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1 Introduction

The history of robotics in the modern sense begins after the World War II by the devel-

opment of remotely controlled mechanical manipulators of master–slave type. Shortly

afterwards, in 1954, the master part was endowed by a programmable unit and attached

to the Computer Numerically Controlled (CNC) machine tool for accurate milling of

low–volume, high–performance aircraft parts. In 1961, the first programmable robot

manipulator was installed in a General Motors plant. Since then the progress is di-

vided into various directions, e.g. positioning accuracy improvement for CNCs, com-

putational schemes for the gravity and Coriolis force control method in the 1980s or

modifiability for different assembly operations. Nevertheless, these industrial manip-

ulators started the development of advanced tools for the kinematics and dynamics

description.

In the 70s, Hirose, [19], described a robotic system similar to the manipulators by

construction, i.e. the robot composed of links and motorised joints. But unlike the

manipulators, the robotic snake was unearthed and therefore moving robot and thus

to the kinematic description certain nonholonomic conditions on the friction forces

and velocity vectors were added leading to the system of differential equations and

transforming the problem into the field of mathematical control theory. Indeed, the

resulting system is a dynamical system with input functions that provide the prescribed

motion by controlling the joint actuators. Mathematically, the foundations of the

control theory were laid by Pierre–Simon Laplace, and it was further elaborated by

James Clerk Maxwell in 1868 from the point of view of the oscillation theory and by

W. Hurewitz in 1947 who analysed the stability conditions.

Within this text we rather use so–called modern control theory meaning that the

controlling dynamical system is expressed in a matrix form q̇ = A·u, where q denotes the

point of a phase space, A is a controlling matrix and u is the input vector. The columns

Ai af A then represent the vector fields that describe the direction of an infinitesimal

motion w.r.t. the appropriate i–th element of u and thus a motion direction from a

given point within the phase space is obtained as the linear combination of Ai. This

approach is suitable for modelling and avoids the non–linearity obstructions. If a phase

space is considered as a manifold and the motion generators as the vector fields, the

problem is translated into the language of differential geometry. Indeed, e.g. the

controllability analysis is then reduced to the dimension conditions on the Lie algebra

generated by Ai by means of a Lie bracket. Moreover, the Lie bracket generated

vector fields play an important role in the spatial motion of a snake robot. Note

that the analysis of the generating process also leads to the classification of the robotic

mechanisms according to the filtration of the appropriate Lie algebra w.r.t. the number

of Lie brackets used, e.g. 3 link robotic snake’s Lie algebra filtration is (2,3,5), i.e. there

are two controlling vector fields, one their bracket and two additional independent

Lie brackets of order two. Based on this classification, Ishikawa [27] introduced a

mechanism of filtration (3,6) called a trident snake robot. We handle this mechanism

within Section 4.1.

Consequently, the tools of sub–Riemannian geometry were used to adopt the con-
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trolling system for the Lie bracket motions simulations in order to estimate the model

error. This lead to the notion of nilpotent approximation, see Section 5.

Quite recently, the calculus of Conformal Geometric Algebra (CGA), see [15], was

employed to the analytical description of robotic manipulators in order to decrease the

computational complexity of position calculations.

In Section 2, we mention a precise definition of some elementary notions of differ-

ential geometry such as curves, manifolds, tangent space etc. Using these notions in

Section 3, we provide an illustrating example of geometric control theory on a sim-

ple car model and mention an exact link between a dynamical system and differential

geometry. In Section 4 we recall the kinematic description of the robotic snakes, includ-

ing the trident snake and a 3–link robotic snake. Section 5 is devoted to the so–called

nilpotent approximation of the controlling distribution. We describe the algorithm in

a more detailed way compared to [43], Appendix 2. A global control model based on a

serpenoid curve is briefly mentioned in Section 6. Next, we resume some facts about the

Conformal Geometric Algebra in Section 7 and describe the translation of the snake

robots’ kinematics into the language of CGA. The author’s results in this field and

further details of Sections 3–7 can be found in [53, 43, 22, 23, 24] as Appendices 1–5,

the results about the differential kinematics described in Section 7.2 can be found in

[21]. Finally, we show another directions of author’s research in differential geometry

within the last Section 8.

2 Elementary notions of differential geometry

In this section we summarize the elementary notions of differential geometry that ap-

pear within this text. All definitions in this Section are rather classical and can be

found in textbooks of differential geometry, see e.g. [4, 32, 55].

2.1 Curves

There exist two elementary approaches to the notion of a curve. In geometry, we usually

understand a curve to be a particular set of points within a plane (or generally within

n-dimensional Euclidean space En). On the other hand, in mathematical analysis a

curve often represents a graph of a smooth function which describes the trajectory of

a point motion.

This
”
dynamical“ approach can be specified as follows: consider an open interval

I ⊂ R whose elements represent time values. A mapping f : I → En is called a

motion in En. Instead of motion we sometimes use path. If a basis is chosen in En
then f(t) = (f 1(t), . . . , fn(t)) is an n-tuple of real functions and thus the motion is

identified with a vector valued function f : I → Rn. The derivative of such function

is then called the motion velocity. We say that the motion f(t) is of class Cr if all its

components f i(t) share common derivatives up to order r. Clearly, the above definition

does not depend on the choice of the coordinate system. Next, we say that a motion

f is regular if f ′(t) 6=→0 for all t ∈ I. This means that a regular motion has non zero
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velocity at any point. Motion f is called simple if the condition t1 6= t2 ⇒ f(t1) 6= f(t2)

holds. This means that the trajectory does not contain any self intersections.

Definition 2.1. A set C ⊂ En is called a simple curve of class Cr if there exists such

a simple regular motion f : I → En of class Cr that C = f(I). A mapping f is then

called a parametrization of a simple curve f(I).

Quite analogously, one can define a surface S ⊂ E3, see e.g. [4].

According to the following proposition, any two parametrizations of the same simple

curve differ by reparametrization.

Proposition 2.2. Mappings f(t) : I → En and g(τ) : J → En are parametrizations of

the same simple curve C of class Cr if and only if there exists a bijection ϕ : J → I, t =

ϕ(τ) of class Cr such that for all τ ∈ J the assertion dϕ
dτ
6= 0 holds and g(τ) = f(ϕ(τ)).

Function ϕ is then called the reparametrization or a parameter transformation of a

curve C.

Definition 2.3. The set C ⊂ En is called a curve of class Cr if for any point p ∈ C
there exists a neighbourhood Up in En such that C ∩ Up is a simple curve of class Cr.

The parametrization of the intersections C ∩ Up is called a local parametrization of a

curve C.

If f : I → En is some local parametrization of a curve C then the line determined

by the point f(t0) ∈ C and a vector f ′(t0) is called the tangent line of a curve C at a

point f(t0).

Definition 2.4. We say that two curves C, C ⊂ En at a common point p ∈ C ∩ C
have the contact of order k if there exist their local parametrizations f(t) and f(t),

f(t0) = f(t0) = p, such that dif(t0)
dti

= dif(t0)
dti

for all i = 1, . . . , k.

Clearly, two curves have the contact of order 1 at a common point if and only if

they share the common tangent line at that point. It is also true that the tangent line

is the only line having the contact of order 1 with a curve at a particular point.

2.2 Manifolds

A crucial notion of differential geometry is that of a manifold. It can be understood

as a generalization of the notions of curves and surfaces. For better understanding

we employ the idea of the Earth cartography. Indeed, a sphere can not be described

completely by one planar chart but it can be glued from a set of charts ordered into an

atlas. Strictly speaking, any point of a sphere has a neighbourhood such that it can be

uniquely mapped on a subset of a plane. We use the notions of charts and atlas even

in the following text, where we define a manifold precisely. First, let us recall that a

topological space is called Hausdorff if its any two points can be separated by two open

sets. Next we recall that a homeomorphism is a continuous bijective mapping whose

inverse is also continuous.
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An n–dimensional topological manifold is a Hausdorff space M with a countable

basis which is locally homeomorphic to Rn, i.e. for every point x ∈ M there exists its

open neighbourhood U ⊂ M and a homeomorphism ϕ : U → ϕ(U) ⊂ Rn. The pair

(U,ϕ) is called a local chart. A system of charts (Uα, ϕα), α ∈ I on M such that Uα
cover whole M is called an atlas. The demand on the countable basis guarantees that

a finite or countable system of charts covering whole M can be chosen.
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Figure 1: Manifold charts

Two local charts (U1, ϕ1), (U2, ϕ2) induce a mapping ϕ12 := ϕ1◦ϕ−1
2 : ϕ2(U1∩U2)→

ϕ1(U1 ∩ U2) between two subsets of Rn called the chart changing mapping, see Figure

1. We say that an atlas (Uα, ϕα) of a manifold M is of class Ck, if all chart changing

mappings ϕαβ are diffeomorphisms of class Ck (i.e. ϕαβ is a bijection of class Ck such

that its inverse is also of class Ck). A chart (U0, ϕ0) is called compatible with the atlas

(Uα, ϕα) of class Ck if any chart changing mapping ϕ0α is a diffeomorphism of class

Ck. Atlas (Uα, ϕα) of class Ck is called complete if it contains all compatible charts.

Definition 2.5. A differentiable manifold of class Ck is a topological manifold M with

a complete atlas of class Ck.

A mapping ϕ from a local chart (U,ϕ) is given by an n–tuple of functions (ϕ1, . . . , ϕn)

denoted by (x1, . . . , xn) or (xi) that are called local coordinates of a manifold M , the

set U is called a coordinate neighbourhood. We say that a mapping f : M → N

between two manifolds is of class Ck if for any x ∈M and any chart (V, ψ) on N such

that f(x) ∈ V , there exists a chart (U,ϕ) on M such that x ∈ U and the mapping

ψ ◦ f ◦ ϕ−1 is of class Ck. A mapping ψ ◦ f ◦ ϕ−1 is called a coordinate form of map-

ping f . If (yp) are local coordinates on N, this coordinate form is yp = fp(x1, . . . , xn).

Analogically, we define a function f : M → R of class Ck. In the sequel, we assume
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all manifolds (mappings, functions) to be of class C∞ and will be called smooth. All

smooth manifolds and their mappings form a category denoted as Mf .

2.3 Tangent bundle

We recall that tangent vectors of a surface S ⊂ E3 at a point x ∈ S are defined as

the tangent vectors of such curves on S that contain the point x. We use this idea

to establish the notion of a tangent vector to a manifold M . A smooth mapping

f : I → M is called a path on a manifold M . In the sequel and w.l.o.g., we assume

that the interval I contains zero.

Definition 2.6. We say that two paths f, g : I → M satisfying f(0) = g(0) = a have

a contact at a point a ∈ M if there exists a coordinate neighbourhood U of a point a

with local coordinates (xi) such that

d(xi ◦ f)(0)

dt
=
d(xi ◦ g)(0)

dt
.

Clearly, the above definition is independent on the choice of local coordinates. The

equivalence class of paths f(t) on M satisfying f(0) = a and having a contact at a ∈M
is called a tangent vector of a manifold M at a point a and we denote it as ta = df(0)

dt
.

The elements ξi := d(xi◦f)(0)
dt

are then called the coordinates of a vector ta in local

coordinates (xi). If ϕ = ϕ(xi) : M → R is an arbitrary smooth function on U then

taϕ :=
d(ϕ ◦ f)(0)

dt
=

n∑

i=1

∂ϕ(a)

∂xi
d(xi ◦ f)(0)

dt
=

n∑

i=1

∂ϕ(a)

∂xi
ξi. (2.1)

The value taϕ defined by (2.1) is called a derivative of a function ϕ in the direction

of vector ta. Clearly, for arbitrary smooth functions ϕ, ψ : M → R defined on the

neighbourhood of a point a the following holds:

ta(rϕ+ sψ) = rtaϕ+ staψ, ta(ϕ · ψ) = ϕ(a) · taψ + ψ(a) · taϕ, r, s ∈ R. (2.2)

Consequently, it is possible to define a tangent vector as an operator ta which assigns

a real number taϕ to a function ϕ : M → R and which satisfies (2.2). An example of a

tangent vector is an operator
(
∂
∂xi

)
a

which to a function ϕ assigns its derivative w.r.t.

xi at a point a.

The set TaM of all tangent vectors of a manifold M at a point a is called the tangent

space of M at a. Then TaM is n–dimensional vector space with the basis formed by

tangent vectors
(
∂
∂xi

)
a
. The disjoint union of tangent spaces at every a is denoted by

TM := ∪a∈MTaM . Clearly, TM is 2n–dimensional differentiable manifold called the

tangent space. Together with a natural projection p : TM → M which to a tangent

vector ta ∈ TaM assigns the contact point a, we have a tangent bundle denoted by

TM →M .
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2.4 Vector fields

Definition 2.7. Let TM → M be the tangent bundle of a manifold M . By a vector

field on M we understand a smooth mapping X : M → TM which to any point a ∈M
assigns a tangent vector X(a) ∈ TaM .

If (xi) are local coordinates on the neighbourhood U of a point x ∈ M then the

vector field X can be expressed in the form

X =
n∑

i=1

X i ∂

∂xi
,

where X i = X i(x) are smooth functions defined on U . For any smooth function

f : M → R, it is possible to define its derivative Xf : M → R along the vector field X

by (Xf)(a) = X(a)f where the right hand side stands for a derivative in the direction

of a vector X(a) ∈ TaM as in (2.2). In local coordinates clearly Xf =
∑n

i=1X
i(x) ∂f

∂xi
.

It turns out that the set χ(M) of all vector fields on M can be identified with the space

of all derivatives of the algebra of smooth functions C∞(M,R), i.e. with R–linear

operators D : C∞(M,R)→ C∞(M,R) satisfying D(fg) = D(f)g + fD(g).

A path f : I → M is called an integral curve of a vector field X if the vector

X(f(t)) is tangent to f at f(t) for any t ∈ I, i.e.

df(t)

dt
= X(f(t)) ∀t ∈ I.

Any integral curve is thus a solution of a system of ODEs dxi

dt
= X i(x1, . . . , xn). From

the theory of ODEs it follows that for any point x ∈ M there exists an open interval

Ix containing 0 and an integral curve fx : Ix → M of a vector field X such that

fx(0) = x. If the interval Ix is maximal then fx is unique. Furthermore, the set

DX := ∪x∈MIx × {x} ⊂ R ×M is open and a mapping FlX : DX → M defined by

FlX(t, x) = fx(t) is smooth. The mapping FlX is called the flow of a vector field X.

For any pair of vector fields X, Y on M there exists a unique vector field [X, Y ]

on M such that for any function f on M the assertion [X, Y ]f = X(Y f) − Y (Xf)

holds. The vector field [X, Y ] is called a Lie bracket of vector fields X, Y . If X i(x) and

Y i(x) are the coordinate forms of X and Y then the Lie bracket [X, Y ] is of the form∑n
j=1X

j ∂Y i

∂xj
− Y j ∂Xi

∂xj
. Note that the set of all vector fields χ(M) on a manifold M

together with the Lie bracket form a Lie algebra which, generally, is defined as a vector

space g over a field F together with a binary, bilinear, anti–commutative operation

denoted by [·, ·] : g × g → g defined by [X, Y ] = XY − Y X for X, Y ∈ g assuming

that an algebraic product is defined on g and, furthermore, for any three elements

X, Y, Z ∈ g the Jacobi identity holds:

[X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = 0.

In the following text, we use some more advanced notions of differential geometry

such as e.g. the Lie derivative, Lie group, fibred manifold and connection, the definition

of which is omitted and we refer to e.g. [32, 55] for the details.
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3 Motivation for geometric control

3.1 Local control and differential geometry

We now show the connection between the dynamical systems and vector fields, more

precisely we show the simple car model description by both methods, for classical

approach see e.g. [35]. Furthermore, on the geometrical background we discuss the

model controllability and show the meaning of a Lie bracket.

L

(x,y)

Φ

θ

ρ
Φ

x

y

Figure 2: Simple car model

For the model description see Figure 2 and note that the fixed coordinate system

(x, y) is attached. The car moves on a planar surface and thus the configuration space is

isomorphic to R2×S1×S1 with coordinates denoted by (x, y, θ,Φ), first two describing

the position, the third one the car orientation w.r.t. the fixed coordinate system and Φ

determining the shape of the car, i.e. the front wheels orientation. The non–holonomic

condition on the rear wheels reads that the velocity vector is always tangential to

the trajectory of the rear axle midpoint (x, y). Mathematically, this condition can be

expressed as

−ẋ sin θ + ẏ cos θ = 0,

which is the form of the Pfaffian equation, i.e. dually in the form Pdx+Qdy = 0 for a

vector field (P (x, y), Q(x, y)). This is satisfied if ẋ = α cos θ and ẏ = α sin θ, α ∈ R, i.e.

the α multiple of the velocity vector v of the car. If we set α =‖ v ‖=: s, we obtain two

configuration equations ẋ = s cos θ and ẏ = s sin θ. To describe the car position and

spatial orientation (not front wheels orientation) completely, we need to determine the

equation for θ̇, too. First observe that ρ = L
tan Φ

. If w denotes the distance travelled by

the car then clearly w = 2πρ
2π
θ = ρθ for a fixed Φ and thus dw = ρdθ. Consequently

dθ =
tan Φ

L
dw.
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Using the fact that ẇ = s this yields

θ̇ =
s

L
tan Φ.

To comply with the notation used in the field of dynamical systems we should specify

the action variables (the input). In this model, the action variables are clearly the

speed s controlled by the throttle, and Φ controlled by the steering wheel. As the

inputs are denoted by (us, uΦ), we obtain a control system

ẋ = us cos θ,

ẏ = us sin θ,

θ̇ =
us
L

tanuΦ.

(3.1)

In addition, further restriction such as the steering angle limitation must be applied.

Furthermore, from the point of view of dynamical systems, note that the exact solution

depends on the actual state of the input functions. Nevertheless, as the system serves

for modelling, it is considered as the dynamic feedback control law and the solution of

a linearized system is involved in each iteration.

The question arises whether there exists a different way of the problem modelling

that could be more convenient with some additional topics. This is where the mod-

ern geometric control theory comes to action. Indeed, if the configuration space is

considered as a four dimensional manifold M with coordinates (x, y, θ,Φ), then the

reconfiguration, i.e. both spatial, including the position and orientation, and shape

(the front wheels orientation) transformations, are viewed as curves on the manifold

M . Thus , equivalently, we may consider the evolution of the shape coordinate Φ̇ as

an input function and obtain the modification of the system 3.1 in the form

ẋ = us cos θ,

ẏ = us sin θ,

θ̇ =
us
L

tan Φ,

Φ̇ = uΦ,

(3.2)

which is again a dynamical system, yet now in the Pfaffian form which defines the

coordinates of the controlling vector fields explicitly as the input functions coefficients,

i.e.

steering: S =
∂

∂Φ
,

drive: D = cos θ
∂

∂x
+ sin θ

∂

∂y
+

tan Φ

L

∂

∂θ
.

The motion within the phase space is then realized along the integral curves of

these vector fields, which are easily found for a fixed initial point, see Figure 3.
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(a) θ evolution (b) x, y evolution

(c) Overall view

Figure 3: Integral curves

Clearly Figure 3(a) shows the periodic evolution of θ denoted as z within the graph,

Figure 3(b) reads that the car with fixed steering angle rotates in x, y plane and Figure

3(c) shows the spatial form of the integral curve with fixed steering angle Φ. Very

simple sequential motion planning algorithms then come to the reader’s mind. One

can either evaluate the vector fields S and D at the initial point x0, move in the constant

direction of their arbitrary linear combination into the point x1, recalculate the vector

fields again and proceed further by iteration, or determine the integral curve of the

particular linear combination of vector fields S and D at x0, move along the integral

curve into the point x1, recalculate the integral curve in x1 and proceed by iteration,

see Figure 4. Such algorithm demands sufficient computational capacity and suffers

from its local character. Furthermore, the problem also lies in the question how to

determine a curve that starts at x0 and ends in a prescribed point x1. Thus it is not

9



suitable for global motion planning, yet in the sequel we show its contribution to the

robotic snake motion planning.

x0

x1

x2 x3

t1

t2 t3

Figure 4: Motion planning

We described how a motion may be obtained by a linear combination of the con-

trolling vector fields. Yet, there exists their more sophisticated combination called the

Lie bracket. Note that we use the Lie bracket on the Lie algebra of vector fields. The

calculation of a Lie bracket of vector fields X, Y on a manifold M with coordinates

denoted by x at a point x0 ∈M is quite simple, indeed

[X, Y ](x0) =
∂X

∂x
(x0)Y (x0)− ∂Y

∂x
(x0)X(x0),

where ∂X
∂x

stands for a Jacobi matrix of X.

To demonstrate the effect of a Lie bracket, let us consider the flows (or integral

curves) of the appropriate vector fields. Then the Lie bracket measures the non–

commutativity of the corresponding flows, see Figure 5.

F lS

F lD

F l−S

F l−D

[S,D]

Figure 5: Lie bracket

In case of simple car model we obtain two more available motions, particularly

rotation: R = [S,D] =
1

L cos2 Φ

∂

∂θ
,

translation: T = [R,D] = − sin θ

L cos2 Φ

∂

∂x
+

cos θ

L cos2 Φ

∂

∂y
.
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From the coordinate form it is clear that R corresponds to the change of the ori-

entation only, i.e. it represents pure rotation, while T moves the car w.r.t. the spatial

coordinates x, y only and thus it represents the translation. It is also clear that such

motions cannot be realized directly in the motion planning algorithm but have to be

formed as a combination of the controlling vector fields S and D. See Figure 6 for the

motions interpretations. Note that e.g. the translation in the direction parallel to the

rear axle is the answer to the parallel parking problem, see Figure 6(a).

T

(a) Translation

R

(b) Rotation

Figure 6: Bracket motions

Clearly, parallel parking problem can be solved using the combination of S and

D vector fields and, as shown above, the Lie bracket plays an important role in it.

Furthermore, if the Lie bracket is understood as the composition of flows, see Figure 5,

it becomes clearer that the Lie bracket motion is realized by so–called periodic input,

see [42] or (4.5) for its exact form.

