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Chapter 1

Introduction

Specialty optical fibers have been an important part of fiber optic technology for last four decades.
They find their usage in diverse application domains as fiber optic laser sources, optical amplifiers,
dispersion-compensating devices for optic communications, fiber optic gyroscopes used in aerospace
systems, or in design of various fiber optic sensors. The last mentioned area is a leading consumer
of specialty optical fibers. The application of fiber optic sensors of physical quantities includes the
detection of strain, pressure, mechanical vibrations, flow, temperature, and electric or magnetic
field sensing. As to the application in chemistry, fiber optic sensors based on refractive index
change detection are often used for concentration measurements. Other application potential is
connected with the possibility to combine multiple features in the same specialty fiber. Such fiber
allows to detect for example stress and temperature changes simultaneously.

The term ’specialty’ is used to distinguish such fibers from standard telecommunication fibers. It
refers to some unique features obtained either by special dopant application or by specific geometry
of the fiber. Typical examples of the first group are rare earth-doped fibers used for optical fiber
amplifiers and fiber laser sources, or fluoride, chalcogenide or heavy metal oxide glass fibers designed
for mid-infrared or infrared applications. Other examples are photosensitive fibers whose core
index of refraction can be permanently modified when exposed to irradiation by ultraviolet light.
Photosensitivity allows to realize various optical components based on fiber Bragg gratings or
long-period gratings. Concerning the second group, various types of elliptical fibers ranging from
elliptical core to D-shaped elliptical fibers are worth mentioning together with microstructured
fibers, which are manufactured using only one material and whose dispersion properties can be
optimized just by the change of their geometry. Because of broken circular symmetry, elliptical
fiber waveguides exhibit ability to preserve the polarization state of a guided wave. This feature
is often used in design of fiber optic sensors where polarimetric detection setup is exploited. The
microstructured fiber with proper geometry design can possess the same feature.

The fibers with above mentioned ability to keep and transmit the polarization of the light
launched into it are called polarization maintaining fibers (PMFs). They are important part of
specialty optical fiber technology and the measurement methods for characterization of their pa-
rameters are the subject of presented text. Polarization maintaining fibers were developed for the
purposes of coherent communication systems as one of the first applications of specialty fiber tech-
nology in beginning of eight decade of last century. Even if the development of commercial coherent
communication systems based on PMFs effectively ceased ten years after when simpler and more
versatile solutions to high-bandwidth transmission were presented, they found their usage in sev-
eral others optical systems as fiber optic gyroscopes, current sensors or laser Doppler anemometry
devices. The ability to transmit the polarization modes is created through the introduction of
anisotropy to the fiber cross-section.
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Such anisotropy can be created either by application of uniaxial stress leading to the refractive
index changes via the photo-elastic effect, or by appropriate geometric design. The first case is
referred to as stress birefringence, the second one as form birefringence.

The stress birefringent polarization maintaining fibers have usually one of the used geometries:
PANDA, bow tie or elliptical jacket. All three designs are based on the same mechanism, where
some stress applying parts consisting of high-expanding glass are placed in the vicinity of the fiber
core. The thermal expansion coefficient difference leads to the residual tension acting as the source
of birefringence.

As to the presented text, the experiments were oriented on characterization of fiber samples
belonging to the second mentioned design - form birefringence fiber. The measurements were carried
out for elliptical core fibers and microstructured fibers. Historically, elliptical core fibers were first
studied as the case of imperfection of standard circular fibers. Now they are mostly used in sensing
applications, where the elliptical core design offers lower temperature variation of birefringence and
better mechanical properties than the stress induced birefringence design.

The other type of experimentally studied form birefringence fibers were photonic crystal fibers.
Such fibers, sometimes called microstructured fibers, can be manufactured from a single material
and their characteristics can be manipulated just by the change of several geometric parameters.
The guiding mechanism of optical waves in the mentioned fibers differs from the waveguiding in
conventional fibers operating on total internal reflection the waves undergo on boundary between
core and cladding. Instead of cladding consisting of the glass with different refractive index, the
core is surrounded by periodic array of microstructured air holes. The periodic arrangement of the
holes leads to the formation of photonic band-gap. The waves whose frequencies fall into such a
photonic band-gap can not propagate in the air-hole array and so they are forced to propagate in
the core region. In addition, the core itself is not necessary solid and the waveguiding can take place
in an air hole in located in the core. Thus, the photonic band-gap waveguiding offers a rich variety
of possible fiber designs. Polarization maintaining properties of such fibers can be controlled via
the geometry of the holes too. Introduction of some ”defects” in the location and geometry of the
holes, leading to the circular core symmetry break, induces the polarization maintaining ability of
such fibers.

Proper design of fiber optic devices requires the knowledge of dispersion characteristics of used
fibers. Considering the sensors of various chemical or physical quantities based on interferometric
techniques and employing the polarization maintaining fibers, the phase and group birefringence
behavior in spectral domain plays an important role. On the other side, chromatic dispersion is
an important parameter for the design of supercontinuum sources. The type of the used charac-
terization method depends on the length of investigated fiber. The dispersion characteristics of
long length optical fibers are usually determined by time-of-flight method, or by modulation phase
shift method. The first technique is based on the measurement relative temporal delay for pulses
generated at different wavelengths. The second one measures the phase delay of a modulated sig-
nal as a function of wavelength. The other choice is wavelength scanning method usually used
for short length fibers, but the technique can be applied to long length fibers as well. One of the
most versatile tools considered for the dispersion characterization of short length fiber samples is
spectral interferometry. Presented work deals with spectral interferometric techniques developed
and applied to the characterization of polarization maintaining fibers.

The thesis begins with an introduction followed by two chapters where the basic facts and
methods used in for description of elliptical core fibers and photonic crystal fibers are presented.
Then the basic concepts of spectral interferometry methods used for characterization of polarization
maintaining fibers are given. The results of research work are discussed in the chapter five. Finally,
chapter six contains the summary of the thesis and some ideas for further research.



Chapter 2

Elliptical core fibers

2.1 Problem formulation

Wave propagation in optical elliptical core fibers is based on index guiding mechanism. It means
that the refractive index value ncr in core region (see Fig.2.1) is higher then the refractive index
value ncl in cladding region and the waves are confined within core by total reflection on the core-
cladding boundary. Materials in both regions are assumed to be lossless, homogeneous dielectrics,
forming a step refractive index profile. Besides the total reflection, other condition enforced by the
fact that the waves in the core propagate in a bounded region has to be fulfilled as well. Both
condition lead to the discrete character of the spectrum of waves guided in the waveguide structure.
In the following text, the core is represented by the ellipse with the semi-major and semi-minor
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Figure 2.1: Elliptical core fiber cross-section
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Figure 2.2: Schematic drawing of elliptical
coordinates, core boundary at ξ = ξ0.

axes a and b, where the semi-major axis is parallel to x-axis of Cartesian coordinate system. The
geometry of the problem naturally leads to elliptical coordinate system schematically depicted in
Figure 2.2. The elliptical coordinates ξ, η and z are related to Cartesian coordinates x, y and z by
transformation:

x = q sinh ξ cos η y = q cosh ξ sin η z = z , (2.1)
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where q =
√
a2 − b2 is the semi-focal distance. The core boundary is then simply defined by a

constant value of radial coordinate ξ = ξ0. The semi-major and semi-minor axes of the core ellipse
are then expressed as a = q cosh ξ0 and b = q sinh ξ0. The task is to find the solution to Maxwell
equations in lossless, isotropic, non-magnetic (µ = µ0) media, characterized by permittivity ε:

∇×E = −µ0
∂H

∂t
(2.2)

∇×H = ε
∂E

∂t
(2.3)

∇ ·E = 0 (2.4)

∇ ·H = 0 (2.5)

transformed to elliptical coordinates in the core and cladding region and fulfilling appropriate
boundary conditions on core-cladding boundary. For the purposes of following analysis, the cladding
region is supposed to be infinite, E(r, t) and H(r, t) denote the intensity of electric and magnetic
field. Instead of the set of first-order partial differential equations (2.2-2.5), the wave equations for
E and H vectors can be derived by taking the curl of (2.2) and (2.3):

∆E − µε∂
2E

∂t2
= 0 ∆H − µε∂

2H

∂t2
= 0 . (2.6)

Usual method in waveguide analysis is to separate the vector fields to transverse and longitudinal
parts with respect to the direction of propagation along the waveguide axis (z−axis in our case).
Because the transverse components can be expressed using the longitudinal one, the problem can
be substantially simplified - instead of two vector wave equations (2.6), two scalar wave equations
for longitudinal components are solved. Then the transverse components can be obtained and used
when the boundary conditions are introduced. Further simplification comes from the assumption
that our analysis is restricted to time-harmonic case only. The time dependence exp(iωt) of the
electric and magnetic field intensity is supposed. So the fields are periodic in longitudinal direction
as exp(−iβz), where β is the propagation constant.

Partial differential equations for electromagnetic field are transformed to the required coordinate
system using appropriate metric coefficients (for details of the procedure see [1]). The Laplace op-
erator in general curvilinear orthogonal system (u1, u2, u3) acting on a scalar function Φ(u1, u2, u3)
takes the form:

∆Φ =
1

h1h2h3

[
∂

∂u1

(
h2h3

h1

∂Φ

∂u1

)
+

∂

∂u2

(
h3h1

h2

∂Φ

∂u2

)
+

∂

∂u3

(
h1h2

h3

∂Φ

∂u3

)]
, (2.7)

where h1, h2 and h3 are the mentioned metric coefficients. In our case of elliptic coordinate system,
the metric coefficients are expressed as:

h1 = h2 = q

√
sinh2 ξ cos2 η + cosh2 ξ sin2 η h3 = 1 , (2.8)

and according to (2.1) the curvilinear coordinates are u1 = ξ , u2 = η and u3 = z. Thus the scalar
wave equation for assumed time harmonic fields Φ = Φt(ξ, η) exp(−iβz) in elliptical coordinates
can be expressed as:

[
∂2Φt

∂ξ2
+
∂2Φt

∂η2

]
+ q2[k2 − β2][sinh2 ξ + sin2 η]Φt = 0 , (2.9)
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where Φt(ξ, η) represents the transverse distribution of the field and k is the wavenumber in the
appropriate media. Assuming that according to [2] the separation of variables Φt(ξ, η) = R(ξ)Θ(η)
can be applied to (2.9), we obtain a pair of equations for radial and azimuthal variation of the field:

∂2R

∂ξ2
−
[
Λ− (k2 − β2)

q2

2
cosh2 2ξ

]
R = 0 (2.10)

∂2Θ

∂η2
+

[
Λ− (k2 − β2)

q2

2
cos2 2η

]
Θ = 0 , (2.11)

where Λ denotes the separation constant. Equation (2.10) for the radial variation is the modified
Mathieu equation, the equation (2.11) for azimuthal variation is the Mathieu equation. The following
sections of this chapter are focused on basic methods of solution to the mentioned waveguiding
problem, as the computation of the properties of elliptical core fibers is an important counterpart
to the measurement methods used for determination of their parameters.

2.2 Exact approach

This type of analysis follows simple idea - find the appropriate eigensolutions to waveguide equation
in the core and cladding regions and apply boundary conditions at the interface between them. The
physics of the waveguiding problem requires continuity of tangent components of electromagnetic
field intensities at the core/cladding boundary. This leads to a dispersion relation from which the
propagation constant β can be obtained. The word ’exact’ means that no additional assumptions
considering the geometry of the boundary (for example low core ellipticity value), or refractive
index difference value is used in order to simplify the analysis.

In order to compact the expressions in following text, it is useful to introduce the transverse
propagation constant γ as:

γ2
d =

q2

4
(k2

d − β2) (2.12)

where the indices d = cr, cl refers to the core and cladding regions. As to the azimuthal variation
of the electromagnetic field along the boundary ellipse (given by ξ = ξ0), it is obvious that the
solution to Mathieu equation (2.11) must be single-valued or periodic with the azimuthal coordinate
η ∈ 〈0, 2π〉. According to the theory of Mathieu functions [3] that happens only when the separation
constant Λ equals to one of the characteristic number of Mathieu equation:

Λ = Λ(γd) = a0(γ2
d), a1(γ2

d), a2(γ2
d), . . . ; b0(γ2

d), b1(γ2
d), b2(γ2

d), . . . . (2.13)

Two sets of characteristic numbers an(γ2
d) and bn(γ2

d) corresponds to even and odd eigensolutions
to (2.11) denoted in literature as angular Mathieu functions: cen = cen(η, γ2) (even) and sen =
sen(η, γ2) (odd). The characteristic numbers can be computed for a given value of γ using recursive
formulae - for details see [3] or [4]. The angular Mathieu functions describe the electromagnetic
field in the core as well as in the cladding.

Radial variations of the field are described by the solutions to modified Mathieu equation
(2.10). Two types of solution can be distinguished. The first type are periodic functions called
associated Mathieu functions of the first kind : Cen(ξ, γ2) (cosine-like) and Sen(ξ, γ2) (sine-like).
They correspond to the appropriate characteristic numbers (2.13). Those functions describe the
field in the core (bounded) region. The other type of the solution exhibit non-periodic decrease
for ξ →∞. If the wave is to be guided in the core, it has to be evanescent in the outer (cladding)
region, which is here considered to be unbounded. Thus the non-periodic solutions to associated
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Mathieu equation denoted as Fekn(ξ, γ2) and Gekn(ξ, γ2) are used for representation of the field in
the cladding region. In comparison with the case of circular-core waveguide, the Mathieu function
describing the azimuthal variation of the field does not depend on the azimuthal coordinate η only,
but they also depend on material properties (refractive index) of the region. So the field components
in the core and cladding regions have to be represented using infinite series of terms, each of them
written as the product of appropriate azimuthal and radial eigensolutions [5]. According to the
parity, the longitudinal field components Ez and Hz correspond either to even modes in core
(0 ≤ ξ ≤ ξ0):

Hz(ξ, η, z, γ
2
cr) =

∞∑

m=0

AmCem(ξ, γ2
cr)cem(η, γ2

cr) exp(−iβz) (2.14)

Ez(ξ, η, z, γ
2
cr) =

∞∑

m=1

BmSem(ξ, γ2
cr)sem(η, γ2

cr) exp(−iβz) (2.15)

and cladding region (ξ0 ≤ ξ <∞):

Hz(ξ, η, z, γ
2
cl) =

∞∑

r=0

LrFekr(ξ,−γ2
cl)cer(η,−γ2

cl) exp(−iβz) (2.16)

Ez(ξ, η, z, γ
2
cl) =

∞∑

r=1

PrGekr(ξ,−γ2
cl)ser(η,−γ2

cl) exp(−iβz) , (2.17)

or to the odd modes in core:

Hz(ξ, η, z, γ
2
cr) =

∞∑

m=1

CmSem(ξ, γ2
cr)sem(η, γ2

cr) exp(−iβz) (2.18)

Ez(ξ, η, z, γ
2
cr) =

∞∑

m=0

DmCem(ξ, γ2
cr)cem(η, γ2

cr) exp(−iβz) (2.19)

and cladding region:

Hz(ξ, η, z, γ
2
cl) =

∞∑

r=1

GrGekr(ξ,−γ2
cl)ser(η,−γ2

cl) exp(−iβz) (2.20)

Ez(ξ, η, z, γ
2
cl) =

∞∑

r=0

FrFekr(ξ,−γ2
cl)cer(η,−γ2

cl) exp(−iβz) , (2.21)

where Am, Bm, Cm, Dm, Lr, Pr, Fr and Gr are arbitrary constants. The remaining transverse field
components are determined from the longitudinal ones using Maxwell’s curl equations in core and
cladding regions distinguished by the region index d = cr, cl:

Eξ,d =
−i
γ2
d

(
β

h1

∂Ez
∂ξ

+
ωµd

h2

∂Hz

∂η

)
Hξ,d =

−i
γ2

d

(
β

h1

∂Hz

∂ξ
− ωεd

h2

∂Ez
∂η

)
(2.22)

Eη,d =
−i
γ2

d

(
β

h2

∂Ez
∂η
− ωµd

h1

∂Hz

∂ξ

)
Hη,d =

−i
γ2

d

(
β

h2

∂Hz

∂η
+
ωεd
h1

∂Ez
∂ξ

)
(2.23)

where h1 and h2 are the appropriate metric coefficients for elliptical coordinate system defined by
(2.8). According to the boundary conditions, the tangential components of electric and magnetic
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field intensity have to be continuous across the core-cladding boundary given by ξ = ξ0. It can be
written as:

Hz,cr(ξ0, γ
2
cr) = Hz,cl(ξ0,−γ2

cl)
Eη,cr(ξ0, γ

2
cr) = Eη,cl(ξ0,−γ2

cl)
Hη,cr(ξ0, γ

2
cr) = Hη,cl(ξ0,−γ2

cl)
Ez,cr(ξ0, γ

2
cr) = Ez,cl(ξ0,−γ2

cl) .

(2.24)

In order to assemble this system of equations, Mathieu and modified Mathieu functions have to
be expressed. Angular Mathieu functions are usually represented using the trigonometric function
series [4]. The radial (modified) Mathieu functions can be obtained if the argument η in angular
functions is replaced by iξ. It leads to the expansion in terms of hyperbolic functions sinh ξ and
cosh ξ [4], but such expansion is not suitable for numeric computation because of divergent nature
of the mentioned functions. So the representation in terms of Bessel function series is usually
employed [6–8]. Because the waveguiding problem in elliptical geometry requires the usage of
infinite number of modes for field representation in both regions, the boundary conditions (2.24)
lead to the infinite system of linear homogeneous equations (for details see [5]). Linear algebraic
equation system has a non-trivial solution, if its determinant takes a zero value. Because the matrix
elements of the mentioned system depend on γcr and γcl (see (2.24)), the roots of determinant
provide the values from which the propagation constant β can be obtained. Because the structure
of the infinite determinant is rather complex, the roots can be obtained only by numerical methods,
such as the method of successive approximation [9].

It can be seen from (2.22) and (2.23) that to fulfill the boundary conditions (2.24), both lon-
gitudinal components Ez, Hz have to be present. The consequence is that all modes propagating
in elliptical core waveguide are hybrid. Because of the asymmetry of the core two orientations of
field configurations exists. The are denoted as even and odd waves corresponding to the fact that
the longitudinal components are represented by even or odd Mathieu functions (2.15-2.21). Results
obtained using the exact approach are often used as a trial or benchmark data for other meth-
ods, usually based on some simplification of waveguiding problem. As to the exact approach, the
only inevitable approximation, besides the approximation used in numeric computing of Mathieu
functions and their derivatives, is connected with the truncation of infinite matrix leading to the
determinantal equation for propagation constants.

2.3 Approximate methods

Although the above described exact method should yield the most rigorous results when the prop-
agation constant β or the modal field distribution is to be obtained, its practical implementation is
difficult because of complexity of computational process. That is why various approximate meth-
ods have been developed in order to either simplify the formulation of waveguiding problem or to
completely avoid the usage of Mathieu functions. Usually the assumption is made that the core
refractive index differs only slightly from the refractive index of the cladding. This is valid in the
most cases of practical interest. The other often used assumption is related to the core shape,
where the slightly elliptical core can be treated as the perturbation of a circular one.

2.3.1 Perturbation approach

The method was developed for computation of mode parameters of waveguides with low dielectric
contrast between the core and cladding media. Under the assumption ncr ≈ ncl the electromagnetic
field components of an optical waveguide can be expressed using a critical angle θc ≈ sin θc =
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(1 − n2
cl/n

2
cr)

1/2 acting here as a ”small” parameter used for perturbation. The other parameter
V = b(k2

cr − k2
cl)

1/2 is assumed to be independent with respect to θc when θc � 1. If a waveguide
has a cylindrical symmetry and the material parameters do not change in the longitudinal (z)
direction, the electromagnetic field of the modes can be decomposed to transverse and longitudinal
components:

E = (et + ez) exp iβz H = (ht + hz) exp iβz (2.25)

for harmonic exp(−iωt) time dependence. It can be shown, that the transverse part et of electric
field intensity has to obey the reduced wave equation:

∇2
tet + (k2 − β2)et = −∇t(et · ∇t ln ε) , (2.26)

where ∇2
t is the transverse part of vector Laplacian operator, k = 2πn(x, y)/λ is the wave and ε

represents the transverse permittivity distribution. The idea of the method is to expand the field
as a power series in θc, treating θc and V as independent variables [10]:

e(V, θc) = e0(V, 0) + θce1(V, 0) + θ2
ce2(V, 0) + . . .

to simplify the waveguide equation and consequently obtain an approximation formula for propa-
gation constant. From the point of view of physics, one first deals with the ncr = ncl waveguide
and then uses the results to approximate the field of ncr ≈ ncl waveguide. The zero-order ap-
proximation, given by ncr = ncl condition appears to lead to unphysical consequence, that such
a waveguide is incapable to guide the energy. But when we assume that the guiding properties
remain unaffected (i.e. V can be an arbitrary constant), it is found that e(V, 0) is an excellent
approximation to e(V, θc). Because ncr = ncl condition leads to β = kcr = kcl, the field in such a
structure is purely transverse electromagnetic waves and all polarization-dependent effects vanish
since they are related to ∇t ln ε term in (2.26). When ncr = ncl, this term is zero. Consequently,
the field of ncr = ncl waveguide is the solution of scalar wave equation:

∇2
tψ + (k2 − β̃2)ψ = 0 . (2.27)

The vector modal fields can be expressed in Cartesian coordinate system as ẽx = ψx and ẽy = ψy,
where x and y are the unit vectors, and the tilde is used to distinguish the quantities obtained
using (2.27) from the ones obtained using (2.26). The solution ψ has to be bounded everywhere
(waveguiding) and they have to obey the condition related to scalar wave equation that ψ and
its normal derivative with respect to core boundary are continuous everywhere. The mentioned
constraints are used to construct the eigenvalue equation for ncr = ncl case in order to obtain the
propagation constants β̃. The mentioned modal fields ẽx and ẽy of ncr = ncl step index profile
waveguide are uniformly polarized, thus they are referred in the literature as linearly polarized
(LP) modes [11]. They can be used to approximate the modal fields of vector wave equation for
the case of ncr ≈ ncl, when the ∇t(et · ∇t ln ε) is no longer zero. The appropriate modal fields are
then approximated by linear combinations of the mentioned LP modes. The way how to form them
depends on the symmetry of the waveguide cross-section.

Under the low dielectric contrast assumption the longitudinal component of electric field inten-
sity can be obtained from Maxwell’s equations using approximation formula:

ez ≈ (i/β)∇t · et . (2.28)

Once the propagation constant β̃ and modal fields ẽt of scalar wave equation (2.27) are known
and the vector wave equation modal fields et are approximated using LP modes (assembled using
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ẽt), standard perturbation technique can be applied to find the approximation formula for β [12].
The idea is based on deviation computation used to obtain modal orthogonality, forming first the
dot product of ẽt with vector wave equation (2.26) and the dot product of (2.27) with et. The
dot products are then subtracted and the resulting equation integrated over the infinite waveguide
cross-section A∞. This leads to a formula:

β − β̃ ≈ β2 − β̃2

2k
=

∫
A∞

ẽt · ∇t(et · ∇t ln ε) dA
2k
∫
A∞

ẽt · et dA (2.29)

for the required propagation constant β. Further simplification can be done for the step index
waveguide, where the integral in the numerator can be converted to a line integral around the core
boundary B: ∫

A∞

ẽt · ∇t(et · ∇t ln ε) dA = θ2
c

∮

B
(∇t · ẽt)(et · n) dl

where n denotes the outer normal with respect to core boundary line.

In order to form the LP modes polarized along x or y axes, the linear combinations of proper
waveguide modes are used. The procedure is usually demonstrated on the circular waveguide case.
Here the fundamental modes (angular order l = 0) of a ncr = ncl are exceptional - they are the
same as fundamental modes ncr ≈ ncl waveguide and they are directly x or y−polarized. As to
the elliptical waveguide, the situation is similar, except that the propagation constants for both
polarizations are different - the elliptic shape of the core removes the degeneracy. The higher
order modes have to be constructed as linear combinations. For example, in the case of l = 1 of
circular waveguide they are: ẽxe = eEH01 + eHE21, ẽxo = oHE21 − oEH01, ẽye = eHE21 + eEH01,
and ẽyo = oEH01 − oHE21 (nomenclature of hybrid modes as in [12], the indices e and o stand
for even and odd modes). Similar procedure can be used for elliptic waveguide case where for
example et,i = aiψ

ex + biψ
oy ≈ aiẽxe + biẽyo (i = 1, 2), formed using ψe and ψo, are the even and

odd solution to scalar wave equation (2.27) in elliptical geometry. These combinations are then
used in the perturbation formula for the propagation constants computation. It is important to
mention that the LP modes are not individual modes of the waveguide - especially in the case of
circular waveguide. That is because the propagation constants of the modes used to form them are
different. Consequently the LP mode pattern rotates as the ”mode” propagates, thus it is better
to refer them as pseudo-modes. Nevertheless, when the core has a non-zero eccentricity (elliptical
core), the LP pseudo-modes resemble the true modes of elliptical waveguide. That is why they are
used for their approximation. Whether to use the solution to a scalar wave equation in circular or
elliptical geometry for the mentioned approximation or not is given by the core eccentricity. For
highly elliptical cores, the scalar wave equation is to be solved in elliptical geometry, whereas for
the nearly-circular core cross-section the circular waveguide modes will do. For detailed discussion
see [12].

2.3.2 Weakly guiding approximation

The low dielectric contrast assumption can be used to obtain a simplified version of dispersion
relations, when applied to the above described exact approach. The procedure is often addressed
as weakly guiding approximation because the low dielectric contract implies low confinement of
guided optical waves in the core region. If the term (1 − n2

cl/n
2
cr) is very small, according to [10],

a small parameter θp = (1− β2/k2
cr) can be introduced to expand various quantities used in exact

approach in order to simplify the analysis. Perhaps the most important result of this approach is
that the angular Mathieu functions in the waveguide core and infinite cladding region are simply
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related as [13]:

cen(η,−γ2
cl) = cen(η, γ2

cr) +O(θ2
p) and sen(η,−γ2

cl) = sen(η, γ2
cr) +O(θ2

p) . (2.30)

In addition, 1+γ2
cr/γ

2
cl = O(θ2

p) holds for the transverse propagation constants. This approximation
can be used when the linear equation system for mode amplitudes in exact analysis is constructed.
Here, it is necessary to expand the angular Mathieu function in the cladding region using angular
Mathieu functions of the core region using so called connection coefficients [5, 14]. For example
cen(η,−γ2

cl) =
∑′∞

r αnrcen(η, γ2
cr), where the prime indicates the summation over even values of r

only. The connection coefficients αnr are obtained using the orthogonality of cen(η, γ2
cr).

After a simple but tedious algebra one obtains an infinite system of linear equations whose
matrix is full. Using (2.30) the situation can be simplified because now the orthogonality of the
core and cladding functions leads to αnr = δnr + O(θ2

p) (here, the normalization of cen and sen is
supposed). Thus the infinite system matrix is no longer full, but it is in block-diagonal form. In
other words, the radial orders are treated as independent quantities in the computation process.
Then the determinant of the whole matrix is in the form of the product of subdeterminants related
to individual blocks and the approximate dispersion equations of m− th radial mode order can be
written in explicit forms [13] for even:

1

γ2
cr

Ce′m(ξ0, γ
2
cr)

Cem(ξ0, γ2
cr)

+
1

γ2
cl

Fek′m(ξ0, |γ2
cl|)

Fekm(ξ0, |γ2
cl|)

= 0 (2.31)

and odd modes:
1

γ2
cr

Se′m(ξ0, γ
2
cr)

Sem(ξ0, γ2
cr)

+
1

γ2
cl

Gek′m(ξ0, |γ2
cl|)

Gekm(ξ0, |γ2
cl|)

= 0 , (2.32)

where the prime denotes the derivative of radial Mathieu function with respect to ξ in elliptical coor-
dinate system. The value ξ = ξ0 represents the core boundary. Thus, using the quasi-orthogonality
implied by weakly guiding approximation, the dispersion relations for eHEmn and oHEmn hybrid
waves of a step-index, elliptical core waveguide can be obtained.

The above described procedure can be used in analysis based on LP pseudo-mode concept
too, as was shown in [15]. The scalar fields ψ(ξ, η) in elliptical geometry are assumed to be x or
y−polarized. The even and odd solutions to scalar wave equation (2.27) are LPe,o

mn modes, expressed
in the core region (0 ≤ ξ ≤ ξ0) as:

ψe
cr(ξ, η) =

∞∑

m=0

AmCem(ξ, γ2
cr)cem(η,−γ2

cr)e
iβz (2.33)

ψo
cr(ξ, η) =

∞∑

m=0

AmSem(ξ, γ2
cr)sem(η,−γ2

cr)e
iβz , (2.34)

and in the infinite cladding as:

ψe
cl(ξ, η) =

∞∑

m=0

BmFekm(ξ, γ2
cl)cem(η,−γ2

cl)e
iβz (2.35)

ψo
cl(ξ, η) =

∞∑

m=0

BmGekm(ξ, γ2
cl)sem(η,−γ2

cl)e
iβz . (2.36)

As stated in [12], the solution to scalar waveguide equation and its normal derivative have to be
continuous at the core-cladding boundary:

ψe,o
cr (ξ0, η) = ψe,o

cl (ξ0, η)
∂

∂ξ
ψe,o

cr (ξ, η)

∣∣∣∣
ξ=ξ0

=
∂

∂ξ
ψe,o

cl (ξ, η)

∣∣∣∣
ξ=ξ0

. (2.37)
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After expansion using the connection coefficients, the solutions are inserted into (2.37) and subse-
quently the quasi-orthogonality relations (2.30) are applied. The results are dispersion equations:

Ce′m(ξ0, γ
2
cr)

Cem(ξ0, γ2
cr)

=
Fek′m(ξ0,−γ2

cl)

Fekm(ξ0,−γ2
cl)
,

Se′m(ξ0, γ
2
cr)

Sem(ξ0, γ2
cr)

=
Gek′m(ξ0,−γ2

cl)

Gekm(ξ0,−γ2
cl)

(2.38)

for the even and odd LPmn pseudo-modes. The equations are similar to (2.31) and (2.32), except
of factors 1/γ2

cr and 1/γ2
cl, but recalling that 1 + γ2

cr/γ
2
cl = O(θ2

p) ≈ 0, there is no discrepancy. The
index m denotes the order of radial Mathieu function, whereas n is related to the root position of
(2.38). The same dispersion equations can be obtained by direct using of boundary conditions for
Eη, Hz, Hη and Ez components of electromagnetic field [16] in LP pseudo-mode analysis. Thus
the correctness of the continuity conditions of ψ and its normal derivative merely stated in [12]
were proved. Nevertheless, its worth mentioning that to obtain correct results, besides the weakly
guiding condition, the value of the core eccentricity should be low - for discussion see [17].

2.3.3 Approximation by rectangular-core waveguide

Whereas the above described approximate methods will do for the elliptical core fibers with low
core eccentricity, they may not cope with highly elliptical core fibers, but such fibers are often a
subject of interest because of their polarization maintaining properties. Although their propagation
characteristics can be in principle obtained using the exact analysis, its implementation is rather
complicated (Mathieu functions implementation, truncation of infinite determinantal eigenvalue
equation, etc). In such a case, the highly elliptical core fibers can be treated using rectangular core
approximation. The idea of the method is simple - the highly eccentric core is approximated by
a rectangular one. This geometry simplification leads to much simpler characteristic equations for
propagation constant. Once its value and the appropriate modal fields are known, the propagation
constant can be further improved by perturbation method [18]. Let us look at the step-index

a′/2

b′/2

a/2

b/2

ncr

ncl

(a)

y

0 x
ncr

ncl

ncl

ncl

ncl

(b)

1

1

3

3

2

4 4

44

(c)

Figure 2.3: Approximation by rectangular core waveguide: (a) geometry of an elliptical core and a
rectangular one, (b) rectangular waveguide geometry, (c) regions for perturbation method

elliptical core waveguide depicted in the figure 2.3a characterized by its semi-major and semi-minor
axes a′/2, b′/2’, and by the core and cladding dielectric constants n2

cr and n2
cl. The dimensions a, b

of an equivalent rectangular-core waveguide are chosen in such a way that its core area is kept the
same and the axes aspect ratios equal to a/a′ = b/b′ =

√
π/2. Its dielectric constant distribution

is then expressed as n2(x, y) = n′2(x) + n′′2(y) [19], where:

n′(x)2 = n2
cr/2 |x| < a/2

= n2
cl − n2

cr/2 |x| > a/2
n′′(y)2 = n2

cr/2 |y| < b/2
= n2

cl − n2
cr/2 |y| > b/2 .

(2.39)
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The basic steps of the rectangular-core waveguide follows the Marcatili’s technique [20], omitting
the corner regions (see fig. 2.3b - shaded areas). Then the distribution field of the components can
be described using scalar function ψ(x, y) = X(x)Y (y) [19]:

X(x) = A1 cos(µ1x+ α) |x| < a/2
= A2 exp(−µ2|x|) |x| > a/2

Y (y) = B1 cos(ν1y + γ) |y| < b/2
= B2 exp(−ν2|y|) |y| > b/2 .

(2.40)

In order to keep the notation of (2.40) compact, the following parameters µ1 =
√
k2

0n
2
1/2− β2

1 ,
µ2 = 2a−1

√
V 2

1 − µ2
1a

2/4, ν1 =
√
k2

0n
2
1/2− β2

2 , ν2 = 2b−1
√
V 2

2 − ν2
1b

2/4 are used, where V1 =

k0a
√
n2

cr − n2
cl/2 and V2 = V1b/a are the normalized frequencies, k0 is the free space wavenumber.

The propagation constant of a specific mode is obtained as β0 = (β2
1 + β2

2)1/2, the index 0 indi-
cates that it will be subsequently used as the zero-order approximation in perturbation method.
The constants α = 0,−π/2, γ = 0,−π/2 refers to symmetric (antisymmetric) mode in x and
y−directions.

The modal fields have to obey the appropriate boundary conditions on the core-cladding rect-
angular interface. The boundary conditions resulting from continuity relations yield the eigenvalue
equations for β1, β2 and the relationship among the modal amplitude constants A1, A2 and B1, B2.
As in the case of previously described LP mode-based approach, two types of modes polarized along
the symmetry axes x, y are considered. One of them, Expq, is predominantly polarized along the
x-axis, the other one, Eypq is polarized along the y-axis. The other field components are therefore
expressed using the dominant one. When we consider that ψ(x, y) corresponds to Ex, the continu-
ity relations require that Ex and ∂Ex/∂y are continuous at y = ±b/2, and n2Ex and ∂Ex/∂x are
continuous at x = ±a/2. In the case of Eypq, ψ(x, y) corresponds to Ey and n2Ey and ∂Ey/∂y have
to be continuous at y = ±b/2 whereas Ey and ∂Ey/∂x are continuous at x = ±a/2. The results
are the eigenvalue equations written in a compact form as:

κ− arctan

[
C

√
V 2
1
κ2
− 1

]
− (p− 1)π2 = 0

ζ − arctan

[
n2
cr

n2
cl

1
C

√
V 2
1
ζ2
− 1

]
− (q − 1)π2 = 0

, (2.41)

where κ = µ1a/2, ζ = ν1b/2. The constant C equals to n2
cr/n

2
cl for Expq modes and 1 for Eypq modes.

The relationship between A1 , A2 and B1 , B2 is expressed as:

A2

A1
= C cos(κ+ α) exp(µ2a/2)

B2

B1
=
n2

cr

n2
cl

1

C
cos(ζ + γ) exp(ν2b/2) . (2.42)

Instead of propagation constant β, we can define its normalized form using the following expression:

P 2 =
β2 − k2

0n
2
cl

k2
0(n2

cr − n2
cl)
. (2.43)

The normalized propagation constant of an elliptic core waveguide can be then obtained using
perturbation technique [18] applied on the rectangular-core waveguide. We consider its corrected
value as P 2 = P 2

0 + P ′2, where P ′ is the first-order correction and the zero-order term P0 is
computed using β0 obtained from eigenvalue equations (2.41) describing unperturbed rectangular-
core waveguide. Assuming that ncr ≈ ncl, the dielectric constant is perturbed by the amount of
δn2. The value of the perturbation is considered to be:

δn2 = n2
cr − n2

cl in regions 1, 3
= n2

cl − n2
cr in region 2

= 0 otherwise,
(2.44)
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where the region numbers are related to figure 2.3c. According to the perturbation method, the
first-order correction P ′ to normalized propagation constant is given by following expression:

P ′ =
1

(n2
cr − n2

cl)

∞∫

−∞

∞∫

−∞

|ψ(x, y)|2δn2dxdy

∞∫

−∞

∞∫

−∞

|ψ(x, y)|2dxdy

, (2.45)

where the expressions (2.40) and (2.44) are used. After some lengthy but straightforward alge-
bra, the normalized propagation constants P 2

x and P 2
y corresponding to Expq and Eypq modes are

obtained [19]. They can subsequently be used to express the modal birefringence ∆β, which is an
important characteristics of an elliptical-core fiber:

∆β = (βx − βy)/k0 = [P 2
x (n2

cr − n2
cl) + n2

cl]
1/2 − [P 2

y (n2
cr − n2

cl) + n2
cl]

1/2 . (2.46)

Thus, the technique leads to expressions using only elementary functions (sine, cosine or exponential
function) instead of Mathieu or Bessel functions.





Chapter 3

Microstructured optical fibers

3.1 Basic concepts

Conventional optical fiber usually consists of a solid thread (core) surrounded by another material
(cladding) where the refractive index of the cladding is lower than the core refractive index. That
is because the guiding mechanism is based on total internal reflection (TIR). In order to achieve the
required dielectric contrast, two materials (usually glasses) are needed. Moreover, because of the
condition required by production process (drawing), the thermal expansion of those materials have
to be similar. The alternative can be the usage of various dopants to change the refractive index
value, but this may lead to unwanted increase of material absorption and to change of dispersion
properties. The mentioned facts and some other factors limit the design possibilities of the optical
fibers based on TIR waveguiding mechanism, so the question is how to avoid such difficulties.

The solution came from the research of artificial periodic structures known as photonic crystals.
Photonic crystal is an analogue of solid state crystal where the atoms or molecules are replaced by
macroscopic media with different dielectric constants and instead of periodic potential a periodic
distribution of dielectric function (or refractive index) is considered. When the dielectric constant
difference is sufficiently high and the absorption of light by the materials is minimal, the multiple
reflections and refractions from all interfaces in the periodic structure can lead to similar phenomena
for photons that the periodic atomic potential produces for electrons. Especially, it is possible to
design a photonic crystal with so called photonic band gaps to prevent the light, whose wavelength
(frequencies) falls to some specified range, from propagating in certain direction. The characteristics
of such band gaps are given by dielectric contrast and lattice geometry, and so they offer the
possibility to design and produce the fibers with parameters not achievable (for example dispersion)
with conventional fiber design based mostly on material parameters.

In order to form the mode guided in the core region and not to rely on the total internal
reflection phenomena, it is necessary to introduce the light wave into the core with such a value
of propagating constant, that is not allowed to propagate in the cladding consisting of photonic
band gap material. The photonic crystal cladding is usually formed by two-dimensional (2D)
photonic crystal structure, although the one-dimensional structure can be used as well, effectively
infinite in the third dimension (along the fiber axis). The fibers containing some type of photonic
crystal structure can be roughly divided in two broad classes according to the sign of the difference
between core and cladding refractive indices. If the core refractive index is higher then the ”effective
refractive index” of the photonic cladding, the fiber is denoted as solid core fiber. When the fiber
core-cladding index difference is negative, such a fiber is usually referred to as photonic band gap
guiding fiber.

17
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The described optical fibers are usually called photonic crystal fibers (PCF) because the original
objective was to make a periodic wavelength-scale cladding structure - photonic crystal, as described
above. But other names are in use as well, such as holey or microstructured fibers, emphasizing
other features. Since all those fibers have a microstructure, we adopted the term microstructured
optical fibers (MOFs).

3.2 Guiding mechanisms in MOFs

As to the waveguiding in MOFs, usually two types of guiding mechanism are considered: index
guiding mechanism referred to as modified total internal reflection (MTIR), and photonic band gap
guiding (PBG) mechanism.

3.2.1 MTIR waveguiding

This type of waveguiding process takes place in MOFs whose core refractive index is higher then
the refractive index of the cladding, as is usual in conventional optical fiber. However, in the case
of MOF, the cladding consists of a periodic structure (photonic crystal) formed by low refractive
index inclusions in higher-index dielectric matrix (ninc < nmat), and the core can be considered
as a defect in the periodic structure created either by missing inclusion (see Fig.3.1), or by the
inclusion with higher refractive index then the index of dielectric matrix, so ncr ≥ nmat. The first
possibility is usually preferred in manufacturing process because the MOF is produced using just
one material. Such fibers are often called solid-core fibers.

Λ

d

nmat

Figure 3.1: Example of solid-
core MOF, triangular lattice mi-
crostructured cladding with pitch
Λ, ncr = nmat.

R
e(
n

e
ff

)

normalized wavelength λ/Λ

ninc

nmat

FSM

fundamental mode

higher order mode

bandgap mode

Figure 3.2: Schematic drawing of solid-core fiber band
gap diagram and dispersion curves, Λ, ncr = nmat

The mechanism of waveguiding in the mentioned fiber can be qualitatively explained using
the band diagram depicted in Fig. 3.2 related to microstructured cladding consisting of low-index
inclusions (for example air holes) in homogeneous dielectric matrix. We are interested in the modes
with the highest possible real part of the modal effective index neff , having in the same time the
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lowest value of its imaginary part, and localized in the core region. It is clear that in our case
when ncr = nmat, the highest possible value of real part of neff is limited by nmat, so no guided
mode is allowed above the nmat line forming the upper bound of the guided mode region. The
lower bound of that region is given by the dispersion curve of so called fundamental space-filling
mode (FSM). This mode is the one with the highest effective modal index nfsm allowed in the
photonic crystal (infinite) structure used as microstructured cladding. Thus the modal effective
indices have to be located in the region given by nfsm < real(neff) < nmat condition. From this
point of view, such MOF can be considered as a waveguiding structure similar to conventional step
index optical fiber where ncl < neff < ncr. The microstructured cladding can be then considered as
a region with an ”average” refractive index (depending now on hole diameter d, lattice geometry
and inclusion/matrix dielectric contrast) corresponding to ncl in conventional step index fiber case,
where the guiding mechanism is based on total internal reflection on core/cladding boundary. In
a solid-core MOF, of course, the total internal reflection will be modified by the finite thickness of
microstructured cladding, hence the waveguiding mechanism is often referred to as modified total
internal reflection. It is worth mentioning that some modes can exist inside of the band gaps (see
Fig. 3.2), but they are usually out of interest. As to the situation where the core refractive index
exceeds the matrix refractive index, the situation is similar but the nmat line is replaced by ncr

line, which is now shifted upward, and the dispersion curve shift can be now influenced by the core
diameter too.

3.2.2 Photonic band gap waveguiding

The other type of MOFs are usually called ”hollow core” fibers because their cores consist of low
refractive index inclusion in high refractive index matrix, surrounded by microstructured cladding
(see Fig. 3.3). The core can have a different size (or even the shape) and its refractive index value
may not be the same as the value of low-index inclusions ninc in the cladding region, but ncr = ninc

design is often preferred from technology point of view. The highest dielectric contrast is achieved
when the inclusions are air holes, leading to the mentioned name of such MOFs.

nmat

Figure 3.3: Example of hollow-
core MOF with ncr = ninc.
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Figure 3.4: Schematic drawing of hollow-core fiber
band gap diagram and dispersion curves.
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Because the core refractive index is lower then the ”average” cladding refractive index, the
waves in the core region cannot be guided by MTIR mechanism. The alternative is to surround the
core by microstructured cladding with the complete photonic band gap in the transverse direction
of the fiber for required wavelength region and the guided modes have to be located in this band
gap, as is schematically depicted in Fig. 3.4. Hence the name photonic crystal fibers. Guiding the
modes in the air core offers the possibility to reduce the unwanted dispersion.

It should be noted that the band diagram point of view gives only a qualitative picture of
waveguiding properties, because it is computed for the case of infinite periodic structure, whereas
a real photonic crystal fiber has a microstructured cladding of finite thickness (finite number of
inclusions). The result is that all guided modes are in fact leaky modes and there are losses even
if the fiber material is lossless.

3.3 Modeling methods for microstructured optical fibers

The main task of the computational methods is to obtain dispersion relations β(λ) (or β(ω), ω(β)),
electromagnetic field distribution and the other important modal characteristics. In contrast to
the conventional optical fibers (with circular or elliptical core), even the dispersion relation cannot
be expressed in a closed form because of complicated geometry of MOF and some sophisticated
numerical techniques are needed. In following text the methods mainly used to model MOFs
properties are briefly introduced.

3.3.1 Effective index method

This approach is the simplest of the modeling methods and it can be applied to solid core MOFs
operating on modified total reflection. The method can be considered as a ”bridge” between the
convention optical fibers and MOFs. The idea is simple: because the microstructured cladding
consists of low-index inclusions in high-index dielectric matrix, it is possible to introduce some
”average” refractive index in the cladding region which is lower than the refractive index of the
core (usually formed by missing inclusion). Then instead of complicated microstructure geometry,
the fiber is treated as a conventional step-index optical fiber. Even if the effective index method
(EIM) is not a real theory but an auxiliary trick, it was successfully used to explain the possibility
of endlessly single-mode guiding phenomenon in solid core MOFs [21].

