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Introduction
The present habilitation thesis contains the set of publications [H1] — [H18].

The history of the topic begins in the 18" and 19" centuries, when
G. Monge and C.F. Gauss studied the geometry of surfaces in Euclidean
space. These studies were stimulated by the practical application of surfaces
in technology and in cartography.

In the second half of the 19" century the theory of surfaces was extended
by B. Riemann to n-dimensional spaces. In 1854 in his habilitation thesis he
introduced the metric form which generalized Gauss’ first quadratic form of
surfaces. Spaces with a metric are called Riemannian spaces, they generalize
Euclidian geometry in a natural way [12,22,27,28,67,70,71,89,102,108,111,
118,148,155, 156].

The theory of Riemannian spaces and their generalizations found many
applications in mechanics and physics, e.g. in theoretical mechanics, electro-
dynamics and thermodynamics [21,30, 58,63, 76,77, 108].

A. Einstein applied pseudo-Riemannian spaces in the General Theory of
Relativity [26]. Groundbreaking work in this field was done by E. Cartan and
H. Weyl [12,23,29,34,63,68,72,76,89,102,105,108, 118,146, 151].

Today the application in physics is very wide. Above all it provides the
mathematical foundation of General Relativity, more recently it was applied
for example in gauge field theory and ¢ models, popular in string theory
[69,115].

In more detail, in original Riemannian geometry, as it was developed by
Gauss, Riemann, Christoffel, Ricci, Bianchi, Levi-Civita, Einstein and Weyl,
vectors and tensors are expressed in terms of components in relation to a
coordinate system, in modern terms in the so-called "natural” or ”holonomic”
basis of the tangent bundle of a manifold. Sometimes, however, orthonormal
bases are more convenient. When spinors are involved, or in theories of gauge
fields, other kinds of bundles than tangent bundles are appropriate.

In the course of their evolution, differential geometric notions were at a
certain stage formulated without restriction to holomorphic bases by Cartan,
Schouten and others and later generalized by Chevalley, Koszul, Nomizu and
others in a coordinate - and basis - free way.

As a detail in this process, general relativity was first formulated in Rie-
mannian space with its Levi-Civita connection, constructed in a natural and
unique way from the metric. An important step in the genesis of gauge the-
ories was the separation of the notation of affine connections as independent
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structures, from the metric. This leads, for example, to a slight generalization
of general relativity, the Einstein-Cartan theory, with includes torsion and
finds application, when gravity is coupled to fermionic matter. Connections,
both in form of metric-derived Levi-Civita connections, and of independent
affine connections, as well as curvature, derived from them, play a central role
in a large part of the work presented here. Differential geometry on manifolds
facilitates the formulation of mappings and can be written in coordinate free
form, widely used in contemporary mathematics. In physics, nevertheless,
calculations are mostly carried out in local coordinates.

An interesting actual field of differential geometry is the study of diffeo-
morphisms and automorphisms of different types of geometric structures on
smooth manifolds. In geometry the term morphism denotes a mapping be-
tween manifolds which preserves some characteristic properties. Important
structures in differential geometry are affine and special Riemannian con-
nections, the latter ones expressed by Christoffel symbols. These connections
are very important and useful in physics. A generalization of Riemannian
geometry is Finsler geometry with Berwald connection [89,114]. In Finsler
geometry the metric depends not only on the position on a manifolds, but
also on directions.

These issues have a main meaning in mathematics as well as also in its
applications.

The habilitation thesis is devoted to the following problems of differen-
tial geometry of (pseudo-) Riemannian manifolds and manifolds with affine
connection:

1. Geodesics [H1], [H2],

2. Geodesic mappings [H3 — H§],

3. Equidistant spaces and special mappings [H9 — H12],
4. F-planar and similar mappings [H13 — H18].

The above results were used in the monographs [89, 102], where I am a
coauthor. Now I present these topics in detail.

The mathematical apparatus employed here is tensor calculus, which is
used for global and local relations on n-dimensional manifolds with affine
connection, denoted in the following by A,, and Riemannian manifolds,
denoted by V,,. The signature of the metric of V,, can be indefinite, so under



the notion of Riemannian manifolds we understand also pseudo-Riemannian

manifolds, irrespectively to the signature of their metric, as for example in
the books [27,28,87-89,102,107,108,111,112,118,120, 155, 156].

1 Geodesics

In Riemannian spaces the natural generalization of straight lines are geodesics.
This is illustrated by their role in General Relativity: geodesics are trajectories
of freely falling particles in curved space-time, replacing the rectilinear motion
of free particles in flat space (Euclidian). Today the theory of geodesics has
reached the stadium of technical application in GPS, but their physical and
mathematical significance is well known since the time of Bernoulli, Euler,
Lagrange, and Gauss.

1.1 Variational problem of geodesics

In the paper [H1] I studied generalizations of the variational problem of
geodesics in generalized Finsler and (pseudo-) Riemannian manifolds.

In 1696 Johann Bernoulli formulated the brachistochrone problem, this was
the first variational problem. The second variational problem was determining
the shortest curve on a surface. This problem was solved by Johann Bernoulli
in 1698 but it was published in a textbook by L. Euler in 1728.

During this calculation Leonhard Euler developed new methods which
have later in 1766 been called the calculus of variations. Afterwards Joseph-
Louis Lagrange found results in modern variational calculus: Trajectories of
point particles in classical mechanics are derived by variation of the integral
over the Lagrange function, which is the difference between the kinetic and
the potential energy. Nowadays these methods are still the subject of active
research, [72].

Bernoulli solved the problem of the shortest lines on a surface. In con-
temporary notation the Lagrange function of the corresponding variational
problem [[l] = ff L(t,z(t),z(t))dt is L = +/|gij(x) 22|, where z = z(t),
T =dx(t)/dt, t € R is a parameter of a curve ¢, g;;(x) are components of the
metric tensor in (pseudo-) Riemannian manifolds.

A possible generalization is Finsler geometry, where the components of the
metric tensor g;; depend also on &, that is L = \/]g;;(z, &) &'47].

Geodesics are often defined as the extremals with respect to




L = g;j(z,2)%'%’. In this case L plays a role as a “generalized kinetic
energy”’ and the parameter ¢ is necessarily canonical.

In the paper [H1] I studied the variational problems for functions
L = f(gij(x, &) 3'¢7), f' # 0 in (pseudo-) Riemannian and generalized Fins-
lerian spaces. The extremals are geodesics.

1.2 On the existence of pre-geodesic coordinates

Closely associated with geodesics are special coordinates: geodesic, semige-
odesic and pre-semigeodesic coordinates. These special coordinates play an
important role in calculations.

Geodesic coordinates at a point p and along a curve ¢ (Fermi coordinates)
are characterized by vanishing Christoffel symbols (or components of the affine
connection) at the point p and along the curve ¢, respectively.

Advantages of semigeodesic coordinates are known since C.F. Gauss (Geo-
datische Parallelkoordinaten, [71, p. 201]), and geodesic polar coordinates:
they can be also interpreted as a “limit case” of semigeodesic coordinates:
all geodesic coordinate lines ¢ = 2? = const pass through one point called
the pole, corresponding to r = 2! = 0, and lines r = 2! = const are geodesic
circles (Geoddtische Polarkoordinaten, [71, pp. 197-204]).

Well known semigeodesic coordinate systems on surfaces and (pseudo-) Ri-
emannian manifolds are generalized in the following way (Mikes, Vanzurova,
Hinterleitner, [102, p. 43]): Coordinates (U,x) in A, are called pre-
semigeodesic coordinates if one system of coordinate lines is geodesic and
their natural parameter is just the first coordinate.

The following is true (Mikes, Vanzurova, Hinterleitner, [102, p. 43]): The
conditions I (x) =0, h = 1,...,n, are satisfied in coordinates (U, x) if and
only if (U,x) is pre-semigeodesic. Here and below Ffj(a:), i=1,2,...,n, are
components of the connection V on (U, x).

This was observed by Z. Dusek and O. Kowalski [24] who precisely proved
the existence of pre-semigeodesic charts in the case when the components of
the affine connection are real analytic functions.

It was proved [H2] that pre-semigeodesic charts exist in the case when the
components of the affine connection are twice differentiable functions.

From the example of the Fermi coordinates we can see that this spe-
cial system of coordinates plays an important role in physics. Because pre-
semigeodesic coordinates on manifolds with affine connection are related with
geodesic coordinates which can have a physical meaning, the existence of
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pre-semigeodesic coordinates under more general condition makes them po-
tentially applicable in more general situations.

2 Geodesic mappings

Already in Beltrami’s lifetime geodesic-preserving morphisms were studied
— geodesic mappings. T. Levi-Civita [77], who laid the foundations of this
theory in tensor form, studied it from the point of view of modelling dynamical
processes in mechanics. Presently, for example E. Ferapontov [30] and G. Hall
and D. Lonie [34-36,40] continue working on this subject. See also [79,138].

To the theory of geodesic mappings and transformations were devoted
many papers, results are formulated in a large number of research articles and
monographs: T. Levi-Civita [77], H. Weyl [152], T. Thomas [139], P.A. Shiro-
kov [116], L.P. Eisenhart [27,28], A.Z. Petrov [108], N.S. Sinyukov [118,119],
A.S. Solodovnikov [124], A.V. Aminova [4], J. Mikes [87,89,94,102,112], etc.

2.1 General dependence of geodesic mappings

In the papers [H5], [H6] and [H8] I studied the general dependence of geodesic
mappings of manifolds with affine and projective connection onto (pseudo-)
Riemannian manifolds in dependence on the smoothness class of these geo-
metric objects. We presented well known facts, which were proved by H. Weyl
[152], T. Thomas [139], L.P. Eisenhart [27,28], V. Berezovski and J. Mikes
[90], see [27,28,87,94,102,105,112,118,156].

In these results no details about the smoothness class of the metric, resp.
connection, were stressed. They were formulated “for sufficiently smooth”
geometric objects.

We study fundamental equations of geodesic mappings of manifolds with
affine and projective connection onto (pseudo-) Riemannian manifolds with
respect to the smoothness class of these geometric objects [H8]:

We prove that the natural smoothness class of these problems is preserved.

Similar tasks also were solved for geodesic mappings between (pseudo-)
Riemannian manifolds [H5] and [H6].

In [H8] it was proved that an arbitrary manifold with projective connection
admits a global geodesic mapping onto a manifold with equiaffine connection.
These results in local form were obtained by L.P. Eisenhart [28, p. 105].



From our results follows the validity of the fundamental equation of geo-

desic mappings onto (pseudo-) Riemannian manifolds, which was obtained by
J. Mikes and V. Berezovski [90].

2.2 Geodesic mappings of Einstein spaces

To geodesic mappings of special manifolds are devoted many papers beginning
with E. Beltrami, who studied geodesic mappings of spaces with constant
curvature, well known as special cases of Einstein spaces.

Results about geodesic mappings of Einstein spaces until 2006 are summa-
rized in the paper [H3], moreover the paper contains result by A.Z. Petrov
[108] and J. Mikes [81], see [89,102]. The metrics of Einstein spaces, which
admit geodesic mappings, are in the paper by S. Formella and J. Mikes [31],
see [102], [89, pp. 321-326]. The above works were carried out for Einstein
spaces V,, € C? onto V,, € C3.

In the case V,, € C? these results were obtained in [64].

From our results (Theorem 7.8 [89, p. 283]) follows the validity of the above
results for the case of Einstein spaces V,, € C?® (besides, for Einstein spaces
V,, there exist always coordinates of the real analytic class C¥, see [20]) and
geodesic equivalent spaces V,, € C'. Thus we have V,, € C¥ and V,, is also an
Einstein space, see [H6] and [89, p. 320].

2.3 Geodesic mappings of Kahler spaces

Kahlerian spaces play an important role in theoretical physics, especially
in the theory of o-models. They are characterized by a symmetric metric
tensor and an antisymmetric symplectic form. Geodesic mappings of Kahler
spaces were studied by Coburn, Yano, Westlake, Nagano, who proved the
non-existence of non-trivial geodesic mappings with further conditions. Their
existence for Kéhler spaces was found by Mikes and Starko, see [89, pp. 340—
344].

In the paper [H7] fundamental equations of geodesic mappings onto Kéhler
spaces of the first kind were found. These spaces are generalizations of Rie-
mannian and Kahler spaces in the sense of non-symmetric metrics introduced
by Einstein. These results were quoted in [103].
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2.4 Geodesic mappings on compact Riemannian manifolds with
conditions on the sectional curvature

Many papers about geodesic mappings deal with global problems. A complete
overview of these papers is found in [84-87,93,102], [89, pp. 345-365].

In [H4] we clarify many results of other authors (N.S. Sinyukov, E.N. Sin-
yukova [121,123], S.E. Stepanov [132-134], J. Mikes and H. Chud4 [91,92));
the results in [H4] are a continuation of the paper [1] by M. Afwat and A. Svec:

A compact Riemannian manifold (M, g) without boundary of dimension
n > 2, where at any point x € M the sectional curvature is non-positive for
any two-direction from all the principal orthonormal basis, does not admutt
non-trivial geodesic mappings.

3 Equidistant spaces and special mappings

Geometric properties of Riemannian manifolds are studied with respect to
the existence of certain vector fields.

The subject of [H9]-[H12] are selected examples of Riemannian spaces with
special symmetry properties, namely equidistant spaces and generalizations
thereof, and several kinds of diffeomorphisms which preserve certain geometric
structures.

A major part is devoted to mappings between Riemannian spaces of a
special kind, so-called equidistant spaces. Equidistant spaces are characterized
by the existence of certain vector fields, called concircular (see 2.8). In physics
these spaces occur as spatially homogenous and isotropic cosmological models
(Friedmann-Robertson-Walker-Lemaitre models).

3.1 Concircular mappings and equidistant spaces

Under a geodesic circle we understand a curve for which the first curvature
is constant and the second curvature is zero. K. Yano [154] introduced a
conformal mapping of (pseudo-) Riemannian spaces which preserves geodesic
circles and is called concircular, see also H.L. Vries [149]. These mappings
are connected with the existence of manifolds with concircular vector fields.
In 1925 these vector fields were studied by H.W. Brinkmann [11] besides
conformal mappings onto Einstein space. N.S. Sinyukov [117-119] found
geometrical properties of spaces which admit a concircular vector field and
called them equidistant spaces.
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In the paper [H11] we show results connected with basic notations under
the conditions of minimal differentiability of metrics and geometric objects
which define concircular mappings and also concircular vector fields. We prove
that the smoothness class under concircular mappings is preserved.

In [H12] general dependence of equitorsion concircular tensors on gene-
ralized Riemannian spaces are studied. These spaces are generalizations of
Riemannian and pseudo-Riemannian manifolds and they were introduced by
A. Einstein [26] as possibilities of a generalization of General relativity.

3.2 Special mappings between equidistant spaces

In the paper [H9] we consider special mappings between equidistant spaces in
special coordinate systems ds® = a(z?) (dx1)2—|—b(x1) d3?, especially conformal,
concircular, affine, geodesic, harmonic, conformally-projective harmonic and
equivolume mappings, see also [83,89,98,135,153].

The composition of conformal and geodesic (projective) mappings in the
case when they are harmonic is called conformally-projective harmonic [H13].
Finally we consider equivolume mappings, which were defined and studied by
T.V. Zudina and S.E. Stepanov [160]. The above mentioned mappings are
studied in many applications in theoretical physics, see [136].

3.3 On global geodesic mappings of an ellipsoid

In [H10] I considered two aspects of geodesic mappings of ellipsoids. I describe
the geodesic deformations in Fs3. An interesting property is that on a sphere
as a special case of an ellipsoid these transformations act as identity, whereas
they act highly nontrivially on general ellipsoids. In the limit of large trans-
formation parameters the transformed surfaces approach a sphere as limiting
surface. The second aspect concerns geodesic transformations of the metric
on a manifold homeomorphic to the sphere, in accordance with [147], where it
is shown by application of a classical theorem by U. Dini [21] that there is (up
to a homothety) a one-parameter family of geodesically equivalent metrics on
surfaces.

My result can be summarized [H10]: Rotational ellipsoids admit global
nontrivial geodesic deformations under which they remain rotational surfaces.
The resulting surfaces are not ellipsoids.
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4 F-planar and similar mappings

The force exerted by an electro-magnetic field, described by the antisymmetric
electro-magnetic tensor F', on a particle with electric charge e and mass m on
a trajectory x'(s) in four-dimensional Minkowski space is given by e F;v*(s),
where vF = i%(s) is the tangent vector to x'(s), such that the equation of
motion has the following form
(3
m % — eF'o", (4.1)
The tangent vector v’(s) has the meaning of the four-velocity of the particle,
parametrized by the particle’s proper time s, which is a canonical parameter.
The derivative dv’/ds is the space-time acceleration, the right-hand side is
the Lorentz force in four dimensions.

By generalization of the equation (4.1) A.Z. Petrov [109] introduced the no-
tion of quasigeodesic curves and mappings, which were used for modeling pro-
cesses in theoretical physics. These notations were defined for 4-dimensional
pseudo-Riemannian spaces with Lorentz signature (4, —, —, —).

If the tangent vector is denoted by A and V denotes the covariant derivative
w.r. to the Levi-Civita connection, the equation of this kind of curves reads

Vi At) = 01(8) A(t) + 02(t) FA(?), (4.2)

where p; and g9 are some functions of the arbitrary parameter ¢.

Beside this, the tangent vector A is orthogonal to F'A. The component of F'A
in (4.2) is important as “electro-magnetic force” acting on physical particles.

In a further step of generalization Mikes and Sinyukov [97] introduced the
notion of F-planar curves, which are given by equation (4.2) on spaces with
affine connection of arbitrary dimension. A metric need not necessarily be
defined. In analogy to the conditions of geodesic and quasigeodesic mappings,
Mikes and Sinyukov gave the conditions for F'-planar mappings that map
F-planar curves onto F'-planar curves.

Much work is spent further on isometric, homothetic and conformal
mappings, also on various generalizations of geodesic mappings, among
them for example holomorphic-projective, quasi-geodesic, semi-geodesic,
F-planar, 4-planar mappings, transformations and deformations. Work on
related questions can be found in many monographs, reports and theses:
[3,6-8,15,16,27-29,41-43, 46,49, 74,75, 78,82, 83,87-89, 95-97, 102, 106-109,
116,118-120, 146, 154-156].
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An interesting continuation and generalization of these topics is found in
the papers [50-53,55-57] by J. Hrdina, J. Slovdk and P. Vasik.

The papers [H12-H18| are dedicated to these problems.

4.1 On F-planar mappings of spaces with affine connections

In the papers [H14-H18] we study F-planar curves and mappings. A mapping
is called F-planar, if it maps F-planar curves to F-planar curves. Under an
F-planar curve we understand a curve the tangent vector A of which lies in
the 2-dimensional distribution spanned by itself and F'A\, where F'is a tensor
of type (1,1). This condition can be written in the form (4.2), see [97].

In [H14] general properties of F-planar mappings are studied. There we
specified the fundamental equation of F-planar mappings.

Results in [H11] were used in [H15] and in our paper [49]. In this paper, as a
special case, F5-planar mappings were introduced and studied. We also proved
that PQc-projectivity, see [78,138], is a special case of Fy-planar mappings
88].

In the paper [H15] infinitesimal F-planar transformations were studied.
These papers were quoted frequently [6, 131,140,141, 143,159]. In the paper
[6] our results about the fundamental equation, which were derived in the
paper [H14], were used.

4.2 Holomorphically-projective mappings

Kahler manifolds K, are manifolds with a symmetric metric g and, in addi-
tion, a covariantly constant tensor £ with the property that 2 = —Id. Such
a structure is called a complex structure [7,89,102,118,155] and plays a role
in the construction of symplectic structures in quantum field theory and in
o-models [69,115].

More generally, hyperbolic (or para-) Kéhler spaces were characterized by
the condition F? = Id, see [2,89,102,119,120].

A special case of F-planar mappings are the previously studied holomor-
phically projective mappings of (pseudo-) Kéhler manifolds, see [89,102].

In [H16,H18] we study fundamental equations of holomorphically pro-
jective mappings of (pseudo-) Kéhler manifolds with respect to the smooth-
ness class of metrics C", r > 1. We show that holomorphically projective
mappings preserve the smoothness class of metrics.

14



In previous work on this subject by Domashev, Kurbatova, Mikes, Prva-
novi¢, Otsuki, Tashiro etc., see [7,88,89,102,106,118,120,155] no details about
the smoothness class of the metric were emphasized. Results were formulated
“for sufficiently smooth” geometric objects there.

It [H14] fundamental equations of holomorphically projective mappings for
the conditions of minimal differentiability of metrics were found. These clarify
results obtained in the case K, K,, € C?, see [74,82,120]. These results were
used in [93].

4.3 4-planar mappings of quaternionic Kahler manifolds

4-planar and 4-quasiplanar mappings of almost quaternionic spaces have been
studied in [75,95,96]. These mappings generalize the geodesic, quasigeodesic
and holomorphically projective mappings of Riemannian and Kahlerian spa-
ces. Almost quaternionic structures were studied by many authors, for exam-
ple [3,59,60]. Generalisations of the above introduced mappings were studied
by J. Hrdina and J. Slovak [51,52,55], and M. Stankovi¢, Lj. Velimirovié
[127,128,131].

In [H17] T study the general dependence of 4-planar mappings of almost
quaternionic manifolds in dependence on the smoothness class of the metric.
Some results were obtained by Kurbatova, see [75], without stress on details
about the smoothness class of the metric. In [H17] I make this issue more
precise.

In [H17] I proved the following theorem: If K,, € C" (r > 2) admits 4-
planar mappings onto K, € C?, then K, € C".

4.4 Conformally-geodesic mappings

In [H14] we study compositions of conformal and geodesic diffeomorphisms,
which are at the same time harmonic mappings (conformally-projective har-
monic mappings). The equations of conformally-projective harmonic map-
pings are shown. We obtained the fundamental equations of these mappings
in form of a system of differential equations of Cauchy type. Solutions of this
system depend on at most 1/2 (n+1)(n+2)—(n—2) independent parameters.

Conformally-projective harmonic diffeomorphisms of equidistant manifolds
are shown in [H13].

A continuation of these topics can be found in the papers [15,16,91, 93],
in which also paper [H14] is cited.
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Abstract. A new variational property of geodesics in (pseudo-)Riemannian
and Finsler spaces has been found.

1. Introduction

Let us assume an n-dimensional Finsler space F), with local coordinates x =

(x',...,2") on the underlying manifold M,,, and a (positive definite) metric form

with local expression

ds? = gij(x,jc)dmidxj. €))
Here g;;(z!,...,2", &', ... &™) are components of the metric tensor, and (z, i)
denote adapted local coordinates on the tangent bundle TM, i.e., (i, ..., i") are

coordinates of the “tangent vector” & at x. Metric depends on “positions” and
“velocities” in general.
In the Finsler space F), there exists a (fundamental) function F'(z,#) which is
homogeneous of the second degree in 2" and satisfies
_ O?F (z, 1)
i (2, 0) = —(—7-
gZ] ( Y ) 83‘328.1',‘]
Particularly, the equality
F(x,i) = gij(x,)dz"da?

holds [3]. As it is well known, in the particular case when components of the met-
ric tensor depend only on position coordinates (i.e., are independent of “velocity
coordinates” &) the Finsler space F}, turns out to be a Riemannian space V/,.
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2. Pseudo-Riemannian and (Generalized) Finslerian Spaces

In what follows, the signature of the (non-degenerate) metric form is supposed to
be arbitrary (we no more restrict ourselves onto positive definite metrics only) so
that we can write

ds? = egij(x, &) datda?, e= =1 2)

and the sign is determined in such a way that ds? > 0.

In short, we will call such metrics and spaces Finslerian metrics and Finsler
spaces again, or Riemannian, respectively (more usually, they are called pseudo-
Riemannian, or semi-Riemannian).

The arc length of a curve v, given by parametrization z° = z%(t), is given in a
Finsler or Riemannian space (in our sense) by the integral

5= /totl \/egij(x<t)v*@(t))i'i(t)x.j(t) dt, xl(t) — dx;t(t) ) 3)

It is well known [3], that this integral is stationary in a Finsler space if and only if
its extremals are geodesic curves determined by the equations

i+ 2GM (x, ) = o(t)i" “4)

where o(t) is a function, g% are components of the matrix inverse to (g;;), and

ah lgz’j O?F(x,%) _ OF(z,%)
2 041 dak 47

are components of the Berwald connection. Let us emphasize that extremals of the
integral of length are independent of reparametrization of geodesics. In Riemann-
ian spaces, [2, 3], the components read

1 o
Gh = §r§;(x) itq

where F;‘j are the Christoffels of second type.
Many authors define a geodesic in V,, as an extremal curve of the integral

t
I— / g (@) at. )
to

Extremals of this variational problem are those geodesics which satisfy the equa-
tions (4) with o(t) = 0.

Analogous situation is in Finsler spaces (in our generalized sense). Extremal
curves of the integral (5) are determined together with their parameter, which is
used to be called canonical. Note that particularly, arc length in V,, or F,,, respec-
tively, is always canonical.
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3. Generalized Variational Problem of Geodesics

In a Riemannian or in a Finsler space (in a more general sense explained above)
consider the following more general variational problem

1 .
I = flegij(z,2)&'d’)dr (6)
to
where e takes the values £1, and f(7) is a differentiable real-valued function (at
least of class two) defined on some open domain D C R which is regular on D in
the sense that f/'(7) # 0 forall 7 € D.

As an immediate consequence of the Euler-Lagrange equations for the Lagrange
function £ = f(e g;;4'4’), it can be checked that the extremals satisfy the equa-
tions

i 2GM (1) = —%(m |/ (egapi®i®)|)i". (7)

We can prove the following theorem.

Theorem 1. In (generalized) Finsler or Riemannian spaces, respectively, geodesic
lines parameterized by a canonical parameter, which satisfy the condition

egapt®i’® =k € D
are extremals of the integral (6).

Theorem 2. Consider (all) extremals of the integral (6) in a Finsler space (or in
a Riemannian space, respectively). All curves arising under all possible regular
reparameterizations of extremal curves belong to extremals, too, if and only if the
function f takes the form f(x) = a/x where v is some non-zero constant.

Theorem 3. All possible extremals of the integral (6) are just those geodesics
which figure in Theorem 1 and Theorem 2. More precisely, in the particular case
f(x) = ay/z, 0 # o = const, they are represented by all unparameterized
geodesics (i.e., geodesics under all possible regular reparameterizations), while
for all other functions f, satisfying the above assumptions of the problem (6), ex-
tremals are represented just by canonically parameterized geodesics only.
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On the existence of pre-semigeodesic coordinates

Irena Hinterleitner, Josef Mikes

Abstract

In the present paper we consider the problem of the existence of pre-
semigeodesic coordinates on manifolds with affine connection. We proved
that pre-semigeodesic coordinates exist in the case when the components
of the affine connection are twice differentiable functions.

Keywords: Geodesic, pre-semigeodesic coordinates, manifold with affine
connection.

1 Introduction

Geodesics are fundamental objects of differential geometry, analogous to straight
lines in Euclidean space. A geodesic is a curve whose tangent vectors in all of
its points are parallel. Some properties of geodesic lines in mechanics: a point
mass without external influences moves on a geodesic line, another example
of geodesics is an ideal elastic ribbon without friction between two points on
a curved surface [I1L[12]. Geodesics are of particular importance in general
relativity. Timelike geodesics in general relativity describe the motion of inertial
test particles.

Let A, = (M, V) be an n-dimensional manifold M with affine connection V.
A curve £ in A,, is a geodesic when its tangent vector field remains in the tangent
distribution of ¢ during parallel transport along the curve or, equivalently if
and only if the covariant derivative of its tangent vector, i.e. A(t) = £(t) is
proportional to the tangent vector VaA = p(t) A, where g is some function of
the parameter ¢ of the curve £.

When the parameter ¢ of the geodesic is chosen so that o(t) = 0, then this
parameter is called natural or affine. A natural parameter is usually denoted
by 7.

With geodesics some special coordinates are closely associated:

geodesic, semigeodesic and pre-semigeodesic coordinates.
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Geodesic coordinates at a point p and along a curve £ (Fermi coordinates)
are characterized by vanishing Christoffel symbols (or components of the affine
connection) at the point p and along the curve ¢, respectively.

Let us consider a non-isotropic coordinate hypersurface ¥: x! = ¢ in (pseudo-)
Riemannian space V;,. Let us fix some point (c,z2,...,2") on ¥ and construct
the geodesic v passing through the point and tangent to the unit normal of X;
v is an xl-curve, it is parametrized by y(z!') = (2! + ¢,22,...,2") and 2! is
the arc length on the geodesic. Coordinates introduced in this way are called
semigeodesic coordinates in V.

It is well known that the metric of V,, in semigeodesic coordinates has the
following form: ds?> = e (dz')? + gap(x) dz®da®, a,b > 1, e = £1. On the
other hand this coordinate form of the metric is a sufficient condition for the
coordinate system to be semigeodesic. In this case for the Christoffel symbols
of the second type follows I'", =0, h =1,...,n.

Advantages of such coordinates are known since C.F. Gauss (Geoddtische
Parallelkoordinaten, [9, p. 201]),

Geodesic polar coordinates: can be also interpreted as a “limit case” of
semigeodesic coordinates: all geodesic coordinate lines ¢ = x? = const. pass
through one point called the pole, corresponding to 7 = 2! = 0, and lines
r = 2 = const are geodesic circles (Geoditische Polarkoordinaten, [9, pp. 197-
204]).

Let A, = (M, V) be an n-dimensional manifolds M with the affine connec-
tion V, dimension n > 2, and let U C M be a coordinate neighbourhood at the
point xg € U. A couple (U, z) is a coordinate map on A,,.

Semigeodesic coordinate systems on surfaces and (pseudo-) Riemannian man-
ifolds are generalized in the following way (Mikes, Vanzurovd, Hinterleitner
14, p. 43]):

Definition 1 Coordinates (U, x) in A, are called pre-semigeodesic coordinates

if one system of coordinate lines is geodesic and the coordinate is just the natural
parameter.

In a paper by J. Mikes and A. Vanzurova [15] these coordinates were called
general Fermi coordinates, and the reconstruction of components of the affine
connection in these coordinates is shown, if we known a certain number of
components of the curvature tensor.

In [I4] p. 43], [I5] the following theorems were proved.

Theorem 1 The conditions T'h(x) =0, h=1,...,n, are satisfied in (U, x)
if and only if (U,x) is pre-semigeodesic.
Theorem 2 The conditions T (z) = 0, h = 1,...,n, are satisfied in a
coordinate map (U, x) if and only if the parametrized curves

6:I—=U, Ur)=(r,a2,...,an),TE€I, a; ER, i =2,...,n,

are canonically parametrized geodesics of V |y, I is some interval, ay are suitable

constants chosen so that £(I) C U, I‘?j are components of the affine connection
V, the subset U C M is a coordinate neighbourhood of A, = (M, V).