Finally, we discuss the application of the differential geometry approach to the

solution of local controllability. It can be calculated directly that there are pointwise no

linearly independent vectors generated by further iteration of the Lie bracket. Indeed,

this means that the dimension of the Lie algebra generated by S,D,R and T is 4 so as

the dimension of the configuration space, or more precisely of its tangent space, and

thus, according to the Chow–Rashevski Theorem, the system is locally controllable. In

other words, this means that it is possible to steer the system from a given initial state

to any final state within its neighbourhood in finite time using the available controls.

On a simple car model we demonstrated the geometric approach to the control

theory which is used in Appendices 2-5, [43, 22, 23, 24].

3.2 Further geometric concepts

Note that there are further notions of differential geometry that play an important role

in the control theory. We mention two concepts that appear within this text.

Clearly, the control system (3.2) can be rewritten as

q̇ = us · S(q) + uϕ ·D(q)

assuming that q = (x, y, θ,Φ). Generally, any controlling system can be written as

q̇ = u1X1(q) + · · ·+ umXm(q), q ∈M, u = (u1, ..., um) ∈ Rm, (3.3)
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where Xi are smooth vector fields on M , see [29]. Indeed, the system (3.3) determines

a family of vector spaces

∆(q) = span{X1(q), . . . , Xm(q)} ⊂ TqM, q ∈M

which, in case that the dimension of ∆(q) is constant for all q ∈M , is called the distri-

bution. We will focus on such cases only, furthermore, we suppose that the dimension of

∆(q) is lower than the dimension of TqM and this defines so–called nonholonomic sys-

tem. Consequently, it is possible to define a trajectory of (3.3) as a path γ : [0, 1]→M

for which there exists a function u(·) ∈ L1([0, T ],Rm) such that γ is a solution of the

ordinary differential equation

q̇(t) =
m∑

i=1

ui(t)Xi(q(t))

for almost every t ∈ [0, T ]. Such a function u(·) is called a control associated with γ.

Note that the existence of such path between two sufficiently close points is given by

the local controllability. Now one can define a sub-Riemannian metric associated with

(3.3) as a function g : TM → R ∪ {∞} given by

g(q, v) = inf

{
u2

1 + · · ·+ u2
m :

m∑

i=1

uiXi(q) = v

}
,

where the convention reads that inf ∅ = +∞. With the notion of a metric we are ready

to define the length of a path γ(t) as

length(γ) =

∫ T

0

√
g(γ(t), γ̇(t))dt

and finally the sub-Riemannian distance on M associated with (3.3) as

d(p, q) = inf length(γ)

for such γ that γ(0) = p and γ(T ) = q. Note that this concept allows measuring the

trajectories (motions) of a mechanism defined by (3.3) assigning a finite measure to

those trajectories whose tangent vectors are a linear combination of the controlling

vector fields Xi. Infinite measure is assigned to the trajectories that are not solutions

of (3.3) and thus the appropriate motion violates the mechanism’s natural behaviour.

In the context of a simple car model, this means that the rear wheels slip or slide and

thus the velocity vector is no longer purely perpendicular to the rear axle.

In addition, we recall another important notion that refers to the Lie bracket gen-

erating process which is the filtration appropriate to the nonholonomic system. We use

the same notation as in [29]. Let us by ∆1 denote the distribution

∆1 = span{X1, ..., Xm}

and for s ≥ 1 define

∆s+1 = ∆s + [∆1, ∆s],
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where [∆1, ∆s] = span{[X, Y ] : X ∈ ∆1, Y ∈ ∆s}. Then the filtration is understood as

a sequence of dimensions of the distributions ∆s, i.e. the filtration appropriate to the

simple car model is (2,3,4) as the vector field T is the second order Lie bracket. Note

that modelling of the Lie bracket motions leads to the concept of the nilpotent approx-

imation that follows the sub–Riemannian geometry structure given by the dynamical

system. Particular example will be given in Section 5.

Finally, geometrical concept of a connection plays an important role in the control

theory, yet the exact use can vary and may demand quite deep knowledge of differential

geometry. For the use of a connection in the control theory based on the kinematic

energy optimization see e.g. [13, 46]. To find the correspondence between dynamical

system, vector field and a connection we refer to [53], Appendix 1, where the connection

is established by the projection onto the space of controlling parameters, canonical

parameters and differential invariants of the controlling system. Indeed, if a solution

of a dynamic system is considered as an integral curve (flow) of an appropriate vector

field denoted by Y , then the canonical parameter s, defined by LY s = 1, and the

system of independent invariants Ik defined by LY I = 0 of Y can be considered, where

LY denotes the Lie derivative w.r.t. the vector field Y . Consequently, if we define a

submersion

ϕ : ∆→ (s, Ik),

then each fibre is formed by the family of integral surfaces which define a horizontal dis-

tribution ∆h and therefore a connection. Thus the control is identified with a (torsion

free) connection, see [53], Appendix 1 for further details, application to the dynamical

system transformation and examples. For the differential geometrical background see

[1, 50], for more details about dynamical systems see e.g. [44].

4 Kinematics of robotic snakes

Robotic snakes, or rather snake-like robots, are a good example of very sophisticated

biologically inspired specimen. A snake, as a mobile biological unit, is very well adapted

for an effective overcoming of obstacles and thus its terrain traversability is good in

very complex environments [30]. From this point of view there are two very beneficial

and fundamentally irreplaceable robotic applications. The first is the snake as an in-

dependent exploratory unit which is able to move in terrain that is hardly reachable

or unreachable by means of the common mobile technology based on wheels or legs.

One of many examples is a rescue mission in the earthquake affected areas [39, 40].

The snake robot could crawl through a destroyed building looking for people. The

snake robot can also be used for surveillance and maintenance of complex and pos-

sibly dangerous structures such as nuclear plants and pipelines. Other application

can be for example a snake-like robot used as a slender hyper-redundant manipula-

tor, which is irreplaceable in industry and also in medical applications. Compared to

the wheeled and legged mobile mechanisms, the snake robot offers high stability and

superior traversability. Nowadays, snake-like robots are actively developing area in

robotics, rising in popularity.
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One of the most famous works has been done by Hirose and Umetami, in the

early 1970’s, they were the first to explore, design and develop limbless locomotors

[19, 20, 41, 56]. They started the first bio-mechanical study using the real snakes

and designed the first snake-like robot based on so–called serpentine locomotion. The

first designs of Hirose’s snake robots had modules with small passive wheels, and since

then, most of the current developments by Downling (1997) [9], Chirikjian and Burdick

(1990) [7], and Ostrowski (1995) [45] keep using the snake robots with wheels in order

to facilitate forward propulsion.

Up to now, a variety of different snake-like robots has been designed, see [7, 31, 36,

47], some of which are currently used in practical tasks. It is important to note that

there are other locomotion models using the principles of the biological snakes [6]: 1)

Serpentine locomotion; 2) Rectilinear locomotion; 3) Concertina locomotion; 4) Side

winding locomotion. The precise modelling of any of these motion components is quite

difficult task [37]. There is a significant number of papers focused on searching for

new snake–like mechanism constructions in order to realize one or more of the above

models, [11, 38]. For the snake–like motion mimicking, basically three approaches are

used (simplified classification).

First, the original Hirose approach, [19, 20], i.e. the representation of the kine-

matic model based on the serpenoid curve. This is well developed in many directions,

[2]. Two main planar models, the serpentine locomotion (horizontal locomotion) and

the travelling wave locomotion (vertical locomotion) are often adopted in the snake

robot [5]. Furthermore, many authors present the optimized versions of this approach

based on various parameter estimations. This is also often used for the verification of

other solutions. We present a short description of serpenoid curve–based model within

Section 6.

Second, heuristic and artificial intelligence approach based on so–called CPG (Cen-

tral Pattern Generators) or other types of non–linear models. CPG produces so called

rhythmic outputs defining a periodic motion of a robotic snake. It is realized as the

intra-spinal artificial neural network. It is one of the mechanisms for neural control

of locomotion in higher animals and humans [49]. In the field of modular robots, the

CPG plays an important role in the motion description [8]. Different variations of this

approach are still widely studied and developed [26].

Third, the analytical mechanic model based on the Newton-Euler formulation and

Lagrangian [54, 42]. The fact that the energy of the system and the friction forces

acting on the system are invariant with respect to the position and orientation of

the snake robot is exploited to simplify the mathematical model. In the position

calculation, the classical Euler angles can be used. The same calculations with much

lower computational complexity are provided when the representations by quaternions

or by the elements of so–called Conformal Geometric Algebra (CGA) [3, 16, 17] are

employed. This approach is elaborated on a snake robot within Appendices 3–4, [22,

23], for trident snake robot see Appendix 5, [24].

Note that the above approaches differ not only by mathematical methods but also

by suitability for particular applications. The division into global and local control is
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vital. While heuristic methods suit well to the global control, the analytical approach

solves rather local control, i.e. the way of actual movements and thus it can be used

e.g in the situations where not enough joints can be operated, such as narrow spaces

or difficult terrain due to obstacles.

In the sequel, we describe two particular mechanisms, i.e. trident snake and snake

robot. We apply the geometric control methods and show elementary local motion

planning algorithms based on the controlling vector fields. We shall stress that the Lie

bracket motions are crucial to provide continuous lateral undulation and show the exact

form of a periodic input that models them satisfactorily. Let us note that according

to [42], the accuracy of modelling the bracket motions by periodic input up to order

two is checked by so–called nilpotent approximation of the controlling distribution. We

describe the whole transformation process for the 3–link snake, where the full strength

algorithm must be used, in [43], Appendix 2. Within this text we compute the exact

form of the trident snake’s nilpotent approximation with comments and more details.

4.1 Trident snake robot

The mechanism of the trident snake robot was introduced in [27]. It consists of a

body in the shape of an equilateral triangle with circumscribed circle of radius r and

three rigid links (also called legs) of constant length l connected to the vertices of the

triangular body by three motorised joints. In this text, we consider r = 1 and l = 1.

To each free link end, a pair of passive wheels is attached to provide an important

snake-like property that the ground friction in the direction perpendicular to the link

is considerably higher than the friction of a simple forward move. In particular, this

prevents slipping sideways. To describe the actual position of a trident snake robot we

need the set of 6 generalized coordinates

q = (x, y, θ,Φ1,Φ2,Φ3) =: (x1, x2, x3, x4, x5, x6)

as shown in Figure 7. Hence the configuration space is (a subspace of) R2×S1× (S1)3.

Note that a fixed coordinate system (x, y) is attached.

Let us now recall the kinematics description of the trident snake robot according to

[27]. Let xi, yi, i = 1, 2, 3, denote the wheel positions, θ the absolute orientation and

x, y the platform centre coordinates. Then

(
xi
yi

)
=

(
x+ cos(αi + θ) + cos(αi + θ + Φi)

y + sin(αi + θ) + sin(αi + θ + Φi)

)
, (4.1)

where αi denotes the i–th central angle within the platform triangle. Note that the

parametrizations can vary by setting the angles within the triangular platform either

0, 2π
3

and 4π
3

or 0, 2π
3

and −2π
3
, etc. The non–slip and non–slide assumption on the

wheels imply the following three nonholonomic constraints:

ẋi sin(αi + θ + Φi) = ẏi cos(αi + θ + Φi), i = 1, 2, 3. (4.2)
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y

S[x, y]

Figure 7: Trident snake robot model

Differentiating the equations (4.1) and substituting into (4.2) we obtain the controlling

dynamical system. Similarly to the system (3.2) we transform it into the appropriate

Pfaff system of ODEs which describes the local controllability. If q̇ is expressed we

obtain a control system q̇ = Gµ, more precisely



ẋ

ẏ

θ̇

Φ̇1

Φ̇2

Φ̇3




=




cos θ − sin θ 0

sin θ cos θ 0

0 0 1

sin(θ + α1 + Φ1) − cos(θ + α1 + Φ1) −1− cos(Φ1)

sin(θ + α2 + Φ2) − cos(θ + α2 + Φ2) −1− cos(Φ2)

sin(θ + α3 + Φ3) − cos(θ + α3 + Φ3) −1− cos(Φ3)






u1

u2

u3




where the vector (u1, u2, u3) is the vector of controlling parameters and the control

matrix G is a 6 × 3 matrix whose columns are considered as the controlling vector

fields g1, g2, g3.

It is easy to check that in regular points, i.e. such points where the matrix G is

regular, these vector fields define a (bracket generating) distribution with growth vector

(3, 6). It means that in each regular point the vector fields g1, g2, g3 together with their

Lie brackets span the whole tangent space. Consequently, the system is controllable

by Chow–Rashevsky theorem.

For sake of simplicity and according to [43], Appendix 2, we use the simplified vector

fields where the rotation matrix is factored out which corresponds to the non–inertial

coordinate system connected to the platform. The Lie algebra generating vector fields
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g1, g2, g3 with the parametrization α1 = −2π
3
, α2 = 0 and α3 = 2π

3
are then transformed

as follows:

g1 = ∂x + sin(Φ1 − 2π
3

)∂Φ1 + sin(Φ2)∂Φ2 + sin(Φ3 + 2π
3

)∂Φ3 ,

g2 = ∂y − cos(Φ1 − 2π
3

)∂Φ1 − cos(Φ2)∂Φ2 − cos(Φ3 + 2π
3

)∂Φ3 ,

g3 = ∂θ − (1 + cos(Φ1))∂Φ1 − (1 + cos(Φ2))∂Φ2 − (1 + cos(Φ3))∂Φ3 .

(4.3)

Similarly to the simple car model we shall explore the Lie bracket motions more pre-

cisely. Thus, we calculate the vector fields given by the Lie brackets of g1, g2, g3 eval-

uated at 0 and denote them by g4 = [g1, g2], g5 = [g2, g3] and g6 = [g1, g3]. Their

coordinate form with respect to the rotation free system (i.e. the non–inertial system

connected with the platform) is the following:

g4 = ∂Φ1 + ∂Φ2 + ∂Φ3,

g5 =
√

3∂Φ2 −
√

3∂Φ3,

g6 = 2∂Φ1 − ∂Φ2 − ∂Φ3.

(4.4)

According to [27] and [43], Appendix 2, we demonstrate the motions generated by the

Lie brackets, see Figures 8, 9 and 10. Let us stress that in spite of the simple car model

example in Section 3.1 the trajectories do not represent the integral curves but are real

trajectories of wheels and triangle vertices within the Euclidean plane. Further details

of the Lie bracket exact realizations can be found in [27].

-2 -1 0 1 2 3

-2

-1.5

-1

-0.5
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0.5

1

1.5

2

Figure 8: Realization of g4 motion

Note that the trajectories on Figure 8 read that the root stays put and the angles

represented by the coordinates Φ1,Φ2,Φ3 change, which is obvious from approximately
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Figure 9: Realization of g5 motion
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Figure 10: Realization of g6 motion

equal dislocation of the wheel points at the end of the motion. Considering the vector

field g4 at 0 one finds that the angles should change proportionally to 1:1:1. Similarly,

Figure 9 demonstrates the Lie bracket g5 motion and clearly the trajectories represent

the effect that the root moves along the x–axis and the angles change proportionally

to 1:0:-1. Finally, Figure 10 shows g6 realization which reads that the root moves along

the y–axis and the angles change proportionally to -2:1:1.

This is crucial for the local motion planning algorithm as g4 provides a shape

transformation such that only the links move and the rest stays put and g5 and g6

provide motion along x and y axes, respectively. The local motion planning algorithm

then runs in loops, i.e. once the spatial motion is performed and the position of

the links is changed accordingly up to the construction limit, the bracket motion is

realized to restore the original shape with no spatial effect and the mechanism is ready

to repeat the motion in the desired direction. To find more details about the bracket

motions and motion planning algorithm see [27, 28]. When compared to the simple

car model, where the bracket motion corresponded to specific translation and rotation

only and may be omitted for standard motion planning otherwise, it is clear that for

snake like mechanisms the bracket motions are vital. Thus we come to a question of

their realization which, according to [42], brings us to the periodic input and nilpotent

approximation, see [43], Appendix 2. Indeed, the periodic input appropriate to the Lie

bracket [g1, g2] is a vector input function in the form

u(t) = (−Aω sinωt,Aω cosωt, 0) (4.5)

with suitable choice of A ∈ R sufficiently small amplitude and ω ∈ R. For further

details about the exact form of inputs for composed Lie brackets see [42].

4.2 3–link snake robot

Similarly to the previous section we describe the robot’s kinematics. Note that we

follow the notation used in [43, 22, 23, 24], Appendices 2–5.

The snake robot described in this text consists of 3 rigid links of constant length 2

interconnected by 2 motorized joints. To each line, in the centre of its mass, a pair of
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wheels is attached which provides the same snake–like property as for the trident snake

robot. To describe the actual position of a snake robot we need the set of 5 generalized

coordinates

q = (x, y, θ,Φ1,Φ2)

which describe the configuration of the snake robot as shown in Figure 11 and forms

5–dimensional manifold M as a phase space.

p0 = (x0, y0)

(x1, y1)

(x2, y2)

(x3, y3)

Φ2
Φ1

x

y

θ

Figure 11: Snake robot model

Note that the forward kinematics is calculated w.r.t. the head point (x0, y0) and

the model is parametrized by ẋ and ẏ. The regular positions then form a 2–dimensional

distribution which can be determined by the vector fields X = (X1, ..., X6) and Y =

(Y1, ..., Y6) e.g. with the following coordinates:

X1 =1,

X2 =0,

X3 =2 sin(θ),

X4 =− 4 sin(θ) sin(Φ1 + π/6)− 2 sin(θ)− 2 cos(θ + Φ1 + π/6),

X5 =8 cos(Φ2 + π/3) sin(Φ1 + π/6) sin(θ)− 4 sin(θ) cos(Φ1 + Φ2)

+ 4 cos(Φ2 + π/3) cos(θ + Φ1 + π/6) + 4 sin(θ) sin(Φ1 + π/6)

+ 2 cos(θ + Φ1 + π/6) + 2 sin(θ + Φ1 + Φ2)

(4.6)

and

Y1 =0,

Y2 =1,

Y3 =− 2 cos(θ),

Y4 =4 cos(θ) sin(Φ1 + π/6) + 2 cos(θ)− 2 sin(θ + Φ1 + π/6),

Y5 =− 8 cos(Φ2 + π/3) sin(Φ1 + π/6) cos(θ) + 4 cos(θ) cos(Φ1 + Φ2)

+ 4 cos(Φ2 + π/3) sin(θ + Φ1 + π/6)− 4 cos(θ) sin(Φ1 + π/6)

+ 2 sin(θ + Φ1 + π/6)− 2 cos(θ + Φ1 + Φ2).

(4.7)
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Their Lie bracket [X, Y ] and two second order brackets [[X, Y ], X] and [[X, Y ], Y ]

can be constructed, yet we omit their full coordinate form. Evaluating these vector

fields at the point init = (0, 0, 0,−π
3
, π

3
) which is considered in the following as the

snake’s initial position, we obtain

X(init) =(1, 0, 0,−
√

3, 2
√

3),

Y (init) =(0, 1,−2, 3, 0),

[X, Y ](init) =(0, 0, 4,−12, 12),

[[X, Y ], X](init) =(0, 0, 8,−36, 60),

[[X, Y ], Y ](init) =(0, 0, 0,−4
√

3, 20
√

3).

The motion planning is then modelled sequentially, meaning that e.g. the motion

in the direction of the x axis from the initial position and consequent transformation

into the shifted initial position (i.e. only the x coordinate is different) again is formed

by the linear combination

(1, 0, 0, 0, 0) ≈ (576 + 360
√

3)X − 22[X, Y ] + 11[[X, Y ], X]− 101
√

3[[X, Y ], Y ],

where the Lie bracket motions are realized by the periodic input u similar to (4.5)

consisting of two components only, i.e. u(t) = (−Aω sinωt,Aω cosωt). For further

analysis and details see [43], Appendix 2.

5 Nilpotent Approximation

We construct the nilpotent approximation of a trident snake robot’s controlling dis-

tribution. The aim is to show the construction that proves the periodic input (4.5) a

convenient tool for modelling the Lie bracket motions, see [42]. Note that the construc-

tion of the 3–link snake robot’s nilpotent approximation is described in [43], Appendix

2. We proceed according to Belläıche’s algorithm, see e.g. [29]. We stress that in [43],

Appendix 2, one step of the algorithm is added which is valid for at least depth 3 filtra-

tions. Recall that the trident snake’s filtration is (3,6) and the 3–link robotic snake’s

filtration is (2,3,5). Thus we mainly point out the differences to [43], Appendix 2. In

our particular case the configuration space of the trident snake robot is a 6–dimensional

manifold M with the coordinate functions denoted by

(x, y, θ,Φ1,Φ2,Φ3) =: (x1, x2, x3, x4, x5, x6).

Let the basis of a vector space TpM be denoted by

(∂x1 , ∂x2 , ∂x3 , ∂x4 , ∂x5 , ∂x6), p ∈M
and let us consider three vector fields g1, g2, g3 in the form (4.3) which determine

a distribution in TM, and we add their Lie brackets g4, g5, g6, see (4.4). For the

introduction into the topic from the point of view of sub-Riemannian geometry see

[29], for the notions needed within this text we refer to [43], Appendix 2. We recall the

definition of privileged coordinates, [29].
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Definition 5.1. A system of privileged coordinates at p is a system of local coordinates

(y1, ..., yn) such that ordp(yj) = wj for j = 1, ..., n where ordp(yj) stands for the order of

the coordinate function yj at a point p and wj denotes the weights of the distribution.

The first question is what is the exact form of a coordinate transformation x :=

(x1, x2, x3, x4, x5, x6) (y1, y2, y3, y4, y5, y6) =: y such that the condition

∂

∂yi
|p= gi |p, i = 1, ..., 6 (5.1)

holds in p ∈ M. Let us denote by [gik]y the i–th coordinate of a vector gk in the

coordinate system y and by ei a 6–dimensional vector with coordinates eij = 0 for i 6= j

and eij = 1 for i = j, i, j ∈ {1, ..., 6}. Then e.g. [g1
1]x = 1, [g2

1]x = 0, [g3
1]x = 0, [g4

1]x =

sin(x3 + x6) etc. and the condition (5.1) reads [gi]y = ei. Employing the Einstein

summation convention, i.e. summing over j ranging from 1 to 6, the transformation

law for vector fields under the coordinate change x y reads

[
gik
]
y

=
∂yi
∂xj

[
gjk
]
x
.

