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Introduction

Giving a name is a most difficult task as it influences the destiny of the named
thing or person considerably. Giving a title to a scientific work is no easier.
A too special title limits its audience as only true enthusiasts will read it. On
the other hand, a general title is likely to attract attention of many yet arouse
too great expectations. Moreover, it may put the writer in the position of
an amateur writing superficially about things already known or ignoring the
context or true relevance of his results. I have decided on a compromise:
a general universally understandable title with a subtitle humbly admitting
that this book is not meant to be the compendium of the topic. Thus the
name I gave it is “Hyperstructures and ordering: one possible approach”.

I was introduced to the (algebraic) hyperstructure theory in 2005 by Jan
Chvalina. First, I helped him in preparing contributions to a few local con-
ferences and meetings where he decided to present results on his hyperstruc-
ture generalizations in the theory of automata. Later on, when I noticed
that the attention of the small group of his colleagues is broader and covers
various kinds of operators (which, as I learned later, is motivated by some
very classical results), I realized that many of their conclusions are based
on one particular lemma. When asking about some more results in this di-
rection, I got a surprising answer that none exist yet if they existed they
would help. So I set myself on a path of exploring what had first been called
“Ends lemma”–based hyperstructures and later, when Piergiulio Corsini did
not like the name as he thought it was too long, EL–hyperstructures. I
was encouraged when the European Journal of Combinatorics decided to
publish some results on what has gradually become my small obsession and
even more encouraged when they soon accepted another paper on the topic.
In 2014, at the main meeting of the “pure hyperstructuralists”, the Inter-
national Congress on Algebraic Hyperstructures and Applications (AHA),
Bijjan Davvaz and his colleagues and Ph.D. students presented a number of
results on ordered hyperstructures, a concept that is younger yet – thanks
to the intensity and prolific nature of Bijjan’s work – more spread. At the
same meeting I communicated two contributions of our Brno group, both of
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iv INTRODUCTION

which were centered around ordering. When soon after this meeting some
Iranian colleagues decided to continue in the research of EL–hyperstructures
and applied the idea in the n–ary context and in the difficult direction of
“hyperstructures constructed from hyperstructures”, i.e. what they called
EL2–hyperstructures, I realized that the answer I had got a few years ago –
“There are no results but they would help.” – may have indeed been true.

In 2014, Štěpán Křehĺık, a Ph.D. student of our department, asked me
for help with a paper he was preparing for publication. I am not sure it
will ever appear. Anyway, we have published a sequence of four papers, in
which we have gradually shifted our attention from the pure theory around
EL–hyperstructures to applying the idea, since. I am even more pleased that
Kyriakos Ovaliadis, a colleague of mine from Kavala, Greece, believes that
the research on hyperstructures and ordering will help to make advances in
the important yet problematic and so far not standardised area of collecting
data from underwater wireless sensor networks.

Since Štěpán is my junior and Kyriakos is an engineer, they have been
asking naturally arrising simple questions. Answering them not only showed
my limitations in knowledge but also made me go back to the roots and
study works of the “old bards (and ladies)”. I have had a great priviledge
of having private discussions with some of these, who not only provided
fundamental results of “our” theory but also remember the historical context
and motivation of their own teachers and colleagues. I am also happy to have
met Irina Cristea, a person of my age, whose professional experience, similar
to mine, has always encouraged me to learn more about the topic, to which
she herself had been introduced by another “old bard”, Piergiulio Corsini,
and his student, Violeta Leoreanu. Thus in the end it turned out that the
topic I started to explore is broader and its roots much firmer and older than
I thought.

To be specific, this book deals with a class of algebraic hyperstructures
in the sense of Marty which are constructed from quasi-ordered semigroups.
I discuss both semihypergroups and ring– or lattice–like hyperstructures of
this type. Since I deal with one particular class of hyperstructures, I relate
them to other similar concepts such as quasi-order hypergroups, ordered hy-
perstructures or BCK–algebras. Apart from the introductory chapter, the
reader will find historical references, footnotes or links to numerous papers
on the topic of algebraic hyperstructures. This is because I am explicitly dis-
cussing concepts which have already been implicitly noticed by a number of
authors. This is the reason why the subtitle of this book reads “one possible
approach”.



Notation

N,Z,Q,R,C number domains
N0 N ∪ {0}
P(S) power set of set S
P∗(S) P(S) \ ∅
Hn Cartesian product H × . . .×H︸ ︷︷ ︸

n

≈ non-empty intersection
≤ relation; generally speaking any preordering (i.e. quasi-ordering)
� partial ordering of ordered hyperstructures
+, · operations
∗,⊕,�, ◦, •, ? hyperoperations
◦ composition (hyper)operation (Subsection 2.5.4 only)
∗ BCI–algebra operation (Section 1.2, Subsection 2.6.4 only)
∧,∨ lattice operations∧
,
∨

lattice-like hyperoperations
∼ equivalence relation
|, ⊆, ≡, etc. specific relations such as divisibility, set inclusion, congruence, etc.
min,max, inf, sup minimum, maximum, infimum, supremum
gcd, lcm greatest common divisor, least common multiple
[a)≤ {x | a ≤ x}
≤(a] {x | x ≤ a}
a/b {x | a ∈ x ∗ b}
b \ a {x | a ∈ b ∗ x}
an a ∗ . . . ∗ a︸ ︷︷ ︸

n

or a · . . . · a︸ ︷︷ ︸
n

(context dependent)

i(a) set of (hyperstructure) inverses of a
f(ai−1

1 , xi, a
n
i+1) f(a1, . . . , ai−1, xi, ai+1, . . . an)

perm{a1, . . . , an} set of all permutations of a1, . . . an
Mn,n(S) set of square n× n matrices with entries from S
A matrix

For notation used in Chapter 4, see Subsection 4.1.1 and Section 4.2.
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Origin of results

Results presented in this book have been collected from several papers pub-
lished between 2005 and 2017. A majority of results included in Section 2.4
was published by European Journal of Combinatorics as Novák [244] and
Novák [242]. Results of Subsection 2.4.4 were published as Novák [246], re-
sults of Subsection 2.4.10 were included in Novák, Cristea and Křehĺık [248].
Subsection 2.5.2 and 2.5.3 is based on Novák [243] while results of Subsec-
tion 2.5.4 were taken from Novák and Cristea [247] accepted in Hacettepe
Journal of Mathematics and Statistics. Results included in Subsection 2.5.5
were published by Analele Ştiinţifice ale Universităţii “Ovidius” Constanţa
as Křehĺık and Novák [187]. In Chapter 3, Section 3.1 is based on Novák [240]
published by Analele Ştiinţifice ale Universităţii “Ovidius” Constanţa while
Section 3.3 (together with Subsection 2.4.6) was published by Soft Computing
as Novák and Křehĺık [249]. Some of the examples throughout Chapter 2 and
Chapter 3 as well as some results in Section 4.1 were collected from papers
such as [23,50–54,58,60,69,70,76] (published often as conference proceedings)
written by a group of students and colleagues of Jan Chvalina, to which I be-
long. Results motivated by Section 4.2 were published by Analele Ştiinţifice
ale Universităţii “Ovidius” Constanţa as Chvalina, Křehĺık and Novák [61].
The study of the mathematical model of Section 4.3 was initiated by Novák,
Ovaliadis and Křehĺık [251].

Some minor parts of Chapter 2 and Chapter 3 were adapted from papers
written by authors other than myself. Subsection 2.4.9 includes results ob-
tained in Ghazavi, Anvariyeh and Mirvakili [137] (published by Journal of
Algebraic Systems). Subsection 3.1.3 includes results published by Soft Com-
puting as Ghazavi and Anvariyeh [135] while in Subsection 3.2 some results
published by Ghazavi, Anvariyeh and Mirvakili [136] in Iranian Journal of
Mathematical Sciences and Informatics are included.

Of the above papers published in journals assigned with an impact factor,
I am the sole author of [240, 242, 244]. For papers, where their authors are
given in the alphabetical order, the co-authorship is equal. Where the alpha-
betical order is not followed, authors are listed based on their contribution.
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Chapter 1

Preliminaries

1.1 Basic notions

The difference between algebraic structures and hyperstructures comes from
the difference between the notion of an operation and a hyperoperation. While
an operation on a set H is a mapping from Hn to H, a hyperoperation on
H is a mapping from Hn to P∗(H), the set of all non-empty subsets of H.
In other words, the result of an operation on H is an element of H, while
the result of a hyperoperation (sometimes called a hyperproduct) on H is a
subset of H. Typically, the operation of addition applied on two real numbers
results in another real number. A hyperoperation applied on the same pair
of numbers may result in e.g. the interval between these numbers.

The generalization towards hyperstructures was done in 1934 when Marty
in [201] introduced the concept of a hypergroup. The study of multi-valued
aspects enabled by the transition from operations to hyperoperations has
attracted a lot of attention since. As a result, different branches of the
hyperstructure theory exist. In this book we deal exclusively with algebraic
hyperstructures in the sense of Marty as studied in the classical introductory
books [92,95,108,111] written by Corsini, his former Ph.D. student Leoreanu
(Leoreanu–Fotea after her marriage), Davvaz and Cristea. We do not study
topological hyperstructures introduced by Dunkl, Jewett and Spector [131],
which are used in harmonic analysis or probability theory.1 For a basic
introduction to this approach to the hyperstructure theory see e.g. Bloom
and Heyer [28], for a short overview of its history see e.g. Ross et al. [273],
p. 77.

1See the definition of a hypergroup used in Bloom and Heyer [28], p. 9, which has
nothing in common with the definition used in the algebraic context as it is based on
vector spaces and locally compact Hausdorff spaces and mentions continuous mappings.
Given the names above, these hypergroups are often called DJS–hypergroups.

1



2 CHAPTER 1. PRELIMINARIES

This introductory section includes definitions and some basic results on
algebraic hyperstructures. Most of these are taken from [92, 95, 111] and to
some extent also from Vougiouklis [300], which the reader is asked to confer
for further reference.

1.1.1 Hyperstructures

In abstract algebra, a groupoid is a set G, which is closed with respect to
a binary operation. A hypergroupoid is a set H closed with respect to a
hyperoperation.2 Notice that some authors (especially students of Mittas
and Massouros) speak of hypercomposition and hypercompositional structures
instead of hyperoperation and hyperstructures, respectively.3

Definition 1.1.1. Let H be a non-empty set. By an n–hyperoperation we
mean a mapping f : Hn → P∗(H). The number n is called the arity of f .

Binary hyperoperations, i.e. those where n = 2, are often denoted by sym-
bols such as “∗, ?, •, ◦,�,⊕,⊗” so that they could be easily distinguished
from the usual binary operations. However, especially for cases of hyper-
rings, they are often denoted by symbols “+, ·” which may be sometimes
somewhat confusing. Hyperoperations of arity greater than 2 are denoted by
f(x1, . . . , xn). A set H may be endowed with one or more hyperoperations.

Definition 1.1.2. A set H endowed with a family of hyperoperations is
called a hyperstructure (or a multivalued algebra). A set H endowed with
one binary hyperoperation is called a hypergroupoid. A set H endowed with
one hyperoperation of arity n > 2 is called an n–ary hypergroupoid ; in case
of n = 3 the word ternary is used.

Hypergroupoids as well as hyperstructures are usually denoted as pairs
(set,hyperoperation(s)); if the hyperoperation(s) is / are obvious or irrel-
evant, they are denoted by the set only.

2The following definition is taken over from Corsini and Leoreanu [95]. We could permit
that the image of f is P(H) = P∗(H)∪∅. It is easy to prove that, in a hypergroup, f(a, b)
is always non-empty. However, if we permit the image of f to be P(H), then in weaker
structures such as semihypergroups there can be f(a, b) = ∅. In such a case we speak of
partial hypergroupoids. Further on, however, we will be interested in hypergroupoids only.

3This is partially motivated by the fact that in arithmetics, by a hyperoperation one
means any of the members of the recursively defined hyperoperation sequence, i.e. a se-
quence of operations, the first members of which are usually named “successor”, “addi-
tion”, “multiplication”, “exponentiation”, etc. However – unfortunatelly – sometimes one
may step upon other names such as non-deterministic operator (or nd-operator) used by
Mart́ınez et al. [200] in their study of hyperstructure generalizations of lattices.



1.1. BASIC NOTIONS 3

Commutativity and associativity are defined in the same way as in the
usual non-hyperstructure way. However, proving associativity is often not
easy in the hyperstructure theory as we have to prove equality of sets instead
of elements. A semihypergroup is defined by means of associativity.

Definition 1.1.3. A hypergroupoid (H, ∗) is called commutative if for all
a, b ∈ H there holds a ∗ b = b ∗ a. An n–ary hypergroupoid (H, f) is called
associative if

f(xi−1
1 , f(xn+i−1

i ), x2n−1
n+i ) = f(xj−1

1 , f(xn+j−1
j ), x2n−1

n+j ) (1.1)

holds for every i, j ∈ {1, 2, . . . , n} and x1, x2, . . . , x2n−1 ∈ H. In case of a
hypergroupoid (H, ∗) this means that a∗ (b∗ c) = (a∗ b)∗ c for all a, b, c ∈ H.
By a semihypergroup we mean an associative hypergroupoid; by an n–ary
semihypergroup we mean an associative n–ary hypergroupoid.

Given an arbitrary hypergroupoid (H, ∗), for all A,B ⊆ H and x ∈ H
there is4

A ∗B =
⋃

a∈A,b∈B

a ∗ b, x ∗ A = {x} ∗ A, B ∗ x = B ∗ {x}. (1.2)

The concept of the neutral element is generalized by means of inclusion.
In the hyperstructure theory there is no equivalent of monoids, i.e. semi-
groups with a neutral element. In the n–ary context, neutral elements were
originally defined for hypergroups but this was a side effect of the fact that
when starting these considerations in [115], Davvaz and Vougiouklis were not
interested in the study of semihypergroups. Therefore, as suggested in e.g.
Novák [240], the concept can be used without any modifications in n–ary
semihypergroups as well.

Definition 1.1.4. An element e ∈ H, where (H, ∗) is a hypergroupoid, is
called an identity (or a neutral element or a unit) of H if there is

x ∈ x ∗ e ∩ e ∗ x (1.3)

for all x ∈ H. In case (H, f) is an n–ary semihypergroup, e ∈ H is an identity
(or a neutral element or a unit) of H if

f(e, . . . , e︸ ︷︷ ︸
i−1

, x, e, . . . , e︸ ︷︷ ︸
n−i

) (1.4)

includes x for all x ∈ H and all 1 ≤ i ≤ n.

4These days, the set union notation given below is regarded standard. However, in
the very first papers on the hyperstructure theory such as e.g. Wall [307], the additive
notation, where for A = a1 + a2 . . . ap and B = b1 + b2 + . . . bq, the (hyper)product is

defined as AB =
p∑

i=1

q∑
j=1

aibj , is used.
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The concept of a group is defined by means of associativity, existence of
a neutral element and existence of inverse elements. This results in the fact
that, in a group (G, ·), equations a ·x = b and x ·a = b have unique solutions.
A hypergroup is defined without explicitly mentioning inverse elements.5

Definition 1.1.5. By reproductive law we mean a condition

a ∗H = H ∗ a = H (1.5)

satisfied for all a ∈ H, where (H, ∗) is a hypergroupoid, or a condition

f(H i−1, x,Hn−i) = H (1.6)

satisfied for all x ∈ H and all i = {1, 2, . . . , n}, where (H, f) is an n–ary
hypergroupoid. A hypergroupoid (H, ∗) in which the reproductive law holds
is called a quasi-hypergroup. A semihypergroup in which the reproductive
law holds is called a hypergroup. An n–ary hypergroupoid (H, f) in which
the reproductive law holds is called an n–ary hypergroup.

Notice that the reproductive law might in the n–ary context be written
in a more intuitive way (using “∗” to denote the hyperoperation) as

H ∗ . . . ∗H︸ ︷︷ ︸
i−1

∗ x ∗H ∗ . . . ∗H︸ ︷︷ ︸
n−i

= H (1.7)

for all x ∈ H and all i = {1, 2, . . . , n}. Also notice that an equivalent
definition of n–ary hypergroups is such that they are n–ary semihypergroups
(H, f) in which the equation

b ∈ f(ai−1
1 , xi, a

n
i+1) (1.8)

has the solution xi ∈ H for every a1, . . . , ai−1, ai+1, . . . , an, b ∈ H and 1 ≤
i ≤ n, which is a generalization of the group property and in fact the original
definition given by Davvaz and Vougiouklis [115] in 2006. Notice that by (1.8)
we mean that b is an element of f(a1, . . . , ai−1, xi, ai+1, . . . an). Since the
generalization of (semi)hypergroups to n–ary context is rather new, names
n–semihypergroup and n–hypergroup can sometimes, e.g. in [193] published
in 2008, be found.

In monoids, if an inverse exists, then it is unique. Since in the hyperstruc-
ture theory we have no monoids, and neutral elements (or rather, identities)
are defined by means of inclusion, an element can have multiple hyperstruc-
ture inverses. Therefore, instead of “the” inverse we say “an” inverse just as
instead of “the” identity (or neutral element) we say “an” identity.

5For some classical wordings and motivations of the definition see e.g. Marty [201],
Dresher and Ore [128], Utumi [294] or Comer [82].
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Definition 1.1.6. If (H, ∗) is a hypergroup endowed with at least one iden-
tity, then an element a′ ∈ H is called an inverse of a ∈ H if there is an
identity e ∈ H such that a ∗ a′ 3 e ∈ a′ ∗ a. The set of inverses of a ∈ H is
denoted by i(a).

Inverse elements in n–ary hyperstructures were studied e.g. by Ameri and
Norouzi in [11]. The property of having a unique inverse element required
in [11] is taken over from the definition of a canonical n–ary hypergroup
included in Leoreanu [190]. Notice that canonical n–ary hypergroups are
a special class of commutative n–ary hyperstructures (moreover, with the
unique identity e having a certain further property). Without this require-
ment of uniqueness (thus applicable to any n–ary hypergroup), the definition
of inverses in the n–ary context would be as follows.6

Definition 1.1.7. Element x′ of an n–ary hypergroup (H, f) is called an
inverse element to x ∈ H if there exists an identity e ∈ H such that

e ∈ f(perm{x, x′, e, . . . , e︸ ︷︷ ︸
n−2

}) (1.9)

for every 1 ≤ i ≤ n.

In this form the above definition is used in Novák [240] and will be used
in Section 3.1.

The analogy of “the” identity is called scalar identity in the hyperstruc-
ture theory. Apart from scalar identities we often make use of other special
elements where the hyperproduct is a one-element (or some special) set.7

Definition 1.1.8. An element e of a hypergroupoid (H, ∗) is called

1. a strong identity if there is x ∗ e = e ∗ x ⊆ {x, e}

2. a scalar identity if there is x ∗ e = {x} = e ∗ x,

3. an absorbing element if there is x ∗ e = {e} = e ∗ x

for all x ∈ H.

While a strong identity need not be unique, a scalar identity, once it
exists in H, is always unique. Also, some authors such as Jafarabadi et.

6Notice that in the following text the notation perm{a1, . . . , an} stands for the set of
all permutations of elements a1, . . . , an.

7For some results concerning strong identities in various types of hyperstructures see
e.g. Jantosciak, Massouros and Massouros [170,210].
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al [162, 163] denote absorbing elements by “0” and use names zero scalar
element or simply zero scalar instead of absorbing element. Furthermore,
the condition for absorbing elements is often given in an equivalent way as
e∗H = e = H ∗e. Moreover, scalar elements are often defined in hypergroups
only as they are important for defining canonical hypergroups introduced
by Mittas [225] or polygroups introduced by Comer [83] (for the history of
this concept see Comer [81, 82]; polygroups are also called quasi-canonical
hypergroups – see e.g. Massouros [208] or Corsini and Leoreanu [95]).

Definition 1.1.9. A hypergroup H is called canonical if

1. it is commutative,

2. it has a scalar identity,

3. every element has a unique inverse,

4. it is reversible.

A non-commutative canonical hypergroup is called quasi-canonical hy-
pergroup (or polygroup). (The notion of reversibility will be defined later in
Subsection 1.1.3.)

The idea of idempotency, important in e.g. making distinctions between
semigroups and groups, is transferred to hyperstructures in the usual way of
inclusion.

Definition 1.1.10. An element a of a semihypergroup (S, ∗) is called an
idempotent if a ∈ a ∗ a.8 The semihypergroup (S, ∗) is called an idempotent
semihypergroup if all its elements are idempotent. A nonempty subset A of
a semihypergroup (S, ∗) is called an idempotent subset if A ⊆ A ∗ A.

Motivated to study classical geometries from the point of view of the hy-
perstructure theory, Prenowitz and Jantosciak [168,264,265] developped the
concept of a join space and its weaker non-commutative version called trans-
position hypergroup, which make use of the following “fraction notation”: in
a hypergroupoid (H, ∗) we denote

a/b = {x ∈ H | a ∈ x ∗ b} b \ a = {x ∈ H | a ∈ b ∗ x} (1.10)

for an arbitrary pair of a, b ∈ H. If the hyperoperation “∗” is commutative,
then obviously a/b = a \ b. Notice that – even though the fraction notation
may seem a bit complicated – we are talking about half lines in (1.10) and
the classical Pasch’s axiom in (1.11).

8Notice that some authors, such as Polat [262], use a more strict definition of idempo-
tency where a ∗ a = {a}. This is motivated by the need to study geometry motivated join
spaces.
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Definition 1.1.11. A commutative hypergroup (H, ∗) is called a join space
if for all a, b, c, d ∈ H the following implication holds:

a/b ∩ c/d 6= ∅ ⇒ a ∗ d ∩ b ∗ c 6= ∅. (1.11)

The above condition is often written as a/b ≈ c/d⇒ a ∗ d ≈ b ∗ c, where
“≈” denotes non-empty intersection.

Weakening of the axioms of associativity and commutativity enabled Vou-
giouklis in 1990s to construct some equivalence relations such that quotients
of these “weak” hyperstructures, or Hv–structures as he called them, with
respect to these equivalence relations are always (single-valued) structures.
Thus since [304] and the compendium [300] we speak of Hv–structures such
as Hv–groups, Hv–fields or even Hv–matrices.

Definition 1.1.12. A hypergroupoid (H, ∗) is weak associative (often ab-
breviated to WASS) if

a ∗ (b ∗ c) ∩ (a ∗ b) ∗ c 6= ∅ (1.12)

for all a, b, c ∈ H, and weak commutative (often abbreviated to COW) if

a ∗ b ∩ b ∗ a 6= ∅ (1.13)

for all a, b, c ∈ H. A weak associative hypergroupoid is called an Hv–
semigroup. An Hv–semigroup is called Hv–group if it satisfies the repro-
ductive law.

As en example of such equivalence relations let us mention relation β∗

which one can define on every hypergroup or every Hv–group (H, ·) by

aβb⇔ ∃n ∈ N, ∃x1, x2, . . . xn ∈ H : a ∈
n∏
i=1

xi 3 b (1.14)

The transitive closure of β, denoted by β∗, is called fundamental equivalence
relation on H. Vougiouklis [300] proved that if H is an Hv–group, then β∗ is
the smallest equivalence relation onH such that the quotientH/β∗ is a group.
In this respect notice that, given a groupoid (H,+), e.g. a commutative
hyperoperation “∗” can be defined on H by putting e.g. a∗b = a+b for such
a, b ∈ H that a + b = b + a and a ∗ b = {a + b, b+ a} for such a, b ∈ H that
a + b 6= b + a. For details regarding this procedure, called uniting elements
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method by Corsini and Vougiouklis, see [96,304].9 The history of equivalence
relations in the hyperstructure theory has two origins: Koskas [183] and
Vougiouklis. For a nice comparison of their approaches see Antampoufis and
Hošková–Mayerová [8].

Algebraic hyperstructures with two (hyper)operations are defined in a sim-
ilar way as the single-valued structures. However, the terminology is often
ambiguous and not codified.10 Just as for algebraic structures, we need two
(hyper)structures (hypergroups, Hv–groups, semihypergroups, groups, semi-
groups, etc.) and distributivity of one (hyper)operation over the other. His-
torically, hyperrings were first defined by Krasner [186] as hyperstructures
with one hyperoperation and one operation. For this reason, by “hyperring”
Krasner hyperrings are often meant.11

Definition 1.1.13. Let “⊕” be a hyperoperation and “·” an operation de-
fined on H such that “·” is distributive over “⊕” from both left and right.
Denote “0” the two-sided absorbing element with respect to “·”.

1. If (H,⊕) is a canonical hypergroup and (H, ·) is a semigroup with 0,

9Hv–structures were introduced in [304] in a very short Section 5. However, the mo-
tivation is explained very clearly there: “Examples of Hv–groups can be obtained in the
following way. Let (H, ·) be a group and let d denote a property that is desirable of a quo-
tient. Put together, in the same class, every pair of elements that cause the non-validity
of d and form the quotient by this partition. The resulting quotient structure is an Hv–
group. The uniting elements procedure, introduced in [96], extends to this situation. By
forming the β? quotient of this Hv–group, a group that satisfies property d is obtained.”

10The reason may be that some of the fundamental papers on the theory are not in En-
glish (e.g. of Mittas and Stratigopoulos written in French [223,224,290]) or are otherwise
difficult to access. In short, one can say that Krasner [186] introduced the notion of the
hyperfield and then hyperring in order to approximate a local field of positive characteristic
by a system of local fields of characteristic zero. The additive part of this hyperring was a
special hypergroup (later known as canonical hypergroup) while the multiplicative part was
a semigroup. Constructions of these structures can be found in [185,207,230]. While study-
ing polynomials over Krasner’s hyperrings, Mittas [226], introduced superrings, in which
both parts, additive and multiplicative, were hyperstructures. G. Massouros, approching
the theory of languages and automata from the point of view of hyperstructure theory,
was led to the introduction of the concepts of hyperringoid and join hyperring [211, 214].
Then, Vougiouklis [302] generalizing Mittas’ superring introduced hyperrings in the gen-
eral sense. On contrary, Rota [276] studied hyperstructures in which not the additive but
the multiplicative part is a hypergroup while the additive part, i.e. not the multiplicative
part, is a semigroup.

11Notice that in the process of evolution of the hyperring theory, the results obtained by
Massouros [202, 207] are fundamental as he proved that there exist other Krasner hyper-
rings than the residual or quotient ones which can be obtained by the original Krasner’s
constructions [185, 186], i.e. in order to achieve them means of classical algebra are in-
sufficient. For a detailed discussion of the topic written in an easy-to-follow style, see the
expository and survey paper [230] written by Nakasis. Also see Massouros [205].



1.1. BASIC NOTIONS 9

then (H,⊕, ·) is called Krasner hyperring.

2. If (H,⊕) is a canonical hypergroup and (H \ {0}, ·) is a group, then
(H,⊕, ·) is called hyperfield.

It is to be noted that since we work with hyperoperations, in distributive
laws we compare sets instead of elements. Therefore, it is rather natural to
weaken the distributive laws by permitting inclusions instead of requesting
equality. Thus, Spartalis and Vougiouklis studied hyperrings from a more
general perspective as hyperstructures with two hyperoperations; for a basic
introduction see e.g. their papers [284, 302]. In their theory, Krasner hy-
perrings are a class of additive hyperrings. Vougiouklis also introduced the
notion of strong (or good) hyperrings as a counterpart to hyperstructures in
which only the inclusive version of distributivity holds. In his classification
he also defined semihyperrings.

Definition 1.1.14. Let “⊕” and “�” be hyperoperations and “+” and “·”
operations defined on H. By inclusion distributivity of “�” over “⊕” (and
likewise for other possible combinations of the above (hyper)operations) we
mean validity of12

x� (y ⊕ z) ⊆ (x� y)⊕ (x� z)

(x⊕ y)� z ⊆ (x� z)⊕ (y � z) (1.15)

for all x, y, z ∈ H.

1. If (H,⊕) is a hypergroup, (H,�) is a semihypergroup and “�” is inclu-
sively distributive over “⊕”, then (H,⊕,�) is called hyperring in the
general sense.

2. If (H,⊕) is a hypergroup, (H,�) is a semihypergroup and “�” is dis-
tributive over “⊕”, then (H,⊕,�) is called good (or strong) hyperring
in the general sense.

3. If (H,⊕) is a hypergroup, (H, ·) is a semigroup and “·” is inclusively
distributive over “⊕”, then (H,⊕, ·) is called additive hyperring.

4. If (H,⊕) is a hypergroup, (H, ·) is a semigroup and “·” is distributive
over “⊕”, then (H,⊕, ·) is called good (or strong) additive hyperring.

5. If (H,⊕) and (H,�) are semihypergroups and “�” is inclusively dis-
tributive over “⊕”, then (H,⊕,�) is called semihyperring in the general
sense.

12In [302] Vougiouklis actually uses the symbol “⊂” yet he does so in the sense of “⊆”.
Also, he himself does not use the term “inclusion distributivity” – see Remark 1.1.16.
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6. If (H,⊕) and (H,�) are semihypergroups and “�” is distributive over
“⊕”, then (H,⊕,�) is called good (or strong) semihyperring.

Just as is the case with semirings in classical algebra, some authors define
semihyperrings as hyperstructures, where the scalar identity with respect to
one hyperoperation is absorbing with respect to the other while others assume
semigroups only and omit the axiom of absorption. This is e.g. the case
of [255], where Omidi and Davvaz introduced (long after the classification
of Vougiouklis) the term ordered semihyperring, which will be mentioned in
Section 1.2.

In his study of Hv–structures summed up in [300], Vougiouklis also coined
the term Hv–ring. Notice that the following definition uses the concept of
weak distributivity which is different from inclusion distributivity. In fact, it
is a parallel to weak commutativity and weak associativity.

Definition 1.1.15. If (H,⊕) is an Hv–group, (H,�) is an Hv–semigroup and
hyperoperation “�” is weakly distributive over “⊕”, i.e. for all x, y, z ∈ H
there is

x� (y ⊕ z) ∩ (x� y)⊕ (x� z) 6= ∅
(x⊕ y)� z ∩ (x� z)⊕ (y � z) 6= ∅, (1.16)

then (H,⊕,�) is called Hv–ring.

Remark 1.1.16. As regards various types of hyperstructure distributivity,
one must consider historical perspective. The classification of Vougiouklis,
i.e. Definition 1.1.14, is the oldest one, and therefore its distributivity did not
require a name as the distinction was provided by words “good” (or “strong”).
However, after the concepts of weak associativity and weak commutativity
emerged in [300], their parallel in hyperrings was called weak distributivity
and, to make the distinction clear, the original “non-strong” distributivity
of Definition 1.1.14 became known as inclusion distributivity. Unfortunately,
some authors such as Hedayati, Ameri [144] use the term “weak” in the sense
of “inclusive” – see Definition 2.5.19 on page 109.

When classifying hyperrings, Vougiouklis [302] mentions also multiplica-
tive hyperrings, which are (in his sense) intuitive counterparts to additive
hyperrings, i.e. hyperstructures (H,+,�), where “�” is (weakly) distribu-
tive over the single-valued operation “+”. However, when giving a definition
of the term in 1982 (and studying the concept in [274,277]), Rota [276] listed
two more conditions – commutativity and existence of unique single-valued
inverses. However, her definition, which follows below as Definition 1.1.17,
must be read with the historical perspective in mind as Rota gave it in 1982,
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i.e. before the classification of Vougiouklis, when the term hyperring univer-
sally meant “Krasner hyperring”, i.e. a concept which is based on canonical
hypergroups, i.e. hyperstructures which are commutative and in which every
element has the unique inverse. In this way, multiplicative hyperrings are in
fact Krasner hyperrings with swapped hyper– and single-valued operations.

Definition 1.1.17. If (H,+) is a commutative group, (H,�) is a semihy-
pergroup, hyperoperation “�” is (inclusively)13 distributive over “+”, i.e.

a� (b+ c) ⊆ (a� b) + (a� c)
(b+ c)� a ⊆ (b� a) + (c� a), (1.17)

for all a, b, c ∈ H and for all a, b ∈ H there is a� (−b) = (−a)�b = −(a�b),
then (H,+,�) is called multiplicative hyperring.

If in the above definition hyperoperation “�” is distributive over “+” in
the sense of equalities instead of inclusions, then Rota and later Davvaz and
Leoreanu [111] call (H,+,�) strongly distributive multiplicative hyperring. In
the sense of classification done by Vougiouklis, names multiplicative hyperring
and good (or strong) multiplicative hyperring would be used.

Obviously, we have to be very careful when interpreting this definition
as a � b and a � c are sets on which the definition applies a single-valued
operation “+”. In Section 2.5 we will discuss this topic in detail. We will
also specify whether we mean multiplicative hyperrings in the sense of Vou-
giouklis or in the sense of Rota. For more details on multiplicative hyperrings
see Davvaz and Leoreanu–Fotea [111], chapter 4. In Subsection 2.5.4 we de-
velop results obtained by Cristea and Jančić-Rašović [98, 166]. Since they
adopt the terminology of Spartalis [284], it is to be noted that by “hyper-
ring” Spartalis means “good hyperring in the general sense” in the sense of
Definition 1.1.1414 and by “semihyperring” he means “good semihyperring”
in the sense of Definition 1.1.14. Other hyperstructures such as e.g. hyper-
ringoids will be defined in Subsection 2.5.3. Hv–matrices will be defined in
Subsection 2.5.5.

Finally, we must mention that some authors have recently adopted the
terminology advocated by Ameri, Hedayati and Davvaz in papers such as [10,
103], where by semihyperrings they mean structures (S,⊕, ·) such that (S,⊕)
is a semihypergroup, (S, ·) is a semigroup and “·” distributes over “⊕”. It

13Neither Rota uses the word “inclusive”. In [276] she calls the property “proprietà
distributive” while strong distributivity is “fortemente distributive”.

14This usage is contrary to some more recent papers in which many authors use “hy-
perring” in the sense of “Krasner hyperring”. The paper of Spartalis dates back to 1989
and he worked with Vougiouklis.
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is to be noted, though, that early papers of Davvaz such as [104] follow the
classification of Vougiouklis and Definition 1.1.14.

In the algebra of single-valued structures, the notion of a lattice naturally
combines the point of view of algebraic operations and the point of view of
ordering. The notion of a hyperlattice, which transfers this double approach
to the hyperstructure theory, was introduced in the hyperstructure theory
twice: by Benado [21] in 1950s and Konstantinidou and Mittas [182] in 1977.
Further on we will concentrate on the line stemming from the approach of
Konstantinidou and Mittas, which received more attraction; for implications
of Benado’s work see Pickett [259] or Spanish authors such as Mart́ınez et
al. [200] or a PhD thesis by Golzio [142] (who all speak of multilattices).

Konstantinidou and Mittas defined hyperlattices as sets with one hy-
peroperation “

∨
” and one single-valued operation “∧” under the following

Definition 1.1.18.15 In this way hyperlattices are also defined in Corsini and
Leoreanu [95].

Definition 1.1.18. Let H be a set, “
∨

” a hyperoperation on H and “∧” an
operation. We say that (H,

∨
,∧) is a hyperlattice if the following conditions

are satisfied, for all a, b, c ∈ H:

1. a ∈ a
∨
a and a ∧ a = a

2. a
∨
b = b

∨
a and a ∧ b = b ∧ a

3. (a
∨
b)
∨
c = a

∨
(b
∨
c) and (a ∧ b) ∧ c = a ∧ (b ∧ c)

4. a ∈ [a
∨

(a ∧ b)] ∩ [a ∧ (a
∨
b)]

5. a ∈ a
∨
b⇒ b = a ∧ b

In the course of time other approaches have emerged and further con-
cepts have been defined. The most prominent of these include total hyper-
lattices, also known as superlattices, which are structures with two hyperop-
erations. Also, notice that some authors such as Soltani Lashkenari, Rasouli
and Davvaz [270,283] make distinction between join and meet hyperlattices,
which they consider to be hyperstructures with one hyperoperation and one
single-valued operation in the sense of Definition 1.1.18 yet such that only
axioms 1–4 hold. (In their terminology the above definition defines the join
hyperlattice.) If moreover axiom 5 of Definition 1.1.18 holds, they call the

15In axiom 4, notice that for sets X,Y ⊆ H there is X ∧ Y = {x ∧ y | x ∈ X, y ∈ Y }.
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join hyperlattice a strong join hyperlattice.16 Naturally, join and meet hy-
perlattices are mutual duals, i.e. dually, a strong meet hyperlattice may be
defined.

The introduction of ordered hyperstructures [146] combined with numer-
ous results obtained by Konstantinidou and Seramifidis (for references see
the list in [95]; most papers written in French), enhanced the study of hyper-
structure generalizations of lattice-like structures and enabled to view these
from the two perspectives common in lattices. Xiao and Zhao in [309] intro-
duced and studied the concept of a hypersemilattice as a multivalued analogy
of a semilattice while Dehghan Nezhad and Davvaz in [116] presented nu-
merous results on hypersemilattices and especially Hv–semilattices, which are
the natural weakening of the strong hypersemilattice concept.

Definition 1.1.19. Let L be a nonempty set with a binary hyperoperation
“∗” on L such that, for all a, b, c ∈ L, the following conditions hold:

1. a ∈ a ∗ a (idempotency)

2. a ∗ b = b ∗ a (commutativity)

3. (a ∗ b) ∗ c ∩ a ∗ (b ∗ c) 6= ∅ (weak associativity)

Then (L, ∗) is called an Hv–semilattice. When in the condition 3 we have
equality, then (L, ∗) is called a hypersemilattice.

1.1.2 Subhyperstructures

The notion of subhyperstructure is often a straightforward transfer of the
notions of the single-valued classical concepts.

Definition 1.1.20. A pair (K, ∗), where K is a non-empty subset of a hy-
pergroupoid (H, ∗) such that K ∗K ⊆ K, is called a subhypergroupoid of H.
A subhypergroupoid (K, ∗) of H is called a subsemihypergroup of (H, ∗) if it
is associative or a sub-quasi-hypergroup of (H, ∗) if the reproductive law is
valid for K. If (K, ∗) is a hypergroup, it is called a subhypergroup of H. The
definitions for n–ary hypergroupoids are analogous.

Terms such as sub-join space or sub-canonical hypergroup are not used so
often, even though they can be defined in a similar way. We say e.g. “the
subhypergroup K of the join space H is a join space” instead.

16I.e. in the original definition given by Konstantinidou and Mittas [182] a hyperlattice
is a strong join hyperlattice.
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Given certain specific properties we distinguish several special kinds of
subhyperstructures. These will be mentioned in Subsection 1.1.3.

Subhyperstructures of hyperstructures with two (hyper)operations are
defined mostly in a similar fashion as subsets which themselves are hyper-
structures of the given type. However, sometimes (most often for Krasner
hyperrings) equivalent definitions are used which may result in some level of
confusion.

Definition 1.1.21. A non-empty subset S of a semihyperring (R,⊕,�)
is called a subsemihyperring of R if (S,⊕,�) itself is a semihyperring. If
(R,⊕,�) and (S,⊕,�) are Krasner hyperrings, then S is called a subhyper-
ring of R.

Since in Krasner hyperrings we have unique neutral elements and unique
inverses, some authors use an equivalent definition of a subhyperring defining
it as a non-empty subset S of R such that x	y ⊆ S and x�y ∈ S for all x, y ∈
S, where “	y” is the unique inverse of y ∈ S. For reasons of convenience
signs “+, ·,−” are often used instead of “⊕,�,	”. Of the authors who
study the issue of ordering in hyperstructure theory, e.g. Asokkumar [14]
or Davvaz in some of his papers do so. Alternatively, it is possible to define
subhyperrings as subsets S of a Krasner hyperring (R,⊕,�) such that (S,⊕)
is a canonical subhypergroup of (R,⊕) and S � S ⊆ S, where S � S ⊆ S
has the same meaning as x � y ⊆ S for all x, y ∈ S. The actual form of
the definition influences the form of definition of a hyperideal of a hyperring.
Below, we give the most natural definition corresponding to the definition
of a subhyperring as included in Davvaz and Leoreanu–Fotea [111] at the
beginning of a chapter discussing Krasner hyperrings. Naturally, the ideal of
a hyperideal remains the same regardless of the hyperstructure it is applied
on.

Definition 1.1.22. A subhyperring S of a Krasner hyperring (R,⊕,�) is
called a left hyperideal of R if r�s ∈ S (or a right hyperideal of R if s�r ∈ S)
for all s ∈ S, r ∈ R. If S is both a left and a right hyperideal of R, i.e. if
R� S ⊆ S and S �R ⊆ S, it is called a hyperideal of R.

In semihypergroups, hyperideals are hyperstructure analogies of ideals
too.

Definition 1.1.23. A non-empty subset I of a semihypergroup (H, ∗) is
called a left hyperideal of H if h∗ i ∈ I (or a right hyperideal of H if i∗h ∈ I)
for all i ∈ I, h ∈ H. If I is both a left and a right hyperideal of H, it is called
a hyperideal of H.
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In Section 2.4 we will use some results concerning hyperideals such as
those obtained by Chattopadhyay [42]; this paper may be also used as a
source of reference for definitions and results concerning some basic types of
hyperideals such as prime, semiprime, principal or maximal in the context of
semihypergroups. Also, a number of authors such as Azizpour, Changphas,
Dine, Davvaz, Hedayati, Hila [40,145,147] study the notion of bi-hyperideals.
Further on, in Section 3.2, we will include some results obtained by Ghazavi,
Anvariyeh and Mirvakili [137] concerning ideals in hyperstructures presented
in Chapter 2.

1.1.3 Properties

Now we are going to mention a few definitions of some very basic properties
of hyperstructures. Some more special properties will be defined at respective
places further on in the text.

Definition 1.1.24. If A is a non-empty subset of a hypergroupoid (H, ∗),
then A is called:

1. Reflexive in H if for an arbitrary pair of elements x, y ∈ H the fact
that x ∗ y ∩ A 6= ∅ implies that y ∗ x ∩ A 6= ∅.

2. Invariant (normal) in H if for an arbitrary element x ∈ H there is
x ∗ A = A ∗ x.

3. Invertible on the left if for an arbitrary pair x, y ∈ H the fact that
y ∈ A ∗ x implies the fact that x ∈ A ∗ y. It is called invertible on
the right if the fact that y ∈ x ∗ A implies the fact that x ∈ y ∗ A and
invertible if it is invertible both on the left and on the right.

Definition 1.1.25. If A is a non-empty subset of H, where (H, ∗) is a semi-
hypergroup, then A is called a complete part of H if the following implication
holds:

∀n ∈ N,∀(x1, . . . , xn) ∈ Hn,

n∏
i=1

xi ∩ A 6= ∅ ⇒
n∏
i=1

xi ⊂ A

The intersection of all complete parts of a semihypergroup S which contain
A, is called complete closure of A in S and is denoted by C(A). A semihy-
pergroup (S, ∗) is called complete if, for all x, y ∈ S, there is C(x ∗ y) = x ∗ y.

Definition 1.1.26. A semihypergroup (H, ∗) is called simplifiable on the left
if for all x, a, b ∈ H the fact that x ∗ a ∩ x ∗ b 6= ∅ implies that a = b.
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The concepts of simplifiable on the right and simplifiable are defined in a
way analogous to invertibility. It was already Marty [201] who proved that
any hypergroup simplifiable on the left (or on the right) is a group.

Definition 1.1.27. If (H, ∗) is a hypergroup and G its subhypergroup, then
G is called:

1. Closed on the left (right) in H if for arbitrary a ∈ H and x, y ∈ G the
fact that x ∈ a ∗ y (x ∈ y ∗ a) implies a ∈ G. The subhypergroup G of
H is called closed in H if it is closed both from the left and from the
right.

2. Ultraclosed on the left if for an arbitrary x ∈ H there holds G ∗ x ∩
(H \ G) ∗ x 6= ∅. The properties of being ultraclosed on the right and
ultraclosed are defined in a way analogous to the concept of closed on
the right and closed.

Definition 1.1.28. A hypergroup is called regular if it has at least one
identity and each element has at least one inverse. A regular hypergroup is
called reversible if for any triple x, y, z ∈ H there holds (i) if y ∈ a ∗ x, then
there exists an inverse a′ of a such that x ∈ a′ ∗ y and (ii) if y ∈ x ∗ a, then
there exists an inverse a′′ of a such that x ∈ y∗a′′. A commutative hypergroup
(H, ∗) is called inner irreducible if for any pair of its subhypergroups G1, G2

such that G1 ∗G2 = H there holds G1 ∩G2 6= ∅.

Finally, we mention homomorphisms of hypergroupoids, a topic which
will be discussed only very briefly further on.17

Definition 1.1.29. Let (H, ◦) and (K, ∗) be hypergroupoids and f : H → K
be a mapping. If, for all a, b ∈ H, there is f(a ◦ b) ⊂ f(a) ∗ f(b), we say that
f is a homomorphism. If, for all a, b ∈ H, there is f(a ◦ b) = f(a) ∗ f(b), we
say that f is a good homomorphism.

1.1.4 Ordering

The constructions, which we present further on, rely on the commonly-known
notion of quasi- (or partially) ordered semigroups. The concepts we are going
to use are rather basic and need not be recalled.18

17Names “good” and “strong” are often equivalents in the hyperstructure theory. How-
ever, this is not true with homomorphisms as strong homomorphisms are different from
good ones. See Corsini and Leoreanu [95], p. 4.

18For a deeper study of the topic a great number of monographs, including easy to
follow books [29, 141], can be referred to. We will often make use of results included in
Chvalina [44].
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Definition 1.1.30. By a quasi-ordered (or a partially ordered) semigroup
we mean a semigroup (S, ·,≤) endowed with a reflexive and transitive (or a
reflexive, antisymmetric and transitive) relation “≤” such that

a ≤ b⇒ a · c ≤ b · c and c · a ≤ c · b (1.18)

for all a, b, c ∈ S.

The condition used in the above definition is often called compatibility
condition and the relation “≤” is said to be “compatible with the opera-
tion ‘·’”. Alternatively, we speak of monotone condition. In proofs of our
results we will often make use the fact that in quasi-ordered semigroups
(S, ·,≤) the fact that a ≤ b and c ≤ d implies a · c ≤ b · d.

Remark 1.1.31. At this place a remark on terminology must be included.
In accordance with Chvalina [44] and a number of papers stemming from it
(including those with results which make a substantial part of this book)
we use terms “quasi-order(ing)”, “quasi-ordered semigroup” and “partial
order(ing)” and “partially ordered semigroup”. In English, terms such as
“preorder” or “preordered set” are often used instead of the former. Also,
terms “proset” and “poset” are often used to refer to a set endowed with
a “preorder”, i.e. “quasi-ordering”, and “partial order(ing)”, respectively.
Furthermore, since in many of our results it will be important whether the
relation in question is or is not antisymmetric (on top of being reflexive and
transitive) the adjectives “quasi” or “partially” will always be used. This
is especially important to notice as many authors who focus their study on
partially ordered sets exclusively can afford to omit the adjective “partially”
as in their context it is redundant.

Remark 1.1.32. Just as we have discussed terminology, we must make a
remark on notation. Given a relation R one usually writes aRb to denote that
elements a and b are in relation R and denotes by R(x) the set {y ∈ X | xRy},
i.e. the set of all elements which are in relation R with x. If R is a partial
ordering, most authors use the standard notation a ≤ b; if R is a quasi-
ordering, a � b is used. For an equivalence relation R, the notation a ∼ b is
often used.

In our text we either write a ≤ b and specify the type of the relation or use
standard notation such as “|” for divisibility relation, “⊆” for set inclusion
or “≡” for congruence modulo m. To avoid confusion, we also – whenever
possible – describe the relation in plain words.

When moving from binary relations to n–ary relations, some concepts
can be transferred while others cannot. The following definition has been
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taken from Cristea and Ştefănescu [99] who make use of results obtained by
Novák and Novotný [253] and continue their research presented in [252–254].

Definition 1.1.33. The relation ρ on a non-empty set H is called:

1. Reflexive if, for any x ∈ H, the n-tuple (x, . . . , x) ∈ ρ,

2. n–transitive if it has the following property:
if (x1, . . . , xn) ∈ ρ, (y1, . . . , yn) ∈ ρ and there exist natural numbers
i0 > j0 such that 1 < i0 ≤ n, 1 ≤ j0 < n, xi0 = yj0 , then the n-tuple
(xi1 , . . . xik , yjk+1

, . . . yjn) ∈ ρ for any natural number 1 ≤ k < n and
i1, . . . ik, jk+1, . . . jn such that 1 ≤ i1 < . . . < ik < i0, j0 < jk+1 < . . . <
jn ≤ n,

3. Strongly symmetric if (x1, . . . xn) ∈ ρ implies (xσ(1), . . . xσ(n)) ∈ ρ for
any permutation σ on the set {1, . . . , n},

4. n–ary preoredering (or n–ary quasi-ordering19) on H if it is reflexive
and n–transitive,

5. An n–equivalence on H if it is reflexive, strongly symmetric and n–
transitive.

In Section 3.1 we will see that the impossibility to reasonably transfer the
notion of antisymmetry to the context of n–ary relations enabled Ghazavi
and Anvariyeh [135] to obtain some interesting results concerning the topic
of this book. In [135] the following definition is given as a parallel to the
binary context.

Definition 1.1.34. An algebraic structure (H, ·, ρ) is called an n–ary pre-
ordering groupoid (or n–ordered groupoid) if (H, ·) is a groupoid and ρ is an
n–ary preordering on H such that for all (x1, x2, . . . , xn, y) ∈ Hn+1 with
the property (x1, x2, . . . xn) ∈ ρ there holds (yx1, yx2, . . . , yxn) ∈ ρ and
(x1y, x2y, . . . xny) ∈ ρ.

The following idea (and corresponding notation) will be crucial in our
considerations: for a set S endowed with a relation “≤” we denote

[a)≤ = {a ∈ S | a ≤ x} (1.19)

and
(a]≤ = {a ∈ S | x ≤ a}. (1.20)

19This term is not used in the definition of [99] or in Ghazavi and Anvariyeh [135], which
we mention below, but we include it because of Remark 1.1.31.
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These sets are often called upper (or lower) cone of S generated by a ∈ S.
Based on Chvalina [44] we call them principal end (or principal beginning)
of S generated by a ∈ S.

Some of our proofs will make use of concepts of the smallest / the greatest
or minimal / maximal elements. Strictly speaking, all of these concepts are
defined for partially ordered sets only because if antisymmetry of the relation
“≤” is missing, we may run into difficulties (notice that the concept of a
maximal element actually can be defined in the context of quasi–ordered
sets; for an example of use see e.g. Kovar and Chernikava [184]). Therefore,
if we use the greatest or the smallest elements in our proofs, we need to
adjust assumptions of the theorems accordingly. However, in cases which
regard maximal elements, we will in fact handle elements, principal ends of
which are one-element sets. Since the relation “≤” will always be reflexive,
the fact that [a)≤ = {a} will simply mean that there exists no element x ∈ S
different from a such that a ≤ x, which is an equivalent definition of a
maximal element. In such a case it is in fact irrelevant whether “≤” is a
partial or quasi-order. Since we will be interested in binary relations, we
ignore the case of cyclically ordered sets. However, even if we did not, [a)≤
would not be a one-element set (for S 6= {a}). Therefore, let us include the
following definition with which we waive all possible future problems with
different approaches to the concept of maximality in quasi-ordered sets.

Definition 1.1.35. Let (S,≤) be a quasi-ordered set. An element a ∈ S
such that [a)≤ = {x ∈ S | a ≤ x} = {a}, is called an EL–maximal element.

However, one must be aware of the following: if for some element a ∈ S
there holds x ≤ a for all x ∈ S, where “≤” is a quasi-ordering only, then –
unfortunately – we cannot conclude that [a)≤ = {a}.

1.2 Various approaches to ordering

in the hyperstructure theory

The connection between ordering and the idea of a hyperoperation, i.e. a
mapping from Hn to the set of non-empty subsets of H (denoted as P∗(H)),
is a very natural one. It was in fact the idea of a line segment being generated
by its endpoints, i.e. a hyperoperation

a ∗ b = {x ∈ R | a ≤ x ≤ b} (1.21)
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for all a, b ∈ R, that was the motivation20 with which Prenowitz and Jantos-
ciak in 1972 introduced the concept of a join space [264]. Already in 1948,
Iwasava [161] worked with a hyperoperation “∗” defined on a lineraly ordered
group G by

a ∗ b = {x ∈ G | min{a, b} ≤ x ≤ max{a, b}}. (1.22)

Corsini [87, 91] used a very much similar idea when constructing join
spaces from fuzzy sets.21

Definition 1.2.1. Let X be a non-empty set. Any function µ : X → 〈0, 1〉
is called a membership function of X. The pair (X,µ) is called a fuzzy set.
For a given x ∈ X, µ(x) is called the grade of membership of x in (X,µ).

Suppose we have a hypergroupoid (H, ∗). For a given element u ∈ H
denote by Q(u) the set of all pairs (a, b) ∈ H2 such that u ∈ a ∗ b, i.e.
Q(u) = {(a, b) ∈ H2 | u ∈ a ∗ b} and by q(u) denote the cardinality of Q(u),
i.e. q(u) = |Q(u)|. Now, for all u ∈ H, define

µ̃(u) =

∑
(x,y)∈Q(u)

1
|x∗y|

q(u)
. (1.23)

If Q(u) = ∅ or in case of infinite cardinality of Q(u), we define µ̃(u) = 0.
Obviously, µ̃(u) ∈ 〈0, 1〉 for all u ∈ H, i.e. µ̃ is a membership function of H.
Corsini [87] showed that if we define on H a hyperoperation “∗µ̃” by

x ∗µ̃ y = {z ∈ H | min{µ̃(x), µ̃(y)} ≤ µ̃(z) ≤ max{µ̃(x), µ̃(y)}} (1.24)

for all x, y ∈ H, then (H, ∗µ̃) is a join space.

20Notice how simple and evident it is to show that (H, ∗), where “∗” is a line segment
generated by its endpoints, is a hypergroup, or rather to justify the wording of hyper-
structure axioms. Also recall a quote from the abstract of Nieminen [238] which reads: “A
join space is an abstract model for partially ordered linear spherical and projective geome-
tries.” Cf. also [18], in which Bandelt and Mulder discuss the relation of pseudo-median
graphs and join spaces, to be more precise, the text on p. 15. Recall that Prenowitz had
worked on the idea of geometries seen from the perspective of the hyperstructure theory
since early 1940s [263], which makes the topic – and the link to ordering – one of the
most classical ones in the hyperstructure theory. Recently, a similar geometrical approach
can be observed in works of Antampoufis, Dramalids and Vougiouklis [7, 9, 125, 127] on
geometrical hyperoperations. However, by far the nicest link between geometry and hy-
perstructure theory can be found in [204], in which Massouros relates some of Euclid’s
postulates to hyperoperations. For more of geometrical motivation of some concepts of
hyperstructure theory see also Mittas and Massouros [203,227].

21This idea was later developped e.g. by Ştefănescu and Cristea [289].
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Also, on page 29 we mention Pickett [259] who in 1967 gave an example
of a hyperoperation constructed using lattice ordering. In 1975, Varlet [295]
established a connection between distributive lattices and join spaces which
had been introduced only 3 years before. We quote Varlet’s result as Theo-
rem 2.5.57 on page 129; notice that the hyperoperation he uses is defined on
a lattice (L,∧,∨,≤) by

a � b = {x ∈ L | a ∧ b ≤ x ≤ a ∨ b} (1.25)

for all a, b ∈ L. The papers that we make reference to above are a tiny
selection. However, it may not be so easy to identify elements of hyper-
structure theory in many works before 1980s since the terminology had not
been codified for long. For example, when using join spaces for classification
of median algebras, Bandelt and Hedĺıková [17] use the term “operation”
when referring to a hyperoperation (see [17], p.7). Even though the paper in
fact relies on the hyperstructure theory, it never uses the prefix “hyper–” to
make this connection obvious. Also, hyperstructures have often been called
multistructures, and some authors may have adopted this (now obsolete) ter-
minology. For example, Mihail Benado, a Romanian, studied generalizations
of lattices in 1950s, i.e. even before Konstantinidou and Mittas [182]. How-
ever, his works such as [21] (written in Romanian)22 have not drawn enough
attention in the algebraic hyperstructure theory (or remained unfinished).
Recently, Mart́ınez et. al [200], picked up his research – however, instead of
using a standard name “hyperoperation” they speak of “non-deterministic
operators” (or “nd–operators”).

There are several areas in which the hyperstructure theory and ordering
intersect substantially. First of all, it is the lattice theory and the results of
Varlet on distributive lattices [295], Konstantinidou, Seramifidis and Keha-
gias [177, 179] on lattice-ordered join spaces and results of Comer, Mittas,
Konstantinidou [80, 85, 182] and later of Călugăreanu and Leoreanu [37] on
hypergroupoids associated to semi-lattices and lattices as well as on charac-
terization of modular lattices. For a collection of these results see Corsini and
Leoreanu [95], chapter 4.

Nieminen [237,238] established a connection between join spaces and con-
nected simple graphs by defining the hyperoperation on the set of vertices
of a graph as certain paths, i.e. subsets of the set V of vertices of a given
graph. One can see that this idea is similar to (1.25) or the idea of a line
segment as a result of a hyperoperation applied on its endpoints.23 Also

22For details on his research and impact of his ideas on contemporary theoretical infor-
matics see an overview paper Rudeanu and Vaida [278].

23The use of join spaces for the study of graphs is by far not a closed topic. See e.g.
recently published Polat [262].
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Corsini [88, 89], Rosenberg [272] and V. Leoreanu and L. Leoreanu [197]
studied hyperoperations associated to graphs. With a motivation similar to
Nieminen, Kalampakas, Spartalis et al. [173–175] studied path hyperopera-
tions in graphs and based on these picture hyperstructures which enable us
to see the hyperoperation as a mapping from the set of pixels of a movie
frame to the subset of pixels such as path or an image. In this way it can be
used in image processing to e.g. detect motion.

Chvalina’s book [44] is a collection of his results on functional graphs,
quasi-ordered sets and commutative hypergroups. One layer of this book
studies hyperoperations related to a general set H endowed with a quasi-
ordering “≤”. In 1994, Chvalina [43] classified certain types of hyperstruc-
tures which in [44] (published in Czech) and later in [53] were named quasi-
order hypergroups.24 The following definition is adapted from [44], p.158.

Definition 1.2.2. By a quasi-order hypergroup we mean a commutative
hypergroup (H, ∗) such that, for all a ∈ H, there is a ∗ a ∗ a = a ∗ a, i.e.
a3 = a2.

Later on, Chvalina [44] approached the topic from a slightly different
perspective than in [43] and defined, on the set of quasi-order hypergroups,
a binary relation R∗ ⊆ H ∗H by

R∗ = {(a, b) ∈ H ∗H | a ∗ b ∗ a = a ∗ a} (1.26)

and showed that R∗ is a quasi-ordering on the hypergroup H which is more-
over antisymmetric if and only if, for all a, b ∈ H, the fact that a2 = b2

implies a = b. Also, Chvalina showed that if (H,R) is a quasi-ordered set,
then (H, ∗R), where

a ∗R b = R(a) ∪R(b) (1.27)

for all a, b ∈ H, is an extensive commutative hypergroup. Corsini and Leo-
reanu, inspired by [43], include the following definition and proposition.

Definition 1.2.3. Let (H, ∗) be a hypergroupoid. We say that H is a quasi-
order hypergroup, i.e. a hypergroup determined by a quasi-order, if, for all
a, b ∈ H, a ∈ a3 ⊆ a2 and a ∗ b = a2 ∪ b2. Moreover, if the following
implication holds,

a2 = b2 ⇒ a = b, (1.28)

for all a, b ∈ H, then (H, ∗) is called an order hypergroup.

24Or, alternatively – and originally, quasi-ordering hypergroups. Also notice that in
some earlier papers such as [47,148] Hort and Chvalina use also the name qoset-hypergroup.
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Proposition 1.2.4. A hypergroupoid is a (quasi–) order hypergroup if and
only if there exists a (quasi–) order R on the set H such that, for all a, b ∈ H

a ∗ b = R(a) ∪R(b).

Notice that since in Remark 1.1.32 we chose not to follow the R notation
of relations, the condition of Proposition 1.2.4 rewrites to

a ∗ b = [a)≤ ∪ [b)≤, (1.29)

which can be easily compared to (2.1) in Subsection 2.1.25

Thus we have seen that quasi-order hypergroups are hyperstructures con-
strcuted from a pair set – relation. This book discusses EL–hyperstructures,
i.e. hyperstructures constructed from a triple semigroup – single-valued op-
eration – relation. The study of hyperstructure generalization of lattices,
initiated by Konstantinidou and Mittas [182] and developped especially by
Konstantinidou [179–181], urged the need to study such hyperstructures
not only from the algebraic point of view of hyperstructures with two (hy-
per)operations but also from the point of view of ordered sets. Starting with
Heidari and Davvaz [146], ordered hyperstructures, in which the triple set –
hyperoperation – relation is used, have been studied.26 Notice that in the
following definition we use the symbol “�” not in the sense of a preorder, i.e.
a quasi-ordering, but as a symbol for partial ordering on a hyperstructure.
This will enable us, in Section 2.6, to easily distinguish between quasi-ordered
semigroups (H, ·,≤) and ordered semihypergroups (H, ∗,�).

