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HABILITATION THESIS

AUTOR

AUTHOR
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Basic notation and definitions

(1) N is the set of natural numbers.

(2) R is the set of real numbers.

(3) R+ is the set of nonnegative real numbers.

(4) For any x ∈ R, we put

[x]− =
1

2
(|x| − x), [x]+ =

1

2
(|x|+ x).

(5) ess inf{f(t) : t ≥ a} = sup {b ∈ R ∪ {−∞} : f(t) > b for a.e. t ≥ a}

(6) C([a, b];R) is the Banach space of continuous functions u : [a, b]→ R equipped

with the norm

||u||C = max {|u(t)| : t ∈ [a, b]}.

(7) AC([a, b];R) is the set of absolutely continuous functions u : [a, b]→ R.

(8) AC ′loc(I) is the set of functions u : I → R which are absolutely continuous

with their first derivative on every compact subinterval of I.

(9) L([a, b];R) is the Banach space of Lebesgue integrable functions f : [a, b]→ R
equipped with the norm

||f ||L =

b∫
a

|f(s)| ds.

(10) Lloc(I) is the set of functions f : I → R which are Lebesgue integrable on

every compact subinterval of I.

(11) L([a, b];R+) =
{
f ∈ L([a, b];R) : f(t) ≥ 0 for a. e. t ∈ [a, b]

}
.

(12) Lab is the set of linear bounded operators ` : C([a, b];R)→ L([a, b];R).

(13) Fab is the set of linear bounded functionals h : C([a, b];R)→ R.

(14) K([a, b]× A;B), where A ⊆ R and B ⊆ R, is the set of functions

f : [a, b] × A → B satisfying the Carathéodory conditions, i. e.,

(a) f(·, x) : [a, b]→ B is a measurable function for all x ∈ A,

(b) f(t, ·) : A→ B is a continuous function for almost all t ∈ [a, b],

(c) for every r > 0 there exists qr ∈ L([a, b];R+) such that

|f(t, x)| ≤ qr(t) for a. e. t ∈ [a, b] and all x ∈ A, |x| ≤ r.
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Definition 0.1. An operator ` ∈ Lab is said to be positive if the relation

`(u)(t) ≥ 0 for a. e. t ∈ [a, b]

holds for every function u ∈ C([a, b];R) satisfying the condition

u(t) ≥ 0 for t ∈ [a, b].

The set of positive operators we denote by Pab.
We say that an operator ` ∈ Lab is negative if −` ∈ Pab.

Definition 0.2. A functional h ∈ Fab is said to be positive if the relation

h(u) ≥ 0

holds for every function u ∈ C([a, b];R) satisfying the condition

u(t) ≥ 0 for t ∈ [a, b].

The set of positive functionals we denote PFab.

Definition 0.3. An operator K : C([a, b];R)→ L([a, b];R) is said to be an a–Volterra

operator if for every t0 ∈ ]a, b] and v1, v2 ∈ C([a, b];R) satisfying

v1(t) = v2(t) for t ∈ [a, t0],

we have

K(v1)(t) = K(v2)(t) for a. e. t ∈ [a, t0].
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1 Introduction

The habilitation thesis is based on the author’s results obtained in the years 2003–

2015 and published in the papers [27–29, 39–45]. Three main topics are discussed:

asymptotic theory of delay differential equations, boundary value problems for func-

tional differential equations, and the singular Dirichlet problem.

The text consists of introduction, where a brief review of the discussed topics is

given, and three chapters, where the author’s results are presented.

Asymptotic properties

Second order nonautonomous ordinary differential equations (ODE) and the asymp-

totic behaviour of their solutions attracted attention in the early 20th century in con-

nection with the astrophysical investigations by R. Emden, where the equation of the

type

u′′ ± tσun = 0

appeared. Detailed qualitative investigation of that equation, which subsequently be-

came known as the Emden-Fowler equation, was realized by R. Fowler. The interest in

the study of the asymptotic properties of second order nonlinear equations essentialy

enhanced after the appearance of the well-known monograph [2] by R. Bellman, where

all main results are stated dealing with the Emden-Fowler equations. The current state

of this theory is presented in the monograph [15].

On the other hand, at the beginning of the 20th century the interest in studying so-

called differential equations with delay arguments (DDE) grew, especially in connection

with their extensive applications in mechanics, physics, biology, medicine, and economy.

The main reason is that many mathematical models cannot be really described by

ordinary differential equations. Indeed, the evolution of the process depends not only

on the current value of an unknown function but also on its past or future.

In particular, we mention two typical branches, where the DDEs are widely used.

DDE models naturally appear in the control processes. Almost every system including

a feedback control involves time delays. This happens because some (finite) time is

required to ”transport” the information and then react to it (see, e.g., model of gantry

crane in Section 2.1). Aftereffects in biology has an important influence on biological

systems. These are usually related to such long processes as birth, growth, and death.

Therefore, the evolution of these processes depends in an essential way on the whole

previous history, and can be modelled by DDEs succesfully (see for example the models

of population dynamics in Section 2.2).

The bases of the qualitative theory of the equations with delayed arguments and

so-called integro-differential equations were put in the works of A. Myshkis and R.

Bellman (see, e.g., [2, 22]) in the second half of the 20th century.

Boundary value problem for functional differential equations

The foundation of the theory of boundary value problems (BVP) for functional dif-

ferential equations (FDE) was laid in 70’s of the 20th century (see, e.g., [1,11,22,48]).

This theory has been intensively developed in the last 50 years. During this period,

the particular types of FDEs were studied, e.g., equations with delay arguments and

1



equations with Volterra’s right-hand sides. Some special types of boundary conditions

were also considered, e.g., two-point or periodic type conditions (see [1, 11, 20]). How-

ever, a quite wide class of BVPs for FDEs was not sufficiently investigated till now.

The reasons are obvious: the right-hand side of FDE contains operators, which are in

general nonlocal, and therefore, the investigation of FDEs is more complicated than the

study of ordinary differential equations (ODE). Other difficulties arise, when boundary

conditions are also nonlocal. Such kind of problems can be represented by the following

BVP

u′(t) =

b∫
a

K(t, s)u(s) ds+ q(t); u(a) =

b∫
a

σ(s)u(s) ds,

where K : [a, b]× [a, b]→ R and q, σ : [a, b]→ R are suitable functions.

The analysis of simple FDEs shows that unlike ODEs, a theorem on differential in-

equalities is not valid, in general. It seems that the mentioned ”pathological” property

is the main reason why the most fruitful technique for ODEs cannot be used for the

investigation of FDEs.

Singular Dirichlet problem

Boundary value problems for singular second order ordinary differential equations

frequently arise in applications. It is sufficient to mention, e.g., the Bessel equation or

the hypergeometric equation. Nowadays, there is a quite complete theory of singular

boundary value problems for ordinary differential equations (see, e.g., [4]). In this

theory, it is usually assumed that the right-hand side of the equation is integrable with

a “linear weight”. However, many interesting problems do not satisfy this assumption

(for example, the Bessel equation). It is therefore desirable to extend the theory to

cover such cases.

The first step in this effort, of course, concerns the linear part of the theory, which

includes the Fredholm theory, well-posedness, and eigenvalue problems. These topics

are also studied in the given order in the case of nonsingular problems. For example,

the treatment of the eigenvalue problem in the regular case is based on the Fredholm’s

alternative and the continuous dependence on parameters.

In Section 5, we present our results concerning the Fredholm theory and well-

posedness of the singular Dirichlet problem. These results could be useful, in particular,

for the study of eigenvalue problems and nonlinear singular problems, which are the

topics of our further research.
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2 Motivation

Functional differential equations, boundary value problems for FDEs as well as

ordinary differential equations with singularities arise in many applications in biological

models, engineering processes, mechanics, technical problems, medicines, chemistry,

economy, etc. (see, e.g., [7, 22, 49]). We introduce, for instance, the following three

models as a motivation for the study of qualitative properties of ODEs and FDEs.

2.1 Model of a gantry crane

Gantry cranes are used for transportation of objects within factories, railyards,

shipyards, ports, etc. We show a simple one-dimensional model (see Figures 2.1 and 2.2)

which was introduced in [7]. In this system, almost all controlling motions are done

automatically with some anti-sway control technique. Gantry cranes can transport

heavy objects, which weight several tons. Moreover, cable length can be over ten

meters. So it is necessary for the crane motion to be smooth, otherwise a subject may

start sway and the operator can lose control of the payload. We assume that the crane

Figure 2.1: Schema of gantry cranes

rides on the frictionless rails, the payload rotates around a frictionless pivot P and the

cable is nonelastic. By using the second Newton’s law, one can derive from Figure 2.2

the following equations, which describe the motions of the crane and payload

Mu′′ +m(u′′ + lθ′′) = F,

m(u′′ + lθ′′)l cos θ +mgl sin θ = 0.
(2.1)

Here, M and m are masses of the trolley and payload, F denotes the force applied to

the motor of the trolley and θ is the angle of deviation. By elimination of the function

u in (2.1) we obtain

θ′′ + tg θ +
F (s)

(M +m)g
= 0, (2.2)

3



Figure 2.2: Pendulum model for container crane

where the prime denotes the derivative with respect to the dimensionless time s = ωt

and ω is the payload frequency introduced by ω =
√

(M+m)g
Ml

. By using the so-called

Pyrygas-type control F (s)
(M+m)g

= k(θ(s − T ) − θ(s)), where k is a real parameter and

T > 0 is a constant delay (see [47]), we get from (2.2)

θ′′(s) + tg θ(s) + k(θ(s− T )− θ(s)) = 0. (2.3)

For small value of θ, the equation (2.3) can be linearized and thus, we arrived at

the linear second order differential equation with a constant delay

θ′′(s) + (k − 1)θ(s) + kθ(s− T ) = 0.

In Chapter 3, we investigate oscillations of a two-term linear delay differential equation

with a non-constant coefficient and a non-constant delay.

2.2 Population dynamics

Functional differential equations appear in mathematical models of many biological

processes because, for example, population dynamic is related to long processes as

birth, growth, and death or food supply, etc. It is the reason why the evolution of

population systems depends on the previous history and can be modelled by FDEs

successfully.

We start with a basic population model of single species without ”delay”. It is

assumed that the per-capita growth rate F depends on the size of the population, i.e.,

N ′ = NF (N), (2.4)

where N(t) denotes the size (density) of the population at the time t. One of the first

and the most known example of the function F is

F (N) = r

(
1− N

K

)
, (2.5)
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where the real constant r > 0 is a specific coefficient of the growth and K > 0 is a

measure of the environment carrying capacity. The model (2.4) with the function F

defined by (2.5) was introduced by Verhulst in 1838 and is commonly known as the

logistic equation.

In the above-mentioned model we assume that the growth rate F at time t depends

on the population size (density) N at the same time t. But there are models of pop-

ulation dynamics, where changes in the population size (density) do not correspond

to the growth rate instantly. Consequently, using DDEs is much more suitable than

using ODEs in these cases. Models with a ”time delay” are, for example, those which

incorporate gestation and maturation of populations, differences in resource consump-

tion with respect to the age structure, dependence on a food supply, migration and

diffusion of populations, etc.

There are two basic concepts how a time delay is represented in biological models.

The first one lies in assuming that the growth rate is a function of the population size

(density) N(τ(t)) at previous time τ(t) ≤ t. These models can be introduced as follows

N ′(t) = R(N(τ(t)))−D(N(t)). (2.6)

Here, the function R denotes the birth rate and D denotes the death rate of population

size. For easier investigation of properties of population models, a so-called ”constant

delay” is usually used. Consequently, if we put τ(t) := t − T , where T > 0 is a real

constant, then we obtain from (2.6) the equation

N ′(t) = R(N(t− T ))−D(N(t)),

where T is the time that members of population need to mature (i.e., to have an ability

of reproduction) and thus, N(t−T ) is the number of adult members. Now one can see

that the function of birth rate depends only on the size (density) of adult population.

If the death rate of population is zero and the growth rate is given as in formula (2.5),

we get the logistic equation with a constant delay

N ′(t) = N(t)r

(
1− N(t− T )

K

)
.

The second concept in biological models lies in assuming that a time delay is dis-

tributed over the time. Let p be a nonnegative function such that
∫ +∞
0

p(s)ds = 1 and

p(s)∆s is an approximation of the probability that the delay τ(s) is between s and

s+ ∆s. Then we obtain the integro-differential equation

N ′(t) = N(t)

+∞∫
0

F (N(τ(s)))p(s)ds.

Finally, we mention a particular population model, which is commonly known as

the ”Harvesting of a single population”. This model is widely studied not only to

investigate biological systems with external influence on population but it also has
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applications in ecological and economical processes. It is important to develop such

strategy for harvesting any renewable resources (fish, animals, plants) in order to max-

imize the yield, but the species do not die out. We consider the population model (2.6)

with some harvesting function H, namely, the equation

N ′(t) = R(N(τ(t)))−D(N(t))−H(t)N(t), (2.7)

where function H describes the harvesting rate per-capita and include a harvesting

strategy, costs, effort, etc. Together with the equation (2.7) we consider the boundary

condition

N(a) = N(b), (2.8)

which can be interpreted as a periodic behaviour of the population size (density) in the

time period [a, b] under a ”harvesting pressure”. The task is to regulate the harvesting

in order to guarantee that the population does not die, respectively, that the population

size at the time t = b returns to the beginning value N(a). It means to find the

conditions on the function H, which guarantee that the boundary value problem (2.7),

(2.8) is solvable. This BVP as well as the above-mentioned DDEs are particular cases

of boundary value problems and functional differential equations studied in Chapter 4.

2.3 Model of moving of dislocations in crystals

Most of the technologically important materials are crystals, where atoms are ar-

ranged in a periodic lattice of a defined symmetry (cubic, hexagonal, orthorhombic,

etc.). Due to the finite rate of solidification, the atoms do not have sufficient time to

find their perfect lattice positions which results in the formation of defects. There is

a wide variety of such defects but the most important ones from the point of view of

mechanical properties are line defects, the so-called dislocations. Each dislocation is

characterized by so-called Burgers vector ~b and the local orientation of the dislocation

specified by the tangential vector ~τ . The Burgers vector is fixed for the whole disloca-

tion but the tangential vector changes from place to place. We distinguish two basic

types of dislocation segments: edge segment (~b ⊥ ~τ), screw segment (~b ‖ ~τ). If none

of these conditions is satisfied, we characterize the segment as mixed. The motion of

dislocations is thermally activated – they move due to the applied load and this motion

is aided by thermal fluctuations. The higher the applied load, the lower the thermal

energy is needed for its motion and vice versa. We are interested in screw dislocations

(see Figure 2.3 and Figure 2.4a).

The task is to calculate the activated shape of the dislocation which minimizes the

activation enthalpy that has to be supplied by the thermal fluctuations. The dislocation

first moves by the applied stress alone as a straight line from x = 0 to x = x0 (see

Figure 2.4b), where the latter will be determined later. From this straight shape, the

dislocation vibrates due to finite thermal energy until it reaches the activated shape

x = x(z) for which the dislocation needs no more energy to move through the lattice

(see Figure 2.4c). The task is to calculate this shape, which corresponds to a stationary

state of the activation enthalpy.
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The activated shape of the dislocation can be mathematically described as a non-

constant solution of the boundary value problem

x′′(z) =
E ′p(x(z))

Ep(x(z))

(
1 + x′(z)2

)
− σb

Ep(x(z))

(
1 + x′(z)2

) 3
2 , z ∈ ]−∞,+∞[ , (2.9)

lim
z→−∞

x(z) = x0, lim
z→+∞

x(z) = x0. (2.10)

Figure 2.3: Screw dislocation Figure 2.4: Dislocation process

Here, σ is the shear stress, b is the magnitude of the Burgers vector, and Ep is the

so-called Peierls barrier representing a lattice friction that acts against moving of the

dislocation (see Figure 2.5).

Figure 2.5: Peierls barrier, E ′p(y0) = σb.

One of possibilities how to find a solution of boundary value problem (2.9), (2.10)

is to transform it into a suitable problem given on a finite interval and to use available

7



software packages. Introducing the transformation z = t
1−t2 , one can show that the

boundary value problem (2.9), (2.10) is equivalent to the problem

u′′(t) =
1

(1− t)(1 + t)

2t(t2 + 3)

1 + t2
u′(t)

+
(1 + t2)2

(1− t)4(1 + t)4
f
(
u(t),

(1− t2)2
1 + t2

u′(t)
)
, t ∈ ]− 1, 1[ ,

(2.11)

lim
t→−1+

u(t) = x0, lim
t→1−

u(t) = x0,

where f(v1, v2) :=
1+v22
Ep(v1)

(
E ′p(v1)−σb

√
1 + v22

)
. Observe that unlike (2.9), the equation

(2.11) contains time singularities for both t = −1 and t = 1. A standard method

how to investigate nonlinear problems is to compare them to suitable linear problems.

Precisely, a linear problem with singularities of the same kind as in (2.11) is studied in

Chapter 5.
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3 Asymptotic properties

3.1 Introduction

In this chapter, we present our contribution in the oscillatory theory of ordinary

and functional differential equations obtained in [43–45]. First of all, in Section 3.2, we

present Hille-Nehari’s type results for DDEs. This type of oscillation criteria concerns

the case when the delay is ”small enough”. Hence, it is natural to expect that the

properties of solutions of DDE are close to the properties of solutions of ODE. However,

if the delay is ”large enough”, then qualitative properties of solutions of DDE are not

necessarily close to the properties of solutions ODE. Oscillation criteria, specific for

DDEs, were suggested for the first time by A. Myshkis (see [37]). In Section 3.3, we

present our contribution along this line. Finally, in Section 3.4, we deal with so-called

half-linear equations. It is worth mentioning that the criteria stated there generalize

results presented in the book [6] by O. Došlý and P. Řehák.

3.2 Hille-Nehari’s type criteria for DDE

On the half-line [0,+∞[ , we consider the second-order linear delay differential equa-

tion

u′′(t) + p(t)u(τ(t)) = 0, (3.1)

where p : R+ → R+ is a locally Lebesgue integrable function and τ : R+ → R+ is

a measurable function such that

τ(t) ≤ t for a. e. t ≥ 0 (3.2)

and

lim
t→+∞

ess inf{τ(s) : s ≥ t} = +∞. (3.3)

Solutions of equation (3.1) can be defined in various ways. Since we are interested in

properties of solutions in a neighbourhood of +∞, we introduce the following commonly

used definition.

Definition 3.1. Let t0 ∈ R+ and a0 = ess inf{τ(t) : t ≥ t0}. A continuous function

u : [a0,+∞[→ R is said to be a solution of equation (3.1) on the interval [t0,+∞[ if

it is absolutely continuous together with its first derivative on every compact interval

contained in [t0,+∞[ and satisfies equality (3.1) almost everywhere in [t0,+∞[ .

Although equation (3.1) is linear, the presence of the argument deviation τ in

this equation causes many peculiar properties, which do not appear in the case of

ordinary differential equations. In particular, it may happen that a nontrivial solution

of equation (3.1) is identically equal to zero in some neighbourhood of +∞. Indeed,

let t∗ ∈ ]3π/2, 2π[ be such that

sin t∗

(t∗ − 3π)2
= −k, where k = max

{
− sin t

(t− 3π)2
: t ∈ [3π/2, 2π]

}
,
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and

p(t) =

{
1 for t ∈ [0, t∗[∪ ]3π,+∞[ ,

2k for t ∈ [t∗, 3π],
τ(t) =

{
t for t ∈ [0, t∗[∪ ]3π,+∞[ ,

π/2 for t ∈ [t∗, 3π].

Then

u(t) =


− sin t for t ∈ [0, t∗[ ,

k(t− 3π)2 for t ∈ [t∗, 3π[ ,

0 for t ∈ [3π,+∞[

is a nontrivial solution of equation (3.1) on R+, which is equal to zero on the interval

[3π,+∞[ . To exclude from our consideration such kind of solutions, we introduce the

following definition.

Definition 3.2. A solution u of equation (3.1) on the interval [t0,+∞[ is called proper

if the inequality sup
{
|u(s)| : s ≥ t

}
> 0 holds for t ≥ t0.

Now we are in a position to introduce definitions of oscillatory and non-oscillatory

solutions of equation (3.1).

Definition 3.3. A proper solution u of equation (3.1) is said to be oscillatory if it

has a sequence of zeros tending to infinity, and non-oscillatory otherwise.

3.2.1 Main results

Oscillation criteria presented in this section guarantee that every proper solution

of equation (3.1) is oscillatory. The main results are proved by using lemmas on

a priori estimates of non-oscillatory solutions (see Section 3.2.2). To do this, having

a proper non-oscillatory solution u of equation (3.1), we need to find a suitable a priori

lower bound of the quantity u(τ(t))/u(t), which is equal to 1 in the case of ordinary

differential equations. It is not difficult to verify that

τ(t)

t
≤ u(τ(t))

u(t)
for t large enough.

However, we succeeded to find a more precise estimate (see Lemma 3.22 below) which

allows one to establish more sophisticated results.

We first present a rather simple result which, for ordinary differential equations,

follows for example from [13, Theorem 2].

Proposition 3.4 ( [44, Prop. 2.1]). Let∫ +∞

0

sp(s)ds < +∞.

Then equation (3.1) has a proper non-oscillatory solution.
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Remark 3.5. It follows from the proof of Proposition 3.4 that the assertion of this

proposition remains true without assumption (3.2), i. e., equation (3.1) may not be

delayed.

Recall that we are interested in oscillation criteria for equation (3.1), i. e., conditions

guaranteeing that every proper solution of equation (3.1) is oscillatory. Therefore, in

view of Proposition 3.4, we assume in what follows that∫ +∞

0

sp(s)ds = +∞. (3.4)

Put

G∗ = lim inf
t→+∞

1

t

∫ t

0

sτ(s)p(s)ds, G∗ = lim sup
t→+∞

1

t

∫ t

0

sτ(s)p(s)ds. (3.5)

The following statement has been established in [43] in the case, where the function

τ is continuous. In [44], the result mentioned is proved in a more general case.

Proposition 3.6 ( [44, Prop. 2.3]). Let condition (3.4) hold and

G∗ > 1.

Then every proper solution of equation (3.1) is oscillatory.

In view of Proposition 3.6, it is natural to suppose in the sequel that

G∗ ≤ 1. (3.6)

Theorem 3.7 ( [44, Thm. 2.4]). Let conditions (3.4) and (3.6) be fulfilled and let

there exist λ < 1 and ε ∈ [0, 1[ such that∫ +∞

0

sλ
(
τ(s)

s

)1−εG∗
p(s)ds = +∞. (3.7)

Then every proper solution of equation (3.1) is oscillatory.

Remark 3.8. Observe that for any ε ∈ ]0, 1[ , we have∫ +∞

0

sλ
(
τ(s)

s

)1−εG∗
p(s)ds ≤

∫ +∞

0

sλ
(
τ(s)

s

)1−G∗
p(s)ds.

Under some additional assumption imposed on the argument deviation τ , assumption

(3.7) in the previous theorem can be replaced by the more convenient assumption∫ +∞

0

sλ
(
τ(s)

s

)1−G∗
p(s)ds = +∞. (3.8)

More precisely, if we assume in Theorem 3.7 that there exist numbers α > 0 and t0 ≥ 0

such that
τ(t)

t
≥ α for a. e. t ≥ t0, (3.9)
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then assumption (3.7) is, in fact, equivalent to (3.8). Indeed, for any ε ∈ ]0, 1[ , the

inequality∫ t

t0

sλ
(
τ(s)

s

)1−εG∗
p(s)ds ≥ α(1−ε)G∗

∫ t

t0

sλ
(
τ(s)

s

)1−G∗
p(s)ds for t ≥ t0

holds and thus, equality (3.8) yields the validity of assumption (3.7).

Similarly, we can put ε = 1 in all theorems stated in this section provided that

additional assumption (3.9) is satisfied.

Now we provide a criterion which generalizes a result of E. Müller-Pfeiffer proved

for ordinary differential equations in [36].

Theorem 3.9 ( [44, Thm. 2.6]). Let conditions (3.4) and (3.6) hold and let there exist

ε ∈ [0, 1[ such that

lim sup
t→+∞

1

ln t

∫ t

0

s

(
τ(s)

s

)1−εG∗
p(s)ds >

1

4
. (3.10)

Then every proper solution of equation (3.1) is oscillatory.

In view of Theorem 3.7, we can assume in the sequel that∫ +∞

0

sλ
(
τ(s)

s

)1−εG∗
p(s)ds < +∞ for all λ < 1, ε ∈ [0, 1[. (3.11)

It allows us to define, for any λ < 1 and ε ∈ [0, 1[ , the function

Q(t;λ, ε) := t1−λ
∫ +∞

t

sλ
(
τ(s)

s

)1−εG∗
p(s)ds for t > 0.

Moreover, for any µ > 1 and ε ∈ [0, 1[ , we put

H(t;µ, ε) :=
1

tµ−1

∫ t

0

sµ
(
τ(s)

s

)1−εG∗
p(s)ds for t > 0.

By using the lower and upper limits

Q∗(λ, ε) := lim inf
t→+∞

Q(t;λ, ε), Q∗(λ, ε) := lim sup
t→+∞

Q(t;λ, ε),

H∗(µ, ε) := lim inf
t→+∞

H(t;µ, ε), H∗(µ, ε) := lim sup
t→+∞

H(t;µ, ε),
(3.12)

we establish Hille-Nehari’s type oscillation criteria, which coincide with the well-known

results in the case of ordinary differential equations (see, e.g., [13, 16,25,38,46]).

Theorem 3.10 ( [44, Thm. 2.7]). Let conditions (3.4) and (3.6) be fulfilled and let

there exist λ < 1, µ > 1, and ε ∈ [0, 1[ such that

lim sup
t→+∞

(
Q(t;λ, ε) +H(t;µ, ε)

)
>

λ2

4(1− λ)
+

µ2

4(µ− 1)
. (3.13)

Then every proper solution of equation (3.1) is oscillatory.
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As corollaries of Theorem 3.10 (with µ = 2 and λ = 0, respectively) we obtain the

following statements, which coincide with the Nehari’s classical results (see [38]) in the

case of ordinary differential equations.

Corollary 3.11 ( [44, Cor. 2.8]). Let conditions (3.4) and (3.6) be fulfilled and let

there exist λ < 1 and ε ∈ [0, 1[ such that

Q∗(λ, ε) >
(2− λ)2

4(1− λ)
.

Then every proper solution of equation (3.1) is oscillatory.

Corollary 3.12 ( [44, Cor. 2.9]). Let conditions (3.4) and (3.6) be fulfilled and let

there exist µ > 1 and ε ∈ [0, 1[ such that

H∗(µ, ε) >
µ2

4(µ− 1)
.

Then every proper solution of equation (3.1) is oscillatory.

The next theorem deals with the lower limit of the sum on the left-hand side of

inequality (3.13) and thus, it complements Theorem 3.10 in a certain sense.

Theorem 3.13 ( [44, Thm. 2.10]). Let conditions (3.4) and (3.6) be fulfilled and let

there exist λ < 1, µ > 1, and ε ∈ [0, 1[ such that

lim inf
t→+∞

(
Q(t;λ, ε) +H(t;µ, ε)

)
>

1

4(1− λ)
+

1

4(µ− 1)
.

Then every proper solution of equation (3.1) is oscillatory.

Theorem 3.13 yields the following corollaries.

Corollary 3.14 ( [44, Cor. 2.11]). Let conditions (3.4) and (3.6) be fulfilled and let

there exist λ < 1 and ε ∈ [0, 1[ such that

Q∗(λ, ε) >
1

4(1− λ)
. (3.14)

Then every proper solution of equation (3.1) is oscillatory.

Corollary 3.15 ( [44, Cor. 2.12]). Let conditions (3.4) and (3.6) be fulfilled and let

there exist µ > 1 and ε ∈ [0, 1[ such that

H∗(µ, ε) >
1

4(µ− 1)
. (3.15)

Then every proper solution of equation (3.1) is oscillatory.

Now we provide two statements complementing Corollaries 3.14 and 3.15 in certain

sense (see Example 3.20).
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Theorem 3.16 ( [44, Thm. 2.13]). Let conditions (3.4) and (3.6) be fulfilled and let

there exist λ < 1, µ > 1, and ε ∈ [0, 1[ such that

λ(2− λ)

4(1− λ)
≤ Q∗(λ, ε) ≤

1

4(1− λ)
(3.16)

and

H∗(µ, ε) >
µ2

4(µ− 1)
− 1

2

(
1−

√
1− 4(1− λ)Q∗(λ, ε)

)
. (3.17)

Then every proper solution of equation (3.1) is oscillatory.

Theorem 3.17 ( [44, Thm. 2.14]). Let conditions (3.4) and (3.6) be fulfilled and let

there exist λ < 1, µ > 1, and ε ∈ [0, 1[ such that

µ(2− µ)

4(µ− 1)
≤ H∗(µ, ε) ≤

1

4(µ− 1)
(3.18)

and

Q∗(λ, ε) >
λ2

4(1− λ)
+

1

2

(
1 +

√
1− 4(µ− 1)H∗(µ, ε)

)
. (3.19)

Then every proper solution of equation (3.1) is oscillatory.

If both conditions (3.16) and (3.18) are satisfied then oscillation criteria (3.17)

and (3.19) can be slightly refined as is presented in the last two statements (see also

Example 3.21).

Theorem 3.18 ( [44, Thm. 2.15]). Let conditions (3.4) and (3.6) be fulfilled and let

there exist λ < 1, µ > 1, and ε ∈ [0, 1[ such that inequalities (3.16) and (3.18) are

satisfied. If, moreover,

lim sup
t→+∞

(
Q(t;λ, ε) +H(t;µ, ε)

)
> Q∗(λ, ε) +H∗(µ, ε)

+
1

2

(√
1− 4(1− λ)Q∗(λ, ε) +

√
1− 4(µ− 1)H∗(µ, ε)

)
,

(3.20)

then every proper solution of equation (3.1) is oscillatory.

Corollary 3.19 ( [44, Cor. 2.16]). Let conditions (3.4) and (3.6) be fulfilled and let

there exist λ < 1, µ > 1, and ε ∈ [0, 1[ such that inequalities (3.16) and (3.18) are

satisfied. Then each of the relations

Q∗(λ, ε) > Q∗(λ, ε) +
1

2

(√
1− 4(1− λ)Q∗(λ, ε) +

√
1− 4(µ− 1)H∗(µ, ε)

)
(3.21)

and

H∗(µ, ε) > H∗(µ, ε) +
1

2

(√
1− 4(1− λ)Q∗(λ, ε) +

√
1− 4(µ− 1)H∗(µ, ε)

)
(3.22)

guarantees that every proper solution of equation (3.1) is oscillatory.
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Example 3.20. On R+, we consider the equation with a proportional delay

u′′(t) +
cos(ln(t+ 1)) + sin(ln(t+ 1)) + 2

(t+ 1)2
u

(
t

4

)
= 0. (3.23)

One can easily derive that

Q(t; 0, 0) = t

∫ +∞

t

τ(s)

s
p(s)ds =

1

4
t

∫ +∞

t

cos(ln(s+ 1)) + sin(ln(s+ 1)) + 2

(s+ 1)2
ds

=
t

4(t+ 1)
(2 + cos(ln(t+ 1))) for t > 0

and

H(t; 2, 0) =
1

t

∫ t

0

s2
τ(s)

s
p(s)ds =

1

4t

∫ t

0

s2

(s+ 1)2
(cos(ln(s+ 1)) + sin(ln(s+ 1)) + 2)ds

=
t2

4t(t+ 1)
(2 + sin(ln(t+ 1)) + φ(t) for t > 0,

where limt→+∞ φ(t) = 0. Hence,

Q∗(0, 0) := lim inf
t→+∞

Q(t; 0, 0) =
1

4
, Q∗(0, 0) := lim sup

t→+∞
Q(t; 0, 0) =

3

4
,

H∗(2, 0) := lim inf
t→+∞

H(t; 2, 0) =
1

4
, H∗(2, 0) := lim sup

t→+∞
H(t; 2, 0) =

3

4
.

(3.24)

Moreover,∫ +∞

0

sp(s)ds =

∫ +∞

0

s
cos(ln(s+ 1)) + sin(ln(s+ 1)) + 2

(s+ 1)2
ds

= lim
t→+∞

(−t(cos(ln(t+ 1)) + 2)

t+ 1
+ sin(ln(t+ 1)) + 2 ln(t+ 1)

)
= +∞

and

G∗ = lim inf
t→+∞

1

t

∫ t

0

sτ(s)p(s)ds = H∗(2, 0) =
1

4
≤ 1,

i.e., conditions (3.4) and (3.6) are fulfilled. It is clear that inequality (3.14) with λ = 0

(resp. (3.15) with µ = 2) is not satisfied. Therefore, Corollary 3.14 with λ = 0 (resp.

Corollary 3.15 with µ = 2) cannot be applied.

However, by virtue of (3.24), one can see that (3.16) and (3.17) (resp. (3.18)

and (3.19)) with λ = 0 and µ = 2. Consequently, according to Theorem 3.16 (resp.

Theorem 3.17), every proper solution of equation (3.23) is oscillatory.

Example 3.21. On R+, we consider the equation with proportional delay

u′′(t) +
cos(ln(t+ 1)) + sin(ln(t+ 1)) + 3

(t+ 1)2
u

(
t

8

)
= 0. (3.25)
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Analogously as above one can derive that

Q(t; 0, 0) =
t

8(t+ 1)
(3 + cos(ln(t+ 1))) for t > 0

and

H(t; 2, 0) =
t2

8t(t+ 1)
(3 + cos(ln(t+ 1)) + φ̃(t) for t > 0,

where limt→+∞ φ̃(t) = 0. Hence,

Q∗(0, 0) := lim inf
t→+∞

Q(t; 0, 0) =
1

4
, Q∗(0, 0) := lim sup

t→+∞
Q(t; 0, 0) =

1

2
,

H∗(2, 0) := lim inf
t→+∞

H(t; 2, 0) =
1

4
, H∗(2, 0) := lim sup

t→+∞
H(t; 2, 0) =

1

2
.

(3.26)

Analogously as in the previous example, one can show that (3.4) and (3.6) are fulfilled.

Moreover, it is clear that (3.16) with λ = 0 and (3.18) with µ = 2 hold, but inequality

(3.17) (resp. (3.19)) with λ = 0 and µ = 2 is not satisfied. Therefore, neither of

Theorems 3.16 and Theorem 3.17 can be applied for λ = 0 and µ = 2.

However, by virtue of (3.26), one can see that condition (3.21) (resp. (3.22)) is

fulfilled with λ = 0 and µ = 2 and thus, according to Corollary 3.19, every proper

solution of equation (3.25) is oscillatory.

3.2.2 Auxiliary statements

The following lemma on an a priori estimate of proper non-oscillatory solutions of

equation (3.1) plays a crucial role in the proofs of the main results.