Effective index of microstructure cladding

Considering the conventional optical fibers, the values of guided mode effective indices are in the
range ncl < neff < ncr. In the case of MOF, the effective index nfsm of fundamental space-filling
mode is used instead of cladding material refractive index, so ncl < neff < nfsm (see Fig. 3.2). As-
suming an infinite cladding, the microstructure can be analyzed by some of the methods developed
for photonic crystals [22] to compute the value of nfsm for a given λ, d and Λ, but it means to em-
ploy a computationally demanding numerical technique and the simplicity of EIM is lost. Instead
of this, it is possible to consider the symmetry of the fundamental space-filling mode, which is the
same as the symmetry of the photonic crystal, and to obtain nfsm by solving the wave equation
within a unit cell centered on one inclusion. Let us demonstrate it on a honeycomb array of circular
low-index inclusions (usually air holes) in high-index (usually silica) matrix. Here, the unit cell has
a hexagonal shape, but it can be approximated with a circular one as depicted in Fig. 3.5. The
choice of the outer cell radius is not unique - often R = Λ/2, but the choice of R = Λ(

√
3/(2π))1/2
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based on the assumption that hexagonal and circular cell have the same area can be used as well
(R1 and R2 in Fig. 3.5).

a
R1

R2

Figure 3.5: Solid core MOF with honeycomb cladding structure and hexagonal cell for EIM, circular
cell approximation used for nfsm computation, R1 = Λ/2 (dotted), R2 = Λ(

√
3/(2π))1/2 (dashed).

In beginning the scalar wave equation with Neumann boundary conditions on the cell edges was
used [21,23], but in most cases the dielectric contrast between the inclusion and matrix is high, so the
vector wave equation has to be used. Hence this improved variant of EIM is called fully vectorial
effective index method (FVEIM). The procedure for calculating nfsm is well known [20] - the
wave equation for longitudinal electromagnetic field components Ez, Hz is solved with appropriate
boundary conditions. The continuity of tangential field components is required on inner boundary
(inclusion boundary), whereas on the outer cell boundary, the condition Ez(R) = Hz(R) = 0 has
to be fulfilled [24]. Then the Ez, Hz in the cell are expressed as (% is the radial coordinate) [25]:

Ez(%), Hz(%) ∼ Il(γinc%) 0 < % < a = d/2
Ez(%), Hz(%) ∼ [Jl(γmat%)Yl(γmatR)− Yl(γmat%)Jl(γmatR)] a < % < R,

(3.1)

where γ2
inc = β2 − k2

0n
2
inc and γ2

mat = β2 − k2
0n

2
mat are transverse propagation constants in the

inclusion and rest of the cell (matrix), and Il, Jl, Yl are the Bessel functions. Applying the bound-
ary conditions and defining Pl(γmat%) = Jl(γmat%)Yl(γmatR) − Yl(γmat%)Jl(γmatR), the dispersion
equation for the cell can be written [26]:

[
P ′l (γmata)

γmataPl(γmata)
+

I ′l(γinca)

γincaIl(γinca)

] [
n2

matP
′
l (γmata)

γmataPl(γmata)
+

n2
incI

′
l(γinca)

γincaIl(γinca)

]
=

l2

[(
1

γinca

)2

+

(
1

γmata

)2
]2(

β

k0

)2

.

(3.2)

When l = 1, the solution β to the above equation yields the value of the fundamental space-filling
mode nfsm = β/k0.

Dispersion equation

Because MOFs do not have a well defined boundary between the core and cladding regions, the
choice of the waveguide core radius rcr is to a certain extend arbitrary. One possibility is to define it
as rcr = Λ/2 [23], or rcr = Λ−a [25]. The other choices reported in the literature are rcr = 0.64Λ [27]



22 3.3. MODELING METHODS FOR MICROSTRUCTURED OPTICAL FIBERS

and rcr = 0.625Λ [28]. It should be noted that such a choice of fixed ”effective” core radius does
not reflect the influence of d/Λ and Λ/λ, so some attempts to introduce such a dependence were
made, for example [29, 30], but these are mostly based on retro-fitting schemes, where the modal
parameters are first computed using some numerical technique and then the EIM parameters are
fitted to obtain the best agreement with the computed data.

Once the effective core radius rcr and the effective cladding index ncl = nfsm are determined, the
equivalent step-index fiber is defined and its guided modes propagation constants β can be easily
computed from well known dispersion equation [30]:

[
J ′l (U)

UJl(U)
+

K ′l(W )

WKl(W )

] [
n2

crJ
′
l (U)

UJl(U)
+
n2

clK
′
l(W )

WKl(W )

]
= l2

[
1

U2
+

1

W 2

] [
n2

cr

U2
+
n2

cl

W 2

]
, (3.3)

where the parameters U and W are defined in usual way as U2 = r2
cr(k

2
0n

2
cr − β2) and W 2 =

r2
cr(β

2−k2
0n

2
cl). So the analogy between the photonic crystal fiber and step-index fiber is established,

but one should not forget, that it is only an approximation and the choice of effective core radius
can lead to slightly different results obtained for the same MOF [26].

3.3.2 Plane wave method

The method was originally developed for the analysis of photonic crystals and it was the first
accurate technique to compute the photonic band structure in two-dimensional geometry. It is
based on the assumption that the analyzed structure is periodic. Considering a typical MOF,
its cross-section has a periodic structure (cladding) where the core forms a central defect. The
structure consisting of infinitely long array of air holes embedded in a lossless dielectric matrix is
supposed to be invariant along the fiber axis. To solve Maxwell’s equations in such periodic media,
the idea of the method is to expand the electromagnetic field intensities and material parameters
on the same space period (primitive unit cell) using plane waves basis functions. Hence the method
is referred to as plane wave expansion method (PWEM).

The governing equation can be obtained either for electric or magnetic field intensity vector,
but the formulation in terms of H is mostly preferred. Assuming the time harmonic dependence of
the form e−iωt and linear and non-magnetic media (µ = µ0), we eliminate the electric field intensity
from Maxwell’s equations to obtain the master equation [22] of the problem:

∇×
(

1

εr
∇×H

)
=
ω2

c2
H ∇ ·H = 0 (3.4)

together with the divergence condition in order to get the correct solution (transverse waves) only.
When analyzing the guiding properties of a MOF, two tasks can be distinguished. The first one
is to compute the spectral band gaps of the microstructured cladding treated as an infinite two-
dimensional photonic crystal, and the second one is related to the computation of guided mode
propagation constant. In the theory of photonic crystals, the band structure computations are
performed for the waves whose propagation direction lies in the cross-section plane. But that is
not the case of MOF where the computation has to be performed for out of plane geometry [31] in
order to analyze the wave guiding along the fiber axis. Further, PWEM can be formulated in two
ways depending on the choice of required quantities. One method is to fix the wave vector k and
compute the modes characterized by the angular frequency ω. This is similar to the computation
of energy bands in solid state physics. The other choice, directly related to optics of MOF, is to
fix the angular frequency (or wavelength) together with two perpendicular components of the wave
vector and formulate the equations to determine the longitudinal wave vector component (β). This
approach can be referred to as ”fixed frequency” method.
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The translation invariance along the z−axis of the fiber allows to express the magnetic field
intensity as:

H(x, y) = [ht(x, y) + z0hz(x, y)] exp(iβz) , (3.5)

where ht and hz are the transverse and longitudinal parts of H vector. For linear, non-magnetic
media described by material parameters εr and µ0, the equation (3.4) can be split in two equations.
The problem of finding the propagation constant is obviously formulated using the equation for
magnetic intensity transverse part [12]:

[∇2
t + εrk

2
0 +∇t ln εr ×∇t×]ht = β2ht . (3.6)

Here, ∇2
t is the transverse Laplacian operator, k = ω/c is the free-space wavenumber and εr(x, y)

is the relative permittivity distribution. The computation of β from (3.6) leads to a non-Hermitian
eigenproblem. In order to solve it, the field components have to be expanded using a finite basis
set of periodic functions. The simplest natural choice is the plane wave basis.

As the relative permittivity εr is periodic in the fiber transverse cross-section plane, it satisfies
the condition of discrete translational symmetry εr(rt) = εr(rt+R) where R = l1R1+l2R2 (l1, l2 ∈
Z) are the 2D primitive lattice vectors and rt = (x, y). Considering the appropriate primitive
reciprocal lattice vectors G defined by the condition Gi · Ri = 2πδij (i, j = 1, 2), the relative
permittivity εr can be expanded together with ηr = ln εr using the plane wave basis set:

εr(rt) =
∑

G

[εr]G exp(iG · rt) ηr(rt) =
∑

G

[ηr]G exp(iG · rt) , (3.7)

where G = m1G1 + m2G2 (m1, m2 ∈ Z). The same operation is then applied to the transverse
component of magnetic field intensity ht, so its components are expressed in the form:

h(j)(rt) =
∑

G

h
(j)
kt,G

exp[i(kt + G) · rt] . (3.8)

The symbol kt denotes here the transverse (Bloch) wave vector. After the substitution of (3.7)
and (3.8) to the master equation (3.6), the Laurent’s theorem on series multiplication is applied
formally to vector index G, and the matrix representation of (3.6) is obtained in reciprocal-space
form [32]:

∑

G′

[
Mxx Mxy

Myx Myy

]


h
(x)

kt,G
′

h
(y)

kt,G
′


 = β2




h
(x)

kt,G
′

h
(y)

kt,G
′


 . (3.9)

The reciprocal-space expansion coefficients h
(j)

kt,G
′ are here arranged into column vectors, and Mij

elements have the form:

Mxx = −|kt + G′|2δG,G′ + k2
0 [εr]G−G′ + (Gy −G′y)(ky +G′y)[ηr]G−G′ ,

Mxy = −(Gx −G′x)(ky +G′y) [ηr]G−G′ ,

Myx = −(Gy −G′y)(kx +G′x) [ηr]G−G′ ,

Myy = −|kt + G′|2δG,G′ + k2
0 [εr]G−G′ + (Gx −G′x)(kx +G′x)[ηr]G−G′ .

(3.10)

Equation (3.9) represents an infinite equation set for the eigenvectors v = (h
(x)

kt,G
′ , h

(y)

kt,G
′). In

practice, the sum is truncated restricting the expansion in the reciprocal space on the area given,
for example, by the condition |G| < Gcut. The resulting finite set of equations forms a non-
Hermitian (see (3.10)) matrix eigenproblem Mv = β2v, where the square of propagation constant
is the eigenvalue.
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(a) (b)

Figure 3.6: Supercell approach: (a) supercell geometry, (b) artificial periodic structure used for
computation of β

In principle, the computation is performed for the components of kt corresponding to all points
inside and on the boundaries of the Brillouin zone. However, in order to prove the existence of
photonic band gaps, it is widely accepted that the computation for kt vectors along the zone
boundary is sufficient. So far, the periodicity of εr(rt) has been supposed. Such a case corresponds
to infinite MOF cladding region, but the fiber core forms a defect in otherwise perfect structure. To
use the above described formulation of PWEM, a slight modification has to be made. Instead of the
primitive cell referring to the cladding structure, an auxiliary supercell is considered (see Fig. 3.6a),
containing the core (defect) and several periods of surrounding cladding structure [33]. The real
MOF structure is then approximated by an artificially periodic system of supercells, as depicted in
Fig. 3.6b. The size of the supercell has to be large enough to guarantee that the neighboring defect
interactions can be neglected.

3.3.3 Multipole method

Instead of treating the photonic cladding (and core) as a periodic, crystal-like structure, it is
possible to consider it as a set of inclusions acting as scatterers of light and use a multiple scattering
technique called multipole method (MPM). Since this method does not require the periodicity of the
structure, it is capable to describe the guiding properties of MOFs with a finite cladding structure
with generally irregular arrangement of inclusions (air holes). The only crucial restriction is that
the inclusions has to be non-overlapping. The physics of the method is simple. At the boundary of
each inclusion two different types of field can be distinguished. The first one is transmitted through
the boundary from the region beyond it, the second one is reflected from the boundary itself and
coming from all the other inclusions. That is why the boundary of each inclusion in MOF acts
effectively as a source of radiation, even though no actual sources or sinks are present.

The basic idea of MPM is to formulate a field identity that relates the field incident on each
inclusion to the field scattered from all the other inclusions and the jacket [34]. The fields on both
sides of every inclusion and jacket (inside/outside) have to obey the continuity relations following
from Maxwell’s equations and therefore are coupled via reflection and transmission processes.

Consider the cross-section of a MOF as the set of circular inclusions of refractive index nI

embedded in a homogeneous matrix whose refractive index is nM. The matrix domain has a
circular shape and is surrounded by a jacket of refractive index nJ - see Fig. 3.7a. To derive the
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Figure 3.7: Multipole method scheme: (a) local and global coordinate systems, (b) domains of
Fourier-Bessel expansion

field identity, the time-harmonic longitudinal components of electromagnetic field Ez and Hz are
considered. They are then expanded using a function basis set related to the geometry of the
inclusion (or jacket) in the surrounding of each inclusion and jacket [35]. In our case of cylindrical

shape, the basis are Bessel functions Jm and Hankel functions of first kind H
(1)
m . The field in the

proximity of the l−th cylindrical inclusion is expressed in the local cylindrical coordinate system
centered at cl as:

Vl(rl, θl) =
∞∑

m=−∞

[
VAlmJm(kM

t rl) + VBl
mH

(1)
m (kM

t rl)
]
eimθl , V = Ez, Hz (3.11)

where kM
t is the transverse wavenumber in the matrix material and Alm, B

l
m are the coefficients

of Fourier-Bessel expansion. This is a local expansion where the regular part of the field is de-
scribed by Bessel functions (no singularity) whereas the Hankel functions describe the outgoing
field propagating away from the cylinder boundary corresponding to the source placed in the inclu-
sion center. The local expansion is valid in an annular region around the inclusion, and it extends
to the perimeter of the nearest cylinder or jacket boundary - see Fig. 3.7b. Similar expansion can
be written for jacket (l = 0) using (r, θ) coordinate system. On the other hand, the field throughout
the uniform dielectric matrix can be expanded using global expansion. Here Ez, Hz at any point
can be described as a superposition of outgoing waves from all the ’sources’ in the matrix - i.e.
jacket and all inclusions [36]. To keep the consistency of the field description, the local and global
expansions near l−th inclusion has to be equal, forming the relation (NI is the total number of
inclusions):

∞∑

m=−∞

VAlmJm(kM
t rl)e

imθl =

NI∑

j=1
j 6=l

∞∑

m=−∞

VBj
mH

(1)
m (kM

t rj)e
imθj +

∞∑

m=−∞

VA0
mJm(kM

t r)e
imθ (3.12)

called Rayleigh identity. In the vicinity of the jacket a similar relation can be found, connecting
the field contributions from waves approaching the jacket from inside to the sum of the field
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contributions corresponding the waves outgoing from all inclusions:

∞∑

m=−∞

VB0
mH

(1)
m (kM

t r)e
imθ =

NI∑

l=1

∞∑

m=−∞

VBl
mH

(1)
m (kM

t rl)e
imθl . (3.13)

The equations (3.12) and (3.13) use different coordinate systems related to the l or j−th inclusion
(local system), or to the jacket (global system). Thus the different changes of basis functions are
needed: inclusion-to-inclusion, inclusion-to-jacket and jacket-to-inclusion conversion. The trans-
formation can be performed using Graf’s theorem [37]. According to this theorem, a displaced
cylindrical harmonic function can be expressed as a superposition of undisplaced ones. Applying
it to (3.12) and (3.13), the field identities can be cast in compact matrix form:

A = H̃B + T̃B0 Ã0
and B̃0

= T̃0B B , (3.14)

where A = [EÃl
,HÃl

]T and B = [EB̃l
,HB̃l

]T are the column vectors of all expansion coefficients

for all inclusions (l 6= 0) and Ã0
, B̃0

for the jacket field (caused by all inclusions). The symbols

H̃, T̃B0
and T̃0B

correspond to the appropriate transformation matrices describing the mentioned
changes of basis functions.

According to Maxwell’s equations, the tangential components Ez, Hz, Eθ and Hθ have to be
continuous at every boundary, thus the relations among the internal (inside the inclusion or jacket)
and external (outside the inclusion or jacket) expansion coefficients are needed. Resulting reflection
and transmission processes lead to general coupling between electric and magnetic field components.
Considering the waveguiding process, there are no sources inside the inclusions and jacket, so the
relation between the expansion coefficient vectors is simplified to

B = RA , (3.15)

where the block-diagonal matrix R describes the reflection on all inclusion boundaries. Combin-
ing (3.14) and (3.15), the Rayleigh identity (3.12) can be expressed in the form of homogeneous
system of equations [34] using the expansion coefficient vector B only:

MB = 0, M = I− R
(
H̃ + T̃B0 R̃0 T̃0B

)
(3.16)

where I is the identity matrix and R̃0
is the reflection matrix on jacket boundary. The term

H̃ describes all direct inclusion-to-inclusion interactions, while T̃B0 R̃0 T̃0B
term is related to all

indirect interactions among the inclusions caused by the reflections on jacket boundary. Considering
a given fiber, whose geometry and wavelength-dependent material parameters are known, the field
identity matrix M is then the function of mode propagation constant β. As the field identity leads
to homogeneous equation system, its non-trivial solutions exist only if M is singular. Thus the
propagation constants of guided modes are obtained as the solution to a determinant equation
detM = 0. The expansion coefficient vector B corresponding to a given β is then obtained using a
singular value decomposition procedure, and it can be used to construct the associated longitudinal
electric and magnetic field distribution allowing further computation of other important parameters
as modal power distribution, etc. [38].

3.3.4 The finite element method

In contrast to the methods described in previous text, the finite element method (FEM) is extremely
general, so there is no limitation of the analyzed fiber geometry. This can be very useful when
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considering real photonic crystal fibers as their cross-section can exhibit some irregularities. The
FEM implementation is usually based on one of the two methods used to solve boundary-value
problems. A boundary-value problem is defined by a governing differential equation in a given
domain Ω:

Lφ = f (3.17)

together with the boundary conditions on the domain boundary Γ. Here L is a differential operator
and f is an excitation function. One way how to solve such a boundary-value problem is based
on variational principle [39]. The problem is formulated in terms of an integral expression called
functional. It can be shown that the stationarity condition for this functional corresponds to the
governing differential equation under given boundary conditions. In order to be able to construct
the functional, the operator L has to be self-adjoint 〈Lφ, ψ〉 = 〈φ,Lψ〉 and positive definite. The
angular brackets denote the inner product defined as 〈φ, ψ〉 =

∫
Ω φψ

∗dΩ. Then the appropriate
functional corresponding to equation (3.17) takes the following form:

F (φ̃) =
1

2
〈Lφ̃, φ̃〉 − 1

2
〈φ̃, f〉 − 1

2
〈f, φ̃〉 , (3.18)

where φ̃ denotes the trial function. To formulate the conditions for stationarity of F , assume that
the solution φ̃ can be approximated by the expansion:

φ̃ =

n∑

j=1

cj vj = {c}T{v} = {v}T{c} , (3.19)

where vj are the expansion functions and cj are the unknown coefficients. The {} brackets denote
a column vector and the superscript T means the vector transpose. To find a stationarity condition
of F (φ̃), the expansion (3.19) is inserted into (3.18) and the partial derivatives with respect to the
coefficients ci have to be zero. This operation leads to a set of linear algebraic equations:

[S]{c} = {b} , (3.20)

where the elements of the matrix [S] and vector {b} are given as:

Sij =
1

2

∫

Ω

(viLvj + vjLvi) dΩ and bj =

∫

Ω

vjf dΩ . (3.21)

When the vector of expansion coefficients {c} is computed, the approximate solution to original
boundary-value problem (3.17) is given by the expansion (3.19).

The other way is to seek the solution by computing the weighted residual [40] of the govern-
ing differential equation. When the trial function φ is approximated by φ̃, inserting it into the
equation (3.17) results in a nonzero residual:

r = Lφ̃− f 6= 0 . (3.22)

The best approximation of φ̃ minimizes the residual at all points of the domain Ω. To this purpose,
the weighted residual method enforce the condition:

Ri =

∫

Ω

wir dΩ i = 1, 2, . . . , n , (3.23)
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where Ri denote the weighted residual integrals and wi are chosen weighting functions. When
the weighting functions are the same as the expansion functions used in approximation (3.19), i.e.
wi = vi, the method is referred to as Galerkin’s method. Inserting those functions into (3.23) leads
to the conditions:

Ri =

∫

Ω

(viL{v}T{c} − vif) dΩ = 0 . (3.24)

This results to the algebraic equation system in the form (3.20), but now the matrix [S] is in
general not symmetric unless the operator L is self-adjoint. In this case the Galerkin method leads
to the same equation system as obtained by the variational method. The alternative is to minimize
the absolute square residual error I = 1

2

∫
Ω r

2 dΩ with respect to the unknown coefficients in the
expansion (3.19). This is equivalent to using the weighting functions wi = Lvi.

In the above described formulations, the trial functions φ̃ were expressed as a combination of a
basis function set defined over the entire domain Ω. Considering a general problem whose geometry
can be complicated and can contain irregular boundaries, it is very difficult or even impossible to
find any required entire-domain trial functions. To overcome this difficulty, the domain is divided
into smaller domains, denoted as elements, hence the name finite element method. If the subdomains
are small enough to assume that the solution does not change much inside them, the basis functions
defined over a subdomain can have a simple form. This is the basic idea of FEM - to replace an
entire continuous domain by a number of elements, where the solution to boundary-value problem
is represented by simple interpolation functions with unknown coefficients called here degrees of
freedom (DOFs).

The work-flow of FEM solution to a boundary-value problem starts with the division of con-
tinuous domains into elements - see Fig. 3.8a. Considering the waveguiding problem in PCF, the
analysis is usually carried out on two-dimensional (2D) domain (fiber cross-section) and the fiber
is assumed to be infinite along its axis. In this case the straight-edge elements as quadrilaterals
and triangles are mostly used, the latter being more suitable for structures with curved boundaries
(circular inclusions, etc). Overlaps and gaps among the elements are not allowed. The element size

(a) (b)

Figure 3.8: Finite element method: (a) meshed cross-section of PCF, (b) infinite matrix terminated
by perfect matching layers
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can change - the smaller are generated in the vicinity of fine details, larger can be used where the
abrupt changes of the solution (electromagnetic field components) are not assumed.

The next step is to choose some suitable elemental interpolation functions. Polynomials are the
usual choice as they are simple and easy to implement. Lagrange interpolation polynomials can
be used as well. Considering the standard FEM formulation, the basis polynomials are connected
with the element nodes, so they have the property that they are equal to one in the appropriate
node and zero in the other nodes. Then the DOFs are directly the solution values at the nodes.
The simplest choice are linear polynomials. Increasing the order of polynomials (higher-order
elements) leads to the solution accuracy, but more nodes have to be added on the edges and
interior of elements. The above described so-called nodal-based elements are well suited for the
cases, when the problem is described by scalar functions as is the waveguiding formulated using the
longitudinal field components Ez, Hz only. But in general, the waveguide modes are hybrid modes
and all field components are required. Here the usage of node-based elements often leads to non-
physical results referred to as spurious solutions. The problem is related to the lack of divergence
condition the electromagnetic waves has to obey. One way to overcome this difficulty, is to add
the divergence condition as a penalty term or to reformulate the problem using transverse field
components Et, Ht [41]. The other way leads to so called edge-elements constructed to ensure the
continuity of vector field tangent component across element’s edges. The DOFs are the associated
with the edges and not with the nodes only [42].

When the choice of interpolation functions is done, the elemental matrices can be obtained
using already described variational or Galerkin formulation. Then the sum of elemental equations
over all elements is constructed to form the global system of equations. This process is called
assembly. At this step, if necessary, the interface and boundary conditions given by the physics of
the analyzed problem are imposed.

The waveguiding in PCF belongs to the open-domain problem class. To solve it using FEM
the original exterior infinite domain has to be truncated by an artificial boundary to create a finite
computational domain. Appropriate conditions on this boundary should have make it appear as
transparent as possible to the field radiating out from the waveguiding structure. For this pur-
pose, the so called absorbing boundary conditions (ABC) were designed. These pure mathematical
conditions can be derived by combining the asymptotic form of wave equation solution valid for
a large distance from the waveguide [43]. Unfortunately, the absorbing boundary created by this
method has to be placed some distance away from the waveguide (source of radiation) because its
transparency depends on angle of incidence and the best condition leading to lowest back-reflection
are met close the normal incidence. The alternative to ABC based on physical approach to the
problem is to truncate the domain by a fictitious absorber consisting of a conducting boundary
(magnetic or electric) whose inner surface is coated by a system of several layers dielectrics with fic-
titious material parameters. Their thickness and material constants can be optimized to absorb the
incident field for a wide incident angle range. The disadvantage of this technique is that fictitious
absorbers are designed to work at some specific wavelength so the computation of PCF dispersion
properties is difficult to implement.

In order to solve this problem, the concept of perfectly matched layer (PML) was proposed [44].
A perfectly matched interface between two domains does not reflect a plane wave incident from
the first domain for all angles of incidence, frequencies and polarizations. In the second domain,
the waves are supposed to be attenuated in the direction normal to the interface. Considering
the material parameters to be the same in both domains, the coordinate stretching in the second
domain is introduced [45]. It maps the space coordinates xi → x̃i using some stretching functions
s(xi), specifically sx = sx(x), sy = sy(y), sz = sz(z). Because of scaling properties of Maxwell’s
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equations, the wave impedance is the same in both domains and perfect matching is achieved.
When for example the stretching function sx is complex, the wave is attenuated in x−direction.
The same holds for other two coordinates. The example of a domain truncated by PMLs is depicted
in Fig. 3.8b - where a typical PCF structure consisting of air holes (inclusions) in homogeneous
glass matrix is considered. As one is mainly interested in guided modes localized in the core region,
the matrix is supposed to be infinite, but for the FEM computation is truncated by PMLs. The
waves traveling in the PML regions are attenuated (the attenuation direction is marked by arrows)
but not reflected. On the outer boundary of PML domains, the zero-condition or ABC can be
applied. The PML concept can be extended to cylindrical or spherical coordinate systems as well
as to anisotropic media [46].

The last step is to solve the assembled equation system. As to the waveguiding in optical fibers,
the excitation of the fiber is not usually considered, so the formulation does not lead to the system
of equations in the form of (3.20). Without the source, its right-hand side is zero and the system
of equations is recast to following form:

[A]{φ} = Λ[A]{φ} , (3.25)

which is a type of generalized eigenproblem. The primary aim is to compute the eigenvalue Λ. It is
possible to formulate the eigenproblem (3.25) using k0, or kz as the eigenvalue. The former yields
the allowed frequencies propagating in the waveguide whereas the latter leads to computation of
the propagation constants β = kz of guided modes. This is usually the objective of the analysis of
waveguiding in PCF, since it gives the information of modal effective indices neff and waveguide
losses. The appropriate eigenvector (consisting of DOFs) can be then used to compute the field
distribution of a given mode and subsequently the other required quantities as propagating power
distribution, mode field diameter, etc., usually as a function of the wavelength and fiber geometry.



Chapter 4

Spectral interferometry

4.1 Dispersion in optical fibers

Dispersion phenomena play an important role in design of optical fibers as they limit the information
transfer capacity of any optical communication system. The performance of optical fiber sensing
schemes is influenced too. Dispersion inevitably distorts any signal of a finite bandwidth, leading
to possible detection and decoding problems. In general, a medium exhibits chromatic dispersion
when the propagation constant of a wave traveling inside it varies non-linearly with the frequency
(wavelength). Considering an optical waveguide, this effect has two reasons: (1) refractive index
of the medium depends on the wavelength and (2) waveguide-related effects. In polarization main-
taining fibers an additional dispersion mechanism appears arising from polarization effects, as the
principal polarization modes have different propagation constants.

4.1.1 Material dispersion

The origin of this type of dispersion is the variation of the media refractive index with the wavelength
as the waves with different wavelengths travel at different velocities. The dielectric function of
materials can be often expressed as a sum of oscillator functions describing electron transitions.
Considering the glasses used to prepare the optical fibers, their losses are low in the required
operational wavelength range. Moreover, this range usually lies between infrared and ultraviolet
transitions (resonances), so the formula for the dielectric function can be simplified. Hence for a
such type of material it is convenient to write the dependence of refractive index on the wavelength
in the form:

n2(λ)− 1 =
∑

i

Aiλ
2

λ2 −B2
i

. (4.1)

This equation is referred to as Sellmeier formula, where the coefficients for a given material are
obtained from a fit to experimentally measured refractive index data. The coefficients Ai can be
considered as the magnitudes and Bi are resonance wavelengths. Sellmeier formula shows that
in the spectral ranges away from any resonance, or between them, the refractive index decreases
with the increasing wavelength. The most often used materials in optical fiber production are pure
silica (SiO2) and germanium dioxide (GeO2) glasses. Their Sellmeier formula coefficients [47, 48]
are summarized in Table 4.1.

The required changes of refractive index in the core or cladding regions can be achieved by
adding of appropriate dopants (usually germanium dioxide or fluorine) to the host material (silica).
In that case the refractive index n(λ) of resulting composite is expressed using the refractive indices

31
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Table 4.1: The coefficients for computing of the refractive index by Sellmeier formula

Material A1 B1 [µm] A2 B2 [µm] A3 B3 [µm]

SiO2 0.69611630 0.068404300 0.40794260 0.11624140 0.89747940 9.896161
GeO2 0.80686642 0.068972606 0.71815848 0.15396605 0.85416831 11.841931

of all components and their concentrations using some mixing rule. The simplest model suggested
for a two-component glass based on experimental data assumes that its refractive index can be
represented by Sellmeier formula whose coefficients are obtained using a linear mixing rule applied
to the Sellmeier coefficients of both constituents [49]:

n2(λ)− 1 =
3∑

i

[A
(1)
i + f(A

(2)
i −A

(1)
i )]λ2

λ2 − [B
(1)
i + f(B

(2)
i −B

(1)
i )]2

, (4.2)

where f is the mole fraction of the dopant (constituent denoted by superscript (2)). A better model
based on Clausius-Mossotti relation leads to the equation [50]:

n2(λ)− 1

n2(λ) + 2
= (1− f)

n2
1(λ)− 1

n2
1(λ) + 2

+ f
n2

2(λ)− 1

n2
2(λ) + 2

, (4.3)

which is in fact a form of Lorentz-Lorenz formula for a binary mixture and n1, n2 for a given
wavelength are obtained using Eq. (4.1). When the concentration of germanium dioxide dopant is
relatively low (< 20%), the equation (4.3) can be simplified to the form [51]:

n2(λ)− 1

n2(λ) + 2
=

3∑

i

(Am + fBm)λ2

λ2 − Z2
m

, (4.4)

where the coefficients (see table 4.2) were obtained by fitting the equation (4.4) to experimental
data acquired for different SiO2 −GeO2 glass compositions.

Table 4.2: The coefficients for computing of the SiO2 −GeO2 glass refractive index.

Am Bm Zm

m = 1 0.2045154578 −0.1011783769 0.06130807320
m = 2 0.06451676258 0.1778934999 0.1108859848
m = 3 0.1311583151 −0.1064179581 8.964441861

4.1.2 Waveguide-related dispersion effects

Even if the refractive index wavelength dependence is not taken into account (no material disper-
sion), the transmission properties of the waveguide are affected by other dispersion effect related to
the waveguide geometry. Consider the single-mode transmission when only the fundamental mode
propagates along the waveguide. The propagation constant β of a guided mode is obtained as a so-
lution to the characteristic equation related to appropriate waveguide problem. Material constants
and the wavelength are the parameters in this equation. Keeping the material parameters constant,
the solution β still depends on the wavelength (or frequency). Considering the analogy between
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the propagation of meridional rays in a step-index optical fiber and propagation in a dielectric slab,
this effect referred to as waveguide dispersion can be interpreted as the dependence of a ray zig-zag
path on the wavelength.

When a set of guided modes at a given wavelength propagates in the waveguide, another dis-
persion mechanism appears. Considering a light pulse which is coupled into the optical fiber, it
propagates in the form of a set of discrete modes traveling with different propagation velocities.
Using the ray model, the overall paths along a given length of the fiber are different for different
modes. As a result, there is a delay among the modes and the input pulse is spread at the output.
This distortion effect is called modal dispersion and it exists even for ideal monochromatic light
source.

The propagation in the waveguide can be influenced by the birefringence too. Such a fiber is
then denoted as polarization maintaining fiber. Two type of birefringence can be distinguished:
material birefringence and form birefringence. Considering the case of an optical fiber, the first one
is usually the result of an intentional or unwanted mechanical stress (stress applying part or residual
stress). The second type of the birefringence is related to the break of circular symmetry of the
fiber as in case of elliptical core fiber. Both mechanisms remove the polarization degeneracy. In an
ideal circular fiber the fundamental mode can have two orthogonal polarizations propagating at the
same speed. When the circular symmetry is broken, both polarizations travel at different speeds
and a mutual delay appears having adverse effects on optical data transmission. This phenomenon
is denoted as polarization mode dispersion.

4.1.3 Dispersion parameters

The propagation in an homogeneous medium is described by a wave vector k. When a medium
is unbounded, the magnitude of the wave vector k (the wave number) depends only on the wave-
length and medium refractive index. Considering a waveguide, only the wave vectors meeting the
transverse resonance condition can be guided and instead of wave vector the description using the
propagation constant β is preferred. Propagation constant is the projection of the guided mode
wave vector on the waveguide longitudinal axis. Instead of propagation constant, it is useful to
define an effective index of a guided mode as

neff = β/k0 (4.5)

where k0 is the free space wavenumber. The propagation constant is related to the phase velocity
v = ω/β of a guided wave in the same way as the wave number in the case of a wave propagating
in an unbounded medium, where v = ω/k.

The transmitted information has often the form of pulses, so the spectrum of the propagating
light is no more monochromatic, but is characterized by a finite spectral bandwidth. The pulse
in an unbounded, homogeneous medium can be represented by a set of waves having different
wavelengths and traveling at different phase velocities, as the refractive index generally depends on
the wavelength (frequency). Assume such a pulse in the form of wave packet centered on a frequency
ω0 with sufficiently narrow spectral width in frequency domain, so its wave number dependence on
frequency can be approximated by its Taylor expansion up to first order k(ω) ≈ k(ω0) +

(
dk
dω

)
ω0
ω.

Then the group delay of the packet propagating on the distance z is given by expression:

τg = z
dk

dω
= z

dλ

dω

d

dλ
(nk0) =

z

c

(
n− λdn

dλ

)
, (4.6)

where n(λ) is the refractive index of the medium. Using this expression, the group velocity can be
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defined as:

vg =
c

n− λ(dn/dλ)
=

c

N
⇒ N(λ) = n(λ)− λdn(λ)

dλ
, (4.7)

whereN(λ) denotes the group refractive index of the medium. The group velocity can be interpreted
as the velocity at which the envelope maximum of the wave packet propagates through the medium,
or as the velocity at which the energy flows along a wave. The same concept can be applied to
the case of a waveguide, where the propagation constant β(ω) is considered instead of k(ω). The
resulting expression:

Neff(λ) = neff(λ)− λdneff(λ)

dλ
, (4.8)

defines the group effective index of a given mode propagating in the waveguide.
Often the linear approximation of wave number (or propagation constant) variation with fre-

quency does not describe the pulse propagation properly and higher-order terms in Taylor expansion
of k(ω) have to be taken into account. Usually the the quadratic approximation is sufficient. Then
it is useful to define the dispersion parameter D(λ) relating the group delay changes to the changes
in wavelength:

D(λ) =
1

c

dN(λ)

dλ
. (4.9)

The value of D parameter gives the information about the group delay spread in picoseconds per
nanometer of light source bandwidth per unit of the propagation distance (usually kilometers). It

is related to the second-order Taylor expansion coefficient in frequency domain as D = −2πc
λ

d2k
dω2 .

Often the expression in wavelength domain is preferred:

D(λ) = −λ
c

d2n(λ)

dλ2
(4.10)

as the measurement results are usually obtained in wavelength domain. Similarly, the dispersion
parameter for a given mode can be obtained when the group index in Eq. (4.9) is replaced by the
appropriate group index of a guided mode, or refractive index in Eq. (4.10) is replaced by modal
effective index.

In a step-index optical fiber consisting of isotropic material, whose geometry has a circular
symmetry, the guided modes can exhibit a polarization degeneracy - there exist two guided waves
with different polarization states with the same propagation constant β. When the anisotropy is
introduced, the polarization degeneracy is removed and the waveguide becomes birefringent. Then
each mode is characterized by its unique propagation constant and polarization state. The effect
have two sources: the material of the waveguide becomes to be anisotropic, or the symmetry of
the structure is broken (for example by the change of the core shape from circular to elliptic). The
anisotropy of originally isotropic material is induced by an external agent (mechanical or thermal
stress, magnetic field, etc.) so the result is denoted as induced birefringence. The anisotropy related
to the structure geometry is denoted as form birefringence.

Considering an unbounded, homogeneous, anisotropic medium, its birefringence is characterized
by the difference of two refractive indices belonging to two polarization eigenmodes propagating
along the same direction (for example ne − no in the case of an uniaxial crystal). As to the
birefringent optical fiber (holey or elliptical core fiber), the guided modes can be often represented
by LP mode approximation (see subsection 2.3.1). In this case the phase modal birefringence Bmn
for the respective spatial LPmn mode at a given wavelength is defined in the following way:

Bmn(λ) =
λ

2π

[
β(x)
mn(λ)− β(y)

mn(λ)
]
, (4.11)
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where β
(x)
mn and β

(y)
mn are the wavelength-dependent propagation constants of the appropriate modes

polarized along x and y directions. The x− y coordinate frame is chosen along the principal axes
of the waveguide anisotropy. Furthermore, one can define the group modal birefringence Gmn for
respective spatial LP mode as:

Gmn(λ) = Bmn(λ)− λdBmn(λ)

dλ
= −λ2 d

dλ

[
Bmn(λ)

λ

]
(4.12)

The birefringence of the fiber can be characterized in a different way. Once more assume an
optical fiber whose principal axes of anisotropy coincide with x and y coordinate axes operated in
single-mode regime. In fact, there are two orthogonally polarized modes. Considering the pair of
modes linearly polarized along x and y directions, the resulting field is a wave whose polarization
state changes with the z coordinate. As the value of z increases, the polarization state is evolving
periodically from linear through elliptical and circular back to the linear polarization. The spatial
periodicity of this evolution is known as the beat length, defined as:

LB(λ) =
2π

∆β(λ)
, (4.13)

where ∆β is the difference of appropriate propagation constants [see Eq. (4.11)]. Obtaining the beat
length from experiment, the modal birefringence for the pair of fundamental polarization modes
can be determined as B(λ) = λ/LB(λ).

4.2 Two-wave interference in the spectral domain

The measurement methods of spectral interferometry are based on two-wave interference concept
in the spectral domain. Let us consider two beams from a broadband light source traveling along
different optical paths and then combined. The result of their mutual interference at the angular
frequency ω and arbitrary position r is given by the spectral interference law [52]:

S(r, ω) = S1(r, ω) + S2(r, ω) + 2
√
S1(r, ω)S2(r, ω) cos

[ω
c

∆(r, ω)
]
, (4.14)

where S1(r, ω) and S2(r, ω) are the contributions of both beams to the resultant spectral power
density S(r, ω) and ∆(r, ω) is the optical path difference (OPD). The interference in the spectral
domain leads to spectral modulation of the source spectrum usually called as spectral fringes.

The resultant optical field is then launched into some detection device (for example detection
optical fiber or input slit of a spectrometer) whose finite input aperture can affect the measured
spectrum. This effect can be described by the following equation:

P (ω) =

∫
S(R, ω)A(R, ω)d2R , (4.15)

representing the spatial integration over the input aperture area given by position R and described
by an aperture function A(R, ω). Assuming that the aperture function varies slowly with ω, the
equation (4.14) is substituted into (4.15) and the spectral interference law is then expressed as:

P (ω) = P1(ω) + P2(ω) + 2VA(ω)
√
P1(ω)P2(ω) cos

[ω
c

∆(ω)
]
, (4.16)

where P1(ω) and P2(ω) are the contributions of both beams to the spectral power P (ω). The term
VA(ω) denotes the visibility and it describes the influence of the input aperture of the detection
system on the resultant spectral fringes.
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In practice the spectrometer itself has an additional influence on the measured spectrum. The
effect can be characterized by the spectrometer response function R(ω − ω′) reflecting its finite
spectral bandpass. Thus the spectral intensity I(ω) detected at a given angular frequency ω ad-
justed by the spectrometer has to be expressed by the convolution of the input spectral power with
the response function:

I(ω) =

∫
P (ω′)R(ω − ω′)dω′ . (4.17)

The form of the response function depends on the used type of spectrometer. Suppose that a
low-resolution fiber optic spectrometer is used to detect the spectral fringes. In this case the
spectrometer response function is a Gaussian function characterized by its half-width ΓR:

R(ω − ω′) =
R0√
πΓR

exp

[
−(ω − ω′)2

Γ2
R

]
(4.18)

To compute the convolution expression (4.17), assume that the spectral phase function Φ(ω) =
ω
c∆(ω) can be represented by local Taylor expansion in the vicinity of a given angular frequency ω
truncated to the first three terms:

Φ(ω′) ≈ Φ(ω) + Φ′(ω)(ω′ − ω) +
1

2
Φ′′(ω)(ω′ − ω)2 + . . . , (4.19)

where the expansion coefficients Φ′(ω) = dΦ
dω′

∣∣
ω

and Φ′′(ω) = d2Φ
dω′2

∣∣∣
ω

are related to the first and

second order dispersion effect in the whole analyzed system. Suppose that P1(ω), P2(ω) and
VA(ω) are slowly varying with the angular frequency, the equations (4.16), (4.18) and (4.19) can
be substituted to the convolution relation (4.17), and the resultant spectral intensity I(ω) can be
obtained:

I(ω) = I1(ω) + I2(ω) + 2VA(ω)VR(ω)
√
I1(ω)I2(ω) cos [ΦR(ω)] , (4.20)

where I1(ω), I2(ω) are the contribution of both beams. The terms VR(ω) and ΦR(ω) denote the
spectral visibility and spectral phase of the resultant spectral fringes affected by the spectrometer.
Computing the convolution integral [4], the spectral visibility can be expressed in the following
form [53]:

VR =
1

4
√

1 + ρ2(ω)
exp

{
−1

4
Γ2

R[Φ′(ω)]2
1

1 + ρ2(ω)

}
. (4.21)

To express the spectral visibility in a simple form, the parameter ρ(ω) which is related to second-
order dispersion effects was used:

ρ(ω) =
1

2
Γ2

RΦ′′(ω) . (4.22)

Similarly, the expression for spectral phase [53] can be written as

ΦR(ω) = Φ(ω) +
1

4
Γ2

R [Φ′(ω)]2
ρ(ω)

1 + ρ2(ω)
− 1

2
arctan[ρ(ω)] . (4.23)

The equation (4.20) is usually expressed in a compact form:

I(ω) = I0(ω) {1 + VI(ω) cos[ΦR(ω)] } , (4.24)

where I0(ω) is the reference spectrum of the used source (unmodulated) and VI(ω) denotes the
overall visibility of detected spectral fringes:

VI(ω) = 2VA(ω)VR(ω)

√
I1(ω)I2(ω)

I1(ω) + I2(ω)
(4.25)

Equation (4.24) is usually used to describe and analyze a given spectral interferometric experimental
setup as well as to compute synthetic interferograms.
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4.3 Measurement methods

The methods of spectral interferometry how to obtain the dispersion characteristics of various
sample types can be roughly classified using two criteria. The first one refers to the type of recorded
spectral interferogram and its evaluation, the second one is related to the configuration of the
measuring setup. Considering the spectral interferograms, two types can be usually distinguished:

• the interferogram contains so called stationary phase point,

• the interferogram is recorded far from that point.

As to the second mentioned criterion, it is related to the location of analyzed sample with respect
to the measurement setup:

• the sample is placed inside the interferometer - in the measuring arm,

• the sample is placed outside the interferometer - tandem configuration.

The mentioned features can be combined in order to tailor the measuring method to obtain the
requested dispersion parameter.

4.3.1 Equalization wavelength method

The idea of the method can be explained using the analysis of an interferometer operated in the
wavelength domain. Let us consider for example the Michelson interferometer depicted in Fig. 4.1.
For the sake of clarity we can assume that the interferometer is compensated (assume an ideal
beamsplitter BS) before the measured dispersive sample is inserted into it and a broad band (white
light) source is used. The spectral interferogram recorded at the output of such a setup can
be described by the expression (4.24). The phase function of the modulated spectral intensity
distribution is in general given by the expression:

Φ(λ) =
2π

λ
[∆1(λ)−∆2(λ)] , (4.26)

where ∆1(λ) and ∆2(λ) are the optical paths in the reference and measuring arm respectively. In
our case, when the sample is inserted into the measuring arm, the phase function takes the form:

Φ(λ) =
2π

λ
{2[ns(λ)− 1]t− 2L} . (4.27)

Here L = L2 − L1 is the optical path difference (OPD) in the air, t is the sample thickness and
ns(λ) is the sample refractive index. Without the sample, the phase function exhibit monotonous
behavior (the dispersion in the air can be neglected). When the inserted sample exhibit dispersion,
i. e. ns = ns(λ), the phase function is no longer monotonous and it can have an extremum (or an
inflection point) in the measured wavelength range. Its position depends on the value of L, so it
can be in principle adjusted by the position of the M2 mirror in the reference arm. The extremum
itself is often referred in the literature as the stationary phase point [54], the wavelength where it
is located is denoted as the equalization wavelength [55]. Mathematically, the extremum can be
located at the points where the first derivative of the phase function reaches zero. Applying this
condition on equation (4.27) the following expression is obtained:

[Ns(λeq)− 1]t = L ⇒ Ns(λeq) =
L

t
+ 1 , (4.28)
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Figure 4.1: Schematic drawing of a Michelson interferometer with a dispersive sample inserted into
the measuring arm, M1 and M2 are the mirrors, BS is an ideal (non-dispersive) beamsplitter

where Ns(λeq) is the value of the group refractive index of the sample at the appropriate equalization
wavelength. So the group refractive index can be obtained provided the sample thickness and OPD
in the air are known.