We thought that the existence of this chart is trivial. This problem is ob-
viously more difficult than we supposed. This was observed in [1[2] where
precisely the existence of pre-semigeodesic charts was proved in the case when
the components of the affine connection are real analytic functions. In the proof
S. Kowalewsky’s Theorem [§] was used.

We proved that the pre-semigeodesic charts exist in the case when the com-
ponents of the affine connection are twice differentiable functions. The following
is true

Theorem 3 For any affine connection determined by I‘Z(:v) eC"(U), r>2,
there exists a local transformation of coordinates determined by ©' = f(xz) €
C" such that the connection in the new coordinates (U',2"), U C U, satisfies

't (2') =0, h=1,...,n, i.e. the coordinates (U',z') are pre-semigeodesic and
the components I'}' (') € C"=2(U").
The differentiability class r is equal to 0,1,2,...,00,w, where 0, co and w

denotes continuous, infinitely differentiable, and real analytic functions, respec-
tively.

It therefore follows that the existence of a pre-semigeodesic chart is guar-
anteed in the case when the components of the affine connection V are twice
differentiable. The existence of this chart is not excluded in the case when the
components are only continuous.

The components I'};(z’) can have better differentiability than C"2(U").
On the other hand, if the transformation 2’ = f(z) € C"", 2 < r* < r,
leads to pre-semigeodesic coordinates (which is possible), then it guarantees
that "% (/) € O 72,

The affine connection V is defined in general coordinates by n® components
F?J(:zz) which are functions of n variables, and V without torsion is defined by
n?(n +1)/2 components.

Theorem 3 implies that in pre-semigeodesic coordinates the number of inde-
pendent functions, which are defined by V, is reduced by n functions. It follows
that all affine connections V in dimension n depend locally only on n(n? — 1)
arbitrary functions of n variables, and all affine connections without torsion
depend only on n(n — 1)?/2 arbitrary functions of n variables.

A manifold A, with a symmetric affine connection is called an equiaffine
manifold if the Ricci tensor is symmetric, or equivalently, in any local coordi-
nates x there exists a function f(x) satisfying [I3[14L17,20]:

It = 0:f(2).

It is clear to see that for equiaffine connections the number of these functions is
reduced by further (n — 1) functions.

2 Special coordinates generated by vector fields

Let X be a vector field which is defined in the neighbourhood of the point p on
an n-dimensional manifold M,, in the coordinate system x = (x!,22,..., 2") by



the components ¢ (z); €"(p) # 0.
It is known, see [3L4}13}T14LT6LI8H2T], that it is possible to find a coordinate
system 2’ = (21, ..., 2'™) such that

(') = af, (1)

where 6! is the Kronecker symbol.
The coordinate transformation from x" to /" has the form

ot =M (2t 2?2 (2)
for which the law of change of the components of contravariant vectors holds:
' (a') = € (x) - Qaa™ (x). (3)

This task is solved by finding solutions f(x) and F(z) of the linear partial
differential equations

ga(x) : 6af(x) =0, (4)

and
§(x) - OaF(z) = 1, (5)
It is known that equation () has (n — 1) functionally independent solutions
F2(@), (), ..., f"(2), (6)

which are the first integrals of the system of ordinary differential equations

= M2 (1), 2%(t),. .., 2" (t), h=1,2,...,n. (7)

Equation () is solved in the same way, its solution is denoted by f!(x).
Then the searched transformation (2)) has the following form

™ = fh(z). (8)

The above solution was found for £"(z) € C1, see [3}4,16}[18,20,21].

By detailed analysis, based on the Theorem of existence of the general solu-
tion and integrals in [Bl p. 306], the system of ordinary differential equations ()
has the solutions for ¢"(z) € C°, and, the functions ¢ (z)/¢1(x), i = 2,...,n,
satisfy Lipschitz conditions. In this case there exist (n — 1) functional indepen-
dent integrals fi(x) € C', i =2,...,n, which are solutions of equation () in a
neighbourhood of the point p.

Moreover, from the differential equation (@) we can see that for £"(z) € C”,
i =2,...,n, there exist integrals f'(z) € C", i =2,...,n. A similar statement
holds for equation (), i.e. f(z) € C".

From the above follow.



Proposition 1 If ¢"(z) € C", r > 1, then there exist functionally independent

solutions of @) and ([@):
ffx)yec™, h=1,2,...,n

Theorem 4 Let X be a vector field on M,, such that X, # 0 at a point p € M.
If &"(z) € C",r > 1, then there is a coordinate system x' near p such that
X =9/02'" and the transformation ¥’ = f(x) € C".

Remark 1 The proof for X€C? can be given e.g. by means of local flows [16].

Remark 2 It is easy to show examples where £"(x) € C™, r > 1, and solutions
fi(x) € C™*! do not exist.

Remark 3 Finally, we show another approach to the transformation z'" =

f"(z) of Theorem [

Let &'"(2") € C™ be a vector field in coordinates ' and z'" = 2’"(x) be the
transformation of coordinates x — 2’ for which 0 — 0. Further we assume that
&M (x) = 6. Then formula (B) has the following form

da'" () = £/ (2)). (9)

We can look at the partial differential equations (@) as ordinary differential
equations in the value 2! and real parameters 7 = (22,...,2"):

da'M(xt, %) /dat = €M (2 (24, 7)), (10)

and we can use the integral form:

PPl ) = P El/hu,C/Tli7 1
<,><p<>+/os<<,>>d, (11)

where ¢" (%) are functions. These functions are initial conditions for the differ-
ential equations (I0). For these conditions we assume

2M0,%) = (&), h=1,2,...,n. (12)

Evidently, the points (2!, %) belong to a certain neighbourhood of the origin 0.

As it is known [5,6], if ¢ and &'" are continuous, then equations () (and
also equation (I0) with initial conditions (IZ)) has a solution x'"(z!,#). For
this solution, evidently, exists the partial derivative 0;2'"(x), unfortunately in
general 0;2'"(x), i = 2,...,n, can not exist, and in this case z'"(x) ¢ C*.

From properties of integrals and convergence of series of functions with pa-
rameters, see [10, p. 300], after differentiation of the integral equations (1) we
obtain that

it ¢"(a),¢"(@) e C” (r>0) then 2'"(z)ecC".

Often it can happen that 2'"(z) € C™+1.



We note that for the transformation of coordinates z’(z) the initial functions
©(Z) must satisfy the following conditions det [|9;z'"(0,%)|| # 0 where (0, %)
is in neighbourhood of the origin 0. These conditions might be for example:
©H(7) = 0 and p'(7) = 2°, i > 1.

This is the correct proof of Theorem [l

Proposition 2 The above general transformations ¢’ = f(x) depend on n func-
tions with (n — 1) arguments.

Proof. The general solution f of the homogeneous equation ([) is a functional
composition of (n — 1) independent solutions of [@): f = ®(f2, f3,..., f"). The
same holds for the solution of equation (Hl), because a general solution of the
non-homogeneous equation () is a sum of one solution of (@) and the general
solution f of the homogeneous equation ().

From the above follows that the functions f? of the transformation (§)) can
have a lower class of differentiability than C™%!, it depends on the differentia-
bility of the functions ®.

In the law of the transformation the components of the transformed tensor
depend of the components of the tensor 7' and also on d;z'" (or d/x"). From
that follows that the introduced coordinate transformation f: x — z’ belongs to
the class of differentiability C"*! the components of the tensor fields T'(x) € C™
are transformed by

T(I) c CT* N TI(:Z?I) c Cmin{r*,r}.
Because the transformation law of the affine connection (20) contains 0;;2'"

I (z) € O Tl (a!) € Cmint™r 1),

3 Pre-semigeodesic coordinates

Let A, = (M, V) be an n-dimensional manifold M with affine connection V,
and let U C M be a coordinate neighborhood at the point g € U. (U, x) are
coordinate maps on A,.

It is well known that the curve £: 2" = 2"(7) is a geodesic, if on it exists a
parallel tangent vector. A geodesic £ is characterized by the following equation
VanA(T) = 0, where A(7) = da"(7)/dr, (7 is a natural parameter on ¢), which
we can rewrite in local coordinates

d?zh (1)

a2 +F?j($(7'))

dr'(r) da?(T)
dr dr

—0. (13)

The coordinates in A, are called pre-semigeodesic coordinates if one system
of coordinate lines are geodesics and their natural parameter is just the first
coordinate, see Definition [I1



Let the x'-curves be geodesics ¢ = (1, x%,x%, ...,xy) where T is a natural
parameter. Substituting this parametrization into the equations for geodesics
([@3) we obtain

I (x) = 0. (14)

This condition is necessary and sufficient for a coordinate system to be pre-
semigeodesic, see Theorem 2l Proof of Theorem 2l Let T'f; = 0 hold for h =

1,...,n. Then the local curves with parametrizations ¢ = (7,23, 23, ... ,2})
satisfy
di(T)/dT = (01)4(r), d*4(r)/dr* =0, (15)
therefore they are solutions to the system ([I3)).
Conversely, if the curves ¢ = (1,2%,23, ... ,z%) are among the solutions to

([@3), then due to (I5), we get I'’y = 0.

Hence the pre-semigeodesic chart is fully characterized by the condition (4]
that the curves z! = 7, ' = const, i = 2,...,n, are geodesics of the given
connection in the coordinate neighbourhood, see Theorem [II The definition
domain U of such a chart is “tubular”, a tube along geodesics.

4 On the existence of pre-geodesic charts

We proved Theorem [J that a pre-semigeodesic chart exists in the case if the
components of the connection are twice differentiable.

Evidently, the existence of this chart is not excluded in the case when the
components are only continuous.

Let (U, x) be a coordinate system at a point p € U C M, and let Ffj () e C7,
r > 0, be components of V on (U, z).

In a neighbourhood of p we construct a set of geodesics, which go through the
point zg = (z,23,...,2%) of a hypersurface o > p in the direction Ag(z¢) # 0,
which is not tangent to o.

Let 0 and Ao be defined in the following way:

orat =l ... xl), 2t =), i>1, and /\g :Ah(xg, cooyxg). (16)

Then the above considered geodesics are the solutions of the following ODE’s

h
~ !
N (17)
d\" (1) a
e —T% 5 (z(T)A* (1A (1)
-
for the initial conditions
z"(0) = (p(z3,... 20), 23, ..., 28),
(18)
M 0) = AR, ap)
for any (x3,...,7%) in the neighbourhood of p.



Remark 4 From (7)), (I8) and from the theory of ODE’s [6,[7] follows:
1) If e () are continuous, then by the Peano existence theorem locally exists

a solution. 2) If T'? () satisty Lipschitz conditions, then by the Picard-Lindelof

theorem this solution is unique.

In the neighbourhood of p we have constructed a vector field A"*(x) # 0 which
is tangent to the considered geodesics.

In addition, by more detailed analysis it can be shown that \*(x) € C" if
I (z) € C" and moreover

o(x? ... ,2") € C” and A'(2?, ... 2")€C".

Note that from the decreasing of the degree of differentiability of the functions
¢ and A" follows the decreasing of the degree of differentiability of \*(z).
As an example, we can take the initial conditions (I8)) in the form:

2"(0) = (0,22, ... ,2y) and A'(0) = &7, (19)

Theorem [ ensures the existence of a coordinate system z’ in which
NP (z') = 6%, So, this system 2’ is pre-semigeodesic, according to Theorems
M and 2 there also exists a transformation =’ = z'(z) € C".

The components of a connection V satisfy the well-known transformation
law [4],13}14}1°7,20]:

a B 2,7y 'h
0z Oz 0’z )896 (20)

th 0\ Y Ny I
I (@) = (I’aﬁ(x(:v ) ox’ Ox' + 9z 0x" )z’
Evidently, we can prove:
Ihs(x) €CT,C>,C% — T'hs(a’) e C"2,C%,Cv.
Thus Theorem [3] was proved.

Remark 5 Unfortunately, the existence of a solution \(z) € C (if FZ— e CY

does not ensure the existence of a transformation 2’ = 2’(x) € C?, which leads to
the solution of our problem. In this case, the conditions for the transformations
of connections are not fulfilled.

Remark 6 We show a short alternative approach of the methods for finding a
transformation z'* = f”(z), 0 — 0, in Theorem

Proof of Theorem [3 From (20) follows formula

82$/h 8I/h " 817/0‘ (933/5

— T« / -
Oxidri Y (z) Ozo ap (7 (2)) Ozt Oxi

We substitute from the last formula with i = j = 1, to the conditions T'?; (x) = 0
and «’ = f(x) and we get

o2 f ” afe af?
oion — Lasl(@) 5 g

h=1,...,n. (21)



If 21 = t and if the other coordinates # = (22,...,2") are supposed as
parameters the system (2I)) is a system of ordinary differential equations with
respect to the variable t.

Let the initial condition be

0.8 = eh@
h (22)
T0m = He)

To equations [2I)) and ([22) Remark [ applies.

In addition, for the transformation 2’ = f(x) to be regular, it is necessary
that the Jacobi matrix at a point (0, ) is regular. Then it is regular in some
neighborhood of the origin 0. An example of suitable initial conditions (€ C*)
are

<P(1J(j) =0, <Pg(57) = xha h>1, 90}11(57) =1, 90}11(:%) =0.

Unfortunately, from the existence of a solution does not necessary follows the
existence of a transformation, which would lead to the solution of our problem.

The solution f”(z) may not be generally differentiable variables 22, ..., 2.
In order to realize the transformation of the components of the connection (20])
it is necessary that the second derivative of f"(z) according to the variables
x2, ..., 2" exists.

It is known we can find the solution of (2I) with initial conditions [22)) by a
method of successive iterations [6]:

h(atz) = so%(f)+zflA§<t,f)dt,

0

oy (23)
AN (@', 8) = @l (@) + [ Ts(fi(t, 7)) A3 (L, 2)N (¢, T) dt.

0

In the neighbourhood of the point (0,22,...,2") the iterations f2 ,(z',z)
and A2, (z!, %) uniformly converge to the solutions f"(z) and \"(z).

From the properties of the derivative of the integral of the parametric func-
tions, see [10 p. 300], it follows that the first derivative of solution f”(z) exists,
if (), o6 (), 01 (2) € C'. If we take fl' = Aj = 0, then each successive
iteration £, A" will belong to the class C!. Because iteration is uniformly con-
vergent, and based on the above properties, the limits f? +— f* and A\* — \?
also belong to class C*.

Analogically, the solution f"(x) € C" exists, if I}}(2'), ¢4 (Z), o} (Z) € C".
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Abstract. In this paper we consider results of the theory of geodesic mappings of Einstein spaces and their generalizations.

In 1925 H. Brinkmann found the metric of equidistant spaces and obtained conditions, when these spaces are Einstein
spaces, resp. spaces of constant curvature. We introduce the conditions on these spaces when they are semisymmetric,
pseudosymmetric, Ricci semisymmetric, Ricci pseudosymmetric and spaces V,(B).

A diffeomorphism f between Riemannian spaces Vj, and V,, is called a geodesic mapping, if any geodesic line in V,, is
mapped into a geodesic line in Vj,. In 1954 N.S. Sinyukov proved that equidistant spaces admit geodesic mappings. Our
constructions of a geodesic mapping of Einstein spaces with the Brinkmann metric proves that Petrov’s conjecture is not true.

We formulate results by E. Beltrami, R. Couty, V.I. Golikov, S. Formella, V.A. Kiosak, T. Levi-Civita, J. Mike§, A.Z. Petrov
and A.V. Pogorelov about geodesic mappings of Einstein spaces and spaces of constant curvature.

Further we introduce results on geodesic mappings for Riemannian spaces, which are generalized Einstein spaces and
spaces of constant curvature. For instance symmetric, recurrent, generalized recurrent, semisymmetric, pseudosymmetric,
Ricci semisymmetric, Ricci pseudosymmetric spaces, spaces with harmonic curvature, etc. These results were obtained by
many authors: R. Deszcz, V.A. Kiosak, J. Mikes, N.S. Sinykov, E.N. Sinyukova, V.S. Sobchuk, etc.

Keywords: Einstein spaces, spaces of constant curvature, symmetric spaces, recurrent spaces, semisymmetric spaces, pseudosymmetric
spaces, Ricci semisymmetric spaces, Ricci pseudosymmetric spaces, space with harmonic curvature, geodesic mappings, projective transfor-
mations.

PACS: 02.40.Ky

INTRODUCTION

Study of diffeomorphisms and automorphisms of geometrically generalized spaces constitute one of the current main
directions in differential geometry. A large number of papers is devoted to conformal, geodesic, quasigeodesic, almost
geodesic, holomorphically projective and other mappings. One line of thought is now the most important one, namely,
the investigation of special affine-connected, Riemannian, Kihlerian and Hermitian spaces (see [13, 31, 32, 38, 39, 41,
43, 47, 57)).

This paper is a survey of some recent results concerning geodesic mappings of Einstein spaces &, and their
generalizations.

If not oterwise stated, expressions in the present review are given locally in tensor form in the class of real sufficiently
smooth functions. All the spaces are assumed to be connected. Let us present the basic notions of the theory of n-
dimensional Riemannian spaces V,,, using the notations of [13, 31, 38, 39, 41, 43, 47].

The Riemannian space V;,, endowed with a local coordinate system x = (x',x?, ... x"), is characterized by the
regular symmetric metric tensor g;;(x). The signature of the metric form ds* = g;;(x)dx'dx/ is assumed, in general, to
be arbitrary. The space V,, belongs to the class C" (V,€ C") if g;;(x) € C".

In the Riemannian space V,,, endowed with the metric tensor g;;(x), are considered the Christoffel symbols of type
Iand I T = %(aig ik + 9jgix — Okgij) and l"f.'j = g"®T;;q, respectively, and the Riemannian, Ricci and Weyl (of the
projective curvature) tensors are defined as follows:

1
h )
Riy = 0T+ T — AL+ TGy, Ry =R}, Wi = Rl — — (8{'Rij— 8]Ra),

Ji ijos i

CP861, Albert Einstein Century International Conference,
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© 2006 American Institute of Physics 978-0-7354-0359-8/06/$23.00

428



where 51.h is the Kronecker symbol, d; = d/ dx' and g" are elements of the inverse matrix to g; ;. In'V, is considered the
scalar curvature R = Ry g%b. Using g;; and g/, we introduce in V}, the operations of lowering and raising indices, for

kOtRl} Rh — ghOCRm,
i .

. 7
example: Ryijk = ghaR[j R ‘=g T

EINSTEIN SPACES AND THEIR GENERALIZATIONS

As we know, Einstein spaces &, are a special case of Riemannian spaces. These spaces were introduced by A. Einstein
as model time-spaces [12, 13, 39, 41, 47, 57].
A Riemannian space V,, is called Einstein space &,, when its Ricci tensor is proportional to the metric tensor, i.e.

Rij = p gij,
where p = % If n > 2, then R is constant.
Well-known spaces of constant curvature K (denoted by .#,;) are special Einstein spaces, where K = Ai—1)°

These spaces are characterized by the following conditions on the Riemannian tensor:

Ruiji = K (818 — 8k8ij)-
It is known that all 3-dimensional Einstein spaces &3 are spaces of constant curvature. For dimensions # > 3 this is not
true.

Spaces of constant curvature and Einstein spaces are generalized by the following special Riemannian spaces (see
[4, 17,18, 31, 41, 47, 50, 57])

symmetric spaces (S)) - Rﬁ’jk_j =0,

recurrent spaces (K!) - Rf.'ij =q Rf.'jk,
Ricci-symmetric spaces (RicS}) - R;j; =0,

Ricci-recurrent spaces (RicK)) - Rijy = @Ry,

V., with harmonic curvature (H,) - Rf‘jk’a =0 (& Rijx=Ri ),
spaces Ly, - Rijx =agij+bigjk+b;gix.

Hereafter "," denotes the covariant derivative with respect to the connection of the space V, and ¢, ai, b; are
nonvanishing covectors.
By using the tensor
1 h h h
Ziljk = Rijk —B(& 8ij — 5,- 8ik)
where B is a function, let us define, for every tensor field 7 of the type (Z) in V,, a tensor operation (Im) in the
following way [24, 31]:

q p
hy...h o hy...hy o hl...hr,l(xhrﬂ...h hy
Til _._iq{;m) = Z 7;'| ...i,,llairﬂ ...iqu,lm - Z ];1 ...iq pZOClm'
r=1 r=1
Generalizations of the above mentioned spaces S, and RicS), are
semisymmetric space (Psy,) - R?jk(lm) =0, B=0,
pseudosymmetric space (Ps,(B)) - R?jk(lm) =0,
Ricci-semisymmetric space (RicPs,) - Rijumy =0, B=0,
Ricci-pseudosymmetric space (RicPs,(B)) - Rijumy =0.

Semisymmetric spaces were first considered in 1920 by P. A. Shirokov, E. Cartan, and A. Lichnerowicz when
studying symmetric spaces. The name semisymmetric spaces was, however, introduced by N.S. Sinyukov (see [4,
45, 47]). He (see [31, 45, 47]) started to study semisymmetric spaces Ps, and their geodesic mappings. Research on
this subject was continued by J. Mikes [20, 21, 22, 24, 30, 31, 47] and P. Venzi [54]. Many investigations have been
devoted to the study of these spaces; comprehensive reviews of this problem are given by V. R. Kaigorodov [17, 18]
and E. Boeckx, O. Kowalski, L. Vanhecke [4].

The research of pseudosymmetric and Ricci-pseudosymmetric spaces has been started by J. Mikes (see [20, 21,
24, 30, 31, 36, 47]). These spaces were studied further by F. Defeverer, R. Deszcz, W. Grycak, M. Hotlos etc.
[7,8,9,10, 11].
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GEODESIC MAPPINGS

A diffeomorphism f: V,, — V,, is called a geodesic mapping, if any geodesic line in V,, maps into a geodesic line in V.
Beginning with E. Beltrami [2, 3] much ef_fort was dedicated to these mappings, see [13, 19, 31, 41, 43, 47].
Consider a concrete mapping f: V,, — V,, both spaces being considered with the general coordinate system x with

respect to this mapping. This is a coordinate system where two corresponding points M € V,, and f(M) € V,, have equal

coordinates x = (x',x%,...,x"); the corresponding geometric objects in V,, will be marked with a bar. For example, I'};

and ff‘j are components of the affine connection on V,, and V,,, respectively.

The Riemannian space V;, admits a geodesic mapping f onto the Riemannian space V,, if and only if in the common
coordinate system x the following conditions hold

L(x) =T (x) + %8) + ;8" (1)

where y;(x) is a gradient, i.e. there is a function y(x) for y;(x) = dw(x)/dx".
If y; # 0, then a geodesic mapping is called nontrivial, otherwise it is said to be trivial or affine.
Given a geodesic mapping the following conditions hold:

Rly =R+ 8w — 6] wy:  Rij=Rij+(n—Dwij; Wiy =W},

where V;; = y; j — W;y;. The Weyl tensor of the projective curvature, W/, is an invariant object of the geodesic

’ ijk>
mapping.
Condition (1) is equivalent to
&ijk = 2Vigij + Vig jk + Vi (2)
where g;; is the metric tensor of V,,. Conditions (1) and (2) are called the Levi-Civita equations.
A Riemannian space V,, admits geodesic mappings onto V,, if and only if in V,, the linear differential equations in
covariant derivatives (Sinyukov’s equations)

aijk = Aiaji + Ajai, (3)

have a solution with respect to the unknown regular symmetric tensor ¢;; and the gradient vector A;; A; # 0 if and only
if y; # 0 [47]. The metric tensor g;; of V,, and solutions of (3) are connected by the relations

ajj = e_zwgaﬁgaigﬁja A= —e 2VgoP Yo 8Bis 187l = Hgin_l-
We shall denote a Riemannian space V), by space V,(B), if it admits a nontrivial geodesic mapping with
Aij = W gij+Baij, (4)
where y and B are some functions. Formulas (4) are equivalent to
vij = Bgij — Bgij,

where B is a function [21, 24, 31].

From this it follows that a space V,,(B) maps geodesically only on spaces V,,(B), moreover B = const < B = const. If
B = const, then i ; = 2BA;, and if B =0, then u = const. The spaces Vu(B), B = const # 0, admit nontrivial projective
transformations and the vector 4; is not isotropic.

Under geodesic mappings from V,,(B) onto V,,(B) the tensors Zlf’jk and Z;; are invariant:

Z‘h Zh 7 7
ijk = “ijk and ij = ijs
where Z,'j = Zi[ja = R,’j — B(l’l — l)gij.

The spaces V,(B) naturally generalize the space V(K), introduced by A.S. Solodovnikov [16, 52].
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EQUIDISTANT SPACES

A vector field &" is called concircular, if £ = p 8!, where p is a function. If p = const, " is convergent. A space V,,
with a concircular vector field is called eqdidistant, see [31, 46, 47, 56].

Equidistant spaces V,,, where the concircular vector fields are nonisotropic, can be endowed with a system of
coordinates x, where the metric is of the form

1
fxh)
where f € C' (f # 0) is a function, d&* = Zu(¥%, ... ,x")dx“dx” (a,b =2, ... ,n) is the metric form of a certain

Riemannian space V,,_; (see [5, 41, 47, 56]).
H.K. Brinkmann [5] showed that the space V,, with metric (5) is an Einstein space &, (resp. .%;,) if and only if

ds? = ——dx'> + f(x)dP, (5)

f:Kx12+2axl+b, (6)

where K, a, b are constants and d§> is a metric of an Einstein space &1 (resp. .%,_1), moreover
-R —R < - .
K= , K= =bK?—d?, R and R are the scalar curvatures of &, and 6,1 (resp. ./, and 7, 1).
n(n—1) (n—=1)(n—2)

An equidistant space V,, with metric (5) admits geodesic mappings onto the Riemannian space V,,, whose metric

form is 7

p 12 p 2
IR T )
where p, g are some constants such that 1 +¢gf #£ 0, p # 0. If gf’ # 0, the mapping is nontrivial; otherwise it is trivial;
here x are common coordinates for V,, and V}, [46].

If f # const the space V,, is a space V;,(B). A space V}, with (5) is V,,(B), B = const, if and only if f = B! +ax!+b,
where B, a, b are constants, f' # 0.

It can be shown that for all spaces .#, with constant curvature K there exists always the above mentioned coordinate
system, in which the metric has the form (5). As we have said above, all &3 have constant curvature, moreover Einstein
spaces &4 with metric (5) also have constant curvature [5, 41]. For Einstein spaces &, (n > 4) this is not the case in
general. It is obvious that Einstein spaces &, with a metric (5) admit nontrivial geodesic mappings.

In many papers these mentioned problems were studied in a semigeodesic coordinate system x, in which the

equidistant spaces V,, have a metric tensor in the following form ds? = +dx'? + f(x") ds?, see [24, 31, 33, 35, 47].

ds* =

GEODESIC MAPPINGS OF SPACES WITH CONSTANT CURVATURE

First let us consider geodesic mappings from spaces of constant curvature (.;,), which are a special case of &, and
which, in 1865 [2, 3], were the initial objects with which the history of geodesic mappings began.

A theorem by E. Beltrami in modern formulation states that a Riemannian space V,,, admitting a geodesic mapping
onto a Euclidean space, is a space with constant curvature. The proofs of this theorem (see [13, 19, 43, 47]) are given
under the condition V,, € C?, i.e. g;j(x) € C*.

There exists a more general theorem:

Theorem 1 (A.V. Pogorelov [42]) Let in the Euclidean space a Riemannian metric be given by the linear element
ds* =g j(x)dx'dx’, gij(x) € CY in cartesian coordinates. Let the geodesic lines of the space with this metric be straight
lines (segments of straight lines). Then this space has constant curvature.

Locally it holds that between two spaces .%, and .%, with constant curvature K and K, respectively, there exists a
nontrivial geodesic mapping, where for the tensor ;; the formula y;; = Kg;; — Kg;; holds [43]. Therefore an arbitrary
space ., with constant curvature K is a special case of a space V,,(K).

It is proved, for the n-dimensional sphere S,,, that it admits global nontrivial projective transformations and nontrivial
geodesic mappings [26]. By applying the global I'-transformation (its local application is considered in ([47], p. 127])
to two spheres S, and S,, that are in a nontrivial global geodesic correspondence, an infinite series of compact orientable
properly Riemannian spaces with nonconstant curvature can be obtained, including some spaces L,,.
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On the other hand, compact flat spaces do not admit global nontrivial geodesic mappings. Compact properly
Riemannian spaces with constant negative curvature also do not admit global nontrivial geodesic mappings [48].

There are no global geodesic mappings between compact spaces with constant curvature and with different signa-
tures of metrics. The above-mentioned property is proved when one of the spaces is properly Riemannian.

GEODESIC MAPPINGS OF EINSTEIN SPACES

The studies of geodesic mappings of Lorentzian four-dimensional Einstein spaces were initiated in 1961 by A.Z.
Petrov [40], see [41]. A space V,, is called Lorentzian, if it has a metric with Minkowski signature. The following holds

Theorem 2 (V.I. Golikov and A.Z. Petrov, see [41]) Lorentzian four-dimensional Einstein spaces with nonconstant
curvature do not admit nontrivial geodesic mappings onto Lorentzian Riemannian spaces.

These investigations are completed by the following:

Theorem 3 (J. Mikes§ and V.A. Kiosak [33]) Four-dimensional Einstein spaces with nonconstant curvature do not
admit nontrivial geodesic mappings to Riemannian spaces.

From this is follows that & with nonconstant curvature are characterized among Riemannian spaces by the position
of their geodesic curves.

P. Venzi [55] proved that a properly Riemannian &, admits geodesic mappings only onto an &,. There exists a more
general theorem generalizing the theorem by E. Beltrami:

Theorem 4 (J. Mikes [23]) If the Einstein space &, admits a nontrivial geodesic mapping onto the Riemannian space
V,., then V,, is an Einstein space.

Einstein spaces &, admitting nontrivial geodesic mappings are the spaces Vn(ﬁ), and they always admit
projective transformations (when R # 0, they admit nontrivial projective transformations).

R. Couty [6] proved that under additional conditions compact &, do not admit nontrivial projective transformations.
Compact Ricci-flat spaces V;, € C* do not admit global nontrivial geodesic mappings [25]. Geodesic mappings from a
compact equiaffine Ricci-flat space onto an equiaffine Ricci-flat space are trivial. Hence compact equiaffine Ricci-flat
spaces do not admit nontrivial projective transformations.

One cannot set global nontrivial geodesic mappings between compact Einstein spaces V,, and V,, with different
signatures of metrics.

Geodesic mappings of Einstein spaces were investigated by S. Formella [14], and for Einstein-Finsler spaces by
Z. Shen [44].

A.Z. PETROV’S CONJECTURE ON GEODESIC MAPPINGS OF EINSTEIN SPACES

A.Z. Petrov extended methods of studying geodesic mappings of four-dimensional Lorentzian-Einstein spaces to
Einstein spaces of higher dimensions n > 4, and conjectured that the Lorentzian-Einstein spaces &, (n > 4) which are
distinct from the spaces of constant curvature, do not admit nontrivial geodesic mappings onto Lorentzian-Einstein

spaces ([41], pp. 355, 461).
Let us construct a counterexample to A.Z. Petrov’s conjecture (see [33]).

