transduce ATC segments (text) to concepts. . . 37

22 General overview of the proposed multi-stage SDR architecture based on

expanded lattice embeddings (source: [VIL+22]). . . . . . . . . . . . . . . . . . . . . . . . . . . 41

23 Overview of the RNNLM discretization scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



Figures VII

24 Call-sign and command tagging: Named entity recognizer to automatically

tag the input word sequence for respective ATC classes. Visualisation of

BERT-based model (Huggingface) fine-tuned on NER task. . . . . . . . . . . . . . . . . . 46

25 Integrate the surveillance data (extracted from radar screen) into the ASR

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

26 Overview of an ATM application of virtual pilot: besides ASR, the module

for speaker role identification and text-to-speech (to generate an automatic

response back to pilot) are deployed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48





Introduction 1

1 Introduction

Automatic Speech Recognition (ASR) - a sequence to sequence problem – remains a distinct

field of research in speech and language technology, and builds around various machine learn-

ing algorithms making it a relatively complex task compared to other areas.

This thesis overviews our contributions in the context of automatic speech recognition. More

specifically, in this thesis we decided to divide our contributions into three areas:

• Domain transfer learning in ASR (Section 2),

• Boosting contextual information in ASR (Section 3),

• Natural language understanding on automatically generated textual data (Section 4).

The reasons for such a division are as follows: ASR has been among our main interests over

the last two decades. The first most evident open issues in the area of ASR were related to

its applicability for new domains (environments) or languages. Here, we particularly consider

low-resource scenarios which assume availability of relatively low amounts of development

data. While this scenario may not be of interest for well-resourced (e.g. viable) languages

or environments, there are numerous applications where direct deployment of ASR would fail

(especially due to very low performance). Overview of our contributions in this area is given in

Section 2.

Further, many applications comprising ASR require very accurate performance, either in terms

of overall word error-rates1, or at least when recognising highly informative set of words for

subsequent downstream processes. This problem is specifically addressed in Section 3 where

we consider boosting contextual information in ASR.

The third area builds on our contributions combining ASR and natural language understanding.

More specifically, we comment on very recent works where automatically generated textual

outputs (from ASR) are used as direct input for subsequent downstream applications, such

as information (or spoken document) retrieval, or named entity recognition, including boosting

these technologies using apriori known information. Besides above, Section 4 also comments

on our work related to language modeling in ASR (concretely building the language models

using supervised and unsupervised data). We also present our approach on using powerful

recurrent neural networks for a direct decoding in ASR.

This thesis focuses with a large care on Air-Traffic Management (ATM). Recognition and under-

standing of communication between air-traffic controllers and pilots in the field of ATM has not

been addressed in a sophisticated manner, until recently. We have started to work in this field

1 https://en.wikipedia.org/wiki/Word_error_rate

https://en.wikipedia.org/wiki/Word_error_rate
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in 2016. One of the reasons for starting to apply ASR into the ATM domain was due to recent

significant improvements in acoustic modeling, thus reaching acceptable ASR accuracies in

new environments even with limited development data. ASR in ATM will be addressed in all

3 areas of this thesis. Our most significant papers related to ATM are highlighted in bold in

Table 1.

To address our contributions in those 3 aforementioned areas, we decided to select 12 papers

to be introduced and commented on in this thesis. These 12 papers are attached in Section 5.

Across all the following text, these 12 papers are also aligned with particular sections, and

always highlighted in red. Besides these 12 papers, we also link some subsections with other

potentially interesting papers - highlighted in blue.

Commentary of our works in this thesis does not include recognition/classification perfor-

mances achieved in presented contributions. We rather give a high-level introduction to our

works. Details are obviously presented in given papers.

1.1 Note on the author’s contribution

We would like to emphasise that the 12 selected papers underlying this thesis (see Section 5

with the attachments) do not directly reflect authors’ contribution. We therefore add Figure 1

which gives more details about the contribution of the author of this thesis to those papers.

In fact, Figure 1 presents a super-set of 25 scientific publications (including those 12 papers).

As there is no agreement on a metric allowing for a qualitative evaluation, the figure describes

the author’s contribution to commonly accepted parts of the process of creating a paper in

computer science.

Following Table 1 presents a list of 25 scientific publications – ranked as the most significant

according to the author. 6 papers in bold are related to the application domain of this thesis –

“air-traffic management”. 12 selected papers (underlying this thesis) are highlighted in red.
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Figure 1 The author’s most significant scientific contributions – 25 publications. Black denotes
an essential contribution, grey denotes an important contribution, white denotes minor or no
contribution, and crosses denote non-applicability. Out of 25 papers, 12 are selected (see
those highlighted in red in Table 1) and commented on in this thesis. These 12 papers are also
attached to this thesis (see Section 5).
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(ICASSP), Japan, pages 4413-4416, 2012

[MVS12]

25 Unsupervised Speech/Non-speech Detection for Automatic Speech Recognition in Meeting Rooms, Hari
Krishna Maganti et al., in: Proceedings on IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2007

[MMG07]

Table 1 List of 25 scientific publications – ranked as the most significant according to the
author. 6 papers in bold are related to the application domain of this thesis – “air-traffic man-
agement”. 12 papers in red are among those selected and commented in this thesis.
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1.2 Focus and structure of the thesis

In the following sections, we will comment on and discuss in more detail some of the key ideas

carried out by 12 selected papers underlying this thesis.

More particularly, Section 2 presents our achievements in the area of generic ASR with a partic-

ular attention to domain transfer learning. By domain transfer learning, we mean not only a new

environment, but also possibly new language(s). 5 papers were selected to be commented on in

this section. Both acoustic modeling as well as language modeling are targeted here although

larger attention is given to R&D of acoustic models, i.e., dealing with the raw audio waveforms

of human speech and predicting what phoneme each waveform corresponds to, typically at

the character or sub-word level. Section 2 comments on our approaches in cross-lingual and

multi-lingual modeling. It also presents our work in extending well-known sequence discrimina-

tive training for multi-lingual modeling and language transfer. Further, semi-supervised training

for acoustic models is presented with our contributions in this area. We also introduce a self-

supervised acoustic model training – a relatively new approach in ASR. This section eventually

introduces the domain of air-traffic management and briefly overviews our work already done

through various projects in applying ASR in this domain.

Section 3 is devoted to boosting of contextual information in ASR. Progress in contextual boost-

ing – incorporating prior knowledge (e.g., from different modality) – for ASR has found many

applications. First, boosting of out-of-vocabulary words for an artificially created test set (Com-

monVoice data) is presented. Then, we introduce an approach on spoken-term detection,

allowing to detect a set of words in word recognition output, and boosting them by incorpo-

rating apriori information in form of textual data from corresponding PowerPoint presentations.

Last three sub-sections (particularly Sections 3.4 to 3.6) are devoted to boosting contextual

information in the area of air-traffic management. 4 papers were selected to be commented on

in this section.

Section 4 comments on our past (including very recent) contributions in the domain of natu-

ral and spoken language understanding. First, this section reviews our work in the area of

language modeling, particularly in supervised and unsupervised Language Model (LM) adap-

tation for ASR and conversion of conventional recurrent neural network based LMs to be used

directly in the first pass of ASR decoders. Further, this section aims to highlight approaches

which require the use of ASR to generate automatic transcripts used in subsequent down-

stream applications such as information retrieval and named entity recognition. 3 papers were

selected to be commented on in this section.

The final Section 5 lists 12 selected papers underlying this thesis.
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2 Domain transfer learning in ASR

This section summarises our R&D achievements in an area of automatic speech recognition

and deployment of new algorithms for domain and language transfer learning . The presented

work will mainly focus on acoustic modeling for ASR applications, nevertheless, language mod-

eling will also be discussed here. Eventually, this section will also give a brief overview of afore-

mentioned technologies for a particular domain targeted in this thesis – “air-traffic management”

(Section 2.8).

Following 5 papers were selected among others to be summarised/commented and aligned

with other works in this section:

(1) Using out-of-language data to improve an under-resourced speech recognizer,

2013 [Ims+13b],

(2) Impact of deep MLP architecture on different acoustic modeling techniques for

under-resourced speech recognition, 2013 [Ims+13a],

(3) Lattice-Free Maximum Mutual Information Training of multi-lingual Speech Recog-

nition System , 2020 [Mad+20a],

(4) Multitask adaptation with Lattice-Free MMI for multi-genre speech recognition of low

resource languages, 2021 [MMB21],

(5) Semi-supervised Learning with Semantic Knowledge Extraction for Improved

Speech Recognition in Air Traffic Control, 2017 [Sri+17].

2.1 Introduction

Current Automatic Speech Recognition (ASR) systems are based on statistical parametric

methods. In the 1990s and in the first decade of the twentieth century, advances in ASR

have been largely driven forward by the US government, specifically via the National Institute

of Science and Technology (NIST)2. Besides participating on technology evaluations, one of

the main contributions was related to collection of databases (e.g. [Kub+94], [PB92]). First

works were naturally considering English language and a large progress was made to reach

good performance on English related recognition tasks (i.e. read speech). Furthermore, these

improvements were later translated directly to different languages, or domains (e.g. telephone

speech, spontaneous speech, etc.), thanks largely to the robustness of statistical approaches

to the different specificities of languages or domains.

Current conventional ASR systems are stochastic and their acoustic models (specifically hybrid

types) still exploit Hidden Markov Models (HMM) in their framework. Most recent algorithms
2 http://www.nist.gov/index.html

http://www.nist.gov/index.html
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are built around deep neural learning as generative or discriminative modeling approaches.

Figure 2 illustrates a typical HMM-based ASR system for the English language. The principal

components of the HMM-based ASR system are as follows:

• Feature extraction: converting the speech sequence into a stream of feature observa-

tions/vectors. Feature extraction is typically considered a language-independent pro-

cess. Among typical features, Mel-Frequency Cepstral Coefficients (MFCCs) [DM80]

are still often used, composed of static coefficients and their approximate first order

and second order time derivatives.

• Acoustic Model (AM): it models the relation between the speech feature vector(s) and

units of spoken form (sound units, such as phones or directly graphemes). Develop-

ment and various versions of AM will be particularly considered in this section with a

focus on domain and language transfer.

• Lexicon: although in case of very recent end-to-end ASR approaches it is often un-

necessary, lexicon (or dictionary) still plays an important role to integrate lexical con-

straints on top of spoken unit level representation yielding a unit representation that is

typically common to both spoken form and written form such as, word or morpheme.

• Language Model (LM): LM represents syntactical/grammatical constraints of the spo-

ken language. Often, it is modeled using statistical models such as n-grams, or more

recently using deep neural network architectures (e.g., recurrent neural networks).

The

dog  cat
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d o  g
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       ANN)

Likelihood
Words

Recognized
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Decoder

Language model

HMM

Lexicon 
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Figure 2 Illustration of a typical HMM-based ASR system (source: [Bou+11]).
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2.2 Acoustic modeling

This section will review and discuss approaches applied for the development of the acoustic

models for ASR. Specifically this section will describe (i) technologies to build both genera-

tive and discriminative acoustic models, (ii) approaches allowing to perform language and/or

domain transfer learning (i.e., adaptation), (iii) approaches aimed to significantly increase ro-

bustness of the ASR models by applying sequence-discriminative training, and (iv) training

procedures which allow us to employ both transcribed as well as untranscribed speech corpora

for supervised and semi-supervised training.

2.2.1 Generative models

HMM/GMMs

Past acoustic models also applied in many production ASR systems were largely built around

Gaussian Mixture Models (GMMs) (i.e., generative models) to model the speech feature obser-

vations in HMM/GMM architectures [Rab89] (see Figure 3). Specifically, this type of AM aimed

to represent distributions of (usually tied) Hidden Markov Model (HMM) states using a relatively

large number of parameters completely defining a GMM. This approach was also considered in

the recent past as state-of-the-art in acoustic modeling especially for Large Vocabulary Contin-

uous Speech Recognition (LVCSR). The main advantage of the HMM/GMM compared to other

acoustic modeling techniques (see later those employing neural networks) was its feasibility for

parallel training (i.e., it can easily accommodate large amounts of training data which is usu-

ally available for well-resourced languages) and possibility to combine standard adaptation and

discriminative training techniques.

Figure 3 HMM/GMM acoustic model.
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HMM/SGMMs

Although HMM/GMMs were a mainstream in AM, such the framework was not found appropri-

ate for domain transfer (i.e., their adaptation to for instance low-resourced scenarios where the

model is supposed to perform well also in case of relatively small amounts of training data).

An interesting approach to overcome problems with requirements of large amounts of training

data was presented by SGMMs - a new acoustic modeling scheme based on Sub-space Gaus-

sian Mixture Model (SGMM), proposed in [Pov+10] (see Figure 4). SGMMs demonstrated their

large potential to benefit from available data from well-resourced domains to improve recogni-

tion performance of the target domain.
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Figure 4 SGMM acoustic model (source: [Ims+13b]).

This characteristic was also shown for language transfer [Bur+10]. Compared to other (multi-

lingual) techniques, such as traditional ones exploiting universal phone models to allow for

training acoustic models from many languages [Lin+09], SGMM (as well as other models men-

tioned later such as KL-HMM and multi-lingual Tandem) can utilize a target phone set thus rep-

resenting much simpler procedure. An example of application of SGMMs for language transfer

learning is given in Section 2.4.1.
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2.2.2 Hybrid models

Hybrid models for acoustic modeling in ASR were also proposed in 90’s. They typically exploit

an HMM framework, but the modeling of feature observations is done using artificial neural

networks which are usually trained to estimate phone (or any other sound units) posteriors

while also including a temporal context.

HMM/ANNs

Competitive acoustic modeling technologies to the generative HMM/GMMs consider Artificial

Neural Networks (ANNs), allowing to discriminatively train the acoustic classifier. First ANN

models employed Multi-Layer Perceptrons (MLPs) [BM94], also combined with Markov chains,

referred to as hybrid HMM/ANNs. HMM/ANN were usually trained to estimate sound-unit

(phone) posteriors based on the input speech features. Eventually, these posteriors estimated

by ANNs are then transformed to scaled likelihoods and used directly as output probabilities in

the HMM topology (i.e. replacing likelihoods estimated by GMMs in HMM/GMMs).

Tandem

Among interesting approaches exploiting disriminatively trained acoustic classifiers were “Tan-

dem” models (see Figure 5). Such an acoustic model combined spectral features (MFCCs) with

another set of features derived from phone-classification MLPs. Rather than interpreting the

outputs as phone posteriors, they were subject to a logarithm transformation and dimension-

ality reduction, and (used in a combination with MFCCs) as final input features in HMM/GMM

architecture [HES00].

HMM/DNNs

Most recent hybrid AM approaches applied for automatic speech recognition use modern Deep

Neural Networks (DNNs) and allow to exploit large temporal contexts (e.g., in the form of time-

delay neural architectures). Similar to HMM/ANN, these hybrid HMM/DNN systems use the

DNNs to estimate posterior probabilities of usually context-dependent HMM states (see Fig-

ure 6).

KL-HMMs

As illustrated in Figure 7, KL-HMM is a particular form of HMM in which the emission proba-

bilities are parametrized by a categorical distribution, i.e., a multinomial distribution from which

only one sample is drawn. In contrast to Tandem that uses Gaussian mixtures and therefore

needs the post-processed features, the categorical distributions can directly be trained from

phone class posterior probabilities (e.g. by ANNs or DNNs).
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Figure 5 Tandem acoustic model.

More particularly, a term of discrimination information is nowadays referred to as the Kull-

back–Leibler (KL) distance (or divergence as it is not a metric), defined by [KL51]. In [ABM08],

authors proposed multiple KL divergence based local scores for KL-HMM training and decod-

ing. In other studies, the symmetric variant of the KL divergence was used. However, recently

it was found that the asymmetric KL divergence gives better performance and increases the

robustness of ASR systems. This is also intuitively reasonable in that the underlying acous-

tic modeling problem is not symmetric since we observe the posterior features and train the

categorical distributions.
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Figure 6 HMM/DNN acoustic model.

Figure 7 KL-HMM acoustic model.
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2.3 Language modeling

Apart from acoustic modeling, language models are also among important building modules

of ASR systems. In this section, we will first give a brief introduction to language modeling

technology.. Second, as presented in Section 2.4.3, the language models also offer a transfer

learning capability (e.g., for a new domain), similar to acoustic models. As part of Section 4

related to natural language understanding, we will present our work on language model adapta-

tion (as supervised and unsupervised approach),as well as the work on using recurrent neural

network based LMs in ASR.

In addition to automatic speech recognition, LMs are widely used in many other fields of natural

language processing. The principal objective of LMs is to assign a probability to an utterance,

e.g. a sentence, estimating how likely it is to observe this utterance in the language. As such,

the LM performance has a significant impact on the performance of the ASR. In case of ASR,

the most commonly used approach is the n-gram – a purely statistical approach to estimate

probabilities for new utterances by collecting statistics from a training text corpus. If we consider

the same language, using a larger text corpus or increasing the model order typically improves

LM performance, but also increases its size. N-gram makes a Markov assumption, i.e., the

probability of observing a specific word in a sentence only depends on the last n− 1 observed

words. In earlier times, mostly bi-gram models (n = 2) have been used, whereas nowadays lan-

guage model orders of n = 3 (tri-grams), n = 4 or even n = 5 are common [Man11]. Although

the simplicity of an n-gram language model obviously cannot possibly convey the complexity

of real natural language and research into more complex LM types has been conducted for

decades [Jel91], n-gram LMs persist as a very popular type of language model used.

In case of n-grams, one of the most typical problems is a balance weight between infrequent

grams (for example, if a proper name appeared in the training data) and frequent grams. Also,

entities not seen in the training data will be given a probability of 0.0 without “smoothing”

method. This method is therefore necessary to smooth the probability distributions by also

assigning non-zero probabilities to unseen words or n-grams. Kneser–Ney smoothing [NEK94]

is considered among the most effective methods, primarily used to calculate the probability

distribution of n-grams in a document based on their histories.

Advanced LMs

(Paper also for consideration in this section: The Kaldi Speech Recognition Toolkit, Daniel

Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek, Nagendra Goel,

Mirko Hannemann, Petr Motlicek, Yanmin Qian, Petr Schwarz, Jan Silovsky, Georg Stemmer

and Karel Vesely, in: IEEE 2011 Workshop on Automatic Speech Recognition and Understand-
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ing, Hilton Waikoloa Village, Big Island, Hawaii, US, IEEE Signal Processing Society, 2011

[Pov+11])

(Paper also for consideration in this section: STACKED NEURAL NETWORKS WITH PA-

RAMETER SHARING FOR MULTILINGUAL LANGUAGE MODELING, Banriskhem Khonglah,

Srikanth Madikeri, Navid Rekabsaz, Nikolaos Pappas, Petr Motlicek and Hervé Bourlard, Idiap-

RR-12-2019 [Kho+19])

Conventional ASR development tools (such as Kaldi [Pov+11]) use FST-based frameworks

which in principle allow to deploy any language model that can be represented as a Finite State

Transducer (FST)3. Neural based LMs (most typically Recurrent Neural Networks(RNNs)) are

often used to re-score top ranked hypotheses obtained using conventional back-off n-gram LMs.

Alternatively, the lattices generated with n-gram LMs may be directly re-scored. Recently, a LM

based on Time Delay Neural Network (TDNN) architecture, in which the convolution is applied

with respect to only the past time steps to avoid any leakage from the future time steps, was

proposed. TDNN based LMs were shown to have lower perplexity than RNN LMs [Kho+19].

RNNs are also further analysed in Section 4.3, to be used for a direct decoding (i.e., replacing

a two-pass ASR where RNNs are used to re-score word recognition hypotheses).

2.4 Domain and language transfer learning for acoustic and language modeling

In this section, we will review algorithms used for both domain and language transfer applied in

ASR. The focus will mainly be on transfer learning capabilities of acoustic models, nevertheless,

a short section will also be devoted to typical approaches applied for LM transfer learning.

By transfer learning, we principally mean the model’s ability to adapt to a new domain or lan-

guage. There are several needs for this type of approaches:

• Adaptation to low resource languages: Many languages in the world can be con-

sidered as low-resourced, i.e., there are not sufficiently large corpora available for

developing robust and accurate acoustic or language models for a given language.

The same may apply for different accents (e.g. French English or German English),

or dialects (e.g. Swiss German).

• Adaptation to challenging domains: Even in case of developing the ASR for viable

languages, there are typical problems with robustness of the ASR systems for specific

domains. Among many examples, we can consider analysis of multi-party interactions

(e.g. remote meetings), or, as it will be particularly addressed here, recognition of air-

traffic communication, where there are not many data resources available to develop

sufficiently robust systems.
3 https://en.wikipedia.org/wiki/Finite-state_transducer

https://en.wikipedia.org/wiki/Finite-state_transducer
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This section will review our past works related to both aforementioned problems.

2.4.1 Cross-lingual acoustic modeling

(Relevant paper: Using out-of-language data to improve an under-resourced speech recog-

nizer, David Imseng, Petr Motlicek, Hervé Bourlard and Philip N. Garner, in: Speech Commu-

nication, 2013 [Ims+13b])

(Paper also for consideration in this section: Exploiting foreign resources for DNN-based ASR,

Petr Motlicek, David Imseng, Blaise Potard, Philip N. Garner and Ivan Himawan, in: EURASIP

Journal on Audio, Speech, and Music Processing(2015:17), 2015 [Mot+15])

(Paper also for consideration in this section: Multilingual Deep Neural Network based Acoustic

Modeling For Rapid Language Adaptation, Ngoc Thang Vu, David Imseng, Daniel Povey, Petr

Motlicek, Tanja Schultz and Hervé Bourlard, in: Proceedings IEEE International Conference on

Acoustics, Speech and Signal Processing, Florence, pages 7639-7643, IEEE, 2014 [Vu+14])

One of the important tasks in ASR is to address cross-language transfer, specifically for lan-

guages with low data resources. In a practical case this means the models developed for well-

resourced language (e.g., Dutch) can be adapted (or fine-tuned) in a cross-lingual manner to

the target language (e.g., Afrikaans) as considered in our paper [Ims+13b]). More particularly,

this paper from 2012 considered a scenario where out-of-language data (i.e., audio data avail-

able from another language, different to the target language) can boost the ASR performance

of the within language having only limited amounts of data for training/development. The study

investigated both the generative (HMM/GMM) and discriminative (HMM/ANN) acoustic models

and their extended versions for cross-lingual transfer.

Cross-lingual Tandem and KL-HMMs

The MLP for acoustic modeling is typically trained to estimate phone class posterior probabili-

ties given the speech feature vectors. For the domain or language transfer, the model is usually

built on a large set of out-of-domain data (or language) and thus called an “auxiliary” MLP. The

approaches which exploit MLP to generate posterior probabilities are denoted as feature-level

based approaches, in this section further used for model adaptation.

More specifically, once the MLP is trained: (i) we consider a sequence of T acoustic feature

vectors X = x1, ...,xT , namely Perceptual Linear prediction (PLP) speech features [Her89],

extracted from within-language data, and (ii) the phone class posterior sequence Z = z1, ..., zT

is then estimated with the previously trained auxiliary MLP. To estimate zt = (z1t , ..., z
K
t )T , we

consider also a temporal context of xt features. Further, two modeling approaches were used

to model the class posterior sequence [Ims+13b]:
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• Tandem: as already shown in Figure 5, it uses GMMs for estimating emission proba-

bilities of HMMs [HES00] (i.e., HMM states qd (where qd : d ∈ 1, ..., D) are associated

with the target language (D is equal to total number of HMM states in the model)). To

model the emission probabilities with Gaussians, the posterior features zt are usually

post-processed (decorrelated with a principal component analysis (PCA)). The trans-

formation matrix can be estimated on within-language data. Usually, the resulting

feature vector rt = (r1t , ..., r
L
t )

T has a reduced dimensionality L. The approach is in

details visualised in Figure 8.
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Figure 8 Tandem - the emission probabilities of the HMM states are modeled with Gaussian
mixtures and the MLP output is postprocessed (source: [Ims+13b]).

• KL-HMM: as described in Section 2.2.2, KL-HMM is a particular form of HMM in

which the emission probability of state qd is parametrized by a categorical distribution

yd = (y1d, ..., y
K
d )T , where K is the dimensionality of the features. Unlike Tandem that

uses GMM (with the post-processed features rt), the categorical distributions can

directly be trained from zt. For acoustic modeling of ASR, [AVB07] proposed multiple

KL divergence based local scores for KL-HMM training and decoding. KL-HMM is

visualised in Figure 9.
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Cross-lingual SGMMs

A complementary approach to the feature-level adaptation is the model-level adaptation allow-

ing to exploit out-of-language data directly on the acoustic model level to perform cross-lingual

transfer and eventually improve ASR performance on target language. In our past work, we

specifically experimented with Subspace GMMs (i.e., HMM/SGMMs), already introduced in

Section 2.2.1. Similar to feature level, HMM state distributions associated with the target lan-

guage are estimated. The transition probabilities are fixed and the emission probabilities are

modeled using probability density function in an SGMM manner.

Mathematically, the SGMM model is described in [Pov+10], where the emission probabilities of

each context-dependent HMM-state qd are modeled by GMM. Each HMM-state is parametrized

by a vector vd. The parameters M and W are globally shared and are used to derive the means

and mixture weights representing the given HMM state. Graphical interpretation of SGMMs as

an acoustic model was given in Figure 4.

The results presented in [Ims+13b] have shown that out-of-language data (in this experiment

Dutch speech) can significantly improve speech recognition on Afrikaans (i.e., target language

represented by only a small data set).
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Cross-lingual DNNs

More recent approach published in 2015 [Mot+15], which is already using modern Deep Neural

Networks (DNN) as an acoustic model employed in HMM framework, performs a cross-lingual

transfer through a condition-specific layer. The idea is similar to multi-lingual DNN approaches

(see Section 2.4.2) in which hidden layers of DNNs are shared across multiple (auxiliary) lan-

guages while the output layers are made language-specific. The adaptation procedure is graph-

ically visualised in Figure 10. Starting with a DNN model trained using out-of-language data

(in this case French ESTER database), the output layer is replaced by a new layer in which we

randomly initialise the WL which is the matrix of connection weights between the layer L−1 and

the output layer L. The network is then retrained using in-language data (in this case French

MP-FR database) which most closely matches the evaluation set.
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Figure 10 Cross-lingual adaptation in DNN (source: [Mot+15]).

Previous cross-lingual adaptation algorithms have considered, although different languages or

dialects, the same phone sets shared across them. In case the phone sets are largely dis-

similar, other alternative approaches in cross-lingual (or multi-lingual) transfer learning need

to be considered, such as: (i) use of merged universal phoneset based on the International

Phonetic Alphabet (IPA) chart4, i.e. the same IPA symbols are merged across languages, or (ii)

a universal phoneset without merging strategy. Our work presented in [Vu+14] (on ten differ-

ent languages from the Globalphone database) investigated the effect of IPA based phoneme

merging on the multi-lingual DNN and its application to new languages.

2.4.2 Multi-lingual acoustic modeling

(Relevant paper: Impact of deep MLP architecture on different acoustic modeling techniques

for under-resourced speech recognition, David Imseng, Petr Motlicek, Philip N. Garner and

Hervé Bourlard, in: Proceedings of the IEEE workshop on Automatic Speech Recognition and

Understanding, 2013 [Ims+13a])

4 https://en.wikipedia.org/wiki/International_Phonetic_Alphabet

 https://en.wikipedia.org/wiki/International_Phonetic_Alphabet
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Multi-lingual acoustic modelling shares the acoustic data across multiple languages to cover as

much as possible the contextual variations of the considered languages. Unlike cross-lingual

acoustic modeling (in details presented in Section 2.4.1) which envisaged a language trans-

fer from one (source) to another (target) language, multi-lingual approaches consider multiple

source languages during the development.

In our preliminary experiments [Ims+13a], we used a simplistic approach where data from

several languages are joined (shared) for training the acoustic model. One way to achieve

such data sharing is to define a common phonetic alphabet across all languages. As already

presented above, this common phone set can be either derived in a data-driven way, or obtained

from the IPA.

Multi-lingual Tandem, KL-HMMs and SGMMs

An extension of previous cross-lingual AM approaches (Tandem, KL-HMMs and SGMMs) as-

sumed a common phone set (i.e., the set is similar for both languages) thus allowing to train

an MLP jointly using both languages (Dutch and Afrikaans in that case). Unlike a cross-lingual

approach described in Section 2.4.1 where the MLP was trained only using out-of-language

data, this system uses both out-of-domain and in-domain data for MLP training.

Multi-task adaptation

Multi-task learning (adaptation) has led to successes in many applications of machine learn-

ing [Rud17], including automatic speech recognition [DHK13]. In case of multi-lingual AM train-

ing, it is among the most powerful approaches especially for low-resourced languages.

ASR for low-resource languages is often developed by adapting a pre-trained model to a tar-

get language. Similarly to previous approaches, this type of adaptation uses auxiliary speech

data from other languages in addition to the target-language data. However unlike previous

case where the specific layers in the DNN were adapted using in-language data (also called

“single-task adaptation”), “multi-task adaptation” employs a similar strategy by adapting to the

multiple languages at the same time (despite our interest being in target language). Multi-task

adaptation has several rigorously proven advantages. Two important advantages that are often

considered in AM training are (i) implicit data augmentation and (ii) ability to reduce the risk

of over-fitting. Figure 11 illustrates the difference between single-task and multi-task training.

Well documented set of experiments comparing multi-lingual approaches (such as using IPA or

multi-task adaptation) while using deep neural nets was performed in [TGB17].
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Figure 11 Single-task and multi-task adaptation for acoustic modeling (source: [MMB21]).

2.4.3 Domain adaptation and multi-lingual training of LMs

LM domain adaptation

Although only briefly discussed here, language model adaptation plays an important role (and

complements with a significant boost of performance an acoustic model adaptation) when

transferring ASR systems to be deployed for new (unseen) domains. As already mentioned

for acoustic modeling, there are applications where the specific domain of data needs to be

improved for successful application of ASR. One such application was in the MATERIAL pro-

gramme5. In MATERIAL, targeted by both BUT6 and Idiap7, the ASR for low-resource lan-

guages was researched for document retrieval and summarization purposes.

Linear combination – One of relatively simple but still preferable approaches, successfully

deployed in production ASRs (not only in domains with limited amount of in-domain training

data such as MATERIAL), relies on model combinations [Hsu07]. In the case of LM, these

approaches include improving the estimation of the underlying probability distributions. While

many of these approaches involve the combination of multiple n-gram LMs, most existing works

only evaluate their performance using simple linear interpolation [Jel80].

From a practical point of view, linear interpolation first trains individual n-gram LMs separately

for each training corpus (e.g., from out-of-domain and in-domain text). Given the resulting set of

n-gram LMs, it computes the weighted average of the component model probabilities, while the

interpolation weight is typically tuned to optimize the development set perplexity. To increase

its efficiency, an approximation is often applied on the final interpolated model that constructs a

single n-gram back-off model where the probability for all observed n-grams is represented by

the weighted average of the component model probabilities [Sto02].

5 https://www.iarpa.gov/index.php/research-programs/material
6 https://www.fit.vut.cz/research/project/1140/.en
7 https://www.idiap.ch/en/scientific-research/projects/SARAL

https://www.iarpa.gov/index.php/research-programs/material
https://www.fit.vut.cz/research/project/1140/.en
https://www.idiap.ch/en/scientific-research/projects/SARAL
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Neural networks – Successful approaches for domain transfer often consider Neural Net-

works (NNs). NN-based LMs are widely used for re-scoring the N-best list of word recognition

hypotheses obtained from the decoding based on n-grams [Mik+10]. This is usually called the

second pass decoding. There were also attempts to use the neural networks for first pass

decoding (which will be discussed later in Section 4.3).

Multi-lingual LM

For many domains such as conversational speech, there is less availability of data, thus in-

language domain adaptation usually does not provide sufficient performance (e.g., also pointed

out by many works from MATERIAL programme). For such domains, multi-lingual NNLMs

sharing parameters across multiple languages may be of large interest. These models aim to

address these data sparsity issues [Rag+16].

One of our past work proposed multi-lingual architecture consisting of a stacked NN model,

where the first layer is language-specific and the second one is shared across multiple lan-

guages. In addition, and in contrast to [Rag+16], every language has a separate input and

output layer and hence a separate loss function. The overall loss in our proposed approach

was the weighted sum of per-language loss values, used to optimize the whole network through

back-propagation [Kho+19].

2.5 Sequence discriminative training for AM

Significant improvements in acoustic modeling have also been obtained by exploiting

sequence-discriminative training approaches, first applied on generative HMM/GMM model-

ing [Bah+86] [Pov+08].

Typical objective function for estimating the model parameters in HMM based speech recogni-

tion systems is Maximum Likelihood Estimation (MLE). If we assumed that the speech matched

the statistics expected by an HMM and we had access to an infinite training set, the global

maximum likelihood estimate would be optimal in the sense that it is unbiased with minimum

variance [WP00]. However, this is usually not the case. It has been shown that alternative

discriminative training schemes such as the most popular Maximum Mutual Information MMI

estimation provide generally better ASR performance.

For applying MMI training for acoustic model in ASR, typical approach is that the derivatives of

MMI objective function are computed from two sets of posterior quantities: (i) for the numerator

graph, specific to each utterance related to the alignment (i.e. with text transcript) and (ii) for

the denominator graph, which represents all possible word sequences and which is the same
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for all utterances. In Kaldi ASR framework [Pov+11], the Finite State Acceptor (FSA) format is

used to store both of them (with labels on arcs, not states).

The theory for sequence-discriminative training of neural networks was also developed quite

early in 90’s [BD91], where the posterior probabilities are same as the numerator and denom-

inator occupancies used in discriminative training of HMM/GMM systems. Later, it was also

pointed out that sequence-discriminative training of NNs can take advantage of the lattice-

based computations that were routinely used for HMM/GMM systems. Very recently, the

Lattice-Free Maximum Mutual Information (LF-MMI) framework has shown to have superior

performance compared to the conventional Cross-Entropy (CE) training of DNNs [Had+18].

Similar to HMM/GMMs, the MMI cost function uses the numerator graph modelling the ob-

served speech feature sequence based on ground-truth transcript and the denominator graph

computing the probability over all possible sequences. The latter enforces the discriminative

property in the training shown to be useful for AM development.

2.5.1 Extension to multi-lingual acoustic modeling

(Relevant paper: Lattice-Free Maximum Mutual Information Training of Multilingual Speech

Recognition System, Srikanth Madikeri, Banriskhem Khonglah, Sibo Tong, Petr Motlicek, Hervé

Bourlard and Daniel Povey, in: Proceedings of Interspeech, pages 4746–4750, ISCA, 2020

[Mad+20a])

(Relevant paper: Multitask adaptation with Lattice-Free MMI for multi-genre speech recognition

of low resource languages, Srikanth Madikeri, Petr Motlicek and Hervé Bourlard, in: Proceed-

ings of Interspeech, 2021 [MMB21])

Combination of multi-lingual modeling and sequence-discriminative training is nowadays con-

sidered as state-of-the-art framework to train large-scale hybrid acoustic models. As already

mentioned in Section 2.4.2, in case of single-task approach, the multi-lingual resources are

combined by merging the phoneme sets from all languages either using a universal phone

set such as IPA, or by combining acoustic units (phones) across languages. If sequence-

discriminative training is applied in any of these cases, a universal denominator graph is shared

across all languages during training, as shown also for LF-MMI for instance by [TGB19]. How-

ever, when combining acoustic units for multi-lingual training in single-task approach, the output

NN layer size increases rapidly with number of languages, which may become impractical dur-

ing decoding. Alternately, multi-task training (already presented in Section 2.4.2) solves this

issue by separating the output layers of languages so that during decoding only the output rel-

evant to the language is used. An added advantage during training is that the cost function can

be computed faster as its complexity depends on the number of states in the denominator.
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In single-task case when implemented for LF-MMI multi-lingual AM, the configuration provides

a choice of using language-specific (i.e. trained with data from all languages), or language-

independent denominator (i.e., trained with data from only one language, which is equivalent

to training mono-lingual AMs). When using language-specific denominators, the cost function

changes: each denominator graph is built from the language-specific phone language model

(the same as that used in mono-lingual LF-MMI training). Gradients for language-dependent

layers are computed and updated for each minibatch. Using back-propagation, the shared

parameters are then updated. The overall cost-function is the weighted sum of all language-

dependent cost-functions.

In multi-task case, the language-independent denominator is applicable only. The work

was proposed in [Mad+20a] and the code implementation was made available as a part of

Kaldi [Pov+11]8.

2.5.2 Extension to multi-lingual acoustic modeling and language transfer

Figure 12 LF-MMI training for multi-lingual acoustic modeling (source: [Mad+20a]).

In addition to multi-lingual training, we also recently presented a work on (multi-task) language

transfer [MMB21] while employing sequence discriminative training. The reason for combin-

ing both multi-task and sequence discriminative training approaches is that when adapting

pre-trained acoustic models to low-resource languages, it can be observed that despite heavy

regularization (e.g., high dropout rates), the model performance usually saturates. To avoid

such saturation, the regularization is often used, which in this case is done by presenting other

languages for training (see Figure 11). The work was performed as part of MATERIAL pro-

8 egs/babel multilang/s5d/local/chain2/run tdnn.sh
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gramme thus many languages were considered assuming relatively small development data is

available. The multi-lingual model in this work [MMB21] was developed on 18 languages with

LF-MMI criterion. For multi-task training, Kazakh, Pashto and Farsi languages were used. The

first two languages were also part of the 18 languages used for multi-lingual training while Farsi

was an unseen language. The work also applied single-task training for comparison.

Eventually, the multi-task adaptation code was released9 as part of the Babel multi-lingual

recipe in Pkwrap [Mad+20b] to adapt both Kaldi and Pytorch [Pas+19] acoustic models trained

with LF-MMI.

2.6 Semi-supervised training

In order to reach sufficient accuracy, the state-of-the-art ASR systems require large datasets for

the development. The typical supervised training requires speech recordings with manual tran-

scripts together with a collection of linguistic data resources for lexicon and language model-

ing. However, the data preparation can be very slow and costly. To avoid this, semi-supervised

training can be of interest, as it can significantly reduce the data preparation time and cost by

transcribing only a subset of the data while the rest of data is transcribed automatically. One of

the works, also implemented as part of Kaldi, was developed at BUT [VHB13].

In our work, we mostly used methodology in which the transcribed data are used to build a seed

model. The seed model is then used to decode untranscribed data and the resulting hypotheses

represent ground-truth transcripts in further training. Typically, the data are selected according

to some form of a confidence measure.

2.6.1 Data selection

(Relevant paper: Semi-supervised Learning with Semantic Knowledge Extraction for Improved

Speech Recognition in Air Traffic Control, Ajay Srinivasamurthy, Petr Motlicek, Ivan Himawan,

Gyorgy Szaszak, Youssef Oualil and Hartmut Helmke, in: Proceedings of Interspeech, 2017,

Stockholm, Sweden, pages 2406-2410 [Sri+17])

(Paper also for consideration in this section: Contextual Semi-Supervised Learning: An Ap-

proach To Leverage Air-Surveillance and Untranscribed ATC Data in ASR Systems, Juan

Zuluaga-Gomez, Iuliia Nigmatulina, Amrutha Prasad, Petr Motlicek, Karel Vesely, Martin Ko-

cour and Igor Szoke, in: Proceedings of Interspeech, 2021 [Zul+21])

The automatically generated transcripts (along with transcribed speech) can be used as train-

ing data. However, these automatic transcripts will most probably be erroneous and those
9 https://github.com/idiap/pkwrap/tree/master/egs/multilang/babel/

 https://github.com/idiap/pkwrap/tree/master/ egs/multilang/babel/
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with most significant errors should be excluded from training, which is a problem often termed

as “data selection”. Typically, data selection is done by assigning confidence scores to ASR

outputs, so that high confidence transcripts (and corresponding utterances) can be selected

for further training. In our past work, we explored two different data selection strategies: (i)

word level confidences and (ii) concept and command level confidences (as part of the work on

analysing air-traffic communication). Both data selection methods aim to utilize automatically

transcribed data to provide additional training resources [Sri+17].

2.6.2 Semi-supervised training using LF-MMI

A simple approach to semi-supervised training in the LF-MMI framework (see Section 2.5 for

more details about the framework) is to generate 1-best output as transcription for the unla-

belled data. Also posteriors in the 1-best path can be used in the lattices generated during de-

coding as frame weights. The 1-best path is used as a numerator graph during semi-supervised

training, where the supervised and unsupervised data are combined together. The confidence

scores obtained from the LF-MMI system are often sparse thus to get informative measures for

data selection or weighting, some post-processing needs to be applied.

Figure 13 Incremental approach for semi-supervised training. Model100 means acoustic
model developed using 100 hours of untranscribed data, etc.

2.6.3 Incremental semi-supervised training

(Relevant paper: INCREMENTAL SEMI-SUPERVISED LEARNING FOR MULTI-GENRE

SPEECH RECOGNITION, Banriskhem Khonglah, Srikanth Madikeri, Subhadeep Dey, Hervé

Bourlard, Petr Motlicek and Jayadev Billa, in: IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), 2020 [Kho+20])

In order to improve the quality of transcriptions produced for the untranscribed data, recently we

proposed a simple method to generate and update labels without any change to the core semi-

supervised training framework being employed. The work was motivated based on the obser-
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vation that semi-supervised training can improve the acoustic model even with limited amounts

of untranscribed data. As seen in Figure 13, our approach divides the entire untranscribed

dataset into several equalsized parts (i.e., per 100 hours) and starts the semi-supervised train-

ing with only one part. While there exist many ways to divide the data, in this work we have

considered closely matching the amount of supervised data to our split-size.