The presence of a stationary phase point in the recorded range of the spectral interferogram has
an influence on the local period and visibility of spectral fringes. The density of spectral fringes
(reciprocal period) is given by the rate of spectral phase change. So the period of spectral fringes is
infinitely large at the zero points of the first derivative of spectral phase. To analyze the visibility,
the expression (4.21) has to be written in the wavelength domain [56], neglecting the second-order
effects (ρ(ω) ≈ 0):

V (λ) ≈ exp

{
−π2

2

[
∆g(λ)∆λR

λ2

]2
}
, (4.29)

where ∆g(λ) is the group OPD of the interferometer and ∆λR is the width of the spectrometer
Gaussian response function in the spectral domain. Excluding the case of an ideal spectrometer
(∆λR = 0), the visibility function (4.29) has a maximum only when the group OPD between the
beams in both arms of an interferometer is zero. As the group OPD can be expressed using optical
path difference in the interferometer [57], the condition for the maximum visibility is:

∆g(λ) = ∆(λ)− λd[∆(λ)]

dλ
= 0 . (4.30)

Inserting the expression ∆(λ) = 2[ns(λ) − 1]t − 2L for the OPD in analyzed case into (4.30), one
obtains the equation which is same as the condition (4.28) for the spectral phase extremum. So
the spectral fringes exhibit the highest visibility at the equalization wavelength.
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Figure 4.2: Spectral interferogram computed for analyzed Michelson interferometer: (a) phase
and visibility functions, spectrometer Gaussian response function with ∆λ = 3 nm is assumed; (b)
spectral interferogram I(λ) for ideal (∆λ = 0 nm) and IR(λ) for a real spectrometer, non-modulated
(background) Gaussian spectrum I0(λ) of white light source (λmax = 650 nm, 150 nm half-width)
was used for computation.

The mentioned features of the phase Φ(λ) and visibility functions V (λ) are demonstrated in
spectral interferogram (see Figs. 4.2a and 4.2b) computed using Eqs. (4.27), (4.29) and (4.24)
for the case of analyzed Michelson interferometer where the dispersive sample consists of fused
silica plate (t = 5 mm). The adjusted OPD value L = 2365µm in the air then leads to the
stationary phase point at the equalization wavelength λeq = 668.6 nm whose position corresponding
to the phase extremum and visibility maximum is marked by the dashed line. The effect of the
spectrometer is clearly seen in Fig. 4.2b where the dash-dotted line was obtained for the case of an
ideal spectrometer. In this case the half-width of the response function is zero and consequently
the visibility equals to one in the whole measured spectral range. The finite half-width of the
response function leads to decrease of the visibility of spectral fringes (see the full line in Fig. 4.2b
corresponding to the interferogram IR(λ) resolved by spectrometer), but the method is based on
stationary phase point detection where the visibility reaches its maximum. In order to obtain
Ns(λ), the OPD in the air L is changed in steps and corresponding spectral interferograms are
recorded to determine λeq(L) and compute the sample group index using the Eq. (4.28).
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4.3.2 Measurement far from stationary phase point

Sometimes it is not possible to adjust the position of stationary phase point inside of the measured
wavelength range. Consequently, the position of the equalization wavelength can not be scanned
to determine the dispersion parameters of the sample. In such a case, the required information
can be obtained using the phase function whose values can be retrieved from the spectral interfer-
ogram. In contrast to the equalization wavelength method where the set of spectral interferograms
corresponding to different OPDs has to be recorded, only one interferogram is needed to retrieve
the phase function.

The analysis is usually performed in reciprocal wavelength domain [58] using the quantity
σ = 1/λ, where the scaling is the same as angular frequency ω scaling used for the phase function
expansion (4.19) except the multiplicative constant 1/(2πc). At first, the phase function Φr(σ)
is retrieved from the spectral interferogram using some of the signal processing methods. The
resulting set of discrete values of the spectral phase is then usually fitted to a polynomial to
obtain a continuous approximation Φapp(σ) in the analyzed wavenumber range. The approximation
function can be used for computation of the sample group refractive index Ns(σ) as a function of the
wavenumber. Considering the analyzed case of the Michelson interferometer depicted in Fig. 4.1,
equation (4.27) for spectral phase is rewritten to express its dependence on the wavenumber:

Φ(σ) = 4πtσns(σ)− 4π(t+ L)σ . (4.31)

The expression (see equation (4.7)) for the sample group refractive index is rewritten to wavenumber
domain as well:

Ns(σ) = ns(σ) + σ
dns

dσ
. (4.32)

Let us assume that the values of the sample thickness t and the optical path difference in the air L
for the analyzed interferogram are known. Then one can express the sample refractive index ns(σ)
using equation (4.31) and insert it into equation (4.32). The result is the following expression

Ns(σ) =
1

4πt

d Φapp(σ)

dσ
+
L+ t

t
, (4.33)

which can be used to compute the group refractive index of the sample using the approximation
Φapp(σ) of the phase function.

The polynomial approximation of phase function can be deduced from the polynomial approxi-
mation of the sample refractive index in the wavenumber domain around the given wavenumber σ0

chosen in the center of the inspected range. As the contribution of the dispersion is usually weak
in comparison to the refractive index value at a given σ0, the sample refractive index in the vicinity
of this point can be approximated by Taylor series up to the first order:

ns(σ) = n0 +

[
dns

dσ

]

σ0

(σ − σ0) + · · · , (4.34)

where n0 denotes the refractive index value ns(σ0). When this approximation is inserted into
the expression (4.31), the resulting phase function takes a polynomial form Φapp(σ) = A2σ

2 +
A1σ without the constant term [54]. The phase function Φr(σ) retrieved from recorded spectral
interferogram is obtained with 2mπ ambiguity, where m is the order of the interference. To remove
such an ambiguity, some additional information has to be used. When for example σ0 is chosen to
correspond to the intensity maximum, the phase value at that very point is Φ(σ0) = 2mπ. Using
this condition, the interference order can be estimated as m = 2σ0∆0, where the optical path



CHAPTER 4. SPECTRAL INTERFEROMETRY 41

difference ∆0 = ∆(σ0) = (A2σ0 + A1)/4π is computed using the mentioned polynomial, whose
coefficients are obtained from fit to the retrieved phase. The computed value of m is subsequently
rounded to the nearest integer m′ and ∆0 is corrected to ∆′0 = m′/2σ0. The phase function can be
then corrected to remove the ambiguity and written as follows:

Φ(σ) = Φapp(σ) +
[
4πσ0∆′0 − Φapp(σ0)

]
. (4.35)

Hence the ambiguity removal means the constant term addition to the approximation. According
to the assumption about the weak contribution of the dispersion to n0 in the considered spectral
range, the dispersion effect can be described by differential refractive index of the sample as:

∆ns(σ) = ns(σ)− n0 . (4.36)

In order to compute this dispersion parameter, let us introduce the auxiliary phase function
Φaux(σ) = 4πσ∆′0 using the corrected OPD corresponding to the given wavenumber σ0. Such
a phase is a linear function [54] in the considered spectral interval. Then the phase difference
∆Φ(σ) = Φ(σ)−Φaux(σ) can be introduced. Considering the equation (4.31), the phase difference
can be expressed in the following form:

∆Φ(σ) = 4πtσ[ns(σ)− n0] = 4πtσ∆ns(σ) . (4.37)

So the spectral dependence of differential refractive index of the sample can be computed using the
expression:

∆ns(σ) =
∆Φ(σ)

4πtσ
. (4.38)

The dispersion of the refractive index can be subsequently obtained provided that its value at
the given wavenumber σ0 is known, or can be determined by some other measurement method.
Once more it is worth mentioning, that only one spectral interferogram is needed to determine
∆ns(σ), where the required intensity maximum at σ0 can be obtained by a proper adjusting the
path difference L in the air. The above described concept can be applied to other quantities with
differential or difference nature as are the quantities related to birefringence.

4.3.3 Tandem configuration

The idea of the tandem methods is to use two sequentially connected systems where the interference
takes place, so the optical field at the output of the first system is launched into the input of the
second one. Then the OPD, or the group OPD, in one system can be compensated by a proper
adjusting of the OPD in the other one. Tandem configuration usually comprises two interferometers
with the sample under test inserted into an arm of one of them, or it can consist of one interferometer
used for controlled OPD adjustment and measured sample placed behind (outside) it. The later
configuration can be used to obtain the birefringence and group birefringence of an anisotropic
dispersive sample as a piece of polarization maintaining fiber or birefringent crystal plate.

Let us demonstrate the idea of a tandem spectral interferometry method in the case of group
birefringence measurement. Consider the configuration of Michelson interferometer (MI) and dis-
persive birefringent sample depicted in Fig. 4.3. For the sake of clarity the interferometer is assumed
to be non-dispersive. The sample is placed at the output of MI between a pair of linear polarizers.
The light beam from an unpolarized broad-band source is divided by an ideal beamsplitter in two
beams with equal optical intensities having adjustable OPD given by the path difference between
the arms (1) and (2). After transmission through the polarizer P the electric field intensity of
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Figure 4.3: Schematic drawing of a tandem system: Michelson interferometer and dispersive bire-
fringent sample, M1 and M2 are the mirrors, BS is an ideal (non-dispersive) beamsplitter, P and
A are polarizer and analyzer

each wave is considered to be projected on its transmission axis and it can be decomposed into
appropriate x− and y−component with respect to the chosen coordinate system whose x− z plane
coincides with the plane given by the light beams in both arms of MI. The positions of transmission
axes of the polarizer P and analyzer A are characterized by the angles α and β with respect to
the x−axis. To keep the analysis simple, the principal axes of the sample coincide with the axes
of coordinate system and the sample optical axis is parallel to the sample input face. In such a
case, the normal modes of the sample are plane waves linearly polarized along x− and y− direction
(crystal plate), or appropriate polarization modes (PMF described using LP mode approximation).
As the optical axis of the sample is not parallel to the direction of propagation, the x− and y−
polarized components of total field, consisting of the contributions from beams (1) and (2), travel
inside the sample at different velocities. Passing through the analyzer A both components of elec-
tric field intensity are mixed by their projection on analyzer transmission axis and the interference
takes place. The resulting optical field is then analyzed by a low-resolution spectrometer.

The analysis of this tandem system can be carried out using the two-wave interference formalism
described in detail in section 4.2. Under the assumption that the influence of the second order
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dispersion effects can be neglected and the Gaussian response function of the spectrometer is
assumed, the resulting spectral intensity recorded by a low-resolution spectrometer at the output
of the above described tandem configuration can be expressed in the wavelength domain as [59]:

I(λ) = I0(λ)
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where ∆I and ∆g,I are the OPD and group OPD adjusted in the interferometer (dispersion in
the air is neglected). Similarly ∆S(λ) = B(λ) t and ∆g,S(λ) = G(λ) t are the OPD and group
OPD related to the birefringent sample whose thickness is denoted as t. The term V (α, β) is the
visibility function related to the angular position of polarizer and analyzer transmission axes. To
obtain the highest contrast of resulting spectral fringes, both polarization eigenwaves (or polariza-
tion modes) have to be excited with the same amplitude of electric field intensity, so α is usually
set to π/4 and consequently β = π/4. The resulting spectral intensity (4.39) is then the superpo-
sition of four spectral fringes with different periods, superimposed on the reference (unmodulated)
spectrum I0(λ).

The technique itself is based on the determination of equalization wavelength λeq in the recorded
spectral interferogram. At this very point the visibility reaches its maximum value, so the overall
group OPD has to be zero [see Eq. (4.29)]. Considering the analyzed system, only two last terms
in Eq. (4.39) can be used for such a measurement strategy, as the arguments in their visibility
terms contain the expression ∆g,I ± ∆g,S(λ). Thus by the proper adjustment of the OPD in
the interferometer, the equalization wavelength is moved across the measured spectral range in
steps yielding the information about the group birefringence of the sample given by the condition
∆g,I = −G(λeq) t. Once the discrete set of group birefringence values is known, it is possible to
perform a fit to some approximation function. As the group birefringence can be expressed via
birefringenceB(λ) using the relationG(λ) = −λ2d[B(λ)/λ]/dλ, the relative wavelength dependence
of sample birefringence can be obtained as well. When it is combined with the known value at
some specific wavelength, the absolute values of B(λ) can be then determined.





Chapter 5

Discussion of research work

5.1 Measurement and computation of birefringence dispersion
of a microstructured fiber

Optical sensing of various physical quantities, as temperature or strain, is often based on the inter-
action of polarization modes in an optical fiber, so the conventional birefringent fibers supporting
two stable polarization modes have received a considerable amount of interest for a long period
of time. Taking into account the mentioned facts, the technology of microstructured fibers offers
much higher flexibility in shaping of propagation and sensing characteristics than the conventional
fiber technology. In order to properly develop a fiber optic sensing scheme operated in the spectral
domain, the knowledge of the dispersion characteristics of the sensing fiber plays an important role
in the design process.

The topics of experimental and theoretical investigation of dispersion properties of an birefrin-
gent microstructured fiber are studied in papers [I] and [II]. The investigated fiber was a commer-
cially produced solid core fiber, made of fused silica. The core was surrounded by five rings of air
holes in triangular lattice forming a microstructured cladding. Such an idealized structure belongs
to C6v symmetry group. It was shown [60] that in this case the fundamental mode exhibits double
degeneracy. In order to remove it, the six-fold symmetry has to be broken. As to the studied sam-
ple, two opposite holes in the most inner ring have bigger diameter than the rest of the cladding
holes. The fundamental mode of the resulting structure is then split in two polarization modes
with different propagation constants and consequently the fiber exhibits the required polarization
maintaining features.

The task was to obtain the wavelength dependence of the phase modal birefringence and group
modal birefringence. Besides the fundamental mode, the fiber can support another spatial mode in
some part of the investigated spectral range, so it was also possible to study the intermodal disper-
sion which is described by the wavelength dependence of the differences between the phase effective
indices of the two modes having the same polarization. Furthermore, the differences between the
appropriate group effective indices can be defined too. The mentioned modes are denoted as LP01

(fundamental mode) and evenLP11 (higher-order mode) using the LP mode approach adopted from
the approximate theory of conventional step-index, circular-core waveguides.

Besides the experimental work, the model computation of dispersion properties plays an impor-
tant part in the analysis of the microstructured fibers, thus the proper choice of the computational
method is essential. Let us examine the basic theoretical approaches introduced in section 3.3 with
respect to the analyzed fiber structure. For the sake of clarity, the geometry is supposed to be
ideal (no defects). It means that all the holes are perfect circles and the lattice is not distorted.

45
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Even in this case, the effective index method cannot be applied because of the pair of holes whose
diameter differs from the rest. Speaking in terms of EIM (or FVEIM), we have the effective ”el-
liptical core” surrounded by the microstructure cladding, whereas the method was developed for
circular core shape in order to use all the results of conventional fiber theory. Moreover, the change
of the diameter of some holes inevitably leads to anisotropic ”cladding” and there is no reasonable
straightforward method how to obtain an ”effective permittivity tensor” of such a structure. Thus
the EIM (FVEIM) cannot be applied to such a polarization maintaining fiber.

The above described problem can be avoided using PWEM, where the plane-wave (Fourier)
expansion is applied to the field and material parameters in the supercell (see subsection 3.3.2).
For this method, the periodicity is essential. To obtain correct results, the central defects (formed
in our case by the ”core” and the most inner ring of holes), have to be well separated. In practice,
it means to check the convergence of computed propagation constants with respect to increasing
number of surrounding hole rings included to the supercell. This can lead to large supercells and
subsequently to the increasing demand of computational resources as the scaling of the resulting
matrix problem is poor with respect to the number of used plane waves [61]. On the other hand, the
method is in principle capable to handle even the irregular MOF structure as the required Fourier
expansion coefficients for the distribution of material parameters in the supercell can be computed
numerically. However, any approximate method based on Fourier expansion is prone to a low
convergence rate when the material parameters are represented by discontinuous functions. This
problem is well known in the electromagnetic theory of diffraction gratings and its mathematics is
related to the case when a product of two functions (one of them or both have a discontinuity) has to
be represented using their Fourier expansion coefficients (factorization problem). As shown in [62],
the proper usage of factorization theorems can help in some cases, but the application to two-
dimensional structures representing MOFs is not straightforward. Nevertheless, recent study [63]
claims that proper implementation of PWEM can achieve the same computational efficiency as
finite element methods.

Summarizing the above mentioned facts, it is clear that the drawbacks of PWEM have two
reasons. The first of them is related to the plane-wave basis used for the expansion, as it does not
conform with the general characteristics of the inclusion geometry. Whereas the plane waves are
highly general and mathematically easy to treat, they are consequently not efficient. The second
reason is related to the inclusion boundaries, where the material parameters exhibit discontinuities,
but the appropriate continuity relations are not incorporated into the method. To solve both
problems, the multipole method was developed (see subsection 3.3.3). As the periodicity of the
inclusion placement is not required for the field component expansion, the MPM can treat in general
any irregular cross-section structure of MOF provided that the inclusions do not overlap. Moreover,
because the microstructured cladding can be considered to be finite, the losses associated with the
mode propagation are automatically obtained. For the inclusions arranged to regular lattice, the
symmetry can be used to decrease the computational load. However, it should be noted that the key
aspect of the method is the circularity of the inclusions leading to the proper choice of the Fourier-
Bessel expansion which is natural for the circular geometry. Besides this, the continuity relations
for the field components tangent to the inclusion boundary lead to reflection and transmission
matrices whose elements can be expressed for circular inclusions in closed form. On the other
hand, the assumption about the regularity of the inclusion shape brings some limitations to MPM.
The non-circular inclusions can be in principle treated by this method [64] but the formulation of
field identities will be more complicated. For example, even the simplest case of elliptical-shaped
inclusions requires the usage of Mathieu functions, which are not easy to handle and implement
to computations. As to the general inclusions shapes, some numerical estimates obtained from
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differential or integral equation treatment have to be used [64].

Because the geometry of the real fiber is not ideal, the modeling method used for the com-
putations of its guiding properties has to be capable to treat the inclusions with irregular shape
arranged in the lattice exhibiting some imperfections. Considering this requirement, the finite ele-
ment method (see 3.3.4) is an extremely powerful tool which allows to obtain the modal properties
of fibers with arbitrary cross-section structures, so it was used for the model computations in pa-
pers [I] and [II]. The key to the determination of parameters, which have to be compared to the
experimental results, was computation of effective indices of all guided polarization modes prop-
agating in the fiber in the spectral range where the measurements were performed. The problem
was formulated using all three component of electric field intensity, and full-vector mode solver,
based on hybrid edge/nodal approach, was used to compute the propagation constants at a given
wavelength. The model domain was terminated by PML. The governing equations led to general-
ized eigenproblem and the Arnoldi method was used as the eigensolver. Since the microstructured
cladding in the real geometry is always finite, the guided modes are in principle leaky modes and
their propagation constants are complex. Then the resulting system of linear equations is not
symmetric, so an asymmetric multifrontal solver has to be used. The accuracy of the computed
propagation constants (or effective indices) was checked versus the number of elements forming the
mesh. In the considered case, to obtain the effective index values stable to six decimal places, the
mesh consisting of approximately 2× 105 triangular, curl-conforming elements had to be used. As
the computations were performed in broad spectral range, the dispersion of refractive index of the
fiber material (fused silica) had to be included into the model. Once the modal effective indices
were computed, the phase or group modal birefringence as well as the intermodal dispersion pa-
rameters were easily obtained. The mask used for the mesh generation was obtained from scanning
electron microscopy image by digital image processing methods.

The experimental study of the analyzed holey PMF was performed using the combination of
several measurement techniques. In contrast to the modeling approach where the effective modal
indices are computed at first and the phase and group modal birefringence (or the differences be-
tween the group effective indices used to characterize the intermodal dispersion) are obtained as
the result of some post-processing of the computed data (for definition see subsection 4.1.3), the
measurement strategy is different as it starts with the determination of group modal birefringence
dispersion. In order to cover the required broad spectral range, two interferometric methods were
used. First of them was the spectral-domain tandem interferometry employing a white-light source
(halogen lamp). The tandem setup consisted of a Michelson interferometer with the PMF sample
placed at its output between a pair of polarizers. The method is based on the fact that the OPD
adjusted in the interferometer compensates the group OPD introduced by the fiber sample at the
equalization wavelength (see subsections 4.3.1 and 4.3.3 for the idea of the method). The measure-
ment was performed in the spectral range from 500 to 800 nm where it was possible to determine
the equalization wavelengths by used a low-resolution spectrometer, and the group modal birefrin-
gence dispersion was obtained for both spatial modes. To perform the measurement for longer
wavelengths, the wavelength scanning method employing four broadband SLEDs was applied and
measurement range was extended to ≈ 1.6µm. In both methods the polarizer and analyzer placed
at both ends of measured fiber sample were oriented at 45◦ relative to fiber polarization axes to
obtain the interference of polarization modes. Once the group modal birefringence was obtained as
a function of the wavelength, it was used to determine the relative wavelength dependence of phase
modal birefringence. To get the absolute values of phase modal birefringence, at least one its value
at a specific wavelength is needed. For this purpose the lateral force method was used [65]. This
method allowed to determine the absolute values of phase modal birefringence at several distinctive
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wavelengths. When combined with the results yielded from spectral-domain tandem interferometry
and wavelength scanning method, the dispersion of phase modal birefringence was obtained in a
broad spectral range. Furthermore, the spectral-domain tandem interferometry allowed to deter-
mine the differences between the group effective indices of the identically polarized modes. As in
previous case, the method based on the measurement of equalization wavelength was used, but this
time the orientation of polarizer/analyzer pair was parallel to the fiber polarization axes to ensure
that only the modes with the same polarization took part in the interference process.

All the results obtained from the measurement were compared to the data computed for the
real fiber geometry. As the mutual discrepancy was low (< 10% in the worst case), consistency of
the used experimental and computing methods was proved. The differences can be explained as a
result of limited precision of the input data used to build the model geometry.

The substantially improved variant of the spectral tandem interferometry was later described
in paper [II]. To obtain the wavelength dependence of the group modal birefringence in a broad
spectral range, two different techniques had to be used, as was mentioned in the above text.
As the considerable progress of the low-resolution fiber optic spectrometer technology allowed
to extend their usage to near-infrared range, the setup described in [II] was equipped with two
spectrometers: one for the measurement in 〈350, 1000〉 nm spectral range and the other one for
〈850, 1700〉nm range. Such a combination allowed to perform effectively the measurement in the
spectral interval from 480 nm to 1600 nm using the tandem interferometry in the spectral domain
as the only technique. Moreover, the usage of the spectrometer in NIR led to the more dense and
uniformly distributed data in this spectral interval and consequently to more precise polynomial
representation of determined wavelength dependence of the group modal birefringence. Further
improvement of the method was based on the usage of a birefringent crystal plate serving here
as an additional delay line. When such a uniaxial crystal plate of suitable thickness and optical
axis orientation is placed between the polarizer/analyzer pair behind the tested fiber, the shift
of the spectral fringes resolvable in the vicinity of the equalization wavelength can be observed.
Provided that the group birefringence and the thickness of the plate are known, the sign of the fiber
group birefringence can be determined from the direction of that shift. For example, the elliptical
core fiber analyzed in paper [II] exhibited positive birefringence whereas the holey PMF (the same
type as analyzed in [I]) exhibited negative group modal birefringence. Using the fourth-order
polynomial representation of −G(λ)/λ2 the relative phase modal birefringence was then obtained.
The described method offered the precision of ≈ 0.1% in a broad spectral range obtained using
cost-effective instrumentation.

5.2 Measurement of the group index dispersion

The knowledge of the group index of optical components over a broad spectral range plays an im-
portant role in various areas of optical research. Considering the model computation of parameters
of PMFs, the knowledge of the dispersion properties of used materials is as important as the infor-
mation about the fiber geometry. The producers often declare only the basic information on the
materials (as its commercial name), but not the dispersion data itself. The similar situation arises
when the material of fiber core is known but the material of the cladding is not. Therefore the
measurement methods of dispersion characteristics of glasses of optical fibers are required. Spectral
interferometry is considered as one of the best tools for the dispersion characterization of optical
guiding media such as optical fibers. Such a measurement technique is the topic of paper [III].

The method utilizes an unbalanced Mach-Zehnder interferometer with the fiber sample inserted
into one of its arms (referred to as the test arm). The other arm (reference arm) contains a delay
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line, so the variable path difference in the air can be adjusted. The analysis of such a setup is
similar to the analysis of a Michelson interferometer (see section 4.3), only the OPD (and appro-
priate group OPD) is one-half of the OPD in the Michelson interferometer. Considering practical
implementation, the proper alignment of the components in a Mach-Zehnder interferometer is much
simpler compared with the Michelson interferometer where the light passes both arms twice. As it
is not possible to couple the light into the tested fiber directly, a lens or microscope objective has
to be used to focus the beam on the entrance face of the sample. Similar components are placed
behind the fiber. All the optics used in the test arm is the source of some dispersion as well as
the fiber itself. Thus its influence has to be included into the condition for overall group OPD,
where its phenomenologically represented by a product of an ”effective” thickness and appropriate
”effective” group refractive index.

Because the correct alignment of all parts of the setup is crucial, prior to the measurement
a laser diode was used as the light source instead of the white-light source in order to adjust
the excitation condition of the fiber - whether the light is coupled into the guided mode or to
the cladding. As we want to measure the dispersion properties of the holey fiber material, the
ring-shape optical field has to be seen at the output of the test arm in the far-field zone. The
measurement, based on equalization wavelength determination, is carried out in two steps. At
first the overall group dispersion of a combination of the sample and coupling optics is measured.
The path length in the air is changed in steps and the spectral interferograms are recorded to
determine the equalization wavelength values. Second, the sample is removed and the measurement
is repeated on the previously determined set of equalization wavelengths. Because in this case it was
not possible to obtain them directly using only the delay line in the Mach-Zehnder interferometer,
the tandem configuration utilizing a Michelson interferometer placed between the light source and
unbalanced Mach-Zehnder interferometer was used to resolve the spectral fringes at its output.
Subsequently one specific equalization wavelength was used as a reference value and the path
lengths differences with respect to this reference point were computed. Such a strategy, applied
to both cases corresponding to the measurement with and without the fiber, allowed to subtract
the unwanted group dispersion of the used optics from the overall group dispersion and obtain net
differential group refraction index of the measured object (here the fiber cladding material) as a
function of the equalization wavelength, provided that the sample length is known.

The proposed method was demonstrated on two samples of holey fibers. One of them was a
pure silica fiber and the other one was made of SK222 multicomponent optical glass. Considering
the silica fiber as a kind of ”reference” sample, the determined differential group refractive index
dispersion was compared with the results obtained using the dispersion equation of pure silica (as
it is a well defined material), and good agreement confirmed that the method is suitable for the
measurement of dispersion properties of optical fiber materials.

The usage of the method was then extended to the measurement of the group dispersion of
fundamental mode of a holey fiber [IV]. By a proper choice of excitation conditions it is possible
to couple the light to the fundamental mode as well as to the cladding modes propagating in its
microstructured and solid parts. As it was shown in the literature [66], the modes propagating
in the microstructured region exhibit very high attenuation, so most of the energy is transmitted
by the modes propagating in the solid part of the cladding. These modes are well confined in
the glass and so their group effective indices are equal to its group effective index. Thus, when
the group dispersion of the holey fiber material is known, it is possible to properly identify the
spectral signal related to the fundamental mode and to get its group effective index. The method
is based on the assumption that the spectral fringes corresponding to the cladding modes, which
can be distinguished in the vicinity of the equalization wavelength, can be obtained for a path
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length that differs from the path length corresponding to the fundamental mode at the same
equalization wavelength. When equations representing the zero conditions for the overall group
OPD, and describing both situations are subtracted, the terms related to the dispersion of optical
components cancel. So it is possible to obtain the expression for the group index of the fundamental
mode at a given equalization wavelength written only in terms of group refractive index of glass
and the appropriate path length difference. As usual, the length of the fiber has to be known, but
that is no problem because the method is designed for short-length samples. The main limitation
of this approach is that the path lengths has to be known for the same equalization wavelength set.
A solution to this problem is to choose one specific value of equalization wavelength as a reference
value and to rewrite all equations using appropriate differences. Thus the final relation for the
fundamental mode group effective index contains only a single value of glass group index together
with path length on the reference wavelength. The price is that the measurement is carried in
two steps - with and without the fiber sample - as the knowledge of the path length differences
related to coupling optics is necessary. Using the described strategy, the group index dispersion of
pure silica fiber fundamental mode was determined and compared to the already computed data
[I]. Good agreement between the experiment and theory was obtained.

The experimental method introduced in [III] was later improved and presented in paper [V].
The aim of the paper was to determine the group index dispersion when the differential group index
is already known. This in fact means to determine one value of group index at a specific wavelength
chosen as a reference point. Three possibilities how to choose the reference element were suggested:
glass sample, reference fiber and the outer fiber cladding. As to the first case, the fiber under test
was replaced by a suitable plate from a material transparent in the considered measurement range
(for example glass or a crystal) whose thickness and group dispersion at the reference wavelength
are well defined. The second technique utilized a reference fiber, whose group dispersion and length
are known, to replace the tested one. The last technique used the change of excitation conditions
in order to couple the light into the solid part of the sample cladding. The last technique is the
easiest to implement, as the excitation conditions can be changed by mere defocusing of the input
light beam.

The first and the last techniques were applied to two samples of holey fiber, already used in
[IV]. In order to measure the group dispersion of polarization modes (the samples were pieces
of polarization-maintaining fibers), the Mach-Zehnder interferometer was equipped with a linear
polarizer inserted at its output. The polarizer was used for discrimination of spectral signals
corresponding to both polarization modes, because the setup used and unpolarized source at its
input. As the reference element, a polished birefringent crystal plate (quartz) of well defined
thickness was used. The plate was cut in such a way that the optical axis was parallel to the
polished surfaces and the collimated beam was incident on them perpendicularly. The reference
group index then corresponds either to ordinary or to extraordinary wave propagating in the plate,
depending on the polarizer orientation. The results, combined with the results obtained by the
method already described in [III] finally yielded the group effective mode index. Thus, the methods
described in all three mentioned papers form a versatile and powerful tool to characterize the
group dispersion properties of short-length holey fiber samples and the materials used for their
preparation. Alternatively, the methods can give some information about the dispersion properties
of used cladding materials when a conventional optical fibers are considered. Such information are
valuable especially for the laboratories oriented on the technology of optical fiber preparation, as
it gives a complex feedback to the used technology processes. Besides the glass fibers, the polymer
fibers can be tested as well.
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5.3 Methods of absolute birefringence dispersion measurement

In beginning, it should be reminded that all suggested techniques of spectral interferometry dis-
cussed in previous two sections yield the dispersion of group quantities as group modal index or
group birefringence. To determine the effective index or birefringence dispersion, the data obtained
by these methods had to be combined with the results obtained by some other techniques. Consid-
ering the birefringence dispersion, the so called lateral force method was mentioned in section 5.1.
Generally speaking, the method is based on the beat length measurement, as this quantity is di-
rectly related to the birefringence (see subsection 4.1.3). In order to observe the beat length, two
polarization modes have to propagate in the tested fiber. The first one is excited on the entrance
of the fiber using linearly polarized beam focused on the input face, and the other one appears as
a result of some cross-polarization coupling process. The coupling results from the anisotropy of
fiber material induced by externally applied stress, thus the technique is referred to as lateral force
method. In its original variant [67], the stress-applying element (tip) was driven by a time harmonic
signal and the result of interference of polarization modes was detected in the time domain using
the heterodyne detection technique employing a lock-in amplifier. To measure the dispersion of the
beat length, the setup utilized a fiber Raman laser as the light source and the detection chain was
equipped with a bulk filter and monochromator in order to select individual wavelengths.

Later, a modification of the method was suggested in [65] to measure polarization mode disper-
sion in addition to modal birefringence measurement. This time, a constant point-like force was
applied to the fiber and the result of the interference (fringes) was observed in the spatial domain
using a CCD camera as a detector. The method was designed to obtain the birefringence value
at a specific operation wavelength given by the used light source. Here a broad-band laser diode,
operated below the lasing threshold was used. It is worth noting that both proposed methods did
not yield the birefringence dispersion in really broad spectral range at once. In the first case the
measurement had to be sequentially performed, whereas in the second case a set of different sources
was needed. Nevertheless, to obtain the absolute birefringence dispersion, only one its value at a
specific wavelength is need to combine with the spectral tandem interferometry results, as described
in [I].

We focused our attention to this topic in paper [VI]. To solve the problem of birefringence
dispersion, the measurement method was suggested that utilized the interference in the spectral
domain. The method is based on the application of point-like force on the fiber sample in order to
induce the cross-polarization coupling as in [65], but the response in the form of fringes is resolved
in the spectral domain (sometimes the term ”channeled spectrum” is used). Consider the light from
a white-light source passing through the linear polarizer and launched to the fiber under test. The
orientation of polarizer axis is parallel to one of the PMF axes in order to excite only one of two
polarization modes. When a point-like force acts on the fiber, a part of the energy is transferred
to the other polarization mode. As both polarizations are orthogonal, the analyzer oriented at 45◦

with respect to the polarization axes of the fiber has to be placed at the output end of the fiber to
mix them and make them interfere. The position and shape of the spectral fringes is then given by
the mutual phase difference related to the distance from the coupling point to the output face of
the fiber. In response to the displacement of the coupling point along the fiber sample, a shift of the
spectral fringes is observed. The beat length is directly related to the mentioned displacement and
to the corresponding wavelength dependence of phase change reconstructed from two successive
spectral interferograms.

It is clearly seen, that two problems have to be solved. One of them is to reconstruct the spectral
phase of both interferograms to compute their difference. The other one is to remove the phase
ambiguity. As to the first problem, there exist a large number of algorithms suitable for phase
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retrieval from recorded channeled spectrum. In paper [VI] the method based on windowed Fourier
transform applied in the wavelength domain was used. In contrast to standard Fourier transform,
the convolution of spectral signal with the modified kernel (product of a window function with
the exponential function) is computed. Next, the approach based on window Fourier filtering with
modification (thresholding) is used to synthesize a new complex spectral signal used for spectral
phase computation. We already applied this technique to the measurement of the effective thickness
of cube beam splitters used for a Michelson interferometer [68]. The reconstructed spectral phase is
obtained with 2πm ambiguity. To remove it, a simple procedure, similar to the approach described
in subsection 4.3.2, can be applied. At first a maximum (or minimum) is chosen at one specific
wavelength. Then the coupling point is shifted along the fiber until such a displacement is adjusted,
for which another maximum at the same wavelength is resolved. Then we know that the phase
was shifted by 2π at this wavelength. The beat length at this wavelength equals to the mentioned
displacement. Consequently, the wavelength dependence of the beat length enables to determine
the phase modal birefringence.

The method was applied to the elliptical-core fiber with the cut-off wavelength of 620 nm. As
the measurement was carried out in 〈450, 850〉nm spectral range, a loop of the fiber was used to
suppress the higher order modes. The results were compared with the data obtained using spectral
tandem interferometry and good agreement of the results confirmed the suitability of the proposed
method for modal birefringence dispersion measurement. Moreover, the technique is much simpler
to implement than the method used in [65], and cost-effective in comparison to the periodic lateral
force method.

The birefringence dispersion of an anisotropic sample can be obtained by an alternative tech-
nique described in paper [VII], not restricted to optical fibers only. General principle of the method
is the same as in the case of point-like force method - the result of interference of polarization modes
or eigenwaves is analyzed in the spectral domain, but this time no external agent used to excite the
cross-polarization coupling is needed. The idea is quite simple: the fiber sample or a tested piece
of a birefringent crystal is inserted between a pair of linear polarizers together with the launching
optics (if necessary). The input polarizer is oriented in such a way, that two polarization modes
or eigenwaves with equal amplitudes are excited. After the transmission through the measured
object, both modes are mixed by the analyzer to obtain the interference. The resulting field is
analyzed by a spectrometer, and the relative spectral phase is then retrieved from the recorded
spectrum. The key point of the method is to obtain the absolute spectral phase directly related to
the birefringence.

In previous papers, the polynomial representation of birefringence dispersion was used. Here, the
approximation by a five-term, symmetric Cauchy-like dispersion function was used. The problem
of 2πm ambiguity removal is now solved using the minimization of the introduced error (penalty)
function which is the measure of difference between the retrieved and approximated spectral phase.
The interference order m is now one of the unknown coefficients in the fitting process. The method
consists of two steps. At first the spectral signal is constructed where the reference spectrum (acting
as a ”background”) is removed from the recorded spectral interferogram. Then the relative spectral
phase is retrieved using the method based on the windowed Fourier transform. In the second step,
the unknown coefficients of used approximate dispersion function together with the interference
order are estimated by trust-region algorithm. The value of retrieved interference order is then
rounded to nearest integer and fixed in the following computations. Subsequently, the new values
of the coefficients are computed using a Levenberg-Marquardt least-square algorithm. Finally, the
birefringence is determined, provided that the length of the fiber sample or tested crystal is known.

The only limitation of the method is that the spectral fringes have to be resolved in the spectral
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range, which leads to a constrain for the length of the analyzed object. This condition can be
derived from the term describing the visibility of spectral fringes. The method was successfully
tested on the sample of elliptical-core PMF and a birefringent crystal plate. In the case of the
fiber, the results were compared with the data obtained from tandem interferometry in the spectral
domain. The apparent mutual shift of birefringence dispersion curves was probably caused by the
fact, that the fiber samples used in both measurements were not identical. The compared group
birefringence data exhibited very good agreement. The results obtained for a birefringent crystal
plate (quartz) exhibited very good agreement for birefringence and group birefringence dispersion
compared with the results computed using appropriate Sellmeier-like dispersion relation. Thus the
versatility of the technique was demonstrated. The measurement method can be further extended
to the dispersion characteristics related to the interference of two spatial modes guided in the
optical fiber.

5.4 Measurement of chromatic dispersion of polarization modes

The methods for a precise measurement of the group modal index can be used for the determination
of chromatic dispersion too. The knowledge of this parameter is important for the design of various
optical fiber systems as broad-band optical communications, high-speed transmission systems or
generators of optical supercontinuum, as it is related to the distortion of propagating optical pulses.
This optical fiber metrology task was the subject of paper [VIII]. As the chromatic dispersion
coefficient can be determined simply by differentiation of the group index (see subsection 4.1.3),
the already discussed method for differential group index determination can be exploited for this
measurement too. The problem of reference choice is not relevant in this case, because when the
group index is expressed as the sum of the differential group index and the group index value at
the reference wavelength, the constant term related to the reference is removed in the process of
differentiation. Thus, the measurement method suggested in paper [III] can be directly applied.
The only modification of the Mach-Zehnder interferometer described in the mentioned paper is that
a linear polarizer was placed at the output of the interferometer to distinguish the spectral signals
corresponding to two polarization modes, because the method was applied to the fundamental mode
of PMF samples. The idea of the method is to represent the obtained discrete set of differential
group effective index data by a suitable approximate function which can be written in a closed
form in order to be able to analytically express its first derivative, and subsequently obtain the
chromatic dispersion coefficient.

In principle, this procedure can be applied to both polarization modes separately, but that is
not necessary provided that the group birefringence dispersion is already known for the analyzed
fiber. The group modal birefringence is defined as the difference between the group effective indices
related to both polarization modes. Because the group modal effective indices are expressed using
appropriate differential indices and the group modal birefringence is written in the same differen-
tial form, the process of differentiation removes the constant term and the chromatic dispersion
difference can be introduced. Thus the chromatic dispersion of the other polarization mode can be
expressed without performing the measurement, when the group modal birefringence of the tested
sample was already obtained by some other method.

The method was used to determine the chromatic dispersion of polarization modes of two
different PMFs. One of them was the pure silica holey fiber whose characteristics were already
measured by tandem interferometry in the spectral domain, supporting higher-order modes for the
wavelengths shorter than 1µm, and the second one was an elliptical-core, highly birefringent fiber.
This fiber supported the higher-order evenLP11 mode for the wavelengths shorter than 630 nm and
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the group modal birefringence of the fundamental mode was known too. Prior to the measurement
itself, the proper alignment of optical component as well as the excitation conditions were checked
using a laser diode used as the light source. Even if the short length of the samples allowed the
propagation of higher-order modes, only the fundamental mode was excited in the fiber, as was
revealed by the inspection of the far-field pattern in the test arm, and later confirmed by the shape
of the spectral signal, which was not distorted by the presence of higher-order modes. The axis of
the polarizer placed at the output of the interferometer was set to be parallel with the major or
minor axis of the elliptical far-field pattern.

Considering the sample of holey silica fiber, an interesting behavior of spectral signal was
observed. As the path length difference was adjusted in successive steps to resolve the equalization
wavelength position, for values below some specific limit two positions of equalization wavelength
appeared. Such behavior was revealed in the near-infrared part of the measured spectral interval.
The mutual distance between the mentioned spectral positions decreased with the decreasing path
length difference. Both values were used to obtain the differential group effective index until the
mutual merging of the spectral fringes made the determination of equalization wavelength position
impossible. This effect is caused by the non-monotonous behavior of the differential group effective
index in a broad spectral interval. Thus, there can be a spectral range in the vicinity of the
differential group effective index minimum where the method is not applicable.

As to the choice of the approximate function, the five-term power series (Laurent polynomial)
was used for the representation of the differential group index dispersion. The group modal bire-
fringence of a holey fiber sample was approximated by a relation obtained by differentiation of
a heuristic power function used to approximate the phase modal birefringence of air-silica holey
fibers [69]. By further differentiation of the group modal birefringence, the chromatic-dispersion
difference was obtained in a closed form. The chromatic dispersion curve of the holey fiber was
shifted toward the shorter wavelengths with respect to the chromatic dispersion curve of the fiber
material. So its possible to optimize the dispersion behavior according to the requirements of a
specific application just by the changes of fiber geometry. This design strategy is sometimes re-
ferred to as ”dispersion engineering” and it is an important feature of PCF technology. To check
the precision of the method, the chromatic dispersion values for both modes at specific wavelength
were compared with the data specified by the manufacturer and very good agreement was obtained.

The proposed method is easy to implement and it offers sufficiently high measurement accuracy
achieved with a simple and cost-effective instrumentation. Furthermore, it can be extended for
dispersion characterization of other types of PMFs supporting the propagation of two polarization
modes in a wide spectral range.

Besides the chromatic dispersion itself, the precise position of the wavelength where it equals to
zero is often required. This parameter, referred to as the zero-dispersion wavelength (ZDW) plays
an important role in design of specialty optical fibers used for the generation of supercontinuum.
It is highly desirable, that the ZDW of such a fiber closely matches the wavelength of the laser
used for optical pumping. The method how to measure the chromatic dispersion including the
ZDW was presented in paper [IX]. In contrast to the technique based on equalization wavelength
determination described in paper [VIII] where a series of spectral interferograms had to be recorded,
only one spectral interferogram is needed. Moreover, the chromatic dispersion can be obtained even
in the vicinity of the ZDW, where the previous method failed because of impossibility to properly
resolve the equalization wavelength. At this point, the group modal effective index exhibits an
extremum (minimum). As the extremum position is given by the zero of first derivative, it follows
from the definition of chromatic dispersion that the ZDW is located at this very point.

In order to simplify the measurement procedure and increase the comfort, the experimental
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setup was slightly modified to avoid the problem with the optical components used for coupling
and decoupling of the optical beam into the fiber sample. This time, a dispersion balanced Mach-
Zehnder interferometer was exploited, where a pair of identical optical components, as used in the
tested arm, was inserted into the reference arm. Moreover, a supercontinuum source replaced the
halogen lamp and this way, the signal-to-noise ratio was substantially improved. In addition to
the linear polarizer used at the output of interferometer to discriminate between two orthogonal
polarization modes, the other linear polarizer was placed between the source and interferometer.
By proper adjusting of this polarizer only one polarization was excited and the fringe contrast was
optimized to its maximum value.

The method itself is based on the processing of a single interferogram recorded in a spectral
range as wide as possible containing the ZDW. Such an interval is framed by two points where the
visibility reaches its maximum (the pattern characteristic for the equalization wavelength). Inside
of the interval the positions of the fringe extrema (for example maxima) are resolved and numbered.
The position of an interference maximum is given by a condition imposed on the spectral phase.
Combining two such conditions related to the first and last maximum in the numbered set, it is
possible to obtain an equation which couples together the path length difference in the air, effective
index of the mode, sample length and unknown interference order. When the effective index
dispersion is approximated by a suitable function, one obtains the equations, where coefficients of
approximate functions and interference order are unknown parameters. By fitting this relation to
the experimental data (fringe maximum number vs its wavelength), the unknown parameters are
determined. Hence the second derivative of the approximate modal effective index leads directly to
the expression for chromatic dispersion written in the closed form. The sample length is the only
parameter which has to be known, as the constant containing path length difference in the air is
removed by the differentiation.

As the successful use of the method depends on the representation of the modal effective index
by an approximate function, the proper choice of such a function is quite important. The commonly
used polynomial approximation, simple and easy to implement, would do the job but polynomials
suffer from non-physical behavior in the vicinity of endpoints, where they tend to oscillate. So the
modified Cauchy dispersion formula was used. Mathematically speaking, this type of function is re-
ferred to as a Laurent polynomial [70]. Considering the optical fiber metrology, such approximation
was in the past successfully used for example in [71] to approximate the polarization dispersion,
as it keeps the trends in the whole interval. To obtain a suitable representation of chromatic dis-
persion, the fourth-order symmetric Laurent approximation, containing only even orders, was used
to represent the modal effective index dispersion. It should be mentioned that fitting to a Laurent
polynomial has to be performed using some procedure applicable to non-linear fitting tasks, as for
example Levenberg-Marquardt algorithm. This is because it leads to ill-condition matrix whose
inversion can not be performed directly even for low-order approximation.

To demonstrate the feasibility of the described method, the measurement was performed with
the pure silica holey fiber already characterized by other above described methods. Based on the
already obtained results [VIII], the attention was paid to the NIR spectral range containing the
ZDW, so only one spectrometer was used. The spectral interferograms corresponding to both po-
larization modes were recorded and processed using the above described procedure. The constants
obtained from a least-square fit of modal effective indices to Laurent polynomial served as an esti-
mate for the fit of spectral interferogram. The theoretical spectral signals agreed very well with the
recorded ones, thus the accuracy of the method was clearly demonstrated. Besides the determina-
tion of the ZDW, the dispersion slope was computed as well. The values of both parameters were
compared with those obtained by a broad spectral range measurement method [VIII] and good
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agreement was confirmed. The small errors in ZDW were probably caused by poor resolution of
used NIR spectrometer, so the precision could be improved using a spectrometer allowing denser
sampling in the measurement range (for example optical spectrum analyzer). The method offers
fast and accurate measurement of ZDW and dispersion slope together with the improvement of
measurement comfort and if necessary, it can be extended to VIS spectral range.