Particularly, in the vector form we have

ei = [gi]y =




∂y1
∂xj

[
gji
]
x

∂y2
∂xj

[
gji
]
x

...
∂y6
∂xj

[
gji
]
x



.

Evaluating all functions at an arbitrary point p, for sake of simplicity we choose the

point p = (0, 0, 0, 0, 0, 0), we get a system of 36 linear PDEs with respect to ∂yi
∂xj

with

constant coefficients. We split the system into 6 groups, each containing 6 equations

for a particular yi, determine the inverse matrix and continue by integration. Clearly,

at an arbitrary p ∈ M the desired transformation x  y will be linear, in our case it

will be given by




y1

y2

y3

y4

y5

y6




=




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0√
3

2
1
2
−2 1 −1

√
3

0 −1 −2 1 2 0

−
√

3
2

1
2
−2 1 −1 −

√
3







x1

x2

x3

x4

x5

x6



. (5.2)

Proposition 5.2. The coordinates y = (y1, y2, y3, y4, y5, y6) form the system of privi-

leged coordinates.

For general proof see [29].

Vector fields gi are of order ≥ −1 and thus generally their Taylor expansion is of

the form:

gi(y) ∼
∑

α,j

aα,jy
α∂yj ,
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where α = (α1, ..., αn) is a multiindex. Furthermore, if we define a weighted degree of

the monomial yα = yα1
1 · · · yαnn to be w(α) = w1α1 + · · ·wnαn, then w(α) ≥ wj − 1 if

aα,j 6= 0. Recall that wj = ordp(yj) from Definition 5.1 and in our particular case the

coordinate weights are (1, 1, 1, 2, 2, 2). Grouping together the monomial vector fields

of the same weighted degree we express gi, i = 1, 2, 3 as a series

gi = g
(−1)
i + g

(0)
i + g

(1)
i + · · · ,

where g
(s)
i is a homogeneous vector field of degree s. Note that this means that the

∂y1 , ∂y2 and ∂y3 coordinate functions of g
(−1)
1 , g

(−1)
2 and g

(−1)
3 are formed by constants

and the ∂y4 , ∂y5 and ∂y6 coordinate functions are linear polynomials in y1, y2, y3. Then

the following proposition holds, [29]:

Proposition 5.3. Set ĝi = g
(−1)
i , i = 1, 2, 3. The family of vector fields (ĝ1, ĝ2, ĝ3) is

a first order approximation of (g1, g2, g3) at 0 and generates a nilpotent Lie algebra of

step r = 1, i.e. all brackets of length greater than 1 are equal to zero.

In our case, we obtain the following vector fields:

ĝ1 = ∂y1 −
y2

2
∂y4 + (−y2

2
− y3)∂y5 −

y1

2
∂y6 ,

ĝ2 = ∂y2 +
y1

2
∂y4 −

y1

2
∂y5 + (

y2

2
− y3)∂y6 ,

ĝ3 = ∂y3 .

The family (ĝ1, ĝ2, ĝ3) is the nilpotent approximation of (g1, g2, g3) at 0 associated with

the coordinates y. The remaining three vector fields are generated by Lie brackets

of (ĝ1, ĝ2, ĝ3) due to the second part of Proposition 5.3. Note that due to linearity

of the three latter coordinates of (ĝ1, ĝ2, ĝ3), the coordinates of (ĝ4, ĝ5, ĝ6) must be

constant. Indeed, we get ĝ4 = ∂y4 , ĝ5 = ∂y5 and ĝ6 = ∂y6 . Note that the vector fields

(ĝ1, ĝ2, ĝ3, ĝ4, ĝ5, ĝ6) in (x1, x2, x3, x4, x5, x6) coordinates are of the form

ĝ1 = ∂x1 − (x2 + x3)∂x4 − (
√

3x1
4

+ x2
4
− x3

2
−
√

3
2

)∂x5 + (
√

3x1
2
− x2

4
+ x3

2
−
√

3
2

)∂x6 ,

ĝ2 = ∂x2 − ∂x4 + (3x1
4

+
√

3x2
4
−
√

3x3
2

+ 1
2
)∂x5 + (3x1

4
−
√

3x2
4

+
√

3x3
2

+ 1
2
)∂x6 ,

ĝ3 = ∂x3 − 2∂x4 − 2∂x5 − 2∂x6 ,

ĝ4 = ∂x4 + ∂x5 + ∂x6 ,

ĝ5 = −
√

3
2
∂x5 +

√
3

2
∂x6 ,

ĝ6 = −∂x3 + 1
2
∂x5 + 1

2
∂x6 ,

where the inverse transformation to (5.2) was applied. Once the nilpotent approxima-

tion is computed, it can be proved that the periodic input provides a model of the Lie

bracket motions that is accurate up to order 2. We omit the proof within this text and

refer to [42] for general proof.
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6 Global motion planning algorithm

In 1990s, the term biorobotics left the area of science–fiction and became realistic

mostly in medicine to replace the malfunctioning parts of a human body by an arti-

ficial substitute and, consequently, it turned out that the bio–inspired solutions are

often the effective ones. Thus the applications shifted from mimicking the properties

of the biological model into the development of nature inspired robotic mechanisms.

We present a note about one possible global motion algorithm. This topic is well

elaborated in [37] and is a part of [43], Appendix 2. A well–known bio–inspired math-

ematical description of lateral undulation was presented by Hirose in 1993 based on

empirical studies of biological snakes. Hirose discovered that a close approximation to

the shape of a biological snake during lateral undulation is given by a planar curve

whose curvature varies sinusoidally, more precisely κ(s) = |ab sin(bs) − c|, see [37].

Hirose named it a serpenoid curve and described it by

x(s) =
∫ s

0
cos(a cos(bσ) + cσ)dσ,

y(s) =
∫ s

0
sin(a cos(bσ) + cσ)dσ

where (x(s), y(s)) are the coordinates of the point along the curve at arc length s from

the origin and a, b, c are positive scalars.

The pattern for lateral undulation is achieved by moving the joints of a planar snake

robot according to

Φi = A sin(ωt+ (i− 1)δ) + Φ0,

where in our case, i = 1, 2, the offset Φ0 = 0 and only the amplitude A and frequency

ω remain, see [37]. In [43], Appendix 2, we reparametrized the robotic system in such

way that instead of controlling vector fields (4.6) and (4.7) parametrized by ẋ and ẏ,

we use vector fields parametrized by Φ̇1 and Φ̇2.

7 Conformal Geometric Algebra

7.1 Abstract structures in kinematics

The classical approach composes the kinematic chain of homogeneous matrices using

the moving frame method and Euler angles, or, in a more advanced way, the quaternion

algebra H which was introduced by W. R. Hamilton in 1843. By analogy with the

complex numbers, quaternions are written as a real part and a linear combination of

three complex units i, j, k as

q = a+ b · i+ c · j + d · k

where i2 = j2 = k2 = ijk = −1. Note that while quaternions are associative, they are

not commutative. Indeed

ij = −ji = k, jk = −kj = i, ki = −ik = j.
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Quaternions can be interpreted as a scalar plus a vector in R3 and this idea leads to

the representation of an Euclidean point x ∈ R3 as an imaginary quaternion

x = (x1, x2, x3)
 x1i+ x2j + x3k.

The crucial contribution of quaternions to mechanics is the representation of rotations

in the Euclidean space. Indeed, if we consider u = u1i+ u2j + u3k such that uū = 1 as

the axis of rotation and q as a quaternion given by

q = e
θ
2

(u1i+u2j+u3k) = cos θ
2

+ u sin θ
2
,

then the rotation of x ∈ R3 around the axis u is realized on the image of x in H
by conjugation x 7→ qxq−1 provided that q−1 = e−

θ
2

(u1i+u2j+u3k), i.e. the problem of

rotation in the three dimensional space reduces to the quaternion multiplication.

From the structural point of view the quaternions form a Clifford algebra Cl(0, 2)

and thus it is only natural to search suitable generalizations among Clifford algebras.

In 1984 D. Hestenes and G. Sobczyk in [14] described a suitable structure for object

manipulation as Conformal Geometric Algebra referred to as CGA. Algebraically, we

work with a geometric algebra on R4,1 which is the Clifford algebra Cl(4, 1) in which we

can easily transform both linear objects and spheres of any dimension. Namely, these

objects are simply elements of the algebra and can be transformed and intersected with

ease. In addition, rotations, translation, dilations and sphere inversions all become

rotations in our 25-dimensional space, see [18, 48, 61].

More precisely, let R4,1 denote a vector space R5 equipped with the scalar product

of signature (4, 1) and let {e1, e2, e3, e+, e−} be an orthonormal basis. The Clifford

algebra Cl(4, 1) can be described as a free, associative and distributive algebra such

that the geometric product eiej

(i) coincides with the scalar product in the case i = j,

(ii) is equal to −ejei for i 6= j. Hence the dimension of the algebra is 25 = 32.

Next to the geometric product, we define two additional products on the elements

of R4,1 based on the geometric one for any u, v ∈ R4,1, inner product and wedge product,

respectively:

u · v =
1

2
(uv + vu), u ∧ v =

1

2
(uv − vu)

and thus for the base vectors we have uv = u · v + u ∧ v. Note that u · v is a scalar

(an algebra element of grade zero) while u ∧ v is a bivector (an algebra element of

grade two). In this sense, the definition of these product extends to the whole algebra.

Namely, given two elements Ek = ea1 ∧ · · · ∧ eak and El = eb1 ∧ · · · ∧ ebl of grades k and

l, respectively, the wedge (outer) product is defined as

Ek ∧ El := 〈EkEl〉k+l
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while the inner product is defined as

Ek · El := 〈EkEl〉|k−l|,

where 〈 〉k is the grade projection into the grade k. These products can be used

effectively to compute an intersection of geometric objects and distances, respectively.

The conformal geometric basis elements can be represented by the multi–vectors

from Cl(4, 1) either in the outer product null space (OPNS) representation or in its

dual, so called inner product null space (IPNS) representation. To work with CGA

effectively, one defines e0 = 1
2
(e−−e+) and e∞ = (e−+e+). Consequently, the following

properties hold. The geometric objects which we use in the snake robot’s kinematics

description are then given as follows.

object CGA element (OPNS)

Point Q = x+ 1
2
x2e∞ + e0

Point pair Q1, Q2 P = Q1 ∧Q2

Line L L = Q1 ∧Q2 ∧ e∞
Circle C containing Q1, Q2, Q3 C = Q1 ∧Q2 ∧Q3

Each geometric transformation (rotation, translation, dilation, inversion) of a ge-

ometric object represented by an algebra element O is realized by conjugation O 7→
MOM̃, where M is an appropriate multi–vector and M̃ is its reversion. For instance,

the translation in the direction t = t1e1 + t2e2 + t3e3 is realized by conjugation by the

multi–vector

T = 1− 1
2
te∞,

which can be written as e−
1
2
te∞ , and the rotation around the axis L by angle ϕ is

realized as conjugation by the multi–vector

R = cos ϕ
2
− L sin ϕ

2
.

Similarly to the case of a translation, the rotation can be also written as e−
1
2
ϕL. The

composition of translations and rotations is called the motor (the abbreviation of ”mo-

mentum and vector,” i.e. the element performing a screw motion) and usually denoted

by M .

The direct kinematics for the snake robot is obtained similarly as the kinematics

for serial robot arms [61]. In general, it is given by a succession of generalised rotations

Ri and it is valid for all geometric objects, including point pairs. A point pair P in a

general position is computed from its initial position P0 as follows

P =
n∏

i=1

RiP0

n∏

i=1

R̃n−i+1.

Unlike the fixed serial robot arms, we allow Ri to be also a translation. We view

translations as degenerate rotations.
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7.2 Differential kinematics

By differential kinematics we understand the description of a motion not by the coordi-

nates in the final state but by means of the velocity, i.e. by the norm and the direction

of the velocity vector. As we consider both translations and rotations, both linear and

angular velocities are involved. If we consider a robot whose final position is given by

a kinematic chain (i.e. by the system of kinematic equations), the formulae for the

differential kinematics are obtained simply as its total derivative. Let us consider the

following kinematic chain in CGA:

MnMn−1 · · ·M1PM̃1 · · · M̃n−1M̃n, (7.1)

where Mi denotes the appropriate motors.

In the sequel, we consider the motors in the kinematic chain to be of the form

Mi = e−
1
2
qiLi ,

where Li denotes the appropriate rotation axis and qi are the angles of rotations, see

[61]. At this point, by differentiation of the kinematic chain (7.1) we obtain [61, 12]

Ṗ =
n∑

j=1

[P · L′j]dqj, (7.2)

where

L′j =

j−1∏

i=1

MiLj

j−1∏

i=1

M̃j−i.

In case of a planar robot model, e.g. a snake robot moving on a planar surface [23],

the motors do not affect the axis Lj within the formula and thus we omit the function

L′j and leave only Lj instead. Let us remark that if we replace Lj with L′j the following

calculations are still valid and thus the results are true in full generality. Note that

(7.2) represents the point P motion. In the rest of the paper we shall derive similar

equations for other geometric objects, see [21] for proofs.

Lemma 7.1. Let P1 and P2 be two moving points and let their final position be deter-

mined by the same kinematic chain (7.1). Then the differential kinematics of the point

pair Pp = P1 ∧ P2 is given by

Ṗp =
n∑

j=1

[Pp · L′j]dqj.

Theorem 7.2. Let P1, P2, P3 and P4 be four moving points whose final position is

obtained by means of the same kinematic chain (7.1). Then the differential kinematics

of a 1D–sphere S1 = P1∧P2∧P3 and a 2D–sphere S2 = P1∧P2∧P3∧P4 are given by:

Ṡ1 =
n∑

j=1

[S1 · L′j]dqj,

Ṡ2 =
n∑

j=1

[S2 · L′j]dqj.
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Theorem 7.3. Let P be a moving CGA geometric object, particularly a point, line,

plane, point pair or a sphere of dimension 1 or 2, respectively. If the final position of

P is determined by the kinematic chain (7.1), then the differential kinematics of P is

given by the equations (7.2).

The proof is a direct consequence of Lemma 7.1 and Theorem 7.2. The key fact

is that a line is just a 1D–sphere S1, where P3 = e∞ and a plane is a 2D–sphere S2,

where P4 = e∞.

The last object whose differential kinematics equations are useful for a robotic snake

motion description is a sphere centre.

Lemma 7.4. Let c be a centre of a sphere S (including a point pair as a 0D–sphere)

whose final position is given by the kinematic chain (7.1). Then the differential kine-

matics of c is given by

ċ =
n∑

j=1

[c · L′j]dqj.

7.3 CGA and snake robot

Similarly to the beginning of the snake robot’s construction, their description by CGA

was inspired by robotic manipulators, see [12]. Each link is represented by the 0–

dimensional sphere, referred to as a point pair, and the kinematic equations and con-

trol of the non–holonomic robotic snake is derived by means of CGA operations con-

sequently. More precisely, to any link of a snake a single point pair is assigned and the

mechanism is transformed by rotations and translations. Note that the coordinate and

object notation is changed to comply with CGA description and with [22], Appendix

3.

We consider the snake robot model generally composed of n links of the lengths

li, i = 1, .., n, interconnected by (n− 1) motorised joints with the appropriate axis of

rotation denoted by Li, i = 1, .., n− 1, and each link is endowed with a pair of passive

wheels at arbitrary position within the appropriate link Qi, i = 1, .., n− 1, see Figure

12. To describe such a complex model, it is suitable to use the tools of Conformal

Geometric Algebra (CGA), where all the model modifications can be carried out quite

easily, see [23], Appendix 4.

Note that a fixed coordinate system (x, y) is attached. For sake of simplicity, we

consider the links to be of constant length 1 but the generalization to arbitrary lengths

is obvious. The points pi := (xi, yi), i = 0, ..., n, denote the endpoints of each link and

by Qi = ripi + (1 − ri)pi−1, ri ∈ 〈0, 1〉, i = 1, ..., n, we denote the points where the

wheels are attached to the particular link. Then, the distance |Qipi−1| = −2(Qi · pi−1)

is equal to ri. If the absolute angle of the i–th link, i.e. the angle between the link and

the x–axis, is denoted by θi then the position of Qi w.r.t. the global x− y axes is then
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Figure 12: Snake robot model

expressed as

Qx,i = px,0 +
i−1∑

j=1

cos θj + ri cos θi,

Qy,i = py,0 +
i−1∑

j=1

sin θj + ri sin θi

(7.3)

where by px,0 and py,0 we denote the x and y coordinate of the head point p0, re-

spectively. Note that to recover the generalized coordinates one has to consider the

assertion

θi =
i−1∑

j=1

Φj + θ.

Furthermore, the linear velocity of Qi can be determined by taking the derivative of

(7.3) and thus the nonholonomic equations are obtained.

Q̇x,i = ṗx,0 −
i−1∑

j=1

sin θj θ̇j − ri sin θiθ̇i,

Q̇y,i = ṗy,0 +
i−1∑

j=1

cos θj θ̇j + ri cos θiθ̇i.

In [22], Appendix 3 we show the kinematics calculation for 3–linked robotic snake

and in addition the dynamic terms are elaborated. Also the virtual model in CLUCalk

software is provided. On the other hand, in [23], Appendix 4, we show the full contribu-

tion of CGA in describing completely general snake robot construction corresponding

to Figure 12. We encourage the reader to compare this model to the 3–link snake

robot from Section 4.2. We stress that CGA provides not only alternative analytical

description of a mechanical system but may be used as a unifying tool for incorporat-

ing computer vision algorithms too, which is useful especially for autonomous robotic

systems, see [61].
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7.4 CGA and trident snake robot

Similarly to the previous section, by means of CGA quite general configuration of a

trident snake robot may be described.

S[x, y]

φ11

φ12

φ1l

φ21

φ22

φ2l

φ31

φ32

φ3l

P0
1

P0
2

P0
3

P1
1

P1
2

P1
3

θ

P`
2

P`
1

P`
3

Figure 13: Trident snake robot model

Let us denote by Q0
k the centre S of the body, and by Q1

k, · · · , Q`
k the successive

joints of the k–th branch leg, k = 1, 2, 3. As a central object that describes the state

of the system we choose the set of point pairs which represent individual leg links

P = (P 0
1 , · · · , P `

1 , P
0
2 , · · · , P `

2 , P
0
3 , · · · , P `

3),

see Figure 13. These point pairs are computed in terms of the wedge product in CGA

as P i
k := Qi

k ∧Qi+1
k . At first, let us look at the zero position q = 0. Since Qi

2(0) = [i, 0],

the elements in CGA corresponding to P i
2 are established as

P i
2(0) =

(
ie1 + 1

2
i2e∞ + e0

)
∧
(
(i+ 1)e1 + 1

2
(i+ 1)2e∞ + e0

)

= 1
2
i(i+ 1)e1∞ − e10 − 1

2
(2i+ 1)e∞0,

where we have used a shortened notation e1∞ = e1 ∧ e∞ etc. The algebra elements

P i
1,3(0) which correspond to the zero position of the links of the first and the third

branch leg are obtained from the corresponding links of the first branch by rotation by

angle 2
3
π and −2

3
π respectively, i.e.

P i
1,3(0) = (1

2
±
√

3
2
e12)P i

2(0)(1
2
∓
√

3
2
e12).

The particular point pairs in a general position q are obtained by a translation to

[x, y] composed by a trident body rotation θ and a series of rotations of the corre-

sponding leg links by angles Φki. For further details and consequent calculations of
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the kinematic equation and differential kinematics of a trident snake robot in terms of

CGA see [24], Appendix 5, where as a particular example, a 1–link trident snake robot

is elaborated and a virtual model implemented in CLUCalc is also enclosed.

8 Further fields of interest

In this Section we recall several research areas and some author’s results from these

topics. Namely we mention the theory of jets and jet functors, higher order connec-

tions and some operations, especially the Ehresmann prolongation. To find the exact

definitions of all the notions used within the following text such as the frame bundle,

principal bundle, Lie group, fibred manifold etc. we refer to e.g. [32, 34].

8.1 Jets and jet functors

The theory of jets has been developed as a unifying tool for the description of many

objects within differential geometry. For example, the frame bundle P rM of a manifold

M with dimension n can be viewed as a space Jr0 (Rn,M) of jets from Rn to M with

source 0. Consequently, using the notion of jet prolongation of a fibred manifold, one

can define even more complicated space, e.g. so called r-th order principal prolongation

W rP of a principal bundle P →M with structure Lie group G as W rP = P rM ×JrP
with the appropriate structure Lie group W r

mG, see [32, 34] for details. Note that

principal prolongation of principal bundles plays a fundamental role in gauge theories

of mathematical physics, see [10]. For geometric applications see [32].

To recall the definition of jets we first have to define the r–th order contact of two

curves on a manifold M.

Definition 8.1. Two curves γ, δ : R→M have the r–th order contact at 0 if for every

smooth function ϕ on M the difference ϕ◦γ−ϕ◦δ vanishes up to r–th order at 0 ∈ R.

Consequently, one can define the class of maps between two manifolds M and N

determining the same jet.

Definition 8.2. Two maps f, g : M → N are said to determine the same r–jet at

x ∈M if for every curve γ : R→M with γ(0) = x the curves f ◦ γ and g ◦ γ have the

r–th order contact at zero.

An equivalence class of this relation is called an r–jet of M into N.

Now we can recall the definition of a jet prolongation of a fibred manifold. To define

this notion, we first recall that a mapping f : M → N is called a submersion if its

rank, i.e. the rank of the appropriate Jacobi matrix in local coordinates, at any point

is equal to dimN . Locally, the form of a submersion is that of a projection Rn+k → Rn,

in local coordinates (x1, . . . , xn, xn+1, . . . , xn+k) 7→ (x1, . . . , xn). In case of a tangent

bundle TM we have a projection of two manifolds p : TM →M .
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Definition 8.3. A surjective submersion p : Y → M is called a fibred manifold with

base M , total space Y and a projection p. The set p−1(x) =: Yx ⊂ Y is called a fibre

over the point x ∈ M . A smooth mapping s : U ⊆ M → Y is called a local section of

a fibred manifold p : Y →M if p ◦ s = idM .

Consequently, let p : Y → M be a fibred manifold. Denote by JrY → M the r-th

jet prolongation of p : Y → M , that is the space of r-jets of local sections M → Y .