Lemma 3.22. Let u be a solution of equation (3.1) on the interval [tu,+∞[ satisfying

the inequality

u(t) > 0 for t ≥ tu. (3.27)

Then the inequalities ∫ +∞

0

τ(s)

s
p(s)ds < +∞ (3.28)

and

lim sup
t→+∞

1

t

∫ t

0

sτ(s)p(s)ds ≤ 1, lim sup
t→+∞

t

∫ +∞

t

τ(s)

s
p(s)ds ≤ 1 (3.29)

are satisfied. Moreover, for any ζ ∈ [0, 1[ , there exists t0(ζ) ≥ tu such that(
T1
T2

)1−ζG∗
≤ u(T1)

u(T2)
≤
(
T1
T2

)ζF∗
for T2 ≥ T1 ≥ t0(ζ), (3.30)

where the number G∗ is defined by (3.5) and

F∗ := lim inf
t→+∞

t

∫ +∞

t

τ(s)

s
p(s)ds. (3.31)
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Proof. It is not difficult to verify that the inequality

u′(t) ≥ 0

holds for sufficiently large t. Since equation (3.1) is homogeneous, we can assume

without loss of generality that u(t) ≥ 1 for t large enough. Consequently, by virtue of

assumption (3.3), there exists t1 > tu such that

u′(t) ≥ 0, u(τ(t)) ≥ 1 for t ≥ t1. (3.32)

Obviously, relation (3.1) yields that(
tu′(t)− u(t)

)′
= −tp(t)u(τ(t)) for a. e. t ≥ tu.

The integration of the latter equality from t1 to t leads to

θ(t) = θ(t1)−
∫ t

t1

sp(s)u(τ(s))ds for t ≥ t1,

where θ(t) := tu′(t) − u(t) for t ≥ t1. In view of relations (3.4) and (3.32), we have

θ(t)→ −∞ as t→ +∞ and thus, there exists t2 ≥ t1 such that

tu′(t)− u(t) ≤ −
∫ t

t2

sp(s)u(τ(s))ds ≤ 0 for t ≥ t2, (3.33)

whence we get (
u(t)

t

)′
=

1

t2
(
tu′(t)− u(t)

)
≤ 0 for t ≥ t2. (3.34)

By virtue of assumption (3.3), there exists a number t3 ≥ t2 such that

τ(t) ≥ t2 for t ≥ t3. (3.35)

Using inequalities (3.34) and (3.35) in relation (3.33), we get

tu′(t)− u(t) ≤ −
∫ t

t3

sτ(s)p(s)
u(τ(s))

τ(s)
ds ≤ −u(t)

t

∫ t

t3

sτ(s)p(s)ds for t ≥ t3.

Hence, we have

tu′(t) ≤ u(t)

[
1− 1

t

∫ t

t3

sτ(s)p(s)ds

]
for t ≥ t3. (3.36)

In particular, by virtue of relations (3.27) and (3.32), inequality (3.36) yields that

1

t

∫ t

t3

sτ(s)p(s)ds ≤ 1 for t ≥ t3

and therefore, the first inequality in (3.29) holds.
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On the other hand, integrating of equality (3.1) from t to T , one gets

u′(t)− u′(T ) =

∫ T

t

p(s)u(τ(s))ds for T ≥ t ≥ t3.

Using inequalities (3.32), (3.34) and (3.35), from the last equality it follows that

u′(t) ≥
∫ T

t

τ(s)p(s)
u(τ(s))

τ(s)
ds ≥

∫ T

t

τ(s)p(s)
u(s)

s
ds

≥ u(t)

∫ T

t

τ(s)

s
p(s)ds for T ≥ t ≥ t3.

(3.37)

Hence, in view of relations (3.27) and (3.33), we get

t

∫ T

t

τ(s)

s
p(s)ds ≤ 1 for T ≥ t ≥ t3

and therefore, the desired relation (3.28) holds. It is clear that the second inequality

in (3.29) is satisfied as well. Moreover, it follows from (3.37) that

u′(t) ≥ u(t)

∫ +∞

t

τ(s)

s
p(s)ds for t ≥ t3. (3.38)

Now let ζ ∈ [0, 1[ be arbitrary. According to notation (3.5) and (3.31), there exists

a number t0(ζ) ≥ t3 such that

1

t

∫ t

t3

sτ(s)p(s)ds ≥ ζG∗, t

∫ +∞

t

τ(s)

s
p(s)ds ≥ ζF∗ for t ≥ t0(ζ).

Then, in view of relation (3.27), from inequality (3.36) we get that

tu′(t)− u(t) ≤ −ζG∗u(t) for t ≥ t0(ζ)

and thus, we have(
u(t)

t

)′
=

1

t2
(
tu′(t)− u(t)

)
≤ −ζ G∗

t

u(t)

t
for t ≥ t0(ζ).

Hence, we get that

ln

u(T2)
T2

u(T1)
T1

≤ −ζ G∗ ln
T2
T1

for T2 ≥ T1 ≥ t0(ζ). (3.39)

On the other hand, in view of relation (3.27), from inequality (3.38) we obtain

u′(t) ≥ ζF∗
t

u(t) for t ≥ t0(ζ),

whence we get

ln
u(T2)

u(T1)
≥ ζF∗ ln

T2
T1

for T2 ≥ T1 ≥ t0(ζ).

The latter inequality and relation (3.39) guarantee the validity of the desired estimates

(3.30). To conclude the proof we mention only that ζ was arbitrary. �
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Now we introduce the following notation. Let u be a solution to equation (3.1) on

the interval [tu,+∞[ satisfying relation (3.27). For any λ < 1, we put

c(t;λ, u) :=

∫ t

tu

sλ
u(τ(s))

u(s)
p(s)ds for t ≥ tu. (3.40)

Lemma 3.23. Let u be a solution of equation (3.1) on the interval [tu,+∞[ satisfying

relation (3.27). Then, for any λ < 1, there exists a finite limit

c0(λ, u) := lim
t→+∞

c(t;λ, u), (3.41)

where the function c is defined by formula (3.40).

Proof. Let λ < 1 be arbitrary and put

%(t) :=
u′(t)

u(t)
for t ≥ tu. (3.42)

Then equality (3.1) yields that

%′(t) = −p(t)u(τ(t))

u(t)
− %2(t) for a. e. t ≥ tu. (3.43)

Multiplying both sides of this equality by tλ and integrating them from tu to t, we get

that

tλ%(t)− tλu%(tu)− λ
∫ t

tu

sλ−1%(s)ds =−
∫ t

tu

sλ
u(τ(s))

u(s)
p(s)ds

−
∫ t

tu

sλ %2(s)ds for t ≥ tu,

whence we obtain

1

t1−λ

[
t%(t)− λ

2

]
= δ0 −

λ(2− λ)

4(1− λ)

1

t1−λ
−
∫ t

tu

sλ
u(τ(s))

u(s)
p(s)ds

−
∫ t

tu

sλ−2
[
s%(s)− λ

2

]2
ds for t ≥ tu,

(3.44)

where δ0 = tλu%(tu) + λ2

4(1−λ)
1

t1−λu
.

We first show that ∫ +∞

tu

sλ−2
[
s%(s)− λ

2

]2
ds < +∞. (3.45)

Assume on the contrary that the integral in (3.45) is divergent. In view of assumption

(3.3), there exists a number t∗u ≥ tu such that

τ(t) ≥ tu for a. e. t ≥ t∗u
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and thus, ∫ t

tu

sλ
u(τ(s))

u(s)
p(s)ds ≥

∫ t∗u

tu

sλ
u(τ(s))

u(s)
p(s)ds for t ≥ t∗u.

Therefore, it follows from equality (3.44) that for some a > t∗u, the inequality

t%(t)− λ

2
≤ −1

2
t1−λ

∫ t

tu

sλ−2
[
s%(s)− λ

2

]2
ds < 0 for t ≥ a (3.46)

holds. Put

x(t) :=

∫ t

tu

sλ−2
[
s%(s)− λ

2

]2
ds for t ≥ a.

Using relation (3.46), we get

x′(t) = tλ−2
[
t%(t)− λ

2

]2
≥ 1

4tλ
x2(t) for t ≥ a.

Therefore, the integration of the latter inequality from a to t yields that

4(1− λ)

x(a)
+ a1−λ ≥ t1−λ for t ≥ a,

which is a contradiction. The contradiction obtained proves the validity of inequality

(3.45).

Now, in view of notation (3.40), equality (3.44) can be rewritten to the form

tλ%(t) = δ(λ, u)− λ2

4(1− λ)

1

t1−λ
− c(t;λ, u)

+

∫ +∞

t

sλ−2
[
s%(s)− λ

2

]2
ds for t ≥ tu,

(3.47)

where

δ(λ, u) := tλu%(tu) +
λ2

4(1− λ)t1−λu

−
∫ +∞

tu

sλ−2
[
s%(s)− λ

2

]2
ds.

Consequently, we get

−∞ < lim
t→+∞

c(t;λ, u) = δ(λ, u) < +∞ (3.48)

because, by virtue of condition (3.33), the inequality %(t) ≤ 1/t holds for large t. �

Lemma 3.24. Let λ < 1 and u be a solution of equation (3.1) on the interval [tu,+∞[

satisfying relation (3.27). Then

lim sup
t→+∞

t1−λ

ln t

(
c0(λ, u)− 1− λ

t1−λ

∫ t

tu

c(s;λ, u)

sλ
ds

)
≤ 1

4
, (3.49)

where the function c is defined by relation (3.40) and the number c0(λ, u) is given by

formula (3.41).
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Proof. It follows from the proof of Lemma 3.23 (see relations (3.45), (3.47), and (3.48))

and notation (3.41) that

c0(λ, u)− c(t;λ, u) =
1

t1−λ

[
t%(t)− λ

2

]
+
λ(2− λ)

4(1− λ)

1

t1−λ

−
∫ +∞

t

sλ−2
[
s%(s)− λ

2

]2
ds for t ≥ tu,

(3.50)

where the function % is defined by formula (3.42). Multiplying both sides of this equality

by t−λ and integrating them from a to t, we get

t1−λ

1− λ

(
c0(λ, u)− 1− λ

t1−λ

∫ t

a

c(s;λ, u)

sλ
ds

)
=

a1−λ

1− λ c0(λ, u) +
λ(2− λ)

4(1− λ)
ln
t

a
+

∫ t

a

1

s

[
s%(s)− λ

2

]
ds

−
∫ t

a

1

sλ

(∫ +∞

s

ξλ−2
[
ξ%(ξ)− λ

2

]2
dξ

)
ds for t ≥ a > tu,

whence we obtain

t1−λ

1− λ

(
c0(λ, u)− 1− λ

t1−λ

∫ t

a

c(s;λ, u)

sλ
ds

)
= δ(a) +

λ(2− λ)

4(1− λ)
ln
t

a

+
1

1− λ

∫ t

a

1

s

[
s%(s)− λ

2

](
1− λ−

[
s%(s)− λ

2

])
ds

− t1−λ

1− λ

∫ +∞

t

sλ−2
[
s%(s)− λ

2

]2
ds for t ≥ a > tu,

(3.51)

where

δ(a) :=
a1−λ

1− λ c0(λ, u) +
a1−λ

1− λ

∫ +∞

a

sλ−2
[
s%(s)− λ

2

]2
ds for a > tu.

By using the inequality 4x(1 − λ − x) ≤ (1 − λ)2 for x ∈ R, it follows from equality

(3.51) that

t1−λ

1− λ

(
c0(λ, u)− 1− λ

t1−λ

∫ t

a

c(s;λ, u)

sλ
ds

)
≤ δ(a) +

1

4(1− λ)
ln
t

a
for t ≥ a > tu.

However, the latter relation yields that

lim sup
t→+∞

t1−λ

ln t

(
c0(λ, u)− 1− λ

t1−λ

∫ t

a

c(s;λ, u)

sλ
ds

)
≤ 1

4
for a > tu,

which implies the validity of desired inequality (3.49). �
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Let u be a solution of equation (3.1) on the interval [tu,+∞[ satisfying relation

(3.27). For any λ < 1 and µ > 1, we put

q(t;λ, u) := t1−λ
∫ +∞

t

sλ
u(τ(s))

u(s)
p(s)ds for t > tu (3.52)

and

h(t;µ, u) :=
1

tµ−1

∫ t

tu

sµ
u(τ(s))

u(s)
p(s)ds for t > tu. (3.53)

Note that the function q is well defined because, in view of Lemma 3.23, we have

q(t;λ, u) = t1−λ
(
c0(λ, u)− c(t;λ, u)

)
for t > tu. (3.54)

Moreover, we put

q∗(λ, u) := lim inf
t→+∞

q(t;λ, u), q∗(λ, u) := lim sup
t→+∞

q(t;λ, u), (3.55)

h∗(µ, u) := lim inf
t→+∞

h(t;µ, u), h∗(µ, u) := lim sup
t→+∞

h(t;µ, u). (3.56)

Lemma 3.25. Let u be a solution of equation (3.1) on the interval [tu,+∞[ satisfying

relation (3.27). Then

lim sup
t→+∞

1

ln t

∫ t

tu

s
u(τ(s))

u(s)
p(s)ds ≤ 1

4
. (3.57)

Proof. Let λ < 1 be arbitrary. In view of assumptions (3.3) and (3.27), there exists

t∗u > max{1, tu} such that

u(τ(t)) > 0 for a. e. t ≥ t∗u.

According to Lemma 3.23, the function c defined by formula (3.40) possesses a finite

limit (3.41). Therefore, by using relation (3.54), we get

t1−λ

ln t

(
c0(λ, u)− 1− λ

t1−λ

∫ t

tu

c(s;λ, u)

sλ
ds

)
=
q(t;λ, u)

ln t
+

1

ln t

∫ t

tu

s
u(τ(s))

u(s)
p(s)ds

≥ 1

ln t

∫ t

tu

s
u(τ(s))

u(s)
p(s)ds for t ≥ t∗u,

(3.58)

which, by virtue of Lemma 3.24, guarantees desired estimate (3.57). �

Lemma 3.26. Let λ < 1 and u be a solution of equation (3.1) on the interval [tu,+∞[

such that relation (3.27) holds and

λ(2− λ)

4(1− λ)
≤ q∗(λ, u) ≤ 1

4(1− λ)
, (3.59)
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where the number q∗(λ, u) is defined by formula (3.55). Then either

lim inf
t→+∞

tu′(t)

u(t)
= +∞ (3.60)

or
1

2

(
1−

√
1− 4(1− λ)q∗(λ, u)

)
≤ lim inf

t→+∞

tu′(t)

u(t)

≤ 1

2

(
1 +

√
1− 4(1− λ)q∗(λ, u)

)
.

(3.61)

Proof. It follows from the proof of Lemma 3.23 (see relations (3.45), (3.47), and (3.48))

and notation (3.41) that equality (3.50) is satisfied, where the function % is defined by

formula (3.42). Therefore, in view of relation (3.54), equality (3.50) leads to

t%(t)− λ

2
= q(t;λ, u)− λ(2− λ)

4(1− λ)

+ t1−λ
∫ +∞

t

sλ−2
[
s%(s)− λ

2

]2
ds for t ≥ tu.

(3.62)

Now we put

m := lim inf
t→+∞

[
t%(t)− λ

2

]
. (3.63)

If m = +∞, then condition (3.60) holds. Therefore, assume that m < +∞. Then it

follows from relation (3.62) that

m ≥ q∗(λ, u)− λ(2− λ)

4(1− λ)
. (3.64)

If q∗(λ, u) = λ(2−λ)
4(1−λ) , then desired estimate (3.61) holds, because relation (3.64) yields

that m ≥ 0. Hence, we suppose in what follows that q∗(λ, u) > λ(2−λ)
4(1−λ) and thus, we

have m > 0 (see relation (3.64)).

Let ε ∈ ]0,m] be arbitrary and choose tε ≥ tu such that

t%(t)− λ

2
≥ m− ε, q(t;λ, u) ≥ q∗(λ, u)− ε for t ≥ tε.

Then from equality (3.62) we get

t%(t)− λ

2
≥ q∗(λ, u)− ε− λ(2− λ)

4(1− λ)
+

(m− ε)2
1− λ for t ≥ tε,

which implies that

m ≥ q∗(λ, u)− ε− λ(2− λ)

4(1− λ)
+

(m− ε)2
1− λ .

Since ε was arbitrary, the latter relation leads to the inequality

m2 − (1− λ)m+ (1− λ)q∗(λ, u)− λ(2− λ)

4
≤ 0.
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Consequently, we have

1

2

(
1− λ−

√
1− 4(1− λ)q∗(λ, u)

)
≤ m ≤ 1

2

(
1− λ+

√
1− 4(1− λ)q∗(λ, u)

)
which, in view of notation (3.63), yields estimate (3.61). �

Lemma 3.27. Let µ > 1 and u be a solution of equation (3.1) on the interval [tu,+∞[

such that relation (3.27) holds and

µ(2− µ)

4(µ− 1)
≤ h∗(µ, u) ≤ 1

4(µ− 1)
, (3.65)

where the number h∗(µ, u) is defined by formula (3.56). Then

lim sup
t→+∞

tu′(t)

u(t)
≤ 1

2

(
1 +

√
1− 4(µ− 1)h∗(µ, u)

)
. (3.66)

Proof. Define the function % by formula (3.42). Then, in view of (3.1), relation (3.42)

yields that equality (3.43) is satisfied. Multiplying both sides of equality (3.43) by tµ

and integrating them from a to t, we get

tµ%(t)− aµ%(a)− µ
∫ t

a

sµ−1%(s)ds = −
∫ t

a

sµ
u(τ(s))

u(s)
p(s)ds

−
∫ t

a

sµ%2(s)ds for t > a ≥ tu,

whence we obtain

t%(t) =
δ(a)

tµ−1
− h(t;µ, u)

+
1

tµ−1

∫ t

a

sµ−2
[
s%(s)

(
µ− s%(s)

)]
ds for t > a ≥ tu,

(3.67)

where

δ(a) := aµ%(a) +

∫ a

tu

sµ
u(τ(s))

u(s)
p(s)ds for a ≥ tu. (3.68)

Now we put

M := lim sup
t→+∞

t%(t). (3.69)

It is not difficult to verify that inequality u′(t) ≥ 0 holds for t large enough and thus

we have M ≥ 0. According to the inequality 4x(µ− x) ≤ µ2 for x ∈ R, it follows from

relation (3.67) that

t%(t) ≤ δ(a)

tµ−1
− h(t;µ, u) +

µ2

4(µ− 1)
for t > a ≥ tu,

which implies

M ≤ −h∗(µ, u) +
µ2

4(µ− 1)
. (3.70)
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If h∗(µ, u) = µ(2−µ)
4(µ−1) , then desired estimate (3.66) is fulfilled because relation (3.70)

yields that M ≤ µ
2
. Hence, we suppose in the sequel that h∗(µ, u) > µ(2−µ)

4(µ−1) and thus,

we have M < µ
2

(see relation (3.70)).

Let ε ∈ ]0, µ
2
−M ] be arbitrary and choose tε ≥ tu such that

t%(t) ≤M + ε, h(t;µ, u) ≥ h∗(µ, u)− ε for t ≥ tε. (3.71)

Since we have M + ε ≤ µ
2
, it is easy to check that

s%(s)
(
µ− s%(s)

)
≤ (M + ε)(µ−M − ε) for s ≥ tε. (3.72)

Therefore, by using relations (3.71) and (3.72), from equality (3.67) with a = tε we get

t%(t) ≤ δ(tε)

tµ−1
− h∗(µ, u) + ε+

(M + ε)(µ−M − ε)
µ− 1

for t > tε,

which yields that

M ≤ −h∗(µ, u) + ε+
(M + ε)(µ−M − ε)

µ− 1
.

Since ε was arbitrary, the latter relation leads to the inequality

M2 −M + (µ− 1)h∗(µ, u) ≤ 0.

Consequently, we have

M ≤ 1

2

(
1 +

√
1− 4(µ− 1)h∗(µ, u)

)
which, in view of notation (3.69), proves desired estimate (3.66). �

Lemma 3.28. Let λ < 1, µ > 1, and u be a solution of equation (3.1) on the interval

[tu,+∞[ satisfying relation (3.27). Then

lim sup
t→+∞

(
q(t;λ, u) + h(t;µ, u)

)
≤ λ2

4(1− λ)
+

µ2

4(µ− 1)
, (3.73)

where the functions q and h are defined by formulas (3.52) and(3.53), respectively.

Proof. Analogously to the proofs of Lemmas 3.26 and 3.27 we get equalities (3.62) and

(3.67), where δ(a) is given by formula (3.68), combining of which leads to the relation

q(t;λ, u) + h(t;µ, u)

=
λ2

4(1− λ)
+
δ(a)

tµ−1
+

1

tµ−1

∫ t

a

sµ−2
[
s%(s)

(
µ− s%(s)

)]
ds

− t1−λ
∫ +∞

t

sλ−2
[
s%(s)− λ

2

]2
ds for t > a ≥ tu.

(3.74)

Putting a = tu and using the inequality 4x(µ−x) ≤ µ2 for x ∈ R, from equality (3.74)

we get

q(t;λ, u) + h(t;µ, u) ≤ λ2

4(1− λ)
+

µ2

4(µ− 1)
+
δ(tu)

tµ−1
for t > tu,

which yields desired estimate (3.73). �
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Lemma 3.29. Let λ < 1 and u be a solution of equation (3.1) on the interval [tu,+∞[

satisfying relation (3.27). Then

q∗(λ, u) ≤ 1

4(1− λ)
, (3.75)

where the number q∗(λ, u) is defined by formula (3.55).

Proof. In view of Lemma 3.23, the function c defined by formula (3.40) possesses a finite

limit (3.41).

Assume on the contrary that inequality (3.75) does not hold. Then there exist ε > 0

and tε > max{1, tu} such that

q(t;λ, u) ≥ 1 + ε

4(1− λ)
for t ≥ tε.

By using this relation, for t ≥ tε we get

t1−λ

ln t

(
c0(λ, u)− 1− λ

t1−λ

∫ t

tu

c(s;λ, u)

sλ
ds

)

=
t1−λu

ln t
c0(λ, u) +

1− λ
ln t

∫ t

tu

q(s;λ, u)

s
ds

≥ t1−λu

ln t
c0(λ, u) +

1− λ
ln t

∫ tε

tu

q(s;λ, u)

s
ds

+
1 + ε

4 ln t
ln
t

tε
,

which yields that

lim sup
t→+∞

t1−λ

ln t

(
c0(λ, u)− 1− λ

t1−λ

∫ t

tu

c(s;λ, u)

sλ
ds

)
≥ 1 + ε

4
. (3.76)

However, this is in a contradiction with the assertion of Lemma 3.24. �

Lemma 3.30. Let µ > 1 and u be a solution of equation (3.1) on the interval [tu,+∞[

satisfying relation (3.27). Then

h∗(µ, u) ≤ 1

4(µ− 1)
, (3.77)

where the number h∗(µ, u) is defined by formula (3.56).

Proof. Let λ < 1 be arbitrary. In view of assumptions (3.3) and (3.27), there exists

t∗u > max{1, tu} such that

u(τ(t)) > 0 for a. e. t ≥ t∗u.
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According to Lemma 3.23, the function c defined by formula (3.40) possesses a finite

limit (3.41). Therefore, by using equality (3.54), it is not difficult to verify that relation

(3.58) is fulfilled, where the function q is defined by formula (3.52).

Assume on the contrary that inequality (3.77) does not hold. Then there exist ε > 0

and tε ≥ t∗u such that

h(t;µ, u) ≥ 1 + ε

4(µ− 1)
for t ≥ tε.

By using this relation, we get∫ t

tu

s
u(τ(s))

u(s)
p(s)ds = h(t;µ, u) + (µ− 1)

∫ t

tu

h(s;µ, u)

s
ds

≥ 1 + ε

4(µ− 1)
+ (µ− 1)

∫ tε

tu

h(s;µ, u)

s
ds+

1 + ε

4
ln
t

tε

for t ≥ tε. Consequently, relation (3.58) yields the validity of inequality (3.76), which

is in a contradiction with the assertion of Lemma 3.24. �

Lemma 3.31. Let λ < 1, µ > 1, and u be a solution of equation (3.1) on the interval

[tu,+∞[ such that relation (3.27) holds. If, moreover, inequalities (3.59) and (3.65)

are satisfied then

lim sup
t→+∞

(
q(t;λ, u) + h(t;µ, u)

)
≤ q∗(λ, u) + h∗(µ, u)

+
1

2

(√
1− 4(1− λ)q∗(λ, u) +

√
1− 4(µ− 1)h∗(µ, u)

)
,

(3.78)

where the functions q and h are defined by relations (3.52) and (3.53), respectively, and

the numbers q∗(λ, u) and h∗(µ, u) are given by formulas (3.55) and (3.56), respectively.

Proof. Analogously to the proofs of Lemmas 3.26 and 3.27 we get equalities (3.62)

and (3.67), where δ(a) is given by formula (3.68), combining of which leads to relation

(3.74).

Let the numbers m and M be given by formulas

m :=
1

2

(
1−

√
1− 4(1− λ)q∗(λ, u)

)
(3.79)

and

M :=
1

2

(
1 +

√
1− 4(µ− 1)h∗(µ, u)

)
, (3.80)

respectively. It follows from Lemmas 3.26 that and 3.27

lim inf
t→+∞

t%(t) ≥ m and lim sup
t→+∞

t%(t) ≤M,

where the function % is defined by relation (3.42). Since we assume that inequalities

(3.59) and (3.65) are fulfilled, we have that m ≥ λ
2

and M ≤ µ
2
.
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Suppose that m > λ
2

and M < µ
2
. Let 0 < ε ≤ min{m − λ

2
, µ
2
−M} be arbitrary

and choose tε ≥ tu such that

t%(t) ≥ m− ε, t%(t) ≤M + ε for t ≥ tε

hold. Since M + ε ≤ µ
2
, it is easy to check that

s%(s)
(
µ− s%(s)

)
≤ (M + ε)(µ−M − ε) for s ≥ tε .

Therefore, from equality (3.74) with a = tε we get

q(t;λ, u) + h(t;µ, u) ≤ λ2

4(1− λ)
+

(M + ε)(µ−M − ε)
µ− 1

−
(
m− λ

2
− ε
)2

1− λ +
δ(tε)

tµ−1
for t ≥ tε.

Since ε was arbitrary, it follows from the latter inequality that

lim sup
t→+∞

(
q(t;λ, u) + h(t;µ, u)

)
≤ λ2

4(1− λ)

+
M(µ−M)

µ− 1
−
(
m− λ

2

)2
1− λ .

(3.81)

If m = λ
2

(respectively, M = µ
2
), then we prove similarly as above that relation

(3.81) holds whereas we use the fact that

−t1−λ
∫ +∞

t

sλ−2
[
s%(s)− λ

2

]2
ds ≤ 0 = −

(
m− λ

2

)2
1− λ for t ≥ tu(

respectively,
1

tµ−1

∫ t

a

sµ−2
[
s%(s)

(
µ− s%(s)

)]
ds

≤ µ2

4(µ− 1)
=
M(µ−M)

µ− 1
for t ≥ a ≥ tu

)
.

Consequently, relation (3.81) and notation (3.79) and (3.80) guarantee the validity

of desired estimate (3.78). �

3.2.3 Proofs of main results

Proof of Proposition 3.4. It can be found in [44]. �

Proof of Proposition 3.6. It can be found in [44]. �

Proof of Theorem 3.7. It can be found in [44]. �
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Proof of Theorem 3.9. Suppose on the contrary that equation (3.1) has a proper non-

oscillatory solution. Let u be a solution of equation (3.1) on the interval [tu,+∞[

satisfying relation (3.27). According to Lemma 3.22, there exists t0(ε) > max{1, tu}
such that inequality (3.30) holds. Let, moreover, t∗0(ε) ≥ t0(ε) be such that τ(t) ≥ t0(ε)

for a.e. t ≥ t∗0(ε). Then we have

1

ln t

∫ t

0

s

(
τ(s)

s

)1−εG∗
p(s)ds ≤ 1

ln t

∫ t∗0(ε)

0

s

(
τ(s)

s

)1−εG∗
p(s)ds

+
1

ln t

∫ t

t0∗(ε)
s
u(τ(s))

u(s)
p(s)ds for t ≥ t∗0(ε).

Therefore, by virtue of Lemma 3.25, we get

lim sup
t→+∞

1

ln t

∫ t

0

s

(
τ(s)

s

)1−εG∗
p(s)ds ≤ 1

4
,

which is in a contradiction with assumption (3.10). �

Proof of Theorem 3.10. Suppose on the contrary that equation (3.1) has a proper non-

oscillatory solution. Let u be a solution of equation (3.1) on the interval [tu,+∞[

satisfying relation (3.27). Define the functions q and h by formulas (3.52) and (3.53),

respectively. According to Lemma 3.22, there exists t0(ε) ≥ tu such that inequality

(3.30) is fulfilled. Let, moreover, t∗0(ε) ≥ t0(ε) be such that τ(t) ≥ t0(ε) for a.e.

t ≥ t∗0(ε). Then we have

Q(t;λ, ε) +H(t;µ, ε) ≤ q(t;λ, u) + h(t;µ, u)

+
1

tµ−1

∫ t∗0(ε)

0

sµ
(
τ(s)

s

)1−εG∗
p(s)ds

− 1

tµ−1

∫ t∗0(ε)

tu

sµ
u(τ(s))

u(s)
p(s)ds for t > t∗0(ε).

(3.82)

Consequently, by virtue of Lemma 3.28, we get

lim sup
t→+∞

(
Q(t;λ, ε) +H(t;µ, ε)

)
≤ λ2

4(1− λ)
+

µ2

4(µ− 1)
,

which contradicts assumption (3.13). �

Proof of Corollary 3.11. It immediately follows from Theorem 3.10 with µ = 2, be-

cause the inequality H(t; 2, ε) ≥ 0 holds for t > 0. �

Proof of Corollary 3.12. Since we have Q(t; 0, ε) ≥ 0 for t > 0, the assertion of the

corollary immediately follows from Theorem 3.10 with λ = 0. �

Proof of Theorem 3.13. It can be found in [44]. �
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Proof of Corollary 3.14. According to assumption (3.14), there exists µ > 1 such that

Q∗(λ, ε) >
1

4(1− λ)
+

1

4(µ− 1)
.

Since we have H(t;µ, ε) ≥ 0 for t > 0, the assertion of the corollary immediately follows

from Theorem 3.13 �

Proof of Corollary 3.15. By virtue of assumption (3.15), there exists λ < 1 such that

H∗(µ, ε) >
1

4(1− λ)
+

1

4(µ− 1)
.

Consequently, the assertion of the corollary follows from Theorem 3.13, because the

inequality Q(t;λ, ε) ≥ 0 holds for t > 0.

�

Proof of Theorem 3.16. It can be found in [44]. �

Proof of Theorem 3.17. It can be found in [44]. �

Proof of Theorem 3.18. Suppose on the contrary that equation (3.1) has a proper non-

oscillatory solution. Let u be a solution of equation (3.1) on the interval [tu,+∞[

satisfying relation (3.27). Define the functions q and h by formulas (3.52) and (3.53),

respectively. According to Lemma 3.22, there exists t0(ε) ≥ tu such that inequality

(3.30) is fulfilled and thus, in view of (3.3), we easily get inequalities

Q∗(λ, ε) ≤ q∗(λ, u), H∗(µ, ε) ≤ h∗(µ, u),

and

H∗(µ, ε) ≤ h∗(µ, u), Q∗(λ, ε) ≤ q∗(λ, u),

where the numbers q∗(λ, u), q∗(λ, u) and h∗(µ, u), h∗(µ, u) are defined by formulas

(3.55) and (3.56), respectively. Therefore, assumptions (3.16), (3.18) and Lemmas 3.29,

3.30 (see relations (3.75) and (3.77)) immediately yield the validity of inequalities (3.59)

and (3.65), i. e., the assumptions of Lemma 3.31 are satisfied. Obviously, inequality

(3.82) holds, the function

x 7→ x+
1

2

√
1− 4(1− λ)x is non-increasing on

[λ(2−λ)
4(1−λ) ,

1
4(1−λ)

]
,

and the function

y 7→ y +
1

2

√
1− 4(µ− 1)y is non-increasing on

[
µ(2−µ)
4(µ−1) ,

1
4(µ−1)

]
.
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Consequently, by using Lemma 3.31, we obtain

lim sup
t→+∞

(
Q(t;λ, ε) +H(t;µ, ε)

)
≤ lim sup

t→+∞

(
q(t;λ, u) + h(t;µ, u)

)
≤ q∗(λ, u) +

1

2

√
1− 4(1− λ)q∗(λ, u)

+ h∗(µ, u) +
1

2

√
1− 4(µ− 1)h∗(µ, u)

≤ Q∗(λ, ε) +
1

2

√
1− 4(1− λ)Q∗(λ, ε)

+H∗(µ, ε) +
1

2

√
1− 4(µ− 1)H∗(µ, ε) ,

which contradicts assumption (3.20). �

Proof of Corollary 3.19. It is easy to show that

lim sup
t→+∞

(
Q(t;λ, ε) +H(t;µ, ε)

)
≥ Q∗(λ, ε) +H∗(µ, ε)

and

lim sup
t→+∞

(
Q(t;λ, ε) +H(t;µ, ε)

)
≥ H∗(µ, ε) +Q∗(λ, ε).

Consequently, in both cases (3.21) and (3.22), inequality (3.20) is satisfied and thus,

the assertion of the corollary follows immediately from Theorem 3.18. �

3.3 Myshkis’s type criteria for DDE

In this section, we present other type of oscillation criteria for equation (3.1), so-

called Myshkis’s type oscillation criteria, which generalise known results of R. Ko-

platadze. Below we assume that τ : R+ → R+ is a continuous function satisfying

τ(t) ≤ t for t ≥ 0 (3.83)

and

lim
t→+∞

τ(t) = +∞. (3.84)

The assumption of continuity imposed on τ is motivated by the form of relations

(conditions) of type (3.97), (3.101), (3.102), etc. Similar statements can also be formu-

lated for τ that is only measurable. In order to do so, one should use suitable notions

of upper and lower limits for measurable functions.

3.3.1 Main results

In the paper [23], R. Koplatadze proved, among other things, the following state-

ments.
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Theorem 3.32 ( [23, Thm. 1]). Let there exist a continuous non-decreasing function

σ : R+ → R+ such that the inequalities

τ(t) ≤ σ(t) ≤ t for t ≥ 0 (3.85)

and

lim sup
t→+∞

∫ t

σ(t)

τ(s)p(s)ds > 1 (3.86)

are fulfilled. Then every proper solution of equation (3.1) is oscillatory.

Remark 3.33. It is necessary for the validity of assumption (3.86) that∫ +∞

0

τ(s)p(s)ds = +∞. (3.87)

Theorem 3.34 ( [23, Thm. 2]). Let the inequality

lim inf
t→+∞

∫ t

τ(t)

τ(s)p(s)ds >
1

e
(3.88)

hold. Then every proper solution of equation (3.1) is oscillatory.

Remark 3.35. If assumption (3.88) is fulfilled then condition (3.87) necessarily holds.

In Theorem 3.34, the constant 1
e

is optimal and can not be in general improved. A coun-

terexample is constructed in [23] for equation (3.1) with a proportional delay.

