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ABSTRACT
People with neurodevelopmental (e.g. developmental dysgraphia) or neurodegenerative (e.g. Parkin-
son’s disease) disorders are very likely to exhibit graphomotor disabilities (GD) such as motor-memory
dysfunction, graphomotor production deficits, motor feedback difficulties, etc., leading to various draw-
ing and handwriting difficulties (HD). These alterations have a very detrimental impact on the quality
of life. Unfortunately, current diagnostic methods have many limitations, which results in underdiag-
nosis or incorrect diagnosis of GD/HD and consequently in ineffective therapy. In recent years, online
handwriting processing proved to be a promising approach to an objective and accurate assessment of
GD/HD. Nevertheless, the field is still relatively unexplored and has several knowledge gaps. The main
goal of this habilitation thesis is to progress beyond the state of the art and to research new approaches
to the computerised assessment of GD/HD that would facilitate objective diagnosis and monitoring of
neurodegenerative and neurodevelopmental disorders. The thesis summarises 34 peer-reviewed works
that bridge the main knowledge gaps, and provides new directions in the field.

KEYWORDS
graphomotor disabilities, handwriting disabilities, neurodegenerative disorders, neurodevelopmental dis-
orders, dysgraphia, Parkinson’s disease, online handwriting, assessment, diagnosis

ABSTRAKT
U osob s neurovývojovými poruchami (např. s neurovývojovou dysgrafií) nebo neurodegenerativními
onemocněními (např. s Parkinsonovou nemocí) je velká pravděpodobnost výskytu grafomotorických
obtíží (GD), jako např. motoricko-paměťové dysfunkce, poruchy grafomotoriky, potíže s motorickou
zpětnou vazbou atd., což vede dále k různým potížím s kreslením a psaním (HD). Tyto poruchy mají
velmi negativní dopad na kvalitu života. Bohužel, aktuální diagnostické metody manifestují mnoho ne-
dostatků, což vede ke špatné diagnóze GD/HD, a následně k neefektivní terapii. V posledních letech
se prokázalo, že je zpracování online písma slibným přístupem k objektivnímu a přesnému hodnocení
GD/HD. Nicméně tato oblast je stále poměrně neprozkoumána a obsahuje mnoho mezer ve znalostech.
Hlavním cílem této habilitační práce je postoupit za aktuální stav vědění a zkoumat nové přístupy hod-
nocení GD/HD, které by ulehčily objektivní diagnózu a monitorování neurodegenerativních onemocnění
a neurovývojových poruch. Práce shrnuje 34 recenzovaných článků, které překlenují zmíněné mezery,
a poskytují nové směry v oblasti.
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Introduction
Handwriting is a complex perceptual-motor skill composed of a coordinated combination of fine
graphomotor movements, visual–perceptual abilities, visual–motor coordination, motor planning
and execution, kinesthetic feedback, and orthographic coding [1]. These underpinnings of drawing
and consequently handwriting abilities are usually considered as graphomotor skills (GS) [2], and
should be mastered at the age of 8–9. When a person suffers from a neurodevelopmental (e.g.
developmental dysgraphia) or neurodegenerative (e.g. Parkinson’s disease) disorder, she/he is
very likely to exhibit graphomotor disabilities (GD) such as graphomotor production deficits,
motor-memory dysfunction, motor feedback difficulties, etc. [3], leading to various drawing and
handwriting difficulties (HD). Such difficulties can have serious consequences, and can greatly
affect a person’s every-day life starting with slow and less-legible handwriting, lower self-esteem,
poor emotional well-being, as well as problematic communication and social interaction [4]. To be
able to introduce a timely and effective treatment/therapy and to improve a person’s quality of life
as much as possible, neurologists, psychologists, special education counselors, and other experts
need a theory-based, proven and robust framework that will enable them to diagnose GD and HD
in an objective and complex way with minimum manual intervention, cost and time constraints [5].

Nowadays, the most promising approach into robust, objective, and computerised assessment of
GD/HD utilises various signals describing the process/product of handwriting/drawing acquired by
a digitizing tablet [6]–[9]. Such signals represent movement of a digitizing stylus (pen) on horizontal
and vertical axis, pressure exert on the surface of a digitizer, tilt and azimuth, acquired with
respect to a specific series of timestamps forming a collection of time-series describing the process
of handwriting/drawing from its beginning to the end (referred to as online handwriting) [10].
In addition, modern digitizers have the ability to record not only the movement of a pen on the
surface of a digitizer, but also the movement above the surface (in-air movement) [11]. As shown
in a variety of studies [12], [13], online handwriting provides us with the capability of going beyond
the limitations of human perception and to characterize the handwriting/drawing process in terms
of its temporal, spatial, kinematic, and dynamic features.

In recent years, online handwriting has been advantageously used in a variety of research
studies focusing on identification and assessment of GD/HD in children experiencing developmental
dysgraphia (DD) [9], [14], or in adults suffering from Parkinson’s disease (PD), Alzheimer’s disease
(AD), essential tremor [6]–[8], [15], etc. Although the significant potential of this technique has
been proved, the field is still relatively unexplored and has many knowledge gaps that should
be bridged before we adopt this technology in practice. This compilation thesis summarises 34
works ([10]–[13], [15]–[44]) with the aim to go beyond the state of the art and to introduce new
knowledge and directions in the computerised assessment of GD/HD facilitating objective diagnosis
and monitoring of neurodegenerative and neurodevelopmental disorders.
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1 Knowledge gaps

1.1 Graphomotor and handwriting disabilities in patients with PD
Parkinson’s disease (PD) is a chronic idiopathic disorder characterized by a pathophysiological
process of 𝛼-synuclein accumulation leading to the formation of Lewy bodies and Lewy neurites
resulting in loss/degeneration of dopaminergic neurons in the substancia nigra pars compacta [45]–
[47]. It is the second most frequent neurodegenerative disorder, with the prevalence rate estimated
to be approximately 2.0 % for people aged over 65 years [48]. To date, the gradual deficiency
of dopaminergic neurons in the basal ganglia has been recognized as a major cause of parkinso-
nian symptoms [49]. In addition to a large variety of other motor symptoms, such as tremor at
rest [50], progressive bradykinesia [51], muscular rigidity [50], postural instability [52] and hypoki-
netic dysarthria [53], one of the prominent and early markers of PD is so-called Parkinson’s disease
dysgraphia (PDD) [3], [54]–[56].

PDD is a term describing a spectrum of neuromuscular difficulties, including motor-memory
dysfunction (problems combining memory input with motor output), graphomotor production
deficits (poor muscle coordination), motor feedback difficulties (overactivation of certain muscles
and joints during handwriting as well as problems tracking the location of the pen’s tip) and others.
These cause a variety of HD manifesting as dysfluent, shaky, slow, and less readable handwriting;
a progressive decrease in letter amplitude or width, namely, micrographia [3], [57], [58]; etc. Hence,
PDD has serious consequences that significantly affect a person’s everyday life, starting with slow
and less legible handwriting and often progressing to lower self-esteem, poor emotional well-being,
problematic communication and social interaction, and many others.

To introduce a timely and effective treatment to improve a patient’s quality of life as much
as possible, neurologists and other experts could benefit from the computer-aided assessment of
PDD. We entered this field of science more than ten years ago when we reviewed some pioneering
studies and identified the following knowledge gaps:

Knowledge gap 1 Although neurologists considered micrographia to be the main alteration of
PD handwriting, just a few studies explored the presence of other manifesta-
tions.

Knowledge gap 2 The spiral drawing and spring task was used as a gold standard for the assess-
ment of PDD. However, the potential of more complex (handwriting) tasks
was not fully investigated.

Knowledge gap 3 Although the computer-aided diagnosis of PDD was not a new technology, it
was still in its beginning, classification models had poor performance, there
were almost no studies dealing with the rating of PD severity, no studies utilis-
ing multilingual datasets, and no studies focusing on the prodromal diagnosis.

1.2 Graphomotor and handwriting disabilities in children with DD
A child starts to develop GS [59], [60] and form the foundation of drawing [61] and consequently,
handwriting abilities [62] around the age of 6. These skills should be mastered at the age of 8–9 and
should result in automated, legible, well-coordinated and fast-paced handwriting [5], [63], which is
used for quantification of a child’s timely maturation and integration of linguistic, psycho-motor
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and mental abilities, and readiness for education [64]. Although a child is intensively exposed
to modern technologies that bring new ways of communication, education and self-expression,
handwriting takes 30–60 % of a child’s school-time [65] and is still an important part of her/his
life [60].

Proper acquisition of handwriting is crucial for a child’s academic success and self-esteem [66].
However, 10–30 % of children experience an impairment of the neuro-muscular system manifested in
GD, such as graphomotor production deficits (poor muscle coordination, less precise graphomotor
movements, and unusual pen-grip), motor-memory dysfunction (problems combining memory input
with motor output), motor feedback difficulties (problems tracking the location of the pen’s tip and
over-activation of certain muscles and joints during handwriting), etc. [59], [60] GD/HD are tightly
linked with the developmental dysgraphia (DD), which belongs to the category of specific learning
disabilities according to DSM V [67], and to the category of specific developmental disorders of
scholastic skills according to ICD-10 [68]. DD could have serious pedagogical and psychological
consequences such as lack of motivation to write, poor emotional well-being, bad attitude and
behaviour, communication and social interaction problems, etc. [60], [69]–[71]

Nowadays, GD/HD in children with DD are diagnosed by occupational therapists and/or special
educational counsellors, who visually assess the handwriting product and process, and score it in
several domains using a questionnaire (rating scale). Some representatives of these questionnaires
could be the Concise Assessment Scale for Children’s Handwriting (Brave Handwriting Kinder)
(BHK) [72], Handwriting Proficiency Screening Questionnaire (HPSQ) [73] or Handwriting Pro-
ficiency Screening Questionnaire for Children (HPSQ–C) [74]. Unfortunately, assessment based
on these questionnaires is very subjective, depends on the rater’s experience, perceptual abilities,
and is subject to inter-rater variability [75], [76]. Due to the above-mentioned limitations, many
children are undiagnosed or badly diagnosed, which has a detrimental impact on their quality of
life.

The limitations could be effectively addressed by the computerised analysis of online handwrit-
ing. We entered this field of science in 2016 and identified the following knowledge gaps:

Knowledge gap 4 Most of the available studies reported some conclusions based on the quan-
titative analysis, but almost no studies investigated, whether mathematical
modelling (e.g. employing machine learning) of handwriting features could
support the diagnosis or rating of GD/HD.

Knowledge gap 5 We have not identified any study comparing different graphomotor tasks in
supportive GD diagnosis.

Knowledge gap 6 There was no scale enabling objective and fully automatic assessment of man-
ifestations associated with GD/HD.

1.3 Computerised assessment of GD/HD
In the concept of computerised assessment (see Section 3.1), GD/HD are usually quantified in terms
of features (measures) that could be split into several categories: temporal (e.g. duration), spatial
(e.g. width and length of the product of handwriting), kinematic (e.g. velocity and acceleration),
dynamic (e.g. pressure or pen tilt), and other (e.g. the number of pen stops) [6]–[9], [77]. For
a more detailed review of these parameters, we refer to Section 3.3. The advantage of the features
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is that they are usually easily interpretable, and they could be linked with specific manifestations
of GD/HD.

Nonetheless, from the signal processing point of view, handwriting is time series that is the
result of several interacting physiological mechanisms. This kind of signal contains complex fluc-
tuations, which could provide information related to underlying processes and states of the physio-
logical system. Disfluent movement, irregular muscle contractions, and cognitive deficits introduce
randomness to handwriting and increase its complexity (e.g., add tremor, more handwriting in-
terruptions, sudden changes in velocity, etc.). However, this complexity is difficult to be analysed
using only conventional parameters. To better quantify the hidden complexities, an advanced and
more sophisticated apparatus is needed.

Knowledge gap 7 Most of the existing online handwriting parameterisation algorithms were
adopted from the field of biometrics and were not designed to quantify GD/HD.

Finally, until 2012, almost no attention was paid to the potential of in-air movement analysis.
In that year, Sesa-Nogueras et al. observed, that information contained in the in-air movement
could be advantageously used in biometric recognition [78]. This study opened new questions
related to the utilisation of the in-air movement in the field of GD/HD assessment.

Knowledge gap 8 There was no research exploring how is the in-air movement linked with phys-
iological processes and whether it contributes to more accurate diagnosis of
neurodegenerative and neurodevelopmental disorders.
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2 Aims of the thesis
Concerning the knowledge gaps mentioned in Section 1, the main goal of this habilitation thesis
is to progress beyond the state of the art, and to research new approaches to the comput-
erised assessment of GD/HD that would facilitate objective diagnosis and monitoring
of neurodegenerative/neurodevelopmental disorders, more specifically, the thesis has the
following aims.

Aim 1 Explore the impact of in-air movement analysis on diagnostic accuracy.

Aim 2 Introduce new online handwriting parameterisation techniques enabling advanced quan-
tification of GD/HD.

Aim 3 Identify what tasks are suitable for assessment of drawing/handwriting alterations in
PD/DD.

Aim 4 Evaluate the researched methodology in the computerised assessment of PDD.

Aim 5 Evaluate the researched methodology in the computerised assessment of DD.
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3 General methods

3.1 Concept of the computerised assessment of GD/HD
The general concept of the computerised assessment of GD/HD in subjects with neurodegenera-
tive/neurodevelopmental disorders is illustrated in Figure 3.1, and described below:

1. Based on an acquisition protocol (templates and instructions) a subject performs a set of
drawing or handwriting tasks using a stylus and a digitizer (tablet).

2. Signals (time series) recorded by the tablet are consequently parametrized, and the resulting
vector/matrix of features is extended by demographic/clinical data such as age, gender,
information about medication, etc.

3. To get some first insight into data, we perform visualisations (e.g. kernel density esti-
mation, violin graphs) and exploratory statistical analysis (e.g. correlation analysis or
parametric/non-parametric tests). Usually, we also model the data employing machine learn-
ing algorithms, e.g. logistic regression of XGBoost.

4. The machine learning models could be used for supportive diagnosis (e.g. diagnosis of PDD),
or for a rating of severity of GD/HD. The performance of a subject could be also followed in
time (e.g. to monitor the effect of a therapy).

Each of the steps is in more detail explained in the following sections.
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Fig. 3.1: Concept of the computerised assessment of GD/HD

3.2 Datasets and acquisition protocols
Through our research, we enrolled several hundreds of participants who performed specifically
designed drawing/handwriting tasks on an A4 paper that was laid down and fixed to a digitizing
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tablet Wacom Intuos 4 M or Wacom Intuos Pro L (sampling frequency 𝑓s = 130 Hz). A special
Wacom inking pen was used to provide immediate visual feedback, i.e., simulating classical pen-
and-paper writing/drawing. Before the acquisition, the participants were seated in a comfortable
way and had some time to get familiar with the hardware. The following datasets were acquired:

• PaHaW – The dataset contains 75 Czech subjects (37 PD patients and 38 age- and gender-
matched healthy controls – HC) [A.23]. The participants were enrolled at the First De-
partment of Neurology, St. Anne’s University Hospital in Brno, Czech Republic. They are
associated with information about gender, age, PD duration, UPDRS (Unified Parkinson’s
Disease Rating Scale), part V – modified Hoehn and Yahr staging score [79], and levodopa
equivalent daily dose (LED) [80].
The participants performed 9 tasks following the template available in Figure 3.2: TSK1 –
Archimedean spiral; TSK2 – overlapped circles; TSK3 – five graphemes “l”; TSK4 – five
bigrams “le”; TSK5 – five trigrams “les”; TSK6 – two words “lektorka”; TSK7 – two words
“porovnat”; TSK8 – one word “nepopadnout”; and TSK9 – one sentence “Tramvaj dnes už
nepojede.” The dataset is freely available for a scientific community [A.23], and until now, it
is probably the most popular database of online handwriting collected in PD patients.

• CoBeN – This is a multilingual dataset containing 59 Czech participants (19 PD patients
and 40 HC) enrolled at the Central European Institute of Technology, 21 US participants (9
PD patients and 12 HC) enrolled at the University of Arizona, and 21 Hungarian participants
(9 PD patients and 12 HC) enrolled at the University of Szeged [A.1]. They are associated
with information about gender, age, PD duration, UPDRS part III – motor part score [79],
and LED.
The Czech participants performed 8 tasks following the template available in Figure 3.3:
TSK1 – five graphemes “l”; TSK2 – a task, where a participant has to horizontally connect
two dots; TSK3 – a signature performed with opened eyes; TSK4 – a signature performed
with closed eyes; TSK5 – one sentence “Tramvaj dnes už nepojede.”; TSK6 – one sentence
“Máma a táta jeli dvakrát na dovolenou.”; TSK7 – Archimedean spiral; and TSK8 – the
pentagon copy test [A.4]. Except for the TSK5 and TSK6, the US and Hungarian participants
performed the same tasks. Sentences were not the same, nevertheless, they contained the
same number of letters.

• preLBD – We enrolled 39 subjects diagnosed with possible or probable MCI (based on
the scores of the MoCA – Montreal Cognitive Assessment [81] and based on the CCB –
Complex Cognitive Battery (see the explanation below), who were simultaneously diagnosed
with possible or probable MCI-LB (i.e. mild cognitive impairment with Lewy bodies) based
on the criteria published by McKeith et al. [82]. In this group, 21 subjects also had more than
50 % probability of developing PD (calculated following the MDS criteria published in [48]).
In addition, we enrolled 7 subjects without possible/probable MCI-LB, but still with more
than 50 % probability of developing PD. The participants performed the same protocol as in
the CoBeN dataset (see Figure 3.3).
CCB was used to evaluate four cognitive domains: 1) memory (The Brief Visuospatial mem-
ory test–revised [83], Philadelphia Verbal Learning Test [84]); 2) attention (Wechsler Adult
Intelligence Scale-III: Letter-Number Sequencing, Digit Symbol Substitution [85]); 3) exec-
utive functions (Semantic and phonemic verbal fluency [86], Picture arrangement test [85]);
and 4) visuospatial functions (Judgment of Line Orientation [87]). The cognitive domain z-
scores were computed as the average z-scores of the tests included in the particular domain.
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• DYS_CZ_001 – The database contains 65 Czech children (33 diagnosed with DD and
32 intact) attending the 3rd or 4th grade of an elementary school [A.14]. The children
performed three tasks using cursive letters: TSK1 – the children wrote all letters of the
Czech alphabet [A.16]; TSK2 – a copy of a paragraph [A.14]; and TSK3 – the children wrote
several sentences on a random topic. Besides the gender, age, and grade, the children were
also associated with the scores of HPSQ and HPSQ–C.

• DYS_CZ_002 – The database consists of 353 children from the final grade of kindergarten
to the fourth grade of elementary schools. Participants were enrolled in 8 kindergartens, 14
elementary schools, and 2 counselling centres in the Czech Republic, covering 62 children
with GD/HD and 291 intact children. The database includes socio-demographic data, several
diagnostic scores, and the HPSQ–C score.
All children were asked to perform a protocol (see Figure 3.4) consisting of 7 elementary
graphomotor tasks (TSK1 – Archimedean spiral (approximately 15 cm in height); TSK2 –
half-sized version of TSK1; TSK3 – connected loops (the spring task); TSK4 – flipped version
of TSK3; TSK5 – saw; TSK6 – rainbow; TSK7 – a combination of TSK3 and TSK4) [A.7,
A.9, A.13], and one paragraph copy task, whose content was depending on the grade of
a child. Regarding the graphomotor part of the protocol, it was designed in a way so that
the tasks cover the building blocks of letters used in the Latin alphabet.

Besides the above-mentioned datasets, in some studies, we also analysed databases of our part-
ners, e.g. the Colombian HWUDEA [A.1], a database of patients with AD [A.21, A.32], or the
BIOSECURID database [A.28].

Regarding our databases, all subjects used their dominant hand. None of the participants had
a history or presence of any psychiatric symptoms or any disease affecting the central nervous
system (other than PD in the PD cohort). All PD patients were well compensated on their
stable dopaminergic medication and without major motor fluctuations or dyskinesias (they were
examined while on their regular dopaminergic medication (ON state) approximately 1 h after the
L-dopa dose). All subjects signed an informed consent form (in the datasets of children, the form
was signed by parents). All studies were approved by the relevant local ethics committees.

3.3 Baseline parameters
The tablets, that we used, recorded the following time series/signals: x and y position (𝑥[𝑛] and
𝑦[𝑛]); timestamp (𝑡[𝑛]); a binary variable (𝑏[𝑛]), being 0 for in-air movement (i.e. movement of
pen tip up to 1.5 cm above the tablet’s surface) and 1 for on-surface movement (i.e. movement of
pen tip on the paper), respectively; pressure exerted on the tablet’s surface during writing (𝑝[𝑛]);
pen tilt (𝑎[𝑛]); azimuth (𝑎𝑧[𝑛]).

In most studies, the signals were parameterised by employing baseline features that are fre-
quently used in the field of neurodegenerative and neurodevelopmental disorders [6]–[9], [77], [88],
[89]. These features could be split into several groups:

1. temporal – duration of writing, ratio of the on-surface/in-air duration, duration of strokes,
and ratio of the on-surface/in-air stroke duration,

2. spatial – width, height, and length of the whole product as well as those of its individual
strokes, i.e., stroke width, height, and length,

3. kinematic – velocity, angular velocity, acceleration, and jerk,
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Fig. 3.2: Acquisition protocol of the PaHaW database

4. dynamic – pressure, tilt, and azimuth,

5. spiral-specific – degree of spiral drawing severity, mean drawing speed of spiral, second-order
smoothness of spiral, spiral precision index, spiral tightness, variability of spiral width, and
first-order zero-crossing rate of spiral,

6. loops/saw/rainbow-specific – local minima, local maxima, distance between neighbouring lo-
cal maxima, velocity at local maxima, width of teeth (on a horizontal line going through
95 % of a particular tooth height), normalised width of teeth (normalised by a mean distance
between local minima), and distance between neighbour bows (on a horizontal line going
through 50 % of the first of them),

7. other – number of interruptions or pen elevations, relative number of interruptions, num-
ber of pen stops, tempo (number of strokes normalised by duration), number of on-surface
interstroke intersections, relative number of on-surface interstroke intersections, number of
on-surface intrastroke intersections, relative number of on-surface intrastroke intersections,
total number of on-surface intrastroke intersections, relative total number of on-surface in-
trastroke intersections, relative number of changes in velocity profile, relative number of
changes in pressure profile, relative number of changes in tilt profile, and relative number of
changes in azimuth profile.

The spatial, temporal and kinematic features were extracted from both the on-surface and in-air
movements. In addition, the kinematic features were also analyzed for the horizontal and vertical
projections of the movements. Features that were represented by time series were transformed into
scalar values using statistics such as median, interquartile range (iqr), nonparametric coefficient of
variation (defined as iqr/median), 95th percentile, slope by applying the Theil–Sen estimator, etc.
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Fig. 3.4: A part of the acquisition protocol of the DYS_CZ_002 database

3.4 Statistical analysis and mathematical modelling
To get some first insight into the data, we typically plotted kernel density estimation, violin graphs,
or correlation matrices. When necessary, we regressed out the effect of confounding factors (e.g. age
or level of medication). Since the features usually did not have a normal distribution (as assessed
by e.g. the Kolmogorov-Smirnov test), during the exploratory analysis, we usually applied the
Mann-Whitney U test, Wilcoxon signed-rank test, and/or Pearson’s correlation with the level of
significance 𝛼 = 0.05. In the case of a higher number of features, we also applied the false discovery
rate correction.

Depending on a specific application, we modelled the feature space utilising e.g. logistic re-
gression, classification and regression trees, bagging and gradient boosting algorithms, or artificial
neural networks. To prevent overfitting, and to get robust results, we usually followed the cross-
validation strategy with several repetitions. Hyperparameters were optimised based on the random-
or grid-search algorithm. Performance of classifiers was most frequently evaluated by sensitivity,
specificity, balanced accuracy and Matthews correlation coefficient. The performance of regressors
was evaluated by mean absolute error, mean squared error, root mean squared error, estimation
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error rate, etc. To get some intuition about the robustness of the models, we employed the per-
mutation test. Finally, to interpret the models, we used feature importances. In some cases, we
visualised the performance of a model using the ROC (Receiver Operating Characteristic) curve.
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4 Discussion of main findings

4.1 Impact of the in-air movement analysis
More than ten years ago, the added value of the in-air movement analysis was not fully explored. In
our first work dealing with this topic, we compared the on-surface and in-air movement from the in-
formation theory point of view [A.34], i.e. in samples of the BIOSECURID dataset, we investigated
how much information each movement contains (based on the Shannon entropy) and how much
information the movements share (based on the mutual information). Our experiments proved that
the amount of information is similar in both movements, moreover, both trajectories appear to be
notably non-redundant. After this finding, we moved further and explored, whether the quantita-
tive analysis of in-air movement could improve the computer-aided diagnosis of PDD [A.1, A.11,
A.24, A.27, A.31]. For this purpose, we processed the sentence copy task of the PaHaW database.
Based on the results, we observed that the quantification of the in-air movement not only im-
proves the classification accuracy but when considering both movements separately, the in-air one
provides higher discrimination power [A.27, A.31]. Proficient handwriters without any disease af-
fecting the central nervous system have the so-called “open-loop” handwriting performance, i.e.
their handwriting is automatic (they do not concentrate on the process of handwriting). Vice
versa PD patients experience the so-called “closed-loop” handwriting performance, i.e. they pay
more attention to the process and thus also manifest increased in-air movement [A.27]. We hy-
pothesise that the in-air movement is tightly linked with cognitive processes. E.g. in [A.32] we
measured the in-air time of AD patients and HC performing a 3D house copy task. AD patients
spent significantly higher time in-air, probably having issues with the visuospatial and memory
functions. Similarly, in [A.20] we observed that (in a cohort of AD and MCI patients) this time is
significantly higher even at a long distance, i.e. in a distance from the tablet’s surface where we
are not able to monitor displacement of a pen. Next, in [A.4] we also proved that entropy-based
features extracted from the in-air movement could be used to identify early cognitive changes in
PD patients performing the pentagon copy test. In addition, we observed that the features are
closely linked to attention levels and to the grey matter volume variability of the posterior cor-
tical region engaged in both visual attention and visual-spatial processing. Besides the cognitive
deficits, we assume that the in-air movement could be used to quantify fatigue. E.g. in [A.2] we
identified progressively increasing duration of in-air strokes in a cohort of subjects with a high risk
of developing Lewy body diseases (LBDs), thus suggesting, that this parameter could be used as
a prodromal marker.

We observed that the in-air movement plays a significant role in the assessment of HD in children
with neurodevelopmental disorders as well [A.7, A.14, A.16]. Similarly to the PPD, children with
DD spend more time in-air and make more pauses/interruptions [A.7]. On the other hand, the
in-air movement was less important in the quantification of GD [A.13]. However, this finding is
expectable, because all the graphomotor elements we considered in our protocol (see Figure 3.4])
could be theoretically performed without pen elevation.

4.2 Advanced online handwriting parameterisation techniques
In [A.25] we introduced a new set of entropy (Shannon and Rényi) and energy (squared and Teager-
Kaiser energy operator) based features extracted from raw signals and intrinsic mode functions
of the empirical mode decomposition (EMD). The new feature set significantly outperformed the
conventional one in supportive PDD diagnosis. In the following studies [A.23, A.24], we further
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extended the set by new pressure-based parameters extracted from different parts of pressure
trajectories (raising, sustained, and falling) and further improved the classification accuracy.

Next, we introduced very successful features based on the theory of fractional calculus (the the-
ory of integrals and derivatives of arbitrary order). In the first two studies dealing with this topic,
we established new handwriting parametrization techniques utilizing fractional-order derivatives
(FD) as a substitution of the conventionally used differential derivatives in the kinematic hand-
writing features extraction [A.17, A.19]. The newly proposed features improved the classification
accuracy in absolute value by approximately 10 %. In [A.11] we additionally confirmed the po-
tential of FD-based features to assess the severity of PD (as measured by the UPDRS V). In
the following study [A.15], we optimized the order of FD so that we significantly reduced com-
putational costs, moreover, we explored whether FD-based parameterisation of pressure, azimuth,
and tilt time series brings some advancement. Next, we found out the features could be easily
adjusted to the diagnosis of GD [A.9] and HD [A.16] in the children population. In addition, we
observed that when applied to the in-air movement, they outperform the conventional ones [A.16].
Finally, in [A.3, A.10] we shed light on the impact of different FD approximations, namely on the
Grünwald-Letnikov’s, Riemann–Liouville’s, and Caputo’s.

In [A.14] we introduced features based on the tunable Q-factor wavelet transform (TQWT)
and showed that HD manifest themselves in higher energies of the residual component of the de-
composed signal computed by the transform. Following this research, in [A.9] we investigated the
potential of TQWT to describe limited motor skills, poor dexterity and muscle tone or unspecified
motor clumsiness in school-aged children suffering from GD. Although the TQWT-based parame-
ters were comparable to other advanced ones, their limitation lies in a need for apriori knowledge
about the analysed signal that is required for the optimisation of the transform parameters.

On top of the above-mentioned parameters, we also introduced measures based on the mod-
ulation spectra (quantifying the ratio between the low and high-frequency movements present in
a given handwriting signal) [A.9] or based on real cepstrum [A.5]. Finally, in our recent publica-
tion [A.1] we paid attention to the increasing popularity of convolutional neural networks (CNNs) as
feature extractors. We compared the discrimination power of the baseline handcrafted parameters
with the ones learned by CNN in a multilingual dataset of PD patients performing Archimedean
spiral and a sentence. We found that the two approaches are competitive, especially for the spi-
ral drawing task, which is independent of language. Handcrafted features (especially kinematic
measures) proved to be the better choice for the sentence writing task. This is expected since
CNN-based features are extracted only from offline handwriting samples, from which temporal
information is not available. In addition, the orthography of a sentence is strongly affected by the
language of a writer.

4.3 Most discriminative tasks
In a review published in [A.6], we identified a wide range of tasks that could be used to quantify
different pathologies associated with drawing/handwriting. Regarding the assessment of PDD,
the most frequent ones are the Archimedean spiral, the spring task, and the sentence copy task.
The first version of our protocol (see Figure 3.2) contains the spiral and the sentence copy task.
In addition, we included overlapped circles (to quantify continuous kinematics), graphemes and
some words. Unfortunately, at that time, we did not know the spring task has a good potential to
quantify micrographia, therefore this important task is missing. In a couple of studies [A.24, A.33],
we investigated which task of the protocol provides the best discrimination power. Although the
Archimedean spiral is still considered a gold standard in the assessment of PDD [A.1], we found
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out that the sentence copy task significantly outperforms it. We assume that this task requires
higher cognitive effort and accents the effect of rigidity and bradikinesia [A.27]. In terms of
projection, the deficits mainly dominated in the vertical projection [A.1, A.2]. The finger system
(which is mainly involved in vertical movement) is more affected by muscular fatigue than the
wrist system (which controls the horizontal movement). From the anatomical point of view, the
vertical movement requires coordinated movement and finer flexions/extensions of more joints
(interphalangeal and metacarpophalangeal), i.e., it is more complex than ulnar abductions of the
wrist, and we assume this to be the reason why kinematic deficits were more strongly observed
in this direction. This finding could also be somehow linked with progressive/consistent vertical
micrographia, i.e., progressive/consistent reduction in letter amplitude. However, this hypothesis
requires further research because some studies suggest that the horizontal version of micrographia
is even more common than the vertical version. Regarding the sentence copy task, we further
confirmed its importance in a study, where we employed FD-based measures [A.17], and in a study,
where we compared the performance of handcrafted and CNN-learned features in a multilingual
dataset [A.1]. In [A.2] we also observed that handwriting (represented by a sentence), in comparison
to a graphomotor task (the Archimedean spiral) or cognitive task (the pentagon copy test), enabled
the highest classification accuracy when performing the prodromal diagnosis of LBDs.

In terms of DD, we intensively cooperated with psychologists and remedial teachers, and iden-
tified a complex set of graphomotor tasks that could be used for the assessment of GD [A.7].
Consequently, in [A.13], we noticed that the most discriminative one is the combined loop task
(see TSK7 in Figure 3.4), i.e. the most complex task in our protocol, which requires coordinated
movement of fingers, wrist, elbow and shoulder. In addition, the task is demanding in terms of
visuospatial cognitive functions. The results also suggest that the task, where children draw a saw-
tooth (TSK5), can also work well during the differential analysis. This task requires a precise
change in direction when hitting the top of each tooth. Children with GD were associated with
higher instability of acceleration when performing this task. We assume that the children were
unstable especially in acceleration between upward and downward strokes, which is, again, linked
with the vertical movement of the finger system.

4.4 Computerised assessment of PDD
During the last decade, we published more than 15 works dealing with the computerised assess-
ment of PDD [A.1, A.2, A.3, A.4, A.5, A.11, A.12, A.15, A.17, A.19, A.23, A.24, A.25, A.26, A.27,
A.31, A.33]. Depending on specific objectives, we followed different statistical and machine learn-
ing pipelines (see Section 3.4), processed different tasks (see Section 3.2) and employed different
features (see Sections 3.3 and 4.2). When considering the computer-aided diagnosis of PD, in our
first work [A.33], we reached 79 % accuracy (ACC), 80 % sensitivity (SEN), and 79 % specificity
(SPE) in the PaHaW database. In [A.23] we made the dataset available for the scientific com-
munity, it became very popular, and was used by many teams around the world (the article has
more than 100 citations without self-citations on the Web of Science), who published classification
accuracies beyond 90 % (in some cases with questionable methodology). Regarding our own re-
search, in [A.11], we reached 97 % ACC (SEN = 96 %, SPE = 100 %) when processing the whole
protocol by the FD-based features. This and other recent publications suggest that the supportive
diagnosis utilising online handwriting could provide very high accuracies. Nevertheless, majority
of them were conducted in a single-language cohort. We were the first who explored the impact of
language in a big dataset containg 143 PD patients and 151 HC enrolled in the Czech Republic,
Hungary, Colombia and the United States of America [A.1]. We observed that the classification
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accuracies in multi-language scenarios droped to approximately 70 %, thus concluding that this
field is still highly challenging and requiring further research. Besides PD, in [A.2], we focused
on a more general task, i.e. supportive diagnosis of LBDs (including DLB), moreover in their
prodromal state. Employing baseline parameters, we were able to differentiate LBDs and HC with
ACC = 74 %, SEN = 80 %, and SPE = 67 %.

Regarding the assessment of PD severity, since the PaHaW database contains clinical data
such as the duration of PD, or UPDRS V, we introduced several regression models estimating
these variables. In [A.11] we predicted UPDRS V and PD duration with 13 % and 24 % error,
respectively. The latter one was further improved in [A.15], where we reached 22 % error. The errors
are still high, i.e. it is another challenging field. On the other hand, two patients could experience
different severity in, e.g., ten years of PD, which is differently manifested in drawing/handwriting.
Therefore, it makes sense to focus more on the computer-aided estimation of UPDRS scores and
other metrics evaluating the progress of the disease.

4.5 Computerised assessment of DD
In comparison to PD, DD does not have any unified diagnostic criteria that could be used inde-
pendently from a language. Nowadays, the diagnosis is usually done subjectively, based on several
scales with poor psychometric properties [A.7]. This fact accents the need to introduce an objective
approach. On the other hand, since most of external validation criteria are less reliable, it is even
more challenging to establish a good classification model (we can observe a wide range of classifica-
tion accuracies). In our first work dealing with this topic [A.22], we reached ACC = 96 % (SEN =
96 %, SPE = 97 %) when diagnosing DD in Israeli children performing a graphomotor tasks similar
to a rainbow. In a work, where we processed the paragraph copy task of the DYS_CZ_001 dataset,
we reached ACC = 85 % (SEN = 89 %, SPE = 83 %) [A.14]. When quantifying the combined loop
task of the DYS_CZ_002 cohort, we were able to diagnose GD with ACC = 82 %, but with very
imbalanced SEN (47 %) and SPE (90 %) [A.13]. We further improved the results in [A.9] (ACC =
84 %, SEN = 83 %, SPE = 81 %), however, we had to extend our pipeline by advanced features
(see Section 4.2) and process all the tasks of the protocol together.

Regarding the severity of DD, we were the first in the world who defined and evaluated the
concept of computer-aided rating [A.22]. In the cohort of the Israeli children, we were able to
estimate the total score of HPSQ with 8 % error. Nevertheless, in a cohort of Czech children
(DYS_CZ_001), the minimum error we were able to reach was 18 % [A.18]. In [A.8], we found out
that since adults are usually influenced by their point of view, children could better evaluate their
own performance using the HPSQ–C scale than teachers using the HPSQ one. This could also be
one of the explanations why the estimation error of HPSQ–C was lower than the estimation error of
HPSQ [A.18]. Nonetheless, assessment based on HPSQ–C is still subjective, and its mathematical
modelling is challenging, e.g., in the DYS_CZ_002 cohort, we were not able to get the estimation
error lower than 30 %.
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5 Conclusion

5.1 General contributions of the thesis
Nowadays, the field of computerised assessment of GD/HD is very dynamic and perspective. Its
benefit for the computer-aided diagnosis of neurodegenerative and neurodevelopmental diseases
was proved in many studies. We were the pioneers in many paths in this field of science, bridged
several gaps, and brought the community new knowledge and directions with an indirect impact
on the quality of life of children experiencing DD and adults suffering from PD. Our specific
contributions are structured according to the aims of this thesis:

Aim 1 Explore the impact of in-air movement analysis on diagnostic accuracy.
Progress beyond the state of the art: We were the first who quantitatively showed that
the in-air movement contains almost the same amount of information as the on-surface
one, moreover, that this information is not redundant. We were one of the first who
successfully utilised the in-air movement in the computerised assessment of GD/HD and
proved that it could be employed to quantify cognitive processes and fatigue. The in-air
movement analysis is already well established in the domain, and plays a significant role
in the supportive diagnosis.

Aim 2 Introduce new online handwriting parameterisation techniques enabling ad-
vanced quantification of GD/HD.
Progress beyond the state of the art: We introduced a set of new features specifically de-
signed to quantify GD/HD. We observed that these parameters could improve classification
accuracies, as well as improve the performance of regression models. Although a clinical
interpretation or connection with physiological processes was sometimes very challenging,
in all our studies, we tried to avoid black boxes and provide neurologists, neuroscientists,
psychologists, and other experts with meaningful and understandable outcomes.

Aim 3 Identify what tasks are suitable for assessment of drawing/handwriting alter-
ations in PD/DD.
Progress beyond the state of the art: We helped to fight the stigma of gold standards in
the field of PDD, and proved that handwriting tasks could be much better candidates in
terms of quantitative analysis (e.g. they support better quantification of cognitive pro-
cesses) of GD/HD, and computer-aided diagnosis of PD or prodromal diagnosis of LBDs
in general. Regarding the DD, we identified tasks that accent GD during the performance
of graphomotor elements, and that improve their classification accuracies.

Aim 4 Evaluate the researched methodology in the computerised assessment of PDD.
Progress beyond the state of the art: We confirmed that micrographia is just one of the
PDD manifestations, and that PD is associated with far more complex alterations that
could be identified in the temporal, kinematic and dynamic aspects of handwriting. We
helped the community to advance the computer-aided diagnosis of PD by providing it
with the PaHaW database, and by pushing the research in the field of machine-learning-
based diagnosis beyond the state of the art. Although it can look that the computer-aided
diagnosis of PD (based on the online handwriting processing) is an almost solved task, in
our recent work focusing on the multilingual dataset, we demonstrated that it is still a very
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challenging field with several knowledge gaps. Finally, we were the first who revealed that
the computerised assessment of GD/HD could support the early diagnosis of LBDs.

Aim 5 Evaluate the researched methodology in the computerised assessment of DD.
Progress beyond the state of the art: We were the first who defined and evaluated the
concept of DD rating by employing online handwriting processing. Our study served as
a building block and a baseline for other works published in the community. We proved that
the machine-learning-based approach could bridge the limitations of current assessment
methods, but on the other hand, we also observed how unreliable the current external
validation criteria are – this is a big obstacle in training a model with good psychometric
properties.

Besides the above-mentioned achievements, the conducted research and works have also several
secondary contributions:

• Our team laid the foundations of online handwriting processing in the Czech Republic and
brought it to the world-class level.

• From the educational point of view, the research was part of two defended PhD theses
(“Advanced parameterisation of online handwriting in writers with graphomotor disabilities”
defended by Ing. Ján Mucha, Ph.D., and “Research of advanced online handwriting analysis
methods with a special focus on assessment of graphomotor disabilities in school-aged chil-
dren” defended by Ing. Vojtěch Zvončák, Ph.D.), and is part of one ongoing (“Research of
online handwriting parameterisation in subjects with graphomotor difficulties” being solved
by Ing. Michal Gavenčiak).

• This multidisciplinary research helped us to strengthen or establish new cooperation with the
Central European Institute of Technology, St. Anne’s University Hospital in Brno, Masaryk
University, Czech Academy of Sciences, Escola Superior Politecnica (TecnoCampus Mataro-
Maresme), University of Haifa, University of the Basque Country, University of Las Palmas
de Gran Canaria, University of Vic, Technical University of Košice, University of Antioquia,
University of Arizona, University of Szeged, University of Bari Aldo Moro, Taipei Veterans
General Hospital, and Wacom Co., Ltd.

• We raised awareness about the computerised assessment of GD/HD during several workshops
with students held at the Masaryk University. We also raised the awareness among the general
public, e.g. during the Wacom Connected Ink event.1

• Besides the PaHaW database that is freely available for research purposes, we also made
available a Python library for online handwriting processing [90], [91], and user-friendly
software for online handwriting acquisition [92], [93].

Regarding the neurodegenerative disorders, from a practical point of view, the outcomes of our
research were used to better understand their pathophysiology. Even though we proposed some
models supporting diagnosis, there is still a long path until they are used in clinical practice. On
the other hand, concerning the DD, in the frame of project no. TL03000287 (Software for advanced
diagnosis of graphomotor disabilities) supported by the Technology Agency of the Czech Republic,
we cooperate with the company Propsyco s. r. o. and prepare software, that will help psychologists
and remedial teachers to objectively diagnose GD/HD in school-aged children.

1https://www.youtube.com/watch?v=04G5ksvNFBY
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5.2 Future directions
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Fig. 5.1: Assessment based on the GHDRS scale

As already mentioned, the field of the computerised assessment of GD/HD is very dynamic,
opens new questions and brings new challenges. We have identified the following future directions:

• Since external validation criteria in studies dealing with DD are very unreliable, we propose
to introduce diagnostic models based on semi-supervised and data-driven approaches. The
only work following (at least partially) this approach was published by Asselborn et al. in
2020 [94]. Our team is just finishing a study, where we go much beyond the state of the
art, and which we believe will revolutionise the computer-aided diagnosis of GD/HD. The
process could be summarised as follows: 1) based on discussions with well recognised special
educational counsellors, and based on a very comprehensive review of symptoms associated
with GD/HD, we pre-identified manifestations and related handwriting measures that could
quantify them; 2) based on some simulations, we performed a finer selection of features that
were consequently used to create a scale for each manifestation (e.g. dysfluent handwriting),
and normative values that are used during diagnosis/rating. The concept is visualised in
Figure 5.1. As can be seen, the concept enables us not only to diagnose GD/HD but also to
assess specific manifestations (moreover, it could be scaled to pre-school children who are not
able to write). This is very important because we observed that several children, all diagnosed
with DD, could actually have different difficulties and require different therapy. Figure 5.2
displays our newly proposed GHDRS scale (Graphomotor and Handwriting Disabilities Scale)
of three children attending 3rd grade of a primary school. As can be seen, the first girl has no
GD/HD (she is intact). The second girl has GD/HD, more specifically, she has the impaired
process of drawing and handwriting. Vice versa, the boy has impaired product of drawing and
handwriting, which could be also seen in Figure 5.3 (he was not able to maintain the loops in
a line and was not able to keep a stable tilt – this probably explains the different orientation
of loops) and in Figure 5.4 (frequent overwriting, disability to perform longer strokes, all
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letters tended to have the same amplitude). The methodology (maximally transparent so
that it could be used in practice) will be published in an upcoming article.

a)

0 0.2 0.4 0.6 0.8 1
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Fig. 5.2: Three children attending 3rd grade of a primary school assessed based on the GHDRS scale
(the first top block contains the global scores; the next four blocks contain specific manifestations,
i.e. they represent a detailed profile associated with the global scores; all scores are transformed
by a sigmoid function so that the minimum is 0, maximum 1 and the threshold determining
disability has a value 0.5): a) an intact girl without any GD/HD; b) a girl with the affected
process of handwriting (too high duration of writing, lower variability of velocity) and affected
process of drawing the loops (low velocity, low acceleration); also, she is not able to perform longer
strokes during writing; c) a boy whose handwriting is characteristic by frequent overwriting (see
Figure 5.4), disability to perform longer strokes, moreover, all letters tended to have the same
amplitude; in addition, he was not able to maintain the loops in a line (see Figure 5.3) and was
not able to keep a stable tilt.

• In 2021, Jan Rusz et al. published a work, where the authors identified distinct speech
phenotypes in de novo PD patients [95]. This finding and the finding mentioned above
(supported by Figure 5.2) led us to postulate that some phenotypes could be observed even
in PDD. We plan to investigate it in the next few years.

• Although there has been a body of research focusing on PDD, studies dealing with GD/HD in
patients with atypical Parkinsonian syndromes (e.g. multiple system atrophy or progressive
supranuclear palsy) are missing. One year ago, we teamed up with the neuroscientific group of
the Taipei Veterans General Hospital and currently collect a handwriting dataset of patients
with these syndromes.

• As in the other fields of science, the popularity of deep neural networks (DNNs) in the
computer-aided diagnosis of neurodegenerative disorders is rapidly increasing. The conven-
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Fig. 5.3: Connected loops (spring task) performed by a boy, whose GHDRS is depicted in Fig-
ure 5.2c (the blue line represents the on-surface movement, the red line represents the in-air one).
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Fig. 5.4: Paragraph copy task performed by a boy, whose GHDRS is depicted in Figure 5.2c (the
blue line represents the on-surface movement, the red line represents the in-air one).

tional methodology combining handcrafted features and shallow machine learning algorithms
is still outperforming DNN-based approaches (and facilitating clinical interpretation). On
the other hand, with the increasing size of datasets, new data augmentation techniques,
model interpretation methodologies, and approaches such as transfer learning, we believe
that DNNs will play a significant role. Moreover, some recent works put in place networks
specifically designed for online handwriting processing (i.e. they are able to combine the
spatial and temporal information) [96], [97].

• To adjust therapy or modify a treatment policy, children visit pedagogical-psychological coun-
selling centres (and adults hospitals) a few times per year. Nevertheless, the frequency is in-
sufficient, moreover, patients under clinical examination could be subjected to the Hawthorne
effect [98]. To monitor the therapy effectively and intervene when necessary, neurologists,
psychologists, educational counsellors, and other experts could take the advantage of mobile
devices. In spite of the fact that some remote monitoring applications already exist 2, this
field is still at its beginning.

2https://dynamilis.com/en/
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Parkinson’s disease dysgraphia (PDYS), one of the earliest signs of Parkinson’s disease

(PD), has been researched as a promising biomarker of PD and as the target of

a noninvasive and inexpensive approach to monitoring the progress of the disease.

However, although several approaches to supportive PDYS diagnosis have been

proposed (mainly based on handcrafted features (HF) extracted from online handwriting

or the utilization of deep neural networks), it remains unclear which approach provides

the highest discrimination power and how these approaches can be transferred

between different datasets and languages. This study aims to compare classification

performance based on two types of features: features automatically extracted by

a pretrained convolutional neural network (CNN) and HF designed by human experts.

Both approaches are evaluated on a multilingual dataset collected from 143 PD patients

and 151 healthy controls in the Czech Republic, United States, Colombia, and Hungary.

The subjects performed the spiral drawing task (SDT; a language-independent task) and

the sentence writing task (SWT; a language-dependent task). Models based on logistic

regression and gradient boosting were trained in several scenarios, specifically single

language (SL), leave one language out (LOLO), and all languages combined (ALC). We

found that the HF slightly outperformed the CNN-extracted features in all considered

evaluation scenarios for the SWT. In detail, the following balanced accuracy (BACC)

scores were achieved: SL—0.65 (HF), 0.58 (CNN); LOLO—0.65 (HF), 0.57 (CNN); and

ALC—0.69 (HF), 0.66 (CNN). However, in the case of the SDT, features extracted by

a CNN provided competitive results: SL—0.66 (HF), 0.62 (CNN); LOLO—0.56 (HF),

0.54 (CNN); and ALC—0.60 (HF), 0.60 (CNN). In summary, regarding the SWT, the HF
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outperformed the CNN-extracted features over 6% (mean BACC of 0.66 for HF, and 0.60

for CNN). In the case of the SDT, both feature sets provided almost identical classification

performance (mean BACC of 0.60 for HF, and 0.58 for CNN).

Keywords: machine learning, deep learning, feature extraction, Parkinson’s disease dysgraphia,

handwriting analysis

1. INTRODUCTION

Parkinson’s disease (PD) is a chronic idiopathic disorder
characterized by the progressive loss/degeneration of
dopaminergic neurons in the substancia nigra pars
compacta (Hornykiewicz, 1998; Dickson, 2012) with the
development of α-synuclein-containing Lewy bodies within the
dopaminergic neurons (Forno, 1996). PD is the second most
frequent neurodegenerative disorder, with the prevalence rate
estimated to be ∼2.0% for people aged over 65 years (Heinzel
et al., 2019). To date, the gradual deficiency of dopaminergic
neurons in the basal ganglia has been recognized as a major

cause of parkinsonian symptoms (Brodal, 2003). In addition
to a large variety of other motor symptoms, such as tremor at

rest (Hughes et al., 1993), progressive bradykinesia (Berardelli
et al., 2001), muscular rigidity (Hughes et al., 1993),

postural instability (Horak et al., 2005), and hypokinetic
dysarthria (Brabenec et al., 2017), one of the prominent motor
symptoms of PD is so-called Parkinson’s disease dysgraphia

(PDYS) (Letanneux et al., 2014; Pinto and Velay, 2015; Thomas
et al., 2017).

PDYS is a term describing a spectrum of neuromuscular
difficulties, including motor-memory dysfunction (problems
combining memory input with motor output), graphomotor
production deficits (poor muscle coordination), motor feedback
difficulties (over-activation of certain muscles and joints during
handwriting as well as problems tracking the location of the pen’s
tip) and others. These cause a variety of handwriting difficulties
(HD) manifesting as dysfluent, shaky, slow, and less readable
handwriting; a progressive decrease in letter amplitude or
width, namely, micrographia (McLennan et al., 1972; Rosenblum
et al., 2013; Letanneux et al., 2014); etc. Hence, PDYS has
serious consequences that significantly affect a person’s everyday
life, starting with slow and less legible handwriting and often
progressing to lower self-esteem, poor emotional well-being,
problematic communication, and social interaction, and many
others. To introduce a timely and effective treatment to improve
a patient’s quality of life as much as possible, neurologists, and
other experts could benefit from a remote, objective, fast, and
low-cost decision support system. Such a system could employ
artificial intelligence and provide information that might lie
beyond human perception. It could enable specialists to combine
their expertise with a large volume of data that are not available
when utilizing a conventional in-clinic examination to identify
and assess parkinsonian symptoms. Finally, such an approach
could be implemented in decentralized clinical trials and could
significantly suppress the Hawthorne effect (Morberg et al.,
2018).

In general, the handwriting tasks that are traditionally
employed in PDYS analysis can be classified into drawing,
writing, and more complex tasks (Vessio, 2019). Usually, simple
drawing or writing elements are performed repetitively and
continuously as a single exercise. In the drawing task category,
spirals, circles, meanders, and simple figures are frequently
used for motor performance evaluation. These types of drawing
tasks are effortless and well-tolerated and hence are suitable for
studying motor control deficits in PD patients, especially for
assessing tremor (San Luciano et al., 2016; Vessio, 2019). As PD
patients commonly exhibit constructional apraxia (Garre-Olmo
et al., 2017), their drawings may contain simplifications, lack of
perspective, fewer angles, or spatial alterations. Letters, words,
and sentences are commonly acquired during the examination
process in the writing task category. As PD patients may produce
slower andmore irregular movements, mainly due to rigidity and
bradykinesia, the results of repetitive writing tasks usually emerge
in a more segmented fashion (Pullman, 1998; Drotar et al.,
2016). Sentence writing requires a high degree of simultaneous
processing, including motor planning; therefore, it is suitable
for detecting micrographia (Bidet-Ildei et al., 2011), which is
the most commonly observed handwriting abnormality in PD
patients. Finally, more complicated handwriting tasks, such as the
Clock Drawing Test (Agrell and Dehlin, 1998), may be used as
well as part of a more complex examination involving cognitive
and functional issues.

Currently, the most promising approach for the robust,
objective, and computerized assessment of PDYS utilizes various
signals describing the process/product of handwriting acquired
by a digitizing tablet (Drotar et al., 2014, 2015). Such signals
represent the movement of a digitizing stylus (pen) along
both the horizontal and vertical axes, the pressure exerted on
the surface of a digitizer, and the tilt and azimuth angles,
acquired with respect to a specific series of timestamps to form
a collection of time series describing the process of handwriting
from beginning to end (referred to as online handwriting). In
addition, modern digitizers have the ability to record not only
the movement of a pen on the surface of the digitizer but also the
movement above the surface (in-air movement; Alonso-Martinez
et al., 2017). As shown in a variety of research studies focusing
on the identification and assessment of HD in patients suffering
from PD, Alzheimer’s disease (AD), essential tremor (Drotar
et al., 2014, 2016; Alonso-Martinez et al., 2017; Impedovo et al.,
2018), etc., online handwriting capture provides the ability to
characterize the process of handwriting in terms of its kinematic,
dynamic, and temporal features, which are not accessible from
the final handwritten product when using the conventional pen
and paper methodology (referred to as offline handwriting).
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At present, the following handcrafted features are
conventionally used to describe the product/process of
handwriting/drawing (Rosenblum et al., 2013; Thomas et al.,
2017; De Stefano et al., 2019): (a) spatial features—width, height,
and length; (b) temporal features—duration; (c) kinematic
features—velocity, acceleration, and jerk; (d) dynamic features—
pressure, tilt, and azimuth; and (e) other features—number of
interruptions (pen elevations), etc. These features are computed
either for an entire product or on a per-stroke basis utilizing
on-surface and in-air movements. In the case of per-stroke
computation, the investigated signals are broken down into
the separate strokes forming the final handwritten product.
A crucial characteristic of these conventional features is their
clinical interpretability, allowing them to be linked with the
real physiological phenomena behind the studied pathologies,
which is extremely important for the mass adoption of this
methodology in real clinical use cases.

Despite the broad use and indisputable success of these
conventional handcrafted features, our recent studies (Mucha
et al., 2018a,b; Mucha et al., 2019) concerning the computerized
identification and assessment of PD and developmental
dysgraphia (DD) have illustrated the necessity of additional
research into novel and more advanced parametrization
techniques for handwriting that could enable more robust
and complex characterization of HD. For this reason, various
nonlinear handwriting features based on modulation spectra,
fractional-order derivatives (FD) and the tunable-Q wavelet
transform have been developed and evaluated (Galaz et al., 2020;
Mucha et al., 2020).

Conventional and nonlinear handcrafted features have shown
promising potential for the quantification of hidden patterns in
deficient handwriting. However, the necessity of manual design
and development is still a severe limitation. Recent advancements
in artificial neural networks offer new possibilities for automated
feature extraction. By utilizing transfer learning, pre-trained
convolutional neural networks (CNNs) can be advantageously
used to extract features and, as such, provide an alternative
solution in place of tedious and time-consuming manual feature
design. This approach has already been used not only for
handwriting processing (Gil-Martin et al., 2019; Moetesum et al.,
2019; Gazda et al., 2021) but also in several other domains
(Hagerty et al., 2019; Minaee et al., 2020). Nevertheless, in the
area of handwriting processing, one apparent limitation of CNN
feature extraction is that it utilizes only image data, and as such,
it is limited only to offline handwriting processing. However,
there have recently been some promising attempts to employ
recurrent neural networks for the classification of handwriting
signals (Diaz et al., 2021).

As seen from the above discussion, various parametrization
techniques for offline and online handwriting have been
developed. However, a major limitation of the current state
of affairs is that these techniques are treated separately most
of the time. Studies comparing the robustness of conventional
handcrafted features with that of features extracted automatically
using a pre-trained CNN for the identification and assessment
of PDYS are lacking. Moreover, multilingual studies analyzing

datasets acquired from subjects of different nationalities are
very rare.

The primary goal of this work is to compare two different
approaches for the identification of PDYS from drawing and
handwriting. The first approach is based on online handwriting
utilizing a set of conventional handcrafted features (baseline),
whereas the second approach relies on automated feature
extraction from offline handwriting utilizing a pre-trained CNN.
The primary aim of this comparison is to reveal whether a set of
features that are automatically extracted with no prior domain
knowledge could compete with a set of handcrafted features
designed by domain experts. The secondary goal of this work is
to explore the power of both feature sets for the identification
of PDYS in a multilingual dataset. In this study, we consider
two different handwriting tasks, namely, the Archimedean spiral
drawing task and the sentence writing task. The reason behind
this selection is to examine a drawing task, which is independent
of language, and a writing task, which is dependent on language.
We note that except for our own previous work (Mucha
et al., 2019), in which the Spanish and Czech sentence tasks
were investigated together, this is the only study to date to
consider a large multilingual cohort of PD patients, who were
enrolled in the Czech Republic, the United States, Colombia,
and Hungary. Such cross-language and cross-cultural clinical
studies are essential to generalize themethodology used for PDYS
diagnosis and assessment; therefore, the findings of this study
could lay a foundation for future research in this area.

2. RELATED WORKS ON PD
CLASSIFICATION FROM HANDWRITING

2.1. Online Handwriting
The most frequently used handcrafted features extracted from
online handwriting can be divided into (a) conventional features
(temporal, spatial, kinematic, and dynamic) and (b) advanced
features (Vessio, 2019). Among conventional features, the
following features have been utilized the most: (a) temporal—
duration of writing, duration of strokes; (b) spatial—width,
height, and length of a written product or of individual strokes;
(c) kinematic—velocity, acceleration, jerk; and (d) dynamic—
pressure, tilt, azimuth, etc. With respect to advanced features,
various studies have explored designs based on entropy, the
signal-to-noise ratio (SNR), empirical mode decomposition
(EMD), cepstrum (Nolazco-Flores et al., 2021), sigma–lognormal
models (O’Reilly and Plamondon, 2009), FD (Mucha et al.,
2018b), etc.

To obtain a complete picture of the utilization of
handcrafted features in PDYS diagnosis and assessment,
we refer to comprehensive reviews published up through
2019 (Letanneux et al., 2014; Impedovo and Pirlo, 2018;
De Stefano et al., 2019; Vessio, 2019). In the following
discussion, we review a number of recent articles. Although
the present work investigates conventional features only,
the review below includes studies that have employed
conventional features, advanced features, or both; the primary
focus is the summarization of the latest works addressing
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the computerized assessment of HD in patients suffering
from PD.

Impedovo et al. (2018) investigated whether a diagnosis of PD
based on the quantitative analysis of online handwriting could be
successful in early to mid stages of the disease. For this purpose,
the PaHaW database was reduced to a subset of 65 subjects [36
healthy controls (HCs) and 29 PD patients] who fit the Hoehn
and Yahr scale at scores from 1 to 2.5 (Goetz et al., 2004, 2008).
Almost all of the extracted features were kinematic, whereas some
of them utilized entropy. Significant discriminative power was
achieved in the sentence task [accuracy (ACC) of 71.95% with
a Gaussian naïve Bayes classifier], thus confirming the previously
reported findings of Drotar et al. (2016) that the writing of a long
sentence presents a higher cognitive demand such that the effect
of PD can manifest itself in the aggravation of HD.

Intending to improve the computerized assessment of PD
severity, Mucha et al. (2018b) deeply analyzed various advanced
kinematic features based on FD. The newly designed features
were compared to conventional ones for only those PaHaW
subjects who completed all of the 9 tasks (Drotar et al., 2016) (69
subjects in total). The authors reported that the conventional in-
air features outperformed the advanced ones in the differential
analysis (ACC of 97.1% with an XGBoost classifier) as well
as in the estimation of PD duration [estimation error rate
(EER) of 23.6%], but in this specific case, the in-air parameters
were combined with features extracted from the on-surface
movement. On the other hand, the severity of PD in terms of
the score on the Unified Parkinson’s Disease Rating Scale, part
V: Hoehn and Yahr scale (UPDRS V) was better estimated by the
new FD-based metrics (EER of 12.5%), suggesting that fractional
calculus can play a significant role in the assessment of PD.

In 2019, Rios-Urrego et al. (2019) analyzed the ability to use
kinematic, geometric, spectral and nonlinear dynamic features to
model HD and to discriminate between HCs and patients with
PD. In that study, they enrolled 130 subjects from Colombia,
who were asked to draw an Archimedean spiral and to write
a short sentence. The results indicated an ACC of 83.3% [K-
nearest neighbors (KNN) classifier] for the Archimedean spiral
and ACC of 75% [support vector machine (SVM) classifier] in
the case of the sentence writing task. The absence of nonlinear
features in the trainedmodels indicated that such features did not
contribute to the classification accuracy as much as kinematic or
geometric features.

Jerkovic et al. (2019) experimented with in-air handwriting
features and multiclass linear discriminant analysis (cLDA)
to differentiate between HCs, patients with PD and patients
with atypical parkinsonism. Altogether, 43 subjects from
Serbia were enrolled in the study. The task was to write
a sentence in various scenarios, such as with or without
looking at the monitor of the laptop during writing. Various
kinematic features related to the in-air and on-surface
trajectories were extracted. The combination of the on-
surface and in-air features led to ACC of 86%, whereas
a model trained only with in-air features had a slightly
lower ACC of ∼79%. The results led to the conclusion that
kinematic features based on both the in-air and on-surface
trajectories are equally important in the quantitative analysis

of the handwriting of PD patients with various types of
motor impairments.

Impedovo (2019) investigated the use of new velocity-based
signal processing techniques for the advance diagnosis of PD
based on the discrete Fourier transform (DFT; for assessing
rapidity and fluency), sigma–lognormal modeling (SLM; for
quantifying the constant tremor pattern of PD utilizing cepstrum
properties) and the Maxwell–Boltzmann distribution (MBD;
for modeling handwriting velocity profiles). In his work, he
utilized online handwriting records from the PaHaW database.
The newly proposed features were extracted together with
conventional features (baseline; Impedovo et al., 2018) for all
tasks in the database.When classification was performed using all
features and all tasks, the newly proposed features were selected
among the 10 best-performing features (ACC of 94%, SVM
classifier) and outperformed the baseline features (ACC of 88%
SVM classifier). The author was able to increase the HC/PD
classification accuracy to 98% when using only the most suitable
tasks (the Archimedean spiral, “lll” and the word “lektorka”).

In 2020, a study published by Aouraghe et al. (2020)
introduced new kinematic features utilizing the discrete time
wavelet transform (DTWT), the fast Fourier transform (FFT)
and a Butter/adaptive filter in the diagnosis of PD. Altogether,
80 native Arabic speakers were enrolled. All of them wrote
a particular segment of text on several lines. Additionally, to
better predict the continuous degradation of PD handwriting,
the output of the text task was segmented line by line using
unsupervised K-means clustering (observing the variation in the
x and y trajectories). All of the extracted features (new and
conventional) were calculated for the whole text and for each
segmented line separately (at least 4 lines). The best performance
on the entire task corresponded to ACC of 85.7% (KNN
classifier). The first line showed a slightly lower ACC of 78.6%
when a decision tree (DT) classifier was used. The last line proved
to be the most effective and discriminative segment in the study
when utilizing the DWT (ACC of 92.9%). Segmentation proved
to be a valid method, as the results confirmed the hypothesis that
PD handwriting degradation, deterioration, and fatigue increase
over time.

While the previous approaches relied on carefully designed
handcrafted features, Vásquez-Correa et al. (2019) proposed
directly feeding the raw captured signals and their derivatives
into a 1D CNN. These authors utilized a rather small CNN with
two convolutional and pooling layers. This procedure allowed
ACC of 67% to be achieved in the classification of PD patients
and HC subjects. The authors performed several experiments
using only onset or offset data, constituting the 200ms after the
transition from on-surface to in-air movement or the transition
from in-air to on-surface movement. However, this approach did
not seem to improve the prediction accuracy.

There are also some other studies that confirm feasibility of
the digitized spiral drawing for PD detection (Kamble et al., 2021)
and PD stage classification (Zham et al., 2017).

2.2. Offline Handwriting
In contrast to approaches based on online handwriting, in
which multiple modalities are available, offline handwriting
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approaches must rely on visual data only. This significantly limits
the information that is available for classification. Moetesum
et al. (2019) utilized a pretrained AlexNet CNN to extract
features from images capturing handwriting samples. To further
enhance the extraction of features and boost the performance, the
authors combined three different types of image preprocessing
techniques. With this approach, they obtained ACC of 76% on
a single task from the PaHaW dataset and ACC of 83% when
merging all tasks used for prediction.

Recently, Gazda et al. (2021) proposed the idea of multiple-
fine-tuned CNNs for the classification of PD handwriting.
Similar to the work of Moetesum et al. (2019), this approach
relies on a pretrained CNN. However, Gazda et al. utilized
datasets of handwriting samples to bridge the gap between the
semantically different ImageNet dataset, which was used for
network pretraining, and parkinsonian handwriting datasets.
This approach enabledmore efficient transfer learning, leading to
ACC of 92.7% on the spiral drawing task from the NewHandPD
dataset and ACC of 85.8% on the spiral drawing task from the
PaHaW dataset.

Similarly, six pretrained CNNs (AlexNet, GoogLeNet,
VGG16, VGG19, ResNet50, and ResNet101) were evaluated
in Kamran et al. (2021) in terms of their performance on
four different handwriting datasets. The obtained results
strongly depended on the dataset, with the most challenging
dataset being PaHaW. In this case, the classification accuracy
was only 62.5%, compared to accuracies of over 90% for the
HandPD, NewHandPD (Pereira et al., 2016) and Parkinson’s
Drawing (Zham et al., 2017) datasets.

Finally, the authors of Diaz et al. (2019) were able to merge
the online and offline handwriting approaches by incorporating
dynamic information into static images. This approach seemed to
improve classification in cases where the task can be performed
continuously without lifting the pen. The highest ACC of 75%
was achieved using VGG as the feature extractor and a linear
SVM as the classifier for a single drawing task (spiral). Further
improvements were obtained by building an ensemble classifier
based on the results from different tasks, yielding ACC of 86%.

For a better illustration, a summary of the related works is
provided in Table 1. The overview of the related works based
on online handwriting is in the upper part, and studies based on
offline handwriting are in the bottom part of the table.

3. MATERIALS AND METHODS

3.1. Dataset
In total, 143 patients with PD (71 female and 72 male; mean
age 66.32 ± 10.79 years) and 151 HCs (86 female and 65
male; mean age 64.79 ± 9.90 years) were enrolled in several
geographical locations: the Czech Republic (CZ), Hungary
(HU), the United States of America (US), and Colombia (CO).
A corresponding multilingual dataset was created by fusing
the following databases: PaHaW (Drotar et al., 2016), CoBeN
(acquired under the Marie Skłodowska-Curie grant agreement
no. 734718), and HWUDEA (Castrillon et al., 2019; Rios-Urrego
et al., 2019). In the case of the PaHaW database, the participants
performed 9 tasks (e.g., Archimedean spiral, letters, syllables,

words, sentence) on A4 paper that was laid down and fixed to
a digitizing tablet (Wacom Intuos 4M, with a sampling frequency
of fs = 133 Hz). A special Wacom inking pen was used to
provide immediate visual feedback, i.e., simulating classical pen-
and-paper writing/drawing. The participants enrolled for the
acquisition of CoBeN underwent a protocol consisting of 8 tasks
(e.g., connecting dots, overlapping pentagons, Archimedean
spiral, sentences) using a similar paper–tablet setup; however,
in this case, the data were recorded by a Wacom Intuos Pro
L (fs = 133 Hz). Finally, the HWUDEA database was acquired
by employing a Wacom Cintiq 13HD Touch display tablet
(fs = 180 Hz). In total, 17 tasks were recorded for each
participant (e.g., spring, alphabet, sentence, Archimedean spiral,
house drawing). Although the databases were collected following
different protocols, all of them share two tasks: the Archimedean
spiral drawing task and a sentence writing task. Selected samples
can be seen in Figure 1.

Demographic data with respect to each of the two tasks shared
among all databases are reported in Table 2. Unfortunately, the
databases are not annotated with the same clinical information
(e.g., the CoBeN–HU dataset contains only information about
sex and age); nevertheless, to provide at least limited insight into
the characteristics of the PD patients, we summarize the available
metadata in Table 3. None of the participants had a history or
the presence of any psychiatric symptoms, cognitive impairment,
or any disease affecting the central nervous system (other than
PD in the PD cohort). All PD patients were diagnosed based
on the diagnostic criteria for PD (Postuma et al., 2016). They
were well-compensated on their stable dopaminergic medication
and without major motor fluctuations or dyskinesias [they were
examined while on their regular dopaminergic medication (ON
state) ∼1 h after the L-dopa dose]. All subjects signed informed
consent forms. The study was approved by the relevant local
ethics committees.

3.2. Scenarios
We define three main scenarios to analyze the effect of linguality
on the classification of PDYS:

1. Single language—In this scenario, we consider datasets for
every language separately. As such, there are four different
models: HU, US, CO, and CZ (the Czech dataset is created by
merging the PaHaW and CoBeN datasets). In this scenario,
each classification model is trained and tested on a dataset
consisting of data samples that all come from the same
language. This scenario is considered to correspond to internal
model validation because the linguality of the datasets is not
considered; rather, the robustness of the features is evaluated
at the per-dataset level.

2. Leave one language out—In this scenario, the influence
of different languages on the classification performance is
evaluated by training each model on three out of four
datasets and testing it on the remaining dataset. With this
approach, we aim to investigate the effect of transferring
knowledge between datasets coming from different language
sources. We refer to this scenario as the leave-one-language-
out scenario. This scenario is considered to correspond to
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TABLE 1 | Overview of the related works.

References Participants Task Features Analysis Results

Online handwriting

Impedovo et al. (2018) 29 PD, 36 HC PaHaW–all Kinematic, enthropy GNB ACC = 72.0%

Mucha et al. (2018b) 33 PD, 36 HC

PaHaW–all

FD-based kinematic XGBoost ACC = 97.1%

EER = 23.6% (PD dur)

EER = 12.5% (UPDRS V)

Rios-Urrego et al. (2019) 39 PD, 70 HC
Archimedean spiral Kinematic, geometric KNN ACC = 83.3% (spiral)

Short sentence Spectral, non-linear SVM ACC = 75.0% (sentence)

Jerkovic et al. (2019) 33 PD, 10 HC Various sentences Kinematic cLDA ACC = 86.0%

Impedovo (2019) 37 PD, 38 HC PaHaW–all DFT, SLM, MBD SVM ACC = 94.0%

Aouraghe et al. (2020) 40 PD, 40 HC Segment of text
DTWT, FFT KNN ACC = 85.7% (full text)

Butter/adaptive filter decision tree ACC = 78.6% (first line)

Vásquez-Correa et al. (2019) 44 PD, 40 HC 14 drawings/writings Original signal 1D CNN ACC = 67.0%

Offline handwriting

Moetesum et al. (2019) 37 PD, 38 HC PaHaW–all AlexNet CNN SVM ACC = 83.0%

Gazda et al. (2021)
64 PD, 71 HC

Archimedean spiral
Pre-trained CNN and transfer ACC = 92.7% (NewHandPD)

2 dataset learning (ImageNet→PD dataset) ACC = 85.8% (PaHaW)

Kamran et al. (2021)

PaHaW

Several drawings

ACC = 62.5% (PaHaW)

HandPD
AlexNet, GoogLeNet, VGG16

ACC = 91.4% (HandPD)

NewHandPD
VGG16, ResNet50, ResNet101

ACC = 98.4% (NewHandPD)

PD Drawings ACC = 90.0% (PD Drawings)

Diaz et al. (2019) 37 PD, 38 HC PaHaW–all VGG SVM ACC = 86.0%

PD, Parkinson’s disease; HC, healthy control; PaHaW, Parkinson’s disease handwriting database (Drotar et al., 2016); FD, fractional order derivative; ACC, accuracy; EER, estimation

error rate; PD dur, PD duration; GNB, gaussian naïve bayes classifier; xGBoost, extreme gradient boosting tree; KNN, K-nearest neighbors; SVM, support vector machine; cLDA, multi-

class linear discriminant analysis; CNN, convolution neural network; ResNet, residual neural network; VGG, very deep CNN; DFT, discrete fourier transformation; SLM, sigma-lognormal

model; MBD, maxwell-boltzmann distribution; DTWT, discrete time wavelet transform; FFT, fast Fourier transform; UPDRS V, UPDRS, part V: Hoehn and Yahr scale (Fahn and Elton,

1987).

FIGURE 1 | Selected samples from the multilingual dataset (blue line – on-surface movement; red line – in-air movement). (A) Spiral drawing (PD patient); (B) Spiral

drawing (HC); (C) English sentence (PD patient) “The weather turned nice”; (D) Hungarian sentence (PD patient) “A vonat hirtelen megállt”; (E) Czech sentence (HC)

“Tramvaj dnes už nepojede”.

external model validation because the multilinguality of the
data is taken into account, i.e., the validation samples come
from a different geographical location, as recommended in the
TRIPOD guidelines (Collins and Moons, 2019).

3. All languages combined—In the last scenario, we combine all
datasets of different languages into one complete dataset to
evaluate the performance of the features on the mixed dataset.

3.3. Feature Extraction
Although the individual databases were acquired using different
devices, all of them recorded the following information (time
series): the x and y positions (x[n] and y[n]), the timestamp (t[n]),
a binary variable (b[n]) taking values of 0 for in-air movement
(i.e., movement of the pen tip up to 1.5 cm above the tablet’s
surface) and 1 for on-surface movement (i.e., movement of the
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TABLE 2 | Demographic characteristics.

Dataset Language PD (N; female) PD (N; male) PD (age) HC (N; female) HC (N; male) HC (age)

Archimedean spiral

PaHaW CZ 18 15 69.21 ± 11.10 17 19 62.50 ± 11.70

CoBeN CZ 6 13 66.48 ± 7.77 30 10 67.04 ± 6.07

CoBeN US 3 6 68.56 ± 4.07 9 3 72.50 ± 8.37

CoBeN HU 2 7 66.00 ± 9.96 7 5 64.92 ± 5.30

HWUDEA CO 41 28 64.42 ± 11.85 22 27 62.69 ± 11.34

Sentence

PaHaW CZ 19 18 69.32 ± 10.97 18 20 62.42 ± 11.39

CoBeN CZ 6 13 66.48 ± 7.77 30 9 67.21 ± 6.05

CoBeN US 3 6 68.56 ± 4.07 9 3 72.50 ± 8.37

CoBeN HU 2 6 65.88 ± 10.64 7 5 64.92 ± 5.30

HWUDEA CO 13 4 63.88 ± 7.61 5 5 70.20 ± 10.67

TABLE 3 | Clinical characteristics of the PD patients.

Dataset Language Duration of PD [years] LED [mg/day] UPDRS III UPDRS V

PaHaW CZ 8.38 ± 4.80 1,432.19 ± 704.78 – 2.27 ± 0.85

CoBeN CZ 4.00 ± 4.15 568.33 ± 508.03 7.00 ± 1.41 –

CoBeN US – 333.12 ± 240.40 – –

CoBeN HU – – – –

HWUDEA CO 10.56 ± 11.16 – 36.78 ± 19.63 2.38 ± 0.61

LED, L-dopa equivalent daily dose (Lee et al., 2010); UPDRS III, Unified Parkinson’s Disease Rating Scale, part III: motor examination (Fahn and Elton, 1987); UPDRS V, UPDRS, part

V: Hoehn and Yahr scale (Fahn and Elton, 1987).

pen tip on the paper), the pressure exerted on the tablet’s surface
during writing (p[n]), the pen tilt (a[n]), and the pen azimuth
(az[n]). First, we preprocessed the recordings for unit unification
(e.g., we expressed the x and y positions in millimeters, time
in seconds, etc.) and resampling [we resampled all signals
to fs = 133 Hz employing a finite impulse response (FIR)
antialiasing low-pass filter]. Subsequently, we parameterized the
signals employing the previously mentioned baseline and CNN-
based features.

3.3.1. Baseline Features

To establish a good baseline for the evaluation of the CNN-
based features, we consulted several recent articles and reviews
(Impedovo and Pirlo, 2018; De Stefano et al., 2019; Vessio, 2019)
and extracted the handcrafted features that are most commonly
used for the quantitative assessment of PD dysgraphia. These
features can be divided into six groups:

1. Temporal—duration of writing (DUR), ratio of the on-
surface/in-air durations (DURR), duration of strokes (SDUR),
and ratio of the on-surface/in-air stroke durations (SDURR)

2. Spatial—width (WIDTH), height (HEIGHT), and length
(LEN) of the whole product as well as those of its individual
strokes, i.e., stroke width (SWIDTH), height (SHEIGHT), and
length (SLEN)

3. Kinematic—velocity (VEL), angular velocity (AVEL), and
acceleration (ACC)

4. Dynamic—pressure (PRESS), tilt (TILT), and azimuth
(AZIM)

5. Spiral-specific (San Luciano et al., 2016; Cascarano et al.,
2019)—first-order smoothness of spiral (1stSm), second-order

smoothness of spiral (2ndSm), spiral tightness (TGHTNS),
first-order zero-crossing rate of spiral (1stZC), second-

order zero-crossing rate of spiral (2ndZC), degree of spiral
drawing severity (DoS), mean drawing speed of spiral (MDS),
variability of spiral width (SWVI), and spiral precision index

(SPI)
6. Other—number of interruptions or pen elevations (NINT),

relative number of interruptions (RNINT), number of on-
surface interstroke intersections (NIEI), relative number of

on-surface interstroke intersections (RNIEI), number of on-

surface intrastroke intersections (NIAI), relative number of

on-surface intrastroke intersections (RNIAI), total number

of on-surface intrastroke intersections (TNIAI), relative total

number of on-surface intrastroke intersections (RTNIAI),
relative number of changes in velocity profile (RNCV), relative

number of changes in pressure profile (RNCP), relative

number of changes in tilt profile (RNCT), and relative number
of changes in azimuth profile (RNCA)

The spatial, temporal, and kinematic features were extracted

from both the on-surface and in-air movements. In addition,
the kinematic features were also analyzed for the horizontal
and vertical projections of the movements. Features that are
represented by time series were transformed into scalar values
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using the median, interquartile range (iqr), nonparametric
coefficient of variation (ncv; defined as iqr/median), and slope
by applying the Theil–Sen estimator (slope). In the case
of the kinematic time series, we also calculated the 95th
percentile (95p).

For each feature, we use the following notation: INF: DIR-
FN (HL), where INF denotes the processed information (ON for
on-surface, AIR for in-air, PRESS for pressure, TILT for tilt, and
AZIM for azimuth), DIR denotes the direction (H for horizontal
and V for vertical), FN is the feature name, andHL is the statistic
used for the transformation.

3.3.2. CNN-Based Features

Over the past decade, CNNs have demonstrated outstanding
capabilities on various tasks, such as image recognition, medical
image analysis, and handwriting recognition. Multiple state-of-
the-art models exist, with a typical structure consisting of an
input layer, a mix of convolutional and pooling layers, and one
output layer. Deeper networks often produce better results than
shallower ones; on the other hand, they have multiple times more
parameters and require more data for training, especially when
compared to traditional machine learning models. To overcome
this problem, transfer learning techniques have been proposed.

The idea behind transfer learning is to take advantage of
the features of a CNN trained on one task and use them for
another task. Given a source domain Ds, a corresponding task
Ts, a target domain Dt , and the corresponding task Tt , where
Ds 6= Dt and Ts 6= Tt , the goal of transfer learning is to
reduce the error of the target predictive function ft(.) in Dt . For
transfer learning, twomain paradigms exist. The first is called fine
tuning, in which a neural network or at least part of the neural
network is retrained, thus changing the weights of the layers. In
the second approach, a CNN is used to extract features. In the
feature extraction model, the weights trained on the source task
are frozen, and the corresponding representations are applied in
the target task.

In case of CNN-based features we render images from data
captured by the digitizing tablet. Specifically, we use only the
x and y positions (x[n] and y[n]). To extract CNN-based
features, we employed the state-of-the-art CNN known as
VGG16 (Simonyan and Zisserman, 2014), pretrained on the
ImageNet dataset (Russakovsky et al., 2015). The VGG16 is well-
known architecture that is still being frequently used thanks to its
relative simplicity. The input images were resized to 224×224 by
nearest-neighbor interpolation. We extracted features from the
last convolutional layer in the VGG16 network. The extracted
features capture abstract representations of the processed input
image. Features were classified by CNN head consisting of fully
connected layer and output layer.

3.4. Machine Learning
For the handcrafted features, we built binary classificationmodels
using an ensemble extreme gradient boosting algorithm known
as XGBoost (Chen and Guestrin, 2016). The reason behind
using such an advanced nonlinear classifier is to search for
complex nonlinear patterns in a feature set composed of rather
simple feature representations. To build models with the optimal

hyperparameters, we applied a randomized search strategy to
optimize the following set of hyperparameters: the learning rate
[0.001, 0.01, 0.1, 0.2, 0.3], γ [0, 0.05, 0.10, 0.15, 0.20, 0.25,
0.5], the maximum tree depth [6, 8, 10, 12, 15], the fraction of
observations to be randomly sampled for each tree (subsample
ratio) [0.5, 0.6, 0.7, 0.8, 0.9, 1.0], the subsample ratio for the
columns at each level [0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0], the
subsample ratio for the columns when constructing each tree
[0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0], the minimum sum of the weights
of all observations required in a child node [0.5, 1.0, 3.0, 5.0, 7.0,
10.0], and the balance between positive and negative weights [1,
2, 3, 4].

In contrast, the binary classification models for the CNN-
based features were built using L2-regularized logistic regression
(LR), also known as ridge regression. The reason behind using
this much simpler linear classifier is the assumption that the
underlying nonlinear representations are already captured by
the CNN-extracted features. In addition, features extracted from
convolutional layers tend to have very high dimensionality, and
thus, using a simpler classifierminimizes the chance of overfitting
and maximizes the computational efficiency. To find the optimal
parameters of the LR classifier, we searched through the various
settings for the regularization parameter C given by the following
set: [0.001, 0.01, 0.1, 1, 10, 100, 1000].

The randomized search was conducted 500 times. In both
cases, the objective of the hyperparameter search was to optimize
the balanced accuracy score (BACC; described in more detail
along with other evaluation scores below) via stratified five-
fold cross-validation with five repetitions (the five-fold cross-
validation scheme was chosen as a reasonable compromise
between the numbers of samples in the training and validation
folds, i.e., to provide the classifier with sufficient training samples
while also testing its performance on a representative subset of
the overall sample size).

Finally, the trained classification models were evaluated
on a per-scenario basis: (a) single language—in this scenario,
we conducted stratified five-fold cross-validation with five
repetitions; (b) leave one language out—in this scenario, we
tested the performance of each trained classifier on the remaining
dataset that was not present in the training data; and (c)
all languages combined—in this scenario, we again employed
stratified five-fold cross-validation with five repetitions. Only one
sample of Archimedean spiral or sentence was available from
each subject. Therefore, all decisions are based on a per subject
basis. The classification test performance was established using
the following well-known and widely used classification metrics:
BACC, sensitivity (SEN), specificity (SPE), and F1 score.

4. RESULTS

4.1. Single-Language Scenario
The classification performance of the models trained in this
scenario is summarized in Table 4. First, we trained and tested
the classification models using the spiral drawing task. The
highest BACC values of 82% (handcrafted features) and 77%
(CNN-based features) were achieved for the US dataset. These
accuracies are notably higher than those achieved for the other
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TABLE 4 | Classification performance in the single-language scenario.

Language Features BACC F1 SEN SPE

Spiral drawing

CZ Handcrafted 0.59 ± 0.08 0.590.07 0.82 ± 0.12 0.36 ± 0.14

CNN 0.64 ± 0.03 0.65 ± 0.05 0.65 ± 0.09 0.65 ± 0.06

CO Handcrafted 0.59 ± 0.12 0.72 ± 0.07 0.81 ± 0.09 0.37 ± 0.23

CNN 0.61 ± 0.02 0.62 ± 0.02 0.62 ± 0.03 0.62 ± 0.02

HU Handcrafted 0.64 ± 0.17 0.61 ± 0.20 0.72 ± 0.29 0.57 ± 0.34

CNN 0.48 ± 0.03 0.52 ± 0.13 0.52 ± 0.16 0.52 ± 0.12

US Handcrafted 0.82 ± 0.18 0.77 ± 0.28 0.84 ± 0.31 0.81 ± 0.23

CNN 0.77 ± 0.02 0.77 ± 0.07 0.77 ± 0.11 0.77 ± 0.08

Sentence writing

CZ Handcrafted 0.66 ± 0.08 0.62 ± 0.08 0.64 ± 0.10 0.69 ± 0.12

CNN 0.65 ± 0.04 0.66 ± 0.04 0.66 ± 0.04 0.66 ± 0.05

CO Handcrafted 0.56 ± 0.18 0.72 ± 0.19 0.83 ± 0.22 0.28 ± 0.29

CNN 0.50 ± 0.08 0.54 ± 0.07 0.54 ± 0.08 0.54 ± 0.09

HU Handcrafted 0.75 ± 0.18 0.65 ± 0.30 0.82 ± 0.34 0.59 ± 0.34

CNN 0.50 ± 0.06 0.48 ± 0.08 0.48 ± 0.10 0.48 ± 0.08

US Handcrafted 0.65 ± 0.20 0.54 ± 0.28 0.58 ± 0.34 0.73 ± 0.32

CNN 0.70 ± 0.04 0.70 ± 0.06 0.70 ± 0.08 0.70 ± 0.05

BACC, balanced accuracy; F1, F1 score; SEN, sensitivity; SPE, specificity.

datasets, which indicates that the US samples most likely carry
certain recognizable patterns of PD related to the graphomotor
difficulties manifested during spiral drawing. With respect to the
comparison between the handcrafted and CNN-based features,
the results show similar trends, with both types of features
yielding the highest accuracy on the US dataset and quite similar
results on the other datasets. More specifically, the CNN-based
features outperformed the handcrafted features on the CZ dataset
(BACCs of 64 vs. 59%) as well as on the CO dataset (BACCs
of 61 vs. 59%) but yielded less accurate predictions on the US
dataset. This shows that CNNs, even when provided with visual
information only, can be competitive with handcrafted features
on the spiral drawing task. However, there is one exception. From
the performance of the CNN-based features on the HU dataset, it
is evident that this model failed to provide reasonable predictions
(BACC of 48% with the CNN-extracted features as opposed to
BACC of 64% with the handcrafted features).

To interpret the machine learning models, we investigated
the top ten most important features (see Figure 2). In the CZ
dataset, most of these features are derived from the on-surface
angular velocity. Other kinematic features are based on the
on-surface velocity and the mean drawing speed of the spiral.
Finally, the zero-crossing rate of the spiral, the pressure and
the spiral smoothness all show some importance. The most
important feature in the CO dataset is the ratio between the
on-surface and in-air durations. It is followed by the relative
number of interruptions and by the tilt-based and azimuth-
based parameters. The important feature set also contains the
in-air duration and spiral tightness. The rest of the features are
based on the angular velocity and horizontal/vertical velocity.
The most important set of features for the HU model contains
two spatial parameters, width and height. The variation in

azimuth plays an important role as well. Finally, the majority of
the important features are kinematic (angular velocity, velocity,
and acceleration). These features are also important in the
US database. In addition, some spatial parameters (length
and height), the pressure and the intraspiral intersections are
identified as important.

Second, we evaluated the models for the sentence writing
task in the same scenario. There are a few interesting points
to note. First, prediction fails on the CO dataset for both types
of features (BACC of 56% with the handcrafted features and
BACC of 50% with the CNN-based features). The reason is most
likely the small sample size; in the CO data, there are only 27
sentences, compared to the 118 spirals used in the previous
experiment. Next, the model utilizing the handcrafted features
clearly outperformed the model based on the CNN features on
the HU dataset (BACC of 75% with the handcrafted features
and BACC of 50% with the CNN-based features) and yielded
slightly more accurate predictions on the CZ dataset (BACC
of 66% vs. BACC of 65%). This is to be expected since for
CNN-based features, a larger sample size is probably needed to
learn the underlying patterns from a given sentence; compared
with spiral drawing, sentence writing is much less restricted
in terms of what the final handwritten product should look
like. Finally, even though the US dataset contains spirals and
sentences from the same patient group, the classification accuracy
is significantly lower for the sentence writing task than for
the spiral drawing task. Quite surprisingly, the CNN-extracted
features outperformed the handcrafted features for the US cohort
(BACCs of 70 vs. 65%).

Regarding the interpretation of the models shown in Figure 3,
the most important features in the CZ dataset are based on
the on-surface velocity, more specifically on its median and
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FIGURE 2 | Importance of the features used in the models in the single-language scenario (spiral drawing task).
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FIGURE 3 | Importance of the features used in the models in the single-language scenario (sentence writing task).
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FIGURE 4 | Relevance maps for ten Archimedean spirals (two random samples from each dataset are depicted).

variation. In addition, the two highest-ranked velocity-based
parameters are derived from the vertical projection. The most
important feature set also contains the duration and number
of intrastroke intersections. The most important feature in the
CO dataset is the relative number of changes in the pressure
profile, and two other pressure-based parameters (range and
variation) were also selected. The last dynamic parameter is the

number of changes in the azimuth profile. Regarding kinematic
features, the set contains the in-air velocity and angular velocity.

The stroke duration and spatial features such as width and
height also play important roles. In the HU dataset, the most
important feature is the variation in azimuth. Other significant

features include the on-surface and in-air acceleration, and the
on-surface horizontal velocity and the relative number of changes
in the velocity profile are also important. Temporal features are

represented by the in-air stroke duration. Finally, two important
spatial parameters are identified: the on-surface stroke length

and the overall length of the in-air movement. The three most
important features in the US dataset are the number of on-surface

intrastroke intersections, the in-air stroke length and the range of
the azimuth. These are followed by mainly kinematic parameters,
i.e., the in-air horizontal velocity, in-air acceleration, and on-
surface velocity (including its horizontal projection). In terms of
temporal features, the set also contains the in-air stroke duration.

The interpretation of CNN decisions is not straightforward
since CNN models work in a black-box manner. We employ
deep Taylor decomposition (Montavon et al., 2017) to gain
a better understanding of the decisions made. Deep Taylor
decomposition generates relevance maps illustrating the
importance of single pixels in images. Figures 4, 5 show the
relevance maps for ten spirals and four sentence writing samples,
illustrating the pixels that were considered the most relevant for
CNN-based feature extraction. Note that all figures that were
used as CNN input were rendered at a resolution of 244 × 244
pixels. This resolution is optimal for the pretrained VGG
network, but it created some deformation of the handwriting in
the sentence writing task. This might have produced suboptimal
results; however, using different resolutions would have required
training the whole network from scratch, which would have been
incompatible with the intention of this study.

4.2. Leave-One-Language-Out Scenario
The classification performance of the models trained in this
scenario is summarized in Table 5. Naturally, the native language
of a participant exerts no influence on the spiral drawing task;
however, we can still investigate how the models performed
on external validation datasets. When the CZ dataset was
used as the test set, BACC degraded from 59 to 54% and
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FIGURE 5 | Relevance maps for four sentences (one random sample is depicted for each language).

from 64 to 45% for the handcrafted and CNN-based features,
respectively. In contrast, in the case of the CO test set, BACC

with the handcrafted features decreased from 59 to 50%, while

the performance of the CNN-based features slightly improved,
specifically from 61 to 63%. In the case of the HU test set, BACC

with the handcrafted features similarly degraded from 64 to 56%,
but interestingly, when the CNN-extracted features were used,
the classification performance improved from 48 to 71%, even

higher than in the internal model validation in the previous
experiment. This can be explained by the fact that the HU dataset

is quite small, so the model was not able to learn well from
data coming from the HU dataset only. Finally, the prediction
performance on the US test set, which yielded optimistic results
in the single-language scenario, decreased dramatically. For the
handcrafted features, BACC decreased from 82 to 65%, and
for the CNN-based features, the model completely failed to
generalize, as BACC decreased from 77 to only 38%. This shows
that the pattern responsible for the high classification accuracy in
the internal model validation is most likely not present (or is less
prominent) in the other datasets.

Regarding the sentence writing task, the language does exert
an influence, and it is therefore important to look at the
differences in the classification performance achieved in the
internal and external validations. When the CZ dataset was
used as the test set, BACC decreased from 66 to 63% and
from 65 to 54% for the handcrafted and CNN-based features,
respectively. In the case of the CO test set, BACC decreased from
56 to 50% for the handcrafted features and from 59 to 51% for
the CNN-extracted features. With respect to the HU test set,
BACC degraded from 75 to 67% for the handcrafted features but
improved from 50 to 60% for the CNN-based features. This is
consistent with the results of the spiral drawing task, for which
the classifier based on the CNN-extracted features needed more

TABLE 5 | Classification performance in the leave-one-language-out scenario.

TRAIN TEST Features BACC F1 SEN SPE

Spiral drawing

CO+HU+US CZ Handcrafted 0.54 0.51 0.62 0.46

CNN 0.45 0.41 0.48 0.42

CZ+HU+US CO Handcrafted 0.50 0.74 1.00 0.00

CNN 0.63 0.62 0.54 0.71

CZ+CO+US HU Handcrafted 0.56 0.47 0.44 0.67

CNN 0.71 0.67 0.67 0.75

CZ+CO+HU US Handcrafted 0.65 0.67 0.88 0.41

CNN 0.38 0.32 0.33 0.42

Sentence writing

CO+HU+US CZ Handcrafted 0.63 0.68 0.78 0.48

CNN 0.54 0.58 0.80 0.29

CZ+HU+US CO Handcrafted 0.59 0.30 0.18 1.00

CNN 0.51 0.72 0.82 0.20

CZ+CO+US HU Handcrafted 0.67 0.64 0.59 0.75

CNN 0.60 0.46 0.38 0.83

CZ+CO+HU US Handcrafted 0.71 0.67 0.59 0.83

CNN 0.63 0.46 0.33 0.92

TRAIN, training dataset; TEST, test dataset; BACC, balanced accuracy; F1, F1 score;

SEN, sensitivity; SPE, specificity.

data for training. In the case of the US test set, BACC improved
for the handcrafted features, from 65 to 70%, but decreased for
the CNN-extracted features, from 71 to 63%.

Interestingly, the classifiers utilizing the CNN-based features
extracted from the spiral drawing task either outperformed
those trained on the handcrafted features or failed to generalize,
whereas the classifiers based on the handcrafted features
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TABLE 6 | Classification performance in the scenario with all languages combined.

Task Features BACC F1 SEN SPE

Spiral Handcrafted 0.60 ± 0.06 0.63 ± 0.06 0.73 ± 0.10 0.48 ± 0.07

CNN 0.60 ± 0.01 0.61 ± 0.02 0.61 ± 0.04 0.61 ± 0.04

Sentence Handcrafted 0.69 ± 0.05 0.65 ± 0.07 0.61 ± 0.09 0.78 ± 0.07

CNN 0.66 ± 0.01 0.67 ± 0.01 0.67 ± 0.03 0.67 ± 0.03

BACC, balanced accuracy; F1, F1 score; SEN, sensitivity; SPE, specificity.

extracted from the sentence writing task yielded higher
classification accuracy in all four experiments (with different
combinations of training and test datasets). This was to be
expected since in the latter case, the models were trained on
sentences with orthography different from that in the test set.
These findings confirm the hypothesis that the handcrafted
features designed by domain experts are more robust than
automatically extracted CNN-based features in cases in which
different visual patterns are to be evaluated.

4.3. Scenario With All Languages
Combined
In the last scenario, we combined the samples from all
languages together to create a single heterogeneous dataset.
The classification performance of the models trained in this
scenario is summarized in Table 6. In the case of the spiral
drawing task, the handcrafted features and CNN-based features
show very similar performance, achieving 60% accuracy. The
hypothesis that CNN-based features are more sensitive to
the visual orthography of the sentence writing task is also
confirmed by this last scenario, as the classifier based on
handcrafted features outperformed the one trained on CNN-
extracted features, achieving almost 70% accuracy (although in
this case, the difference was much less prominent).

5. DISCUSSION

We compared the results of two different approaches to feature
extraction: handcrafted features and features extracted by a CNN.
In the case of the handcrafted features, we utilized a set of baseline
features that are frequently used for handwriting analysis. We
focused mainly on temporal, spatial, kinematic, and dynamic
features, and we did not employ any advanced nonconventional
features. Similarly, in the case of the CNN-extracted features,
we used a pretrained VGG network to extract the features,
although propositions have already emerged for improving the
methodologies applied to diagnose PD from offline handwriting
(Moetesum et al., 2019; Gazda et al., 2021). The motivations for
this are two-fold. First, our aim was to establish baseline results
that can be used as a reference in the future. Second, by using
these baseline approaches, we could provide a fair comparison
between the classification performance of handcrafted features
and CNN-extracted features.

Regarding clinical interpretability, the models based on the
Archimedean spiral drawing task mainly utilized kinematic
features. This finding is reasonable because the cardinal

symptoms of PD, such as rigidity, akinesia, and bradykinesia,
have a significant impact on fine motor skills, including
handwriting/drawing (Letanneux et al., 2014). Generally, PDYS is
associated with reduced velocity (Ponsen et al., 2008; Rosenblum
et al., 2013; Impedovo and Pirlo, 2018; De Stefano et al., 2019),
which could occur more frequently than the most pronounced
symptom, micrographia (Letanneux et al., 2014). Since the
Archimedean spiral drawing task is a task in which subjects
perform coordinated rotation, among the kinematic parameters,
the angular velocity seems to play the most important role in the
differentiation of PD/HC subjects.

Interestingly, features specifically designed for the assessment
of Archimedean spiral drawing in PD patients (San Luciano
et al., 2016; Cascarano et al., 2019; such as the smoothness
of the spiral, the spiral tightness, the variability of the spiral
width, and the spiral precision index) were not as important
as we initially assumed. Similar to the dynamic features (e.g.,
pressure, tilt, azimuth), spatial features (width, height, length),
and temporal features (duration), they were important only in
some specific datasets.

Concerning the clinical interpretability of the models based
on the sentence writing task, except for the CO database,
all models were again based mainly on kinematic features,
mostly extracted from the on-surface movement. In terms
of projection, kinematic deficits were observed in both the
horizontal and vertical movements. Nevertheless, in the largest
database (CZ), deficits mainly dominated in the vertical
projection. Kushki et al. (2011) reported that the finger system
(which is mainly involved in vertical movement) is more
affected by muscular fatigue than the wrist system (which
controls horizontal movement). From an anatomical point
of view, vertical movement requires coordinated movement
and finer flexions/extensions of more joints (interphalangeal
and metacarpophalangeal), i.e., it is more complex than ulnar
abductions of the wrist (Van Galen, 1991; Dounskaia et al., 2000),
and we assume this to be the reason why kinematic deficits
were more strongly observed in this direction. This finding could
also be somehow linked with progressive/consistent vertical
micrographia, i.e., progressive/consistent reduction in letter
amplitude (Thomas et al., 2017). However, this hypothesis
requires further research because some studies suggest that the
horizontal version of micrographia is even more common than
the vertical version (Thomas et al., 2017).

Interestingly, except for the CZ database, the azimuth
also played a significant role, more specifically its variation
and range. We have identified one publication in which the
authors advantageously utilized azimuth-based features in the
semisupervised modeling of PDYS (Ammour et al., 2020). We
assume that tremor could lead to improper coordination of the
upper extremities, which could manifest as unstable azimuth
features during the process of handwriting.

Temporal features (the duration of the whole process or of
individual strokes) additionally played an important role in all
models. In some studies, duration has not been found to be
useful for discriminating between PD patients and HCs because
although patients with PD write slowly, they also write smaller
letters and thus ultimately spend the same time on, e.g., copying
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a sentence (Letanneux et al., 2014; Vessio, 2019). Nevertheless,
in our case, with a few exceptions, spatial parameters were not
found to be important in PDYS modeling.

Although it has been reported that PD patients generally apply
less pressure (Rosenblum et al., 2013), we observed an important
role of pressure-based features only in the CO model. Since only
the CO database was recorded using the Wacom Cintiq tablet,
the question arises of whether the corresponding discriminative
power is associated solely with the disease or whether it is
somehow enhanced by writing on a display.

In contrast to conventional shallow machine learning models,
deep CNN models are quite challenging to interpret because
of the dimensionality and complexity involved. However, as
mentioned in the previous sections, we employed deep Taylor
decomposition (Montavon et al., 2017) to create relevance maps
illustrating the pixels that were considered most relevant for
CNN-based feature extraction.

Regarding the spiral drawing task, as seen from Figure 4,
the pixels that were assigned the highest weight for decisions
lay along the outline of the drawn image. This indicates that
the outer curve may convey information that can be explored
to differentiate PD patients and HCs. We can hypothesize that
this location in the spiral is strongly related to the shape and
size of the spiral itself, which requires more focus and fine
control over the kinematic and dynamic aspects of drawing.
In the case of the sentence writing task, Figure 5 shows that
the most important pixels tend to be clustered around bends
with high curvature. Again, this likely indicates that areas with
higher differentiation potential are related to increased demand
in terms of the kinematic and dynamic aspects of handwriting.
This is an interesting observation showing that a CNN without
any knowledge about the evolution of drawing/handwriting
over time (as it is given only the final handwritten product)
is able to identify the areas in handwritten images that require
increased muscular control and focus. This observation could
be consistent with the findings presented in Vásquez-Correa
et al. (2019), where the transitions from non-moving to moving
and from moving to non-moving states were shown to be
highly informative. Additionally, this observation supports the
importance of handcrafted features and poses an interesting
research question of whether deep neural networks, when
trained with adequately large and heterogeneous datasets, could
provide more insights for the development of new features
or whether the present knowledge about baseline handwriting
features could be used for the development of novel deep
neural networks specialized for automated feature extraction
from handwriting/drawing.

5.1. Study Limitations
This work has several limitations. First, we need to be aware
of the restricted statistical strength of any inferences regarding
the population of patients with PD given the relatively limited
sample size. In addition, although the clinical information is not
complete for all of the datasets, it is evident that the PD cohort
contains patients with different levels of PD progression; for
example, based on the UPDRS III, the CO subjects are at a more
severe stage than the CZ subjects. On the other hand, by fusing

them together, we were able to train models that could support
the diagnosis of PD in both severe and early stages.

Another limitation is associated with the effect of medication.
Since we did not have information about LED for all PD subjects,
we could not control for this effect in the statistical modeling.
According to Zham et al. (2019), levodopa has a positive effect,
especially on the performance in simple graphomotor tasks, such
as the Archimedean spiral drawing task in our case. Nevertheless,
the authors reported that no such benefit was observed in
the sentence writing task, which imposes higher memory and
cognitive loads. Therefore, we assume that controlling for the
effect of medication in our analyses could further improve the
performance of the models based on the spiral drawing task.

Next, although we performed unit unification and resampling
on the signals so that they all had the same sampling frequency,
the different recording conditions (e.g., paper vs. the display
version of the tablets) could still have had some impact on
the results.

In addition, various machine learning models should be
trained and compared in future studies to obtain more
information about the classification performance of the proposed
features and to obtain the most robust models for PDYS
identification. Finally, the relationship between the classification
performance of the trained models and the feature space
complexity as well as the cross-validation setup should be
investigated to evaluate and confirm the robustness of the
proposed methodology.

In summary, considering its limitations, this study should be
viewed as a pilot study that is exploratory in nature, and its results
should be confirmed by subsequent research studies.

6. CONCLUSION

We investigated several aspects of handwriting evaluation for
the detection of PDYS. First, we compared the utilization of
handcrafted features with the utilization of features extracted
by a CNN. We found that the two approaches are competitive,
especially for the spiral drawing task, which is independent of
language. Handcrafted features (especially kinematic features)
proved to be the better choice for the sentence writing task
in multilingual scenarios. This is expected since CNN-based
features are extracted only from offline handwriting samples,
from which temporal information is not available. In addition,
the orthography of a sentence is strongly affected by the language
of the writer. Second, we analyzed the effect of multilinguality
on the training and performance of classification models. Here,
in contrast to our initial hypothesis, model validation performed
on sentences written in a different language than the ones used
for training did not result in performance degradation. In fact,
the prediction accuracy improved in the case of the US and HU
datasets. Finally, we compared the sentence writing task and
the spiral drawing task. Here, the sentence writing task showed
higher discrimination potential, even in multilingual scenarios.

Although there are several limitations, to the best of our
knowledge, this is the first study to compare the classification
performance of conventional handcrafted features designed
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by domain experts and features extracted automatically by
a pretrained CNN from a multilingual dataset collected from
patients suffering from PD. It also provides an objective
evaluation of PDYS detection using two different and
very promising approaches and analyzes several aspects of
handwriting that are frequently neglected in the literature. Based
on the results, we can conclude that both types of features
have great potential to be used to describe various aspects
of drawing/handwriting in both language-independent and
language-dependent scenarios. In summary, our work can be
perceived as establishing some initial baseline results for further
research toward the introduction of new prediction models
utilizing handcrafted features as well as CNN-based features
that could provide more robustness and confidence in the
identification of HD in patients with PD.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Research Ethics Committee of Masaryk University,
Zerotinovo Namesti, 617/9, 601 77 Brno, Czech Republic. The

patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

IR, TK, SR, JO-A,MF-Z, ZS, JMe, PD, and ZG: conceptualization.
ZG, PD, JMe, MG, JMu, and VZ: research about the current
state of knowledge. IR, LB, TK, SR, JO-A, RC, MF-Z, JMe, and
ZG: database acquisition, development, and processing. ZG, PD,
JMe,MG, JMu, andVZ: feature extraction, machine learning, and
experiments. All authors contributed to the article and approved
the submitted version.

FUNDING

This work was supported by the European Union’s Horizon
2020 research and innovation program under the Marie
Skłodowska-Curie grant agreement no. 734718 (CoBeN),
by the Czech Ministry of Health under grant no. NU20-04-
00294, by the Slovak Research and Development Agency
under contract no. APVV-16-0211, by the Scientific Grant
Agency of the Ministry of Education, Science, Research
and Sport of the Slovak Republic and the Slovak Academy
of Sciences under contract VEGA 1/0327/20, and by
the Spanish grant Ministerio de ciencia e innovación
PID2020-113242RB-I00.

REFERENCES

Agrell, B., and Dehlin, O. (1998). The clock-drawing test. Age Ageing 27, 399–403.

doi: 10.1093/ageing/27.3.399

Alonso-Martinez, C., Faundez-Zanuy, M., and Mekyska, J. (2017). A comparative

study of in-air trajectories at short and long distances in online handwriting.

Cogn. Comput. 9, 712–720. doi: 10.1007/s12559-017-9501-5

Ammour, A., Aouraghe, I., Khaissidi, G., Mrabti, M., Aboulem, G., and Belahsen, F.

(2020). A new semi-supervised approach for characterizing the Arabic on-line

handwriting of Parkinson’s disease patients. Comput. Methods Prog. Biomed.

183:104979. doi: 10.1016/j.cmpb.2019.07.007

Aouraghe, I., Alae, A., Ghizlane, K., Mrabti, M., Aboulem, G., and

Faouzi, B. (2020). A novel approach combining temporal and

spectral features of Arabic online handwriting for Parkinson’s disease

prediction. J. Neurosci. Methods 339:108727. doi: 10.1016/j.jneumeth.2020.

108727

Berardelli, A., Rothwell, J., Thompson, P., and Hallett, M. (2001).

Pathophysiology of Bradykinesia in Parkinson’s disease. Brain 124, 2131–2146.

doi: 10.1093/brain/124.11.2131

Bidet-Ildei, C., Pollak, P., Kandel, S., Fraix, V., and Orliaguet, J.-P.

(2011). Handwriting in patients with Parkinson disease: effect of

l-DOPA and stimulation of the sub-thalamic nucleus on motor

anticipation. Hum. Mov. Sci. 30, 783–791. doi: 10.1016/j.humov.2010.

08.008

Brabenec, L., Mekyska, J., Galaz, Z., and Rektorova, I. (2017). Speech disorders

in Parkinson’s disease: early diagnostics and effects of medication and brain

stimulation. J. Neural Transm. 124, 303–334. doi: 10.1007/s00702-0171676-0

Brodal, P. (2003). The Central Nervous System: Structure and Function, 3 Edn.

Oxford: Oxford University Press.

Cascarano, G. D., Loconsole, C., Brunetti, A., Lattarulo, A., Buongiorno, D.,

Losavio, G., et al. (2019). Biometric handwriting analysis to support Parkinson’s

disease assessment and grading. BMC Med. Inform. Decis. Making 19, 1–11.

doi: 10.1186/s12911-019-0989-3

Castrillon, R., Acien, A., Orozco-Arroyave, J. R., Morales, A., Vargas, J., Vera-

Rodríguez, R., et al. (2019). “Characterization of the handwriting skills

as a biomarker for Parkinson’s disease,” in 2019 14th IEEE International

Conference on Automatic Face & Gesture Recognition (FG 2019) (Lille), 1–5.

doi: 10.1109/FG.2019.8756508

Chen, T., and Guestrin, C. (2016). “XGBoost: a scalable tree boosting system,” in

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 785–794. doi: 10.1145/2939672.2939785

Collins, G. S., and Moons, K. G. M. (2019). Reporting of

artificial intelligence prediction models. Lancet 393, 1577–1579.

doi: 10.1016/S0140-6736(19)30037-6

De Stefano, C., Fontanella, F., Impedovo, D., Pirlo, G., and di Freca, A. S.

(2019). Handwriting analysis to support neurodegenerative diseases diagnosis:

a review. Pattern Recogn. Lett. 121, 37–45. doi: 10.1016/j.patrec.2018.

05.013

Diaz,M., Ferrer,M. A., Impedovo, D., Pirlo, G., andVessio, G. (2019). Dynamically

enhanced static handwriting representation for Parkinson’s disease detection.

Pattern Recogn. Lett. 128, 204–210. doi: 10.1016/j.patrec.2019.08.018

Diaz, M., Moetesum, M., Siddiqi, I., and Vessio, G. (2021). Sequence-based

dynamic handwriting analysis for Parkinson’s disease detection with one-

dimensional convolutions and BiGRUs. Expert Syst. Appl. 168:114405.

doi: 10.1016/j.eswa.2020.114405

Dickson, D. W. (2012). Parkinson’s disease and Parkinsonism: neuropathology.

Cold Spring Harb. Perspect. Med. 2:a009258. doi: 10.1101/cshperspect.a009258

Dounskaia, N., Van Gemmert, A., and Stelmach, G. (2000). Interjoint

coordination during handwriting-like movements. Exp. Brain Res. 135,

127–140. doi: 10.1007/s002210000495

Drotar, P., Mekyska, J., Rektorova, I., Masarova, L., Smekal, Z., and Faundez-

Zanuy, M. (2014). Analysis of in-air movement in handwriting: a novel

marker for Parkinson’s disease. Comput. Methods Prog. Biomed. 117, 405–411.

doi: 10.1016/j.cmpb.2014.08.007

Drotar, P., Mekyska, J., Rektorova, I., Masarova, L., Smekal, Z., and Faundez-

Zanuy, M. (2016). Evaluation of handwriting kinematics and pressure for

Frontiers in Neuroinformatics | www.frontiersin.org 16 May 2022 | Volume 16 | Article 877139



Galaz et al. Comparison of CNN-Learned vs. Handcrafted Features

differential diagnosis of Parkinson’s disease. Artif. Intell. Med. 67, 39–46.

doi: 10.1016/j.artmed.2016.01.004

Drotar, P., Mekyska, J., Rektorova, I., Masarova, L., Smekal, Z., and Zanuy, M. F.

(2015). Decision support framework for Parkinson’s disease based on novel

handwriting markers. IEEE Trans. Neural Syst. Rehabil. Eng. 23, 508–516.

doi: 10.1109/TNSRE.2014.2359997

Fahn, S., and Elton, R. L. (1987). UPDRS Development Committee (1987) Unified

Parkinson’s Disease Rating Scale. Recent Developments in Parkinson’s Disease.

Florham Park, NJ: Macmillan.

Forno, L. S. (1996). Neuropathology of Parkinson’s disease. J. Neuropathol. Exp.

Neurol. 55, 259–272. doi: 10.1097/00005072-199603000-00001

Galaz, Z., Mucha, J., Zvoncak, V., Mekyska, J., Smekal, Z., Safarova, K., et al. (2020).

Advanced parametrization of graphomotor difficulties in school-aged children.

IEEE Access 8, 112883–112897. doi: 10.1109/ACCESS.2020.3003214

Garre-Olmo, J., Faúndez-Zanuy, M., López-de Ipi na, K., Calvó-Perxas, L., and

Turró-Garriga, O. (2017). Kinematic and pressure features of handwriting and

drawing: preliminary results between patients with mild cognitive impairment,

Alzheimer disease and healthy controls. Curr. Alzheimer Res. 14, 960–968.

doi: 10.2174/1567205014666170309120708

Gazda, M., Hireš, M., and Drotár, P. (2021). Multiple-fine-tuned convolutional

neural networks for Parkinson’s disease diagnosis from offline handwriting.

IEEE Trans. Syst. Man Cybernet. 1–12. doi: 10.1109/TSMC.2020.3048892

Gil-Martin, M., Montero, J. M., and San-Segundo, R. (2019). Parkinsons disease

detection from drawing movements using convolutional neural networks.

Electronics 8:907. doi: 10.3390/electronics8080907

Goetz, C. G., Poewe, W., Rascol, O., Sampaio, C., Stebbins, G. T., Counsell, C.,

et al. (2004). Movement disorder society task force report on the Hoehn and

Yahr staging scale: status and recommendations. Mov. Disord. 19, 1020–1028.

doi: 10.1002/mds.20213

Goetz, C. G., Tilley, B. C., Shaftman, S. R., Stebbins, G. T., Fahn, S., Martinez-

Martin, P., et al. (2008). Movement disorder society-sponsored revision of the

unified Parkinson’s disease rating scale (MDS-UPDRS): scale presentation and

clinimetric testing results.Mov. Disord. 23, 2129–2170. doi: 10.1002/mds.22340

Hagerty, J. R., Stanley, R. J., Almubarak, H. A., Lama, N., Kasmi, R., Guo, P., et

al. (2019). Deep learning and handcrafted method fusion: Higher diagnostic

accuracy formelanoma dermoscopy images. IEEE J. Biomed. Health Informatics

23, 1385–1391. doi: 10.1109/JBHI.2019.2891049

Heinzel, S., Berg, D., Gasser, T., Chen, H., Yao, C., Postuma, R. B., et al. (2019).

Update of the MDS research criteria for prodromal Parkinson’s disease. Mov.

Disord. 34, 1464–1470. doi: 10.1002/mds.27802

Horak, F. B., Dimitrova, D., and Nutt, J. G. (2005). Direction-specific postural

instability in subjects with Parkinson’s disease. Exp. Neurol. 193, 504–521.

doi: 10.1016/j.expneurol.2004.12.008

Hornykiewicz, O. (1998). Biochemical aspects of Parkinson’s disease. Neurology

51(2 Suppl. 2), S2–S9. doi: 10.1212/WNL.51.2_Suppl_2.S2

Hughes, A., Daniel, S., and Lees, A. (1993). The clinical features of Parkinson’s

disease in 100 histologically proven cases. Adv. Neurol. 60:595.

Impedovo, D. (2019). Velocity-based signal features for the assessment

of Parkinsonian handwriting. IEEE Signal Process. Lett. 26, 632–636.

doi: 10.1109/LSP.2019.2902936

Impedovo, D., and Pirlo, G. (2018). Dynamic handwriting analysis for

the assessment of neurodegenerative diseases: a pattern recognition

perspective. IEEE Rev. Biomed. Eng. 12, 209–220. doi: 10.1109/RBME.2018.

2840679

Impedovo, D., Pirlo, G., and Vessio, G. (2018). Dynamic handwriting analysis

for supporting earlier Parkinson’s disease diagnosis. Information 9:247.

doi: 10.3390/info9100247

Jerkovic, V. M., Kojic, V., Miskovic, N. D., Djukic, T., Kostic, V. S., and Popovic,

M. B. (2019). Analysis of on-surface and in-air movement in handwriting of

subjects with Parkinson’s disease and atypical parkinsonism. Biomed. Eng. 64,

187–194. doi: 10.1515/bmt-2017-0148

Kamble, M., Shrivastava, P., and Jain, M. (2021). Digitized spiral drawing

classification for Parkinson’s disease diagnosis. Measurement 16:100047.

doi: 10.1016/j.measen.2021.100047

Kamran, I., Naz, S., Razzak, I., and Imran, M. (2021). Handwriting

dynamics assessment using deep neural network for early identification

of Parkinson’s disease. Fut. Gener. Comput. Syst. 117, 234–244.

doi: 10.1016/j.future.2020.11.020

Kushki, A., Schwellnus, H., Ilyas, F., and Chau, T. (2011). Changes in

kinetics and kinematics of handwriting during a prolonged writing task in

children with and without dysgraphia. Res. Dev. Disabil. 32, 1058–1064.

doi: 10.1016/j.ridd.2011.01.026

Lee, J. Y., Kim, J. W., Lee, W. Y., Kim, J. M., Ahn, T. B., Kim, H. J., et al.

(2010). Daily dose of dopaminergic medications in Parkinson’s disease: clinical

correlates and a posteriori equation. Neurol. Asia 15, 137–143.

Letanneux, A., Danna, J., Velay, J.-L., Viallet, F., and Pinto, S. (2014). From

micrographia to Parkinson’s disease dysgraphia. Mov. Disord. 29, 1467–1475.

doi: 10.1002/mds.25990

McLennan, J., Nakano, K., Tyler, H., and Schwab, R. (1972).

Micrographia in Parkinson’s disease. J. Neurol. Sci. 15, 141–152.

doi: 10.1016/0022-510X(72)90002-0

Minaee, S., Kafieh, R., Sonka, M., Yazdani, S., and Jamalipour Soufi, G. (2020).

Deep-COVID: predicting covid-19 from chest x-ray images using deep transfer

learning.Med. Image Anal. 65:101794. doi: 10.1016/j.media.2020.101794

Moetesum, M., Siddiqi, I., Vincent, N., and Cloppet, F. (2019). Assessing

visual attributes of handwriting for prediction of neurological disorders-

a case study on Parkinson’s disease. Pattern Recogn. Lett. 121, 19–27.

doi: 10.1016/j.patrec.2018.04.008

Montavon, G., Lapuschkin, S., Binder, A., Samek, W., and Müller, K.-R. (2017).

Explaining nonlinear classification decisions with deep Taylor decomposition.

Pattern Recogn. 65, 211–222. doi: 10.1016/j.patcog.2016.11.008

Morberg, B. M., Malling, A. S., Jensen, B. R., Gredal, O., Wermuth, L., and Bech,

P. (2018). The Hawthorne effect as a pre-placebo expectation in Parkinson’s

disease patients participating in a randomized placebo-controlled clinical study.

Nordic J. Psychiatry 72, 442–446. doi: 10.1080/08039488.2018.1468480

Mucha, J., Mekyska, J., Faundez-Zanuy,M., Lopez-de Ipina, K., Zvoncak, V., Galaz,

Z., et al. (2018a). “Advanced Parkinson’s disease dysgraphia analysis based on

fractional derivatives of online handwriting,” in 10th International Congress

on Ultra Modern Telecommunications and Control Systems and Workshops

(ICUMT). doi: 10.1109/ICUMT.2018.8631265

Mucha, J., Mekyska, J., Galaz, Z., Faundez-Zanuy, M., Lopez-de Ipina, K.,

Zvoncak, V., et al. (2018b). Identification andmonitoring of Parkinson’s disease

dysgraphia based on fractional-order derivatives of online handwriting. Appl.

Sci. 8:2566. doi: 10.3390/app8122566

Mucha, J., Mekyska, J., Galaz, Z., Faundez-Zanuy, M., Zvoncak, V., Safarova,

K., et al. (2020). Analysis of various fractional order derivatives approaches

in assessment of graphomotor difficulties. IEEE Access 8, 218234–218244.

doi: 10.1109/ACCESS.2020.3042591
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Abstract. To this date, studies focusing on the prodromal diagnosis of
Lewy body diseases (LBDs) based on quantitative analysis of graphomo-
tor and handwriting difficulties are missing. In this work, we enrolled 18
subjects diagnosed with possible or probable mild cognitive impairment
with Lewy bodies (MCI-LB), 7 subjects having more than 50% prob-
ability of developing Parkinson’s disease (PD), 21 subjects with both
possible/probable MCI-LB and probability of PD > 50%, and 37 age-
and gender-matched healthy controls (HC). Each participant performed
three tasks: Archimedean spiral drawing (to quantify graphomotor diffi-
culties), sentence writing task (to quantify handwriting difficulties), and
pentagon copying test (to quantify cognitive decline). Next, we parame-
terized the acquired data by various temporal, kinematic, dynamic, spa-
tial, and task-specific features. And finally, we trained classification mod-
els for each task separately as well as a model for their combination to
estimate the predictive power of the features for the identification of
LBDs. Using this approach we were able to identify prodromal LBDs
with 74% accuracy and showed the promising potential of computerized
objective and non-invasive diagnosis of LBDs based on the assessment
of graphomotor and handwriting difficulties.
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1 Introduction

Lewy body diseases (LBDs) is a term describing a group of neurodegenerative
disorders characterized by a pathophysiological process of α-synuclein accumula-
tion in specific brain regions leading to the formation of Lewy bodies and Lewy
neurites resulting in cell death. LBDs consists of two major clinical entities:
Parkinson’s disease (PD) and dementia with Lewy bodies (DLB) [30, 39]. Al-
though the phenotypes and temporal evolution of motor and cognitive symptoms
of these two diseases vary, they share many clinical and pathophysiological fea-
tures and are therefore referred to as LBDs spectrum. Together with Alzheimer’s
disease (AD), LBDs comprise the major part of all cases of neurodegenerative
disorders.

It is known that LBDs do not start suddenly. At the time the clinical symp-
toms occur, the neurodegenerative process has reached a severe degree in which
most of the targeted neurons have already been damaged. Before the clinical
diagnosis based on the presence of typical clinical symptoms becomes possible,
there is a long period of the underlying neurodegenerative process with subtle or
nonspecific symptoms [18, 30] such as sleep disturbances, mood changes, smell
loss, constipation, etc. This period of LBDs is called the prodromal stage.

One of the early markers of PD is PD dysgraphia (micrographia and other
alterations in handwriting, e. g. kinematic and dynamic) [21, 33, 34]. Similarly,
some manifestations of dysgraphia have been observed in the prodromal DLB
as well [24]. Although modern approaches to the analysis of graphomotor and
handwriting difficulties (utilising digitising tablets) were proved to work well
during e. g. diagnosis of the clinical stage of PD [9, 11, 36], assessment of cogni-
tion in PD patients [4], or discrimination of AD and mild cognitive impairment
(MCI) [15], to the best of our knowledge, no studies employed this technology
(with high potential) in the prodromal diagnosis of LBDs in a larger scale.