5.5 Tandem configuration of birefringent fiber and birefringent
crystal

Optical fibers are often used as sensors of various physical quantities. Especially the birefringent
fibers in connection with the interferometric methods are an important part of optical sensing
technology. The sensing concept based on the usage of a birefringent fiber, acting as sensing
element, and birefringent crystal is presented in paper [X]. The idea is to utilize the interference
of polarization modes depending on anisotropy induced in the sensing fiber by an external agent.
The result is detected in the spectral domain where the required information is inscribed in the
spectral fringes. The sensing capabilities of the proposed setup were demonstrated by the phase
change of the spectral fringes induced by the change of fiber length. The sensor system comprised
a tandem configuration of an elliptical-core fiber and uniaxial crystal inserted between a pair of
linear polarizers including the coupling optics.

Whenever a system containing several polarization components has to be analyzed, the proper
choice of the coordinate system is an important task. Here, the system connected with the direc-
tions of linearly polarized eigenwaves, propagating in the crystal, was used. The orientation of the
other components was expressed using their azimuths with respect to the polarization direction
of the crystal ordinary wave representing the horizontal axis. The setup is similar to the tandem
configuration of a Michelson interferometer and a birefringent object (see subsection 4.3.3) used to
demonstrate how to treat such systems. To keep the analysis general, the arbitrary orientation of
polarizer, analyzer and sensing fiber was allowed, and the Jones formalism was used to express the
spectral density at the output of the system. The knowledge of angle-dependent terms describing
the influence of component orientation on the visibility of spectral fringes then helped to simplify
the situation and optimize the fringe contrast. To obtain the closed-form expression for the the-
oretical spectral interferogram including the bandpass influence of a low-resolution spectrometer,
the approach explained in section 4.2 was used. The model computation was performed for two
cases concerning the combination of positive or negative birefringent crystal with elliptical-core
fiber of known dispersion characteristics. The computation revealed that the visibility of the spec-
tral fringes reaches its maximum when the group OPD in the fiber was compensated by the group
OPD introduced by the crystal, as was later confirmed by experiment. The achieved results are
important for the optimization of a birefringent crystal thickness to control the optimal shape of
the interferogram with respect to the intended detection strategy and the spectral range of used
spectrometer.

Considering the usage of the elliptical-core fibers as sensing elements, the knowledge of their
spectral characteristics is essential for a proper design of fiber optic sensors operated in the spec-
tral domain. The topic of determining the required dispersion parameters using experimental as
well as theoretical methods was addressed in paper [XI]. The investigated fibers supported LP01

and evenLP11 spatial modes in a broad spectral range. To obtain the phase and group modal
birefringence, the measurement techniques already described in [III] and [VII] were utilized.

As the model computation is as important as the experimental methods, the choice of the
appropriate theoretical approach is essential with respect to the analyzed fiber geometry. Based on
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the results from the available literature [2], it can be concluded that the required high birefringence
value corresponds to high eccentricity of the fiber core. Considering this fact, the approximate
method based on perturbation approach (see subsection 2.3.1) can not handle the highly birefringent
ECFs properly. Nevertheless, it gives a clear insight into the characteristics of propagating modes
and to the LP-mode classification scheme widely used in the literature. The other method based
on weakly guiding approximation can treat the waveguiding problem more precisely, but the core-
cladding dielectric contrast has to be sufficiently low and the core eccentricity is limited as well. To
quickly estimate some guiding properties, the approximation by equivalent rectangular core can be
used (see subsection 2.3.3), especially when the fibers with high core eccentricity are considered.
The other advantage of this method is the relatively simple mathematics compared to two above
mentioned techniques, but the results obtained by this method can not explain the experimental
results in detail. The computation of the propagation constants can be in principle performed using
the exact theory of elliptical waveguides (see section 2.2), but the implementation of the method
into computation practice is difficult because of the problem geometry inherently leads to infinity
number of modes used for representation of the field components. Consequently, a proper truncation
of appropriate matrices in needed. The other difficulty is related to the complex nature of Mathieu
functions. In addition to this, the libraries for numerical computation of Mathieu function are not
commonly available. Finally, the elliptical waveguide theory was not developed to handle the case
of anisotropic materials. Nevertheless, the exact approach can serve as a starting point to various
approximations used to handle special fiber configurations. To treat a complex fiber geometry as
well as the material anisotropy, the FEM analysis was used in paper [XI]. The goal was to compute
the propagation constants in case of highly elliptical fibers, where the side-effects of used producing
technology led to some residual stress. Such a stress inevitably introduced the anisotropy of the fiber
material. FEM allowed to treat the situation as a multi-physics problem, where various quantities
are mutually coupled. At first, the distribution of residual thermal stress was modeled using
plane-stress model based on the information about the technology, and consequently the relative
permittivity tensor distribution was obtained in the fiber cross-section. Then the propagation
constants for the ECF with included material anisotropy were computed using the same mesh.

As to the group modal birefringence measurement using the spectral-domain tandem interferom-
etry, two guided modes were excited and two corresponding equalization wavelengths were detected.
To avoid the situation when the corresponding interference signals overlaps, a sufficiently long fiber
sample was used. For the phase modal birefringence measurement, the point-like force method in
the spectral domain was utilized. Here it should be mentioned that the modal birefringence of
higher-order mode (evenLP11) could not be obtained this way, as it was not possible to excite only
this mode (the fundamental mode was always present). The experimental and theoretical values
were compared and good agreement was confirmed. The small discrepancies in short-wavelength
range were probably caused by lack of reliable material parameters and inaccuracy of the core
dimensions used as input to computer models.

The concept based on tandem configuration fiber-crystal, demonstrated in [X], was used as a
starting point for fiber optic temperature sensing described in paper [XII]. The main objective of
the work was to realize a sensor using the available ECF whose characteristics were known, and
test the applicability of the approach already introduced in [X]. At first, the theoretical spectral
interferograms were computed. In principle, the fiber alone could be used, but the period of spectral
modulation corresponding to a reasonable length of the fiber would be too short to be resolved by
the considered spectrometer. So the tandem configuration of the birefringent crystal plate (quartz)
and the fiber had to be used. The character of spectral fringes depends on the thickness of the plate.
If the plate is thick enough, the interferogram contains the stationary phase point in the measuring
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range. As the information is hidden in the spectral phase, it has to be retrieved, but the procedure is
not simple [72]. When the plate thickness decreases, the stationary phase point shifts toward shorter
wavelengths and the interferogram takes the form of channeled spectrum. Then the phase change
corresponding to the measured temperature can be retrieved using much simpler procedure based on
windowed Fourier transform. Moreover, the temperature change can be directly deduced from the
shift of a position of a given interference extremum. This strategy was finally adopted. To evaluate
the performance of the sensing scheme, the so-called polarization sensitivity [73] was determined.
In the described case, the polarization change is induced by the change of the temperature. This
parameter represents an increase of phase shift between two polarization modes of the sensing
fiber induced by unit change of the temperature acting on the unit length of the fiber. It was
revealed that it decreased with the increasing wavelength of the used spectral maximum. To check
the temperature sensitivity of the system, different wavelengths were chosen and the shift of their
maxima was traced as the temperature changed. In accordance with the obtained polarization
sensitivity of the used fiber, the response to temperature was higher at the shorter wavelengths.
The shift with the temperature was almost linear in the used temperature range. Thus it is possible
to ”tune” the sensitivity just by choice of the maxims located in different parts of used spectral
range, provided that the phase change does not exceed 2π. However, it is possible extend the
temperature measurement range, when the sequential measurement is performed with a step small
enough to assure the phase unambiguity. The achieved results are important from a practical
point of view, as the sensing is performed in VIS spectral range using a low-cost and accessible
instrumentation.



Chapter 6

Summary and conclusion

The presented habilitation thesis deals with spectral interferometry of polarization maintaining
fibers. As the progress in technology of preparation of such fibers has led to their availability at a
reasonable cost, the number of possible applications utilizing their unique properties is perpetually
growing. To be able to properly design various systems based on that kind of fibers, their dispersion
characteristics have to be well known. Among various methods that are applicable to dispersion
characteristics determination, the spectral interferometry offers high versatility and provides the
dispersion data in a wide spectral range.

We focused our attention mainly on the spectral dependence of parameters related to the
birefringence properties of studied fibers. At first the already developed techniques were successfully
combined to obtain the phase and group modal birefringence of a holey fiber in a broad spectral
range. Later, the method of tandem interferometry in the spectral domain was improved in order
to determine the dispersion characteristics using this method only. Moreover, we proposed and
experimentally tested the procedure how to specify a correct sign of the group modal birefringence.

Apart from the dispersion characteristics related to the guided modes, the dispersion of the
fiber materials is important too as the knowledge of this information is essential to compute the
parameters of fiber waveguides in a realistic way. We proposed a technique to measure the group
differential index of material of holey fibers. Instead of tandem interferometry using a Michelson
interferometer, the method utilizes an unbalanced Mach-Zehnder interferometer with the fiber
sample inserted into its test arm. The method was successfully tested on the holey fiber samples
made of different glasses. The results were then compared to the known material data computed
using known dispersion formulae and good agreement confirmed the feasibility of the proposed
method. The technique was subsequently applied to group modal dispersion determination. To
obtain the mentioned parameter, the problem of reference element choice as well as the influence
of used coupling optics was discussed and successfully solved.

As every measurement method based on the determination of equalization wavelength position
leads to group quantities only, we developed a new simple method to measure the phase modal
birefringence of polarization maintaining fibers directly. The method, utilizing the beat length,
is based on already known lateral force technique, but in our variant the result of interference of
polarized modes is observed in the spectral domain. It was applied on the sample of an elliptical-core
fiber, and good compatibility with the results obtained by other methods was confirmed. Latter we
proposed another technique which allows to treat not only the birefringence of fiber samples, but
the birefringence of the bulk samples (for example birefringent crystals) too, as it does not rely on
the beat length. This method was successfully tested on the previously studied fiber samples as well
as on the quartz crystal sample. Both methods offer the possibility to determine the value of the
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birefringence absolutely and so the results can be combined with our already proposed methods.
The problem of chromatic dispersion determination of optical fibers is considered to be an

important task of optical fiber metrology, as chromatic dispersion can induce the distortion of
propagating optical pulses. Based on our previous knowledge, we extended our spectral interferom-
etry methods to be able to determine this parameter. The technique is based on a Mach-Zehnder
interferometer used to measure the differential group effective index, fitted in the next step to a
suitable approximate function. The chromatic dispersion is then obtained in a closed form by the
differentiation of this function. The successful test of the method was performed using already
tested samples of holey and elliptical-core fibers. Because the proposed method was limited by the
equalization wavelength resolution in the vicinity of zero-dispersion wavelength, we proposed an
alternative method. This new method, in contrast to the previous technique, uses only one recorded
interferogram containing the zero-dispersion wavelength. The spectral fringes are properly located
and numbered. The fringe number dependence on its position is then fitted to obtain the inter-
ference order and unknown coefficients of an approximate formula used to approximate the modal
effective index dispersion. As in the case of the previous method, the second derivative of this
function leads to the chromatic dispersion formula written in a closed form, allowing to compute
the position of zero-dispersion wavelength. The results of this measurement were compared to the
data determined by other methods and good agreement was obtained.

The knowledge of computational and experimental techniques allowed us to perform the analy-
sis of a tandem configuration comprising the sample of a birefringent fiber and birefringent crystal.
At first we theoretically showed the usage of such a setup in optical sensing utilizing the birefringent
fibers and demonstrated the results using the change of the fiber sample length. Recently, we applied
this concept to the problem of temperature sensing. Based on theoretical background, we demon-
strated in practice the temperature measurement using the tandem configuration of elliptical-core
fiber and quartz crystal plate serving here as a delay line. The information about the temperature
was retrieved from the recorded channeled spectrum, where the fringe extrema were traced. The
possibility to change the sensitivity to the temperature was shown too.

To conclude, we successfully demonstrated the feasibility of the spectral domain interferometry
applied to the characterization of dispersion properties of polarization maintaining fibers. The
proposed experimental methods together with the sophisticated computational techniques can serve
as a powerful and versatile tool in optical fiber metrology as well as in the design of various
applications.

It is worth mentioning that the application of spectral interferometry is not limited to the tasks
of optical fiber metrology. Recently, the spectral interferometry has been successfully used in the
detection of surface plasmon resonance (SPR) in the thin film systems. So we suggest that the
future research can be oriented on the optical fibers containing some structures supporting surface
plasmon waves. Such sensors based on the combination of SPR with mature optical fiber technology
can utilize the interference of polarization modes. Optical sensors based on the single-mode fiber
can offer higher sensitivity and detection accuracy in comparison with common sensing schemes
utilizing multimode fibers.
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Abstract
Employing several interferometric methods, we measured in a broad
spectral range the wavelength dependences of the phase modal birefringence
and the polarization mode dispersion for the LP01 and even LP11 spatial
modes supported by a birefringent holey fibre. We also determined the
wavelength dependence of the intermodal dispersion between the X- and
Y-polarized LP01 and even LP11 spatial modes. Furthermore, using a
full-vector finite-element method, we modelled all the measured dispersion
characteristics and demonstrated good agreement between experimental and
theoretical results.

Keywords: fibre characterization, birefringent holey fibre, birefringence
dispersion, intermodal dispersion

1. Introduction

Conventional birefringent two-mode optical fibres that support
two stable spatial modes, i.e., the fundamental LP01 and the
second-order even LP11 mode, have attracted considerable
interest for a number of applications, such as interferometric
modal/polarimetric sensors of strain, temperature or both at
the same time [1–4]. A new class of birefringent holey fibres
may also find metrological applications due to much higher
flexibility in shaping propagation and sensing characteristics
[5–8], including the possibility of operation in single-mode [9]
and two-mode [10] regimes over a wide wavelength range.

Most of the birefringent holey fibres described in the
literature so far are based on a hexagonal lattice. As shown
in [5], high birefringence in these fibres can be induced by an
asymmetrical cladding, in which one row of hexagonal cells
has lower fill factor than the other cladding cells. Another
type of cladding asymmetry was proposed in [11]. The
birefringence in this structure is induced by two air holes
adjacent to the fibre core and having diameters greater than
the other cladding holes.

In this paper, we present the results of experimental and
theoretical investigations of dispersion characteristics of a
two-mode birefringent holey fibre. Different interferometric
techniques were used to measure in a broad spectral range the
wavelength dependences of the phase and the group modal
birefringence for the LP01 and even LP11 spatial modes. We
also measured the wavelength dependence of the intermodal
dispersion for two orthogonal polarizations of the LP01 and
even LP11 spatial modes employing a white-light spectral
interferometric method. Furthermore, we modelled all the
dispersion characteristics using a full-vector finite-element
method and confirmed good agreement between experimental
and theoretical results.

2. Dispersion characteristics of a birefringent fibre

Consider a birefringent holey fibre, which supports the
X- and Y-polarized fundamental LP01 and second-order
even LP11 spatial modes. If the wavelength-dependent
propagation constants of the corresponding modes are denoted

0957-0233/06/040626+05$30.00 © 2006 IOP Publishing Ltd Printed in the UK 626
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Figure 1. SEM photograph of the investigated holey fibre.

as βx
01(λ), β

y

01(λ), βx
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y

11(λ), we can define the phase
modal birefringences for the respective spatial modes in the
following way:

�n01(λ) = λ

2π

[
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y

01(λ)
]
,

�n11(λ) = λ

2π
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(1)

The differences between the phase effective indices of the
LP01 and even LP11 modes of the same polarization can be
expressed, respectively, as

�nx
int(λ) = λ

2π

[
βx

01(λ) − βx
11(λ)

]
,

�n
y
int(λ) = λ

2π

[
β

y

01(λ) − β
y

11(λ)
]
.

(2)

Furthermore, we can define the group modal birefringences
�N01(λ) and �N11(λ) for the respective spatial modes and
the differences between group effective indices �Nx

int(λ) and
�N

y
int(λ) using the following general relation:

�N(λ) = �n(λ) − λ
d�n(λ)

dλ
= −λ2 d[�n(λ)/λ]

dλ
. (3)

It is clear from equation (3) that knowledge of the spectral
dependence of �N(λ) can be used to obtain the relative
wavelength dependence of �n(λ). It can be combined with
the known value of �n at one specific wavelength to obtain
absolute values of �n(λ) [12].

3. Experimental methods

We investigated a birefringent holey fibre produced by Blaze
Photonics Inc. Its cross section obtained by the scanning
electron microscope (SEM) is shown in figure 1. The
orientation of the polarization X and Y axes is as follows:
X overlaps with the longer axis of the elliptical core, while Y
overlaps with the shorter axis and crosses the two large holes
adjacent to the fibre core. The average geometrical parameters
of the holey fibre are as follows: pitch distance 4.30 µm,
diameter of large holes 4.42 µm and diameter of the cladding
holes 2.34 µm. This fibre supports the even LP11 spatial mode
for wavelengths shorter than 1 µm.

The phase modal birefringences for the LP01 and
even LP11 spatial modes, respectively, �n01(λ) and �n11(λ),
were measured by a lateral force method [13], which
was developed first for the characterization of conventional
birefringent fibres. To perform the measurements of the phase
modal birefringence over a wide wavelength range, we used
different light sources such as YAG (533 nm), He–Ne laser
(633 nm) and several laser diodes operating, respectively, at
680, 785, 830, 1314 and 1500 nm. In this method, a shift of
interference fringes is observed in response to the displacement
of the coupling point along the tested fibre. An accuracy better
than 1% is easily achievable if the coupling point is displaced
over a sufficiently long distance.

The group modal birefringences for the LP01 and
even LP11 spatial modes, respectively, �N01(λ) and �N11(λ),
were measured by two different interferometric methods: a
method of spectral-domain tandem interferometry [12] and
a wavelength-scanning method [14]. In both methods, a
polarizer and an analyser were placed at the ends of the
measured holey fibre and oriented at 45◦ relative to the fibre
polarization axes. The method of spectral-domain tandem
interferometry uses a white-light source (a halogen lamp) and
is based on the fact that the optical path difference adjusted
in the Michelson interferometer compensates for the group
optical path difference introduced by the tested fibre at one
specific wavelength, called the equalization wavelength. The
equalization wavelength, in the vicinity of which the resolvable
spectral interference fringes are localized, was measured in a
wavelength range from 575 to 765 nm. Using this method, we
measured the group birefringence for both spatial modes with
a precision better than 1% [12].

In the wavelength-scanning method, we used four
superluminescent diodes having broadband spectrum and the
central wavelength 785, 840, 1300 and 1550 nm, respectively.
This method, which is characterized by an accuracy better
than 5%, is based on interference of both polarization modes
that gives rise to the modulation of the output spectrum. The
group birefringence is determined from the spectral separation
of successive interference fringes [8].

The differences in group effective indices between the
X- and Y-polarized LP01 and even LP11 spatial modes,
respectively, �Nx

int(λ) and �N
y
int(λ), were measured in a

wavelength range from 555 to 800 nm by the spectral-domain
tandem interferometry method [15] with a precision better than
0.1%.

4. Numerical modelling

A full-vector mode solver based on a hybrid edge/nodal
finite-element method (FEM) [16–18] was used to calculate
the propagation constants and electric field distributions of
guided modes. In this approach, the following eigenequation
is solved:[−∇⊥ × ∇⊥ × +k2

0ε(�r) 0
0 0

] [ �E⊥
Ez

]

= β2

[
1 ∇⊥

∇⊥ � + k2
0ε(�r)

] [ �E⊥
Ez

]
, (4)

where ( �E⊥, Ez) is the electric field vector (eigenvector) and
β is the propagation constant of the mode (eigenvalue). To
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Figure 2. Binary mask used for mesh generation.
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Figure 3. Calculated (solid lines) and measured (markers) phase
modal birefringence as a function of wavelength.

find the eigenpairs of the above equation, we used the Arnoldi
method as an eigensolver and an asymmetrical multifrontal
method as a solver of a linear system of equations.

The calculations were carried out for the real geometry
of the fibre. The edges of the holes in the cladding were
automatically detected by special processing of the SEM
image, which included modification of the histogram followed
by thresholding and binarization. As a result, we obtained a
binary image of the fibre cross section (figure 2) that was
used as a mask to generate the mesh for FEM, which reflected
the real shape and location of each hole. To assure high
accuracy of numerical results, we applied a mesh composed
of about 170 000 triangular elements and took into account the
dispersion of the refractive index of the silica glass.

5. Results of the experiments and of the modelling

Figure 3 shows by the dots the measured values of the phase
modal birefringence, respectively, �n01(λ) and �n11(λ), for
the LP01 and even LP11 spatial modes. As already reported
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Figure 4. Calculated (solid lines) and measured (markers) group
modal birefringence as a function of wavelength.

in earlier publications [5–8], �n01 strongly increases against
wavelength. The phase modal birefringence for the even LP11

spatial mode has similar wavelength dependence; however,
its value is lower by about 30% compared to �n01. For
the shorter wavelengths, the results of measurements for the
fundamental mode agree well with theoretical ones. For the
longer wavelengths, the experimental values are lower by
about 10% than the theoretical ones. The discrepancy between
the measured and calculated values of �n11(λ) is even lower
than in the case of the fundamental mode and does not exceed
2%.

Figure 4 shows by the markers the measured group modal
birefringences �N01 and �N11 for the LP01 and even LP11

modes as a function of wavelength. Open circles correspond
to the measurement results obtained by the method of spectral
tandem interferometry whereas full circles are related to the
wavelength-scanning method. The group modal birefringence
for the LP01 mode is negative and strongly decreases against
wavelength, which is in accordance with the results of
numerical modelling. The group modal birefringence for the
even LP11 spatial mode has similar wavelength dependence;
however, the absolute value of �N11 is lower than �N01 by
about 20%. The measured values of �N11 agree within 5%
error with the results of numerical modelling. The difference
between the experimental and theoretical values of the group
birefringence for the LP01 mode increases against wavelength
and reaches 10% at λ = 1.5 µm. The measured values of
�N01 and �N11 are fitted by polynomials shown in figure 4
by the dashed lines. Using a procedure presented in [12], we
obtained the polynomial representations of the phase modal
birefringences �n01(λ) and �n11(λ), which are indicated
in figure 3 by the dashed lines. These lines fit well the
experimental values which confirms the consistency of the
phase and the group birefringence measurements.

Figure 5 shows the calculated differences in phase
effective indices �nx

int(λ) and �n
y
int(λ), respectively, for

the X- and Y-polarized LP01 and even LP11 spatial modes.
These calculation results show that �nx

int(λ) is higher than
�n

y
int(λ) in the whole analysed spectral range, indicating
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Figure 5. Calculated difference between phase effective indices of
the LP01 and even LP11 modes of respective polarizations as a
function of wavelength.
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Figure 6. Calculated difference between group effective indices of
the LP01 and even LP11 modes of respective polarizations as a
function of wavelength. The measured values are indicated with
dots.

noticeable discrimination between both polarizations for
longer wavelengths. Figure 6 shows the differences in
group effective indices �Nx

int(λ) and �N
y
int(λ) calculated as

a function of wavelength using equation (3). The calculated
values of �Nx

int(λ) are lower than those of �N
y
int(λ) in the

whole analysed spectral range. Figure 6 also shows the
measured values of �Nx

int(λ) and �N
y
int(λ) that differ from

the calculated ones by about 10%. In contrast to the modelling
results, the experimental values of �Nx

int(λ) are greater than
those of �N

y
int(λ) by about 2%.

The small disagreements between experimental and
calculated values observed in all measurements are most
probably caused by the errors in reproducing the real structure
geometry from the SEM image. When creating a binary mask
used for mesh generation, we arbitrarily adjust the threshold
level to discriminate between 0 and 1 values. As shown in

figure 1, a SEM image of the fibre cross section contains
halftones, which means that it is practically impossible to
detect the location of the holes’ edges with an accuracy better
than 50 nm. Furthermore, every SEM image is charged with a
scaling error that may reach up to 20%. We partially eliminated
this problem by measuring the distance between the selected
structural elements in the fibre cross section using an optical
microscope. These measurements are later used to calibrate
the magnification of the SEM image, which results in lowering
of the scaling error to the level of about 2%. Finally, the
accuracy of measurements of the holes’ diameters is limited
by the thickness of the conductive coating (carbon or gold)
used to cover the fibre cleave before taking the SEM image,
because such a coating partially shadows the holes’ openings.

In conclusion, there are several experimental limitations
causing the dimensions of the real fibre to be determined and
transferred to the numerical model with limited precision. At
the long wavelength limit, the modal field extends more deeply
into the cladding and becomes more sensitive to inaccuracies of
the numerical model. Therefore, one may expect an increasing
difference between experimental and numerical results for
longer wavelengths. As shown in figures 3 and 4, this effect is
especially apparent for the fundamental mode.

It is also worth mentioning that the fibre characterized in
this work is the same as that from [8]. The discrepancies in the
fibre geometrical parameters presented in [8] and in the present
work are caused by different methods of determining the fibre
dimensions. In [8], we simply scaled the fibre image using the
reference bar produced by the SEM, while in the present work
we used a more accurate scaling procedure involving optical
measurements. As a result, the fibre dimensions presented in
[8] and in the present work differ by about 15%.

6. Conclusions

Using different interferometric methods, we measured in a
wide spectral spectral range the wavelength dependences of
both the phase and the group modal birefringence for two
lowest order spatial modes supported by a birefringent holey
fibre. We also determined the wavelength dependence of
the difference in effective group indices for two orthogonal
polarizations of the LP modes employing a white-light spectral
interferometric method. Furthermore, all the measured
dispersion characteristics were calculated for the real geometry
of the fibre using a full-vector finite-element method. The
discrepancy between theoretical and experimental values is
low and in the worst case does not exceed 10%. The
investigated dispersion characteristics may be of importance
for applications of the holey fibres in optical interferometric
systems and fibre optic sensors.
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of group and phase modal birefringence in elliptical-core
fiber measured by white-light spectral interferometry
Opt. Express 11 2793–8
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Abstract

We report on a substantially improved white-light spectral interferometric technique for
measurement of the group and phase modal birefringence in polarization-maintaining fibres
(PMFs) over a wide wavelength range (e.g. 480–1600 nm). The technique utilizes a tandem
configuration of a Michelson interferometer and a PMF placed between Glan–Taylor polarizer
and analyzer. Spectral signals are recorded by VIS–NIR and NIR fibre-optic spectrometers to
measure the equalization wavelength as a function of the path length difference adjusted in the
interferometer, or equivalently, the wavelength dependence of the group modal birefringence
in the PMF. Moreover, a new procedure is used to specify the sign of the group modal
birefringence. A polynomial fit is applied to the measured data to determine also the
wavelength dependence of the phase modal birefringence in the PMF over a wide spectral
range.

Keywords: spectral interferometry, fibre characterization, birefringent fibre, birefringence
dispersion

1. Introduction

The phase and group modal birefringences and their
wavelength dependences belong to the most important
parameters and dispersion characteristics of polarization-
maintaining fibres (PMFs). These have attracted considerable
interest for a number of applications, including, e.g.,
polarization-sensitive optical devices and fibre-optic sensors
of various physical quantities employing interferometric
techniques. Several methods have been developed to measure
the dispersion of birefringence in PMFs over a wide spectral
range. A wavelength scanning technique can be applied to
either short [1] or long fibres [2]. A standard technique
of time-domain tandem interferometry [3] uses processing
of either a single interferogram [4, 5] or a series of
interferograms at different wavelengths [6–8] recorded in a
tandem interferometer.

1 Author to whom any correspondence should be addressed.

Recently, a white-light spectral interferometric technique
employing a tandem configuration of a Michelson
interferometer and an elliptical-core PMF has been used to
measure the dispersion of group modal birefringence over a
wide spectral range [9]. The technique utilizes a series of
the recorded spectral interferograms to resolve the so-called
equalization wavelength [9] at which the path length difference
adjusted in the interferometer compensates the group delay
between polarization modes of the fibre. Most recently, a
lateral force method [10] applied in the spectral domain has
been used for measuring the phase modal birefringence in an
elliptical-core PMF [11]. Both techniques employed sheet
polaroids as analyzer and polarizer with very bad extinction
ratio in the infrared region and a fibre-optic spectrometer of
limited spectral operation range (350–1000 nm).

In this paper, a substantially improved white-light spectral
interferometric technique [9] is presented for measurement
of the group and phase modal birefringence in PMFs over
a wide spectral range (e.g. 480–1600 nm). The technique
utilizes a Glan–Taylor polarizer and analyzer, and VIS–NIR

0957-0233/09/025301+05$30.00 1 © 2009 IOP Publishing Ltd Printed in the UK
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Figure 1. Experimental set-up for measuring the wavelength dependence of the group modal birefringence in a PM fibre under test.

and NIR fibre-optic spectrometers [12]. The spectral signals
are recorded by the spectrometers in the transmission mode to
measure precisely the equalization wavelength as a function
of the path length difference adjusted in the interferometer,
or equivalently, the wavelength dependence of the group
modal birefringence in the PMF. The technique is used for
two different fibres, including elliptical-core and holey PMFs.
Moreover, a new procedure is used to specify the sign of the
group modal birefringence. A polynomial fit is applied to
the measured data to determine also the wavelength
dependence of the phase modal birefringence in the PMF when
one value is known precisely for a specific wavelength.

2. Experimental methods

Let us consider a PMF of length z supporting two polarization
modes over a broad spectral range. The PMF is characterized
by the wavelength-dependent differential propagation constant
�β(λ) = βx(λ) − βy(λ), where βx(λ) and βy(λ) are
propagation constants for the respective polarization modes.
We define the beat length LB(λ) as

LB(λ) = 2π/�β(λ), (1)

the phase modal birefringence B(λ) as

B(λ) = λ/LB(λ), (2)

and the group modal birefringence G(λ) as

G(λ) = B(λ) − λ
dB(λ)

dλ
= −λ2 d [B(λ)/λ]

dλ
. (3)

The beat length LB(λ) can be measured by a spectral-
domain method [11] based on the application of a lateral
point-like force on the fibre. The force causes strong coupling
between polarization modes whose interference is resolved as
the spectral fringes (channelled spectrum). In response to the
displacement �L of the coupling point along the tested fibre, a
phase shift of the channelled spectrum is observed, from which
the beat length can be determined according to the relation

LB(λ) = 2π�L/�φ(λ), (4)

where �φ(λ) is the phase change reconstructed from two
successive channelled spectra.

Figure 1 illustrates a simple experimental set-up based
on spectral-domain tandem interferometry [9] used for
measuring the wavelength dependence of the group modal
birefringence G(λ) in a PMF. Light from white-light source
WLS (a 20 W quartz-tungsten-halogen lamp) passes through
collimator CL and enters bulk-optic Michelson interferometer
MI in which the path length difference �M is adjusted

with a micropositioner. The light from the output of the
interferometer passes though Glan–Taylor calcite polarizer
P (Thorlabs) and is focused by microscope objective O1
(15×/0.30) into the PMF under test. The PMF under test
is either an elliptical-core fibre with the cutoff wavelength of
620 nm or pure silica holey PMF (PM-1550-01, Thorlabs)
[13, 14]. The transmission azimuth of the polarizer is adjusted
45◦ with respect to the polarization axes of the PMF so that
both polarization modes are excited in the tested fibre. Using
another microscope objective O2 (10×/0.30) at the output
of the tested fibre, a collimated light beam is generated that
passes through Glan–Taylor calcite analyzer A (Thorlabs)
and is focused by the next objective O3 (10×/0.30) into the
read fibre of a spectrometer (S2000, NIR-512, Ocean Optics)
which resolves the interference of polarization modes as a
spectral signal. The transmission azimuth of the analyzer is
adjusted at 45◦ with respect to the polarization axes of the
PMF. The spectral signal is recorded by the spectrometer in
the transmission mode after a dark spectrum and a reference
one (without the interference) is stored.

The spectrometers S2000 and NIR-516 [12] have a
spectral operation ranging from 350 to 1000 nm and from
850 to 1700 nm, respectively. For both spectrometers we
used the read optical fibre with a 50 μm core diameter
which results in a Gaussian response function. If the PMF
is with G(λ)z � 0 and the path length difference adjusted
in the Michelson interferometer is similarly �M � 0, the
spectral signal recoded in the set-up by a spectrometer can be
represented in the form [9]

S(λ) = 1 + 0.5V (λ) exp{−(π2/2)[(G(λ)z − �M)�λR/λ2]2}
× cos[(2π/λ)(B(λ)z − �M)], (5)

where V (λ) is a visibility term, and λR is the width of the
spectrometer response function.

To resolve the spectral interference fringes in the vicinity
of the so-called equalization wavelength λ0 [9], the path length
difference governed by the relation �M = G(λ0)z needs
to be adjusted in the Michelson interferometer. Thus, the
path length difference �M adjusted in the interferometer and
measured as a function of the equalization wavelength λ0

gives directly the spectral dependence of the group modal
birefringence G(λ0) = �M/z in the PMF under test. Because
the group modal birefringence G(λ) is related to the phase
modal birefringence B(λ) via equation (3), we can obtain
the relative wavelength dependence of the phase modal
birefringence. It can be combined with the known value at one
specific wavelength to obtain absolute values of the wavelength
dependence of the phase modal birefringence B(λ) [11].
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Figure 2. Two spectral signals recorded for �M = 952 μm without
(solid) and with the effect of a delay line (dashed).

3. Experimental results and discussion

After optimizing excitation and detection conditions to assure
the highest visibility of spectral interference fringes, the
spectral signals were recorded for the path length differences
�M adjusted in the Michelson interferometer with a step
of 10 μm. We revealed for the elliptical-core fibre having
length z = 7.460 m that the equalization wavelengths increase
approximately from 555 to 910 nm with �M increasing
from 812 to 1182 μm. An example of the spectral
signal recorded by the first spectrometer for the adjusted
�M = 952 μm is shown in figure 2 by the solid curve.
We can clearly resolve the spectral interference fringes in
the vicinity of the equalization wavelength λ0 = 669.08 nm
to which G(λ0) = 1.28×10−4 corresponds. The positive sign
of the group modal birefringence was also determined in the
set-up shown in figure 1. We placed a delay line (see DL in
figure 1), represented by the quartz crystal of suitable thickness
and orientation, in tandem with the PMF under test and
used a procedure similar to that presented in [8]. If the
extraordinary axis of the crystal, which has the positive
group birefringence (Ne > No), is parallel to the major
axis of the fibre elliptical core (along the X polarization
mode), the group birefringence of the fibre is positive or
negative, if the equalization wavelength shifts to shorter or
longer wavelengths. Figure 2 shows by the dashed curve
the effect of the quartz crystal having a thickness of 4
mm and it demonstrates that the group modal birefringence
of the elliptical-core fibre is positive. Moreover, figure 3
shows an example of the spectral signal recorded by the
second spectrometer for �M = 1172 μm. We can clearly
resolve the spectral interference fringes in the vicinities of two
different equalization wavelengths λ01 = 891.93 and λ02 =
1090.92 nm to which G(λ01) = G(λ02) = 1.57 × 10−4

corresponds. This is due to the maximum in G(λ) located
between λ01 and λ02 as is demonstrated in figure 4 which
shows by the full and open circles the measured group
modal birefringence G(λ0) in the elliptical-core optical fibre
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Figure 3. Spectral signal recorded for �M = 1172 μm.
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Figure 4. Group modal birefringence measured as a function of
wavelength for the elliptical-core PMF (solid curve corresponds to a
polynomial fit).

determined for respective equalization wavelengths λ0. The
full circles correspond to the values obtained by the first
spectrometer whereas the open ones were obtained by the
second spectrometer. The solid line in the same figure
represents the group modal birefringence G(λ) obtained from
the values −G(λ0)

/
λ2

0 fitted to a fourth-order polynomial.
The polynomial order is sufficiently high because the fit is
characterized by a correlation factor as high as 0.99998.

The fit is used to determine the corresponding phase
modal birefringence B(λ) versus wavelength λ, with
B(λ)/λ represented by a fifth-order polynomial, shown in
figure 5. It was obtained by combining the relative phase modal
birefringence with one value B = 8.55 × 10−5 measured at a
wavelength of 637.08 nm. This value was obtained by using
equations (2) and (4) for the displacement �L = 7450 μm of
the coupling point when the phase change �φ(λ) ≈ 2π [11].
It should be noted here that the phase modal birefringence
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Figure 5. Phase modal birefringence as a function of wavelength
for the elliptical-core PMF.

decreases with increasing wavelength and that its positive sign
is the same as the sign of the group modal birefringence.

We can estimate the precision of the group modal
birefringence measurement. If the equalization wavelength
is determined with an error of δ(λ0), the path length difference
�M adjusted in the interferometer is known with a precision of
δ(�M) and the length of the PM fibre is known with a precision
of δ(z), the group modal birefringence G is obtained with a
precision given by the following formula:

δ(G)

G
=

√[
1

G

dG(λ0)

dλ0
δ(λ0)

]2

+

[
δ(�M)

�M

]2

+

[
δ(z)

z

]2

. (6)

In our case, the error δ(λ0) is 0.3 nm or 1.8 nm and it
corresponds to the wavelength difference of adjacent pixels of
the detector of the first or second spectrometer, the precision
δ(�M) is 1 μm and the precision δ(z) is 1 mm so that the
precision δ(G) in obtaining the group modal birefringence is
better than 0.1%.

Next, we measured the group modal birefringence for
the holey fibre [13, 14] having the length z = 2.603 m
when the spectral signals were recorded for the path length
differences �M adjusted in the Michelson interferometer with
a step of 20 μm or 100 μm. We revealed that the equalization
wavelengths increase approximately from 480 to 1600 nm with
�M increasing from 56 to 2318 μm. Figure 6 shows by the
full and open circles the measured group modal birefringence
G(λ0) in the holey fibre determined for respective equalization
wavelengths λ0. The solid line in the same figure represents
the group modal birefringence G(λ) obtained from the values
−G(λ0)

/
λ2

0 fitted to a fourth-order polynomial. The fit is used
to determine the corresponding phase modal birefringence
B(λ) versus wavelength λ, with B(λ)/λ represented by a
fifth-order polynomial, shown in figure 7. It was obtained
by combining the relative phase modal birefringence with one
value B = 3.84×10−5 measured at a wavelength of 632.8 nm
[13] by a lateral force method applied in the time domain
[6]. The phase modal birefringence increases with increasing
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Figure 6. Group modal birefringence measured as a function of
wavelength for the holey PMF (solid curve corresponds to a
polynomial fit).
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Figure 7. Phase modal birefringence as a function of wavelength
for the holey PMF.

wavelength but its sign is opposite to the sign of the group
modal birefringence.

4. Conclusions

We used the substantially improved white-light spectral
interferometric technique to measure the wavelength
dependence of the phase and group modal birefringence
in PMFs over a wide spectral range (e.g. 480–1600 nm).
The technique utilized a tandem configuration of a Michelson
interferometer and a PMF placed between Glan–Taylor
polarizer and analyzer, and VIS–NIR and NIR fibre-
optic spectrometers to increase the spectral range of the
measurements. A new recording mode of the spectrometers
(the transmission mode) was used to record the spectral
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signals and to measure precisely the equalization wavelength
as a function of the path length difference adjusted in the
interferometer, or equivalently, the wavelength dependence of
the group modal birefringence in the PMF. Moreover, a new
procedure was used to specify the sign of the group modal
birefringence. We applied a polynomial fit to the measured
data to obtain also the wavelength dependence of the phase
modal birefringence when one value was known precisely for a
specific wavelength. We demonstrated the applicability of the
white-light spectral interferometric technique for dispersion
characterizing of two different fibres (elliptical-core and holey
PMFs) over a wide spectral range.

The described method offers high measurement
precision of 0.1% achieved with simple and cost-effective
instrumentation. It allows for simultaneous measurements
of the group and phase modal birefringence that can be
extended for dispersion characterizing of other fibres guiding
two polarization modes over a wide spectral range (Panda and
bow-tie fibres, PCFs).
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of group and phase modal birefringence in elliptical-core
fibre measured by white-light spectral interferometry Opt.
Express 11 2793–8

[10] Takada K, Noda J and Ulrich R 1985 Precision measurement
of modal birefringence of highly birefringent fibres by
periodic lateral force Appl. Opt. 24 4387–91

[11] Hlubina P and Ciprian D 2007 Spectral-domain measurement
of phase modal birefringence in polarization-maintaining
fibre Opt. Express 15 17019–24

[12] Ocean Optics Inc. 2007 Spectrometers Catalog 07 11–32
[13] Hlubina P, Szpulak M, Knyblová L, Statkiewicz G,

Martynkien T, Ciprian D and Urbańczyk W 2006
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Abstract
We report on a white-light interferometric technique employing a
low-resolution spectrometer to measure the differential group refractive
index of glasses of optical fibres over a wide wavelength range. The
technique utilizes an unbalanced Mach–Zehnder interferometer with a fibre
under test of known length inserted in one of the interferometer arms and the
other arm with adjustable path length. We record a series of spectral
interferograms to measure the equalization wavelength as a function of the
path length difference, or equivalently the group dispersion. Subtracting the
group dispersion of the optical components present in the interferometer
along with the fibre, we measure the wavelength dependence of differential
group refractive index for pure silica and SK222 glasses. We confirm that
the differential group dispersion measured for pure silica glass agrees well
with that described by the dispersion equation.

Keywords: spectral interferometry, white-light source, low-resolution
spectrometer, Mach–Zehnder interferometer, group refractive index,
dispersion, pure silica glass, SK222 glass

1. Introduction

A precise measurement of the group dispersion of optical
components over a broad spectral range is important in
various research areas including applications of femtosecond
lasers, material characterization and broadband optical
communications. White-light interferometry based on the
use of a broadband source in combination with a standard
Michelson or a Mach–Zehnder interferometer is considered as
one of the best tools for dispersion characterization of optical
guiding media such as optical fibres.

White-light interferometry usually utilizes a temporal
method or a spectral method. The temporal method involves
measurement of the time of flight of optical pulses through a
sample. A method for measuring the group delay introduced
by an optical material consists in placing the sample in one of

the interferometer arms and evaluating the temporal shift of
the peak of the cross-correlation interferogram. As the central
wavelength is varied, the relative group delay of the different
frequency components is observed directly [1]. Alternatively,
the spectral phase over the full bandwidth of the white-light
source can be obtained in a single measurement by a Fourier
transform of the cross-correlation interferogram [2–5]. The
group dispersion of the sample under study can be obtained by
simply differentiating the measured spectral phase.

The spectral method is based on the observation of
spectrally resolved interference fringes (channelled spectrum)
in the vicinity [6, 7] of a stationary-phase point or far from
it [8–11] and involves measurement of the phase or period
of the spectral fringes. The group dispersion of the sample
under study can be obtained by simply differentiating the
spectral phase retrieved from a single interferogram. The
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Figure 1. Experimental set-up with an unbalanced Mach–Zehnder interferometer to measure the differential group refractive index
dispersion of glasses of optical fibres.

stationary-phase point [6] appears in the recorded spectral
interferogram when the group optical path difference (OPD)
between two beams in the interferometer is close to zero.
The main limitation of the method is reached for thick or
strongly dispersive materials because under such conditions
the spectral interference fringes that are far from the stationary-
phase point become difficult to resolve. Using a low-
resolution spectrometer [12], the measurement of the group
refractive index dispersion of a given material is still possible
in the vicinity of the stationary-phase point if one moves
it in successive steps to different wavelengths and repeats
the measurement. We measured in this way the dispersion
of differential group refractive index of a pure silica beam
splitter present in a Michelson interferometer [12]. The
modification of the technique with a tandem configuration of
a Michelson interferometer and an optical fibre has been used
in measurement of the group dispersion in standard [13] and
birefringent [14, 15] fibres of a known length. Recently, the
use of the method with a Mach–Zehnder interferometer was
extended to two-dimensional spectral interferometry [16] or
for dispersion characterization of tapered fibres [17].

The aim of this paper is to present a white-
light interferometric technique employing a low-resolution
spectrometer for measurement of the differential group
refractive index of glasses of optical fibres over a wide
wavelength range. The technique utilizes an unbalanced
Mach–Zehnder interferometer with a fibre under test of known
length inserted in one of the interferometer arms and the other
arm with adjustable path length. We record a series of spectral
interferograms to measure the equalization wavelength as a
function of the path length difference, or equivalently the group
dispersion over the wavelength range approximately from 500
to 910 nm. Subtracting the group dispersion of a microscope
objective in front and a lens behind the fibre present in the
interferometer, we measure the wavelength dependence of the
differential group refractive index for pure silica and SK222
glasses with a precision of 2 × 10−5. The group dispersion

measured for pure silica glass agrees well with that described
by the dispersion equation.

2. Experimental method

First, let us consider an unbalanced Mach–Zehnder
interferometer (see figure 1) with a fibre under test of length z

and refractive index n(λ) and optical components (lens 1 and
lens 2) to which the effective thickness d and refractive index
nc(λ) correspond. The fibre is inserted into the first (test)
arm of the interferometer and the other (reference) arm has
adjustable path length L in air so that the group OPD �

g
MZ(λ)

between the beams in the interferometer is given by

�
g
MZ(λ) = L − l − N(λ)z − Nc(λ)d, (1)

where l is the path length in the air in the test arm and N(λ) and
Nc(λ) are the group refractive indices satisfying the relation

N(λ) = n(λ) − λ
dn(λ)

dλ
. (2)

Let us consider now that the spectral interference fringes
recorded in the set-up have the largest period in the vicinity of
a stationary-phase point for which the group OPD is zero at
one specific wavelength λ0, referred to as the equalization
wavelength [12]. The condition �

g
MZ(λ0) = 0 gives for

the overall path length L = Lo = Lo(λ0) for which
the equalization wavelength λ0 is resolved in the recorded
spectrum the relation

Lo(λ0) = N(λ0)z + Nc(λ0)d + l. (3)

If we choose one of the equalization wavelengths, λ0r , as
the reference one, we can introduce the overall path length
difference �Lo(λ0) = Lo(λ0) − Lo(λ0r ) given by

�Lo(λ0) = �N(λ0)z + �Nc(λ0)d, (4)

where �N(λ0) = N(λ0) − N(λ0r ) and �Nc(λ0) = Nc(λ0) −
Nc(λ0r ) are the corresponding differential group refractive
indices.
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Second, let us consider the unbalanced Mach–Zehnder
interferometer in which the fibre is removed and which is used
for measuring the group dispersion of the optical components.
This group dispersion has to be subtracted from the overall
group dispersion to determine the group dispersion of the fibre
alone. The corresponding path length difference is denoted as
�Lc(λ0) = Lc(λ0) − Lc(λ0r ) and is given by

�Lc(λ0) = �Nc(λ0)d. (5)

Using equations (4) and (5), we obtain the relation

�N(λ0) = [�Lo(λ0) − �Lc(λ0)]/z, (6)

which means that the differential group refractive index
�N(λ0) of the fibre can be measured directly as a function of
the equalization wavelength λ0 if the fibre length z is known.