In what follows, JrY will be called the r-th holonomic prolongation of Y . Recall that

r-th nonholonomic prolongation J̃rY of Y is defined by iteration

J̃1Y = J1Y, J̃rY = J1(J̃r−1Y →M).

Clearly, we have an inclusion JrY ⊂ J̃rY. Further, r-th semiholonomic prolongation

J
r
Y ⊂ J̃rY is defined by the following induction. First, by β1 = βY we denote the

projection J1Y → Y and by βr = βJ̃r−1Y the projection J̃rY = J1J̃r−1Y → J̃r−1Y, r =

2, 3, . . . . If we set J
1
Y = J1Y and assume we have J

r−1
Y ⊂ J̃r−1Y such that the

restriction of the projection βr−1 : J̃r−1Y → J̃r−2Y maps J
r−1

Y into J
r−2

Y, we can

construct J1βr−1 : J1J
r−1

Y → J1J
r−2

Y and define

J
r
Y = {A ∈ J1J

r−1
Y ; βr(A) ∈ Jr−1

Y }.

Obviously, Jr, J
r

and J̃r are bundle functors on the category FMm,n of fibred

manifolds with m-dimensional bases and n-dimensional fibres and locally invertible

fibre-preserving mappings.

To find the author’s results about existence and description of natural transforma-

tions between various jet functors, namely the transformations J̄3 → J̄3, J̄→J3 and

J̃3 → J3, we refer to [59].

8.2 Higher order connections

But not only the spaces can be viewed in the jet setting. We now mention the crucial

object of differential geometry, i.e. that of a connection. Roughly speaking, a given

connection defines the
”
direct lines“ in generally curved space. The motivation for this

notion lies in parallel transport and geodesic curves on a manifold, see [32].

First, we recall rather geometric approach. A connection on a manifold M can be

defined by means of the decomposition of the tangent bundle as follows, [52]. First,

let us denote by T the tangent functor, by TM the tangent space of the manifold M

and note that by T kM we understand the k–th order tangent space defined iteratively

as T kM = T (T k−1M). A connection on bundle π : Y →M is defined by the structure

4h ⊕ 4v on a manifold Y where 4v = kerTπ is the vertical distribution tangent to

the fibres and 4h is the horizontal distribution complementary to the distribution 4v.

The transport of the fibres along the path γ ⊂ M is realized by the horizontal lifts

given by the distribution 4h on the surface π−1(γ). If the bundle is a vector one and

the transport of fibres along an arbitrary path is linear, then the connection is called

linear.
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A classical affine connection on manifold M is seen as a linear connection on the

bundle π1 : TM →M . On the tangent bundle TM →M one can define the structure

4h ⊕ 4v. To establish the notion of higher order connection in terms of horizontal

distributions we recall that generally there exists k alternative projections T kM →
T k−1M which will be denoted by ρs, s = 1, ..., k. For example, if the local coordinates

on M are denoted by ui, the induced coordinates on TM by (ui, ui1) and on T 2M by

(ui, ui1, u
i
2, u

i
12) etc., the coordinate forms of three possible projections ρs : T 3M → T 2M

are given by the following diagram:

(ui, ui1, u
i
2, u

i
12, u

i
3, u

i
13, u

i
23, u

i
123)

ρ1

tt
ρ2
��

ρ3

**
(ui, ui2, u

i
3, u

i
23) (ui, ui1, u

i
3, u

i
13) (ui, ui1, u

i
2, u

i
12).

Let us note that similarly to the jet prolongations one can consider the semiholo-

nomic and holonomic case as well. We recall that the semiholonomity condition is

connected to the notion of the osculating bundle, see [51], and can be defined as the

equalizer of all possible projections.

Higher order connections are defined as follows: on tangent bundle TM the struc-

ture4⊕41 is defined where kerTρ1 = 41, on T (TM) the structure ∆⊕∆1⊕∆2⊕∆12

is defined where kerTρs = ∆s ⊕∆12 , s = 1, 2, etc. For further details see [52].

Once the notion of a distribution is taken into account, it presents a straightforward

link to the dynamical systems and control theory as described in [53], Appendix 1.

On the other hand, one can define the connection on a fibred manifold as follows.

By simple identification of horizontal subspaces of tangent space TyY, y ∈ Y, with the

elements j1
ys ∈ J1

yY, s : M → Y, a connection on the fibred manifold Y → M can be

understood as a mapping Y → J1Y to the first jet prolongation of Y. Passing to higher

order jet prolongation of a fibred manifold one can define r-th order general connection

Γ on Y → M as a mapping Γ : Y → JrY to the r-th order jet prolongation of Y .

There are three distinguished types of a connection appropriate to the considered target

jet prolongations J̃rY, J
r
Y, JrY , i.e. nonholonomic, semiholonomic and holonomic,

respectively.

Note that the author’s results in the area of higher order connections can be found

in [51, 52, 53]. In [58] we handle semiholonomic connections mainly as a result of

so–called semiholonomic prolongation of a connection.

8.3 Ehresmann prolongation

The prolongation of a connection is motivated by quantum mechanics, higher order

dynamics, field theory and gauge theories of mathematical physics. We mention a

fundamental operator transforming a connection into higher order semiholonomic con-

nection called Ehresmann prolongation. First, given two higher order connections

Γ : Y → J̃rY and Γ : Y → J̃sY, the product of Γ and Γ is the (r + s)–th order
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connection Γ ∗ Γ : Y → J̃r+sY defined by

Γ ∗ Γ = J̃sΓ ◦ Γ.

If we consider two first order connections, the question of semiholonomity of their

product was solved in [33, 34] in the following way: for two first order connections Γ

and Γ, the product Γ ∗ Γ : Y → J̃2Y is semiholonomic if and only if Γ = Γ.

Considering a connection Γ : Y → J1Y, one can define an r–th order connection

Γ(r−1) : Y → J̃rY by

Γ(1) := Γ ∗ Γ = J1Γ ◦ Γ, Γ(r−1) := Γ(r−2) ∗ Γ = J1Γ(r−2) ◦ Γ.

The connection Γ(r−1) is called the (r − 1)–st prolongation of Γ in the sense of Ehres-

mann, shortly (r − 1)–st Ehresmann prolongation. Consequently, in [57] all natural

operators transforming first order connection Γ : Y → J1Y into second order semi-

holonomic connection Y → J
2
Y were described as a one parameter family

Γ 7→ k · (Γ ∗ Γ) + (1− k) · e(Γ ∗ Γ), k ∈ R,

where e : J
2
Y → J

2
Y is obtained from the natural exchange map

eΛ : J1J1Y → J1J1Y

as a restriction to the subbundle J
2
Y ⊂ J1J1Y . As a next step, the properties of semi-

holonomic prolongations of higher order semiholonomic connections were considered.

The author’s results in this field can be found in [57, 58]. Consequently, we applied

the semiholonomity in the material science, see [25, 60].

33





References

[1] Atanasiu, Gh., Balan, V., Br̂ınzei, N., Rahula, M.: Differential-Geometric Struc-

tures. Tangent Bundles, Connections in Fiber Bundles, Exponential Law and Jet

Spaces, Librokom, Moscow, (in Russian), 2009.

[2] Bayraktaroglu, Z.Y.: Snake-like locomotion: Experimentations with a biologically

inspired wheel-less snake robot, Mech. Mach. Theory 44, No. 3, 591–602, 2009.

[3] Bayro-Corrochano, E., Daniilidis, K., Sommer, G.: Motor algebra for 3D kinemat-

ics: The case of the hand-eye calibration, Journal of Mathematical Imaging and

Vision 13, 79–100, 2000.

[4] Carmo, do M.: Differential Geometry of Curves and Surfaces, Prentice-Hall, 1976.

[5] Chen, L., Ma, S., Wang, Y., Li, B.; Duan, D., Design and modelling of a snake

robot in traveling wave locomotion, Mech. Mach. Theory 42, No. 12, 1632–1642,

2007.

[6] Chernousko, F. L.: Modelling of snake-like locomotion, Applied Mathematics and

Computation, Vol. 164, Issue 2, 415–434, 2005.

[7] Chirikjian, G. S., Burdick, J. W.: An obstacle avoidance algorithm for hyper-

redundant manipulators, In IEEE International Conference on Robotics and Au-

tomation, Cincinnati, 625–631, 1990.

[8] Crespi, A., Ijspeert, A. J.: AmphiBot II: An Amphibious Snake Robot that Crawls

and Swims using a Central Pattern Generator, In Proc. of 9th International Con-

ference on Climbing and Walking Robots (CLAWAR 2006), 19–27, 2006.

[9] Dowling, K. J. : Limbless Locomotion: Learning to Crawl with a Snake Robot, PhD

thesis, Carnegie Melon University, Pittsburgh, USA, 1997.

[10] Fatibene, M., Francaviglia, M.: Natural and Gauge Natural Formalism for Clas-

sical Field Theories, Kluwer, 2003.

[11] Fukuda, T., Hasegawa, Y., Sekiyama, K., Aoyama, T.: Multi-locomotion robotic

systems. New concepts of bio-inspired robotics, Springer Berlin, 2012.

[12] Gonzalez–Jimenez, L., Carbajal–Espinosa, O., Loukianov, A., Bayro–Corrochano,

E.: Robust Pose Control of Robot Manipulators Using Conformal Geometric Alge-

bra, Advances in Applied Clifford Algebras, Vol. 24, No. 2, 533–552, 2014.

[13] Guo, X., Ma, SG., Li, B., Wang, MH., Wang, YC.: Modeling and optimal torque

control of a snake-like robot based on the fiber bundle theory, Science China - Infor-

mation Sciences, Vol. 58, Issue 3, 1–13, 2015.

[14] Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus, D. Reidel,

Dordrecht/Boston, 1984.

35



[15] Hestenes, D., Li, H., Rockwood, A.: Geometric Computing with Clifford Algebra,

Springer-Verlag Heidelberg, 2000.

[16] Hestenes, D., Li, H., Rockwood, A.: New algebraic tools for classical geometry,

In Sommer, G. (ed.), Geometric Computing with Clifford Algebras, Vol. 40, 3-–23,

2001.

[17] Hestenes, D.: Invariant body kinematics: I. Saccadic and compensatory eye move-

ments, Neural Networks 7, 65–77, 1994.

[18] Hildenbrand, D.: Foundations of Geometric Algebra Computing, Springer, Geom-

etry and Computing, Vol. 8, 2013.

[19] Hirose, S., Umetani, Y.: Kinematic control of active cord mechanism with tactile

sensors, In 2nd International CISM-IFTMM Symposium on Theory and Practice

of Robots and Manipulators, 241–252, 1976.

[20] Hirose, S.: Biologically inspired robots (snake-like locomotor and manipulator),

Oxford Uni. Press, 1993.
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[32] Kolář, I., Michor P. W., Slovák J.: Natural Operations in Differential Geometry,

Springer-Verlag, 1993.
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[60] Vaš́ık, P.: Higher order connections on Lie groupoid: application to materials,

Miskolc Mathematical Notes, Vol. 14, No. 2, 705–711, 2013.

[61] Zamora–Esquivel, J., Bayro–Corrochano, E.: Kinematics and differential kine-

matics of binocular robot heads, Robotics and Automation, 2006, ICRA 2006.

38



Appendix 1
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Abstract. We present an infinitesimal interpretation of the control theory, particularly of the part concerning dynamic systems. We
use the original concept of a bundle connection, which lies in the idea of fibre transportation along a path on the base manifold. The
control of a process leads also to the transportation of fibres, and the control strategy, i.e. the choice of a suitable system control
in order to optimize the process corresponds to the choice of a path on the base manifold. The triple of crucial terms of control,
aim–control–strategy, translates in the terms of connections as fibre–connection–curve. Such a scheme is quite convincing, but it
also works well in dynamic systems analysis.

Key words: control theory, connection.

1. INTRODUCTION

When controlling a system, we not only apply one control model but also try to find a more suitable control
model among the possible ones, i.e. we search the control strategy. We distinguish the following stages:
controlled process – control correction – strategy choice.

Let us describe the mathematical setting. Let X ,Y , and Z be three vector fields and let us denote by

at = exp tX , bσ = expσY, cτ = expτZ

the appropriate flows. If we understand the flow as a motion, the vector field can be seen as stopping the
motion at the precise moment (stop-scene). Shortly, a vector field is an infinitesimal representation of the
flow.

The flow cτ of the vector field Z represents the controlled process (it is also possible to replace it by a
transport of an arbitrary tensor field along the flow cτ ). Furthermore, the flow bσ acts on the vector field Z
flow cτ as follows; see [1,3]:

cτ Ã bσ cτb−1
σ , ZÃ Zσ .

This corresponds to the change of control. If in addition the flow at acts on bσ , we have a control strategy

bσ Ã atbσ a−1
t , Y Ã Yt .

∗ Corresponding author, rahula@ut.ee
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Concerning the strategy {X Ã {Y Ã Z}}, it is obtained as a composition of the action of bσ on cτ and the
action of at on bσ ,

cτ Ã bσ cτb−1
σ Ã (atbσ a−1

t )cτ(atbσ a−1
t )−1.

The vector field Y plays the role of the one controlled by the vector field X and the role of the controlling
field over Z.

The main goal of the paper is to describe the transformation of the parameters when the process Z is
changed according to the strategy appropriate to the vector field X under the action of the vector field Y .

2. VECTOR FIELDS

Let M be a smooth manifold. The derivatives of a function f : M → R along the vector fields X , Y , and Z
are defined by

X f .
= ( f ◦at)

′
t=0, Y f .

= ( f ◦bσ )
′
σ=0, Z f .

= ( f ◦ cτ)
′
τ=0.

The vector field Y is transported along the flow of X , which can be understood as an infinitesimal
interpretation of such transportation (stop-scene) – the bracket of vector fields, i.e. Lie derivative LXY =
[X ,Y ].

Remark 1. One can obtain the bracket of two vector fields [X ,Y ] = XY −Y X by double differentiation of a
function f along the vector field flow atbσ a−1

t w.r.t. σ and then w.r.t. t:

f ◦ (atbσ a−1
t )−1 (.)′σ=0−→ −

(
Y ( f ◦at)

)
◦a−1

t
(.)′t=0−→ (XY −Y X) f .

Next, the transport of an arbitrary smooth tensor field along a vector field flow is defined by the Lie–
Maclaurin series. For example, the transport of a vector field Z along the flow bσ is defined by

Z Ã Zσ = Z +Z′σ +Z′′ σ2

2
+ . . .=

∞

∑
k=0

Z(k) σ (k)

k!
,

where the coefficients Z(k) = LY Z(k−1) , k = 1,2, . . . , are Lie derivatives of Z with respect to Y .
In our situation, the vector field X plays three roles:

1. The vector field X itself causes the process as a motion in its flow at .
2. The operator LX transforms the control Y Ã [X ,Y ].
3. The operator LLX defines the control strategy – control of control LY Ã [LX ,LY ] = L[X ,Y ]. Note that

the above equality can be obtained from the Jacobi identity:
[
[X ,Y ],Z

]
+
[
[Y,Z],X

]
+
[
[Z,X ],Y

]
= 0

or equivalently [
[X ,Y ],Z

]
=
[
X , [Y,Z]

]
−
[
Y, [X ,Z]

]
.

Note that the process can be influenced only by some outer process, not by it itself. Indeed, if we admit
that the operator LX acts on the control by the process X , we obtain:

LX X = [X ,X ] = 0.

We assign the following operators to the vector fields X ,Y , and Z:
1. the operator Z implementing the process (motion in the flow cτ );
2. the operator LY implementing the control of the process ZÃ [Y,Z] (motion of the flow cτ in the flow bσ );
3. the operator LLX defining the control strategy LY (motion in the flow at of a motion of the flow cτ in the

flow bσ ).
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3. CONTROL AND CONNECTION

We will follow the notations appropriate to the theory of connections on fibred manifolds; see, e.g., [1,4].
Let us consider a vector bundle π : M1 → M with n-dimensional base manifold M and r-dimensional

fibres. The standard fibre is isomorphic to Rr. On a neighbourhood U ⊂ M1 we have local coordinates
(ui,uα), where (ui) denotes the base coordinates and (uα) the fibre coordinates. Precisely, ui = ūi ◦π , where
ūi denotes the local coordinates on the neighbourhood π(U)⊂ M. The coordinates (uα) are the coordinates
of Rr. Latin indices i, j, . . . range from 1 to n, Greek indices α,β , . . . range from n+1 to n+ r.

We define two vector fields:

Y = yα∂α and Z = zα∂α .

Here zα are the functions depending on the fibre coordinates uα only, while yα are the functions of all
coordinates (ui,uα). The flow bσ = expσY is defined on the neighbourhood U by a system of ODEs

duα

dσ
= yα(u i,uβ ). (1)

Indeed, now we can see the connection between dynamic systems, see [2], and the controlling parameters
(u i). As mentioned above, these parameters are lifted from the base π(U) ⊂ M to the neighbourhood
U ⊂ M1, i.e. u i = ū i ◦π .

On every fibre, the vector field Y induces a family of trajectories – phase portrait. When the fibre is
changed, the vector field Y changes too and so does the phase portrait, i.e. the control {Y Ã Z}. A question
arises: how do the parameters (u i) affect the controlling process?

Let us consider the coordinate map

Φ : (u i,uα)Ã (u i,s, Iκ), k = n+2, . . . ,n+ r,

where s is a canonical parameter, i.e. LY s = 0, and Iκ is a system of r− 1 independent invariants of the
vector field Y . The coordinates (ui, Iκ) form a complete system of local invariants of Y on the manifold M1.
Now we can define the submersion of the manifold M1 onto the fibre Rr,

ϕ : M1 → Rr : (u i,uα)Ã (s, Iκ).

A fibre of the submersion ϕ has the dimension n and forms the family of the integral surfaces which define a
horizontal distribution 4h. Thus on the fibration π , a zero torsion connection structure 4h ⊕4v is defined.
Let us consider the adapted basis

(Xi Xα) =

(
∂

∂u j
∂

∂uβ

)
·
(

δ j
i 0

Γβ
i δ β

α

)
,

(
ω i

ωα

)
=

(
δ i

j 0
−Γα

j δ α
β

)
.

(
du j

duβ

)
,

where the vector fields

Xi =
∂

∂ui +Γα
i

∂
∂uα

form a base of the distribution ∆h and the forms

ωα = duα −Γα
i du i

vanish on the distribution ∆h. The number of parameters Γα
i equals nr and they define the distribution

∆h uniquely. On the other hand, the parameters Γα
i are determined by setting the functions ϕα equal to a

constant on the fibres of the submersion ϕ , more precisely by their differentials:

dϕα = ϕα
i du i +ϕα

β duβ = ϕα
β (duβ + ϕ̄β

γ ϕγ
i du i) = ϕα

β ωβ =⇒ Γα
i = ϕ̄α

γ ϕγ
i ,

where the coefficients of dϕα are the partial derivatives of ϕα . The matrix (ϕα
β ) is the integrating matrix

with respect to the forms ωα and its inverse is (ϕ̄β
α ).
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Theorem 1. The vector field Y is projected by the submersion ϕ : M1 → Rr onto the vector field T ϕY on
the standard fibre Rr. In the coordinates (s, I), where s denotes the canonical parameter and I is a system

of the base invariants, the vector field T ϕY represents the operator ∂s
.
=

∂
∂ s

. The vector field Z is expressed

uniquely in the basis (∂s,∂I) and the process controlled by Z is, in the coordinate system (s, I), described by
the functions s◦ϕ and I◦ϕ . These functions depend on the parameters uα and the controlling parameters ui.

Proof. A family of the fibres corresponding to the submersion ϕ is defined by the solution of the system
of differential equations (uα)σ = ϕα(σ ,u i,uβ ); see system (1). Furthermore, an arbitrary section of the
fibration π can be extended into the system of imprimitivity appropriate to the flow bs, i.e. the family
of the fibres corresponding to the submersion ϕ . The vector field Y is ϕ-projected on the fibre Rr. An
integrable distribution ∆h = KerT ϕ in the fibration π defines a zero curvature connection and thus on the
neighbourhood U the basis and the co-basis of the distribution ∆h is defined as follows:

Xi = ∂i +Γα
i ∂α , ωα = duα −Γα

i dui.

Let us recall that an arbitrary vector field X̄ on the base manifold M can be lifted from M to the horizontal
distribution ∆h :

X̄ = x̄i∂̄i Ã X = xiXi, where xi = x̄i ◦ϕ.

In our notations, the basis Xi represents the operators ∂̄i from the neighbourhood π(U) lifted to the
distribution ∆h.

It is now clear that the vector field X behaves with respect to the vector field Y as an infinitesimal
symmetry, i.e. [X ,Y ] = 0, and thus the impact on the vector field Y vanishes. In other words, the process
appropriate to the vector field Z is defined on the fibre in the coordinates (s, I), where the functions s◦ϕ and
I ◦ϕ depend on the parameters uα and the controlling parameters ui. The vector field X affects the vector
field Z indirectly by means of the invariants of the vector field Y .

Remark 2. The components yα of the vector field Y depend linearly and homogeneously on the fibre
coordinates. Thus the defining system is described by the system of linear differential equations

duα

dσ
= yα

β (u
i)uβ .

4. APPLICATION

On the bundle1

π : R3 → R : (u,x,y) Ã (u)

with the fibre coordinates (x,y) and the controlling parameter (or base coordinate) (u) we have the vector
field

Y =
∂
∂x

+ux
∂
∂y

.

We define its flow bs = expsY , the canonical parameter s, and the invariant I of Y as follows:

{
ẋ = 1
ẏ = ux ⇒

{
xs = x+ s
ys = y+u(xs+ s2

2 ),

{
s = x
I = y− ux2

2 .

We check that LY s = 1,LY I = 0. The trajectories on the fibres are parabolas depending on the parameter u.

1 Here, for the sake of simplicity, we denote the local coordinates by (u,x,y) instead of (u1,u2,u3) but note that the fibre
coordinates (x,y) are in no way related to the components (xi,yα ) of the vector fields X and Y .
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The submersion ϕ : R3 → R : (u,x,y) Ã (s, I) projects the space R3 onto the plane sI. The tangent
mapping T ϕ is defined by the following differentials and by the Jacobi matrix:

{
ds = dx
dI =− x2

2 du−uxdx+dy,

(
0 1 0

− x2

2 −ux 1

)
.