Enumerating each split from 1...n, we run n training iterations. In the i-th iteration, splits 1...i are

used as the untranscribed set for training. As shown in Figure 13, in each iteration we use the

previous model as the seed for a new iteration of semi-supervised training from scratch. The

data used for each iteration includes the supervised set, all the portions of the unsupervised set

used in the last iteration and one unused sub-set for the current iteration. In doing so, we are

continuously improving the seed model on the domain of the untranscribed data. We note that

this data scheduling strategy, however, is computationally intensive since it involves multiple

decodes of the data.

2.6.4 Semi-supervised training for language modeling

Previous sections were related to training of acoustic models while using the data without man-

ual transcripts. In order to develop a good quality production system, the LM also requires large

data for training.

Our typical approach in this case (i.e., specifically in the case where small amounts of tran-

scripts are available), builds a second LM using the textual resources crawled from the internet.

More details will be given in Section 4.2. Finally, linear interpolation is typically applied combin-

ing LM built from available manual transcripts with the one built from crawled textual resources.

2.7 Self-supervised acoustic model training

(Paper also for consideration in this section: End-to-End Accented Speech Recognition,

Thibault Viglino, Petr Motlicek and Milos Cernak, in: Proceedings of Interspeech, ISCA, Graz,

Austria, pages 2140-2144, 2019 [VMC19])

Similar to semi-supervised training, self-supervised training methods aim to learn powerful

acoustic representations from untranscribed audio data. It has been shown that such acoustic

models can later be adapted using supervised data to achieve state-of-the-art performance for

ASR) while greatly reducing the amount of transcribed training data which is both expensive

and time-consuming to obtain.

In our works related to rapid development of ASR for low-resource languages, we specifically

considered wav2vec 2.0 [Bae+20], which learns representations from raw audio data using
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contrastive learning. Typical model, which was found of large interest, was trained on English

read speech (i.e., 1000 hours of unsupervised Librispeech data [Pan+15]) and later adapted on

a 100 hour supervised subset of Librispeech data to achieve state-of-the-art performance. The

past works only considered Connectionist Temporal Classification (CTC) [Gra+06] for acoustic

model training. Our recent work done as part of MATERIAL programme [VMB21]:

• (i) compared the effect of sequence discriminative training criterion for supervised

adaptation and showed that fine-tuning the wav2vec 2.0 model with end-to-end ver-

sion of LFMMI and CTC criterion yields roughly similar performances;

• (ii) the wav2vec 2.0 model (concretely XLSR-10 model [Con+20]) was further adapted

on out-of-domain conversational speech and on cross-lingual data and achieved ASR

results showed that the wav2vec 2.0 pretraining provides significant gains over the

models trained only with supervised data.

One of our recent approaches used multi-task training and accent embedding in the context of

end-to-end ASR trained with the connectionist temporal classification loss [VMC19].

Our very new work from spring 2022 targeted the scenario for the case when the data substan-

tially differs between the pre-training and downstream fine-tuning phases (i.e., domain shift).

We analyzed the robustness of wav2vec2.0 and XLSR models on downstream ASR for a com-

pletely unseen domain, i.e., air-traffic control communications.

2.8 Application of ASR in air-traffic management

(Paper also for consideration in this section: Automatic Call Sign Detection: Matching Air

Surveillance Data with Air Traffic Spoken Communications, Juan Zuluaga-Gomez, Karel Vesely,

Alexander Blatt, Petr Motlicek, Dietrich Klakow, Allan Tart, Igor Szoke, Amrutha Prasad, Seyyed

Saeed Sarfjoo, Pavel Kolcarek, Martin Kocour, Honza Cernocky, Claudia Cevenini, Khalid

Choukri, Mickael Rigault and Fabian Landis, in: Proceedings of 8th OpenSky Symposium,

OpenSky Network, pages 1-10, MDPI, 2020 [Zul+20a])

(Paper also for consideration in this section: Automatic Speech Recognition Benchmark for

Air-Traffic Communications, Juan Zuluaga-Gomez, Petr Motlicek, Qingran Zhan, Rudolf Braun

and Karel Vesely, in: Proceedings of Interspeech, pages 2297-2301, 2020 [Zul+20b])

Air-Traffic Control (ATC) is a very demanding task where one or several Air-Traffic Controllers

(ATCos) plan, send, and execute commands via voice communications, in order to ensure the

safety of the airplanes in a given space area. ATC communication is one of typical cases

where ASR systems would significantly help controllers to improve their efficiency and possibly
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decrease their workload, allowing also to spot errors in spoken communication, etc. A graphical

example of ASR in ATC is given in Figure 14.

Figure 14 Overview of air-traffic management system incorporating automatic speech recog-
nition.

Both Idiap and BUT have started collaborating on this topic already in 2016, through several

projects. ATC communication currently relies on two approaches: (i) voice communication and

(ii) voiceless communication through data links (also called CPDLC systems). One example of

a CPDLC system is the Eurocontrol Link200+ [Eur12], which was expected to be deployed in

all European airports by 2016. The idea is to transfer certain commands and orders through

a human-machine interface, thus reducing the amount of spoken communication, but increas-

ing the ATCos’ workload. The International Civil Aviation Organization (ICAO) stated that “To

minimize pilot head down time and potential distractions during critical phases of flight, the con-

troller should use voice to communicate with aircraft operating below 10,000 ft above ground

level”; hence, voice communications remains as the main way to exchange information and

commands near airports. Recent research projects [Hol+15] and the ICAO have stated that

air-traffic is expected to grow between 3% and 6% percent yearly at least until 2025 (i.e., es-

timated before COVID pandemic). The European Union (EU) with the aim of decreasing the

ATCos’ workload has invested resources into projects such as MALORCA (MAchine Learn-

ing Of speech Recognition models for Controller Assistance)10, AcListant11, and more recently

ATCO2 (Automatic collection and processing of voice data from air-traffic communications)12

and HAAWAII (HIGHLY AUTOMATED AIR TRAFFIC CONTROLLER WORKSTATIONS WITH

ARTIFICIAL INTELLIGENCE INTEGRATION)13, which have demonstrated various achieve-

ments by integrating spoken language understanding systems (including ASR: see a simplified

output of the ATM based in Figure 15) on reducing the ATCos’ workload [Hel+16], increasing

the efficiency [Hel+17], and even offering better solutions in integrating contextual information,

also in real time [Oua+15].

10 http://www.malorca-project.de
11 http://www.AcListant.de
12 https://www.atco2.org
13 https://www.haawaii.de

http://www.malorca-project.de
http://www.AcListant.de
https://www.atco2.org
https://www.haawaii.de
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Figure 15 Output of ASR system developed for air-traffic management.

Master thesis already in 2011 [Sho11] showed for the first time that including context knowledge

in ASR significantly reduces Word Error Rates (WER) in an ATC task. For instance, the WER

was reduced by a factor of almost 10 times i.e., 2.8% to 0.3%. In a follow-up project, AcListant

and DLR focused on integrating their ASR into an arrival manager (in order to improve the

prediction of the landing sequence). Following MALORCA project focused on ASR directly

developed and integrated for two Air-Navigation Service Providers (ANSPs): ANS CR14 and

Austrocontrol15.

Subsequent (and still ongoing project) HAAWAII focuses on more complex tasks such as read-

back error detection while exploring ASR as well. ATCO2 project, which recently ended, de-

veloped a unique platform allowing to collect, organize and pre-process ATC (voice communi-

cation) data from air space (see Figure 16 for an overview). First the project considered the

real-time voice communication between ATCos and pilots available either directly through pub-

licly accessible radio frequency channels, or indirectly from ANSPs. In addition to the voice

communication, the contextual information available in a form of metadata (i.e. surveillance

data) was exploited, available as part of OpenSky Network services16.

14 https://www.ans.cz
15 https://www.austrocontrol.at
16 https://opensky-network.org

https://www.ans.cz
https://www.austrocontrol.at
https://opensky-network.org
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Figure 16 Automatic transcription and annotation of ATC speech data with possible manual
verification.
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3 Boosting contextual information in ASR

This section summarises our R&D achievements in an area of boosting contextual information

for automatic speech recognition applications. The commented works address all 3 principal

components of the ASR systems, namely acoustic modeling, language modeling, and lexical

knowledge. Eventually, this section will also give a brief overview of contextual boosting for a

particular domain of air-traffic management.

Following 4 papers were selected to be summarised, commented and aligned with other works

in this section:

(1) A Comparison of Methods for OOV-Word Recognition on a New Public Dataset,

2021, [BMM21],

(2) English Spoken Term Detection in Multilingual Recordings, 2010, [MVG10],

(3) A Context-Aware Speech recognition and Understanding System for Air Traffic Con-

trol Domain, 2017, [Oua+17],

(4) Boosting of contextual information in ASR for air-traffic call-sign recognition,

2021, [Koc+21b].

3.1 Introduction

Contextual boosting - a technique to adapt ASR engine to increase its efficiency towards highly

informative content (or phrase) - can be very beneficial for various applications. In practice,

the problem of boosting can evolve in many directions. One of them is the recognition of

words not seen during training (i.e., often called Out-Of-Vocabulary (OOV) words). Another

problem is rather due to a very low occurrence of specific words in training data, thus having

a low probability to be recognized due to low n-gram score in language model. This section

summarizes our work done in this direction.

Goal of contextual boosting, as briefly introduced above and supported by our past and ongoing

work, is to increase the probability of words, or sequence of words, to be recognized with high

accuracy by an ASR system. The concept of boosting assumes that some prior information

(e.g., list of words to be boosted) is known in advance to the user. The prior information can be

similar to the whole test data (e.g. test set) used for recognition, or an online (real-time) ASR

can be considered and boosting can then vary for each particular audio file (utterance) to be

recognized.
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3.2 Boosting of OOV words

(Relevant paper: A COMPARISON OF METHODS FOR OOV-WORD RECOGNITION ON A

NEW PUBLIC DATASET, Rudolf Braun, Srikanth Madikeri and Petr Motlicek, in: IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, Ontario,

Canada, 2021 [BMM21])

In our recent work from 2021 [BMM21], we addressed the problem of boosting the scores for

OOV words by focusing on Weighted Finite-State Transducer (WFST) based ASR systems with

distinct acoustic and language models [MPR08]. In these systems both the LM and lexicon

are fixed and encoded as a WFST, thus words unseen during training cannot be recognized.

Our proposed solution towards this problem was to employ word or subword-based models

while using a phone LM as the pronunciation for [unk] token17, and then try to recover a word

from the recognized phone sequence aligned with the [unk] token. A reproducible dataset for

English and German using CommonVoice [Ard+19] was built with a large number of realistic

OOVs in the test set. Also a new tool for calculating error rate metrics was released18, and we

proposed a new metric called “OOV-CER” for measuring OOV-word recognition performance

independent of the performance on in-vocabulary words.

3.3 Boosting by a prior from another modality

(Relevant paper: English Spoken Term Detection in Multilingual Recordings, Petr Motlicek,

Fabio Valente and Philip N. Garner, in: Proceedings of Interspeech, Makuhari, Japan, 2010

[MVG10])

Very specific type of boosting can be considered by using a prior extracted from another modal-

ity (e.g., a presentation (slides) provided with audio from a conference lecture). Previous sec-

tion considered incorporation of a prior knowledge (i.e., highly informative words although not

included in the ASR lexicon) through a decoding WFST graph. This section proposes to use

prior information (available from another modality) through modifying (rescoring) ASR output

(word recognition lattices).

The work from 2010 [MVG10] used an English LVCSR based Spoken Term Detection (STD)

engine performing automatic indexation of real lecture recordings. The audio recordings were

uttered in English (usually by non-native speakers), however, some recordings were partially

(e.g. at the beginning of the talk), or fully uttered in French or Italian. Blindly applying an

English STD engine for automatically indexing English segments in such multi-lingual record-

ings would lead to a significant decrease of overall STD performance since the English engine
17 [unk] (unknown) token is often used in ASR for the words whose pronunciations are represented by a phone

LM trained on a lexicon of words with low counts.
18 https://github.com/idiap/icassp-oov-recognition

https://github.com/idiap/icassp-oov-recognition
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would be employed on“inappropriate” speech input (i.e., speech pronounced in different (alien)

languages whose words do not appear in the LVCSR dictionary).

One of the solutions would be to to employ a language identification, requiring to encode the

knowledge of other (non-target) languages. Another solution is to build an Out-Of-Language

(OOL) detection module built around LVCSR word lattices subsequently used for search of the

spoken terms.

To perform STD, the recordings are first pre-processed by using the LVCSR system that pro-

duces word recognition lattices. The word lattices are then converted into a candidate term

index accompanied with times and detection scores. The detection scores are represented

by the word posterior probabilities P estimated from the lattices using the forward-backward

re-estimation algorithm [EW00], and defined as:

P (Wi; ts, te) =
∑

Q

P (W j
i ; ts, te|xtets),

where Wi is the hypothesized word identity spanning the time interval t ∈ (ts, te). ts and te

denote the start and end time interval, respectively. j denotes the occurrence of word Wi in

the lattice. xtets denotes the corresponding partition of the input speech (the observation feature

sequence). Q represents a set of all word hypotheses sequences in the lattice that contain the

hypothesized word Wi in t ∈ (ts, te).

In order to boost some terms which were found apriori in corresponding slides, word posterior

probabilities P (Wi; ts, te) of searched terms can be modified by using a prior which represents

a relevance of a term to the topic (given by corresponding text slides). The prior is introduced

by a multiplicative constant c:

Pnew = cPold, if c <= 1/Pold,
Pnew = 1, otherwise.

We tested the boosting algorithm on multi-lingual lecture recordings (supplemented with text

slides): (i) for each lecture recording, a new list of terms was automatically generated based

on the occurrence of searched terms in the text of corresponding PowerPoint slides. Since

no time allocation of the individual slides and their precise alignment with the audio segments

of a lecture is available (only the general lecture number assignment), no precise temporal

information is employed. (ii) Posterior probabilities Pold (initially estimated from the LVCSR

based word recognition lattices) associated with search terms occurring in the new list of a

given lecture are updated.
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Figure 17 graphically shows a dependence of Equal Error Rate (EER)19 on varying c for two

STD systems (without and with application of the OOL detection module). c varied from 10−4

to 103.

Figure 17 Overall EERs of spoken-term detection when additional prior information is
exploited: (a) STD system without OOL module, (b) STD system with OOL module
(source: [MVG10]).

3.4 Context-based re-scoring of ASR output

(Relevant paper: A Context-Aware Speech recognition and Understanding System for Air Traffic

Control Domain, Youssef Oualil, Dietrich Klakow, Gyorgy Szaszak, Ajay Srinivasamurthy, Hart-

mut Helmke and Petr Motlicek, in: Proceedings of the IEEE Automatic Speech Recognition and

Understanding Workshop, Okinawa, Japan, 2017 [Oua+17])

Previous section considered prior information (as textual entities extracted from PowerPoint

presentations) to boost term detection in audio streams. This work was done by rescoring the

ASR hypotheses.

For some specific domains such as Air-Traffic Control (ATC), the context information can be

provided in many different ways. For instance, it can be available as abstract concepts (e.g.

airline codes such as “AFR2A”), which are however difficult to map into full possible spoken

sentences to perform rescoring (or model adaptation). Our work from 2017 [Oua+17] pre-

sented a multi-modal approach, which dynamically integrates partial temporal and situational

19 The EER is the location on a ROC or DET curve where the false acceptance rate and false rejection rate are
equal.
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ATC context information to improve its performance. More specifically, we tackled this work also

by re-scoring word recognition output (N-best) by using word sequences which carry relevant

ATC information as well as by directly adapting a language model (which can be seen as a

similar technique to WFST boosting).

Figure 18 Schematic view of an automatic speech recognition-based ATC system
(source: [Oua+17]).

3.4.1 Contextual data in ATC

The ATCos provide the commands to the pilots based on the state of a given airspace sector

obtained from radar information. These commands are issued in an irregular way and usually

contain an information as: (i) an aircraft call-sign (e.g. AFR2A ∼= air france two alpha) followed

by a command type to execute and a command value to achieve (e.g. REDUCE 220 ∼= reduce

speed two two zero knots).

Recognition of ATC commands is a primary goal of ASR based ATC systems. Our solution to-

ward this (already partially described above in Section 2.8) is to incorporate the contextual data

(which can be extracted in many ways from radar information available for ANSPs, or from con-

current streams (captured by ADS-B devices)) regularly issued by airplanes20. In MALORCA

project, we attempted to solve this problem by using the information regularly extracted from

the radar, while in more recent project ATCO2, the surveillance data was retrieved directly from

the OpenSky Network21. As the recorded ATC utterances are stored together with a timestamp,

20 https://en.wikipedia.org/wiki/Automatic_Dependent_Surveillance\T1\textendashBroadcast
21 https://opensky-network.org

https://en.wikipedia.org/wiki/Automatic_Dependent_Surveillance\T1\textendash Broadcast
https://opensky-network.org
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this timestamp can be used in combination with the ADS-B receiver (or airport) location to send

a query to the OpenSky Network (OSN) database. The OSN collects ADS-B and Mode S data

from airplanes from many locations around the world. The query to the OSN database has two

parameters: the time range and the search area. The time range is centered on the times-

tamp, and the search area is centered on the receiver (or airport) location. The query returns

the ADS-B information from every plane that matches the criteria. The call-signs contained

in the ADS-B information are present in the ICAO format (a three-character airline code, e.g.,

LUF(Lufthansa), followed by the call-sign number, which consists of a digit combination and

may also contain an additional character combination, e.g., LUF189AF, this is the compressed

form of a call-sign.).

Figure 19 Expected landing sequences and trajectories for different aircraft approaching
Prague airport. (source: [Oua+17]).

3.4.2 Context-based rescoring

As part of the 2017 paper [Oua+17], we proposed and developed a rescoring approach which

follows these steps (visualised in Figure 20):

• “Sequence Labeling”: We use a context-free-grammar-based token tagger [Sch+14]

(which is developed from rules manually collected by experts) to automatically map

the word transcripts provided by ASR to a concept level (Figure 21). As an exam-

ple – the ASR hypothesis “air france two alpha hello reduce speed two three

zero knots” is mapped to the following concept “<callsign> air france two alpha
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Figure 20 Command extractor and corrector - steps described in Section 3.4.2.

</callsign> hello <command=reduce> reduce speed <speed> two three zero

</speed> knots </command>”.

Figure 21 Use of context-free grammar to transduce ATC segments (text) to concepts.

• “Context-to-Word Mapping”: The partial rescoring approach turns the problem of gen-

erating full spoken sentences (realizations) of the context (i.e., from radar) into gener-

ating realization of short segments, which can be extracted by the sequence labeler in

the previous step. As an example, instead of generating the full realization of the com-

mand “AFR2A REDUCE 250”, we only need to generate context-to-word mapping for

the call-sign “AFR2A” and the speed value “250”.

• “Context-based Rescoring”: A Weighted Levenshtein Distance (WLD) is used to re-

score the segments extracted from the ASR hypotheses (Step 1), to find the closest

context segments (i.e., from all verbalized context segments available from Step 2).
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3.5 Two-stage boosting

(Relevant paper: Boosting of contextual information in ASR for air-traffic call-sign recognition,

Martin Kocour, Karel Vesely, Alexander Blatt, Juan Zuluaga-Gomez, Igor Szoke, Jan Cernocky,

Dietrich Klakow and Petr Motlicek, in: Proceedings of Interspeech, 2021 [Koc+21b])

A more advanced algorithm to boost contextual information was developed very recently jointly

at BUT and Idiap. It is called a two-stage boosting strategy, consisting of (i) HCLG boosting

and (2) lattice boosting, both implemented as WFST compositions. Briefly for HCLG boosting,

score discounts are given to individual words, while in lattice boosting the score discounts are

given to word-sequences.

The work has so far been developed and tested for boosting the call-signs in ATC applications,

nevertheless, the approach is very universal and can be used for boosting words or sequence

of words for various scenarios. Specifically, we apply targeted boosting of certain words, or

word-strings by applying score discounts into language model scores done by means of WFST

composition. The boosted expressions are thus made more likely to appear in the best hypoth-

esis of ASR. This approach is natural for WFST based ASR systems as for instance developed

in Kaldi.

3.5.1 List of call-signs

As already described in Section 3.1, prior information (known in advance of boosting) for each

spoken utterance (or generic to given “session”) is expected, and can be provided either from

radar screen or through a concurrent data stream such as from ADS-B receivers. Concretely,

a list of candidate call-signs for given short-term traffic situations can be periodically provided.

These call-signs can be obtained in a dynamic way (e.g. from a radar system), in a static

way from a historical database of traffic monitoring, or from ADS-B (where the synchronization

between speech and ADS-B channels can be done using timestamp and location information).

3.5.2 Lattice boosting

It is done through the composition of L and B, where L means the original lattice, and B means

boosting graph. Depending on application, B can be made specific for each speech segment

(utterance). Our first implementations aimed at a batch-mode composition (i.e., offline mode),

but most recent work (in 04/2022 under submission for Interspeech 2022 conference) describes

an implementation in an on-line mode. The composition can be implemented as a fast operation

as both the lattices and boosting graphs are relatively small.
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3.5.3 HCLG boosting

The HCLG boosting is also done as a composition of two FSTs, HCLG and B, where HCLG is

the pre-compiled recognition network22, and B is another type of boosting graph. The original

HCLG graph is plugged into the ASR decoder to generate word-recognition lattices. B can be

utterance-specific. The composition of B with HCLG graph is performed on-the-fly immediately

before initializing the decoder. An alternative approach to HCLG boosting, already presented

in Section 3.2 proposed to boost the G.fst and do on-the-fly composition with HCL.fst graph.

This implementation was tested as part of our research report [Nig+21]. The presented pa-

per [Koc+21b] shows that a cascade of HCLG and lattice boosting is complementary and the

boosted elements appear more likely as part of the best ASR hypothesis.

3.6 Application of contextual boosting in air-traffic management

(Paper also for consideration in this section: Automatic processing pipeline for collecting and

annotating air-traffic voice communication data, Martin Kocour, Karel Vesely, Igor Szoke, San-

tosh Kesiraju, Juan Zuluaga-Gomez, Alexander Blatt, Amrutha Prasad, Iuliia Nigmatulina, Petr

Motlicek, in: Proceedings of 9th OpenSky Symposium, OpenSky Network, Brussels, Belgium,

pages 1-9, MDPI, 2020 [Koc+21a])

(Paper also for consideration in this section: Machine Learning of Controller Command Pre-

diction Models from Recorded Radar Data and Controller Speech Utterances, Matthias Klein-

ert, Hartmut Helmke, Gerald Siol, heiko Ehr, Michael Finke, Youssef Oualil and Ajay Srini-

vasamurthy, in: Proceedings of the 7th SESAR Innovation Days (SID), University of Belgrade,

Belgrade, Serbia, 2017 [Kle+17])

Application of speech processing and automatic speech recognition in air-traffic management

has already been introduced in Section 2.8. The topic of boosting plays an essential role to

reach low word-error rates (for detection and classification of call-signs as well as for other

entities of the ATC communication). In brief, contextual boosting allows to incorporate a prior

knowledge known in advance (either from another modality such as radar or ADS-B), or from

other sources (e.g., command prediction model [Kle+17]). Although the strategy of boosting

was already applied in ASR for ATC in 2017 [Oua+17], substantial improvements were made

very recently by implementing several approaches directly within the ASR decoder (e.g., HCLG

boosting) or on top of decoder output by boosting directly word-recognition lattices. Also shown

in the following Section 4.4, another type of boosting which brought further improvements in

recognition accuracies was implemented and integrated as part of the natural language pro-

cessing stage.

22 https://kaldi-asr.org/doc/graph.html

https://kaldi-asr.org/doc/graph.html
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4 Natural language understanding on automatically generated textual data

This section summarises our past (including very recent) works falling into the category of natu-

ral language understanding, with direct or indirect implications to automatic speech recognition.

More specifically, the first part will be related to adapting language models using supervised

and unsupervised techniques. This will be followed by a section related to the use of powerful

recurrent neural networks in language modeling - directly converted to WFSTs. The last sec-

tion will be devoted to comment on our very recent work on building a named entity recognizer

exploiting prior information extracted from radar data for ATC domain.

Following 3 papers were selected among others to be summarised/commented on and aligned

with other works in this section:

• Supervised and unsupervised Web-based language model domain adaptation,

2012 [Lec+12],

• Conversion of Recurrent Neural Network Language Models to Weighted Finite State

Transducers for Automatic Speech Recognition, 2012 [LM12],

• A two-step approach to leverage contextual data: speech recognition in air-traffic

communications, 2022 [Nig+22].

4.1 Joint ASR and NLP

(Paper also for consideration in this section: Expanded Lattice Embeddings for Spoken Doc-

ument Retrieval on Informal Meetings, Esaú VILLATORO-TELLO, Srikanth Madikeri, Petr

Motlicek, Aravind Ganapathiraju and Alexei V. Ivanov, in: The 45th International ACM SIGIR

Conference on Research and Development in Information Retrieval, 2022 [VIL+22])

Before presenting in more details aforementioned NLP areas (represented by 3 papers), one

of the goals of this Section 4 is also to recapitulate and highlight our very recent research

directions while addressing downstream applications of automatic speech recognition. As a

mature technology, ASR has become an alternative input method in many applications, and

is in general considered as an input in several SLU tasks, including Information Retrieval (IR)

or more concretely Spoken Document Retrieval (SDR). SDR typically employs ASR transcripts

to index and retrieve relevant spoken documents. However, it can be expected that upstream

processes (such as ASR) inject errors that would negatively affect the retrieval performance.

Our very recent activities aim to jointly address both ASR and NLP (i.e., SDR) systems to

eventually improve performance of the whole chain.

One of possible solutions to deal with ASR errors in SDR is to consider multiple alternative

hypotheses to augment the input to document retrieval to compensate for the erroneous 1-
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best hypothesis. N-best output (i.e., the top “n” scoring hypotheses) is usually available in

any of WFST based ASR systems and it can easily be fed to a traditional IR pipeline. One

of the problems of n-best is that the concurrent hypotheses are terribly redundant, and do

not sufficiently encapsulate the richness of the ASR output usually represented as an acyclic

directed graph called the lattice.

Our recent work [VIL+22] (also graphically explained in Figure 22) proposes to utilize the lat-

tice’s constrained minimum path to generate a minimum set of hypotheses that serve as input

to the re-ranking phase of IR. The novelty of this approach is the incorporation of the lattice as

an input for neural re-ranking by considering a set of hypotheses that represents every arc in

the lattice. The obtained hypotheses are encoded through sentence embeddings using BERT-

based models, namely SBERT and RoBERTa, and the final ranking of the retrieved segments

is obtained with a max-pooling operation over the computed scores among the input query and

the hypotheses set. This approach, when tested on a standardised database, presumes that

this new set of hypotheses derived from the expanded lattice can significantly improve the SDR

performance (when compared with typical n-best ASR output).

Figure 22 General overview of the proposed multi-stage SDR architecture based on ex-
panded lattice embeddings (source: [VIL+22]).

4.2 Supervised and unsupervised language model adaptation

(Relevant paper: Supervised and unsupervised Web-based language model domain adap-

tation, Gwénolé Lecorvé, John Dines, Thomas Hain and Petr Motlicek, in: Proceedings of

Interspeech, Portland, Oregon, USA, 2012 [Lec+12])

Already partially described in Section 2.4.3, domain adaptation, allowing the use of machine

learning technologies (such as ASR) in new environments, is usually required to reach ad-

equate and acceptable performance. In case of LM, the domain adaptation consists in re-

estimating probabilities of a baseline (in our case n-gram) LM in order to better match the

specifics of a given broad topic of interest. To do so, a common strategy is to retrieve adaptation
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texts from the Web (e.g. by using Commoncrawl23) based on a given domain-representative

seed text. In case of our study from 2012 [Lec+12], our goal was to analyze the differences of

our Web-based adaptation approach for:

• Supervised case – in which the seed text is manually generated, and

• Unsupervised case – where the seed text is given by an automatic transcript gener-

ated by an ASR.

The work was built around video data available at YouTube channels (with manual or automatic

transcripts accompanying video).

4.2.1 N-gram LM adaptation

The n-gram LMs are still among the most typical models used by ASR systems and usually

require a large multi-topic text collection for training. As a consequence, this LM is not optimal

(as part of ASR) to transcribe material dealing with a given specific domain. As proposed

solution, LM adaptation (to re-estimate the n-gram probabilities of the baseline LM) can be

performed in order to fit the specifics of the considered domain.

Web textual data seems to be a natural alternative to be used for LM adaptation. The process

can be split into several steps:

• Query extraction of a text that is representative of the domain of interest – “seed” text.

Seed text is of high importance in this process as it is supposed to well characterize

the target domain so that we can extract meaningful information (documents) from

the Web.

• Retrieve web pages by submitting the queries to a Web search engine.

• Build an adapted LM by integrating the retrieved adaptation data with background

training material.

Having a large amount of seed text is desirable as it can better represent the domain of interest.

However in case of domain such as those related to spontaneous speech (e.g., multiparty

meetings24, etc.), this might be problematic as such data do not really exist/cannot be easily

retrieved from Web, or it is costly to produce such text by manually transcribing the spoken

material (video/audio). Therefore, supervised LM adaptation is not always feasible. In the case

of automatizing this process and relying more on automatically generated text data, this would

lead to a much lower effort by humans/developers.

23 https://commoncrawl.org
24 https://www.cstr.ed.ac.uk/research/projects/ami

https://commoncrawl.org
https://www.cstr.ed.ac.uk/research/projects/ami
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Overall, the work commented in this section compared the Web-based domain LM adaptation

process using different levels of supervision while also analysing the impact of recognition

errors in the seed text on ASR accuracy gains provided by LM adaptation and the dependence

on the size of the seed text. Achieved results indicate that the use of manual transcripts brings

the greatest improvement in terms of perplexity and ASR accuracy. Further we also found

out that the recognition errors do not significantly bias LM adaptation, as this is usually the

case for query extraction, or for linear interpolation. This is very interesting due to the fact that

error spotting in ASR outputs is a complex task. Finally, the presented work has demonstrated

that reducing the size of the seed text does not change aforementioned observations. In fact,

results indicate that decreasing the seed text size reduces both the gains in perplexity and

in word error rates consistently for both supervised and unsupervised cases, though in the

unsupervised case this is more pronounced.

4.3 Conversion of RNN based LM to WFST

(Relevant paper: Conversion of Recurrent Neural Network Language Models to Weighted Finite

State Transducers for Automatic Speech Recognition, Gwénolé Lecorvé and Petr Motlicek, in:

Proceedings of Interspeech, Portland, Oregon, USA, 2012 [LM12])

Recurrent Neural Network Language Models (RNNLMs) have been known to significantly in-

crease accuracies of ASR when used on top of n-gram LM. In fact, highly cited paper of col-

leagues from BUT in 2010 have presented the work on the use of RNNLMs in ASR and demon-

strated up to 50% reduction of perplexity by using mixture of several RNN LMs [Mik+10].

Our work on the use of RNNs in LM was already briefly introduced in Section 2.3. Specifically,

RNNLMs are used in a two-pass ASR approach to re-score N-best lists generated in the first-

pass by using n-gram LMs. This means that the prediction power of RNNLMs is used only

on subsets of all transcription hypotheses. which implies that the approach does not offer the

optimal solution since the n-gram LM used for the first-pass (decoding) may have discarded

hypotheses which the RNNLM would have judged very likely. It has also been shown that both

n-gram and RNNs provide complementary distributions [Mik+11] and thus the use of RNNLMs

in early stages of speech decoding is a challenging objective.

The problem of employing RNNLM in the first-pass ASR has been addressed by our paper in

2012 [LM12]. The key obstacle for ASR is that RNNLMs cannot be used to directly decode a

speech signal since they rely on continuous representations of word histories while decoding

algorithms (e.g. the one implemented in Kaldi [Pov+11]) require to handle discrete representa-

tions to remain tractable. In our work, we defined a new generic strategy to transform RNNLMs

into a Weighted Finite State Transducer (WFST) which can directly be used within the decoding

process in ASR. The principle of the conversion consists in discretizing continuous RNNLM rep-
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resentations of word histories in order to build WFST states, and then to link these states with

probabilities derived from the RNNLM. Figure 23 gives a graphical overview of the discretization

scheme. In practice, this approach also raises some needs for pruning the generated WFST

since the theoretical number of states may be large according to the chosen discretization strat-

egy. The paper presented a preliminary implementation of the RNNLM conversion algorithm

based on K-means clustering and entropy pruning.

Although the obtained results brought only marginal improvements (i.e., compared to the ap-

proach where RNNLMs were employed to re-score N-best hypotheses in the second pass of

ASR), the approach is theoretically valid and the problem is still (even nowadays) interesting

from a research point of view.

Figure 23 Overview of the RNNLM discretization scheme.

4.4 Boosting of NER for air-traffic management

(Relevant paper: A two-step approach to leverage contextual data: speech recognition in

air-traffic communications, Iuliia Nigmatulina, Juan Zuluaga-Gomez, Amrutha Prasad, Seyyed

Saeed Sarfjoo and Petr Motlicek, in: Proceedings of IEEE International Conference on Acous-

tics, Speech, and Signal Processing (ICASSP), 2022 [Nig+22])

In addition to the work presented above in Section 4.1, this section presents the work on a

transition between both ASR and NLP technologies. The work, purely dedicated to the ATM

domain, is an extension of the previous work already presented in Section 3.5 on (two stage)

contextual boosting. Unlike previous work presented in [Koc+21b], the work briefly presented

here aims to combine the benefits of ASR and NLP methods and to demonstrate that the use

of surveillance data (i.e. available through additional modality) applied simultaneously in both
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technologies helps to considerably improve the ASR (i.e., recognition of call-signs considered

as named entities). Practically this work can be seen as a two-step call-sign boosting approach,

where:

• at step (1) as part of ASR - weights of probable call-sign n-grams are reduced (i.e.,

boosted) in G.fst and/or in the decoding FST (lattices), and

• at step (2) as part of NLP - call-signs extracted from the boosted recognition outputs

by using Named Entity Recognition (NER) module are eventually correlated with the

surveillance data to select the most suitable one.

Our work demonstrates that ASR and NLP can be seen as complementary tasks rather than

separated ones. Whereas ASR exploits speech to produce a sequence of words, NLP exploits

the intrinsic characteristics in a given snippet of text. ASR normally struggles to model long

sequences, while state-of-the-art NLP systems allow extracting key information in the whole

chunks of text; for instance an entire ATC utterance. The proposed approach focuses on an

iterative use of contextual data to take advantage of a combination of ASR and NLP modules.

The ASR engine does not differ much from the one described in [Koc+21b]. The NER module

is built using BERT model [Dev+18], pre-trained as masked language model from Hugging-

face [Wol+19] and fine-tuned it on NER task with our in-domain text (i.e., where each word has

a tag). A data augmentation pipeline was also implemented in order to increase the amount of

training data. The developed NER is then capable of extracting the call-sign information from a

given transcript, or in our case from ASR 1-best hypotheses. Recognition of the call-sign entity

is crucial where a single error produced by the ASR system affects the whole entity (normally

composed of three to eight words).
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Figure 24 Call-sign and command tagging: Named entity recognizer to automatically tag the
input word sequence for respective ATC classes. Visualisation of BERT-based model (Hug-
gingface) fine-tuned on NER task.

4.4.1 Re-ranking

The output of an NER system is a list of tags that match words or sequences of words in an

input utterance. As our only available source of contextual knowledge (provided by radar - see

Figure 25) in this work are call-signs registered at a certain time and location, we extracted

call-signs with the NER system and discarded other entities. Correspondingly, each utterance

has a list of call-signs expanded into word sequences. As input, the re-ranking module takes (i)

a call-sign extracted by the NER system and (ii) an expanded list of call-signs (available from

radar). The re-ranking module compares a given n-gram sequence against a list of possible

n-grams, and finds the closest match from the list of surveillance data based on the weighted

Levenshtein distance.
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Figure 25 Integrate the surveillance data (extracted from radar screen) into the ASR system.

4.4.2 BERT - as speaker role detector

As a subsequent task in the ATM domain, also implying the use of the BERT-based model, is

represented by a speaker role detector. Similarly to the NER module (developed from BERT),

we also trained the speaker role detector as a text-based module to reliably classify the utter-

ances into two classes: Air-Traffic Controllers (ATCos), or pilots. Implementation of this module

on purely acoustics, e.g., by expecting that the SNR level of pilot’s speech will be way lower

than SNR of ATCos, was not found very reliable. Although not anticipated, the communication

channel between air-traffic controllers and pilots is often not automatically split (i.e., it is avail-

able as a 1-channel) and thus automatic and reliable speaker segmentation is of high interest

- as a pre-processing block for all downstream applications. A recent work on speaker role

detection (while using a rule-based approach) can be found in the research report [Pra+21].

Overview of the whole processing scheme including ASR module to automatically transcribe

the ATCo-pilot voice communication, followed by NER tagging and speaker role identification,

can be seen in Figure 26. The application is assumed to work as a virtual pilot, automatically

answering to the controllers on the issued commands.
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Figure 26 Overview of an ATM application of virtual pilot: besides ASR, the module for
speaker role identification and text-to-speech (to generate an automatic response back to pilot)
are deployed.
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Using out-of-language data to improve an under-resourced speech recognizer

David Imsenga,b,∗, Petr Motliceka, Hervé Bourlarda,b, Philip N. Garnera

aIdiap Research Institute, Martigny, Switzerland
bEcole Polytechnique Fédérale, Lausanne (EPFL), Switzerland

Abstract

Under-resourced speech recognizers may benefit from data in languages other than the target language. In this paper,
we report how to boost the performance of an Afrikaans automatic speech recognition system by using already available
Dutch data. We successfully exploit available multilingual resources through (1) posterior features, estimated by multi-
layer perceptrons (MLP) and (2) subspace Gaussian mixture models (SGMMs). Both the MLPs and the SGMMs can be
trained on out-of-language data. We use three different acoustic modeling techniques, namely Tandem, Kullback–Leibler
divergence based HMMs (KL-HMM) as well as SGMMs and show that the proposed multilingual systems yield 12%
relative improvement compared to a conventional monolingual HMM/GMM system only trained on Afrikaans. We also
show that KL-HMMs are extremely powerful for under-resourced languages: using only six minutes of Afrikaans data
(in combination with out-of-language data), KL-HMM yields about 30% relative improvement compared to conventional
maximum likelihood linear regression and maximum a posteriori based acoustic model adaptation.

Keywords: Multilingual speech recognition, posterior features, subspace Gaussian mixture models, under-resourced
languages, Afrikaans

1. Introduction

Developing a state-of-the-art speech recognizer from
scratch for a given language is expensive. The main reason
for this is the large amount of data that is usually needed
to train current recognizers. Data collection involves large
amounts of manual work, not only in time for the speakers
to be recorded, but also for annotation of the subsequent
recordings. Therefore, the need for training data is one of
the main barriers in porting current systems to many lan-
guages. On the other hand, large databases already exist
for many languages.

Previous studies have shown that automatic speech
recognition (ASR) may benefit from data in languages
other than the target language only under certain condi-
tions such as there being less than one hour of data for the
training language (Imseng et al., 2012a; Qian et al., 2011).
Usually, a language with large amounts of training data is
used to simulate small amounts of target training data (Im-
seng et al., 2012a; Qian et al., 2011). For instance (Niesler,
2007) studied the sharing of resources on real under-
resourced languages, including Afrikaans, inspired by mul-
tilingual acoustic modeling techniques proposed by Schultz
and Waibel (2001). However, only marginal ASR perfor-
mance gains were reported.

Standard ASR systems typically make use of phonemes
as subword units to model human speech production. A
phoneme is defined as the smallest sound unit of a language

∗Corresponding author

that discriminates between a minimal word pair (Bloom-
field, 1933, p. 78). Although humans are able to pro-
duce a large variety of acoustic sounds, we assume that all
those sounds across speakers and languages, share a com-
mon acoustic space. We found in previous studies (Imseng
et al., 2012a, 2011) that the relation between phonemes of
different languages can (1) be learned and (2) be exploited
for cross-lingual acoustic model training or adaptation.
Posterior features, estimated by multilayer perceptrons
(MLPs), are particularly well suited for such tasks. Even
though previous posterior feature studies that used more
than one hour of target language data reported rather
small or no improvements (up to 3.5% relative) (Tòth
et al., 2008; Grézl et al., 2011), we successfully used poste-
rior features estimated by MLPs that are trained on sim-
ilar languages such as English, Dutch and Swiss German
to boost the performance of an Afrikaans speech recog-
nizer (Imseng et al., 2012b).

In this paper, we show how to significantly boost the
performance of an existing Afrikaans speech recognizer
that was trained on three h of within-language data, by
using 80 h of Dutch data. We also compare different acous-
tic modeling techniques and investigate their usefulness
if only very limited amounts of within-language data are
available.