3. Experimental set-up

The experimental set-up used in the application of
spectral-domain white-light interferometry for measuring the
differential group refractive index dispersion of glasses of
optical fibres is shown in figure 1. It consists of a white-
light source: a quartz–tungsten–halogen lamp (HL-2000HP,
Ocean Optics, Inc.) with launching optics, optical fibre of
cut-off wavelength as short as possible, a collimating lens,
a bulk-optic Mach–Zehnder interferometer with plate beam
splitters (BSW07, Thorlabs), a micropositioner connected to
mirrors 3 and 4 of the interferometer, a microscope objective,
micropositioners, a fibre-optic spectrometer (S2000, Ocean
Optics, Inc.), an A/D converter and a personal computer. The
spectrometer resolution is given by a 50 µm core diameter of
the read optical fibre to which a Gaussian response function
with the width of about 3 nm corresponds [18].

In the test arm of the interferometer is inserted a
combination of components (shown schematically in figure 1
as lens 1, fibre under test and lens 2) represented by a
microscope objective (10×/0.30, Meopta), a fibre sample
and an achromatic lens (74-ACR, Ocean Optics, Inc.). We
measured two different fibre samples. The first sample is
pure silica holey fibre (PM-1550-01, Thorlabs) of length
z = 50 650 µm and the second sample is a holey fibre of
length z = 54 200 µm made of SK222 optical glass [19]. The
fibre lengths were measured by a micrometer with an accuracy
of ±10 µm.

4. Experimental results and discussion

First, the overall group dispersion of a combination of the first
fibre sample and optical components was measured in the set-
up shown in figure 1. Prior to the measurement we utilized
the main advantage of the set-up, which is in fibre connection
of a light source (that can be varied) with the interferometer.
We used a laser diode instead of the halogen lamp to check the
precise placement and alignment of the optical components in
the test arm by observing the interference fringes. The ring-
shape optical field was revealed at the output of the test arm
indicating that the light was guided by the outer cladding of
the fibre [15]. It should also be noted here that the alignment
of the components is much simpler in the interferometer with
a single pass of light through the test arm than in a Michelson
interferometer with two passes [20].
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Figure 2. Examples of the spectral signals recorded for two cases:
pure silica fibre plus optical components (F+OCs) and optical
components (OCs).

In the dispersion measurement, such a path length in the
reference arm of the interferometer was adjusted to resolve
spectral interference fringes. Figure 2 shows an example of
the recorded normalized spectral signal (denoted as F+OCs)
obtained by subtracting the reference signal (without the
interference) from the interferogram. It clearly shows the
effect of the limiting resolving power of the spectrometer on
the visibility of the spectral interference fringes identified only
in the vicinity of the equalization wavelength λ0 = 748.23 nm,
which was chosen as the reference one λ0r . The
equalization wavelength was determined with an error of
0.32 nm corresponding to the wavelength difference for
adjacent pixels of the spectrometer linear CCD-array detector
[18].

Second, the group dispersion of the optical components
for which the equalization wavelength cannot be resolved with
the unbalanced Mach–Zehnder interferometer was measured
by a method of tandem interferometry [14]. The method
utilizes a Michelson interferometer placed in between the
source and the unbalanced Mach–Zehnder interferometer and
the adjustment of such an OPD in the Michelson interferometer
to resolve the spectral interference fringes at the output of
the Mach–Zehnder interferometer. We checked the precise
placement and alignment of the microscope objective and the
achromatic lens in the test arm by observing the interference
fringes when a laser diode was used instead of the halogen
lamp. Figure 2 shows an example of the recorded spectral
signal (denoted as OCs) with the spectral interference fringes
identified only in the vicinity of the equalization wavelength
λ0 = 601.35 nm.

We measured the dependence of the adjusted path length
difference on the equalization wavelength for both cases. We
displaced the stage with mirrors 3 and 4 manually by using the
micropositioner with a constant step of 10 µm and performed
recording of the corresponding spectral signals. The spectral
signals recorded for the first case revealed that the equalization
wavelength λ0 can be resolved in the spectral range from 508
to 910 nm and that the path length difference �Lo varies from
1480 to −340 µm. The measured values are shown in figure 3
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Figure 3. Path length difference measured as a function of
wavelength for two cases: pure silica fibre plus optical components
(F+OCs) and optical components (OCs). The solid line is a
polynomial fit.
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Figure 4. Differential group refractive index of pure silica measured
as a function of wavelength. The solid line corresponds to theory.

by the crosses. Similarly, the spectral signals recorded for the
second case revealed that the equalization wavelength λ0 can
be resolved in the spectral range from 509 to 869 nm and that
the path length difference �Lc varies from 470 to −90 µm.
The measured values are shown in figure 3 by the crosses
together with the polynomial fit. Knowledge of the measured
dependences and the fibre length z of the first sample enables
us to evaluate directly the differential group refractive index
�N(λ0) as a function of the equalization wavelength λ0. The
function is represented in figure 4 by the crosses, and it is
shown together with the theoretical function resulting from the
Sellmeier formula for pure silica [12]. This figure confirms
very good agreement between theory and experiment.

We can estimate the precision of the differential group
refractive index measurement. If the path length difference
�L = �Lo − �Lc is adjusted with a precision of δ(�L) and
the length z of the fibre is known with a precision of δ(z),

550 600 650 700 750 800 850
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
 F+OCs

 OCs

S
pe

ct
ra

l S
ig

na
l

Wavelength (nm)

Figure 5. Examples of the spectral signals recorded for two cases:
fibre made of SK222 glass plus optical components (F+OCs) and
optical components (OCs).

the differential group refractive index �N is obtained with a
precision given by the following formula:

δ(�N) =
√[

δ(�L)

z

]2

+

[
�L

δ(z)

z2

]2

. (7)

In our case, the precision δ(�L) is 1 µm and the precision
δ(z) is 10 µm so that the precision δ(�N) in determining
the differential group refractive index is 2 × 10−5. Higher
measurement precision can be achieved, for example, using a
longer fibre. However, there exists a maximum length of the
fibre given by the limited resolving power of the spectrometer.

Finally we measured the group dispersion of the second
fibre sample made of SK222 glass, which is a multicomponent
glass that exhibits a higher nonlinearity (up to a factor of
2) than pure silica [19]. Figure 5 shows an example of
the recorded spectral signal (denoted as F+OCs) with the
spectral interference fringes identified only in the vicinity
of the equalization wavelength λ0 = 747.91 nm, chosen
as the reference one λ0r . Figure 5 also shows an example
of the spectral signal (denoted as OCs) recorded for optical
components. The dependence of the overall path length
difference on the equalization wavelength was once again
measured when the stage with mirrors 3 and 4 was displaced
manually by using the micropositioner with a constant step
of 10 µm. The spectral signals recorded revealed that the
equalization wavelength λ0 can be resolved in the spectral
range from 497 to 907 nm and that the path length difference
�Lo varies from 2160 to −480 µm. The measured values
are shown in figure 6 by the crosses and in comparison with
the values from figure 3 are greater. In the same figure are
shown the measured values regarding the group dispersion
of the microscope objective and the achromatic lens. They
are represented by the crosses and are shown together with
the polynomial fit. Knowledge of the measured dependences
and the fibre length z of the second sample enables us to
evaluate directly the wavelength dependence of the differential
group refractive index �N(λ0). The function is represented in
figure 7 by the crosses, and it is shown together with a
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Figure 6. Path length difference measured as a function of
wavelength for two cases: fibre made of SK222 glass plus optical
components (F+OCs) and optical components (OCs). The solid line
is a polynomial fit.
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Figure 7. Differential group refractive index of SK222 glass
measured as a function of wavelength. The solid line is a
polynomial fit.

polynomial fit. The differential group refractive index �N

of SK222 glass is obtained with a precision of 2 × 10−5.

5. Conclusions

We used a white-light interferometric technique employing
a low-resolution spectrometer for measurement of the
differential group refractive index of glasses of optical fibres
over a wide spectral range (500 to 910 nm). The technique
utilized an unbalanced Mach–Zehnder interferometer with
a fibre under test of known length inserted in one of the
interferometer arms and the other arm with adjustable path
length. From a series of recorded spectral signals we measured
the equalization wavelength as a function of the path length
difference, or equivalently the group dispersion. Subtracting
the group dispersion of a microscope objective in front and
a lens behind the fibre present in the interferometer arm,

we measured the wavelength dependence of the differential
group refractive index for pure silica and SK222 glasses with
a precision of 2 × 10−5. We confirmed that the differential
group dispersion measured for pure silica glass agrees well
with that described by the dispersion equation.

The use of the method, whose main advantage is in
easy inspection of the optical field at the output of the test
arm, can be extended for measuring the group dispersion
of core or cladding parts of fibres composed of different
glasses. Moreover, suitable excitation of an optical fibre,
for example by means of a supercontinuum source [20],
will enable measurement of the group dispersion for modes
guided by the fibre. Experimental results regarding the group
dispersion of both the glass and guided modes of the optical
fibre are crucial for comparison with theoretical results in order
to verify the reliability of numerical modelling.
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VŠ B-TUO).

References

[1] Knox W H, Pearson N M, Li K D and Hirlimann C A 1988
Interferometric measurements of femtosecond group delay
in optical components Opt. Lett. 13 574–6

[2] Beck M and Walmsley I A 1990 Measurement of group delay
with high temporal and spectral resolution Opt. Lett. 15
492–4

[3] Naganuma K, Mogi K and Yamada 1990 Group-delay
measurements using the Fourier transform of an
interferometric cross correlation generated by white light
Opt. Lett. 15 393–5

[4] Diddams S and Diels J C 1996 Dispersion measurements with
white-light interferometry J. Opt. Soc. Am. B 13 1120–8

[5] Galli M, Marabelli F and Gizzetti G 2003 Direct measurement
of refractive-index dispersion of transparent media by
white-light interferometry Appl. Opt. 42 3910–4
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Measurement and modelling of dispersion characteristics of
two-mode birefringent holey fibre Meas. Sci. Technol.
17 626–30

[16] Kovács A P, Osvay K, Kurdi G, Gobre M, Klebniczki J and
Bor Z 2005 Dispersion control of a pulse
stretcher–compressor system with two-dimensional spectral
interferometry Appl. Phys. B 80 165–70

[17] Lu P, Ding H and Mihailov S J 2005 Direct measurement of
the zero-dispersion wavelength of tapered fibres using

broadband-light interferometry Meas. Sci. Technol.
16 1631–6

[18] Hlubina P, Gurov I and Chugunov V 2003 White-light
spectral interferometric technique to measure the
wavelength dependence of the spectral bandpass
of a fibre-optic spectrometer J. Mod. Opt.
50 2067–74

[19] Mitrofanov A V, Linik Y M, Buczynski R, Pysz D, Lorenc D,
Bugar I, Ivanov A A, Alfimov M V, Fedotov A B and
Zheltikov A M 2006 Highly birefringent silicate glass
photonic-crystal fiber with polarization-controlled
frequency shifted output: a promising fiber light source for
nonlinear Raman microspectroscopy Opt. Express
14 10645–51
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Mélin G and Burov E 2006 Experimental and numerical
analysis of the chromatic dispersion dependence upon the
actual profile of small core microstructured fibres J. Opt. A:
Pure Appl. Opt. 8 933–8

1552



Paper IV.

95





Measurement of the group dispersion of
the fundamental mode of holey fiber by

white-light spectral interferometry

P. Hlubina1, M. Szpulak2, D. Ciprian1,
T. Martynkien2, and W. Urbańczyk2
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Abstract: We present a new method for measuring the group dispersion
of the fundamental mode of a holey fiber over a wide wavelength range
by white-light interferometry employing a low-resolution spectrometer.
The method utilizes an unbalanced Mach-Zehnder interferometer with a
fiber under test placed in one arm and the other arm with adjustable path
length. A series of spectral signals are recorded to measure the equalization
wavelength as a function of the path length, or equivalently the group
dispersion. We reveal that some of the spectral signals are due to the funda-
mental mode supported by the fiber and some are due to light guided by the
outer cladding of the fiber. Knowing the group dispersion of the cladding
made of pure silica, we measure the wavelength dependence of the group
effective index of the fundamental mode of the holey fiber. Furthermore,
using a full-vector finite element method, we model the group dispersion
and demonstrate good agreement between experiment and theory.

© 2007 Optical Society of America
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19. P. Hlubina, T. Martynkien, and W. Urbańczyk, ”Dispersion of group and phase modal birefringence in elliptical-
core fiber measured by white-light spectral interferometry,” Opt. Express 11, 2793–2798 (2003).

1. Introduction

The group dispersion, that is, the wavelength dependence of the group index, belongs to one
of the fundamental dispersion characteristics of optical fibers. The chromatic dispersion, which
can be obtained by simply differentiating the measured relative group index, is a significant
characteristic that affects the bandwidth of a high speed optical transmission system through
pulse broadening and nonlinear optical distortion. Chromatic dispersion of long length optical
fibers is determined by two widely used methods [1]: the time-of-flight method which measures
relative temporal delays for pulses at different wavelengths, and the modulation phase shift
technique which measures the phase delay of a modulated signal as a function of wavelength.

White-light interferometry based on the use of a broadband source in combination with a
standard Michelson or a Mach-Zehnder interferometer [2] is considered as one of the best tools
for dispersion characterization of short length optical fibers. White-light interferometry usually
utilizes a temporal method or a spectral method. The temporal method involves measurement
of the group delay introduced by an optical fiber which is placed in one of the interferometer
arms and evaluating the temporal shift of the peak of the cross-correlation interferogram. As
the central wavelength is varied, the relative group delay of different frequency components
is observed directly [3]. Alternatively, the spectral distribution of the phase delay over the full
bandwidth of the white-light source is obtained in a single measurement by a Fourier transform
of the cross-correlation interferogram [4]. The dispersion characteristics of the fiber sample
under study can be obtained by simply differentiating the measured phase delay.

The spectral method is based on the observation of channeled spectrum [5, 6, 7, 8] and in-
volves measurement of the period of the spectral fringes in the vicinity of a stationary-phase
point in the recorded spectral interferogram [5, 6]. The main limitation of this method is re-
lated to the fact that the spectral interference fringes far from the stationary-phase point [7] are
difficult to resolve. Fortunately, the measurement of the chromatic dispersion of a fiber sample
is still possible in the vicinity of the stationary-phase point if one shifts it in successive steps
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to different wavelengths [8]. The feasibility of the interferometric techniques has been demon-
strated in measuring the dispersion in microstructured and holey fibers [9, 10, 11]. To the best of
our knowledge, non of these methods directly measure the dispersion of group effective index.

In this paper, a new technique, based on white-light interferometry and employing a low-
resolution spectrometer, is used for measuring the group effective index dispersion of the fun-
damental mode of a holey fiber over a wide wavelength range. The technique utilizes an unbal-
anced Mach-Zehnder interferometer with a fiber under test placed in one arm while the other
arm has adjustable path length to record a series of spectral signals and to measure the equal-
ization wavelength as a function of the path length. We revealed that there is an apparent path
length discrimination between the spectral signals associated with the fundamental mode sup-
ported by the fiber and light guided by the outer cladding of the fiber. Using the fact that the
group dispersion of the cladding, which is made of pure silica, is known, we were able to iden-
tify the spectral signal related to the fundamental mode and to measure the dispersion of the
group effective index. Furthermore, using a full-vector finite element method, we modelled the
dispersion of the group effective index and demonstrated good agreement between experiment
and theory.

2. Experimental method

Let us consider an unbalanced Mach-Zehnder interferometer as shown in Fig. 1 with a fiber
under test of length z supporting the guided mode of the phase effective index n e f f (λ ). The
fiber is placed in the first (test) arm of the interferometer that comprises optical components
(lens 1 and lens 2) to which the effective thickness d and refractive index n c(λ ) correspond.
The other (reference) arm of the interferometer has the adjustable path length L in the air so
that the group OPD Δg

MZ(λ ) between the beams in the interferometer is given by:

Δg
MZ(λ ) = L− l −Ne f f (λ )z−Nc(λ )d, (1)

where l is the path length in the air in the test arm, and Ne f f (λ ) and Nc(λ ) are the group
(refractive) indices satisfying the relation:

N(λ ) = n(λ )− λ
dn(λ )

dλ
. (2)

PC S2000

Spectrometer

Light source

Lens 1 Lens 2

Mirror 3

Mirror 4

Mirror 2

Beam splitter 1 Fiber under test Mirror 1

HL−2000

Micropositioner

Optical table

Optical fiber Collimator

Read optical fiber

Beam splitter 2

Micropositioners

Objective

Fig. 1. Experimental setup with an unbalanced Mach-Zehnder interferometer to measure
the group dispersion of the mode supported by a fiber under test.
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Let us consider now that the spectral interference fringes recorded in the setup have the
largest period in the vicinity of a stationary-phase point for which the group optical path dif-
ference is zero at one specific wavelength λ0, referred to as the equalization wavelength [12].
The condition Δg

MZ(λ0) = 0 gives for the overall path length L = Lo = Lo(λ0) for which the
equalization wavelength λ0 is resolved in the recorded spectrum the relation:

Lo(λ0) = Ne f f (λ0)z+Nc(λ0)d + l. (3)

The light is also guided in the gallery of the cladding modes arising in the microstructured
and solid parts of the cladding. As shown in [13], attenuation of the modes propagating in the
microstructured region is very high and reaches 1-5 dB cm −1, depending on wavelength range.
Therefore, most of the energy is transmitted through the modes propagating in the solid part of
the cladding. These modes are very well confined in the glass (except the ones close to the cut-
off), which justifies the assumption that their group effective index is equal to the group index
of the glass Ng(λ ). It is worth mentioning that correctness of this simplifying assumption was
recently confirmed experimentally in [14] by direct interferometric measurements of the group
index of light transmitted through the solid part of the cladding in the holey fiber. Furthermore,
such an assumption was also used in earlier works [15] devoted to dispersion measurements in
conventional fibers. In consequence, the spectral interference fringes associated to the cladding
modes, which arise in the vicinity of the equalization wavelength λ 0 but for the different path
lengths L = Lg = Lg(λ0), may be represented by the following equation:

Lg(λ0) = Ng(λ0)z+Nc(λ0)d + l, (4)

where Ng(λ0) is the group index of the glass at the equalization wavelength λ 0. Using Eqs. (3)
and (4), we obtain the simple relation:

Ne f f (λ0) = Ng(λ0)+ [Lo(λ0)−Lg(λ0)]/z, (5)

which means that the group effective index Ne f f (λ0) of the mode supported by the fiber can be
measured directly as a function of the equalization wavelength λ 0 if the fiber length z and the
dispersion of the group index Ng(λ ) of the glass (pure silica) are known. The main limitation of
the method is in the measured wavelength dependences of the path lengths L o(λ0) and Lg(λ0)
that must be known for the same equalization wavelengths λ 0.

Another possibility for measuring the group effective index Ne f f (λ0) as a function of the
equalization wavelength λ0 is based on the knowledge of only a single value of the path length
Lg(λ0r) at one specific equalization wavelength, λ0r, the reference one. In this case, we need
to know the group dispersion of the optical components, which is measured in the unbalanced
Mach-Zehnder interferometer with the fiber removed. If the corresponding path length is de-
noted as Lc = Lc(λ0), we can measure the path length difference ΔLc(λ0) = Lc(λ0)− Lc(λ0r)
given by

ΔLc(λ0) = ΔNc(λ0)d, (6)

where ΔNc(λ0) = Nc(λ0)− Nc(λ0r) is the differential group index of the optical components.
Equation (4) can be rewritten as

Lg(λ0) = Lg(λ0r)+ ΔNg(λ0)z+ ΔNc(λ0)d, (7)

where ΔNg(λ0) = Ng(λ0)−Ng(λ0r) is the differential group index of the glass. On substituting
Eq. (7) into Eq. (5) and using Eq. (6), we obtain the final relation for the group effective index
Ne f f (λ0):

Ne f f (λ0) = Ng(λ0r)+ [Lo(λ0)−Lg(λ0r)− ΔLc(λ0)]/z, (8)

which is easy to use if the group index Ng(λ0r) of the fiber glass is known at the reference
equalization wavelength λ0r.
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3. Experimental setup

The setup for measuring the dispersion of the group effective index of the mode supported
by the fiber using spectral-domain white-light interferometry is shown in Fig. 1. It consists of
a white-light source: a quartz-tungsten-halogen lamp (HL-2000HP, Ocean Optics, Inc.) with
launching optics, a single-mode optical fiber (FS-SN-3224, 3M), a collimating lens, a bulk-
optic Mach-Zehnder interferometer with plate beam splitters (BSW07, Thorlabs), a micropo-
sitioner connected to mirrors 3 and 4 of the interferometer, a microscope objective, micropo-
sitioners, a fiber-optic spectrometer (S2000, Ocean Optics, Inc.), an A/D converter and a per-
sonal computer. In the test arm of the interferometer is inserted a combination of a fiber sam-
ple and optical components (shown schematically in Fig. 1 as lens 1 and lens 2) represented
by a microscope objective (10×/0.30, Meopta), and an achromatic lens (74-ACR, Ocean Op-
tics, Inc.). The fiber sample is pure silica holey fiber (PM-1550-01, Thorlabs) [17] of length
z = (50650±10) μm.

4. Numerical modelling

Prior to the measurements, we model the dispersion of the modes supported by the investigated
holey fiber. Its cross-section obtained by the scanning electron microscope (SEM) is shown in
Fig. 2(a). A full-vector mode solver based on hybrid edge/nodal finite-element method (FEM)
[16] was used to calculate the propagation constants of guided modes. In this approach, the
following eigenequation is solved

[
−∇⊥ × ∇⊥ ×+k2

0ε(�r) 0
0 0

][
�E⊥
Ez

]
= β 2

[
1 ∇⊥
∇⊥ Δ + k2

0ε(�r)

][
�E⊥
Ez

]
, (9)

where (�E⊥,Ez) is the electric field vector (eigenvector) and β is the propagation constant of the
mode (eigenvalue). To find the eigenpairs of the above equation, we used the Arnoldi method
as an eigensolver and an unsymmetrical multifrontal method as a solver of linear system of
equations. The calculations were carried out for the real geometry of the fiber [17]. The binary
image of the fiber cross section shown in Fig. 2(b) was used as a mask to generate the mesh
for FEM, which reflected the real shape and location of each hole. To assure high accuracy of
numerical results, we applied a mesh composed of about 170 000 triangular elements and took
into account the dispersion of the refractive index of the pure silica glass.

(a) (b)

Fig. 2. (a) SEM photograph of the investigated holey fiber and (b) binary mask used for
mesh generation.
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Fig. 3. Calculated phase (a) and group (b) effective indices of the LP01 mode of respective
polarizations as a function of wavelength.

Figure 3(a) shows the wavelength dependence of the phase effective index n e f f (λ ) =
β (λ )/(2π/λ ) for the fundamental (LP01) mode supported by the fiber. Figure 3(b) then shows
the wavelength dependence of the group effective index N e f f (λ ) calculated by means of Eq.
(2) for the LP01 mode. It should be noted that there is a minimum in the group effective index.
In Figs. 3(a) and 3(b) are shown the effective indices for two orthogonal polarizations and the
apparent discrimination between them is demonstrated.

5. Experimental results and discussion

First, the measurement was performed on a combination of the fiber sample and optical com-
ponents in the setup shown in Fig. 1. Prior to the measurement we utilized the main advantage
of the setup, which is in fiber connection of a light source (that can be exchanged) with the
interferometer. We used a laser diode instead of the halogen lamp to check the right excitation
of the modes supported the fiber, and the precise placement and alignment of the optical com-
ponents in the test arm by observing the interference fringes. The optical field corresponding
to the fundamental mode was revealed at the output of the test arm together with some patterns
indicating that the light was also guided by the outer cladding of the fiber [14].

During the dispersion measurement we adjusted such a path length in the reference arm
of the interferometer that allows to resolve spectral interference fringes. Figure 4(a) shows an
example of the recorded normalized spectral signal (denoted as F+OCs) obtained by subtracting
the reference signal (without the interference) from the interferogram. It clearly shows that the
spectral interference fringes can be identified only in the vicinity of the equalization wavelength
λ0 = 664.54 nm. To reveal the dependence of the equalization wavelength λ 0 on the adjusted
path length Lo = Lo(λ0), we displaced manually the stage with mirrors 3 and 4 by using the
micropositioner with a constant step of 10 μm and recorded the corresponding spectral signals.
Using this method, we revealed that the equalization wavelength λ 0 can be resolved in two
different spectral ranges from 515 to 807 nm and from 769 to 882 nm. Figure 4(b) shows an
example of the normalized spectral signal (denoted as G+OCs) recorded in the second spectral
range with the spectral interference fringes arising in the vicinity of the equalization wavelength
λ0 = 816.42 nm. The spectral signal was preprocessed to remove the noise and the equalization
wavelength was determined precisely by an autoconvolution method [18]. It is clearly seen
that the spectral signal from Fig. 4(b) has substantially lower visibility in comparison with that
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Fig. 4. Examples of the recorded spectral signals: (a) optical components (OCs), fiber plus
optical components (F+OCs); (b) optical components (OCs), glass plus optical components
(G+OCs).

from Fig. 4(a). This is due to the fact that the light is guided by the outer cladding so that in this
spectral signal the group dispersion of the fiber glass is encoded [14]. Moreover, the measured
path lengths Lo(λ0) and Lg(λ0) are with the same equalization wavelengths λ0 in too narrow
spectral range from 769 to 807 nm to use Eq. (5). Better is to utilize Eq. (8) when only a single
value of the path length Lg(λ0r) at the reference equalization wavelength λ0r needs to be known.

In the second step, the measurement was performed for the optical components for which
the equalization wavelength cannot be resolved with the unbalanced Mach-Zehnder interfer-
ometer alone. A method of tandem interferometry [19] was used, which utilizes a Michelson
interferometer placed in between the source and the unbalanced Mach-Zehnder interferometer
and an appropriate OPD in the Michelson interferometer was introduced to resolve the spectral
interference fringes at the output of the Mach-Zehnder interferometer. We checked the pre-
cise placement and alignment of the microscope objective and the achromatic lens in the test
arm by observing the interference fringes when a laser diode was used instead of the halogen
lamp. Figures 4(a) and 4(b) show an example of the recorded spectral signal (denoted as OCs)
with the spectral interference fringes arising only in the vicinity of the equalization wavelength
λ0 = 601.35 nm.

From the two measurements described above, the wavelength dependences of the adjusted
path length were obtained. In the first case we revealed that the overall path length difference
Lo(λ0)− Lg(λ0r) varies from 1840 to −120 μm, when the reference equalization wavelength
λ0r = 816.42 nm was chosen. The measured values are shown in Fig. 5(a) by the crosses and
there is an apparent discrimination between the values that can be attributed to the fundamental
mode guided by the fiber (denoted as F+OCs) and to the light guided by the solid part of
the cladding (denoted as G+OCs). Similarly, the spectral signals recorded for the second case
revealed that the equalization wavelength λ0 can be resolved in the spectral range from 509 to
869 nm and that the path length difference ΔLc(λ0) varies from 470 to −90 μm. The measured
values are shown in Fig. 5(a) by the crosses together with the polynomial fit.

Knowledge of the measured dependences and the fiber length z enabled us to calculate the
group effective index Ne f f (λ0) of the fundamental mode as a function of the equalization wave-
length λ0. The function, which was obtained by means of Eq. (8) and the known group index
Ng(λ0r) of the pure silica glass [12], is represented in Fig. 5(b) by the crosses and it is shown
together with the calculated functions also shown in Fig. 3(b). This figure confirms very good
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Fig. 5. Path length difference (a) and group effective index (b) measured as a function of
wavelength: optical components (OCs), fiber plus optical components (F+OCs), glass plus
optical components (G+OCs); LP01 mode, pure silica (solid lines are theoretical functions).

agreement between theory and experiment, and also shows that the group effective index of
the fundamental mode is substantially higher than the group index of the pure silica glass. Fur-
thermore, no apparent discrimination between the group effective indices for the orthogonal
polarizations was revealed in the measured spectral range. This is owing to short length of
optical fiber used in the experiment.

We can estimate a precision of the group effective index measurement. If the reference
equalization wavelength is determined with an error of δ (λ 0r), the path length difference
ΔL = Lo(λ0) − Lg(λ0r) − ΔLc(λ0) is adjusted with a precision of δ (ΔL) and the length z of
the fiber is known with a precision of δ (z), the group effective index Ne f f is obtained with a
precision given by the following formula:

δ (Ne f f ) =

√[dNg(λ0r)

dλ0r
δ (λ0r)

]2
+

[δ (ΔL)

z

]2
+

[
ΔL

δ (z)
z2

]2
. (10)

In our case, the error δ (λ0r) is 0.32 nm (the wavelength difference corresponding to adjacent
pixels of the spectrometer linear CCD-array detector), the precision δ (ΔL) is 1 μm and the
precision δ (z) is 10 μm so that the precision δ (Ne f f ) in determining the group effective index
is 2×10−5. Higher measurement precision can be achieved, for example, using a longer fiber.
However, the maximum length of the investigated fiber is limited by resolving power of the
spectrometer.

6. Conclusions

We proposed a new technique for measuring the dispersion of group effective index in the
fundamental mode of a holey fiber over a wide wavelength range. The technique, which is based
on white-light interferometry employing a low-resolution spectrometer, utilizes an unbalanced
Mach-Zehnder interferometer with a fiber under test placed in one arm and the other arm with
adjustable path length. A series of the spectral interferograms were recorded to measure the
equalization wavelength as a function of the path length, or equivalently the dispersion of the
effective index. We revealed that there is an apparent path length discrimination between the
spectral signals associated with the fundamental mode supported by the fiber and light guided
by the outer cladding of the fiber. Using the fact that the group dispersion of the pure-silica
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cladding is known, we measured the wavelength dependence of the group effective index of the
fundamental mode of the holey fiber. Furthermore, we modelled the group dispersion using a
full-vector finite element method and demonstrated good agreement between experiment and
theory. The use of the method, whose main advantage is in easy inspection of the optical field
at the output of the test arm, can be extended for measuring the group dispersion of the spatial
and/or polarization modes supported by a fiber under study.
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a b s t r a c t

We present a new white-light interferometric technique to measure the group index of holey fibres over a
wide wavelength range. The technique utilizes an unbalanced Mach–Zehnder interferometer with a fibre
under test of known length placed in one of the interferometer arms and the other arm with adjustable
path length. In a first step, the differential group index of the fibre is measured over a wide wavelength
range. In a second step, the fibre is replaced by the reference sample of known thickness and group dis-
persion to determine precisely the group index of the fibre at one specific wavelength. The group index as
a function of wavelength is measured for two different holey fibres, one made of pure silica glass and the
other made of SK222 glass. For both fibres, the wavelength dependence of the group index of the outer
cladding and modes supported by the fibre is measured.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

A precise measurement of the wavelength dependence of the
group refractive index (group index dispersion) of optical fibres
over a broad spectral range is important in various research areas
including high-speed optical transmission systems and broadband
optical communications. The chromatic dispersion, which can be
obtained by simply differentiating the differential group index in
the spectral domain, is a significant characteristic that affects the
bandwidth of a high-speed optical transmission system through
pulse broadening and nonlinear optical distortion. Chromatic dis-
persion of long length optical fibres is determined by two widely
used methods [1]: the time-of-flight method, which measures rel-
ative temporal delays for pulses at different wavelengths, and the
modulation phase shift technique, which measures the phase delay
of a modulated signal as a function of wavelength.

White-light interferometry based on the use of a broadband
source in combination with a standard Michelson or Mach–Zehn-
der interferometer [2] is considered as one of the best tools for dis-
persion characterization of short length optical fibres. White-light
interferometry usually utilizes a temporal method or a spectral
method. The temporal method involves measurement of the group
delay introduced by an optical fibre which is placed in one of the
interferometer arms and evaluating the temporal shift of the peak
of the cross-correlation interferogram. As the central wavelength is
varied, the relative group delay of different frequency components
is observed directly [3]. Alternatively, the spectral distribution of
the phase delay over the full bandwidth of the white-light source
is obtained in a single measurement by a Fourier transform of
the cross-correlation interferogram [4]. The dispersion characteris-
tics of the fiber sample under study can be obtained by simply dif-
ferentiating the measured phase delay.

The spectral method is based on the observation of spectrally
resolved interference fringes (channelled spectrum) in the vicinity
[5–7] of a stationary phase point or far from it [8] and involves
measurement of the phase or period of the spectral fringes. The

0030-4018/$ - see front matter � 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.optcom.2008.04.015

* Corresponding author. Tel.: +420 597 323 134; fax: +420 597 323 139.
E-mail address: petr.hlubina@vsb.cz (P. Hlubina).

Optics Communications 281 (2008) 4008–4013

Contents lists available at ScienceDirect

Optics Communications

journal homepage: www.elsevier .com/locate/optcom



group dispersion of a fibre sample can be obtained by simply dif-
ferentiating the spectral phase retrieved from a single interfero-
gram. The stationary phase point appears in the recorded
spectral interferogram when the overall group optical path differ-
ence (OPD) between two beams in the interferometer is close to
zero. The main limitation of this method is related to the fact that
the spectral interference fringes far from the stationary phase point
[8] are difficult to resolve. Using a low-resolution spectrometer [9],
the measurement of the group refractive index dispersion of a gi-
ven fibre is still possible in the vicinity of the stationary phase
point if one moves it in successive steps to different wavelengths
and repeats the measurement. The modification of the technique
with a tandem configuration of a Michelson interferometer and
an optical fibre has been used in measurement of the group disper-
sion in birefringent fibres [10–12] of known lengths. Recently, the
use of the method with a Mach–Zehnder interferometer was ex-
tended for dispersion characterization of tapered fibres [7] or
glasses of optical fibres [13].

The feasibility of the interferometric techniques has been dem-
onstrated in measuring the dispersion in microstructured and
holey fibres [14–17]. Both fibre-optic [15] and bulk-optic [16,17]
implementations of a Michelson [15,16] or Mach–Zehnder [17]
interferometer were utilized. The dispersion parameters were ob-
tained either by fitting the measured channelled spectrum to
wavelength when the location of the stationary phase point was
adjusted by the path length in the air [15] or by measuring the
location of the stationary phase point (the equalization wavelength
[17]) as a function of the path length difference [16,17]. The most
recent paper [17] describes a new method of measuring the group
dispersion of a holey fibre based on an apparent path length dis-
crimination between the spectral interference fringes associated
with the fundamental mode supported by the fibre and light
guided by the fibre cladding the group dispersion of which is
known.

The aim of this paper is to present a new white-light interfero-
metric technique for measurement of the group index of holey fi-
bres over a wide wavelength range. The technique utilizes an
unbalanced Mach–Zehnder interferometer with a fibre under test
of known length placed in one of the interferometer arms and

the other arm with adjustable path length. A series of spectral
interferograms is recorded to measure the equalization wave-
length as a function of the path length difference. First, the differ-
ential group index of the fibre is measured over a wide wavelength
range. Second, the fibre is replaced by the reference sample of
known thickness and group dispersion to determine precisely the
group index of the fibre under test at one specific wavelength.
The group index as a function of the wavelength is measured for
two different holey fibres, one made of pure silica glass and the
other made of SK222 glass. For both cases, the wavelength depen-
dence of the group index of the outer cladding and modes sup-
ported by the fibre is measured with a precision of 13� 10�5.

2. Experimental method

First, let us consider a technique presented in a previous paper
[13] that has been used for measuring the differential group index
DNðkÞ of a fibre under test of length z and refractive index nðkÞ. The
technique utilizes an unbalanced Mach–Zehnder interferometer
(see Fig. 1) with optical components (lens 1 and lens 2) to which
the effective thickness d and refractive index ncðkÞ correspond.
The fibre under test is placed in the first (test) arm of the interfer-
ometer and the other (reference) arm is with the adjustable path
length L in the air so that the group OPD Dg

MZðkÞ between the beams
in the interferometer is given by

Dg
MZðkÞ ¼ L� l� NðkÞz� NcðkÞd; ð1Þ

where l is the path length in the air in the test arm, and NðkÞ and
NcðkÞ are the group refractive indices satisfying the relation

NðkÞ ¼ nðkÞ � k
dnðkÞ

dk
: ð2Þ

The spectral interference fringes recorded in the set-up have the
largest period in the vicinity of a stationary phase point for which
the group OPD is zero at one specific wavelength, the equalization
wavelength k0. To measure the differential group index
DNðk0Þ ¼ Nðk0Þ � Nðk0rÞ of the fiber [13], the overall path length
L ¼ Lo ¼ Loðk0Þ has to be adjusted for which the equalization wave-
length k0 is resolved in the recorded spectrum. If we choose one of
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Fibre under test
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Mirror 3

Mirror 4

Mirror 2

Beam splitter 1 Mirror 1

HL−2000

Micropositioner

Optical table

Optical fibre Collimator

Read optical fibre

Glass sample

Beam splitter 2 Objective

Micropositioners

Analyzer

Lens 1 Lens 2

t

Aperture

Fig. 1. Experimental set-up with an unbalanced Mach–Zehnder interferometer to measure the group index dispersion of a fibre under test.
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the equalization wavelengths, k0r, as the reference one, the overall
path length Loðk0rÞ that results from the condition Dg

MZðk0rÞ ¼ 0 is gi-
ven by

Loðk0rÞ ¼ Nðk0rÞzþ Ncðk0rÞdþ l: ð3Þ

The path length is the basis of the measurement of the fibre group
dispersion N ¼ Nðk0Þ from the measured differential group index
dispersion DNðk0Þ ¼ Nðk0Þ � Nðk0rÞ [13] and the group index Nðk0rÞ
determined precisely by another technique.

Let us consider three different techniques with three different
reference elements that can be used for measuring the fibre group
index Nðk0rÞ.

2.1. First reference element: glass sample

In this technique we consider a set-up of the unbalanced Mach–
Zehnder interferometer in which the fibre under test is replaced by
a glass sample of known thickness t and group refractive index
Nrðk0rÞ (see Fig. 1). To resolve the reference equalization wave-
length k0r in the recorded spectrum, the reference path length
L ¼ Lr ¼ Lrðk0rÞ have to be adjusted which satisfies the relation

Lrðk0rÞ ¼ Nrðk0rÞt þ Ncðk0rÞdþ l� t þ z: ð4Þ

By combining Eq. (3) with Eq. (4), we obtain for the group refractive
index Nðk0rÞ of the fiber the relation

Nðk0rÞ ¼ 1þ Nrðk0rÞ � 1½ �t=zþ Loðk0rÞ � Lrðk0rÞ½ �=z: ð5Þ

2.2. Second reference element: fibre

In this technique we consider a set-up of the unbalanced Mach–
Zehnder interferometer (see Fig. 1) in which the fibre under test is
replaced by the reference fibre of length t and known group refrac-
tive index Nrðk0rÞ. If the reference equalization wavelength k0r is re-
solved in the recorded spectrum for the reference path length
Lrðk0rÞ, the group refractive index Nðk0rÞ of the fiber under test is gi-
ven by Eq. (5).

2.3. Third reference element: outer fibre cladding

In this technique we consider a set-up of the unbalanced Mach–
Zehnder interferometer (see Fig. 1) with the fibre under test of
length z. If the fibre is excited in such a way that light is guided
by the outer fibre cladding of known group index Nrðk0rÞ and if
the reference equalization wavelength k0r is resolved in the re-
corded spectrum for the reference path length Lrðk0rÞ, the group in-
dex Nðk0rÞ of the fiber under test is given by

Nðk0rÞ ¼ Nrðk0rÞ þ ½Loðk0rÞ � Lrðk0rÞ�=z: ð6Þ

To summarize the implementation merits of the above methods,
the simplest is the third one. However in this case we need to know
the group dispersion of the outer fibre cladding. In the opposite
case, the second method is simpler than the first one if the fibre
of known dispersion is available.

3. Experimental set-ups

The experimental set-up used in the application of spectral-do-
main white-light interferometry for measuring the differential
group index dispersion DN ¼ DNðk0Þ of optical fibres is shown in
Fig. 1. It consists of a white-light source: a quartz–tungsten–halo-
gen lamp (HL-2000HP, Ocean Optics, Inc.) with launching optics, a
single-mode optical fibre (FS-SN-3224, 3M), a collimating lens, a
bulk-optic Mach–Zehnder interferometer with plate beam splitters
(BSW07, Thorlabs), a micropositioner connected to mirrors three
and four of the interferometer, an aperture, a Glan–Taylor polarizer

(Thorlabs), a microscope objective, micropositioners, a fibre-optic
spectrometer (S2000, Ocean Optics, Inc.), an A/D converter and a
personal computer. The spectrometer resolution is given by a
50 lm core diameter of the read optical fibre to which a Gaussian
response function with the width of about 3 nm corresponds [9]. In
the test arm of the interferometer is placed a combination of a fiber
under test (fibre sample) and optical components (shown schemat-
ically in Fig. 1 as lens 1 and lens 2) represented by a microscope
objective (10�/0.30, Meopta) and an achromatic lens (74-ACR,
Ocean Optics, Inc.). We measured two different fibre samples.
The first sample is pure silica holey fibre of length z ¼ 50650 lm
(PM-1550-01, Thorlabs, see its SEM photograph in [12]). The sec-
ond sample is a rectangular-shape highly birefringent holey fibre
of length z ¼ 54200 lm made of SK222 optical glass with rectangu-
lar lattice and circular holes (see a similar fibre of IEMT with ellip-
tical holes in [18]). The fibre lengths were measured by a
micrometer with an accuracy of ±10 lm.

The experimental set-up used in the application of spectral-do-
main white-light interferometry for measuring the group index
Nðk0rÞ with the reference element is also shown in Fig. 1. The ref-
erence element is represented by a birefringent quartz plate of
thickness t ¼ ð25750� 10Þ lm. The quartz plate consists of two
polished surfaces, parallel to the optical axis of the crystal with a
precision of 15 arcmin. The plate is inserted into the test arm of
the interferometer in such a way that the collimated beam is inci-
dent on the surfaces perpendicularly. The reference group index
Nrðk0rÞ is either Noðk0rÞ or Neðk0rÞ depending on the orientation of
the polarizer in the set-up and subscripts o and e stand for the or-
dinary and extraordinary waves propagating in the crystal.

4. Experimental results and discussion

Prior to the group dispersion measurements we utilized the
main advantage of the set-ups, which is in fibre connection of a
light source (that can be varied) with the interferometer. We used
a laser diode instead of the halogen lamp to check the precise
placement and alignment of the optical components in the test
arm by observing the interference fringes. Moreover, the excitation
of the outer fibre cladding or core was easily inspected at the out-
put of the test arm. In the case of the first fibre sample, the ring-
shape optical field indicated that the light was guided by the outer
fibre cladding [13]. Similarly, the elliptical-shape optical field indi-
cated that the light was guided by the fiber core and the funda-
mental mode was supported. The orientation of the polarizer was
along the longer or shorter axis of the elliptical core so that the
group dispersion in the X or Y polarization [12] was measured.

In the dispersion measurement of the outer cladding and the fi-
bre mode, such a path length in the reference arm of the interfer-
ometer was adjusted to resolve spectral interference fringes. Fig. 2
shows an example of the recorded normalized spectral signal [13]
corresponding to the excitation of the outer fibre cladding (de-
noted as F + OCs). It clearly shows the effect of the limiting resolv-
ing power of the spectrometer on the visibility of the spectral
interference fringes identified only in the vicinity of the equaliza-
tion wavelength k0 ¼ 748:23 nm. Fig. 2 also shows an example of
the recorded spectral signal corresponding to the excitation of
the fundamental mode (denoted as M + OCs) in the X polarization
with the spectral interference fringes identified only in the vicinity
of the equalization wavelength k0 ¼ 664:54 nm.

We measured the dependence of the adjusted path length differ-
ence on the equalization wavelength for both cases. We displaced
the stage with mirrors 3 and 4 manually by using the microposition-
er with a constant step of 10 lm and performed recording of the
corresponding spectral signals. The spectral signals recorded for
the outer fibre cladding revealed that the equalization wavelength
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k0 can be resolved in the spectral range from 508 to 910 nm [13].
Similarly, the spectral signals recorded for the fundamental mode
revealed that the equalization wavelength k0 can be resolved in
the spectral range from 515 to 807 nm. Knowledge of the measured
dependences and the fibre length z enables us to evaluate directly
the differential group index DNðk0Þ as a function of the equalization
wavelength k0 [13]. Fig. 3 shows the function for the outer cladding
by the crosses (denoted as pure silica) together with the theoretical
function resulting from the Sellmeier formula for pure silica [19].
This figure confirms very good agreement between theory and
experiment. Similarly, Fig. 3 shows the function for the fundamen-
tal mode by the crosses (denoted as mode) and demonstrates differ-
ent dispersion slope for the mode in the comparison with that for
the pure silica. It should be noted here that no apparent discrimina-
tion between the spectral signals for the orthogonal polarizations of
the mode was revealed in the measured spectral range. This is
owing to short length of the optical fibre used in the experiment.