The vector field Y with the components (0,1,ux) is projected to the plane sI in which it forms the operator
T ϕY = ∂s (see Fig. 1).

Thus on the bundle π a horizontal distribution

4h = KerT ϕ

is defined. The co-basis on 4h is of the form

{
ω2 = ds = dx = (dx−Γ2

1du)
ω3 = uxds+dI = dy− x2

2 du = (dy−Γ3
1du) ,

and the connection coefficients are (
Γ2

1
Γ3

1

)
=

(
0
x2

2

)
.

The adapted basis of the distribution 4h is characterized by the following:

X1 = ∂u +
x2

2
∂y,

(
ω2

ω3

)
=

(
dx
dy

)
−
(

0
x2

2

)
· (du) .

The operator X1 commutes with the vector field Y , i.e. [X1,Y ] = 0, and vanishes under the projection T ϕ ,
i.e. T ϕX1 = 0. The co-basis admits an integrating matrix as follows:

(
ω2

ω3

)
=

(
1 0
us 1

)
·
(

ds
dI

)
⇒

(
1 0

−ux 1

)
·
(

ω2

ω3

)
=

(
ds
dI

)
.
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Fig. 1. Mapping T ϕ : Y → ∂s.
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The direct impact of the parameter (u) on the operator Y is eliminated. Indeed, because the projection
ϕ targets on the fibre xy, it is possible to change the coordinates under the condition u = const from (x,y)
to (s, I), {

x = s
y = us2

2 + I ,

(
1 0
us 1

)
.

Using the Jacobi matrix (the right-hand side), we can change the basis to the new natural one and we obtain
the following frames and co-frames:

( ∂
∂x

∂
∂y

)
=
( ∂

∂ s
∂
∂ I

)
·
(

1 0
−us 1

)
,

(
dx
dy

)
=

(
1 0
us 1

)
·
(

ds
dI

)
.

Let us focus on the fibre. Note that the action of the vertical vector field Z can be understood as an action
on a tensor field. Concerning the action of the operator Y on the vector field Z in the form

Y Ã Z = µ
∂
∂x

+ν
∂
∂y

,

with the components (µ,ν), we can see that in new coordinates it reduces to the action of the operator ∂s on
the vector field Z̃ depending on the parameter u only:

∂s Ã Z̃ = µ∂s +ν∂I −uµs∂I .

Note that Z and Z̃ are the same vector field, only expressed in the coordinates (x,y) and (s, I), respectively.
The operators T ϕY and ∂s are the same operators expressed in different coordinate systems.

Thus we change the control:

{Y Ã Z } Ã {∂sÃ Z̃ }.

Remark 3. As an example, let us consider the operator of rotation

Z =−y
∂
∂x

+ x
∂
∂y

.

In coordinates (s, I), it can be written in the form Z̃ =−I∂s + s∂I +u(...), i.e. in such a form that some new
operator with coefficient u is added. Such a property holds for an arbitrary linear dynamic system.

The control {Y Ã Z } is described in the coordinates (x,y), while the control {∂sÃ Z̃ } is expressed in
the coordinates (s, I). The parameter u affects the controlled field Z̃ directly.

5. CONCLUSION

The control of a dynamic system is viewed by means of differential geometry as the vector field Y on the
bundle π : M1 → M with the standard fibre Rr and the base manifold M = Rn. The submersion ϕ is defined
in such a way that the vector field Y is projected to the fibre Rr. The distribution 4h = KerT ϕ gives rise
to the possibility of eliminating the dependence of the vector field Y on the controlling parameter u. The
change of variables to (s, I), where s is the canonical parameter and I is the invariant of the field Y , changes
the control (Y → Z) to the control {∂sÃ Z̃ }, where the field ∂s no longer depends on the parameter u while
the controlled field Z̃ does so.
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mudeliks on kihtkond, kus seostus mõjutab toimuvat kihil, ja baasiparameetrid, millest sõltub seostus. Need
määravad juhtimise strateegia. Osutub, et baasiparameetreid võib seostuse abil otsekohe kihile suunata, st
juhtivast protsessist juhitavasse.
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Abstract. We present three possible ways of controlling a robotic system called a 3–link
snake robot. First, we recall the classical approach by constructing the controlling vector fields
and their Lie brackets. Next we modify the coordinate system in order to obtain a nilpotent
approximation of the controlling distribution. This is based on the notions of sub–Riemannian
geometry. The third model is based on serpenoid curve and maintains the global control task.

Keywords: robotic snake, local control

MSC 2010 classification: 93B27

1 Introduction

Within this paper, we consider a 3–link snake robot moving on a planar
surface. More precisely, it is a model when to each link a pair of wheels is
attached and the joints of the legs are motorised and thus the possible motion
directions are determined. Local controllability of such mechanism is known, see
[4]. If the generalized coordinates are considered, the non–holonomic forward
kinematic equations can be understood as a Pfaff system and thus a distribution
on the configuration space is given. Rachevsky–Chow Theorem implies that the
appropriate non–holonomic system is locally controllable if the corresponding
distribution is not integrable and the span of the Lie algebra generated by the
controlling distribution is of the same dimension as the configuration space. The
spanned Lie algebra is then naturally endowed by a filtration which shows the
way to realize the motions by means of the vector field brackets. In our case,
the system is locally controllable and the appropriate filtration growth vector is
(2, 3, 5). The above considerations follow the geometric control ideas which is a

iThis work was supported by a grant of the Czech Science Foundation (GAČR) no. 17–
21360S.

http://siba-ese.unisalento.it/ c© 2017 Università del Salento



modern geometrical approach to the control theory. For further applications of
differential geometry in robotics see e.g. [6].

Note that to compose a motion control algorithm, the Lie bracket motions
have to be considered to restore the initial position and allow the repetition of
propulsion. As the Lie bracket motions are realized by means of so–called peri-
odic input, an error occurs. To classify the model error, we establish so–called
nilpotent approximation of the controlling distribution in which, according to
[5], the periodic input models the Lie bracket motions that are accurate up to
the second order. Furthermore, in e.g. [3], a convenient error estimates in the
nilpotent approximation are described. Note that all constructions are local in
the neighbourhood of 0 and the constructed nilpotent approximation is referred
to as homogeneous.

2 Preliminaries

We recall the following concepts of functions or vector fields orders and
distribution weights, see [3]. Let X1, ..., Xm denote the smooth vector fields
on a manifold M and C∞(p) denote the set of germs of smooth functions at
p ∈ M . For f ∈ C∞(p) we say that the Lie derivatives Xif,XiXjf, ... are
non–holonomic derivatives of f of order 1,2,... The non–holonomic derivative of
order 0 of f at p is f(p).

Definition 1. Let f ∈ C∞(p). Then the non–holonomic order of f at p,
denoted by ordp(f), is the biggest integer k such that all non–holonomic deriva-
tives of f of order smaller than k vanish at p.

Note that in case M = Rn, m = n and Xi = ∂xi , for a smooth function
f , ord0(f) is the smallest degree of monomials having nonzero coefficient in
the Taylor series. In the language of non–holonomic derivatives, the order of a
smooth function is given by the formula, [3]:

ordp(f) = min

{
s ∈ N : ∃i1, ..., is ∈ {1, ...,m} s.t. (Xi1 · · ·Xisf)(p) 6= 0

}
,

where the convention reads that min ∅ =∞.
If we denote by VF(p) the set of germs of smooth vector fields at p ∈ M ,

the notion of non–holonomic order extends to the vector fields as follows:

Definition 2. Let X ∈ VF(p). The non–holonomic order of X at p, denoted
by ordp(X), is a real number defined by:

ordp(X) = sup

{
σ ∈ R : ordp(Xf) ≥ σ + ordp(f),∀f ∈ C∞(p)

}
.
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Note that ordp(X) ∈ Z. Moreover, the null vector field X ≡ 0 has infinite
order, ordp(0) = ∞. Furthermore, X1, ..., Xm are of order ≥ −1, [Xi, Xj ] of
order ≥ −2, etc. Using the notion of a vector field order one can define

Definition 3. A family of m vector fields (X̂1, ..., X̂m) defined near p is
called a first order approximation of (X1, ..., Xm) at p if the vector fields Xi −
X̂i, i = 1, ...,m are of order ≥ 0 at p.

Finally, to define the weights of distributions we use the same notation as in
[3]. Let us by ∆1 denote the distribution ∆1 = span{X1, ..., Xm} and for s ≥ 1
define ∆s+1 = ∆s + [∆1, ∆s], where [∆1, ∆s] = span{[X,Y ] : X ∈ ∆1, Y ∈ ∆s}.
Then ∆s = span{XI : |I| ≤ s}. Note that this directly leads to the fact that
every X ∈ ∆s is of order ≥ −s. Now let us consider the sequence ∆1(p) ⊂
∆2(p) ⊂ · · · ⊂ ∆r−1  ∆r(p) = TpM, where r = r(p) is called the degree of
non–holonomy at p. Set ni(p) = dim∆i(p). Then we can define the weights at
p, wi = wi(p), i = 1, ..., n = nr(p) by setting wj = s if ns−1(p) < j ≤ ns(p),
where n0 = 0. In other words, we have

w1 = · · · = wn1 = 1, wn1+1 = · · · = wn2 = 2, ..., wnr−1+1 = · · · = wnr = r.

The weights at p form an increasing sequence w1(p) ≤ · · · ≤ wn(p).

3 3–link snake robot

pn

pn−1

p2

p1

p0

L0

L1

L2

Ln−1

x

y

Q1

Q3

Qn−1

Qn

θ

Φ1

Φ2

Φn−1

Q2

Figure 1. Snake robot model

The snake robot model is generally composed of n links of the lengths li, i =
1, .., n, interconnected by (n − 1) motorised joints with the axis of rotation
denoted by Li, i = 1, .., n − 1, and each link is endowed with a pair of passive
wheels at arbitrary position within the appropriate link Qi, i = 1, .., n− 1, see
1. To describe such a complex model, it is suitable to use the tools of Conformal

3



Geometric Algebra (CGA), where all the model modification can be carried on
quite easily, see [1].

The snake robot described in this paper consists of 3 rigid links of constant
length 2 interconnected by 2 motorized joints. To each line, in the centre of its
mass, a pair of wheels is attached to provide an important snake-like property
that the ground friction in the direction perpendicular to the link is considerably
higher than the friction of a simple forward move. In particular, this prevents
the slipping sideways. To describe the actual position of a snake robot we
need the set of 5 generalized coordinates q = (x, y, θ,Φ1,Φ2) which describe the
configuration of the snake robot as shown in Figure 2 and forms a manifold M
as a phase space.

p0 = (x0; y0)

(x1; y1)

(x2; y2)

(x3; y3)

Φ2

Φ1

x

y

θ

Figure 2. 3–link snake robot model

Note that the forward kinematics is calculated w.r.t. the head point (x0, y0)
and the parameterization by ẋ and ẏ. The non–singular positions then form a
2–dimensional distribution which can be determined by the vector fields X,Y
e.g. with the following coordinates:

X1 =1

X2 =0

X3 =2 sin(θ)

X4 =− 4 sin(θ) sin(Φ1 + π/6)− 2 sin(θ)− 2 cos(θ + Φ1 + π/6)

X5 =8 cos(Φ2 + π/3) sin(Φ1 + π/6) sin(θ)− 4 sin(θ) cos(Φ1 + Φ2)

+ 4 cos(Φ2 + π/3) cos(θ + Φ1 + π/6) + 4 sin(θ) sin(Φ1 + π/6)

+ 2 cos(θ + Φ1 + π/6) + 2 sin(θ + Φ1 + Φ2)

(1)
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and

Y1 =0

Y2 =1

Y3 =− 2 cos(θ)

Y4 =4 cos(θ) sin(Φ1 + π/6) + 2 cos(θ)− 2 sin(θ + Φ1 + π/6)

Y5 =− 8 cos(Φ2 + π/3) sin(Φ1 + π/6) cos(θ) + 4 cos(θ) cos(Φ1 + Φ2)

+ 4 cos(Φ2 + π/3) sin(θ + Φ1 + π/6)− 4 cos(θ) sin(Φ1 + π/6)

+ 2 sin(θ + Φ1 + π/6)− 2 cos(θ + Φ1 + Φ2)

(2)

And their Lie bracket [X,Y ] and two higher order brackets [[X,Y ], X] and
[[X,Y ], Y ]. Evaluating these vector fields at the point init = (0, 0, 0,−π

3 ,
π
3 )

which is considered in the following as the snake’s initial position, we obtain

X(init) =(1, 0, 0,−
√

3, 2
√

3),

Y (init) =(0, 1,−2, 3, 0),

[X,Y ](init) =(0, 0, 4,−12, 12),

[[X,Y ], X](init) =(0, 0, 8,−36, 60),

[[X,Y ], Y ](init) =(0, 0, 0,−4
√

3, 20
√

3).

The motion planning is then modelled sequentially, meaning that e.g. the
motion in the direction of the x axis from the initial position and consequent
transformation into the shifted initial position (i.e. only the x coordinate is
different) again is formed by the linear combination

(1, 0, 0, 0, 0) ∝ (576 + 360
√

3)X − 22[X,Y ] + 11[[X,Y ], X]− 101
√

3[[X,Y ], Y ],

where the Lie bracket motions are realized by so–called periodic input in the
form

u(t) = (−Aω sinωt,Aω cosωt) (3)

with suitable choice of A ∈ R sufficiently small amplitude and ω ∈ R. For further
details about the precise form of inputs for composed Lie brackets see [5].

4 Nilpotent Approximation

We proceed according to Belläıche’s algorithm, see e.g. [3]. We shall use the
following notation: (x1, x2, x3, x4, x5) := (x, y, θ,Φ1,Φ2) and the resulting priv-
ileged coordinates will be denoted by (z1, z2, z3, z4, z5). We recall the definition
of privileged coordinates, [3], taking into account the notation from Section 2.
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Definition 4. A system of privileged coordinates at p is a system of local
coordinates (y1, ..., yn) such that ordp(yj) = wj for j = 1, ..., n.

Yet, note that the algorithm starts with the coordinate transformation into
(y1, y2, y3, y4, y5) such that ∂y1 = X, ∂y2 = Y , ∂y3 = [X,Y ], ∂y4 = [[X,Y ], X]
and ∂y5 = [[X,Y ], Y ]. The transformation matrix at 0 is of the form




1 0 0 0 0
0 1 0 0 0

1/4
√

3 5/4 5/4 5/12 1/12

−1/8
√

3 −3/8 −1/2 −5/24 −1/24

1/8 1/8
√

3 1/4
√

3 1/8
√

3 1/24
√

3



.

If the controlling vector fields are denoted as

g1 := X,

g2 := Y,

g3 := [X,Y ],

g4 := [[X,Y ], X],

g5 := [[X,Y ], Y ],

then generally the condition reads

∂

∂yi
|p = gi(p), i = 1, . . . , 5

where p ∈M . Note that set (yi) is then called an adapted frame at p.
Note that we keep the notation of the transformed controlling vector fields

to be gi and, if needed, we use the notation gi(z) to denote the vector fields
transformed into (z1, z2, z3, z4, z5) coordinate system etc.

Next step of the Belläıche’s algorithm is the following: For j = 1, . . . , 5 set

zj = yj −
wj−1∑

k=2

hk(y1, . . . , yj−1), (4)

where, for k = 2, . . . , wj − 1,

hk(y1, . . . , yj−1) =
∑

|α|=k
w(α)<wj

gα1
1 . . . g

αj−1

j−1


yj −

k−1∑

q=2

hq(y)


 (p)

yα1
1

α1!
· · ·

y
αj−1

j−1
αj−1!

.

Note that the choice of the polynomials hk in (4) guarantees that the non–
holonomic derivatives of zj at p up to order wj − 1 vanish. Clearly, only the
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coordinates of the order 3, i.e. z4 and z5 will be different from the adapted
coordinates y4 and y5, the lower order coordinates remain unchanged. Note
that this step is employed due to the depth of the filtration (2,3,5) while for e.g.
the trident snake robot, [2], with the filtration (3,6) this step is omitted. In our
case,

z4 = y4 + 3y1y2 + (1/2)
√

3y21 − (5/2)
√

3y22,

z5 = y5 − 12y1y2 +
√

3y21 + 5
√

3y22.

Proposition 1. The coordinates (z1, z2, z3, z4, z5) form the system of priv-
ileged coordinates.

For general proof see [3].

To form the nilpotent approximation Vector fields gi are of order ≥ −1 and
thus generally their Taylor expansion is of the form:

gi(z) ∼
∑

α,j

aα,jz
α∂zj ,

where α = (α1, ..., αn) is a multiindex. Furthermore, if we define a weighted
degree of the monomial zα = zα1

1 · · · zαn
n to be w(α) = w1α1 + · · ·wnαn, then

w(α) ≥ wj − 1 if aα,j 6= 0. Furthermore, the weighted degree of the monomial
vector field zα∂zj is w(α) − wj . Recall that wj = ordp(zj) from Definition 4
and in our particular case the coordinate weights are (1, 1, 2, 3, 3). Grouping
together the monomial vector fields of the same weighted degree we express
gi, i = 1, 2 as a series

gi = g
(−1)
i + g

(0)
i + g

(1)
i + · · · ,

where g
(s)
i is a homogeneous vector field of degree s. Note that this means that

the controlling vector fields coefficients of ∂z1 and ∂z2 are formed by constants,
the coefficients of ∂z3 are linear in z1 and z2 and independent of the rest, and
finally, the coefficients of ∂z4 and ∂z5 are formed by polynomials of the weighted
degree 2, i.e. quadratic in ∂z1 and ∂z2 and linear in ∂z3 . This fully corresponds
to the fact that the weights of the coordinates are (1,1,2,3,3), see Section 2 for
explanation. Then the following proposition holds, [3]:

Proposition 2. Set ĝi = g
(−1)
i , i = 1, 2. The family of vector fields (ĝ1, ĝ2) is

a first order approximation of (g1, g2) at 0 and generates a nilpotent Lie algebra
of step r = 2, i.e. all brackets of length greater than 2 are zero.

The proof is just a straightforward computation of Lie brackets and is ob-
vious. Because of its very extensive form we show the coordinate form of the
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approximated vector field corresponding to X only and we denote it by X̂. Note
that it is expressed in the original coordinate system (x, y, θ,Φ1,Φ2).

X̂ =

∂x

− 1

2(3
√

3− 2)2

(
621
√

3x2 − 13832
√

3xy − 12705
√

3y2 + 120
√

3Φ1 + 24
√

3Φ2

− 186
√

3x+ 264
√

3y + 360
√

3θ + 644x2 + 21626xy + 21580y2

−310Φ1 − 62Φ2 + 216x− 682y − 930θ

)
∂θ

− 1

(3
√

3− 2)3

(
−1164

√
3x2 − 149430

√
3xy − 145220

√
3y2 + 1755

√
3Φ1

+ 351
√

3Φ2 − 1700
√

3x+ 4212
√

3y + 5265
√

3θ − 7044x2 + 272028xy

+252600y2 − 170
√

3− 2550Φ1 − 510Φ2 + 3510x− 6120y − 7650θ + 351

)
∂Φ1

− 1

2(3
√

3− 2)3

(
1290

√
3x2 + 106170

√
3xy + 99950

√
3y2 − 680

√
3x+ 5925x2

−204180xy − 163425y2 + 680
√

3 + 1404x− 1404

)
∂Φ2

The motion planning algorithm is similar to the one proposed in Section 3, i.e. it is
sequential with periodic input (3) applied for the bracket motions. Note that according
to [5], the periodic input (3) in nilpotent approximation can be applied to model the
Lie bracket motions.

5 Global control

A well–known mathematical description of lateral undulation was presented by
Hirose in 1993 based on empirical studies of biological snakes. Hirose discovered that
a close approximation to the shape of a biological snake during lateral undulation is
given by a planar curve whose curvature varies sinusoidally, more precisely κ(s) =
|ab sin(bs)− c|, see [4]. Hirose named it a serpenoid curve and described it by

x(s) =
∫ s

0
cos(a cos(bσ) + cσ)dσ,

y(s) =
∫ s

0
sin(a cos(bσ) + cσ)dσ

where (x(s), y(s)) are the coordinates of the point along the curve at arc length s
from the origin and a, b, c are positive scalars. The following pictures within Figure 3
show the form of a serpenoid curve for different choices of parameters.

Furthermore, it was shown by Sainto in 2002 that a serpenoid curve of arc length
1 can be approximated by N identical discrete segments by calculating the angle Φi
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(a) a=1,b=1,c=0 (b) a=2,b=2,c=0 (c) a=2,b=2,c=3

Figure 3. Serpenoid curves

of segment i ∈ {1, ..., N} with respect to the x axis according to Φi = a cos
(
ib
N

)
. This

implies that a snake robot with N identical discrete links attains a discrete approxima-
tion to the serpenoid curve by moving its ling angles sinusoidally with a constant phase
shift between the links. The pattern for lateral undulation is achieved by moving the
joints of a planar snake robot according to

Φi = A sin(ωt+ (i− 1)δ) + Φ0, (5)

where in our case, i = 1, 2, the offset Φ0 = 0 and only the amplitude A and frequency
ω remain, see [4]. To use this model, we have to reparametrize the robotic system in
such way that instead of controlling vector fields (1) and (2) parametrized by ẋ and ẏ,
we use vector field parametrized by Φ̇1 and Φ̇2. Then we use (5) as an input. Figure 4
shows the trajectory of a head point within one second.

Figure 4. Head point trajectory

Finally, to demonstrate the similarity of the nilpotent approximation with the orig-
inal controlling model see Figure 5. Note that due to locality property of the nilpotent

9



approximation the time for comparison was decreased to 0,25 second.

Figure 5. Nilpotent approximation comparison

6 Conclusion

We presented three possible models of a 3–link snake robot control, two of them
local and one global. Note that if the motion is realized on a smooth surface with
no obstacles then the control the robot is realized by the global control model. If the
obstacles and narrow places are added such that the number of actually operational
motorized joints decreases under the critical value of 4 then the local control takes
place. We conclude that the questions of optimality are yet to be solved.
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1. Introduction

Within this paper, we consider a three-link snake robot moving on a planar
surface. More precisely, it is a model when to each link a pair of wheels is
attached and thus the possible movement directions are determined uniquely.
The aim is to find the complete local controllability solution. If generalized
coordinates are considered, the non-holonomic forward kinematic equations
can be understood as a Pfaff system and its solution as a distribution in the
configuration space. Rachevsky–Chow Theorem implies that the appropriate
non-holonomic system is locally controllable if the corresponding distribution
is not integrable and the span of the Lie algebra generated by the controlling
distribution has to be of the same dimension as the configuration space. The
spanned Lie algebra is then naturally endowed by a filtration which shows
the way to realize the movements by means of the vector field brackets [6,8].
In our case, the system is locally controllable and the filtration is (2, 3, 5).