Definition 1.2.5. An ordered semihypergroup (H, ∗,�) is a semihypergroup
(H, ∗) together with a partial ordering “�” which is compatible with the
hyperoperation, i.e.

x � y ⇒ a ∗ x � a ∗ y and x ∗ a � y ∗ a (1.30)

for all a, x, y ∈ H. By a ∗ x � a ∗ y we mean that for every c ∈ a ∗ x there
exists d ∈ a ∗ y such that c � d.

Papers written on the topic of ordered hyperstructures are numerous;
for a collection of some results see a recently published book Davvaz [105].

25In [43], Chvalina gave another similarly looking construction of a hyperoperation,
where a ◦ b is defined as Ra ∪ Lb, where Ra = {b ∈ H | (a, b) ∈ ρ} and Lb = {b ∈ H |
(b, a) ∈ ρ} for a binary relation ρ on H × H. Such hypergroupoids were studied by De
Salvo and Lo Faro [120,121].

26Notice that since [146] was published in 2011 and a number of papers by various
authors have emerged since, the terminology and definitions have not been standardized
yet.
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In [107], Davvaz, Corsini and Changphas discussed a question of whether
there exists a strongly regular relation ρ on an ordered semihypergroup S
such that S/ρ is an ordered semigroup. As far as the issue of hyperlattices
seen as ordered (hyper)structures is concerned, notice a discussion on the
topic included in Rasouli and Davvaz [270] and Rosenberg [283]. In [112],
Davvaz and Omidi introduce the concept of an ordered semihyperring. In
Section 2.6 we discuss their definition and show that the fact that they mis-
quote Vougiouklis and his classification included as Definition 1.1.14 is crucial
for our considerations regarding relation of EL–semihyperrings of Section 2.5
and ordered semihyperrings of theirs.

Finally, one must not forget the issue of hyper BCK–algebras which
are generalizations of BCI– or rather BCK–algebras introduced in 1966
by Iséki [159] and brought to a shape by Iséki and Tanaka in papers such
as [160]. For a collection of results on BCI– / BCK–algebras see Huang [158]
or Meng and Jun [219]; notice that the original motivation for introducing
such structures lies in combinatory logic and propositional calculus.

Definition 1.2.6. An algebra (X; ∗, 0) of type (2, 0) is called a BCI–algebra
if it, for all x, y, z ∈ X, satisfies the following conditions:

1. ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

2. (x ∗ (x ∗ y)) ∗ y = 0,

3. x ∗ x = 0,

4. simultaneous validity of x ∗ y = 0 and y ∗ x = 0 implies that x = y.

Remark 1.2.7. In the theory of BCI–algebras, the standard notation “∗”
stands for a binary operation on X. In the context of hyperstructure theory
this is rather inconvenient and misleading as the symbol “∗” is usually re-
served for a hyperoperation. Notice that – to increase the possible confusion
– in the definition of a hyper BCK–algebra, i.e. Definition 1.2.9, the same
symbol is used for a hyperoperation.

In BCI–algebras we can define, for all x, y ∈ X, a relation “≤”, called a
BCI–ordering, by setting

x ≤ y whenever x ∗ y = 0. (1.31)

It is easy to show that “≤” is a partial ordering on X. However, when
attempting to show that the BCI–ordering “≤” is compatible with the op-
eration “∗” (which is crucial for our further considerations), we run into
difficulties as, for all x, y, z ∈ X, the fact that x ≤ y implies that x∗z ≤ y ∗z
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yet z ∗ x ≥ z ∗ y (given as Huang [158], Proposition 1.1.4). Thus we see that
(X, ∗,≤) are not partially ordered semigroups.

The nature of BCI–algebras is such that the operation “∗” can often
intentionally be neither associative nor commutative in the usual sense of
the word. In the special case of associative BCI–algebras, i.e. BCI–algebras
(X; ∗, 0) such that, for all x, y, z ∈ X there is (x ∗ y) ∗ z = x ∗ (y ∗ z), we have
that x ∗ y = y ∗ x and 0 ∗ x = x for all x, y ∈ X (all these statements are
in fact equivalent), which means that the BCI–ordering “≤” is compatible
with the operation “∗”. However, this result is of no practical use because
from the fact that x ∗ y = y ∗ x and definition (1.31), there is in this case
x ≤ y and also y ≤ x, which means that x = y because the BCI–ordering is
antisymmetric.

Therefore, there cannot be much common ground between the broadest
general case of BCI–algebras and the topic of this book. However, this is
not true for the case of lower BCK–semilattices.

Definition 1.2.8. A BCI–algebra is called a BCK–algebra if, for all x ∈ X,
there is 0 ∗x = 0. A BCK–algebra is called commutative if, for all x, y ∈ X,
there is x ∗ (x ∗ y) = y ∗ (y ∗ x). A BCK–algebra is called a lower BCK–
semilattice if (X,≤), where “≤” is a BCI–ordering, is a lower semilattice.

Hyper BCK–algebras were introduced by Bolurian and Hasankhani [30].

Definition 1.2.9. The set X with a hyperoperation “∗” and a constant
“0”, i.e. (X, ∗, 0), is called a hyper BCK–algebra if it, for all x, y, z, t ∈ X,
satisfies the following conditions:

1. (x ∗ y) ∗ z = (x ∗ z) ∗ y,

2. t ∈ x ∗ (x ∗ y)⇒ t ≤ y,

3. x ≤ y ⇒ x ∗ z ≤ y ∗ z and z ∗ y ≤ z ∗ x,

4. x ≤ x,

5. 0 ≤ x,

6. x ≤ y, y ≤ x⇒ x = y,

where x ≤ y is defined by 0 ≤ x ∗ y and A ≤ B means that, for all b ∈ B,
there exists a ∈ A such that a ≤ b for all x, y ∈ X and A,B ⊆ X.

From the above definition it can be easily proved that from simultaneous
validity of x ≤ y and y ≤ z we get that x ≤ z, i.e. that the relation
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“≤” in hyper BCK–algebras is a partial ordering (because, by definition,
it is reflexive and symmetric). This, combined with the results on ordered
hyperstructures, enables us to study hyper BCK–algebras and their relation
to hyperlattices.

One gets partial ordering in MV –algebras introduced by Chang [39] in
1958 as well. Inspired by this approach, Ghorbani, Hasankhani and Es-
lami [138] introduced the concept of hyper MV –algebras, which was recently
developed by e.g. Jun, Kang and Kim [171]. Notice that in [138] one can find
definitions of some related concepts which have not been mentioned above
such as hyper K–algebras. Since in hyper MV –algebras the partial ordering is
preserved, one can again study their relations to ordered hyperstructures and
hyperlattices. For an example of this see Borzooei, Radfar and Niazian [34].

The connection between hyperstructure theory and relations has also been
studied by Chvalina, Corsini, Cristea, Spartalis, Ştefănescu and others in
papers such as [63, 88, 97, 100, 286, 287]. For more references see respective
sections. Also see a footnote on page 40 which makes reference to Phanthaw-
imol and Kemprasit [261] and the hyperoperation on equivalence classes of a
group.



Chapter 2

EL–hyperstructures

In his book on functional graphs, quasi-ordered sets and commutative hyper-
groups [44], published in 1995, Chvalina proposed several universal construc-
tions of hypergroups from sets endowed with ordering. One of these, that of
quasi-order hypergroups, has been briefly mentioned in Section 1.2. Further
on we focus on another construction, that has drawn wider attention only
recently.

2.1 The “Ends lemma”

Lemma 2.1.1. ( [44], Theorem 1.3, p. 146) Let (S, ·,≤) be a partially ordered
semigroup. Binary hyperoperation ∗ : S × S → P∗(S) defined by

a ∗ b = [a · b)≤ = {x ∈ S | a · b ≤ x} (2.1)

is associative. The semihypergroup (S, ∗) is commutative if and only if the
semigroup (S, ·) is commutative.

Lemma 2.1.2. ( [44], Theorem 1.4, p. 147) Let (S, ·,≤) be a partially ordered
semigroup. The following conditions are equivalent:

10 For any pair a, b ∈ S there exists a pair c, c′ ∈ S such that b · c ≤ a and
c′ · b ≤ a.

20 The semi-hypergroup (S, ∗) defined by (2.1) is a hypergroup.

In groups, condition 10 of Lemma 2.1.2 holds trivially as it is sufficient to
put c = b−1 · a and c′ = a · b−1. Thus, the following corollary holds.

Corollary 2.1.3. If, in Lemma 2.1.2, (S, ·,≤) is a partially ordered group,
then (S, ∗), constructed by means of (2.1), is a hypergroup.

27
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Apart from these, Chvalina proved the following lemma, which turns to
be very useful in further considerations.

Lemma 2.1.4. Let (S, ·,≤) be a partially ordered semigroup. Let a ∗ b =
[a · b)≤ for every pair of elements a, b ∈ S. Then for every triple of elements
a, b, c ∈ S there is

a ∗ (b ∗ c) = [a · b · c)≤ = (a ∗ b) ∗ c. (2.2)

Finally, Račková, one of Chvalina’s students, proved the following:

Lemma 2.1.5. ( [268], Theorem 4) Let (H, ·,≤) be a partially1 ordered group.
Then (H, ∗), constructed by means of (2.1), is a transposition hypergroup.

The following corollary is obvious because join spaces are commutative
transposition hypergroups.

Corollary 2.1.6. (H, ∗), constructed from a commutative partially ordered
group (H, ·,≤) by means of (2.1), is a join space.

This set of lemmas had been used – without any further study – in a num-
ber of papers by Chvalina and his colleagues such as Chvalinová, Hošková,
Račková, Dehghan Nezhad, Borzooei, Varasteh or Hasankhani, dealing with
hyperstructures of transformation / differential / integro-differential opera-
tors and / or hyperstructure generalizations of automata. A few easily ac-
cessible examples include [35,50,55,59,69,117,149,151,155]. For the context
see Section 4.1 and 4.2.

Since this ad-hoc use became rather inefficient, there emerged the need
to provide a theoretical basis for a growing number of somewhat similar
results obtained in the above papers. It was Chvalina himself that coined
the Czech term “koncové lemma” to refer to the above results. The term
translates to English literally as “Ends lemma”,2 which is the name used
in the title of Novák [243, 246]. Semihypergroups constructed by means of
Lemma 2.1.1 had originally been called “Ends lemma–based hyperstructures”
which changed to “EL–hyperstructures” in Novák [241]. Since it was this
name that was used in Novák [244], the first paper on the topic aimed at
wide international audience, the term EL-hyperstructures (recently used by
e.g. Ghazavi, Anvariyeh and Mirvakili [135–137]) seems to have a chance of
becoming a standard name for hyperstructures constructed using the above
Chvalina’s construction.

1In [268] Račková assumes quasi-ordered sets after she misquotes Lemma 2.1.1. How-
ever, as will be shown later, the assumption of a quasi -ordered instead of a partially
ordered semigroup is not incorrect.

2The incorrect translation “Ending lemma” might have been used for some time.
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2.2 Examples

The construction of EL–hyperstructures seems to be both general and simple
enough to be applied in a sufficiently wide range of contexts. In this section
we provide several examples so that one can see that this context may be
straightforward as well as sophisticated.

One of the earliest occurrances of EL–semihypergroups (of course, not
using this name) can be found in 1967 when Pickett [259] gives Example 2.2.1.
We give an exact quote of this example including its parts which are not
relevant for our present considerations (the term multigroup is equivalent to
an n–ary hypergroup, here n = 2, i.e. we have a hypergroup).

Example 2.2.1. Let (X,∧,∨,≤) be a lattice and define a·b = {x | x ≥ a∧b},
a ◦ b = {x | x ≤ a ∨ b}. Both (X, ·) and (X◦) are commutative multigroups
and every element is a unit. The only coset decomposition is determined by
X, for if Y is determined a coset decomposition for (X, ·), say, then if a and
b are any two elements of X, Y · (a ∧ b) meets both a and b. Hence they are
in the same coset.

Some other examples of EL–hyperstructures include:

Example 2.2.2. Consider the set N of all natural numbers (excluding 0).
Obviously (N, ·,≤), where “·” is the usual multiplication and “≤” is the
natural ordering of natural numbers by size, is a partially ordered semigroup.
Thus if we define a ∗ b = [a · b)≤ = {x ∈ N | a · b ≤ x}, for all a, b ∈ N, then
(N, ∗) is a commutative semihypergroup.

Example 2.2.3. If we regard the divisibility relation “|” in Example 2.2.2,
then (N, ∗), where a ∗ b = [a · b)| = {x ∈ N | a · b|x}, for all a, b ∈ N, is a
semihypergroup.

Example 2.2.4. Since (N, gcd,≤), where “gcd” stands for the greatest com-
mon divisor of natural numbers and “≤” is the usual ordering of natural
numbers by size, is a partially ordered group, we can define a ∗ b = {x ∈
N | gcd{a, b} ≤ x} for all a, b ∈ N, and get that (N, ∗) is a commutative
semihypergroup.

Example 2.2.5. If we consider the set R of all real numbers and the usual
addition and ordering of real numbers, then (R,+,≤) is a partially ordered
group. Thus if we define a ∗ b = [a + b)≤ = {x ∈ R | a + b ≤ x}, for all
a, b ∈ R, we get that (R, ∗) is a join space. Obviously, the same holds for
(Q,+,≤) and (Q, ∗) or (Z,+,≤) and (Z, ∗).
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Notice that in the following example the interval may represent prob-
abilities while the single-valued operation “·” may represent simultaneous
probability of independent events. Also, “min” and “max” may represent
the event, probability of which is smaller or greater, respectively.

Example 2.2.6. The set of all real numbers from the interval 〈0, 1〉 together
with the operation of multiplication and the usual ordering of real numbers
by size is a partially ordered semigroup. Thus if we define a ∗ b = [a · b)≤ =
{x ∈ 〈0, 1〉 | a · b ≤ x}, for all a, b ∈ 〈0, 1〉, we get that (〈0, 1〉, ∗) is a
commutative semihypergroup. The same holds for intervals (0, 1〉 or 〈0, 1) or
(0, 1).

Example 2.2.7. It is easy to verify that an arbitrary interval 〈a, b〉 of real
numbers with operations “min” or “max” and the natural ordering of real
numbers by size is a partially-ordered semigroup, i.e. can be taken as a basis
for constructing EL–semihypergroups.

In their study of braid groups, Al Tahan and Davvaz [4] use the idea of
the “Ends lemma” to construct a cyclic hypergroup of an arbitrary braid
group Bn of n strands.3 In this respect it is important to notice that they
take an abstract structure and a particular property of their elements – in
their case the shortest presentation of the product of elements σηii ∈ Bn. This
technique can be generalized: if one can describe properties of elements of a
given set by means of natural / whole / rational / real, etc. numbers, one
can construct examples such as the following – intentionally simplistic (!) –
Example 2.2.8.

Example 2.2.8. Let S be a set of apple trees and p(s) the average weight
of apples collected from a given tree s. For arbitrary r, s ∈ S define r ∗ s =
{t ∈ S | p(r) + p(s) ≤ p(t)}. Then (S, ∗) is a commutative hypergroup.

For a more mathematical example of the previous reasoning, one can
consider e.g. an automaton with a given input alphabet I and denote by l(a)
the length of a word constructed from the letters of this alphabet. In this
case l(a) + l(b) = l(a&b), where a&b is a word constructed by the opereation
of catenation of two words a, b. Obviously, (I∗,&), where I∗ is a set of
words defined over I, is a monoid, where the neutral element is the empty
word. For some results of this approach see [44], chapter 6 or Massouros and
Mittas [218].

3Braid groups were introduced to algebra by Artin [12]; for further reading on the topic
see e.g. Birman’s book [27].
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Example 2.2.9. Denote I = 〈0, 1〉 and C(I) the set of all real continuous
functions on C(I) and for two functions f, g ∈ C(I) define that f ≤ g if for
all x ∈ I there is f(x) ≤ g(x). Since (C(I),+,≤) is a commutative partially
ordered group, we get that (C(I), ∗), where f ∗ g = [f + g)≤ = {h ∈ C(I) |
f +g ≤ h}, for all f, g ∈ C(I), and “+” denotes the usual pointwise addition
of functions, is a join space.

Phathawimol and Kemprasit [261] (based on Corsini [92]) as well as An-
tampoufis, Dramalidis and Vougiouklis [7, 9] use hyperoperations which are
in fact based on the “Ends lemma” construction even though they, naturally,
do not use the name or the lemma itself. For more details see footnote at
page 40 and Remark 2.4.4.

In Subsection 2.5.5 on page 122 some natural associative operations and
partial orderings on the set of square matrices will be used, which will result
in the construction of semihypergroups and join spaces of square matrices.

Example 2.2.10. Regard an arbitrary set S and its power set P(S). The
operations “∩”, “∪” of set intersection and set union are associative, thus
(P(S),∩) and (P(S),∪) are semigroups. The relation “⊆” on P(S) is ob-
viously reflexive and transitive and for arbitrary A,B,C ∈ P(S) such that
A ⊆ B there is A ∩ C ⊆ B ∩ C and A ∪ C ⊆ B ∪ C. Thus if we define
hyperoperations “⊕”, “•” for arbitrary A,B ∈ P(S) by

A⊕B = [A ∪B)⊆ = {X ∈ P(S) | A ∪B ⊆ X} (2.3)

and
A •B = [A ∩B)⊆ = {Y ∈ P(S) | A ∩B ⊆ Y }, (2.4)

we get commutative semihypergroups (P(S),⊕) and (P(S), •).

Example 2.2.11. If in Example 2.2.10 we regard P∗(S) = P(S)\∅, we get an-
other pair of examples of commutative semihypergroups. In Subsection 2.4.7
we will see how the fact that (P∗(S),∪) is not a monoid (while (P(S),∪),
(P(S),∩) and (P∗(S),∩) are) will affect our considerations in proving whether
(P∗(S),⊕) and (P∗(S), •) are hypergroups.

Theoretical studies of EL–hyperstructures have primarily been motivated
by the need to provide a theoretical basis for examples scattered through a
number of different papers such as [35,50,55,59,69,117,149,151,155]. In most
of these, the elements of the sets in question were n–tuples (mostly pairs or
triples) and the single-value operation “·” was performed by means of their
components. In those papers, both the single-valued operation and the neces-
sary ordering “≤” were motivated by the specific needs of the mathematical
model (see e.g. Remark 4.1.3 on page 179). Below we include two examples
of this type; for a motivation concerning Example 2.2.12 see Section 4.1.
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Example 2.2.12. (included in Chvalina and Chvalinová [50], used to demon-
strate some results of Novák [244]) Consider the relation of hyperstructures
and homogeneous second order linear differential equations

y′′ + p(x)y′ + q(x)y = 0, (2.5)

such that p ∈ C+(I), q ∈ C(I), where Ck(I) denotes the commutative ring
of all continuous real functions of one variable defined on an open interval I
of reals with continuous derivatives up to order k ≥ 0 (instead of C0(I) we
write only C(I)), and C+(I) denotes its subsemiring of all positive continuous
functions. The set of nonsingular ordinary differential equations (2.5) is
denoted A2. The pair of functions p, q is denoted [p, q], D = d

dx
and Id is

the identity operator. The notation L(p, q) is reserved for the differential
operator L(p, q) = D2 + p(x)D + q(x)Id, i.e. the notation L(p, q)(y) = 0 is
the equation (2.5). The set

LA2(I) = {L(p, q) : C2(I)→ C(I); [p, q] ∈ C+(I)× C(I)} (2.6)

is the set of all such operators. Finally, for an arbitrary r ∈ R the notation
χr : I → R stands for the constant function with value r.

Proposition 1 of [50] states that if we define multiplication of operators
by

L(p1, q1) · L(p2, q2) = L(p1p2, p1q2 + q1) (2.7)

and if we define that L(p1, q1) ≤ L(p2, q2) if

p1(x) = p2(x), q1(x) ≤ q2(x) for any x ∈ I, (2.8)

then (LA2(I), ·,≤) is a noncommutative partially ordered group with the
unit element (identity) L(χ1, χ0). Using the “Ends lemma” we get that if we
put

L(p1, q1) ∗ L(p2, q2) =

= {L(p, q) ∈ LA2(I);L(p1, q1) · L(p2, q2) ≤ L(p, q)} = (2.9)

= {L(p1p2, q); q ∈ C(I), p1q2 + q1 ≤ q} ,

then (LA2(I), ∗) is a transposition hypergroup (which is given in [50] as
Theorem 3).

Example 2.2.13. Consider the function of the Gaussian-shaped pulse signal
v(t) = a exp(−2πt2), where a ∈ R+. When regarding the second order linear
differential equation in the Jacobi form, i.e. v′′(t) + p(t)v(t) = 0, where
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p is a continuous function, and creating hyperstructures of the respective
linear differential operators using the “Ends lemma” following the pattern
of Example 2.2.12, we see that we get a one-parametric system, i.e. an
analogy of the simple Examples 2.2.2 or 2.2.5, as the operators have the
form L(0, ϕ(a)), where ϕ stands for a suitable function of a ∈ R+.

More examples of this type can be constructed using the following (rather
trivial) lemmas included in Novák and Křehĺık [250], which can be easily gen-
eralized for vectors consisting of n components. Of course, what we present
below, is a tiny selection as there exist infinitely many ways of defining asso-
ciative operations on an arbitrarily chosen set H. In this way, Lemma 2.2.15,
Lemma 2.2.16 and Lemma 2.2.17 serve as space saving tools for the verifica-
tion of Examples 2.2.18, 2.2.19 and 2.2.20 and as tools to generate further
examples.

Definition 2.2.14. For all a = (a1, a2), b = (b1, b2) ∈ H, where H is a
suitable set, define ·i : H ×H → H, i ∈ {1, 2, 3} by

1. a ·1 b = (a1 + a2 + b1 + b2, a1 ⊕ a2 ⊕ b1 ⊕ b2),

2. a ·2 b = (a1 + b1, a2 ⊕ b2),

3. a ·3 b = (k1(a1)+k2(b1), l1(a2)⊕ l2(b2)), where kj, lj, j = 1, 2 are suitable
functions.

where “+”,“⊕” are suitable operations applied on components of elements
of H.

Lemma 2.2.15. Let H be a set of elements of the form a = (a1, a2) endowed
with operations “·i” as defined in Definition 2.2.14.

1. (H, ·1) is a semigroup if operations “+”, “⊕” are identical and simul-
taneously they are associative, commutative and idempotent.

2. (H, ·2) is a semigroup if and only if both operations “+”, “⊕” are as-
sociative.

3. If k1 = k2 (denote these by k), l1 = l2 (denote these by l), then (H, ·3)
is a semigroup if and only if

k(k(aj) + k(bj)) + k(cj) = k(aj) + k(k(bj) + k(cj)) (2.10)

for j = 1, 2 and all (a1, a2), (b1, b2), (c1, c2) ∈ H (and likewise for l).
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Proof. Suppose an arbitrary triplet of elements a, b, c ∈ H such that a =
(a1, a2), b = (b1, b2), c = (c1, c2). We need to prove that a ·i (b ·i c) = (a ·i b) ·i c
for i ∈ {1, 2, 3}.

1. As far as the left-hand side is concerned, we get that

b ·1 c = (b1 + b2 + c1 + c2, b1 ⊕ b2 ⊕ c1 ⊕ c2)

and

a ·1 (b ·1 c) = (a1 + a2 + (b1 + b2 + c1 + c2) + (b1 ⊕ b2 ⊕ c1 ⊕ c2),

a1 ⊕ a2 ⊕ (b1 + b2 + c1 + c2)⊕ (b1 ⊕ b2 ⊕ c1 ⊕ c2)).

As far as the right-hand side is concerned,

a ·1 b = (a1 + a2 + b1 + b2, a1 ⊕ a2 ⊕ b1 ⊕ b2)

and

(a ·1 b) ·1 c = ((a1 + a2 + b1 + b2) + (a1 ⊕ a2 ⊕ b1 ⊕ b2) + c1 + c2,

(a1 + a2 + b1 + b2)⊕ (a1 ⊕ a2 ⊕ b1 ⊕ b2)⊕ c1 ⊕ c2).

One can easily see that if the operations “+” and “⊕” are identical and
on top of that if they are associative, commutative and idempotent,
both sides of the equality reduce to (a1 + a2 + b1 + b2 + c1 + c2, a1 +
a2 + b1 + b2 + c1 + c2).

2. We get that

(a ·2 b) ·2 c = ((a1 + b1) + c1, (a2 ⊕ b2)⊕ c2)

while
a ·2 (b ·2 c) = (a1 + (b1 + c1), a2 ⊕ (b2 ⊕ c2)).

Obviously these are equal if and only if both operations “+” and “⊕”
are associative.

3. If we apply the same reasoning as above, we get that

a ·3 b = (k1(a1) + k2(b1), l1(a2)⊕ l2(b2))

and

(a ·3 b) ·3 c = (k1(k1(a1) + k2(b1)) + k2(c1), l1(l1(a2)⊕ l2(b2))⊕ l2(c2))
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while

b ·3 c = (k1(b1) + k2(c1), l1(b2)⊕ l2(c2))

and

a ·3 (b ·3 c) = (k1(a1) + k2(k1(b1) + k2(c1)), l1(a2)⊕ l2(l1(b2)⊕ l2(c2))).

And it is obvious that the equality (a ·3 b) ·3 c = a ·3 (b ·3 c) does not
hold in general. Yet if k1 = k2 and l1 = l2, then “·3” is associative if
and only if the condition of the lemma holds.

Notice that special cases of operation “·3” include e.g. k, l being con-
stant mappings and “+” and “⊕” associative or k, l being idempotent ho-
momorphisms. Also, in the definition of the operation “·3”, functions ki, li
may be substituted by real numbers which changes the definition of “·3” to
a ·4 b = (k1a1 + k2b1, l1a2⊕ l2b2), where “+” and “⊕” are suitable operations
performed on components of a, b. In the following lemma notice that H is
an arbitrary set (not necessarily a vector space).

Lemma 2.2.16. Let H be a set of elements of the form a = (a1, a2) endowed
with operations “·4” defined by a·4b = (k1a1+k2b1, l1a2⊕l2b2), where ki, li ∈ R,
i = 1, 2. Then (H, ·4) is a semigroup if and only if the multiplication by ki,
for i = 1, 2, is distributive over “+” (and likewise multiplication by li for
i = 1, 2 distributive over “⊕”), there is ki, li ∈ {0, 1} for i = 1, 2, and
ki(kjam) = (kikj)am = kikjam for i, j,m ∈ {1, 2} (and likewise for l).

Proof. In this new context the reasoning included in the proof of Lemma 2.2.15
changes (under the condition of distributivity) to

(a · b) · c = (k1k1a1 + k1k2b1 + k2c1, l1l1a2 + l1l2b2 + l2c2)

while

a · (b · c) = (k1a1 + k2k1b1 + k2k2c1, l1a2 + l2l1b2 + l2l2c2).

Since we must secure that multiplication of coefficients ki, li, i = 1, 2 is
idempotent, the choice of their values is obvious.

Moreover, by setting k1 = f, k2 ≡ 0, l1 ≡ 0, l2 = g, the operation “·3”
changes its definition to a ·5 b = (f(a1), g(b2)), where f, g are suitable func-
tions.
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Lemma 2.2.17. Let H be a set of elements of the form a = (a1, a2) en-
dowed with operations “·5” defined by a ·5 b = (f(a1), g(b2)). Then (H, ·) is a
semigroup if and only if f, g are idempotent.

Proof. Follows immediately from the proof of Proposition 2.2.15, part 3, by
setting k1 = f, k2 ≡ 0, l1 ≡ 0, l2 = g.

The above lemmas enable us to generate a number of new examples of
semigroups which can be taken (after a meaningful ordering has been devised)
as a basis for constructing respective EL–semihypergroups. The following
examples are a small selection.

Example 2.2.18. Let H = {(P,R) | P,R ⊆ P(S)}, where S is a suitable
set. For (A,B), (C,D) ∈ H define

(A,B) ·1 (C,D) = (A ∩B ∩ C ∩D,A ∩B ∩ C ∩D).

and

(A,B) ·4 (C,D) = (A ∪ C,D).

Then (H, ·1) and (H, ·4) are semigroups.

Example 2.2.19. Let H = {(r, s) | r, s ∈ R}. For (x1, x2), (y1, y2) ∈ H
define

(x1, x2) ·2 (y1, y2) = (x1 + y1, x2y2),

and

(x1, x2) ·3 (y1, y2) = (|x1|+ |y1|, |x2|+ |y2|),

where in both cases “+” is the usual addition of real numbers, and

(x1, x2) ·5 (y1, y2) = (|x1|, sgn(y2)).

Then (H, ·2), (H, ·3), (H, ·5) are semigroups.

In the following example we give an example of the relation “≤” needed
to construct an EL–semihypergroup. Notice the crucial difference between
this and Example 2.2.12: the result of the multiplication is either “of the
same type” (a fully meaningful operator as in Example 2.2.12) or “of differ-
ent quality” (a vector of matrices which are however only formal matrices,
because the potential of the operation “·5” lies in the fact that the matrices
can be treated as numbers). For more ideas for (and obstacles when) defining
EL–hyperstructures on sets of matrices cf. e.g. [187,268].



2.2. EXAMPLES 37

Example 2.2.20. LetHM = {(A1,A2) | A1,A2 ∈Mn,n(R)}, where Mn,n(R)
is the set of all square matrices over R (regardless of size), i.e. e.g. M2,2 ∈
Mn,n(R) as well as M3,3 ∈Mn,n(R). For (M1,M2), (N1,N2) ∈ HM define

(M1,M2) · (N1,N2) = ((det(M1)), (tr(N2))).

Then (HM , ·) is a semigroup. Further, for (M1,M2), (N1,N2) ∈ HM define

(M1,M2) ≤ (N1,N2)⇔ det(M1) = det(N1) and tr(M2) ≤ tr(N2)

and define

(M1,M2) ∗ (N1,N2) = [(M1,M2) · (N1,N2))≤.

Then, by Lemma 2.1.1, we get that (HM , ∗) is a semihypergroup.

Notice that the properties of determinant or trace of matrices enable us to
construct a variety of EL–semihypergroups. E.g. if we regard the Kronecker
product of matrices “⊗”, then tr(X ⊗ Y) = tr(X) · tr(Y), which means
that (Mn,n(R),⊗,≤), where we put A ≤ B whenever tr(A) ≤ tr(B), is a
noncommutative quasi-ordered semigroup.

Examples of operations on sets of the above type, which in spite of being
“logical picks” are not associative include definitions of “·” such that e.g.:

1. a · b = (f(a1 + a2), g(b1 ⊕ b2)), where f, g are functions; not even for
f ≡ g, “+” equaling “⊕”,

2. a · b = (f(a1 + b1), g(a2 ⊕ b2)), i.e. functions applied on the result of
component-wise operations; if f, g are not homomorphisms, then this
is associative only in very special contexts,

3. “combining components” such as e.g. a·b = (b2, a1) or a·b = (f(a1), g(b1)).

For more details concerning this topic the reader is advised to consult any
standard introductory book on the semigroup theory such as e.g. Clifford
and Preston [78].

Obviously, the relation “≤” need not be based on analogies of “ordering
by size”. E.g. in Chvalina, Novák and Křehĺık [62, 70] a relation between a
special kind of operators is studied. The single-valued operation “·” needed
in the “Ends lemma” is defined in a similar manner as in Example 2.2.12
while the relation of operators is defined by V1 ≤ V2 whenever there exists
m ∈ N and an operator V0 such that V2 = V m

0 · V1, where V m
0 = V0 · . . . · V0︸ ︷︷ ︸

m

.

When discussing examples of EL–hyperstructures, one must also mention
that, on an intuitive level, one can suggest that the set H could be a set
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of individuals, the operation “·” could be interpreted as mating and the
ordering “≤” could be interpreted as comparing indices of generations, i.e.
a ≤ b means that a is a descendant (or, alternatively, an ancestor) of b.
However, when formalizing this idea, a number of practical issues occurs.
In Section 3.3, these obstacles will lead us to the study of modified EL–
hyperstructures on a partitioned set H; also see introduction to Chapter 4
and references to papers on biological inheritance mentioned on page 176.

For more examples of partially ordered (semi)groups see any standard
textbook on the topic such as e.g. Fuchs [133].

2.3 Proposed questions

There are several questions that naturally arise in connection with the “Ends
lemma”.

1. Can the number of assumptions (which in the original wording include
reflexivity, transitivity and antisymmetry of the relation “≤”, asso-
ciativity of the operation “·” and the fact that the operation “·” is
compatible with the relation “≤”) be reduced?

2. What are some equivalent conditions of condition 10 of Lemma 2.1.2,
i.e. on what conditions do semigroups, which are not groups, create
hypergroups?

3. Can the “Ends lemma” be used to create more specialized hypergroups
such as canonical hypergroups?

4. How can the “Ends lemma” be used to create hyperstructures with two
(hyper)operations including hyperstructure generalizations of lattices?

5. What are the properties of EL–hyperstructures?

6. Can the construction be applied in the n–ary context, i.e. on n–ary
hypergroupoids and / or n–ary relations?

7. What is the relation of EL–hyperstructures to other concepts which
combine the ideas of ordered sets and hyperoperations?

In this and the following chapter we are going to include results, most
of which had been obtained by the author in [187, 240–244, 246–250] when
giving answers to the above questions. In Section 3.1 the results obtained
by the author will be combined with results of Ghazavi and Anvariyeh [135]
while Section 3.2 will communicate results obtained by Ghazavi, Anvariyeh
and Mirvakili [136].
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2.4 Construction

from quasi-ordered semigroups

2.4.1 Partially ordered or quasi-ordered semigroups?
Converting the lemma.

Most results included in this subsection were collected from Novák [241, 246].

First of all we will consider the issue of reduction of assumptions and
conversion of the “Ends lemma”. For this we need to recall the original
proofs included in Chvalina [44].

Proof. Proof of Lemma 2.1.1: Suppose a, b, c ∈ S arbitrary. First of all, it is
useful to show that the following equality holds:⋃

t∈[b·c)≤

[a · t)≤ =
⋃

x∈[a·b)≤

[x · c)≤.

Suppose therefore an abitrary s ∈
⋃

t∈[b·c)≤
[a · t)≤. This means that s ≥ a · t0

for a suitable t0 ∈ S, t0 ≥ b · c. Then a · t0 ≥ a · (b · c) = (a · b) · c and if we set
x0 = a ·b, we get that x0 ·c ≤ s, x0 ∈ [a ·b)≤, i.e. s ∈ [x0 ·c)≤ ⊆

⋃
x∈[a·b)≤

[x ·c)≤.

The other inclusion may be proved in the analogous way. Now we get that

a ∗ (b ∗ c) =
⋃
t∈b∗c

a ∗ t =
⋃

t∈[b·c)≤

[a · t)≤ =
⋃

x∈[a·b)≤

[x · c)≤ =
⋃
x∈a∗b

x ∗ c = (a ∗ b) ∗ c,

which completes the proof of associativity. Obviously, if (S, ·) is commutative,
then also (S, ∗) is commutative. On the other hand, if (S, ∗) is commutative,
then for an arbitrary pair of elements a, b ∈ S we have that a ∗ b = b ∗ a, i.e.
[a ·b)≤ = [b ·a)≤, which means that a ·b ≤ b ·a and simultaneously b ·a ≤ a ·b,
i.e. – given the fact that “≤” is a partial order – means that a · b = b · a.

One can see that the only place in the above proof, where antisymmetry
of the relation “≤” is used, is one of the implications on commutativity.
Therefore, the “Ends lemma” may be rewritten in the following way.

Corollary 2.4.1. Let (S, ·,≤) be a quasi-ordered semigroup. Binary hyper-
operation ∗ : S × S → P∗(S) defined by a ∗ b = [a · b)≤ is associative. If the
semigroup (S, ·) is commutative, then the semihypergroup (S, ∗) is commuta-
tive as well.
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In the following examples we construct EL–semihypergroups using an
equivalence relation, i.e. a quasi-ordering which is moreover symmetric.4

Example 2.4.2. Let (N, ·,≡) be the multiplicative semigroup of natural
numbers and “≡” the relation of congruence modulo m. Obviously, (N, ·,≡)
is a quasi-ordered semigroup (which is not a group) and “≡” is not anti-
symmetric. If we, for a fixed m ∈ N, define, for arbitrary a, b ∈ N, that
a ∗ b = {x ∈ N | a · b ≡ x (mod m) }, then (N, ∗) is an EL–semihypergroup.
In this way a ∗ b is a class of all x ∈ N equivalent to a · b.

Example 2.4.3. On the set C of all complex numbers regard a binary oper-
ation “·|z|” defined as multiplication of absolute values, i.e. for all z1, z2 ∈ C
define z1 ·|z|z2 = |z1| · |z2|, and a relation “≤|z|” defined as equality of absolute
values, i.e. for all z1, z2 ∈ C put z1 ≤|z| z2 whenever |z1| = |z2|. Obviously,
(C, ·|z|,≤|z|) is a quasi-ordered semigroup (and “≤|z|” is not antisymmetric,
yet it is symmetric). Thus if we define, for all z1, z2 ∈ C, z1 ∗ z2 = {x ∈ C |
|z1| · |z2| = |x|}, we get that (C, ∗) is an EL–semihypergroup. In this way
z1 ∗ z2 is a circle in the Gaussian plane with center z = 0 and a diameter
equal to |z1| · |z2|.

Remark 2.4.4. Antampoufis, Dramalidis and Vougiouklis in papers such
as [7, 9, 125, 127] investigate various kinds of geometric hyperoperations (for
a nice visualization of some of them see [127]). Antampoufis [7] defines a
hyperoperation on C \ {0} by a ∗ b = {z ∈ C \ {0} | |z| = |ab|}, for all
a, b ∈ C \ {0} and proves that (C \ {0}, ∗) is a commutative hypergroup.
In [9] Antampoufis, Vougiouklis and Dramalidis show that along with mul-
tiplication of complex numbers we can consider also their addition and show
the relation of such a hyperoperation to what they call “constant arc hyper-
operation” on the set of complex numbers. In [9] some urban applications
are modelled using these hyperoperations.

Antisymmetry is essential in proving that commutativity of the hyperop-
eration implies commutativity of the single-valued operation. In the proof
of Corollary 2.4.1 we used the fact that [a)≤ = [b)≤ implies a = b. How-
ever, this is true only on condition of antisymmetry. Indeed, suppose a
simple two element set S = {a, b} on which the relation “≤” is defined as
a ≤ a, a ≤ b, b ≤ a, b ≤ b. This reflexive and transitive relation “≤” is
obviously not antisymmetric and there holds [a)≤ = [b)≤ yet a 6= b.

4In this respect notice Phanthawimol and Kemprasit [261], where hyperoperation x ◦N
y = xyN for all x, y ∈ G, where G is a group and N is its normal subgroup, i.e. a
hyperoperation making use of equivalence classes of G, is used and studied. Notice that
this hyperoperation was originally introduced by Corsini and is included in [92], p. 11.
Also see Remark 2.4.4.
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Example 2.4.5. Let S = {a, b, c} and define operation “·” on S by the
following table:

· a b c

a a a a
b a b c
c a a a

For an arbitrary pair x, y ∈ S define that x ≤ y, i.e. “≤” = S × S, and
x ∗ y = [x · y)≤. Thus we get that [a)≤ = [b)≤ = [c)≤. Yet the fact that
b ∗ c = [c)≤ = [a)≤ = c ∗ b does not imply that c = a.

Example 2.4.6. Regard the EL–semihypergroup (N, ∗) constructed in Ex-
ample 2.4.2 from (N, ·,≡), in which we set m = 3. In this case

[4)≡ = {x ∈ N | x ≡ 4 (mod 3) } = [7)≡,

yet the fact that [4)≡ = [7)≡ does not imply that 4 = 7. Also, in Exam-
ple 2.4.3, the fact that two complex numbers have the same absolute value
does not mean that they are the same.

The original “Ends lemma” is a way to create semihypergroups. The fol-
lowing theorem, included in [246], is meant as a converse of the construction.

Theorem 2.4.7. Let (H, ·) be a non-trivial groupoid and “≤” a partial or-
dering on H such that for an arbitrary triple of elements a, b, c ∈ H such
that a ≤ b there is c · a ≤ c · b and a · c ≤ b · c. Define a hyperopera-
tion ∗ : H × H → P∗(H) for an arbitrary pair of elements a, b ∈ H by
a ∗ b = [a · b)≤ = {x ∈ H | a · b ≤ x}. If the hyperoperation “∗” is associative,
then the single–valued operation “·” is associative too. Moreover, if there ex-
ists an element e ∈ H such that for all a ∈ H there holds a∗e = e∗a = [a)≤,
then (H, ·) is a monoid with with the neutral element e.

Proof. 1. If the hyperoperation “∗” defined in the theorem is associa-
tive, then the fact that an arbitrary element x ∈ (a ∗ b) ∗ c implies
that x ∈ a ∗ (b ∗ c). Conversely, the fact that an arbitrary element
y ∈ a ∗ (b ∗ c) implies that y ∈ (a ∗ b) ∗ c.

(a) If there holds x ∈ (a∗ b)∗ c, then there exists an element x1 ∈ a∗ b
such that x ∈ x1 ∗ c, i.e. there exists an element x1 ∈ H such that
a · b ≤ x1 and x1 · c ≤ x. Thanks to the assumed properties of the
relation “≤” we get that (a · b) · c ≤ x1 · c ≤ x, i.e. (a · b) · c ≤ x,
which means that x ∈ [(a · b) · c)≤.
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(b) Furthermore, we know that x ∈ a ∗ (b ∗ c), i.e. by analogous
reasoning we get that x ∈ [a · (b · c))≤.

Since x is an arbitrary element of H and since the same reasoning holds
for the arbitrary above mentioned y ∈ H, we get that [(a · b) · c)≤ =
[a · (b ·c))≤. However, on condition of antisymmetry of the relation “≤”
this implies that (a · b) · c = a · (b · c), which means that the operation
“·” is associative.

2. If there exists an element e ∈ H such that for all a ∈ H there holds
a∗e = e∗a = [a)≤ then there for all a ∈ H holds [a·e)≤ = [e·a)≤ = [a)≤,
which on condition of antisymmetry of the relation “≤” means that
a · e = e · a = a, i.e. e is the identity of (H, ·). Obviously, the element
satisfying the condition of the theorem is unique.

The fact that, in the context of Theorem 2.4.7, the commutativity of
the hyperoperation “∗” implies the commutativity of the operation “·” is
included already in Lemma 2.1.1.

As follows from the original proof of Lemma 2.1.2, antisymmetry of “≤”
is not needed in it.

Corollary 2.4.8. Lemma 2.1.2 holds for quasi-ordered semigroups (S, ·,≤)
as well.

Proof. It is sufficient to include the original proof of Lemma 2.1.2. Since it
was not given on page 27, we include it now.

10 ⇒ 20: Suppose t ∈ S arbitrary. Since t ∗ S ⊆ S and S ∗ t ⊆ S obviously
holds, we will prove the converse inclusions. Suppose s ∈ S arbitrary.
We assume that for the pair s, t ∈ S there exists a pair c, c′ ∈ S such
that t · c ≤ s, c′ · t ≤ s, i.e.

s ∈ [t · c)≤ ∩ [c′ · t)≤ = (t ∗ c) ∩ (c′ ∗ t) ⊆
( ⋃
x∈S

t ∗ x
)
∩
( ⋃
x∈S

x ∗ t
)

=

= (t ∗ S) ∩ (S ∗ t),

which means that S ⊆ t ∗ S and S ⊆ S ∗ t.

20 ⇒ 10: Suppose that (S, ∗) is a hypergroup and a, b ∈ S are arbitrary.
Since there is b ∗ S = S ∗ b = S, there is

a ∈ b ∗ S =
⋃
t∈S

b ∗ t =
⋃
t∈S

[b · t)≤,
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which means that a ∈ [b · c)≤ for a suitable element c ∈ S, i.e. b · c ≤ a.
In an analogous way, a ∈ S ∗ b, i.e. c′ · b ≤ a for a suitable element
c′ ∈ S, which is 20.

In [268], Račková includes Lemma 2.1.5 (quoted in [268] as Theorem 4).
However, she mistakingly assumes that (H, ·,≤) is a partially ordered group
instead of a quasi-ordered group. However, thanks to Corollary 2.4.8, this
mistake is a technicality only. What she needs to prove is the join space
implication (1.11) only.5 And her proof is based on using the compatibility
condition and multiplication by inverse elements only.

Proof. Proof of Lemma 2.1.5: Suppose a hypergroup (H, ∗) constructed from
a partially ordered group (H, ·,≤). Assume that for some a, b, c, d ∈ H we
have b \ a ≈ c/d. This means that there exists an element x ∈ H such that
a ∈ b ∗ x and c ∈ x ∗ d. This means that b · x ≤ a and x · d ≤ c. In partially
ordered groups this is equivalent to a−1 · b ≤ x−1 and d · c−1 ≤ c−1. When
multiplied first by a and then by c, these turn into b · c ≤ a · x−1 · c and
a ·d ≤ a ·x−1 ·c, which means that a ·x−1 ·c ∈ b∗c∩a∗d, i.e. a∗d ≈ b∗c.

Therefore, with the exception of one implication on commutativity, i.e.
that commutativity of the hyperoperation implies commutativity of the single-
valued operation, the “Ends lemma” can be used for quasi-ordered semigroups
as well. Of course, we must be careful not to use concepts which are defined
for partial ordering only – such as e.g. the concept of the greatest, small-
est, maximal or minimal element. In this respect notice Definition 1.1.35 on
page 19, which introduces EL–maximal elements, and its motivation.

Remark 2.4.9. It is easy to show that if we, instead of (2.1), regard the
dual definition of a hyperoperation “∗d”

a ∗d b = ≤(a · b] = {x ∈ S | x ≤ a · b} (2.11)

for all a, b ∈ S, then the proof included on page 39 can be (without adding
any further assumptions) dualized and Corollary 2.4.8 is valid for “∗d” as well.
This and other hyperoperations similar to the “Ends lemma” construction
will be used in Subsection 2.5.5 where lattices are discussed.

5Notice that while Definition 1.1.11 works in the commutative context, Račková dis-
cusses the non-commutative case. In her case, the assumption of (1.11) is therefore
b \ a ≈ c/d instead of a/b ≈ c/d.
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Proof. We have

(a ∗d b) ∗d c =
⋃

t∈≤(a·b]

t ∗d c =
⋃

t∈≤(a·b]

≤(t · c]

while

a ∗d (b ∗d c) =
⋃

s∈≤(b·c]

a ∗d s =
⋃

s∈≤(b·c]

≤(a · s]

Now, the fact that r ∈ (a ∗d b) ∗d c means that r ∈
⋃

t∈≤(a·b]
≤(t · c], i.e. that

there is r ≤ t0 · c for some t0 ∈ ≤(a · b], i.e. for such t0 that t0 ≤ a · b. Yet,
since (S, ·,≤) is a quasi-ordered semigroup, the fact that t0 ≤ a · b means
that t0 · c ≤ (a · b) · c for all c ∈ S. From transitivity of “≤” we have that
r ≤ (a · b) · c = a · (b · c). Now, denote s0 = b · c. From reflexivity of “≤”
we have that s0 ∈ ≤(b · c] = {x ∈ S | x ≤ b · c}. Since r ≤ a · s0, there is
r ∈ ≤(a · s0] = {y ∈ S | y ≤ a · s0} ⊆

⋃
s∈≤(b·c]

(a · s], i.e. r ∈ a ∗d (b ∗d c). The

other inclusion is proved in an analogous way.

2.4.2 Polygroups and more specialized hyperstructures

Now we need to set limits to our considerations. Suppose that the sequence
of hyperstructures from the most general to the more specialized ones is given
as: hypergroupoids – semihypergroups – hypergroups – quasi-canonical hyper-
groups (i.e. polygroups) – canonical hypergroups, where the last concept is a
hyperstructure equivalent of abelian group, i.e. a structure used to construct
rings and fields. It is therefore natural to ask about conditions under which
the “Ends lemma” enables us to construct canonical hypergroups. Obtaining
the answer is rather a simple task.

Theorem 2.4.10. Let (S, ·,≤) be a non-trivial quasi-ordered semigroup such
that “≤” is not the identity relation. Then no element of the EL–semihyper-
group (S, ∗) is a scalar identity.

Proof. Suppose that in (S, ∗) there exists a scalar identity e. This means
that for all a ∈ S there holds [a · e)≤ = {a} = [e · a)≤. Since the relation “≤”
is a reflexive one, there is x ∈ [x)≤ for an arbitrary x ∈ S, i.e. we get that
a · e = a = e · a for all a ∈ S. However, this implies that e is the identity
of (S, ·). As a result [a)≤ = {a} for all a ∈ S, which means that “≤” is the
identity relation.



2.4. CONSTRUCTION FROM QUASI-ORDERED SEMIGROUPS 45

Corollary 2.4.11. Let (S, ·,≤) be a non-trivial quasi-ordered semigroup such
that “≤” is not the identity relation. Then – regardless of commutativity – the
EL–semihypergroup (S, ∗) cannot be a polygroup or a canonical hypergoup.

Proof. Obvious because both quasi-canonical hypergroups (polygroups) and
canonical hypergroups are defined by means of scalar elements.

Thus we can see that the “Ends lemma” cannot be used to construct
canonical hypergroups or hyperstructures built on them (such as e.g. Kras-
ner hyperrings) or those which use the idea of scalar elements such as e.g. hy-
pernearrings of Dašić [101].6

Massouros, Mittas and Jantosciak [170,215,216,218] studied the concept
of fortification in transposition hypergroups which is based on the existence
of strong identities, i.e. minimal identities in extensive hypergroups.7 As
mentioned in [170], if a transposition hypergroup with a strong identity has
the property that each nonidentity element has unique nonidentity right and
left inverses, which are identical, it is said to be a fortified transposition
hypergroup. When commutative, such hypergroups have application to the
theory of languages and automata and have been known and studied as
fortified join hypergroups.

In the proof of the following theorem we use the concept of the greatest
and smallest elements. Therefore, we assume that “≤” is partial ordering.
However, given the nature of the proof and of strong identities, it is obvious
that the effort to construct EL–semihypergroups with strong identities out
of non-antisymmetric relations “≤” is vain.

Theorem 2.4.12. Let (S, ∗) be the EL–semihypergroup of a partially ordered
semigroup (S, ·,≤). The only cases when (S, ∗) has strong identities are either
S = {a}, or S = {a, b}, where a ≤ b, or such S that the relation “≤” on
S \ {g}, where g is the greatest element of (S,≤) and simultaneously the
neutral element of (S, ·), is the identity relation.

6The notion of hypernearring was introduced by Dašić in [101]. Since Dašić was new
to hyperstructure theory at the time of publication of the paper, he stated that the hyper-
nearring is based on a “hypergroup” while the axioms of his Definition 1 indicate that it
is a “quasi-canonical hypergroup” instead. When including the definition in [111], Davvaz
and Leoreanu corrected this misprint, see p. 126. A similar slip happened years later e.g.
in papers dealing with matroids over hyperfields such as Baker and Bowler [16] where “hy-
pergroup” is used in the sense of “canonical hypergroup” without explicitly mentioning
this.

7On page 3 we made a remark on the rather unusual additive notation used in some
older works on hyperstructure theory. Notice that notation might be somewhat misleading
even in newer papers. When defining strong identities, Jantosciak and Massouros [170]
write “x ≈ ex = xe ⊆ x ∪ e”. Compare this to Definition 1.1.8 on page 5.
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Proof. According to the definition, an element e ∈ S is a strong identity
of S if x ∗ e = e ∗ x ⊆ {x, e} for all x ∈ S. In our case this means that
[x · e)≤ = [e · x)≤ ⊆ {x, e} for all x ∈ S. There are two possible cases:

1. x · e = e · x for all x ∈ S: In this case there obviously is [x · e)≤ =
[e · x)≤ and should these sets be a subset of {x, e}, there must, thanks
to reflexivity of “≤”, be either x · e = e · x = x or x · e = e · x = e.
Now, the fact that x · e = e · x = x for all x ∈ S means that e
is the neutral element of S and therefore the condition rewrites to
[x · e)≤ = [e · x)≤ = [x)≤ ⊆ {e, x} for all x ∈ S. Again, thanks to
reflexivity of “≤” we have that x ∈ [x)≤. Therefore, there must be
x ≤ e for all x ∈ S, i.e. e is the greatest element of S, while all y, z ∈ S
such that y 6= e, z 6= e are incomparable, i.e. “≤” is an identity relation
on S \ {e}. On the other hand, the fact that x · e = e · x = e for all
x ∈ S means that e is an absorbing element of S. Thus the condition
rewrites to [x · e)≤ = [e · x)≤ = [e)≤ ⊆ {e, x} and since e ∈ [e)≤, there
must be [e)≤ = {e, x} for all x ∈ S. Yet this means that S can be a two
element set only as e ≤ x1 and e ≤ x2 means that [e)≤ = {e, x1, x2} for
x1 6= x2.

2. The above condition does not hold: In this case we have that for a
given e and all x ∈ S there is either [x · e)≤ = [e · x)≤ = {x} or
[x · e)≤ = [e ·x)≤ = {e} or [x · e)≤ = [e ·x)≤ = {e, x}. Since the relation
“≤” is reflexive, the last case is the only possible one, or e = x for all
x ∈ S, which is again a trivial case. The fact that [x · e)≤ = [e · x)≤
means that x · e ≤ e · x and at the same time e · x ≤ x · e. Moreover,
thanks to reflexivity of “≤”, there must be either (a) x · e = x and
e · x = e or (b) x · e = e and e · x = x, and that for all x ∈ S. Yet both
of these cases result in simultaneous validity of x ≤ e and e ≤ x for
all x ∈ S, which means that e is simultanouesly the greatest and the
smallest element of (S,≤), i.e. S = {e}.

Notice, that on the intuitive level, the above results are no surprise as the
“Ends lemma” relies on the concept of principal ends, i.e. “cones of elements
greater than a given element”. If these cones are to be restricted to one- or
two-element sets for a multiplication by all elements of the given set, than
this can naturally hold in very special contexts only.
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Figure 2.1: To Theorem 2.4.12: “≤” on S \ {g} is an identity relation

Even though we give up the study of canonical or fortified join hyper-
groups, it is to be pointed out that these are not the only important special
types of hypergroups. In Section 2.4.5 we e.g. mention cyclic hypergroups
introduced as early as 1937 by Wall [307].

2.4.3 Identities, inverses, zero scalars and idempotent
elements

Most results included in this subsection were published by European Journal of

Combinatorics (WoS Q2) as Novák [242].

We have seen that describing scalar or strong identities is pointless in
EL–hyperstructures. However, this is not the case of “ordinary” identities
or other special elements.

Theorem 2.4.13. Let (S, ∗) be the EL–semihypergroup of a quasi-ordered
monoid (S, ·,≤) with the neutral element u. An element e ∈ S is an identity
of (S, ∗) if and only if e ≤ u.

Proof. ”⇒”: If e ∈ S is an identity of an EL–semihypergroup (S, ∗), then
there holds e · a ≤ a and a · e ≤ a for all a ∈ H. Specifically, this holds for
a = u. In this case we get e ≤ u.
”⇐”: Suppose that e ≤ u. Since (S, ·) is a quasi-ordered semigroup, this is
equivalent to e · a ≤ a for any a ∈ S, which means that for any a ∈ S we
have that a ∈ [e · a)≤ = e ∗ a. In an analogous way we get that a ∈ a ∗ e, i.e.
e is an identity of (S, ∗).

Corollary 2.4.14. Let (S, ∗) be the EL–semihypergroup of a quasi-ordered
monoid (S, ·,≤). The neutral element of (S, ·) is an identity of (S, ∗).

Proof. Obvious.
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Lemma 2.4.15. Let (H, ∗) be the EL–join space of a quasi-ordered com-
mutative group (H, ·,≤). If an element e ∈ H is an identity of (H, ∗), then
e ≤ e−1.

Proof. If e ∈ H is the neutral element of (H, ·), the implication is obviously
true. Therefore study the case that e is not the neutral element of (H, ·). If e
is an identity of (H, ∗), then for all a ∈ H there holds that a ∈ a∗e = [a ·e)≤,
i.e. a · e ≤ a. In a similar way there holds e · a ≤ a, i.e. a ≤ e−1 · a. This
implies that for all a ∈ H there is a · e ≤ a ≤ e−1 · a, which in a commutative
quasi-ordered group means that e ≤ e−1.

Recall that we denote i(a) the set of inverses of an element a ∈ H. Further
on we will use the notation a′ for an inverse of a in a hyperstructure while a−1

will be the notation reserved for the inverse of a – either in a single-valued
structure or in a hyperstructure (we will see that such cases are very rare).

Lemma 2.4.16. Let (H, ∗) be the EL–transposition hypergroup of a quasi-
ordered group (H, ·,≤). For every a ∈ H, its inverse a−1 in (H, ·) is its
inverse in (H, ∗).

Proof. Denote u the neutral element of (H, ·). Since a and a−1 are inverse
elements in (H, ·), there is a · a−1 = a−1 · a = u, i.e. a ∗ a−1 = a−1 ∗ a = [u)≤.
Since u ∈ [u)≤ and u is an identity of (H, ∗), we get that a−1 is the inverse
of a in (H, ∗).

Theorem 2.4.17. Let (H, ∗) be the EL–transposition hypergroup of a quasi-
ordered group (H, ·,≤). Then for an arbitrary a ∈ H there is

i(a) = {a′ ∈ H | a′ ≤ a−1} = ≤(a−1],

where a, a−1 are inverses in (H, ·).

Proof. Inverse elements to a ∈ H in (H, ∗) are defined as such elements
a′ for which there exists an identity e in (H, ∗) such that e ∈ a ∗ a′ and
simultaneously e ∈ a′ ∗a, i.e. a ·a′ ≤ e and a′ ·a ≤ e for EL–hyperstructures.
In order to prove the theorem, we have to prove the following implications:

1. If a′ ≤ a−1, then a′ is an inverse of a in (H, ∗).
Suppose that a′ ≤ a−1. This means that a′ · a ≤ a−1 · a = u, where u is
the neutral element of (H, ·). It does not matter whether we multiply
from the left or from the right. Since u is an identity of (H, ∗), a′ is an
inverse of a in (H, ∗).
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2. If a′ ∈ H is an inverse of a in (H, ∗), then a′ ≤ a−1.
Since a, a′ ∈ H are inverses in (H, ∗), there exists an identity e ∈ H
such that e ∈ a ∗ a′ ∩ a′ ∗ a. This means that there simultaneously
holds a · a′ ≤ e and a′ · a ≤ e. Denote u the neutral element of (H, ·).
Since from Theorem 2.4.13 there follows that e ≤ u, and since “≤” is
transitive, we altogether get that a ·a′ ≤ u and a ·a′ ≤ u, which implies
a′ ≤ a−1.

Remark 2.4.18. Theorem 2.4.13 and Theorem 2.4.17 suggest that in a gen-
eral case both the set of identities and i(a) are more than one-element sets,
which violates defining axioms of some hyperstructure concepts including a
canonical hypergroup. In this respect cf. Jantosciak [169], Proposition 6, the
application of which (in case that card i(a) > 1 for any a ∈ H, where H
is an arbitrary EL–transposition hypergroup) suggests another line of proof
of Theorem 2.4.10. Furthermore, if we regard definition of a fortified join
space the above theorems confirm the result given by Theorem 2.4.12 that
fortification is possible in very special contexts only.

Remark 2.4.19. If the quasi-ordering “≤” is an equivalence, we get that
i(a) is the set of such a′ ∈ H that are equivalent to a−1. If we now define an
operation “�” on the set of equivalence classes H/≤, i.e. define A�B = C,
where C is the set of such elements of H that are equivalent to a · b, where
a ∈ A and b ∈ B, we get that (H/≤,�) is a group. Recall now page 7 and no-
tice that one of the motivations for introducing Hv–structures was to obtain
structures with desired properties in cases when “all but some problematic”
elements have the desired property. See Corsini and Vougiouklis [96,300] and
(for further reference) Vougiouklis [296].

Studying scalar elements is of no use in EL–hyperstruture. However, this
is not exactly the case of zero scalars (often called absorbing elements).

Theorem 2.4.20. Let (S, ∗) be the EL–semihypergroup of a non-trivial
quasi-ordered semigroup (S, ·,≤). Then (S, ∗) has zero scalars if and only
if (S, ·,≤) has an element which is simultaneously EL–maximal with respect
to “≤” and absorbing with respect to “·”.

Proof. In the “Ends lemma” context, the defining condition of a zero scalar
element e ∈ S modifies to [x · e)≤ = {e} = [e · x)≤ for all x ∈ S. If we realize
that “≤” must be reflexive, the proof is obvious.

Corollary 2.4.21. Let (S, ∗) be the EL–semihypergroup of a non-trivial
quasi-ordered semigroup (S, ·,≤). Then (S, ∗) has at most one zero scalar
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element. To be more precise, if (S, ·) is a monoid, then it is its neutral ele-
ment that can be the only zero scalar of (S, ∗). If (S, ·) is not a monoid, then
(S, ∗) is without zero scalars.

Proof. An obvious rewording of Theorem 2.4.20.