In our most recent study (Imseng et al., 2012b), we
compared two different acoustic modeling techniques for
posterior features, namely Tandem (Hermansky et al.,
2000) and Kullback-Leibler divergence based hidden
Markov models (KL-HMM) (Aradilla et al., 2008). KL-
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HMM and Tandem both exploit multilingual information
in the form of posterior features; we found that they bene-
fit from MLPs that were trained on context-dependent tar-
gets, but limited ourselves to MLPs with relatively small
numbers of context-dependent targets (about 200). In this
study however, we further investigate MLPs trained on
context-dependent targets and allow ten times more out-
put units. We also investigate a different (and more suit-
able) cost function for the KL-HMM framework and com-
pare the aforementioned acoustic modeling techniques to
subspace Gaussian mixture models (SGMM), conventional
maximum likelihood linear regression (MLLR) and maxi-
mum a posteriori (MAP) adaptations.

Given three h of Afrikaans data, KL-HMM, Tandem
and SGMM successfully exploit 80 h of Dutch data and
yield more than 10% relative improvement compared to
the conventional HMM/GMM based monolingual recog-
nizer. Furthermore, we also compare the performance
of KL-HMM, Tandem, SGMM, MLLR and MAP if only
six minutes of Afrikaans data is available. KL-HMM is
demonstrated to be particularly well suited to such low
amount of data scenarios and outperforms all other acous-
tic modeling techniques and also MLLR and MAP adap-
tations.

We first briefly review Tandem, KL-HMM and SGMM
in Section 2. In Section 3, we then present the databases
that we used for the training of the MLPs and the shared
SGMM parameters as described in Section 4, and give an
overview over the investigated systems in Section 5. Ex-
periments and results are then given in Section 6 and dis-
cussed in Section 7.

2. Acoustic modeling

In this paper, we investigate three different acoustic
modeling techniques and also compare them to a conven-
tional HMM/GMM system. The investigated approaches
are well suited to exploit out-of-language data. We also
compare them to an HMM/GMM system that exploits
out-of-language data with the conventional maximum like-
lihood linear regression (MLLR) approach (Gales, 1998)
and with maximum a posteriori (MAP) adaptation (Gau-
vain and Lee, 1993).

Two of the presented approaches exploit out-of-
language data on the feature level, namely Tandem (Her-
mansky et al., 2000) and Kullback–Leibler divergence
based HMM (KL-HMM) (Aradilla et al., 2008). Subspace
Gaussian mixture models (SGMM) (Burget et al., 2010) on
the other hand exploit out-of-language data on the acous-
tic model level. The Tandem approach is illustrated in
Figure 1, KL-HMM in Figure 2 and SGMM in Figure 3.

The posterior feature based approaches exploit out-of-
language information in the form of a Multilayer Percep-
tron (MLP) which was trained on out-of-language data,
whereas the SGMM uses a Universal Background Model
(UBM) and shared projection matrices trained on out-of-

language data. In the remainder of this section, we will
briefly review all three acoustic modeling techniques.

2.1. Feature level

Both posterior feature based approaches involve the
training/estimation of two different kind of distributions:

• Posterior features: The posterior features are phone
class posterior probabilities given the acoustics and
estimated with an MLP that can be trained on any
auxiliary dataset. Therefore we call it an auxil-
iary MLP and choose an out-of-language dataset
with large amounts of available data with which to
train. The language of the training data determines
the number of output units K (number of phone
classes) of the MLP. The phone classes can for exam-
ple be context-independent monophones or context-
dependent triphones. More details about the MLP
training are given in Section 4.1.

Once the MLP is trained, we consider a sequence
of T acoustic feature vectors X = {x1, . . . ,xT },
namely perceptual linear prediction (PLP) features,
extracted from within-language data. As seen
in Figure 2, the phone class posterior sequence
Z = {z1, . . . ,zT } is then estimated with the pre-
viously trained auxiliary MLP. To estimate zt =
(z1t , . . . , z

K
t )T, we consider a nine frame tempo-

ral context {xt−4, . . . ,xt, . . . ,xt+4}. The described
phone class posterior estimation is identical for
both posterior feature based acoustic modeling tech-
niques.

• HMM state distributions: The HMM states qd : d ∈
{1, . . . , D} are associated with the target language.
Each phone (mono- or tri-phone) of the target lan-
guage is modeled with three states, thus the total
number of states D is equal to three times the num-
ber of phones of the target language.

The HMM state distributions consist of emission
and transition probabilities. Based on anecdotal
knowledge, we fix the transition probabilities aij for
both posterior feature based acoustic modeling tech-
niques (see Figures 1 and 2). The emission prob-
abilities however are modeled differently for Tan-
dem and KL-HMM. As we will describe below, Tan-
dem (Section 2.1.1) uses Gaussian mixtures and KL-
HMM (Section 2.1.2) uses a categorical distribution.
The emission probabilities are trained from within-
language data only. Here, we assume that we have
access to a limited amount of within-language data.

2.1.1. Tandem

The conventional Tandem approach models the emis-
sion probabilities of the HMM states qd with mixtures
of Gaussians. Figure 1 illustrates the HMM associated
with a three-state-phone (qi, qj , qk). To model the emis-
sion probabilities with Gaussians, the posterior features zt
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Figure 1: Tandem - the emission probabilities of the HMM states
are modeled with Gaussian mixtures and the MLP output is post-
processed. For more details, see Section 5.4.

need to be post-processed. More specifically, the log-phone
class posteriors are decorrelated with a principal compo-
nent analysis (PCA). The transformation matrix can be
estimated on within-language data. Usually, the resulting
feature vector rt = (r1t , . . . , r

L
t )T, has a reduced dimen-

sionality L.

2.1.2. Kullback–Leibler divergence based HMM

As illustrated in Figure 2, a KL-HMM is a partic-
ular form of HMM in which the emission probability
of state qd is parametrized by a categorical distribution
yd = (y1d, . . . , y

K
d )T, where K is the dimensionality of the

features. A categorical distribution is a multinomial dis-
tribution from which only one sample is drawn. In con-
trast to Tandem that uses Gaussian mixtures and therefore
needs the post-processed features rt, the categorical distri-
butions can directly be trained from phone class posterior
probabilities zt.

Kullback and Leibler introduced the term discrimina-
tion information (Kullback and Leibler, 1951; Kullback,
1987) which is nowadays often referred to as the Kullback–
Leibler distance1, defined by Cover and Thomas (1991).
The divergence of Kullback and Leibler (1951) is today
referred to as the symmetric variant of the KL divergence.
Aradilla et al. (2008) proposed multiple KL divergence
based local scores for KL-HMM training and decoding. In
recent studies, we used the symmetric variant of the KL
divergence. However, recently we found that the asymmet-
ric KL divergence KL(x||y) is in fact more robust. This
is also intuitively reasonable in that the underlying acous-
tic modeling problem is not symmetric since we observe

1In reality, usually it is referred to as a divergence rather than a
distance because it is not a metric.
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Figure 2: KL-HMM - the emission probabilities are modeled with
categorical distributions and the MLP output can directly be used.
More details can be found in Section 5.5.

the posterior features and train the categorical distribu-
tions. Therefore, we use the following Kullback–Leibler
based distance as local score in this study:

d(zt,yd) =
K∑

k=1

zkt log
zkt
ykd
. (1)

A detailed description of training and decoding algorithms
based on the symmetric variant of the KL divergence can
be found in (Imseng et al., 2012a). In this paper we use
the asymmetric KL divergence as given in (1). For clarity,
we briefly review the training and decoding algorithms.

Training
The categorical distributions Y = {y1, . . . ,yD} can

be learned using an iterative Viterbi segmentation-
optimization scheme. The cost function can be defined
by integrating the local score, given in (1), over time t and
states qd, resulting in

F(Z, Y ) =

T∑

t=1

D∑

d=1

d(zt,yd)δdt , (2)

where the Kronecker delta δdt is defined as:

δdt =

{
1, if xt is associated with state qd

0, otherwise.

To associate each xt with one of the states, the HMM
aligns the phone class posterior probabilities Z with the
states by minimizing F(Z, Y ), given in (2).

Each zt is then used to update a particular categor-
ical distribution yd. To minimize F(Z, Y ) subject to∑K

k=1 y
k
d = 1, we take the partial derivative with respect

to each variable ykd and set it to zero to find the minimum.
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Then, we introduce the Lagrange multipliers λ to enforce
the sum to one constraint:

∂

∂ykd

[
F(Z, Y ) + λ

(
K∑

k=1

ykd − 1

)]
= 0. (3)

Solving (3) yields:

ykd =
1

λ

∑

∀t∗
zkt , (4)

where the sum extends over all t∗ such that xt∗ is associ-
ated with state qd. Solving (4) for λ yields:

λ =
∑

∀t∗

K∑

k=1

ykd =
∑

∀t∗
1 = Td,

where Td stands for the number of frames associated with
state qd. We thus obtain:

ykd =
1

Td

∑

∀t∗
zkt . (5)

Decoding
During decoding, we minimize:

FQ(Z, Y ) = min
Q

T∑

t=1

[
d(zt,yqt)− log aqt−1qt

]
, (6)

where Q = {q1, . . . , qT } stands for all allowed state paths
and yqt is the categorical distribution associated with qt,
the state at time t. The transition probabilities aqt−1qt are
fixed.

2.2. Acoustic model level

In addition to feature level, out-of-language data can
also be directly exploited on the acoustic model level to
improve ASR performance. In this study we employ SG-
MMs as an acoustic modeling technique exploiting out-of-
language data. Similar to feature level, HMM state distri-
butions associated with the target language are estimated.
The transition probabilities are fixed and the emmission
probabilities are modeled using probability density func-
tion in an SGMM manner.

2.2.1. Subspace Gaussian mixture model (SGMM)

In the SGMM acoustic modeling approach, each speech
state associated with an HMM is modeled by a GMM, as
is the case for conventional HMM/GMMs. However, the
GMMs are not the parameters of the model. Instead, each
HMM state qd (where d represents a state index) is associ-
ated with a vector vd = (v1d, . . . , v

S
d )T, where S is usually

similar to the dimension of the acoustic speech features.
Mathematically, the SGMM model can be described as
follows (Povey et al., 2010):

..

. ..
. ..

.

Shared parameters

Acoustic
observation
sequence

Acoustic
Model

HMM

w1

2

wS
1

w1

1

wS
2

w1

I wS
I

m1

1

m1

A

mS
1

mS
A

q2

x1, · · · ,xt, · · · ,xT

MW

M1

M2

M3

MI

UBMI
i=1

vS
1

v1
2

vS
2

v1
3

vS
3

v1
1

a11 a22 a33

q1 q3

a12 a23 a34a01

Figure 3: SGMM - the emission probabilities of each context-
dependent HMM-state qd are modeled by GMM. Each HMM-state is
parametrized by a vector vd. The parameters M and W are globally
shared.

p(xt|qd) =

I∑

i=1

ωd
iN (xt;µi,d,Σi), (7)

µi,d = Mivd, (8)

ωd
i =

exp(wi · vd)
∑I

l=1 exp(wl · vd)
, (9)

where xt ∈ RA denotes feature vector, qd is the HMM-
state, and vd ∈ RS is the state-specific vector. The
model in each HMM state is represented by a simple GMM
with I Gaussians, mixture weights ωd = (ωd

1 , . . . , ω
d
I )T,

means µi,d, and covariances Σi. Σi are shared across
the states. The state-specific vectors vd ∈ RS together
with the globally shared parameters M = (M1, . . . ,MI)T

and W = (w1, . . . ,wI)T with wi = (w1
i , . . . , w

S
i ) are used

to derive the means and mixture weights representing the
given HMM state. For the initialization of the SGMM, a
generic GMM with I Gaussians, denoted as UBM, mod-
eling all the speech is used. SGMM acoustic modeling is
depicted in Figure 3 for a single HMM.

Note that the equations above assume (without loss of
generality) one state-specific vector vd to be assigned to
each HMM-state. However, as done for the experiments in
this study, we can model each state with a mixture of sub-
states (Povey et al., 2011), each having its own sub-state
specific vector vdj

, where j = 1, . . . , Jd with Jd being the
number of sub-states of state d. In that case, we also need
to estimate the mixture weights cj for each sub-state.
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ID Language Number of Amount of
phonemes training data

AF Afrikaans 38 3 h
CGN Dutch 47 81 h

Table 1: Summary of the different languages with number of
phonemes and amount of available training data.

3. Databases

We used data from Afrikaans and Dutch as summarized
in Table 1. In this section, we describe the two databases.

3.1. LWAZI

The Afrikaans data is available from the LWAZI corpus
provided by the Meraka Institute, CSIR, South Africa2

and described by Barnard et al. (2009). The database
consists of 200 speakers, recorded over a telephone chan-
nel at 8 kHz. Each speaker produced approximately 30
utterances, where 16 were randomly selected from a pho-
netically balanced corpus and the remainder consisted of
short words and phrases.

The Afrikaans database comes with a dictionary (Davel
and Martirosian, 2009) that defines the phoneme set con-
taining 38 phonemes (including silence). The dictionary
that we used contained 1585 different words. The HLT
group at Meraka provided us with the training and test
sets. In total, about three hours of training data and 50
minutes of test data is available (after voice activity de-
tection).

Since we did not have access to an appropriate language
model, we trained a bi-gram phoneme model on the train-
ing set and only report phoneme accuracies in this study.
The bi-gram phoneme model learned the phonotactic con-
straints of the Afrikaans language and has a phoneme per-
plexity of 14.5 on the training set and 14.7 on the test
set.

3.2. Corpus Gesproken Nederlands

Heeringa and de Wet (2008) reported that standard
Dutch seems to be the best language from which to bor-
row acoustic data for the development of an Afrikaans
ASR system. Our studies confirmed that hypothesis (Im-
seng et al., 2012b). Therefore, we used data of the
Spoken Dutch Corpus (Corpus Gesproken Nederlands,
CGN) (Oostdijk, 2000) that contains standard Dutch pro-
nounced by more than 4000 speakers from the Netherlands
and Flanders. The database is divided into several subsets
and we only used “Corpus o” because it contains phonet-
ically aligned read speech data pronounced by 324 speak-
ers from the Netherlands and 150 speakers from Flanders.
“Corpus o” uses 47 phonemes and contains 81 h of data
after the deletion of silence segments that are longer than
one second. It was recorded at 16 kHz, but since we use
the data to perform ASR on Afrikaans, we downsampled
it to 8 kHz prior to feature extraction.

2http://www.meraka.org.za/hlt

ID Language Number of Frame accuray
output units on validation set

AF Afrikaans 187 43.8%
CGN Dutch 1789 56.5%

Table 2: Summary of the MLPs with number of output units and
frame accuracy on the cross-validation set.

4. Multilingual boosting strategies

In this section, we describe how out-of-language data is
exploited in case of feature-level and acoustic model-level
adaptation.

4.1. Feature level approach

For each language (Afrikaans and Dutch), we trained
an MLP from 39 Mel-Frequency Perceptual Linear Pre-
diction (MF-PLP) features (C0 – C12+∆+∆∆) in a nine
frame temporal-context (four preceding and following
frames), extracted with the HTS variant (Zen et al., 2007)
of the HTK toolkit. The number of parameters in each
MLP was set to 10% of the number of available training
frames, to avoid overfitting. We used Quicknet (Johnson,
2005) software to train the MLPs.

We have already shown that systems that use MLPs
which are trained on context-dependent targets (tri-
phones) outperform MLPs trained on context-independent
monophones (Imseng et al., 2012b). Therefore, we trained
both MLPs on triphone targets. To obtain triphone tar-
gets, we developed a standard HMM/GMM system with
all the training data for both languages and used a stan-
dard decision tree approach to tie rare triphones. More
specifically, we used the minimum description length cri-
terion to automatically determine the number of tied tri-
phones for each language independently (Shinoda and
Watanabe, 1997). As described by Shinoda and Watanabe
(1997), the MDL criterion has a hyper-parameter, c, which
controls the weight of the term that penalizes models with
large amounts of triphones. We tuned c on the Afrikaans
database and fixed it to 16 (for both databases). The
HMM/GMM systems were then used to align the train-
ing data in terms of tied triphones. We used 90% of the
training set for training and 10% for cross-validation to
stop training. Table 2 shows the number of output units
(tied triphones) per MLP and frame accuracy on the cross-
validation set.

4.2. Acoustic model level approach

To exploit out-of-language data, the SGMM model
parameters can be divided into HMM-state specific and
shared parameters, as visualized in Figure 3. As pro-
posed by Burget et al. (2010), M and W projection
matrices together with UBM can be perceived as shared
(language-independent) and can therefore be trained us-
ing large amounts of data from different languages. As al-
ready mentioned in Section 2.2.1, we use several sub-states
per HMM-state. The sub-state-specific vectors vdj as well
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Afrikaans Dutch
A: A
ae E
oe Y
ø: ø
H h

Table 3: The Afrikaans phonemes without a matching Dutch seed
model (same IPA symbol not present in the Dutch phoneme set) are
given in the left column. The corresponding manually chosen Dutch
seed models are listed in the right column.

as the mixture weights cj are trained on within-language
data.

5. Systems

In this section, we will describe the systems that we
investigated to study the exploitation of out-of-language
data in the framework of under-resourced ASR. We
will compare the performance of the Tandem approach
with the performance of KL-HMM and SGMM. Further-
more, we will also compare the proposed systems to an
HMM/GMM baseline only trained on within-language
data and to an HMM/GMM system trained on Dutch and
then adapted to Afrikaans by using MLLR and MAP.

5.1. HMM/GMM

Each context-dependent triphone is modeled with three
states (qi, qj , qk). As usually done, we first train context-
independent monophone models that serve as seed models
for the context-dependent triphone models. We use eight
Gaussians per state to model the emission probabilities.
To balance the number of parameters with the amount of
available training data, we apply conventional state tying
with a decision tree that is based on the minimum de-
scription length principle (Shinoda and Watanabe, 1997).
Training and decoding is performed with HTS.

5.2. Maximum likelihood linear regression (MLLR)

To evaluate whether an under-resourced language
could be accommodated by linear transforms, we first train
a triphone HMM/GMM system on the Dutch data. Each
triphone state is modeled with 16 Gaussians. We inves-
tigate the standard MLLR and use a regression tree that
allows up to 32 regression classes.

For most Afrikaans phonemes, we use the correspond-
ing Dutch phoneme, represented with the same IPA sym-
bol, as a seed model for MLLR. However, not all the
Afrikaans phonemes are also present in the Dutch phoneme
set. The Afrikaans phonemes without matching Dutch
seed model are given in Table 3 together with the re-
spective manually chosen Dutch seed model. Further-
more, since the diphthongs i@, u@, @u, @i are not present
in the Dutch phoneme set, we split them into individual
phonemes (monophthongs).

5.3. Maximum a posteriori (MAP) adaptation

Since Köhler (1998) has shown that MAP adaptation
is suitable for cross-lingual acoustic model adaptation,
we also evaluate MAP adaptation. More specifically, the
mean µj,m of mixture component m and state j is adapted
as follows:

µ̂j,m =
Nj,m

Nj,m + τ
µA

j,m +
τ

Nj,m + τ
µD

j,m, (10)

where Nj,m is the occupation likelihood of the Afrikaans
data, τ a parameter to tune, µA the mean of the Afrikaans
data and µD the mean of the Dutch data.

As seed models, we used the same Dutch context-
dependent HMM/GMM models as in Section 5.2. For
Afrikaans phonemes without a matching Dutch seed
model, we again mapped phonemes as explained in Sec-
tion 5.2 and Table 3.

5.4. Tandem

Similar to the conventional HMM/GMM system, for
the Tandem system, we train context-independent mono-
phone models that serve as seed models for the three-state
context-dependent triphone models. We use eight Gaus-
sians per state to model the emission probabilities and
use PCA for decorrelation. PCA can also be used to re-
duce the dimensionality to, for example, 30, as is typically
done (Qian et al., 2011; Grézl et al., 2011). In recent stud-
ies, we have shown that the dimensionality of the feature
vectors greatly affects the performance of the Tandem sys-
tem (Imseng et al., 2012b). Furthermore, we observed that
preserving 99% of the variance yielded similar results to
using all the dimensions (Imseng et al., 2012b). Therefore,
in this study, we fix the dimensionality such that 99% of
the variance is preserved (note that the dimensionality of
different systems varies and is given in Tables 4, 5 and 6).

To balance the number of parameters with the amount
of available training data, we also use a decision tree that is
based on the minimum description length principle (Shin-
oda and Watanabe, 1997).

5.5. KL-HMM

As for HMM/GMM and Tandem, for the KL-HMM
system, we train context-independent monophone mod-
els that serve as seed models for the three-state context-
dependent triphone models.

For KL-HMM, we applied a decision tree clustering re-
formulated as dictated by the KL criterion (Imseng et al.,
2012c). Since it is not obvious how to apply the mini-
mum description length principle to the modified cluster-
ing approach, we tuned the threshold that determines the
number of tied states on the development set.
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System Feature Number of Phoneme
dimension tied states accuracy

HMM/GMM 39 1447 61.2 %
KL-HMM 187 15207 60.6 %
Tandem 48 1846 64.7 %
SGMM 39 2000 65.5 %

Table 4: Using 3 h of Afrikaans data to build a monolingual ASR
system. Acoustic modeling techniques are described in Section 5.
The best result is marked bold; italic numbers point to results that
are not significantly worse.

5.6. SGMM

The training of SGMMs is also done from context-
independent monophone models that serve as seed models
for the three-state context-dependent triphone models.

Decision tree clustering was done automatically, after
having specified the number of leaves to be similar to the
Tandem system. The UBM has I = 500 Gaussians and
the dimensionality of the substate phone-specific vectors,
S, was fixed to 50.

6. Evaluation

In this section, we analyze the performance of the
different systems. We always apply the same bi-gram
phoneme model as described in Section 3.1 and report
Afrikaans phoneme accuracies on the test set (about 50
min of data). The bi-gram phoneme model scaling fac-
tor was determined for each system independently on the
cross-validation set (see Section 4.1). In general, we ex-
pect that the exploitation of Dutch data will improve the
Afrikaans ASR performance. For all the significance tests,
we used the bootstrap estimation method (Bisani and Ney,
2004) and a confidence interval of 95%.

6.1. Afrikaans data only

For the first set of experiments, we only used the
Afrikaans training set (3 h of data) for the training of
the global and local parameters. More specifically, the
MLP for the posterior feature extraction as well as the
globally shared SGMM parameters were trained on three
hours of Afrikaans (see Table 2 for MLP details). In pre-
vious studies (Povey et al., 2010), SGMM outperformed
HMM/GMM when 15 h of training data was used. We
hypothesize that SGMM also outperforms conventional
HMM/GMM if only three hours of data is available for
training. Furthermore, Tandem outperformed conven-
tional HMM/GMM and KL-HMM systems if three hours
of Afrikaans data was available for training (Imseng et al.,
2012b).

Table 4 shows the results. Note that the baseline
results reported by van Heerden et al. (2009), 63.1%
phoneme accuracy, were the first set of results obtained for
the data and the official train and test set were compiled
after the official database release. Personal communica-
tion with the HLT group at Meraka confirmed that the

lower performance of our baseline can be attributed to the
different data partitioning3.

The results in Table 4 confirm our hypotheses. On
Afrikaans data only, SGMM performs best, followed by
Tandem. Bold numbers in tables mark the best result
(column-wise) and italic numbers are not significantly dif-
ferent from the best performance. KL-HMM and the
HMM/GMM baseline perform significantly worse than
SGMM and Tandem.

Table 4 also shows the feature dimensionality of the
employed acoustic modeling techniques. HMM/GMM and
SGMM are both based on acoustic features (39 dimen-
sions). KL-HMM uses the raw output of the Afrikaans
MLP. For the Tandem system however, recall that the pos-
terior features need to be post-processed. Keeping 99% of
the variance after PCA results in a 48-dimensional feature
vector.

The number of tied states, also shown in Table 4, for
HMM/GMM and for Tandem were automatically deter-
mined with the MDL criterion. Based on anecdotal knowl-
edge, we fixed the number of tied states for the SGMM
system similar to the number of tied states for the Tan-
dem system. The number of tied states for the KL-HMM
was tuned on the cross-validation set. Since the categorical
distributions of the KL-HMM can be trained with very few
data, modeling each triphone state separately performed
best. Hence, the decision tree was only used to synthesize
unseen triphone contexts during testing.

Due to the extremely high number of states of the
KL-HMM system compared to the other systems, the KL-
HMM system has the most parameters of the four systems
given in Table 4. To increase the number of parameters of
the other systems, we increased the number of Gaussians
per state for the HMM/GMM as well as for the Tandem
system to 16 and doubled the number of sub-states of the
SGMM system. However, none of the performances im-
proved.

6.2. Auxiliary Dutch data

For the second set of experiments, we used the Dutch
data to train the MLP as well as the globally-shared
SGMM parameters. We also trained Dutch seed models
for the MLLR and MAP adaptation. The Afrikaans data
was used to train the HMM distributions (KL-HMM and
Tandem), the sub-state phone-specific vectors vd and sub-
state mixture weights cj (SGMM) and the MLLR adap-
tation. MAP adaptation was applied as described in (10)
and τ was tuned on the development set (see Table 5).

Since three hours seems to be a reasonable amount of
training data, we also simulated very low-resourced lan-
guages and evaluated three different scenarios: six min-
utes of data, one hour of data and three hours of data.

3The HLT group now also uses the partitioning that we used in
this paper and report a lower performance.
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System Feat. 6 min 1 h 3 h
dim. TS τ PA [%] TS τ PA [%] TS τ PA [%]

HMM/GMM 39 116 — 38.6 594 — 55.3 1447 — 61.2

MLLR 39 — — 41.3 — — 44.4 — — 44.7
MAP 39 11357 15 39.4 11357 5 46.9 11357 1 50.6
KL-HMM 1789 635 — 53.1 13308 — 61.5 15207 — 67.3
Tandem 286 114 — 41.0 537 — 61.3 1846 — 68.2
SGMM 39 150 — 40.2 600 — 60.4 2000 — 68.5

Table 5: Exploiting Dutch data to improve an Afrikaans ASR system. The different acoustic modeling techniques are described in Section 5.
TS stands for the number of tied states, PA for phoneme accuracy and τ is the parameter of the MAP adaptation. Best results of each PA
column are marked bold; italic numbers point to results that are not significantly worse.

For the sake of comparison, we also evaluated a conven-
tional HMM/GMM system for each scenario. We hypoth-
esize, that KL-HMM performs best for very low amounts
of data because we have seen this behavior in previous
similar evaluations of KL-HMM (Imseng et al., 2012c). If
three hours of data is available, we expect that KL-HMM,
Tandem and SGMM are successfully exploiting the out-of-
language data and performing similarly well.

Table 5 confirms our hypotheses. The HMM/GMM
(only trained on Afrikaans) is clearly outperformed by KL-
HMM, Tandem and SGMM, hence all three systems suc-
cessfully exploit out-of-language information. MLLR and
MAP, however, only perform better than HMM/GMM if
six minutes of Afrikaans data are available. Note that both
approaches are bound to phoneme sets. Köhler (1998) for
example had for each phoneme a multilingual seed model
that was trained from data associated with a matching IPA
symbol. In our case however, we needed to manually map
several Afrikaans phoneme models as discussed in Table 3.
If there is 1 h or more data available, MAP outperforms
MLLR.

For the three hours as well as the one hour scenario,
SGMM, KL-HMM and Tandem all perform statistically
the same. While SGMM is the most suitable acoustic mod-
eling technique if we train only on within-language data,
KL-HMM (which was performing significantly worse in Ta-
ble 4) benefits most from out-of-language data and seems
to be particularly well suited to exploit out-of-language in-
formation on this database. Furthermore, KL-HMM using
six minutes of data performs almost as well as a conven-
tional monolingual HMM/GMM system using one hour of
data. In the case of the SGMM, results are slightly worse
than expected. We suppose that the dimensionality of the
sub-state-specific vectors is probably too high for only six
minutes of data.

6.3. Within- and out-of-language data

We have already shown that properly combining acous-
tic information from multiple similar languages can boost
the performance. Therefore, we hypothesize that the per-
formance can be improved if we concatenate the output
of both MLPs or train the shared SGMM parameters on
both languages. The concatenated MLP outputs were
renormalized to guarantee that the feature vectors can be

System Feature Phoneme
dimension accuracy

KL-HMM 1976 68.8 %
Tandem 308 68.4 %
SGMM 39 68.6 %

Table 6: Using the Dutch and Afrikaans MLP (KL-HMM and Tan-
dem) and use Dutch and Afrikaans data to train the shared param-
eters (SGMM). The best result is marked bold; italic numbers point
to results that are not significantly worse.

interpreted as posterior distributions, as assumed by the
KL-HMM. For the Tandem systems, we post-process the
normalized vectors as already described in Section 5.4. For
SGMM, we trained the shared parameters with the data
of both languages.

However, Table 6 shows that the results only
marginally improve for Tandem and SGMM. For KL-
HMM, they improve by 1.5% absolute. KL-HMM per-
forms best but not statistically differently from the other
systems.

7. Discussion

The results in Section 6 have shown that (a) out-
of-language data improved an existing Afrikaans speech
recognizer and (b) KL-HMM outperforms all other ap-
proaches if only 6 min of Afrikaans data are available. In
this section, we discuss the two conclusions.

7.1. Out-of-language data

The systems in Table 6 perform significantly better
than the HMM/GMM baseline that does not use Dutch
data (see Table 4). We hypothesize that Dutch data
mostly improve recognition accuracy of phonemes for
which the Afrikaans dataset does not contain much train-
ing data. Figure 4 shows the relative phoneme accuracy
change per phoneme of the systems given in Table 6 with
respect to the HMM/GMM baseline that does not use
Dutch data. The phonemes on the x-axis are sorted ac-
cording to their frequency in the Afrikaans training data
with the most frequent phonemes on the left. Figure 4
appears to confirm our hypothesis.
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Figure 4: Relative phoneme accuracy change per phoneme of the systems shown in Table 6 with respect to the monolingual HMM/GMM
baseline system. The phonemes on the x-axis are sorted according to their frequency in the Afrikaans training data (most frequent phoneme
on the left).

7.2. KL-HMM

Even though we performed an extensive error analysis,
there was no clear evidence for which phonemes KL-HMM
yields most improvement compared to the other modeling
techniques. Rather, KL-HMM consistently improves the
recognition accuracy across all phonemes. We attribute
the improvement to the sophisticated acoustic modeling
and the constrained optimization space that are particu-
larly well suited for low amount of data scenarios.

8. Conclusion and future work

We successfully exploited Dutch data and boosted a
monolingual speech recognizer that was trained on three
h of Afrikaans data. We compared KL-HMM, Tandem,
SGMM, MLLR as well as MAP and found that KL-HMM,
Tandem and SGMM successfully exploit out-of-language
data if at least one hour of within-language data are avail-
able. If only six minutes of data are available, KL-HMM
outperforms all other acoustic modeling techniques includ-
ing MLLR and MAP.

Furthermore, we found that if three h of within-
language data and 80 h of out-of-language data are avail-
able, the proposed systems yield 12% relative improvement
compared to a conventional HMM/GMM system only us-
ing within-language data. If only six minutes of within-
language data and 80 h of out-of-language data are avail-
able, KL-HMM performs relatively about 30% better than
MLLR and MAP .

We exploited multilingual information on the feature
level by applying simple concatenation of MLP outputs.
In future, we plan to explore different methods to com-
bine the output of several MLPs. Furthermore, we also
exploited multilingual information on the acoustic model-
ing level. To investigate whether the two approaches are
complementary, we plan to implement an SGMM system
based on posterior features.
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ABSTRACT

Posterior based acoustic modeling techniques such as Kullback–
Leibler divergence based HMM (KL-HMM) and Tandem are
able to exploit out-of-language data through posterior fea-
tures, estimated by a Multi-Layer Perceptron (MLP). In this
paper, we investigate the performance of posterior based ap-
proaches in the context of under-resourced speech recognition
when a standard three-layer MLP is replaced by a deeper five-
layer MLP. The deeper MLP architecture yields similar gains
of about 15% (relative) for Tandem, KL-HMM as well as
for a hybrid HMM/MLP system that directly uses the poste-
rior estimates as emission probabilities. The best performing
system, a bilingual KL-HMM based on a deep MLP, jointly
trained on Afrikaans and Dutch data, performs 13% better
than a hybrid system using the same bilingual MLP and 26%
better than a subspace Gaussian mixture system only trained
on Afrikaans data.

Index Terms— KL-HMM, Tandem, hybrid system, deep
MLPs, under-resourced speech recognition

1. INTRODUCTION

Under-resourced speech recognition is a very challenging
task. The main reason for this is the large amount of data
that is usually required to train current recognizers. There-
fore, acoustic modeling techniques that are able to exploit
out-of-language data such as Kullback–Leibler divergence
based HMM (KL-HMM) [1], Tandem [2] or Subspace Gaus-
sian mixture models (SGMMs) [3] have been developed and
extensively studied. KL-HMM and Tandem both exploit
out-of-language data through posterior features, estimated
by a Multi-Layer Perceptron (MLP) that was trained on
out-of-language data. SGMMs on the other hand exploit
out-of-language data through parameter sharing.

The work was supported by Samsung Electronics Co. Ltd, South Korea,
under the project “Multi-Lingual and Cross-Lingual Adaptation for Auto-
matic Speech Recognition”, and by Eurostars Programme powered by Eu-
reka and the European Community under the project “D-Box: A generic
dialog box for multilingual conversational applications”.

Recently, it has been shown that deep MLP architectures
can greatly improve the performance of automatic speech
recognition (ASR) systems [4]. Most deep MLP based ASR
studies use hybrid HMM/MLP systems, where the MLP out-
put is directly used to model the emission probability of the
HMM states. However, if the MLP output is used as a fea-
ture [5, 6], conclusions tend to be more ambiguous, i.e. it is
not clear if deeper MLP architectures are beneficial.

In this study, we build on our previous results [1] and in-
vestigate how deep MLP architectures affect the performance
of posterior based acoustic modeling techniques that are par-
ticularly well suited for under-resourced ASR. As an addi-
tional reference point, we also evaluate SGMMs that do not
rely on posterior features.

Taking Afrikaans as a representative of an under-resourced
language (target language), we use large amounts of out-of-
language data to improve an Afrikaans speech recognizer.
Since Afrikaans is similar to Dutch, we intuitively expect that
Dutch data provides most benefit for an Afrikaans speech
recognizer [7]. Indeed, we already compared how English,
Dutch and Swiss German data influence the performance of
an Afrikaans speech recognizer and found that Dutch data
yielded most improvement [8]. Hence, in this paper, we will
use Dutch as a representative of the well-resourced language.
In this context, we already compared phoneme accuracies
of KL-HMM, Tandem, SGMM, conventional maximum
likelihood linear regression (MLLR) and maximum a pos-
teriori (MAP) adaptation systems [1]. Here, we compare
word error rates (WERs) of KL-HMM, Tandem, SGMM and
hybrid HMM/MLP systems. For KL-HMM, Tandem and
HMM/MLP, we also investigate the impact of a deep MLP
compared to the standard MLP.

The remainder of this paper is structured as follows: Sec-
tion 2 described the databases that are used in this work. Sec-
tion 3 then introduces all the investigated systems and Sec-
tion 4 presents the experimental results.



ID Language number of Amount of
phonemes trn data test data

AF Afrikaans 38 3 h 50 min
CGN Dutch 47 81 h -

Table 1. Summary of the different languages with number of
phonemes and amount of available data.

2. DATABASES

We used data from Afrikaans and Dutch as summarized in
Table 1. In this section, we describe the two databases.

2.1. LWAZI

The Afrikaans data is available from the LWAZI corpus
provided by the Meraka Institute, CSIR, South Africa1 and
described by [9]. The database consists of 200 speakers,
recorded over a telephone channel at 8 kHz. Each speaker
produced approximately 30 utterances, where 16 were ran-
domly selected from a phonetically balanced corpus and the
remainder consisted of short words and phrases.

The Afrikaans database comes with a dictionary [10] that
defines the phoneme set containing 38 phonemes (including
silence). The dictionary that we used contained 1,585 differ-
ent words. The HLT group at Meraka provided us with the
training and test sets. In total, about 3 h of training data and
50 min of test data is available (after voice activity detection).

The bi-gram language model, built on the training sen-
tences, has 1.1% out-of-vocabulary words and a perplexity of
about 19 on the test set.

2.2. Corpus Gesproken Nederlands

We used data of the Spoken Dutch Corpus (Corpus Gespro-
ken Nederlands, CGN) [11] that contains standard Dutch pro-
nounced by more than 4,000 speakers from the Netherlands
and Flanders. The database is divided into several subsets
and we only used Corpus o because it contains phonetically
aligned read speech data pronounced by 324 speakers from
the Netherlands and 150 speakers from Flanders. Corpus o
uses 47 phonemes and contains 81 h of data after the deletion
of silence segments that are longer than one second. It was
recorded at 16 kHz, but since we use the data to perform ASR
on Afrikaans, we downsampled it to 8 kHz prior to feature
extraction.

3. SYSTEMS

In this section, we describe the systems under investigation.
The systems can be divided into three different categories: (a)
monolingual systems, using only Afrikaans data; (b) crosslin-
gual systems, using only Dutch data during MLP training; and

1http://www.meraka.org.za/hlt

Afrikaans HL HU OU TRN DEV
Standard 1 1,366 1,447 35.0% 30.8%
Deep 3 6,636 1,447 41.8% 35.0%

Table 2. Summary of the Afrikaans MLP training. The
number of hidden layers (HL), the total number of hidden
units (HU) and the number of output units (OU) are given.
Frame accuracies on the training (TRN) and cross-validation
set (DEV) are shown as well. Note that we fixed the num-
ber of hidden units to be the same than for the Dutch MLPs
presented in Section 3.2.

(c) bilingual systems, using Afrikaans and Dutch data during
MLP training. This, coupled with the various different archi-
tectures, leads to quite a lot of systems. For a summary, see
Table 5.

3.1. Monolingual systems

The monolingual systems serve as reference systems only. In
this paper, we evaluate a conventional HMM/GMM system,
an SGMM system and two hybrid HMM/MLP systems, one
based on a three-layer MLP (standard hybrid system) and one
based on a five-layer MLP (deep hybrid system).

3.1.1. HMM/GMM

The HMM/GMM system is a standard cross-word context-
dependent speech recognizer that models each triphone with
three states and is based on 39 Mel-Frequency Perceptual
Linear Prediction (MF-PLP) features (C0–C12 + ∆ + ∆∆),
extracted with the HTK toolkit [12]. As usually done, we first
trained context-independent monophone models that were
then used as seed models for the context-dependent triphone
models. We used eight Gaussians per state to model the
emission probabilities. To balance the number of parameters
with the amount of available training data, we applied con-
ventional state tying with a decision tree that is based on the
minimum description length principle [13], resulting in 1,447
tied states.

3.1.2. Monolingual SGMM

The SGMM acoustic modeling technique allows compact
representation of large collection of mixture-of-Gaussian
models and has shown its capability to outperform conven-
tional HMM/GMMs in monolingual as well as cross- or
multi-lingual scenarios [3, 14]. For the monolingual SGMM
system, we trained all the parameters from Mel-Frequency
cepstrum coefficients (MFCCs), using Afrikaans data only. In
total we used 500 Gaussians and the substate phone-specific
vectors had 50 dimensions.



Dutch HL HU OU TRN DEV
Standard 1 1,366 1,789 59.0% 56.5%
Deep 3 6,636 1,789 64.2% 60.3%

Table 3. Summary of the Dutch MLP training. The number
of hidden layers (HL), the total number of hidden units (HU)
and the number of output units (OU) are given. Frame accu-
racies on the training (TRN) and cross-validation set (DEV)
are shown as well.

3.1.3. Monolingual HMM/MLP

The monolingual HMM/MLP systems used the same 1,447
tied states as the HMM/GMM system presented in Sec-
tion 3.1.1. For the standard hybrid system, we trained a
three-layer MLP and for the deep hybrid system, we trained
a five-layer MLP (each hidden layer had similar number of
hidden units) using Quicknet software [15]. We randomly
split the three hours of Afrikaans training data into an MLP
training set (90%) and an MLP cross-validation set (10%).
We trained the MLPs from the 39-dimensional MF-PLP fea-
tures in a nine frame temporal context (four preceding and
following frames). More details about the MLP training are
given in Table 2. For this study, the only difference between
the three-layer and the five-layer network was in the num-
ber of parameters (and in the number of hidden layers). We
did not employ more elaborated training procedures such as
pre-training or dropout. The resulting posterior probabilities
were divided by the priors and then directly used as emission
probabilities.

3.2. Crosslingual systems

The crosslingual systems exploit Dutch data during MLP
training. More specifically, we trained a standard and a deep
MLP with all the available Dutch data. As we already did
in earlier studies [1], we developed a standard HMM/GMM
system with all the Dutch training data to obtain 1,987 tied
states targets. We set the number of parameters for the stan-
dard MLP to 10% of the available number of training frames,
resulting in a hidden layer with 1,366 units. As suggested by
studies on deep MLPs [16], we targeted about 2000 hidden
units per layer in the deeper MLP and therefore set the num-
ber of parameters to 50% of the available number of training
frames, leading to a total of 6,636 hidden units distributed to
three hidden layers. We used 90% of the training set for MLP
training and 10% for cross-validation to stop training. More
details about the MLP training are given in Table 3.