Remark 3.36. Oscillation criteria (3.86) and (3.88) are usually called Myshkis’s type

oscillation criteria because results of that kind were firstly achieved for first-order linear

delay differential equations by famous mathematician A. D. Myshkis (see, e. g., [37]).

In what follows, we show that condition (3.87), necessary in statements of R. Ko-

platadze, can be relaxed. Moreover, under some natural additional assumptions, we

improve constants on the right-hand side of inequalities (3.86) and (3.88).

Let the number G∗ be defined by (3.5). By virtue of Theorem 3.7, Proposition 3.6,

and Corollary 3.11, we assume in the sequel that conditions (3.11) and (3.29) are

fulfilled, because otherwise every proper solution of equation (3.1) is oscillatory without

any additional assumption.

Define the number F∗ by (3.31). In view of assumption (3.11), the number F∗ is

well defined. Moreover, assumptions (3.29) yield that

G∗ ≤ 1, F∗ ≤ 1.

Furthermore, Corollaries 3.14 and 3.15 claim that every proper solution of equation

(3.1) is oscillatory provided that either

Q∗(λ, ε) >
1

4(1− λ)
for some λ < 1, ε ∈ [0, 1[ ,
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or

H∗(µ, ε) >
1

4(µ− 1)
for some µ < 1, ε ∈ [0, 1[ ,

where the numbers Q∗(λ, ε) and H∗(µ, ε) are defined by (3.12). Therefore, it is natural

to restrict ourself to the case, where

Q∗(λ, ε) ≤
1

4(1− λ)
, H∗(µ, ε) ≤

1

4(µ− 1)
for all λ < 1, µ < 1, ε ∈ [0, 1[ .

Under these assumptions, we can improve Theorems 3.32 and 3.34 as follows.

Theorem 3.37 ( [45, Thm. 3]). Let there exist numbers λ < 1, µ > 1, ε, δ ∈ [0, 1[

and continuous functions ν, σ : R+ → R+ such that σ is non-decreasing,

τ(t) ≤ ν(t) ≤ σ(t) ≤ t for t ≥ 0, (3.89)

λ(2− λ)

4(1− λ)
≤ Q∗(λ, ε) ≤

1

4(1− λ)
,

µ(2− µ)

4(µ− 1)
≤ H∗(µ, ε) ≤

1

4(µ− 1)
, (3.90)

and

lim sup
t→+∞

(
ν(t)

σ(t)

)1−δF∗ ∫ t

ν(t)

τ(s)p(s)

(
σ(s)

τ(s)

)εG∗
ds > R0 − α∗r0, (3.91)

where

r0 :=
1

2

(
1−

√
1− 4(1− λ)Q∗(λ, ε)

)
,

R0 :=
1

2

(
1 +

√
1− 4(µ− 1)H∗(µ, ε)

)
,

(3.92)

and

α∗ := lim inf
t→+∞

(
ν(t)

t

)1−δF∗
. (3.93)

Then every proper solution of equation (3.1) is oscillatory.

Remark 3.38. Observe that 0 ≤ α∗ ≤ 1 and

max

{
λ

2
, 0

}
≤ r0 ≤

1

2
≤ R0 ≤ min

{µ
2
, 1
}
. (3.94)

Remark 3.39. For the validity of assumption (3.91) it is necessary that∫ +∞

0

τ(s)p(s)

(
σ(s)

τ(s)

)εG∗
ds = +∞. (3.95)

On the other hand, we suppose that (3.11) hold. It worth mentioning that relations

(3.11) and (3.95) are not in any contradiction to each other and thus, Theorem 3.37 is

meaningful.

Remark 3.40. The condition (3.87), necessary for the validity of assumption (3.86)

in Theorem 3.32, is weakened in Theorem 3.37 to condition (3.95). Consequently,

Theorem 3.37 can be applied also in the case, where∫ +∞

0

τ(s)p(s)ds < +∞. (3.96)
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If we put ν ≡ σ and ε = δ in Theorem 3.37, we obtain

Corollary 3.41 ( [45, Cor. 1]). Let there exist numbers λ < 1, µ > 1, ε ∈ [0, 1[

and a non-decreasing function σ : R+ → R+ such that conditions (3.85) and (3.90) are

fulfilled and

lim sup
t→+∞

∫ t

σ(t)

τ(s)p(s)

(
σ(s)

τ(s)

)εG∗
ds > R0 − β∗r0,

where the numbers r0 and R0 are given by relations (3.92) and

β∗ := lim inf
t→+∞

(
σ(t)

t

)1−εF∗
.

Then every proper solution of equation (3.1) is oscillatory.

Remark 3.42. In view of relations (3.94), it is clear that R0 − β∗r0 ≤ 1 and thus,

Corollary 3.41 improves (under additional assumptions (3.90)) Theorem 3.32.

Now we show that, under additional assumptions (3.90), we can also improve the

constant 1
e

in Theorem 3.34. However, to prove Theorem 3.44 below we need the

technical assumption

lim inf
t→+∞

t

τ(t)
< +∞. (3.97)

Therefore, we first give an oscillation criterion for the case, where condition (3.97) does

not hold.

Theorem 3.43 ( [45, Thm. 4]). Let

lim
t→+∞

t

τ(t)
= +∞.

Then every proper solution of equation (3.1) is oscillatory provided G∗ > 0.

Now we present above-mentioned statements improving Theorem 3.34.

Theorem 3.44 ( [45, Thm. 5]). Let condition (3.97) hold and there exist numbers

λ < 1, µ > 1, and ε ∈ [0, 1[ such that inequalities (3.90) are satisfied. Let, moreover,

there exist a continuous function ν : R+ → R+ satisfying

τ(t) ≤ ν(t) ≤ t for t ≥ 0 (3.98)

and

lim inf
t→+∞

νεG∗(t)

∫ t

ν(t)

τ 1−εG∗(s)p(s)ds > R0 − γ∗r0, (3.99)

where the numbers r0 and R0 are given by relations (3.92) and

γ∗ := lim inf
t→+∞

(
ν(t)

t

)εG∗
. (3.100)

Then every proper solution of equation (3.1) is oscillatory.
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Remark 3.45. If εG∗ > 0 then inequality (3.99) can be fulfilled even when condition

(3.96) hold and thus, condition (3.87), necessary for the validity of assumption (3.88)

in Theorem 3.34, is relaxed in Theorem 3.44.

If we put ν ≡ τ and σ ≡ idR+ in Theorems 3.37 and 3.44 then we get

Corollary 3.46 ( [45, Cor. 2]). Let there exist numbers λ < 1, µ > 1 and ε, δ ∈ [0, 1[

such that inequalities (3.90) are satisfied and either

lim sup
t→+∞

(
τ(t)

t

)1−δF∗ ∫ t

τ(t)

τ(s)p(s)

(
s

τ(s)

)εG∗
ds > R0 − η∗r0, (3.101)

or condition (3.97) holds and

lim inf
t→+∞

τ εG∗(t)

∫ t

τ(t)

τ 1−εG∗(s)p(s)ds > R0 − ξ∗r0, (3.102)

where the numbers r0 and R0 are given by relations (3.92) and

η∗ := lim inf
t→+∞

(
τ(t)

t

)1−δF∗
, ξ∗ := lim inf

t→+∞

(
τ(t)

t

)εG∗
. (3.103)

Then every proper solution of equation (3.1) is oscillatory.

Observe that 0 ≤ ξ∗ ≤ 1 and the numbers r0 and R0 given by relations (3.92) satisfy

R0 − r0 =
1

2

(√
1− 4(1− λ)Q∗(λ, ε) +

√
1− 4(µ− 1)H∗(µ, ε)

)
and thus, the difference R0 − r0 converges to zero if Q∗(λ, ε)→ 1

4(1−λ) and H∗(µ, ε)→
1

4(µ−1) . Consequently, it may happen that R0 − ξ∗r0 < 1
e

in which case Corollary 3.46

improves Theorem 3.34 (see Example 3.50.)

In the last two statements we ensure that the number ξ∗ given by formula (3.103)

is equal to 1. At first we put ε = 0 in Corollary 3.46 and we obtain

Corollary 3.47 ( [45, Cor. 3]). Let condition (3.97) be fulfilled and there exist num-

bers λ < 1 and µ > 1 such that

λ(2− λ)

4(1− λ)
≤ Q∗(λ, 0) ≤ 1

4(1− λ)
,

µ(2− µ)

4(µ− 1)
≤ H∗(µ, 0) ≤ 1

4(µ− 1)
.

If, moreover,

lim inf
t→+∞

∫ t

τ(t)

τ(s)p(s)ds

>
1

2

(√
1− 4(1− λ)Q∗(λ, 0) +

√
1− 4(µ− 1)H∗(µ, 0)

)
then every proper solution to equation (3.1) is oscillatory.
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It is clear that if

lim inf
t→+∞

τ(t)

t
> 0

then, in view of assumption (3.11), we have∫ +∞

0

sλp(s)ds < +∞ for all λ < 1.

It allows one to define in this case for every λ < 1 and µ > 1, the numbers

Q̃∗(λ) := lim inf
t→+∞

t1−λ
∫ +∞

t

sλp(s)ds, H̃∗(µ) := lim inf
t→+∞

1

tµ−1

∫ t

0

sµp(s)ds.

Therefore, from Corollary 3.46 we derive

Corollary 3.48 ( [45, Cor. 4]). Let

lim
t→+∞

τ(t)

t
= 1 (3.104)

and there exist numbers λ < 1 and µ > 1 such that the inequalities

λ(2− λ)

4(1− λ)
≤ Q̃∗(λ) ≤ 1

4(1− λ)
,

µ(2− µ)

4(µ− 1)
≤ H̃∗(µ) ≤ 1

4(µ− 1)

are satisfied. If, moreover,

lim sup
t→+∞

∫ t

τ(t)

sp(s)ds >
1

2

(√
1− 4(1− λ)Q̃∗(λ) +

√
1− 4(µ− 1)H̃∗(µ)

)
then every proper solution of equation (3.1) is oscillatory.

Remark 3.49. Under the additional assumption (3.104), not only the constant 1
e

on

the right-hand side of inequality (3.88) in Theorem 3.34 can be improved, but it is also

possible to replace the lower limit in (3.88) by the upper limit.

We mention that assumption (3.104) is meaningful because it holds for a wide class

of delay differential equations, namely, for differential equations with a bounded delay

frequently studied in the literature. On the other hand, we can easily find an example of

an unbounded delay for which equality (3.104) is satisfied, as well (e. g., if τ(t) = t−
√
t

for t large enough).

Example 3.50. On R+, we consider the equation with a proportional delay

u′′(t) + min

{
1

2
,

1

2t2

}
u

(
t

2

)
= 0. (3.105)

One can easily see that condition (3.88) is not fulfilled, because

lim inf
t→+∞

∫ t

τ(t)

τ(s)p(s)ds = lim inf
t→+∞

∫ t

t
2

s

2

1

2s2
ds =

ln 2

4
≯

1

e
. (3.106)
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Therefore, Theorem 3.34 cannot be applied. On the other hand, condition (3.90) with

λ = 0 and µ = 2 is satisfied, since

Q∗(0, 0) = lim inf
t→+∞

t

∫ +∞

t

τ(s)

s
p(s)ds = lim inf

t→+∞
t

∫ +∞

t

s

2s

1

2s2
ds =

1

4
,

H∗(2, 0) = lim inf
t→+∞

1

t

∫ t

0

s2
τ(s)

s
p(s)ds = lim inf

t→+∞

1

t

∫ t

0

s2
s

2s

1

2s2
ds =

1

4

and, moreover, r0 = 0, R0 = 0, where numbers r0 and R0 are defined by (3.92). By

virtue of this and (3.106), one can see that (3.102) holds for ε = 0. Finally, it is clear

that assumption (3.97) is satisfied and thus, according to Corollary 3.46, every proper

solution of equation (3.105) is oscillatory.

3.3.2 Proofs of main results

Proof of Theorem 3.37. Suppose on the contrary that equation (3.1) has a proper non-

oscillatory solution. Let u be a solution of equation (3.1) on the interval [tu,+∞[

satisfying relation (3.27). Analogously to the proof of Lemma 3.22 one can show that

there exist numbers t2 ≥ t1 > tu such that relations (3.32) and (3.34) hold.

For given ε and δ, let t0(ε) and t0(δ) be numbers appearing in Lemma 3.22 with

ζ = ε and ζ = δ, respectively. In view of assumption (3.84), there exists t3 ≥ t2 such

that

τ(t) ≥ max
{
t2, t0(ε), t0(δ)

}
for t ≥ t3. (3.107)

Furthermore,there exists a number t4 ≥ t3 such that

ν(t) ≥ t3 for t ≥ t4. (3.108)

The integration of equality (3.1) from ν(t) to t leads to the equality

u′(ν(t))− u′(t) =

∫ t

ν(t)

p(s)u(τ(s))ds for t ≥ t4.

Therefore, using relations (3.89), (3.30), (3.34), (3.107), (3.108) and the assumption

that the function σ is non-decreasing, one gets

u′(ν(t))− u′(t) =

∫ t

ν(t)

p(s)
u(τ(s))

u(σ(s))
u(σ(s))ds

≥
∫ t

ν(t)

p(s)

(
τ(s)

σ(s)

)1−εG∗
u(σ(s))ds

=

∫ t

ν(t)

τ(s)p(s)

(
σ(s)

τ(s)

)εG∗ u(σ(s))

σ(s)
ds

≥ u(σ(t))

σ(t)

∫ t

ν(t)

τ(s)p(s)

(
σ(s)

τ(s)

)εG∗
ds for t ≥ t4,
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whence we obtain

ν(t)%(ν(t)) ≥ t%(t)
ν(t)

t

u(t)

u(ν(t))

+
ν(t)

σ(t)

u(σ(t))

u(ν(t))

∫ t

ν(t)

τ(s)p(s)

(
σ(s)

τ(s)

)εG∗
ds for t ≥ t4,

where

%(t) :=
u′(t)

u(t)
for t ≥ tu. (3.109)

Hence, by virtue of estimates (3.30), we obtain

ν(t)%(ν(t)) ≥ t%(t)

(
ν(t)

t

)1−δF∗

+

(
ν(t)

σ(t)

)1−δF∗ ∫ t

ν(t)

τ(s)p(s)

(
σ(s)

τ(s)

)εG∗
ds for t ≥ t4.

(3.110)

Now we put

r := lim inf
t→+∞

t%(t), R := lim sup
t→+∞

t%(t), (3.111)

and

A(t) :=

(
ν(t)

σ(t)

)1−δF∗ ∫ t

ν(t)

τ(s)p(s)

(
σ(s)

τ(s)

)εG∗
ds for t ≥ t4. (3.112)

It follows from Lemmas 3.29 and 3.30 that

q∗(λ, u) ≤ 1

4(1− λ)
, h∗(µ, u) ≤ 1

4(µ− 1)
, (3.113)

where the numbers q∗(λ, u) and h∗(µ, u) are defined by (3.55) and (3.56). Moreover,

using assumption (3.83) and estimates (3.30) we easily get the inequalities

q∗(λ, u) ≥ Q∗(λ, ε), h∗(µ, u) ≥ H∗(µ, ε). (3.114)

Therefore, conditions (3.113), (3.114) and assumption (3.90) yield the validity of in-

equalities (3.59) and (3.65) and thus, it follows from Lemmas 3.26 and 3.27 that

r ≥ 1

2

(
1−

√
1− 4(1− λ)q∗(λ, u)

)
≥ 1

2

(
1−

√
1− 4(1− λ)Q∗(λ, ε)

)
≥ 0

and

R ≤ 1

2

(
1 +

√
1− 4(µ− 1)h∗(µ, u)

)
≤ 1

2

(
1 +

√
1− 4(µ− 1)H∗(µ, ε)

)
. (3.115)

Let ε0 > 0 be arbitrary and choose tε0 ≥ t4 such that

t%(t) ≥ r − ε0, ν(t)%(ν(t)) ≤ R + ε0 for t ≥ tε0 . (3.116)
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Then, using assumption (3.89), from inequality (3.110) we get

A(t) ≤ R + ε0 − r
(
ν(t)

t

)1−δF∗
+ ε0 for t ≥ tε0

which, in view of notation (3.93), implies that

lim sup
t→+∞

A(t) ≤ R− rα∗, (3.117)

because the number ε0 was arbitrary. Hence, by virtue of notation (3.92), inequality

(3.117) guarantees that

lim sup
t→+∞

A(t) ≤ R0 − α∗r0

which, in view of notation (3.112), contradicts assumption (3.91). �

Proof of Corollary 3.41. It immediately follows from Theorem 3.37 with ν ≡ σ and

ε = δ. �

Proof of Theorem 3.43. It can be found in [45]. �

Proof of Theorem 3.44. Suppose on the contrary that equation (3.1) has a proper non-

oscillatory solution. Let u be a solution of equation (3.1) on the interval [tu,+∞[

satisfying relation (3.27). It is not difficult to verify that there exists t1 > tu such that

u′(t) ≥ 0 for t ≥ t1.

For given ε, let t0(ε) be the number appearing in Lemma 3.22 with ζ = ε. In view

of assumption (3.84), there exists t2 ≥ t1 such that

τ(t) > t0(ε) for t ≥ t2. (3.118)

Furthermore, there exists a number t3 ≥ t2 such that

ν(t) ≥ t2 for t ≥ t3. (3.119)

The integration of equation (3.1) from ν(t) to t leads to the equality

u′(ν(t))− u′(t) =

∫ t

ν(t)

p(s)u(τ(s))ds for t ≥ t3.

Therefore, using relations (3.83), (3.98), (3.30), (3.118), and (3.119), one gets

u′(ν(t))− u′(t) =

∫ t

ν(t)

p(s)s1−εG∗
u(τ(s))

u(s)

u(s)

s1−εG∗
ds

≥ u(t)

t1−εG∗

∫ t

ν(t)

p(s)s1−εG∗
u(τ(s))

u(s)
ds

=
u(t)

t1−εG∗

∫ t

ν(t)

τ 1−εG∗(s)p(s)ϕ(s)ds for t ≥ t3,
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where

ϕ(t) :=
u(τ(t))

u(t)

(
t

τ(t)

)1−εG∗
for t ≥ t2. (3.120)

Hence, by virtue of estimates (3.30), for t ≥ t3 we obtain

ν(t)%(ν(t))ϕ(t) ≥ t%(t)

(
ν(t)

t

)εG∗ u(τ(t))

u(ν(t))

(
ν(t)

τ(t)

)1−εG∗

+
u(τ(t))

u(ν(t))

(
ν(t)

τ(t)

)1−εG∗
νεG∗(t)

∫ t

ν(t)

τ 1−εG∗(s)p(s)ϕ(s)ds

≥ t%(t)

(
ν(t)

t

)εG∗
+ νεG∗(t)

∫ t

ν(t)

τ 1−εG∗(s)p(s)ϕ(s)ds,

(3.121)

where the function % is given by formula (3.109).

Define the numbers r and R by relations (3.111) and put

B(t) := νεG∗(t)

∫ t

ν(t)

τ 1−εG∗(s)p(s)ds for t ≥ t3 (3.122)

and

ϕ∗ := lim inf
t→+∞

ϕ(t), (3.123)

where the function ϕ is defined by (3.120). Observe that, in view of assumptions (3.83)

and (3.97), estimates (3.30) yield that

1 ≤ ϕ∗ < +∞.
On the other hand, it follows from Lemmas 3.26 and 3.27 that inequalities (3.113) hold,

where the numbers q∗(λ, u) and h∗(µ, u) are defined by (3.55) and (3.56). Moreover,

using assumption (3.83) and estimates (3.30) we easily get inequalities (3.114). There-

fore, conditions (3.113), (3.114) and assumption (3.90) yield the validity of inequalities

(3.59) and (3.65) and thus, it follows from Lemmas 3.26 and 3.27 that relation (3.115)

holds and

0 ≤ 1

2

(
1−

√
1− 4(1− λ)q∗(λ, u)

)
≤ r ≤ 1

2

(
1 +

√
1− 4(1− λ)q∗(λ, u)

)
. (3.124)

Let ε0 ∈ ]0, 1] be arbitrary and choose tε0 ≥ t3 such that relations (3.116) hold and

ϕ(t) ≥ ϕ∗ − ε0 for t ≥ tε0 .

Furthermore, we find a number t∗ε0 ≥ tε0 such that

ν(t) ≥ tε0 for t ≥ t∗ε0 .

Then, using assumption (3.98), from inequalities (3.121) we get

(R + ε0)ϕ(t) ≥ (r − ε0)
(
ν(t)

t

)εG∗
+ (ϕ∗ − ε0)B(t)

≥ r

(
ν(t)

t

)εG∗
− ε0 + (ϕ∗ − ε0)B(t) for t ≥ t∗ε0
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which, in view of notation (3.100) and (3.123), implies that

lim inf
t→+∞

B(t) ≤ R− r

ϕ∗
γ∗, (3.125)

because the number ε0 was arbitrary.

Observe that inequalities (3.124) can be rewritten equivalently to the form

r2 − r + (1− λ)q∗(λ, u) ≤ 0. (3.126)

Moreover, according to notation (3.123), we get

q∗(λ, u) ≥ ϕ∗Q∗(λ, ε).

Hence, it follows immediately from inequality (3.126) that

r2 − r + (1− λ)ϕ∗Q∗(λ, ε) ≤ 0,

whence we get (
r

ϕ∗

)2

− r

ϕ∗
+ (1− λ)Q∗(λ, ε) ≤ 0,

because ϕ∗ ≥ 1. Consequently, we have

r

ϕ∗
≥ 1

2

(
1−

√
1− 4(1− λ)Q∗(λ, ε)

)
.

Finally, by virtue of relation (3.115) and notation (3.92), inequality (3.125) guarantees

that

lim inf
t→+∞

B(t) ≤ R0 − γ∗r0

which, in view of notation (3.122), contradicts assumption (3.99). �

Proof of Corollary 3.46. The assertion of the Corollary follows from Theorems 3.37

and 3.44 with ν ≡ τ and σ ≡ idR+ . �

Proof of Corollary 3.47. It immediately follows from Corollary 3.46 with ε = 0. �

Proof of Corollary 3.48. Using assumptions (3.83), (3.84), and (3.104), we easily get

Q∗(λ, 0) = Q̃∗(λ), H∗(µ, 0) = H̃∗(µ),

and

lim sup
t→+∞

τ(t)

t

∫ t

τ(t)

τ(s)p(s)ds = lim sup
t→+∞

∫ t

τ(t)

sp(s)ds.

Consequently, the assertion of the corollary follows from Corollary 3.46 with ε = δ = 0.

�
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3.4 Nonlinear system

3.4.1 Introduction

On the half-line [0,+∞[ , we consider the two-dimensional system of nonlinear

ordinary differential equations

u′ = g(t)|v| 1α sgn v,

v′ = −p(t)|u|αsgnu,
(3.127)

where α > 0 and p, g : [0,+∞[→ R are locally Lebesgue integrable functions.

By a solution of system (3.127) on the interval J ⊆ [0,+∞[ we understand a pair

(u, v) of functions u, v : J → R, which are absolutely continuous on every compact

interval contained in J and satisfy equalities (3.127) almost everywhere in J .

It was proved by Mirzov in [35] that all non-extendable solutions of system (3.127)

are defined on the whole interval [0,+∞[. Therefore, when we are speaking about

a solution of system (3.127), we assume that it is defined on [0,+∞[.

Definition 3.51. A solution (u, v) of system (3.127) is called non-trivial if u 6≡ 0 on

any neighborhood of +∞. We say that a non-trivial solution (u, v) of system (3.127)

is oscillatory if the function u has a sequence of zeros tending to infinity, and non-

oscillatory otherwise.

In [35, Theorem 1.1], it is shown that a certain analogue of Sturm’s theorem holds

for system (3.127), if the additional assumption

g(t) ≥ 0 for a. e. t ≥ 0 (3.128)

is satisfied. Especially, under assumption (3.128), if system (3.127) has an oscillatory

solution, then any other its non-trivial solution is also oscillatory.

On the other hand, it is clear that if g ≡ 0 on some neighborhood of +∞, then all

non-trivial solutions of system (3.127) are non-oscillatory. That is why it is natural to

assume that inequality (3.128) is satisfied and

meas{τ ≥ t : g(τ) > 0} > 0 for t ≥ 0. (3.129)

Definition 3.52. We say that system (3.127) is oscillatory if all its non-trivial solu-

tions are oscillatory.

Oscillation theory for ordinary differential equations and their systems is a widely

studied and well-developed topic of the qualitative theory of differential equations. As

for the results which are closely related to those of this section, we should mention

[6, 13, 14, 16, 24–26, 34, 38, 46]. Some criteria established in these papers for the second

order linear differential equations or for two-dimensional systems of linear differential

equations are generalized to the considered system (3.127) below.

Many results (see, e.g., survey given in [6]) have been obtained in oscillation theory

of the so-called ”half-linear” equation(
r(t)|u′|q−1sgnu′

)′
+ p(t)|u|q−1sgnu = 0 (3.130)
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(alternatively this equation is referred as ”equation with the scalar q-Laplacian”).

Equation (3.130) is usually considered under the assumptions q > 1, p, r : [0,+∞[→ R
are continuous and r is positive. One can see that equation (3.130) is a particular case

of system (3.127). Indeed, if the function u, with properties u ∈ C1 and r|u′|q−1sgnu′ ∈
C1, is a solution of equation (3.130), then the vector function (u, r|u′|q−1sgnu′) is a so-

lution of system (3.127) with g(t) := r
1

1−q (t) for t ≥ 0 and α := q − 1.

Moreover, the equation

u′′ +
1

α
p(t)|u|α|u′|1−αsgnu = 0 (3.131)

is also studied in the existing literature under the assumptions α ∈ ]0, 1] and p : R+ → R
is a locally integrable function. It is mentioned in [16] that if u is a so-called proper

solution of (3.131) then it is also a solution of system (3.127) with g ≡ 1 and vice

versa. Some oscillation and non-oscillation criteria for equation (3.131) can be found,

e.g., in [16,24].

Finally, we mention the paper [5], where a certain analogy of Hartman-Wintner’s

theorem is established (origin one can find in [12,50]), which allows us to derive oscil-

lation criteria of Hille-Nehari’s type for system (3.127).

In what follows, we assume that the coefficient g is non-integrable on [0,+∞[ , i.e.,∫ +∞

0

g(s)ds = +∞. (3.132)

Let

f(t) :=

∫ t

0

g(t)ds for t ≥ 0.

In view of assumptions (3.128), (3.129), and (3.132), we have

lim
t→+∞

f(t) = +∞ (3.133)

and there exists tg ≥ 0 such that f(t) > 0 for t > tg and f(tg) = 0. We can assume

without loss of generality that tg = 0, since we are interested in behaviour of solutions

in the neighbourhood of +∞, i.e., we have

f(t) > 0 for t > 0. (3.134)

For any λ ∈ [0, α[ , we put

cα(t;λ) :=
α− λ
fα−λ(t)

∫ t

0

g(s)

fλ−α+1(s)

(∫ s

0

fλ(ξ)p(ξ)dξ

)
ds for t > 0.

Now, we formulate an analogue (in a suitable form for us) of the Hartman-Wintner’s

theorem for the system (3.127) established in [5].

Theorem 3.53 ( [5, Corollary 2.5 (with ν = 1 − α + λ)]). Let conditions (3.128),

(3.129), and (3.132) hold, λ < α, and either

lim
t→+∞

cα(t;λ) = +∞,
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or

−∞ < lim inf
t→+∞

cα(t;λ) < lim sup
t→+∞

cα(t;λ).

Then system (3.127) is oscillatory.

Clearly, two cases are not covered by Theorem 3.53, namely, lim inft→+∞ cα(t;λ) =

−∞ and the function cα(t;λ) has a finite limit. The aim of this section is to find

oscillation criteria for system (3.127) in the second mentioned case. Consequently, in

what follows, we assume that

lim
t→+∞

cα(t;λ) =: c∗α(λ) ∈ R. (3.135)

3.4.2 Main results

In this section, we formulate main results and theirs corollaries.

Theorem 3.54. Let λ ∈ [0, α[ and (3.135) hold. Let, moreover, the inequality

lim sup
t→+∞

fα−λ(t)

ln f(t)
(c∗α(λ)− cα(t;λ)) >

(
α

1 + α

)1+α

(3.136)

be satisfied. Then system (3.127) is oscillatory.

We introduce the following notations. For any λ ∈ [0, α[ and µ ∈ ]α,+∞[ , we put

Q(t;α, λ) := fα−λ(t)

(
c∗α(λ)−

∫ t

0

p(s)fλ(s)ds

)
for t > 0,

H(t;α, µ) :=
1

fµ−α(t)

(∫ t

0

p(s)fµ(s)ds

)
for t > 0,

where the number c∗α(λ) is given by (3.135). Moreover, we denote lower and upper

limits of the functions Q(·;α, λ) and H(·;α, µ) as follows

Q∗(α, λ) := lim inf
t→+∞

Q(t;α, λ), H∗(α, µ) := lim inf
t→+∞

H(t;α, µ),

Q∗(α, λ) := lim sup
t→+∞

Q(t;α, λ), H∗(α, µ) := lim sup
t→+∞

H(t;α, µ).

Now we formulate two corollaries of Theorem 3.54.

Corollary 3.55. Let λ ∈ [0, α[ , µ ∈ ]α,+∞[ , and (3.135) hold. Let, moreover,

lim inf
t→+∞

(Q(t;α, λ) +H(t;α, µ)) >
µ− λ

(α− λ)(µ− α)

(
α

1 + α

)1+α

. (3.137)

Then system (3.127) is oscillatory.
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Corollary 3.56. λ ∈ [0, α[ , µ ∈ ]α,+∞[ , and (3.135) hold. Let, moreover, either

Q∗(α, λ) >
1

α− λ

(
α

1 + α

)1+α

, (3.138)

or

H∗(α, µ) >
1

µ− α

(
α

1 + α

)1+α

. (3.139)

Then system (3.127) is oscillatory.

Remark 3.57. Oscillation criteria (3.138) and (3.139) coincide with the well-known

Hille-Nehari’s results for the second order linear differential equations established in

[13,38].

Theorem 3.58. Let λ ∈ [0, α[ , µ ∈ ]α,+∞[ , and (3.135) hold. Let, moreover,

lim sup
t→+∞

(Q(t;α, λ) +H(t;α, µ)) >
1

α− λ

(
λ

1 + α

)1+α

+
1

µ− α

(
µ

1 + α

)1+α

. (3.140)

Then system (3.127) is oscillatory.

Now we give two statements complementing Corollary 3.56 in a certain sense.

Theorem 3.59. Let λ ∈ [0, α[ , µ ∈ ]α,+∞[ , and (3.135) hold. Let, moreover, in-

equalities
α

α− λ
(
γ − γ 1+α

α

)
≤ Q∗(α, λ) ≤ 1

α− λ

(
α

α + 1

)α+1

(3.141)

and

H∗(α, µ) >
1

µ− α

(
µ

1 + α

)1+α

− γ − A(α, λ) (3.142)

be satisfied, where

γ :=

(
λ

1 + α

)α
(3.143)

and A(α, λ) is the smallest root of the equation

α|x+ γ| 1+αα − αx+ (α− λ)Q∗(α, λ)− αγ = 0. (3.144)

Then system (3.127) is oscillatory.

Theorem 3.60. Let λ ∈ [0, α[ , µ ∈ ]α,+∞[ , and (3.135) hold. Let, moreover, in-

equalities(
µ

1 + α

)α
α(1 + α− µ)

(µ− α)(1 + α)
≤ H∗(α, µ) ≤ 1

µ− α

(
α

1 + α

)1+α

(3.145)

and

Q∗(α, λ) > B(α, µ) +
1

α− λ

(
λ

1 + α

)1+α

(3.146)

be satisfied, where B(α, µ) is the greatest root of the equation

α|x| 1+αα − αx+ (µ− α)H∗(α, µ) = 0. (3.147)

Then system (3.127) is oscillatory.
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Finally, we formulate an assertion for the case, when both conditions (3.141) and

(3.145) are fulfilled. In this case we can obtain better results than in Theorems 3.59

and 3.60.

Theorem 3.61. Let λ ∈ [0, α[ , µ ∈ ]α,+∞[ , and (3.135) hold. Let, moreover, condi-

tions (3.141) and (3.145) be satisfied and

lim sup
t→+∞

(Q(t;α, λ) +H(t;α, µ)) > B(α, µ)− A(α, λ)

+Q∗(α, λ)+H∗(α, µ)− γ,
(3.148)

where the number γ is defined by (3.143), A(α, λ) is the smallest root of equation

(3.144), and B(α, µ) is the greatest root of equation (3.147). Then system (3.127) is

oscillatory.

Remark 3.62. Presented statements generalize results stated in [6,13,14,16,24–26,34,

38,46] concerning system (3.127) as well as equations (3.130) and (3.131). In particular,

if we put α = 1, λ = 0, and µ = 2, then we obtain oscillation criteria for linear system

of differential equations presented in [46]. Moreover, the results of [16] obtained for

equation (3.131) are in a compliance with those above, where we put g ≡ 1, λ = 0,

and µ = 1 + α. Observe also that Corollary 3.56 and Theorems 3.59 and 3.60 extend

oscillation criteria for equation (3.131) stated in [24], where the coefficient p is supposed

to be nonnegative. In the monograph [6], it is noted that the assumption p(t) ≥ 0 for t

large enough can be easily relaxed to
∫ t
0
p(s)ds > 0 for large t. It is worth mentioning

here that we do not require any assumption of this kind.

Finally we provide an example, where we cannot apply oscillation criteria from the

above-mentioned papers, but we can use Theorem 3.54 successfully.

Example 3.63. Let α = 2 and

g(t) := 1, p(t) := t cos

(
t2

2

)
+

1

(t+ 1)3
for t ≥ 0.

It is clear that the function p and its integral∫ t

0

p(s)ds = sin

(
t2

2

)
− 1

2(t+ 1)2
+

1

2
for t ≥ 0

change their signs in any neighbourhood of +∞. Therefore, neither of results mentioned

in Remark 3.62 can be applied.

On the other hand, we have

c2(t; 0) =
2

t2

∫ t

0

s

(∫ s

0

(
ξ cos

ξ2

2
+

1

(ξ + 1)3

)
dξ

)
ds

=
1

2
− 2 cos t2

2

t2
+

3

t2
− ln(t+ 1)

t2
− 1

t2(t+ 1)
for t > 0
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and thus, the function c2(·, 0) has the finite limit

c∗α(0) = lim
t→+∞

c2(t; 0) =
1

2
.

Moreover,

lim sup
t→+∞

t2

ln t
(c∗α(0)− c2(t; 0)) = lim sup

t→+∞

(
2 cos t2

2
− 3

ln t
+

ln(t+ 1)

ln t
+

1

(t+ 1) ln t

)
= 1.

Consequently, according to Theorem 3.54 with λ = 0, system (3.127) is oscillatory.

3.4.3 Auxiliary lemmas

We first formulate two lemmas established in [5], which we use in this section.