Later on, in Subsection 2.4.7, we will work with semihypergroups without
zero scalars and based on results obtained by Jafarabadi et al. [162, 163] we
will prove some results concerning hyperideals of (S, ∗).

The first of our results regarding hyperstructure idempotent elements
is rather straightforward. We see that if the carrier structure of an EL–
hypergroup is a (quasi-ordered) group, then the notions of hyperstructure
idempotent elements and identities coincide.

Theorem 2.4.22. Let (H, ∗) be the EL–hypergroup of a quasi–ordered group
(H, ·,≤). An element a ∈ H is idempotent in (H, ∗) if and only if it is an
identity of (H, ∗).

Proof. Idempotent elements are defined as such a ∈ H that a ∈ a ∗ a, i.e. in
the “Ends lemma” context, a · a ≤ a. In a group, this means that a ≤ u,
where u is the neutral element of (H, ·). According to Theorem 2.4.13 this is
equivalent to the fact that a is an identity of (H, ∗).

In the following theorem denote by an the hyperproduct of n elements a,
i.e. an = a ∗ . . . ∗ a︸ ︷︷ ︸

n

.

Theorem 2.4.23. Let (S, ∗) be the EL–semihypergroup of a quasi-ordered
semigroup (S, ·,≤). Then for an arbitrary idempotent element a in (S, ·) we
have:

(i) a is an idempotent of (S, ∗),

(ii) a ∗ a is a subsemihypergroup of (S, ∗),

(iii) [a)≤ = a2 = a3 = . . . = an for all n ∈ N, n ≥ 2.

Proof. In the proof a will denote an arbitrary idempotent element of (S, ·).

(i) Trivial, because since a = a · a, there is also [a)≤ = [a · a)≤ and since
the relation “≤” is reflexive, there is a ∈ [a)≤ = [a · a)≤, i.e. a ∈ a ∗ a.
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(ii) This follows from Chattopadhyay [42], Corollary 2.18, which states that
for an arbitrary idempotent element of (S, ∗), a ∗ a is a subsemihyper-
group of (S, ∗) if and only if a ∗ a ∗ a = a ∗ a, or from Lemma 2.1.4.
Since a is a single-valued idempotent, there is

a ∗ (a ∗ a) = [a · a · a)≤ = [a · a)≤ = a ∗ a,

or without the need of reference to [42]

(a ∗ a) ∗ (a ∗ a) = a ∗ (a ∗ (a ∗ a)) = a ∗ (a ∗ a) = a ∗ a

which again means that a ∗ a is a subsemihypergroup of (S, ∗).

(iii) In the proof of (ii) we have seen that a3 = a2 and a4 = a2. Thus
a4 = a3. However, this can be also shown in the following way:

a ∗ (a ∗ (a ∗ a)) = [a · a · (a · a))≤ = [a · (a · a))≤ = a ∗ (a ∗ a),

which can be easily expanded by “adding” further a. Also as above in
(i) there is a2 = [a)≤.

Remark 2.4.24. Notice that (ii) follows also from the fact that for a single-
valued idempotent a ∈ S there is a ∗ a = [a)≤. Thus the condition (a ∗ a) ∗
(a∗a) ⊆ a∗a simplifies to [a)≤ ∗ [a)≤ ⊆ [a)≤. Yet [a)≤ ∗ [a)≤ =

⋃
x,y∈[a)≤

[x ·y)≤,

the relation “≤” is reflexive and (S, ·,≤) is a quasi-ordered semigroup. Thus
for an arbitrary x, y ∈ [a)≤, i.e. x, y ∈ S such that a ≤ x, a ≤ y, there must
be a · a ≤ x · y, and since a is idempotent, there is a ≤ x · y. Thus not only
x · y ∈ [a)≤ ∗ [a)≤ but also x · y ∈ [a)≤.

Unfortunately, in the general case of a quasi-ordering “≤”, from the va-
lidity of (i), (ii) or (iii) of Theorem 2.4.23 there does not follow that a is an
idempotent element of (S, ·) which would help to give a complete answer of
the question of whether an EL–hypergroup was constructed from a proper
semigroup or from a group. This issue will be discussed later in Subsec-
tion 2.4.8. Obviously, if “≤” is a partial ordering, then we get the following
corollary.

Corollary 2.4.25. Let (S, ∗) be the EL–semihypergroup of a partially or-
dered semigroup (S, ·,≤). If, for some a ∈ S, there is [a)≤ = a2 = a3 = . . . =
an for all n ∈ N, n ≥ 2, then a is an idempotent element of (S, ·).
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Example 2.4.26. Suppose the EL–semihypergroup (〈0, 1〉, ∗) constructed
from the quasi-ordered semigroup (〈0, 1〉, ·,≤), where “·” and “≤” are the
usual multiplication and ordering of real numbers. In this case, by Theo-
rem 2.4.13, every element is an identity. Further, u = 1 is a zero scalar, 0
and 1 are idempotent elements and 0 ∗ 0 and 1 ∗ 1 are (trivial) subsemihy-
pergroups of (〈0, 1〉, ∗).

Example 2.4.27. Suppose the EL–semihypergroup (Z, ∗) constructed from
the quasi-ordered semigroup (Z,+,≤), where “+” and “≤” are the usual
addition and ordering of integers. Here, by Theorem 2.4.13, every negative
integer is an identity, for every negative number e ∈ Z there obviously is
e ≤ −e and for every a ∈ Z there is i(a) = ≤(−a]. Also, (Z, ∗) has no zero
scalars, and by Theorem 2.4.22, the idempotents of (Z, ∗) are the negative
integers.

Example 2.4.28. Suppose the EL–semihypergroup (N, ∗) constructed from
the quasi-ordered semigroup (N, gcd, |), where “gcd” stands for the greatest
common divisor and “|” is the usual divisibility relation. In this case, every
element of (N, ∗) is idempotent. By Theorem 2.4.23, every set

a ∗ a = {x ∈ N | gcd{a, a}|x} = {x ∈ N | a|x}

is a subsemihypergroup of (N, ∗). Indeed, if e.g. a = 3, then obviously e.g.
12 ∈ 3 ∗ 3, 18 ∈ 3 ∗ 3. Now,

12 ∗ 18 = {x ∈ N | gcd{12, 18}|x} = {x ∈ N | 6|x} ⊆ 3 ∗ 3 = {x ∈ N | 3|x}.

2.4.4 The notion of a subhyperstructure

Results of this subsection were published by APLIMAT – Journal of applied math-

ematics as Novák [246] and used in Novák [244], published by European Journal

of Combinatorics (WoS Q2) .

Now we are going to discuss the issue of subhyperstructures of EL–hyper-
structures. Since EL–hyperstructures rely on the idea of “cones of elements”,
we must, first of all, clarify the concept of a principal end generated by an
element, which lies in the subset in question. Obviously, two approaches are
possible. For an arbitrary element g ∈ G, where G ⊆ S, we may write

[a)≤G
= {x ∈ G | a ≤ x}

as well as
[a)≤S

= {x ∈ S | a ≤ x}.
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Given this notation we may distinguish between (G, ∗G) based on the hy-
peroperation “∗G” such that for an arbitrary pair of elements a, b ∈ G we
set

a ∗G b = [a · b)≤G
= {x ∈ G | a · b ≤ x} (2.12)

and (G, ∗S), where a ∗S b is defined by

a ∗S b = [a · b)≤S
= {x ∈ S | a · b ≤ x}. (2.13)

Example 2.4.29. Suppose the linearly ordered semigroup (N,+,≤) and its
linearly ordered subsemigroup (S,+,≤) of all even numbers. In this context
we have

2 ∗G 4 = {x ∈ S | 6 ≤ x} = {6, 8, 10, . . .} (2.14)

while
2 ∗S 4 = {x ∈ N | 6 ≤ x} = {6, 7, 8, . . .}. (2.15)

Obviously, neither of these is “the only correct approach, while the other
one is incorrect”, as it is a matter of pure personal and applicational prefer-
ence which of them we adopt as the one deserving our attention. Since the
notation “∗S” reflects the idea of “cones of elements” better, we are going
to start the study of implications of (2.13). Further on, instead of “∗S” and
“≤S” the usual notation “∗” and “≤” is going to be used.

It will be useful to utilize the concept of an upper set known from the
order theory. However, in the following definition we prefer using the term
upper end of a set in order to visually relate the concept to the idea of the
“Ends lemma”. Also, we choose not to use the term upper set because it is
used in the context of partially ordered sets while we will work in a more
general context of quasi-ordered sets. Furthermore, identifying the elements
which “spoil” the property of being an upper end of a set will be useful.8

Definition 2.4.30. Let (S, ·,≤) be a quasi-ordered semigroup and let G
be a nonempty subset of S. If for an arbitrary element g ∈ G there holds
[g)≤ ⊆ G, we call G an upper end of S. If there exists an element g ∈ G
such that there exists an element x ∈ S \G such that g ≤ x (i.e. x ∈ [g)≤),
we say that G is not an upper end of S because of the element x.

Using Definition 2.4.30 we can clarify the issue of subhypergroupoids.

Lemma 2.4.31. Let (S, ∗) be the EL–semihypergroup of a quasi-ordered
semigroup (S, ·,≤) and G ⊆ S nonempty. If (S, ·) is a monoid, denote its
neutral element by u. Further suppose that (G, ·) is a subgroupoid of (S, ·).

8In the below definition, since x 6∈ G we could also write “g < x and x ∈ [g)≤ \ {g}”.



54 CHAPTER 2. EL–HYPERSTRUCTURES

1. If G is an upper end of S, then (G, ∗) is a subhypergroupoid of (S, ∗).

2. If G is not an upper end of S and there holds u ∈ G, then (G, ∗) is not
a subhypergroupoid of (S, ∗).

3. The statement in part 2 holds even in case that u 6∈ G (or u does not
exist) yet for some a, b ∈ G there holds that a · b = c, where c ∈ G is
such that there exists an element xi because of which G is not an upper
end of S such that c ≤ xi.

4. On simultaneous validity of conditions that

(a) u does not exist or u 6∈ G
(b) G is not an upper end of H because of elements xi, i ∈ I
(c) for every a, b, c ∈ G there holds a · b = c and all the triples are

such that for no xi there holds c ≤ xi

the couple (G, ∗) is a subhypergroupoid of (S, ∗).

Proof. 1. Since “·” is an operation on G, for an arbitrary pair a, b ∈ G
there holds a · b = c, where c ∈ G. Thus a ∗ b = [a · b)≤ = [c)≤, which is
a subset of G because G is an upper end of S. Therefore we have that
G ∗G ⊆ G, which means that (G, ∗) is a subhypergroupoid of (S, ∗).

2. If G is not an upper end of S, then there exists an element g ∈ G
such that there exists an element x ∈ S \ G such that g ≤ x. If
furthermore u ∈ G, then if we consider the above mentioned element g,
then g∗u = [g ·u)≤ = [g)≤ 6⊆ G (because of the element x, the existence
of which is assumed), which means that G ∗G 6⊆ G, i.e. (G, ∗) is not a
subhypergroupoid of (S, ∗).

3. Obvious since a∗ b = [a · b)≤ = [c)≤, for which there by definition holds
[c)≤ 6⊆ G, i.e. (G, ∗) is not a subhypergroupoid of (S, ∗). Elements
a, b, c have the meaning defined in part 3.

4. In this case for ∀a, b ∈ G we have that a ∗ b = [a · b)≤ = [c)≤, where
c ∈ G is such that [c)≤ ⊂ G, i.e. we have that G∗G ⊂ G, which means
that (G, ∗) is a subhypergroupoid of (S, ∗).

Remark 2.4.32. In fact, parts 2 and 3 of Lemma 2.4.31 may be written as
one. Yet they are included separately because of uniqueness of the neutral
element u. Instead of c ≤ xi we could write c < xi because we suppose c ∈ G
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while xi 6∈ G, which means that c and xi cannot be equal. Finally, notice
that if “·” is not an operation on G, then (G, ∗) is not a subhypergroupoid
of (S, ∗). Indeed, in this case there exists a triple a, b, c, where a, b ∈ G while
c 6∈ G, such that a · b = c. This means that a ∗ b = [a · b)≤ = [c)≤. However
since the relation “≤” is reflexive and c 6∈ G, we get that [c)≤ 6⊆ G, i.e.
G ∗G 6⊆ G.

Example 2.4.33. The set N\{1, 2, 3, 4, 5, 7, 9} ⊂ N with the operation “+”
and the usual ordering of numbers is an example of a set constructed under
Lemma 2.4.31, part 4. Indeed, N\{1, 2, 3, 4, 5, 7, 9} = {6, 8, 10, 11, 12, 13, 14 . . .}
is not an upper end of N because of elements 7 and 9 (since e.g. 7 ∈ [6)≤ but
7 6∈ N \ {1, 2, 3, 4, 5, 7, 9}). Yet for no couple a, b ∈ {6, 8, 10, 11, 12, 13, 14 . . .}
there holds a+ b ≤ 7 or a+ b ≤ 9.

Lemma 2.4.31 gives a complete description of an arbitrary subset of an
arbitrary EL-semihypergroup. Since subsemihypergroups, subhypergroups
and other concepts are defined as special classes of subhypergroupoids, the
lemma gives a complete list of candidates for various types of subhyper-
structures of EL-semihypergroups. We start with examining the case of
subsemihypergroups.

Theorem 2.4.34. Let (H, ∗) be the EL–semihypergroup of a partially or-
dered semigroup (S, ·,≤). Suppose that G is either an upper end of S or
such a subset of S that assumptions of Lemma 2.4.31, part 4 are fulfilled.
Then

1. (G, ·) is a subsemigroup of (S, ·) if and only if (G, ∗) is a subsemihy-
pergroup of (S, ∗).

If furthermore (S, ·) is a monoid, then

2. (G, ·) is a submonoid of (S, ·) if and only if there exists an element
u ∈ G such that for all g ∈ G there holds g ∗ u = u ∗ g = [g)≤.

Proof. Suppose that (S, ∗) is the EL–semihypergroup of a partially ordered
semigroup (S, ·,≤) and G is a nonempty subset of S.

1. “⇒” The fact that (G, ∗) is a subhypergroupoid of (S, ∗) follows from
Lemma 2.4.31, parts 1 and 4 respectively. For both types of
G, the associativity of (G, ∗) follows from the first part of the
“Ends lemma”, Theorem 2.1.1 – notice that the proof (included
on page 39) may be applied without any changes even when G is
not an upper end of S.
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“⇐” Suppose that (G, ∗) is a subsemihypergroup of (S, ∗). First we
have to prove that G is closed with respect to the operation “·”
of S. Yet for arbitrary elements a, b ∈ G the fact that a ∗ b ⊆ G
implies that [a · b)≤ ⊆ G, i.e. any element x ∈ S such that
a · b ≤ x belongs to G. Since the relation “≤” is reflexive, we
get that a · b ∈ G. As a result (G, ·) is a groupoid. The fact
that it is associative is granted by the reasoning of the proof of
Theorem 2.4.7, part 1 on page 41. Altogether we get that (G, ·)
is a subsemigroup of (S, ·).

2. “⇒” Denote u the neutral element of (S, ·). If (G, ·) is a submonoid
of (S, ·), the fact that g ∗ u = u ∗ g = [g)≤ is obvious.

“⇐” Cf. part 2 of the proof of Theorem 2.4.7, which may be literally
repeated.

From the proof of Theorem 2.4.34, part 1 “⇐”, we directly get an obvious
statement equivalent to the one included in Remark 2.4.32. Notice that its
validity does not depend on the fact whether G is an upper end of S.

Corollary 2.4.35. Let (S, ∗) be the EL–semihypergroup of a partially or-
dered semigroup (S, ·,≤) and G a nonempty subset of S. If (G, ∗) is a sub-
hypergroupoid of (S, ∗), then (G, ·) is a subgroupoid of (S, ·).

Also notice that implications “⇒” in Theorem 2.4.34 hold for quasi-
ordered semigroups as well. The issue of subhypergroups seems to be a
bit more complicated.

Theorem 2.4.36. Let (S, ∗) be the EL–semihypergroup of a quasi-ordered
semigroup (S, ·,≤). Suppose that G is an upper end of S. If (G, ·) is a
subgroup of (S, ·), then (G, ∗) is a subhypergroup of (S, ∗).

Proof. Since we assume that (G, ·) is a subgroup of (S, ·), we have that for an
arbitrary a, b ∈ G there holds a · b−1 ∈ G, b−1 · a ∈ G. Therefore if elements
c = b−1 · a and c′ = a · b−1 are regarded, Theorem 2.1.2 may be directly
applied, or rather, its proof literally copied. Since we are proving only “⇒”,
we are bypassing the problem causes by the lack of antisymmetry, i.e. the
theorem holds for the more general type of quasi-ordered semigroups.

As follows from the proof of Theorem 2.1.5, the subhypergroup is a trans-
position hypergroup or (if it is commutative) a join space.
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Remark 2.4.37. Notice that (G, ∗), where G is such as defined in the
assumptions of Lemma 2.4.31, part 4, can never be a subhypergroup of (S, ∗).
In this case the inclusion G ⊆ a ∗ G of the reproductive law is problematic.
Indeed, suppose an arbitrary element a ∈ G and any element g ∈ G for
which there holds g ≤ xi, where xi is an arbitrary of those elements because
of which G is not an upper end of S, i.e. xi 6∈ G. In other words, g is such that
there holds [g)≤ 6⊆ G. Then we have that a ∗ g = [a · g]≤ = [b)≤ and thanks
to the assumption of Lemma 2.4.31, part 4, especially that we consider an
arbitrary a 6= u, we have that g 6∈ [b)≤, which means that G 6⊆ a ∗G.

Example 2.4.38. Consider the set (Rn,+,≤) of n–tuples of real numbers
with the usual componentwise addition and lexicographic order. (Rn,+) is
a group with the identity (0, . . . , 0). Sets (Rn

1,...,k,+), where k ≤ n, in which
components 1, . . . , k are arbitrary real numbers while all other components
are equal to zero, are obvious examples of subgroups of (Rn,+). Furthermore,
relation “≤” is linear ordering.9 If we now define the hyperoperation for any
two n–tuples u, v ∈ Rn as

u ∗Rn v = [u+ v)≤,

we get that (Rn, ∗Rn) is a join space. If we regard the above subgroups
(Rn

1,...,k,+), then only (Rn
n,+) is the upper end of (Rn,+,≤). All other sub-

groups cannot qualify because they do not meet the condition “for an arbi-
trary element g ∈ G there holds [g)≤ ⊆ G” from Definition 2.4.30. This is
because concerning the subgroups we regard the relation “≤” among all ele-
ments of the set (Rn,+,≤) (i.e. we regard hyperoperation of the type (2.13)
which is not restricted on elements of the subsets G).

Proposition 2.4.39. Let (S, ∗) be the EL–semihypergroup of a partially
ordered semigroup (S, ·,≤) and G ⊆ S nonempty. If (G, ∗) is a subhypergroup
of (S, ∗), then (G, ·) is a subsemigroup of (S, ·) and G is an upper end of S
such that for any pair a, b ∈ G there exists a pair c, c′ ∈ G such that b · c ≤ a
and c′ · b ≤ a.

Proof. Thanks to Lemma 2.4.31, Remark 2.4.32, Theorem 2.4.36 and Re-
mark 2.4.37 it is obvious that all EL–subhypergroups (G, ∗) of (S, ∗) are
such that G is an upper end of S. Since every hypergroup is a semihyper-
group, we get that (G, ∗) is a subsemihypergroup of (S, ∗). Yet according
to Theorem 2.4.34, part 1, (G, ·) is in this case a subsemigroup of (S, ·).

9To explain the notation, e.g. (R8
2,4,5,+) stands for the set of all 8-tuples, where the

second, fourth and fifth components are arbitrary real numbers while all other components
are zero, i.e. the set of (0, n, 0,m, l, 0, 0, 0), where n,m, l ∈ R.



58 CHAPTER 2. EL–HYPERSTRUCTURES

The proposition for the arbitrary pair a, b ∈ G is a copy of condition 10 of
Theorem 2.1.2.

What remains to be proved is whether (G, ·) in the above proposition
is a subgroup of (S, ·). This is still an open question. Notice that Propo-
sition 2.4.39 does not guarantee the existence of u ∈ G such that u is the
neutral element of (S, ·).

Remark 2.4.40. Suppose that (H, ·,≤) is a partially ordered group with
identity u and G is a non-empty subset of H. If (G, ·) is simultaneously a
subgroup of (H, ·) and an upper end of H, then notice the following:

If we take an arbitrary x ∈ H such that x < g, where g ∈ G is arbitrary,
then x < g implies u < x−1 ·g and since (G, ·) is a subgroup of (H, ·), which is
a group, and simultaneously G is an upper end of H, we get that x−1 ·g ∈ G.
Yet since g ∈ G, there is also x−1 ∈ G, which implies that x ∈ G.

As a result we get that if (H, ·,≤) is a linearly ordered group, there do not
exist any proper subhypergroups associated to subgroups of (H, ·) because
there are no proper subgroups (G, ·) of (H, ·), where G is an upper end of
H. Theorem 2.4.36 is thus of no practical use for linearly ordered groups.
Also cf. Remark 2.4.37, which states that it is upper ends that are the only
candidates for subhypergroups.

However, if (H, ·) is a monoid only, then x < g does not imply u < x−1 · g
(and consequently x ∈ G) because x need not have the inverse element.

If we define the principal end generated by an element a ∈ G, where
G ⊆ H, as [a)≤G

= {x ∈ G | a ≤ x}, i.e. instead of (2.13) regard (2.12),
problems of “holes” caused by elements x ∈ H \ G in Definition 2.4.30 will
not come up. Technically speaking there are two distinct hyperoperations in
the following theorem: “∗” and “∗G”. Therefore, the (hyper)structures on G
are not called sub(hyper)structures.

Theorem 2.4.41. Let (S, ∗) be the EL–semihypergroup of a partially ordered
semigroup (S, ·,≤). Further, let G ⊆ S be non-empty and such that (G, ·) is
a subgroupoid of (S, ·) and the relation “≤G” be a restriction of “≤” on G,
i.e. for arbitrary elements a, b ∈ G let a ≤ b ⇒ a ≤G b. Finally, if (S, ·)
is a monoid, denote its neutral element by u. Define a new hyperoperation
∗G : G×G→ P ∗(G) for arbitrary elements a, b ∈ G by

a ∗G b = [a · b)≤G
= {x ∈ G | a · b ≤G x}.

Then

1. (G, ·) is a semigroup if and only if (G, ∗G) is a semihypergroup.
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2. (G, ·) is a monoid if and only if (G, ∗G) is a semihypergroup and u ∈ G.

3. If (G, ·) is a group, then (G, ∗) is a transposition hypergroup.

4. If (G, ∗) is a hypergroup, then (G, ·) is a semigroup such that for any
pair a, b ∈ G there exists a pair c, c′ ∈ G such that b·c ≤ a and c′ ·b ≤ a.

Proof. The theorem is a simple corollary to the “Ends lemma”, Theorem 2.4.7
and Theorem 2.1.2.

Remark 2.4.42. The fact that G is closed with respect to “·” is again
essential: suppose a triple a, b, c such that a, b ∈ G and c ∈ H \ G. If now
a ∗G b was constructed, we would get a ∗G b = [a · b)≤G

= [c)≤G
, which is

difficult to be assigned with any sense since due to reflexivity of “≤G” there
must hold c ∈ [c)≤G

, i.e. c ∈ {x ∈ G | c ≤ x} yet we suppose that c 6∈ G.

2.4.5 Some properties of EL–semihypergroups

Most results of this subsection (with the exception of results on cyclicity) were

published by European Journal of Combinatorics (WoS Q2) as Novák [244].

The study of properties of EL–hyperstructures was motivated by the fact
that in numerous papers and conference contributions such as e.g. [35,50,55,
70,117,155,267] these properties were proved ad hoc for (semi)hypergroups or
join spaces which had been constructed using the “Ends lemma”. Therefore,
in Novák [244] this issue was studied in detail from the theoretical point of
view and the following results were proved.

Notice that unless stated otherwise, the notion of a subhypergroupoid
(G, ∗) of a semihypergroup (S, ∗) is defined by means of (2.13), i.e. using
the concepts of “upper ends” and Lemma 2.4.31.

Theorem 2.4.43. Let (H, ∗) be the EL–hypergroup of a quasi-ordered group
(H, ·,≤) and (G, ·) its subgroup such that G is an upper end of H. Then the
hypergroup (G, ∗) is invertible and closed in H.

Proof. (invertibility) First of all we need to rewrite the condition of invert-
ibility in the language of the “Ends lemma”. The fact that y ∈ G ∗ x is
equivalent to the fact that y ∈

⋃
g∈G

g ∗ x, i.e. y ∈
⋃
g∈G

[g · x)≤, which means

that there exists an element g0 ∈ G such that g0 · x ≤ y. In a similar way
we get that x ∈ G ∗ y means that there exists an element g1 ∈ G such that
g1 · y ≤ x. Therefore, if G is a non-empty subset of H and (H, ∗) is an
EL–hyperstructure, we have to prove that for an arbitrary pair of elements
x, y ∈ H the fact that there exists an element g0 ∈ G such that g0 · x ≤ y
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implies that there exists an element g1 ∈ G such that g1 · y ≤ x (and in a
similar way for invertibility on the right).

Suppose that (H, ·,≤) is a commutative quasi-ordered group, G ⊆ H,
G 6= H, x, y ∈ H arbitrary. Then

1. g0 · x ≤ y is equivalent to g0 · x · x ≤ y · x, which is equivalent to
y−1 · g0 ·x ·x ≤ x, i.e. y−1 · g0 ·x ·x ·y−1 ≤ x ·y−1, which is equivalent to
y−1 ·g0 ·x ·x ·y−1 ·y ≤ x. Therefore, if we denote g1 = y−1 ·g0 ·x ·x ·y−1,
we must examine whether g1 ∈ G. Yet if (H, ·) is commutative, we
may write g1 = x · y−1 · x · y−1 · g0. Furthermore g0 · x ≤ y is equivalent
to g0 ≤ y · x−1, which – since G is an upper end of H – means that
y · x−1 ∈ G. Yet (G, ·) is also a group, thus (y · x−1)−1 = x · y−1 ∈ G.
Now g1 = (x ·y−1) · (x ·y−1) ·g0 is a product of elements of G. Therefore
g1 ∈ G, which means that G is invertible on the left.

2. The proof of invertibility on the right is analogous; the element a′1 in
question would be a′1 = y−1 · y−1 · x · a′0 · x. However, since “·” is a
commutative operation, “∗” is a commutative hyperoperation, which
itself alone completes the proof of invertibility.

Later, we will see that in case (H, ·) is not commutative, the theorem is
valid as well (see Corollary 2.4.56 on page 66).

(closedness) Suppose arbitrary elements x, y ∈ G and a ∈ H. Further
suppose that there holds x ∈ a ∗ y, i.e. x ∈ [a · y)≤, i.e. a · y ≤ x. Since
(H, ·,≤) is a quasi-ordered group, this means that y ≤ a−1 · x. Since G is
an upper end of H and y ∈ G, we get that a−1 · x ∈ G. Since x ∈ G and
G is a subgroup of H, we get that a−1 ∈ G, which means that a ∈ G, thus
G is closed from the left in H. The fact that it is closed also from the right
may be proved in an analogous way. Altogether, G is closed in H. Or, in a
commutative case, we could make a reference to Corsini and Leoreanu [95],
chapter 1, 37 (iii), from which the theorem follows immediately.

Remark 2.4.44. Chvalina in [44], p. 157, uses a different idea of a closed
subhypergroup of a hypergroup – the one that is related to [128, 298]. He
states that: “the subhypergroup (G, ∗) of a hypergroup (H, ∗)10 is called closed
if there holds:

H ∗ (G \H) = G \H = (G \H) ∗H. (2.16)

It can be proved that any nonempty intersection of an arbitrary system of
closed subhypergroups is a closed subhypergroup of this hypergroup and then

10In fact, the notation G and H is switched in [44] as G is a hypergroup and H its
subhypergroup. Our notation here is used for consistency reasons.
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a closure 〈A〉 may be defined for every nonempty subset of (H, ∗) in a usual
way by means of their closed subhypergroups.” Notice that for hyperstructures
constructed using Theorem 2.4.36 (i.e. for upper ends) Theorem 2.4.43, part
on closedness, is valid under this definition too. Here we have to prove that⋃
g∈G,h∈H\G

[g · h)≤ = H \ G =
⋃

h∈H\G,g∈G
[h · g)≤. The first equality can be

proved as follows:

“⊆:” Suppose g ∈ G, h ∈ H \ G arbitrary. Further suppose an arbitrary
x ∈ [g · h)≤. Since x ∈ [g · h)≤, there is g · h ≤ x and since H is a
quasi-ordered group we have that g ≤ x · h−1. Since G is an upper end
of H, there must hold x · h−1 ∈ G. Suppose now that x ∈ G. Since
x ·h−1 ∈ G, there is h−1 ∈ G, i.e. h ∈ G. However, this is contradiction
to the initial assumption that h ∈ H \ G. Therefore there must hold
x 6∈ G, i.e. x ∈ H \G.

“⊇:” Suppose an arbitrary x ∈ H \ G. If we denote g the neutral element
of (H, ·) and write h = x, then x = g · h. Since the relation “≤” is
reflexive, we have that x ∈ [g · h)≤, i.e. x ∈

⋃
g∈G,h∈H\G

[g · h)≤.

The second equality can be proved in an analogous way.

Notice that Jantosciak in [169] starts with a definition of a closed (sub)set
(i.e. not a closed subhypergroup) — formulated in the “extensions” language
of transposition hypergroups — and then proves that in any hypergroup if G
is closed, then G is a subhypergroup of H, and shows that intersection of any
family of closed sets is closed, and defines the operator 〈A〉 denoting the least
closed set containing A by means of closed sets (i.e. not subhypergroups as
Chvalina does.)

In Theorem 2.4.36 we have seen that if in a semigroup S we take a sub-
semigroup G which is a group and apply the “Ends lemma” on both S and G
(in case of G using (2.13), i.e. in the same way as e.g. in Theorem 2.4.43) we
get that if G is an upper end of S, then (G, ∗) is a subhypergroup of (S, ∗).
If we assume that S is a group, we get the following theorem and corollaries.

Theorem 2.4.45. Let (H, ∗) be the EL–hypergroup of a quasi-ordered group
(H, ·,≤) and (G, ∗) its arbitrary subhypergroup associated to a subgroup (G, ·)
of (H, ·), where G is an upper end of H. Denote the neutral element of (H, ·)
by u. Then G is ultraclosed if and only if for any h ∈ H such that h ≤ u
there follows that h ∈ G.
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Proof. According to Corsini and Leoreanu [95], chapter 1, 34, a subhyper-
group (G, ∗) of a hypergroup (H, ∗) is ultraclosed if and only if it is closed
and contains Ip, where Ip is the set of partial identities of (H, ∗), i.e. Ip =
{e ∈ H | ∃x ∈ H | x ∈ e ∗ x ∪ x ∗ e}. Obviously, for EL–hypergroups
associated to groups we have that Ip = {e ∈ H | ∃x ∈ H | e · x ≤ x or x · e ≤
x} = {e ∈ H | e ≤ u}. Furthermore, according to Theorem 2.4.43 every
subhypergroup in question is closed. As a result we get the theorem.

Remark 2.4.46. All subsets G discussed in Theorem 2.4.45 are upper ends
(and groups), i.e. for an arbitrary element g ∈ G there holds [g)≤ ⊆ G,
i.e. for an arbitrary element e ∈ H, g ≤ e it follows e ∈ G. If we now
regard an arbitrary element e ≤ u, where u is the identity of (H, ·), then
u ≤ e−1 and since u ∈ G, we get that e−1 ∈ G. This means that in this
context the request that “h ≤ u ⇒ h ∈ G” is equivalent to the fact that
an arbitrary element, which is in relation with u, is in G. In other words,
all ultraclosed subhypergroups associated to subgroups of (H, ·) contain all
elements, which are in relation with the identity of (H, ·). As far as linear
ordered groups (H, ·,≤) are concerned, this means that in them there are
no proper ultraclosed subhypergroups associated to their proper subgroups.
This corresponds to Remark 2.4.40, which states that in the case of linear
ordered groups there do not exist any proper subhypergroups associated to
proper subgroups defined in the above sense.

Corollary 2.4.47. Under the assumptions of Theorem 2.4.45 assume that
G 6= H. If (H, ·,≤) has the smallest element, then (G, ∗) is not ultraclosed.

Proof. If we continue with the reasoning of Remark 2.4.46 and take into
account that if s ∈ H is the smallest element (with this we assume that “≤”
is a partial order), then obviously s ≤ u, then since all subhypergroups in
question are such that G is an upper end of H, i.e. since a ∈ G⇒ [g)≤ ⊆ G,
we get that all ultraclosed subhypergroups (G, ∗) of (H, ∗) are such that
[s)≤ = H ⊆ G, thus G = H.

Corollary 2.4.48. Let (H, ∗) be the EL–hypergroup of a quasi-ordered group
(H, ·,≤) and (G, ∗) its arbitrary subhypergroup associated to a subgroup (G, ·)
of (H, ·), where G is an upper end of H. Denote the neutral element of H by
u. If (H, ·) or (H, ∗) is commutative, then G is a complete part of H if and
only if, for all h ∈ H such that h ≤ u, there is h ∈ G.

Proof. Follows immediately from Theorem 2.4.45 and Corsini and Leore-
anu [95], chapter 1, 70, because in this case (H, ∗) is a join space.
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Corollary 2.4.49. The EL–hypergroup of an arbitrary quasi-ordered group
(H, ·,≤) is regular. Also, if (H, ·) is a semigroup, then the EL–hypergroup
of an arbitrary subgroup of (H, ·) is regular.

Proof. Follows immediately from Lemma 2.4.16 on page 48.

Notice that in the above theorem it makes no difference whether (2.12)
or (2.13) is used to define the hyperoperation on S. The same is true also
for the following theorem which states that a substructure of the underlying
single-valued structure possessing the property of a normal subgroup creates
a normal subhypergroup of its EL–hypergroup.

Theorem 2.4.50. Let (H, ∗) be the EL–hypergroup of a quasi-ordered group
(H, ·,≤) and (G, ∗) its arbitrary subsemihypergroup associated to a subsemi-
group (G, ·) of (H, ·). If, for arbitrary x ∈ H and g ∈ G, there holds x·g·x−1 ∈
G, then (G, ∗) is normal.

Proof. The condition of hyperstructure normality states that for an arbitrary
x ∈ H there must be x ∗ G = G ∗ x. When proving the inclusions in the
language of EL–semihypergroups, we get that a ∈ x ∗ G is equivalent to
a ∈

⋃
g∈G

x ∗ g, i.e. there exists an element g0 ∈ G such that a ∈ x ∗ g0, i.e.

x · g0 ≤ a. Similarly, a ∈ G ∗ x is equivalent to the existence of an element
g1 ∈ G such that g1 · x ≤ a. Now, x · g0 ≤ a is in a group equivalent to
(x·g0·x−1)·x ≤ a and if we denote g1 = x·g0·x−1, we get the assumption of the
theorem. Testing the other inclusion results in x · (x−1 · g1 ·x) ≤ a. However,
since we suppose that x · g · x−1 ∈ G holds for an arbitrary x ∈ H, it holds
also for an element y = x−1, i.e. we could have also written x−1 ·g ·x ∈ G.

Corollary 2.4.51. Let (H, ∗) be the EL–hypergroup of a quasi-ordered group
(H, ·,≤) and (G, ·) its normal subgroup such that G is an upper end of H.
Then (G, ∗) is reflexive.

Proof. If we realize that (H, ∗) is a transposition hypergroup (for this see
Lemma 2.1.5), the corollary follows immediately from Theorem 2.4.43 and
Jantosciak [169], Proposition 9, which states that, in a transposition hyper-
group, a normal closed set is reflexive.

Chvalina and Chvalinová in [53], which makes an important part of chap-
ter 6 of Corsini and Leoreanu [95], construct state hypergroups of automata
(not using the “Ends lemma” but using a similar construction) and then
prove that an automaton is connected if and only if its state hypergroup is
inner irreducible. For EL–hyperstructures we have the following result on
inner irreducibility.
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Theorem 2.4.52. Let (H, ∗) be the EL–hypergroup of a partially ordered
commutative group (H, ·,≤). If for every x ∈ H such that x, x−1 are incompa-
rable with respect to “≤” there is either [x)≤∩[x−1)≤ 6= ∅ or ≤(x]∩≤(x−1] 6= ∅,
then (H, ∗) is inner irreducible.

Proof. Let (H, ∗) be the EL–hypergroup of a partially ordered group (H, ·,≤)
and G1, G2 an arbitrary pair of its subhypergroups such that G1 ∗ G2 = H.
First of all, rewrite the condition imposed on (H, ∗). In our case there is
H = G1 ∗ G2 =

⋃
g1∈G1,g2∈G2

g1 ∗ g2 =
⋃

g1∈G1,g2∈G2

[g1 · g2)≤, i.e. to an arbitrary

element x ∈ H there must exist elements g1 ∈ G1, g2 ∈ G2 such that g1 ·g2 ≤
x.

Notice the case of x = u, where u is the neutral element of (H, ·). Obvi-
ously, there are these possibilities:

1. u ∈ G1, u ∈ G2. Then G1 ∩G2 6= ∅.

2. u belongs to exactly one of the subhypergroups G1, G2. Let us denote
them so that u ∈ G1, u 6∈ G2.

In a group the neutral element u may be obtained only as a product of
an arbitrary element x ∈ H and its inverse x−1 ∈ H. If there exists an
element x ∈ G2 such that x−1 ∈ G2 then – since (G2, ·) is a groupoid
– there is x · x−1 = u ∈ G2, which is a negation of the assumed fact.
Therefore G2 is such a subset of H that x ∈ G2 ⇒ x−1 6∈ G2.

The fact that H = G1 ∗ G2 means that there exist g1 ∈ G1, g2 ∈ G2

such that g1 · g2 ≤ u. In a partially ordered group this is equivalent to

g1 ≤ g−1
2 , which – since G1 is an upper end of H11 – means that

g−1
2 ∈ G1

as well as to

g2 ≤ g−1
1 , which – since G2 is an upper end of H – means that

g−1
1 ∈ G2.

However, with respect to the nature of G2 the latter implies that g1 6∈
G2. This means that there cannot be g−1

1 ≤ g1, in other words there
may be either g1 < g−1

1 (admitting g1 = g−1
1 would mean that g−1

1 = u
which would be a contradiction to the assumption that u 6∈ G2) or the
elements g1, g

−1
1 are incomparable. Yet

11This as well as the statement below concerning G2 follows from Proposition 2.4.39.
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• since G1 is an upper end of H, the fact that g1 < g−1
1 implies that

g−1
1 ∈ G1 which means that g−1

1 ∈ G1 ∩G2,

• if g1, g
−1
1 are incomparable, then thanks to the assumptions of the

theorem there exists an element a ∈ H such that a ≤ g1, a ≤ g−1
1

or an element b ∈ H such that g1 ≤ b, g−1
1 ≤ b. In the former case

we have that g−1
1 ≤ a−1, g1 ≤ a−1, which means that a−1 ∈ G1∩G2

because we already know that g−1
1 ∈ G2 and g1 ∈ G1 and G1, G2

are upper ends of H. In the latter case we for the same reason
have that b ∈ G1 ∩G2.

3. u 6∈ G1, u 6∈ G2. Then for no a ∈ G1, b ∈ G2 there holds a ≤ u, b ≤ u,
i.e. for every a ∈ G1, b ∈ G2 there holds

u ≤ a or u,a are incomparable

and

u ≤ b or u,b are incomparable.

Now examine the case of a = g1, b = g2, i.e. of those elements for which
there is g1 · g2 ≤ u.

• The fact that u ≤ g1 is in a partially ordered group equivalent to
g−1

1 ≤ u, which – since g−1
1 ∈ G2 and G2 is an upper end of H –

means that u ∈ G2, which is a contradiction.

• If u, g1 are incomparable (yet since both are elements of G1), then
thanks to Proposition 2.4.3912 there exists an element c ∈ G1

such that g1 · c ≤ u, which is equivalent to the fact that c ≤ g−1
1 .

However, since c ∈ G1 and G1 is an upper end of H, we get that
g−1

1 ∈ G1. However, if both g1, g
−1
1 ∈ G1, then also u ∈ G1, which

is a contradiction.

Corollary 2.4.53. Let (H, ∗) be the EL–hypergroup of a partially ordered
commutative group (H, ·,≤). If (H,≤) is a linearly ordered set or if (H,≤)
has the smallest or the greatest element, then (H, ∗) is inner irreducible.

Proof. Obvious.

12If antisymmetry were not required in the proposition, the theorem would hold for
quasi-ordered groups (H, ·,≤) too. However, the requirement follows from the idea “[a)≤ =
[b)≤ ⇒ a = b”, which is not possible without antisymmetry.
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Theorem 2.4.54. Let (H, ∗) be the EL–hypergroup of a quasi-ordered group
(H, ·,≤). Then (H, ∗) is reversible.

Proof. If we rewrite the definition of reversibility into the “Ends lemma”
notation, we get that for arbitrary a, x, y ∈ H there must simultaneously be

1. a · x ≤ y implies that there exists an inverse a′ of a in (H, ∗) such that
a′ · y ≤ x

2. x · a ≤ y implies that there exists an inverse a′′ of a in (H, ∗) such that
y · a′′ ≤ x

Now focus on 1. The fact that a ·x ≤ y is in quasi-ordered groups equivalent
to x · y−1 ≤ a−1 while the fact that a′ · y ≤ x is equivalent to a′ ≤ x · y−1.
Thus condition 1 may be rewritten as “x · y−1 ≤ a−1 implies the existence of
an inverse a′ of a such that a′ ≤ x ·y−1”. Now denote a′ = x ·y−1 (which both
exists because (H, ·) is a group and is in relation “≤” with x · y−1 because
“≤” is reflexive). If a′ = x · y−1 is an inverse of a in (H, ∗), the proof is
complete. Yet thanks to Theorem 2.4.17, a′ is an inverse of a.

Validity of condition 2 may be proved in an analogous way with a′′ =
y−1 · x.

Example 2.4.55. As a very simple example showing the validity of Theo-
rem 2.4.54 regard the chain (Z,+,≤) of all integers with the usual addition
and ordering of numbers and its EL–hypergroup (Z, ∗). For an arbitrary
triple a, x, y ∈ Z such that a+x ≤ y, the element a′ = x−y and the require-
ment a′+y ≤ x turns into (x−y)+y ≤ x. Obviously, such elements a, a′ are
inverses in (Z, ∗) as required since a+x ≤ y is equivalent to x−y+a ≤ 0, i.e.
a′ + a ≤ 0, which means that a, a′ are inverses in (Z, ∗) because 0 is a unit
of (Z, ∗). If e.g. a = 5, x = 15, y = 40, then obviously a + x = 15 ≤ 40 = y.
Since a′ = x− y, there is a′ = −25 and we must examine whether a′ = −25
is an inverse of a = 5. Yet since a′ = −25 ≤ −a = −5, we get that −25 is
an inverse of 5 in (Z, ∗).

Corollary 2.4.56. Theorem 2.4.43 holds even in a non-commutative case.

Proof. Follows immediately from Corsini and Leoreanu [95], chapter 1, 49,
and Theorem 2.4.43 because (H, ∗) is a regular reversible hypergroup.

In Corsini and Corsini and Leoreanu [92, 95] there is included a brief
study of KH–hypergroups introduced by De Salvo [119]. Thanks to results
of this subsection theorems proved on p. 19 of [95] may be directly applied on
EL–semihypergroups. Notice that Dramalidis [126] discusses Hv–structures
derived from KH–hypergroups.
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Definition 2.4.57. Let (H, ∗) be a hypergroupoid and let {A(x)}x∈H be a
family of pairwise disjoint non-empty sets. Let KH =

⋃
x∈H

A(x) and let us

define for an arbitrary a ∈ KH that g(a) = x if and only if a ∈ A(x). For an
arbitrary pair a, b ∈ KH we define a hyperoperation “�” on KH by

a�b =
⋃

z∈g(a)∗g(b)

A(z). (2.17)

As an immediate corollary of [95], chapter 1, 100–106, we get the following
theorem:

Theorem 2.4.58. Let (H, ∗) be the EL–semihypergroup of a quasi-ordered
semigroup (H, ·,≤) and let (KH ,�) be the hypergroupoid constructed using
Definition 2.4.57. Then (KH ,�) is a semihypergroup. If (H, ·) is moreover
a group, then (KH ,�) is a regular reversible hypergroup.

Cyclic hypergroups are a hyperstructure analogy of cyclic groups. The
first remark on cyclicity in hyperstructures can be traced back to Wall [307].
Based on his approach, Vougiouklis [178, 297] initiated the deeper study of
cyclicity introducing concepts such as period of a cyclic hypergroup or single-
power cyclic hypergroup.13

Definition 2.4.59. A hypergroup H is called cyclic if, for some h ∈ H,
there is

H = h1 ∪ h2 ∪ . . . ∪ hn ∪ . . . , (2.18)

where h1 = {h} and hm = h ∪ . . . ∪ h︸ ︷︷ ︸
m

. If there exists n ∈ N such that (2.18)

is finite, we say that H is a cyclic hypergroup with finite period ; otherwise
H is a cyclic hypergroup with infinite period. The element h ∈ H in (2.18) is
called generator of H, the smallest power n for which (2.18) is valid is called
period of h. If all generators of H have the same period n, then H is called
cyclic with period n. If, for a given generator h, (2.18) is valid but no such
n exists (i.e. (2.18) cannot be finite), then H is called cyclic with infinite
period. If we can, for some h ∈ H, write

H = hn, (2.19)

then the hypergroup H is called single-power cyclic with a generator h.
If (2.18) is valid and for all n ∈ N and, for a fixed n0 ∈ N, n ≥ n0 there is

h1 ∪ h2 ∪ . . . ∪ hn−1 ( hn, (2.20)

13The definition given below follows the wording of Vougiouklis; on contrary Corsini in
his definition included e.g. in [92, 95] stresses the connection between cyclic hypergroups
and cyclic groups.
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then we say that H is a single-power cyclic hypergroup with infinite period
for h.

The “Ends lemma” can be used to construct cyclic hypergroups of differ-
ent types.

Example 2.4.60. Regard multiplication on the interval I = (0, 1) – see
Example 2.2.6 on page 30, where closed interval is used. Then (I, ∗), where
a ∗ b = [a · b)≤ = {x ∈ I | a · b ≤ x}, is a semihypergroup. In the following
subsection we will show that, by Theorem 2.4.71, (I, ∗) is a hypergroup.
Now, for an arbitrary a ∈ I there is an ( an+1 and, obviously, (I, ∗) is a
single power cyclic hypergroup with infinite period for an arbitrary a ∈ I.

Example 2.4.61. Suppose (Z,+,≤), with the usual addition and ordering
of integers. Since (Z,+,≤) is a partially ordered group, (Z, ∗), where a ∗ b =
{x ∈ Z | a + b ≤ x} is a hypergroup. For an arbitrary negative a ∈ Z
and k > 1 we have ak = a ∗ . . . ∗ a︸ ︷︷ ︸

k

= {x ∈ Z | −ka ≤ x}, i.e. Z =

a∪ a2 ∪ a3 ∪ . . .∪ an ∪ . . . and (Z, ∗) is a single-power cyclic hypergroup with
infinite period for infinitely many (yet not all) generators. In this respect
notice that all infinite cyclic groups are isomorphic to the additive group
(Z,+).

In the “Ends lemma” we often regard idempotent operations such as
“min”, “max”, “∪”, “∩”, etc. In this case we get, for an arbitrary h ∈ H,

hk = h ∗ . . . ∗ h︸ ︷︷ ︸
k

= [h · . . . · h︸ ︷︷ ︸
k

)... = [h)≤ = {x ∈ H | h ≤ x}, (2.21)

which means that the only chance that (2.18) becomes valid is in case that
[h)≤ = H (notice that, due to reflexivity of “≤”, there is always h ∈ [h)≤). In
other words, if (H, ∗) is a hypergroup (and, by a forthcoming Theorem 2.4.71
of the following subsection, extensivity of the hyperoperation is sufficient to
achieve this), then H is single power cyclic with period 2. Of course, the
only generator of H is the smallest element of H (provided “≤” is partial
ordering). If “≤” is not antisymmetric, the word “smallest” cannot be used
and there can be more generators.

Example 2.4.62. Regard the quasi-ordered semigroup (N,min,≤) and its
EL–semihypergroup (N, ∗), where a ∗ b = {x ∈ N | min{a, b} ≤ x} for all
a, b ∈ N. For the same reason as in Example 2.4.60, (N, ∗) is a hypergroup.
Since [1)≤ = N, we get that 1 ∗ 1 = N and 1 is the only generator of a
single power cyclic hypergroup (N, ∗) with period 2. (Or 0 instead of 1 if we
consider N0). If we change N to Z, we get that the hypergroup (Z, ∗) is not
cyclic because there is no integer a ∈ Z such that [a)≤ = Z.
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Sets in all of the above examples were infinite. Therefore, the following
example involves a finite set, or rather a class of finite sets.

Example 2.4.63. Regard (N, gcd, |), where “gcd” stands for the greatest
common divisor of natural numbers (zero excluded) and “|” is the divisibility
relation. Since (N, gcd, |) is a partially ordered semigroup, (N, ∗), where
a ∗ b = {x ∈ N | gcd{a, b}|x}, for all a, b ∈ N, is a semihypergroup. Since
{a, b} ⊆ a ∗ b for all a, b ∈ N, (N, ∗) is, by a forthcoming Theorem 2.4.71, a
hypergroup. Now, obviously 1 ∗ 1 = [gcd{1, 1})≤ = [1)≤ = N. Thus (N, ∗) is
single power cyclic with period 2 and one generator 1. Of course, instead of
N we can regard the set of divisors of an arbitrary n ∈ N and get a class of
finite single power cyclic hypergroups with period 2.

Finally, we include a result concerning homomorphisms of EL–semihyper-
groups, which was proved already in Chvalina and Novák [70].14 Recall that
isotone mappings f : (G,≤G) → (H,≤H) are mappings which preserve the
relation, i.e. x ≤G y implies f(x) ≤H f(y).

Theorem 2.4.64. Let (G, ∗G) and (H, ∗H) be EL–semihypergroups of quasi-
ordered semigroups (G, ·,≤G) and (H, ·,≤H), respectively, f : (G, ·)→ (H, ·)
a homomorphism and f : (G,≤G) → (H,≤H) an isotone mapping. Then
f : (G, ∗G)→ (H, ∗H) is a homomorphism.

Proof. Suppose that the mapping f : (G, ·,≤G) → (H, ·,≤H) is such that
f : (G,≤G) → (H,≤H) is isotone and f : (G, ·) → (H, ·) is a semigroup
homomorphism. Then it is easy to see that for any element x ∈ G we have
f([x)≤G

) ⊂ [f(x))≤H
. Since f(a · b) = f(a) · f(b) for arbitrary a, b ∈ G, we

obtain that a, b ∈ G implies

f(a ∗G b) = f([a · b)≤) ⊂ [f(a · b))H = f(a) ∗H f(b),

i.e. f : (G, ∗G)→ (H, ∗H) is a semihypergroup homomorphism.

2.4.6 The role of extensivity

Results of this subsection were, together with the results of Section 3.3, published

by Soft Computing (WoS Q2) as Novák and Křehĺık [249].

In this subsection we briefly discuss one special class of EL–hyperstruc-
tures. Motivated by Chvalina [43, 44] we, in the following definition, use
the name “extensivity”. However, it needs to be pointed out that some

14Notice that in [70] the term “inclusion homomorphism” is used in the sense of “ho-
momorphism” of Definition 1.1.29 on page 16.
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other authors, such as Massouros, use a much more suitable name “closed”
as this can be easily contrasted with “open”. For basic definitions see e.g.
Massouros [206].15 Our results included in this subsection can be linked to
those of Subsection 3.3, as in fact they were published together as [249].

Definition 2.4.65. A hyperoperation “∗” on H is called extensive if for all
a, b ∈ H there is {a, b} ⊆ a ∗ b. A hypergroupoid (H, ∗) with an extensive
hyperoperation is called an extensive hypergroupoid.

Notice that if the hyperoperation “∗” is defined by a ∗ b = {a, b} for all
a, b ∈ H, we speak of minimal extensive hypergroupoids. Both extensivity
and minimal extensivity (for certain elements) have their meaning in real-life
situations. Suppose e.g. that a∗bmeans the path consisting of points between
a and b. In this case extensivity means that the endpoints are included in
the path while the fact that a ∗ b = {a, b} means that the points are either
next to each other or that there is no path between them.

Example 2.4.66. EL–semihypergroups constructed from (S,min,≤), where
S ∈ {N,Z,Q,R} ∪ {〈a, b〉}, where 〈a, b〉 is an arbitrary interval of real num-
bers, and “≤” is the usual ordering of numbers by size, are extensive.

Example 2.4.67. As has been shown in Example 2.4.63, the EL–semi-
hypergroup constructed from quasi-ordered semigroup (N, gcd, |), is exten-
sive. However, if we instead of the greatest common divisor regard minimum
of natural numbers – see Example 2.2.3, then the respective EL–semihyper-
group is not extensive.

Example 2.4.68. If we denote by P(S) a power set of an arbitrary set S
and construct EL–semihypergroups in the same way as in Example 2.2.10,
we get that (P(S),⊕), where

A⊕B = [A ∪B)⊆ = {X ∈ P(S) | A ∪B ⊆ X}

is extensive while (P(S), •), where

A •B = [A ∩B)⊆ = {Y ∈ P(S) | A ∩B ⊆ Y },

is not extensive.

15Notice that some authors, such as Polat [262], use the name “closed” too yet they
use it in a more loose definition of closedness where only a ∈ a ∗ b is required. Such a
definition is motivated by the need to study geometry motivated join spaces. In the sense
of Massouros [206] this is left closedness and it should not be confused with extensivity.



2.4. CONSTRUCTION FROM QUASI-ORDERED SEMIGROUPS 71

Example 2.4.69. If we in Example 2.4.66 change “min” to “max” or to “+”,
then (S, ∗) are not extensive. Also, the transposition hypergroup (LA2(I), ∗)
from Example 2.2.12 is not extensive. The semihypergroup (N, ∗) from Ex-
ample 2.4.73, which makes use of the divisor function, is not extensive.

Example 2.4.70. Pickett’s lattice hyperoperations used in Example 2.2.1
on page 29 are extensive.

If we consider the condition given by Lemma 2.1.2, i.e. “for any pair
a, b ∈ S there exists a pair c, c′ ∈ S such that b · c ≤ a and c′ · b ≤ a”, then
we immediately get the following theorem.

Theorem 2.4.71. Every extensive EL–semihypergroup is a hypergroup.

Proof. Obvious because extensivity in EL–semihypergroups means that a ·
b ≤ a for all a, b ∈ S. Thus it is sufficient to set c = c′ = a and apply
Lemma 2.1.2.

By this, the issue of “reaching” hypergroups has been settled. What has
not been settled by Theorem 2.4.71, though, is the issue of transposition
hypergroups and join spaces as in Lemma 2.1.5 we need groups to construct
these.

Even though there is in fact no more to say regarding extensivity and the
issue of constructing hypergroups, we include the following results which will
be very useful in our future considerations in Section 3.3. In order to pre-
pare ground for them, let us change the definition of the EL–hyperoperation
from (2.1) to

a ∗m b = {a, b} ∪ [a · b)≤. (2.22)

Since we are discussing extensive hyperoperations at the moment, this is just
a technicality because {a, b} ⊆ a ∗ b for all a, b ∈ S anyway. Nevertheless, we
will use “∗m” whenever we will want to make the extensivity of “∗” explicit.
In this respect, “m” will stand for modified. Later on, in Section 3.3, we will
discuss situations when the hyperoperation “∗” is not necessarily extensive
and the modification provided by (2.22) will secure it. In that case, the below
included results will remain valid.

Theorem 2.4.72. Every binary EL–hyperstructure, where the hyperopera-
tion is defined by (2.22) instead of (2.1), is an Hv–group.

Proof. We have to show that (H, ∗m) is weak associative and that it satisfies
the reproductive law. In order to test weak associativity we have to show
that sets a ∗m (b ∗m c) and (a ∗m b) ∗m c have non-empty intersection for all
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a, b, c ∈ H. Yet it is obvious that {a, b, c} ∈ a ∗m (b ∗m c) ∩ (a ∗m b) ∗m c.
For the reproductive law, we must test that a ∗m H = H ∗m a = H for all

a ∈ H. Yet a∗mH =
⋃
x∈H

a∗m x =
⋃
x∈H

(
{a, x}∪ [a ·x)≤

)
and since obviously⋃

x∈H
{a, x} = H =

⋃
x∈H
{x, a}, the reproductive law holds.

In the above theorem we intentionally write “EL–hyperstructure” (we
could also write “EL–hypergroupoids”). This is because its proof does not
require that the relation “≤” and single-valued operation “·” are compatible.
It simply says that if we apply (2.22) on an arbitrary groupoid H, we get an
Hv–group.

Example 2.4.73. Consider multiplication of natural numbers, i.e. a monoid
(N, ·), and regard a relation given by values of the divisor function. To
be more precise, put a ≤σ b whenever σ0(a) ≤ σ0(b), i.e. whenever the
number of divisors of a is smaller or equal to the number of divisors of
b (or, alternatively, strictly smaller). If we define, for all a, b ∈ N, that
a ∗ b = {a, b} ∪ {x ∈ N | σ(a · b) ≤ σ(x)}, we obtain an Hv–group (N, ∗).
As an example we have that 3 ∗ 5 = {3, 5} ∪ {6, 8, 10, 12, 14, 15, 16, 18, . . .}
because σ0(15) = 4. Notice that e. g. σ0(2) = σ0(3) = σ0(11) = 2 and
σ0(4) = 3 while σ0(2 · 2) = 3, σ0(2 · 11) = 4 or σ0(3 · 8) = 8, σ0(4 · 8) = 6,
which means that “≤σ” and “·” are not compatible.

Lemma 2.4.74. Let S be a set endowed with an operation “·” and a relation
“≤”. Binary hyperoperation ∗ : S × S → P∗(S) defined by a ∗ b = [a · b)≤ is
associative if and only if binary hyperoperation ∗m : S × S → P∗(S) defined
by a ∗m b = {a, b} ∪ [a · b)≤ is associative.

Proof. We have

a ∗m (b ∗m c) =
⋃

x∈b∗mc

a ∗m x =
⋃

x∈{b,c}∪[b·c)≤

(
{a, x} ∪ [a · x)≤

)
while

(a ∗m b) ∗m c =
⋃

y∈a∗mb

y ∗m c =
⋃

y∈{a,b}∪[a·b)≤

(
{y, c} ∪ [y · c)≤

)
.

Yet in the first case we have⋃
x∈{b,c}∪[b·c)≤

{a, x} = {a, b, c} ∪ [b · c)≤
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and ⋃
x∈{b,c}∪[b·c)≤

[a · x)≤ = [a · b)≤ ∪ [a · c)≤ ∪
⋃

x∈[b·c)≤

[a · x)≤

while in the second case we have⋃
y∈{a,b}∪[a·b)≤

{y, c} = {a, b, c} ∪ [a · b)≤

and ⋃
y∈{a,b}∪[a·b)≤

[y · c)≤ = [a · c)≤ ∪ [b · c)≤ ∪
⋃

y∈[a·b)≤

[y · c)≤.

Thus we see that a ∗m (b ∗m c) = (a ∗m b) ∗m c if and only if⋃
x∈[b·c)≤

[a · x)≤ =
⋃

y∈[a·b)≤

[y · c)≤. (2.23)

Yet this is exactly a∗(b∗c) = (a∗b)∗c using the original hyperoperation (2.1)
and conditions of Lemma 2.1.1.

And Theorem 2.4.71 can now be considered also as a simple corollary to
Theorem 2.4.72 and Lemma 2.4.74.

Corollary 2.4.75. Every EL–hypergroup constructed from a quasi-ordered
group, where the hyperoperation is defined by (2.22) instead of (2.1), is a
transposition hypergroup.

Proof. Straightforward transfer of the proof of Lemma 2.1.5 included on
page 43.

Notice that extensivity of the EL–hyperoperation has some important
implications for properties of EL–hyperstructures. Once again, the follow-
ing results will also hold for EL–semihypergroups, where the hyperoperation
is defined by (2.22) instead of (2.1) or those where the hyperoperation de-
fined by (2.1) is such that (2.1) is extensive. For short, we will refer to
these as mEL–hyperstructures (to be more precise, we could refer to them
as to mEL–hypergroups because given Theorem 2.4.71 they are always hy-
pergroups but because of the forthcoming Remark 2.4.81 we do not). It is
important to realize that later on, in Section 3.3, we will utilize the fact
mentioned in Remark 2.4.81 and we will denote by mEL–hyperstructures
(or, to be more precise, mEL–hypergroupoids, since, at the moment, we are
considering one hyperoperation only) a more general class of hyperstructures
– those where the hyperoperation is defined by (2.22) (or extensive (2.1))
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yet such that Lemma 2.1.1 cannot be used because we drop the condition
that the semigroup is quasi-ordered. However, since this change in defini-
tion will have no impact on the below included results, we already use the
term mEL–hyperstructures at this place – it is completely irrelevant whether
by mEL–hyperstructures we mean extensive EL–semihypergroups or hyper-
structures defined using Definition 3.3.10 on page 164.