The classical approach composes the kinematic chain of homogeneous
matrices using the moving frame method and Euler angles [4]. Instead of this,
our aim is to use the notions of conformal geometric algebra, i.e. the subset
of a Clifford algebra Cl(4, 1) where the Euclidean space E3 is included by a

The authors were supported by a Grant No. FSI-S-14-2290.
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mapping x �→ x + x2e∞ + e0. In this geometric setting, we can easily handle
both linear objects and spheres of dimensions 2, 1 and 0, see [2,7,9].

In particular, the 0-dimensional sphere, referred to as a point pair, is
used to derive the kinematic equations and for the control of the robotic
snake, consequently. More precisely, to any link of a snake a single point
pair is assigned and the mechanism is transformed by rotations and trans-
lations. We introduce the differential kinematic equations (3), as well as the
non-holonomic conditions (5) or (7), respectively. Also the singularity condi-
tion was formulated. Furthermore, the system movement dynamic equations
are derived (14). We demonstrate the functionality in the CLUCalc software
designed for the computations in Clifford algebra, particularly in conformal
geometric algebra.

2. Conformal Geometric Algebra—CGA

Let R4,1 denote a vector space R
5 equipped with the scalar product of signa-

ture (4, 1) and thus we have the corresponding Clifford algebra Cl(4, 1) such
that the set {e1, e2, e3, e+, e−} is the basis. To describe the elements of
O := Cl(4, 1) we have to determine a free, associative and distributive alge-
bra as a span of the set {e1, e2, e3, e+, e−} such that the following identities
are satisfied:

e2
1 = e2

2 = e2
3 = e2

+ = 1, e2
− = −1,

eiej = −ejei, i �= j, i, j ∈ {1, 2, 3,+,−}.
In this case, we get 25 = 32-dimensional vector space.

Table 1. Elements of Cl(4, 1)

Scalars 1
Vectors e1, e2, e3, e+, e−
Bivectors e1e2, e1e3, e1e+, e1e−, e2e3, e2e+, e2e−, e3e+, e3e−, e−e+

Threevectors e1e2e3, e1e2e+, e1e2e−, e1e3e+, e1e3e−, e1e+e−, e2e3e+,
e2e3e−, e2e+e−, e3e+e−

Fourvectors e1e2e3e+, e1e2e3e−, e1e2e+e−, e1e3e+e−, e2e3e+e−
Pseudoscalars e1e2e3e+e−

Let us note that the geometric product in R
4,1 coincides with the scalar

product and the norm in R
4,1 can be understood as a vector square x2 = ‖x‖2.

Now, we define two additional products on R
4,1 based on the geometric

one for any u, v ∈ O, dot product and wedge product, respectively:

u · v =
1
2
(uv + vu), u ∧ v =

1
2
(uv − vu)

and thus the geometric product of the basis elements are derived as

uv = u · v + u ∧ v.
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Generally, the wedge (outer) product of two basis blades Ei and Ej , with
k = gr(Ei), l = gr(Ej) is defined as

Ei ∧ Ej := 〈EiEj〉k+l

and the dot (inner) product is defined as

Ei · Ej := 〈EiEj〉|k−l|, i, j, > 0
:= 0, i = 0 or j = 0,

where gr(E) is a grade of the basis blade E and 〈 〉k is the grade projection
into grade k. To work with CGA effectively, we have to define a new basis of
R

4,1 as a set {e1, e2, e3, e0, e∞} such that e0 = 1
2 (e−+e+) and e∞ = (e−−e+).

Consequently, the following properties hold:

e2
0 = 0, e2

∞ = 0, e∞e0 = −1 − e− ∧ e+, e0e∞ = −1 + e− ∧ e+,

e∞e0 = −e0e∞ − 2.

In CGA, we can represent the points by the following multivector from
Cl(4, 1):

point x � Q = x +
1
2
x2e∞ + e0

Note that the previous object is expressed in the IPNS representation while
for other objects such as spheres and point pairs in particular we use the
OPNS representation that is more convenient. Indeed, their expression in
OPNS is the following:

point pair Q1, Q2 � P = Q1 ∧ Q2.

circle containing
the points Q1, Q2, Q3

� C = Q1 ∧ Q2 ∧ Q3.

In CGA (in fact in GA generally), any transformation of the element O
is realized by conjugation

O �→ TOT̃

where T is the appropriate multivector from O. For instance, the translation
in the direction t = t1e1 + t2e2 + t3e3 is realized by the multivector

T = 1 − 1
2
te∞

and the rotation around the axis L by angle φ is realized by the multivector

R = cos
φ

2
− L sin

φ

2

where L = a1e2e3 + a2e1e3 + a3e1e2.
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3. Control Theory

The snake robot described in this paper consists of 3 rigid links of constant
length 2 interconnected by 2 motorized joints. To each line, in the center
of mass, a pair of wheels is attached to provide an important snake-like
property that the ground friction in the direction perpendicular to the link is
considerably higher than the friction of a simple forward move. In particular,
this prevents the slipping sideways. To describe the actual position of a snake
robot we need the set of 5 generalized coordinates

q = (x, y, θ,Φ1,Φ2) (1)

which describe the configuration of the snake robot as shown in Fig. 1.
Note that a fixed coordinate system (x, y) is attached. The points p1 :=

(x1, y1), p2 := (x2, y2), p3 := (x3, y3) denote the centers of mass of each link.
To describe the robotic snake we use as a central object the couple of point
pairs

(P1, P3)

where P1 = Q1∧Q2 and P3 = Q3∧Q4, where Qi are the joints. Consequently,
the kinematic equations can be assessed and if we consider the projections

Q2 = −
√

P1 · P1 + P1

e∞ · P1
, Q3 =

√
P3 · P3 + P3

e∞ · P3
,

we are able to express the first point coordinates from any point pair. Finally,
denote P2 = Q2 ∧ Q3. The coordinates of a particular position vectors are
expressed as

p1 = P1e∞P̃1, s.t. P1 = RθTx,yP1,0T̃x,yR̃θ,

p2 = P2e∞P̃2, s.t. P2 = RΦ1RθTx,yP2,0T̃x,yR̃θR̃Φ1 ,

p3 = P3e∞P̃3, s.t. P3 = RΦ2RΦ1RθTx,yP3,0T̃x,yR̃θR̃Φ1R̃Φ2

(2)

Figure 1. Snake robot model
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and, for the robotic snake’s initial position x = y = θ = Φ1 = Φ2 = 0, three
appropriate point pairs are established as

P1,0 = (e0) ∧ (2e1 + 2e∞ + e0) = 2e0e1 − 2e+e−,

P2,0 = (2e1 + 2e∞ + e0) ∧ (4e1 + 8e∞ + e0) = 2e0e1 + 8e1e∞ − 6e+e−,

P3,0 = (4e1 + 8e∞ + e0) ∧ (6e1 + 18e∞ + e0) = 2e0e1 + 24e1e∞ − 10e+e−.

Now, the transformations corresponding to the generalized coordinates can
be written as

Tx,y = 1 − 1
2
(xe1 + ye2)e∞, TQ1 = 1 − 1

2
Q1e∞, TQ2 = 1 − 1

2
Q2e∞,

Rθ = cos
θ

2
− L0 sin

θ

2
, where L0 = Tx,ye1e2T̃x,y,

RΦ1 = cos
Φ1

2
− L1 sin

Φ1

2
, where L1 = TQ2e1e2T̃Q2 ,

RΦ2 = cos
Φ2

2
− L2 sin

Φ2

2
, where L2 = TQ3e1e2T̃Q3 .

The direct kinematics for the snake robot is obtained similarly as the
kinematics for serial robot arms [1]. In general, it is given by a succession
of generalised rotations Ri and it is valid for all geometric objects, including
point pairs. A point pair P in a general position is computed from its initial
position P0 as follows

P =
n∏

i=1

RiP0

n∏

i=1

R̃n−i+1.

Unlike the fixed serial robot arms, we allow Ri to be also a translation. We
view translations as degenerate rotations. Then the differential kinematics is
expressed by means of the total differential as follows

dP =
n∑

j=1

∂qj

(
n∏

i=1

RiP0

n∏

i=1

R̃n−i+1

)
dqj .

Since both the translations and the rotations can be expressed as exponen-
tials, and dR = d(e− 1

2 qL) = − 1
2RLdq, the straightforward computation leads

to the following assertion, [3,9]:

dP =
n∑

j=1

[P · Lj ]dqj .

If Ri is a translation, then the axis of rotation Li is given by a linear com-
bination of bivectors that contain e∞. In our particular case, previous con-
siderations lead to the following general expression of ṗi, where the range of
the subscript i is determined by the number of links:
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ṗi = ∂t(Pie∞P̃i) = Ṗie∞P̃i + Pie∞
˙̃Pi

=
n∑

j=1

[Pi · Lj ]e∞P̃idqj + Pie∞
n∑

j=1

[L̃j · P̃i]dqj

=
1
2

n∑

j=1

(
PiLje∞P̃i − LjPie∞P̃i + Pie∞L̃jP̃i − Pie∞P̃iL̃j

)
dqj

In the last line we used the definition of the scalar product and the fact that
Li contains only bivectors. This also implies that Li always commutes with
e∞ (in the case of a translation the product vanishes), and that L̃i = −Li.
Thus we get

ṗi =
1
2

n∑

j=1

(
−LjPie∞P̃i − Pie∞P̃iL̃j

)
dqj =

n∑

j=1

[pi · Lj ]dqj ,

i.e. the same formula of the differential kinematics holds also for the link
centers pi. Concretely, we obtain the system

ṗ1 = [p1 · e1e∞]ẋ + [p1 · e2e∞]ẏ + [p1 · L0]θ̇,

ṗ2 = [p2 · e1e∞]ẋ + [p2 · e2e∞]ẏ + [p2 · L0]θ̇ + [p2 · L1]Φ̇1,

ṗ3 = [p3 · e1e∞]ẋ + [p3 · e2e∞]ẏ + [p3 · L0]θ̇ + [p3 · L1]Φ̇1 + [p3 · L2]Φ̇2

which in the matrix notation is of the form

ṗ = Jq̇, (3)

where q are our coordinates (1) and J = (jkl) is a 3 × 5 matrix with the
elements defined by

ji1 = [pi · e1e∞], ji2 = [pi · e2e∞],
jik = [pi · Lk−3] for 3 ≤ k < 3 + i,
jik = 0 for 3 + i ≤ k.

(4)

As the wheels do not slip to the side direction, the velocity constraint
condition is satisfied for each link i and in terms of CGA can be written as

ṗi ∧ Pi ∧ e∞ = 0. (5)

Thus if we substitute (3) in (5), we obtain a system of linear ODEs,
which has a simple Pfaff matrix form

Aq̇ = 0, (6)

where A = (aij) is a matrix with the elements defined by

aik = jik ∧ Pi ∧ e∞. (7)

Note that the enteries of A are multiples of e1e2e+e−. Taking the conjugate
and multiplying with e3, A can be considered simply as a matrix over the
field of functions. For example, the solution of this system with respect to θ̇
parameterized by ẋ, ẏ, (i.e. ẋ = t1 and ẏ = t2) is of the form
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Figure 2. Snake robot’s singular position

θ̇ = − [p1 · e1e∞] ∧ P1 ∧ e∞
[p1 · L0] ∧ P1 ∧ e∞

t1 − [p1 · e2e∞] ∧ P1 ∧ e∞
[p1 · L0] ∧ P1 ∧ e∞

t2.

The straightforward computation leads to [p1 · L0] ∧ P1 ∧ e∞ = 2e∗
3, i.e.

the solution always exists, because ([p1 ·L0]∧P1∧e∞)−1 = − 1
2e∗

3. The system
matrix is singular in case that the wheel axes, i.e. lines perpendicular to each
link containing the link center point, intersect in precisely one point or are
parallel, see Fig. 2.

In our setting this is one condition only because in CGA the parallel
lines intersect in exactly one point which is e∞. It is easy to see that this
happens in such case that all joints lie on a single circle, i.e. in CGA they
satisfy a simple condition

P1 ∧ P3 = 0. (8)

Finally, note that the non-singular solution forms a 2-dimensional distribution
which can be parameterized e.g. as follows:

q̇ = G

(
t1
t2

)
, (9)

where G = (gij) is a 2 × 5 control matrix with the elements defined by

g11 = 1, g12 = 0, g21 = 0, g22 = 1, g31 = cos(θ), g32 = sin(θ),

g41 = −2 cos(Φ1) sin(θ) + sin(θ + Φ1) − sin(θ),

g42 = 2 cos(Φ1) cos(θ) − cos(θ + Φ1) + cos(θ),

g51 = 4 cos(Φ1) cos(Φ2) sin(θ) − 2 sin(θ + Φ1) cos(Φ2) + 2 cos(Φ1) sin(θ)

− 2 cos(Φ1 + Φ2) sin(θ) − sin(θ + Φ1) + sin(θ + Φ1 + Φ2),
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g52 = −4 cos(Φ1) cos(Φ2) cos(θ) + 2 cos(θ + Φ1) cos(Φ2)

− 2 cos(Φ1) cos(θ) + 2 cos(Φ1 + Φ2) cos(θ) + cos(θ + Φ1)

− cos(θ + Φ1 + Φ2).

Thus if we consider the snake robot’s configuration space with coordinates (1)
as a 5-dimensional manifold M , the solution above forms a couple of vector
fields g1 and g2.

It is clear, that the space span{g1, g2} determines the set of acces-
sible velocity vectors and thus, taking into account the vector field flows
exp(tg1), exp(tg2), the possible trajectories of the snake robot. On the other
hand, due to non-commutativity of exp(tg1), exp(tg2), the robot can move
even along the flow of the Lie bracket by means of the composition

exp(−tg2) ◦ exp(−tg1) ◦ exp(tg2) ◦ exp(tg1).

Extending this idea, the space Qq of all movement directions in point q is
given by taking all possible Lie brackets of g1(q) and g2(q) and the resulting
vector fields. From the geometric control theory point of view, it is quite
necessary that the dimension of Qq is equal to the dimension of the tangent
space TqM, q ∈ M, which in our case is 5. Note that this is the condition on
the model local controllability given by the Rashevsky–Chow Theorem. In
our case, it is easy to show that in regular points q indeed

Qq = span {g1, g2, [g1, g2], [g1, [g1, g2]], [g2, [g1, g2]]} ∼= TqM.

Thus the tangent space to the configuration space of the snake robot is
equipped with a (2, 3, 5) filtration.

4. CLUCalc Implementation

The proposed snake control was tested in CLUCalc software [2,7], which is
designed exactly for calculations in arbitrary predefined geometric algebra.
The following code piece contains the definitions of basic objects:

DefVarsN3();\\
// COMPUTATION OF COORDINATES IN CONFIGURATION SPACE\\
// POSITION OF ROBOT CORR. TO THE COORDINATES\\
// Initial position of points Q1, Q2, Q3 and line L1 \\
Q1=VecN3(0,0,0);
L1=VecN3(0,0,1);
T0=TranslatorN3(2,0,0);
Q2=T0*P1*~T0;
Q3=T0*P2*~T0;
Q4=T0*P3*~T0;
// Computation of point pairs P1,P2 and P2
P1=P1^P2;
P2=P2^P3;
P3=P3^P4;
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The initial position is thus recalculated with respect to the controlling
parameters change.

\\ Coordinates x and y from configuration space
T=TranslatorN3(x,y,0);
\\ Axis of rotation in point (x,y)
LB=T*L1*~T;
\\ Rotor in space with respect to R
MB=TranslatorN3(LB)*RotorN3(0,0,1,d)*~TranslatorN3(LB);
\\ New position of point pair P1
:P1=MB*T*P1*~T*~MB;
\\ Projection to the first point of P1
T1=(-(sqrt(P1.P1)+P1)/(einf.P1));
\\ Rotor in first joint
L2=TranslatorN3(T1)*L1*~TranslatorN3(T1);
M1=TranslatorN3(L2)*RotorN3(0,0,1,a)*~TranslatorN3(L2);
\\ New position of point pair P2
:P2=M1*MB*T*P2*~T*~MB*~M1;
\\ Projection to the second point of P3
T2=((sqrt(P3.P3)+P3)/(einf.P3));
\\ Rotor in second joint
L3=TranslatorN3(T2)*L1*~TranslatorN3(T2);
M2=TranslatorN3(L3)*RotorN3(0,0,1,b)*~TranslatorN3(L3);
\\ New position of point pair P3
:P3=M2*M1*MB*T*P3*~T*~MB*~M1*~M2;

Figure 3 demonstrates the evolution from 0 in the direction of the vector
field g1, i.e. when the controlling parameter t1 is set to zero and t2 is changed
within the range 〈0, 2π〉.

Figure 4 shows the motion corresponding to the bracket [g1, g2] which
is realized by means of a periodic transformation of the generators g1 a g2:

v(t) = −εω sin(ωt)g1 + εω cos(ωt)g2,

where ε = 0.1, ω = 4 and t ∈ 〈0, 2π/ω〉.
The calculations with the CGA elements provide not only significant

theoretical model simplification, particularly in better geometric understand-
ing and the notations, but also a remarkable computational complexity reduc-
tion when a system such as Gaalop is used [2]. To demonstrate the contri-
bution of CGA calculus let us restrict from CGA to quaternions. Classically,
rotations in 3D-space are realized by multiplication of a 3x3 matrix. The
composition of rotations is then rotation matrices multiplication, i.e such
composition is given by 27 multiplications and 18 summations. If you rep-
resent rotations by quaternions, for the same composition you need just 16
multiplications and 15 summations. This reduces the computational time
remarkably.



1078 J. Hrdina et al. Adv. Appl. Clifford Algebras

Figure 3. t1 = 0, t2 = t (pictured by CLUCalc)

Figure 4. Lie bracket [g1, g2] (pictured by CLUCalc)

5. Dynamics

The results obtained above via the conformal geometric algebra may be used
directly to derive the model of snake’s dynamics from the d’Alembert prin-
ciple. Since there is no potential energy, the Lagrangian L of the (uncon-
strained) system equals to the total kinetic energy

L = Ek. (10)

Then, the Euler–Lagrange equation has the form

d

dt

(
∂Ek

∂q̇

)
− ∂Ek

∂q
= F + τ. (11)

The right-hand side of the Eq. (11) contains the traction forces F and the
control forces (torques) τ = (0, 0, 0, τ1, τ2)T . Since the traction forces are
always perpendicular to the evolution of the system, we have F = λAT ,
where A is the matrix that gives the Pfaff constraint (6), viewed as a 3 × 5
matrix over the field of functions. And since this matrix satisfies A(q)G(q) = 0
in each point q, we eliminate the traction forces term by pre-multiplying (11)
by 2 × 5 matrix GT . The resulting system together with (6) then describes
the dynamics of the snake robot.

In order to get a precise form of the equations, it is sufficient to compute
the total kinetic energy Ek. We consider a snake with identical links and
wheels, where the wheels are located in centers of links. If we denote by mw

the mass of each wheel, rw and dw its radius and thickness, ml the mass of
each link and L = 2 its length, the moment of inertia of each link with the
wheel (with respect to the axis located in its center of mass) is given by

I =
1
12

mw

(
3r2

w + d2
w

)
+

1
12

mlL
2.

Denoting by m = mw +ml the total mass of wheel and link, we compute the
kinetic energy of the individual links as

Ek1 =
1
2
mṗ2

1 +
1
2
Iθ̇2,

Ek2 =
1
2
mṗ2

2 +
1
2
I(θ̇ + φ̇1)2,

Ek3 =
1
2
mṗ2

3 +
1
2
I(θ̇ + φ̇1 + φ̇2)2.
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Recall that pi is the position of the i-th link center (that coincides with its
mass center) and ṗi represents its velocity which is computed using the equa-
tion of differential kinematics (3) explained in the previous section. Although
ṗi is a vector in CGA, its square (with respect to the geometric product) is a
real number which gives the square of the real (physical) velocity. Hence the
total energy of the snake robot

Ek =
1
2
m

(
ṗ2
1 + ṗ2

2 + ṗ2
3

)
+

1
2
I

(
θ̇2 + (θ̇ + φ̇1)2 + (θ̇ + φ̇1 + φ̇2)2

)

can be written in a compact way as

Ek =
1
2
q̇T Mq̇, (12)

where M is a symmetric 5 × 5 matrix

M = mJT J + I

⎛

⎜⎜⎝

0 0

0
3 2 1
2 2 1
1 1 1

⎞

⎟⎟⎠ . (13)

Recall that J is a 3 × 5 matrix given by (4). Now, using (12) we directly
compute

∂Ek

∂q̇
= Mq̇

and
∂Ek

∂q
=

1
2
q̇T

(
∂M
∂q

)
q̇.

Thus the Lagrange Eq. (11) can be rewritten as

Mq̈ − Ṁq̇ − 1
2
q̇T

(
∂M
∂q

)
q̇ = λAT + τ.

A standard elimination of the multipliers then results in the following equa-
tions of motion of the snake robot

Aq̇ = 0,
(
GT M)

q̈ − GT

(
Ṁ +

1
2
q̇T ∂M

∂q

)
q̇ = GT τ. (14)

Recall that A is given by (7), M is given by (13) and G is the control matrix
(9). Thus the equations of motion are formed by three first order differential
equations and two second order differential equations. For more informations
one can see [10], for example.