Identification of the early stages of LBDs is crucial for the development
of disease-modifying treatment since the neurodegeneration may be possibly
stopped or treated before the pathological cascades start. Therefore, the goal
of this study is to explore whether the computerised assessment of graphomo-
tor and handwriting difficulties could support the prodromal diagnosis of LBDs,
more specifically, we aim to:

1. identify which task significantly discriminates LBD patients and age- and
gender-matched healthy controls (HC),

2. identify what conventional online handwriting features have good discrimi-
nation power.
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2 Materials and methods

2.1 Dataset

We enrolled 39 subjects (19 females, 20 males, age = 69.53 ± 6.61) diagnosed
with possible or probable MCI (based on the scores of the MoCA – Montreal
Cognitive Assessment [26] and based on the CCB – Complex Cognitive Battery,
see the explanation below) who were simultaneously diagnosed with possible
or probable MCI-LB (i.e. mild cognitive impairment with Lewy bodies) based
on the criteria published by McKeith et al. [23]. In this group, 21 subjects also
had more than 50% probability of developing PD (calculated following the MDS
criteria published in [18]). In addition, we enrolled 7 subjects (2 females, 5 males,
age = 66.41±4.32) without possible/probable MCI-LB, but still with more than
50% probability of developing PD. Finally, we enrolled 37 HC (26 females, 11
males, age = 67.60 ± 5.61). In the experiments, we stratified the subjects into
two groups, HC vs. LBD (i. e. people with a high risk of developing PD or DLB).

CCB was used to evaluate four cognitive domains: 1) memory (The Brief
Visuospatial memory test–revised [2], Philadelphia Verbal Learning Test [3]);
2) attention (Wechsler Adult Intelligence Scale-III: Letter-Number Sequencing,
Digit Symbol Substitution [38]); 3) executive functions (Semantic and phonemic
verbal fluency [31], Picture arrangement test [38]); and 4) visuospatial functions
(Judgment of Line Orientation [37]). The cognitive domain z-scores were com-
puted as the average z-scores of the tests included in the particular domain.

The participants were asked to perform a set of three tasks:

1. Archimedean spiral (spiral) –we consider this task as a graphomotor one,
i. e. it is a building block of some letter shapes; in addition, it is a golden
standard in PD dysgraphia diagnosis [36]

2. sentence “Tramvaj dnes už nepojede” (translation: “A tram will not go to-
day.”) writing (sentence) – this handwriting task was used e. g. in the PaHaW
database [11]

3. pentagon copying test (pentagons) – it is a task frequently used for quantifi-
cation of cognitive decline [4]

All participants were right-handed and had Czech as their native language.
They all signed an informed consent form that was approved by the local ethics
committee.

2.2 Feature extraction

The participants were asked to perform the tasks (using the Wacom Ink pen)
on an A4 paper that was laid down and fixed to a digitizing tablet Wacom In-
tuos 4 M (sampling frequency fs = 130Hz). Before the acquisition, they had
some time to get familiar with the hardware. The recorded time series (x and
y position; timestamp; a binary variable, being 0 for in-air movement and 1 for
on-surface movement, respectively; pressure exert on the tablet’s surface during
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writing; pen tilt; azimuth) were consequently parameterised utilising the follow-
ing set of features (we selected the set based on available reviews and based on
our experience [9, 11, 36]):

1. temporal – duration of writing, ratio of the on-surface/in-air duration, dura-
tion of strokes, and ratio of the on-surface/in-air stroke duration

2. kinematic – velocity, and acceleration
3. dynamic – pressure, tilt, and azimuth
4. spatial –width, height, and length of the whole product, as well as its par-

ticular strokes, i. e. stroke width, height, and length
5. spiral-specific – degree of spiral drawing severity [32], mean drawing speed of

spiral [32], second-order smoothness of spiral [32], spiral precision index [5],
spiral tightness [32], variability of spiral width [32], and first-order zero-
crossing rate of spiral [32]

6. other – number of interruptions (pen elevations), number of pen stops [28],
tempo (number of strokes normalised by duration), number of on-surface
intra-stroke intersections, relative number of on-surface intra-stroke intersec-
tions, number of on-surface inter-stroke intersections, and relative number of
on-surface inter-stroke intersections, Shannon entropy [4], number of changes
in the velocity profile, relative number of changes in the velocity profile

Most of the features were extracted using the recently released Python library
handwriting-features (v 1.0.1) [14], the rest of them were coded in Matlab. Some
features (mainly spatial, temporal and kinematic) were extracted from both on-
surface and in-air movements. In addition, kinematic features were also analysed
in horizontal and vertical projection. Features represented by vectors were con-
sequently transformed to a scalar value using median, non-parametric coefficient
of variation (nCV; interquartile range of feature divided by its median), slope
and 95th percentile (95p).

2.3 Statistical analysis and machine learning

To compare the distribution of features between the HC and LBD subjects, we
conducted Mann-Whitney U-test with the significance level of 0.05. Moreover,
to assess the strength of a relationship between the features and the subject’s
clinical status (HC/LBD), we computed Spearman’s correlation coefficient (ρ)
with the significance level of 0.05. Finally, during this exploratory step, we calcu-
lated Spearman’s correlation with the domains of CCB and the overall score of
MDS–Unified Parkinson’s Disease Rating Scale (MDS–UPDRS), part III (motor
part) [16].

To identify the presence of graphomotor or handwriting difficulties, we built
binary classification models using an ensemble extreme gradient boosting algo-
rithm known as XGBoost [6] (with 100 estimators). This algorithm was chosen
due to its robustness to outliers, ability to find complex interactions among fea-
tures as well as the possibility of ranking their importance. To build models with
an optimal set of hyperparameters, we conducted 1000 iteration of randomized
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search strategy via stratified 5-fold cross-validation with 10 repetitions aiming
to optimize balanced accuracy score (BACC; described in more detail along with
other evaluation scores below). The following set of hyperparameters were op-
timized: the learning rate [0.001, 0.01, 0.1, 0.2, 0.3], γ [0, 0.05, 0.10, 0.15, 0.20,
0.25, 0.5], the maximum tree depth [6, 8, 10, 12, 15], the fraction of observations
to be randomly sampled for each tree (subsample ratio) [0.5, 0.6, 0.7, 0.8, 0.9,
1.0], the subsample ratio for the columns at each level [0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1.0], the subsample ratio for the columns when constructing each tree [0.4,
0.5, 0.6, 0.7, 0.8, 0.9, 1.0], the minimum sum of the weights of all observations
required in a child node [0.5, 1.0, 3.0, 5.0, 7.0, 10.0], and the balance between
positive and negative weights [1, 2, 3, 4].

The classification test performance was determined using the following clas-
sification metrics: Matthew’s correlation coefficient [22] (MCC), balanced accu-
racy (BACC), sensitivity (SEN) also known as recall (REC), specificity (SPE),
precision (PRE) and F1 score (F1). These metrics are defined as follows:

MCC =
TP × TN + FP × FN√

N
, (1)

BACC =
1

2

(
TP

TP + FN

TN

TN + FP

)
, (2)

SPE =
TN

TN + FP
, (3)

PRE =
TP

TP + FP
, (4)

REC =
TP

TP + FN
, (5)

F1 = 2
PRE ×REC

PRE +REC
(6)

where N = (TP + FP ) × (TP + FN) × (TN + FP ) × (TN + FN), TP (true
positive) and FP (false positive) represent the number of correctly identified
LBD subjects and the number of subjects incorrectly identified as having LBDs,
respectively. Similarly, TN (true negative) and FN (false negative) represent
the number of correctly identified HC and the number of subjects with LBDs
incorrectly identified as being healthy.

To further optimize the trained classification models, we fine-tuned the mod-
els’ decision thresholds via the receiver operating characteristics (ROC) curve.
Using the fine-tuned decision thresholds, we evaluated the classification perfor-
mance of the models using the leave-one-out cross-validation. The ROC curves
were plotted using the probabilities of the predicted labels obtained via the
cross-validation procedure that was employed during the final evaluation of the
fine-tuned models.

And finally, to evaluate the statistical significance of the prediction perfor-
mance obtained by the built classification models, a non-parametric statistical
method named permutation test was employed [7, 29]. For this purpose, we
applied 1 000 permutations with the significance level of 0.05. To estimate the
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performance of the models on the permuted data, we used the same classification
setup as employed during the training phase [27].

3 Results

The results of the exploratory data analysis are summarized in Table 1 (sorted
based on the p-value for the Mann-Whitney U-test). The following features were
found as the most distinguishing ones in terms of the differentiation between HC
and subjects with LBD (the top 4 features are listed; *, **, and *** denote the p-
values for both the Mann-Whitney U-test and Spearman’s correlation coefficient
being bellow the significance level of 0.05, 0.01, and 0.001, respectively; if both p-
values are bellow a different significance level, the weaker statistical significance
is selected): a) spiral – nCV of acceleration (on-surface) ρ = −0.2438∗, variability
of spiral width ρ = 0.2439∗, median of azimuth ρ = 0.2378∗, and spiral precision
index ρ = 0.2367∗; b) sentence – number of pen stops ρ = 0.3460∗∗, slope of
duration of stroke (in-air) ρ = 0.2823∗∗, median of vertical velocity (on-surface)
ρ = −0.2438∗, and median of vertical acceleration (on-surface) ρ = 0.2317∗; and
c) pentagons –width of writing (on-surface) ρ = −0.3045∗∗, median of length
of stroke (on-surface) ρ = −0.2894∗∗, nCV of length of stroke (on-surface) ρ =
0.2489∗, and median of duration of stroke (on-surface) ρ = −0.2327∗.

Table 1. Results of the exploratory analysis.

feature p(U) ρ p(ρ)

spiral

nCV of acceleration (s) 0.0138 -0.2438 0.0263
variability of spiral width 0.0138 0.2439 0.0263
median of azimuth 0.0158 0.2378 0.0304
spiral precision index 0.0162 0.2367 0.0312
nCV of duration of stroke (s) 0.0438 -0.1892 0.0867

sentence

number of pen stops 0.0009 0.3460 0.0014
slope of duration of stroke (a) 0.0054 0.2823 0.0097
median of vertical velocity (s) 0.0138 -0.2438 0.0263
median of vertical acceleration (s) 0.0182 0.2317 0.0351
rel. total number of intra-stroke intersections 0.0232 -0.2206 0.0451

pentagons

width of writing (s) 0.0030 -0.3045 0.0051
median of length of stroke (s) 0.0045 -0.2894 0.0080
nCV of length of stroke (s) 0.0123 0.2489 0.0233
median of duration of stroke (s) 0.0178 -0.2327 0.0343
median of horizontal acceleration (s) 0.0182 0.2317 0.0351

1 p(U) – p-value of Mann-Whitney U-test; ρ – Spearman’s correlation co-
efficient; p(ρ) – p-value of ρ; (s) – on-surface movement; (a) – in-air move-
ment.
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Next, Table 2 presents the results of the correlation analysis (*, and ** denote
the p-values for Spearman’s correlation coefficient being below the significance
level of 0.05 and 0.01, respectively) between the features summarized in Table 1
and the following clinical information: a) MDS–UPDRS, and b) CCB domains.

Table 2. Results of the correlation analysis.

feature ρ (UPDRS) ρ (V) ρ (A) ρ (E)

spiral

nCV of acceleration (s) -0.3411∗ -0.0013 0.1130 0.1899
variability of spiral width 0.1653 -0.3973∗∗ -0.2981∗ -0.1666
median of azimuth 0.0442 -0.3656∗ -0.1029 -0.0490
spiral precision index 0.0606 -0.0942 -0.3987∗∗ -0.2126
nCV of duration of stroke (s) -0.1089 -0.1344 -0.1618 -0.0469

sentence

num. of pen stops -0.1018 -0.1181 0.1012 -0.1956
slope of duration of stroke (a) 0.2620 -0.1928 -0.0513 -0.1025
median of vertical velocity (s) 0.0314 0.1106 0.0025 0.1794
median of vertical acceleration (s) -0.2641 -0.0301 0.3246∗ 0.0193
rel. total num. of intra-stroke intersections 0.0477 0.1647 0.1143 0.0962

pentagons

width of writing (s) -0.3448∗ 0.2947∗ 0.1351 0.1362
median of length of stroke (s) -0.1545 0.1607 0.0501 0.1511
nCV of length of stroke (s) 0.3065∗ -0.2435 -0.1126 -0.1155
median of duration of stroke (s) -0.0348 0.0080 -0.0085 -0.0269
median of horizontal acceleration (s) 0.3215∗ -0.0226 -0.1632 -0.2060
1 ρ – Spearman’s correlation coefficient (∗ denotes p-value < 0.05 and ∗∗ denotes p-
value < 0.01); UPDRS–MDS–Unified Parkinson’s Disease Rating Scale, part III (mo-
tor part) [16]; V – visuospatial domain of CCB; A– attention domain of CCB; E –
executive functions domain of CCB; (s) – on-surface movement; (a) – in-air movement.

To visualize the difference in the distribution of the top 4 features summarized
above for HC and subjects with LBD, the box-violin plots are presented in
Figures 1–3. The Figure 1 shows the distribution of the features for the spiral
drawing, the Figure 2 shows the distribution of the features for the sentence
writing, and the Figure 3 is dedicated to the distribution of the features for the
pentagon copying test.

The results of the classification analysis are summarized in Table 3. We
trained 4 models in total: 3 models dedicated to each task separately and a model
combining all of the tasks. The following results were achieved (where ∗ and ∗∗
denote p-value of the permutation test bellow< 0.05 and< 0.01, respectively): a)
spiral –BACC = 0.6848∗∗, SEN = 0.8696, SPE = 0.5000; b) sentence –BACC =
0.7283∗∗, SEN = 0.9783, SPE = 0.4783 c) pentagons –BACC = 0.6848∗∗,
SEN = 0.9348, SPE = 0.4348; and d) all tasks combined –BACC = 0.7391∗∗,
SEN = 0.8043, SPE = 0.6739. The ROC curves of the trained models are shown
in Figure 4.
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Fig. 1. Distribution of the top 4 most discriminating features (spiral drawing).
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Fig. 2. Distribution of the top 4 most discriminating features (sentence writing).

4 Discussion

As mentioned in the methodology, the Archimedean spiral is considered as a
gold standard, especially in the assessment of graphomotor difficulties in PD pa-
tients [5, 8, 32], nevertheless, it has been utilised during the quantitative analysis
of Huntington’s disease, essential tremor, or brachial dystonia as well [13]. Con-
cerning the spiral features with the highest discrimination power (as identified
by the Mann-Whitney U-test), we observed that the LBD group was associated
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Fig. 3. Distribution of the top 4 most discriminating features (pentagons copying test).

Table 3. Results of the classification analysis.

task MCC BACC SEN SPE PRE F1 threshold p

spiral 0.3977 0.6848 0.8696 0.5000 0.6349 0.7339 0.26 ∗∗
sentence 0.5271 0.7283 0.9783 0.4783 0.6522 0.7826 0.36 ∗∗
pentagons 0.4267 0.6848 0.9348 0.4348 0.6232 0.7478 0.13 ∗∗
all tasks combined 0.4824 0.7391 0.8043 0.6739 0.7115 0.7551 0.48 ∗∗

1 MCC–Matthew’s correlation coefficient; BACC–balanced accuracy; SEN–
sensitivity; SPE– specificity; PRE–precision; F1 –F1 score; p – p-values computed
by the permutation test (1 000 permutations, ∗ denotes p-value < 0.05 and ∗∗ de-
notes p-value < 0.01); threshold – fine-tuned decision threshold.

with a lower range in on-surface acceleration, which we suppose is caused by
rigidity. This assumption is supported by the fact that the measure significantly
correlates (ρ = −0.3, p < 0.05) with the overall score of MDS–UPDRS III. Next,
the LBD group was not able to keep small variability of loop-to-loop spiral width
index, which is in line with findings reported in [32]. We also observed a signifi-
cant correlation between this feature and the visuospatial (ρ = −0.4, p < 0.01)
and the attention (ρ = −0.3, p < 0.05) domain of CCB. On the other hand, the
LBD group had generally higher values of the spiral precision index than the
HC one, which is against our initial assumptions (also the correlation with the
attention domain of CCB is surprisingly negative; ρ = −0.4, p < 0.01). Finally,
the last significant correlation with the clinical status was identified in the me-
dian of azimuth, which was higher in the LBD group (in addition we observed a
negative correlation with the visuospatial domain of CCB; ρ = −0.4, p < 0.05).

Regarding the classification analysis, based on the spiral features, we were
able to discriminate the LBD and HC groups with 68% balanced accuracy (area
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Fig. 4. Receiver operating characteristic curves for the trained models.

under the curve (AUC) = 71%), which is the worst result when compared to
other tasks and which supports our previous findings that even though the spiral
is considered as a gold standard the sentence copy task accents the manifestations
of dysgraphia much better [11].

Regarding the sentence, the most discriminative feature extracted from this
task is the number of pen stops (i.e. a pen is in contact with the paper and
does not vary its position for at least 30ms [8]), which was higher in the LBD
group. This parameter has been mainly employed in the diagnosis of develop-
mental dysgraphia in children population [28], however, in one study, Danna et
al. observed that this measure (but extracted from the spiral) was significantly
different between PD patients in the OFF state and HC [8]. Initially, we assumed
that the feature could be theoretically linked with cognitive deficits, but we did
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not observe any significant correlation with the visuospatial, attention, or execu-
tive functions domain of CCB. The second most significant feature was the slope
of the duration of in-air strokes. The positive correlation coefficient suggests that
the LBD subjects were associated with progressing fatigue [1, 12, 17]. Next, in
the LBD group, we observed lower on-surface vertical velocity (this is in line
with e.g. [21, 36]), but increased on-surface vertical acceleration. This could be
probably explained by the slow and less smooth handwriting. In terms of pro-
jection, the reason why these deficits dominate in the vertical movement could
be explained by the fact that the finger system (which is mainly involved in the
vertical movement) is more affected by muscular fatigue than the wrist system
(which controls horizontal movement) [20]. The vertical movement requires coor-
dinated movement and finer flexions/extensions of more joints (interphalangeal
and metacarpophalangeal), thus it is more complex than ulnar abductions of the
wrist [10, 35] and could more accent the rigidity and bradykinesia. In addition,
this manifestation could be associated with the progressive/consistent vertical
micrographia, i. e., progressive/consistent reduction in letter amplitude [34].

In terms of classification, by modelling features extracted from the sentence,
we were able to differentiate both groups with 73% balanced accuracy (AUC
= 80%). In comparison with the state of the art in supportive LBD or PD
diagnosis [9, 19, 36], it is not a competitive result, but on the other hand, we
would like to highlight that we deal with results evaluating diagnosis of LBDs
in the prodromal state that has not been targeted by other research teams yet.

Concerning the last (cognitive) task, all the top 5 discriminative features were
extracted from the on-surface movement. In our recent article [4] we proved that
in-air entropy-based parameters could be used to identify early cognitive deficits
in PD without major cognitive impairment and that they correlate with the
level of attention. In the current study, these in-air measures were not signifi-
cant, but on the other hand, their on-surface variants (i.e. median of Shannon
entropy calculated from the global/vertical movement) had the p-values of the
Mann-Whitney U-test < 0.05, moreover, they significantly correlated with the
visuospatial domain of CCB (e.g. ρ = −0.3, p < 0.05). The top 5 parameters
consist of the width of the product, which was smaller in the LBD group. It
slightly correlates with the lower median of the length of strokes (ρ = 0.3) and
lower median of the duration of strokes (ρ = 0.2) and probably means that the
subjects in the LBD group made the overlapped pentagons smaller. In addition,
since the non-parametric coefficient of variation of the length of strokes was
higher, we assume that the LBD subjects were not able to keep a stable length
of strokes (nevertheless, based on the scoring published in [25], this is assumed
as a very small deviation). Regarding the width, we also observed a negative
correlation (ρ = −0.3, p < 0.05) with the overall score of MDS–UPDRS III.

The classification based on the pentagon copying test provided 68% balanced
accuracy (AUC = 0.73%), which is slightly better than in the case of the spiral,
but not as high as in the case of the sentence.

And finally, a machine learning model based on the whole set of features
(tasks) enabled us to improve the accuracy to 74% (AUC = 76%). This shows
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that the combination of the graphomotor, handwriting and cognitive deficits can
be used to achieve reasonable performance in the prodromal diagnosis of LBDs.

5 Conclusion

This study has several limitations. Our dataset has a small sample size and the
HC and LBD groups are imbalanced, therefore to get better results in terms
of their generalisation, a bigger database must be analysed. Next, due to the
small sample size, we fused subjects with a high risk of developing PD or MCI-
LB into one LBD group. Nevertheless, subjects with MCI-LB in its prodromal
stage are associated mainly with cognitive (executive or visuospatial) decline,
while subjects with prodromal PD experience mainly motor deficits. In other
words, we suppose that further stratification of these participants into two groups
could increase the classification accuracy (we hypothesise that MCI-LB would
be more pronounced in the pentagon copying task and PD in the handwriting
one). Finally, although we tried a correction of multiple comparisons during the
statistical analysis, almost no significant features appeared after this adjustment.
To sum up, concerning the limitations mentioned above, the study should be
considered as a pilot one

In conclusion, despite the limitations, to the best of our knowledge, it is
the first work exploring the impact of computerised analysis of a graphomotor,
cognitive, and handwriting task on the prodromal diagnosis of these neurodegen-
erative disorders. It bridges the knowledge gap in the field of LBDs, and provides
baseline results for future studies focusing on the prodromal diagnosis of LBDs
via a computerized and objective analysis of graphomotor and handwriting dif-
ficulties.
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Abstract. Parkinson’s disease (PD) is a common neurodegenerative
disorder with a prevalence rate estimated to 2.0% for people aged over
65 years. Cardinal motor symptoms of PD such as rigidity and bradyki-
nesia affect the muscles involved in the handwriting process resulting
in handwriting abnormalities called PD dysgraphia. Nowadays, online
handwritten signal (signal with temporal information) acquired by the
digitizing tablets is the most advanced approach of graphomotor diffi-
culties analysis. Although the basic kinematic features were proved to
effectively quantify the symptoms of PD dysgraphia, a recent research
identified that the theory of fractional calculus can be used to improve
the graphomotor difficulties analysis. Therefore, in this study, we fol-
low up on our previous research, and we aim to explore the utilization
of various approaches of fractional order derivative (FD) in the analy-
sis of PD dysgraphia. For this purpose, we used the repetitive loops task
from the Parkinson’s disease handwriting database (PaHaW). Handwrit-
ten signals were parametrized by the kinematic features employing three
FD approximations: Grünwald-Letnikov’s, Riemann–Liouville’s, and Ca-
puto’s. Results of the correlation analysis revealed a significant relation-
ship between the clinical state and the handwriting features based on the
velocity. The extracted features by Caputo’s FD approximation outper-
formed the rest of the analyzed FD approaches. This was also confirmed
by the results of the classification analysis, where the best model trained
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PID2020-113242RB-I00.



2 J. Mucha et al.

by Caputo’s handwriting features resulted in a balanced accuracy of
79.73% with a sensitivity of 83.78% and a specificity of 75.68%.

Keywords: Fractional order derivatives · fractional calculus · Parkin-
son’s disease · online handwriting · handwriting difficulties.

1 Introduction

Fractional calculus (FC) is a name of the theory of integrals and derivatives of an
arbitrary order [28]. It has been developed simultaneously with the well-known
differential calculus [16] and its principles have been successfully used in modern
engineering and science in general [18, 32, 37]. The advances of FC have been
employed in the modeling of different diseases as well, like the human immun-
odeficiency virus (HIV) [2] or malaria [27]. In addition, the FC has been widely
utilized in several computer vision disciplines such as the super-resolution, mo-
tion estimation, image restoration or image segmentation [34]. Furthermore, in
our recent research we developed new handwriting features extraction techniques
based on the application of the fractional order derivatives (FD) [11, 21–25].

Parkinson’s disease (PD) is a chronic idiopathic disorder, with the prevalence
rate estimated to be approximately 2.0% for people aged over 65 years [12]. It is
characterized by the progressive loss of dopaminergic neurons in the substancia
nigra pars compacta [6, 13], which is a major cause of the symptoms linked with
the PD. Primary PD motor symptoms are tremor at rest, muscular rigidity,
progressive bradykinesia, and postural instability [3, 14]. One of the essential
motor symptoms of PD is PD dysgraphia [17, 36]. Additionally, a variety of non-
motor symptoms such as cognitive impairment, sleep disturbances, depression,
etc. may arise.

PD dysgraphia includes a spectrum of neuromuscular difficulties like motor-
memory dysfunction, motor feedback difficulties, graphomotor production deficits
and others [17, 31]. These disabilities leads to a variety of handwriting diffi-
culties manifesting as dysfluent, shaky, slow, and less readable handwriting.
The most commonly observed handwriting abnormality in PD patients is mi-
crographia. Micrographia represents the progressive decrease of letter’s ampli-
tude or width [20]. Some PD patients never develop micrographia, but they still
exhibit other handwriting difficulties. Accordingly, the consequences of PD dys-
graphia significantly affect a person’s quality of life. Starting with slow and less
legible handwriting and often progressing to lower self-esteem, poor emotional
well-being, problematic communication and social interaction, and many others.
Nowadays, the most advanced approaches of the PD manifestations quantifi-
cation contained in the handwriting are based on digitizing tablets [9, 21, 35].
These devices can acquire x and y trajectories along with temporal information,
therefore the temporal, kinematic, or dynamic characteristics can be processed
together with the spatial features. Handwritten signal acquired by the digitizing
tablet is called online handwriting.

In the past decades, researchers have been exploring the effect of several
handwriting/drawing tasks in PD dysgraphia analysis, including the simplest
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ones (loops, circles, lines, Archimedean spiral) together with more complex ones
(words, sentences, drawings, etc.) [7–9, 21–23, 26]. Drotar et al. [7–9] reported
classification accuracy up to 89% using a combination of kinematic, pressure,
energy or empirical mode decomposition features. The diagnosis of PD with
accuracy of 71.95% based on the kinematic and entropy features extracted from
the sentence task was reported by Impedovo et al. [15]. Taleb et al. [35] reported
up to 94% accuracy of PD severity prediction using kinematic and pressure
features in combination with adaptive synthetic sampling approach (ADASYN)
for model training. Rios-Urrego et al. [30] achieved classification accuracy of
83.3% using the kinematic, geometric, spectral and nonlinear dynamic features.
New kinematic features utilizing the discrete time wavelet transform, the fast
Fourier transform and a Butter/adaptive filter introduced by Aouraghe et al. [1]
resulted in classification accuracy of 92.2%.

Finally, in our recent works [21–23, 25] we introduced and evaluated a new
advanced approach of PD dysgraphia analysis employing the FD as a substitu-
tion of the conventional differential derivative during the basic kinematic feature
extraction. Newly designed handwriting features achieved classification accuracy
up to 90%, using the Grünwald-Letnikov approach only. In addition to PD dys-
graphia analysis, we explored the FD-based handwriting features in analysis of
graphomotor difficulties in school-aged children, where we examined three dif-
ferent FD approaches [24]. The results suggests that the employment of various
FD approximations brings major differences in kinematic handwriting features.
Therefore, as a next logical step, this study aims to:

1. extend our previous research in PD dysgraphia analysis by the utilization of
various FD approaches,

2. explore the differences of various FD approaches in the analysis of PD dys-
graphia,

3. compare the power of the FD-based handwriting features extracted by sev-
eral FD approximations to distinguish between the PD patients and healthy
controls (HC).

2 Materials and methods

2.1 Dataset

For the purpose of this study, we used the Parkinson’s disease handwriting
database (PaHaW) [7]. The database consists of several handwriting or drawing
tasks acquired in 37 PD patients and 38 healthy controls (HC). The participants
were enrolled at the First Department of Neurology, St. Anne’s University Hos-
pital in Brno, Czech Republic. All participants reported Czech language as their
native language and they were right-handed. The patients completed their tasks
approximately 1 hour after their regular dopaminergic medication (L-dopa). All
participants signed an informed consent form approved by the local ethics com-
mittee. Demographic and clinical data of the participants involved in this study
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can be found in Table 1. For the purpose of this study, we selected the repeti-
tive loop handwriting task. This task is missing for several participants of the
PaHaW dataset, therefore, we processed 31 PD patients and 37 HC only.

Table 1. Demographic and clinical data of the participants.

Gender N Age [y] PD dur [y] UPDRS V LED [mg/day]

Parkinson’s disease patients

Females 15 70.2 ± 8.4 7.9 ± 3.9 1.9 ± 0.4 1129.7 ± 572.9
Males 16 65.9 ± 13.1 7.0 ± 3.9 2.4 ± 0.9 1805.7 ± 743.3
All 31 68.0 ± 11.1 7.4 ± 3.9 2.2 ± 0.8 1478.6 ± 739.8

Healthy controls

Females 17 61.6 ± 10.2 - - -
Males 20 63.3 ± 12.5 - - -
All 37 62.9 ± 11.5 - - -
1 N–number of subjects; y – years; PD dur –PD duration; UPDRS V–
Unified Parkinson’s disease rating scale, part V: Modified Hoehn & Yahr
staging score [10]; LED–L-dopa equivalent daily dose.

2.2 Data Acquisition

The PaHaW database [7] consists of nine handwriting tasks. For the purpose of
this study we selected the repetitive loop task only. An example of the repetitive
loop task for a PD patient and a HC can be seen in Figure 1. During the
acquisition of the handwriting tasks, the participants were rested and seated
in a comfortable position with a possibility to look at a pre-filled template. In
case of some mistakes, they were allowed to repeat the task. A digitizing tablet
(Wacom Intuos 4M) was overlaid with an empty paper and the participants wrote
on that using the Wacom Inking pen. Online handwriting signals were recorded
with fs = 150 Hz sampling rate, and the following time sequences were acquired:
x and y coordinates (x[t], y[t]); time-stamp (t); on-surface and in-air movement
status (b[t]); pressure (p[t]); azimuth (az[t]); and tilt (also called altitude; al[t]).

2.3 Fractional Order Derivative

The main subject of this study is the exploration of the various FD approxima-
tions as a substitution of the conventional differential derivatives in the handwrit-
ing feature extraction process. We utilized three different FD approximations,
namely: Grünwald-Letnikov (GL), Riemann–Liouville (RL), and Caputo (C),
implemented by Valério Duarte in Matlab [38–40].

First approach employed in this study was developed by Grünwald and Let-
nikov. A direct definition of the derivation of the function y(t) by the order α
– Dαy(t) [28] is based on the finite differences of an equidistant grid in [0, τ ],
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Fig. 1. Example of the repetitive loop task for a HC (left) and a PD patient (right).

assuming that the function y(t) satisfies certain smoothness conditions in every
finite interval (0, t), t ≤ T , where T denotes the period. Choosing the grid

0 = τ0 < τ1 < ... < τn+1 = t = (n+ 1)h, (1)

with
τk+1 − τk = h, (2)

and using the notation of finite differences

1

hα
∆α

hy(t) =
1

hα

(
y(τn+1)−

n+1∑

v=1

cαv y(τn+1−v)

)
, (3)

where
cαv = (−1)v−1(αv ). (4)

The Grünwald–Letnikov definition from 1867 is defined as

GLDαy(t) = lim
h→0

1

hα
∆α

hy(t), (5)

where GLDαy(t) denotes the Grünwald-Letnikov derivatives of order α of the
function y(t), and h represents the sampling lattice.

Second approach used in this study has been given by Riemann-Liouville. The
left-inverse interpretation of Dαy(t) by Riemann-Liouville [28, 18] from 1869 is
defined as

RLDαy(t) =
1

Γ (n− α)

(
d

dt

)n
t∫

0

(t− τ)n−α−1y(t) dt, (6)
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where RLDαy(t) denotes the Riemann–Liouville derivatives of order α of the
function y(t), Γ is the gamma function and n− 1 < α ≤ n, n ∈ N, t > 0.

Third and last FD approach involved in this study was developed by M.
Caputo [4]. In contrast to the previous ones, the improvement hereabouts lies in
the unnecessity to define the initial FD condition [18, 28]. The Caputo’s definition
from 1967 is

CDαy(t) =
1

Γ (n− α)

t∫

0

(t− τ)n−α−1yn(t) dt, (7)

where CDαy(t) denotes the Caputo derivatives of order α of the function y(t),
Γ is the gamma function and n− 1 < α ≤ n, n ∈ N, t > 0.

2.4 Feature extraction

Considering the nature of the selected task, on-surface handwriting features were
extracted only. Since we did employ three FD approaches in the feature extrac-
tion process, three sets of the handwriting features were created. Digitizing tablet
rarely omits 3–4 samples during the acquisition, therefore the in-signal outliers
removal was performed (outliers were considered as elements more than three
scaled median absolute deviations from the median). If not pre-processed, the
differentiation of this gap would leave significant peaks in the output handwrit-
ing feature. All handwriting features were computed for α in the range of 0.1–1.0
(with the step of 0.1), where α = 1.0 is equal to the full derivation. Furthermore,
the statistical properties of all extracted handwriting features were described by
the mean and the relative standard deviation (relstd). To sum up, each feature
set consists of 180 computed kinematic features.

2.5 Statistical analysis and machine learning

Firstly, the normality test of the handwriting features using the Shapiro-Wilk
test was performed [33]. Since most of the features were found to come from
normal distribution, we did not apply any normalization on a feature basis.
To control for the effect of confounding factors (also known as covariates), we
controlled for the effect of age and gender of the subjects.

Next, Spearman’s (ρ) and Pearson’s (r) correlation coefficient with the sig-
nificance level of 0.05 were computed to assess the strength of the monotonous
and linear relationship between the handwriting features and the subject’s clin-
ical status (PD/HC). Finally, to control for the issue of multiple comparisons,
p-values were adjusted using the False Discovery Rate (FDR) method.

Consequently, binary classification models were built in order to distinguish
between the PD patients and HC utilizing the extracted handwriting features.
An ensemble extreme gradient boosting algorithm known as XGBoost [5] (with
100 estimators) was used for this purpose. The XGBoost algorithm was selected
due to its ability to find complex interactions among features as well as the
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possibility of ranking their importance and its robustness to outliers. Hyper-
parameter space optimization (1000 iteration) by the randomized search strategy
(stratified 5-fold cross-validation with 10 repetitions) was performed to optimize
balanced accuracy. The set of hyper-parameters that were optimized can be
found in the following table (Table 2).

Table 2. Hyper-parameters set.

hyper-parameter values

learning rate [0.001, 0.01, 0.1, 0.2, 0.3]
gamma [0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.5]
maximum tree depth [6, 8, 10, 12, 15]
subsample ratio [0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
columns subsample ratio at each level [0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
columns subsample ratio for each tree [0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
balance between positive and negative weights [1, 2, 3, 4]
minimum weights required in a child node [0.5, 1.0, 3.0, 5.0, 7.0, 10.0]

The classification performance was evaluated by the following classification
metrics: Matthew’s correlation coefficient [19] (MCC), balanced accuracy (BACC),
sensitivity (SEN) also known as recall (REC), specificity (SPE), precision (PRE)
and F1 score (F1). These metrics are defined as follows:

MCC =
TP × TN + FP × FN√

N
, (8)

BACC =
1

2

(
TP

TP + FN

TN

TN + FP

)
, (9)

SPE =
TN

TN + FP
, (10)

PRE =
TP

TP + FP
, (11)

REC =
TP

TP + FN
, (12)

F1 = 2
PRE ×REC

PRE +REC
(13)

where N = (TP + FP ) × (TP + FN) × (TN + FP ) × (TN + FN), TP (true
positive) and FP (false positive) represent the number of correctly identified
PD patient and the number of subjects incorrectly identified as PD patient,
respectively. Similarly, TN (true negative) and FN (false negative) represent
the number of correctly identified HC and the number of subjects with PD
incorrectly identified as being healthy.

For a better illustration, the overview of the performed analysis from the
handwriting task selection to the evaluation of the results can be found in Fig-
ure 2.
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Fig. 2. Flow overview of the performed experiments.

3 Results

The results of the correlation analysis can be seen in Table 3, where the top 5 fea-
tures per FD approximation according to the p-values of Spearman’s correlation
are shown. The most significant correlation (after the FDR adjustment) with
the clinical state (PD/HC) of the participants was identified in the features ex-
tracted by the Caputo’s FD approach. Nevertheless, all FD approaches provided
the handwriting features that pass the selected significance level (p < 0.05),
while features extracted by Caputo’s and Riemann-Liouville’s achieved the p-
values very close to 0. Most of the top selected handwriting features are based
on horizontal velocity, and all of them have α different from 1, which confirms
the positive impact of the FD in PD dysgraphia analysis.



Exploration of Various Fractional Order Derivatives 9

Table 3. Results of the correlation analysis between the subjects’ clinical status
(PD/HC) and the computed handwriting features ranked by the adjusted p-value (and
the correlation coefficient) of Spearman’s correlation.

feature name ρ ps p∗s r pp p∗p
Caputo

relstd horizontal velocity-α=0.6 -0.5408 0.0001 0.0001 -0.5456 0.0001 0.0001
relstd horizontal velocity-α=0.5 -0.5122 0.0001 0.0001 -0.5204 0.0001 0.0001
relstd horizontal velocity-α=0.4 -0.4912 0.0001 0.0001 -0.5024 0.0001 0.0001
mean horizontal velocity-α=0.3 0.4791 0.0001 0.0001 0.4049 0.0006 0.0051
mean horizontal velocity-α=0.4 0.4716 0.0001 0.0001 0.4240 0.0003 0.0036

Grünwald-Letnikov

relstd horizontal velocity-α=0.8 -0.4475 0.0001 0.0180 -0.4332 0.0002 0.0240
relstd horizontal velocity-α=0.9 -0.4310 0.0002 0.0180 -0.4184 0.0004 0.0240
relstd horizontal velocity-α=0.7 -0.4220 0.0003 0.0180 -0.4162 0.0004 0.0240
relstd horizontal velocity-α=0.6 -0.3964 0.0008 0.0324 -0.3682 0.0020 0.0720
relstd vertical velocity-α=0.9 -0.3949 0.0009 0.0324 -0.3801 0.0014 0.0630

Riemann-Liouville

mean horizontal velocity-α=0.2 0.4882 0.0001 0.0001 0.3869 0.0011 0.0060
relstd horizontal velocity-α=0.2 -0.4716 0.0001 0.0001 -0.4643 0.0001 0.0013
mean horizontal velocity-α=0.3 0.4716 0.0001 0.0001 0.4240 0.0003 0.0022
relstd vertical velocity-α=0.2 -0.4686 0.0001 0.0008 -0.4654 0.0001 0.0013
relstd vertical velocity-α=0.3 -0.4475 0.0001 0.0008 -0.4483 0.0001 0.0013

1 ρ – Spearman’s correlation coefficient; ps – p-value of Spearman’s correlation;
p∗s – adjusted p-value of Spearman’s correlation; r –Pearson’s correlation coef-
ficient; pp – p-value of Pearson’s correlation; p∗p – adjusted p-value of Pearson’s
correlation; relstd – relative standard deviation; h. – horizontal; v. – vertical.

The results of the classification analysis are summarized in Table 4. In total,
4 models were trained: one model per each FD approach and one model com-
bining all the features. The best classification performance was achieved by the
Caputo’s FD approach with BACC = 0.7973, SEN = 0.8378, SPE = 0.7568,
PRE = 0.7750 and F1 = 0.8052. However, the highest SEN and SPE were
achieved by the Riemann-Liouville approach (SPE = 0.8378, PRE = 0.8065).

Next, in Figure 3 the comparison of the horizontal velocity function for α =
0.6 across all of the utilized FD approximations is visualized. The handwriting
features were extracted from the performance of the PD patient with high PD
severity. And finally, an example of the dependency of the mean of horizontal
velocity on the FD order α for all three FD approaches is shown in Figure 4.

4 Discussion

The main goal of this study is to explore various FD approximations and their
differences in the analysis of the PD dysgraphia by online handwriting. For bet-
ter illustration and more understanding of the differences as well as the common
characteristics, the comparison of the identical handwriting feature extracted
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Table 4. Results of the classification analysis.

FD approach MCC BACC SEN SPE PRE F1

C 0.5966 0.7973 0.8378 0.7568 0.7750 0.8052
RL 0.5204 0.7568 0.6757 0.8378 0.8065 0.7353
GL 0.4867 0.7432 0.7297 0.7568 0.7500 0.7397

ALL 0.5135 0.7568 0.7568 0.7568 0.7568 0.7568

1 MCC–Matthew’s correlation coefficient; BACC–balanced
accuracy; SEN– sensitivity; SPE– specificity; PRE–precision;
F1 –F1 score; GL –Grünwald-Letnikov; C –Caputo; RL –
Riemann–Liouville; ALL (combination of all feature-types, i. e.
540 features).

Fig. 3. Comparison of the horizontal velocity function (α=0.6) across all of
the FD approximations (PD patient; C –Caputo; GL –Grünwald-Letnikov; RL –
Riemann–Liouville).

Fig. 4. Mean of horizontal velocity depending on FD order α (PD patient; C –Caputo;
GL –Grünwald-Letnikov; RL –Riemann–Liouville).

for all three FD approaches can be found in Figure 3. The feature is extracted
from the handwritten product of a PD patient and the feature represents the
horizontal velocity for α = 0.6. The velocity function extracted by the Riemann-
Liouville’s approximation dominates by its oscillatory nature in comparison to
the other two approaches. Nevertheless the envelope of Riemann-Liouville’s ap-
proach follows the local maximums and minimums of the functions computed
by the Caputo’s and Grünwald-Letnikov’s approximation. A minor shift of the
velocity function can be noticed between the Caputo’s and Grünwald-Letnikov’s
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approaches. This is due to the nature of the Caputo’s FD approach, which differ-
entiates input data before the convolution operation, so the temporal memory
is applied to the velocity afterwards. Regarding the visualization in Figure 3,
we can confirm the differences in the same handwriting feature extracted by
various FD approximations. Additionally, the dependency comparison of the
mean of horizontal velocity on the order α is provided in Figure 4. The oscil-
latory behaviour of the Riemann-Liouville’s function results in the wider gap
from the Caputo’s and Grünwald-Letnikov’s functions. Nevertheless, all three
FD approaches converge to the same point as the order α is closer to 1.0. This
behaviour is expected, because the full derivation has to be the same for all
approaches.

Regarding the results of the correlation analysis, the most significantly cor-
related handwriting features (after the FDR adjustment) were extracted by the
Caputo’s FD. This observation is in line with our previous results [24], where
we analysed the same three FD approaches in assessment of the graphomotor
difficulties in school-aged children. The performance of the handwriting features
extracted by the Riemann–Liouville’s approach is almost as good as the Ca-
puto’s features. The Grünwald-Letnikov’s handwriting features achieved weaker
relationship, however the features are still below selected level of significance
(p < 0.05). Most significantly correlated handwriting features are related to the
horizontal velocity. In general, PD dysgraphia is linked with the reduced velocity,
which could occur even more often than micrographia [15, 29, 31]. This strong
relationship is reasonable due to the cardinal symptoms of PD, such as bradyki-
nesia or rigidity, which have a significant impact on fine motor skills, including
handwriting/drawing. Moreover, some studies suggest that the horizontal ver-
sion of micrographia is even more common than the vertical version [36]. The
values of the correlation coefficients for handwriting features described by the
mean are positive, which means that the performance of the participant is worse
with the higher values of the horizontal velocity. This can be confusing because
just the opposite effect may be expected. However, this may be specific for the
repetitive loop task, where the velocity for the healthy writer is more constant.
On the other hand, the writer with PD dysgraphia performs the loop more jerk-
ily, which leads to higher velocity with more variability. This is confirmed by
the fact that the features described by the relative standard deviation are neg-
ative, which means that the handwriting performance is better with the lower
variability of the horizontal velocity.

Based on the results of the classification analysis, the best classification
performance was obtained by the handwriting features computed by Caputo’s
FD. The resulting balanced accuracy was 79.73% with SEN = 83.78% and
SPE = 75.68%. In our similar study [21] we achieved classification accuracy
of 80.60% with SEN = 79.4% and SPE = 80.56% using all of the handwrit-
ing tasks from the PaHaW database, but only the Grünwald-Letnikov FD was
employed. In comparison to this study, we can conclude that the exploration
of the various FD approaches improved the classification analysis, considering
that we achieved almost the same performance only by one handwriting task
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and using the on-surface kinematic features only. The balanced accuracy of the
Riemann-Liouville and Grünwald-Letnikov FD is approximately 5% lower while
the sensitivity is lower up to 15% in comparison to the Caputo’s FD. Consid-
ering the reported results, we can conclude that the Caputo’s approach is the
most suitable FD approximation of the kinematic analysis of the PD dysgraphia
by online handwriting.

5 Conclusion

To the best of our knowledge, this is one of the first studies performing an
investigation of the various FD approaches in the computerized analysis of the
PD dysgraphia by online handwriting. For that reason, the outcomes should be
considered as being rather exploratory and pilot in nature. Based on the reported
results, Caputo’s FD approximation outperformed the rest of the analysed FD
approaches in all experiments. The correlation analysis resulted in the significant
relationship between the clinical state and the handwriting features based on
the velocity, which is in line with our previous findings. Additionally, the best
classification model achieved the balanced accuracy of 79.73% with SEN =
83.78% and SPE = 75.68%, which is a comparable result to our previous studies.

This study has several limitations and possible parts, that could be further
improved. The processed dataset is relatively small in terms of the statistical
validity of the achieved results. Next, the α order should be explored more sensi-
tively (e. g. with a step of 0.01 or even less) in order to identify the optimal range
for PD dysgraphia analysis. Additionally, other feature types, such as temporal,
spatial, and dynamic, should be included in future comparisons. Moreover, the
comparison of the various FD-based features with the conventionally used hand-
writing features should be performed. Besides, all handwriting tasks included
in the PaHaW database have to be investigated by the various FD approaches.
And finally, various machine learning models should be trained and compared
in future studies.
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A B S T R A C T   

Introduction: Impaired copy of intersecting pentagons from the Mini-Mental State Examination (MMSE), has been 
used to assess dementia in Parkinson’s disease (PD). We used a digitizing tablet during the pentagon copying test 
(PCT) as a potential tool for evaluating early cognitive deficits in PD without major cognitive impairment. We 
also aimed to uncover the neural correlates of the identified parameters using whole-brain magnetic resonance 
imaging (MRI). 
Methods: We enrolled 27 patients with PD without major cognitive impairment and 25 age-matched healthy 
controls (HC). We focused on drawing parameters using a digitizing tablet. Parameters with between-group 
differences were correlated with cognitive outcomes and were used as covariates in the whole-brain voxel- 
wise analysis using voxel-based morphometry; familywise error (FWE) threshold p < 0.001. 
Results: PD patients differed from HC in attention domain z-scores (p < 0.0001). In terms of tablet parameters, 
the groups differed in Shannon entropy (horizontal in-air, p = 0.003), which quantifies the movements between 
two strokes. In PD, a correlation was found between the median of Shannon entropy (horizontal in-air) and 
attention z-scores (R = − 0.55, p = 0.006). The VBM revealed an association between our drawing parameter of 
interest and gray matter (GM) volume variability in the right superior parietal lobe (SPL). 
Conclusion: Using a digitizing tablet during the PCT, we identified a novel entropy-based parameter that differed 
between the nondemented PD and HC groups. This in-air parameter correlated with the level of attention and 
was linked to GM volume variability of the region engaged in spatial attention.   

1. Introduction 

Subtle cognitive deficits are very common in Parkinson’s disease 
(PD) and mostly include altered attention and executive functions that 
are particularly related to dopaminergic deficits and dysfunction of as-
sociation basal ganglia circuitry [1], although other neurotransmitters 
seem to be involved as well [2]. In addition to the abovementioned 
profile of cognitive impairment, other cognitive domains may be 
affected [3]. For a quick and easy assessment of executive and visuo-
spatial functions, a task involving copying two intersecting pentagons is 
often used. Performance in the pentagon copying test (PCT) has been 
shown to predict cognitive decline in PD [4]; however, results may vary 
depending on the scoring method [5]. We have shown that handwriting 

kinematic parameters, assessed with the help of a digitizing tablet, can 
precisely quantify both “on-surface” and “in-air” hand movements [6], 
and the in-air kinematic parameters distinguished PD from healthy 
controls (HC) with higher accuracy than the well-described on-surface 
handwriting parameters [7]. Hesitation and uncertainty between two 
handwriting/drawing strokes lead to excessive in-air movements that 
may reflect disturbed planning of movement execution and/or cognitive 
deficits. We have previously shown that Shannon entropy, i.e. a nu-
merical measure of the randomness or uncertainty of a signal, is a good 
in-air parameter that reflects alterations of PD handwriting [8]. There-
fore, in the frame of this study, using a digitizing tablet and exploiting 
the Shannon entropy, we aimed to identify a more precise parameter 
that would quantify PCT and distinguish nondemented PD subjects from 
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HC. We also aimed at identifying their cognitive and neural correlates. 

2. Methods 

2.1. Participants 

We enrolled 27 patients with clinically established PD and 25 HC. All 
participants were right-handed. None of the subjects had a history or 
presence of psychosis, hallucinations, depression, or dementia [3]. All 
PD patients were on a stable dopaminergic medication and were tested 
in the ON medication state without dyskinesias. All participants signed 
an informed consent form that was approved by the local ethics 
committee. 

2.2. PCT parameters and visual scoring 

The participants were asked to perform a drawing on an A4 paper 
that was laid down and fixed to a digitizing tablet Wacom Intuos 4 M. 
Collected signals are described in Suppl. Material. 

During the parameterization of the PCT drawings, we focused on six 
features included in evaluating the on-surface drawing: 1) spatial fea-
tures – height and length; 2) temporal feature – duration of drawing; 3) 
kinematic feature – relative standard deviation of acceleration which is 
associated with the fluency of drawing; and 4) entropy-based features – 
median of Shannon entropy extracted from in-air hand movements 
(horizontal, vertical) between consecutive strokes. A stroke is a product 
of a drawing on paper performed between two pen elevations, e.g. see 
the blue lines in Fig. 1 and Suppl. Material for more details. Considering 
that the horizontal in-air movement is represented by time-series X with 
n unique samples xi, then its Shannon entropy is calculated as H(X) = −

∑n

i=1
p(xi)log2p(xi), where p(xi) is the probability density function [8]. 

Analogically, the formula can be applied to the time series of the vertical 
in-air movement. 

The PCT was scored by a psychologist (LB), using the qualitative 
scoring of pentagon test (QSPT) method [9]. The total score ranged from 
0 to 13 points; for details see the Supplementary materials. 

2.3. Neuropsychological assessment 

Four cognitive domains (visuospatial, memory, attention, and exec-
utive domains) were examined using a complex neuropsychological 
assessment. The cognitive domain z-scores were computed as the 
average z-scores of the tests included in the particular domain and were 
correlated with PCT parameters. For details see the Supplementary 

materials. 

2.4. MRI sequences 

Subjects were scanned with a 3T Siemens Prisma MR scanner 
(Siemens, Erlangen, Germany). High-resolution anatomical T1- 
weighted images were acquired (TR = 2300 ms, TE = 2.33 ms, FA =
8◦, FOV = 224 mm, slice thickness 1 mm, 240 sagittal slices, matrix size 
224 × 224). 

2.5. Association between PCT parameters and regional GM volumes 

SPM12 software was used to pre-process anatomical T1-weighted 
images. MR images were segmented into gray and white matter seg-
ments and the DARTEL imported versions of GM and white matter were 
obtained for each subject. They were then spatially registered to the MNI 
coordinate system using the DARTEL toolbox [10]. GM probability maps 
were Jacobian-modulated in order to preserve the original GM volume 
and smoothed using a spatial filter with the Gaussian kernel (FWHM =
10 mm). Lastly, the values of images were divided by total intracranial 
volume (TIV) to correct for the effects of overall brain size. In the 
second-level whole-brain voxel-wise analysis, we investigated the 
presence of significant linear correlations between regional volumes and 
drawing features of interest (i.e. with significant differences between 
both groups) using the general linear model separately in the HC and PD 
groups. Age, gender, education, and levodopa equivalent dose (LED) 
were included as covariates of no interest. Results were considered 
significant if p < 0.05 after FWE correction was performed with the 
initial threshold being p < 0.001. 

2.6. Statistical analysis 

We used the Mann-Whitney U test to assess differences between HC 
and PD in PCT parameters, cognitive domain z-scores, and PCT visual 
scores. Spearman’s correlations between PCT parameters of interest (i.e. 
with significant differences between both groups) and cognitive do-
mains z-scores and PCT visual scores were calculated separately in the 
PD and HC groups. Additional partial correlation analyses were per-
formed with LED and Unified Parkinson’s Disease Rating Scale III 
(UPDRS III) scores as covariates in order to regress out the effects of 
motor impairment and/or dopaminergic medication. Bonferroni 
correction was used to control for multiple testing. 

Fig. 1. PCT performed by a PD patient (A) and a HC subject (B). The blue line represents on-surface (on-paper) movement and the red line the in-air one. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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3. Results 

3.1. Clinical and cognitive outcomes 

All 52 subjects completed the study. Altogether 13 patients had left- 
sided PD symptom predominance, 10 had right-sided symptom pre-
dominance, and 4 had bilateral PD. For the demographic and clinical/ 
cognitive data for PD and HC groups, see Table 1. The PD and HC groups 
differed in all cognitive domains, but only the attention cognitive 
domain z-scores survived Bonferroni correction (for four measure-
ments). Only 3 out of 27 PD patients had z-scores lower than − 1.5 in at 
least two cognitive tests in one or more cognitive domains and were 
classified as PD-MCI [3]. The groups slightly differed in the QSPT (p =
0.016); however, as expected in non-demented subjects, the scores in 
both the HC and PD groups displayed a ceiling effect, therefore reducing 
variability in the data. These significant differences also remained after 
removal of these 3 subjects (see Suppl. Materials). There were no sig-
nificant differences between right and left sided dominant patients, see 
Supplementary Table S4. 

3.2. PCT parameters 

We observed a significant difference between the HC and PD groups 

in the median of Shannon entropy (horizontal in-air) (p = 0.003), me-
dian of Shannon entropy (vertical in-air) (p = 0.044), and relative STD 
of acceleration (on-surface) (p = 0.014); see Table 1. Only the Shannon 
entropy (horizontal in-air) survived the Bonferroni correction for six 
measurements. For an illustration of in-air movements in PD and HC, see 
Fig. 1 A,B. 

3.3. Correlation analyses between PCT parameter of interest and 
cognitive outcomes 

In the PD group, we found a significant correlation between the 
median of Shannon entropy (horizontal in-air) and attention domain z- 
scores (R = − 0.554, p = 0.006). The result survived Bonferroni 
correction for four measurements (four cognitive domains z-scores), see 
Fig. S1 and Table S1 in the Supplementary materials. Similar results 
were found after regressing out the effects of LED and UPDRS III Motor 
Assessment (R = − 0.668, p = 0.005). 

In the HC group, we found significant correlation between median of 
Shannon entropy (horizontal in-air) and executive domain z-scores (R =
− 0.447, p = 0.042). The result lost significance after correction for 
multiple testing. 

No significant correlations were found between visual PCT scores 
and cognitive domains in either PD or HC groups; see Table S2 in the 
Supplementary materials. No association was found between visual PCT 
scores and the median of Shannon entropy (horizontal in-air) either (R 
= 0.096; p = 0.697). 

3.4. Correlation between MRI regional GM volumes and PCT parameters 
of interest 

In the PD group, we found a significant negative correlation between 
our PCT parameter of interest (median of Shannon entropy, horizontal 
in-air) and GM volume in the right SPL (Brodmann area 7; Cluster size 
585 voxels; MNI coordinates 25.5 –64.5 39.0; p = 0.001; see Fig. S2 in 
the Supplementary materials). In the HC group, there were no signifi-
cant correlations between regional GM volumes and drawing features. 

4. Discussion 

Our study demonstrated that Shannon entropy extracted from in-air 
movement between two consecutive strokes, significantly differed be-
tween non-demented PD and HC while drawing intersecting pentagons. 

Shannon entropy quantifies excessive in-air movements that could be 
associated with the following activities: movement preparation, in-air 
motor start hesitation, and movement uncertainty, as well as cognitive 
impairment or lapses of attention. Previous research focused on hand-
writing showed more alterations in the horizontal direction of hand-
writing than in the vertical direction, which may be due to wrist 
extension stiffness in PD [7,11]. We showed that the variability of 
horizontal Shannon entropy was closely linked to the level of attention, 
even after regressing out the effects of motor impairment as assessed by 
motor score and LED. Attention had been clearly affected in our 
non-demented PD subjects when compared to HC despite the fact that 
only 3 out of 27 PD subjects met the criteria for PD-MCI [3] and these 
significant differences also remained after removal of these 3 subjects. 
Notably, this correlation was not found with the visual PCT scores, 
probably due to the ceiling effect and low variability of visual PCT scores 
in non-demented subjects. We did not find any significant difference 
between right and left sided dominant patients. 

Few studies have focused on assessing the neural correlates of 
pentagon drawing in PD, with variable results. Filoteo et al. [5] found 
that PCT accuracy, based on their modified visual scoring system (scores 
ranged from 3 to 0), significantly correlated with cortical volume vari-
ability in the left rostral middle frontal cortex, the right supplementary 
motor area, the pars triangularis, and the left cuneus in PD patients, i.e. 
regions involved in the frontoparietal, motor, language, and visual 

Table 1 
Demographic and clinical/cognitive variables.   

PD, N = 27 HC, N = 25 Mann- 
Whitney 

Gender (M/F) 17/10 7/18 p = 0.012 
Age (years) Med. = 67.0 

IQR = 11.0 
Med. = 67.1 
IQR = 7.12 

p = 0.806 

Education (years) Med. = 13 IQR 
= 5 

Med. = 17 
IQR = 5 

p = 0.273 

MOCA Med. = 26 IQR 
= 6 

Med. = 28 
IQR = 4 

p = 0.019 

PD duration (years) Med. = 4.0 
IQR = 8.0 

NA NA 

LED (mg) Med. = 960.0 
IQR = 910.0 

NA NA 

UPDRS III Med. = 11.0 
IQR = 9.0 

NA NA 

Memory domain z-scores Med. = 0.475 
IQR = 1.35 

Med. = 1.058 
IQR = 1.34 

p = 0.033 

Attention domain z-scores Med. = − 0.47 
IQR = 0.74 

Med. = 0.33 
IQR = 0.57 

p < 0.0001 

Executive domain z-scores Med. = − 0.11 
IQR = 0.90 

Med. = 0.27 
IQR = 0.76 

p = 0.030 

Language domain z-scores Med. = − 0.25 
IQR = 1.5 

Med. = 0.50 
IQR = 1.13 

p = 0.014 

Visuospatial domain z-scores Med. = 0.36 
IQR = 1.16 

Med. = 0.78 
IQR = 0.47 

p = 0.020 

Height of drawing (mm) Med. = 32.64 
IQR = 6.83 

Med. = 35.21 
IQR = 11.06 

p = 0.489 

Length of drawing (mm) Med. = 327.3 
IQR = 136.2 

Med. = 349.0 
IQR = 96.2 

p = 0.749 

Duration of drawing (s) Med. = 21.85 
IQR = 9.13 

Med. = 17.43 
IQR = 15.62 

p = 0.403 

relative STD of acceleration 
(on-surface) 
higher values associated with 
more dysfluent movement 

Med. = 20.01 
IQR = 10.76 

Med. = 14.91 
IQR = 5.56 

p = 0.014 

median of Shannon entropy 
(horizontal in-air) 
higher values associated with 
excessive movements in-air 

Med. = 5.4 
IQR = 1.12 

Med. = 4.54 
IQR = 0.95 

p = 0.003 

median of Shannon entropy 
(vertical in-air) 
higher values associated with 
excessive movements in-air 

Med. = 5.37 
IQR = 1.23 

Med. = 4.56 
IQR = 0.92 

p = 0.044 

QSPT Med. = 12.0 
IQR = 1.0 

Med. = 13.0 
IQR = 1.5 

p = 0.016 

Med. – median, IQR – interquartile range. 
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networks, respectively. Another study by Garcia-Diaz et al. [12] used 
cortical thickness measures and found that PD patients with abnormal 
pentagon drawings, as assessed visually, had significant cortical thin-
ning of the right precentral and postcentral gyri, superior parietal re-
gion, and posterior cingulate cortex, i.e., in regions linked to higher 
order visual processing as well as attention and movement execution. 
Unlike in our study, the PCT scores were associated with widespread 
cortical region atrophy, meaning that visual PCT scores cannot identify 
and monitor early brain changes. 

We demonstrated that changes in our in-air PCT parameter of in-
terest were significantly related to GM volume variability solely of the 
right SPL. This region is a part of the dorsal attention network (DAN) 
[13] as well as the dorsal visual stream. Both pathways are involved in 
visual (spatial) attention control in PD [13] and atrophic changes of the 
SPL have been demonstrated early in the course of the disease [14]. 
Therefore, we assume that disrupted in-air movements during PCT, as 
assessed by the digitizing tablet, could be an early manifestation of 
attention-related posterior cortical volume changes that have been 
shown to predict cognitive decline during the PD course [4]. Future 
prospective longitudinal studies should assess whether this parameter 
may serve as an early marker of cognitive impairment and dementia in 
PD. 

In conclusion, we identified a novel in-air parameter for quantitative 
PCT assessment. This parameter is closely linked to attention levels and 
to the GM volume variability of the posterior cortical region engaged in 
both visual attention and visual-spatial processing. Our results indicate 
that this in-air parameter could be used to evaluate early cognitive 
changes that precede disturbed pentagon drawing (as assessed visually) 
and this may be clinically relevant. Future longitudinal studies should 
assess whether the Shannon entropy of in-air movement will become a 
good marker for MCI and dementia conversion in PD. 
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ABSTRACT Parkinson’s disease (PD) is the second most frequent neurodegenerative disease associated
with several motor symptoms, including alterations in handwriting, also known as PD dysgraphia. Several
computerized decision support systems for PD dysgraphia have been proposed, however, the associated
challenges require new approaches for more accurate diagnosis. Therefore, this work adds spectral and
cepstral handwriting features to the already-used temporal, kinematic and statistics handwriting features.
First, we calculate temporal and kinematic features using displacement; statistic features (SF) using dis-
placement, and horizontal and vertical displacement; spectral (SDF) and cepstral (CDF) using displacement,
horizontal and vertical displacement and pressure. Since the employed dataset (PaHaW) contains only
37 PD patients and 38 healthy control subjects (HC), then as the second step, we augment the percentage
of the smaller training set to equal the larger. Next, we augment both classes to increase the training
patient’s data and added random Gaussian noise in all augmentations. Third, the most relevant features were
selected using the modified fast correlation-based filtering method (mFCBF). Finally, autoML is employed
to train and test more than ten plain and ensembled classifiers. Experimental results show that adding
spectral and cepstral features to temporal, kinematics and statistics features highly improved classification
accuracy to 98.57%. Our proposed model, with lower computational complexities, outperforms conventional
state-of-the-art models for all tasks, which is 97.62%.

INDEX TERMS Parkinson’s disease, dysgraphia, online handwriting, feature extraction, data augmentation,
autoML.

I. INTRODUCTION
Biometrics can be used for e-security and e-health [1] and can
be grouped based on two traits. Morphological biometrics,
such as fingerprints or eye pupils, use direct measurements
of the physical traits of the human body [2], [3]. Behavioral
biometrics, such as handwriting and drawing, use specific
drawing and handwriting tasks performed by the subjects
involved in data collection [4]. From a health perspective,
online handwriting biometrics are more appealing and infor-
mative on states of diseases, such as dementia, than other
popular biometrics traits, such as fingerprints or iris [3], [4]

The associate editor coordinating the review of this manuscript and

approving it for publication was Gang Mei .

because they make part of routine functional activities from
which evidence are drawn affected by the disease.

In the last two decades, online handwriting processing has
been employed in the computerized assessment of neurode-
generative disorders (e.g., Parkinson’s disease (PD)) [5], [6].
Patients with PD experience progressive loss of dopamin-
ergic neurons in substantia nigra pars compacta (located
in the midbrain), which is consequently associated with
cardinal motor symptoms such as bradykinesia, rigidity,
resting tremor, or postural instability [7]–[9]. Therefore,
especially during the clinical phase of the disorder, we can
observe freezing of gait [10], hypokinetic dysarthria [11],
hypomimia [12], or alterations in handwriting [6]. The lat-
ter was initially linked with micrographia, i.e., a progres-
sive decline in amplitude (vertical micrographia) or with
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(horizontal micrographia) of letters [13]. Nevertheless,
micrographia is one manifestation of altered handwriting in
patients with PD. Others include more pronounced changes
in kinematics and dynamics too. Letanneux et. reported a
connection to developmental dysgraphia and proposed a new
and more general term, PD dysgraphia [14].

Recently, several designs of decision support systems
for diagnosing different PDs based on speech/voice anal-
ysis [15]–[20] or gait monitoring [21]–[23], have been
proposed. However, compared with online handwriting pro-
cessing, both speech assessment and gait monitoring require
more technical equipment and are vulnerable to low sig-
nal quality due to a noncontrolled environment. Speech
assessment requires high-quality recording conditions with-
out background noise and further postprocessing of recorded
speech. This includes human-operated speech segmenta-
tion, making the whole process more difficult. Gait moni-
toring or tremor assessment techniques require specialized
equipment, such as motion capture systems, accelerome-
ters, and gyroscopes. However, the diagnosis of PD using
handwriting processing can be easily administered at the
clinic or a patient’s home. Handwriting acquisition is
simple and natural and requires no timing or exhaustive
repetitions.

A comprehensive review of quantitative analysis of PD
dysgraphia and its computerized diagnosis for published
works until 2019 has been summarized [4]–[6], [14].
Furthermore, we review the state-of-the-art designs pub-
lished in 2020 and 2021, focusing on articles using online
handwriting.

The rest of the paper is organized as follows: Section II
reviews related works and presents state-of-the-art results
obtained in PD diagnosis based on the PaHaW database.
Section III describes the H2O platform used in this work.
Section IV describes the PAHAW database. Section V
describes the feature extraction process used and describes
the type of feature obtained. Section VI presents a brief
explanation of the modified version of the fast correlation-
based filtering feature selection methodology. Section VII
describes the front-end hyperparameters. Section VIII
describes the experiments conducted and their results.
Finally, in Section IX, we present final remarks, comments,
and conclusions.

II. RELATED WORKS
This section reviews related works and state-of-the-art results
obtained for PD diagnosis. Table 1 shows a summary of the
state-of-the-art results.

Ammour et al. [24] quantitatively analyzed online
handwriting in 28 PD patients and 28 age-matched healthy
controls (HC). They quantified the performance of sub-
jects (when writing a text in Arabic letters) accord-
ing to 1482 kinematics (velocity, acceleration, jerk, etc.),
dynamic (pressure, tilt, azimuth, etc.), temporal (e.g., dura-
tion), and some additional features. From a semi-supervised
approach (employing cluster analysis), they differentiated the

PD group with 71.44% accuracy. Furthermore, they con-
cluded that the complications of fine motor skills in PD
patients were mainly manifested in the kinematic feature
set.

Liaqat Ali, et al. [25] propose a method for dealing with
the highly unbalanced handPD dataset. To improve the PD
detection accuracy on this dataset, they developed a cascaded
learning system that cascades a Chi2 model with an adaptive
boosting (Adaboost) model. Experimental results confirmed
that the proposed cascaded system outperforms six similar
cascaded systems using six state-of-the-art machine learning
models, respectively.

Taleb et al. [26] introduced a PD diagnosis concept
that uses convolutional neural networks (CNN) fed by
spectrograms (calculated from various online handwrit-
ing/drawing tasks) and CNN bidirectional long-short-term
memory networks (CNN-BLSTM) fed by raw time series.
In the publicly available dataset called HandPDMultiMC,
containing 21 PD and HC, respectively, a classification
accuracy of approximately 97.62% was achieved by com-
bining CNN-BLSTM models trained with jittering and syn-
thetic data augmentation. They trained 204,060 parameters
model for one day using an NVIDIA GTX 1080 GPU
of 8 GB.

Gupta et al. [27] explored the effect of age and gen-
der on the performance of classification models. Thus, they
used the PaHaW database [28] containing 37 PD patients
and 38 HC. The subjects performed seven tasks including
a sentence or isolated words. The data were parametrized
using kinematic, entropic, and energetic features and fed into
age- and gender-dependent support vector machine (SVM)
models. A distinct set of discriminative features was observed
in each category (age vs. gender). The results showed an
improved classification accuracy of a general model from
75.76% to 83.75% and 79.55% in a female and male set,
respectively.

Aouraghe et al. [29] focused on the effect of progressing
fatigue in PD dysgraphia. They enrolled 40 PD patients and
HC, respectively, copying a multiline paragraph in Arabic
letters. First, the paragraph was segmented into individual
lines and then, each line processed separately using a set of
temporal, kinematic, dynamic, spectral, entropy-based, and
wavelet-based features. The feature space was modeled by
k-nearest neighbor classifier (KNN), SVMand decision trees.
An accuracy of 92.86% was obtained when processing the
last line of the paragraph, i.e., the line where the fatigue is
mostly accented.

Deharab et al. [30] introduced a novel online handwrit-
ing parameterization using dynamic writing traces warping
(DWTW).DWTWwas applied to kinematic patterns of hand-
writing and returned parameters linked with the similarity
between normative and pathological time series. The features
were modeled using SVM and were evaluated on the PaHaW
dataset (29 PD and 32HC; all eight tasks including hand-
writing and drawing of Archimedean spiral), and an accuracy
of 88.33% was achieved.

141600 VOLUME 9, 2021



J. A. Nolazco-Flores et al.: Exploiting Spectral and Cepstral Handwriting Features on Diagnosing Parkinson’s Disease

TABLE 1. State -of -the -art in PD diagnosis based onUSING the PaHaW database. Legend: SVM – support vector machine; RF – random forests; ET –
extremely randomized trees; ADA – AdaBoost, TKEO – Teager-Kaiser energy operator; EMD – empirical mode decomposition; DWTW – dynamic writing
traces warping; CGP – cartesian genetic programming; 1DCL – 1-dimensional convolutional layer; BiGRUs – bidirectional gated recurrent units; ACC –
accuracy; SEN – sensitivity; SPE – specificity; PRE – precision; REC – recall, AUC – area under the ROC curve.

Parziale et al. [31] addressed a recurrent issue in
most published works, clinical interpretability. More

specifically, authors frequently use handcrafted features
poorly linked to physiological processes and employ less

VOLUME 9, 2021 141601



J. A. Nolazco-Flores et al.: Exploiting Spectral and Cepstral Handwriting Features on Diagnosing Parkinson’s Disease

interpretable machine learning models (so-called black
boxes).

Such systems are unacceptable for clinicians. There-
fore, cartesian genetic programming (CGP) (which pro-
vides a tradeoff between performance and interpretability)
was used in comparison with the more common classifiers.
The proposed methodology was evaluated on two datasets,
PaHaW (37 PD and 38 HC; all tasks were used) and
NewHandPD (31 PD and 35 HC; subjects performed a spiral
and a meander). Using conventional temporal, kinematic, and
dynamic features, CGP produced more accurate results than
white-box methods (reaching 71.18% in PaHaW and 80.39%
in NewHandPD) and more interpretable than the black
boxes.

Lamba et al. [32] analyzed basic temporal (e.g., duration)
and kinematic (e.g., velocity, acceleration, jerk) measures
in 62 PD patients and 15 HC (enrolled in the frame of the
Irvine (UCI) Parkinson’s disease spiral drawings dataset).
Due to high imbalance, the synthetic minority-oversampling
technique was employed to balance the cohort. Next, data
were modeled by several machine learning models, e.g.,
SVM,AdaBoost, andXGBoost. Finally, a classification accu-
racy of 96.02% was reported for AdaBoost.

Diaz et al. [33] discussed processed time series of online
handwriting (including velocity, acceleration, jerk, displace-
ment, pressure, etc.) using one-dimensional convolutions and
bidirectional gated recurrent units (BiGRUs). This end-to-
end pipeline was applied to PaHaW (37 PD and 38 HC; all
tasks were used) and NewHandPD (31 PD and 35 HC; all
tasks were used). The method provided competitive results
(96.25% accuracy in PaHaW and 94.44% in NewHandPD),
thus confirming the effectiveness of the sequence learn-
ing paradigm for processing sequential handwriting
data.

Impedovo et al. [34] investigate different velocity-based
signal processing techniques to address PD assessment.
He uses kinematic, energy, and cepstral features. The energy
and cepstral features are similar to the ones used in this
work, but they do not use filterbank, and they so not use the
filterbank output to calculate the cepstral. An accuracy result
of 93.7% for all tasks, and 98.44% when he selects the top
three tasks was reported.

Mucha et al. [35] combine kinematic features with
fractional-order derivatives and reported an accuracy of
97.14%, for the continuous and repetitive task, such as
Archimedean spiral.

Finally, in [36] we proposed the use of spectral and cep-
stral features for emotion recognition. Here, we concatenated
these features with very simple temporal features.

This study explores new approaches of online handwriting
parameterization, augmentation, analysis, and modeling with
a special focus on improved diagnostic accuracy. Further-
more, we explore the impact of newly proposed spectral
and cepstral features on classification accuracy and improve
the pipeline by adding data augmentation and modified fast
correlation-based filtering feature selection method.

TABLE 2. List of machine learning models.

III. DATA MODELING
For data modeling, we use autoML H2O [37], [38]. Auto-
matic machine learning (AutoML) is the process of automat-
ing algorithm selection, feature generation, hyperparameter
tuning, iterative modeling, and model assessment. It eases
training and evaluation of machine learning models. AutoML
includes many ML models, however, we limit the number of
models to the ones shown in Table 1. Also, it ensembles the
best models that outperform individual models. Furthermore,
it uses the area under the ROC curve as the default ranking
metric for binary classification. The configuration is such that
individual models are tuned using a two-fold cross-validation
set. AutoML automatically performs Bayesian hyperparame-
ter optimization.

Since a default performancemetric for eachmachine learn-
ing task is specified internally, the leaderboard is sorted by
that metric.

In Table 2, ML models include stacked ensemble mod-
els. The stacked ensemble is an efficient ensemble method,
such that the predictions, from machine learning algorithms,
are used as inputs in a second layer learning algorithm.
In the second layer, H20 ensembles all models, (Stacke-
dEnsemble_AllModels), and the best of family, (Stacke-
dEnsemble_BestOfFamily), including the best models of
each kind in the final ensemble.

IV. PAHAW DATABASE
This study employed the Parkinson’s disease handwriting
database (PaHaW), containing 37 PD patients and 38 age-
and gender-matched HC enrolled at the department of neu-
rology, St. Anne’s university hospital in Brno [28]. Besides
age and gender, the PD group is described in terms of PD
duration, unified Parkinson disease rating scale part V score,
and levodopa equivalent daily dose.

All subjects have no history or presence of any psychiatric
symptom or disease affecting the central nervous system,
except for PD. The acquisition was performed when the
patients were in their ON state, i.e., approximately one hour
after taking levodopa.
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FIGURE 1. Online-drawing time series of the first task (Archimedean
spiral drawings.

During the acquisition, the subjects were rested and seated
in front of a table in a comfortable position. They completed
a protocol on a printed template at a comfortable speed. The
prefilled template was shown to the subjects; no restrictions
on the number of repeated syllables/words in tasks or their
heights were given. The signals were recorded at a 133 Hz
sampling rate using the Intuos 4 M (Wacom technology)
digitizing tablet and Wacom inking pen.

The protocol consists of the following eight tasks: Task 1
asks the user to draw, from inside out, an Archimedean spiral;
tasks 2, 3, and 4 asks the user to repetitively write a cursive
letter ‘‘l,’’ syllable ‘‘le,’’ and trigram ‘‘les,’’ respectively;
tasks 5, 6, and 7 asks the user to repetitively write a simple
orthography and an easy syntax word, such that they are
written in one continuous movement; finally, task 8 requires
the user to write a longer sentence.

When the user was writing or drawing on the tablet
(Fig. 1), the application captured the horizontal and vertical
displacements of the pen tip in the x-axis, x (n) and the
y-axis, y (n), respectively. Furthermore, the on-surface/in-
air pen position information or status (touching/not-touching
tablet’s surface), sq (n), the altitude of the pen with respect
to the tablet’s surface, al (n), the pressure applied by the pen
tip, p (n) , the azimuth angle of the pen with respect to the
tablet’s surface, az (n) , and the signal’s timestamp, Ts, were
captured.

A. DATA AUGMENTATION
Since the training database is small and unbalanced, we aug-
ment the smaller class such that both are equal in size. Then,
we augment both classes to increase the training set.

Augmentation of the training data is performed as follows:
1. Cm = Identify the class with few samples.
2. Ns = Calculate the number of samples to compensate

for the different number of samples.
3. Randomly select Ns of Cm.
4. For each selected sample, calculate the new feature

vector by adding Gaussian random noise to the original
features.

FVa = FVu∗ + α ∗ GV

where FVu∗ is the feature vector of a random user, α is
a value less than 0.2, and GV a vector with Gaussian
random values. FVa,FVu∗, and GV are vectors with
equal dimensions.

V. FEATURE EXTRACTION
The front-end used in this study is shown in Fig. 2. This
section describes the kinematic, statistics, spectral- and cep-
stral domain features used in the front-end. Definitions for
calculating these features are provided in the next subsections
and its graphical representation is shown in Fig. 3.

A. TEMPORAL AND KINEMATIC FEATURES
The row vector of temporal and kinematic features (KF) [34]
for task τ and user u, applied to displacement, is defined as
follows:

TKFτ,udτ,u(n)
=
[
Sτ,u1 ,Fτ,u1 ,Fτ,u2 , Ḟτ,u1 , Ḟτ,u2 ,NCV τ,u,NCAτ,u,NCV τ,ur ,

NCAτ,ur ,rτ,u
]
,

where,

dτ,u(n) =
√
xτ,u (n)2 + yτ,u (n)2, is the displacement,

Sτ,u1 is the trajectory during handwriting divided by the
duration of writing,
Fτ,u1 =

∑N−1
n=1 d (2n), this is the on-air pen duration,

Fτ,u2 =
∑N−1

n=0 d (2n+ 1), this is the on-paper pen duration,
d (i) is the duration of the stroke i;when imod 2= 0, the pen
is on- air, otherwise it is on the tablet surface,
Ḟτ,u1 = Fτ,u1 /T represents the Fτ,u1 normalized to writing
duration,
Ḟτ,u2 = Fτ,u2 /T represents the Fτ,u2 normalized to writing
duration,
rτ,u is the ratio of time the pen spent in-air/on the tablet’s
surface,
NCV τ,u = 1/ (n− 1)

∑N−1
i=1 |v (i)− v(i+ 1)| represents the

number of changes in velocity direction (The mean number
of local extrema of velocity),
NCAτ,u = 1/ (n− 2)

∑N−2
i=1 |a (i)− a(i+ 1)| represents the

number of changes in acceleration direction (The mean num-
ber of local extrema of acceleration),
NCV τ,ur = NCV τ,u/(T − 1) represents the NCV τ,u relative
to writing duration,
NCAτ,ur = NCAτ,u/(T − 2 ∗ Ts) represents the NCAτ,u

relative to writing duration, Ts is the sampling time
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FIGURE 2. System Front-end mFCBF is the modified Fast Correlation-Based Filtering.

and T = spiral, letterl, syllable le, trigrammles,
word1, word2, word3, sentence is the set of tasks to per-
form.
Then, the TKF row vector is the concatenation of TKF of

each task τ ; mathematically shown below, using relational
algebra:

TKFU =

[⋃
τ∈T

[
TKFτ,ud(n)

]T]T
.

We observe that to concatenate columns, we transpose the
row vector, then we append the resulting column vectors
using the union function. Finally, the row feature vector is
obtained by transposing the column vector.

B. STATISTICS FEATURES
The statistics are obtained from the kinematic and stroke
signals [39]. First, consider the set for task τ and user u:

gτ,u (n) =
{
kτ,uw (n) , sτ,u (n)

}
,

where
n = 1, . . . ,T ,
sτ,u (n) is the stroke signal,
kτ,uw (n) = {vτ,uw (n) , aτ,uw (n) , jτ,uw (n)} is the set of kinematic
signals, applied to signal in set wτ,u (n),
wτ,u (n) = {dτ,u (n) , xτ,u (n) , yτ,u (n) is the set containing
discrete, horizontal, and vertical displacements,

dτ,u(n) =
√
xτ,u (n)2 + yτ,u (n)2, is the discrete displace-

ment,
xτ,u (n) is the horizontal displacement,
yτ,u (n) is the vertical displacement,
vτ,uw (n) = wτ,u(n)−wτ,u(n−1)

Ts
, is the velocity applied to signals

in wτ,u (n),
aτ,uw (n) = vτ,uw (n)−vτ,uw (n−1)

Ts
, is the acceleration applied to

signals in wτ,u (n),
jτ,uw (n) = aτ,uw (n)−aτ,uw (n−1)

Ts
, is the jerk applied to signal in

wτ,u (n), and T = spiral, letterl, syllable le, trigrammles,
word1, word2,word3, sentence is the set of tasks per-
formed for each user.
Statistics features row vector [Drotar et al., 2014; 2016] for

task τ and user u, is defined as follows:

SFτ,ug =

[
Bτ,ug ,Mτ,u

g
,Mτ,u

g

]
,

where

Bτ,ug(n) is the row vector of basic statistics features,
Mτ,u

g(n) is the row vector of mean features and
Mτ,u

g(n) is the row vector of momentum features.
They are all applied to all signals in gτ,u (n).
The row vector of basic statistics features is defined as
follows:

Bτ,ug =

[
↔

g
τ,u
, ǧτ,u, g̈τ,u,

...
g τ,u,

...

g̃ τ,u
]
,

where
↔

g
τ,u

is the range,
ğτ,u is the median,
g̈τ,u is the mode,
...
g τ,u

=

(
1/n

∑n=T
n=1 (g

τ,u (n)− ḡτ,u)
)1/2

is the standard
deviation
↔
. . .
g τ,u is the outlier robust range (percentile 99th–percentile
1st); all above definitions applied to all signals in setgτ,u (n),
and
T is the set of tasks to perform.
The row vector of mean features is defined as follows:

Mτ,u
g =

ḡτ,u,gτ,u, tri︷︸︸︷
gτ,u

 ,
where

ḡτ,u = 1/n
∑n=T

n=1 gτ,u (n) is the arithmetic mean,

g
τ,u
=

(∏t=T
t=1 gτ,u (n)

)1/n
is the geometric mean,

tri︷︸︸︷
gτ,u =

⋃ tri︷︸︸︷
g
τ,u
i ∀i = 5, 10, 20, 30, 40, 50, is the set of

trimmed means for each of the values in i of gτ,u (n); the
trimmed mean is the mean after removing the outliers. For
example, suppose g̃τ,ui has n values, the trimmed mean is the
mean of g̃C

i excluding the highest and lowest k data values,
where k = n∗ (i/100) /2.; all above definitions applies to all
signals in gτ,u (n), and
T (asdefined).
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The row vector of momentum statistics features is defined
as follows:

Mτ,u
g =

 qua︷︸︸︷
gτ,u

per︷︸︸︷
gτ,u

mom︷︸︸︷
gτ,ukτ,u

 ,
where︷︸︸︷
gc is the row vector of quartiles (Q3 = 25(lower , Q1 =

75/upper),
per︷︸︸︷
gτ,u =

⋃ per︷︸︸︷
g
τ,u
i , ∀i = 1, 5, 10, 20, 30, 90, 95, 100, is the row

vector of percentils,
mom︷︸︸︷
gτ,u =

⋃ mom︷︸︸︷
g
τ,u
i ,∀i = 3th, 4th, 5th, 6th, is the row vector of

i moments,

kτ,u = 1/σ 4
(∑n=T

n=1 (g
τ,u (n)− ḡτ,u)

)1/4
, is the kur-

tosis; all above definitions applies to all signals in
gτ,u (n), and T = {spiral, letterl, syllablele, trigrammles,
word1,word2,word3, sentence
Then, the row vector of the statistics feature for user U ,

using relational algebra, is shown below:

SFU =
[⋃

τ∈T
⋃

G∈gC (n)

[
SFτ,uG

]T]T
.

C. SPECTRAL-DOMAIN FEATURES
Spectral-domain feature row vectors for task τ and user u,
applied to signals is sτ,u (n), is defined as follows:

SDFτ,us =
[
FBCCτ,us (1) , . . . ,FBCCτ,us (M)

]
where
LEFBτ,us (m) = filterbank

θ=1,2,...,M
{Eτ,us (k)}, for m = 1, 2, . . . ,M ,

Eτ,us (k) = log2
(
|Sτ,u (k)|2

)
, is the log energy spectrum,

Sτ,u (k) =
∑N−1

n=0 s
τ,u (n) e−

2π i
N kn, for k = 0, 1, . . . ,K ,

is the discrete Fourier transform of the signal and
sτ,u (n) = xτ,u (n) , yτ,u (n) , pτ,u (n),
xτ,u (n) is the horizontal displacement,
yτ,u (n) is the vertical displacement, and
pτ,u (n) is the pressure signal.
Then, the row vector of the spectrum-domain features is

the concatenation of the SDF of each of the task τ for each
signal in sτ,u (n):

SDFU =
[⋃

τ∈T
⋃

S∈s
[
SDFτ,uS

]T]T
.

D. CEPSTRAL DOMAIN FEATURES
Cepstral domain feature row vectors for task τ and user u,
applied to signals in sτ,u (n), is defined as follows:

CDFτ,us =
[
LEFBτ,us (1) , . . . ,LEFBτ,us (M)

]
where

FBCCτ,us (q) =
M−1∑
m=0

LEFBτ,us (m) e−
2π i
N qm,

For q = 1, 2, . . . ,Q.

M is the number of Filterbanks, Q = M/2 is the number of
filterbanks, in the number of filterbanks divided by 2.

Then, the row vector of the cepstral domain features for
user U , again using relational algebra, is shown below:

CDFU =
[⋃

τ∈T
⋃

ψ∈9

[
FBCCτ,us (q)

]T]T
.

E. USERS FEATURE
The row feature vector FVu of each user, using relational
algebra is shown as follows:

FV u
=

[[
TKFu

]T
∪
[
SFu

]T
∪
[
SDFu

]T
∪
[
CFu

]T ]T
.

Alternatively, we define the disease state for each user as
follows:

Du
=

{
0, Normal
1, above Normal

for all u = 1 . . .U ,

The row vector relating features to the emotional state is

FVDu
=

[[
FV u]T

∪
[
Du]T]T

The data frame is defined as the union FVDu of all users,
and can be expressed using relational algebra notation as
follows:

FVD =
U⋃
u=1

FVDu.

In this dataframe, the rows represent the number of users
and the columns represent the features and its users’ disease
state.

VI. FEATURE SELECTION
Feature selection is a popular and common premodeling
step in machine learning, especially in high-dimensional
databases. Irrelevant features decrease the accuracy of data
models because models also learn irrelevant information.
Thus, selecting the right number of features increases the
performance of the machine learning method.
Several methods for selecting features exist. All of them

aim to obtain the best features and most do so by employing
statistical tools with certain correlations to selection. The
major difference between these tools is the selection criterion.
Each patient has a considerable number of features, so we
reduce the dimension of the number of features using a
modified fast correlation-based filtering (FCBF) [40].
FCBF is based on two correlation factors: correlation

between each feature and output and correlations among
major difference between these tools is the selection criterion.
Each patient has a considerable number of features, so we

reduce the dimension of the number of features using a mod-
ified fast correlation-based filtering (FCBF) [40].
FCBF selection is based on two steps. In the first step,

the selected features are the ones whose correlation with
the output are higher than a threshold. In the second step,
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FIGURE 3. Feature Processing. Notation: {} indicates the number of members in the set; [] indicates the vector dimension of each element of the set.
Black vertical rectangles indicate that the output is a set of the inputs; no-filled vertical rectangles indicate the outputs is a column concatenation of
the inputs vectors. The processing of the horizontal rectangles is made for each element of the input set, creating an output of the same dimension
as the input. In this figure, we assume a filterbanks dimension of 28 (M = 28) and cepstral coefficients number of 14 (Q = 14).

it takes the features of the first steps and selectes the ones
with correlation lower than a threshold. In our modified
version [36], mFCBF differs of the original FCBF at step 5,
where the selected feature is the one having higher correla-
tion with the output. Algorithm 1 shows a pseudo-code for

the mFCBF process. mFCBF algorithm receives, as inputs,
a dataframe and thresholds oTh and iTh. oTh is used to set
the lower correlation value of each of the selected features
and the output; iTh is used to set the higher correlation value
between features. Using the values of oTh and iTh, we can
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Algorithm 1 ThemFCBFAlgorithmReceives the Users Fea-
ture Matrix (OE), Minimum Correlation Threshold (oTh),
and the Maximum Correlation Threshold (iTh) and Returns
the Selected Set of Features
1: function mFCBF(O, oTh, iTh)
2: Calculate corr(O)
3: Otmp ← Select columns whose output correlation is >
oTh
4: Calculate corr(Otmp)
5: ÔTh,iTh ← Select columns whose correlation with the
input is < iTh and with the highest correlation with the
output.
6: return (ÔTh,iTh)
7: end function

find the right features to maximize the performance of the
machine learning method. This operation is expressed as
follows:

F̂VDoTh,iTh = mFCBFoTh,iTh (FVD) .

Note that in F̂VDoTh,iTh is a 2-D array, where one dimen-
sion represents the number of users and the other, the number
of selected features.

Feature selectivity is controlled with oTh and iTh values.
For example, given 370 user feature vectors, then for iTh =
0.15 and oTh = 0.7, the number of selected features reduce
to 26, 28, and 20 for the depression, anxiety, stress states,
respectively.

One way to visualize the relevance of features in improv-
ing performance is to use RadViz [41]. In RadViz, each
data frame sample is represented inside the circle using the
value in each series according to a physical metaphor. Each
point is attached to each characteristic with a force propor-
tional to the value the sample takes in the corresponding
series. This implies that the final position is the equilib-
rium position between all forces representing the character-
istics. Figs. 2 and 3 show the RadViz of the 2658 features
and the selected 47 features, respectively. RadViz shows
the dominant proportional values (DPV) of the features.
In the graph, the higher cloud dispersion means higher
DPV, whereas, a higher DPV means that features are easily
exploited to improve the classification. Furthermore, these
47 features have higher DPVs than the complete set of
2658 features.

VII. FRONT-END HYPERPARAMETERS
Spectral-domain features (SDF) is a function of the filter-
bank bandwidth (fbbw), the bandwidth of the filters on the
filterbank (fbw), the filterbank’s initial frequency (if ), and
the overlap between filters on the filterbank (ov).

Conversely, features selection (FS) depends on the
feature-output-correlation threshold (oTh) and the intra-
feature correlation threshold (iTh).

FIGURE 4. RadViz of the 2658 features. We can observe that there are no
features with dominant proportional values (DPVs).

FIGURE 5. RadViz of 47 selected features. Note that selecting features
increases the number of features with dominant proportional values
(DPVs).

Therefore, the parameters for the final vector of features
are

(fbbw, fbw, if , ov, oTh, iTh)

For practical, the range of values for each parameter is
defined as follows:

iThrange = [0.2− 1] ,

oThrange = [0− 0.20] ,

fbbwrange = [075], in Hz,

fbwrange = [0.5− 3] , in Hz;

if range = [0.5] and

ovrange = [0] in %.

A different set of features is selected for each combination
of values. More so, each set of features produces a corre-
sponding performance accuracy. Since one of these combi-
nations is optimal, we find the combination that maximizes
the ML accuracy.
Since augmentation of the training data, user selection, and

Gaussian noise is random, we are unaware of which users
and random sequences generate a better model. Therefore,
we train and test the model for different sets of users and
different random sequences, and we select the maximum
accuracy.

VIII. RESULTS
The Leave-Percentage-Out (LPO) was used for testing. Here,
the data model is trained with all database registers but a per-
centage, and the test is performed on registers that were out.
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TABLE 3. Accuracy (%) results for different sets of coefficients
with(FS)/without(NO_FS) feature selection applying mFCBF as features
selection.

This was repeated until all possibilities were checked, then,
we averaged the accuracy of all tests. In our experiments,
we leave the 15% out.

We sample different filterbank’s hyperparameters as
follows:

fbbwsrange = [15, 20, . . . 50], in Hz,

fbwsrange = [0.2, 0.3, , . . . , 1.0] ,

firange = [0.5] and

ovrange = [0] .

and, the mFCBF hyperparameters (oTh and iTh) are given as
follows:

oThsrange = [0, 0.02, 0.04, 0.06, . . . , 0.18, 0.20] ,

iThsrange = [0.2, 0.30, . . . , 1.0] ,

Therefore, we find the combination of this sample space
that maximizes ML accuracy.

Table 3 shows the different accuracies for different feature
sets. The accuracy results for TKF , when using feature selec-
tion or not, are 88.87% and 80%, respectively. The accuracy
results for concatenating SF and using either feature selection
or not are 94.28% and 80%, respectively.

From these two experiments, we find that adding statis-
tics feature when combined with TKF improves the result
accuracy.

Table 3 shows that the accuracy of the results when con-
catenating SDF using either feature selection or not are
97.14% and 82.85%, respectively. The last accuracy result is
for concatenating CDF using either feature selection or not,
are 98.57% and 88.57%, respectively.

The training data for all experiments were augmented by
80%, and the amplitude of the random Gaussian (α) was set
to 0.2.

IX. CONCLUSION AND FUTURE WORK
We applied spectral and cepstral features on Parkinson’s
disease detection. Although spectral and cepstral features
have been successfully applied for emotion detection, here,
we concatenate them with kinetic and statistical features.

Similar features were used in [52] without the filterbank,
thereby providing the flexibility for changing filterbank’s
bandwidth, filterbank’s filters bandwidth, filterbank’s filters
overlapping, and filterbank’s initial frequency to improve
performance.

As the first step, we calculated TKF using the displacement
signals; SF using displacement, and horizontal and vertical
displacement; the SDF and CDF from the displacement and
the horizontal and vertical displacement, and pressure signals.

Since the employed dataset (PaHaW) contains 37 PD
patients and 38 HC subjects, then as a second step, we aug-
mented the smaller class of the training set such that both are
equal in size; next, we augment both classes of the training
data by randomly selecting 80% of the training patient’s data
and added random Gaussian noise in all augmentations. For
the third step, we selected the most relevant features using
mFCBF method. Finally, autoML was employed to train and
test more than ten plain and ensembled classifiers.

Experimental results show that adding spectral and cep-
stral features to the kinematics and statistics features highly
improves the classification accuracy, reaching a combined
classification accuracy of 98.57%. This result shows that our
proposed model outperforms the best state-of-the-art result,
which sits at 97.62%. Moreover, the state-of-the-art model
has higher computational complexity and is required to train
204,060 parameters model for one day using an NVIDIA
GTX 1080 GPU of 8 GB.
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Abstract
Advantageous property of behavioural signals (e.g. handwriting), in contrast to morphological ones (e.g. iris, fingerprint, 
hand geometry), is the possibility to ask a user to perform many different tasks. This article summarises recent findings and 
applications of different handwriting/drawing tasks in the field of security and health. More specifically, it is focused on on-
line handwriting and hand-based interaction, i.e. signals that utilise a digitizing device (specific devoted or general-purpose 
tablet/smartphone) during the realization of the tasks. Such devices permit the acquisition of on-surface dynamics as well 
as in-air movements in time, thus providing complex and richer information when compared to the conventional “pen and 
paper” method. Although the scientific literature reports a wide range of tasks and applications, in this paper, we summarize 
only those providing competitive results (e.g. in terms of discrimination power) and having a significant impact in the field.

Keywords Drawing · Online handwriting · Signature · Tasks · Touch dynamics

Introduction

Signature/handwriting recognition can be split into two cat-
egories: off-line and on-line [1–3]. In the former case, just 
the result of the signature/writing (i.e. static 2D image) is 
known because it is acquired after the realization (writing) 
process. On the other hand, online signature/writing consists 
of acquiring the signal during the realization process. This 
provides a large set of raw data:

– absolute spatial coordinates (x, y) of the tip of the pen,
– pressure exerted on the surface—of course, this value is 

zero when the pen is not touching the surface,
– angles of the pen: altitude and azimuth,
– time stamp of the moment where the previous values 

have been acquired.

When pressure is different from zero, the movement is con-
sidered to be on-surface and the whole set of information 
described before is acquired. When pressure is zero, the 
movement is considered to be in-air. If the distance from the 
tip of the pen to the paper surface is below one centimetre 
(depending on the specific acquisition tool) the whole set 
of information described before is acquired with the unique 
exception of pressure, which is always zero. A deeper dis-
cussion linked with the in-air movement can be found in our 
previous works [1, 3, 4].

From a pattern recognition perspective, off-line systems 
deal with image processing, while on-line ones with time-
sequence signal processing. However, it must be argued 
that, so far, some solutions developed for off-line systems 
have been adopted to on-line ones and vice-versa [5]. An 
emerging and very interesting aspect discussed in this article 
deals with the possibility to sign and/or write and in general 
interact with the finger on a screen of a mobile device (e.g. 
smartphone or tablet) [6].

Four components are embedded in the signing/writing/
drawing process [6, 7]:

– The physiological component is constituted by the writ-
ing system which includes muscles, arm, wrist, hand, 
fingers, etc.;
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– The learned component deals with personalization, 
schooling, culture, habits, etc.;

– The cognitive one can be referred to mental abilities 
(learning, thinking, reasoning, remembering, problem-
solving, decision-making, and attention);

– The contour component: given the above, some noise can 
be introduced due to the writing device, posture, spatial 
constraints, emotional state, etc.

Variations of these components are reflected into variations 
of the acquired signal and represent the intra-writer vari-
ability. The variability is then, typically, observed over short 
(day-to-day or trial-to-trial basis) or long periods (months, 
years, etc.). In the former case, the contour component has 
a major role on the overall variability [6], while in the latter 
one all the different components could have a significance 
and different impact [7]. It is quite intuitive that the hand-
writing signal can be used for multiple purposes: handwrit-
ing recognition [8], script recognition, drawing recogni-
tion [9], health evaluation, assessment of specific learning 
disabilities, gender recognition [10], fatigue detection [11], 
emotional state recognition [12], forensic studies, writer 
identification (based on signature or handwriting) and sig-
nature/writer verification.

However, handwriting does not only include the writing 
of cursive/capital letters or scripts, in fact drawings can be 
considered too. More specifically, the different handwriting 
tasks can be classified as [7]: 

1. Simple drawing tasks: straight lines, circles, spirals, 
meanders, swipes, etc. These tasks are also referred to as 
graphomotor elements, because they represent the basic 
building blocks of letters;

2. Simple writing tasks: nonsense words, single characters, 
single tap, etc.;

3. Complex tasks: they simultaneously involve motor, 
cognitive, and functional issues (e.g. copying tasks, the 
clock-drawing task, etc.).

It has been demonstrated so far that, given a specific clas-
sification problem (e.g. writer identification, health status 
assessment, etc.), a specific task is more profitable than oth-
ers. In fact, intuitively, given a specific writing task, one of 
the previous mentioned components could have a different 
impact on the acquired signal.

Handwriting is a cognitive task in which synchronized 
neuromotor orders are fired from the cortex to carry out the 
planned action [13]. The knowledge of these cognitive tasks 
performed by human brain is a milestone in the develop-
ment of computerized models to simulate the human thought 
process in complex situations where the answers may be 
ambiguous and uncertain. In fact, cognitive systems include 
self-learning technologies that use data mining, pattern 

recognition and natural language processing (NLP) to mimic 
the way the human brain works.

Automatic handwriting-based analysis can be based on 
many different tasks performed by using a pen-based tool. 
These tasks are described and discussed in detail in section 2 
along with a review of several relevant scientific works. Nev-
ertheless, many finger-based interactions, related to hand-
writing, can occur on a wide set of touchscreen devices (e.g. 
smartphone, tablet, etc.): Section 3 reports a review of the 
most interesting results. Section 4 presents a re-organization 
and a discussion of all the different tasks (previously dis-
cussed) in terms of applications (security and/or health) also 
according to an effort-based taxonomy. Section 5 concludes 
the article.

Handwritten Tasks

Signature‑Based Analysis

Figure 1 shows an example of a signature acquired with a 
Wacom Intuos digitizing tablet. The blue colour represents 
the on-surface movement, while the red colour the in-air 
one. The relevance of the in-air movement has been clearly 
described in [2, 3, 14]. Handwritten signature is the most 
widespread behavioural biometric trait: it has a socially 
accepted role as a proof of identity as well as a demonstra-
tion of the willing of the writer to accept the content of 
the document. For this reason, it has been extensively ana-
lysed [15]. Signature is adopted on a daily basis for commer-
cial and banking payments/transactions and in many other 
sectors (e.g. express courier, education, healthcare, etc.). 
Several international competitions exist that facilitate a fair 
comparison between competing algorithms [8].

Although it is not massively used in health applications 
sometimes interactions appear between security and health, 
such as in documents signed by a user suffering from demen-
tia or some other temporary/permanent health problem that 
can invalidate the signature. An example has been reported 
in [16]. The interesting aspect is that usually, security and 
health implications are present both together and cannot be 
considered as isolated application fields [16].

Micrographia (the abnormal progressive reduction in 
amplitude of letters) has been observed in the off-line and 
on-line signing tasks as well as in sentences of patients with 
Parkinson’s disease [17, 18]. Signature position with respect 
to a dotted line (on or below) and other cognitive functions 
have been investigated, and it has been observed that it may 
be a marker of vulnerability of visuospatial abilities [19].

Recently, it has been demonstrated that, when dealing 
with on-line writing, velocity-related features play a very 
crucial role [20, 21]. A similar result has been observed 
on signatures when considering features related to the 
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Sigma-Lognormal model coupled with a Bagging CART 
classifier [22]. In this case, the approach has been able to 
discriminate dementia affected users from the healthy coun-
terpart with 3% of Equal Error Rate (ERR), however the 
main limitation of this work is a reduced dataset. A more 
recent study has investigated the relation between signatures 
of persons with Alzheimer’s disease (AD) and those writ-
ten by age-matched healthy controls (HC) [23]. In this case, 
authors adopted a simple statistical evaluation on parameter 
features evaluated upon dynamic raw data (e.g. stroke dura-
tion, stroke amplitude, peak vertical velocity, average nor-
malized jerk, etc.) and categorized signatures within three 
classes: text based, mixed, or stylized. No significative dif-
ferences were observed apart from an association between 
increased feature variability and increased dementia sever-
ity for stylized and mixed signatures. Signatures were also 
acquired after one year during which a hard decline was 
observed in the cognitive status: signature features remained 
stable. Authors conclude the work by stating that demen-
tia has a residual impact on signature formation. A simi-
lar finding is reported by Reiner et al. [24] who acquired 
two samples of signature and a spontaneous writing from 
36 persons with Mild Cognitive Impairment (MCI) diag-
nosis and 38 HC. Cognitive functions in decision-making 
were also evaluated: while a significant correlation between 
spontaneous writing and neuropsychological test results was 
observed, signature deterioration did not appear to be corre-
lated with the level of cognitive decline. However, it must be 
underlined that the style of the signature plays a role, in fact 
the speed for flourish signatures is higher than that of text-
based ones, moreover muscles involved in the movement are 
more active in the generation of the flourish ones [25]. These 
results call for further and extended research.

The relation between handwritten signatures and per-
sonality traits has been evaluated considering static and 

dynamic features. It is interesting to report that aspects as 
gender and personality can be predicted effectively using 
signature velocity characteristics [26].

On-line signatures have been also used (coupled with 
speech) to distinguish among three psychophysiological 
states: normal, drowsiness and alcohol-intoxicated [27]. 
Dynamic and static features were adopted to test Bayesian 
hypothesis reporting an overall average error of 14.5%.

Unfortunately, very few works provide a comparison of 
performance when adopting writing, drawing and signing 
tasks. From an intuitive point of view, handwriting should be 
able to provide a wider range of information. More evidence 
is reported in the following paragraphs.

Text‑Based Recognition Analysis

An example of a cursive handwriting could be seen in Fig. 2. 
Several security applications based on handwritten text have 
been proposed, such as [8] for capital letters or [28] for cur-
sive drawing on a whiteboard, which is not a very usual 
writing scenario. However, they have not attracted too much 
attention of the scientific community. Especially when com-
pared to signatures.

Drawing‑Based Analysis

In security applications drawing analysis has attracted some 
attention especially in graffiti performed by gangs. Gangs 
use specific clothing, brands, symbols, tattoos, and graffiti 
to identify their group and interchange messages. Graffiti 
are any type of public markings that may appear in forms 
that range from simple written words to elaborate wall paint-
ings [29]. However, due to its nature, they are off-line. Pre-
liminary results in online recognition show a potential to 
identify people using some drawings [9].

Fig. 1  Online signature: the 
product is depicted on the left 
side, the right side of the figure 
contains associated informa-
tion about horizontal/vertical 
movement and pressure pattern 
(the blue colour represents the 
on-surface movement, while the 
green colour the in-air one)
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Generally, in the area of diagnostics in medical context, 
drawings are widely used. Some common drawings and their 
potential usage in medical field are mentioned below.

Pentagon Test

The test is used, e.g. in the Mini-subject classification Men-
tal State Examination (MMSE) to assess cognitive impair-
ment [30]. It consists of copying a drawing, which includes 
two pentagons overlapping into a rhombus (see 3). It is of 
interest to report that it has been adopted to differentiate 
dementia associated with Lewy Body (DLB) from Alzhei-
mer’s disease (AD). To the aim, visual parameter features 
such as number of angles, distance/intersection, closure/
opening, rotation and closing-in were considered with an 
artificial neural network classifier [31]. Park et al. [32] have 
recently adopted a mobile device to acquire timestamps, x-y 

coordinates and touch-events. In this case, raw data were 
processed by means of a U-Net (a convolutional network) to 
automatically segment angles, distance/intersection between 
two drawn figures, and closure/opening of the drawn figure 
contours. Moreover, tremor was also evaluated. It is worth 
noting that the evaluation of these parameters is associated 
with a specific disease scaling (interested readers can refer 
to [31]). Errors which occur in the copying/drawing tasks 
can be related to damages of the brain: it has been observed 
that the score connected to the pentagon copy task is associ-
ated with parietal grey matter volume and not with frontal, 
temporal, and occipital ones [33].

Clock‑Drawing Test (CDT)

The test can be utilized as a precursory measure to indi-
cate the likelihood of further/future cognitive deficits. It 

Fig. 2  Text “Have a nice day!” 
written in cursive letters: the 
product is depicted on the left 
side, the right side of the figure 
contains associated informa-
tion about horizontal/vertical 
movement and pressure pattern 
(the blue colour represents the 
on-surface movement, while the 
green colour the in-air one)
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Fig. 3  Pentagon test: the 
product is depicted on the left 
side, the right side of the figure 
contains associated informa-
tion about horizontal/vertical 
movement and pressure pattern 
(the blue colour represents the 
on-surface movement, while the 
green colour the in-air one)
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is used, e.g. in the Addenbrooke’s Cognitive Examination 
– Revised (ACE-R) test [34] (see Fig. 4). The use of an 
on-line acquisition tool gives the possibility to evaluate 
the process of the clock construction and not only the 
final drawing. In the last decade digital on-line versions of 
the CDT have been considered [35]. Harbi et al. [36] used 
a set of features extracted at stroke level (evaluated upon 
the set of on-line raw data) and an SVM (Support vector 
machines algorithm) to identify connected components 
in normal and abnormal drawings. The same authors also 
proposed a multi-expert approach [37]. More specifically 
two systems were developed: the first one considered 
static images obtained by plotting the x-y coordinates and 
derived a set of static features evaluated by means of a 
CNN. The same CNN provided a final decision. The sec-
ond system was based on the x-y coordinates sequences. 

It was showed that the combination of both systems was 
able to outperform individual classifiers in the dementia 
vs healthy subject classification task. Muller et al. [38] 
investigated the diagnostic value of a digital version of 
the CDT by comparing it to the standard pencil-paper 
version. To the aim, 20 patients with early dementia, 30 
with MCI and 20 HC were considered. It was observed 
that in-air time provided by the digital version is able to 
provide a higher diagnostic accuracy (MCI vs HC) than 
the use of the traditional test.

House Drawing Copy

This test is used for identification of Alzheimer’s dis-
ease [39, 40] (see Fig. 5).

Fig. 4  Clock-drawing test: the 
product is depicted on the left 
side, and the right side of the 
figure contains associated infor-
mation about horizontal/vertical 
movement and pressure pattern 
(the blue colour represents the 
on-surface movement, while the 
green colour the in-air one)
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Fig. 5  House drawing test: the 
product is depicted on the left 
side, the right side of the figure 
contains associated informa-
tion about horizontal/vertical 
movement and pressure pattern 
(the blue colour represents the 
on-surface movement, while the 
green colour the in-air one)
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Archimedes Spiral and Straight Line (Drawing Between 
Points)

These tasks are useful to support diagnosis of, e.g. Parkin-
son’s disease [41, 42], Huntington’s disease [43], essential 
tremor [44–47], developmental dysgraphia [48], fatigue [11], 
or brachial dystonia [49]. See Figure 6. In the case of the 
Archimedes spiral acquisition and straight lines, the par-
ticipants can have a printed spiral on a sheet of paper and a 
couple of dots to be connected and they are asked to trace 
it by a pen without touching the spiral neither the bars (see 
Fig. 7). Or, the spiral is shown them on a template and they 
are asked to replicate it on a blank sheet of paper.

Overlapped Circles (Ellipses)

It can be used for quantitative analysis of schizophrenia or 
Parkinson’s disease [21, 50]. See Fig. 8, which represents 
some simple kinematic features that can be used for an effec-
tive diagnosis.

Spring Task (Connected l or Loops)

Several variants exist, such as the connected loops (see 
Fig. 9), inverted connected loops, connected f, etc. This 
task is interesting to check the skills to produce rhythmic 
movements, as well as sudden changes of direction (start-
stop-start sequences), useful to evaluate problems to initiate 
movement [51].

Rey‑Osterrieth Complex Figure Test (ROCF)

ROCF consists of copying a complex drawing [52]. It is fre-
quently used to further explain any secondary effect of brain 
injury in neurological patients, to test for the presence of 

dementia, or to study the degree of cognitive development in 
children. In this task patients have to memorize an image and 
later they have to replicate it without looking at the example. 
Rey–Osterrieth complex text is depicted in Fig. 10.

Bank‑Check Copying

It is, as for most cases of copying tasks, a functional writing 
task. To properly copy the bank check (Fig. 11), the user 
should be able to identify the source and corresponding tar-
get fields, to locate them and to write the correct content. 
The single movement and the corresponding stroke could 
be correct, but the task must be evaluated in its total exe-
cution. Patients affected by dementia could result in poor 
execution producing simplified figures, misplacement of the 
text, modifications in spatial relationships among strokes, 
etc. [53]. Considering the example reported in Fig. 11, in-air 
movements which reveal the action of locating the source 
and the corresponding target field performed by a mild stage 
dementia patient can be clearly observed.

Trail‑Making Test (TMT)

The test is composed of two parts, in part A the user is 
required to connect a sequence of consecutive numeric tar-
gets (Fig. 12), in part B numbers and letters must be alter-
nated in progressive order (i.e. 1-A, 2-B, etc.). The test 
involves attentional skills, motor planning, and working 
memory [54]. This test is adopted for a wide range of cases 
of brain dysfunction [55]; moreover, normative data are 
available for several countries according to relevant factors 
such as age, education level and gender [55]. Patients must 
complete the task as quickly as possible, if an error occurs 
then the examiner requests to correct it: this increases the 
total duration (time) thus reducing the final score assigned 

Fig. 6  Archimedes spiral: the 
product is depicted on the left 
side, the right side of the figure 
contains associated information 
about horizontal/vertical move-
ment and pressure pattern
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by the examiner (which is typically based only on the time 
spent). The test is asked to be performed without lifting the 
pen from the paper/tablet, however a wide set of in-air move-
ments can be observed in the example reported in Figure 12 
revealing the need for a mild dementia patient, to ideally 
retrace the path already written to be able to move forward 
from an error or hesitation point. The equivalence between 
the standard (pencil-paper) and the digital (pen-tablet) ver-
sion of the TMT has been recently verified [56].

It is of interest to report that crossed pentagons, TMT 
and CDT tests have been recently adopted and compared 
within the context of handwriting processing to discrimi-
nate between HC, MCI and AD  [57]. To the aim the 
following features were considered: pressure, numbers 
of segments, velocity, acceleration, jerk, in-air and on-
the-pad total time. Accuracy of pentagons, TMT-partA, 
TMT-partB and CDT were, respectively, of 66.2%, 69.0%, 
63.3% and 67.6%. The combination of all tasks was able to 

Fig. 7  a) Archimedes spirals 
and straight lines performed by 
a subject with essential tremor 
on a sheet of paper; b) recon-
struction of the first straight line 
(information about the pressure 
is missing)
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provide increased performance thus revealing they have a 
certain degree of complementarity.

Cancellation Test of Digits

These tasks are selective attention tests based on a can-
cellation task. The patient is asked to find targets (e.g. the 
number 5 in the example in Fig. 13) within a short time 
constraint. So far, it has been reported that they are useful 
not only to discriminate AD and HC, but also to monitor the 
evolution of the cognitive decline [58]. Clinicians typically 
consider errors performed by patients; however, a digitized 
version of the test is also able to provide information related 
to the searching pattern (in air movement in Fig. 13).

Keystroke/Tactile/Touch Analysis

Keystroke dynamics have been extensively used for iden-
tification aims on physical keyboards [59–61] and recently 
on virtual keyboards when considering smartphones and 
tablets [62]. In this last situation, a wider range of interac-
tions can be considered including finger-swiping patterns 
drawing, touch-dynamics and, of course, signatures [6, 
63]. It is evident that aspects involved in handwriting/
signing described in the previous sections are not far 
from those involved in more general hand-based interac-
tion tasks because they involve the same hand motor area 
within the brain [64]. So far it has been underlined that 
typewriting includes a cognitive phase, an associative 
phase and an autonomous phase [65].

Fig. 8  Overlapped circles: the 
product is depicted on the left 
side, the right side of the figure 
contains associated information 
about horizontal/vertical move-
ment and pressure pattern
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Fig. 9  Spring task: the product 
is depicted on the left side, the 
right side of the figure contains 
associated information about 
horizontal/vertical movement 
and pressure pattern
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Based on the previous observations, touch dynamics 
can be used also for health evaluation. However, it must be 
underlined that writing/drawing/signing and, more in gen-
eral, interacting with a finger on a screen is different from 
using a pen/tablet system: dynamics as well as the final 2D 
drawing can be very different [6]. Main reasons are:

– habits in using the pen instead of the finger and/or vice 
versa;

– finger size compared to the pen’s one (in terms of contact 
point);

– non-rigidity of the finger;
– friction between the finger and the screen.

It is worth noting that, so far, a useful tool for evaluating 
motor skills is finger-tapping, a test based on a special 
tool that allows to count the number of key taps within a 
given time interval (e.g. 30 seconds). This test is used for 

assessing the presence of bradykinesia, that is, an unnatu-
ral slowness in initiating and carrying out simple voluntary 
movements [51, 66]. Other interesting tasks can be consid-
ered. Iakovakis et al. [67] acquired fragmentary typing of 
short text on a touchscreen smartphone involving 18 PD 
patients and 15 HC. In this case features adopted were those 
of the typical key-stroke domain: hold times (time between 
the pressing and the releasing of a key), flight times (time 
between the releasing of a key and the pressing of the next 
one), etc. The adopted classification schema reported 0.82 
and 0.81 of, respectively, sensitivity and specificity. Noyce 
et al. [68] adopted the following parameters for the PD vs 
HC classification: Kinesia Score (KS30) as, number of key 
taps in 30 seconds, Akinesia Time (AT30) as the mean dwell 
time on a key, Incoordination Score (IS30) as the variance 
of flight time between two consecutive keys and Dysmetria 
Scores (DS30) related to accuracy of key presses. It was 
observed that KS30, AT30 and IS30 were significantly able 
to discriminate PD patients from HC, moreover the same 
parameters were also correlated with UPDRS motor scores. 
Similar results have been obtained considering key hold time 
series and early PD patients [69]. Typing activity on smart-
phones, independently from the text, has been also consid-
ered [64]. In this last case, participants were requested to 
copy a randomly selected text for five minutes. The time 
sequence of flight times was used to compute parameter 
features to be fed to a set of different classifiers: a sensitiv-
ity/specificity of 0.81/0.81 has been reported in the binary 
PD/HC classification task. A very recent work has investi-
gated and compared different touch gestures on the same 
device: flick, drag, handwriting, pinch, tap, and alternating 
finger tapping [70]. A wide set of spatial, velocity, time and 
pressure-based features was considered with the aim to dis-
tinguish between early PD patients and HC. The following 
results were observed: PD subjects resulted in less-efficient 
finger trajectories, less stable speed, less stable pressure 
and, higher tremor than HC. Touch gestures and typing 

Fig. 10  Rey-Osterrieth complex figure test

Fig. 11  Bank-check copying 
(the black colour represents the 
on-surface movement, while the 
red colour the in-air one)
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appeared to be complementary tasks and an analysis of each 
task reported drag gestures most performing for classifica-
tion aims. The best performance was achieved by using all 
categories of features. Lipsmeier et al. [71] considered also 
finger tapping (recording all touchscreen events) within a set 
of many tests related to the use of a smartphone (sustained 
phonation, rest tremor, postural tremor, balance and gait). 
The study involved 44 PD and 35 HC. The finger tapping 
appeared to be the less performing task, however it must be 
underlined that only intratap variability was considered as 
a feature.

Problems in hand movements are often the first symptoms 
of neurological disorders, which do not include only PD, 
but also Essential Tremor (ET) and Huntington’s disease 
(HD) [72, 73]. On the other hand, dementia diseases, as for 
example Alzheimer Disease (AD), first result in cognitive 
rather than motor degradation. In fact, it is well-known that 
complex tasks including cognitive load (e.g. clock draw-
ing and pentagons) are generally considered [7]. However 
also coping tasks can be considered. Van Waes et al. [65] 
requested to a set of 20 young HC, 20 cognitively healthy 
elderly and 12 age-matched elderly with mild cognitive 
impairment (MCI) or mild dementia due to AD to perform 
a typing copy task. Different performances were observed 
among the three groups.

More in general, a comprehensive user analysis must 
involve the monitoring of multiple behavior including typ-
ing, menu navigation, swipes, drawing and activity under-
standing [74], [75]. Unfortunately, no works are still avail-
able in this direction considering a mobile device, so that 
it can be considered an open field of research. Very few 
works are available demonstrating the possibility of using 
touch dynamics for emotion recognition by considering 
common unlock Android touch patterns [76] or typing on 
touchscreens [77].

Tasks Classification

The results presented in this section are based mainly on our 
own quantitative and qualitative assessment of earlier works. 
According to our previous work [11], handwritten tasks can 
be classified into three categories:

– Mechanical tasks—with no cognitive effort, this task 
can be performed without any heavy load because it is 
a repetitive movement that the user can do in an auto-
matic way. The user is habituated to do it regularly in 

Fig. 12  Trail-Making Test (the black colour represents the on-surface 
movement, while the red colour the in-air one)

Fig. 13  Cancellation test of the digit ’5’ (the black colour represents 
the on-surface movement, while the red colour the in-air one)
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her/his life. This is the case of the handwritten signa-
ture, handwriting text in capital letters, and handwritten 
text in cursive letters. Usually, these kinds of tasks are 
quite straight forward and trivial. These kinds of tasks 
are quite frequent in the healthy population and find an 
important niche of applications in biometric recogni-
tion of people (user identification and verification [2]).

– Cognitive effort tasks—these tasks require some psy-
chical effort to copy a complex drawing. In this case, 
the user requires a strategy to start the task. Some cog-
nitive aspects are important because the user needs to 
know the parts of the drawing already done and the 
parts that are missing. This kind of task is especially 
challenging for those people affected by cognitive 
impairment, such as dementia, mild cognitive impair-
ment, etc. This is the case of the house drawing task, 
pentagon drawing test, clock-drawing test, Osterrieth 
complex figure test, trail-making test, cancellation test 
of a specific digit and Bank-check copying. The clock-

drawing test is a special case, because no model is pre-
sented prior or during the task. It has to be imagined 
during the performance.

– Fine motor control tasks—these tasks do not require a 
heavy cognitive load as the drawing itself is simple and 
straightforward to understand and memorize at a glance. 
However, good motor control is required to perform the 
task. This is the case of the Archimedes spiral drawing 
test, straight line test, spring drawing test, and concentric 
circle drawing test.

Table 1 summarizes the best tasks for each application 
purpose. This table is focused on on-line acquired signals. 
Although the table presents security and health applica-
tions separately, it is important to point out that the same 
signal can reveal identity and pathologies. Thus, privacy is 
another interesting research topic that involves both security 
and health [39].

Table 1  Summary of tasks classified by applications in the field of security and health (each task is classified into one of these three categories: 
(M)—mechanical task, (C)—cognitive task, (F)—fine motor control task)

Tasks Security (user identification and verification) Health

Signature (M) classical application with increasing popularity in online 
cases (supermarkets, post offices, etc.) [1, 2, 5, 6, 78]

although pathologies can be detected (e.g. Alzheimer’s  
disease [16, 22, 24, 26, 79]) this is not a popular task in 
health applications requiring more investigation due to 
controversial results [23]

personality assessment [26]
international competitions exist to compare different  

algorithms [80–82]
Handwriting (M) capital letters [8] Parkinson’s disease [21, 51, 83–85]

cursive letters [28] Huntington’s disease [43]
letter level writer identification [86] developmental dysgraphia [87, 88]
gender recognition [10, 89–93] attention deficit hyperactivity disorder [94]
writer identification [95–98] autism spectrum disorder [99]
competitions in writer identification [90] obsessive-compulsive disorder [100]
competitions in gender identification [101] fatigue [11]

depression, stress, etc. [12], although better results are found 
using drawing tasks

drug abuse, such as Marijuana [102], alcohol [103],  
caffeine [104]

Drawing (C or F) graffiti’s author identification (offline) [29, 105] Pentagon test (C)
preliminary results in on-line cases [9] Alzheimer’s disease [40]

Clock drawing test (C)
Alzheimer’s disease [35, 38, 40, 106]
mild cognitive impairment [40]
mild major depressive disorder [107]
House drawing (C)
Alzheimer’s disease [40, 108]
mild cognitive impairment [40, 108]
hypoxemic patient analysis [109]
fatigue [11]

1416 Cognitive Computation  (2021) 13:1406–1421

1 3



Conclusions

Handwriting is probably one of the most complex tasks that 
human beings can perform. In addition to being considered 
a personal behavioral trait (suitable for biometric recognition 
in security applications), it can also reveal health aspects 
(when analyzing its quality).

A large amount of scientific literature exists in both appli-
cation fields: security and health. However, there is no uni-
fied activity to be performed by hand writers. Depending on 
the specific application field, there are some tasks that can 
unveil richer information than others. Thus, we have tried 
to systematically review the existing tasks and applications 
with the goal to serve as a guide for presenting the main 
alternatives and the topics where they have succeeded.

On the first level, we can classify the tasks into three 
categories: signature, handwriting (cursive or capital let-
ters), and drawings, being the latest one being richer in 
possibilities.

On the second level, we can classify the tasks into three 
different categories according to the specific skills required 
to perform the task: mechanical, cognitive effort and fine 
motor control. This second level of tasks classification is 
mainly relevant for health applications. However, contrary 
to the first classification, these are not disjoint sets, as each 
task requires some amount of effort from the other classes. 
Thus, it just depicts the predominant effort.

While large number of possible tasks exists, one research 
goal to be addressed is to find the best tasks for each applica-
tion: those which require a short realization time and provide 

Table 1  (continued)

Tasks Security (user identification and verification) Health

Archimedes spiral, meanders and straight lines (F)
Parkinson’s disease [41, 42]
Huntington’s disease [43]
essential tremor [44–47]
developmental dysgraphia [48]
fatigue [11]
brachial dystonia [49]
Single or overlapped circles (F)
Huntington’s disease [43]
schizophrenia [50]
Spring task (F)
fatigue [11]
developmental dysgraphia [48, 110]
schizophrenia [50, 111]
bipolar disorder [111]
Parkinson’s disease [51]
Huntington’s disease [43]
Rainbow task (F)
developmental dysgraphia [48, 112]
Saw task (F)
developmental dysgraphia [48]

Rey-Osterrieth complex figure test (C)
mild cognitive impairment [113]
Alzheimer’s disease [114]
Multiple geometrical figures copying (C)
dementia [53]
Trail making test (C)
Alzheimer’s disease [57]
Cancellation test (C)
Alzheimer’s disease [58]
Tree drawing (C)
Alzheimer’s disease [115]
mild cognitive impairment [115]
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good discrimination capability (for instance, to differentiate 
essential tremor from Parkinson’s disease).