Theorem 2.4.76. In an mEL–hypergroupoid (H, ∗m):

1. Every element is an identity.16

2. No element is the scalar identity.

3. No element is a zero scalar.

4. i(a) = H for all a ∈ H, where i(a) is the set of inverses of a ∈ H.

The set of inverses of an arbitrary element a ∈ H equals H.

Proof. For a fixed yet arbitrary e ∈ H we have that {e, x} ⊆ e ∗m x for all
x ∈ H. Thus e is an identity of (H, ∗m). If e ∈ H is fixed, then there can
obviously never be {e} = e ∗m x for all x ∈ H because this can happen only
in the special case of x = e. The same is true for zero scalar elements. The
statement concerning the set of inverses is obvious.

Corollary 2.4.77. No mEL–hypergroupoid is a canonical hypergroup.

Proof. Obvious because one of the defining axioms of canonical hypergroups
is having the scalar identity.

Theorem 2.4.78. Every mEL–hypergroupoid is regular and reversible.

Proof. Obvious if we recall that regularity of a hypergroupoid is defined as
the fact that every element has at least one inverse; reversibility means that
y ∈ a ◦ x implies that there exists an inverse a′ of a such that x ∈ a′ ◦ y (and
likewise for y ∈ x ◦ a) for all a, x, y ∈ (H, ◦). It is enough to set a′ = x.

Theorem 2.4.79. In an mEL–hypergroupoid (H, ∗m):

1. Every subset A ⊆ H is invariant.

2. Every subhypergroup K of H has the defining property of ultraclosed-
ness.17

16In this respect recall Example 2.2.1 on page 29 which states the same in its special
context.

17The concept of an ultraclosed subhypergroup is usually defined in hypergroups only.
However, in the proof one can see that the desired property holds regardless of the nature
of H.
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3. Every subhypergroup K of a hypergroup H is invertible and closed.

Proof. Invariantness of a subset A of H, where (H, ◦) is a hypergroupoid, is
defined by validity of x ◦ A = A ◦ x for all x ∈ H. Yet if we realize that

x∗mA =
⋃
a∈A

{x, a}∪[x·a)≤ =
⋃
a∈A

{x, a}∪{b ∈ A | x·a ≤ b} =
⋃
a∈A

{x, a} = A∪{x}

and the same for A∗mx, the proof of invariantness becomes a simple corollary
of Theorem 2.4.72.

A subhypergroup K of (H, ◦) is called ultraclosed if for all x ∈ H there
is K ◦ x ∩ (H − K) ◦ x 6= ∅ and x ◦ K ∩ x ◦ (H − K) 6= ∅. Yet in our
case x always belongs to these intersections. The fact that K is always
invertible follows immediately from Corsini and Leoreanu [95], 37. Theorem,
part (ii), p. 8, while the fact that K is always closed, follows immediately
from [95], 37. Theorem, part (iii), p. 8 (in both cases because K is ultraclosed
and we suppose that (H, ∗m) is a hypergroup).

Corollary 2.4.80. In an mEL–hypergroup if {Ai}i∈I is a family of subhy-
pergroups, then A =

⋂
i∈I
Ai is a subhypergroup.

Proof. Follows immediately from Theorem 2.4.78, from Corsini and Leore-
anu [95], 43. Theorem, p. 10, and Theorem 2.4.79.

Remark 2.4.81. Notice that some properties of the original EL–hyper-
structures (including the above ones) were discussed in Subsection 2.4.5.
However, the results of Subsection 2.4.5 assume that the single-valued struc-
ture (H, ·,≤), which is used for construction of the EL–hyperstructure, is
a quasi-ordered group. Yet nowhere in the proof of Theorem 2.4.76, Corol-
lary 2.4.77, Theorem 2.4.78, Theorem 2.4.79 or Corollary 2.4.80 the fact that
(H, ·,≤) is a quasi-ordered group, or its inverse elements, are used. As a
result, given our modification of the hyperoperation (or its extensivity), the
results are now valid for (H, ·,≤) being an arbitrary semigroup with a relation
“≤”.

Remark 2.4.82. Here we must mention a small slip done by Corsini [92]
which is repeated in Corsini and Leoreanu [95]. In [92], p. 39, 85. Theorem,
and later in [95], p. 8, 34. Theorem, the authors say that for a hypergroup
H, its subhypergroup A and the set of partial identities of H, denoted as Ip,
there holds “A is ultraclosed⇔ A is closed and A contains Ip”. However, the
property of being ultraclosed means that there cannot be A = H (because
this would mean that we test the intersection of x ◦H and x ◦ ∅, which has
no meaning). Yet mEL–hyperstructures are such that Ip = H. In this case,
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words “A contains Ip”, i.e. Ip ⊆ A, result in a contradiction because they
mean that A = Ip = H. Thus, the theorem is valid only for hypergroups
where Ip 6= H. If one does not realize this (which is possible because [95] gives
no proof of this theorem – as it is included in the “Basic notions” chapter),
one can run into difficulties because the following can be – incorrectly! –
proved.
Let (H, ∗m) be the mEL–hypergroup of a quasi-ordered semigroup (H, ·,≤).
Then (H, ∗m) has no proper subhypergroups.
Indeed, thanks to extensivity of “∗”, H is a hypergroup. Yet [95], 34. The-
orem, p. 8, states that in a hypergroup H a subhypergroup K is ultraclosed
if and only if it is closed and contains the set of partial identities. For exten-
sive hyperoperations, the concepts of partial identity and identity coincide.
However, by Theorem 2.4.76, the set of (partial) identities equals H and
by Theorem 2.4.79, every subhypergroup of an mEL–hyperstructure is both
closed and ultraclosed. Therefore, under our assumptions, H ⊆ K, which
means that K = H.

The following example shows an mEL–hypergroup, constructed from a
quasi-ordered semigroup, and one of its proper subhypergroups.

Example 2.4.83. For a fixed n ∈ N suppose the set Mn,n(R+) of square
matrices with entries of positive real numbers. Regard (Mn,n(R+),+,≤M),
where “+” is the usual addition of matrices and, for all A,B ∈ Mn,n(R+),
set

A ≤M B if bij ≤ aij for all i, j ∈ {1, 2, . . . , n}. (2.24)

Obviously, (Mn,n(R+),+,≤M) is a partially ordered semigroup. If we define,
using the “Ends lemma”, hyperoperation “∗” by

A ∗B = {C ∈Mn,n(R+) | A + B ≤M C} (2.25)

for all A,B ∈ Mn,n(R+), then (Mn,n(R+), ∗) is an extensive EL–semihyper-
group. Since the hyperoperation “∗” is obviously extensive, we have that
(Mn,n(R+), ∗) is a hypergroup, i.e. an mEL–hypergroup. Now, regard
Md

n,n(R+) ⊂ Mn,n(R+), the set of all diagonal matrices from Mn,n(R+), i.e.
such matrices that aij = 0 for all i 6= j (in other words the null matrix
is included in Md

n,n(R+)). Since the sum of diagonal matrices is again a
diagonal matrix and, by Definition 2.4.30 on page 53, Md

n,n(R+) is an up-
per end of Mn,n(R+), we have that (Md

n,n(R+), ∗) is a subhypergroupoid of
(Mn,n(R+), ∗). Since we can apply the above reasoning concerning the “Ends
lemma” and extensivity also on (Md

n,n(R+), ∗), we get that the (Md
n,n(R+), ∗)

is a proper subhypergroup of (Mn,n(R+), ∗).
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2.4.7 When the underlying structure is not a group.
Proper semihypergroups.

Results of this subsection were published by European Journal of Combinatorics

(WoS Q2) as Novák [242].

In the previous subsection we saw that regardless of having a semigroup
or a group, the extensivity of the hyperoperation results in (H, ∗) being a
hypergroup. Now, let us focus on cases when (H, ·) is a semigroup which
is not a group and look for conditions equivalent to the one mentioned in
Lemma 2.1.2 in cases when the hyperoperation is not extensive. Also, we will
be interested in cases when we are able to show that the EL–semihypergroup
is not a hypergroup.

Definition 2.4.84. A semigroup which is not a group is called a proper
semigroup. A semihypergroup which is not a hypergroup is called a proper
semihypergroup.

Chattopadhyay in his paper [42], which is a part of the investigation of Γ–
hypergroups initiated by Sen and Saha’s paper [281], studies semihypergroups
with inverse elements, which is an extension of the usual concept of a regular
hypergroup onto semihypergroups.

Definition 2.4.85. ( [42], Definition 2.7) A semihypergroup (S, ∗) is called
a regular hypergroup or simply an r–hypergroup if it has an identity e and for
each a ∈ S there exists an inverse a′ ∈ S.

For these r–hypergroups (which in spite of their name are – given the
definition – still only semihypergroups) he then proves the following result.

Lemma 2.4.86. ( [42], Theorem 2.8) Every r–hypergroup is a hypergroup.

If we combine this result with Theorem 2.4.13, the condition of Lemma 2.1.2
may be simplified considerably.

Theorem 2.4.87. Let (S, ∗) be the EL–semihypergroup of a quasi-ordered
monoid (S, ·,≤) with the identity u. If for an arbitrary a ∈ S there exists an
element b ∈ S such that a ·b ≤ u and b ·a ≤ u, then (S, ∗) is an r–hypergroup,
and consequentely, a hypergroup.

Proof. In order to prove the theorem, we are going to use Definition 2.4.85
and Theorem 2.4.13. Therefore, we will concentrate on the issue of inverses
of an arbitrary element a ∈ S.

An element a′ ∈ S is defined as an inverse of an arbitrary a ∈ S if there
exists an identity e of (S, ◦) such that a ◦ a′ 3 e ∈ a′ ◦ a. In the ”Ends
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lemma” context this means that there must simultaneously be a · a′ ≤ e and
a′ · a ≤ e. However, Theorem 2.4.13 states that all identities of (S, ∗) are
such that e ≤ u. Since the relation “≤” is transitive, we have that there
must be a · a′ ≤ u and a′ · a ≤ u. Thus, if such a′ ∈ S (or b ∈ S in the
terminology of Theorem 2.4.87) exists for every a ∈ S, then every element of
S has an inverse in (S, ∗), which means that (S, ∗) is an r–hypergroup. Thus
according to Lemma 2.4.86, it is a hypergroup.

Remark 2.4.88. Notice that in a general context Lemma 2.4.86 is not an
equivalence; in Chattopadhyay [42] an appropriate example, which makes
use of a hypergroup with no identity, is included. Even in the “Ends lemma”
context the converse of Lemma 2.4.86 does not hold in general. An EL–
hypergroup (H, ∗) may either be based on a group or on a semigroup. If it is
based on a group, then the converse does hold – trivially, because since the
neutral element u of (H, ·) is an identity of (H, ∗), a, a−1 are mutual inverses
in (H, ∗) for all a ∈ H. However, if it is based on a semigroup, we cannot
decide.

Yet for mEL–semihypergroups, i.e. once extensivity of “∗” is involved,
we get, by Theorem 2.4.79, the following obvious corollary.

Corollary 2.4.89. Every mEL–semihypergroup is an r–hypergroup.

Now we turn our attention to conditions under which a proper semigroup
gives rise to a proper EL–semihypergroup.

Theorem 2.4.90. Let (S, ∗) be the EL–semihypergroup of a quasi-ordered
semigroup (S, ·,≤) with at least two distinct elements. If (S, ·) is a monoid,
denote its identity u. The semihypergroup (S, ∗) is not a hypergroup if and
only if there exists x ∈ S, such that for some a ∈ S:

(i) x is incomparable with all products a ·b and b ·a for all b ∈ S and x 6= u,
or

(ii) there is x < a · b and x < b · a for all b ∈ S (with explicit exclusion of
cases a = x, b = u and a = u, b = x).

Proof. The reproductive law states that for every a ∈ S there must be a∗S =
S ∗ a = S. If this holds, the semihypergroup (S, ∗) becomes a hypergroup.
The law holds if all of the below inclusions hold simultaneously:

1. a ∗ S ⊆ S and S ⊆ a ∗ S,

2. S ∗ a ⊆ S and S ⊆ S ∗ a.
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Validity of a ∗ S ⊆ S or S ∗ a ⊆ S is obvious in the “Ends lemma” context
because a ∗ S =

⋃
b∈S

[a · b)≤, where [a · b)≤ = {x ∈ S; a · b ≤ x}, i.e. x ∈ a ∗ S

(as well as x ∈ S ∗ a) always implies x ∈ S.
Therefore concentrate on the other two inclusions. Suppose that S ⊆ a∗S

does not hold for some a ∈ S. This means that for some a ∈ S there
exists an x ∈ S such that x 6∈ a ∗ S. Since in the “Ends lemma” context
a ∗ S =

⋃
b∈S

[a · b)≤, we have that the condition in fact means that for some

a ∈ S there is x 6∈ [a · b)≤ for all b ∈ S. In an analogous way, the fact that
S ⊆ S ∗ a does not hold for some a ∈ S implies that x 6∈ [b · a)≤ for all b ∈ S.
Yet x ∈ [a · b)≤ means that a · b ≤ x. Thus the fact that the reproductive law
does not hold for (S, ∗) is equivalent to the fact that this condition (as well
as b · a ≤ x) may not hold for all b ∈ S for some a ∈ S. If we consider that
the relation “≤” is by definition reflexive (which excludes cases a = x, b = u
and a = u, b = x for which a · b ≤ x and b · a ≤ x must by definiton always
hold), we get the theorem.

Remark 2.4.91. Notice that

(i) If (S, ·) is a monoid, under condition (i) of Theorem 2.4.90 we shall
first of all test existence of an element x ∈ S, x 6= u, incomparable
with all s ∈ S, x 6= s.

(ii) In (ii) of Theorem 2.4.90 there cannot be a = x = u. Indeed, if we then
took a = b = x = u, we would require x < x, which is not possible.

(iii) If there exists an element x ∈ S such that it is incomparable with all
products a · b for all a, b ∈ S, condition (i) of Theorem 2.4.90 holds
trivially. The same holds if x < a · b for all a, b ∈ S.

Example 2.4.92. Consider the ordered monoid (N0,+,≤) of all non-negative
integers. Then its EL–semihypergroup (N0, ∗), where a∗ b = [a+ b)≤ = {x ∈
N0 | a + b ≤ x}, is not a hypergroup because p = 0 ∈ N0 has the property
(ii) for an arbitrary nonzero a ∈ N0. Simultaneously, as has been shown in
Remark 2.4.91, (ii), case a = 0 is not possible.

In Examples 2.4.93 to 2.4.95 we use a rather simple example of a potent set
of an arbitrary set S to demonstrate various strategies of determining whether
a proper semigroup creates an EL–semihypergroup or an EL–hypergroup.

Example 2.4.93. Let S be an arbitrary set and P∗(S) the system of its non-
empty subsets. Then (P∗(S),∪) is a proper semigroup. From Example 2.2.10
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we already know that (P∗(S), ∗), where the hyperoperation “∗” is on P∗(S)
defined by

A ∗B = [A ∪B)⊆ = {X ∈ P∗(S);A ∪B ⊆ X} (2.26)

for an arbitrary pair of subsets A,B of S, is a semihypergroup. Since
(P∗(S),∪) is not a group, we cannot use Corollary 2.1.3 to decide whether
(P∗(S), ∗) is a hypergroup.

(P∗(S),∪) is not a monoid because the empty set, which would have been
the neutral element with respect to set union, is by definition not included
in P∗(S). Theorem 2.4.87 thus cannot be used.

As far as Theorem 2.4.90 is concerned, according to (i) we must look for
such subset X ⊆ S that, for some subset A ⊆ S and all subsets B ⊆ S,
X is incomparable with A ∪ B, where X,A,B 6= ∅. Yet this is not possible
because every subset X ⊆ S is always comparable at least with S.

According to (ii) we look for such a subset X ⊆ S that for some subset
A ⊆ S there is X $ A ∪B for all subsets B ⊆ S. Yet if we take A = S then
obviously for all X 6= S there is X $ S ∪ B for all B ⊆ S. Thus (P∗(S), ∗)
is not a hypergroup.

Notice that the conclusion reached in Example 2.4.93 is compatible with
Corollary 2.1.3. Indeed, if we consider e.g. A a one element subset of S, B
a two element subset of S, then obviously no subsets C,C ′ ⊆ S such that
B ∪ C ⊆ A and C ′ ∪B ⊆ A exist.

Example 2.4.94. If in Example 2.4.93 we regard P(S) instead of P∗(S),
i.e. include the empty set, (P(S),∪) has the neutral element ∅ and we can
consider using Theorem 2.4.87. In our case it says that if to an arbitrary
subset A ⊆ S there exists a subset B ⊆ S such that A ∪ B ⊆ ∅, then
(P(S), ∗∪), the EL–semihypergroup of (P(S),∪,⊆), is a hypergroup, i.e. it
obviously cannot be used. Reasoning concerning Theorem 2.4.90 remains the
same as in Example 2.4.93 with the exception that the condition X,A,B 6= ∅
need not be imposed. This makes no difference, though.

Example 2.4.95. If in Example 2.4.94 we change the single-valued operation
to intersection, i.e. regard an arbitrary set S, system of its subsets P(S),
the partially ordered semigroup (P(S),∩,⊆) with neutral element S and
construct the hyperoperation analogically as in (2.26), only changing set
union to set intersection, we have that (P(S), ∗∩) is a semihypergroup. To
an arbitrary pair of subsets A,B ⊆ S there always exists a subset C ⊆ S
such that B∩C ⊆ A as we can set C = ∅. Thus, by Lemma 2.1.2, (P(S), ∗∩)
is a hypergroup.
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However, to every subset A ⊆ S there also exists a subset B ⊆ S such
that A ∩ B ⊆ ∅ as we can set B = ∅ for an arbitrary A. Thus we get the
same result using Theorem 2.4.87.

Reasoning concerning Theorem 2.4.90, (i) remains the same as in Exam-
ple 2.4.93. As for Theorem 2.4.90, (ii), consider an arbitrary subset A ⊆ S
and examine all subsets B ⊆ S. If we take B = S \ A, then A ∩ B = ∅
and we are looking for a subset X ⊆ S such that X $ ∅. This is obviously
impossible for all A,B. Thus by Theorem 2.4.90 we again reach the same
conclusion.

Example 2.4.96. In Example 2.4.92 we used the ordered monoid (N0,+,≤).
If we change the single-valued operation from addition to meet, it is easy to
verify that we get another example of a semigroup (not monoid) such that
its associated hyperstructure is a hypergroup. To be more precise, suppose
(N0,∧,≤) and define

m ∗ n = [m ∧ n)≤ = {p ∈ N0 | min{m,n} ≤ p}.

In general, the construction may be applied to any lower semilattice (S,∧)
to obtain the same result.

Chattopadhyay [42] also works with the concept of a regular semihyper-
group which is taken over from the theory of semigroups and in fact is a
generalization of the idea of regularity in semigroups18 (not of regularity in
hypergroups defined on page 16). Recall that a semigroup (S, ·) is regular
if for an arbitrary element a ∈ S there exists an element b ∈ S such that
a · b · a = a.

Definition 2.4.97. ( [42], Definition 2.19) Let (S, ∗) be a semihypergroup
and a ∈ S. The element a is called regular if there exists an element b ∈ S
such that a ∈ a ∗ b ∗ a. The semihypergroup S is called regular if every
element of S is regular.

Lemma 2.4.98. ( [42], Theorem 2.20) Every r–hypergroup is a regular semi-
hypergroup.

This has a direct corollary in the EL–context.19

18In fact, the notion of regularity was introduced by von Neumann in his paper [236] for
rings. In linear algebra the straigthforward transfer of the definition of a regular element
links to a very important concept of a pseudo-regular matrix. For details on regular ordered
semigroups see e.g. Chvalina [46].

19Obviously, every mEL–semihypergroup is regular by default because it is an r–
hypergroup.



82 CHAPTER 2. EL–HYPERSTRUCTURES

Corollary 2.4.99. Let (S, ∗) be the EL–semihypergroup of a quasi-ordered
monoid (S, ·,≤) with the neutral element u. If for an arbitrary a ∈ S there
exists b ∈ S such that a · b ≤ u and b · a ≤ u, then (S, ∗) is a regular
semihypergroup.

Proof. Follows immediately from Theorem 2.4.87 and its proof.

In Corollary 2.4.99 the monoid does not need to be regular. If it is,
regularity of its EL–semihypergroup is secured.

Theorem 2.4.100. The EL–semihypergroup (S, ∗) of a regular quasi-ordered
monoid (S, ·,≤) is regular.

Proof. Chvalina in [44], Theorem 1.7, p. 149, proves that in a semihypergroup
associated to a regular partially ordered monoid (S, ·,≤) with the neutral
element u there exists to every a ∈ S an element b ∈ S such that a∗b∗a = a∗u.
If we realize that a∗u = [a ·u)≤ = [a)≤ for all a ∈ S and the neutral element
u of (S, ·) and that a ∈ [a)≤ for an arbitrary a ∈ S, we immediately get the
theorem.

Let us now concentrate on the issue of hyperideals in EL–semihypergroups
and hypergroups. Since we are working in hyperstructures with one hyperop-
eration, this is to be distinguished from hyperideals in ring-like hyperstruc-
tures as studied in e.g. the book by Davvaz and Leoreanu–Fotea [111] and
papers stemming from it.

Recall that using the “Ends lemma” we construct semihypergroups, some
of which are hypergroups. If we start with a quasi-ordered group (H, ·,≤), we
get a hypergroup. Under Corollary 2.4.99 we also get a hypergroup, because
the condition given in the corollary is a special case of condition given in
Lemma 2.1.2 on page 27. Yet describing hyperideals of hypergroups is of no
point since the smallest left hyperideal containing an element a ∈ H is in
this case H ∗ a (a ∗H for a right hyperideal) which in hypergroups equals H
(thanks to the reproductive law).

Yet Theorem 2.4.90 describes proper EL–semihypergroups. In these cases
we may apply Theorem 2.4.101. The theorem is a simple corollary of re-
sults on hyperideals included in Chattopadhyay [42]. Other results contained
in [42] may be directly applied to EL–semihypergroups described by Theo-
rem 2.4.90 as well.20

20Notice that this particular paper deals with various types of hyperstructures with
binary relations including Chvalina’s quasi-order hypergroups introduced in [44], studied
in e.g. [43,151] and included in [95]. For more on these, see Section 1.2 and Subsection 2.6.3.
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Theorem 2.4.101. Let (S, ∗) be the EL–semihypergroup of a quasi-ordered
semigroup (S, ·,≤) and I a hyperideal of S. If (S, ∗) is regular, then I is
regular and any hyperideal J of I is a hyperideal of S. Moreover, in this
case, for any one-sided hyperideal I of S there is I ∗ I = I.

Proof. The theorem is a corollary to Theorem 2.25 and Theorem 2.27 of [42].

Corollary 2.4.102. A nonempty subset I of a regular EL–semihypergroup
(S, ∗) is a hyperideal of S if and only if it is an idempotent subsemihypergroup
of (S, ∗).

Proof. Obvious because I ∗ I ⊆ I is a defining property of a subsemihy-
pergroup while I ⊆ I ∗ I is a defining property of an idempotent subset.
Moreover, by definition every hyperideal is a one-sided ideal.

Jafarabadi et al. studied various kinds of semihypergroups related to our
topic. In [163] and later in [162] they discuss zero scalar elements and dis-
tinguish between semihypergroups with and without zero scalars. A special
class of semihypergroups without zero scalars is called a simple semihyper-
group. Notice that “proper hyperideal” means “other than itself” in the
following definition.

Definition 2.4.103. ( [163], Definition 2) A semihypergroup without zero
scalars is called simple if it has no proper hyperideals.

Lemma 2.4.104. ( [162], Corollary 1) A semihypergroup is simple if and
only if for all a ∈ S there is S = S ∗ a ∗ S.

The following result has already been mentioned in plain text on page 82.

Lemma 2.4.105. ( [162], Proposition 2) Every hypergroup is a simple semi-
hypergroup.

This leads us to an interesting question: Are proper EL–semihypergroups
simple? In the following theorem notice that by Corollary 2.4.21 on page 49
we know that in EL–semihypergroups there is at most one zero scalar ele-
ment, which – if it exists – is, within the single-valued structure, simultane-
ously EL–maximal and absorbing. Also notice that a complete description
of proper EL–semihypergroups has been given by Theorem 2.4.90.

Theorem 2.4.106. Let (S, ∗) be a proper commutative semihypergroup. Fur-
thermore, let (S, ∗) be without zero scalars. Then (S, ∗) is not simple.
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Proof. By Theorem 2.4.90, the proper semihypergroup (S, ∗) is associated to
a quasi ordered semigroup (S, ·,≤) such that there exists x ∈ S such that for
some a ∈ S

(i) x is incomparable with all products a · b and b · a for all b ∈ S and
x 6= u, or

(ii) there is x < a · b and x < b · a for all b ∈ S (with the explicit exclusion
of cases a = x, b = u and a = u, b = x),

where u is the neutral element of (S, ·) – in case it exists. In the “Ends
lemma context” the condition given by Lemma 2.4.104 is

S ∗ a ∗ S =
⋃

t∈
⋃

s∈S
[s·a)≤

[t · r)≤

for all r ∈ S. This may be rewritten to⋃
r∈S

[⋃
t∈S

([t · a)≤) · r
)
≤

=
⋃
r∈S

[⋃
t∈S

([t · a)≤ · r)
)
≤

=
⋃
r∈S

[⋃
t∈S

[t · a · r)≤
)
≤

=
⋃
r∈S

[⋃
t∈S

[t · a · r)≤
)

=
⋃
t,r∈S

[t · a · r)≤

The inclusion S ⊆ S ∗ a ∗ S means that for all y ∈ S there must exist
t, r ∈ S such that y ∈ [t · a · r)≤, i.e. t · a · r ≤ y.

If we now restrict on commutative semigroups (S, ·), we may rewrite this
as a·(t·r) ≤ y. Yet it is obvious that none of elements x ∈ S mentioned in (i)
or (ii) are such that a·(t·r) ≤ x. Thus for such elements x there is x 6∈ S∗a∗S
and as a result S 6= S ∗ a ∗S, which means that the semihypergroup (S, ∗) is
not simple.

Item (iii) of Remark 2.4.91 may be used to describe some non-commuta-
tive cases.

Theorem 2.4.107. Let (S, ∗) be the EL–semihypergroup of a non-commutative
quasi-ordered semigroup (S, ·,≤) with at least two distinct elements. Further-
more, let (S, ∗) be without zero scalars. In each of the following cases (S, ∗)
is not simple:

(i) (S, ·) is a monoid with the neutral element u and there exists an element
x ∈ S, x 6= u, incomparable with all s ∈ S, x 6= s.

(ii) There exists an element x ∈ S such that it is incomparable with all
products a · b for all a, b ∈ S.
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(iii) There exists an element x ∈ S such that x < a · b for all a, b ∈ S.

Proof. The proof is the same as the proof of Theorem 2.4.107 up to the
requirement of existence of elements t, r ∈ S such that t ·a · r ≤ y. From this
place on it is obvious.

Thus we see that all proper EL–semihypergroups of commutative semi-
groups do have proper hyperideals and we are able to identify at least some
more cases in the non-commutative context.

To conclude this subsection, let us use the potent set discussed in Exam-
ples 2.4.93, 2.4.94 and 2.4.95 to demonstrate some other concepts mentioned
above.

Example 2.4.108. Since for an arbitrary subset A of a set S there is A ∪
∅ ∪ A = A and A ∩ S ∩ A = A, we have (by definition for b = ∅, or
b = S, respectively) that both (P(S),∪) and (P(S),∩) are regular. Moreover,
since also A = A ∪ A = A ∩ A, we have that an arbitrary A ⊆ S is an
idempotent element of both (P(S),∪) and (P(S),∩). Furthermore, since for
every subset B ⊆ P∗(S) there is B ⊆ [B)⊆ = [B ∪B)⊆ = [B ∩B)⊆, we have
that B is an idempotent subset of both (P(S), ∗∪) and (P(S), ∗∩). Thus,
by Theorem 2.4.23, every subset A ⊆ S is an idempotent element of both
(P(S), ∗∪) and (P(S), ∗∩) and there is [A)⊆ = A2 = A3 = . . . = An for all
n ∈ N, n ≥ 2. Also, by Corollary 2.4.102, every nonempty subset B ⊆ P(S)
is a hyperideal of both (P(S), ∗∪) and (P(S), ∗∩). The sets (P∗(S),⊆) and
(P(S),⊆) have one maximal element, the set S. Thus, by Theorem 2.4.20,
it is easy to decide whether they are without zero scalars. The property of
being an absorbing element rewrites to A ∪ S = S = S ∪ A or A ∩ S =
S = S ∩ A for all A ⊆ S, respectively. Thus (P∗(S), ∗) and (P(S), ∗∪)
have a zero scalar element S while (P(S), ∗∩) is without zero scalars. Since
(P(S), ∗∩) is commutative, it is, by Theorem 2.4.106, not simple, i.e. has
proper hyperideals – which is what we have already established.

2.4.8 The origins of EL–hypergroups

Results of this short subsection were included in Novák [244], published by European

Journal of Combinatorics (WoS Q2) .

We already know that when the “Ends lemma” is applied on quasi-ordered
semigroups, we get semihypergroups, i.e. Lemma 2.1.1 secures associativity
of the hyperoperation. We also know that when the lemma is applied on
quasi-ordered groups, we get hypergroups, or rather transposition hyper-
groups or join spaces. This is thanks to Lemma 2.1.2, which gives a con-
dition equivalent to validity of the reproductive law, and Corollary 2.1.3,



86 CHAPTER 2. EL–HYPERSTRUCTURES

which says that this condition holds in groups. We get hypergroups if the
EL–semihypergroup is extensive.

In this subsection we will be dealing with a very natural issue. What
are other equivalent conditions of Lemma 2.1.2? If we know that an EL–
hyperstructure is a hypergroup, how can we determine whether the original
structure, from which it was (or could have been) constructed, is a group
or a semigroup? Also, we will be interested in semigroups giving rise to
EL–hypergroups and in the study of the transfer of some properties of the
original single-valued structure to EL–hypergroups.

Obviously, if we want to use Lemma 2.1.1 to construct semihypergroups,
we know whether the structure we are working with is a semigroup or a
group. However, this is not the motivation for the results included in this
subsection. Imagine we have a semigroup and by means of Lemma 2.1.1
and Corollary 2.1.3 (or thanks to the fact that the hyperoperation is ex-
tensive) we construct its EL–hypergroup. Now, consider subhypergroups of
this hypergroup. For example, in situations when we need to describe all
subhypergroups without actually constructing them or to decide validity of
a statement concerning an arbitrary subhyperstructure. Are the subhyper-
groups associated to subgroups of the original group or to its subsemigroups?
Both cases are possible and even the mixture of cases is possible as some
of the subhypergroups may be associated to subgroups while some may be
associated to proper subsemigroups. Yet proofs of some results (such as
e.g. Theorem 2.4.52) could simplify if we knew the answer. Moreover, some
results regarding EL–hyperstructures (see Subsection 2.4.5 on page 59 or
Novák [246]) could be generalized as they assume subhypergroups associated
to subgroups yet this need not be a comprehensive list of subhypergroups.

First of all, we are going to include a few results concerning idempotent
elements, i.e. elements which (if we ignore the neutral element) exist in
semigroups only. We will be looking for negative results, i.e. for statements
“(H, ·) is not a group” because this would mean that it is a semigroup.

Theorem 2.4.109. Let (H, ∗) be the EL–semihypergroup of a quasi–ordered
semigroup (H, ·,≤). For an arbitrary element a ∈ H there holds

a ∗ a = {a} ⇔ a is idempotent and simultaneously EL–maximal element of
(H, ·,≤).

Proof. Suppose the suggested structures (H, ·,≤) and (H, ∗) and an element
a ∈ H.

“⇒” According to the definition of hyperoperation “∗” there is a∗a = [a·a)≤.
Since for the element a ∈ H there holds a ∗ a = {a}, there also holds
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[a · a)≤ = {a}. Since the relation “≤” is reflexive, there must be
a · a ∈ [a · a)≤, i.e. altogether we get that a · a = a, i.e. a is an
idempotent of (H, ·). Furthermore, there does not exist any element
x 6= a such that a · a = a ≤ x, i.e. a is an EL–maximal element of
(H, ·,≤).

“⇐” If a is an idempotent element of (H, ·), then a · a = a. Since “≤” is
reflexive, there is a ≤ a, i.e. a · a ≤ a, i.e. a ∈ a ∗ a. Since a is EL–
maximal, we have that [a)≤ = {a}. Then a ∗ a = [a · a)≤ = [a)≤ = {a}.

Corollary 2.4.110. Let (H, ∗) be the EL–hypergroup of such a quasi-ordered
semigroup (H, ·,≤) that at least two distinct elements a, b ∈ H are in relation
“≤” (i.e. “≤” is not trivial). If there exists an element a ∈ H such that
a ∗ a = {a}, then (H, ·) is not a group.

Proof. Suppose that (H, ·,≤) is a quasi-ordered group and that there exists
an element a ∈ H such that a ∗ a = {a}. This means that a is idempotent,
which in a group means that a = u, where u is the neutral element of the
group. However, the fact that u ∗ u = {u} also means that there does not
exist an element b ∈ H, b 6= u, such that u ≤ b, i.e. for all b ∈ H there is
either b ≤ u or u, b are incomparable. Yet b ≤ u implies u ≤ b−1, which is not
possible for u 6= b, if there should simultaneously be u < b and u ∗ u = {u}.
Also, if c, d ∈ H are such that c ≤ d, then u ≤ c · d−1, which is again
not possible for c 6= d. Therefore, simultaneous validity of the fact that
(H, ·,≤) is a quasi-ordered group and existence of an element a ∈ H such
that a ∗ a = {a} implies triviality of the relation “≤”. Thus non-triviality of
the relation “≤” implies that (H, ·,≤) is not a quasi-ordered group (i.e. it
is a quasi-ordered semigroup) or that a ∗ a = {a} holds for no a ∈ H. If we
suppose non-triviality and existence of the element a, then (H, ·) may not be
a group.

The proof of the following corollary is rather obvious.

Corollary 2.4.111. Let (H, ∗) be the EL–hypergroup of a quasi-ordered
semigroup (H, ·,≤) and (G, ∗) a subhypergroup of (H, ∗).21

1. Denote u the neutral element of (H, ·). If u is an EL–maximal element
of (G,≤) and at least two distinct elements a, b ∈ G are in relation “≤”,
then (G, ·) is a subsemigroup of (H, ·) yet not a subgroup of (H, ·).

21In Subsection 2.4.4 we made distinctions between “∗G” and “∗S”, to be more precise
between (2.12) and (2.13), in defining subhyperstructures. This distinction is not relevant
here as the corollary is valid for both cases.
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2. If for two distinct elements a, b ∈ H there holds a∗a = {a}, b∗b = {b},
then H does not have the greatest element. Moreover, (H, ·) is not a
group.

Remark 2.4.112. Notice that in a commutative case the fact stated in
Corollary 2.4.110 may be deduced also from Lemma 2.4.15, which states
that if (H, ·) and (H, ∗) are commutative and (H, ·) a group, then for an
identity a of (H, ∗) there holds that a ≤ a−1. According to Theorem 2.4.22
the fact that a ∈ a ∗ a is equivalent to the fact that a is an identity of (H, ∗),
i.e. a ≤ a−1, i.e. a · a ≤ u, where u is the neutral element of (H, ·). This
means that u ∈ a ∗ a. Since in Corollary 2.4.110 we suppose that a ∗ a is
a singleton and both a and u belong to a ∗ a, they must be equal. Yet this
results in triviality of the relation “≤”.

After mentioning Theorem 2.4.23 we said that unfortunately, from the
validity of (i), (ii) or (iii) of Theorem 2.4.23 there does not follow that a is
an idempotent element of (S, ·). Yet we can include at least the following
Theorem 2.4.113. Notice that the assumption of antisymmetry of “≤” is
crucial. Also notice that (H, ·) need not be a monoid. If it is, one of the
elements assumed in the theorem is obvious.

Theorem 2.4.113. Let (H, ∗) be the EL–hypergroup of a partially ordered
semigroup (H, ·,≤). If there exists a pair of distinct elements a, b ∈ H such
that there holds [a)≤ = a ∗ a, [b)≤ = b ∗ b, then (H, ·) is not a group.

Proof. Straightforward because a ∗ a = [a · a)≤ and since the relation “≤” is
a partial order, the equality [a)≤ = [a · a)≤ implies that a = a · a. The same
holds for the element b. Thus in (H, ·) there are two distinct idempotent
elements which means that (H, ·) cannot be a group.

2.4.9 Ideals in EL–semihypergroups.
A link to Γ–semihypergroups.

This section is taken over from Ghazavi, Anvariyeh and Mirvakili [137].

In [137], Ghazavi, Anvariyeh and Mirvakili study the issue of ideals in
EL–semihypergroups. So far, on page 83, we have included a brief discus-
sion of the issue of whether proper EL–semihypergroups do have proper
hyperideals (i.e. whether they are simple or not). Notice that the property
of “being simple”, i.e. “not having a proper hyperideal”, is equivalent to the
fact that H ∗ x ∗ H = H for all x ∈ H. Also notice that simplicity of a
semigroup is defined analogically to the simplicity of a semihypergroup.
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Definition 2.4.114. A semigroup (S, ·) is called simple if it has no proper
ideals, i.e. if a · S = S · a = S for all a ∈ S.

Theorem 2.4.115. Let (S, ∗) be the EL–semihypergroup of a quasi-ordered
semigroup (S, ·,≤). If (S, ·) is simple, then also (S, ∗) is simple.

Proof. See [137], proof of Theorem 3.12.

The converse of the above theorem is not true; for a counterexample
see [137], Example 3.14.

Among the many concepts of the ideal theory, recall the following.

Definition 2.4.116. Let (S, ·,≤) be a quasi-ordered semigroup and I an (left
/ right) ideal of S. I is called a bi-ideal of S if I · S · I ⊆ I and an interior
ideal if S · I · S ⊆ I. Finally, I is called (m,n)–ideal of S if Im · S · In ⊆ I.
In all of these cases, I is called ordered if for all a ∈ I the fact that b ≤ a
implies that b ≤ I. In such a case we write (I]≤ = I.

In [137], Ghazavi, Anvariyeh and Mirvakili proved the following.

Theorem 2.4.117. Let (S, ∗) be the EL–semihypergroup of a quasi-ordered
semigroup (S, ·,≤) and I ⊆ S non-empty.

1. If I is a left / right (ordered) ideal of S, which is an upper end of S,
then I is a left / right hyperideal of (S, ∗).

2. If S is a monoid, then I is a left / right ideal of S, which is an upper
end of S, if and only if I is a left / right hyperideal of (S, ∗).

3. I is maximal / minimal among all left (or right) ideals of S, which are
also upper ends of S, if and only if I is maximal among all left (or
right) hyperideals of (S, ∗).

Proof. See [137], proof of Theorem 3.3, Theorem 3.9 and Theorem 3.19.

In a similar fashion, the properties of (ordered) bi-hyperideals, interior
ideals or (m,n)–ideals can be transferred to the hyperstructure context. For
details see [137]. Also, in Section 3.2 we discuss the construction of EL2–
hyperstructures, where the authors of [137] applied the “Ends lemma” on
quasi-ordered hyperstructures ; in Theorem 3.2.4 of the section we show how
hyperideals of the original hyperstructure are transferred to hyperideals of
the resulting hyperstructure.

Finally, Ghazavi, Anvariyeh and Mirvakili show that the “Ends lemma”
can be used to construct Γ–semihypergroups. Recall that these are a hyper-
structure analogy of Γ–semigroups introduced by Sen [280], which themselves
are based on Nobusawa’s Γ–rings [239].
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Definition 2.4.118. Let S and Γ be two non-empty sets. Then S is called
a Γ–semigroup if there exists a map S × Γ× S → S, denoted as xγy for all
x, y ∈ S, such that, for all a, b, c,∈ S and γ, δ ∈ Γ, there is (aγb)δc = aγ(bδc).
If moreover (S,≤) is a partially ordered set and the relation x ≤ y implies
that xγy ≤ yγz and zγx ≤ zγy for all x, y, z ∈ S and γ ∈ Γ, then S is called
a partially ordered Γ–semigroup. If each γ ∈ Γ is a hyperoperation on S, i.e.
xγy ⊆ S for all x, y ∈ S, then S is called a Γ–semihypergroup.

Theorem 2.4.119. The EL–semihypergroup of a partial ordered Γ–semigroup
(S, ·,≤) is a Γ–semihypergroup.

Proof. See [137], proof of Theorem 4.7.

For examples of the above concepts on some finite element sets cf. [137].

2.4.10 A special case:
hypersemilattices and hyperlattices

Results of this subsection were published in Proceedings of APLIMAT 2017 (SCO-

PUS) as Novák, Cristea and Křehĺık [248].

In Subsection 2.6, where we discuss relation of EL–hyperstructures to
some other concepts of hyperstructure theory in which ordering is used, we
include a rather obvious statement that every semilattice can be used to
construct an EL–semihypergroup. In this subsection we will include some
results connected to Hv–semilattices and hyperlattices constructed using the
“Ends lemma”. Later on, in Subsection 2.5.5, we will define some orderings
on the set of matrices and make use of the “Ends lemma” to construct semi-
hypergroups on the sets of matrices which – together with some results on
lattices – will eventually lead us to examples of Hv–rings and Hv–matrices
over these Hv–rings.

In this subsection we will study hyper(semi)lattices from the perspective
of algebraic structures. Naturally, one can also approach the topic from the
point of view of ordered hyperstructures. For a synthesis of these approaches
see recent works of Soltani Lashkenari, Rasouli and Davvaz such as [270,283].

First of all we show the connection between EL–(semi)hypergroups and
hypersemilattices /Hv–semilattices. For the respective definitions cf. page 12
and 13.

Theorem 2.4.120. Let (L, ∗) be the EL–semihypergroup of a quasi-ordered
semigroup (L, ·,≤).
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1. If “·” is commutative and (L, ·) is a proper semigroup, then the condi-
tion that for all a ∈ L there holds a ·a ≤ a is equivalent to the fact that
(L, ∗) is a hypersemilattice.

2. If “·” is not commutative and “≤” is antisymmetric, then (L, ∗) is
neither a hypersemilattice nor an Hv–semilattice.

3. If (L, ·) is a non-trivial group and “≤” is antisymmetric, then (L, ∗) is
neither a hypersemilattice nor an Hv–semilattice.

Proof. Condition 3 of Definition 1.1.19 (in its strong associative version) is
secured by default. Therefore, the question of whether the “Ends lemma”
construction gives rise to hypersemilattices, is for commutative “∗” equivalent
to the question of validity of condition in statement 1. Moreover, in the “Ends
lemma” context, the idempotency condition 1 means that a · a ≤ a should
hold for all a ∈ L.

If (L, ·) is a proper semigroup, this has no special implications and we
obtain statement 1.

However, if (L, ·) is a group, then this is equivalent to a ≤ u for all a ∈ L,
where u is the neutral element of (L, ·). On condition of antisymmetry of
“≤” this means that u is the greatest element of (L,≤). Yet a ≤ u is in a
partially ordered group equivalent to u ≤ a−1 for all a ∈ L, which is possible
only if u = a−1. Yet since this should hold for all a ∈ L, there is L = {u}
and we obtain statement 3.

Finally, if “≤” is antisymmetric, then (L, ·,≤) is a partially ordered semi-
group and commutativity of (L, ∗) is equivalent to commutativity of (L, ·)
and we obtain statement 2.

Remark 2.4.121. Further on, in Corollary 2.4.126 and in Corollary 2.4.127
we assume that (L, ∗) is a semihypergroup constructed from a commutative
semigroup (L, ·). Notice that this means that (L, ∗) is commutative. How-
ever, commutativity of (L, ∗) might be secured also for non-commutative
carrier semigroups (L, ·) – in case “≤” is a quasi-ordering which is not par-
tial ordering. Of course, only proper semigroups (L, ·) are relevant in this
respect.

Example 2.4.122. If we denote by |C|10 the set of all complex numbers
such that their absolute value is smaller than or equal to one 1 (i.e. we
regard a unit disc of the Gaussian plane) and regard “·|z|” multiplication of
absolute values and set that z1 ≤|z| z2 whenever |z1| ≤ |z2|, then we get that
(|C|10, ·|z|,≤|z|) is a proper quasi-ordered semigroup. Moreover, “≤|z|” is not
antisymmetric. We define a hyperoperation on |C|10 by

z1 ∗ z2 = [z1 ·|z| z2)≤|z| = {x ∈ |C|10 | |z1| · |z2| ≤ |x|}.
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Since z ∈ z ∗ z for all z ∈ |C|10, we have that (C, ∗) is a hypersemilattice.

The case of commutative quasi-ordered groups, where “≤” is not anti-
symmetric is not discussed in Theorem 2.4.120.

Example 2.4.123. Regard the additive group of complex numbers (C,+)
and define, for all z1, z2 ∈ C, relation “≤|z|−1” by z1 ≤|z|−1 z2 whenever
|z1| ≥ |z2|, where |z| stands for the absolute value of z ∈ C. It is easy
to verify that (C,+,≤|z|−1) is a commutative quasi-ordered group, where
“≤|z|−1” is obviously not antisymmetric. If we define, for all z1, z2 ∈ C, that
z1 ∗ z2 = {x ∈ C | |x| ≤ |z1 + z2|}, then, by Definition 1.1.19 and the “Ends
lemma”, (C, ∗) is a hypersemilattice. Indeed, |z| ≤ |z + z| for all z ∈ C,
i.e. z ∈ z ∗ z (and the rest is obvious). However, if we regard “≤|z|” such
that z1 ≤|z| z2 whenever |z1| ≤ |z2| instead of ≤|z1|−1 , then “∗” is no longer
idempotent, i.e. (C, ∗) is neither a hypersemilattice nor an Hv–semilattice.

The following corollary is more or less obvious. Only notice that the
relation “≤” need not be antisymmetric.

Corollary 2.4.124. In Theorem 2.4.120, an idempotent quasi-ordered semi-
group (L, ·,≤) always creates a hypersemilattice.

Proof. Obvious since “≤” is reflexive.

Example 2.4.125. The set union and set intersection are idempotent op-
erations. Therefore, if we regard (P∗(S),∩) or (P∗(S),∪), then condition 1
of Definition 1.1.19 holds in both cases. Moreover, both (P∗(S),∩,⊆) and
(P∗(S),∪,⊆) are proper quasi-ordered semigroups. Therefore, if we set
A ∗ B = {X ⊆ P∗(S) | A ∩ B ⊆ X} or A ∗ B = {X ⊆ P∗(S) | A ∪ B ⊆ X},
then (P∗(S), ∗) is in both cases a hypersemilattice. The same is true if we
consider P(S) = P∗(S) ∪ {∅} in either of the cases.

The results of Theorem 2.4.120 and Corollary 2.4.124 may be worded also
in terms of idempotent elements and idempotent sets. However, one shall not
confuse the concept of idempotency in single-valued structures, i.e. a ·a = a,
and in hyperstructure theory, i.e. a ∈ a ∗ a.

Corollary 2.4.126. Let (L, ∗) be the EL–semihypergroup of a quasi-ordered
commutative semigroup (L, ·,≤). Then (L, ∗) is a hypersemilattice if and
only if it is an idempotent semihypergroup.

Proof. Obvious, since (L, ∗) is both commutative and associative thanks to
Lemma 2.1.1 (“Ends lemma”) and the condition a ∈ a ∗ a for all a ∈ L,
equivalent to a · a ≤ a is present in definitions of both concepts.
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The following statement may be easily proved on its own, yet it may be
also regarded as a corollary to the fact that (S, ∗) mentioned below is a hy-
persemilattice. In the case of regular (S, ∗) compare the following statement
to Corollary 2.4.102 on page 83.

Corollary 2.4.127. Let (S, ∗) be the commutative EL–semihypergroup of a
quasi-ordered semigroup (S, ·,≤). If for every s ∈ S there holds s · s ≤ s,
then every subset A of (S, ∗) is idempotent.

Proof. Obvious thanks to Corollary 2.4.126, also Corollary to Dehghan Nezhad
and Davvaz [116], Proposition 3.1.

Example 2.4.128. Denote the closed interval of real numbers 〈0, 1〉 by L.
Obviously, (L, ·,≤), where “·” is the usual multiplication and “≤” the usual
ordering of real numbers, is a proper quasi-ordered semigroup. Also obvi-
ously, the condition that, for all a ∈ L, there is a·a ≤ a holds in L. Therefore,
the EL–semihypergroup (L, ∗), is a hypersemilattice. More importantly, it is
an example of a hypersemilattice constructed from a non-idempotent quasi-
ordered semigroup. Moreover, since “∗”, defined on (L, ·,≤), is extensive,
(L, ∗) is, by Theorem 2.4.71 on page 71, a hypergroup.

Remark 2.4.129. In [116], Proposition 3.3, Dehghan Nezhad and Davvaz
take the additive partially ordered group of all integers (Z,+,≤), define the
hyperoperation in a way similar to the “Ends lemma” by k ∗ l = {u ∈ Z |
k + l ≤ 2u} for all k, l ∈ Z, and show that (Z, ∗) is an Hv-semilattice which
is not a hypersemilattice. Notice that the choice of double sum instead of
sum in the definition of the hyperoperation is crucial as it secures idempo-
tency of “∗” (even though at a price of breaking its strong associativity).
On the other hand, choosing sum instead of double sum, i.e. regarding an
EL–semihypergroup, would secure strong associativity of “∗” yet prevent
(Z, ∗) from being an Hv–semilattice or a hypersemilattice as (Z,+,≤) is a
partially ordered group. In general, number domains with operations of sum
or product of numbers are problematic as a basis for construction of EL–
hypersemilattices as they themselves or their important subsets are (given
the usual ordering by size) mostly (partially ordered) groups. For an applica-
tion of (Z, ∗) defined as an EL–hypergroup see Hošková and Chvalina [151],
Example 1. Also notice, that introducing the concept of double-sum in [116]
(or any other multiple of the sum) is possible only because (Z,+, ·) is a ring
as k + l ≤ 2u is a definition that relies on two single-valued operations, i.e.
cannot be generalized so easily as the definition used in the “Ends lemma”.

In Subsection 2.4.6 we discussed the role of extensivity of the hyperoper-
ation “∗”. In Example 2.4.128 we included an example of a hypersemilattice
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such that the hyperoperation is extensive. If we now change the definition
of the hyperoperation from a ∗ b = [a · b)≤ to a ∗m b = {a, b} ∪ [a · b)≤ (see
(2.22) on page 71 and Subsection 2.4.6), there is a ∈ a ∗m a for all a ∈ L
by default, i.e. axiom 1 of Definition 1.1.19 always holds. Also, again by
default, axiom 3 of the definition is secured for this hyperoperation. More-
over, by Lemma 2.4.74, the new hyperoperation is associative if and only if
the original hyperoperation is associative. As a result we have the following
theorem and corollary.

Theorem 2.4.130. Let (L, ∗m) be the mEL–semihypergroup of a proper
commutative quasi-ordered semigroup (L, ·,≤), where “≤” is not antisym-
metric. Then (L, ∗m) is a hypersemilattice.

Proof. Obvious.

In case of extensive hyperoperations such that the quasi-ordering “≤”
is also antisymmetric, commutativity becomes an equivalent condition to L
being a hypersemilattice.

Corollary 2.4.131. Let (L, ∗m) be the mEL–semihypergroup of a proper
partially ordered semigroup (L, ·,≤). Then (L, ∗m) is a hypersemilattice if
and only if “·” is commutative.

Proof. Idempotency and weak associativity are obvious. Since (L, ·,≤) is
a partially ordered semigroup, validity of the remaining axiom of Defini-
tion 1.1.19, commutativity of the hyperoperation “∗m”, is equivalent to the
commutativity of the single-valued operation.

The list of important elements of Hv–semilattices and hypersemilattices
includes absorbent and fixed elements. Notice that, for commutative semihy-
pergroups, the definition of fixed elements is equivalent to the definition of
zero scalar elements.

Definition 2.4.132. ( [116], Definition 3.4) Let (L, ∗) be an Hv–semilattice.
An element a ∈ L is called an absorbent element of L if it satisfies condition
that c ∈ a ∗ c for all c ∈ L. An element b ∈ L is called a fixed element of L
if it satisfies condition that b ∗ c = {b} for all c ∈ L.

The following theorem lets us identify absorbent and fixed elements easily.
Notice that due to Theorem 2.4.120 the study of groups (L, ·) is irrelevant if
“≤” is antisymmetric, i.e. the cancellation law cannot be used in such cases
in the forthcoming Theorem 2.4.133, statement 1.

Theorem 2.4.133. Let (L, ∗) be the EL–hypersemilattice of a quasi-ordered
semigroup (L, ·,≤). Then:
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1. a ∈ L is an absorbent element of (L, ∗) if and only if a · c ≤ c holds for
all c ∈ L.

2. If a ∈ L is an absorbent element of (L, ∗), then all elements b ∈ L such
that b ≤ a are absorbent.

3. b ∈ L is a fixed element of (L, ∗) if and only if b is an EL–maximal
element of (L,≤) such that b · c = c · b = b holds for all c ∈ L.

4. If (L, ·,≤) is non-trivial, then no element of L can be simultaneously
absorbent and fixed element of (L, ∗).

Proof. Statement 1 is obvious.
In statement 2 suppose an arbitrary element b ∈ L such that b ≤ a. In

a quasi-ordered semigroup (L, ·,≤) this means that, for all c ∈ L, there is
b · c ≤ a · c. Yet a ∈ L is an absorbent element of (L, ∗). Thus a · c ≤ c for all
c ∈ L. From transitivity we get b · c ≤ c for all c ∈ L, i.e. b is also absorbent.

As regards statement 3: according to the definition, b ∈ L is a fixed
element of (L, ∗) if for all c ∈ L there holds b ∗ c = {b}, i.e., in the “Ends
lemma” context, {b} = b ∗ c = {x ∈ L | b · c ≤ x} for all c ∈ L. Moreover, in
hypersemilattices, commutativity is assumed, i.e. in our case there must be
b ∗ c = c ∗ b for all c ∈ L. However, since “≤” is reflexive, two simultaneous
conclusions are equivalent with this: b · c = c · b = b must hold for all c ∈ L
and on top of that, b must be an EL–maximal element of (L,≤).

In statement 4, if a is absorbent, then a · c ≤ c for all c ∈ L. If a is
fixed, then a · c = a for all c ∈ L. Thus a ≤ c, for all c ∈ L. Yet as follows
from statement 3, fixed elements are also EL–maximal ones. Thus we get a
contradiction or (L, ·,≤) is trivial.

Theorem 2.4.134. Let (L, ∗) be the EL–hypersemilattice of a quasi-ordered
semigroup (L, ·,≤). Denote AE(L) the set of all absorbent elements of (L, ∗).
Then:

1. (AE(L), ·) is a subsemigroup of (L, ·).

2. If (L, ·) is a monoid, then AE(L) is always non-empty.

3. (AE(L), ∗), where “∗” is defined in the same way as in (L, ∗) yet re-
stricted on elements of AE(L), is a hypersemilattice.

Proof. Suppose that a, b ∈ L are absorbent elements of (L, ∗). Then b · c ≤ c
for all c ∈ L. In a quasi-ordered semigroup this implies a · b · c ≤ a · c for all
c ∈ L. However, since also a ∈ L is absorbent, we get from transitivity that
a · b · c ≤ c for all c ∈ L, which means that also a · b is absorbent.
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Further, denote u the neutral element of (L, ·), if it exists. Obviously,
since “≤” is reflexive, u · c = c ≤ c for all c ∈ L, which means that u is
absorbent.

Finally, the proof of statement 3 is obvious.

Remark 2.4.135. Notice that in Dehghan Nezhad and Davvaz [116], p. 384,
plain text, an Hv–subsemilattice of (L, ∗) is defined as an arbitrary non-
empty subset M ⊆ L such that a ∗ b ∈ P∗(M), i.e. such that M ∗ M =
M . However, in our case of (AE(L), ∗) we have a different situation as the
equality AE(L) ∗AE(L) = AE(L) is all but self-evident. (AE(L), ∗) can be
– but equally well need not be – a subsemihypergroup of (L, ∗). For details
see Subsection 2.4.4, or Example 2.4.136. Notice that this has also important
influence on the study of hyperideals of EL–hypersemilattices.

Example 2.4.136. If we continue with Example 2.4.128, where we consid-
ered L = 〈0, 1〉 with the usual multiplication and ordering of real numbers,
then we see that all elements of L are absorbent and no element of L is fixed.

If we denote by L(Q) the set of all rational numbers from L = 〈0, 1〉, we
get an example of what has been discussed in Remark 2.4.135: (L(Q), ·) is
a subsemigroup of (L, ·), thus we may use (L(Q), ·,≤) to define the hyper-
operation using the “Ends lemma”. However, e.g. 1

4
∗ 1

5
= {x | 1

20
≤ x}

yet we have to decide whether we take x ∈ L or x ∈ L(Q) as both of these
choices are equally justifiable and meaningful. Only based on answer to this
question can we consider cases such as fractions of π and thus decide in what
relation (L(Q), ∗) to (L, ∗) is.

Example 2.4.137. If we continue with Example 2.4.125, where we consid-
ered the power set of an arbitrary set S, and examine the set intersection,
then we see that A ∩ C ⊆ C for all C ∈ P(S) holds for all A ∈ P(S) while
condition B ∩ C = B for all C ∈ P(S) holds for B = ∅ only. On the other
hand, if we examine the set union, we see that A ∪ C ⊆ C for all C ∈ P(S)
holds for A = ∅ only while B∪C = B for all C ∈ P(S) holds for B = S only.

Thus in (P(S), ∗), constructed from (P(S),∩,⊆), all elements are ab-
sorbent and none is fixed – because ∅ is not an EL–maximal element of
(P(S),⊆). However, if we construct (P(S), ∗) from (P(S),∪,⊆), then only ∅
is absorbent and only S is fixed.

In Remark 2.4.9 on page 43 we showed that if we use hyperoperation
∗d : S × S → P(S) defined by

a ∗d b = ≤(a · b] = {x ∈ S | x ≤ a · b} (2.27)

instead of a ∗ b = [a · b)≤, the Lemma 2.1.1 (“Ends lemma”) remains valid.
This means that our results are (with respect to duality) valid also for the
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hyperoperation “∗d” and its extensive modification a∗dmb = {a, b}∪≤(a·b] =
{a, b} ∪ {x ∈ S | x ≤ a · b}.

Let us now move from hypersemilattices to hyperlattices which were de-
fined in Definition 1.1.18 and the context of which has been discussed on
page 12. We will adopt terminology used on page 12 and study strong join
hyperlattices (defined by Definition 1.1.18, i.e. hyperlattices in the sense of
the original definition of Konstantinidou and Mittas [182]) and join hyper-
lattices (defined by axioms 1–4 of Definition 1.1.18). In order to remain on
the “safe ground”, assume that “≤” is partial ordering. This assumption
will also allow us to link our results to those obtained by Davvaz et al. on
partially ordered (semi)hypergroups.22 Given Theorem 2.4.120 this means
that (L, ·,≤) must be a proper partially ordered semigroup.

Hyperlattices of Konstantinidou and Mittas [182] (seen as algebraic struc-
tures) are hyperstructures with one hyperoperation and one single-valued
operation. Suppose that the hyperoperation “

∨
” is the “Ends lemma”

hyperoperation; “∧” will be arbitrary. In other words, let us study EL–
hyperstructures (L, ∗,∧).

First of all, we must explain the meaning of Definition 1.1.18 in this
context of ours. Since axioms 1–3 (with respect to “

∨
”, i.e. with respect

to “∗”) are defining axioms of hypersemilattices, we can use our results on
hypersemilattices. In axiom 4, every element a ∈ L must be, for all a, b ∈ L,
in the intersection of a

∨
(a ∧ b) and a ∧ (a

∨
b). Yet since “

∨
”, i.e. “∗” in

our case, is defined as

a
∨

b = a ∗ b = [a · b)≤ = {x ∈ L | a · b ≤ x}, (2.28)

we have that a ∈ a
∨

(a ∧ b) is equivalent to a ∈ [a · (a ∧ b))≤ which is
equivalent to a · (a ∧ b) ≤ a, for all a, b ∈ L. On the other hand, the fact
that a ∈ a ∧ (a

∨
b) is equivalent to a ∈ a ∧ [a · b)≤ which is equivalent to

a ∈ {a∧ x | x ∈ [a · b)≤}, i.e. a ∈ {a∧ x | a · b ≤ x}. This means that, for all
a, b ∈ L, there exists an element x ∈ L such that a = a ∧ x, where a · b ≤ x.
Axiom 5 is in our context equivalent to the fact that a · b ≤ a ⇒ b = a ∧ b,
for all a, b ∈ L.