In this paper, we investigated two approaches that benefit
from exploiting out-of-language data through posterior fea-
tures: Tandem and KL-HMM. In both approaches, Afrikaans
data is passed through the MLP trained on Dutch and the
resulting posterior features are then used to train the HMM
parameters (see Sections 3.2.1 and 3.2.2). Since the hybrid
HMM/MLP approach is bound to the tied states target used

during the MLP training, we did not evaluate a crosslingual
HMM/MLP system. However, as an additional reference
point, we also evaluated a crosslingual SGMM system that
did not use the Dutch posterior features, but used the Dutch
data for global parameter training as described in [1].

3.2.1. Crosslingual Tandem

Similar to the conventional HMM/GMM system, for the
Tandem system, we trained context-independent monophone
models that served as seed models for the three-state context-
dependent triphone models. Because of the ambiguous results
from earlier studies [5, 6], we evaluate a standalone Tandem
system (similar to the system in [6]) as well as an augmented
Tandem system, where augmented refers to our concatenating
of MF-PLP features with the posterior features (similar to the
system in [5]). We used eight Gaussians per state to model
the emission probabilities. As in our previous study [1], we
used PCA for dimensionality reduction and fixed the dimen-
sionality such that 99% of the variance was preserved. This
procedure resulted in 286-dimensional features (we used the
same feature dimensionality for the posteriors of the standard
and the deep MLP). To have comparable Tandem systems,
we run PCA again after concatenating MF-PLP features with
posterior features and reduced the dimensionality to 286.

3.2.2. Crosslingual KL-HMM

The KL-HMM acoustic modeling technique can directly
model raw posterior features. Therefore no post-processing
is necessary. In the KL-HMM acoustic modeling approach,
the HMM states are parametrized with reference posterior
distributions (categorical distributions) that can be trained
by minimizing the Kullback–Leibler divergence between the
categorical distributions and the posterior features. More de-
tails about training and decoding in the KL-HMM framework
can be found in, for instance, [1]. Similar to HMM/GMM
and Tandem, the KL-HMM system was trained based on
the context-independent monophone models that served as
seed models for the three-state context-dependent triphone
models. For KL-HMM, we applied a decision tree clustering
reformulated as dictated by the KL criterion [17]. We found
in our previous study that the best KL-HMM performance
is achieved with a fully developed tree (about 15,000 tied
states), therefore we did the same for this study.

3.2.3. Crosslingual SGMM

SGMMs can be naturally exploited in under-resourced sce-
narios, since most of the model parameters can be estimated
on well-resourced datasets. Therefore, we use the crosslin-
gual SGMM system as an additional reference point in this
study. To exploit out-of-language data, the SGMM model pa-
rameters can be divided into HMM-state specific and shared



AF & Dutch HL HU OU TRN DEV
Standard 1 1,366 1,447 48.3% 38.3%
Deep 3 6,636 1,447 53.1% 42.1%

Table 4. Summary of the MLP trained on Dutch first and the
re-trained on Afrikaans. The number of hidden layers (HL),
the total number of hidden units (HU) and the number of out-
put units (OU) are given. Frame accuracies on the training
(TRN) and cross-validation set (DEV) are shown as well.

parameters. The crosslingual SGMM used Dutch data dur-
ing training of the globally-shared (language-independent)
parameters and Afrikaans data for the training of the HMM-
state specific parameters [3]. Similar to the monolingual
SGMM system, we used 500 Gaussians and the substate
phone-specific vectors had 50 dimensions.

3.3. Bilingual systems

Inspired by a recent study [6], the bilingual systems that we
present are based on MLPs that were trained on Afrikaans and
Dutch data. More specifically, we took the two Dutch MLPs
(standard and deep) trained in Section 3.2 and removed the
output layer. Then, we appended a new randomly initialized
output layer and trained the MLP (all layers) to estimate pos-
terior probabilities for the 1,447 Afrikaans tied states by using
Afrikaans data. More details about the MLP training are given
in Table 4. In this study, we investigated three acoustic mod-
eling techniques that are able to exploit the posterior prob-
abilities estimated with the bilingually trained MLP: hybrid
HMM/MLP, Tandem and KL-HMM. Again, SGMM serves
as a reference not using posterior features.

3.3.1. Bilingual HMM/MLP

The bilingual HMM/MLP systems are essentially the same
systems as the monolingual HMM/MLP ones presented in
Section 3.1.3. The monolingual HMM/MLP systems used the
posterior probabilities estimated with the MLP only trained
on Afrikaans data, and the bilingual HMM/MLP systems em-
ployed the posterior probabilities estimated with the MLP first
trained on Dutch data and then re-trained on Afrikaans data.

3.3.2. Bilingual Tandem

Similar to the crosslingual Tandem systems, presented in Sec-
tion 3.2.1, we trained a standalone and an augmented Tandem
system based on three-state context-dependent triphone mod-
els. We used eight Gaussians per state to model the emission
probabilities and used PCA for decorrelation. To preserve
99% of the variance we reduced the feature dimensionality to
146.

3.3.3. Bilingual KL-HMM

The bilingual KL-HMM system resembles the crosslin-
gual KL-HMM system, presented in Section 3.2.2. The
1,789 dimensional Dutch posterior features were replaced by
1,447 dimensional feature vectors, trained on Dutch and on
Afirkaans data.

3.3.4. Bilingual SGMM

The bilingual SGMM system used Dutch and Afrikaans
data during training of the globally-shared parameters and
Afrikaans data only for the training of the HMM-state spe-
cific parameters. We used 500 Gaussians and the substate
phone-specific vectors had 50 dimensions.

4. EXPERIMENTS

In this section, we first discuss the hypotheses under investi-
gation, then present the experimental results.

4.1. Prior expectations

Given the systems described in Section 3, we hypothesize the
following:

1. Based on the success of deep architectures in recent
studies [4], we hypothesize that the deep MLP archi-
tectures yield improvement for all systems.

2. Recent literature [5] suggests that adding hidden lay-
ers does not improve the performance of a augmented
Tandem system. We therefore assume that MLP output
post-processing reduces the performance gain resulting
from deeper MLP architectures and hypothesize that:

(a) hybrid systems gain most from a deeper MLP ar-
chitecture because they directly use the estimated
posteriors probabilities as emission probabilities.

(b) KL-HMM gains more than Tandem because the
posterior features are directly modeled without
post-processing.

3. Multilingual data was successfully used to generate
deep neural network features for low resource speech
recognition [6]. Therefore, we hypothesize that the
gains from the deep MLP architecture and the out-of-
language data exploitation are complementary.

4.2. Results

The experimental results are summarized in Table 5. All the
systems based on deep MLPs outperform the equivalent sys-
tem based on the standard MLP, hence hypothesis 1 is demon-
strated.



System Std. Deep Rel. Gain

Monoling.
HMM/GMM 11.4% - -
SGMM 9.5% - -
HMM/MLP 12.3% 9.9% 20%

Crossling.

Tandem 10.5% 9.4% 10%
+MF-PLP 9.7% 9.5% 2%

KL-HMM 9.6% 9.0% 6%
SGMM 8.5% - -

Biling.

HMM/MLP 9.3% 8.0% 14%
Tandem 9.9% 8.4% 15%

+MF-PLP 9.7% 8.9% 8%
KL-HMM 8.0% 7.0% 13%
SGMM 8.5% - -

Table 5. Achieved word error rates (WERs) of the mono-
lingual, crosslingual and bilingual systems described in Sec-
tion 3. Std. stands for the standard (three-layer) MLP and
deep for the deep (five-layer) MLP. The relative gain by using
the deeper MLP is also given.

For the bilingual scenario, HMM/MLP, KL-HMM and
standalone Tandem yield very similar improvement if the
standard and deep MLP performance are compared. There-
fore we must reject hypothesis 2. We evaluated a standalone
and an augmented Tandem system. Our results are in line
with earlier studies [5, 6] where it was found that deep MLPs
yield improvement for standalone systems [6], but only to a
limited extend for augmented Tandem systems [5]. It seems
reasonable to conclude that the concatenation of the MLP
output with MF-PLP features diminishes the advantage of the
deep MLP architecture.

Although the experimental results suggest that the relative
gain decreases in cross- and bi-lingual scenarios compared to
the monolingual HMM/MLP system, it seems that the gains
from out-of-language data exploitation and a deep MLP archi-
tecture are still complementary. Thus, hypothesis 4 is demon-
strated.

The bilingual KL-HMM systems yields the best perfor-
mance (13% relative improvement compared to the hybrid
HMM/MLP system). We attribute the advantage of the KL-
HMM system to the fact that the hybrid system is bound to
the tied state targets used during the MLP training. Hence the
hybrid system uses about 1,500 tied states. The KL-HMM
system on the other hand is more flexible and allows more tied
states to be used, even in under-resourced scenarios. The par-
simonious use of parameters of the KL-HMM system (cate-
gorical distributions) allows training of an HMM with 15,000
tied states, only using three hours of Afrikaans data.

Furthermore, Table 5 also reveals that the crosslingual and
the bilingual SGMM perform similarly. The crosslingual en-
vironment is particularly well suited for the SGMM system
because the shared parameters can be trained on Dutch data
and the language specific parameters on Afrikaans data. In

the bilingual case however, the 3 h of Afrikaans data are dom-
inated by the 80 h of Dutch data during the shared parameter
training. The MLP based systems yield more improvement
from the bilingual setup because the MLPs estimate Afrikaans
tied states posteriors instead of Dutch tied states posteriors in
the crosslingual case.

5. CONCLUSION

We investigated under-resourced speech recognition in the
context of an Afrikaans speech recognizer that benefits from
Dutch data, and compared how the performance of posterior
based approaches changes if a standard three-layer MLP is
replaced by a deeper five-layer MLP. We have shown that the
deeper MLP structure equally improved a hybrid HMM/MLP
and a standalone Tandem system as well as a KL-HMM sys-
tem. Further, experiments revealed that gains from the deeper
MLP architecture and out-of-language data exploitation are
complementary. The best performing bilingual system, KL-
HMM based on the MLP that was jointly trained on Afrikaans
and Dutch data, performs 13% better than a hybrid system
using the same bilingual MLP and yields 26% relative im-
provement if compared to a monolingual SGMM system only
trained on Afrikaans data.

We therefore conclude that deep MLP architectures are
suitable for under-resourced speech recognition, with the KL-
HMM being the most promising.
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Daniel Povey3

1Idiap Research Institute, Martigny, Switzerland
2Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

3Xiaomi Technology, China
msrikanth, bkhonglah, stong, petr.motlicek, bourlard@idiap.ch, dpovey@xiaomi.com

Abstract
Multilingual acoustic model training combines data from multi-
ple languages to train an automatic speech recognition system.
Such a system is beneficial when training data for a target lan-
guage is limited. Lattice-Free Maximum Mutual Information
(LF-MMI) training performs sequence discrimination by intro-
ducing competing hypotheses through a denominator graph in
the cost function. The standard approach to train a multilin-
gual model with LF-MMI is to combine the acoustic units from
all languages and use a common denominator graph. The re-
sulting model is either used as a feature extractor to train an
acoustic model for the target language or directly fine-tuned. In
this work, we propose a scalable approach to train the multilin-
gual acoustic model using a typical multitask network for the
LF-MMI framework. A set of language-dependent denomina-
tor graphs is used to compute the cost function. The proposed
approach is evaluated under typical multilingual ASR tasks us-
ing GlobalPhone and BABEL datasets. Relative improvements
up to 13.2% in WER are obtained when compared to the cor-
responding monolingual LF-MMI baselines. The implementa-
tion is made available as a part of the Kaldi speech recognition
toolkit.
Index Terms: speech recognition, multilingual ASR, LF-MMI

1. Introduction
In Automatic Speech Recognition (ASR) for low-resourced

languages, training multilingual systems is an effective way to
compensate for limited amount of data [1, 2, 3, 4, 5, 6]. When
trained with resources from multiple languages, Deep Neural
Networks (DNN) based Acoustic Models (AM) can function as
a feature extractor to train a monolingual acoustic model for the
target language [7, 8, 9]. Alternately, the models can be adapted
to the target language [10, 11, 12, 13, 14, 15]. The multilingual
models can either share the output layer or have separate output
layers (one for each language) [3]. In the former case, mono-
phones may be used to avoid a huge output layer, which is often
followed by retraining the network for the target language with
senones.

The research is based upon the work supported by the Office of the
Director of National Intelligence (ODNI), Intelligence Advanced Re-
search Projects Activity (IARPA), via AFRL Contract #FA8650-17-C-
9116. The views and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily representing the offi-
cial policies or endorsements, either expressed or implied, of the ODNI,
IARPA, or the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright annotation thereon. The work is also partially
supported by the ROXANNE H2020 EC project (http://www.roxanne-
euproject.org), under grant agreement No. 833635.

In this work, we focus on sequence-discriminative training
of multilingual AM with the Lattice-Free Maximum Mutual In-
formation (LF-MMI) framework [16]. LF-MMI training has
been shown to have superior performance compared to the con-
ventional cross-entropy (CE) training of DNNs [17, 18]. The
MMI cost function uses a numerator graph modelling the ob-
served feature sequence based on ground truth and a denom-
inator graph computing the probability over all possible se-
quences [19]. The latter enforces the discriminative property
in the training shown to be useful for training AM [20, 21].

Given the advantages of both multilingual and LF-MMI
training procedures, it is natural to combine them to obtain
better performance. In [22, 23], multilingual LF-MMI mod-
els were observed to improve over their monolingual counter-
parts. The multilingual resources are combined by merging the
phoneme sets from all languages either using a universal phone
set such as the International Phonetic Alphabet (IPA), or by
combining acoustic units. In both cases, a universal denomi-
nator graph is shared across all languages during training.

When combining acoustic units for multilingual training,
the output layer size increases rapidly with number of lan-
guages. This may render such a system impractical during de-
coding. We refer to this type of multilingual AM as a single-
task system. Alternately, multitask training solves this issue by
separating the output layers of languages so that during decod-
ing only the output relevant to the language is used. An added
advantage during training is that the cost function can be com-
puted faster as its complexity depends on the number of states
in the denominator.

In this paper, we compare different styles of multilingual
training in the LF-MMI framework. The two styles are broadly
categorized as single-task and multitask depending on whether
the output layer is shared across languages or not. For single-
task training, existing LF-MMI implementation can be easily
extended. For multitask training, we make our implementa-
tion available as a part of Kaldi [24]1. The comparisons are
performed on two commonly used multilingual databases: (1)
GlobalPhone and (2) BABEL. We present results on 5 target
languages for the former and 4 target languages for the latter.
The results show that multitask training provides a much more
scalable approach to develop multilingual AM due to the afore-
mentioned advantages without any loss in performance. The
rest of the paper is organized as follows: in Section 2, the LF-
MMI training procedure is described. In Section 3, the proposed
multilingual LF-MMI training procedure is given. Results of
our experiments on GlobalPhone and BABEL are described in
Section 4.

1egs/babel multilang/s5d/local/chain2/run tdnn.sh
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Figure 1: (a) Multilingual LF-MMI system with shared output layer. The objective function FMMI is computed with either a language-
independent or language-dependent denominator graphs. (b) Proposed LF-MMI system with language-dependent objective functions.
Both systems are shown for a simple feedforward architecture.

2. LF-MMI
In LF-MMI, the MMI objective function is used as the cost
function to train the AM [16]. The cost function is given as
follows:

FMMI =
U∑

u=1

log
p
(
x(u)|Mw(u),θ

)
p(w(u))

p (x(u)|Mden,θ)
, (1)

where x(u) is the input sequence,
u is an utterance,
U is the set of all training utterances,
Mw(u) corresponds to the numerator graph specific to a

word sequence in transcription,
Mden is the denominator graph modelling all possible

word sequences and
θ is the model parameter.
The numerator can be computed either using alignments

from another acoustic model, or in a completely end-to-end
fashion [17]. In this work, we always use alignments from a
monolingual HMM/GMM model.

The standard implementation of LF-MMI makes several
simplifications to the conventional AM training of DNNs. First,
the HMM topology is modified to a 2-state HMM so that the
final state can be reached in one frame. Next, frame-dropping is
employed during training so that only 1 in 3 frames is required
during decoding. Finally, the segment length of an utterance
during training is limited.

The derivatives of the two quantities–numerator and
denominator–in Equation 1 are computed using two graphs.
The numerator graph is constructed using forced alignment and
the denominator graph is obtained by composing the phone lan-
guage model with the phonetic context-dependency followed
by context-dependent states. Following the notation in [18], if
NUMγ

(u)
t (s) is the posterior from the numerator at time t for

state s and DENγ
(u)
t (s) is that from the denominator, the gradi-

ent is given by:

∂FMMI

∂y
(u)
t (s)

=NUM γ
(u)
t (s)−DEN γ

(u)
t (s), (2)

where y
(u)
t (s) is the network output for state s at time t given

input utterance u

While training a multilingual model with the output layer
containing acoustic units from all languages, the objective still
remains the same as above, meaning the DENγ is language-
independent.

Computing DENγ requires training a phone language
model. Combining acoustic units across all languages for
single-task multilingual training not only increases the number
of states in the denominator graph, but may also introduce lead
to noisy DENγ estimates. Thus, to reduce the influence of other
languages while computing DENγ, we propose to use a set of
language-dependent denominator for AMs trained in multitask
fashion.

3. Multilingual LF-MMI
Multiple approaches exist to train a multilingual AM. Depend-
ing on whether the output layer is shared by languages or not,
we can classify it as either single-task or multitask model. The
difference between these two broad categories of multilingual
LF-MMI systems is shown in Figure 1. In the multitask archi-
tecture, each language has a separate output layer preceded by a
pre-final layer and a corresponding objective function (marked
F (1)

MMI, . . . ,F
(L)
MMI in the figure).

The choice between single-task and multitask AM dictates
how the acoustic units are shared across languages. In the
single-task case, one can simply combine the acoustic units by
choosing a union of all non-silence acoustic units from each
language. Alternately, well-defined linguistic units such as IPA
can be used to derive the acoustic units. In the multitask case,
each language will have its own set of acoustic units.

Given such possibilities to train the AM, the single-task
configuration also provides a choice of using language-specific
(i.e. trained with data from all languages) or language-
independent denominator (i.e. trained with data from only one
language), whereas only the language-independent denomina-
tor is applicable in the multitask case. The focus of this paper is
to compare all such possible configurations to better understand
the performance of the resulting models.
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In single-task multilingual AM, the case of using language-
independent denominator is equivalent to training monolingual
AMs. However, when using language-specific denominators,
the cost function changes as follows: we have L objective func-
tions, where L is the number of languages, computed indepen-
dent of each other depending only on the language of the utter-
ance:

F (�)
MMI =

U�∑

u=1

log
p
(
x(u)|M�

w(u),θ
)
p(w(u))

p
(
x(u)|M�

den,θ
) , (3)

where U� is the number of utterances in the minibatch for lan-
guage �, θ contains the shared and language-dependent param-
eters, M�

w(u) and M�
den are language-specific numerator and

denominator graphs, respectively.
Each denominator graph is built from the language-specific

phone language model (the same as that used in monolingual
LF-MMI training). Gradients for language-dependent layers are
computed and updated for each minibatch. Using backpropoga-
tion, the shared parameters are then updated. The overall cost-
function is the weighted sum of all language-dependent cost-
functions:

FMMI =
L∑

�=1

α�F
�
MMI , (4)

where α� is language-dependent weight. Note that each mini-
batch is expected to have samples (sequence of MFCCs) from
multiple languages. To facilitate such a training in Kaldi, we
modify the training procedure to select the denominator graph
for each sequence in the minibatch according to the language.
In practice, this only requires the knowledge of the language of
each sequence in the minibatch. Assuming the sequences are
grouped by language, we simply iterate over the languages in
the minibatch to call the existing procedures for monolingual
training with the appropriate denominator graph. Such multi-
task models also simplify addition or removal of languages and
applying language-specific operations during training.

4. Experiments
Experiment results are reported on GlobalPhone [25] and BA-
BEL datasets. All experiments are performed with the Kaldi
toolkit [24]. For GlobalPhone, we used the French (FR), Ger-
man (GE), Portuguese (PO), Russian (RU) and Spanish (SP)
datasets from the GlobalPhone corpus [23]. Each language has
roughly 20 hours of speech for training and two hours for devel-
opment and evaluation sets, from a total of about 100 speakers.
The development sets were used to tune the hyper-parameters
for training. Only the results on evaluation sets are reported.
The trigram language models that we used are publicly avail-
able2. The detailed statistics for each of the languages is given
in Table 1.

We also investigated our proposed method with the BABEL
dataset. Datasets for several languages with limited resources
were released during the BABEL project with the main goal
of building keyword spotting systems. We considered 4 BA-
BEL languages for evaluation: Tagalog (TGL), Swahili (SWA),
Zulu (ZUL), and Turkish (TUR). The statistics of the target lan-
guages are given in Table 2. Trigram language models are used
during testing.

2http://www.csl.uni-bremen.de/GlobalPhone/

Table 1: Statistics of the subset of GlobalPhone languages used
in this work: the amounts of speech data for training and eval-
uation sets are in hours.

Language Vocab PPL #Phones Train Dev Eval

FR 65k 324 38 22.7 2.1 2.0
GE 38k 672 41 14.9 2.0 1.5
PO 62k 58 45 22.7 1.6 1.8
RU 293k 1310 48 21.1 2.7 2.4
SP 19k 154 40 17.6 2.0 1.7

Table 2: Statistics of BABEL target languages used for testing.
Note that the Eval sets mentioned refer to the ”dev” set in the
official BABEL release. Only conversational speech is consid-
ered for both training and testing. All durations are calculated
prior to silence removal. (PPL: perplexity)

Language Vocabulary PPL Train (h) Eval (h)

Tagalog 22k 148 84.5 10.7
Swahili 25k 357 38.0 9.3
Turkish 41k 396 77.2 9.8
Zulu 56k 719 56.7 9.2

4.1. GlobalPhone Setup

We used 40-dimensional MFCCs as acoustic features, derived
from 25 ms frames with a 10 ms frame shift. The features were
normalized via mean subtraction and variance normalization
on a speaker basis. We used a frame subsampling factor of 3
which speeds up training by a factor of 2. We also augmented
the data with 2-fold speed perturbation in all the experiments.
The network consists of 8 layers of Time Delay Neural Network
(TDNN), with 450 nodes in each layer [26].

We compare the monolingual systems to three multilingual
systems: (1) single-task system trained with language indepen-
dent denominator, (2) single-task system trained with language
dependent denominator, and (3) multitask system trained with
language dependent denominator. For the single-task systems,
we concatenate the phonemes from the five languages to create
the universal phone set for multilingual training. We did not use
IPA-based phone set as in [23] because we found that the con-
catenated phone set performs better in preliminary experiments.

4.2. GlobalPhone Results

The results on GlobalPhone are presented in Table 3. The
single-task multilingual systems trained with concatenated
phone set improve over the monolingual LF-MMI systems on
four out of five languages. Using language-dependent denom-
inator, in this case, does not make a significant difference in
terms of WERs, thus only providing computational benefits dur-
ing training. The single-task system performs better on FR
and GE than the multitask system. The difference on the other
languages is marginal. The multitask multilingual system im-
proves over the monolingual baseline for 4 out of 5 languages.
The relative improvements range from 0.7% (for PO) to 10%
(for RU). We do not compare to the CE system as its results are
poorer compared to the two LF-MMI baselines. We believe that
the LF-MMI baselines are superior due to the controlled nature
of the dataset (read speech and clean acoustic conditions).
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Table 3: Comparison between target languages in Global-
Phone in WER(%). (FR: French, GE: German, PO: Portugese,
RU: Russian, SP: Spanish)

System FR GE PO RU SP

Monolingual LF-MMI 20.4 12.7 15.2 24.6 7.1

Single-task multilingual system

Language independent 21.3 12.5 14.9 22.1 6.6
Language dependent 21.3 12.4 15.0 22.1 6.6

Multitask multilingual system

5 languages 20.7 11.7 15.1 22.1 6.5

Table 4: BABEL languages used for training and testing.

Category Languages

Target languages Tagalog, Swahili, Zulu, Turkish
& 4 Language Training

14 Language Training Tagalog, Swahili, Zulu, Turkish,
Assamese, Bengali, Cantonese,
Haitian, Kazhak, Kurmanji,
Tamil, Telugu, Tok, Vietnamese

4.3. BABEL setup

We consider two training configurations: training with only 4
of the target languages and training with 14 languages. The 14-
language system is used to demonstrate the scalability of the
multitask system. In both cases, results for only 4 target lan-
guages are reported (see Table 4). We follow the feature con-
figuration (except for feature mean and variance normalization)
and data augmentation of GlobalPhone systems. In addition, an
online i-vector extractor of dimension 100 is trained for each
configuration. The transcripts are used for speech/non-speech
labels. The online i-vectors are appended to MFCCs as input
to the DNN. TDNN architecture is used with 8 hidden layers.
Each hidden layer has 1024 units. The pre-final layer has only
200 units. Frame-dropping is enabled for all models.

In order to obtain alignments to train all the TDNN models,
HMM/GMM models were first trained for each language. The
standard recipe from Kaldi was followed.

4.4. BABEL results

The results on target languages from BABEL are presented in
Table 5. The performance of the monolingual LF-MMI mod-
els are already better compared to those presented in literature,
thus forming a strong baseline. Next, we compare the mono-
lingual models to three multilingual models trained with the 4
language setup: (1) single-task system trained with language in-
dependent denominator, (2) single-task system trained with lan-
guage dependent denominator, and (3) multitask system trained
with language dependent denominator. The results show that in
conditions with high acoustic variability, as in the case of BA-
BEL data-sets, multilingual training brings considerable ben-
efits. The multilingual systems show improvements over the
monolingual systems for all languages. This clearly demon-
strates the benefit of multilingual LF-MMI training for low-
resource languages. Both single-task and multitask setups out-
perform the monolingual baseline, with relative improvements

Table 5: Comparison between target languages in BABEL in
WER(%). Improvements with LF-MMI are in bold. (TGL: Taga-
log, SWA: Swahili, TUR: Turkish, ZUL: Zulu)

System TGL SWA TUR ZUL

Monolingual LF-MMI 45.3 38.7 47.2 53.5

Single-task multilingual system

Language independent 44.4 35.5 43.4 52.4
Language dependent 44.4 35.4 43.0 51.9

Multitask multilingual system

4 languages 43.9 35.6 43.5 51.0
14 languages 42.2 33.6 43.9 50.8

ranging from 2% to 8.8% for the former and 3% to 8% for the
latter. In the single-task setup, as in the case of Globalphone,
language-dependent denominator provides only marginal gains
over language-independent denominator. Overall, the benefits
obtained are dependent on the language, but no significant loss
is observed by choosing one technique for multilingual train-
ing over the other for majority of the languages (Zulu being the
exception).

To demonstrate the scalability of the multitask system, we
also train an AM with 14 languages (final row in Table 5; the 14
languages are in Table 4). Compared with the 4 languages sys-
tem, the 14 language system improves on 3 out of 4 languages.
Relative improvements range from 0.4% (ZUL) to 5.6% (SWA)
suggesting that adding more languages to the AM training can
be beneficial without any additional cost during decoding. In
addition, compared to the monolingual baseline relative im-
provement of up to 13.2% (SWA) is obtained.

5. Conclusions
In this work, we compared different styles of training multi-
lingual acoustic models in the LF-MMI framework. The sys-
tem was evaluated on GlobalPhone and BABEL datasets. The
results on target languages in GlobalPhone show that the multi-
task training approach leads to a system that outperforms single-
task models trained with either IPA or combined phone sets.
The results on BABEL datasets show similar trends in im-
provement for 3 out of 4 target languages. By further increas-
ing the number of languages in training significant benefits are
achieved demonstrating the scalability of our method. We ob-
tained relative improvements up to 13.2% when compared to
the monolingual model.
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Abstract

In this paper, we develop Automatic Speech Recognition (ASR)
systems for multi-genre speech recognition of low-resource
languages where training data is predominantly conversational
speech but test data can be in one of the following genres: news
broadcast, topical broadcast and conversational speech. ASR
for low-resource languages is often developed by adapting a
pre-trained model to a target language. When training data is
predominantly from one genre and limited, the system’s perfor-
mance for other genres suffer. To handle such out-of-domain
scenarios, we employ multitask adaptation by using auxiliary
conversational speech data from other languages in addition to
the target-language data. We aim to (1) improve adaptation
through implicit data augmentation by adding other languages
as auxiliary tasks, and (2) prevent the acoustic model from over-
fitting to the dominant genre in the training set. Pre-trained pa-
rameters are obtained from a multilingual model trained with
data from 18 languages using the Lattice-Free Maximum Mu-
tual Information (LF-MMI) criterion. The adaptation is per-
formed with the LF-MMI criterion. We present results on MA-
TERIAL datasets for three languages: Kazakh and Farsi and
Pashto.
Index Terms: Lattice Free MMI, low-resource speech recogni-
tion, multitask learning

1. Introduction
In the MATERIAL (Machine Translation for English Retrieval
of Information in Any Language1) program, ASR systems for
low-resource languages are trained on predominantly conver-
sational speech, but tested on speech from multiple genres:
conversational speech (CS), news broadcast (NB) and topical
broadcast (TB). For such tasks, an ASR that generalizes bet-
ter across multiple genres despite the constraints imposed on
the training data is desirable. Owing to the low-resource nature
of the target languages, a common approach is to adapt a pre-
trained model to the target language [1, 2]. Multilingual mod-
elling is a common technique used to boost training resources
for the acoustic model [3, 4, 5, 6]. In the Babel program [7],
multilingual models were trained using data from all languages
in the program [8, 9], which proved to be effective on both seen
and unseen languages in training.

In [10, 11], adaptation of pre-trained Lattice Free-
Maximum Mutual Information Criterion (LF-MMI) models
was shown to be effective for ASR on out-of-domain data.
In [12], multilingual models trained with the LF-MMI were
shown to outperform monolingual models on both Babel and

1https://www.iarpa.gov/index.php/
research-programs/material

Globalphone datasets. In this paper, we show the effective-
ness of adapting such multilingual LF-MMI models to MA-
TERIAL’s multi-genre test condition. Compared to training
monolingual models with LF-MMI, adaptation of multilingual
LF-MMI models perform significantly better across all genres.
Similar to [11], we adapt the multilingual model by adding new
language-specific output layers, even in the case where lan-
guages were seen during multilingual training.

Given a target-language, ASR can be trained by simply
adapting existing language specific layers in the model, or
adding new layers to be trained during adaptation. In the lat-
ter case, typically the learning rate on the pre-trained layers is
a fraction of the learning on newly added layers (e.g. one tenth
of the learning rate of the new layers [10]). Since the amount
of adaptation data is limited (few tens of hours of speech) and
mostly from a single domain (CS), the model tends to adapt well
towards the genre predominant in the training data.

Unlike CS, broadcast speech data for many languages are
available in the open source domain. Thus, to improve the
performance on broadcast data one can further perform semi-
supervised training (SST) [13, 14, 15, 16, 17]. Moreover, as
shown in [16], improving the seed model can provide a con-
siderable boost to the final performance on broadcast data with
SST. Thus, we propose a simple approach using multitask learn-
ing that can provide a better starting point for techniques such as
SST. The goal of applying multitask learning for adaptation (or
transfer learning in the case where the target language is unseen
during multilingual training) is to use auxiliary tasks as compet-
ing objectives to boost the adapted model’s out-of-domain per-
formance. Given the success of multilingual LF-MMI training,
we extend it to target language adaptation as well. In this case,
we consider models pre-trained with multilingual LF-MMI with
18 languages. The model is adapted, also with the LF-MMI
criterion, along with other languages that are not necessarily
our target. We refer to this technique as multitask adaptation
(MTA), while the conventional adaptation of pre-trained models
is referred to as Single Task Adaptation (STA). On MATERIAL
datasets, we show that by replacing STA with MTA, one can
achieve relative improvements in Word Error Rate (WER) of
up to 7.1%. We will release the MTA adaptation code as part of
the Babel multilingual recipe in Pkwrap [18] to adapt both Kaldi
and Pytorch [19] acoustic models trained with LF-MMI 2.

The rest of the paper is organized as follows: in Sections 2
and 3, multilingual LF-MMI training and our multitask adapta-
tion method are described, respectively. In Section 4, we detail
the proposed approach of multi-task adaptation. In Section 5,
experimental details and results are presented.

2https://github.com/idiap/pkwrap/tree/master/
egs/multilang/babel/



Figure 1: (a) illustration of typical adaptation of pre-trained model to a target-language. (b) illustration of the proposed multitask
adaptation with target language as one of the tasks. The target language shares parameters with auxiliary tasks (other languages used
during adaptation).

2. Multilingual LF-MMI
In [12], a multitask setup to train multilingual acoustic models
with LF-MMI was introduced. The LF-MMI criterion provides
state-of-the-art performance for hybrid ASR systems. LF-MMI
provides a sequence discriminative training criterion, wherein
each sequence (typically, an utterance of speech) is evaluated
by two values: the numerator which computes the probability
of the observation given the groundtruth, and the denomina-
tor which computes the probability over all possible sequences.
The latter is computed with a graph, referred to as the denomi-
nator graph, trained from a phone Language Model (LM) [20].
The phone LM is trained from transcripts in the training data.
In multilingual LF-MMI, the acoustic model shares parameters
across languages, and there is one output layer for each lan-
guage in the training dataset. Each language has its own de-
nominator graph during training.

The performance of multilingual models on the Babel
datasets is well established with standard Time Delay Neu-
ral Networks (TDNN) [21]. In this paper, we improve the
model capacity of the AM by using the CNN-TDNN-F architec-
ture (Convolutional Neural Networks and Factorized TDNNs)
trained with 18 languages obtained from Babel and MATE-
RIAL datasets (as opposed to only 14 in our previous work),
thereby learning better representations suitable for cross-lingual
learning [22, 23]. The list of datasets used for trained are given
in Table 1. Note that we only refer to the multitask version
of multilingual training in this paper, where each language in
training has a separate output layer.

We apply transfer learning on this multilingual model to
languages recently considered in the MATERIAL program:
Pashto, Farsi and Kazakh. Out of the three, two languages,
Pashto and Kazakh, overlap with the 18 languages used for mul-
tilingual training. Farsi is treated as an unseen language. The
adaptation is carried out in a fashion similar to [10]. We do not
freeze all the layers in the multilingual model, but fix a learn-
ing rate factor on the pre-trained layers. To adapt to each lan-
guage, a learning rate factor of 0.1 was used. In addition to
the pre-trained layers we also add additional target language-
specific layers. To control the number of model parameters, we
use TDNN-F layers [24]. The LF-MMI criterion is used for
adaptation.

3. Multitask adaptation
In this section, we describe the proposed multitask approach.
To motivate our approach we provide the following reasoning:
in order to improve the AM for low-resource languages, mul-

tilingual modelling is often considered useful. Similarly, when
adapting a well-trained acoustic model to a target language, one
can employ a similar strategy by adapting multiple languages at
the same time despite our interest being in only one of the lan-
guages. As mentioned earlier, we refer to this type of adapta-
tion as Multitask adaptation (MTA). To contrast with MTA, we
will refer to the conventional adaptation of pre-trained models
to a target language as Single Task Adaptation (STA). In Natu-
ral Language Processing tasks, where using pre-trained models
is quite common, MTA of pre-trained models has been shown
to be effective [25]. Figure 1 illustrates the difference between
STA and MTA.

Multitask learning [26, 27] has several well-documented
advantages. Two important advantages that we consider here
are implicit data augmentation and ability to reduce the risk
of overfitting. When adapting pre-trained models to low-
resource languages, we observed that despite heavy regulariza-
tion through high dropout rates, the model performance satu-
rates. To avoid such saturation we use the regularizing effect of
adding new languages. Multitask learning for regularization has
already been applied in different contexts. In LF-MMI train-
ing, it is common to use cross-entropy objective function as an
auxiliary objective. In end-to-end ASR training, using multiple
objective functions has been shown to be useful [28].

In addition, the presence of more data from different lan-
guages is well-known to improve speech models [29, 30, 31].
Thus, we hypothesize that adapting a pre-trained model to mul-
tiple languages instead of just the target language can be more
beneficial to the performance on out-of-domain data. In this
work, we consider four languages for MTA: Kazakh, Farsi,
Pashto and Turkish. The first three are target languages, and
Turkish is included due to its linguistic proximity to Kazakh
(among the Babel datasets used in this work). In order to bal-
ance the trade-off between the adaptation speed and multi-task
adaptation benefits, we do not consider more than four lan-
guages.

4. Experiments

We first evaluate the performance of the improved multilingual
model on four languages from Babel: Tagalog (TGL), Swahili
(SWA), Zulu (ZUL) and Turkish (TUR). The evaluation setup
for Babel is the same as [12]. Then, we report the results on
three languages in the MATERIAL program: Farsi, Kazakh and
Pashto.



Assamese Bengali Cantonese Haitian

Kazhak Kurmanji Kurdish Lao Lithuanian

Pashto Somali∗ Swahili Tagalog

Tamil Telugu Tok Pisin Turkish

Vietnamese Zulu

Table 1: Babel [7] and MATERIAL (marked with *) datasets
used for multilingual training. The language names are sorted
in alphabetical order.

Layer Parameter

CNN-1 64 filters

CNN-2 64 filters

CNN-3 128 filters + height subsampling

CNN-4 128 filters

CNN-5 256 filters + height subsampling

CNN-6 256 filters

TDNN-F 1536 dim, 256 dim BN

TDNN-F x 7 1563 dim + 0.66 bypass scale

Bottleneck layer 512 dimension

Table 2: Description of the architecture of the multilingual
CNN-TDNN-F model. The architecture is a modifica-
tion of a similar model found in standard Kaldi recipes
(egs/librispeech/s5/local/chain/tuning/
run_cnn_tdnn_1a.sh ). (dim: dimension, BN: bottleneck)

4.1. Model training

The multilingual model was trained with the 18 languages given
in Table 1. For all Babel datasets, only conversational speech
data was used for training. We trained a 14-layer CNN-TDNN-
F (Convolutional Neural Network followed by Factorized Time-
delay Neural Networks [24]). The model architecture is given
in Table 2. We used hybrid LF-MMI to train the model, with
a weight of 1/18 for each language. The model takes as input
40 dimensional MFCC features and online i-vectors ([32, 33]).
Three-fold speed-perturbation was applied to the training data.

To generate alignments for training, a HMM/GMM system
was trained with PLP+pitch (a concatenation of Perceptual Lin-
ear Prediction and pitch) features using the standard recipe for
Babel datasets in Kaldi [34]. The lexicon provided with the
dataset was used. The alignments generated were used to create
supervision lattices for LF-MMI training. The acoustic model
was trained for 6 epochs with an exponentially decaying learn-
ing rate schedule with an initial learning rate of 0.001 and final
learning rate of 0.0001. A dropout schedule with the following
parameters was used: from 20% to 50% of the iterations, the
dropout was increased from 0.0 to 0.25, and then was gradu-
ally decreased to 0.0 for the rest of the iterations. A continuous
version of a dropout was used [34]. We used Kaldi for all our
experiments.

4.2. Performance on Babel

The performance of the multilingual model on four languages is
presented in Table 3. WERs are reported on dev10h test set. We
also refer to performance reported in [35] to compare with our

System TGL SWA TUR ZUL

Monolingual TDNN [12] 45.3 38.7 47.2 53.5

BLSTM [35] 46.3 38.3 - 61.1

Multilingual models

TDNN (14 languages) [12] 42.2 33.6 43.9 50.8

CNN-TDNN-F (18 languages) 39.4 31.2 40.8 48.5

Table 3: Comparison of performance of multilingual LF-MMI
models on four languages in the Babel dataset. Word Error
Rates (WER) on dev10h are reported. We also compare our
results with [35] as reference to other multilingual models with
similar datasets.

Parameter Pashto Kazakh Farsi

Training data (h) 78.4 49.8 36.3

Test data (CS, NB, TB) (h) 16.4 11.2 9.5

Vocabulary 239k 580k 1.7M

LM (words) 816k 184M 1.3B

LM Perplexity (3-gram) 560 789 786

Table 4: Statistics of the MATERIAL test sets for Pashto, Kazakh
and Farsi. Train and test data duration are computed after seg-
mentation. The segmentation is taken from groundtruth. LM
perplexities are calculated with the LM trained on all text avail-
able for the language and evaluated on only broadcast data
transcripts.

baseline monolingual systems. As reported in [12], the multi-
lingual model trained with 14 languages is significantly better
than the monolingual LF-MMI system. Relative improvements
of up to 13.6% (SWA) was achieved. From the results with the
CNN-TDNN-F model, it is clear that the multilingual training
can further benefit with increased model capacity. The CNN-
TDNN-F model improves further by 6.6% for TGL, 7.1% for
SWA.

4.3. MATERIAL datasets

We consider three MATERIAL datasets: Kazakh, Pashto and
Farsi. The first two languages are also part of the Babel datasets
used for multilingual training while Farsi is an unseen language.