Let &, (n > 4) be an equidistant Einstein space of nonconstant curvature with Brinkmann metric (5), satisfying
condition (6). It is known that the space &, with a coordinate system (5) admits a geodesic mapping onto the Einstein
space &, with metric (7). If gf’ # 0, the mapping is nontrivial. The coordinates x are common to this mapping. The
signatures of the metrics of &, and &, are different if 1 +¢f < 0, otherwise they coincide.

One can easily see that, under an appropriate choice of the constant ¢, it is possible to construct an example of a
nontrivial geodesic mapping between Einstein spaces with Minkowski signature which have nonconstant curvatures
and whose dimensions are greather than four. This provides a counterexample to the reduced Petrov conjecture.
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GEODESIC MAPPINGS OF SEMISYMMETRIC SPACES AND THEIR
GENERALIZATIONS

As we have said before spaces of constant curvature, Einstein spaces and spaces V,,(B) form closed classes of geodesic
mappings of Riemannian spaces.
A similar property was shown for pseudosymmetric (Ps,(B)) and Ricci-pseudosymmetric (RicPs,(B)) spaces:

Theorem 5 (J. Mikes [21, 24]) If a pseudosymmetric space Ps,(B) (resp. a Ricci pseudosymmetric space RicPs,(B))
admits geodesic mappings onto V,, then the space V,, is a pseudosymmetric space Ps,(B) (resp. a Ricci pseudosym-
metric space RicPsy(B)), and B, B are constants.

It can be shown that a Riemannian space V,, with metric (5) is a space Ps,(B) (resp. RicPs,(B)), B = const,

if f=Bx! ® 4 2ax! +b, B,a, b are constants, and d5” is a metric of space Ps,,(B) (resp. RicPs,(B)), and B = bB?> — a*
The above mentioned questions concerning spaces were studied by F. Defeverer, R. Deszcz, W. Grycak, M. Hotlos
[7,8,9,10, 11].

Theorem 6 (J. Mikes [20], see [21, 22, 47], P. Venzi [54)) If a semisymmetric space Ps, admits nontrivial geodesic
mappings onto V,, then V,, is an equidistant pseudosymmetric space.

Theorem 7 (J. Mikes [22]) If a Ricci semisymmetric space RicPs, # &, admits nontrivial geodesic mappings onto V,,
then this space is an equidistant space.

Theorem 8 (J. Mikes [25]) Compact semisymmetric Riemannian spaces Ps, € C* with nonconstant curvature ( resp.
non-Einsteinian Ricci-semisymmetric Riemannian spaces RicPs, € C*) do not admit either global nontrivial geodesic
mappings or global non-affine projective transformations. onto V,, € C.

In the works by E.N. Sinyukova [48], a series of results for global geodesic mappings of compact (Ricci-) semisym-
metric Riemannian spaces with additional conditions is obtained.

The property of spaces &, which is the subject of Theorem 3, is shared by many Riemannian spaces, which are
generalization of ., and &,. In 1954 N.S. Sinyukov [47] proved that the symmetric and recurrent Riemannian spaces
V,, with nonconstant curvature do not admit nontrivial geodesic mappings.

V.R. Kaygorodov [17, 18] introduced into consideration the generally recurrent spaces D', defined by the conditions

h h
Rijk:IIIZ“‘lm Z Ql sls+17+lm lek Liy-lg 1>

s=1

where fz are some tensors The spaces where Rflj eyl = 0 are called m-symmetric spaces S);', and the spaces where
Rf‘jk_’l] bty = 1. 0 R Jk, Q # 0, are called m-recurrent spaces K]'. Note that many spaces D’” are semisymmetric
spaces Ps,. In particular, S}, 2. K" C Ps,.

J. Mikes [22, 31, 47] proved that the semisymmetric spaces considered above with nonconstant curvature do not
admit nontrivial geodesic mappings: (a) K'; (b) Sﬁ; () D (d) DI, where Q2 £0.

V.S. Sobchuk added to this list the semlsymmetric spaces S'. He also showed that the spaces of nonconstant
curvature SZ, n >4 (see [51)), Sfl, n >4 (see [37]), and S}, 2n > m+ 3 (see [29]), cannot be semisymmetric and
do not admit nontrivial geodesic mappings.

This is true also for non-Einsteinian Ricci-symmetric (R;;x = 0, see [1, 22]), Ricci-2-symmetric (R;jx = 0, see
[22]), Ricci-3-symmetric (R;;j wm = 0, n > 4, see [37]), Ricci-4-symmetric (R;; imp = 0, n > 4, see [51]) and Ricci-m-
symmetric (R;j ;,1,..1,, = 0, 2n > m+ 2, see [29]) spaces.

GEODESIC MAPPINGS OF SPACES WITH HARMONIC CURVATURE

A Riemannian space V,, with harmonic curvature is defined as a space where Rl ko = =0 (& R;jk = Ry j). In particular,

Va with R;; ;= 0 is Ricci symmetric RicS}; in [22], it is proved that RicS) # &, do not admit nontrivial projective
transformations, nor nontrivial geodesic mappings, see also [1].

Theorem 9 (V.S. Sobchuk [50]) In spaces V,, with harmonic curvature admitting nontrivial geodesic mappings, there
exist concircular vector fields and special coordinates (5), where ds? is a metric of some Einsteinian space with scalar

433



curvature R, and the function f % const satisfies the differential equation
(n—=1)@Af "+ (n=2)f?)+4e(R—Rf) =0,
where R is the constant scalar curvature of V,,.

S. Tanno [53] studied projective transformations of complete Riemannian spaces V,, with harmonic curvature. His
results are generalized by the following theorems:

Theorem 10 (J. Mikes, 7. Radulovié [35]) Non-Einsteinian spaces V,, with harmonic curvature do not admit a
nontrivial geodesic mapping onto V,, with harmonic curvature.

Theorem 11 (J. Mikes, 7. Radulovié¢ [35]) Non-Einsteinian spaces V,, with harmonic curvature do not admit any
non-affine projective transformations.

GEODESIC MAPPINGS OF SPACES L,

The Riemannian spaces V,, with nonconstant curvature R such that

n Ri: v _n—ZG
(n—n+2)" % = 2

Rijx = O1gij+Vigjk + Vg, where o=
are called the spaces L, [47].
The tensor a;;, which is a nontrivial solution of the basic geodesic mappings equations (3) in .}, is a metric tensor
of the space L, [47]. A similar circumstance is stated for nontrivial geodesic mappings of Einsteinian spaces [14, 15].
The general solution of (3) in the space L, has the form

nR
aij=c18ij+c2 Rij_i(nil)(nJrz)gij )

where c1, ¢y are constants. The same result has been partially proved earlier under the condition RangHRi = § 8ij || >2
in [49].

The local expression of the metric L, is given by S. Formella [15].

The problems of global geodesic mappings of spaces L, were considered in [27, 49]. It follows from Theorems 2
and 3 [49] that there is no compact properly Riemannian space L, with the inequality

Ri'774R gij RiRj>0
J (n—l)(n+6) J =

holding everywhere, where R = g/*R 4.
In [27], the principal scheme of constructing a compact orientable space L, admitting global nontrivial geodesic
mappings is given.
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GEODESIC MAPPINGS ON COMPACT
RIEMANNIAN MANIFOLDS WITH
CONDITIONS ON SECTIONAL CURVATURE

Irena Hinterleitner

ABSTRACT. We found new criteria for sectional curvatures on compact Rie-
mannian manifolds for which geodesic mappings are affine, and, moreover,
homothetic.

1. Introduction

To the theory of geodesic mappings and their transformations have been de-
voted many papers, these results are formulated in a large number of research
papers and monographs [21[4H12][16H19.21H261[30L133], etc.

In 1953, Takeno and Tkeda [31] considered geodesic mappings of spherically
symmetric spaces Vy, in 1954 Sinyukov [26] p. 88] studied the case of symmetric and
recurrent spaces and, in 1976 Mikes ( [13l16], [21] p. 206], [26] pp. 151-155]) proved
that generalized recurrent (pseudo-) Riemannian spaces V,, with nonconstant cur-
vature do not admit nontrivial geodesic mappings. In this topic Prvanovié [23] and
Sobchuk [201[29] also have been interested. These results were obtained “locally”
and they are contained in [141[16,21]126].

Global results for geodesic mappings of compact Riemannian manifolds were
obtained by Vrangeanu [33], Sinyukova [271128], Mikes [15l[16], etc.

The above results are related to questions of projective rigidity of (pseudo-)
Riemannian manifolds and also of manifolds with affine connections.

In [10] and [11] we proved that these mappings preserve the smoothness class
of metrics of geodesically equivalent (pseudo-) Riemannian manifolds. In [10] it
was sufficient to suppose the metrics to be of differentiability class C?, and in [11]
to be of class C*.

We present new results on geodesic mappings of compact Riemannian manifolds
with certain conditions on the sectional curvature of the Ricci directions.
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2. Geodesic mapping theory

Let V,, = (M,g) and V,, = (M,g) be n-dimensional (pseudo-) Riemannian
manifolds with metrics g and g, respectively.

DEFINITION 2.1. A diffeomorphism f : V,, — V,, is called a geodesic mapping
of V,, onto V,, if f maps any geodesic in V,, onto a geodesic in V.

We restricted ourselves to the study of a coordinate neighborhood (U, x) of the
points x € V,, and f(z) € V,,. The points = and f(x) have the same coordinates
r = (z',...,2"). We assume that V,,, V,, € C' (g,g € C") if their components
gij (), gij(x) € C! on (U, z), respectively.

It is known [12], see [6], pp.131-133], [21], p. 167], that V;, admits a geodesic
mapping onto V,, if and only if the following Levi-Civita equations

(2.1) ViGij = 2VkGij + Vigjk + V5 Gik
hold, where V is the Levi-Civita connection on V,, and
1 .
1/)1281\11, U = n+1ln\/|det§/detg|, 8128/8I1

Sinyukov [26] p.121], see [21] p.167], proved that the Levi-Civita equations ([21))
are equivalent to

(2.2) Viaij = Nigjx + Ajgir,
where
(2.3) (a) aij =Y 5% giagis;  (b) Ni = —€*Y 5% agis,

and, moreover, \; = 9;A, A = L aapg®?. Here (§7) = (gi;) ™" and (g%) = (gi5) "
On the other hand:

gij =€ gy, U=Iny/|detg/detgl, (4i;) = (aapyg™g’”)".

Furthermore, we assume that V,, = (M, g) € C? and V,, = (M, g) € C?. In this
case, the integrability conditions of the equations (2.2]), due to the Ricci identity

(2.4) ViViai; — ViVia;; = aiaR?kl + ajaRiakl,
have the following form
(2.5) tia Ry + aja Ry = 9iViXj + gk Vidi — guVeAj — g Vi,

where R?j . are components of the Riemannian tensor R on V;,, and after contraction
with g% we get [26] p. 133]

(2.6) nVidj = pgji — aja Ry — aas R,

where = Vo A%, RY = g*P R, and R;j = R, ; are components of the Ricci tensor
Ric on V,,.



GEODESIC MAPPINGS OF COMPACT RIEMANNIAN MANIFOLD, ... 127

3. Integral formula
We introduce the vector field £ on V;, € C? in the following way
(3.1) £ = agvaaiﬂ — agvaao"@,

where a! = g'%ani, a¥ = an59°*g?P. Using formula (3I)), the Ricci identity (24)
and Sinyukov’s equations ([2:2]) we obtained that the divergence of the vector ¢ has
the following representation

divé = ®(a) — (n — 1)(n + 2) \arsg®?,

where ®(a) = Rijaikai — Rijklaikajl.

Suppose that the Riemannian manifold (M, g) is compact and without bound-
ary, then on the basis of the GauB theorem |, v divEdy = 0 we obtain the integral
formula

(3.2) /M ®(a)dv = (n—1)(n+2) /M AaAsg®Pdu.

For applying the Gauss theorem it is necessary to require the orientability of M, if
M is a non-orientable manifold, then we’ll look at the oriented double cover.

Let g(e;,e;) = d;; and a(e;,e;) = «;0;; with the Kronecker symbol d;;, i.e.,
{e1, ..., e} is the orthonormal basis of eigenvectors to the eigenvalues g, ..., a,
of the tensor a = (a;;) of T, M at any point x € M. As we can see from direct
calculation, ®(a) has the following form (see [3| p.592]):

(3.3) D(a) = Z K(eivej)(a; — aj)?,
i<j
where K (e;,e;) are sectional curvatures in the two-directions e; A e;.
It is easy to see:

— ik J ik gl __ E : 2 E :
<I>(a) = Rijal ak — Rijklal at = (al) Rijij — aiajRijij
5,J 5,J

=D ((@)* +(@))*) - Rijij — 2 ) i Ry

i<j 1<j
= (ai—a;)’ Rijig = Y_(ai —)” - K(eie)),
i<j i<j
where
R(e;,ej,e; e
K(ei,ej) _ ( R ERE2) J) 5 — Rijij'

glei,ei) - glej, e5) — (g(es, €5))
4. Principal orthonormal basis

Eisenhart [6] pp.113-114] introduced a principal direction in a Riemannian
manifold (M, g), as an eigenvector of the Ricci tensor. He showed that at any point
x € M there exists the orthonormal basis {ey, ..., e, } in which

gij = 0; and R;j = p;d;j,
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ie., ey, ..., e, are the vectors of the principal directions and p1, ..., p, are their
eigenvalues. This basis is called the principal orthonormal basis.

This means that the existence of this basis is a property only of the Riemannian
manifold (M, g), independent of the solution a;; of equation ([Z.2)). Generally the set
of principal orthonormal bases is a proper subset of the set of orthonormal bases.
Because the vector field ); is gradient-like, formula (Z6]) implies [26] p. 138]

(67 (7
CLiaRj = CLjaRl- .

So the tensors a;; and R;; commute and have common eigenvectors. From this
fact it follows that there exist a principal orthonormal basis in which g;; = d;; and
ai; = «;0;; hold. This basis is called a joint principal orthonormal basis. Note
that we do not restrict the signature of the Ricci tensor and the tensor a;;. In
the following we restrict ourselves to the study of formulas [B.2]) and B3] on joint
principal orthonormal bases.

5. Main Theorems

For the following we recall that a compact Riemannian manifold V,, admits a
geodesic mapping onto a (pseudo-) Riemannian manifold V.

If we assume that at each point x € M all sectional curvatures K (e;,e;) are
non-positive in the two-directions e; A e; of the joint principal orthonormal basis
{e1,...,en} of vectors of the main directions of the Ricci tensor, then from integral
formula (32]) it follows

(5.1) (a) /M ®(a)dv =0 and (b) /M AaAsg™? dv = 0.

From integral (5.Ib) follows A,Azg®® = 0 and this fact implies that \; is
vanishing on M, i.e., \y = --- = A\, = 0. In this case, the geodesic mapping is
affine (see [21], p. 150]). We proved the following theorem:

THEOREM 5.1. Assume a compact Riemannian manifold (M, g) without bound-
ary of dimension n = 2. If at any point x € M the sectional curvature K (e;,e;) is
non-positive for any two-direction e; A e; from all the principal orthonormal basis
{e1,...,en} of vectors of the main direction of the Ricci tensor, then any geodesic

mapping of (M, g) is affine.

Moreover, we suppose at each point « € M the sectional curvature K (e;, ;) is
non-positive and that there is a certain point oy € M where the sectional curva-
ture K (e;, e;) in any two-direction e; A e; of the joint principal orthonormal basis
{e1,...,en} of vectors of the main directions of the Ricci tensor is negative. Then
from integral [B.2)) follows equation (EI)). On the basis of Theorem .11t follows
A1 = -+ = A, =0 and the geodesic mapping is affine.

Further, from integral (5:Ih) follows ®(a) = 0 on M. Then from formula (3:3)
at the point z9p € M we obtain a; = -+ = a, = . Hence a;; = odyj, ie,
Qi (.Io) = OG5 (.Io)

In this case, the affine mapping is homothetic, i.e., § = o’ g, where o/ = const.
This fact follows from the uniqueness of solutions of the fundamental equations of
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affine mappings V,, — Vj, : Vigi; = 0 with initial values g;;(x0) = o g;j(x0). This
is equivalent to a;(xo) = ag;j(zo), this fact follows from equation ([2.3).
We proved the following theorem:

THEOREM 5.2. Assume a compact Riemannian manifold (M, g) without bound-
ary of dimension n > 2. If at any point x € M the sectional curvature K (e;,e;) is
non-positive and if there is a certain point xy € M, where the sectional curvature
K (e, ej) is negative in any two-direction e; A e; of all the principal orthonormal
basis {e1,...,en} of vectors of the main directions of the Ricci tensor, then any
geodesic mapping of (M, g) is homothetic.

These Theorems generalize the results of Mikes [15] (see [16]), which were
obtained by means of modifications of integral inequalities obtained by Svec [1]
p. 10].

References

1. M. Afwat, A. Svec, Global differential geometry of hypersurfaces, Rozpr. Ceskoslov. Akad.
Véd Rada Mat. Piirod. Véd 88 (1978), 75 pp.

2. A.V. Aminova, Projective transformations of pseudo-Riemannian manifolds, J. Math. Sci.,
New York 113 (2003), 367-470.

3. A.L. Besse, Einstein manifolds. Vol. I, II, Reprint of the 1987 edition, Classics in Mathemat-
ics, Springer-Verlag, Berlin, 2008.

4. H. Chuda, J. Mikes, Conformally geodesic mappings satisfying a certain initial condition,
Arch. Math. (Brno) 47 (2011), 389-394.

5. M.S. Ciri¢, M.Lj. Zlatanovié, M.S. Stankovié, Lj.S. Velimirovi¢, On geodesic mappings of
equidistant generalized Riemannian spaces, Appl. Math. Comput. 218 (2012), 6648-6655.

6. L.P. Eisenhart, Riemannian geometry, Princeton Univ. Press (1949).

, Non-Riemannian Geometry, Princeton Univ. Press. 1926; Am. Math. Soc. Colloq.
Publ. 8, 2000.

8. S. Formella, J. Mikes, Geodesic mappings of Einstein spaces. Szczeciniske rocz. naukove, Ann.
Sci. Stetinenses. 9 1. (1994) 31-40.

9. I. Hinterleiner, J. Mikes, Fundamental equations of geodesic mappings and their generaliza-
tions, Geometry, Itogi Nauki Tekh. Ser. Sovrem. Mat. Prilozh. Temat. Obz., Vseross. Inst.
Nauchn. i Tekhn. Inform. (VINITI), Moscow 124 (2010) 7-34,.

, Geodesic Mappings and FEinstein Spaces; in: Geometric Methods in Physics,

Birkhauser Basel, 2013, pp. 331-336.

, Geodesic mappings of (pseudo-) Riemannian manifolds preserve the class of differ-

entiability, Math. Notes Miskolc (to appear); arXiv:1306.6810 [math.DG].
12. T. Levi-Civita, Sulle transformations delle equazioni dinamiche, Ann. Mat. Milano, 24 (1886),
255-300.

13. J. Mikes, Geodesic mappings of semisymmetric Riemannian spaces, Odessk. Univ. Moscow:
Archives at VINITI, 11.11.76, No. 3924-76 (1976) 19p.

, On geodesic and holomorphic-projective mappings of generalized m-recurrent Rie-
mannian spaces, Sib. Mat. Zh. 33 (1992), 215.

15. | Global geodesic mappings and their generalizations for compact Riemannian spaces,
Opava: Open Education and Sci., Silesian Univ. Math. Publ. (Opava) 1 (1993) 143-149.

, Geodesic mappings of affine-connected and Riemannian spaces, J. Math. Sci., New
York 78 (1996) 311-333.

17. J. Mikes, H. Chudd, On geodesic mappings with certain initial conditions, Acta Math. Acad.

Paedagog. Nyhézi. (N.S.) 26 (2010) 337-341.
18. J. Mikes, I. Hinterleitner, On geodesic mappings of manifolds with affine connection, Acta
Math. Acad. Paedagog. Nyhdzi. (N.S.) 26 (2010) 343-347.

10.

11.

14.

16.




130

19.
20.
21.
22.
23.
24.
25.

26.
27.

28.

29.

30.

31.

32.

33.

HINTERLEITNER

J. Mikes, M. Jukl, L. Juklova, Some results on traceless decomposition of tensors, J. Math.
Sci. 174 (2011) 627-640.

J. Mikes, V. S. Sobchuk, Geodesic mappings of 3-symmetric Riemannian spaces, J. Math. Sci.
69 (1994) 885-887; transl. from Ukrain. Geom. Sb. 34 (1991) 80-83.

J. Mikes, A. Vanzurové, I. Hinterleitner, Geodesic mappings and some generalizations,
Palacky University Press, 2009.

A.Z. Petrov, New methods in the general theory of relativity, Moskva, Nauka, 1966.

M. Prvanovié¢, Foundations of Geometry, Gradevinska knjiga, Beograd, 1980 (in Serbian).
M. Prvanovitch, Projective and conformal transformations in recurrent and Ricci-recurrent
Riemannian spaces, Tensor (N.S.) 12 (1962) 219-226.

Zh. Radulovich, J. Mikes, M. L. Gavril’chenko, Geodesic mappings and deformations of Rie-
mannian spaces, Podgorica: CID. Odessa: OGU, 1997 (in Russian).

N.S. Sinyukov, Geodesic mappings of Riemannian spaces, Moskva, Nauka, 1979.

E. N. Sinyukova, Geodesic mappings of certain special Riemannian spaces, Math. Notes 30
(1982), 946-949; transl. from Mat. Zametki 30(1981) 889-894.

, On geodesic definiteness in a whole of certain classes of Riemannian spaces, Zb. Pr.
Inst. Mat. NAN Ukr. 6 (2009) 195-206.

V.S. Sobchuk, On the Ricct geodesic mapping of 4-symmetric Riemannian spaces, Sov. Math.
35 (1991) 68-69; transl. from Izv. Vyssh. Uchebn. Zaved. Mat. 1991, 347 (1991) 69-70.

M. S. Stankovié¢, S. M. Mincié, Lj.S. Velimirovi¢, M. Lj. Zlatanovié¢, On equitorsion geodesic
mappings of general affine connection spaces, Rend. Semin. Mat. Univ. Padova 124 (2010)
77-90.

H. Takeno, M. Ikeda, Theory of the spherically symmetric spaces-times. VII. Space-times
with corresponding geodesics, J. Sci. Hiroshima Univ. A17 (1953) 75-81.

Y. Tashiro, Complete Riemannian manifolds and some vector fields, Trans. Amer. Math. Soc.
117 (1965) 251-275.

G. Vranceanu, Legcons de geometri différentielle, vol. I, II, Bucharest: Ed. Acad. Rep. Popul.
Roumaine, 1957.

Brno University of Technology
Faculty of Civil Engineering
Deptartment of Mathematics
Brno, Czech Republic
hinterleitner.irena@seznam.cz



Miskolc Mathematical Notes HU ISSN 1787-2405
Vol. 14 (2013), No. 2, pp. 575-582

GEODESIC MAPPINGS OF (PSEUDO-) RIEMANNIAN
MANIFOLDS PRESERVE CLASS OF DIFFERENTIABILITY

IRENA HINTERLEITNER AND JOSEF MIKES

Abstract. In this paper, we prove that geodesic mappings of (pseudo-) Riemannian manifolds
preserve the class of differentiability (C”,r > 1). Also, if the Einstein space V;, admits a non-
trivial geodesic mapping onto a (pseudo-) Riemannian manifold V,, € C!, then Vj, is an Ein-
stein space. If a four-dimensional Einstein space with non-constant curvature globally admits
a geodesic mapping onto a (pseudo-) Riemannian manifold V4 € C1, then the mapping is af-
fine and, moreover, if the scalar curvature is non-vanishing, then the mapping is homothetic, i. e.
g =const- g.
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Keywords: geodesic mappings, (pseudo-) Riemannian manifold, smoothness class, Einstein man-
ifold

1. INTRODUCTION

The paper is devoted to the geodesic mapping theory of (pseudo-) Riemannian
manifolds with respect to differentiability of their metrics. Most of the results in this
area are formulated for “sufficiently” smooth, or analytic, geometric objects, as usual
in differential geometry. It can be observed in most of the monographs and researches
dedicated to the study of the theory of geodesic mappings and transformations, see
[1,3,5-11,13-19,23-36].

Let V, = (M,g) and V,, = (M, ) be (pseudo-) Riemannian manifolds, where
M and M are n-dimensional manifolds with dimension n > 2, g and g are metrics.
All the manifolds are assumed to be connected.

Definition 1. A diffeomorphism f: V;, — Vy is called a geodesic mapping of Vy
onto V;, if f maps any geodesic in V}, onto a geodesic in V;,.

Hinterleitner and Mike$ [11] have proved the following theorem:

Theorem 1. If the (pseudo-) Riemannian manifold V, (V, € C", r > 2, n > 2)
admits a geodesic mapping onto Vy, € C2, then Vy, belongs to C”.

The paper was supported by grant P201/11/0356 of The Czech Science Foundation and by the project
FAST-S-13-2088 of Brno University of Technology.

(© 2013 Miskolc University Press
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Here and later, V,, = (M, g) € C" means that g € C’, i.e., in a coordinate neigh-
borhood (U, x) for the components of the metric g, g;;(x) € C" holds. If V;, € C",
then M € C"*1!. This means that the atlas on the manifold M has the differentiabil-
ity class C"*1, i.e., for non-disjoint charts (U, x) and (U’, x") on U N U, it is true
that the transformation x’ = x’(x) € C"+1.

We suppose that the differentiability class r is equal to 0,1,2,..., 00, w, where
0, 00 and w denote continuous, infinitely differentiable, and real analytic functions,
respectively.

In the paper, we prove more general results. The following theorem holds:

Theorem 2. If the (pseudo-) Riemannian manifold V, (Vy € C", r > 1, n > 2)
admits a geodesic mapping onto V,, € C1, then V,, belongs to C” .

Briefly, this means that the geodesic mapping preserves the class of smoothness of
the metric.

Remark 1. It’s easy to prove that the Theorems 1 and 2 are valid also for r = oo
and for r = w. This follows from the theory of solvability of differential equations.
Of course, we can apply this theorem only locally, because differentiability is a local

property.

Remark 2. To require Vy,, V, € C' is a minimal requirement for geodesic map-
pings.

T. Levi-Civita [13] found metrics (Levi-Civita metrics) which admit geodesic map-
pings, see [1,5], [25, p. 173], [27, p. 325]. From these metrics, we can easily see
examples of non-trivial geodesic mappings V;, — V;,, where

. V,,,IZ,, eClandg C™ 1 forr e N;
o V., Vy e C®and ¢ C?;
o 1.V, e C%.

2. GEODESIC MAPPINGS OF EINSTEIN MANIFOLDS

These results may be applied to geodesic mappings of Einstein manifolds V;, onto
pseudo-Riemannian manifolds V,, € C1.

Geodesic mappings of Einstein spaces have been studied by many authors starting
by A. Z. Petrov (see [27]). Einstein spaces V; are characterized by the condition
Ric = const - g.

An Einstein space V3 is a space of constant curvature. It is known that Riemannian
spaces of constant curvature form a closed class with respect to geodesic mappings
(Beltrami theorem [5,23,25,27,29,31]). In 1978 (see [15] and PhD. thesis [14], and
see [16, 20, 22], [23, p. 125], [25, p. 188]), Mikes proved that under the conditions
V.,V € C3, the following theorem holds (locally):

Theorem 3. [f the Einstein space Vy admits a non-trivial geodesic mapping onto
a (pseudo-) Riemannian manifold V,,, then Vy, is an Einstein space.
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Many properties of Einstein spaces appear when V,, € C3 and n > 3. Moreover,
it is known (D. M. DeTurck and J. L. Kazdan [4], see [2, p. 145]), that Einstein space
Vi belongs to C?, i.e., for all points of ¥}, a local coordinate system x exists, for
which g;; (x) € C® (analytic coordinate system).

It implies global validity of Theorem 3 and, on the basis of Theorem 2, the follow-
ing more general theorem holds:

Theorem 4. If the Einstein space Vy admits a nontrivial geodesic mapping onto
a (pseudo-) Riemannian manifold Vy, € C 1 then V,, is an Einstein space.

The present Theorem is true globally, because the function ¥ which determines the
geodesic mapping is real analytic on an analytic coordinate system and so ¥ (= V¥)
is vanishing only on a point set of zero measure. This simplifies the proof given in
[11].

Finally, based on the results (see [16,20-22], [23, p. 128], [25, p. 194]) for geodesic
mappings of four-dimensional Einstein manifolds, the following theorem holds:

Theorem 5. If a four-dimensional Einstein space V4 with non-constant curvature
globally admits a geodesic mapping onto a (pseudo-) Riemannian manifold V4 € C,
then the mapping is affine and, moreover, if the scalar curvature is non-vanishing,
then the mapping is homothetic, i. e. g = const - g.

3. GEODESIC MAPPING THEORY FOR V,, — V,, OF cLASS C'!

Let us briefly recall some main facts of geodesic mapping theory of (pseudo-)
Riemannian manifolds which were found by T. Levi-Civita [13], L. P. Eisenhart [5,6]
and N. S. Sinyukov [31], see [1,9-11, 14, 16, 18, 19, 23,25-32, 34-36]. In these
results, no details about the smoothness class of the metric were stressed. They were
formulated “for sufficiently smooth” geometric objects.

Since a geodesic mapping f: V;, — V}, is a diffeomorphism, we can suppose M =
M . A (pseudo-) Riemannian manifold V,, = (M, g) admits a geodesic mapping onto
Vyu = (M, g) if and only if the Levi-Civita equations

VxY = VxY + ¥ (X)Y + v ()X (3.1

hold for any tangent fields X, Y and where v is a differential form on M. Here, V
and V are Levi-Civita connections of g and g, respectively. If ¥ = 0, then f is affine
or trivially geodesic.

Let (U, x) be a chart from the atlas on M. Then, equation (3.1) on U has the

following local form: I/ = Flﬁ’ + ¥ 81}-’ + v 8;’, where Fli’ and I;l? are the Chris-

ij _
toffel symbols of V}, and V;,, ¥; are components of ¥ and 81.}’ is the Kronecker delta.
Equations (3.1) are equivalent to the following Levi-Civita equations

Vi8ij =2Vx8ij + Vigjk + ¥ &ik (3.2)

where g;; are components of g.
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It is known that
1 9
2+ 1) C T
N.S. Sinyukov proved that the Levi-Civita equations (3.1) and (3.2) are equivalent
to ([31, p. 121], [16], [23, p. 108], [25, p. 167], [29, p. 63]):

Viaij = Aigik + Aj&ik- (3.3)

detg
Yi= v W= =8

detg

where

eZ!P ~af

(@) aij = e 5% gnigp: () hi = —e2¥3% g4y, (3.4)
From (3.3) follows A; = 3; (3 aapg®®), (¢) = (gij)~' and (gV) = (§;;)~".
On the other hand [29, p. 63]:

eZ'I/

1. |detg

gij=e%8;, w= S In dete|’ (&) = (g% Pagp)™. (3.5

We can rewrite equations (3.3) and (3.4) in the following equivalent form (see [18],
[25, p. 150]):

Vial = A8 + 278, (3.6)
where
(@) a’ = g7 and (b) A = —yea®. (3.7)
Evidently, it follows
. 1 .
A= g™ 0@ gap). (3.8)

The above formulas (3.1), (3.2), (3.3), (3.6), are the criterion for geodesic map-
pings Vy, — Vy globally as well as locally. These formulas are true only under the
condition V,, V,, € C.