As can be seen in the following examples, the EL–hyperoperation (2.28)
can be used to construct both join hyperlattices and strong join hyperlattices.

Example 2.4.138. Let L = N, operation “·” be defined as the minimum of
natural numbers and operation “∧” be defined as the maximum of natural
numbers. Finally, “≤” is the usual ordering of natural numbers by size. In
this case, for all a, b ∈ N, a

∨
b = a ∗ b = {x ∈ N | min{a, b} ≤ x} and

22For a collection of these see e.g. recently published book Davvaz [105]
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a ∧ b = max{a, b}. Obviously, (N, ∗) is a hypersemilattice and (N, ∗,∧) is
a join hyperlattice (for all a ∈ N the desired x ∈ N equals a) which is not
strong.

Example 2.4.139. Suppose that L = P∗(S), where P∗(S) is the system
of all non-empty subsets of an arbitrary set S. For an arbitrary subsets
A,B ⊆ P∗(S) define that

A
∨

B = A ∗B = {X ∈ P∗(S) | A ∪B ⊆ X},

i.e. the operation “·” is defined as union of subsets of S and the relation is
defined as inclusion, and A∧B = A∩B for all A,B ⊆ P∗(S). Then obviously,
A∪ (A∩B) ⊆ A for all A ⊆ P∗(S) and for X = S we have that A = A∩X,
where A ∪ B ⊆ X for all A,B ⊆ P∗(S). Thus axiom 4 of Definition 1.1.18
holds and (P∗(S), ∗,∧) is a join hyperlattice. Moreover, A∪B ⊆ A is, for all
A,B ⊆ P∗(S), equivalent to the fact that B ⊆ A and in this case B = A∩B.
Therefore, the join hyperlattice (P∗(S), ∗,∧) is strong.

Therefore, we can ask: If we want (L, ∗,∧) to be a join hyperlattice, how
shall the single-valued operations “·” and “∧” be linked?

Theorem 2.4.140. Let (L, ∗) be an EL–hypersemilattice and let “∧” be an
idempotent, commutative and associative operation on L.

1. If, for all a, b ∈ L, there is a · (a ∧ b) ≤ a and a · b ≤ a, then (L, ∗,∧)
is a join hyperlattice.

2. If, for all a, b ∈ L, there is a · (a∧ b) ≤ a and a = a∧ 1, where 1 is the
greatest element of (L,≤), then (L, ∗,∧) is a join hyperlattice.

Proof. Since (L, ∗) is a hypersemilattice and we assume that “∧” is an idem-
potent, commutative and associative operation on L, we verify axiom 4 of
Definition 1.1.18 only.

1. As has been mentioned above, the left-hand side of the axiom is equiv-
alent to the condition a ·(a∧b) ≤ a. In the right-hand side it is enough,
for all a ∈ L, to set x = a and we obtain that, for all a, b ∈ L, there
must be a = a ∧ a (which is true because “∧” is idempotent), where
a · b ≤ a (which is what we suppose).

2. The left-hand side of the axiom is equivalent to the condition a·(a∧b) ≤
a. In the right-hand side we assume that a = a ∧ 1 and since 1 is the
greatest element of (L,≤), the fact that a · b ≤ 1 holds, for all a, b ∈ L,
trivially.
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Example 2.4.141. Example 2.4.138 is an example of a join hyperlattice con-
structed using Theorem 2.4.140, statement 1. However, as Example 2.4.139
suggests, the converse of this condition is not true as A ∪ B ⊆ A does not
hold for all A,B ∈ P∗(S). Notice that the condition of statement 2 holds in
(P∗(S), ∗,∧) from Example 2.4.139.

Example 2.4.142. Suppose the partially ordered semigroup (N, gcd, |), where
“gcd” stands for the greatest common divisor of natural numbers and “|”
is the usual relation of divisibility. By Corollary 2.4.124, (N, ∗), where
a∗b = {x ∈ N | gcd{a, b}|x}, for all a, b ∈ N, is a hypersemilattice. Set “

∨
” =

“∗” and a∧b = min{a, b}. Since there is gcd{a, b}|a and gcd{a,min{a, b}}|a,
for all a, b ∈ N, we have, by Theorem 2.4.140, that (N, ∗,min) is a join
hyperlattice. Since e.g. gcd{16, 24} = 16 6⇒ 24 = min{16, 24}, the join
hyperlattice is not strong.

If we use the extensive modification of the EL–hyperoperation (see Sub-
section 2.4.6), i.e. assume that for all a, b ∈ L there is

a
∨

b = a ∗m b = {a, b} ∪ [a · b)≤ = {a, b} ∪ {x ∈ L | a · b ≤ x}, (2.29)

we have a ∈ a
∨

(a ∧ b) by default. As a result, no special link between
operations “·” and “∧” is needed under conditions of Theorem 2.4.140.

Corollary 2.4.143. Let (L, ∗m) be an mEL–hypersemilattice and let “∧”
be an idempotent, commutative and associative operation on L. If, for all
a, b ∈ L, there is a · b ≤ a, then (L, ∗m,∧) is a join hyperlattice.

Proof. Obvious because in Theorem 2.4.140, statement 1, condition a · (a ∧
b) ≤ a of the left-hand side of axiom 4 becomes reduntant and on the right-
hand side of axiom 4 it is enough to set x = a for all a ∈ L.

Finally, it is to be noted that in her study of hyperlattices, i.e. strong
join hyperlattices in the above sense, Konstantinidou-Seramifidou [180, 181]
studied also distributive, complemented and modular hyperlattices.

2.5 Construction

from quasi-ordered semirings

2.5.1 Setting the ground

In Section 2.4 we discussed semihypergroups constructed from quasi-ordered
semigroups. Now it is natural to ask whether – and if yes, how – the lemma
can be used to construct hyperstructures with more than one hyperoperation.
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Prior to that, however, we need to establish the meaning of the phrase
“more than one hyperoperation”. “More than one” will mean “two” yet as
far as hyperstructure generalizations are concerned, the issue is a bit more
complex. Starting from page 8 we included a short discussion on various ap-
proaches to the issue of algebraic hyperstructures with two (hyper)operations
and some historical remarks aimed at clarifying the rather confused terminol-
ogy of the topic. Therefore, the reader should first recall Definition 1.1.13,
Definition 1.1.14, Definition 1.1.15 and Definition 1.1.17 as well as all the
context mentioned on pages starting from page 8.

Generally speaking, in our case we can make use of the “Ends lemma” in
three different ways:

1. Let (S,+) and (S, ·) be two single-valued structures. We can define
a hyperoperation using one of the operations “+” or “·” such as e.g.
a ∗ b = [a + b)≤ – thus we get an EL–semihypergroup (S, ∗). The
hyperstructure in question will then be a triplet (S, ∗, ·) where “∗” is
the hyperoperation based on the single-valued operation “+”.

2. Let (S,+) and (S, ·) be two single-valued structures. We can define two
hyperoperations, each based on one single-valued operation, i.e. for an
arbitrary pair a, b ∈ S we can define a∗ b = [a+ b)≤ and a◦ b = [a · b)≤.
Thus we get a triplet (S, ∗, ◦), where “∗” and “◦” are hyperoperations.

3. However, we can also start with a single single-valued structure (S, ·)
and using it define a hyperoperation “∗” by a ∗ b = [a · b)≤. The
hyperstructure in question will then be a triplet (S, ∗, ·), where “∗” is
the hyperoperation based on the single-valued operation “·”.

Given the variety of concepts studied in the hyperstructure theory (see
the above mentioned definitions), every approach will lead to a meaningful
application.

The title of this section is “Hyperstructures constructed from quasi-
ordered semirings”. By a semiring we mean a structure without the explicit
inclusion of the axiom of annihilation, or rather without the requirement for
existence of elements 0 and 1. In other words, we use the following defi-
nition included e.g. in Hebisch and Weinert [143] with a remark regarding
commutativity.

Definition 2.5.1. ( [143], Definition 2.1) Let S 6= 0 be a set and “+” and
“·” binary operations on S named addition and multiplication. Then (S,+, ·)
is called a semiring if the following conditions are satisfied:

1. (S,+) is a commutative semigroup,
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2. (S, ·) is a semigroup,

3. Both operations are linked by the distributive laws a ·(b+c) = a ·b+a ·c
and (a+ b) · c = a · c+ b · c for all a, b, c,∈ S.

In particular, a semiring is said to be commutative if also (S, ·) is commuta-
tive, and (S,+, ·) is called a ring if (S,+) is a commutative group. We will
call a semiring, which is not a ring, a proper semiring.

Remark 2.5.2. In Definition 1.1.14 the semihypergroups need not be com-
mutative. If one wanted to achieve a complete parallel of Definition 1.1.14
in Definition 2.5.1, one would have to assume that (S,+) is a semigroup
(not necessarily commutative) and define commutative semirings as struc-
tures where (S,+) is explicitely commutative. However, if one realizes that
our aim is to construct hyperstructures of Definition 1.1.14 (and also that
Theorem 2.5.4 holds), this is no more than reduntant formalism. Also notice
results of Section 2.1 and Subection 2.4.1 regarding commutativity. However,
if commutativity is needed in the proofs of some of the following theorems,
we will explicitely mention it.

Naturally, the potential existence of an element which annihilites S with
respect to multiplication, shall not be ignored. We will discuss it later on in
Remark 2.5.12 on page 105.

Definition 2.5.3. By a quasi-ordered (or partially ordered) semiring we
mean a semiring (S,+, ·) such that “≤” is a quasi– (or partial) ordering on
S and

a ≤ b ⇒ a+ c ≤ b+ c and c+ a ≤ c+ b (2.30)

a ≤ b ⇒ a · c ≤ b · c and c · a ≤ c · b (2.31)

for all a, b, c ∈ S.

The following theorem is an immediate corollary of Theorem 2.4.10 on
page 44.

Theorem 2.5.4. The “Ends lemma” cannot be used to construct Krasner
hyperrings or quasi-canonical hyperrings.

Proof. Definition 1.1.13 (of Krasner hyperrings (H,⊕,�)) as well as the def-
inition of quasi-canonical hyperrings in Davvaz and Leoreanu–Fotea [111]
assumes that (H,⊕) is a canonical hypergroup, i.e. a hypergroup with the
scalar identity. Yet Theorem 2.4.10 says that non-trivialEL–semihypergroups
do not have scalar identities.

Thus, further on, we shall concentrate on more general hyperstructures
which were defined in Definition 1.1.14, Definition 1.1.15 and Definition 1.1.17.



102 CHAPTER 2. EL–HYPERSTRUCTURES

2.5.2 The issue of distributivity

Results of this subsection were published by South Bohemia Mathematical Letters

as Novák [243].

Since we know that the “Ends lemma” constructs semihypergroups from
semigroups, it is obvious that – given our list of objectives on page 100 – we
must concentrate on the issue of distributivity. Therefore, we will assume
that we have a semiring (S,+, ·), i.e. a distributive structure, and study
whether we can obtain an (inclusively) distributive hyperstructure from it.
Since by the “Ends lemma” we always get semihypergroups, we can use
results of Section 2.4 to decide whether (S,⊕) or (S,�) are hypergroups, i.e.
whether (S,⊕,�) is a stronger hyperstructure than a proper semihyperring.

In the following theorems, (S,⊕) will be the EL–semihypergroup of a
quasi-ordered semigroup (S,+,≤) and (S,�) will be the EL–semihypergroup
of a quasi-ordered semigroup (S, ·,≤).

Lemma 2.5.5. Let (S,⊕) and (S,�) be EL–semihypergroups of quasi-ordered
semigroups (S,+,≤) and (S, ·,≤), respectively. Then

a · (b+ c) = a · b+ a · c⇒ a� (b⊕ c) ⊆ a� b⊕ a� c
(a+ b) · c = a · c+ b · c⇒ (a⊕ b)� c ⊆ a� c⊕ b� c

Proof. For an arbitrary triple a, b, c ∈ S the fact that

a� (b⊕ c) ⊆ a� b⊕ a� c

may be rewritten as⋃
h∈[b+c)≤

[a · h)≤ ⊆
⋃

x∈[a·b)≤,y∈[a·c)≤

[x+ y)≤,

while the second inclusion may be rewritten in an analogous way as⋃
h∈[a+b)≤

[h · c)≤ ⊆
⋃

x∈[a·c)≤,y∈[b·c)≤

[x+ y)≤.

Suppose g ∈
⋃

h∈[b+c)≤

[a · h)≤ arbitrary. This means that there exists h0 ∈

[b + c)≤ such that g ∈ [a · h0)≤, i.e. a · h0 ≤ g. The fact that h0 ∈ [b + c)≤
is equivalent to the fact that b+ c ≤ h0 which in a quasi-ordered semigroup
implies a ·(b+c) ≤ a ·h0 for an arbitrary a ∈ S. We assume distributivity, i.e.
there is a · b+a · c ≤ a ·h0, i.e. a · b+a · c ≤ g, i.e. g ∈ [a · b+a · c)≤. Since the
relation “≤” is reflexive, there is a ·b ∈ [a ·b)≤ and a ·c ∈ [a ·c)≤, which means
that if we denote x = a ·b and y = a ·c, we get that g ∈

⋃
x∈[a·b)≤,y∈[a·c)≤

[x+y)≤.

Obviously, the second inclusion may be proved in an analogous way.
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Corollary 2.5.6. Let (S,⊕) be the EL–semihypergroup of a quasi-ordered
semigroup (S,+,≤) and let (S, ·,≤) be a quasi-ordered semigroup. Then

a · (b+ c) = a · b+ a · c⇒ a · (b⊕ c) ⊆ a · b⊕ a · c
(a+ b) · c = a · c+ b · c⇒ (a⊕ b) · c ⊆ a · c⊕ b · c

Proof. Obvious as this is a special case of Lemma 2.5.5. The proof may be
repeated without the necessity of reasoning concerning the fact that a · b ∈
[a · b)≤ and a · c ∈ [a · c)≤.

Lemma 2.5.7. Let (S,⊕) be the EL–semihypergroup of a quasi-ordered
semigroup (S,+,≤) and let (S, ·,≤) be a quasi-ordered group. Then

a · (b+ c) = a · b+ a · c⇒ a · (b⊕ c) ⊇ a · b⊕ a · c
(a+ b) · c = a · c+ b · c⇒ (a⊕ b) · c ⊇ a · c⊕ b · c

Proof. Let x ∈ a · b ⊕ a · c = [a · b + a · c)≤ be arbitrary. This means that
a · b + a · c ≤ x, i.e. (since we assume distributivity) a · (b + c) ≤ x. Now
regard an element h = a−1 · x, which must exist because (S, ·) is a group.
Since (S, ·,≤) is a quasi-ordered group, the fact that a · (b + c) ≤ x implies
b+ c ≤ a−1 · x, i.e. h = a−1 · x ∈ [b+ c)≤. If we now regard the product a · h,
we get that a · h = a · (a−1 · x) = x, i.e. x ∈

⋃
h∈[b+c)≤

a · h = a · (b⊕ c), which

means that the first inclusion holds. The other inclusion can be proved in an
analogous way.

Lemma 2.5.8. Let (S,⊕) and (S,�) be EL–semihypergroups of quasi-ordered
semigroups (S,+,≤) and (S, ·,≤), respectively. Moreover, let (S, ·) be a
group. Then

a · (b+ c) = a · b+ a · c⇒ a� (b⊕ c) ⊇ a� b⊕ a� c
(a+ b) · c = a · c+ b · c⇒ (a⊕ b)� c ⊇ a� c⊕ b� c

Proof. The lemma is a generalization of Lemma 2.5.7. The proof may be
copied. The lemma holds because the relation “≤” is reflexive, i.e. [a)≤ 6= ∅
for all a ∈ S. We prove inclusions⋃

h∈[b+c)≤

[a · h)≤ ⊇
⋃

x∈[a·b)≤,y∈[a·c)≤

[x+ y)≤,

and ⋃
h∈[a+b)≤

[h · c)≤ ⊇
⋃

x∈[a·c)≤,y∈[b·c)≤

[x+ y)≤.



104 CHAPTER 2. EL–HYPERSTRUCTURES

If we regard g ∈
⋃

x∈[a·b)≤,y∈[a·c)≤
[x+y)≤ arbitrary, then there exist x0 ∈ [a ·b)≤,

i.e. a · b ≤ x0, and y0 ∈ [a · c)≤, i.e. a · c ≤ y0, such that g ∈ [x0 + y0)≤, i.e.
x0 + y0 ≤ g. Obviously a · b+ a · c ≤ x0 + y0 ≤ g, i.e. thanks to distributivity
a · (b + c) ≤ g. In a quasi-ordered group this means that b + c ≤ a−1 · g,
i.e. h0 = a−1 · g ∈ [b + c)≤ and if we regard the product a · h0, we get that
a · (a−1 ·g) = g, i.e. g ∈

⋃
h∈[b+c)≤

[a ·h)≤, which means that the inclusion holds.

The other inclusion can be proved in an analogous way.

Before the following lemma notice that by the sum of sets A,B we mean
the set A+B = {a+ b | a ∈ A, b ∈ B}.
Lemma 2.5.9. Let (S,�) be the EL–semihypergroup of a quasi-ordered
semigroup (S, ·,≤) and let (S,+,≤) be a quasi-ordered group. Then

a · (b+ c) = a · b+ a · c⇒ a� (b+ c) = a� b+ a� c
(a+ b) · c = a · c+ b · c⇒ (a+ b)� c = a� c+ b� c

Proof. Once again, we are going to demonstrate validity of one equality only
– validity of the other one can be proved in an analogous way.

“⊆” Regard an arbitrary x ∈ a� (b+ c). This is equivalent to the fact that
x ∈ [a · (b+ c))≤, which – since we assume distributivity – is equivalent
to the fact that x ∈ [a · b + a · c)≤, i.e. a · b + a · c ≤ x. Now regard
two elements, x0 = a · b and y0 = x − a · b, which obviously exist
because (S,+) is a group. There obviously holds that a ·b ∈ [a ·b)≤ and
x0 + y0 = x. Furthermore, since a · b+ a · c ≤ x, there is a · c ≤ x− a · b,
i.e. y0 = x− a · b ∈ [a · c)≤. Thus x ∈ [a · b)≤ + [a · c)≤ = a� b+ a� c.

“⊇” Regard an arbitrary x ∈ a�b+a�c, i.e. an arbitrary x ∈ [a·b)≤+[a·c)≤.
This means that there exist x0 ∈ [a · b)≤ and y0 ∈ [a · c)≤ such that
x = x0 + y0. However, this is equivalent to the fact that a · b ≤ x0 and
a · c ≤ y0, which in a quasi-ordered set implies a · b+ a · c ≤ x0 + y0, i.e.
a · b + a · c ≤ x. This means that x ∈ [a · b + a · c)≤, which – since we
assume distributivity – is equivalent to the fact that x ∈ [a · (b+ c))≤,
i.e. x ∈ a� (b+ c).

Lemma 2.5.10. Let (S,�) be the EL–semihypergroup of a quasi-ordered
semigroup (S, ·,≤) such that “·” is a commutative idempotent operation.
Then

a · (b� c) ⊆ a · b� a · c
(a� b) · c ⊆ a · c� b · c
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Proof. The proof copies the proof of Lemma 2.5.5 with respect to the fact
that the operation “·” is commutative and idempotent, i.e. [a · b · a · c)≤ =
[a · b · c)≤.

Remark 2.5.11. Whether also the converse inclusion holds in Lemma 2.5.10,
is still an open question. The proof of Lemma 2.5.7 cannot be repeated
because the fact that (S, ·) is a group and the fact that “·” is an idempotent
operation either contradict each other or result in trivialities. In fact, the
issue of validity of the converse inclusion in the general case depends on
finding conditions for validity of the following statement, where a, b ∈ S is
arbitrary and (S, ·,≤) is at least a quasi-ordered semigroup:

For an arbitrary x ∈ [a · b)≤ there exists h ∈ [b)≤ such that a · h = x.

On condition that (S, ·,≤) is a quasi-ordered group we get Lemma 2.5.7.

In ring-like structures (R,+, ·) the neutral element of (R,+) denoted 0
has the absorbing property, i.e. for an arbitrary element a ∈ R there holds
a · 0 = 0 · a = 0. This property either follows from the defining axioms
of the structure (such as in rings) or is defined as an axiom itself (such as
in semirings by some authors). However, in our definition of a semiring on
page 100 we chose the approach without absorbing elements. Therefore, we
must now check what happens if we regard monoids or groups (S,+) in all
the above lemmas and corollaries. Further on, we will denote the neutral
element of (S,+), which annihilates S with respect to “·”, by 0.

Remark 2.5.12. If we regard the absorbing element a = 0 (or c = 0 in
second inclusions) in Lemma 2.5.5, Corollary 2.5.6 or Lemma 2.5.10, the
inclusions obviously hold because we get [0)≤ ⊆

⋃
x,y∈[0)≤

[x+y)≤ or {0} ⊆ [0)≤

and the relation “≤” is reflexive.

The issue of Lemma 2.5.7 is a complex one.

1. If (S,+) is a group with the neutral element 0, then the fact that (S, ·)
is a group and the fact that distributivity law holds imply that 0 is an
absorbing element of (S, ·). However, this means that (S, ·) is trivial,
thus of no interest to our considerations.

2. If (S,+) is a proper semigroup (be it a monoid with the neutral element
0 or not), then (S, ·) need not have an absorbing element. If it does
not have it, we experience no problems. If it does, (S, ·) is trivial, thus
of no interest to our considerations.
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3. If we restrict ourselves to a group (S \ {0}, ·), where 0 is an absorbing
element of (S, ·), then we get⋃

h∈[b+c)≤

a · h ⊇ [a · b+ a · c)≤

which for absorbing a = 0 means that {0} ⊇ [0)≤ which obviously does
not hold for general relation “≤”. The relation must therefore be a
special one – such that 0 is an EL–maximal element of (S,+,≤).

(a) Yet if (S,+) is a group, then for an arbitrary a, b ∈ S such that
a < b we have 0 < b − a, which is not possible if there should
simultaneously hold [0)≤ = {0}. The relation “≤” is thus, in such
a case, trivial. In other words, considering skew-fields (S,+, ·) in
Lemma 2.5.7 is of no sense.

If we regard the absorbing element a = 0 in Lemma 2.5.8, we get that⋃
x∈[0)≤,y∈[0)≤

[x+ y)≤ ⊆
⋃

h∈[b+c)≤

[0 · h)≤ = [0)≤.

However, ⋃
x∈[0)≤,y∈[0)≤

[x+ y)≤ =
⋃

0≤x,0≤y

[x+ y)≤ = [0)≤,

i.e. unlike for Lemma 2.5.7 the implication holds without any further as-
sumptions.

It can be easily verified that Lemma 2.5.9 holds for the absorbing element
a = 0 (or c = 0 in the second equation) as well.

Remark 2.5.13. In Subsection 2.5.5 we will include one more theorem on
distributivity, where both (S,+,≤) and (S, ·,≤) can be semihypergroups
only.

2.5.3 EL–ring-like hyperstructures

Results of this subsection are an adapted version of results from Novák [243].23

They have also been summarized in Novák and Cristea [247], accepted for publica-

tion by Hacettepe Journal of Mathematics and Statistics (WoS Q4) .

Now that we have discussed the issue of distrubtivity, we can shift our at-
tention to ring-like hyperstructures. Suppose we have a quasi-ordered semir-
ing (S,+, ·,≤) which we use to construct a hyperstructure (S,⊕,�), where

23In Novák [243] the term “quasi-ordered semiring” is not used.
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(S,⊕) and (S,�) are EL–semihypergroups. Theorems of this subsection
describe the great variety of ring-like hyperstructures that we can obtain.
Recall Definition 1.1.14 from page 9.

Theorem 2.5.14. Let (S,+, ·,≤) be a quasi-ordered semiring and (S,⊕)
and (S,�) EL–semihypergroups constructed from quasi-ordered semigroups
(S,+,≤) and (S, ·,≤), respectively.

1. (S,⊕,�) is a semihyperring in the general sense.

2. If (S, ·) is a group, then (S,⊕,�) is a good semihyperring.

3. If (S,+) is a group or if (S,⊕) is a hypergroup, then (S,⊕,�) is a
hyperring in the general sense.

4. If (S,+) is a group with neutral element 0 and (S \ {0}, ·) is a group,
then (S,⊕,�) is a good hyperring in the general sense.

Proof. The theorem is an immediate corollary of lemmas on distributivity
included in Subsection 2.5.2.

In item 3 of Theorem 2.5.14 notice that hypergroups can be constructed
from proper semigroups as well. See the following example.

Example 2.5.15. Regard an arbitrary set K and its power set P(K). The
operations “∩”, “∪” of set intersection and set union are associative, thus
(P(K),∩) and (P(K),∪) are semigroups. The relation “⊆” on P(K) is ob-
viously reflexive and transitive and for arbitrary A,B,C ∈ P(K) such that
A ⊆ B there is A ∩ C ⊆ B ∩ C and A ∪ C ⊆ B ∪ C. Thus if we define
hyperoperations “⊕”, “�” for arbitrary A,B ∈ P(K) by

A⊕B = [A ∪B)⊆ = {X ∈ P(K) | A ∪B ⊆ X} (2.32)

and
A�B = [A ∩B)⊆ = {Y ∈ P(K) | A ∩B ⊆ Y }, (2.33)

we get semihypergroups (P(K),⊕) and (P(K),�). Moreover, as set intersec-
tion is distributive with respect to set union, (P(K),⊕,�) is a semihyperring
in the general sense. Finally, as follows from Example 2.4.94, (P(K),⊕) is
a hypergroup. Altogether we get that (P(K),⊕,�) is a hyperring in the
general sense.

On page 11 we discussed the differences in terminology between Rota
(followed by Davvaz and Leoreanu–Fotea [111]) on one hand and Spartalis
and Vougiouklis on the other as far as multiplicative hyperrings are concerned.
The following theorem clarifies the issue.
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Theorem 2.5.16. Let (S,+, ·,≤) be a quasi-ordered semiring and (S,�) the
EL–semihypergroup constructed from a quasi-ordered semigroup (S,+,≤). If
(S,+) is a group, then (S,+,�) is a good multiplicative hyperring in the sense
of Spartalis and Vougiouklis. If moreover (S,+) is commutative, i.e. (S,+, ·)
is a ring, then (S,+,�) is a strongly distributive multiplicative hyperring in
the sense of Rota.

Proof. In the case of Spartalis, the theorem is an immediate corollary of
Lemma 2.5.9. In the case of Rota, we need, on top of that, to assume
commutativity of (S,+) and prove the validity of

a� (−b) = (−a)� b = −(a� b)

for all a, b ∈ S. However, in the context of the “Ends lemma” this means

[a · (−b))≤ = [(−a) · b)≤ = [−(a · b))≤

for all a, b ∈ S. Yet this obviously holds because

a · (−b) = (−a) · b = −(a · b)

for all a, b ∈ S, is a standard ring property and we suppose that (S,+, ·) is a
ring.

In other words, even though the “Ends lemma” cannot be used to con-
struct Krasner hyperrings, it can be used to construct “the other class of
hyperrings”, multiplicative hyperrings. For a basic introduction to the topic
of multiplicative hyperrings see book [111], chapter 4; for some results on
strongly distributive multiplicative hyperrings see Rota [275]. Below we in-
clude two simple examples of such hyperstructures.

Example 2.5.17. Suppose the commutative ring (Z,+, ·) and define the
hyperoperation on Z by a � b = [a · b)≤ for all a, b ∈ Z, where “≤” is
the usual ordering of integers. Then (Z,�) is an EL–semihypergroup and
(Z,+,�) is a strongly distributive multiplicative hyperring (as well as a good
multiplicative hyperring).

Example 2.5.18. Already in [275] Rota uses the set of integer residue classes
as a tool to construct a multiplicative hyperring. Suppose the commutative
ring (Z,+, ·) and define the hyperoperation on Z by a � b = [a · b)≡ for all
a, b ∈ Z, where, for a fixed m ∈ Z, “≡” is the relation of congruence modulo
m. In this way a� b is a residue class – that one in which the product a · b
belongs to. Then (Z,�) is an EL–semihypergroup and it is easy to show
that (Z,+,�) is a strongly distributive multiplicative hyperring (as well as
a good multiplicative hyperring).
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In Definition 1.1.14 we followed the classification of Vougiouklis and de-
fined semihyperrings as hyperstructures (S,⊕,�) with two hyperoperations.
However, we can also use the classification based on the original Krasner’s
idea, where only “⊕” is a hyperoperation. Thus we get the following classifi-
cation used e.g. in works by Davvaz, Ameri or Hedayati related to their study
of hyperideals such as e.g. [103, 144], or works by Chaopraknoi, Hobuntud,
Kemprasit and others in their study of semigroups admitting semihyperrings
with zero such as e.g. [41]. Notice that by “hyperring”, the Krasner hyperring
of Definition 1.1.13 is meant.

Definition 2.5.19. [144] A hyperalgebra (S,⊕, ·) is called a semihyperring
if and only if

(i) (S,⊕) is a semihypergroup;

(ii) (S, ·) is a semigroup;

(iii) ∀a, b, c ∈ S, a · (b⊕ c) = a · b⊕ a · c and (b⊕ c) · a = b · a⊕ c · a

If we replace (iii) by

∀a, b, c ∈ S, a · (b⊕ c) ⊆ a · b⊕ a · c and (b⊕ c) · a ⊆ b · a⊕ c · a

we say that S is a weak 24 distributive semihyperring. A semihyperring is
called with zero element, if there exists a unique element 0 ∈ S such that
0⊕ x = x = x⊕ 0 and 0 · x = 0 = x · 0 for all x ∈ S. [. . .] A semihyperring
is called a hyperring provided (S,+) is a canonical hypergroup.

Given such a definition, we immediately get the following:

Theorem 2.5.20. Let (S,+, ·,≤) be a quasi-ordered semiring and (S,⊕) the
EL–semihypergroup constructed from a quasi-ordered semigroup (S,+,≤).
Then (S,⊕, ·) is a semihyperring in the sense of Definition 2.5.19.

Proof. The theorem is an immediate corollary to lemmas on distributivity
included in Subsection 2.5.2.

Given our objective 3 on page 100, we get the following result.

Theorem 2.5.21. Let (S,�) be the EL–semihypergroup of a quasi-ordered
semigroup (S, ·,≤) such that “·” is a commutative idempotent operation.
Then (S,�, ·) is a weak distributive semihyperring in the sense of Defini-
tion 2.5.19.

24Hedayati and Ameri indeed use the word “weak” even though, given our discussion in
Remark 1.1.16 on page 10, it is rather misleading as what they describe is “inclusive” or
“non-strong” distributivity.
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Proof. The theorem is an immediate corollary of Lemma 2.5.10.

EL–semihyperrings of Definition 2.5.19 will always be without zero el-
ements because the condition “0 ⊕ x = x = x ⊕ 0” is the property of
scalar identities which, by Theorem 2.4.10 on page 44, do not exist in EL–
semihypergroups. This blocks the road to Krasner hyperrings because the
semihypergroup (S,⊕) can never be a canonical hypergroup. However, it still
can be a commutative hypergroup in which the transposition axiom holds,
i.e. a join space. Such hyperstructures (H,⊕, ·), introduced by Massouros
and Mittas [218] to facilitate the study of automata, are called hyperringoids .

Definition 2.5.22. A hyperringoid is a structure (H,⊕, ·) where (H,⊕) is
a join space, (H, ·) is a semigroup and the multiplication “·” is bilaterally
distributive over “⊕”.

Lemma 2.5.23. ( [95], p. 12) A commutative hypergroup is canonical if and
only if it is a join space with a scalar identity.

In other words, hyperringoids are semihyperrings of Definition 2.5.19 such
that “⊕” is commutative and in (H,⊕) both reproductive (1.5) and trans-
position laws (1.11) hold. Yet how to enable this in the context of the “Ends
lemma” was discussed in Section 2.4. The obvious suggestion to get hy-
perringoids is to assume that both (S,⊕) and (S, ·) are groups – because by
Lemma 2.1.5 the transposition law holds in EL–semihypergroups constructed
from quasi-ordered groups and in Lemma 2.5.7 we need (S, ·) to be a group.
However, this would result in trivialities. Yet we can use hypergroups (S,⊕)
constructed from proper semihypergroups in which the transposition law
holds. Extensive EL–semihypergroups of Subsection 2.4.6 are an example of
such hyperstructures.

Theorem 2.5.24. Let (S,+, ·,≤) be a quasi-ordered semiring and (S,⊕)
the mEL–semihypergroup constructed from a commutative extensive quasi-
ordered semigroup (S,+,≤). Moreover, let (S, ·) be a group. Then (S,⊕, ·)
is a hyperringoid.

Proof. By Theorem 2.4.71, (S,⊕) is a hypergroup (commutativity is not
needed). By Corollary 2.4.75, the transposition law holds in (S,⊕) (commu-
tativity is still not needed). If we suppose commutativity of “⊕”, we con-
clude that (S,⊕) is a join space. Distributivity follows from Lemma 2.5.5 and
Lemma 2.5.7. In Remark 2.5.12 we mention that the fact that the (potentially
existing) neutral element of (S,+) is absorbing in (S, ·) results in trivialities
– yet this is only to be remarked as (S,+) need not be a monoid.
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If we suppose that the quasi-ordered semiring (S,+, ·,≤) is a field, all
we can get is an inclusively distributive hyperringoid. Indeed, by supposing
that both (S,+) and (S \ {0}, ·) are groups we, by Remark 2.5.12, loose
Lemma 2.5.7. However, in such a case we need not assume extensivity of
“+”.

Finally, notice that Massouros brothers [209] arrived to a more general
definition as they define hyperringoids as hyperstructures (H,+, ·), where
(H,+) is a hypergroup only while they call hyperringoids of Definition 2.5.22
join hyperringoids. This has no influence on the validity of Theorem 2.5.24,
which assumes extensivity of “+”. However, it would enable us to get a
weak distributive hyperringoid – in the sense of [209] – even in case that
(S,+, ·) was not a field. However, as this a matter of terminology and proper
application of lemmas on distributivity only, we do not seek to explore this
topic.

Remark 2.5.25. Throughout Subsection 2.5.2, the results of which are cru-
cial for our considerations in this subsection, we proved implications in the
form “single-valued distributivity implies”. This was because we wanted to
show what the single-valued semirings result in when the “Ends lemma” is
applied on them. Naturally, the validity of hyperstructure distributivity may
be achieved by means of other conditions.

2.5.4 A special case: composition in EL–semihyperrings

Results of this subsection were accepted for publication in Hacettepe Journal of

Mathematics and Statistics (WoS Q4) as Novák and Cristea [247].

Out of the many special classes of (semi)hyperrings we will mention com-
position hyperrings introduced by Cristea and Jančić-Rašović [98] and mo-
tivated by the study of a hyperring of polynomials in Jančić-Rašović [166].
This choice of topic is purely arbitrary as we want to show an example of
a special property in the context of hyperrings in the sense of Spartalis and
Vougiouklis.

The “hyperring” of the following definition is the “good hyperring in the
general sense”.

Definition 2.5.26. ( [98], Def. 3.1) A composition hyperring is an algebraic
structure (R,⊕,�, ◦), where (R,⊕,�) is a commutative hyperring and the
hyperoperation “◦” satisfies the following properties, for all x, y, z ∈ R:

1. (x⊕ y) ◦ z = x ◦ z ⊕ y ◦ z

2. (x� y) ◦ z = (x ◦ z)� (y ◦ z)
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3. x ◦ (y ◦ z) = (x ◦ y) ◦ z.

The binary hyperoperation “◦” having the above properties is called the
composition hyperoperation of the hyperring (R,⊕,�).

Composition hyperrings are multi-valued generalizations of composition
rings introduced in Adler [1]. To follow [1,98] we further on regard commu-
tative hyperoperations only (recall that hyperstructures of Subsection 2.5.3
need not be commutative; also “commutative hyperring” in the above defi-
nition means that both “⊕” and “�” are commutative). Notice that in the
“Ends lemma” context, commutativity of the single-valued operation implies
commutativity of the hyperoperation and antisymmetry of “≤” turns this
implication into equivalence. If x ◦ y is a one-element set for all x, y ∈ R, we
will say “operation” rather than “hyperoperation” even though it will have
to be at certain point applied in an element-wise manner on sets (see below
e.g. (2.42) on page 117). We will continue with the approach suggested in
Remark 2.5.25 and study properties of hyperstructures which follow from the
properties of the single-valued structures.

To start with, we recall the precise meaning of symbols “⊕” and “�”.
When applied on elements a, b ∈ R, they have the usual “Ends lemma”
meaning

a⊕ b = [a+ b)≤ = {x ∈ R | a+ b ≤ x} (2.34)

and
a� b = [a · b)≤ = {y ∈ R | a · b ≤ y}. (2.35)

For sets A,B ⊆ R there is

A⊕B =
⋃
a∈A
b∈B

[a+ b)≤ =
⋃
a∈A
b∈B

{x ∈ R | a+ b ≤ x} (2.36)

and
A�B =

⋃
a∈A
b∈B

[a · b)≤ =
⋃
a∈A
b∈B

{y ∈ R | a · b ≤ y}. (2.37)

First of all we discuss a rather trivial case of constant composition.

Definition 2.5.27. If there is x ◦ y = r ◦ s for an arbitrary quadruple of
elements x, y, r, s ∈ R, we call the composition operation (hyperoperation)
“◦” constant composition operation (hyperoperation).

For the rest of this subsection recall that semihyperrings in the general
sense are the weakest and most general type of hyperstructures mentioned
in Theorem 2.5.14 on page 107.
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Theorem 2.5.28. Let (S,⊕,�) be a semihyperring in the general sense con-
structed using the “Ends lemma” from idempotent quasi-ordered semigroups
(S,+,≤) and (S, ·,≤). Consider r ∈ S arbitrary. Then “◦” defined by

a ◦ b = [r)≤ (2.38)

for all a, b ∈ S, is a constant composition hyperoperation on (S,⊕,�). It is
a constant operation if “≤” is antisymmetric and r is the greatest element of
(S,≤).

Proof. In our notation, the left-hand side of Definition 2.5.26, property 1,
reads (x⊕ y) ◦ z. This is

[x+ y)≤ ◦ z =
⋃

number of elements
of [x+y)≤ –times

[r)≤ = [r)≤.

The right-hand side reads (x ◦ z)⊕ (y ◦ z), which is

[r)≤ + [r)≤ =
⋃

a,b∈[r)≤

[a+ b)≤ =
⋃
r≤a
r≤b

[a+ b)≤.

Since r ≤ a, r ≤ b implies r + r ≤ a + b and the relation “≤” is reflexive,
there is [r)≤ + [r)≤ = [r + r)≤. For idempotent “+” there is r + r = r, i.e.
[r)≤ + [r)≤ = [r)≤.

The same reasoning can be applied on property 2 of the definition while
property 3 holds obviously. Finally, if r is the greatest element of (S,≤), i.e.
we need to assume antisymmetry of “≤”, then [r)≤ = {r}, thus “◦” is an
operation rather than a hyperoperation.

Example 2.5.29. If we continue with Example 2.5.15, where the hyperring
in the general sense of the power set P(K) was discussed, and define

A ◦B = [R)⊆ = {T ∈ P(K) | R ⊆ T}

for an arbitrary pair of A,B ∈ P(K) and an arbitrary R ∈ P(K), we get a
constant composition hyperoperation on P(K). If R = K, then “◦” becomes
a constant composition operation.

Theorem 2.5.28 obviously does not hold when operations “+” or “·” are
non-idempotent. Not even one of the inclusions holds because neither r ∈
[r + r)≤ nor r + r ∈ [r)≤ in a general case. Yet we can prove the following
theorem. Notice that we use the concept of maximum / minimum of a two
element set in it. In order not to complicate our reasoning we assume that
“≤” is a partial ordering even though a way out could possibly be found even
without antisymmetry.
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Theorem 2.5.30. Let (S,⊕,�) be a semihyperring in the general sense con-
structed from partially ordered semigroups (S,+,≤) and (S, ·,≤). If they
exist, denote es the neutral element of (S,+) and ep the neutral element of
(S, ·).

1. If simultaneously ep ≤ ep + ep and es ≤ es · es, then “◦min e” defined by

a ◦min e b = [min{es, ep})≤ (2.39)

for all a, b ∈ S, is a constant composition hyperoperation on (S,⊕,�).

2. If simultaneously ep + ep ≤ ep and es · es ≤ es, then “◦max e” defined by

a ◦max e b = [max{es, ep})≤ (2.40)

for all a, b ∈ S, is a constant composition hyperoperation on (S,⊕,�).

Before proving the theorem, agree that if the elements es, ep are incom-
parable, then since their minimum does not exist, we set a ◦min e b = ∅.
Moreover, if only es exists, then we set min{es, ep} = es (and the same for
ep). And make the analogous agreement for the maxima.

Proof. We will prove the theorem for “◦min e” only. The proof for “◦max e” is
analogous.

In our notation the left-hand-side of Definition 2.5.26, property 1, reads
(x⊕ y) ◦ z. This is

[x+ y)≤ ◦min e z =
⋃

number of elements
of [x+y)≤–times

[min{es, ep})≤ = [min{es, ep})≤

while the right-hand side, which reads (x ◦ z)⊕ (y ◦ z), is

[min{es, ep})≤ + [min{es, ep})≤ =
⋃

min{es,ep}≤a

min{es,ep}≤b

[a+ b)≤.

Now, the following cases are possible:

es ≤ ep : This means that min{es, ep} = es; the left-hand side is [es)≤ while
the right-hand side is

⋃
es≤a
es≤b

[a+ b)≤ = [es + es)≤ = [es)≤, i.e. the same.

ep < es : This means that min{es, ep} = ep; the left-hand side is [ep)≤ while
the right hand side is

⋃
ep≤a
ep≤b

[a + b)≤ = [ep + ep)≤. Suppose now an
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arbitrary x ∈ [ep)≤, i.e. such x ∈ S that ep ≤ x. Since we assume that
ep < es, there is also ep + ep < x+ es = x, i.e. x ∈ [ep + ep)≤. If on the
other hand we suppose an arbitrary x ∈ [ep + ep)≤, i.e. ep + ep ≤ x,
then on condition assumed in the theorem, i.e. ep ≤ ep + ep, there is
from transitivity that ep ≤ x, which means that x ∈ [ep)≤. Altogether
[ep)≤ = [ep + ep)≤.

If neither es nor ep exists or if es and ep are incomparable, we end up with
∅ = ∅. If only es exists, we get the same as when es ≤ ep. If only ep exists,
we get the same as when ep < es.

The proof of Definition 2.5.26 property 2, is completely analogous. The
proof of property 3 is obvious.

Example 2.5.31. Since (Z,+,≤), where “≤” is the natural ordering of
integers, is a partially ordered group, (Z, ·,≤) a partially ordered semigroup
and es = 0, ep = 1, the hyperoperation “◦” defined for all a, b ∈ Z by a ◦ b =
[0)≤ is an example of a constant composition hyperoperation on the hyperring
in the general sense (Z,⊕,�) in a context where the single-valued operations
“+” and “·” are non-idempotent. The conditions of Theorem 2.5.30 obviously
hold because 1 ≤ 1 + 1 and 0 ≤ 0 · 0.

The constant compositions are rather trivial and degenerated cases yet
even there the limits of applying the composition property in the context of
the “Ends lemma” can be seen. It is rather difficult to achieve equality in
properties 1 and 2 since the addition (or multiplication) on the left-hand side
is applied on elements while on the right-hand side it is (in a general case)
applied on sets – and this is done in a context where neither a ∈ [a + a)≤
nor a + a ∈ [a)≤ holds generally. Let us therefore adjust the composition
hyperoperation of Definition 2.5.26 to suit the “Ends lemma” better.

Definition 2.5.32. A binary operation (hyperoperation) on a semihyperring
in the general sense (S,⊕,�) is called a left weak composition operation
(hyperoperation) and denoted “◦lw” if, for all x, y, z ∈ S,

1. (x⊕ y) ◦lw z ⊆ (x ◦lw z)⊕ (y ◦lw z)

2. (x� y) ◦lw z ⊆ (x ◦lw z)� (y ◦lw z)

3. x ◦lw (y ◦lw z) = (x ◦lw y) ◦lw z.

or the right weak composition operation (hyperoperation) and denoted “◦rw”
if, for all x, y, z ∈ S:

1. (x ◦rw z)⊕ (y ◦rw z) ⊆ (x⊕ y) ◦rw z
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2. (x ◦rw z)� (y ◦rw z) ⊆ (x� y) ◦rw z

3. x ◦rw (y ◦rw z) = (x ◦rw y) ◦rw z.

The hyperstructure (S,⊕,�, ◦W ) (regardless of type) is called a weak compo-
sition hyperstructure (i.e. weak composition semihyperring / weak composi-
tion hyperring / etc.) regardless of whether “◦W” = “◦lw” or “◦W” = “◦rw”
or whether “◦W” is single– or multi–valued.

Chvalina has in [43,44] and subsequent papers introduced and studied the
concept of quasi-order hypergroups (for details see Section 1.2 and Subsec-
tion 2.6.3). In the following theorem we not only give necessary conditions
for the existence of a left (right) weak composition hyperoperation but also
establish a link between quasi-order hypergroups and EL–hyperstructures by
defining the composition hyperoperation by a◦b = [a)≤∪ [b)≤ for all a, b ∈ S,
i.e. by a condition used when testing whether a hypergroupoid (H, ◦) is a
quasi-order hypergroup.25 Notice that, thanks to reflexivity of relation “≤”,
the set [a)≤∪ [b)≤ has for a 6= b always at least two elements, i.e. the notation
defines a hyperoperation.

Theorem 2.5.33. Let (S,⊕,�) be a semihyperring in the general sense con-
structed from quasi-ordered semigroups (S,+,≤) and (S, ·,≤). If, for all
r ∈ S, there is r + r ≤ r and r · r ≤ r, then there always exists a left weak
composition hyperoperation “◦lw” on (S,⊕,�).

Proof. Define a◦lwb = [a)≤∪[b)≤ for all a, b ∈ S. In this context the left-hand
side of property 1 of Definition 2.5.32 is

[x+ y)≤ ◦lw z =
⋃

x+y≤a

[a)≤ ∪ [z)≤ = [x+ y)≤ ∪ [z)≤

while the right-hand side is

(x ◦lw z)⊕ (y ◦lw z) = ([x)≤ ∪ [z)≤)⊕ ([y)≤ ∪ [z)≤) =
⋃

a∈[x)≤∪[z)≤
b∈[y)≤∪[z)≤

[a+ b)≤,

i.e. (x ◦lw z) ⊕ (y ◦lw z) = {d ∈ S | a + b ≤ d, (x ≤ a or z ≤ a) and (y ≤
b or z ≤ b)}. Suppose an arbitrary c ∈ [x+ y)≤ ◦lw z. There are two options:
c ∈ [x+y)≤ or c ∈ [z)≤. If c ∈ [x+y)≤, then obviously c ∈ (x◦lw z)⊕(y◦lw z)
because a ∈ [x)≤, b ∈ [y)≤, i.e. x ≤ a, y ≤ b implies x+y ≤ a+b which thanks

25For details see e.g. Corsini and Leoreanu [95], chapter 3, §1 and (1.29) on page 23
and (2.63) on page 137.
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to transitivity of “≤” means that x + y ≤ c which is what we suppose. If
c ∈ [z)≤, i.e. z ≤ c, then if we suppose that z+z ≤ z, we get from transitivity
of “≤” that z+ z ≤ c. Yet this is on the right-hand side the case of a ∈ [z)≤,
b ∈ [z)≤, i.e. z + z ≤ a+ b.

The proof of property 2 is analogous, the proof of property 3 is obvious.

Corollary 2.5.34. If (S,+,≤) and (S, ·,≤) are idempotent quasi-ordered
semigroups, then there always exists a left weak composition hyperoperation
“◦lw” on (S,⊕,�). The same holds if r + r ≤ r for all r ∈ S and (S, ·,≤)
is an idempotent quasi-ordered semigroup or if r · r ≤ r for all r ∈ S and
(S,+,≤) is an idempotent quasi-ordered semigroup.

Proof. Conditions r + r ≤ r, r · r ≤ r included in Theorem 2.5.33 in this
case turn into r ≤ r. However, since the relation “≤” is reflexive, they hold
trivially.

Theorem 2.5.35. Let (S,⊕,�) be a semihyperring in the general sense con-
structed from a quasi-ordered semigroup (S,+,≤) and a commutative idem-
potent quasi-ordered semigroup (S, ·,≤). There always exists a right weak
composition hyperoperation on (S,⊕,�).

Proof. For arbitrary A,B ⊆ S denote

A ◦rw B = {a · b | a ∈ A, b ∈ B}, (2.41)

where “·” is the single-valued product of (S, ·,≤). One-element sets A,B will
be represented by the elements themselves, i.e. {a}◦rw {b} = a · b, which will
allow us to write

a ◦rw b = a · b (2.42)

for all a, b ∈ S.
Now, in property 1 of Definition 2.5.32 we get on the left-hand side,

which reads (x ◦rw z) ⊕ (y ◦rw z), the set [x · z + y · z)≤ which, thanks to
distributivity of the single-valued structure (S,+, ·), is [(x+ y) · z)≤. On the
right-hand side, which reads (x⊕ y)◦rw z, we get [x+ y)≤ ◦rw z, which equals⋃
x+y≤s

{s · z}. Yet since the relation “≤” is reflexive, there is x + y ≤ x + y

and [(x+ y) · z)≤ ⊆
⋃

x+y≤s
{s · z}.

In property 2 of Definition 2.5.32 we get that (thanks to commutativity
and idempotency)

(x ◦rw z)� (y ◦rw z) = (x · z)� (y · z) = [x · z · y · z)≤ =

= [x · y · z · z)≤ = [x · y · z)≤.
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On the left-hand side we get that [x · y)≤ ◦rw z =
⋃

x·y≤r
{r · z}. Thus thanks

to reflexivity of the relation “≤” property 2 holds.
In property 3 of Definition 2.5.32 there is x ◦rw (y ◦rw z) = x ◦rw (y · z) =

x · y · z and (x ◦rw y) ◦rw z = (x · y) ◦rw z = x · y · z.

The following lemma mentions a rather specific case of EL–semihyper-
groups constructed from linearly ordered commutative semigroups. Even
though linear ordering is rather special as we assume two more properties of
the relation “≤” on top of reflexivity and transitivity, it is important to realize
that number sets with the usual operations of addition and multiplication are
linearly ordered and commutative; in some of these the conditions assumed
in the lemma hold. Notice that unlike in Theorem 2.5.35, idempotency is
not needed in this lemma.

Lemma 2.5.36. Let (S,⊕,�) be a semihyperring in the general sense con-
structed from linearly ordered commutative semigroups (S,+,≤) and (S, ·,≤
). If implications a + a ≤ b ⇒ a ≤ b and a · a ≤ b ⇒ a ≤ b hold for all
a, b ∈ S, then there always exists a right weak composition hyperoperation
“◦rw” on (S,⊕,�).

Proof. We will show that the weak composition hyperoperation in question
will be

a ◦rw b = [max{a, b})≤. (2.43)

Suppose arbitrary x, y, z ∈ S. First we discuss the meaning of property 1
of Definition 2.5.32 based on definitions of “⊕” and “◦rw”. In our notation
the left-hand side reads (x ◦rw z)⊕ (y ◦rw z). This is

[max{x, z})≤ ⊕ [max{y, z})≤ =
⋃

a∈[max{x,z})≤
b∈[max{y,z})≤

[a+ b)≤ =
⋃

max{x,z}≤a
max{y,z}≤b

[a+ b)≤,

which results in the following four cases based on the relations between x, y
and z. Notice that reasoning in cases C and D is analogous to reasoning in
case B.

A) x ≤ z, y ≤ z: In this case max{x, z} = z, max{y, z} = z and moreover
x+ y ≤ z + z. Thus⋃

max{x,z}≤a
max{y,z}≤b

[a+ b)≤ =
⋃
z≤a
z≤b

[a+ b)≤ = {c ∈ S | a+ b ≤ c, z ≤ a, z ≤ b}.

At the same time conditions z ≤ a, z ≤ b result in z + z ≤ a + b and
from transitivity of “≤” we get that z + z ≤ c. Finally

(x◦rW z)⊕(y◦rW z) = {c ∈ S | x+y ≤ c} = {c ∈ S | z+z ≤ c}. (2.44)
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B) x ≤ z, z ≤ y: In this case max{x, z} = z, max{y, z} = y and moreover
from transitivity of “≤” there is x ≤ y. Thus⋃

max{x,z}≤a
max{y,z}≤b

[a+ b)≤ =
⋃
z≤a
y≤b

[a+ b)≤ = {c ∈ S | a+ b ≤ c, z ≤ a, y ≤ b}.

At the same time conditions z ≤ a, y ≤ b result in z + y ≤ a + b and
from transitivity of “≤” we get that z + y ≤ c. Finally

(x ◦rW z)⊕ (y ◦rW z) = {c ∈ S | z + y ≤ c}. (2.45)

C) z ≤ x, y ≤ z: This results in (x ◦rw z)⊕ (y ◦rw z) = {c ∈ S | x+ z ≤ c}.

D) z ≤ x, z ≤ y: This results in

(x ◦rw z)⊕ (y ◦rw z) = {c ∈ S | x+ y ≤ c} = {c ∈ S | z + z ≤ c}

The right-hand side of property 1 of Definition 2.5.32 reads (x ⊕ y) ◦rw z.
Based on definitions of “⊕” and “◦rw” this is

[x+ y)≤ ◦rw z =
⋃

r∈[x+y)≤

[max{r, z})≤ =
⋃

x+y≤r

[max{r, z})≤.

However, in our case this is the same as [max{x+ y, z})≤, which is

{d ∈ S | max{x+ y, z} ≤ d}. (2.46)

Now we verify the inclusion in property 1 of Definition 2.5.32. Suppose an
arbitrary c ∈ (x◦rw z)⊕ (y ◦rw z) and let us find out whether c ∈ (x⊕y)◦rw z.
We have to test each of the cases A−D.

ad A: The element c is such that z+ z ≤ c, x+ y ≤ c and at the same time
x ≤ z, y ≤ z. Thus

1. If max{x+y, z} = x+y, then (2.46) turns into {d ∈ S | x+y ≤ d}.
Thus c ∈ (x⊕ y) ◦rW z obviously holds.

2. If max{x+y, z} = z, then (2.46) turns into {d ∈ S | z ≤ d} and we
have to show that z ≤ c. Yet since z + z ≤ c, there is – thanks to
the assumption of the theorem – also z ≤ c and c ∈ (x⊕ y) ◦rW z.

ad B: The element c is such that z + y ≤ c and at the same time x ≤ z,
z ≤ y. Thus
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1. If max{x+y, z} = x+y, then (2.46) turns into {d ∈ S | x+y ≤ d}.
Since x ≤ z, there is x + y ≤ z + y and from transitivity we get
that x+ y ≤ c. Thus c ∈ (x⊕ y) ◦rW z.

2. If max{x + y, z} = z, then (2.46) turns into {d ∈ S | z ≤ d} and
we have to show that z ≤ c. Since z ≤ y, there is z + z ≤ z + y
and from transitivity of “≤”, there is z + z ≤ c. Yet this means
– thanks to the assumption of the theorem – that z ≤ c and
c ∈ (x⊕ y) ◦rW z.

ad C: The element c is such that x + z ≤ c and at the same time z ≤ x,
y ≤ z. Thus

1. If max{x+y, z} = x+y, then (2.46) turns into {d ∈ S | x+y ≤ d}
and we have to show that x + y ≤ c. Suppose on contrary that
c < x+y. Since y ≤ z, there is c < x+z. Yet since simultaneously
x+ z ≤ c, we get from transitivity that c < c which is impossible.
Thus x+ y ≤ c and c ∈ (x⊕ y) ◦rW z.

2. If max{x + y, z} = z, then (2.46) turns into {d ∈ S | z ≤ d} and
we have to show that z ≤ c. Since z ≤ x, there is z + z ≤ x + z
and from transitivity of “≤”, there is z + z ≤ c. Yet this –
thanks to the assumption of the theorem – means that z ≤ c and
c ∈ (x⊕ y) ◦rW z.

ad D: The element c is such that x+ y ≤ c, z+ z ≤ c and at the same time
z ≤ x, z ≤ y. Thus

1. If max{x+y, z} = x+y, then (2.46) turns into {d ∈ S | x+y ≤ d}
and we have to show that x + y ≤ c. Yet this is one of our
assumptions. Thus c ∈ (x⊕ y) ◦rW z holds trivially.

2. If max{x + y, z} = z, then (2.46) turns into {d ∈ S | z ≤ d}
and we have to show that z ≤ c. Yet since z + z ≤ c, there is
also – thanks to the assumption of the theorem – that z ≤ c and
c ∈ (x⊕ y) ◦rW z.

Thus we have verified validity of property 1 of Definition 2.5.32. The
proof of property 2 is completely analogous.

Verifying property 3 is rather straightforward. The left-hand side x ◦rw
(y ◦rw z) is

x ◦rw [max{y, z})≤ =
⋃

r∈[max{y,z})≤

[max{x, r})≤ =
⋃

max{y,z}≤r

[max{x, r})≤
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while the right-hand side (x ◦rw y) ◦rw z is

[max{x, y})≤ ◦rw z =
⋃

s∈[max{x,y})≤

[max{s, z})≤ =
⋃

max{x,y}≤s

[max{s, z})≤.

Yet since the relation “≤” is reflexive, i.e. max{y, z} ≤ max{y, z}, max{x, y} ≤
max{x, y}, both sides equal [max{x, y, z})≤.

Thus finally (2.43) is a weak composition hyperoperation on (R,⊕,�)
with the assumed properties.

Remark 2.5.37. Notice that as regards number domains, the implications
used in Theorem 2.5.36 which obviously hold in N or Z, do not hold for
other number domains. The transition to Q or R is not possible as e.g.
0.1 · 0.1 ≤ 0.02 yet 0.1 6≤ 0.02. Notice that if we expanded Example 2.5.40
to R = R+ or considered this in the theorem, then e.g. in case C2 of the
proof the conditions would not hold for multiplication and x = 0.1, y = 0.02,
z = 0.1.

Example 2.5.38. If we continue with Example 2.5.15 on page 107 and define

A ◦lw B = [A)⊆ ∪ [B)⊆ = {R ∈ P(K) | A ⊆ R or B ⊆ R}

for all A,B ∈ P(K), then since both set intersection and set union are
idempotent, the above defines a left weak composition hyperoperation on
(P(K),⊕,�), i.e. (P(K),⊕,�, ◦lw) is a weak composition hyperring in the
general sense.

Example 2.5.39. If we continue with Example 2.5.15 and define A ◦rw B =
A∩B for all A,B ∈ P(K), then since the set intersection is both commutative
and idempotent (and distributive with respect to set union), this defines a
right weak composition operation on (P(K),⊕,�), i.e. that (P(K),⊕,�,∩)
is a weak composition hyperring in the general sense.

Examples 2.5.40 and 2.5.41 are partly motivated by the classical in-
terval binary hyperoperation on linearly ordered groups discussed e.g. in
Iwasava [161] and defined by

a ∗ b = [min{a, b})≤ ∩ (max{a, b}]≤ = {x ∈ G | min{a, b} ≤ x ≤ max{a, b}}
(2.47)

for all a, b ∈ G.

Example 2.5.40. Regard the ordered semiring of natural numbers, i.e. a
distributive structure (N,+, ·), where (N,+) and (N, ·) are semigroups and
“≤” is the usual ordering of natural numbers with the smallest element 1.
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Obviously (N,+,≤) and (N, ·,≤) are quasi-ordered semigroups, which en-
ables us to construct EL–semihypergroups (N,⊕) and (N,�). Thus we get
a semihyperring in the general sense (N,⊕,�). By Lemma 2.5.36 we get
that (2.43) is a weak composition hyperoperation on (N,⊕,�).

Example 2.5.41. One can easily show that when changing max{a, b} to
min{a, b} in (2.43), we get another weak composition hyperoperation on
(N,⊕,�).

2.5.5 A corollary: from lattices to Hv–matrices

Results of this subsection were published by Analele Ştiinţifice ale Universităţii

“Ovidius” Constanţa (WoS Q4) as Křehĺık and Novák [187].

When one views EL–hyperstructures from the perspective of the lattice
theory, it becomes obvious that dualizing the concept, involving one more
“similar” hyperoperation or changing “a · b ≤ x” in the construction to the
interval definition using two hyperoperations may lead to interesting results.
Moreover, despite all the advances of the hyperstructure theory, the concept
of a matrix, i.e. a two-dimensional scheme of m×n entries, has been studied
in it only occassionaly. The exception to this rule is the concept of Hv–
matrices used by Vougiouklis in the representation theory [299–301]. Before
including its definition recall the definition of Hv–rings on page 10.

Definition 2.5.42. By an Hv–matrix we mean a matrix entries of which are
elements of an Hv–ring or an Hv–field.

However, since entries of Hv–matrices are elements of Hv–rings, i.e. hy-
perstructures with two hyperoperations, defining and working withHv–matrix
multiplication, trace or rank of Hv–matrices or other matrical concepts is
complicated or yet unexplored. In fact, when in 2009 in his overview pa-
per [299], Vougiouklis presented “some of the open problems arising on the
topic in the procedure to find representations on hypergroups”, four out of
the eight presented problems regard Hv–matrices.