6. Conclusions

The snake-like robot (see [5]) modelling by means of CGA is quite promising
topic. This approach leads to a list of nice formulas for forward kinemat-
ics (2), differential kinematics (3), nonholonomic constrains (5) and singular
positions (8). It brings not only a geometric point of view to the topic that
is important for the complete problem understanding, but it also allows the
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calculations to be done faster and thus it contributes to the final model real-
ization together with the proposal of the control solution.
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Abstract. Local controllability of an n-link robotic snake with variable
wheel positions is solved by means of the conformal geometric alge-
bra, more precisely by the Clifford algebra of signature (3, 1). The non-
holonomic kinematic equations are assembled, their role in the geomet-
ric control theory is discussed and the singular positions are elaborated.
Within this paper, we present an alternative model description only,
while all its kinematic properties remain.
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1. Introduction

Within this paper, we consider an n-link snake robot moving on a planar
surface. More precisely, it is a model when to each link, two wheels are at-
tached and thus the possible movement directions are determined uniquely.
Calculations in CGA allow the wheels to be placed not in the link’s centre
of mass only, but their position is arbitrary within each link. The aim is to
find the complete kinematic description. Although we handle only the case
that the links are of a constant length 1, the generalization to an arbitrary
length of each link is obvious. If the generalized coordinates are considered,
the non-holonomic forward kinematic equations can be understood as a Pfaff
system. In classical approach, local controllability is discussed by means of
differential geometry and Lie algebras, see [12,15]. Our aim is to translate
the whole kinematics into the language of CGA, where both linear objects
and spheres of dimensions 2, 1 and 0, see [3,4,14,16], are easy to transform.

The classical approach composes the kinematic chain of homogeneous
matrices using the moving frame method and Euler angles [10]. Instead of

The authors were supported by a Grant No. FSI-S-14-2290.
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this, our aim is to use the notions of conformal geometric algebra. Partic-
ularly, we use a Clifford algebra Cl(3, 1) where the Euclidean space E2 is
included by a mapping x �→ x + 1

2x2e∞ + e0.
In particular, the point pair is used to derive the kinematic equations

and for the control of the robotic snake, consequently. More precisely, to any
link of a snake a single point pair is assigned and the mechanism is trans-
formed by rotations and translations. We introduce the differential kinematic
equations, as well as the non-holonomic conditions, respectively. Also the sin-
gularity conditions are formulated. The advantage of CGA description lies in
the simplicity of the model modifications, i.e. variable link length and variable
wheel position. Furthermore, we fully use the advantage of CGA in opera-
tions representation, precisely rotations and translations are represented by
particular CGA elements.

Currently, the model of a snake robot is well elaborated by classical
geometrical approaches [10], together with the controllability and motion
control. Also heuristic algorithms for the control are known. On the other
hand, the CGA description has not been presented as far as the authors are
aware. Note that the solutions of local controllability, motion control model
and singular points analysis can be adopted from the classical models, see
e.g. [10]. Within this paper, we present an alternative model description only,
while all its kinematic properties remain.

2. State of the art

The topic of the snake-like robots goes back to early 1970’s when Hirose
formulated the essential model design and developed limbless locomotors, for
the complex review of his work see [7]. He started the first bio-mechanical
study using the real snakes and designed the first snake-like robot based on
so-called serpentine locomotion.

The first designs of Hirose’s snake robots had modules with small passive
wheels, and since then, most of the current developments by Downling [2],
Chirikjian and Burdick [1], and Ostrowski [13] keep using the snake robots
with wheels in order to facilitate forward propulsion.

Since then a variety of different snake-like robots has been designed For
the precise modelling of snake-like motions see [10]. For the snake-like motion
mimicking, basically three approaches are used (simplified classification):

(1) The original Hirose approach [7], i.e. the representation of the kine-
matic model based on the serpenoid curve. This is well developed in
many directions. Two main planar models, the serpentine locomotion
(horizontal locomotion) and the travelling wave locomotion (vertical lo-
comotion) are often adopted. Furthermore, many authors present the
optimized versions of this approach based on various parameter estima-
tions. This is also often used for the verification of other solutions.

(2) Heuristic and artificial intelligence approach based on so-called CPG
(Central Pattern Generators) or other types of non-linear models. CPG
produces so called rhythmic outputs defining a periodic motion of a
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robotic snake. It is realized as the intra-spinal artificial neural network.
It is one of the mechanisms for neural control of locomotion in higher
animals and humans.

(3) The analytical mechanic model based on the Newton–Euler formulation
and Lagrangian [12,15]. The fact that the energy of the system and
the frictional forces acting on the system are invariant with respect to
the position and orientation of the snake robot is exploited to simplify
the mathematical model. In the position calculation, the classical Euler
angles are used.

Note that the above approaches differ not only by mathematical methods
but also by suitability for particular applications. The division into global
and local control is vital. While heuristic methods suit well to the global
control, the analytical approach (3) solves rather local control, i.e. the way of
actual movements. Furthermore, while the areas (1) and (2) are ready to be
used, there is still plenty open questions, such as the optimality and/or effec-
tiveness, and space for possible improvements in (3). In this sense, analytical
description by CGA seems to be promising.

3. Conformal geometric algebra: CGA

We recall some elementary facts about CGA and specify our particular set-
ting. Note that the properties and definitions of conformal geometric algebras
can be found in e.g. [12]. Classically, for modelling a 3D robot, the whole CGA
(i.e. Cl(4, 1)) is used, where the embedding R

3 → R
4,1 is considered. As the

snake robot moves on a planar surface it is enough to consider an embedding

c : R2 → K
3 ⊂ R

3,1,

where K
3 is a null cone and R

3,1 is a Minkowski space. Let us choose the
basis of R3,1 such that the appropriate quadratic form is

B =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 −1
0 0 −1 0

⎞
⎟⎟⎠ ,

which corresponds to the choice of the basis e1, e2, e0, e∞ ∈ R
3,1 composed

of the vectors from the classically used basis of R4,1. Consequently, the em-
bedding is of the form

c(x) = x +
1
2
x2e∞ + e0.

Note that e0 and e∞ play the role of the origin and the infinity, respectively.
We recall that the algebra operation is called the geometric product and

two further elementary operations on CGA are added. We recall just the basic
properties used within the following text. The inner (dot) product and outer
(wedge) product on R

3,1 correspond to the symmetric and antisymmetric part
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of the geometric product, respectively. Generally, the wedge product of two
basis blades Ek and El of grades k and l, respectively, is defined as

Ek ∧ El := 〈EkEl〉k+l

and the dot product is defined as

Ek · El := 〈EkEl〉|k−l|,

where 〈 〉k is the grade projection into grade k. Consequently, the inverse
mapping

c−1 : K3 → R
2

is defined by

c−1(x) = P⊥
e∞∧e0

(
x

−x · e∞

)
= x +

x · (e∞ ∧ e0)−1

x · e∞
(e∞ ∧ e0),

where P⊥ denotes the orthogonal complement to the projection onto e∞ ∧e0.

Algebraically, we consider the geometric algebra on R
3,1, i.e. the alge-

bra denoted as G3,1 which is the Clifford algebra Cl(3, 1). The advantage of
representing objects in CGA are well known. Particularly, not only spheres
of all dimensions but also transformations (rotations and translations) are
represented as algebra elements and this provides high efficiency in calcula-
tions. For instance, a sphere of any dimension (point, circle, point pair, line)
S ⊆ R

2 is viewed as an element A ∈ G3,1 such that

x ∈ S ⇔ c(x) ∧ A = 0.

Note that this is so-called OPNS representation. Dually, i.e. in IPNS repre-
sentation, the sphere S is represented by an element A∗ and the condition
reads

x ∈ S ⇔ c(x) · A∗ = 0.

The transformation represented by T of a sphere A is in CGA realized
by conjugation

A �→ TAT̃ .

For instance, the translation in the direction t = t1e1 + t2e2 is realized by the
multivector

T = 1 − 1
2
te∞

and the rotation around the origin by angle φ is realized by the multivector

R = e− 1
2 (e1∧e2)L = cos

φ

2
− (e1 ∧ e2) sin

φ

2
.

The rotation around a general point is then a composition

TRT̃

of the translation to the origin, rotation R and reverse translation.
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4. Snake robot model

The snake robot described in this paper consists of n rigid links intercon-
nected by n − 1 motorized joints. To each line, a pair of wheels is attached
to provide an important snake-like property that the ground friction in the
direction perpendicular to the link is considerably higher than the friction of
a simple forward move. In particular, this prevents the slipping sideways. To
describe the actual position of a snake robot the generalized coordinates

q = (x, y, θ,Φ1, . . . ,Φn−1) (1)

are considered, see Fig. 1.

pn

pn −1

p2

p1

p0

L0

L1

L2

Ln−1

x

y

Q1

Q3

Qn−1

Qn

θ

Φ1

Φ2

Φn−1

Q2

Figure 1. Snake robot model

Note that a fixed coordinate system (x, y) is attached. For sake of sim-
plicity, we consider the links to be of constant length 1 but the generalization
to arbitrary lengths is obvious. The points pi := (xi, yi), i = 0, . . . , n, denote
the endpoints of each link and by Qi = ripi + (1 − ri)pi−1, ri ∈ 〈0, 1〉, i =
1, . . . , n, we denote the points where the wheels are attached to the particular
link. Then, the distance |Qipi−1| = −2(Qi ·pi−1) is equal to ri. If the absolute
angle of the ith link, i.e. the angle between the link and the x-axis, is denoted
by θi then the position of Qi w.r.t. the global x − y axes is then expressed as

Qx,i = Px,0 +
∑i−1

j=1 cos θj + ri cos θi,

Qy,i = Py,0 +
∑i−1

j=1 sin θj + ri sin θi.
(2)

Note that to recover the generalized coordinates one has to consider the
assertion

θi =
i−1∑
j=1

Φj + θ.

Furthermore, the linear velocity of Qi can be determined by taking the de-
rivative of (2) and thus the nonholonomic equations are obtained. This gives
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us a rough idea of the snake model in the Euclidean space R
n+2. To describe

the robotic snake by means of CGA we use as a central object the point pairs

Pi = pi−1 ∧ pi, i = 1, . . . , n

and thus the i-th link is represented by a point pair Pi. Anyway, if the position
of a particular joint pi is needed, one can consider the projection of a point
pair onto its endpoints in the form

pi−1 =
−√

Pi · Pi + Pi

e∞ · Pi
, pi =

√
Pi · Pi + Pi

e∞ · Pi
.

The direct kinematics for the snake robot is obtained similarly as the
kinematics for serial robot arms [16]. For the case of a 3-link robotic snake
see [9]. In general, it is given by a succession of generalised rotations Ri and
translations Ti. The composition of Ri and Ti will be called a motor and will
be denoted by Mi. Particularly, the actual position of a joint pi at a general
point q = (x, y, θ,Φ1, . . . ,Φn−1) ∈ R

n+2 is computed from its initial position
pi(0) by

pi(q) = Mipi(0)M̃i, i = 0, . . . , n,

where pi(0) is the initial position of pi and Mi is a motor defined as

M0 := T = 1 − 1
2
(xe1 + ye2)e∞,

i.e. T stands for the translation from the origin to the position of the head
point, and

Mi = Ri . . . R1T for i �= 0,

i.e. the product of rotations. These can be determined inductively as follows:

Ri+1 = e−ΦiLi = cos
Φi

2
− sin

Φi

2
Li,

Li = MiLi(0)M̃i,

where Li are the axes of rotations placed in the corresponding joints, see Fig.
1. Furthermore, the wheel position at the link Pi is calculated as

Qi = MiQi(0)M̃i. (3)

In the following, the snake robot’s initial position is the one depicted in
Fig. 2, i.e q0 = (0, . . . , 0). Then

pi(0) = ie1 +
1
2
i2e∞ + e0,

Li(0) = ie2 ∧ e∞ − e1 ∧ e2.

This gives us the whole kinematic chain which corresponds to Eq. (2). The
differential kinematics will be obtained by the differentiation of this kinematic
chain as follows. For the wheel position point Qi ∈ Pi we have

Q̇i = Qi · (e1 ∧ e∞)ẋ + Qi · (e2 ∧ e∞)ẏ +
i−1∑
j=0

(Qi · Lj)Φ̇j . (4)
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x

yp0 pn

Figure 2. Snake robot initial position

Note that according to [8], the Eq. (4) holds for any other point on the link
Pi and, with minor modification, for any CGA object attached to Pi at the
position of Qi .

If we consider the wheels positions as a vector Q = (Qi)T , the Eq. (4)
transforms as

Q̇ = Jq̇, (5)

where

J =
(
Qi · (e1 ∧ e∞) Qi · (e2 ∧ e∞)︸ ︷︷ ︸

n×2

| Qi · Lj−1︸ ︷︷ ︸
n×n

)
, i, j = 1, . . . , n,

plays role of a Jacobi matrix, particularly a matrix of inner products of Qi

and axes of rotations or translations.
As the wheels do not slip to the side direction, the velocity vector must

be parallel to Q̇i and the constraint condition, i.e. the nonholonomic con-
straint, is in terms of CGA expressed as

Q̇i ∧ Pi ∧ e∞ = 0. (6)

Thus if we substitute (4) in (6), we obtain a system of linear ODEs

Aq̇ = 0, (7)

where A = (aij) plays the role of the Pfaff matrix and is of a simple form

aij = Jij ∧ Pi ∧ e∞. (8)

Note that the elements of A are just pseudoscalar multiples and thus A can be
understood as a matrix over the field of functions. To specify the elements of
A more precisely we formulate the following Lemma. For sake of simplicity,
we suppose that each link length is 1 and the wheels attached to the ith
link are represented by a point Qi but both these parameters can be easily
generalized. In particular, each link can be of a different length and Qi can
stand for any CGA object.

Lemma 4.1. If Qi = ripi + (1 − ri)pi−1, ri ∈ 〈0, 1〉, is a point on the link Pi,
then

(Qi · Li−1) ∧ Pi ∧ e∞ = riI, (9)

where I is a pseudoscalar.
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Proof. First, let us note that the rotor Ri commutes w.r.t. to the geometric
product with its appropriate axis of rotation Li−1. This follows from the fact
that

Ri = e−Φi−1Li−1 =
∞∑
k=0

1
k!

Φk
i−1 Li−1 . . . Li−1︸ ︷︷ ︸

k

.

Then

Qi · Li−1 = (RiMi−1Qi(0)M̃i−1R̃i) · Li−1

= 〈RiMi−1Qi(0) M̃i−1Mi−1︸ ︷︷ ︸
1

Li−1(0)M̃i−1R̃i〉1

= Mi(Qi(0) · Li−1(0))M̃i

and thus

(Qi · Li−1) ∧ Pi ∧ e∞ = Mi((Qi(0) · Li−1(0)) ∧ Pi(0) ∧ e∞)M̃i

and because (Qi(0) ·Li−1(0))∧Pi(0)∧ e∞ is a multiple of a pseudoscalar, we
have

(Qi · Li−1) ∧ Pi ∧ e∞ = (Qi(0) · Li−1(0)) ∧ Pi(0) ∧ e∞, (10)
i.e. again a constant multiple of a pseudoscalar. If we consider the initial
position to be the zero position as in Figure 2 and substitute it into (10) we
obtain

(Qi · Li−1) ∧ Pi ∧ e∞ = riI

for ri ∈ 〈0, 1〉 and a pseudoscalar I. �

If we denote the element ei∧e∞ by ei∞ then Lemma 4.1 directly implies
the following

Proposition 4.2. The Pfaff matrix A of the system (7) is of the form

A = (b|B),

where

b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

e1∞ ∧ P1 e2∞ ∧ P1

e1∞ ∧ P2 e2∞ ∧ P2

e1∞ ∧ Pn e2∞ ∧ Pn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1 0 0

(Q2 · L0) ∧ P2 ∧ e∞ r2

0

(Qn · L0) ∧ Pn ∧ e∞ . . . (Qn · Ln−2) ∧ Pn ∧ e∞ rn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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One can see that the matrix B in the form from Proposition 4.2 is
a lower triangle block matrix with nonzero elements on the diagonal (and
thus always invertible). The inverse of such matrix is easy to express. Thus
generally, the matrix A = (b|B) , where b = (bij), i = 1, . . . , n, j = 1, 2,
and B = (Bij), i, j = 1, . . . , n, are n × 2 and n × n dimensional matrices,
respectively, and their elements can be expressed as

bij = (Qi · ej∞) ∧ Pi ∧ e∞ = ej∞ ∧ Pi,
Bij = (Qi · Lj−1) ∧ Pi ∧ e∞.

(11)

Thus if we consider the control u = (u1, u2), u1 = ẋ, u2 = ẏ then the
control matrix G is in the form

G =
(

E
−B−1b

)
,

wher E is a 2 × 2 unit matrix, the system (5) can be written as

Q̇ = Jq̇ = JGu,

where

JG =
(

Q · e1∞ Q · e2∞︸ ︷︷ ︸
n×2

) − (
Q · Lj−1︸ ︷︷ ︸

n×n

)
B−1b︸ ︷︷ ︸
n×2

.

Moreover, once the model is reformulated in this sense, the velocity equations
of the wheel points change accordingly, e.g. the equation of the wheel point
Qn attached to the last link Pn will be of the form

Q̇n = Qn · (
�1 �2

)(
u1

u2

)
,

where

�1 = e1∞ −
n∑

i=1

Li−1

n∑
j=1

B−1
ij bj1

�2 = e2∞ −
n∑

i=1

Li−1

n∑
j=1

B−1
ij bj2

provided that Bij and bij are the elements of B and b, respectively, specified
by (11). This completes the CGA-based model control description.

5. Singular points

The singular positions, i.e. singular points in R
n+2 in generalized coordinates,

can be characterized as those positions that do not allow the snake-like mo-
tion without breaking the nonholonomic constraints. Note that the whole
mechanism can move linearly (see the zero initial position in Fig. 2) or ro-
tate around a given point without changing the Φi—coordinates. Yet these
motions are not considered as snake-like as they are not a consequence of the
mechanism construction but rather of the outer forces.

The singular point example is the following: a position is singular if all
wheel axles oi intersect in one point, see Fig. 3.



J. Hrdina et al. Adv. Appl. Clifford Algebras
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Q i+1

Q i+2

p i

p i+1
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Figure 3. Snake robot’s singular position

In CGA description, this condition is simply expressed as

o∗
i ∧ o∗

j ∧ o∗
k = 0 (12)

for any three indices i, j, k ∈ {1, ..., n}. To describe the singular position in
CGA completely, we add that for a wheel position Qi on the link Pi the wheel
axle is expressed as

o∗
i = (Qi ∧ e∞) · (Pi ∧ e∞).

6. Conclusions

We proposed a novel analytic description of a snake-like robot, see [11],
model by means of conformal geometric algebra. More precisely, the for-
mulae for forward kinematics (3), differential kinematics (4), nonholonomic
constrains (6) and singular positions (12) were translated. The CGA-based
solutions of robotic systems are actually developing topic, see [3], yet its
use to snake-like robots has not been studied. Currently, our simulations
are run in Maple, package Cliffordlib developed by R. Ablamowicz and B.
Fauser with certain optimization elements, see [5]. Let us note that the fi-
nal realization should be implemented by means of a system like Gaalop,
[4], to reduce the computational complexity, for an example with particu-
lar data and hardware solution see [6]. Furthermore in the CGA setting,
the mechanism modifications are quite straightforward, particularly the link
lengths and the wheel positions may be modified with minimal equation
change.
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Abstract. We demonstrate the theory on the 1-link trident snake and the
functionality in the CLUCalc software designed for the computations
in Clifford algebra. Local control of a general trident snake robot is
solved by means of conformal geometric algebra. It is shown that the
model modifications are much easier to handle in this setting. Within
this paper, we present an alternative model description only, while all its
kinematic properties remain. The equations of the direct and differential
kinematics, the Pfaff constraints, the inverse kinematics and the singular
postures are discussed and translated into the language of CGA.
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1. Introduction

Originally the general trident snake robot has been introduced in [8]. It is
a planar robot with a body in the shape of a triangle and with three legs
consisting of � links. Its precise description is given below. Then, its simplest
non-trivial version, corresponding to � = 1, has been mainly discussed, see
e.g. [9,10]. Within this paper, we focus on the general case of �-links. The
aim of this article is to solve the complete local control in a new geometric
form.

In terms of generalized coordinates, the non-holonomic forward kine-
matics equations can be understood as a Pfaff system and its solution as
a distribution in the configuration space. Rachevsky–Chow theorem implies
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that the appropriate non-holonomic system is locally controllable if the cor-
responding distribution is not integrable and the span of the Lie algebra gen-
erated by the controlling distribution has to be of the same dimension as the
configuration space. The spanned Lie algebra is then naturally endowed by a
filtration which shows the way to realize the motions by means of the vector
field brackets [13,15]. In the case � = 1, the system is locally controllable and
the filtration is (3, 6).

The classical approach composes the kinematic chain of homogeneous
matrices using the moving frame methods and Euler angles, [11]. Instead of
this, our aim is to use the notions of conformal geometric algebra (CGA),
where the Euclidean space E3 is included. In this geometric setting, we can
easily handle both linear objects and spheres of dimensions 2, 1 and 0, see
[1,2,14,16].

In particular, the 0-dimensional sphere, referred to as a point pair,
is used to derive the kinematic equations and for the control of the non-
holonomic snake like robotic mechanisms, consequently. More precisely, to
any link of a single point pair is assigned and the mechanism is transformed
by rotations and translations. We introduce the forward kinematic Eq. (6),
the differential kinematic Eq. (7), as well as the non-holonomic constraints
(8). We also derive an equation for singular positions of the robot (10).

We demonstrate the theory on the 1-link trident snake and the func-
tionality in the CLUCalc software designed for the computations in Clifford
algebra, particularly in conformal geometric algebra.

The advantage of CGA description lies in the simplicity of the model
modifications, i.e. variable link length and variable wheel position. Further-
more, we fully use the advantage of CGA in operations representation, pre-
cisely rotations and translations are represented by particular CGA elements.
Note that the solutions of local controllability, motion control model and
singular points analysis can be adopted from the classical models, see [8].
Within this paper, we present an alternative model description only, while
all its kinematic properties remain.

2. Conformal Geometric Algebra: CGA

The classical approach composes the kinematic chain of homogeneous matri-
ces using the moving frame methods and Euler angles, or, in a more advanced
way, the quaternion algebra H by conjugation x �→ q−1xq, where we view an
Euclidean point x as a quaternion

x = (x1, x2, x3) � x1i + x2j + x3k.

and q is a quaternion given by

q = cos θ
2 + u sin θ

2 ,

where u is an axis of rotation u1i + u2j + u3k. Instead of this, we use the
notions of conformal geometric algebra, i.e. the Clifford algebra Cl(4, 1) where
the Euclidean space E3 is included by a mapping x �→ x + 1

2x2e∞ + e0.
Consequently, we can easily handle both linear objects and spheres of any
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dimension. Namely, these objects are simply elements of the algebra and can
be transformed and intersected with ease. In addition, rotations, translation,
dilations and inversions all become rotations in our 5-dimensional space, see
[2,14,16].