4. GEODESIC MAPPING THEORY FOR V,, € C2 — 17,, eC!

In this section, we prove the main Theorem 2 from above. It is easy to see that
Theorem 2 follows from Theorem 1 and the following theorem.

Theorem 6. If V,, € C? admits a geodesic mapping onto V,, € C1, then V,, € C2.

Proof. Below, we prove Theorem 6.

4.1. We will suppose that the (pseudo-) Riemannian manifold V,, € C? admits the
geodesic mapping onto the (pseudo-) Riemannian manifold V;, € C!. Furthermore,
we can assume that M = M.

We study the coordinate neighborhood (U, x) of any point p = (0,0,...,0) at
M. Evidently, components g;;(x) € C? and g;j(x) € Cton U C M. On (U, x),
formulas (3.1)—(3.8) hold. From that fact, it follows that the functions g’/ (x) € C?2,
gV (x) e CLw(x) e CL, yi(x) € C° a¥(x) e C!, Mi(x) € C°, and Fi;’(x) €
C!, where F;ﬁl = % ghk(aigjk + 0;gix — 0rgij) are Christoffel symbols.
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4.2. Tt is easy to see that in a neighborhood of the point p in V;; € C7 there
exist a semigeodesic coordinate system (U, x) for which the metric g € C” has the
following form (see [5], [25, p. 64])

ds? = e(dx")? + gap(x'. ... xMdx%xt, e=%1, a,b>1. 4.1)
Evidently, fora > 1:
gn=gl=e=%1, gu=g""=0and I}, =1, =T =0. 42

We can construct such a coordinate system using a coordinate transformation of class
C”*1 for a basis of non-isotropic hypersurfaces ¥ € C”*! in a neighborhood of
p € Y. Moreover, we can assume at p that

gij(0) =¢; 8;j; e = =£l1. (4.3)

4.3. We write equations (3.6) in the following form
dpal = A18] + AL —d'or) —aloTl . (4.4)

Because ¢/ € C! and Fajk e C! from equation (4.4), we have the existence of the
derivative immediately

dra'l, dpa', Oia' (= dixa'l), dgga, dgra, ia (= dixa),

for each set of different indices i, j, k,[. Derivatives do not depend on the order
because they are continuous functions.
We compute formula (4.4) fori = j = k and fori # j = k:

il i io i ik _ i ka i ik
dia'' =20 —2a'"I'y; and Ora'* = A" —a"" I, —a'® I
where, for an index k, we do not carry out the Einstein summation and after elimin-
ating A', we obtain
Loiat — oga'* = dker) +adork —der); (4.5)
Because there exists the partial derivative d;za'’, formula (4.5) implies the existence

of the partial derivatives dg;a’X.

4.4. In the semigeodesic coordinate system (4.1), we compute (4.4) fori = j =
k=12 = % d1a'l, and from (3.8): A! = % M(al! + ea“ﬂgaﬂ), we obtain
Bl(a"‘ﬂgag) = 0. Here and later ¢, 8 > 1.

Further (4.4) fori = j = 1 and k = 2, we have the following expression d,a'? +
alypy21 + azyfyll = A2. Using (3.8), we have

d1a'? = 5 g* - dy(a"! +aa'BgaB) _alypyzl’ v>1
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and after integration, we obtain

X
a12:l</
2 \Jo

1
g2 (th X2, .. .,x")drl) -By(a"‘B - 8ap)
1 [x
+§/ g2y(11,x2,...,xn)-8ya11d1:1
0
1

—[ IVF dt' 4+ A(x2, . x"). (4.6)
0

Asal'?(0,x2,...,x™) = A(x?,...,x™), the function 4 € C.
After differentiating the formula (4.6) by x? and using the law of commutation of
derivatives and integrals, see [12, p. 300], we can see that

(e 0 o) @7

exists. From (4.5) fori = 2and k = ¢ # 2, we obtain 0.a> = %82022 +
ar 820 +a?r SCc —a®r 822' Using this formula, we can rewrite the bracket (4.7) in
the following form

{(fo g2 (th x? ,x”)drl) - g2y - 82a22+f},

where f is the rest of this parenthesis, which is evidently differentiable by x2.
Since the parenthesis and also the coefficients by d,a2? are differentiable with
respect to x2, there exists 020022 if

L

Using (3.3), this inequality is true for all x in a neighborhood of the point p ex-
cluding the point for which x! = 0.

For these reasons, in this domain, there exists the derivative 922022 as well as all
second derivatives a'/ . This follows from the derivative of the formula (4.5).

So,a” € C? and A’ € C!, from the formula (3.7b), it follows ¥; € C! and it
means that ¥ € C2. From (3.7a) follows g"/’ € C2 and also 8ij € C2. Thisis a
proof of Theorem 6. O

1

g2 (rh X2, .. .,x”)dtl) - g2y # 0.
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Abstract. In this paper we study fundamental properties of geodesic map-
pings with respect to the smoothness tlass of metrics. We show that geodesic
mappings preserve the smoothuess class of metrics. We study geodesic map-
pings of Einstein spaces.
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1. Introduction

First we study the general dependence of geodesic mappings of (pseudo-} Riemann-
lan manifolds in dependence on the smoothness class of the metric. We present
well-known facts, which were proved by Beltrami, Levi-Civita, Weyl, Sinyukov,
etc., see [1-5]. In these results no details about the smoothness class of the metric
were discussed, They were formulated “for sufficiently smooth” geometric objects.

In the last section we present proofs of some facts about geodesic mappings
of Einstein spaces.

2. Geodesic mappings theory for V,, — V,, of class C*
Assume the (pseudo-) Riemannian manifolds V, = (M.g} and V,, = (M,§) with

metrics ¢ and §, and Levi-Civita connections V and V, respectively. Here V,,. V,,
€l ie., g.g € C' which means that their components g;;, §i; € C1,

Definition 1. A diffeomorphism f: V;, — ¥, is called a geodesic mapping of V,
onto V¥, if f maps any geodesic in V, onto a geodesic in V,,.

%
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Let there exist a geodesic mapping f: V,, — V,. Since [ is a diffeomorphisin,
we can assume the existence of local coordinate maps on M or M, respectively,
such that locally, f: V,, — V,, maps points onto points with the same coordinates,
and M = M. A manifold V,, admits a geodesic mapping onto V,, if and enly if the
Levi-Clvita equations

VxY = VxY + ¢(X)Y + 3(Y)X (1)

hold for any tangent fields X, Y and where ¢ is a differential form., If 1 = 0 than
[ is affine or trivially geodesic.

In a local form: .f’ " = I‘h + t,)gé" + ;0% where | { } are the Christoffel
symbols of V,, and P;h ¥y are components ()f ¥ and 5" is ‘ih(* Kronecker delta.
Equations (1} are equivalent to the following equations

Gisde = 205815 + ik + Vi (2)
where *," denotes the covariant derivative in V,. It is known that
i det § .
=00, V= ., & =0/0".
vi=a n+1) " |detg” ¥
Sinyukov [5] proved that the Levi-Civita equations are equivalent to
' @ijk = Aigjk + AjGik, (3)
where
dij = ..\Pqnﬁigm‘}gj! ,‘3 = ‘“?2‘;‘9“{15}33 V.
From (3) follows A = 8;X = 8;(} aazg™®). On the other hand 4, p. 631>
. o L, ldetg - T
gy =™y, ¥=3m| Il =l el @)

The above formulas are the criterion for geodesic mappings V, — ¥, globally
as well as locally.

3. Geodesic mappings theory for V,, — V,, of class C?

Let V;, and V,, € C?, then for geodesic mappings V;, = ¥, the Riemann and the
Ricei tensors transform in the following way
(a) Ry = Rl +6fw — o0 (b) Ry =Ry+n—-Vvy,  (5)
where ¢ = 9 ; — ¥;, and the \M*yi t(*nsor of projective curvature, which is
defined in the following form Wy, = Ry, — A5 (81 Ri; — 6% Rit), is invariant.
The integrability conditions of the Sinyukov equations (.S) have the following
form
Gia Ry + Ao Rt = gikAja + Giedit ~ gadjk = GitAi k. (6)
After contraction with g?* we get [5]
R = g + aia R — ans R 3" (7

where R% ;% = gfk R, o Re = g°fRs; and p = \; ;6%
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4. Geodesic mapping between V, € C" (r > 2) and V,, € C?

Theorem 2. If V,, € C” (r > 2) admits geodesic mappings onto V, € Cc?,
then V,, € C".

The proof of this Theorem follows from the following lemmas.

Lemma 3. Let \* € C* be q vector field and o a function.
If ;M\ — 00" € C! then \' € C? and o€ Ch.

Proof. The condition §;\" — 08! € C! can be written in the following form
BN — o8] = fMz), (8)

where fP(x) are functions of class C'. Evidently, p € CO. For fixed but
arbitrary indices h # i we integrate (8) with respect to dz*:

lt'-
M= AP 4 / fih(:pl,...,xi_l,t,$i+1,...,x”) dt,
=i

where A” is a function, which does not depend on z*.

Because of the existence of the partial derivatives of the functions \*
and the above integrals (see [5, p. 300]), also the derivatives 9, A" exist; in
this proof we don’t use Einstein’s summation convention. Then we can write
(8) for h =1

0= — ,’LL+(9;IAh'+/> Onfl(x',. .. " .2t ™) dt. (9)

Because the derivative with respect to 2° of the right-hand side of (9) exists,
the derivative of the function p exists, too. Obviously d;0 = & -5 f,’l‘,
therefore p € C! and from (8) follows A" € C2. 0

In a similar way we can prove the following: if \* € C” (r > 1) and
AN — o6k € CT then Ah € C™) and o € C.

Lemma 4. If V,, € C* admits a geodesic mapping onto V,, € C2, then V, € C3.

Proof. In this case Sinyukov’s equations (3) and (7) hold. According to the
assumptions g;; € C3 and g;; € C2. By a simple check-up we find ¥ € 2,
Y € Cl, aij € 02, Ai € C! and Rz;k,Rhijk,Rij,R?' e C.

From the above-mentioned conditions we easily convince ourselves that
we can write equation (7) in the form (8), where A = gh*)\, € C!, p = n/n
and f}' = (=A°Th; — g"aq, R® + g"ansR%:,%) /n € CL.

From Lemma 3 follows that A" € C? o € C!, and evidently \; € C2.
Differentiating (3) twice we convince ourselves that a;j € C3. From this and
formula (4) follows that also ¥ € C® and g;; € C°. O

Further we notice that for geodesic mappings between V,, and V, of
class C® holds the third set of Sinyukov equations:

(n = Dk =2(n+ 1)ARE + anp(2R:.° — R ;). (10)
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If V,, € C" and V, € C? then by Lemma 4, ¥, € C* and (10) hold.
Because Sinyukov’s system (3), (7) and (10) is closed, we can differentiate
equations (3) (r — 1) times. So we convince ourselves that a;; € C7, and also
Gi; €CT (=V,eC.

Remark 5. Because for holomorphically projective mappings of Kihler (and
also hyperbolic and parabolic Kéhler) spaces hold equations analogical to (3)
and (7), see {7, 9, 12], from Lemma 3 follows an analog to Theorem 2 for
these mappings.

5. On geodesic mappings of Einstein spaces

Geodesic mappings of Einstein spaces were studied by many authors starting
with A.Z. Petrov (see [10]). Einstein spaces V;, are characterized by the con-
dition Ric = const - g, so V,€ C? would be sufficient. But many properties of
Einstein spaces appear when V,, € C® and n > 3. An Einstein space V; is a
space of constant curvature.

We continue with geodesic mappings of Einstein spaces V;, € C3. On
basis of Theorem 2 it is natural to suppose that V,€ C3. In 1978 (see PhD
thesis [3] and [4]) Mikes proved that under these conditions the following
theorem holds:

Theorem 6. If the Einstein space V,, admits a nontrivial geodesic mapping
onto a (pseudo-) Riemannian space V,,, then V,, is an Einstein space.

Proof. Let the Einstein space V,, € C? (for which R;; = —K (n—1) g; ) admit
a nontrivial geodesic mapping onto V,, € C2. Then the Sinyukov equations (3)
hold; their integrability conditions have the form (6). Taking (3) into account,
we differentiate (6) with respect to ™, contract the result with ¢'™, and then
we alternate with respect to ¢, k. By (8), we get AR = i€k — gik€j, where
§i is some vector. Contracting the latter with ¢*/ and using (8) we see that
& = K\, that is, the formula reads A, F “;k = K(gij e — girAj)-

We contract (6) with A!. Considering the last formula, we get

gkiAja)‘a + gijm)\"‘ - /\,A;k — /\A?k = 0 (11
where Aij = A;; — Ka;;. It is easy to show that A®A,; = p;, where p1 is a
function. Slnce /\ # 0, we find from (11) that
/\7'_]' = W gij + K Qjj. (12)

Differentiating (4b) and considering (2), (3), (4), it is easy to get the following
equation:

Yij = iy g~ Wiy = Kgij - Kgij, (13)
where K is a function. Then from (5b), by virtue of the last relation, and
considering R;j = —K (n — 1) gj, we get that R;; = (n — 1)K §;;. Hence V,
is an Einstein space. The theorem is proved. g
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Theorem 6 was proved “locally” but it is easy to show that when the
domain of validity of equations (13) borders with a domain where ¥ = 0,
then in this domain +; = 0. Assume a point z, on the borders between these
domains, then v;(z¢) = 0 and ¢;; = 0. Indeed a) If K # 0 or K # 0 then
Gij(z0) = K/K gij(zo). From these properties follows that the system of
equations (2) and (13) has a unique solution g; = K/K gi; and ¢¥; = 0.
b) If K = K = 0 then equations (13): ¢; ; = v;1»; have a unique solution for
Yi(zo) = 0: ¢ =

This Theorem was used for geodesic mappings of 4-dimensional Einstein
spaces (Mikes, Kiosak [8]) and to find metrics of Einstein spaces that admit
geodesic mappings (Formella, Mikes [2]), etc.
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Abstract. In the present paper a generalized Kihlerian space Gﬂlﬁ N of the first kind is

considered as a generalized Riemannian space GR 5 with almost complex structure Fih that
is covariantly constant with respect to the first kind of covariant derivative.

Using a non-symmetric metric tensor we find necessary and sufficient conditions for
geodesic mappings f: GRy — G”fN with respect to the four kinds of covariant deriva-

tives. These conditions have the form of a closed system of partial differential equations
in covariant derivatives with respect to unknown components of the metric tensor and the
complex structure of the Kédhlerian space Gﬂlﬁ N-

Keywords: geodesic mapping; equitorsion geodesic mapping; generalized Kéhlerian space

MSC 2010: 53B05, 53B35

1. INTRODUCTION

Geodesic mappings of Kihlerian manifolds have been studied by many authors.
We continue the general idea by introducing the notion of generalized Kihlerian
spaces of the first kind GU§N, which generalize K#hlerian spaces in the spirit of
Einstein’s Unified Field Theory and Moffat’s non-symmetrical gravitational theory.
This paper is devoted to the study of geodesic mappings of generalized Riemannian
spaces to generalized Kihlerian spaces of the first kind GH§N,

The authors gratefully acknowledge support from the research project 174012 of the
Serbian Ministry of Science and FAST-S-13-2088 of the Brno University of Technology.
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The main results of the paper: New explicit formulas of geodesic mappings onto
G[I1< N are given in Subsection 3.1, new explicit formulas of equitorsion geodesic map-
pings onto GU§N in Subsection 3.2.

In a similar way we can consider generalized Kéahlerian spaces of the second, the
third and the fourth kind.

2. GENERALIZED KAHLERIAN SPACES OF THE FIRST KIND

2.1. Generalized Riemannian spaces. A generalized Riemannian space GRy
in the sense of Eisenhart’s definition [5] is a differentiable N-dimensional manifold,
equipped with a non-symmetric metric tensor g;; (i.e. g;; # gj;). The symmetric and
the antisymmetric parts of g;; are

1 1 1 1
9ij = 5(9ij + 95i) = 5969 9ij = 5(9is = 95) = 5904
The lowering and the rising of indices are defined by the tensors g;; and g% | respec-
tively, where g% is defined by the equation

(2.1) 919k = oF

(6% is the Kronecker symbol). From (2.1) we have that the matrix (¢”2) is inverse
to (gi;), wherefrom it is necessary that g = det(g;;) # 0. Connection coefficients of
this space are generalized Christoffel symbols of the second kind, where

agij

) ) 1
F;‘k =g Ty gk, Tije= i(gji,k = Gjk,i t Gik,j)s  Gijk = azk

Generally I‘é-k #* I‘};j. Therefore, one can define the symmetric and the anti-
symmetric part of I‘; &> respectively, by

i [ i 1 i 1 i 1
Uoe = 5+ Thy) = 506wy Tie = 5Tk = Tig) = 5T

The quantity F;k is the torsion tensor of the spaces GRy.

The use of a n:)n—symmetric metric tensor and a non-symmetric connection became
especially topical after the appearance of the papers of A. Einstein [2]-[4] related to
the attempt to formulate a Unified Field Theory (UFT). We remark that in UFT
the symmetric part g;; of g;; is related to gravitation, and the antisymmetric one
gi; to electromagnetis?n. More recently the ides of a non-symmetric metric tensor

\
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appears in Moffat’s non-symmetric gravitational theory [17]. In Moffat’s theory the
antisymmetric part represents a Proca field (massive Maxwell field) which is part of
the gravitational interaction, contributing to the rotation of galaxies.

Based on the non-symmetry of the connection in a generalized Riemannian space
one can define four kinds of covariant derivatives. For example, for a tensor a® in

J
GRy we have

i i P i i i P i
T = W+ Tp @y — T30, agy,, = aj, + 1507 =TT ap,
1 2
i i P i i i P i
jim = +F:Dm J Fm] pr jlm = +Fmp J ij p*
3 4

By applying four kinds of covariant derivatives of tensors, it is possible to con-
struct several Ricci type identities. In these identities 12 curvature tensors appear
as well as 15 quantities, which are not tensors, named “curvature pseudotensors”
by S.M. Min¢i¢ [12], [13]. In the case of the space GRy we have five independent

curvature tensors.

2.2. Generalized Kihlerian space of the first kind. Kihlerian spaces and
their mappings were investigated by many authors, for example T.Otsuki and
Y. Tasiro [18], [25], K. Yano [26], J. Mikes, V. V. Domashev [1], [6], [7], [8], [9], [10],
[11], [22], M. Prvanovi¢ [19], N. Pusi¢ [21], S. S. Pujar [20], M. S. Stankovi¢ at al. [16],
[24], and many others.

An N-dimensional Riemannian space with metric tensor g;; is a Kdhlerian space
K if there exists an almost complex structure F ]’ such that

FyFl ==},
gquiijq = Yij» gij = ngﬁFg,
F, Z,Lg =0,
where “;” denotes the covariant derivative with respect to the metric tensor g;;.

Definition 2.1. A generalized N-dimensional Riemannian space with non-
symmetric metric tensor g;; is a generalized Kdhlerian space of the first kind G[K N
if there exists an almost complex structure Fj ¢ such that

h h
(2.2) FrEP = 5P,
(2.3) ngipF;] = 9ij, gw _ gquzFJ
h h
=0, Fy; =0,
1
where “|” denotes the covariant derivative of the first kind with respect to the con-

1
nection F;- e (I j e 7 L j) and “” denotes the covariant derivative with respect to the

symmetric part of the metric tensor F;k.
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From (2.3), using (2.2), we get F;; = —Fj; and F¥ = —FJ" where we denote
Fji = FPgpi, FI' = Fig”.
The following theorem holds.

Theorem 2.1 ([23]). For the almost complex structure FJZ of GHfN the relations

h __ h __ h h __ h
Fl; =0, Fl,=2BT}, Fj,=2FT},

are valid, where F?j is the torsion tensor.
A\

3. GEODESIC MAPPING

3.1. Geodesic mapping between generalized Kihlerian spaces of the first
kind. In this part we consider geodesic mappings f: GRy — GKN.

Definition 3.1. A diffeomorphism f: GRy — Gg;v is geodesic, if geodesics of
the space GRy are mapped to geodesics of the space Gg]\;.

At the corresponding points M and M we can put
(3.1) T =Th+ Pl (i,jk=1,...,N),
where Pjik is the deformation tensor of the connection I' of GRy corresponding to

the mapping f: GRy — GKN.

Theorem 3.1 ([14]). A necessary and sufficient condition for the mapping f:
GRy — GKN to be geodesic is that the deformation tensor P;k from (3.1) has the

form
(3.2) P;k = 5§¢k + 55 + §;‘ka

where
1

Re] a 7 7 1 ) 7
(S N—_H(Fia -T), &= ik = 5( ik — Prj)

We remark that in GD1§ ~ the following equations are valid:

re, =0, &,=0 F*=0.

1Y

In [11] Mikes et al. proved necessary and sufficient conditions for geodesic mappings
of a Riemannian space onto a K#hlerian space.

1116



Theorem 3.2. The Riemannian space Ry admits a nontrivial geodesic mapping
onto the Kahlerian space Ky with metric g;; and complex structure Ff satisfying

9ij = Gji, det(@j) # 0, Ffﬁpj + Fé)?pi =0, FZFf = —5?7

if and only if, in the common coordinate system x with respect to the mapping, the
conditions

a) Gijik = 2UkGij + ViGjx + ViTis

b) Fly = Fiabi — 60 F e
hold, where ; # 0.

Our idea is to find the corresponding equations with respect to the four kinds of
covariant derivative.

In all the following theorems concerning mappings from a generalized Riemannian
space onto a generalized Kéhlerian space, g,;; and F{ denote the metric and the
almost complex structure of G[I1< N, respectively, satisfying

(3.3) Gij # Gji» det(gy;) #0, Flg,; +F%g,, =0, FZFf = 0.
pi T i

Theorem 3.3. The generalized Riemannian space GRy admits a nontrivial
geodesic mapping onto the generalized Kéhlerian space GKN if and only if, in the

common coordinate system x with respect to the mapping, the conditions

(3.4) a) 9ijlke = 9Tk T 208G + iG + ViGi + EkTas T EGkTias
1 Vi

b)  Fjy = Fity — 00 F e — EFF + 64 F L,
1

hold with respect to the first kind of covariant derivatives, where 1; # 0.

Proof. Equation (3.4) a) guarantees the existence of a geodesic mapping from
the generalized Riemannian space GRy onto the generalized Riemannian space GR y
with metric tensor g;; with respect to the first kind of covariant derivatives (see [15]).

Formula (3.4) b) implies that the structure F'? in GRy is covariantly constant
with respect to the first kind of covariant derivative. The algebraic conditions (3.3)
guarantee that g;; and F are the metric tensor and the structure of GEN, respec-
tively.

The deformation tensor is determined by equation (3.2), i.e.,

—=h
(3.5) Ty, — Tl =0l + ;00 + &)
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For the structure F, we have the following equations:

(3.6) F”k =F! +ThFP —T0 F, F”k =Fl + T —T0 Fh.
Replacing I'}; from (3.5) in (3.6), we get

— — —h — — —
Fli =Fry + (T — b — ol — E)FY — (T, — i6h — vi6? — E5)Fp
1

= Fhk + Fkap Q/’p‘SIZLFf - ﬁ’k(sgﬁf - ngf - ffkfz
+ 1/)1(5;]:}7; + 1l)k5f172 + fkoZ
= — YO FY — Oy FY — L FY + i) Fy + iU Fy + €4 F
1

= Fli — UpOp FY — i F) — ffsz + O F+ 0 P+ 6Ty
1

- Fﬁk — YpR Y + 1 F — + &0 Fh,
\,1./
0
where “|”, and “T” are covariant derivatives in GRy and GEN, respectively. O

Theorem 3.4. The generalized Riemannian space GRy admits a nontrivial
geodesic mapping onto the generalized Kéhlerian space GKN if and only if, in the

common coordinate system x with respect to the mapping, the conditions
a) ?ij\k = ?mk + 20175 + ViGjn + V50 + ERiTaj + &k Tias
b) F k =F} wz SpF e — EL T8 + EFL,

hold thh respect to the second kind of covariant derivatives, where 1; # 0.

Proof. For the second kind of covariant derivatives in GRy, we have

= Fhk + (ka wk(%’.? — Ppp — fkp) (Pm Y0y — hidy, — fzi)FZ

=Fl + rkap UrOhFY — 1, 0RFY — e FP — T, Fh
+ wké‘th 4 1/%5th + é'p Fh
=iy, — 00y T — 000 T — L FY + 0l Ty + 9o Ty + LT

2
= M — Uk Fy — 00} = §, FY + O Fy + Py + . F

= UiFy — U0 Py — &1, FF + €1 Fy.
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In a similar way, we can prove the corresponding theorems for the third and the
fourth kind of covariant derivative:

Theorem 3.5. The generalized Riemannian space GRy admits a nontrivial
geodesic mapping onto the generalized Kéhlerian space GKN if and only if, in the

common coordinate system x with respect to the mapping, the conditions
) g’L] \k z]|k + 2%91] + wtgjk + wjgzk + gzkga] + E}cggwu
b) Fﬁk = Fh — PO Y+ i F = EFY + L F ),

hold with respect to the third kind of covariant derivatives, where 1; # 0.

Theorem 3.6. The generalized Riemannian space GRy admits a nontrivial
geodesic mapping onto the generalized Kéhlerian space GKN if and only if, in the

common coordinate system x with respect to the mapping, the conditions
a) ?z‘j\k = ?iﬂk + 2G5 + Vi + ¥i0i + €RiTas + 5k Tias
b) Fflk = Fh — YpORFY + p F — fﬁpr + &5 Fh

hold with respect to the fourth kind of covariant derivatives, where 1); # 0.

3.2. Equitorsion geodesic mapping. Equitorsion mappings play an important
role in the theories of geodesic, conformal and holomorphically projective transfor-

mations between two spaces of non-symmetric affine connection.

Definition 3.2 ([14]). A mapping f: GRy — GKN is an equitorsion geodesic
mapping if the torsion tensors of the spaces GRy and G[I1< ~ are equal. Then from
(3.1), (3.2) and (3.5):

f’; — rh] =& =0

where ij denotes an antisymmetrization with respect to i, j.
v

In the case of these mappings, the previous Theorems 3.3-3.6 become:

Theorem 3.7. The generalized Riemannian space GRy admits a nontrivial equi-
torsion geodesic mapping onto the generalized Kéhlerian space GKN if and only if|

in the common coordinate system x with respect to the mapping, the conditions
a) yij\k = 20195 + Vi, + iGin;
b) Fiﬁk = Pt — 6} F oy,

hold with respect to the first kind of covariant derivatives, where 1; # 0.
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Theorem 3.8. The generalized Riemannian space GRy admits a nontrivial equi-
torsion geodesic mapping onto the generalized Kéhlerian space GKN if and only if|
in the common coordinate system x with respect to the mapping, the conditions

a) Gijik = 2VkGs; + ik + ViGas

i) i ik
b) Fﬁk = FZ#)Z - 52Ff1/1p,
2

hold with respect to the second kind of covariant derivatives, where 1; # 0.

Theorem 3.9. The generalized Riemannian space GRy admits a nontrivial equi-
torsion geodesic mapping onto the generalized Kéhlerian space GKN if and only if|
in the common coordinate system x with respect to the mapping, the conditions

a) Gijik = 2¥kG;; + ViGjk + Vi 0iks
i} i ik
b) Fi) = Fhlk — 0N + o, Fh,
3

3
3

hold with respect to the third kind of covariant derivatives, where 1; # 0.

Theorem 3.10. The generalized Riemannian space GRy admits a nontrivial
equitorsion geodesic mapping onto the generalized Kéhlerian space GE n if and only
if, in the common coordinate system x with respect to the mapping, the conditions

a) Gijik = 2¥kGs; + ViGjk + Vi 0uks

g iy
Th _ Th R Th
b) lek = FiTk — PO FY + 4, Fy,
4

hold with respect to the fourth kind of covariant derivatives, where v; # 0.

4. CONCLUSION

We have shown that the notions of geodesic and equitorsion geodesic mappings
from Riemannian to Ké&hlerian spaces can be generalized to the case of a non-
symmetric metric, and we have given necessary and sufficient conditions for nontrivial

such mappings.
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Geodesic Mappings and Differentiability of Metrics,
Affine and Projective Connections

Irena Hinterleitner?, Josef MikesP

*Brno University of Technology, Faculty of Civil Engineering, Dept. of Math.
bPalacky University Olomouc, Dept. Algebra and Geometry

Abstract. In this paper we study fundamental equations of geodesic mappings of manifolds with affine
and projective connection onto (pseudo-) Riemannian manifolds with respect to the smoothness class of
these geometric objects. We prove that the natural smoothness class of these problems is preserved.

1. Introduction and Basis Definitions

To theory of geodetic mappings and transformations were devoted many papers, these results are
formulated in large number of researchs and monographs [1], [2], [3], [4], [5], [7], [8], [9], [10], [11], [12], [13],
[14], [16], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [30], [31], [32], [33], [34], [35], [36], [37], etc.

First we studied the general dependence of geodesic mappings of manifolds with affine and projective
connection onto (pseudo-) Riemannian manifolds in dependence on the smoothness class of these geometric
objects. We presented well known facts, which were proved by H. Weyl [37], T. Thomas [35], ]. Mikes and
V. Berezovski [21], see [5], [20], [25], [26], [30], [32], [36].

In these results no details about the smoothness class of the metric, resp. connection, were stressed.
They were formulated as “for sufficiently smooth” geometric objects.

In the paper [14, 15] we proved that these mappings preserve the smoothness class of metrics of
geodetically equivalent (pseudo-) Riemannian manifolds. We prove that this property generalizes in a
natural way for a more general case.
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2. Geodesic Mapping Theory for Manifolds with Affine and Projective Connections

Let A, = (M, V) and A, = (M, V) be manifolds with affine connections V and V, respectively, without
torsion.

Definition 2.1. A diffeomorphism f: A, — A, is called a geodesic mapping of A, onto A, if f maps any geodesic in
A, onto a geodesic in A,,.

A manifold A, admits a geodesic mapping onto A, if and only if the Levi-Civita equations (H. Weyl [37],
see [5, p. 56], [25, p. 130], [26, p. 166], [32, p. 72]):

VxY = VxY + p(X)Y + (V)X (1)

hold for any tangent fields X, Y and where ¢ is a differential form on M (= M). If ¢ = 0 then f is affine or
trivially geodesic.

Eliminating 1 from the formula (1) T. Thomas [35], see [5, p. 98], [25, p. 132], obtained that equation (1)
is equivalent to

I1(X,Y) =T1I(X, Y) for all tangent vectors X, Y, (2)

where
X, y)=v(x,y) - % (trace(V — VyX) - Y + trace(V — VyY) - X)

is the Thomas” projective parameter or Thomas” object of projective connection.