Therefore, in this subsection, we apply the “Ends lemma” on sets of
matrices. We show that our considerations naturally result in Hv–matrices
which might provide a tool for better applications of this concept. Also, we
show that in the context of lattices, there exist other classes of hyperstruc-
tures analogous to EL–hyperstructures. In this we expand results of Davvaz,
Leoreanu-Fotea, Rosenberg or Varlet [192,195,196,295].

In this subsection we denote Mm,n(S) the set of all m× n matrices with
entries from a suitable set S, i.e.

Mm,n(S) = {M = [mi,j]) | mi,j ∈ S, i = {1, . . . ,m}, j = {1, . . . , n}}. (2.48)
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On Mm,n(S) we, for an arbitrary pair of matrices A,B ∈Mm,n(S), naturally
define relation “≤M” in an entry-wise manner by

A ≤M B if ai,j ≤e bi,j for all i = {1, . . . ,m}, j = {1, . . . , n}, (2.49)

where “≤e” is a suitable relation between entries of the matrices. Suppose
that (S, inf, sup,≤e) is a lattice and define the minimum of matrices A,B ∈
Mm,n(S) by

min{A,B} = C, where C ∈Mm,n(S) is such that ci,j = inf{ai,j, bi,j}(2.50)

for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, in case of two matrices and analogically
in case of more matrices; and the maximum of matrices A,B ∈Mm,n(S) by

max{A,B} = D, where D ∈Mm,n(S) is such that di,j = sup{ai,j, bi,j}(2.51)

for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, in case of two matrices and analogically
in case of more matrices.

We will show later on that the straightforwardness and suspected “sim-
plicity” of the above definitions is in fact their advantage. Of course, we do
not seek to explore concepts such as traces, determinants or calculations of
inverse matrices in this context of lattices. Our matrix operations will be
restricted to those defined above.

Lemma 2.5.43. The operations “min” and “max” defined on Mm,n(S) are
idempotent, commutative and associative. (Mm,n(S),≤M) is a partially or-
dered set. (Mm,n(S),min,≤M), and (Mm,n(S),max,≤M), are partially or-
dered semigroups.

Proof. Obvious.

Lemma 2.5.43 allows us to make an immediate conclusion regarding the
structure (Mm,n(S),min,max,≤M).

Theorem 2.5.44. (Mm,n(S),min,max,≤M) is a lattice.

Proof. Lemma 2.5.43 verifies commutativity, associativity and idempotency.
The absorption laws hold thanks to the relationship between “≤M” and “≤e”,
expressed by (2.49), and the fact that (S, inf, sup,≤e) is a lattice.

Now that we have established the context of Mm,n(S), we define two
pairs of dual hyperoperations on Mm,n(S) using (2.49) and (2.50), or (2.51),
respectively.
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First, for an arbitrary pair of matrices A,B ∈Mm,n(S) we define26

A ◦B = {C ∈Mm,n(S) | min{A,B} ≤M C}, (2.52)

i.e., for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n},a11 . . . a1n

. . . . . . . . .
am1 . . . amn

 ◦
 b11 . . . b1n

. . . . . . . . .
bm1 . . . bmn

 =


 c11 . . . c1n

. . . . . . . . .
cm1 . . . cmn

 ∈Mm,n(S) | inf{aij, bij} ≤e cij


and dually

A •B = {D ∈Mm,n(S) | max{A,B} ≥M D}, (2.53)

i.e., for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n},a11 . . . a1n

. . . . . . . . .
am1 . . . amn

 •
 b11 . . . b1n

. . . . . . . . .
bm1 . . . bmn

 =


d11 . . . d1n

. . . . . . . . .
dm1 . . . dmn

 ∈Mm,n(S) | sup{aij, bij} ≥e dij

 .

In the following lemma, recall that “≈” stands for non-empty intersection.

Lemma 2.5.45. For an arbitrary quadruple A1,A2,A3,A4 ∈ Mm,n(S) we
have A1 ◦A2 ≈ A3 ◦A4 and A1 •A2 ≈ A3 •A4.

Proof. The proof for both hyperoperations is analogous, we include it only
for hyperoperation “◦”. Suppose Ai, i ∈ {1, 2, 3, 4}, are arbitrary elements
of Mm,n(S). Denote B = max{A1,A2,A3,A4}. Since Mm,n(S) is a lat-
tice, there is B ∈ Mm,n(S). Moreover, there is min{A1,A2} ≤M B and
min{A3,A4} ≤M B. As a result, B ∈ A1 ◦A2 and also B ∈ A3 ◦A4, which
proves the lemma.

26The symbol “◦” used in (2.52) shall not be confused with the composition hyperoper-
ation of Subsection 2.5.4.
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Example 2.5.46. Let S be the lattice of divisors of a suitable natural number
n with inf{a, b} being the greatest common divisor of a, b ∈ N, sup{a, b} being
the least common multiple of a, b and a ≤e b if a|b. For e.g. n = 120, divisors
of which are 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120, construct M2,2(S)
and regard an arbitrary quadruple of matrices A1,A2,A3,A4 ∈ M2,2(S),

e.g. A1 =

[
8 15
3 6

]
, A2 =

[
10 12
20 24

]
A3 =

[
1 2
5 3

]
, A4 =

[
8 12
30 1

]
. Then

B =

[
40 60
60 24

]
,

A1 ◦A2 =

{[
a11 a12

a21 a22

]
, 2|a11, 3|a12, 1|a21, 6|a22

}
,

A3 ◦A4 =

{[
a11 a12

a21 a22

]
, 1|a11, 2|a12, 5|a21, 1|a22

}
,

and obviously B ∈ A1 ◦A2 ∩A3 ◦A4.

Theorem 2.5.47. (Mm,n(S), ◦) and (Mm,n(S), •) are join spaces.

Proof. Since hyperoperations “◦” and “•” are dual, i.e. the respective proofs
would be analogous, we will prove only the fact that (Mm,n(S), ◦) is a join
space. First of all, commutativity of the hyperoperation is obvious. Next, we
immediately get that (Mm,n(S), ◦) is a semihypergroup (constructed using
the “Ends lemma”, i.e. Lemma 2.1.1).

Reproductive law, i.e. condition A ◦ Mm,n(S) = Mm,n(S) holds for all
A ∈ Mm,n(S): It is evident that A ◦ Mm,n(S) ⊆ Mm,n(S), for any A ∈
Mm,n(S). As far as the opposite inclusion, i.e. Mm,n(S) ⊆ A ◦Mm,n(S), for
all A ∈Mm,n(S), is concerned, notice that

A◦Mm,n(S) =
⋃

X∈Mm,n(S)

A◦X =
⋃

X∈Mm,n(S)

{C ∈Mm,n(S) | min{A,X} ≤ C}.

For a fixed A ∈ Mm,n(S) and an arbitrary M ∈ Mm,n(S) the following cases
are possible:

1. If M ≤M A, then min{A,M} = M and since “≤M” is reflexive, there
is M ∈ A ◦Mm,n(S).

2. If A ≤M M, then min{A,M} = A which means that M ∈ A◦Mm,n(S).

3. If A and M are not in relation “≤M”, then there is min{A,M} ≤M,
which means that M ∈ A ◦Mm,n(S).
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Therefore, (Mm,n(S), ◦) is a commutative hypergroup. Finally, the transpo-
sition axiom holds thanks to Lemma 2.5.45.

Remark 2.5.48. Notice that in the proof of Theorem 2.5.47, when proving
the validity of the reproductive law, Lemma 2.1.5 (part of the “Ends lemma”,
see page 28) could not be used because it assumes that the single-valued
structure, in our case (Mm,n(S), inf,≤e), or (Mm,n(S), sup,≤e), is a partially
ordered group. We could have used Theorem 2.4.71 on page 71 though,
because both hyperoperations are extensive.

Now, analogous to (2.52) and (2.53) we for matrices A,B ∈ Mm,n(S)
define

A ∗B = {C ∈Mm,n(S) | max{A,B} ≤M C}, (2.54)

i.e., for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n},a11 . . . a1n

. . . . . . . . .
am1 . . . amn

 ∗
 b11 . . . b1n

. . . . . . . . .
bm1 . . . bmn

 =


 c11 . . . c1n

. . . . . . . . .
cm1 . . . cmn

 ∈Mm,n(S) | sup{aij, bij} ≤e cij

 .

and dually
A ?B = {D ∈Mm,n(S) | min{A,B} ≥M D}, (2.55)

i.e., for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n},a11 . . . a1n

. . . . . . . . .
am1 . . . amn

 ?
 b11 . . . b1n

. . . . . . . . .
bm1 . . . bmn

 =


d11 . . . d1n

. . . . . . . . .
dm1 . . . dmn

 ∈Mm,n(S) | inf{aij, bij} ≥e dij

 .

Example 2.5.49. Suppose that S is a lattice of non-negative integer pairs,
where we set (a, b) ≤e (c, d) if a ≤ c and b ≤ d, and consider 2× 2 matrices

of such entries, e.g. A =

[
(5, 8) (3, 0)
(2, 4) (1, 9)

]
and B =

[
(7, 2) (2, 1)
(6, 1) (3, 5)

]
. Then the

hyperproduct A ∗B is

A ∗B =

{[
(a1

11, a
2
11) (a1

12, a
2
12)

(a1
21, a

2
21) (a1

22, a
2
22)

]
∈M2,2(S)

}
,
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where the entries are such that

7 ≤ a1
11, 8 ≤ a2

11, 3 ≤ a1
12, 1 ≤ a2

12, 6 ≤ a1
21, 4 ≤ a2

21, 3 ≤ a1
22, 9 ≤ a2

22.

Theorem 2.5.50. (Mm,n(S), ∗) and (Mm,n(S), ?) are commutative semihy-
pergroups.

Proof. For hyperoperation “∗” follows directly from the “Ends lemma”, i.e.
from Lemma 2.1.1, and from Lemma 2.5.43; for hyperoperation “?” follows
from the fact that “min” and “max” are dual.

Remark 2.5.51. Unlike semihypergroups (Mm,n(S), ◦) and (Mm,n(S), •), the
above semihypergroups do not satisfy the reproductive axiom. Since hyper-
operations “?” and “∗”, or rather operations “min” and “max”, are dual,
we will demonstrate this on (Mm,n(S), ∗) only and show that the condition
A ∗Mm,n(S) 6= Mm,n(S) does not hold for all A ∈Mm,n(S). First of all,

A∗Mm,n(S) =
⋃

X∈Mm,n(S)

A∗X =
⋃

X∈Mm,n(S)

{C ∈Mm,n(S) | max{A,X} ≤M C}.

Now, for matrices A,X ∈Mm,n(S) such that X ≤M A there is max{A,X} =
A and if we take M ∈Mm,n(S) such that M ≤M A, then M 6∈ A ∗Mm,n(S).

Theorem 2.5.52. The transposition axiom holds both in (Mm,n(S), ∗) and
in (Mm,n(S), ?).

Proof. Once again, it is sufficient to prove the statement for (Mm,n(S), ∗)
only. The proof is analogous to the proof of Lemma 2.5.45, only for the
matrix B = max{A1,A2,A3,A4} there holds B ≥M max{A1,A4} and
B ≥M max{A2,A3}, i.e. B ∈ A1 ∗A4 and simultaneously B ∈ A2 ∗A3.

Example 2.5.53. If in Example 2.5.46 we use “∗” instead of “◦”, we get
that

A1 ∗A2 =

{[
a11 a12

a21 a22

]
, 40|a11, 60|a12, 60|a21, 24|a22

}
,

A3 ∗A4 =

{[
a11 a12

a21 a22

]
, 8|a11, 12|a12, 30|a21, 3|a22

}
,

and obviously B =

[
40 60
60 24

]
∈ A1 ◦A2 ∩A3 ◦A4.

Remark 2.5.54. Notice that even though the transposition axiom is usu-
ally studied in hypergroups, its validity is neither restricted to nor follows
from the validity of the reproductive law. Transposition axiom in semihyper-
groups which are not hypergroups has been studied e.g. by Massouros and
Massouros [217].
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Among the very basic notions of the hyperstructure theory there is the
idea of proclaiming a line segment as the result of the hyperoperation applied
on its endpoints. Inspired by this, and by the interval binary hyperopera-
tion (2.47) on page 121, for an arbitrary pair of matrices A,B ∈ Mm,n(S),
we define

A�B = {C ∈Mm,n(S) | min{A,B} ≤M C ≤M max{A,B}}, (2.56)

i.e., for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n},a11 . . . a1n

. . . . . . . . .
am1 . . . amn

�
 b11 . . . b1n

. . . . . . . . .
bm1 . . . bmn

 =


 c11 . . . c1n

. . . . . . . . .
cm1 . . . cmn

 ∈Mm,n(S) | inf{aij, bij} ≤e cij ≤e sup{aij, bij}

 .

Notice that (2.56) is in fact also a matrix variation of a hyperoperation de-
fined by Varlet [295], Definition 2.5.56, which is frequentely used in machine
learning applications and is often studied alongside with another hyperop-
eration introduced by Nakano [229] and studied e.g. by Comer [85], which
creates join spaces from modular lattices. Varlet’s ideas have been stud-
ied and used by e.g. Davvaz, Leoreanu-Fotea or Rosenberg [192, 194–196].
The nature of (Mm,n(S),�) can be easily established with the help of results
obtained by Varlet [295].

In this respect, first recall that a lattice (L,∧,∨) such that “∧” distributes
over “∨” (and dually “∨” over “∧”) is called distributive.

Theorem 2.5.55. The lattice (Mm,n(S),min,max) is distributive if and only
if the lattice (S, inf, sup) is distributive.

Proof. The proof is rather obvious thanks to the straightforward correspon-
dence between relations “≤M” and “≤e” suggested by (2.49) and correspon-
dence between the definition of minimum and maximum of matrices using
infima and suprema of their entries. If (S, inf, sup) is distributive, then dis-
tributive laws are valid for all aij, bij, cij ∈ S, i.e. distributive laws are valid
for matrices as well, which means that (Mm,n(S),min,max) is distributive.
On the other hand, if (Mm,n(S),min,max) is distributive, then

max{A,min{B,C}} = min{max{A,B},max{B,C}}

for all A,B,C ∈ Mm,n(S) and thanks to the definition of the minimum and
maximum of matrices we immediately have that (S, inf, sup) is distributive.
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Definition 2.5.56. [295] Let L≤ = (L,∧,∨) be a lattice with join “∧”, meet
“∨” and order relation “≤” and let, for every a, b ∈ L,

a � b = {x ∈ L | a ∧ b ≤ x ≤ a ∨ b}.

Theorem 2.5.57. [295] For a lattice L≤ the following are equivalent:

(1) L≤ is distributive,

(2) L≤ = (L, �) is join space.

Theorem 2.5.55 and Varlet’s results allow us to immediately state the
following corollary.

Corollary 2.5.58. (Mm,n(S),�) is a join space if and only if the lattice
(S, inf, sup) is distributive.

The above constructions naturally result in Hv–rings, i.e. as a conse-
quence in Hv–matrices. In Theorem 2.5.55 we have already seen that sets
of matrices (Mm,n(S),min,max) are distributive lattices if and only if sets
(S, inf, sup) of their entries are distributive lattices. Moreover, the following
– stronger – lemma holds.

Lemma 2.5.59. Let (S,⊕) and (S,�) be EL–semihypergroups of partially
ordered semigroups (S,+,≤) and (S, ·,≤), respectively. If “·” distributes
over “+” from both left and right (i.e. if (S,+, ·,≤) is a partially ordered
semiring), then “�” weakly distributes over “⊕” from both left and right.

Proof. For an arbitraty s ∈ S we will denote – as usually – the set {x ∈ S |
s ≤ x} by [s)≤. For arbitrary a, b, c ∈ S consider the element a ·(b+c) which,
thanks to distributivity, equals a · b+ a · c. Notice that

a� (b⊕ c) = a� [b+ c)≤ =
⋃

x∈[b+c)≤

a · x =
⋃

b+c≤x

a · x

and on the other hand

(a�b)⊕(a�c) = [a ·b)≤⊕ [a ·c)≤ =
⋃

y∈[a·b)≤,z∈[a·c)≤

[y+z)≤ =
⋃

a·b≤y,a·c≤z

[y+z)≤

and since the relation “≤” is reflexive, we immediately see that a · (b+ c) =
a ·b+a ·c is the common element of both regarded sets. Analogous reasoning
can be done for the element (a+ b) · c = a · c+ b · c.

Therefore, we straightforwardly get the following:
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Theorem 2.5.60. If the lattice (S, inf, sup) is distributive, then (Mm,n(S), ◦, ∗)
and (Mm,n(S), •, ?) are Hv–rings.

Proof. Follows immediately from Theorem 2.5.47, which provides the hy-
pergroups, Theorem 2.5.50, which provides the semihypergroups, and from
Lemma 2.5.59, which provides weak distributivity (because S is distribu-
tive).

This result immediately takes us to the concept of Hv–matrices.

Corollary 2.5.61. If S is a distributive lattice, then Mm,n(S) is the set of
Hv–matrices.

Proof. If in Theorem 2.5.60 we set m = n = 1, then Mm,n(S) becomes S, i.e.
the set from which we take entries of Mm,n(S). Definitions of hyperoperations
“◦, •, ∗, ?” simplify accordingly.

Thus we see that using Theorem 2.5.60 and Corollary 2.5.61 we can in
fact construct Hv–matrices of different classes: first of all, matrices, entries of
which are elements of S (because, thanks to Corollary 2.5.61, S is anHv–ring).
We have denoted this set of matrices by Mm,n(S). Yet since Mm,n(S) is itself
a lattice, which is distributive if and only if S is distributive, we can apply
Theorem 2.5.60 and regard elements of Mm,n(S) as entries of matrices again.
For easier future reference we can denote this set of matrices as M2

m,n(S).

Remark 2.5.62. Notice that the conditions of definition of Hv–ring are
rather weak for the “Ends lemma” context. All our hyperoperations are not
only weakly associative but associative. Also, we do not obtain Hv–groups
but hypergroups. In other words, three things remain to be secured for
(Mm,n(S), ◦, ∗) and (Mm,n(S), •, ?) to become Krasner hyperrings : existence
of a scalar identity of (Mm,n(S), ◦) or (Mm,n(S), •), existence of absorbing
elements of (Mm,n(S), ∗) or (Mm,n(S), ?), and distributivity of the hyperop-
erations instead of weak distributivity shown by Lemma 2.5.59. However,
Theorem 2.4.10 on page 44 shows that the existence of scalar identities of
(Mm,n(S), ◦) and (Mm,n(S), •) is not possible.

When setting m = n = 1 in Mm,n(S), we obtain the original lattice S.
For all a, b, c, d ∈ H, hyperoperations (2.52), (2.53), (2.54), (2.55), (2.56) in
this case reduce to

a ◦ b = {c ∈ S | inf{a, b} ≤e c}
a • b = {d ∈ S | sup{a, b} ≥e c}
a ∗ b = {c ∈ S | sup{a, b} ≤e c}
a ? b = {d ∈ S | inf{a, b} ≥e d}

a� b = {c ∈ S | inf{a, b} ≤e c ≤e sup{a, b}}
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and we immediately get the following corollary.

Corollary 2.5.63. If (S, inf, sup,≤e) is a lattice, then

1. (S, ◦) and (S, •) are join spaces,

2. (S, ∗) and (S, ?) are proper semihypergroups which satisfy the transpo-
sition axiom.

Thus – in lattices – the concept of EL–hyperstructures can be not only
dualized but also its natural analogy can be proved.

2.6 Relation to similar concepts

In this section we will show the relation of EL–hyperstructures to ordered
hyperstructures of Heidari and Davvaz [146], to Chvalina’s concept of quasi-
order hypergroups [43, 44, 95] and to lower BCK–semilattices [158]. For the
respective definitions recall Section 1.2.

2.6.1 Ordered semihypergroups

First, we are going to relate EL–semihypergroups (S, ◦), constructed from
quasi-ordered semigroups (S, ·,≤) by means of the hyperoperation “◦” de-
fined, for all a, b ∈ S, by

a ◦ b = [a · b)≤ = {x ∈ S | a · b ≤ x}, (2.57)

and ordered, i.e. partially ordered, semihypergroups (S, ◦,�). Recall that
compatibility in the sense of single-valued structures means that

x ≤ y ⇒ a · x ≤ a · y and x · a ≤ y · a (2.58)

for all x, y, a ∈ S, while compatibility in the sense of hyperstructures means
that

x � y ⇒ a ∗ x � a ∗ y and x ∗ a � y ∗ a (2.59)

for all a, x, y ∈ S, where by a ∗ x � a ∗ y we mean that for every c ∈ a ∗ x
there exists d ∈ a ∗ y such that c � d.

First of all, suppose that the relations “≤” and “�” are the same. Thus,
when rewriting the compatibility condition (2.59), we get that

x ≤ y ⇒ [a · x)≤ ≤ [a · y)≤ and [x · a)≤ ≤ [y · b)≤, (2.60)

for all x, y, a ∈ S, i.e. the fact that x ≤ y implies that for all a ∈ S we have
that for every c ∈ S such that a · x ≤ c there must exist d ∈ S such that
a · y ≤ d and c ≤ d and for every f ∈ S such that x · a ≤ f there must exist
g ∈ S such that y · a ≤ g and f ≤ g. The following lemma is obvious.
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Lemma 2.6.1. In the EL–semihypergroup (S, ◦) of a quasi-ordered semi-
group (S, ·,≤) there is

x ≤ y ⇒ a ◦ y ⊆ a ◦ x and y ◦ a ⊆ x ◦ a (2.61)

for all x, y, a ∈ S.

Proof. Suppose an arbitrary k ∈ a ◦ y = {k ∈ S | a · y ≤ k}. Since (S, ·,≤)
is a quasi-ordered semigroup, the fact that x ≤ y implies a · x ≤ a · y, for all
a ∈ S, and from transitivity of “≤”, we have that a · x ≤ k, i.e. k ∈ a ◦ x.
Proving the other inclusion is analogous.

Now we need to establish, in the context of (2.57), the relation between
a ◦ x and a ◦ y for x ≤ y as described by (2.59). For every element c ∈ a ◦ x
we need to find an element d ∈ a ◦ y such that c ≤ d and for every element
f ∈ x ◦ a we need to find an element g ∈ y ◦ a such that f ≤ g. This is an
easy and straightforward task in the following two special cases.

Lemma 2.6.2. The EL–semihypergroup (S, ◦) of a quasi-ordered semigroup
(S, ·,≤) is an ordered semihypergroup (S, ◦,≤) if:

1. (S,≤) has the greatest element or,

2. the relation “≤” is linear ordering.

Proof. We will show the proof for elements c, d (in the sense of the above
text) only as reasoning for elements f, g of the other-sided multiplication is
analogous.

1. If (S,≤) has the greatest element, then, for an arbitrary c ∈ S, the
desired element d ∈ a ◦ y is exactly this greatest element of (S,≤). Of
course, in such a case, “≤” must be partial ordering.

2. Since every two elements x, y ∈ S are in relation “≤” and, if x ≤ y,
there is a · x ≤ a · y and a ◦ y ⊆ a ◦ x, for all a ∈ S, then due to the
construction of sets a ◦ x and a ◦ y the statement is obvious.

Thus we see that we must focus on such cases of c ∈ a◦x, where c 6∈ a◦y.
If c ≤ a · y, then it is enough to set d = a · y because reflexivity of “≤”
provides that d ∈ a◦ y. Therefore, we must focus on cases of c ∈ a◦x, where
there is simultaneously c 6∈ a ◦ y and elements a · y and c are not in relation
“≤”. Notice that this means that we focus on cases where c is not in relation
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with any element of a ◦ y. In other words, that to such an element c ∈ a ◦ x
with these properties there exists no element d ∈ a ◦ y such that c ≤ d.

Given this perspective, the following theorem becomes obvious and we
can see that Lemma 2.6.2 is in fact its corollary.

Theorem 2.6.3. The EL–semihypergroup (S, ◦) of a partially ordered semi-
group (S, ·,≤) is an ordered semihypergroup (S, ◦,≤) if an arbitrary pair of
elements x, y ∈ S has an upper bound.

Proof. Obvious because the existence of an upper bound of an arbitrary two
element subset of (S,≤) prevents the situation described before the theorem.

If for a pair of elements x, y ∈ S there is x ≤ y, then condition (2.59)
must be valid for all a ∈ S. This means that if (S, ·) is a monoid with a
unit u, there must be also u ◦ x ≤ u ◦ y, i.e. [u · x)≤ ≤ [u · y)≤ (and also
x◦u ≤ y ◦u), which means [x)≤ ≤ [y)≤. This justifies the following theorem.

Theorem 2.6.4. The EL–semihypergroup (S, ◦) of a quasi-ordered monoid
(S, ·,≤) is not an ordered semihypergroup (S, ◦,≤) if there exists a pair of
elements such that it does not have an upper bound yet has a lower bound.

Proof. The assumptions of the theorem are such that there exists a triple of
elements c, x, y ∈ S such that x ≤ c, x ≤ y while c and y are not related
and do not have an upper bound, i.e. no element from S is simultaneously
greater than both c and y (see Fig. 2.6.1). Since (S, ·) is a monoid and x ≤ y,
there must be – should (S, ◦,≤) be a partially ordered semihypergroup – also
[x)≤ ≤ [y)≤. Yet to our c ∈ [x)≤ there obviously does not exist any element
d ∈ [y)≤ such that c ≤ d. Therefore, (S, ◦,≤) is not a partially ordered
semigroup.

t
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Figure 2.2: To Theorem 2.6.4: [x)≤ = {x, c, y} while [y)≤ = {y}
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In Section 4.2 we include a link of the above results to transformation hy-
pergroups with phase tolerance spaces [151] and general hyperstructures [59]
studied by Dehghan Nezhad, Chvalina and Hošková.

Remark 2.6.5. Notice that in Theorem 2.6.4 pairs of elements which do
not have a lower bound need not be tested for the existence of their upper
bound. Indeed, imagine that in Fig. 2.6.1 elements c and x are not related.
Then c 6∈ [x)≤ and the problem of finding a suitable element d ∈ [y)≤ such
that c ≤ d disappears.

Out of the infinitely many ways of defining relation “�” by means of “≤”,
one stands out. Let us, for all x, y ∈ S, define that

x � y whenever y ≤ x. (2.62)

This turns out to be a universal way of obtaining an ordered semihypergroup
from an arbitrary EL–semihypergroup.

Theorem 2.6.6. Let (S, ◦) be the EL–semihypergroup of a partially ordered
semigroup (S, ·,≤). For an arbitrary pair of elements x, y ∈ S define x � y
whenever y ≤ x, i.e. define “�” as the inverse relation to “≤”. Then the
relation “�” is compatible with the hyperoperation “◦”.

Proof. After we rewrite condition (2.59) and take into account our definition
of relation “�”, we get that, for all x, y, a ∈ S, the fact that y ≤ x implies
that to every element c ∈ S such that a · x ≤ c there exists an element d ∈ S
such that a · y ≤ d and d ≤ c. However, since (S, ·,≤) is a partially ordered
semigroup, the fact that y ≤ x implies that a · y ≤ a · x, i.e. we can, for
an arbitrary c ∈ a ◦ x set d = a · x because a · x ∈ a ◦ y. Obviously, the
same reasoning can be used for multiplication by an arbitrary a ∈ S from
the right.

Remark 2.6.7. Naturally, the issue of “≤” being a quasi-ordering and the
properties of “�” must be discussed separately. Obviously, the fact that
“≤” is a partial ordering, means that also “�” is a partial ordering. Notice
that even though Heidari and Davvaz [146] originally mention ordered hyper-
structures only, in e.g. Ghazavi, Anvariyeh and Mirvakili [136] quasi-ordered
hyperstructures are discussed as well. The motivation to study partial order-
ing on hyperstructures lies in the fact that including antisymmetry is suitable
for description of hyperstructure generalizations of lattices. However, we do
not seek to explore this topic in such a detailed way, especially because it
is the relation between the compatibility conditions (2.58) and (2.59) that is
relevant for us for the time being.
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2.6.2 Ordered semihyperrings

In Subsection 2.5.3 on page 106 we mentioned various approaches to defining
the concept of a semiring and a semihyperring. The concept of an ordered
semihyperring was defined by Davvaz and Omidi [112] only recently. They
define semihyperrings as hyperstructures with two hyperoperations (S,⊕,�),
i.e. follow the classification of Vougiouklis, Definition 1.1.14, yet they mis-
quote it by adding the requirement that (S,⊕) has a scalar identity which is
moreover absorbing with respect to the hyperoperation “�”. In other words,
they make it a parallel to the definition of a semiring with zero. Notice that
the alternative definition of a semihyperring we mention in Section 2.5, i.e.
Definition 2.5.19 on page 109, is different because we regard a hyperstruc-
tures (S,⊕, ·), where “·” is a single-valued operation. To be more precise,
Davvaz and Omidi use the following definition.27

Definition 2.6.8. ( [112], Definition 2.1) A semihyperring is an algebraic
hyperstructure (R,+, ·) which satisfies the following axioms:

1. (R,+) is a commutative semihypergroup with a zero element 0 satis-
fying x+ 0 = 0 + x = {x}, that is, (i) For all x, y, z ∈ R, x+ (y + z) =
(x+ y) + z, (ii) For all x, y ∈ R, x+ y = x+ y, (iii) There exists 0 ∈ R
such that x+ 0 = 0 + x = {x} for all x ∈ R.

2. (R, ·) is a semihypergroup.

3. The multiplication “·” is distributive with respect to the hyperoperation
“+”, that is x · (y + z) = x · y + x · z and (x + y) · z = x · z + y · z for
all x, y, z ∈ R.

4. The element 0 ∈ R is an absorbing element, that is x · 0 = 0 · x = 0 for
all x ∈ R.

It is on such hyperstructures that Davvaz and Omidi define partial or-
dering.

Definition 2.6.9. ( [112]) An ordered semihyperring (R,+, ·,≤) is a semi-
hyperring of Definition 2.6.8 equipped with a partial order relation “≤” such
that for all a, b, c ∈ R, we have

1. a ≤ b implies a+ c ≤ b+ c, meaning that for any x ∈ a+ c, there exists
y ∈ b+ c such that x ≤ y.

27Since we are going to adjust this definition later on, when quoting it we use the exact
quote with “+” and “·” instead of “⊕” and “�”. In the forthcoming Definition 2.6.11 the
usual symbols “⊕” and “�” are used.
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2. a ≤ b and 0 ≤ c imply a · c ≤ b · c, meaning that for any x ∈ a · c there
exists y ≤ b · c such that x ≤ y. The case c ·a ≤ c · b is defined similarly.

Notice that the above definition uses the definition of a semihyperring in
which the hyperoperation “+” is already commutative while the hyperoper-
ation “·” need not be so. Since the terminology has not been codified yet,
notice that sometimes such ordered semihyperrings are called positive and
in ordered semihyperring the compatibility condition with respect to “·” is
required to hold for all c ∈ R instead of those for which 0 ≤ c holds. See e.g.
Omidi and Davvaz [257] for a brief discussion and examples.

Lemma 2.6.10. In the EL-semihypergroup (S, ◦) of a partially ordered semi-
group (S, ·,≤), if an element of S is absorbing with respect to “◦”, then it is
absorbing with respect to “·” and maximal with respect to “≤”.

Proof. Obvious since x ◦ 0 = 0 ◦ x = {0} for all x ∈ S means that [x · 0)≤ =
[0 · x)≤ = {0} which, thanks to reflexivity of the relation “≤” means that
x · 0 = 0 · x = 0 for all x ∈ S. Since [x · 0)≤ = [0)≤ is a one-element set and
“≤” is reflexive, 0 is a maximal element of (S,≤).

Thus, condition 2 of Definition 2.6.9 holds trivially. Now we can see that
the definition in the sense of Davvaz and Omidi included in [112] cannot be
used in the case of EL-hyperstructures as it is either not possible to construct
a semihyperring or as the definition of ordering leads to a degenerated (even
though not completely trivial) case. However, we can come back to the
roots and use the original definition of Vougiouklis without the explicit use
of scalar identity which has the property of absorption with respect to the
other hyperoperation, and combine it with the ordering defined by Davvaz
and Omidi, yet with the compatibility condition of “·” applied on all c ∈ R.
This will enable us to apply some already existing results – those where the
properties of the special element 0 are not required (or where we explicitely
prove them anew). Thus, the following definition can be justified in our
context.

Definition 2.6.11. By an ordered semihyperring we mean a hyperstructure
(S,⊕,�,�) such that

1. (S,⊕) and (S,�) are semihypergroups.

2. The hyperoperation “�” distributes over “⊕”, i.e. for all x, y, z ∈ S
there is x� (y ⊕ z) = x� y ⊕ x� z and (x⊕ y)� z = x� z ⊕ y � z.

3. The relation “�” is a partial ordering.
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4. The relation “�” is compatible with both “⊕” and “�”, i.e. for all
x, y, z ∈ S there is

(a) a � b implies a⊕ c � b⊕ c, meaning that for any x ∈ a⊕ c, there
exists y ∈ b⊕ c such that x � y (the case c⊕ a � c⊕ b is defined
in an analogous way).

(b) a � b implies a� c � b� c, meaning that for any x ∈ a� c there
exists y � b� c such that x � y (the case c� a � c� b is defined
in an analogous way).

If in the distributive law inclusion holds instead of equality, the ordered
semihyperring is called ordered semihyperring in the general sense.

Example 2.6.12. Consider (Z,min,+,≤), with the usual operations and
ordering of integers. It is easy to verify that (Z,min,≤) is a partially ordered
semigroup and (Z,+,≤) is a partially ordered group. Distributive laws,
which rewrite to a + min{b, c} = min{a + b, a + c} and min{a, b} + c =
min{a + c, b + c} for all a, b, c ∈ Z, also hold. As a result, if we define
a ⊕ b = [min{a, b})≤ and a � b = [a + b)≤ for all a, b ∈ Z, we get that
(Z,⊕,�) is a semihyperring in the sense of Definition 1.1.14 on page 9 and, by
Lemma 2.6.2, also an ordered semihyperring in the sense of Definition 2.6.11.

Example 2.6.13. If we adjust Example 2.6.12 so that instead of (Z,min,+,≤
) we regard (N,min,+,≤), then (N,+) is a semigroup only and we get that
(N,⊕,�), where “⊕” and “�” are defined in the same way as in Exam-
ple 2.6.12, is – based on Definition 1.1.14 – a semihyperring in the general
sense. Since “≤” is a linear ordering, (N,min,+,≤) is an ordered semihy-
perring in the general sense.

2.6.3 Quasi-order hypergroups

Given the definition of quasi-order hypergroups and Proposition 1.2.4 of Sec-
tion 1.2 the quest for relationship between quasi-order hypergroups and EL–
hyperstructures is not so straightforward. When constructing EL–hyper-
structures, we start with a relation “≤” while in order to prove that a hy-
perstructure is a quasi-order hypergroup, we have to find it.

If (S, ·,≤) is an idempotent quasi-ordered semigroup, then, by Theo-
rem 2.4.23 on page 50, (S, ∗) is commutative and such that, for all a ∈ S,
there is a3 = a2, i.e., by original Chvalina’s Definition 1.2.2, (S, ∗) is a quasi-
order hypergroup. Now, the condition a ∗ b = a2 ∪ b2 of Definition 1.2.3 in
this case turns into

[a · b)≤ = [a)≤ ∪ [b)≤. (2.63)
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If the relation “≤”, which we use to construct the EL–semihypergroup (S, ∗),
has this property, then (S, ∗) can be viewed as a quasi-order hypergroup,
or rather as an order hypergroup because the implication (1.28) of Defini-
tion 1.2.3 on page 22 holds, for idempotent “·”, trivially.

Example 2.6.14. Consider the EL–semihypergroup (Z, ∗) constructed from
a partially ordered semigroup (Z,min,≤). Obviously, the operation “min”
is idempotent and [min{a, b})≤ = [a)≤ ∪ [b)≤ for all a, b ∈ Z. Thus (Z, ∗)
is a quasi-order hypergroup. Notice that the same is true when we change
Z to N. There is no ambiguity in terminology because “∗” is an extensive
hyperoperation, i.e. (Z, ∗) and (N, ∗) are, by Theorem 2.4.71 on page 71,
hypergroups.

A nice example of a link between quasi-ordered hypergroups and EL–
hyperstructures can be found in [167], in which Jančić-Rašović studies hyper-
rings – to be more precise hyperrings in the general sense of Definition 1.1.14.
Inspired by Chvalina [43, 44] she defines, on a quasi-ordered semigroup, one
hyperoperation using the idea of (1.29) on page 23 and the other using the
“Ends lemma”. Of course, since the paper was submitted in early 2012, she
does not speak of EL–hyperstructures. Below we include her result ( [167],
Corollary 3.1), rewritten in our language and notation.

Theorem 2.6.15. Let (H, ·) be a semigroup equipped with binary relations
“≤1”, “≤2” such that both (H, ·,≤1) and (H, ·,≤2) are quasi-ordered semi-
groups and “≤1” ⊆ “≤2”. Define, for all a, b ∈ H, hyperoperations “+≤1”
and “◦≤2” on H as follows:

x+≤1 y = [x)≤1 ∪ [y)≤1

x ◦≤2 y = [x · y)≤2

Then (H,+≤1, ◦≤2) is a strong hyperring in the general sense.

2.6.4 Lower BCK–semilattices

In this subsection, “∗” stands for a BCK operation, not for a hyperoperation.

In lower BCK–semilattices (X, ∗, 0) we denote x ∧ y the greatest lower
bound of an arbitrary pair of elements x, y ∈ X. Obviously, in all lower
BCK–semilattices, i.e. not only in such that X is a commutative BCK–
algebra, there is x ∧ y = y ∧ x and (X,∧) is a semigroup. If we define28

x ≤n y whenever x ∧ y = x (2.64)

28Notice that the lower index “n” in “≤n” stands for “new” to distinguish (2.64)
from (1.31), which is defined by means of x ∗ y = 0.
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for all x, y ∈ X, we see that “≤n” is compatible with the operation “∧” and
we can construct the following.

Example 2.6.16. Suppose a lower BCK–semilattice (X,≤), where “∧” is
the greatest lower bound of elements x, y ∈ X. For all x, y ∈ X we define
“≤n” by (2.64). It is easy to show that the relation “≤n” is a partial ordering.
Indeed, since x ∧ x = x, the relation is reflexive. Also, if x ≤n y, there is
x ∧ y = x and if y ≤n x, there is y ∧ x = y, yet since x ∧ y = y ∧ x, there is
x = y. Finally, if x ≤n y and y ≤n z, then x ∧ y = x and y ∧ z = y and

x ∧ z = (x ∧ y) ∧ z = x ∧ (y ∧ z) = x ∧ y = x,

i.e. x ≤n z. The compatibility condition also holds because given an arbi-
trary a ∈ X and a pair x, y ∈ X such that x ≤n y we have

(x ∧ a) ∧ (y ∧ a) = (x ∧ y) ∧ (a ∧ a) = x ∧ a,

i.e. x∧ a ≤n y ∧ a. And, thanks to commutativity of “∧”, we also have that
a ∧ x ≤n a ∧ y. Altogether, we have that (X,∧,≤n) is a partially ordered
semigroup and as such it can be used to construct an EL–hyperstructure
(X, ◦) by defining the hyperoperation ◦ by

x ◦ y = [x ∧ y)≤n = {z ∈ X | x ∧ y ≤n z} (2.65)

for all x, y ∈ X. And we immediately have that (X, ◦) is a semihypergroup.

In fact, it is irrelevant whether X is a lower BCK–semilattice as it is
important that it is a semilattice. Example 2.6.16 is thus in fact an example
supporting the following lemma, which – by a nice loop – brings us back in
time to Pickett’s Example 2.2.1 on page 29, the oldest one in this book that
makes use of the “Ends lemma”.

Lemma 2.6.17. Every semilattice (X,∧,≤) or (X,∨,≤) can be used to
construct an EL–hypergroup (X, ◦), where, for all a, b ∈ X there is

a ◦ b = [a ∧ b)≤ = {x ∈ X | a ∧ b ≤ x}, (2.66)

or a ◦ b = [a ∨ b)≤ = {x ∈ X | a ∨ b ≤ x} respectively.

Proof. Given the above reasoning, obvious. The fact that the semihyper-
group (X, ◦) is a hypergroup, follows from Theorem 2.4.71 because the hy-
peroperation is extensive.

Bounded BCI/BCK–algebras are such BCI/BCK–algebras that have
the greatest element, which is usually denoted by 1. Yet this fact is ex-
actly what Lemma 2.6.2 assumes. Therefore, we easily obtain the following
theorem.
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Theorem 2.6.18. An EL-semihypergroup (X, ◦) constructed from a bounded
lower BCK–semilattice (X,∧,≤) by means of (2.66) is an ordered semihy-
pergroup.

Proof. Follows immediately from Lemma 2.6.2.

Example 2.6.19. In [31] Bordbar, Zahedi and Jun study ideals of BCK–
algebras. They regard the set (I(X),∧,≤), where I(X) is the set of all ideals
of a lower BCK–semilattice X and “∧” is for an arbitrary pair of ideals
A,B ∈ I(X) defined by

A ∧B = {a ∧ b | a ∈ A, b ∈ B}.

They show that “∧” is a binary operation on I(X) and that (I(X),∧) is a
semigroup. This enables us to proceed in the similar way as in Example 2.6.16
and define relation “≤i” on I(X) by putting

A ≤i B whenever A ∧B = A

for all A,B ∈ I(X). It is easy to show that (I(X),∧,≤i) is a partially
ordered semigroup. Indeed, the fact that “≤i” is reflexive, antisymmetric
and transitive can be verified by means analogical to those used in Exam-
ple 2.6.16. Finally, suppose that A ≤ B and C are arbitrary ideals of X.
Then A ∧B = A. So we have

(A ∧ C) ∧ (B ∧ C) = (A ∧B) ∧ (C ∧ C) = A ∧ C,

i.e. A ∧ C ≤ B ∧ C. Since a ∧ b = b ∧ a for all a, b ∈ X, we have also that
C ∧ A ≤ C ∧ B, which means that the relation “≤i” is compatible with the
operation “∧” applied on ideals of X.

Therefore, we can define a hyperoperation “◦” on the set I(X) by setting

A ◦B = [A ∧B)≤ = {C ∈ I(X) | A ∧B ≤i C}

and immediately conclude that (I(X), ◦) is a semihypergroup. Since X ∈
I(X) is obviously the greatest element of (I(X),≤i), we can again immedi-
ately conclude that (I(X), ◦) is an ordered semihypergroup. Indeed, because
if A ≤i B and C are arbitrary ideals of X, and we suppose an arbitrary ideal
G ∈ A◦C, then by definition A∧C ≤i G and we must look for such an ideal
H of X that B ∧ C ≤i X and G ≤i X. Yet no matter what A,B,C,G are,
we can always set H = X.



Chapter 3

Extensions and modifications

3.1 Extensions to n–ary case

Most results of this section (with the exception of Subsection 3.1.3) were pub-

lished by Analele Ştiinţifice ale Universităţii “Ovidius” Constanţa (WoS Q4) as

Novák [240].

The step from binary hyperstructures to n–ary hyperstructures has been
done only recently: implicitly in a general case of universal hyperalgebras by
Šlapal [282] and explicitly by Davvaz and Vougiouklis who in [115] introduced
the concept of n–ary hypergroup (sometimes called simply n–hypergroup) and
presented n–ary generalization of some very basic concepts of hyperstruc-
ture theory. The connection between hypergroups and n–ary hypergroups
was thoroughly studied in Leoreanu–Fotea and Corsini [191]. The topic was
transferred to the fuzzy context in Davvaz and Corsini [106].

Results recently obtained in the area of n–ary generalization of hyper-
structures associated to binary relations fall into three groups: some, such as
Cristea and Ştefănescu in e.g. [97,99], generalize the binary relation and con-
struct binary hyperstructures associated to n–ary relations while others, such
as Leoreanu-Fotea and Davvaz in e.g. [193] generalize the hyperstructure and
construct n–ary hyperstructures associated to binary relations. Finally, the
third approach, presented e.g. in Anvariyeh and Momeni [6] is possible too
– as one can study n–ary hyperstructures associated to n–ary relations.

Out of these three options we first of all, in Subsection 3.1.2, develop the
approach pioneered by Leoreanu-Fotea and Davvaz in [193]. In this we make
use of n–ary hyperstructure concepts defined in Ameri and Norouzi [11],
Davvaz and Vougiouklis [115] or Leoreanu [190]. Then, in Subsection 3.1.3
we include some results obtained by Ghazavi and Anvariyeh [135] in the
direction of Cristea and Ştefănescu [97,99].

141
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3.1.1 Two approaches to the n–ary extension

By Definition 1.1.1 on page 2, EL–semihypergroups that we have studied so
far are hyperstructures of arity 2. It is thus natural to find out whether the
construction can be extended to involve more than two elements.

Analogically to the standard definition (2.1), i.e.

a ∗ b = [a · b)≤ = {x ∈ S | a · b ≤ x}, (3.1)

we could define an n-ary hyperoperation ∗ : S × . . .× S︸ ︷︷ ︸
n

→ P∗(S) by

a1 ∗ . . . ∗ an︸ ︷︷ ︸
n

= [a1 · . . . · an︸ ︷︷ ︸
n

)≤ = {x ∈ S | a1 · . . . · an︸ ︷︷ ︸
n

≤ x} (3.2)

In a standard notation used e.g. by Davvaz and Vougiouklis [115] or Leoreanu–
Fotea and Davvaz [193], which is also used in Subsection 1.1.1, this would
be denoted as a hyperoperation f : Sn → P∗(S) (or with H instead of S
if we wanted to make use of the distinction semihypergroup vs. hypergroup)
defined by

f(an1 ) = [a1 · . . . · an︸ ︷︷ ︸
n

)≤ = {x ∈ S | a1 · . . . · an︸ ︷︷ ︸
n

≤ x}. (3.3)

The hypergroupoid would be an n-ary hypergroupoid and would be denoted
in the former case by (S, ∗) and in the latter case by (S, f).1

However, first of all we need to establish meaning of the very basic con-
cepts used in (3.2) or (3.3). The result of the hyperoperation f(an1 ) ap-
plied on elements a1, . . . , an, n > 2 is the upper end of a single element
a1 · . . . · an︸ ︷︷ ︸

n

∈ S. (In further text we call such an element as generating the

upper end.) Yet how does one obtain this single element? In other words,
what is the arity of the single-valued operation “·”? In a general case, “·”
may be a binary operation, an n–ary operation, or a j–ary operation for
some special j such that 2 < j < n.

In Subsection 3.1.2 we suppose that “·” is a binary operation, i.e. that the
product a1 · . . . · an︸ ︷︷ ︸

n

is an iterated binary operation. This is usually defined in

such a way that for j ≥ 1, n ≥ j we denote by anj a sequence of elements ai,

1Further on we will use the standard notation, i.e. define the n–ary hyperoperation
using analogies of (3.3). Analogies of notation (3.2) will be used only at places where
the explicit reference to the binary hyperoperation “∗” makes the understanding more
straightforward.



3.1. EXTENSIONS TO N–ARY CASE 143

j ≤ i ≤ n and for the single-valued binary operation sf we define two new
operations sitl and sitr in the following way:

sitl (an1 ) =

{
a1 n = 1
sf (s

it
l (an−1

1 ), an) n > 1

and

sitr (an1 ) =

{
a1 n = 1
sf (an, s

it
r (an−1

1 )) n > 1

Obviously, in a general case sitl (an1 ) 6= sitr (an1 ). However, if the original binary
operation sf is associative, then the two newly defined operations sitl and
sitr are equal and we may write sit instead. For details on iterated binary
operations cf. e.g. Miller, Vandsome and McBrewster [220].

Further on we will use the notation a1 · . . . · an︸ ︷︷ ︸
n

in the sense of sit(an1 ).

More precisely we should distinguish between sitl (an1 ) and sitr (an1 ) but this
would be redundant because the “Ends lemma” which we attempt to gener-
alize, i.e. Lemma 2.1.1, assumes asociativity of the single-valued operation.

Remark 3.1.1. Notice that the decision on nature of a1 · . . . · an︸ ︷︷ ︸
n

has a num-

ber of implications. If, contrary to our assumption, one decides to consider
this element as a result of an n–ary operation (as is the case of Subsec-
tion 3.1.3), then all theorems must be adjusted to work with n–ary quasi-
ordered (semi)groups. These, however, must first be properly defined. Thus,
from a certain point of view, our decision on the nature of a1 · . . . · an︸ ︷︷ ︸

n

in Sub-

section 3.1.2 is not only naturally following from the context but also easier
and more convenient to work with.

Remark 3.1.2. Just as we have considered the meaning of a1 · . . . · an︸ ︷︷ ︸
n

and

discussed whether it is a result of an n–ary or an iterated binary single-
valued operation “·”, we may discuss the meaning of the symbol a1 ∗ . . . ∗ an︸ ︷︷ ︸

n

.

Again, in a general case it could stand for both an n–ary or an iterated
binary hyperoperation. Yet as has been suggested above, in the case of the
hyperoperation we choose the n–ary option.

3.1.2 Implications of iterated binary operation

First, discuss the issue of associativity and commutativity in n–ary hyper-
structures defined by (3.3). The following theorem is a parallel to the “Ends
lemma”, i.e. Lemma 2.1.1.
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Theorem 3.1.3. Let (S, ·,≤) be a quasi-ordered semigroup. n–ary hyperop-
eration f : Sn → P∗(S) defined by (3.3), i.e. as

f(an1 ) = [a1 · . . . · an︸ ︷︷ ︸
n

)≤ = {x ∈ S | a1 · . . . · an︸ ︷︷ ︸
n

≤ x}.

is associative. Furthermore, it is commutative if the semigroup (S, ·) is com-
mutative.

2

Proof. In order to prove associativity, we will modify the proof of Chvalina [44],
Lemma 1.6, p. 148, which shows that if we start with a quasi-ordered2 semi-
group (S, ·) there holds a ∗ (b ∗ c) = (a ∗ b) ∗ c = [a · b · c)≤.

First of all, suppose the following: x, y, ai ∈ S, i = 1, . . . , n+1, x ≤ y and
that (S, ·,≤) is a quasi-ordered semigroup. This implies that ai · x ≤ ai · y,
x · ai ≤ y · ai and [ai · y)≤ ⊆ [ai · x)≤, [y · ai)≤ ⊆ [x · ai)≤ for i = 1, . . . , n (and
the same for any product of any number of elements of S in position of ai –
if we keep their order).

Second, notice that obviously for all x ∈ S such that an · an+1 ≤ x there
is [a1 · . . . · an−1︸ ︷︷ ︸

n−1

· x)≤ ⊆ [a1 · . . . · an+1︸ ︷︷ ︸
n+1

)≤. This is easy to verify because the

fact that y ∈ [a1 · . . . · an−1︸ ︷︷ ︸
n−1

· x)≤ is equivalent to the fact that a1 · . . . · an−1︸ ︷︷ ︸
n−1

·

x ≤ y. On the other hand, the fact that an · an+1 ≤ x is equivalent to
a1 · . . . · an+1︸ ︷︷ ︸

n+1

≤ a1 · . . . · an−1︸ ︷︷ ︸
n−1

·x, which due to transitivity of the relation “≤”

means that a1 · . . . · an+1︸ ︷︷ ︸
n+1

≤ y, i.e. y ∈ [a1 · . . . · an+1︸ ︷︷ ︸
n+1

)≤. Naturally, it is not

important whether we multiply by x from left or right, i.e. there is also
[x · a3 · . . . · an+1︸ ︷︷ ︸

n−1

)≤ ⊆ [a1 · . . . · an+1︸ ︷︷ ︸
n+1

)≤ for all x ∈ S such that a1 · a2 ≤ x.

Then consider that the proof of Lemma 1.6 of [44] goes (using the above
considerations for n = 2 and notation a, b, c instead of ai) as follows:

a ∗ (b ∗ c) =
⋃
x∈b∗c

a ∗ x =
⋃

x∈[b·c)≤

[a · x)≤ = [a · b · c)≤ ∪
⋃
x>b·c

[a · x)≤ = [a · b · c)≤

2In [44] Chvalina in fact assumes that the semigroup is partially ordered. However,
antisymmetry is not used in the proof. The reason why Chvalina assumes partially ordered
semigroups is that he shows that Lemma 1.6 can be used in the proof of the “Ends lemma”,
where – because of the part on commutativity – he assumes partial ordering. Notice that
Lemma 1.6 of [44] is included as Lemma 2.1.4 on page 28. Also see Subsection 2.4.1.
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and similarly

(a ∗ b) ∗ c =
⋃

x∈[a·b)≤

[x · c)≤ = [a · b · c)≤,

which combined means that a ∗ (b ∗ c) = (a ∗ b) ∗ c = a ∗ b ∗ c. This can
be denoted as f(a, f(b, c)) = f(f(a, b), c) or f(a1, f(a3

2)) = f(f(a2
1), a3) using

the notation (3.3) for any triple of elements of S.
In a completely analogous manner we can prove that f(a1, f(a4

2)) =
f(f(a3

1), a4) = f(a4
1) for any quadruple of elements of S as well as f(a1, f(a5

2)) =
f(f(a4

1), a5) = f(a5
1) for any quintuple of elements of S. Thus for arity n = 3

we have that

f(ai−1
1 , f(ai+2

i ), a5
i+3) = f(aj−1

1 , f(ai+2
j ), a5

j+3)

for all i, j ∈ {1, 2, 3}, which means that associativity in 3–ary EL–hyper-
groupoids (S, f) is secured. Obviously, this consideration can be repeated
for any higher arity n.

Proving commutativity is rather simple: since the single-valued operation
“·” is commutative and as has been shown above also associative, then all
permutations a1 · . . . · an︸ ︷︷ ︸

n

are equal. This means that all respective upper

ends [a1 · . . . · an︸ ︷︷ ︸
n

)≤ are equal because they are generated always by the same

element. In other words, all permutations of the hyperoperation f are equal,
i.e. the hyperoperation f is commutative.

Theorem 2.4.7 on page 41 is meant as a converse of the original construc-
tion. The following theorem is its n–ary extension.

Theorem 3.1.4. Let (S, ·) be a non-trivial groupoid and “≤” a partial or-
dering on S such that for an arbitrary pair of elements a, b ∈ S, a ≤ b, and
for an arbitrary c ∈ S there holds c · a ≤ c · b, a · c ≤ b · c. Further define an
n–ary hyperoperation f (also denoted by “∗”) using notation (3.3) (or (3.2)).

Then if the hyperoperation f (or “∗”) is associative, then the single-valued
operation “·” is associative too. Furthermore, if the hyperoperation f (or “∗”)
is commutative, then the single-valued operation “·” is commutative too.

2

Proof. The fact that the hyperoperation f (or “∗”) is associative, means that
all permutations f(ai−1

1 , f(an+i−1
i ), a2n−1

n+i ) for an arbitrary i ∈ {1, 2, . . . , n}
are equal, i.e. if an arbitrary element x ∈ S belongs to one of the permuta-
tions f(ai−1

1 , f(an+i−1
i ), a2n−1

n+i ), it belongs to all other ones.
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Suppose an arbitrary x ∈ f(ai−1
1 , f(an+i−1

i ), a2n−1
n+i ) for some i ∈ {1, 2, . . . , n},

e.g. for i = 1. This means that x ∈ f(f(an1 ), a2n−1
n+1 ), i.e. using the “∗” no-

tation, x ∈ a1 ∗ . . . ∗ an︸ ︷︷ ︸
n

∗ an+1 ∗ . . . ∗ a2n−1︸ ︷︷ ︸
n−1

. This means that there exists

an element x1 ∈ a1 ∗ . . . ∗ an︸ ︷︷ ︸
n

such that x ∈ x1 ∗ an+1 ∗ . . . ∗ a2n−1︸ ︷︷ ︸
n−1

. In other

words, for these elements x1 and x there holds that a1 · . . . · an︸ ︷︷ ︸
n

≤ x1 and

x1 · an+1 · . . . · a2n−1︸ ︷︷ ︸
n−1

≤ x. Thanks to the properties assumed in the theorem

this – when combined – means that

(a1 · . . . · an︸ ︷︷ ︸
n

) · (an+1 · . . . · a2n−1︸ ︷︷ ︸
n−1

) ≤ x1 · (an+1 · . . . · a2n−1︸ ︷︷ ︸
n−1

) ≤ x

and thanks to assumed transitivity of the relation “≤” we get that

x ∈ [(a1 · . . . · an︸ ︷︷ ︸
n

) · (an+1 · . . . · a2n−1︸ ︷︷ ︸
n−1

))≤. (3.4)

Yet we could have started with any other permutation f(ai−1
1 , f(an+i−1

i ), a2n−1
n+i )

and apply analogous reasoning on it. E.g. for i = 2 we have that x ∈
a1 ∗ (a2 ∗ . . . ∗ an+1︸ ︷︷ ︸

n

) ∗ an+2 ∗ . . . ∗ a2n−1︸ ︷︷ ︸
n−1

and conclude that

x ∈ [a1 · (a2 · . . . · an+1︸ ︷︷ ︸
n

) · (an+2 · . . . · a2n−1︸ ︷︷ ︸
n−2

))≤, (3.5)

and since f(ai−1
1 , f(an+i−1

i ), a2n−1
n+i ) are equal for i = 1 and i = 2 (just as

for any other i ∈ {1, 2, . . . , n}) and we supposed an arbitrary element x ∈
f(ai−1

1 , f(an+i−1
i ), a2n−1

n+i ), we get that the upper ends in (3.4) and (3.5) (just
as any other upper end which results from using another i) are equal too.

Since we assume that the relation “≤” is antisymmetric, using implication
[a)≤ = [b)≤ ⇒ a = b we get that also the elements generating the upper ends
are equal. As a result, the single-valued operation “·” is associative.

Proving commutativity of the single-valued operation “·” is rather straight-
forward. If the hyperoperation f is commutative, then f(an1 ) is the same
regardless of the permutation of elements a1, . . . , an. By the definition of the
hyperoperation f marked as (3.3), this means that all upper ends [a1 · . . . · an︸ ︷︷ ︸

n

)≤

are the same regardless of the permutation of elements a1, . . . , an. How-
ever, on condition of antisymmetry of the relation “≤”, from the fact that
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[a)≤ = [b)≤ ⇒ a = b we immediately get that also a1 · . . . · an︸ ︷︷ ︸
n

is the same

regardless of the permutation of elements a1, . . . , an, which together with
already proved associativity means that the single-valued operation “·” is
commutative.

Now we can proceed to conditions on which an n–ary EL–semihypergroup
becomes an n–ary hypergroup. Recall that the concept of n–ary hypergroup
may be defined in two equivalent ways: either as Definition 1.1.5 on page 4
or by expanding the reproductive law, i.e. expanding validity of

x ∗H = H ∗ x = H

for all x ∈ H, to the form

H ∗ . . . ∗H︸ ︷︷ ︸
i−1

∗ x ∗H ∗ . . . ∗H︸ ︷︷ ︸
n−i

= H (3.6)

for all x ∈ H and all i = {1, 2, . . . , n} using notation (3.2) or

f(H i−1, x,Hn−i) = H (3.7)

for all x ∈ H and all i = {1, 2, . . . , n} using notation (3.3).
Since in the “Ends lemma” context obviously f(H i−1, x,Hn−i) ⊆ H for

an arbitrary i ∈ {1, 2, . . . , n}, we must concentrate on the other inclusion,
i.e. secure that

H ⊆ H ∗ . . . ∗H︸ ︷︷ ︸
i−1

∗ x ∗H ∗ . . . ∗H︸ ︷︷ ︸
n−i

, (3.8)

or H ⊆ f(H i−1, x,Hn−i), for all x ∈ H and i = {1, 2, . . . , n}.

Theorem 3.1.5. If (H, ·,≤) is the quasi-ordered group, then the n–ary EL–
semihypergroup constructed using Theorem 3.1.3 is an n–ary hypergroup.

2

Proof. As has been suggested above, we need to verify validity of inclu-
sion (3.8). To do this, suppose an arbitrary element h ∈ H and first of all
suppose that we need to verify that H ⊆ H ∗ x or H ⊆ x ∗ H. Obviously,
h · x−1 ∈ H and x−1 · h ∈ H. Thus we get that h · x−1 · x = h ≤ h (since “≤”
is reflexive) and x ·x−1 ·h = h ≤ h, i.e h ∈ [(h ·x−1) ·x)≤ ⊆

⋃
g∈H

[g ·x)≤ = H ∗x

as well as h ∈ x ∗H.
Yet instead of h · x−1 ∈ H we may write h · h−1 · h · x−1 ∈ H ∗ H =⋃

f∈H,g∈H
[f ·g)≤ (and instead of x−1 ·h ∈ H we may write x−1 ·h·h−1 ·h ∈ H∗H)

and we can repeat this for any number of instances of H.
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Theorem 3.1.6. Let (S, f) be the n–ary EL–semihypergroup of a quasi–
ordered monoid (S, ·,≤) with the neutral element u. Then

1. If e ∈ S is an identity of (S, f), then e · . . . · e︸ ︷︷ ︸
n−1

≤ u.