We forecast new potential applications in the future based 
on online handwriting, especially in health. We encourage 
scientific community to test several handwriting tasks in 
order to find the optimal one. This paper summarizes the 
main successful ones and can serve as a potential task cata-
logue to explore when studying new or existing problems.
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Abstract: Writing is a complex skill. Issues in this process, which are usually associated with developmental dysgraphia (DD), 
could consistently cause problems in everyday life, like for example, lower self-esteem and poorer academic achievement. That 
is why the correct diagnosis of DD is crucial for further child development. DD belongs to the category of specific learning 
disabilities and according to different studies, its prevalence ranges between 0.1 and 30 percent. Diagnosing a child with DD 
relies, in the first place, on teachers. After that, psychologists, or special educational specialists (in the Czech Republic) 
commonly use qualitative evaluation of the written process, where the child is observed when he or she is writing. Nevertheless, 
there are no objective tests or standardized examinations for the assessment of handwriting deficiency either in special 
educational or psychological practices. In the frame of current research, a new quantitative approach to handwriting 
proficiency assessment was developed. Digitizing tablets (Wacom Intuos Pro L) with a special inking pen (Wacom Ink Pen) are 
used to record the online handwriting process and graphomotor skills of children. Administration templates contain simple 
graphomotor elements and complex figures related to DD symptoms and cognitive (memory and visuospatial) abilities. This 
new approach to diagnose handwriting issues will be presented in this article. 

Keywords: Developmental Dysgraphia, Diagnosis, Online Process, Machine Learning,  
Graphomotor Disabilities Rating Scale 

Introduction 
he aim of this article is to present the experimental research on graphomotor disabilities 
(GD) and developmental dysgraphia (DD) performed by an interdisciplinary team of 
psychologists, educationists, and engineers in Brno, Czech Republic. The main goal is to 

create an objective and accurate way to detect problems with handwriting and to help specialists 
in the practice of this method. In the first part of the article, GD and DD will be described and 
the problems with their existing definitions will be discussed. The second part will compare the 
methods of diagnosis of handwriting issues in the Czech Republic with those in the rest of the 
world, and the problems with the process of diagnosis in the Czech Republic will be clarified. 
In the third part, a new method will be presented—the graphomotor disabilities rating scale 
(GDRS)—which is currently being researched and developed.  

There is a huge problem not only with diagnostic processes but with diagnostic methods 
themselves. Experts such as psychologists, occupational therapists, or teachers lack objective 
diagnostic methods to detect handwriting issues. One part of this problem is that there is a lack 
of research concerning this topic and that dysgraphia is marginalized. On the web, there are 
12,120 results for the keyword “dyslexia” (reading disorder) and only 538 results for the 
keyword “dysgraphia” (writing disorder).  

Theory and Current State 
Graphomotor Skills and Handwriting 

Graphomotor (GM) skills are psychomotor abilities which primarily comprise writing and 
drawing. The GM process is considered as an outcome of cognitive, motor, and perceptual skills 

1 Corresponding Author: Katarína Šafárová, Arne Nováka 1, 602 00, Brno, Department of Psychology, Faculty of Art, 
Masaryk University, Brno, Czech Republic, 602 00. email: katas@mail.muni.cz 
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and their interactions. Hence, if a child has issues with GM skills, there is a disruption between 
ideas and the ability to express them through writing. It is for this reason that writing has been 
described as “language by hand” by Berninger and her colleagues (2002). The action of writing 
by hand begins with ideation and planning processes, followed by the application of language 
rules (grammar, syntax, spelling, punctuation, etc.), with the outcome of text production at the 
motor level. The lower arm, wrist, and fingers must cooperate to create a final handwriting 
product. Moreover, other processes like evaluation and self-monitoring, which serve as 
effective feedback, must be taken into consideration. All of these look like they are consecutive 
processes, but in reality, they all take place concurrently.  

Nowadays, nearly all models of handwriting (Van Galen 1991; Kandel et al. 2011; McCloskey 
and Rapp 2017; Feder and Majnemer 2007; Cornhill and Case-Smith 1996; Berninger and Amtmann 
2003; Flower and Hayes 1981) differentiate between several levels, which could be summarized as: 
(1) higher cognitive levels and (2) lower motoric-perception levels. For example, one of the oldest
theories developed by Flower and Hayes (1981) distinguishes between three levels of mental
representation. At the conceptual level, the ideas or preverbal messages, stored in the long-term
memory, are created during the planning processes. At the linguistic level, translating processes are
involved, and preverbal messages are translated into verbal messages. This is how the conceptual
structure from the first stage gets its grammatical properties (syntax, morphology, and spelling,
stored in the mental lexicon). Finally, at the motor level, the verbal message is converted into a
sequence of motor plans and the written output is created. It comprises the regulation of handwriting
parameters such as size, speed, spacing, force–form alignment, and slant (Hayes and Gradwohl-Nash
1996; Bock and Levelt 1994; Kellogg 1996; McCloskey and Rapp 2017).

Feder and Majnemer (2007) described two components of the writing process: motor and 
perceptual. Perceptual components comprise sensory modalities, visual perception, and sustained 
attention. Motor components pertain to fine-motor control (in-hand manipulation, bilateral 
integration, motor planning, and kinesthesia). Both components are linked to visual–motor 
integration as an important part of the whole handwriting process, which is the ability to 
coordinate visual information with motor processes. Other authors (Christensen 2005; Medwell, 
Strand and Wray 2009) have agreed that writing is not only a motor skill. According to them, the 
memory and orthographic processes work together to recall the letter shapes and translate its 
patterns automatically. A central part of the writing model proposed by Berninger and Amtmann 
(2003) involves the working memory. It is linked to long-term memory through the process of 
composing and to short-term memory through the process of reviewing. The executive functions 
like conscious attention, planning, revising, and strategies for self-evaluation are involved as well. 
This model argues that orthographic–motor integration (OMI) contributes more to handwriting 
skills than fine-motor skills (Graham and Weintraub 1996; Abbott and Berninger 1993). The OMI 
allows the child to recall the correct shape of the letters or whole words from his or her mind and 
write it down without focusing attention on it. It means that the process of writing is automated. 
Research shows that OMI accounts for more than 50 percent of the variance in written language 
performance in individuals from primary through secondary school and even into adulthood 
(Bourdin and Fayol 2002; Graham et al. 1997; Jones and Christensen 1999). 

As Palmis and her colleagues (2017) state, the automation of handwriting means that writing 
does not require conscious effort. Therefore, the cognitive resources could be allocated elsewhere, 
for example, to planning, organizing, or creating the content of the story (ideation). Automaticity is 
based on experience and training and so the movements become more fluent. At this point, the 
Matthew effect should be mentioned (Cunningham and Chen 2014; Stanovich 1993), which 
describes the improvement in the reading and/or writing skills of children who have a better level of 
those abilities, and conversely, stagnation among children who have poor skills. From previous 
paragraphs, it is evident that writing is not merely a motor process, but other higher cognitive and 
executive processes are also involved. Richards et al. (2011, 512) wrote that writing is a “brain-based 
skill that facilitates meaning-making as writers externalize their cognitions through letter forms, the 
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building blocks of written words and text.” From this point of view, handwriting issues and 
dysgraphia should not be seen only as a distortion of a written product, but we should be able to see 
those higher cognitive processes as well and incorporate them into the whole picture of the normal 
writing process and also into writing disabilities. For example, when the child must focus on the 
execution of motor plans (lower motoric perception functions), the working memory capacity is 
overloaded and there is no space for higher cognitive processes. Likewise, the automatization of 
writing is not possible in that kind of setting. 

Developmental Dysgraphia and Its Diagnosis 

DD is defined as the disturbance of the process of written production, which is related to the 
mechanics of handwriting. In ICD-10 (WHO 1992), the problems of handwriting belong to 
Chapter 5: Mental, behavioral, and neurodevelopmental disorders; Section F80-F89: Pervasive 
and specific developmental disorders; Category F81: Specific developmental disorders of 
scholastic skills; and the final code F81.81: Disorder of written expression. To define 
handwriting issues, the ICD-10 was used instead of the DSM-IV (APA 2000), because it is the 
common diagnostic system in Europe. Although there is a definition of this disorder, there are 
missing diagnostic criteria both in the ICD-10 and the DSM-IV. Moreover, in the literature, 
different terms are used for describing dysgraphia. A child could be dysgraphic or could be 
named as having poor handwriting. A child could have handwriting issues or difficulties and 
those could be part of special learning disorders or disabilities. Also, the motoric part of 
dysgraphia could be linked to agraphia or developmental coordination disorder. Children with 
DD are of at least average intelligence and they have not been identified as having any 
neurological problems (Hamstra-Bletz and Blöte 1990). The prevalence ranges between 10 and 
34 percent (Döhla and Heim 2016; Cermak and Bissell 2014) depending on the country and 
study in question. The data reported in Czech Republic concern only specific learning disorders, 
with estimates ranging from 3 to 5 percent (Kejřová and Krejčová 2015; Zelinková 2015). 

Another problem with diagnosis is that of comorbidity. Writing issues are present in 30 to 
47 percent of children with reading issues (Chung, Patel and Nizami 2020). Authors added that 
there are 90 to 98 percent children with neurodevelopmental issues such as attention-deficit 
hyperactivity disorder or autism, who also struggle with handwriting. It is also the case that 
developmental coordination disorder affects the handwriting process. In the Czech Republic, the 
numbers of comorbidities with other specific learning disorders are missing in the data. 

Usually, the following symptoms are listed: (1) problems with size control—letters are not 
consistent in size; (2) slant—written letters are not even; (3) alignment—child is not able to 
follow the lines; (4) pressure—too high, usually linked to incorrect grip which causes fatigue or 
pain during the writing; (5) poor spacing between letters and words; (6) messy organization of 
the text on the page; (6) problems with letter differentiation and spelling—inversions of b and d, 
a and o, etc.; (7) added or missing strokes; (8) problems with beginning of writing—child does 
not know where or how to start; (9) grammar mistakes—child does not check the outcome or 
she/he erases or crosses out the text a lot. According to the literature (Rosenblum, Weiss, and 
Parush 2003) there are two main outcomes which are used for assessing and defining poor 
handwriting: (1) legibility, which is the combination of all the above-mentioned symptoms, and 
(2) performance time, which could be assessed as writing duration.

Diagnostic Process 

The primary aim of researchers in this area is to develop standardized evaluation capable of 
producing quantitative scores for handwriting quality. The dilemma is how to define 
“readability” or “quality of handwriting” (Ayres 1912). Rosenblum, Weiss, and Parush (2003) 
distinguished two types of evaluation: product and process evaluation. To enhance the 
methodology, questionnaires were implemented as a third type. 
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First, there is product evaluation. As the name suggests, in this case, final and static outcomes of 
written products are evaluated by experts. This evaluation is based on two types of scales: (1) global 
and (2) analytical. Global scales consist solely of one factor, legibility, which means that the 
assessment is based on an overall judgment of this factor. Analytical scales are created with many 
criteria such as the shape of letters, spacing, or speed. In this approach, these specific features are 
linked to the general legibility of writing. In practice, there are different tests which serve this 
purpose. An overview of common tests used for diagnosing handwriting problems is shown in Table 
1 (Feder and Majnemer 2003; Roston, Hinojosa, and Kaplan 2008). The major drawback of these 
tools is a lack of evaluation of psychometric qualities (see validity rows). Only the TOHL (Test of 
Legible Handwriting; Larsen and Hammill 1989) has documented evidence for criterion, content, 
and construct validity, but the test itself was designed in 1989.  

In the last 20 years, there has been a new approach called process evaluation, where 
computerized technology, software, and digitizers, are used to record the process of handwriting 
itself (Rosenblum, Weiss, and Parush 2003; Longstaff and Heath 1997). This interdisciplinary 
field, called graphonomics, focuses on handwriting movement analysis (e.g., Van Gemmert and 
Teulings 2006). Most importantly, this approach addresses the limitations of previous 
measurement tools. In addition, as the child is writing on the paper with inking pen, it maintains 
the measure as ecologically valid. This online process records not only the process, but it also 
allows the researcher to measure the features which underlie writing, and which are not 
detectable by the naked eye. That is why this quantitative online examination is considered to 
be more precise and objective. Unfortunately, the diagnostic tool which should be established 
on the outcomes of these online and objective measurements does not exist yet. As a 
consequence, although there have been studies with promising outcomes (e.g., Asselborn, 
Chapatte and Dillenbourg 2020), actual diagnostic applications have not yet been pursued.  

A third approach is evaluations using questionnaires, where the children judge themselves (self-
evaluation) or are judged by others (teachers, parents, psychologists, etc.). These questionnaires are 
usually focused on different manifestations of handwriting issues or on experiences of disability and 
well-being. Handwriting problems are evaluated from a subjective point of view without assessing 
the handwriting itself, contrary to product evaluation. An example is the Handwriting Proficiency 
Screening Questionnaire for Children (HPSQ-C; Rosenblum and Gafni-Lachter 2015). 

Having covered the different approaches to handwriting analysis, a description of the diagnostic 
process from an expert’s point of view will ensue. The profession of occupational therapy is, among 
other things, responsible for correct GD and DD assessment and remediation in many jurisdictions. 
In the Czech Republic, the diagnosis process is distributed between teams of psychologists and a 
special educationist (SE) who takes part in the process. Working in collaboration, the psychologists 
are responsible for taking anamnesis and for testing intelligence and memory. Further diagnosis, 
especially of specific learning disorders (e.g., dyslexia, dysgraphia, dyscalculia, etc.), is carried out 
by a SE. When a diagnosis of dysgraphia is returned, the SE assesses the child in several ways:  

1) writing assessment, which is created from a transcription task (cursive writing → cursive
writing), a copying task (block letters → cursive writing), a dictation task, and/or drawing;

2) experienced but subjective observation during the writing process, which includes
observation of (a) how the child is sitting during writing, (b) the grip, i.e., how the
child is holding a pen or pencil, (c) the relaxation of hand during writing, (d) how the
child is writing, i.e., the stroke smoothness, pressure, size of the letters, slant, etc., (e)
speed of writing, (f) jerky movements, (g) increased focus on writing process, which
could cause more grammar mistakes;

3) test of laterality or handedness;
4) visual perception;
5) right-to-left and spatial orientation;
6) analysis of homework and exercise books (Pokorná 2015; Zelinková 2015).
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On looking at these criteria, we perceive several problems. Firstly, there is no screening tool 
in the Czech Republic for teachers or parents, who often first recognize handwriting issues. 
Neither do the practitioners have a specialized test for detecting or diagnosing handwriting issues, 
but as has been noted previously, nor are current, internationally used tests dependable, as they 
have questionable or unknown psychometric properties. The graphonomics approach is also yet to 
yield a diagnostic tool, while the questionnaire approach relies on subjective and nonuniform 
criteria for evaluating handwriting issues. For the latter, even when special educationists are 
experts in their field, there could be inconsistent outcomes from the diagnostic process. 

Table 1: Summary of the Handwriting Evaluation Tests and its Psychometric Properties 

M
H

A 

ET
C

H
-M

 

C
H

ES
-M

 

D
RH

P 

TO
LH

 

D
H

A 

W
O

LD
 

TH
S-

R 

H
H

E 

D
AS

H
 

BH
K

 

H
ST

 

Age 6–18 9–16 6–12 3–12 
Grade 1–2 2 2 3+ 2–12 3–8 1–5 2–3 

Standards ✓ ✓ ✓ ✓ ✓ 
Alphabet 
writing ✓ ✓ ✓ ✓ ✓ ✓

Numeral 
writing ✓

Near-point 
copying ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Far-point 
copying ✓ ✓

Dictation ✓ ✓ ✓ ✓
Composition ✓ ✓ ✓

Speed ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Global 

readability ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Inter-rater 
0.87

–
0.98 

0.75
–

0.92 

0.85
–

0.93 
ICC 

0.61
–

0.65 
0.95 

0.75
–

0.79 

0.85
–

0.99 
ICC 

0.71
–

0.89 

0.99 
ICC 

Test-retest 
0.58

–
0.94 

0.63
–

0.77 
× × 0.90 0.82 

0.50
–

0.92 
ICC 

0.51
–

0.55 

0.99 
ICC 

Criterion × × × ✓ ✓ × × ✓ × × × ×
Construct × × × × ✓ × × × ✓ × × ×
Content ✓ ✓ × × ✓ × × × × ✓ × ×

Notes: MHA: Minnesota Handwriting Assessment (Reisman 1993); ETCH-M: Evaluation Tool for Children’s Handwriting-
Manuscript (Amundson 1995); CHES-M: Children’s Handwriting Evaluation Scale-Manuscript (Phelps and Stempel 1988); 
DRHP: Diagnosis and Remediation of Handwriting problems (Stott, Moyes and Henderson 1985); TOLH: Test of Legible 
Handwriting (Larsen and Hammill 1989); DHA: Denver Handwriting Analysis (Anderson 1983); WOLD: –Wold Sentence 
Copy Test (Maples 2003); THS-R: Test of Handwriting (Milone 2007); HHE (Erez and Parush 1999); DASH (Barnett et al. 

2007); BHK (Hamstra-Bletz, DeBie, and Den Brinker 1987); HST (Wallen, Bonney and Lennox 1996). 
Source: MHA-TOHL: Feder and Majnemer 2003; DHA-WOLD: Roston, Hinojosa, and Kaplan 2008 

New Diagnostic Approach 

Planned Sample 

In the research project, children were enrolled via psychological counselling centers and via 
schools. The sample is divided into three groups: (1) children with diagnosed dysgraphia; (2) 
children who were not diagnosed, but the teachers or children themselves reported some 
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problems with handwriting; and (3) typical development children. The sample consists of 
children from kindergarten to fourth grade, which makes five groups. There are 100 children 
planned for each group, that is, there should be approximately 500 children in the whole 
sample. Previous studies used only small samples, with approximately 20 children in each 
group on average (experimental/comparative) (e.g., Engel-Yeger, Nagauker-Yanuv, and 
Rosenblum 2009; Smits-Engelsman and Van Galen 1997).  

With this type of sample distribution, differences between groups could be compared in three 
ways: (1) horizontally—between the condition of age/grade (five levels); (2) vertically—between 
the condition of diagnosis (three levels); (3) and a combination of the two conditions. The first 
axis of comparison is very important, because the internalization of the writing process is believed 
to occur between the third and fourth grades. It means that this process becomes more automatic, 
and attention becomes more focused on the process of ideation and the content of the text, which 
frees up capacity for the working memory (McCutchen 1996). Furthermore, changes or 
improvements in the writing could be tracked. Some studies suggest that handwriting 
characteristics of typical development in children should be smaller, of even size, and smoother 
(Meulenbroek and Van Galen 1989; Zesiger, Mounoud, and Hauert 1993). Older children also use 
less bounded cursive writing, but the letters are closer (Blöte and Hamstra-Bletz 1991). 

Instruments: Digitizer and Software 

For the research, the specially created software HandAQUS for handwriting acquisition is used 
together with digitizing tablets (Wacom Intuos Pro L) with a special inking pen (Wacom Ink 
Pen). This system allowed the researchers to capture information about the position of the pen 
(x and y axes) on the tablet’s surface or up to 1.5 cm above it. It also allowed the measurement 
of pressure on the surface, the pen’s tilt, and azimuth. Finally, the movement was sampled with 
150 Hz sampling frequency, where each sample was associated with a time stamp, which 
enabled the reconstruction of kinematic characteristics. More specifically, it distinguishes 
between several categories of conventional handwriting features (Table 2).  

Table 2: List of Clinical Features Used in the Study 
Category/Features On-surface In-air 

Temporal Global Vertical Horizontal Global Vertical Horizontal 
Duration of handwriting ✓ ✓

Spatial Global Vertical Horizontal Global Vertical Horizontal 
Height of written product ✓ ✓
Width of written product ✓ ✓
Angle of written product ✓ ✓

Height of stroke ✓ ✓
Width of stroke ✓ ✓
Angle of stroke ✓ ✓

Kinematic Global Vertical Horizontal Global Vertical Horizontal 
Velocity ✓ ✓ ✓ ✓ ✓ ✓

Acceleration ✓ ✓ ✓ ✓ ✓ ✓
Jerk ✓ ✓ ✓ ✓ ✓ ✓

Dynamic Global Vertical Horizontal Global Vertical Horizontal 
Pressure ✓
Altitude ✓ ✓
Azimuth ✓ ✓

Other Global Vertical Horizontal Global Vertical Horizontal 
Number of pen elevations – – – – – – 

Number of changes in velocity ✓ ✓ ✓ ✓ ✓ ✓
Source: Mekyska 
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The Protocol 

The protocol for this study was created by a SE with extensive experience in diagnosing special 
learning disabilities, who is also the author of several remediation publications (e.g., Bednářová 
and Šmardová 2006; Bednářová 2017). All tasks were designed taking into consideration the 
different grades, as the complexity and difficulty were gradually increased. The assessment took 
approximately 50 minutes depending on the specific sample conditions. Overall, the protocol 
consisted of three types of tasks:  

1) Seven graphomotor elements (see Figure 1): These represent the basic forms of Latin
cursive letters, and for kindergarten children and first graders they are usually the very
first attempt to create more complex graphomotor manifestations. For example, in this
exercise the differences between the first and the second Archimedean spirals are
noted. With the second one, it is more difficult to perform fine-motor movements
because the loops are closer together. The last task is also very hard to accomplish for
younger children, because contrary to the previous tasks the child has to use spatial
abilities and combine the upper and lower loops (Mekyska et al. 2019).

Figure 1: Examples of Graphomotor Elements 
Source: Bednářová and Mekyska  

2) Four sets of tasks for assessing cognitive processes (see Figure 2): These are intended to
examine visuospatial abilities and working memory. In the first set of tasks, the child is
asked to copy the figure into the empty box as precisely as she or he can (Task 8 in Figure
2). Immediately after that the assessor covers the upper part (the pattern and the copy) and
the child is asked to draw the figure from memory (Task 9 in Figure 2). The same principle
is applied to the remaining four tasks. The second set of four tasks is very similar to the
previous one, where the child is asked to copy the complex figures to empty boxes (Task
18 in Figure 2). The principle of the third set is to draw five reverse figures (tasks 22 and 24
in Figure 2). The last task is based on the Rey-Osterreith complex figure principle (Rey
1959) where the child is asked to copy the complex figure (Task 27 in Figure 2), and after
three minutes the child must recall the figure and draw it again (Task 28 in Figure 2).

Figure 2: Examples of Cognitive Tasks 
Source: Bednářová and Mekyska 
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3) Four sets of writing tasks: These were used to assess the handwriting process. Firstly,
the child is asked for her or his signature. After this, the copying task follows, where
the child copies one sentence from cursive script into cursive writing. The third task is
a transcription one, where the child transcribes sentences from block letters to cursive
writing, and the last one is a dictation task. According to some studies (Fryburg 1997;
Margolin 1984; Parush et al. 2010), there should be differences between these types of
tasks, because copying and transcriptions are based on processes where the inputs
(stimuli) and outputs (final product) are visual. In the dictation task, the input is
auditory, and the output is visual.

During the assessment, anamnestic data are taken to control demographic variables, such as 
age, sex, class, native language, parents’ level of education, number of children in the family, 
and grades (Czech language, English language, Math); other disabilities, such as special 
learning disabilities diagnosis or other conditions (neurological, psychiatry, orthopedics, etc.). 
In addition, the Handwriting Proficiency Screening Questionnaire for Children (HPSQ-C; 
Rosenblum and Gafni-Lachter 2015) is used to check the child’s self-evaluation. It contains ten 
items grouped in three factors: (1) legibility, (2) performance time, and (3) physical and 
emotional well-being. Every item is scored on a 5-point Likert scale (0 = never; 4 = always) and 
the total score is computed as the sum of points for each item. In the Czech sample, the mean is 
12.86 with a standard deviation of ± 5.68. Based on this, two cut-off scores were created: the 
lower cut-off is 7 and the upper cut-off score is 19 (Šafárová et al. 2020). 

Case Studies 

Because the research is still ongoing, an example of a comparison between two children will be 
presented in the form of case studies. Children were chosen for this part of the study based on 
three criteria: (1) diagnosis, (2) HPSQ-C score, and (3) the classification provided by an expert. 
One child is a boy in the fourth grade from the experimental group with diagnosed dysgraphia 
(hereinafter DYS) and with a HPSQ-C score of 22. His scores for single HPSQ-C factors are: (1) 
legibility = 5; (2) performance time = 6; (3) physical and emotional well-being = 11. The other 
child is a girl in the fourth grade from the control group with typical handwriting development 
(hereinafter THD) with a HPSQ-C score of 5. Her scores for single HPSQ-C factors are: (1) 
legibility = 1; (2) performance time = 3; (3) physical and emotional well-being = 1. The DYS boy 
perceived his handwriting as less readable, it takes him more time to copy or write something, and 
he is not comfortable with the whole process of handwriting (e.g., feels pain, does not want to 
write, or feels tired). 

The final output from the software is shown in Figure 3. The children are asked to 
transcribe the following text: Gusta, Lenka, Hana, and Stáňa are classmates. They will get a 
school report soon. After vacations they will attend the fourth grade. This text is a translation 
from the Czech version and Gusta, Lenka, Hana, and Stáňa are common Czech names. They 
were chosen for this task because the handwritten capital letters G, L, H, and S are difficult to 
remember and write for children with handwriting issues. In each image, the trajectory of the 
pen on the surface is depicted with blue lines and the trajectory of the pen in-air above the 
surface is depicted with red lines. In addition, in both figures, the pressure is represented by 
different shades of blue. Dark blue represents more pressure and light blue represents less 
pressure on the surface of the digitizer. 
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Figure 3: Comparison of Handwriting from the Transcription Task of the DYS Child (upper image) and 
THD Child (lower image) 

Source: Zvončák  

It is evident that the first writing sample is that of a child with handwriting issues. The 
letters are not even, they differ in size and slant, there are incorrect forms, the diacritics are 
missing, and there are missing letters. At first glance from a clinical point of view, it is obvious 
that the script is harder to read. However, with the new approach, it was found out that the DYS 
child spent significantly much more time in-air than the THD child (see red lines). The study 
showed that children with dysgraphia tend to have much longer in-air trajectories (Rosenblum, 
Parush, and Weiss 2003b) as they think longer about what the letter looks like and how to write 
it. This previously unrecognized phenomenon may indicate problems with the working memory 
and orthographic coding of graphemes. It also allows us to look at how the child thinks about 
the organization of the overall written text on the page.  

Table 3 shows the values recorded for different handwriting features. In the first column, there is 
a differentiation between on-surface and in-air movements, corresponding with the blue lines (on-
surface) and red lines (in-air) from both texts depicted in Figure 3. The features are divided into two 
categories, one quantifying the overall product (text) and the other quantifying particular strokes.  

Table 3: Selected Handwriting Features of One DYS and One THD Child 
THD DYS 

Features of Whole Text 

On-surface 

Width 49.29 63.52 
Height 192.23 250.42 
Length 2,636.84 4,107.46 
Duration 113.48 136.68 

In-air 

Width 46.88 79.34 
Height 194.66 257.25 
Length 1,838.15 4,857.65 
Duration 47.11 87.78 
Number of interruptions 98.00 124.00 
Mean of pressure 0.41 0.78 
Azimuth 1,220.47 1,142.45 
Altitude 568.80 672.04 

Features of Strokes (Mean) 

On-surface 

Width 7.92 11.65 
Height 5.91 5.90 
Length 37.69 40.78 
Duration 2.27 2.17 
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THD DYS 
Features of Strokes (Mean) 

In-air 

Width 16.93 27.76 
Height 7.49 16.20 
Length 29.33 67.67 
Duration 0.96 1.42 

On-surface 

Speed 14.58 17.49 
Velocity 16.68 18.88 
Acceleration 24.81 31.30 
Jerk 5,458.77 6,126.42 

In-air 

Speed 30.07 49.42 
Velocity 29.17 50.49 
Acceleration −2.84 −111.53
Jerk 19,289.18 −2,182.68

Source: Šafárová 

Firstly, the focus will be on spatial features (given in millimeters) and the temporal features 
(given in seconds). The on-surface values demonstrate that the whole text of the DYS child is 
wider and higher, and that the overall trajectory of the written text is longer than that of the 
THD child. The same results concerning the mean width, height, and length of all strokes could 
be seen. By stroke is meant one continuous movement of the pen. One stroke can correspond to 
one letter, a group of letters, or even a whole word.  

Also, the DYS child takes longer to complete the whole task, which indicates possible 
writing problems. Between the third and fourth grades of elementary school, children´s 
writing becomes smaller and faster. Dysgraphic children write significantly slower, and their 
font is large. At the same time, problems with fine-motor skills (vertical hand movements 
made up mainly of fingertips—height of strokes) and coarse-motor skills (horizontal hand 
movement made up of wrist—width of stroke) can be considered. These differences between 
the children described here are further accentuated by the spatial and temporal parameters 
above the paper surface. 

The kinematic parameters are lower for the THD child. A higher value of velocity means that 
the task is written faster. Higher acceleration indicates higher fluctuation in the velocity of writing 
and the jerk feature refers to impulsiveness in writing and to the degree of sketching. From 
previous information, it may be concluded that the DYS child wrote the task much faster, with 
fewer fluctuations in speed (i.e., with less dynamics) and more sketching. However, some children 
without diagnosed problems have the opposite results. It can therefore be concluded that these 
children are slow writers because they are too focused on trying to make the script neater. 

Dynamic features are represented by the pressure, altitude, and azimuth of the pen. It can be 
seen in the selected case that the DYS child had exerted more pressure on the tip of the pen on the 
surface of digitizer (see Figure 3, darker blue trajectory). Usually, clinicians or teachers report that 
children with dysgraphia have higher pressure but Rosenblum and Dror (2017) did not find any 
differences in pressure between children with and without developmental dysgraphia. The altitude 
parameter determines the angle between the surface and the pen. When the pen lies on the surface 
it is represented by 0°, and when the pen is perpendicular it is represented by 90°. The azimuth 
parameter specifies the position of the pen on the circle. At present, it is generally accepted that 
grip does not have a relationship with handwriting problems (Burton and Dancisak 2000; Sassoon, 
Nimmo-Smith and Wing 1986; Schwellnus et al. 2012).  

Table 3 shows that the THD child interrupted the writing process several times during 
transcription. While it might seem that this is more typical for dysgraphic children (Chang and 
Yu 2013), Blöte and Hamstra-Bletz (1991) found out that in girls, especially during the 
automation of writing and during the creation of their own manuscript, cursive script is 
abandoned and there are gaps between individual letters—that is, the child makes more 
movements that are processed faster.  
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In addition, the coefficient of variation was used to compare the dynamic features between 
the children, which allowed us to examine differences in movement variability. Table 4 presents 
that the DYS child had higher variances of overall and in-air azimuth values. This means that the 
DYS child produced more circular movements. In addition, these differences are even more 
significant in air. This could be interpreted in the way that the DYS child had a problem with 
controlling the pen when the pen is above the surface. On the contrary, the THD child had higher 
variances of altitude values. That means that the variability of angles between the pen and surface 
is higher. The combination of both parameters could be understood as an indicator of fine-motor 
movements. If the position of the pen during writing is correct, the thumb and middle finger are 
used for creating the fine-motor movements and the index finger is used for stabilization. With the 
correct grip, during the writing the pen is oscillating back and forth, which causes altitude 
changes, but the position of the pen is more or less steady, which means no or minor azimuth 
changes. This combination could be seen in the handwriting of the THD child.  

 
Table 4: Coefficients of Variation for Dynamic Parameters of One DYS and One THD Child 

Dynamic Parameters Coefficient of Variation THD DYS 

Azimuth 
Overall 0.24 0.43 
In-air 0.43 0.63 

On-surface 0.09 0.07 

Altitude 
Overall 0.17 0.15 
In-air 0.26 0.14 

On-surface 0.07 0.06 
Pressure Overall 0.65 0.71 

Source: Šafárová 
 

At this point it should be emphasized that the values used in the comparison of case studies 
are just absolute values. For some parameters (i.e., dynamic features), it will be suitable to use 
standard deviations or coefficient of variations because they indicate the variability in the 
writing process. Handwriting is a very dynamic process and in future research the focus should 
be on variances or changes in writing, instead of simple parameters. Lurija (1973) called the 
process of writing as a kinetic melody, which is apt. For those reasons it is necessary to search 
for and create new parameters or use the parameters from other fields of biosignal detection, or 
to explore the interactions between current parameters.  

The Diagnostic Application: Graphomotor Disabilities Rating Scale 

The general goal of the ongoing research project is to combine the process-oriented approach 
and the psychometric approach to create a new concept of objective GD and DD diagnosis and 
rating based on quantitative analysis of online handwriting. The outcome will be the 
graphomotor abilities rating scale (GDRS). Discrepancies between theoretical claims (e.g., 
dysgraphic children have problematic grip or are slower writers) and recorded clinical features 
will be further examined. Also, novel and nonconventional parameters, which will be able to 
better quantify motor skills and cognitive abilities, will be designed, as was presented in this 
article. Furthermore, mathematical models and machine learning that will calculate the GD 
score based on parameters and sociodemographic data are established. When completed, the 
project will produce a new DD scale, with a final score used as a rate of GD, rather than a 
binary classification (diagnosed/typical development).  

Summary 
This article referred to the current problematic state of diagnosing dysgraphia and explained that 
even when the disorder of written expression is defined by ICD-10 or DSM-IV, good diagnostic 
criteria are still missing (APA 2000; WHO 1992). Also, the relative lack of scientific interest in this 
topic in contrast with the related but more well-known condition of dyslexia was outlined. Present 
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worldwide methods for measuring problems with handwriting are product-oriented and do not have 
sufficiently established psychometric characteristics or follow old norms and standardizations. 
Although there exists a possible process-oriented technique of measurement, this is currently not yet 
at the stage of being applied to diagnostic work. Moreover, in the Czech Republic there are no good 
methods specific for the Czech context for diagnosing handwriting problems. Collectively, these 
issues may result in the inconsistent evaluation of children with handwriting issues. 

This discussion implies that a more objective assessment is needed. In the current work, 
process-oriented online assessment is applied. For this project, collaborating experts have 
created a new protocol which uses performance in tasks like graphomotor elements and 
complex figures to examine not only the handwriting process but also cognition (visuospatial 
abilities and working memory). The sampling strategy assumed distributions according to 
grades and diagnostic condition and included children who do not have any current diagnosis. 
The plan is to collect a larger sample size than has been used in similar previous research. 

The main goal of the project is to create a graphomotor abilities rating scale (GASR). The 
GASR will be based on selected graphomotor, cognitive, and writing tasks which will 
distinguish among children with different degrees of handwriting difficulties. Using clinical, 
anamnestic, and digitally captured mechanical properties, a mathematical model will be built, 
which can then be used to compute scores for different categories of features (temporal, 
kinetics, etc.) and generate a final score so as to place a child along a scale. We think this would 
be an important step in generating a practical application from the research.  

In this article, the new approach using data from two children who were sampled (DYS and 
THD) was illustrated. Comparison of these results showed that the DYS boy perceived himself as 
having less readable handwriting, taking more time to copy or write something, and being 
uncomfortable with the whole process of handwriting (e.g., feeling pain, not wanting to write, or 
feeling tired). From a mechanical and orthographic point of view, the DYS child’s text was higher 
and wider on the page and it took more time to finish the writing task, with this excess duration 
reflecting in both on-surface and in-air measurements. The DYS child also made more interruptions 
during writing and exerted more pressure on the tip of the pen. Moreover, the DYS child wrote the 
task much faster, with fewer fluctuations in speed (i.e., with less dynamics), and more jerks. Some of 
these observations correspond with the classical picture of handwriting problems denoted in the 
literature, like for example, children with poor handwriting are slower writers (Rosenblum, Parush, 
and Weiss 2003a), spending more time in-air (Rosenblum, Parush, and Weiss 2003b; Rosenblum 
and Dror 2017), making more pauses or interruptions (Chang and Yu 2013); but some did not fit 
existing notions, like for example, less fluctuation in speed (Danna, Paz-Villagrán, and Velay 2013).  

The field needs a better understanding of measured parameters and its relationships to 
create a meaningful picture of handwriting issues. This is because there are findings in the 
literature that seem to contradict claims made by other scholars, such as the influence of 
incorrect grip (Burton and Dancisak 2000; Sassoon, Nimmo-Smith, and Wing 1986; Schwellnus 
et al. 2012) or handedness (Ziviani and Elkins 1986). We hope that the ongoing research will 
enable others to empirically test some of the ideas presented in this article and contribute to the 
outstanding questions raised by other studies.  

The case studies presented here, as well as the rest of the larger research project, have 
several limitations. First of all, given that it is the case that intact intelligence has been used as a 
rule-of-thumb to detect dysgraphia, we have chosen not to control for IQ. However, the sample 
was enrolled from: (1) elementary schools, which usually do not admit children with intellectual 
disabilities; and (2) special centers, where a diagnosis of mental retardation is an exclusion 
criterion for a diagnosis of dysgraphia. Given this, this limitation should not have a significant 
impact on the results. Another limitation is missing sociodemographic data of some of the 
children in the cohort. In some of the special centers, they are dealing with the European 
General Data Protection Regulation, known as the GDPR policy. This law enables counselling 
centers to share information about the children. 
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First, the process of handwriting itself should be mapped, as must its development and 
issues, and interindividual differences. Based on this, a new scale—the GDRS—will be created. 
At this point in the current research, the different settings of the feature groups (temporal, 
kinetics, etc.) are being investigated as there could be different combinations of dysgraphic 
issues. We hope that this scale will be helpful for professionals (special educationists and/or 
occupational therapists). Thus, the very first step should be to have a valid method for 
diagnosing, which will be also reliable. Subsequent work could then focus on remediation and 
therapy. With knowledge about the process and its development, researchers would be able to 
concentrate on the child’s improvements or on contextual variables.  

Problems with handwriting and graphomotor issues are long-standing and even today with 
computers and other smart devices, fine-motor movements are indispensable. Furthermore, 
writing continues to be a daily routine at schools as a significant part of the school day. 
Problems with writing are related not only to quantity and quality of written expression 
(Graham 1990), but with the child’s academic achievement, which is usually assessed by her or 
his handwriting. Studies point to the relationship between worse grades and handwriting 
neatness (Brackett et al. 2013; Briggs 1980; Chase 1986; Graham, Harris, and Fink 2000; 
Hammerschmidt and Sudsawad 2004; Klein and Taub 2005). This approach could affect the 
child’s self-esteem and well-being. In conclusion, if we want to offer these children better 
targeted care (remediation), we should understand their specific difficulties; this understanding 
is, of course, related to correct diagnosis.  
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Čechová B, Losenická B, Smékal Z,

Urbánek T, Havigerová JM and
Rosenblum S (2020) Psychometric

Properties of Screening
Questionnaires for Children With

Handwriting Issues.
Front. Psychol. 10:2937.

doi: 10.3389/fpsyg.2019.02937

Psychometric Properties of
Screening Questionnaires for
Children With Handwriting Issues
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Dysgraphia (D) is a complex specific learning disorder with a prevalence of up to
30%, which is linked with handwriting issues. The factors recognized for assessing
these issues are legibility and performance time. Two questionnaires, the Handwriting
Proficiency Screening Questionnaire (HPSQ) for teachers and its modification for children
(HPSQ-C), were established as quick and valid screening tools along with a third
factor – emotional and physical well-being. Until now, in the Czechia, there has been
no validated screening tool for D diagnosis. A study was conducted on a set of 294
children from 3rd and 4th year of primary school (132 girls/162 boys; Mage 8.96 ± 0.73)
and 21 teachers who spent most of their time with them. Confirmatory factor analysis
based on the theoretical background showed poor fit for HPSQ [χ2(32) = 115.07,
p < 0.001; comparative fit index (CFI) = 0.95; Tucker–Lewis index (TLI) = 0.93; root
mean square error of approximation (RMSEA) = 0.09; standard root mean square
residual (SRMR) = 0.05] and excellent fit for HPSQ-C [χ2(32) = 31.12, p = 0.51;
CFI = 1.0; TLI = 1.0; RMSEA = 0.0; SRMR = 0.04]. For the HPSQ-C models, there
were no differences between boys and girls [1χ2(7) = 12.55, p = 0.08]. Values of
McDonalds’s ω indicate excellent (HPSQ, ω = 0.9) and acceptable (HPSQ-C, ω = 0.7)
reliability. Boys were assessed as worse writers than girls based on the results of both
questionnaires. The grades positively correlate with the total scores of both HPSQ
(r = 0.54, p < 0.01) and HPSQ-C (r = 0.28, p < 0.01). Based on the results, for the
assessment of handwriting difficulties experienced by Czech children, we recommend
using the HPSQ-C questionnaire for research purposes.

Keywords: developmental dysgraphia, reliability, validity, HPSQ, HPSQ-C

INTRODUCTION

Handwriting is a complex task requiring a perfect combination of motor and cognitive skills
(Feder and Majnemer, 2007; McCutchen, 2011). During childhood, children learn to write at both
qualitative as well as quantitative levels, which in general spans a period of approximately 10 years
(from the age of 5 years, when a child first encounters this task, up to the age of 15 years, when
a child is supposed to be comfortable with writing on a daily basis), i.e., the handwriting should
meet the expectations of being legible, fast enough, etc. (Ziviani and Wallen, 2006; Accardo et al.,
2013). Handwriting forms the basis of a child’s capability of being educated, the ability to express
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his/her ideas, and to communicate throughout his/her life
(Graham, 1990). Therefore, writing issues could consistently
cause problems in everyday life, they could lower self-esteem
and reduce academic achievement (Blöte and Hamstra-Bletz,
1991; Dunford et al., 2005; Feder and Majnemer, 2007; Dinehart,
2015), e.g., teachers tend to give worse grades to children whose
handwriting is poor (Briggs, 1980; Chase, 1986; Graham et al.,
2000). Although children frequently use new technology, such as
smartphones and tablets, handwriting is still an important part of
their education process.

Dysgraphia (D) occurs in literature as a subtype of specific
learning disorder (SpLD). It can be found in the 10th edition
of International Statistical Classification of Diseases and Related
Health Problems (ICD-10), a medical classification system
established by the World Health Organization (WHO), in
Specific developmental disorders of scholastic skills, more
specifically, as a Disorder of written expression (F81.81; World
Health Organization [WHO], 1992). This classification is used
in the Czechia where the questionnaires were adapted. D is
usually defined as a disturbance in the production of the written
process. Döhla and Heim (2016) defined developmental D as a
problem in the acquisition of writing skills and report that a
child with D is below the expected level of writing performance
in comparison with her/his peers. Children with this disorder
are not identified as having neurological problems or mental
retardation (Hamstra-Bletz and Blöte, 1990).

The prevalence of D ranges between 10 and 30% (Cermak
and Bissell, 2014; Döhla and Heim, 2016). In the Czechia, the
prevalence of SpLD is estimated to be 3–5% (Zelinková, 2003;
Kejřová and Krejčová, 2015); nevertheless, there is a lack of
sole statistics for D. Besides, boys are generally considered to
be worse in legibility and quality of handwriting than girls
(Hawke et al., 2009), which results in two to three times higher
prevalence (Snowling, 2005; Katusic et al., 2009). The differences
in prevalence percentage are due to different diagnosis criteria
and a lack of information about D. In comparison, the keyword
“dyslexia” has 12 120 search results according to the Web
of Science, while “D” has only 832. If we want to provide
children with D with better care, it is necessary to introduce
better diagnostic and screening tools and to learn more about
underlying processes and their manifestation.

Generally, two factors are used to assess and/or define poor
handwriting: (1) legibility and (2) performance time (Graham
et al., 1998; Koziatek and Powell, 2002; Rosenblum et al., 2003;
Germano et al., 2016). For that reason, there are plenty of
tests which have been designed to assess these two factors.
Legibility is generally understood as an extent of readability
of the text or as the ease with which the letters or words
are recognized (Amundson, 1995). Rosenblum et al. (2003)
distinguished between global and analytic types of tools used
to assess legibility. The global scales are based on the overall
judgment of the sole factor of legibility. The analytic ones focus
on different aspects of handwriting (e.g., letter form, size, slant,
spacing, alignment, spelling and grammatical mistakes, speed,
and spatial organization). It is assumed that all the features are
part of the legibility factor. Performance time, also referred to as
speed, is usually measured as the number of letters or words per

time unit (1–5 min). Recent reviews of these tests were conducted
by several authors (Feder and Majnemer, 2003; Roston et al.,
2008), with the same outcome: most of them do not have proper
manuals or standardization, they have old norms, and they are
problematic in terms of reliability and validity.

Moreover, since a single study does not provide enough
evidence to validate a test, than a design of practically useful
D diagnosis tool with appropriate psychometric properties must
be based on several works. Finally, concerning the replication
crisis in psychology, we could not neglect the impact of drawer
effect (publishing only significant and positive results) on
reported findings. To overcome some of the above-mentioned
limitations, in 2008, Rosenblum (2008) introduced Handwriting
Proficiency Screening Questionnaire (HPSQ) that is used to
assess handwriting proficiency by teachers. Later, Rosenblum and
Gafni-Lachter (2015) proposed its modification (HPSQ-C) that
is used by children to assess themselves (more information about
these questionnaires can be found in the section “Materials and
Methods”). Since clinicians also reported fatigue or pain while
writing and unwillingness to do homework in children with
D (Benbow, 1995; Feder et al., 2000; Tseng and Chow, 2000),
Rosenblum (2008) considered these factors as important signs of
D and included a well-being factor into both questionnaires. This
factor was omitted in previous tests and no data on that subject
exists in the literature (Engel-Yeger et al., 2009). Author of both
questionnaires reported sufficient reliability and validity.

In the Czechia, the D diagnostic process includes: (1)
creation of family anamnesis based on interviews with parents
and child her/himself; (2) teacher’s evaluation of a child’s
performance at school, where marks and written homework are
analyzed; (3) psychological examination, including assessment of
intellect, working memory, and visual and spatial differentiation;
(4) examination of graphomotor difficulties, motor skills,
laterality, quantitative analysis of grammar mistakes in written
text (dictation and transcription), and qualitative analysis of
observation (pen grip, sitting position, subjective assessment
of temporal, spatial, kinematic and dynamic handwriting
characteristics). To assess the handwriting problems a team of
experts (psychologists and a special educationist) is working
together. Nevertheless, in our research, we are focusing on two
types of evaluations: children and teachers. We perceive those
groups are usually omitted, yet very important because they are
in the front line in diagnosing D.

In Czech school practice, there is no screening tool
for children or for teachers which could provide quick
and efficient differentiation between children with/without
handwriting problems. HPSQ and HPSQ-C could bridge this
gap. They are focused on three domains of non-proficient
handwriting issues, which are: (1) legibility; (2) performance
time; and (3) physical and emotional well-being. Previous
studies indicated that these tools could be reliable and valid
for screening handwriting deficits (Rosenblum, 2008; Rosenblum
and Gafni-Lachter, 2015). Moreover, its assessment could be
extended by computerized analysis, which makes the overall
process more objective (Mekyska et al., 2017). Nevertheless,
until now there have been no norms for Czech pupils that use
cursive handwriting.
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To sum up, D diagnosis and rating is a complex task that
nowadays relies mostly on experience of teachers, psychologists,
and/or occupational therapists. There is no valid screening tool
which could provide fast and reliable differentiation between
dysgraphic and non-dysgraphic children in schools. Therefore,
the general goal of this study is to adapt the HPSQ and HPSQ-
C for Czech language and check their validity and reliability.
In addition, none of the previous studies compared the results
of both questionnaires. They were used as a research tool,
but there is no evidence of their comparison in one context
(Rosenblum, 2008; Cantero-Téllez et al., 2015). We perceive this
information as missing one and this step as logical, because these
questionnaires contain the same items, they are just adjusted to
children or their teachers. To sum up, in the range of this study
we focus on:

1. Construct validity – hypothesis: (1) Factor structure of
HPSQ and HPSQ-C will correspond with its theoretical
background, i.e., it should have a three-factor structure:
legibility (items 1, 2, and 10), performance time (items 3,
4, and 9), and physical and emotional well-being (items
5, 6, 7, and 8) (Rosenblum, 2008; Rosenblum and Gafni-
Lachter, 2015).

2. Reliability analysis – hypothesis: (2) Internal consistency
(McDonald’s ω) of both questionnaires will be >0.7, which
is considered as an acceptable level.

3. Discriminant validity – hypotheses: (3) HPSQ and HPSQ-
C will differentiate girls and boys; (4) the higher the
total scores of HPSQ and HPSQ-C, the higher the
average grade will be.

4. Exploration of differences between HPSQ and HPSQ-
C – hypothesis: (5) There is no significant difference
between total scores of HPSQ and HPSQ-C; (6) Pearson’s
correlations coefficient between the same items of each
questionnaire will be positive and >0.6, which is
considered as a strong relationship.

MATERIALS AND METHODS

Study Participants
In this study, we used two sources of data, i.e., data from
children and their teachers, respectively. Each group filled in a
related questionnaire (see the following section about the HPSQ
and HPSQ-C instruments). We enrolled 294 Czech-speaking
children (132 girls/162 boys; mean age 8.96 ± 0.73, HPSQ-
C: m = 12.86, SD = 5.68) and 21 teachers who spent most of
the school-time with the enrolled children (HPSQ: m = 11.55,
SD = 6.79), in seven Czech schools (3rd and 4th class). Related
demographic data for children can be found in Table 1. Thirty-
three children (12.89%) were left-handed which is in line with 10–
13% prevalence previously reported (Hardyck and Petrinovich,
1977; Raymond et al., 1996). Based on reports of teachers, 28.87%
of children have handwriting difficulties (cf. 37.5% in Schwellnus
et al., 2012). The parents of all children enrolled in the study
and the teachers signed an informed consent form. Through the
whole study the Ethical Principles of Psychologists and Code

TABLE 1 | Gender distribution in both classes.

Third class Fourth class Total

Girls 73 (49.7%) 59 (40.1%) 132 (44.9%)

Boys 74 (50.3%) 88 (59.9%) 162 (55.1%)

Total 147 (100%) 147 (100%) 294 (100%)

of Conduct released by the American Psychological Association
(2019)1 were followed.

Instruments: HPSQ and HPSQ-C
The original version of HPSQ and HPSQ-C is written in Hebrew
and has been consequently translated into English (Rosenblum,
2008). Questionnaires contain the same questions which are
modified for person’s evaluating bias. In HPSQ, teacher is asked
about her or his student’s handwriting problems and in HPSQ-
C children evaluate themselves. Both questionnaires comprise of
10 items that are grouped in three factors: legibility (items 1,
2, and 10), performance time (items 3, 4, and 9), and physical
and emotional well-being (items 5, 6, 7, and 8) (Rosenblum,
2008; Rosenblum and Gafni-Lachter, 2015). An example of
HPSQ legibility question is “Is the child’s handwriting readable?”
performance time question “Does the child often erase while
writing?,” and physical and emotional well-being question “Does
the child tire while writing?.” Every item is scored on a 5-point
Likert scale ranging from 0 (never) to 4 (always). The final
score (max. 40) is computed as a sum of all items, where
higher sum means poorer handwriting performance. In addition,
the questionnaires record information about age, class, and
average grade (Czech language, English language, Maths and
Fundamentals of social and natural science).

Rosenblum (2008) reports that Cronbach’s α of the HPSQ and
HPSQ-C is equal to 0.90 and 0.77, respectively, indicating high
to moderate reliability (Rosenblum and Gafni-Lachter, 2015).
Spanish colleagues (Cantero-Téllez et al., 2015) report internal
consistency of HPSQ α = 0.78. First attempts to validate this
method showed only two factors in HPSQ: (1) items 3 and
9 (performance time and well-being); (2) items 1, 2, and 10
(legibility); with 67% of the variance explained (Rosenblum,
2008). These results are similar to those reported by Cantero-
Téllez et al. (2015): (1) items 1, 2, and 10 (legibility); (2) the
rest of items (performance time and well-being together); with
the 49% of the variance explained. Another study focused on
factor analysis of HPSQ-C (Rosenblum and Gafni-Lachter, 2015)
found two factors: (1) items 3 and 5–9 (performance time and
well-being); (2) items 1, 2, 4, and 10 (legibility); these two
factors together explain 45% of the variance. Rosenblum (2008)
recommended further research.

Procedure
Translation Process
In the frame of this study, we performed the forward–backward
translation process, where the English version was translated
into Czech language (forward translation) and back into English

1https://www.apa.org/ethics/code/
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(backward translation). As a first step the English version of
both questionnaires was translated by two experts (an educational
psychologist, as well as one of the authors of the study). Both
had conceptual knowledge and were familiar with terminology
covered by research topic. Two independent Czech versions were
created and compared with minimum discrepancies.

Afterward, a third expert, a researcher in educational
and school psychology, reviewed the Czech versions of the
questionnaires collaboratively with one of the original translators
from the previous step. The main goal was to identify inadequate
concepts. In this part, the expert suggested that items 1–3,
6, and 10 should be reversed because they were negatively
formulated (e.g., “Does the child not do his/her homework?”).
This was perceived as an issue also by other researcher, e.g.,
Schwellnus et al. (2012) mentioned it as one of the limitations
of HPSQ. In Czech language a negation could be created by
prefix added to a verb, by special pronouns or adverbs. Moreover,
the negation itself could make some difficulties while being
cognitively processed by primary school children (Kaup et al.,
2006; Lüdtke et al., 2008). Therefore, every negatively formulated
item was rewritten into a positive way (in our example “Does the
child do his/her homework?”). These items were reverse-scored
during data transcription.

In the backward translation process, the Czech version of both
questionnaires were translated by another researcher, who had no
knowledge about the questionnaires. The final versions of HPSQ
and HPSQ-C were discussed with the author Rosenblum of the
both questionnaires.

Data Collection and Sample Size Justification
Recruitment of participants was done via e-mails to headmasters
of 176 elementary schools in Brno, the capital of the east part
of the Czechia. We got replies from seven schools. Two of the
schools are attended by more than 500 pupils, three of them by
more than 100 pupils, and two of the schools are attended by
fewer than 50 pupils. Children and teachers were enrolled from
both types of schools, both from larger schools in the city and its
suburbs, and from smaller ones in villages.

Data were collected based on the convenience sampling
method. Because there is no established rule of thumb for the
sample size determination in the confirmatory factor analysis
(CFA), or just with little empirical evidence (Guadagnoli and
Velicer, 1988), we followed different recommendations. Some
authors estimate that a sample of 100 participants would be
sufficient for a measure with three or more indicators per factor
(Anderson and Gerbing, 1984; MacCallum et al., 1999). Kline
(1998) regards samples between 100 and 200 participants as
medium sized. There are other researchers (e.g., Su et al., 2014;
Fang et al., 2015) who argue that the minimum sample should
be at least 200. For more information, we also refer to Osborne
and Costello (2004) or Chang et al. (2018). Based on previous
estimates, which consider minimum 200 participants in the
sample, we justified our sample size as sufficient.

Both questionnaires HPSQ and HPSQ-C were administered
in a paper–pencil form. At the beginning of testing we explained
to the participants how to fill out the questionnaires, particularly
in the case of the children. HPSQ was administered individually

and HPSQ-C was administered to whole classes. Children were
not aware of their teachers’ evaluation.

Data Analysis
Both Kolmogorov–Smirnov (D294 = 0.96, p < 0.001) and
Shapiro–Wilk (W294 = 0.96, p < 0.001) tests confirmed non-
normal distribution of the HPSQ total score. Same conclusions
were drawn in the case of HPSQ-C (D294 = 0.98, p < 0.001,
W294 = 0.98, p = 0.001). Table 2 shows the values of skewness
(Sk) and kurtosis (Ku) for each item in both questionnaires. All
values are in acceptable limits ± 2 (Trochim and Donnelly, 2006;
Field, 2013; Gravetter and Wallnau, 2014) except for item 6 from
HPSQ-C. Moreover, due to the fact that both overall distributions
tend to be normal (Figure 1) and that a bigger sample size
could cause that even a small deviation from normality can lead
to a rejected null hypothesis of both tests (Field, 2013), in this
study we decided to employ parametric tests. To analyze the
data, we used IBM SPSS 25 (IBM Corp, 2017), IBM SPSS AMOS
(Arbuckle, 2019), and R 3.2.2 (R Core Team, 2019).

Construct validity was tested using the CFA to measure the fit
with the theoretical background of both questionnaires. As the
estimation method, we used the maximum likelihood (ML) for
both questionnaires. In general, there are several indices used in
the literature to check the goodness fit of CFA. For continuous
data Tucker–Lewis index (TLI) and comparative fit index (CFI)
should be >0.95 threshold. In addition, root mean square error
of approximation (RMSEA) < 0.6 and standard root mean square
residual (SRMR) < 0.08 (Hu and Bentler, 1999; Schreiber et al.,
2006). For computing CFA of both questionnaires, we used the
lavaan package (Rosseel, 2012) and for computing sex invariance
in HPSQ-C model we used the software IBM SPSS AMOS
(Arbuckle, 2019).

TABLE 2 | Skewness (Sk) and kurtosis (Ku) values of each HPSQ
and HPSQ-C items.

Item Min. Max. M SD Sk SD Ku SD

HPSQ 1 0 3 0.95 0.89 0.53 0.14 −0.63 0.28

2 0 3 0.83 0.85 0.73 0.14 −0.28 0.28

3 0 4 1.08 1.07 0.69 0.14 −0.51 0.28

4 0 4 1.94 0.92 0.17 0.14 −0.40 0.28

5 0 4 1.38 1.02 0.30 0.14 −0.71 0.28

6 0 3 0.38 0.71 1.94 0.14 3.33 0.28

7 0 3 0.50 0.69 1.15 0.14 0.55 0.28

8 0 4 1.23 0.97 0.46 0.14 −0.32 0.28

9 0 4 2.05 1.11 0.27 0.14 −0.79 0.28

10 0 4 1.15 0.89 0.29 0.14 −0.59 0.28

HPSQC 1 0 4 1.28 0.95 0.41 0.14 −0.18 0.28

2 0 4 0.61 0.96 1.56 0.14 1.77 0.28

3 0 4 0.92 1.03 0.94 0.14 0.26 0.28

4 0 4 2.10 1.06 −0.01 0.14 −0.49 0.28

5 0 4 1.90 1.34 0.03 0.14 −1.08 0.28

6 0 4 0.24 0.65 3.34 0.14 12.91 0.28

7 0 4 0.93 1.17 1.04 0.14 0.07 0.28

8 0 4 1.60 1.36 0.33 0.14 −1.01 0.28

9 0 4 2.32 1.15 −0.14 0.14 −0.55 0.28

10 0 4 0.97 1.13 1.06 0.14 0.34 0.28
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FIGURE 1 | Kernel density estimation, histogram, and Q–Q plot of HPSQ/HPSQ-C total score.

To assess the internal consistency of HPSQ and HPSQ-C,
we calculated McDonalds’s ω, item-total correlations, and ω

coefficients in the case the items are deleted. Internal consistency
of the theoretical factor structure was computed using the JASP
Team (2019) and of CFA model fit using R 3.2.2 software (R Core
Team, 2019) with the semTools package (Jorgensen et al., 2019).

The t-test (sex) and Pearson’s correlation coefficient (grades)
were computed for hypotheses related to the discriminant
validity of HPSQ and HPSQ-C. As the last step in this article,
we provide an exploration of differences and relationship
between both questionnaires by computing Pearson’s correlation
coefficient between items of both questionnaires and t-test for the
differences between total scores.

RESULTS

Construct Validity
Confirmatory Factor Analysis
The CFA was conducted with the three factors explaining
the covariances of the HPSQ and HPSQ-C items separately
(items 1, 2, and 10 loading on the legibility factor; items
3, 4, and 9 on the performance time factor; and items 5,
6, 7, and 8 on the physical and emotional well-being factor,
which is the structure assumed by Rosenblum, 2008). All
factor loadings were >0.4 and significant (p < 0.01) except
these items: six HPSQ (0.36), three HPSQ-C (0.38) and
six HPSQ-C (0.17). Parameter estimates, standardized error
(SE), and standardized loadings (SLs) for both questionnaires

with corresponding factors and their meanings are reported
in Table 3.

The global model fit of HPSQ was statistically significant
[χ2(32) = 115.07, p < 0.001] with indexes values CFI = 0.95,
TLI = 0.93, RMSEA = 0.09 with 90% CI (0.076, 0.113), and
SRMR = 0.05. The correlations among all three latent factors were
all highly statistically significant (p < 0.001) and positive (see in
Table 4), mostly between 0.52 and 0.66 indicating that teachers
who evaluated child’s issues as higher in one dimension were
more likely to evaluate hers/his issues as high in the others as
well. According to cut-off values mentioned in the section “Data
Analysis” we do not consider these results as a good fit. The data
did not support the theoretical structure.

The global model fit of HPSQ-C was not statistically
significant [χ2(32) = 31.12, p = 0.51] with indexes values
CFI = 1.0, TLI = 1.0, RMSEA = 0.0 with 90% CI (0.000, 0.042),
and SRMR = 0.04. The correlations among the three factors
were all highly statistically significant and positive, but weak.
The range of correlation values was from 0.13 to 0.23 (see
in Table 4). It indicates that children understand those latent
variables as independent. According to cut-off values mentioned
in the section “Data Analysis” we consider these results as an
excellent fit. The data support the theoretical structure.

In addition, we performed the CFA invariance analysis for
the HPSQ-C model, where the model has two different parts for
girls (N = 132) and boys (N = 162). We used the ML estimation
method, where the parameters were estimated freely in each
group. We tested the model on the three levels: (1) configural
invariance; (2) metric invariance; and (3) scalar invariance.
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TABLE 3 | Estimates, standardized errors (SE), and standardized factor loadings (SL) from CFA for each item of HPSQ and HPSQ-C.

Assumed factor Item’s meaning Item Estimate SE SL

HPSQ Legibility Legibility 1 1.00 0.00 0.78

Legibility Success with reading own handwriting 2 1.00 0.05 0.78

Legibility Satisfaction with own handwriting 10 0.81 0.06 0.63

Performance time Amount of time to copying 3 1.00 0.00 0.82

Performance time Erasing during writing 4 0.85 0.07 0.70

Performance time Child frequently looks at a blackboard during copying 9 0.84 0.08 0.70

Physical and emotional well-being Child does not want to write 5 1.00 0.00 0.90

Physical and emotional well-being Doing homework 6 0.41 0.04 0.36

Physical and emotional well-being Child feels pain (complains) 7 0.44 0.04 0.40

Physical and emotional well-being Tired while writing 8 0.96 0.05 0.86

HPSQ-C Legibility Legibility 1 1.00 0.00 0.69

Legibility Success with reading own handwriting 2 0.82 0.12 0.57

Legibility Satisfaction with own handwriting 10 0.94 0.14 0.65

Performance time Amount of time to copying 3 1.00 0.00 0.38

Performance time Erasing during writing 4 1.55 0.37 0.59

Performance time Child frequently looks at a blackboard during copying 9 1.39 0.35 0.53

Physical and emotional well-being Child does not want to write 5 1.00 0.00 0.71

Physical and emotional well-being Doing homework 6 0.25 0.07 0.17

Physical and emotional well-being Child feels pain (complains) 7 0.71 0.14 0.50

Physical and emotional well-being Tired while writing 8 1.37 0.22 0.97

All standardized loadings are statistically significant on the level p < 0.01.

TABLE 4 | Latent factor correlations in HPSQ and HPSQ-C.

Questionnaire Factor 1 Factor 2 Correlation

HPSQ Legibility Performance time 0.53

Legibility Well-being 0.53

Performance time Well-being 0.67

HPSQ-C Legibility Performance time 0.13

Legibility Well-being 0.23

Performance time Well-being 0.19

All standardized loadings are statistically significant on the level p < 0.01.

A non-significant result means that the model has acceptable
fit when a particular level of measured invariance is assumed
(Bialosiewicz et al., 2013; Chakraborty, 2017).

Requirements of configural invariance are fulfilled when the
basic factor structure is invariant for both groups (Chakraborty,
2017). The model fit for girls is not excellent, but acceptable
[χ2(32) = 37.38, p = 0.24] with indexes CFI = 0.96, TLI = 0.94,
and RMSEA = 0.04 [90% CI (0.00, 0.08)]. The model fit for
boys is acceptable [χ2(32) = 37.79, p = 0.22] with indexes
CFI = 0.97, TLI = 0.96, and RMSEA = 0.03 [90% CI (0.00, 0.07)].
The global model fit is acceptable and the obtained data for
unconstrained factor structure fit well with the theoretical factor
structure (see indexes in Table 5). Results indicate that there
are no statistically significant differences between girls’ and boys’
models [1χ2(7) = 12.55, p = 0.08, 1TLI = −0.004]. Based on this
results we can conclude that girls and boys conceptualized the
factors in same way.

The metric invariance explains whether girls and boys
answered to the items in a similar way. The obtained data for

metric factor structure of boys or girls (Chakraborty, 2017) fit
acceptable with the theoretical factor structure. Except the TLI
value, other obtained values crossed the threshold for the rest
of the goodness of fit measures (Table 5). Scalar estimates for
every item in both groups were significant on the level p < 0.001.
Based on this results we can conclude that there are no differences
between girls and boys in the way how they answered to the items.

The scalar variance compares the means of the construct
across gender groups to check if the observed scores and the
latent scores are related (Chakraborty, 2017). On this level we
found statistically significant differences (p = 0.02) and two
of the indexes TLI and CFI do not cross requested threshold
(Table 5). Those results showed that children with the same latent
construct score did not have same observed scores with respect to
the sex membership.

The differences between RMSEA values of configural, metric,
and scalar levels are equal to 0.01 which is considered as a
good indicator of invariance (Rutkowski and Svetina, 2014;
Putnick and Bornstein, 2016). Usually the differences in CFI are
reported and requested threshold for change is −0.01 (Cheung
and Rensvold, 2010). In our study, there are bigger differences,
but Rutkowski and Svetina (2014) permitted the difference −0.02,
which is fulfilled between configural and metric level. Based
on this results, we assumed that HPSQ-C is sex invariant on
the configural and metric level, but the stricter level of scalar
invariance is probably much less certain.

Internal Consistency
Firstly, we checked the internal consistency following the
theoretical background. We employed the JASP Team (2019) to
calculate the overall McDonald’s ω as well as ω of three factors
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TABLE 5 | Goodness of fit measures for different factor structure for boys and girls of HPSQ-C.

Level of factor structure/measure χ2 DF p CMIN/DF RMSEA TLI CFI

Threshold >0.05 <3 <0.06 >0.95 >0.95

Configural 75.31 65 0.18 1.16 0.02 0.96 0.97

Metric 88.14 72 0.10 1.22 0.03 0.94 0.95

Scalar 110.68 82 0.02 1.35 0.04 0.91 0.91

(legibility, performance time, and physical and emotional well-
being) in each questionnaire. Based on McDonald’s ω = 0.91
the reliability of overall HPSQ is considered as excellent.
First subscale (legibility) had ω = 0.87, the second subscale
(performance time) had ω = 0.77, and finally, the last subscale
(physical and emotional well-being) had ω = 0.81. The lowest
corrected correlation between item and total score was found in
item 6, where r = 0.49. During the analysis of particular subscales,
we did not find any items that should be removed.

In the case of HPSQ-C, the overall reliability is identified as
acceptable (ω = 0.70). In this questionnaire the first subscale
(legibility) had ω = 0.67, the second subscale (performance time)
had ω = 0.46, and the third subscale (physical and emotional well-
being) had ω = 0.57. Two corrected item-total correlations with
the overall score were <0.3. More specifically, the corrected item-
total correlation for item 3 was r = 0.27 and for item 6 was r = 0.21.
Nevertheless, removal of item 3 did not increase the value of
McDonald’s ω of the second subscale (performance time). Only
the third subscale McDonald’s ω (physical and emotional well-
being) increases to 0.59 when eliminating the item 6.

Additionally, the McDonald’s ω was computed in the
proposed models from the CFA analysis (we used the semTools
package; Jorgensen et al., 2019). McDonald’s ω of HPSQ for factor
legibility was 0.87, for factor performance time it was 0.76, and
for the last factor physical and emotional well-being it was 0.85.
The overall ω for HPSQ was 0.93. McDonald’s ω of HPSQ-C for
factor legibility was 0.66, for factor performance time it was 0.46,
and for the last factor physical and emotional well-being it was
0.60. The overall ω for HPSQ was 0.74.

Discriminant Validity
Sex Differences
Based on the independent t-test, sex differences were observed
when assessed by both questionnaires. Leven’s homogeneity tests
were non-significant in both questionnaires: HPSQ (F = 0.97,
p = 0.33) and HPSQ-C (F = 1.44, p = 0.23). Teachers evaluated
boys as worse (HPSQ: m = 12.53, SD = 6.91, SE = 0.54) than girls
(HPSQ: m = 10.34, SD = 6.47, SE = 0.56) with 2.2 difference [95%
CI (0.64, 3.74)], which is significant [t(292) = 2.78, p = 0.006]
and has medium effect size d = 0.33. Similarly, boys perceived
themselves as worse (HPSQ-C: m = 13.66, SD = 5.90, SE = 0.46)
than girls (HPSQ-C: m = 11.89, SD = 5.27, SE = 0.46) with
1.77 difference [95% CI (0.48, 3.07)], which is significant as well
[t(292) = 2.69, p = 0.008] and has medium-sized effect d = 0.32.

Relationship to Grades
Using Pearson’s correlation coefficients, we observed significant
correlation between average grade and total score of HPSQ

(r = 0.54, p < 0.01) and slightly weaker but still significant
correlation with total score of HPSQ-C (r = 0.28, p < 0.01).

Differences Between Questionnaires
On average, children perceived themselves more strictly
(m = 12.86; SE = 5.68) than teachers did (m = 11.55, SE = 6.79).
This difference, 1.32, CI (0.30, 2.33) was significant t(294) = 2.55,
p = 0.011 and it is represented by a small effect size d = 0.21.

Pearson’s correlation coefficients were computed to assess the
relationships between the items of both questionnaires. Table 6
summarizes all correlation coefficients and related p-values and
the correlation between the same items of both questionnaires
are highlighted in bold. Items 7, 8 (physical and emotional well-
being), and 9 (performance time) did not correlate significantly.
The highest correlation is between the items with the number 1
(legibility; r = 0.34, p < 0.01) and 3 (performance time; r = 0.32,
p < 0.01) of both questionnaires. There was a weak positive
correlation between the total scores of HPSQ and HPSQ-C
(r = 0.37, p < 0.01).

DISCUSSION

The primary purpose of this study was to adapt and evaluate
the psychometric qualities of HPSQ and HPSQ-C as screening
tools among children in the Czechia. The secondary purpose
was to compare both questionnaires because there is no
information about their psychometric qualities in one context.
The questionnaires were designed as screening tools for
identification of handwriting difficulties in children population.
We replicated Rosenblum’s (2008) studies (Rosenblum and
Gafni-Lachter, 2015) and validated her screening questionnaires
in a Czech cohort. As mentioned before, in the Czechia, there is
no standardized assessment for D, nor a screening questionnaire,
that would enable complex D examination. Moreover, there is
no study which compares the psychometric properties of both
questionnaires simultaneously.

Initially, both questionnaires were designed as follows: items
1, 2, and 10 should be grouped in factor legibility; items
3, 4, and 9 belong to factor called performance time; and
finally, items 5, 7, 6, and 8 are part of physical and emotional
well-being factor (Rosenblum, 2008; Rosenblum and Gafni-
Lachter, 2015). For the CFA, we built the models based on
the theoretical background for each questionnaire separately.
The CFA showed poor model fit for the teachers’ model
(HPSQ) and excellent model fit for children’s model (HPSQ-
C). Correlation between latent factors showed that teachers
had a tendency to evaluate children without discriminating
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TABLE 6 | Pearson’s correlation coefficients between the items of HPSQ and HPSQ-C.

HPSQ-C HPSQ

1 2 3 4 5 6 7 8 9 10 Sum 1 2 3 4 5 6 7 8 9 10 Sum

HPSQ-C 1 1

2 0.433∗∗ 1

3 0.180∗∗ 0.128∗ 1

4 0.149∗ 0.141∗ 0.211∗∗ 1

5 0.227∗∗ 0.234∗∗ 0.098 0.213∗∗ 1

6 0.146∗ 0.096 0.193∗∗ 0.070 0.111 1

7 0.202∗∗ 0.110 0.084 0.176∗∗ 0.177∗∗ 0.167∗∗ 1

8 0.196∗∗ 0.128∗ 0.195∗∗ 0.312∗∗ 0.399∗∗ 0.189∗∗ 0.310∗∗ 1

9 0.188∗∗ 0.194∗∗ 0.148∗ 0.270∗∗ 0.127∗ 0.016 0.191∗∗ 0.223∗∗ 1

10 0.417∗∗ 0.333∗∗ 0.115∗ 0.159∗∗ 0.189∗∗ 0.049 0.138∗ 0.185∗∗ 0.166∗∗ 1

Sum 0.580∗∗ 0.516∗∗ 0.434∗∗ 0.529∗∗ 0.578∗∗ 0.321∗∗ 0.507∗∗ 0.648∗∗ 0.501∗∗ 0.531∗∗ 1

HPSQ 1 0.336∗∗ 0.289∗∗ 0.104 0.204∗∗ 0.156∗∗ 0.139∗ 0.040 0.188∗∗ 0.108 0.202∗∗ 0.330∗∗ 1

2 0.290∗∗ 0.279∗∗ 0.164∗∗ 0.226∗∗ 0.090 0.173∗∗ 0.009 0.145∗ 0.127∗ 0.200∗∗ 0.310∗∗ 0.805∗∗ 1

3 0.186∗∗ 0.223∗∗ 0.332∗∗ 0.260∗∗ 0.139∗ 0.194∗∗
−0.009 0.152∗∗ 0.095 0.169∗∗ 0.319∗∗ 0.528∗∗ 0.621∗∗ 1

4 0.261∗∗ 0.310∗∗ 0.150∗∗ 0.261∗∗ 0.103 0.121∗ 0.015 0.153∗∗ 0.111 0.205∗∗ 0.313∗∗ 0.594∗∗ 0.562∗∗ 0.542∗∗ 1

5 0.184∗∗ 0.177∗∗ 0.198∗∗ 0.199∗∗ 0.175∗∗ 0.125∗ 0.002 0.169∗∗ 0.087 0.121∗ 0.271∗∗ 0.558∗∗ 0.602∗∗ 0.559∗∗ 0.620∗∗ 1

6 0.170∗∗ 0.219∗∗ 0.187∗∗ 0.158∗∗ 0.027 0.199∗∗ 0.015 0.097 0.047 0.097 0.213∗∗ 0.413∗∗ 0.450∗∗ 0.363∗∗ 0.343∗∗ 0.492∗∗ 1

7 0.079 0.181∗∗ 0.221∗∗ 0.190∗∗ 0.149∗ 0.120∗ 0.090 0.191∗∗ 0.058 0.084 0.260∗∗ 0.387∗∗ 0.400∗∗ 0.470∗∗ 0.452∗∗ 0.510∗∗ 0.186∗∗ 1

8 0.137∗ 0.175∗∗ 0.263∗∗ 0.254∗∗ 0.153∗∗ 0.090 −0.068 0.114 0.102 0.108 0.249∗∗ 0.527∗∗ 0.608∗∗ 0.645∗∗ 0.611∗∗ 0.787∗∗ 0.426∗∗ 0.519∗∗ 1

9 0.099 0.116∗ 0.205∗∗ 0.268∗∗ 0.070 0.111 −0.045 0.065 0.056 0.119∗ 0.194∗∗ 0.381∗∗ 0.422∗∗ 0.558∗∗ 0.489∗∗ 0.474∗∗ 0.260∗∗ 0.225∗∗ 0.534∗∗ 1

10 0.294∗∗ 0.238∗∗ 0.178∗∗ 0.191∗∗ 0.191∗∗ 0.150∗∗ 0.007 0.162∗∗ 0.076 0.230∗∗ 0.321∗∗ 0.625∗∗ 0.626∗∗ 0.440∗∗ 0.572∗∗ 0.566∗∗ 0.389∗∗ 0.374∗∗ 0.537∗∗ 0.325∗∗ 1

Sum 0.271∗∗ 0.289∗∗ 0.278∗∗ 0.304∗∗ 0.176∗∗ 0.187∗∗
−0.002 0.186∗∗ 0.119∗ 0.205∗∗ 0.373∗∗ 0.775∗∗ 0.815∗∗ 0.787∗∗ 0.782∗∗ 0.835∗∗ 0.562∗∗ 0.589∗∗ 0.843∗∗ 0.659∗∗ 0.729∗∗ 1

∗∗Correlation is significant at the 0.01 level (two-tailed). ∗Correlation is significant at the 0.05 level (two-tailed).
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based on the theorized factors. In contrast, children perceived
those factors as relatively independent. In addition, we checked
measurement properties varied by sex, which came out as not
significant. We also conduct the invariance analysis for groups
of girls and boys with results that suggest possibility of claiming
configural and metric invariance for the HPSQ-C, but not
scalar invariance.

Previous studies used exploratory factor analysis with different
outcomes. Rosenblum (2008) reports two factors in HPSQ.
The first factor includes items 3–9 and the second factor
comprises items 1, 2, and 10. Her results were confirmed by a
Spanish sample (Cantero-Téllez et al., 2015) with the same factor
arrangement. Also, in this case, item 6 had the lowest factor score
(0.18). Similarly, the original study of HPSQ-C mentions only
two factors. The first factor includes item 3 and items from 5
to 9, and the second factor was formed by items 1, 2, 4, and
10 (Rosenblum and Gafni-Lachter, 2015). Based on our results
we can conclude that our data for HPSQ did not support the
theoretical structure. In contrast, our data support the proposed
theoretical structure for HPSQ-C.

We think that the differences between our study and those
published in the original study could be caused by the reversal
of some items meaning. The same issue with the double
negation in the HPSQ items was identified by Schwellnus et al.
(2012). Another explanation could be based on the different
number of evaluators in both questionnaires. Even when the
number of evaluations was the same (N = 294), there was
a difference in the numbers of independent evaluations of
HPSQ (N = 21) and HPSQ-C (N = 294). Hammerschmidt and
Sudsawad (2004) reported that the most important criterion
which teachers used for evaluating handwriting issues is legibility
(67.8%; N = 314). Furthermore, as a major method for
handwriting evaluation, they compare student’s handwriting to
classroom peers (36.8%). These outcomes support our results.
We understand that as an explanation of higher correlations
between latent variables in HPSQ model. That is, teachers
are probably better in the evaluation of the whole group
than of individuals.

Values of McDonald’s ω of the theoretical model indicate
excellent (HPSQ, ω = 0.91) and acceptable (HPSQ-C, ω = 0.70)
reliability of both questionnaires. Further analysis suggests
deleting two items: items 3 and 6 from HPSQ-C. Nevertheless,
without item 3, the reliability will not decrease. The total values
of McDonald s ω in the proposed CFA model of HPSQ and
HPSQ-C could be considered as nearly excellent (ω = 0.93 and
ω = 0.74). Both values meet the condition of acceptable reliability
for research purposes.

We have a common finding in all results points at item
6 (doing homework). The Sk value 3.34 and the Ku value
12.91 in HPSQ-C indicate that there are very few children
who do not do homework. This item was also the less
assessed one by both groups, children (m = 0.24) and teachers
(m = 0.39), which again explains minimal problems with
homework. We assume that this particular item has minimal
discrimination information because almost every Czech child
in 3rd and 4th grade do his/her homework. In addition,
thanks to the sex invariance analysis in CFA, we know that

this issue is related only to the group of girls, because the
standardized factor loading of item 6 in HPSQ-C was not
significant (p = 0.79). This means that this item does not detect
differences among girls.

Reliability analysis of HPSQ-C also excludes item 3 (assessing
whether a child has enough time to copy text from blackboard).
Rosenblum and Gafni-Lachter (2015) wrote about the content
validation process. They asked 10 children to complete HPSQ-
C questionnaire and rate its items based on their clarity.
Each item obtained 100% agreement, nevertheless, two children
had a problem with item 3. They reported problems with
meaning “repeatedly” in comparison with their classmates. Also,
a few teachers from our study had the same difficulties. They
complained that the question is not clear. According to them,
the time of copying the text from blackboard depends on the
length and complexity of sentence or paragraph. Even when
internal consistency recommended to delete items 3, 6, and 9,
we did not do this. Those items could be more efficient in
other age cohorts and further analysis is needed. Moreover,
the content of all items is meaningful considering the scope of
the questionnaires.

Boys were assessed as worse writers than girls by both
groups – teachers (HPSQ) and children (HPSQ-C). These gender
differences are a well-known fact, which corresponds with
previous research (Blöte and Hamstra-Bletz, 1991; Hawke et al.,
2009; Shih et al., 2018). Next, we found out that grades positively
correlate with scores of both questionnaires. In addition, worse
school achievement is linked with worse handwriting. Similar
findings could be found in other studies (Graham et al., 2000;
Klein and Taub, 2005).

We found significant differences between total scores
made by children (HPSQ-C) and their teachers (HPSQ).
Children from our study were more critical during self-
evaluation. Similar conclusions are reported by Rosenblum
and Gafni-Lachter (2015). The authors write that: “.children
as a whole evaluated their handwriting as less proficient
than did their teachers.” (p. 5). According to outcomes
of correlation analysis, there were three items of HPSQ
and HPSQ-C which did not correlate: item 7 focused
on child’s complaining to pain during the writing, item
8 aimed at fatigue during writing (both from physical
and emotional well-being factor) and item 9 surveyed
frequency of looking at a blackboard during copying (from
performance time factor).

In accordance with the first research studies (Rosenblum,
2008; Rosenblum and Gafni-Lachter, 2015), we found out that
children can better distinguish between questions in HPSQ-
C questionnaire. Some studies indicate potential disparities
between children and teachers/parents in the way of evaluation
(e.g., Sturgess and Ziviani, 1996; Bouman et al., 1999; Petersson
et al., 2013). Other studies report that children could be better
judges of their performance than their parents or teachers
(Petersson et al., 2013). Hammerschmidt and Sudsawad (2004)
reported that teachers’ evaluation of handwriting problems is not
congruent with standardized tests (Sudsawad et al., 2001).

When adults assess children, their opinion could be influenced
by their point of view. They are trying to figure out how the
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child should feel in a situation (Begley, 2000). Teachers cannot
discriminate between items and understand them as well as
children do. This finding is consistent with that of Germano
et al. (2016) who reported that HPSQ did not distinguish
dyslectic students. They stated that: “. . .teachers perhaps do
not have enough knowledge about the handwriting skills.”
(p. 593) as an explanation for higher “never” and “rarely”
answer frequency. Based on our results, we can infer that
children’s perception of their handwriting is quite different
and more accurate.

This study has several limitations. First, we did not control the
IQ variable. Nevertheless, the cohort was enrolled in elementary
schools where children with mental retardation are usually not
included. For that reason, we do not assume this limitation
would have a significant impact on our results. Next, we
did not compare the results with a baseline diagnosis of D;
however, the diagnostic assessment of D in the Czechia is rather
subjective and there are problems with establishing the correct
diagnosis. On the other hand, the percentage of children with
handwriting problems confirmed the estimated prevalence of
D in foreign studies (Cermak and Bissell, 2014; Döhla and
Heim, 2016). Another limitation could be the different number
of independent evaluations collected in each questionnaire as
mentioned above.

Another limitation is linked with the teachers’ sample.
Variables such are sex, age, or years of experience were not
recorded for teachers, therefore they could not be controlled.
In future research, especially for the HPSQ these variables
should be part of the questionnaire to observe their potential
influence on the results. Also, the sample of children consisted
only of those enrolled from the 3rd and 4th grades, and this
could be seen as non-representative. We chose this range for
several reasons: (1) during the 3rd and 4th grades handwriting
becomes automatic, (2) thus handwriting issues are more
conspicuous and (3) the disorder of written expression (F81.81
in ICD-10) is diagnosed between the 3rd and 4th grades.
Nevertheless, Rosenblum and Gafni-Lachter (2015) used HPSQ-
C for younger children, i.e., from first grade. Further research in
this field is needed.

The last limitation which we want to emphasize is the
translation process. The original questionnaire was in Hebrew,
but for forward and backward translation we used the English
version. Moreover, we did not conduct any of recommended
final steps (i.e., cognitive interview, expert panel, or pilot
study). Given that the items of the questionnaires are quite
simple in terms of comprehension, we did not assume any
difficulty of understanding from the children’s or teachers’
points of view. This statement is supported by the fact
that there were no conceptual or terminology discrepancies
between versions, nor in the forward or in the backward
phases of translation.

In the Czechia, there is no quick and reliable screening tool
for D assessment which could help teachers, children, and their
parents to recognize handwriting issues. Therefore, in the frame
of this study, we adapted HPSQ and HPSQ-C questionnaires
for the Czech population and evaluated their reliability and

validity. Based on a statistical analysis we recommend the HPSQ-
C questionnaire for further research use in the Czech population.
We would like to emphasize that this questionnaire is only
considered as an auxiliary screening tool which should help
teachers to identify children with handwriting difficulties. But
some additional and accurate diagnosis is still necessary. To
sum up, based on the results we suggest that: (1) a child is
a better evaluator of her/his issues and they should be seen
through her/his eyes; (2) in the case of further research in other
languages, inversion of items 1–3, 6, and 10 should be considered.
To develop a full picture of psychometric characteristics of this
questionnaire additional studies are needed.

As the next logical step in this research, we are going to
extend the D assessment methodology based on HPSQ-C by
applying a quantitative analysis of digitized handwriting/drawing
and utilization of machine learning. This approach can enable
us to identify underlying patterns and processes in children with
graphomotor disabilities, which can make the general diagnosis
more objective and accurate.
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ABSTRACT School-aged children spend 31–60% of their time at school performing handwriting, which is
a complex perceptual-motor skill composed of a coordinated combination of fine graphomotor movements.
As up to 30% of them experience graphomotor difficulties (GD), timely diagnosis of these difficulties and
therapeutic intervention are of great importance. At present, an objective, computerized decision support
system for the identification and assessment of GD in school-aged children is still missing. In this study,
we propose three novel advanced handwriting parametrization techniques based on modulation spectra,
fractional order derivatives, and tunable Q-factor wavelet transform to improve the identification of GD
using online handwriting. For this purpose, we analyzed signals acquired from 7 basic graphomotor tasks
performed by 53 children attending 3rd and 4th grade at several primary schools around the Czech Republic.
Combining the newly proposed features with the conventionally used ones, we were able to identify GD
with 84% accuracy. In this study, we showed that using advanced parametrization of basic graphomotor
movements can be potentially used to improve our capabilities of quantifying problemswith the development
of legible, fast-paced handwriting, and help with the early diagnosis of handwriting difficulties frequently
manifested in developmental dysgraphia.

INDEX TERMS Advanced parametrization, computerized analysis, graphomotor difficulties, machine
learning, online handwriting.

I. INTRODUCTION
At present, every school-aged child is expected to master
legible, well-coordinated and fast-paced handwriting, which
is a complex perceptual-motor skill learned by instruction
that quantifies a child’s timely maturation and integration of
psycho-motor, linguistic and mental abilities, and readiness
for education [1]. It is known that it takes approximately
10 years to develop handwriting skills [2] on both quantita-
tive (speed) and qualitative (legibility) level [3], [4]. However,
before a child starts to write, she/he first needs to learn how
to draw [5]. In general, until the age of 6, a child starts to
develop a combination of motor and non-motor skills such

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

as motor planning and execution, visual–perceptual abilities,
orthographic coding, kinesthetic feedback, and visual–motor
coordination, which eventually become automated at the age
of 8–9 [6], [7]. These skills are referred to as graphomotor
skills (GS) [8], [9], and form the foundation of drawing and
consequently, handwriting abilities [2] that accompany every
person throughout the life-time.

Even though modern technologies brought new ways of
communication, self-expression, and education, handwrit-
ing is still an important part of a child’s life [9]. In gen-
eral, it has been estimated that children spend 31–60% of
their school-time performing handwriting [10]. Given that
children at school need to write under time constraints,
the acquisition of GS is crucial for a child’s ability to
write legibly, as well as quickly and efficiently. Basically,
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the development of GS affects a child’s academic success
and professional career [11]. It has also been shown that
approximately 10–30% of children experience graphomotor
difficulties (GD) [8], [9] such as motor-memory dysfunc-
tion (problems combining memory input with motor output),
graphomotor production deficits (poor muscle coordination,
unusual pen-grip and less precise graphomotor movements),
motor feedback difficulties (over-activation of certain mus-
cles and joints during handwriting as well as problems track-
ing the location of the pen’s tip), etc. Such an impairment
of the neuro-muscular system can have serious pedagogi-
cal and psychological consequences, and can greatly affect
a child’s every-day life [12] startingwith slow and less-legible
handwriting, lack of motivation to write, lower self-esteem
combined with poor emotional well-being, bad attitude and
behaviour, communication and social interaction problems,
and in some cases going as far as being diagnosed with a seri-
ous neurodevelopmental disorder such as developmental dys-
graphia (DD) [9], [13]–[15]. To provide children with both
preventive as well as corrective therapeutic care, GD should
be identified and treated as soon as possible [16], [17].

To identify and evaluate GD and handwriting
difficulties (HD) in general, occupational therapists and/or
special educational counsellors use specialized question-
naires or tests that aim at quantification of the quality of
the handwritten product in multiple domains using its visual
inspection. Some of the most commonly used questionnaires
(rating scales) are the following: Concise Assessment Scale
for Children’s Handwriting (Brave Handwriting Kinder)
(BHK) [18], Handwriting Proficiency Screening Question-
naire (HPSQ) [19] or Handwriting Proficiency Screening
Questionnaire for Children (HPSQ–C) [20]. Even though
these scales are a well-established way of identification and
rating of GD and HD in school-aged children, its administra-
tion and coding are time-consuming, which limits the use of
this type of evaluation on a regular day-to-day basis. More-
over, it is naturally limited by the perceptual capabilities,
subjective judgement and experience of an examiner [21].
Finally, it is also a subject to inter-rater variability [22]. Due to
the complexity and limitations associated with GD/HD iden-
tification, many children, especially those attending lower
grades of a primary school, may remain undiagnosed or may
be diagnosed later than appropriate.

To overcome the limitations of the perceptual analysis and
search for a more robust view of various hidden complexities
of the handwriting process, new methods based on digitiza-
tion and signal processing techniques have been developed
[23]–[28]. More specifically, instead of a conventional data
acquisition using a pen and paper, digitizing tablets (digitiz-
ers) have been used to record a variety of signals describing
the evolution of handwriting in time. Such a collection of data
about handwriting (i. e. that one associated with timestamps)
is referred to as online handwriting [29]. Using advanced
digital signal processing algorithms a variety of handwriting
parameters (commonly referred to as handwriting features)
quantifying kinematic (velocity, acceleration, jerk) as well as

dynamic (pen pressure, tilt and azimuth) components con-
tributing to the execution of the handwriting process have
been designed [6], [30]–[32]. Such characteristics are very
hard to be perceived and precisely quantified by a human
observer and are almost impossible to be extracted using only
the final handwritten product.

In recent years, several studies focusing on computer-
ized analysis, identification and assessment of HD, mostly
associated with writing in children with developmental dys-
graphia, have been conducted. In 2017, Pagliarini et al. [27]
reported that the governing principles of rhythmic organiza-
tion, namely homothety and isochrony, describe the hand-
writing process in school-aged children from the time where
the very first handwritten products are made, i. e. before
the handwriting is performed automatically. Moreover, they
pointed out the potential of quantitative analysis to indicate
the development of HD at a very early age. In the same
year, Mekyska et al. [32] performed a study in a cohort
of 27 school-aged children in which they introduced a new
intra-writer normalisation method aiming at improving the
discrimination capabilities of a large variety of conventional
and non-conventional handwriting features. They also built
a random forest classifier identifying the presence of DD
with 96% sensitivity and specificity. Next, Rosenblum and
Dror [26] employed a study focusing on automatic identifica-
tion and characterization of DD in a cohort of 99 third-grade
children. Using various kinematic and dynamic features, they
trained a linear support vector machines classifier achieving
90% sensitivity and specificity. In 2018, Asselborn et al. [28]
developed a diagnostic tool for DD evaluated on a cohort of
298 children (56 children with DD) performing the BHK test
on a digitizing tablet coveredwith a sheet of paper. To identify
the presence of DD, they computed 53 handwriting features
and built a random forest classifier with 96% sensitivity
and 99% specificity. In 2019, Mekyska et al. [33] employed
a study that is the closest one to a study proposed in this work.
They aimed at exploring the impact of specific elementary
graphomotor tasks on the accuracy of computerized diagnosis
of GD. For this purpose, they analysed 7 basic graphomotor
elements performed by a cohort of 76 school-aged children.
Using only conventional handwriting features, they trained
an XGBoost [34] classifier and achieved 50% sensitivity
and 90% specificity. In the same year, Zvoncak et al. [35]
used features based on fractional order derivatives to enrich
a set of conventional features and analysed their corre-
lation with HPSQ–C in 55 children (19 third-grade chil-
dren, and 36 fourth-grade children) performing an alphabet
writing task. With this setup, they reported that features
based on fractional order derivatives improved quantification
and robustness of the description of in-air movements. And
finally, in 2020 Asselborn et al. [36] proposed a data driven
strategy for estimating handwriting quality in a battery of
448 school-aged children (390 typically developing children
and 58 children with HD). They utilized principal component
analysis to reduce 53 handwriting features also used in [28]
to three dimensions that are independent of the BHK scores.
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Next, they used the reduced feature space to cluster children
into two groups (typical handwriting, HD), and evaluated how
far a child’s score is from the average score of children of
the same age and gender. With this approach, they reported
four specific handwriting scores for kinematics, pressure, pen
tilt and static features to describe the handwriting profile of
a child in a finer way that enables measuring the quality of
handwriting in multiple domains.

Although there is a body of research dealing with comput-
erized quantitative analysis of HD in school-aged children,
several key points have not been fully investigated yet. First
of all, most of the studies aimed at identifying HD and/or DD.
Studies focusing on quantification and identification of GD
are very sparse. This is an important topic as HD can have
many forms and can vary even among typically developing
children. As mentioned in one of the most recent publi-
cations dealing with computerized analysis of handwriting
in school-aged children proposed by Asselborn et al. [36],
dysgraphia is an umbrella term that describes a variety of
handwriting difficulties. Therefore, GD play a crucial role in
determining the handwriting profile of a child, and should be
investigated as well. Moreover, most of the studies focused
on writing signals such as writing words, sentences, etc.,
only. Finally, conventional handwriting features have been
used to describe HD almost exclusively. To the best of our
knowledge, a comprehensive study aiming at quantifying GD
manifested during performing a battery of simple but impor-
tant graphomotor elements (loops, spirals, etc.) using not only
conventional but also more advanced graphomotor features is
missing. For this purpose, in this study, we propose the use
of seven graphomotor tasks and three novel types of hand-
writing features based on: a) modulation spectra; b) fractional
order derivatives; and c) tunable Q-factor wavelet transform.
We hypothesize that these features can bring more infor-
mation about specific GD accompanying the handwriting
process of children with GD in its very basis. In addition,
we also hypothesize that a combination of conventional and
more advanced parametrization of online handwriting can
improve identification of GD and contribute to a development
of a decision support system that can be used for diagnosis of
HD and eventually DD.

II. MATERIALS AND METHODS
The methodology can be briefly summarized as follows:
a) dataset description (cohort, acquisition protocol, data
acquisition, etc.), b) presentation of the feature extraction
methods (conventional, newly-proposed features), and c) sta-
tistical analysis and machine learning (normality testing and
feature pre-processing, feature selection, correlation analy-
sis, hypothesis testing, and binary classification). Finally,
an overview of the methodology can also be seen in Fig. 1.

A. DATASET
Altogether, we enrolled 53 Czech-speaking children (22 girls
and 31 boys) attending 3rd and 4th grade at several primary
schools in the Czech Republic: 26 healthy children (HC)

FIGURE 1. An overview of the methodology applied in the study.

(2 3rd-grade girls, 12 4th-grade girls, and 12 4th-grade boys)
and 27 children with GD (1 3rd-grade girl, 5 3rd-grade boys,
7 4th-grade girls, and 14 4th-grade boys). Description of
the dataset can be seen in Table 1. During the data acqui-
sition, all of the children were asked to perform a specifi-
cally designed drawing protocol consisting of 7 elementary
graphomotor tasks (TSK) (for more information, see Fig. 2):
TSK1 –Archimedean spiral (approximately 15 cm in height);
TSK2 – half-sized version of TSK1; TSK3 – connected
loops; TSK4 –flipped version of TSK3; TSK5 – sawtooth;
TSK6 – rainbow; TSK7 – combination of TSK3 and TSK4.
Each of the tasks was first shown to a child and then she/he
replicated it on a blank sheet of paper with a comfort-
able speed. The protocol was designed in cooperation with
psychologists and special educational counsellors so that
it reflects all coordinated elementary movements that are

VOLUME 8, 2020 112885



Z. Galaz et al.: Advanced Parametrization of GD in School-Aged Children

FIGURE 2. Drawing acquisition protocol with the selected graphomotor tasks.

TABLE 1. Description of the dataset.

needed to successfullywrite cursive letters (i. e. cursive letters
are constructed of these basic graphomotor elements, there-
fore, mastering these elements is a prerequisite for mastering
legible handwriting). Examples of the final handwritten prod-
uct for all graphomotor tasks performed by healthy children
and children with GD can be seen in Fig. 3.

The protocol was printed on an A4 paper that was laid
down and fixed to a digitising tablet. To acquire the hand-
writing data, we usedWacom Intuos Pro L (PHT-80) with the
sampling frequency of 150Hz, and the Wacom Inking pen.
This set-up enabled us to take advantage of two facts: a) it
provided the children as well as an examiner with immediate
visual feedback andmade it possible to simulate the feeling of
using a conventional inking pen; and b) it allowed for record-
ing of a variety of signals describing the drawing process:
x and y position (x[n] and y[n]); timestamp (t[n]); a binary
variable (b[n]; 0 – in-air movement, i. e. movement of pen tip
up to 1.5 cm above the tablet’s surface, and 1 – on-surface
movement, i. e. movement of pen tip on the paper), pressure
exert on the tablet’s surface during drawing/writing (p[n]);
pen tilt (a[n]); and azimuth (az[n]). For more information,
we refer to our previous works [32], [37].

Moreover, to assess legibility and performance time dur-
ing handwriting as well as physical and emotional well-
being, the children were asked to evaluate themselves using
HPSQ–C (rating scale) [20], which is composed of 10 ques-
tions scored on a 5-point Likert scale (0 – never, i. e. no GD,
4 – always, i. e severe GD; total score, i. e. sum over all ques-
tions: 0 –min. value, 40 –max. value; legibility – items 1, 2,

and 10, performance time – items 3, 4 and 9, and physical and
emotional well-being – items 5–8). Using HPSQ–C brings
two important advantages: a) the scale is language indepen-
dent and therefore well-comparable across studies employed
on cohorts coming from different language groups; b) it has
already been validated in a couple of previous studies such as
[8], [32], [38], [39]. The overall HPSQ–C scores, as well as
the final handwritten product, were both examined by experi-
enced psychologists and special educational counsellors. The
decision about a child’s assignment into HC or GD group
was performed on a PC after the examination of a child’s
handwritten product, where an expert (remedial teacher) had
no information about her/his sociodemographic information
(e. g. sex, class, HPSQ–C, etc.). The description of HC/GD
groups mentioned at the beginning of Section II presents the
numbers after the final examination and assignment.

Parents of all children participating in this study signed an
informed consent form approved by the Ethical Committee
of the Masaryk University. Throughout the entire duration
of this study, we strictly followed the Ethical Principles of
Psychologists and Code of Conduct released by the
American Psychological Association (https://www.apa.org/
ethics/code/).

B. FEATURE EXTRACTION
To quantify GD, we extracted the following convention-
ally used graphomotor features (CONV) [25], [30], [40]:
a) spatial features –width (WIDTH), height (HEIGHT), and
length (LEN) of the signals (also referred to as writing). Even
though the in-air movements can be used to capture a certain
aspect of GD [25], [40], all graphomotor tasks proposed in
this work should be performed using a single stroke. Since
the number of multi-stroke signals analyzed in this study
was only marginal, we did not distinguish between signals
and strokes and used the stroke notation, i. e. stroke width
(SWIDTH), height (SHEIGHT), and length (SLEN), as it is
used in general; b) kinematic features (horizontal and ver-
tical projection) – velocity (VEL), acceleration (ACC), and
jerk (JERK); and c) dynamic features – pressure (PRESS),
tilt (TILT), and azimuth (AZIM). These features were used
as a baseline feature set. To build on top of these conven-
tional features and to enhance their capability of describing
GD in a more robust and complex way, we present three
new feature-types aiming at improving the quantification
and description of GD in school-aged children, namely:
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FIGURE 3. Example of the final handwritten product for all graphomotor tasks performed by randomly selected healthy children (blue)
and children with GD (red) (units are in millimeters).

a) features based on modulation spectra (MS); b) features
based on fractional order derivatives (FD); and c) features
based on tunable Q-factor wavelet transform (TQWT). All
vector-valued features were transformed to scalar values
using mean and coefficient of variation (cv) estimates (some
of the novel features used additional statistical functions that
are described along with the features themselves).

An important fact to point out is that these features were
designed not only to improve the robustness of the conven-
tional features but also to maintain as much interpretability as

possible. This is crucial especially for their real use in clinical
practice because the complexity and great discrimination
power without understanding the meaning of the features are
not likely to bring trust and convenience. If psychologists and
special educational counsellors are able to link the features
with the specific physiological phenomena, the computerized
quantitative analysis of GD can be finally deployed.

To present the features in a compact and easy to read
way, we used the following naming convention: TSK INF:
DIR-FN (HL), where TSK denotes the specific graphomotor
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task, INF represent information about the movement
(ON– on-surface, AIR – in-air), PRESS – pressure,
TILT – tilt, and AZIM– azimuth), DIR stands for direc-
tion (H – horizontal and V – vertical), FN shows the feature
name, and HL holds an applied statistic (if any). Moreover,
each specific novel feature-type also sets FN accordingly
(described in the section devoted to the proposed features).
As all features presented in this work are computed from
on-surface movements, the on-surface/in-air information is
considered redundant and is not shown in the feature names.

1) MODULATION SPECTRA FEATURES
The first type of the novel features proposed in this work is
based on modulation spectra as a non-parametric method for
representing modulations in an analyzed biomedical signal.
MS has already been used for parametrization of dysarthric
speech in patients with Parkinson’s disease (PD) [41]. These
features however aimed at describing instability of vocal
folds vibrations. The features proposed in this work aim at
quantifying the ratio between the low and high-frequency
movements present in a given handwriting signal of children
attending a primary school.

To compute the modulation spectra features, Short-Time
Fourier Transform (STFT) of the input handwriting signal
s[n] of length N is computed as

S[k,m] =
N−1∑
n=0

s[n]w[n− mL]e−jk
2π
N n, (1)

k = 0, 1, . . . ,N − 1,

m = 0, 1, . . . ,M − 1,

where M denotes the number of segments obtained using
a segmentation window w[n] composed of L samples. In the
frame of this work, we usedHamming segmentationwindows
with L = 75 samples (fs = 150Hz, windows of 0.5 s with the
overlap of 50%).

Next, power spectrum |S[k,m]|2 of each segment is com-
puted and filtered by a filer-bank P consisted of Pn filters. For
this purpose, we used a filter bank of 50 linearly distributed
triangular filters. After the filtration, the matrix X [p,m] con-
tains Pn sub-bands p = 1, 2, . . . ,Pn. Subsequently, each
sub-band is normalized [42] as follows

X̂ [p,m] = ln (X [p,m])− ln (X [p,m]), (2)

where ∗ refers to the averaging operator applied over m.
To obtain a modulation spectra matrix, Discrete Fourier

Transform (DFT) is applied on X̂ [p,m].

9[p, l] =
M−1∑
m=0

X̂ [p,m]e−jl
2π
M m, (3)

l = 0, 1, . . . ,M − 1,

where p and l denote the handwriting and modulation fre-
quency, respectively. Finally, 9[p, l] is normalized by the
mean of each sub-band.

After obtaining the modulation spectra matrix, a vector
of handwriting cut-off frequencies fc = 1, 2, . . . ,C [Hz] is
defined. The values of fc are subsequently converted to the
filter indices c using their center frequencies. In this work,
we used fc ∈ Fc, where Fc = 1, 2, . . . , 10, 15, 20, 25Hz.
Next, for each value of fc, low (El) and high frequency
(Eh) summation components of 9[p, l] are computed as

El(fc)[l] =
c∑

p=0

9[p, l],

Eh(fc)[l] =
Pn∑
p=c

9[p, l], (4)

l = 0, 1, . . . ,M − 1,

fc = Fc. (5)

Finally,El(fc) andEh(fc) are used to compute the final energy
ratio Rfc between the low and high frequency movements in
the analyzed handwriting signal. It is defined as

Rfc =

M−1∑
l=0

El[l]2

M−1∑
l=0

Eh[l]2
. (6)

We used the following naming convention for the MS fea-
tures: FRfc, where F represents the name of the handwriting
feature, R stands for ratio, and fc holds the value of the
specific handwriting cut-off frequency used to compute the
energy ratio.

2) FRACTIONAL ORDER DERIVATIVE FEATURES
The second type of the novel features is based on the theory
of fractional order derivatives. Handwriting features based
on FD have already been explored in our previous studies
focusing on the quantitative analysis of parkinsonian dys-
graphia [43]–[46], where they brought a promising improve-
ment in the power of the FD-based features to objectively
discriminate between healthy and dysgraphic handwriting
using machine learning. In this work, we aim at exploring the
possibilities of utilizing FD to describe GD in school-aged
children.

The most common approaches to compute FD are
Riemann–Liouville, Caputo, and Grünwald–Letnikov formu-
lations [47]–[49]. Parameterization of online handwriting
using FD is performed by substituting the conventional differ-
ential derivative during the calculation of the basic kinematic
features (velocity, acceleration, and jerk). The advantage of
FDs lies in their wide range of settings (order α, kernel func-
tion, etc.). In this study, we followed the Grünwald–Letnikov
approximation [48], [50] and used the implementation of FD
by Jonathan Hadida. To decrease the computational require-
ments, we used a segmentation-based computation.

A direct definition of the Dαy(t) is based on the finite
differences of an equidistant grid in [0, τ ], assuming that the
function y(τ ) satisfies certain smoothness conditions in every
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finite interval (0, t), t ≤ T . Choosing the grid [48]

0 = τ0 < τ1 < . . . < τn+1 = t = (n+ 1)h (7)

with

τk+1 − τk = h (8)

and using the notation of finite differences

1
hα
1αh y(t) =

1
hα

(
y(τn+1)−

n+1∑
v=1

cαv y(τn+1−v)

)
, (9)

where

cαv = (−1)v−1(αv ). (10)

The Grünwald–Letnikov definition from 1867 is defined
as

Dαy(t) = lim
h→0

1
hα
1αh y(t), (11)

where Dαy(t) denotes a derivative with order α of a func-
tion y(t), and h represents a sampling lattice. Following our
previous works focused on optimization of α [43], [46],
we used the ranges: from 0.1 to 0.4, and from 0.65 to 0.9,
with iteration step of 0.05.

The naming convention for FD-based features can be
described as: Fα, where F represents the name of the hand-
writing feature and α stands for the order of FD.

3) TUNABLE Q-FACTOR WAVELET TRANSFORM FEATURES
The last type of the novel features is based on tunable
Q-factor wavelet transform [51]–[53]. Recently, we have
shown that HD manifest themselves in higher energies of
the residual component of the decomposed signal computed
by TQWT [39]. Following our previous research, we aim
at investigating the potential of TQWT to describe limited
motor skills, poor dexterity and muscle tone or unspecified
motor clumsiness in school-aged children suffering fromGD.

TQWT is a non-linear discrete-time resonance-based
signal decomposition technique that separates an input
signal into high-resonance (sustained rhythmic oscillations),
low-resonance (non-rhythmic and transient behaviour) and
residual components (stochastic nature of the decomposed
signal) [51]. It is parameterized by a tunable Q-factor and an
oversampling rate (redundancy). In this study, we utilized the
implementation of TQWT based on morphological compo-
nent analysis (MCA) [54] and split augmented Lagrangian
shrinkage algorithm (SALSA) [55] described in [52].

To decompose an input signal into high and low reso-
nance components, an iterative J -level decomposition of its
low-pass channel by a two-channel filter-bank composed
of low- and high-pass filters is used [52]. The frequency
responses of the low-pass Hl(ω) and the high-pass Hh(ω)
filters are defined as

Hl(ω) = θ
ω + (β − 1)π
α + β − 1

, (12)

Hh(ω) = θ
απ − ω

α + β − 1
, (13)

for (1 − β)π < ω < απ , where α and β are the low-
and high-pass scaling parameters, and θ is the Daubechies
frequency response [52] given as

θ (ω) = 0.5(1+ cosω)
√
2− cosω, (14)

for | ω |≤ α. More details can be found in [51], [52].
To describe the proposed features, we define the clean

graphomotor signal xc[n] as

xc[n] = x[n]− xr [n], (15)

where x[n] is a handwriting signal, and xr [n] is a residual
signal given as xr [n] = x[n]− xh[n]− xl[n] (xh[n] and xl[n]
are the high- and low-resonance components).

With xc[n] and xr [n] being defined, the signal-to-noise
ratio is computed as

SNR = 10 log10

(
E(xc[n])
E(xr [n])

)
[dB], (16)

where E denotes energy computed as

E(s[n]) =
N−1∑
n=0

s[n]2, (17)

for s being a substitution for xc[n] and xr [n].
Next, absolute value of the first order derivative of E(xr [n])

is computed as Ed (xr [n]) = |E ′(xr [n])|. To quantify the
variability of Ed (xr [n]), a slope of its cumulative sum is
computed as

E1 = 1C(Ed ), (18)

where C(Ed )[n] for n = 0, 1, . . . ,N − 1 refers to the
cumulative sum applied on Ed , and 1 denotes the slope of
a function. Finally, to compute the number of significant
changes in Ed (xr [n]), the number of its peaks Ep above the
median value is computed.

Naming convention for TQWT-based features can be
described as: FN, where F represents the name of the hand-
writing feature and N stands for the specific TQWT feature:
signal-to-noise ratio (SNR), E1 as RES (csum), and Ep as
RES (npeaks).

C. STATISTICAL ANALYSIS
At first, the features with any missing values were discarded
from the analysis. Consequently, normality of the features
was tested using Shapiro-Wilk test [56]. All non-normally
distributed features were adjusted using Box-Cox [57]
transformation. After the normalization, the features were
re-inspected. As not all of the features were fully-normalized,
an entire feature set was considered as being non-normally
distributed. As a result, only non-parametric statistical meth-
ods were employed during the subsequent statistical analysis.
Next, to control for the effect of confounding factors (also
known as covariates), we computed the Spearman’s corre-
lation between the values of the features and the following
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characteristics: age, gender, grade (these characteristics were
chosen after the consultation with psychologists and special
educational counsellors). With this approach, age and grade
were identified as having a statistically significant effect on
the feature values. The effect of children’s gender on the fea-
tures was onlymarginal. Therefore, during the statistical anal-
ysis, we controlled for the effect of age and grade only. After
the feature-transformation, we reduced the size of the fea-
ture set using a feature pre-selection process independently
for each analyzed feature-type. More specifically, we used
a filter method named minimum RedundancyMaximumRel-
evance (mRMR) to select a relevant sub-set of the features
with minimum redundancy and cross-correlation among the
features. After the feature pre-selection, we obtained 15 fea-
tures per feature-type. Having the same number of the fea-
tures for each features-type is important especially for the
classification analysis, where each classifier is built starting
with the same feature-space complexity.

Next, to compare the distribution of the graphomotor
features for healthy children and children with GD, we used
Mann-Whitney U-test with the significance level of 0.05.
Moreover, to assess the strength of a relationship between
the features and the children’s clinical status (HC/GD),
we computed Spearman’s correlation coefficient with the sig-
nificance level of 0.05. To control for the issue of mul-
tiple comparisons, p-values were adjusted using the False
Discovery Rate (FDR) method.

Subsequently, to identify the presence of GD, we built
binary classificationmodels using an ensemble learning algo-
rithm named Random Forests (RF) [58]. This particular algo-
rithm was chosen due to its robustness to outliers, ability
to find complex interactions among features as well as the
possibility of ranking their importance. Using a randomized
search strategy, we selected the following model settings:
number of estimators (500), maximum tree depth (10), mini-
mum number of samples required for splitting (2), minimum
number of samples at a leaf node (1). Additionally, to train
the models using only a parsimonious, information-rich sub-
set of the features, to considerably decrease the risk of
overfitting, and to reduce the computational performance
requirements, we employed a feature selection process using
a wrapper method named Sequential Floating Forward Selec-
tion (SFFS). As shown previously, reduction of the fea-
ture space complexity can significantly improve the model’s
prediction power [59].

i To quantify the classification performance of the trained
models as well as to control the addition and removal of
the features during the feature selection, we used Matthew’s
correlation coefficient (MCC) [60]. This particular metric
was chosen due to its ability to summarize the confusion
matrix with the focus on obtaining a balance between the
model’s sensitivity and specificity [61]. The training and test-
ing features were standardized before classification on a per-
feature basis to have 0mean and a standard deviation of 1. The
trained models were evaluated conducting a stratified 5-fold
cross-validation (we chose the 5-fold cross-validation scheme

as a reasonable compromise between the number of sam-
ples in the training and validation folds) with 20 repetitions,
and the classification test performance was determined using
the following classification metrics: MCC, accuracy (ACC),
sensitivity (SEN), and specificity (SPE).

Finally, to evaluate the statistical significance of the
prediction performance obtained by the trained classification
models, a non-parametric statistical method named permu-
tation test was employed (exact p-values were computed to
mitigate the type I error rate and the multiple testing issues)
[62], [63]. In this work, we used 1 000 permutations and the
significance level of 0.01 (to estimate the performance of the
models on the permuted data, we used the same classification
setup as in the training phase [64]).

III. RESULTS
At first, the cross-correlation matrices (using Pearson’s cor-
relation) of the 15 features per feature-type selected using
feature pre-selection performed by the mRMR algorithm are
visualized in Fig. 4. As can be seen, there are some features
that can be considered redundant, i. e. having a strong corre-
lation with one/more features, however, as we did not want
to reduce the feature-space complexity too much (the redun-
dancy is not the same in every feature-type, so by reducing the
feature space complexity any further, some relevant features
could be removed as well. This would most likely result in
having sub-optimal feature space for some of the feature-
types.), we decided to use all of the 15 features, and analyze
them accordingly (having the possibility of cross-correlated
features appearing in the results of the statistical analysis
together in mind).

Results of the statistical analysis can be seen in Table 2.
The table shows the top 5 features for each of the
feature-types according to the p-value computed by the
Mann-Whitney U-test (if some of the cross-correlated fea-
tures appeared together, we selected only one of them and
replace the other with the feature/s bellow the top 5). Regard-
ing the p-values of the Mann-Whitney U-test, the following
number of features can be considered as coming from a distri-
bution that is significantly different for the two subject groups
(threshold of 0.05): a) CONV features – 5/5 (prior adjust-
ment), 1/5 (after adjustment); b) MS features – 5/5 (prior
adjustment), 4/5 (after adjustment); c) FD features – 5/5
(prior adjustment), 1/5 (after adjustment); and d) TQWT fea-
tures – 3/5 (prior adjustment), 1/5 (after adjustment). With
respect to the Spearman’s correlation, the following features
were found to have the strongest correlation with the presence
of GD (where ∗∗ denotes p-value < 0.01, and ∗ denotes
p-value< 0.05): a) CONV features – TSK1TILT (mean) ρ =
−0.42∗∗; b) MS features – TSK2 V-JERKR25 ρ = 0.41∗∗; c)
FD features – TSK1 TILTVEL0.3 (mean) ρ = −0.41∗∗; and
d) TQWT features – TSK6 V-VELSNR ρ = −0.39∗∗. All of
these features were found to have a statistically significant
relationship with the presence of GD (both prior and after
p-value adjustment). For better visualization, violin plots
showing the distribution estimates of the best-discriminating
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FIGURE 4. Cross-correlation matrices of the feature sets (Pearson’s correlation coefficient (r); 15 features per feature-type) after
the pre-selection. Color notation: linear scale in the range of < −1, 1 >, where the maximum positive correlation is denoted by
the red color, and the maximum negative correlation is denoted by the blue color. More information about the features can be
seen in Section II-B.

features of every feature-type for both healthy children and
children with GD are presented in Fig. 5.

And finally, results of the classification analysis can be
seen in Table 3. Regarding the individual feature-types,
the following results were achieved (where ∗∗ denotes
p-value < 0.01, and ∗ denotes p-value < 0.05): a) CONV
features (7 features selected) –ACC = 0.74∗∗; b) MS fea-
tures (8 features selected) –ACC = 0.73∗∗; c) FD features
(3 features selected) –ACC = 0.76∗∗; and d) TQWT fea-
tures (2 features selected) –ACC = 0.71∗∗. Features used
to train these classification models for each feature-type are
summarized in Table 4. With respect to an overall feature
set (all 60 features combined), the classification performance
was: ACC = 0.84∗∗ using 10 features. All classification
results were evaluated by the permutation test as being
statistically significant.

IV. DISCUSSION
In the search for novel and more robust graphomotor
features that can be used to improve the quantification and
identification of GD in school-aged children, we introduced
three non-conventional advanced types of features, specifi-
cally, features based on modulation spectra, features based
on fractional order derivatives, and features based on tun-
able Q-factor wavelet transform. As each feature-type pro-
duced a different number of features, we employed feature
pre-selection to reduce the feature-space complexity and
minimize the effect of the curse of dimensionality occur-
ring when the number of analyzed features greatly out-
numbers the number of observations present in the dataset,
as well as to unify the number of features among the feature
sub-sets. With this approach, we reduced each feature-type
to 15 features with minimal cross-correlation. An important
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FIGURE 5. Violin plots of graphomotor features in both GD and HC groups (after removing the covariates). Figure notation: background of
the box plots represents vertically mirrored kernel density estimations; horizontal dashed lines represent medians; and a star(s) between
two violins mean(s) the p-value of Mann-Whitney U-test (∗∗ denotes p-value < 0.01, and ∗ denotes p-value < 0.05).

TABLE 2. Results of the statistical analysis.

TABLE 3. Results of the classification analysis.

observation to note here is that in all cases, the selected fea-
tures do not cover an entire spectrum of the graphomotor tasks
(TSK1–TSK7) under investigation. Moreover, the distribu-
tions of the tasks per feature-type vary as well. This indicates
that each individual type of the features can potentially be
used to describe slightly different task-specific aspects of
GD experienced by school-aged children supporting the use
of a variety of specialized feature-types to provide a more

TABLE 4. Features selected for the trained classification models.

robust and wide-scale description of the hidden complexities
underlying GD in general.

Regarding the results of the statistical analysis, it can be
seen that basic parameters such as mean tilt, height, and
length of writing were found as the most statistically sig-
nificant features in the case of the conventional (baseline)
feature set. More specifically, mean tilt during the drawing
of Archimedean spiral (TSK1) and rainbow (TSK6) showed
the strongest relationship with the presence of GD. As can
be seen, children with GD held the pen less steeply when
performing such spiral- and rainbow shape-based move-
ments. In addition, when compared with the cohort of healthy
children, sawtooth (TSK5) and rainbow (TSK6) drawn by
children with GD were found to be smaller in both height as
well as length further underlining the difficulties associated
with these tasks.

Another fact that can be observed in the results of the
statistical analysis is that as opposed to the conventional
features which consisted solely of the spatial (stroke length
and height) and dynamic (tilt) parameters, the top-ranking
non-conventional features mostly consisted of kinematic fea-
tures (velocity, acceleration, and jerk) computed in both
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horizontal as well as vertical projections, and dynamic fea-
tures (tilt). This observation is in line with the analysis
performed by a variety of previous studies [6], [65]–[67]
using kinematic features to quantify GD, and confirms the
fact that kinematic features are an important measure of the
quality of handwriting as well as drawing. Furthermore, such
features are specific to computerized analysis as they are
almost impossible to be quantified precisely using the human
perception of the final handwritten product.

With respect to the features based on modulation spectra,
all of the top-ranking features showed a positive correla-
tion with the presence of GD indicating the existence of an
increased low-frequency noise in the analyzed handwriting
signals. This noise seems to be relatively task-independent
as it appeared in all spiral-, loop- as well as sawtooth-based
movements. Moreover, in four out of five cases, the features
were based on acceleration or jerk, which points out to inabil-
ity of children with GD to perform a given graphomotor
task with steady and controlled velocity that is eventually
reflected in an increased noise in the acquired kinematic
signals (mathematical point of view) as well as in the lack of
fluency and efficiency during handwriting (clinical point of
view). Such observation is in line with the previous research
reporting non-fluent handwriting as being present in children
with HD (diagnosed with DD) [32], [68].

Regarding the top-ranking FD-based features, it may be
noticed that all of them were extracted from different grapho-
motor tasks (TSK1–TSK5) further underlying the need for
a variety of specifically-designed features to quantify GD.
The most significant FD-based feature, the mean velocity of
tilt extracted from TSK1, probably refers to the difficulties
in changing the direction of the Archimedean spiral caused
by hesitancy, distress, etc. This is an interesting finding as
it is in line with the most significant conventional feature
being the mean tilt, which highlights the importance of dif-
ferent tilt parametrizations. The rest of the most correlated
FD-based features are derived from velocity and accelera-
tion. This shows that FDs can be advantageously applied to
both kinematic as well as dynamic features. Additionally,
the values of α suggest that regular derivation is not optimal
for kinematic handwriting features, which is in line with our
previous research [43], [45].

Regarding the top-ranking TQWT features, the only
statistically significant correlation was found for the signal-
to-noise ratio of the vertical velocity extracted from the
rainbow task (TSK6). This probably shows that maintain-
ing steady velocity while performing this particular task is
not causing problems to healthy children, but is challeng-
ing for children with GD, which is in line with the previ-
ous publication reporting problems in vertical movements
in children with DD [6] caused by the psychological and
muscular fatigue in the finger system. The vertical movement
requires coordinated movement and finer flexions/extensions
of more joints (interphalangeal and metacarpophalangeal)
and therefore it is more complex than ulnar abductions of
the wrist [69], [70], which plays a key role in the horizontal

one, i. e. GD are more pronounced in the vertical projection
of handwriting/drawing. Next, we assume, that children with
GD are unable to quickly change the acceleration of their
handwriting. On the other hand, healthy children have fewer
problems with handwriting automation and therefore can
change the acceleration more fluently. This can indirectly
cause higher noise-level in the residual component of vertical
acceleration in the handwritten product of healthy children,
as can be seen in the second most significant TQWT feature.

Finally, concerning the results of the classification anal-
ysis, it can be seen that all of the three novel feature-types
achieved similar classification performance in comparison
to the conventional handwriting features. This shows that
a single type of feature, even if more complex, is not likely
to improve the identification of GD provided by the conven-
tional features significantly. However, as the results suggest,
when these features are combined, the classification perfor-
mance can be increased by approximately 10% in terms of
accuracy, 3% in terms of sensitivity and 10% in terms of
specificity. An important fact to note is that when compared
with the previous research, the results proposed in this work
might at first seem unsatisfactory as some of the recent
publications reported over 90% sensitivity [26], [28], [32].
However, those studies aimed at identifying HD in children
with DD using a complex acquisition protocol comprising
writing. The results proposed in this work are based solely on
graphomotorics and aim at predicting the presence of GD that
can lead to HD and possibly to DD. It is of great importance
to also focus on simple graphomotor movements as they form
the basis of handwriting, hence, a robust parametrization of
GD has a potential to be used as an early marker of DD
in children in pre-school age or first grades of a primary
school. Another important fact to note is that all of the feature-
types, as well as the conventional features, were selected
when training the combined model. In addition, except TSK4
(flipped version of the connected loops in TSK3), all of
the graphomotor tasks are present as well, This shows that
all of the selected features extracted from almost all of the
graphomotor tasks contributed to an improvement in the
identification of GD confirming the hypothesis of enhancing
the model’s capability to model the relationship between the
properties of the handwriting signals and the presence of GD
in school-aged children.