A geometric object I1 that transforms according to a similar transformation law as Thomas’ projective
parameters is called a projective connection, and manifolds on which an object of projective connection is
defined is called a manifold with projective connection, denoted by P,. Such manifolds represent an obvious
generalization of affine connection manifolds.

A projective connection on P, will be denoted by v. Obviously, ¥ is a mapping TP, X TP, — TP, i.e.
(X,Y) = vxY. Thus, we denote a manifold M with projective connection v by P, = (M, ¥). See [5, p. 99], [6].

We restricted ourselves to the study of a coordinate neighborhood (U, x) of the points p € A, (P,) and
f(p) € Ay (P,). The points p and f(p) have the same coordinates x = (x},...,x").

We assume that A,, A,, Py, P, € C" (V,V,V,¥ € C7) if their components Fi?j(x),l_’i?j(x), Hf.’].(x), ﬁi?j(x) eC
on (U, x), respectively. Here C" is the smoothness class. On the other hand, the manifold M which these
structures exist, must have a class smoothness C"*2. This means that the atlas on M is of class C'*2, i.e. for
the non disjunct charts (U, x) and (U’,x) on (U N W’) it is true that the transformation x" = x’(x) € C"*2.

Formulae (1) and (2) in the common system (U, x) have the local form:

) = T1(0) + 9i(x)d} + (05} and TTji(x) = IT);(x),
respectively, where 1; are components of 1 and ¢! is the Kronecker delta.

It is seen that in a manifold A, = (M, V) with affine connections V there exists a projective connection
v (i.e. Thomas projective parameter) with the same smoothness. The opposite statement is not valid, for
example if Ve C" (= v € C"and also ¥ € C") and ¢(x) € C°, then V € C°.

In the paper [12] we presented a construction that the existing V on M guarantees on P, = (M, V).
Moreover, the following theorem holds:

Theorem 2.2. An arbitrary manifold P, = (M, V) € C" admits a global geodesic mapping onto a manifold A,
= (M, V) € C" and, moreover, for which a formula trace(V — Vy)X = VxG holds for arbitrary X and a function G
on M, i.e. A, is an equiaffine manifold and V is an equiaffine connection. Moreover, if r > 1 the Ricci tensor on A, is
symmetric.
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Proof. Tt is known that on the whole manifold M € C"*2 exists globally a sufficiently smooth metric § € C'*1.
For our purpose it is sufficient if § € C"*!, i.e. the components g;; of § in a coordinate domain of M are

functions of type C'*!. We denote by V the Levi-Civita connection of §;j, and, evidently, V € C".

We define 7(X) = # trace(V — VyX) and we construct V in the following way

VxY = vxY +1(X)- Y +7(Y)- X. 3)

It is easily seen that V constructed in this way is an affine connection on M. The components of the object
V in the coordinate system (U, x) can be written in the form: I_“i?j(x) = H?j(x) + Ti(x) - 6?’ + 7(x) - 6? where
1_[?]. and ff.’]. are components of the projective connection ¥ and the affine connection V, respectively, and
T = ﬁ dG/dx', G = In \/m It is obvious that P, is geodesically mapped onto A, =(M,V), and,
evidently because ff;. eC,A,eC.

Insofar as IT%(x) = 0, then I%,(x) = dG/dx’, i.e. trace(V — Vy)X = VxG. Hence follows that A, has an
equiaffine connection [26, p. 151]. Moreover, if V € C! then the Ricci tensor Ric is symmetric ([25, p. 35], [26,
p-151]). O

3. Geodesic Mappings from Equiaffine Manifolds onto (pseudo-) Riemannian Manifolds

Let manifold A, = (M, V) € C° admit a geodesic mapping onto a (pseudo-) Riemannian manifold V,, =
(M, g) € C!, i.e. components gij(x) € C(U). Itis known [21], see [25, p. 145], that equations (1) are equivalent
to the following Levi-Civita equations

Vigij = 29k gij + Yigjx + P ik 4)
If A, is an equiaffine manifold then i) have the following form
1 - _ 1 a L i
Y=V, V= 1 In +/|detgl—p, dip = — Ie, di=d/dx,

and Mike§ and Berezovski [32], see [25, p. 150], proved that the Levi-Civita equations (1) and (4) are
equivalent to

Via'l = Al§] + Ve, (5)
where

(a) ai]' — e2\I’ gij’. (b) /\i — _eZ\I’ giawa' (6)
Here [|77]| = ||7]I™*. On the other hand:

gij = e™gy, W=In+/Idetgl-p, gl =lla"|I"". 7)

Using the equation Hi?].(x) = Fi?].(x) (see (37.4) in [5, p. 105]), where I1 is a projective connection and TI' is
normal affine connection (it is also equi-affine), we after substitution Fi?].(x) - Hi?].(x) into (5) have equation
(2.3) in [4], immediately.

Furthermore, we assume that A, = (M,V) € C' and V,, = (M, g) € 2, In this case, the integrability
Eonditions of the equations (5) from the Ricci identity V,Via'l — VVail = —ui"‘RL e af“R;kl have the following

orm

—a R, = R, = SLVIA + 8] ViAT = 6IVil] = 8] Vi, (8)
where R?jk are components of the curvature (Riemannian) tensor R on A,, and after contraction of the indices
i and k we get [21]

nViA = 18] = a* Ry — a* R’ o 9)

where u = V,A% and R;; = R% . are components of the Ricci tensor Ric on A,,.
# ] laj p
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4. Main Theorems

Let V,, = (M, g) € C" be the (pseudo-) Riemannian manifold. If > 1 then its natural affine connection
V € C! (i.e. the Levi-Civita connection) and projective connection ¥ € C"~!; hence A, = (M, V) and P, =
(M, v) be manifolds with affine and projective connection, respectively. The following theorems are true.

Theorem 4.1. If P, € C'™! (r > 2) admits geodesic mappings onto a (pseudo-) Riemannian manifold V,, € C?, then
V,eC.
Theorem 4.2. If A, € C""1(r > 2) admits geodesic mappings onto a (pseudo-) Riemannian manifold V,, € C?, then
V,eC.

Based on the previous comments (at the end of the second section), it will be sufficient to prove the
validity of the second Theorem. Moreover, the manifold A, can be an equiaffine manifold.
The proof of the Theorem 4.2 follows from the following lemmas.

Lemma 4.3 ([13]). Let A" € C' be a vector field and ¢ a function. If ;A" — 96" € C then A" € C* and ¢ € C'.
Proof. The condition 9;A" — o 6? € C! can be written in the following form
9" — o8} = fl(x), (10)
where f!'(x) are functions of class C'. Evidently, g € C°. For fixed but arbitrary indices  # i we integrate
(10) with respect to dx":
A= Al 4 ]:x fih(xl,...,xi‘l,t,x”l,...,x”)dt,

where A" is a function, which does not depend on x'.

Because of the existence of the partial derivatives of the functions A" and the above integrals (see [17,
p- 300]), also the derivatives Iy A" exist; in this proof we don’t use Einstein’s summation convention. Then
we can write (10) for h = i:

xi
0=—f"+ A" + f Ofixt, .. x Ex,  xT dt. (11)
Xo

Because the derivative with respect to x of the right-hand side of (11) exists, the derivative of the function g
exists, too. Obviously dig = d, f!' — 9; f}!, therefore g € C' and from (10) follows AMecC? O

In a similar way we can prove the following: if A" € C" (r > 1) and 9;A" — g6 € C" then A" € C"* and g € C.
Lemma 4.4. If A, € C? admits a geodesic mapping onto V,, € C?, then V, € C°.

Proof. In this case Mike§’s and Berezovsky’s equations (5) and (9) hold. According to the assumptions,
Ff.’j € C? and gj; € C*. By a simple check-up we find ¥ € C?, ¢; € C', a;j € C2, A" € C' and Ri?].k, Rjje CL.
From the above-mentioned conditions we easily convince ourselves that we can write equation (9) in
the form (10), where ‘
0=u/n and fih = (—)\“in +a/*Ry — uaﬁRiﬁl)/n eC.
From Lemma 4.3 follows that A" € C2, g € C!, and evidently A € C2. Differentiating (5) twice we
convince ourselves that 4’/ € C3. From this and formula (7) follows that also ¥ € C® and g;; € C*. [

Further we notice that for geodesic mappings from A, € C? onto V,, € C3 holds the third set of Mike§'s
and Berezovsky’s equations [21]:

(n = 1)Vip = =2(n + 1)A"Rax + a™ (Rapx — 2Rk p)- (12)
If A, € C"!and V, € C?, then by Lemma 4.4, V,, € C°® and (12) hold. Because Mike$’s and Berezovsky’s

system (5), (9) and (12) is closed, we can differentiate equations (5) r times. So we convince ourselves that
ale(C andalso gjjeC" (= V,eC). O
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Abstract. In this paper we study special mappings of equidistant spaces in a canonical
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1 Introduction

The theory of conformal, affine, geodesic, harmonic and other mappings is an interesting part
of differential geometry of Riemannian and pseudo-Riemannian spaces, see [1]-[14].

In this paper we study special mappings of equidistant spaces in a canonical coordinate
system, concretely for conformal, affine, geodesic, harmonic, conformally-projective harmonic
and equivolume mappings.

For the calculations in this paper we will make use of tensorial analysis in local form, all
used functions are continuous and sufficiently differentiable. The dimension n of the studied
spaces is larger than two, unless stated otherwise. All spaces are linearly connected.

In this paper we use notions from the theory of Riemannian spaces as in the monographies
and reviews [1]-[10].

2 Equidistant spaces

Assume a Riemannian space V,,, determined by the symmetric and regular metric tensor g;;(x)
and endowed with a local coordinate system x = (z*, 2%, ..., 2").

In the following, under the notion “Riemannian” we understand “true” Riemannian metrics
with positive signature as well as pseudo-Riemannian ones with negative signature, like in
[8, 9, 10], for example.
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Christoffel symbols of types I and II are introduced on V,, by the following formulas
Lije = 5 (0igjr + 0j9ik — Orgi;) and Tl = ¢"Tyja, where 9; = 9/0x', ¢g¥ is the inverse
matrix to g;;. Christoffel symbols of type II are the natural connection (the Levi-Civita con-
nection) of Riemannian spaces.

A vector field " is called concircular, if
g = o0l

where o is a function, 0 is the Kronecker delta, “” denotes the covariant derivative with
respect to the connection of the space V,,. If o = const, " is convergent. A Riemannian space
V,, with concircular vector field is called equidistant, see [5, 10, 13].

In equidistant spaces V;,, where the concircular vector fields are nonisotropic (i.e. g;;£°¢7 # 0),
we can introduce a system of so-called canonical coordinates x, where the metric is of the form

ds? = a(z") (dz')” + b(z") d52, (1)

and a,b € C! are non-zero functions, d3? = (22, ..., 2") dz®da® is the metric form of certain

Riemannian spaces V,,_;. Here and after the indices a, b, ¢, ... assume values from 2 to n.

Under the regular transformation z! = z'(z'); 2% = z%(2?,...,2"), the principal form of
the metric does not change (1). Firstly W.H. Brinkmann [2]| found a metric (1) in the form (1)
with @ = 1/f(2') and b = f(z'), and often the metric of the equidistant spaces is written in
the form with a = £1 and b = f(2!), see [1, 4, 5, 7, 8, 10, 13].

It is known, that curves ¢ = {(t, 2 ... ,%”), t € R} are geodesics and they form a geodesic
congruence. The hypersurface S = {z! = const} is orthogonal to this congruence and there is
a conformal to f/n_l.

We will compute the non-zero components of the Christoffel symbols for the metric form (1):

1 1, 1, ~
T = 5 CL/; Figp = Lo = 5 v YGab; Lo = _5 b Gab; Lope = bFabc;
2)
1d 1Y 1y B ~ (
Fh N 5 E; Fi}a - Fgl - 5 E 52; Ftllb = _5 E Gab; Fcclb = nga

where Ty and fgb are Christoffel symbols of type I and IL, respectively, of V,,_;.

3 Special mappings of Riemannian spaces

Consider then a map f: V,, — V,, in a common coordinate system x, i.e. the point M € V,,
and its image f(M) € V, have the same coordinates z = (z',2?,...,2"); the corresponding
geometric objects in V,, will be marked with a bar. For example, F?j is the Christoffel symbol

of V,.

Definition 3.1 ([2, 3, 8, 10, 13]) The mapping f: V,, — V,, is conformal if and only if, in the
common coordinate system z with respect to the mapping, the condition g;;(z) = €*@ g;;(x)
holds, where o(x) is a function on V.

Definition 3.2 ([3, 5, 8, 10]) The diffeomorphism f: V,, — V,, is called a geodesic mapping if
f maps any geodesic line of V,, into a geodesic line of V,.
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The mapping from V,, onto V,, is geodesic if and only if, in the common coordinate system x
with respect to the mapping, the conditions

Tl (x) =T (x) + 05 + 811 (3)

hold, where v; (z) is a gradient-like covector, 6! is the Kronecker delta. If 1; #Z 0, then a
geodesic mapping is called nontrivial; otherwise it is said to be trivial or affine.

Harmonic mappings as introduced by many authors, for example [11, 12], preserve the
solutions of the Laplace equation. The diffeomorphism from V,, onto V,, is harmonic if and only
if, in the common coordinate system x with respect to the mapping, the following conditions
hold [11]

=h h ij _

(Fz’j (z) — Fij (z))g” = 0. (4)
Definition 3.3 ([4]) The composition of conformal and geodesic (projective) mappings in the
case when it is harmonic is called conformally-projective harmonic.

A diffeomorphism from V,, onto Vj, is a conformally-projective harmonic mapping if and only
if in the common coordinate system x the following condition holds

= 2
FZ’ (z) = FZ’ (z) + 901‘5;1 + ;0 — o ©" i) (5)
where ¢; is a gradient-like covector and " = ¢"%¢,.
Finally we consider equivolume mappings, which were defined and studied by T.V. Zudina

and S.E. Stepanov [14]. This mapping f: V,, — V,, is characterized by the following condition
i () =T (2). (6)

4 Special mapping for equidistant spaces

Consider a special mapping f between equidistant spaces V;, and V,, , where the equidistant
space V,, has a metric of the form (1) and the equidistant space V;, has an analogous metric

ds® = A(z") (dz')* + B(2') ds?, (7)

where A, B € C! are non-zero functions, ds? = g (22, ..., 2") dz%da® (a,b = 2, ...,n) is the
metric form of certain Riemannian spaces Vn_l.

The equdistant space V;, is defined by non-zero differentiable functions a(x'),b(z') and the
metric d§? of V,,_;. Analogically, the image of the metric under the special mapping f in V,, is
defined by non-zero differentiable functions A(z'), B(x'), and the metric form d§? of Vj,_;.

Under this map the geodesic curves ¢ = {(t, 2. ,%"), t € R of V,, map into the geodesics
of V,, and the orthogonal surfaces on this geodesic congruence of V;, also map into the orthogonal
surfaces on the corresponding geodesic congruence of V.

The deformation tensor P/i(x) = I'y(x) — T (2) of the mapping f: V,, — V, has in this
case the following form

1 A/ /
Plllz_(__%>; Plla:PC}IZPlclzo; Py, =P =

2\ A
1 (B v c e e
Palb = D) (Zgab - ggab) ;o Py =10 — Tops
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where T'¢, and I'¢, are the Christoffel symbols of V,_; and V,,_;.

4.1 Conformal mappings. By simple analysis we obtain the following lemma.

Lemma 4.1 The special mapping | between equidistant spaces V,, and V,, is conformal if and
only if there exists a function o(x') # 0 and the metric of V,, has the following form

ds? = o(x')ds® = o(z") (a(xl) (dz")” + b(z") d§2> :

4.2 Affine mappings. An affine mapping f: V, — V, is characterized by the condition
Pfj‘ = 0. From (8) follows A = a-a and B = (3 -b, where a, 3 = const # 0. After a detailed
analysis we obtain the following lemma.

Lemma 4.2 The special mapping f between equidistant spaces V, and V,, is affine if and only if
1) the metric of V,, has the following form ds* = const - ds?, i.e. f is homothetic, and
2) if b(z') = const, the metric of V,, has the following form ds* = aa(z') (dxl)2 + d&?,
and the space Vn_l with the metric d3? is affine to Vn_l.

4.3 Geodesic mappings. Rewriting the necessary and sufficient condition (3) of the geodesic
mapping V,, — V,in terms of the deformation tensor in the form Ph wléh + ;0 we obtain

Plio= (5 =) = G Heidl =20 = § -9 =4
Py, = LB _tyse = a6+ 10 =10 = B —E =2
Pl = —55gw—Yia) = vall+0idi=0; = H -0

Py, = Dy —Tg = Va0 =0 = Y=

By analysis of these equations we obtain the following theorem.

Theorem 4.3 The special mapping f between equidistant spaces V,, and V, is non-trivially
geodesic if and only if Vi,_1 is homothetic to V,,_1, and the metric of Vi, has the following form

1 b 1
52 — pa(m )1 2( 1)2+ p (:L' )1 §27
(1+qb(xt)) 1+qb(a?)
where p,q are some constants such that p # 0, 1+ qb(z') # 0, and qV'(z*) # 0. From this
follows ¢ = —3 In |1 + g b(a")].

4.4 Harmonic mappings. For harmonic mappings we can rewrite condidtion (4) in the form
Pgﬂgaﬁ = 0, leading to the following differential equations:

@ (5-%) -3 (G-t 0 (-f)-o o

a a a
Analyzing the last equations we have the following theorem.

Theorem 4.4 The special mapping | between equidistant spaces V;, and V,, is harmonic if and
only if the mapping of the subspace Vi,_; to Vi,_1is harmonic and the metric of Vi, has the
following form ds? = c - a(z?) o' (21) d(x ) + Bds?, where ¢, B = const # 0; moreover, if
GapG™ = const, then for arbitrary functions B(z') € C* there is a function A(z') satisfying an
ordinary differential equation (9a).
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Remark. IfV, ; =V, , (i-e. gab = Gap) then (9b) is satisfed automatically and GapG™ =n—1.
In this case the family of harmonic mappings f: V,, — V,, depends on the one function A(z!) #
0, because for a concrete function, we can find B(x!) by simple integration of equation (9a).

4.5 Conformally-projective harmonic mappings. From the necessary and sufficient
condition (5) of conformally—projective harmonic mappings V,, — V,,, rewritten in the form
Pl = ;0" + ;01 — 2 ¢lg,;, and with the help of (8) we obtain that ¢ = p(z') and

A d 4 B Y B 40, fe T
T g =, o= =200 Zrda — —ga = @ ga Ly =15 (10)

For B = const we obtain that ¢ = const, and f: V,, — V,, is affine, see 4.2.

In the case B # const from (10) it follows that g,, = const g, i.e. V.4 and V,_, are
homothetic. After analyzing of equations (10) we have the following theorem

Theorem 4.5 The special non-affine mapping f between equidistant spaces V,, and V., is con-
formal-projective harmonic if and only if Vi1 admits a homothetic mapping on Vi 1, and the
metric of V,, has the following form

ds* = a - a(a') ot @) (dgz:l)2 + 3 -b(at) 2 d3?, (11)

where «, 3 are non-zero constants, and the function o(x') satisfes the following ordinary dif-
ferential equation

Bt +2bg) - e % —ant/ —daby = 0.

4.6 Equivolume mappings. From the rewritten form of the necessary and sufficient condition
(6) of equivolume mappings V,, — V,, P2, = 0, and with help of (8) we obtain the following

formulas
A’ ! BV . ~
———a+(n—1)(———)—0; e, =1%,. (12)

After analyzing the equations (12) we have following theorem

Theorem 4.6 The special non-affine mapping f between equidistant spaces Vy, and V., is equiv-
olume if and only if V,,_1 admits an equivolume mapping on Vi,_1, and the metric of V,, has the
following form

b n—1
ds?=a-a (E) (dz")? + Bd&?,

where « is a non-zero constant, and B(x') is a non-zero differentiable function.
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On Global Geodesic Mappings of Ellipsoids
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Abstract. In this paper we study geodesic deformations of ellipsoids of revolution. We present a
one-parameter family of geodesic mappings that deform ellipsoids to surfaces of revolution, which
are generally of a different type.

Keywords: geodesic mapping, geodesic deformation, surface of revolution, ellipsoid
PACS: 02.40.Ky; 02.40.Ma; 02.40.Vh

INTRODUCTION

In the present work we study geodesic mappings and deformations of ellipsoids of
revolution. The possibility of geodesic mappings of second order surfaces and surfaces
of revolution was shown by U. Dini [5], see [6]. In the paper [7] a globally geodesic
deformation of a sphere was constructed, and in [13] the existence of geodesic mappings
of an ellipsoid was proved. Geodesic deformations of rotational surfaces were studied
in [8]. Here we construct explicitely rotational surfaces, which arise from geodesic
deformation of a rotational ellipsoid and show that these surfaces cannot be ellipsoids.

GEODESIC MAPPINGS OF SURFACES OF REVOLUTION

A deformation of a surface is called geodesic if it preserves geodesics. These notations
were introduced in [2, 6, 9, 10, 11, 12].

Assume a rotational surface .7 in the Euclidean 3-space E3 given by the equations
x =r(w)cost,
y=r(w)sint, z=z(w), w € [wy,wz], t € [0,27). Its metric has the form

ds? = a(w)dw? + b(w)dr?, (1)

where a(w) and b(w) are the differentiable functions a(w) = r/*(w) + Z/*(w) and
b(w) = r(w).

As it is known [3, 4], the surface .%5 with the metric (1) maps geodesically onto
surfaces . with the metric

paw) 5. pb(w)

2
T+ ap)2 ™ T Trgnn @

ds? =

where p and g are real parameters, ¢ and w are common coordinates.
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Now we suppose that a certain one-parameter family of rotational surfaces .%5 with
x = F(w)cost, y = F(w)sint, z = Z(w) is obtained from the original surface .7 by the
following particular transformations

S, U N /WW \/l—i—arz(f)—r’z(‘c)dT .

1+ ar?(w) (1+ar?(7))?

with parameter a. It was proved that (3) describes a one-parameter family of geodesic
deformations.

The coordinate w is the same as before, therefore it is not the length parameter of
the curve (7,Z). The functions 7 and Z introduced above must satisfy the conditions
of smoothness of the surfaces at the poles w = w; and w = w;, where 7 = 0, namely
dr — 41 and g—i = 0. They hold, provided they are satisfied for r and z.

APPLICATION TO ROTATIONAL ELLIPSOIDS

In the foregoing section we have seen a class of nontrivial geodesic mappings between
smooth surfaces of revolution, which are homeomorphic to a sphere. Now we take as
a concrete example a rotational ellipsoid, embedded into the 3-dimensional Euclidian
space, and investigate its deformation by the considered geodesic mappings. This is
done in a local coordinate patch, covering one half of the surface. Rather than in terms
of the arc length w we formulate it in terms of the angular variable ¢,

r(@) =ksing, z2(p) =1—cos@. 4)

The squared element of the arc length is dw? = dr? +dz? = (k? cos? @ + sin’ @)de?. We
choose wi = w(¢@ = 0) =0, so that the origin of ¢ and the arc length coincide, then wy =
w(¢@ = ) is half of the circumference of the ellipse. The condition r(w;) = r(wz) =0

is fulfilled and &£ = & o _ ____Kesg also & (w1) = 1 and §-(w;) = —1 are

~ dedw VK2 cos2 @+sin’ @
satisfied.

The transformation (3) in terms of ¢ is

_ k sin
o) = d 5)
\/ 1 +ak?sin® @
and
1 +ar( r2(@") dw |,
—do'. 6
/ \/ 1+ar2 ))3 do’ ¢ ©
Note that here and in the following ' means always the derivative with respect to w,
. . r d
even when written as function of ¢, so ¥/ (') is ddTy %
Explicitly we find
k cos
7(9) = z , )

(K2cos2 @ +sin )2 (1 + ak?sin® @)2
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the maximal value of 7, Fyax = ﬁ occurs at ¢ = 7, like for the original elhpsmd

Instead of solving the integral of (7) explicitly, we consider the derivative ¢ 47> Which
gives a differential equation for the curve, and ehmmate the parameter ¢. This is done
in several steps: First we express ; dz in the form 4 dg / d” “From (5) and (6) we get

dr kcos @ and dz  [1+ar’(e)—r?(e) dw
do  (1+ak2sin?@)2 de (1+ar’(9))® de’

Then from the definitions (4) and the explicit equation of the ellipse (1 —z)* + 2—2 =1
we express sin ¢ and cos ¢ in terms of r and find

dz  rV1+ak*+ar? — a®k>r?

dr kK2 =12

in terms of r.
Now we insert the inverse of (5), r = ——— to express this derivative in terms of 7,
V1—ai?

dz f\/k% + ak? — a(1 + ak?)r?
dF  VT—aP2\/k2 — (1 +ak?®) P>

At last, for a direct comparison with the corresponding differential equation for an
ellipse, % P W we carry out a scale transformation # = 7V 1 +ak2, 2 = 71 + ak?,
so that the maximal value of 7 is equal to k, like the maximal value of r in the case of
the ellipse and the radial extensions of both surfaces are the same. In terms of these
variables, finally,

az 1 + ak?(k? — 7?)
dr k\/kz—r 1+a(k?—72)

From this we can see that the transformed curve is of a different type than an ellipse. At
the maximal values of the radial variables, i. e. at the “equator”, both the derivatives %

for the ellipse and % for the deformed curve go to infinity, corresponding to the fact that
r and ¢ provide only a local chart for one half of the surface.

An interesting feature of these transformations is that they leave circles (k = 1)
invariant (up to a scale factor y/1 + a). In the limit of a large transformation parameter a
the modification factor in (8) goes to k and the transformed curve approaches a circle.

The metric of the resulting surface of revolution is,

®)

2 A2\ o 2 _ K2 +ak' + (7_ak2_1> )
ds“=1{1 dre +pedr dre + e dr.
> ( +de> rr ) (I ral—ar) & 17

This form of the metric in terms of 7 is local and applies only to the lower or the upper
half of the surface. It can be generalized without problems to higher dimensions, when
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the circles with constant Z are replaced by higher-dimensional spheres. Then df has only
to be replaced by the solid angle element d€2 of the corresponding dimension.

This metric can be pulled back to the original ellipsoid by simply expressing 7 in
terms of r,

K2 (f—1> >
2 2 k2 2 r 2
ds” = (14ak”) =) (170 dr-+ T ar? dr |, 9)

whereas the metric on the original ellipsoid is
4 (H—1)r
k2 — 2

For an explicit expression of the deformed surfaces, we calculate the equations of the
“meridians" in the form Z(r), where Z and 7 are cartesian coordinates of a cross-section
through the rotation axis. For this purpose we integrate (8), from now on we drop the

2 _

ds dr’ + 2 dr?. (10)

. . . . . 2_.2
hats on r and z. We begin with the substitution sin’ Q= ka—fr—rz Then

1 \/1 (1—k2)sin® ¢’

A ==x7 ), cos? ¢ d¢’, (1n
where ¢(0) = arcsin 1?;12 and ¢@(r) = arcsin li(k;% Integrating (11) by
parts gives

¢(r)
/ \/1— 1 —k?)si \/1— (1—k2)sin’@ tan @
. ¢(0) do/
0 k2 / \/1— 1—k2)51n (p’d(p+ / i
B \/1 —k2)sin?¢’

where the last two integrals are the standard elliptic integrals of the second and first kind
[1] with arguments & and x

E(®,x) = / \/1—K2sin’p d¢p and F(P,x)= /

Inserting back r gives finally

VkE—r2 |14 ak* —ak?r? 1 +ak*
2r) = - LY L
k 1+ak®—ar 1+ak
1 k2 —r2 k
—= 3 |E | arcsin fr,\/l—k2 —E | arcsin ———, /1 —k?
\/&k(l—k) kz‘f’a—rz /k2+l
a

/1 —xZsin (1)
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—F | arcsin

2_ 2
k;r,\/ 1-k2| + F arcsinL,\/ 1 —k2
k2 + é —r? k2 + 1

a

We have considered two aspects of geodesic mappings of ellipsoids. The last equation
and (8) describe the geodesic deformations in E3. An interesting property is that on a
sphere as a special case of an ellipsoid these transformations act as identity, whereas
they act highly non trivially on general ellipsoids. In the limit of large transformation
parameters the transformed surfaces approach a sphere as limiting surface.

The second aspect, represented by (9) and (10), concerns geodesic transformations of
the metric on a manifold homeomorphic to the sphere, in accordance with [13], where it
is shown by application of a classical theorem by Dini [5] that there is (up to homothety)
a one-parameter family of geodesically equivalent metrics on .. Our result can be
summarized in form of a theorem.

Theorem 1 Rotational ellipsoids admit global nontrivial geodesic deformations under
which they remain rotational surfaces. The resulting surfaces are not ellipsoids.
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ON THE MOBILITY DEGREE OF (PSEUDO-) RIEMANNIAN
SPACES WITH RESPECT TO CONCIRCULAR MAPPINGS
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Abstract. In this paper we study the mobility degree of (pseudo-) Riemannian spaces with re-
spect to concircular mappings. We assume that the smoothness class of differentiability is C2.
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1. INTRODUCTION

Under a geodesic circle we understand a curve for which the first curvature is
constant and the second curvature is zero. K. Yano [14] introduced a conformal
mapping of (pseudo-) Riemannian spaces which preserves geodesic circles and is
called concircular.

These mappings are studied in many papers. In the present paper, we show results
connected with basic notations under the conditions of minimal differentiability of
metrics and geometric objects which define concircular mappings and also concircu-
lar vector fields.

2. FUNDAMENTAL EQUATIONS OF CONCIRCULAR MAPPINGS

Let V, = (M,g) and V, = (M, g) be n-dimensional (pseudo-) Riemannian
manifolds with the metric tensors g and g, respectively, n > 2.

Definition 1. A conformal mapping is a diffeomorphism of V}, onto V,, such that
for all points x € M (= M) the following relation is satisfied

5 2
g(x) = 27 Wg(x), 2.1
where o is a function on M.
If o is constant, then the mapping is homothetic, and, moreower, if 0 = 0, then
the mapping is isometric. See [1,7,9,10,12].
The paper was supported by the project FAST-S-12-25/1660 of the Brno University of Technology.
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As we have checked (see [14], [9, p. 117]), if a pseudo-Riemannian space admits
concircular mappings, then the function of conformality ¥ &l e =0 satisfies

VVd =p-g, 2.2)

where p is a function and V is the Levi-Civita connection with respect to the metric g.
In a local coordinate neighbourhood (U, x), U C M, it has the form V; ¥, = p gi;,
where g;; are components of g and #; = V;#. A vector field ¥; is called equidistant
(Sinyukov [12, p. 92], see [9, p. 82]).

The integrability conditions of the last set of equations read

Yo R = 8ij VP — &ikVip, 2.3)
where RZ. « are components of the Riemann tensor of V;,. Using contraction, we get:

1
Vip =— ﬁaRf‘, 2.4
n—1

where th = gh“ Ryi and R;j = RY, ; are components of the Ricci tensor on V.