2. If e ≤ u for some e ∈ S, then e is an identity of (S, f).

2

Proof. In order to prove part 1 suppose that e ∈ S is an identity of (S, f), i.e.
that x ∈ f(e, . . . , e︸ ︷︷ ︸

i−1

, x, e, . . . , e︸ ︷︷ ︸
n−i

) for all x ∈ H and all i such that 1 ≤ i ≤ n. In

the context of definition of the hyperoperation f – see (3.3) – the inclusion
means that x ∈ [e · . . . · e︸ ︷︷ ︸

i−1

, x, e · . . . · e︸ ︷︷ ︸
n−i

)≤, i.e. e · . . . · e︸ ︷︷ ︸
i−1

· x · e · . . . · e︸ ︷︷ ︸
n−i

≤ x. Since

this holds for all x ∈ S, we may e.g. set x = u, where u is the neutral element
of (S, ·). And we get the statement.

As far as part 2 is concerned, suppose that e ≤ u, where u is the neutral
element of (S, ·). Since (S, ·,≤) is a quasi-ordered monoid, we have that also
e · x ≤ u · x = x and e · e · x ≤ e · x for an arbitrary x ∈ S. From transitivity
of the relation “≤” we get that e · e · x ≤ x, i.e. x ∈ [e · e · x)≤ = f(e, e, x).
But we could have also multiplied by x from the left and get x ·e ≤ x ·u = x.
Then from e · x ≤ x we get that e · x · e ≤ x · e and from transitivity we
get that e · x · e ≤ x, i.e. x ∈ [e · x · e)≤, i.e. x ∈ f(e, x, e). Finally, from
x · e ≤ x and x · e · e ≤ x · e we get that x ∈ f(x, e, e), which completes the
proof for arity n = 3. In order to prove the statement for higher arities we
may obviously use the same strategies.

Remark 3.1.7. Notice that for arity n = 2 Theorem 3.1.6 turns into equiv-
alence stating that e ∈ S is an identity of (S, f) if and only if e ≤ u, which
is Theorem 2.4.13 on page 47. Further notice that we obtain the same result
for idempotent “·” and n > 2.

Corollary 3.1.8. If in Theorem 3.1.6 (S, ·,≤) is a quasi-ordered group, then
if e ∈ S is an identity of (S, f), then also e · . . . · e︸ ︷︷ ︸

n−1

≤ e−1 · . . . · e−1︸ ︷︷ ︸
n−1

.

2

Proof. We continue the proof of part 1 of Theorem 3.1.6. By n − 1 times
repeated multiplication by e−1 we get that u ≤ e−1 · . . . · e−1︸ ︷︷ ︸

n−1

and thanks to

the transitivity of the relation “≤” we get the statement.
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Corollary 3.1.9. The neutral element u of (S, ·) is an identity of its n–ary
EL–semihypergroup (S, f).

Proof. Obvious.

Example 3.1.10. If we regard the hypergroup (R, f), where

f(an1 ) = [a1 + . . .+ an︸ ︷︷ ︸
n

)≤ = {x ∈ R | a1 + . . .+ an︸ ︷︷ ︸
n

≤ x}

for arbitrary real numbers a1, . . . , an, we get that 0 and all negative numbers
are all identities of this hypergroup. Also, obviously, x+ . . .+ x︸ ︷︷ ︸

n−1

≤ 0 for both

0 and an arbitrary negative x.

Example 3.1.11. If we regard the set (P(S), f), where

f(An1 ) = [A1 ∪ . . . ∪ An︸ ︷︷ ︸
n

)⊆ = {X ∈ P∗(S) | A1 ∪ . . . ∪ An︸ ︷︷ ︸
n

⊆ X},

we get that this hypergroup has the only identity ∅.

Scalar neutral elements (or scalar identities) are such elements, where the
inclusion in Definition 1.1.4 of n–ary identities on page 3 changes to equality
– see (1.4).

Definition 3.1.12. ( [11], p. 380) Element e of an n–ary hypergroup (H, f)
is called a scalar neutral element if

{x} = f(e, . . . , e︸ ︷︷ ︸
i−1

, x, e, . . . , e︸ ︷︷ ︸
n−i

) (3.9)

for every 1 ≤ i ≤ n and for every x ∈ H.

Remark 3.1.13. Notice that in [11] Ameri and Norouzi use a slightly differ-
ent notation: instead of f(e, . . . , e︸ ︷︷ ︸

i−1

, x, e, . . . , e︸ ︷︷ ︸
n−i

) they write f(e(i−1), x, e(n−i)).

Also notice that sometimes, e.g. Davvaz and Vougiouklis [115], p. 168, the
concept of a more general term scalar is used when defining that “the element
a ∈ H is called a scalar if |f(xi1, a, x

n
i+2)| = 1 for all x1, . . . , xi, xi+2, . . . , xn ∈

H”, i.e. defining that f(e, . . . , e︸ ︷︷ ︸
i−1

, x, e, . . . , e︸ ︷︷ ︸
n−i

) must be a one-element set, not

neccessarily the set {x} as in the case of the scalar neutral element.
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As has been done with Theorem 3.1.6, let us now permit a more general
case of scalar neutral elements – in semihypergroups instead of hypergroups.
To be consistent in naming concepts we prefer the name scalar identity to
scalar neutral element further on.

Theorem 3.1.14. Let (S, ·,≤) be a non-trivial quasi-ordered semigroup and
(S, f) its n–ary EL–semihypergroup. If e ∈ S is a scalar identity of (S, f),
then

x = e · . . . · e︸ ︷︷ ︸
i−1

· x · e · . . . · e︸ ︷︷ ︸
n−i

(3.10)

for all x ∈ S and all 1 ≤ i ≤ n.

2

Proof. Suppose that in (S, f) there exists a scalar neutral identity e. This
means that for every x ∈ S and every i such that 1 ≤ i ≤ n there is

{x} = f(e, . . . , e︸ ︷︷ ︸
i−1

, x, e, . . . , e︸ ︷︷ ︸
n−i

).

Yet thanks to the definition of the hyperoperation f this means that

{x} = [e · . . . · e︸ ︷︷ ︸
i−1

· x · e · . . . · e︸ ︷︷ ︸
n−i

)≤.

Since “≤” is reflexive, there is

e · . . . · e︸ ︷︷ ︸
i−1

· x · e · . . . · e︸ ︷︷ ︸
n−i

∈ [e · . . . · e︸ ︷︷ ︸
i−1

· x · e · . . . · e︸ ︷︷ ︸
n−i

)≤,

which means that x = e · . . . · e︸ ︷︷ ︸
i−1

· x · e · . . . · e︸ ︷︷ ︸
n−i

for all x ∈ S and all i such that

1 ≤ i ≤ n.

Remark 3.1.15. Obviously, if for some x ∈ S or some i ∈ {1, . . . , n} condi-
tion (3.10) does not hold, then e ∈ S is not a scalar identity of (S, f). This
equivalent condition might be a better tool for finding scalar identities than
the theorem itself.

Corollary 3.1.16. The neutral element u of a quasi-ordered monoid (S, ·,≤)
is a scalar identity of its n–ary EL–semihypergroup (S, f) if and only if “≤”
is the identity relation.

2
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Proof. By definition

f(u, . . . , u︸ ︷︷ ︸
i−1

, x, u, . . . , u︸ ︷︷ ︸
n−i

) = [u · . . . · u︸ ︷︷ ︸
i−1

· x · u · . . . · u︸ ︷︷ ︸
n−i

)≤ = [x)≤.

This is equal to {x} for reflexive “≤” and all x ∈ S if and only if “≤” is the
identity relation.

Remark 3.1.17. Notice that for arity n = 2 condition (3.10) turns into
x = e · x = x · e for all x ∈ S which is possible only for e = u, where
u is the neutral element of (S, ·). And we immediately conclude that “≤”
must be the identity relation. As a result, there do not exist any non-trivial
canonical hyperstructures constructed using the “Ends lemma”, which is
Corollary 2.4.11 on page 45.

Example 3.1.18. If we regard the hypergroup (R, f) from Example 3.1.10,
we see that condition (3.10) can hold for e = 0 only, which means that (R, ∗)
does not have a scalar identity.

Apart from identities and scalar identities we might consider zero elements
(or absorbing elements) of n–ary hyperstructures.

Definition 3.1.19. ( [11], p. 380) Element 0 of an n–ary hypergroup (H, f)
is called a zero element if

{0} = f(x1, . . . , xi−1︸ ︷︷ ︸
i−1

, 0, xi+1, . . . , xn︸ ︷︷ ︸
n−i

) (3.11)

for every 1 ≤ i ≤ n and for every (x1, . . . , xi−1, xi+1, . . . , xn) ∈ Hn−1.

Obviously, the zero element is unique. The following theorem might be
used to detect it. We see that only EL–maximal elements of (S,≤) can
be zero elements. As in the case of identities and scalar identities of (S, f)
we might again expand the definition onto semihypergroups. Before the
following theorem recall that by EL–maximal element of a quasi-ordered set
(S,≤) we mean such x ∈ S that [x)≤ = {x}.

Theorem 3.1.20. Let (S, ·,≤) be a non-trivial quasi-ordered semigroup and
(S, f) the n–ary EL–semihypergroup associated to it. If 0 is the zero element
of (S, f), then 0 is an EL–maximal element of (S,≤).

2



152 CHAPTER 3. EXTENSIONS AND MODIFICATIONS

Proof. From (3.11) in the definition of the zero element and from the defini-
tion of the hyperoperation f we get that

[x1 · . . . · xi−1︸ ︷︷ ︸
i−1

· 0 · xi+1 · . . . · xn︸ ︷︷ ︸
n−i

)≤ = {0} (3.12)

for every i such that 1 ≤ i ≤ n and for every (x1, . . . , xi−1, xi+1, . . . , xn) ∈
Sn−1. Since the relation “≤” is reflexive, there is

x1 · . . . · xi−1︸ ︷︷ ︸
i−1

· 0 · xi+1 · . . . · xn︸ ︷︷ ︸
n−i

∈ [x1 · . . . · xi−1︸ ︷︷ ︸
i−1

· 0 · xi+1 · . . . · xn︸ ︷︷ ︸
n−i

)≤,

which combined with (3.12) means that for a zero element 0 there must be
x1 · . . . · xi−1︸ ︷︷ ︸

i−1

· 0 · xi+1 · . . . · xn︸ ︷︷ ︸
n−i

= 0 for every i such that 1 ≤ i ≤ n and for

every (x1, . . . , xi−1, xi+1, . . . , xn) ∈ Sn−1. Yet if this holds, (3.12) reduces to
[0)≤ = {0}, which means that 0 is an EL–maximal element of (S,≤).

Example 3.1.21. Since there are no EL–maximal elements in (R,+,≤)
there are no zero elements in (R, f) from Example 3.1.10.

Example 3.1.22. If we want to describe zero elements in (P(S), f) from
Example 3.1.11, we must concentrate on the only EL–maximal element of
(P(S),∪,⊆), i.e. on P(S) itself. We easily verify that it is a zero element of
(P(S), f).

Inverse elements in n–ary hyperstructures are studied e.g. in Ameri and
Norouzi [11]. The property of having a unique inverse element required in [11]
is taken over from the definition of canonical n–ary hypergroup included in
Leoreanu [190]. Notice that canonical n–ary hypergroups are a special class
of commutative n–ary hyperstructures (moreover, with the unique identity
e having a certain further property), i.e. the definition of inverse elements
included in [11], which has been taken over from [190], must be adjusted to
a more general case – see Definition 1.1.7 on page 5.

Theorem 3.1.23. Let (H, f) be an n–ary EL–hypergroup of a quasi-ordered
group (H, ·,≤). For an arbitrary x ∈ H there holds

1. If x′ ≤ x−1, then x′ is an inverse of x in (H, f).

2. If x′ is an inverse of x in (H, f), then there is a ≤ x−1 for all a ∈
perm{x′ · e · . . . · e︸ ︷︷ ︸

2(n−2)

}.
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In both cases x−1 denotes the inverse of x ∈ H in (H, ·) and e is some
(unspecified) identity of (H, f).

2

Proof. Suppose that x ∈ H, x′ ∈ H are arbitrary and denote by the upper
index “−1” the inverse in (H, ·). Finally, denote by u the neutral element of
(H, ·). Throughout the proof recall (3.3) on page 142 for the definition of the
hyperoperation f using the single-valued operation “·” and the relation “≤”.

ad 1: If x′ ≤ x−1, then also x′ · x ≤ x−1 · x = u and x · x′ ≤ x · x−1 = u.
Moreover, we can multiply by the element u any number of times, or
“insert” it anywhere “in between” x and x′ or x′ and x on the left side.
Since according to Corollary 3.1.9 u is an identity of (H, f), we have
that x′ is an inverse of x.

ad 2: Suppose that x′ is an inverse of x in (H, f). This means that there
exists an identity e ∈ H such that (1.9) holds. This means that

x · x′ · e · . . . · e︸ ︷︷ ︸
arbitrary permutation of n elements

≤ e

When we multiply this by e · . . . · e︸ ︷︷ ︸
n−2

, we get

x · x′ · e · . . . · e︸ ︷︷ ︸
arbitrary permutation of x,x′ and 2(n−2) instances of e

≤ e · . . . · e︸ ︷︷ ︸
n−1

.

However, from Theorem 3.1.6 and transitivity of the relation “≤” we
get that

x · x′ · e · . . . · e︸ ︷︷ ︸
arbitrary permutation of x,x′ and 2(n−2) instances of e

≤ u

which is equivalent to

x′ · e · . . . · e︸ ︷︷ ︸
arbitrary permutation of x′ and 2(n−2) instances of e

≤ x−1.

It can be easily verified that commutativity / non-commutativity of
the single-valued operation “·” is not relevant in the last step.
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Remark 3.1.24. Notice that for arity n = 2 there is 2(n − 2) = 0, i.e.
Theorem 3.1.23 turns into an equivalence which enables us to describe the
set of all inverses of an arbitrary x ∈ H (denoted as i(x)) in a far more
elegant way by

i(x) = ≤(x−1] = {x′ ∈ G | x′ ≤ x−1}, (3.13)

which has already been shown on page 48 as Theorem 2.4.17.

Example 3.1.25. If we regard the hypergroup (R, f) from Example 3.1.10,
we see that all a ∈ R such that a ≤ −x are inverses of an arbitrary real
number x in (R, f). We also see that we might set e = 0 and Theorem 3.1.23
turns into equivalence.

3.1.3 Implications of the “Ends lemma”
being applied on n–ordered semigroups

Results of this subsection are taken over from Ghazavi and Anvariyeh [135].

In [135], Ghazavi and Anvariyeh, motivated by Novák [240], applied the
idea of the “Ends lemma” in the context of n–ordered semigroups which were
studied e.g. by Novák and Novotný [252–254] (originating from the study
of ternary structures) and used in the hyperstructure context by Cristea
and Ştefănescu [97, 99]. First of all, recall necessary basic definitions; to be
more precise, recall Definition 1.1.33 of basic ordering concepts, and Defini-
tion 1.1.34 of the compatibility condition for n–ary relations and groupoids
(for both definitions see p. 18).

One can see that the – for our purposes crucial – difference between binary
and n–ary relations is that there is no definition of n–ary antisymmetry. In
other words, even though some proofs which require quasi-ordering “≤” can
be generalized or modified (in some cases more or less straightforwardly),
proofs which require antisymmetry on top of reflexivity and transitivity of
“≤” must be approached from a new perspective. Naturally, not all of such
results can be transferred. Notice that in n–ordered groupoids the relation is
required to be reflexive and n–transitive, i.e. they are an analogy of proper
quasi-ordered groupoids (not “partially ordered groupoids” as the name may
suggest).

Ghazavi and Anvariyeh [135] aimed at presenting such generalizations
into the n–ary context that as many previous results as possible become
special cases of their results for n = 2. For this they proposed three natural
generalizations of the “Ends lemma”; they focus on the following one.
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Definition 3.1.26. Suppose (S, ·, ρ) is an n–ordered groupoid. For a, b ∈ S
we define the hyperoperation ∗ : S × S → P∗(S) by

a ∗ b = [a · b)ρ = {t ∈ S | (a · b, t, . . . , t︸ ︷︷ ︸
n−1

) ∈ ρ}. (3.14)

The hypergroupoid (S, ∗) is called ELn–hypergroupoid associated to n–ordered
groupoid (S, ·, ρ).

Example 3.1.27. Let n = 3 and S = {a, b, c} be a groupoid with the
following multiplication table:

· a b c

a a a a
b a b a
c a a c

Define the ternary relation ρ as follows:

ρ := {(a, a, c), (a, c, c), (a, a, a), (b, b, b), (c, c, c)}.

In this case, [a)ρ = {a, c}, [b)ρ = {b} and [c)ρ = {c}. As a result, for the
hyperoperation “∗”, we get the following table:

∗ a b c

a {a, c} {a, c} {a, c}
b {a, c} {b} {a, c}
c {a, c} {a, c} {c}

It is easy to verify that (S, ∗) is an EL3–semihypergroup.

The above Definition 3.1.26 enables the following generalizations of earlier
results concerning the “Ends lemma”.

Theorem 3.1.28. Let (S, ∗) be an ELn–hypergroupoid associated to an n–
ordered semigroup (S, ·, ρ). Then:

1. (S, ∗) is a semihypergroup.

2. If the n–ordered semigroup (S, ·, ρ) is commutative, then also (S, ∗) is
commutative.

3. If (S, ·, ρ) is an n–ordered semigroup, then (S, ∗) is a hypergroup if and
only if there for every a, b ∈ S exist c, c′ ∈ S such that

(a · c, b, . . . , b︸ ︷︷ ︸
n−1

) ∈ ρ and (c′ · a, b, . . . , b︸ ︷︷ ︸
n−1

) ∈ ρ.
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4. If (S, ·, ρ) is an n–ordered group, then (S, ∗) is a transposition hyper-
group.

Proof. See [135]; the proofs mostly follow the reasoning of the respective
proofs for the case n = 2.

Of course, this approach reaches its limitations once proofs for n = 2
start requiring antisymmetry of the relation “≤” which has no counterpart
for n–relations ρ. This is e.g. the case of the converse of the “Ends lemma”,
i.e. Theorem 2.4.7 included on page 41, which says that if the hyperoperation
is associative, then the single-valued operation is associative too. Also, e.g.
Theorem 2.4.34 on page 55, which is an equivalence, can be generalized to
an implication only (see Corollary 4.3 of [135]).

Example 3.1.29. Let n = 3 and S = {a, b, c} be a groupoid with the
following multiplication table.

· a b c

a a a a
b a c a
c a a b

Now consider the ternary relation ρ = S3. In this case, (S, ·, ρ) is a 3-ordered
groupoid and its associated EL3–hypergroupoid (S, ∗) is rather trivial as
x ∗ y = S for all x, y ∈ S. However, this triviality makes it clear that (S, ∗)
is associative. Yet since (b · b) · c 6= b · (b · c), the single-valued operation “·”
is not associative.

In [135] a number of properties included in Subsection 2.4.5 (again, mainly
as straightforward generalizations of the case n = 2) are included for ELn–
semihypergroups. Notice that e.g. u ∈ H is an identity of (H, ∗) if and only
if (u, e, . . . , e︸ ︷︷ ︸

n−1

) ∈ ρ, where e is the neutral element of the n-ordered group

(H, ·, ρ), or that the set of inverses of a ∈ H is in such a case i(a) = {y ∈
H | (y, a−1, . . . , a−1︸ ︷︷ ︸

n−1

) ∈ ρ}, where a−1 is the inverse of a in (H, ·). Compare

these results to those included in Subsection 2.4.3 or in Subsection 3.1.2.

3.2 EL2–hyperstructures

Results of this subsection are taken over from Ghazavi, Anvariyeh and Mirvak-

ili [136].
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In Section 1.2 we mentioned the approach pioneered by Heidari and
Davvaz [146] in which ordering “≤” is studied on hyperstructures. Notice
that in ordered hyperstructures, the ordering is supposed to be compatible
with the hyperoperation, not with the single-valued operation. Since [146],
numerous papers written by collaborators and / or PhD students of Davvaz
appeared on the topic; results of some of these are included in a recently
published book Davvaz [105].

In [136], Ghazavi, Anvariyeh and Mirvakili took the idea of the “Ends
lemma” and transferred it from quasi-ordered semigroups to quasi-ordered
hypergroupoids. Since, by this transition, they construct hyperstructures
from hyperstructures (not hyperstructures from single-valued structures) –
yet they use the same idea – they called the resulting hyperstructures EL2–
hyperstructures.

Definition 3.2.1. Suppose (H, ◦) is a quasi-ordered hypergroupoid. For
a, b ∈ H we define a hyperoperation ∗ : H ×H → P∗(H) by

a ∗ b = [a ◦ b)≤ =
⋃

m∈a◦b

[m)≤. (3.15)

We call the hypergroupoid (H, ∗) EL2–hypergroupoid associated to (or of)
the quasi-ordered hypergroupoid (H, ◦,≤).

For the original construction, reflexivity of the relation “≤” is crucial
in many proofs as it provides that [a)≤ is always non-empty. In EL2–
hyperstructures, reflexivity of the hyperstructure ordering “≤” has a some-
what different meaning. Notice that the following proposition is used in the
proof of Theorem 3.2.3, part 1.

Proposition 3.2.2. Let (H, ∗) be an EL2–hypergroupoid of a quasi-ordered
hypergroupoid (H, ◦,≤). Then a ◦ b ⊆ a ∗ b for all a, b ∈ H.

Proof. Let t ∈ a ◦ b be arbitrary. Because t ≤ t, we conclude that t ∈ [t)≤ ⊆⋃
m∈a◦b

[m)≤ = a ∗ b.

Recall the role of extensivity discussed in Subsection 2.4.6. In the case of
the original EL–hyperstructures, we need associativity of the single-valued
operation “·” and validity of the compatibility condition for “·” and “≤” to
achieve associativity of the hyperoperation. However, if the hyperoperation
is extensive, none of these are required to achieve weak associativity of the
hyperoperation or the validity of the reproductive law – see the proof of
Theorem 2.4.72 on page 71.
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Theorem 3.2.3. Let (H, ∗) be an EL2–hypergroupoid of a quasi-ordered hy-
pergroupoid (H, ◦,≤).

1. If (H, ◦) is weak associative, then (H, ∗) is weak associative.

2. If (H, ◦) is associative, then (H, ∗) is associative.

3. If the reproductive law holds in (H, ◦), then it holds also in (H, ∗).

4. If (H, ◦) is a commutative quasi-ordered hypergroup, then (H, ∗) is a
commutative hypergroup.

5. If in (H, ◦,≤) there for all a, b ∈ H holds that either a ≤ b or b ≤ a,
then (H, ∗) is a transposition hypergroup.

6. Every identity of (H, ◦) becomes an identity of (H, ∗).

7. The scalar identity of (H, ◦) does not become the scalar identity of
(H, ∗). However, it is an identity of (H, ∗).

Proof. See [136], proofs of Theorem 3.4, Theorem 3.6, Corollary 3.5, Corol-
lary 3.7, Theorem 3.8, Theorem 3.9, Theorem 5.1, Corollary 5.2 and Theo-
rem 5.3.

We include the proof of item 1, i.e. weak associativity, only. Since, for all
a, b, c ∈ H, there is (a ◦ b) ◦ c ∩ a ◦ (b ◦ c) 6= ∅ and, by Proposition 3.3, also
(a ◦ b) ◦ c ⊆ (a ∗ b) ∗ c and a ◦ (b ◦ c) ⊆ a ∗ (b ∗ c), there must exist an element
which is included both in (a∗ b)∗ c and in a∗ (b∗ c), i.e. (H, ∗) must be weak
associative.

In [136] the authors show that weak associativity of “◦” need not imply
associativity of “∗” (see their Example 5). They also show (Example 9) a
hypergroup (H, ◦,≤) which does not result in a transposition hypergroup
(H, ∗), etc.

Ghazavi, Anvariyeh and Mirvakili [136] use Definition 2.4.30 on page 53
of the upper end (the definition makes use of the set and relation only so it
can be used for both quasi-ordered semigroups (H, ·,≤) and hypergroupoids
(H, ◦,≤)) to prove an analogy of Lemma 2.4.31 and Theorem 2.4.34 for
EL2–hyperstructures. Again, as with ELn–hyperstructures of Ghazavi and
Anvariyeh [135], the analogy of Theorem 2.4.34 has the form of implication,
not of equivalence.

Moreover, in [136] there are also included the following results concerning
hyperideals of EL2–hyperstructures.

Theorem 3.2.4. Let (H, ∗) be an EL2–hypergroupoid of a quasi-ordered hy-
pergroupoid (H, ◦,≤).
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1. If I is a right / left ideal (hyperideal) and, moreover, an upper end of
(H, ◦,≤), then I is a right / left hyperideal of (H, ∗).

2. Every right / left hyperideal of (H, ∗) is a right / left hyperideal (not
necessarily an ideal) of (H, ◦,≤).

3. If I is a minimal ideal (hyperideal) of (H, ◦,≤) and, moreover, an upper
end of (H, ◦,≤), then I is also a minimal hyperideal of (H, ∗).

4. If I is a prime ideal (hyperideal) of (H, ◦,≤) and, moreover, an upper
end of (H, ◦,≤), then I is also a prime hyperideal of (H, ∗).

Proof. See [136], proof of Theorem 4.4, Corollary 4.5 and Corollary 4.6.

For examples see [136].

3.3 The case of a partitioned semigroup

Results of this subsection were, together with the results of Subection 2.4.6, pub-

lished by Soft Computing (WoS Q2) as Novák and Křehĺık [249].

If we examine the construction of EL–hyperstructures from the practi-
cal point of view (looking for real-life examples), we find out that in some
contexts the construction has several disadvantages:

1. There are too many assumptions. Out of these, the assumption of
compatibility of the relation “≤” and operation “·” is the most difficult
to achieve in real-life situations.

2. The original definition of the hyperoperation, i.e. (2.1) on page 27, does
not provide that {a, b} ⊆ a ∗ b. If one wants to use this hyperoperation
for e.g. description of family relations, then if a and b are parents, the
hyperperation describes children only, not the family as a whole. Also,
in case of childless families we get (if parents a, b are not regarded) that
a∗ b = ∅, which means that “∗” is not a hyperoperation at all (as what
we get are partial hypergroupoids). Or, if a ∗ b is meant to describe a
path between nodes a, b ∈ S, then the inclusion of the endpoints is not
secured by default.

3. It does not take into account the usual situation of “incompatibility” of
elements. When applying the idea in e.g. genetics, one must take into
account that for some a and b the hyperproduct (or the single-valued
product) is meaningless as mating is possible between some individuals
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only. If the original concept of (2.1) does not regard this, how can we
test associativity? Or, on the other hand, when constructing e.g. the
Cartesian composition of automata (or their hyperstructure general-
izations; see Section 4.2) one needs the input sets to be disjoint, i.e.
the resulting composition will in fact consist of elements of two types.
See Example 3.3.1, Example 3.3.5 and Example 3.3.6 and Chvalina,
Křehĺık and Novák [61].

Out of all these reasons we need to modify the “Ends lemma” concept.
In this section we will discuss the intuitive yet simple case of two sets Ti.
However, it is not difficult to regard a general case of n sets. Notice that
already in Subsection 2.4.6 we discussed the role of extensivity, i.e. case 2 of
the above list.

3.3.1 New definitions, their motivation and relation to
the cardinal sum

First of all, we start with two non-empty sets, T o1 and T o2 endowed with single-
valued operations “·1” and “·2” and relations “≤1” and “≤2”, respectively.
Since we want to use Lemma 2.1.1 (or to relate our results to it), we assume
that (T o1 , ·1,≤1) and (T o2 , ·2,≤2) are quasi-ordered semigroups.

Example 3.3.1. Let (T o1 , ·1,≤1) be the set of two-dimensional vectors, com-
ponents of which are real numbers, with the operation of component-wise
addition, where for arbitrary u, v ∈ T o1 such that u = (u1, u2), v = (v1, v2)
we set u ≤1 v if u1 ≤ v1. Let (T o2 , ·2,≤2) be the set of 2 × 2 matrices of
real entries with the operation of entry-wise addition, where for arbitrary
A,B ∈ T o2 we set A ≤2 B if tr(A) ≤ tr(B), where tr(A) stands for the
trace of matrix A. Obviously, (T o1 , ·1,≤1) and (T o2 , ·2,≤2) are quasi-ordered
semigroups.

In a case like the one used in Example 3.3.1 considering “criss-cross”
operations between elements of T o1 and T o2 may be problematic or even need
not make any sense at all. Therefore, define a new operation “·” on their
union so that within the respective classes T o1 , T o2 we use the results given
by “·1”, “·2”, respectively, and for results of the “criss-cross” multiplication
we reserve some special element, which we denote s, which has the form of
elements of one of the classes yet is artificially added into the class. Whenever
any relation “≤” is concerned, s is related to itself only. In fact, what we
want to make use of, is a special case of cardinal sum of ordered sets, or
rather of relational and operational systems. Therefore, first of all, we give
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the general definition, included e.g. in Birkhoff [25], and then, referred to as
Definition 3.3.3, introduce the special case suitable for our purposes.

Definition 3.3.2. Let I 6= ∅ be an index set and {(T oi ,≤i) | i ∈ I} a system
of pairwise disjoint quasi-ordered sets. By the cardinal sum (G,≤) we mean
the sum

∑
i∈I

(T oi ,≤i) = (
⋃
i∈I
T oi ,≤), where for a, b ∈ G =

⋃
i∈I
T oi we put a ≤ b

whenever there exists an index i0 ∈ I such that a, b ∈ T oi and a ≤io b.

Now, in this general construction let us assume that {(T oi , ·i,≤i)} is a
system of pairwise disjoint commutative quasi-ordered semigroups, i.e. in our
case we assume, on top of Definition 3.3.2, commutative binary operations
“·i” compatible with the relations “≤i”. Moreover, let our system be such
that T oz = {s} for exactly one z ∈ I. On such a system we define the cardinal
sum (H,≤) =

∑
i∈I\{z}

(T oi ,≤i) +T oz and on H we define a binary operation “·”

in the following way:

a · b =


a ·i b if there exists i ∈ I \ {z} such that a, b ∈ T oi
s if a ∈ T oi , b ∈ T oj where i 6= j

s if a = s or b = s.

(3.16)

It is easy to see that (H, ·,≤) is a commutative quasi-ordered semigroup.
In case of I being a three-element index set we have T o1 , T o2 and T o3 =

T oz = {s}. In order to make things easier, assume that s takes a form of
elements of either T o1 or T o2 (we can do this because in our practical examples
we artificially add the element s to our considerations). Thus, if we include
s into one of the classes, we in fact now have two classes instead of three. In
order to describe this new context, we use notation T1, T2 instead (the upper
index o in T oi stands for “original”). Thus we obtain the following – explicit
– definition modified for our simple case of a three (in fact, two) element
index set. And in this context we define a hyperoperation on H.

Definition 3.3.3. Let (T o1 , ·1,≤1) and (T o2 , ·2,≤2) be quasi-ordered commu-
tative semigroups such that T o1 ∩ T o2 = ∅ and T o1 6= ∅, T o2 6= ∅. For a fixed
i ∈ {1, 2} let Ti = T oi ∪ {s}, where s 6∈ T o1 ∪ T o2 and Tj = T oj for j ∈ {1, 2},
i 6= j. Denote H = T1 ∪ T2 and on H define a binary operation “·” by

a · b =


s if a ∈ T o1 , b ∈ T o2 or a ∈ T o2 , b ∈ T o1
a ·1 b if a, b ∈ T o1
a ·2 b if a, b ∈ T o2
s for all a ∈ T o1 ∪ T o2 , b = s or a = s, b ∈ T o1 ∪ T o2 .

(3.17)
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Next, define a hyperoperation “∗m2” on H by

a ∗m2 b = {a, b} ∪ [a · b)≤, (3.18)

where for an arbitrary pair of elements a, b ∈ H the relation “≤” is defined
as

a ≤ b =

{
a ≤1 b if a, b ∈ T o1
a ≤2 b if a, b ∈ T o2

(3.19)

and [s)≤ = {x ∈ H | s ≤ x} = {s} and s 6∈ [y)≤ = {x ∈ H | y ≤ x} for all
y ∈ T o1 ∪ T o2 . We call (H, ∗m2) a modified EL–hyperstructure of the second
type or an m2EL–hyperstructure for short.3

Example 3.3.4. Let us continue with Example 3.3.1. Usually, making a
componentwise sum of a vector and a matrix makes no sense because of
incompatible dimensions. For this reason, denote s = (∞, 0). Formally
speaking, s is a vector, yet it does not belong to T o1 (even though it has two
components, we regard real components but do not regard infinity in T o1 ).
Thus, we set T1 = T o1 ∪ {s} and T2 = T o2 . Given our definition and arbitrary
vectors and arbitrary matrices A,B, we have that u · v is the usual sum of
vectors within T o1 and A ·B is the usual sum of matrices within T o2 . Given
the definition, A · u = s and u · s = s · u = A · u = s ·A = s (in plain words,
impossible products give meaningless results). Using “≤” we relate vectors
to vectors and matrices to matrices, while the “criss-cross” relation such as
e.g. A ≤ u is not permitted. Also, by our definition, s is not related to any
element of H, only to itself.

Notice that sometimes defining single-valued operations within the classes
may not be possible (or may be uninteresting for our purposes) while the
“criss-cross” operation may have the practical use we want.

Example 3.3.5. Let (T o1 , ·1,≤1) be the set of two-dimensional vectors, com-
ponents of which are positive real numbers, with the operation of component-
wise multiplication, where for arbitrary u, v ∈ T o1 such that u = (u1, u2), v =
(v1, v2) we set u ≤1 v if u1 ≤ v1. Let (T o2 , ·2,≤2) be the set of 2× 2 matrices
of real entries with the operation of entry-wise addition, where for arbitrary
A,B ∈ T o2 we set A ≤2 B if a11 ≤ b11). In this case, operations within the
classes are possible and (T o1 , ·1,≤1) and (T o2 , ·2,≤2) are quasi-ordered semi-
groups yet all of this is just a side-effect of our considerations now since we

3The reason why we – rather illogically – call this modification (introduced as the first
one) of the second type is that it is historically younger as traces of the other modification
defined in Definition 3.3.7 can be found already in Chvalina, Křehĺık and Novák [61].
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might in fact want to consider a new operation such as the usual multiplica-
tion of matrices of different dimensions – yet in this case only u ·A would be
defined (also notice that in this case u ·A ∈ T o1 which would not be the case
if we considered e.g. 2× 3 matrices).

Example 3.3.6. Suppose that T o1 is the set of males and T o2 is the set of
females. Let “·1” and “·2” be the operation of mating. For most living or-
ganisms, mating is not possible within the same sex as a male and a female
are needed. Therefore, we need a “criss-cross” operation “·” while speak-
ing about hypergroupoids (T o1 , ·1) or (T o2 , ·2) makes no sense in this context.
Moreover, the relation “≤” may be the descendent relation valid for all in-
dividuals regardless of sex, i.e. a ≤ b may mean that a is the offspring (or
parent) of b. Obviously, a product of mating between individuals with dis-
tinguished sex is an individual of exactly one sex (that is, moreover, related
to their parents, i.e. elements of both T o1 and T o2 ).

Therefore, we adjust Definition 3.3.3 in the following way. Notice that by
this definition we overcome the obstacles with multiplication of vectors and
matrices in Example 3.3.5 because – if we denote “·o” the usual multiplication
of m × n matrices (again, “o” can stand for “original”) – we, in case of
Example 3.3.5 for all vectors u and matrices A, define a · b := u ·o A = c,
where c is a vector, while for b · a = A ·o u, which has no meaning under
standard definitions, we define that b·a := u·oA = a·b = c, which is the same
vector. Naturally, operations such that a · b 6= b · a for some a, b ∈ T o1 ∪ T o2
are not possible under the following definition.

Definition 3.3.7. Let T o1 , T
o
2 be non-empty sets such that T o1 6= ∅, T o2 6= ∅.

For a fixed i ∈ {1, 2} let Ti = T oi ∪{s}, s 6∈ T o1 ∪T o2 , and Tj = T oj for j ∈ {1, 2}
such that j 6= i. Denote H = T1 ∪ T2 and by means of an outer operation
·o : T o1 × T o2 → T o1 define a binary operation “·” on H such that

a · b =



a ·o b if a ∈ T o1 , b ∈ T o2
b ·o a if a ∈ T o2 , b ∈ T o1
s if a, b ∈ T o1
s if a, b ∈ T o2
s for all a ∈ T o1 ∪ T o2 , b = s or a = s, b ∈ T o1 ∪ T o2 .

(3.20)

Next, define a hyperoperation “∗m1” on H by

a ∗m1 b = {a, b} ∪ [a · b)≤, (3.21)

where “≤” is such a quasi-ordering on H that [s)≤ = {x ∈ H | s ≤ x} = {s}
and s 6∈ [y)≤ = {x ∈ H | y ≤ x} for all y ∈ T o1 ∪ T o2 . We call (H, ∗m1) a
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modified EL–hyperstructure of the first type or an m1EL–hyperstructure for
short.

Remark 3.3.8. Notice that if either T o1 = ∅ or T o2 = ∅, then in Defini-
tion 3.3.3 there is no need to consider the special element s and (H, ·,≤)
reduces to (T oi , ·i,≤i) for a suitable i ∈ {1, 2}, where a ∗ b = {a, b} ∪ [a · b)≤
is used (instead of a ∗ b = [a · b)≤ used in Lemma 2.1.1) to define the hyper-
operation on H. Therefore, in our paper, we consider not only results valid
for a decomposed set H but also for the original “Ends lemma” construction
using Lemma 2.1.1 which is made explicitely extensive. We will see later on
that thanks to the extensivity of “∗” we often do not need the assumption
that (H, ·,≤) is a quasi-ordered semigroup. It is important to notice that
even though Lemma 2.4.74 on page 72 shows that Lemma 2.1.1 holds even
if the hyperoperation is made explicitely extensive, Lemma 2.1.1 (and conse-
quentely, Lemma 2.4.74) cannot be used if the condition that “the semigroup
(H, ·) is quasi-ordered” is dropped.

Remark 3.3.9. It is easy to prove that (H, ·) is a semigroup under both
definitions. However, it is not true that under both definitions (H, ·,≤)
is a quasi-ordered semigroup, i.e. that for an arbitrary triple of elements
a, b, c ∈ H such that a ≤ b there holds a · c ≤ b · c and c · a ≤ c · b. Notice
that this condition is incompatible with formulas (3.20). Indeed, if a ∈ T o1
and b ∈ T o2 and a ≤ b, then for c ∈ T o1 the expression a · c ≤ b · c means
s ≤ x, where x 6= s. Yet the special element s is related to itself only,
i.e., by definition, s 6≤ x, which is a contradiction. Therefore, in the most
general contexts we will be trying to avoid the assumption that (H, ·,≤) is
a quasi-ordered semigroup. In m2EL–hyperstructures this condition makes
no problems because we do not allow relations between elements of different
types, which explains our future interest in “∗m2” rather than in “∗m1”. Also,
when T1 = ∅ or T2 = ∅, the above problem does not apear.

Therefore, we introduce the term mEL–hyperstructure in which we stress
the fact that it is extensivity that is a priority. Notice that if we moreover
assume that one of the sets T o1 or T o2 is empty and H = T oi is a quasi-ordered
semigroup (where T oi is the non-empty of the two sets), we get a modification
of the original construction of Lemma 2.1.1 (with extensivity added). This
is e.g. the case of Corollary 3.3.21.

Definition 3.3.10. By a modified EL–hyperstructure (ormEL–hyperstructure
for short) we mean a hypergroupoid (H, ∗m), where “∗m” is a commutative
hyperoperation on H defined for all a, b ∈ H by a ∗m b = {a, b} ∪ [a · b)≤,
where (H, ·) is a semigroup and “‘≤” is a quasi-ordering on H.
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Obviously, every m1EL–hyperstructure as well as every m2EL–hyper-
structure is an mEL–hyperstructure. Also, hyperstructures discussed in
Subsection 2.4.6 are mEL–hyperstructures of Definition 3.3.10.

Remark 3.3.11. Since writing T1 = T o1 ∪ {s}, T2 = T o2 (or vice versa),
H = T1 ∪ T2 would be rather inconvenient in some proofs, we use equivalent
notation T1 \ {s}, T2 \ {s}, H = T1 ∪ T2 in the assumptions of our theorems
instead. Of course, s belongs to exactly one of the sets, so – technically
speaking – one of the notations is not formally correct as {s} 6⊆ Ti for one
i ∈ {1, 2}, which means that, in such a case, Ti \ {s} does not comply with
the usual definition of set difference.

3.3.2 Results in the context of the new definitions

In the context of mEL–hyperstructures we can now include results of Sub-
section 2.4.6. However, all of those results follow from the simple fact that
we make the definition of the hyperoperation extensive by changing it from
a ∗ b = [a · b)≤ to a ∗m b = {a, b}∪ [a · b)≤. Yet in this subsection, we regard a
new context given by Definition 3.3.3, Definition 3.3.7 and Definition 3.3.10.
Of course, results of Subsection 2.4.6 remain valid.

Let us now consider the set H = T1 ∪ T2 such that (T1, ∗m) and (T2, ∗m)
are constructed using Lemma 2.1.1 and Lemma 2.4.74. Since T1 and T2

are elements of different types, hyperoperations on T1 and T2 are different.
Therefore, for the time being, denote them “∗1” and “∗2”. In the follow-
ing theorem we must discuss the associativity of “the whole of H”, a rather
strange concept, discussion of which could be avoided in the proof of The-
orem 2.4.72 on page 71. Notice that oddity of this concept comes from the
fact that in the proof we have to apply “∗1” on elements a ∈ T1 and x ∈ T2,
i.e., technically speaking, we are discussing nonsense. However, this does not
matter because both hyperoperations “∗1” and “∗2” were constructed using
the same formulas (3.18) and the nature of the single-valued operations “·” is
irrelevant for the proof. Finally, in the assumptions of the following theorem
(and further on in Theorem 3.3.15) we need to make sure that the special
element s is excluded from both T1 and T2, even though it belongs to one of
the sets only as they are disjoint – see Remark 3.3.11.

Theorem 3.3.12. Let (H, ∗m2) be an m2EL–hyperstructure such that H =
T1 ∪ T2, where T1 6= ∅, T2 6= ∅ and (T1 \ {s}, ·1,≤1) and (T2 \ {s}, ·2,≤2) are
quasi-ordered semigroups. Then (H, ∗m2) is a hypergroup.

Proof. Thanks to Theorem 2.4.72 only associativity must be tested. Since
(T1 \{s}, ·1,≤1) and (T2 \{s}, ·2,≤2) fulfill assumptions of Lemma 2.1.1 (and
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consequently of Lemma 2.4.74), the test of associativity reduces to testing
the case a ∈ T1, b, c ∈ T2 (or a ∈ T2, b, c ∈ T1, which is equivalent) for
a ∗1 (b ∗2 c) = (a ∗1 b) ∗2 c (or swapping “∗1” and “∗2”, which is equivalent).

Since b, c ∈ T2, there is obviously b ∗2 c ⊆ T2. Moreover, {b, c} ⊆ b ∗2 c.
Now,

a ∗1 (b ∗2 c) = {a} ∪ {x ∈ H | x ∈ b ∗2 c} ∪ {a · x | x ∈ b ∗2 c}.

However, since a ∈ T1 and elements of b ∗2 c are elements of T2, we get that

a ∗1 (b ∗2 c) = {a} ∪ {x | x ∈ b ∗2 c} ∪ {s}.

On the other hand, a ∗1 b = {a, b, s} and

{a, b, s} ∗2 c = a ∗2 c ∪ b ∗2 c ∪ c ∗2 s.

Yet since a ∗2 c = {a, c} ∪ [s)≤ = {a, c, s}, c ∗2 s = {c, s} and c ∈ b ∗2 c, the
proof is complete.

Before discussing the issue of whether mEL–hyperstructures are join
spaces, i.e. commutative hypergroups in which the transposition axiom holds,
we include the following Lemma 3.3.13 and Lemma 3.3.14 which will simplify
the proof of Theorem 3.3.15. Notice that commutativity of mEL–hyper-
structures obviously results in the fact that the right and left extensions a/b
and b\a coincide. Recall that in the hyperstructure theory b\a is defined as
b\a = {x ∈ H | a ∈ b◦x} for all a, b ∈ (H, ◦). For details on join spaces and
transposition hypergroups see e.g. Corsini and Corsini and Leoreanu [92,95]
or Jantosciak [169].

Lemma 3.3.13. Let (H, ∗m) be an arbitrary mEL–hyperstructure. Then for
an arbitrary a ∈ H:

1. a/a = H.

2. b \ a = a/b 6= ∅ for all a, b ∈ H.

3. If H = T1 ∪ T2 is an m1EL– or m2EL–hyperstructure, where T1 6= ∅
and T2 6= ∅, then a ∗m s = s ∗m a = {a, s}.

Proof. 1. Obvious. Notice that in this case the fact whether T1 6= ∅ and
T2 6= ∅ in H = T1 ∪ T2 is irrelevant. Also, if a = s, the statement is
obvious because s/s = {x ∈ H | s ∈ {s, x}}.
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2. Suppose the contrary, i.e. that for some a, b ∈ H there is a 6∈ b ∗m x for
all x ∈ H. Yet in this case H 6⊆ b ∗m H, i.e. the reproduction axiom
does not hold in (H, ∗m). Yet this is a contradiction to Theorem 2.4.72.
Cases a = s or b = s obviously hold because s ∈ {b, s} or s ∈ {a, s}.

3. Obvious because the hyperoperation is commutative and for an arbi-
trary a ∈ H we have a ∗m s = {a, s} ∪ [a · s)≤ = {a, s} ∪ [s)≤ = {a, s}.

Lemma 3.3.14. Let (H, ∗m2) be an m2EL–hyperstructure. Denote by Ti an
arbitrary of types T1, T2 ⊂ H. Then:

1. If a, b ∈ Ti, a 6= s, b 6= s, a 6= b, then b \ a = a/b ⊆ Ti.

2. a \ s = s/a = {s} ∪ Ti, where a 6∈ Ti, a 6= s.

3. s \ a = a/s = {a} for an arbitrary a ∈ H \ {s}.

4. For an arbitrary quadruple of elements a, b ∈ T1 and c, d ∈ T2 such that
a 6= s, b 6= s, c 6= s, d 6= s, there is b \ a ∩ c/d = ∅.

5. a ∗m2 b = {a, b, s} for all a ∈ Ti, b 6∈ Ti.

6. b \ a = a/b = {a} for all a ∈ Ti, b 6∈ Ti, a 6= s.

Proof. 1. We have that b \ a = {x ∈ H | a ∈ b ∗m2 x} = {x ∈ H | a ∈
{b, x} ∪ [b · x)≤}. Suppose that a, x are of different types, e.g. a ∈ T1

and x ∈ T2. Then b · x = s, i.e. [b · s)≤ = {s} and b ∗m2 x = {b, x, s}.
However, if a = x, then we have a contradiction because T1 ∩ T2 = ∅.
Therefore, a and x must be of the same type Ti.

2. Suppose an arbitrary a ∈ T1. Then a \ s = {x ∈ H | s ∈ a ∗m2 x} =
{x ∈ H | s ∈ {a, x} ∪ [a · x)≤}. If a and x are of different types, then
a · x = s ∈ [s)≤. Therefore for an arbitrary x ∈ T2 there is s ∈ a ∗m2 x.
The fact that s ∈ a ∗m2 s is obvious.

3. Suppose an arbitrary a ∈ H. Then s \ a = {x ∈ H | a ∈ x ∗m2 s} =
{x ∈ H | a ∈ {x, s}}. Obviously, x = a.

4. Follows from item 1 and the fact that T1 ∩ T2 = ∅.

5. Obvious because in this case [a · b)≤ = [s)≤ = {s}.
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6. We have that b \ a = {x ∈ H | a ∈ b ∗m2 x} = {x ∈ H | a ∈
{b, x} ∪ [b · x)≤}. From the proof of item 1 there follows that a and x
must be of the same type Ti. Yet in this case x and b are of different
types which means that [b · x)≤ = {s}. Since a 6= s and a ∈ Ti, b 6∈ Ti
and T1 ∩ T2 = ∅, there is also a 6= b. Thus the condition “x ∈ H such
that a ∈ {b, x, s}” can be fulfilled only for x = a. Therefore b\a = {a}.
If b = s, we get item 3 immediately.

Theorem 3.3.15. Let (H, ∗m2) be an m2EL–hyperstructure such that H =
T1 ∪ T2, where T1 6= ∅, T2 6= ∅ and (T1 \ {s}, ·1,≤1) and (T2 \ {s}, ·2,≤2) are
quasi-ordered groups. Then the transposition axiom holds in (H, ∗m2).

Proof. Throughout the proof we will work with elements a, b, c, d ∈ H. Before
giving the proof recall some basic facts. The hyperoperation “∗m2” and the
operation “·” are commutative. As a result b \ a = a/b for all a, b ∈ H.
Elements of the same type Ti ⊂ H can be put into relation “≤” while elements
of different types cannot. The special element s ∈ H is related to itself
only and is absorbing with respect to the operation “·”, which means that
[a · s)≤ = {s} for all a ∈ H. We need to prove that that b \ a ∩ c/d 6= ∅
implies a ∗m2 d ∩ b ∗m2 c 6= ∅ for all a, b, c, d ∈ H.

There are 16 possible arrangements of elements a, b, c, d ∈ H into T1, T2:

1. a, b, c, d ∈ T1

2. a, b, c, d ∈ T2

3. a ∈ T1, b, c, d ∈ T2

4. b ∈ T1, a, c, d ∈ T2

5. c ∈ T1, a, b, d ∈ T2

6. d ∈ T1, a, b, c ∈ T2

7. a, b ∈ T1, c, d ∈ T2

8. b, c ∈ T1, a, d ∈ T2

9. a, c ∈ T1, b, d ∈ T2

10. d, a ∈ T1, b, c ∈ T2

11. b, d ∈ T1, a, c ∈ T2

12. d, c ∈ T1, a, b ∈ T2

13. b, c, d ∈ T1, a ∈ T2

14. a, c, d ∈ T1, b ∈ T2

15. a, b, d ∈ T1, c ∈ T2

16. a, b, c ∈ T1, d ∈ T2

First of all, suppose that a 6= s, b 6= s, c 6= s, d 6= s, which will enable us
to apply Lemma 3.3.13 and Lemma 3.3.14.

In case 1 we have that b \ a = {a} ∪ {x ∈ H | b · x ≤ a} while c/d =
{c} ∪ {x ∈ H | d · x ≤ c}. Regard now an arbitrary x ∈ b \ a ∩ c/d. Since in
a quasi-ordered group b · x ≤ a implies b · c ≤ a · x−1 · c and d · x ≤ c implies
a ·d ≤ a ·x−1 · c, we see that a ·x−1 · c ∈ b∗m2 c∩a∗m2 d. Case 2 is analogous.
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In case 3 we have that b \ a = {a} ⊆ T1 while c/d ⊆ T2. Therefore, in
this case the intersection is never non-empty. Case 13 is analogous.

Similarly, in case 4 we have that b \ a = {a} ⊂ T2 and c/d = {c} ∪ {x ∈
T2 | x ≤ c · d−1}. The intersection of these two sets is non-empty only on
condition that a ≤ c · d−1 or a = c. Therefore suppose that the former holds.
We have that a ∗m2 d = {a, d} ∪ [a · d)≤ = {a, d} ∪ {x ∈ H | a · d ≤ x} and
c ∗m2 b = {c, b, s}. Yet since we suppose that a ≤ c · d−1, there is a · d ≤ c,
which means that c ∈ a ∗m2 d. If a = c, then obviously a ∈ a ∗m2 d ∩ c ∗m2 b.
Case 14 is analogous.

In case 5 we have that b \ a ⊆ T2 yet c/d = {c}. Yet since c ∈ T1, the
intersection of these two sets is never non-empty. Case 15 si analogous.

In case 6 we have that b \ a = {a} ∪ {x ∈ T2 | x ≤ a · b−1} and c/d =
{c} ⊂ T2. The intersection of these two sets is non-empty on condition that
c ≤ a · b−1 or a = c. Therefore suppose that the former holds. We have that
a ∗m2 d = {a, d, s} and c ∗m2 b = {c, b} ∪ {x ∈ H | c · b ≤ x}. Yet since we
suppose that c ≤ a · b−1, there is c · b ≤ a, which means that a ∈ c ∗m2 b. If
a = c, then obviously a ∈ a ∗m2 d ∩ c ∗m2 b. Case 16 is analogous.

In case 7 we have that b \ a ⊆ T1 while c/d ⊆ T2, which means that their
intersection is never non-empty. Case 12 is analogous. The same, albeit the
sets are different, happens in cases 8 and 10.

The sets in case 9 are the same as in case 8, i.e. b\a = {a} and c/d = {c},
yet now there may happen that they coincide. This happens when a = c. In
this case there is obviously a ∈ a ∗m2 d ∩ c ∗m2 b. Case 11 is analogous.

Finally, we need to verify cases when some of the elements a, b, c, d ∈ H
equal s. Yet most of such cases reduce to trivialities as either b \ a and c/d
have no intersection or a ∗m2 d∩ b ∗m2 c is non-empty by default. In fact, the
only non-trivial case is a 6= b = c, such that a, b, c ∈ T2, and d = s ∈ T1.
Since b/s = {b} ⊆ T2, sets b \ a and b/s have non-empty intersection only if
b ∈ b\a. Since b\a = {x ∈ H | a ∈ b∗m2 x} = {x ∈ H |, a ∈ {b, x}∪ [b ·x)≤}
and a 6= b, there must be (if we want that b ∈ b \ a) that a ∈ [b · b)≤. Since
a ∗m2 s = {a, s}, then a ∗m2 s ∩ b ∗m2 c 6= ∅ only if a ∈ b ∗m2 c or s ∈ b ∗m2 c.
Yet since we assume that b = c, this means that a ∈ b ∗m2 b or s ∈ b ∗m2 b
and we have just shown that if b \ a and b/s have non-empty intersection,
the former holds.

Example 3.3.16. Consider the set (Rn,+,≤) of n–tuples of real numbers
with the usual addition by components and lexicographic order. (Rn,+,≤)
is a partially ordered group with the identity (0, . . . , 0). If we now define the
hyperoperation “∗” for any two n–tuples u, v ∈ Rn as

u ∗ v = [u+ v)≤ = {x ∈ Rn | u+ v ≤ x},
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by Lemma 2.1.1 and Lemma 2.1.2 we get that (Rn, ∗) is a hypergroup. By
Lemma 2.4.74 and Theorem 2.4.71 we get that if we modify the hyperoper-
ation to

u ∗m v = {u, v} ∪ [u+ v)≤ = {u, v} ∪ {x ∈ Rn | u+ v ≤ x},

(Rn, ∗m) is also a hypergroup. If we now take the union of two specific sets
of this type, e.g. H = R2∪R3, we can consider applying Theorem 3.3.12 and
Theorem 3.3.15. Before doing that let us agree that e.g. s = (∞, 0) and define
(u1, u2)+(∞, 0) = (∞, 0), (v1, v2, v3)+(∞, 0) = (∞, 0), (u1, u2)+(v1, v2, v3) =
(∞, 0), for all u = (u1, u2) ∈ R2 and v = (v1, v2, v3) ∈ R3, and s = (∞, 0)
is incomparable with all u ∈ R2 and v ∈ R3. Obviously, the sum of two
elements from R2 and of two elements of R3 is meaningful and the addition
is commutative, i.e. we are using formulas (3.17) to handle the sum “+”.
Thus, by Theorem 3.3.12 and Theorem 3.3.15, (H, ∗m2), where ∗m2 is defined
by (3.18), is a join space.

Example 3.3.17. In Example 3.3.16 lexicographic order is used. As a result
(Rn,≤) is a chain. It is easy to verify that we can obtain an analogous result
if we set e.g. (u1, u2, . . . un) ≤ (v1, v2, . . . vn) if and only if ui = vi, for all
i = 1, 2, . . . n− 1, and u2 ≤ v2 for all u = (u1, u2, . . . un), v = (v1, v2, . . . vn).

Example 3.3.18. Obviously, the same reasoning as in Example 3.3.16 can
be applied on the set (Mn,n(R),+) of square matrices with real coefficients
endowed with the usual componentwise sum. Here, the ordering can be
defined e.g. by M ≤ N if and only if tr(M) ≤ tr(N), for all M,N ∈Mn,n(R),
where tr(M) is the trace of M. The componentwise sum of matrices is
commutative. The sum of u = (u1, u2, . . . un) and a square matrix has no
meaning, therefore we define that u + M = M + u = s = (∞, 0, . . . , 0) for
all u ∈ Rn and M ∈ Mn,n(R). If we now regard H = Rn ∪Mn,n(R), we get
analogous results as in Example 3.3.16.

For details and for more examples with matrices or structures of the
same type as in Example 3.3.18 see Chvalina, Křehĺık and Novák [61] or
Račková [268] or Section 2.2. Notice that [268] includes examples of EL–
semihypergroups constructed using multiplication of symmetric matrices, i.e.
matrices used e.g. for linear systems used when computing splines. For
examples of EL–semihypergroups constructed from noncommutative groups
motivated by linear differential operators or Laplace transform (or other tools
used e.g. in signal processing) see papers by Chvalina, Hošková–Mayerová,
Křehĺık and Novák such as [58,59,62].

It is important to notice that an arbitrary interval 〈a, b〉 (or a matrix of
real numbers from 〈a, b〉) together with the operation “max” or “min” and
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the usual ordering of real numbers by size (or its inverse) gives rise to mEL–
hyperstructures. The same holds for the interval 〈0, 1〉 (or a matrix of real
numbers from 〈0, 1〉) with the operation of multiplication. Thus, the regarded
numbers, vectors or matrices can denote probabilities and the operations can
denote the smaller or greater probability or the probability of simultaneous
occurrance.

Remark 3.3.19. An example of an ICT application where all the above as-
pects combine are the techniques of detection and navigation such as the si-
multaneous localization and mapping (SLAM). For a basic overview of SLAM
see e.g. Davidson et al. [102] or Vu, Aycard and Appenrodt [305]. In these
we need to create a map from data obtained by means of sensors (camera /
lidar) and at the same time localize ourselves in this map. Using advanced
techniques of image processing, the 2D data, in which key points such as
corners of buildings or edges had been identified, are back projected into a
3D map so that we get a map composed of landmarks. In case we are using
lidars, the 2D map has a form of an occupancy grid, i.e. a probabilistic grid
mapping obstacle occurances. The moving object (such as a car or a robot)
has to localize itself in such a map as precisely as possible making use of the
observed obstacles. Simultaneously, the map is iteratively updated as one
source complements the other (as each sensor gives different information).
Thus the basic layout of the situation is the same as in Example 3.3.16. The
relation “≤” in Example 3.3.17 suggests that when scanning the occupancy
grid for information, i.e. reading it, we move using vertical or horizontal
lines (since u = (u1, u2) ∈ R2 is a point in the grid; this is an example of
movement, of course). Also, we need to consider probability of an obstacle
occurance – yet immediately before this remark we mentioned that interval
〈0, 1〉 with operations such as “min”, “max” or the ususal multiplication gives
rise to (modified) EL–hyperstructures.

Of course, the description of the model we give in this example is rather
simple in comparison with the complexity of SLAM as we consider points
from R2 or R3 and e.g. in SLAM from cameras the landmarks are represented
by vectors and the SLAM process is computed using covariant matrices;
see Davidson et al. [102]. However, the structures considered in the “Ends
lemma” and our modifications of it can be of any type. For more complex
examples such as the “Ends lemma” being applied on the set of matrices see
Subsection 2.5.5.

Remark 3.3.20. Notice that in m2EL hyperstructures the types T o1 and T o2 ,
which make up the set H, are disjoint and are linked by the special element
s ∈ H only. This makes our considerations in the proof of Theorem 3.3.15
rather straightforward. However, if we permitted relations between elements
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of different types (which is the case of m1EL–hyperstructures – see the “male
– female” Example 3.3.6), we would run into difficulties very soon. Most
importantly, we would not be able to work with quasi-ordered semigroups –
see Remark 3.3.9.

As a corollary we get a statement for the original construction of EL–
hyperstructures in which we use (3.18) instead of (2.1) to define the hyper-
operation. Notice that what we get is a result analogical to Lemma 2.1.5
included on page 28.

Corollary 3.3.21. Let (H, ∗m) be an mEL–hyperstructure such that T1 = ∅
or T2 = ∅ and (H, ·,≤) is a quasi-ordered group. (In other words, we assume
conditions of the original “Ends lemma” construction yet instead of (2.1) we
use (3.18) to define the hyperoperation.) Then (H, ∗m) is a join space.

Proof. By repeating the proof of Theorem 2.4.71 on page 71, we have that
(H, ∗m) is a hypergroup. By the proof of case 1 of Theorem 3.3.15, we
know that the transposition axiom holds, which completes the proof. Making
distinctions between the first and second modiciations is irrelevant because
all elements are of the same type.