V. LIMITATIONS OF THE STUDY
This work has several limitations. First, we need to be aware
of the restricted statistical strength of the inference about the
population of school-aged children given a relatively small
sample size of 53 children. Next, only children attending
3rd and 4th grade of the primary school were enrolled in
this study. To obtain a more complex spectrum of hand-
writing signals, i. e. to have additional information about
the performance of the proposed graphomotor features and
their relationship with children’s age, grade, etc., handwriting
signals of children attending 1st and 2nd grade of the primary
school (possibly even pre-school children) as well as children
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attending the higher grades should also be analyzed. On the
other hand, our cohort includes children from the 3rd and
4th grade of primary schools, where the handwriting should
become automatic. Therefore a possibility to identify GD in
this stage is critical for the consequent diagnosis and thera-
peutic care of DD. The results proposed in this work therefore
laid the foundations (baseline) for future studies that should
bring evenmore information about GD in various age profiles
and their evolution in time. Next, deeper investigation and
design of the features can be performed, e. g. additional tun-
ing of the filter-banks to compute modulation spectra, other
formulations of fractional order derivatives or sub-bands of
the tunable Q-factor wavelet transform could be analyzed.
Next, various machine learning models should be trained and
compared in the future studies to get more information about
the classification performance of the proposed features and to
obtain the most robust models for GD identification. Finally,
the relationship between the classification performance of the
trained models with the feature space complexity as well as
the cross-validation setup should be investigated to evaluate
and confirm the robustness of the proposed methodology.
To sum up, concerning the limitations mentioned above, this
study should be considered as being rather exploratory and
pilot in nature, and its results should be confirmed by the
subsequent scientific research.

VI. CONCLUSION
In this study, we presented three novel types of graphomotor
features providing more robust and complex quantification of
GD in school-aged children. In each feature-type, we iden-
tified several features that significantly differentiate healthy
children and children with GD. Of note is the fact that the
novel features mostly quantified kinematic aspects of the
handwriting process that are very hard to be perceived by
a human examiner using only a final handwritten product.
In addition, we also showed that combining the proposed
graphomotor features with the set of conventionally used ones
can increase the prediction capability of the trained binary
classifier significantly. With respect to the acquisition proto-
col, all of the chosen graphomotor tasks but one appeared in
the final selection of the features used to train the combined
classification model. This confirms that using a variety of
basic graphomotor tasks requires coordinated movement of
fingers, wrist, elbow, shoulder as well as visuospatial cog-
nitive functions that allow the more advanced features to
quantify subtle and rather imperceptible manifestations of
GD using online handwriting.

To the best of our knowledge, it is the first work exploring
the possibilities of using modulation spectra, fractional order
derivatives and tunable Q-factor wavelet transform to extract
advanced graphomotor features for the purpose of quantifica-
tion and identification of GD in school-aged children. Based
on the reported results, we conclude that the proposed fea-
tures have a great potential to improve the computerized iden-
tification and assessment of GD. However, to generalize the

results, our findings should be confirmed by further scientific
research.
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ABSTRACT Graphomotor disabilities (GD) are present in up to 30% of school-aged children and are
associated with several symptoms in the field of kinematics. Although the basic kinematic features such
as velocity, acceleration, and jerk were proved to effectively quantify these symptoms, a recent body of
research identified that the theory of fractional calculus can be used to even improve the objective GD
assessment. The goal of this study is to extend the current knowledge in this field and explore the abilities
of several fractional order derivatives (FD) approximations to estimate the severity of GD in the children
population. We enrolled 85 children attending the 3rd and 4th grade of primary school, who performed a
combined loop task on a digitizing tablet. Their performance was rated by psychologists and the online
handwriting signals were parametrised by kinematic features utilising three FD approximations: Grünwald-
Letnikov’s, Riemann–Liouville’s, and Caputo’s. In this study, we showed the differences across the employed
FD approaches for the same kinematic handwriting features and their potential in GD analysis. The results
suggest that the Riemann-Liouville’s approximation in the field of quantitative GD analysis outperforms the
other ones. Using this approach, we were able to estimate the overall score with a low error of 0.65 points,
while the scale range is 4. In fact, the psychologists tend to make the error even higher.

INDEX TERMS Fractional calculus, fractional order derivatives, graphomotor difficulties, graphonomics,
online handwriting.

I. INTRODUCTION
Fractional calculus (FC) is a name of the theory of integrals
and derivatives of an arbitrary order [1]. The concept of frac-
tional operators has been introduced almost simultaneously
with the development of the classical differential, integral
or other well-known calculus [2]. It attracted the interest
of many famous mathematicians, including Euler, Liouville,
Laplace, Riemann, Grünwald, and Letnikov. The principles
of FC have been used in modeling of many physical and
chemical processes, as well as in modern engineering and

The associate editor coordinating the review of this manuscript and

approving it for publication was Donato Impedovo .

science in general [3]–[5]. It has been advantageously used
during the modeling of different diseases such as the human
immunodeficiency virus (HIV) [6] or malaria [7]. Recently,
the FC has been significantly examined in computer vision,
particularly in image restoration, super-resolution, image seg-
mentation or motion estimation [8]. In line with this trend,
in our recent research, we developed new parametrisation
techniques of online handwriting (a handwritten signal with
temporal information) based on the application of the frac-
tional order derivatives (FD) [9]–[13].

It has been estimated that approximately 10–30% of
children experience graphomotor difficulties [20] such as
graphomotor production deficits, motor feedback difficulties
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(e. g. the pen’s tip location tracking problems), motor-
memory dysfunctions, etc. Considering that children
spend 31–60% of their school-time performing handwrit-
ing [21], the early identification of graphomotor disabilities
(GD) is crucial in the prevention of serious pedagogical
and psychological consequences [22]. Otherwise, a child’s
every-day life can be greatly affected starting with a lack
of motivation to write, a decrease in self-esteem in com-
bination with poor emotional well-being continuing to bad
attitude and behaviour, communication and social interaction
problems [23]. In some cases, it may result in being diag-
nosed with a serious neurodevelopmental disorder such as
developmental dysgraphia (DD) [24], [25]. To identify and
evaluate GD in school-aged children, several well-established
questionnaires or tests based on a visual inspection of the
handwritten product have been developed [26]. Though,
their utilization on a day-to-day basis is still limited due to
the fact that the administration and coding are very time-
consuming. Furthermore, the perceptual abilities, experience,
and subjective judgment of an examiner are limited as well.

To overcome the limitations of the perceptual GD analysis,
researchers have been focusing on computerized quantitative
analysis of online handwriting. Pen and paper have been
replaced by digitizing tablets used to record a variety of
signals describing the evolution of the handwritten product
in time. It allowed quantification of kinematic (velocity,
acceleration or jerk) as well as dynamic (pen pressure, tilt or
azimuth) components of the handwritten signal. For instance,
Pagliarini et al. [27] (2017) presented the potential of quanti-
tative analysis to identify the development of handwriting dif-
ficulties (HD) at a very early age. Mekyska et al. [14] (2017)
built a classifier (random forests; 54 children) identifying
the presence of DD with 96% sensitivity and specificity.
Rosenblum and Dror [15] (2017) achieved 90% sensitivity
and specificity in DD diagnosis (support vector machines;
99 children) using various kinematic and dynamic features.
Asselborn et al. [16] (2018) reported 96% sensitivity and
99% specificity (random forests; 268 children) using 53
handwriting features quantifying different dimensions of
handwriting. Next, Mekyska et al. [17] (2019) proposed
a model (based on XGBoost, 76 children) and achieved
50% sensitivity and 90% specificity in identification of
GD presence using 7 basic graphomotor elements quantified
by conventional temporal, spatial, kinematic, and dynamic

parameters. In 2020, Galaz et al. [13] published a work
dealing with advanced analysis (utilising modulation spectra,
fractional order derivatives, and tunable-Q wavelet trans-
form) of graphomotor elements in 53 children attending
3rd and 4th grade of elementary schools. Employing ran-
dom forests they reached 83% sensitivity and 81% speci-
ficity. In the same year, Asselborn et al. [18] proposed new
data-driven based approaches for an assessment of handwrit-
ing difficulties, that were divided into 4 dimensions: kine-
matic, pressure, tilt and static. This novel approach enables
a detailed analysis in children having a very similar overall
score of dysgraphia, but differing in specific difficulties.
Finally, Garot et al. [19] (2020) enrolled 280 children who
were performing the Concise Evaluation Scale for Children’s
Handwriting (BHK) while recorded by digitising tablets.
Employing a cluster analysis, the authors were able to auto-
matically discriminate among 3 groups of children associated
with dysgraphia: 1) children with mild dysgraphia usually
not identified in schools, 2) children with severe dysgraphia
manifested in kinematics and pressure, and 3) children with
severe dysgraphia manifested mainly in tilt. The overview of
the mentioned current works and their achievemnts can be
found in Table 1.

Considering the success of utilizing the FD (Grünwald-
Letnikov approach) in Parkinson’s disease dysgraphia anal-
ysis in our previous works [9]–[12], and in the assessment of
GD in school-aged children [13], [28], this study, as a next
logical step, has the following aims:
• to extend our previous research by the employ-
ment of several FD-approaches instead of one
(Grünwald-Letnikov approach),

• to explore the differences of several FD approaches in
the assessment of GD in the children population,

• to compare the power of the FD-based handwriting fea-
tures computed by several FD approaches to estimate the
severity of GD.

II. DATASET & METHODOLOGY
A. DATASET
For this study, we enrolled 85 children (31 girls and 54 boys)
attending 3rd and 4th grade at several primary schools in the
Czech Republic. The demographic data of the participants
can be found in Table 2 and the resulting grade distribu-
tion in Table 3. Children were asked to perform drawings,

TABLE 1. Overview of current works.
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writings, and several cognitive tests based on a protocol
consisting of 31 tasks designed in cooperation with psy-
chologists and special educational counselors. Every grapho-
motor task of the protocol has been evaluated by a well-
experienced psychologist and rated on the scale from 0 to 4
where: 0 – no graphomotor difficulties; 1 –mild graphomo-
tor difficulties; 2 – graphomotor difficulties; 3 – dysgraphia;
4 – severe dysgraphia. Finally, an overall score has been
assigned to each child based on a complex analysis of
all the 31 tasks in the protocol (i.e. including the cogni-
tive tests). Although the protocol contains 7 graphomotor
tasks such as Archimedean spiral, loops, sawtooth, or rain-
bow, in this study, we focused on one graphomotor task
(combined loops), which has been proved to discriminate
well between children with/without graphomotor difficul-
ties [17].The distribution of scores (the overall and the sub-
score for the combined loops task) is presented in Fig. 1.
Correlation between the scores and the demographic data
is visualized in Fig. 2. Parents of all children participating
in this study signed an informed consent form approved by
the Ethical Committee of the Masaryk University. Through-
out the entire duration of this study, we strictly followed
the Ethical Principles of Psychologists and Code of Con-
duct released by the American Psychological Association
(https://www.apa.org/ethics/code/).

TABLE 2. Demographic data of the enrolled children.

TABLE 3. Grade distribution.

B. DATA ACQUISITION
At first, a template of the combined loop task was shown to
a child and then he/she was asked to replicate it on an A4
paper that was laid down and fixed to a digitizing tablet.
The drawing was acquired by the Wacom Intuos Pro L
(PHT-80) digitizer with the sampling frequency of 150Hz,
and the Wacom Inking pen, which provides a feeling of writ-
ing by a regular pen and offers immediate visual feedback.

FIGURE 1. Distribution of the overall score and the sub-score. Blue
dashed line represents imaginary threshold for the graphomotor
difficulties (right of the line).

FIGURE 2. Correlation matrix between the scores and demographic data
of the participants. A positive correlation is represented by red color and
a negative correlation by blue color.

Moreover, this set-up enabled us to record a variety of sig-
nals describing the drawing process: x and y position (x[n]
and y[n]); timestamp (t[n]); a binary variable (b[n]; 0 – in-
air movement, i. e. movement of the pen tip up to 1.5 cm
above the tablet’s surface, and 1 – on-surface movement, i. e.
movement of the pen tip on the paper), pressure exerted on
the tablet’s surface during drawing (p[n]); pen tilt (a[n]);
and azimuth (az[n]). For more information, see our previous
works [12], [14], [28]. An example of the selected combined
loop task performed by a child with/without GD can be seen
in Fig. 3.

C. FRACTIONAL ORDER DERIVATIVES
The essential of this study is the investigation of the sev-
eral (non-equivalent) FD approximations as a new advanced
approach of drawing/handwriting parameterisation. We
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FIGURE 3. Example of the combined loop task performed by a child without graphomotor difficulties (upper part)
and with graphomotor difficulties (bottom part). The thick parts of the red line represent the line-up places after
the interruptions of the writing.

developed this method to substitute the conventional differ-
ential derivatives in the feature extraction process (see our
previous works [9]–[12], [28]) in order to improve the quan-
titative analysis of the GD. In the scope of this study, we uti-
lized three FD approximations: Grünwald-Letnikov (GL),
Riemann–Liouville (RL), and Caputo (C), implemented by
Valério Duarte in Matlab [29]–[31].

1) GRÜNWALD-LETNIKOV
The FD definition by Grünwald-Letnikov is one of the first
and basic approaches [2]. A direct definition of the derivation
of the function y(t) by the order α –Dαy(t) [1] is based on the
finite differences of an equidistant grid in [0, τ ], assuming
that the function y(t) satisfies certain smoothness conditions
in every finite interval (0, t), t ≤ T , where T denotes the
period. Choosing the grid

0 = τ0 < τ1 < . . . < τn+1 = t = (n+ 1)h, (1)

with

τk+1 − τk = h, (2)

and using the notation of finite differences

1
hα
1αh y(t) =

1
hα

(
y(τn+1)−

n+1∑
v=1

cαv y(τn+1−v)

)
, (3)

where

cαv = (−1)v−1(αv ). (4)

The Grünwald–Letnikov definition from 1867 is defined
as

GLDαy(t) = lim
h→0

1
hα
1αh y(t), (5)

where GLDαy(t) denotes the Grünwald-Letnikov derivatives
of order α of the function y(t), and h represents the sampling
lattice.

2) RIEMANN–LIOUVILLE
Another classical form of the FD has been given by
Riemann-Liouville. The left-inverse interpretation of Dαy(t)
by Riemann-Liouville [1], [3] from 1869 is defined as

RLDαy(t) =
1

0(n− α)

(
d
dt

)n t∫
0

(t − τ )n−α−1y(t) dt, (6)

where RLDαy(t) denotes the Riemann–Liouville derivatives
of order α of the function y(t), 0 is the gamma function and
n− 1 < α ≤ n, n ∈ N, t > 0.

3) CAPUTO
Nowadays, the most significant contributions to the field of
FC are the results achieved by M. Caputo [32]. In contrast
to the previous ones, the improvement hereabouts lie in the
unnecessity to define the initial FD condition [1], [3]. The
Caputo’s definition from 1967 is

CDαy(t) =
1

0(n− α)

t∫
0

(t − τ )n−α−1yn(t) dt, (7)

where CDαy(t) denotes the Caputo derivatives of order α of
the function y(t), 0 is the gamma function and n− 1 < α ≤

n, n ∈ N, t > 0.

D. HANDWRITING FEATURES
Altogether, we extracted 3 sets of handwriting features, one
feature set per one employed FD approach. Basic kinematic
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FIGURE 4. Illustration of the in-signal outlier removal, where the original handwritten signal before removing the outlier samples is placed in the
upper part and after the outlier removal in the bottom part of the Figure. The velocity for α = 0.7 computed by Caputo’s approach from a sample of
healthy children is used. The magnitude of the removed samples (peaks) is up to 100-times higher in comparison with the normal ones.

features from the input handwritten signal were extracted as
well, namely velocity, acceleration, jerk and their horizontal
and vertical variants. Due to rare omissions of 3–4 samples
by the digitizing tablet during the acquisition, we performed
the in-signal outliers removal (outliers were considered as
elements more than three scaled median absolute deviations
from the median). If not pre-processed, the differentiation of
this gap would leave significant peaks in the output hand-
writing feature as illustrated in Figure 4. All handwriting
features were computed for α in the range of 0.1–1.0 (with
0.1 step), where α = 1.0 is equal to the full derivation.
Finally, the statistical properties of all extracted handwriting
features were described by the mean and the relative standard
deviation (relstd). To sum up, each feature set consists of 180
computed kinematic features.

E. STATISTICAL ANALYSIS
At first, we performed the normality test of the handwriting
features using the Shapiro-Wilk test [33]. In the case of
non-normally distributed features, we utilised the Box-Cox
transformation [34].

Next, to assess the strength of the relationship between
the feature values and the scores (the overall score and the
sub-score), Spearman’s and Pearson’s correlation coefficients
were computed (we considered the level of significance
0.05). The p-values were adjusted using the False Discov-
ery Rate (FDR) method to address the issue of multiple
comparisons.

During the statistical analysis, we controlled for the effect
of several confounding factors (covariates), namely age,
grade, and sex.

Finally, to evaluate the power of the handwriting fea-
tures to support the estimation of scores assessing the GD,
we performed a multivariate analysis. For this purpose,
we employed the state-of-the-art algorithm XGBoost [35]
(10-fold cross-validation with 20 repetitions). The XGBoost
algorithm was selected, because of its ability to achieve good
performance on a small data set. Moreover, it is able to
compete with the deep learning methods that are still not
being used in the case of the small dataset as they require
much larger data to be trained on [36]. Hyper-parameter space
optimization was performed by a random search strategy with
following parameter values:

• learning rate: [0.001, 0.01, 0.1, 0.2, 0.3];
• gamma: [0, 0.10, 0.15, 0.25, 0.5];
• maximum depth of a tree: [6, 8, 10, 12, 15];
• sub-sample ratio: [0.5, 0.6, 0.7, 0.8, 0.9, 1.0];
• sub-sample ratio of columns for level:
[0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0];

• sub-sample ratio of columns for tree:
[0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0];

• minimum child weight: [0.5, 1.0, 3.0, 5.0, 7.0, 10.0].

The model’s performance was evaluated by the mean
absolute error (MAE), the mean square error (MSE), the
root mean square error (RMSE), and the estimation error
rate (EER).
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FIGURE 5. Cross-correlation matrices of the most significant FD features as assessed by the Spearman’s correlation (see Table 4).Framed sub-areas in
each cross-correlation matrix visually isolates the handwriting features computed by the same FD approach.

FIGURE 6. Distribution of the FD order α for the features mostly
correlating with the overall score, see Table 4 (GL – Grünwald-Letnikov;
C – Caputo; RL – Riemann–Liouville).

III. RESULTS
The results of the correlation analysis can be seen in Table 4.
The table shows the top 5 features per FD approximation
according to p-values of the Spearman’s correlation related
to the overall score (upper part) and the sub-score (bottom
part). The strongest correlation (after the FDR adjustment)
with the overall score was identified in features extracted by
the Caputo’s FD. However, in the case of the sub-score, the
Riemann-Liouville’s FD arises as the most significant.

The correlation matrices (using the Spearman’s correla-
tion) are visualized in Fig. 5. Each matrix includes the top 5
features per FD approximation (i. e. 15 features in onematrix)
identified in Table 4. The distribution of the FD order α of
20 best features regarding the Spearman’s correlation per FD
approximation is visualised in Fig. 6 for the overall score and
in Fig. 7 for the sub-score.

Finally, the results of the multivariate analysis can be found
in Table 5. In the case of the overall score estimation, the
best results were achieved by the Riemann-Liouville FD.

FIGURE 7. Distribution of the FD order α for the features mostly
correlating with the sub-score, see Table 4 (GL – Grünwald-Letnikov;
C – Caputo; RL – Riemann–Liouville).

In the case of the sub-score estimation, the lowest error was
achieved when combining features of all the approximations.
Hyper-parameters of the best XGBoost models can be found
in Table 6.

IV. DISCUSSION
The main goal of this study is to explore the differences
across various FD approximations utilized in the analysis of
the GD. A comparison of an identical feature (i. e. velocity
for α = 0.2) extracted from the handwritten product asso-
ciated with the GD (the same sample as in the bottom part
of Fig. 3) is shown in Fig. 8. It illustrates the differences
across the involved FD approximations. The velocity function
extracted by the Caputo’s FD dominates by significant peaks
in the positions, where a child interrupts the performance for
a moment and then continues writing. These interruptions
are also visible in the function computed by the Riemann-
Liouville approach, though in the form of a constant line
followed by elevated oscillations instead of peaks. On the

VOLUME 8, 2020 218239



J. Mucha et al.: Analysis of Various Fractional Order Derivatives Approaches in Assessment of Graphomotor Difficulties

FIGURE 8. Comparison of the velocity function (α = 0.2) across all the FD approximations (a child associated with graphomotor difficulties; C – Caputo;
GL – Grünwald-Letnikov; RL – Riemann–Liouville).

TABLE 4. Results of the correlation analysis between the score values
and computed handwriting features ranked by the adjusted p-value of
Spearman’s correlation.

other hand, the function based on the Grünwald-Letnikov
approach seems to be a constant line, nevertheless after a scale
normalization (min-max normalization), see Fig. 9, it is clear
that the function has the oscillatory nature as well.

The differences across FD approaches are underlined by
the comparison in Fig. 10, where the dependency of the
relative standard deviation of the velocity on the FD order

α is visualized. Feature values computed by the Grünwald-
Letnikov approach are generally higher in comparison with
the Caputo and Riemann-Liouville ones, which are more
similar. On the other hand, the envelope of the velocity profile
based on the Grünwald-Letnikov approach is more similar to
the Riemann-Liouville one. Moreover, all functions meet at
the point where α = 0.9 and continue simultaneously to the
full derivation (α = 1.0), which is expected, because the full
derivation has to be the same for all approaches.

Experts in the field of psychology need to understand
and clearly interpret the results of the graphomotor analysis,
i. e. to link them with specific symptoms or physiological
processes. This is very challenging especially in the case
of advanced signal parameterisation, which is also our case.
Therefore, to bring credibility for a non-technical reader,
we provide an illustration in Fig. 11. In this figure, we com-
pare the vertical projection of the movement (y axis) and the
vertical velocity (Grünwald-Letnikov approach, α = 0.8) in
a child without graphomotor difficulties (same as in the upper
part of Fig. 3). The function extracted by FD for α = 0.8 is
difficult to be understood, but the relationship to the velocity
is obvious.

Regarding the results of the correlation analysis (associ-
ation with the overall score), the most significant features
(after the FDR adjustment) are extracted by the Caputo’s
FD, where the top 5 have the p-value < 0.05. Most sig-
nificant handwriting features are related to the variability
of the jerk, which refers to the disturbances in the fluent
handwriting performance of the child with GD. The values
of the correlation coefficients are negative, which means that
the handwriting performance of the subject is worse with
the lower variability of the jerk. This may be confusing,
because just the opposite effect may be expected. Never-
theless, this is specific for the combined loop task. A child
without GD is less focused on the writing (the movement
is more automatic), therefore the changes between loops
are more dynamic, which results in higher jerk variability.
Vice versa, a child with GD is more focused on his/her
performance, therefore, the handwriting is associated with
lower acceleration and jerk. In the case of Grünwald-Letnikov
based features, 4 out of the 5 most significant ones are jerk
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FIGURE 9. Comparison of the velocity function (α = 0.2, normalized scale) across all the FD approximations (a child associated with
graphomotor difficulties; C – Caputo; GL – Grünwald-Letnikov; RL – Riemann–Liouville).

FIGURE 10. Relative standard deviation of velocity depending on FD
order α (C – Caputo; GL – Grünwald-Letnikov; RL – Riemann–Liouville).

related too, what supports the results obtained by the Caputo’s
approach. In the view of the Riemann-Liouville FD, the most
significant features are mostly acceleration and jerk related,
this likewise supports the association with the smooth hand-
writing disabilities.

Considering the correlation with the sub-score, the most
significant features (after the FDR adjustment) are extracted
by the Riemann-Liouville FD, while 4 out of 5 features are
acceleration-based. This again refers to the disruptions in
continuous handwriting of a child with GD (i. e. less auto-
matic and dynamic movements). In the case of the Grünwald-
Letnikov approach, the variation of the velocity is observed
to be the most significant, however, none of the features
is significant after the p-value adjustment (similarly to the
Caputo’s approach). Due to the omission of the full deriva-
tions in best correlation results, the FD-based features outper-
form the conventional handwriting features in the scope of the
sub-score correlation analysis for the connected loops task.
In addition, this is in line with our previous results. [11], [12].

Regarding the cross-correlation of the top-ranked features
strongly associated with the overall score (see the left matrix
in Fig. 5), we did not observe any strong correlations among
the features based on the Caputo’s approach. In the case of
the Riemann-Liouville’s approximation, we identified a sig-
nificant correlation between the mean of the vertical accel-
eration and the relstd of the horizontal acceleration, in both
features α = 1, which means full derivation. Similarly,
in the Grünwald-Letnikov’s approach, we identified a strong
association between the relstd of the horizontal acceleration,
and the mean vertical jerk and the mean vertical acceleration.
The last two mentioned features are in fact very close to each
other, because the acceleration with α = 1 is very similar to

FIGURE 11. Comparison of the vertical projection of movement and the
vertical velocity (Grünwald-Letnikov, α = 0.8) in a child without
graphomotor difficulties.

the jerk with α = 0.2 We assume that the above-mentioned
association is linked with the fact that the vertical movement,
contrary to the horizontal one, requires coordinated move-
ment and finer flexions/extensions of more joints (interpha-
langeal and metacarpophalangeal) and therefore, it is more
complex than ulnar abductions of the wrist [37], [38]. Since
the vertical movement is complex, it is strongly affected by
psychological and muscular fatigue [39], which could be
manifested in lower vertical acceleration in children with
GD. Nevertheless, low relstd in the horizontal direction could
mean monotonous and less dynamic movement too.

In the case of the cross-correlation matrix linked with the
sub-score, we can observe significant correlations only in
features that express the same information, e. g. the mean
of the horizontal acceleration, but differ only in α, e. g. the
difference is 0.1. Since this difference is very low, it is
obvious that these features significantly correlate. Except for
this, the features do not correlate much among themselves
which means that they are not redundant, but still relevant
(see Table 4).

Based on the distribution of α in the 20 top-ranked features,
we can observe that those based on the Caputo’s approach
are mostly concentrated around 0.2 and 0.5 for the over-
all score and almost evenly distributed in the case of sub-
score correlation analysis. The Grünwald-Letnikov FD-based
features associated with the overall score have α concen-
trated around 0.2 and 0.9. Those associated with the sub-
score are mainly around 0.2, 0.5 and 0.7. Finally, in the
case of the Riemann-Liouville’s approach, we can observe
a higher concentration in the range [0.4; 0.6] for the overall
score, and in the range [0.7; 0.9] for the sub-score. Since the
distribution of the α varies per FD approximation and rat-
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TABLE 5. Results of the multivariate analysis.

TABLE 6. Hyper-parameters of the best XGBoost models.

ing scale, we hypothesise that further and finer optimization
of this parameter would bring even better quantification of
the GD.

Concerning the multivariate analysis (Table 5), where we
estimated the overall score, the best results were achieved
by the Riemann-Liouville FD-based features. The resulting
MAE was 0.65, and RMSE = 0.79. When estimating the
sub-score, all approaches had a very similar MAE, neverthe-
less, the lowest RMSE (0.79) was reached by the Riemann-
Liouville’s approach too. A combination of all the approaches
slightly decreased the error. These results suggest that the
Riemann-Liouville’s approximation in the field of quanti-
tative GD analysis outperforms the other ones. In addition,
using this approach we were able to estimate the scores with
MAE = 0.65 and MAE = 0.66, respectively. If we take
into account that the range of the first scale is 4, and of the
second one 3, the error can be considered as very low. In fact,
when assessing GD in children, psychologists tend to make
the error even higher, e. g. two experts can frequently differ
by 1 point (compare it to 0.65 or 0.66).

V. CONCLUSION
To the best of our knowledge, this is a unique study that
performs an investigation of the various FD approaches in the
computerized assessment of the GD in school-aged children.
Therefore, it should be considered as being rather exploratory
and pilot in nature. We can conclude that the employment of
various FD approximations brings major differences in kine-
matic handwriting features. In the scope of the correlation
analysis associated with the overall score, the Caputo’s FD

approach exceeds the rest of the analysed FD approxima-
tions. However, in the scope of the sub-score, the Riemann-
Liouville gained the most significant features. Moreover, the
results of the multivariate analysis suggest that the Riemann-
Liouville’s approximation in the field of the quantitative GD
analysis outperforms the other ones (MAE= 0.65 for overall
score and MAE = 0.66 for sub-score).

This study has several limitations and possible parts, that
could be further improved. First of all, the dataset is relatively
small in terms of the statistical validity of the results. To gen-
eralize the results, the larger dataset have to be acquired and
more handwriting tasks should be included in the analysis.
Next, a more granular FD α order search (step of 0.01 or
even less) in order to find the optimal α range should be
performed. Moreover, other feature types, such as temporal,
spatial, and dynamic, should be included in future compar-
isons. The future study should be detailly focused on the com-
parison of the FD-based features with the conventionally used
handwriting features. The different handwriting tasks have to
be investigated separately for the best performing FD-based
features. Besides, when comparing the several feature sets
performance (regression, etc.) an ANOVA test should be per-
formed in the future to analyze the differences between them.
Finally, various machine learning models should be trained
and compared in the future studies to get more information
about the classification performance of the proposed features
and to obtain the most robust models for GD identification.
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Abstract: Parkinson’s disease dysgraphia affects the majority of Parkinson’s disease (PD) patients
and is the result of handwriting abnormalities mainly caused by motor dysfunctions. Several effective
approaches to quantitative PD dysgraphia analysis, such as online handwriting processing, have
been utilized. In this study, we aim to deeply explore the impact of advanced online handwriting
parameterization based on fractional-order derivatives (FD) on the PD dysgraphia diagnosis and
its monitoring. For this purpose, we used 33 PD patients and 36 healthy controls from the PaHaW
(PD handwriting database). Partial correlation analysis (Spearman’s and Pearson’s) was performed
to investigate the relationship between the newly designed features and patients’ clinical data.
Next, the discrimination power of the FD features was evaluated by a binary classification analysis.
Finally, regression models were trained to explore the new features’ ability to assess the progress and
severity of PD. These results were compared to a baseline, which is based on conventional online
handwriting features. In comparison with the conventional parameters, the FD handwriting features
correlated more significantly with the patients’ clinical characteristics and provided a more accurate
assessment of PD severity (error around 12%). On the other hand, the highest classification accuracy
(ACC = 97.14%) was obtained by the conventional parameters. The results of this study suggest that
utilization of FD in combination with properly selected tasks (continuous and/or repetitive, such as
the Archimedean spiral) could improve computerized PD severity assessment.

Keywords: Parkinson’s disease dysgraphia; micrographia; online handwriting; kinematic analysis;
fractional-order derivative; fractional calculus
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1. Introduction

As a second most common neurodegenerative disorder, Parkinson’s disease (PD) is expected to
impose an increasing social and economic burden on societies as populations age [1]. Its prevalence rate
is estimated to approximately 1.5% for people aged over 65 years [2]. The risk of being affected by PD
strongly increases with age, and, in the next 15 years, the incidence of PD is expected to be doubled [3,4].
The rapid degeneration of dopaminergic cells in the substantia nigra pars compacta [5] arose as the
most significant biological finding associated with the disease, but the exact pathophysiological cause
of PD has not yet been discovered. PD cardinal motor symptoms involve bradykinesia (slowness
of movement), tremor at rest, rigidity, gait impairment, and postural instability [6–8]. A variety of
non-motor symptoms may emerge as well—for instance, cognitive impairment, dementia, depression,
sleep disorders, or anxiety [6,9,10].

Handwriting requires cognitive, perceptual, and fine motor abilities. In conjunction with motor
dysfunctions in people suffering from PD, it has been proven that disrupted handwriting may be
used as a significant biomarker for PD diagnosis [11,12]. Micrographia, which is associated with the
progressive decrease in letters’ amplitude, is the most commonly observed handwriting abnormality
in patients with PD [13,14]. Moreover, according to McLennan et al. [14], in approximately 5% of PD
patients, micrographia may be observed even before the onset of the cardinal motor symptoms.

The recent advantage of new technologies coming hand-in-hand with Health 4.0 systems enables
the acquisition of online handwriting signals, where temporal information is added to the x and y
position. Therefore, by using a digitizing tablet, the analysis is not limited to spatial features which
mainly quantify PD micrographia. In addition, we are able to quantify temporal, kinematic, and
dynamic manifestations of PD dysgraphia, such as hesitations, pauses, and slow movement [7],
which cannot be studied objectively using a classical paper-and-pen method. Due to this complexity,
Letanneux et al. [15] started to refer to these manifestations using the generalized term PD dysgraphia.

Several research teams have explored the impact of quantitative PD dysgraphia analysis
utilizing simple handwriting/drawing tasks (e.g., separate characters, a combination of two or
three characters, repetitive loops, circles), as well as more complex ones (e.g., words, sentences,
figures, 3D objects, and the Archimedean spiral) [8,16–20]. An overview of recent related works
(2015–present) can be seen in Table 1. Most of them confirm the irreplaceability of kinematic features in
PD dysgraphia analysis. Additionally, the researchers usually employ temporal, spatial, and dynamic
features. Some more advanced parameters are reported too. For instance, Drotar et al. [8,16,17]
demonstrated a combination of kinematic, pressure, energy, or empirical mode decomposition
(EMD)-based features that resulted in a classification accuracy of up to 89% using several handwriting
tasks. Kotsavasilogloua et al. [21] achieved an average prediction accuracy of 91% using simple
horizontal lines and features describing the variability in the pen tip’s velocity, a deviation from the
horizontal plane, and the trajectory’s entropy. Other works report even higher classification accuracies
(approximately 97%), e.g., Loconsole et al. [18], who used computer vision and electromyography
signal processing techniques, or Taleb et al. [22], who used a combination of features related to the
correlation between kinematic and pressure characteristics (but, in this case, applied to a very small
dataset). Another promising approach was published by Moetesum et al. [23], who reached an 83%
classification accuracy by employing convolutional neural networks (CNN) that were used to extract
discriminating visual features from handwriting data transformed into the offline mode. In 2018,
Impedovo et al. reported the results of a study focused only on the early stages of PD; the best
accuracy was 74.76% for a combination of three handwriting tasks. Finally, in our previous work [20],
we proposed a new approach of advanced kinematic feature extraction that utilizes fractional-order
derivatives (FD). This approach increased the classification accuracy by 10% (72.39%) for Archimedean
spiral tasks in comparison with the baseline [20].
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Although the authors of the previously mentioned studies reported high classification accuracies,
further signal processing and machine learning pipeline improvements are expected to make the
differential analysis even more accurate. One possible approach could involve an advanced feature
extraction methodology based on fractional calculus (FC) [29,30], which enables the use of an arbitrary
order of derivatives and/or integrals. Generally, FC has many applications in different fields of
science [31–33]. For instance, it has been advantageously used during the modeling of different diseases,
such as human immunodeficiency virus (HIV) [34] and malaria [35]. In addition, FC-based analytical
tools have outperformed classical techniques in geology [36,37], economics and finance [38,39], etc.
Moreover, in our recent paper [20], we identified a high potential for the use of FC in the kinematic
analysis of PD drawings. Based on these preliminary results, we assume that FD-based handwriting
features may bring improvements to PD diagnosis and assessment. In the frame of this article, we
would like to go further and deeply explore the impact of FD on the PD dysgraphia diagnosis and its
monitoring. More specifically, we aim to:

• investigate the relationship between newly designed FD handwriting features and a patient’s clinical
data and compare these results with a baseline (i.e., results based on conventional parameters),

• evaluate the discrimination power of the FD features in terms of binary classification accuracy
and compare the results to the baseline,

• use the newly designed features to establish regression models that will estimate the severity of
PD and compare its performance to that of a baseline.

The rest of this paper is organized as follows: Section 2 describes the cohort of patients and the
methodology, and Section 3 includes the results. A discussion is presented in Section 4, and, finally,
conclusions are drawn in Section 5.

2. Materials and Methods

2.1. Dataset

For the purpose of this work, the Parkinson’s disease handwriting database (PaHaW) [8],
which consists of multiple handwriting/drawing samples from 37 PD patients and 38 age- and
gender-matched healthy controls (HC), was used. Since the Archimedean spiral drawing task is missing
for some participants, we reduced the analyzed cohort to 33 PD patients and 36 HC. Demographic
and clinical data of the participants can be found in Table 2. The participants were enrolled at the First
Department of Neurology, St. Anne’s University Hospital in Brno, Czech Republic. All participants
reported the Czech language as their native language and were right-handed. The patients completed
their tasks approximately 1 h after their regular dopaminergic medication (L-dopa). All participants
signed an informed consent form approved by the local ethics committee. Unified Parkinson’s disease
rating scale, part V (UPDRS V): Modified Hoehn and Yahr staging score [40], was used to assess
clinical symptoms of PD. In the frame of this work, the duration of the disease was considered as
well. Descriptive visualization (histograms, regression, and residual plots) of the clinical data for the
subjects participating in this study can be seen in Figure 1.
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Table 2. Demographic and clinical data of the enrolled participants.

Gender N Age [years] PD dur [years] UPDRS V LED [mg/day]

Parkinson’s disease patients

Females 17 71.76 ± 10.93 9.88 ± 5.27 2.18 ± 0.86 1146.03 ± 543.89
Males 16 66.50 ± 13.44 7.44 ± 4.04 2.31 ± 0.75 1673.38 ± 616.66
All 33 69.21 ± 11.10 8.70 ± 4.82 2.24 ± 0.80 1401.72 ± 630.71

Healthy controls

Females 17 61.59 ± 10.17 - - -
Males 19 63.32 ± 13.14 - - -
All 36 62.50 ± 11.70 - - -

PD—Parkinson’s disease; N—number of subjects; PD dur—PD duration; UPDRS V—Unified Parkinson’s
disease rating scale, part V: Modified Hoehn and Yahr staging score [40]; LED—L-dopa equivalent daily
dose [41].
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Figure 1. Descriptive graphs of patients’ clinical characteristics: Unified Parkinson’s disease rating
scale (UPDRS V) and Parkinson’s disease (PD) duration (in years). Histograms are visualized on the
diagonal. A scatterplot with a line fitted using linear regression is visualized in the top-right corner.
Residuals of the trained linear model are visualized in the bottom-left corner.

2.2. Data Acquisition

The PaHaW database [8] includes nine different handwriting tasks written in the Czech language.
Their description and translation to English can be found in Table 3. During all handwriting tasks,
the participants were rested and seated in a comfortable position with the possibility to look at the
prefilled template (see Figure 2). A digitizing tablet (Wacom Intuos 4M, Wacom, Kazo, Saitama, Japan)
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was overlaid with an empty paper template and participants were asked to perform all tasks using
a special Wacom inking pen that gave the patients immediate visual feedback. Online handwriting
signals were recorded with a sampling frequency of fs = 150 Hz. The following time sequences were
acquired: x and y coordinates (x[t], y[t]); time-stamp (t); in-air/on-surface (on-surface movement is
a movement of a pen when its tip is touching the surface, e.g., paper (i.e., it provides the information
about the pen writing/drawing on the paper); vice versa, in-air movement is a movement of a pen
when its tip is up to 1.5 cm above the surface [42,43]) status (b[t]); pressure (p[t]); azimuth (az[t]); and
altitude (al[t]).

Figure 2. Filled template of the PaHaW database.

Table 3. Description of the PaHaW handwriting tasks.

N Task Czech (Original) English (Translation)

1 Archimedean spiral - -
2 repetitive loops - -
3 letter l l
4 syllable le le
5 word les forest
6 word lektorka lecturer
7 word porovnat compare
8 word nepopadnout not grasped
9 sentence Tramvaj dnes už nepojede. The tram will no longer go today.

2.3. Feature Extraction

The main goal of this work is to compare a set of commonly used kinematic features with newly
proposed FD-based features in terms of quantitative PD dysgraphia analysis. All of the handwriting
features were computed using both on-surface as well as in-air movements. The two movements were
quantified separately using velocity (rate at which the position of the pen changes with time [mm/s]),
acceleration (rate at which the velocity of the pen changes with time [mm/s2]), jerk (rate at which the
acceleration of the pen changes with time [mm/s3]), and their horizontal and vertical variants [8,44,45].
FD-based features were extracted for different values of α. In the frame of this work, α ranging from 0.1
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to 1.0 with a step of 0.1 was used. Subsequently, the statistical properties of the computed handwriting
features were described using the mean, median, standard deviation (std), and maximum (max).
Finally, all of the extracted features were divided into nine different feature sets according to the type
of the movement (on-surface, in-air, and combined) and the calculation approach, i.e., the type of
feature (FD-based, conventional, and combined). For more information, see Table 4.

Table 4. Feature sets matrix.

Movement FD (Count) Conventional (Count) Together (Count)

on-surface 4536 618 5154
in-air 2916 404 3320

together 7452 1022 8474

Fractional-Order Derivatives

Utilization of the FD as a substitution for the conventional differential derivative during
calculation of the basic kinematic features provides a new advanced approach. The advantage
of FDs is in their wide range of settings and many different approaches to approximation, e.g.,
Riemann–Liouville, Caputo, or Grünwald–Letnikov formulations [31,46,47]. For the purpose of this
work, Jonathan Hadida’s FD Matlab implementation was used following the Grünwald–Letnikov
approximation [31,48]. A direct definition of the FD Dαy(t) is based on the finite differences of
an equidistant grid in [0, τ], assuming that the function y(τ) satisfies certain smoothness conditions
in every finite interval (0, t), t ≤ T. Choosing the grid [31],

0 = τ0 < τ1 < ... < τn+1 = t = (n + 1)h (1)

with
τk+1 − τk = h (2)

and using the notation of finite differences

1
hα

∆α
hy(t) =

1
hα

(
y(τn+1)−

n+1

∑
v=1

cα
vy(τn+1−v)

)
, (3)

where
cα

v = (−1)v−1(α
v). (4)

The Grünwald–Letnikov implementation is defined as

Dαy(t) = lim
h→0

1
hα

∆α
hy(t), (5)

where Dαy(t) denotes a derivative with order α of function y(t), and h represents a sampling lattice.

2.4. Statistical Analysis

Prior to providing a description of the analytical setup, it is important to note that the effect of
well-known confounding factors, also known as covariates, was controlled for in all of the analytical
steps described below. In the frame of this work, we controlled for the effect of participants’ age,
gender, and L-dopa [41] (dopaminergic medication).

To assess the strength of the relationship between the computed handwriting features and
patient’s clinical data (UPDRS V and PD duration), we computed the partial Pearson’s correlation
coefficient (assessment of a linear relationship), as well as the partial Spearman’s correlation coefficient
(assessment of a monotonic relationship). With this approach, we aimed to identify the handwriting
features that are significantly correlated with the clinical measures under focus and also to compare
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the FD features with conventional ones. A significance level of correlation (p) of 0.05 was selected
for both of the correlation types. Only the results with a p-value below the significance level in both
correlation coefficients were considered statistically significant.

Next, to evaluate and compare the power of the handwriting features to discriminate PD patients
and HC, multivariate binary classification analysis was performed. For this purpose, state-of-the-art
gradient boosted trees were employed. Specifically, we used the famous XGBoost algorithm [49].
The XGBoost algorithm was chosen for its ability to achieve a good performance, even for small
datasets; its inherent robustness to outliers; its ability to model complex interdependencies in the data;
and also its recent successes in the field of machine learning (e.g., the winning algorithm in many
www.kaggle.com competitions). To train and evaluate the models, we used the following supervised
learning setup: stratified 10-fold cross-validation with 20 repetitions. The performance of the trained
classification models was evaluated by Matthew’s correlation coefficient (MCC) [50], classification
accuracy (ACC), sensitivity (SEN), and specificity (SPE), which are defined as follows:

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
, (6)

ACC =
TP + TN

TP + TN + FP + FN
· 100 [%], (7)

SEN =
TP

TP + FN
· 100 [%], (8)

SPE =
TN

TN + FP
· 100 [%], (9)

where TP is the number of true positives, TN is the number of true negatives, FP is the number of false
positives, and FN is the number false negatives.

Finally, to evaluate and compare the power of the handwriting features’ ability to predict the
values of the selected clinical characteristics (UPDRS V and PD duration), multivariate regression
analysis was performed. For this purpose, the same boosting tree algorithm (XGBoost) and the
supervised learning setup were used. The performance of the trained regression models was evaluated
by the mean absolute error (MAE), root mean square error (RMSE), and estimated error rate (EER),
which are defined as follows:

MAE =
1
n

n

∑
i=1
|yi − ŷi|, (10)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2, (11)

EER =
1

n · r
n

∑
i=1
|yi − ŷi| · 100 [%], (12)

where yi represents the true label of the ith observation, ŷi denotes the predicted label of the ith
observation, n is the number of observations, and r is the range of the values of the predicted clinical
characteristic (not the range that can be theoretically reached, but the actual range of the values in
the dataset). Therefore, the EER describes a percentage of error predictions in regard to the statistical
properties of the data.

3. Results

In Table 5, the results of partial correlation analysis between the handwriting features (FD-based
features, conventional features) and patients’ clinical characteristics (UPDRS V, PD duration) are
summarized. The table shows the five best features according to Spearman’s correlation coefficient for
each movement (on-surface, in-air).
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In the case of UPDRS V (on-surface movement), the following FD-based features achieved a
statistical significance of correlation: the median of jerk (α = 0.3, α = 0.4) and horizontal velocity
(α = 0.1) for the repetitive letter l, the mean of vertical acceleration (α = 0.7) for repetitive loops, and
the standard deviation of the vertical velocity (α = 0.3) for the sentence. The following conventional
features achieved a statistical significance of correlation (p-value of only one of the coefficients was
below the threshold): the maximum of horizontal jerk and velocity for the repetitive letters le, the
maximum of horizontal jerk and horizontal velocity for the repetitive letter l, and the maximum of
horizontal velocity for the letter l. Regarding UPDRS V (in-air movement), the following FD-based
features achieved a statistical significance of correlation: the median of vertical velocity (α = 0.9,
α = 0.8, α = 0.7) for the sentence and the median of horizontal velocity (α = 0.5) and vertical
jerk (α = 0.3) for the repetitive letters le. The following conventional features achieved a statistical
significance of correlation (p-value of only one of the coefficients was below the threshold): the mean
of acceleration for the repetitive word lektorka, the maximum of horizontal jerk for the word porovnat,
the median of the vertical velocity for the repetitive letter l, and the median of the horizontal velocity
of the repetitive letters le.

Table 5. Results of partial correlation analysis between handwriting features and clinical data.

UPDRS V

FD on-suface Conventional on-surface

feature name α task rp rs rs rp task feature name

jerk (median) 0.3 r. letters l 0.37 * 0.48 ** −0.45 * −0.24 r. letters le h. jerk (max)
jerk (median) 0.4 r. letters l 0.43 * 0.46 * −0.43 * −0.2 r. letters le velocity (max)

h. velocity (std) 0.1 r. letters l −0.42 * −0.41 * −0.42 * 0.25 r. letters l h. jerk (max)
v. acceleration (mean) 0.7 r. loops 0.48 ** 0.40 * −0.42 * −0.16 r. letters l h. velocity (max)

v. velocity (std) 0.3 sentence 0.40 * 0.40 * −0.41 * −0.15 letter l h. velocity (max)

FD in-air Conventional in-air

feature name α task rp rs rs rp task feature name

v. velocity (median) 0.9 sentence 0.44 * 0.53 ** 0.43 * 0.28 r. word lektorka acceleration (mean)
v. velocity (median) 0.8 sentence 0.40 * 0.52 ** −0.37 * −0.31 word porovnat h. jerk (max)
h. velocity (median) 0.5 r. letters le −0.38 * −0.49 ** 0.36 * 0.25 r. letters l v. velocity (median)

v. jerk (median) 0.3 r. letters le −0.43 * −0.49 ** 0.35 0.41 * r. letters le h. velocity (median)
v. velocity (median) 0.7 sentence 0.37 * 0.48 ** 0.35 0.19 r. word lektorka acceleration (median)

PD Duration

FD on-surface Conventional on-surface

feature name α task rp rs rs rp task feature name

velocity (max) 0.1 spiral 0.54 ** 0.55 ** −0.46 * −0.40 * r. letters l h. velocity (max)
acceleration (max) 0.8 spiral 0.54 ** 0.54 ** −0.40 * −0.37 * r. letters l h. jerk (max)
acceleration (max) 0.6 spiral 0.54 ** 0.54 ** −0.38 * −0.37 * r. letters l velocity (max)
acceleration (max) 0.2 spiral 0.54 ** 0.54 ** 0.46 ** 0.34 spiral v. velocity (mean)
acceleration (max) 0.7 spiral 0.54 ** 0.53 ** 0.40 * 0.14 r. loops h. acceleration (mean)

FD in-air Conventional in-air

feature name α task rp rs rs rp task feature name

jerk (median) 0.4 sentence −0.37 * −0.49 ** −0.44 * −0.38 * word lektorka h. jerk (median)
jerk (max) 0.1 r. word les 0.57 ** 0.46 * 0.38 * 0.40 * word nepopad. velocity (max)
jerk (max) 0.3 r. word les 0.57 ** 0.45 * 0.37 * 0.42 * word lektorka h. n. jerk (mean)

velocity (max) 0.1 r. word les 0.57 ** 0.45 * −0.47 ** −0.13 r. word lektorka h. velocity (mean)
jerk (max) 0.2 r. word les 0.57 ** 0.45 * −0.42 * −0.13 word nepopad. h. velocity (mean)

α—order of FD; rp—Pearson’s correlation coefficient; rs—Spearman’s correlation coefficient; v.—vertical;
h.—horizontal; r.—repetitive task; *—p < 0.05; **—p < 0.01; rows are ordered by the absolute value of
Spearman’s correlation coefficient.

For PD duration (on-surface movement), the following FD-based features achieved a statistical
significance of correlation (of note: all of these features satisfied the stronger threshold for statistical
significance of correlation p < 0.01): the maximum of the velocity (α = 0.1) and acceleration (α = 0.8,
α = 0.7, α = 0.6, α = 0.2) for the Archimedean spiral. The following conventional features achieved
a statistical significance of correlation (p-value of only one of the coefficients was below the threshold):
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the maximum of horizontal velocity, horizontal jerk, and velocity for the repetitive letter l; the mean of
the vertical velocity for the Archimedean spiral; and the mean of horizontal acceleration for repetitive
loops. For PD duration (in-air movement), the following FD-based features achieved a statistical
significance of correlation: the median of jerk (α = 0.4) for sentence, the maximum of jerk (α = 0.1,
α = 0.2, α = 0.3) and velocity (α = 0.1) for repetitive word les. The following conventional features
achieved a statistical significance of correlation (p-value of only one of the coefficients was below the
threshold): the median and mean of horizontal jerk for the word lektorka, the maximum of the velocity
for the word nepopadnout, and the mean of horizontal velocity for the repetitive word lektorka and the
word nepopadnout.

The results of the multivariate binary classification analysis are summarized in Table 6. In total,
we built and evaluated nine different classification models. These models were selected according to
the following criteria: movement type (on-surface, in-air, all), feature type (FD features, conventional
features, all). We built models based on the combinations of these criteria as well. For more information,
see Table 4.

Table 6. Results of multivariate binary classification analysis (PD/HC).

Feature Set MCC ACC [%] SEN [%] SPE [%] Feat

conventional on-surface 0.83 ± 0.18 91.19 ± 9.65 93.00 ± 15.52 70.00 ± 0.46 1
conventional in-air 0.95 ± 0.10 97.14 ± 5.71 95.50 ± 9.07 100.00 ± 0.00 1
conventional together 0.95 ± 0.11 97.14 ± 5.71 95.50 ± 9.07 100.00 ± 0.00 1
FD on-surface 0.95 ± 0.12 87.14 ± 13.48 82.00 ± 21.24 90.00 ± 30.00 1
FD in-air 0.95 ± 0.13 81.43 ± 12.86 71.50 ± 30.83 60.00 ± 48.99 3
FD together 0.95 ± 0.14 81.43 ± 15.71 69.50 ± 32.13 70.00 ± 45.83 2
all on-surface 0.95 ± 0.15 88.33 ± 14.06 89.00 ± 22.11 70.00 ± 45.83 2
all in-air 0.95 ± 0.16 97.14 ± 5.71 95.50 ± 9.07 100.00 ± 0.00 1
all together 0.95 ± 0.17 97.14 ± 5.71 95.50 ± 9.07 100.00 ± 0.00 1

MCC—Matthew’s correlation coefficient; ACC—accuracy; SEN—sensitivity; SPE—specificity; feat.—number
of features important for the trained model (i.e., feature importance of the feature > 0.0); The feature
importances, as well as the exact names of these features, are summarized in the text.

With respect to the classification performance, the highest MCC achieved was 0.95 was for eight
out of the total nine feature sets (with the exception being the feature set composed of conventional
handwriting features computed for the on-surface movements). An interesting fact to note is that for
all models based on conventional handwriting features, only a single feature was capable of providing
the classification models with such a high discrimination power. In terms of the specific features
important for the trained models, the following feature importances were returned by the models
(feature importance quantifies the relative importance of the features in the ensemble of the trained
XGBoost model [49]; therefore, the higher the value of the feature importance, the more important the
feature for the prediction of the dependent variable): conventional on-surface (horizontal jerk (median)
of repetitive loops), conventional in-air (horizontal velocity (median) of the sentence), conventional
together (horizontal velocity (median) of the sentence), FD on-surface (jerk (max) α = 0.3 of the letters
le), FD in-air (vertical acceleration (mean) α = 0.6 of the word nepopadnout (FI = 0.33), horizontal jerk
(mean) α = 0.9 of the word nepopadnout (FI = 0.33), horizontal jerk (mean) α = 0.2 of the repetitive
word lektorka (FI = 0.33)), FD together (jerk (max) α = 0.3 of the letters le (on-surface; FI = 0.67),
horizontal jerk (mean) α = 0.9 of the word nepopadnout (in-air; FI = 0.33)), all on-surface (horizontal
jerk (median) of repetitive loops (FI = 0.50), jerk (max) α = 0.3 of the letters le (FI = 0.50)), all in-air
(horizontal velocity (median) of the sentence), and all together (horizontal velocity (median) of the
sentence (in-air)).

The results of multivariate regression analysis are summarized in Table 7. For this purpose,
we used UPDRS V and PD duration as our target variables. As in the case of binary classification,
we built and evaluated nine different regression models according to the same criteria. For each of the
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rating scales, the table shows the results achieved using the trained models and the associated feature
importance values. All obtained results are discussed in the following section.

Table 7. Results of regression analysis for clinical data.

Feature Set MAE RMSE EER [%] Feat

UPDRS V

conventional on-surface 0.59 ± 0.29 0.71 ± 0.41 13.82 ± 6.71 1
conventional in-air 0.60 ± 0.30 0.72 ± 0.42 14.01 ± 6.98 1
conventional together 0.60 ± 0.31 0.73 ± 0.42 14.05 ± 6.90 1
FD on-surface 0.60 ± 0.32 0.65 ± 0.45 12.51 ± 7.55 1
FD in-air 0.60 ± 0.33 0.68 ± 0.43 13.49 ± 7.29 1
FD together 0.60 ± 0.34 0.66 ± 0.45 13.06 ± 7.55 2
all on-surface 0.60 ± 0.35 0.65 ± 0.45 12.51 ± 7.55 1
all in-air 0.60 ± 0.36 0.71 ± 0.43 13.72 ± 7.36 1
all together 0.60 ± 0.37 0.66 ± 0.45 13.06 ± 7.55 2

PD duration

conventional on-surface 4.29 ± 0.94 5.03 ± 1.09 24.52 ± 5.39 18
conventional in-air 4.91 ± 1.38 5.56 ± 1.50 28.03 ± 7.85 16
conventional together 4.14 ± 1.32 4.85 ± 1.52 23.64 ± 7.55 16
FD on-surface 4.45 ± 0.66 5.06 ± 0.85 25.40 ± 3.75 14
FD in-air 4.79 ± 0.73 5.48 ± 0.72 27.36 ± 4.20 19
FD together 4.55 ± 0.68 5.32 ± 0.78 26.00 ± 3.88 21
all on-surface 4.48 ± 0.86 5.12 ± 0.96 25.62 ± 4.92 16 (12 F, 4 C)
all in-air 4.95 ± 1.18 5.59 ± 1.17 28.30 ± 6.75 17 (13 F, 4 C)
all together 4.70 ± 1.10 5.45 ± 1.23 26.82 ± 6.30 17 (12 F, 6 C)

UPDRS V—Unified Parkinson’s disease rating scale, part V: Modified Hoehn and Yahr staging score [40];
MAE—mean absolute error; RMSE—root mean squared error; EER—estimation error rate; F—FD-based
features; C—conventional handwriting features; feat.—number of features important for the trained model
(i.e., feature importance of the feature > 0.0); The feature importances, as well as the exact names of these
features for models built to assess UPDRS V, are summarized in the text. In the case of PD duration, this data
can be found in Table S1 provided in the Supplementary Material.

Considering EER as our performance evaluation metric, the following results are worth pointing
out. In the case of UPDRS V, the lowest EER was achieved using a single FD-based feature—specifically,
the standard deviation of vertical velocity (α = 0.1) computed for the on-surface movements
(12.51± 7.55%). The same feature was selected when both FD and conventional features were
considered while building the model. In general, all models achieved an EER of around 12–13%.
In comparison with the conventional features, the FD-based features performed better, with a difference
of about 1%. In terms of the specific features important for the trained models, the following feature
importances were returned by the models: conventional on-surface (vertical normalized jerk (mean) of
the repetitive word lektorka), conventional in-air (vertical velocity (mean) of the sentence), conventional
together (vertical velocity (mean) of the sentence), FD on-surface (vertical velocity (std) α = 0.1 of the
sentence), FD in-air (vertical velocity (median) α = 0.3 of the sentence), FD together (vertical velocity
(std) α = 0.1 of the sentence (on-surface; FI = 0.50), vertical velocity (median) α = 0.3 of the sentence
(in-air; FI = 0.50)), all on-surface (vertical velocity (std) α = 0.1 of the sentence), all in-air (vertical
velocity (median) α = 0.3 of the sentence), and all together (vertical velocity (std) α = 0.1 of the
sentence (on-surface; FI = 0.50), vertical velocity (median) α = 0.3 of the sentence (in-air; FI = 0.50)).
With respect to PD duration, the lowest EER was achieved using conventional handwriting features
computed for both on-surface as well as in-air movements (23.64± 7.55%).

4. Discussion

To the best of our knowledge, except for our pilot work [20], there are no prior studies
which integrate FD into a handwriting parameterization for quantitative PD dysgraphia analysis.
Therefore, the results published in this paper are exploratory in nature.
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In comparison with the conventional kinematic features, FD-based ones correlate more
significantly with the clinical characteristics (UPDRS V and PD duration). We observed especially
strong correlations for handwriting tasks based on the periodic repetition of specific movements
(Archimedean spiral; repetitive letter l, syllable le, or word les). Although the levels of significance based
on the conventional handwriting parameters are lower, similar handwriting tasks are involved in the
most significant results. We hypothesize that this is due to their ability to highlight or better quantify the
cardinal motor symptoms of PD. For example, the most significant relationship between handwriting
performance and PD duration was identified in acceleration extracted from the Archimedean spiral.
Rigidity combined with tremor and/or bradykinesia makes a PD patient’s handwriting/drawing
less fluent (increased changes in velocity and higher acceleration). This is highlighted in a task such
as the spiral, where the proper coordination of the fingers, wrist, and arm is required. Generally,
the observed problems with coordination are in line with the work of Dounskaia et al. [51] and
Teulings et al. [52]. To better illustrate these manifestations, Figure 3 plots the velocity profiles of
repetitive loops for a healthy control and a PD patient. As can be seen, the patient introduced more
changes in velocity, and their drawing became much more non-fluent. To summarize these findings,
FD features in combination with properly selected tasks provide a stronger relationship with the
severity and progress of PD.
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Figure 3. Handwriting samples of the repetitive loop task for HC and PD patients are on the left, and
the resulting velocity profiles are on the right.

On the other hand, in terms of binary classification, the conventional parameters provided the best
results. The classification performance is remarkable: ACC = 97.74%, SEN = 95.50%, and SPE = 100%.
In fact, our results represent the highest classification accuracy that has ever been reported based on
the PaHaW database (see Table 1). We hypothesize that the improvement was caused by the inclusion
of the state-of-the-art XGBoost algorithm into our machine learning pipelines. As already mentioned,
the result is based on one in-air feature: median horizontal velocity of a sentence. In comparison
with the HC cohort, the PD patients exhibited much lower values of this measure, i.e., while writing
the sentence, the PD patients were not able to perform horizontal transitions (movement between
neighboring letters or words) as quickly as the HC could. This finding is in line with the work of
Ma et al. [53], who observed that wrist extension stiffness in PD patients makes the handwriting
in the horizontal direction more problematic. Therefore, scientists started to use the term horizontal
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dysgraphia [13]. Generally, vertical or horizontal dysgraphia may be considered a presymptomatic
neurobehavioral biomarker of PD with possible significance in early PD diagnosis [13].

In [20], we proved that the FD features improved the accuracy of PD dysgraphia diagnosis in the
Archimedean spiral drawing task by 10%. Contrary to our pilot results, in the frame of this work, these
features did not lead to any improvements. After a deeper analysis, we found that this was caused by
a combined task approach. Performance of the Archimedean spiral is a quasiparticle and continuous
task with some repetitive patterns. It looks as though the FD features work especially well in these
specific cases. Nevertheless, when combining these tasks with a complex handwriting task (such as a
sentence), the measures quantifying in-air movement tend to be more discriminative (in our case, the
median in-air horizontal velocity of a sentence). This brings us to the same conclusion that was given
during the correlation analysis—the FD features advance the PD dysgraphia diagnosis only in some
specific cases.

The best regression model, estimating the UPDRS V score with a 12.51% error, is based only on the
standard deviation of on-surface vertical velocity (α = 0.1) extracted from the sentence. This FD-based
parameter was selected from the feature set combining all on-surface measures; therefore, we can
confirm the positive influence of FC on the regression analysis performance. In fact, the FD features
outperformed the conventional ones in all scenarios. To better understand this result, we plotted
vertical velocity patterns of the sentence task for different orders of FD (see Figure 4). We can observe
a big difference between α = 0.1 and the rest of the orders, including the full derivative. This large
distance means that we are working with completely new information that is far from that contained
in the full derivative. Although it is difficult to clinically interpret this information, it is clear that FC
opens new possibilities for monitoring PD severity.
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Figure 4. Vertical velocity patterns of the sentence task for different orders of fractional-order
derivatives (FD).

Regarding the PD duration estimation results, the most successful model (EER = 23.46%) consists of
16 conventional on-surface/in-air features (all features’ importance values can be found in Supplementary
Table S1). The most frequent feature with the highest feature importance is the jerk extracted from several
handwriting tasks. This probably means that as PD progresses, handwriting becomes more jerky and
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irregular. Vertical velocity is the second most frequent feature involved in the models, which is probably
linked with micrographia. Generally, in the case of PD duration estimation, the FD-based features did not
yield any improvement.

In conclusion, the FD-based features are better for modeling PD severity (in terms of UPDRS V
score estimation), but they do not lead to an improvement in PD duration modeling. The progress of
PD is nonlinear and very individual. This means that patients with the same PD duration can be in
different stages of the disease. This fact supports our results: the estimation error of PD duration was
generally much worse than the estimation error of the UPDRS V score. Since PD duration estimation is
a difficult task with poor results, fine improvements based on FD parameters play no role.

5. Conclusions

This study deals with advanced approaches to PD dysgraphia diagnosis and monitoring based on
FC integrated with online handwriting/drawing parameterization. To the best of our knowledge, it is
the first work that performs a complex investigation into the possibilities for FC in online handwriting
processing and proposes new advances in kinematic analyses based on FD. Although the conventional
features provided better and very high classification accuracy, which is at the top of the state-of-the-art
analyses based on the PaHaW database (ACC = 97.74%, SEN = 95.50%, and SPE = 100%), the newly
designed parameters were proven to work better for specific tasks (continuous and/or repetitive, such
as the Archimedean spiral) and for specific applications, i.e., PD severity estimation (EER = 12.51%).
However, our results need to be confirmed by subsequent scientific research.

This study has several limitations and suggestions for further improvements. Since the dataset is
small, to be able to generalize the results, bigger databases should be involved. On the other hand,
it is common to have such small numbers of PD patients and HC samples in PD dysgraphia analysis,
e.g., see our review in Table 1. Next, we considered only the kinematic measures. To better evaluate
the discrimination power of the FD features and better evaluate their ability to estimate PD severity or
progress, other feature types, such as temporal, spatial, and dynamic, should be included in future
comparisons. Finally, the FD-based parameters could be further explored. For instance, we can
consider other approximations (e.g., Caputo) or employ FC for other measures (e.g., entropies).

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/8/12/2566/s1,
Table S1: Feature relevance from multivariate regression (modeling PD duration).
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ACC accuracy
ADA AdaBoost
ANN artificial neural network
ANOVA analysis of variance
AUC area under the ROC curve
CNN convolutional neural network
EMD empirical mode decomposition
EER estimated error rate
FN false negatives
FP false positives
FC fractional calculus
FD fractional-order derivative
FI feature importance
K-NN K-nearest neighbors
LED L-dopa equivalent daily dose
LDA linear discriminant analysis
MCC Matthew’s correlation coefficient
max maximum
MAE mean absolute error
NB naïve Bayes classifier
OPF optimum path forest
PD Parkinson’s disease
RF random forests
RMSE root mean squared error
SEN sensitivity
rp Pearson’s correlation coefficient
rs Spearman’s correlation coefficient
SPE specificity
std standard deviation
TN true negatives
TP true positives
SVM support vector machine
UPDRS V unified Parkinson’s disease rating scale, part V: Modified Hoehn and Yahr staging score
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Abstract: The majority of Parkinson’s disease (PD) patients suffer from handwriting abnormalities commonly called as 

Parkinsonic dysgraphia. Several approaches of PD dysgraphia analysis exist, e.g. based on online handwriting processing. 

However, a small and unilingual cohort of PD patients is often an issue in quantitative PD dysgraphia analysis studies. 

Therefore, in this work, we aim to perform a discrimination analysis in a multilingual cohort of 73 PD patients and 48 healthy 

controls (Spanish and Czech). For this purpose, we extracted advanced handwriting features based on fractional order 

derivatives (FD). Discrimination power of the advanced FD-based features was evaluated by Mann-Whitney U test and random 

forests classifier. We reached 82 % classification accuracy (86 % sensitivity, 77 % specificity) in the multilingual cohort. In 

addition, we observed high discrimination power of the FD-based parameters and proofed the high impact of online 

handwriting processing in cross-cultural PD dysgraphia analysis studies. 

 

Keywords: Parkinsonic dysgraphia; micrographia; online handwriting; fractional order derivative; fractional calculus; 

multilingual cohort 

 

 

1. Introduction 

Parkinson’s disease (PD), as the second most 

frequent neurodegenerative disorder, affects 

approximately 1.5 % of the world population aged 

over 65 years [1]. A rapid degeneration of 

dopaminergic cells in substancia nigra pars compacta 

emerged as the most important biological finding 

accompanying the disease [2]. Considering the 

cardinal motor symptoms of PD (tremor in rest, 

bradykinesia and rigidity) in conjunction with 

cognitive, perceptual and motor requirements of 

handwriting, the disrupted handwriting of PD patients 

may be used as a significant biomarker for PD 

diagnosis [3]. The most commonly observed 

handwriting abnormality in PD patients is 

micrographia (progressive decrease of letters 

amplitude) [4], which may be noticed even before the 

onset of PD motor symptoms in approximately 5 % of 

PD patients.  

Nowadays, by utilizing digitizing tablets, which 

brings an ability to acquire x and y position with 

temporal information, we have the opportunity to 

process online handwriting signals. Therefore, we are 

not limited to analyze the spatial features only, but we 

are able to quantify more manifestations of PD 

appearing in patients handwriting data (temporal, 

kinematic or dynamic), generally named as PD 

dysgraphia [5]. 

The impact of quantitative PD dysgraphia analysis 

employing several handwriting or drawing tasks 

(e. g. characters, loops, sentences, figures) has been 

explored in [6] [7] [8] [9]. Researchers usually use 

kinematic, temporal, spatial or dynamic handwriting 

features in PD dysgraphia analysis. However, more 

advanced parameters (based on entropy, energy 

operators or empirical mode decomposition) have been 

reported too. PD dysgraphia classification accuracies 

reported by recent works vary in the range of 85 and 

97 %. In our previous works [6] [10] [11], we proposed 

and evaluated a new advanced approach of kinematic 

analysis based on fractional order derivatives (FD). 

Using this approach, we were able to identify PD with 

almost 90 % accuracy employing only 5 basic 

kinematic features.  

The most common issue in PD differential analysis 

(cause by complicated and time-consuming patient 

examination process), which researchers are 

encountering with, is a small and unilingual cohort of 

patients. This may result into poor generalization. 

Especially, the size of examining dataset has a 

significant influence on results reliability. The smallest 

the dataset is, the more misleading results may be. 

Therefore, in this study, we aimed to analyze a 

multilingual cohort involving two PD handwriting 

databases (Czech and Spanish) in order to train a more 

robust classification model. To our best knowledge, 
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this is the first study considering multilingual cohort in 

PD dysgraphia analysis.  

 

2. Datasets and Methodology 
 

2.1. Datasets 

 

For the purpose of this study, we used two PD 

handwriting databases. The Czech (PaHaW [8]) 

database consists of 37 PD patients and 38 healthy 

controls (HC). It includes 9 different handwriting tasks 

(Archimedean spiral, repetitive loops, repetitive letter 

l, syllable, words and sentence). The Spanish database 

(recorded in Mataró Hospital, Spain) consists of 36 PD 

patients and 10 HC. It includes 2 handwriting tasks 

(repetitive and continuously written letter l and 

sentence). Demographic and clinical data of both 

cohorts can be found in Table 1. All patients were 

examined on their regular dopaminergic medication 

approximately 1 hour after the L-dopa dose. All 

participants were right-handed, and all participants 

signed an informed consent form approved by the local 

ethics committees. 

 

Table 1. Demographic and clinical data of all 

participants. 

Cohort Number Age [y] PD dur [y] 

Parkinson’s disease patients 

Czech 37 69.21 ± 11.10 8.70 ± 4.82 

Spanish 36 68.25 ± 10.46 6.10 ± 3.78 

Healthy Controls 

Czech 38 62.50 ± 11.70 - 

Spanish 10 57.50 ± 6.36 - 
1 y – years; dur - duration 

       

For the purpose of this study, sentence handwriting 

task was selected from the databases. Even the tasks 

are different due to language, we hypothese that 

pathological characteristics in the handwritten signals 

will be similar. Sentences in their original language 

and with resulting English translations are listed 

below: 

a) Czech: “Tramvaj dnes už nepojede.”  

English: The tram will no longer go today. 

b) Spanish “La casa de Barcelona es preciósa.” 

English: The house in Barcelona is beautiful. 

Samples of PD patients’ sentences can be found in 

Figure 1. In Figure 2, descriptive statistics of both 

datasets are visualized. Handwriting data were 

acquired using a digitizing tablet Wacom Intuos 4M 

(both datasets). Following time sequences were 

sampled with frequency fs = 150 Hz: x and y 

coordinates (x[t], y[t]); time-stamp (t); in-air/on-

surface status (b[t]); pressure (p[t]); azimuth (az[t]); 

and tilt (al[t]). 

 

2.2. Methodology 

 

Firstly, each handwritten signal was split into on-

surface and in-air movements [12] (see Figure 1). 

Next, basic kinematic features such as velocity, 

acceleration and jerk were extracted. Instead of 

conventional differential derivative, we utilized FD as 

an advanced approach of kinematic features 

calculation. For this purpose, the Grünwald-Letnikov 

approximation was used [13] [14]. The advantage of 

FD is based on their extensive range of settings and 

several approaches of approximation. Moreover, we 

also applied FD on pen pressure, azimuth and tilt 

signals. All features were extracted for different values 

of α (order of FD). In the frame of this work, a range 

from 0.1 to 1.0 with a step of 0.1 was used. Finally, 

statistical properties of the features were described by: 

mean, median, standard deviation (std), and maximum 

 (max). Altogether, 1188 handwriting features 

were extracted for each dataset.  

We were considering 3 following feature sets: 

Czech, Spanish and multilingual (mixed – 73 PD, 48 

HC). In order to identify features that discriminate HC 

and PD we employed the Mann-Whitney U test. The 

significance level was set to  = 0.001.  

 Next, to evaluate the discrimination power of 

handwriting features, we performed multivariate 

classification analysis based on random forests (RF) 

[15]. In order to reduce the number of handwriting 

features entering into the classification analysis, we 

designed fast and efficient 2-stage feature selection. 

Firstly, each feature set was reduced by minimum 

redundancy maximum relevance [16] (mRMR) feature 

selection algorithm to 50 best features. Secondly, to 

obtain the most appropriate combination of the 

features, the sequential floating forward selection [17] 

(SFFS) algorithm was employed. To achieve the most 

accurate results for each dataset, we used different 

types of model validation techniques. In the case of 

Czech and Spanish feature sets we used leave-one-out 

cross-validation (due to small sample size). For the 

multilingual feature set, 10-fold cross-validation with 

20 repetition was used. Classification performance was 

evaluated by the Matthew’s correlation coefficient 

[18] (MCC), classification accuracy (ACC), sensitivity 

(SEN) and specificity (SPE).  

Figure 1. PD patient's sentences examples. Czech sentence 

in the upper part and Spanish in the bottom part of the 

figure. On-surface (blue) and in-air (red) movement are 

visualized. 
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3. Results 

The results of the Mann-Whitney U test can be 

found in the upper part of Table 2. Three most 

discriminative features which passed through the test 

are reported for each feature set. Features are sorted by 

significance level p, while all reported features 

obtained p < 0.0001. The most discriminative feature 

from the Spanish feature set is velocity (on-surface). In 

the case of Czech and multilingual feature set, it is its 

vertical variant, which is probably linked with the 

vertical micrographia [19]. As can be noticed, the 

results of the Czech and multilingual feature sets are 

quite similar, in comparison with Spanish one. This is 

probably caused by the size of the Spanish HC cohort 

(10 participants).  

Next, the results of the multivariate classification 

analysis can be found in the bottom part of Table 2. 

The highest classification performance was obtained in 

the Spanish feature set (ACC = 95.65 %), nevertheless, 

due to the imbalanced cohort (36 PD patients and 10 

HC), these results may be misleading. Number of HC 

in the Spanish database is 3.6 times lower than number 

of PD patients. By mixing the Spanish and Czech (well 

balanced) databases we have reduced the imbalance of 

the Spanish one (PD ≈ 1.5 x HC). Also, the distribution 

of PD duration for the Czech cohort is more uniform 

(see Figure 2). In the Spanish cohort, patients with 

shorter disease duration (less than 6 years) outweigh, 

however the distribution of PD patient’s age is quite 

similar for both cohorts. Thus, by combining the 

datasets, we also improved non-uniformity of the final 

cohort. Although the accuracy of the multilingual 

feature set is the lowest one (82.29 %), credibility of 

the results may be considered as higher in comparison 

to the Spanish feature set.  
 

 

 

Table 2. Results of Mann-Whitney U test and 

classification analysis 

Mann-Whitney U test 

Feat. Set Feature Name α p 

Spanish 

velocitys (median)  0.1 0.000069 

velocitys(median)  0.2 0.000069 

velocitya (mean)  0.1 0.000077 

Czech 

vertical velocitys (mean)  0.2 0.000012 

vertical velocitys (mean) 0.2 0.000014 

vertical velocitys (median) 0.4 0.000014 

Multi-

lingual 

vertical velocitys (mean) 0.1 0.000001 

vertical velocitys (median) 0.4 0.000001 

vertical velocitys (median) 0.3 0.000001 

Multivariate classification analysis 

Feat. Set  N MCC ACC [%] SEN [%] SPE [%] 

Spanish 2 0.87 95.65 97.22 90.00 

Czech 9 0.71 85.33 89.19 81.58 

Multi-

lingual 
8 0.63 82.29 85.99 77.22 

1 Feat. Set – feature set; α – order of FD; p – significance level; 
s – on-surface movement; a – in-air movement; N – number of 

features 
 

4. Conclusions 

This study deals with the advanced analysis of PD 

dysgraphia in a multilingual cohort. First of all, since 

the most significant features identified in the Mann-

Whitney U test and features selected by the SFFS have 

a non-integer value of the FD order, we suppose that 

the FD based parameters play significant role in PD 

dysgraphia quantification. Next, we achieved more 

than 80 % classification accuracy in all scenarios, 

which suggests the high impact of online handwriting 

processing in cross-cultural clinical studies focused on 

PD dysgraphia diagnosis. 

Figure 2. Descriptive statistics of examined datasets. In the top left part of the figure, the HC age distribution is 

visualized. The PD age distribution is in the top right part and in the bottom part, the distribution of PD duration is shown. 



1st International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI' 2019),  

20-22 March 2019, Barcelona, Spain 

This study has several limitations and suggestions 

for further research. Firstly, the Spanish dataset is not 

balanced (PD/HC, PD duration). In addition, the 

overall sample size is not big. On the other hand, to the 

best of our knowledge, it is the first and therefore the 

biggest multilingual online handwriting PD dataset, 

that has ever been analyzed. Finally, the FD-based 

features may be more explored and extended (e.g. by 

Caputo approximation approach). To sum it up, this 

study has a pilot character and further research should 

be done to be able to generalize the results. 

 

Acknowledgements 
 

This work was supported by the grant of the Czech 

Ministry of Health 16-30805A (Effects of non-

invasive brain stimulation on hypokinetic dysarthria, 

micrographia, and brain plasticity in patients with 

Parkinson’s disease), grant of the Czech Science 

Foundation 18-16835S (Research of advanced 

developmental dysgraphia diagnosis and rating 

methods based on quantitative analysis of online 

handwriting and drawing) and the following projects: 

LO1401, FEDER and MEC, TEC2016-77791-C4-2-R, 

from the Ministry of Economic Affairs and 

Competitiveness of Spain. For the research, 

infrastructure of the SIX Center was used. 

 

Reference 
 

[1]  D. Berg, R. B. Postuma, C. H. Adler, B. R. Bloem, 

P. Chan, B. Dubois, T. Gasser, C. G. Goetz, G. 

Halliday, L. Joseph and others, "MDS research criteria 

for prodromal Parkinson's disease," Movement 

Disorders, vol. 30, pp. 1600-1611, 2015.  

[2]  A. Elbaz, L. Carcaillon, S. Kab and F. Moisan, 

"Epidemiology of Parkinson's disease," Revue 

Neurologique, vol. 172, pp. 14-26, 2016.  

[3]  C. De Stefano, F. Fontanella, D. Impedovo, G. 

Pirlo and A. S. Freca, "Handwriting analysis to 

support neurodegenerative diseases diagnosis: A 

review," Pattern Recognition Letters, 2018.  

[4]  J. E. McLennan, K. Nakano, H. R. Tyler and R. S. 

Schwab, "Micrographia in Parkinson's Disease," 

Journal of the Neurological Sciences, vol. 15, pp. 141-

152, 1972.  

[5]  A. Letanneux, J. Danna, J.-L. Velay, F. Viallet and 

S. Pinto, "From micrographia to Parkinson's disease 

dysgraphia," Movement Disorders, vol. 29, pp. 1467-

1475, 2014.  

[6]  J. Mucha, V. Zvoncak, Z. Galaz, M. Faundez-

Zanuy, J. Mekyska, T. Kiska, Z. Smekal, L. Brabenec, 

I. Rektorova and K. Lopez-de-Ipina, "Fractional 

Derivatives of Online Handwriting: A New Approach 

of Parkinsonic Dysgraphia Analysis," in 2018 41st 

International Conference on Telecommunications and 

Signal Processing (TSP), 2018.  

[7]  E. Nackaerts, S. Broeder, M. P. Pereira, S. P. 

Swinnen, W. Vandenberghe, A. Nieuwboer and E. 

Heremans, "Handwriting training in Parkinson's 

disease: A trade-off between size, speed and fluency," 

PLOS ONE, vol. 12, p. e0190223, 12 2017.  

[8]  P. Drotar, J. Mekyska, I. Rektorova, L. Masarova, 

Z. Smekal and M. Faundez-Zanuy, "Evaluation of 

handwriting kinematics and pressure for differential 

diagnosis of Parkinson's disease," Artificial 

Intelligence in Medicine, vol. 67, pp. 39-46, 2016.  

[9]  C. Kotsavasiloglou, N. Kostikis, D. Hristu-

Varsakelis and M. Arnaoutoglou, "Machine learning-

based classification of simple drawing movements in 

Parkinson's disease," Biomedical Signal Processing 

and Control, vol. 31, pp. 174-180, 2017.  

[10]  J. Mucha, J. Mekyska, M. Faundéz-Zanuy, K. 

Lopez-de-Ipina, V. Zvončák, Z. Galáž, T. Kiska, Z. 

Smékal, L. Brabenec and I. Rektorová, "Advanced 

Parkinson's Disease Dysgraphia Analysis Based on 

Fractional Derivatives of Online Handwriting.," in 

10th International Congress on Ultra Modern 

Telecommunications and Control Systems and 

Workshops (ICUMT). , 2018.  

[11]  J. Mucha, J. Mekyska, Z. Galaz, M. Faundez-

Zanuy, K. Lopez-de-Ipina, V. Zvoncak, T. Kiska, Z. 

Smekal, L. Brabenec and I. Rektorova, "Identification 

and Monitoring of Parkinson’s Disease Dysgraphia 

Based on Fractional-Order Derivatives of Online 

Handwriting," Applied Sciences, vol. 8, p. 2566, 2018.  

[12]  E. Sesa-Nogueras, M. Faundez-Zanuy and J. 

Mekyska, "An Information Analysis of In-Air and On-

Surface Trajectories in Online Handwriting," 

Cognitive Computation, pp. 1-11, 2012.  

[13]  I. Podlubny, Fractional differential equations an 

introduction to fractional derivatives, fractional 

differential equations, to methods of their solution and 

some of their applications, San Diego: Academic 

Press, 1999.  

[14]  A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, 

"Theory and applications of fractional differential 

equations," 2006.  

[15]  L. Breiman, "Random Forests," Mach. Learn., 

vol. 45, pp. 5-32, 2001.  

[16]  H. Peng, F. Long and C. Ding, "Feature selection 

based on mutual information criteria of max-

dependency, max-relevance, and min-redundancy," 

IEEE Trans. Pattern Anal., vol. 27, pp. 1226-1238, 

2005.  

[17]  J. Pohjalainen, O. Rasanen and S. Kadioglu, 

"Feature Selection Methods and Their Combinations 

in High-Dimensional Classification of Speaker 

Likability, Intelligibility and Personality Traits," 

Comput. Speech Lang., 2014.  

[18]  B. W. Matthews, "Comparison of the predicted 

and observed secondary structure of T4 phage 

lysozyme," Biochim. Biophys. Acta (BBA), vol. 405, 

pp. 442-51, 1975.  

[19]  M. Thomas, A. Lenka and P. Kumar Pal, 

"Handwriting Analysis in Parkinson's Disease: 

Current Status and Future Directions," Movement 

Disorders Clinical Practice, vol. 4, pp. 806-818.  

 
 



A.13 Computerised Assessment of Graphomotor Difficulties in
a Cohort of School-aged Children

228



Computerised Assessment of Graphomotor
Difficulties in a Cohort of School-aged Children

Jiri Mekyska∗, Zoltan Galaz∗, Katarina Safarova†, Vojtech Zvoncak∗, Jan Mucha∗, Zdenek Smekal∗,
Anezka Ondrackova†, Tomas Urbanek†, Jana Marie Havigerova†, Jirina Bednarova† and Marcos Faundez-Zanuy‡

∗Department of Telecommunications, Brno University of Technology, 61600 Brno, Czech Republic
Email: mekyska@feec.vutbr.cz

†Department of Psychology, Faculty of Arts, Masaryk University, Arne Novaka 1, 60200 Brno, Czech Republic
‡Escola Superior Politecnica, Tecnocampus, Avda. Ernest Lluch 32, 08302 Mataro, Barcelona, Spain

Abstract—Although graphomotor difficulties (GD) are present
in up to 30 % of school-aged children, the field of GD diagnosis
and assessment is not fully explored and several research gaps
can be identified. This study aims to explore the impact of specific
elementary graphomotor tasks analysis on the accuracy of
computerised diagnosis and assessment of GD. We analysed seven
basic graphomotor tasks from 76 children (assessed by special
educational counsellors and using the handwriting proficiency
screening questionnaire for children HPSQ–C). Employing a dif-
ferential analysis, we observed that the most discriminative tasks
are based on combined loops, sawtooth and small Archimedean
spiral drawings. Features with the highest discrimination power
quantify kinematics, especially in the vertical projection. Using
a multivariate mathematical model, we were able to identify GD
with 50 % sensitivity and 90 % specificity, and to estimate the
total score of HPSQ–C with 31 % error.

Index Terms—computerised analysis, digitizer, graphomotor
difficulties, graphomotor elements, machine learning, online
handwriting

I. INTRODUCTION

A combination of motor planning and execution, visual–
perceptual abilities, orthographic coding, kinesthetic feedback,
and visual–motor coordination is referred to as graphomotor
skills [1], [2]. These skills start to develop in kindergarten at
the age < 6 years, level off at the age of 7–8 years (typically
1st and 2nd class of an elementary school) and become
automatic at the age of 8–9 years (3rd and 4th class) [3], [4].
It is estimated that children spend 31–60 % of their school
day performing handwriting [5], therefore the acquisition of
these skills is crucial for the consequent academic success and
children’ self-esteem [6]. Nevertheless, 10–30 % of them are
associated with graphomotor difficulties (GD) or disturbance
in the production of written language, i.e. they are considered
as poor writers or as having dysgraphia [1], [2].

Dysgraphia or GD are nowadays diagnosed mainly subjec-
tively based on experiences of special educational counsellors
or following some tests/questionnaires such as Concise As-
sessment Scale for Children’s Handwriting (BHK) [7], [8] or
Handwriting Proficiency Screening Questionnaire (HPSQ) [9].

This work was supported by the grant of Czech Science Foundation 18-
16835S (Research of advanced developmental dysgraphia diagnosis and rating
methods based on quantitative analysis of online handwriting and drawing)
and project LO1401. For the research, infrastructure of the SIX Center was
used.

The latter one was also modified to HPSQ–C, where children
assess themselves in three domains: legibility, performance
time, and physical and emotional well-being [10]. In addition,
all three tests we also extended by computerised analysis
allowing advanced assessment of GD [8], [11], [12].

The computerised analysis is usually based on the process-
ing of online handwriting signals acquired by digitising tablets.
The online handwriting is handwriting associated with time
series [13], i.e. it allows to capture kinematics and usually also
dynamics in terms of pen pressure, tilt and azimuth [11]. It
enables to go beyond the limitations of human perception and
accurately assess handwriting characteristics such as velocity,
acceleration, strokes’ duration, etc. This technology has been
advantageously used in several research studies linked with
GD. E.g. Asselborn et al. modelled online handwriting data of
298 children (56 with dysgraphia) with 96.6 % sensitivity and
99.2 % specificity [8]. Mekyska et al. introduced a new intra-
writer normalisation method and trained a model diagnosing
dysgraphia with 96 % sensitivity/specificity (in a cohort of 27
school-aged children) and estimating the HPSQ total score
with 10 % error [11]. Finally, in a cohort of 99 third-class
students, Rosenblum et al. trained a model achieving 90 %
sensitivity and specificity [14].

Drawing is an early form of a child’s graphomotor skill [15].
Its acquisition is necessary for further development, therefore
we hypothesize that identification of disturbances in grapho-
motor elements (contained in most of the alphabet letters)
could lead to a general diagnosis of GD as well. Nevertheless,
to the best of our knowledge, there is no complex research
focused on the utilisation of specific graphomotor tasks in
this field of science. Therefore, the general goal of this study
is to explore the impact of specific elementary graphomotor
tasks analysis on the accuracy of computerised diagnosis and
assessment of GD. More specifically, we aim to:

1) identify online handwriting features that significantly
differentiate children with and without GD, as assessed
by special educational counsellors or children them-
selves,

2) identify an elementary graphomotor task that provides
high discrimination power,

3) train and evaluate multivariate mathematical models that
diagnose and/or assess GD automatically.
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II. DATASET AND METHODS

A. Participants

In total 76 children were enrolled in several elementary
schools spread around the Czech Republic. They attended
1st class (3 girls, 12 boys), 2nd class (5 girls, 11 boys),
3rd class (11 girls, 6 boys), and 4th class (17 girls, 11
boys) and reported Czech as their native language. The
children were split into experimental (E; children with GD)
and comparative (C; children without GD) groups based on
two approaches: 1) diagnosis made by a special educational
counsellor (SEC); 2) diagnosis using total score of the HPSQ–
C questionnaire (based on the 18-point cut-off score validated
for Czech cohort). Demographic information of these groups
can be found in Table I. Parents of all children signed an
informed consent form. The study was approved by the Ethics
Committee of Masaryk University. Besides, we followed the
Ethical Principles of Psychologists and Code of Conduct
released by the American Psychological Association (see
https://www.apa.org/ethics/code/).

TABLE I
DEMOGRAPHIC CHARACTERISTICS OF THE PARTICIPANTS

SEC criterion HPSQ–C criterion
N Age [y] N Age [y] HPSQ–C

Experimental group

Girls 13 9.46±0.97 12 9.77±0.80 21.67±2.67
Boys 2 10.08±0.57 7 10.22±0.80 22.00±3.61

Comparative group

Girls 23 9.73±1.13 24 9.18±2.24 10.88±3.40
Boys 38 8.53±1.44 33 8.26±1.31 10.15±3.43

B. Data Acquisition

The children were asked to perform a drawing protocol on
an A4 paper, that was laid down and fixed to a digitising
tablet Wacom Intuos Pro L (PHT-80). For this purpose, they
used a Wacom Inking pen that enabled them to have immediate
visual feedback and feeling like they write with a conventional
inking pen. Online drawings were sampled with frequency
fs = 150Hz.

The protocol contains 7 elementary graphomotor tasks (see
Fig. 1): TSK1 – Archimedean spiral (approximately 15 cm
heigh); TSK2 – Archimedean spiral (half the size of TSK1);
TSK3 – connected loops; TSK4 – flipped TSK3; TSK5 – saw-
tooth; TSK6 – rainbow; TSK7 – a combination of TSK3 and
TSK4. Each task was shown to a child and then she/he repli-
cated it on a blank sheet of paper with a comfortable speed.
This protocol was designed in cooperation with psychologists
and special educational counsellors. It was designed in a way
so that it reflects all coordinated elementary movements that
are needed to successfully write cursive letters. In other words,
cursive letters are based on these graphomotor elements. An
example of TSK7 performed by a child with and without GD
can be seen in Fig. 2 (both children attend the 2nd class).
One can immediately observe that the child with GD cannot

keep the same height and vertical position of individual loops,
he/she is not able to draw it without pen elevations (there is
in-air movement; for more information see Section II-C) and
he/she has difficulties in transitions from upper to lower loops.

C. Drawing Analysis

Although we collected drawings, we can still consider them
as online handwriting signals. More specifically, the digitizer
captures this information: x and y position (x[n] and y[n]);
timestamp (t[n]); a binary variable (b[n]), being 0 for in-air
movement (i.e. movement of pen tip up to 1.5 cm above the
tablet’s surface) and 1 for on-surface movement (i.e. movement
of pen tip on the paper), respectively; pressure exert on the
tablet’s surface during writing (p[n]); pen tilt (a[n]); azimuth
(az[n]). For more information about these signals, we refer to
e.g. [11], [12].

During parameterisation of the drawings, we focused on the
most commonly used online handwriting features, that could
be split into five categories:

• spatial – width (WIDTH), height (HEIGHT), and length
(LEN) of the whole product, as well as its particular
strokes, i.e. stroke width (SWIDTH), height (SHEIGHT),
and length (SLEN).

• temporal – duration of drawing (DUR).
• kinematic – velocity (VEL), acceleration (ACC), and jerk

(JERK).
• dynamic – pressure (PRESS), tilt (TILT), and azimuth

(AZIM).
• other – number of interruptions (pen elevations; NINT)

and relative number of interruptions (RNINT).
Spatial, temporal and kinematic features were extracted from
both on-surface and in-air movements. Moreover, kinematic
features were also analysed in horizontal and vertical pro-
jection. Features that are represented by time series, e.g. the
velocity profile, were consequently transformed to a scalar
value using mean and relative standard deviation (rstd). To
make clear how a particular feature was calculated, we will
use a notation in format INF: DIR-FN (HL), where INF stands
for processed information (ON for on-surface, AIR for in-air,
PRESS for pressure, TILT for tilt, and AZIM for azimuth),
DIR denotes direction (H for horizontal and V for vertical),
FN contains feature name, and HL a statistic, that has been
used for transformation to a scalar value. For example, AIR:
V-ACC (mean) means mean of vertical acceleration during
in-air movement.

D. Statistical Analysis

Since several handwriting features did not have the normal
distribution (as assessed by the Kolmogorov-Smirnov test)
we identified features with the highest discrimination power
based on the Mann-Whitney U (Wilcoxon rank sum) test.
Handwriting/drawing abilities are very dependent on class
a child attends. Therefore, we performed this analysis in 3rd
and 4th class separately (we have not done this for children
attending 1st and 2nd class, because children with GD are
underrepresented in these groups). To evaluate the association
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Fig. 1. Drawing acquisition protocol.

Fig. 2. Example of TSK7 performed by a child without GD (HPSQ–C =
13) and a child diagnosed with GD (HPSQ–C = 23). The blue line represents
on-surface movement and the red line the in-air one.

between handwriting features and the total score of HPSQ–C
we used the Spearman’s correlation.

During the multivariate analysis, we employed an ensemble
machine learning algorithm called XGBoost [16]. It is the
state-of-the-art algorithm that has been used to win many
data science challenges on www.kaggle.com. It is robust to
outliers, it performs implicit variable selection, it captures
non-linear relationship in data, it is able to capture higher-
order interactions among data, and finally, in contrary to e.g.
deep learning algorithms, it works well in small datasets
too [16]. It was utilised in a 10-fold (with 20 repetitions) cross-
validation setup. Information about age, gender, and class
were used as an input to the model. Hyper-parameters of
XGBoost were selected based on a random search algorithm.
Discriminative models were evaluated using accuracy (ACC),
sensitivity (SEN), specificity (SPE), and Matthews correlation
coefficient (MCC). Regression model (estimating the total
score of HPSQ–C) was evaluated based on mean absolute error
(MAE), mean squared error (MSE), and estimation error rate
(EER, [17]).

III. RESULTS

Results of the Mann-Whitney U test are reported in Table II.
For each criterion/class the table provides up to 5 most
discriminative features sorted by their p values. In the case of
the 3rd class and SEC criteria, the first two features with the
highest discrimination power are based on vertical kinematics
in the Archimedean spiral (generally instability, as expressed
by the relative standard deviation, is higher in the E group),
the next three features are spatial characteristics of combined
loops (E group performed this task bigger). In the case of
HPSQ–C criterion, we identified only two significant features:
height of the Archimedean spiral (higher in the E group)
and relative standard deviation of on-surface velocity (higher
in the C group). In the case of the 4th class and SEC
criterion, the first three features are linked with the instability
of kinematic characteristics (higher in the E group), and the
last two with the number of pen elevations (increased in the
E group) during the performance of the combined loop task.
Finally, based on the HPSQ–C criterion, all top five most
discriminative features are based on kinematics, nevertheless,
with inconsistent relative differences between E and C groups.

Results of the correlation analysis are summarised in Ta-
ble III. In this case, for each class, we selected the top 3
features with the strongest association. Except for the number
of interruptions reported in the 1st class, all of them are kine-
matic parameters. Directions of correlations are not consistent
and they depend on a specific task. E.g. in TSK5 (sawtooth)
the HPSQ–C total score was increased (more significant hand-
writing difficulties) with decreased vertical velocity; decreased
variation of global velocity, vertical velocity, and vertical
jerk; decreased number of elevations; increased variation of
acceleration.

Results of the multivariate differential analysis can be found
in Table IV. In both scenarios (SEC/HPSQ–C) TSK7 (com-
bined loops) provided the highest discrimination power (based
on MCC), nevertheless, sensitivity and specificity are not well
balanced. In the SEC scenario, although the model reached
90 % specificity, it has only 47 % sensitivity. Moreover, the
sensitivity has a very high standard deviation (45 %). Similarly,
in the case of HPSQ–C, we reached SPE = 89 %, but SEN
= 50±35 %. The most discriminative TSK7 was in the SEC
scenario followed by Archimedean spirals, loops, sawtooth,
flipped loops, and rainbow. In the HPSQ–C scenario, TSK7
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TABLE II
RESULTS OF MANN-WHITNEY U TEST

SEC criterion HPSQ–C criterion
Task Feature E > C p Task Feature E > C p

3rd class

TSK1 ON: V-VEL (rstd) + 0.0007 TSK1 ON: HEIGHT + 0.0365
TSK1 ON: V-JERK (rstd) + 0.0007 TSK5 ON: VEL (rstd) − 0.0365
TSK7 ON: WIDTH + 0.0007
TSK7 ON: LEN + 0.0012
TSK7 ON: HEIGHT + 0.0031

4th class

TSK5 ON: ACC (rstd) + 0.0027 TSK5 ON: V-JERK (rstd) − 0.0003
TSK6 ON: JERK (rstd) + 0.0083 TSK7 ON: VEL (rstd) + 0.0076
TSK7 ON: H-JERK (rstd) + 0.0083 TSK5 ON: V-JERK (mean) − 0.0118
TSK7 RNINT + 0.0091 TSK5 ON: ACC (rstd) + 0.0270
TSK7 NINT + 0.0142 TSK6 ON: JERK (mean) + 0.0446

1 E – experimental group; C – comparative group; + – median of E is greater than median of C; − –
median of E is lower than median of C

TABLE III
RESULTS OF CORRELATION ANALYSIS

Task Feature ρ p

1st class

TSK5 ON: V-VEL (mean) -0.66 0.0079
TSK5 NINT -0.60 0.0184
TSK5 ON: V-JERK (rstd) -0.59 0.0214

2nd class

TSK7 ON: V-VEL (rstd) -0.58 0.0192
TSK4 ON: V-JERK (rstd) -0.58 0.0196
TSK7 ON: V-VEL (mean) -0.57 0.0216

3rd class

TSK1 ON: V-ACC (mean) 0.66 0.0036
TSK1 ON: V-JERK (mean) 0.64 0.0058
TSK5 ON: VEL (rstd) -0.61 0.0093

4th class

TSK5 ON: ACC (rstd) 0.58 0.0013
TSK5 ON: V-JERK (rstd) -0.55 0.0026
TSK6 ON: V-VEL (rstd) -0.53 0.0037

1 ρ – Spearman’s correlation coefficient; p – signif-
icance level

was followed by flipped loops, small Archimedean spiral,
sawtooth, loops, rainbow, and big Archimedean spiral.

Results of the multivariate regression analysis (estimation
of the HPSQ–C total score) are summarised in Table V. Also,
in this case, the lowest estimation error rate (EER = 31 %) was
observed in TSK7. It was then followed by sawtooth, flipped
loops, rainbow, loops, and Archimedean spirals.

IV. DISCUSSION

Although the in-air movement has been reported as ad-
vantageous information during graphomotor difficulties analy-
sis [18]–[20], in this study, beside the number of interruptions,
the in-air features did not play a significant role. The rationale

TABLE IV
RESULTS OF MULTIVARIATE DIFFERENTIAL ANALYSIS

Task ACC SEN SPE MCC

SEC criterion

TSK1 0.83±0.10 0.36±0.41 0.95±0.09 0.32±0.40
TSK2 0.84±0.11 0.34±0.41 0.96±0.08 0.33±0.44
TSK3 0.80±0.12 0.31±0.40 0.92±0.11 0.24±0.42
TSK4 0.79±0.13 0.33±0.41 0.89±0.12 0.22±0.42
TSK5 0.82±0.10 0.28±0.39 0.95±0.08 0.23±0.39
TSK6 0.79±0.10 0.18±0.34 0.94±0.09 0.12±0.36
TSK7 0.82±0.12 0.47±0.45 0.90±0.12 0.35±0.43

HPSQ–C criterion

TSK1 0.69±0.13 0.18±0.26 0.86±0.15 0.05±0.33
TSK2 0.77±0.12 0.37±0.35 0.90±0.12 0.29±0.40
TSK3 0.73±0.13 0.28±0.34 0.88±0.14 0.16±0.37
TSK4 0.79±0.12 0.41±0.36 0.92±0.11 0.35±0.39
TSK5 0.78±0.11 0.32±0.34 0.93±0.11 0.28±0.38
TSK6 0.71±0.13 0.23±0.29 0.87±0.14 0.12±0.37
TSK7 0.79±0.12 0.50±0.35 0.89±0.12 0.40±0.37

1 ACC – accuracy; SEN – sensitivity; SPE – specificity; MCC –
Matthews correlation coefficient

TABLE V
RESULTS OF MULTIVARIATE REGRESSION ANALYSIS

Task MAE MSE EER

TSK1 5.58±1.36 47.42±20.26 0.36±0.11
TSK2 5.62±1.43 47.81±20.84 0.36±0.11
TSK3 5.30±1.28 42.60±17.76 0.34±0.12
TSK4 5.10±1.22 38.32±15.34 0.33±0.11
TSK5 4.58±1.13 33.48±14.86 0.30±0.10
TSK6 5.24±1.24 42.23±16.80 0.34±0.11
TSK7 4.78±1.12 33.79±14.30 0.31±0.12

1 MAE – mean absolute error; MSE – mean squared
error; EER – estimation error rate
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behind this fact is simple. The tasks considered in our protocol
are very specific in a way that they can be theoretically
performed as one stroke.

Considering horizontal and vertical projections of drawing,
the majority of discriminative measures, or features associated
with the HPSQ–C total score, is based on the vertical move-
ment. This supports findings of Kushki et al. [3] who suggested
that the finger system, which is mainly responsible for the
vertical movement, may be more affected by psychological
and muscular fatigue than the wrist system, which is more
involved in the horizontal one. This can be explained from
an anatomical point of view because the vertical movement
requires coordinated movement and finer flexions/extensions
of more joints (interphalangeal and metacarpophalangeal) and
therefore it is more complex than ulnar abductions of the
wrist [21], [22].

Except for TSK7 (combined loops), the spatial, temporal
and dynamic features were in both differential and correlation
analysis outperformed by the kinematic ones. The finding is
in line with previous studies utilising these features during
the analysis of handwriting difficulties [3], [23]–[25]. It again
accents the impact of digitizers during the assessment of GD,
because such measures are very difficult to be accurately
quantified and perceived by humans.

Concerning specific tasks, we can conclude that the most
discriminative one is based on combined loops. In fact, it is the
most complex task in our protocol, which requires coordinated
movement of fingers, wrist, elbow and shoulder. In addition,
it is demanding in terms of visuospatial cognitive functions.
The results also suggest that the task, where children draw
sawtooth, can also work well during the differential analysis.
This task requires a precise change in direction when hitting
the top of each tooth. Children in the experimental group
were associated with higher instability of acceleration when
performing this task. We assume that the children were unsta-
ble especially in acceleration between upward and downward
strokes, that is again linked with the vertical movement of the
finger system. The rest of the conclusions regarding the tasks
are dependent on a specific split criterion (SEC/HPSQ–C). E.g.
the big Archimedean spiral (TSK1) had a high discrimination
power based on the SEC criterion, but very low in the case of
HPSQ–C. On the other hand, the small spiral worked well in
both cases. We hypothesize that this originates from a fact, that
smaller and denser spiral requires more precise coordination
of fingers and wrist.

The observed results differ between groups as stratified by
SEC or HPSQ–C criteria. Nevertheless, this was expected. The
experimental groups have different sample sizes (see Table I),
i.e. some children diagnosed with GD by one criterion can be
diagnosed as without GD using the second one. The highest
classification scores (SEN = 50 %, SPE = 89 %, MCC = 0.40)
were reached in the case of HPSQ–C criterion suggesting that
this approach is easier to be mathematically modelled (and
probably provides lower miss-classification than assessment
by special educational counsellors, who could be inconsistent
in their decision), however, more studies must be conducted

to be able to generalise this conclusion.
As already mentioned, we got a poor trade-off between

sensitivity and specificity. Although the specificity was high
(usually around 90 %), the sensitivity was low. We identified
two possible explanations: 1) The dataset is highly unbalanced,
i.e. there are 3–4 times more children in the comparative
group, than in the experimental one. Although we employed
the Matthews correlation coefficient during model training,
it did not prevent possible overfitting to the control group.
2) The dataset has some discrepancies, especially in the
case of SEC criterion. Fig. 3 provides a visualisation of
high-dimensional data space embedded into two dimensions
using the t-distributed stochastic neighbor embedding (t-SNE)
method [26]. As can be seen, it is difficult to find a simple
hyperplane that would differentiate C and E groups. This
could be caused by incorrect classification made by the special
educational counsellors. Based on this finding, it would be
interesting to perform unsupervised machine learning, cluster
datasets into two groups and explore their differences. To sum
the issue of poor trade-off up, the model is able to identify
children without GD with high probability. The children
classified by the model as those having GD should be further
examined to confirm this diagnosis.

Fig. 3. Visualisation of high-dimensional data split by the SEC criterion
using t-distributed stochastic neighbor embedding (C – comparative group; E
– experimental group).

Regarding the multivariate regression analysis, the results
are still challenging. In our recent study, we modelled the
HPSQ–C total score with approximately 15 % error [12], while
in this work we reached EER = 31 %. Nevertheless, both
studies used different datasets and different tasks (graphomotor
elements vs. handwritten paragraph). The results thus cannot
be directly compared. We believe that with a larger dataset,
more complex acquisition protocol and advanced parameter-
isation techniques we will be able to further improve the
model’s accuracy.
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V. CONCLUSION

In the frame of this study, we identified online handwrit-
ing features that significantly differentiate children with and
without GD, as assessed by special educational counsellors
or children themselves (using the HPSQ–C questionnaire).
They mostly quantify kinematics, especially in the vertical
projection, which requires finer flexions/extensions of inter-
phalangeal and metacarpophalangeal joints. Based on the
observed results, to diagnose or assess GD in elementary
school children we recommend to utilise the combined loops,
sawtooth or small Archimedean spiral drawing tasks. Using
the state-of-the-art machine learning approach, we were able to
identify GD with 50 % sensitivity and 90 % specificity, which
are still challenging numbers.

This work has several limitations. The analysed dataset has
a small sample size and it is highly unbalanced, therefore
further studies must be conducted to be able to generalise
the results. Next, although we have tried the false discovery
rate correction in the differential and correlation analysis, no
significant features appeared after this adjustment. Finally,
we employed just conventional parameterisation. We suppose
that the inclusion of more advanced features (e.g. based on
fractional-order derivatives, signal decomposition techniques
or modulation spectra) could further improve the results. To
sum up, concerning the limitations mentioned above, the study
should be considered as a pilot one. On the other hand,
it bridges a research gap in the field of computerised GD
analysis, and to the best of our knowledge, it is the first
work exploring the impact of simple graphomotor elements
quantification on diagnosis and assessment of GD in school-
aged children.
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Abstract—Developmental dysgraphia is a neurodevelop-
mental disorder present in up to 30 % of elementary school
pupils. Since it is associated with handwriting difficulties
(HD), it has detrimental impact on children’s academic
progress, emotional well-being, attitude and behaviour.
Nowadays, researchers proposed a new approach of HD
assessment utilizing digitizing tablets. I.e. that handwriting
of children is quantified by a set of conventional parameters,
such as velocity, duration of handwriting, tilt, etc. The aim
of this study is to explore a potential of newly designed
online handwriting features based on the tunable Q-factor
wavelet transform (TQWT) in terms of computerized HD
identification. Using a digitizing tablet, we recorded a writ-
ten paragraph of 97 children who were also assessed by
the Handwriting Proficiency Screening Questionnaire for
Children (HPSQ–C). We evaluated discrimination power
(binary classification) of all parameters using random forest
and support vector machine classifiers in combination with
sequential floating forward feature selection. Based on the
experimental results we observed that the newly designed
features outperformed the conventional ones (accuracy =
79.16 %, sensitivity = 86.22 %, specificity = 73.32 %). When
considering the combination of all parameters (including
the conventional ones) we reached 84.66 % classification
accuracy (sensitivity = 88.70 %, specificity = 82.53 %). The
most discriminative parameters were based on vertical
movement and pressure, which suggests that children with
HD were not able to maintain stable force on pen tip and
that their vertical movement is less fluent. The new features
we introduced go beyond the state-of-the-art and improve
discrimination power of the conventional parameters by
approximately 20.0 %.

Index Terms—Handwriting difficulties, developmental
dysgraphia; online handwriting; digitizing tablet; tun-
able Q-factor wavelet transform; machine learning

I. INTRODUCTION

Despite the rapid technological evolution in society,
handwriting is still one of the most important life skills
that children have to manage in the first years of their
school attendance. Fluent and legible handwriting is im-
portant for expressing, communicating and recording their
ideas [1], [2]. There are many underlying component
skills that may interfere with handwriting performance,
such as fine motor control, motor planning, in-hand ma-
nipulation, visual perception, sustained attention, etc. [3],

This work was supported by the grant of Czech Science Foundation
18-16835S (Research of advanced developmental dysgraphia diagnosis
and rating methods based on quantitative analysis of online handwriting
and drawing) and project LO1401. For the research, infrastructure of
the SIX Center was used.

[4]. It is estimated that 10–30 % of school-aged children
suffer from a neurodevelopmental disorder called devel-
opmental dysgrafia, which is associated with difficulties
mastering handwriting [5]. Handwriting difficulties (HD)
can negatively impact academic success, self esteem,
emotional well-being, behavior, and attitude [6], [7].
For a benefitial and effective therapy, it is necessary to
have an objective methodology that would enable HD
identification and complex assessment [8].

For identification and rating of the gravity of possible
HD, Rosenblum et al. [9] developed the Handwriting Pro-
ficiency Screening Questionnaire for Children (HPSQ–
C). The questionnaire apprehends the most significant
indicators of dysgraphic handwriting [10], such as leg-
ibility, performance time, and physical and emotional
well-being. It was already used in several studies con-
sidering different language groups [11]–[13]. Although
Rosenblum et al. also developed a questionnaire, where
the assessment is done by teachers (HPSQ – Handwriting
Proficiency Screening Questionnaire for Children) [14],
in this study we have decided to focus on HPSQ–C,
because children are able to evaluate their handwriting
skills better than anyone else. We proved this fact in our
recent paper, where we compared results of HPSQ and
HPSQ-C scales [15].

Current methods for identification of HD in children are
outdated in comparison with methods dealing with read-
ing disorders [16]. Today’s trend in clinical assessment of
children’s handwriting tends to point toward examination
of global legibility or specific letter’s criteria, such as
shape, spacing, position, number of errors, etc. Even
though these criteria provide valuable information about
handwriting, it’s assessment together with administration
and pattern searching is time consuming, expensive, and
subjective. Moreover, they are usually limited to hand-
writing product, while the process of handwriting itself is
less analysed.

Recent ongoing advancement in biomedical and IT
technology enabled a new approach of handwriting anal-
ysis based on digitizing tablets (sometimes called digitiz-
ers). The digitizers record various signals during hand-
writing (see Fig. 1): x and y position of a pen when
it touches paper’s surface (on-surface movement), same
coordinates of the pen when it is up to 1.5 cm above the
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surface (in-air movement), pressure, azimuth and altitude
(tilt). We are used to call this kind of handwriting as
online, because samples of these signals carry information
about time [17].

0

180

90

270

90

       tilt (    -       )0 90
azimuth (    -        )3590

Fig. 1. Online handwriting signals: position (on-surface/in-air), pressure,
azimuth, altitude(tilt).

Quantitative analysis of online handwriting is cost-
effective, non-invasive, and recently proven diagnostic
tool [5], [12], [18]–[23]. For instance, Asselborn et al.
[24] reported 96.6 % sensitivity and 92.2 % specificity
when diagnosing dysgraphia in a cohort of 298 pupils
using BHK test in combination with random forest classi-
fier [24]. Zhiming et al. reached 85.7 % HD identification
accuracy employing modified support vector machine
classifier in a database of 300 Chinese pupils assessed
by HPSQ [11]. Next, in our recent study we were able
to estimate total scores of HPSQ–C with approximately
14.77 % error using gradient boosted tree classifier in
combination with only 6 specific in-air features (tested
on a database of 97 Czech pupils) [15].

Almost all up-to-date scientific works are based on
rather basic handwriting features. The advantage of this
approach is, that the features could be easily clinically
interpretable, which means that they can be linked with
specific manifestations of HD. Nevertheless, since the
developmental dysgraphia is associated with deficient
fine motor skills, poor dexterity, poor muscle tone, or
unspecified motor clumsiness, which generally manifests
in higher complexity of handwriting, we assume that the
conventional features are not able to sufficiently quantify
these complexities. This led us to research of new pa-
rameterisation methods, that could significantly improve
accuracy of computerized HD assessment. We hypothe-
size, that features based on the tunable Q-factor wavelet
transform (TQWT) [25] could better quantify the hidden
complexities in dysgraphic handwriting by residual of
the decomposition, which should exhibit higher energy
for dysgraphic (i.e. more irregular/complex) handwriting.
Therefore, the specific aims of this study are:

• to introduce new TQWT based features quantifying
handwriting complexity,

• to compare these features to the conventional ones
(considered as a baseline) in terms of HD identifica-
tion accuracy.

Further organization of the paper is as follows. Section II
describes dataset and its acquisition process. In addition,
it introduces the new TQWT based features and defines a
baseline. Finally, this section provides information about
employed statistical analysis. The results we achieved are
presented in Section III. Discussion of the results and
conclusions are given in Section IV and V, respectively.

II. STUDY & METHODS

A. Dataset

For the purpose of this study we enrolled 65 pupils,
who were attending 3rd and 4th grade of an elementary
school. Almost all of them were right handed (only 2
kids were left handed). Children were asked to fill in the
HPSQ–C questionnaire, which consists of 10 questions.
Consequently, they were separated into two groups on
the basis of a cut-off value derived from the HPSQ–C
total score. The experimental group consists of children
with higher values of HPSQ–C (i.e. children with HD).
Children without HD are considered in the compara-
tive group. Demographic information of children in both
groups can be found in Table I. All children used the
cursive handwriting and in all cases their parents signed
an informed consent form. Thorough the whole study
we followed the Ethical Principles of Psychologists and
Code of Conduct released by the American Psychological
Association (see https://www.apa.org/ethics/code/).

TABLE I
DATASET STRUCTURE

Gender N Age [y] Mark [-] HPSQ–C [-]
Experimental group

girls 16 9.19 ± 0.75 1.61 ± 0.47 20.88 ± 2.16
boys 17 9.18 ± 0.73 1.46 ± 0.38 22.82 ± 4.29

Comparative group
girls 14 9.21 ± 0.70 1.11 ± 0.21 6.57 ± 2.38
boys 18 9.06 ± 0.73 1.01 ± 0.06 7.83 ± 2.28

N – number; y – years; HPSQ–C – HPSQ–C total score, Mark – mean mark
of four major schools subjects (Czech language, Mathematics, English language,
Fundamentals of civics and natural science)

B. Data Acquisition

The enrolled children were asked to copy a short
paragraph (63 words, 371 characters including spaces),
which was selected from a book for 3rd grade. During the
acquisition, they were writing on a lined A4 paper, that
was laid down and fixed to a digitizing tablet. For this
purpose we used Wacom Intuos Pro L (PHT-80) digitizer
with Wacom Inking pen. This pen is providing a valuable
visual feedback during handwriting, which is entirely
similar to the response of a regular inking pen. All signals
of online handwriting were sampled with frequency fs =
150 Hz. An example of the paragraph copy task performed
by a pupil with and without HD can be found in Fig. 2.

C. Baseline Handwriting Features

Online handwriting signals were parameterized on a
global level (i.e. the whole handwriting), as well as
on the stroke one. We extracted the following set of
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Fig. 2. The paragraph written by a child without HD (HPSQ-C = 3, upper part of the picture) and with HD (HPSQ-C = 35, lower part of the
picture). The color of letters is given by the tip pressure of the pen (cyan: 0 – 25 %, blue: 25 – 50 %, purple: 50 – 75 %, black: 75 – 100 %). Green
strokes around letters represent the in-air trajectories.

baseline parameters: kinematic (velocity, acceleration,
jerk), temporal (duration), spatial (width, height, length
of stroke), and dynamic (pressure). Kinematic, temporal
and spatial features we calculated from both on-line and
in-air movements. We also considered their horizontal and
vertical projection. Features represented by a vector were
consequently transformed into a scalar value using statis-
tics such as mean, standard deviation, median, relative
standard deviation, etc. For more information see [12],
[18], [26].

D. Tunable Q-factor Wavelet Transform

The TQWT is a flexible fully-discrete wavelet trans-
form, that can decompose a signal into two components,
which represent its oscillatory behavior. With fine tuning
we can decompose any signal into a high q-factor com-
ponent xHQ[n] and a low q-factor component xLQ[n] [25].
If we consider the online handwriting signal as x[n], then

its TQWT residual part xRES[n] can be calculated as:

xRES[n] = x[n] − xHQ[n] − xLQ[n]. (1)

As already mentioned in the introduction, we assume that
xRES[n] contains information, that is linked with deficient
fine motor skills, poor dexterity, poor muscle tone, or
unspecified motor clumsiness [12]. Therefore, a signal-
to-noise ratio (SNR) measure based on xRES[n] could
hypothetically differentiate handwriting associated with or
without difficulties.

A clear part of x[n], i.e. without the strong effect of
HD, can be calculated using the following formula:

xCL[n] = x[n] − xRES[n]. (2)

Next, we calculated SNR based on the three approaches
published at [27]: SNR based on the Teager-Kaiser En-
ergy Operator (SNRTEO), SNR based on the Conventional
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Energy Operator E (SNRCON), and SNR as the energy
ratio of xRES[n] and xCL[n], i.e.:

SNRE = 10 · log10

(
E(xCL[n])

E(xRES[n])

)
[dB]. (3)

We applied the TQWT on all raw online handwriting
signals (see Fig. 1) and also on velocity, acceleration, and
jerk profiles.

Extracting around eight hundred features from each
pupil was computationally highly demanding, so we de-
signed our program to work on various computers at the
same time. Each computer can be set to extract features
only for selected pupils and save its results to a remote
server.

E. Statistical Analysis

We considered three scenarios in our study:
1) Baseline: experiments based on the baseline hand-

writing features (81 in total).
2) Scenario 1: based on the TQWT features (665 in

total).
3) Scenario 2: combination of the baseline and TQWT

features (774 in total).
Firstly, we performed an exploratory analysis using Pear-
son’s and Spearman’s correlation between handwriting
features and HPSQ–C total score. In addition, we em-
ployed univariate classification analysis, where we tested
discrimination power of individual features using support
vector machine (SVM with linear kernel) [28] and random
forest (RF including 40 trees) [29] classifiers. We con-
sidered 10-fold cross-validation with 100 repetitions. The
discrimination power was evaluated by accuracy (ACC),
sensitiviy (SEN), specificity (SPE), and the Matthew
correlation coefficient (MCC).

In the second step, we performed multivariate clas-
sification analysis, using a combination of the sequen-
tial floating forward selection (SFFS) algorithm [30]
and SVM/RF classifiers. We followed the same cross-
validation settings and evaluation measures. Due to large
computational demands of SFFS, especially in Scenario
2, where a feature space has big dimension, we addition-
ally included minimum redundancy maximum relevance
feature selection (mRMR) [31] into the machine learn-
ing pipeline (i.e. feature pre-selection). After this pre-
selection each model was trained in approximately 1.5
day on a computer with CPU Intel i5 6500 3.2 GHz and
16 GB 1600 MHz DDR3 RAM.

III. RESULTS

Results of the Baseline scenario are shown in Table II.
Strongest relationship with the HSPQ–C total score exhib-
ited mean velocity (in-air) with ρ = −0.38, p = 0.0016.
The best discrimination power had standard deviation
of altitude, that was modelled by RF (MCC = 0.35,
ACC = 67 %, SEN = 70 %, SPE = 65 %). In the multi-
variate classification analysis we reached 73 % accuracy
(MCC = 0.49, SEN = 80 %, SPE = 68 %) using 3
features modelled by SVM.

TABLE II
BASELINE SCENARIO

COR / feature name Spearman’s r Pearson’s ρ

M of velocity†† −0.36∗∗ −0.38∗∗

M of height of stroke‡‡ 0.37∗∗ 0.34∗∗

Duration of writing†† 0.31∗ 0.28∗

C UCA / feature name ACC [%] SEN [%] SPE [%] MCC [-]

S M of velocity†† 64.1±17.4 70.6±25.7 59.3±28.9 0.3±0.4
S M of height of stroke‡‡ 63.5±18.2 65.0±28.1 63.7±28.2 0.3±0.4
S M of jerk†† 61.6±17.2 84.3±20.9 40.7±28.5 0.3±0.4

R Std of altitude 66.7±17.6 69.6±27.4 65.0±28.1 0.3±0.4
R Length of writing‡‡ 65.2±18.5 59.8±28.5 71.7±27.7 0.3±0.4
R M of vertical jerk‡‡ 63.8±18.0 59.0±28.7 70.5±28.1 0.3±0.4

MCA / feature name ACC [%] SEN [%] SPE [%] MCC [-]

S
SHOS 66.7±17.4 75.6±26.0 58.1±29.3 0.3±0.4
M of velocity†† 66.6±18.9 76.1±26.4 59.1±29.8 0.3±.4
M of duration of stroke‡‡ 73.5±17.1 80.8±23.5 68.8±27.4 0.5±0.3

R
Std of altitude 66.7±17.9 69.1±27.3 65.4±29.0 0.3±0.4
SVnJ†† 65.6±18.4 69.2±27.7 64.3±29.3 0.3±0.4
Std of length of stroke‡‡ 69.5±17.7 71.8±27.2 68.3±27.9 0.4±0.4

COR – Correlation analysis, C – Classificator, UCA – Univariate Classification
Analysis, MCA – Multivariate Classification Analysis, †† – In-air, ‡‡ – On-
surface, R – Random Forest Classifier, S – Support Vector Machine, M – Mean,
Std – Standart deviation, SHOS – Std of height of the stroke ‡‡, SVnJ – Std the
of vertical normalized jerk, ∗ – p < 0.05, ∗∗ – p < 0, 01, ∗∗∗ – p < 0.001.

Table III reports results of Scenario 1. In correla-
tion analysis SNRE of vertical normalized jerk (in-air)
achieved the highest value of ρ = 0.37 (p = 0.0022). The
highest discrimination power was observed in 4th moment
of SNRCON extracted from pressure profile and modelled
by RF, where ACC = 68% (MCC = 0.38, SEN = 68%,
SPE = 71 %). Regarding the multivariate analysis, we
reached ACC = 79 % using 6 TQWT features, that
were modelled by SVM (MCC = 0.58, SEN = 86%,
SPE = 73%).

Finally, results of Scenario 2 can be found in Table
IV. In this case the classification accuracy was further
improved to ACC = 85% (MCC = 0.70, SEN = 89%,
SPE = 83%), where a feature space containing 9 param-
eters was modelled by SVM.