More precisely, let R
4,1 denote a vector space R

5 equipped with the
scalar product of signature (4, 1) and let {e1, e2, e3, e+, e−} be an orthonormal
basis. The Clifford algebra Cl(4, 1) can be described as a free, associative and
distributive algebra such that the geometric product eiej

(i) coincides with the scalar product in the case i = j,
(ii) is equal to −ejei for i �= j. Hence the dimension of the algebra is 25 = 32.

Next to the geometric product, we define two additional products on
R

4,1 based on the geometric one for any u, v,∈ R
4,1, inner product and wedge

product, respectively:

u · v =
1
2
(uv + vu), u ∧ v =

1
2
(uv − vu)

and thus for the basis elements we have uv = u · v +u∧ v. Note that u · v is a
scalar (an algebra element of grade zero) while u∧v is a bivector (an algebra
element of grade two). In this sense, the definition of these product extends
to the whole algebra. Namely, given two basis blades Ek = ea1 ∧· · ·∧eak

and
El = ea1 ∧ · · · ∧ eal

of grades k and l, respectively, the wedge (outer) product
is defined as

Ek ∧ El := 〈EkEl〉k+l

while the inner product is defined as

Ek · El := 〈EkEl〉|k−l|,

where 〈 〉k is the grade projection into the grade k. These products can be
used effectively to compute an intersection of geometric objects and distances,
respectively.

The conformal geometric basis elements can be represented by the multi-
vectors from Cl(4, 1) either in the outer product null space (OPNS) repre-
sentation or in its dual, so called inner product null space (IPNS) repre-
sentation. To work with CGA effectively, one defines e0 = 1

2 (e− + e+) and
e∞ = (e− − e+). Consequently, the following properties hold. The geometric
objects which we use in this paper are then given as follows.

Object CGA element (OPNS)
Point Q = x + 1

2x2e∞ + e0
Point pair Q1, Q2 P = Q1 ∧ Q2

Line L L = Q1 ∧ Q2 ∧ e∞
Each geometric transformation (rotation, translation, dilation, inver-

sion) of a geometric object represented by an algebra element O is realized by
conjugation O �→ MOM̃, where M is an appropriate multi-vector and M̃ is
its reversion. For instance, the translation in the direction t = t1e1+t2e2+t3e3
is realized by conjugation by the multi-vector

T = 1 − 1
2 te∞,
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which can be written as e− 1
2 te∞ , and the rotation around the axis L by angle

φ is realized as conjugation by the multi-vector

R = cos φ
2 − L sin φ

2 .

Similarly to the case of a translation, the rotation can be also written as

e−1
2φL.

3. Control Theory of the Trident Snake Robot

The model of a general trident snake robot is illustrated in Fig. 1. It is a
planar robot which consists of a body in the shape of an equilateral triangle
with circumscribed circle of the unit radius and three branch legs. Each of
the legs consists further of � rigid links of constant unit length interconnected
by motorised joints and linked with the vertices of the triangular body by
motorised joints. Each link has a passive wheel at its centre which provide
an important snake-like property that the ground friction in the direction
perpendicular to the link is considerably higher than the friction of a simple
forward move. In particular, this prevents the slipping and sliding sideways.
We assume the wheels are placed in the link centres, but the case of a general
position on a link of an arbitrary length is also discussed.

S[x, y]

φ11

φ12

φ1l

φ21

φ22

φ2l

φ31

φ32

φ3l

P0
1

P0
2

P0
3

P1
1

P1
2

P1
3

θ

P�
2

P�
1

P�
3

Figure 1. Trident snake robot model
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To describe the actual position of a trident snake robot we need the set
of 3 + 3l generalized coordinates as shown in Fig. 1. According to [8], we call
g := (x, y, θ) ∈ SE(2) the configuration vector and

φ := (φ11, . . . , φ1�, φ21, . . . , φ2�, φ31, . . . , φ3�) ∈ (S1)3�

the shape vector, where Φij stands for the angle of the j-th link attached
to the i-th vertex. Note that we consider the same number of links attached
to each vertex but, generally, no restrictions on number of links or other
parameters are necessary. Then the generalized coordinates associated to our
system are

q = (g, φ) ∈ SE(2) × (S1)3� (1)

3.1. Euclidean Description

In this section, we rephrase the results of [8], where the kinematics of the
trident snake robot is derived classically using Euclidean geometry. First the
Euclidean position vector of link centres is expressed in terms of generalized
coordinates (joint angles) via so called moving frame algorithm and then 3�
nonholonomic constraints are assembled. This gives the following kinematic
equation:

A(φ)RT
φ ġ = B(φ)φ̇,

where the matrices occurring in this equation are defined by

A(φ) =

⎛
⎝

A1(φ)
A2(φ)
A3(φ)

⎞
⎠ ∈ R

3�×3, B =

⎛
⎝

B1 0 0
0 B2 0
0 0 B3

⎞
⎠ ∈ R

3�×3�,

Ai =

⎛
⎜⎜⎜⎜⎝

sin(φi1 + αi) − cos(φi1 + αi) −1 − cos φi1

sin(φi1 + φi2 + αi) − cos(φi1 + φi2 + αi) −1 − cos(φi1 + φi2) − cos(φi2)
.
..

.

..
.
..

sin(βi
j0 + αi) − cos(βi

j0 + αi) −1 − ∑l−1
k=0 cos βl

jk

⎞
⎟⎟⎟⎟⎠

,

Bi =

⎛
⎜⎜⎜⎝

1 0 · · · 0

cos βi
21 1 . . . 0

..

.
..
.

. . .
..
.

cos βi
l1 cos βi

l2 · · · 1

⎞
⎟⎟⎟⎠

and where α1 = − 2
3π, α2 = 0, α3 = 2

3π and βi
jk :=

∑j
h=k+1 φih and Rθ is

the rotation matrix by the angle θ in the xy-plane. The control inputs are
the angular velocities of the joints, i.e. u := φ̇ ∈ R

3�. In order to derive the
state equation, one defines an input transformation u = B(φ)−1A(φ)v, where
v is a (three dimensional) virtual input. Note that it is always possible since
B(φ) is regular for all φ. Then one obtains a control (state) equation q̇ = Gv,
where the control matrix is equal to

G =
(

Rθ

B(φ)−1A(φ)

)
. (2)
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3.2. Direct and Inverse Kinematics via CGA

Now we show how to describe the system exclusively in terms of the confor-
mal geometric algebra. We can view the robot as three ordinary (� + 1)-link
snakes joint by their tails such that the tail links has a specific configura-
tion. The CGA description of a simple snake robot motion can be found in
[1,7]. Following this idea we denote by Q0

k the centre S of the body, and by
Q1

k, . . . , Q�
k the successive joints of the k-th branch leg, k = 1, 2, 3. As a cen-

tral object that describes the state of the system we choose the set of point
pairs which represent individual leg links

P = (P 0
1 , . . . , P �

1 , P 0
2 , . . . , P �

2 , P 0
3 , . . . , P �

3 ). (3)

These point pairs are computed in terms of the wedge product in CGA as
P i

k := Qi
k ∧ Qi+1

k . On the other hand, Qi
k is easily extracted from the point

pair by a projection

−√
P i

k · P i
k + P i

k

−e∞ · P i
k

.

Consequently, we may freely switch between point pairs and points defining
their ends. Of course, not all triples of pair points define a state of the robot.
In terms of the CGA inner product, the consistency relations read Q1

j · Q1
k =

− 3
2 for each j �= k, and Qi

k ·Qi+1
k = − 1

2 for each i = 0, . . . , �. These equations
read that the tail points have the constant distance

√
3 and the length of

links is 1, respectively. Implicitly, it also says that Q0
k are equal.

Having such an admissible state (3), we can assess the kinematic equa-
tions. At first, let us look at the zero position q = 0. Since Qi

2(0) = [i, 0], the
elements in CGA corresponding to P i

2 are established as

P i
2(0) =

(
ie1 + 1

2 i2e∞ + e0
) ∧ (

(i + 1)e1 + 1
2 (i + 1)2e∞ + e0

)
(4)

= 1
2 i(i + 1)e1∞ − e10 − 1

2 (2i + 1)e∞0,

where we have used a shortened notation e1∞ = e1 ∧ e∞ etc. The algebra
elements P i

1,3(0) which correspond to the zero position of the links of the
first and the third branch leg are obtained from the corresponding links of
the first branch by rotation by angle 2

3π and − 2
3π respectively, i.e.

P i
1,3(0) = (12 ±

√
3
2 e12)P i

2(0)(12 ∓
√
3
2 e12). (5)

The particular point pairs in a general position q as in (1) are obtained
by a translation to [x, y] composed by a trident body rotation θ and a series of
rotations of the corresponding leg links by angles φki. In CGA, it is expressed
for each k = 1, 2, 3 and i = 0, . . . , � as a conjugation

P i
k(q) = M i

k(q)P i
k(0)M̃ i

k(q), (6)

M i
k(q) = Rφki

· · · Rφk1RθTx,y,

where the translation Tx,y and the rotations Rφki
are given by

Tx,y = 1 − 1
2 (xe1 + ye2)e∞,

Rφki
= cos φki

2 − Lki sin φki

2 ,
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and where the axes of rotations are given by

Lki = (1 − 1
2Qi

ke∞)e12(1 + 1
2Qi

ke∞).

Note that we have used the notation φk0 = θ for each k = 1, 2, 3 and note that
the procedure is recursive. Namely, given a point pair P i

k, we compute the
projection Qi+1

k first, then we compute L(i+1)k. From this axis we compute
Rφk(i+1) and then by (6) we get P i+1

k .
The CGA approach is convenient also for solving problems of the inverse

kinematics. In CGA, it can be done in a geometrically very intuitive way due
to its easy handling of intersections of geometric objects like spheres, circles,
planes. A basic problem is to find the generalized coordinates in terms of the
robot position. In our case, having an admissible state (3), we first compute
the centre S = Q0

k by a projection of a point pair P 0
k , and for each i = 1, 2, 3

we form lines through two consecutive links P i
k and P i+1

k . Then we compute
the coordinates via the inner product as

x = S · e1,

y = S · e2,

cos θ = (P 0
2 ∧ e∞) · e1∞0,

cos φki = (P i−1
k ∧ e∞) · (P i

k ∧ e∞).

3.3. Differential Kinematics and Singular Points via CGA

Let us now determine the velocity from the direct kinematics, which is
obtained by differentiating (6). It is proved in [16] and generalized in [6]
that the total differential of a general kinematic chain

O = R1 . . . RnO(0)R̃n . . . R̃1

containing any geometric object O and rotations R1, . . . Rn is equal to

dO =
n∑

j=1

(O · Lj)dqj ,

where O · Lj is the inner product of the geometric object (in the actual
position) and the axis of the rotation Lj . This formula follows basically from
the fact that each rotation can be expressed as an exponential. But the same
is true for translations since we may view each translation as a degenerate
rotation, with an ‘axis’ containing e∞. Hence the formula above holds also if
we allow Ri to be a generalized rotation, i.e. a rotation or a translation.

In our case, the equation of the direct kinematics is given by (6). A nice
consequence of the geometric formulation is that the same equation holds for
an arbitrary chosen object Q attached to P i

k, i.e. Q = M i
k(q)Q(0)M̃ i

k(q). The
differentiation of this kinematic chain then yields the following differential
formula for any Q on P i

k:

Q̇ = (Q · e1∞)ẋ + (Q · e2∞)ẏ +
i∑

j=0

(Q · Lkj)φ̇kj . (7)

This equation can be seen as an analogue of the classical equation of differen-
tial kinematics. Namely, we have a system in the usual form Q̇ = Jq̇ but the
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entries of the ‘Jacobi’ matrix J are the inner products of a point and an axis
and thus they belong to the algebra (and not to a field of functions). If Q is
the position of a wheel, then, as the wheels do not slip to the side direction,
its velocity is parallel to P i

k, which in CGA reads

Q̇ ∧ P i
k ∧ e∞ = 0. (8)

Now, if we substitute (7) in (8), we obtain a system of linear ODEs,
which can be written in a classical form Aq̇ = 0, where the Pfaff matrix A is
given by

Aij = Jij ∧ P i
k ∧ e∞, (9)

provided that if
• k = 1 then j = 1, . . . , l,
• k = 2 then j = l + 1, . . . , 2l,
• k = 3 then j = 2l + 1, . . . , 3l.

In our particular case, the wheels are located at the link centres Q = P i
ke∞P̃ i

k,
for each i = 1, . . . , �−1, and at the head point of each branch Q = Q�

k. Hence
we get a system of 3� first order differential equations with 3� + 3 variables.
It is easy to see that each Aij is a multiple of (e3)∗. Thus the Pfaff equation
Aq̇ = 0 can be solved for A considered as a matrix over the field of functions.
Then, in a point, one obtains q̇ = Gu for a suitable control matrix G and
an input u. Substituting this into (7) one obtains a system Q̇ = JGu. Let
us also remark that the particular position of wheels does not play any role
formally. The Eqs. (6), (7), (8) and (9) are valid for any position and also for
an arbitrary lengths of leg links.

At the end of this section, let us discuss the positions of the robot which
are critical for the control. Such critical (singular) positions occur when the
velocity constraints degenerate. It is e.g. in the case when all wheel axles
are either parallel or intersect in one point, so called instantaneous center
of rotation (ICR). Obviously, the former singular positions coincide with the
latter if the centre of rotation is in infinity. Thus, in CGA, we have one
equation describing such singular positions. Denoting by oi

k the i-th wheel
axle on the k-th branch it reads ∧

oi∗
k = 0, (10)

where oi∗
k denotes the IPNS representation of oi

k. We can equivalently express
this equation in terms of the geometric product as 〈o11 . . . ol

3〉1 = 0. If we
denote by Q the position of a wheel attached to the link P i

k , then its axle oi
k

is computed by the formula

oi
k = (Q ∧ e∞) · (P i

k ∧ e∞). (11)

4. 1-Link Trident Snake Robot

Here we demonstrate the theory on the simplest non-trivial case, i.e. the case
� = 1. We also assume that the leg links have the unit length and that the
wheels are attached at the ends of these links. For more details see [12].
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4.1. Kinematics

For simplicity we omit the upper index denoting the first link from now on.
By (4) and (5), the zero position of point pairs associated to the leg links is
given by

P2(0) = e1∞ − e10 − 3
2e∞0,

P1,3(0) = − 1
2e1∞ + 1

2e10 ±
√
3
2 e2∞ ∓

√
3
2 e20 − 3

2e∞0.

By (6), the general position of a point pair Pk is given by

Pk = Rφk1RθTx,yPk(0)T̃x,yR̃θR̃φk1 .

The same kinematic chain holds for any point Q on Pk. Thus, for the leg
ends Q = (Q1, Q2, Q3)T , we get a differential equation Q̇ = Jq̇, where

J =

⎛
⎝

Q1 · e1∞ Q1 · e2∞ Q1 · L0 Q1 · L1 0 0
Q2 · e1∞ Q2 · e2∞ Q2 · L0 0 Q2 · L2 0
Q3 · e1∞ Q3 · e2∞ Q3 · L0 0 0 Q3 · L3

⎞
⎠ .

The nonholonomic constraints (8) read Q̇i ∧ Pi ∧ e∞ = 0. The fact that any
rotation Ri commutes with its axis of rotation Li imply that (Qi ·Li)∧Pi∧e∞
is constant and equal to the pseudoscalar for each i = 1, 2, 3. Hence the Pfaff
matrix (9) has the block form A = (Qi · �j ∧ Pi ∧ e∞|1), where �j denotes
e1∞, e2∞ and L0, respectively, and the control matrix G is a 6 × 3 matrix

G =
(

1
−Qi · �j ∧ Pi ∧ e∞

)
.

Evaluating the CGA products we obtain that the distribution G is spanned
by vector fields

g1 = ∂x + sin(θ + φ1)∂φ1 + sin
(
θ + φ2 + 2π

3

)
∂φ2 + sin

(
θ + φ3 + 4π

3

)
∂φ3 ,

g2 = ∂y − cos(θ + φ1)∂φ1 − cos
(
θ + φ2 + 2π

3

)
∂φ2 − cos

(
θ + φ3 + 4π

3

)
∂φ3 ,

g3 = ∂θ − (1 + cos φ1)∂φ1 − (1 + cos φ2)∂φ2 − (1 + cos φ3)∂φ3 .

It is easy to check that it corresponds to the general result (2) obtained by
the Euclidean geometry. By a direct computation, one can also check that
the equation (10) describing the singular points gives exactly the equation in
[8, Remark 1].

By [8], these vector fields define a bracket generating distribution with
growth vector (3, 6) in the regular points. It means that in each regular point
the vectors g1, g2, g3 together with their Lie brackets span the whole tangent
space. Consequently, the system is controllable by Chow–Rashevsky theorem.

4.2. A Modification

Now we demonstrate the efficiency of our geometric approach. Let us allow
the trident robot to have general lengths l1, l2, l3 of legs. The only thing that
differ are formulas (4) and (5) for the zero position of the robot. Now we have
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P2(0) = 1
2 l2(l2 + 1)e1∞ − l2e10 + 1

2 l2(l2 + 2)e0∞,

P1,3(0) = − 1
4 l1,3(l1,3 + 1)e1∞ ±

√
3
4 l1,3(l1,3 + 1)e2∞,

+ 1
2 l1,3e10 ∓

√
3
2 l1,3e20 + 1

2 l1,3(l1,3 + 2)e0∞.

All other formulas are universal and thus remain unchanged. The control
fields of the modified trident snake robot are then

g1 = ∂x+ 1
l1

sin(θ+φ1)∂φ1 + 1
l2

sin
(
θ+φ2+ 2π

3

)
∂φ2 + 1

l3
sin

(
θ + φ3 + 4π

3

)
∂φ3 ,

g2 = ∂y− 1
l1

cos(θ+φ1)∂φ1 − 1
l2

cos
(
θ+φ2+ 2π

3

)
∂φ2 − 1

l3
cos

(
θ + φ3 + 4π

3

)
∂φ3 ,

g3 = ∂θ − 1
l1

(l1 + cos φ1)∂φ1 − 1
l2

(l2 + cos φ2)∂φ2 − 1
l3

(l3 + cos φ3)∂φ3

and the singular position corresponds to the angles that satisfy

(l1 + cos φ1) cos(φ3 − φ2 + π
6 ) + (l2 + cos φ2) cos(φ1 − φ3 + π

6 ),

+(l3 + cos φ3) cos(φ1 − φ2 + π
6 ) = 0.

4.3. CLUCalc Implementation

The proposed trident snake control was tested in CLUCalc software [2,14],
which is designed exactly for calculations in arbitrary predefined geometric
algebra. The following code piece contains the definition of the initial position:

// INITIAL POSITION\\
S0=VecN3(0,0,0);\\
LB0=VecN3(0,0,1);\\
R=RotorN3(0,0,1,2*Pi/3);\\
// Joints\\
pb10=VecN3(1,0,0);\\
pb20=R*pb10*\textasciitilde R;\\
pb30=R*pb20*\textasciitilde R;\\
// Axes\\
L10=TranslatorN3(pb10)*LB0*TranslatorN3(-pb10);\\
L20=R*L10*\textasciitilde R;\\
L30=R*L20*\textasciitilde R;\\
// Ends of legs\\
p10=VecN3(2,0,0);\\
p20=R*p10*\textasciitilde R;\\
p30=R*p20*\textasciitilde R;\\ \\

The initial position is then recalculated with respect to the controlling para-
meters change to get the current position. The code we demonstrate corre-
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Figure 2. g1 Direction (pictured by CLUCalc)

Figure 3. g2 Direction (pictured by CLUCalc)

Figure 4. g3 Direction (pictured by CLUCalc)

sponds to the body and the first leg of the trident snake robot. The other
legs are computed in the same way.

T=TranslatorN3(x,y,0);\\

// BODY\\

// Center\\

S=T*S0*\textasciitilde T;\\

// Axis \\

LB=T*LB0*\textasciitilde T;\\

// Motor\\

MB=TranslatorN3(LB)*RotorN3(0,0,1,d)*\textasciitilde TranslatorN3(LB); \\

\\

// FIRST LEG \\

// Joint\\

:Blue; \\

:pb1=MB*T*pb10*\textasciitilde T*\textasciitilde MB;\\

// Axis\\

L1=MB*T*L10*\textasciitilde T*\textasciitilde MB;\\

// Motor\\

M1=TranslatorN3(L1)*RotorN3(0,0,1,a)*TranslatorN3(-L1); \\

// End\\

:Black;\\

:p1=M1*MB*T*p10*\textasciitilde T*\textasciitilde MB*\textasciitilde M1; \\

Figures 2, 3, 4 demonstrate the evolution from 0 in the direction of g1, g2
and g3 vector fields, respectively.
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Note that the inner triple of points defines the root vertices and the
outer three points show the wheel positions. The cross denotes the origin.

5. Conclusions

The snake-like robot modelling by means of CGA is a quite promising topic.
This approach leads to a list of nice formulas for forward and inverse kinemat-
ics, differential kinematics, nonholonomic constrains and singular positions.
It brings not only a geometric point of view to the topic that is important for
the complete problem understanding, but it also allows the calculations to be
done faster if a system like Gaalop is used [2]. Yet, our current simulations are
run in Maple, package Cliffordlib developed by Ablamowicz and Fauser which
contains certain optimization elements, see [3]. The computational complex-
ity analysis for a point pair inverse kinematics optimized algorithms w.r.t.
particular hardware solution can be found in [4].

To demonstrate the contribution of CGA calculus let us restrict from
CGA to quaternions. Classically, rotations in 3D-space are realized by mul-
tiplication of a 3 × 3 matrix. The composition of rotations is then rota-
tion matrices multiplication, i.e such composition is given by 27 multiplica-
tions and 18 summations. If you represent rotations by quaternions, for the
same composition you need just 16 multiplications and 15 summations. This
reduces the computational time remarkably.
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