Lemma 3.64 ( [5, Lemma 3.1]). Let α > 0 and ω ≥ 0. Then the inequality

ωx− α|x| 1+αα ≤
(

ω

1 + α

)1+α

is satisfied for all x ∈ R.

Lemma 3.65 ( [5, Lemma 3.2]). Let α > 0. Then

α|x+ y| 1+αα ≥ α|y| 1+αα + (1 + α)x|y| 1α sgny forx, y ∈ R.
Remark 3.66. One can easily verify (see the proofs of Lemma 4.2 and Corollary 2.5

in [5]) that if (u, v) is a solution of system (3.127) satisfying

u(t) 6= 0 for t ≥ tu (3.149)

with tu > 0 and the function cα(·;λ) has a finite limit (3.135), then

c∗α(λ) = fλ(tu)ρ(tu) +

∫ tu

0

fλ(s)p(s)ds+
α(γ − γ 1+α

α )

α− λ · 1

fα−λ(tu)

−
∫ +∞

tu

g(s)fλ−1−α(s)h(s)ds,

(3.150)

where the number γ is defined by (3.143),

h(t) := α|fα(t)ρ(t) + γ| 1+αα − (1 + α)fα(t)ρ(t)γ
1
α − αγ 1+α

α for t ≥ tu, (3.151)

and

ρ(t) :=
v(t)

|u(t)|αsgnu(t)
− 1

fα(t)

(
λ

1 + α

)α
for t ≥ tu. (3.152)

Moreover, acording to Lemma 3.65, we have

h(t) ≥ 0 for t ≥ tu (3.153)

and one can show (see Lemma 4.1 and the proof of Corollary 2.5 in [5]) that∫ +∞

tu

g(s)fλ−1−α(s)h(s)ds < +∞. (3.154)
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Lemma 3.67. Let λ ∈ [0, α[ , (3.135) and (3.141) hold, where the number γ is defined

by (3.143). Then every non-oscillatory solution (u, v) of system (3.127) satisfies

lim inf
t→+∞

(
fα(t)v(t)

|u(t)|αsgnu(t)
− γ
)
≥ A(α, λ), (3.155)

where A(α, λ) denotes the smallest root of equation (3.144) .

Proof. Let (u, v) be a non-oscillatory solution of system (3.127). Then there exists

tu > 0 such that (3.149) holds. Define the function ρ by (3.152). Then we obtain from

(3.127) that

ρ′(t) = −p(t)− αg(t)

∣∣∣∣ρ(t) +
γ

fα(t)

∣∣∣∣ 1+αα + αγ
g(t)

f 1+α(t)
for a. e. t ≥ tu. (3.156)

Multiplaying the last equality by fλ(t) and integrating it from tu to t, we get∫ t

tu

fλ(s)ρ′(s)ds = −α
∫ t

tu

g(s)fλ−1−α(s) |ρ(s)fα(s) + γ| 1+αα ds

+ αγ

∫ t

tu

g(s)fλ−1−α(s)ds−
∫ t

tu

fλ(s)p(s)ds for t ≥ tu.

(3.157)

Integrating the left-hand side of (3.157) by parts, we obtain

fλ(t)ρ(t) =
(
αγ − αγ 1+α

α

)∫ t

tu

g(s)fλ−1−α(s)ds−
∫ t

tu

fλ(s)p(s)ds

+ fλ(tu)ρ(tu)−
∫ t

tu

g(s)fλ−1−α(s)h(s)ds for t ≥ tu,

where the function h is defined in (3.151). Hence,

fλ(t)ρ(t) = δ(tu)−
∫ t

0

fλ(s)p(s)ds−
∫ t

tu

g(s)fλ−1−α(s)h(s)ds

−
α
(
γ − γ 1+α

α

)
α− λ

1

fα−λ(t)
for t ≥ tu,

(3.158)

where

δ(tu) := fλ(tu)ρ(tu) +

∫ tu

0

fλ(s)p(s)ds+
α
(
γ − γ 1+α

α

)
α− λ

1

fα−λ(tu)
.

Therefore, in view of relations (3.150) and (3.154), it follows from (3.158) that

fλ(t)ρ(t) = c∗α(λ)−
∫ t

0

fλ(s)p(s)ds+

∫ +∞

t

g(s)fλ−1−α(s)h(s)ds

−
α
(
γ − γ 1+α

α

)
α− λ

1

fα−λ(t)
for t ≥ tu.

(3.159)
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Hence,

fα(t)ρ(t) = Q(t;α, λ) + fα−λ(t)

∫ +∞

t

g(s)fλ−1−α(s)h(s)ds

−
α
(
γ − γ 1+α

α

)
α− λ for t ≥ tu.

(3.160)

Put

m := lim inf
t→+∞

fα(t)ρ(t). (3.161)

It is clear that if m = +∞, then (3.155) holds. Therefore, we suppose that

m < +∞.

In view of (3.141), (3.153), and (3.161), relation (3.160) yields that

m ≥ Q∗(α, λ)− α

α− λ
(
γ − γ 1+α

α

)
≥ 0. (3.162)

If Q∗(α, λ) = α
α−λ(γ − γ

1+α
α ), then 0 is a root of equation (3.144). Moreover,

in view of Lemma 3.65 and the assumption λ < α, we see that the function x 7→
α|x+γ| 1+αα −αx−αγ 1+α

α is positive on ]−∞, 0[ . Consequently, by virtue of notations

(3.152), (3.161) and relation (3.162), desired estimate (3.155) holds.

Now suppose that Q∗(α, λ) > α
α−λ(γ − γ

1+α
α ). Let ε ∈ ]0, Q∗(α, λ)− α

α−λ(γ − γ
1+α
α )[

be arbitrary. According to (3.162), it is clear that

m > ε. (3.163)

Choose tε ≥ tu such that

fα(t)ρ(t) ≥ m− ε and Q(t;α, λ) ≥ Q∗(α, λ)− ε for t ≥ tε. (3.164)

Then it follows from (3.160) that

fα(t)ρ(t) ≥ Q∗(α, λ)− ε+ fα−λ(t)

∫ +∞

t

g(s)fλ−1−α(s)h(s)ds

− α
(
γ − γ 1+α

α

)
α− λ for t ≥ tε.

(3.165)

On the other hand, the function x 7→ α|x+γ| 1+αα −(1+α)xγ
1
α−αγ 1+α

α is non-decreasing

on [0,+∞[. Therefore, by virtue of (3.153), (3.163), and (3.164), one gets from (3.165)

that

fα(t)ρ(t) ≥ Q∗(α, λ)− ε+
α|(m− ε) + γ| 1+αα − αγ − λ(m− ε)

α− λ for t ≥ tε,

which implies

m ≥ Q∗(α, λ)− ε+
α|(m− ε) + γ| 1+αα − αγ − λ(m− ε)

α− λ .
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Since ε was arbitrary, the latter relation leads to the inequality

α|m+ γ| 1+αα − αm+Q∗(α, λ)(α− λ)− αγ ≤ 0. (3.166)

One can easily derive that the function y : x 7→ α|x+γ| 1+αα −αx+Q∗(α, λ)(α−λ)−αγ
is decreasing on ] − ∞, ( α

1+α
)α − γ] and increasing on [( α

1+α
)α − γ,+∞[ . Therefore,

in view of assumption (3.141), the function y is non-positive at the point
(

α
1+α

)α − γ,

which together with (3.152), (3.161), and (3.166) implies desired estimate (3.155). �

Lemma 3.68. Let µ ∈ ]α,+∞[ and (3.145) hold. Then every non-oscillatory solution

(u, v) of system (3.127) satisfies

lim sup
t→+∞

fα(t)v(t)

|u(t)|αsgnu(t)
≤ B(α, µ), (3.167)

where B(α, µ) is the greatest root of equation (3.147).

Proof. Let (u, v) be a non-oscillatory solution of system (3.127). Then there exists

tu > 0 such that (3.149) holds. Define the function ρ by (3.152). Then from (3.127)

we obtain the equality (3.156), where the number γ is defined by (3.143).

Multiplaying (3.156) by fµ(t) and integrating it from tu to t, we obtain

t∫
tu

fµ(s)ρ′(s)ds = −
t∫

tu

fµ(s)p(s)ds− α
t∫

tu

g(s)fµ−α−1(s)|ρ(s)fα(s) + γ| 1+αα ds

+ αγ

t∫
tu

g(s)fµ−α−1(s)ds for t ≥ tu.

Integrating the left-hand side of the last equality by parts, we get

fα(t)ρ(t) = fα−µ(t)

t∫
tu

g(s)fµ−α−1(s)
[
µfα(s)ρ(s)− α|ρ(s)fα(s) + γ| 1+αα

]
ds

+ δ(tu)f
α−µ(t)−H(t;α, µ) +

αγ

µ− α for t ≥ tu,

(3.168)

where

δ(tu) := fµ(tu)ρ(tu) +

∫ tu

0

fµ(s)p(s)ds− αγ

µ− αf
µ−α(tu). (3.169)

According to Lemma 3.64, it follows from (3.168) that

fα(t)ρ(t) ≤ δ1(tu)f
α−µ(t)−H(t;α, µ) +

1

µ− α

(
µ

1 + α

)1+α

− γ for t ≥ tu, (3.170)

where

δ1(tu) := δ(tu)−
fµ−α(tu)

µ− α

((
µ

1 + α

)1+α

− µγ
)
. (3.171)
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Put

M := lim sup
t→+∞

(fα(t)ρ(t) + γ) . (3.172)

Obviously, if M = −∞ then (3.167) holds. Therefore, suppose that

M > −∞.

By virtue of (3.133), inequality (3.170) yields

M ≤ −H∗(α, µ) +
1

µ− α

(
µ

1 + α

)1+α

. (3.173)

If H∗(α, µ) =
(

µ
1+α

)α α(1+α−µ)
(µ−α)(1+α) , then it is not difficult to verify that ( µ

1+α
)α is a

root of the equation (3.147) and the function x 7→ α|x| 1+αα − αx + (µ − α)H∗(α, µ)

is positive on ]( µ
1+α

)α,+∞[ . Consequently, it follows from (3.172) and (3.173) that

(3.167) is satisfied.

Now suppose that

H∗(α, µ) >

(
µ

1 + α

)α
α(1 + α− µ)

(µ− α)(1 + α)
.

Using the latter inequality in (3.173), we get

M <

(
µ

1 + α

)α
.

Let ε ∈]0,
(

µ
1+α

)α −M [ be arbitrary and choose tε ≥ tu such that

γ + fα(t)ρ(t) ≤M + ε, H(t;α, µ) ≥ H∗(α, µ)− ε for t ≥ tε. (3.174)

Observe that the function x 7→ µx − α|x| 1+αα is non-decrasing on ] −∞,
(

µ
1+α

)α
] and

thus, using relations (3.174) and M + ε <
(

µ
1+α

)α
, from (3.168) we get

fα(t)ρ(t) ≤ δ2(tu)f
α−µ(t)−H∗(α, µ) + ε+

αγ

µ− α −
µγ

µ− α

+ fα−µ(t)

t∫
tu

g(s)fµ−α−1(s)
[
µ (M + ε)− α|M + ε| 1+αα

]
ds for t ≥ tε,

where

δ2(t) := fµ(tu)ρ(tu) +

∫ tu

0

fµ(s)p(s)ds+ γfµ−α(tu).

Consequently,

fα(t)ρ(t) + γ ≤ δ3(tu)f
α−µ(t)−H∗(α, µ) + ε

+
µ (M + ε)− α|M + ε| 1+αα

µ− α for t ≥ tε,
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where

δ3(tu) := δ2(tu)−
µ (M + ε)− α|M + ε| 1+αα

µ− α fµ−α(tu),

which, by virtue of the assumption α < µ and conditiond (3.133) and (3.172), yields

that

M ≤ −H∗(α, µ) + ε+
µ (M + ε)− α|M + ε| 1+αα

µ− α .

Since ε was arbitrary, the latter inequality leads to

α|M | 1+αα − αM + (µ− α)H∗(α, µ) ≤ 0. (3.175)

One can easily derive that the function y : x 7→ α|x| 1+αα − αx + H∗(α, µ)(µ − α) is

decreasing on ] − ∞, ( α
1+α

)α] and increasing on [( α
1+α

)α,+∞[. Therefore, in view of

assumption (3.145), the function y is non-positive at the point
(

α
1+α

)α
, which together

with (3.152), (3.172), and (3.175) implies desired estimate (3.167). �

3.4.4 Proofs of main results

Proof of Theorem 3.54. Assume on the contrary that system (3.127) is not oscillatory,

i.e., there exists a solution (u, v) of system (3.127) satisfying relation (3.149) with

tu > 0. Analogously to the proof of Lemma 3.67 we show that equality (3.159) holds,

where the functions h, ρ and the number γ are defined by (3.151), (3.152), and (3.143).

Moreover, conditions (3.153) and (3.154) are satisfied.

Multiplaying of (3.159) by g(t)fα−1−λ(t) and integrating it from tu to t, one gets∫ t

tu

g(s)fα−1(s)ρ(s)ds = c∗α(λ)

∫ t

tu

g(s)

f 1+λ−α(s)
ds

−
∫ t

tu

g(s)

f 1+λ−α(s)

(∫ s

0

fλ(ξ)p(ξ)dξ

)
ds

+

∫ t

tu

g(s)

f 1+λ−α(s)

(∫ +∞

s

g(ξ)fλ−1−α(ξ)h(ξ)dξ

)
ds

− α

α− λ
(
γ − γ 1+α

α

)∫ t

tu

g(s)

f(s)
ds for t ≥ tu,

(3.176)

Observe that∫ t

tu

g(s)

f 1+λ−α(s)

(∫ +∞

s

g(ξ)fλ−1−α(ξ)h(ξ)dξ

)
ds

= −f
α−λ(t)

α− λ

∫ +∞

t

g(s)fλ−1−α(s)h(s)ds+
1

α− λ

∫ t

tu

g(s)

f(s)
h(s)ds

− fα−λ(tu)

α− λ

∫ +∞

tu

g(s)fλ−1−α(s)h(s)ds for t ≥ tu.
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Hence, it follows from (3.176) that

fα−λ(t) (c∗α(λ)− cα(t;λ))

=

∫ t

tu

g(s)

f(s)

[
(α− λ)fα(s)ρ(s)− h(s) + α

(
γ − γ 1+α

α

)]
ds

+ fα−λ(tu)

[
c∗α(λ)− cα(tu;λ) +

∫ +∞

tu

g(s)fλ−1−α(s)h(s)ds

]

− fα−λ(t)
∫ +∞

t

g(s)fλ−1−α(s)h(s)ds for t ≥ tu.

(3.177)

On the other hand, according to (3.143), (3.151), and Lemma 3.64 with ω := α, the

estimate

(α− λ)fα(s)ρ(s)− h(s) + α
(
γ − γ 1+α

α

)
= α (fα(s)ρ(s) + γ)− α|fα(s)ρ(s) + γ| 1+αα ≤

(
α

1 + α

) 1+α
α

(3.178)

holds for s ≥ tu. Moreover, in view of (3.128), (3.134), and (3.153), it is clear that

fα−λ(t)

∫ +∞

t

g(s)fλ−1−α(s)h(s)ds ≥ 0 for t ≥ tu.

Consequently, by virtue of the last inequality and (3.178), it follows from (3.177)

that

fα−λ(t) [c∗α(λ)− cα(t;λ)] ≤
(

α

1 + α

) 1+α
α

ln
f(t)

f(tu)

+ fα−λ(tu)

[
c∗α(λ)− cα(tu;λ) +

∫ +∞

tu

g(s)fλ−1−α(s)h(s)ds

]
for t ≥ tu.

Hence, in view of (3.133), we get

lim sup
t→+∞

fα−λ(t)

ln f(t)
[c∗α(λ)− cα(t;λ)] ≤

(
α

1 + α

) 1+α
α

,

which contradicts (3.136). �

Proof of Corollary 3.55. Observe that for t > 0, we have

fα−λ(t)

ln f(t)
(c∗α(λ)− cα(t;λ)) =

α− λ
ln f(t)

t∫
0

g(s)

f(s)
Q(s;α, λ)ds (3.179)
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and

Q(t;α, λ) +H(t;α, µ) = (µ− λ)fα−µ(t)

t∫
0

g(s)fµ−α−1(s)Q(s;α, λ)ds. (3.180)

Moreover, it is easy to show that

t∫
0

g(s)

f(s)
Q(s;α, λ)ds = fα−µ(t)

t∫
0

g(s)fµ−α−1(s)Q(s;α, λ)ds

+ (µ− α)

t∫
0

g(s)fα−µ−1(s)

 s∫
0

g(ξ)fµ−α−1(ξ)Q(ξ;α, λ)dξ

 ds for t > 0.

(3.181)

On the other hand, by virtue of (3.137), from relation (3.180) one gets

lim inf
t→+∞

fα−µ(t)

t∫
0

g(s)fµ−α−1(s)Q(s;α, λ)ds >

(
α

α + 1

)α+1
1

(α− λ)(µ− α)
.

Therefore, in view of relation (3.133), it follows from (3.181) that

lim inf
t→+∞

1

ln f(t)

t∫
0

g(s)

f(s)
Q(s;α, λ)ds >

(
α

α + 1

)α+1
1

α− λ. (3.182)

Now, equality (3.179) and inequality (3.182) guarantee the validity of condition (3.136)

and thus, the assertion of the corollary follows from Theorem 3.54. �

Proof of Corollary 3.56. If assumption (3.138) holds, then it follows from (3.179) that

condition (3.136) is satisfied and thus, the assertion of the corollary follows from The-

orem 3.54.

Let now assumption (3.139) be fulfilled. Observe that

t∫
0

fα(s)p(s)ds = H(t;α, µ) + (µ− α)

∫ t

0

g(s)

f(s)
H(s;α, µ)ds for t > 0.

Therefore, in view of (3.139), we obtain

lim inf
t→+∞

1

ln f(t)

∫ t

0

fα(s)p(s)ds >

(
α

α + 1

)α+1

. (3.183)

On the other hand, it is clear that

c′α(t;λ) =
−(α− λ)2g(t)

f 1+α−λ

∫ t

0

g(s)fα−λ−1(s)

(∫ s

0

fλ(ξ)p(ξ)dξ

)
ds

+
(α− λ)g(t)

f(t)

∫ t

0

fλ(s)p(s)ds

=
(α− λ)g(t)

fα−λ+1(t)

∫ t

0

fα(s)p(s)ds for t > 0.
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Hence, we have

cα(τ ;λ)− cα(t;λ) = (α− λ)

∫ τ

t

g(s)

fα−λ+1(s)

(∫ s

0

fα(ξ)p(ξ)dξ

)
ds τ ≥ t > 0

and consequently, by virtue of assumption (3.135) and condition (3.183), we get

c∗α(λ)− cα(t;λ) =

(α− λ)

∫ +∞

t

g(s) ln f(s)

fα−λ+1(s)

(
1

ln f(s)

∫ s

0

fα(ξ)p(ξ)dξ

)
ds for t > 0.

(3.184)

In view of (3.183), there exist ε > 0 and tε > 0 such that

1

ln f(t)

∫ t

0

fα(s)p(s)ds ≥
(

α

α + 1

)α+1

+ ε for t ≥ tε.

Hence, it follows from (3.184) that

c∗α(λ)− cα(t;λ) ≥ (α− λ)

((
α

α + 1

)α+1

+ ε

)∫ +∞

t

g(s) ln f(s)

fα−λ+1(s)
for t ≥ tε.

Since ε > 0, by virtue of (3.133), from the last relation we derive inequality (3.136).

Therefore, the assertion of the corollary follows from Theorem 3.54. �

Proof of Theorem 3.58. Assume on the contrary that system (3.127) is not oscillatory,

i.e., there exists a solution (u, v) of system (3.127) satisfying relation (3.149) with

tu > 0. Analogously to the proofs of Lemmas 3.67 and 3.68 we derive equalities (3.159)

and (3.168), where the numbers γ, δ(tu) and the functions h, ρ are given by (3.143),

(3.169) and (3.151), (3.152).

It follows from (3.159) and (3.168) that

Q(t;α, λ) +H(t;α, µ) = −fα−λ(t)
∫ +∞

t

g(s)fλ−1−α(s)h(s)ds

+
α

α− λ
(
γ − γ 1+α

α

)
+

αγ

µ− α + δ(tu)f
α−µ(t)

+ fα−µ(t)

t∫
tu

g(s)fµ−α−1(s)
[
µfα(s)ρ(s)− α|ρ(s)fα(s) + γ| 1+αα

]
ds

(3.185)

is satisfied for t ≥ tu. Moreover, according to Lemma 3.64 with ω := µ, it is clear that

µ (fα(t)ρ(t) + γ)− α|ρ(t)fα(t) + γ| 1+αα ≤
(

µ

1 + α

)1+α

for t ≥ tu. (3.186)

Therefore, using (3.143), (3.153), and (3.186) in relation (3.185), we get

Q(t;α, λ) +H(t;α, µ) ≤ 1

α− λ

(
λ

1 + α

)1+α

+
1

µ− α

(
µ

1 + α

)1+α

+δ̃(tu)f
α−µ(t) for t ≥ tu,

(3.187)
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where

δ̃(tu) := δ(tu)−
[(

µ

1 + α

)1+α

− µγ
]
fµ−α(tu)

µ− α .

Consequently, by virtue of (3.133), relation (3.187) leads to a contradiction with as-

sumption (3.140). �

Proof of Theorem 3.59. Suppose on the contrary that system (3.127) is not oscillatory.

Then there exists a solution (u, v) of system (3.127) satisfying relation (3.149) with

tu > 0. Analogously to the proof of Lemma 3.68 one can show that relation (3.170)

holds, where the numbers γ, δ1(tu) and the function ρ are given by (3.143), (3.171),

and (3.152). On the other hand, according to Lemma 3.67, estimate (3.155) is fulfilled,

where A(α, λ) is the smallest root of equation (3.144).

Let ε > 0 be arbitrary. Then there exists tε ≥ tu such that

fα(t)ρ(t) ≥ A(α, λ)− ε for t ≥ tε.

Hence, it follows from (3.170) that

H(t;α, µ) ≤ δ1(tu)f
α−µ(t)− A(α, λ) + ε+

1

µ− α

(
µ

1 + α

)1+α

− γ for t ≥ tε.

Since ε was arbitrary, in view of (3.133), from the latter inequality we get

H∗(α, µ) ≤ 1

µ− α

(
µ

1 + α

)1+α

− γ − A(α, λ, γ),

which contradicts assumption (3.142). �

Proof of Theorem 3.60. Assume on the contrary that system (3.127) is not oscillatory,

i.e., there exists a solution (u, v) of system (3.127) satisfying relation (3.149) with

tu > 0. Analogously to the proof of Lemma 3.67 we show that equality (3.160) holds,

where the number γ and the functions h, ρ are defined by (3.143), (3.151), and (3.152).

On the other hand, according to Lemma 3.68, estimate (3.167) is fulfilled, where

B(α, µ) is the greatest root of equation (3.147). Let ε > 0 be arbitrary. Then there

exists tε ≥ tu such that

fα(t)ρ(t) + γ ≤ B(α, µ) + ε for t ≥ tε.

In view of the last inequality, (3.128), (3.134) and (3.153), it follows from (3.160) that

Q(t;α, λ) ≤ B(α, µ) + ε− γ +
α

α− λ
(
γ − γ 1+α

α

)
for t ≥ tε.

Since ε was arbitrary, we get

Q∗(α, λ) ≤ B(α, µ) +
γ

1+α
α

α− λ,

which contradicts (3.146). �
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Proof of Theorem 3.61. Suppose on the contrary that system (3.127) is not oscillatory.

Then there exists a solution (u, v) of system (3.127) satisfying relation (3.149) with

tu > 0. Put

m := A(α, λ), M := B(α, µ), (3.188)

i.e., m denotes the smallest root of equation (3.144) and M is the greatest root of

equation (3.147). According to Lemmas 3.67 and 3.68, we have

lim inf
t→+∞

fα(t)ρ(t) ≥ m, lim sup
t→+∞

(fα(t)ρ(t) + γ) ≤M, (3.189)

where the function ρ and the number γ are defined in (3.152) and (3.143).

Analogously to the proof of Theorem 3.58 we show that relation (3.185) holds for

t ≥ tu, where the number δ(tu) and the function h are defined by (3.169) and (3.151).

In view of (3.141), one can easily show that the function y : x 7→ α|x + γ| 1+αα −
αx + Q∗(α, λ)(α − λ) − αγ is positive on ] −∞, 0[ and there exists x̄ ∈ [0,+∞[ such

that y(x̄) ≤ 0, which yields that m ≥ 0.

On the other hand, in view of (3.145), one can easily verify that the function

z : x 7→ α|x| 1+αα − αx + (µ− α)H∗(α, µ) is positive on ]
(

µ
1+α

)α
,+∞[ and there exists

x̃ ≤
(

µ
1+α

)α
such that z(x̃) ≤ 0. Consequently, we have M ≤

(
µ

1+α

)α
.

We first assume that m > 0 and M <
(

µ
1+α

)α
. Let ε ∈ ]0,min

{
m,
(

µ
1+α

)α −M}[

be arbitrary. Then, by virtue of (3.189), there exists tε ≥ tu such that

fα(t)ρ(t) ≥ m− ε, fα(t)ρ(t) + γ ≤M + ε for t ≥ tε. (3.190)

The function x 7→ α|x + γ| 1+αα − (1 + α)xγ
1
α is non-decrasing on [0,+∞[ . Therefore,

in view of (3.151) and (3.190), we get

fα−λ(t)

∫ +∞

t

g(s)fλ−1−α(s)h(s)ds ≥ α|m− ε+ γ| 1+αα − λ(m− ε)− αγ 1+α
α

α− λ (3.191)

for t ≥ tε. Moreover, the function x 7→ µx−α|x| 1+αα is non-decrasing on ]−∞,
(

µ
1+α

)α
[

and thus, in view of (3.190), we obtain

fα−µ(t)

t∫
tε

g(s)fµ−α−1(s)
[
µfα(s)ρ(s)− α|ρ(s)fα(s) + γ| 1+αα

]
ds

≤ µ(M + ε)− α|M + ε| 1+αα − µγ
µ− α for t ≥ tε.

(3.192)

Now it follows from (3.185), (3.191), and (3.192) that

Q(t;α, λ) +H(t;α, µ) ≤M + ε+H∗(α, µ)− (m− ε) +Q∗(α, λ)− γ

+
α(M + ε)− α|M + ε| 1+αα − (µ− α)H∗(α, µ)

µ− α

− α|m− ε+ γ| 1+αα − α(m− ε) + (α− λ)Q∗(α, λ)− αγ
α− λ

+ δ(tε)f
α−µ(t) for t ≥ tε,

(3.193)
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where

δ(tε) := δ(tu) +

∫ tε

tu

g(s)fµ−α−1(s)
[
µfα(s)ρ(s)− α|ρ(s)fα(s) + γ| 1+αα

]
ds.

Since ε was arbitrary, in view of (3.133) and (3.188), inequality (3.193) yields that

lim sup
t→+∞

(Q(t;α, λ) +H(t;α, µ)) ≤ B(α, µ)− A(α, λ, γ)

+Q∗(α, λ) +H∗(α, µ)− γ,
(3.194)

which contradicts assumption (3.148).

If m = 0 then, in view of (3.153), it is clear that

−fα−λ(t)
∫ +∞

t

g(s)fλ−1−α(s)h(s)ds ≤ 0 = −α|m+ γ| 1+αα − λm− αγ 1+α
α

α− λ
(3.195)

for t ≥ tu. On the other hand, if M =
(

µ
1+α

)α
then, using Lemma 3.64 with ω := µ,

one can show that

fα−µ(t)

t∫
tu

g(s)fµ−α−1(s)
[
µfα(s)ρ(s)− α|ρ(s)fα(s) + γ| 1+αα

]
ds

≤
(

µ
1+α

)1+α − µγ
µ− α − fµ−α(tu)

fµ−α(t)

((
µ

1+α

)1+α − µγ
µ− α

)

=
µM − α|M | 1+αα − µγ

µ− α − fµ−α(tu)

fµ−α(t)

((
µ

1+α

)1+α − µγ
µ− α

)
for t ≥ tu.

(3.196)

Consequently, if m = 0 (resp. M =
(

µ
1+α

)α
), then we derive from (3.185), the inequality

(3.194) similarly as above, but we use (3.195) instead of (3.191) (resp. (3.196) instead

of (3.192)). �
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4 Boundary value problems for functional differen-

tial equations

4.1 Introduction

On the interval [a, b], we consider the functional differential equation

u′ = F (u)(t), (4.1)

where F : C([a, b];R)→ L([a, b];R) is a continuous (in general) nonlinear operator. As

usually, by a solution of this equation we understand an absolutely continuous function

u : [a, b]→ R satisfying equality (4.1) almost everywhere on [a, b]. Along with equation

(4.1), we consider the nonlocal boundary condition

h(u) = ϕ(u), (4.2)

where h : C([a, b];R)→ R is a (non-zero) linear bounded functional and ϕ : C([a, b];R)→
R is a continuous (in general) nonlinear functional.

Firstly, in Sections 4.2 and 4.3, we study the question on the unique solvability of

problem (4.1), (4.2) in a linear case, i.e., in the case where equation (4.1) is linear and

ϕ ≡ const. Conditions guaranteeing the solvability and unique solvability of problem

(4.1), (4.2), when equation (4.1) is nonlinear, are provided in Section 4.4.

In this chapter we present our result stated in [27, 40, 42]. Besides boundary value

problems presented here, we also dealt with the following ones. In the papers [31–33,41],

we studied the question of the existence and uniqueness of a solution of the linear

problem

u′(t) = `(u)(t) + q(t), (4.3)

u(a) = h(u) + c, (4.4)

where ` : C([a, b];R) → L([a, b];R) is a linear bounded operator, q ∈ L([a, b];R),

h : C([a, b];R)→ R is a linear functional, and c ∈ R.

Particularly, in [31,41], we considered the boundary condition (4.4) in the form

u(a) = λu(b) + h0(u)− h1(u) + c, (4.5)

where h0, h1 : C([a, b];R) → R are positive functionals and λ ≥ 0. It is clear that the

periodic condition is a particular case of (4.5). Presented results are concretized for

boundary value problems with delay differential equations such as

u′(t) = p(t)u(τ(t)) + q(t),

b∫
a

u(s) dσ(s) = c,

where p, q ∈ L([a, b];R), τ : [a, b] → [a, b] is a measurable function, σ : [a, b] → R is

an absolutely continuous function, σ(a) > 0, σ(b) > 0, and c ∈ R (see [31]). In [32],
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we established conditions guaranteeing the unique solvability of problem (4.3), (4.4) as

well as nonpositivity of its solution. Obtained general statements are applied to the

case, where the operator ` is the operator with argument deviations defined by

`(u)(t) := p(t)u(τ(t))− g(t)u(µ(t)),

where p, g ∈ L([a, b];R+) and τ, µ : [a, b]→ [a, b] are measurable functions.

Problem (4.1), (4.2) in a full generality, i.e., if F is a continuous nonlinear operator

and ϕ is a continuous nonlinear functional, has been studied in [39].

4.2 Linear problem - nonnegative solutions

In this section, we assume that equation (4.1) is linear and the functional ϕ in the

boundary condition (4.2) is constant, i.e., we consider the boundary value problem

u′(t) = `(u)(t) + q(t), (4.6)

u(a) = h(u) + c, (4.7)

where ` : C([a, b];R)→ L([a, b];R) is a linear bounded operator, h : C([a, b];R)→ R is

a linear bounded functional, q ∈ L([a, b];R), and c ∈ R. It is natural to assume that

h̃ 6≡ 0, where h̃(v) := v(a)− h(v).

We establish conditions sufficient for the unique solvability of the considered prob-

lem. Moreover, if the function q and the number c are nonnegative, then these condi-

tions guarantee also nonnegativity of a solution. Presented results are concretized for

differential equations with argument deviations.

Recall that by a solution of problem (4.6), (4.7) we understand a function u ∈
AC([a, b];R) satisfying equality (4.6) almost everywhere in [a, b] and condition (4.7).

Along with problem (4.6), (4.7) we consider the corresponding homogeneous problem

u′(t) = `(u)(t), (4.60)

u(a) = h(u). (4.70)

The following result is well known from the general theory of BVPs for FDEs (see,

e.g., [1, 3, 9, 20,48])

Theorem 4.1. Problem (4.6), (4.7) is uniquely solvable iff the corresponding homoge-

neous problem (4.60), (4.70) has only the trivial solution.

Introduce the definition.

Definition 4.1. We say that an operator ` ∈ Lab belongs to the set Ṽ +
ab (h) if every

function u ∈ AC([a, b];R) satisfying

u′(t) ≥ `(u)(t) for a. e. t ∈ [a, b], (4.8)

u(a) ≥ h(u) (4.9)

is nonnegative on [a, b].
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Remark 4.2. Assume that ` ∈ Ṽ +
ab (h). Then it is clear that problem (4.60), (4.70)

has only the trivial solution. Therefore, according to Theorem 4.1 problem (4.6), (4.7)

is uniquely solvable for any c ∈ R and q ∈ L([a, b];R). If, moreover, c ∈ R+ and

q ∈ L([a, b];R+), then the unique solution of problem (4.6), (4.7) is nonnegative.

Let us mention some properties of the set Ṽ +
ab (h) in the case when h ∈ PFab.

Remark 4.3. Let h ∈ PFab. It is not difficult to verify that Pab ∩ Ṽ +
ab (h) 6= ∅ if and

only if

h(1) < 1. (4.10)

Indeed, assume that ` ∈ Pab ∩ Ṽ +
ab (h). Then, according to Remark 4.2, the problem

u′(t) = `(u)(t)

u(a) = h(u) + 1 (4.11)

has a unique solution u and

u(t) ≥ 0 for t ∈ [a, b]. (4.12)

By virtue of (4.12) and the assumption ` ∈ Pab, we have

u′(t) ≥ 0 for a. e. t ∈ [a, b]. (4.13)

Hence,

u(t) ≥ u(a) for t ∈ [a, b]. (4.14)

Now (4.14) and the assumption h ∈ PFab imply that

h(u) ≥ u(a)h(1), (4.15)

whence, together with (4.11), we obtain

u(a)(1− h(1)) ≥ 1.

Therefore, inequality (4.10) holds.

Assume now that (4.10) is fulfilled. We show that 0 ∈ Ṽ +
ab (h). Let the function

u ∈ AC([a, b];R) satisfy (4.9) and (4.13). Clearly, (4.14) holds, as well. Hence, on

account of the assumption h ∈ PFab, inequality (4.15) is satisfied. By virtue of (4.9)

and (4.15), we get

u(a)(1− h(1)) ≥ 0,

which together with (4.10) implies u(a) ≥ 0. Taking now into account (4.14), we get

(4.12). Therefore, 0 ∈ Ṽ +
ab (h).
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4.2.1 Main results

In this section we present optimal (nonimprovable in a certain sense) sufficient

conditions guaranteeing the inclusion ` ∈ Ṽ +
ab (h).