IV. DISCUSSION

On the basis of our correlation analysis, we can con-
firm, that HD manifest in higher energies of TQWT
residual signals of online handwriting. This finding is
supported, for example, by the positive correlation (ρ =
0.37, p = 0.002) between SNRE of vertical normalized
jerk (in-air) and the HPSQ–C total score. Moreover, the
vertical movement during handwriting involves activation
of more muscles than in the horizontal case. There-
fore, this movement is more complex, requires better
handwriting proficiency, and better differentiates children
with and without HD. Another finding based on the
correlation analysis is, that children with lower values
of mean velocity (in-air) exhibit higher HPSQ–C scores.
This probably means that children with HD have slower
transitions between strokes, which could be linked with
cognitive functions.

Since MCC = 0.49 in the Baseline scenario was lower
than MCC = 0.58 in Scenario 1, we can conclude that the
TQWT based parameters outperformed the conventional
ones. Nevertheless, a combination of both feature sets
brought even better results (MCC = 0.70), which suggests
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TABLE III
SCENARIO 1

COR / feature name Spearman’s r Pearson’s ρ

SNRE of VNJ 0.36∗∗ 0.37∗∗

SNRTEO of RIRP −0.31∗ −0.31∗

SNRCON of 95PXP −0.26∗ −0.30∗

C UCA / feature name ACC [%] SEN [%] SPE [%] MCC [-]

S SNRTEO of STY 65.3±17.7 71.4±25.7 63.3±28.9 0.3±0.4
S SNRCON of SEY 65.3±17.9 67.7±28.4 66.2±27.5 0.3±0.4
S SNRE of HS 65.3±17.6 71.6±26.1 60.4±29.5 0.3±0.4

R SNRCON of 4MP 68.1±18.1 68.0±27.8 70.6±27.5 0.4±0.4
R SNRE of 1OEX 67.9±17.5 69.0±27.7 68.6±27.6 0.4±0.4
R SNRE of IRY 68.3±16.9 66.7±26.9 70.7±27.2 0.4±0.4

MCA / feature name ACC [%] SEN [%] SPE [%] MCC [-]

S

SNRE of IRX 69.2±18.0 75.4±25.3 64.2±29.0 0.4±0.4
SNRE of RIXA 76.9±16.2 81.0±23.6 73.9±26.1 0.5±0.3
SNRE of 95XO 77.0±16.4 82.0±23.1 74.3±26.1 0.5±0.3
SNRE of 90XO 78.5±15.7 84.3±22.1 73.4±25.8 0.6±0.3
SNRCON of RRY 78.6±16.1 85.2±20.8 73.0±26.2 0.6±0.3
SNRCON of RIRYP 79.2±15.6 86.2±20.2 73.3±26.2 0.6±0.3

R

SNRE of IRXS 66.3±17.8 66.3±28.1 67.3±27.9 0.3±0.4
SNRCON of 1OEYP 74.0±17.0 73.0±26.7 75.8±26.7 0.5±0.4
SNRCON of RINTQ 74.8±17.3 76.3±25.9 74.5±26.2 0.5±0.4
SNRE of 90PXP 75.1±16.8 77.3±25.0 74.0±26.8 0.5±0.4
SNRTEO of 1OEYP 76.5±16.2 78.5±23.7 76.9±24.8 0.5±0.3

COR – Correlation analysis, C – Classificator, UCA – Univariate Classification
Analysis, MCA – Multivariate Classification Analysis, †† – In-air, ‡‡ – On-
surface, R – Random Forest Classifier, S – Support Vector Machine, M – Mean,
Std – Standart deviation, VNJ – vertical normalized jerk ††, STY – Shannon
entropy of TEO of y position ‡‡, RIRP – relative interdecile range of pressure p,
95PXP – 95th percentile of x position ††, SEY – Shannon entropy of y position‡‡, HS – height of stroke ‡‡, 4MP – 4th moment of pressure p, 1OEX – 1st
order entropy of x position ††, IRY – interdecile range of y position ‡‡, IRX –
interdecile range of x position ‡‡, RIXA – relative interpercentile range of x
position ††, 95XO – 95th percentile of x position ‡‡, 90XO – 90th percentile
of x position ‡‡, RRY – relative interdecile range of y position ††, RIRYP –
relative interdecile range of y position ‡‡, 1OEYP – 1st order entropy of y position‡‡ , IRXS – interdecile range of x position ‡‡, RINTQ – relative interquartile
range of y position ‡‡, 90PXP – 90th percentile of x position ‡‡, ∗ – p < 0.05,
∗∗ – p < 0.01, ∗∗∗ – p < 0.001.

TABLE IV
SCENARIO 2

MCA / feature name ACC [%] SEN [%] SPE [%] MCC [-]

S

SNRE of 90XO 69.5±17.8 76.9±25.7 65.5±27.7 0.4±0.4
M of velocity †† 77.8±15.5 80.6±22.6 76.1±24.9 0.6±0.3
Std of jerk ‡‡ 82.7±15.0 84.7±22.1 82.2±21.8 0.7±0.3
SNRCON of 90XO 84.6±14.3 87.7±20.5 82.0±22.5 0.7±0.3
SNRCON of MADX 84.6±14.1 88.5±18.1 82.1±22.7 0.7±0.3
SNRTEO of FCY 84.6±14.4 89.0±18.5 82.1±21.7 0.7±0.3
SNRTEO of FCX 84.5±14.4 89.0±18.0 82.0±22.7 0.7±0.3
SNRCON of FCX 84.2±14.6 88.7±17.9 82.5±22.3 0.7±0.3
SNRCON of FCY 84.7±14.3 88.7±18.7 82.5±22.4 0.7±0.3

R

SNRE of IRX 66.0±17.1 66.5±27.4 67.5±27.1 0.3±0.4
MOSW 75.3±16.1 74.0±26.4 77.7±24.7 0.5±0.3
SNRTEO of PXY 77.3±16.6 74.3±26.5 80.9±23.8 0.5±0.4
SNRE of 90XO 78.4±15.7 76.9±24.8 81.2±22.8 0.6±0.3
SHS 79.6±15.7 79.1±23.7 81.0±24.9 0.6±0.3
SNRE RINTERP 79.7±15.1 79.2±23.6 81.9±23.6 0.6±0.3
SNRE of 95XO 80.3±15.1 79.4±24.4 81.9±23.5 0.6±0.3

COR – Correlation analysis, C – Classificator, UCA – Univariate Classification
Analysis, MCA – Multivariate Classification Analysis, †† – In-air, ‡‡ – On-
surface, R – Random Forest Classifier, S – Support Vector Machine, M – Mean,
Std – Standart deviation, 90XO – 90th percentile of x position ‡‡, MADX –
mean absolute deviation of x position ††, FCY – first correlation coefficient of y
position ††, FCX – first correlation coefficient of x position ††, IRX – interdecile
range of x position ‡‡, PXY – position of max. of y position ††, RINTERP –
relative interpercentile range of y position ††, 95XO – 95th percentile of x position‡‡, MOSW – Mean of speed of writing ††, SHS – Std of height of stroke ††,
∗ – p < 0.05, ∗∗ – p < 0, 01, ∗∗∗ – p < 0.001.

that the conventional parameters still play their significant
role in HD analysis.

Regarding the computerized identification of HD, As-
selborn et al. [24] reported SEN = 96.6 % and SPE =
99.2 % using 53 features. Zhimming et al. [11] reported
SEN = 77% and SPE = 77% based on 7 features.
Finally, in our recent article we reached SEN = 96%
and SPE = 97% based on 7 features [12]. We received
SEN = 89 % and SPE = 83 % in this study, which is
lower than in the recent ones. Nevertheless, since each
team used a different set of parameters, tasks and different
cohorts, the results are hardly comparable.

Finally, we can observe that the most discriminative
TQWT features (see Table III and Table IV) are extracted
mainly from the on-surface/in-air x and y trajectories and
from the pressure profile. Therefore, we assume that the
higher handwriting complexities associated with HD are
not that much manifested in tilt and azimuth.

V. CONCLUSION

The general goal of this study is to introduce new
TQWT based parameters quantifying handwriting com-
plexity and evaluate these features in terms of HD identi-
fication accuracy. The results suggest that the residual sig-
nal of TQWT decomposition contains some information
about irregularities/complexities linked with HD. More
specifically, the major occurrence of these complexities
was observed in the x/y trajectories and in the pressure
profile. Finally, we found out that the newly introduced
parameters (those based on TQWT) improve HD identifi-
cation accuracy by approximately 20 % (in comparison
to the baseline feature set). Unfortunately, we cannot
compare our results with achievements of other research
teams, because any experiments based on the considered
dataset have not been published yet. Nevertheless, our
goal was to compare TQWT based parameters with a
conventional baseline features.

This work has a couple of limitations. First of all,
the dataset does not have a large number of samples,
which means that the results cannot be well generalized,
nevertheless, it provides an intuition and some pilot
conclusions, that can be further developed and evaluated
on larger cohorts. Next, the TQWT decomposition can be
tuned using several parameters. In the frame of our ex-
periments we followed the settings recommended in [25],
however, some kind of optimization could further increase
the discrimination accuracy. The children assessed them-
selves by HPSQ–C, which means that our trained models
are dependent on a subjective rating. Finally, the children
were recorded only in one session, therefore we are not
able to monitor intra-writer variability, and its effect on
models’ sensitivity and specificity.
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Abstract—Parkinson’s disease (PD) is a common neurode-
generative disorder with prevalence rate estimated to 1.5 %
for people age over 65 years. The majority of PD patients is
associated with handwriting abnormalities called PD dysgraphia,
which is linked with rigidity and bradykinesia of muscles involved
in the handwriting process. One of the effective approaches of
quantitative PD dysgraphia analysis is based on online hand-
writing processing. In the frame of this study we aim to deeply
evaluate and optimize advanced PD handwriting quantification
based on fractional order derivatives (FD). For this purpose,
we used 37 PD patients and 38 healthy controls from the
PaHaW (PD handwriting database). The FD based features were
employed in classification and regression analysis (using gradient
boosted trees), and evaluated in terms of their discrimination
power and abilities to assess severity of PD. The results suggest
that the most discriminative and descriptive information provide
FD based features extracted from a repetitive loop task or a
sentence copy task (maximum sensitivity/specificity = 76 %, error
in severity assessment = 14 %, error in PD duration estimation
= 22 %). Next, we identified two optimal ranges for the order
of fractional derivative, α = 0.05 – 0.45 and α = 0.65 – 0.80.
Finally, we observed that inclusion of pressure, azimuth, and tilt
together with kinematic features into mathematical modeling has
no influence (positive or negative) on classification performance,
however, there was a notable improvement in the estimation of
PD duration.

Index Terms—online handwriting; Parkinson’s disease; dys-
graphia; fractal calculus; fractional derivatives; classification;
regression
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I. INTRODUCTION

Parkinson’s disease (PD) is a common neurodegenerative
disorder affecting approximately 1.5 % of the world population
aged over 65 years [1]. The risk of being affected by PD
increases with age. Therefore, as populations age, the inci-
dence rate is expected to be doubled in the next 15 years [2].
The exact pathophysiological cause of PD has not yet been
discovered, though a rapid degeneration of dopaminergic cells
in the substantia nigra pars compacta is the most significant
biological finding linked with PD. Tremor at rest, rigidity,
bradykinesia and postural instability are considered as the
primary motor symptoms of PD [3]. Non-motor symptoms
such as cognitive impairment, sleep disturbances, depression,
etc. may also arise [4], [5]. Moreover, PD patients usually
develop additional axial motor symptoms, e.g. hypokinetic
dysarthria, dysphagia, and gait freezing [5].

Considering the primary motor symptoms of PD to be in
line with cognitive, perceptual and motor requirements of
handwriting, the disrupted handwriting of PD patients may be
used as a significant biomarker in PD diagnosis [6]. Especially,
by detecting micrographia (progressive decrease of letter’s am-
plitude or width), which is the most commonly observed hand-
writing abnormality in PD patients [7]. Nevertheless, some
PD patients never develop micrographia, but they still exhibit
some other handwriting disabilities. Due to this complexity,
Letanneux et al. [8] started to use the term PD dysgraphia.
To be able to effectively quantify manifestations of PD in
handwriting, more advanced approaches were introduced [9],
[10]. They are based on digitizing tablets that are able to
acquire x and y trajectories along with temporal information
(this kind of signal is called online handwriting). Therefore,
we are not limited to analyze the spatial features only, but we
can process temporal, kinematic or dynamic characteristics.

Researchers have been exploring the influence of many
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handwriting/drawing tasks in PD dysgraphia analysis, from
the simplest ones (loops, circles, lines, Archimedean spiral,
etc.) to more complex (words, sentences, drawings, etc.) [10]–
[15]. The importance of kinematic features was confirmed by
most of the recent works, however, temporal, spatial, dynamic
or other more advanced features play their significant role
as well. For instance, Drotar et al. [10]–[12] achieved PD
classification accuracy up to 89 % using a combination of
kinematic, pressure, energy or empirical mode decomposition
(EMD) features. Average accuracy of 91 % was achieved
by Kotsavasilogloua et al. [16] using kinematic and entropy
based features extracted from simple horizontal lines. Some
other works reported even higher classification accuracies
(≈ 97 %) [17], [18], but based on a very small dataset.
Moetesum et al. [19] published a promising advanced ap-
proach by applying convolutional neural networks (CNN) on
handwriting data transformed into the offline mode, which
resulted in 89 % accuracy. Next, Taleb et al. [9] reported up
to 94 % accuracy of PD severity prediction using kinematic
and pressure features in combination with adaptive synthetic
sampling approach (ADASYN) for model training. Finally, in
our recent works [14], [15], [20] we introduced and evaluated
a new advanced approach of PD dysgraphia analysis exploiting
a fractional order derivative (FD) as a substitution of con-
ventional differential derivative during basic kinematic feature
extraction (i.e. velocity, acceleration, and jerk parameters). We
achieved up to 90 % classification accuracy employing only 5
FD-based kinematic parameters in these works. Nevertheless,
in comparison to conventional parameters, the newly proposed
FD-based features yielded better performance only in specific
tasks (continuous and/or repetitive movement) and in specific
applications such as PD severity estimation.

Therefore, the main objective of this study is to extend our
previous findings and perform a deeper and more sensitive
analysis of FD-based features, especially in terms of their dis-
crimination power and descriptive abilities. More specifically,
we aim to:
• explore the utilization of FD in the other dimensions of

online handwriting (i.e. pressure, azimuth, and tilt),
• identify an optimal combination of handwriting/drawing

tasks and the FD-based features in terms of discrimination
power and descriptive abilities,

• identify an optimal range of FD order α for classification
and regression analysis.

The rest of this paper is organized as follows. Section II
describes the used dataset and methodology. Results are sum-
marized in Section III. In Section IV the discussion related
to the results can be found and the conclusions are drawn in
Section V.

II. DATASET AND METHODOLOGY

A. Dataset

For the purpose of this work, we used the Parkinson’s
disease handwriting database (PaHaW) [11]. The database
consists of several handwriting or drawing tasks acquired in 37

PD patients and 38 age- and gender-matched healthy controls
(HC). Demographic and clinical data of the participants can
be found in Table I. The participants were enrolled at the First
Department of Neurology, St. Anne’s University Hospital in
Brno, Czech Republic. All participants reported Czech lan-
guage as their native language and they were right-handed. The
patients completed their tasks approximately 1 hour after their
regular dopaminergic medication (L-dopa). All participants
signed an informed consent form approved by the local ethics
committee.

TABLE I
DEMOGRAPHIC AND CLINICAL DATA OF THE ENROLLED PARTICIPANTS.

Gender N Age [y] PD dur [y] UPDRS V LED [mg/day]
Parkinson’s disease patients

Females 18 71.23 ± 8.03 9.55 ± 5.29 2.17 ± 0.84 1124.03 ± 535.84
Males 19 67.52 ± 13.15 7.26 ± 4.12 2.37 ± 0.86 1724.12 ± 733.03
All 37 69.32 ± 10.97 8.38 ± 4.80 2.27 ± 0.85 1432.19 ± 704.78

Healthy controls
Females 18 61.44 ± 9.89 - - -
Males 20 63.30 ± 12.79 - - -
All 38 62.42 ± 11.39 - - -

1 N – number of subjects; y – years; PD dur – PD duration; UPDRS V – Unified
Parkinson’s disease rating scale, part V: Modified Hoehn & Yahr staging score [21];
LED – L-dopa equivalent daily dose.

B. Data Acquisition
The PaHaW database [11] includes multiple handwriting

tasks, namely: Archimedean spiral; repetitive loops; letter l;
syllable le; Czech words les, lektorka, porovnat, and nepopad-
nout; Czech sentence Tramvaj dnes už nepojede. During
handwriting tasks performance, the participants were rested
and seated in a comfortable position with a possibility to look
at a pre-filled template. In case of some mistakes, they were
allowed to repeat the task. A digitizing tablet (Wacom Intuos
4M) was overlaid with an empty paper and the participants
wrote on that using the Wacom Inking pen. Online handwriting
signals were recorded with fs = 150 Hz sampling rate. The
following time sequences were acquired: x and y coordinates –
x[t], y[t]; time-stamp – t; on-surface (i.e. on paper movement)
and in-air (i.e. movement up to 1.5 cm above the paper) status
– b[t]; pressure – p[t]; azimuth az[t]; and tilt al[t].

C. Fractional Derivative
We discovered the potential of FD-based kinematic features

in PD dysgraphia analysis in our previous works [14], [15],
[20]. By substitution of the conventional differential deriva-
tive during feature calculation, we have developed a new
advanced approach of handwriting parametrization. Generally,
FDs can have wide range of settings and several approaches
of approximation (e.g. Caputo, Grünwald-Letnikov) [22]. In
this work, we utilized the Grünwald-Letnikov approximation
implemented by Jonathan Hadida. A direct definition of FD
Dαy(t) is based on finite differences of an equidistant grid
in [0, τ ] assuming that the function y(τ) satisfies certain
smoothness conditions in every finite interval (0, t), t ≤ T .
Choosing the grid [22]

0 = τ0 < τ1 < ... < τn+1 = t = (n+ 1)h (1)
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with
τk+1 − τk = h (2)

and using the notation of the finite differences

1

hα
∆α
hy(t) =

1

hα

(
y(τn+1) −

n+1∑

v=1

cαv y(τn+1−v)

)
, (3)

where
cαv = (−1)v−1(αv ). (4)

The Grünwald-Letnikov implementation is defined as:

Dαy(t) = lim
h→0

1

hα
∆α
hy(t), (5)

where Dαy(t) denotes a derivative with order α of function
y(t), and h represents sampling lattice.

D. Handwriting Features

The first set of parameters consists of conventional kine-
matic features extracted from all tasks of the PaHaW database
for both on-surface and in-air movement. It means we cal-
culated: velocity (rate at which a position of pen changes
with time [mm/s]), acceleration (rate at which the velocity
of pen changes with time [mm/s2]), jerk (rate at which the
acceleration of pen changes with time [mm/s3]), and their
horizontal and vertical variants [11], [23]. Next, we calculated
the kinematic features based on FD. Moreover, to further
extend and improve our previous research, FD was also
similarly applied to pressure, azimuth and tilt.

In the first step, the FD-based features were calculated for
different values of α in range from 0.1 to 1.0 with the step
of 0.1. Next, the most discriminative handwriting tasks were
selected and deeper analysed with a finer step of α (0.01).
This selection was made in order to reduce computational
cost of the analysis. Statistical properties of all extracted
handwriting features were expressed using mean, median,
standard deviation (std), and maximum (max).

E. Statistical Analysis

To evaluate the discriminative power of the handwriting
features, a multivariate binary classification analysis based
on the state-of-the-art Gradient Boosted Trees (10-fold cross-
validation with 50 repetitions) was employed. More specifi-
cally, the famous XGBoost algorithm [24] was used in light
of its ability to achieve good performance on a small dataset.
Classification performance was evaluated by the Matthew’s
correlation coefficient (MCC), classification accuracy (ACC),
sensitivity (SEN), and specificity (SPE). Next, in order to
evaluate the power of handwriting features to estimate val-
ues of PD duration and UPDRS V, regression analysis was
performed. The same boosting tree algorithm (XGBoost) with
the same supervised learning setup was used. Regression
performance was evaluated by mean absolute error (MAE),
root mean square error (RMSE), and estimation error rate
(EER).

III. RESULTS

The results of classification and regression analysis for
the FD-based handwriting features extracted from all tasks
can be found in Table II. Selection of the most discrimi-
native/descriptive handwriting tasks for the consequent opti-
mization of FD was performed based on feature importances
of trained models (feature importance quantifies the relative
importance of the feature in an ensemble of the trained
XGBoost model [24]). Distribution of particular tasks and
derived features for all classification/regression scenarios can
be found in Figure 1. Results of the classification/regression
analysis after the fine tuning of FD are reported in Table III.
Finally, distributions of the FD order α among the fine-tuned
parameters are visualized in Figure 2.

TABLE II
RESULTS OF CLASSIFICATION AND REGRESSION ANALYSIS

BASED ON ALL TASKS

Classification
MCC ACC [%] SEN [%] SPE [%] Feat
0.62 ± 0.14 80.60 ± 9.87 79.41 ± 14.52 80.56 ± 7.25 18

Regression
Scale EER [%] MAE RMSE Feat
UPDRS V 12.98 ± 7.01 0.55 ± 0.29 0.66 ± 0.42 3
PD duration 25.23 ± 3.65 4.42 ± 0.64 5.33 ± 0.89 30

1 MCC – Matthew’s correlation coefficient; ACC – accuracy; SEN –
sensitivity; SPE – specificity; Feat – number of features important for the
trained model; MAE – mean absolute error; RMSE – root mean squared
error; EER – estimation error rate; UPDRS V – Unified Parkinson’s disease
rating scale, part V: Modified Hoehn & Yahr staging score [21].

TABLE III
RESULTS OF CLASSIFICATION AND REGRESSION ANALYSIS FOR

SELECTED TASKS

Classification
Task MCC ACC [%] SEN [%] SPE [%] Feat
Sentence 0.34 ± 0.18 66.67 ± 12.45 65.79 ± 18.12 65.79 ± 21.58 21
Rep. loops 0.52 ± 0.11 76.00 ± 11.98 75.68 ± 12.36 76.32 ± 19.54 11

Regression
Task Scale EER [%] MAE RMSE Feat
Sentence UPDRS V 14.67 ± 7.44 0.63 ± 0.32 0.78 ± 0.40 1
Rep. loops UPDRS V 13.94 ± 7.61 0.61 ± 0.33 0.75 ± 0.41 2
Sentence PD duration 23.73 ± 10.67 4.05 ± 1.82 4.62 ± 1.83 33
Rep. loops PD duration 21.97 ± 8.97 3.75 ± 1.53 4.36 ± 1.60 39

1 MCC – Matthew’s correlation coefficient; ACC – accuracy; SEN – sensitivity; SPE –
specificity; Feat – number of features important for the trained model; MAE –
mean absolute error; RMSE – root mean squared error; EER – estimation error rate;
UPDRS V – Unified Parkinson’s disease rating scale, part V: Modified Hoehn & Yahr
staging score [21].

IV. DISCUSSION

Firstly, we performed the analysis using all tasks of the
PaHaW database utilizing features calculated for α from
0.1 to 1.0 with step 0.1 (10 FD-based features for one
handwriting parameter). As can be seen in the upper part
of Table II, ACC (80.60 %) corresponds with our previous
results (81.43 %) [14], while SEN and SPE were improved
by approximately 10 %. Number of features involved in the
trained model is 18, and as can be seen in Figure 1 (bottom
part of column a), besides the kinematic features the pressure
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Feature category
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Repetitive letters le 
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Others
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Tasks

Repetitive letters leSentence 
Word "lektorka" Repetitive loops
Repetitive word "les"   Others

b)a)

Feature category

Kinematic Altitude

Tasks

Sentence Letters le Word "lektorka"

Fig. 1. Distribution of particular tasks and derived features in the trained XGBoost models: a) classification analysis; b) regression analysis (PD duration);
c) regression analysis (UPDRS V).
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Fig. 2. Distributions of FD order α among the fine-tuned parameters.

and azimuth parameters are also modeled. Based on the distri-
bution reported in the upper part of column a) (see Figure 1),
it is noticeable that the highest discriminative power provide
repetitive loops. Regarding the results of regression analysis,
the most suitable task for further optimization of the FD-based
features is the sentence (see the upper part of column b) and c)
in Figure 1). In comparison with our previous results [14], the
estimation error of PD duration differs minimally, however, the
resulted models include parameters coming from all feature
categories. In the case of UPDRS V, the value of EER
is similar again, but in this case, most of the features are
tilt-based instead of kinematic-based. Considering the facts
mentioned above, we can conclude that utilizing FD analysis

of pressure, azimuth and tilt does not have any noticeable
effect on model’s performance.

Secondly, we performed the optimization of FD-based fea-
tures extracted from the repetitive loops and sentence. We re-
calculated these features for α from 0.01 to 1.00 with 0.01
step (100 FD-based features for one time sequence) in order
to identify the optimal values of α. As can be seen in the upper
part of Table III, ACC for both tasks is lower in comparison
with the all task classification. It is the consequence of using
just a single task for classification, and it corresponds with
previous works [10], [11], [14], [20]. Nevertheless, we have to
point out that the main objective of this step is not to increase
the classification accuracy but to identify the optimal values
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of α. It is visible from the first column of Figure 2 that the
optimal α for PD classification is in ranges from 0.05 to 0.35
and 0.60 to 0.75. Regarding the results of regression analysis,
in the case of UPDRS V estimation, EER is slightly worse
in comparison with the first step. In the case of PD duration
estimation, EER is slightly better (by 2 – 3.5 %) than in the
first step and also in comparison with our previous work [14]
it was improved by 5 %. These results are probably caused by
the usage of fine-tuned FD-based features. From the middle
and last column in Figure 2, we may conclude that the optimal
value of α for PD severity assessment and duration estimation
is in ranges from 0.05 to 0.45 and from 0.65 to 0.80. By inter-
sectioning optimal α ranges of classification and regression
analysis, we created a final optimal range of α from 0.05 to
0.45 and from 0.60 to 0.80, that is recommended to be used
in the field of PD dysgraphia analysis.

V. CONCLUSION

Based on the results we can conclude that applying FD on
pressure, azimuth and tilt profiles has no influence (negative
or positive) on classification performance. However, there was
a notable improvement in the estimation of PD duration by
19 %. Next, in the field of PD dysgraphia analysis, we iden-
tified the optimal values of the FD order, which should be in
the range from 0.05 to 0.45 or from 0.60 to 0.80. Identification
of these ranges enables significant reduction of computational
cost (by approximately 50 %), because researchers do not have
to explore the full range of possible values of the FD order
during quantitative analysis of PD dysgraphia.

This study has several limitations and possible parts, that
could be further improved/explored. Since the processed
dataset is small, further studies on this topic should be held
in order to generalize the results. Next, the FD order could be
further tuned for horizontal and vertical movement separately.
And finally, some other approximations of FD (e.g. Caputo’s)
can further improve classification or regression performance.
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Abstract—Handwriting difficulties (HD) affects some of the
school-aged children and its current prevalence rate is between
5–34%. Children at primary schools have to face rising cog-
nitive demands that the handwriting represents, and some of
them are not able to do so. As a result, they tend to make
mistakes and their written product is dysfluent and has poor
legibility. HD can also lead them to lower self-esteem, learning
difficulties and ultimately to less academic achievements. For
this reason occupational therapists are trying to identify HD
through examination as early as possible. We extracted online
handwriting signals of children using digitizing tablets. Handwrit-
ing Proficiency Screening Questionnaire for Children (HPSQ–C)
was used to score severity of HD in children’s written product.
To advance current computerized analysis of online handwriting,
we employed fractional order derivative features (FD) together
with conventional measures. We selected significant features for
HD identification and utilized correlation analysis together with
Mann-Whitney U-test to evaluate their discriminative power. We
can conclude that FD-based features bring benefits of more
robust quantification of in-air movements as opposed to the
conventionally used ones. Finally, we have shown that utilization
of FD can be beneficial for computerized assessment of HD
but should be further optimized and evaluated with advanced
statistical or machine learning methods.

Index Terms—fractal calculus; fractional derivative; handwrit-
ing difficulties; kinematic analysis; online handwriting; school-
aged children; digitizer; developmental dysgraphia

I. INTRODUCTION

In childhood, mastering legible handwriting is an important
skill [1]. During this life period, a child has to develop
adequate cognitive and motor abilities, such as fine motor
control, stroke formation, thumb-to-finger sequencing, visual
processing, formulation of an idea, planing a syntax of a sen-
tence, achieving orthographic-motor integration to produce
text, and evaluation of the outcome [2]. In fact, many children

This work was supported by the grant of Czech Science Foundation 18-
16835S (Research of advanced developmental dysgraphia diagnosis and rating
methods based on quantitative analysis of online handwriting and drawing),
project LO1401, and TEC2016-77791-C4-2-R from the Ministry of Economic
Affairs and Competitiveness of Spain. For the research, infrastructure of the
SIX Center was used.

have problems to withstand rising cognitive demands that
the handwriting represents, and are not able to comprehend
simultaneous tasks such as grammar, spelling, composition [3],
etc. As a result, their written product is dysfluent, it has poor
legibility, and the in-air time (time spent above the writing
surface) is generally longer [4]. Moreover, these children
spend too much effort during handwriting, which leads to low
dexterity [5] as well as the lack of fine motor control [6].
This phenomenon is commonly referred to as handwriting
difficulties (HD) and its prevalence range between 5–34 % [7].

At present, occupational therapists examine HD based on
the following criteria [8]: legibility and speed of writing, per-
formance time, quality of letter formation, alignment, number
of errors, spacing and sizing of letters, etc. Although the
clinical assessment of HD provides valuable information about
handwriting, it is still limited to a visual inspection of the
written product, which does not provide complete information
about the process itself. Besides, such an assessment is also
dependent on the examiner’s experience, level of expertise,
physical and emotional state, etc. These factors result in inter-
rater variability and less objectivity of the examination [9].

To overcome the limitations of conventional clinical eval-
uation and diagnosis of HD, researchers have been focusing
on computerized quantitative analysis of online handwriting
(where each sample is associated to its timestamp [10])
taking advantage of a variety of signal processing and ma-
chine learning techniques [1], [11]–[14]. In terms of the
HD quantification, previous studies [6], [15]–[19] have been
using conventional feature extraction methods aiming at stroke
duration, velocity, acceleration, tilt, pressure, etc.

In our previous works [20]–[22], the potential of fractional
order derivatives (FD) for development and application of
robust and complex kinematic feature extraction methods
in the field of Parkinson’s disease dysgraphia analysis was
uncovered and evaluated. Therefore, we hypothesize that the
utilization of FD for the analysis of HD in children population
may also bring a noticeable improvement. With this hypothesis
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in mind, we aim at:
• exploring the utilization of FD in the field of computer-

ized analysis of HD in children population,
• comparing the power of the FD-based features with the

set of conventionally used ones to discriminate children
without HD and children with HD,

• identifying the optimal range of FD α order for robust
and complex quantification of HD.

II. MATERIALS & METHODS

A. Dataset

In this study, we enrolled 55 children (19 attending 3th
grade, and 36 attending 4th grade of primary schools), see
Table I for more information. To assess legibility and per-
formance time during handwriting as well as physical and
emotional well-being, the children were asked to fill a self-
evaluating Handwriting Proficiency Screening Questionnaire
for Children (HPSQ–C) [23]. It contains 10 questions scored
on a 5-point Likert scale (0 – no difficulties, 4 – severe diffi-
culties; total score, i. e. sum over all questions: 0 – no HD,
40 – severe HD). The important advantage of HPSQ–C is its
language independence and the fact that it has already been
validated in a couple of previous studies [11], [12], [19],
[24]. Based on the HPSQ–C cut-off scores, the children were
separated into two groups: a) children with HPSQ–C < 7
were considered as healthy controls (HC, i. e. no HD); b)
children with HPSQ–C >= 19 were considered as children
with handwriting difficulties (HD). Some of the children, that
obtained HSPQ–C scores between these two values, had to be
moved into HC or HD group based on the visual inspection
of their handwritten product by an independent therapists.

Parents of all the children participating in this study signed
an informed consent form, and trough the entire duration of
the study, we followed the Ethical Principles of Psychologists
and Code of Conduct released by the American Psychological
Association (https://www.apa.org/ethics/code/).

B. Data Acquisition

To record the handwriting process, the children were asked
to write all 34 letters of the Czech alphabet using cursive
lower-case letters on a lined A4 paper attached to an ac-
tive area of digitizing tablet Wacom Intuos Pro L (PTH-
80) (sampling frequency fs = 150 Hz), which enabled us
to not only inspect the written product but also to record
a variety of signals describing the handwriting process: x
and y position (x[n] and y[n]); timestamp (t[n]); a binary
variable (b[n]; 0 – in-air movement, i. e. movement of pen tip
up to 1.5 cm above the tablet’s surface, and 1 – on-surface
movement, i. e. movement of pen tip on the paper), pressure
exert on the tablet’s surface during writing (p[n]); pen tilt
(a[n]); and azimuth (az[n]). For more information, we refer to
[11], [13]. During data acquisition, all children were also using
the Wacom Inking pen, which provides visual feedback as well
as a feeling of writing by a regular inking pen. An example
of the written product of the alphabet performed by a HC and
a child with HD can be seen in Figure 1.

TABLE I
DEMOGRAPHIC CHARACTERISTICS OF THE COHORT.

clin mean ± std min Q1 Q2 Q3 max

healthy children
age 9.13 ± 0.68 8.00 9.00 9.00 10.00 10.00
class 3.67 ± 0.48 3.00 3.00 4.00 4.00 4.00
HPSQ–C 7.07 ± 2.29 3.00 5.25 7.00 8.00 12.00

children with HD
age 9.20 ± 0.65 8.00 9.00 9.00 10.00 10.00
class 3.64 ± 0.49 3.00 3.00 4.00 4.00 4.00
HPSQ–C 21.88 ± 3.80 19.00 20.00 20.00 22.00 35.00

all children
age 9.16 ± 0.66 8.00 9.00 9.00 10.00 10.00
class 3.65 ± 0.48 3.00 3.00 4.00 4.00 4.00
HPSQ–C 13.80 ± 8.04 3.00 7.00 10.00 20.00 35.00

1 age is expressed in years
2 dataset consists of 30 healthy children and 25 children with HD

C. Fractional Order Derivatives

FD is used as a substitution of the conventional differential
derivative during feature extraction. Hereby, we have devel-
oped a new advanced approach of handwriting parametriza-
tion. FDs have a wide range of settings and several approaches
of approximation (e. g. Caputo, Grünwald-Letnikov) [25]. In
this work, we utilized the Grünwald-Letnikov approximation
implemented by Jonathan Hadida. A direct definition of FD
Dαy(t) is based on finite differences of an equidistant grid
in [0, τ ] assuming that the function y(τ) satisfies certain
smoothness conditions in every finite interval (0, t), t ≤ T .
Choosing the grid [25]

0 = τ0 < τ1 < ... < τn+1 = t = (n+ 1)h (1)

with
τk+1 − τk = h (2)

and using the notation of the finite differences

1

hα
∆α
hy(t) =

1

hα

(
y(τn+1) −

n+1∑

v=1

cαv y(τn+1−v)

)
, (3)

where
cαv = (−1)v−1(αv ). (4)

The Grünwald-Letnikov implementation is defined as:

Dαy(t) = lim
h→0

1

hα
∆α
hy(t), (5)

where Dαy(t) denotes a derivative with order α of function
y(t), and h represents sampling lattice.

D. Handwriting Features

To quantify HD, we used two sets of handwriting features:
a) conventional features [2], [11], [26], [27] (used as a baseline
feature set); b) features utilizing FD (FD-based features)
[20]–[22]. Concerning the conventional features, we extracted
kinematic (velocity, acceleration, jerk), temporal (duration)
and dynamic (azimuth, altitude) ones from both global as well
as stroke-based movements. We also used vertical/horizontal
projections together with on-surface/in-air trajectories. Finally,
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Fig. 1. The alphabet written by a 10-year-old girl attending 4th grade (HPSQ–C = 4, the upper part of the figure) and by a 9 years old boy with HD
attending 3th grade (HPSQ–C = 30, the lower part of the figure). The four colors represents the actual tip pressure of the inking pen (cyan: 0 – 25 %, blue:
25 – 50 %, purple: 50 – 75 %, black: 75 – 100 %). The in-air trajectories (inking pen above the tablet’s surface) of the inking pen are visualized using the light
green colour.

we computed number of interruptions in writing and normal-
ized jerk according to [28]. In terms of FD-based features,
we extracted basic kinematic features only, namely velocity,
acceleration, jerk and their horizontal and vertical variants.
All of the features were computed for α in the range of 0.1–
0.9 (step of 0.1) except for α = 1.0 as it is covered by the
conventional feature set (it equals the full-derivation). Finally,
the statistical properties of all the features from both of the
feature sets were described by mean and relative standard
deviation (relstd).

E. Statistical Analysis

At first, normality of the handwriting features was tested
using the Shapiro-Wilk test [29]. Features that were not found
to be normally distributed were adjusted using Box-Cox [30]
transformation. After that, the distributions of such features
were visually re-inspected (some of the features were not fully
normalized, however, we hypothesized that such features will
not pass the subsequent statistical analysis).

Next, to select only a parsimonious, information-rich sub-
set of the features, we applied a two-step feature selection
(FS) before the analysis: a) we used Minimum Redundancy
Maximum Relevance (mRMR) [31] algorithm to discard the
most redundant features that bring no/very little information;
b) we visualized the cross-correlation matrices of the features
to discard the ones that have high correlation among each
other. With this approach, we reduced the dimension of our
feature sets by the following amount: a) conventional feature
set: 63 (prior FS), 40 (after FS); and b) FD-based feature set
324 (prior FS), 40 (after FS). The cross-correlation matrices
of the best 15 features according to mRMR for both feature
sets are visualized in Figure 2.

Subsequently, to assess the strength of a relationship be-
tween the values of the handwriting features and the clinical
status of the children (HC/HD), and the values of the HPSQ–
C (severity of HD), Spearman’s correlation coefficient [32]
with the significance level of 0.05 was computed. Due to the

exploratory nature of this study as well as a relatively small
number of the features under investigation, no adjustment for
multiple comparisons was made.

Finally, to quantify the ability of the handwriting features
to discriminate healthy children and children with HD, Mann-
Whitney U-test1 [33] with the significance level of 0.05
between the handwriting features and clinical status of the
children (HC/HD) was used.

III. RESULTS

The results of the correlation analysis can be seen in
Table II. In this table, only statistically significant correlations
(i. e. those with the p-value bellow 0.05) are shown. As can
be seen, the strongest correlations between the conventional
handwriting features and the clinical characteristics of the
children were found for the following pair/s2: a) ρ = 0.3220∗

relstd v. acc. s (HC/HD); and b) ρ = 0.3191∗ mean h. n.
jerk s (HPSQ–C). The strongest correlation for the FD-based
features: a) ρ = −0.3105∗ relstd acc. α = 0.2 a (HC/HD); and
b) ρ = −0.3405∗ relstd v. vel. α = 0.5 a (HPSQ–C) being the
strongest correlated feature-clin. char. pair.

Next, the kernel density estimation plots of the 4 best
features selected according to the power to distinguish healthy
and impaired handwriting assessed by Mann-Whitney U-
test are shown in Figure 3 (as well as in the case of the
correlation analysis, only the features with the p-value bellow
0.05 were considered). The figure shows both conventional
features and FD-based ones: a) conventional feature with the
greatest discrimination power: mean l. stroke a and mean v.
n. jerk s (p = 0.0110); b) FD-based feature with the greatest
discrimination power: relstd acc. α = 0.3 a (p = 0.0169).

Finally, the distribution of the order of FD (α) across the
best 40 FD-based features selected according to mRMR is
drawn in Figure 4.

1We did not use Student’s t-test because not all features were normally
distributed.

2Correlation with p < 0.05 (∗), correlation with p < 0.01 (∗∗).
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Fig. 2. Cross-correlation matrices of the 15 best features selected according to mRMR: a) conventional features (left side); b) FD-based features (right side).
Table convention: vel. – velocity; acc. – acceleration; v. – vertical; h. – horizontal; l. – length; n. – normalized; d. – duration; a – in air movement; s – on surface
movement.
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Fig. 3. Kernel density estimation plots of the 4 best features ranked by Mann-Whitney U-test: a) baseline (conventional) features (upper part); b) FD-based
features (bottom part). Features are visualized separately for healthy children (HC) and children with HD. On top of each figure, the corresponding p-value is
shown. All features were normalized using min-max normalization (min = 0, max = 1) prior the plotting. Figure convention: vel. – velocity; acc. – acceleration;
v. – vertical; h. – horizontal; l. – length; n. – normalized; d. – duration; a – in air movement; s – on surface movement; p – p-value of Mann-Whitney U-test.

IV. DISCUSSION

The correlation analysis (see Table II) for FD-based fea-
tures shown that there is a statistically significant relationship

between HPSQ–C and relative standard deviation of vertical
velocity with α of 0.5, which is in line with the results of [16]
reporting that vertical in-air velocity might be a potential

Authorized licensed use limited to: Brno University of Technology. Downloaded on May 18,2022 at 09:22:54 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
RESULTS OF THE CORRELATION ANALYSIS.

handwriting feature feature type clin ρ p

relstd v. acc. s Conv HC/HD 0.3220 0.0165
mean v. n. jerk s Conv HC/HD 0.3128 0.0200
mean l. stroke a Conv HC/HD 0.3128 0.0200
mean h. n. jerk s Conv HC/HD 0.2990 0.0266
relstd azimuth Conv HC/HD 0.2829 0.0363

mean h. n. jerk s Conv HPSQ–C 0.3191 0.0176
mean v. n. jerk s Conv HPSQ–C 0.3058 0.0232
mean d. stroke a Conv HPSQ–C 0.3054 0.0234
relstd azimuth Conv HPSQ–C 0.3040 0.0241
relstd v. acc. s Conv HPSQ–C 0.2798 0.0385

relstd acc. α= 0.2 a FD-based HC/HD -0.3105 0.0210
relstd acc. α= 0.3 a FD-based HC/HD -0.2898 0.0318

relstd v. vel. α= 0.5 a FD-based HPSQ–C -0.3405 0.0110
relstd acc. α= 0.3 a FD-based HPSQ–C -0.3150 0.0192
relstd acc. α= 0.2 a FD-based HPSQ–C -0.2990 0.0266

1 clin – clinical characteristics, i. e. dependent variable (clinical state: HC/HD, values of
HPSQ–C); ρ – Spearman’s correlation coefficient; p – p-value of ρ; Conv – conventional
feature set; FD-based – FD-based feature set; vel. – velocity; acc. – acceleration; v. –
vertical; h. – horizontal; l. – length; n. – normalized; d. – duration; a – in air movement;

s – on surface movement.
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Fig. 4. Distribution of the FD order (α) across the best 40 FD-based features
selected according to mRMR (feature selection step applied prior to the
analysis).

biomarker for HD identification. With respect to the com-
parison between the two feature sets, it can be seen that all
relevant FD-based features are related with in-air trajectories,
more specifically with acceleration and velocity that probably
points out to their capability of quantifying hesitating and
dysfluent movements during stroke interruptions, which is also
coherent with our previous studies [11], [12]. In contrast,
three out of the total number of four selected conventional
features were computed from the on-surface movements. An
important observation to note is the presence of relative stan-
dard deviation of azimuth showing that even for a relatively
automated task such as the Alphabet writing, the lack of fine
motor control together with redundant wrist movements are
present in children with HD [4], [5]. Finally, all selected FD-
based features have α between 0.2 and 0.5, which suggest
that regular derivation is not optimal for temporal handwriting
features (acceleration and vertical stroke velocity) and that FD

is likely to improve their ability to describe HD.
Regarding the results of Mann-Whitney U-test (see Fig-

ure 3), they suggest that the alphabet handwriting task is
not very suitable for discrimination of HC and children with
HD. When looking at the shape of the probability density
function for the 4 selected features in both feature groups,
it is obvious that a single feature will not have sufficient
discrimination power. With respect to FD-based features, those
derived from the acceleration of in-air movements emerged as
the most significant ones. This may refer to the difficulties in
writing of particular characters of the alphabet, such as long
preparation, hesitancy, distress, etc., which can also be seen
when inspecting the shapes of the particular characters in the
example provided in Figure 1. It is evident that for the child
with HD, the on-surface movements are more or less without
visible corruptions. However, the difference is eminent for the
movements above the tablet’s surface.

According to the distribution of the FD α order across
the handwriting features that passed the FS (see Figure 4),
we were able to identify its optimal range for HC/HD dis-
crimination: 0.1–0.3, and 0.7–0.9, which is also supported
by the results of the statistical analysis (the features with
the greatest discrimination power and the most statistically
significant correlation were computed using the α values from
one of those two ranges) and is also in line with our previous
study [34] in which we focused on the FD optimization for
Parkinson’s disease dysgraphia and obtained similar α ranges
(0.05–0.45, and 0.6–0.8). Altogether, we can hypothesize
there exists some universal optimal range of α suitable for
the analysis of corrupted handwriting performance via online
handwriting quantification that we need to search for.

V. CONCLUSION

To the best of our knowledge, this is the first study that
performs an investigation of the possibilities of using FD in
the computerized assessment of HD in school-aged children.
We can conclude that FD-based features bring benefits of
more robust quantification of in-air movements as opposed to
the conventionally used ones. These movements are likely to
describe inter-stroke hesitation/s, uncertainty during writing,
stiffness of hand/fingers, etc., which can definitely be linked
with HD and are imperceptible to an examiner that only sees
the written product (even computerized approaches, if not
sensitive enough, can be incapable of the precise description
of such phenomena).

Although we have shown that utilization of FD can be bene-
ficial for a computerized assessment of HD, several limitations
need to be pointed out too. First of all, the alphabet task does
not seem to be optimal for the differential analysis, as some
of the children’s handwriting capabilities and habits are not
fully quantified (e. g. copying/writing of words, sentences or
paragraphs requires continuous writing, simple graphomotor
elements require the application of children’s drawing skills,
etc. [7], [19]). Next, our dataset consists of only 55 subjects,
which is a relatively small number in terms of the statistical
validity of the results. Moreover, grouping children in two
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subject groups (HC/HD) was based entirely on the selection
of a cut-off score applied on HPSQ–C, which may not reflect
the true nature/presence of HD.

In our future studies, more granular FD α order search
(step of 0.01 or even less) as well as investigation of other
FD approximations (e. g. Capputo’s approximation) will be
analyzed. Finally, to investigate the power of FD-based fea-
tures to not only discriminate HC/HD but also predict the
presence/severity of HD in children population, advanced clas-
sification and regression models will be trained and evaluated.
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Abstract—Parkinson’s disease (PD) is one of the most frequent
neurodegenerative disorder with progressive decline in several
motor and non-motor skills. Due to time-consuming and partially
subjective conventional PD diagnosis, several more effective
approaches based on signal processing and machine learning, e. g.
online handwriting analysis, have been proposed. This paper in-
troduces a new methodology of PD dysgraphia analysis based on
fractional derivatives applied in PD handwriting quantification.
The proposed methodology was evaluated on a database that
consists 33 PD patients and 36 healthy controls who performed
several handwriting tasks. Employing random forests classifier
in combination with 5 kinematic features based on fractional-
order derivatives we reached 90 % classification accuracy, 89 %
sensitivity, and 91 % specificity. In comparison with the results of
other related works dealing with the same database, the proposed
approach brings improvements in PD dysgraphia diagnosis
and confirms the impact of fractional derivatives in kinematic
analysis.

Index Terms—kinematic analysis; fractal calculus; fractional
derivative; online handwriting; Parkinson’s disease; Parkinson’s
disease dysgraphia;

I. INTRODUCTION

Parkinson’s disease (PD) affects millions of people all
over the world as a second most frequent neurodegenerative
disorder [1]. Prevalence rate of PD is estimated to approx-
imately 1.5 % for people aged over 65 years [2], but the
risk of being affected by this disease increases strongly with

This work was supported by the grant of the Czech Ministry of Health 16-
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micrographia, and brain plasticity in patients with Parkinsons disease), grant of
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tal dysgraphia diagnosis and rating methods based on quantitative analysis of
online handwriting and drawing) and the following projects: LO1401, FEDER
and MEC, TEC2016-77791-C4-2-R, and TEC- 2016-77791-C4-4-R from the
Ministry of Economic Affairs and Competitiveness of Spain. For the research,
infrastructure of the SIX Center was used.

age [3]. The cardinal signs of PD include resting tremor,
slowness of movement (bradykinesia), rigidity and postural
instability [4]–[6]. Over the course of the disease a variety
of non-motor symptoms may arise or can precede motor
symptoms like depression, dementia, sleep disorders, anos-
mia, cognitive dysfunctions, psychosis etc. [4], [7], [8]. Even
though, the precise pathophysiological cause of PD has not
yet been discovered, the most significant biological finding is
a rapid degeneration of dopaminergic cells in substancia nigra
pars compacta [9].

Considering motor dysfunctions in people suffering from
PD, in conjunction with complexity, proficiency and preci-
sion of handwriting performance, it is distinct that disrubted
handwriting may be used as a significant biomarker for PD
diagnosing [3], [6], [20]. With new technologies coming hand
by hand with Health 4.0 systems we are able to acquire online
handwriting signals, where a temporal information is added to
x and y coordinates. Thus instead of quantifying PD micro-
graphia by spatial features only, the use of digitalizing tablets
gives us a new opportunity to quantify temporal, kinematic and
dynamic manifestations of PD handwriting such as hesitations,
pauses, and slow movement [5], which Letanneux et al. (2014)
named PD dysgraphia [21].

The impact of many handwriting tasks in PD dysgraphia
analysis has been explored, including simple (e. g. loops,
circles, characters) as well as more complex ones (e. g. words,
sentences, Archimedean spiral, figures) [6], [10], [11], [17],
[22], [23]. Discrimination power of handwriting features is
usually evaluated by correlation, classification and/or variance
analysis. From the overview of related works (2015–now),
which can be seen in Table I, it is obvious that kinematic fea-
tures have irreplaceable place in PD dysgraphia analysis. Dro-
tar et al. (2015, 2016) proved that combination of kinematic,
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TABLE I
OVERVIEW OF RELATED WORKS FOCUSED ON COMPUTERIZED ANALYSIS OF PD DYSGRAPHIA

First author Year PD/HC Handwriting task Analysis Features Conclusions
Drotar [10] 2015 37/38 letters, words, differential kinematic, temporal, spatial, The highest classification accuracy after

sentences analysis (SVM) entropy, EMD, signal energy feature selection approach was 88.1 %.
Drotar [11] 2015 37/38 letters, words, differential kinematic, temporal, spatial, Classification performance was at its peak

sentences analysis (SVM) entropy, EMD, pressure with on-surface features (89.09 %).
Heremans [12] 2015 34/10 up/down strokes at ANOVA writing amplitude and velocity Significant difference between groups was in

varying amplitudes writing amplitude (F (2.41) = 3.97; p= 0.03).
Pereira [13] 2015 37/18 Archimedean spiral differential an. mean relative tremor The best results were obtained by NB classifier,

(SVM, NB, OPF) and spatial parameters that provided around 79 % classification accuracy.
Drotar [6] 2016 37/38 letters, words, differential an. kinematic, temporal, spatial, Combining all exercises, SVM proved to be

Archimedean spiral, (SVM, K-NN, entropy, EMD, pressure the best classifier with 82.5 % accuracy.
sentences AdaBoost)

Heremans [14] 2016 30/15 repetitive cursive ANOVA, writing amplitude and velocity Medical scale and writing amplitude
loops correlation an. had significant correlation (r = −0.40).

Pereira [15] 2016 14/21 Archimedean spiral differential an. pen-based features The best result was obtained by CNN with
meander (CNN, OPF) 87.14 % recognition rate using meander task.

Kotsavasil. [16] 2017 24/20 horizontal lines differential normalized velocity variability Average classification accuracy was
analysis (NB) 91 % for unlabelled PD and HC data.

Loconsole [17] 2017 4/7 sentence, differential execution time and average Highest classification accuracy (96.81 %) was
repetitive loops analysis (ANN) speed, density ratio, height ratio achieved using all the extracted features.

Taleb [18] 2017 16/16 letters, waves, differential kinematic, stroke, pressure, The highest classification accuracy was 96.88 %
words analysis (SVM) entropy, energy, EMD for 12 kinematic and pressure features.

Moetesum [19] 2018 37/38 letters, words, differential CNN based features Extraction of features using CNN applied on raw
Archimedean spiral, analysis (SVM) handwriting data resulted in 83 % classification
sentence, loops accuracy.

SVM – support vector machine; EMD – empirical mode decomposition; rs – Spearman’s correlation coefficient; K-NN – K-nearest neighbours; ANOVA – analysis of variance;
NB – naı̈ve Bayes classifier; OPF – optimum path forest; ANN – artificial neural network; CNN – convolutional neural networks; F and p corresponds to variables of F distribution;
articles are sorted by the year of release and then alphabetically.

pressure, energy or empirical mode decomposition (EMD)
based features resulted in classification accuracy up to 89 %
using several handwriting tasks [6], [10], [11]. Next, Kot-
savasilogloua et al. (2017) achieved an average prediction
accuracy of 91 % using simple horizontal lines and features
describing a variability of the pen tip’s velocity, a deviation
from the horizontal plane, and the trajectory’s entropy [16].
Some other works report even higher classification accuracies
results (approximately 97 %), e.g. Loconsole et al. (2017)
who used computer vision and electromyography signal pro-
cessing techniques but applied on a very small dataset (4
PD and 7 HC). Thus, the reliability of those results may
be untrustworthy. Another promising approach was published
by Moetesum et al. (2018) who reached 83 % classification
accuracy by employing convolutional neural networks (CNN)
that were used to extract discriminating visual features from
raw handwriting data.

The main goal of this work is to introduce an advanced
approach of kinematic features calculation based on fractional
order derivation (FDE) as a new methodology of PD dys-
graphia analysis. We aim to:

• proof the potential of FDE in PD dysgraphia quantifica-
tion employing classification analysis,

• evaluate discrimination power of the newly designed
features when comparing the results with a baseline,

• identify a handwriting task that (in combination with the
newly designed parameters) provides best results in terms
of PD dysgraphia classification accuracy.

The rest of this paper is organized as follows: section II de-

scribes cohort of patients and methodology, section III includes
achieved results, discussion can be found in section IV and
finally, the conclusions are drawn in section V.

II. DATASET & METHODS

A. Dataset

We used the Parkinson’s disease handwriting database (Pa-
HaW) [6] that consists 33 PD patients and 36 healthy con-
trols (HC). Demographic and clinical data of the participants
can be found in Table II. The participants were enrolled
at the First Department of Neurology, St. Anne’s University
Hospital in Brno, Czech Republic. All participants reported
Czech language as their native language and all participants
were right-handed. The PD patients completed the tasks ap-
proximately 1 hour after their regular L-dopa medication. All
participants signed an informed consent form approved by
the local ethics committee.

B. Data Acquisition

PaHaW database [6] includes several handwriting tasks (see
Fig. 1), namely: Archimedean spiral; repetitive loops; letter l;
syllable le; Czech words les, lektorka, porovnat, and nepopad-
nout; Czech sentence Tramvaj dnes už nepojede. During all
handwriting tasks the participants were rested and seated in
a comfortable position with possibility to look at pre-filled
template. A digitizing tablet (Wacom Intuos 4M) was overlaid
with an empty paper template and participants were allowed
to repeat a task in case of some mistakes. Online handwriting
signals were recorded with fs = 150 Hz sampling rate.
Following time sequences were acquired: x and y coordinates
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TABLE II
DEMOGRAPHIC AND CLINICAL DATA OF PARTICIPANTS

Parkinson’s disease patients
Gender N Age [y] PD dur [y] UPDRS V LED [mg]
Female 17 71.76 ± 7.93 9.88 ± 5.27 2.18 ± 0.86 1146.03 ± 543.89
Male 16 66.50 ± 13.44 7.44 ± 4.04 2.31 ± 0.75 1673.38 ± 616.66
All 33 69.21 ± 11.10 8.70 ± 4.82 2.24 ± 0.80 1401.72 ± 630.71

Healthy controls
Gender N Age [y]
Female 17 61.59 ± 10.17
Male 19 63.32 ± 13.14
All 36 62.50 ± 11.70

N – number; y – years; PD dur – PD duartion; UPDRS V – Unified Parkinson’s disease
rating scale, part V: Modified Hoehn & Yahr staging score [24]; LED – L-dopa equivalent
daily dose [25].

– x[t], y[t]; time-stamp – t; in-air/on-surface status – b[t];
pressure – p[t]; azimuth az[t]; and tilt al[t].

Fig. 1. Filled template of the PaHaW database.

C. Fractional Order Derivative

The idea of this study is to use the FDE as a substitution
of the conventional differential derivative during calculation
of the basic kinematic features. There are several defini-
tions of FDE, namely, the Riemann-Liouville, Caputo, and
Grünwald-Letnikov formulations [26]–[28]. For the purpose
of this study we used the Jonathan Hadida’s FDE imple-
mentation, which follows the Grünwald-Letnikov approxima-
tion [27], [29]. A direct definition of the FDE Dαy(t) is based
on finite differences of an equidistant grid in [0, τ ]. Assume
that the function y(τ) satisfies some smoothness conditions
in every finite interval (0, t), t ≤ T . Choosing the grid [27]

0 = τ0 < τ1 < ... < τn+1 = t = (n+ 1)h (1)

with
τk+1 − τk = h (2)

and using the notation of the finite differences

1

hα
∆α
hy(t) =

1

hα

(
y(τn+1)−

n+1∑

v=1

cαv y(τn+1−v)

)
, (3)

where
cαv = (−1)v−1(αv ), (4)

the Grünwald-Letnikov implementation is defined as:

Dαy(t) = lim
h→0

1

hα
∆α
hy(t), (5)

where Dαy(t) means a derivative with order α of function
y(t), and h represents sampling lattice.

D. Handwriting Features

A wide range of handwriting features for analysis
of PD dysgraphia is commonly used, but to demonstrate
the impact of FDE, only basic on-surface kinematic fea-
tures [6], [30], [31] extracted from all PaHaW tasks are con-
sidered. Feature set consists: velocity – rate at which a position
of pen changes with time [mm/s]; acceleration – rate at which
the velocity of pen changes with time [mm/s2]; jerk – rate at
which the acceleration of pen changes with time [mm/s3];
and their horizontal and vertical variants. These features were
extracted for different values of α going from 0.1 to 1.0 with
0.1 step. Consequently, statistical properties of the features
were described using following statistics: mean, median, stan-
dard deviation (std), and maximum (max). Considering all
combinations of tasks and features (with different FDE order),
in total 5040 features were extracted.

E. Statistical Analysis

After feature extraction, univariate binary classification
(PD/HC) model (stratified 7-fold cross-validation with 50
repetitions) based on random forests (RF) [32] was designed
to evaluate a discrimination power of the features among all
handwriting tasks. To eliminate non-significant features from
results of univariate classification, Spearman’s and Pearson’s
correlation analysis was performed (significance level of p =
0.01 was selected). Consequently, multivariate classification
with the same classifier and the same cross-validation settings
was performed in order to improve classification accuracy.
To obtain the most appropriate combination of the features,
the sequential floating forward selection (SFFS) algorithm
was used [33]. Classification performance was evaluated by
the Matthew’s correlation coefficient [34], classification accu-
racy (ACC), sensitivity (SEN) and specificity (SPE).

III. RESULTS

Univariate and multivariate classification analysis results
are summarized in Table III. In the upper part of table the
results of univariate analysis sorted by ACC are reported.
Only 10 best features that achieved condition of signifi-
cance (p < 0.01) were chosen. The best ACC (74.96 %) was
obtained using horizontal acceleration with α = 0.6 extracted
from repetitive loops task. Nevertheless, based on the results,
the most useful task is sentence (8/10 features with ACC
around 74 %). Fig. 2 displays dependence of ACC on FDE
order for 3 most discriminative features extracted from this
task. Dependence of average ACC for each α separately for
XY, horizontal, vertical and altogether features extracted from
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TABLE III
RESULTS OF UNIVARIATE AND MULTIVARIATE CLASSIFICATION ANALYSIS

Univariate classification analysis
Feature α Task ACC [%] SEN [%] SPE [%] MCC rp pp rs ps
horizontal acceleration (mean) 0.6 repetitive loops 74.96 70.79 78.78 0.50 0.34 0.003821 0.52 0.000005
vertical velocity (max) 0.2 sentence 74.38 71.52 77.00 0.49 0.33 0.006085 0.44 0.000160
horizontal acceleration (mean) 0.5 repetitive loops 74.32 75.94 72.83 0.49 0.34 0.003785 0.50 0.000012
vertical jerk (max) 0.7 sentence 74.12 70.85 77.11 0.48 0.33 0.006086 0.44 0.000160
vertical velocity (max) 0.1 sentence 74.09 70.12 77.72 0.48 0.33 0.006086 0.44 0.000160
vertical acceleration (max) 0.6 sentence 74.00 70.24 77.44 0.48 0.33 0.006086 0.44 0.000160
vertical velocity (max) 0.8 sentence 74.00 70.36 77.33 0.48 0.33 0.006086 0.44 0.000160
vertical acceleration (max) 0.3 sentence 73.91 70.61 76.94 0.48 0.33 0.006086 0.44 0.000160
vertical jerk (max) 0.2 sentence 73.80 71.39 76.00 0.48 0.33 0.006086 0.44 0.000160
vertical jerk (max) 0.5 sentence 73.74 69.58 77.56 0.47 0.33 0.006086 0.44 0.000160

Multivariate classification analysis
Feature set Model information

Feature α Task Features quantity ACC [%] SEN [%] SPE [%] MCC
velocity (max) 0.1 repetitive character l 1 76,25 73.07 79.85 0.5325
horizontal velocity (median) 0.5 repetitive word lektorka 2 80.40 78.28 82.81 0.6112
vertical velocity (median) 0.9 word les 3 82.99 78.46 87.74 0.6699
acceleration (median) 0.8 syllables le 4 88.66 88.37 88.64 0.7785
velocity (median) 0.1 word porovnat 5 89.81 88.63 90.87 0.8039

α – order of FDE; ACC – accuracy; SEN – sensitivity; SPE – specificity; rp – Pearson’s correlation coefficient; MCC – Matthew’s correlation coefficient;
rs – Spearman’s correlation coefficient; pp – significance level of correlation (rp); ps – significance level of correlation (rs)

Fig. 2. Dependence of classification accuracy on FDE order for 3 most discriminative features extracted from the sentence task.

all tasks is visualized in Fig. 3. Regarding the multivariate
classification analysis (bottom part of Table III), the best
classification score (ACC = 89.81 %, SEN = 88.63 %, SPE
= 90.87 %) was achieved using a combination of 5 kinematic
features. The table contains information about RF performance
as the features were gradually selected by the SFFS.

IV. DISCUSSION

With respect to the results of univariate analysis, previous
hypothesis that FDE utilization in PD dysgraphia analysis

may improve classification performance can be confirmed.
Following the α values reported in Table III, it is evident
that features calculated by FDE fully substitute conventional
kinematic parameters based on the differential derivative (full
derivative; α = 1). The sentence appears to be the most
suitable handwriting task in univariate classification analysis,
where 8 out of 10 most discriminative features (ACC around
74 %) are extracted from this task. This finding is in line with
results reported by Drotar et al. ( [6]). The sentence provides
good discriminative power because the PD dysgraphia symp-
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Fig. 3. Dependence of average classification accuracy on FDE order separately for XY, horizontal, vertical and overall features.

toms have more space to emerge in comparison with others
tasks of the PaHaW database. I. e. the task contains more on-
surface/in-air transitions, it can capture decreasing amplitude
of letters (micrographia), variations in handwriting kinematics,
etc. We can conclude that the univariate approach described in
this paper brings remarkable improvements giving very similar
classification accuracy using only basic kinematic features in
comparison with the baseline published by Drotar et al. (2016),
where the authors reported ACC = 76.5 % for the sentence task
using combination of several kinematic and pressure features.

The effect of FDE order on the classification performance
(as visualized by Fig. 2) has some local maxima for α ∈<
0.2; 0.3 > and for α ∈< 0.6; 0.8 >. A decreasing character of
ACC for α going from 0.8 towards the full derivation can be
noticed. As can be seen in Fig. 3 horizontal and vertical fea-
tures generally provide higher classification accuracies when
compared to the XY features. This can be also confirmed by
the nature of the most discriminative features whereas all of
them are horizontal or vertical. Considering, that the average
classification accuracy based on the XY features is lower
than the overall average, we conclude that the importance of
separate movement directions analysis is high.

Next, classification performance was improved by approxi-
mately 15 % using the multivariate classification analysis. The
best classification model contains only 5 features (providing
ACC = 89.81 %, SEN = 88.63 % and SPE = 90.87 %) extracted
from different handwriting tasks, including cursive letter “l”,
syllable, words and repetitive word. This higher-dimensional
feature space points to complexity of handwriting and directs
to the need of considering various aspects of deficits in PD dur-

ing PD dysgraphia analysis. Based on the values of α, which
are different from 1, we can confirm full utilization of FDE in
multivariate classification analysis too. The best classification
accuracy reported in the frame of PaHaW database is ACC
= 89 % employing combination of kinematic and pressure
features [11]. We reached the same accuracy omitting the
pressure ones.

The reached accuracy is interesting from a clinical point
of view too. It is well known that L-dopa medication has
a positive effect on upper limb in PD, which means that
theoretically PD dysgraphia in patients who are in their ON
state should not be manifested significantly. Nevertheless, we
proved that using advanced kinematic analysis we are able to
differentiate HC and patients 1 hour after their regular L-dopa
medication with almost 90 % accuracy.

Several other research teams published PD dysgraphia
classification accuracies in range between 91 % and 97 %,
however, analysing different datasets (with significantly lower
number of samples) and extracting advanced handwriting
features [16]–[18]. A relevant comparison is thus not possible.

V. CONCLUSION

This pilot study proves that application of FDE in quantita-
tive PD dysgraphia analysis brings new promising and enhanc-
ing methodology of PD diagnosis. Based on the results, we
are able to identify PD dysgraphia with almost 90 % accuracy
using only 5 basic kinematic features extracted from a few
handwriting tasks. We hypothesise that combination of the
newly designed features with spatial, temporal and dynamic
ones could bring even better results. Some improvements could
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be made in machine learning too. For instance application of
boosting algorithms such as XGBoost would be beneficial.
Finally, a lot can be further explored in the case of FDE, i. e.
finer selection of FDE order and individual tuning of α for
horizontal and vertical movement.

The limitation of this study is the size of database. As
already mentioned, this study has a pilot character. To be
able to generalize the results, bigger and multilingual datasets
should be analysed.
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Abstract—Developmental dysgraphia (DD) can negatively in-
fluence writing speed, legibility of written product, and even
planning and content generation. This could have a detrimental
impact on self-expression, and communication in childhood. The
goal of this study is to investigate new intra-writer and self-
esteem normalization methods (IWN) in direction of improving
computerized DD assessment based on the quantitative analysis of
online handwriting. For this purpose we enrolled 97 children who
wrote a paragraph using a digitizing tablet. Their handwriting
proficiency was rated by the Handwriting Proficiency Screening
Questionnaire (HPSQ). The handwriting was parametrized using
a conventional set of features that were consequently normalized
by four newly designed IWN. Based on the results we observed
that a stroke-level `2 norm normalization decreased the com-
puterized DD assessment error from 23 % to 18 %. This study
proves that the stroke-level IWN has the significant potential in
the field of computerized DD diagnosis and assessment.

Index Terms—developmental dysgraphia; digitizer; intra-
writer normalization; kinematic analysis; machine learning;
online handwriting

I. INTRODUCTION

To successfully participate in self-expression and communi-
cation in the academic environment in childhood, handwriting
proficiency is required [1]. The handwriting is considered as
proficient when a produced text is legible, performed with
minimum effort and reasonable amount of time [2], [3].
According to Berninger et al. [4] the handwriting difficulties
can be classified as lower and higher, where the lower diffi-
culties correspond to actual mechanical forming of letters on

This work was supported by the grant of Czech Science Foundation 18-
16835S (Research of advanced developmental dysgraphia diagnosis and rating
methods based on quantitative analysis of online handwriting and drawing),
project LO1401, and TEC2016-77791-C4-2-R from the Ministry of Economic
Affairs and Competitiveness of Spain. For the research, infrastructure of the
SIX Center was used.

the writing surface, and the higher difficulties are related to
planning and content generation. These difficulties are usually
linked with developmental dysgraphia (DD), which occurs in
10 – 30 % of school-aged children [5], and is associated with
several symptoms: poor legibility [6], inadequate speed [7],
slow performance time [8], and higher number of deletions
and/or corrections [9].

The Handwriting Proficiency Screening Questionnaire
(HPSQ) [14] proved to be reliable and valid tool for identifying
and rating DD. The questionnaire consists of 10 items that
describe three handwriting-related factors: legibility, perfor-
mance time, and physical and emotional well-being. Each part
is scored on a 5-point Likert scale. Severity of DD corresponds
to higher values of the sum of all scores. Seven years later,
authors Rosenblum et al. developed its modified version where
the children assess themselves. This version is called The
Handwriting Proficiency Screening Questionnaire for Children
(HPSQ-C) [7].

Until now, there is no available objective (i. e. without
an influence of human factor) method for diagnosing and
rating DD in Czech Republic. Nowadays, the graphomotorical
skills are assessed manually/visually based on shape of letters,
spacing, and number of errors. This subjective approach is
affected by rater’s actual psychical state, visual abilities and
experiences. Moreover, the raters are not able to accurately
quantify information such as pressure of the tip of pen, fine
motor tremor, in-air movement (movement of the pen when
its tip is not touching a paper’s surface), etc.

Digitizing tablets (sometimes called digitizers) enable us to
overcome these limitations. The digitizers record various sig-
nals linked with the handwriting (see Fig. 1): x and y position
of pen when it touches the surface of paper (on-surface move-
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ment), x and y position of pen when it is up to 1.5 cm above
the surface of paper (in-air movement), azimuth, altitude, and
pressure. Because each sample of this information is associated
with a time stamp, we generally call this kind of handwriting
as online [15]. Previous research identified benefits and impact
of digitizing tablets in quantitative DD analysis [2], [5], [6],
[8], [11], [12], [16]–[18]. Nevertheless, just a few explored
the possibility of automatic DD diagnosis and/or rating based
on machine learning approaches. For example, Rosenblum et
al. proved it is possible to discriminate between children’s
proficient and dysgraphic handwriting products with approxi-
mately 90 % accuracy using Support Vector Machine (SVM)
classifier [1]. Similarly, in our recent study we proved that
graphomotorical skills of children with DD (as assessed by
HPSQ) could be automatically rated using classification and
regression trees with error around 10 % [5]. We also proved
that an intra-writer normalization can further decrease this
error. Based on these results we hypothesise, that a more
sophisticated intra-writer normalization working on a stroke
level could introduce even better accuracy of computerized
DD assessment.

0
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Fig. 1. Signals of online writing: position (on-surface/in-air), pressure,
azimuth, altitude.

The objective of this paper is to introduce a new approach
of intra-writer normalization (IWN). More specifically we aim
to:

1) Introduce several techniques of IWN.
2) Evaluate these techniques and compare their perfor-

mance with a baseline (i.e. without the use of IWN)
in terms of DD assessment error.

The rest of this paper is organized as follows. A dataset
of DD children, IWN techniques and a machine learning
methodology is described in Section II. Results are reported
in Section III and consequently discussed in Section IV.
Conclusions are given in Section V.

II. MATERIALS & METHODS

A. Dataset

We enrolled altogether 97 children for this study. Almost all
of them were right-handed writers (only 4 were left-handed).
35 children attended third and the rest fourth class of the
elementary school. Based on the cut-off scores of HPSQ

and HPSQ-C questionnaires, the children were divided into
4 groups (see Table I). Experimental group corresponds to
children with higher values of HPSQ/HPSQ-C (i.e. children
with DD). On the contrary, comparative group represents
control children without DD. The study was approved by the
local ethics committee, and parents of all the children signed
an informed consent form.

TABLE I
DATASET STRUCTURE

HPSQ
Gender N Age [y] Grades [-] Scores [-]

Experimental group
girls 20 9.40 ± 0.68 1.84 ± 0.47 21.70 ± 2.29
boys 9 9.00 ± 0.70 1.95 ± 0.45 23.22 ± 3.52

Comparative group
girls 25 9.12 ± 0.60 1.07 ± 0.22 5.12 ± 2.42
boys 10 9.10 ± 0.73 1.08 ± 0.23 3.8 ± 2.04

HPSQ-C
Gender N Age [y] Grades [-] Scores [-]

Experimental group
girls 17 9.17 ± 0.72 1.46 ± 0.37 15.23 ± 5.46
boys 16 9.19 ± 0.75 1.61 ± 0.47 20.87 ± 2.15

Comparative group
girls 18 9.05 ± 0.72 1.01 ± 0.05 4.72 ± 2.49
boys 14 9.21 ± 0.69 1.10 ± 0.21 6.57 ± 2.37

N – number; y – years; HPSQ/HPSQ-C – scores of HPSQ and HPSQC questionnaires

B. Data Acquisition

The children were asked to copy a paragraph on a lined
A4 paper, which was lay down and fixed to a digitizing
tablet. For this purpose we used the Wacom Intuos Pro L
(PTH-850) digitizer and the Wacom inking pen, which enabled
the children to have an immediate visual feedback and feeling
like they were using a conventional inking pen. The online
handwriting signals (i.e. x and y position, azimuth, altitude,
and pressure) were sampled with fs = 150 Hz. The paragraph
was taken from a 3rd grade textbook and the children were
asked to copy it from a printed template. It contains 63 words
(310 characters, 371 characters including spaces). Example of
one sentence written by a child with DD and a child without
DD can be seen on Fig. 2.

C. Handwriting Features

Only the stroke-based handwriting features that can be
further processed by the IWN techniques were considered in
this study. More specifically we calculated a set of spatial
(width, height, length of stroke), kinematic (velocity, accelera-
tion, jerk), and temporal (duration) in-air/on-surface measures
in a direction of stroke trajectory, as well as in its vertical
and horizontal projection. For more information we refer
to [5], [19]. Finally to transform a vector representation of the
calculated features into scalar values we used these statistics:
range, mean, median, variance, standard deviation.

D. Normalization Techniques

We introduced the four IWN techniques based on `1 and
`2 norms [20], `∞ norm [21] and z-score. The normalization
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Fig. 2. Part of the paragraph written by a child without DD (HPSQ = 1, upper
part of the picture) and with DD (HPSQ = 26, lower part of the picture). The
color of letters corresponds to the tip pressure of the pen (cyan: 0 – 25 %,
blue: 25 – 50 %, purple: 50 – 75 %, black: 75 – 100 %), where the green color
represents the in-air movement.

process can be mathematically described by these formulas (in
the previously mentioned order):

v1 =
v

N∑
i=1

|vi|
, (1)

v2 =
v√

N∑
i=1

|vi|2
, (2)

v∞ =
v

max
i
|vi|

, (3)

vz =
v −mean(v)

std(v)
, (4)

where v is the input feature vector and N its length.

E. Statistical Analysis
First of all we employed an univariate analysis where we

trained a Gradient Boosted Trees classifier [22], [23] (10-fold
cross validation with 10 repetitions) fed by individual features,
and evaluated their performance in HPSQ/HPSQ-C total score
estimation by MAE (Mean Absolute Error), RMSE (Root
Mean Squared Error) and EER (Estimation Error Rate):

MAE =
1

n

n∑

i=1

|yi − ŷi|, (5)

RMSE =

√√√√ 1

n

n∑

i=1

(yi − ŷi)2, (6)

EER =
1

n · r
n∑

i=1

|yi − ŷi| · 100 [%], (7)

where n denotes the number of true/predicted values, yi
and ŷi represents the true and predicted values of the
HPSQ/HPSQ-C total scores, respectively, and r denotes the
range of HPSQ/HPSQ-C total score values the dataset.

In the second step we performed a multivariate analysis
where the HPSQ/HPSQ-C scores were modelled by a mul-
tidimensional feature space. To select the best combination
of features we used the Squential Floating Forward Selection
(SFFS) [24] in combination with the same classifier and the
same cross validation settings. In both univariate and multiva-
riate analysis the effect of IWN techniques was compared to
a baseline (non-normalized features).

III. RESULTS

The results of univariate regression analysis are reported
in Table II. Due to a large number of features in each
scenario (i.e. combination of on-surface/in-air movement and
a particular normalization technique), we mention only fe-
atures with the lowest MAE in each of these scenarios. In
the case of HPSQ total score estimation, the `1 norm based
normalization of median length of in-air stroke provided the
lowest MAE = 6.22 (RMSE = 7.82, EER = 22.22 %). In the
case of HPSQ-C, the lowest MAE = 5.76 (RMSE = 7.47,
EER = 18.00 %) was achieved by `∞ norm normalization
applied on the same feature, but acquired on-surface.

Table III reports the results of the multivariate analysis. In
this case the HPSQ total score was estimated with minimum
MAE = 4.99 (RMSE = 6.12, EER = 17.82 %) based on
`2 norm normalization of eight in-air parameters. Regarding
HPSQ-C, we did not observe any improvement in comparison
to the baseline.

IV. DISCUSSION

Although the results suggest that neglecting the effect of
intra-writer variability plays some role in more accurate asses-
sment of DD, the differences in comparison to the baseline are
not so remarkable. This conclusion can have two explanations:

1) The stroke-level IWN is not so effective or the selected
normalization algorithms particularly are not candidates
suitable for this kind of normalization.

2) The intra-writer variability of children in primary school
has not so significant effect on DD diagnosis. IWN is
introduced to remove the variability of a specific task
performed by the same person. This could have a posi-
tive effect, e.g. in biometric systems based on signature.
Even though people are well trained to perform their
signature, they usually perform it in a different way
depending on their mood, actual psychical condition, etc.
However, in the case of children that are still learning to
write and whose handwriting is not proficient enough,
the variability in a task performance is probably not so
high.

Nevertheless, in some cases the normalization provided mo-
derately better results than the baseline. In our recent work we
reported a decrease in the HPSQ total score estimation error
after a simple normalization based on a feature subtraction by
approximately 3 % [5]. In this study, we proved that this error
can be further decreased when employing more sophisticated
stroke-level `2 norm normalization (decrease of EER by ap-
proximately 5 %), even applied on a smaller set of handwriting
features. Some improvements in estimation error were reached
by `1 norm (decrease of EER by approximately 3 %), and `∞
based normalization (decrease of EER by approximately 1 %)
too.

Although some comparisons of the observed results with
results reported by other scientific papers would be welcomed,
this is a first study whose conclusions are based on a Czech
dataset (containing Czech cursive handwriting) assessed by the
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TABLE II
RESULTS OF UNIVARIATE REGRESSION ANALYSIS

HPSQ HPSQ-C
Norm. Movement Feature Name MAE RMSE EER Feature Name MAE RMSE EER

baseline in-air height of stroke (m) 7.28 ± 2.08 8.82 ± 2.25 25.99 ± 7.42 horizontal accel. (r) 6.37 ± 1.60 7.57 ± 1.65 19.90 ± 5.01
on-surface horizontal jerk (r) 7.97 ± 1.96 9.45 ± 2.03 28.48 ± 6.98 speed of writing (r) 6.20 ± 1.56 7.25 ± 1.69 19.35 ± 4.86

`∞
in-air velocity (m) 6.39 ± 2.16 8.10 ± 2.48 22.84 ± 7.71 speed of writing (m) 6.39 ± 2.18 7.93 ± 2.53 19.98 ± 6.82
on-surface horizontal accel. (r) 7.94 ± 2.00 9.45 ± 1.97 28.35 ± 7.14 length of stroke (m) 5.76 ± 2.23 7.47 ± 2.98 18.00 ± 6.98

`1
in-air length of stroke (m) 6.22 ± 1.89 7.82 ± 2.06 22.22 ± 6.74 vertical velocity (v) 6.35 ± 2.06 7.99 ± 2.48 19.86 ± 6.44
on-surface horizontal accel. (s) 6.97 ± 2.00 8.51 ± 2.15 24.88 ± 7.15 length of stroke (r) 6.24 ± 1.81 7.83 ± 2.25 19.51 ± 5.65

`2
in-air velocity (m) 7.19 ± 2.43 8.83 ± 2.52 25.67 ± 8.67 dur. of stroke (m) 6.25 ± 1.83 7.76 ± 2.14 19.53 ± 5.72
on-surface speed of writing (m) 7.45 ± 1.94 8.95 ± 2.20 26.61 ± 6.95 length of stroke (v) 6.24 ± 1.73 7.46 ± 1.92 19.49 ± 5.42

z-score in-air jerk (m) 7.07 ± 2.18 8.73 ± 2.45 25.24 ± 7.78 velocity (r) 6.61 ± 1.58 7.70 ± 1.72 20.65 ± 4.94
on-surface speed of writing (m) 7.04 ± 1.92 8.79 ± 2.26 25.15 ± 6.84 height of stroke (mn) 6.26 ± 2.04 7.74 ± 2.50 19.58 ± 6.38

MAE – mean absolute error; RMSE – root mean square error; EER – equal error rate; HPSQ – Handwriting Proficiency Screening Questionnaire; HPSQ-C – Handwriting Proficiency
Screening Questionnaire for Children; m – median; v – variance; r – range; mn – mean; s – std; accel. – acceleration; dur – duration.

TABLE III
MULTIVARIATE REGRESSION ANALYSIS

HPSQ HPSQ-C
Normalization Movement NoF MAE RMSE EER NoF MAE RMSE EER

baseline in-air 4 7.61 ± 1.89 6.34 ± 2.04 22.64 ± 6.76 9 4.99 ± 1.52 6.26 ± 1.79 15.59 ± 4.75
on-surface 14 6.62 ± 1.60 7.73 ± 1.66 23.63 ± 5.71 5 5.53 ± 1.61 6.71 ± 2.00 17.29 ± 5.02

`∞
in-air 3 5.72 ± 1.73 7.40 ± 1.91 20.45 ± 6.19 6 4.72 ± 1.44 5.79 ± 1.76 14.77 ± 4.51
on-surface 9 6.72 ± 1.90 7.91 ± 1.97 23.99 ± 6.77 4 5.84 ± 1.55 7.18 ± 2.05 18.25 ± 4.85

`1
in-air 8 5.18 ± 1.69 6.32 ± 1.95 18.49 ± 6.03 6 5.58 ± 1.50 6.80 ± 1.85 17.45 ± 4.68
on-surface 5 5.98 ± 1.62 7.06 ± 1.69 21.35 ± 5.77 5 5.55 ± 1.68 6.65 ± 1.94 17.36 ± 5.26

`2
in-air 8 4.99 ± 1.67 6.12 ± 1.99 17.82 ± 5.96 5 5.44 ± 1.61 6.70 ± 1.80 17.00 ± 5.03
on-surface 7 5.74 ± 1.40 6.76 ± 1.51 20.49 ± 4.98 4 5.53 ± 1.65 6.73 ± 2.13 17.27 ± 5.14

z-score in-air 6 6.05 ± 1.77 7.29 ± 1.98 21.62 ± 6.32 3 5.13 ± 1.66 6.17 ± 1.66 16.02 ± 5.20
on-surface 3 6.17 ± 1.83 7.45 ± 2.05 22.03 ± 6.54 6 6.10 ± 1.57 7.67 ± 2.15 19.08 ± 4.91

NoF – number of features; MAE – mean absolute error; RMSE – root mean square error; EER – equal error rate; HPSQ – Handwriting Proficiency Screening Questionnaire;
HPSQ-C – Handwriting Proficiency Screening Questionnaire for Children.

HPSQ/HPSQ-C scales. Therefore a relevant comparison is not
possible. However, the goal of this paper was to explore the
effect of IWN in computerized DD assessment. It has been
proved that IWN has some impact in this field of science and
that its further research could make computerized DD rating
more accurate.

V. CONCLUSION

The aim of this study is to introduce new IWN techni-
ques that will make computerized assessment of DD more
accurate. To address this aim we developed a new stroke-
level IWN methodology that is based on four normalization
algorithms. Performance of these algorithms was compared
to a baseline in automatic DD assessment scenarios utilizing
a set of conventional online handwriting features. Based on the
experimental analyses we proved that IWN has some benefits
in computerized DD rating. Especially the `2 norm approach
brought some promising results in comparison to the baseline
(EER = 17.82 % vs. EER = 22.64 %).

To the best of our knowledge this is a first study dealing
with the stroke-level IWN. Although the positive impact of
this methodology in computerized DD assessment has been
proved, this work has some limitations. The experimental
results were conducted on a dataset that contains just a few
dozens of samples. To generalize the results a larger dataset

should be further analysed. Next, we proved that the idea of
stroke-level IWN is promising, however, we used just a few
simple normalization algorithms. We expect that more so-
phisticated normalization on the stroke-level could bring even
better results. Taking into account the previously mentioned
facts, this study should be considered as a pilot one.
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Abstract—Parkinson’s disease (PD) is the second most frequent
neurodegenerative disorder. One typical hallmark of PD is
disruption in execution of practised skills such as handwriting.
This paper introduces a new methodology of kinematic features
calculation based on fractional derivatives applied on PD handw-
riting. Discrimination power of basic kinematic features (velocity,
acceleration, jerk) was evaluated by classification analysis (using
support vector machines and random forests). For this purpose,
30 PD patients and 36 healthy controls were enrolled. In compa-
rison with results reported in other works, the newly designed
features based on fractional derivatives increased classification
accuracy by 8 % in univariate analysis and by 10 % when
employing the multivariate one. This study reveals an impact of
fractional derivatives based features in analysis of Parkinsonic
dysgraphia.

Keywords—Archimedean spiral; binary classification; fractal
calculus; fractional derivative; online handwriting; Parkinson’s
disease;

I. INTRODUCTION

Parkinsons disease (PD) is the second most frequent pro-
gressive neurodegenerative disorder in the world [1]. Its preva-
lence rate is estimated to approximately 1.5 % for people
aged over 65 years [2]. Although, the exact pathophysiological
cause of PD has not yet been discovered, a rapid degeneration
of dopaminergic cells in substancia nigra pars compacta [3]
emerged as the most significant biological finding associated

This work was supported by the grant of the Czech Ministry of Health 16-
30805A (Effects of non-invasive brain stimulation on hypokinetic dysarthria,
micrographia, and brain plasticity in patients with Parkinsons disease), grant of
the Czech Science Foundation 18-16835S (Research of advanced developmen-
tal dysgraphia diagnosis and rating methods based on quantitative analysis of
online handwriting and drawing) and the following projects: LO1401, FEDER
and MEC, TEC2016-77791-C4-2-R, and TEC- 2016-77791-C4-4-R from the
Ministry of Economic Affairs and Competitiveness of Spain. For the research,
infrastructure of the SIX Center was used.

with the disease. Tremor in rest, rigidity, bradykinesia, and loss
of postural reflexes [4], [5] are considered as cardinal motor
symptoms. PD also accompanies several non-motor symptoms
such as sleep disorders, cognitive deficits, depression, demen-
tia, etc. [6], [7].

Due to motor dysfunctions in people suffering from PD,
some recent studies have suggested that quantitative analysis
of handwriting can be used as a quick and accurate PD diagno-
sis method [8], [9]. Moreover, using digitizing tablets we are
able to acquire online handwriting signals, where a temporal
information is added to x and y coordinates. Therefore the
analysis is not limited to spatial features quantifying mainly
PD micrographia, but in addition, we are able to quantify
temporal, kinematic and dynamic manifestations of PD (e. g.
hesitations, pauses, and slow movement [10]), which are
generally called PD dysgraphia [11].

For the purpose of PD handwriting analysis, several han-
dwriting tasks were proposed (Archimedean spiral, repetitive
loops, letters, words, sentences, etc.), but the most popular
handwriting task for tremor assessment is currently the Archi-
medean spiral [5]. This task has been frequently used to eval-
uate motor performance in various movement disorders [12],
[13], including PD. In view of these facts the Archimedean
spiral was selected for the purposes of this study as well.
Some related works (2014–now) focused on analysis of online
handwriting in PD patients are summarized in Table I.

The aim of this paper is to introduce advanced kinematic
features that replace the conventional ones by utilizing fractio-
nal derivative (FDE). The potential of FDE in PD dysgraphia
quantification is demonstrated by classification analysis and
a discrimination power of the newly designed features is
compared with a baseline [5], [12], [9], [14].

214978-1-5386-4695-3/18/$31.00 ©2018 IEEE TSP 2018
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TABLE I. OVERVIEW OF RELATED WORKS FOCUSED ON ANALYSIS OF PD DYSGRAPHIA

First author Year PD/HC Handwriting task Analysis Features Conclusions
Broeder [15] 2014 18/11 Repetitive loops Correlation Writing amplitude and velocity The highest correlation for given medical scale

(Spearman) and task was with velocity with r = 0.627.
Drotar [14] 2014 37/38 One sentence Differential Kinematic, temporal, spatial Using both in-air/on-surface features resulted

analysis (SVM) and its statistical representations in 85.61 % classification accuracy.
Drotar [16] 2015 37/38 Characters, words, Differential Same as in [14], entropy, empirical The highest classification accuracy after

sentences analysis (SVM) mode decomposition, signal energy feature selection approach was 88.1 %.
Drotar [12] 2015 37/38 Characters, words, Differential Same as in [16], pressure Classification performance was at its peak

sentences analysis (SVM) with on-surface features (89.09 %).
Drotar [5] 2016 37/38 Characters, words, Differential an. Same as in [12], but in-air For classification of PD on all exercises SVM

Archimedean spiral, (SVM, K-NN, features were not computed proved to be the best classifier with
sentences AdaBoost) accuracy 82.5 %.

Heremans [17] 2015 34/10 Up/down strokes at ANOVA Writing amplitude and velocity Significant difference between groups was in
varying amplitudes writing amplitude (F (2.41) = 3.97; p= 0.03).

Heremans [18] 2016 30/15 Repetitive cursive ANOVA, Writing amplitude and velocity Medical scale and writing amplitude
loops correlation had significant correlation r = −0.40.

Loconsole [19] 2017 4/7 Sentence, Differential Execution time and average speed, Highest classification accuracy 96.81 % was
repetitive loops analysis (ANN) density ratio, height ratio achieved using all the extracted features.

Masarova [20] 2014 40/40 Characters, words, Correlation Velocity, acceleration, jerk, The most significant relative difference between
Archimedean spiral, (Spearman) statistical representations groups was 19.5 % for mean velocity of
sentences of each one writing extracted from long sentence.

Nackaerts [21] 2017 38/0 Repetitive loops, Correlation Stroke duration, writing velocity, Amplitude training has as negative effect
eight-like figure (Spearman) normalized jerk on fluency and stroke duration.

Smits [13] 2014 10/10 Circle, spiral, line t-test Kinematic, temporal, spatial Time per repetition, velocity, and acceleration
characters, sentence and its statistical representations have the highest discriminative power.

SVM – support vector machine; rs – Spearman’s correlation coefficient; K-NN – K-nearest neighbours; ANOVA – analysis of variance; ANN – artificial neural network;
F and p corresponds to variables of F distribution; articles are sorted alphabetically and then by year of release.

II. MATERIALS AND METHODS

A. Dataset

The dataset consisted of 66 participants: 36 healthy controls
(HC) with (mean ± std) age: 62.50 ± 11.70 years, and 30 PD
patients with (mean ± std) age: 68.37 ± 11.08 years, PD
duration: 8.67 ± 4.49 years, UPDRS V (Unified Parkinson’s
disease rating scale, part V: Modified Hoehn & Yahr staging
score) [22]: 2.23 ± 0.83 and LED (L-dopa equivalent daily
dose) [23]: 1474.67 ± 614.81 mg. The participants were
enrolled at the First Department of Neurology, St. Anne’s
University Hospital in Brno, Czech Republic. All participants
reported Czech language as their native language and all
participants were right-handed. The PD patients completed
the tasks approximately 1 hour after their regular L-dopa me-
dication. All participants signed an informed consent form
approved by the local ethics committee.

B. Data Acquisition

The Archimedean spiral task is a part of the PaHaW data-
base [5]. During this task, a template was shown to a subject
for visual guidance. Participants drew the spiral from its center,
but were not asked to draw it within particular boundaries or
to follow a pre-drawn line. Online handwriting signals were
recorded using the Intuos 4M (Wacom technology) digitizing
tablet, with sampling rate fs = 100 Hz. The tablet was overlaid
with an empty paper template. The following features were
acquired (time sequences): x and y coordinates – x[t], y[t];
time-stamp – t; in-air/on-surface status – b[t]; pressure – p[t];
azimuth az[t]; and tilt al[t].

C. Fractional Derivative

Several approaches of fractional derivative calculation ex-
ist [24]. In this paper, the implementation of FDE by Jonathan
Hadida, which follows the Grünwald-Letnikov approxima-
tion [25], was used. A direct definition of the FDE Dαy(t)
is based on finite differences of an equidistant grid in [0, τ ].
Assume that the function y(τ) satisfies some smoothness
conditions in every finite interval (0, t), t ≤ T . Choosing the
grid

0 = τ0 < τ1 < ... < τn+1 = t = (n + 1)h (1)

with

τk+1 − τk = h (2)

and using the notation of the finite differences

1

hα
Δα

hy(t) =
1

hα

(
y(τn+1)−

n+1∑

v=1

cαv y(τn+1−v)

)
, (3)

where

cαv = (−1)v−1(αv ), (4)

the Grünwald-Letnikov implementation is defined as [24]:

Dαy(t) = lim
h→0

1

hα
Δα

hy(t), (5)

where Dαy(t) means a derivative with order α of function
y(t), and h represents sampling lattice.

In our case, the FDE substitutes the conventional differential
derivative during calculation of the kinematic features. A de-
tailed description of the FDE can be found at [24], [25].
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Fig. 1. Box plots of two features with the highest MCC (univariate models).

D. Handwriting Features

To demonstrate the impact of FDE in analysis of PD
dysgraphia, we extracted only basic on-surface kinematic
parameters [5], [9]: velocity – rate at which a position of
pen changes with time [mm/s]; acceleration – rate at which
the velocity of pen changes with time [mm/s2]; jerk – rate at
which the acceleration of pen changes with time [mm/s3];
and their horizontal and vertical variants. These features were
calculated for different orders α of the FDE in range from 0.1
to 1.0 with 0.1 steps. Consequently, statistical properties of
the features were described using following statistics: mean,
median, standard deviation (std), and maximum (max) [5],
[12], [9], [14]. In total 360 features were extracted.

E. Statistical Analysis

To evaluate a discrimination power of the features, univa-
riate binary classification (PD/HC) models (stratified 7-fold
cross-validation with 50 repetitions) based on random fo-
rests (RF) [26] and support vector machines (SVM) [27]
with radial basis function (RBF) were employed. Next, some
improvements in classification accuracy were done by mul-
tivariate approach with the same classifiers and the same
cross-validation settings. In this case, the sequential floating
forward selection (SFFS) algorithm was used [28] in order
to select the most appropriate combination of the features.
Classification performance was evaluated by the Matthew’s
correlation coefficient [29], classification accuracy (ACC),
sensitivity (SEN) and specificity (SPE).

III. RESULTS

Results of the univariate and multivariate analysis are sum-
marized in Table II. Regarding the univariate classification,
only the best features (in terms of the MCC values) are
reported. The best feature of the univariate classification is
median of velocity with α = 0.1 (ACC = 70.55 %
classified by SVM). Box plots of two features with the highest
MCC are visualized in Figure 1. Regarding the multivariate

classification analysis, ACC of 72.39 % (MCC = 0.44) was
achieved using combination of 10 features classified by RF.
The set of these features as gradually selected by SFFS can
be found in Table III.

TABLE II. RESULTS OF THE UNIVARIATE AND MULTIVARIATE
CLASSIFICATION ANALYSIS

Univariate analysis
Classifier Feature α MCC ACC [%] SEN [%] SPE [%]
SVM velocity (median) 0.1 0.40 70.55 62.00 77.67
SVM vertical velocity (mean) 0.6 0.40 70.24 52.40 85.11
RF jerk (max) 1.0 0.33 67.06 59.53 73.34
RF vertical jerk (median) 0.1 0.29 65.34 54.40 74.45

Multivariate analysis
Classifier Number of features MCC ACC [%] SEN [%] SPE [%]
RF 10 0.44 72.39 65.52 77.87
SVM 11 0.39 67.55 57.42 79.96

α – order of fractional derivative; RF – random forests; SVM – support vector machine;
MCC – Matthew’s correlation coefficient; ACC – accuracy; SEN – sensitivity; SPE –
specificity.

TABLE III. THE BEST COMBINATION OF FEATURES IN THE
MULTIVARIATE CLASSIFICATION (EMPLOYING RF) SELECTED BY SFFS

Feature α ACC [%]
vertical jerk (median) 0.1 64.89
acceleration (mean) 0.3 65.97
horzintal velocity (median) 0.1 68.17
vertical jerk (mean) 0.8 70.34
horzintal velocity (median) 0.4 71.52
vertical acceleration (median) 0.5 71.15
horzintal acceleration (median) 1.0 72.36
vertical acceleration (median) 0.6 71.77
velocity (median) 0.8 72.01
horzintal jerk (median) 1.0 72.39

IV. DISCUSSION

According to the reported results we can confirm our
previous hypothesis that application of the FDE in calculation
of kinematic features brings promising potential in automatic
diagnosis of PD dysgraphia. Considering that only the basic
kinematic features such as velocity, acceleration, and jerk were
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extracted, the results of discrimination analysis are promising,
especially when compared with previous related papers (ba-
seline) [5], [12], [9], [14], where the Archimedean spiral task
was eliminated from the final classification models due to
low ACC (62–65 %). In the case of univariate analysis we
can claim that the ACC was improved by 3–8 %. Based on
the results summarized in Figure 1, we can confirm reduced
movement abilities in PD cohort, which is caused mainly
by rigidity and bradykinesia. The best result of multivariate
analysis (ACC = 72.38 %, MCC = 0.44) was achieved
by the RF classifier in combination with 10 features selected
by SFFS. In comparison to the baseline, this result means im-
provement by 10 %. Moreover, from the feature set description
(see Table III), it is evident that most of the parameters were
based on α �= 1, which confirms full utilization of the FDE.

V. CONCLUSION

With respect to the results we can conclude that using the
FDE in kinematic analysis brings new improvements in quan-
titative PD dysgraphia processing and add-on to the existing
conventional techniques. This study is considered as a pilot
one and its conclusions should be confirmed and extended
by further research. For instance, it would be interesting to
combine the newly developed parameters with other features
such as temporal, spatial or dynamic ones. Moreover, the
other tasks (e.g. overlapped circles, words, drawings) could
be quantified. Another implementation of the FDE should be
evaluated as well. Finally, a bigger dataset must be used to be
able to generalize the conclusions.
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Abstract Existing literature about online handwriting analy-
sis to support pathology diagnosis has taken advantage of in-
air trajectories. A similar situation occurred in biometric secu-
rity applications where the goal is to identify or verify an
individual using his signature or handwriting. These studies
do not consider the distance of the pen tip to the writing sur-
face. This is due to the fact that current acquisition devices do
not provide height formation. However, it is quite straightfor-
ward to differentiate movements at two different heights (a)
short distance: height lower or equal to 1 cm above a surface
of digitizer, the digitizer provides x and y coordinates; (b) long
distance: height exceeding 1 cm, the only information avail-
able is a time stamp that indicates the time that a specific
stroke has spent at long distance. Although short distance
has been used in several papers, long distances have been
ignored and will be investigated in this paper. In this paper,
we will analyze a large set of databases (BIOSECUR-ID,
EMOTHAW, PaHaW, OXYGEN-THERAPY, and SALT),
which contain a total amount of 663 users and 17,951 files.
We have specifically studied (a) the percentage of time spent
on-surface, in-air at short distance, and in-air at long distance

for different user profiles (pathological and healthy users) and
different tasks; (b) the potential use of these signals to improve
classification rates. Our experimental results reveal that long
distance movements represent a very small portion of the total
execution time (0.5% in the case of signatures and 10.4% for
uppercase words of BIOSECUR-ID, which is the largest da-
tabase). In addition, significant differences have been found in
the comparison of pathological versus control group for letter
Bl^ in PaHaW database (p = 0.0157) and crossed pentagons in
SALT database (p = 0.0122).

Keywords Handwriting . Biometrics . In-air trajectories

Introduction

Speech and handwriting are probably the most difficult tasks
performed by human beings, because they differentiate us
from animals. Handwriting requires very fine motor skills,
probably more so than speech, because some animals can
imitate human sounds but no animal can write. In addition,
we learn to speak first and then we learn how to read and
write, when the brain is more mature.

Handwriting analysis is a good way to study the human
brain in a non-invasiveway. This knowledge, once acquired,
can be applied to artificial systems that emulate the human
brain. We consider that handwriting movements are more
complex by far than what has been analyzed in the past. In
fact, some parts of themovements have been neglected.With
this paper, we will analyze this kind of movements, which
will be defined in posterior sections as in-air at long distance.
This kind of movements can be used to improve artificial
intelligence for biometric applications such as health and
security [1–4].

* Carlos Alonso-Martinez
calonso@tecnocampus.cat

Marcos Faundez-Zanuy
faundez@tecnocampus.cat

Jiri Mekyska
mekyska@feec.vutbr.cz

1 ESUP Tecnocampus (Pompeu Fabra University), Av. Ernest Lluch
32, 08302 Mataró, Spain

2 Department of Telecommunications, Faculty of Electrical
Engineering and Communication, Brno University of Technology,
Technicka 10, 616 00 Brno, Czech Republic

Cogn Comput (2017) 9:712–720
DOI 10.1007/s12559-017-9501-5

The Author(s) 2018, corrected publication /2018June



In the past, the analysis of handwriting had to be performed
in an offline manner. Only the writing itself (strokes on a piece
of paper) were available for analysis. Nowadays, modern-
capturing devices like digitizing tablets and pens or online
whiteboards can gather data without losing its temporal di-
mension. When spatiotemporal information is available, its
analysis is referred to as online. A typical modern-digitizing
tablet (Fig. 1) not only gathers the x-y coordinates that de-
scribe the movement of the writing device as it changes its
position, but it can also collect other data, mainly the pressure
exerted by the writing device on the writing surface, the azi-
muth (the angle of the pen in the horizontal plane), and the
altitude (the angle of the pen with respect to the vertical axis)
(see (Fig. 2)). From now own, x-y coordinates, pressure, azi-
muth, and altitude will be referred to as features of the
handwriting.

A very interesting aspect of the modern online analysis of
handwriting is that it can consider information gathered when
the writing device was not exerting pressure on the writing
surface. Thus, the movements performed by the hand while
writing a text can be split into two classes:

1. On-surface trajectories (pen-downs), corresponding to the
movements executed while the writing device is touching
the writing surface. Each of these trajectories produces a

Fig. 1 Intuos Pro L digitizing tablet and pen

90º 

90º

180º 

270º 

0º 

Altitude (0º-90º) 
Azimuth (0º-359º)

Fig. 2 Azimuth and altitude angles of the pen with respect to the plane of
the writing surface

Fig. 3 On-surface (top) and in-air (bottom) trajectories from two executions of two crossed pentagons
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visible stroke. We will call this kind of movement on-
surface.

2. In-air trajectories (pen-ups), corresponding to the move-
ments performed by the handwhile transitioning from one
stroke to the next one. During these movements, the writ-
ing device exerts no pressure on the surface. This class
can be split into two subsets:

a. In-air at short distances (in-airS), when the distance
from the tip of the pen to the writing surface is lower
or equal to 1 cm. In this case, the digitizing device can
track the (x, y) coordinates during the pen movement.

b. In-air at long distances (in-airL), when distances from
the tip of the pen to the writing surface are higher than
1 cm. In this case, the digitizing device is not able to
track the movements and we only know the time
spent at high distance.

In our previous research, we have focused on on-surface
and in-airS movements discarding in-airL movements because
they do not provide the same amount of data as the previous
ones. In fact, the unique parameters are just the number of
strokes at long distance and time spent at long distance. For
instance, in [5], we applied information theory to demonstrate
that on-surface and in-airS contain almost the same amount of
information and they are not redundant. This was an important
milestone because in-air trajectories had received almost no
attention at all, even in online approaches where spatiotempo-
ral information is available.

Figure 3 shows two examples of on-surface and in-airS
trajectories taken from two executions of the pentagon test
performed by two different writers from the Emothaw
database.

In-airL can be detected looking at the time stamp provided
by the digitizing tablet. During in-airL time, the tablet is

Fig. 4 Time stamp difference of
consecutive samples for an
example of accepted file from
PaHaW database task write
lektorka word twice

Fig. 5 Time stamp difference of
consecutive samples for an
example of discarded file from
PaHaW database task write
lektorka word twice
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unable to track the tip of the pen and no samples are ac-
quired. Nevertheless, time stamp is increasing and the next

time that the pen touches the surface, the samples are stored
again in the file and the time jump can be detected. Figure 4

Table 1 BIOSECUR-ID database. Time in absolute units and relative time in parenthesis

Time Strokes

Task On-surface In-airS In-airL On-surface In-airS In-airL

Genuine signature 2857.6 (79.6%) 715.4 (19.9%) 17.5 (0.5%) 6.62 5.94 0.32

Skilled forgeries 5447.9 (68.5%) 2373.4 (29.9%) 128.5 (1.6%) 6.58 6.21 0.63

Lower case words 110,445.1 (55.9%) 76,454 (38.7%) 10,644.4 (5.4%) 335.01 367.16 33.16

Numbers 3677.3 (53.6%) 3071.1 (44.7%) 117.0 (1.7%) 11.66 11.46 0.79

Uppercase words 73,608.8 (54.4%) 47,756.2 (35.3%) 14,073.4 (10.4%) 313.49 343.29 30.81

Table 2 EMOTHAW database. Time in absolute units and relative time in parenthesis

Time Strokes

Task On-surface In-airS In-airL On-surface In-airS In-airL

a. Depression

Two-pentagon 11394.0 (55.5%) 7755.8 (37.7%) 1393.3 (6.8%) 9.26 13.15 9.47

House 18765.4 (53.6%) 13933.1 (39.8%) 2329.4 (6.7%) 23.74 33.00 20.97

Capital letters 15789.4 (51.0%) 13112.3 (42.4%) 2050.1 (6.6%) 59.79 65.91 12.15

Loops with left hand 10183.9 (97.7%) 215.8 (2.1%) 21.3 (0.2%) 1.26 0.41 0.21

Loops with right hand 8542.7 (98.9%) 58.6 (0.7%) 39.3 (0.4%) 1.18 0.21 0.06

Clock 14228.8 (45.0%) 14905.2 (47.2%) 2468.7 (7.8%) 27.35 36.91 21.44

Sentence 15288.8 (60.4%) 8052.4 (31.8%) 1958.5 (7.8%) 41.24 47.41 11.09

b. Stress

Two-pentagon 11283.0 (55.0%) 7768.6 (37.9%) 1444.1 (7.1%) 9.41 13.89 11.39

House 18868.4 (52.5%) 14378.6 (40.0%) 2685.6 (7.5%) 25.45 35.14 21.32

Capital letters 15732.3 (50.1%) 13555.7 (43.1%) 2135.2 (6.8%) 60.80 67.09 12.04

Loops with left hand 10648.5 (97.3%) 233.5 (2.1%) 66.6 (0.6%) 1.59 0.77 0.95

Loops with right hand 9264.1 (99.3%) 40.0 (0.4%) 23.9 (0.3%) 1.13 0.14 0.04

Clock 14481.5 (44.8%) 14934.1 (46.2%) 2896.2 (9.0%) 27.63 37.80 21.41

Sentence 15756.6 (59.4%) 8539.8 (32.2%) 2215.8 (8.4%) 42.55 48.95 10.84

c. Anxiety

Two-pentagon 11474.7 (57.3%) 7135.2 (35.6%) 1420.7 (7.1%) 8.70 12.75 10.16

House 18871.9 (53.6%) 13683.5 (38.8%) 2672.7 (7.6%) 23.77 32.89 18.95

Capital letters 16010.0 (50.9%) 13356.9 (42.5%) 2082.7 (6.6%) 60.48 66.39 10.96

Loops with left hand 10248.4 (96.9%) 224.3 (2.1%) 103.0 (1.0%) 1.57 0.79 0.96

Loops with right hand 8793.2 (99.3%) 35.6 (0.4%) 23.9 (0.3%) 1.11 0.13 0.04

Clock 14175.3 (46.5%) 13487.9 (44.3%) 2811.3 (9.2%) 26.27 35.48 19.54

Sentence 15676.5 (59.9%) 8402.2 (32.1%) 2107.5 (8.0%) 41.96 48.14 10.38

d. Control

Two-pentagon 10256.0 (49.7%) 8670.5 (42.1%) 1684.9 (8.2%) 10.13 15.27 12.91

House 17468.1 (49.0%) 15150.2 (42.5%) 3044.5 (8.5%) 26.63 36.23 22.27

Capital letters 15699.2 (48.9%) 13721.2 (42.8%) 2677.1 (8.3%) 61.46 67.84 11.68

Loops with left hand 9737.1 (98.5%) 133.3 (1.3%) 17.7 (0.2%) 1.18 0.30 0.41

Loops with right hand 8992.1 (98.4%) 123.2 (1.3%) 23.9 (0.3%) 1.07 0.09 0.04

Clock 12365.6 (38.9%) 16180.8 (50.9%) 3229.5 (10.2%) 27.13 37.25 22.63

Sentence 15660.0 (53.6%) 9539.6 (32.6%) 4024.3 (13.8%) 42.41 49.43 11.43
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shows the difference of consecutive time stamps for an ex-
ample file. For most of the samples (on-surface and in-airS),
this value is small (typically two units). However, there are
some peaks, which correspond to in-airL movements.
Figure 4 reveals 11 strokes of the type in-airL. Sometimes,
this time is abnormally long. This is probably due to some
acquisition problem, where the user started to speak with the
database acquisition supervisor for minutes. We will label
these cases and will not include them in the average compu-
tation of time spent at in-airL. We consider these cases when
time in-airL is greater than 70% of the total time. In partic-
ular, we have found this phenomenon in 5 files from the
analyzed databases (total amount of analyzed files is
17,951 files) (e.g. see Fig. 5).

Experimental Databases

In this paper, we have analyzed a set of different databases that
contain different tasks and user profiles. The databases share
the existence of handwritten tasks. In this section, we will
summarize the main characteristics of the analyzed databases.

BIOSECUR-ID

This database is a multimodal biometric one and includes
eight biometric traits: speech, iris, face (still images and
videos), handwritten signature and handwritten text, finger-
prints, hand, and keystroking. This database acquired inside
the Biosecur-ID project was developed by a consortium of six

Table 3 PAHAW database. Time in absolute units and relative time in parenthesis

Time Strokes

Task On-surface In-airS In-airL On-surface In-airS In-airL

a. Control

Spiral 18,665.8 (98.6%) 171.5 (0.9%) 103.2 (0.5%) 1.40 1.97 1.94

Letter l 8077.8 (57.6%) 3868.3 (27.6%) 2069.6 (14.8%) 5.21 18.16 15.50

Bigram le 10,545.9 (71.2%) 2998.4 (20.2%) 1274.3 (8.6%) 5.13 14.03 11.00

Word les 12,309.1 (69.2%) 3513.0 (19.7%) 1977.7 (11.1%) 5.29 15.11 11.82

Word lektorka 14,931.2 (73.0%) 3238.1 (15.9%) 2279.8 (11.1%) 7.00 16.97 12.00

Word porovnat 13,071.5 (74.4%) 3356.7 (19.1%) 1139.4 (6.5%) 8.08 18.08 11.82

Word nepopadnout 8757.5 (83.8%) 1512.5 (14.5%) 179.0 (1.7%) 5.29 8.47 4.50

Sentence 14,481.3 (58.4%) 7457.9 (30.1%) 2844.6 (11.5%) 15.24 31.87 19.34

b. Parkinson patients

Spiral 24,057.4 (95.4%) 618.3 (2.4%) 536.6 (2.2%) 2.03 6.78 7.31

Letter l 8928.1 (63.8%) 4132.5 (29.5%) 939.1 (6.7%) 5.51 16.08 12.59

Bigram le 12,143.2 (69.1%) 4094.1 (23.3%) 1330.4 (7.6%) 5.57 17.08 13.76

Word les 14,702.7 (69.6%) 4093.1 (19.4%) 2330.9 (11.0%) 5.76 19.22 15.54

Word lektorka 17,716.2 (76.3%) 36,045.0 (15.5%) 1890.1 (8.2%) 7.22 17.97 12.49

Word porovnat 14,690.6 (75.8%) 3808.9 (19.6%) 891.1 (4.6%) 8.86 18.11 11.00

Word nepopadnout 9784.0 (79.8%) 2115.7 (17.2%) 365.6 (3.0%) 6.76 11.30 5.86

Sentence 16,176.5 (58.2%) 8252.3 (29.9%) 3300.1 (11.9%) 16.57 36.81 23.62

Table 4 OXIGEN-THERAPY database. Time in absolute units and relative time in parenthesis

Time Strokes

Task On-surface In-airS In-airL On-surface In-airS In-airL

a. Before O2

House 32,699.0 (49.6%) 22,184.8 (33.7%) 11,033.8 (16.7%) 28.88 131.13 141.29

Clock 20,144.0 (40.2%) 21,824.0 (43.6%) 8104.3 (16.2%) 27.25 94.13 79.00

b. After O2

House 26,572.1 (53.6%) 18,429.1 (37.1%) 4606.5 (9.3%) 27.70 74.57 51.96

Clock 16,619.8 (46.4%) 16,007.8 (44.7%) 3197.6 (8.9%) 25.21 57.21 37.29
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Spanish Universities, more details can be found in [6]. With
respect to handwriting and signatures, this database defines
five different tasks: a Spanish text in lower-case, ten digits
written separately, 16 Spanish words in upper-case, four gen-
uine signatures, and one forgery of the three precedent
subjects.

EMOTHAW

As described in [7], this database includes samples of 129
participants who are classified on the basis of their emotional
states: anxiety, depression, and stress or health. This classifi-
cation is assessed by the Depression–Anxiety–Stress Scales
(DASS) questionnaire. Seven tasks are recorded through a
digitizing tablet: pentagons and house drawing, words in cap-
ital letters copied in handprint, circles with left and right hand,
clock drawing, and one sentence copied in cursive writing.

PAHAW

The Parkinson’s Disease Handwriting Database (PaHaW)
consists of multiple handwriting samples from 37

Parkinson’s disease patients, and 38 gender and age
matched controls. Eight different tasks were recorded
through a digitizing tablet: spiral drawing, letters, words,
and a sentence. The details about this database can be found
in [8].

OXIGEN-THERAPY

This database described in [9] includes eight patients with
hypoxemia who performed two tasks: house and clock draw-
ing, before and after breathing 30 min with O2 with the aim of
evaluating changes in psychomotor functions.

SALT

As described in [10], the database includes samples of 52
participants: 23 with Alzheimer’s disease, 12 with mild cog-
nitive impairment (MCI), and 17 healthy controls. Seven tasks
were recorded: crossed pentagons, spiral, 3D house, clock
drawings, spontaneous, copied, and dictated handwriting.

Table 5 SALT database. Time in absolute units and relative time in parenthesis

Time Strokes

Task On-surface In-airS In-airL On-surface In-airS In-airL

a. DCLI

Crossed pentagons 18,292.8 (60.2%) 8497.3 (27.9%) 3612.6 (11.9%) 10.00 20.33 27.50

Spiral 8219.3 (99.0%) 26.75 (0.3%) 60.8 (0.7%) 1.42 1.75 2.25

3D house 33,503.83 (52.0%) 19,388.6 (30.1%) 11,534.3 (17.9%) 29.50 49.17 50.42

Clock 18,931.9 (31.2%) 24,807.2 (40.9%) 16,917.0 (27.9%) 26.67 52.17 70.50

Spontaneous sentence 16,500.3 (48.8%) 14,322.9 (42.4%) 2966.5 (8.8%) 40.67 47.75 15.33

Sentence copied 26,535.4 (49.3%) 21,918.3 (40.7%) 5404.9 (10.0%) 57.58 69.08 29.58

Sentence dictation 20,710.7 (59.1%) 11,717.8 (33.4%) 2633.0 (7.5%) 43.25 50.08 16.33

b. Alzheimer

Crossed pentagons 21,535.4 (48.4%) 15,430.1 (34.6%) 7555.4 (17.0%) 14.05 28.00 48.14

Spiral 11,312.2 (88.7%) 1108.8 (8.7%) 327.2 (2.6%) 1.71 1.67 2.52

3D house 40,341.6 (47.3%) 30,465.8 (35.8%) 14,386.2 (16.9%) 31.55 55.23 75.77

Clock 24,524.7 (36.1%) 33,060.4 (48.6%) 10,420.8 (15.3%) 29.36 48.41 50.95

Spontaneous sentence 19,555.9 (48.6%) 17,090.1 (42.4%) 3606.1 (9.0%) 37.23 44.05 17.09

Sentence copied 34,023.8 (45.1%) 33,451.3 (44.4%) 7951.2 (10.5%) 54.32 69.50 35.95

Sentence dictation 26,640.6 (52.7%) 20,723.6 (41.0%) 3189.6 (6.3%) 44.27 54.86 20.45

c. Control

Crossed pentagons 17,077.7 (50.1%) 13,085.8 (38.4%) 3918.6 (11.5%) 11.88 36.47 36.65

Spiral 6198.3 (91.0%) 426.6 (5.4%) 251.3 (3.6%) 1.63 3.06 2.94

3D house 29,170.5 (43.3%) 26,094.5 (38.7%) 12,152.4 (18.0%) 30.82 72.24 68.12

Clock 18,986.1 (30.2%) 31,299.1 (49.8%) 12,547.1 (20.0%) 29.94 71.38 71.06

Spontaneous sentence 14,990.5 (43.8%) 14,648.8 (42.8%) 4566.4 (13.4%) 35.41 56.88 31.12

Sentence copied 24,684.2 (45.5%) 23,968.8 (44.1%) 5654.8 (10.4%) 53.59 78.00 37.53

Sentence dictation 19,531.1 (56.9%) 13,131.1 (38.2%) 1676.5 (4.9%) 38.71 50.24 16.76
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Experimental Results

The first experiments consisted of analyzing the three kinds of
time in absolute and relative values as well as the number of
strokes in all the scenarios. Tables 1, 2, 3, 4, and 5 summarize

the results for the analyzed databases. It is worth remarking
that different databases contain different tasks described in the
previous section.

For a given user, the number of strokes is an integer num-
ber. However, the table shows the average number of strokes

Table 7 PaHaW (Mann-
Whitney U test) Task p TS p TAS p TAL p strokesS p strokesAS p strokesAL

a. Parkinson/control

Spiral 0.3947 0.5621 0.0939 0.2857 0.0919 0.0949

Letter l 0.4614 0.5529 0.0157 0.2390 0.3611 0.2718

Bigram le 0.3015 0.0403 0.5671 0.0090 0.1173 0.1710

Word les 0.3015 0.3166 0.6601 0.2941 0.2453 0.4385

Word lektorka 0.5166 0.9440 0.3019 0.8111 0.6928 0.4744

Word porovnat 0.3878 0.7226 0.4025 0.3778 0.9239 0.7963

Word nepopadnout 0.5780 0.1776 0.2836 0.0630 0.1287 0.2538

Sentence 0.2000 0.5850 0.9612 0.3229 0.2720 0.5773

TS time on-surface, TAS time in-airS, TAL time in-airL, StrokesS strokes on-surface, StrokesAS strokes in-airs,
StrokesAL strokes in-airL

Table 6 EMOTHA (Mann-Whitney U test)

Task p TS p TAS p TAL p strokesS p strokesAS p strokesAL

a. Depression/control

Two-pentagon 0.4316 0.3082 0.0589 0.1374 0.0731 0.0561

House 0.7329 0.0495 0.5002 0.0315 0.0774 0.4217

Capital letters 0.5771 0.5771 0.8744 0.0904 0.2317 0.5994

Loops with left hand 0.7613 0.2380 0.1292 0.2954 0.2742 0.1542

Loops with right hand 0.6592 0.5316 0.7322 0.5067 0.5005 0.7322

Clock 0.1267 0.6293 0.2196 0.6641 0.7739 0.9688

Sentence 0.8992 0.3273 0.1849 0.3794 0.2870 0.5764

b. Anxiety/control

Two-pentagon 0.2429 0.1020 0.1678 0.1546 0.1010 0.1505

House 0.4564 0.0417 0.4086 0.0652 0.1777 0.2550

Capital letters 0.3770 0.6374 0.3503 0.1731 0.1888 0.7751

Loops with left hand 0.7711 0.1575 0.1723 0.1560 0.1429 0.2017

Loops with right hand 0.9374 1 1 0.9822 0.9762 1

Clock 0.0414 0.1540 0.2410 0.4462 0.5801 0.8294

Sentence 0.7234 0.4259 0.1296 0.5392 0.3971 0.2913

c. Stress/control

Two-pentagon 0.5665 0.4886 0.3429 0.6173 0.4131 0.3678

House 0.5221 0.2565 0.4705 0.5562 0.7621 0.9188

Capital letters 0.4741 0.9907 0.7934 0.2769 0.4367 0.4662

Loops with left hand 0.3859 0.1625 0.2801 0.1466 0.1498 0.3173

Loops with right hand 0.4795 0.7184 1 0.6875 0.6875 1

Clock 0.0241 0.7401 0.4670 0.6199 0.6496 0.6623

Sentence 0.6819 0.5753 0.1011 0.7034 0.5335 0.4764

TS time on-surface, TAS time in-airS, TAL time in-airL, StrokesS strokes on-surface, StrokesAS strokes in-airs, StrokesAL strokes in-airL
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for a specific database and task (in addition to the number of
strokes done by the whole set of users split by the number of
users). This number is not integer anymore.

Experimental results of BIOSECUR-ID database, which is
the largest one according to the number of users and files, reveal
that in-airL is almost negligible in the case of signatures, but
interestingly, it is three times larger for skilled forgeries than
for genuine signatures. For uppercase words, the time in-airL is
larger than for the other tasks but still quite modest (10.4%).
Thus, this kind of movement is less important than the other
two and can probably be ignored without sacrificing a lot of
information. For the other databases, a statistical test will be
performed after presenting the experimental results.

From all the databases related to diseases, we computed the
Mann-Whitney U test between study and control groups to
determine the existence of statistically significant difference
(p < 0.05) in the studied features (time and strokes). The re-
sults are shown in Table 6.

We can observe in Table 6 (a. Depression/control) how in
crossed pentagon task, the values are very close to the threshold
for long distance time and strokes. In house draw, the near time
and on-surface strokes show statistical significance. In Table 6

(b. Anxiety/control), house draw shows again that near-distance
time is statistically signficant. Finally, in Table 6 (c. Stress/con-
trol), we obtain p < 0.05 for on-surface time in clock draw only.

As is shown in Table 7, for PaHaW database we obtain
statistically significant results in letter l long distance time
and in bigram le for near-distance time and on-surface strokes.

In OXYGEN THERAPY database, the times and number
of strokes do not show statistical significance and do not seem
to offer a valid classification pattern between pre- and post-O2

results (Table 8).
In Table 9 (SALT, a. Alzheimer/control), we can observe

how on crossed pentagons draw, statistical significance can be
found in on-surface time and long distance time. Also, on-
surface time presents significance on the sentence copied.
No results with p < 0.05 were obtained for mild cognitive
impairment (MCI)/control (Table 9, b).