Language model for each dataset is trained as follows: for
each language text obtained from web-crawl is available for
language model. The web-crawl text is cleaned (punctuation
and out-of-language word) and a 3-gram model is trained with
SRILM [36] along with the training transcripts. We use Kneser-
Ney smoothing with parameters 0, 1 and 2. This consistently
gave us the best trade-off between language model perplexity
and size. This language model is used for decoding NB and TB
audio. For CS, we interpolate the LM with a 3-gram LM trained
only with training transcripts. An interpolation weight of 0.9 on
the latter is used [37]. The vocabulary for each language is cho-
sen based on the web crawl text and training transcripts. While
all words in the training transcripts are included, only words
that appear at least 5 times in the web crawl are chosen as a
part of the vocabulary. Graphemic lexicon was used for all the



System Seen languages Unseen language

Pashto Kazakh Farsi

CS NB TB CS NB TB CS NB TB

(a) Monolingual TDNN-F 47.2 47.0 54.8 44.3 29.4 36.2 50.7 56.6 49.7

(b) Monolingual CNN-TDNNF 46.9 44.2 51.3 39.7 25.9 30.9 43.2 42.4 48.9

(c) STA 41.9 43.6 48.1 39.2 23.4 26.6 37.0 36.6 41.1

(d) MTA 41.8 40.5 45.4 38.9 21.9 25.4 36.9 35.3 40.1
(e) Fusion (c+d) 40.8 40.7 45.2 37.6 21.6 24.7 35.3 33.8 38.6

Table 5: Comparison of performance of adaptation with multilingual LF-MMI models to three MATERIAL datasets. Word Error Rates
(WER) are reported. CS: Conversational speech, NB: News Broadcast, TB: Topical Broadcast, STA: Single task adaptation, MTA:
Multitask adaptation

three languages. All words in Kazakh were lower-cased. The
statistics of training data is given in Table 4.

Two experiments were performed on the MATERIAL lan-
guages: (1) STA (adaptation of the multilingual CNN-TDNN-F
model to the target language), and (2) MTA (multitask adapta-
tion of the same pre-trained model to several target languages,
simultaneously). We also used Babel Turkish as an additional
language for MTA. The adaptation was carried out by setting
a learning rate factor of 0.1 on the pre-trained layers. Addi-
tional 9 layers of TDNN-F was added to adapt to each target
language. All but the first TDNN-F component had a context
of 3. The first TDNN-F layer takes as input the output of the
bottleneck layer of the multilingual model. The same network
architecture was used for both STA and MTA. Each output layer
in MTA had a learning rate factor of 0.25 (i.e. all languages
were weighted equally). An exponentially decaying learning
rate schedule was used with initial learning rate of 0.001 and
final learning rate of 0.0005. A different dropout schedule was
used during adaptation: dropout rate was kept to 0.0 for the first
5% of the iterations, then increased to 0.25 until 60% of the
iterations, followed by reduction to 0.0 until the final iteration.

4.4. Performance on MATERIAL datasets

The results are presented in Table 5. First we compare the re-
sults of monolingual systems with systems adapted from the
multilingual model. Considerable improvements are observed
for all 3 languages. The benefits of adapting a multilingual
model with STA is shown by relative improvements obtained up
to 15.9% (Farsi, TB) compared to the best monolingual system.
All systems performed the worst on the TB compared to other
genres owing to the difficulty of the genre (mostly in terms of
acoustic conditions and vocabulary). Adapting any of the three
target languages provides significant performance boost for all
genres.

With MTA, improvements in the broadcast genre (i.e. NB
and TB) were observed for all languages. The results demon-
strate that MTA can be beneficial compared to STA for out-
of-domain data. Note that for both STA and MTA the same
model configuration is used. Relative improvements ranging
from 2.5% (TB in Farsi) to 7.1% (NB in Pashto) are observed
for the broadcast genre. For in-domain data (CS), we only ob-
served marginal gain in performance. However, to verify if
the acoustic model trained with MTA is different to that ob-
tained with STA, we performed a simple system fusion exper-

iment. Improvements observed on 8 out of the 9 subsets sug-
gest that MTA learns representations different to that learnt with
STA. Even though the difference between STA and MTA per-
formances are negligible for the CS genre, the fusion of the two
systems provided relative improvements between 2.4% (Pashto)
and 4.4% (Farsi). For NB in Pashto, there is a slight degrada-
tion in performance (from 40.5% to 40.7%) suggesting that the
acoustic representation obtained with MTA can sometimes be
considerably better for broadcast data than that obtained with
STA.

5. Summary
We presented results on four Babel languages with multilingual
LF-MMI training. We showed that multilingual LF-MMI scales
well with increased model capacity, and with the number of
languages used during training. We demonstrated the useful-
ness of such pre-trained models for multi-genre speech recog-
nition on the MATERIAL dataset for three languages: Pashto,
Kazakh and Farsi. Consistent improvements were obtained for
both seen and unseen languages. To further improve the per-
formance on broadcast data we proposed multitask adaptation.
Relative improvements ranging between 2.5% and 7.1% were
obtained compared to the conventional adaptation on news and
topical broadcast.
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Abstract
Automatic Speech Recognition (ASR) can introduce higher lev-
els of automation into Air Traffic Control (ATC), where spo-
ken language is still the predominant form of communication.
While ATC uses standard phraseology and a limited vocabu-
lary, we need to adapt the speech recognition systems to lo-
cal acoustic conditions and vocabularies at each airport to reach
optimal performance. Due to continuous operation of ATC sys-
tems, a large and increasing amount of untranscribed speech
data is available, allowing for semi-supervised learning meth-
ods to build and adapt ASR models. In this paper, we first iden-
tify the challenges in building ASR systems for specific ATC
areas and propose to utilize out-of-domain data to build base-
line ASR models. Then we explore different methods of data
selection for adapting baseline models by exploiting the contin-
uously increasing untranscribed data. We develop a basic ap-
proach capable of exploiting semantic representations of ATC
commands. We achieve relative improvement in both word er-
ror rate (23.5%) and concept error rates (7%) when adapting
ASR models to different ATC conditions in a semi-supervised
manner.
Index Terms: Speech Recognition, Air Traffic Control, Semi-
supervised learning

1. Introduction
Air Traffic Control (ATC) involves spoken language commu-
nication between aircraft pilots and air traffic controllers, who
guide aircraft to navigate safely in air and at airports. The in-
tensive use of spoken language in ATC is natural and hence pre-
ferred in some ways, but it also hampers the introduction of
higher levels of automation. Introduction of ASR (Automatic
Speech Recognition) into ATC systems is an enabler for differ-
ent levels of automation, reducing the efforts of air traffic con-
trollers leading to significant gains in terms of reduced human
effort and saved flight times.

Recently, Assistant based Speech Recognition (ABSR)1 [1]
that combines ASR with a radar based assistant system has been
shown to be useful. An ABSR generates context information
to reduce the search space for the speech recognizer and can
reduce controller’s workload by a factor of three [2], in addi-
tion to significant fuel savings [3] resulting from shorter flight
times and increased operational efficiency. However, extending
ABSR to real world operational environments is challenging for
many reasons. To build robust ASR systems for each operating

1AcListant®: http://www.aclistant.de

ATC environment, transcribed speech data is necessary, obtain-
ing which is time and resource consuming. Owing to its global
nature, ATC uses standardized English vocabulary and phrase-
ology for communication. However, local variations in each
ATC area exist due to local runways, waypoints, airlines, acous-
tic conditions, local English accents and the occasional use of
local language words. Further, some of the local conditions (air-
lines, runways, waypoints) can also change over time and hence
the ASR systems need regular maintenance. Due to continu-
ous operation of ATC systems, an increasing amount of (un-
transcribed) speech and radar data is generated and is archived
for flight safety reasons. The MALORCA2 project has been
constituted to address these issues and automate re-learning,
adaptation and customization of ASR systems to new ATC en-
vironments. The main goal is to continuously update the ASR
models in an unsupervised/semi-supervised manner by utiliz-
ing increasing amounts of speech data, while exploiting local
acoustic, language and semantic constraints. In addition, data
from other modalities such as radar can be used, which provide
a context for the commands issued by the controllers to pilots.

ASR systems built to a specific domain ensure the best
performance. However, in their absence, adapting out-of-
domain (OOD) ASR models to a specific domain has been ex-
plored [4, 5]. In aviation, ASR is a known technology used
with considerable success in training simulators [6]. Applying
ASR to ATC domain has been previously explored [7], but the
use of untranscribed data is a new challange. Semi-supervised
learning methods [8] can be used to utilize the untranscribed
data to improve and build domain specific ASR systems. A
“first iteration” ASR built with limited training data can be
used to automatically transcribe raw audio data, thus generat-
ing approximate transcriptions that can be used as additional
training data. Data selection for semi-supervised learning [9]
from such automatic transcripts then becomes a central task,
where different confidence measures at frame, word and sen-
tence level have been used and several methods have been pro-
posed [10, 11, 12]. Semantics based confidence measures have
received some attention in specific tasks related to spoken di-
alogue systems [13, 14]. However, the variation in semantics
across different application domains of ASR motivates the need
for domain specific semantic confidence measures.

In this paper, we explore the tasks associated with auto-
matic deployment and adaptation of ASR models to a new ATC
environment. We use a limited amount of transcribed data
available from Vienna ATC area while also utilizing additional

2MAchine Learning Of speech Recognition models for Controller
Assistance: http://www.malorca-project.de/



OOD data. We propose data selection methods to choose suit-
able training data from untranscribed speech from Vienna ATC
area and discuss directions for further improvement of semi-
supervised learning methods. ATC communication has a lim-
ited vocabulary with strong semantic restrictions. The goal
of such communication is to ensure that the necessary com-
mands from controllers to pilots are conveyed through spoken
language. The commands are hence primary, while the exact
spoken text is of secondary importance. Any improvements to
an ASR system in such an application should be geared towards
improving the accuracy of command recognition. Hence mea-
sures and approaches that can work with command semantics
in addition to the commonly used phone and word levels are
preferred. We also explore such methods in this paper.

2. Semi-supervised Learning: Methods
In this paper, (1) we build base ASR models using limited in-
domain data from Vienna ATC area and out-of-domain data,
(2) the base ASR models are then supervised-adapted to Vi-
enna ATC area. Subsequently, (3) the ASR models are used for
further semi-supervised learning experiments. We start by first
describing the datasets used in the experiments.

2.1. Datasets

The speech data used in this paper has been recorded from Vi-
enna approach sector and feeder controller. A part of the speech
data is transcribed, with text and command transcriptions. The
availability of a partial set of transcriptions provides us the right
opportunity to explore semi-supervised learning methods to uti-
lize the complete untranscribed data. Vienna ATC continuously
records speech data and hence can provide increasing amounts
of (untranscribed) speech data. At the moment, this data is not
publicly available. The speech content of the dataset is simi-
lar to other publicly available ATC domain datasets such as the
LDC ATC dataset [15] and ATCOSIM dataset [16].

While additional data from Vienna approach is expected,
presently the dataset has over 20 hours of speech data from
46 different controllers (speakers). All the data was recorded
from operational ATC environments in the second half of 2016
at a sampling rate of 8kHz. The data has been segmented into
short utterances containing only a few (upto 5) controller com-
mands (most utterances have just one command). A command
from a controller is repeated by the pilots (readback), but the
pilot replies are not recorded and stored since they are not rele-
vant. While all recordings have speaker labels, only a part of the
dataset is annotated by professional air traffic controllers with
text and command transcripts using an in-house annotation tool.

For training the base ASR models, we use about 5 hours of
transcribed data, which we term as VDev1. The transcriptions
include text transcriptions of the speech utterance, along with a
transcription of the command that the speech utterance conveys
to the pilots. For testing, we use about 2 hours of transcribed
data with 6 speakers, termed as VTest dataset. About 9 hours of
untranscribed data termed as VDev2 is used for semi-supervised
learning of models. The three datasets are disjoint and do not
share any speakers across them, as described in Table 1.

Since the amount of transcribed data available from Vienna
approach is limited, we utilize other available transcribed re-
sources to train the ASR system. We hypothesize that the use of
standard English datasets is useful for seed training an acous-
tic model. We pool 150 hours of speech data from the pub-
licly available LIBRISPEECH [17], ICSI [18], AMI [19] and
TED-LIUM [20] datasets, which have been extensively used for

Dataset Source Dur. (hr) Speakers

VDev1 Vienna approach 5.1 13
VDev2 Vienna approach 9.1 24
VTest Vienna approach 1.9 6
MEGA LIBRISPEECH, AMI,

ICSI, TED-LIUM
150 1043

Table 1: Datasets, showing the source, duration and speakers

recognition of conversational speech. The speech data and ac-
companying transcripts (called MEGA) are used in conjunction
with training data from Vienna approach.

2.2. Dictionary, Acoustic and Language models

We add all the possible in-domain words associated with Vienna
ATC area (e.g. airlines and waypoints) to the standard CMU-
Sphinx dictionary3 to form an extended pronunciation dictio-
nary for use with both acoustic and language models. There are
hence no out-of-vocabulary words during training or testing.

DNN/HMM (Deep Neural Network Hidden Markov
Model) acoustic models are the state of the art in speech recog-
nition acoustic modeling. As reliable training of DNNs re-
quire significant amount of labeled data, we add the 150 hour
MEGA dataset to the limited Vienna VDev1 dataset. We use
the combined data to train a Gaussian Mixture Model based
GMM/HMM acoustic model (AM). Using the state level align-
ments of the combined data using the GMM/HMM model, we
train a DNN/HMM acoustic model (called the DNN-BASE).

The DNN-BASE acoustic model is then adapted to Vi-
enna ATC domain using the VDev1 dataset. To adapt, we start
from the DNN-BASE model, and first reinitialize and random-
ize the weights of the last layer of the DNN. The architecture
and weights of the other layers are unchanged. We then re-
train the entire network using VDev1 training dataset to obtain
supervised-adapted DNN (DNN-SA). This way of reinitializing
the last layer and retraining the complete network was found to
be effective for supervised adaptation using in-domain data.

For decoding a test utterance, we use a trigram language
model (LM) built using the transcripts of VDev1 (vocabulary
size ≈ 700 words) to ensure that an in-domain Vienna specific
language model is used. Together with the language model, the
ASR system using DNN-BASE and DNN-SA with the trigram
language model from VDev1 is called ASR-BASE and ASR-
SA, respectively.

The standard vocabulary and phraseology used in ATC is
an argument to construct a rule based Context-Free Grammar
(CFG) that can be used to build a Vienna specific language
model. However, in practice, the controllers often deviate from
standards, and hence an N-gram statistical language model is
used instead for recognition, while a CFG is used for concept
extraction, as further described next.

2.3. Concept and Command extraction

The output from an ASR system is a sequence of words as spo-
ken by the controller. We however then need to extract the
controller command that the sequence contains. From the con-
troller utterances we extract concepts and commands. Concepts
include all meaningful words or expressions which are related
to the controller command and the required action of the air-
craft. Concepts basically include (i) the callsign composed of
an airline identifier (International Civil Aviation Organization
airline code) and a flight number, (ii) the command word or ex-

3http://www.speech.cs.cmu.edu/cgi-bin/cmudict



pression itself, and (iii) the command attributes (usually target
values for some flight parameters). This sequence of concepts
forms a command. For example, the following utterance “hello
lufthansa eight echo kilo, start reduce your speed to two two
zero knots" contains the following concepts:

• DLH8EK (lufthansa eight echo kilo - callsign)
• REDUCE (reduce - command word)
• 220 (two two zero - speed attribute)

The command in its semantic form is hence: DLH8EK RE-
DUCE 220. In order to extract the concepts from the ut-
terance, we use a CFG that models controller phraseology.
Normally phraseology is highly standardized, i.e. the con-
trollers are fairly bound on how they formulate a command.
All possible command words or expressions have an entry
in the CFG, for modelling standard phraseology and often
used deviation forms. Each semantic slot for the command
is tagged in the CFG, and hence, transducing [21] a tran-
script hypothesis from the ASR over the CFG results in an
XML tagged version as follows (using the previous example):
hello <callsign> <airline> lufthansa </airline> <flightnumber>
eight echo kilo </flightnumber> </callsign> start <commands>
<command="reduce"> reduce your speed to <speed> two two
zero </speed> knots </command> </commands>. If trans-
ductions fail (due to a deviation in phraseology not modelled
by the CFG or due to ASR errors), the command extrac-
tor returns “NO_CALLSIGN" if the callsign is missed, and
“NO_CONCEPT", if the command word or the command at-
tribute could not be recovered.

Thus, given a speech utterance by a controller, we obtain a
plain text hypothesis (sequence of words as they were spoken),
an XML tagged version of hypothesis (tagged with semantic
concepts), and the command hypothesis.

2.4. Semi-supervised learning

Semi-supervised learning aims to exploit the untranscribed data
available in VDev2 dataset to improve the ASR models. Start-
ing with the supervised-adapted ASR-SA system, the approach
we use in this paper consists of three steps: transcript genera-
tion, data selection, and semi-supervised training.

2.4.1. Transcript generation

First we use the system adapted to VDev1 (ASR-SA) to gen-
erate the text and command transcripts for the data in VDev2.
These automatically generated transcripts are used for further
experiments.

2.4.2. Data selection

The automatically generated transcripts along with speech in
VDev2 can be used as training data. However, these transcripts
might have errors and those should be excluded from training,
which is a problem often termed as data selection. Data selec-
tion is done by assigning confidence scores to ASR outputs, so
that high confidence transcripts (and corresponding utterances)
can be selected for further experiments. We explore two dif-
ferent data selection strategies, one that uses word level confi-
dences and another that uses concept and command level con-
fidences. Both data selection methods aim to utilize automati-
cally transcribed data to provide additional training resources.

Word confidence: A logistic regression model is built with
word-lattice derived features using the VDev1 transcribed data.
The features include the posterior probability of a word ob-
tained from Minimum Bayes Risk (MBR) decoding [22], word
length, competing words, and frames per character ratio. The

System Training dataset #Sen. WER (%) CER (%)

ASR-DEV1 VDev1 2143 12.3 38.6
ASR-BASE MEGA + VDev1 3861 13.3 41.4

Table 2: Baseline results on evaluation with VTest dataset and
using an LM built with VDev1 transcripts, showing the number
of senones (#Sen.), Word (WER) and Concept (CER) error rate.

trained logistic regression model is applied with the same fea-
tures extracted from the decoding word-lattices of VDev2 and
output confidences (ranging from 0 to 1) per word are obtained.
Utterance level confidence is then obtained as the average word-
confidence of the words in the output. The utterance-confidence
values are sorted and a threshold is used to select high confi-
dence data into a subset VDev2-W of the automatically tran-
scribed VDev2 dataset.

Concept confidence: Since the output commands are more
relevant than the plain text ASR hypotheses, a data selection
method that can incorporate a confidence measure based on out-
put command hypothesis is preferred. We hypothesize that an
accurate ASR output would result in an accurate command hy-
pothesis generated by the command extractor. In case the com-
mand extractor is unable to decipher a valid command from the
ASR output, it implies an erroneous automatic transcription.
We base our data selection method on this premise, and ex-
clude all automatic transcriptions that contain NO_CALLSIGN
or NO_CONCEPT (and hence indicate the failure of the com-
mand extractor to extract a meaningful and valid concept and
command hypothesis) as output command, to obtain a sub-
set VDev2-C. Note that a valid output from the command ex-
tractor does not always imply an accurate command hypoth-
esis. Nevertheless, we observed that command recognition is
mostly accurate when the command extractor does not return
NO_CONCEPT/NO_CALLSIGN. Without ground truth com-
mand transcripts, we explore this method as a first step towards
command semantics based data selection.

2.4.3. Semi-supervised training

With either data selection methods, we combine VDev1 with
the selected subset of VDev2 (either VDev2-W or VDev2-C)
and their automatically obtained transcripts to form a larger
adaptation dataset. Based on our previously published ideas, we
explore adapting either the AM [23, 24], LM [25], or both using
this adaptation dataset. To adapt only the AM, similar to train-
ing the DNN-SA, we reinitialize the last layer of DNN-BASE
model and retrain the complete network with the adaptation
dataset, while using the LM built with only VDev1. To adapt
only the LM, we use the supervised-adapted DNN-SA acoustic
model with a 3-gram LM built with the adaptation dataset. To
adapt both AM and LM, we adapt DNN-BASE with the com-
bined dataset and use a 3-gram LM built with the adaptation
dataset. The ASR systems with semi-supervised adaptation us-
ing word and concept based confidences are termed ASR-SSA-
W and ASR-SSA-C, respectively.

2.5. Evaluation measures

The most relevant metric of performance for ATC applications
is at the command semantics level. However, since the ASR
system outputs hypothesis at both word level and command
level, we report the commonly used Word Error Rate (WER)
and the Concept Error Rate (CER). For the CER, we discard all
the semantically irrelevant words with respect to the command
type from the output text hypothesis and match only the con-



System Selection Adaptation dataset WER (%) CER (%)
method (Duration) AM LM AM+LM AM LM AM+LM

ASR-SA — VDev1 (5.1 hr) 10.0 — — 37.5 — —
ASR-SSA-none None + VDev2 (9.1 hr) 9.6 9.8 9.6 36.6 37.3 36.9
ASR-SSA-W Word + VDev2-W (7.2 hr) 9.6 9.8 9.4 36.8 36.7 37.0
ASR-SSA-C Concept + VDev2-C (7 hr) 9.8 9.8 9.5 37.1 36.1 35.9

Table 3: Results on evaluation with VTest dataset for supervised (ASR-SA) and semi-supervised methods (ASR-SSA-none, ASR-SSA-W,
ASR-SSA-C), showing the selection method, adaptation dataset used, AM, LM or AM+LM adaptation, and the measures Word (WER)
and Concept (CER) error rate. All acoustic models have 3861 senones at the output. Since the default LM is built with VDev1, LM
adaptation is not applicable to ASR-SA. The best WER and CER is marked in bold.

cepts, by treating the command word and its attribute together.
For example, supposing a ground truth transcript of DLH8EK
REDUCE_230 and a hypothesis of DLH8EK REDUCE_220,
the CER is 50%, since the callsign is correctly hypothesized
while command attribute is wrong. Owing to its inclusion of
semantics, CER is a stricter measure than the WER.

3. Experiments
The speech recognition experiments are done using the Kaldi
speech recognition toolkit [26].

3.1. Experimental setup

The GMM/HMM acoustic model is trained in a conventional
fashion and consists of≈3900 senones. In all the training cases,
50K Gaussians were added to the GMM/HMM model using
diagonal covariance matrices. As input features, we applied
13 dim MFCCs accompanied with their delta and acceleration
coefficients (39 dim feature vector), along with fMLLR trans-
forms for speaker adaptive training. For the DNN/HMM model,
the DNN comprises 4 layers: 351 dim input layer (9 stacked
MFCC vectors with a context of 4 frames around the centered
frame), hidden layers of 1200 nodes and output layer trained to
discriminate among senones to estimate senone posterior prob-
abilities. The DNN is trained to minimize frame-level cross
entropy. To establish baselines, we additionally train smaller
GMM/HMM (consisting of ≈2100 senones) and DNN/HMM
acoustic models with VDev1 without utilizing the OOD data.

Starting from the DNN-BASE model, the supervised-
adapted DNN-SA is trained as described in Section 2.2, with
the same architecture. The semi-supervised methods follow the
process described in Section 2.4.3, adapting either the AM, LM
or both, using word confidence (ASR-SSA-W) or concept con-
fidence (ASR-SSA-C). An average word confidence threshold
of 0.95 is used for utterance selection, selecting (from VDev2)
7.2 hours of speech into VDev2-W. Command confidence based
selection retains 7 hours of speech in VDev2-C data subset. In
order to compare the performance of data selection, we also re-
port results with no data selection (i.e. using all of VDev2),
termed as ASR-SSA-none.

3.2. Results

We report results only with DNN/HMM acoustic models since
they provided a better performance than the GMM/HMM coun-
terparts. The baseline results are shown in Table 2 while the
results of supervised and semi-supervised (AM, LM) adapta-
tion are shown in Table 3. Both tables show the evaluation
results on VTest dataset, with the baseline supervised train-
ing with only VDev1 (ASR-DEV1), VDev1 combined with
MEGA (ASR-BASE), supervised adaptation of DNN-BASE
with VDev1 (ASR-SA) and the two semi-supervised meth-
ods ASR-SSA-W (word confidence) and ASR-SSA-C (concept
confidence), in addition to ASR-SSA-none (no data selection).

While using only VDev1 to build smaller models seems to per-
form better in baselines in Table 2, the use of MEGA dataset
helps building generalizable larger models that outperform with
supervised adaptation as seen from ASR-SA (WER: 10.0%,
which is an 18.7% relative decrease compared to 12.3% WER
of ASR-DEV1).

Table 3 shows that the addition of automatically transcribed
data for training is useful and improves performance over ASR-
SA in all cases. It also shows the advantage of AM and
LM adaptation, while adapting both AM and LM leads to
better WER. The results also indicate that AM adaptation is
marginally better than LM adaptation to improve WER, while
such an observation does not extend to CER.

The ASR system built without data selection (ASR-SSA-
none) shows a 4% relative improvement in WER over ASR-
SA, while further data selection methods provide marginal im-
provement. The best performing WER of 9.4% (6% relative
improvement over ASR-SA) is with AM+LM adaptation using
word confidence based data selection (ASR-SSA-W), while the
best performing CER of 35.9% (relative 4% improvement over
ASR-SA, with 35 more concepts correctly hypothesized in to-
tal) is with AM+LM adaptation using concept confidences for
data selection (ASR-SSA-C). This indicates that concept confi-
dence measures help to achieve lower CER, while word confi-
dence measures improve WER.

4. Conclusions
We built domain specific ASR models for controller pilot com-
munication for Vienna approach by utilizing 150 hours of OOD
data and adapting with 5 hours of in-domain transcribed data.
We proposed data selection methods using word level and con-
cept level confidences to benefit from cheaply available un-
transcribed in-domain data. This complemented transcribed in-
domain data, enabling an adaptation of both acoustic and lan-
guage models. Exploiting OOD data, plus complementing tran-
scribed data with untranscribed in-domain data through data
selection gives a relative reduction of WER by 23.5% (using
word confidences) and CER by 7% (using concept confidences),
when compared to using only in-domain transcribed data (ASR-
DEV1, WER: 12.3%, CER: 38.6%). In the future, we will ex-
plore using additional amounts of untranscribed data for data
selection. We also plan to integrate additional semantic in-
formation and other modalities such as radar data to develop
improved training (such as transfer learning, sequence training
with concept error metrics) and data selection methods for semi-
supervised learning.
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ABSTRACT

A common problem for automatic speech recognition systems is how
to recognize words that they did not see during training. Currently
there is no established method of evaluating different techniques for
tackling this problem.
We propose using the CommonVoice dataset to create test sets for
multiple languages which have a high out-of-vocabulary (OOV) ra-
tio relative to a training set and release a new tool for calculating
relevant performance metrics. We then evaluate, within the context
of a hybrid ASR system, how much better subword models are at
recognizing OOVs, and how much benefit one can get from incor-
porating OOV-word information into an existing system by modify-
ing WFSTs. Additionally, we propose a new method for modifying
a subword-based language model so as to better recognize OOV-
words. We showcase very large improvements in OOV-word recog-
nition and make both the data and code available.

Index Terms— speech recognition, OOV-word recognition,
speech dataset, finite-state transducers

1 Introduction
All languages are constantly evolving and therefore all ASR systems
suffer from failing to detect words that were not in their training set
(out-of-vocabulary, OOV, words). We focus on weighted finite-state
transducer (WFST) based ASR systems with distinct acoustic and
language models [1]. In these systems both the language model and
lexicon are fixed and encoded as a WFST, this means words that were
not part of these systems at training time are impossible to recognize.
This has lead to various approaches to modify the WFSTs so that the
ASR system can recognize words it had previously no knowledge
of [2, 3, 4, 5, 6, 7]. A complication is that typically the lexicon and
language model WFSTs will be composed together to create a static
decoding graph that can be used repeatedly during decoding. This
is a problem because, depending on the use-case, it means we don’t
have access to the lexicon WFST (L) or the language model WFST
(G), and must try and alter the full decoding graph, the HCLG, which
is harder.

One workaround is to use a subword-based model, as they can
theoretically create any word by outputting a sequence of shorter
subword tokens [8, 9, 10]. Another approach is for the language
model to contain a [unk] (unknown) token, which has as the pronun-
ciation a phone LM trained on a lexicon of words with low counts,
and then to try recover a word from the recognized phone sequence
aligned with the [unk] token [11, 12].

Doing graph composition on a client’s device can be difficult
as it can take a significant amount of time and memory to perform.

Thanks to Phil Garner for the helpful discussions

Therefore it is usually preferred to deploy ASR systems with an al-
ready composed decoding graph. If one is willing to redo compo-
sition but does not want to retrain the language model modifying
the L and G directly is an option. Alternatively, one can avoid hav-
ing to create the static decoding graph by doing on-the-fly compo-
sition, also known as dynamic composition, which is done at run-
time [13, 14, 15, 16]. Keeping the G, for example, separate makes
it easier to bias the model towards certain words or add new ones to
it [2, 3, 4]. However, this approach causes a decrease in decoding
speed.

Finally, one can try and modify the static decoding graph
(HCLG) [5, 6, 7]. Because of composition and optimization (e.g.
determinisation, minimisation, weight-pushing) the initially sepa-
rated knowledge sources (the lexicon, language model, etc.) are
now entangled, making it harder to modify or add new words and
pronunciations than when working with the separated L and G.

Many existing papers focusing on OOV recognition used private
datasets, which makes results not comparable [2, 5, 8, 11]. Or to
create OOVs they keep the top ten thousand (or some other number
that is significantly smaller than a real ASR system would use) in the
vocabulary and use the rest as OOV words [4, 5, 10, 8]. This evalua-
tion method is problematic because it would overestimate the benefit
of using subword-based models as relatively frequent words are not
included in the top ten-thousand but the various inflections of them
will be seen often during LM training by the subword-based model.
This will make it artificially easy to then recover the OOV-word as
the subword sequence needed will have a relatively high probability.
For the same reason (these artificial OOV-words actually being com-
mon when considering inflections) grapheme2phoneme tools will re-
turn more accurate pronunciations than would happen with realistic
OOV-words.

Therefore, we create reproducible datasets for English and Ger-
man using CommonVoice[17] where the test set has a large number
of realistic OOVs. We release a new tool for calculating error rate
metrics, and propose a new metric called “OOV-CER” for measur-
ing OOV-word recognition performance independent of the perfor-
mance on in-vocabulary words. Using this setup we compare word
to subword-based models, check how well OOV recognition works
when using a phone LM as the pronunciation for [unk], and compare
how effective modifying the L, G and HCLG is. Finally, we propose
a new method for modifying the G of a subword-based model to im-
prove performance.
The data and relevant code to modify WFSTs (discussed later) can
be found here: github.com/idiap/icassp-oov-recognition.

2 Dataset
The goal is to create a test dataset with a high amount of realistic
OOV-words. The approach we use is to have a large vocabulary and



then choose utterances from the CommonVoice[17] dataset that con-
tain at least one OOV-word to create the test dataset. The training set
is created from the remainder, while excluding those utterances that
would lead to a speaker overlap between train and test. For English
we used the Librispeech[18] lexicon as the vocabulary, for German
we created one by taking the top two hundred thousand words from
a text corpus (Europarl). By using large vocabularies gotten from
large corpora we ensure that any OOVs will be realistic.
The training and test set size is 280 / 250 and 2.5 / 3 hours for
English / German respectively. The OOV ratio is 12.2 / 13.6%.
The distribution of the OOV-words is very flat. The English ones
tend to be modern words, the top three are “firefox”, “website” and
“nudism”. This is because the Librispeech corpus is based on old
books, so the vocabulary is old-fashioned. The German OOV-words
tend to be compounds words. The English task is harder as the
test set text is not only a different domain but also from a different
time-period than the vocabulary and text corpus used to train the LM.

3 Metrics
We measure the standard WER (word error rate) and CER (char-
acter error rate). Character error rate is a useful measure because
if a word has one character wrong that should be a less significant
error than if most are incorrect. Additionally, it is useful to know
how well OOV-words are recognized independent of performance
on in-vocabulary words because OOV-words are more important
than for example stop words (“the”, “a”, “and” etc.). This could
be done by measuring OOV recall (how many times a OOV-word
in the reference is predicted) but this, like WER, treats one or
five character mistakes equally. Therefore we developed a new
tool for calculating error metrics and propose a new metric called
‘OOV-CER’. The tool is called texterrors and is available at
github.com/RuABraun/texterrors.
It does character aware alignment of the reference and hypothesis by
incorporating the edit distance between words into the substitution
cost. The OOV-CER is calculated by getting the index of the OOV-
word in the reference, using it to index into the aligned hypothesis
and then calculating the edit distance between that word and the
reference word. To take into account that a model could output the
reference as two separate words, words in the aligned hypothesis
that neighbor the index (obtained from where the OOV-word is in
the aligned reference) and are aligned with nothing (are insertions)
will be pre- or appended to the word in the index.
As an example: The reference is ”words in sentence”, the hypothesis
is ”words in sent tense” and the word ”sentence” is the OOV-word
and is aligned to ”sent”. To calculate the OOV-CER we first join
”sent” and ”tense”, as the latter is an insertion and aligned next to
the OOV-word, and then calculate the CER between ”sentence” and
the joined word.

We don’t bother measuring OOV precision as a decrease in per-
formance will already be reflected by an increase in WER/CER. As
OOV-words are more important than most in-vocabulary words if the
OOV-CER goes down while the WER stays the same after applying
some modification to the model, we consider the model as improved.

4 Model biasing mechanisms
A very common use-case is to have some prior knowledge about
likely OOV-words, and to want to adjust the model so as to recognize
them. In this section, we first review three approaches and introduce

a new one. When we mention using a list of OOV-words, we mean
a list that has been extracted from the test set relative to our model
vocabulary. This is therefore the best case scenario as we know all
OOV-words that our model will be asked to recognize. The [unk]
symbol is a token that represents an unknown word, jnk is its default
pronunciation.

4.1 UNK with non-jnk pronunciation
This method does not actually require any knowledge of possible
OOV-words in advance. Rather than having jnk be the pronun-
ciation of the [unk] token, one can replace it with a phone LM
trained on the phones from a lexicon of (possible OOV-) words. The
LM is inserted in WFST form. Our implementation uses kaldi’s
utils/lang/make unk lm.sh. This allows for an almost ar-
bitrary phone sequence to be recognized.
In figure 1 one can see a simple L. If we wanted to insert just one
pronunciation for [unk] we would delete the existing arc from state
0 to 3, then add an arc for each phone in the pronunciation starting
from state 0 and ending at state 3. One of these would have [unk]
as the output label. To add a phone LM we take an existing WFST
over phones P, and connect state 0 in the L to the start state of P with
[unk] as the output label, then connect all final states of P to state
3. The connecting arcs will have input disambiguation symbols to
ensure the L is still determinisable.
After decoding one then aligns the best-path output lattice to find
which phones match to [unk], runs phoneme2grapheme (trained
separately), rescores the alternatives with a character LM and gets
the best path to get the recovered word. When the training data for
the phone LM comes from the lexicon of OOV-words we call this
method ’biased unk lm’. To simulate the case when we don’t know
what words are OOV we get phones from a lexicon of words with
low counts (relative to the text corpus used to train the LM) and call
it ‘unk lm’.

Fig. 1. Simple example of a lexicon WFST (the L).

4.2 Replacing UNK in L and G
This approach assumes one has access to the L and G WFSTs. Using
a lexicon of all OOV-words, we add the words and corresponding
pronunciations into the L. This is easy to do as the L is unoptimized
and we can just add the pronunciations as a sequence of arcs with
one of them having the word as the output label. It assumes the
new words do not contain any new phones. Then we iterate over
the states of the G and replace all arcs with [unk] with multiple
arcs keeping the same start and end state, each with one of the OOV-
words we want to add as the input and output label. Each arc inherits
the [unk] weight plus a penalty of 2.3 (equivalent to multiplying the
probability by 0.1). The penalty is because [unk] has a relatively
high probability, and we empirically found this to help. This method
is called ‘mod L,G’.



4.3 Replacing UNK in HCLG
To replace the jnk:[unk] arcs in the HCLG we need an HCL, as
the input labels of the HCLG are transition-ids and the states repre-
sent different HMM states. We can create an HCL from the lexicon
of OOV-words and then do the replacement. For the sake of simplic-
ity our method requires that the HMM topology only has one state.
Doing the replace operation makes an additional assumption which
constrains the sort of models we can use: By default our models use
biphone context dependency, now imagine we inserted the HCL of
a word who’s pronunciation started with some phone p, the issue is
that the input label associated with p should be different depending
on what arc came before (i.e. what phone came before) the one we
are replacing in the HCLG. But we can’t know that at the time of
the HCL creation. We get around this problem by using a mono-
phone model. While techniques exist to modify the HCLG of con-
text dependent models [5][7] they are quite complex and we want
to test whether using context dependency is even necessary. Due
to our LM being trained with the limit-unk-history option
of pocolm, [unk] can only appear at the end of an ngram, so we can
just insert the HCL once, and point all arcs matching [unk] to it. The
outgoing arcs have the same probability for all histories, as there are
no saved histories for [unk]. This means the HCLG barely changes
in size after the operation. As in ‘mod L G’ we add in a penalty of
2.3. This method is called ‘mod HCLG’.

4.4 Modifying subword G
Trying to modify a word-based model so as to incorporate prior
knowledge and better recognize certain (possibly OOV) words is
a common focus. However we are not aware of any efforts to try
the same with a subword-based model. Since subword-based mod-
els can outperform word-based models when there are many OOVs
(see section 6), we decided to try incorporate prior knowledge to im-
prove performance even more. We do this by modifying the G (this
assumes the G is available separately). We tokenize each OOV-word,
and then check if that sequence of subwords exists in the G starting
from the backoff state. If it does, we lower the cost (cost because
weights are the negative log of the probability) slightly, if it does not
we add the necessary arcs with a low cost. The final arc goes to the
unigram state of the last subword. This method is called ‘mod G’.

0
fire

fox

runs

fox

Fig. 2. Illustrative example of how ‘mod G’ will modify the G by
adding new arcs (dashed lines are new arcs) with low costs to in-
crease the odds of recognising certain words. The 0 state is the start
state.

In figure 2 a simplified G for illustrative purposes. The 0 state
is the start state from which all unigram arcs start. By adding a
new (represented by a dashed line) arc ‘fox’ with a low cost (high
probability) from the ‘fire’ unigram state we lower the total cost of
recognizing the subwords ‘fire’ and ‘fox’, thereby making it easier
for the model to recognize the OOV-word ‘firefox’. The alternative,

going from the unigram state ‘fire’ back to state 0 along the backoff
arc and then to the unigram state ‘fox’, would result in a higher total
cost for the subword sequence. We also add a back-off arc going to
the unigram state ‘fox’, rather than back to the start state, so that the
language model knows that the previous subword was ‘fox’ which
improves performance.

5 Experimental setup
For both languages for the word-based models we train a trigram
language model using pocolm, and prune to 3.5 million ngrams. The
subword based model uses a five gram pruned to the same number.
We use BPE to choose the set of subword tokens and allow 5000
merges. The lexicon of the subword-based model is character based
(this performed better than using g2p on the subword tokens). For
English the LM training data is the Librispeech text corpus and the
we use the 200k lexicon that is part of the corpus, we create pronun-
ciations for OOV words using Phonetisauras[19]. For German we
use the Europarl corpus, the vocabulary is the top 200k words, we
used espeak-ng for creating the pronunciations.
For training the acoustic model and doing decoding we use kaldi[20].
We follow the standard procedure of getting alignments via HMM-
GMM training and then training a TDNNF[21] model with LF-
MMI[22] and ivectors. We use biphone context dependency unless
indicated otherwise.

6 Results & Discussion
6.1 No prior knowledge
The first case we consider is when no knowledge about poten-
tial OOV-words is available. We want to test the assumption that
subword-based models do better than word-based, and how well
word recovery performs when using the ’unk lm’ method. As men-
tioned previously when using the ’unk lm’ method we train once
on a lexicon of words with low counts, and once on the lexicon of
OOV-words, the latter is ’biased unk lm’. By comparing the two we
can test how important it is for the phone LM to be trained on phone
sequences that equal the ones seen at test time. The results can be
seen in table 1.

WER CER OOV-CER

English

word 36.3 19.7 54.1
word, unk lm 35.9 18.6 51.8

word, biased unk lm 35.4 18.7 52.0
BPE 37.2 19.1 52.1

German

word 29.9 10.2 44.4
word, unk lm 26.9 9.2 37.2

word, biased unk lm 25.6 8.8 34.7
BPE 25.2 8.2 36.0

Table 1. Comparison of word- and subword-based models and OOV
recovery using a phone LM when no prior information about OOV-
words is known.