Theorem 4.4 ( [27, Thm. 2.1]). Let h ∈ PFab and ` ∈ Pab. Then ` ∈ Ṽ +
ab (h) if and

only if there exists a function γ ∈ AC([a, b]; ]0,+∞[) satisfying the inequalities

γ′(t) ≥ `(γ)(t) for a. e. t ∈ [a, b], (4.16)

γ(a) > h(γ). (4.17)

In the case, when ` is an a-Volterra operator, Theorem 4.4 yields the following

statement.

Corollary 4.5 ( [27, Cor. 2.1]). Let h ∈ PFab, ` ∈ Pab be an a-Volterra operator,

and

h(γ) < 1, (4.18)

where

γ(t) := exp

 t∫
a

`(1)(s) ds

 for t ∈ [a, b].

Then ` ∈ Ṽ +
ab (h).

Remark 4.6. Inequality (4.18) is optimal and cannot be replaced by the inequality

h(γ) ≤ 1. Indeed, let γ(t) := exp

[
t∫
a

p(s) ds

]
for t ∈ [a, b], where p ∈ L([a, b];R+) is

such that h(γ) = 1. Clearly, the function γ is a nontrivial solution of problem (4.60),

(4.70) with `(v)(t) := p(t)v(t). Therefore, according to Remark 4.2, ` /∈ Ṽ +
ab (h).

Corollary 4.7 ( [27, Cor. 2.2]). Let h ∈ PFab, ` ∈ Pab, h(1) < 1, and let there exist

m, k ∈ N and a constant α ∈ ]0, 1[ such that m > k and

ρm(t) ≤ αρk(t) for t ∈ [a, b], (4.19)

where

ρ1 ≡ 1, ρi+1(t) :=
1

1− h(1)
h(ϕi) + ϕi(t) for t ∈ [a, b], i ∈ N,

ϕi(t) :=

t∫
a

`(ρi)(s) ds for t ∈ [a, b], i ∈ N.
(4.20)

Then ` ∈ Ṽ +
ab (h).

In the case, when the operator ` is negative, necessary and sufficient condition for

the inclusion ` ∈ Ṽ +
ab (h) is presented in the next theorem.
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Theorem 4.8 ( [27, Thm. 2.3]). Let h ∈ PFab, −` ∈ Pab be an a-Volltera operator,

and (4.10) hold. Then ` ∈ Ṽ +
ab (h) if and only if ` ∈ Ṽ +

ab (0).

Theorem 4.8 yields the following corollaries.

Corollary 4.9 ( [27, Cor. 2.4]). Let h ∈ PFab, −` ∈ Pab be an a-Volterra operator,

and (4.10) hold. Let, moreover, there exist a function γ ∈ AC([a, b];R+) satisfying

γ(t) > 0 for t ∈ [a, b[ , (4.21)

γ′(t) ≤ `(γ)(t) for a. e. t ∈ [a, b]. (4.22)

Then ` ∈ Ṽ +
ab (h).

Remark 4.10. Corollary 4.9 is nonimprovable in a certain sense. More precisely,

condition (4.21) cannot be replaced by the condition

γ(t) > 0 for t ∈ [a, b1[ , (4.23)

where b1 ∈]a, b[ .Indeed, it is shown in [8, Example 4.3] that conditions (4.22) and (4.23)

do not guarantee the inclusion ` ∈ Ṽ +
ab (0). Consequently, by virtue of Theorem 4.8,

Corollary 4.9 is nonimprovable in the above-mentioned sense.

Corollary 4.11 ( [27, Cor. 2.5]). Let h ∈ PFab, −` ∈ Pab be an a-Volterra operator,

and let (4.10) hold. If, moreover,

b∫
a

|`(1)(s)| ds ≤ 1, (4.24)

then ` ∈ Ṽ +
ab (h).

Remark 4.12. Corollary 4.11 is nonimprovable in the sense that the inequality (4.24)

cannot be replaced by the inequality

b∫
a

|`(1)(s)| ds ≤ 1 + ε,

no matter how small ε > 0 is (see Theorem 4.8 and [8, Example 4.4]).

The following theorem deals with the case, when the operator ` is not monotone.

Theorem 4.13 ( [27, Thm. 2.4]). Let the operator ` ∈ Lab admit the representation

` = `0 − `1, where `0, `1 ∈ Pab and

`0 ∈ Ṽ +
ab (h), −`1 ∈ Ṽ +

ab (h). (4.25)

Then ` ∈ Ṽ +
ab (h).
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Remark 4.14. Assumption (4.25) is nonimprovable in the sense that it can be replaced

neither by the assumption

(1− ε)`0 ∈ Ṽ +
ab (h), −`1 ∈ Ṽ +

ab (h), (4.26)

nor by

`0 ∈ Ṽ +
ab (h), −(1− ε)`1 ∈ Ṽ +

ab (h), (4.27)

no matter how small ε > 0 is (see Examples 4.17 and 4.18 ).

Now we concretize obtained results for the differential equations with argument

deviations. Put

`(v)(t) :=p(t)v(τ(t)), (4.28)

`(v)(t) :=− g(t)v(µ(t)), (4.29)

where p, g ∈ L([a, b];R+) and τ, µ : [a, b]→ [a, b] are measurable functions.

In the case, when the operator ` is defined by (4.28), the following statement follows

immediately from Corollary 4.5.

Theorem 4.15. Let τ(t) ≤ t for a.e. t ∈ [a, b], h(1) < 1, and the inequality

b∫
a

p(s) ds < ln
1

h(1)

hold. Then the operator ` defined by (4.28) belongs to the set Ṽ +
ab (h).

For the operator ` is defined by (4.29), the next statement is true.

Theorem 4.16 ( [27, Thm. 4.4]). Let µ(t) ≤ t for a.e. t ∈ [a, b], h(1) < 1, and at

least one of the following conditions be fulfilled:

a)
b∫

a

g(s) ds ≤ 1;

b)
b∫

a

g(s)

 s∫
µ(s)

g(ξ) exp

 s∫
µ(ξ)

g(η) dη

 dξ

 ds ≤ 1;

c) g 6≡ 0 and

ess sup


t∫

µ(t)

g(s) ds : t ∈ [a, b]

 < ω∗,

where

ω∗ = sup

1

x
ln

x+ x

exp

x b∫
a

g(s) ds

− 1

−1
 : x > 0

 .

Then the operator ` defined by (4.29) belongs to the set Ṽ +
ab (h).
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Now we present two examples justifying that assumption (4.25) in Theorem 4.13 is

nonimprovable in a certain sense.

Example 4.17. Let ε ∈ ]0, 1[ , t0 ∈ ]a, b], and the functions p, g ∈ L([a, b];R+) be such

that ∫ t0

a

p(s)ds = 1 + ε̃,

∫ b

t0

p(s)ds = ε− ε̃, (4.30)∫ t0

a

g(s)ds =
ε

2
,

∫ b

t0

g(s)ds =
ε

2
, (4.31)

where

ε̃ :=

{
ε
2

if t0 6= b

ε if t0 = b.
(4.32)

Consider the boundary value problem

u′(t) = p(t)u(t0)− g(t)u(a), (4.33)

u(a) =
ε2u(t0)

2
+ 1, (4.34)

i.e., problem (4.60), (4.7) with ` = `0 − `1, where

`0(v)(t) := p(t)v(τ(t)), `1(v)(t) := g(t)v(µ(t)), (4.35)

h(v) :=
ε2v(t0)

2
, (4.36)

τ ≡ t0, µ ≡ a, and c = 1.

One can show that (1−ε)`0 ∈ Ṽ +
ab (h) and −`1 ∈ Ṽ +

ab (h). Indeed, by virtue of (4.30),

we have

ρ2(t) =
1

1− h(1)
h(ϕ1) + ϕ1(t) = (1− ε)

(
1

1− h(1)
h

(∫ t

a

`0(1)(s)ds

)
+

∫ t

a

`0(1)(s)ds

)
=(1− ε)

(
1

1− h(1)
h

(∫ t

a

p(s)ds

)
+

∫ t

a

p(s)ds

)
≤ (1− ε)(1 + ε)

2

2− ε2 < 1,

where the functions ρ2 and ϕ1 are defined by (4.20). Hence, (4.19) is satisfied with

α = 2−2ε2
2−ε2 . Consequently, according to Corollary 4.7 (with k = 1,m = 2), we obtain

(1 − ε)`0 ∈ Ṽ +
ab (h). On the other hand, by virtue of (4.31) and Corollary 4.11, it is

clear that −`1 ∈ Ṽ +
ab (h).

Note that equation (4.33) has only the trivial solution satisfying

u(a) =
ε2u(t0)

2
. (4.37)

Indeed, let u be a solution of problem (4.33), (4.37). Integrating (4.33) from a to t0
and taking into account (4.37), one gets

0 = u(t0)

(
ε̃+

ε2

2

(
1− ε

2

))
.
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Hence, by virue of (4.32) and (4.37), we obtain u(t0) = 0 and u(a) = 0. Consequently,

in view of (4.33), we have u′(t) = 0, which leads to u ≡ 0. Therefore problem (4.33),

(4.34) has a unique solution u. Integrating (4.33) from a to t0 and taking into account

(4.34), we get
ε

2
− 1 = u(t0)

(
ε̃+

ε2

2

(
1− ε

2

))
.

Hence, by virtue of (4.32), we have u(t0) < 0.

Therefore, `0− `1 /∈ Ṽ +
ab (h) and thus, assumption (4.25) of Theorem 4.13 cannot be

relaxed to (4.26) no matter how small ε > 0 is.

Example 4.18. Let ε ∈ ]0, 1[ , t0 ∈ ]a, b], and the functions p, g ∈ L([a, b];R+) be such

that ∫ t0

a

p(s)ds =
ε

4
,

∫ b

t0

p(s)ds =
ε

4
, (4.38)∫ t0

a

g(s)ds = 1 + ε̃,

∫ b

t0

g(s)ds = ε− ε̃, (4.39)

where ε̃ is given by (4.32). Define the operators `0 and `1 by (4.35).

One can show that `0 ∈ Ṽ +
ab (h) and −(1−ε)`1 ∈ Ṽ +

ab (h). Indeed, by virtue of (4.36)

and (4.38), analogously to Example 4.17 we derive

ρ2(t) =
1

1− h(1)
h(ϕ1) + ϕ1(t) ≤

ε

2− ε2 < 1,

where the functions ρ2 and ϕ1 are defined by (4.20). Hence, according to Corollary 4.7

(with k = 1,m = 2, α = ε
2−ε2 ), we have `0 ∈ Ṽ +

ab (h). On the other hand, by virtue of

(4.39) and Corollary 4.11, it is clear that −(1− ε)`1 ∈ Ṽ +
ab (h).

Analogously to Example 4.17, one can show that the homogeneous problem (4.33),

(4.37) has only the trivial solution. Therefore, problem (4.33), (4.34) has a unique

solution u. Integrating (4.33) from a to t0 and taking into account (4.34), we get

−ε̃ = u(t0)

(
ε̃
ε2

2
+ 1− ε

2

)
.

Hence, by virtue of (4.32), we have u(t0) < 0.

Therefore, `0− `1 /∈ Ṽ +
ab (h) and thus, assumption (4.25) of Theorem 4.13 cannot be

relaxed to (4.27), no matter how small ε > 0 is.

4.2.2 Proofs of the main results

To prove the main results we need the following auxiliary lemma.

Lemma 4.19. Let ` ∈ Pab, inequality (4.10) be fulfilled, and let there exist no nontrivial

function v ∈ AC([a, b];R+) satisfying

v′(t) ≤ `(v)(t) for a. e. t ∈ [a, b], v(a) = h(v). (4.40)

Then ` ∈ Ṽ +
ab (h).
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Proof. Let u ∈ AC([a, b];R) satisfy (4.8) and (4.9). Obviously, (4.6) and (4.7) hold,

where

q(t) := u′(t)− `(u)(t) for a. e. t ∈ [a, b], c := u(a)− h(u).

It is clear that

q(t) ≥ 0 for a. e. t ∈ [a, b], c ≥ 0. (4.41)

Taking into account (4.6), (4.7), (4.41), and the assumption ` ∈ Pab, we easily get

[u(t)]′− =
1

2

(
u′(t)sgnu(t)− u′(t)

)
=

1

2

(
`(u)(t)sgnu(t)− `(u)(t)

)
+

1

2
q(t)

(
sgnu(t)− 1

)
≤ `([u]−)(t) for a. e. t ∈ [a, b],

(4.42)

and

[u(a)]− =
1

2

(
h(u)sgnu(a)− h(u)

)
+

1

2
c
(

sgnu(a)− 1
)
≤ h([u]−). (4.43)

Put

c0 :=
(

1− h(1)
)−1(

h([u]−)− [u(a)]−

)
, (4.44)

v(t) := [u(t)]− + c0 for t ∈ [a, b].

On account of (4.10) and (4.43), we have

c0 ≥ 0. (4.45)

On the other hand, by virtue of (4.42), (4.44), and (4.45) v is a nonnegative function

satisfying (4.40). Therefore v ≡ 0 which, in view of (4.45), yields that [u]− ≡ 0.

Consequently, u(t) ≥ 0 for t ∈ [a, b] and thus, ` ∈ Ṽ +
ab (h). �

Proof of Theorem 4.4. Let ` ∈ Ṽ +
ab (h). Then, according to Remark 4.2, the problem

γ′(t) = `(γ)(t), (4.46)

γ(a) = h(γ) + 1 (4.47)

has a unique solution γ and

γ(t) ≥ 0 for t ∈ [a, b]. (4.48)

By virtue of (4.48) and the assumption h ∈ PFab, it follows from (4.47) that

γ(a) > 1. (4.49)

Now, on account of (4.48), (4.49), and the assumption ` ∈ Pab, equality (4.46) yields

γ(t) = γ(a) +

t∫
a

`(γ)(s) ds ≥ γ(a) > 0 for t ∈ [a, b].

Therefore, γ ∈ AC([a, b]; ]0,+∞[). Clearly, (4.16) and (4.17) hold, as well.
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Assume now that there exists a function γ ∈ AC([a, b]; ]0,+∞[) satisfying (4.16)

and (4.17). According to Lemma 4.19, it is sufficient to show that there exist no

nontrivial function v ∈ AC([a, b];R+) satisfying (4.40). Assume on the contrary that

v ∈ AC([a, b];R+) is a nontrivial function satisfying (4.40).

Put

w(t) := λγ(t)− v(t) for t ∈ [a, b],

where

λ = max

{
v(t)

γ(t)
: t ∈ [a, b]

}
. (4.50)

Obviously,

λ > 0. (4.51)

It is also evident that

w(t) ≥ 0 for t ∈ [a, b]. (4.52)

On account of (4.17), (4.51), (4.52), and the assumption h ∈ PFab, we have

w(a) = λγ(a)− v(a) > h(w) ≥ 0. (4.53)

From (4.50) and (4.53) it follows that there exists t0 ∈]a, b] such that

w(t0) = 0. (4.54)

On the other hand, by virtue of (4.16), (4.40), (4.51), (4.52), and the assumption

` ∈ Pab, we get

w′(t) ≥ `(w)(t) ≥ 0 for t ∈ [a, b],

which together with (4.53) contradicts (4.54). �

Proof of Corollary 4.5. It is clear that that

γ(a) = 1 (4.55)

and

γ′(t) = `(1)(t)γ(t) for a. e. t ∈ [a, b]. (4.56)

Since ` ∈ Pab is an a-Volterra operator, one can show that

`(γ)(t) ≤ `(1)(t)γ(t) for a. e. t ∈ [a, b].

The latter inequality together with (4.56) yields that (4.16) is fulfilled. On the other

hand, it follows from (4.18) and (4.55) that (4.17) holds. Therefore, by virtue of

Theorem 4.4, ` ∈ Ṽ +
ab (h). �

Proof of Theorem 4.8. It can be found in [27, Thm. 2.3]. �

Proof of Corollary 4.9. It can be found in [27, Cor. 2.4]. �

Proof of Corollary 4.11. It can be found in [27, Cor. 2.5]. �
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Proof of Theorem 4.13. Let u ∈ AC([a, b];R) satisfy (4.8) and (4.9). On account of

the assumption −`1 ∈ Ṽ +
ab (h), it follows from Remark 4.2 that

v′(t) = −`1(v)(t)− `0([u]−)(t), (4.57)

v(a) = h(v) (4.58)

has a unique solution v and

v(t) ≤ 0 for t ∈ [a, b]. (4.59)

By virtue of (4.8), (4.9), (4.57), (4.58), and the assumption `0 ∈ Pab, it is easy to show

that

w′(t) ≥ −`1(w)(t) for a. e. t ∈ [a, b], w(a) ≥ h(w),

where

w(t) := u(t)− v(t) for t ∈ [a, b].

Hence, by virtue of the inclusion −`1 ∈ Ṽ +
ab (h), we have

u(t) ≥ v(t) for t ∈ [a, b].

The latter inequality together with (4.59) yields that

−[u(t)]− ≥ v(t) for t ∈ [a, b]. (4.60)

Therefore, on account of (4.59), (4.60), and the condition `1 ∈ Pab, it follows from

(4.57) that

v′(t) ≥ `0(v)(t)− `1(v)(t) ≥ `0(v)(t) for a. e. t ∈ [a, b]. (4.61)

Now by virtue of the inclusion `0 ∈ Ṽ +
ab (h), (4.58) and (4.61) yield

v(t) ≥ 0 for t ∈ [a, b].

The latter inequality and (4.59) result in v ≡ 0. Therefore, it follows from (4.60) that

[u]− ≡ 0, which yields the inequality u(t) ≥ 0 for t ∈ [a, b]. �

Proof of Theorem 4.13. The assertion of theorem immediately follows from Corro-

lary 4.5, where the operator ` is defined by (4.28) . �

Proof of Theorem 4.16. It can be found in [27, Thm. 4.4]. �

4.3 Linear problem - existence and uniqueness of solutions

In this section, we still assume that equation (4.1) is linear and the functional ϕ in

boundary condition (4.2) is constant. More preciously, we consider the problem on the

existence and uniqueness of a solution of the equation

u′(t) = `(u)(t) + q(t) (4.62)
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satisfying the nonlocal boundary condition

h(u) = c, (4.63)

where ` : C([a, b];R) → L([a, b];R) is a linear bounded operator, h : C([a, b];R) → R
is a linear bounded functional, q ∈ L([a, b];R), and c ∈ R. As above, by a solution of

problem (4.62), (4.63) we understand a function u ∈ AC([a, b];R) satisfying equality

(4.62) almost everywhere in [a, b] and condition (4.63).

In theorems stated below, we assume that the operator ` admits the representation

` = `0 − `1 with `0, `1 ∈ Pab.
It is clear that the ordinary differential equation

u′ = p(t)u+ q(t), (4.64)

where p, q ∈ L([a, b];R), is a particular case of equation (4.62). Moreover, it is easy to

show that problem (4.64), (4.63) is uniquely solvable if and only if the condition

h
(
e
∫ ·
a p(s)ds

)
6= 0

is satisfied. Below, we establish solvability conditions for problem (4.62), (4.63) in

terms of norms of the operators appearing in (4.62) and (4.63). Further, we apply the

results obtained to the differential equation with an argument deviation

u′(t) = p(t)u(τ(t)) + q(t) (4.65)

in which p, q ∈ L([a, b];R) and τ : [a, b]→ [a, b] is a measurable function.

4.3.1 Main results

We first consider the case, where the boundary condition (4.63) is understood as

a nonlocal perturbation of a two-point condition of an anti-periodic type. More pre-

cisely, we consider the boundary condition

u(a) + λu(b) = h0(u)− h1(u) + c, (4.66)

where λ ≥ 0, h0, h1 ∈ PFab, and c ∈ R. Observe that there is no loss of generality in

assuming this, because an arbitrary functional h can be represented in the form

h(v) := v(a) + λv(b)− h0(v) + h1(v) for v ∈ C([a, b];R),

where λ ≥ 0 and h0, h1 ∈ PFab.

Theorem 4.20 ( [42, Thm. 2.1]). Let h0(1) < 1 + λ + h1(1) and ` = `0 − `1, where

`0, `1 ∈ Pab. Let, moreover,

λ
(
λ− h0(1)

)
≤
(
1 + h1(1)

)2
(4.67)
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and either the conditions

‖`0‖ < 1− h0(1)−
(
λ+ h1(1)

)2
,

‖`1‖ < 1− λ− h1(1) + 2
√

1− h0(1)− ‖`0‖ , (4.68)

be satisfied, or the conditions

‖`0‖ ≥ 1− h0(1)−
(
λ+ h1(1)

)2
,

‖`0‖+
(
λ+ h1(1)

)
‖`1‖ < 1 + λ− h0(1) + h1(1), (4.69)(

1 + h1(1)
)
‖`0‖+ λ‖`1‖ < 1 + λ− h0(1) + h1(1) (4.70)

hold. Then problem (4.62), (4.66) has a unique solution.

Remark 4.21. Let ` = `0− `1 with `0, `1 ∈ Pab. Define the operator ϕ : C([a, b];R)→
C([a, b];R) by setting

ϕ(w)(t) := w(a+ b− t) for t ∈ [a, b], w ∈ C([a, b];R).

For i = 0, 1, we put

˜̀
i(w)(t) := `i(ϕ(w))(a+ b− t) for a. e. t ∈ [a, b] and all w ∈ C([a, b];R)

and

q̃(t) := −q(a+ b− t) for a. e. t ∈ [a, b],

h̃(w) := h(ϕ(w)) for w ∈ C([a, b];R).

It is clear that if u is a solution of problem (4.62), (4.63), then the function v := ϕ(u)

is a solution of the problem

v′(t) = ˜̀
1(v)(t)− ˜̀

0(v)(t) + q̃(t), h̃(v) = c, (4.71)

and vice versa, if v is a solution of problem (4.71) then the function u := ϕ(v) is

a solution of problem (4.62), (4.63).

Using the transformation described in the previous remark, we can immediately

derive from Theorem 4.20 the following statement.

Theorem 4.22 ( [42, Thm. 2.2]). Let λ > 0, h0(1) < 1 + λ + h1(1), and ` = `0 − `1,

where `0, `1 ∈ Pab. Let, moreover,

1− h0(1) ≤
(
λ+ h1(1)

)2
and either the conditions

‖`1‖ < 1− 1

λ
h0(1)−

(
1 + h1(1)

)2
λ2

,

‖`0‖ < 1− 1

λ

(
1 + h1(1)

)
+ 2

√
1− 1

λ
h0(1)− ‖`1‖
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be satisfied, or

‖`1‖ ≥ 1− 1

λ
h0(1)−

(
1 + h1(1)

)2
λ2

and the conditions (4.69) and (4.70) hold. Then problem (4.62), (4.66) has a unique

solution.

Remark 4.23. Geometrical meaning of the assumptions of Theorems 4.20 and 4.22 is

illustrated on Figures 4.1 and 4.2, respectively.

Figure 4.1:

‖ℓ0‖

‖ℓ1‖

x1 x2

y1

y2

x1 = 1− h0(1)− (λ+ h1(1))2

x2 =
1 + λ− h0(1) + h1(1)

1 + λ+ h1(1)

y1 = 1 + λ+ h1(1)

y2 = 1− λ− h1(1) + 2
√

1− h0(1)

Figure 4.2:

‖ℓ0‖

‖ℓ1‖

x1 x2

y1

y2

x1 = 1 +
1 + h1(1)

λ

x2 = 1− 1 + h1(1)

λ
+ 2

√
1− 1

λ
h0(1)

y1 = 1− 1

λ
h0(1)− (1 + h1(1)r

λ2

y2 =
1 + λ− h0(1) + h1(1)

λ+ h1(1)

If λ = 0 in (4.66), we arrive at the problem

u′(t) = `(u)(t) + q(t), u(a) = h0(u)− h1(u) + c (4.72)

and from Theorem 4.20 we get the following statement

Corollary 4.24 ( [42, Cor. 2.2]). Let h0(1) < 1 + h1(1) and ` = `0 − `1, where

`0, `1 ∈ Pab. Let, moreover, either the conditions

‖`0‖ < 1− h0(1)− h1(1)2,

‖`1‖ < 1− h1(1) + 2
√

1− h0(1)− ‖`0‖ ,
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be satisfied, or the conditions

1− h0(1)− h1(1)2 ≤ ‖`0‖ < 1− h0(1)

1 + h1(1)
,

‖`0‖+ h1(1)‖`1‖ < 1− h0(1) + h1(1)

hold. Then problem (4.72) has a unique solution.

Finally, we give two statements dealing with the unique solvability of problem

(4.62), (4.63), where h = h+ − h− with h+, h− ∈ PFab. There is no loss of generality

in assuming this, because every linear bounded functional h : C([a, b]) → R can be

expressed in such a form.

Theorem 4.25 ( [42, Thm. 2.3]). Let h(1) > 0, h = h+ − h− with h+, h− ∈ PFab,
and ` = `0 − `1, where `0, `1 ∈ Pab. Let, moreover, the conditions

‖`0‖+ h+(1)‖`1‖ < h(1)

and

h+(1)‖`0‖+ ‖`1‖ < h(1)

be fulfilled. Then problem (4.62), (4.63) has a unique solution.

Theorem 4.26 ( [42, Thm. 2.4]). Let h(1) < 0, h = h+ − h− with h+, h− ∈ PFab,
and ` = `0 − `1, where `0, `1 ∈ Pab. Let, moreover, the conditions

‖`0‖+ h−(1)‖`1‖ < |h(1)|

and

h−(1)‖`0‖+ ‖`1‖ < |h(1)|

be fulfilled. Then problem (4.62), (4.63) has a unique solution.

Remark 4.27. Geometrical meaning of the assumptions of Theorems 4.25 and 4.26 is

illustrated on Figures 4.3 and 4.4, respectively.

Remark 4.28. From Theorems 4.20, 4.22, 4.25 and 4.26 we can immediately obtain

conditions guaranteeing the unique solvability of problems (4.65),(4.66) and (4.65),

(4.63) when we replace the norms ‖`0‖ and ‖`1‖ appearing therein by the integrals∫ b
a
[p(s)]+ds and

∫ b
a
[p(s)]−ds (see [42, Thm. 2.5 and 2.6]).
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Figure 4.3:

‖ℓ0‖

‖ℓ1‖

h(1)

1 + h+(1)

h(1)

h+(1)

h(1)

1 + h+(1)

h(1)

h+(1)

Figure 4.4:

‖ℓ0‖

‖ℓ1‖

|h(1)|
1 + h−(1)

|h(1)|
h−(1)

|h(1)|
1 + h−(1)

|h(1)|
h−(1)

4.3.2 Proofs of the main results

We first recall that linear problem (4.62), (4.63) has Fredholm’s property, i. e., the

following assertion holds (see, e.g., [1, 3, 9, 20,48]).

Lemma 4.29. The problem (4.62), (4.63) has a unique solution for any q ∈ L([a, b];R)

and c ∈ R if and only if the corresponding homogeneous problem

u′(t) = `(u)(t), h(u) = 0

has only the trivial solution.

Proof of Theorem 4.20. According to Lemma 4.29, to prove the theorem it is sufficient

to show that the homogeneous problem

u′(t) = `0(u)(t)− `1(u)(t), (4.73)

u(a) + λu(b) = h0(u)− h1(u) (4.74)

has only the trivial solution. Assume on the contrary that, u is a nontrivial solution of

problem (4.73), (4.74).

First suppose that u changes its sign. Put

M := max{u(t) : t ∈ [a, b]}, m := −min{u(t) : t ∈ [a, b]} (4.75)

and choose tM , tm ∈ [a, b] such that

u(tM) = M, u(tm) = −m. (4.76)

It is clear that

M > 0, m > 0. (4.77)
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We can assume without loss of generality that tM < tm. Integrating equality (4.73)

from tM to tm, from a to tM , and from tm to b and taking into account (4.75), (4.76),

and the assumption `0, `1 ∈ Pab, one gets

M +m =

∫ tm

tM

`1(u)(s) ds−
∫ tm

tM

`0(u)(s) ds ≤MB1 +mA1, (4.78)

M − u(a) + u(b) +m =

∫ tM

a

`0(u)(s) ds−
∫ tM

a

`1(u)(s) ds+

+

∫ b

tm

`0(u)(s) ds−
∫ b

tm

`1(u)(s) ds ≤MA2 +mB2,

(4.79)

where

A1 :=

∫ tm

tM

`0(1)(s) ds, A2 :=

∫ tM

a

`0(1)(s) ds+

∫ b

tm

`0(1)(s) ds,

B1 :=

∫ tm

tM

`1(1)(s) ds, B2 :=

∫ tM

a

`1(1)(s) ds+

∫ b

tm

`1(1)(s) ds.

On the other hand, in view of relations (4.76), (4.77) and the assumption h0, h1 ∈ PFab,
from the boundary condition (4.74) we obtain

u(a)− u(b) = −
(
1 + λ

)
u(b) + h0(u)− h1(u) ≤

(
1 + λ

)
m+Mh0(1) +mh1(1)

and

u(a)− u(b) =
(

1 +
1

λ

)
u(a)− 1

λ
h0(u) +

1

λ
h1(u) ≤

≤
(

1 +
1

λ

)
M +m

1

λ
h0(1) +M

1

λ
h1(1).

Hence, it follows from equality (4.79) that

M − λm ≤MA2 +mB2 +Mh0(1) +mh1(1) (4.80)

and

m− 1

λ
M ≤MA2 +mB2 +m

1

λ
h0(1) +M

1

λ
h1(1). (4.81)

We first assume that ‖`0‖ ≥ 1. Then conditions (4.69) and (4.70) are supposed to

be satisfied. It is clear that inequality (4.70) implies λ > 0 and ‖`1‖ < 1− 1
λ
h0(1) and

thus, we have

B1 < 1, B2 < 1− 1

λ
h0(1).

Using these inequalities and relations (4.77), from (4.78) and (4.81) we get

0 < M(1−B1) ≤ m(A1 − 1),

0 < m
(

1− 1

λ
h0(1)−B2

)
≤M

(
A2 +

1

λ

(
1 + h1(1)

))
,
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which yields that

(1−B1)
(

1− 1

λ
h0(1)−B2

)
≤ (A1 − 1)

(
A2 +

1

λ

(
1 + h1(1)

))
. (4.82)

Obviously,

(1−B1)
(

1− 1

λ
h0(1)−B2

)
≥ 1− 1

λ
h0(1)− ‖`1‖. (4.83)

On the other hand, by virtue of (4.67), it follows from inequality (4.70) that

‖`0‖ < 1 +
λ− h0(1)

1 + h1(1)
≤ 1 +

1

λ

(
1 + h1(1)

)
,

and thus, we obtain

(A1 − 1)
(
A2 +

1

λ

(
1 + h1(1)

))
≤ (‖`0‖ − 1)A2 + (A1 − 1)

1

λ

(
1 + h1(1)

)
≤

≤ 1

λ

(
1 + h1(1)

)
(A1 + A2 − 1) ≤ 1

λ

(
1 + h1(1)

)
(‖`0‖ − 1).

(4.84)

Now from (4.82), (4.83), and (4.84) we get

1 + λ− h0(1) + h1(1) ≤
(
1 + h1(1)

)
‖`0‖+ λ‖`1‖,

which contradicts inequality (4.70).

Now assume that ‖`0‖ < 1. Then, in view of condition (4.77), inequalities (4.78)

and (4.80) yield that

0 < m
(
1− A1

)
≤M

(
B1 − 1

)
,

M
(
1− h0(1)− A2

)
≤ m

(
B2 + λ+ h1(1)

)
and thus, we get ‖`1‖ ≥ B1 > 1 and(

1− A1

)(
1− h0(1)− A2

)
≤
(
B1 − 1

)(
B2 + λ+ h1(1)

)
. (4.85)

Obviously, (
1− A1

)(
1− h0(1)− A2

)
≥ 1− h0(1)− ‖`0‖. (4.86)

If ‖`0‖ ≥ 1−h0(1)−
(
λ+h1(1)

)2
, then conditions (4.69) and (4.70) are supposed to

be satisfied. Therefore, we obtain from the inequality (4.69) that ‖`1‖ ≤ 1 + λ+ h1(1)

and thus, it is easy to verify that(
B1 − 1

)(
B2 + λ+ h1(1)

)
≤ (‖`1‖ − 1)B2 + (B1 − 1)(λ+ h1(1)) ≤

≤
(
λ+ h1(1)

)(
B1 +B2 − 1

)
≤
(
λ+ h1(1)

)(
‖`1‖ − 1

)
.

(4.87)

Now it follows from (4.85), (4.86), and (4.87) that

1 + λ− h0(1) + h1(1) ≤ ‖`0‖+
(
λ+ h1(1)

)
‖`1‖,

which contradicts inequality (4.69).
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If ‖`0‖ < 1 − h0(1) −
(
λ + h1(1)

)2
, then taking into account the above-mentioned

condition ‖`1‖ > 1 and the obvious inequality(
B1 − 1

)(
B2 + λ+ h1(1)

)
≤ 1

4

(
‖`1‖ − 1 + λ+ h1(1)

)2
,

from relations (4.85) and (4.86) we get

1− λ− h1(1) + 2
√

1− h0(1)− ‖`0‖ ≤ ‖`1‖,

which contradicts inequality (4.68).

Now suppose that u does not change its sign. Then, without loss of generality, we

can assume that

u(t) ≥ 0 for t ∈ [a, b]. (4.88)

Put

M0 := max
{
u(t) : t ∈ [a, b]

}
, m0 := min

{
u(t) : t ∈ [a, b]

}
(4.89)

and choose tM0 , tm0 ∈ [a, b] such that

u(tM0) = M0, u(tm0) = m0. (4.90)

It is clear that

M0 > 0, m0 ≥ 0,

and either

tM0 ≥ tm0 , (4.91)

or

tM0 < tm0 . (4.92)

Observe that if the assumptions of the theorem are fulfilled, then both inequalities

A+
(
λ+ h1(1)

)
B < 1 + λ− h0(1) + h1(1) (4.93)

and (
1 + h1(1)

)
A+ λB < 1 + λ− h0(1) + h1(1) (4.94)

hold, where A := ‖`0‖ and B := ‖`1‖.
Integrating equality (4.73) from a to tM0 and from tM0 to b and taking into account

relations (4.88), (4.89), and (4.90), and the assumption `0, `1 ∈ Pab, one gets

M0 − u(a) =

∫ tM0

a

`0(u)(s) ds−
∫ tM0

a

`1(u)(s) ds ≤M0A

and

M0 − u(b) =

∫ b

tM0

`1(u)(s) ds−
∫ b

tM0

`0(u)(s) ds ≤M0B.

The last two inequalities yield that

M0(1 + λ)− u(a)− λu(b) ≤M0(A+ λB)
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and thus, using (4.74), (4.89), and the assumption h0, h1 ∈ PFab, we obtain

m0h1(1) ≤M0

(
A+ λB + h0(1)− 1− λ

)
. (4.95)

First suppose that (4.91) holds. Integrating equality (4.73) from tm0 to tM0 and

taking into account (4.88), (4.89), (4.90), and the assumption `0, `1 ∈ Pab, one gets

M0 −m0 =

∫ tM0

tm0

`0(u)(s) ds−
∫ tM0

tm0

`1(u)(s) ds ≤M0A,

i. e.,

M0

(
1− A

)
≤ m0.