To measure the fibre group index Nðk0rÞ at the reference equal-
ization wavelength k0r, first, the procedure presented in Section 2.1

was used. It is important to insert the quartz crystal into the test
arm of the interferometer (see Fig. 1) in order not to shift the inter-
ference pattern with respect to the centre of the aperture. Similar
procedure needs to be applied in the alignment of the optical com-
ponents after removing the fibre from the test arm of the interfer-
ometer. Then, such a path length Lrðk0rÞ in the reference arm of the
interferometer was adjusted to resolve spectral interference
fringes at the reference equalization wavelength k0r. In our case,
when k0r ¼ 693:62 nm was chosen, we adjusted DLðk0rÞ ¼ Loðk0rÞ�
Lrðk0rÞ ¼ 9348 lm. Using Nrðk0rÞ ¼ Neðk0rÞ ¼ 1:56904 resulting
from dispersion relation for the birefringent quartz [20] and Eq.
(5), we obtain Nxðk0rÞ ¼ 1:47386. From the value and the measured
values of the differential group index DNxðk0Þ, the group index
Nxðk0Þ of the fundamental mode as a function of the equalization
wavelength k0 was determined. The function is represented in
Fig. 4 by the crosses and is shown together with the function for
the pure silica (crosses with the solid line). This figure shows that
the group index of the fundamental mode is substantially higher
than that of the pure silica.

We can estimate a precision of the group index measurement. If
the reference equalization wavelength k0r is determined with an
error of dðk0rÞ, the path length difference DL is adjusted with a pre-
cision of dðDLÞ and the lengths z and t of the fibre and crystal are
known with precisions of dðzÞ and dðtÞ, respectively, the group in-
dex N is obtained with a precision given by the following formula

d2ðNÞ ¼ dNrðk0rÞ
dk0r

t
z
dðk0rÞ

� �2

þ ðNr � 1Þ dðtÞ
z

� �2

þ ðNr � 1Þt dðzÞ
z2

� �2

þ dðDLÞ
z

� �2

þ DL
dðzÞ
z2

� �2

: ð7Þ

In our case, the error dðk0rÞ is given by the wavelength difference
corresponding to adjacent pixels of the spectrometer linear CCD-ar-
ray detector and is 0.32 nm, the precision dðDLÞ is 1 lm and the pre-
cisions dðzÞ and dðtÞ are 10 lm so that the precision dðNÞ in
determining the group index is 13� 10�5. Higher measurement
precision can be achieved using more precisely determined lengths
and/or a longer fibre sample. However, there exists maximum
length of the fibre given by the limited resolving power of the
spectrometer.

The group index Nðk0rÞ of the fundamental mode at the refer-
ence equalization wavelength k0r was also measured by the proce-
dure presented in Section 2.3. In this case, the excitation of the
fundamental mode was changed to that of the outer cladding,
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Fig. 3. Differential group index of outer fibre cladding (pure silica) and fibre mode
measured as a function of wavelength. The solid line corresponds to theory.
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the group index Nrðk0rÞ of which is known. Simultaneously, path
length Loðk0rÞ in the reference arm of the interferometer was chan-
ged to Lrðk0rÞ and spectral interference fringes were resolved at the
same reference equalization wavelength k0r. In our case, when
k0r ¼ 693:62 nm was chosen, DLðk0rÞ ¼ 118 lm was adjusted. Using
Nrðk0rÞ ¼ 1:47158 resulting from dispersion relation for the pure
silica [19] and Eq. (6), we obtain Nxðk0rÞ ¼ 1:47391. This value is
in very good agreement with that obtained by a previous proce-
dure. Also in this case we can estimate a precision of the group in-
dex measurement, which is given by the following formula

d2ðNÞ ¼ dNrðk0rÞ
dk0r

dðk0rÞ
� �2

þ dðDLÞ
z

� �2

þ DL
dðzÞ
z2

� �2

: ð8Þ

The precision dðNÞ in determining the group index by the procedure
is 3� 10�5 and is higher than that of the previous procedure.

Finally we measured the group dispersion of the second fibre
sample. The excitation of the outer fibre cladding or core was once
again easily inspected at the output of the test arm. The rectangu-
lar-shape optical field indicated that the light was guided by the
outer fibre cladding. Similarly, the elliptical-shape optical field indi-
cated that the light was guided by the fiber core and the fibre mode
was supported. The orientation of the polarizer was along the long-
er or shorter axis of the elliptical core so that the group dispersion in
the X or Y polarization was measured. Fig. 5 shows an example of
the recorded spectral signal (denoted as F + OCs), which corre-
sponds to the excitation of the outer fibre cladding with the spectral
interference fringes identified only in the vicinity of the equaliza-
tion wavelength k0 ¼ 747:91 nm [13]. Fig. 5 also shows an example
of the spectral signal (denoted as XM + OCs), which corresponds to
the excitation of the fibre mode in the X polarization with the spec-
tral interference fringes identified only in the vicinity of the equal-
ization wavelength k0 ¼ 607:34 nm. Moreover, Fig. 5 shows an
example of the spectral signal (denoted as YM + OCs) corresponding
to the excitation of the fibre mode in the Y polarization with the
spectral interference fringes identified only in the vicinity of the
equalization wavelength k0 ¼ 608:01 nm. The two spectral signals
demonstrate discrimination of both polarization modes resolved
for a given length of the fibre sample. From the different values of
the equalization wavelengths resolved for the same path length dif-
ference adjusted in the interferometer we can conclude that the
sign of the group birefringence G ¼ Nx � Ny is negative.

The spectral signals recorded for the outer fibre cladding re-
vealed that the equalization wavelength k0 can be resolved in the
spectral range from 497 to 907 nm [13]. Similarly, the spectral sig-
nals recorded for the polarization modes revealed that the equal-
ization wavelength k0 can be resolved in the spectral range from
536 to 766 nm. In these spectral ranges, the wavelength depen-
dence of the differential group index DNðk0Þ was measured. The
measured values related to the outer cladding are shown in
Fig. 6 by the crosses (denoted as SK222 glass) together with a poly-
nomial fit. Similarly, the measured values related to the fundamen-
tal mode in the X and Y polarizations are shown by the crosses
(denoted as X mode and Y mode) and demonstrates different dis-
persion slope for the polarization modes in the comparison with
that for the SK222 glass. It should be noted here that an apparent
discrimination between the spectral signals for the orthogonal
polarizations was revealed in the measured spectral range, which
indicates that the second holey fibre has higher group birefrin-
gence than the first one.

To measure the fibre group index Nðk0rÞ at the reference equal-
ization wavelength k0r, the procedure presented in Section 2.1. was
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Fig. 5. Examples of the spectral signals recorded for two cases: outer fibre cladding
plus optical components (F + OCs), fibre modes plus optical components (XM + OCs,
YM + OCs).
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used. For the outer fibre cladding, when k0r ¼ 649:54 nm was cho-
sen, we adjusted DLðk0rÞ ¼ 14956 lm. Using Nrðk0rÞ ¼ Noðk0rÞ ¼
1:56247 and Eq. (5), we obtain Ngðk0rÞ ¼ 1:54317. Similarly, for
the mode in the X polarization, when k0r ¼ 649:54 nm was chosen,
we adjusted DLðk0rÞ ¼ 15180 lm. Using Nrðk0rÞ ¼ 1:56247 and Eq.
(5), we obtain Nxðk0rÞ ¼ 1:54730. Moreover, using the procedure
presented in Section 2.3, this value gives for the measured
DLðk0rÞ ¼ 214 lm the cladding group index Ngðk0rÞ ¼ 1:54335.
From the values and the measured values of the differential group
indices DNgðk0Þ, DNxðk0Þ, DNyðk0Þ, the group index Ngðk0Þ of the out-
er fibre cladding and the group indices Nxðk0Þ, Nyðk0Þ of the polar-
ization modes as a function of the equalization wavelength k0 were
determined. The functions are represented in Fig. 7 by the crosses
and are shown together with the polynomial fit for the cladding.
This figure shows that the group indices of the polarization modes
are substantially higher than the group index of the SK222 glass.
According to Eq. (7), the group indices were measured with a pre-
cision of 13� 10�5.

5. Conclusions

We used a new white-light interferometric technique for mea-
surement of the group index of holey fibres over a wide spectral
range (in one case from 515 to 807 nm). The technique utilized
an unbalanced Mach–Zehnder interferometer with a fibre under
test of known length placed in one of the interferometer arms
and the other arm with adjustable path length. First, from a series
of recorded spectral signals we measured the equalization wave-
length as a function of the path length difference, or equivalently
the differential group index dispersion of the fibre. Second, the fi-
bre was replaced by the reference sample of known thickness and
group dispersion and the group index of the fibre at one specific
wavelength was determined precisely. The group index as a func-
tion of wavelength was measured for two different holey fibres,
one made of pure silica glass and the other made of SK222 glass,
and a precision was 13� 10�5.

The use of the method, whose main advantage is in the absolute
group dispersion determination, can be extended for measuring
cladding modes of holey fibres. Moreover, the sign of the group
birefringence in highly birefringent holey fibres can be specified
by the method. The method allows for the dispersion measurement
in a wider spectral band, which can be further extended by apply-
ing the CCD array operating in another spectral range.
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Abstract: We report on a new and simple method for measuring the
wavelength dependence of phase modal birefringence in a polarization-
maintaining fiber. The method is based on application of a lateral pointlike
force on the fiber that causes strong coupling between polarization modes
and utilizes their interference resolved as the channeled spectrum. The
change of the phase retrieved from two recorded channeled spectra that
are associated with the known displacement of coupling point is used to
determine the phase modal birefringence as a function of wavelength. A
windowed Fourier transform is applied to reconstruct precisely the phase
change and the phase ambiguity is removed provided that we know the
phase change of the spectral fringes at one specific wavelength. The meas-
ured wavelength dependence of phase modal birefringence is compared
with that resulting from the group modal birefringence measurement.
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1. Introduction

Polarization-maintaining fibers (PMFs) have attracted considerable interest for a number of
applications, including e.g. polarization-sensitive optical devices and fiber-optic sensors of var-
ious physical quantities employing interferometric techniques. For these applications, it is im-
portant to know the dispersion, i.e. the wavelength dependence, of the phase and group modal
birefringence in the PMFs. Several methods have been developed to measure the dispersion of
birefringence in PMFs over a wide spectral range. A wavelength scanning technique can be
applied to either short [1] or long fibers [2]. A standard technique of time-domain tandem inter-
ferometry [3] uses processing of either a single interferogram [4, 5] or a series of interferograms
at different wavelengths [6, 7, 8] recorded in a tandem interferometer. The latter technique is a
modification of a lateral force method proposed and demonstrated for precisely measuring the
phase modal birefringence in PMFs [9].

Recently, a new measurement technique employing a low-resolution spectrometer at the out-
put of a tandem configuration of a Michelson interferometer and an elliptical-core PMF [10, 11]
has been used to measure the dispersion of group modal birefringence over a wide spectral
range [11]. In comparison with the standard time-domain tandem interferometry, the technique
of spectral-domain tandem interferometry uses a series of the recorded spectral interferograms
to resolve the so-called equalization wavelengths [10, 11] at which the overall group optical
path difference (OPD) is zero. Measuring the equalization wavelengths as a function of the
OPD adjusted in a Michelson interferometer, the wavelength dependence of the group modal
birefringence in the PMF is obtained [11].

In this paper, a new and simple method to measure the wavelength dependence of phase
modal birefringence in an elliptical-core PMF is presented using spectral-domain white-light
interferometry. The method is based on application of a lateral pointlike force on the fiber
that causes strong coupling between polarization modes and utilizes their interference resolved
as the spectral fringes (channeled spectrum). The phase modal birefringence as a function of
wavelength is determined from the change of the phase retrieved from two recorded chan-
neled spectra that are associated with the known displacement of coupling point. A windowed
Fourier transform is applied to reconstruct precisely the phase change and the phase ambigu-
ity is removed provided that we know the phase change of the spectral fringes at one specific
wavelength. The wavelength dependence of phase modal birefringence measured over a broad
spectral range is compared with that resulting from the group modal birefringence measurement
and good compatibility of the results is confirmed.

2. Experimental method

Consider a PMF of length z supporting two polarization modes over a broad spectral range. We
can introduce the wavelength-dependent differential propagation constant Δβ (λ ) = β x(λ ) −
βy(λ ), where βx(λ ) and βy(λ ) are propagation constants for the respective polarization modes.
We define the beat length LB(λ ) as

LB(λ ) = 2π/Δβ (λ ), (1)
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the phase modal birefringence B(λ ) as

B(λ ) = λ/LB(λ ), (2)

and the group modal birefringence G(λ ) as

G(λ ) = B(λ )− λ
dB(λ )

dλ
= −λ 2 d[B(λ )/λ ]

dλ
. (3)

Figure 1 illustrates a simple experimental setup we propose for measuring the wavelength
dependence of phase modal birefringence B(λ ) in a PMF. Light from a white-light source
passes through a polarizer and is focused by a microscope objective into the PMF under test.
The transmission azimuth of the polarizer is adjusted parallel to the symmetry axis of the PMF
so that only one polarization mode is excited in the tested fiber. A pointlike force is applied
to the tested fiber causing polarization coupling so that a fraction of light is coupled into the
polarization mode that is not excited at the input of the tested fiber. The two polarization modes
are propagating through the fiber of length L, which is given by the distance of the coupling
point from the fiber end. The two polarization modes are mixed with an analyzer and their
interference is resolved by a spectrometer as channeled spectrum. The transmission azimuth of
the analyzer is adjusted at 45◦ with respect to the polarization axes of the PMF. The spectrum
recoded by the spectrometer of a Gaussian response function can be represented in the form
[10, 11]

I(λ ) = I0(λ ){1+V(λ )exp{−(π 2/2)[G(λ )LΔλR/λ 2]2}cos[(2π/λ )B(λ )L]}, (4)

where I0(λ ) is the reference (unmodulated) spectrum, V (λ ) is a visibility term, and λ R is the
width of the spectrometer response function.

Light source

L

FPolarizer

ObjectiveCollimatorOptical fiber
Fiber under test

Analyzer

HL−2000−HP Spectral Fringes

45o

0o

Fig. 1. Experimental setup for measuring the wavelength dependence of phase modal bire-
fringence in fiber under test.

In response to the displacement ΔL = L2 −L1 of the coupling point along the tested fiber, a
phase shift of channeled spectrum (spectral interference fringes) is observed, from which the
beat length can be determined according to the relation

LB(λ ) = 2πΔL/Δφ(λ ), (5)

where Δφ(λ ) = φ2(λ ) − φ1(λ ) is the wavelength-dependent phase change corresponding to
two phase functions φ2(λ ) and φ2(λ ) reconstructed from two successive channeled spectra.
The ambiguity of 2mπ , where m is an integer, in the phase retrieval from the two recorded
channeled spectra can be removed by a simple procedure. In the first step we choose in the
recorded spectrum interference maximum (minimum) which is resolved at one specific wave-
length λ ′

. Next, the phase shift of the channeled spectrum with the displacement of the coupling
point is inspected and in the second step we adjust such a displacement ΔL for which another
maximum (minimum) is resolved in the recorded spectrum at the same wavelength λ ′

and the
phase change Δφ(λ ′

) = 2π . Similarly, successive phase changes Δφ(λ ′
) = 4π , 6π , . . ., can be

adjusted at the wavelength λ ′
. The fiber beat length LB(λ ) determined from Eq. (5) enables us

to calculate the phase modal birefringence B(λ ) from Eq. (2).
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3. Experimental configuration

The setup used for measuring the wavelength dependence of the phase modal birefringence in
a PMF by spectral-domain white-light interferometry is shown in Fig. 1. It consists of a white-
light source: a quartz-tungsten-halogen lamp (HL-2000-HP, Ocean Optics, Inc.) with launching
optics, an optical fiber, a collimating lens, Glan Taylor calcite polarizer (Thorlabs), a micro-
scope objective (10×/0.30), a PM fiber under test, a tip connected with a micropotioner, an
analyzer (Polaroid), micropositioners, a fiber-optic spectrometer (S2000, Ocean Optics, Inc.),
an A/D converter and a personal computer. The PMF under test is an elliptical-core fiber with
the cutoff wavelength of 620 nm. A loop of the fiber was used to strip off the higher-order
modes and to smooth the reference spectrum as much as possible. The spectrometer has a spec-
tral operation range from 350 to 1000 nm and its spectral resolution is limited by the effective
width of the light beam from the read optical fiber. We used the read optical fiber with a 50 μm
core diameter which results in a Gaussian response function with the width Δλ R = 2.7 nm.

4. Experimental results and discussion

After optimizing excitation conditions to assure that only one polarization mode is excited in
the tested PMF, a pointlike force was applied. Similarly, after optimizing detection conditions
to assure the highest visibility of spectral interference fringes, the channeled spectrum was
recorded for the first distance L1 of the coupling point from the fiber end. Figure 2(a) shows the
corresponding recorded spectrum by the blue curve. Next, the displacement ΔL = L 2 − L1 =
7450 μm of the coupling point along the tested PMF was adjusted provided that the phase
change Δφ(λ ′

) at chosen wavelength λ ′
= 637.08 nm is approximately 2π . Figure 2(a) shows

the corresponding recorded spectrum by the red curve and illustrates the wavelength-dependent
phase change, which is larger then 2π for the wavelengths shorter then λ ′

(see the shift to the
right) and smaller then 2π for the wavelengths longer then λ ′

(see the shift to the left).
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Fig. 2. (a) Two recorded channeled spectra with the corresponding unmodulated spectra.
(b) Two spectral interference signals constructed from the spectra shown in Fig 2(a).

To reconstruct precisely the spectral phase functions φ1(λ ) and φ2(λ ) from the two recorded
channeled spectra, a new procedure of the phase retrieval in the wavelength domain was applied
[12]. It is based on the processing of the spectral interference signal S(λ ) defined as

S(λ ) = I(λ )/I0(λ )−1. (6)

In the first step, the unmodulated spectrum I0(λ ) needs to be reconstructed from the recorded
channeled spectrum. It is obtained as the inverse Fourier transform of the zero-order com-
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ponent of the Fourier spectrum of the recorded channeled signal [13]. Figure 2(a) shows the
unmodulated spectra corresponding to the two recorded channeled spectra by the dashed lines.
Figure 2(b) then shows the corresponding spectral interference signals that clearly illustrate
the wavelength-dependent phase change. In the second step, the spectral phase functions φ 1(λ )
and φ2(λ ) were retrieved from the spectral signal S1(λ ) and S2(λ ) using a procedure based
on a windowed Fourier transform applied in the wavelength domain [12]. From the retrieved
spectral phase functions, the signals cos[φ1(λ )] and cos[φ2(λ )] were constructed as shown in
Fig. 3(a). Figure 3(a) once again clearly demonstrates the wavelength-dependent phase change
with Δφ(λ ′

) ≈ 2π at λ ′
= 637.08 nm. This fact is also confirmed in Fig. 3(b) which shows the

retrieved phase difference Δφ(λ ) that decreases with increasing wavelength.
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Fig. 3. (a) Two spectral interference signals constructed from the retrieved phase functions
φ1(λ ) and φ2(λ ) and the corresponding phase difference (b) as a function of wavelength.
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Fig. 4. Phase (a) and group (b) modal birefringences measured as a function of wavelength
(red curves correspond to a polynomial fit).

Figure 4(a) finally shows by the blue curve the wavelength dependence of the phase modal
birefringence B(λ ) determined from Eqs. (2) and (5). These equations can be used to esti-
mate the precision δB = B

√
[δ (Δφ)]2/Δφ2 +[δ (ΔL)]2/ΔL2 of the phase modal birefringence

measurement, which is affected by the precision δ (Δφ) with which the phase difference is
known and by the precision δ (ΔL) of adjusting the displacement. In our case we estimate
δ (Δφ) = 2π/100 and δ (ΔL) = 1 μm, so that B(λ ′

) = 8.55 × 10−5 at λ ′
= 637.08 nm is

known with precision δB(λ ′
) = 8.55 × 10−7. We can also estimate the minimum Bmin and
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maximum Bmax birefringences that can be measured by the technique. The minimum birefrin-
gence is given by Bmin(λ ) = λ Δφ/(2πΔLmax), where ΔLmax is the maximum displacement
adjustable in the setup. For ΔLmax = 2.5 cm (travel of the micropositioner) and Δφ = 2π we
obtain Bmin(λ ) = 2.6 × 10−5 at λ = 650 nm. The maximum birefringence is limited by the
resolution of the channeled spectra [see the overall visibility in Eq. (4)] and is given on the as-
sumption B(λ ) = G(λ ) by Bmax(λ ) = [λ 2/(πΔλRL)]

√
ln2/VRmin, where VRmin is the minimum

visibility. For L = 1 cm and VRmin = 0.5, we obtain Bmax(λ ) = 5.9×10−3 at λ = 650 nm.
The measured phase modal birefringence B(λ ) in the elliptical-core PMF can be compared

with that resulting from the group modal birefringence G(λ ) measured by a method of spectral-
domain tandem interferometry [11]. Figure 4(b) shows by markers the group modal birefrin-
gence G(λ0) determined for respective wavelengths λ0. The red line in the same figure rep-
resents the group modal birefringence G(λ ) obtained from the values −G(λ 0)/λ 2

0 fitted to a
fourth-order polynomial. The polynomial order is sufficiently high because the fit is charac-
terized by a correlation factor as high as 0.99998. The corresponding absolute phase modal
birefringence B(λ ), with B(λ )/λ represented by a fifth-order polynomial, is shown in Fig. 4(a)
by the red curve. It was obtained by combining the relative phase modal birefringence B(λ )
with the measured one [blue curve in Fig. 4(a)] to reach minimal deviation between them. The
difference between the determined values is approximately within ±2.6×10 −6. In order to re-
duce the deviation, the larger displacement ΔL of the coupling point along the tested PMF has
to be adjusted. In our case we adjusted ΔL = 14900 μm with Δφ(λ ′

) ≈ 4π at λ ′
= 637.08 nm.

The corresponding phase modal birefringence B(λ ) is shown by the dashed curve and the above
difference is approximately within ±2 × 10−6. The difference can be attributed to the distor-
tions of the channeled spectra and thus the retrieved phase difference [see Fig. 3(b)] due to the
wavelength-dependent polarization coupling and/or the presence of the residual higher-order
modes supported by the fiber.

5. Conclusions

We used a new and simple spectral-domain method to measure the wavelength dependence
of the phase modal birefringence in an elliptical-core PMF over a wide spectral range (450
to 850 nm). The method is based on a lateral pointlike force applied on the fiber that causes
strong coupling between polarization modes and resolving the channeled spectrum arising due
to interference of the modes. The change of the phase retrieved from two recorded channeled
spectra that are associated with the known displacement of coupling point was used for de-
termining the phase modal birefringence as a function of wavelength. The phase change was
reconstructed precisely by a windowed Fourier transform and the phase ambiguity was removed
provided that the phase change of the spectral fringes at one specific wavelength is known. The
measured wavelength dependence of phase modal birefringence was compared with that result-
ing from the group modal birefringence measurement. Good compatibility of the results was
confirmed.

We demonstrated the applicability of the spectral-domain white-light interferometric tech-
nique that can be extended for dispersion characterizing of other fibers guiding two polarization
modes over a wide spectral range (Panda and bow-tie fibers, PCFs). Moreover, if the proposed
technique is combined with the data from group modal birefringence dispersion measurement,
then the obtaining of phase modal birefringence dispersion can be substantially simplified be-
cause the measurement can be performed at one specific wavelength (e. g., λ ′

) only.
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We report on a simple method for retrieving the wavelength dependence of the phase birefringence in a
polarization-maintaining fiber or a birefringent crystal from a channeled spectrum. The method utilizes in-
terference of polarized modes or waves resolved as the channeled spectrum and its processing by a windowed
Fourier transform to reconstruct precisely the phase as a function of wavelength. The ambiguity of the phase
is removed provided that we know both the approximative function for the birefringence dispersion and the
length of the fiber or the thickness of the crystal. The method is used in measuring the wavelength depen-
dence of the phase birefringence in an elliptical-core fiber or in a quartz crystal in a range from
500 to 900 nm. The dependences are compared with those resulting from the available data, and very good
agreement is confirmed. © 2010 Optical Society of America
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Highly birefringent, polarization-maintaining fibers
(PMFs) have attracted considerable interest for a
number of applications, including, e.g., polarization-
sensitive optical devices and fiber-optic sensors of
various physical quantities employing interferomet-
ric techniques. For these applications, it is important
to know the birefringence dispersion, i.e., the wave-
length dependence of the phase and group birefrin-
gence in the PMFs. Several methods have been devel-
oped to measure the phase birefringence in PMFs
over a wide spectral range. A wavelength scanning
technique can be applied to either short [1] or long [2]
fibers.

It is well known that scanning the wavelength
alone (a channeled spectrum) gives only a relative
measure of the phase birefringence, and it inherently
measures the group birefringence. The absolute
phase birefringence is obtained by both scanning the
wavelength and absolutely measuring the birefrin-
gence at one particular wavelength. To measure this
quantity, a precision electromagnetic modulation
technique [1] or a lateral force method [3] applied in
the time [4] or wavelength [5] domain can be used.
Similarly, the birefringence dispersion is of funda-
mental importance for anisotropic materials used in
optical devices such as wave plates, compensators,
retarders, and polarizers. Measurement of the phase
birefringence of a prescribed dispersion function can
be performed by spectral interferometric techniques
based on either determining the positions of the
maxima in a channeled spectrum [6] or fitting the
measured spectrum to the theoretical one [7].

In this Letter, a simple method for retrieving the
wavelength dependence of the phase birefringence in
a PMF of known length is presented. The technique,
which is based on processing of a channeled spectrum
to retrieve the phase function, utilizes the approxi-
mative function of the phase birefringence disper-
sion. We extended the use of the technique for mea-

suring the phase birefringence in a quartz crystal of
known thickness.

Consider a PMF supporting two polarization
modes over a broad spectral range. We can introduce
the wavelength-dependent phase birefringence B���
=nx���−ny���, where nx��� and ny��� are the effective
phase refractive indices for the respective polariza-
tion modes. Figure 1 illustrates a simple experimen-
tal setup we use for recording of a channeled spec-
trum from which we retrieve the wavelength
dependence of B��� in a PMF, if its length L is known
precisely. Light from white-light source WLS passes
through collimator CL and polarizer P and is
launched by microscope objective O1 into the PMF
under test. The transmission azimuth of the polar-
izer is adjusted at 45° with respect to the polarization
axes of the PMF so both polarization modes are ex-
cited equally in the tested fiber. The two polarization
modes are mixed with analyzer A, which is placed be-
tween microscope objectives O2 and O3, and their in-
terference is resolved by spectrometer S as a chan-
neled spectrum. The transmission azimuth of the
analyzer is adjusted at 45° with respect to the polar-
ization axes of the PMF. The spectral intensity re-
coded by the spectrometer of a Gaussian response
function can be represented in the form [8]

I��� = I0����1 + VR���cos��2�/��B���L��, �1�

where I0��� is the reference (unmodulated) spectrum
and VR���=exp�−��2 /2��G���L��R/�2�2� is a visibility

Fig. 1. (Color online) Experimental setup to record a chan-
neled spectrum for a PMF or a birefringent crystal.
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term dependent on both the group birefringence
G���=−�2d�B��� /�� /d� and the width ��R of the spec-
trometer response function. To resolve a channeled
spectrum (spectral fringes) in a spectral range from
�1 to �2, the fiber length must satisfy the condition
L��1

2 / �G��1���R�.
From the recorded channeled spectrum, a relative

spectral phase �r��� can be retrieved with the ambi-
guity of m2�, where m is an integer. To remove the
phase ambiguity, we assume that the phase birefrin-
gence dispersion is given by the relation [9]

B��� = A1�−4 + A2�−2 + A3 + A4�2 + A5�4, �2�

where Ai are the coefficients. The difference between
the retrieved phase function and the absolute phase
function is the phase error function

e��� = �r��� + m2� − �2�/��B���L, �3�

which is a measure of the correct determination of
the coefficients Ai and the interference order m. In an
ideal case e���=0.

The experimental setup used for measurement of
the phase birefringence B��� in a PMF is shown sche-
matically in Fig. 1, and it consists of a halogen lamp
HL-2000 (Ocean Optics), a collimating lens, micro-
scope objectives �10� /0.30�, a Glan–Taylor calcite
polarizer and analyzer (Thorlabs), an elliptical-core
PMF of length L= �356.5±0.5� mm, a fiber-optic spec-
trometer S2000 (Ocean Optics), and other compo-
nents. The PMF has a core made of GeO2-doped silica
glass �19.3 mol. %� and a cladding made of pure
silica. The dimensions of the fiber elliptical core are
approximately 3.2 �m�1.2 �m. The spectrometer,
with ��R�3 nm, has a spectral operation range from
350 to 1000 nm.

We demonstrate the ability of our method in mea-
suring the phase birefringence B��� in the PMF for
which the channeled spectrum shown in Fig. 2 was
recorded. It is clearly seen that a large number of the
spectral interference fringes of sufficiently high vis-
ibility are resolved. The procedure used to retrieve a
relative spectral phase �r��� from the recorded chan-
neled spectrum comprises two steps. In the first step,

the reference spectrum I0��� is retrieved from the
channeled spectrum I���. It is obtained as the inverse
Fourier transform of the zero-order component of the
Fourier spectrum of the recorded channeled spec-
trum. In the second step, the spectral phase function
�r��� is retrieved from the spectral signal S���
=I��� /I0���−1 using a procedure based on a win-
dowed Fourier transform [10].

The procedure used in the determining the coeffi-
cients Ai in Eq. (2) consists of two steps. In the first
step, a trust-region algorithm [11] is used for the re-
trieved �r��� to estimate m and Ai, which give the ab-
solute phase function. The integer value of m is used
in the second step when the coefficients Ai are ob-
tained by using the Levenberg–Marquardt least-
squares algorithm, which minimizes the function �2

=�i=1
N e2��i�, where �i are wavelengths at which the

spectrum was recorded. The procedure gives the
phase error function e��� shown in Fig. 2. Note that
this function consists of the artifacts (due to the
phase retrieval procedure [10]) that oscillate around
the zero value. Using the coefficients Ai and Eq. (2),
the absolute phase birefringence B��� shown in Fig. 3
was determined. For an error of ±0.5 mm in the
length of the PMF a relative error in the birefrin-
gence is about 0.1%. The contribution of the phase er-
ror e���= ±0.1 rad to the relative error is even
smaller. In Fig. 3 is also shown the birefringence B���
measured over a broader wavelength range. It was
retrieved from the group birefringence G��� mea-
sured by a technique of tandem interferometry [12]
and using B��0�=8.55�10−5 at �0=637.08 nm mea-
sured by a lateral force method applied in the wave-
length domain [5]. There is a nearly constant shift
between these dependences, and our method gives
B��0�=7.32�10−5, which represents a 14% difference
between the measurement results. The discrepancy
is probably caused by different birefringences of fiber
samples used in the experiments. Figure 3 demon-
strates very good agreement between the group bire-
fringences G��� measured by both techniques.

Fig. 2. (Color online) Channeled spectrum recorded for a
PMF and the phase error function e��� obtained by our
procedure.

Fig. 3. (Color online) Retrieved phase and group birefrin-
gences, B��� and G���, for a PMF compared with those
measured over a broader spectral range.
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We extended the use of our method in determining
the phase birefringence Bf���=ne���−no��� in a
quartz crystal, where ne��� and no��� are the phase
refractive indices of the extraordinary and ordinary
eigenwaves, respectively. Our setup was modified
(see the upper part of Fig. 1), and for the crystal of
thickness t= �4010±1� �m and the orientation of the
optic axis shown in Fig. 1 we recorded the channeled
spectrum shown in Fig. 4. It is clearly seen that a
large number of the spectral interference fringes of
sufficiently high visibility are resolved. The number
of the spectral fringes in the wavelength range from
500 to 900 nm is given by the group path difference
Gf���t in the crystal. Using the same procedure as
presented above, we retrieved the absolute birefrin-
gence Bf��� shown in Fig. 5. For the phase error
e����0.03 rad a relative error in the birefringence is
about 0.03%. The contribution of the thickness uncer-
tainty to the relative error is even smaller. The same
figure shows the birefringence Bf��� resulting from
the Sellmeier-like form of the dispersion relation for
the quartz crystal [8]. We clearly see that there is
very good agreement between these dependences,
which have slightly different dispersion slopes.
This is illustrated in Fig. 5 that shows the dispersion
functions for the group birefringence Gf���
=−�2d�Bf��� /�� /d�. The difference between them,
which is in general dependent on the fitting function,
is in part caused by the approximation (2) of the
phase birefringence dispersion Bf��� we used.

In conclusion, a simple technique for retrieving the
absolute phase birefringence from a channeled spec-
trum has been presented. It utilizes the approxima-
tive function of the birefringence dispersion and the
phase retrieval using a windowed Fourier transform.

The feasibility of the technique has been demon-
strated in measuring the phase birefringence in a
PMF or in a quartz crystal. We confirmed very good
agreement with the available data. The use of the
technique can be extended, e.g., for retrieving the dis-
persion of the differential phase refractive index from
a channeled spectrum originated from interference of
two spatial modes guided in a fiber.
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Abstract
We report on a white-light interferometric technique for a broad spectral range measurement
(e.g. 500–1600 nm) of chromatic dispersion of polarization modes in short-length optical
fibres. The technique utilizes an unbalanced Mach–Zehnder interferometer with a fibre under
test of known length inserted in one of the interferometer arms and the other arm with
adjustable path length. We record a series of spectral interferograms by VIS–NIR and NIR
fibre-optic spectrometers to measure the equalization wavelength as a function of the path
length difference, or equivalently the differential group index dispersion of one polarization
mode. The differential group dispersion of the other polarization mode is obtained from
measurement of the group modal birefringence dispersion. We verify the applicability of the
method by measuring the chromatic dispersion of polarization modes in a birefringent holey
fibre. We apply a five-term power series fit to the measured data and confirm by its
differentiation that the chromatic dispersion agrees well with that specified by the
manufacturer. We also measure by this technique the chromatic dispersion of polarization
modes in an elliptical-core fibre.

Keywords: spectral interferometry, white-light source, Mach–Zehnder interferometer, group
refractive index, chromatic dispersion, holey fibre, elliptical-core fibre

1. Introduction

A precise measurement of the group index dispersion of
optical fibres over a broad spectral range is important
in various research areas including high-speed optical
transmission systems, broadband optical communications and
supercontinuum generation. The chromatic dispersion, which
can be obtained by simply differentiating the group index, is a
significant characteristic that affects the bandwidth of a high-
speed optical transmission system through pulse broadening
and nonlinear optical distortion. Chromatic dispersion of
long-length optical fibres is determined by two widely used
methods [1]: the time-of-flight method, which measures
relative temporal delays for pulses at different wavelengths,
and the modulation phase shift technique [2], which measures

1 Author to whom any correspondence should be addressed.

the phase delay of a modulated signal as a function of
wavelength.

White-light interferometry based on the use of a
broadband source in combination with a standard Michelson
or a Mach–Zehnder interferometer [3] is considered as one of
the best tools for dispersion characterization of short-length
optical fibres. White-light interferometry usually utilizes a
temporal method or a spectral method. The temporal method
involves measurement of the group delay introduced by an
optical fibre which is placed in one of the interferometer
arms and evaluating the temporal shift of the peak of the
cross-correlation interferogram. As the central wavelength
is varied, the relative group delay of different frequency
components is observed directly [4]. Alternatively, the spectral
distribution of the phase delay over the full bandwidth of the
white-light source is obtained in a single measurement by a
Fourier transform of the cross-correlation interferogram [5].
The dispersion characteristics of the fibre sample under study

0957-0233/10/045302+07$30.00 1 © 2010 IOP Publishing Ltd Printed in the UK & the USA
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can be obtained by simply differentiating the measured phase
delay.

The spectral method is based on the observation of
spectrally resolved interference fringes (channelled spectrum)
in the vicinity [6–11] of a stationary-phase point or far from
it [12] and involves measurement of the phase or period of
the spectral fringes. The stationary-phase point appears in
the recorded spectral interferogram when the overall group
optical path difference (OPD) between two beams in the
interferometer is close to zero. The main limitation of this
method is related to the fact that the spectral interference
fringes far from the stationary-phase point [12] become
difficult to resolve. The measurement of the group refractive
index dispersion of a given fibre is still possible in the vicinity
of the stationary-phase point if one moves it in successive steps
to different wavelengths and repeats the measurement.

The feasibility of the interferometric techniques has been
demonstrated in measuring the dispersion in microstructured
and holey fibres [13–19]. Recently, the dispersion of
birefringent microstructured fibres useful in generating
controllable supercontinuum has been investigated [20].
Both fibre-optic [14, 17] and bulk-optic [15, 16, 18–20]
implementations of a Michelson [14, 15, 17] or a Mach–
Zehnder [16, 18, 20] interferometer were utilized. The
dispersion parameters were obtained either by fitting the
measured spectrum to the theoretical one when the location
of the stationary-phase point was adjusted by the path length
in air [14, 19] or by measuring the location of the stationary-
phase point (the equalization wavelength [16]) as a function
of the path length difference [15, 16, 18].

The aim of this paper is to present a technique based
on white-light spectral interferometry for measuring the
chromatic dispersion of polarization modes in short-length
optical fibres over a broad wavelength range (e.g. 500–
1600 nm). The technique comprises the recording of a series
of spectral interferograms in a Mach–Zehnder interferometer
with the fibre of known length placed in one of the
interferometer arms and the other arm with adjustable path
length. We measure the equalization wavelength as a function
of the path length difference, or equivalently the differential
group index dispersion of one polarization mode. The
differential group dispersion of the other polarization mode is
obtained from measurement of the group modal birefringence
dispersion. First, we verify the applicability of the method by
measuring the chromatic dispersion of polarization modes in
a birefringent holey fibre. We confirm very good agreement
with data specified by the manufacturer. Second, we measure
the chromatic dispersion of polarization modes in an elliptical-
core fibre.

2. Experimental method

Let us consider an unbalanced Mach–Zehnder interferometer
(see figure 1) with a fibre under test of length z that
supports two polarization modes over a broad wavelength
range with the effective refractive indices nx(λ) and ny(λ).
The interferometer includes optical components (lens 1 and
lens 2) to which the effective thickness d and refractive index

nc(λ) correspond. The fibre is inserted into the first (test) arm
of the interferometer and the other (reference) arm has the
adjustable path length L in air. If the polarizer at the output
of the interferometer discriminates the x polarization only, the
OPD �MZ(λ) and the group OPD �

g
MZ(λ) between the beams

in the interferometer are given by

�MZ(λ) = L − l − nx(λ)z − nc(λ)d, (1)

and

�
g
MZ(λ) = L − l − Nx(λ)z − Nc(λ)d, (2)

where l is the path length in the air in the test arm and Nx(λ) and
Nc(λ) are the group refractive indices satisfying the relation

N(λ) = n(λ) − λ
dn(λ)

dλ
. (3)

Let us consider now that the spectral interference fringes can
be resolved by a spectrometer used at the output of the Mach–
Zehnder interferometer. The spectral signal (interference
fringes) recorded by the spectrometer of a Gaussian response
function is given by [26]

SMZ(λ) = 1 + V (λ) exp
{−(π2/2)

[
�

g
MZ(λ)�λR/λ2

]2}

× cos[(2π/λ)�MZ(λ)], (4)

where V (λ) is a visibility term dependent on the overlap of
the beams from the test and the reference arms, and �λR is the
width of the spectrometer response function, which affects the
number of fringes resolved.

The spectral interference fringes recorded in the set-up
have the highest visibility and the largest period in the vicinity
of a stationary-phase point for which the group OPD �

g
MZ(λ)

is zero at one specific wavelength λ0, referred to as the
equalization wavelength [22]. The condition �

g
MZ(λ0) = 0

gives for the overall path length L = Lo = Lo(λ0) for which
the equalization wavelength λ0 is resolved in the recorded
spectrum the relation

Lo(λ0) = Nx(λ0)z + Nc(λ0)d + l. (5)

If we choose one of the equalization wavelengths, λ0r , as
the reference one, we can introduce the overall path length
difference �Lo(λ0) = Lo(λ0) − Lo(λ0r ) given by

�Lo(λ0) = �Nx(λ0)z + �Nc(λ0)d, (6)

where �Nx(λ0) = Nx(λ0) − Nx(λ0r ) and �Nc(λ0) =
Nc(λ0) − Nc(λ0r ) are the corresponding differential group
refractive indices.

Next, let us consider the unbalanced Mach–Zehnder
interferometer in which the fibre is removed and which is
used for measuring the differential group dispersion of the
optical components [22]. This differential group dispersion
has to be subtracted from the overall group dispersion to
determine the group dispersion of the fibre polarization mode
alone. The corresponding path length difference is denoted as
�Lc(λ0) = Lc(λ0) − Lc(λ0r ) and is given by

�Lc(λ0) = �Nc(λ0)d. (7)

Using equations (6) and (7), we obtain the relation

�Nx(λ0) = [�Lo(λ0) − �Lc(λ0)]/z, (8)

2
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Figure 1. Experimental set-up with an unbalanced Mach–Zehnder interferometer to measure the chromatic dispersion of polarization
modes in optical fibres.

which means that the differential group index �Nx(λ0) of the
x-polarization mode in the fibre can be measured directly as a
function of the equalization wavelength λ0.

The measured wavelength dependence of the differential
group refractive index can be fitted to a function �Nx(λ) from
which the chromatic dispersion Dx(λ) can be evaluated by
using the relation

Dx(λ) = 1

c

d[�Nx(λ)]

dλ
, (9)

where c is the velocity of light in vacuum. Similarly, if the
polarizer at the output of the interferometer discriminates the
y polarization only, both the differential group index �Ny(λ0)

and chromatic dispersion Dy(λ) of the y-polarization mode in
the fibre can also be measured.

For highly birefringent fibres supporting two polarization
modes a simple white-light spectral interferometric technique
employing a Michelson interferometer [23] is also available
that can be used for measuring the group modal birefringence
G(λ) defined as

G(λ) = Nx(λ) − Ny(λ). (10)

From the group modal birefringence G(λ) we can deduce the
chromatic-dispersion difference Dp(λ) defined as

Dp(λ) = Dx(λ) − Dy(λ) = 1

c

d[G(λ)]

dλ
, (11)

or the chromatic dispersion Dy(λ) of the y-polarization mode
if the chromatic dispersion Dx(λ) of the x-polarization mode
is known.

3. Experimental set-up

The experimental set-up used in the application of
spectral-domain white-light interferometry for measuring
the chromatic dispersion of polarization modes in optical
fibres is shown in figure 1. It consists of a white-light
source: a quartz–tungsten–halogen lamp (50 W) with
launching optics, optical fibre of cut-off wavelength as
short as possible, a collimating lens, a bulk-optic Mach–
Zehnder interferometer with plate beam splitters (BSW07,
Thorlabs), a micropositioner connected to mirrors 3 and 4
of the interferometer, an aperture, a Glan–Taylor polarizer
(Thorlabs), a microscope objective, micropositioners, a fibre-
optic spectrometer (S2000, NIR-512, Ocean Optics), an A/D

converter and a personal computer. The spectral signal is
recorded by the spectrometer in the transmission mode after a
dark spectrum and a reference one (without the interference)
are stored. The spectrometers S2000 and NIR-516 have a
spectral operation range from 350 to 1000 nm and from 850
to 1700 nm, respectively. For both spectrometers we used the
read optical fibre with a 50 μm core diameter which results in a
Gaussian response function with �λR ≈ 3 nm for the first one
[26]. In the test arm of the interferometer a combination of a
fibre under test (fibre sample) and optical components (shown
schematically in figure 1 as lens 1 and lens 2) represented by a
microscope objective (10×/0.30, Meopta) and an achromatic
lens (74-ACR, Ocean Optics) is placed.

We measured the chromatic dispersion of polarization
modes for two different samples of birefringent fibres. The
first sample is pure silica highly birefringent holey fibre of
length z = 48 850 μm (PM-1550-01, Thorlabs, see its SEM
photograph in [21]). The geometrical parameters of the holey
fibre are as follows: pitch distance 4.30 μm, diameter of large
holes 4.42 μm and diameter of the cladding holes 2.34 μm.
This fibre supports the even LP11 spatial mode for wavelengths
shorter than 1 μm. The second sample is an elliptical-
core highly birefringent fibre of length z = 60 500 μm with
the core made of GeO2-doped silica glass (19.3 mol%) and
the cladding made of pure silica. The dimensions of the fibre
elliptical core are approximately 3.2 μm × 1.2 μm. The
fibre supports the even LP11 spatial mode for wavelengths
shorter than 630 nm. The fibre lengths were measured by a
micrometer with an accuracy of ±10 μm. The wavelength
dependence of the group modal birefringence G(λ) in fibres
under test was measured by a technique of spectral-domain
tandem interferometry [23].

4. Experimental results and discussion

Prior to the measurement we utilized the main advantage of
the set-up, which is in fibre connection of a light source (that
can be varied) with the interferometer. We used a laser diode
(λ ≈ 670 nm) instead of the halogen lamp to check the precise
placement and alignment of the optical components in the
test arm by observing the interference pattern. Moreover, the
proper excitation of the fibre core by a microscope objective
was easily inspected at the output of the test arm. Even if
we used short-length fibres in which higher order modes can

3
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Figure 2. Examples of the spectral signals recorded for two
polarization modes and the same path length difference adjusted in
the interferometer.

propagate, the excitation of only the fundamental mode was
reached. This was indicated by the elliptical-shape far-field
pattern of the fundamental mode (with the laser diode) and
by the spectral signals (with the halogen lamp) not distorted
by the higher order modes. Note that the long axis of the
far-field pattern is along the short axis of the elliptical core of
the fibre. In order to measure the chromatic dispersion of the
x- or y-polarization mode, the polarizer needs to be oriented
along the short or the long axis of the far-field pattern.

In the dispersion measurement, such a path length in the
reference arm of the interferometer was adjusted to resolve
spectral interference fringes and to determine the equalization
wavelength. We displaced the stage with mirrors 3 and 4
manually by using the micropositioner with a constant step
ranging from 10 to 50 μm and performed recording of the
corresponding spectral signals. The spectral signals recorded
by the first spectrometer (S2000) revealed that the equalization
wavelength λ0 can be resolved in the spectral range from 509
to 888 nm. Similarly, the spectral signals recorded by the
second spectrometer (NIR-516) revealed that the equalization
wavelength λ0 can be resolved in the spectral range from 902
to 1591 nm. Figure 2 shows an example of the spectral signal
recorded by the second spectrometer when the polarizer was
oriented along the longer axis of the elliptical core of the
first fibre sample. It clearly shows the effect of the limiting
resolving power of the spectrometer on the visibility of the
spectral interference fringes (see equation (4)) in the vicinities
of two different equalization wavelengths λ01 = 950.57 nm
and λ02 = 1363.52 nm. This is due to the minimum in the
group index Nx(λ) or in the differential group index �Nx(λ)

located between the wavelengths λ01 and λ02. In figure 2
is also shown an example of the spectral signal recorded
for the same path length adjusted in the reference arm of
the interferometer and for the y-polarization mode when the
spectral interference fringes are resolved in the vicinities of
two different equalization wavelengths λ01 = 967.86 nm and
λ02 = 1308.06 nm.
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Figure 3. Measured differential group refractive indices (crosses)
for two polarization modes as a function of the wavelength with the
corresponding fits (solid lines).