Comparing word to subword-based models there is no improve-
ment for English but a significant one for German. These results
make sense as the types of OOV-words differ between the two lan-
guages. In German a lot of the OOV-words are compounds words,
these words can be created by a sequence of subwords which them-
selves are valid words in the German language and are therefore
more likely to be present in ngrams of the ngram language model.
In general subword-based LMs benefit from the fact that, unless a



character in a word is very unusual, every word in the training set
will be used for training (in segmented form), whereas word LMs
will convert all words not part of the vocabulary to [unk].
In the English dataset the OOV-words tend to be completely novel.
This means the subword LM is very unlikely to have seen the se-
quence of subwords, and since there is no natural way to split the
OOV-words (because they are not compound words) it is likely that
the subwords needed to create the OOV-word will be short (which
makes it harder for the language model to make estimates, consider
the extreme case of a word being split up into individual charac-
ters to understand why), and that no or few n-grams contain these
subwords, leading to the language model assigning the subword se-
quence a low probability.
With the ‘unk lm’ method one can see an insignificant benefit for En-
glish and a noticeable one for German. We decided to test whether
the issue was the phone based lexicon for English, and therefore
trained a model that used characters as pronunciations. This meant
we did not need to do any sort of g2p to get pronunciations for words
not in the librespeech lexicon, or do p2g when doing OOV recovery
to convert a recognized phone sequence back to letters. We just need
to find the characters aligned to [unk] in the decoded lattice. We
trained the char LM that is the pronunciation of [unk] on the OOV-
word character lexicon. Table 2 shows the results.

WER CER OOV-CER

English

word 36.3 19.7 54.1
word, unk lm 35.9 18.6 51.8

word, biased unk lm 35.4 18.7 52.0
word char 37.0 19.4 53.3

word char unk lm 36.0 18.8 50.4

Table 2. Comparing OOV recovery with a phone LM to using a
model with a character based lexicon, where recovering the word is
trivial

The character based model doing OOV recovery does slightly
better at recognizing OOV-words, but the WER is still close enough
to the phone based baseline model that it is questionable whether the
effort is worth it as this is the best case performance since the char-
acter LM (used as pronunciation for [unk]) was trained on the OOV-
word character lexicon. These results show that without having some
prior knowledge about the OOV-words the model will encounter, it
is very difficult for a hybrid based ASR system to deal with them. In
languages with a significant amount of compound words one can use
the just described methods to mitigate the amount of errors caused
by OOV-words, but the improvement is moderate.

6.2 With prior knowledge

It is a very common use-case to know that certain OOV-words will
need to be recognized by a model. We compare three different sce-
narios: When we have access to the L and G and are willing to redo
composition (’mod L,G’), when we don’t want to redo composition
and therefore modify the HCLG and are willing to accept the con-
straint of using a monophone model (’mod HCLG’), and when we
have a subword-based model and have access to the G and will do
composition again (’mod G’). In each case we assume we have a
list of OOV-words that we know the model will need to recognize,
see section 4 for details on how to incorporate that information. The
results are in table 3.

WER CER OOV-CER

English

word 36.3 19.7 54.1
word mod L,G 24.3 13.8 16.1

word mono 36.8 19.2 53.2
word mono mod HCLG 23.6 13.0 15.2

BPE 37.2 19.1 52.1
BPE mod G 29.4 15.8 33.4

German

word 29.9 10.2 44.4
word mod L,G 12.0 4.9 4.7

word mono 30.1 10.4 39.7
word mod HCLG 11.8 5.1 4.5

BPE 25.2 8.2 36.0
BPE mod G 14.8 5.5 11.1

Table 3. Comparison of the baseline to ’mod L,G’, a monophone
baseline and ’mod HCLG’, the BPE baseline and ’mod G’ which
modifies the subword-based model.

All methods lead to a very large performance improvement on
OOV-words. The fact that the monophone model is so competitive
with the biphone baseline supports the modern trend of not using
context dependent targets for the acoustic models[23][24], and sug-
gests that these targets are more robust to out-of-domain data (as
the OOV-CER is lower). The results also show that using the [unk]
probability is a legitimate approach for modeling OOV-words, which
makes sense since words that will end up OOV tend to have certain
characteristics like being nouns. Adding the penalty of 2.3 to the arcs
of each added word improved performance by roughly 10%. While
‘mod G‘ improves the performance of the subword-based model
significantly, the modifications for word-based models are better.
We believe this is because a lot of OOV-words will be represented
by several short subwords, and both their and the pronunciations of
the OOV-word (as realized by connecting the pronunciations of the
subwords) can be inaccurate, making it hard for the model to recog-
nize the exact sequence of subwords needed to create the OOV-word.

7 Conclusion
We used CommonVoice to create shareable datasets for evaluating
OOV-word recognition in English and German. Using a new tool
texterrors we developed for calculating error metrics, we con-
ducted experiments on OOV recognition performance across two
languages in two different scenarios: Without and with prior knowl-
edge. When no prior knowledge is available subword-based models
and OOV-word recovery, with a phone LM for [unk], improve re-
sults slightly. With prior knowledge we showed several methods to
dramatically reduce the error rate on OOV-words. The best approach
for dealing with a high OOV-ratio is to use a word-based, context in-
dependent model and a modified HCLG. We have shared the data
and the code so that others can evaluate their own methods, compare
to an existing baseline and build upon our results.
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Abstract
This paper investigates the automatic detection of Englishspo-
ken terms in a multi-language scenario over real lecture record-
ings. Spoken Term Detection (STD) is based on an LVCSR
where the output is represented in the form of word lattices.
The lattices are then used to search the required terms. Pro-
cessed lectures are mainly composed of English, French and
Italian recordings where the language can also change within
one recording. Therefore, the English STD system uses an Out-
Of-Language (OOL) detection module to filter out non-English
input segments. OOL detection is evaluated w.r.t. various con-
fidence measures estimated from word lattices. Experimental
studies of OOL detection followed by English STD are per-
formed on several hours of multilingual recordings. Significant
improvement of OOL+STD over a stand-alone STD system is
achieved (relatively more than50% in EER). Finally, an addi-
tional modality (text slides in the form of PowerPoint presenta-
tions) is exploited to improve STD.
Index Terms: Spoken Term Detection (STD), LVCSR, Confi-
dence Measure (CM), Out-Of-Language (OOL) detection

1. Introduction
A large increase in the amount of spoken recordings requires
automatic indexation and search in this data. A potential solu-
tion is a Spoken Term Detection (STD) system1 which would
be able to quickly detect a word or phrase in large archives of
unconstrained speech recordings (e.g. lecture recordings, tele-
phone conversations, ...). A common approach is to split the
task into two stages. Firstly, a Large Vocabulary Continuous
Speech Recognition (LVCSR) system is used to generate a word
or phone lattice. Secondly, lattice search is performed to deter-
mine likely occurrences of the search terms. STD systems based
on word lattices provide significantly better performance than
those based on phoneme lattices (e.g., [1]). Word lattices can
be associated with a Confidence Measure (CM) for each word.
Traditionally, forward-backward re-estimation is used torepre-
sent a confidence using word posterior probability conditioned
on the entire utterance. Although such an STD system does not
deal with Out-Of-Vocabulary (OOV) words, the problem can be
solved by taking into account phone recognition lattices usually
generated by the same LVCSR system.

In this paper, we present experimental results with an
LVCSR-STD system performing automatic indexation of real
lecture recordings provided by Klewel2 to be eventually im-
plemented into a conference webcasting system. Most of the

This work was partially supported by the Swiss National Center
of Competence in Research (NCCR) on “Interactive Multi-modal In-
formation Management (IM)2”; and by the European commission 7th
Framework Programme (FP7) ICT project TA2.

1NIST STD06 Eval, http://www.itl.nist.gov/iad/mig//tests/std
2http://www.klewel.com

Klewel lecture talks are recorded in west Switzerland. Speech
recordings are mostly uttered in English (usually by non-native
speakers), however, some recordings are partially (e.g. atthe
beginning of the talk), or fully uttered in French or Italian.
Blindly applying an English STD system for automatically in-
dexing English pronunciations in such multilingual recordings
would lead to a significant decrease of overall STD perfor-
mance since the system would be employed on “inappropriate”
speech input (i.e., speech pronounced in different (alien)lan-
guages whose words do not appear in the LVCSR dictionary).
The amount of detected False Alarms (FAs) of searched terms
would significantly increase. These FAs could potentially be re-
duced by modifying an operating point of the STD system, but
this would lead (directly) to an increase of missed terms.

A straightforward solution is to employ a language identi-
fication module. However, such a system would have to exploit
the knowledge of other (non-target) languages. In order to keep
the entire STD system relatively simple and independent of any
non-target language, an OOL detection module is an ideal so-
lution. Such a module exploits only the information stored in
the same LVCSR word lattices used for search of the spoken
terms. Similar approach can possibly be applied to reduce false
detections due to dialect variations of the target languagewhich
usually have a severe impact on the performance of speech sys-
tems [2].

The paper is organized as follows: Sect. 2 and Sect. 3 de-
scribe respectively STD task and the STD system used in our
studies. Experiments carried out to improve the STD system
and achieved results are given in Sect. 4. Sect. 5 concludes the
paper.

2. STD task

2.1. Test data

The study is carried out on the16 kHz audio lecture record-
ings (supplemented with video and text) provided by Klewel2.
In total, 9 hours of recordings pronounced in English, French
and Italian languages were used. This data was first transcribed
according to the input language and then used for evaluation
of the OOL detection module. Then, over one hour of En-
glish data (from9 hours of multilingual speech) was selected
for STD evaluations and carefully manually annotated. In order
to jointly evaluate STD and OOL modules, an additional two
hours of French and Italian recordings were used together with
one hour of English data. All audio recordings were automati-
cally segmented using a state-of-the-art Multi-Layer Perceptron
(MLP) based speech/non-speech detector [3].

In addition, to evaluate a stand-alone STD English system
on a standard database,3 hours of a two channel8 kHz CTS
English development corpus distributed by NIST for the 2006
STD task was used1.



2.2. Evaluation metric

Since STD is a detection task, performance can be character-
ized by Detection Error Tradeoff (DET) curves of miss (Pmiss)
versus false alarm (Pfa) probabilities [4]. In addition, we also
present Equal Error Rates (EERs), a one number metric often
used to optimize the system performance. Besides DET and
EERs, we use the evaluation measure defined by NIST 2006
STD: Maximum Term-Weighted Value (MTWV) [5].

3. STD system
To perform the search of selected spoken terms in lecture au-
dio recordings, the recordings are first pre-processed using the
LVCSR system that produces word recognition lattices. The
word lattices are then converted into a candidate term index
accompanied with times and detection scores. The detec-
tion scores are represented by the word posterior probabili-
ties, estimated from the lattices using the forward-backward re-
estimation algorithm [6], and defined as:

P (Wi; ts, te) =
X

Q

P (W j
i ; ts, te|xte

ts), (1)

whereWi is the hypothesized word identity spanning the time
interval t ∈ (ts, te). ts and te denote the start and end time
interval, respectively.j denotes the occurrence of wordWi in
the lattice.xte

ts
denotes the corresponding partition of the input

speech (the observation feature sequence).Q represents a set
of all word hypotheses sequences in the lattice that containthe
hypothesized wordWi in t ∈ (ts, te).

3.1. LVCSR system

To achieve robust hypotheses outputs, a 3-pass LVCSR sys-
tem is employed, based on various acoustic models trained
on different audio data (no Klewel recordings used for train-
ing). The system achieving the best recognition performance
is then selected to be used in the subsequent STD experiments.
More specifically, an LVCSR based on the8 kHz Conversa-
tional Telephone Speech (CTS) system derived from AMI[DA]3

LVCSR [7] is used. In the first pass, PLP features are exploited
and HMMs are trained using a Minimum Phone Error (MPE)
procedure. In the second pass, Vocal Tract Length Normaliza-
tion takes place together with HLDA, MPE and Speaker Adap-
tive Training (SAT). In the third pass, posterior-based speech
features estimated using a neural network system replace PLPs.
For the decoding, a50k dictionary is used together with a 3-
gram Language Model (LM).

In the second potential system, acoustic models trained on
16 kHz Individual Headset Microphone (IHM) recordings from
several meeting corpora (ICSI, NIST, AMI) are employed, re-
placing CTS models. In the third case, Multiple Distant Mi-
crophone (MDM) instead of IHM recordings are used to train
acoustic models. In both (IHM, MDM) cases, discriminative
training in 3-pass system, similar to the previous AMI CTS sys-
tem, is employed.

To select the most suitable LVCSR setting in the following
STD studies, we evaluate the three systems on1 hour of man-
ually annotated Klewel English lectures. Overall, the bestASR
performance measured in terms of Word Error Rates (WERs) is
achieved for the LVCSR system trained on16 kHz IHM meet-
ing recordings (WER =28.9%). LVCSR systems trained on16
kHz MDM and8 kHz CTS acoustic models perform around4%

3http://www.amiproject.org

and6% worse, respectively. Therefore,16 kHz IHM LVCSR is
selected for subsequent STD studies.

3.2. Evaluation of stand-alone STD system

First, the LVCSR STD system is evaluated on3 hours of8 kHz
CTS English development database. The automatically seg-
mented speech recordings are processed by the AMIDA LVCSR
system employing CTS acoustic models with a50k dictionary.
The generated bigram lattices are subsequently expanded with
a trigram language model. For evaluation,550 English search
terms are randomly selected from the STD06 dry-run list. The
achieved STD performance is compared to the baseline sys-
tem described in [8]. The EER of the baseline system is about
10.1%. The presented STD built on 3-pass LVCSR gives about
20% relative improvement.

For automatic indexing of Klewel lecture recordings, an
STD system based on word lattices generated using16 kHz
IHM acoustic models is chosen, since the best ASR perfor-
mance is achieved with such a system. Word recognition lat-
tices are generated in the third pass using HTK (HDecode) with
bi-gram language model. The list of English spoken terms con-
sists of312 items. The terms are selected manually from the
available annotations (in a random fashion over all recordings
based only on a potential interest of Klewel end-users). The
list of terms is then transformed into a format following NIST
2006 STD evaluations. The EER achieved on3 hours of Klewel
multilingual recordings is about8.1%, as shown in Tab. 2.

4. Improving STD by detecting OOL
segments

Although the English STD system performs reasonably well,
while having at the input (unrestricted) multilingual recordings,
other improvements can be obtained by detecting OOL seg-
ments. The OOL module can be thought of as a probabilistic
model that assigns a probability of each processed input seg-
ment given the language used in the segment.

4.1. OOL module

The OOL detection used extracts a confidence score of the
processed input speech using several Confidence Measures
(CMs) [9]. These CMs are derived from word LVCSR lattices.
More specifically, we studied these CMs:

• Cmean – Probabilities of all hypotheses for the wordWi

recognized in the 1-best output, spanning time interval
t ∈ (ts, te), are summed and normalized [10]:

Cmean =

Pte
t=ts

P (Wi | t)
1 + α(te − ts − 1)

. (2)

α is a constant between0 and1.
Cmax – The best case probability for a hypothesized
wordWi (also found in the 1-best output) occurring in a
certain period of timet ∈ (ts, te) is returned [10]:

Cmax = max
t∈(ts,te)

P (Wi | t). (3)

• H
`

W | ttets
´

– Amount of uncertainty of recognized
words measured using Entropy information criteria for
the given time intervalt ∈ (ts, te):

H
`

W | ttets
´

=

Pte
t=ts

P

i
1

P (Wi|t) log2
`

P (Wi | t)
´

1 + α(te − ts − 1)
.

(4)
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(a) H(W|t), 0s
(b) Cmax, 0s
(c) Cmean, 0s
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(i) Cmean, 3s
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Figure 1: DET plot – OOL detection using different CMs for
temporal context equal to0 sec. and3 sec.

OOL - EER

Len [s] Cmean Cmax H
`

W | ttets
´

Wlat Wnact

0 24.9% 25.6% 21.4% 10.9% 19.0%

3 11.2% 11.8 8.0% 4.1% 7.4%

120 3.6% 3.9% 2.6% 1.4% 2.6%

Table 1:OOL – EER [%] performances achieved on Klewel lec-
ture recordings for different CMs and various temporal context.

• Wlat – Word lattice width - a simple measure provided
by counting the number of active arcs from the recogni-
tion lattice determines the amount of uncertainty in the
LVCSR system at the given time instancet = tn.

• Wnact – Number of active and unique words at the given
time instancet = tn is counted and also used as an OOL
confidence score.

OOL detection is tested directly on the target Klewel eval-
uation data. In particular,9 hours of recordings (3 hours from
each of English, Italian and French language) are used. The
derived OOL CMs, described in Sec. 4.1, are further post-
processed to incorporate a temporal context. This has been
shown to significantly improve the detection performance. In
case of unconstrained length of processed speech segments,the
optimal length of the temporal filter was found to be about3
sec. [9]. We also experimented with higher lengths (up to120
sec.) of the filter, since the language usually does not change
often in the processed recordings. However, this may cause sig-
nificant degradation of OOL detection when such a temporal
filter were applied on short speech segments, as shown in [9].

Achieved detection performance is shown in the form of
DET curves and EERs in Fig. 1 and Tab. 1, respectively.Wlat

as a confidence score significantly outperforms other CMs used
for OOL detection. Additional experiments to fuse all individ-
ual CMs using a Maximum Entropy (MaxEnt) technique do not
bring any improvements (see Fig. 1). This is probably caused
by employing very different data to train the MaxEnt classifier.
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Figure 2:Combination of OOL and STD modules: STD detec-
tion scores are set to zero if detected in speech segments marked
as OOL.

STD

OOL - Wlat OOL - no OOL - manual

Len [s] EER MTWV EER MTWV EER MTWV

0 5.9% 0.70

3 4.0% 0.78 8.1% 0.64 3.5% 0.82

120 3.6% 0.81

Table 2: STD – EER [%] performances achieved on Klewel
lecture recordings w.r.t. OOL detection module.Len denotes
length of the temporal filter of the OOL detection module. OOL-
Wlat, OOL-manual and OOL-no denote OOL detection based
on Wlat CM, OOL detection taken from manual annotations
and the STD system without OOL detection module, respec-
tively.

4.2. Exploiting OOL in STD system

The OOL detection module is applied in the STD system to au-
tomatically remove input speech segments pronounced in non-
target languages. Therefore, false alarm terms caused by pro-
cessing non-English speech segments will potentially be re-
moved in an optimal way (i.e., without any effect on correctly
detected terms in English segments).

More specifically, the confidence scores of those terms (al-
ready detected by STD system) which correspond to speech
segments classified to be OOL segments are set to zero, as
graphically shown in Fig 2. In order to “hard threshold” STD
detection scores using the OOL detection module, an OOL de-
tection threshold needs to be introduced. In our studies, anop-
timal threshold is found on development data. A development
set comprising of30 min. of audio recordings uttered in Czech
and German languages (i.e., different to French and Italian) as
well as in English is used to tune the operating point of OOL
detection module [9]. The threshold corresponding to EER is
selected as the operating point of the OOL detection module.

Experimental results of the English STD system, in terms of
EERs and MTWVs, achieved on3 hours of multilingual Klewel
lecture recordings are given in Tab. 2. Graphical representation
in terms of DET curves is shown in Fig 3. Since the best au-
tomatic OOL detection performace is achieved withWlat CM,
that system is exploited in STD experiments. As seen in Tab. 2,
the temporal filter of the OOL detection module with a length
of 3 sec. gives performance close to the STD system with man-
ually classified OOL speech segments.

4.3. Exploiting prior information from other modality

Many Klewel lecture audio recordings are supplemented with
corresponding slide (PowerPoint) presentations. Therefore, we
attempted to exploit this modality in our STD experiments.
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(a) STD
(b) STD + OOL Wlat, 0s
(c) STD + OOL Wlat, 3s
(d) STD + OOL Wlat, 120s
(e) STD + OOL manual

(a)

(b)

(c)
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Figure 3:DET plot – STD on Klewel multilingual recordings.

STD

slide OOL EER MTWV

no no 5.3% 0.74
yes no 4.5% 0.76
yes Wlat, 3s 2.0% 0.80
yes manual 1.6% 0.83

Table 3: STD – EER [%] performances achieved on a subset
of Klewel lecture recordings when additional modality is ex-
ploited.c was chosen to be equal to50.

More specifically, word posterior probabilitiesP (Wi; ts, te) of
searched terms are modified using a prior which represents a
relevance of a term to the topic (given by corresponding text
slides). The prior is introduced by a multiplicative constant c:

Pnew = cPold, if c <= 1/Pold,
Pnew = 1, otherwise.

(5)

The experiments are run on a subset (∼ 1/3) of the multi-
lingual lecture recordings (those supplemented with text slides).
First, for each lecture recording, a new list of terms (whichis
a subset of original312 searched terms) is automatically gen-
erated based on the occurrence of searched terms in the text of
corresponding PowerPoint slides. Since no time allocationof
the individual slides and their precise alignment with the audio
segments of a lecture is available (only the general lecturenum-
ber assignation), no precise temporal information is employed.
Then, posterior probabilitiesPold (initially estimated from the
LVCSR lattices) associated with search terms occurring in the
new list of a given lecture are updated according to Eq. 5.

Fig. 4 graphically shows a dependence of EER on varyingc
for two STD systems (without and with application of the OOL
detection module).c varied from10−4 to 103. Correspond-
ing MTWV values are given in Tab. 3. Although a very simple
model is used, which takes into account neither time allocation
of searched terms nor quantity of their occurrence in the corre-
sponding slides of each lecture, a relative EER improvementof
about15% is achieved (in both cases with and without the OOL
detection module).

5. Discussions and conclusions
This paper summarizes experimental results achieved with an
English STD system on Klewel lecture recordings. Due to the
unconstrained multilingual input, the system is augmentedwith
an OOL detection module which assigns to each input segment
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slide − yes; OOL − no
slide − no; OOL − no
slide − yes; OOL Wlat. 3s − yes
slide − no; OOL Wlat. 3s − yes

(a)

(b)

Figure 4:Overall EERs of STD on the subset of Klewel multilin-
gual recordings when additional prior information is exploited:
(a) STD system without OOL module, (b) STD system with OOL
module.

(e.g. frame) a probability given the language used in the seg-
ment. Such a module performs as a binary classifier (target-
English/ non-target-any language). An OOL detection module
can use different lengths of temporal context, which has a sig-
nificant effect on performance of the subsequent STD system.

STD performance is measured using several criteria (DET
curves, EER, MTWV values) on3 hours of multilingual record-
ings. Incorporation of the OOL detection module (with3 sec.
long temporal filter) into the STD system increases EER perfor-
mance relatively by more than50%.

We also experimented with an additional source of informa-
tion available from associated text slides on a subset of Klewel
recordings. Posterior probabilities (initially estimated from the
LVCSR lattices) of those spoken terms which are detected in the
corresponding slides of a given lecture recording are modified
by a multiplicative constant. A relative improvement of∼ 15%
in STD EER was found.
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ABSTRACT
Automatic Speech Recognition and Understanding (ASRU) systems
can generally use temporal and situational context information to im-
prove their performance for a given task. This is typically done by
rescoring the ASR hypotheses or by dynamically adapting the ASR
models. For some domains such as Air Traffic Control (ATC), this
context information can be however, small in size, partial and avail-
able only as abstract concepts (e.g. airline codes), which are difficult
to map into full possible spoken sentences to perform rescoring or
adaptation. This paper presents a multi-modal ASRU system, which
dynamically integrates partial temporal and situational ATC context
information to improve its performance. This is done either by 1) ex-
tracting word sequences which carry relevant ATC information from
ASR N-best lists and then perform a context-based rescoring on the
extracted ATC segments or 2) by a partial adaptation of the language
model. Experiments conducted on 4 hours of test data from Prague
and Vienna approach showed a relative reduction of the ATC com-
mand error rate metric by 30% to 50%.

Index Terms— Automatic speech recognition, context-aware
systems, air traffic control, spoken language understanding.

1. INTRODUCTION

Automatic Speech Recognition and Understanding (ASRU) appli-
cations can generally benefit from the presence of task-related sit-
uational and temporal context (prior) information to improve their
performance [1]. This can be done either by 1) refining the ASRU
models, such as adapting the acoustic model to new acoustic con-
ditions or adapting the Language Model (LM) to a new domain,
or 2) by rescoring the ASR hypotheses using a domain-dependent
model. Early usage of situational context goes back to Young et
al.’s works [2, 3], who used sets of contextual constraints to gener-
ate several grammars for different contexts. Fügen et al. [4] used
a dialogue-based context to update a Recursive Transition Network
(RTN) to improve ASR quality of a dialogue system. Everitt et al. [5]
proposed a dialogue system for gyms, which, based on the exer-
cise routine, would switch its ASR component between pre-existing
grammars tailored to different sports equipments.

While there is no doubt that context can significantly improve
ASRU performance, the information it provides however, can be
small in size, time-varying, partial and available only as machine-
generated abstract representations (e.g. airline codes on a radar

This work was supported by the MALORCA project (Grant Agreement
No. 698824), funded by SESAR Joint Undertaking, under EU Horizon 2020.

screen), which are difficult to map back into full possible spoken
sentences to perform rescoring or adaptation. In particular, in or-
der to manage a given airspace, Air Traffic Controllers (ATCOs) is-
sue verbal commands to the pilots by interpreting and relying on
1) situational context acquired through multiple modalities such as,
radar derived aircraft state vectors comprising position, speed, al-
titude, etc., as well as 2) temporal context given by the sequence
of previously issued commands. Furthermore, verbal communica-
tion is the primary mode of communication between agents oper-
ating in the ATC domain, which inspires many ASRU-based appli-
cations to enhance the ATC technologies. The designed ASRU sys-
tems can also benefit from the same context information used by AT-
COs. Shore et al. [6] investigated this idea using lattice rescoring on
a small Context Free Grammar (CFG)-based simulated ATC setup,
whereas Schmidt et al. [7] proposed a dynamic finite state transducer
adaptation of a CFG-based LM. As an alternative to CFG solutions,
we have recently proposed a Levenshtein-based context integration
approach combined with a Statistical Language Model (SLM) [8].
More details about ASRU for ATC are presented in Section 2.

This paper extends and generalizes the work presented in [7, 8]
in different directions. That is, 1) in addition to situational context,
we propose a new model that also integrates temporal context (his-
tory of spoken commands) (Section 3). Then, 2) we combine the two
types of context in a generalization of [8] using N-best lists (Sec-
tion 4). Finally, 3) contrary to [7, 8], which evaluated their systems
on data collected from a simulator of Düsseldorf airport, this paper
evaluates the system on 4 hours of data collected from ATCOs per-
forming their daily tasks in Vienna and Prague airports (Section 6).
The obtained results show that the proposed context-aware ASRU
system reduces the ATC Command Error Rate (CmdER) metric by
30% to 50% compared to a standard ASRU system.

2. ASRU SYSTEMS FOR ATC DOMAIN

2.1. Air Traffic Control Assistance Systems

The task of air traffic control aims at maintaining a safe, orderly and
expeditious flow of air traffic. ATCOs apply strict separation rules to
direct aircraft safely and efficiently, both in their respective airspace
sector and on the ground. Since controllers have a significant re-
sponsibility and can face high workloads in busy sectors, different
planning systems have been proposed to assist them in managing
the airspace such as, the Arrival Manager (AMAN). These systems
mainly suggest an optimal sequence of commands (command advi-
sories), which are then issued in verbal radio communication from
the controller to the aircraft pilots.
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Fig. 1. Schematic view of an ASRU-based ATC system.

2.2. AcListant®: Active Listening Assistance System

For different reasons such as, emergency or weather conditions, the
controller may deviate from the advisory commands proposed by
the assistance system. The latter reacts slowly to such deviations
and may require the controller to enter the issued commands via
mouse/keyboard. Thus, indirectly increasing the workload that they
were mainly designed to reduce. As a solution to this problem, we
have recently proposed the AcListant®1 [9] system, which extends
the planner to include a background ASRU system, ideally replacing
the mouse/keyboard feedback. Conversely, ASRU can also benefit
from the context information used by the assistant system [8, 10]
to improve its performance. We will refer to it as Assistance-based
ASRU (ABSRU) system in the rest of this paper. Fig. 1 shows the
information flow in an ASRU-based assistance system.

2.3. From AcListant® To MALORCA

Although the AcListant® system achieved a good performance in a
simulator of Düsseldorf airport, the cost of transferring such system
from the laboratory to real ops-rooms is very significant. Each model
in the ABSRU system must by manually adapted to the linguistic and
acoustic features of the new environment, which are due to new lo-
cal conditions such as, noise conditions, different accents, speaking
styles, deviations from standard phraseology [11], etc. Therefore,
the MALORCA2 project is proposed as a generalization of AcLis-
tant® that aims at developing a general, cheap and effective solu-
tion to automate the re-learning, adaptation and customization pro-
cess to new environments. This will be done by taking advantage of
the large amount of un-transcribed speech data available on a daily
basis in the new ATC environment, which can be used in un/semi-
supervised learning approaches to automatically adapt the ABSRU
models to the respective environment. The work presented in this
paper describes the basic and general ABSRU systems, which will
be used as initial points in the bootstrap automatic adaptation cycle
for Vienna and Prague airports, respectively.

3. ATC CONTEXT-BASED RESCORING

This section introduces the different types of context we consider
and the mathematical models we designed to integrate them into an
ASRU system. Then, we show how these different models can be
combined in a unifying framework.

1AcListant®: http://www.AcListant.de
2MALORCA: MAchine Learning Of speech Recognition models for

Controller Assistance: http://www.malorca-project.de

3.1. Situational Context Information

An ATC assistance system bases its proposed command sequence
on the state of a given airspace sector. This state is primarily derived
from radar information about the current situation of the airspace
and aviation domain knowledge. This is done by forming a search
space of all physically possible commands in the current airspace
situation in a first step, and then extracting the advisory sequence
of commands, shown to ATCOs, by optimizing a set of ATC crite-
ria. The formed search space summarizes the current situation in the
airspace. Thus, we will refer to it as situational context. For an
ASRU system, this context can be seen as a command-level search
space, which is 1) dynamic, i.e. changes every few seconds, 2) small
in size, i.e. few hundred/thousand of commands, and 3) available
only as partial standardized ICAO phraseology concepts [11] (see
example Table 1). In particular, a situational context information
contains an aircraft callsign (e.g. AFR2A ∼= air france two alpha)
followed by a command type to execute and a command value to
achieve (e.g. REDUCE 220 ∼= reduce speed two two zero knots).

Callsign Command Type Value
AFR2A REDUCE 220

DLH9000 DESCEND 120
BER256 RATE_OF_DESCENT 3000

KLM23RV TURN_LEFT_HEADING 80

Table 1. Excerpt from situational context information generated by
a planning system. It shows an ICAO abstraction of four different
actions that can be issued by the controller to an aircraft.

Given the spoken language variability, it is very difficult to build
the word-level context space, which maps each command in the con-
text into the set of all possible spoken realizations of that command,
which can be issued by an ATCO to an aircraft pilot. Furthermore,
such process should be very fast given that the situational context
changes every few seconds. As a result, performing the standard
lattice rescoring or LM adaptation is not feasible in this case. The
next section introduces a partial rescoring approach, which considers
only the ATC segments in the recognized hypotheses.

3.2. Situational Context-based Rescoring (SCR)

The situational context model considers the context information as
an ASRU search space for ATC concepts. That is, it only targets se-
quence of words that carry some ATC information in the recognized
hypotheses. This partial rescoring approach follows these steps:

Step 1) Sequence Labeling: This step takes the raw ASR
hypothesis as input and automatically detects and extracts the
ATC concepts that it carries. For instance, the hypothesis “air
france two alpha hello reduce speed two three zero knots” is
mapped to “<callsign> air france two alpha </callsign>
hello <command=reduce> reduce speed <speed> two three
zero </speed> knots </command>”. This step directly puts the
focus on the ATC information carried by the ASR hypotheses, which
is our primary target, and ignores the rest. Our experiments use a
CFG-based token tagger similar to the one used in [7, 8].

Step 2) Context-to-Word Mapping: The partial rescoring ap-
proach turns the problem of generating full spoken sentences (real-
izations) of the context into generating realization of short segments,
which can be extracted by the sequence labeler in the previous step.
For instance, instead of generating the full realization of the com-
mand “AFR2A REDUCE 250”, we only need to generate context-to-
word mapping for the callsign “AFR2A” and the speed value “250”.



Step 3) Situational Context-based Rescoring: We use here a
Weighted Levenshtein Distance (WLD) to rescore the ATC segments
extracted from the ASR hypotheses in Step 1, in the search space
formed by all verbalized context segments from Step 2. More details
about the WLD can be found in [8].

Formally, let A = {Acs, {Acs
com}com} be the ATC segments

extracted from the ASR hypothesis using sequence labeling as de-
scribed in Step 1. We assume that each hypothesis contains (at
most) a single callsign Acs in addition to one or multiple issued com-
mands {Acs

com}com. Similarly, let C = ∪cs{(Ccs, {Ccs
com}com)} be

the set of all possible context-based ground truths resulting from the
context-to-word mapping described in Step 2. This set consists of all
callsigns in the context and the ATC commands applicable to them.
The situational context-based rescoring extracts the “corrected” ATC
segments H = {Hcs, {Hcs

com}com} according to

H = argmin
C∈C

{WLD(A,C)} (1)

= argmin
C∈C

{WLD(Acs, Ccs)+
∑

Ak∈{Acs
com}

argmin
Cj∈{Ccs

com}
WLD(Ak, Cj)}

More details about the WLD and the situational context-based
rescoring can be found in [8].

3.3. Temporal Context-based Rescoring (TCR)

Air traffic control assistance systems typically use the radar infor-
mation to generate the situational context. The resulting command
advisories are generated through a deterministic optimization pro-
cess, which takes into account a number of physical and local con-
straints about the operating airport. These constraints include way-
points, which play the role of “markers” in the airspace, location of
the runways for landing and departure, the landscape surrounding
the airport (see, mountains, etc), to name a few. Due to these con-
straints, a number of pre-defined trajectories and landing patterns
are frequently generated to guide aircraft from their current location
to the runways. For instance, most landing aircrafts will receive a
confirmation of identification as first command, and a handover as
last command. In particular, once an aircraft enters the controlled
airspace, the generated landing sequence for this aircraft is expected
to be closely similar to the ones generated for previous aircraft that
entered that airspace at close locations. Fig. 2 shows an example
of landing sequence and trajectory patterns that are expected to be
followed by different aircraft depending on their location.

Fig. 2. Expected landing sequences and trajectories for different air-
craft approaching Prague airport.

Based on these pre-defined patterns, we designed an “Airport
Flight Model”, which can predict the future commands to be spoken
to a given aircraft based on the history (temporal context) of the
previously issued commands to that aircraft.

In practice, this model is a Long-Short Term Memory (LSTM)
neural network [12, 13] trained on landing sequences of commands,
which are reconstructed from data collected in Prague or Vienna air-
ports. That is, we define the input to this model as the timely-ordered
sequence of commands, which were issued to a given aircraft since it
entered the controlled airspace and until it landed on the runway. The
next section shows how this temporal model can be combined with
the situational model to generalize the approach proposed in [13].

4. A GENERALIZED CONTEXT-AWARE ASRU SYSTEM

Although the SCR approach (Section 3.2) can significantly improve
the performance, it only operates on command values and callsigns.
More precisely, if the ASRU hypothesis confuses two commands
which take the same attribute but are of different types, the SCR will
not be able to correct this misrecognition. e.g. the sequence labeler
extracts a “SPEED 220” command instead of a “REDUCE 230”,
which both take a speed value as attribute. In this case, SCR would
be able to correct the command value “220” to “230” but cannot
correct the command type “SPEED” to “REDUCE”.

This problem can be solved using the TCR approach (Sec-
tion 3.3). In order to do so, we train this model only on command
types without command values, i.e. we only predict the probability
of a “REDUCE” command in a given context regardless of the speed
value that can be assigned to it. This in fact is a marginalization of
the full model (command type+value) on the complete range of val-
ues that this command can take. Furthermore, this decision is also
justified by the small amount of data available to train the full model,
which would result in a vocabulary size of few hundred/thousand,
resulting from the rich range of values that each command can take.
Building a model only for command types reduces drastically the
vocabulary size (40 to 60 different command types).

In order to combine the SCR and TCR models, we consider N-
best lists instead of 1-best hypothesis which was used in [8]. For-
mally, assuming the ASR system produces a list of N hypotheses,
let A = {An}Nn=1 = {{An

cs, {Acs,n
com}com}}Nn=1 be the set of ATC

segments extracted from these hypotheses using sequence labeling
(Section 3.2). The combination of SCR and TCR models is done
according to

H = argmin
n=1,...,N

{argmin
C∈C

{p(An, C)}} (2)

= argmin
n=1,...,N

{
argmin

C∈C
{ps(An

cs, Ccs)}

+
∑

An
k
∈{Acs,n

com}
argmin

Cj∈{Ccs
com}
{ptcs(An

k ) · ps(An
k , Cj)}

}

The probability p(An, C) combines 1) a situational context based-
rescoring probability ps(., .), directly derived from the WLD scores
used in Section 3.2. This distribution operates on callsigns and com-
mand values as explained above, and 2) a temporal context based
score ptcs(.), which estimates the probability distribution over the
command type space given the history of issued commands for a
callsign cs. In doing so, the situational and temporal context models
complement each other, which leads to a generalized model that can
successfully rescore callsigns, command types and command values.

5. PRAGUE AND VIENNA DATASETS

The proposed context-based rescoring system is evaluated using
recordings of actual ATCOs performing their daily tasks in Prague
and Vienna airports. This data was collected as part of the MAL-
ORCA2 project. It consists of 8kHz ATC speech recordings of dif-
ferent noise levels and different radio transmission qualities. In par-



ASRU Systems Prague Results (Error Rates are in %) Vienna Results (Error Rates are in %)
WER ConER CmdER CmdER Rt(s) WER ConER CmdER CmdER Rt(s)

SLM (no context) 10.9 17.5 30.9 21.9 1.25 13.2 22.3 41.4 30.4 0.90
SLM+Rescoring (N-best=1) 11.2 13.8 19.1 12.8 3.40 17.5 16.4 27.7 20.6 3.22
SLM+Rescoring (N-best=5) 8.9 11.6 16.5 12.7 4.65 15.5 15.5 26.3 19.8 3.63

CFG (no context) 18.0 33.1 50.5 37.5 1.02 22.1 38.5 58.9 43.1 0.77
CFG+Adaptation 17.8 21.9 30.9 23.4 3.57 26.7 29.7 44.1 30.4 1.43

CFG+Rescoring (N-best=1) 19.7 25.3 33.1 25.4 1.87 25.6 27.9 40.1 33.0 1.71
CFG+Rescoring (N-best=10) 19.1 24.4 31.8 24.2 4.57 25.1 26.5 38.5 32.0 2.97

Table 2. ASRU results on 4h of test data from Prague and Vienna airports using different ASRU systems with and without context information.

ticular, the Vienna dataset is very noisy and it can be difficult to
understand for humans with no ATC expertise. All commands were
issued in English with a mild usage of Czech or Austrian German
languages, respectively. In particular for words which do not contain
any ATC information such as greetings. Different ATC sessions were
recorded over multiple days from each controller. Table 3 presents
recording statistics for these two datasets.

The situational context is updated every 5 seconds by the as-
sistant system [10]. Table 3 also reports the context accuracy, i.e.
context contains the actual spoken command, and the average con-
text size i.e. number of ATC commands per context file, which can
be compared to 239 and 359 used in [7] and [8], respectively.

Duration (h) # of Speakers Context
Train Test Train Test Size Acc.

Prague 2.1h 1.9h 6 5 650 99.0%
Vienna 5.0h 1.9h 13 6 1600 96.0%

Table 3. Recording statistics for Vienna and Prague datasets includ-
ing the context accuracy (i.e. contains the actual spoken commands).

6. EXPERIMENTAL SETUP AND ANALYSIS

ASR was performed using the KALDI software [14] and the ASR
confidence scores for WLD were generated based on the Minimum
Bayesian Risk (MBR) decoding approach [15]. The acoustic model
is a DNN/HMM (Deep Neural Network Hidden Markov Model),
trained on 150 hours of speech data from the publicly available LIB-
RISPEECH [16], ICSI [17], AMI [18] and TED-LIUM [19] datasets,
which have been extensively used in ASR of conversational speech,
and then adapted on Vienna or Prague training data in Table 3. More
details about this system can be found in [20]. The SLM is a trigram
model trained on a combination of the training data and synthetic
data generated from the CFG. The latter defines its rules based on
the standard ATC phraseology [11], in addition to most common de-
viations observed in the training data. The CFG design was guided
by the work done in [7, 8].

For evaluation, in addition to conventional WER and Recogni-
tion time (Rt), the ATC-specific evaluation metrics Concept Error
Rate (ConER) and CmdER are used. ConER is restricted to the
ATC-relevant semantic concepts of a given utterance, which are ex-
tracted using the sequence labeling approach (Section 3.2). A con-
cept can be either a callsign or a command, e.g. AFR2A or RE-
DUCE_250. The CmdER metric requires the entire sequence of
concepts to be correct. In the case where the sequence labeling sys-
tem fails in extracting ATC segments, it returns NO_CALLSIGN
or NO_COMMAND, which are counted as misrecognition, even
though they have no impact on the planning system (no informa-
tion). Therefore, we also report the CmdER after excluding these
utterances (noted CmdER) to estimate the misrecognition rate which
negatively affects the planning system.

Table 2 reports the ASRU results for Vienna and Prague
test data with and without context information. The approach
“CFG+Adaptation” is the one proposed in [7]. Furthermore, using
an N-best=1 is equivalent to the system proposed in [8], which does
not use temporal context. In this case, the recognized ATC segment
contains (at most) one command type. Thus, the TCR is not used.