Remark 3.3.22. Notice an important fact: neither in the proof of Theo-
rem 2.4.72 nor in the proof of Theorem 3.3.15 have we used transitivity of
the relation “≤”. However, this property is essential in proving associativity
of the hyperoperation in the original construction and, as a result, also in
Lemma 2.4.74 and Theorem 2.4.71. For details see the proof of Lemma 2.1.1
on page 27 or its modification for the n–ary context on page 144. This
fact is an explanation of the wording of the following corollary. Although the
wording is rather complicated, the corollary in fact says that in m2EL–hyper-
structures, in which we drop the assumption of transitivity of the relation
“≤”, all join space axioms hold – only associativity is replaced by weak asso-
ciativity (in the hyperstructure sense) because dropping transitivity prevents
us from applying Lemma 2.1.1 (and consequently Lemma 2.4.74).

Corollary 3.3.23. Let H = T1 ∪ T2, where T1 6= ∅, T2 6= ∅ and T1 ∩ T2 6= ∅,
further let (T1 \ {s}, ·1) and (T2 \ {s}, ·2) be commutative groups in which the
operation “·” is defined using (3.17) and finally let “≤” be a reflexive relation
on H such that for all a, b, c ∈ H the fact that a ≤ b implies c ·a ≤ c ·b. Then
(H, ∗m2), where “∗m2” is a hyperoperation (3.18), is an Hv-group in which
the transposition axiom holds.

Proof. Follows directly from Theorem 2.4.72, from Theorem 3.3.15 and from
Remark 3.3.22.
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Thus, by Theorem 3.3.15, m2EL–hyperstructures are join spaces. If
we drop transitivity of “≤”, associativity is replaced by weak associativ-
ity. Thanks to Corollary 2.4.77 we know that modified EL–hyperstructures
(i.e. also m2EL–hyperstructures) cannot be canonical hypergroups. As far
as m1EL–hyperstructures are concerned, by the proof of Theorem 2.4.72 on
page 71 we know that they are Hv–groups (notice that the proof does not
change under Definition 3.3.7 of m1EL–hyperstructures).

Remark 3.3.24. Even though we have discussed the case of a semigroup
partitioned into elements of two types, the nature of our definitions enable
us to generalize the results for context of T oi , where i ∈ N is arbitrary.
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Chapter 4

Applications

“What are the applications of your theory?” – a nightmare question for a
mathematician because the obvious answer is: “Well, engineer, let’s sit down
and talk for a while and I am sure we will find many of them.” – yet the
mathematician is expected to provide a comprehensive list on demand to
justify his research.

In this chapter I collect a few suggestions or areas in which the theory
of the previous chapters can be found, used or applied. In Section 4.1 we
discuss a branch of mathematics in which the “Ends lemma” was used to
obtain some mathematical results. In Section 4.2 we show how these results
were (or can be) applied in some engineering sciences. Finally, in Section 4.3
we use the “Ends lemma” and related topics to construct a hyperstructure
model of a specific engineering problem.

Of course, the topics included in this chapter are a sample only. The
“Ends lemma” construction is so natural and general that it can go un-
noticed in many situations or applications. Antampoufis, Dramalidis and
Vougiouklis [9] were not aware of the construction when they proposed their
urban applications yet they use it in their considerations. When Davvaz,
Dehghan Nezhad and Heidari [110] noticed that algebraic hyperstructures
naturally occur in genetics, they had only a rough idea in mind (see also
Example 3.3.6 on page 163 for a more elaborate yet still a rough idea of a
similar nature). Al Tahan and Davvaz [2] approached the topic of biological
inheritance from the perspective of ordered hyperstructures yet in Subsec-
tion 2.6.1 we discuss the relation between EL–hyperstructures and ordered
hyperstructures, i.e. their results relate to our topic. Also, when defining
their hyperoperation on a braid group (which can be applied to the study of
fluid mechanics ; see e.g. Thiffeault and Finn [292]), Al Tahan and Davvaz [4]
only briefly remark that there exists a link between their hyperoperation and
the “Ends lemma”. Jun and Song [172] and Flaut [134] linked BCK–algebras
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to block codes used in channel encoding in earlier mobile communication sys-
tems. Matrices of block codes are studied in Saeid et al. [279]. Since, in a
special case, we obtain lattices (or semilattices), whenever multivalued as-
pects are employed we can make use of results of the hyperstructure theory
and concepts and results such as those mentioned in Subsection 2.5.5.

It is not only the above mentioned biological inheritance that seems
a natural motivation for hyperstructures defined in the “Ends lemma” or
“quasi-order hypergroups” way. The following quote is taken from Hošková,
Chvalina and Račková [153]: “Nuclear fission occurs when a heavy nucleus
splits, or fissions, into two small nuclei. As a result of this fission process we
can get several dozens of different combinations of two medium-mass elements
and several neutrons. Another typical example of the situation when the re-
sult of interaction between two particles is the whole set of particles is the
interaction between a foton with certain energy and an electron. The result
of this interaction is not deterministic. A photo-electric effect or Coulomb
repulsion effect or changeover of foton onto a pair electron – positron can
arise. . . . Another motivation for investigation of hyperstructures yields from
technical processes such as a time sequence of military car repairs with re-
spect to its roadability consequences and operational behavious.” Now, the
ordering which naturally arises in all these situations, can be sometimes seen
from the point of view of the “Ends lemma”, i.e. essential for constructing a
hyperoperation, or from the point of view of ordered hyperstructures, i.e. as
a feature of an – already existing – hyperstructure.

Many hyperstructures motivated by chemistry or physics areHv–structures
(for some examples see papers of Benvidi, Davvaz, Dehghan Nezhad, Nad-
jafikhah or Moosavi Nejad such as [109, 118]). Yet as has been shown in
Subsection 2.4.6, securing weak associativity is rather trivial in our context.

Also worth exploring is the link between the topic of Section 4.1 and
neural networks started by Chvalina and Smetana [77] in which neurons
are described mathematically by means of linear differential operators of
Subsection 4.1.2. Notice that [77] makes use of the mathematical approach
of Buchholz [36] and builds on some results of Srivastava et al. [288].

4.1 Various kinds of operators

One of the first areas, in which EL–hyperstructures were used, was the
study of various kinds of operators related to ordinary differential equations,
integro-differential equations or affine transformations. A list of such pa-
pers (often conference proceedings) includes papers written by various stu-
dents or collaborators of Chvalina [56–58, 60, 62, 64, 70, 74, 75]; see also a
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list in Hošková and Chvalina [150]. This study was initiated by Chvalina
and Chvalinová [50, 52, 55] and motivated by the algebraic approach to the
investigation of global properties of ordinary differential equations by Neu-
man [231–235] who himself continued the work of Bor̊uvka [32]. It is to be
noted that by applying the group theory to the study of ODE’s, Neuman [232]
achieved some fundamental results regarding global properties of differential
equations. The study initiated by Chvalina and Chvalinová was motivated
by the effort to enhance these results by applying the multi-valued aspect.
In this respect notice book by Davvaz and Leoreanu–Fotea [111], Section 8.4,
where results (albeit not making use of EL–hyperstructures) of Chvalina and
Chvalinová [52] are included.

4.1.1 Notation

Following Neuman, we denote An the set of all ordinary differential equations
of order n. In case of homogeneous linear ODE’s we by LAn(I) mean the set
of all linear differential operators, i.e. left-hand sides of homogeneous ODE’s
such that their right-hand side is 0, with coefficients defined on interval I,
where I is usually open to avoid problems with continuity at endpoints. By
VAn(I) we denote the set of solution spaces of all n–order linear ODE’s,
coefficients of which are defined on I. By L, or V , we denote one particular
operator, or a solution space of one particular ODE. Given the standard form
of notation of homogeneous linear ODE’s, we use notation L(pn−1, . . . , p0),
where pi, i = 0, . . . , n−1 are the respective coefficients, i.e. functions defined
on I; whenever L(~p) is used, ~p stands for a vector of – suitably ordered –
components pn−1, . . . , p0. Also, in case of n = 2 we prefer using notation
L(p, q), i.e. given a second-order homogeneous linear ODE

y′′ + x3y′ + y cosx = 0,

we write L(p, q)(y) = 0, where p(x) = x3 and q(x) = cos x. We always
suppose that the coefficient at highest-order derivative is 1. We suppose that
these functions are continuous on I, which we denote by pi ∈ C(I). All pi
are functions of x, i.e. – technically speaking – we should always write pi(x)
instead of pi. By Cn(I) we denote the set of functions, derivatives of which
are, on I, continuous up to order n; by C∞(I) we mean set of functions
derivatives of which of any order are continuous.

Whenever we work with complex functions, we denote by C the complex
domain and by Ω a non-empty subset of C, such as Ω = {z ∈ C | <(z) > 0}
used in Chvalina and Novák [70]. The set of complex functions of one variable
is denoted by CΩ, i.e. CΩ = {f : Ω → C}. The variable of our complex
functions is z, i.e. whenever f is a function, we mean f(z).
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In contexts other than linear ODE’s we use letters other than L to de-
note specific operators – such as “T” for transformation (see e.g. Chvalina,
Moučka and Novák [64]) or “V ” for Volterra (see e.g. Chvalina and Novák [70];
confusion with a notation of a solution space of one particular ODE is not
likely thanks to different nature of their arguments). The notation such as
T (λ, F, ϕ)(f) means that the operator is applied on f , i.e. that it transforms
f into another function, such as e.g.

T (λ, F, ϕ)(f) = λFf + ϕ

as used in Chvalina, Moučka and Novák [64].
Further on we make use of operations on sets of various kinds of operators.

In case of non-commutative operations, we by C(operator) denote the set
of operators commuting with a given operator, i.e. e.g.

C(L(p, q)) = {L(r, s) | L(r, s) · L(p, q) = L(p, q) · L(r, s)} (4.1)

for a given operation “·”.

4.1.2 Hyperstructures motivated by ordinary differen-
tial equations and affine transformations

Motivated by Bor̊uvka’s and Neuman’s works [32, 33, 231], Chvalina and
Chvalinová [50,52,55] applied the tools of (algebraic) hyperstructure theory
on the classical results achieved by the algebraic approach to the study of
differential equations. One of the first tasks in this area was to test meaning-
ful constructions of hyperstructures (semihypergroups, hypergroups or join
spaces) of various kinds of operators associated to specific differential equa-
tions. In [52] Chvalina and Chvalinová, making use of quasi-order hyper-
groups, presented constructions which lead to commutative hyperstructures
satisfying the reproductive law, i.e. quasi-hypergroups.1 Soon after [52],
Chvalina and Chvalinová [50], with the help of the “Ends lemma”, con-
structed transposition hypergroups of linear differential operators and showed
certain properties of these. Notice that in Novák [242,244] some of the proofs
included in the above mentioned papers could be simplified considerably be-
cause they turned out to be examples illustrating results of Subsection 2.4.5.

Theorem 4.1.1. [50] Let I ⊆ R be an open interval and LA2(I) = {L(p, q) |
p, q ∈ C(I), p(x) > 0 for all x ∈ I}. For an arbitrary pair of operators
L(p1, q1), L(p2, q2) ∈ LA2(I) define an operation “·” by

L(p1q1) · L(p2, q2) = L(p1p2, p1q2 + q1) (4.2)

1Some of their results were generalized by Trimèche [293] in his use of hypergroups in
the study of wavelets.



4.1. VARIOUS KINDS OF OPERATORS 179

and a relation “≤” by

L(p,q1) ≤ L(p2, q2) if p1(x) = p2(x), q1(x) ≤ q2(x) for all x ∈ I. (4.3)

Then (LA2(I), ·,≤) is a noncommutative ordered group. If we define a hy-
peroperation “∗”, for all L(p1, q1), L(p2, q2) ∈ LA2(I), by

L(p1, q1) ∗ L(p2, q2) = [L(p1, q1) · L(p2, q2))≤, (4.4)

(LA2(I), ∗) is a noncommutative transposition hypergroup.

Moreover, if we denote by χ1 the function I → R such that χ(x) = 1 for
all x ∈ I, and by L1A2(I) the set of all operators L(χ1, q) ∈ LA2(I), then we
get the following result.

Theorem 4.1.2. [50] (L1A2(I), ∗) is a subhypergroupoid of (LA2(I), ∗).
Moreover, it is a closed, invertible, reflexive and normal subhypergroup of
(LA2(I), ∗).

Now, the proofs included in [50] are rather lengthy and complicated.
However, as has been shown in Novák [244], if we use results of Subsec-
tion 2.4.5, they become obvious. Moreover, using results of Subsection 2.4.7,
we can omit the assumption that p(x) need to be positive functions. In The-
orem 4.1.1 this is assumed because a group must be constructed to a obtain
the EL–hypergroup. Yet as results of Subsection 2.4.7, or rather Novák [242],
show, a hypergroup can in this case be obtained even without the existence
of inverse operators. For details see [242], Example 3.

Remark 4.1.3. It is to be noted that the motivation for operation (4.2)
is rather straightforward. Regard two linear functions, f(x) = ax + b and
g(x) = cx + d, and denote f = [a, b], g = [c, d]. Then their composition
(f ◦ g)(x) = acx + ad + b can be denoted as [ac, ad + b]. For a detailed
investigation of transposition hypergroups of linear functions (including the
use of EL–hyperstructures) see Beránek and Chvalina [22].

The way Theorem 4.1.1 constructs an operation and a relation, i.e. using
the “Ends lemma” consequently a hyperoperation, can be easily expanded
from second-order linear ODE’s to n–order linear ODE’s. This was done by
Chvalina and Chvalinová in [51]. In order to get a join space, it is enough to
define the multiplication of operators L(~p), L(~q) ∈ LAn(I) by L(~p)◦mL(~q) =
L(~u), where, for all x ∈ I, the k–th component of L(~u) is

uk(x) = pm(x)qk(x) + δkmpk(x) (4.5)
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and m ∈ N is such a component of L(~p) that pm(x) > 0 for all x ∈ I, and δkm
stands for the Kronecker δ. The relation of operators L(~p) ≤ L(~q) is defined
by pm(x) = qm(x) and pk(x) ≤ qk(x) for all k 6= m.

Apart from the above construction, in Chvalina, Moučka and Novák [66]
or Chvalina and Račková [76] one can find another construction of EL–join
spaces linked to functions of one variable. Regard functions f, g ∈ Ck(I)
of one variable, where k ∈ {0, 1, . . .}, their pointwise addition, and relation
“f ≤ g whenever f(x) ≤ g(x) for all x ∈ I”. Chvalina and Račková [76]
obtained the following result.

Theorem 4.1.4. [76] Let Ck(I), where k = {0, 1, . . .}, be the ring of func-
tions f : I → R, derivatives of which are continuous up to order k. Regard
the set (Ck(I),+,≤), where “+” is pointwise addition of functions and “≤” is
the relation defined above, and for an arbitrary pair of functions f, g ∈ Ck(I)
define a hyperoperation “∗” on Ck(I) by

f ∗ g =
⋃

[a,b]∈R+
0 ×R

+
0

[af + bg)≤, (4.6)

i.e.

f ∗ g =
⋃

[a,b]∈R+
0 ×R

+
0

{h ∈ Ck(I) | af(x) + bg(x) ≤ h(x), x ∈ I}.

Then (Ck(I), ∗) is a join space.

Remark 4.1.5. Notice that, since we are using the linear combination of
functions, the join space (Ck(I), ∗) is not an EL–join space for a, b 6= 1.
Recall also Remark 2.4.129 on page 93 where the concept of multiple of a
sum in the definition of the hyperoperation is discussed. Notice that the
same idea has been used in Chvalina, Moučka and Novák [65] to describe
hyperstructures of preference relations, a microeconomics concept.

In [24] Beránek and Chvalina, motivated by the one-to-one correspon-
dence between all equations L(p, q)(y) = 0 and their solution spaces V (ϕ1, ϕ2)
(see Neuman [232]), construct a join space of fundamental solution systems
of certain second order linear homogeneous differential equations. Below we
include this result as included in Chvalina, Chvalinová and Novák [57].2

Suppose two linearly independent functions ϕ1, ϕ2 ∈ C2(I), i.e. functions
such that their Wronski determinant is nonzero for any x ∈ I, i.e.

W [ϕ1, ϕ2] =

∣∣∣∣ ϕ1(x) ϕ2(x)
ϕ′1(x) ϕ′2(x)

∣∣∣∣ 6= 0 for any x ∈ I.

2Notice the not-so-obvious use of the “Ends lemma” in Theorem 4.1.6.
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Denote by V (ϕ1, ϕ2) the two-dimensional linear space formed by all functions

y(x) = c1ϕ1(x) + c2ϕ2(x),

where c1, c2 ∈ R, i.e.

V (ϕ1, ϕ2) = {c1ϕ1 + c2ϕ2 | ϕ1, ϕ2 ∈ C2(I), c1, c2 ∈ R}.

Regard LA2(I) used in Theorem 4.1.1 and denote by VA2(I) the set of two-
dimensional linear solution spaces of second order linear differential equations
L(p, q)(y) = 0. Finally, denote

D[ϕ1, ϕ2] =

∣∣∣∣ ϕ′′1(x) ϕ′′2(x)
ϕ1(x) ϕ2(x)

∣∣∣∣ .
As has been mentioned above, Neuman [232] shows that there is a one-to-
one correspondence between all equations L(p, q)(y) = 0 and their solution
spaces V (ϕ1, ϕ2). Notice that the ODE corresponding to the space V (ϕ1, ϕ2)
with linearly independent ϕ1, ϕ2 ∈ C2(I) has the form

y′′(x) +
D[ϕ1, ϕ2]

W [ϕ1, ϕ2]
y′(x) +

W [ϕ′1, ϕ
′
2]

W [ϕ1, ϕ2]
y(x) = 0.

For any solution space V (ϕ1, ϕ2) ∈ VA2(I) we choose an arbitrary but fixed
base which will be further on called representing fundamental solution system
of the corresponding second order linear homogeneous ODE.

Theorem 4.1.6. [24] Let I ⊆ R be an open interval and VA2(I) the set of
solution spaces defined above. Regard a pair V (ϕ1, ϕ2), V (ψ1, ψ2) ∈ VA2(I)
such that their bases {ϕ1, ϕ2}, {ψ1, ψ2} form representing fundamental solu-
tion systems of second order linear homogeneous ODE’s

y′′(x) +
D[ϕ1, ϕ2]

W [ϕ1, ϕ2]
y′(x) +

W [ϕ′1, ϕ
′
2]

W [ϕ1, ϕ2]
y(x) = 0

and

y′′(x) +
D[ψ1, ψ2]

W [ψ1, ψ2]
y′(x) +

W [ψ′1, ψ
′
2]

W [ψ1, ψ2]
y(x) = 0

respectively. Denote F(ϕ1, ϕ2, ψ1, ψ2) the set of all representing fundamental
solution systems of differential equations

y′′(x) +
D[ϕ1, ϕ2]D[ψ1, ψ2]

W [ϕ1, ϕ2]W [ψ1, ψ2]
y′(x) + v(x)y(x) = 0,
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where v ∈ C(I) is such that

D[ϕ1, ϕ2]W [ψ′1, ψ
′
2]

W [ϕ1, ϕ2]W [ψ1, ψ2]
+
W [ϕ′1, ϕ

′
2]

W [ϕ1, ϕ2]
≤ v(x).

Then (VA2(I), ∗), where “∗” is a hyperoperation on VA2(I) such that for all
V (ϕ1, ϕ2), V (ψ1, ψ2) ∈ VA2(I) we define

V (ϕ1, ϕ2) ∗ V (ψ1, ψ2) = {V (ω1, ω2) ∈ VA2(I) | {ω1, ω2} ∈ F(ϕ1, ϕ2, ψ1, ψ2)},

is a (noncommutative) transposition hypergroup.

In the construction of operation (4.2) we used the idea of composition of
linear transformations. Regard now a function f ∈ CΩ and for an arbitrary
λ ∈ C such that λ 6= 0 and F,G ∈ CΩ define an operator

T (λ, F, ϕ)(f) = λFf + ϕ.

In other words, we define a transformation of CΩ such that a function f is
multipled by a complex number λ and another function F and then shifted
in the direction of ϕ, i.e. in a certain sense we make use of the idea of affine
transformations. If we now denote the set of such operators T(Ω) and regard
composition of two operators T (λ1, F1, ϕ1), T (λ2, F2, ϕ2) ∈ T(Ω), we get that

T (λ1, F1, ϕ1) ◦ T (λ2, F2, ϕ2) = T (λ1λ2, F1F2, λ1F1ϕ2 + ϕ1). (4.7)

In [64] Chvalina, Moučka and Novák show conditions under which these
operators form a commutative quasi-ordered semigroup which is then used
to construct a respective EL–semihypergroup and – under certain restrictions
– an EL–hypergroup. When doing this, the idea of centralizers, i.e. of (4.1),
is used. For a fixed T0 = T (λ0, F0, ϕ0) ∈ T(Ω) we define

CtT(T0) = {T (λ, F, ϕ) ∈ T(Ω) | T (λ, F, ϕ) ◦ T0 = T0 ◦ T (λ, F, ϕ)}.

The single-valued operation on CtT(T0) has been defined by (4.2). Regard
now a relation on CtT(T0). For this we set that

T1 ≤ T2 whenever there exists n ∈ N such that T2 = T1 ◦ T n0 , (4.8)

where T n(λ, F, ϕ) is

T n(λ, F, ϕ)(f) =

{
f + nϕ = T (1, 1, nϕ)(f) if F = λ−1

λnF nf + λnFn−1
λF−1

ϕ = T (λn, F n, λ
nFn−1
λF−1

ϕ)(f) if F 6= λ−1 ,
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which can be easily shown using mathematical induction. It is now a matter
of routine verification to show that if we define a hyperoperation “∗T” on
CtT(T0), for a fixed n ∈ N, by

T (λ1, F1, ϕ1) ∗T T (λ2, F2, ϕ2) = {T n0 ◦ T (λ2, F2, ϕ2) ◦ T (λ1, F1, ϕ1)}, (4.9)

we get that (CtT(T0), ∗T) is an EL–semihypergroup. Moreover, if we restrict
the hyperoperation “∗T” on

S(T0) = {T (λ, F, ϕ) ∈ CtT(T0) | λ 6= 0, F (z) 6= 0 for all z ∈ Ω},

then (S(T0), “∗T”) is an EL–hypergroup constructed from a group (S(T0), ◦),
with the neutral element being the identity mapping T (1, 1, 0) = T 0(λ, F, ϕ),
such that the inverse of T (λ, F, ϕ) is T

(
1
λ
, 1
F
,− ϕ

λF

)
.

In [152,153,155] Hošková, Chvalina and Račková use the idea of the “Ends
lemma” to construct and study join spaces of Fredholm integral operators.
Moreover, they construct certain subgroups of the group of Fredholm integral
operators and using the decomposition of the group by these subgroups they
obtain a quasi-hypergroup of blocks of operators. By doing this, the authors
in fact obtain hyperstructures in a very classical way (see e.g. Dresher and
Ore [128], Eaton [132] or Utumi [294]). Notice that many of the results
obtained in [155] had been included in Davvaz and Leoreanu–Fotea [111].
Therefore, we discuss the topic in a rather brief way.

Definition 4.1.7. By the Fredholm integral equation of the first kind we
mean an equation

b∫
a

K(x, s)ϕ(s)ds = f(x), (4.10)

while by the Fredholm integral equation of the second kind we mean an equa-
tion

ϕ(x)− λ
b∫

a

K(x, s)ϕ(s)ds = f(x), (4.11)

where K(x, s) is a real or complex valued function defined on I × I, where
I = 〈a, b〉 ⊂ R and is called kernel, f(x) defined on I is a real valued function
called free or absolute member, λ is a real number and ϕ is an unknown
function.

Closely related to Fredholm integral equations are Volterra integral equa-
tions which have variable upper integral limits. The corresponding integral
operators are called Fredholm, or Volterra integral operators, respectively.



184 CHAPTER 4. APPLICATIONS

Thus, if we concentrate on the Fredholm integral equation of the second
kind, we can write

F (λ,K, f) = λ

b∫
a

K(x, s)ϕ(s)ds + f(x) (4.12)

In [152] Hošková, Chvalina and Račková discuss the issue of commutativ-
ity of multiplication of Fredholm integral operators. It turns out (see [152],
Lemma 1) that in order to achieve this it is suitable to define the multiplation
as

F (λ1, K1, f1) · F (λ2, K2, f2) = F (λ1λ2, K2f1 +K1, f1f2) (4.13)

for all F (λ1, K1, f1), F (λ2, K2, f2) ∈ F. Furthermore, if we define the relation
“≤” on the set F of all operators, such that f(x) > 0 for all x ∈ I, by
F (λ1, K1, f1) ≤ F (λ2, K2, f2) whenever

λ1 = λ2 and f1(x) ≡ f2(x) and K1(x, s) ≤ K2(x, s) for all x ∈ I, (4.14)

then we obtain the following result, included in Hošková, Chvalina and
Račková [155].

Theorem 4.1.8. [155] Regard the set F of Fredholm integral operators (4.12),
where f(x) > 0 for all x ∈ I, multiplication of operators given by (4.13)
and relation “≤” given by (4.14). On (F, ·,≤) define, for all operators
F (λ1, K1, f1), F (λ2, K2, f2), hyperoperation “∗” by

F (λ1, K1, f1) ∗ F (λ2, K2, f2) = (4.15)

= {F (λ,K, f) ∈ F | F (λ1, K1, f1) · F (λ2, K2, f2) ≤ F (λ,K, f)}.

Then (F, ∗) is a join space.

Just as is the case of Theorem 4.1.1 and Theorem 4.1.2, the rather
lengthy proofs included in [155] can be shortened considerably using the
theory included in Subsection 2.4.5. For details see Novák [242], Exam-
ple 4. Notice that results of [155] were generalized by Dehghan Nezhad and
Davvaz [117]. For details and further issues linked to Fredholm or Volterra
integral equations (such as implications of applying Laplace transform) see
Hošková, Chvalina and Račková [152,153].

4.2 Generalizations of automata

In the theory of automata various types of automata are considered. Gener-
ally speaking, by an automaton we mean a quintuple consisting of an input
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alphabet, an output alphabet, a set of states and two functions linking these
three sets, which give rules for reaching desired states or output. Automata
can be classified using a number of different criteria. Further on we concen-
trate on automata without outputs (or rather a special class of it), i.e. we
reduce the quintuple to a triad consisting of an input alphabet, a set of states
and a function giving rules for reaching states. We work with the follow-
ing definition (notice that condition 1 is sometimes omitted if we regard a
semigroup instead of a monoid).

Definition 4.2.1. By a quasi–automaton we mean a structure A = (I, S, δ)
such that I 6= ∅ is a monoid, S 6= ∅ and δ : I × S → S satisfies the following
condition:

1) There exists an element e ∈ I such that δ(e, s) = s for any s ∈ S.

2) δ(y, δ(x, s)) = δ(xy, s) for any pair x, y ∈ I and any s ∈ S.

The set I is called the input set or input alphabet, the set S is called the state
set and the mapping δ is called next-state or transition function.

This definition dates back to 1970s and works such as Dörfler [123,124] or
Gécseg and Peák [140], even though Dörfler [124] gives the triad in a swapped
form of (S, I,M), which also means that the components in conditions 1 and
2 are swapped. Also worth mentioning is that the name “quasi–automaton”
is not very frequent. The following is a quote from Warner [308]: “An au-
tomaton is defined by Ginzburg [139] to be quintuple (X, Y,Q, δ, λ) consisting
of input set X, output set Y , state set Q, next-state function δ : X×Q→ Q
and next-output function λ : X × Q → Y . If we concentrate on changes of
state rather than outputs, we consider the triple (X,Q, δ) called by Ginzburg
a semiautomaton.” Gécseg and Peák [140], p. 113 clarify the distinction be-
tween automata without outputs, quasi-automata and semiautomata in the
following way: “Indeed, every automaton (A,X, δ) without outputs can be
considered as a quasi–automaton with S = F1(X) [Note: where F1(X) is
the free semigroup of X, i.e. a semigroup elements of which are all the fi-
nite sequences of zero or more elements of X with string catenation as the
associative operation]. In other words, every automaton without outputs
is a quasi–automaton such that its input semigroup is free. If, especially,
the input semigroup S of a quasi–automaton (A, S, δ) is a right cancellative
semigroup, i.e. for arbitrary r, s, t ∈ S the implication

rt = st⇒ r = s

3For the formalization of the first sentence of the quote see Dörfler [124], Definition 1
and Definition 2, and his remark between them.
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holds, then the automaton is called a semiautomaton.4” When introducing
semiautomata, Ginzburg [139], p. 40, writes: “Many physical devices have
the remarkable property of tending to remain in any of a finite number of
situations or states. The ‘jumping’ from one state to another (sometimes
the same) is a continuous process which must be carefully considered by the
designer of the device, but it can be disregarded by the user interested only
in the above discrete states.”

No matter how old (in the context of information technology, ancient)
the works of Dörfler, Ginzburg, Gécseg and Peák or Warner may be they are
still worth considering and exploring.

In our further text we are going to include some results acheived in the
context of quasi-automata of Definition 4.2.1. It is to be noted that the
first links between the theory of automata and the hyperstructure theory
date back to Massouros and Mittas [213, 218]; some of these results are in-
cluded in Corsini and Leoreanu [95].5 In [53] Chvalina and Chvalinová use
the hyperstructure theory to prove some properties of quasi-automata of Def-
inition 4.2.1; see page 64. For consistency reasons we will use terms “quasi–
automaton” and “quasi–multiautomaton” instead of “semiautomaton” and
“multi–semiautomaton” even though, in many cases, the input semigroup
(S, ·) will be a group, i.e. right cancellative, which means that we could
speak of semiautomata.

Remark 4.2.2. In Definition 4.2.1, Condition 1 is called unit condition (UC)
while condition 2 is sometimes called Mixed Associativity Condition (MAC),
even though most authors give it no name. Based on the name “MAC”,
we further on – see Definition 4.2.3 – use the name “GMAC” which stands
for the Generalized Mixed Associativity Condition. This is the term that
can be found in papers dealing with the hyperstructure generalizations of
quasi-automata, called quasi–multiautomata, which we briefly study further
on. This study was initiated by Chvalina and Chvalinová [53] and explored
e.g. by Hošková, Chvalina and Dehghan Nezhad in [59], where also a link to
Section 4.1 can be found.

If in quasi–automata we suppose that the input set I is a semihypergroup
instead of a free monoid, we arrive at the concept of a quasi–multiautomaton.
When defining it caution must be exercised when adjusting the conditions
imposed on the transition function δ as on the left-hand side of condition 2
we get a state while on the right-hand side we get a set of states. However, in

4Automata without outputs are called semiautomata in M. Yoeli [310].
5Notice that in order to study certain concepts of automata theory, Massouros and

Mittas introduced the notion of hyperringoid and fortification in join spaces, which are
discussed on pages 110 and 45, respectively.
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the dichotomy deterministic — nondeterministic, quasi–multiautomata still
are deterministic because the range of δ is S.

Definition 4.2.3. A quasi–multiautomaton is a triad A = (I, S, δ), where
(I, ∗) is a semihypergroup, S is a non–empty set and δ : I × S → S is a
transition map satisfying the condition:

δ(b, δ(a, s)) ∈ δ(a ∗ b, s) for all a, b ∈ I, s ∈ S. (4.16)

The hyperstructure (I, ∗) is called the input semihypergroup of the quasi–
multiautomaton A (I alone is called the input set or input alphabet), the set
S is called the state set of the quasi–multiautomaton A, and δ is called next-
state or transition function. Elements of the set S are called states, elements
of the set I are called input symbols.

Example 4.2.4. Regard a simple machine (such as a player using – for
a better understanding – a tape), where I = {FFWD,REW, STOP} and
S = {tape beginning, at 1:00, at 2:00, tape end at 3:00}, where “FFWD”
stands for “forward the tape by 1 minute”, “REW” stands for “rewind
the tape by 1 minute” and “STOP” means “no action”. Now, what hap-
pens if two conflicting commands are issued simultaneously? The natural
response is either “no action” or “error message” or “perform the com-
mands one by one”. And it is the last option that can be easily described
by the hyperoperation applied on elements of I. Suppose that we have
FFWD ∗ REW = {FFWD,REW} and the current state is “tape end at
3:00”. The set on the right-hand side of the GMAC condition (4.16) is

δ({FFWD,REW}, tape end at 3:00) = {tape end at 3:00, at 2:00}

while on the left hand side we get, in case FFWD is executed first,

δ(REW, δ(FFWD, tape end at 3:00)) = δ(REW, tape end at 3:00) = at 2:00

or, in case REW is executed first,

δ(FFWD, δ(REW, tape end at 3:00)) = δ(FFWD, at 2:00) = tape end at 3:00.

Or, suppose that we are in state “at 1:00” and simultaneously issue com-
mands “FFWD” and “STOP”, where FFWD ∗ STOP = {FFWD, STOP}.
In this case we get {at 2:00, at 1:00} on the right hand side while on the
left-hand side we get the state “at 2:00” regardless of which command is
performed first.
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Remark 4.2.5. In the above example it is natural to consider that FFWD∗
FFWD = {FFWD} or REW ∗ REW = {REW}. Yet, with most machines,
double pressing of the same button results in a faster or repeated action.
However, our set I consists of movements by one minute only. Therefore,
it is obvious that, in a case like Example 4.2.4, Chvalina’s Definition 4.2.3
should be changed in such a way that the transition function δ is, for such
a ∈ I that a ∗ a = {a}, instead of δ(a ∗ a, s) = δ(a, s) defined by

δ(a ∗ a, s) = δ(a, δ(a, s)) (4.17)

for all s ∈ S. Notice that the concept of quasi-multiautomaton was originally
coined for contexts where the hyperoperation is built on the idea of principal
ends – either using the “Ends lemma” construction or using the idea of quasi-
order hypergroups. However, in such contexts, the fact that a∗a = {a} is not
very common. Moreover, if a ∗ a = {a} for all elements a, the quasi-ordering
is trivial (because in both cases we assume reflexivity).

So, using this simple example one can easily see the difference between
the transition function of a quasi-automaton and the transition function of
a quasi-multiautomaton. In quasi-automata the state achieved by applying
y in a state, which is the result of application of x in s, is the same as the
state achieved by applying xy in s. On the other hand, the condition (4.16)
says that it is one of the many states achievable by applying any command
from x ∗ y in state s.

Notice that there are many situations in which conflicting commands, or
some forbidden combinations, might be issued at the same time. One such
case are flip–flop circuits, a type of logic circuits whose output depends not
only on the present value of its signals but on the sequence of past inputs.6

In fact, the study of multi–valued aspects in quasi–automata can be related
to Comer [84], who – in his Problem 15 – suggests to develop sentential
logic, i.e. propositional calculus, in which the truth table of logical OR is
adjusted so that 1 ∨ 1 = {0, 1}. Also notice the mathematical theory of
quantum computers, the construction of which is still in its very infancy.
Already in [153] the authors (when discussing hyperstructures of Fredholm
integral operators), mention the basic idea of qubits, the units of information
of quantum computers, which – unlike conventional bits – do not have, at
one moment in time, exactly one of states 0 or 1.7

6Another simple real-life example is the simultaneous pushing of buttons “make call”,
“terminate call” on a mobile phone or an intercom.

7In this respect the issue of Boolean matrices and its link to binary relations could be
worth exploring. For a straightforward explanation of the link see Aghabozorgi, Jafarpour
and Davvaz [3], for some results in this area see works of Massouros and Tsitouras such
as [212].
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In fact, the reasoning in Example 4.2.4 is such that we somehow “store”
the commands, i.e. in a certain way we imitate the functionality of pushdown
automata, even though the concept is absolutely different. The hyperoper-
ation “∗” used in Example 4.2.4 was extensive (in fact minimal extensive),
i.e. such that for all a, b ∈ I there is {a, b} ∈ a ∗ b (in our case {a, b} = a ∗ b).
However, this need not be the case at all. Also, in information sciences, the
single-valued operation “·” is usually catenation of words, i.e. a · b = ab,
which implies the distinction between the alphabet I and the set of words
of the alphabet, i.e. a free monoid I∗ = (I, ·) under catenation. In papers
on quasi–multiautomata and the GMAC condition (4.16) the authors regard
an arbitrary single-valued operation “·” or an arbitrary hyperoperation per-
formed on the input alphabet I.

Example 4.2.6. Suppose that the input alphabet is I = {a, b, c}. If we
regard the set of all possible (finite or infinite) strings which can be made up
of characters a, b, c, we get I∗ = {a, b, c, aa, bb, cc, ab, ac, bc, aaa, bbb, ccc, . . .}.
Thus we regard the free semigroup (I∗,&), where “&” is the operation of
catenation. However, instead of catentaion we can regard an arbitrary oper-
ation on I. In this case we work with a semigroup (I, ·), i.e. regard that, for
all x, y ∈ I, we have x · y ∈ I instead of x · y ∈ I∗.

The transition function δ is a tool to obtain the next state by applying
a given letter in a given state. In other words, we apply an outer operation
on the set of states S. Given this perspective, one can abandon the link
to physical machines or formal languages and one can view quasi–automata
(or quasi–multiautomata) as another abstract algebraic structure inspired by
the use of the outer operation of vector spaces. This is the approach used
by Chvalina, Hošková (Mayerová), Moučka, Dehghan Nezhad and others
in papers such as [49, 59, 64, 66, 68, 70, 73, 75, 76, 154] in which the input
semihypergroups are various sets of operators constructed in Section 4.1 and
the set of states is the set of functions restricted in various ways. In the
context of those papers we speak of “actions of semihypergroups on given
phase sets”.8

Definition 4.2.7. ( [152], Definition 2) Let X be a set, (G, ∗) a semihyper-
group and π : X ×G→ X a mapping such that, for each x ∈ X, s, t ∈ G,

π(π(x, t), s) ∈ π(x, t ∗ s),
where π(x, t ∗ s) = {π(x, u) | u ∈ t ∗ s}. Then (X,G, π) is called a discrete
transformation semihypergroup or an action of the semihypergroup G on the
phase set X. The mapping π is usually said to be simply an action.

8In the following definition notice that it uses the swapped notation of Dörfler; see
page 185.
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As we have seen in Section 4.1, the semihypergroups often make use of the
“Ends lemma” construction; the EL–hyperoperation is such that the GMAC
condition (4.16) of quasi–multiautomata holds.

Instead of the various kinds of operators used in Section 4.1 or studied in
papers such as Hošková, Chvalina and Račková [152, 153], one can consider
operators of differential equations induced by specific modelling functions
used e.g. in signal analysis and signal processing. One can see that in
those applications we naturally obtain both special kinds of linear differential
operators and sets of matrices or functions used in the above mentioned
papers.

Since these functions are functions of time, we regard I = 〈0,∞) and use
the variable t instead of x further on.

Our first example is the function of the muffled oscillations

y(t) = a exp(−λt) sin(bt). (4.18)

Its first and second derivatives are y′(t) = a exp(−λt) (b cos(bt)− λ sin(bt))
and y′′(t) = a exp(−λt) ((λ2 − b2) sin(bt)− 2λt cos(bt)), respectively. The re-
lation between y′′(t), y′(t) and y(t) is described by the linear ODE

y′′(t) + 2λy′(t) + (λ2 + b2)y(t) = 0. (4.19)

As another example, consider the modelling time function

y(t) = exp(αt)− exp(βt), α < β, (4.20)

which is in fact a two parameter time signal known as multiexponential func-
tion of nuclei decay. Its derivatives are y′(t) = −α exp(−αt) + β exp(−βt)
and y′′(t) = α2 exp(−αt) + β2 exp(−βt), which leads to the following differ-
ential equation

y′′(t)− (α− β)y′(t) + αβy(t) = 0. (4.21)

Finally, we mention two functions which are solutions of differential equa-
tions in the Jacobi form. First, the Gaussian–shaped pulse signal

v(t) = a exp(−2πt2), (4.22)

the first and second derivatives of which are v′(t) = −4aπt exp(−2πt2) and
v′′(t) = 16aπ2t2v(t), respectively. This leads to the differential equations in
the Jacobi form

v′′(t) + (4π − 16aπ2t2)v(t) = 0 (4.23)

with the parameter a running through a suitable number set. Second, the
Chapman-Richard’s function (CHRF)

y = A[1− exp(−ct)]b, (4.24)
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one of the most common functions based on the original Bertalanffy equa-
tion derived for growth and increment of body weight. Its first and second
derivatives are y′ = Abc[1 − exp(−ct)]b−1 exp(−ct) and y′′ = −Abc2[1 −
exp(−ct)]b exp(ct)−b

(exp(ct)−1)2
, respectively. From these we obtain a second order lin-

ear ODE in the Jacobi form

y′′(t) +
Abc2 · exp(−ct) · [b exp(−ct)− 1]

(1− exp(−ct))2
y(t) = 0. (4.25)

The following paragraphs are adapted from books by Bellanger and Jan [20,
164] and from Jan and Janová [165].

1. Linear discrete systems are described by means of input/output mod-
els. In some applications a more general state model is used. This
model works with vector input and output and describes values in cho-
sen internal points of the system and enables its users to transform the
basic realization structure into structures which are (from the point of
view of the input/output correspondence) equivalent. The usual form
of the state model is

~qn+1 = A~qn + B~xn (4.26)

~yn = C~qn + D~xn,

where ~qn = (q1
n, q

2
n, . . . , q

m
n )T is a column vector of internal, state vari-

ables, ~xn = (x1
n, x

2
n, . . . , x

p
n)T is the vector of input values and ~yn =

(y1
n, y

2
n, . . . , y

l
n)T is the vector of output values. Further, A, B, C, D are

matrices of appropriate dimensions which define the system in question.
The name of the model is derived from the concept of state variables
which are parameters remembered (or rather, capable of being remem-
bered) by the system. One can find an evident parallel between this
system and the functional diagrams of finite automata since discrete
systems are special cases of automata with alphabets (input, output,
state ones) composed of sets of values taken by signals ~x, ~y, ~z (in case of
digital systems by respective sets of admissible vectors of numbers) and
transition functions and output functions are expressed by the matrix
relations of the model.

2. Discrete linear transformation is a mapping {xn} → {xk} from the
original domain (in general a vector space CN1 , in most cases RN1) to
the transformation domain (vector space CN2 or RN2) given by

xk =

N1−1∑
n=0

ak,nxn, k = 0, . . . N2 − 1 (4.27)
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or (in vector form) by X = A~x, where A is an N2 ×N1 matrix of the
form

A =


a0,0 a0,1 . . . a0,N1−1

a1,0 a1,1 . . . a1,N1−1
...

...
...

aN2−1,0 aN2−1,1 . . . aN2−1,N1−1


called the transformation kernel, elements of which are real or com-
plex numbers. In most applications there is N1 = N2 and as a result
A is a square matrix. If it is moreover regular, i.e. det(A) 6= 0, the
transformation is invertible, which means that there is a one-to-one
correspondence between the original sequence ~x and its transformation
~y called discrete spectrum. The inverse transformation is ~x = A−1~y.
Based on special properties of the matrix A we obtain respective spe-
cial transforms such as Hadamar transform, Walsh transform, discrete
Fourier transform, Haar transform, etc. For details see Jan [164].

3. Inverse filtering and noised signal recovery. Very often, one needs to
recover an unknown signal from its garbled and noise influenced form
which is a result of passing through a garbling or noisy environment
(such as a communication channel). As an example recall a recovery
method called Kalman filtering. Apart from the scalar Kalman filter
the vector filter is often used in applications since the state vector need
not contain the delayed values of one state variable only but instead it
can be compose of various variables that have various physical meaning
in the modelled system. This enables a traightforward creation of well
understandable models of physical systems, the internal variables of
which (i.e. the original signals) can be Kalman filters estimated using
external observation. Denote vectors of delayed values of the original
and observed signals by

~xn = (x1
n, x

2
n, . . . , x

R
n )T , ~yn = (y1

n, y
2
n, . . . , y

R
n )T ,

where R is the order of the given model. In a similar way denote the
vectors of the driving noise and undesired noise ~gn and νn. The state
equation of the model describing the signal generation is

~xn+1 = An+1~xn + ~gn+1 (4.28)

while the output equation is

~yn+1 = Cn+1~xn + ~νn+1. (4.29)
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In contrast to the standard form of the state description (4.26), we
have that it is the vector of undesired noise that is used in the output
equation of the system (instead of the input vector of the system),
otherwise there is obviously B = D = I from (4.26), i.e. the output
equation of the system is

~yn+1 = An+1Cn+1~xn + Cn+1~gn+1 + ~νn+1. (4.30)

In cases when we want to create signals of complicated structure or
model complicated systems (provided we choose sufficiently high order
R) we need to use vector and matrix mathematical apparatus (e.g. in
finite impluse response filters).

We remark that in [61], Chvalina, Křehĺık and Novák, using the above rea-
soning and motivation, discuss the issue of Cartesian composition of quasi–
multiautomata and the way the GMAC condition (4.16) must be adjusted so
that the resulting structure is again a quasi–multiautomaton. In this respect
notice that in Subsection 2.5.5, most of which was published as Křehĺık and
Novák [187], we work with sets of matrices. Also, one of the motivating lines
of Novák and Křehĺık [249] is the need to make use of the undefined product
of vectors or matrices.

Finally, it is to be noted that Chvalina’s approach to the generalization
of quasi–automata via the GMAC condition (4.16) is not the only possible
one. In this respect notice Ashrafi and Madanshekaf [13]. Also, refer to [35],
in which Borzooei, Varasteh and Hasankhani transferred Chvalina’s results
into the context of fuzzy sets and fuzzy automata.

4.3 Underwater wireless sensor networks

Results included in this section were accepted for publication in Proceedings of

ICNAAM 2017 (WoS) as Novák, Ovaliadis and Křehĺık [251].

In this section we make use of our construction in describing a mathe-
matical model of one particular engineering problem. To be more precise, we
discuss underwater wireless sensor networks , abbreviated as UWSN’s, which
are groups of sensors deployed underwater, networked via acoustic links and
performing collaborative tasks.

UWSN’s are often used in environment monitoring, where they review
how human activities affect marine ecosystems, undersea explorations such as
detecting oilfields, disaster prevention, e.g. when monitoring ocean currents,
in assisted navigation for e.g. location of dangerous rocks in shallow waters,
or for disturbed tactical surveillance for e.g. intrusion detection.
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The fact that such wireless sensor networks are deployed underwater re-
sults in profound differences from terrestrial wireless sensor networks. The
key aspects, which are different, include communication method, i.e. radio
waves vs acoustic signals, cost (while contruction of terrestrial networks ex-
perience decreasing prices of components, underwater sensors are expensive
devices), memory capacity (because water is a problematic medium resulting
in loss of large quantities of data), power limitations due to the nature of the
signal and longer distances handled, as well as problems related to deployment
of the network, i.e. issues connected to static or dynamic deployment. In un-
derwater sensor networks we commonly face challenges of limited bandwith,
high bit error rates, large propagation delays, and limited battery resources
caused by the fact that in the underwater environment, sensor batteries are
impossible to recharge especially because no solar energy is available under-
water. As the number of sensor nodes that stop working due to the power
loss increases, the network topology has to be reconfigured to guarantee net-
work connectivity and effective communication between sensor nodes. This
affects the size of the UWSN coverage area, leading to a less efficient data
aggregation and smaller reliability of data. Obviously, greater efficiency in
battery use means prolonging network lifetime without sacrificing system
performances. A key factor in keeping the UWSN alive and operational for
as long as possible is the protocols used for discovering and maintaining the
routes between sensor nodes. The most commonly used routing protocols
are: flooding, multipath, cluster and miscellaneous protocols – see Wahid and
Dongkyun [306]. In the flooding approach, the transmitters send a packet to
all nodes within the transmission range. In the multipath approach source
sensor nodes establish more than one path towards sink nodes on the surface.
Finally, in the clustering approach the sensor nodes are grouped together in
a cluster. For an easy-to-follow reading on how UWSN’s work and on advan-
tages of clustering see e.g. Domingo and Prior [122].

Recent research shows that the cluster based protocols give a great contri-
bution towards the concept of energy efficient networks – see Ayaz et al. [15],
Ovaliadis and Savage [258] or Rault, Abdelmadjid and Yacine [266]. A com-
mon cluster based network consists of a centralised station deployed at the
surface of the sea called a sink (or surface station) and sensor nodes de-
ployed at various tiers inside the sea environment. These are grouped into
clusters. In this architecture, each cluster has a head sensor node, called
cluster head (CH). The cluster head is assumed to be inside the transmis-
sion range of all sensor nodes that belong to its cluster. Every cluster head
operates as a coordinator for its cluster, performing significant tasks such as
cluster maintenance, transmission arrangements, data aggregation and data
routing.
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In our model, denote H the set of all elements (i.e. sensor nodes as well
as sinks) of an arbitrary UWSN. Suppose that all elements are capable of
handling (i.e. receiving or transmitting) data in the same way and performing
the same set of tasks, i.e. that they are – from the mathematical point of view
– interchangable and equal (of course, with respect to their functionality as
sinks / sensor nodes). Since the aim of the system is to collect information,
our elements of H must communicate the data – ideally upwards, towards the
surface. As mentioned above, there are different ways of passing information.
We concentrate on multipath and cluster routing approach (see Figure 1 and
2). For details concerning these see e.g. Ayaz [15] or Li et al. [198]. Multipath
routing protocols forward the data packets to the sink via other nodes while
in cluster based routing protocols, data packets are first aggregated to the
respective cluster heads and then forwarded via other cluster heads to the
sink on the surface. In our model we denote the i–th cluster by cli and its
cluster head by CHi. We call non-CH nodes plain. Sinks are treated as
cluster heads.

Figure 4.1: Multipath approach to UWSN data aggregation – notice the
upwards oriented communication between nodes

4.3.1 Mathematical model

Now, denote by H the set of all components of an UWSN and for a given
pair of elements a, b ∈ H, regard a binary hyperoperation, where a ∗ b is, for
arbitrary a, b ∈ H, defined by:
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Figure 4.2: Cluster based approach to UWSN data aggregation – idealized
deployment; tiers need not be horizontal, we usually regard distance towards
sink instead of depth. For some more explanatory figures see e.g. Huang et
al. [157]

a ∗ b =


{a, b} ∪ [a · b)≤ for (a = CHi, b = CHj) or a, b ∈ cli
{a, b} for (a 6= CHi or b 6= CHj)

and (a ∈ cli, b ∈ clj, i 6= j)
(4.31)

Above, by [a · b)≤ we mean a set {x ∈ H | a · b ≤ x}, where a · b is a result
of a single-valued binary operation such that a · b is, for arbitrary a, b ∈ H,
defined by

a · b =


CHi for a, b ∈ cli
CHk for a = CHi, b = CHj, i 6= j
s for a = s or b = s or

((a 6= CHi or b 6= CHj) and (a ∈ cli, b ∈ clj, i 6= j))

(4.32)

and CHk is such a cluster head that CHi ≤ CHk, CHj ≤ CHk, where a ≤ b
is a relation between elements of H such that: (1) s ≤ s, s ≤ CHi and
CHi ≤ s for all clusters cli, (2) within the same cluster cli we have aj ≤ CHi

for all aj ∈ cli while mutually different plain elements of the cluster are
incomparable, (3) between clusters for a = CHi, b = CHj the fact that a ≤ b
means that the tier of b (measured towards the surface) is smaller than or
equal to the tier of a, (4) in all other cases a and b are not related. By CHk



4.3. UNDERWATER WIRELESS SENSOR NETWORKS 197

above we mean a cluster head on the closest tier above both CHi and CHj.
Of course, CHk always exists yet need not be unique as there may be more
cluster heads at this closest tier – in such a case we choose the most suitable
one or regard all cluster heads as equal. Notice that, in our definitions, the
fact that CHi ≤ CHj and simultaneously CHj ≤ CHi does not mean that
CHi = CHj; it only means that CHi and CHj are on the same tier. If we are
able to choose the most suitable cluster head, the relation “≤” (restricted to
H \ {s}) becomes partial ordering and we can write CHk = sup{CHi, CHj}
(with respect to the relation “≤”). Finally, the element s is an element of
H reserved for situations when a and b fail to communicate. It is artificially
added to our set of elements H – or we can agree that one (given the actual
sensor deployment of course carefully chosen) of elements of H will be s. In
this way, technically speaking, we should in fact write He = H ∪ {s}, where
He could mean “expanded”. Of course, if we choose the option of s ∈ H,
then He = H.

Given these definitions, a · b is the element in which the data from a and
b meet while a ∗ b is the path in which the data from both a and b can spread.
The facts that a ·b = s or a∗b = {a, b} both stand for communication failure.

Lemma 4.3.1. (H,≤) is a quasi-ordered set.

Proof. Given our assumptions, reflexivity is obvious. If a ≤ b and b ≤ c, then
either a, b, c are cluster heads or a is a plain element of cli and b, c are cluster
heads. (Given our assumptions, no other option is possible. Of course, b
could be a plain element of clj but then a ≤ b would have no meaning.) In
this case, transitivity of “≤” is obvious.

Suppose that we have arbitrary a, b ∈ H. Since the result of a·b is such an
element ofH in which the data from a and bmeet, it is natural to suppose that
a·b = b·a, i.e. that “·” is commutative. However, we can suppose this only on
condition that we devise such algorithms that a · b = CHk = CHl = b · a for
arbitrary clusters clk, cll. Further on suppose that such an algorithm exists,
i.e. that (H, ·) is a commutative groupoid. The following lemma is obvious.

Lemma 4.3.2. If (H, ·) is a commutative groupoid, then (H, ∗) is a commu-
tative hypergroupoid.

Proof. Obvious because if a · b = b · a, then also [a · b)≤ = [b · a)≤.

Lemma 4.3.3. The hypergroupoid (H, ∗) is an Hv–group, i.e. a weak asso-
ciative quasi-hypergroup.

Proof. Obvious, because {a, b, c} ⊆ a∗(b∗c)∩(a∗b)∗c and a∗H =
⋃
h∈H

a∗h =

H = H ∗ a.
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Lemma 4.3.4. The quasi-ordering “≤” and the operation “·” are compatible,
i.e. for all a, b ∈ H such that a ≤ b and an arbitrary c ∈ H there is a ·c ≤ b ·c
and c · a ≤ c · b.

Proof. The fact that for arbitrary a, b ∈ H there is a ≤ b, means that either
(1) a ∈ cli is plain and b = CHi or (2) a = CHi, b = CHj. In case (1) we,
for an arbitrary c ∈ H have that either c ∈ cli or c 6∈ cli. If c ∈ cli, we get
that a · c = b · c = CHi. If c 6∈ cli, then a · c = b · c = s. In case (2) we have
to consider the following: (a) if c 6∈ cli, c 6∈ clj, then a · c = b · c = s, (b) if
c ∈ cli, then a · cli = CHi · c = CHi while b · c = CHj · c = s and we assume
CHj ≤ s, (c) if c ∈ clj, then a · c = CHi · c = s while b · c = CHj · c = CHj

and we assume s ≤ CHj. Moreover, in (2) we have to consider special cases
of c being a cluster head. If c is a cluster head, say c = CHk, then in (a) we
must test whether CHi ·CHk ≤ CHj ·CHk. But since the product of cluster
heads is always a cluster head in the closest tier above both cluster heads,
the inequality obviously holds. If c = CHi, we in (b) have a · c = a · a = CHi

while b · c = CHj ·CHi yet since we suppose that a ≤ b, this is equal to CHj

and a · c ≤ b · c. If c = CHj, we in (c) we have a · c = CHi · CHj = CHj

while b · c = CHj · CHj = CHj and since “≤” is reflexive, the inequality
holds. Since we assume commutative “·”, the other inequality holds as well.
Finally, case (3) a = s or b = s is obvious.

Now, denote HCH ⊆ H the set of cluster heads. This enables us to re-
gard both multipath and clustering based systems as the fact that HCH = H
means that every element of H is a cluster head, i.e. the system is a multipath
one. In such a case the model simplifies substantially, as there is no need for
the special element s and we do not need to distinguish between communica-
tion within and between clusters. The operation “·” defined by (4.32) reduces
to a · b = c (we still suppose that it is commutative) and, consequently, the
hyperoperation (4.31) reduces to a ∗ b = {a, b} ∪ [a · b)≤, in both cases for all
a, b ∈ H.

Lemma 4.3.5. If we are able to uniquely identify CHk in (4.32), then
(HCH , ·,≤) is a partially ordered semigroup.

Proof. The assumption of uniquely defined CHk means that the condition
of associativity, i.e. (a · b) · c = a · (b · c) for all a, b, c ∈ HCH turns into
sup{sup{a, b}, c} = sup{a, sup{b, c}}, which is obviously true. Therefore,
(HCH , ·) is a semigroup. The compatibility condition holds because this is
the special case of (2a) of Lemma 4.3.4 – without the need of assumptions
regarding the special element s.
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Finally, we assign meaning to x ∈ [a)≤. This means that a ≤ x, i.e. that
the data from the element a reach the element x. Thus, if x is a sink, than the
fact that x ∈ [a)≤ means that the data from a can be successfully collected.
What we want is that, if we denote S the set of all sinks, for all a ∈ H there
exists at least one x ∈ S such that x ∈ [a)≤, which means that data from all
elements of our network H can be successfully collected.

Of course, in order to achieve this, it is crucial to have an algorithm
for unique determination of CHk in (4.32). Yet this is a task that can be
solved in a number of different ways such as LEACH (used also for terrestrial
networks), cluster head selection algorithm in DUCS, etc. For details see e.g.
Domingo and Prior [122,157] or Huang et el. [156].

Remark 4.3.6. Notice that it is worth considering to regard the data collec-
tion process as applying a transition function of a quasi-automaton. Using a
quasi-multiautomaton instead of a quasi-automaton would be an advantage
in cases when data are collected by a cluster head simultaneously, which is
an issue discussed by Domingo and Prior [122] (see ToA techniques). In
this case the next state of a quasi-multiautomaton would be equivalent to
reconfiguring the network. In this respect also notice the comment on inner
irreducibility of a state hypergroup of an automaton on page 63.
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[62] J. Chvalina, Š. Křehĺık, M. Novák, Homomorphisms of EL–
hyperstructures based on a certain classical transformation, Int. J. of
Algebraic Hyperstructures and Its Applications, 2(1) (2015), 101–112.
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fyzice na vysokých školách technických, Univerzita obrany, Brno, 2005.
[CD-ROM].

[73] J. Chvalina, M. Novák, On Levine’s decomposition of the power phase
set of a semihypergroup act, in: 5th International Conf. APLIMAT.
FME Slovak University of Technology, Bratislava, 2006, 89–94.

[74] J. Chvalina, M. Novák, Semicascades with bitopological phase spaces
formed by solution spaces of second-order linear homogeneous differ-
ential equations, in: 7. konference o matematice a fyzice na vysokých
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Congress on A.H.A., 1993, Iaşi, Romania. Hadronic Press, 1994, 45–
52.

[92] P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore, Trices-
imo, 1993.

[93] P. Corsini, Sur les semi-hypergroupes, Atti Soc. Pelor. Sc. Mat. Fis.
Nat. Messina, 26 (1980), 363–372.

[94] P. Corsini, Sur les semi-hypergroupes completes et les groupoids, Atti
Soc. Pelor. Sc. Mat. Fis. Nat. Messina, 26 (1980), 391–396.

[95] P. Corsini, V. Leoreanu, Applications of Hyperstructure Theory, Kluwer
Academic Publishers, Dodrecht – Boston – London, 2003.

[96] P. Corsini, T. Vougiouklis, From groupoids to groups through hyper-
groups, Rendiconti di Mat., Serie VII(9) Roma (1989), 173–181.

[97] I. Cristea, Several aspects on the hypergroups associated with n-ary
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[150] Š. Hošková, J. Chvalina, A survey of investigations of the Brno research
group, in: 10th International Congress of Algebraic Hyperstructures
and Applications, Proceedings of AHA 2008, University of Defence,
Brno, 2009, 71–83.
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Şt. Univ. Ovidius Constanţa, 22(1) (2014), 141–153.
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[188] Š. Křehĺık, Properties of quasi-multiautomata created by a hypergroup
of linear differential operators in the Jacobi form, South Bohemia Math-
ematical Letters, 21(1) (2013), 38–46. (in Czech)
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[282] J. Šlapal, On exponentiation of universal hyperalgebras, Algebr. Uni-
versalis, 44 (2000), 187–193.

[283] A. Soltani Lashkenari, B. Davvaz, Complete join hyperlattices, Indian
J. Pure Appl. Math., 46(5) (2015), 633–645.

[284] S. Spartalis, A class of hyperrings, Riv. Mat. Pura Appl., 4 (1989), 55–
64.

[285] S. Spartalis, M. Konstantinidou-Serafimidou, A. Taouktsoglou, C-
hypergroupoids obtained by special binary relations, Comput. Math.
Appl., 59(8) (2010), 2628–2635.

[286] S. Spartalis, Hypergroupoids obtained from groupoids with binary re-
lations, Ital. J. Pure Appl. Math., 16 (2004), 201–210.

[287] S. Spartalis, C. Mamaloukas, Hyperstructures associated with binary
relations, Comput. Math. Appl., 51 (2006), 41–50.

[288] Srivastava, N. et al., Dropout: a simple way to prevent neural networks
from overfitting, J. Machine Learning Res., 15 (2014), 1929–1958.
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