Remark 1. In many papers, the Ricci tensor was defined with the opposite sign,
for example, [2-8, 12].

Contracting the integrability condition (2.3) with g’# g, we obtain easily Vi p =
B 9, where B is a function. Because ¥, is gradient-like: ¢, = Vi, then it implies
that p = p(J) and B = B(9).
After this, the condition (2.3) acquires the following form
Yo R = B (8ij0k — &ikV))- 2.5)

As was shown earlier [13] (see [3,4,6,9]), these equations are satisfied if

Vi, V, € Cc? (i.e. gij(x), gij(x) € C2), UH(x) € C3, Ui(x) € C? and o(x) € cl.

3. FUNDAMENTAL EQUATIONS OF CONCIRCULAR MAPPINGS FOR MINIMAL
DIFFERENTIABLE CONDITIONS
We can write formula (2.2) in the following form
i . .
i _ i Q0 __ i

where 9 = g!%¥,, 8;. is the Kronecker symbol and Fli’ are the Christoffel symbols.
It is easily seen that formulas (3.1) and also (2.2) are true when

V.V € C! (ie. 8ij(x),8ij(x) € ChH, 9(x) € C2, ¥i(x) e C!and o(x) € C°.

The following lemma holds.
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Lemma 1 (Hinterleitner and Mikes [2]). Let At e C1 be a vector field and p a
function. If

art

ox!

—pS,-heCI,
then \* € C2 and p € C.

If Fli’ € C! holds, which is equivalent to V}, € C? (.e., 8ij € C?), then from

formula (3.1) follows gi; -0 8; e C1, and from Lemma 1 we get:
X

9 (x) € C3H(= Vi (x) € C? =¥ (x) € C3) and o(x) € CL.

From this viewpoint, we specify and generalize the results involving concircular
vector fields below. Evidently, in this case, the above formulas from (2.3) to (2.5) are
satisfied.

The system of equations

Vivj = p-gij

3.2
Vip = (3.2)

— Do RY
is closed. It is a system of linear differential equations with respect to the co-vector ¥;
and function g, of Cauchy type, in first order covariant derivatives with coefficients
uniquely determined by the metric g of the (pseudo-) Riemannian space V},. For
any family of initial values 9¥;(xo) = ¥; and p(x9) = p° of the functions under
consideration in the given point xg, it admits at most one solution. Consequently, the
number of free parameters in the general solution of the system is at most n + 1. See
[6,13].

Definition 2. The upper bound for the number of substantial parameters in the
general solution of the system of equations (2.2) is called the mobility degree under
concircular mappings of the (pseudo-) Riemannian manifold V.

Since the system is linear, it admits at most # 4 1 linearly independent solutions
corresponding to constant coefficients. It is obvious that the mobility degree under
concircular mappings of the space coincides with the cardinality of the system of
independent (substantial) concircular vector fields of the space.

It is known that only spaces with constant curvature admit the maximal number
of n 4 1 linearly independent concircular vector fields. Hence, under concircular
mappings, only the spaces of constant curvature have the maximal mobility degree.
This holds locally.

It follows from the analysis of the system of equations (3.2) thatif V,, € C",r > 2,
then %; € C” and p € C"~!. It follows that the function ¥ belongs to C” 1. From
this and the formula (2.1), we obtain the following theorem.
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Theorem 1. If the (pseudo-) Riemannian manifold Vy VueClir=>=2n>2)
admits a concircular mapping onto V, € C 2 then Vy, belongs to C”. Moreover, the
function ¥ of conformality Vy, and Vy: § = 972 - g belongs to C™ 1.

We suppose that the differentiability class r is equal to 2, 3, ..., 00, w, where oo
and w denote infinitely differentiable and real analytic functions, respectively.

We can construct examples of such concircular mappings V;, — Vj, in the form of
equidistant metrics, see [9, p. 79]:

1
g = 5378 &= +(dx")? + const- /|9 - d52,
where d§? ()ch, ..., x")yis a C" metric of an (n — 1)-dimensional (pseudo-) Rieman-
nian space V,,_; and 9(x') is a C" ! function and 9 > 0, 9’ # 0.

4. A (PSEUDO-) RIEMANNIAN SPACE WHICH ADMITS AT LEAST TWO
LINEARLY INDEPENDENT CONCIRCULAR VECTOR FIELDS

Below we prove the following properties of concircular fields.

Lemma 2. The non-vanishing concircular vector field 9¥; (x) can be equal to zero
only on point sets of zero measure.

Proof. Let us suppose that Lemma 2 is not true. Thus there exists a point xo €
M in the neighborhood Uy, C M of which the concircular vector field @ (x) is
vanishing. From (3.2) follows that p(x) = 0 on Uy,. From that follows the initial
conditions at the point xo: ¥ (x9) = 0 and p(x¢) = 0. The system of linear equations
(3.2) with these initial conditions has only the trivial solution ¥; (x) = 0 and p(x) =
Oonall of M. 0

By mathematical induction we have the following lemma.

Lemma 3. The set of r (r < n) linear independent concircular vector fields

1 2 r
{9,.0,,....0,} 4.0
on Vi, can be linearly dependent only on point sets of zero measure.

Proof. Successively we are able to substitute r = 1,2,...,n— 1. Let (4.1) be lin-
early independent (excluding at point sets of zero measure) concircular vector fields
on V;, which satisfy the equations

N

s
ﬁi,j =pP8ij»

where ;) are functions on V.

Let these vectors be linearly independent at the point xg € M, then these are
linearly independent at a point x in a certain neighborhood Uy,,. Finally, let ¢}; be a
concircular vector field on M and

9i(x) = D5y a(x)- 1s9i (x) for x € Uy, (4.2)
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s . S . s
where & (x) are functions on Uy,. Because 9 (x) € C 1 the functions o (x) are

differentiable. Covariantly differentiating (4.2) with respect to x/ we find
r r
s s s 9
(o —ZW'P)gij = Zvja-ﬁl—-
s=1 s=1

.. . N N N . N
This implies that p = Z:Zl a-pand Vi = 0 (i.e., o = const) on Uy, .
For the initial conditions

Di(x0) = Z a- 5,’ (xo0),
s=1

p(xXo) = Z a- /B(xo),
s=1

N
the equations (3.2) have only one solution: ¥; (x) = Y ;_, Q- ?;(x) on Vj,. a
We are going to prove the following

Theorem 2. If a (pseudo-) Riemannian space Vy, € C? (n > 2) admits at least
two linearly independent concircular vector fields i (x) € C! with constant coeffi-
cients, then B is a constant, uniquely determined by the metric of the space V3.

Remark 2. In [6] and [4, p. 88] a similar theorem was published, but the proof
was done only for V,, € C3, 9;(x) € C3 and o(x) € C?2, and, moreover, it has
local validity. This also concerns the following Theorems 3, 4 and 5. On the basis of
Lemmas 2 and 3 these Theorems are valid globally.

Proof. Assume in V;, exist at least two linearly independent concircular vector
fields with constant coefficients 9; and ;, with correspondent functions B and B,
respectively. Then the following is satisfied (see (3.1)):

Yo Ry, = B(gij Ok — &ik?)), (4.3)
Do RY = B(gijOk — giky). (4.4)
Multiplying (4.3) by D g“k and contracting over k we get by (4.4)
(B — B)(gij040% — 0;0,) = 0.

Suppose B # B. Then g; T DD — ¥ ¥; = 0. From the last formula we get
Do 9% =0 and 5,; ¥; = 0, a contradiction, since the vector fields are non-zero.
Hence B = B holds. That is, the function B is uniquely defined by the metric of
the space Vy, itself. Because ¥ and 19k are gradient-like covector fields (¥ = Vi 9
and z‘}k =V ) from the equality B = B the fact B(¥) = B(z‘}) follows. Note that
9 and ¥ are indenpendent variables, then from this fact follows: B is constant.  [J
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Note that the above theorem is analogous to some results proven earlier under the
additional assumptions V;,, V, € C3,[5,6,13].

Theorem 3. There are no (pseudo-) Riemannian spaces Vy, € C?, except spaces of
constant curvature, which admit more than (n — 2) linearly independent concircular
vector fields ¥; (x) € C corresponding to constant coefficients.

Remark 3. In [4, p. 86], [3,5], a similar theorem was published but the proof was
done only for V,, € C3, 9;(x) € C3 and g; (x) € C2.

Proof. Let us suppose the opposite. Let V;,, be a space which is not of constant
curvature and yet admits more than (n — 2) linearly independent concirrcular vector
fields with constant coefficients. The conditions (2.5) read

Vo Zf‘j =0, 4.5)

where

def
Zihjk :ethjk - B(5£’gij - 5jhgik)-

We can write the tensor Z l’; & as

s

m
hoo_ h
Zijk = le’ 2,k

S

where pg" are some linearly independent vectors, and £2; ;. are linearly independent

tensors. Since V}, is not of constant curvature, m > 2 holds.

From the conditions (4.5), we obtain

Vo b =0, U b%*=0, ... ,9b%=0. (4.6)

1 2 m
Since m > 2, among the equations of the system (4.6) there are at least two sub-
stantial equations. From the previous facts it follows that there exist less or equal
to n — 2 linearly independent vector fields ©;, a contradiction. This proves The-
orem 3. O

From Theorem 3 and results in [6], the following two theorems are obtained:

Theorem 4. Let V, € C?, (n > 2), be (pseudo-) Riemannian spaces in which
there are (n —2) linearly independent concircular vector fields 9;(x) € C. Then
the Riemannian tensor has the following expression

Rpijk = B (gnk&ij — &nj&ik) + e(anbi — aibp)(ajby — arb;),

where a; and b; are non-colinear and pairwise orthogonal covectors, e = 1, and
B = const.
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Theorem 5. The (pseudo-) Riemannian space Vy, € C3 (n > 3) admits (n — 2)
linearly independent concircular vector fields 9;(x) € C' if and only if in Vy the
relations [11]

Rpijk = B(gnk&ij — &nj&ik) + elapbi — aibp)(ajby — arbj),
1 2
ai, j ijai-l- Ejb,' + cia;;
3 4
bi, :Eja,-+ Ejbi +cib;:
5 6
ci,j =§;ai+ §;bi +cic; — Bgij

are satisfied, where a; and b; are non-colinear and pairwise orthogonal covectors;

N
i, Sj (s =1,...,6) are some covectors; ¢ = 1, and B = const.

Remark. This theorem was proved locally for V,, € C 3.9, €C3, 0eC? inJ6].
The detailed local proof is contained in the dissertation [3, p. 94-95], [4, p. 88-92].
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Abstract. In this paper we consider concircular vector fields of manifolds with non-symmetric metric
tensor. The subject of our paper is an equitorsion concircular mapping. A mapping f : GRy — GRy is an
equitorsion if the torsion tensors of the spaces GRy and GRy are equal.

For an equitorsion concircular mapping of two generalized Riemannian spaces GRy and GRy, we
obtain some invariant curvature tensors of this mapping %, 0=12,...,5 given by equations (3.14, 3.21,

3.28, 3.31, 3.38). These quantities are generalizations of the concircular tensor Z given by equation (2.5).

1. Introduction

The use of non-symmetric basic tensors and non-symmetric connection became especially actual after
appearance of the works of A. Einstein [2]-[4] related to the Unified Field Theory (UFT). Remark that in
the UFT the symmetric part g;; of the basic tensor g;; is related to gravitation, and antisymmetric one g;; to

electromagnetism.
A generalized Riemannian space GIRy in the sense of Eisenhart’s definition [5] is a differentiable N-
dimensional manifold, equipped with non-symmetric basic tensor g;;.

Let us consider two N-dimensional generalized Riemannian spaces GIRy and GRy with basic tensors
gij and g, ir respectively. Generalized Christoffel symbols of the first kind of the spaces GRy and GRRy are
given by

1 = 1_ _ _
Lijg= E(!]ji,k = Gjki+gij) and Ty = E(g ik = Tiki ¥ G ) (1.1)

where, for example, gijx = dgij/dx*. Connection coefficients of these spaces are generalized Christoffel
symbols of the second kind F;.k = giﬂl"p,]-k and I:;k = ?iﬁl_"p,jk respectively, where (gﬁ) = (i)' and ij
denotes symmetrization with division of the indices i and j. Generally the generalized Christoffel symbols
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are not symmetric, i.e. l";.k + 1";;].. We suppose that g = det(gyj) # 0, g = det(g;)) # 0, g = det(gi;) # 0,
g = det(g;;) # 0.

A diffeomorpism f : GRy — Gy is a conformal mapping if for the basic tensors gij and g;; of these spaces
the condition

?ij = gij (1.2)

is satisfied, where 1) is an arbitrary function of x, and the spaces are considered in the common system of
local coordinates x'.

In this case for the Christoffel symbols of the first kind of the spaces GIRy and GﬁN the relation
Tig=eXTip+ gV — g+ guth,) (1.3)
is satisfied and for the Christoffel symbols of the second kind we have
Ui = Ty + 020 = g + 9k, (1.4)

where ) = di/dx*. Let us denote Y = ¥ and ¢/ = giﬁgbp. Now, from (1.4) we have

T = T+ FUGjp i — G Uy + gk ) + giﬁ(%'vplﬁk = gikp + Gpij)s
i.e.
T =Ty + 0, g + 8,y — Wigy + &L, (15)
where

l

i =
= p(gjp Yr = gjk Pyt Gk Yj) = kj’ Vi = N(F?E - FZP)' (1.6)

and ij denotes an antisymmetrisation with division. In the corresponding points M(x) and M(x) of a

\2
conformal mapping we can put

l"]k = F + P’ @ jk=1,.,N), (1.7)
where P}k is the deformation tensor of the connection I of GRy according to the conformal mapping f :
GIRN - G]RN.

Notice that in GIRy we have
Po_

I, =0, (1.8)

(eq. (2.10) in [14]).

Based on the non-symmetry of the connection in a generalized Riemannian space one can define four
kinds of covariant derivatives. For example, for a tensor a;, in GIRy we have

i _ i _ TP 1' i i _ TP
ajl'" =a, +T, a F]m ” a]lm +1"mpa] l"m] pr
a +T a; A a = S L

]ém ; pm mjtp Jlm ] mpTyio T jm P

Here we denoted by | a covariant derivative of the kind 6 (0 € {1,2, 3,4}) in GRy.
0
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In the case of the space GIRy we have five independent curvature tensors [24]:

Ki =T T 4171 —r'r

1 jmn jmn jnm jm=pn jn= pm’

Iz<j'mn = %(r;m,n - F;'n,m + Iﬂinj,n - rizj,?n + ri’}mr;P + rpm]r;n - r?nr;np - ri]r;m)'
K = i = Do + T Tp = T + Ty = T),

Kl = %(Tﬁm,n =0+ D = D + D T + T3, T = T T = T, 1),
15<] = %(Tﬁ-m,n +T n r;in,m -T im t 2r§?ﬁr;‘ﬁ - zrzn rinl + FﬁWFLT).

We use the conformal mapping f : GRy — GRy to obtain the tensors E;mn (6 =1,...,5), where for example

X = _T 4T _-TT (1.9)

1 jmn jmmn jnm jm= pn jnt pm*

2. Concircular vector field

In 1940. K. Yano [23] considered the conformal mapping g;; = ?gij of two Riemannian spaces. In this
case, he proved that geodesics are invariant under this mapping if and only if

Viij = Yihj = wgij, 2.1
where (;) is a covariant derivative, g;; a symmetric metric tensor, w an invariant and 1); is a gradient vector.

When N. S. Sinyukov studied geodesic mappings of symmetric spaces [18], he wrote this condition in
terms of & = e7¥. It is easy to see that the formula (2.1) transformes to

ij = PYijs (22)

where p = —we™V, &; = &;. The vector field &;, was called concircular vector field by K. Yano [23] . In the
case when p = const., & is called convergent, and in the case p = BE + C, (B,C = const.), & is called special
concircular. A space with concircular vector field was called equidistant space by N.S. Sinyukov.

Definition 2.1. [1] A generalized Riemannian space GRy with a non-symmetric metric tensor g;j is called an
equidistant space, if its adjoint Riemannian space Ry is an equidistant space, i.e. if there exists a non-vanishing
one-form ¢ in GRy, @; # 0 satisfying

Pij = PYGijs (2.3)

where (;) denotes the covariant derivative with respect to the symmetric part of the connection of the space GRy. For
p # 0 equidistant spaces belong to the primary type, and for p = 0 to the particular.

The following definition is a consequence of the previous definition

Definition 2.2. A Concircular mapping f : GRy — GRy is a conformal mapping if the following equation is
valid

Vij = ¥ — i) = wgij, (24)

where ¢; = %(f?p - F?p), w is an invariant, and (;) is the covariant derivative with respect to the connection

i
Fﬁ.
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In the case of a concircular mapping f : Ry — Ry of two Riemannian spaces Ry and Ry, we have an
invariant geometric object

i — pRi R PSP
Z jmn T R jmn N(N _ 1) (671 Gjm 6m gji’l)r (25)

where Ri].mn is the Riemann-Christoffel curvature tensor of the space Ry, Rj the Ricci tensor and R the

scalar curvature. The object Zi].mn is called the concircular curvature tensor.

3. Equitorsion concircular curvature tensors

For a concircular mapping f : GRy — GRy, it is not possible to find a generalization of the concircular
curvature tensor. For that reason, we define a special concircular mapping.

Definition 3.1. A concircular mapping f : GRy — GRy is equitorsion if the torsion tensors of the spaces GRy
and GRRy are equal at corresponding points.

According to (1.7), this means that
—i . .
Ly - I’}k = lj.k =0. (3.1)

3.1. Equitorsion concircular curvature tensor of the first kind

Using (1.7), we get a relation between the first kind curvature tensors of the spaces GRy and GRy:

K =K. +p. —P. +pP’ pi —ppi +P’ r” -P T —P’ r’” +PP TE . 3.2)

1 jmn T jmn jmn jnm jm= P jnpm jn pm jm P”
Substituting the deformation tensor P with respect to (1.5,1.7), and using (2.4), we obtain

K, =K, + 200, 0gjn =28, @fjm + (O} gjn = Oy gjm ) AP

1 jmn T jmn

YT =2 Doy =y Tl = 20/ T, + 4701 Ty = P Ty, 3

where we denoted

1#;- = g5, DY = U0y = Yy (3.4)
Contracting with respect to the indices i and 7 in (3.3) we get

@-m =Kjn = 2(N = Dwgjn = (N = D)aggp + (N - 2)¢pr§?m +2YPT, i 3.5)
In case of concircular mappings, it is easy to prove the following formula

Gl=egl, (3.6)
In (3.5) multiplying by gjﬂ and contracting with respect to the indices j and then m we get

ezlﬁg =K+2N(1 - N)w + N(1 - N)ag, (3.7)

where g = _’”ﬁgpq, and Il< = ’ﬂlqu are scalar curvatures of the first kind of the spaces GRy and GRy
respectively. From (3.7), we have

1

= WA )(e YK - K)——Al/) (3.8)



M. Zlatanovié, 1. Hinterleitner, M. Najdanovi¢ / Filomat 28:3 (2014), 463471 467

It is easy to see that for concircular mappings the following formula is valid

P Gjn = TG (3.9)
From (1.2) follows
1, d, _ 0
i = 55(55ng - 55Ing) (3.10)

where g = det(g;;), g = det (?ij). From (3.1) and (3.10) we obtain
p 0 1

8
Jnm‘l’ 2N ]nmg Ox pl g 2N ]nmg & }7 ng (311)
and
gl = —T 5 719 s L 1.9 3.12
i ' = SN~ 5109 = 55T ngm]g 57 - (312)
Taking into account (3.10, 3.11, 3.12), we can write the relation (3.3) in the form
%l]mn = %ijmn/ (313)
where
i i 1 i i
%rmn = Il<jmn - N(N - 1)K(6n Gim — Oy gjn)
4 P (3.14)
+ 5 (=0 I”;’m+26’7 I+ o, r” +29% g r" — 3095 Ty + 3090 qn) 55 1Ing.

and analogously for the geometrical object %mn € GRy. The tensor %ijm” is an invariant of equitorsion

concircular mappings, and one can call it the equitorsion concircular curvature tensor of the first kind.
So, the following theorem is proved:

Theorem 3.1. Let the generalized Riemannian spaces GRy and GRy be defined by virtue of their non-symmetric
basic tensors gij and g,; respectively. The equitorsion concircular curvature tensor of the first kind %’ jmn (3.14) is an

invariant of the equitorsion concircular mapping f : GRy — GRy.

3.2. Equitorsion concircular curvature tensor of the second kind
For the second kind curvature tensors of the spaces GRy and GRy we get the relation
K = K+ Pjn =P+ PP~} Pon (3.15)
i.e., using (1.5, 1.7, 2.4) one obtains
Koy = K 20, 0Gju =20, 0 + (8, Gjn = 8, Gjm ) &Y. (3.16)

Contracting with respect to the indices i and 7 in (3.16) we get

Kjm=Kijm = 20N = Dagjm = (N = D)Atpgjm (3.17)

In the previous equation multiplying by gjﬁ and contracting with respect to j and then to m, we get

ezlﬁg =K+2N(1 - N)w + N(1 - N)A¢, (3.18)
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where E = yﬁgpq, and 12< = gﬁlzg,q are scalar curvatures of the second kind of the spaces GRy and GRy
respectively. From (3.18), we have

_ 1 W _xy_ L
w_ZN(l_N)(e K=K) =349, (3.19)

And finally, taking into account (3.10, 3.11, 3.12), we can write the relation (3.16) in the form

—i i,
7= Z s (320)
where
i i 1 i
%jmn = 12<jmn - N(N 1)2 (6 Jjm — O gjn) (3.21)

and analogously for ;}mn € GRy. The tensor %ijm” is an invariant of equitorsion concircular mappings, and

one can call it the equitorsion concircular curvature tensor of the second kind. So, we have:

Theorem 3.2. Starting from the curvature tensor 12<’1

jmn’

one obtains an invariant tensor %l jmn With respect to the

equitorsion concircular mapping f : GRy — GRy in the form (3.21).

3.3. Equitorsion concircular curvature tensor of the third kind

In the case of the third kind curvature tensors of the spaces GRy and GRy we get the relation

K =Kt 4+p. _p. 4p’ pi _p’pi

amn = Sjmn T jmn ™ jrm  jpn ™ pm
+P;ll"” Pj’nr;,mw;,mr” Pi’ml";m —ZPZ,,,r;p, (3.2
i.e., using (1.5, 1.7, 2.4) one obtains
Ky = Ky + 20, g =20, i + (O ju = 61 Gjm )mp
- A ; (3.23)
2T+ 0, T = 2T 48 T+ 0701 T + 207 T + 07010 T
Contracting (3.23) with respect to the indices i and 7, the previous equation becomes
gjm =Kjn = 2(N = Dwgjn = (N = )aggp + (N - 2)¢pr§?m +2YPT, [ (3.24)
Multiplying (3.24) by 7" = e~2% gjm and contracting we get
ewg = I3< +2N(1 - N)w + N(1 - N)Ay, (3.25)

where E = ?ﬂgpq, and I3< = gﬂlgpq are scalar curvatures of the third kind of the spaces GRy and GRy

respectively. From (3.25), we have

Finally,

L = Z'jm (327)
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where

i _ pi 1 i i
%imn_1§fmn N(N - 1)K(6 nYjm 67119]”)

P (3.28)
(6’5,T’]m—é’nF’;’m+26ﬁ11";n—6ﬁﬂlfn—g@gjn qm—Zg Jun T gﬂgjm qn) SNy

And analogously for %mn of the space GRy. The tensor %i jmn 18 an invariant of equitorsion concircular

mappings, and one can call it the equitorsion concircular curvature tensor of the third kind. Now we
have proved

Theorem 3.3. From the curvature tensor K?mn, we obtain an invariant tensor Zij,,m according to the equitorsion
3

concircular mapping f : GRy — GRy in the form (3.28).

3.4. Equitorsion concircular curvature tensor of the fourth kind

For curvature tensors of the fourth kind we get

K= K+ P =Pl Py Pyn =P, Pom (3.29)
i.e.
K= K + 200, 0jn =26, @i + Oy gjn = 0}, g )AY. (3.30)

Using the same procedure like in the previous cases, in this case an invariant object of the equitorsion
concircular mapping is in the form

. 1 )
%1]'11114 I4<;mn - W (6 Jjm — O gjn) (3.31)
where I4< jm is the Ricci curvature tensor of the fourth kind and I4< a scalar curvature of the fourth kind. The
object %i jmn 18 a tensor and we call it equitorsion concircular curvature tensor of the fourth kind of the

equitorsion mapping. So, the next theorem is valid:

Theorem 3.4. From the curvature tensor K;mn, one obtains an invariant tensor %ijmn (3.31) of the equitorsion

mapping of generalized Riemannian spaces.

3.5. Equitorsion concircular curvature tensor of the fifth kind

For the curvature tensors of the fifth kind of the spaces GRy and GRy we have

I5<1]mn = K;mn +P;m N _P;n ;m +Pl]7mP;7W anP;m (3.32)
i.e.
K= K + 205, 0jn =20, @i + Oy gjn = 0}, 9 )OY. (3.33)

Contracting with respect to the indices i, 7 and denoting

P _r. P —X.

we obtain

Kijm=Kjm = 2(N = Dagjm = (N = 1)Agpgjn - (3.35)
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wherefrom, multiplying by yfﬁ = e ?gj,, and contracting with respect to the indices j and 7 one obtains

1

YT IONA-N)

- 1
(e2¢15< - 15<) - EA‘P' (3.36)

After eliminating @ from (3.33) we can write

%;'mn = %lfm”’ (3.37)
where
i i 1 i i
%lfmn = Kin = méﬂ% Gjm = Oy Gjn)- (3.38)

The object %i jmn is an invariant of the concircular equitorsion mapping. We call it equitorsion concircular

curvature tensor of the fifth kind. So, the following theorem is proved:

Theorem 3.5. Starting from the curvature tensor Ié;mn, we obtain an invariant tensor ?jmn (3.38) of the equitorsion

concircular mapping f : GRy — GRy.

4. Concluding remarks

For g;j(x) = gji(x) the space GRRy reduces to the Riemannian space Ry. The curvature tensors Ie<' 0 =

1,...,5in a generalized Riemannian space reduce to the single curvature tensor R in Riemannian space (in
the symmetric case).

In the case of equitorsion concircular mapping of the Riemannian spaces (in the symmetric case) %,

(6=1,---,5), given by the formulas (3.14, 3.21, 3.28, 3.31, 3.38) reduce to the concircular curvature tensor
[18, 23]

, , R , .
Z i = Ry = g1 ©n 9 = O 91 )

All these new quantities can be quite interesting for further investigation.
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1. Introduction

The theory of conformal, geodesic and harmonic mappings can be viewed as an in-
teresting part of differential geometry of Riemannian and pseudo-Riemannian spaces,
see [1-10]. Harmonic mappings are extremal with respect to the natural energy func-
tionals of sigma models, see J.C. Wood [9].

S.E. Stepanov and I.G. Shandra [8] studied harmonic diffeomorphisms. In this
paper compositions of conformal and geodesic mappings, which are harmonic, are
studied. We shall call such a composition conformally-projective harmonic. We
study particularly conformally-projective harmonic diffeomorphisms of equidistant
manifolds.
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2. Special diffeomorphisms of Riemannian spaces

Consider an n-dimensional Riemannian manifold V,, (Riemannian space) endowed
with the metric g, which in any coordinate neighborhood U C V,, with local coordi-
nates z = (z!,2%,...,2") is determined by the components g;;(z), i, = 1,2,... ,n,
which form a symmetric and non-singular matrix. We use notions from the theory of
Riemannian spaces as in the articles [1, 2, 3, 5, 6, 8].

The signature of the metric is assumed, in general, to be arbitrary, i.e. under
the notion of a Riemannian space V,, we understand “classical” Riemannian spaces,
as well as pseudo-Riemannian spaces, like in [5, 6], for example.

Christoffel symbols of types I and II are introduced by the formulas:

Lije = 3 (0igjk + 959 — Orgij) and F?j = ¢"Tja, where 9; = 9/0x%, g¥ is
the inverse matrix to g;;. Christoffel symbols of type II are the natural connection
(the Levi-Civita connection) of Riemannian spaces, with respect to which the metric
tensor is covariantly constant, i.e. g;;r = 0. Hereafter “” denotes the covariant
derivative with respect to the connection of the space V,,.

We study special diffeomorphisms f between Riemannian spaces V, and V,,
and we restrict ourselves to coordinate neighbourhoods U C V,, and U = f(U) C
Vp. In U and U we introduce a common coordinate system x with respect to the
diffeomorphism f, so that the point M € U and its image f(M) € U have the same
coordinates z = (z!,2%,...,2"), i.e. f is represented by the identity map from U to
U; see, for example, [2, 3, 4, 5, 6, 8] According geometric objects in V;, will be denoted
by a bar. For example, f‘?j are Christoffel symbols in V.

Definition 1 (see [1, 2, 5, 6, 8, 10]). The mapping f: V,, —= V,, is conformal
if and only if, in the common coordinate system x with respect to the mapping, the
condition

gij () = gy () (1)
holds, where o(z) is a function on V,,.
Under conformal mappings the following conditions hold [1, 2, 5, 6, 10]:
f‘f](gc) = FZ(%) + 6?0j + 5;’01' —oh Gijs (2)
where o; = 0;0(x), " = 0,9*" and 6! is the Kronecker delta.
Definition 2 (see [2, 3, 4, 5, 6]). The diffeomorphism f: V,, — V,, is called a

geodesic (or projective) mapping if f maps any geodesic line of V,, into a geodesic line

of Vip.
A diffeomorphism from V;, onto V;, is geodesic if and only if the conditions
Ll () = Ty (2) + 0 + 0y (3)

hold, where 9; (x) is a gradient vector, i.e. 1; = 9;¢(z) for some function . If
; Z 0, a geodesic mapping is called nontrivial; otherwise it is said to be trivial or
affine. See [2, 3, 4, 5, 6].
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Definition 3 (see [9]). A harmonic diffeomorphism is a diffeomorphism that pre-
serves Laplace’s equation.

A diffeomorphism from V,, onto V,, is harmonic if and only if the following con-

ditions hold ([8]) B -
(T} (@) =T (2)) g7 = 0. (4)

Definition 4 We shall call a composition of a conformal and a geodesic (projective)
diffeomorphism between Riemannian spaces, which is harmonic,conformally-projective
harmonic.

It follows from [8] that a diffecomorphism from an n-dimensional Riemannian
space V,, onto a Riemannian space V;, is conformally-projective harmonic if and only
if the following conditions hold

0 (x) = Tl (@) + @i0l + ;60 — 2 gy, (5)

where ; = 0;p0(z) is a gradient-like vector, " = g"“p,. Conditions (5) are derived
by a combination of (2) and (3) under the assumption of (4).

3. Equidistant manifolds

Definition 5 A vector field £ is called concircular [10], if 5}1 = 06", where o is an
invariant. A Riemannian space V,, with concircular vector field is called equidistant

[6], see [3, 4].