The results clearly confirm the conclusions reported in [8]. That
is, SLM clearly outperforms the CFG-based system with and with-
out context information. This observation highlights the importance
of the probability distribution learned by SLM but ignored by CFG,
which uses a uniform distribution over words and commands. More-
over, SLM automatically captures deviations from standard phrase-
ology present in the data, whereas CFG requires a manual addition.

We can also conclude from these results that context informa-
tion strongly improves the ATC-related metrics (ConER, CmdER
and CmdER), whereas it slightly improves or worsens the WER of
either system. This is an expected outcome given that the proposed
approach is mainly designed to improve the ConER (and therefore
also the CmdER), by directly extracting and correcting ATC seg-
ments from the recognized hypotheses. Correcting such segments,
however, does not necessarily mean improving the word-level recog-
nition. This is particularly true in cases where the controller deviates
from standard phraseology [11], which was used to build the context-
to-word mapping (Section 3.2), e.g. dropping the word “decimal”
while issuing the frequency 133.2 =“one three three decimal two”.
These cases were very common, particularly in Vienna data. Further-
more, increasing the N-best list size leads to further improvements
for all systems. This observation highlights the advantages of the
proposed generalized system compared to the one proposed in [8]
(N-best=1). In fact, testing the TCR component alone leads to an
accuracy (prediction of the command type) of 59% for Prague and
55% for Vienna, with a mean rank of 2.4 and 2.7, respectively.

These experiments also show that data and context quality are
very crucial. More particularly, the Prague speech data is less noisy
compared to Vienna data and largely benefits from the smaller and
more accurate situational context (Table 3). Moreover, comparing
CmdER and CmdER shows an average degradation of ≈ 10%. This
reflects the need for a better sequence labeler to extract the ATC
segments. The recognition time Rt, however, is within a real-time
range given that ATC utterances are ≈ 3.7s long on average.

7. CONCLUSIONS AND FUTURE WORK

We proposed a context-aware ASRU system for ATC domain, which
combines situational context acquired through an ATC assistance
system, and temporal context given by the history of issued com-
mands. Experiments conducted on real data from Prague and Vi-
enna airports showed a significant reduction of the command error
rate. Our future work will focus on investigating different sequence
labeling approaches, which seem to be a cornerstone for improving
the performance of the overall system.
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Jan “Honza” Černocký1, Dietrich Klakow2and Petr Motlı́ček3
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Abstract
Contextual adaptation of ASR can be very beneficial for multi-
accent and often noisy Air-Traffic Control (ATC) speech. Our
focus is call-sign recognition, which can be used to track con-
versations of ATC operators with individual airplanes. We
developed a two-stage boosting strategy, consisting of HCLG
boosting and Lattice boosting. Both are implemented as WFST
compositions and the contextual information is specific to each
utterance. In HCLG boosting we give score discounts to in-
dividual words, while in Lattice boosting the score discounts
are given to word sequences. The context data have origin in
surveillance database of OpenSky Network. From this, we ob-
tain lists of call-signs that are made more likely to appear in
the best hypothesis of ASR. This also improves the accuracy
of the NLU module that recognizes the call-signs from the best
hypothesis of ASR.

As part of ATCO2 project, we collected liveatc test set2.
The boosting of call-signs leads to 4.7% absolute WER im-
provement and 27.1% absolute increase of Call-Sign recogni-
tion Accuracy (CSA). Our best result of 82.9% CSA is quite
good, given that the data is noisy, and WER 28.4% is relatively
high. We believe there is still room for improvement.

Index terms: Air Traffic Control, Automatic Speech Recogni-
tion, Contextual Adaptation, Call-sign Recognition, Call-sign
Detection, OpenSky Network.

1. Introduction
The purpose of aviation call-signs is to identify airplanes in Air
Traffic Control (ATC) procedures. Many ATC messages are
currently conveyed by voice over noisy VHF channel. If we had
perfect call-sign recognition, we could easily track conversa-
tions of pilots with ATC operators in the shared audio channel.
The tracking would be useful for post-analysis of recordings, or
possibly for real-time ATC systems of the airports.

Recently, call-sign detection was an evaluation task in Air-
bus Air Traffic Control challenge [1, 2]. We redefined the task
from detection to call-sign recognition, as we recognize the
ICAO call-sign codes (e.g. TVS123AB) from the best ASR
hypothesis. Then, the call-sign code can be directly interfaced
to radar or other system. From the perspective of our paper,
the call-sign recognition module is a black-box, and we focus
on improving ATC-ASR (i.e. ASR for ATC data) by leveraging
contextual information. The context we use are call-sign lists
for given location and time, and these lists are queried from
OpenSky Network (OSN) database [3, 4].

Several works are addressing the use of contextual informa-
tion for ATC-ASR [5, 6, 7]. Shore et al. [5] introduced a lattice-

0

1c_s_a/-6

7

<eps>

2
three/-4

3
alfa/-4

8

#0

4alfa/-4

5

bravo/-4

6bravo/-4

<eps>

<eps>

9

c_s_a

one

two

three

alfa

bravo

brno

prague

<eps>

Figure 1: Topology of WFST graph for boosting of lattices.

rescoring mechanism, penalizing call-signs not present in the
current radar situation. Schmidt et al. [6] built a grammar-based
ASR, in which the search-space is limited to all command-
predictions for actual radar situation. The context adaptation
is continuous and integrated with on-line ASR. Later, in [7]
Oualil et al. compare grammar-based and n-gram-based lan-
guage modelling in ASR, showing n-grams as better. The n-
grams cover well the irregularities of real ATC speech. Again,
the context adaptation is continuous, and Weighted Levenshtein
Distance algorithm is used to select command prediction closest
to the ASR output. These works inspired us to focus on contin-
uous adaptation and its integration into ATC-ASR with n-gram
language models.

Otherwise, a significant inspiration for our Lattice boost-
ing was the work on composition-based on-the-fly rescor-
ing [8], where rapid rescoring is done on unpruned pseudo-
deterministic word-lattices. LM weights are adjusted for a small
set of n-grams representing contextual information. Later, in
rescoring-aware beam search [9], a secondary larger beam was
introduced into the decoder generating lattices. The secondary
beam is applied to the context represented as n-grams that are
later biased by rescoring. The purpose is to reduce a chance
that the context is pruned-out in the lattice generation. With the
very same motivation, we introduce our on-the-fly HCLG graph
boosting. Here, the score discounts are given to single words
relevant to the context. Our technique is simpler to implement.



2. Call-sign boosting in ASR system
As call-sign recognition has many practical use-cases for pro-
cessing ATC data, we focus on improving Call-Sign recognition
Accuracy (CSA). We improve CSA by targeted boosting of cer-
tain words, or word-strings. We give them score discounts into
language model scores, which is done by means of WFST com-
position [8]. The boosted expressions are thus made more likely
to appear in the best hypothesis of ASR. This approach is nat-
ural for Weighted Finite State Transducer (WFST) based ASR
systems. And Kaldi [10] ASR systems do use OpenFst [11] for
representing WFSTs.

The composition is done with a boosting graph that holds
score discounts. The original language model log-scores are
still used in the decoding process, as the score discounts are
added as their offsets.

The boosting graph is distinct for each utterance, so we
have to be aware that composition can easily become a com-
putationally demanding operation. The complexity of WFST
composition depends on numbers of states in the two operands,
the number of outgoing arcs from states and a degree of non-
determinism1.

2.1. Obtaining the call-sign lists

For boosting, we need lists of candidate call-signs, which are
capturing the short-term traffic situation. These can be obtained
in a dynamic way from a radar system, or in a static way from
a historical database of traffic monitoring. Our partner in the
ATCO2 project - OpenSky Network - provides an access to its
database of surveillance data [3]. The surveillance data are col-
lected from ADS-B receivers operated by a network of volun-
teers. The queries for call-sign lists are bounded both spatially
and with a time-frame [12].

For evaluation sets from HAAWAII project, we use call-
sign lists from radar system of the airport.

2.2. Verbalizing a call-sign

An example of the original ICAO call-sign code format from
the lists is: TVS123AB. This can be verbalized in several ways.
Our verbalization is an extension of ICAO standard [13]:

skytravel one two three alfa bravo
skytravel three alfa bravo
skytravel alfa bravo
skytravel one alfa bravo
skytravel one two bravo
tango victor sierra one two three alfa bravo
one two three alfa bravo
three alfa bravo
alfa bravo

The translation TVS -> skytravel is done according to
a look-up table of airline designators. The rest of the code
should be read as isolated numbers, and the suffix of let-
ters is ‘spelled’ with ICAO alphabet. Shortening right af-
ter the airline designator is possible. Spelling of TVS with
ICAO alphabet is also acceptable in the standard. Some
common non-standard variations include shortening the air-
line designator lufthansa -> hansa, or omitting it if
the situation is not ambiguous. We support also other non-
standard call-sign shortenings, and number expansions of type

1http://www.openfst.org/twiki/bin/view/FST/
ComposeDoc
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Figure 2: Topology of WFST graph for boosting the recognition
network HCLG.

777 -> triple seven. Airplanes not serving in airlines
have registration number as a call-sign. The registration has a
prefix that encodes country, which is spelled by ICAO alphabet
(e.g. OK for Czech Republic, or HB for Switzerland).

2.3. Lattice boosting

The lattice boosting is done as composition:

L′ = L ◦B , (1)

where L is the original lattice, and B is boosting graph. The
boosting graph B is specific for each utterance.

The toy-example boosting graph in Figure 1 has a lower part
with all the words in a lexicon on parallel arcs. This ensures
no word sequence being dropped from the original lattice by
the composition. There is also a phi input symbol #0 on the
‘entrance’ arc to the lower part. The upper part encodes word
sequences of call-signs, the score discounts -4 or -6 are on word
links. We intended to experiment with a combination of per-
word and per call-sign score discounts. The phi symbol allows
entering lower part only if the sub-path cannot be matched by
the upper part of boosting graph.

The composition is run in batch mode for whole test-set,
but it could be also done on-line after finalizing the lattice.
The composition is fast because both the lattices and boosting
graphs are relatively small.

The word sequence must be present in the lattice in order to
be boosted. The Lattice Oracle WER is computed from lattice-
path that is closest to the correct transcript, and the oracle align-
ments can hint us of problematic words.

2.4. HCLG boosting

The HCLG boosting is done as composition:

HCLG′ = HCLG ◦B , (2)

where HCLG 2 is the pre-compiled recognition network, and
B is another type of boosting graph. The HCLG′ graph is used
for lattice-generation, and the boosting graph B is again specific
for each utterance. The composition of B with HCLG graph
is done on-the-fly immediately before initializing the decoder.

The toy-example boosting graph in Figure 2 boosts individ-
ual words. In the figure it is c s a and brno which get the
score discount -3, other words have no discount. Also, note the
<eps> back-link into state 0.

2HCLG is composed from ‘H’ with HMM topology, ‘C’ for context
dependency, ‘L’ with lexicon and ‘G’ for language model (grammar),
more info in https://kaldi-asr.org/doc/graph.html



database hours accents ref.

AIRBUS 38.9 French [14]

HIWIRE 28.7 French, Greek,
Italian and Spanish

[15]

LDC ATCC 26.2 American English [16]

MALORCA 7.9 Austrian German [17, 18]

N4 NATO 10.7 Canadian, German,
Dutch, British

[19]

ATCOSIM 10.7 German, Swiss
German + French

[20]

UWB ATCC 13.2 Czech [21, 22]

Total sum: 136.3

Table 1: Audio databases for training the ASR models.

test-set hours description

airbus dev 1.03 custom held-out set from Airbus
challenge data, mostly from ‘lfbo’
airport, both operator and pilot
speech

malorca vienna 1.93 test-set from project MALORCA, Vi-
enna airport ‘loww’, no pilot speech

liveatc test set2 0.88 our own collection and manual tran-
scription of LiveATC data, mostly
Zurich airport ‘lszh’ plus some
‘eidw’ and ‘katl’, contains operator
and pilot speech, some parts are noisy

haawaii bikf
haawaii egll

5.31
6.85

data from HAAWAII project, Ke-
flavik airport ‘bikf’ and London
Heathrow ‘egll’, both operator and
pilot speech, ‘egll’ has more noise

Table 2: Audio data for testing ASR and Call-sign recognition.

The purpose of HCLG boosting is to decrease the Lattice
Oracle WER, so that the recall of call-signs in Lattice boosting
increases. And, by boosting more call-signs in lattices, the final
WER improves as well.

In the HCLG graph, we cannot boost word-strings as in case
of using graph from Figure 1. The composition would be pro-
hibitively slow, about 5 minutes per composition. By simplify-
ing the boosting graph to topology from Figure 2, we already
got an affordable increase of processing time of 20-30% on top
of lattice-generation time.

We also apply epsilon-removal on B, prior to the composi-
tion, which reduces the composition run-time. In fact B could
be a single state WFST right from the beginning, the second
state is added for easier visualisation.

We believe that only rare, context-specific, individual words
should be boosted in HCLG boosting. As we focus on call-sign
recognition, we are boosting only the airline designator code-
words like skytravel, c_s_a or air_berlin.

An alternative strategy to HCLG boosting would be
to boost the G.fst and do the on-the-fly composi-
tion with HCL.fst graph as is done in Kaldi tool
nnet3-latgen-faster-lookahead. The cascade of
on-the-fly compositions HCL◦ (G◦B) would introduce some
latency too. We will consider exploring this possibility as a
follow-up work.

Training data liveatc test set2 airbus dev malorca vienna

with malorca 33.1 8.3 4.7
w/o malorca 35.1 8.4 8.9

Table 3: Simulating deployment of ASR to ‘malorca vienna’ as
a ‘new’ airport, WER% results.

WER% Lattice Oracle
Beams baseline lattice HCLG+lat baseline HCLG

boost boost boost

b=10, lb=5 32.9 31.2 30.2 21.4 19.8
b=15, lb=8 33.1 30.0 28.8 15.2 13.9
b=20, lb=11 33.0 29.1 28.4 12.0 11.1
b=25, lb=13 33.1 28.9 28.4 11.3 10.7

Table 4: Effect of tuning the beam-width for ‘lattice boosting’
and ‘HCLG + lattice boosting’, data-set liveatc test set2.

3. Experimental setup
3.1. Audio databases

For training the ASR, we pre-processed 7 audio databases of
English ATC audio data, see Table 1. Various accents are
present. Some data are from simulated scenarios (HIWIRE,
N4 NATO, ATCOSIM), while other audio is from real traffic.
Particularly the unification of transcripts ended up being a chal-
lenging task.

For testing, we use 5 different sets, see Table 2. The test-
sets differ in quality of signal : ‘airbus dev’, ‘malorca vienna’
and ‘haawaii bikf’ are clean, ‘liveatc test set2’ is quite noisy
and ‘haawaii egll’ contains some moderate noise. Next, ‘mal-
orca vienna’ contains no pilot speech. And further, the airports
from ‘liveatc test set2’, ‘haawaii bikf’ and ‘haawaii egll’ are
not present in training data of our ASR system.

Even though the ATC messages should follow a stan-
dard [13], we had to normalize the transcripts as follows: a) to
use same ICAO alphabet, b) to use only one variant of word-
splits in common expressions (e.g. ‘take off’ ‘take-off’ →
‘takeoff’, ‘flightlevel’ → ‘flight level’, etc.), c) to standardize
the airline designators according to a “correct” table and map
spaces and dashes to underscores (e.g. ‘norshuttle’ ‘nor shuttle’
→ ‘nor shuttle’, or ‘fly niki’ ‘fly niki’ ‘fly-niki‘→ ‘flyniki’).

3.2. Baseline ASR system

We use a ‘hybrid’ speech-to-text recognizer based on Kaldi [10]
trained with Lattice-free MMI [23]. The neural network has 6
‘conv-relu-batchnorm-layer’ convolutional layers followed by
9 ‘tdnnf-layer’ semi-orthogonal components [24]. As usual,
there are two pre-final layers and two output layers: one for
LF-MMI objective, the second for frame cross-entropy objec-
tive. In total, the model has 12.93 million trainable parameters,
and the number of left biphone tied-states is 1680. The input
features are high-resolution Mel-frequency cepstral coefficients
(MFCC) with online Cepstral mean normalization (CMN). The
features are extended with online i-vectors [25, 26].
Lexicon: The positive side of ATC-ASR is that the vocabu-
lary is relatively small compared to general purpose ASR. In
our case, there are 28.4k unique tokens in lexicon, out of that
15.3k are 5-letter waypoints, and 5.2k are airline designators
for call-signs. We tried to create a rich vocabulary in advance
to minimize the OOV problem.

We used Phonetisaurus [27] to build a grapheme to
phoneme model from Librispeech lexicon [28]. We limited the
vocabulary to ATC word-list gathered from 7 training databases,
our test-sets, and some other pre-collected word-lists (airline



Baseline Lattice boost. HCLG+Lat. boost. Oracle
CSA WER CSA WER CSA WER CSA

liveatc test set2 53.5 33.1 75.6 28.9 80.6 28.4 90.0
malorca vienna 84.4 8.9 86.5 8.1 88.1 7.5 90.5
haawaii bikf - 30.6 - 29.4 - 28.9 -
haawaii egll - 20.8 - 19.3 - 18.8 -

Table 5: Call-Sign recognition Accuracy % (CSA) and Word Error Rate % (WER) for 4 test sets and 2 types of ASR boosting:
‘Lattice boosting’ and ‘HCLG + Lattice boosting’. The Oracle CSA is calls-sign recognition from ground truth transcripts.

designators, waypoints, airports, cities, countries, etc.).
The table of airline designators was prepared from

Wikipedia page3. We cross-checked some items with other pub-
lic databases. Recently, we found an FAA document4, which
could be used in future. The list of European waypoints was
obtained from traffic [29] python project.
Language model: We use 3-gram language model built by in-
terpolating several LMs with SRI-LM [30]. The mixing coeffi-
cients are tuned on entire ‘liveatc test set1’ (i.e. a set different
from liveatc test set2) complemented with a fragment of ‘air-
bus dev’ and ‘malorca vienna’ test-sets. We build one LM from
each training corpus transcripts (except HIWIRE and N4 NATO
whose transcripts have limited variability).

An additional LM for interpolation is built from ‘ex-
tra data’, i.e. a collection of: a) expanded call-signs from OSN
database with 2019 world-wide traffic5, b) all possible runway
number combinations, c) European waypoints in typical idioms,
and d) pre-collected word-lists previously added to lexicon.

4. Results
4.1. Deploying ASR to new airport, simulation

An ideal ATC-ASR system should generalize to a ‘new’ airport.
In practice, the training data come from some airport, and per-
formance for that airport is better than for some ‘new’ airport.
We quantified this effect in Table 3.

By excluding malorca data from the training (acoustic
model, language model and lexicon), the WER nearly doubles
4.7 → 8.9 for malorca vienna test set. For other test sets, the
error rate almost did not change. The malorca data consist of
purely ATC operator speech, and including pilot speech would
further increase the WER. Our boosting experiments are done
with an ASR system that had malorca data excluded, to simulate
the ‘new’ airport scenario.

4.2. Call-sign boosting, ASR performance, tuning beams

Next, we experiment with call-sign boosting. The call-sign
words represent roughly 25% of reference transcript text. We
evaluate Lattice boosting and a cascade of HCLG boosting and
Lattice boosting. The liveatc test set2 is used to tune the beam
widths and values of score discounts.

Table 4 shows a significant improvement 4.7% of WER
(33.1 → 28.4) from the combination of HCLG boosting and
Lattice boosting. If we do only Lattice boosting, the per-
formance gain is little smaller (4.2%). Further widening the
beams can, to some extent, compensate for not doing the HCLG
boosting, but the lattices also grow larger. With ‘lb=8’ the
liveatc test set2 lattices have 12MB, with ‘lb=11’ 89MB, and
for ‘lb=13’ 192MB.

3https://en.wikipedia.org/wiki/List_of_airline_
codes

4https://www.faa.gov/documentLibrary/media/Order/
7340.2J_Chg_1_dtd_10_10_19.pdf

5https://zenodo.org/record/3901482#.X5cK9k_0m_4

In first column, ‘b=’ stands for --beam and ‘lb=’ for
--lattice-beam. The default values from Kaldi are ‘b=15,
lb=8’. Larger beams lead to better performance, but the system
becomes slower. We also see the effect of HCLG boosting of
airline code-words on Lattice Oracle WER. The improvements
are ranging from 1.6% absolute for smaller lattices generated
with narrow beams to 0.6% for wide beams.

4.3. Callsign accuracy performance

The ASR output is processed by call-sign recognition module,
which is an End2End neural network that translates text directly
into ICAO call-sign code like TVS123AB. The performance is
measured as Call-Sign recognition Accuracy (CSA). The call-
sign recognizer uses list of candidate call-signs as contextual
information, while it still can synthesize a new call-sign not
present in the list.

In Table 5, we see that WER improvements consistently
translate into CSA improvements. On liveatc test set2 we have
a huge improvement from 53.5 to 80.6. For malorca vienna
the absolute CSA improvement is smaller, nevertheless the gain
from 84.4 to 88.1 removed 60.7% of the gap spanning from
baseline to oracle CSA. For test-sets from HAAWAII project,
we have only WER scores that show consistent improvements.
For evaluation of call-sign recognition, we kept only utterances
where the true call-sign was present also in the traffic monitor-
ing data. This reduces the risk of having a wrong call-sign in
the ground-truth annotation.

5. Conclusions
Inspired by other works on contextual adaptation of WFST-
based ASR systems, we applied a cascade of on-the-fly HCLG
boosting of individual words and Lattice boosting of word se-
quences. The boosted elements appear more likely as part of
the best ASR hypothesis.

We focused on call-sign recognition from air-traffic control
speech. Our boosting improved dramatically both the Word Er-
ror Rate and Call-sign recognition accuracy, especially for noisy
test-set like liveatc test set2 : WER -4.7% absolute, Call-sign
accuracy +27.1% absolute in Table 5. The proposed technique
of giving score discounts to certain words or word sequences in
ASR inference is generic and can be used in other domains.

In future, we plan to extend contextual adaptation to more
types of content, for example waypoints, geographical names,
or frequent expressions in local language.

6. Acknowledgements
We would like to thank to Hartmut Helmke for early feedback
and DLR for providing annotated audio data from HAAWAII
project. The work was supported by European Union’s Horizon
2020 projects No. 864702 - ATCO2 (all auth.) and No. 884287
HAAWAII (BUT and IDIAP). Part of high-performance com-
putation run on IT4I supercomputer and was supported by the
Ministry of Education, Youth and Sports of the Czech Republic
through e-INFRA CZ (ID:90140).



7. References
[1] T. Pellegrini, J. Farinas, E. Delpech, and F. Lancelot,

“The Airbus Air Traffic Control Speech Recognition 2018
Challenge: Towards ATC Automatic Transcription and Call
Sign Detection,” in Interspeech 2019, Graz, Austria, September
2019. ISCA, 2019, pp. 2993–2997. [Online]. Available:
https://doi.org/10.21437/Interspeech.2019-1962

[2] V. Gupta, L. Rebout, G. Boulianne, P. A. Ménard, and J. Alam,
“CRIM’s Speech Transcription and Call Sign Detection System
for the ATC Airbus Challenge Task,” in Interspeech 2019, Graz,
Austria, September 2019. ISCA, 2019, pp. 3018–3022. [Online].
Available: https://doi.org/10.21437/Interspeech.2019-1131

[3] J. Sun and J. M. Hoekstra, “Integrating pyModeS and OpenSky
Historical Database,” in Proceedings of the 7th OpenSky Work-
shop, vol. 67, 2019, pp. 63–72.
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Abstract
Domain language model adaptation consists in re-estimating
probabilities of a baseline LM in order to better match the
specifics of a given broad topic of interest. To do so, a com-
mon strategy is to retrieve adaptation texts from the Web based
on a given domain-representative seed text. In this paper, we
study how the selection of this seed text influences the adapta-
tion process and the performances of resulting adapted language
models in automatic speech recognition. More precisely, the
goal of this original study is to analyze the differences of our
Web-based adaptation approach between the supervised case,
in which the seed text is manually generated, and the unsuper-
vised case, where the seed text is given by an automatic tran-
script. Experiments were carried out on data sourced from a
real-world use case, more specifically, videos produced fora
university YouTube channel. Results show that our approach
is quite robust since the unsupervised adaptation providessim-
ilar performance to the supervised case in terms of the overall
perplexity and word error rate.
Index Terms: Language model, domain adaptation, supervi-
sion, Web data

1. Introduction
The n-gram language model (LM) of most automatic speech
recognition (ASR) systems is usually trained on a large multi-
topic text collection. As a consequence, this LM is not optimal
to transcribe spoken documents dealing with a given specific
domain. To solve this problem, domain LM adaptation seeks to
re-estimate then-gram probabilities of the baseline LM in order
to fit the specifics of the considered domain. The ultimate goal
of this adaptation is to improve the quality of ASR transcripts.

Nowadays, a standard approach for LM domain adaptation
consists of using the Web as an open corpus in order to retrieve
domain-specific data providing accurate statistics forn-gram
re-estimation [1, 2, 3, 4, 5]. The process of the Web-based
adaptation can be split into the following steps: first, one has
to extract queries from a given text that is representative of the
domain of interest—this text is called theseed text; then Web
pages are retrieved by submitting the queries to a Web search
engine ; finally, an adapted LM is built by integrating the re-
trieved adaptation data with background training material.

The seed text is a key aspect of this process since it is sup-
posed to provide a good characterization of the domain in order
to extract meaningful information for the adaptation. In the lit-
erature, two main approaches are commonly known: either the
adaptation is supervised, i.e., the domain is knowna priori and
the considered seed text is a manually generated reliable text,
typically a manual transcript [3, 6], or the adaptation is unsu-

This work is funded by the project CTI 12189.2 PFES-ES of
the Comité pour la Technologie et l’Innovation(Switzerland) and was
carried out in collaboration with Koemei.

pervised where the seed text is obtained from ASR on spoken
documents [5, 7, 8].

Obtaining large amount of seed text is desirable since large
texts are assumed to more widely characterize the encountered
domain. However, the feasibility of supervised adaptationde-
pends on the size of the seed text, since the level of human ef-
fort required to produce this text manually is significant. Thus,
automation of this process could provide important savingsin
cost and effort for the development of domain specific LMs in
real-life applications.

One would naturally think that supervised approaches
based on a very large seed text produce better performance than
equivalent unsupervised approaches, but to the knowledge of
the authors very few study has yet been conducted to verify this.
Only [9] carefully examined the effect of supervision and non
supervision on the performance of LM adaptation. However,
the studied adaptation approach was not based on the Internet.
Hence, this paper aims at comparing the Web-based domain LM
adaptation process using different levels of supervision.More
precisely, we seek to understand the impact of recognition errors
in the seed text on speech recognition accuracy gains resulting
from LM adaptation and the dependence on the size of the seed
text. Since the paper focuses on LM adaptation, the problem of
vocabulary adaptation is not considered here.

The paper is organized as follows: Section 2 presents the
LM adaptation used in the experiments. Section 3 describes the
experimental setup and introduces different adaptation scenar-
ios for the seed text. Finally, Section 4 studies the effect of these
scenarios on various aspects of our LM adaptation technique.

2. LM adaptation technique
The strategy of our LM adaptation technique is three-fold.
Given a seed text which is assumed to be representative of the
domain of interest, queries are first extracted. Then, Web pages
are retrieved by submitting the queries to a Web search en-
gine from which we construct an adaptation corpus. Finally,an
adapted LM is trained by linearly interpolation statisticsfrom
the adaptation corpus with the set of background texts previ-
ously used to train the baseline LM. Such an adapted LM is
supposed to provide higher speech recognition accuracy than
the baseline LM when applied to recordings from the domain
of interest. This section describes the query extraction method
before explaining how Web pages are retrieved and how the
adapted LM is effectively trained in our experiments.

2.1. Extracting queries from the seed text

The principle of our query extraction method, as introduced
in [3], is to determine whichn-grams of the baseline LM are
not well enough modeled according to the given seed text and
then to directly use thesen-grams as queries. Given the seed
textT , this principle is driven by the search for an adapted LM



whose likelihood on the seed text is greater than the one using
the baseline LM, i.e.,:

PA(T ) > PB(T ) , (1)

wherePA andPB respectively refer to the probability distri-
bution of target adapted LM and of the baseline LM. This in-
equality can be guaranteed by decomposing the likelihood onto
everyn-gram(h,w) fromT , wherew is a word andh is a word
history, leading to the following set of constraints:

PA(w|h) > PB(w|h), ∀(h,w) ∈ T . (2)

Then, extracting queries consists in finding out whichn-grams
in T are the most likely to satisfy (2). To do so,PA can be
first assumed to be a linear interpolation ofPB and probability
distributionPC trained on the corpusC of retrieved Web pages.
Second, we postulate thatPC can be modeled as another linear
interpolation ofPB with the probability distributionPT trained
on seed textT . Hence, (2) can be greatly simplified, as follows:

λPT (w|h) + (1− λ)PB(w|h) > PB(w|h),∀(h,w) ∈ T (3)

PT (w|h) > PB(w|h),∀(h,w) ∈ T . (4)

In practice, we approximate (4) by arbitrarily considering
as queries the sole trigrams from the seed text which have not
been observed during the baseline LM training, i.e., trigrams
whose probability is computed by backing off. However, these
n-grams may be numerous, depending on the size of the seed
textT , thereby leading to a very long retrieval process and most
of thesen-grams are just sequences that are not specific to the
domain of interest. Hence, the set of thesen-grams is finally
filtered by discarding anyn-gram containing a stopword1. In
our experiments, this query extraction strategy leads to a few
hundred queries for a given seed text.

2.2. Web pages retrieval and adapted LM training

To retrieve domain-specific adaptation data, the queries are sub-
mitted to a Web search engine. The returned hits are down-
loaded following a round-robin algorithm, i.e., thei-th hits of
each query are downloaded successively before downloading
the (i + 1)-th hits, and so on. Web pages are cleaned and nor-
malized before gathering them into an adaptation corpus. This
process stops as soon as a selected number of words is reached.
In our experiments, this number is set to5 million words. On
average, this threshold is reached after downloading about20-
40 pages per query.

To train the domain adapted LM, the process initially de-
veloped for the baseline LM is then re-used. More precisely,
the adaptation corpus is added to the set of background cor-
pora used to train the baseline model, and compound LMs are
trained using each corpus. Then, these LMs, including the adap-
tation LM, are linearly interpolated such that their combination
minimizes the perplexity on the seed text. Finally, the result-
ing LM is pruned in order to reach the same size as the base-
line LM. This strategy enables to determine the relative impor-
tances of the various background corpora according to the seed.
Thus, it is supposed to be better than directly linearly interpo-
lating the baseline LM with the adaptation LM.

3. Experimental setup and adaptation
scenarios

Before presenting the impact of the seed text on the adaptation
process, this section presents the experimental setup, i.e., the
ASR system and experimental data. Then, adaptation scenarios
are introduced.

1The list of stopwords is about600 words.

3.1. Experimental setup

The recognition system used in the experiments is a two-
pass system for English. In brief, it uses individual head-
mounted microphones (IHM) based acoustic models, a lexicon
of 50, 000 words and a 4-gram LM trained on various corpora
(AMI corpus, ICSI meeting corpus,etc.) for a total amount of
about one billion words. The decoder is based on weighted fi-
nite state transducers. The first decoding pass relies on generic
acoustic models whereas the second is performed after speaker
adaptation. All details about the system architecture and the
training setups can be found in [10].

The domain is represented by57 videos produced for a
university YouTube channel. While the broad domain is cen-
tered on the course content offered, these videos are of vari-
ous types (faculty teaching, self-promotion, conferences, inter-
views,etc.). They have been recorded in different acoustic con-
ditions, are of varying duration and some stakeholders are non-
native English speakers. The reference transcript represents a
total of 40, 000 words. The data was split into two sets: a de-
velopment set of 29 videos that can be considered as the seed
information source to characterize the target domain ; and atest
set of 28 held-out videos. The length of the reference transcrip-
tion is the same for both sets, i.e., about20, 000 words. Out-of-
vocabulary rates are0.65% and0.59% on the development set
and on the test set respectively.

3.2. Adaptation scenarios

The aim of this paper is to study the importance of the seed
text in achieving an effective domain LM adaptation. In fact,
this adaptation may be applied within two main scenarios. Ei-
ther adaptation is meant to be used in a multi-pass recognition
process where spoken documents are first transcribed using the
baseline LM, before adapting the LM using the first pass out-
put as seed text with which we perform a subsequent decoding
pass—we denote this asself adaptation. Or it is dedicated to a
longer term application where the domain of documents to be
transcribed in the future will remain the same—we denote this
aslong term adaptation.

Considering the development and test sets as independent,
but covering the same domain, the nature of seed texts within
these scenarios can vary according to two aspects: their origin
and their size. Regarding the origin, the supervised case con-
sists in considering the reference of the development set. This
case is costly in terms of money and time since it requires man-
ual transcription. Conversely, the unsupervised situation relies
on the noisy transcript generated by the baseline ASR system.
The word error rate (WER) of the baseline ASR is29.6% on
the development set. Further, the levels of supervision andnon
supervision can be modulated by varying the seed text size. In
our experiments, this is done by subsampling the seed text.

3.3. Evaluation

Effect of the domain adaptation is mainly evaluated by compar-
ing the perplexities of the baseline LM with those of adapted
LMs, on the reference transcriptions of the development setand
of the test set. For most interesting settings, WERs are also
reported. Results on the development set may be considered
representative of a self adaptation scenario while those onthe
evaluation set stand for long term adaptation. Furthermore, let
us notice that results for self adaptation using the reference as
a seed are “cheating experiments” whose goal is to exhibit op-
timal (oracle) results. Finally, let us recall that no vocabulary
adaptation is performed during the experiments since the paper
is focusing on the sole LM adaptation task.

The next section investigates the adaptation scenarios
within the two steps of the process involving the seed text.



4. Experiments and results
The seed text plays an important role during two steps of the
domain adaptation process: it is used to extract domain-specific
queries, and it helps determine the importance of the adapta-
tion data when combining domain-specificn-gram probabilities
with those obtained from the background training texts. This
section thus first studies the effect of the seed text on queryex-
traction before analyzing its role in the final linear interpolation
step. Finally, the dependence on the seed text size on both steps
is presented.

4.1. Effect of the seed text on query extraction

As described in Section 2, query extraction is the first step of the
adaptation process. Hence, the quality of the seed text is prob-
ably crucial. To assess this hypothesis, this section compares
the use of the reference and the ASR transcript of the develop-
ment set (20, 000 words each) in order to investigate the effect
of recognition errors on query extraction.

Table 1 compares perplexities obtained using the base-
line LM and LMs adapted from supervised and unsupervised
seed texts. For every adapted LM, linear interpolation is carried
out using the reference transcript in order to train optimalLMs
and, thus, to highlight lower bounds of perplexity for each seed
used for query extraction. It appears that, on the development
set, the largest improvement is obtained when using the refer-
ence as the seed text. This is quite logical since this setting (in
italic) represents an artificial case where the seed text is similar
to the text modeled by the LM. It is thus common sense to ob-
serve that the improvement is less significant on the evaluation
set. Interestingly, when using the ASR transcript as seed text
we do not observe such differences in perplexity between the
development and test data.

To better understand these first results, a second series of
evaluations have been carried out whereby we isolate the cor-
rectly and incorrectly recognized parts (words) of text in the
reference and in the ASR transcripts and use these sole parts
as new seed texts for query extraction. Recognition errors are
spotted by aligning ASR transcripts with the reference. There-
sults of these experiments are presented in the three last rows
of Table 1, where “misrecognized reference” denotes the parts
of the reference which have been misrecognized using the base-
line LM, “incorrect ASR” denotes what the ASR system has
returned for these parts, and “correct ASR” stands for the cor-
rectly transcribed parts in the ASR. One can notice that the
perplexity improvements on the development set mainly come
from the misrecognized portions of the reference. This seems to
be logical since it represents the word sequences which are the
most inaccurately modeled by the baseline LM. However, such
a conclusion is not observed on the evaluation set since the per-
plexity improvement obtained using “misrecognized reference”
is almost the same as when only relying on the correctly rec-
ognized portions (correct ASR). Moreover, it appears that the
use of “incorrect ASR” still results in perplexity improvements,
though these improvements are lower. This surprising result
can probably be explained by the fact that Web search engines
attempt to automatically transform unlikely queries into more
common word sequences while untransformed queries simply
result in no hit. Further, some recognition errors may stillbe
domain-specific words. Therefore, the use of ASR transcriptis
not as bad as expected since it seems that most recognition er-
rors are harmless for query extraction, be it for long term adap-
tation or for self adaptation.

4.2. Choice of the seed text for linear interpolation

The second aspect involving the seed text is the estimation of
linear interpolation weights. Table 2 presents the resultsof ex-

Table 1: Perplexities of the development and evaluation sets
using different seed texts for query extraction.

Query extraction Linear interp. Dev. Test
Baseline LM 165 170

Reference Reference 119 139
ASR Reference 133 143

Correct ASR Reference 134 143
Incorrect ASR Reference 142 150

Misrecognized reference Reference 120 140

Table 2:Perplexities on the development and evaluation sets us-
ing different texts to estimating the linear interpolationweights.

Query extraction Linear interp. Dev. Test
Baseline LM 165 170

(a) Reference Background text 159 168
ASR Background text 163 169

(b) No data Reference 154 159
No data ASR 155 161

(c) Reference 119 139
ASR 136 145

(d) Correct ASR 135 143

periments conducted. In addition to the seed texts previously
presented, the text initially used to build the baseline LM,re-
ferred to as “background”, is introduced. As shown in rows (a),
where the linear interpolation is based on the background text,
it is clear that the use of adaptation data is completely inefficient
if the interpolation text is disconnected from the domain. More-
over, the rows (b) show that re-interpolation of the background
training texts, i.e., when no adaptation corpus is retrieved, leads
to modest improvements when considering a domain-specific
text to estimate the linear interpolation weights. Moreover, in
this case there is nearly no difference between the use of the
reference against the ASR transcript, meaning that recognition
errors do not bias the interpolation weight estimation.

The set of rows (c) denotes the settings where the same text
is used for both query extraction and linear interpolation,as this
would probably be the case in a real application. On the wholeit
appears that the use of noisy seed text for interpolation as well
as query generation is not significantly worse than the query
generation scenario alone. Finally, the row (d) shows that by
focusing on the sole correctly transcribed ASR parts linearin-
terpolation does not perform better2, further reinforcing previ-
ous observations. In summary it would appear that recognition
errors do not bias the interpolation weight estimation (at least at
the error rates that we have observed).

Achieved error rates for the settings (c) and (d) are reported
in Table 3. In general, the relative trends are the same as ob-
served for perplexity measures. More precisely, it appearsthat
all the settings lead to significantly outperform the baseline re-
sults, even when using the ASR as a seed. Furthermore, it is
clear that the recognition errors do not have any significantim-
pact on the system performance, as was already evident from
the perplexity results.

4.3. Dependence on the size of the seed text

The size of the seed text may change the conclusions drawn
above concerning the low impact of recognition errors on fi-
nal LM perplexities. Indeed, one would naturally assume that
shorter the seed text, more variable we would expect the results
of the adaptation. This is due to the fact that the domain of

2This is done by replacing recognition errors by out-of-vocabulary
words while minimizing the perplexity of the interpolated LM.



Table 3: WERs (%) obtained with or without domain adapta-
tion. In brackets, relative variations w.r.t. baseline aregiven.

Query extraction and Development Testlinear interpolation
Baseline LM 29.6 25.8

Reference 26.3 (-11.1 %) 24.1 (-6.6 %)
ASR 27.3 (-7.8 %) 24.6 (-4.7 %)

Correct ASR 27.5 (-7.1 %) 24.4 (-5.4 %)

Figure 1:Perplexity of adapted LMs versus the size of the seed
text by subsampling the reference (a) or the ASR transcripts(b).

interest cannot be characterized so well. In our last seriesof ex-
periments, we studied the influence of the seed text size on LM
domain adaptation. Both reference and ASR transcripts from
the development data were randomly subsampled on a sentence
basis with different rates and these subsamples were used as
new seed texts, both for query extraction and linear interpola-
tion.

Figure 1 reports perplexities of the adapted LMs w.r.t. the
size of the seed text when relying on the reference or the ASR
transcripts. Firstly, it appears that the perplexity improvements
decrease and their variability increases with the size of the seed
text in all cases. However, this decrease is very gradual until
reaching2, 000-4, 000 words, i.e., only10-20% of the original
seed text size. This tends to show that the efforts spent in gener-
ating a seed text can be quite limited. Finally, it is interesting to
note that the trends of the curves are the same whether the seed
text is derived from the reference or from the ASR transcripts.
This means that recognition errors do not appear to have strong
influence on LM adaptation when reducing the seed text size.

Decoding experiments were carried out by only considering
about10-20% of the full seed texts for LM adaptation. Result-
ing WERs are presented in Table 4. Regarding the reference
transcriptions, WERs are quite similar to those reported inTa-
ble 3. This is very interesting from a practical point of view
since it shows that in the supervised case we can annotate less
data without degrading the performance. Some slight improve-
ments even show that better adaptations can be performed with
less queries, meaning that some parts of the reference are more
important than others for domain adaptation. On the contrary,
considering10-20% of the ASR transcripts leads to average in-
crease in the WER of0.5% absolute compared to the use of
the full development set transcript. We assume that this comes
from the fact that decreasing the seed text size not only limits
the ability of the text to characterize the domain but increases
the impact of queries containing transcription errors. Neverthe-
less, WER gains w.r.t. the baseline are still significant.