It follows from the latter inequality and (4.95) that(
1 + h1(1)

)
A+ λB ≥ 1 + λ− h0(1) + h1(1),

which contradicts inequality (4.94).

Now assume that (4.92) holds. Integrating of equality (4.73) from tM0 to tm0 and

taking into account (4.88), (4.89), (4.90), and the assumption `0, `1 ∈ Pab, we obtain

M0 −m0 =

∫ tm0

tM0

`1(u)(s) ds−
∫ tm0

tM0

`0(u)(s) ds ≤M0B,

i. e.,

M0(1−B) ≤ m0.

The last inequality, together with (4.95), yields that

A+
(
λ+ h1(1)

)
B ≥ 1 + λ− h0(1) + h1(1),

which contradicts inequality (4.93).

The contradictions obtained prove that the homogeneous problem (4.73), (4.74) has

only the trivial solution. �

Proof of Theorem 4.22. Using the transformation described in Remark 4.21, the asser-

tion of the theorem can be derived from Theorem 4.20. �

Proof of Corollary 4.24. It follows from Theorem 4.20 with λ = 0. �

Proof of Theorem 4.25. Let the functionals h0 and h1 be defined by the formulae

h0(v) := v(a) + h−(v), h1(v) := h+(v) for v ∈ C([a, b];R).

By virtue of Corollary 4.24, problem (4.62), (4.63) is uniquely solvable under the as-

sumptions

‖`0‖ < 1− 1 + h−(1)

1 + h+(1)
, ‖`0‖+ h+(1)‖`1‖ < h+(1)− h−(1).
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Moreover, using the transformation described in Remark 4.21, it is not difficult to

verify that the problem (4.62), (4.63) is uniquely solvable also under the assumptions

‖`1‖ < 1− 1 + h−(1)

1 + h+(1)
, ‖`1‖+ h+(1)‖`0‖ < h+(1)− h−(1).

Combining these two cases, we obtain the desired assertion. �

Proof of Theorem 4.26. The assertion of the theorem follows from Theorem 4.25 and

the fact that the problem

u′(t) = `(u)(t) + q(t), h(u) = c

has a unique solution for every q ∈ L([a, b];R) and c ∈ R if and only if the problem

v′(t) = `(v)(t) + q(t), −h(v) = c

has a unique solution for every q ∈ L([a, b];R) and c ∈ R. �

4.4 Nonlinear problem

In this section, we establish sufficient conditions for the solvability as well as unique

solvability of a nonlocal boundary value problem for nonlinear functional differential

equations. On the interval [a, b], we consider the functional differential equation

u′ = F (u)(t), (4.96)

where F : C([a, b];R) → L([a, b];R) is a continuous (in general) nonlinear operator,

subjected to the linear nonlocal boundary condition

h(u) = c, (4.97)

where h : C([a, b];R) → R is a (non-zero) linear bounded functional and c is a real

number.

Recall that by a solution of equation (4.96) we understand an absolutely continuous

function u : [a, b] → R satisfying equality (4.96) almost everywhere on the interval

[a, b]. A solution of equation (4.96) satisfying the boundary condition (4.97) is said to

be a solution of problem (4.96), (4.97).

We assume in theorems below that the functional h in the boundary condition

(4.97) admits the representation h = h0 − h1, where h0, h1 ∈ PFab. There is no lost

of generality in assuming this, because an arbitrary linear bounded functional can be

expressed in this form. As fot the operator F in equation (4.96), we introduce the

hypothesis:

F : C([a, b];R)→ L([a, b];R) is a continuous operator such that the relation

sup
{
|F (v)(·)| : v ∈ C([a, b];R), ‖v‖C ≤ r

}
∈ L([a, b];R+)

is satisfied for every r > 0.

 (H)
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4.4.1 Main results

For any h0 ∈ PFab, c ∈ [a, b], and λ ≥ 0, we put

hλ0,c(v) := h0(v)− λv(c) for v ∈ C([a, b];R), (4.98)

Obviously, h00,c ∈ PFab. It allows one to set

λ∗c := sup{λ ≥ 0 : hλ0,c ∈ PFab} (4.99)

It is clear that 0 ≤ λ∗c ≤ h0(1) and

h
λ∗c
0,c ∈ PFab. (4.100)

Theorem 4.30 ( [40, Thm. 2.1]). Let assumption (H) be satisfied, the functional h

admit the representation h = h0 − h1 with h0, h1 ∈ PFab, and the condition

h1(1) < λ∗a (4.101)

hold, where the number λ∗a is defined by formula (4.99). Let, moreover, there exist

`0, `1 ∈ Pab (4.102)

such that for any v ∈ C([a, b];R), the inequality[
F (v)(t)− `0(v)(t) + `1(v)(t)

]
sgn v(t) ≤ q(t, ‖v‖C) for a. e. t ∈ [a, b] (4.103)

holds, where the function q ∈ K([a, b]× R+;R+) satisfies the condition

lim
x→+∞

1

x

b∫
a

q(s, x) ds = 0. (4.104)

If, in addition, either

‖`0‖ < 1− 1

λ∗a
h1(1)−

( 1

λ∗a

(
h0(1)− λ∗a

))2
,

‖`1‖ < 2

√
1− 1

λ∗a
h1(1)− ‖`0‖ −

1

λ∗a

(
h0(1)− λ∗a

)
,

(4.105)

or

‖`0‖ ≥ 1− 1

λ∗a
h1(1)−

( 1

λ∗a

(
h0(1)− λ∗a

))2
,

λ∗a ‖`0‖+
(
h0(1)− λ∗a

)
‖`1‖ < λ∗a − h1(1),

(4.106)

then problem (4.96), (4.97) has at least one solution.
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A

Figure 4.5: The set A: x1 = 1 − 1
λ∗a
h1(1) −

(
1
λ∗a

(
h0(1) − λ∗a

))2
, x2 = 1 − 1

λ∗a
h1(1),

y1 = 1
λ∗a

(
h0(1)− λ∗a

)
, y2 = 2

√
1− 1

λ∗a
h1(1)− 1

λ∗a

(
h0(1)− λ∗a

)
.

Remark 4.31. Let h0, h1 ∈ PFab and A denote the set of (x, y) ∈ R2
+ such that either

x < 1− 1

λ∗a
h1(1)−

( 1

λ∗a

(
h0(1)− λ∗a

))2
, y < 2

√
1− 1

λ∗a
h1(1)− x− 1

λ∗a

(
h0(1)− λ∗a

)
,

or

x ≥ 1− 1

λ∗a
h1(1)−

( 1

λ∗a

(
h0(1)− λ∗a

))2
, λ∗ax+

(
h0(1)− λ∗a

)
y < λ∗a − h1(1),

where the number λ∗a is defined by the formula (4.99) (see Fig. 4.5).

According to Theorem 4.30, if (H) and (4.101) hold, there exist `0, `1 ∈ Pab such

that inequality (4.103) is satisfied on the set C([a, b];R), and(
‖`0‖, ‖`1‖

)
∈ A,

then the problem (4.96), (4.97) with h = h0 − h1 has at least one solution.

Remark 4.32. If the functional h is defined by the formula

h(v) := αv(a) + βv(b) for v ∈ C([a, b];R)

with α, β > 0, the assumptions (4.105) and (4.106) of the previous theorem take the

form

‖`0‖ < 1−
(
β

α

)2

, ‖`1‖ < −
β

α
+ 2
√

1− ‖`0‖

and

‖`0‖ ≥ 1−
(
β

α

)2

, α‖`0‖+ β‖`1‖ < α,

respectively. Therefore, in this case, Theorem 4.30 reduces to Theorems 14.1 and 14.6

stated in [10].
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Remark 4.33. Let the operator ω : C([a, b];R) → C([a, b];R) be defined by the for-

mula

ω(z)(t) := z(a+ b− t) for t ∈ [a, b], z ∈ C([a, b];R).

Put

F̂ (z)(t) := −F
(
ω(z)

)
(a+ b− t) for a. e. t ∈ [a, b] and all z ∈ C([a, b];R)

and

ĥ(z) := h
(
ω(z)

)
for z ∈ C([a, b];R).

Then u is a solution of problem (4.96), (4.97) if and only if the function v := ω(u) is

a solution of the problem

v′(t) = F̂ (v)(t), ĥ(v) = c.

Using the transformation described in the previous remark, we can immediately

derive from Theorem 4.30 the following statement.

Theorem 4.34 ( [40, Thm. 2.2]). Let assumption (H) be satisfied, the functional h

admit the representation h = h0 − h1 with h0, h1 ∈ PFab, and the condition

h1(1) < λ∗b (4.107)

hold, where the number λ∗b be defined by formula (4.99). Let, moreover, there exist

`0, `1 ∈ Pab such that, for any v ∈ C([a, b];R), the inequality[
F (v)(t)− `0(v)(t) + `1(v)(t)

]
sgn v(t) ≥ −q(t, ‖v‖C) for a. e. t ∈ [a, b]

holds, where the function q ∈ K([a, b] × R+;R+) satisfies condition (4.104). If, in

addition, either

‖`1‖ < 1− 1

λ∗b
h1(1)−

( 1

λ∗b

(
h0(1)− λ∗b

))2
,

‖`0‖ < 2

√
1− 1

λ∗b
h1(1)− ‖`1‖ −

1

λ∗b

(
h0(1)− λ∗b

)
,

(4.108)

or

‖`1‖ ≥ 1− 1

λ∗b
h1(1)−

( 1

λ∗b

(
h0(1)− λ∗b

))2
,(

h0(1)− λ∗b
)
‖`0‖+ λ∗b‖`1‖ < λ∗b − h1(1),

(4.109)

then problem (4.96), (4.97) has at least one solution.

The next theorems deal with the unique solvability of problem (4.96), (4.97).

Theorem 4.35 ( [40, Thm. 2.3]). Let assumption (H) be satisfied, the functional h

admit the representation h = h0 − h1 with h0, h1 ∈ PFab and condition (4.101) hold,
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where the number λ∗a be defined by formula (4.99). Let, moreover, there exist `0, `1 ∈ Pab
such that the inequality[
F (v)(t)− F (w)(t)− `0(v − w)(t) + `1(v − w)(t)

]
sgn
(
v(t)− w(t)

)
≤ 0

for a. e. t ∈ [a, b] (4.110)

holds on the space C([a, b];R). If, in addition, either condition (4.105), or condition

(4.106) is fulfilled, then problem (4.96), (4.97) is uniquely solvable.

Theorem 4.36 ( [40, Thm. 2.4]). Let assumption (H) be satisfied, the functional

h admit the representation h = h0 − h1 with h0, h1 ∈ PFab, and condition (4.107)

hold, where the number λ∗b be defined by formula (4.99). Let, moreover, there exist

`0, `1 ∈ Pab such that the inequality[
F (v)(t)− F (w)(t)− `0(v − w)(t) + `1(v − w)(t)

]
sgn
(
v(t)− w(t)

)
≥ 0

for a. e. t ∈ [a, b]

holds on the space C([a, b];R). If, in addition, either condition (4.108), or condition

(4.109) is fulfilled, then problem (4.96), (4.97) is uniquely solvable.

4.4.2 Proofs of the main results

The main results are proved using so-called principle of a priory estimate due to

Kiguradze and Půža. It can be formulated as follows.

Lemma 4.37 ( [19, Cor. 2]). Let there exist a positive number ρ and an operator ` ∈ Lab
such that homogeneous problem

u′ = `(u)(t), h(u) = 0 (4.111)

has only the trivial solution and for every δ ∈ ]0, 1[ , an arbitrary function u ∈ AC([a, b];R)

satisfying the relations

u′ = `(u)(t) + δ[F (u)(t)− `(u)(t)] for a. e. t ∈ [a, b], h(u) = δc (4.112)

admits the estimate

‖u‖C ≤ ρ. (4.113)

Then problem (4.96), (4.97) has at least one solution.

Now we prove lemma on a apriory estimate suitable for our problem.

Lemma 4.38. Let assumption (H) be satisfied, the functional h admit the representa-

tion h = h0 − h1 with h0, h1 ∈ PFab, and condition (4.101) hold, where the number

λ∗a be defined by formula (4.99). Let moreover, the operators `0, `1 ∈ Pab be such that

either condition (4.105), or condition (4.106) is fulfilled. Then there exists r > 0 such
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that for any c∗ ∈ R+ and q∗ ∈ L([a, b];R+), an arbitrary function u ∈ AC([a, b];R)

satisfying the inequalities

h(u) sgnu(a) ≤ c∗, (4.114)[
u′ − `0(u)(t) + `1(u)(t)

]
sgnu(t) ≤ q∗(t) for a. e. t ∈ [a, b] (4.115)

admits the estimate

‖u‖C ≤ r(c∗ + ‖q∗‖L). (4.116)

Proof. Let c∗ ∈ R+, q∗ ∈ L([a, b];R+), and u ∈ AC([a, b];R) satisfy conditions (4.114)

and (4.115). We show that estimate (4.116) holds, where the number r depends only

on ‖`0‖, ‖`1‖, λ∗a, h0(1), and h1(1). It is clear that

u(t)′ = `0(u)(t)− `1(u)(t) + q̃(t) for a. e. t ∈ [a, b], (4.117)

where

q̃(t) := u′ − `0(u)(t) + `1(u)(t) for a. e. t ∈ [a, b].

From condition (4.115) we get

q̃(t) sgnu(t) ≤ q∗(t) for a. e. t ∈ [a, b]. (4.118)

First suppose that the function u does not change its sign. Put

M0 := max{|u(t)| : t ∈ [a, b]} (4.119)

and choose tM0 ∈ [a, b] such that

|u(tM0)| = M0.

It is clear that M0 ≥ 0 and, in view of (4.102), (4.118), and (4.119), from (4.117) we

get

|u(t)|′ ≤M0 `0(1)(t) + q∗(t) for a. e. t ∈ [a, b]. (4.120)

By virtue of (4.98), it is clear that

h(u) sgnu(a) = λ∗a|u(a)| − h1(u) sgnu(a) + h
λ∗a
0,a(u) sgnu(a)

and thus, relations (4.100), (4.114), and (4.119) yield

|u(a)| ≤M
h1(1)

λ∗a
+ c∗α(λ). (4.121)

Integrating (4.120) from a to tM0 and taking into account (4.102) and (4.121), one gets

M0 −M0
h1(1)

λ∗a
− c∗α(λ) ≤M0 ‖`0‖+ ‖q∗‖L.

Note that relations (4.105) and (4.106) yield that ‖`0‖ < 1− h1(1)
λ∗a

. Therefore, from the

last inequality we obtain

‖u‖C ≤ r0 max
{ 1

λ∗a
, 1
}

(c∗ + ‖q∗‖L), where r0 =
(

1− h1(1)

λ∗a
− ‖`0‖

)−1
> 0,
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and thus, estimate (4.116) holds, where the number r is defined by the formula

r := r0 max
{ 1

λ∗a
, 1
}
.

Now suppose that the function u changes its sign. Put

M := max{u(t) : t ∈ [a, b]}, m := −min{u(t) : t ∈ [a, b]} (4.122)

and choose tM , tm ∈ [a, b] such that

u(tM) = M, u(tm) = −m. (4.123)

Obviously, M > 0, m > 0, and either

tm < tM , (4.124)

or

tm > tM . (4.125)

Suppose that relation (4.124) holds. It is clear that there exists α2 ∈ ]tm, tM [ such

that

u(t) > 0 for α2 < t ≤ tM , u(α2) = 0. (4.126)

Let

α1 := inf{t ∈ [a, tm] : u(s) < 0 for t ≤ s ≤ tm}.
Obviously,

u(t) < 0 for α1 < t ≤ tm and u(α1) = 0 if α1 > a. (4.127)

In view of (4.98), it is clear that

λ∗au(a) = h1(u)− hλ∗a0,a(u) + h(u)

and thus, we obtain from (4.100), (4.114), (4.122), and (4.127) that

u(α1) ≥ −m
h1(1)

λ∗a
− M

1

λ∗a

(
h0(1)− λ∗a

)
− c∗α(λ). (4.128)

Integrating (4.117) from α1 to tm and from α2 to tM and taking into account (4.102),

(4.115), (4.122), (4.123), and (4.126)–(4.128), one gets

m−m h1(1)

λ∗a
−M 1

λ∗a

(
h0(1)− λ∗a

)
− c∗α(λ) ≤

≤M

tm∫
α1

`1(1)(s) ds+m

tm∫
α1

`0(1)(s) ds+

tm∫
α1

q∗(s) ds
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and

M ≤M

tM∫
α2

`0(1)(s) ds+m

tM∫
α2

`1(1)(s) ds+

tM∫
α2

q∗(s) ds.

Hence, we have

m
(

1− h1(1)

λ∗a
− C

)
≤M

( 1

λ∗a

(
h0(1)− λ∗a

)
+ A

)
+ ‖q∗‖L + c∗α(λ) ,

M
(

1−D
)
≤ mB + ‖q∗‖L,

(4.129)

where

A :=

tm∫
α1

`1(1)(s) ds, B :=

tM∫
α2

`1(1)(s) ds

and

C :=

tm∫
α1

`0(1)(s) ds, D :=

tM∫
α2

`0(1)(s) ds.

In view of relations (4.105) and (4.106), we have ‖`0‖ < 1 − 1
λ∗a
h1(1) and thus, it is

clear that C < 1− h1(1)
λ∗a

and D < 1. Consequently, (4.129) implies

m
(

1− h1(1)

λ∗a
− C

)
(1−D) ≤

≤ mB
( 1

λ∗a

(
h0(1)− λ∗a

)
+ A

)
+
(
‖q∗‖L + c∗α(λ)

)(h0(1)

λ∗a
+ A

)
,

M
(

1− h1(1)

λ∗a
− C

)
(1−D) ≤

≤MB
(h0(1)

λ∗a
− 1 + A

)
+
(
‖q∗‖L + c∗α(λ)

)
(B + 1).

(4.130)

Observe that(
1− h1(1)

λ∗a
− C

)(
1−D

)
≥ 1− h1(1)

λ∗a
− (C +D) ≥ 1− h1(1)

λ∗a
− ‖`0‖. (4.131)

First suppose that assumption (4.105) holds. Obviously,

B
(h0(1)

λ∗a
− 1 + A

)
≤ 1

4

(
A+B +

h0(1)

λ∗a
− 1
)2
≤ 1

4

(
‖`1‖+

h0(1)

λ∗a
− 1
)2
.

By virtue of the last inequality, (4.131) and the second inequality in (4.105), it follows

from (4.130) that

m ≤ r1 max
{ 1

λ∗a
, 1
}(
‖q∗‖L + c∗

)(h0(1)

λ∗a
+ ‖`1‖

)
,

M ≤ r1 max
{ 1

λ∗a
, 1
}(
‖q∗‖L + c∗

)
(1 + ‖`1‖),
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where

r1 :=

[
1− h1(1)

λ∗a
− ‖`0‖ −

1

4

(
‖`1‖+

h0(1)

λ∗a
− 1
)2]−1

.

Consequently, estimate (4.116) holds, where the number r is defined by the formula

r := r1 max
{ 1

λ∗a
, 1
}(h0(1)

λ∗a
+ ‖`1‖

)
,

because we have λ∗a ≤ h0(1).

Now suppose that the assumption (4.106) holds. Using the relation λ∗a ≤ h0(1),

from inequalities (4.106) we get

B ≤ ‖`1‖ <
h0(1)

λ∗a
− 1

and thus,

B
(h0(1)

λ∗a
− 1 + A

)
≤ B

(h0(1)

λ∗a
− 1
)

+ A
(h0(1)

λ∗a
− 1
)
≤ ‖`1‖

(h0(1)

λ∗a
− 1
)
.

By virtue of the last inequality, (4.131) and the second inequality in (4.106), it follows

from (4.130) that

m ≤ r2 max
{ 1

λ∗a
, 1
}(
‖q∗‖L + c∗

)(h0(1)

λ∗a
+ ‖`1‖

)
,

M ≤ r2 max
{ 1

λ∗a
, 1
}(
‖q∗‖L + c∗

)
(1 + ‖`1‖),

where

r2 :=

[
1− h1(1)

λ∗a
− ‖`0‖ − ‖`1‖

(h0(1)

λ∗a
− 1
)]−1

.

Consequently, estimate (4.116) holds, where the number r is given by the formula

r := r2 max
{ 1

λ∗a
, 1
}(h0(1)

λ∗a
+ ‖`1‖

)
.

If relation (4.125) holds, then the validity of estimate (4.116) can be proved analo-

gously. �

Proof of Theorems 4.30. Let ` = `0−`1. It is clear that ` ∈ Lab and all the assumptions

of Lemma 4.38 are satisfied. Let r be the number appearing therein. According to

(4.104), there exists ρ > 2r|c| such that

1

x

b∫
a

q(s, x) ds <
1

2r
for x > ρ.

First note that the homogeneous problem (4.111) has only the trivial solution.

Indeed, if u is a solution of problem (4.111), then the function u satisfies inequalities
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(4.114) and (4.115) with c∗ = 0 and q∗ ≡ 0. Consequently, Lemma 4.38 guarantees

that u ≡ 0.

Now let δ ∈ ]0, 1[ and u ∈ AC([a, b];R) be a function satisfying condition (4.112).

Then we obtain from (4.103) that inequalities (4.114) and (4.115) are fulfilled with

c∗ = |c| and q∗ ≡ q(· , ‖u‖C). Hence, using Lemma 4.38 and the definition of the

number ρ, we get estimate (4.113). Indeed, assuming ‖u‖C > ρ, from estimate (4.116)

we get

1 ≤ r|c|
‖u‖C

+
r

‖u‖C

b∫
a

q(s, ‖u‖C) ds < 1,

which is a contradiction.

Since ρ depends neither on u nor on δ, it follows from Lemma 4.37 that problem

(4.96), (4.97) has at least one solution. �

Proof of Theorem 4.34. Acording to Remark 4.33, the assertion of the theorem follows

immediately from Theorem 4.30. �

Proof of Theorem 4.35. First note that the assumptions of Lemma 4.38 are satisfied. It

follows from assumption (4.110) that inequality (4.103) is fulfilled on the set C([a, b];R),

where q ≡ |F (0)|. Consequently, all the assumptions of Theorem 4.30 are satisfied and

thus, problem (4.96), (4.97) has at least one solution. It remains to show that problem

(4.96), (4.97) has at most one solution.

Let u1, u2 be solutions of problem (4.96), (4.97). Put

u(t) := u1(t)− u2(t) for t ∈ [a, b].

Then h(u) = 0 and, by virtue of inequality (4.110), we have[
u′(t)− `0(u)(t) + `1(u)(t)

]
sgnu(t) ≤ 0 for a. e. t ∈ [a, b].

Consequently, inequalities (4.114) and (4.115) are satisfied with c∗ = 0 and q∗ ≡ 0.

Therefore, Lemma 4.38 guarantees that u ≡ 0, which yields u1 ≡ u2. �

Proof of Theorem 4.36. Acording to Remark 4.33, the assertion of the theorem follows

immediately from Theorem 4.35. �
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5 Singular Dirichlet problem

5.1 Introduction

Consider the boundary value problem

u′′ = p(t)u+ q(t), (5.1)

u(a) = 0, u(b) = 0, (5.2)

where p, q ∈ Lloc(]a, b[). We are mainly interested in the case, when the functions p and

q are not (in general) integrable on [a, b]. In this case, equation (5.1) as well as problem

(5.1), (5.2) are said to be singular. While if p, q ∈ L([a, b]), then equation (5.1) and

problem (5.1), (5.2) are referred as regular. Theory of the regular Dirichlet problem is

well developed. One of the main part of this theory is the so-called Sturm-Liouville’s

theory, which in its turn consists of the following three items: Fredholm’s theorems,

well-posedness and eigenvalue problem. However an analogue of the Sturm-Liouville’s

theory for the singular problem is far from being complete.

It is well known that for the singular problem (5.1), (5.2), the condition∫ b

a

(s− a)(b− s)|p(s)|ds < +∞ (5.3)

guarantees the validity of Fredholm’s alternative. More precisely, if (5.3) holds then

the problem (5.1), (5.2) is uniquely solvable for any q satisfying∫ b

a

(s− a)(b− s)|q(s)|ds < +∞ (5.4)

iff the corresponding homogeneous equation

u′′ = p(t)u (5.10)

has no nontrivial solution satisfying (5.2). Above statement plays an important role

in the theory of singular problems, however it does not cover many interesting, even

rather simple, equations. For example, consider the Dirichlet problem for the Euler

equation

u′′ =
α

(t− a)2
u+ β; u(a) = 0, u(b) = 0, (5.5)

where α and β are real constants. By direct calculations one can easily verify that if

α > 0, then the homogeneous problem

u′′ =
α

(t− a)2
u; u(a) = 0, u(b) = 0,

has only the trivial solution, while problem (5.5) is uniquely solvable. However, in this

case p(t) := α
(t−a)2 and therefore, condition (5.3) is not satisfied.
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In this chapter we show that Fredholm’s alternative remains true even in the case,

when instead of (5.3) only the condition∫ b

a

(s− a)(b− s)[p(s)]−ds < +∞ (5.6)

holds. Moreover, bellow we establish optimal, in a certain sense, conditions for well-

posedness of singular problem.

Definition 5.1. Under a solution of equation (5.1) we understand a function u ∈
AC ′loc(]a, b[), which satisfies it almost everywhere in ]a, b[ . A solution of the equation

(5.1) satisfying (5.2) is said to be a solution of problem (5.1), (5.2).

We say that a certain property holds in ]α, β[ if it takes place on every closed

subinterval of ]α, β[ .

5.2 Fredholm’s alternative

5.2.1 Main results

Theorem 5.2 ( [28, Thm. 1.1]). Let condition (5.6) hold. Then problem (5.1), (5.2)

is uniquely solvable for any q satisfying (5.4) iff the homogeneous problem (5.10), (5.2)

has no nontrivial solution.

Remark 5.3. In Theorem 5.2, condition (5.4) is essential and cannot be omitted.

Indeed, let p ≡ 0, q ∈ Lloc(]a, b[), q(t) ≥ 0 for a.e. t ∈ ]a, b[ , and∫ a+b
2

a

(s− a)q(s)ds = +∞. (5.7)

Obviously, (5.6) holds and problem (5.10), (5.2) has no nontrivial solution. On the

other hand, a general solution of (5.1) is of the form

u(t) = α + βt+

∫ a+b
2

t

(s− a)q(s)ds− (t− a)

∫ a+b
2

t

q(s)ds for t ∈ ]a, b[ .

However, for a < t < x < a+b
2

, we have

u(t) ≥
∫ a+b

2

x

(s− a)q(s)ds− (t− a)

∫ a+b
2

x

q(s)ds+ α + βt.

Hence,

lim inf
t→a+

u(t) ≥ α + βa+

∫ a+b
2

x

(s− a)q(s)ds.

Therefore, in view of (5.7), we get lim
t→a+

u(t) = +∞ and consequently, problem (5.1),

(5.2) has no solution.
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Remark 5.4. Theorem 5.2 concerns the half-homogeneous problem (5.1), (5.2) and

does not remain true for fully nonhomogeneous problem

u′′ = p(t)u+ q(t); u(a) = c1, u(b) = c2. (5.8)

Let, for example, p(t) := 2
(t−a)2 , q ≡ 0, c1 6= 0, and c2 = 0. It is clear that (5.6) holds

and the corresponding homogeneous problem (5.10), (5.2) has no nontrivial solution.

On the other hand, a general solution of (5.1) is of the form u(t) = α
t−a + β(t− a)2 for

t ∈ ]a, b[ and therefore, (5.8) has no solution.

Theorem 5.5 ( [28, Thm. 1.2]). Let (5.6) hold and problem (5.10), (5.2) have no

nontrivial solution. Then there exists r > 0 such that for any q satisfying (5.4), the

solution u of problem (5.1), (5.2) admits the estimate

|u(t)|+ (t− a)(b− t)|u′(t)| ≤ r

∫ b

a

(s− a)(b− s)|q(s)|ds for t ∈ ]a, b[ . (5.9)

Consider now a sequence of equations

u′′ = p(t)u+ qn(t), (5.10n)

where qn ∈ Lloc(]a, b[) are such that∫ b

a

(s− a)(b− s)|qn(s)|ds < +∞ for n ∈ N. (5.11)

Let, moreover, q ∈ Lloc(]a, b[) satisfy (5.4) and

lim
n→+∞

∫ b

a

(s− a)(b− s)|qn(s)− q(s)|ds = 0. (5.12)

Corollary 5.6 ( [28, Cor. 1.1]). Let (5.4), (5.6) hold and problem (5.10), (5.2) have

no nontrivial solution. Let, moreover, (5.11) and (5.12) be fulfilled. Then problems

(5.1), (5.2) and (5.10n), (5.2) have unique solutions u and un, respectively,

lim
n→+∞

un(t) = u(t) uniformly on [a, b] (5.13)

and

lim
n→+∞

u′n(t) = u′(t) uniformly in ]a, b[ . (5.14)

5.2.2 Auxiliary statements

In this section, we consider the equation

v′′ = h(t)v + q(t),

where h, q ∈ Lloc(]a, b[), q satisfies (5.4), and∫ b

a

(s− a)(b− s)|h(s)|ds < +∞. (5.15)

Below we state some known results in a suitable for us form.
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Proposition 5.7. Let (5.15) hold. Then the problem

v′′ = h(t)v + q(t) ; v(a) = c1, v(b) = c2

is uniquely solvable for any c1, c2 ∈ R and q satisfying (5.4) iff the homogeneous problem

v′′ = h(t)v ; v(a) = 0, v(b) = 0

has no nontrivial solution.

Proof. See, e. g., [18, Theorem 3.1] or [21, Theorem 1.1]. �

Proposition 5.8. Let (5.15) hold. Then there exist a0 ∈ ]a, b[ and b0 ∈ ]a0, b[ such

that for any t1 < t2 satisfying either t1, t2 ∈ [a, a0] or t1, t2 ∈ [b0, b], the homogeneous

problem

v′′ = h(t)v ; v(t1) = 0, v(t2) = 0 (5.16)

has no nontrivial solution. Moreover, for any w ∈ C ′loc(]t1, t2[) (where t1 < t2 are the

same as above) satisfying

w′′(t) ≥ h(t)w(t) for a. e. t ∈ ]t1, t2[ , w(t1) = 0, w(t2) = 0,

the inequality

w(t) ≤ 0 for t ∈ [t1, t2]

holds.

Proof. In view of (5.15), there exist a0 ∈ ]a, b[ and b0 ∈ ]a0, b[ such that∫ a0

a

(s− a)|h(s)|ds < 1,

∫ b

b0

(b− s)|h(s)|ds < 1.

Hence, the inequalities∫ a0

a

(s− a)(a0 − s)|h(s)|ds < a0 − a,
∫ b

b0

(s− b0)(b− s)|h(s)|ds < b− b0

hold, as well. The latter inequalities, by virtue of [21, Lemma 4.1], imply that for any

t1 < t2 satisfying either t1, t2 ∈ [a, a0] or t1, t2 ∈ [b0, b], the homogeneous problem (5.16)

has no nontrivial solution.

Second part of the proposition follows easily from the above-proved part and [21,

Lemma 1.3]. �

Proposition 5.9. Let (5.15) hold. Let, moreover, a0 ∈ ]a, b[ and b0 ∈ ]a0, b[ be from

the assertion of Proposition 5.8. Then there exists % > 0 such that for any c ∈ R and

any q satisfying (5.4), the solution v of the problem

v′′ = h(t)v + q(t) ; v(a) = 0, v(a0) = c (5.17)
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admits the estimate

|v(t)| ≤ %

(
|c|(t− a) +

∫ t

a

(s− a)|q(s)|ds+ (t− a)

∫ a0

t

|q(s)|ds
)

(5.18)

for t ∈ ]a, a0], while the solution v of the problem

v′′ = h(t)v + q(t) ; v(b0) = c, v(b) = 0 (5.19)

admits the estimate

|v(t)| ≤ %

(
|c|(b− t) +

∫ b

t

(b− s)|q(s)|ds+ (b− t)
∫ t

b0

|q(s)|ds
)

(5.20)

for t ∈ [b0, b[ .

Proof. By virtue of (5.15) and [18, Lemma 2.2], the initial value problems

v′′1 = h(t)v1 ; v1(a) = 0, v′1(a) = 1

and

v′′2 = h(t)v2 ; v2(a0) = 0, v′2(a0) = −1

have unique solutions v1 and v2, respectively, and the estimates

|v1(t)| ≤ %0(t− a), |v2(t)| ≤ %0(a0 − t) for t ∈ [a, a0] (5.21)

are fulfilled, where

%0 := exp

(
2

∫ a0

a

(s− a)|h(s)|ds
)
.

On the other hand, by virtue of Proposition 5.8,

v1(a0) 6= 0 and v2(a) 6= 0.

In view of Propositions 5.7 and 5.8, problem (5.17) has a unique solution v. By direct

calculations one can easily verify that

v(t) =
c

v1(a0)
v1(t)−

1

v2(a)

(
v2(t)

∫ t

a

v1(s)q(s)ds+ v1(t)

∫ a0

t

v2(s)q(s)ds

)
(5.22)

for t ∈ [a, a0]. Analogously, the (unique) solution v of problem (5.19) is of the form

v(t) =
c

v4(b0)
v4(t)−

1

v3(b)

(
v4(t)

∫ t

b0

v3(s)q(s)ds+ v3(t)

∫ b

t

v4(s)q(s)ds

)
(5.23)

for t ∈ [b0, b], where v3 and v4 are solutions of the problems

v′′3 = h(t)v3 ; v3(b0) = 0, v′3(b0) = 1

and

v′′4 = h(t)v4 ; v4(b) = 0, v′4(b) = −1,
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respectively, v3(b) 6= 0, v4(b0) 6= 0, and the estimates

|v3(t)| ≤ %1(t− b0), |v4(t)| ≤ %1(b− t) for t ∈ [b0, b] (5.24)

are fulfilled with

%1 := exp

(
2

∫ b

b0

(b− s)|h(s)|ds
)
.

Now, in view of (5.21) and (5.24), it follows from (5.22) and (5.23) that estimates

(5.18) and (5.20) hold with

% :=
ρ0

|v1(a0)|
+

ρ1
|v4(b0)|

+
a0 − a
|v2(a)| %

2
0 +

b− b0
|v3(b)|

%21.

�

5.2.3 Lemmas on a priory estimates

Lemma 5.10. Let (5.4) and (5.6) hold. Then for any α ∈ [a, b[ and β ∈ ]α, b], every

solution u of equation (5.1) satisfying

u(α) = 0, u(β) = 0 (5.25)

admits the estimate

(t− a)(b− t)|u′(t)| ≤ ‖u‖[α,β]
(
b− a+

∫ b

a

(s− a)(b− s)[p(s)]−ds
)

+

∫ b

a

(s− a)(b− s)|q(s)|ds for t ∈ ]α, β[ .