Discussion

Although most of the results in previous tables are not signif-
icant, even for on-surface and in-airS information, we should

Table 9 SALT (Mann-Whitney U test)

Task p TS p TAS p TAL p strokesS p strokesAS p strokesAL

a. Alzheimer/control

Crossed pentagons 0.0303 0.1609 0.0122 0.3941 0.6604 0.0891

Spiral 0.0063 0.5132 0.1995 0.9185 0.1338 0.1869

3D house 0.0677 0.1370 0.1297 0.3493 0.7533 0.0720

Clock 0.1071 0.1984 0.1785 0.5526 0.2033 0.6256

Spontaneous sentence 0.1878 0.0524 0.9210 0.3875 0.8316 0.8761

Sentence copied 0.0096 0.1080 0.1096 0.5612 0.3954 0.2629

Sentence dictation 0.0132 0.0721 0.0920 0.2510 0.3953 0.1604

b. MCI/control

Crossed pentagons 0.1915 0.4925 0.1915 0.2758 0.1688 0.5643

Spiral 0.0968 0.5358 0.0865 0.4290 0.0889 0.0973

3D house 0.2069 0.5500 0.3879 0.6729 0.7734 0.5206

Clock 0.4437 0.9445 0.0738 1 0.8892 0.2854

Spontaneous sentence 0.5500 0.8421 0.9119 0.4124 0.5496 0.6094

Sentence copied 0.1501 0.4384 0.7735 0.2777 0.6260 0.8075

Sentence dictation 0.3640 0.7398 0.2878 0.3407 0.4784 0.5203

TS time on-surface, TAS time in-airS, TAL time in-airL, StrokesS strokes on-surface, StrokesAS strokes in-airs, StrokesAL strokes in-airL

Table 8 OXYGEN THERAPY
(Mann-Whitney U test) Task p TS p TAS p TAL p strokesS p strokesAS p strokesAL

a. Pre/post O2

House 0.8968 0.8764 0.9174 0.9174 0.8968 0.8968

Clock 0.9218 0.8936 0.9077 0.8665 0.8795 0.8795

TS time on-surface, TAS time in-airS, TAL time in-airL, StrokesS strokes on-surface, StrokesAS strokes in-airs,
StrokesAL strokes in-airL
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point out that this kind of measurements offers a large set of
features that can be extracted, such as speed and acceleration of
trajectories and complexity measurements extracted from coor-
dinates x, y. In fact, a classifier would not be based on a single
measurement. It will take advantage of a set of measurements.
Thus, high p values for on-surface and in-airS do not imply the
impossibility to perform a classification. These values are pro-
vided just for comparison purpose with in-airL values. In-airL
extracted features are limited to time and number of strokes.
Thus, the analysis of relevance of this information is simpler.

Nevertheless, this paper points out the tasks and patholo-
gies where more potential improvements can be achieved,
because in some tasks, p < 0.05 has been obtained.

Looking at the experimental results of pathologies, we can
establish that in-airL movements are not relevant but there are
some exceptions: crossed pentagon task for depression pa-
tients in EMOTHAW, which is near significance (p = 0.0589
for time and p = 0.0561 for strokes), letter l task for PaHaW
database (p = 0.0157 for time), and crossed pentagons task for
Alzheimer/control comparison (p = 0.0122 for time). We con-
sider these results especially interesting because crossed pen-
tagons are a very useful measurement in pathological analysis,
in fact, it is the only drawing that subjects must perform in the
well-established mini-mental state examination, also known
as the Folstein test [11].

Conclusions

One of the main goals of this paper was to study if in-airL
information can be discarded in handwritten tasks analysis.
Looking at the experimental results, we can conclude that little
time is spent by healthy writers at long distance so most of the
information is contained on-surface and in-airS distances. This
implies that the development of a new acquisition device able
to track x and y coordinates and long distances will probably
not be very useful, because few samples will be acquired in
this condition. However, experimental results reveal that time
spent at long distance is more than three times higher for
skilled forgeries than for genuine signatures. This opens a
possible research line in security biometrics. A similar consid-
eration can be established for the number of strokes, which is
doubled in the case of skilled forgeries with respect to short
distance in-air movements. Thus, the existence of long dis-
tance movements can be indicative of a signature forgery.

On the other hand, when looking at pathologies, we have
found statistically significant differences in the pentagon tasks
for Alzheimer/control comparison. This result opens the possi-
bility of investigating in-air at long distance movements further.
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Chapter 2

Privacy of online handwriting biometrics
related to biomedical analysis

Marcos Faundez-Zanuy1 and Jiri Mekyska2

Online handwritten signals analysis for biomedical applications has received lesser
attention from the international scientific community than other biometric signals
such as electroencephalogram (EEG), electrocardiogram (ECG), magnetic resonance
imaging signals (MRI), speech, etc. However, handwritten signals are useful for
biometric security applications, especially in the case of signature, but to support
pathology diagnose/monitoring as well. Obviously, while utilising handwriting in
one field, there are implications in the other one and privacy concerns can arise. A
good example is a biometric security system that stores the whole biometric template.
It is desirable to reduce the template to the relevant information required for security,
removing those characteristics that can permit the identification of pathologies.

In this paper, we summarize the main aspects of handwritten signals with special
emphasis on medical applications (Alzheimer’s disease, Parkinson’s disease, mild
cognitive impairment, essential tremor, depression, dysgraphia, etc.) and security. In
addition, it is important to remark that health and security issues cannot be easily
isolated, and an application in one field should take care of the other.

2.1 Introduction

Online handwritten biometrics belongs to behavioural biometrics because it is based
on an action performed by a user. This is opposed to morphological biometrics,
which is based on direct measurements of physical traits of the human body. From
human behaviour and health condition point of view, it appears more appealing than
other hard biometrics such as fingerprint or iris. Although health applications based
on online handwriting today have not been deeply explored, there is a nice set of
possibilities that will probably grow in the future, such as diagnosis/monitoring of
depression, neurological diseases, drug abuse, etc. It can be noted that nowadays,

1Pompeu Fabra University, Spain
2Department of Telecommunications, Brno University of Technology, Brno, Czech Republic
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most of the published research in biometric signal processing is based on image and
speech, reasons for which can be that these signals are easier to acquire and cheaper
than online handwriting tasks. The price of a webcam or a microphone has been low
since the past century, while digitizing devices for online handwritten tasks was by
far more expensive. Fortunately, in the recent years, tactile screens have become more
popular and online handwritten signals are more present in the society than a few years
ago. This has permitted a reduction in the cost of acquiring devices. Thus, nowadays,
the price of the acquisition device is not a drawback anymore. We can forecast a
growing in applications in this field, and we should take care of privacy issues. In
this chapter, we will present an introduction to online handwritten signals and discuss
several applications of them in the medical field, which we consider relevant for the
biometric community.

This chapter is written for signal-processing engineers devoted to security bio-
metric applications. Even if readers have a background in speech and/or image but are
not familiar with online handwritten signals, they will find an explanation including
fundamentals of the acquisition process as a starting point. However, and even more
challenging, this part of the book is also written for people outside the biometric com-
munity, including the audience of medical doctors, willing to enter into this topic and
collaborate with engineers. Today, it seems hard to establish collaborations between
engineers and medical doctors. Quite often, we do not understand each other due to
our different background. Thus, we tried to write the chapter in an easy-to-read way.
Breaking innovations are hardly produced in the core of a knowledge area, and the
main contribution is seen rather in terms of focussing on the borders between different
areas.

The structure of this chapter is as follows: Section 2.2 introduces to the properties
and characteristics of the acquisition devices as well as the online handwritten signal.
Section 2.3 is devoted to examples of implications between both fields, security and
health, with special emphasis on those situations where the privacy of the user can
be compromised, and the authentication task is performed under pressure or without
consciousness of the users (e.g. suffering a severe disease). Section 2.4 summarizes
the chapter.

2.2 Online handwritten signals – an introduction

Online handwritten signals acquisition consists of dynamic acquisition of various
properties of the moving pen during the writing process in real time, whereas the
digital representation of the signals is typically given by time-stamped sequences of
measurement points/tupels. For instance, using a digitizing tablet, smartphone, etc.,
which typically acquires information listed in Table 2.1.

Using this set of dynamic data, further information can be inferred by analytical
computation, which is usually more suitable for certain applications (e.g. handwriting
velocity, duration, width, height). This results in what is usually called feature sets,
being similar to the use of body mass index for overweight classification. Body mass
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Table 2.1 Information acquired from a digitizing tablet

Abbreviation Description

x Position of pen tip in x axis
y Position of pen tip in y axis
s/a On-surface/in-air pen position information
p Pressure applied by the pen tip
az Azimuth angle of the pen with respect to the tablet’s surface (see Figure 2.1)
al Altitude angle (sometimes called tilt) of the pen with respect to the tablet’s

surface (see Figure 2.1)
t Timestamp

0°

180°

90°

270°

90°

Altitude (0°–90°)
Azimuth (0°–359°)

Figure 2.1 Handwriting online information acquired in typical cases (x and y
position, pressure, azimuth, altitude)

index is not a direct measure. In fact, it is based on weight and height but it is more
useful than body/weight alone.

2.2.1 In-air and on-surface movements

Some digitizing devices, such as Intuos Wacom TabletTM, Samsung Galaxy NoteTM,
etc., are able to track the pen-tip movement even when it is not touching the surface.
Thus, it is possible to record the x and y coordinates of in-air movements when pressure
is equal to zero. Unfortunately, this is only possible when the distance between the tip
of the pen and the surface is less or equal to approximately 1 cm, otherwise the tracking
is lost. Nevertheless, the time spent in air is still known because the acquisition
device provides a timestamp of each sample. By looking at the difference between
consecutive samples, it is possible to know the exact amount of time spent in-air,
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Paper

Tablet’s
surface

Distance

Figure 2.2 Illustration of the distance from pen tip to surface

although the x and y coordinates are only known when the height is smaller or equal
to 1 cm (see Figure 2.2).

While some devices can be operated with a sheet of paper and a special ink pen,
others do not permit this kind of pen, and the handwriting must be directly done on
the tablet’s surface using plastic pen without an immediate visual feedback.

Thus, we know three kinds of data:

1. Movement on-surface: typically provides the five features described in the
previous section (x, y, pressure, azimuth, altitude).

2. Movement in-air at short distance to surface: provides x and y position, azimuth
and altitude.

3. Movement in-air at long distances to surface: when distance is higher than
approximately 1 cm, we only know the time spent in-air, as no samples are
acquired.

Figure 2.3 shows the aspect of raw samples acquired by a digitizer. For each sampling
instance, a set of features is acquired: x coordinate; y coordinate; timestamp t provided
by the machine; surface/air bit s/a, which is equal to zero when there is no contact
between tip of pen and surface, and one where there is contact; pressure value p;
azimuth az and altitude al. In this example, we may observe some samples in-air at
short distance plus some time in-air (between t = 11,253,657 and 11,253,827), with a
subsequent measurement at long distance. This can be observed because the jump in
timestamp between t = 11,253,827 and 11,253,843 is higher than the usual sampling
rate for on-surface samples. For the later, the time-stamp progress in t is 10 units,
while for the last sample in-air at short distance, it is 16 time units. Time in-air at long
distance can appear after in-air at short distance before touching again the surface.
For most of the users and tasks, this time is negligible, because movements between
strokes tend to be short.

Looking at Figure 2.3, we observe that raw data provided by digitizing tablet is
really simple in structure and thus can be processed in a straightforward way, even
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10,609  8,915  11,253,637  1  1,680  630  574
10,774  8,907  11,253,647  1  1,700  630  171
10,774  8,907  11,253,657  0  1,720  630  0
10,801  8,906  11,253,667  0  1,740  630  0
10,706  8,924  11,253,677  0  1,760  630  0
10,585  8,955  11,253,687  0  1,760  620  0
10,466  8,993  11,253,697  0  1,760  620  0
10,368  9,025  11,253,707  0  1,760  620  0
10,295  9,049  11,253,717  0  1,740  620  0
10,242  9,060  11,253,727  0  1,730  620  0
10,206  9,060  11,253,737  0  1,680  630  0
10,191  9,054  11,253,747  0  1,660  620  0
10,186  9,044  11,253,757  0  1,650  620  0
10,186  9,033  11,253,767  0  1,630  620  0
10,186  9,023  11,253,777  0  1,610  620  0
10,186  9,013  11,253,787  0  1,590  610  0
10,186  9,006  11,253,797  0  1,590  610  0
10,186  9,001  11,253,807  0  1,570  610  0
10,191  8,992  11,253,817  0  1,590  610  0
10,205  8,981  11,253,827  0  1,590  610  0
10,205  8,981  11,253,843  1  1,610  620  173
10,205  8,981  11,253,853  1  1,610  620  153

x y t s/a al az p

On-surface
samples

In-air
samples

On-surface
samples

Figure 2.3 Example of digital representation of samples acquired with digitizer
in two scenarios: on-surface, in-air. x – x position, y – y position,
t – timestamp, s/a – on-surface/in-air pen position information,
p – pressure, az – azimuth, al – altitude

by people without programming skills. For instance, it can be easily imported in
any standard spreadsheet software and processed there to extract simple and useful
statistics such as mean time on-surface/in-air, variation in pressure, etc.

Although most of the many existing works related to handwritten signals in bio-
metrics and handwriting recognition have been based on surface movements (see
e.g. [1]), there are evidences of the importance of in-air movements as well. Sesa-
Nogueras et al. [2] presented an analysis of in-air and on-surface signals from an
information theory point of view. They performed the entropy analysis of handwrit-
ing samples acquired in a group of 100 people (see the BiosercurID database for
more information [3]) and observed that both types of movements contain approx-
imately the same amount of information. Moreover, based on the values of mutual
information, these movements appear to be notably non-redundant. This property has
been advantageously used in several fields of science. For instance, Drotar et al. [4,5]
proved that in-air movement increases the accuracy of Parkinsonic dysgraphia identi-
fication. Specifically, when classifying the Parkinsonic dysgraphia by support vector
machine (SVM) in combination with the in-air features, they reached 84% accuracy
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1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
1,200

1,400

1,600

x

y
Healthy

5,000 5,500 6,000 6,500 7,000 7,500

1,800

2,000

2,200

x

y

Parkinson’s disease

Figure 2.4 Example of on-surface (grey line) and in-air (black line) movement.
Czech sentence written by a healthy writer and patient with PD
(samples from the PaHaW database, Drotar et al. [11])

which is by 6% higher in comparison to classification based on the on-surface features
only. When combining both feature sets, they observed 86% classification accuracy.
Faundez-Zanuy et al. [6] reported that the in-air movement supports diagnosis of
Alzheimer’s disease (AD). They observed that patients with AD spend seven times
longer in-air when comparing to a control group. In the case of on-surface move-
ment, it is only three times longer. Similarly, Rosenblum et al. [7] found out that
the in-air duration can be a good measure for performance analysis of children with
high-functioning autism spectrum disorder. The in-air movement has also been used
for identification and quantitative analysis of developmental dysgraphia in children
population [8–10]. Mekyska et al. [8] proved that kinematic features derived from
this kind of movement (especially jerk, which is rate at which the acceleration of a
pen changes with time) provide good discrimination power between children with
dysgraphia and control group.

Figure 2.4 contains an example of Czech sentence written by a healthy writer and
writer with Parkinson’s disease (PD). As can be seen, the in-air movement (transition
between strokes plotted in black bold) is in the case of PD writer very unsmooth and
irregular. We can see that the writer spent a lot of time in-air before he initiated the
writing of next word. This is tightly related to cognitive functions, the writer has to
think about the next movement, and sometimes, he forgets what to write. We wouldn’t
be able to objectively describe these cognitive processes without the in-air movement.
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2.3 Handwriting signals from biometrics to medical applications

The analysis of handwriting in security applications, i.e. for the automated identifi-
cation or verification of subjects by means of biometric methods, today appears to
be a well-studied domain. We thus in this section discuss this part very briefly, with
reviews of some relevant works. Further, we expand the views to metadata analysis
(also referred to as Soft Biometrics) with a brief review of selected works published.
Finally, we bridge the gap towards the analysis of handwriting signals for medical
purposes, for example to support diagnostics of some diseases. These aspects will be
the main focus of discussions in the following subsections.

2.3.1 Biometric security applications

Biometric security applications based on handwritten tasks are mainly based on sig-
natures. Several international competitions summarize the state of the art achieved
by dozens of teams, such as Houmani et al. [12], signature verification competition
(SVC) [13] and SigWiComp (competitions on signature verification and writer iden-
tification for on- and offline skilled forgeries) [14]. Although less known, there are
also some works where biometric recognition is based on handwritten text, either
text-dependent or independent.

The individuality of handwriting has been demonstrated by several authors. Sri-
hari et al. [15] assessed the individuality of handwriting in the off-line case. They
collected a database of 1,500 writers selected to be representative of the US population
and conducted experiments on identification and verification. Regarding identifica-
tion, they reached accuracy of about 83% at the word level (88% at the paragraph-level
and 98% at the document-level). These results allowed the authors to conclude that the
individuality hypothesis, with respect to the target population, was true with a 95%
confidence level. Zhang and Srihari [16] complemented the previous work of [15].
They analysed the individuality of four handwritten words (been, Cohen, Medical
and referred) taken from 1,027 US individuals, who wrote each word three times.
The combination of the four words yielded an identification accuracy of about 83%
and a verification accuracy of about 91%.

With regard to the online case, some authors have addressed the issue of individ-
uality of single words and short sentences. Hook et al. [17] showed that single words
(the German words auch, oder, bitte and weit) and the short sentence Guten Morgen
exhibit both considerable reproducibility and uniqueness (i.e. equal items written by
the same person match well while equal items written by different people match far
less well). They used a small database consisting of 15 writers that produced, in a
single session, ten repetitions of each item captured by a prototype of a digitizing
pen. Chapran [18] used the English words February, January, November, October
and September (25 repetitions of each word donated by 45 writers). The identifica-
tion rate reached 95%. In Sesa and Faundez-Zanuy [19], a writer identification rate of
92.38% and a minimum of detection cost function [20] of 0.046 (4.6%) was achieved
with 370 users using just one word written in capital letters. Results were improved
up to 96.46% and 0.033 (3.3%) when combining two words.
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2.3.2 Metadata applications

Behavioural biometrics, in addition to security and health applications, can provide a
set of additional information, known as metadata. Sometimes also referred to as Soft
Biometrics, it can be based on system hardware specifics (technical metadata) and on
the other side on personal attributes (non-technical metadata) [21,22]. System-related
metadata represent physical characteristics of biometric sensors and are essential for
ensuring comparable quality of the biometric raw signals. Previous work in personal
related metadata has shown that it is possible to estimate some metadata like script lan-
guage, dialect, origin, gender and age by statistically analysing human handwriting.
In this section, we will summarize some non-technical metadata applications.

Gender recognition attempts to classify the writer as a male or a female. In
[23] using only four repetitions of a single uppercase word, the average rate of well-
classified writers is 68%; with 16 words, the rate rises to an average of 72.6%.
Statistical analysis reveals that the aforementioned rates are highly significant. In
order to explore the classification potential of the in-air strokes, these are also con-
sidered. Although in this case, results are not conclusive, and an outstanding average
of 74% of well-classified writers is obtained when information from in-air strokes is
combined with information from on-surface ones. This rate is slightly better than the
one achieved by calligraphic experts. However, we should keep in mind that this is a
two-class problem and even by pure chance (for instance, flipping a coin) we would
get 50% accuracy.

Bandi et al. [24] proposed a system that classifies handwritings into demographic
categories using measurements such as pen pressure, writing movement, stroke for-
mation and word proportion. The authors reported classification accuracies of 77.5%,
86.6% and 74.4% for gender, age and handedness classification, respectively. In this
study, all the writers produced the same letter. Liwicki et al. [25] also addressed the
classification of gender and handedness in the on-line mode. The authors used a set
of 29 features extracted from both on-line information and its off-line representation
and applied support vector machines and Gaussian mixture models to perform the
classification. The authors reported an accuracy of 67.06% for gender classification
and 84.66% for handedness classification. In [26], the authors separately reported
the performance of the offline mode, the on-line mode and their combination. The
accuracy reported for the off-line mode was 55.39%.

Emotional states, such as anxiety, depression and stress, can be assessed by
the depression anxiety stress scales (DASS) questionnaire. Likforman-Sulem et al.
[27] presents a new database that relates emotional states to handwriting and draw-
ing tasks acquired with a digitizing tablet. Experimental results show that anxiety
and stress recognition perform better than depression recognition. This database
includes samples of 129 participants whose emotional states are assessed by the DASS
questionnaire and is freely distributed for those interested in researching in this line.

2.3.3 Biometric health applications

As to be seen from the example on emotional states and the reasons for emotional
changes, the transition from metadata to medical analysis is somewhat fluent. In this
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Basal 6 Months 12 Months 18 Months

Figure 2.5 Clock drawing test of ACE-R for a person with AD, showing initial
baseline on the left, and then from left to right, samples from the same
person after 6, 12 and 18 months

section, we focus on selected analysis for the latter case, with regards to handwriting
modality. While signature and handwritten script samples are also useful for health
issues, we focus on a set of probably more interesting tasks such as drawings or
sketches. These kinds of signals can also be used for biometric recognition, although
they are not as usual in real life as handwriting or signature (some examples can be
found in [28]).

One important unsolved problem is how the dementia syndrome is associated
with diseases such as Parkinson’s and Alzheimer’s, etc. In the case of Alzheimer’s,
it is estimated that the cost per year for a single patient is 35,000 USD in the USA.
One in ten patients is below 60 years old. The incidence of Alzheimer’s is doubled for
every 5 years after 65, and beyond 85 years old the incidence is between one-third
and half of the amount of population. If a solution is not found, this problem will
be unbearable for society. Consequently, a relevant issue related to dementia is its
diagnostic procedure. For example, AD is the most common type of dementia, and it
has been pointed out that early detection and diagnosis may confer several benefits.
However, intensive research efforts to develop a valid and reliable biomarker with
enough accuracy to detect AD in the very mild stages or even in pre-symptomatic
stages of the disease have not been conclusive. Nowadays, the diagnostic procedure
includes the assessment of cognitive functions by using psychometric instruments
such as general or specific tests that assess several cognitive functions. A typical test
for AD is the clock drawing test (CDT) [29] that consists of drawing a circle and
distributing the 12 hours inside. An example of this is shown in Figure 2.5. The initial
result produced by a person (baseline) is shown on the left, and on the right, several
samples of the same person after 6, 12 and 18 months of being damaged are also
shown. This same test has also been used for detecting drug abuse, depression, etc.
Figure 2.6 shows a similar situation when copying two interlinking pentagons, which
is one of the tasks of the mini-mental state examination (MMSE) [30]. The MMSE or
Folstein test is a brief 30-point questionnaire test that is used to screen for cognitive
impairment. It is also used to estimate the severity of cognitive impairment at a
specific time and to follow the course of cognitive changes in an individual over time,
thus making it an effective way to document an individual’s response to treatment.
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Basal 6 Months 12 Months 18 Months

Figure 2.6 Pentagons of MMSE for a person with AD, showing initial baseline on
the left, and then from left to right, samples from the same person after
6, 12 and 18 months. A pentagon template copied by the patients
appears in the top

Figure 2.7 presents a house drawing that includes perspective notions (3D aspect
[31]). The first two rows are performed by individuals with AD of different clinical
severity. The visual inspection of the on-surface image suggests a progressive degree
of impairment, where drawing becomes more disorganized and the three dimensional
effect is only achieved in the second row (mild case). The visual information provided
by the in-air drawing between AD individuals also indicates a progressive impairment
and disorganization when the individuals try to plan the drawing. It is also important
to note that the comparison of the on-surface drawing between the mild case ofAD and
the control (third and fourth rows) also shows important differences. Even in the case
when the drawing is performed with the non-dominant hand. Besides the increased
time in-air, there is an increased number of hand movements before writers decide to
put the pen on the surface to drawn. We consider that these graphomotor measures
applied to the analysis of drawing and writing functions may be a useful alternative
to study the precise nature and progression of the drawing and writing disorders
associated with several neurodegenerative diseases [6,31]. Figure 2.7 illustrates the
potential of in-air information, which is neglected when medical doctors use the
classical ink pen system in off-line mode.

Generally, in the area of diagnostics in medical context, drawings are widely
used. In summary, some common drawings and their potential usage in medical field
(included the cases described already above) are

1. Pentagon test – used in the MMSE to assess cognitive impairment [30] (see
Figure 2.6). A template provided to the patient appears in the top row. The second
row is the result produced by the patient when trying to copy the template, which
is always the same.

2. CDT – can be utilized as a precursory measure to indicate the likelihood
of further/future cognitive deficits. It is used in the Addenbrooke’s cognitive
examination-revised (ACE-R) test [32] (see Figure 2.5). As in the previous case,
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Figure 2.7 House drawing performed by four individuals. First and second rows
correspond to individuals with Alzheimer’s disease (one per row). Third
and fourth rows correspond to a healthy user when drawing with
dominant and non-dominant hand. First column – on-surface
movement, second column – in-air movement, third column –
combination of both. Extracted and adapted with permission from
Reference [33]

the different clocks (from left to right) are produced by the same patient passing
6 months.

3. House drawing copy – used for identification of AD [6,33] (see Figure 2.7).
Patients have to copy a shown image of a house sketch.

4. Archimedes spiral and straight line (drawing between points) – useful to discrim-
inate between PD and essential tremor; diagnose mild cognitive impairment, AD,
dysgraphia, etc. [11,34–38] (see Figure 2.8). In the case of the Archimedes spiral
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Figure 2.8 Examples of Archimedean spiral: ideal, spiral written by a healthy

writer, spiral written by a patient with essential tremor. The second row
of picture represents an unwrapped version, where x axis contains
angle of each sample on spiral with respect to its centre, and y axis a
distance from this centre. This representation is usually used for
discrimination among healthy controls and patients with essential
tremor or PD [43–45]

acquisition and straight lines, the participants can have a printed spiral on a sheet
of paper and a couple of dots to be connected, and they are asked to trace it by a
pen without touching the spiral neither the bars (see Figure 2.9). Or, the spiral is
shown to them on a template, and they are asked to replicate it on a blank sheet of
paper. Similarly, the straight lines can be acquired. In addition, the participants
can be asked to connect printed points.

5. Overlapped circles (ellipses) – can be used for quantitative analysis of schizophre-
nia or PD [39–41]. See Figures 2.10 and 2.11, which represents some simple
kinematic features that can be used for an effective diagnosis.

6. Rey–Osterrieth complex figure test – developed in 1941 and further consists of
copying a complex drawing [42]. It is frequently used to further explain any
secondary effect of brain injury in neurological patients, to test for the presence
of dementia or to study the degree of cognitive development in children. In this
task, patients have to memorize an image, and later, they have to replicate it
without looking at the example.

Changes in handwriting are usually among the first manifestations of the second most
common neurodegenerative disorder – PD [46]. PD patients are usually associated
with several motor features, such as tremor in rest, rigidity (resistance to passive
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Drawing C

Figure 2.9 Spiral and straight lines test. In the spiral test, the user has to trace a
spiral without touching the walls of the traced spiral. In the line test, he
has to connect the dots with a straight line without touching the upper
and lower bars
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Figure 2.10 Examples of overlapped circles (ellipses): healthy subject and patient
with essential tremor. The right part of figure represents vertical
movement in time
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Figure 2.11 Examples of signals from Figure 2.10 (vertical movement during
overlapped ellipses writing) after application of first (speed) and
second (acceleration) derivative

movement) and bradykinesia (slowness of movement). These motor features affect
handwriting as well. Usually, we can observe micrographia (characterized by abnor-
mal reduction in writing size) in patients with PD [46,47]. However, several recent
studies showed that micrographia is not the most characteristic feature of PD handwrit-
ing [48]. The availability of graphical tablets allowed investigating the PD handwriting
in great detail, which resulted in the definition of the term PD dysgraphia. PD dys-
graphia encompasses all deficits characteristic of Parkinsonian handwriting [46,48],
e.g. deficits in geometry, kinematic variables, pressure patterns, in-air movement.
All these deficits can be effectively and objectively quantified using a protocol of
handwriting/drawing tasks [4,5,11,49].

Beside AD and PD, mild cognitive impairment, essential tremor, dysgraphia and
schizophrenia, the online handwriting analysis found its place in many other health
applications, e.g. analysis of depression [50], autism [51] or obsessive–compulsive
disorder [52].
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2.4 Security–health implications and concerns

Security and health applications have been described as isolated fields to each other
in previous sections. They indeed are separated for most of the scientific community.
However, they are not separated in real life.

Engineers can develop a technological solution for security or health issues. In
general, they tend to be experts in just one of the two fields, and they do not take
care of the other field. This solution can be based on biometrics but hardly can we
consider that security is not related to health and the opposite. In some cases, both
should be considered jointly. In other ones, we cannot isolate one from the other one.
In the next subsections, we will describe several examples.

2.4.1 Security where health aspects influence biometric security

Most biometric security applications only try to determine the identity of a user or to
verify if he is who claims to be. However, in the common knowledge that automated
biometric systems are subject to erroneous classifications, it is important to extract
some additional information in context of the acquisition of biometric signals. In the
following, we summarise three of such possible scenarios, motivated by the questions
as follows:

1. Is the user under stress? It is not the same to put a finger in a sensor, confirm
the identity, and open a door if, for example, his heart is beating at 70 beats
per minute (bpm) than if it is beating at 120 bpm. If his heart is much more
accelerated than expected, some suspicious activity can be happening. To solve
this, some fingerprint systems have a mechanism called duress finger, which
is a way to notify security guards or the police about the threatening situation
without letting the threatening person notice it. To do that the user enrols at least
two fingers. Both will open the door but one of them will activate a silent alarm.
This concept is known as duress detection. See for instance [53]. Some examples
are the commercialized fingerprint products by Fingertec1 and Suprema2. This
is a simple example to illustrate the idea, but obviously, it is quite simple for
the threatening person to force the user to use the specific finger that does not
activate the alarm. This knowledge can be obtained just looking how the user
interacts with the sensor in previous days. Similarly, the user can enrol a couple
of different signatures, one for duress recognition and the other one for normal
operation system. Again, it would be possible for a third party to be familiar with
the genuine signature that does not activate any silent alarm and force the user
to use that signature.

A robust biometric security system should be able to detect the stress situation
based on characteristics that cannot be easily controlled by the user. Detection
of user stress from signature or handwriting is a challenging research topic that
can indeed improve security systems.

1http://www.fingertec.com/ver2/english/vd-duressfingerprint.html
2https://www.supremainc.com/es/node/613
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Figure 2.12 On the left, documents signed in 1985 (hesitated) and 1986. On the
right, some signatures on blank sheets, when the elder woman was
suffering dementia. Extracted with permission from Reference [33]

2. Is he suffering any disease that makes him unable to understand the real implica-
tion on his acts? In [33], we presented the case of a woman affected by AD. This
case was presented to us by Viñals and described in his book [54]. In this case,
several women made an elder woman sign her name on blank sheets of paper (see
Figure 2.12). Theoretically, due to some issues related to medicines. When the
elder person died, the women took advantage of the signed sheets in order to write
a rental agreement. The declared date of this agreement was 1985 (Figure 2.12
on the bottom left), but several documents signed in 1986 (Figure 2.12 on the
top left) showed better control of calligraphic movements. In fact, the hesitantly
written signature document signed in 1985 was closer in appearance to the blank
sheets signed when the elder woman had dementia than to the 1986 document.
Thus, it was demonstrated that in fact the rental document was not signed in
1985. It was signed later.

Another possibility is to be affected by depression. Heinik et al. [55] used
drawings for analysing depressive disorders in older people.

These two examples indicate that while even if in the context of biometric
signature verification one can conclude that the signature is genuine, this may be
not enough. One should in addition take into account aspects such as the health
state of the user. Considering both aspects (identity, i.e. degree of signature
matching and health), one can conclude in doubt of a good health condition of
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the subject the signature, from a legal point of view, may not be valid. In these
cases, the biometric authentication of the individual does not solve the problem,
and some additional considerations should be taken. This is not just related to
health. Another similar situation where a genuine biometric sample is used in
a fraudulent way is a replay attack. In a replay attack, the biometric signal is
usually genuine, but it was acquired/recorded in the past and presented again and
should be considered as a fake attempt.

3. Is he temporarily affected by drug substances abuse? References [56,57] found
changes in handwriting due to alcohol. Tucha et al. [58] detected the effects of
caffeine on handwriting. Foley and Miller [59] performed similar experiments
about the effects of marijuana and alcohol. While this consumption could be
hardly detected by fingerprint analysis, for instance, this is not the case with
biometric signals such as handwriting/signature and speech.

2.4.2 Situations where health information can be extracted
from security applications

One of the main concerns of biometrics applied to security is about privacy issues [33].
Technological advances let to store, gather and compare a wide range of information
on people. Using identifiers such as name, address, passport or social security number,
institutions can search databases for individuals’ information. This information can
be related to salary, employment, sexual preferences, religion, consumption habits,
medical history, etc. This information can be collected with the consent of the user,
but in some cases it could also be extracted from biometric samples without the
knowledge of the user. Thus, the user could ignore that some additional and private
information can be extracted from his biometric samples.

Though in most of the scenarios there should be no problem, there is a potential
risk. Let us think, for instance, in sharing medical information. Obviously, in case
of emergency, this sharing between hospitals would be beneficial. On the contrary,
if this information is transferred to a personal insurance company or a prospective
employer, the insurance or the job application can be denied. The situation is especially
dramatic when biometric data collection is intended for security biometric recogni-
tion to grant access to a facility or information but a third party tries to infer the
health condition of the subject. For instance, in the case of retina and iris recogni-
tion, an expert can determine that a patient suffers from diabetes, arteriosclerosis,
hypertension, etc.

For any biometric identifier, there is a portion of population for which it is pos-
sible to extract relevant information about their health, with similar implications to
the ones described in the previous paragraph. This is not a specific problem of hand-
written signals. Some other biometric signals exhibit the same potential problems.
For example, speech disorders, hair or skin colour problems, etc. An important ques-
tion is what exactly is disclosed when biometric scanning is used. In some cases,
additional information not related to identification might be obtained. One possible
scenario could be a company where an attendance sheet must be signed each day.
The main purpose of this task could be to check if the worker is at his workplace all
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the labouring days. However, once the handwriting is provided, the company could
decide to analyse the signature to detect some pathologies or drugs abuse and to fire
out those workers who do not show a good health. And last but not the least, once we
provide our biometric samples, they can last in a database for dozens of years, and due
to technological advances, they can be used in a simple way in the future to extract
additional information that was not intended during acquisition. For this reason, we
should think about technical solutions to preserve privacy and legal regulations to
avoid that.

2.4.3 Situations where the identity information must be removed

Sometimes, the situation is just opposite to that one mentioned in the previous section.
With the growth of eHealth and telemedicine fields, scientists started to develop
automatic handwriting analysis systems that can be used for disease diagnosis, rating
or monitoring. However, to introduce a robust analysis system, it is necessary to
develop it using a large database consisting of hundreds or thousands of subjects.
This could be problematic, especially when acquiring patients with rare diseases or
patients with cognitive deficits (e.g. patients with dementia). In these cases, it is
difficult to find enough samples and explain the handwriting tasks, respectively.

One possibility to overcome the lack of data is to fuse databases acquired by
different research or clinical teams around the world, i.e. make the data publicly
available (or at least for research purposes). But this is usually not allowed by the local
ethics committee or by the participants themselves. Just a few people would make
their health data available when containing identity information. Therefore, during
last few years, scientists started to develop de-identification methods, that would
remove this information, but that would still keep the information about pathology
(see the next paragraph). Usually, this is done using a sophisticated parameterization
process. For example, in future datasets used for analysis of handwriting in patients
with PD, it would be enough to keep and disseminate kinematic, in-air, tremor and
pressure characteristics.

In this field, there was a European Cooperation in Science and Technology
action devoted to de-identification for privacy protection in multimedia content. De-
identification in multimedia content can be defined as the process of concealing the
identities of individuals captured in a given set of data (images, video, audio, text), for
the purpose of protecting their privacy. This will provide an effective means for sup-
porting the EU’s Data Protection Directive (95/46/EC), which is concerned with the
introduction of appropriate measures for the protection of personal data. The fact that
a person can be identified by such features as face, voice, silhouette and gait, indicates
the de-identification process as an interdisciplinary challenge, involving such scien-
tific areas as image processing, speech analysis, video tracking and biometrics. This
action aims to facilitate coordinated interdisciplinary efforts (related to scientific,
legal, ethical and societal aspects) in the introduction of person de-identification and
reversible de-identification in multimedia content by networking relevant European
experts and organisations.
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2.5 Summary and conclusions

In this chapter, we have described the main characteristics of online handwritten
signals as well as their applications on biometric recognition and health. We have
emphasized the importance of taking into account that security and health should not
be isolated to each other. Care must be taken to protect privacy in health applications
(in some studies, the identity should not be revealed), and vice versa, it is important
to preserve health state privacy in security ones.

To sum up, some background of both fields is desirable although we are working
only in the field of security or health. In addition, privacy aspects must be carefully
considered in our technological solutions.
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Abstract—Developmental dysgraphia, being observed among
10–30% of school-aged children, is a disturbance or difficulty in
the production of written language that has to do with the mechan-
ics of writing. The objective of this study is to propose a method
that can be used for automated diagnosis of this disorder, as well
as for estimation of difficulty level as determined by the hand-
writing proficiency screening questionnaire. We used a digitizing
tablet to acquire handwriting and consequently employed a com-
plex parameterization in order to quantify its kinematic aspects
and hidden complexities. We also introduced a simple intrawriter
normalization that increased dysgraphia discrimination and HPSQ
estimation accuracies. Using a random forest classifier, we reached
96% sensitivity and specificity, while in the case of automated rat-
ing by the HPSQ total score, we reached 10% estimation error.
This study proves that digital parameterization of pressure and
altitude/tilt patterns in children with dysgraphia can be used for
preliminary diagnosis of this writing disorder.

Index Terms—Dysgraphia, handwriting analysis, handwriting
proficiency screening questionnaire (HPSQ), intrawriter normal-
ization, rating.

I. INTRODUCTION

WRITING is a complex form of language production
ranging from the idea of conceptualization to motor

execution by hand, meaning handwriting [1]. Handwriting is
a complex human activity, considered to be an “overlearned”
skill involving particularly rapid sequencing of movements
in time, which reflects the relationship between planning and
product generation [2]. Handwriting is one of the functional
daily activities required of school-aged children for their ade-
quate participation in the academic process [3]. In fact, 50%
of a child’s school day is spent performing handwriting tasks
[4], [5]. It is proposed that the mastery of lower level tran-
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scription skills such as handwriting and spelling is required
for idea conceptualization and production of high-level content
text [6]. For example, handwriting speed was found to be im-
portant for note-taking-recording important information [7], and
handwriting automaticity was correlated with children’s com-
position performance variance [8]. Despite the widespread use
of computers, handwriting still serves as a medium of commu-
nication and is a necessary life skill [3].

Most children are capable of coping with their handwriting
requirements and become proficient writers. Their handwrit-
ing is legible, and they invest little effort in the handwriting
process [9], [10]. The process of adopting the letters’ form be-
gins at the first grade (age 6 in Israel). Following two school
years of handwriting experience leads to unify an automatic
proficient manner of letters production, which occurs around
age eight [11]. Thus, children at that age who do not succeed
in developing proficient handwriting face developmental dys-
graphia [12], [13], and it is not just a matter of “tim” or “matu-
ratio.” Their functional limitations are manifested in inadequate
speed and/or product legibility [9], [14].

Dysgraphia is found among children of at least average
intelligence and who have not been identified as having any
obvious neurological or perceptual-motor problems. The preva-
lence of handwriting difficulties or developmental dysgraphia
among school-aged children varies between 10% and 30% [13],
whereas children with neurodevelopmental disabilities were
found at high risk for handwriting difficulties [15].

Researchers suggested that handwriting difficulties might
have serious consequences for the student’s overall academic
success, emotional well-being, attitude, and behavior [3], [16].
These findings reinforce the importance of identifying hand-
writing difficulties as early as possible, both as a preventive and
as a corrective aid [17].

Previous studies indicated the benefits of several methods
for both identifying and detecting unique handwriting charac-
teristics of children with dysgraphia. Two short and practical
questionnaires enable dysgraphia identification: one is desig-
nated for teachers or parents [handwriting proficiency screening
questionnaire (HPSQ)] [18] and one for the child’s self-report
[handwriting proficiency screening questionnaire for child
(HPSQ-C)] [11]. Those two scales cover three domains of dys-
graphic writing production: legibility, performance time, and
physical and emotional well-being.

Further studies indicated the benefits of a computerized
system for detection of the handwriting process and further
evaluation of the written product for detection of handwriting
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features of children with dysgraphia [13], [19]–[21]. However,
knowledge from the field of machine learning may shed more
light on the performance of features and may serve for improv-
ing both diagnosis and detection of handwriting deficits among
children with dysgraphia. Previous literature indicated the ben-
efits of sequential motor task, which requires consideration of
quantity, time, space, and pressure for diagnosis of deficient per-
formance [19], [22]–[24]. Thus, the assumption of the current
study was that unique characteristics taken from machine learn-
ing discipline of sequential task as repetitions of the same letter
may contribute to identification of children with dysgraphia. In
fact, such task performance reflects the child’s ability to control
quantitative, temporal, spatial, and pressure characteristics of
handwriting production simultaneously. Therefore, the aim of
this work is to:

1) introduce an automated and complex parameterization
approach that can be used for quantification of different
dysgraphia domains;

2) propose a simple intrawriter normalization method that
can increase discrimination/automated HPSQ total score
estimation accuracies;

3) propose a system of dysgraphia discrimination;
4) propose a system of dysgraphia rating and evaluate its per-

formance in terms of HPSQ total score estimation error.
The estimation error is defined here as a relative difference be-

tween HPSQ total score given by clinician and score calculated
automatically by the system.

The rest of this paper is organized as follows. Section II de-
scribes the dataset and methodology. Section III provides some
preliminary insight into extracted features, as well as the results
of dysgraphia discrimination and HPSQ total score estimation
using feature selection and intrawriter normalization. A discus-
sion of the results can be found in Section IV, and, finally,
conclusion is given in Section V.

II. PATIENTS AND METHODS

A. Concept of Automatic Dysgraphia Classification and
Rating

Because a reader of this work can be outside the field of
signal processing and machine learning, first, we decided to
describe the idea of automatic developmental dysgraphia rating
using a simple picture (see Fig. 1). This section is suitable more
for clinicians and researchers from the field of occupational
therapy or human–machine interaction. Those who are more
interested in the theory of handwriting signal parameterization,
mathematical model construction, and evaluation can move to
Sections II-E and II-F.

The activation of system (the way how the system works in
office of clinician during examination of children) is described
in the lower part of the picture. First, consider that the system
is a black box that has a digitizer as an input and that shows
the estimated HPSQ score on an output. The child writes a se-
quence of letters on a paper using an ink pen. The paper is placed
on a surface of digitizer that is recording the whole process of
writing. After the child finishes, the system performs automatic
handwriting analysis and estimates child’s HPSQ score. This
can be used as a preliminary diagnosis and potential recommen-

dation of seeing a therapist who can do a deeper analysis and a
final diagnosis.

In our case, the black box has four main parts (see the Fig. 1).
1) Sequential writing acquisition—a digitizer used for the

acquisition and specific sequential handwriting task con-
sisted of repeated cursive Hebrew letter HET (for more
information, see Section II-D).

2) Feature extraction—in this part of system, the handwriting
is quantified, i.e., we describe kinematic aspects (veloc-
ity, jerk, acceleration, duration, etc.), handwriting geom-
etry (width, height, orientation, etc.), handwriting fluency
(tremor, irregularities in velocity, etc.), in-air movement
(movement of pen when its tip is not touching the surface
of paper), and other characteristics (see Section II-E).

3) Intrawriter normalization—some of the previously ex-
tracted features are very writer dependent. For example,
consider that velocity is very individual and it affects the
value of all other features. In order to suppress the indi-
viduality in handwriting and emphasize dysgraphic fea-
tures, it is necessary to introduce some kind of intrawriter
normalization. In our work, it is performed by a simple
subtraction (see Section II-E5).

4) Dysgraphia rating—in this part, we send the values of
previously normalized features to a mathematical model
(equation) whose output is the estimated HPSQ score. In
our work, we employed a model based on trees whose
nodes are the values of the features. During the estimation
of the HPSQ, we begin from the root and ask a question:
“Is the value of the feature greater or smaller than a specific
threshold?” If the value is smaller, we move to the next
node on the right, otherwise on the left. We repeat the
questions with the different features until we reach the last
node. This last node holds a specific value of HPSQ that is
used as an estimate (for deeper description of classification
and regression trees (CART), see Section II-F4).

We described the process of activation. However, to activate
this system, we must first train it, which means that we must
identify the features that are significant for dysgraphia rating,
we must find the feature that is suitable for intrawriter nor-
malization, and, finally, we must construct the tree (identify its
structure, features on nodes, and thresholds). Generally, we call
it a training phase. Training is performed during development
of system, and it is described by the upper part of Fig. 1.

5) Acquisition of the training database—in order to cre-
ate a robust model with good sensitivity and specificity,
we must train the system using a complex database that
contains handwriting of children (healthy and with dys-
graphia) with different HPSQ scores (given by clini-
cians). For more information about our database, see
Section II-B.

6) Extraction of all the possible features—at the beginning
of training, we do not know what features are signifi-
cant for dysgraphia rating. Therefore, we extract all the
possible features (see Section II-E), and then, we try to
identify those that are significant.

7) Finding optimal feature for intrawriter normalization—
in the next step of system training, we must identify a
feature that is suitable for intrawriter normalization. In
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Fig. 1. Process of training and activation of the automatic dysgraphia classification and rating system.

our work, we tested all the possible combinations (see
Section II-E5).

8) Feature selection—as was already mentioned, not all fea-
tures are significant for dysgraphia rating. Some can be
redundant, some irrelevant, etc. We try to find the small-
est possible subset of features that will provide the best
estimation power. For this purpose, we used a combina-
tion of two techniques; see Section II-F2.

9) Model training—in this step, we find the best structure
of tree and optimal thresholds (see Section II-F4).

10) Model evaluation—in step 8, we try to find the best fea-
ture subset. For each subset, we train one model (tree)
and evaluate it (see Section II-F1). It means we use
some children from the database for training and some
for testing (see Section II-F5). In the case of testing,
we know the real HPSQ score given by clinician and
the HPSQ score estimated by the system. We can calcu-
late difference of these two values and monitor its trend.
If the value of this difference decreased, it means that
we can still improve rating accuracy and we are trying to
find better subset of features. If the difference reached its
minimum, we stop training and store information about
optimal feature subset, normalization feature, and model
parameters. At this point, we can distribute the system
and use it for rating.

B. Study Participants

Two groups of handwriters (proficient and dysgraphic), each
consisting of 27 third-grade male and female pupils, aged 8
and 9, were included in the study. Dysgraphic handwriters were
identified via the standardized and validated ten-item question-
naire for handwriting proficiency (HPSQ) [18]. All participants
were born in Israel, used the Hebrew language as their primary
means of verbal and written communication, and were right-
hand dominant. The proficient handwriters were matched to the
participants in the poor handwriting group on the basis of gen-
der, age, school, and class. There were no significant differences
between the two groups with respect to their age (8.38 ± 0.22
years for the proficient handwriters and 8.32 ± 0.30 years for the
dysgraphic handwriters) and gender ratio (13 girls and 14 boys
in each group). Children with known psychiatric/emotional dis-
orders, autistic tendencies, physical disabilities, or neurological
or systemic disease were excluded from the study.

C. Handwriting Proficiency Screening Questionnaire

The HPSQ is a ten-item questionnaire developed to spot
school-aged children with handwriting difficulties based on their
teacher’s observation. These ten items cover the most important
indicators of handwriting deficiencies, i.e., legibility, perfor-
mance time, and physical and emotional well-being were scored
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Fig. 2. Representative sequential writing samples selected from our database.

Fig. 3. Template that was copied by children.

on a five-point Likert scale (from 0—never to 4—always) and
a final score is summed. The examples of the items in each
category are: Legibility: Is the child’s handwriting readable?
Performance time: Does the time given in class for copying
tasks from the blackboard is enough for the child? Physical
and emotional well-being: Does the child complain about pain
while writing? (for more details, see [18]). The questionnaire’s
reliability and validity were established, and a sum of 14 was
determined as the cut of score for handwriting deficiency among
school-aged children in Israel [18]. In the present study, the in-
ternal reliability for the entire scale was found to be α = 0.95.
The HPSQ is now in the process of adaptation in more than ten
countries worldwide (e.g., Spain).

D. Handwriting Acquisition

We used Computerized Penmanship Evaluation Tool (Com-
PET, previously named POET) [25], which is standardized and
validated handwriting assessment utilizing a digitizing tablet
and online data collection and analysis software. It was devel-
oped to collect objective measures of the handwriting process
(for more details, see [25]). In the present study, children were
asked to write a sequence of seven semi-HET (letters (as pre-
sented to them in Fig. 3). This pattern has been used in previous
studies, where authors analyzed nature of control of pen stroke
size while writing [26], [27]. The pattern was written on A4 size
lined paper affixed to the surface of a WACOM Intuos II xy dig-
itizing tablet (404 × 306 × 10 mm) using a wireless electronic
pen with a pressure-sensitive tip (Model GP-110). Displace-
ment, pressure, and pen tip angle were sampled at 100 Hz via a
1300-MHz Pentium (R) M laptop computer.

Fig. 2 represents sequential semi-HET letter writing of chil-
dren without (C, controls) and with dysgraphia (D) from our
database. As can be seen, while a child without dysgraphia per-

Fig. 4. Altitude/tilt and azimuth information.

forms the writing task with almost no “in-air” motions, in a
sequential way, the child with dysgraphia needs more time, and
motion in-air between the written strokes and his performance
is less sequential (especially at the beginning of writing, see the
left part of the second figure). Such findings are similar to previ-
ous, while children with dysgraphia stayed in-air more time than
proficient writers, and their writing was less automatic [19], [25].

The ComPET system enables dynamic handwriting evalua-
tion while analyzing temporal, spatial, and pressure measures
for each writing stroke. In the present study, a stroke is defined
as the sequential written line from the point at which the pen
touches the paper (applying pressure of more than 50 nonscale
units) until the point it leaves the paper [28].

E. Handwriting Features

Our first objective was to introduce a complex parameteri-
zation approach that can be used for quantification of different
manifestations of dysgraphia. In this work, we considered a
large and complex set of the features that quantify handwriting
geometry, dynamics, tremor, pressure, and altitude. We used
the conventional features [19], [21], [25], [29] as well as new
and more complicated parameters proposed in our recent works
for analysis of micrographia and generally Parkinsonic (PD)
dysgraphia [30], [31]. The digitizing tablet is able to capture
several signals. These include position of the pen tip in terms of
x and y coordinates (x[n], y[n]), time stamp (t[n]), and a binary
variable (b[n]), being 0 for pen-up state (in-air movement) and
1 for pen-down state (on-surface movement). This means that
besides the on-surface movement, the tablet is able to track x[n]
and y[n] information when the pen is not touching the tablet
surface too. It has been already proven that in-air movement
brings the additional and valuable information to the overall
handwriting analysis [32]. Moreover, it increases PD dysgraphia
identification accuracy [33], [34]. Therefore, we included in-air
movement analysis as well. In addition to the previously men-
tioned signals, we processed pressure exert on the tablet surface
during writing (p[n]), information of pen altitude/tilt (a[n]), and
azimuth (az[n]) (see Fig. 4).

The on-surface or in-air movement can be further divided
into horizontal (in direction of x[n]) and vertical (in the di-
rection of y[n]) one. A sample of trajectory is then defined
as tr[m] =

√
(x[n + 1] − x[n])2 + (y[n + 1] − y[n])2 for m =

0, . . . , n − 1. Notation of handwriting feature has format INF:
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DIR-FN (HL), where INF indicates processed information (ON
for on-surface, AIR for in-air, and P for pressure), DIR denotes
direction (H for horizontal and V for vertical), FN holds feature
name, and HL statistic used for transformation to scalar value
(see Section II-E4). For example, AIR: H-VEL (med) means
median of horizontal velocity during in-air movement.

We divided the feature set into three groups: kinematic fea-
tures, nonlinear dynamic features, and other features. A deeper
description of these features is beyond the scope if this paper;
however, we always refer to the publications that contain a suf-
ficient definition.

1) Kinematic Measures: It has been shown that various kine-
matic aspects are affected in children with dysgraphia [13], [19],
[21], [25], and several measures were proposed for quantifica-
tion of these disruptions. We can consider these measures as
conventional ones, because they are used in a wide range of
handwriting analysis applications. In our work, we used these
kinematic and spatiotemporal features (to analyze the whole
handwriting and particular strokes as well): speed (SPEED, tra-
jectory divided by duration), velocity (VEL, rate at which the
position of a pen changes with time), acceleration (ACC, rate at
which the velocity of a pen changes with time), jerk (JERK, rate
at which the acceleration of a pen changes with time, reflects
the smoothness of the movement, and can provide the infor-
mation about the coordination of finger and wrist movements),
normalized jerk (N_JERK, normalized by movement duration),
width (WIDTH), height (HEIGHT), orientation (ORIENT, de-
scribe slope of handwriting), duration (DUR), and length (LEN,
length of trajectory) [29], [33], [35], [36].

2) Nonlinear Dynamic Features: From the signal process-
ing point of view, handwriting is time series that is the result
of several interacting physiological mechanisms. This kind of
signal contains complex fluctuations, which could provide the
information related to underlying processes and states of the
physiological system. Disfluent movement and irregular muscle
contractions introduce randomness to the handwriting and in-
crease its complexity (e.g., add tremor, more handwriting inter-
ruptions, sudden changes in velocity, etc.). We hypothesize that
D children with deficient fine motor skills, poor dexterity, poor
muscle tone, or unspecified motor clumsiness manifest higher
complexity of handwriting. However, this complexity random-
ness is difficult to analyze using only kinematic measures. To
uncover hidden complexities, several features were proposed by
the research community, and some of them were first used for
analysis of dysgraphia in this work.

The first of them is correlation dimension (CD), which sta-
tistically measures attractor geometry in the phase space. CD
is related to a number of independent variables necessary for
generating the attractor [37]. Another dimension measure frac-
tal dimension is based on a number of basic building blocks
that form a pattern [38]. To quantify the regularity embedded
in a time series, we used Ziv-Lempel complexity (ZLC) [39].
Possible long-term dependencies in the analyzed signal were
described by Hurst exponent [40].

Next, we used a set of features based on entropies. The
entropy is a measure of uncertainty, and it can be used to
quantify the complexity of a system. In our work, we focused
on Shannon entropy (SHE) [30], first-order Shannon entropy

(SHE1) [41], second-order Rényi entropy (RE) [30], correlation
entropy (CE) [42], first-order Rényi block entropy (RBE1) [43],
second-order Rényi block entropy (RBE2) [43], permutation en-
tropy (PE) [44], normalized PE, approximate entropy (AE) [45],
sample entropy (SE) [45], and normalized recurrence time prob-
ability density entropy [46]. REs quantify the loss of information
in time in a dynamic system, CE and first-order SHE give an
indication of the predictability of the nonlinear time series, and
PE takes into account temporal information in the time series.
The only difference between AE and SE is that SE does not
evaluate a comparison of embedding vectors with themselves.
Approximate and sample entropies are usually used with Heav-
iside kernel (HEAV); however, in this work, we extended these
features by the other kernels like Gaussian (GAUSS), expo-
nential (EXP), Laplacian (LAPL), circular (CIRC), spherical
(SPHE), Cauchy (CAUCH), and triangular (TRIAN) proposed
in [47].

Another representative of nonlinear dynamic features is first
minimum of mutual information [43]. To include also a mea-
sure of sensitivity to an initial condition, the largest Lyapunov
exponent [48] was employed (its absolute value LLE and its pre-
diction error PE_LLE). Finally, we used detrended fluctuation
analysis (DFA) to characterize the self-similarity of the graph
of a signal from a stochastic process [49]. In this field, normal-
ized scaling exponent (NSE_DFA) and fluctuation amplitudes
(FA_DFA) were evaluated.

3) Other Features: The ability to make handwriting fluent
with minimum of unnecessary interruptions (interruption is con-
sidered as a change from on-surface to in-air movement and it
is closely related to a number of strokes in handwriting) can
be quantified by a number of interruptions (N_INT) and its
normalized version, relative number of interruptions (RN_INT,
normalized by duration).

The last measure that quantifies tremulous/noisy parts of
handwriting (and indirectly its complexity) is median of power
spectral density. This parameter takes into account a distribution
of energy in power spectrum, and its increased value indicates
a significant presence of high-frequency parts [50].

A feature that is based on energy of an analyzed signal is
Teager–Kaiser energy operator (TKEO). The advantage of this
feature is that it takes into account also signal frequency [51].
This feature found its place in the field of handwriting anal-
ysis; usually, it is used for description of pressure profile
(PRESS) [52]. It quantifies the total pressure over a small period
of time.

Some of the signals recorded by digitizer were directly
used as the features and were forwarded to a postprocessing
step described in Section II-E4. Specifically, we used pressure
(PRESS), azimuth (AZIM), and altitude (ALT).

4) Handwriting Features Postprocessing: The feature ex-
traction stage produces the parameters represented either by
scalar values or by vectors. An example of vector representation
is pressure profile or velocity calculated for each stroke. How-
ever, to be able to carry out the next processing like statistical
analysis, classification, and regression, the vector representation
must be transformed to a scalar value. This is usually done by
an extraction of some kind of statistics (we call these statistics
high-level features). We extracted these 62 high-level features:
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1) maximum (max), minimum (min), position of max
(pmax), position of min (pmin), relative position of max
(rpmax), relative position of min (rpmin);

2) range, relative range (rr), interquartile range (iqr), relative
interquartile range (riqr), interdecile range (idr), relative
interdecile range (ridr), interpercentile range (ipr), relative
interpercentile range (ripr), studentized range (sr);

3) mean, geometric mean (gmean), harmonic mean (hmean),
mean excluding 10%, 20%, 30%, 40% and 50% of outliers
(mean x%), median (med), mode;

4) variation (var), standard deviation (std), mean absolute
deviation (mad), median absolute deviation (mead), ge-
ometric standard deviation (gsd), coefficient of variation
(cv), index of dispersion (id);

5) 3rd, 4th, 5th and 6th moment (xm), kurtosis (kurt), skew-
ness (skew), Pearson’s first skewness coefficient (skew1),
Pearson’s second skewness coefficient (skew2);

6) 1st, 5th, 10th, 20th, 30th, 40th, 60th, 70th, 80th, 90th, 95th
and 99th percentile (xp), 1st and 3rd quartile (xq);

7) slope, offset (off) and error (err) of linear regression;
8) modulation (mod), Shannon entropy (ent), first-order

entropy (1ent), second-order RE (2ren), first correlation
coefficient (1cc).

5) Intrawriter Normalization: The second objective of this
study is to propose a simple intrawriter normalization method
that can increase discrimination/automated HPSQ total score es-
timation accuracies. In pattern recognition field, the convenience
of score normalization before classification is well known. There
is variability in tasks performed by human beings. This vari-
ability is evident between different people (interwriter) but also
when looking at different realizations of a same task performed
by a specific writer. One example could be a signature. The
signature of different people is different. On the other hand,
different realizations of a specific signature are not exactly the
same due to human variability. This means that a direct compar-
ison between measurements could provide wrong conclusions.
A classic way to improve the results is trying to remove this vari-
ability. It can be done using the samples of the same user or using
the samples of different users, usually known in the technical
literature as cohorts or universal background model (UBM).

For instance, in speaker verification, the UBM is a refer-
ence speaker model to which the target speaker is compared
during the classification process to produce a log-likelihood
ratio (LLR) [53]. During classification, the LLR can be calcu-
lated from the target speaker model and background model. In
essence, this configuration can be viewed as the UBM normal-
izing for the characteristics of the impostor population that has
potential to affect the classification score.

Another successful technique is called cohort normaliza-
tion [54], which tries to normalize classification scores in the
same manner as the UBM. Rather than using a world model, an
impostor person model with similar characteristics to the target
person is dynamically selected from a small cohort of similar
impostor people. This cohort is selected based on a distance
metric between models.

This implies that a predefined classification threshold is setup
to decide if a sample belongs to an impostor or a genuine user.

Thus, rather than having an adaptive threshold, the score is
adapted itself using a reference (UBM or cohort).

In this paper, we propose a normalization scheme similar to
the cohort strategy, but rather than using other users, we use other
handwriting features of the same user. Mathematically, for a spe-
cific user, we extract a set of M features F = f1 , f2 , . . . , fM .
For instance, the feature f1 could be the mean speed of hand-
writing, f2 the mean acceleration, and so on. Considering that a
normalized feature is called fnorm , the following normalization
can be applied for a specific user n:

fnorm = fa(n) − fb(n) (1)

where fa and fb are different features, and a, b ∈ 1, . . . ,M . We
tested all combinations of features’ normalization.

F. Statistical Analysis and Classification

1) Preliminary Statistical Analysis: To obtain some prelim-
inary insight into statistical properties of the features, we fol-
lowed [49] and calculated nonparametric Spearman’s rank sum
correlation [55] coefficient and mutual information (MI) be-
tween the features and associated clinical diagnosis. MI is a
measure of the amount of the information shared by two random
variables. The larger the value of MI, the stronger statistical as-
sociation between the feature and the response can be observed.
MI is defined as

I(X;Y ) =

∫

X

∫

Y

f(x, y)log2

(
f(x, y)

fX (x)fY (y)

)
(2)

where X and Y are random variables with associated joint
probability density function f(x, y) and marginal density func-
tions fX (x) and fY (y), respectively. We calculated MI us-
ing marginal entropies H(X) and H(Y ) and joint entropy
H(X,Y ), defined as

I(X;Y ) = H(X) + H(Y ) − H(X,Y ). (3)

We also performed the Mann–Whitney U test to compare the
handwriting features between C and D children. The Mann-
Whitney U test is a nonparametric statistical test used to assess
whether two independent groups are significantly different from
each other. Additionally, every feature was used separately as
an input to the linear discriminant analysis (LDA) and random
forest (RF) classifiers to evaluate its discrimination power. The
classifiers were evaluated using classification accuracy (ACC),
sensitivity (SEN), specificity (SPE), and tradeoff between sen-
sitivity and specificity (TSS). Definition of these metrics can
be found in Section II-F2. For each feature, we also calculated
its median and standard deviation in D or C group. Finally, we
mentioned relative difference of both medians D > C defined as
(median D − median C)/median C.

We evaluated statistical properties of the features using Spear-
man’s rank sum correlation, MI, Mann–Whitney U test, TSS
(LDA), and TSS (RF) separately. For each case, we selected
five most significant features that were included into the fi-
nal overview table. In addition, we plotted density estimations
(computed using kernel density estimation with Gaussian ker-
nels) of top three features with the highest discrimination power
according to the Mann–Whitney U test.
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In the next step, we were interested in ability of the features to
rate the dysgraphia and estimate HPSQ total score. In addition,
in this step, we employed Spearman’s rank sum correlation and
Mann–Whitney U test; however, in these cases, we tested an
association between the features and HPSQ. Finally, for each
parameter individually, we trained CART and evaluated its esti-
mation power by mean absolute error (MAE) and two kinds of
estimation errors [56]

EE1 =
MAE

range(HPSQ)
(4)

EE2 =
MAE

max(HPSQ)
(5)

where the function range(HPSQ) calculates the range from
HPSQ data available during the analysis, while the function
max(HPSQ) returns the maximal score that can be theoretically
reached in the specific scale. Theoretically, EE1 is more relevant
because it takes into account only HPSQ values that were inside
the database. To have some visual insight into the associations
between the features and HPSQ, we selected three parameters
with the highest Spearman’s rank sum correlation coefficients
and plotted correlation graphs.

2) Feature Selection: A general problem in data analysis is
the curse of dimensionality that can be summarized as follows:
The presence of a very large number of the features (parame-
ters) inhibits the detection of the useful patterns underlying the
data. The curse of dimensionality often obstructs the subsequent
classification process. In order to reduce the dimensionality of
the input feature set and also remove the nonrelevant features
before the classification, we employed a feature selection pro-
cess in which the high-dimensional feature space is analyzed
in direction of obtaining a compact subset of features holding
the maximum clinically relevant information without a loss of
predictive information. In addition, the feature selection process
does considerably reduce a risk of overfitting and also associ-
ated computational performance requirements. Moreover, it has
been proven in many research articles that reduction of the fea-
ture space before the classification can significantly improve the
model’s predictive power [57].

Many different feature selection methods exist. They are gen-
erally divided into the following categories: filters, wrappers,
and embedded methods [58]. The filter methods select the fea-
ture subsets from entire feature set independently of chosen
learning algorithm. Wrapper methods search for best feature
subset for a given classifier; however, wrapper methods are of-
ten computationally very expensive. Last, embedded methods
select feature subset using the information obtained from a clas-
sifier. In this work, we used a two-step feature selection process
consisting of the preprocessing step using a filter-based algo-
rithm and the processing step using a wrapper approach. The
rationale behind this particular approach is the fact that the fil-
ter methods are faster and provide better generalization than
wrapper or embedded methods, and therefore, its usage as the
preprocessing step can mitigate the requirements of the sub-
sequent wrapper-based methods [59]. In contrast, the wrapper
methods do utilize the learning algorithm of interest to score the
subsets of features according to their predictive power.

In the preprocessing step, the minimum redundancy maxi-
mum relevance (mRMR) algorithm was considered. We used
the implementation of Tsanas, Little, and McSharry [60] and
computed mRMR using Spearman’s correlation coefficient as
a criterion to quantify the statistical relationships between the
features and the response in mRMR. The features that did pass
the preprocessing step (for the purpose of this paper, we used 20
features as a reasonable tradeoff between a size of the feature set
and the associated computational requirements) were selected
as the candidates for further processing and classification. Con-
sequently, we performed the sequential floating forward selec-
tion (SFFS) algorithm to determine the best possible subsets
of the features. Furthermore, we have recently introduced a
novel classification performance criterion for determining the
best available feature subset by taking into account the relation-
ship between classification sensitivity and specificity, named
TSS [61]. The value of this parameter was used for stop crite-
ria in SFFS. Classification accuracy (ACC), sensitivity (SEN),
specificity (SPE), and TSS are defined as

ACC =
TP + TN

TP + TN + FP + FN
(6)

SEN =
TP

TP + FN
(7)

SPE =
TN

TN + FP
(8)

TSS = 2sin( π S E N
2 ) sin( π S P E

2 ) (9)

where TP (true positive) and FP (false positive) represents the
number of correctly identified D subjects and a number of sub-
jects identified as D, but being without dysgraphia. Similarly,
TN (true negative) and FN (false negative) represent the to-
tal number of correctly identified controls (C), and D children
identified as controls.

3) Classification: The third objective of this work is to pro-
pose a system of dysgraphia discrimination. Term discrimina-
tion in this work is considered as binary classification from the
machine-learning point of view. During preliminary statistical
analysis, we used the LDA and RF classifiers to evaluate the fea-
tures’ discrimination power. LDA is a statistical method used
for separation of two or more classes. For the prediction, LDA
utilizes the conditional probability density functions fk , where
k represents the particular class. For the purpose of this study,
f0 and f1 will represent the conditional probability functions
of C and D children, respectively. LDA assumes that the fk are
normally distributed, and they share a common variance matrix.
LDA estimates the parameters of fk (mean and covariance) us-
ing the data and uses them to construct a linear function called
the decision criterion used for the prediction. In practice, the
assumptions of LDA never hold; however, LDA still gives rea-
sonably good results comparable with logistic regression [62].

However, we observed that RF provided better sensitivity
and specificity; therefore, we decided to use this classifier in
consequent classification based on feature selection and in-
trawriter normalization. RF is an ensemble learning algo-
rithm that operates by constructing a multiple of base learners
(weighted decision trees) [63]. Typically, the RF classifies the
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TABLE I
PRELIMINARY FEATURE ANALYSIS IN TERMS OF DISCRIMINATION POWER

Feature r p

(SC)
MI p

(MW)
D >

C
median

(C)
std
(C)

median
(D)

stdxbrk
(D)

ACC SEN SPE TSS ACC SEN SPE TSS

(LDA) (LDA) (LDA) (LDA) (RF) (RF) (RF) (RF)

ALT
(cv)

0.5074 0.0001 0.4204 0.0002 46.97 0.1823 0.302 0.3437 0.6865 64.29 40.74 86.21 1.50 50.00 51.85 48.28 1.4144

ALT
(id)

0.4787 0.0002 0.2841 0.0004 62.62 8.8984E+05 2.3154E+06 2.3808E+06 9.1177E+06 66.07 37.04 93.10 1.46 67.86 70.37 65.52 1.7002

PRESS
(60p)

0.4202 0.0013 0.4926 0.0019 19.63 172 43.21 214 35.85 71.43 74.07 68.97 1.75 67.86 66.67 68.97 1.6995

ON:
H-
N_JERK
(cv)

0.4168 0.0014 0.4164 0.0021 13.61 0.9566 0.2595 1.1073 0.2407 66.07 62.96 68.97 1.67 50.00 55.56 44.83 1.4102

PRESS
(med)

0.4024 0.0021 0.5622 0.0029 19.81 166 43.66 207 38.58 73.21 70.37 75.86 1.78 57.14 59.26 55.17 1.5277

Feature r p

(SC)
MI p

(MW)
D >

C
median

(C)
std
(C)

median
(D)

std
(D)

ACC SEN SPE TSS ACC SEN SPE TSS

(LDA) (LDA) (LDA) (LDA) (RF) (RF) (RF) (RF)
ON:
V-
FA_DFA
(mean
10%)

0.0851 0.5328 0.6442 0.5332 12.39 9.6679E+07 6.5636E+07 1.1036E+08 5.9985E+07 55.36 48.15 62.07 1.48 58.93 51.85 65.52 1.5403

ALTxbrk
(5p)

−0.2057 0.1282 0.6354 0.1291 −70.00 1.5938E+07 1.9028E+07 9.3750E+06 1.1344E+07 55.36 40.74 68.97 1.44 76.79 74.07 79.31 1.8279

ON:
V-
PE_LLE
(1q)

0.2686 0.0453 0.6237 0.0472 23.92 0.1307 0.0569 0.1718 0.0562 67.86 70.37 65.52 1.70 55.36 48.15 62.07 1.4825

PRESS
(off)

0.2134 0.1144 0.6132 0.1155 18.36 155.61 47.08 190.61 50.28 60.71 59.26 62.07 1.58 57.14 55.56 58.62 1.5261

ON:
V-
FA_DFA
(1q)

−0.147 0.2795 0.6085 0.2792 −24.67 1.4036E
+06

6.7119E
+05

1.1259E
+06

6.5486E
+05

66.07 74.07 58.62 1.66 66.07 55.56 75.86 1.6377

Feature r p (SC) MI p (MW) D > C median
(C)

std
(C)

median
(D)

std
(D)

ACC SEN SPE TSS ACC SEN SPE TSS

(LDA) (LDA) (LDA) (LDA) (RF) (RF) (RF) (RF)
ALT
(idr)

0.369 0.0051 0.3351 0.0064 30.00 1.3125E
+07

5.3131E
+06

1.8750E
+07

9.1506E
+06

75.00 74.07 75.86 1.81 58.93 66.67 51.72 1.5462

PRESS
(3q)

0.3936 0.0027 0.4317 0.0036 17.81 180 41 219 33.68 73.21 77.78 68.97 1.78 55.36 62.96 48.28 1.4892

PRESS
(80p)

0.3926 0.0028 0.4703 0.0037 17.65 182 39.72 221 32.65 73.21 77.78 68.97 1.78 67.86 66.67 68.97 1.6995

PRESS
(70p)

0.3925 0.0028 0.3902 0.0037 17.89 179 41.94 218 34.4 73.21 77.78 68.97 1.78 64.29 62.96 65.52 1.6425

PRESS
(95p)

0.3529 0.0076 0.4426 0.0091 11.45 201 31.23 227 28.51 73.21 77.78 68.97 1.78 55.36 66.67 44.83 1.4749

Feature r p

(SC)
MI p

(MW)
D >

C
median

(C)
std
(C)

median
(D)

std
(D)

ACC SEN SPE TSS ACC SEN SPE TSS

(LDA) (LDA) (LDA) (LDA) (RF) (RF) (RF) (RF)
ALT
(60p)

−0.1339 0.3251 0.3702 0.3247 −14.29 2.2500E
+07

1.8863E
+07

1.9688E
+07

8.9280E
+06

44.64 59.26 31.03 1.30 82.14 81.48 82.76 1.8961

ALT
(1p)

−0.1791 0.1865 0.5793 0.1867 −116.67 1.2188E
+07

1.9513E
+07

5.6250E
+06

1.1679E
+07

50.00 44.44 55.17 1.40 82.14 77.78 86.21 1.8891

ON:
H-ZLC

−0.0785 0.5653 0.5206 0.566 −0.64 0.3604 0.0735 0.3581 0.0738 50.00 59.26 41.38 1.40 78.57 74.07 82.76 1.8464

P:
ZLC

−0.0785 0.5653 0.5206 0.566 −0.64 0.3604 0.0735 0.3581 0.0738 50.00 59.26 41.38 1.40 78.57 74.07 82.76 1.8464

ON:
V-ZLC

−0.0785 0.5653 0.5206 0.566 −0.64 0.3604 0.0735 0.3581 0.0738 50.00 59.26 41.38 1.40 78.57 74.07 82.76 1.8464

1 D—children with dysgraphia, C—children without dysgraphia, r—Spearman’s rank correlation coefficient, p (SC)—significance level of Spearman’s rank correlation, MI—
mutual information, p (MW)—significance level of Mann-Whitney U test, D > C—relative difference of medians of D and C group [%], ACC—accuracy [%], SEN—sensitivity
[%], SPE—specificity [%], TSS—trade-off between sensitivity and specificity, LDA—linear discriminant analysis, RF random forests, ON: *—on surface movement, P: *—
pressure information, *: H-*—horizontal movement, *: V-*—vertical movement, ALT—altitude, PRESS—pressure, N_JERK—normalized jerk, FA_DFA—fluctuation amplitudes
of detrended fluctuation analysis, PE_LLE—prediction error of largest Lyapunov exponent, ZLC—Ziv–Lempel complexity, cv—coefficient of variation, id—index of dispersion,
xp—xth percentile, med—median, mean x%—mean excluding x% of outliers, xq—xth quartile, off—offset of linear regression, mead—median absolute deviation, idr—interdecile
range.
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new sample by the majority of votes from the base learners. RF
has got two tuning parameters: the number of the features over
which to search to construct each branch of each tree and the
number of trees in the classifier. We used the settings, where the
number of the features over which to search to construct each
branch is equal to the square root of the number of input features
and the number of trees is decided to be equal to 500. We chose
this particular algorithm for our classification setup considering
its ability to deal reasonably well with high-dimensional and
highly correlated data with complex interactions and its ability
to rank the importance of used variables.

4) Classification and Regression: The fourth and last objec-
tive of this study is to propose a system of dysgraphia rating
based on estimation of HPSQ total score. To estimate this score,
we employed the CART. This is a nonparametric learning al-
gorithm used either for classification of regression. The output
of this algorithm is a single decision tree, which is basically
a collection of rules based on the training data. The rules are
designed to get the best split to model the dependent variable. A
recursive procedure, which continues in constructing new rules
for each split, is used to acquire a tree-like structure of rules.
When the algorithm detects no further gain by splitting, then
the splitting process is stopped. After this step, the technique
called pruning is applied to reduce the size and complexity of
the decision tree and, hence, improves the predictive capability
of the final model.

5) Validation: Cross validation is a technique used for model
validation. Its primary purpose is assessing how the results of
an analysis will generalize to a previously unseen data. A lot
of different cross-validation setups exist. In this work, we de-
cided to use leave-one-out cross validation. In this approach,
the dataset is divided into two groups. The first one is used as a
training dataset, and its size is N − 1, where N is the number
of samples contained in the whole dataset. The other group is
used as a testing dataset, and its size is 1.

III. RESULTS

The results of the preliminary feature analysis in terms of
discrimination power can be found in Table I. We considered
five evaluation scenarios, while in each scenario, we identified
first five most significant features (scenarios 1 and 2 are fused
in Table I, because the same significant features were selected).
Regarding the Spearman’s rank correlation, the most signifi-
cant feature is ALT (cv) (r = 0.5074, p = 0.0001). Generally,
the features based on altitude, pressure, and jerk (on-surface)
correlated well with binary state (C/D). Next, similarly to the
correlation measure, the Mann–Whitney U test identified ALT
(cv) (p = 0.0002) as the feature with the highest discrimination
power. Density estimation plots of top three features with the
highest discrimination power according to the Mann–Whitney U
test can be found in Fig. 5. The most significant feature ac-
cording to the MI is ON: V-FA_DFA (mean 10%), where we
observed MI = 0.6442.

The first scenario that evaluated the features according to per-
formance of classifier employed classification by LDA, where
the best results were observed in the case of altitude feature
ALT (idr) (ACC = 75.00%, SEN = 74.07%, SPE = 75.86%,

Fig. 5. Density estimation plots (computed using kernel density estimation
with Gaussian kernels) of top three features with the highest discrimination
power according to the Mann–Whitney U test (C—children without dysgraphia,
D—children with dysgraphia).

TABLE II
DYSGRAPHIA DISCRIMINATION BASED ON FEATURE SELECTION AND

INTRAWRITER NORMALIZATION

Normalized by ACC SEN SPE TSS No.

ON: V-JERK (10p) 96.43 96.30 96.55 1.9956 7
ON: H-JERK (rpmin) 94.64 96.30 93.10 1.9896 6
ON: V-JERK (1p) 94.64 92.59 96.55 1.9886 5
no normalization 92.86 92.59 93.10 1.9826 4
AIR: V-JERK (10p) 92.86 92.59 93.10 1.9826 5
ON: JERK (1q) 92.86 88.89 96.55 1.9771 5
AIR: JERK (1q) 91.07 92.59 89.66 1.9727 6
AIR: H-JERK (10p) 91.07 88.89 93.10 1.9711 5
AIR: H-JERK (1q) 91.07 88.89 93.10 1.9711 7
AIR: V-JERK (1q) 91.07 88.89 93.10 1.9711 5

1 ACC—accuracy [%], SEN—sensitivity [%], SPE—specificity [%], TSS—trade-
off between sensitivity and specificity, No.—number of selected features, ON: *—on
surface movement, AIR: *—in-air movement, *: H-*—horizontal movement, *: V-*—
vertical movement, xp—xth percentile, xq—xth quartile, rpmin—relative position of
minimum.

and TSS = 1.81). The last and probably the most interesting
scenario included classification by RFs, where, using just 60th
percentile of altitude, we are able to identify dysgraphia with
81.48% sensitivity (SPE = 82.76%, TSS = 1.8961).

Although, using just a single-feature classification, we are
able to exceed 80% limit in terms of sensitivity and specificity,
we expected better results when employing feature selection and
simple intrawriter normalization. These results can be found in
Table II (they are related to the second and third objective of this
work: intrawriter normalization and dysgraphia discrimination).
As can be seen, normalization by on-surface features derived
from jerk can increase ACC, SEN, and SPE by approximately
4%. When considering classification without normalization, we
reached ACC = 92.86%, SEN = 92.59%, SPE = 93.10%, and
TSS = 1.9826 (four features selected by SFFS), while in the
case of normalization by ON: V-JERK (10p), we reached ACC
= 96.43%, SEN = 96.30%, SPE = 96.55%, and TSS = 1.9956.
In this case, the SFFS selected seven features based on alti-
tude, azimuth, velocity, acceleration, jerk, and fluctuation anal-
ysis: ALT (1q), ON: H-FA_DFA (skew2), AIR: V-VEL (pmin),
AZIM (4m), ON: H-ACC (80p), ALT (99p), and ON: H-JERK
(kurt).

In the next step, we investigated features’ ability to rate dys-
graphia and estimate HPSQ total score (objective 4). The results
of preliminary analysis can be found in Table III. Performance
was evaluated in terms of correlation and MI with the HPSQ,
MAE, and estimation errors evaluating CART. The most sig-
nificant correlation (r = −0.4546, p = 0.0004) with the HPSQ
total score was identified in feature derived from pressure
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TABLE III
PRELIMINARY FEATURE ANALYSIS IN TERMS OF HPSQ TOTAL SCORE ESTIMATION

Feature r p MI D > C median (C) std (C) median (D) std (D) MAE EE1 EE2

P: TKEO (off) −0.4546 0.0004 2.0030 −76.54 −2.0912 24.1664 −8.9153 12.6800 8.26 26.64 20.65
ON: H-JERK (mean) −0.4107 0.0017 2.6343 2577.31 1.4256E-10 3.9512E-10 −5.7546E-12 3.5646E-10 10.20 32.92 25.51
ALT (cv) 0.4046 0.0020 1.9957 46.97 0.1823 0.3020 0.3437 0.6865 9.78 31.55 24.45
ON: H-JERK (skew1) −0.3848 0.0034 2.8705 1789.82 0.0012 0.0036 −0.0001 0.0027 8.18 26.4 20.46
ON: H-JERK (skew2) −0.3848 0.0034 2.8560 1789.82 0.0012 0.0036 −0.0001 0.0028 8.27 26.69 20.69

Feature r p MI D > C median (C) std (C) median (D) std (D) MAE EE1 EE2
ON: V-PE_LLE (3q) 0.2098 0.1207 3.2349 29.81 0.1503 0.0635 0.2141 0.0674 10.02 32.33 25.06
ON: V-PE_LLE (80p) 0.2012 0.137 3.2057 29.57 0.1509 0.0650 0.2143 0.0685 10.43 33.64 26.07
ON: V-PE_LLE (1q) 0.1612 0.2351 3.1875 23.92 0.1307 0.0569 0.1718 0.0562 9.04 29.15 22.59
ON: V-PE_LLE (mean 50%) 0.2130 0.1150 3.1857 25.69 0.1444 0.0594 0.1943 0.0608 10.22 32.98 25.56
ON: V-PE_LLE (mean 40%) 0.2099 0.1204 3.1857 25.89 0.1442 0.0595 0.1946 0.0606 10.22 32.98 25.56

Feature r p MI D > C median (C) std (C) median (D) std (D) MAE EE1 EE2
ALT (1p) −0.1291 0.3429 2.8151 −116.67 1.2188E+07 1.9513E+07 5.6250E+06 1.1679E+07 6.24 20.14 15.61
AIR: V-JERK (pmax) −0.0756 0.5799 1.3721 24.22 1.2200E+02 2.7765E+02 1.6100E+02 6.1075E+02 6.62 21.35 16.55
ON: V-TKEO (1ent) −0.0071 0.9586 2.6118 −0.24 2.4878 0.4260 2.4818 0.5476 6.93 22.36 17.33
ALT (5p) −0.1629 0.2303 2.8643 −70.00 1.5938E+07 1.9028E+07 9.3750E+06 1.1344E+07 7.02 22.66 17.56
P: TKEO (95p) −0.0951 0.4857 2.2813 −13.19 2.8070E+02 1.5074E+02 2.4800E+02 8.0905E+01 7.04 22.72 17.61

1 D—children with dysgraphia, C—children without dysgraphia, r—Spearman’s rank correlation coefficient, p—significance level of Spearman’s rank correlation, MI—mutual
information, D > C—relative difference of medians of D and C group [%], MAE—mean absolute error, EE1—equal error rate of type 1 [%], EE2—equal error rate of type 2
[%], ON: *—on surface movement, AIR: *—in-air movement, P: *—pressure information, *: H-*—horizontal movement, *: V-*—vertical movement, ALT—altitude, TKEO—
Teager-Kaiser energy operator, PE_LLE—prediction error of largest Lyapunov exponent, xp—xth percentile, xq—xth quartile, off—offset of linear regression, cv—coefficient of
variation, skew1—Pearson’s first skewness coefficient, skew2—Pearson’s second skewness coefficient, mean x%—mean excluding x% of outliers, pmax—position of maximum,
1ent—first-order Shannon entropy.

Fig. 6. Correlation graphs of top three features with resulting lowest signif-
icance level according to Spearman’s rank correlation (C—children without
dysgraphia, D—children with dysgraphia).

P: TKEO (off). The resulting correlation graph of this parameter
and other significant features can be found in Fig. 6.

The highest MI was observed between HPSQ and features
based on largest Lyapunov exponent (on-surface). Finally, using
a single-feature approach (again feature derived from altitude),
we are able to estimate the HPSQ total score with MAE = 6.24,
EE1 = 20.14, and EE2 = 15.61. However, it is obvious that
these results are poor, and the estimation can be improved by
feature selection and intrawriter normalization (see Table IV,
objective 2 and 4: intrawriter normalization and dysgraphia rat-
ing). In the best case [normalization by ON: V-JERK (rpmin)],
we estimated the HPSQ with EE1 = 10.05% (MAE = 3.12),
which is by 3.48% better than standard (without normalization)
approach and by 10.09% better than the single-feature approach.
In this case, the SFFS selected 13 features based on pressure,
altitude, velocity, acceleration, jerk, fluctuation analysis, and
largest Lyapunov exponent: AIR: ACC (2ren), ON: H-PE_LLE
(skew2), ALT (40p), AIR: VEL (40p), AIR: V-VEL (5m), ON:
V-N_JERK (3m), AIR: H-VEL (range), AIR: JERK (ripr), ON:
H-FA_DFA (gsd), AIR: V-N_JERK (max), AIR: V-N_JERK
(rr), ON: H-N_JERK (1q), and P: TKEO (60p).

TABLE IV
HPSQ TOTAL SCORE ESTIMATION BASED ON FEATURE SELECTION AND

INTRAWRITER NORMALIZATION

Normalized by MAE EE1 EE2 No.

ON: V-JERK (rpmin) 3.12 10.05 7.79 13
PRESS (rr) 3.30 10.65 8.25 13
AIR: H-VEL (3q) 3.95 12.73 9.87 11
ON: JERK (mad) 4.08 13.17 10.21 13
ON: H-JERK (2ren) 4.09 13.19 10.22 7
no normalization 4.20 13.53 10.49 10
AIR: V-VEL (idr) 4.43 14.28 11.07 4
ON: JERK (1cc) 4.74 15.28 11.84 7
P: FA_DFA (40p) 5.15 16.62 12.88 5
PRESS (80p) 5.28 17.03 13.20 4

1 MAE—mean absolute error, EE1—equal error rate of type 1 [%], EE2—equal error
rate of type 2 [%], No.—number of selected features, ON: *—on surface movement,
AIR: *—in-air movement, P: *—pressure information, *: H-*—horizontal movement,
*: V-*—vertical movement, PRESS—pressure, VEL—velocity, FA_DFA—fluctuation
amplitudes of detrended fluctuation analysis, xp—xth percentile, xq—xth quartile,
rpmin—relative position of minimum, rr—relative range, mad—median absolute devi-
ation, 2ren—second-order Rényi entropy, idr—interdecile range, 1cc—first correlation
coefficient.

IV. DISCUSSION

The previous findings indicated lower values of sensitivity
and specificity of methods designated for handwriting defi-
ciency evaluation. For example, although the developmental test
of visual-motor integration (VMI) [64] was not designated for
this purpose, it was identified as the most commonly used tool
to assess handwriting difficulties by occupational therapists in
Canada [65]. When the VMI’s sensitivity was analyzed, it was
found that the VMI correctly identified only a small number
of the children with handwriting dysfunction (34% sensitiv-
ity) [65]. When focusing on handwriting evaluation scales, the
values of 71% sensitivity and 75% specificity were reported for
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the evaluation tool of children handwriting cursive (ETCH-C)
scale among children aged five to six years [66]. Similar val-
ues of discrimination were found in further studies focusing
on validating handwriting evaluation scales [67], [68]. When
applying a computerized system for differentiation between
healthy people and patients with varied diseases, as for ex-
ample depression, based on their handwriting, sensitivity values
raised to 82% [69]. In light of such previous findings, achiev-
ing 96% of sensitivity and specificity in the present study is
novelty.

We observed that most of the features useful for diagnosis
are based on pressure (pressure was by 17% higher in the case
of children with dysgraphia; median of pressure is 166 ± 43.66
and 207 ± 38.58 for C and D children, respectively; p = 0.0032
identified by the Mann–Whitney U test). Pressure was previ-
ously found as a sensitive measure of the individual’s perfor-
mance and served for individual’s identification and verifica-
tion [70], [71]. More specifically, this finding is in line with the
previous studies, where pressure measure differentiated between
children with developmental coordination disorders (DCD) who
have handwriting difficulties and controls with typical develop-
ment [72]. As investigated by Kao, Mak, and Lam, relationship
between pressure and complexity of task exists [73]; therefore,
we hypothesize that more complex task would further increase
the difference between both groups.

Other interesting finding is that coefficient of variation of
altitude has one of the best discrimination power among fea-
tures (this parameter was by 47% higher in the case of chil-
dren with dysgraphia; std of altitude/tilt is 0.1823 ± 0.3020
and 0.3437 ± 0.6865 for C and D children, respectively; and
p = 0.0002 identified by the Mann–Whitney U test). This prob-
ably means that children with dysgraphia are not able to hold
pen in a stable position, and therefore, the pen tilt is chang-
ing a lot in time. In fact, the tilt measure reflects the ability of
controlling a tool (pen) in order to produce a brain–hand ac-
tion. Such a control requires a proficient hand movement while
taking into account the required form, space, time, and amount
of pressure, and thus, it is sensitive to the individual’s writing
proficiency.

As single features, those based on pressure and tilt correlate
with the HPSQ better than the features based on in-air movement
(see Table III). However, as shown in the last paragraph of
Section III, all these three categories bring specific information
about dysgraphia, and their fusion into multidimensional model
provides the best estimation of HPSQ. Therefore, it is more
advantageous not to consider these features separately, but rather
in combination.

Besides pressure and tilt-based features, we also observed that
nonlinear dynamic ones provide good discrimination or HPSQ
estimation power. Specifically, this is the case of ZLC. This
measure has been widely used in biomedical signal analysis as
a metric to estimate the complexity of discrete-time physiolog-
ical signals. Aboy, Hornero, Abasolo, and Alvarez showed that
ZLC is useful as a scalar metric to estimate the bandwidth of ran-
dom processes, quasiperiodic or periodic signals [39]. In other
words, ZLC can be used to quantify regularity in handwriting.
Theoretically, fluent and well-coordinated movement results in
lower complexity of handwriting; therefore, D children with

deficient fine motor skills, poor dexterity, poor muscle tone, or
unspecified motor clumsiness manifest higher values of ZLC.

Developing methods for intraindividual variability detection
with objective measures of real activity performance goes in line
with the up-to-date trend to find the unique performance fea-
tures of each individual. The framework presented by the World
Health Organization extended the concept of health, while the
way individual performs actual daily activities (as handwriting)
and participate in life domains is relevant for his health/illness
status [74], [75]. Furthermore, the worldwide movement to-
ward personalized medicine [76] leading to the need to get
insight about the individual’s performance features for adapting
personally the appropriate intervention method. For example,
individual differences were found among children with DCD,
attention deficit hyperactive disorders, and autism who strug-
gle with handwriting difficulties [77], [78]. Application of the
method described in the present study may shed light on each
child’s performance features and adapted the most appropriate
intervention method for his specific needs.

We proposed a system that is able to rate developmental dys-
graphia with approximately 10% HPSQ estimation error, and we
believe it is possible to further decrease it, e.g., using some ad-
ditional handwriting features (e.g., the features based on empir-
ical mode decomposition [30], [31] or another machine learning
methods (e.g., quantile regression [79]). However, the HPSQ is
given subjectively according to examination of trained person;
therefore, it can happen that two trained experts rate one writer
with inconsistent results. It would be interesting to make some
tests, where ten experts rate one writer and compare interexpert
differences with the estimation error of automatic rating.

V. CONCLUSION

This paper has dealt with an automatic rating of develop-
mental dysgraphia in children population using the state-of-the-
art handwriting parameterization techniques and a simple in-
trawriter normalization approach. The work is innovative from
several points of view. First of all, it employs complex param-
eterization based on ten kinematic measures, 34 nonlinear dy-
namic, and other seven features. Moreover, we analyzed both,
on-surface and in-air movements. Second, it is the first work
that introduces intrawriter normalization applied in the field of
dysgraphia analysis. Finally, to our best knowledge, it is the first
work that introduces automatic rating of dysgraphia based on
HPSQ total score estimation.

In this paper, we analyzed sequential writing of 27 children
with dysgraphia and 27 age-matched controls who had an expe-
rience of two years of writing in school. We achieved all goals
of this work.

1) We introduced parameterization based on 51 features and
observed that those based on altitude/tilt and pressure dis-
criminate well D and C children.

2) We proposed a simple intrawriter normalization method
based on subtraction and proved that it can increase dis-
crimination accuracy by 4% and decrease HPSQ score
estimation error by 3.48%.

3) We proposed a system of automatic dysgraphia discrimi-
nation with 96% sensitivity and specificity.
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4) We proposed a system that is able to rate developmen-
tal dysgraphia and estimate HPSQ total score with 10%
estimation error.

Our findings may be used clinically for discriminating dys-
graphia among school-aged children who at least have two years
of writing experience. However, our dataset consists of 54 par-
ticipants; therefore, further research works should address the
same topic and verify the proposed concept of dysgraphia rating.
Another possible limitation of this work is related to the analysis
of in-air movement. The vertical dimension (z) is not captured in
our protocol. The digitizer only acquires orthogonal projection
of the pen coordinates when the tip of the pen is no more than
approximately 1 cm above the tablet’s surface. Therefore, it can
happen that when the writer elevates pen more than this limit,
the time series of coordinates can lose continuity between two
specific samples. Some features, especially kinematic ones, can
be distorted by this limitation. In order to suppress an impact
of this limitation on our system, during parameter postprocess-
ing, we used some statistics less sensitive to outliers. Moreover,
the nonrelevant parameters were consequently filtered during a
two-step feature selection based on mRMR and SFFS.
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a  b  s  t  r  a  c  t

Objective:  We  present  the  PaHaW  Parkinson’s  disease  handwriting  database,  consisting  of handwriting
samples  from  Parkinson’s  disease  (PD)  patients  and  healthy  controls.  Our  goal  is to  show  that  kinematic
features  and  pressure  features  in handwriting  can  be used  for the  differential  diagnosis  of  PD.
Methods  and material:  The  database  contains  records  from  37  PD  patients  and  38  healthy  controls  per-
forming  eight  different  handwriting  tasks.  The  tasks  include  drawing  an  Archimedean  spiral,  repetitively
writing  orthographically  simple  syllables  and  words,  and writing  of a  sentence.  In  addition  to  the conven-
tional  kinematic  features  related  to the  dynamics  of handwriting,  we investigated  new  pressure  features
based  on  the pressure  exerted  on  the writing  surface.  To discriminate  between  PD  patients  and  healthy
subjects,  three  different  classifiers  were  compared:  K-nearest  neighbors  (K-NN),  ensemble  AdaBoost
classifier,  and  support  vector  machines  (SVM).
Results: For  predicting  PD  based  on kinematic  and pressure  features  of  handwriting,  the best  perform-
ing  model  was  SVM  with  classification  accuracy  of  Pacc =  81.3%  (sensitivity  Psen = 87.4%  and  specificity
of  Pspe =  80.9%).  When  evaluated  separately,  pressure  features  proved  to be  relevant  for  PD diagnosis,
yielding  Pacc =  82.5%  compared  to Pacc =  75.4%  using  kinematic  features.
Conclusion:  Experimental  results  showed  that  an analysis  of  kinematic  and  pressure  features  during  hand-
writing  can  help  assess  subtle  characteristics  of  handwriting  and discriminate  between  PD patients  and
healthy  controls.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Parkinson’s disease is a complex neurodegenerative disease that
affects a large portion of the worldwide population [1]. With cur-
rent prevalence rates, ranging from 10 to 800 people per 100,000,
PD is one of the most common neurodegenerative disorders [2]. PD
is a movement disorder characterized by resting tremor, rigidity,
slowness of movement (bradykinesia), and loss of postural reflexes.
The disturbances of motor control in PD involve processing of motor
planning, motor programming, motor sequencing, movement ini-
tiation and movement execution [3].

There is currently no objective method for diagnosing PD. It can
take months to get a reliable PD diagnosis, and symptoms need to
be carefully monitored. Even then the probability of an inaccurate

∗ Corresponding author. Tel.: +420 543182639.
E-mail address: rektorova@fnusa.cz (I. Rektorová).

diagnosis is approximately 25% [4]. The diagnosis can be confirmed
only by a pathological analysis at autopsy; this further highlights
the complexity of the diagnosis. Decision support tools for accurate
diagnosis would be beneficial for early diagnosis and for the devel-
opment of treatment strategies for PD patients [5,6]. Identifying
biomarkers is an important goal of the research on neurodegener-
ative diseases [7].

One typical hallmark of PD is disruption in the execution of prac-
ticed skills such as handwriting [8,9]. People with PD frequently
have severe difficulties in coordinating of the components of a
motor sequence movement. They tend to perform sequential move-
ments in a more segmented fashion. Hesitations and pauses are
often observed between the components of the sequence [10,11].
Continuous handwriting and similar motor tasks occur more slowly
than in a healthy person. Some recent studies have suggested that
handwriting can be used as a biomarker for diagnosing PD [12,13].
The reasoning behind this suggestion is that handwriting is no
longer an automated process for PD patients and their handwriting
depends on a visual closed loop [14].

http://dx.doi.org/10.1016/j.artmed.2016.01.004
0933-3657/© 2016 Elsevier B.V. All rights reserved.
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Fig. 1. Illustration of filled template (not actual handwriting samples).

Several handwriting tasks were proposed for use in analyz-
ing the handwriting of PD patients and for obtaining insight into
the motor disruption caused by PD. Probably the most popu-
lar handwriting exercise for tremor assessment is currently the
Archimedean spiral. Spiral drawing has been frequently used for
evaluating of the motor performance in various movement dis-
orders, including PD [4,8,15–17]. Words containing one or more
repetitions of the cursive letter “l” are the second-most common
exercises in handwriting assessment [10,18]. In addition to these
established tasks, we proposed new ones consisting of writing
simple words and short sentences. The words used in these hand-
writing tasks were selected for their simple orthography and easy
syntax.

It has been shown that the absolute positioning of the pen
during handwriting is relevant for PD diagnosis, as are pen move-
ments above the writing surface (when the pen does not leave
the trajectory) [12,13,19]. Pressure exerted on the surface during
handwriting plays a significant role too [13].

In this paper, we extend our previous work [12,20] by providing
a more detailed analysis of the pressure modality of handwriting
and by introducing novel pressure features. Moreover, we intro-
duce the Parkinson’s disease handwriting (PaHaW) database, which
can be used for developing predictive models for PD diagnosis. The
PaHaW database contains recorded in-air/on-surface trajectories
and pressure, i.e. modalities that have been shown to be significant
for PD classification. The results confirmed that handwriting is rel-
evant in diagnosing and monitoring PD. We  also compared three
frequently used classifiers on the PaHaW database: SVM, Adaboost
and K-NN.

We  believe that the PaHaW database can encourage further
research and provide additional information to other available
databases related to PD such as Parkinson’s disease speech datasets
[21,22].

In the next section, the database of handwriting samples is
introduced and described in detail. Section 3 presents our meth-
ods and obtained results. We  provide a discussion and conclusions
in the last section.

2. Parkinson’s disease handwriting (PaHaW) database

We  created a handwriting database of 37 PD patients (19 men)
and 38 sex- and age-matched healthy controls (20 men). The
database was acquired in cooperation with the First Department of

Neurology, Masaryk University and St. Anne’s University Hospital
in Brno, Czech Republic.

Subjects were rested and seated in front of the table in comfort-
able position. Each subject was asked to complete a handwriting
task according to the prepared pre-filled template at a comfortable
speed. Subjects were allowed to repeat the task in case of some error
or mistake during handwriting. The pre-filled template is depicted
in Fig. 1 [23]. The pre-filled template was  shown to the subjects; no
restrictions about the number of repetitions of syllables/words in
tasks or their height were given.

A tablet was  overlaid with an empty paper template (containing
only printed lines and square box specifying area for Archimedean
spiral), and a special ink pen was  held in a normal fashion, allowing
for immediate full visual feedback. The signals were recorded using
the Intuos 4M (Wacom technology) digitizing tablet.

Digitized signals were acquired during the movements exe-
cuted while exerting pressure on the writing surface (on-surface
movement) and during the movement above the writing surface
(in-air movement). The perpendicular pressure exerted on the
tablet surface was also recorded. The recordings started when the
pen touched the surface of the digitizer and finished when the task
was completed. The tablet captured the following dynamic fea-
tures (time-sequences): x-coordinate, x[t]; y-coordinate, y[t]; time
stamp, s[t]; button status, b[t]; pressure, p[t]; and discrete time t.
Button status is a binary variable, being 0 for in-air movement and
1 for on-surface movement.

The tablet sampling rate was  100 samples per second; the acqui-
sition software was  developed by the research team. Subsequent
analysis was  performed using Matlab and Python programming
language.

2.1. Subjects

Altogether, 75 subjects (37 PD patients and 38 healthy controls)
participated in the study. The participants were enrolled in the First
Department of Neurology, St. Anne’s University Hospital in Brno. A
complete list of all participants is provided in Appendix A, with
information about sex, age, disease duration, UPDRS-part V score1

1 Unified Parkinson’s Disease Rating Scale (UPDRS) is a rating scale used to follow
the  longitudinal course of PD [24].
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Table  1
Parkinson’s handwriting dataset. Characteristics of healthy controls (H) and Parkinson’s disease (PD) group.

Age UPDRS (part V) Years since diag. LED Male/female

Mean Std Mean Std Mean Std Mean Std

PD 69.3 10.9 2.27 0.84 8.37 4.8 1373.4 714 19/18
H  62.4 11.3 – – – – – – 20/18

and levodopa equivalent daily dose.2 Mean and standard deviation
of age, UPDRS-Part V – Modified Hoehn and Yahr staging score [24]
and disease duration are summarized in Table 1. No significant dif-
ferences related to gender or age were found between the PD and
healthy control groups.

All the subjects had completed at least ten years of education
and reported Czech as their native language. All subjects used their
dominant right hand. None of the subjects had a history or presence
of any psychiatric symptoms or any disease affecting the central
nervous system (other than PD in the PD cohort). All PD patients
completed the tasks under L-DOPA medication.

Prior to handwriting acquisition, each patient was evaluated by
a clinical neurologist. The healthy controls were examined by a clin-
ician in order to make sure that there was no movement disorder
or injury present that could significantly affect handwriting. We
removed subjects whose handwriting was apparently affected by
another diseases or who were not in the suitable physical condition.
Basic information and instructions regarding the upcoming task
were provided for each subject, and they were allowed to practice
the task before the recording.

2.2. Handwriting tasks

The template consisted of eight different handwriting tasks.
Based on a survey of the literature, we included drawing of an
Archimedean spiral and repetitively writing cursive a letter “l”, or
a syllable “le”, respectively.

The Archimedean spiral is an established task used in assessing
of akinesia in PD and essential tremor [16,18]. During this task, the
template was shown to the subject for visual guidance. Subjects
drew the spiral from inside to out, but were not asked to draw
spiral within particular boundaries or to follow a pre-drawn line.

In tasks 2, 3, and 4 participants wrote the cursive letter l, bigram
le or the trigram les. Similar tasks (writing the letter l – or its vari-
ations) are frequently used for handwriting analysis [10,17].

Tasks 5, 6, and 7 were to write words lektorka – female teacher,
porovnat – to compare, and nepopadnout – to not catch (written in
Czech –, the native language of all participants). These words are
characterized by simple orthography and quite easy syntax. The
common characteristic is that they can be written continuously,
without lifting the pen above the surface, i.e. they can be written in
one continuous movement.

Task 8 was to write a longer sentence: Tramvaj dnes už nepo-
jede (The tram won’t go today). Use of the whole sentence allowed
us to acquire also movements above the writing surface, i.e. in-air
movements, during transitions between individual words in the
sentence.

3. Methods and results

3.1. Feature extraction

The handwriting features were computed from on-surface
movements (in the form of Cartesian coordinates) and pressure.

2 Levodopa equivalent dose (LED) of a drug that produces the same anti-
parkinsonian effect as 100 mg  of immediate-release levodopa.

Table 2
Overview of kinematic handwriting features.

Feature Description

Stroke speed Stroke length divided by stroke
duration in mm/s

Speed Trajectory during handwriting divided
by handwriting duration in mm/s

Velocity Rate at which the position of a pen
changes with time in mm/s

Acceleration Rate at which the velocity of a pen
changes with time in mm/s2

Jerk Rate at which the acceleration of a pen
changes with time in mm/s3

Horizontal
velocity/acceleration/jerk

Velocity/acceleration/jerk in horizontal
direction

Vertical
velocity/acceleration/jerk

Velocity/acceleration/jerk in vertical
direction

Number of changes in velocity
direction (NCV)

The mean number of local extrema of
velocity [25]

Number of changes in
acceleration direction (NCA)

The mean number of local extrema of
acceleration [25]

Relative NCV NCV relative to writing duration
Relative NCA NCA relative to writing duration
On-surface time Time spent on-surface during writing
Normalized on-surface time Time spent on-surface during writing

normalized by whole writing duration

The kinematic features used in this study are listed in Table 2 [12].
The term stroke represents single connected continuous compo-
nent of trace, i.e. on-surface movement between two  successive
pen lifts. According to this definition spiral or letter l are usually
drawn as one stroke. Strokes were used only to calculate stroke
speed.

Novel pressure handwriting features were computed to take
advantage of all tablet functionalities. The typical pressure profile
during writing is depicted in Fig. 2 for Archimedean spiral and Fig. 3
for tasks 2, 4 and 6.

The fundamental pressure features are the value of pressure as
captured by the tablet during the particular task and the rate at
which pressure changes with respect to time. Similarly to the concept
of the number of changes in velocity [25] we proposed a number of
changes in pressure (NCP) and relative NCP. Since there can be rapid
changes in pressure that lead to incorrect NCP, we smoothed the
data using a local regression using weighted linear least squares
and a first degree polynomial model3. Relative NCP is NCP nor-
malized by the whole length of writing. We  introduced correlation
coefficients to capture the relationship between pressure and kine-
matic features. In particular, we computed correlation between
pressure and (horizontal/vertical) velocity/acceleration. Altogether,
six correlation coefficients �(horizontal/vertical),vel/acc were computed.

Figs. 2 and 3 show that the main trend of the typical pressure
trajectory starts with a rising edge, continues with a slowly increas-
ing main movement, and finishes with a falling edge. The progress
of the main trend is similar for all tasks. On the other hand, there is
visible difference in smoothness of the main part of the signal for
different tasks. As can be seen from Fig. 3, the main part is relatively
smooth for the second task, however, as the performed task become
longer the main part is more rough. The exterted pressure varies

3 We used Matlab’s built-in function smooth.
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Fig. 2. Example of handwriting from task 1 (Archimedean spiral). On surface trajec-
tory recorded by tablet (top figure) and related pressure exerted on tablet surface
(bottom figure).

with the length of the word and complexity of the drawn letter.
This may  indicate why are some tasks more useful for classification
than others.

The drawing of the spiral is different from the other tasks used
in our study. Handwriting features are generally more stable for
writing of the words, whereas, when drawing the spiral features
change from beginning to the end of the task. This can be seen in
Fig. 2 where the pressure trajectory is continuously increasing. In
this study, we focus on the analysis of the handwriting and we  did
not introduce any spiral specific features. Therefore we extracted
the same features from signals from all tasks.

We expected that there would be indicators for particular parts
of the pressure signal, therefore we calculated the above mentioned
pressure features separately for rising edge, main movement, and
falling edge. The features corresponding to the different parts of
the signal are denoted by superscript rise, main or fall.  The boundary
between the edges and the main movement is given by a median of
signal pressure. Additionally, the range (maximal value–minimal
value) between the rising edge and falling edge time duration
(Rfall/rise

time
) and the range of the rising edge and falling edge pres-

sure (Rfall/rise
press ) were included in the analysis. The final included

feature was the pressure overshoot,  providing the distance between
the pressure maximum and pressure median.

Additionally, six basic statistical functionals (mean, median,
standard deviation, 1st percentile, 99th percentile, 99th per-
centile − 1st percentile) were computed. Features were normalized
before classification on a per-feature basis to have a zero mean and
a standard deviation of one.

3.2. Statistical classification

Our aim was  to build a discriminative model to differentiate
between people with PD and healthy subjects. It is a binary clas-
sification task that can be resolved by statistical machine learning
algorithms.

We compared three frequently used machine learning tech-
niques: SVM [26], AdaBoost classifier with a decision tree base
estimator [27] and K-NN algorithm. We  used Python implemen-
tation of scikit-learn library [28].

The underlying idea of SVM classifiers is to calculate a maxi-
mal  margin hyperplane separating two  classes of the data. To learn
non-linearly separable functions, the data are implicitly mapped to
a higher dimensional space by means of a kernel function, where a
separating hyperplane is found. New samples are classified accord-
ing to the side of the hyperplane they belong to. We  used radial basis
function (RBF) kernel [26]. The RBF kernel is defined as

K(x, xi) = e
−‖x−xi‖2

2�2 (1)

where � controls the width of RBF function.
The parameters kernel gamma  � and penalty parameter C were

optimized using grid search of possible values. Specifically, we
searched over the grid (C, �) defined by the product of the sets
C = [2−8, 2−5, . . .,  27, 28], � = [2−9, 2−4, . . .,  28, 29].

AdaBoost is one of the important ensemble methods known as
boosting. The key idea behind boosting techniques is to use ensem-
ble methods to combine weak classifiers in order to build a strong
learner. AdaBoost is an iterative boosting algorithm constructing
a strong classifier as a linear combination of weak classifiers, each
performing at least above chance level (50% correct classification).
We used decision trees classifiers as weak classifiers [29]. The max-
imum number of estimators at which boosting is terminated was
set to 500. Settings used for decision trees were as follows. The
number of features to consider when looking for the best split was
the square root of the number of features and the maximum depth
of the tree was  set to 3.

In the K-NN algorithm, k-the nearest samples in a reference set
are found, by taking a majority vote among the classes of these
k samples. The goal is to determine the true class of an undefined
test pattern by finding the nearest neighbors within a hyper-sphere
of predefined radius. For the K-NN classifier, the best results were
obtained with k = 3.

3.3. Numerical results

Classifier validation was  conducted using stratified 10-fold
cross-validation. The data was divided into ten mutually exclu-
sive and exhaustive equal-sized subsets. For each subset, the union
of all other subsets was  considered as training data and the error
rate was determined. Errors over different subsets were averaged
to obtain the classification error. The process was repeated a total
of ten times; the original dataset was randomly permuted in each
repetition prior to splitting into training and testing subsets. The
results were averaged over all ten runs.

The classification test performance was determined by the clas-
sification accuracy Pacc, sensitivity Psen and specificity Pspe [30].

From all computed features we kept only those that passed the
Mann–Whitney U test, i.e. those that showed a statistically sig-
nificant (p < 0.05) difference between the PD and control groups.
Table 3 shows 20 most relevant features and median of their val-
ues for PD and healthy control group. Features are sorted according
Spearman’s correlation coefficient �.

At first, we evaluated the prediction potential of different hand-
writing tasks considering both conventional kinematic features
and pressure features. The classification accuracies for all tasks are
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Fig. 3. Example of handwriting from tasks 2, 4 and 6. On surface trajectory recorded by tablet and related pressure exerted on tablet surface.

Table 3
Twenty kinematic and pressure features with largest relevance to class label sorted according to the Spearman’s correlation coefficient |�|. Displayed are medians and
standard deviations (std) for healthy controls (H) and Parkinson’s disease group.

Feature, stat. functional, task number |�| PD median (std) H median (std)

Stroke speed, std, task 8 0.39 0.45 (0.88) −0.47 (0.97)
Relative  NCP, task 8 0.37 −0.22 (0.63) −0.06 (1.16)
Horizontal velocity, std, task 8 0.35 0.20 (0.99) −0.33 (0.89)
�vel , 99th percentile, task 2 0.35 −0.57 (0.86) 0.37(1.02)
Horizontal velocity, 99th percentile, task 8 0.33 0.4 (0.95) −0.44 (0.95)
Rfall

time
, median, task 8 0.33 −0.42 (0.57) 0.11(1.22)

�rise
horizontal,acc

, 1st percentile, task 8 0.33 −0.17 (0.83) −0.37 (1.06)
Relative  NCP, –, task 6 0.33 −0.40 (0.56) −0.1 (1.23)
Rrise

press , 99th percentile − 1st percentile, task 3 0.33 −0.33(0.61) 0.1 (1.2)
�main

vertical,vel
, 99th percentile – 1st percentile, task 2 0.32 −0.47 (0.75) −0.11(1.12)

Rrise
press , std, task 3 0.32 −0.29(0.6) 0.06 (1.21)

Horizontal jerk, std, task 8 0.32 0.23 (1.0) −0.41 (0.9)
Horizontal velocity, 99th percentile 99 – 1st percentile, task 8 0.32 0.22 (1.01) −0.48 (0.89)
Horizontal jerk, 99th percentile, task 8 0.32 0.29 (0.99) −0.25 (0.91)
Rfall

time
, median, task 3 0.31 −0.17(0.65) −0.1 (1.19)

Velocity, median, task 8 0.31 0.2(0.9) −0.35 (1.0)
Horizontal velocity (rising edge), std, task 8 0.26 (0.98) −0.44(0.94)
Horizontal jerk, percentile 99th – percentile 1st, task 8 0.31 0.26 (0.97) −0.33 (0.95)
�vertical,vel , std, task 3 0.3 −0.6 (0.93) 0.23 (0.99)
Velocity  (rising edge), mean, task 8 0.3 0.16 (0.98) −0.41 (0.93)
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Table  4
Classification accuracies of different handwriting tasks for kinematic and pressure features (support vector machines classifier).

Evaluated task Pacc pressure features Pacc kinematic features Pacc kinematic and pressure

1 (Archimedean spiral) 62.8 – 62.8
2  (letter l) 72.1 69.2 72.3
3 (bigram le) 71.5 72.5 71.0
4  (word les) 66.4 – 66.4
5  (word lektorka) 66.9 65.1 65.2
6  (word porovnat) 74.2 64.9 73.3
7  (word nepopadnout) 66.8 66.4 67.6
8  (sentence) 73.2 74.9 76.5
overall 82.5 75.4 81.3

Table 5
Comparison of different classifiers for diagnosis of Parkinson’s disease from hand-
writing. Kinematic and pressure features obtained from tasks 2 to 8 were used.

Classifier Pacc [%] Pspe [%] Psen[%]

SVM 81.3 80.9 87.4
AdaBoost 78.9 79.2 82.4
K-NN 71.7 70.8 78.5

depicted in Table 4. We  did not find any statistically significant
kinematic features for the tasks 1 and 4; therefore, for these two
tasks we considered only pressure features. The highest classifica-
tion accuracy using pressure features Pacc = 74.2% was obtained for
data from the task 6. The slightly lower classification accuracy of
73.2% was achieved for the task 8. The best results for kinematic fea-
tures were provided by data from the task 8. Similarly, task 8 was
the most discriminative for merged kinematic and pressure fea-
tures. Both modalities, i.e. pressure and kinematic features showed
relatively similar classification accuracies for all tasks. Interest-
ingly, the fusion of pressure and kinematic features3 did not result
in any improvement in terms of classification accuracy. The only
exception was the most predictive task 8.

Merging all of the tasks together noticeably improved the clas-
sification accuracy, probably due to the different nature of the
handwriting tasks. The results presented in Table 4 were obtained
using an SVM classifier. To obtain more confidence in our results
and to compare different classifiers we also employed the AdaBoost
classifier and K-NN classifier. Overall classification accuracy (Pacc),
sensitivity (Psen), and specificity (Pspe) for all tasks and merged kine-
matic and pressure features are provided in Table 5. Comparing all
three classifiers, it is clear that the best results in terms of accuracy,
specificity, and sensitivity were obtained using the SVM classifier.

4. Discussion

PD is a very complex disease with different symptoms that can
vary from patient to patient. The handwriting process is a complex
motor activity requiring the coordination of several muscles. Both
these aspects make it very difficult to explain or exactly link any
handwriting characteristics or features to particular symptoms of
PD. The results of our study show that pressure or kinematic fea-
tures can be used to support a differential diagnosis of PD; however,
the exact relationship between PD symptoms and particular fea-
tures is not known. From a clinical point of view, kinematic features
reflect complex cognitive processes and are influenced by a wide
range of clinical aspects such as tremor, muscle stiffness, rigidity,
and variance in movement speed. On the other hand, the pressure

3 Only tasks 2–8 were merged. Task 1 contained data from only 69 subjects and
did  not show any significant discrimination potential, therefore we  did not include
this task.

features can provide additional information that is not captured in
kinematic features.

As indicated in Table 4, not all handwriting tasks provide the
same level of discrimination power. After evaluating our results, it
is evident that some tasks are more useful for diagnosis than oth-
ers. Task 8 appeared to be the most promising task. This is probably
because the task involves writing a whole sentence, and some rep-
resentations of PD appear only when the task has some temporal
extension. This is similar to typical symptom of PD – microgra-
phy, where the letter size is reduced as the subject spends more
time writing a sentence line. As in task 8, task 2 (writing the let-
ter l) provided good predictive performance from kinematic and
pressure features. There was  a gap in the predictive performance
derived from pressure features and kinematic features for the task
6 (writing the word nepopadnout). Tasks 1, 4, 5, and 7 did not
contribute to overall predictive performance significantly, as they
reached only 62–66% accuracy. These findings indicate that spe-
cial attention should be paid by researchers and clinicians when
designing handwriting templates or even handwriting standard-
ized tests since the task selection strongly influences the results
or the potential of acquired data. In this study we focus mainly
on handwriting analysis and we  did not utilize any spiral specific
features. This may  explain why the task 1 does not have a sig-
nificant impact on classification. Therefore in our future work we
plan to perform deeper spiral analysis and evaluate spiral specific
features.

Decision support tools are gaining significant research inter-
est due to their potential to improve health-care provision [5,6].
Among many possible approaches, those that provide noninvasive
monitoring and diagnosis of diseases are of increased interest to
clinicians and biomedical engineers. We  contribute to this area
with the publication of our PaHaW database3, containing eight dif-
ferent handwriting samples from 75 healthy and PD subjects. To
prove the relevance of the database, we proposed a methodology
to build a predictive model of PD from kinematic and pressure
handwriting measures. It was  shown that using of basic kinematic
and pressure features allowed for a classification accuracy of 82%.
The proposed approach is not intended to replace the clinician
but rather to provide assistance for a more accurate and objective
diagnosis. When employed with other approaches such as speech
processing [22,31], even better results can be achieved in terms of
accuracy of prediction. We  showed that both kinematic and pres-
sure features contribute in discriminating between PD and healthy
subjects.

In this study, we almost 200 features. To follow and analyze
such a high number of features can be very difficult for clinicians.
It would be more convenient to specify a smaller representative
group of features that would make it possible to map  features to

3 The database can be downloaded from BDALab webpage (http://bdalab.utko.
feec.vutbr.cz/) or UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/).
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standard metrics and provide quantification of a PD severity. How-
ever this again requires a relatively high number of subjects with
different levels of disease symptom severity.

The results presented in this study indicate that different aspects
of handwriting can be with advantage used in diagnosis of PD.
However, several limitations have to be recognized when inter-
preting the results. Firstly, in this study we decided to focus only
on PD and healthy control group. Other diseases have been ana-
lyzed in other papers [32,33]. Inclusion of the cognitively well
characterized PD patients at different motor stages of PD as well
as inclusion of other relevant patient groups that suffer from
both micrographia and cognitive impairment such as progressive
supranuclear palsy or Huntington’s disease are warranted in order
to investigate whether the proposed technique can be used to dis-
criminate between PD and other diseases. Classification of different
diseases may  be possible if they alter handwriting in diverse way,
i.e. there are different patterns across the variables. However, this
further underlines the importance of deeper handwriting analy-
sis that include all modalities, since discriminative features may
be hidden in handwriting signal and simple evaluation of con-
ventional kinematic features may  not be sufficient. Secondly, all
patients with PD performed the handwriting tasks under medi-
cation. It suggests that proposed methodology may  be sensitive
enough to identify PD even if the symptoms are attenuated by the
medication. On the other hand, medication can have side effects
impacting the movements of the patients that can influence classi-
fication process. Before implementation of the proposed approach
in the clinical settings a future study on patients without med-
ication should be performed to investigate how would classifier
perform under this condition. Thirdly, we have shown that hand-
writing can be used as biomarker for PD, however this should
be considered only as a first step in further investigation. Longi-
tudinal study is required to investigate subjects with a high risk
of PD development, and confirm whether proposed methodol-
ogy successfully identified participants that actually developed PD.
This can reveal whether it is possible to use handwriting mark-
ers for early diagnosis of PD. Similarly, repeated measurements
from the same subjects can be obtained to increase test-retest
reliability or to investigate how can be proposed approach used
for symptoms severity monitoring. Additionally, it is not possi-
ble to control for all intentional and unintentional alterations of
handwriting. There may  be many factors influencing handwriting
that might impact classification decision. Therefore further stud-
ies are needed to provide confirmation of conclusions drawn in
this paper. Standardized data collection and testing of subjects
on multiple occasions is necessary and it is aim of our future
research.
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Appendix A. Subject data

Table A.6.

Table A.6
Detailed clinical and demographic information about participants.

ID Sex Diagnosis Age
[years]

LED UPDRS
(part V)

Years since
diag.

01 F PD 68 1115 2 6
02  F PD 78 2110 2 8
03  F PD 69 1557 2 7
04  F PD 79 1691 2 12
05  F PD 69 600 2 2
06  F PD 57 1272 2 9
07  F PD 78 666 3 19
08  F PD 58 397 1 5
09  M PD 78 2066 1 3
10  M PD 74 1480 2.5 3
13  M PD 65 990 1 2
14  M PD 64 1253 3 8
15  F PD 69 990 2.5 17
16  M PD 67 1188 2 4
17  F PD 75 1370 5 18
18  F PD 76 1250 2.5 17
19  F PD 86 750 2 6
20  F PD 79 2227 2 8
22  F PD 67 645 2 14
23  F PD 73 1235 2 9
24  M PD 70 1317 4 7
25  M PD 60 1143 3 10
26  F Healthy 57 – – –
27  M Healthy 92 – – –
28  F Healthy 52 – – –
29  F Healthy 58 – – –
30  M Healthy 69 – – –
31  M Healthy 76 – – –
32  F Healthy 59 – – –
33  F PD 62 750 2 4
34  M PD 61 2547 2 5
36  M PD 90 750 2 3
39  M Healthy 65 – – –
40  M Healthy 53 – – –
41  M Healthy 78 – – –
43  M PD 48 1080 1 4
44  F PD 62 397 1 5
48  M PD 87 1450 4 12
49  M Healthy 58 – – –
51  F Healthy 48 – – –
52  F Healthy 44 – – –
53  M PD 84 1942 2 2
54  M PD 69 2546 2 10
55  M PD 63 1930 2.5 14
57  M Healthy 80 – – –
60  M Healthy 65 – – –
61  F Healthy 59 – – –
62  F Healthy 65 – – –
66  F Healthy 69 – – –
67  M Healthy 59 – – –
69  F Healthy 74 – – –
70  F Healthy 47 – – –
71  M Healthy 52 – – –
72  M Healthy 45 – – –
73  F Healthy 64 – – –
74  M PD 53 2387 2.5 9
75  M PD 73 2010 2.5 12
76  M Healthy 56 – – –
77  M PD 74 2337 3 1
78  M PD 36 800 2 2
80  M PD 67 3544 3 5
82  M Healthy 45 – – –
83  F Healthy 74 – – –
84  F Healthy 62 – – –
85  F Healthy 75 – – –
87  M Healthy 57 – – –
89  M Healthy 63 – – –
90  M Healthy 71 – – –
91  F Healthy 64 – – –
92  F Healthy 58 – – –
94  M Healthy 64 – – –
95  M Healthy 74 – – –
96  F Healthy 77 – – –
97  M Healthy 44 – – –
98  F PD 77 1210 2 6



46 P. Drotár et al. / Artificial Intelligence in Medicine 67 (2016) 39–46

References

[1] de Lau LM,  Breteler MM.  Epidemiology of Parkinson’s disease. Lancet Neurol
2006;5(6):525–35.