Table 4:WERs (%) obtained when reducing the size of the seed
text derived from the reference or from the ASR transcripts.In
brackets, relative variations w.r.t. the baseline are given.

Query extraction and Development Testlinear interpolation
Baseline LM 29.6 25.8

Reference (∼20 % words) 26.2 (-11.4 %) 24.4 (-5.4 %)
Reference (∼10 % words) 26.5 (-10.5 %) 24.1 (-6.6 %)

ASR (∼20 % words) 28.2 (-4.7 %) 25.0 (-3.1 %)
ASR (∼10 % words) 28.2 (-4.7 %) 24.8 (-3.9 %)

5. Conclusion
In this paper, we have conducted an investigation of supervised
and unsupervised Web-based LM domain adaptation. Various
scenarios have been explored to highlight the influence of the
seed text used to extract queries and to perform the final lin-
ear interpolation step leading to the adapted LM. Obviously,
it appears that using manual transcripts brings the greatest im-
provements of perplexity and ASR accuracy, but other interest-
ing conclusions can be drawn. Firstly, the recognition errors do
not bias LM adaptation, as can be seen for query extraction or
for linear interpolation. This is very interesting due to the fact
that error spotting in ASR outputs is a complex task. Instead,
the main effect of recognition errors is a loss of information
which prevents us from achieving an optimal characterization
of the domain. Nevertheless, relative improvements of7.8%
and4.7% over the baseline WER are achieved using the ASR
transcript, depending on the adaptation scenario. Secondly, re-
ducing the size of the seed text does not change this conclusion.
Rather, the experiments have shown that decreasing the seed
text size reduces both the gains in perplexity and in word error
rates consistently for both supervised and unsupervised cases,
though in the unsupervised case this is more pronounced.

Further aspects of supervision could be studied in the future
work. For example, it would be interesting to know what is
the influence of the baseline word error rate on the adaptation
process. Furthermore, while having voluntarily left the problem
of vocabulary adaptation aside, it would be interesting to know
the influence of supervision on the recovery of domain-specific
out-of-vocabulary words.
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Abstract
Recurrent neural network language models (RNNLMs) have
recently shown to outperform the venerablen-gram language
models (LMs). However, in automatic speech recognition
(ASR), RNNLMs were not yet used to directly decode a speech
signal. Instead, RNNLMs are rather applied to rescore N-best
lists generated from word lattices. To use RNNLMs in earlier
stages of the speech recognition, our work proposes to trans-
form RNNLMs into weighted finite state transducers approxi-
mating their underlying probability distribution. While the main
idea consists in discretizing continuous representationsof word
histories, we present a first implementation of the approachus-
ing clustering techniques and entropy-based pruning. Achieved
experimental results on LM perplexity and on ASR word error
rates are encouraging since the performance of the discretized
RNNLMs is comparable to the one ofn-gram LMs.
Index Terms: Language model, recurrent neural network,
weighted finite state transducer, speech decoding

1. Introduction
Recurrent neural network language models (RNNLMs) have
shown to outperform the venerablen-gram language mod-
els (LMs) [1]. However, in automatic speech recogni-
tion (ASR), RNNLMs cannot be used to directly decode a
speech signal since they rely on continuous representations
of word histories while decoding algorithms require to han-
dle discrete representations to remain tractable [2, 3]. Instead,
RNNLMs are currently used to rescore N-best lists generated
usingn-gram LMs. Hence, the prediction power of RNNLMs
is used only on subsets of all transcription hypotheses. Such
an approach does not offer the optimal solution since then-
gram LM used for the decoding may have discarded hypotheses
which the RNNLM would have judged very likely. Further-
more, the distributions of these two kinds of LMs have been
shown to be complementary [4, 5]. The use of RNNLMs in
early stages of speech decoding is thus a challenging objective.

Recently, few studies were devoted to this problem. In [6],
the authors propose to sample word sequences by using
RNNLM as a generative model before training ann-gram LM
based on the generated text. By exploiting this LM to perform
first pass decoding, achieved results outperformed the use of n-
gram LMs trained on standard texts. However, we assume that
this approach is still not optimal since it still prevents from re-
lying on long span information during the decoding. In [7], the
author has proposed aniterative decodingalgorithm which en-
ables to efficiently rescore word lattices using RNNLMs. The
main idea is to partition word lattices to reduce the computa-
tional complexity of browsing all possible hypotheses. Though
leading to good results, this technique cannot be directly applied
in the first pass of the decoding since no explicit search graph is
available at this moment of the recognition process.

In this paper, we define a new generic strategy to transform
RNNLMs into a Weighted Finite State Transducer (WFST)

which can directly be used within the decoding process of an
ASR system [3]. We believe that this approach has a potential
to outperform the conventional approach where RNNLMs are
employed to rescoreN -best hypotheses as a final step of ASR.
The principle of the conversion consists in discretizing continu-
ous RNNLM representations of word histories in order to build
WFST states, and then to link these states with probabilities de-
rived from the RNNLM. In practice, this approach also raises
some needs for pruning the generated WFST since the theo-
retical number of states may be large according to the chosen
discretization strategy. We present a preliminary implementa-
tion of the RNNLM conversion algorithm based onK-means
clustering and entropy pruning.

This paper is organized as follows: after recalling the prin-
ciples of RNNLMs provided in Section 2, the generic conver-
sion strategy is introduced in Section 3. Section 4 presentshow
K-means clustering and entropy pruning can be used to imple-
ment a first version of the generic strategy. Finally, Section 5
describes experiments on the Penn Treebank corpus and using
LVCSR meeting system.

2. Overview of RNNLMs
The goal of a language model employed in ASR system is to
provide the conditional probability of a wordwi given an his-
toryh of preceding words. As detailed in [1], this history is rep-
resented in RNNLMs by the most recent preceding wordwi−1

and a multi-dimensional continuous representationci of the
remaining context. The topology of the neural network used
to compute conditional probabilitiesP [wi|wi−1, ci−1] is orga-
nized in 3 layers using a bottleneck scheme. The input layer
reads a wordwi−1 and a continuous historyci−1. The hidden
layer compresses the information of these two inputs and com-
putes a new representationci. The valueci is then passed to
the output layer which, after normalization, provides the condi-
tional probabilities.

3. Generic RNNLM conversion
The goal of this work is to convert RNNLMs into an approxi-
mate WFST representation. As illustrated in Figure 1, this task
mainly consists in binding discrete states with the continuous
input states of the RNNLM, and in using these discrete states
as the nodes of a WFST. The edges among nodes are then la-
beled with word transitions and their probabilities estimated by
the RNNLM. There are two key aspects to achieve this task.
First, adiscretization functionneeds to be defined to transform
the continuous representations. Second, we have to take into
account the size of the output WFST since enumerating all pos-
sible discrete states might quickly be untractable as soon as the
vocabulary becomes large and the discretization becomes pre-
cise. Thus, apruning criterionneeds to be defined in order to
discard uninteresting discrete states, and aback-off strategyin
order to model the pruned states in a simpler way. This sec-



Figure 1:Overview of the RNNLM discretization scheme.

tion formally introduces these parameters before providing the
generic algorithm for the conversion.

3.1. Discretization function

The main function to be defined is a discretization function
which returns a discrete state for every possible input continu-
ous state(wi, ci). The generic form of this discretization func-
tion f is as follows:

f : V × Rh −→ Nk

wi , ci 7−→ di ,
(1)

whereV is the LM vocabulary,h is the size of the hidden layer
of the RNNLM, andk is the dimension of the discrete represen-
tationdi. As it will be shown in the algorithm, we also need
to be able to go back from discrete states to continuous repre-
sentations. Thus, the partial inverse functionf−1 must also be
defined such that:

f−1 : Nk −→ Y ⊂ V × Rh

di 7−→ (wi, ci) .
(2)

This function is only a partial inverse of functionf sincef is,
by definition, a surjection. Thus, the codomain off−1 is limited
to a subset ofV × Rh.

3.2. Pruning criterion and back-off

Since the WFST is intended to be used in ASR during the de-
coding, it should not be too large. Thus, it is important to be
able to control the size of the WFST by pruning and by intro-
ducing a back-off scheme. Furthermore, since the cardinality
of the discrete domainNk can be huge, the pruning should be
done on the fly, i.e., while building the WFST. This requires to
define two parameters.

First, a pruning criterionπ must be defined to decide
whether a corresponding edge should be discarded or added
when building the WFST. A “good” pruning criterion should
be such that the pruning of an edge does not lead to large in-
formation loss. Given a nodedi, the criterion should thus be
derived from the quantity of information carried by a new word
transitionv. The generic form of this criterion is

π(v,di) =
{

false if P (v|f−1(di)) is informative enough,
true otherwise. (3)

Second, a back-off mechanism must be introduced in order
to approximate the probability of pruned events1. Basically, this
strategy requires to define a back-off functionβ which maps a
given discrete representation to a simpler representation:

β : Nk −→ Nk

di 7−→ d′
i .

(4)

1Even if an event is judged as unlikely, it does not mean that itcannot
occur. Hence, the model must be able to provide a probabilityfor any
event.

Data: L, a list of discrete states, i.e., of WFST nodes
1 L← f(beginning of sentence);
2 while L 6= ∅ do
3 dsrc← pop(L);
4 (wsrc, csrc)← f−1(dsrc);
5 cdst← hiddenlayer(wsrc, csrc);
6 foreach v ∈ V do
7 if dsrc = dmin
8 or not π(v,dsrc) then
9 p← P (v|wsrc, csrc);

10 ddst← f(v, cdst);
11 else
12 p← 0 ;
13 v ← ǫ;
14 ddst← β(dsrc);

15 if nodeddst does not existthen
16 add nodeto wfst(ddst);
17 push(L,ddst);

18 add edgeto wfst(dsrc
v:v,p−−−→ ddst);

19 computebackoff weights();

Algorithm 1: Pseudo-code of the RNNLM conversion.

The destination stated′
i is referred to as theback-off stateor

nodeof the statedi. To avoid cycles in the WFST, the func-
tion β must define a partial order over all discrete states, i.e.,
it must guarantee thatd′

i is “simpler” thandi. This naturally
introduces the notion of minimal statedmin, i.e., the state for
which no pruning and back-off can be done.

3.3. Conversion algorithm

Assuming that the discretization functionf , the pruning crite-
rion π, and the back-off functionβ are defined, the conversion
algorithm seeks to discretize each given RNNLM state and to
build outgoing edges reaching new states. This process can be
written in an iterative way whose pseudo-code is given by the
Algorithm 1. Given the list of states which have already been
added to the WFST but for which no outgoing edge has been
created yet, the algorithm pops a state, computes probabilities
using the RNNLM, and then builds edges. As soon as an edge
reaches a new destination node in the WFST, this next node is
built and pushed into the list on remaining states to be explored.
In practice, the conversion process starts with the RNNLM state
corresponding to a beginning of sentence. When considering
pruning, a decision must be made before adding a new edge. If
the edge starts from the minimal state or carries enough infor-
mation, then it is built. Otherwise, it is discarded and redirected
to a back-off node. The weights of back-off transitions are com-
puted after building the WFST by following Katz’s strategy [8].

4. Implementation
We propose to implement the generic process described above
by usingK-means clustering for the discretization of RNNLM
states and entropy-based criteria for the pruning strategy. This
implementation is described in this section.

4.1. Discretization using K-means

We propose to discretize RNNLM states by first partitioning
their continuous domain into clusters computed using theK-
means algorithm, and then by associating each state to a corre-
sponding cluster. Each cluster is denoted by an identifier and
is associated with its centroid. Given a set ofK centroids, the



discretization and “undiscretization” functions are defined as:

fK(w , c) = ( w , k ) , (5)

wherek ∈ J1, KK is the ID of the centroid associated withc,
and

f−1
K (w , k) = ( w , ck ) , (6)

whereck is thek-th centroid. As mentioned in Section 3.1, we
can clearly see that, in most cases,f−1

K

(
fK(x)

)
does not equal

to x, which means that some information is lost.
An advantage ofK-means is that the size of the discrete

space of the WFST nodes can be explicitly set throughK.
Nonetheless, for a large vocabulary, the size of the final WFST
can be huge if no pruning is applied2. To train the centroids,
the RNNLM is first applied on a text data, e.g., the training text.
Then, each continuous stateci encountered is stored and the
K-means clustering is performed on these logs.

4.2. Back-off

We define a two-fold back-off scheme such that the informa-
tion about the long-span context is dropped as first and the
information about the last word is dropped as second. For-
mally, given a discrete state(w, k), this consists in defining
β(w, k) = (w,∅) and β(w,∅) = (∅,∅) where∅ means
that no information is provided. To remain compliant with
the method, values are defined according tof−1 for these two
special discrete states:f−1(w,∅) = (w, c0) wherec0 is the
global mean of all the continuous states observed during theK-
means clustering, andf−1(∅,∅) = (∅, c0).

4.3. Pruning

Within the conversion process, the principle of pruning is to
reduce the final WFST size by not building edges whose ab-
sence does not result in significant information loss. A well
known strategy for this problem consists in identifying edges
which have a minimal effect on the entropy of the probability
distribution [9]. Following this principle, we define our pruning
criterion based on two values.

First, the piece of entropy carried by a transition from the
stated with the wordv is considered. It is expressed as:

H(v,d) = −P (v, f−1
K (d)) · logP (v, f−1

K (d)) . (7)

By denotingP (v|f−1
K (d)) to P (v|d), the joint probability

P (v, f−1
K (d)) of a word v and its historyd can be approxi-

mated as:

P (v, f−1
K (d)) ≈ P (v|d) · P (d) (8)

= P (v|w, ck) · P (w, k) . (9)

The probabilityP (v|w, ck) is directly given by the RNNLM
while the probabilityP (w,k) is considered as a prior estimated
from the logs used to train the centroids. Since the estimation
of this joint probability may be unreliable because of data spar-
sity, an independence assumption betweenw andk is made. In
practice,P (w, k) is thus simplified toP (w) · P (k) .

Second, an important aspect is to know if the probabilities
of an event remain close before and after pruning. For a transi-
tion (v,d), the relative difference between these two probabili-
ties is defined as:

D(v,d) =
|P (v|d)− α(d) · P (v|β(d))|

P (v|d) , (10)

2Precisely, the theoretical maximum numbers are|V | × K nodes
and(|V | ×K)2 edges.

Table 1:Perplexities ofn-gram LMs and of the RNNLM.
2-grams 3-grams 4-grams 5+-grams RNNLM

186 148 142 141 124

Figure 2: Perplexities on test set of the Penn Treebank corpus
for WFSTs generated using various numbers of centroids and
various pruning thresholds∆.

where β(d) is the back-off state ford, and the back-off
weightα(d) is approximated by iteratively estimating the prob-
ability mass of events which will be pruned for the stated. The
higherD(v,d), the lesser backing off preserves the original
probability.

Finally, for a noded and a transition wordv taken under
examination, we define the pruning criterion as follows:

π(w,d) =

{
false if H(v,d) ·D(v,d) < ∆
true otherwise, (11)

where∆ is a user-determined pruning threshold (the lower the
value, the larger the size of the WFST).

The whole process has been implemented using the
RNNLM toolkit3 and the OpenFst library4. Conversions last be-
tween a few minutes and a few hours according|V |, K, and∆.

5. Experiments
Two series of experiments have been carried out to evaluate the
proposed approach: (a) experiments on the Penn Treebank cor-
pus to study the behavior of the conversion process, and (b) the
decoding experiments on meeting speech recordings using a
large vocabulary continuous speech recognition system.

5.1. Perplexities on the Penn Treebank corpus

The goal of the first part of experiments is to study an impact of
theK-means algorithm as well as the pruning threshold on the
RNNLM conversion. To do so, we use the same LMs as those
used in [1] on the Penn Treebank corpus. Two types of LMs
are considered:n-gram LMs trained with various orders us-
ing maximum likelihood estimation and Kneser-Ney smooth-
ing, and a RNNLM based on a hidden layer of300 neurons.
The Penn Treebank corpus is a portion of the Wall Street Jour-
nal which is widely used for evaluating performance of statis-
tical LMs [10]. This corpus is split into 3 parts: a training set
of 900K words, a development set of70K words (which is only
used for RNNLM training), and a test set of80K words. The
vocabulary is made of10K words. Perplexities of these models
on the test set are reported in Table 1.

Various values ofK have been used to extract centroids
from the training set, as described in Section 4.1. Furthermore,
3 different values have been set for the pruning threshold. WF-
STs are generated using these settings and the final perplexities
are measured on the test set. These perplexities are reported
in Figure 2 and are compared with those of the other models.

3http://www.fit.vutbr.cz/˜imikolov/rnnlm/
4http://www.openfst.org



Table 2:Perplexities of LMs on the evaluation set of RT 2007.
2-gram LM 4-gram LM WFST RNNLM

162 93 127 93

Additionally, the optimal perplexity, which can be obtained if
no pruning was applied, is given in Figure 2. First, it appears
that this optimal value decreases when the numberK of cen-
troids increases (as increasingK means that richer history can
be considered). Although the optimal perplexity does not reach
the perplexity of the original RNNLM, these preliminary results
interestingly show that the discretization does not lead tolarge
information loss as long asK is large enough. Then, a degra-
dation can clearly be observed when introducing pruning (i.e.,
∆ > 0), which is obvious since most of the possible transi-
tions are pruned5. These degradations increase asK becomes
too large, which probably highlights some weaknesses of our
current implementation. This can mainly be explained by the
fact that the average prior probability of any centroid decreases
asK increases. This leads to reduce the number of transitions
which are informative enough according to the pruning thresh-
old. Moreover, this phenomenon can become worse by taking
into account more unreliable prior probabilities of centroids for
high values ofK because of the limited size of the training set.

5.2. Decoding of meeting data

Second, preliminary decoding experiments have been car-
ried out on the evaluation set of NIST RT 20076 dataset
(35K words). We use a two-pass recognition process where
word lattices are first generated using “simple” models, lead-
ing toN -best lists, withN set to1, 000. Then, more complex
LMs are used to rescore these lists. For the rescoring, we usethe
RNNLM described in [5] and a4-gram developed for the AMI
system [11]. The RNNLM has been trained on 26.5M words
with a 65K words vocabulary while then-gram LM is trained
on about a billion words with the same vocabulary. Both mod-
els reach the same perplexity on the evaluation set of RT 2007.
For the decoding, a WFST is built from the RNNLM based
with K = 512 and∆ = 10−7 and a bigram LM is derived
from the4-gram LM. The WFST and the bigram LM are about
the same size. Perplexities of all LMs on RT 2007 are given
in Table 2. Acoustic model is represented by relatively simple
HMM/GMM trained using maximum likelihood over PLP fea-
tures (39 dimensions). The model contains 4.5K tied states with
18 Gaussian mixture components per state. No speaker adapta-
tion is performed in order to keep reasonable run times.

Table 3 reports the word error rates (WER) of the best hy-
pothesis directly after the decoding pass using the bigram LM
or the WFST, and after rescoring with the4-gram LM or with
the RNNLM. Additionally, the WERs of the best hypothesis re-
turned without any rescoring, i.e., by using only the WFST and
the bigram LM, are given. First, we can notice that WERs are
a bit high. This is due to the absence of speaker adaptation.
Then, it appears that the WER obtained using the WFST is bet-
ter than when using the bigram LM since an absolute differ-
ence of0.5% is reported, as this was suggested by the perplexi-
ties. This is consistent with observed perplexities. Finally, after
rescoring, the difference is lesser when using the4-gram LM
and it is even reversed when using the RNNLM. Nonetheless,
these results are encouraging since our preliminary implemen-
tation of the RNNLM conversion scheme performs already as
well asn-gram LMs. We will thus continue experiments.

5For instance, forK = 2 and∆ = 10−5, 99.946% of the tran-
sitions are pruned, and, forK = 1024 and∆ = 10−7, this number
becomes99.986%.

6http://www.itl.nist.gov/iad/mig/tests/rt/2007/

Table 3: WERs on the evaluation set of RT 2007 usingn-
gram LM or RNNLM-derived WFST to generateN -best lists
and usingn-gram LM or RNNLM to rescore them.``````````Rescoring

Decoding
2-gram LM WFST derived

from RNNLM
No rescoring 47.8 % 47.3 %
4-gram LM 45.2 % 45.0 %
RNNLM 42.9 % 43.2 %

6. Conclusion
In this paper, we have proposed a new strategy to directly ex-
ploit probabilities estimated by RNNLMs in the ASR decoder.
This strategy consists in converting a RNNLM into a WFST
by means of discretization and pruning. We have proposed an
original implementation of this generic strategy by usingK-
means clustering and entropy-based pruning. Achieved results
on the Penn Treebank and RT 2007 corpora show that this strat-
egy is promising since the generated WFSTs lead to similar
performance to the one ofn-gram LMs. Nevertheless, some
improvements are still necessary. Especially, a more elaborate
pruning criteria could be defined to examine the importance of
a transition. However, this task is difficult since estimating the
entropy of a RNNLM is complex. Finally, the discretization
step could probably also be improved. For instance, it could
be interesting to use other possible distances than the default
L2 distance to compute the centroids. Measures based on the
Kullback-Leibler divergence appear as a natural option towards
this objective. Eventually, the employment of hierarchical clus-
tering may also reduce the loss of information due to back-off.
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ABSTRACT

Automatic Speech Recognition (ASR), as the assistance of
speech communication between pilots and air-traffic controllers,
can significantly reduce the complexity of the task and increase the
reliability of transmitted information. ASR application can lead to a
lower number of incidents caused by misunderstanding and improve
air traffic management (ATM) efficiency. Evidently, high accuracy
predictions, especially, of key information, i.e., callsigns and com-
mands, are required to minimize the risk of errors. We prove that
combining the benefits of ASR and Natural Language Processing
(NLP) methods to make use of surveillance data (i.e. additional
modality) helps to considerably improve the recognition of callsigns
(named entity). In this paper, we investigate a two-step callsign
boosting approach: (1) at the 1st step (ASR), weights of probable
callsign n-grams are reduced in G.fst and/or in the decoding FST
(lattices), (2) at the 2nd step (NLP), callsigns extracted from the im-
proved recognition outputs with Named Entity Recognition (NER)
are correlated with the surveillance data to select the most suitable
one. Boosting callsign n-grams with the combination of ASR and
NLP methods eventually leads up to 53.7% of an absolute, or 60.4%
of a relative, improvement in callsign recognition.

Index Terms— automatic speech recognition, human-computer
interaction, Air-Traffic Control, Air-Surveillance Data, Callsign De-
tection, finite-state transducers

1. INTRODUCTION

Key components of speech communication between pilots and Air-
Traffic Controllers (ATCo), i.e., callsigns, which are used for identi-
fication of aircrafts, and providing commands, demand high recog-
nition accuracies. Callsigns are unique identifiers for aircrafts, of
which the first part is an abbreviation of airline name and the last
part is a flight number that contains a digit combination and may
also incorporate an additional character combination, e.g., TVS84J
(see Table 1). At a certain time point, only few aircrafts are usually
in the radar zone which means only a limited number of callsigns
can be referred to in the ATCo communications. If a recognized
callsign does not match any ‘active’ callsign registered by radar at
the given time point, it means that there is no corresponding aircraft

The work was supported by the European Union’s Horizon 2020
projects. No. 864702 - ATCO2 (Automatic collection and processing of
voice data from air-traffic communications), which is a part of Clean Sky
Joint Undertaking. The work was partially supported by SESAR Joint Under-
taking under Grant Agreement No. 884287 - HAAWAII (Highly automated
air traffic controller workstations with artificial intelligence integration).

Table 1. Callsigns: compressed and extended (airlines designators
are in bold)

Callsign Extended callsign

SWR2689 swiss two six eight nine
RYR1RK ryanair one romeo kilo
RYR1SG ryanair one sierra golf

in the air space and the automatically recognized command (from
voice communication) is invalid. Therefore, contextual information
coming from the surveillance (radar) data allows adjusting system
predictions that can significantly increase its accuracy.

Although contextual information has been already used in pre-
vious ATC studies [1–4], or more recently in [5–7]; it has been
never adapted for both ASR and concept extraction outputs simul-
taneously and without a need of any additional knowledge (e.g.,
manual annotation, classes, etc.). This research aims to leverage
the available contextual information by combining ASR and NLP
methods. We believe that ASR and NLP are complementary tasks
rather than separated ones. Whereas ASR exploits speech to pro-
duce a sequence of words, NLP exploits the intrinsic characteristics
in a given snippet of text. ASR normally struggles to model long
sequences, while state-of-the-art NLP systems allow extracting key
information in the whole chunks of text; for instance an entire ATC
utterance. In the proposed approach, we focus on an iterative use
of contextual data, to take advantage of a combination of ASR and
NLP modules. (1) First, boosting the probability of active callsigns
in ASR system (FST-boosting), (2) second, boosting ASR outputs
(NLP-boosting) in order to correct those predicted callsigns, which
are not present in the surveillance data.

The rest of the paper is organised as follows: Section 2 reviews
current approaches on integrating contextual knowledge in ASR for
ATC communications. Section 3 gives a theoretical background
of the proposed ASR-NLP approach to leverage surveillance data.
Then, we present the data and the experiment set up in Section 4.
Finally, we report the results and summarise our observations and
ideas in Section 5 and 6, respectively.

2. CONTEXTUAL INFORMATION FOR CALLSIGN
DETECTION

Contextual data on the ASR level can be integrated by modifying
weights of target n-grams in the grammar or/and in the ASR decod-
ing lattices, e.g. by mean of generalised composition of baseline



LM and Weighted Finite State Transducers (WFSTs) with the target
contextual n-grams [8–10]. A similar approach has been recently
adopted in the ATC domain [5, 6] and proved to offer a significant
gain in callsign recognition. A list of callsigns to be boosted is reg-
ularly changing and needs to be updated dynamically per each utter-
ance. Thus, weights of callsign n-grams are dynamically modified
in the WFST. The first of the methods is lattice rescoring, where
the weights are adjusted on the word recognition lattices from the
first pass decoding. In the other method, weights are dynamically
modified directly in the grammar (G.fst), which allows having target
n-grams boosted before the decoding is performed [6]. For our ex-
periments, we will adopt the lattice rescoring approach to leverage
the performance on the ASR side.

Besides the ASR performance, contextual information for
ATC has been also used to improve concept extraction [1–4].
Schmidt et al. [1] applied a Context-Free Grammar (CFG)-based
LM limiting the search space according to the contextual data.
Shore et al. [2] and Oualil et al. [3, 4] build a CFG-based concept
extractor with all semantic concepts of ATC embedded in XML
annotation tags. In [2], after decoding, the lattice hypotheses are
rescored by incorporating an additional knowledge source compo-
nent to the cost function. The knowledge-based rescoring penalises
hypotheses that are invalid in the context, e.g., callsigns not regis-
tered in the air space. In [3], to overcome the problem of variability
of ATCO commands, the weighted Levenshtein distance is applied
to find the closest match between an ASR hypothesis and generated
context word sequences. [4] combines methods from [2, 3] adding
more contextual constraints from data with temporal information.
Although these methods help to considerably increase the recogni-
tion accuracy, their limitation is that it deals only with concepts and
callsigns which are annotated and included into the grammar. Those
n-grams that do not appear in the grammar can not be extracted and
evaluated. Finally, Helmke et al. [11] recently proposed a machine
learning algorithm for command extraction from the ASR hypothe-
sized outputs with the use of keywords. This model achieves good
results and it is the second alternative approach to our methods.

3. METHODS

We focus on the combination of ASR and NLP methods and inves-
tigate two-steps approach for callsigns extraction. As a callsign is a
sequence of words, using contextual information to improve recog-
nition of callsigns is a task of boosting n-grams. The contextual data
comes from radar in a compressed form, i.e., standardized phraseol-
ogy format of International Civil Aviation Organization (ICAO) [12]
(see Fig. 1). To introduce the contextual knowledge into the ASR
system, all callsigns need to be expanded to word sequences (Ta-
ble 1). The compressed form often allows more than one possible
realisation in the ATCos’ speech: For example, DLH5KX can be
expanded as ‘hansa five kilo x-ray’ or ‘lufthansa five kilo x-ray’, etc.
As we can not say which particular expansion is true for an uttered
callsign, it is important to take all expansion variants into account.

3.1. Integration of contextual knowledge into ASR system

In a standard hybrid-based ASR system, the different knowledge
sources are represented as WFSTs, which are combined by the ‘com-
position’ operator together in the final decoding graph [13]. Informa-
tion from additional knowledge sources can be also integrated into a
system by means of composition.

Our first integration of contextual knowledge into ASR is done
on the LM level (G-extension). The idea is to boost callsign n-grams

Fig. 1. Callsigns in ICAO format received from radar.

already available in LM, and even more important to add those call-
sign n-grams, which are absent (e.g., >3 words sequences in 3-gram
LM). We build a contextual FST that includes all possible callsigns
from the tower: all callsigns registered by the radar at different time
stamps (from 17K to 280K callsigns to boost in different test sets;
see last column in Table 2). Then, the main G.fst is composed with
the contextual G biased.fst and the result of composition is used
in the final decoding HCLG graph.

The second integration of contextual information (lattice rescor-
ing) is done per utterance on top of the decoding lattices which
allows flexible adaptation to new-coming contextual information
avoiding changing the main decoding graph (HCLG) (for more
details check [6]). Weights in lattices are rescored according to
the surveillance data: for each test utterance, an FST biased to
callsigns n-grams registered at the time stamp when an utterance is
created and composed with lattices created in the first pass:

Lattices′ = Lattices ◦ biasing FST (1)

Weights updated in the composition are used for final predictions.

3.2. Integration of contextual knowledge on ASR transcripts

Our approach for integrating contextual knowledge on ASR tran-
scripts (e.g., 1-best hypothesis) is based on a two-step pipeline. Each
step conveys an independent module.

3.2.1. Named Entity Recognition (NER) module

ATC communications carry rich information such as callsigns, com-
mands, values and units; they can be seen as ‘named entities’. We
propose a NLP-based system to extract such information from ASR
transcripts. We defined callsigns, commands, units, values, greetings
OR the rest (e.g., ‘None’ class) as tags for the NER task, as depicted
in Figure 2. First, we downloaded a BERT [14] model pre-trained
as masked language model from Huggingface [15] and fine-tuned it
on NER task with 12k sentences (∼12 hours of speech), where each
word has a tag. Then, we developed a data augmentation pipeline
in order to increase the amount of training data: 1M samples from
12k sentences. The pipeline has four actions that modifies the train-
ing sample: add, delete, swap, or move the callsign across the ut-
terance -sentence-. Delete and move actions, remove and keep the
same callsigns, respectively; add and swap generate a sentence with
a new callsign picked randomly from a callsign list. The callsign list
is pre-defined by a user, which makes the approach easy to deploy in
out-of-domain data (i.e., callsigns from different airports/countries).

3.2.2. Re-ranking module based on Levenshtein distance

The BERT-based system for NER allows us to extract the callsign
from a given transcript or ASR 1-best hypotheses. Recognition of
this entity is crucial where a single error produced by the ASR sys-
tem affects the whole entity (normally composed of three to eight



Fig. 2. BERT-based model (Huggingface) fine-tuned on NER task.

words). Additionally, speakers regularly shorten callsigns in the con-
versation making it impossible for an ASR system to generate the
full entity (e.g., ‘three nine two papa’ instead of ‘austrian three nine
two papa’, ‘six lima yankee’ instead of ‘hansa six lima yankee’).
One way to overcome this issue is to re-rank entities extracted by
the BERT-based NER system with the surveillance data. The output
of an NER system is a list of tags that match words or sequences of
words in an input utterance. As our only available source of contex-
tual knowledge are callsigns registered at a certain time and location,
we extract callsigns with the NER system and discard other entities.
Correspondingly, each utterance has a list of callsigns expanded into
word sequences (shown in Table 1). As input, the re-ranking module
takes (i) a callsign extracted by the NER system and (ii) an expanded
list of callsigns. The re-ranking module compares a given n-gram se-
quence against a list of possible n-grams, and finds the closest match
from the list of surveillance data based on the weighted Levenshtein
distance. We skip the re-ranking in case the NER system outputs a
‘NO CALLSIGN’ flag (no callsign recognized).

4. DATA AND EXPERIMENTAL SETUP

4.1. Data

For the callsign boosting experiments, we use four test sets; all of
them have utterances both with and without callsigns (see Table 2).

LiveATC: the first test set is from the LiveATC1 data recorded
from publicly accessible VHF radio channels, which includes both
pilots and ATCo speech and, therefore, is of rather low quality (i.e.,
low SNR often below 10dB) [16].

MALORCA: Prague and Vienna test sets are mainly of good
quality (i.e., telephone quality speech with SNR usually above 20dB)
data from the MALORCA project [17, 18]2 which includes only
ATCo speech. The recognition accuracy of the baseline model are
already high above the one reached on VHF LiveATC data (see Ta-
ble 3). The data was collected from the Prague and Vienna airports
and, thus, forms two separate sets correspondingly.

NATS: a data set collected under HAAWAII project3 with the
data coming from London approach (airport). This data is relatively

1Streaming audio platform that gathers VHF aircraft communications
2From the ‘standard’ MALORCA test sets [18] only utterances with the

available surveillance information are selected.
3https://www.haawaii.de/wp/

Table 2. Test sets (callsigns (csgn) per utterance (utt) — median of
callsigns per utterance in the surveillance data)

N of utt Csgn
Test set with w/o per Min All csgns

a csgn utt

LiveATC 581 29 28 40 280K
Malorca Prague 784 88 5 82 17K
Malorca Vienna 877 38 19 65 59K
NATS 794 73 50 50 168K

high-quality, similar to MALORCA.
The data sets are used differently in training ASR and NER mod-

els. The ASR train data includes Malorca sets but not LiveATC and
NATS. The data for fine-tuning the NER system contains LiveATC
data but neither Malorca, nor NATS sets.

4.2. ASR model

For training the baseline acoustic model, as well as for the decoding
and rescoring experiments, we used the Kaldi framework [19]. The
system follows the standard Kaldi recipe, which uses MFCC and i-
vectors features. The standard chain training is based on Lattice-free
MMI (LF-MMI) [20], which includes 3-fold speed perturbation and
one third frame sub-sampling.

The acoustic model is a CNN-TDNNF trained on approximately
1200 hours of ATC labeled augmented data [16, 21]. First, the train-
ing databases (195 hours4) were augmented by adding noises that
match LiveATC audio channel (one batch between 5-10 dB and other
10-20dB SNR). Afterwards, we applied speed perturbation, obtain-
ing almost 1200 hours of training data. The model was further im-
proved with 700 hours of semi-supervised data collected in LiveATC
for different airports from Europe [17]. The LM is 3-gram trained
on the same data as the acoustic model with an additional textual
data from additional public resources such as airlines names, air-
ports, ICAO alphabet and way-points in Europe.

4.3. Evaluation

Since this paper focuses on improving callsign detection, we eval-
uate the proposed methods by calculating the accuracy of callsign
extraction. For the evaluation we use ICAO format, which is the
target form to display on the screen of ATCo and pilots, and we
have only two outcomes: ICAO is recognized ‘correctly’ VS ‘in-
correctly’. In the previous studies [5, 6], the accuracy of callsign
recognition is evaluated with matching the ground truth callsign n-
grams to the ones in utterances. This approach, however, does not
correspond to the real situation, when ground truth callsigns are not
available. In our experiments, we do not only do speech recognition
but proceed with callsign extraction, we evaluate the performance
directly on the extracted entities. In addition, the use of the ICAO
format helps to avoid issues with variability of pronunciation within
a callsign: the full form of callsign is extracted automatically but a
speaker says a shorten version, which is then outputted by the ASR,
as well as recorded in the ground truth transcriptions (see example
above 3.2.2). All experiments share the same ASR and BERT-based
NER systems, as well as the ICAO extractor module; thus, the per-
formances are only impacted by the proposed boosting techniques.

4The ATCO2 test set is publicly available in https://www.atco2.
org/data



Table 3. Results of callsign extraction with ASR boosting (ASR-B) and post-boosting (NLP-B): the accuracy of callsign recognition (%) is
calculated for the callsigns in ICAO format (see Section 4.3)

Method Test sets (callsign recognition accuracy)

LiveATC Prague Vienna NATS
ASR output Callsign extraction (baseline) 42.8 64.4 48.4 35.2

Lattice rescoring G-extension NLP-boosting
X - - 53.1 66.9 59.6 37.1
- X - 44.4 64.3 49.2 34.8
X X - 52.8 66.9 52.1 36.8
- - X 88.4 95.0 86.0 87.0
X - X 88.5 94.8 84.3 88.9
- X X 87.7 95.0 85.6 88.2
X X X 88.0 94.7 84.0 88.0

Ground Truth Callsign extraction (oracle) 89.7 72.2 59.6 67.4
+ NLP-Boosting 89.3 95.4 87.0 94.0

ASR WER (without boosting) 32.4 3.4 9.2 24.4

5. RESULTS

As a baseline we use callsign extraction done directly on the outputs
of our ASR system. Then, we apply the proposed boosting tech-
niques (G-extension, lattice rescoring, NLP-boosting) in different
combinations to see how they can benefit from each other. In Ta-
ble 3, the results of the experiments are presented on four different
test sets with accuracy of callsign (ICAO) recognition. Overall, the
proposed metrics help to improve the baseline accuracy from 30.6%
to 53.7% absolutely, or from 32.1% to 60.4% relatively (for the test
sets Prague and NATS correspondingly; when the NATS set gets the
highest improvement being the out-of-domain data). The best results
are always achieved with the use of NLP-boosting. For LiveATC
and NATS sets, the out-of-domain sets in the ASR training, the best
performance is achieved with the combination of NLP-boosting and
ASR-boosting (lattice rescoring) methods.

At the same time, the G-extension has a contradicting effect. It
helps to improve results comparing to the baseline for the LiveATC
and Vienna sets, yet, its combination with lattice rescoring achieves
worse accuracy than lattice rescoring alone. The possible drawback
of the G-extension method is that a very high number of available
callsigns are boosted in LM FST (see last column 2). It can intro-
duce confusion when combining with the lattice rescoring boosting
method, which focuses on only current callsigns. On the other hand,
it does not need any modifications during the decoding and serves as
a general domain adaptation. Thus, G-extension can be used to im-
prove the outputs when other methods are not available, otherwise,
can be skipped. The number of callsigns used to boost the ASR
outputs may also have the degradation effect on the performance of
the lattice rescoring approach. Although in this case, the number of
callsigns did not exceed 50, we investigated its impact. The test sets
have different numbers of boosted n-grams, from 5 to 50 (see Ta-
ble 1), but even with 50 boosted callsigns the recognition accuracy
goes considerably up comparing to the baseline.

Along with the evaluation of boosting methods on the ASR out-
puts, we provide the ‘oracle’ results, when callsigns are extracted on
the ground truth transcriptions (2nd line in Table 3). This comparison
allows estimating the impact of the proposed methods to the callsign
extraction improvement, when no ground truth information is avail-
able. Even if the ‘oracle’ scores always stay better, the accuracy
achieved with our systems shows close and comparable results. No

Table 4. Examples of improved callsign recognition (bold part)
Baseline (incorrect ICAO) Boosted (correct ICAO)

wizz air four one six (WZZ416) iceair four one six (ICE416)
easy three delta (EZY3D) fraction eight eight three

delta (NJE883D)
serbia one nine lima (ASL19L) stobart one nine lima

(STK19L)

improvement with NLP-boosting on the ground truth transcription
for LiveATC test set can be explained by already high accuracy of
callsign extraction, as LiveATC data was used to fine-tune the NER.

Table 4 gives examples of improvement where airline names and
callsigns are detected correctly comparing to the baseline predic-
tions. Our methods demonstrate consistent results for data of dif-
ferent quality. The level of noise in the recordings of LiveATC and
Malorca test sets is very different, as well as WERs achieved by their
baseline ASR systems (the last line in Table 3; [6]). Nevertheless, we
see considerable improvement for all test sets and the general ten-
dency stays the same. The main advantage of the proposed approach
comparing to the others is its simplicity and flexibility. The NER-
system can be fine-tuned to different data sets that makes it easy to
adapt to new out-of-domain data. Moreover, it is also suitable for the
online implementation.

6. CONCLUSION

We investigated a two-step approach of integrating contextual radar
data in order to dynamically improve the recognition of callsigns per
utterance. We demonstrated that the best result is achieved with the
NLP-boosting and with the combination of NLP-boosting and lattice
rescoring methods on all test sets of different recording quality with
the significant improvement, i.e., from 32.1% to 60.4% of relative
improvement on callsign recognition accuracy across the evaluated
data sets. Introduction of contextual information considerably im-
proves recognition of callsigns and, thus, recognition of ATCo mes-
sages in general. As a noisy environment leading to lower recog-
nition accuracy is often a reality in pilot-ATCo communication, the
proposed methods and their combination will definitely benefit the
recognition of the key information in ATCo speech.
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Rémi Louf, and Morgan Funtowicz et al, “Transformers: State-
of-the-art natural language processing,” in Proceedings of the
2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations. 2020, pp. 38–45, Associ-
ation for Computational Linguistics.

[16] Juan Zuluaga-Gomez, Karel Veselỳ, Alexander Blatt, Petr
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