(5.26)

Proof. Let t0 ∈ ]α, β[ . Then it is clear that either

u(t0)u
′(t0) > 0, (5.27)

or

u(t0)u
′(t0) < 0, (5.28)

or

u(t0)u
′(t0) = 0. (5.29)

Assume that (5.27) (resp., (5.28)) holds. Then, in view of (5.25), there is t∗ ∈ ]t0, β[

(resp., t∗ ∈ ]α, t0[) such that

u(t) sgnu′(t0) > 0 for t ∈ [t0, t
∗] and u′(t∗) = 0(

resp., u(t) sgnu′(t0) < 0 for t ∈ [t∗, t0] and u′(t∗) = 0
)
.

(5.30)
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Multiplying both sides of (5.1) by b− t (resp., by t− a) and integrating it from t0 to

t∗ (resp., from t∗ to t0), we get

(b− t0)u′(t0) = u(t∗)− u(t0)−
∫ t∗

t0

(b− s)
(
p(s)u(s) + q(s)

)
ds(

resp., (t0 − a)u′(t0) = u(t0)− u(t∗) +

∫ t0

t∗

(s− a)
(
p(s)u(s) + q(s)

)
ds

)
.

Hence, in view of (5.30), we obtain

(b− t0)|u′(t0)| ≤ ‖u‖[α,β]
(

1 +

∫ b

t0

(b− s)[p(s)]−ds
)

+

∫ b

t0

(b− s)|q(s)|ds(
resp., (t0 − a)|u′(t0)| ≤ ‖u‖[α,β]

(
1 +

∫ t0

a

(s− a)[p(s)]−ds

)
+

∫ t0

a

(s− a)|q(s)|ds
)
.

Multiplying both parts of the latter inequality by t0 − a (resp., by b− t0), we get

(t0 − a)(b− t0)|u′(t0)| ≤ ‖u‖[α,β]
(
b− a+

∫ b

a

(s− a)(b− s)[p(s)]−ds
)

+

∫ b

a

(s− a)(b− s)|q(s)|ds.
(5.31)

Suppose now that (5.29) holds. Then either there is a β0 ∈ ]t0, β[ such that

u(t)u′(t) = 0 for t ∈ [t0, β0], (5.32)

or there is a sequence {tn}+∞n=1 ⊂ ]t0, β[ such that

lim
n→+∞

tn = t0, (5.33)

u(tn)u′(tn) 6= 0 for n ∈ N. (5.34)

If (5.32) holds then evidently u(t) = u(t0) for t ∈ [t0, β0] and consequently, (5.31) is

fulfilled. On the other hand, if (5.34) holds then, by virtue of the above-proved, the

inequalities

(tn − a)(b− tn)|u′(tn)| ≤ ‖u‖[α,β]
(
b− a+

∫ b

a

(s− a)(b− s)[p(s)]−ds
)

+

∫ b

a

(s− a)(b− s)|q(s)|ds for n = 1, 2, . . .

are fulfilled and therefore, in view of (5.33), inequality (5.31) holds, as well.

Hence, estimate (5.26) is fulfilled. �

Lemma 5.11. Let (5.6) hold. Then there exist a0 ∈ ]a, b[ , b0 ∈ ]a0, b[ , and % > 0

such that for any α ∈ [a, a0[ , β ∈ ]b0, b], and any q fulfilling (5.4), every solution u of

equation (5.1) satisfying

u(α) = 0 (5.35)
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admits the estimate

|u(t)| ≤ %

(
(t− a)‖u‖[α,a0] +

∫ t

a

(s− a)|q(s)|ds+ (t− a)

∫ a0

t

|q(s)|ds
)

(5.36)

for t ∈ ]α, a0], while every solution u of equation (5.1) satisfying

u(β) = 0 (5.37)

admits the estimate

|u(t)| ≤ %

(
(b− t)‖u‖[b0,β] +

∫ b

t

(b− s)|q(s)|ds+ (b− t)
∫ t

b0

|q(s)|ds
)

(5.38)

for t ∈ [b0, β[ .

Proof. Let a0, b0, and % be from the assertion of Propositions 5.8 and 5.9 with h(t) :=

−[p(t)]−. Let, moreover, α ∈ [a, a0[ (resp., β ∈ ]b0, b]) and u be a solution of problem

(5.1), (5.35) (resp., (5.1), (5.37)). By virtue of Propositions 5.8 and 5.9, the problem

v′′ = −[p(t)]−v − |q(t)|, (5.39)

v(a) = 0, v(a0) = ‖u‖[α,a0]
(
resp., v(b0) = ‖u‖[b0,β], v(b) = 0

)
has a unique solution v and, moreover, for any t ∈ ]a, a0] (resp., t ∈ [b0, b[ ), the estimate

0 ≤ v(t) ≤ %

(
(t− a)‖u‖[α,a0] +

∫ t

a

(s− a)|q(s)|ds+ (t− a)

∫ a0

t

|q(s)|ds
)

(
resp., 0 ≤ v(t) ≤ %

(
(b− t)‖u‖[b0,β] +

∫ b

t

(b− s)|q(s)|ds+ (b− t)
∫ t

b0

|q(s)|ds
))
(5.40)

holds. We show that

|u(t)| ≤ v(t) for t ∈ [α, a0]
(
resp., for t ∈ [b0, β]

)
. (5.41)

Assume on the contrary that (5.41) is violated. Put

w(t) := |u(t)| − v(t) for t ∈ [α, a0]
(
resp., for t ∈ [b0, β]

)
.

Then there exist t1 ∈ [α, a0[ and t2 ∈ ]t1, a0] (resp., t1 ∈ [b0, β[ and t2 ∈ ]t1, β]) such

that

w(t) > 0 for t ∈ ]t1, t2[ , (5.42)

w(t1) = 0, w(t2) = 0. (5.43)

In view of (5.1), (5.39), and (5.42), it is clear that w ∈ AC ′loc(]t1, t2[) and

w′′(t) = p(t)|u(t)|+ q(t) sgnu(t) + [p(t)]−v(t) + |q(t)| ≥ −[p(t)]−w(t) for a. e. t ∈ ]t1, t2[ .

Hence, by virtue of (5.43) and Proposition 5.8, we get w(t) ≤ 0 for t ∈ ]t1, t2[ , which

contradicts (5.42). Therefore, (5.41) is fulfilled. The desired estimate (5.36) (resp.,

(5.38)) now follows from (5.40) and (5.41). �
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Lemma 5.12. Let (5.6) hold and problem (5.10), (5.2) has no nontrivial solution. Then

there exist ā0 ∈ ]a, b[ , b̄0 ∈ ]ā0, b[ , and r0 > 0 such that for any α ∈ [a, ā0], β ∈ [b̄0, b],

and any q fulfilling (5.4), every solution u of equation (5.1) satisfying

u(α) = 0, u(β) = 0

admits the estimate

|u(t)| ≤ r0

∫ b

a

(s− a)(b− s)|q(s)|ds for t ∈ [α, β].

Proof. Suppose on the contrary that the lemma is not true. Then there exist the

sequences {an}+∞n=1 ⊂ [a, a+b
2

[ , {bn}+∞n=1 ⊂ ]a+b
2
, b], {qn}+∞n=1 ⊂ Lloc(]a, b[), and {un}+∞n=1 ⊂

AC ′loc(]a, b[) such that (5.11) holds,

lim
n→+∞

an = a, lim
n→+∞

bn = b, (5.44)

u′′n(t) = p(t)un(t) + qn(t) for a. e. t ∈ ]a, b[ , un(an) = 0, un(bn) = 0,

and

‖un‖[an,bn] > n

∫ b

a

(s− a)(b− s)|qn(s)|ds for n = 1, 2, . . . . (5.45)

Introduce the notation

ũn(t) :=
1

‖un‖[an,bn]
un(t), q̃n(t) :=

1

‖un‖[an,bn]
qn(t).

Then it is clear that

‖ũn‖[an,bn] = 1 (5.46)

and

ũ′′n(t) = p(t)ũn(t) + q̃n(t) for a. e. t ∈ ]an, bn[ , ũn(an) = 0, ũn(bn) = 0. (5.47)

Moreover, it follows from (5.45) that

lim
n→+∞

∫ b

a

(s− a)(b− s)|q̃n(s)|ds = 0 (5.48)

and consequently,

lim
n→+∞

∫ t

a+b
2

(∫ s

a+b
2

q̃n(ξ)dξ

)
ds = 0 for t ∈ ]a, b[ . (5.49)

By virtue of Lemma 5.11, (5.46), and (5.47), we get

(t− a)(b− t)|ũ′n(t)| ≤ b− a+

∫ b

a

(s− a)(b− s)[p(s)]−ds+

+

∫ b

a

(s− a)(b− s)|q̃n(s)|ds for t ∈ ]an, bn[ .
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Hence, in view of (5.44) and (5.48), the sequence {ũ′n}+∞n=1 is uniformly bounded in

]a, b[ and therefore, the sequence {ũn}+∞n=1 is equicontinuous in ]a, b[ . Taking, moreover,

into account (5.46), by virtue of Arzelá-Ascoli’s lemma, we can assume without loss of

generality that

lim
n→+∞

ũn(t) = u0(t) uniformly in ]a, b[ , (5.50)

where u0 ∈ C(]a, b[) and, moreover,

lim
n→+∞

ũ′n

(
a+ b

2

)
= c0. (5.51)

By direct calculation one can easily verify that

ũn(t) = ũn

(
a+ b

2

)
+

(
t− a+ b

2

)
ũ′n

(
a+ b

2

)
+

+

∫ t

a+b
2

(∫ s

a+b
2

[
p(ξ)ũn(ξ) + q̃n(ξ)

]
dξ

)
ds for t ∈ ]a, b[ ,

whence, in view of (5.49)–(5.51), we get

u0(t) = u0

(
a+ b

2

)
+

(
t− a+ b

2

)
c0 + +

∫ t

a+b
2

(∫ s

a+b
2

p(ξ)u0(ξ)dξ

)
ds for t ∈ ]a, b[ .

Thus, u0 ∈ AC ′loc(]a, b[) and u0 is a solution of equation (5.10).

Now let a0 ∈ ]a, b[ , b0 ∈ ]a0, b[ , and % > 0 be from the assertion of Lemma 5.11.

Assume without loss of generality that an < a0 and bn > b0 for any natural n. Then,

by virtue of Lemma 5.11, (5.46), and (5.47), the estimates

|ũn(t)| ≤ %

(
t− a+

∫ t

a

(s− a)|q̃n(s)|ds+ (t− a)

∫ a0

t

|q̃n(s)|ds
)

for t ∈ ]an, a0],

|ũn(t)| ≤ %

(
b− t+

∫ b

t

(b− s)|q̃n(s)|ds+ (b− t)
∫ t

b0

|q̃n(s)|ds
)

for t ∈ [b0, bn[

(5.52)

are fulfilled. Moreover, in view of (5.48), we have

lim
n→+∞

(∫ t

a

(s− a)|q̃n(s)|ds+ (t− a)

∫ a0

t

|q̃n(s)|ds
)

= 0 for t ∈ ]a, a0]

and

lim
n→+∞

(∫ b

t

(b− s)|q̃n(s)|ds+ (b− t)
∫ t

b0

|q̃n(s)|ds
)

= 0 for t ∈ [b0, b[ .

Taking, moreover, into account (5.50), we get from (5.52) that

|u0(t)| ≤ %(t− a) for t ∈ ]a, a0] and |u0(t)| ≤ %(b− t) for t ∈ [b0, b[

and thus, u0 satisfies the conditions

u0(a) = 0, u0(b) = 0.
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On account of (5.44) and (5.48), there exist α0 ∈ ]a, a0[ , β0 ∈ ]b0, b[ , and n0 ∈ N
such that

an < α0, %

(
α0 − a+

∫ a0

a

(s− a)|q̃n(s)|ds
)
< 1 for n > n0

and

bn > β0, %

(
b− β0 +

∫ b

b0

(b− s)|q̃n(s)|ds
)
< 1 for n > n0.

Then it follows from (5.52) that

|ũn(t)| < 1 for t ∈ [an, α0] ∪ [β0, bn], n > n0.

Hence, in view of (5.46), ‖ũn‖[α0,β0] = 1 for n > n0. Taking now into account (5.50),

we get ‖u0‖[α0,β0] = 1 and thus, u0 is a nontrivial solution of problem (5.10), (5.2).

However, this contradicts an assumption of the lemma. �

5.2.4 Proofs of the main results

Proof of Theorem 5.2. To prove the theorem it is sufficient to show that if problem

(5.10), (5.2) has no nontrivial solution, then problem (5.1), (5.2) has at least one

solution.

Let a0, b0, ā0, b̄0, %, and r0 be from the assertions of Lemmas 5.11 and 5.12. Let,

moreover, the sequences {an}+∞n=1 ⊂ ]a,min{a0, ā0}[ and {bn}+∞n=1 ⊂ ] max{b0, b̄0}, b[ be

such that

lim
n→+∞

an = a, lim
n→+∞

bn = b. (5.53)

By virtue of Lemma 5.12, the problem

u′′ = p(t)u ; u(an) = 0, u(bn) = 0

has no nontrivial solution. Hence, by virtue of Proposition 5.7, the problem

u′′n = p(t)un + q(t), (5.54)

un(an) = 0, un(bn) = 0

has a unique solution un. Moreover, by virtue of Lemma 5.12, the estimate

|un(t)| ≤ r1 for t ∈ [an, bn] (5.55)

holds, where

r1 := r0

∫ b

a

(s− a)(b− s)|q(s)|ds.

On the other hand, on account of Lemma 5.11 and (5.55), we have

(t− a)(b− t)|u′n(t)| ≤ r2 for t ∈ [an, bn], (5.56)
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where

r2 := r1

(
b− a+

∫ b

a

(s− a)(b− s)[p(s)]−ds
)

+

∫ b

a

(s− a)(b− s)|q(s)|ds.

In view of (5.53), (5.55), and (5.56), the sequence {un}+∞n=1 is uniformly bounded and

equicontinuous in ]a, b[ . Hence, by virtue of Arzelá-Ascoli’s lemma, we can suppose

without loss of generality that

lim
n→+∞

un(t) = u0(t) uniformly in ]a, b[ , (5.57)

where u0 ∈ C(]a, b[) and, moreover,

lim
n→+∞

u′n

(
a+ b

2

)
= c0. (5.58)

Taking into account (5.54), one can easily verify by direct calculation that

un(t) = un

(
a+ b

2

)
+

(
t− a+ b

2

)
u′n

(
a+ b

2

)
+

+

∫ t

a+b
2

(∫ s

a+b
2

[
p(ξ)un(ξ) + q(ξ)

]
dξ

)
ds for t ∈ [an, bn].

Hence, in view of (5.57) and (5.58), we get

u0(t) = u0

(
a+ b

2

)
+

(
t− a+ b

2

)
c0 +

∫ t

a+b
2

(∫ s

a+b
2

[
p(ξ)u0(ξ) + q(ξ)

]
dξ

)
ds

for t ∈ ]a, b[ . Thus, u0 ∈ AC ′loc(]a, b[) and u0 is a solution of equation (5.1).

Further, by virtue of Lemma 5.11 and (5.55), the inequalities

|un(t)| ≤ %

(
r1(t− a) +

∫ t

a

(s− a)|q(s)|ds+ (t− a)

∫ a0

t

|q(s)|ds
)

for t ∈ ]an, a0]

and

|un(t)| ≤ %

(
r1(b− t) +

∫ b

t

(b− s)|q(s)|ds+ (b− t)
∫ t

b0

|q(s)|ds
)

for t ∈ [b0, bn[

are fulfilled. Hence, on account of (5.57), we get

|u0(t)| ≤ %

(
r1(t− a) +

∫ t

a

(s− a)|q(s)|ds+ (t− a)

∫ a0

t

|q(s)|ds
)

for t ∈ ]a, a0],

|u0(t)| ≤ %

(
r1(b− t) +

∫ b

t

(b− s)|q(s)|ds+ (b− t)
∫ t

b0

|q(s)|ds
)

for t ∈ [b0, b[ ,

and thus, u0(a) = 0 and u0(b) = 0. Consequently, u0 is a solution of problem (5.1),

(5.2). �
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Proof of Theorem 5.5. According to Theorem 5.2, problem (5.1), (5.2) has a unique

solution u. By virtue of Lemma 5.12, the estimate

|u(t)| ≤ r0

∫ b

a

(s− a)(b− s)|q(s)|ds for t ∈ [a, b]

holds. On the other hand, it follows from Lemma 5.11 that

(t− a)(b− t)|u′(t)| ≤ ‖u‖[a,b]
(
b− a+

∫ b

a

(s− a)(b− s)[p(s)]−ds
)

+

∫ b

a

(s− a)(b− s)|q(s)|ds for t ∈ ]a, b[ .

The latter two inequalities imply (5.9) with

r := 1 + r0

(
b− a+

∫ b

a

(s− a)(b− s)[p(s)]−ds
)
.

�

Proof of Corollary 5.6. By virtue of Theorem 5.2, problems (5.1), (5.2) and (5.10n),

(5.2) have unique solutions u and un, respectively. Let

vn(t) := un(t)− u(t) for t ∈ [a, b]. (5.59)

Then it is clear that

v′′n(t) = p(t)vn(t) + q̃n(t) for a. e. t ∈ ]a, b[ , vn(a) = 0, vn(b) = 0,

where

q̃n(t) := qn(t)− q(t) for t ∈ ]a, b[ . (5.60)

Hence, by virtue of Theorem 5.5, we obtain

|vn(t)|+ (t− a)(b− t)|v′n(t)| ≤ r

∫ b

a

(s− a)(b− s)|q̃n(s)|ds for t ∈ ]a, b[ .

Taking now into account (5.12), (5.59), and (5.60), we get (5.13) and (5.14). �

5.3 Fredholm’s third theorem

5.3.1 Main results

Now we show that, under assumption (5.6), Fredholm’s third theorem remains true

as well.

Theorem 5.13 ( [29, Thm. 1.2]). Let (5.6) hold. Then the homogeneous problem

(5.10), (5.2) has no more then one, up to a constant multiple, nontrivial solution.
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Remark 5.14. Below we show (see Proposition 5.17) that if (5.6) holds and u0 is

a nontrivial solution of problem (5.10), (5.2), then there exists r0 > 0 such that

|u0(t)| ≤ r0(t− a)(b− t) for t ∈ [a, b].

Theorem 5.15 ( [29, Thm. 1.3]). Let (5.6) hold and the homogeneous problem (5.10),

(5.2) have a nontrivial solution u0. Then problem (5.1), (5.2), where the function q

satisfies (5.4), is solvable iff the condition∫ b

a

q(s)u0(s)ds = 0 (5.61)

is fulfilled.

Remark 5.16. In view of Remark 5.14 and condition (5.4), the function qu0 is inte-

grable on [a, b] and therefore, condition (5.61) is meaningfull.

5.3.2 Auxiliary statements

Next proposition immediately follows from Lemma 5.11.

Proposition 5.17. Let (5.6) hold and u0 be a nontrivial solution of the homogeneous

problem (5.10), (5.2). Then there exists r0 > 0 such that

|u0(t)| ≤ r0(t− a)(b− t) for t ∈ [a, b].

Proposition 5.18. Let (5.6) hold and u0 be a nontrivial solution of equation (5.10)

satisfying u0(a) = 0 (respectively, u0(b) = 0). Then there exists a1 ∈ ]a, b[ (respectively,

b1 ∈ ]a, b[) such that

u0(t) 6= 0 for t ∈ ]a, a1]
(
respectively, u0(t) 6= 0 for t ∈ [b1, b[

)
. (5.62)

Proof. In view of (5.6), there exists a0 ∈ ]a, b[ (respectively, b0 ∈ ]a, b[) such that∫ a0

a

(s− a)[p(s)]−ds < 1

(
respectively,

∫ b

b0

(b− s)[p(s)]−ds < 1

)
.

Hence, the inequality ∫ a0

a

(s− a)(a0 − s)[p(s)]−ds < a0 − a(
respectively,

∫ b

b0

(s− b0)(b− s)[p(s)]−ds < b− b0
)

holds, as well. The latter inequality, by virtue of [21, Lemma 4.1], implies that for any

a < t1 < t2 < a0 (respectively, b0 < t1 < t2 < b), the problem

u′′ = p(t)u; u(t1) = 0, u(t2) = 0
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has no nontrivial solution.

Now suppose that u0 is a nontrivial solution of equation (5.10) satisfying u0(a) = 0

(respectively, u0(b) = 0). Then it follows from the above-mentioned that either

u0(t) 6= 0 for t ∈ ]a, a0]
(
respectively, u0(t) 6= 0 for t ∈ [b0, b[

)
, (5.63)

or there is a t0 ∈ ]a, a0] (respectively, t0 ∈ [b0, b[ ) such that

u0(t) 6= 0 for t ∈ ]a, t0[ , u0(t0) = 0(
respectively, u0(t) 6= 0 for t ∈ ]t0, b[ , u0(t0) = 0

)
.

(5.64)

It is now clear that (5.62) holds with a1 := a0 (respectively, b1 := b0) if (5.63) holds,

and with a1 := a+t0
2

(
respectively, b1 := t0+b

2

)
if (5.64) is satisfied. �

Lemma 5.19. Let (5.6) and (5.4) hold. Let, moreover, u be a solution of problem (5.1),

(5.2) and u0 be a solution of problem (5.10), (5.2). Then

lim
t→a+

(
u′(t)u0(t)− u(t)u′0(t)

)
= 0, lim

t→b−

(
u′(t)u0(t)− u(t)u′0(t)

)
= 0. (5.65)

Proof. It is clear that(
u′(t)u0(t)− u(t)u′0(t)

)′
= q(t)u0(t) for a. e. t ∈ ]a, b[ .

Hence,

u′(t)u0(t)− u(t)u′0(t) = δ −
∫ c

t

q(s)u0(s)ds for t ∈ ]a, b[ , (5.66)

where

c :=
a+ b

2
and δ := u′(c)u0(c)− u(c)u′0(c).

By virtue of Proposition 5.17 and condition (5.4), the function qu0 is integrable on

[a, b]. Thus, it follows from (5.66) that there exists a finite limit

lim
t→a+

∣∣u′(t)u0(t)− u(t)u′0(t)
∣∣ = ε0. (5.67)

Now we show that ε0 = 0. Suppose on the contrary that

ε0 > 0. (5.68)

Then there is α ∈ ]a, b[ such that∣∣u′(t)u0(t)− u(t)u′0(t)
∣∣ > ε0

2
for t ∈ ]a, α]. (5.69)

On account of Proposition 5.18, we can assume without loss of generality that

u0(t) 6= 0 for t ∈ ]a, α].
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Then it follows from (5.69) that∣∣∣∣( u(t)

u0(t)

)′∣∣∣∣ > ε0
2u20(t)

for t ∈ ]a, α].

Hence, ∣∣µu0(t)− u(t)
∣∣ > ε0

2
|u0(t)|

∫ α

t

ds

u20(s)
for t ∈ ]a, α], (5.70)

where µ := u(α)
u0(α)

.

Taking now into account Proposition 5.17, we get from (5.70) that

∣∣µu0(t)− u(t)
∣∣ > ε1|u0(t)|

(
1

t− a −
1

α− a

)
for t ∈ ]a, α],

where ε1 := ε0
2r20(b−a)2

. The latter inequality, in view of the conditions u0(a) = 0 and

u(a) = 0, implies that

lim
t→a+

|u0(t)|
t− a = 0. (5.71)

On the other hand, by virtue of Lemma 5.11, there is M > 0 such that

(t− a)|u′(t)| ≤M for t ∈ ]a, α]. (5.72)

In view of (5.71) and (5.72), we get

lim
t→a+

|u′(t)u0(t)| = lim
t→a+

(t− a)|u′(t)| |u0(t)|
t− a = 0

and therefore, on account of (5.67), we obtain

lim
t→a+

|u(t)u′0(t)| = ε0.

Now let α0 ∈ ]a, α[ be such that

|u(t)u′0(t)| >
ε0
2

for t ∈ ]a, α0].

Then it is clear that

‖u‖[a,b]|u′0(t)| >
ε0
2

for t ∈ ]a, α0]

and consequently,

‖u‖[a,b]|u0(t)| >
ε0
2

(t− a) for t ∈ ]a, α0].

However, the latter inequality and (5.71) yield that ε0 ≤ 0, which contradicts (5.68).

The contradiction obtained proves the first equality in (5.65). By the same arguments

one can prove the second equality in (5.65). �

The next lemma we need in the proof of the sufficiency part of Theorem 5.15 and

thus, we suppose that Theorem 5.13 and the necessity part of Theorem 5.15 are true.
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Lemma 5.20. Let (5.6) hold and the homogeneous problem (5.10), (5.2) have a non-

trivial solution u0. Then there exists n0 ∈ N and r > 0 such that for any q satisfying

(5.4) and (5.61) and every n > n0, the solution u of the problem

u′′ =

(
p(t) +

1

n
[p(t)]−

)
u+ q(t); u(a) = 0, u(b) = 0

admits the estimate

|u(t)| ≤ r

∫ b

a

(s− a)(b− s)|q(s)|ds for t ∈ [a, b].

Proof. Suppose on the contrary that the assertion of the lemma is violated. Then for

any n ∈ N, there exist kn ≥ n, qn ∈ Lloc(]a, b[), and un ∈ AC ′loc(]a, b[) such that∫ b

a

(s− a)(b− s)|qn(s)|ds < +∞,
∫ b

a

qn(s)u0(s)ds = 0,

u′′n(t) =

(
p(t) +

1

kn
[p(t)]−

)
un(t) + qn(t) for a. e. t ∈ ]a, b[ ,

un(a) = 0, un(b) = 0,

and

‖un‖[a,b] > n

∫ b

a

(s− a)(b− s)|qn(s)|ds.

Introduce the notation

ũn(t) :=
1

‖un‖[a,b]
un(t) for t ∈ ]a, b[ , q̃n(t) :=

1

‖un‖[a,b]
qn(t) for a. e. t ∈ ]a, b[ .

Then it is clear that

ũ′′n(t) =

(
p(t) +

1

kn
[p(t)]−

)
ũn(t) + q̃n(t) for a. e. t ∈ ]a, b[ , (5.73)

ũn(a) = 0, ũn(b) = 0,

‖ũn‖[a,b] = 1, (5.74)∫ b

a

(s− a)(b− s)|q̃n(s)|ds < 1

n
, (5.75)

and ∫ b

a

q̃n(s)u0(s)ds = 0. (5.76)

By virtue of Lemma 5.11 (with q(t) := 1
kn

[p(t)]−ũn(t) + q̃n(t)) and (5.74), we have

(t− a)(b− t)|ũ′n(t)| ≤ b− a+
n+ 1

n

∫ b

a

(s− a)(b− s)[p(s)]−ds

+

∫ b

a

(s− a)(b− s)|q̃n(s)|ds for t ∈ ]a, b[ ,

(5.77)
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while, by virtue of Lemma 5.11 (with q(t) := 1
kn

[p(t)]−ũn(t) + q̃n(t)), there exist a0 ∈
]a, b[ , b0 ∈ ]a0, b[ , and % > 0 such that

|ũn(t)| ≤ %

[
t− a+

∫ a0

a

(s− a)

∣∣∣∣ 1

kn
[p(s)]−ũn(s) + q̃n(s)

∣∣∣∣ ds] for t ∈ ]a, a0],

|ũn(t)| ≤ %

[
b− t+

∫ b

t

(b− s)
∣∣∣∣ 1

kn
[p(s)]−ũn(s) + q̃n(s)

∣∣∣∣ ds] for t ∈ [b0, b[ .

(5.78)

On account of (5.74) and (5.77), the sequence {un}+∞n=1 is uniformly bounded and

equicontinuous in ]a, b[ . Thus, by virtue of Arzelà-Ascoli’s lemma, we can assume

without loss of generality that

lim
n→+∞

ũn(t) = v0(t) uniformly in ]a, b[ , (5.79)

where v0 ∈ C(]a, b[) and, moreover,

lim
n→+∞

ũ′n

(
a+ b

2

)
= c0. (5.80)

In view of (5.73), it is clear that

ũn(t) = ũn

(
a+ b

2

)
+

(
t− a+ b

2

)
ũ′n

(
a+ b

2

)
+

∫ t

a+b
2

(∫ s

a+b
2

[(
p(ξ) +

1

kn
[p(ξ)]−

)
ũn(ξ) + q̃n(ξ)

]
dξ

)
ds for t ∈ ]a, b[ .

Hence, on account of (5.74), (5.75), (5.79), and (5.80), we get

v0(t) = v0

(
a+ b

2

)
+ c0

(
t− a+ b

2

)
+

∫ t

a+b
2

(∫ s

a+b
2

p(ξ)v0(ξ)dξ

)
ds for t ∈ ]a, b[ .

Therefore, v0 ∈ AC ′loc(]a, b[) and v0 is a solution of equation (5.10). On the other hand,

in view of (5.74), (5.75), and (5.79), it follows from (5.78) that

|v0(t)| ≤ ρ(t− a) for t ∈ ]a, a0] and |v0(t)| ≤ ρ(b− t) for t ∈ [b0, b[ ,

and thus, v0 is a solution of problem (5.10), (5.2).

By virtue of (5.75) and (5.78), it is clear that there are n1 ∈ N, a1 ∈ ]a, a0], and

b1 ∈ [b0, b[ such that ∣∣ũn(t)
∣∣ < 1 for t ∈ [a, a1] ∪ [b1, b], n > n1.

Therefore, ‖ũn‖[a1,b1] = 1 for n > n1. Taking now into account (5.79), we get ‖v0‖[a1,b1] =

1 and therefore, v0 is a nontrivial solution of problem (5.10), (5.2).

By virtue of Theorem 5.13, there is λ 6= 0 such that

v0(t) = λu0(t) for t ∈ [a, b]. (5.81)
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Moreover, in view of the necessity part of Theorem 5.15 (with q(t) := 1
kn

[p(t)]−ũn(t) +

q̃n(t)), (5.73), (5.74), (5.76), and (5.81), we get∫ b

a

[p(s)]−ũn(s)v0(s)ds = 0. (5.82)

Let now α ∈ ]a, b[ and β ∈ ]α, b[ be arbitrary. Then, in view of (5.79), we have

lim
n→+∞

∫ β

α

[p(s)]−ũn(s)v0(s)ds =

∫ β

α

[p(s)]−v
2
0(s)ds. (5.83)

On account of (5.6), (5.81), and Proposition 5.17, the function [p]−v0 is integrable on

[a, b]. Taking into account (5.74), we get∣∣∣∣∫ α

a

[p(s)]−ũn(s)v0(s)ds

∣∣∣∣ ≤ ∫ α

a

[p(s)]−|v0(s)|ds

and ∣∣∣∣∫ b

β

[p(s)]−ũn(s)v0(s)ds

∣∣∣∣ ≤ ∫ b

β

[p(s)]−|v0(s)|ds.

Hence, (5.82) implies the inequality∫ β

α

[p(s)]−ũn(s)v0(s)ds ≤
∫ α

a

[p(s)]−|v0(s)|ds+

∫ b

β

[p(s)]−|v0(s)|ds,

which, together with (5.83), results in∫ β

α

[p(s)]−v
2
0(s)ds ≤

∫ α

a

[p(s)]−|v0(s)|ds+

∫ b

β

[p(s)]−|v0(s)|ds.

Since α and β were arbitrary, we get from the latter inequality that∫ b

a

[p(s)]−v
2
0(s)ds = 0.

Taking now into account that v0 6≡ 0, we get [p]− ≡ 0, i. e., p(t) ≥ 0 for a.e. t ∈ ]a, b[ .

However, in this case, problem (5.10), (5.2) has no nontrivial solution, which contradicts

the assumption of the lemma. �

Proof of Theorem 5.13. Let u0 and v0 be nontrivial solutions of (5.10). By virtue of

Lemma 5.19 (with u ≡ v0 and q ≡ 0), we get

lim
t→a+

(
u′0(t)v0(t)− u0(t)v′0(t)

)
= 0.

On the other hand, clearly,(
u′0(t)v0(t)− u0(t)v′0(t)

)′
= 0 for a. e. t ∈ ]a, b[

107



and therefore,

u′0(t)v0(t)− u0(t)v′0(t) = 0 for t ∈ [a, b]. (5.84)

Choose t0 ∈ ]a, b[ such that

u′0(t0) = 0.

It is clear that u0(t0) 6= 0 since otherwise u0 ≡ 0. Then it follows from (5.84) that

v′0(t0) = 0

and moreover, v0(t0) 6= 0. Put λ := u0(t0)
v0(t0)

and

w(t) := u0(t)− λv0(t) for t ∈ [a, b].

Obviously, w is a solution of equation (5.10) and w(t0) = 0. However, it follows from

(5.84) that w′(t0) = 0. Consequently, w ≡ 0 and thus, u0 ≡ λv0. �

Proof of Theorem 5.15. Let u0 be a nontrivial solution of problem (5.10), (5.2), while

u be a solution of problem (5.1), (5.2). Put

f(t) := u′(t)u0(t)− u(t)u′0(t) for t ∈ ]a, b[ .

It is clear that

f ′(t) = q(t)u0(t) for a. e. t ∈ ]a, b[ .

Hence,

f

(
a+ b

2

)
− f(t) =

∫ a+b
2

t

q(s)u0(s)ds for t ∈ ]a, b[ . (5.85)

By virtue of Lemma 5.19, Proposition 5.17, and condition (5.4), we get from (5.85)

that

f

(
a+ b

2

)
=

∫ a+b
2

a

q(s)u0(s)ds and f

(
a+ b

2

)
= −

∫ b

a+b
2

q(s)u0(s)ds,

and therefore, (5.61) is fulfilled.

Let now u0 be a nontrivial solution of problem (5.10), (5.2), q ∈ Lloc(]a, b[) satisfy

(5.4), and (5.61) be fulfilled. Let, moreover, n0 ∈ N and r > 0 be from the assertion of

Lemma 5.20. By virtue of Lemma 5.20, for any n > n0, the problem

u′′ =

(
p(t) +

1

n
[p(t)]−

)
u; u(a) = 0, u(b) = 0

has no nontrivial solution. Since[
p(t) +

1

n
[p(t)]−

]
−

=
n− 1

n
[p(t)]− (5.86)

and (5.6) holds, it follows from Theorem 5.2 that for any n > n0, the problem

u′′ =

(
p(t) +

1

n
[p(t)]−

)
u+ q(t); u(a) = 0, u(b) = 0 (5.87)
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has a unique solution un.

In view of Lemma 5.20, the inequalities

|un(t)| ≤M for t ∈ ]a, b[ , n > n0 (5.88)

are fulfilled, where

M := r

∫ b

a

(s− a)(b− s)|q(s)|ds.

On the other hand, on account of Lemma 5.11, (5.86), and (5.88), we get

(t− a)(b− t)|u′n(t)| ≤M1 for t ∈ ]a, b[ , n > n0, (5.89)

where

M1 := M

(
b− a+ 2

∫ b

a

(s− a)(b− s)[p(s)]−ds
)

+

∫ b

a

(s− a)(b− s)|q(s)|ds.