[2] von Campenhausen S, Bornschein B, Wick R, Botzel K, Sampaio C, Poewe W,
et  al. Prevalence and incidence of Parkinson’s disease in Europe. Eur Neuropsy-
chopharm 2005;15(4):473–90.

[3] Contreras-Vidal JL, Stelmach GE. Effects of parkinsonism on motor control. Life
Sci 1995;58(3):165–76.

[4] Hughes AJ, Daniel SE, Ben-Shlomo Y, Lees AJ. The accuracy of diagnosis of
parkinsonian syndromes in a specialist movement disorder service. Brain
2002;125(4):861–70, http://dx.doi.org/10.1093/brain/awf080.

[5] Ammenwerth E, Nykanen P, Rigby M,  de Keizer N. Clinical decision support
systems: need for evidence, need for evaluation. Artif Intell Med  2013;59(1):
1–3.

[6] Dreiseitl S, Binder M.  Do physicians value decision support? a look at the
effect of decision support systems on physician opinion. Artif Intell Med
2005;33(1):25–30.

[7] Mattison HA, Stewart T, Zhang J. Applying bioinformatics to proteomics: is
machine learning the answer to biomarker discovery for PD and MSA? Mov
Disord 2012;27(13):1595–7.

[8] Saunders-Pullman R, Derby C, Stanley K, Floyd A, Bressman S, Lipton RB,
et  al. Validity of spiral analysis in early Parkinson’s disease. Mov  Disord
2008;23(4):531–7.

[9] Broderick M,  Van Gemmert A, Shill H, Stelmach G. Hypometria and bradykinesia
during drawing movements in individuals with Parkinsons disease. Exp Brain
Res 2009;197(3):223–33.

[10] Bidet-Ildei C, Pollak P, Kandel S, Fraix V, Orliaguet J-P. Handwriting in patients
with Parkinson’s disease: effect of L-DOPA and stimulation of the sub-thalamic
nucleus on motor anticipation. Hum Mov  Sci 2011;30(4):783–91.

[11] Contreras-Vidal JL, Poluha P, Teulings H-L, Stelmach GE. Neural dynamics of
short and medium-term motor control effects of levodopa therapy in Parkin-
son’s disease. Artif Intell Med  1998;13(1–2):57–79.

[12] Drotar P, Mekyska J, Rektorova I, Masarova L, Smekal Z, Faundez-Zanuy M.  A
new  modality for quantitative evaluation of Parkinson’s disease: in-air move-
ment. In: 2013 IEEE 13th international conference on Bioinformatics and
bioengineering (BIBE). 2013. p. 1–4.

[13] Rosenblum S, Samuel M, Zlotnik S, Erikh I, Schlesinger I. Handwriting as an
objective tool for parkinsons disease diagnosis. J Neurol 2013;260(9):2357–61.

[14] Unlu A, Brause R, Krakow K. Handwriting analysis for diagnosis and prognosis of
parkinsons disease. In: Maglaveras N, Chouvarda I, Koutkias V, Brause R, editors.
Biological and medical data analysis, Vol. 4345 of lecture notes in computer
science. Berlin, Heidelberg: Springer; 2006. p. 441–50.

[15] Kraus PH, Hoffmann A. Spiralometry: computerized assessment of tremor
amplitude on the basis of spiral drawing. Mov  Disord 2010;25(13):2164–70,
http://dx.doi.org/10.1002/mds.23193.

[16] Stanley K, Hagenah J, Bruggemann N, Reetz K, Severt L, Klein C, et al. Digi-
tized spiral analysis is a promising early motor marker for Parkinson’s disease.
Parkinsonism Relat Disord 2010;16(3):233–4.

[17] Smits EJ, Tolonen AJ, Cluitmans L, van Gils M,  Conway BA, Zietsma RC, et al.
Standardized handwriting to assess bradykinesia, micrographia and tremor in
parkinson’s disease. PLOS ONE 2014;9:1–8.

[18] Teulings H-L, Contreras-Vidal JL, Stelmach GE, Adler CH. Parkinsonism reduces
coordination of fingers, wrist, and arm in fine motor control. Exp Neurol
1997;146(1):159–70.

[19] Sesa-Nogueras E, Faundez-Zanuy M,  Mekyska J. An information analysis
of  in-air and on-surface trajectories in online handwriting. Cogn Comput
2012;4(2):195–205, http://dx.doi.org/10.1007/s12559-011-9119-y.

[20] Drotar P, Mekyska J, Rektorova I, Masarova L, Smekal Z, Faundez-Zanuy M.
Decision support framework for Parkinson’s disease based on novel hand-
writing markers. IEEE Trans Neural Syst Rehab Eng 2015;23(3):508–16,
http://dx.doi.org/10.1109/TNSRE.2014.2359997.

[21] Sakar B, Isenkul M,  Sakar C, Sertbas A, Gurgen F, Delil S, et al. Collection and
analysis of a Parkinson speech dataset with multiple types of sound recordings.
IEEE Biomed Health Inform 2013;17(4):828–34.

[22] Tsanas A, Little M, Fox C, Ramig L. Objective automatic assessment of rehabil-
itative speech treatment in Parkinson’s disease. IEEE Trans Neural Syst Rehab
Eng 2014;22(1):181–90.

[23] Drotar P, Mekyska J, Smekal Z, Rektorova I, Masarova L, Faundez-Zanuy M.
Prediction potential of different handwriting tasks for diagnosis of Parkinson’s.
In: E-Health and bioengineering conference (EHB). 2013. p. 1–4.

[24] Fahn S, Elston R. Unified parkinsons disease rating scale. In: Fahn S, Marsden
C,  Calne D, Goldstein M,  editors. Recent developments in Parkinson’s disease,
vol. 2. Florham Park, NJ: Macmillan; 1987. p. 153–63.

[25] Eichhorn T, Gasser T, Mai  N, Marquardt C, Arnold G, Schwarz J, Oertel W.  Compu-
tational analysis of open loop handwriting movements in Parkinson’s disease:
a  rapid method to detect dopamimetic effects. Mov Disord 1996;11(3):289–97.

[26] Vapnik V. Statistical learning theory. 1st Ed. London: John Willey & Sons; 1998.
[27] Zhu J, Zou H, Rosset S, Hastie T. Multi-class adaboost. Stat Interface

2009;2(3):349–60.
[28] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-

learn: Machine learning in Python. J Mach Learn Res 2011;12:2825–30.
[29] Breiman L, Friedman J, Olshen R, Stone C. Classification and regression trees.

Belmont, CA: Wadsworth; 1984.
[30] Cherkassky V, Mulier F. Learning from data: concepts, theory, methods. Hobo-

ken, NJ: John Wiley & Sons; 2007.
[31] Mekyska J, Janousova E, Gomez-Vilda P, Smekal Z, Rektorova I, Eliasova I, et al.

Robust and complex approach of pathological speech signal analysis. Neuro-
computing 2015;167:94–111.

[32] Lopez-de Ipina K, Bergareche A, de la Riva P, Faundez-Zanuy M, Calvo P, Zelarain
F.  Analysis of non-invasive writing signals, applied to essential tremor: a non-
linear approach. In: International work conference on bio-inspired intelligence
(IWOBI). 2014. p. 56–9, http://dx.doi.org/10.1109/IWOBI.2014.6913938.

[33] Faundez-Zanuy M,  Sesa-Nogueras E, Roure-Alcobe J, Garre-Olmo J, Mekyska J,
Lopez-de Ipina K, et al. A preliminary study of online drawings and demen-
tia diagnose. In: Apolloni B, Bassis S, Esposito A, Morabito FC, editors. Neural
nets and surroundings, Vol. 19 of smart innovation, systems and technologies.
Berlin, Germany: Springer; 2013. p. 367–74.



A.24 Contribution of different handwriting modalities to differ-
ential diagnosis of Parkinson’s Disease

331



Contribution of Different Handwriting Modalities to
Differential Diagnosis of Parkinson’s Disease
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Abstract—In this paper, we evaluate the contribution of
different handwriting modalities to the diagnosis of Parkinson’s
disease. We analyse on-surface movement, in-air movement and
pressure exerted on the tablet surface. Especially in-air movement
and pressure-based features have been rarely taken into account
in previous studies. We show that pressure and in-air movement
also possess information that is relevant for the diagnosis of
Parkinson’s Disease (PD) from handwriting. In addition to the
conventional kinematic and spatio-temporal features, we present
a group of the novel features based on entropy and empirical
mode decomposition of the handwriting signal. The presented
results indicate that handwriting can be used as biomarker for
PD providing classification performance around 89% area under
the ROC curve (AUC) for PD classification.

I. INTRODUCTION

According to the recent estimates, more than seven mil-
lion people are affected by Parkinson’s Disease (PD) world-
wide [1]. The high number of affected people makes PD the
second most common neurodegenerative disorder. Moreover,
with the aging population, it is expected that the prevalence
rates will further increase and impose social and economic
burden for healthcare. Despite intensive research effort, the
causes of PD are still not known and the reliable easily
applicable diagnostic test is not available yet [1].

A diagnosis of PD is currently based mainly on clinical
symptoms such as bradykinesia, rigidity, tremor or postural
imbalance. Several alternative solutions and decision support
systems have been proposed to improve diagnosis of PD. The
neuroimaging methods show significant potential but require
expensive equipment [2]. Other approaches include attempts
to detect PD from breath [3] or voice [4], [5], [6]. Especially
speech processing for diagnosis of PD gained significant atten-
tion and offered very promising results. Recent studies indicate
that also handwriting can be with advance used for differential
diagnosis of PD [7], [8], [9]. This is due to the alterations in
parkinsonian handwriting represented by micrographia and PD
dysgraphia [10]. Micrographia was reported for the first time
by Pick [11] as an abnormal reduction in handwriting size
associated with PD. On the other hand, PD dysgraphia is a new
term proposed by Letanneaux et al. [10] that ”encompasses
the whole spectrum of disorders that affect the writing of
PD patients” including tremor, rigidity, bradykinesia, akinesia,
freezing of the upper limb etc.

Micrographia was studied in [12] or [13], however analyz-
ing only micrographia alone is not enough, since micrographia

occurs only in 30 % to 60 % of patients with PD [14],[15]. This
was motivation for several authors to investigate also kinematic
aspects of movement including speed, acceleration or stroke
duration [16], [17]. Even though these studies provided the
significant insight into the handwriting in PD, they did not
assess tremor. Recently, two studies have been published
that provide quantitative measures to assess multiple motor
symptoms of the PD handwriting allowing for the clinically
acceptable differential diagnosis of PD [9],[8]. The current
technologies allow to exploit new modalities, such as in-
air movement and pressure exerted on the surface, not only
conventional handwriting trace on surface [18]. Some initial
studies employing the in-air movement [19], [7] or pressure [7]
indicate that also these modalities can be useful for diagnosis
of PD.

In this study, we employ an approach presented in our
previous work [8] and use advanced handwriting markers
based on entropy, energy and intrinsic measures of handwrit-
ing. Here, we apply these measures also to in-air movement
and pressure to exploit full potential of the handwriting for
classification of PD. To achieve this goal we make use of our
Parkinsonian Handwriting database (PaHaw) which consists of
seven different handwriting tasks. The task template contains
the exercises found in similar studies that are used to assess
PD. In addition to conventional handwriting tasks we added the
new tasks: simple words and one sentence. The orthography of
these task is intentionally simple to minimize cognitive effort
during the writing task.

The paper is organized as follows. After the introductory
section, the description of used database is given. Next,
methodology of extracting the features from handwriting signal
is given, followed by a brief overview of used classifier.
Finally, the numerical results and conclusions are provided.

II. DATA

The Parkinsons handwriting dataset consists of multiple
handwriting samples from 37 parkinsonian patients (19 men/18
women) and 38 gender and age matched controls (20 men/18
women). Mean age was 69.3± 10.9 for parkinsonian patients
and 62.4 ± 11.3 for control subjects, respectively. All sub-
jects were right-handed, had completed at least 10 years of
education, and reported Czech as their first language. For
parkinsonian patients the mean value of Unified Parkinson’s
Disease Rating Scale-Part V was 2.27± 0.84 and all patients
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Fig. 1. Filled task sheet used as template for handwriting tasks.

completed the tasks under medication L-DOPA. A more de-
tailed description of dataset is shown in [8].

Each subject was asked to complete handwriting task
according to the prepared template. The template consists of
7 tasks that were a part of a more detailed test battery. The
tasks were designed to have simple orthography and all but last
one can be written as one long stroke. The filled task sheet is
depicted in Fig.1. The template was shown to the patients and
they were free to write the words without no need to follow
the exact pattern.

III. FEATURE EXTRACTION

Signals were acquired using Wacom Intuos 4M pen tablet.
The tablet itself does not provide visual feedback, therefore, it
was overlaid with the paper so the pen can be held in a normal
fashion and allows full visual feedback during writing. The
inked pen is commercially available from the tablet producer,
it allows a user to draw on the paper and at the same time the
signal is captured by the tablet.

The tablet is able to capture several signals related to the
handwriting. These include position of the pen tip in the form
of x and y coordinate (x[n], y[n]), binary variable (b[n]), being
0 for pen-up state (in-air movement) and 1 for pen-down state
(on-surface movement). This means that the tablet is able to
capture x[n] and y[n] also in case when pen is not touching the
tablet surface while moving in the air. Additionally, pressure
exerted on the tablet surface during writing (p[n]) and time
stamp (t[n]) are recorded. An example of handwriting sample
from the 7th task is depicted in Fig. 2. The figure shows
the example of recorded on-surface (blue solid line) and in-
air (red dashed line) movement. Even though it illustrates
how the actual handwriting sample is realized it does not
provide the insight into the shape of the signals that were used
to extract handwriting features. Signals corresponding to the

sample depicted in Fig. 2 can be seen in Fig. 3. Fig. 3 shows
pressure and coordinates of in-air/on-surface movement as a
function of time.

A. Spatio temporal and kinematic features

Using Cartesian coordinates (x[n],y[n]) and time stamp
it is possible to determine several kinematic and spatio-
temporal features. These include handwriting velocities and
derived measures such as acceleration and jerk: speed,
a number of changes in velocity(NCV)/acceleration(NCA),
relative NCV/NCA, stroke speed, velocity, acceleration,
jerk, horizontal velocity/acceleration/jerk, vertical veloc-
ity/acceleration/jerk. Considered spatio-temporal features are
stroke height/width, writing duration, writing length and in-air
to on-surface ratio. The definition of these features is provided
in [19].

B. Pressure features

To make use of recorded pressure signal p[n] several pres-
sure features were extracted. Similarly to kinematic features,
we computed rate at which pressure changes with respect
to time, a number of changes in velocity pressure (NCP)
and relative NCP. Relative NCP is NCP normalized by the
whole writing length. Additionally, six correlation coefficient
were introduced: correlation between pressure and (horizon-
tal/vertical) velocity/acceleration. Fig. 3 indicates that typical
pressure stroke starts with rising edge, continues with slowly
varying main part and ends with falling edge. We derived
pressure features for each part of the stroke (edge, main part
of signal and falling edge) separately. The boundary between
edges and main part is given by median of signal pressure.
Finally, a range of rising and falling edge in terms of pressure
and time was included in the analysis.

C. Nonstandard handwriting features

In order to uncover also hidden complexities of handwriting
we also employ nonstandard features proposed in [8]. Out of
these, entropy based features have potential to capture random-
ness of the movement during handwriting. We calculated the
Shannon entropy HS and Rényi entropy of the second HR,2

and the third HR,3 order [20].

Similarly, the energy based features express amount of
noise in handwriting in relation to useful handwriting sig-
nal. Note that what we refer to as noise is not un-
wanted interference from an external source, but the irregu-
lar movement resulting from muscle contractions and irreg-
ularities. Therefore, we computed estimated noise variance
N (s[n]) of the signal and energy of the signal Θ(s[n]).
The operator Θ represents conventional energy operator

CE(s[n]) = 1/N
N−1∑
n=0

s[n]2 or Teager-Kaiser energy operator

TKEr(s[n]) = 1/N
N−r−1∑
n=0

s[n]2 − s[n+ r] · s[n− r]. Signal

to noise ratios are given by SNRΘ = Θ(s[n])/N (s[n]).
The signal s[n] is the signal under evaluation i.e. x[n], y[n]
(obtained from both on-surface and in-air movement) or p[n].

To obtain intrinsic features we apply empirical mode
decomposition (EMD) to decompose signal into its intrinsic
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mode functions (IMF). EMD is an intuitive data-dependent de-
composition of a time series that allows decomposition of non-
linear and non-stationary data into IMFs. EMD is conducted
by the iterative extraction based on the local representation of
the signal as the sum of a local oscillating component and a
local trend [21]. Given a time series s[n], combining all the
IMFs gives the original signal s[n] =

∑N
j=1 IMFj [n]+rN [n].

We obtained intrinsic entropies and energies by applying
the above mentioned methods on first and second intrinsic
function. Similarly, intrinsic signal to noise rations were de-
rived as the ratio of energy of first two intrinsic functions to
energy of the rest of intrinsic functions.

IV. MACHINE LEARNING

Six basic statistical functionals (mean, median, standard
deviation, 1st percentile, 99th percentile, 99th percentile - 1st
percentile) were computed from the extracted features. This
produces more than 5000 features. The features were normal-
ized before classification on a per-feature basis to have zero
mean and a standard deviation of one. As a preprocessing step
we applied Mann-Whitney U test for significant differences
identification to remove features that did not show statistical
significance to class label. Application of Mann-Whitney U
test reduced the number of features to less than 700. The
distribution of features for different tasks and modalities is
depicted in Tab. I.

Support Vector Machine (SVM) was used as a classifier to
predict class labels. The underlying idea of SVM classifiers
is to calculate a maximal margin hyperplane separating two
classes of the data. To learn non-linearly separable functions,
the data are implicitly mapped to a higher dimensional space
by means of a kernel function. The new samples are classified
according to the side of the hyperplane they belong to. We used
Radial Basis Function (RBF) kernel [22]. The RBF kernel is
defined as

K(x, xi) = e
−‖x−xi‖2

2γ2 (1)

where γ controls the width of RBF function.

The parameters kernel gamma γ and penalty parame-
ter C were optimized using grid search of possible values.
Specifically, we searched over the grid (C, γ) defined by
the product of the sets C = [2−10, 2−9, . . . , 26, 27], γ =
[2−7, 2−6, . . . , 26, 27]. We used scikit-learn implementation of
SVM [23].

V. NUMERICAL RESULTS AND DISCUSSION

The prediction performance was evaluated in terms of the
area under ROC curve (AUC). In order to obtain prediction
potential of each modality we assess the AUC performance for
every modality (in-air, on-surface and pressure) individually.
Additionally, prediction performance of seven different hand-
writing tasks was also considered separately. The numerical
results achieved by SVM classifier with 10 fold cross valida-
tion are provided in Table II.

As it can be seen from Table II, the highest AUC =
89.09% was achieved when the features extracted from on sur-
face movement were used. This provides significantly higher
AUC than other two modalities. The promising results are

TABLE II. AUC OF PD CLASSIFICATION BASED ON DIFFERENT
MODALITIES (IN-AIR, ON-SURFACE AND PRESSURE).

task/modality on-surface in-air pressure
1 72.39 67.58 72.5
2 70.16 66.75 76
3 70.86 66.75 72.16
4 66.08 65.25 64.25
5 62.75 67.33 69.66
6 65.66 - 71.66
7 83.83 73 72.58
all 89.09 74.16 83.83

also yielded from the pressure features that have not been
used for purpose of PD classification before, giving rise to
more than 83% prediction accuracy. Within this scenario in-air
movement does not appear to be significantly contributing to
differential diagnosis of PD from handwriting. However, we
should note that entropy, energy and intrinsic features were
originally designed for on-surface movement and as such may
not explore full potential of in-air movement.

When comparing the contribution of a different handwrit-
ing task to classification of PD, it is clear that most of the
prediction performance comes from the seventh task. This is
true especially for the on-surface and in-air modality. In case of
pressure, different handwriting tasks contribute more equally.
The seventh task (Tramvaj dnes už nepojede) is the longest task
and in contrast to other tasks this task cannot be written as one
long stroke. Writing longer sentence probably requires higher
cognitive effort and escalates effect of disease on handwriting.
These results are in agreement with the previous findings
where the last task also appears to be the most predictive
one [24].

We tried to identify a smaller subset of the features that
provide the strongest discriminative power. However, reducing
number of the features resulted in decline in classification
performance.

VI. CONCLUSION

We have evaluated a prediction performance of the different
handwriting modalities for differential classification of PD.
It was shown that not only on-surface movement, but also
pressure and in-air movement contribute to the classification
and can be with advantage used for diagnosis of PD from
handwriting. By using 7 different handwriting tasks, standard
kinematic and also novel intrinsic and entropy features we
showed that handwriting is a promising tool for diagnosis of
PD achieving almost 90% prediction performance.
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Fig. 2. Handwriting sample from seventh task of the template. In-air and on-surface movement.
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Fig. 3. Recorded signals during the execution of the seventh task. The figure displays x and y coordinates of in-air (up) and on-surface (dn) movement as a
function of time. Additionally bottom figure illustrates pressure exerted on tablet surface as an function of time.

TABLE I. NUMBER OF EXTRACTED FEATURES AND NUMBER OF FEATURES THAT PASSED THE MANN-WHITNEY U TEST

on-surface (task 1 - task 7) in-air (task 1 - task 7) pressure (task 1 - task 7)
all 268 per task 290 per task 188 per task

afer Mann-Whitney U test 11, 61, 12, 10, 10, 35, 138 58, 81, 2, 7, 8, 0, 80 32, 39, 11, 10, 24, 29, 34
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Abstract—Parkinson’s disease (PD) is a neurodegenerative dis-
order which impairs motor skills, speech, and other functions such
as behavior, mood, and cognitive processes. One of the most typical
clinical hallmarks of PD is handwriting deterioration, usually the
first manifestation of PD. The aim of this study is twofold: (a) to
find a subset of handwriting features suitable for identifying sub-
jects with PD and (b) to build a predictive model to efficiently diag-
nose PD.We collected handwriting samples from 37 medicated PD
patients and 38 age- and sex-matched controls. The handwriting
samples were collected during seven tasks such as writing a syl-
lable, word, or sentence. Every sample was used to extract the
handwriting measures. In addition to conventional kinematic and
spatio-temporal handwriting measures, we also computed novel
handwriting measures based on entropy, signal energy, and empir-
ical mode decomposition of the handwriting signals. The selected
features were fed to the support vector machine classifier with ra-
dial Gaussian kernel for automated diagnosis. The accuracy of the
classification of PD was as high as 88.13%, with the highest values
of sensitivity and specificity equal to 89.47% and 91.89%, respec-
tively. Handwriting may be a valuable marker as a diagnostic and
screening tool.

Index Terms—Biomarker, decision support system, hand-
writing, Parkinson's disease (PD), tablet.

I. INTRODUCTION

P ARKINSON’S DISEASE (PD) is a progressive neuro-
degenerative disorder characterized by tremor, rigidity,

bradykinesia, and loss of postural reflexes. With current preva-
lence rates, ranging from 10 to 800 people per 100 000, PD is
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one of the most common neurodegenerative disorders [1]. PD
usually affects people at an average age of 60 [2], and preva-
lence rates are expected to increase further as the population
ages. There is no objective quantitative method of clinical diag-
nosis. It is thought that PD can only be definitively diagnosed
at postmortem, which further highlights the complexities of
diagnosis. Clinicopathological studies show that up to 25% of
the patients with PD are diagnosed incorrectly in the final stage
of their disease, even by specialists in movement disorders [3].
Therefore, there is intensive effort to develop expert systems
for the analysis and diagnosis of PD.
There have been several attempts to approach the assess-

ment of PD through technology and to develop decision sup-
port tools for accurately diagnosing PD. This usually includes
signal acquisition through wearable sensors during the Timed
Up and Go clinical test [4], [5] or monitoring during free move-
ment [6]. Another approach that attracted the attention of the
speech processing community is based on recent findings that
one frequent symptom of PD is significant vocal impairment [7],
[8]. Research of automatic PD detection with machine learning
tools using acoustic voice impairment measurement achieved
promising results [9], [10]; the latest reported results showed as
high as 98% overall classification accuracy [11].
It has been well documented that handwriting is affected in

Parkinson's disease [12], [13], and some preliminary data sug-
gest that handwriting might serve as a diagnostic marker for PD
[14], [15]. Today there are wide range of high precision tablets
and touch screen devices that make the acquisition and evalu-
ation of handwriting signals very feasible. Moreover, there is
no requirement for any special sensors and no need to solve the
typical problems of acoustic signal acquisition and processing.
Handwriting is a highly skilled and complex coordinated

motor activity requiring the dynamic interaction of the lower
arm, wrist, and finger muscles. The writing process involves ac-
curate sequencing and online scaling of automated movements
and planning of subsequent strokes [16]. In healthy subjects,
these movements are automated and do not require additional
attentional resources. The handwriting of patients with PD is
often characterized by decreased letter size, changes in kine-
matic aspects of movement including decreased velocities and
acceleration, an increased number of changes in velocity, and
increased movement time [17].
A number of studies have been performed assessing the

kinematic aspects of movement execution during handwriting
and showing the potential of digitized handwriting analysis
to be more sensitive than the UPDRS [17], [18]. However, a
complete picture of the extent to which any one measurement

1534-4320 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1. Handwriting sample of healthy and PD subject.

or set of measurements is useful in discriminating PD has not
yet been given. The most commonly measured parameters
relate to the kinematics and dynamics of writing and drawing.
To provide more insight and better understanding of the data,
nonlinear, local structure-based measures can be used with ad-
vantage. Many measures based on time series analysis, different
modeling techniques in frequency domain, and empirical mode
decomposition were shown to be effective in various domains
of biomedical research [9], [19]. We were therefore motivated
to introduce several novel features describing the kinematic
aspects of handwriting while also taking into account tremor,
randomness, and hidden irregularities. These new features are
based on the measures of entropy, energy, and empirical mode
decomposition of the handwriting data.
A template for acquiring handwriting signals was proposed

and used for diagnosis of PD. The support vector machines
(SVM) algorithmwas used to build a predictive model and iden-
tify subjects with PD. The reported results show that the pro-
posed predictive model achieves medically relevant results in
identifying subjects with PD.
The remainder of this paper is organized as follows.

Sections II and III present the dataset and the methods used,
respectively. Section IV provides a statistical analysis of hand-
writing features and selects a subset of the most significant
features. Finally, Section V presents the experimental results,
in Section VI is a discussion, and conclusions are given in the
Section VII.

II. DATA

Altogether, 37 PD (19 men/18 women) and 38 (20 men/18
women) age and gender matched healthy controls were
enrolled at the First Department of Neurology, St. Annes
University Hospital, Brno, Czech Republic. All subjects were
right-handed, had completed at least ten years of education, and
reported Czech as their first language. PD patients were exam-
ined only in their ON-state while on dopaminergic medication,
i.e., 1–2 hours after taking their regular dose of dopaminergic
medication. All patients were taking L-dopa COMT (cate-
chol-o-methyl transferase) inhibitor and/or a dopamine agonist.

TABLE I
PARKINSON'S HANDWRITING DATASET CHARACTERISTICS

The mean daily levodopa-equivalent dose (LED) [20] was
1373.4 714 mg. Mean and standard deviation of age, Unified
Parkinson's Disease Rating Scale-Part V Modified Hoehn and
Yahr Staging score [21] and disease duration are summarized
in Table I. The PD patients were diagnosed by an experienced
neurologist following the clinical criteria of PD according to [3]
and nondemented based on the clinicians judgment, caregivers
interview, and the MMSE [22] score ( 27 points).
Each subject was asked to complete a handwriting task ac-

cording to the prepared template. The template was shown to
patients and they were free to write the words without needing
to follow the exact pattern. A completed task sheet is depicted
in Fig. 1. The template consists of seven handwriting tasks (part
of a more detailed test battery). From the first to the third task,
participants wrote cursive letters or bi/tri-grams of letters. Sim-
ilar tasks (the letter l-or repetitions of it) are commonly used for
handwriting analysis [23]. The next three tasks involved words
that can be written in one long stroke, i.e., the writing device
is in continuous contact with the writing surface while writing
these words. The words were written in Czech (the native lan-
guage of participants) with the following translation to English:
lektorka—teacher (female), porovnat—to compare, nepopad-
nout—to not catch. The final task involved a longer sentence
that also allowed the capture of the effect of fatigue during
writing (Tramvaj dnes už nepojede—The tram won't go today).
Handwritten signals were acquired using the digitizing tablet

Intuos 4M (Wacom technology) in the x-y plane and in the pres-
sure axis. The tablet itself does not provide visual feedback;
therefore, it was overlaid with paper so that the ink pen could
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be held in a normal fashion and allow for full visual feedback
during writing.

III. METHODOLOGY

The recording starts when the pen touches the surface of
digitizer and finishes when the task is completed. The digitizing
tablet captures the following dynamic features (time-se-
quences): x-coordinate ; y-coordinate ; time stamp

; and button status . The x and y components are
segmented into on-surface and in-air strokes and analyzed in
terms of handwriting measures. The feature calculation stage
involves the application of traditional and nonstandard mea-
surement methods to process handwriting signals. Each method
produces either a single value or a vector of numbers for each
of 75 signals. If there is a resulting vector, we further compute
six basic functionals (mean, median, standard deviation, 1st
percentile, 99th percentile and 99th percentile—1st percentile).

A. Kinematic Measures

It has been shown that various kinematic aspects are affected
in PD and several measures have been established to capture
disruptions during handwriting [13]. Based on the literature
survey, several kinematic and spatio-temporal parameters
were considered for each task. These include: speed, number
of changes in velocity(NCV)/acceleration(NCA), relative
NCV/NCA, writing duration and length, stroke speed, velocity,
acceleration, jerk, horizontal velocity/acceleration/jerk, vertical
velocity/acceleration/jerk, and stroke height/width. Definition
of these features can be found in [14] or in references therein.

B. Measures of Entropy and Energy

The digital representation of handwriting is a physiologically
based time series that is the result of several interacting phys-
iological mechanisms. Such signals contain complex fluctua-
tions which could provide information related to underlying
processes and states of the physiological system. Entropy fea-
tures have the potential to uncover hidden complexities in the
handwriting process. For example, tremor and irregular muscle
contractions introduce randomness to the movements during
handwriting; however, this randomness is difficult to analyze
using only kinematic measures. In order to uncover hidden com-
plexities, two types of features were extracted separately from
the x-coordinate and y-coordinate signals: signal
entropy and signal energy based features.
Entropy is a numerical measure of the randomness or un-

certainty of a signal. The widely established and well known
Shannon entropy of random variable is defined as

(1)

where is probability density function computed using
kernel density estimation with a Gaussian kernel. The gen-
eralization of Shannon entropy, describing the diversity and

randomness of the system, is Rényi entropy. The Rényi entropy
is defined as follows:

(2)

where is order of Rényi entropy. In summary, Shannon
entropy and second and third order Rényi entropy

were calculated for both and .
In order to obtain signal to noise ratios of handwriting, con-

ventional energy and Teager-Kaiser energy oper-
ators were computed as follows. The conventional energy oper-
ator of signal is defined as

(3)

where is the length of series . Similarly, Teager-Kaiser
energy operators [24]

(4)

where is the order of the TKE operator. Having de-
fined equations for signal energy, we still need to obtain the
variable describing noise that is present in the signal. Note that
what we refer to as noise is not unwanted interference from
an external source, but the irregular movement resulting from
muscle contractions and irregularities caused by cognitive im-
pairment as a result of PD. Therefore, the noise variance estima-
tion method of [25] is used to estimate noise variance .
Then, signal-to-noise ratios are defined as

(5)

and

(6)

In the equations above, is the signal under evaluation, i.e.
or coordinates of handwriting.

C. Intrinsic Features

1) Empirical Mode Decomposition: Empirical mode decom-
position (EMD) is an intuitive data-dependent decomposition of
a time series that allows decomposition of nonlinear and nonsta-
tionary data into intrinsic mode functions (IMF). EMD is con-
ducted by the iterative extraction based on the local represen-
tation of the signal as the sum of a local oscillating component
and a local trend. The first IMF, representing the oscillations of
the entire signal, is extracted in the first iteration. The differ-
ence between the original signal and the IMF time series is the
residual. The same procedure is then applied on the residual to
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extract the second IMF and so on. The entire procedure can be
summarized as follows [26].
1) For a given signal , identify all the local extrema (both

minima and maxima).
2) Construct upper envelope by using a cubic spline

to connect all the local maxima. In the same way, the lower
envelope is obtained by connecting all the local
minima.

3) Compute the mean of the upper and lower envelope as

(7)

and extract from to obtain

(8)

4) Check if updated conforms to the properties of IMF.
Otherwise repeat all the above steps.

5) Subtract the from to get the residue and
then iterate on the residue.

The whole process is stopped if
is less than 0.2 or 0.3.

Given a time series , combining all the IMFs gives the
original signal

(9)

where is the total number of IMFs obtained from the time
series and is the residual. The number of IMFs depends
on the nature and length of the signal. Each IMF satisfies two
basic assumptions [26]: (1) The number of maxima, which are
strictly positive, and the number of minima, which are strictly
negative, for each IMF, are either equal or differ by no more
than one. (2) The mean value of the envelope, as defined by the
maxima and the minima, for each IMF, is zero.
2) Extracting Intrinsic Features: From several algorithms

for EMD computation, we used the freely available algorithm
[27]. A number of discriminative temporal and spectral fea-
tures were extracted from IMFs obtained from both normal and
PD-affected handwriting signals.
Intrinsic entropies and were obtained by

computing the entropies defined in Section III-B of the first and
second IMF. The motivation for using only the first two IMFs
is, that in practice, the first few IMFs contain only time-varying
high spectral components representing the noise [9], [26], [27].
Since for PD patients the noise represents underlying irregular-
ities, it is anticipated that the first pair of IMFs carries signif-
icant discriminative information with regard to handwriting of
control and PD subjects.
It is possible to compute intrinsic energies and

similarly to intrinsic entropies by applying (5) and (6) to the first
and the second IMF.

Based on the assumption that higher order IMFs contain a
main trend, or useful signal, different SNR measures are intro-
duced as

(10)

Here, is a symbolic representation of the intrinsic entropies
and energies described above and is the number of intrinsic
mode functions that were extracted.

D. Feature Selection
In order to reduce the dimensionality of input data and re-

move the nonrelevant features, the first stage was a statistical
analysis of the data using the Mann-Whitney U-test. The Mann-
Whitney U test is nonparametric statistical test used to assess
whether two independent groups are significantly different from
each other. The features that passed the Mann-Whitney U-test
with a significance level less than 0.05 level were kept. After
this preprocessing stage, 203 features were selected as the can-
didate subset for further processing and classification.
Feature selection algorithms aim to choose a small subset of

features that ideally are necessary and sufficient to describe the
target concept. From many feature selection algorithms, we de-
cided to use the Relief algorithm [28], which has been shown to
achieve promising results in problems similar to ours [11].
Relief is a feature-weighting algorithm that relies entirely on

statistical analysis and employs only a few heuristics. It selects
most of the relevant features even though only a small number
of them are necessary for prediction. In most cases it does not
help with redundant features. Since we want all the relevant
features to be included for prediction, even at the cost of higher
dimensionality, Relief was a promising candidate.

E. Support Vector Machines
The effectiveness of the selected subset of features in clas-

sifying PD and non-PD subjects was evaluated using nonlinear
SVM. The underlying idea of SVM classifiers is to calculate a
maximal margin hyperplane separating two classes of the data.
To learn nonlinearly separable functions, the data are implicitly
mapped via nonlinear mapping to a higher dimensional
space by means of a kernel function, where a separating hyper-
plane is found. The equation of the hyperplane separating two
differential classes is given by the relation

(11)

where is the weight vector of the net-
work. New samples are classified according to the side of the
hyperplane they belong to. We used the Radial Basis Function
(RBF) kernel [29]. The RBF kernel is defined as

(12)
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TABLE II
FOURTEEN FEATURES WITH LARGEST RELEVANCE TO CLASS LABEL SORTED ACCORDING TO SPEARMAN’S CORRELATION COEFFICIENT.

ADDITIONALLY, MI AND SVM PREDICTION FOR PARTICULAR FEATURES ARE DISPLAYED

where controls the width of RBF function.
The parameters kernel gamma and penalty parameter

were optimized using a grid search of possible values. Specifi-
cally, we searched over the grid defined by the product of
the sets , .

IV. PRELIMINARY STATISTICAL ANALYSIS

To obtain some preliminary insight into the statistical proper-
ties of handwriting features, we computed Spearman's correla-
tion coefficients and mutual information (MI) between feature
vectors and associated responses. MI is a measure of the amount
of information shared by two random variables and . It is
defined as

(13)

where and are possible variable values with a joint prob-
ability distribution function and marginal distribution
functions and , respectively [30]. We computed MI
by evaluating the marginal entropies , and joint
entropy as ,
where entropies are defined as in (1).
Table II summarizes 14 handwritingmeasures with the largest

relevance to response sorted according to an absolute correla-
tion coefficient. All of the correlations are statistically signifi-
cant . Most of the listed features are newly proposed
features, providing some initial confidence in the relevance of
the selected features.
Additionally, every feature was used separately as an input to

the SVM classifier to evaluate its classification accuracy in sep-
arating PD and HC. The resulting individual classification accu-

racies of the features listed in Table II are listed in last column
of the table. Note that these classification accuracies represent
only the discriminative power of a single feature to separate PD
from healthy subjects; any possible combination of features or
causal relationships among features are not taken into account.
The features that are among the ten features with the highest
classification accuracy are marked in bold font. As can be seen
from Table II, the highest classification accuracy of a single fea-
ture is over 76%, indicating that the classification task has a
good chance of success.
The probability density functions of the 12 most highly

ranked features from Table II are shown in Fig. 2. The vertical
axes are the probability densities of the normalized measures
estimated using kernel density estimation with Gaussian ker-
nels. The curves of the major part of the handwriting measures
for PD show a clear difference from the probability densities
of healthy subjects.

V. EXPERIMENTAL RESULTS
The classification test performance was determined by the

computation of accuracy, sensitivity and specificity. The accu-
racy , sensitivity and specificity are defined
as

(14)

(15)

(16)

where true positive (TP) and false positive (FP) represent the
number of correctly classified PD subjects and the number of
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Fig. 2. Probability density functions for selected handwriting parameters. Solid blue lines are for PD patients, dashed red lines for HC subjects. Distribution of
feature values is shown in bottom half of each figure.

Fig. 3. Classification accuracy, sensitivity and specificity based on the features
selected by Relief method. SVM with nonlinear kernel was used with 10-fold
cross validation.

actually healthy subjects diagnosed as PD, respectively. Simi-
larly, true negative (TN) and false negative (FN) represent the
total number of correctly classified healthy controls, and the PD
patients incorrectly classified as healthy controls, respectively.
Classifier validation was conducted using stratified tenfold

cross validation. The process was repeated ten times; in each
repetition the original dataset was randomly permuted prior to
splitting into training and testing subsets. Classification accu-
racy, sensitivity, and specificity over the ten repetitions were
averaged. Training and testing features were normalized before
classification on a per-feature basis to have zero mean and a
standard deviation of one.
We computed classification accuracy, specificity, and sensi-

tivity as the number of features is varied (Fig. 3). The features

Fig. 4. Classification accuracy, sensitivity and specificity based on the features
selected by SVM ranking method. SVM with nonlinear kernel was used with
10-fold cross validation.

were selected by applying the Relief algorithm in each run. The
highest accuracy was achieved using 168 fea-
tures. However, as can be seen from the figure, only slightly
lower accuracy can be obtained when employing a considerably
smaller number of features.
To provide another feature selection approach, we employed

the strategy from Section IV. The features are ranked according
to their classification accuracy, i.e., only features that provided
the highest individual classification accuracy are included in the
SVM classifier. The highest classification accuracy using the
SVM ranking approach was for fea-
tures (see Fig. 4). As in the previous case, a smaller subset of
features results in slightly worse classification accuracy.
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VI. DISCUSSION

Disturbances of motor control in PD, caused by the depletion
of dopamine, affect the handwriting of PD patients. These
disturbances involve the processing of motor planning, se-
quencing, movement initiation, and execution, and they result
in hypometric movements, tremor and alterations in hand-
writing kinematics [13]. Modern technology makes it possible
to capture handwriting so it can be incorporated into medical
decision support systems. The acquisition of handwriting does
not require any high quality controlled conditions and can be
carried out at a clinic or at the patient's home. All of the data
used in this study were collected in a clinic environment with a
tablet connected to a notebook computer without any previous
preparation in a room or special environment. The task per-
formance is quite simple and natural and does not require any
timing or exhaustive repetitions.
The proposed approach, based on handwriting, can be

alternative or complementary to other approaches, such as
currently popular speech assessment for PD classification [9],
[10]. Recent studies show very encouraging results, providing
as high as 97% PD classification accuracy. However, it should
be noted that the first results in this area were significantly
lower, identifying PD with around 90% accuracy [31]. The
90% classification accuracy presented by Little [31] is very
similar to results presented in this study. We believe that
further research will improve the performance of decision
support systems based on handwriting. The application of
this approach based on handwriting avoids the additional
processing steps connected with speech processing, such as
speech segmentation, noise removal, and requirements for a
quality recording environment without external noises and
disturbance. Other approaches, such as diagnosing PD from
breath, do not achieve clinically relevant results and require
dedicated sensors [32]. There is also huge potential in neu-
roimaging techniques, but these require expensive equipment
and cannot be used for monitoring at a patient's home [33].
One of the main findings is that the features proposed in

this study are relevant to PD diagnosis. They represent the
majority of features that were ranked as the most correlated
with class label. Additionally, when compared to our previous
research [34], the inclusion of new features substantially im-
proved classification accuracy. Since all of the PD subjects
were on medication to correct symptoms of PD such as visible
tremor, we had to focus on features that capture subtle signs
of tremor. The tremor signals with irregularities are more
similar to random signals. We used entropy to evaluate signals,
where higher entropy means more irregular movement. We
similarly computed the noise variance of a signal and obtained
SNR indicating the amount of noise present in a signal. We
assume that these features are related to the tremor; however,
handwriting is a complex coordinated activity, where other
factors can influence motor movement. In order to avoid or
at least minimize other sources that could affect handwriting,
only subjects without any history or presence of psychiatric
symptoms or any disease affecting the central nervous system
(other than PD in the PD cohort) and without impairment of the
right upper extremity were included in this study. The fact that

the proposed methodology is able to detect alterations in the
handwriting of PD subjects on medication indicates the high
sensitivity of the approach and its potential to discover even
subtle changes in early stage PD.We did not find any significant
correlations between handwriting features and
daily LED of medication.
The features with the highest relevance come mainly from

two tasks: the second and the seventh ones. The seventh task
(Tramvaj dnes už nepojede.) is specific in the sense that it cannot
be written as one long stroke; it is also the longest task. It is
well known that PD patient handwriting depends on a visual
closed loop, whereas normal handwriting is automated and the
movements are so fast that the normal feedback loop of visual
perception and muscle control is disabled, resulting in an open
loop configuration [17]. We assume that sequenced writing re-
quires a higher programming load than more simple tasks. This
probably poses more challenging conditions for PD patients and
amplifies the influence of the disease on handwriting. The sev-
enth task is probably the most representative task in terms of
the observed clinical symptoms of PD. The second task (le) is
similar to the tasks previously used in other studies to analyze
handwriting. It usually consists of loops like llll and was proven
to reflect handwriting alteration due to PD [13], [35]. When we
compare the second task with two similar tasks, i.e., the first
one and the third one, handwriting features obtained from the
second task appear to be more contributing to overall classifica-
tion performance. Even though these tasks are similar, there are
significant differences that have to be considered. The second
task contains letters of different sizes that may pose more de-
manding requirements for cognition. Comparing the second task
to the other tasks, there is another important difference. The
second task is a pseudoword not existing in Czech language,
whereas tasks from 3 to 6 include words used in everyday lan-
guage. Therefore, the performance of the second task is not au-
tomatized. The lateral premotor cortex is additionally activated
when attention must be paid during a motor task. This notion
may partially explain the fact that the second and the seventh
tasks are more relevant to the class labels than the other tasks.
This should be taken into consideration when preparing hand-
writing experiments, and besides conventional tasks such as el-
lipses or llllwriting, one should include alsomore difficult tasks.
This study shows that handwriting is a promising biomarker

that might be used as an early marker of PD. Our analysis
showed that there is a link between the proposed features such
as entropies and signal-to-noise ratios and motor symptoms of
PD. Further studies in drug-naive, newly diagnosed cases of
PD are warranted. Future studies performed in PD and atypical
Parkinson syndromes will show whether handwriting could
also serve as a possible biomarker for differential diagnosis
of parkinsonism and help to explain how nonmotor features
such as cognitive impairment relate to specific handwriting
alterations. From an implementation point of view, there is no
small subset of features for binary classification tasks as in the
case of speech processing for PD diagnosis [11]. However, the
results presented in Figs. 3 and 4 illustrate that most of the
prediction performance comes from the group of 40–50 fea-
tures. Adding more features increases prediction accuracy only
by few perceptual points. This smaller group of features can
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be more conveniently implemented and used for monitoring.
Especially entropy and signal-to-noise ratio features appear
to sufficiently reflect alterations of PD handwriting. Finally,
future studies could incorporate the prospective acquisition of
samples from PD subjects to monitor the progression of hand-
writing impairment with the disease. Intraindividual variability
(test-re-test variability) should also be evaluated.

VII. CONCLUSION

We proposed an assessment of the practical clinical value of
kinematic and novel handwriting features for identifying sub-
jects with PD by using simple, easy-to-perform handwriting
tasks. Newly introduced handwriting measures show significant
relevance to the PD-score, a binary score indicating whether a
sample belongs to a person with PD. The accuracy using our
method is over 88% with very similar values for specificity and
sensitivity. We emphasize that all PD subjects were examined in
their ON motor state while on their regular dopaminergic treat-
ment. This confirms that handwriting is a medically relevant
biomarker for classifying of Parkinson's disease. We believe our
approach can be complementary to numerous speech or move-
ment based discriminant analyses of PD patients and deserves
further attention. Future studies should further explore the as-
sociations between cognitive/motor aspects of PD and hand-
writing parameters during sentence handwriting, both in the ON
and OFF medication conditions, in order to shed further light on
the sensitivity, specificity, and underlying mechanisms.
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Hodnocení písma u pacientů 
s Parkinsonovou nemocí

Assessing Handwriting in Patients with Parkinson‘s Disease

Souhrn
Cíl: Cílem naší studie bylo kvantitativně vyhodnotit poruchy písma u pacientů s Parkinsonovou 
nemoci (PN) ve srovnání s věkově a pohlavím vázanými zdravými kontrolami (ZK) pomocí digi-
talizačního tabletu. Soubor a metoda: Prospektivně jsme zařadili 40 pacientů s PN (průměrný 
věk 68,6 ± 11,36 let, délka trvání nemoci 8,02 ± 4,79 let) a 40 věkem a pohlavím vázaných ZK 
(průměrný věk 62,55 ± 11,22 let). Všichni jedinci byli praváci bez přítomnosti deprese či demence. 
Každý subjekt podstoupil sedm cvičení pro vyšetření písma a kresbu Archimédovy spirály a elips 
s pomocí digitalizačního tabletu. Byly hodnoceny rychlostní parametry mikrografie a kresby při 
pohybu pera po tabletu i nad tabletem. Pro statistickou analýzu dat jsme použili Mann-Whitneyho 
U test a Spearmanovy korelace s korekcí na opakovaná měření (Benjamini-Hochbergova metoda). 
Výsledky: U PN ve srovnání se ZK jsme při psaní na tabletu zjistili statisticky významné snížení v pa-
rametrech: okamžitá rychlost, okamžité zrychlení, okamžitá změna zrychlení v čase. Změny se zvý-
razňovaly s délkou psaného segmentu. Ještě významnější byly rozdíly mezi oběma skupinami při 
hodnocení pohybu pera nad tabletem, tj. před vlastním zahájením psaní, při přípravě na pohyb. 
Zaznamenali jsme pokles sledovaných hodnot až o 20 % ve srovnání se ZK. Závěr: U pacientů 
s PN jsme prokázali specifické změny nejen při vlastním psaní, ale i ve fázi přípravy na psaní, které 
lze kvantifikovat pomocí digitalizačního tabletu. Výsledky studie mohou mít přímý klinický dopad: 
umožní nám studovat mikrografii jako možný časný klinický marker rozvoje PN. 

Abstract
Aim: The aim of this study was to assess micrographia in patients with Parkinson’s disease (PD) as 
compared to healthy controls (HC) using a digitizing tablet. Methods: We included 40 PD (mean 
68.6 ± 11.36 years, duration of illness 8.02 ± 4.79 years) and 40 age- and sex-matched HC 
(mean 62.55 ± 11. 22 years). All subjects were right-handed, without the presence of depression 
or dementia. Each subject underwent seven exercises for writing and drawing of Archimedes 
spiral and ellipses using a digitizing tablet. The speed parameters of micrographia and drawing 
during the movement of a pen in the air and on the tablet were evaluated. The Mann-Whitney 
U test, Spearman correlation and Benjamini-Hochbergs method were used for statistical data 
analysis. Results: A statistically significant reduction in parameters of velocity, acceleration, and 
jerk was found when comparing both groups during writing. Changes were more pronounced 
with increased length of the written segment. The differences between the two groups were 
more pronounced when the in-air movements were assessed, i.e. during movement preparation. 
The values decreased up to 20% compared to HC. Conclusion: PD-specific changes assessed 
with a digitizing tablet were demonstrated not only during writing but also during preparation 
for writing. The results of the study may have a direct clinical impact: further research into its use 
as a clinical marker of early PD is likely to follow. 
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Úvod
Ručně psaný projev je charakteristickým 
rysem každého z nás a vyvíjejí se v prů-
běhu celého života. V časném dětském 
věku, když se začíná dítě učit první moto-
rické vzorce, píše/ kreslí velmi pomalu, při-
čemž se soustřeďuje na každý detail [1]. 
V období dospělosti jsou už jemné moto-
rické pohyby považovány za automatické, 
tzv. open loop, u lidí ve vyšším věku opět 
přestávají být motorické pohyby automa-
tické, jsou tzv. closed loop, a starší lidé 
se musejí při psaní více soustředit [2– 4]. 
Ručně psaný projev se mění také v dů-
sledku onemocnění postihujících moto-
rický systém, jejichž projevy je možné de-
tekovat např. moderními digitalizačními 
tablety. Jedná se především o neurolo-
gická onemocnění z okruhu tzv. extra-
pyramidových onemocnění mozku nebo 
dle anglické klasifikace tzv. movement 
disorders.

Parkinsonova nemoc (PN) je progresivní 
neurodegenerativní onemocnění mozku, 
u něhož je typicky přítomna degene-
race dopaminergních buněk v pars com-
pacta substantiae nigrae, ale s progresí 
onemocnění dochází také k dalším neu-
rotransmiterovým deficitům. PN se pro-
jevuje zejména hybnými příznaky, ke kte-
rým patří klidový tremor hlavně akrálních 
částí horních a dolních končetin, svalová 
rigidita (ztuhlost), bradykineze (zpomale-
nost a snížení amplitudy pohybů) a post-
urální instabilita s poruchou stoje a chůze. 
Bradykineze je hlavním projevem kaž-
dého pacienta s PN. Hybné projevy mají 
asymetrickou distribuci, tj. jsou vyjádřeny 
více na pravostranných nebo levostran-

ných končetinách, a tato asymetrie v tíži 
symptomatiky zůstává i během progrese 
onemocnění. 

Častým motorickým symptomem je 
také tzv. mikrografie –  specifická poru-
cha písma. Mikrografie je klinický příznak 
spojený hlavně s PN [5], ale může se vy-
skytnout např. i u dalších neurodegene-
rativních onemocnění mozku s parkinso-
nizmem označovaných jako onemocnění 
z okruhu „Parkinson plus“, u Huntingto-
novy choroby [6]. Mikrografie je defino-
vána jako zhoršení jemné motoriky pro-
jevující se zejména progresivní redukcí 
amplitudy (výšky) písma [7– 9] a sníže-
ním tempa psaní. Mohou se objevit zu-
baté kontury a neobvyklé fluktuace 
v rychlosti psaní [10]. Písmo může být 
u části pacientů rušeno též třesem, dys-
kinezemi, únavou a mohou se objevo-
vat symptomy typické pro poruchy chůze 
u PN –  motorické zárazy (freezing), poru-
cha iniciace pohybu (start hesitation) a re-
dukce auto matických pohybů [11– 14]. 
Snižuje se schopnost naučit se nové au-
tomatické pohyby [15], což se může pro-
jevit třeba při kresbě elipsy. Mikrografie je 
způsobena zejména bradykinezí a svalo-
vou rigiditou. 

Předchozí studie zaměřené na stu-
dium písma u pacientů s PN hodnotily 
zejména následující úkoly: psaní „lllllllll“ 
a „lililili“ [16], kreslení koncentrických 
kruhů [2]. Kromě digitalizačního tabletu 
byl ručně psaný projev analyzován také 
elektronickým perem, přičemž u nich 
byly nahrávány různé obrazce, smyčky, 
slova a celá věta [17]. Rovněž byla tes-
tována mikrografie s využitím standard-

ního diametrického kuličkového pera na 
linkovaný papír při psaní písmen s ohle-
dem na subjektivní vnímání mikrografie 
pacienty [5]. 

Cílem naší studie bylo zkoumat defi-
cit grafomotorických poruch v oblasti for-
mální složky psaného projevu bez ohledu 
na zkoumání poruch obsahových a také 
zjistit, které ze sledovaných paraklinic-
kých parametrů souvisejí s bradykinezí 
a v kterých konkrétních úlohách nejlépe 
odliší psaní/ kresbu pacientů s PN na do-
paminergní terapii od písma/ kresby vě-
kově a pohlavím vázaných ZK. Na rozdíl 
od předchozích studií jsme vyšetřili dosta-
tečně velký počet subjektů (40 pacientů 
s PN, 40 ZK), použili jsme komplexní vyše-
třovací protokol sestávající ze sedmi úloh 
hodnotících písmo a kresbu spirály a navíc 
jsme se zaměřili i na doposud nestudo-
vané parametry, které přinášejí informace 
o pohybu pera v momentě, kdy se nedo-
týká plochy tabletu, tedy když pacient ne-
píše/ nekreslí (tzv. in-air movement), ale 
připravuje se na pohyb. Dále jsme stu-
dovali vztah mezi tíží mikrografie a dáv-
kou dopaminergní medikace a délkou 
PN. Do studie byli zařazeni pouze praváci. 
Vedlejším cílem naší studie bylo testování 
hypotézy, zda pacienti s PN s počátkem 
nemoci vpravo budou mít výraznější pří-
znaky ve srovnání s pacienty s počátkem 
PN vlevo.

Soubor a metoda
Charakteristika ZK a pacientů s PN je uve-
dena v tab. 1. Prospektivní studie se zú-
častnilo 80 subjektů, z toho 40 s dia-
gnózou PN (20 mužů, 20 žen, průměrný 
věk 68,6 ± 11,36 let, délka trvání ne-
moci 8,02 ± 4,79 let) dle klinických dia-
gnostických kritérií [18] a 40 věkem a po-
hlavím vázaných ZK (20 mužů, 20 žen, 
průměrný věk 62,55 ± 11,22 let). Mateř-
ským jazykem všech byla čeština, ukončili 
alespoň základní vzdělání, všichni byli pra-
váci bez postižení pravé horní končetiny 
a bez přítomnosti deprese či demence 
(dle MKN- 10 kritérií, MMSE –  Mini-Men-
tal State Examination > 25 bodů). 

Pacienti byli sledováni v Centru pro ab-
normální pohyby a parkinsonizmus při 
I. neurologické klinice LF MU ve FN u sv. 
Anny. Všichni byli během vyšetření na do-
paminergní medikaci a v dobrém hyb-
ném stavu (on stavu) bez dyskinezí a bez 
třesu, cca 1– 2 hod po podání dopami-
nergní medikace. Vybírali jsme pacienty 

Tab. 1. Charakteristika ZK a pacientů s PN.

PN ZK

počet 40 40

pohlaví 20 Ž, 20 M 20 Ž, 20 M

průměrný věk 68,6 ± 11,36 let 62,6 ± 11,2 let

dominantní končetina pravá

stav hybnosti ON

LED 1 373,4 ± 714 mg

UPDRS V 2,25 ± 0,816 bodů

délka PN 8,02 ± 4,79 let

první příznak
LHK – 17
PHK – 20

symetricky – 3
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bez tremor- dominantní formy onemoc-
nění. Na základě lékařské dokumen-
tace a pohovoru s pacientem jsme zís-
kali údaje o prvním příznaku PN a délce 
onemocnění. Tíže onemocnění jsme 
hodnotili pomocí standardizované škály 
UPDRS V (Unified Parkinson’s Disease Ra-
ting Scale V –  Modified Hoehn and Yahr 
Staging) [19] a každému pacientovi jsme 
vypočítali celkovou denní dávku dopami-
nergní medikace přepočtenou na ekviva-
lenty levodopy (LED, L- dopa Equivalent 
daily Dose) [20]. ZK sestávaly z hospitali-
zovaných pacientů I. neurologické kliniky 
FN u sv. Anny v Brně, jednalo se zejména 
o pacienty s vertebrogenním onemocně-
ním. Žádný pacient ve skupině ZK neměl 
(ani anamnesticky) onemocnění CNS.

Popis metody
Všichni pacienti a kontroly byli nejprve vy-
šetřeni neurologem, obeznámeni s prů-
během vyšetření ručně psaného projevu. 
Před vyšetřením podepsali informovaný 
souhlas, který byl schválen v rámci stu-
die „Řeč, její poruchy a kognitivní funkce 
u pacientů s Parkinsonovou nemocí“ etic-
kou komisí FN u sv. Anny v Brně. Vyšet-
ření probíhalo bez předchozího nácviku.

Každý subjekt podstoupil komplexní 
protokol obsahující devět cvičení (obr. 1), 
který jsme sestavili na základě dostupné 
literatury a jenž zahrnoval: 
a)  Archimédovu spirálu [21– 25] –  sledu-

jeme tremor, dynamiku pohybu v hori-
zontálním a vertikálním směru,

b)  elipsu [2,26] –  opět sledujeme hlavně 
dynamiku pohybu a schopnost udržet 
pohyb po delší čas (vícenásobné opiso-
vání spirál),

c)  cvičení 3– 5 [12,16,17,27– 31] –  kombi-
nace slovních spojení s písmenem „ l“ –  
změny v rychlosti a akceleraci,

d)  cvičení 6– 8: slova –  jedná se o přechod 
od jednoduchého po složité slovo –  sle-
dujeme schopnost psaní jedním tahem, 
tedy počet přerušení,

e)  cvičení 9: [4,17,32] věta –  sledujeme 
pohyb ruky nad tabletem, akceleraci, 
počet přerušení, dobu psaní.

Samotný záznam písma probíhal po-
mocí digitalizačního tabletu Wacom, 
Intuos 4M –  medium, sériové číslo: 
2DBH016667. Výhodou tohoto typu tab-
letu je, že pacient k psaní využívá inkous-
tové pero, kterým píše na papír ve zcela 
přirozených podmínkách, a zároveň má 

Obr. 1. Ukázka protokolu.

Obr. 2a) Ukázka pohybu nad tabletem u pacienta s PN.

Obr. 2b) Ukázka pohybu nad tabletem u ZK.
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okamžitou vizuální odezvu. Jedná se o di-
gitalizační tablet, jenž snímá s frekvencí 
200 vzorků za sekundu horizontální a ver-
tikální pozici hrotu pera, tlak na hrot pera, 
azimut a sklon pera. Snímaly se též infor-
mace o pohybu pera (horizontální a ver-
tikální pozice hrotu pera), když se nedo-
týkal tabletu (in-air movement), přičemž 
subjekty nebyly poučeny o tom, že sledu-
jeme i tyto pohyby. Ilustrace zachycených 
trajektorií je uvedena na obr. 2a (PN), 
obr. 2b (ZK). Soubor ze získané databáze 
se zpracovával nástrojem NDAT (Neuro-
logical Disorder Analysis Tool) na spolu-

pracujícím pracovišti –  Ústavu telekomu-
nikací FEKT, Vysokého učení technického 
v Brně. Zaměřili jsme se na parametry sou-
visející s bradykinezí a fluktuacemi tempa 
pohybů –  tj. rychlostí a jejími derivacemi 
(změnou rychlosti v čase, tj. zrychlením 
a změnou zrychlení v čase, tj. tzv. jerk).

Statistické zpracování dat
Vzhledem k nenormálnímu rozložení dat 
jsme použili Mann-Whitneyho U test pro 
porovnání skupin a Spearmanovy kore-
lace pro hodnocení asociací s vybranými 
demografickými a klinickými daty, viz též 

cíle studie. Data byla hodnocena na hla-
dině významnosti p < 0,05 a byla prove-
dena korekce na opakovaná měření (False 
Discovery Rate, FDR  –  Benjamini-Hoch-
bergova metoda). 

Výsledky
Všichni zařazení účastníci dokončili studii. 
Pacienti s PN byli ve fázi středně pokročilé 
nemoci s oboustranným hybným posti-
žením bez výraznější poruchy rovnováhy 
(délka onemocnění 8,0 ± 4,8 let, UPDRS V: 
2,2 ± 0,8 bodů). Žádný z pacientů neměl 
tremor- dominantní formu onemocnění, 
u všech převažovala bradykineze s rigidi-
tou a poruchou chůze. Všichni byli na sta-
bilní dopaminergní medikaci levodopou, 
někteří v kombinaci s inhibitory COMT 
(catechol- o- metyltransferázy) a/ nebo 
agonisty dopaminových receptorů (pře-
počítaná denní LED = 1 373,4 ± 714 mg). 
Dvacet pacientů mělo počátek onemoc-
nění vpravo a 17 vlevo, tři pacienti re-
ferovali oboustranný počátek nemoci. 
Pacienti s počátkem vpravo se signifi-
kantně nelišili v demografických parame-
trech od skupiny s levostranným počát-
kem PN. Nezjistili jsme žádné signifikantní 
rozdíly mezi PN a ZK ve sledovaných pa-
rametrech při kresbě Archimédovy spi-
rály (cvičení 1). Naopak obě skupiny se 
signifikantně lišily ve všech dalších cviče-
ních –  pacienti s PN měli ve srovnání se 
ZK nižší průměrné hodnoty ve všech sle-
dovaných parametrech (pro opisování pís-
mene, slabiky a slova, viz tab. 2a–c). Uve-
dený relativní rozdíl mezi veličinami je 
definován následovně: ((H

PN
 –  H

ZK
)/ H

ZK
 ) ×

×100 %, kde H
PN

, je hodnota veličiny pro 
PN skupinu a H

ZK
 je hodnota veličiny pro 

skupinu ZK. Při mnohonásobném obta-
hování elipsy jsme zjistili nejvýznamnější 
změny v průměrném počtu změn v rych-
losti (relativní rozdíl 13,5 %) a v průměr-
ném počtu změn ve zrychlení (relativní 
rozdíl 13,3 %) (tab. 3). Pro hodnocení po-
hybu pera nad tabletem jsme použili cvi-
čení 9. PN ve srovnání se ZK měli signi-
fikantně nižší všechny hodnoty vztahující 
se k okamžité rychlosti a jejím derivacím, 
a to zejména v horizontálním směru (rela-
tivní rozdíl PN < ZK až o 19,5 %) (tab. 4).

Pacienti s počátkem onemocnění 
vpravo měli ve srovnání s PN s počátkem 
vlevo signifikantně nižší hodnoty oka-
mžité rychlosti, zrychlení a počtu jejich 
změn v čase (až o 17,4 %, p = 0,006) 
(tab. 5). U pacientů s PN jsme nezjistili sig-

Tab. 2a) Opisování písmene „l“ (ZK vs PN).

Parametr
PN medián
[× 10e-3]

ZK medián
[× 10e-3]

Relativní roz-
díl PN < ZK 

(v %)
p hodnota

průměrný počet změn
v rychlosti

2,4 2,7 7,8 0,05

průměrný počet změn 
ve zrychlení

2,4 2,7 8,4 0,045

průměrná hodnota oka-
mžité rychlosti

490 640 5,3 0,025

průměrné zrychlení 65,0 90,0 5,4 0,03

průměrný jerk (změna 
zrychlení v čase)

8,9 12,0 5,5 0,02

Tab. 2b) Opisování slabiky „les“ (ZK vs PN).

Parametr
PN medián
[× 10e-3]

ZK medián
[× 10e-3]

Relativní roz-
díl PN < ZK 

(v %)
p hodnota

průměrná hodnota oka-
mžité rychlosti

506 600 0,02 8,4

průměrné zrychlení 69,5 82,5 0,01 8,6

průměrný jerk 9,4 11,1 0,009 8,8

průměrná horizontální 
rychlost

107,3 125,3 0,05 5,0

průměrné horizontální 
zrychlení

14,4 16,8 0,04 4,8

průměrný horizontální jerk 1,9 2,3 0,04 5,0

průměrná vertikální 
rychlost

6,0 10,2 0,02 29,4

průměrné vertikální 
zrychlení

0,8 1,4 0,02 29,1

průměrný vertikální jerk 0,11 0,18 0,03 30,2
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nifikantní korelace mezi jednotlivými hod-
nocenými parametry mikrografie a dél-
kou trvání PN a/ nebo denní LED. 

Diskuze
Mikrografie patří mezi velmi časné symp-
tomy PN a významně ovlivňuje kvalitu ži-
vota pacientů. Patofyziologický mechaniz-
mus rozvoje tohoto příznaku není plně 
objasněn, na rozdíl od běžných hyb-
ných symptomů PN vyjádřených na kon-
četinách nereaguje mikrografie na do-
paminergní léčbu, nebo jen v omezené 
míře [11,12]. Tomu odpovídají i výsledky 
naší studie –  nenašli jsme signifikantní ko-
relace mezi tíží hodnocených příznaků 
mikrografie a celkovou denní dávkou do-
paminergní medikace. Tíže mikrografie 
nekorelovala ani s délkou trvání nemoci, 
tedy hodnocení námi sledovaných para-
metrů písma s pomocí tabletu může slou-
žit spíš pro časnou dia gnostiku a diferen-
ciální dia gnostiku PN nežli pro hodnocení 
progrese onemocnění v čase. K ověření 
této hypotézy bude zapotřebí prospek-
tivní longitudinální studie u osob v riziku 
PN ještě před rozvojem charakteristických 
hybných symptomů. V souladu s naší hy-
potézou jsme zjistili, že pacienti s po-
čátkem onemocnění vpravo, kteří měli 
i v průběhu klinického vyšetření výraznější 
rigiditu a bradykinezi na pravé horní kon-
četině, měli výraznější příznaky mikrogra-
fie. Tento faktor tedy může ovlivnit vý-
sledky budoucích studií a bude nutné brát 
jej v úvahu při hodnocení dat. Nejzajíma-
vější výsledky jsme zaznamenali při porov-
návání psaní u obou skupin. Výsledky ve 
všech cvičeních až na obkreslování Archi-
médovy spirály přinesly signifikantní roz-
díly mezi oběma skupinami ve všech námi 
hodnocených parametrech mikrografie.

Kresba Archimédovy spirály je velmi sen-
zitivní pro dia gnostiku a kvantifikaci ze-
jména posturálního třesu u pacientů s esen-
ciálním třesem [21]. U našich pacientů s PN 
převažovala rigidita a bradykineze nad tre-
morem. Pacienti byli v době vyšetření na 
dopaminergní terapii, tj. v dobrém hybném 
stavu a s minimálním tremorem. Pravděpo-
dobně proto jsme nenašli žádné statisticky 
významné rozdíly při porovnání pacientů 
s PN a ZK při kresbě spirály. 

V testu vícenásobného obtahovaní elips 
pacienti s PN vykazovali snížený počet 
změn v rychlosti a zrychlení oproti ZK, 
tj. jejich pohyby byly monotónnější, ri-
gidnější, bez fyziologicky přítomného 

„švihu“ během tahu perem. Tyto změny 
jsou pravděpodobně způsobeny jak rigidi-
tou, tak i poruchou cirkumdukce v zápěstí 
a souhry mezi pohybem kloubů prstů 
a zápěstí [33]. Dále jsme pozorovali, že 
čím delší je psaný segment, tím výraznější 
jsou příznaky bradykineze během psaní; 
tedy projevuje se progresivní unavitel-
nost u těchto automatizovaných pohybů. 
Tento výsledek může souviset s vlastní 
bradykinezí [34]. Jako doposud první 
jsme zjistili, že signifikantní změny mezi 
PN a ZK jsou nejen při vlastním psaní, ale 
i při hodnocení pohybu pera nad table-

tem. Námi hodnocenými parametry jsme 
u PN prokázali změny v dynamice pohybu 
pera ve vzduchu –  snížení ve všech sledo-
vaných parametrech. Tyto změny mohou 
souviset ovšem nejen s vlastní bradykinezí 
a rigiditou, ale také např. s plánováním 
pohybu, tj. kognitivním výkonem a ze-
jména výkonem v exekutivních funkcích, 
poruchou iniciace nebo se zárazy pohybu. 
Doufáme, že další plánovaná detailní ana-
lýza našich výsledků nám umožní odpově-
dět na ně kte ré z těchto otázek. 

Silnou stránkou této pilotní studie je 
fakt, že jsme studovali ve srovnání s lite-

Tab. 2c) Opisování slova „lektorka“ (ZK vs PN).

Parametr
PN medián
[× 10e-3]

ZK medián
[× 10e-3]

Relativní roz-
díl PN < ZK 

(v %)
p hodnota

průměrná hodnota 
okamžité rychlosti

57,4 70,2 0,005 12,9

průměrné zrychlení 78,3 96,2 0,009 12,9

průměrný jerk 16,0 13,0 0,014 12,9

průměrná horizontální 
rychlost

122,6 156,2 0,03 8,8

průměrné horizontální 
zrychlení 

16,5 21,0 0,03 8,8

průměrný horizontální jerk 2,2 2,8 0,02 8,9

průměrná vertikální 
rychlost

6,3 10,6 0,05 38,9

průměrné vertikální 
zrychlení

0,8 1,4 0,045 40,2

průměrný vertikální jerk 0,9 0,1 0,041 41,4

Tab. 3. Vícenásobné obtahování elips (ZK vs PN).

Parametr
PN medián
[× 10e-3]

ZK medián
[× 10e-3]

Relativní roz-
díl PN < ZK 

(v %)
p hodnota

průměrný počet změn 
v rychlosti

13,500 1 500 13,5 0,01

průměrný počet změn 
ve zrychlení

13,500 1 500 13,3 0,02

průměrná hodnota 
okamžité rychlosti

563 653   6,8 0,03

průměrné zrychlení 75,9 88,4   6,8 0,04

průměrný jerk 10,2 11,9   6,8 0,04
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raturou poměrně velké soubory pacientů 
s PN a ZK, které byly perfektně srovna-
telné po stránce věku a pohlaví. Jedná 
se o pilotní výsledky, plánujeme analy-
zovat další parametry související s mikro-
grafií u PN. Zcela nová je možnost kvan-
tifikace pohybu pera nad tabletem, která 
nám může v budoucnu pomoci lépe ob-
jasnit ně kte ré motorické i kognitivní as-
pekty mikrografie u PN.

Závěr
Výsledky naší studie prokázaly, že u pa-
cientů s PN ve srovnání se ZK existují spe-
cifické rychlostní změny nejen při vlastním 
psaní, ale i ve fázi přípravy na psaní, které 
lze kvantifikovat pomocí digitalizačního 
tabletu. Dalším plánovaným krokem je vy-
hodnotit senzitivitu a specificitu těchto 
zjištěných změn. Výsledky studie mohou 
mít přímý klinický dopad: umožní nám 
studovat mikrografii jakožto možný časný 
klinický bio marker rozvoje PN a mohou 
nám napomoci i v rámci zpřesnění časné 
diferenciální dia gnostiky tohoto onemoc-
nění. Kvantifikace mikrografie u PN je 
prvním krokem ke studiu patofyziologic-
kých mechanizmů tohoto axiálního symp-
tomu a předpokladem pro hodnocení 
efektu jak terapie farmakologické, tak 
i chirurgické.

Tab. 4. Opisování věty „Tramvaj dnes už nepojede.“ (ZK vs PN).

Parametr
PN medián
[× 10e-3]

ZK medián
[× 10e-3]

p hodnota
Relativní roz-
díl PN < ZK 

(v %)

průměrné zrychlení   83,8 104,3 0,046 19,56

průměrná hodnota 
okamžité rychlosti

621,0 767,4 0,042 19,58

průměrný jerk 113,0 141,0 0,038 19,54

Tab. 5. Opisování slabiky „les“ (porovnání pacientů s PN s pravostranným/
/levostranným počátkem onemocnění).

Parametr
Medián PHK

[× 10e-3]
Medián LHK

[× 10e-3]
p 

hodnota

Relativní roz-
díl PHK > LHK 

(v %)

průměrný počet změn ve 
zrychlení

    2,8      2,3 0,006 17,44

rychlost psaní jednotlivých 
úseků

678,8 439,9 0,018 11,53
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Background and objective: Parkinson’s disease (PD) is the second most common neurodegen-

erative disease affecting significant portion of elderly population. One of the most frequent

hallmarks and usually also the first manifestation of PD is deterioration of handwriting char-

acterized by micrographia and changes in kinematics of handwriting. There is no objective

quantitative method of clinical diagnosis of PD. It is thought that PD can only be definitively

diagnosed at postmortem, which further highlights the complexities of diagnosis.

Methods: We  exploit the fact that movement during handwriting of a text consists not only

from  the on-surface movements of the hand, but also from the in-air trajectories performed

when the hand moves in the air from one stroke to the next. We used a digitizing tablet to

assess both in-air and on-surface kinematic variables during handwriting of a sentence in

37  PD patients on medication and 38 age- and gender-matched healthy controls.

Results: By applying feature selection algorithms and support vector machine learning meth-

ods  to separate PD patients from healthy controls, we demonstrated that assessing the

in-air/on-surface hand movements led to accurate classifications in 84% and 78% of sub-

jects, respectively. Combining both modalities improved the accuracy by another 1% over the

evaluation of in-air features alone and provided medically relevant diagnosis with 85.61%

prediction accuracy.

Conclusions: Assessment of in-air movements during handwriting has a major impact on dis-

ease classification accuracy. This study confirms that handwriting can be used as a marker

for PD and can be with advance used in decision support systems for differential diagnosis

of  PD.
© 2014 Elsevier Ireland Ltd. All rights reserved.

1.  Introduction

Handwriting is a highly skilled and complex coordinated
motor activity. Writing a sentence requires the dynamic

∗ Corresponding author. Tel.: +420 543182639.
E-mail address: irena.rektorova@fnusa.cz (I. Rektorová).

interplay of the lower arm, wrist, and finger muscles. The
accurate sequencing and online scaling of automated move-
ments and the programming of subsequent strokes are also
involved [1]. It has been well documented that handwriting

http://dx.doi.org/10.1016/j.cmpb.2014.08.007
0169-2607/© 2014 Elsevier Ireland Ltd. All rights reserved.
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is affected in Parkinson’s disease (PD) and micrographia occurs
in about 63% of PD patients as an early motor feature [2]. It
is characterized by decreased letter size and by changes in
kinematic aspects of movements [3,4]. Kinematic variables are
sensitive measures for alterations of handwriting movements
even with patients treated with dopaminergic medication
[3,5].

Besides the PD, the alterations of the handwriting are con-
nected with other diseases. Several authors investigated the
temporal, kinematic, and dynamic aspects of handwriting
movements to better characterize the handwriting difficul-
ties of children with dysgraphia [6,7] or hyperactivity disorder
[8]. Some aspects of the handwriting are also indicators for
diagnosis of the Alzheimer disease – the most common neu-
rodegenerative disease [9].

It has rarely been taken into account that hand movement
during handwriting consists of two components: an on-
surface component, comprising movements executed while
exerting pressure on the writing surface, and an in-air compo-
nent, comprising movements performed without touching the
writing surface. The in-air movement  has been mostly used for
biometric applications [10], but some pilot data suggest that
it could have meaningful applications for medical diagnostic
purposes as well [11].

There were several attempts to design decision support
systems for differential diagnosis of PD in recent years.
These usually include speech assessment [12–14], gait mon-
itoring [15,16,17] or tremor assessment [18]. Handwriting
and especially in-air movement  has not been explored so
deeply even if there is proven relationship between symp-
toms of PD and handwriting. When compared to handwriting,
both speech assessment and gait monitoring are more
demanding in the terms of technical equipment and sig-
nal processing. Speech assessment requires high quality
recording conditions without background noise and usu-
ally some further post-processing of recorded speech is
necessary. This can include human operated speech seg-
mentation that makes whole process much more  tedious.
Gait monitoring or tremor assessment techniques require
specialized equipment such as accelerometers and gyro-
scopes. On the other hand, diagnosis of PD through the
handwriting can be easily administrated at clinic or even
patient’s home. Handwriting acquisition is quite simple and
natural, and does not require any timing or exhaustive repe-
titions.

Previous research has shown that there are some statisti-
cally significant differences between kinematics of PD patients
and healthy controls. However extend to which any set of fea-
tures could be useful in discriminating PD from HC was not
given. The contribution of this work is twofold. First, we  show
that in-air movement  has a significant role in diagnosis of
PD providing together with on-surface movement  clinically
relevant classification accuracy. In addition, we proposed a
classification model that can be used for automated differen-
tial diagnosis of PD. The achieved results indicate that in-air
and on-surface trajectories can be used in decision support
systems and assist in diagnosis of PD.

2.  Materials  and  methods

2.1.  Patients  and  data  acquisition

Altogether, 37 PD patients (19 men/18 women; mean age
69.3 ± 10.9 years; mean disease duration 8.37 ± 4.8 years;
UPDRS V score [19] 2.27 ± 0.84; daily levodopa equivalent dose
1373.4 ± 714 mg  [20] and 38 age- and gender-matched HC (20
men/18 women; mean age 62.4 ± 11.3 years) were enrolled
at the First Department of Neurology, St. Anne’s Univer-
sity Hospital in Brno, Czech Republic. (UPDRS V provides
information on disease stage based on motor clinical symp-
toms and their body distribution. UPDRS score 2.27 means
that patients suffered from bilateral parkinsonism with mild
postural instability). All subjects were right-handed, com-
pleted at least 10 years of education, and reported Czech
as their first language. None of the subjects had a history
or presence of any psychiatric symptoms or any disease
affecting the central nervous system (other than PD in the
PD cohort). The subjects were non-demented based on the
clinician’s judgment, caregiver’s interview, and the MMSE
[21] score (>27 points). PD patients were examined only
in their ON-state while on dopaminergic medication, i.e.
1–2 h after taking their regular dose of dopaminergic med-
ication. All patients were taking L-dopa dopamine agonist
or COMT (catechol-o-methyl transferase) inhibitor. At the
time of the study, their symptoms were successfully man-
aged and they had no analgesic treatment. Age-matched
healthy controls were examined and treated in St. Anne’s
University Hospital for cervical and/or back pain syndrome
and had no speech problems and handwriting problems.
All subjects signed an informed consent form that was
approved by the ethics committee of St. Anne’s Hospital in
Brno.

Each subject wrote a Czech sentence: Tramvaj dnes už
nepojede (the tram won’t go today). Sentence was written
into template form so there was upper and lower boundary
that limited handwriting height. Subjects were instructed to
write within the limits, but they did not need exactly match
row height. For more  information about full template see
[22].

Writing of sentence allows to acquire in-air movement
not only as interruptions during the writing on particular
words, but also between words when subject is proceed-
ing from one word to another. An ink writing pen was held
in a normal fashion and subjects were asked to write a
sentence at a self-determined comfortable size and speed.
Patients had visual feedback of their on-surface writing only.
All signals were acquired using Intuos 4M digitizing tablet
(Wacom); in the terms of x-coordinate, x(t); y-coordinate, y(t);
time stamp t and button status, b(t). Button status is a binary
variable, being 0 for pen-up state (in-air movement) and 1
for pen-down state (on-surface movement). The example sig-
nals are depicted in Fig. 1. Fig. 1(a) illustrates the handwriting
sample of HC and Fig. 1(b) sample of PD patient, respec-
tively.
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Fig. 1 – An example of the on-surface (blue solid line) and in-air (red dotted line) movement  during writing of a sentence.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

2.2.  Handwriting  features

The x and y coordinates are segmented into on-surface and
in-air strokes and analyzed in terms of handwriting measures.
The feature calculation stage involves the extraction of kine-
matic features such as stroke speed, writing speed, velocity,
acceleration, jerk (changes of acceleration with time), number
of changes in velocity (NCV), number of changes in accelera-
tion (NCA) and relative NCV/NCA. Relative NCV/NCA means
that NCV/NCA was normalized by writing duration. Regarding
the temporal features, we  analyzed time spent in-air, i.e. in-air
duration, on-surface duration and in-air to on-surface ratio.
Complete feature description is provided in Table 1.

Finally, to obtain complete statistical representation of
available features, 30 statistical functionals of the vector fea-
tures were computed. These include means (arithmetic mean,
geometric mean, trimmed means (5, 10, 20, 30, 40, 50)), per-
centiles (quartiles (25/lower, 75/upper), percentiles (1, 5, 10,
20, 30, 90, 95, 99)), moments (moments (3rd, 4th, 5th, 6th),
kurtosis) and other (range, median, mode, standard deviation,
outlier robust range (percentile 99th – percentile 1st)) statisti-
cal functionals.

2.3.  Preliminary  statistical  analysis

To obtain some preliminary insight into the statistical prop-
erties of handwriting features, we  followed the approach
of Tsanas et al. [23] and computed Pearson correlation
coefficients and mutual information between feature vectors
and associated diagnosis (HC vs. PD). The Pearson correlation
expresses measure of linear dependence between features
vectors and associated response [24]. Mutual information (MI)
is a measure of the amount of the information shared by two
random variables. It is defined as:

I(X; Y) =
∑

x∈X

∑

y∈Y

p(x, y) · log2

(
p(x, y)

p(x)p(y)

)
(1)

where x and y are possible variable values with a joint prob-
ability distribution function p(x, y) and marginal distribution
functions p(x) and p(y), respectively [25]. We  computed MI  by
evaluating the marginal entropies H(X), H(Y) and joint entropy

Table 1 – Description of handwriting features.

Feature Description

Stroke speed Trajectory during stroke
divided by stroke duration

Speed Trajectory during handwriting
divided by handwriting
duration

Velocity Rate at which the position of a
pen changes with time

Acceleration Rate at which the velocity of a
pen changes with time

Jerk Rate at which the acceleration
of a pen changes with time

Horizontal
velocity/acceleration/jerk

Velocity/acceleration/jerk in
horizontal direction

Vertical
velocity/acceleration/jerk

Velocity/acceleration/jerk in
vertical direction

Number of changes in velocity
direction (NCV)

The  mean number of local
extrema of velocity ([3])

Number of changes in
acceleration direction (NCA)

The mean number of local
extrema of acceleration ([3])

Relative NCV NCV relative to writing
duration

Relative NCA NCA relative to writing
duration

In-air time Time spent in-air during
writing

On-surface time Time spent on-surface during
writing

Normalised in-air time Time spent in-air during
writing normalised by whole
writing duration

Normalised on-surface time Time spent on-surface during
writing Normalised by whole
writing duration

In-air/on-surface ration Ratio of time spent
in-air/on-surface
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Table 2 – Description of calculated features.

Feature Mutual
information

Correlation
coefficient

Stroke speed (on
surface, standard
dev.)

6.09  −0.388

Velocity (in air,
standard dev.)

5.94  −0.387

Vert. jerk (in air,
min.)

5.70 0.383

Acceleration (in air,
standard dev.)

5.92 −0.380

Horz. jerk (in air,
range)

5.72  −0.379

Jerk (in air, standard
dev.)

5.96  −0.389

Horz. acceleration
(in air, range)

5.81 −0.375

Horz. velocity (in air,
range)

5.87  −0.371

Horz. velocity (on
surface, quantile
75%)

4.46  −0.370

Vert. acceleration (in
air, min.)

5.74  −0.369

H(X, Y) as I(X ; Y) = H(X) + H(Y) − H(X, Y).The entropy is defined
as

HS(X) = −
∑

x∈X

p(x)log2p(x), (2)

where p(x) is probability density function computed using ker-
nel density estimation with a Gaussian kernel.

Table 2 summarizes 10 handwriting features most strongly
correlated with the target classification variable. All correla-
tions are statistically significant (p < 0.05).

2.4.  Classification  algorithm

As an preprocessing step the data was analyzed using the
Mann–Whitney U test for between-group (PD vs. HC) compar-
isons. The level of significance was set to p < 0.05. Features that
did not pass Mann–Whitney test were discarded and were not
used in further processing.

2.4.1.  Feature  selection
Our goal was to determine discriminative potential of hand-
writing and build predictive model only with relevant features.
The most straightforward approach would be to try all pos-
sible feature combinations (brute force approach) and keep
only those that contribute to correct prediction. However, this
approach is computationally intractable, and requires huge
amount of computational resources. An alternative is to use
sequential forward feature selection (SFFS) that enables sig-
nificant reduction of the computational complexity compared
to that of a brute force search but still select relevant features.
Since SFFS for large number of features is still computationally
demanding, the minimum-redundancy-maximum-relevance
(mRMR) [26] feature selection method was applied to reduce
dimensionality to 50 features.

The first stage of mRMR, the maximum relevance method,
selects the best individual features correlated to target clas-
sification variable [26]. Features selected according to the
maximum relevance method could have a large redundancy.
In order to remove redundancy among features, the minimum
redundancy condition is introduced. Therefore, mRMR  selects
features that are mutually different from each other while still
having a high correlation to yield well performing feature sub-
set. Number of 50 features at the output of mRMR was decided
as a trade-off between computational complexity and desire
to include all relevant features in classification model.

2.4.2.  Support  vector  machines
In order to develop a functional relationship to map  hand-
writing measures to subject classification (PD vs. HC), we
employed supervised machine learning algorithm support
vector machines (SVM) [27,28] with nonlinear radial basis
function (RBF) kernel.

The SVM minimizes the classification error and maximizes
the margin by determining a separating hyperplane to iden-
tify different classes of data. For two-class support vector
machine, we consider the following decision function [29]:

f (x) = sign[wTg(x) + b] (3)

where w is the d-dimensional weight vector and b is a bias. To
obtain w and b the following optimization problem with linear
equality constraints is solved:

minimize J(w, b, �i) = 1
2

wTw + �

2

N∑

i=1

�2
i (4)

s.t. yi[w
Tg(xi) + b] = 1 − �i, i = 1, 2, . . .,  N. (5)

In this minimization problem, N is the number of samples
in the training data set, yi is the target value of the training data
set, � is the regularization hyperparameter and �i the slack
variable.

After solving Lagrangian

L(w, b, ˛i, �i) = 1
2

wTw + �

2

N∑

i=1

�2
i −

N∑

i=1

˛i{yi[w
Tg(xx) + b] + �i − 1}

(6)

discriminant function of linear separating hyperplane is
derived as

f (x) = sign

[
N∑

i=1

˛iyiK(x, xi) + b

]
(7)

where ˛i ∈ R is Lagrangian multiplier and K(x, xi) is a kernel
function [30]. We used radial basis kernel function, defined as
K(x, xi) = exp(− ||xi − x||2/�2). The kernel parameter � is referred
to as the kernel width.

In general, SVM requires the specification of several inter-
nal parameters, and SVMs are known to be sensitive to the
values of these parameters [28]. The performance of SVM
with RBF kernel depends on three parameters: kernel width
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(�), penalty parameter (�) and convergence epsilon (�). These
parameters were optimized using a grid search of possible val-
ues. Specifically, we searched over the grid (�, �, �) defined by
the product of the sets � = [10−5, 10−4, . . .,  103, 104], � = [10−5,
10−4, . . .,  102, 103] and � = [10−5, 10−4, . . .,  102, 103].

2.4.3.  Classifier  validation
Classifier validation was conducted using a leave-one-out
approach. That is, we  left out the sample of one individual as
if it were an unseen individual; the remaining samples were
used as a training dataset.

The whole process of feature selection and classification
was repeated a total of 50 times, where in each repetition the
original dataset was randomly permuted prior to splitting into
the training and the testing subsets. The number of features
at the SFFS output cannot be set to concrete number since
algorithm itself evaluates the number of the most predictive
features. In our experience fewer than ten features were usu-
ally selected during 50 repeated realizations. Classification
accuracies over 50 repetitions were averaged. The standard
deviation of averaged results is quite small indicating that
feature selection (SFFS, mRMR)  and classification are quite
robust to initial conditions. The classification performance of
the predictive model was evaluated for three different scenar-
ios: using only features based on the in-air movement, using
only features extracted from the on-surface movement, and
using a combination of both groups of features. By combina-
tion, we  mean that both feature groups were merged prior to
the feature selection.

3.  Results

On average, the ratio of time spent in-air to time spent on-
surface is 0.77 for HC and 0.75 for PD subjects. Of the ten
features that most strongly correlated with the diagnosis, nine
were in-air movement-related features. This result provided
an initial confirmation of our hypothesis that the in-air fea-
tures contain information relevant for discriminating PD from
HC. The features with the largest relevance to the diagno-
sis, sorted according to an absolute correlation coefficient are:
range of in-air jerk (R = −0.428), range of in-air acceleration
(R = −0.424), and minima of in-air acceleration (R = 0.4148), see
the Table 2. The decreased range/standard deviation of rele-
vant kinematic features in PD as compared to HC reflect the
monotonous motor performance in PD caused by bradykine-
sia (increased slowness of movements) and rigidity rigidity
(increased muscle tone).

To discriminate between PD patients and HC controls we
used SVM, that showed good prediction performance in prob-
lems similar to ours [12] and in general perform well in various
biomedical applications [31,32]. Classification employing fea-
tures based on the in-air movements revealed an accuracy
of 84.43 ± 2.88%. Classification accuracy was 78.16 ± 1.96%
when only features based on the on-surface movement  were
employed. The utilization of features from both modalities
(in-air movement  and on-surface movement) led to further
improvement in classification accuracy: 85.61 ± 1.72%. The
results of classification accuracy together with sensitivity and
specificity are provided in Table 3.

Table 3 – Classification accuracy, specificity and
sensitivity of PD diagnosis using in-air and on-surface
movement.

Accuracy Sensitivity Specificity

In-air 84.43 87.47 82.89
On-surface 78.16 78.23 78.05
In-air + on-surface 85.61 85.95 85.26

4.  Discussion

The writing of a sentence consists of different strokes elicited
at a fine-tuned speed and acceleration that requires a high
degree of simultaneous processing and may therefore have a
higher programming load than a sequence of identical stroke
[4]. This becomes important in the evaluation of handwriting
in PD, since both motor program sequencing and concurrent
processing have been shown to be disturbed in PD [4,5,33].

By applying mRMR, SFFS procedure, and SVM learning
methods to separate PD from HC, we  demonstrated for the
first time that the assessment of in-air hand movements dur-
ing sentence handwriting has a higher impact than the pure
evaluation of on-surface movements, leading to classifica-
tion accuracies of 84% and 78%, respectively. Interestingly,
combining both in-air and on-surface kinematic features for
identifying PD patients on dopaminergic medication improved
classification accuracy by only 1% over the pure evaluation of
in-air movements.

The binary SVM classifier was applied to segment data from
healthy controls and patients with PD. We  chose SVM since it
allows to capture complex multivariate relationships in the
data, it has good generalization properties and can deal with
feature vectors of high dimensionality. In fact, SVM classifier
was successfully applied to the individual classification of a
variety diseases and medical conditions [12,34,35]. Because
of the nonlinear propagation of the features we  selected RBF
kernel. Even thought we  tuned SVM classifier to obtain high-
est classification accuracy, we believe that there may be still
some space for improvement. Currently, there are plenty of
new classifiers or improvements of existing classifiers that can
further enhance classification performance. However, this is
beyond the scope of this paper that focuses on demonstrating
the idea of utilization of in-air movement for diagnosis of PD.

Handwriting in PD is thought to be impaired mainly
due to hypokinesia (decreased amplitude of movements)
and bradykinesia [4,5]. The underlying pathophysiologi-
cal mechanisms probably involve inefficiency of the basal
ganglia-thalamocortical circuits and particularly disturbed
activation of the supplementary motor area, which is thought
to be involved in “open-loop” performances, in which a motor
task is run off automatically [36]. It has been shown that PD
patients are able to compensate if the task is modified to
involve “closed loop” performance. This can be done either
by providing visual cues or by otherwise drawing attention to
the task. The lateral premotor cortex is additionally activated
when attention must be paid during a motor task. This notion
may at least partially explain the fact that the in-air kinematic
features reflected the impaired open-loop performance in PD
better than the on-surface writing to which patients devoted
more  attention under the visual guidance. As compared to
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on-surface movements, the in-air movements elicited during
handwriting of a sentence may involve additional cognitive
processes such as motor planning, programming of the alter-
nating motor sequences, and movement  initiation that may
also have impacted on the kinematic features and our results.

The presented results show that in-air movement  possess
significant amount of information relevant to diagnosis of PD
and as such can be incorporated in decision support systems
that are the important part of the next generation health-care.
The main advantage of the proposed approach is that acqui-
sition of handwriting signals at clinic or at home is relatively
simple and easily administered. In fact, all of the data used
in this study were collected in a clinic environment with a
tablet connected to a notebook computer without any previ-
ous preparation in a room or special environment. We  did not
use any custom made hardware, only commercially available
tablet that makes the whole approach very feasible. Relatively
simple management of the test makes it possible to use it at a
patient’s home, e.g. for disease monitoring, that is important
advantage over other approaches.

Handwriting assessment for PD diagnosis can serve as a
complementary method to diagnosis made be clinician or
other decision support tools [12,37]. We  believe that further
investigation, utilization of new handwriting features and
further tuning of machine learning techniques can improve
prediction accuracy and make this approach even more  useful
and competitive. Here, we  assume that mainly new handwrit-
ing features can provide more  insight into effects of PD on
handwriting and can be beneficial for diagnosis.
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Abstract—In order to develop infocommunications devices so
that the capabilities of the human brain may interact with the
capabilities of any artificially cognitive system a deeper knowledge
of aging is necessary. Especially if society does not want to exclude
elder people and wants to develop automatic systems able to
help and improve the quality of life of this group of population
(healthy individuals as well as those with cognitive decline or
other pathologies).

This paper tries to establish the variations in handwriting
tasks with the goal to obtain a better knowledge about aging.
We present the correlation results between several parameters
extracted from online handwriting and the age of the writers.
It is based on BIOSECURID database, which consists of 400
people that provided several biometric traits, including online
handwriting. The main idea is to identify those parameters that
are more stable and those more age dependent. One challenging
topic for disease diagnose is the differentiation between healthy
and pathological aging. For this purpose, it is necessary to be
aware of handwriting parameters that are, in general, not affected
by aging and those who experiment changes (increase or decrease
their values) because of it. This paper contributes to this research
line analyzing a selected set of online handwriting parameters
provided by a healthy group of population aged from 18 – 70
years. Preliminary results show that these parameters are not
affected by aging and therefore, changes in their values can only
be attributed to motor or cognitive disorders.

Keywords—on-line handwriting; aging; BIOSECURID
database

I. INTRODUCTION

A challenging research topic is the differentiation between
healthy and pathological individuals, considering that health is
something that evolves with aging. While most interesting re-
search is based on longitudinal studies, this is time consuming
and difficult to implement, due to the impossibility to ensure
the availability of participants during a long time period.

Aging can be defined as the accumulation of changes in
people over time [1]. Aging is a multidimensional process of
physical, psychological, and social change. Some dimensions

of aging grow and expand over time, while others decline.
Reaction time, for example, may slow with age, while knowl-
edge of world events and wisdom may expand. Research shows
that even late in life, potential exists for physical, mental,
and social growth and development [2]. Aging is an important
part of all human beings reflecting the biological changes that
occur, but also reflecting cultural and societal conventions.
Aging is among the largest known risk factors for most human
diseases [3]. Roughly 100.000 people worldwide die each day
of age-related causes [4].

While aging affects daily life activities, it also affects the
interaction capabilities with other people as well as machines.

Cognitive infocommunications (CogInfoCom) [5]–[7] in-
vestigates the link between the research areas of infocommu-
nications and the cognitive sciences, as well as the various
engineering applications which have emerged as the synergic
combination of these sciences.

The primary goal of CogInfoCom is to provide a sys-
tematic view of how cognitive processes can co-evolve with
infocommunications devices so that the capabilities of the
human brain may not only be extended through these devices,
irrespective of geographical distance, but may also interact
with the capabilities of any artificially cognitive system. This
merging and extension of cognitive capabilities is targeted
towards engineering applications in which artificial and/or
natural cognitive systems are enabled to work together more
effectively.

From this point of view some interesting possibilities
appear, such as the improvement of those human beings
experiencing some cognitive decline with the goal to provide a
successful aging. This requires some measurement functions,
which could be based on high level activities done by people
(speech, handwriting, etc.).

The concept of successful aging can be traced back to the
1950s and was popularized in the 1980s. Successful ageing
consists of three components [8]:
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Fig. 1. Azimuth and inclination angles of the pen with respect to the plane
of the graphic card

1) Low probability of disease or disability
2) High cognitive and physical function capacity
3) Active engagement with life.

In this paper we will use a simple approach, consisting
of evaluating a selected set of online handwriting parame-
ters extracted from the benchmarked handwriting database,
BIOSECURID [9]. The database contains the handwriting
of 400 subjects, which were required to perform specific
handwriting tasks (among those their signature and copying a
predefined paragraph). The handwritten was acquired by means
of an Intuos Wacom 4 digitizing tablet plus an inkpen. From
the users point of view, he is writing with a ordinary ball pen
on an ordinary sheet of paper. In fact, the digitizing tablet is
behind the sheet. The nice advantage of this online handwriting
acquisition is the possibility to accurately measure handwriting
timing, pressures and angles. In addition, the handwriting data
are acquired in real time.

Other than the Intuos Wacom digitizing tablet, online
handwriting data can be acquired through a stylus-operated
PDAs. These devices can capture the following information:

1) Position in x-axis.
2) Position in y-axis.
3) Pressure applied by the pen.
4) Azimuth angle of the pen with respect to the tablet

(see Fig. 1).
5) Altitude angle of the pen with respect to the tablet

(see Fig. 1).

Using this set of dynamic data, further information can be
inferred, such as handwriting acceleration, velocity, instanta-
neous trajectory angle, instantaneous displacement, tangential
acceleration, curvature radius, centripetal acceleration, and
more.

In order to establish a baseline for comparing healthy vs.
pathological handwriting parameters (because of aging) it is
necessary to have information on how they change along the
time. To this aim, the authors collected a multimodal database
of healthy people, which consists of handwriting data provided
by university students, lecturers and administrative/support
people. On the other hand, the acquisition of pathological
samples requires:

• The participation of medical doctors able to label the
samples.

Fig. 2. Cursive handwriting task produced by a male subject

• The access to people affected by some pathology.

For most of the engineering teams it is hard to access
this kind of samples, mostly because of ethical and privacy
issues. For these reasons, to date, online pathological hand-
writing databases do not exist. Nevertheless, the differentiation
between pathological and healthy samples requires a previous
analysis of healthy population. This paper wants to contribute
to this last issue.

II. EXPERIMENTAL RESULTS

A. Biosecurid Database

In this paper we use a specific task of the BIOSECURID
database [1], which consists of the copy of a predefined
paragraph. Fig. 2 shows an example obtained from a masculine
writer.

Using this task we have evaluated the parameters described
in table I for the 400 users and for second acquisition session
(the database consists of four different acquisition sessions
suitable to analyze intra-user variations, which are not con-
sidered in this study). For sake of clarity, it must be said that
the majority of the subjects involved in the data collection were
university students with an average age of 20 years, as it can
be seen from Fig. 3 that illustrate the subjects’ age histogram.
Nonetheless, the database also contains the handwriting of
more aged subjects and their data were used for comparison.

B. Experimental Setup

A Pearson correlation between several features extracted
from the online handwritten task and the age of the writer is
applied, to check if some correlation exists.

In statistics, the Pearson product-moment correlation co-
efficient (sometimes referred to as the PPMCC or PCC or
Pearson’s r) is a measure of the linear correlation (dependence)
between two variables X and Y, giving a value between
+1 and −1 inclusive, where 1 is total positive correlation,
0 is no correlation, and −1 is total negative correlation. It
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Fig. 3. Histogram of the participants’ ages

is widely used in sciences as a measure of the degree of
linear dependence between two variables. In our case, the first
variable is a measurement performed on the handwriting task
(for instance time required on the paper surface to finish the
task) and the second variable is the age of the writer. The
interpretation of the correlation coefficient can be based on
these ranges:

• High correlation: .5 to 1.0 or −0.5 to 1.0

• Medium correlation: .3 to .5 or −0.3 to .5

• Low correlation: .1 to .3 or −0.1 to −0.3

C. Experimental Results

Fig. 4 illustrates the distribution along the age of the
handwriting parameter “time up”, i.e. the time the pen was not
on the sheet of paper (age, time up), for each writer. Fig. 5
represents the same for the “times down” parameter.

Table I shows the selected set of handwriting measured
features, their Pearson correlation coefficinet and the p value,
which is an index of the correlation significance. The selected
handwriting features are: time up and down, pressure, speed of
the trajectory, entropy, Zero crossing rate, number of strokes,
normalized times, differential values obtained by the first (d)
and second derivative (dd), pressure higher than a predefined
threshold and Teager energy operators [10]. The m at the end of
the parameter name stands for mean, std for standard deviation,
and also reported are the median, mode, mean value (m) etc.

As it can be read from the “Rho” column reported in
Table I, none of the selected handwriting parameters show
a high correlation with the age, suggesting that age do not
affect this daily functional activity. For those parameters where
it would be possible to guess a weak correlation, the p value
was too high to made it significant. A weak correlation with the
age (near medium correlation) was found only for the “nt up”
feature (see Table I for the list of selected parameters), which
has been defined by the authors as the normalized time up. It
consists of the time up split by the number of strokes up in
the air.

While our initial guess was that some of the selected
features could have been affected by aging, the results of

Fig. 4. Distribution of the pair of values (age, time up) for each writer

Fig. 5. Distribution of the pair (age, time down) for each writer

this research do not confirm it. However, these results have
very good implications: once it has been established that the
selected handwriting parameters are not (or weakly) affected
by aging, they can be used as a baseline for discriminating
between healthy/pathological subjects. Instead, if our initial
guess was confirmed, the healthy/pathological classification
of subjects through handwriting parameter would have be
more challenging, suggesting that handwriting features were
not useful for discriminating among healthy and pathological
subjects.

Fig. 4 and 5 show some values in the region of the “more
aged” area that seem to suggest an increase of time required
to do the task, especially in the “up in the air” case. However,
as it can be seen from the data reported in Table I, this is not
confirmed by a strong Person’s correlation coefficient. Clearly,
these results must be confirmed with more data, in particular
with more data from more aged subjects. Thus, we should
consider these results preliminary.

To substantiate these results, one future work is to acquire
a balanced database containing handwriting data from a large
and balanced range of ages, and from individuals with similar
education level, and maybe also from different culture.
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TABLE I. SOME EXTRACTED FEATURES, THEIR PEARSON’S
CORRELATION AND THE p VALUE.

features Rho p
t upm 0.2 6.80E-05

t downm 0.14 0.00448107
p meanm 0.1 0.03966636
p maxm 0.12 0.02060574

p medianm 0.09 0.05866625
p modem 0.08 0.12951908

p stdm 0.06 0.22729248
speed maxm 0.06 0.2198899
entropy xm -0.09 0.05843317
entropy ym 0.12 0.01604943
entropy pm -0.1 0.05707732

ZCRm -0.21 2.73E-05
NZCRm -0.21 2.73E-05

strokes dm -0.21 2.73E-05
strokes um -0.21 2.73E-05

nt up 0.29 4.50E-09
nt down 0.22 5.86E-06

dp meanm 0.04 0.404588
dp maxm 0.19 0.00016188

ddp maxm 0.18 0.00036086
entropy dpm -0.19 0.00016748

entropy ddpm -0.19 9.04E-05
entropy accelerationm -0.06 0.23452631

p100m 0.16 0.00157878
p200m 0.17 0.00069852
p300m 0.15 0.00188938
p400m 0.12 0.01359625
p500m 0.12 0.01319046
p600m 0.14 0.00625067
p700m 0.14 0.00471245
p800m 0.13 0.00774605
p900m 0.12 0.02098432

teagerxmax 0.04 0.42055342
teagerym 0.1 0.04343131

teagerymedian -0.02 0.7450191
teagerymax 0.11 0.02860634
teagerpm 0.01 0.87595643

teagerpmedian -0.01 0.90101579
teagerpmax 0.15 0.00216337

III. CONCLUSION

In this paper we have analyzed online handwriting features
to search for age dependence. However, the Pearson correlation
values for the parameters under examination revealed to be
quite low, and not significant. While these results discourage
the existence of a specific handwriting parameter indicative of
age, we provided with these results a baseline for discrimi-
nating between healthy and pathological online handwriting
parameters, considering that now we can hypothesize that
handwriting is only affected by motor and cognitive disorders.

In addition, we should take into account that biological age
does not need to be related to the “apparent age”. Some people
seem younger/older than they really are.

These findings also imply that the proposal of an automatic
age estimator based on handwritten tasks is not a trivial
problem, but it also implies that the alteration of some of these
parameters could be related to health issues regardless of the
age of the writer.

Future research works could be devoted to investigate
the effects of age on other biometric traits also available in
BIOSECURID, such as speech and face changes.

ACKNOWLEDGMENT

This work has been supported by FEDER and Ministerio de
ciencia e Innovacin, TEC2012-38630-C04-03, COST IC 1206,

GAP102/12/1104 and NT13499. The described research was
performed in laboratories supported by the SIX project; the
registration number CZ.1.05/2.1.00/03.0072, the operational
program Research and Development for Innovation.

REFERENCES

[1] R. L. Bowen and C. S. Atwood, “Living and dying for sex,” Gerontol-
ogy, vol. 50, no. 5, pp. 265–290, 2004.

[2] D. E. Papalia, Physical and Cognitive Development in Late Adulthood.
Mc-Graw Hill, 2009.

[3] A. Dillin, D. E. Gottschling, and T. Nystrom, “The good and the bad
of being connected: the integrons of aging,” Current Opinion in Cell
Biology, vol. 26, pp. 107–112, 2014.

[4] A. D. N. J. de Grey, “Life span extension research and public debate:
Societal considerations,” Studies in Ethics, Law, and Technology, vol. 1,
no. 1, 2007.

[5] P. Baranyi and A. Csapo, “Cognitive infocommunications: Coginfo-
com,” in Computational Intelligence and Informatics (CINTI), 2010
11th International Symposium on, 2010, pp. 141–146.

[6] G. Sallai, “The cradle of cognitive infocommunications,” Acta Polytech-
nica Hungarica, vol. 9, no. 1, pp. 171–181, 2012.

[7] P. Baranyi and A. Csapo, “Definition and synergies of cognitive
infocommunications,” Acta Polytechnica Hungarica, vol. 9, no. 1, pp.
67–83, 2012.

[8] J. W. Rowe and R. L. Kahn, “Successful aging,” The Gerontologist,
vol. 37, no. 4, pp. 433–440, 1997.

[9] J. Fierrez, J. Galbally, J. Ortega-Garcia, M. Freire, F. Alonso-Fernandez,
D. Ramos, D. Toledano, J. Gonzalez-Rodriguez, J. Siguenza, J. Garrido-
Salas, E. Anguiano, G. Gonzalez-de Rivera, R. Ribalda, M. Faundez-
Zanuy, J. Ortega, V. Cardenoso-Payo, A. Viloria, C. Vivaracho,
Q. Moro, J. Igarza, J. Sanchez, I. Hernaez, C. Orrite-Urunuela,
F. Martinez-Contreras, and J. Gracia-Roche, “Biosecurid: a multimodal
biometric database,” Pattern Analysis and Applications, vol. 13, no. 2,
pp. 235–246, 2010.

[10] J. Kaiser, “On a simple algorithm to calculate the ‘energy’ of a signal,”
in Acoustics, Speech, and Signal Processing, 1990. ICASSP-90., 1990
International Conference on, vol. 1, 1990, pp. 381–384.

M. Faundez-Zanuy et al. • A Preliminary Study on Aging Examining Online Handwriting

224
Authorized licensed use limited to: Brno University of Technology. Downloaded on May 18,2022 at 10:00:43 UTC from IEEE Xplore.  Restrictions apply. 



A.29 Biometric Applications Related to Human Beings: There
Is Life beyond Security

368



Biometric Applications Related to Human Beings: There Is Life
beyond Security

Marcos Faundez-Zanuy • Amir Hussain • Jiri Mekyska • Enric Sesa-Nogueras •

Enric Monte-Moreno • Anna Esposito • Mohamed Chetouani • Josep Garre-Olmo •

Andrew Abel • Zdenek Smekal • Karmele Lopez-de-Ipiña

Received: 1 December 2011 / Accepted: 10 July 2012 / Published online: 3 August 2012

� Springer Science+Business Media, LLC 2012

Abstract The use of biometrics has been successfully

applied to security applications for some time. However,

the extension of other potential applications with the use of

biometric information is a very recent development. This

paper summarizes the field of biometrics and investigates

the potential of utilizing biometrics beyond the presently

limited field of security applications. There are some syn-

ergies that can be established within security-related

applications. These can also be relevant in other fields such

as health and ambient intelligence. This paper describes

these synergies. Overall, this paper highlights some inter-

esting and exciting research areas as well as possible

synergies between different applications using biometric

information.

Keywords Biometrics � Security � Healthcare � Ambient

intelligence

Introduction

The term ‘‘biometrics’’ originates from the Greek words

Bio (life) and metron (measure) and is defined as the sci-

ence and technology of measuring and statistically ana-

lysing biological data. Although many people consider

biometrics only relevant to security applications, in reality,

the relevance of biometrics is very far reaching. This field

has applications relevant to animals, plants and human

beings. Some examples are:
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• Statistical methods for the analysis of data from

agricultural field experiments to compare the yields of

different varieties of wheat.

• Analysis of data from human clinical trials evaluating the

relative effectiveness of competing disease therapies.

• The analysis of biometric characteristics for animal/

human verification or identification.

The main components of a hypothetical biometric

application system are shown in Fig. 1. The first block

deals with the acquisition of input signals. Depending on

the application and the kind of sensors, a variety of dif-

ferent signals may be obtained. Nowadays, most signals are

acquired in a digital format or are converted to digital in

order to make computerized analysis more feasible. While

some signals can be acquired from both human beings and

animals (such as iris and retinal analysis of the eye), others

are specific to humans (such as speech, handwriting, etc.).

This paper is focused exclusively on applications that

are relevant only to human beings. Therefore, we will limit

discussion to only human-specific signals. The set of these

signals can be split into two categories:

1) Behavioural biometrics: this category is based on the

measurements and data derived from an action

performed by a user and thus indirectly measures

some characteristics of human body. Signature, gait,

gesture and key stroking recognition belong to this

category.

2) Morphological biometrics: this category is based on

direct measurements of parts of the human body.

Fingerprint, face, iris and hand-scanning recognition

belong to this category.

However, this classification is quite artificial. For

example, speech signals are dependent on behavioural

traits such as semantics, diction, pronunciation, idiosyn-

crasy, etc. A speech signal might also be related to factors

such as socio-economic status, education, place of birth,

etc. Moreover, it is also dependent on individual speaker

physiology, such as the shape of the vocal tract. On the

other hand, physiological traits are also influenced by

human behaviour, for example, the manner in which a user

presents a finger and looks at a camera, etc.

Figure 2 summarizes possible biometric applications as

well as the input signals that can be used for these applica-

tions. While a large set of signals can be utilized for bio-

metric security applications, some offer much more potential

in other fields, especially in the case of behavioural signals.

For the remainder of this paper, we will concentrate exclu-

sively on health and ambient intelligence applications.
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Health Applications

The skill level of humans is strongly related to their health

state. An important example is the way our cognitive

functions are related to the ageing process. Cognitive

decline is a natural part of the ageing process. However, the

extent of decline varies across subjects and across func-

tions. For instance, handwriting and speech production is a

fine motor control performed by our brain. When these

signals are degraded, it is indicatory of health problems.

Figure 3 shows the handwriting of one elder person as an

example.

One important unsolved problem is how the dementia

syndrome is associated with diseases such as Parkinson’s

and Alzheimer’s, etc. In the case of Alzheimer’s, it is

estimated that the cost per year for a single patient is

35,000 USD in the USA. One in ten patients is below

60 years old. The incidence of Alzheimer’s is doubled for

every 5 years after 65, and beyond 85 years old, the inci-

dence is between one-third and half of the amount of

population. If a solution is not found, this problem will be

unbearable for society. A relevant issue related to dementia

is its diagnostic procedure. For example, Alzheimer’s dis-

ease (AD) is the most common type of dementia and it has

been pointed out that early detection and diagnosis may

confer several benefits. However, intensive research efforts

to develop a valid and reliable biomarker with enough

accuracy to detect AD in the very mild stages or even in

presymptomatic stages of the disease have not been con-

clusive. Nowadays, the diagnostic procedure includes the

assessment of cognitive functions by using psychometric

instruments such as general or specific tests that assess

several cognitive functions. A typical test for AD is the

clock drawing test (CDT) [84] that consists of drawing a

circle and distributing the 12 h inside. An example of this

is shown in Fig. 4. The top row shows the initial results

produced by a person (baseline) on the left, and on the

right, several samples of the same person after 6, 12 and

18 months of being damaged are also shown. This same

test has also been used for detecting drug abuse, depres-

sion, etc. The bottom row of Fig. 4 shows a similar situa-

tion when copying two interlinking pentagons, which is

one of the tasks of the mini-mental state examination

(MMSE) [30]. The MMSE or Folstein test is a brief

30-point questionnaire test that is used to screen for cog-

nitive impairment. It is also used to estimate the severity of

cognitive impairment at a specific time and to follow the

course of cognitive changes in an individual over time, thus

making it an effective way to document an individual’s

response to treatment.

Research by Forbes et al. [31] showed the correlation

between handwriting skill degradation and AD. Initially, it

is possible to detect the disease using handwriting, espe-

cially in the case of cursive letters. Work by Neils-Strunjas

et al. [60] established that some handwriting aspects are

more open to vulnerabilities than others and thus can be

good indicators for AD diagnosis.

Handwriting tests are also very useful for determining

the relevance of medication. For instance, Fig. 5 shows on

the left the result of drawing an ellipsoid on a digitizing

tablet. As can be seen, the Y plot, the velocity and accel-

eration of this coordinate are quite periodic for a healthy

person (on the left). In the centre, we can see the results of

a Parkinson disease (PD) patient and on the right a PD

patient taking medication. It is evident that the medication

permits the recovery to a large extent the skill of a healthy

person. Obviously, this kind of analysis can be used for

determining the dosage of drugs for a specific patient. This

example has been extracted from [21]. Similar research

line is exploited here [11].

There are similar experiences using the letter ‘‘ll’’ Tucha

et al. [89, 90] and drawing an Archimedes spiral [75].

Werner et al. [94] showed the differences in handwriting

between patients with mild AD and mild cognitive

impairment. Ericsson et al. [23] evaluated the dictated

handwriting and signature and observed that it remained

unaltered longer than spontaneous writing. Heinik et al.

[42] used the drawings for analysing depressive disorders

in older people. Other interesting works using handwriting

include:

a) Changes in handwriting due to Alcohol [27, 65]

b) Effects of caffeine on handwriting [90]

c) Effects of marijuana and alcohol [29]

d) Study of kids with perceptive/motor difficulties [48,

72]

Handwriting analysis using a digitizing tablet with an

ink pen has an advantage over the classic method based on

handwriting and posterior scanning, namely that the

machine can acquire the information ‘‘in the air’’. That is,

where there is no contact between pen and paper. Figure 6

shows the acquisition of the ten digits from 1 to 0 using an

Intuos Wacom digitizing tablet (http://www.wacom.eu).

The tablet acquired 100 samples per second including the

spatial coordinates (x, y), the pressure, and a couple ofFig. 3 Handwriting of an elder person
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basal 6 months 12 months 18 monthsFig. 4 Clock drawing test (top),

pentagons of MMSE (bottom)

for a person with AD, showing

initial baseline on the left, and

then from left to right, samples

from the same person after 6,

12, and 18 months

Fig. 5 Signals y(t), vy(t), ay(t) (position, velocity and acceleration, respectively, of coordinate y) when drawing an ellipsoid by a healthy person

(left), a PD patient (centre) and a PD patient taking apomorphine (APO)
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angles (see Figs. 7, 8). The pen-up information is repre-

sented in Fig. 6 using ‘‘?’’, while the pen-down is marked

with ‘‘*’’. Our experiments on the biometric recognition of

people reveal that these two kinds of information are

complementary and in fact, contain a similar discriminative

capability, even when using a database of 370 users [78,

79].

Speech signals represent another important possibility

for health analysis. Hypokinetic dysarthria is a speech

production alteration based on neurological problems [53].

There are multiple causes for this illness, such as brain

paralysis, thrombosis, embolia, hemorrhagia, tumours and

degenerative diseases (Alzheimer’s, Parkinson’s, Amyo-

trophic lateral sclerosis, etc.). Dysarthria affects speech

quality (articulation, speech, intonation, speed, breath

control, etc.) [57]. One possible analysis based on speech

signals is of emotion analysis, because people affected by

dementia display fewer emotions [80]. Moreau et al. [58]

dealt with oral festination in PD. Festination is the ten-

dency to speed up during repetitive movements. It appears
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first with gait in order for sufferers to avoid falling down,

and it subsequently appears in handwriting and speech.

Ozsancak et al. [63] used speech signals to study PD.

Ackermann et al. [5] analysed the trajectory of the lower

lip when articulating speech signals, in order to study

Parkinson’s, Huntington’s, cerebellum atrophia and pseu-

dobulbar paralysis. Goberman and Coelho [36, 37],

Nagulic et al. [59], Stewart et al. [83] used speech to

evaluate the improvement of PD after treatment. [93]

analysed the required time taken for sufferers to find the

suitable word as well as time taken to articulate, and they

found that AD specially affected the time taken to find the

correct word, and to a lesser extent the articulation time.

Rapcan et al. [69] used several measures (pitch, energy,

etc.) for schizophrenia detection. They obtained promising

results, which are especially interesting because there are

no biological markers for this kind of disorder. Ferrand

[28] used harmonic-to-noise ratio (HNR), jitter, funda-

mental frequency (F0), etc., and found that the most

relevant of these parameters for studying the ageing pro-

cess is the HNR.

Ringeval et al. [70] developed an automatic intonation

recognition systems exploiting static (e.g. k-NN) and

dynamic classifiers (e.g. HMMs) for the characterization of

verbal productions of language-impaired children. The

main results show that it is possible to characterize the

prosodic abilities of those children and providing results in

agreement with the clinical descriptions of the subjects’

communication impairments.

Figure 9 shows a speech sentence pronounced by a

healthy person and the same sentence pronounced by a PD

affected person. It can be seen that the intonation is very

flat for the PD sufferer, matching similar results as those

reported in [41]. AD causes the changes in prosody [71].

The reason is based on the alteration of brain areas devoted

to speech processing [44, 62]. In its initial stages, AD can

be confused with multiple sclerosis, and speech analysis

can differentiate between both [9]. Another classical
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application of speech processing can be useful for dementia

studies. For instance, AD patients exhibit a reduced

vocabulary [19, 47]. Thus, speech recognition applications

can be useful for evaluating the reduction of vocabulary in

spontaneous speech.

Thus, speech signals offer significant potential for

health analysis. Nevertheless, its acquisition can be more

complicated than handwriting due to microphone position,

recording level adjustment, etc. Some studies, such as

[40], studied jointly handwriting and speech, although

they were focused on lexical issues. Obviously, possibil-

ities with other signals exist, such as the pupil reaction to

light [32] and SPECT (single-photon emission computed

tomography) [39], PET (positron emission tomography)

[45], and MRI (magnetic resonance imaging) image

analysis [88].

An interesting application of iris recognition might be to

use this technology for characterizing the relationship of

the change of pupil to the mood state of one person [33]. It

is known that depressed patients manifest a shorter latency

for constriction than control subjects, which is related to

the fact that in depression, the activity of the neurotrans-

mitters’ decreases. Another application of biometric iris

recognition technologies can be to predict the risk of age-

related macular degeneration. Macular degeneration is one

of the main causes of loss of sight in elderly people, and

changes in iris colour are a sign of the risk of this illness

[43]. Another extremely promising use of biometric tech-

nologies can be for a noninvasive estimate of cholesterol,

through the changes in the iris of a patient [67].

Another potential use for biometric information is to

develop the next generation of hearing aids. The previous

audio-only developments in the field of speech enhance-

ment (such as multi-microphone arrays and speech

enhancement algorithms) have been developed academi-

cally and then been implemented into commercial hearing

aids for the benefit of the hearing impaired community. In

recent years, hardware has developed to an extent that very

sophisticated multiple microphone hearing aids have been

developed that exclusively exploit the audio modality. It is

expected that in the future, conventional hearing aids will

be transformed to make use of visual information with the

aid of cameras for input in addition to conventional audio

input, demonstrating that it is possible to combine audio

and visual information to further improve the quality and

intelligibility of speech in real-world noisy environments.

Speech is produced by vibration of the vocal cord and

the configuration of the vocal tract that is composed of

articulatory organs, and due to the visibility of some of

these articulators such as tongue, teeth, and lips, there is an

inherent relationship between the acoustic and visible

properties of speech production. The speech percep-

tion connection between audio and visual aspects of

communication has been established since pioneering

works in 1954 [87] and subsequent developments such as

the McGurk effect [56]. In addition, audiovisual speech

correlation has been deeply investigated in the literature [7,

8, 74], including in the work by [4, 18], showing the

connection between lip movement and acoustic speech and

that this connection could be used for enhancing noisy

speech.

Multimodal correlation is of interest because of the

application of visual information to the speech enhance-

ment domain. To the best knowledge of the authors, the

first example of a functioning audiovisual speech filtering

system was proposed in 2001 [35], and this was then fol-

lowed by other related work [38, 81, 82]. The increased

processing power of computers and the miniaturized and

improved capability of relevant technical components such

as video cameras and processors have made the concept of

utilizing cameras for speech processing, possibly even as

part of a hearing aid system, much more feasible. There are

both strengths and weaknesses with the use of visual

information for speech enhancement, but it has proved

practical for further development. Following the pioneering

work by Girin et al. [35], more recent work has focused on

the use of visual information as part of a source separation-

based system [81, 82]. In addition, [6] has made use of

visual information as part of a Wiener filtering speech

processing system. The use of visual biometric informa-

tion, applied intelligently, has the potential to improve the

quality of future hearing aid devices and aid the lives of

those who suffer from hearing impairment.

Multimodal signal processing plays an important role in

human communication analysis due to its integrative pro-

cess. Indeed, correlations between speech and visual

information (e.g. gestures, movements) make it possible to

extract intra- and inter-coordination. In Delaherche and

Chetouani [20], a general framework is proposed for the

characterization of dyadic interactions for the automatic

assessment of the interactional synchrony, which is con-

sidered as a measure of the quality of interaction.

Ambient Intelligence

In computing, ambient intelligence refers to electronic

environments that are sensitive and responsive to the

presence of people. According to [1, 96], it is characterized

by systems and technologies that are:

• Embedded: many networked devices are integrated into

the environment;

• Context aware: these devices can recognize you and

your situational context;

• Personalized: they can be tailored to your needs;

• Adaptive: they can change in response to you;

142 Cogn Comput (2013) 5:136–151
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• Anticipatory: they can anticipate your desires without

conscious mediation.