In our case, when the differential group index �Ny(λ0)

is higher than �Nx(λ0), two orientations of the polarizer
enable the apparent discrimination between the spectral
signals corresponding to the two polarization modes. This
is illustrated in figure 3 which shows by the crosses the
measured differential group indices �Nx(λ0) and �Ny(λ0)

for the first fibre sample determined for respective equalization
wavelengths λ0 when the group dispersion of the optical
components was subtracted [22]. Note that some experimental
data are missed due to the superimposed interference
fringes for which the equalization wavelengths cannot be
resolved. The equalization wavelengths were determined by
the autoconvolution method [27] with errors of 0.3 or 1.7 nm
corresponding to the wavelength difference for adjacent pixels
of the linear array detectors of the spectrometers. The
measured differential group index �Nx(λ0) is shown in
figure 3 by the lower crosses, together with a five-term power
series fit [17]

�Nx(λ) = a1

λ4
+

a2

λ2
+ a3 + a4λ

2 + a5λ
4. (12)

For the same fibre we measured by a technique of
white-light spectral interferometry (see a previous paper [22])
the group modal birefringence G(λ) as a function of the
wavelength λ. It is shown in figure 4 by the crosses together
with a fit using the relation

G(λ) = (1 − m)ξλm, (13)

where ξ and m are constants. This relation results from the
works [24, 25] treating air–silica birefringent holey fibres
in such a way that the phase modal birefringence B(λ) =
nx(λ) − ny(λ) can be approximated as

B(λ) = ξλm. (14)

The chromatic-dispersion difference Dp(λ) is given by

Dp(λ) = m(1 − m)ξλm−1/c. (15)
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Figure 4. Measured group modal birefringence (crosses) in a holey
fibre with a fit (solid line) and the chromatic-dispersion difference as
a function of the wavelength.
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Figure 5. Chromatic dispersion of two polarization modes in a
holey fibre and pure silica as a function of the wavelength.

A least-squares fit of G(λ) to the experimental data, which
is shown in figure 4 by the solid line, gives m = 2.786. In
the same figure is shown the chromatic-dispersion difference
Dp(λ) as a function of wavelength λ evaluated by using
equation (15). The fit according to equation (13) was used
to deduce the wavelength dependence of �Ny(λ) from the
wavelength dependence of �Nx(λ). It is shown in figure 3 by
the upper solid line and it demonstrates very good agreement
with experimental values shown by the crosses. Similarly, the
chromatic-dispersion difference is negative and it decreases
with increasing wavelength which causes, as illustrated in
figure 5, the chromatic dispersion Dy(λ) to be higher than
Dx(λ) with greater separation at longer wavelengths. The
chromatic dispersion Dx(λ) corresponding to the fit given by
equation (12) is shown in figure 5 together with the material
dispersion of pure silica. It is clearly seen that the chromatic
dispersion for the polarization modes of the fibre is higher than
that for pure silica so that the fibre acts nearly as dispersion-
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Figure 6. Measured differential group refractive index (crosses) for
the x-polarization mode with a fit (solid line) and the chromatic
dispersion of the x-polarization mode and doped silica as a function
of the wavelength.

shifted fibre. The difference between these dispersions can
be attributed to the waveguide dispersion that is higher for
longer wavelengths than for shorter ones. This behaviour is
expected due to the well-known fact that the contribution from
waveguide dispersion increases with wavelength. Physically,
this is because the mode is well confined to the core for short
wavelengths, and the light therefore primarily interacts with
the bulk material; as the mode size increases with wavelength,
the light will increase its interaction with the surrounding
air holes of the fibre. The values Dx = 55 ps km−1 nm−1

and Dy = 60 ps km−1 nm−1 measured at a wavelength of
1550 nm with a relative error of a few tenths of a per cent are
in very good agreement with values Dx = 54 ps km−1 nm−1

and Dy = 59 ps km−1 nm−1 specified by the manufacturer.
For the second fibre sample, we revealed from the spectral

signals recorded by both spectrometers that the equalization
wavelength λ0 can be resolved in the spectral range from 540
to 1380 nm. Figure 6 shows by the crosses the measured
differential group index �Nx(λ0) determined for respective
equalization wavelengths λ0 when the polarizer was oriented
along the longer axis of the elliptical core of the fibre sample
and when the group dispersion of the optical components
was subtracted. The solid line in figure 6 corresponds to
a five-term power series fit (12) and in the same figure
is shown the chromatic dispersion Dx(λ) together with the
material dispersion of doped silica. It is clearly seen that in
contrast to the first fibre sample the chromatic dispersion for
the x-polarization mode of the second fibre sample is lower
than that for the GeO2-doped silica glass (19.3 mol%) [28].
This is caused by the contribution of the negative waveguide
dispersion in the elliptical-core fibre. It should be noted here
that no apparent discrimination between the spectral signals
corresponding to the x- and y-polarization modes was revealed
in the measured spectral range. This is owing to a low-group
modal birefringence and short length of the optical fibre used
in the experiment.

The group modal birefringence G(λ) measured as a
function of the wavelength λ for the second fibre sample is

5
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Figure 7. Measured group modal birefringence (crosses) in an
elliptical-core fibre with a fit (solid line) and the
chromatic-dispersion difference as a function of the wavelength.

shown in figure 7 by the crosses together with a seven-term
power series fit. In contrast to the first fibre sample for which
the group modal birefringence is negative and its absolute value
increases with increasing wavelength, the one for the second
fibre sample is positive with maximum at a wavelength of about
991 nm. At the same wavelength the chromatic-dispersion
difference reaches the zero value as figure 7 illustrates, which
shows Dp(λ) as a function of the wavelength λ evaluated by
using equation (11). It is supposed that the wavelength of the
zero chromatic-dispersion difference can be tuned by the fibre
geometry and fibre glass composition.

5. Conclusions

We used a white-light spectral interferometric technique for
measuring the chromatic dispersion of polarization modes
supported by short-length optical fibres over a broad spectral
range (e.g. 500–1600 nm). The technique utilized an
unbalanced Mach–Zehnder interferometer with a fibre under
test of known length inserted into one of the interferometer
arms and the other arm with adjustable path length. From a
series of spectral signals recorded by VIS-NIR and NIR fibre-
optic spectrometers we measured the equalization wavelength
as a function of the path length difference, or equivalently the
differential group index dispersion of one polarization mode.
The differential group dispersion of the other polarization
mode was obtained from measurement of the group modal
birefringence dispersion. We verified the applicability of the
method by differentiating the measured data to retrieve the
chromatic dispersion of polarization modes in a birefringent
holey fibre. The results obtained were in very good agreement
with those specified by the manufacturer. We also measured
the chromatic dispersion of polarization modes in an elliptical-
core fibre. The characteristics that include chromatic, group
modal birefringence and chromatic-difference dispersions
substantially differ from those for the holey fibre. As an
example, the chromatic-dispersion difference of the elliptical-
core fibre reaches the zero value at a specified wavelength.

The described method, whose main advantage is in
inspection of the optical field at the output of the test
arm, is easy to implement and it offers sufficiently high
measurement precision achieved with simple and cost-
effective instrumentation. The method can be used for
example to measure the chromatic dispersion in birefringent
microstructured fibres that are useful for the supercontinuum
generation. The method can be extended for dispersion
characterization of other fibres guiding two polarization modes
over a broad spectral range (PCFs, Panda and bow-tie fibres).
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[15] Labonté L, Roy P, Pagnoux F, Louradour F, Restoin C,
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M. Kadulová Department of Physics, Technical University Ostrava, 17. listopadu 15, 708 33 Ostrava-Poruba, Czech
Republic

D. Ciprian Department of Physics, Technical University Ostrava, 17. listopadu 15, 708 33 Ostrava-Poruba, Czech
Republic

We report on a simple spectral interferometric technique for chromatic dispersion measurement of a short length optical fibre including
the zero-dispersion wavelength. The method utilizes a supercontinuum source, a dispersion balanced Mach-Zehnder interferometer and a
fibre under test of known length inserted in one of the interferometer arms and the other arm with adjustable path length. The method is
based on resolving one spectral interferogram (spectral fringes) by a low-resolution NIR spectrometer. The fringe order versus the precise
wavelength position of the interference extreme in the recorded spectral signal is fitted to the approximate function from which the
chromatic dispersion is obtained. We verify the applicability of the method by measuring the chromatic dispersion of two polarization
modes in a birefringent holey fibre. The measurement results are compared with those obtained by a broad spectral range (500–1600 nm)
measurement method, and good agreement is confirmed.
[DOI: http://dx.doi.org/10.2971/jeos.2012.12017]

Keywords: spectral interferometry, Mach-Zehnder interferometer, holey fibre, chromatic dispersion, zero-dispersion wavelength

1 INTRODUCTION

The chromatic dispersion, which is a significant characteristic
of optical fibre, affects the bandwidth of a high speed opti-
cal transmission system through pulse broadening and non-
linear optical distortion. Chromatic dispersion of long length
optical fibres is determined by two widely used methods [1]:
the time-of-flight method which measures relative temporal
delays for pulses at different wavelengths, and the modula-
tion phase shift technique which measures the phase delay
of a modulated signal as a function of wavelength. Recently,
a rapid and accurate spectral interferometry-based measure-
ment method using an asymmetric Sagnac interferometer has
been presented [2].

White-light interferometry based on the use of a broadband
source in combination with a standard Michelson or a Mach-
Zehnder interferometer [3] is considered as one of the best
tools for dispersion characterization of short length optical
fibres. White-light interferometry usually utilizes a temporal
method [4] or a spectral method [5]–[13]. The spectral method
is based on the observation of spectral fringes in the vicinity of
a stationary-phase point [5]–[12] or far from it [13]. The feasi-
bility of the interferometric techniques has been demonstrated
in measuring the dispersion of holey fibres [14]–[16] usable for
supercontinuum generation [17]. However, an accurate con-
trol of the chromatic dispersion is required for the application
[18]. As an example, a highly-birefringent holey fibre [19] has
been designed and fabricated with the zero-dispersion wave-
length (ZDW) close to a 1064 nm of a microchip laser, enabling

savings in size and cost of a supercontinuum source. More-
over, these broadband and high-power sources have enabled
to increase the comfort of dispersion measurement [16].

In this paper, a simple technique, based on spectral interfer-
ometry and employing a NIR low-resolution spectrometer, is
used for chromatic dispersion measurement of a short length
optical fibre including the ZDW. The method utilizes a super-
continuum source, a dispersion balanced Mach-Zehnder in-
terferometer and a fibre under test of known length placed
in one arm of the interferometer while the other arm has ad-
justable path length. The method is based on resolving one
spectral interferogram from which the fringe order versus the
precise wavelength position of the interference extreme is ob-
tained [20]. This dependence is fitted to the approximate func-
tion enabling to obtain the chromatic dispersion. We verify
the applicability of the method by measuring the chromatic
dispersion of two polarization modes in a birefringent holey
fibre. Good agreement between the measurement results and
those obtained by a broad spectral range (500–1600 nm) mea-
surement method is confirmed.

2 EXPERIMENTAL METHOD

Consider a dispersion balanced Mach-Zehnder interferometer
(see Figure 1) and a fibre under test of length z that supports
two polarization modes over a broad wavelength range. The

Received March 14, 2012; revised ms. received April 23, 2012; published May 30, 2012 ISSN 1990-2573
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FIG. 1 Experimental set-up for measuring the chromatic dispersion of a fibre under

test.

fibre, which is characterized by the effective indices nx(λ) and
ny(λ), is inserted into the first (test) arm of the interferometer
and the other (reference) arm has the adjustable path length L
in the air. If the analyser at the output interferometer discrimi-
nates the x polarization only, the optical path difference (OPD)
∆MZ(λ) between the beams in the interferometer is given by

∆MZ(λ) = L− l − nx(λ)z, (1)

where l is the path length in the air in the test arm. The group
OPD ∆g

MZ(λ) is similar to Eq. (1), in which nx(λ) is replaced
by the group effective index Nx(λ) given by the relation

Nx(λ) = nx(λ)− λ
dnx(λ)

dλ
. (2)

Next, consider that the spectral interference fringes can be
resolved by a spectrometer used at the output of the Mach-
Zehnder interferometer. The spectral signal (interference
fringes) recorded by the spectrometer of a Gaussian response
function can be expressed as [12]

SMZ(λ) =1 + V exp{−(π2/2)[∆g
MZ(λ)∆λR/λ2]2}

× cos[(2π/λ)∆MZ(λ)], (3)

where V is a visibility term and ∆λR is the width of the spec-
trometer response function.

To resolve spectral fringes in a spectral range from λ1 to
λ2, the group OPD ∆g

MZ(λ) must satisfy the condition
∆g

MZ(λ) < λ2
1/∆λR. We can resolve in the recorded spectral

interferogram a suitable number of spectral fringes. The
interference maximum (a bright fringe) satisfies the relation

L− l − nx(λ)z = mλ, (4)

where m is the order of interference of the fringes. After count-
ing i bright spectral fringes in the direction of shorter wave-
lengths, Eq. (4) can be written as

[L− l − nx(λ)z]/λ = m + i. (5)

The wavelength dependence of the effective index nx(λ) can
be well approximated by a modified Cauchy dispersion for-
mula [21]

nx(λ) = A1λ−4 + A2λ−2 + A3 + A4λ2 + A5λ4, (6)

where Ai are the coefficients. On substituting from Eq. (5) into
Eq. (6), we obtain

a1λ−5 + a2λ−3 + a3λ−1 + a4λ + a5λ3 = m + i, (7)

where a1 = −A1z, a2 = −A2z, a3 = L− l − A3z, a4 = −A4z,
and a5 = −A5z. By a least-squares fitting of Eq. (7), the con-
stants ai and m are determined, and knowing the fibre length
z, the wavelength dependence of the group effective index
Nx(λ) can be deduced from Eqs. (2) and (6). The chromatic
dispersion Dx(λ) can be evaluated as

Dx(λ) =
1
c

dNx(λ)

dλ

=
1
c
(−20A1λ−5 − 6A2λ−3 − 2A4λ− 12A5λ3), (8)

where c is the velocity of light in vacuum. The ZDW λx
0

is given by Dx(λx
0) = 0. Similarly, the dispersion slope

Sx(λ) = dNx(λ)/dλ and its value Sx(λx
0) at the ZDW λx

0 can
be determined. If the analyser at the output of the interferom-
eter discriminates the y polarization only, the chromatic dis-
persion Dy(λ), the ZDW λ

y
0 given by Dy(λ

y
0) = 0 and the dis-

persion slope Sy(λ
y
0) of the y-polarization mode can also be

measured.

The method can also be applied for fibres with two ZDWs
provided that a sufficient number of spectral fringes can be re-
solved in a measured spectral range. In addition, the degree of
Laurent polynomial (a modified Cauchy dispersion formula)
used in the data evaluation has to be chosen with respect to
this fact.

3 EXPERIMENTAL CONFIGURATION

The set-up for spectral interferometry-based measurement of
the chromatic dispersion of the polarization modes supported
by a fibre under test, including the ZDW, is shown in Fig-
ure 1. It consists of supercontinuum source SCS (SC450-4, Fi-
anium) with a splitter (Splitter-900, Fianium) and endlessly
single-mode fibre ESMF (FDS-PCF, Fianium), collimator C,
polarizer P and analyser A (LPVIS050, Thorlabs), a bulk-optic
Mach-Zehnder interferometer with plate beam splitters BS
(BSW07, Thorlabs), a micropositioner connected to mirrors
M3 and M4 of the interferometer, three microscope objectives
MO (10×/0.30, Meopta), two achromatic lenses AL (74-ACR,
Ocean Optics), aperture Ap, a fibre-optic spectrometer (NIR-
512, Ocean Optics) and a personal computer.

The spectral signal is recorded by the spectrometer in the
transmission mode after a dark spectrum and a reference spec-
trum (without the interference) are stored. The spectrometer
has a spectral operation range from 850 to 1700 nm and its
read optical fibre with a 50 µm core diameter results in a Gaus-
sian response function of ∆λR ≈9 nm. In the test arm of the
interferometer, a fibre sample of length z = (77640± 10) µm
is placed. The fibre sample is a pure silica birefringent holey
fibre similar to that analysed in a previous paper [9].

4 EXPERIMENTAL RESULTS AND
DISCUSSION

Prior to the measurement we utilized the main advantage of
the set-up, which is in fibre connection of a light source (that
can be varied) with the interferometer. We used a laser diode
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FIG. 2 Example of the recorded spectral signal (markers) together with a fit (solid

curve): (a) x-polarization mode, (b) y-polarization mode.

(λ ≈ 670 nm) instead of the supercontinuum source to check
the precise placement and alignment of the optical compo-
nents in both arms of the interferometer by observing the in-
terference pattern. The proper excitation of the fibre was also
inspected [9], and in order to measure the chromatic disper-
sion of the x- or y-polarization mode, the polarizer and anal-
yser need to be oriented along the short or the long axis of the
far-field pattern [12].

In the chromatic dispersion measurement, such a path length
in the reference arm of the interferometer was adjusted to re-
solve interference fringes in a spectral range as wide as pos-
sible. Figure 2(a) shows an example of the spectral signal
recorded by the spectrometer for the x-polarization mode. It
clearly shows the effect of the limiting resolving power of
the spectrometer on the visibility of the spectral interference
fringes [see Eq. (3)]. The visibility is the highest in the vicini-
ties of two different equalization wavelengths at which the
group OPD in the interferometer is zero. Between the two
equalization wavelengths the minimum in the group effective
index Nx(λ) or equivalently the ZDW is located.

The procedure used to retrieve the chromatic dispersion
Dx(λ) from the recorded spectral signal consists of two steps.
In the first step, the wavelengths of interference maxima and
minima are determined for the recorded signal. The spectral
interference fringes are numbered in such a way that the
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FIG. 3 Fringe order (markers) as a function of wavelength retrieved from the recorded

spectral signal shown in Figure 2: (a) x-polarization mode, (b) y-polarization mode.

The solid lines correspond to the fit of Eq. (7).

fringe order increases in the direction of longer wavelengths
to the first equalization wavelength (≈ 0.95 µm), decreases to
the second equalization wavelength (≈ 1.28 µm) and from it
once again increases in the direction of longer wavelengths.
Figure 3(a) shows by the markers the dependence of the
fringe order on the wavelength obtained from the spectrum
shown in Figure 2(a). In the second step, a least-squares fit of
Eq. (7) is used to the dependence which gives the constants
ai and m. Figure 3(a) shows the results of the fit by the solid
line. Then the constants ai and the known fibre length z
give the constants Ai needed in the determination of the
chromatic dispersion Dx(λ) according to Eq. (8). It is shown
in Figure 4(a) together with Dx(λ) measured in the same
set-up by a broad spectral range (500–1600 nm) measurement
technique presented in a previous paper [12]. It is clearly seen
that both functions agree well in the vicinity of the ZDW.
Their different courses, especially in a short-wavelength
range, are caused by the approximation (6) used in this
narrower spectral range.

The constants ai obtained from a least-squares fit of Eq. (7) can
serve as the first estimate in a least-squares fit of Eq. (3) to the
recorded spectral signal. The result of the fit is shown in Fig-
ure 2(a) by the solid curve and it illustrates very good agree-
ment. The corresponding ZDWs λx

0 and the dispersion slopes
Sx(λx

0) are listed in Table 1. We estimate the error of determin-
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λx
0 (nm) Sx(λx

0) (ps km−1nm−2) λ
y
0 (nm) Sy(λ

y
0) (ps km−1nm−2)

Fit of Eq. (3) 1097.4 0.161 1083.6 0.172
Fit of Eq. (7) 1097.7 0.162 1083.3 0.172
Method [12] 1097.4 0.168 1084.0 0.178

TABLE 1 The ZDW λ0 and the dispersion slope S(λ0) for x- and y-polarization modes.
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FIG. 4 Chromatic dispersion obtained from the fit shown in Figure 3: (a) x-polarization

mode, (b) y-polarization mode. The dashed lines are the result of a broad spectral

range measurement.

ing the ZDW, which is affected by the wavelength sampling of
a low-resolution spectrometer [12], below 1 nm and the error
of the dispersion slope below 10 fs km−1nm−2. It is supposed
that the smaller error in determining the ZDW can be attained
using an optical spectrum analyser with a denser wavelength
sampling. Similar procedure with all the mentioned steps was
used for the spectral signal shown in Figure 2(b), i.e., for the
y-polarization mode. Figure 4(b) shows the chromatic disper-
sion Dy(λ) which is shifted to shorter wavelengths in com-
parison with Dx(λ). Table 1 then lists the ZDWs λ

y
0 and the

dispersion slopes Sy(λ
y
0).

5 CONCLUSIONS

In this paper, a simple technique for chromatic dispersion
measurement of short length optical fibres, including the
ZDW, is presented. The technique, which is based on spec-

tral interferometry employing a low-resolution NIR spectrom-
eter, utilizes a supercontinuum source, a dispersion balanced
Mach-Zehnder interferometer and a fibre under test placed
in one arm of the interferometer and the other arm with ad-
justable path length. Within the method, the precise wave-
length positions of the interference maxima and minima in
one spectral interferogram are determined. These are used to
retrieve the fringe order versus the wavelength which is fit-
ted to the approximate function enabling to obtain the chro-
matic dispersion. We verify the applicability of the method
by measuring the chromatic dispersion of two polarization
modes in a birefringent holey fibre. The measurement results
are compared with those obtained by a broad spectral range
measurement method [12], and good agreement is confirmed.
The use of the method, whose main advantage is in the mea-
surement comfort, i.e. in rapid and accurate measurements of
the ZDW and the dispersion slope, can be extended for fibres
with the ZDW in the VIS spectral range. Moreover, in com-
parison with fibre-optic implementations of measuring set-
ups the presented one is dispersion balanced and it enables
an easy inspection of the optical field at the output of the test
arm of the interferometer.
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Abstract

Spectral interference of white-light beams propagating through a tandem configuration of birefringent crystal and sensing birefringent
fiber is analyzed theoretically and experimentally. The spectral interference law is expressed analytically under the condition of a Gauss-
ian response function of a spectrometer taking into account the dispersion of birefringence in the crystal and in the fiber. Two types of
spectral interferograms are modeled knowing dispersion characteristics of the sensing fiber and using a quartz crystal of the positive or a
calcite crystal of the negative birefringence. The theoretical analysis is accompanied by two experiments employing a highly birefringent
fiber and a birefringent quartz crystal of two suitable thicknesses. Within both experiments the spectral interference fringes are resolved
in accordance with the theory with phases dependent on the fiber length.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Fiber optic white-light interferometry [1] has attracted
much interest in recent years and has become an important
technique for measuring physical quantities, such as dis-
placement, temperature, pressure, strain and refractive
index. The main advantages of white-light interferometric
systems are the possibility of absolute measurements, a sig-
nificant reduction in the noise level, an insensitivity to opti-
cal power fluctuations and the possibility of multiplexing a
large number of sensors in a measuring system. Numerous
applications of fiber optic white-light interferometric sen-
sors have been reported [2–6].

A typical, simple example of a fiber optic white-light
interferometric system is a setup comprising a white-light
source, a sensor interferometer made of a birefringent

optical fiber, a receiving interferometer, e.g., another
birefringent fiber or Wollaston prism [7,8]. The sensor
element is subjected to the measured quantity and intro-
duces a phase shift between two eigenwaves of propa-
gated light. This phase shift can be detected on the
receiving interferometer, in which controlled introduced
changes of phase shift must be possible. Because of the
different group delays introduced by the sensor and by
the receiving interferometer, many of the interference
patterns can be raised and detected only if the resultant
group delay, responsible for the detected pattern, is smal-
ler than the group delay of the broadband source. Pat-
tern contrasts depend on the alignment of all elements
of the setup. The technique is an extension of time-
domain method used to measure phase and group modal
birefringence in optical fibers [9]. Most recently, we have
proposed and realized a new spectral-domain white-light
interferometric method to measure the group birefrin-
gence in a fiber sample [10] and in a calcite crystal
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[11,12]. The technique of tandem interferometry, which
uses a Michelson interferometer as an element with
adjustable compensating optical path difference (OPD),
can be modified to realize a new spectral-domain sensor
configuration.

In this paper, we analyse theoretically and experimen-
tally spectral interference of white-light beams propagat-
ing through a tandem configuration of birefringent
crystal and sensing birefringent fiber. We express the spec-
tral interference law analytically under the condition of a
Gaussian response function of a spectrometer taking into
account the dispersion of birefringence in the crystal and
in the fiber. We reveal that the visibility of spectral inter-
ference fringes is highest for the group OPD in the crystal
compensating the group OPD in the fiber. We model two
types of spectral interferograms knowing dispersion char-
acteristics of the sensing fiber and using a quartz crystal
of the positive or a calcite crystal of the negative birefrin-
gence. Sensing capabilities of the configuration are dem-
onstrated by the change of the phase of spectral fringes
due to the change of fiber length. We perform two exper-
iments with a highly birefringent fiber and a birefringent
quartz crystal of two suitable thicknesses. We confirm in
accordance with the theory that the wavelength-dependent
phases of spectral interference fringes vary with the fiber
length.

2. Theoretical background

In this section, first the spectral intensity in the fre-
quency domain will be expressed for a tandem configura-
tion of uniaxial birefringent crystal and birefringent fiber.
Then, the wavelength-domain spectral intensity will be
specified for two cases of a uniaxial crystal with the positive
or the negative birefringence.

2.1. The spectral intensity in the frequency domain

First, let us consider the experimental setup shown in
Fig. 1 that consists of a white-light source (WLS), a colli-
mating lens (L1), a polarizer (P), a uniaxial birefringent
crystal (BC) of thickness d, a microscope objective lens
(L2), a sensing highly birefringent optical fiber (SHBOF)
of length L, an analyzer (A) and a spectrometer. The crys-
tal is characterized by the spectrally dependent birefrin-
gence Bf(x) defined as

BfðxÞ ¼ neðxÞ � noðxÞ; ð1Þ

where ne(x) and no(x) are refractive indices of the extraor-
dinary and ordinary eigenwaves, respectively. Similarly, the
highly birefringent fiber is characterized by the spectrally
dependent phase modal birefringence B(x) defined as

BðxÞ ¼ ðc=xÞ½bxðxÞ � byðxÞ�; ð2Þ

where bx(x) and by(x) are the propagation constants of the
orthogonally polarized eigenmodes guided by the optical fi-
ber and c is the velocity of light in the vacuum. For conve-
nience, the longitudinal z-axis of the optical fiber is chosen
along the propagation direction of the beam through the
birefringent crystal, which is perpendicular to the optic axis
of the birefringent crystal. As shown in Fig. 2, let the trans-
mission axis of the polarizer P be a with respect to the
polarization direction of the ordinary eigenwave in the
birefringent crystal. Similarly, let the x-axis of the highly
birefringent fiber, oriented for example along the major
axis of an elliptical core of the fiber, be b with respect to
the polarization direction of the ordinary eigenwave in
the birefringent crystal. Finally, let the transmission axis
of the analyzer A be c with respect to the x-axis of the
highly birefringent fiber.

Let us consider now a random scalar field, represented
by a statistical ensemble {E(a,b,c;x)}, where E(a,b,c;x)
is the complex representation of a linearly polarized optical
field at the output of the analyzer A at the angular fre-
quency x, propagating through the whole setup shown in
Fig. 1. The measurable quantity, the spectral density
S(a,b,c;x), is defined as [13]

Sða; b; c; xÞ ¼ hjEða; b; c; xÞj2i; ð3Þ
where the angular brackets denote the ensemble average
and the brackets | | represent the modulus. If we introduce
P(x), C(x), F(x) and A(x) as the spectrally dependent
transmittances of the polarizer, the crystal, the fiber and
the analyzer, respectively, G(x) = h|E0(x)|2si as the source
spectral density expressed by means of the source field
E0(x), Uf(d;x) = (x/c)Bf(x)d and U(L;x) = (x/c)B(x)L
as the retardances, the spectral density S(a,b,c;x) is given
by

Sða; b; c; xÞ
¼ S0ðxÞfV 1ða; b; cÞ þ V 2ða; b; cÞRefexpf�i½Ufðd; xÞ�gg
þ V 3ða; b; cÞRefexpf�i½Ufðd; xÞ � UðL; xÞ�gg
þ V 4ða; b; cÞRefexpf�i½�UðL; xÞ�gg
þ V 5ða; b; cÞRefexpf�i½�Ufðd; xÞ � UðL; xÞ�gg
þ V 6ða; b; cÞRefexpf�i½�Ufðd; xÞ�ggg; ð4Þ

WLS Spectrometer

L1 P L2 A

d

BC SHBOF

T, S

Fig. 1. Experimental setup with a birefringent crystal (BC) and a sensing
highly birefringent optical fiber (SHBOF) to record spectral interferograms.
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e
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Fig. 2. Orientations of the transmission axes of the polarizer P and the
analyzer A and the x-axis of the optical fiber.
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where

S0ðxÞ ¼ AðxÞF ðxÞCðxÞP ðxÞGðxÞ ð5Þ
and the angle-dependent functions Vi(a,b,c) with i =
1, . . . , 6 are as follows:

V 1ða; b; cÞ ¼ cos2aðcos2 bcos2 cþ sin2 b sin2 cÞ
þ sin2aðsin2 bcos2 cþ cos2 b sin2 cÞ; ð6Þ

V 2ða; b; cÞ ¼ ð1=2Þ sin 2a sin 2bcos2 c; ð7Þ
V 3ða; b; cÞ ¼ ð1=2Þ sin 2acos2 b sin 2c; ð8Þ
V 4ða; b; cÞ ¼ �ð1=2Þ cos 2a sin 2b sin 2c; ð9Þ
V 5ða; b; cÞ ¼ �ð1=2Þ sin 2a sin2 b sin 2c; ð10Þ
V 6ða; b; cÞ ¼ �ð1=2Þ sin 2a sin 2b sin2 c. ð11Þ

We can now resolve two important cases: one case with
b = 0� to which the non-zero terms V1(a,b = 0�,c) and
V3(a,b = 0�,c) correspond and the spectral density
S+(a,c;x) = S(a,b = 0�,c;x) is given by

Sþða; c; xÞ ¼ S0ðxÞfsin2 asin2 cþ cos2 acos2 c

þ ð1=2Þ sin 2a sin 2cRefexpf�i½UþðxÞ�ggg;
ð12Þ

where

UþðxÞ ¼ Ufðd; xÞ � UðL; xÞ
¼ ðx=cÞ½BfðxÞd � BðxÞL�. ð13Þ

The other case is with b = 90� to which the non-zero terms
V1(a,b = 90�,c) and V5(a,b = 90�,c) correspond and the
spectral density S�(a,c;x) = S(a,b = 90�,c;x) is given by

S�ða; c; xÞ ¼ S0ðxÞfsin2 acos2 cþ cos2 asin2 c

� ð1=2Þ sin 2a sin 2cRefexpfþi½U�ðxÞ�ggg;
ð14Þ

where

U�ðxÞ ¼ Ufðd; xÞ þ UðL; xÞ
¼ ðx=cÞ½BfðxÞd þ BðxÞL�. ð15Þ

Next, let us consider that the optical field at the out-
put of the sensing optical fiber, including the effect of the
polarizer, the birefringent crystal and the analyzer, is
analyzed by a spectrometer characterized by both the
spectrally dependent transmittance FR(x) of the read
optical fiber [12] and the response function R(x � x 0)
of a given spectral bandpass. The spectral intensity
I±(a,c;x) as a function of the angular frequency x
adjusted by the spectrometer can be expressed by the
convolution relation:

I�ða; c; xÞ ¼
Z 1

0

S�ða; c; x0ÞRðx� x0Þ dx0. ð16Þ

On substituting from Eqs. (12) and (14) into Eq. (16), and
assuming that the spectral density I0(x) = FR(x)S0(x) is
slowly varying function of x, or equivalently, that it is
constant within the spectrometer bandpass, we obtain

for the spectral intensity at the output of the setup shown
in Fig. 1:

I�ða; c; xÞ ¼ I�0 ða; c; xÞf1þ V �ða; cÞRefC�ðxÞgg; ð17Þ

where for example

Iþ0 ða; c; xÞ ¼ I0ðxÞðsin2 acos2 cþ cos2 a sin2 cÞ ð18Þ
is the reference spectral intensity,

V þða; cÞ ¼ 1

2

sin 2a sin 2c

sin2 acos2 cþ cos2 a sin2 c
ð19Þ

is a visibility term and C±(x) is given by

C�ðxÞ ¼
Z 1

0

Rðx� x0Þ expf�i½U�ðx0Þ�g dx0. ð20Þ

Let us assume now that the spectrometer response function
is a Gaussian function with half-width CR:

Rðx� x0Þ ¼ ð1=pCRÞ exp �ðx� x0Þ2=C2
R

h i
. ð21Þ

Similarly, let us assume that the retardances U±(x 0) can be
expanded in a Taylor series around the frequency x so that
it is truncated only to the two terms (higher-order disper-
sion effects are negligible):

U�ðx0Þ � U�ðxÞ þ U�0ðxÞðx0 � xÞ; ð22Þ
where U±(x) and U± 0(x) are the retardances and the first
derivatives of the retardances, respectively, at the fre-
quency x. On substituting Eqs. (21) and (22) into Eq.
(20) we obtain [14]:

C�ðxÞ ¼ exp �ðp=2ÞDs�2ðxÞ=s2
c

� �
expf�i½U�ðxÞ�g; ð23Þ

where

Ds�ðxÞ ¼ U�0ðxÞ ð24Þ
are the overall differential group delays between the
orthogonally polarized eigenwaves in the setup shown in
Fig. 1 and sc = (2p)1/2/CR is the modified coherence time
[13].

2.2. The spectral intensity in the wavelength domain

Let a birefringent crystal and optical fiber are character-
ized by the wavelength-dependent birefringences Bf(k) and
B(k). The spectral intensity recorded at the output of the
setup shown in Fig. 1 is given by

I�ða; c; kÞ ¼ I�0 ða; c; kÞ 1þ V �ða; cÞV �R ðkÞ cos½U�ðkÞ�
� �

;

ð25Þ

where

V �R ðkÞ ¼ exp �ðp=2ÞDs�2ðkÞ=s2
c

� �
ð26Þ

is a visibility term due to the effect of the spectrometer.
Using Eq. (24) we can express the wavelength-dependent
differential group OPD Dg±(k) between eigenwaves in the
setup as
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Dg�ðkÞ ¼ � k2

2p
d½BfðkÞd � BðkÞL�

dk
¼ GfðkÞd � GðkÞL; ð27Þ

where Gf(k) and G(k) are the wavelength-dependent group
birefringences given by

GfðkÞ ¼ BfðkÞ � k
dBfðkÞ

dk
; GðkÞ ¼ BðkÞ � k

dBðkÞ
dk

. ð28Þ

Denoting DkR ¼ Dk0R
ffiffiffi
2
p

the width of the spectrometer re-
sponse function R(k) in the wavelength domain [12] with
Dk0R ¼ k2CR=ð2pcÞ, we can express the wavelength-depen-
dent visibility term V �RðkÞ as:

V �R ðkÞ ¼ expf�ðp2=2Þ½ðGfðkÞd � GðkÞLÞDkR=k
2�2g. ð29Þ

2.2.1. The positive birefringence of a uniaxial crystal

Let us consider a uniaxial birefringent crystal, such as
quartz, which has the positive birefringence, that is,
Bf(k) > 0 over the wavelength range of the visible spectrum.
In this case, the recorded spectrum can be represented in
the form

Iþða; c; kÞ ¼ Iþ0 ða; c; kÞf1þ V þða; cÞ
� expf�ðp2=2Þ½ðGfðkÞd � GðkÞLÞDkR=k

2�2g
� cosfð2p=kÞ½BfðkÞd � BðkÞL�gg; ð30Þ

from which it results that the spectral interference fringes
have the highest visibility at the equalization wavelength
kþ0 that fulfills the relation

Gðkþ0 ÞL ¼ Gfðkþ0 Þd. ð31Þ

2.2.2. The negative birefringence of a uniaxial crystal

Let us consider a uniaxial birefringent crystal, such as
calcite, which has the negative birefringence, that is,
Bf(k) < 0 over the wavelength range of the visible spectrum.
In this case, the recorded spectrum can be represented in
the form

I�ða; c; kÞ ¼ I�0 ða; c; kÞf1þ V �ða; cÞ
� expf�ðp2=2Þ½ðGfðkÞd þ GðkÞLÞDkR=k

2�2g
� cosfð2p=kÞ½BfðkÞd þ BðkÞL�gg; ð32Þ

from which it results that the spectral interference fringes
have the highest visibility at the equalization wavelength
k�0 that fulfills the relation

Gðk�0 ÞL ¼ �Gfðk�0 Þd. ð33Þ

3. Modeling spectral interferograms

In this section, the wavelength-domain spectral intensity
will be modeled for two cases of a uniaxial crystal having
opposite sign of birefringence and a highly birefringent
optical fiber of known dispersion characteristics.

3.1. Quartz crystal

First, we consider a uniaxial crystal of the positive bire-
fringence, a quartz crystal, the dispersion of which can be
represented in the Sellmeier-like form [15]:

BfðkÞ ¼ H þ Ik2

k2 � G
þ Jk2

k2 � K
; ð34Þ

where k is wavelength in microns and the dispersion
coefficients at room temperature are as follows:
G = 1.37254429 · 10�2, H = 0.78890253 · 10�3, I =
8.04095323 · 10�3, J = 10.1933186 · 10�3 and K = 64.
Using Eq. (28), the group birefringence dispersion can
be represented as

GfðkÞ ¼ BfðkÞ þ
2IGk2

ðk2 � GÞ2
þ 2JKk2

ðk2 � KÞ2
. ð35Þ

We will model the spectral intensity I+(a,c;k) given by Eq.
(30) for a highly birefringent fiber, the phase and group
modal birefringences B(k) and G(k) of which are known
from previous measurements [10]. The phase birefringence
B(k) decreases from 2.615 · 10�4 to 2.353 · 10�4 and the
group birefringence G(k) increases from 2.685 · 10�4 to
3.883 · 10�4 in the wavelength range from 550 to 800
nm. Fig. 3 shows the group OPD G(k)L between the polar-
ization modes as a function of the wavelength k for the
length L = 1 m of the optical fiber. In the same figure,
the group OPD Gf(k)d between the polarization eigenwaves
in the quartz crystal is shown by the bold line as a function
of the wavelength k for the crystal thickness d = 3.2 cm.
Both lines cross at the equalization wavelength
kþ0 ¼ 646:50 nm fulfilling Eq. (31).

Fig. 4 then shows by the solid curve the corresponding
spectral intensity I+(a,c;k) given by Eq. (30) when
Iþ0 ða; c; kÞ is represented by a Gaussian spectrum,
V+(a,c) = 0.5 and DkR = 3 nm. The dashed curve in the
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Fig. 3. Wavelength dependence of the group OPD Gf(k)d in the quartz
crystal of thickness d = 3.2 cm (bold line) and G(k)L in the birefringent
fiber of length L = 1 m.
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same figure shows the spectral intensity I+(a,c;k) when the
length of the fiber is L = 1.0005 m. This figure clearly dem-
onstrates the sensitivity of the phase of the spectral interfer-
ence fringes to the change of the fiber length. We may
introduce the polarimetric sensitivity [8]

SLðkÞ ¼
1

L
d½UðL; kÞ�

dL
¼ 1

L
d

dL
2p
k

BðkÞL
� �

¼ 2p
k

BðkÞ
L

; ð36Þ

which decreases in the 550–800 nm wavelength range from
2.99 to 1.85 rad mm�1 m�1. These values mean that for the
fiber length L = 1 m the phase changes of 2p at 550 and
800 nm, respectively, are associated with the fiber length
changes of 2.1 and 3.4 mm.

3.2. Calcite crystal

Next, we consider a uniaxial crystal of the negative bire-
fringence, a calcite crystal, the dispersion of which can be
represented in the Sellmeier-like form given by Eqs. (34)
and (35) with the dispersion coefficients at room temperature
as follows [15]: G = 2.17641576 · 10�2, H = �29.435688 ·
10�3, I = �134.804456 · 10�3, J = �294.96110 · 10�3 and
K = 80.

We will model the spectral intensity I�(a,c;k) given by
Eq. (32) for the same highly birefringent fiber as in the pre-
vious section. Fig. 5 shows the group OPD G(k)L between
the polarization modes as a function of the wavelength k
for the length L = 1 m of the optical fiber. In the same fig-
ure, the group OPD �Gf(k)d between the polarization
eigenwaves in the calcite crystal is shown by the bold line
as a function of the wavelength k for the crystal thickness
d = 1.65 mm. Both lines cross at the equalization wave-
length k�0 ¼ 646:60 nm fulfilling Eq. (33).

Fig. 6 then shows by the solid curve the corresponding
spectral intensity I�(a,c;k) given by Eq. (32) when
I�0 ða; c; kÞ is represented by a Gaussian spectrum,
V�(a,c) = 0.5 and DkR = 3 nm. The dashed curve in the

same figure shows the spectral intensity I�(a,c;k) when
the length of the fiber is L = 1.0005 m. This figure once
again clearly demonstrates the sensitivity of the phase of
the spectral interference fringes to the change of the fiber
length. The polarimetric sensitivities in the 550–800 nm
wavelength range are the same as stated in the previous
section.

4. Experimental setup, results and discussion

The experimental setup used in the application of spec-
tral-domain interferometry to resolve spectral interference
fringes in a tandem configuration of birefringent crystal
and birefringent fiber is shown in Fig. 1. It consists of a
white-light source, a 20 W quartz tungsten halogen
(QTH) lamp with a collimating lens, a polarizer, a quartz
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Fig. 4. Theoretical spectral interferograms corresponding to two different
fiber lengths L of 1 and 1.0005 m.
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Fig. 5. Wavelength dependence of the group OPD �Gf(k)d in the calcite
crystal of thickness d = 1.65 mm (bold line) and G(k)L in the birefringent
fiber of length L = 1 m.
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Fig. 6. Theoretical spectral interferograms corresponding to two different
fiber lengths L of 1 and 1.0005 m.
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parallel plate, a microscope objective, a birefringent optical
fiber, an analyzer, a fiber optic spectrometer S2000, an A/D
converter and a personal computer. The quartz plate con-
sists of four polished surfaces, parallel to the optical axis
of the crystal with a precision of 1500. The plate is placed
in the setup in such a way that the collimated beam from
the halogen lamp is incident on the two polished surfaces
perpendicularly. The thickness of the plate is in the direc-
tion of the z-axis d1 = (20,950 ± 10) lm and in the direc-
tion of the x-axis d2 = (25,750 ± 10) lm.

The birefringent fiber with the elliptical core has length
L = 0.69 m, a cutoff wavelength for the even LP11 mode is
equal to 780 nm, a core-cladding refractive index difference
of 0.026 at a wavelength of 630 nm (the core is doped with
GeO2 of 18 mol% concentration and the cladding is made
of fused silica) and core dimensions of 3.26 · 1.14 lm.
The fiber optic spectrometer S2000 has the spectral opera-
tion range from 350 to 1000 nm and the resolution given by
the effective width of the light beam from a core of the read
optical fiber. We used the read optical fiber of a 50 lm core
diameter to which a Gaussian response function corre-
sponds [16] with the width DkR = 3.0 nm.

We used the first orientation of the quartz plate with the
corresponding thickness d1 and adjusted the transmission
axes of the polarizer and analyzer to be a,c = 45� so that
V+(a,c) = 1. We recorded two spectral interferograms,
one for the original length and the other one for slightly
changed length of the optical fiber. These interferograms
are shown in Fig. 7 by the solid and dashed curves. Both
interferograms are characterized by the equalization wave-
length kþ0 , which is close to the theoretical value
kþ0 ¼ 618:20 nm given by Eq. (31).

Next, we used the second orientation of the quartz plate
with the corresponding thickness d2. We recorded two spec-
tral interferograms, one for the original length and the
other one for slightly changed length of the optical fiber.
These interferograms are shown in Fig. 8 by the solid

and dashed curves. Both interferograms are characterized
by the equalization wavelength kþ0 , which is close to the
theoretical value kþ0 ¼ 723:70 nm given by Eq. (31). The
interferograms demonstrate qualitatively sensing abilities
of the birefringent fiber in the setup with the birefringent
crystal. From the point of the practical implementation
of the sensing configuration, the use of longer fiber and
consequently the birefringent crystal of the greater thick-
ness are needed. Moreover, to detect phase changes at
one specific wavelength that are related to the sensing of
a measurand, a specialized interrogation procedure has to
be proposed and applied.