A Riemannian space V,, is equidistant with a non-isotropic concircular vector
field ¢ (non-isotropic means £%¢°g,5 # 0) if and only if in V;, exists a system of
coordinates x, where the metric has the form (see [1, 4, 5, 6, 10])

1 12

ds? = ——dz'" + f(a') ds?, 6
e (o) (6)

where f € C' (f #0) is a function,  d3? = gap(2?, ..., 2") doda®
(a,b=2,...,n) is the metric form of the Riemannian subspace V,,_1, given by x! =

const.
An equidistant manifold V;, with metric (6) admits geodesic diffeomorphisms
given by the identity map onto the Riemannian space V,,, whose metric form is

P 12 pf
[-(T+qf)? 1+qf

where p, g are some constants such that 1+ ¢f # 0, p # 0. If ¢f’ # 0, the mapping
is nontrivial; otherwise it is trivial, and z are common coordinates for Vj, and V,,, see
[4]. The function ¥(x), which defines a geodesic mapping (see (3)), has the following
form: ¢ (z) = —% In|1+gqf].

H.W. Brinkmann [1] (see [4, 5]) showed that the space V,, with metric (6) is an
Einstein space &, (resp. a space S,, with constant curvature K) if and only if holds:

ds® =

ds?, (7)
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Condition 1. f = K 2'° + 2az! + b, where K, a and b are constants and d3? is a

metric of an Einstein space gn_l (resp. a space Sn_l with constant curvature K ),
R R

(n—1)(n-2) n(n—1)

Here R and R are the scalar curvatures of &, and 5~n_1 (resp. S, and S’n_l).

moreover K = =bK?—a? where K =

4. Conformally-projective harmonic diffeomorphisms
of equidistant manifolds

The following theorem holds:

Theorem 6 An equidistant manifold V,, with the metric

2

—£ 1
ds?> = (14 q f(zt))n—2 (Mdac

12

+ f(zh) d§2> , (8)

where f € C' (f # 0) is a function and d3* = Gup(2?, ..., m”)gixad:cb (a,b =
2, ...,n) is the metric of some (n—1)-dimensional Riemannian space Vp,_1, is mapped
by the identity map conformally-projectively harmonically on to the Riemannian space

Vi, with the metric (7).

Proof. Let (8) and (7) be the metric forms of the Riemannian spaces V,, and V.
We calculate the Christoffel symbols FZ and F;Lj of these spaces. Formula (5) holds

for ¢ = — In|l+qf]

2(n —2)

Analysing formulas (1)-(8) we can convince ourselves that the following holds:

Proposition 7 The equidistant manifold V,, with metric (8) is conformally mapped
onto a Riemannian space with metric (6), which is geodesically mapped onto a Rie-
mannian space V,, with metric (7).

Proposition 8 By comparison of the metrics (8) and (7) we find that, dependent on
the choice of the parameter q, the signatures of the two metrics can be the same or
not.

Proposition 9 There are spaces with a metric of the form (8), satisfying Condi-
tion 1, admitting conformally-projectively harmonic mappings onto an Einstein space,
resp. a space of constant curvature.

By a detailed analysis we can convince ourselves of the existence of compact Rie-
mannian spaces, for which global non affine conformally-projective harmonic map-
pings exist.
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5. Equidistant manifolds on geodesic coordinate sys-
tem and Friedmann metrics

Upon a suitable transformation of the coordinate z! we can rewrite the metrics (6),
(7) and (8) in the form:

ds? = edz'® + f(x')ds?, (9)

where e = £1, f € C! (f # 0) is a function, d3? = Gu (22, ..., 2")d2z%dz® (a,b =
2, ...,n) is the metric of a certain Riemannian subspace V,,_1 (see [3, 6]). Generally
this function f is not the function, which figures in (6), (7) and (8). It is known that
this coordinate system x is geodesic (see [2, 5, 6]).

The Friedmann metric is a metric (9) with V,_; being a space with constant
curvature, modeling a spatially homogenous and isotropic universe. The function f
describes the evolution in the time coordinate z* [7].

An equidistant space V;, with metric (9) referred to coordinates = admits geodesic

mappings onto a Riemannian space V;,, whose metric form is [3]

d72: ep 12 pf
S T R

ds?, (10)

where p, q are some constants such that 1+qf # 0, p # 0. If gf’ # 0, the mapping is
nontrivial; otherwise it is affine. The function 1 (x), which defines a geodesic mapping,
has also the form (z) = —% In|l1+qf].

Theorem 10 An equidistant manifold V,, with the metric

ds* = (1+qf(x1))% (ed:x12+f(:x1)d§2), (11)

where f € C (f #0) is a function, d&* = Gup(22, ..., 2") dz?dz® (a,b =2, ...,n)

is the metric of some (n — 1)-dimensional Riemannian space Vi_1, is mapped by the
identity map conformally-projectively harmonically on the Riemannian space V,, with
the metric (10).

The proof of Theorem 10 is analogous to that of Theorem 6 for that same function
. The manifold V,, with metric (11) is conformally mapped onto a Riemannian
space with metric (9), which is geodesically mapped onto a Riemannian space V,,
with metric (10).
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Introduction

In many papers geodesic mappings and their generalizations, like quasi-
geodesic, holomorphically-projective, F-planar, 4-planar, mappings, were con-
sidered. One of the basic tasks was and is the derivation of the fundamental
equations of these mappings. They were shown in the most various ways, see [1]-
[7].

Unless otherwise specified, all spaces, connections and mappings under con-
sideration are differentiable of a sufficiently high class. The dimension n of the
spaces being considered is higher than two, as a rule. This fact is not specially
stipulated. All spaces are assumed to be connected.

Here we show a method that simplifies and generalizes many of the results.
Our results are valid also for infinite dimensional spaces with Banach bases
(n = 00).
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1 F-planar curves

We consider an n-dimensional (n > 2) or infinite dimensional (n = o0)
space A, with a torsion-free affine connection V, and an affinor structure F,
i.e. a tensor field of type (})

If n = oo we assume that A,, is locally homeomorphic to a Banach space
E. In connection with local studies we assume the existence of a coordinate
neighbourhood U in the Euclidean space E,, resp. U C E4

1 Definition (J. Mikes, N.S. Sinyukov [4]). A curve ¢, which is given by
the equations

C=0(t), At)=de(t)/dt (£0), tel (1)

where t is a parameter, is called F-planar, if its tangent vector A(tp), for any
initial value ty of the parameter ¢, remains, under parallel translation along the
curve £, in the distribution generated by the vector functions A and F'\ along /.

In particular, if F' = oI we obtain the definition of a geodesic parametrized
by an arbitrary parameter, see [4]. Here ¢ is a function and I is the identity
operator.

In accordance with this definition, ¢ is F-planar if and only if the following
condition holds [4]:

Vi Alt) = 01(t) A(t) + e2(t) FA(2), (2)

where 01 and o are some functions of the parameter ¢.

2 F-planar mappings between two spaces with affine
connection

We suppose two spaces A, and A, with torsion-free affine connections V
and V, respectively. Affine structures F' and F are defined on A,,, resp. A,,.

2 Definition (J. Mikes, N.S. Sinyukov [4]). A diffeomorphism f: A, — A,
between two manifolds with affine connections is called F'-planar if any F-planar
curve in A,, is mapped onto an F-planar curve in A,,.

Important convention. Due to the diffeomorphism f we always suppose
that V, V, and the affinors F', F' are defined on A,,. Moreover, we always identify
a given curve £: [ — A, and its tangent vector function A(¢) with their images

(= foland A = f.(A(t)) in A,.

Two principially different cases are possible for the investigation:

a) F=aF+bI; (3)
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b) F#aF+bl, (4)

a, b are some functions.
Naturally, case a) characterizes F-planar mappings which preserve F-struc-

tures. In case b) the structures of I and F are essentially distinct. The following
holds.

3 Theorem. An F-planar mapping f from A, onto A, preserve F-struc-
tures and is characterized by the following condition

PX,)Y)=¢v(X) Y +¢(Y)X +p(X)FY +o(Y)FX (5)

for any vector fields X,Y , where P 4o V-V is the deformation tensor field of f,
¥, are some linear forms.

Let us recall that on each tangent space T,A,, P(X,Y) is a symmetric
bilinear mapping T, A, x T, A, — T, A, and a tensor field of type (%)

Theorem 3 was proved by J. Mikes and N. S. Sinyukov [4] for finite dimension
n > 3. Here we can show a more rational proof of this Theorem for n > 3 and
also a proof for n = 3. We show a counter example for n = 2.

3 F-planar mappings which preserve F-structures

First we prove the following proposition

4 Theorem. An F-planar mapping f from A, onto A, which preserves
F-structures is characterized by condition (5).

In the sequel we shall need the following lemma:

5 Lemma. Let V be an n-dimensional vector space, @Q:V x V. — V be
a symmetric bilinear mapping and F:V — V a linear mapping. If, for each
vector A €'V

QA A) = e1(M) A+ 22(A) F(A) (6)

holds, where 01(\), 02(\) are functions on V', then there are linear forms 1 and
@ such that the condition

QX,Y) =v(X)Y +¢(V) X + ¢(X) F(Y) + oY) F(X) (7)

holds for any X, Y € V.

PRrOOF. Formula (6) has the following coordinate expression
QRN = 01(A) A" + 05(N) FIA, (8)

where \?, Fih, ,Z are the components of A, F', ().
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By multiplying (8) with A’ FJA\* and antisymmetrizing the indices h, i and
j we obtain
h i i
{QLQCS;F;] } ACATATNG = 0, 9)

where square brackets denote the alternation of indices. The term in curly brack-
ets does not depend on A and (9) holds for any vector A € V, therefore

h i ]
Qug0iFY) =0 (10)

holds, where the round brackets denote symmetrization of indices.

It is natural to assume that FJ* # a6 with a = const. By virtue of this
there exist some vectors " such that ¢2F" #£ b¢", b = const. Introducing
phe phga phde phea anq phd phea we contract (10) with £2€9¢7€9. Since
Fl £ bl we obtain PP = 2a¢" + 2b F", where a, b are certain constants.
Contracting (10) with £%¢7¢9, and taking into account the precending, we have
Pl-h = aéf + bFih + a; " + b; F", where a;, b; are some components of linear
forms. Analogously, contracting (10) with £7¢%, we have

Q?J = wzfsy + wj(slh + SOz‘F]h + (ijih + §ha¢j + thij7 (11)

where v;, p; are components of a 1-form 1, defined on V, and a;;, b;; are
components of a symmetric 2-form defined on V.

In case that a;; = b;; = 0, evidently from (11) we obtain formula (7).

Now we will suppose that either a;; # 0, or b;; # 0. Since ¢" and FP are
noncollinear, it is evident that

tha;; + F'bj # 0. (12)

Formula (10) by virtue of (11) has the form

hi
Qs il =0, (13)
where ngﬁv e (Ehang —|—thm5»)5,i7 — (§iaag—i—Fiba5)5f;. It is possible to show that

there exists some vector " for which Q%Wsasﬁ €7 # 0, otherwise (12) would be
violated.

Contracting (13) with e%e8e7¢%, we have Fle® = a&" + bF" + ce”, with
a, b, c being constants. Analogously, contracting (13) with e’c7¢°, we obtain that
Fl is represented in the following manner:

Fih:a5?+ai§h+biFh+cish, (14)

where a;, b;, ¢; are components of 1-forms.
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Formula (13) by virtue of (14) has the form
[hi  sil _
Wiap,05) = 0, (15)
where
i def i i )
Waty = E"F(a(agby) = bagay) + " eaapey) + Felbapey).
a) If n > 3 then wﬁ’m = 0 follows from (13), and because ¢, I and &"
are linear independent, we obtain a(,gc,) = 0 and b,gc,) = 0. Therefore ¢; =0

and
Fl=adl 4+ a; "+ b; F". (16)

b) If n = 3 the matrix F* has always the previous form (16) while &, F"
and " are not linear dependent.

Then formula (13) becomes (15), whereas w%v o [hFi](a(aﬁb,y) — bapay))-

hi

For n > 2 it follows WaBy

= 0 and consequently

apby) = blapty)- (17)
If aq and b, are linear indepedent, then from (17) we obtain

al-j = a(iwj) and bij = b(in),

where w; are components of a 1-form. Afterwards it is possible to show that on
the basis of (16) formula (11) assumes the following form
?j = (¢ — awi)égl + (¢; — awj)élh + (i + aw,-)th + (¢; + awj)Fih,

i.e. formula (7) also holds.

Now there remains the case that a, and b, are linear depedent. For example,
bo = aaq, o # 0. Then from (17) follows by = aa.3. We denote A =
E+aFM wp =+ ap;, wij = aij + a(ij), from (11) and (16) we obtain that
Q?j and Fih are represented by

Q= vid] + ;0! + A'wy; and  F)' = ad]' + Aa;. (18)
Then formula (8) appears in the following way
A" (wapA® N = 02(X) aaA™) = N (01(N) + a 02(X) — 2¢a ).
From this it follows that
Wag AN = 09(N) an ), YA £ a Al

By simple analysis we obtain that w;; = a(;0;), where o; are components of a
1-form.

Then due to (18) we have QZ = (¢ — ao’i)ég-‘ + (¥j —ao;)ol +UiF]h +o;Fl.
Evidently Lemma 5 is proved. QED
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PROOF OF THEOREM 4. It is obvious that geodesics are a special case of
F-planar curves. Let a geodesic in A,,, which satisfies the equations (1) and
VA = 0, be mapped onto an F-planar curve in A,, which satisfies equations
(1) and

VoA = 01() A+ 02(1) F'A.

Here 01, 02 are functions of the parameter ¢.
Because the deformation tensor satisfies P(A,A) = VoA — VA, we have

P(A(), A(t) = 01(t) A + 02(t) FA.
It follows from the previous formula that in each point z € A,
PAA) = 01(A) A+ 02(A)FA

for each tangent vector A € Ty; 01()), 02(\) are functions dependent on A.
Based on Lemma 5 it follows that there exist linear forms 1 and ¢, for which
formula (5) holds. QED

4 F-planar mappings
which do not preserve F-structures

We now assume that the structures F' and F' are essentially distinct, i.e.
Fl' # adl + b F}.

a) It is obvious, that geodesics are a special case of F-planar curves. Let a
geodesic in A, which satisfies the equations (1) and VA = 0, be mapped onto
an F-planar curve in A, which satisfies the equations (1) and

VoA = 01(t) A+ o2(t) A

Here g1, 02 are functions of the parameter ¢. B
For the deformation tensor we have P(A(t),\(t)) = 01(t) A + 02(t)FA. Tt
follows from the previous formula that in each point = € A,

PAA) = 01(A) A+ 02(A)FA.

for each tangent vector A € T; 01()), 02(A) are functions dependent on A.
Based on Lemma 5 it follows, that there exist linear forms ¢ and ¢, for
which formula

PX,Y)=¢(X)Y + (YY) X + o(X)FY +p(Y) FX (19)
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holds.

b) Let a special F-planar curve in A,, which satisfies the equations (1)
and V A = F), be mapped onto an F-planar curve in A,,, which satisfies the
equations (1) and

VA = 01(t) A+ 02(t) F'A.
Here 01, 0o are functions of the parameter ¢.

For the deformation tensor we have P(A(t), \(t)) = FA+ 01(t) A + 02(t) F.

It follows from the previous formula that in each point = € A,

PAX) = FA4+ 01(A) A+ 02(A)FA

for each tangent vector A € Ty; 01()), 02() are functions dependent on .
Applying (19) we obtain

FA=1(M) A+ 2N\ FA

Analyzing this expression like in Lemma 5 we convince ourselves that for-
mula (3) holds. In this way we prove

6 Theorem. Any F-planar mapping of a space with affine connection A,
onto A,, preserves F'-structures.

5 F-planar mappings for dimension n = 2

It is easy to see that for n = 2 Theorems 3 and 4 do not hold. If they would
hold, the functions p; and g2, appearing in (6), would be linear in \.

In the case
0 1
h _

for example, these functions have the forms

N PL AN+ NP2 AN

A P2ANT — A2P) A\
01(A) = (A1)2 4 (A2)2

()\1)2 + ()\2)2 ’

and  oa()) =

which are not linear in general.
On the other hand an arbitrary diffeomorphism from A, onto As is an F-
planar mapping with (6) being valid for the above functions p; and gs.
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1. DEFINITION OF INFINITESIMAL F-PLANAR TRANSFORMATIONS

Let us consider an n-dimensional torsion-iree affinely connected space A,, where, along with
the object of linear connection I', an affinor F' (a tensor field of type (})) is given. Denote by x =

(x',22,...,2") a coordinate system on A,,. In what follows we suppose that n > 2.

A curve £ in A, given by equations 2" = z"(t) is said to be F-planar if under the parallel translation
along ¢ the tangent vector A = da"(t) /dt remains in the 2-dimensional plane spanned by the vectors A
and F\e.

A curve £ is F-planar if and only if [ 1—6]

d\"
dt

where F?j(x) are the components of T', and p;(t), 02(t) are functions of the parameter ¢. In case

02(t) =0, the curve ¢ is geodesic. A. Z. Petrov’s quasi-geodesic curves [15], the analytic curves of
Kéhler, hyperbolic Kahler, and parabolic Kahler spaces provide examples of F'-planar curves [1, 5].

+Ths(@)AN = 01 (A" + 0o () FIX*, (1)

An infinitesimal transformation of an affinely connected space A,, is given with respect to the
coordinates as follows:

ah = 2 + et (), (2)

where 2" are the coordinates of a point in A,, and 2" are the coordinates of its image, ¢ is an infinitesimal
parameter which does not depend on 2", and £" is the displacement vector.

An infinitesimal transformation (2) of the space A,, will be said to be F-planar if it maps F-planar
curves of A,, onto curves which are F'-planar in their principal parts.

"E-mail: Hinterleitner.Irena@seznam.cz.
" E-mail: Mikes@risc.upol.cz.
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14 HINTERLEITNER et al.

[f an object A depends not only on « € A,, but also on the infinitesimal parametere, i.e., A = A(z,¢),
then the principal part of A is Jél(:c) + ./14(33)5 in the expansion in series with respect to e:

Az, e) = .él(a:) + .,fls + .él(x)sz + -

In our case curves obtained by the transformation from F'-planar curves satisfy the equation of

F-planar curves under condition that the terms containing higher powers of ¢ (i.e., €2,¢2,...) are

dropped.

2. BASIC EQUATIONS OF INFINITESIMAL F-PLANAR TRANSFORMATIONS

Theorem 1. A differential operator X = {%(x)0, (04 = 0/0x%) determines an infinitesimal
F-planar transformation of an affinely connected space A,, if and only if

a) LTl = il + ;60 + @ FI + ¢ Fl'; b)) LeFl = adl + bE, (3)

where ; and ¢; are covectors, a and b are functions, 5? is the Kronecker delta, and L¢ is the Lie
derivative with respect to &.

First, let us formulate two lemmas which will be used in the proof of this theorem. Let A?j (= A?Z-), Azh,

Fih, i, pi, o, and B (h,i,7 = 1,2,...,n)be constants. Let A', A2,..., A" be coordinates of a vector A,
and a(\) and b(\) be functions depending on .

Lemma 1 ([6]). Equations AEXNN = a(\)A" +b(N)F'X' hold identically with respect to an
arbitrary vector X if and only if Aly = 0" + ;00 + @ FJ' + @, F]'.

Lemma 2 (ibid.). Equations AP\ = a(MA* + b(A\)FPA! hold identically with respect to an
arbitrary vector \ if and only if Al = adt + BE!.

Proof. Let us consider an infinitesimal F-planar transformation of an affinely connected space A,
determined by Egs. (2). Suppose that F* # o6P. Let ¢ be an F-planar curve of the space A,, given
by equations z* = z"(¢) and (1). The curve £ corresponding to £ under transformation (2) has equations

(1) = & (t) + e€"(a(t)). (4)

The infinitesimal transformation (2) is F-planar if £ is F-planar in the principal part. Hence, z"(¢)
given by (4) satisly in the principal part Egs. (1), which in this case take the form

d\"(t)

A Las(@(E)A* (AT (1) = 01 (A" (1) + 09 (8) F ((£)) X (t). (5)

Let us find the objects involved in (5). From Eqs. (4) we find the tangent vector A*(¢) of the curve ¢:

dz(t)  da"(t) &M (z(t)) dz(t)
h = — — h « h
AU(t) = » &t +e Py gt N (t) + eX*(8) 0" (2(2)).
For the object of affine connection I' and the structure F, at the point x we have
ory (x) OF) (z)
hig) =Th v g 2 hiry = Fh i g 2
() =T(x) +¢ Py E(x)+ ¢ and Fj'(z) = F'(z) + ¢ Py E(x) 4+ & .

Hereafter £? stands for the terms containing higher powers of the parameter e.
Let us expand g, (t) and o4 (t) in power series with respect to e:

01(t) = 01,0(t) + 011 (t)e + e? and gy(t) = 020(t) + 091 (t)e + e® .

RUSSIAN MATHEMATICS (I1Z. VUZ) Vol.52 No.4 2008



INFINITESIMAL F-PLANAR TRANSFORMATIONS 15
We substitute these expressions into (5) and obtain

A\
dt

+e <aaﬁghxaxﬂ + d(?: aagh>
+ (Thg+e870,Thg+ &2 )(A* +eX0,£%) (N +eX10,£7)
= (010 +€011+ e (A" + Exy&yﬁh)
+ (02,0 + €021 + e VEM + €0, F + €2 )(A* +eN8,£%).
Since the curve £ is F'-planar, we can use (1) to eliminate dg‘th from the previous relation:
—ThaA N 4 0 A" 4 0, A Fl! 4+ £(0apt" AN = T7 10,6 AN + 0, X%0,6" + 0, A F 05"
+ (TR +e70,Ths+ &2 )N +eX0,£%) (N +eX10,£7)
= (010 t€011+ e2 YA\ +eXa,eM)
+ (000 + €001 + € )(EL + €0, + € )N +eX19,£%). (6)

It is evident that (6) holds true at each point z € A,,. Therefore we can assume that o1, 02, 01 0,

011, 020, and oy, are functions of the point z = (x',2%,...,2") as well as of the tangent vector

A= (AL A2 00,
The constant term in(6), i.e., the term which does not depend on €, vanishes. Hence, after calculation,
we get

(010 — o) A" + (02,0 — 09)A*Fll = 0.
This relation holds true for all vectors A\ at a given point . Hence we have 010 = 01 and gy o = 2.
The linear (with respect to €) term in (6) can be rewritten as follows:
(Dupt" =T 50,6" + 0,105 + 10,0587 + TL50,67) AN
+ Qz(FgaﬁEh - F«ibaaﬁﬂ/ - gfavFoff))\a - Q1,1>\h - Q2,1Foff>\a'
This term also vanishes, so, using the definition of Lie derivative, we get
LT AN = 00 Le A + 0 1 A" + 0y FIEN. (7)

Here L¢ stands for the Lie derivative with respect to &.

The transformation under consideration maps F'-planar curves to F'-planar curves up to the second
order. Certainly, this is true also for geodesics, which are characterized by Eqs. (1) with g2(t) = 0. In
this case (7) turns into

L0 AN = 01 )N + 0y FIA,
These equations hold true at any point and for any vector A*. By virtue of Lemma 1, from these equations
we get (3a)).

By (3a)), under condition g9 = —1 (this is possible because each F'-planar curve is mapped onto an
F-planar curve) relations (7) can be rewritten as follows:

LgFZf)\a = (011 — 2o AN + (021 — 2<Pﬁ)\ﬁ)F£)\a-

From these relations (which hold true for any \*) by Lemma 2 (3b)) follows.
Thus we have proved the necessity. The sufficiency can be proved in a direct way.

Note that, in case Fih = gézh, or ; = 0, each infinitesimal F'-planar transformation is an infinitesimal
geodesic transformation. These transformations were studied by L. P. Einsenhart [16], see also [17—19]

RUSSIAN MATHEMATICS (IZ. VUZ) Vol.52 No.4 2008



16 HINTERLEITNER et al.

3. F-PLANAR TRANSFORMATIONS

We will show that the infinitesimal F-planar transformations are closely related to the F'-planar
transformations [2, 5].

Recall (ibid.) that a transformation z" = 2"(¢) of an affinely connected space A, which maps
F-planar curves to F'-planar curves is called F-planar.

In[2]and[5]it is proved that an infinitesimal operator X = £*(x)0,, determines a one-parameter
Lie group of F-planar transformations of an affinely connected space A,, if and only if (3) holds
true.

In [2] this statement is proved under condition that n > 3 and Rank ||F' — «I|| > 1. However, by a
more detailed considerations, as, for example, in [6], one can prove that this statement holds also for
n > 2. Thus, we have the following

h

Theorem 2. [n an affinely connected space A, a one-parameter Lie group of F-planar
transformations exists if and only if in A, an infinitesimal F-planar transformation exists, and
these transformations have the same differential operator.

As it is known, the Lie derivatives Lg].“ and Lth can be written as follows:
LT}y =&l — €*R)y, and  LeF! = ¢*F), + & Fr — ¢GFL.

Here the comma stands for the covariant derivative in the space A,,, and Rh Lk stands for the curvature
tensor of 4,,.
Hence Egs. (3) can be written as follows:

¢l = EOR}, + bl + ;00 + o F) + ¢;F)' and  (OF)', + W FY — ¢GF) = as) + bF. (8)

In the space A,,, under conditions n > 3 and Rank | F' — || > 1, the basic Egs. (3), which determine
F-planar transformations and infinitesimal F'-planar transformations, can be represented as a closed
system of linear differential equations (written in terms of covariant derivatives) of Cauchy type in
n? + 3n unknown functions:

This system has at most one solution (9) for the initial conditions at a point z, € A,:

Mao) =¢&" Pla) =€l dilzo) =dis wileo) = i
Hence, in A,, the dimension r of the group of F-planar transformations is lesser than or equal to

N = n? + 3n, and the dimension of the space of infinitesimal F-planar transformations is lesser than or
equal to N.

The above mentioned system can be written as follows:
a) & = €l
b) &) = E¥ Rl o + 0l + b6 + @i F) + o FI'
c) ww =1Qijaf" +2Q7,85 +° Qs
d) g1 = *Qijal® +°Ql €5 +°QL 0s,

where 7Q) (¢ = 1,6) are tensor objects composed from the geometric objects of the space A4,, i.e., from
the affine connection chj and the affinor F}*.

We set ¢ = {f;, then obtain (10a)). Egs. (10b)) are in fact (3a)) written in the form (8).
The integrability conditions for (10b)) are written as follows:
57 (ke — Vrg) + 00 — 03 j + F(0jk — Prg) + Fl' ik — Flpi s
= gaRmka_‘_gz jk+£] Rzak_‘_glg ijo ga ijk (Fj},Lk _F]?J) +F ]ka’ F‘z}fkw] (11)

(10)

RUSSIAN MATHEMATICS (I1Z. VUZ) Vol.52 No.4 2008
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One can verify that Egs. (11) have unique solution (as linear algebraic equations) with respect to
unknown ; ; and ¢; 1. From this one can get Egs. (10c¢)) and (10d)), where the left-hand side is uniquely
determined.

Egs. (3b)) are linear algebraic equations with respect to ¢* and ¢ with coefficients defined in A,
(one can show that a and b are certain linear functions in ¢" and &P). The integrability conditions for
Egs. (10b)) (these are (11)) are linear algebraic equations in &", £, 4);, and ¢; with coefficients defined
in A,

Now assume that the affine connection object of A4,, and the structure F' are analytic. Let us denote
by (Ap) the integrability conditions for Egs. (10) combined with Egs. (3b)). Then the system (A;) of
first prolongations of the equations (Ag), the system (Asz) of second prolongations, and so on, consist

of linear algebraic equations with respect to the unknown tensors &, Z-h, 1, and ¢; with coefficients
defined in A,,.
From the analytic theory of differential equations it follows

Theorem 3. An affinely connected space A, (n > 3) endowed with an affinor structure F
such that Rank |[|F — «l|| > 1, admits an F-planar transformation and an infinitesimal F-planar
transformation if and only if the system of linear equations (Ayp), (A1), (As2),...,(An_1) has a
non-trivial solution (9).

The maximal number » < N = n(n + 3) of essential parameters on which the general solution of
equation system (10) depends, is the dimension of the group of F-planar transformations of A,,.

Using Egs. (3b)) and their differential prolongations one can prove that the maximum » = N cannot
be achieved and, moreover, in factr < N —2(n —2) =n(n+ 1) + 4.
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ON HOLOMORPHICALLY PROJECTIVE MAPPINGS
OF e-KAHLER MANIFOLDS

IRENA HINTERLEITNER

ABSTRACT. In this paper we study fundamental equations of holomorphically
projective mappings of e-Kahler spaces (i.e. classical, pseudo- and hyperbolic
Kahler spaces) with respect to the smoothness class of metrics. We show that
holomorphically projective mappings preserve the smoothness class of metrics.

1. INTRODUCTION

First we study the general dependence of holomorphically projective mappings of
classical, pseudo- and hyperbolic Kéahler manifolds (shortly e- Kdhler) in dependence
on the smoothness class of the metric. We present well known facts, which were
proved by Domashev, Kurbatova, Mikes, Prvanovié¢, Otsuki, Tashiro etc., see
[2, 3, 6l [7, 8, [@, [10] 1T, 12, 15l 16} 17, I8, 19]. In these results no details about the
smoothness class of the metric were stressed. They were formulated “for sufficiently
smooth” geometric objects.

2. KAHLER MANIFOLDS
In the following definition we introduce generalizations of Kahler manifolds.

Definition 1. An n-dimensional (pseudo-)Riemannian manifold (M, g) is called
an e-Kdhler manifold K, if beside the metric tensor g, a tensor field F' (# Id)
of type (1,1) is given on the manifold M,, called a structure F, such that the
following conditions hold:

(1) F?=cld; ¢g(X,FX)=0; VF=0,

where e = +1, X is an arbitrary vector of T'M,,, and V denotes the covariant
derivative in I,.

If e= -1, K,, is a (pseudo-) Kiahler space (also elliptic Kahler space) and F is a
complex structure. As A-spaces, these spaces were first considered by P. A. Shirokov,
see [I4]. Independently they were studied by E. Kéhler [5].
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Key words and phrases: holomorphically projective mappings, smoothness class, Kahler space,
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If e = +1, K, is a hyperbolic Kihler space (also para Kdihler space, see [1]) and
F is a product structure. The spaces K, were considered by P. K. Rashevskij [13].

The e-Kéhler spaces introduced here are called shortly “Kéhler” in the literature
[10) [16]. By our definition we want to give a unified notation for all clases.

3. HOLOMORPHICALLY PROJECTIVE MAPPING THEORY
FOR K, — K, OF CLASS C'!

Assume the e-Kihler manifolds K,, = (M, g, F) and K,, = (M, g, F) with metrics
g and g, structures F' and F, Levi-Civita connections V and V, respectively. Here
K,, K, € C',ie. g, g € C' which means that their components g;;, gi; € C*.
Likewise, as in [I1] we introduce the following notations.