While probably the highest level of intelligence that a

machine can posses is the knowledge about the health

condition of the human beings in front of machine, there is

much other possible information that the machine can

infer, such as

• Who is in front of the machine? (man/woman)

• How old are they? (child, elder, etc.)

• What is their emotional state? (angry/sad/happy, etc.)

• Who is speaking in a given room?

In a daily body-to-body interaction, emotional expres-

sions play a vital role in creating social linkages, producing

cultural exchanges, influencing relationships and communi-

cating experiences. Emotional information is transmitted and

perceived simultaneously through verbal (the semantic

content of a message) and nonverbal (facial expressions,

vocal expressions, gestures, paralinguistic information)

communicative tools, and contacts and interactions are

highly affected by the way this information is communicated/

perceived by/from the addresser/addressee. Therefore,

research devoted to the understanding of the relationship

between verbal and nonverbal communication modes, and to

investigate the perceptual and cognitive processes involved

in the perception of emotional states, as well as the role

played by communication impairments in their recognition,

is particularly relevant in the field of human–human and

human–computer Interaction both for building up and

hardening human relationships and for developing friendly

and emotionally coloured assistive technologies.

Emotions are considered as adaptive reactions to rele-

vant changes in the environment, which are communicated

through a nonverbal code from one organism to another

[66]. This perspective is based on several assumptions,

among which, the most important is that there exists a

small set of universally shared discrete emotional catego-

ries from which other emotions can be derived [22, 46].

This small set of emotional categories includes happiness,

anger, sadness and fear, which can be reliably associated

with basic survival problems such as nurturing offspring,

earning food, competing for resources, avoiding and/or

facing dangers. In this context, basic emotions are brief,

intense and adapted reactions to urgent and demanding

survival issues. These reactions to goal-relevant changes in

the environment require ‘‘readiness to act’’ and ‘‘prompting

of plans’’ in order to appropriately handle (under condi-

tions of limited time) the incoming event producing suit-

able mental states, physiological changes, feelings and

expressions [34].

The categorization of emotions is, however, debated

among researchers and different theories have been

proposed for its conceptualization, among these dimen-

sional models [73, 77]. Such models envisage a finite set of

primary features (dimensions) in which emotions can be

decomposed and suggest that different combinations of

such features can arouse different affective states. Bringing

the dimensional concept to an extreme, such theories

suggest that, if the number of primary features extends

along a continuum, it would be possible to generate an

infinite number of affective states. This idea, even though

intriguing, clashes with the principle of economy that

seems to rule the dynamic of natural systems, since in this

case, the evaluation of affective states may require an

infinite computational time. Moreover, humans tend to

categorize, since it allows for them to make associations,

rapid recovery of information, and facilitates handling of

unexpected events, and therefore, categories may be

favoured in order to avoid excessive processing time.

Furthermore, this discrete evolutionary perspective of basic

emotions has been supported through several sources of

evidence, such as the findings of (1) an emotion-specific

autonomic nervous system’s (ANS) activity1 [50]; (2)

distinct regions of the brain tuned to handle basic emotions

[64]; (3) presence of basic emotional expressions in other

mammalian species (as the attachment of infant mammals

to their mothers) [61]; (4) universal exhibition of emotional

expressions (such as smiling, amusement and irritability)

by infants, adults, blind and sighted [61]; (5) universal

accuracy in recognizing facial and vocal expressions of

basic emotions by all human beings independently of race

and culture [22, 46, 76].

Most of the relevant applications in information com-

munication technologies exploit what are called the

‘‘expressions of emotions’’, that is, changes in expressions

that allow interactants to perceive an emotional state during

face-to-face interaction. In this sense, the perceptual

appearance of emotional states is attributed to perceptual

changes in the facial, vocal and gestural expressions [24–

26].

In the field of human computer interface (HCI), the

research objectives are to identify methods and procedures

capable of automatically identifying human emotional

states exploiting the multimodal nature of emotions. This

requires the consideration of several key aspects, such as

the development and the integration of algorithms and

procedures for applications in communication, and for the

recognition of emotional states, from gestures, speech, gaze

and facial expressions, in anticipation of the implementa-

tion of intelligent avatars and interactive dialog systems

1 It should be noticed that not all these findings proved to be strong

enough, as, for example, [10, 13] disconfirmed the existence of an

autonomic specificity and distinctive ANS’s activity patterns for each

basic emotion.
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that could be exploited to improve the learning and

understanding of emotional behaviour and facilitate the

user’s access to future communication services.

Emotional processes in disabilities and health disorders

follow in some aspects the same paths exploited in typical

normal conditions and are different in other aspects.

Impairments and developmental disorders may change

emotional expressions and needs with respect to normal

emotional processes.

Emotional reactions may be different. Questions on how

these differences are expressed, felt and relevant to social

interaction are still open and can be considered to still be at

a theoretical level. Comparing normative and disordered

expressions of emotional states can be useful not only for

implementing effective intelligent systems able to interact

with disabled people, but also to improve the performance

of these systems. To the best of our knowledge, very little

research has been done up to now in this direction.

Given the complexity of the problem, there has been a

branching of the engineering approach toward the

improvement and the development of video–audio tech-

niques, such as video and image processing, video and

image recognition, synthesis and speech recognition, object

and features extraction from audio and video, with the goal

of developing new cutting edge methodologies for syn-

thesizing, analysing and recognizing emotional states from

faces, speech and/or body movements.

One example of an emerging ambient intelligence

technology is the novel emotion and sentiment mining

approach, termed sentic computing, that has been devel-

oped by Cambria and Hussain et al. [14], which aims to

extract cognitive and affective information associated

with natural language and, hence, better understand the

current state of the user, including factors such as his/her

emotional state, current needs and intent. Cambria et al.

[14] also employed affective ontologies and common

sense reasoning tools to analyse text not only at docu-

ment, page or paragraph level, but also at sentence and

clause level.

Sentic computing involves the use of AI and Semantic

Web techniques, for knowledge representation and infer-

ence; mathematics, for carrying out tasks such as graph

mining and multi-dimensionality reduction; linguistics, for

discourse analysis and pragmatics; psychology, for cogni-

tive and affective modelling; sociology, for understanding

social network dynamics and social influence; and finally

ethics, for understanding related issues about the nature of

the mind and the creation of emotional machines.

In the field of health, in particular, sentic computing has

been used for the development of patient-centred applica-

tions [15], which empower the real end-users of the health

system by bridging the gap between unstructured and

structured health-care data [16]. Sentic computing is also

employed for the development of intelligent multimodal

affective interfaces, in which many different technologies

are concurrently applied and integrated, for example, a

facial emotional classifier and a multimodal animation

engine for managing virtual agents and 3D scenarios [17].

Different sensors usable in a home environment are

nowadays available at reasonable prices. In the last few

years, many efforts have been made to build different

frameworks capable of integrating unstructured signals

received from different sources. The main aim of such

systems is to enhance everyday living (e.g. for home

automation system) but also to allow people who require

care to safely live in their home environment [55].

An interesting example of ambient intelligence has been

given in Rantz et al. [68] where a number of sensors have

been installed in an apartment within a retirement com-

munity. The sensor network (including bed, chair, stove

temperature and motion sensors) passively collected data to

detect the presence of the person in different rooms and to

infer when the person is carrying out specific activities.

Data from sensors are then aggregated for each patient and

made available to clinicians and researchers; graphical

representations of the activity level could help healthcare

providers to detect any changes in activity patterns, after

receiving automated alert from the system. It has been

shown the potential of this kind of system for early

detection of specific pathologies (e.g. for urinary treat

infections).

There are a number of diverse applications for ambient

intelligence-based technologies and systems that are

expected to impact our daily life in the future. For example,

consider the case of future intelligent transportation sys-

tems for tackling drink driving. One hypothetical example

could be a scenario where a driver intends to drive his/her

car after a night out drinking with friends, an embedded

ambient intelligent system within his car will be able to

automatically detect this situation and judge whether the

level of alcohol is below the legal limit or not. If the system

finds the driver might be illegally driving, it may send a

signal to alert the driver and in an extra case it can stop the

driver from starting his/her car. Another potential appli-

cation of intelligent transport is where ambient intelligence

can also help to alert the driver to be aware of speeding if

the intelligent system can recognise the driving situation

and detect the speed limit.

In adaptive cruise and steering control (ACC) of future

cognitive or ‘‘smart’’ vehicles, ambient intelligence may

also play a key role. Figure 10 illustrates such a typical

system where an intelligent multivariable multi-controller

approach is employed to realize speed tracking by using a

longitudinal and lateral vehicle model and a switching

strategy from one mode to another [2, 3]. One example is

given in Fig. 11 showing how the intelligent system is able
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to track the target speed of vehicle by switching the con-

trollers between two modes [2, 3].

Synergies and Interactions between Health and Security

Applications

Ideally, a system with ambient intelligence should be able

to detect the age of the persons in front of it, and their

gender, health condition, emotional state, etc. This infor-

mation should be inferred from the signals described in

Section 2. Some security systems are also able to detect

heart rates. If the heart rate is higher than a predetermined

threshold, a silent alarm is activated because the system

considers that the person is providing their biometric trait

in a situation where they may be under duress.

One of the main concerns of biometrics applied to

security is about privacy issues. Technological advances let

to store, gather and compare a wide range of information

on people. Using identifiers such as name, address, pass-

port or social security number, institutions can search

databases for individuals’ information. This information

can be related to salary, employment, sexual preferences,

religion, consumption habits, medical history, etc. Though

in most of the scenarios there should be no problem, there

is a potential risk. Let us think, for instance, in sharing

medical information. Obviously, in case of emergency, this

sharing between hospitals would be beneficial. On the

contrary, if this information is transferred to a personal

insurance company or a prospective employer, the insur-

ance or the job application can be denied. The situation is

especially dramatic when biometric data collection is

intended for security purposes but a third party tries to infer

the health condition of the subject. For instance, in the case

of retina and iris recognition, an expert can determine that a

patient suffers from diabetes, arteriosclerosis, hyperten-

sion, etc.

For any biometric identifier, there is a portion of pop-

ulation for which it is possible to extract relevant infor-

mation about their health, with similar implications to the

ones described in previous paragraph, for example, speech

disorders, hair or skin colour problems, etc. An important

question is what exactly is disclosed when biometric

scanning is used. In some cases, additional information not

related to identification might be obtained. For instance,

[95] presents a list of these cases that includes

• Some studies suggesting that fingerprints and finger

images may disclose medical information about a

person (chromosomal disorders such as Down syn-

drome, Turner syndrome and Klinefelter syndrome, and

nonchromosomal disorders, such as chronic, intestinal

pseudo-obstruction, leukaemia, breast cancer and

Rubella syndrome).

• Several researchers reporting a link between finger-

prints and homosexuality.

Fig. 10 Intelligent

multivariable multi controller

approach to adaptive cruise

control
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In (Maltoni et al. [54], p. 46), there is a set of references

about statistical correlation between malformed fingers and

certain genetic disorders.

While the relationship between genetic disorders and

fingerprints may be possible, it is hard to believe that a

fingerprint, which is fully formed at about 7 months of

foetus development and does not change throughout the

life of an individual (Maltoni et al. [54], p. 24), could be

correlated with sexual preferences that can vary, or dis-

eases that can appear and disappear during a lifetime.

Most biometric traits evolve through time. Feature

extraction is a key point of classification, but nowadays

there are no powerful studies about the evolution of dif-

ferent parameters: Which are more long lasting? Which

phenomena affect these parameters? How can we use this

information for a robust biometric security/health appli-

cation? Is the person in front of the machine in good health

condition and he/she can be responsible of his/her own

acts? Fig. 12 shows a real case extracted from [92]. In this

case, several women made an elder woman sign her name

on blank sheets of paper (Fig. 13). Theoretically, it was to

solve some issues related to medicines. When the elder

person died, the other women took advantage of the signed

sheets in order to write a rental agreement. The theoretical

date of this agreement was 1985 (Fig. 12 on the bottom),

but several documents signed in 1986 (Fig. 12 on the top)

showed better control of calligraphic movements. In fact,

the hesitantly written signature document signed in 1985

was closer in appearance to the blank sheets signed when

the elder woman had dementia than to the 1986 document.

Thus, it was demonstrated that in fact the rental document

was not signed in 1985. It was signed later.

An interesting application of biometric system com-

bined with ambient intelligence to health is the use of gait

recognition for predicting falls of elderly people. From a

healthcare perspective, different applications for exploiting

ambient intelligence have been recently proposed. Among

them, we can recall here an automated fall detection system

[52] whose main aim is to promptly detect falls especially

in older people to ensure a rapid medical intervention. In

that study, falls are reported as the leading causes of

accidental death in the US population over 65, with a large

percentage of all people who died as a result of a fall being

over 65. An inexpensive system based on Doppler radar

sensors has been set up and a k-NN (nearest neighbour)-

based classification system has been developed showing

Fig. 11 Intelligent multiple

controller in tracking target

vehicle speed: (a) output speed

trajectory, (b) multiple

controller switching scheme

among throttle and wheel brake

subsystems
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excellent performance (with an AUC equal to 0.96) in

detecting falls at home.

On a similar topic, [86] proposed a preliminary study on

a depth camera device in home environments with a view

of building a fall risk model. That study has shown how

measurements of temporal and spatial gait parameters

could be inexpensively and passively (i.e. without the

active involvement of the person being observed) obtained

by a depth camera (such the popular Microsoft Kinect)

combined with a motion capture system for ground truth.

In biometric systems, the use of gait information has

been used not only for recognizing the identity of people

but also for indentifying gender [49]. The technology for

gait recognition is based on deriving parameters from sil-

houettes, such as approximating ellipses, from which time-

dependent features are extracted, which are fed into a

classifier that gives as output the identity and/or the gender

of the person in the image.

A straight forward extension of this idea might be to

determine a specific gait sequence of a given person, and

detect whether the gait process suffers changes. In the case

of elderly people, it might be a good predictor of the

probability of falling [91]. In this paper, the authors ana-

lysed the set of features that gave the best prediction of the

risk of falling, which from a set of 7 gait markers, the

feature that explained most of the variance was a slower

gait speed. The technology for detecting gait anomalies

does not need to be based on expensive video signal pro-

cessing, but can be based on simple accelerometers [51],

which can be implemented in a wrist wearable device or

even on a mobile telephone. The same technology can be

used for training and correcting the gait of elderly people

and, therefore, diminishing the fall risk [85].

The use of the current technology on gait recognition

not only can identify the danger of fall, but also can be used

to train elderly people to reduce the risk of falling. As a

matter of fact, the combination of biometric and ambient

intelligence technologies may allow to improve the quality

of living and autonomy of elderly or handicapped people,

which improves the independence and auto-sufficiency and

at the same time might lower the cost of attending a

growing fraction of the population that needs specific care,

but not on a 24 h basis.

A last straightforward question is about the physical

‘‘apparent’’ age and the real age. For instance, [12] reveal a

loss of writing speed in later life, particularly in individuals

suffering from senile psychoses. The differences in writing

speed between senile subjects and ‘‘normal elderly’’ ones

were less than the differences between normal elderly and

young subjects. They also provide a plot that relates age

with writing speed. Thus, theoretically, an apparent age

estimation is possible looking at the writing speed, and

some categorization of people could be possible: those with

health condition below the average of those born the same

year and those in better condition than the average. This

classification could probably be considered very sensible

and private data.

Conclusions

In this paper, we have discussed several applications of

biometrics related to human beings beyond security

applications. Mainly, we have investigated the possibilities

in health and ambient intelligence, as well as the rela-

tionship between these applications. The most important

issue is that the same signals used for security applications

can be used for detecting diseases such as dementia, drug

abuse, diabetes, arteriosclerosis, hypertension, genetic

disorders, etc. This is a double-edged sword because bio-

metric data can be used to assist in obtaining accurate and

fast health diagnoses, but this information can also be

illegally inferred without the consent of the user. Another

synergy worth considering is when health issues are

important for identity verification, that is, when the health

Fig. 12 Documents signed in 1985 (hesitated) and 1986
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state can change the validity of the authentication. These

are the cases where the user has provided his biometric

data, such as the signature, under pressure or affected by

dementia.

Thus, this is a hot research topic that must be addressed,

probably by signal processing teams cooperating with

medical doctors and working on both biometric research

fields: health and security.
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Segovia F, Chaves R, Gómez-Rio M, Puntonet CG, the Alzhei-

mer’s Disease Neuroimaging Initiative. 18F-FDG PET imaging

analysis for computer aided Alzheimer’s diagnosis. Inf Sci.

2011;181(4):903–16.

46. Izard CE. Innate and universal facial expressions: evidence from

developmental and cross-cultural research. Psycholog Bull.

1994;115:288–99.

47. Kempler D, Curtiss S. Catherine jackson ‘‘synthactic preservation

in Alzheimer’s disease’’. J speech Hearing Res. 1987;30:343–50.

48. Kushki A, Chau T, Anagnostou E. Handwriting difficulties in

children with autism spectrum disorders: a scoping review.

J Autism Dev Disord. 2011;41(12):1706–16.

49. Lee L, Grimson WEL. Gait analysis for recognition and classi-

fication. Automatic face and gesture recognition, 2002. In: Pro-

ceedings of the fifth IEEE international conference; 2002.

p. 148–55.

50. Levenson RW. Human emotion: a functional view. In: Ekman

PP, Davidson RJ, editors. The nature of emotion: fundamental

questions. New York: Oxford University Press; 1994. p. 123–6.

51. Liu R, Zhou J, Liu M, Hou X. A wearable acceleration sensor

system for gait recognition. In: 2nd IEEE Conference on indus-

trial electronics and applications, ICIEA 2007; 2007. p. 2654–59.

52. Liu L, Popescu M, Rantz M, Skubic M, Cuddihy P, Yardibi T.

Automatic fall detection based on Doppler radar motion signa-

ture. In: 5th International conference on pervasive computing

technologies for healthcare; 2011. p. 222–5.

Cogn Comput (2013) 5:136–151 149

123



53. Llau Arcusa MJ, Gonzalez Alvarez J. Medida de la inteligibilidad
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92. Viñals Carrera F, Puente Balsells ML. ‘‘Grafologı́a criminal’’,

capı́tulo 3, alteraciones neurológicas y biológicas. Editorial

Herder, 2009.

93. Warkentin S, Erikson C, Janciauskiene S. rCBF pathology in

Alzheimer’s disease is associated with slow processing speed.

Neuropsychologia. 2008;46(5):1193–200.

94. Werner Perla, Rosenblum Sara, Bar-On Gady, Heinik J, Korczyn

A. Handwriting process variables discriminating mild Alzheimer’s

150 Cogn Comput (2013) 5:136–151

123



disease and mild cognitive impairment’’. J Gerontol. 2006;61B(4):

228–36.

95. Woodward J. Biometrics: identifying law and policy concerns. In:

Jain AK, Bolle RM, Pankanti S, editors. Biometrics: personal

identification in networked society. New York: Springer; 2005.

p. 385–405.

96. Zelkha E, Epstein B, Birrell S, Dodsworth C. From devices to

‘‘ambient intelligence’’. Digital Living Room Conference, June

1998. http://www.epstein.org/brian/ambient_intelligence/DLR%

20Final%20Internal.ppt.

Cogn Comput (2013) 5:136–151 151

123



A.30 Analysis of neurological disorders based on digital process-
ing of speech and handwritten text

385



Analysis of Neurological Disorders Based on Digital 
Processing of Speech and Handwritten Text 

 

Zdenek Smekal1,2, Jiri Mekyska1,2, Irena Rektorova3,4, Marcos Faundez-Zanuy5 
1 Department of Telecommunications, Faculty of Electrical Engineering and Communication, 

Brno University of Technology, Brno, Czech Republic 
smekal@feec.vutbr.cz, j.mekyska@phd.feec.vutbr.cz 

2 SIX Research Centre, Faculty of Electrical Engineering and Communication, 
Brno University of Technology, Brno, Czech Republic 

3 First Department of Neurology, Faculty of Medicine, St. Anne’s University Hospital, Brno, Czech Republic 
irena.rektorova@fnusa.cz 

4 Applied Neurosciences Research Group, Central European Institute of Technology, CEITEC, MU, Brno, Czech Republic 
5 EUP Mataró, Tecnocampus, Mataro, Barcelona, Spain 

faundez@eupmt.es 
 

Abstract— The paper deals with the methods of non-invasive 
analysis of neurological disorders, focusing on speech signal 
processing and processing of handwritten text. The paper 
describes the whole procedure of the automated analysis of the 
disorder while the greatest attention is paid to a parameterization. 
In the case of speech signal analysis, the state-of-the-art features 
evaluating a presence of hoarseness, breathiness and 
hypernasality are mentioned. Nonlinear dynamic parameters and 
parameters derived from the empirical mode decomposition 
(EMD) are compared. Based on the tests, from the point of 
description of a noise component of signal, the best results were 
obtained using the approximation entropy, the largest Lyapunov 
exponent and parameters based on Teager-Kaiser energy 
operator, which is calculated from the first intrinsic mode 
function (IMF). In the case of handwritten text analysis, the most 
used exercises describing a tremor and movement dynamics are 
mentioned. The new approaches of hand movement analysis at a 
time when the pen tip does not touch the paper have been also 
proposed. Finally the paper discusses different applications of 
speech signal and handwriting text parameterization. 

I. INTRODUCTION 
With development of information technologies, intensity of 

research of digital processing of biomedical signals has also 
increased. Thanks to sophisticated techniques and decreasing 
cost of hardware, it is possible to give physicians better support 
in their work and provide them important information, which 
help them to decide on next steps of treatment, or medical 
intervention, respectively.  

Due to the changing way of life, a greater proportion of 
sedentary behaviour, stress, unhealthy diet, etc. different types 
of neurological disorders such as Parkinson's and Alzheimer's 
diseases, schizophrenia, dementia, dystonia, etc. become more 
and more in human populations. The analysis of speech 
utterances and handwritten text are frequently used by 
physicians as non-invasive methods that help them to diagnose 
different stages of neurological disorders and help them 
recognize the success or failure of the treatment. In particular, 
the analysis of speech and handwritten text is often used for 

diagnosis and analysis of Parkinson's disease. Human speech is 
produced by coordinated movement of speech organs using air 
flow generated from lungs. Handwritten text is actually formed 
by coordinated movement of fingers, wrist and elbow. Based on 
the analysis of these signals, we can find out different 
information about people related to their health, emotions, 
mental state, etc. 

Parkinson's disease can manifest in speech dysarthria of 
patients [1], which affects the area of phonation, articulation, 
prosody and fluency. The voice tremor [2], hypophonia 
(reduced voice intensity [3]), dysphonia (degradation of speech 
quality [4]), hypernasality (increased nasality [5]), dysprosody 
[6], hesitation (unintentional introduction of pauses [7], palilalia 
(rapid repetition of words or syllables [7]), bradyphemia 
(sudden deceleration [8]) or tachyphemia (sudden acceleration 
in speech [8]) may be observed in patients. 

In the case of handwritten text, slower movements 
(bradykinesia [9]), variations in speed of writing [10], decrease 
of the height of letters (micrographia [11]) or uncontrollable 
movements (dyskinesia [12]) can be seen. Sometimes muscles 
of the patient may be very stiff (rigidity [12]), or motionless 
(akinesia [9]), which results in the patient not able to write. 

All above mentioned manifestations of the neurological 
diseases are able to describe and quantify by using carefully 
chosen 1D and 2D signal analysis methods. Based on the 
processing of these signals, the disease can be diagnosed, 
monitored its progression and watched an impact on individual 
body parts. Moreover, thanks to the parameterization, new 
medicines can be developed and the impact of medication on 
patients can be monitored. For these reasons, the methods are 
also used in the pharmaceutical industry. Analysis of speech and 
handwritten text can also be combined with other investigative 
methods such as functional magnetic resonance imaging 
(fMRI), ultrasound investigations, etc. 

The aim of this paper is to describe modern approaches to 
non-invasive analysis of neurological disorders with emphasis 
on Parkinson's disease using speech signal and handwritten text 
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processing. The paper is divided as follows: a general procedure 
for the automated analysis of neurological disorders is given in 
Sec. II, a description of the parameter extraction techniques 
from speech signals and handwritten text follows in Sec. III, 
Sec. IV lists the different use of non-invasive analysis of 
neurological disorders and the conclusion is in Sec. V. 

II. AUTOMATED ANALYSIS OF NEUROLOGICAL DISORDERS 
The analyzed signal of speech or handwritten text is usually 

acquired in a hospital or speech therapist's office. To record 
speech, high-quality condenser microphones are used and to 
register handwritten text a digital tablets are applied. Beside a 
current position, some tablets are also able to record pressure, 
azimuth and altitude. Depending on the specific disorder, it is 
possible to use various utterances and handwriting exercises. In 
the analysis of speech, the exercises of prolonged vocals, 
reading poems, specially adapted sentences, reading excerpts 
from books or exercises difficult for articulation are applied. For 
the analysis of handwritten text, the patients can draw ellipses, 
Archimedean spirals, connect points on the matrix, write 
selected words or phrases or draw different pictures (pointer 
clocks, houses, etc.). The recorded data are labelled (borders 
between utterances are set, written words or phrases to smaller 
parts are segmented, etc.) and from categorized data different 
databases are prepared. After the modification the data are 
processed automatically. Speech and handwritten text signals 
are further processed (re-sampling, filtering, etc.) and various 
parameters (features) are calculated. Based on chosen 
application the parameters are selected. The feature space is 
usually very large and it is necessary to select optimal 
parameters before further processing. For this reason, the 
mRMR (minimum Redundancy Maximum Relevance) method 
[13], the SFFS (Sequential Floating Forward Selection) method, 
the LASSO (Least Absolute Shrinkage and Selection Operator) 
method [14], the LLBFS (Local Learning-Based Feature 
Selection) method [15] or the RELIEF (Feature Weight based 
Algorithm Inspired by Instance-based Learning) method [16], 
etc. may be used. To develop a system that would identify one 
of the disorders, a classifier may be trained (e.g. the Gaussian 
Mixed Models-GMM, Support Vector Machine-SVM or 
Random Forests-RF). To select significant features, by which it 
would be possible to monitor a progression of disease or an 
influence of medication parametric and non-parametric 
statistical methods such as Student's t-test, Mann-Whitney U 
test, Wilcoxon paired test, etc. can be used.  

III. FEATURE EXTRACTION 
The parameters that are extracted from speech record or 

handwritten text can be divided into basic, high-level and global 
features. The basic features are calculated directly from signal, 
and are expressed by scalars, vectors or are written into matrices 
(pitch frequency F0, formant locations, speech intensity, etc.). If 
several features of one type are calculated from the same signal 
(pitch frequency F0 is calculated for each speech segment with 
length of 20 ms), then it is suitable to select one parameter 
(representative) from this set to train the classifier or make 
statistical analysis in an easier way. From this set of features, we 

can calculate, for example, mean value, standard deviation, 
range, moments, percentiles, entropy, regression coefficients, 
etc. These parameters are called high-level features. Sometimes 
it is advantageous to calculate the global parameters, which 
combine individual features of different types (e.g. the first two 
formants calculated from different vowels). The calculation of 
these parameters is more difficult to automate, but the result 
provides a comprehensive and robust description of the disorder 
(e.g. possibility to describe the movement of tongue). 

Based on an optimal extraction of parameters, the disorder 
can be appropriately quantified. It is usually the most important 
part of the analysis process and the improper selection of 
parameters can greatly distort the final result. Thanks to the 
optimal extraction of parameters, a physician can better quantify 
and objectively diagnose the disease and decide more precisely 
further treatment. 

A. Speech Signal Analysis 
In terms of analysis of patient speech records, the features 

which describe prosody, vocal cords function and function of 
speech organs (e.g. tip of the tongue) are primarily extracted. 
Information about vocal tract shape is not so important in this 
case. Disorders that are manifested in speech signal may 
include: Parkinson's disease, Alzheimer's disease, dementia, and 
schizophrenia. Speech features can be divided in terms of what 
they describe: 

• Features describing phonation - pitch frequency F0, 
jitter, glottal coefficients, etc. 

• Features describing intensity of speech - shimmer, 
modulation energy, spectral flow, etc. 

• Features describing speech fluency – index of 
rhythmicity, articulation rate, proportion of speech 
pauses, etc. 

• Features describing tongue movement - location of 
formant frequencies and their bandwidths. 

• Features describing speech quality - glottal signal to 
noise ratio, normalized noise energy, etc. 

Segmental features such as mel frequency cepstral 
coefficients (MFCC) or perceptual linear prediction coefficients 
(PLP) are also used [17]. However, it is not clear which disorder 
they indicate. But, for example, regarding the MFCC 
coefficients Tsanas et al. [17] believe that they can indirectly 
describe motion of articulatory organs. 

In this paper, our attention will be paid to features that are not 
well known in the area of speech analysis, but which can 
positively contribute to correct diagnosis. They are: non-linear 
dynamic features and parameters based on the empirical mode 
decomposition (EMD). 

 
1) Non-linear Dynamic Features 
Sometimes the patients with Parkinson's disease produce 

breathy voice, dysphonia and hypernasality so great that any 
features in voiced speech segments (e.g. pitch period) cannot be 
found and the speech signal seems to be completely chaotic [18, 
19]. Speech is in this case so degraded by noise that no 
conventional linear methods give useful results. The features 
such as F0, jitter, shimmer, etc. or formant characteristics in 
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speech analysis completely fail. For this reason, chaos theory is 
increasingly applied. This theory helps determine how much 
speech is chaotic (stochastic), and thus it is possible to better 
assess speech properties. 

One of the most useful feature is the correlation dimension 
(CD) [20]. This parameter describes geometry of the attractor in 
the phase space. The more the attractor is complicated, the more 
independent variables are necessary to describe it, and value of 
this attribute increases. 

The largest Lyapunov exponent (LLE) is an often used 
feature that describes stability of a dynamic system as well as its 
sensitivity to initial conditions [19]. The more the system is 
stable (speech quality increases), the lower the exponent is. 

To quantify complexity of the speech signal, the approximate 
entropy (AE) can also be used to describe a level of randomness 
[21]. Similar information can be extracted from the signal using 
the fractal dimension (FD) [22] or the Ziv-Lempel complexity 
(ZLC) [23]. In the case of the ZCL, it is a measure of regularity 
level in time series. 

Other parameters are non-linear dynamic features based on 
the detrended fluctuation analysis (DFA) [24], features based on 
normalised recurrence time probability density entropy Hnorm 
[18] and Hurst’s exponent (HE) [25], which describes the 
relationship between the future and previous speech samples. 

For the comparison of the nonlinear dynamic features, a 
simple test in which noise with the normal probability 
distribution is added to part of vowel [a] is performed. Such 
noise may represent stochastic part of speech that corresponds 
to hoarseness, breathiness or hypernasality. Power spectral 
density of noise was gradually increased, while the percentage 
of difference between new and original features` values was 
calculated. The results can be seen in Figure 1. 
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Figure 1: The comparison of sensitivity of the nonlinear dynamic features to 

additive noise with the normal probability distribution. Variable r expresses the 
difference between values when comparing to the situation when no noise has 

been added to the original signal. SNR expresses the signal-to-noise ratio. 
 
The graph shows that the highest sensitivity to additive noise 

has the approximate entropy (AE) which increases 
exponentially with an increasing level of noise. In addition to 
the AE, the LLE and CD features make big differences, but 
their dependence is linear. The remaining features have no big 
changes. 

2) Features Based on the Empirical Mode Decomposition 
Recently, in speech processing new methods based on the 

EMD are used. Using the EMD it is possible to decompose the 
arbitrary nonlinear and time-varying signal into countable and 
usually a small number of the intrinsic mode functions (IMF). 
These functions are modulated in amplitude and frequency and 
their sum gives the original signal. 

Tsanas et al. [17] proposed several speech parameters based 
on the IMF. Their idea is to represent the noise component of 
speech signal with the first few IMFs and stationary speech 
signal with the remaining IMFs. They designed a new method 
for SNR (signal-to-signal ratio) and NSR calculations (noise-to-
signal ratio): 
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where  is mean value of sequence, calculated from the 
original i-th IMF and K is total number of the IMF.  is 
logarithmic mean value, which is calculated as mean value but 
for logarithm of the i-th IMF. In the end, it has to be defined 
which attributes are used for calculation of the original IMF. It 
can be the squared energy operator (SEO), Teager-Kaiser 
energy operator (TKEO), the entropy (H), or the zero crossing 
rate (ZCR). 
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Figure 2: The comparison of the parameters’ sensitivity derived from the IMF to 

additive noise with normal probability distribution. Variable r expresses the 
difference between values when comparing to the situation when no noise has 
been added to the original signal. SNR expresses the signal-to-noise ratio and 

NSR is noise-to-signal ratio. 
 

To compare sensitivity of these features to additive noise, 
another example is prepared. The results of comparison can be 
shown in Figure 2. From the graph it can be seen that most of 
the features in dependence on noise level decrease (SNR) or 
increase (NSR) linearly. The best result provides SNR based on 
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the squared energy and Teager-Kaiser energy operators. These 
features show the largest deviations from the original value. 

Using Figs. 1 and 2, discriminatory efficiency between the 
nonlinear dynamical features and the EMD parameters can be 
compared. If we picked up top 3 candidates for noise part 
description, it would be the approximate entropy (AE), largest 
Lyapunov exponent (LLE) and SNR based on Teager-Kaiser 
energy operator (TKEO). 

B. Analysis of Handwritten Text 
In the case of analysis of handwritten text the feature 

selection is highly dependent on specific written exercises. In 
this paper, for example, four most commonly used exercises for 
analysis of Parkinson's disease are chosen. 

 
1) Archimedean Spiral 
Archimedean spiral is a curve defined by equation 

θ = k + arn, where θ [rad] is an angle between a point on the 
spiral and a point on the origin of the spiral and r is distance 
from the spiral point to the origin point. Variables a, k, and n are 
real numbers. The parameters of this exercise are: number of 
changes in velocity (NCV) [26], number of changes in 
acceleration (NCA) [11], radial oscillation speed (ROS) [27] or 
parameters evaluating smoothness and density of spiral coils 
[28]. Archimedean spiral is also a good test to describe level of 
present tremor. Figure 3 shows the spiral in Cartesian and polar 
coordinates for healthy people and patients afflicted by 
Parkinson's disease. As it is illustrated by the figure, due to 
transformation to the polar coordinates, the 2D spiral curve can 
be expressed by the 1D curve. Using this spiral, healthy and ill 
people can be easily distinguished [29, 30]. It is also possible to 
calculate features based on the signal-to-noise ratio, or the chaos 
theory. 

 

-1000 0 1000
-1000

0

1000

x

y

Healthy

-1000 0 1000
-1000

0

1000

x

y

Parkinson's disease

0 5 10

200
400
600
800

1000
1200
1400

θ [π*rad]

r

0 2 4 6

200
400
600
800

1000
1200
1400

θ [π*rad]

r

 
 
Figure 3: The comparison of Archimedean spirals, which are drawn by healthy 

person and patient afflicted by Parkinson's disease. In the upper part of the 
picture spiral in Cartesian coordinates can be seen, and on the bottom the same 
spiral is expressed in polar coordinates, where r denotes the distance from spiral 
points to centre of the spiral and θ is angle of straight line passing through this 

point and the origin point. 

2) Ellipses 
The ellipses are by patients quickly drawn over themselves, 

as it can be seen in Figure 5. When monitoring the vertical or 
horizontal movement, then dynamics of the movements can be 
well described. Using these curves the parameters as velocity 
(VE), acceleration (AC) or jerk (third derivative of length by 
time) can be calculated [31]. Other ways of ellipse analysis are 
discussed in Chap. C. 
 

3) Connected Letters “l” Written in Italics 
Using this exercise, the writing dynamics can be again seen 

clearly. The following parameters are usually extracted: stroke 
size (SS), stroke length (SL), stroke duration (SD), number of 
local extremes in velocity profile, the velocity (VE), 
acceleration (AC), and jerk (JE). 
 

4) Syllabes, Words, Sentences 
The speed of the writing and the presence of micrography can 

be better monitored on longer part of written text. Using these 
exercises we extract parameters such as: movement time (MT), 
writing pressure (WP), velocity (VE), acceleration (AC), jerk 
(JE), width and height of letters, tendency of decreasing letters 
over time, etc. 

There are tablets which can record movements of the pen in 
time, when the tip does not touch the paper surface. Thanks to 
this information it is possible to see how patient’s hand behaves 
at a time when the patient does not write. Figure 4 shows an 
example of Czech sentence "Tram will no longer go" written by 
a healthy person and a patient afflicted by Parkinson's disease. 
Blue line expresses movement of hand when the pen was 
touching the paper. Red line expresses movement of the pen 
when the tip does not touch the paper. If we focus only on pen 
movement on paper (blue line), we would not recognize so big 
differences in hand tremor between two tested participants. 
However, information about hand movement in air (red line) 
clearly indicates that one of participants has strong tremor. 
Using further analysis, frequency of this tremor, amplitude 
range, etc. can be estimated. 
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Figure 4: The comparison of Czech sentence "Tram will no longer go" written 

by a healthy person and a patient affected by Parkinson's disease. Blue line 
expresses movement of hand when the pen tip was touching the paper. Red line 

expresses movement of the pen when the tip doesn’t touch the paper. 
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Authors in various publications often use lowpass filtering 
before processing to smooth the written text [32, 33]. However, 
such approach unnecessarily removes high-frequency 
components which are related to hand tremor. The high-
frequency components should not be removed, but used for 
further analysis. It would be also helpful to combine parameters 
calculated from pressure the pen tip, azimuth and inclination. 

C.  Comparison of Speech and Handwritten Text Parameters 
It is clear from previous chapter, that speech processing is 

very similar to processing of signals obtained from handwritten 
text. Fig. 5 demonstrates how the ellipse as a picture is 
transformed to 1D periodical signal (function of the vertical 
movement in time). 1D periodical signal obtained from 2D 
ellipse can be analysed similarly as voiced speech segments. 
Generally speaking, in analysis of handwritten text the features 
as jitter, shimmer, short-term energy, modulating energy, 
harmonic signal to noise ratio, the zero crossing rate, etc. can be 
applied. Moreover, as in an area of speech processing, even here 
it is possible to test nonlinear dynamic parameters and 
parameters based on the EMD analysis. This approach in 
analysis of handwritten text has not been used and it seems to 
bring good results. 
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Figure 5: Monitoring the vertical movement in time when drawing the 

overlapping ellipses. 

IV. APPLICATIONS OF NON-INVASIVE NEUROLOGICAL 
DISORDERS ANALYSIS 

As it has been already mentioned, the most important part of 
the analysis of neurological disorders is quantification, i.e. 
feature extraction. When all patients’ dysfunctions are 
appropriately described, it is possible to proceed to the next 
steps of data processing. Due to the objective description of the 
disorder, non-invasive analysis can be used as follows: 

• Diagnosis/identification of neurological disorder - 
although it is possible to train a classifier which can 
perform the diagnosis without the presence of the 
doctors, this approach is not useful in practice. There is 
still a risk that the classifier determines inaccurately or 
bad diagnosis, which could have a very negative impact 
on the patient's health. The aim of the quantification is 
not to replace the doctors’ work, but to make their work 
easier. 

• To monitor disease progression - using some of the 
features, it is possible to follow development of the 
disorder over time, 

• Identification of the first stages of the disorders, 
• Development of new medication, 

• Preparation of an individual plan of medication, 
• Analysis of the effect of different stimulations in 

neurological disorders (e.g. the effect of repetitive 
transcranial magnetic stimulation rTMS on speech of 
patients afflicted by Parkinson's disease [34]), 

• Monitoring the impact of various devices on the 
patient's condition (e.g. Duodopa or deep brain 
stimulation (DBS)). 

V. CONCLUSION 
The paper summarizes the modern methods of digital signal 

processing applied in the field of non-invasive analysis of 
neurological disorders. Emphasis is given on methods of feature 
extraction, which is the most important part of the whole 
procedure of analysis. Thanks to parameterization the disease 
can be adequately quantified, which can help doctors diagnose it 
more objectively, faster and more accurately. In increasing 
number of patients suffering from Alzheimer's or Parkinson's 
disease, an automated analysis has also positive economic 
impact (e.g. due to a possibility to diagnose more accurate and 
on time). 

The paper addresses non-invasive methods of speech and 
handwritten text analyses. The advantage of handwritten text 
processing against speech processing is small influence of 
environment to recorded signal (low influence of noise and no 
influence of acoustic room properties). The main disadvantage 
of handwritten text processing is that some patients are not able 
to write anything but can speak. For this reason, it is 
advantageous to fuse information extracted from both signals. 

Furthermore, the paper describes new methods of feature 
extraction which are not so much known. It is the non-linear 
dynamic parameters and parameters based on the empirical 
mode decomposition. Above introduced tests show that the 
attributes like the approximate entropy, the largest Lyapunov 
exponent or SNR derived from the squared energy operator of 
the IMF may well identify the hoarseness in speech, or tremor 
in writing. 

Scientific research in this area aims to invent a system that 
could diagnose various neurological disorders at an early stage 
or to estimate their progression. Changes in speech in case of 
Parkinson's disease occur due to hypokinetic dysarthria in 60-
90% of patients [35]. This means that error of disease 
identification by speech processing may be 10-40%. Moreover, 
each patient afflicted by Parkinson's disease may have different 
speech dysfunction. Therefore, first it is important to determine 
all patient's dysfunction (both speech and handwriting text), and 
then on the basis of the analysis results, the doctors could 
perform a reliable diagnosis. Therefore, it seems to be 
preferable to use artificial intelligence to recognize patient’s 
dysfunction than to automatically determine diagnosis of the 
disease. Based on the knowledge of dysfunction, the doctors can 
diagnose the disease itself. 

ACKNOWLEDGMENT 
This work was supported by project NT13499 (Speech, its 

impairment and cognitive performance in Parkinson’s disease) and 
project "CEITEC, Central European Institute of Technology": 
(CZ.1.05/1.1.00/02.0068) from the European Regional Development 

Authorized licensed use limited to: Brno University of Technology. Downloaded on May 19,2022 at 22:10:43 UTC from IEEE Xplore.  Restrictions apply. 



Fund. The described research was performed in laboratories supported 
by the SIX project; the registration number CZ.1.05/2.1.00/03.0072, 
the operational program Research and Development for Innovation. 

REFERENCES 
[1] J. Mekyska, Z. Smekal, M. Kostalova, M. Mrackova, S. Skutilova, and I. 

Rektorova, “Motor aspects of speech imparment in Parkinson‘s disease 
and their assessment,” Cesk Slov Neurol N, vol. 74, no. 6, pp. 662–668, 
2011. 

[2] A. M. Goberman, “Correlation between Acoustic Speech Characteristics 
and Non-speech Motor Performance in Parkinson Disease,” Med Sci 
Monit, vol. 11, no. 3, pp. CR109–116, 2005. 

[3] K. K. Baker, L. O. Ramig, E. S. Luschei, and M. E. Smith, 
“Thyroarytenoid muscle activity associated with hypophonia in Parkinson 
disease and aging,” Neurology, vol. 51, no. 6, pp. 1592–1598, 1998. 

[4] N. Roy, S. L. Nissen, C. Dromey, and S. Sapir, “Articulatory changes in 
muscle tension dysphonia: evidence of vowel space expansion following 
manual circumlaryngeal therapy,” Journal of Communication Disorders, 
vol. 42, no. 2, pp. 124–135, 2009. 

[5] K. A. Spencer and M. A. Rogers, “Speech motor programming in 
hypokinetic and ataxic dysarthria,” Brain Lang, vol. 94, no. 3, pp. 347–
366, 2005. 

[6] S. Skodda, H. Rinsche, and U. Schlegel, “Progression of dysprosody in 
Parkinson’s disease over time - a longitudinal study,” Movement 
Disorders, vol. 24, p. 716–722, 2009. 

[7] R. Moretti, P. Torre, R. M. Antonello, L. Capus, M. Gioulis, S. Zambito 
Marsala, G. Cazzato, and A. Bava, “Speech initiation hesitation following 
subthalamic nucleus stimulation in a patient with Parkinson’s disease,” 
Eur Neurol, vol. 49, no. 4, pp. 251–253, 2003. 

[8] M. Gentil, P. Pollak, and J. Perret, “Parkinsonian dysarthria,” Rev 
Neurol, vol. 151, no. 2, pp. 105–112, 1995. 

[9] A. Unlu, R. Brause, and K. Krakow, “Handwriting analysis for diagnosis 
and prognosis of Parkinson’s disease,” in Proceedings of the 7th 
international conference on Biological and Medical Data Analysis, ser. 
ISBMDA’06. Springer-Verlag, 2006, pp. 441–450. 

[10] G. Gangadhar, D. Joseph, A. Srinivasan, D. Subramanian, R. 
Shivakeshavan, N. Shobana, and V. Chakravarthy, “A computational 
model of Parkinsonian handwriting that highlights the role of the indirect 
pathway in the basal ganglia,” Human Movement Science, vol. 28, no. 5, 
pp. 602–618, 2009. 

[11] O. Tucha, L. Mecklinger, J. Thome, A. Reiter, G. L. Alders, H. Sartor, M. 
Naumann, and K. W. Lange, “Kinematic analysis of dopaminergic effects 
on skilled handwriting movements in Parkinson’s disease,” Journal of 
Neural Transmission, vol. 113, pp. 609–623, 2006. 

[12] J. Westin, S. Ghiamati, M. Memedi, D. Nyholm, A. Johansson, M. 
Dougherty, and T. Groth, “A new computer method for assessing 
drawing impairment in Parkinson’s disease,” Journal of Neuroscience 
Methods, vol. 190, no. 1, pp. 143–148, 2010. 

[13] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual 
information criteria of max-dependency, max-relevance, and min-
redundancy,” Pattern Analysis and Machine Intelligence, IEEE 
Transactions on, vol. 27, no. 8, pp. 1226–1238, 2005. 

[14] R. Tibshirani, “Regression shrinkage and selection via the lasso: a 
retrospective,” Journal of the Royal Statistical Society: Series B 
(Statistical Methodology), vol. 73, no. 3, pp. 273–282, 2011. 

[15] Y. Sun, S. Todorovic, and S. Goodison, “Local-learning-based feature 
selection for highdimensional data analysis,” Pattern Analysis and 
Machine Intelligence, IEEE Transactions on, vol. 32, no. 9, pp. 1610–
1626, 2010. 

[16] K. Kira and L. A. Rendell, “The feature selection problem: traditional 
methods and a new algorithm,” in Proceedings of the tenth national 
conference on Artificial intelligence, 1992, pp. 129–134. 

[17] A. Tsanas, M. A. Little, P. E. McSharry, and L. O. Ramig, “Nonlinear 
speech analysis algorithms mapped to a standard metric achieve clinically 
useful quantification of average Parkinson’s disease symptom severity,” 
Journal of The Royal Society Interface, vol. 8, no. 59, pp. 842–855, 2011. 

[18] M. A. Little, P. E. Mcsharry, S. J. Roberts, D. A. E. Costello, and I. M. 
Moroz, “Exploiting nonlinear recurrence and fractal scaling properties for 

voice disorder detection,” BioMedical Engineering OnLine, vol. 6, p. 23, 
2007. 

[19] G. Vaziri, F. Almasganj, and R. Behroozmand, “Pathological assessment 
of patients speech signals using nonlinear dynamical analysis,” 
Computers in Biology and Medicine, vol. 40, no. 1, pp. 54–63, 2010. 

[20] J. Shao, J. K. Maccallum, Y. Zhang, A. Sprecher, and J. J. Jiang, 
“Acoustic analysis of the tremulous voice: assessing the utility of the 
correlation dimension and perturbation parameters,” J Commun Disord, 
vol. 43, pp. 35–44, 2010. 

[21] M. Johnson, M. Straume, and M. Lampl, “The use of regularity as 
estimated by approximate entropy to distinguish saltatory growth,” Ann 
Hum Biol., vol. 28, pp. 491–504, 2001. 

[22] R. Esteller, G. Vachtsevanos, J. Echauz, T. Henry, P. Pennell, C. Epstein, 
R. Bakay, C. Bowen, and B. Litt, “Fractal dimension characterizes 
seizure onset in epileptic patients,” in Acoustics, Speech, and Signal 
Processing, 1999. Proceedings., 1999 IEEE International Conference on, 
vol. 4, mar 1999, pp. 2343–2346. 

[23] M. Borowska, E. Oczeretko, A. Mazurek, A. Kitlas, and P. Kuć, 
“Application of the Lempel-Ziv complexity measure to the analysis of 
biosignals and medical images,” Sleep Rochester, vol. 50, pp. 31–30, 
2005. 

[24] K. Hu, P. C. Ivanov, Z. Chen, P. Carpena, and H. E. Stanley, “Effect of 
trends on detrended fluctuation analysis,” Physical Review E - Statistical, 
Nonlinear and Soft Matter Physics, vol. 64, p. 20, 2001. 

[25] X. Navarro, A. Beuchee, F. Poree, and G. Carrault, “Performance 
analysis of Hurst’s exponent estimators in higly immature breathing 
patterns of preterm infants,” 2011, pp. 701–704. 

[26] T. E. Eichhorn, T. Gasser, N. Mai, C. Marquardt, G. Arnold, J. Schwarz, 
and W. H. Oertel, “Computational analysis of open loop handwriting 
movements in Parkinson’s disease: a rapid method to detect dopamimetic 
effects,” Movement Disorders, vol. 11, no. 3, pp. 289–297, 1996. 

[27] H.Wang, Q. Yu, M. M. Kurtis, A. G. Floyd, W. A. Smith, and S. L. 
Pullman, “Spiral analysis – improved clinical utility with center 
detection,” Journal of Neuroscience Methods, vol. 171, no. 2, pp. 264–
270, 2008. 

[28] R. Saunders-Pullman, C. Derby, K. Stanley, A. Floyd, S. Bressman, R. B. 
Lipton, A. Deligtisch, L. Severt, Q. Yu, M. Kurtis, and et al., “Validity of 
spiral analysis in early Parkinson’s disease,” Movement disorders official 
journal of the Movement Disorder Society, vol. 23, no. 4, pp. 531–537, 
2008. 

[29] M. Faundez-Zanuy, E. Sesa-Nogueras, J. Roure-Alcobe, J. Garre-Olmo, 
J. Mekyska, K. Lopez de Ipina, and A. Esposito, “A preliminary study of 
online drawings and dementia diagnose,” in Neural Nets and 
Surroundings, ser. Smart Innovation, Systems and Technologies, B. 
Apolloni, S. Bassis, A. Esposito, and F. C. Morabito, Eds. Springer 
Berlin Heidelberg, 2013, vol. 19, pp. 367–374. 

[30] M. Faundez-Zanuy, A. Hussain, J. Mekyska, E. Sesa-Nogueras, E. 
Monte-Moreno, A. Esposito, M. Chetouani, J. Garre-Olmo, A. Abel, Z. 
Smekal, and K. L. de Ipina, “Biometric applications related to human 
beings: there is life beyond security,” Cognitive Computation, 2012, (in 
press). 

[31] C. Bidet-Ildei, P. Pollak, S. Kandel, V. Fraix, and J.-P. Orliaguet, 
“Handwriting in patients with Parkinson disease: effect of l-dopa and 
stimulation of the sub-thalamic nucleus on motor anticipation,” Human 
Movement Science, vol. 30, no. 4, pp. 783–791, 2011. 

[32] A. W. V. Gemmert, H.-L. Teulings, and G. E. Stelmach, “Parkinsonian 
patients reduce their stroke size with increased processing demands,” 
Brain and Cognition, vol. 47, no. 3, pp. 504–512, 2001. 

[33] J. H. Yan, S. Rountree, P. Massman, R. S. Doody, and H. Li, 
“Alzheimer’s disease and mild cognitive impairment deteriorate fine 
movement control,” Journal of Psychiatric Research, vol. 42, no. 14, pp. 
1203–1212, 2008. 

[34] I. Eliasova, J. Mekyska, M. Kostalova, R. Marecek, Z. Smekal, and I. 
Rektorova, “Acoustic evaluation of short-term effects of repetitive 
transcranial magnetic stimulation on motor aspects of speech in 
Parkinson’s disease,” Journal of Neural Transmission, pp. 1–9, 2012. 
[Online]. Available: http://dx.doi.org/10.1007/s00702-012-0953-1 

[35] L. O. Ramig, C. Fox, and S. Sapir, “Speech treatment for Parkinson’s 
disease,” Expert Rev Neurother, vol. 8, no. 2, pp. 297–309, 2008. 

Authorized licensed use limited to: Brno University of Technology. Downloaded on May 19,2022 at 22:10:43 UTC from IEEE Xplore.  Restrictions apply. 



A.31 A New Modality for Quantitative Evaluation of Parkinson’s
Disease: In-Air Movement

392
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Peter Drotár, Jiřı́ Mekyska, Irena Rektorová, Lucia Masarová, Zdeněk Smékal and Marcos Faundez-Zanuy

Abstract— Parkinsons disease (PD) is neurodegenerative dis-
order with very high prevalence rate occurring mainly among
elderly. One of the most typical symptoms of PD is deterioration
of handwriting that is usually the first manifestation of Parkin-
sons disease. In this study, a new modality - in-air trajectory
during handwriting - is proposed to efficiently diagnose PD.
Experimental results showed that analysis of in-air trajectories
is capable of assessing subtle motor abnormalities that are
connected with PD. Moreover, conjunction of in-air trajectories
with conventional on-surface handwriting allows us to build
predictive model with PD classification accuracy over 80%.
In total, we compute over 600 handwriting features. Then, we
select smaller subset of these features using two feature selection
algorithms: Mann-Whitney U-test filter and relief algorithm,
and map these feature subsets to binary classification response
using support vector machines.

I. INTRODUCTION

Parkinson’s disease (PD) is progressive neurodegenerative
disorder characterized by tremor, riginity, bradykinesia and
loss of postural reflexes. PD usually affects people with the
average age of 60, although 5% to 10% of patients may
develop symptoms even before age 40 [1]. The particular
causes of PD are not known, but there is ongoing research
evaluating genetics, ageing and toxins. From the pathological
point of view there is no objective quantitative method
for clinical diagnosis. It is thought that PD can only be
definitively diagnosed at postmortem that further highlights
the complexities of diagnosis. Therefore there is intensive
effort to develop expert systems and decision support systems
for the assessment and diagnosis of PD.

Previous research has shown that one of the frequent
syndromes of PD is significant vocal impairment such as
dysphonia (impairment in the vocal production of nor-
mal sounds) and dysarthia (problems with normal articu-
lation) [2],[3],[4]. These findings grasped attention of the
speech processing community and motivated further research
on link between PD and impaired speech. Several new and
traditional voice measures has been proposed to discriminate
healthy people from people with PD [5]. Recent studies
for detection of PD with machine learning tools using
acoustic measurement of voice impairment achieved different
levels of PD prediction accuracy [6], [7]; where the latest
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reported results showed as high as 98% overall classification
accuracy [8].

Not only speech, but also handwriting is affected by the
PD [9],[10],[11],[12],[13]. Parkinson’s Disease patients tend
to move more slowly than healthy subjects and reduce move-
ment amplitude when they are required to make movement
with upper extremities. Slowness of movement and reduc-
tions in movement amplitude in clinical observations of PD
patients are called bradykinesia and hypometria, respectively.
Several studies have documented that handwriting provide
numerous features that display statistically significant differ-
ences between healthy subjects and subjects with PD [11].
Statistical significance only is not sufficient, as this does not
provide a complete picture of the extent to which any one
measurement or set of measurements is useful in predicting
and diagnosis of PD. Therefore we propose classification
model for diagnosis of PD and test it on relatively large
dataset consisting of 75 individuals. In addition, minimal
subset of the most predictive features is selected.

The fact, that has been rarely taken into account is,
that hand movement during handwriting a text consist of
two components: an on-surface component, comprising the
movements executed while exerting pressure on the writing
surface, and an in-air component, comprising the movements
performed without touching the writing surface. The amount
of information is similar in both types of trajectories and,
even if they share some information, in-air and on-surface
trajectories appear to be notably non-redundant [14]. In-air
movement has been so far used only for biometric applica-
tion, but here we show that it has meaningful application
also for medical analysis.

The rest of the paper is organized as follows. In Section
2., the database of handwriting samples is introduced and
described, followed by initial feature analysis. Application
of feature selection and machine learning methods to prob-
lem of PD classification is described in Section 3. Finally,
conclusions are drawn in the last section.

II. DATA AND METHODS

A. Parkinson’s Dataset

37 Parkinsonian patients (19 men/18 women) and 38 (20
men/18 women) age matched healthy controls took part in
this study. Dominant hand of all participants was the right
hand. Parkinsonian patients completed the session in the ON
state (under medication by L-DOPA). Mean and standard
deviation of age, Unified Parkinsons Disease Rating Scale-
Part V., score and disease duration are summarized in Table
I.

978-1-4799-3163-7/13/$31.00 ©2013 IEEE
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TABLE I
PARKINSON’S HANDWRITING DATASET CHARACTERISTICS

Age UPDRS (part V) Years since diag.
mean std mean std mean std

PD 69.3 10.9 2.27 0.84 8.37 4.8
H 62.4 11.3 - - - -
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Fig. 1. Handwriting sample of PD patient.

Each subject was asked to write sentence in Czech lan-
guage (native language of participants) ”Tramvaj dnes u
nepojede” (The tram won’t go today). Handwritten signals
were acquired using digitizing tablet Intuos 4M (Wacom
technology) in the x-y plane, and in the pressure axis. An
inked writing pen was held in a normal fashion without
constraints to allow for full visual feedback during writing.
As was already mentioned, signals were acquired not only
during movements executed while exerting pressure on the
writing surface, but also during movement performed without
touching the writing surface. Fig. 1 and Fig. 2 show example
of on-surface and in-air trajectories taken from executions of
the sentence performed by PD patient and healthy control,
respectively.

B. Measured feature sets

The recordings starts when the pen touched the surface
of digitizer and finishes when task is completed. Digitazing
tablet captures following dynamic features (time-sequences):
x-coordinate, x(t); y-coordinate,y(t); time stamp, s(t) and
button status, b(t). Button status is binary variable being 0
for pen-up(in-air movement) and 1 for pen-down(on-surface
movement), this means that tablet captures pen movement
while on surface, but also in close proximity of surface - in-
air. The x and y components are segmented into on-surface
and in-air strokes and analyzed in terms of handwriting mea-
sures. The feature calculation stage involves the application
of the traditional and nonstandard measurement methods to
all handwriting signals. Each method produce either a single
value or vector of numbers for each of 75 signals. List of
computed features is provided in Tab. II, where single value
features are denoted as s and vector features are denoted
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Fig. 2. Handwriting sample of healthy control.

as v. Additionally 30 statistical functionals of the vector
features were computed. These include minima, maxima,
range, outlier robust range(percentile 99th - percentile 1st),
geometrical mean, median, mode, mean, standard deviation,
statistical moments (3, 4, 5, 6), trimmed means (5, 10,
20, 30, 40, 50), percentiles(1, 5, 10, 20, 30, 90, 95, 99),
quartiles(25/lower, 75/upper), kurtosis.

C. Feature analysis

Previous processing stages produce together more than
six hundred features for in-air and on-surface movement.
In order to obtain some preliminary insight into statistical
properties of handwriting features we computed Pearson cor-
relation coefficients and mutual information between feature
vectors and associated response. Pearson correlation express
measure of linear dependence between features vectors and
associated response. Mutual information is a measure of the
amount of information shared by two random variable X and
Y . It is defined as:

I(X;Y ) = −
∑

x∈X

∑

y∈Y
p(x, y) · log2

(
p(x, y)

p(x)p(y)

)
(1)

where x and y are possible variable values with a joint prob-
ability distribution function p(x, y) and marginal distribution
functions p(x) and p(y), respectively [16].

Table III sumarizes ten handwriting measures with largest
relevance to response sorted according absolute correlation
coefficient. All correlations are statistically significant (p <
0.05). Eight of ten features are in-air movement related fea-
tures, that give us some initial confirmation of our hypothesis
that in-air features contain information relevant for predicting
PD. The Mann-Whitney test indicated significant differences
(p < 0.05) between control group and PD group for all
features listed in table.

III. CLASSIFICATION RESULTS

A. Selection of candidate feature set for classification

After removing all features that did not pass the Mann-
Whitney U test for significant differences there are still 262
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TABLE II
PLEASE WRITE YOUR TABLE CAPTION HERE

Feature (s)/(v) Description

stroke speed v trajectory during stroke divided by stroke duration
speed s trajectory during handwriting divided by handwriting duration
velocity v rate at which the position of a pen changes with time
acceleration v rate at which the velocity of a pen changes with time
jerk v rate at which the acceleration of a pen changes with time
horizontal velocity/acceleration/jerk v velocity/acceleration/jerk in horizontal direction
vertical velocity/acceleration/jerk v velocity/acceleration/jerk in vertical direction
number of changes in velocity direction (NCV) s the mean number of local extrema of velocity [15]
number of changes in acceleration direction (NCA) s the mean number of local extrema of acceleration [15]
relative NCV s NCV relative to writing duration
relative NCA s NCA relative to writing duration
in-air time s time spent in-air during writing
on-surface time s time spent on-surface during writing
normalised in-air time s time spent in-air during writing normalised by whole writing duration

normalised on-surface time s
time spent on-surface during writing normalised by whole
writing duration

in-air/on-surface ration s ratio of time spent in-air/on-surface

TABLE III
DESCRIPTION OF CALCULATED FEATURES

Feature Mutual
Information

Correlation
Coefficient

stroke speed
(on surface, standard dev.) 6.09 -0.388

velocity
(in air, standard dev.) 5.94 -0.387

vert. jerk
(in air, min.) 5.7 0.383

acceleration
(in air, standard dev.) 5.92 -0.38

horz. jerk
(in air, range) 5.72 -0.379

jerk
(in air, standard dev.) 5.96 -0.389

horz. acceleration
(in air, range) 5.81 -0.375

horz. velocity
(in air, range) 5.87 -0.371

horz. velocity
(on surface, quantile 75%) 4.46 -0.37

vert. acceleration
(in air, min.) 5.74 -0.369

candidate features left. Even if many classification algorithms
are fairly robust to the inclusion of potentially irrelevant
features, their performance in speed (due to high dimension-
ality) and predictive accuracy (due to irrelevant information)
may be severely degraded. Feature selection algorithms aim
to choose a small subset of features that ideally is necessary
and sufficient to describe target concept. From many feature
selection algorithms we decided to use Relief algorithm [17],
that has been shown to achieve promising results in problems
similar to ours [8]. Relief is feature weighting algorithm that
relies entirely on statistical analysis and employs only few
heuristics. It selects most of the relevant features even though
only a small number of them is necessary for prediction. In
most cases it does not help with redundant features. Since
we want all relevant features to be included for prediction
even at the cost of higher dimensionality Relief appears to

be promising candidate.

B. Support Vector Machines

The underlying idea of SVM classifiers is to calculate
a maximal margin hyperplane separating two classes of
the data. To learn non-linearly separable functions, the
data are implicitly mapped to a higher dimensional space
by means of a kernel function, where a separating hy-
perplane is found. New samples are classified according
to the side of the hyperplane they belong to. We used
RapidMiner Java implementation of the mySVM with radial
kernel. The parameters kernel gamma γ, penalty parameter
C and convergence epsilon ε were optimized using grid
search of possible values. Specifically, we searched over
the grid (C, γ, ε) defined by the product of the sets C =
[10−5, 10−4, . . . , 103, 104], γ = [10−5, 10−4, . . . , , 102, 103]
and ε = [10−5, 10−4, . . . , 102, 103]. Classifier validation was
conducted using a leave-one-out approach. That is, we left
out the sample of one individual to be used for validation
as if it is an unseen individual. The process was repeated a
total of 50 times, where in each repetition the original dataset
was randomly permuted prior to splitting into training and
testing subsets. Training and testing features were normalized
to have zero mean and a standard deviation of one on a per-
feature basis before classification.

C. Numerical Results

Classification performance for different number of features
was computed for three different scenarios: using only fea-
tures based on in-air movement; using only features extracted
from on-surface movement and using fusion of both groups
of features. By fusion we mean that both feature groups
were merged prior to feature selection. Fig.3 shows pre-
diction accuracy of PD using SVM classifier for increasing
number of features. Features were selected by application
of Relief algorithm. Classification features based on in-air
movement provide classification accuracy similar or higher
then accuracy of features based on on-surface movement.
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Fig. 3. Classification accuracy of SVM for different modalities.

This confirms our initial hypothesis that in-air movement
holds significant information with regards to diagnosis of PD.
The highest classification accuracy, 80.09%, was achieved for
16 features selected from in-air. Merging of both modalities
brings in most of the cases improvement in classification
accuracy indicating amount of non-redundant information in
in-air and on-surface movement. As can be seen from Fig.
3 increasing number of features is not always beneficial.

IV. CONCLUSION

It was shown that proposed scheme can be used for
diagnosis of PD with classification accuracy over 80%.
Besides conventional on-surface handwriting also in-air tra-
jectories during writing were utilized for PD prediction task.
Results indicate that novel in-air features outperform con-
ventional on-surface features in separating healthy controls
from subjects with PD. Conjunction of both modalities to
built predictive model can be used for quantitative recording
for the treating doctor in order to detect and predict long
term changes in the individual disease history. Beside the PD
classification and disease tracking the handwriting analysis
can be also used during an evaluation of modern non-
invasive treatment methods such as high-frequency repetitive
transcranial magnetic stimulation (rTMS), see e.g. [16]. In
our future work, we will analyse new features that can more
efficiently capture tremor, micrographia and other medically
relevant information. We believe that merging handwriting
features with e.g. voice features can further improve diagno-
sis, evaluation and tracking of PD.
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Abstract. In this paper we present preliminary results about on-line
drawings acquired by means of a digitizing tablet, and performed by
control population (left and right hand) as well as pathological subjects
using their dominant hand. Experimental results reveal a clear difference
between both groups, specially on the on-air movements. Although the
acquired samples are not enough to extract significant conclusions we
think that this preliminary results encourage the experimentation in this
research line. Thus, the main purpose of this paper is to attract the
attention of the scientific community.

Keywords: On-line handwriting, Drawings, Dementia.s

1 Introduction

Information and communication technologies are converging to health applica-
tions and a great improvement of health diagnose and recover will be possible if
the signal processing community collaborates with medical doctors. The authors
strongly believe that for the biometric security community this would be quite
straightforward, and this paper points out in this direction.

Biometrics has been successfully applied to security applications for some
time. However, the extension of other potential applications with the use of
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biometric information is a very recent development. This paper summarizes the
field of biometrics and investigates the potential of utilizing biometrics beyond
the presently limited field of security applications.

The term “biometric” originates from the Greek words Bio (life) and metron
(measure), and is defined as the science and technology of measuring and sta-
tistically analyzing biological data. Although many people consider biometrics
only relevant to security applications, in reality, the relevance of biometrics is
much more far reaching. This field has applications relevant to animals, plants
and human beings. Some examples are:

– Statistical methods for the analysis of data from agricultural field experi-
ments to compare the yields of different varieties of wheat.

– The analysis of data from human clinical trials evaluating the relative effec-
tiveness of competing disease therapies.

– The analysis of biometric characteristics for animal/human verification or
identification.

While some signals can be acquired from both human beings and animals (such
as images of iris and retina), others are specific to humans (such as speech,
handwriting, etc.).

This paper is focused exclusively on applications which are relevant only to
human beings, and more precisely on on-line handwritten drawings. Therefore,
we will limit discussion to only human specific signals. The set of these signals
can be split into two categories:

1. Behavioral biometrics: this category is based on the measurements and data
derived from an action performed by a user, and thus indirectly measures
some characteristics of the human body. Signature, gait, gesture and key
stroking recognition belong to this category.

2. Physiological biometrics: this category is based on direct measurements of
parts of the human body. Fingerprint, face, iris and hand-scanning recogni-
tion belong to this category.

The skill level of humans is strongly related to their health state. An important
example is the way our cognitive functions are related to the aging process.
Cognitive decline is a natural part of the aging process. However, the extent
of decline varies across subjects and across functions. For instance, handwriting
and speech production is a fine motor control performed by our brain. When
these signals are degraded, it is indicatory of health problems.

2 On-Line Handwriting

In the past, the analysis of handwriting had to be performed in an offline manner.
Only the writing itself (strokes on a paper) were available for analysis. Nowadays,
modern capturing devices, such as digitizing tablets and pens (with or without
ink) can gather data without losing its temporal dimension. When spatiotempo-
ral information is available, its analysis is referred as online. Modern digitizing
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tablets not only gather the x-y coordinates that describe the movement of the
writing device as it changes its position, but it can also collect other data, mainly
the pressure exerted by the writing device on the writing surface and also the
azimuth, the angle of the pen in the horizontal plane, and the altitude, the angle
of the pen with respect the vertical axis (Fig. 1).

A very interesting aspect of the modern online analysis of handwriting is that
it can take into account information gathered when the writing device was not
exerting pressure on the writing surface. Thus, the movements performed by the
hand while writing a text can be split into two classes:

a) On-surface trajectories (pen-downs), corresponding to the movements exe-
cuted while the writing device is touching the writing surface. Each of these
trajectories produces a visible stroke.

b) In-air trajectories (pen-ups), corresponding to the movements performed by
the hand while transitioning from one stroke to the next. During these move-
ments the writing device exerts no pressure on the surface.

Fig. 1. Azimuth and altitude angles of the pen with respect to the plane of the writing
surface

Fig. 2 shows the acquisition of the ten digits from 1 to 0 using an Intuos
Wacom digitizing tablet. The tablet acquired 100 samples per second including
the spatial coordinates (x, y), the pressure, and a couple of angles (see Fig. 1).
The pen-up information is represented in Fig 1 using “+” while the pen- down
is marked with “*”. Fig. 3 shows the temporal evolution of the signals acquired
while handwriting the digits in Fig. 2.

Our experiments on the biometric recognition of people reveal that these
two kinds of information are complementary [8] and in fact, contain a similar
discriminative capability, even when using a database of 370 users [7].

3 On-Line Drawings Applied to Health Analysis

In the medical field, the study of handwriting has proven to be an aid to diagnose
and track some diseases of the nervous system. For instance, handwriting skill
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Fig. 2. Example of handwritten numerical digits input onto a digitizing tablet. Aster-
isks (*) represent pen-down information and cross (+) the pen-up.

degradation and Alzheimer’s disease (AD) appear to be significantly correlated
[3] and some handwriting aspects can be good indicators for its diagnosis [4]
or help differentiate between mild Alzheimer’s disease and mild cognitive im-
pairment [10]. Also, the analysis of handwriting has proven useful to assess the
effects of substances such alcohol [1] [5], marijuana [2] or caffeine [9]. Aided by
modern acquisition devices, the field of psychology has also benefitted from the
analysis of handwriting. For instance in [6], Rosenblum et al. link the proficiency
of the writers to the length of the in-air trajectories of their handwritings.

Fig. 3. Temporal evolution of the acquired parameters when drawing the numbers
shown in Fig. 1
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Fig. 4. House drawing performed by four individuals with Alzheimer’s disease (one per
row). Each column corresponds to pen-down, pen-up and both simultaneously.

Table 1. Statistical analysis/descriptives from the drawings shown in Fig. 4, 5 and 6

Control Pathological
Measurement Dominant hand Non-dominant hand Dominant hand

Time in-air 8334 10927 61008
Time on-surface 9680 22177 31521
Total time 18014 33104 92259

In the Fig. 4 we present one complex drawing with three dimensions performed
by individuals with AD of different clinical severity. The visual inspection of
the pen down image suggest a progressive degree of impairment, where drawing
becomes more disorganized and the three dimensions effect is only achieved in the
mild case. The visual information provided by the pen up drawing between AD
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Fig. 5. House drawing performed by three control people (one per row). Each col-
umn corresponds to pen-down, pen-up and both simultaneously, performed with the
dominant hand.

individuals also indicates a progressive impairment and disorganization when
the individuals try to plan the drawing. It is also important to note that the
comparison of the pen-up drawing between the mild case of AD and the control
(Fig. 5 and 6) also shows important differences. Besides the increased time on air,
there is an increased number of hand movements before decide to put the pen
in the surface to drawn. We consider that these graphomotor measures applied
to the analysis of drawing and writing functions may be a useful alternative to
study the precise nature and progression of the drawing and writing disorders
associated with several neurodegenerative diseases. Table 1 summarizes some
experimental measures of the drawings shown in Fig. 4, 5 and 6.

Looking at the experimental results of Table 1 it is evident the higher time
for in-air movements for the AD group, which are around 7 times longer. On the
contrary, the time on surface is just around 3 times longer. Thus, there are more
differences between control and AD groups when looking at in-air movements.

When comparing the non-dominant movements performed by the control
group we obtained a 5.6 ratio and 1.5. Again, the in-air times are significantly
higher for the AD group than the control group.
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Fig. 6. House drawing performed by three control people (one per row). Each column
corresponds to pen-down, pen-up and both simultaneously, performed with the non-
dominant hand.

4 Conclusions

Although some pathological drawings may look “normal” according to pen-down
information, the pen-up information looks quite entangled and should permit
easier diagnose. This observation points out the convenience of online handwrit-
ing analysis, which can outperform the classic offline mode, mainly due to the
larger amount of available information.

The differences between control and pathological group do not seem to be
related to some physical problem, because the control group, even when using
the non-dominant hand performs less entangled pen-up movements.

Future work will include a more exhaustive experimental section, with a larger
database.
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Abstract-One of the most frequent clinical hallmarks of 

Parkinson's disease (PD) is micrographia. Micrographia in PD is 

characterized by the decreased letter size and by changes in the 

kinematic aspects including increased movement time, decreased 

velocities and accelerations, and increased number of changes in 

velocity and acceleration. Based on the literature survey we 

proposed template to acquire handwriting during different 

tasks. In addition to well established tasks for PD diagnosis such 

as Archimedean spiral, we designed new tasks to acquire all 

aspects of micrographia. The database consists of eight different 

handwriting samples from seventy-five subjects. The presented 

results shows almost 80% overall classification accuracy 

Keywords-handwriting, Parkinson's disease, decision support 
systems, micrographia, SVM. 

[NTRODUCTION 

Parkinson's disease (PD) is a complex neurodegenerative 
disease affecting large portion of population worldwide [1]. 
The PD influences a part of the brain known as the 

substantia nigra, which controls movement in the body. 
Unlike healthy people, patients with Parkinsons disease 
exhibit disruption in the execution of the practiced skills such 
as handwriting [2], [3], [4], [5] and speech [6], [7]. They have 
severe difficulties in coordinating components of the motor 
sequence movement. They tend to perform sequential 
movements in a more segmented fashion. When the 
handwriting or another motor task have to be produced 
continuously they are slower as if they are executed 
separately. Hesitations and pauses are often observed between 
the components of the sequence [8] 

Several handwriting tasks were proposed to analyse hand
writing of PD patients and to obtain insight into motor 
disruption aspects of PD. Spiral drawing has been used for 
the assessment of the impact of therapy on motor 
performance in various movement disorders including PD [3], 
[9], [10]. Words containing one or multiple repetitions of 
cursive letter I are also frequently used to evaluate 
handwriting samples [8], [11]. 

Based on literature survey, we have developed the complex 

Brno, Czech Republic 

Marcos Faundez-Zanuy 
Escola Universitaria Politecnica de Mataro 

Tecnocampus 
Mataro, Spain 

template to acquire handwriting samples from PD subjects. [n 
addition to already mentioned tasks, our template contain also 
new handwriting tasks: simple words and one sentence. These 
words and sentence were selected because of easy syntax
every word can be written with one stroke- i.e. continuous 
contact between pen and the surface can be preserved during 
writing. The orthography is also rather simple to minimize 
cognitive effort during the writing task. 

Several studies have documented that handwriting provide 
numerous features that display statistically significant differ
ences between healthy subjects and subjects with PD [[ 1], 
[4], [12], [13]. Statistical significance only is not sufficient, as 
this does not provide a complete picture of the extent to 
which any one measurement or set of measurements is useful 
in predicting and diagnosis of PD. Therefore we propose 
classification model for diagnosis of PD and test it on 
relatively large dataset consisting of 75 individuals. 
Additionally, our aim is not only to propose classification 
model for diagnosis of PD, but also to compare handwriting 
tasks that are frequently used in literature to analyse 
handwriting of PD subjects. 

The rest of the paper is organized as follows. [n Section 
II, the database of handwriting samples is introduced and 
described, followed by methods in III section. PD 
classification and obtained results are given in Section [v. 
Finally, conclusions are drawn in the last section. 

PARKINSON'S DISEASE DETECTION HANDWRITING DATASET 

The Parkinsons handwriting dataset consist of multiple 
handwriting samples from 37 parkinsonian patients (19 
men/18 women) and 38 gender and age matched controls (20 
men/18 women). All PD participants were recruited from the 
Movement Disorders Center at the First Department of 
Neurology, Masaryk University and st. Annes Hospital in 
Smo, Czech Republic. Mean age was 69.3 ± [0.9 for 
parkinsonian patient and 62.4 ± 11.3 for control subjects, 
respectively. All subjects used their dominant right hand. For 
parkinsonian patients the mean value of Unified Parkinson's 
Disease Rating Scale-Part V. was 2.27 ± 0.84 and all patients 
completed the tasks under medication L-DOPA. 

978-1-4799-2373-1/13/$31.00 ©2013 IEEE 
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TABLE I. 

OVERVIEW OF HANDWRITING FEATURES 

Feature 

stroke speed 
speed 
velocity 
acceleration 
jerk 
horizontal velocity/acceleration/jerk 
vel1ical velocity/acceleration/jerk 
number of changes in velocity direction (NCY) 
number of changes in acceleration direction (NCA) 
relative NCY 
relative NCA 
writing duration/length 
stroke height/width 

(s)/(v) Description 

v trajectory during stroke divided by stroke duration 
s trajectory during handwriting divided by handwriting duration 
v rate at which the position of a pen changes with time 
v rate at which the velocity of a pen changes with time 
v rate at which the acceleration of a pen changes with time 
v velocity/acceleration/jerk in horizontal direction 
v velocity/acceleration/jerk in vel1ical direction 
s the mean number of local extrema of velocity [14] 
s the mean number of local extrema of acceleration [14] 
s NCY relative to writing duration 
s NCA relative to writing duration 

s time duration (in seconds)/ length (in points) of writing 
v width and height of stroke 

Each subject was asked to complete handwriting task 
according to the prepared template. The filled task sheet is 
depicted in Fig.l. Template consist of eight different tasks. 
First task, Archimedean spiral, is established task used for 
analysis of PO or essential tremor [10], [9]. In the tasks 2-4 
participants wrote cursive letters or bi/tri-grams of letters. 

Digitizing tablet captures following dynamic features (time
sequences): x-coordinate, x(t); y-coordinate, yet); time stamp, 
set) and button status, bet). Button status is binary variable 
being 0 for pen-up state (in-air movement) and I for pen
down state (on-surface movement). 

I. METHODS 
The tasks of similar type (letter 1 - or its repetitions) are also 

commonly used for handwriting analysis [8]. Next three tasks 
are words, that can be written as one long stroke i.e. during 
writing of these words is writing device in continuous contact 
with surface. Words are written in Czech language (native 
language of participants) with following translation to 
English: lektorka - lector(female), porovnat - to compare, 
nepopadnout - do not catch. Finally, the last task is longer 
sentence, that allows to capture also effect of fatigue during 
writing (Tramvaj dnes uz nepojede - The tram won't go 
today). 

Handwritten signals were acquired using digitizing tablet 
Intuos 4M (Wac om technology) in the x-y plane, and in the 
pressure axis. An inked writing pen was held in a normal 
fashion without constraints to allow for full visual feedback 
during writing. Digitized signals were acquired during 
movements executed while exerting pressure on the writing 
surface. The recordings start when the pen touched the 
surface of digitizer and finishes when task is completed. 

@ 

Our goal is not only to propose classification model for 
diagnosis of PD, but also to compare handwriting tasks that 
are frequently used to analyse handwriting of PD subjects. 
Therefore, we have analysed every task individually to see 
predictive potential of particular task. Then, all task were 
merged to make use of task diversity and build predictive 
model for diagnosis of PD. 

Feature Calculation 

The same procedure is applied to all handwriting tasks. The 
x and y components are segmented into strokes and analyzed 
in terms of handwriting features. The feature calculation stage 
involves the application of the traditional and nonstandard 
measurement methods to all handwriting signals. Each 
method produces either a single value or vector for each of 
seventy-five signals. List of computed features is provided in 
Tab. I, where single valued features are denoted as s and 
vector features are denoted as v. Additionally, six "basic" 
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Figure I. Illustration of filled template (not actual handwriting sample) 
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functionals (mean, median, standard deviation, 1st percentile, 
99th percentile, 99th percentile 1 st percentile) of the vector 
features were computed. Here, the 99th percentile - 1 st 
percentile represents outlier robust range, and 1 st and 99th 
percentiles are outlier robust minimum and maximum, 
respectively. 

Support Vector Machines 

The underlying idea of SVM classifiers is to calculate a 
maximal margin hyperplane separating two classes of the 
data. To learn non-linearly separable functions, the data are 
implicitly mapped to a higher dimensional space by means of 
a kernel function, where a separating hyperplane is found. 
New samples are classified according to the side of the 
hyperplane they belong to. We used Radial Basis Function 
(RBF) kernel [\5]. The RBF kernel is defined as 

- l lx-Xi I 1 2 

K(x, Xi) = e ----zyz- (2) 
where y controls the width of RBF function. 

Statistical Analysis 

In order to obtain some preliminary insight into statistical 
properties of handwriting features we analysed relationship 
between feature vectors and associated response (i.e. label 
indicating medical diagnosis PD/H). Table II sumarizes six 
handwriting measures with largest relevance to response 
sorted according SVM classification accuracy using single 
feature. Table shows feature name, as defined in Table I, 
number of task, that was used to obtain feature and statistical 
functional computed from feature vector. Additionally, we 
computed Pearson correlation coefficients between feature 
vectors and associated response. Depicted features are 
strongly correlated to response (highest p = 0.4, P < 0.05). 
SVM classification accuracy (70.6 % for feature stroke 
speed) is also indicating strong association between 
handwriting and subject diagnosis. These findings suggest 
that the extraction of handwriting features accentuate 
relationship between handwriting and PD. 

Probability densities of the top four handwriting features 
from Table II are shown in Fig. 2. The vertical axes are the 
probability densities of the normalized measures, estimated 
using kernel density estimation with Gaussian kernels. Differ
ences between probability densities of PD and healthy control 
are visible also in this case. 

II. RESULTS 

The parameters kernel gamma and penalty parameter C 
were optimized using grid search of possible values. 
Specifically, we searched over the grid (C, y) defmed by the 
product of the sets C = [Z-6, Z-s, ... ,27,28], Y = 
[Z-S, Z-4, ... ,28,29]. Classifier validation was conducted 
using stratified tenfold cross-validation. The process was 
repeated a total of ten times, where in each repetition the 
original dataset was randomly permuted prior to splitting into 
trammg and testing subsets. Classification accuracy, 
sensitivity and specificity over the ten repetitions were 
averaged. Training and testing features were normalized 

before classification on a per-feature basis to have zero mean 
and a standard deviation of one. 

TABLE II. 
SVM PREDICTION ACCURACY AND CORRELATION WITH PDIH 

DIAGNOSIS OF MOST REDICTOVE FEATURES 

Feature 

stroke speed 

SYM prediction Correlation 
accuracy [%] Coefficient 

(task 8, standard dev.) 
70.6 -0.39 

stroke width 
68.3 -0.40 

(task 3, percentile 1st) 
horz. velocity 

68.2 0.33 
(task 8, percentile 99th) 
stroke width 

66.7 -0.24 
(task 3, mean) 
stroke length 

65.3 -0.24 
(task 3, percentile 1st) 
stroke length 

64 0.32 
(task 3, standard dev.) 

The classification test performance was determined by the 
computation of accuracy, sensitivity and specificity. The 
accuracy (Pace), sensitivity (Psen) and specificity (Pspe) are 
defmed as 

TP+TN 
P = ·100% (2) ace T P + TN + F P + F N 

TN 
P = ·100% (3) spe TN+FP 

TP 
P = ·100% (4) sen TP + FN 

where TP (true positive) and FP (false positive) represents 
the number of correctly decided PD subject and number of 
subject diagnosed as PD, but being healthy. Similarly, TN 
(true negative) and FN (false negative) represent the total 
number of correctly decided healthy control, and PD patients 
evaluated as healthy control. 
Mann-Whitney U test showed statistically significant 
differences between patients with PO and healthy controls in 
terms handwriting features for data obtained from tasks 2, 3, 
5, 6, 7 and 8. For task \ and 4, i.e. spiral drawing and 
repetitive writing of les world, were found no differences 
between those two groups. 

The discrimination potential of every task was evaluated 
individually with results depicted in Table III. Additionally, 
we merged all tasks displaying statistical differences between 
PD and H (i.e. 2, 3, 5, 6, 7 and 8) to compute overall 
classification accuracy, sensitivity and specificity. 

As an input to SVM classifier we employed only features 
that passed the Mann-Whitney U test for significant 
differences. In the case of \ st and 4th task, where no 
statistically significant features exist, we used all computed 
features. 

The best classification performance of 79.4 % was reached 
in a combination of all tasks including all relevant 
handwriting exercises. The maximal classification accuracy 
using simple task was 78.7 % for 8th task. Comparing this 
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number to SVM classification accuracy yielded by evaluation 
of other tasks, it is clearly visible, that the most of the SVM 
prediction power comes from features acquired during 8th 
task 

t8; stroke speed (stand. dev.);p = -0.39 
0.4 r-�-----------' 

/ \ 

t3; stroke width (percentile 1 st); p = -0.4 
2 r-------,---------
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Figure 2 Distribution of feature values (bottom half of figures) and estimated 
probability density functions (top half of figures ) of four features, for the top 
4 features from Table II. 

TABLE III. 

CLASSIFICATION RESULTS USING SVM CLASSIFIER 

Evaluated task Pace [%] Pspe [%] Psen[%] 

task 1 65.4 32.4 95.5 
task 2 70.0 59.2 80.1 
task 3 72.3 68.7 75.3 
task 4 65.4 6l.9 68.9 
task 5 66.7 68.9 64.5 
task 6 67.7 69.7 65.8 
task 7 67.1 48.7 85 
task 8 78.7 75.1 82.1 
overall 79.4 78.9 80 

III. CONCLUSION 

We proposed methodology for building the predictive 
model of PD from kinematic handwriting features obtained 
from different conventional and novel handwriting tasks. The 
accuracy obtained using our method is 79.4 % with very 
similar values for specificity and sensitivity. Introduced 
results show that analysis of handwriting has promising 
potential for computer based decision support tools for the 
next-generation health-care. With the recent advent of 
technology and ubiquitous electronic devices, such a tablet or 
different touch-screen devices, acquisition and evaluation of 
handwritten signal is becoming really simple, once proper 
methodologies are established. 
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Abstract This paper is aimed at analysing, from an

information theory perspective, the gestures produced by

human beings when handwriting a text. Modern capturing

devices allow the gathering of data not only from the on-

surface movements of the hand, but also from the in-air

trajectories performed when the hand moves in the air from

one stroke to the next. Our past research with isolated

uppercase words clearly suggests that both types of tra-

jectories have a biometric potential to perform writer rec-

ognition and that they can be effectively combined to

enhance the recognition accuracy. With samples from the

BiosecurID database, we have analysed the entropy of each

kind of trajectories, as well as the amount of information

they share, and the difference between intra- and inter-

writer measures of the mutual information. The results

show that when pressure is not taken into account, the

amount of information is similar in both types of trajec-

tories. Furthermore, even if they share some information,

in-air and on-surface trajectories appear to be notably non-

redundant.

Keywords Handwriting � Biometrics �
Information theory

Introduction

The hand movements carried out when handwriting a text

present two components: an on-surface component, com-

prising the movements executed while exerting pressure on

the writing surface, and an in-air component, comprising

the movements performed without touching the writing

surface. The on-surface movements have been extensively

studied in different fields of research, whereas the in-air

trajectories have seldom been taken into account. Do in-air

movements contain useful information? Is this information

redundant with respect to information in the on-surface

trajectories? This paper aims at answering these questions

with an approach based on information theory.

From a general perspective, the complex movements

performed by the hand while handwriting a text can be

regarded as gestures. These gestures have been learnt at

school and thus are mainly conventional. Different types of

factors influence the production of these gestures: the

muscular movements involved in handwriting are con-

trolled by the central nervous system and are partly outside

the conscious control of the writer. The long- and short-term

conditions within the central nervous system have an effect

on the handwriting. Biomechanical factors such as the

structure and size of the hand, the arm and the shoulder or

the state of the muscles (stiffness, elasticity) also influence

the produced handwriting. Finally, the cultural background

determines the kind of characters written (Asian, Western,

Arabic…). The resulting graphemes on a paper allow cer-

tain measures of these gestures that have proven useful in

different areas. In the forensic field, questioned document

examination (QDE) aims at answering questions about

documents in dispute in a court of law [1]. These questions

are mainly related to authorship. In the medical field, the

study of handwriting has proven to be an aid to diagnose and
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track some diseases of the nervous system. For instance,

handwriting skill degradation and Alzheimer’s disease

appear to be significantly correlated [2] and some hand-

writing aspects can be good indicators for its diagnosis [3]

or help differentiate between mild Alzheimer’s disease and

mild cognitive impairment [4]. Also, the analysis of hand-

writing has proven useful to assess the effects of substances

such alcohol [5, 6], marijuana [7] or caffeine [8]. Aided by

modern acquisition devices, the field of psychology has also

benefitted from the analysis of handwriting. For instance in

[9], Rosenblum et al. link the proficiency of the writers to

the length of the in-air trajectories of their handwritings. In

a more controversial field, graphology aims at drawing

conclusions about different psychological traits of the wri-

ter based, on traits of their handwriting [10, 11].

In recent years, one of the fields that has most benefited

from handwriting analysis is that of biometric security and,

more precisely, biometric recognition [12]. As handwriting

analysis is based on measurements and data derived from an

action performed by the writer, handwriting-based biometric

recognition is a type of behavioural biometrics. Signature-

based recognition is the most well-know approach to bio-

metric writer recognition because signature, having a long

history as a method to prove one’s identity (legal documents,

bank transactions), has been the method of choice for an

important number of handwriting-based recognition

schemes. The interested reader can find extensive surveys of

the research results in this specific field in [13–16].

In the past, the analysis of handwriting had to be per-

formed in an offline manner. Only the writing itself (strokes

on a paper) was available for the analysis. Nowadays,

modern capturing devices, such as digitizing tablets and

pens or online whiteboards, can gather data without losing

its temporal dimension. When spatiotemporal information

is available, its analysis is referred as online. A typical

modern digitizing tablet (Fig. 1) not only gathers the x–y-

coordinates that describe the movement of the writing

device as it changes its position, but it can also collect other

data, mainly the pressure exerted by the writing device on

the writing surface and also the azimuth, the angle of the

pen in the horizontal plane, and the altitude, the angle of

the pen with respect the vertical axis (Fig. 2). From now

on, x–y-coordinates, pressure, azimuth and altitude will be

referred as features of the handwriting.

A very interesting aspect of the modern online analysis

of handwriting is that it can take into account the infor-

mation gathered when the writing device was not exerting

pressure on the writing surface. Thus, the movements

performed by the hand while writing a text can be split into

two classes:

(a) On-surface trajectories (pen-downs), corresponding

to the movements executed while the writing device is

touching the writing surface. Each of these trajecto-

ries produces a visible stroke.

(b) In-air trajectories (pen-ups), corresponding to the

movements performed by the hand while transitioning

from one stroke to the next. During these movements,

the writing device exerts no pressure on the surface.

Figure 3 shows two examples of on-surface and in-air

trajectories taken from two executions of the word BIO-

DEGRADABLE performed by two different writers.

All offline databases (those acquired by a conventional

scanner once the writing process has finished or by any

other equivalent process) lack the information regarding in-

air trajectories.

In the field of automated applications based on hand-

writing analysis, on-surface trajectories have received

considerable attention mainly due to optical character

recognition applications and signature-based writer recog-

nition systems (involving both identification and verifica-

tion). On the other hand, in-air trajectories have received

almost no attention at all, even in online approaches where

spatiotemporal information is available.

Fig. 1 Intuous WACOM A5 digitizing tablet and pen

90º 

90º 

180º 

270º 

0º 

Altitude (0º-90º) 
Azimuth (0º-359º) 

Fig. 2 Azimuth and altitude angles of the pen with respect to the

plane of the writing surface
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In the past, we have successfully used the information in

the in-air trajectories to perform writer recognition. In [17],

we presented a biometric writer recognition system based

on isolated uppercase words. One of the particularities of

this system is that it considers on-surface (pen-down

strokes) and in-air (pen-up strokes) trajectories separately.

Although the measures obtained from both types of tra-

jectories are combined in a final step in order to obtain an

improved word-level measure, the aforesaid separation

allows comparing the discriminative power of each type of

the movement. In the context of this paper, discriminative

power refers to the ability to distinguish, in a set of writers,

a particular writer from the rest, given a sample of their

handwriting. Thus defined, discriminative power arises

from writer individuality. Writer individuality refers to the

hypothesis that each individual has consistent handwriting

that is distinct from the handwriting of other individuals. In

the past, several authors have scrutinized this hypothesis in

the particular case of short sequences of text (isolated

characters, isolated words and sentences comprising a

small number of words) and reached the conclusion that

handwriting is an individual trait, both in the offline case

[18, 19] and in the online one [20, 21]. Results in [22] not

only add further evidence to support the individuality of

handwriting even when only isolated uppercase words are

considered, but extend the reach of the hypothesis to the

invisible part of the handwriting.

Table 1 contains the identification rates and verification

error rates obtained with the writer recognition system

presented in [17] when using a dataset from the BiosecurID

database that comprises 16 different words from 100 dif-

ferent users (See ‘‘Database’’ for further details about the

BiosecurID database). Identification rate (IDR) refers to the

percentage of correctly identified users, whereas verifica-

tion error rate (VER) refers to the average rate of false

rejections (users deemed as impostors when they are

not) and false acceptances (users deemed as authentic when

they are not). Figure 4 graphically depicts the values

obtained with each type of trajectory and with their

combination.

Quite surprisingly, in-air trajectories show a discrimi-

native power that often surpasses that of pen-down strokes

produced in on-surface trajectories except for words 2, 9,

11, 12 and 13, and pen-up strokes produced during in-air

trajectories perform better in verification (lower error) than

pen-down strokes. When it comes to identification, pen-up

strokes perform better in identification (higher identifica-

tion rate) in words 4, 5, 7, 8, 9, 10 and 14.

Not only data gathered from in-air trajectories perform

well in identification and verification, but when combined

with on-surface data, the overall performance is enhanced.

In all cases, the identification rate for the combination

outperforms the best identification rate obtained with

one type of strokes only. The same can be said of the
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Fig. 3 On-surface (top) and in-air (bottom) trajectories from two executions of the word BIODEGRADABLE performed by two different

writers
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verification error rates, except for word 5 where the figure

obtained for the combination is slightly worse than that

obtained from in-air data only.

The results summarized in Table 1 suggest that:

(a) Data from in-air trajectories may not contain signif-

icantly less information than data from the on-surface

trajectories. Otherwise, they would not show an equal,

sometimes better, performance in the recognition

tasks.

(b) A significant amount of this information may be non-

redundant, thus explaining why the combination

outperforms both types of trajectories.

The goal of this paper is to study both kinds of trajec-

tories from the perspective of the information theory [23].

Specifically, the following points will be analysed:

(a) The amount of information contained in each feature

of each trajectory: x-coordinate, y-coordinate, azi-

muth and elevation in in-air trajectories and the same

features, plus pressure, in on-surface trajectories.

(b) The redundancy between in-air and on-surface tra-

jectories. This redundancy will be analysed in a per-

feature basis.

(c) The inter-writer and intra-writer variability for each

kind of trajectory and feature. This variability

assesses the biometric potential of the information

in the trajectories for the recognition task.

The approach taken is similar to that of [24] and [25]. In

[24], the complementarities between thermal, visible and

near infrared images used for face recognition were stud-

ied. In [25], the potential of each spectral band for

Table 1 Recognition (identification and verification) results obtained with the 16 words of the BiosecurID database

Word Text Length In-air trajectories On-surface trajectories Combination

IDR (%) VER (%) IDR (%) VER (%) IDR (%) VER (%)

W1 BIODEGRADABLE 12 86 3.51 88 4.17 99 2.81

W2 DELEZNABLE 10 74 7.95 81 4.40 93 3.28

W3 DESAPROVECHAMIENTO 18 92 1.68 93 3.82 98 1.64

W4 DESBRIZNAR 10 78 5.43 75 5.94 90 4.54

W5 DESLUMBRAMIENTO 15 93 2.69 85 5.19 97 2.99

W6 DESPEDAZAMIENTO 15 92 4.01 92 4.90 97 3.67

W7 DESPRENDER 10 78 5.42 74 8.30 87 5.20

W8 ENGUALDRAPAR 12 79 5.88 70 6.69 89 4.51

W9 EXPRESIVIDAD 12 88 6.03 86 4.65 94 2.91

W10 IMPENETRABLE 12 81 4.38 75 6.94 93 3.43

W11 INEXPUGNABLE 12 82 4.51 86 4.10 94 2.74

W12 INFATIGABLE 11 87 4.34 90 3.87 94 1.71

W13 INGOBERNABLE 12 80 5.03 87 4.44 95 3.27

W14 MANSEDUMBRE 11 73 6.41 71 7.18 85 4.67

W15 ZAFARRANCHO 11 73 6.32 79 6.48 86 5.05

W16 ZARRAPASTROSA 13 78 5.77 81 6.07 93 4.57

Bold value indicates in-air trajectories outperform on-surface trajectories

Fig. 4 Identification rates and

verification errors for the 16

words in the BiosecurID

database
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biometric data fusion and cross-sensor operation (a model

is trained in one spectral band while testing is performed

with samples from a different band) was assessed.

Background on Information Theory

In order to facilitate the understanding of the following

sections, this section provides a very brief introduction to

information theory. The most relevant aspects, connected

to the results shown in this paper, are highlighted. The

interested reader can find in the literature much more

in-depth treatments of the topic (e.g. [26, 27])

If X is a random variable with several possible values x

and a marginal probability distribution function p(x), the

entropy of X, measured in bits, is defined as

HðXÞ ¼ �
X

x2X

pðxÞ � log2ðpðxÞÞ

H(X) is a measure of the uncertainty associated with

X. If X is a source of data or a message, then H(X) measures

the average information content in X. Other equivalent

interpretations are also possible. For instance, H(X) is the

average number of bits (binary symbols) required to

encode all the possible outcomes (values) of X.

For two random variables, X and Y, with possible values

x and y, a joint probability distribution function p(x,y) and

marginal distribution functions p(x) and p(y), respectively,

the following measures are often considered:

(a) Conditional entropy, often called equivocation in

information theory, quantifies the remaining entropy

(i.e. the uncertainty) of one of the variables when the

value of the other one is know. It is defined as:

HðY jXÞ ¼ �
X

x2X

X

y2Y

pðx; yÞ � log2ðpðyjxÞÞ

(b) Joint entropy, a measure of the amount of information

in the joint system of X and Y. Its definition is:

HðX; YÞ ¼ �
X

x2X

X

y2Y

pðx; yÞ � log2ðpðx; yÞÞ

(c) Mutual information, a measure of the amount of

information shared by X and Y. It is defined as:

IðX; YÞ ¼ �
X

x2X

X

y2Y

pðx; yÞ � log2

pðx; yÞ
pðxÞ � pðyÞ

� �

Intuitively, a low value for IðX; YÞ means that X and Y

provide different, non-redundant, information. Notice that

IðX; YÞ ¼ 0 if and only if X and Y are independent (the

knowledge of one has no effect whatsoever on the

knowledge of the other).

These three measures are tightly related to each other:

IðX; YÞ ¼ HðXÞ � HðXjYÞ ¼ HðXÞ þ HðYÞ � HðX; YÞ

Figure 5 graphically depicts the relations among condi-

tional entropy, joint entropy and mutual information, as

shown in [27]

In order to facilitate the comparison of amounts of

mutual information obtained from different pairs of ran-

dom variables, I(X;Y) can be expressed relative to H(X,Y):

I0ðX; YÞ ¼ IðX; YÞ=HðX; YÞ

Thus, relative mutual information I0(X; Y) is the

proportion of the joint entropy that is shared by both

random variables.

Experimental Measures and Results

Database

The results shown in this section were obtained using a

subset of 100 writers from the BiosecurID database [28].

The BiosecurID database comprises 8 biometric traits,

including handwritten text. Data were collected during 4

different sessions in a time span of 4 months. Regarding

handwritten text, each writer was requested to write 16

different Spanish words in uppercase, each one in a single

line, without corrections or crossing outs. These words are

the same ones that are shown in Table 1. When designing

the database, uppercase words were preferred to lowercase

words because they pose a more challenging writer rec-

ognition problem (less differences among different writers)

and because they tend to be the preferred writing method in

online-gathering capable devices such as tablets and PDAs.

The acquisition was carried out with a WACOM INTOUS

A4 USB pen tablet. The following dynamic data were cap-

tured at 100 samples per second: x-coordinate, y-coordinate,

time stamp, button status, azimuth, altitude and pressure. Each

Fig. 5 Relations among the individual entropies (H(X), H(Y)), the

conditional entropies (H(X|Y), H(Y|X)), the joint entropy (H(X,Y)) and

the mutual information (I(X;Y))
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execution of a word is given as seven dynamic features (time-

sequences): x(t), the x-coordinate; y(t), the y-coordinate; ts(t),

a time stamp value; bs(t), the button status value (0 for pen-up,

1 for pen-down); az(t), the azimuth; al(t), the altitude and pr(t),

the pressure. All features have the same length, varying from

execution to execution. Thus, the execution of a word can be

formally described as a matrix xðtÞ; yðtÞ; tsðtÞ; bsðtÞ; azðtÞ;½
alðtÞ; prðtÞ� with t 2 ½1;N� where N is the length (number of

sampling units) of the execution. The in-air and on-surface

trajectories of each execution can be straightforwardly sepa-

rated thanks to the bs(t) feature (pr(t) could also have been

used). The on-surface part of an execution is described by

xðtÞ; yðtÞ; azðtÞ; alðtÞ; prðtÞ½ �;, while the in-air part is descri-

bed by xðtÞ; yðtÞ; azðtÞ; alðtÞ½ �: Notice that in both cases, fea-

tures ts(t) and bs(t) have been removed. These two features are

not used in the recognition system [17] from which the results

shown in Table 1 were obtained.

Entropy of Each Feature

The average entropy for each word, type of trajectory and

feature has been computed. The results are shown in

Table 2. Each figure was obtained averaging 400 execu-

tions of each word from 100 different writers (100 writers,

4 sessions per writer).

All entropies are expressed in bits (i.e. log2 is considered

when computing H(X)). Figure 6 provides a summarized

view of data in Table 2.

The following facts are worth noticing:

(a) If pressure is not taken into account, the global

amount of information (considering all the other

features) is almost the same in both types of

trajectories. Figure 3 already suggested that for the

x- and y-coordinates, the amount of information in the

in-air case could have not been much lower than in

the on-surface case because both cases do not appear

to have very different degrees of complexity.

(b) Pressure and coordinates contain much more infor-

mation than writing angles. For instance, in the in-air

case, the entropy of the x-coordinate is about 7.5 bits.

This represents a 27.5 & 180 different states for this

feature. For the azimuth, the entropy is about 4.1 bits,

representing 24.1 & 17 different states.

(c) X-coordinate and y-coordinate, especially the latter,

tend to have higher entropies in on-surface trajectories

(d) On the other hand, both azimuth and altitude have

higher entropy in in-air trajectories

(e) Variability (measured by the standard deviation of the

entropy of the 400 executions considered) is low. This

means that, in average, there are not great differences

among users and sessions.

Table 2 Entropy in bits (average–avg- and standard deviation–std-) of each feature

Word Pressure X-coordinate Y-coordinate Azimuth Altitude

In-air On-surf. In-air On-surf. In-air On-surf. In-air On-surf. In-air On-surf.

avg std avg std avg std avg std avg std avg std avg std avg std avg std avg std

W1 n/a n/a 7.7 0.2 7.6 0.4 7.7 0.3 7.1 0.4 7.2 0.3 4.1 0.5 4.0 0.5 3.1 0.6 2.6 0.5

W2 n/a n/a 7.6 0.2 7.3 0.4 7.1 0.3 6.9 0.4 6.9 0.3 3.9 0.5 3.8 0.5 3.0 0.6 2.5 0.5

W3 n/a n/a 7.9 0.2 8.0 0.4 7.9 0.3 7.4 0.3 7.4 0.3 4.3 0.5 4.1 0.5 3.1 0.5 2.6 0.5

W4 n/a n/a 7.6 0.2 7.1 0.5 7.4 0.3 6.7 0.4 7.1 0.3 3.9 0.6 3.9 0.6 3.0 0.6 2.7 0.5

W5 n/a n/a 7.8 0.2 7.6 0.5 7.8 0.3 7.1 0.4 7.4 0.3 4.1 0.5 4.0 0.6 3.1 0.6 2.7 0.5

W6 n/a n/a 7.8 0.2 7.8 0.4 7.7 0.3 7.2 0.4 7.3 0.3 4.2 0.6 4.1 0.6 3.0 0.6 2.7 0.5

W7 n/a n/a 7.6 0.2 7.1 0.5 7.3 0.3 6.7 0.5 7.0 0.3 3.9 0.5 3.9 0.6 2.8 0.6 2.6 0.5

W8 n/a n/a 7.7 0.2 7.4 0.5 7.6 0.3 6.9 0.4 7.2 0.3 4.1 0.6 4.1 0.5 3.1 0.6 2.6 0.5

W9 n/a n/a 7.6 0.2 7.4 0.4 7.3 0.3 6.9 0.4 7.0 0.3 4.1 0.5 4.1 0.5 3.0 0.5 2.7 0.5

W10 n/a n/a 7.7 0.2 7.5 0.4 7.5 0.3 7.0 0.4 7.1 0.3 4.2 0.6 4.1 0.6 3.0 0.6 2.7 0.5

W11 n/a n/a 7.6 0.2 7.5 0.5 7.4 0.3 7.0 0.4 7.0 0.3 4.2 0.5 4.1 0.5 3.1 0.6 2.7 0.6

W12 n/a n/a 7.6 0.2 7.3 0.4 7.2 0.4 6.9 0.3 6.9 0.4 4.0 0.5 4.0 0.6 3.0 0.6 2.5 0.6

W13 n/a n/a 7.6 0.2 7.3 0.5 7.6 0.3 6.9 0.4 7.2 0.3 4.2 0.5 4.1 0.5 3.1 0.6 2.6 0.5

W14 n/a n/a 7.6 0.2 7.3 0.5 7.5 0.3 6.8 0.4 7.2 0.3 4.2 0.5 4.2 0.5 3.2 0.6 2.7 0.5

W15 n/a n/a 7.6 0.2 7.3 0.5 7.5 0.4 6.8 0.6 7.1 0.5 4.2 0.5 4.1 0.6 3.2 0.6 2.6 0.5

W16 n/a n/a 7.7 0.2 7.6 0.4 7.8 0.3 7.0 0.8 7.3 0.8 4.3 0.5 4.2 0.5 3.3 0.6 2.8 0.6
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Redundancy Between In-Air and On-Surface

Trajectories

The fact that in-air and on-surface trajectories are different

does not imply that they convey entirely different infor-

mation. In order to evaluate the degree of redundancy

between them, we propose to use the mutual and the rel-

ative mutual information between pairs of measures of the

same feature, taken from in-air and on-surface trajectories.

For a given word and feature, f, fau
e and fsu

e, respectively,

denote the in-air and on-surface values of that feature for

the e-th execution of this word performed by writer u.

Jointair�surface denotes the average joint entropy between

pairs of measures (one in-air, one on-surface) of that fea-

ture taken from the same user and execution. Analogously,

Mutualair�surfaceand RMutualair�surface denote the average

mutual information and relative mutual information

between pairs of measures of a feature, taken from the

same user and execution:

Jointair�surface ¼ avg
8e;8u

H fae
u; fs

e
u

� �� �

Mutualair�surface ¼ avg
8e;8u

I fae
u; fse

u

� �� �

RMutualair�surface ¼ avg
8e;8u

I0 fae
u; fse

u

� �� �

Table 3 contains the average values obtained for

Jointair�surface;Mutualair�surface; and RMutualair�surface: In

the case of RMutualair�surface; the standard deviation is

also shown. All figures were obtained from the same

dataset that in the previous section.

Figure 7 provides a summarized view of the proportion

between joint entropy and mutual information.

The following facts are worth noticing:

(a) X-coordinate shows a redundancy of about 6.5 bits

(with relative mutual information around 0.8 that is

about 80%), while y-coordinate shows a redundancy

of slightly less than 6 bits (70%). Although in both

cases redundancy is high, there is still a significant

Fig. 6 Entropy of each feature. The values shown are the averages

among the words of the entropies shown in Table 2

Table 3 Relations between in-air and on-surface trajectories measured by their joint, mutual and relative mutual information

Word X-coordinate Y-coordinate Azimuth Altitude

Joint Mutual RMutual Joint Mutual RMutual Joint Mutual RMutual Joint Mutual RMutual

avg avg avg std avg avg avg std avg avg avg std avg avg avg std

W1 8.4 6.8 0.81 0.03 8.4 5.8 0.70 0.04 6.5 1.6 0.25 0.1 5.2 0.5 0.10 0.1

W2 8.0 6.4 0.80 0.03 8.0 5.6 0.71 0.04 6.2 1.6 0.25 0.1 4.9 0.5 0.10 0.1

W3 8.7 7.1 0.82 0.02 8.7 6.0 0.68 0.04 6.8 1.6 0.23 0.1 5.2 0.5 0.09 0.1

W4 8.0 6.4 0.79 0.03 8.0 5.6 0.70 0.04 6.1 1.6 0.26 0.1 5.0 0.6 0.12 0.1

W5 8.5 6.8 0.80 0.03 8.5 5.9 0.69 0.04 6.5 1.7 0.26 0.1 5.1 0.6 0.11 0.1

W6 8.5 6.9 0.81 0.02 8.5 5.9 0.69 0.04 6.6 1.7 0.26 0.1 5.1 0.6 0.10 0.1

W7 8.0 6.4 0.79 0.04 8.0 5.6 0.70 0.04 6.1 1.7 0.28 0.1 4.9 0.6 0.12 0.1

W8 8.3 6.6 0.80 0.03 8.3 5.7 0.69 0.04 6.4 1.8 0.28 0.1 5.1 0.6 0.11 0.1

W9 8.1 6.5 0.80 0.03 8.1 5.8 0.71 0.04 6.3 1.9 0.29 0.1 5.0 0.6 0.12 0.1

W10 8.3 6.6 0.80 0.03 8.3 5.8 0.70 0.04 6.4 1.8 0.28 0.1 5.1 0.6 0.12 0.1

W11 8.2 6.6 0.80 0.03 8.2 5.7 0.70 0.04 6.4 1.9 0.29 0.1 5.1 0.6 0.12 0.1

W12 8.0 6.4 0.80 0.03 8.0 5.7 0.71 0.04 6.2 1.8 0.29 0.1 4.9 0.6 0.13 0.1

W13 8.3 6.6 0.80 0.03 8.3 5.7 0.69 0.04 6.4 1.9 0.30 0.1 5.1 0.7 0.13 0.1

W14 8.2 6.5 0.79 0.03 8.3 5.8 0.69 0.04 6.4 1.9 0.29 0.1 5.1 0.6 0.12 0.1

W15 8.2 6.5 0.79 0.03 8.2 5.7 0.69 0.05 6.4 1.9 0.29 0.1 5.1 0.6 0.12 0.1

W16 8.4 6.8 0.81 0.03 8.4 5.9 0.70 0.04 6.6 1.9 0.28 0.1 5.4 0.6 0.11 0.1
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amount of non-redundant information (20–30%). The

reader should notice that entropy being a logarithmic

measure, one bit of difference amounts to a multipli-

cation factor of 2 in the number of states. Thus, a

difference of 1.5 bits between the joint entropy and

the mutual entropy (as in the x-coordinate) amounts to

a multiplication factor of 21.5 & 2.83 in the number

of states.

(b) On the other hand, azimuth and altitude, especially

the latter, show a very low redundancy. In the case of

azimuth, it is less than 2 bits (25–30%), and when it

comes to altitude, it is less than 1 bit (about 10%)

(c) Variability, measured by the standard deviation, is

low (azimuth and altitude) and very low (x-coordi-

nate, y-coordinate). This means that, in average, all

users/sessions have similar behaviour with respect to

redundancy.

Inter-Writer and Intra-Writer Difference

From a biometric recognition point of view, the fitness of a

feature to perform recognition does not only depend on the

amount of information it contains but also on the difference

between the intra-writer and the inter-writer case. Given a

feature f, it is highly desirable that different measures of f

taken from the same writer are more alike to each other

than measures taken from different writers. From an

information theory perspective, it would be desirable that

the amount of mutual information was higher when con-

sidering the same writer (intra-writer) than when consid-

ering different writers (inter-writer). We propose to use the

average difference between both cases as a mean to eval-

uate the potential usefulness of a given feature.

As in the previous section, for a given word and feature,

f, fau
e and fsu

e, respectively, denote the in-air and on-surface

values of that feature for the e-th execution of this word

performed by user u.

For a given word and feature, Intraair
u and Intrasurface

u

denote the average values for all measures of the relative

mutual information between different executions of this

word performed by writer u.

Intraair
u ¼ avg

i 6¼j

I0 fai
u; fa j

u

� �� �

Intrasurface
u ¼ avg

i 6¼j

I0 fsi
u; fs j

u

� �� �

Analogously, for a given word and feature, Interair
u and

Intersurface
u denote the average value of the relative mutual

information between executions of this word performed by

writer u and any other writer.

Interair
u ¼ avg

u 6¼v

I0 fa�u; fa�v
� �� �

Intersurface
u ¼ avg

u 6¼v

I0 fs�u; fs�v
� �� �

where * means any execution.

Finally, Diffair
u and Diffsurface

u denote the differences

between the inter-writer and the intra-writer measures for

the in-air and on-surface cases, respectively:

Diffair
u = Intraair

u � Interair
u

Diffsurface
u = Intrasurface

u � Intersurface
u

Should Diffair
u [ 0 and Diffsurface

u [ 0, this would mean

that, in average and relative to their joint entropies, the

executions from writer u share more information among

them than they share with executions from other writers.

Table 4 shows, for each word and feature, the average

values of Diffsurface
u and their standard deviation. The reader

will notice that the averages are all positive but quite close

to zero. In order to determine whether these average values

are significantly positive, they have been put to a Student’s

unilateral paired t-test with the following parameters: null

hypothesis H0 : avg
8u

Diffsurface
u

� �
¼ 0; alternative hypothesis

H1 : avg
8u

Diffsurface
u

� �
[ 0; degrees of freedom: 99. For each

feature, the third column (p-val) contains the p-value of the

test. The p-value is the probability of obtaining an average

value for Diffsurface
u as extreme as the one that was actually

obtained, assuming that the null hypothesis is true.

Table 5 shows the same results for the in-air trajectories.

Figure 8 summarizes and compares the p-values obtained

for both types of trajectories.

Notice that, for both types of trajectories, with a sig-

nificance level of a = 0.01, the null hypothesis would be

Fig. 7 Comparison of joint entropy and mutual information. The

values shown are the averages among the words of the values shown

in Table 3
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rejected in all cases except for pressure. This means that

from a purely statistical point of view, all features but

pressure exhibit, in average, a significant difference

between the intra-user and the inter-user case. When it

comes to pressure, even if the average difference is positive

for all words, the variability (standard deviation) is high

enough to prevent a clear rejection of the null hypothesis

(p-values range from 0.01 to 0.1)

Conclusions and Further Research

The experimental results presented in the previous section

clearly support the claim that in-air trajectories contain as

much information as on-surface trajectories. For four of the

five features considered (all except pressure), the difference

between the on-surface and the in-air case is lower than a

single bit, usually some tenths of a bit (see Table 2). In

Table 4 Differences in relative mutual information between the inter-writer and intra-writer case for on-surface trajectories

Word Pressure X-coordinate Y-coordinate Azimuth Altitude

avg std p-val avg std p-val avg std p-val avg std p-val avg std p-val

W1 0.003 0.02 6.E-02 0.018 0.02 1.E-13 0.017 0.02 7.E-12 0.019 0.05 2.E-04 0.017 0.04 6.E-06

W2 0.004 0.02 3.E-02 0.025 0.02 2.E-19 0.023 0.02 6.E-17 0.021 0.05 4.E-05 0.020 0.04 1.E-07

W3 0.003 0.02 9.E-02 0.017 0.02 1.E-15 0.016 0.02 3.E-12 0.019 0.05 1.E-04 0.017 0.03 2.E-06

W4 0.003 0.02 8.E-02 0.018 0.02 6.E-12 0.017 0.02 1.E-10 0.025 0.06 1.E-05 0.024 0.04 1.E-07

W5 0.003 0.02 6.E-02 0.018 0.02 5.E-14 0.015 0.02 5.E-09 0.022 0.06 9.E-05 0.021 0.04 5.E-06

W6 0.003 0.02 1.E-01 0.016 0.02 3.E-12 0.016 0.02 1.E-10 0.022 0.06 4.E-04 0.020 0.04 9.E-07

W7 0.004 0.02 2.E-02 0.018 0.02 8.E-13 0.018 0.02 1.E-11 0.026 0.07 5.E-05 0.024 0.04 1.E-08

W8 0.004 0.02 2.E-02 0.018 0.02 1.E-13 0.014 0.02 9.E-10 0.024 0.06 4.E-05 0.017 0.04 3.E-05

W9 0.005 0.02 1.E-02 0.020 0.02 8.E-18 0.019 0.03 6.E-12 0.022 0.05 5.E-05 0.025 0.05 1.E-06

W10 0.003 0.02 8.E-02 0.018 0.02 5.E-14 0.017 0.02 3.E-12 0.023 0.06 1.E-04 0.021 0.04 4.E-06

W11 0.003 0.02 6.E-02 0.021 0.02 5.E-16 0.018 0.02 2.E-11 0.021 0.05 7.E-05 0.021 0.05 1.E-05

W12 0.004 0.02 4.E-02 0.024 0.02 6.E-18 0.023 0.03 4.E-15 0.019 0.05 2.E-04 0.023 0.04 2.E-07

W13 0.003 0.02 7.E-02 0.019 0.02 1.E-11 0.017 0.02 2.E-10 0.024 0.06 3.E-05 0.020 0.05 8.E-06

W14 0.003 0.02 1.E-01 0.020 0.02 1.E-16 0.017 0.02 3.E-11 0.019 0.05 2.E-04 0.023 0.05 6.E-06

W15 0.003 0.02 6.E-02 0.019 0.02 6.E-16 0.019 0.02 2.E-13 0.022 0.06 4.E-04 0.013 0.04 1.E-03

W16 0.003 0.02 7.E-02 0.015 0.02 7.E-12 0.014 0.02 3.E-08 0.020 0.05 3.E-04 0.018 0.04 2.E-05

Table 5 Differences in relative mutual information between the inter-writer and intra-writer case for in-air trajectories

Word X-coordinate Y-coordinate Azimuth Altitude

avg std p-val avg std p-val avg std p-val avg std p-val

W1 0.011 0.02 5.E-06 0.011 0.02 4.E-06 0.017 0.05 1.E-03 0.015 0.04 1.E-04

W2 0.010 0.03 2.E-04 0.010 0.02 6.E-05 0.015 0.05 2.E-03 0.014 0.04 5.E-04

W3 0.009 0.02 2.E-04 0.009 0.03 2.E-04 0.015 0.05 2.E-03 0.010 0.03 2.E-03

W4 0.014 0.03 4.E-06 0.012 0.03 1.E-04 0.022 0.05 2.E-05 0.018 0.04 4.E-05

W5 0.013 0.03 2.E-06 0.013 0.02 4.E-07 0.018 0.05 6.E-04 0.013 0.04 7.E-04

W6 0.011 0.03 3.E-05 0.010 0.02 5.E-05 0.017 0.06 3.E-03 0.013 0.04 5.E-04

W7 0.019 0.03 2.E-09 0.018 0.03 8.E-11 0.025 0.07 1.E-04 0.021 0.05 1.E-05

W8 0.011 0.03 2.E-04 0.011 0.03 6.E-05 0.021 0.06 2.E-04 0.014 0.04 9.E-05

W9 0.013 0.03 1.E-06 0.013 0.03 2.E-06 0.016 0.05 1.E-03 0.018 0.05 8.E-05

W10 0.011 0.02 3.E-06 0.011 0.02 2.E-06 0.018 0.06 2.E-03 0.017 0.04 7.E-05

W11 0.014 0.02 7.E-08 0.013 0.02 3.E-07 0.018 0.05 3.E-04 0.015 0.04 1.E-04

W12 0.012 0.03 2.E-05 0.013 0.02 3.E-07 0.019 0.06 8.E-04 0.019 0.04 3.E-06

W13 0.012 0.03 3.E-06 0.013 0.03 1.E-06 0.020 0.06 4.E-04 0.017 0.05 2.E-04

W14 0.014 0.03 4.E-06 0.014 0.03 5.E-07 0.018 0.05 6.E-04 0.017 0.04 1.E-04

W15 0.012 0.03 2.E-06 0.013 0.03 1.E-06 0.021 0.06 5.E-04 0.015 0.04 2.E-04

W16 0.010 0.02 1.E-04 0.010 0.03 1.E-04 0.016 0.06 6.E-03 0.010 0.03 2.E-03
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fact, the only substantial difference between the two types

of trajectories lies in the information provided by pressure,

the fifth feature under consideration. When it comes to

redundancy, the results show that although it is noticeable

in the case of the x-coordinate and the y-coordinate, it is

low and very low in the case of azimuth and altitude,

respectively (see Table 3). From a global perspective, it

cannot be said that in-air and on-surface trajectories are

entirely non-redundant. Nevertheless, although a certain

amount of redundancy is present, it is far from seeming to

be enough to deem the in-air trajectories as superfluous.

Entropy and redundancy, the latter measured by mutual

information and relative mutual information, show, for all

the analysed words and features, a low variability. This fact

is important because it somehow implies that the obtained

results are valid for a great majority of writers since they

show a similar behaviour with respect to these measures.

When both aspects, amount of information in each type

of trajectory and non-superfluousness of the in-air trajec-

tories, are considered together, there seems to be no need to

discard the information contained in in-air trajectories, as it

is often done in handwriting-based biometric recognition

systems. What is more, it may be advisable to gather and

process this information on its own. Research results pre-

sented in [17, 22] had already given support to the notion

that in-air trajectories were rich in information. Now, from

the information theory perspective, we have further evi-

dence to support this notion.

Regarding the biometric potential of both types of tra-

jectories measured by the difference between the intra-user

and the inter-user cases, the results are not conclusive. On

the one hand, the differences are always positive and,

except for pressure, statistically significant. On the other

hand, these differences are very close to zero which may

prevent their use as a score of the similitude between dif-

ferent executions of the same word. Nevertheless, this lack

of conclusiveness does not imply that handwriting words do

not possess a considerable biometric potential; it just means

that the information theory, and more precisely the selected

measures and the experiments performed, cannot prove the

existence of this potential. Fortunately, past research in this

field does show that words and short sequences of text can

perform well in biometric recognition tasks.

The results of the information analysis of the writing

trajectories also suggest some possibilities of further

research. The fact that the amount of redundancy between

in-air and on-surface trajectories is highly dependent on the

feature under consideration could be exploited in the rec-

ognition field by focusing on the less redundant features in

order to improve the recognition performance. Also, a

future analysis of the redundancy between different fea-

tures could help improve the selection of the most relevant

ones.

The writing angles, azimuth and altitude, only available

when online data are gathered, contain an amount of

information that deserves not to be disregarded. Although

their use in the intra-user vs. inter-user problem may be

limited (their differences yield the lowest significances

when compared to the other features, except pressure,),

they may still prove useful in other classification problems

such as gender classification.
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