5. Conclusions

We analyzed theoretically and experimentally spectral
interference of white-light beams propagating through a
tandem configuration of birefringent crystal and sensing
birefringent fiber. The spectral interference law was
expressed analytically under the condition of a Gaussian
response function of a spectrometer taking into account
the dispersion of birefringence in the crystal and in the
fiber. We revealed that the visibility of spectral interference
fringes is highest for the group OPD in the crystal compen-
sating the group OPD in the fiber. We modeled two types
of spectral interferograms knowing dispersion characteris-
tics of the sensing fiber and using a quartz crystal of the
positive or a calcite crystal of the negative birefringence.
A highly birefringent fiber and a birefringent quartz crystal
of two suitable thicknesses were employed in two experi-
ments. We resolved spectral interference fringes and con-
firmed in accordance with the theory that the
wavelength-dependent phases of spectral interference
fringes vary with the fiber length. The results obtained
are important from the point of view of an optimal adjust-
ment of thickness of a birefringent crystal in this new fiber
optic white-light interferometric sensor configuration. We
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Fig. 7. Spectral interferograms recorded for two different fiber lengths.
The thickness of the quartz crystal is d1 = (20,950 ± 10) lm.
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Fig. 8. Spectral interferograms recorded for two different fiber lengths.
The thickness of the quartz crystal is d2 = (25,750 ± 10) lm.
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are going to use the fiber sensor to resolve spectral fringes
and to measure temperature, strain, pressure, etc.
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Abstract
We present the results of measurement and modelling of the birefringence dispersion in
elliptical-core fibres (ECFs). The measurement is performed over a broad wavelength range
(e.g. 450–1450 nm) by two spectral interferometric techniques. First, a technique employing a
tandem configuration of a Michelson interferometer and an ECF under test is used for a broad
spectral range measurement of the group modal birefringence for two spatial modes supported
by the fibre. Second, a method with a lateral point-like force acting on the fibre and based on
spectral interferometry is used for measuring the phase modal birefringence at one wavelength
for the fundamental mode only. The measured value is combined with the dispersion of the
group modal birefringence to obtain the phase modal birefringence over a broad wavelength
range. We also modelled the dispersion characteristics taking into account contributions of both
the elliptical shape of the core and the residual thermal stress. The dispersion characteristics
measured for the three ECFs show very good agreement with the results of numerical
modelling.

Keywords: spectral interferometry, birefringent fibre, elliptical core, birefringence, dispersion,
numerical modelling

1. Introduction

Two-mode optical fibres have found numerous applications in
the field of speciality optical devices and sensors. They are
frequently used as active elements of interferometric sensors
in which polarization modes must be controlled to assure a
high-contrast interference signal. To overcome the problem
of interference contrast fading, which degrades operation of
optical devices and sensors based on conventional circular-
core fibres, elliptical-core fibres (ECFs) [1] with nondegenerate
polarization modes have been proposed and fabricated. The

4 Author to whom any correspondence should be addressed.

ECFs are capable of maintaining the state of polarization
of propagating light over long distances. As a result, the
ECFs have attracted considerable interest for a number of
applications in which polarization control plays an essential
role, such as interferometric modal/polarimetric sensors for
measuring strain, temperature, pressure or several parameters
simultaneously [2–5].

For the sensing of various physical quantities employing
interferometric techniques [6], it is important to know the
dispersion characteristics such as the phase and group modal
birefringence versus wavelength. So far, the dispersion of the
orthogonally polarized fundamental modes and the dispersion
of the second-order even LP11 mode near cut-off have been

2040-8978/10/035405+08$30.00 © 2010 IOP Publishing Ltd Printed in the UK1
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Figure 1. Experimental set-up for measuring the wavelength dependence of the group modal birefringence in the elliptical-core fibre (ECF)
under test.

analysed theoretically and experimentally. Time domain
low-coherence interferometry and spectral domain white-light
interferometry with channelled spectrum detection have been
used for measuring dispersion characteristics of birefringent
optical fibres [7–16]. Time domain interferometry has been
used to measure the polarization-mode dispersion [7] and
dispersion of modal birefringence in highly birefringent optical
fibres [8–10]. Spectral domain interferometry has been used to
measure birefringence dispersion in polarization-maintaining
optical fibres [11–16]. Recently, the dispersion in a two-
mode birefringent ECF has been analysed theoretically [17].
However, to the best of our knowledge, comprehensive
experimental and theoretical analysis of dispersion properties
of two-mode birefringent ECFs has not been carried out.

In this paper, two spectral interferometric techniques are
used for measuring the birefringence dispersion in three ECFs.
We measured the phase and group modal birefringence for the
LP01 and even LP11 spatial modes over a broad wavelength
range. The group modal birefringence was measured by a
spectral interferometric technique [15, 18] employing a tandem
configuration of a Michelson interferometer and an ECF under
test. The phase modal birefringence was measured at one
wavelength for the fundamental mode only by a method with a
lateral point-like force acting on the fibre [19]. The method
was applied in the spectral domain and the measured value
of the phase modal birefringence was combined with the
dispersion of the group modal birefringence to determine the
phase modal birefringence over a broad wavelength range.
The dispersion characteristics were also calculated numerically
using an approach that takes into account contributions of both
the elliptical shape of the core and the residual thermal stress.
We confirmed for all three ECFs good agreement between
modelling and experiment.

2. Experimental methods

Let us consider an ECF, which supports the x- and y-polarized
LP01 and even LP11 spatial modes. If the wavelength-
dependent propagation constants of the corresponding modes
are denoted as β x

01(λ), β
y
01(λ), β x

11(λ), and β
y
11(λ), we can

define the phase modal birefringences for the respective spatial
modes in the following way:

B01(λ) = λ

2π
[β x

01(λ) − β
y
01(λ)] (1)

and
B11(λ) = λ

2π
[β x

11(λ) − β
y
11(λ)]. (2)

Furthermore, using the following relation for the group modal
birefringence G(λ):

G(λ) = B(λ) − λ
dB(λ)

dλ
= −λ2 d[B(λ)/λ]

dλ
, (3)

we can determine the group modal birefringences G01(λ) and
G11(λ) for the respective spatial modes.

2.1. Measurement of group modal birefringence

The group modal birefringences G01(λ) and G11(λ) for
the LP01 and the even LP11 spatial modes, respectively,
were measured by a method of spectral domain tandem
interferometry [15, 18] in the set-up shown in figure 1.
Light from a white-light source WLS (a 20 W quartz–
tungsten–halogen lamp) passes through collimator CL and
enters Michelson interferometer MI in which the path length
difference �M is adjusted. The light from the output of the
interferometer passes though Glan–Taylor calcite polarizer P
(Thorlabs) and is introduced by microscope objective O1 (15×
/0.30) into an ECF under test. The transmission azimuth of the
polarizer is adjusted at 45◦ with respect to the polarization axes
of the ECF so that both polarization modes are excited in the
tested fibre. Using microscope objective O2 (10×/0.30) at the
output of the tested fibre, a collimated light beam is generated
that passes through Glan–Taylor calcite analyser A (Thorlabs)
and is introduced by the next objective O3 (10×/0.30) into the
read fibre of a spectrometer (S2000, NIR-512, Ocean Optics)
which resolves the interference of polarization modes as a
spectral signal. The transmission azimuth of the analyser
is adjusted at 45◦ with respect to the polarization axes of
the ECF. The orientations of the fibre polarization axes were
first determined at the fibre input and output by rotating the
analyser A and the polarizer P until light at the fibre output
is extinguished. For a white-light illumination, a complete
light extinction can only be achieved for the polarizer and
analyser aligned in parallel with the fibre axes of orthogonal
polarization.

The spectrometers S2000 and NIR-516 have a spectral
operation range from 350 to 1000 nm and from 850 to
1700 nm, respectively. The spectral signal is recorded by the
spectrometer in the transmission mode after dark and reference
(without the interference) spectra are stored. If the two-mode
ECF of length z investigated has G01(λ)z � 0 and G11(λ)z �
0, and the path length difference adjusted in the Michelson
interferometer is similarly �M � 0, the spectral signal recoded
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Figure 2. Experimental set-up for measuring the phase modal birefringence at a specific wavelength in the ECF under test.

by a spectrometer of a Gaussian response function can be
represented in the following form [15, 18]:

S(λ) = 1 + 0.5V0(λ)

× exp{−(π2/2)[(G01(λ)z − �M)�λR/λ2]2}
× cos[(2π/λ)(B01(λ)z − �M)]
+ 0.5V1(λ) exp{−(π2/2)[(G11(λ)z − �M)�λR/λ2]2}
× cos[(2π/λ)(B11(λ)z − �M)], (4)

where V0(λ) and V1(λ) are visibility terms, and �λR is
the width of the spectrometer response function. Generally
speaking, at the output of the spectrometer we observe two
separated interference signals associated with LP01 and even
LP11 modes respectively. The first one corresponds to the
LP01 spatial mode and arises in the vicinity of the so-called
equalization wavelength λ01

eq [15]. The second one corresponds
to the even LP11 spatial mode and arises in the vicinity of the
equalization wavelength λ11

eq .
To resolve the spectral fringes in one of the interfer-

ence signals or in both signals, the path length difference
governed by the relations �01

M = G01(λ
01
eq)z and �11

M =
G11(λ

11
eq)z needs to be adjusted in the Michelson interferom-

eter. Thus, the path length difference �M adjusted in the in-
terferometer and measured as a function of the equalization
wavelengths λ01

eq and λ11
eq gives directly the wavelength depen-

dence of the group modal birefringences G01(λ
01
eq) = �01

M/z
and G11(λ

11
eq) = �11

M/z in the ECF under test. To avoid over-
lapping of interference signals corresponding to the LP01 and
even LP11 modes, one needs to use sufficiently long fibre.

The sign of the group modal birefringence can also be
determined in the set-up shown in figure 1. We place delay line
DL, represented by a quartz crystal of suitable thickness and
orientation, in tandem with the ECF under test and use a simple
procedure [18]. If the extraordinary axis of the crystal, which
has the positive group birefringence (Ne > No), is parallel to
the major axis of the elliptical core (along the x polarization
mode), and the group birefringence of the fibre is positive,
the equalization wavelength shifts to shorter wavelengths after
inserting the delay plate. In the opposite case the group
birefringence is negative.

2.2. Measurement of phase modal birefringence

The phase modal birefringence B01(λ) for the LP01 spatial
mode was measured by a lateral force method applied in the
spectral domain [19]. Figure 2 illustrates the corresponding
experimental set-up in which light from the white-light source
WLS is launched into optical fibre OF with collimator CL,
passes through polarizer P and is introduced by microscope

objective O into an ECF under test. The transmission azimuth
of the polarizer is adjusted in parallel with the symmetry axis
of the ECF so that only one polarization mode is excited in
the tested fibre. Point-like force F is applied to the tested
fibre causing polarization coupling so that a fraction of light
is coupled into the polarization mode that is not excited at
the input of the test fibre. The two polarization modes are
propagating through the fibre of length L, which is given by
the distance of the coupling point from the fibre end. The
two polarization modes are mixed with analyser A (Polaroid)
and their interference is resolved by a spectrometer as the
interferogram. The transmission azimuth of the analyser is
adjusted to 45◦ with respect to the polarization axes of the ECF
under test. A loop of the ECF was used to strip off the higher-
order modes and to smooth the reference spectrum as much as
possible.

In response to the displacement �L = L2 − L1 of the
coupling point along the tested fibre, we measure the phase
change �φ(λ0) of the spectral interference fringes (e.g. 2π ),
from which the beat length can be determined according to

LB(λ0) = 2π�L/�φ(λ0), (5)

where λ0 is the wavelength at which the phase change �φ(λ0)

has been determined [19]. If the fibre beat length LB(λ0) is
known, the phase modal birefringence B(λ0) can be easily
calculated by means of the following relation:

B(λ0) = λ/LB(λ0). (6)

Because the group modal birefringence G01(λ) measured by
the first method is related to the phase modal birefringence
B01(λ) via equation (3), we are able to obtain the relative
wavelength dependence of the phase modal birefringence. It
can be combined with the known value B(λ0) at the wavelength
λ0 to obtain the absolute values of the wavelength dependence
of the phase modal birefringence B01(λ) [15, 18]. The phase
modal birefringence B11(λ) could not be measured in this way
because it was impossible to excite purely the even LP11 spatial
mode.

3. ECFs investigated

We investigated three ECFs: the first one was PMF-38
fibre from Corning (ECF 1) and the remaining two fibres
were manufactured by Fibre Optic Technology Group, MCS
University, Lublin, Poland (ECF 2 and 3). We performed
a microanalysis of the fibres using a scanning electron
microscope (type JSM 5800LV). The photographs of the fibre
cross-sections are shown in figure 3. The corresponding
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Figure 3. SEM photographs of the fibres investigated: (a) ECF 1, (b) ECF 2, (c) ECF 3.

Table 1. Core and cladding parameters of the ECFs used in calculations.

ECF 1 ECF 2 ECF 3

Core Cladding Core Cladding Core Cladding

Dimensions (μm) 3.74 × 0.74 80 2.5 × 1 76 3.42 × 1.2 96
Dopant
concentration

18.5 mol%
GeO2

SiO2 16.7 mol%
GeO2

SiO2 16.7 mol%
GeO2

SiO2

α × 10−7 (K−1) 24.71 5.5 23.7 5.5 23.7 5.5
E (GPa) 62.00 72.45 62.6 72.5 62.6 72.5
ν 0.17 0.165 0.17 0.165 0.17 0.165
Tg (◦C) 930
C1 × 10−13 (Pa−1) −6.9
C2 × 10−13 (Pa−1) −41.8

dimensions of the fibre cores and the levels of GeO2

concentrations in the cores are presented in table 1. The
wavelength dependence of the refractive indices nco(λ) and
ncl(λ) in fibre core and cladding, respectively, was taken into
account in numerical simulations using the Sellmeier formulae
for pure silica and GeO2-doped silica glass [1]. To calculate the
stress distribution in the fibre cross-section induced by different
thermal expansion coefficients of pure and doped silica, the
knowledge of several material constants is required. These
are: the thermal expansion coefficient α, Young modulus E ,
Poisson ratio ν, glass transition temperature Tg, and stress–
optical coefficients C1, C2. The values of these constants for
pure SiO2 glass are well known [20]. Unfortunately, there
are no comprehensive data on the dependence of E , ν, C1,
C2 upon the GeO2 concentration in SiO2/GeO2; therefore
we estimated these parameters for the fibre cores taking
into account assumptions described in detail in the previous
paper [8]. The values of all parameters used in the calculations
are presented in table 1.

4. Numerical modelling

Because of the complex nature of the modal birefringence in
ECFs, the calculations of the propagation constants β x

01(λ),
β

y
01(λ), β x

11(λ), and β
y
11(λ) as a function of wavelength were

divided into two steps. First, we determined the changes
in refractive index that are induced by the thermal stress
arising due to the fibre cooling during the drawing process
as a consequence of mismatch between the thermal expansion
coefficients of core and cladding glasses. In the second step,
we calculated the propagation constants β x

01(λ), β y
01(λ), β x

11(λ),

and β
y
11(λ) of the polarization modes, taking into account the

material birefringence induced by the thermal stress.
The stress calculations were carried out by means of

the finite-element method FEM (software package Comsol
Multiphysics). We applied the plane-stress model to calculate
thermal stress distribution in the fibre cross-section [8, 21–27].
From knowledge of the distributions of the normal stress
components σx(x, y), σy(x, y), σz(x, y), and τxy(x, y) at
room temperature (T0 = 20 ◦C), the relative permittivity tensor
in the cross-section of the elliptical-core fibre under stress is
determined using the following relation [26]:

[ε] =
[ [n0 − C1σxx − C2(σyy + σzz)]2

2n(C2 − C1)τxy
0

2n(C2 − C1)τxy 0
[n0 − C1σyy − C2(σxx + σzz)]2 0

0 [n0 − C1σzz − C2(σxx + σyy)]2

]
,

(7)

where n0 is the refractive index in the glass without stress.
The spatial distribution of the relative permittivity

tensor represented by equation (7) provides the necessary
information for the electromagnetic calculations by means
of the FEM method. An advantage of the above approach
is that mechanical and electromagnetic calculations are
carried out using the same numerical technique (FEM).
This makes possible easy transfer of the meshes between
the mechanical and electromagnetic software modules and
simplifies data-exchange procedures. As soon as the phase
modal birefringence B(λ) was determined for a given set
of wavelengths, we numerically calculated the group modal
birefringence G(λ) according to equation (3).
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Figure 4. Example of a spectral signal recorded for ECF 1 for the
path length difference in the interferometer �M = 648 μm.

5. Measurement and simulation results

After optimizing the excitation and detection conditions to
ensure the highest visibility of spectral interference fringes,
the spectral signals were recorded for ECF 1 of length z =
0.974 m, for the path length differences �M adjusted in the
Michelson interferometer with a step of 20 μm. We revealed
for the LP01 spatial mode that the equalization wavelength
increases approximately from 443 to 735 nm (measured using
an S2000 spectrometer) and from 899 to 1318 nm (measured
using an NIR-512 spectrometer) with �M increasing from 528
to 698 μm and decreasing from 698 to 438 μm, respectively.
Similarly, we revealed for the even LP11 spatial mode that the
equalization wavelength increases approximately from 448 to
584 nm with �M increasing from 448 to 1388 μm. Figure 4
shows an example of the spectral signal recorded using the
first spectrometer for �M = 648 μm. We can clearly
resolve the spectral interference fringes in the vicinities of two
equalization wavelengths λ11

eq = 446.55 and λ01
eq = 639.05 nm.

The first one corresponds to the even LP11 spatial mode and the
second one to the LP01 spatial mode. It should be noted here
that the visibility of the spectral fringes for the fundamental
mode is higher than that for the even LP11 mode.

The group modal birefringences corresponding to the
spatial modes are both positive. Figure 5 shows, as crosses,
the measured group modal birefringences G01(λeq) and
G11(λeq) in ECF 1 determined for the respective equalization
wavelengths λeq. The precision in measuring the group modal
birefringences is better than 0.1% [18]. We clearly see from
figure 5 that the LP01 spatial mode shows a lower group modal
birefringence than the even LP11 mode. The dashed line in
the same figure represents the approximation of the measured
group modal birefringence G01(λ) by a seven-term power
series

G01(λ) = A1λ
−6+A2λ

−4+A3λ
−2+A4+A5λ

2+A6λ
4+A7λ

6,

(8)

Figure 5. Group modal birefringence measured as a function of
wavelength for two spatial modes of ECF 1 (the dashed line
represents a power series fit) and the simulation results (the solid
lines).

where the Ai are the coefficients. The shape of the measured
wavelength dependence of the group modal birefringence
G01(λ) is similar to that obtained by numerical modelling.
Greater differences are observed for wavelengths at which
G01(λ) reaches a maximum (near 812 nm) and for a short
wavelength region. The difference between the experimental
and calculated values increases in this region and reaches 12%
at λ = 0.46 μm. The group modal birefringence G11(λ)

for the even LP11 spatial mode strongly increases against
wavelength near the cut-off (approximately at 0.725 μm),
which is in accordance with the results of numerical modelling.
The difference between the experimental and calculated values
increases with decreasing wavelength and reaches 13% at λ =
0.46 μm.

The approximation of G01(λ) according to equation (8) is
used to determine the corresponding wavelength dependence
of the phase modal birefringence B01(λ), shown in figure 6
by the dashed line. It was obtained by combining the relative
phase modal birefringence with one value B01 = 3.90 ×
10−4 measured at 628.3 nm. This value is obtained from
equations (5) and (6) for the measured displacement �L =
1623 μm of the coupling point producing the phase change
�φ(λ) = 2π . The phase modal birefringence for the
LP01 spatial mode has positive sign, similarly to the group
modal birefringence. It decreases strongly against wavelength,
which is in very good agreement with the results of numerical
modelling. The difference between the experimental and
calculated values is greater in a short wavelength region and
reaches 3% at λ = 0.46 μm. The calculated phase modal
birefringence B11(λ) for the even LP11 spatial mode decreases
much more steeply against wavelength compared to B01(λ)

calculated for the LP01 spatial mode. It is interesting to note
that there is a specific wavelength (approximately 0.46 μm) at
which the two phase birefringences are the same.

5
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Figure 6. Calculated phase modal birefringence as a function of
wavelength for two spatial modes of ECF 1 (solid lines). The dashed
line represents the phase modal birefringence obtained from the
experimental data.

Figure 7 shows, as crosses, the measured group modal
birefringences G01(λeq) and G11(λeq) in ECF 2 determined
for the respective equalization wavelengths λeq. The dashed
line in the same figure represents the approximation G01(λ)

of measured results obtained by a seven-term power series
according to equation (8). We clearly see from figure 7
that the wavelength at which G01(λ) reaches a maximum
(approximately at 0.89 μm) is shifted towards the infrared
compared with that for the first ECF. The shape of the
wavelength dependence of the group modal birefringence
G01(λ) is similar to that obtained by numerical modelling.
The difference between the experimental and calculated values
for the LP01 spatial mode is greater in a short wavelength
region and reaches 14% at λ = 0.46 μm. The group modal
birefringence G11(λeq) for the even LP11 spatial mode strongly
increases against wavelength near the cut-off (approximately at
0.59 μm), which is in accordance with the results of numerical
modelling. The difference between the experimental and
calculated values increases for shorter wavelengths and reaches
13% at λ = 0.46 μm.

The approximation of G01(λ) according to equation (8)
gives the corresponding wavelength dependence of the phase
modal birefringence B01(λ), shown in figure 8 by the dashed
line. It was obtained by combining the relative phase modal
birefringence with one value B01 = 2.20 × 10−4 measured at
621.92 nm. The phase modal birefringence for the LP01 spatial
mode decreases against wavelength. The LP01 birefringence
has positive sign, similarly to the group modal birefringence,
which is in accordance with the results of numerical modelling.
The difference between the experimental and calculated values
is positive and nearly constant over a broad wavelength range.
This difference increases in a short wavelength region and
reaches 4% at λ = 0.46 μm. The calculated phase modal
birefringence B11(λ) for the even LP11 spatial mode has similar

Figure 7. Group modal birefringence measured as a function of
wavelength for two spatial modes of ECF 2 (the dashed line
represents a power series fit) and the simulation results (solid lines).

Figure 8. Calculated phase modal birefringence as a function of
wavelength for two spatial modes of ECF 2 (solid lines). The dashed
line represents the phase modal birefringence obtained from the
experimental data.

wavelength dependence; however, its value is lower by about
25% compared to that of B01(λ).

Figure 9 shows, as crosses, the measured group modal
birefringences G01(λeq) and G11(λeq) in ECF 3 determined
for the respective equalization wavelengths λeq. The dashed
line represents the approximation G01(λ) of measured results
obtained using a seven-term power series. We clearly see
from figure 9 that the wavelength at which G01(λ) reaches
a maximum (approximately at 1.122 μm) is shifted towards
longer wavelengths compared with that for ECF 2. The
shape of the wavelength dependence of the group modal
birefringence G01(λ) is similar to that obtained by numerical
modelling. The group modal birefringence G11(λeq) for the
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Figure 9. Group modal birefringence measured as a function of
wavelength for two spatial modes of ECF 3 (the dashed line
represents a power series fit) and the simulation results (solid lines).

even LP11 spatial mode strongly increases against wavelength
near the cut-off (approximately at 0.740 μm), which is in
agreement with the results of numerical modelling. The
differences between the experimental and theoretical values of
the group modal birefringences for the LP01 and even LP11

spatial modes are the greatest in a short wavelength region and
reach 7% and 9% (λ = 0.46 μm), respectively.

The wavelength dependence of the phase modal birefrin-
gence B01(λ) corresponding to the approximation of G01(λ)

according to equation (8) is shown in figure 10 by the dashed
line. This dependence was obtained by combining the relative
phase modal birefringence with one value B01 = 2.58 × 10−4

measured at 632.8 nm. The phase modal birefringence mea-
sured for the LP01 spatial mode is very similar to the results
of numerical modelling. There is a constant negative shift
of measured values compared to the calculated ones over a
broad wavelength range that reaches 5%. The calculated phase
modal birefringence B11(λ) for the even LP11 spatial mode is
strongly decreasing against wavelength. Its decrease at longer
wavelengths is much steeper compared to that of the funda-
mental mode. Moreover, a specific wavelength (approximately
0.42 μm) can be resolved at which the phase birefringences of
both spatial modes are the same.

Our experimental results show that greater ellipticity of
the ECF core results in higher maximum values of the group
and phase modal birefringences for the LP01 spatial mode.
Moreover, the spectral position of the maximum of group
modal birefringence depends on the core size. Similarly, a
higher group modal birefringence of the even LP11 spatial
mode near the cut-off wavelength was observed in fibres with
greater core ellipticity.

6. Conclusions

We have presented the results of measurement and modelling
of birefringence dispersion in ECFs over a broad spectral

Figure 10. Calculated phase modal birefringence as a function of
wavelength for two spatial modes of ECF 3 (solid lines). The dashed
line represents the phase modal birefringence obtained from the
experimental data.

range. We have used two different interferometric techniques
for measuring the birefringence dispersion in three ECFs,
including Corning PMF-38 highly birefringent fibre. By
a white-light spectral interferometric technique employing a
tandem configuration of a Michelson interferometer and an
ECF under test, we measured the dispersion of the group
modal birefringence. The technique is based on recording
spectral interference signals and resolving the equalization
wavelengths. Measuring the path length difference adjusted in
the interferometer as a function of the equalization wavelength
has served to provide dispersion characterization of the optical
fibre guiding two spatial modes of orthogonal polarizations.
We measured the dispersion of the group modal birefringence
for both the LP01 and the even LP11 spatial modes over a
broad wavelength range (e.g. 450–1450 nm). Using a method
of a lateral point-like force acting on the fibre and based on
spectral interferometry, we also measured the phase modal
birefringence at one wavelength for the fundamental mode
only. The measured value was combined with the dispersion
of the group modal birefringence to obtain the phase modal
birefringence over a broad wavelength range.

We also modelled the dispersion characteristics taking into
account contributions of both the elliptical shape of the core
and the residual thermal stress. We confirmed for all the
fibres investigated good agreement between simulations and
measurements. Small discrepancies reaching at most 15% are
observed in the short wavelength range. This is most probably
caused by a lack of reliable data on the spectral dependence
of material constants (C1, C2) in SiO2/GeO2 glass and by the
inaccuracy of determining the core dimensions.

The results obtained are important from the point of
view of the development of ECFs with desirable birefringence
dispersions. Our results show that the maximum values
of the group and phase modal birefringences for the LP01

spatial mode are higher for ECFs with greater core ellipticities.
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Similarly, the maximum of the group modal birefringence for
the LP01 can be shifted to a desired wavelength by tuning the
core geometry. Moreover, we demonstrate experimentally that
the group modal birefringence for the even LP11 mode rapidly
increases near the cut-off wavelength.
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a b s t r a c t

The spectral interference of polarization modes in a highly birefringent (HB) fiber to measure temperature
is analyzed theoretically and experimentally. A tandem configuration of a birefringent delay line and a
sensing HB fiber is considered and the spectral interferograms are modelled for the known birefringence
dispersion of the HB fiber under test. As the delay line, a birefringent quartz crystal of a suitable thickness is
employed to resolve a channeled spectrum. The channeled spectra are recorded for different temperatures
and the polarimetric sensitivity to temperature, determined in the spectral range from 500 to 850 nm, is
decreasing with wavelength. It is demonstrated that the temperature sensing is possible using the
wavelength interrogation, i.e., the position of a given interference maximum is temperature dependent.
The temperature sensitivity of the HB fiber under test is �0.25 nm/K and the resolution is better than 0.5 K.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Optical fibers are of great importance in sensing different physical
parameters with high sensitivity, wide dynamic range and high
resolution [1]. Moreover, fiber optic sensors possess advantages such
as small size, low weight and electromagnetic immunity. Among the
fiber optic sensors, temperature sensors with different structures
and principles of operation have been extensively investigated
[2–11]. As an example, the sensors were realized by using a special
microstructure in a single-mode fiber such as Bragg gratings [2,3],
long period gratings [4], an in-fiber Fabry–Perot [5] or Mach–
Zehnder [6] interferometer, a tapered fiber [7], and a D-shaped fiber
[8]. Included are also sensors enabling high-temperature measure-
ments [9] and simultaneous measurements of temperature and
strain [10], and sensors based on the in-line reflection principle of
operation [11]. The microstructures are post-fabricated and require
complicated processes employing techniques such as UV-laser writ-
ing, laser machining, fusion tapering, and chemical etching. Conse-
quently, many fiber optic sensors have been proposed which are
based on specialty optical fibers such as polarization-maintaining
fibers, photonic crystal fibers, and multi-core fibers, and the special
structure in the fiber is formed during the fabrication and no extra
post processing for fabricating a fiber sensing head is needed.

A large number of in-line fiber optic sensor configurations utilize
interference between polarization modes [12–16]. Standard highly
birefringent (HB) fibers with elliptical-core or stress-applying ele-
ments have been successfully used as active elements of fiber optic
sensors for measuring numerous physical parameters such as strain,
temperature and pressure [12–16]. Some of the sensor configurations
are working in the spatial domain and utilize white-light interfero-
metric methods [12–14]. The interferometric systems are available
even when the group optical path difference between polarization
modes is larger than the source coherence length. In this case a
tandem configuration of two interferometers, a sensing fiber inter-
ferometer and a birefringent calcite plate to compensate the group
delay between the polarization modes introduced by the sensing
fiber, can be utilized [12,14]. The other configurations are working in
the spectral domain and use two birefringent optical fibers [16] or
are based on the shift of the transmission spectrum dip [17]. In some
configurations, the phase change to be measured is inscribed in the
spectral interference fringes detected by a spectrometer [18–20].
Some of these configurations have been primarily used for measur-
ing the dispersion of birefringence in polarization-maintaining fibers
by processing a stationary-phase point spectrum [21] or channeled
spectrum [22]. In addition, the principle of channeled spectrum is
utilized for optical switching [23,24].

Standard HB fibers exhibit temperature-sensitive birefringence
so that when they are used for sensing other parameters than
temperature, such as strain, the temperature cross-sensitivity
affects the measurement accuracy significantly. To overcome this
limitation, HB holey fibers with much higher flexibility in shaping
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modal birefringence and significantly less temperature depen-
dence than standard HB fibers have emerged as active elements
of fiber optic sensors [25–28].

In this paper, theoretical and experimental analysis of a spectral-
domain technique utilizing the interference of polarization modes of
an elliptical-core HB fiber to measure temperature is presented. The
analysis is motivated by the fact that spectral analysers with a
sufficiently high resolution, such as compact spectrometers, are easily
accessible. Moreover, a tandem configuration is proposed to resolve
spectral interference fringes for a long HB fiber. The method, utilizing
a compact spectrometer in a visible spectral range, is based on the
wavelength interrogation, i.e., the position of a given interference
maximum as a function of temperature is measured. A tandem
configuration of a birefringent delay line and a sensing HB fiber is
considered and first, the spectral interferograms are modelled for the
known spectral dependence of both the phase and group modal
birefringence of the HB fiber under test. As the delay line, a
birefringent quartz crystal of a suitable thickness is employed to
resolve a channeled spectrum in a range as wide as possible. Second,
the polarimetric sensitivity to temperature is measured and it is
higher at shorter wavelengths so the HB fiber under test is suitable for
temperature sensing at a wavelength of about 520 nm. Finally, it is
revealed that when a part of the sensing HB fiber, which is placed in a
chamber, is exposed to temperature changes, a shift of the wave-
length position of a given interference maximum is present. The
temperature sensitivity reaches �0.25 nm/K and the resolution is
better than 0.5 K.

2. Theoretical background

Consider a sensing HB fiber of length z in an experimental
setup shown in Fig. 1. A linearly polarized optical field, propagat-
ing along the axis of the HB fiber, in which only the fundamental
mode in both x and y polarizations is excited, is disturbed by the
external physical quantity – temperature. The spectral intensity at
the output of the HB fiber alone with a polarizer and an analyzer
adjusted at 451 with respect to the fiber eigenaxes is given as [19]

Iðz; λÞ ¼ I0ðλÞf1þVðz; λÞ cos ½ð2π=λÞBðλÞz�g; ð1Þ
where I0ðλÞ is the reference spectral intensity, BðλÞ is the phase
modal birefringence and V ðz; λÞ is the visibility term, which is dep-
endent on the group modal birefringence GðλÞ.

The interference of the polarization modes at the output of the
experimental setup shows up as the spectral modulation (channeled
spectrum) with the period inversely proportional to the group
modal birefringence GðλÞ, which means that for the longer sensing
HB fiber the period of the spectral modulation is smaller [20].

If the resolving power of a spectrometer is insufficient to resolve
the channeled spectrum, the HB fiber in tandem with a birefringent
crystal of the group birefringence GcðλÞ and the thickness d can be
used as shown in Fig. 1. The spectral intensity at the output of the
tandem configuration with a polarizer and an analyzer adjusted at
451 with respect to the polarization axes of the HB fiber is for GðλÞ4
0 and GcðλÞ40 given by [19]

Iðz; λÞ ¼ I0ðλÞf1þVðz;λÞ cos fð2π=λÞ½BðλÞz�BcðλÞd�gg; ð2Þ
where BcðλÞ is the phase birefringence of the crystal. The period of
the spectral modulation depends on the difference GðλÞz�GcðλÞd,
which means that the equalization wavelength is resolvable in the
recorded spectrum when the overall group birefringence in the
tandem configuration of the birefringent crystal and the HB fiber is
zero [20].

2.1. Theoretical spectral interferograms

Consider an elliptical-core PM fiber whose phase and group
modal birefringence dispersions are known from previous mea-
surements [22]. The group modal birefringence as a function of the
wavelength (see Fig. 2) was measured by a method of spectral
tandem interferometry [21] with the precision better than 0.1%.
The phase modal birefringence as a function of the wavelength
(see Fig. 3) was deduced from the wavelength dependence of the
group modal birefringence [22,29] when value B¼ 8:55� 10�5

Fig. 1. Experimental setup with a sensing fiber to record channeled spectra; collimating lens (CL), polarizer (P), delay line (DL), analyzer (A) and microscope objectives
(MO1–MO3).
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Fig. 2. Measured spectral dependence of the group modal birefringence in the HB
fiber under test.
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measured at a wavelength of 637.08 nm by a lateral force method
applied in the spectral domain [29] was used. The phase modal
birefringence decreases with wavelength and its sign is positive
and is the same as the sign of the group modal birefringence
specified using a simple procedure [22].

If we consider a spectrometer with the width of the response
function ΔλR ¼ 3 nm and the HB fiber of length z¼1.6 m, the
period of the spectral modulation is smaller than ΔλR and the
channeled spectrum is not resolvable by the spectrometer so that
the HB fiber alone cannot be used in the sensing applications. If we
consider a tandem configuration of a birefringent crystal of a
suitable thickness d and the HB fiber, the period of the spectral
modulation is larger than ΔλR and the channeled spectrum is
resolvable by the spectrometer. This effect can be illustrated for a
quartz crystal, the birefringence dispersion of which can be
represented in the Sellmeier-like form [30]:

BcðλÞ ¼Hþ Iλ2

λ2�K
þ Jλ2

λ2�L
; ð3Þ

where λ is wavelength in micrometers and the dispersion coeffi-
cients at room temperature are as follows: H¼ �29:435688�
10�3, I¼ �134:804456� 10�3, J ¼ � 294:96110� 10�3, K ¼
2:17641576� 10�2 and L¼80. The group birefringence dispersion
can be represented as

GcðλÞ ¼ �λ2
d½BcðλÞ=λ�

dλ
¼ BcðλÞþ

2IKλ2

ðλ2�KÞ2
þ 2JLλ2

ðλ2�LÞ2
: ð4Þ

In Fig. 4 are shown two examples of the theoretical spectra corre-
sponding to overall phases ϕ1ðλÞ ¼ ð2p=λÞ BðλÞz�BcðλÞd

� �
and

ϕ2ðλÞ ¼ ϕ1ðλÞ � p=2 when the thickness of the birefringent quartz
crystal is d¼21mm. We clearly see that the equalization wavelength
λ0 ¼ 666:46 nm is resolvable in the spectrum. The phase change,
which is inscribed in the spectral interferograms, can be retrieved
using a relatively complicated procedure [20].

When the thickness of the birefringent quartz is changed to
d¼13 mm, the equalization wavelength λ0 shifts toward shorter
wavelengths and in the considered wavelength range a channeled
spectrum can be resolved. This is illustrated in Fig. 5 showing two
examples of the theoretical channeled spectra corresponding to
overall phases ϕ1ðλÞ and ϕ2ðλÞ ¼ ϕ1ðλÞ � p=2. The phase change,
which is inscribed in a shift of the channeled spectrum, can be
retrieved using a relatively simple procedure [31]. In addition, the

change of temperature related to the phase change can be deduced
from the shift of a given interference maximum or minimum. In
the practical implementations of the sensing scheme, it is advanta-
geous to choose the last approach because temperature can be
sensed by measuring the position of a single interference max-
imum in the channeled spectrum.

3. Experimental setup

The experimental setup we used in temperature sensing via
recording channeled spectra is shown in Fig. 1. It consists of a
broadband source – a halogen lamp (HL-2000, Ocean Optics), light
of which is launched into a fiber terminated by a lens. From the lens
a collimated beam propagates through a Glan–Taylor calcite polar-
izer (Thorlabs) and a birefringent delay line represented by a quartz
crystal of thickness d¼14.91 mm. The transmission azimuth of the
polarizer is adjusted at 451 with respect to the birefringent crystal
optical axis, which is perpendicular to the beam axis so that the
beam in two orthogonal polarizations is present at the output of the
crystal. The light beam in two polarizations is focused by a
microscope objective into an elliptical-core HB fiber of length
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Fig. 3. Measured spectral dependence of the phase modal birefringence in the HB
fiber under test.
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Fig. 4. Two examples of the theoretical spectra corresponding to overall phases
ϕ1 and ϕ2 ¼ ϕ1 � p=2 when the thickness of the birefringent quartz crystal is
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ϕ1 and ϕ2 ¼ ϕ1 � p=2 when the thickness of the birefringent quartz crystal is
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z¼1.78 m and the polarization axes of the fiber are parallel to the
polarization axes of the crystal [19]. A loop of the HB fiber is used to
strip off the higher-order modes and to smooth the reference
spectrum as much as possible. At the output of the sensing fiber,
microscope objectives and a Glan–Taylor calcite analyzer (Thorlabs)
are used to easily control the interference signal detected by a fiber
optic spectrometer (USB4000, Ocean Optics) connected to a perso-
nal computer. The transmission azimuth of the analyzer is oriented
at 451 with respect to the polarization axes of the fiber to detect the
interference of the polarization modes with the highest contrast.
The spectrometer has a spectral operation range from 350 to
1000 nm.

The HB fiber, which was drawn at the Department of Optical
Fibers Technology, University of Marie Curie-Sklodowska in Lublin,
Poland, has a core made of GeO2-doped silica glass (19.3 mol%)
and a cladding made of pure silica. The dimensions of the fiber
elliptical core are approximately 3:2� 1:2 μm [22].

4. Experimental results and discussion

In this section, the polarimetric sensitivity of the investigated HB
fiber to temperature is presented and the approach to temperature
sensing based on the wavelength interrogation is outlined.

4.1. Polarimetric sensitivity to temperature

Using the experimental setup shown in Fig. 1, with the length L
of the HB fiber subjected to temperature changes, we measured
the polarimetric sensitivity of the fiber to temperature. It is
defined by the following relation:

KT ðλÞ ¼
1
L
d½ϕxðλÞ�ϕyðλÞ�

dT
; ð5Þ

and represents an increase in the phase shift between the two
polarization modes of the investigated HB fiber induced by the
unit change of the temperature acting on the unit fiber length [20].

To determine the polarimetric sensitivity to temperature KT ðλÞ,
we recorded a series of channeled spectra for increasing tempera-
ture T with a step small enough to assure unambiguity in retrieving
the temperature-induced phase changes Δ½ϕxðλÞ�ϕyðλÞ�. To mea-
sure KT ðλÞ, the HB fiber of the length L¼0.164 m was immersed in
water heated in a chamber with increasing temperature up to 373 K.
Fig. 6 shows two examples of the recorded spectra corresponding to
temperatures T1 ¼ 304 K and T2 ¼ 324 K. It is clearly seen from
Fig. 6 that the interference of polarization modes in the tandem
with the delay line shows up as the channeled spectrum, which
shifts with increasing temperature toward shorter wavelengths.

Using a windowed Fourier transform [31], we retrieved from the
two channeled spectra the phase functions ½ϕxðλÞ�ϕyðλÞ�T2

and
½ϕxðλÞ�ϕyðλÞ�T1

. Their difference is wavelength dependent and
decreasing with wavelength and for the known fiber length L and
temperature difference ΔT ¼ T2�T1 it enables us to determine the
absolute value of the polarimetric sensitivity to temperature KT ðλÞ.
It is also wavelength dependent and decreasing with wavelength.
Repeating this procedure for some other temperatures we obtained
the corresponding values of KT ðλÞ. In Fig. 7 is shown the mean value
of the polarimetric sensitivity to temperature as a function of the
wavelength and its precision is better than 5%. A sign of the
polarimetric sensitivity to temperature is determined from the
expression [32]

KT ðλÞ ¼
2π
λ

dBðλÞ
dT

þBðλÞα
� �

; ð6Þ

where α is a thermal expansion coefficient. The first term in Eq. (6),
representing the susceptibility of the modal birefringence to

temperature [32], has a negative sign for conventional HB fibers
with elliptical cores, and is higher at shorter wavelengths [33]. The
second term BðλÞα, representing the fiber elongation, is most often
neglected when the temperature sensitivity in conventional HB
fibers is considered [32]. As a result, the polarimetric sensitivity to
temperature has a negative sign. The absolute value of the mean
polarimetric sensitivity to temperature for the investigated HB fiber
decreases with wavelength from a value of 1.2 rad m�1 K�1 to a
value of 0.4 rad m�1 K�1 (in the range from 500 to 850 nm). The
absolute value at λ¼632.8 nm is in good agreement with a value of
1.1 rad m�1 K�1 for elliptical-core fiber, but it is less than that of bow-
tie fiber, 7.4 rad m�1 K�1, and PANDA fiber, 7.6 rad m�1 K�1 [34].

4.2. Temperature response

Because the interference of polarization modes of the investi-
gated HB fiber shows up as the channeled spectrum, a shift of the
wavelength position of a given interference maximum with
temperature can be utilized for temperature sensing. In other
words, the wavelength interrogation can be used. As an example,
in Fig. 8 are shown three channeled spectra in the wavelength
range from 510 to 580 nm corresponding to three different
temperatures T1 ¼ 304 K, T2 ¼ 314 K and T3 ¼ 324 K. Similarly, in
Fig. 9 are shown the same channeled spectra in the wavelength
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Fig. 6. Two examples of the recorded channeled spectra corresponding to tem-
peratures T1 and T2.
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Fig. 7. The spectral dependence of the mean value of the polarimetric sensitivity to
temperature for the HB fiber under test.
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range from 560 to 630 nm. The interference maxima in both
wavelength ranges are shifted with temperature toward shorter
wavelengths and the shift is smaller for longer wavelengths (560–
630 nm). This is due to the lower polarimetric sensitivity of the
investigated HB fiber to temperature at longer wavelengths. The
shift is also affected by the group birefringence dispersion of the
fiber because the temperature sensitivity ST ðλÞ, representing the
wavelength shift of the interference maximum induced by the unit
change of the temperature, is given by [27]

ST ðλÞ ¼
dλmax

dT
¼ λ2

2π
KT ðλÞL
GðλÞz : ð7Þ

For the investigated HB fiber it reaches �0.20 nm/K at λ¼520 nm.
The measured wavelength shifts corresponding to the given

maxima in the channeled spectra for increasing temperature up to
373 K are shown in Fig. 10 by crosses. The lower crosses correspond
to a maximum starting at a wavelength of 518.44 nm, the inter-
mediate crosses correspond to a maximum starting at a wavelength
of 570.28 nm and the upper ones correspond to a maximum
starting at a wavelength of 619.86 nm. The dependences of the
wavelength shift on the temperature are with different slopes
(temperature sensitivities): �0.25 nm/K for the lower dependence,

�0.15 nm/K for the intermediate dependence and �0.11 nm/K for
the upper one. The temperature sensitivity is higher at shorter
wavelengths and from the point of view of temperature sensing
using this method the position of a maximum should be measured
at shorter wavelengths (near 520 nm). To the slopes uncertainties
correspond the temperature fluctuations with the root-mean-
square amplitudes below 0.5 K demonstrating that the measure-
ment method is of sufficient resolution. Temperature sensitivities of
other types of HB fibers are higher due to a higher polarimetric
sensitivity. As an example, near λ¼1550 nm ST ðλÞ reaches
�0.2 nm/K for elliptical-core fiber, �1.2 nm/K for bow-tie fiber,
�1.9 nm/K for PANDA fiber [15].

A temperature measurement step is limited by the phase
unambiguity (the phase change not exceeding 2π) and reaches
ΔT ¼ 35 K in the vicinity of 518.44 nm, and ΔT ¼ 48 K in the
vicinity of 619.86 nm. It can be enlarged using the shorter length
L of the sensing fiber. However, in a sequential temperature
measurement with a step small enough to assure phase unambi-
guity, the measurement range can be very wide, that is, high-
temperature measurements are possible.

5. Conclusions

In this paper, the results of theoretical and experimental
analysis of the spectral-domain interference of polarization modes
in an elliptical-core HB fiber applicable to temperature sensing are
presented. A tandem configuration of a birefringent quartz crystal
and a sensing HB fiber is considered and the spectral interfero-
grams are modelled for the known birefringence dispersion of the
HB fiber. It is revealed that for a suitable thickness of the biref-
ringent crystal channeled spectra can be resolved and a shift of the
position of a given interference maximum can be used to tem-
perature sensing.

The investigated HB fiber is employed in an experiment and
from the channeled spectra recorded for different temperatures, the
polarimetric sensitivity to temperature is determined in the wave-
length range from 500 to 850 nm. It is decreasing with wavelength
so that the HB fiber is suitable for temperature sensing in a short
wavelength range. Temperature sensing is demonstrated in the
range from 300 to 370 K when a shift of the wavelength position
of a given interference maximum is measured. The temperature
sensitivity reaches �0.25 nm/K and the resolution is better than
0.5 K. In addition, the measurement range can easily be extended
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Fig. 8. Three examples of the recorded channeled spectra corresponding to
temperatures T1, T2 and T3 (the wavelength range from 510 to 580 nm).
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Fig. 9. Three examples of the recorded channeled spectra corresponding to
temperatures T1, T2 and T3 (the wavelength range from 560 to 630 nm).
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for temperatures greater than 370 K provided that the phase
unambiguity is ensured.

The results obtained are important from the point of view of
implementation of temperature sensors employing HB fibers and
utilizing the spectral interference of polarization modes. A tandem
configuration enables one to resolve the spectral interference even
for a long HB fiber. Moreover, the sensing is performed in a visible
spectral range using a low-cost source and a compact spectro-
meter, components easily accessible.
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