Definition 2. A curve ¢ in K,, which is given by the equation ¢ = £(t), A = d¢/dt,
(#£0), t € I, where t is a parameter is called analytically planar, if under the parallel
translation along the curve, the tangent vector A belongs to the two-dimensional
distribution D = Span {\, FA} generated by A and its conjugate F'\, that is, it
satisfies

Vid = a(t)A+ b(t)FA,

where a(t) and b(t) are some functions of the parameter ¢.
Particularly, in the case b(t) = 0, an analytically planar curve is a geodesic.

Definition 3. A diffeomorphism f: K,, — K, is called a holomorphically projective
mapping of K,, onto K, if f maps any analytically planar curve in K, onto an
analytically planar curve in K.

Assume a holomorphically projective mapping f: K, — K,. Since f is a
diffeomorphism, we can suppose local coordinate charts on M or M, respectively,
such that locally, f: K, — K, maps points onto points with the same coordinates,
and M = M.

A manifold K,, admits a holomorphically projective mapping onto K, if and
only if the following equations [10} [16]:

(2) VxY =VxY +9(X)Y +(Y)X + ep(FX)FY + e (FY)FX

hold for any tangent fields X, Y and where v is a differential form. If ) = 0 than
[ is affine or trivially holomorphically projective. Beside these facts it was proved
[10, [16] that F = +F; for this reason we can suppose that F' = F'. In local form:

)

Ely = Tl + il + 500 + ey + eyt

where F?j and f‘?j are the Christoffel symbols of K,, and K,,, 1, F!" are components
of ¢, F and 6} is the Kronecker delta, 1; = ¢o F}*, 0 = F}".

Here and in the following we will use the conjugation operation of indices in the
way
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Equations are equivalent to the following equations
5 Vzg(X,Y) =2¢(2)g(X,Y) + v(X)g(Y, Z) + (Y)3(X, Z)
3
—ep(FX)g(FY,Z) — e (FY)g(FX,Z).

In local form:

Gijk = 20Gij + Vigjk + Vgir — e;951, — €V; G5

where “,” denotes the covariant derivative on K,,. It is known that
1 det g .

=0, W= , 0;,=0/0x".
v 2(n+2) " detg‘ /02

Domashev, Kurbatova and Mike$ [3] [6], [16] proved that equations and
are equivalent to

@) Vza(X,Y) = AX)g(Y, Z) + A(Y)g(X, Z)
— eMNFX)g(FY, Z) — eN(FY)g(FX, Z).
In local form:
Gijk = Aigjk T Ajgik — €Nigjr — eNjGiy
where

(5) (a) a;; = qugaﬁgmgﬁjv (b) Ai=-— e?¥g aﬁgﬁ Vo -
From () follows A; = 9;A = 9;(% aapg®”). On the other hand [10]:

135511 = 19" 9"  ans| "

1 det g
(6) gij = e*gij, U= ° g‘

2 . det g

The above formulas are the criterion for holomorphically projective mappings
K, — K,, globally as well as locally.

4. HOLOMORPHICALLY PROJECTIVE MAPPING THEORY
FOR K, — K, OF CLASS C?

Let K,, and ane C? be e-Kihler manifolds, then for holomorphically projective
mappings K, — K, the Riemann and the Ricci tensors transform in this way

() Ry = Rify + 0t — 07k — edpthis + €07y + 2667y
(b)  Rij = Rij — (n+2)s5,
where ;; = Vi ; — PYith; + P05 (Vi = i = —edy;).

The tensor of holomorphically projective curvature, which is defined in the
following form

(7)

1
(8) Pl =Rl +—— s (5ka 8} Ry, — e0f Ryj + €8 Ry + 201 R )

is invariant with respect to holomorphically projective mappings, i.e. P, = P[; -

ijk



336 I. HINTERLEITNER

The integrability conditions of equations have the following form
aia Ry + aja Ry = gikAji+ GixAin — guXjk — GitNik
(9)
— €gipAj1 — €GipNin T eguNi K T €GN g -
We make the remark that the formulas introduced above, , and (E[), are

not valid when K,, ¢ C? or K, ¢ C2.
After contraction with ¢/% we get:

aia Ry + aapR}” = eXjp — (n— 1 Aik,
where R, = PR s = gajle and pu = )\a”@gaﬁ.
We contract this formula with F, F, ,f, and from the properties of the Riemann
and the Ricci tensors of K,, we obtain

(10) )‘E,E = _6)\i,k7
and ([3, 9 [0, [15])
(11) nAig = pgik + Gia RY + aagR%" .

Because \; is a gradient-like covector, from equation (11]) follows aiaRj = ajo R

From follows that the vector field A; (= A\, Fy) is a Killing vector field, i.e.
)\;d + )\3/2 = 0.
5. HOLOMORPHICALLY PROJECTIVE MAPPINGS
BETWEEN K, € C" (r >2) AND K,, € C?
We proof the following theorem

Theorem 1. If K, € C" (r > 2) admits holomorphically projective mappings onto
K, € C?, then K, € C".

The proof of this theorem follows from the following lemmas.

Lemma 1 (see [4]). Let \* € C* be a vector field and o a function. If
(12) I — poh e C?
then \* € C? and p € C*.

In a similar way we can prove the following: if \* € C” (r > 1) and 9;\" — ! €
C" then \' € C™+! and o € C".

Lemma 2. If K, €C? admits a holomorphically projective mapping onto K, € C2,
then K,, € C3.

Proof. In this case equations and hold. According to the assumptions
gij € C? and g;; € C?. By a simple check-up we find ¥ € C?, ; € C1, a;; € C?,
A € C1 and RZk,Rhijk,Rij,R? cCL.

From the above-mentioned conditions we easily convince ourselves that we can
write equation in the form , where

M= ghox, e Ct, p=p/n and fI = % (=AT", — " a0y R 4-9" anp R:,7) € CL.
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From Lemma follows that \* € C2, o € C*, and evidently \; € C2. Differen-
tiating twice we convince ourselves that a;; € C3. From this and formula @
follows that also ¥ € C® and g;; € C3. O

Further we notice that for holomorphically projective mappings between e-Kéhler
manifolds K,, and K, of class C® holds the following third set of equations [6] 8 [,
15, [0}, [16]:

(13) M = 2>\aRg :

If K, € C" and K,, € C?, then by Lemma K, € C? and holds. Because
the system , and is closed, we can differentiate equations @) (r—1)
times. So we convince ourselves that a;; € C”, and also g;; € C" (= K,, € C").

Remark. Moreover, in this case from equation follows that the function
peCcrt
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1. Introduction

4-planar and 4-quasiplanar mappings of almost quaternionic spaces have been
studied in [1, 2] and [3]. These mappings generalize the geodesic, quasigeodesic
and holomorphically projective mappings of Riemannian and K&hlerian spaces, see
[4-23]. Almost quaternionic structures were studied by many authors for example
[24-26]. Generalisations of the above-introduced mappings were studied in [27-32].

First we study the general dependence of 4-planar mappings of almost quater-
nionic manifolds in dependence on the smoothness class of the metric. We present
well-known facts, which were proved by Kurbatova, see [1], without stress on details
about the smoothness class of the metric. They were formulated “for sufficiently
smooth” geometric objects. In the present article we want to make this issue more
precise.

2. Almost quaternionic and quaternionic Kahler manifolds
Under an almost quaternionic space we understand a differentiable manifold M,
1 2
with almost complex structures F and F defined on it, satisfying
1, 1 2, 2 1, 2 2,1
FLF==0 FoF{=-06); FuF+ FoF=0,

where 07 is the Kronecker symbol, see, e.g., [4, 24].
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3 12
The tensor Fj'= F® F" is further an almost complex structure. The relations

12 3
among the tensors F', F' and F are the following

1 2 3 3 2 2 3 1 1 3 3 1 2 2 1
h o h o =h. h _ o 2h o h. h _ a0 ;2h o h
Fi :Fl Fa =— Fi Fa ; Fl _Fl Fa =— Fi Fa ; Fl _Fl Fa =— Fi Fa .

12 3
Each pair chosen from the three structures ', F and F determines an almost

1 2 3 1 2 3
quaternionic structure. The tensors *F, *F, *F and F, F, F define the same almost
o 3 P
quaternionic structure if *f = a, I where o, are some functions.
p=1

An almost quaternionic manifold A,, is called a quaternionic Kihler manifold,
if there exists a metric g such that (g, F), s = 1, 2,3 are Kihler spaces, so that
g(X,FX)=0, and VF =0,

for any X€TA,, ands=1,2,3. Here and in the following V is an affine connection
with components I" on A,.

1 2 3
Let A, (T, F, F, F') be a space with affine connection I" without torsion with
1 2 3
almost quaternionic structures (F, F, F).

Definition 1. A curve £ in A,, which is given by the equation ¢ = £(t), A = d¢/dt,
(#£ 0), t € I, where t is a parameter, is called 4-planar, if under the parallel
translation along the curve, the tangent vector A belongs to the four-dimensional

1 2 3
distribution D = Span{\, FA, FA, FA}, that is, it satisfies

1 2 3
Vil = a(t)A + b(t) FA + c(t) FA + d(t) FA,

where a(t), b(t), ¢(t) and d(t) are some functions of the parameter ¢.
Particularly, in the case b(t) = ¢(t) = d(t) = 0, a 4-planar curve is a geodesic.

1 2 3
Evidently, a 4-planar curve with respect to the structure (F, F, F) is 4-planar

1.2 3
with respect to the structure (*F, *F, *F'), too.

3. 4-planar mappings

Consider two almost quaternionic manifolds with affine connections without tor-

sion A, and A, with connection components I" and T, respectively. Let an almost
12 3

quaternionic structure (F, F, F') be defined on A4,,.

Definition 2. A diffeomorphism f: A, — A, is called a 4-planar mapping, if it
maps any 4-planar curve in A, onto a 4-planar curve in A,,.

Assume a 4-planar mapping f: A, — A,. Since f is a diffeomorphism, we
can introduce local coordinate charts on M or M, respectively, such that locally
f: A, — A, maps points onto points with the same coordinates, and M = M.
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A manifold A,, admits a 4-planar mapping onto A,, if and only if the following
equations [3]:

3
ViV = VXY+Z{¢(X)13Y+ w(Y)zliX} (1)

s=0 %

0
hold for any tangent fields X,Y and where ¢ are differential forms; F = Id. If
Y =0, (s=0,1,2,3) then f is affine. (

S
Beside these facts it was proved [3] that the quaternionic structure of A,, and

S
A,, is preserved; for this reason we can assume that F' = F . This was a priori
assumed in the definition and results by Kurbatova [1].
Equation (1) in the common coordinate system z with respect to the map-
ping, has the following form

3
(@) = Th@) + > v F
s=0 °
where I'}; and I'}; are components of V and V, ¢;(z) are components of 4, (i j)

denotes a symmetrization without division by 2.

12 3
Finally we will assume that the space A, (L', F, F, F) is mapped onto the
(pseudo-) Riemannian space V,,(g). A mapping f: Ap,— V,, is 4-planar if and only
if the metric tensor gG;;(x) satisfies the following equations:

3
Gij ke = Z <wkga(i Fﬁ-i— Y Gj)a F;?) (2)

s=0

where the comma is the covariant derivative in A, (see [3]),

4. 4-planar mapping theory for K,, — K, of class C!
Let us consider the quaternionic Kihler manifolds K,, = (M,g,F) and K,, =

12
(M, g, F) with metrics g and g, structures F = (}17,}27,}:;) and F = (F ,F ,F),
Levi-Civita connections V and V, respectively. Here K,,, K, € C', i.e., g,g € C!
which means that their components g;;, gi; € C*.

We further assume that K, admits a 4-planar mapping onto K,. Then we

S

can consider M = M and F = F for s = 1,2,3.

In the present case we can simplify formula (2) as follows:

3
Gij .k = 2k Gij + Z (1/1i9ja Ft Y Gia F;?) . (3)

s=1
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Here and in the following v, = v . When n > 4, it was proved in [1] that
0

$i=— "ty FY  s=1,2,3. Moreover, ¢ is gradient-like, that is

. n?—4 det g
i =0V /0x" and ¥ = 1 .
= owow' and W= g |

Kurbatova [9] proved that equations (3) are equivalent to

Aij 1 = )\aQ?fj) 9Bk (4)
where

3
. aﬂ o a ,8 n SOL S,B

and

(a) aij =e*Yg* gaigs; (b)) Ni = =5 g
In addition, the formula
Qag Z;iia Z;ijﬁ = a;;
holds. From (4) follows \; = 9; A = 9;(const - aaggo‘ﬁ). On the other hand
1
—1In
2

det g
det g

gij =egy, V= 3l = g g aas " (5)

The above formulas are the criterion for 4-planar mappings K, — K,,, glob-
ally as well as locally.

5. 4-planar mapping theory for K, — K,, of class C?

Let K, and K, € C? be quaternionic Kihler manifolds, then the integrability
conditions of equations (4) have the following form

Qij ki = Gijik = iRy + aja Ry = )\alQ?if) gk — AakQ?if) gp1-

Here R?j  are components of the Riemann tensor.
After contraction with g/* we get [1]:

n\ik = pgir + aas B, (6)
where

n= )‘aﬁgaﬁ7 Bgﬁ = Q(ﬂl})Ra’vé l Rg’yé 1= gﬁéR%lv

3

A nn—4) (4-3n s 5 s

Qfgzm(n_l)( - 5fag+§jpfpg>.
s=1
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6. 4-planar mappings between K, € C" (r > 2) and K,, € C?

We demonstrate the following theorem

Theorem 1. If K,, € C" (r > 2) admits 4-planar mappings onto K, € C2, then
K, eCr.

The proof of this theorem follows from the following lemmas.
Lemma 1 (see [7]). Let \* € C! be a vector field and p a function. If
N —pol = fh e C? (7)
then \' € C? and p € C'.
Lemma 2. If K,, € C? admits a 4-planar mapping onto K, € C?, then K, € C3.

Proof. In this case equations (4) and (6) hold. According to the foregoing assump-
tions, g;; € C® and g;; € C?. By a simple check-up we find ¥ € C? ¢, € C!,
aij € 02, A € C' and R{ij‘ eCl.

From the above-mentioned conditions we easily convince ourselves that we
can write equation (6) in the form (7), where

M= gh N, € CY p=p/nand fl' = % g"ags By € CL.

From Lemma 1 it follows that \* € C?, p € C!, and evidently \; € C2. Differen-
tiating (4) twice we show that a;; € C3. From this and formula (5) follows that
also U € C3 and g;; € C3. (]

Further we notice that for 4-planar mappings between quaternionic Kéhler
manifolds K,, and K,, of class C* holds the following third set of equations (after
simple modifications of [1]):

(n—1Dpr= )\acsl[ék]gmS + aang[i}k]g”ﬂ (8)

where CF,, = Q‘;?;B;Y[lﬁgk]g.

If K,, € C" and K,, € C?, then by Lemma 2, K,, € C® and (8) holds. Because
the system (4), (6) and (8) is closed, we can differentiate equations (4) (r—1) times.
So we convince ourselves that a;; € C", and also g;; € C" (= K, € C").

Remark 1. Moreover, in this case from equation (8) follows that the function
ueCrt
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Holomorphically projective mappings of (pseudo-) Kidhler manifolds
preserve the class of differentiability

Irena Hinterleitner?

?Department of Mathematics, Faculty of Civil Engineering, Brno University of Technology, Czech Republic

Abstract. In this paper we study fundamental equations of holomorphically projective mappings of
(pseudo-) Kédhler manifolds with respect to the smoothness class of metrics C’, r > 1. We show that
holomorphically projective mappings preserve the smoothness class of metrics.

subclass: 53B20; 53B21; 53B30; 53B35; 53C26

1. Introduction

First we study the general dependence of holomorphically projective mappings of classical and pseudo-
Kéhler manifolds (shortly Kéhler) in dependence on the smoothness class of the metric. We present well
known facts, which were proved by Otsuki, Tashiro [31], Tashiro, Ishihara [44], Domashev, Mikes [8], Mike$
[19,20], A.V. Aminova, D. Kalinin [2-5], etc., see [6, 9, 25, 27, 28, 35, 36, 45]. To the theory of holomorphically
projective mappings and their generalization are devoted many publications, eg. [1, 7, 10, 11, 15-18, 21—
23, 26, 29, 30, 32, 33, 38-41]. In these results no details about the smoothness class of the metric were
stressed. They were formulated “for sufficiently smooth” geometric objects.

The following results are connected to the paper [12] where it was proved that holomorphically projective
mappings preserve the smoothness class C" of the metrics in the case ¥ > 2. In the following paper we
generalize this result to the case r > 1.

2. Main results

Let K, = (M, ¢,F) and K,, = (M, g, F) be (pseudo-) Kihler manifolds, where M and M are n-dimensional
manifolds with dimension 1 > 4, g and j are metrics, F and F are structures. All the manifolds are assumed
to be connected.

Definition 2.1. A diffeomorphism f: K, — K, is called a holomorphically projective mapping of K, onto K,
if f maps any holomorphically planar curve in K,, onto a holomorphically planar curve in K,,.

We obtain the following theorem.
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Theorem 2.2. If the (pseudo-) Kihler manifold K, (K, € C", r > 1) admits a holomorphically projective mapping
onto K, € C!, then K,, belongs to C'.

Briefly, this means that:
holomorphically projective mappings preserve the class of smoothness of the metric.
The analogous property for geodesic mappings of (pseudo-) Riemannian manifolds is proved in [13].

Here and later K, = (M, g,F) € C" denotes that g € C’, i.e. in a coordinate neighborhood (U, x) for the
components of the metric g holds g;j(x) € C". If K, € C" then M € C'*!. This means that the atlas on the
manifold M has the differentiability class C'*!, i.e. for non disjoint charts (U, x) and (U’,x’) on U N U’ it is
true that the transformation x’ = x’(x) € C'*1.

The differentiability class r is equal to 0,1,2, ..., 00, w, where 0, o0 and w denotes continuous, infinitely
differentiable, and real analytic functions respectively.

Remark 2.3. It’s easy to prove that the Theorem 2.2 is valid also for = co and for r = w. This follows from
the theory of solvability of differential equations. Of course we can apply this theorem only locally, because
differentiability is a local property.

Remark 2.4. A minimal requirement for holomorphically projective mappings is K, K,, € C'.
Mikes, see [19, 21, 22, 24, 25], [28, p. 82] found equidistant Kdhler metrics g in canonical coordinates x:

Jab = Jarmb+m = aabf + 8a+mb+mf and gapem = aab+7nf - aﬂ+mhfl

where a = 1,2,...,m, m = n/2, f = expx!) - G2 x3,... x" xFm 3 o x?m), G e C,
which admit holomorphically projective mappings. Evidently, if G € C"*2 (r € N), G € C* and C¢,
then K, € ", K, € C* and K, € C¥, respectively. From these metrics we can easily see examples of non
trivial holomorphically projective mappings K, — K,, where

K, K, € C and ¢ C"*! forr e N; K, K, € C* and ¢ C¥; K, K, € Cv.

3. (Pseudo-) Kihler manifolds
In the following definition we introduce generalizations of Kéhler manifolds.

Definition 3.1. Ann-dimensional (pseudo-) Riemannian manifold (n > 4)is called a (pseudo-) Kihler manifold
K,=(M, g, F), if beside the metric tensor g, a tensor field F of type (1,1) is given on the manifold M, called a
structure F, such that the following conditions hold:

FP=-1d, g(X,FX)=0; VF=0, (1)
where X is an arbitrary vector of TM, and V denotes the covariant derivative in K,,.

These spaces were first considered as A-spaces by P.A. Shirokov, see [34]. Independently such spaces
with positive definite metric were studied by E. Kdhler [14]. The tensor field F is called a complex structure
[45].

The following lemma specifies the properties of the differentiability of geometrical objects on (pseudo-)
Kéhler manifolds.

Lemma 3.2. If K, =(M,g,F) e C’,ie. geC', then Fe C', forr e Nand r = oo, w.

Proof. Let K, € C', i.e. the components of metric g;j(x) € C" in a coordinate chart x. It is a priori valid that
F' € C'. The formula VF = 0 can be written dyF! = F/T% — F'T" , where Ty = /2 (9igjx + 9jgi — 9kgij),

Jx = 9/9x*, and l"?j = g""T;; are Christoffel symbols of the first and second kind, respectively. It holds that
Tijx and l"f.’]. € C"1. From this equation follows immediately F?(x) eC,ie. FeC. O
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Moreover, due to the differentiability of g € C" according to (1), each point has a coordinate neighborhood
(U, x) € C™*! in which the structure F has the following canonical form:

Fg+m - _F[l

b+m

- — pm - I
=0, F,=Fi,=0, a,b—l,---,m,m—z. (2)
We get, as an immediate consequence, that the dimension is even, n = 2m. Such a coordinate system will
be called canonical.

Due to the conditions (1) and (2), the components of the metric tensor and Christoffel symbols of the
second kind in a canonical coordinate system satisfy

— — _ a  _ patm _ T4 a+m _Ta _ _Tatm
Ga+mb+m = Gabs  Jab+m = ~Ga+mbs and rbc - 1-|b+mc+m - 1—‘b+mc+m’ 1-‘b+mc+m - I_‘b+mc - rbc . (3)

’h

Obviously, the coordinate transformation x” = x"(x) preserves a canonical coordinate system if and

only if the Jacobi matrix | = (9x"/dx') satisfies
ax/aer &x/ﬂ &x/aer axlﬂ
—— =— and = - . 4)
oxb+m axb oxb dxb+m
Let us set z = x® + ix™™, 2/ = x’* + ix’"*" (where i is the imaginary unit). Then (4) can be inter-
preted as Cauchy-Riemann conditions for the complex functions z" = z"(z!,--- ,z™), and we will call this
transformation analytic.

4. Holomorphically projective mappings K,, = K, of class C!

Assume the (pseudo-) K&hler manifolds K, = (M, g, F) and K,, = (M, g, F) with metrics g and g, structures
F and F, Levi-Civita connections V and V, respectively. Here K,,, K,, € C!, i.e. g,4 € C! which means that
their components g;;, 7ij € C'.

Likewise, as in [31], see [6], [35, p. 205], [36], [25], [28, p. 240], we introduce the following notations.

Definition 4.1. A curve ¢ in K, which is given by the equation ¢ = {(t), A = d{/dt (# 0),t € I, where t is
a parameter is called holomorphically planar, if under the parallel translation along the curve, the tangent
vector A belongs to the two-dimensional distribution D = Span {A, FA} generated by A and its conjugate FA,
that is, it satisfies

ViA = a(t)A + b(t)FA,
where a(t) and b(t) are some functions of the parameter ¢.

Particularly, in the case b(t) = 0, a holomorphically planar curve is a geodesic.

We recall the Definition 2.1: A diffeomorphism f: K, — K, is called a holomorphically projective mapping of
K, onto K, if f maps any holomorphically planar curve in K, onto a holomorphically planar curve in K.
Assume a holomorphically projective mapping f: K, — K,. Since f is a difftfomorphism, we can
suppose local coordinate charts on M or M, respectively, such that locally f: K, — K, maps points onto
points with the same coordinates, and M = M.
A manifold K,, admits a holomorphically projective mapping onto K, if and only if the following
equations [28, 36]:

VxY = VxY + ¢(X)Y + ¢(YV)X — 9(FX)FY — ¢(FY)FX (5)
hold for any tangent fields X, Y and where ¢ is a differential form. In local form:
Ty = Ty + i) + ;0] — il — 9707,
where l"f.l]. and 1_"?]. are the Christoffel symbols of K, and K, ¢, Fi? are components of ¢, F and 6? is the

Kronecker delta, ¢; = ,F}, (S? = F?. Here and in the following we will use the conjugation operation of
indices in the way

.......
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If ¢ = 0, then f is affine or trivially holomorphically projective. Beside these facts it was proved [28, 36] that
F = +F; for this reason we can suppose that F = F.

It is known that
1

2n+2) "

Equations (5) are equivalent to the following equations

detg

Y=V, W= Tetsl’

V29X, Y) = 20(2)3(X, Y) + Y(X)G(Y, Z) + ()F(X, 2) + YEX)FEFY, Z) + (FV)IEX, 2). (6)
In local form:
Vigij = 2Ukgij + Yigi + Vi + Vidi + Vg%,
where j;j are components of the metric 7 on K.
The above formulas are well known for F = F, see [31], [6], [35, p. 206], [36], [25], [28, p. 240-242].

Domashev and Mikes ([8], see [35, p. 212], [36], [25], [28, p. 246]) proved that equations (5) and (6) are
equivalent to

Vza(X,Y) = AX)g(Y, Z) + A(Y)g(X, Z) + MEX)g(FY, Z) + MFY)g(FX, Z); (7)

in local form:
Viaij = Nigje + Ajgix + A + A

where
(@) a;j = ezwgubgaighj} ) A = —e?V g, (8)
From (7) follows A; = V;A and A = § a,.g". On the other hand [28]:

1

detg
Eh’l eg

detg

gij=e™gy;, W= gl = llg® g apel . )

The above formulas are the criterion for holomorphically projective mappings K,, — K,, globally as well as
locally.

5. Holomorphically projective mapping for K, € C> - K,, € C
I. Hinterleitner [12] proved the theorem:

Theorem 5.1. If a (pseudo-) Kéhler manifold K,, € C', v > 2, admits a holomorphically projective mapping onto
K, e C?, then K, € C".

It is easy to see that Theorem 2.2 follows from Theorem 5.1 and the following theorem.
Theorem 5.2. If K, € C? admits a holomorphically projective mapping onto K, € C, then K,, € C2.

Proof. We will suppose that the (pseudo-) Kdhler manifold K, = (M, g,F) € C* admits a holomorphically
projective mapping f onto the (pseudo-) Kdhler manifold K, = (M, 7, F) € C'. Furthermore, we can assume
that M = M and F = F. The corresponding points x € M and ¥ = f(x) € M have common coordinates
(x!,x%,...,x"), shortly x, in the coordinate chart (U, x), U C M, .

We study the coordinate neighborhood (U, x) of any point p at M. Moreover, we suppose that the
coordinate system x is canonical (2). On (U, x) formulae (5)—(9) hold, and formula (7) may be written in the
following form

dyal = N's) + Mo+ NE) + VE, — £, (10)
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where a'l = a,.g"gl, At = A,g%, A' = A°Fi, and f;j = aibl"ék +al'Tt

The components g;j(x) € C? and gij(x) € C' on U ¢ M and from that facts follows that the functions
gl(x) € C%, gli(x) € C', W(x) € C!, ¥i(x) € C°, ai(x) € C', Ai(x) € C°, and Ff?].(x) € Cl. It is easy to see, that
flzj eCL

In the canonical coordinate system x we can calculate the following derivative for fixed different indices
ab=1,...,mm=n/2:

&bb‘l”b =) — ’;zh/ ab+m(1gb = _\a+m _ ﬁm, "
&baabﬂn = \@+m _ f;bm, ab+maub+m =)\ — ézi;lm. ( )

Eliminating A? and A**" we obtain the equations

&bb‘l”b _ 8b+maab+m — _ fab + ab+m
b b bb ’ b (12)
Dpem@™ + Qpa ™ = —fob _ fabsm,

ab+m b+m

We denote w = a™ +i-a™*™, z = x + i - x"*™ where i is the imaginary unit. Then (12) can be rewritten

dw=F=(—f"+ firm i (—fL — fibrm),
and because F € C?, then exists d>_w.
So there are the second partial derivatives of the functions a® and a of the variables x? and x’*"; and,
clearly, also of x* and X" After this from formula (11) follows that A" € C'; and equations (10) implies
that a”, a;; € C%. Finally, formula (9) shows that g;; € C2. O

ab+m

6. Holomorphically projective mapping K,, = K,, of class C*

Let K, and K, € C? be (pseudo-) Kihler manifolds, then for holomorphically projective mappings
K,, — K, the Riemann and the Ricci tensors transform in the following way
() Ry = Riy + 0yij — Ojhic + Oy — Ot = 26/ 5
(b) Rij = Rij— (n +2)jj,

where Vi = ¢ — i+ Yih; (Yij = ji = 1//1]) Here the Ricci tensor is defined by Ry = R?,. In many papers
it is defined with the opposite sign [19, 25, 35, 46], etc.
The tensor of the holomorphically projective curvature, which is defined in the following form

(13)

1
ho_ ph J f "Rij— "Ry iR
pho— Rijk + — (5;1{1']' - (SjRik + 6I‘<Rij - (3]1Rik - Zészk)’ (14)

is invariant with respect to holomorphically projective mappings, i.e. Pf’jk = P?jk.

The above mentioned formulae can be found in the papers [6, 28, 35].
The integrability conditions of equations (7) have the following form

2Ry +ajaRyy = guVidj+ giVidi = gaVidj = gpVidi + gaVid; + gpVidi = gaVid; — gaVicki. - (15)
After contraction with g/ we get:

apR} + ap R = =Vid; — (n — 1)Vid;,

where Rb,‘lc = ngRhilk,' R? = gbjle and U= VCAbgbc.
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We contract this formula with Fﬁ Fﬁ, and from the properties of the Riemann and the Ricci tensors of K,
we obtain

Vid; = Vid,, (16)
and ([8, 25, 28, 35])
nVidi = ugix — aisz — RV (17)

Because A; is a gradient-like covector, from equation (17) follows aﬂ,R’]’. =a jbR?.
From (16) follows that the vector field A; (= A.F}) is a Killing vector field, i.e. VjA; + ViA; = 0. But the

other side of the equations (16) can be written in the form Vg/\hF‘l? = V;AF. In the canonical coordinate
system x they are given by

A" = AT =0 and FpeyA” + A" =0, ab=1,...,m, m=n/2.

These are Cauchy-Riemann equations, which implies that the functions A"(x) are real analytic. After this
differentiation of the Killing equations we obtain V;(V;1") = /_\“Rf’],a, and by contraction with F}, we finally
obtain

V]'y = —2/\aRai.

These equations were found earlier under the assumption K,, € C®> and K,, € C?, [20], see [35, p. 212], [28,
pp. 247-248].
From that we proof the following theorem

Theorem 6.1. A Kiihler manifold K,, € C* admits holomorphically projective mappings onto K, € C' if and only if
the system of differential equations

Vka,-]- = /\igjk + Ajgik + /\z_‘gfk + /\]*g;k,
nVidi = gy — apRl — a,R%, (18)
V]'},l = —ZAthj,

has a solution a;j, A; and u satisfying the following conditions

a;j = a;j = a5, det(a;j) # 0. (19)
Remark 6.2. Moreover if K, € C', it follows that K,, € C', the function A; € C" and u € C'71,
Remark 6.3. If K, € C®, then K, € C*, and if K, € C*, then K,, € C®.

Theorem 6.1 was proved in the case K, K, € C83, see [20].

The family of differential equations (18) is linear with coefficients of intrinsic character in K, and
independent of the choice of coordinates. If the metric tensor g and the structure tensor F of the Kahler
manifold K,, are real then for the initial data

a;j(xo) :ij, Ai(xo) =7, w(xo) =i,

the system (18) has at most one solution. Accounting that the initial data must satisfy (19), it follows that
the general solution of (18) depends on 7y, significant parameters, where 7y, < (/2 + 1)2.
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