It follows from (5.88) and (5.89) that the sequence {un}+∞n=n0
is uniformly bounded and

equicontinuous in ]a, b[ . Hence, by virtue of Arzelà-Ascoli’s lemma, we can assume

without loss of generality that

lim
n→+∞

un = u(t) uniformly in ]a, b[ , (5.90)

where u ∈ C(]a, b[) and, moreover,

lim
n→+∞

u′n

(
a+ b

2

)
= c0. (5.91)

In view of (5.87), it is clear that

un(t) = un

(
a+ b

2

)
+

(
t− a+ b

2

)
u′n

(
a+ b

2

)
+

∫ t

a+b
2

(∫ s

a+b
2

[(
p(ξ) +

1

n
[p(ξ)]−

)
un(ξ) + q(ξ)

]
dξ

)
ds for t ∈ ]a, b[ .

Hence, on account of (5.90) and (5.91), we get

u(t) = u

(
a+ b

2

)
+ c0

(
t− a+ b

2

)
+

∫ t

a+b
2

(∫ s

a+b
2

[
p(ξ)u(ξ) + q(ξ)

]
dξ

)
ds for t ∈ ]a, b[ .

Therefore, u ∈ AC ′loc(]a, b[) and u is a solution of equation (5.1).

On the other hand, by virtue of Lemma 5.11 and (5.88), there are a0 ∈ ]a, b[ ,

b0 ∈ ]a0, b[ , and % > 0 such that for any n > n0, the inequalities

|un(t)| ≤ %

[
M(t− a) +

∫ t

a

(s− a)

(
M

n
[p(s)]− + |q(s)|

)
ds

+(t− a)

∫ a0

t

(
M

n
[p(s)]− + |q(s)|

)
ds

]
for t ∈ ]a, a0]
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and

|un(t)| ≤ %

[
M(b− t) +

∫ b

t

(b− s)
(
M

n
[p(s)]− + |q(s)|

)
ds

+(b− t)
∫ t

b0

(
M

n
[p(s)]− + |q(s)|

)
ds

]
for t ∈ [b0, b[

are fulfilled. Hence, in view of (5.90), we get

|u(t)| ≤ %

[
M(t− a) +

∫ t

a

(s− a)|q(s)|ds+ (t− a)

∫ a0

t

|q(s)|ds
]

for t ∈ ]a, a0]

and

|u(t)| ≤ %

[
M(b− t) +

∫ b

t

(b− s)|q(s)|ds+ (b− t)
∫ t

b0

|q(s)|ds
]

for t ∈ [b0, b[ .

Consequently, u satisfies (5.2) and thus, u is a solution of problem (5.1), (5.2). �

5.4 Well-posedness of the second order linear singular Dirich-

let problem

Consider the problem

u′′ = p0(t)u+ q0(t), (5.92)

u(a) = 0, u(b) = 0, (5.93)

where p0, q0 ∈ Lloc(]a, b[), and the sequence of equations

u′′ = pn(t)u+ qn(t), (5.92n)

where pn, qn ∈ Lloc(]a, b[), n ∈ N. Under the well-posedness of the above problem, the

statement of the following type is usually understood.

Statement. Let problem (5.92), (5.93) is uniquely solvable and let the functions pn
and qn converge, in a certain sense, to the functions p0 and q0, respectively. Then for

any n ∈ N large enough, problem (5.92n), (5.93) is uniquely solvable and the sequence

of solutions converge, in a certain sense, to the solution of problem (5.92), (5.93).

In the case, when the functions pn and qn, n ∈ N∪{0}, are integrable on [a, b], well-

posedness of the problem considered one can deduce from the general theory of linear

boundary value problems (see, e. g., [17, Theorem 1.2]). However, we are interested in

the case, when the functions pn and qn are not, in general, integrable on [a, b], having

singularities at t = a and t = b. The aim of this section is to establish conditions

guaranteeing well-posedness of the singular problem (5.92), (5.93).
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Along with (5.92) we consider also the corresponding homogeneous equation

u′′ = p0(t)u. (5.920)

It has been proved in Section 5.2 that Fredholm’s alternative remains true even in the

case, when ∫ b

a

(s− a)(b− s)[p0(s)]−ds < +∞ (5.94)

and ∫ b

a

(s− a)(b− s)|q0(s)|ds < +∞. (5.95)

Hence, it is natural to assume along with (5.94) and (5.95) that for any n ∈ N, the

conditions ∫ b

a

(s− a)(b− s)[pn(s)]−ds < +∞ (5.96)

and ∫ b

a

(s− a)(b− s)|qn(s)|ds < +∞. (5.97)

hold as well.

Now introduce the following definitions.

Definition 5.21. We say that the condition (P ) is fulfilled if (5.94) and (5.96) hold,

lim
n→+∞

∫ t

a+b
2

pn(s)ds =

∫ t

a+b
2

p0(s)ds uniformly in ]a, b[ , (5.98)

and either there exists p∗ ∈ Lloc(]a, b[) such that

[pn(t)]− ≤ p∗(t) for t ∈ ]a, b[ , n ∈ N, and

∫ b

a

(s− a)(b− s)p∗(s)ds < +∞, (5.99)

or

lim
n→+∞

∫ b

a

(s− a)(b− s)
[
pn(s) + [p0(s)]−

]
−
ds = 0. (5.100)

Remark 5.22. If the condition (P ) is fulfilled, then there exists M > 0 such that∫ b

a

(s− a)(b− s)[pn(s)]−ds ≤M for n ∈ N.

Definition 5.23. We say that the condition (Q) is fulfilled if (5.95) and (5.97) hold

and either

lim
n→+∞

∫ b

a

(s− a)(b− s)|qn(s)− q0(s)|ds = 0, (5.101)

or

lim
n→+∞

∫ t

a+b
2

qn(s)ds =

∫ t

a+b
2

q0(s)ds uniformly in ]a, b[ , (5.102)

and there exists q∗ ∈ Lloc(]a, b[) such that

|qn(t)| ≤ q∗(t) for t ∈ ]a, b[ , n ∈ N, and

∫ b

a

(s− a)(b− s)q∗(s)ds < +∞. (5.103)

111



Remark 5.24. It is clear that (5.101) implies (5.102). Mention also that if the condi-

tion (Q) is fulfilled, then there exists M > 0 such that∫ b

a

(s− a)(b− s)|qn(s)|ds ≤M for n ∈ N.

5.4.1 Main result

Theorem 5.25 ( [30, Thm. 1.2]). Let problem (5.920), (5.93) have no nontrivial

solution and the conditions (P ) and (Q) be fulfilled. Then there exists n0 ∈ N such

that for any n > n0, problem (5.92n), (5.93) possesses a unique solution un,

lim
n→+∞

un(t) = u(t) uniformly on [a, b], (5.104)

and

lim
n→+∞

u′n(t) = u′(t) uniformly in ]a, b[ , (5.105)

where u is a (unique) solution of problem (5.92), (5.93).

Remark 5.26. As it follows from Definition 5.21, the condition (P ) implies condi-

tion (5.98). In certain cases, these two conditions are equivalent. For example, if

pn(t) := p0(t) + gn(t) with gn ∈ Lloc(]a, b[), gn(t) ≥ 0, p0(t) ≤ 0 for a.e. t ∈ ]a, b[ , and

lim
n→+∞

∫ t

a+b
2

gn(s)ds = 0 uniformly in ]a, b[ .

However, in Theorem 5.25, the condition (P ) cannot be replaced by condition (5.98)

(see Example 5.29 bellow). Analogously, the condition (Q) yields condition (5.102).

However, Example 5.28 shows that, in Theorem 5.25, the condition (Q) cannot be re-

placed by condition (5.102). In this sense, Theorem 5.25 is optimal and its assumptions

cannot be weakened.

Remark 5.27. In Theorem 5.25, assertion (5.105) cannot be replaced by the stronger

assertion

lim
n→+∞

u′n(t) = u′(t) uniformly on [a, b]. (5.106)

Indeed, let a = 0, b = 1, p0(t)
def
= 0, q0(t) := 0, pn(t) := 0, and qn(t) := 1

nt(1−t) . Then

all the assumptions of Theorem 5.25 are fulfilled, u(t) ≡ 0, and un(t) = 1
n

(
t ln t+ (1−

t) ln(1− t)
)
. However, (5.106) is violated because limn→+∞ u

′
n(e−n) = −1.

Example 5.28. Let a = 0, b = 2π, p0 ≡ 0, q0 ≡ 0,

pn(t) :=

{
−n2 for t ∈

[
0, π

2n2

]
∪
[
2π − π

2n2 , 2π
]
,

0 for t ∈
]
π

2n2 , 2π − π
2n2

[
,
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and

qn(t) :=

{
−n2 sin(nt) for t ∈

]
π

2n2 ,
π
2n

[
∪
]
2π − π

2n
, 2π − π

2n2

[
,

0 for t ∈
[
0, π

2n2

]
∪
[
π
2n
, 2π − π

2n

]
∪
[
2π − π

2n2 , 2π
]
.

It is clear that all the assumptions of Theorem 5.25 with (Q) replaced by (5.102) are

fulfilled. Problem (5.92), (5.93) has a unique solution u ≡ 0, while the function

un(t) :=

{
sin(nt) for t ∈

[
0, π

2n

]
∪
[
2π − π

2n
, 2π
]
,

1 for t ∈
]
π
2n
, 2π − π

2n

[ (5.107)

is a unique solution of problem (5.92n), (5.93). However, ‖un‖[a,b] = 1 for n ∈ N and

therefore, (5.104) is violated.

Example 5.29. Let a = 0, b = 2π, p0 ≡ 0, q0 ≡ 0, qn(t) := 1
n
, and

pn(t) :=

{
−n2 for t ∈

[
0, π

2n

]
∪
[
2π − π

2n
, 2π
]
,

0 for t ∈
]
π
2n
, 2π − π

2n

[
.

It is clear that the all assumptions of Theorem 5.25 are fulfilled with (P ) replaced by

(5.98). However, for any n ∈ N, the function un defined by (5.107) is a nontrivial

solution of the homogeneous problem

u′′ = pn(t)u; u(a) = 0, u(b) = 0.

Since
∫ b
a
un(s)ds 6= 0 for n ∈ N , by virtue of (classical) Fredholm’s third theorem, for

any n ∈ N , problem (5.92n), (5.93) has no solution.

5.4.2 Auxiliary statements

First of all, for the sake of convenience of references, we recall some results (in

a suitable form for us) established above.

Consider the equation

v′′ = h(t)v + q(t),

where h, q ∈ Lloc(]a, b[), ∫ b

a

(s− a)(b− s)|h(s)|ds < +∞, (5.108)

and ∫ b

a

(s− a)(b− s)|q(s)|ds < +∞. (5.109)

In Propositions 5.7–5.9, it is stated that

Proposition 5.30. Let (5.108) hold. Then there exist a0 ∈ ]a, b[ , b0 ∈ ]a0, b[ , and

%0 > 0 such that the following assertions hold:
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(1) For any t1 < t2 satisfying either t1, t2 ∈ [a, a0] or t1, t2 ∈ [b0, b] and for any

w ∈ AC ′loc(]t1, t2[) satisfying

w′′(t) ≥ h(t)w(t) for a. e. t ∈ [t1, t2], w(t1) = 0, w(t2) = 0,

the inequality

w(t) ≤ 0 for t ∈ [t1, t2]

holds.

(2) For any c ∈ R and any q ∈ Lloc(]a, b[) satisfying (5.109), the problems

v′′ = h(t)v + q(t); v(a) = 0, v(a0) = c (5.110)

and

v′′ = h(t)v + q(t); v(b0) = c, v(b) = 0 (5.111)

are uniquely solvable.

(3) The solution v of problem (5.110), resp., (5.111), admits the estimate

|v(t)| ≤ %0

(
|c|(t− a) +

∫ t

a

(s− a)|q(s)|ds+ (t− a)

∫ a0

t

|q(s)|ds
)

for t ∈ ]a, a0],

resp.,

|v(t)| ≤ %0

(
|c|(b− t) +

∫ b

t

(b− s)|q(s)|ds+ (b− t)
∫ t

b0

|q(s)|ds
)

for t ∈ [b0, b[ .

Proposition 5.31. Let (5.94) hold. Then there exist a0 ∈ ]a, b[ , b0 ∈ ]a0, b[ , and

%0 > 0 such that for any pn, qn ∈ Lloc(]a, b[) satisfying (5.96) and (5.97), any solution

un of problem (5.92n), (5.93) admits the estimate

|un(t)| ≤ %0

(
‖un‖[a,b]Pn(t) +Qn(t)

)
for t ∈ ]a, a0] ∪ [b0, b[ , (5.112)

where

Pn(t) := t− a+

∫ t

a

(s− a)
[
pn(s) + [p0(s)]−

]
−
ds

+ (t− a)

∫ a0

t

[
pn(s) + [p0(s)]−

]
−
ds for t ∈ ]a, a0],

Pn(t) := b− t+

∫ b

t

(b− s)
[
pn(s) + [p0(s)]−

]
−
ds

+ (b− t)
∫ t

b0

[
pn(s) + [p0(s)]−

]
−
ds for t ∈ [b0, b[ ,

Qn(t) :=

∫ t

a

(s− a)|qn(s)|ds+ (t− a)

∫ a0

t

|qn(s)|ds for t ∈ ]a, a0],

Qn(t) :=

∫ b

t

(b− s)|qn(s)|ds+ (b− t)
∫ t

b0

|qn(s)|ds for t ∈ [b0, b[ .

(5.113)

114



Proof. Let a0 ∈ ]a, b[ , b0 ∈ ]a0, b[ , and %0 > 0 be from the assertion of Proposition 5.30

with h ≡ −[p0]−. Let, moreover, the functions pn, qn ∈ Lloc(]a, b[) satisfy (5.96) and

(5.97) and un be a solution of problem (5.92n), (5.93).

Consider the problem

v′′ = −[p0(t)]−v −
[
pn(t) + [p0(t)]−

]
−
|un(t)| − |qn(t)|,

v(a) = 0, v(a0) = ‖un‖[a,b].

By virtue of Proposition 5.30(2), this problem has a unique solution vn. In view of

Proposition 5.30(1), we have

vn(t) ≥ 0 for t ∈ ]a, a0], (5.114)

as well. Now we show that

|un(t)| ≤ vn(t) for t ∈ ]a, a0]. (5.115)

Suppose on the contrary that (5.115) is violated. Then there exist t1 ∈ [a, a0[ and

t2 ∈ ]t1, a0] such that

w(t) > 0 for t ∈ ]t1, t2[ , (5.116)

w(t1) = 0, w(t2) = 0,

where w(t) := |un(t)| − vn(t) for t ∈]a, a0]. In view of (5.114) and (5.116), it is clear

that w ∈ AC ′loc(]t1, t2[). Moreover

w′′(t) = u′′n(t) sgnun(t)− v′′n(t) ≥ −[p0(t)]−w(t) for a. e. t ∈ ]t1, t2[ .

Hence, by virtue of Proposition 5.30(1), we get w(t) ≤ 0 for t ∈ ]t1, t2[ , which contra-

dicts (5.116).

Analogously one can prove that

|un(t)| ≤ vn(t) for t ∈ [b0, b[ , (5.117)

where vn is a solution of the problem

v′′ = −[p0(t)]−v −
[
pn(t) + [p0(t)]−

]
−
|un(t)| − |qn(t)|,

v(b0) = ‖un‖[a,b], v(b) = 0.

Estimate (5.112) now follows from (5.115), (5.117), and Proposition 5.30(3). �

Remark 5.32. Suppose that the conditions (P ) and (Q) hold and the functions Pn and

Qn are defined by (5.113). Then there exist nonnegative functions ϕ, ψ ∈ C(]a, a0]) ∪
C([b0, b[) such that

ϕ(a) = 0, ϕ(b) = 0, ψ(a) = 0, ψ(b) = 0, (5.118)
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and

lim sup
n→+∞

Pn(t) ≤ ϕ(t), lim sup
n→+∞

Qn(t) ≤ ψ(t) for t ∈ ]a, a0] ∪ [b0, b[ .

Indeed, if (5.99), resp., (5.103), holds, then we set

ϕ(t) := t− a+

∫ t

a

(s− a)
(
p∗(s) + [p0(s)]−

)
ds

+ (t− a)

∫ a0

t

(
p∗(s) + [p0(s)]−

)
ds for t ∈ ]a, a0],

ϕ(t) := b− t+

∫ b

t

(b− s)
(
p∗(s) + [p0(s)]−

)
ds

+ (b− t)
∫ t

b0

(
p∗(s) + [p0(s)]−

)
ds for t ∈ [b0, b[ ,

resp.,

ψ(t) :=

∫ t

a

(s− a)q∗(s)ds+ (t− a)

∫ a0

t

q∗(s)ds for t ∈ ]a, a0],

ψ(t) :=

∫ b

t

(b− s)q∗(s)ds+ (b− t)
∫ t

b0

q∗(s)ds for t ∈ [b0, b[ .

On the other hand, if (5.100), resp., (5.101), is satisfied, then we put

ϕ(t) := t− a for t ∈ ]a, a0], ϕ(t) := b− t for t ∈ [b0, b[ ,

resp.,

ψ(t) :=

∫ t

a

(s− a)|q0(s)|ds+ (t− a)

∫ a0

t

|q0(s)|ds for t ∈ ]a, a0],

ψ(t) :=

∫ b

t

(b− s)|q0(s)|ds+ (b− t)
∫ t

b0

|q0(s)|ds for t ∈ [b0, b[ .

In particular, for any ε > 0, there exist aε ∈ ]a, a0], bε ∈ [b0, b[ , and nε ∈ N such that

Pn(t) < ε, Qn(t) < ε for t ∈ ]a, aε] ∪ [bε, b[ , n > nε.

Proposition 5.33. Let (5.98) and (5.102) hold. Let, moreover, {un}+∞n=1 be a uni-

formly bounded and equicontinuous in ]a, b[ sequence of solutions of problem (5.92n),

(5.93). Then there exist a subsequence {unk}+∞k=1 and a solution u of equation (5.92)

such that

lim
k→+∞

u(i)nk(t) = u(i)(t) uniformly in ]a, b[ , i = 0, 1.

Proof. By virtue of Arzelá-Acsoli’s lemma, we can assume without loss of generality

that

lim
n→+∞

un(t) = u(t) uniformly in ]a, b[ , (5.119)
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where u ∈ C(]a, b[). Let a0 ∈ ]a, b[ and b0 ∈ ]a0, b[ be fixed. Then for any n ∈ N, there

exists tn ∈ [a0, b0] such that

un(b0)− un(a0) = (b0 − a0)u′n(tn).

Hence, there is a subsequence {tnk}+∞k=1 ⊂ [a0, b0] and t0 ∈ [a0, b0] such that

lim
k→+∞

tnk = t0 (5.120)

and

lim
k→+∞

u′nk(tnk) = c. (5.121)

In view of (5.102), (5.119), and (5.120), it is clear that

lim
k→+∞

∫ t

tnk

(
p0(s)unk(s) + qnk(s)

)
ds

=

∫ t

t0

(
p0(s)u(s) + q0(s)

)
ds uniformly in ]a, b[ .

(5.122)

We first show that

lim
k→+∞

∫ t

tnk

pnk(s)unk(s)ds =

∫ t

t0

p0(s)u(s)ds uniformly in ]a, b[ . (5.123)

Observe that

u′nk(t) = u′nk(tnk) +

∫ t

tnk

(
pnk(s)unk(s) + qnk(s)

)
ds for t ∈ ]a, b[ , k ∈ N. (5.124)

Introduce the notations

Φk(t) :=

∫ t

tnk

(
pnk(s)− p0(s)

)
unk(s)ds, Fk(t) :=

∫ t

tnk

(
pnk(s)− p0(s)

)
ds,

Hk(t) :=

∫ t

tnk

(
p0(s)unk(s) + qnk(s)

)
ds for t ∈ ]a, b[ , k ∈ N.

One can easily verify that

Φk(t) = unk(t)Fk(t)−
∫ t

tnk

u′nk(s)Fk(s)ds for t ∈ ]a, b[ , k ∈ N.

Taking now into account (5.124), we get

Φk(t) = unk(t)Fk(t)− u′nk(tnk)
∫ t

tnk

Fk(s)ds−
∫ t

tnk

Fk(s)Φk(s)ds

−
∫ t

tnk

Fk(s)Hk(s)ds for t ∈ ]a, b[ , k ∈ N.
(5.125)
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It follows from (5.125) that for any α ∈ ]a, a0[ and β ∈ ]b0, b[ , the inequality

‖Φk‖[α,β] ≤ ‖Fk‖[α,β]
(
|u′nk(tnk)|+ ‖unk‖[α,β] + (b− a)

(
‖Φk‖[α,β] + ‖Hk‖[α,β]

))
holds for k ∈ N. Hence, on account of (5.98), (5.121), and (5.122), we conclude that

for any α ∈ ]a, a0[ and β ∈ ]b0, b[ ,

lim
k→+∞

‖Φk‖[α,β] = 0

and consequently, (5.123) holds.

It follows from (5.124) that

unk(t) = unk(tnk) + (t− tnk)u′nk(tnk)

+

∫ t

tnk

(∫ s

tnk

(
pnk(ξ)unk(ξ) + qnk(ξ)

)
dξ

)
ds for t ∈ ]a, b[ , k ∈ N.

Hence, in view of (5.119), (5.120), (5.121), (5.123), and (5.102), we get

u(t) = u(t0) + c(t− t0) +

∫ t

t0

(∫ s

t0

(
p0(ξ)u(ξ) + q0(ξ)

)
dξ

)
ds for t ∈ ]a, b[ .

Consequently, u ∈ AC ′loc(]a, b[) and the function u is a solution of equation (5.92). In

particular,

u′(t) = c+

∫ t

t0

(
p0(s)u(s) + q0(s)

)
ds for t ∈ ]a, b[ . (5.126)

On the other hand, in view of (5.102), (5.120), and (5.123), it follows from (5.124) that

lim
k→+∞

u′nk(t) = c+

∫ t

t0

(
p0(s)u(s) + q0(s)

)
ds uniformly in ]a, b[

and consequently, by virtue of (5.126), we get

lim
k→+∞

u′nk(t) = u′(t) uniformly in ]a, b[ .

�

Lemma 5.34. Let (5.94) hold and problem (5.920), (5.93) have no nontrivial solution.

Let, moreover, the condition (P ) be fulfilled. Then there exist r > 0 and n0 ∈ N such

that for any q ∈ Lloc(]a, b[) satisfying (5.109) and any n > n0, any solution un of the

problem

u′′ = pn(t)u+ q(t); u(a) = 0, u(b) = 0

admits the estimate

‖un‖[a,b] ≤ r

∫ b

a

(s− a)(b− s)|q(s)|ds.
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Proof. Suppose on the contrary that the assertion of the lemma is violated. Then there

exist {q̃nk}+∞k=1 ⊂ Lloc(]a, b[) and {ũnk}+∞k=1 ⊂ AC ′loc(]a, b[) such that for any k ∈ N,

ũnk(t)
′′ = pnk(t)ũnk(t) + q̃nk(t) for a. e. t ∈ ]a, b[ , ũnk(a) = 0, ũnk(b) = 0,

and

‖ũnk‖[a,b] > k

∫ b

a

(s− a)(b− s)|q̃nk(s)|ds.

Introduce the notation

unk(t) :=
ũnk(t)

‖ũnk‖[a,b]
, qnk(t) :=

q̃nk(t)

‖ũnk‖[a,b]
for k ∈ N.

It is clear that for any k ∈ N, we have

u′′nk(t) = pnk(t)unk(t) + qnk(t) for a. e. t ∈ ]a, b[ , unk(a) = 0, unk(b) = 0,

‖unk‖[a,b] = 1, (5.127)

and

lim
k→+∞

∫ b

a

(s− a)(b− s)|qnk(s)|ds = 0. (5.128)

In view of (5.128), we get

lim
k→+∞

∫ t

a+b
2

qnk(s)ds = 0 uniformly in ]a, b[ , (5.129)

as well. By virtue of Proposition 5.10 and (5.127), the inequality

(t− a)(b− t)|u′nk(t)| ≤ b− a+

∫ b

a

(s− a)(b− s)[pnk(s)]−ds

+

∫ b

a

(s− a)(b− s)|qnk(s)|ds for t ∈ ]a, b[ , k ∈ N

holds. Hence, in view of (5.127), (5.128), and Remark 5.22, the sequence {unk}+∞k=1

is uniformly bounded and equicontinuous in ]a, b[ . Taking now into account (5.98),

(5.129), and Proposition 5.33, we can assume without loss of generality that

lim
k→+∞

u(i)nk(t) = u(i)(t) uniformly in ]a, b[ , i = 0, 1, (5.130)

where u is a solution of equation (5.920).

Let now a0 ∈ ]a, b[ , b0 ∈ ]a0, b[ , and %0 > 0 be from the assertion of Proposition 5.31.

Then, in view of (5.127) and Proposition 5.31, we get

|unk(t)| ≤ %0

(
Pnk(t) +Qnk(t)

)
for t ∈ ]a, a0] ∪ [b0, b[ , k ∈ N, (5.131)

where Pnk and Qnk are defined by (5.113). Hence, in view of Remark 5.32, there exist

a1 ∈]a, a0], b1 ∈ [b0, b[ , and k1 ∈ N such that

|unk(t)| < 1 for t ∈ ]a, a1] ∪ [b1, b[ , k > k1,
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whence, on account of (5.127), we get ‖unk‖[a1,b1] = 1 for k > k1. Therefore, in view of

(5.130), we have

u 6≡ 0. (5.132)

On the other hand, on account of (5.128), (5.130), and Remark 5.32, we get from

(5.131) that

|u(t)| ≤ ρ0ϕ(t) for t ∈ ]a, a0] ∪ [b0, b[ ,

where ϕ ∈ C(]a, a0] ∪ [b0, b[) and ϕ(a) = 0, ϕ(b) = 0. Hence, the function u satisfies

(5.93) and therefore, in view of (5.132), u is a nontrivial solution of problem (5.920),

(5.93). However, this contradicts the assumption of the lemma. �

5.4.3 Proof of the main result

Proof of Theorem 5.25. According to Theorem 5.2, problem (5.92), (5.93) has a unique

solution u. Let r > 0 and n0 ∈ N be from the assertion of Lemma 5.34. Then it follows

from Lemma 5.34 that for any n > n0, the problem

u′′ = pn(t)u; u(a) = 0, u(b) = 0

has no nontrivial solution. Therefore, by virtue of Theorem 5.2, for any n > n0, the

problem (5.92n), (5.93) possesses a unique solution un.

To prove (5.104) and (5.105) it is sufficient to show that for any unbounded set

J ⊂ {n0, n0 + 1, . . . }, the sequence {un}n∈J contains a subsequence {unk}+∞k=1 such that

lim
k→+∞

unk(t) = u(t) uniformly on [a, b] (5.133)

and

lim
k→+∞

u′nk(t) = u′(t) uniformly in ]a, b[ .

Let J ⊂ {n0, n0 + 1, . . . } be an arbitrary unbounded set. By virtue of Lemma 5.34

and Proposition 5.10, for any n > n0, the estimates

‖un‖[a,b] ≤ r

∫ b

a

(s− a)(b− s)|qn(s)|ds (5.134)

and

(t− a)(b− t)|u′n(t)| ≤ ‖un‖[a,b]
(
b− a+

∫ b

a

(s− a)(b− s)[pn(s)]−ds

)
+

+

∫ b

a

(s− a)(b− s)|qn(s)|ds for t ∈ ]a, b[ (5.135)

hold. On account of Remarks 5.22 and 5.24, there exists M > 0 such that∫ b

a

(s− a)(b− s)[pn(s)]−ds ≤M for n ∈ N (5.136)
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and ∫ b

a

(s− a)(b− s)|qn(s)|ds ≤M for n ∈ N. (5.137)

In view of (5.136) and (5.137), inequalities (5.134) and (5.135) imply that the sequence

{un}n∈J is uniformly bounded and equicontinuous in ]a, b[ . By virtue of Proposi-

tion 5.33, there exits a subsequence {unk}+∞k=1 such that

lim
k→+∞

u(i)nk(t) = u
(i)
0 (t) uniformly in ]a, b[ , i = 0, 1, (5.138)

where u0 is a solution of equation (5.92).

Let now a0 ∈ ]a, b[ , b0 ∈ ]a0, b[ , and %0 > 0 be from the assertion of Proposition 5.31.

On account of (5.134), (5.137), and Proposition 5.31, we have

|unk(t)| ≤ %0

(
rMPnk(t) +Qnk(t)

)
for t ∈ ]a, a0] ∪ [b0, b[ , k ∈ N, (5.139)

where Pnk and Qnk are defined by (5.113). Hence, in view of (5.138) (with i = 0) and

Remark 5.32, we get

|u0(t)| ≤ %0

(
rMϕ(t) + ψ(t)

)
for t ∈ ]a, a0] ∪ [b0, b[ ,

where ϕ, ψ ∈ C(]a, a0])∪C([b0, b[) satisfy (5.118). Consequently, u0(a) = 0 and u0(b) =

0. Therefore, u0 is a solution of problem (5.92), (5.93). However, this problem has

a unique solution and thus, u0 ≡ u. Taking now into account (5.138), we have

lim
k→+∞

u(i)nk(t) = u(i)(t) uniformly in ]a, b[ , i = 0, 1. (5.140)

It remains to show that (5.133) holds. Let ε > 0 be arbitrary. Then, by virtue of

Remark 5.32 and (5.139), there exist aε ∈ ]a, a0], bε ∈ [b0, b[ , and k0 ∈ N such that

|unk(t)| ≤ ε for t ∈ ]a, aε] ∪ [bε, b[ , k > k0.

Hence, in view of (5.140), we get

|u(t)| ≤ ε for t ∈ ]a, aε] ∪ [bε, b[ .

Therefore,

‖unk − u‖[a,aε] ≤ 2ε, ‖unk − u‖[bε,b] ≤ 2ε for k > k0,

which, together with (5.140), imply desired relation (5.133). �

5.4.4 Example

On the interval ]0, 1[, we consider the problem

u′′ =
1

t2
u+

1− ln t

t
; u(0) = 0, u(1) = 0 (5.141)
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and the sequence of the problems

u′′ =
1 + cos(nt)

t2
u+

1 + cos(nt)− ln t

t
; u(0) = 0, u(1) = 0. (5.141n)

Put p0(t) := 1
t2

, q0(t) := 1−ln t
t

, pn(t) := p0(t) + cos(nt)
t2

, qn(t) := q0(t) + cos(nt)
t

, a = 0 and

b = 1. One can show that (5.94)–(5.97) hold as well as the conditions (P) and (Q) are

satisfied. On the other hand, the functions u1(t) = t
1−
√
5

2 and u2(t) = t
1+
√

5
2 are linearly

independent solutions of equation (5.920) and consequently, problem (5.920), (5.93)

has no nontrivial solution. By direct calculation, we easily conclude that the function

u(t) = t ln t is a unique solution of problem (5.141). Therefore, all the assumptions of

Theorem 5.25 hold and consequently, solutions un of (5.141n) satisfy

lim
n→+∞

un(t) = t ln t uniformly on [0, 1]

and

lim
n→+∞

u′n(t) = 1 + ln t uniformly in ]0, 1[ .
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6 Summary and further research

The habilitation thesis deals with certain problems of qualitative theory of ordinary

and functional differential equations. After a brief introduction, Chapter 2 is devoted

to motivating models for the study of the considered problems. The main results are

provided in the next three chapters.

We studied asymptotic properties of the second order delay differential equations

and the two-dimensional nonlinear systems in Chapter 3. Two types of the oscillation

criteria for DDEs with respect to considered delay are presented. If the delay τ(t) is

”close” enough to the argument t, then we obtain criteria which correspond to well-

known results from the oscillation theory of ODEs, namely Hille’s and Nehari’s criteria

established in [13,38]. On the other hand, if the deviation τ(t) is ”large” with respect

to the argument t in a certain sense, then we formulated the oscillation criteria of so-

called Myshkis’s type. Presented statements generalize and improve (under additional

assumptions) results stated in [23]. Furthermore, the oscillation of the two-dimensional

systems of nonlinear differential equations is discussed in Section 3.4. Obtained results

generalize those, which were presented, e.g., in [6, 13,14,16,24,38].

Chapter 4 deals with certain boundary value problems for functional differential

equations. We established new conditions guaranteeing the solvability and unique solv-

ability of linear as well as of nonlinear problems. Boundary conditions were assumed in

general form, which includes, e.g., initial, periodic, and antiperiodic condition. More-

over, nonnegativity of solutions was investigated for considered BVPs. General results

were applied to the delay differential equations.

In Section 5 we formulated statements concerning the Fredholm theory and well-

posedness of the singular Dirichlet problem. In particular, we found conditions, which

provided that Fredholm’s third theorem remains true for the considered singular prob-

lem. We also established optimal (in certain sense) conditions guaranteeing well-

posedness of the studied problem.

The natural and interesting direction of a future research is to study more gen-

eral second order DDEs than those introduced in Section 3.2. It would be useful to

investigate the asymptotic properties of the three-term DDE

u′′(t) + u′(t)q(t) + F (u(t), u(τ(t)) = 0 (6.1)

because this equation appears in mathematical models in control engineering, hered-

itary phenomena in physics, machine tool vibrations, etc. Specially, modelling of the

milling process can lead to equation (6.1), where the additional term u′(t)q(t) describes

some damping in the process.

There is also a possibility for further investigation of the two-dimensional system

established in Section 3.4. We assumed there that the coefficient g is not integrable

on [0,+∞[ . One can find that there is very few results in the existing literature in

the contrary case, i.e., if the coefficient g is integrable. Consequently, the asymptotic

properties (oscillation and non-oscillation) of the considered system can be completed

in this sense.
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Another direction of a research is continuation in the study of the singular Dirichlet

problem. Quite complete theory of singular boundary problems for ordinary differential

equations is built up, but many interesting problems are not covered there, e.g., the

Dirichlet problem for the Bessel equations. It is usual to study the linear part of the

theory first, which includes Fredholm’s alternative, well-posedness, and the eigenvalue

problem. The first two were investigated in Section 5, so it is natural to continue with

studying of the eigenvalue problem, which is (in the regular case) based on Fredholm’s

alternative and the continuous dependence on parameters. Obtained results will also

be very useful for the investigation of nonlinear singular problems, which arise in many

applications (see, for example, the model introduced in Section 2.3).
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[19] I. Kiguradze, B. Půža: On boundary value problems for functional differential equations,

Mem. Differential Equations Math. Phys. 12 (1997), 106–113.

125
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[48] Š. Schwabik, M. Tvrdý, O. Vejvoda: Differential and integral equations: boundary value

problems and adjoints, Academia, Praha, 1979.

[49] P.Torres: Mathematical Models with Singularities, Atlantis Press, Amsterdam - Paris,

2015.

[50] A. Wintner: On the non-existence of conjugate points, Amer. J. Math. 73 (1951), No.

2, 368–380.

127


