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ABSTRACT

ON THE MODULAR PERIODICITY OF A CUBIC GENERALIZATION
OF THE FIBONACCI NUMBERS AND RELATED PROBLEMS

The habilitation dissertation ”On the modular periodicity of a cubic generalization
of the Fibonacci numbers and related problems ” deals with some special parts of the
number theory a their applications. Primarily, this work is a contribution to the
following fields: 11B39 – Fibonacci and Lucas numbers and polynomials and gene-
ralizations, 11B50 – Sequences (mod m), 11D25 – Cubic and quartic equations and
00A69 – General applied mathematics. Formally, the problems solved in this work can
be partitioned into four basic parts as follows. First, we study the interesting problem
concerning the modular periodicity of the Fibonacci sequence known as Wall’s con-
jecture or as Wall-Sun-Sun prime conjecture. This problem first appeared in a paper by
Donald Dines Wall published in American Mathematical Monthly in 1960. Second, we
solve a number of problems concerning the cubic generalization of Fibonacci numbers.
These numbers are often called the Tribonacci numbers. The modular periodicity of the
Tribonacci numbers is examined in detail and many interesting results are established.
For example, the combinatorial problem of Morgan Ward for the Tribonacci case will
be completely solved. Third, we deal with the questions concerning the factorization of
monic cubic polynomials with integer coefficients having the same discriminant. The
problems of the factorization is studied over the Galois fields Fp where p is a prime.
Above all, we focus on the question concerning the validity of the law of inertia for
the factorization of cubic polynomials. Finally, an important part of this work is devo-
ted to the practical applications of the number theory. In this part we show a whole
range of examples which describe natural situations where the number theory problems
can arise. In more detail, we will deal especially with the various applications of the
Fibonacci numbers and with the use of the sequences over the finite fields. Some appli-
cations of Diophantine equations and the theory of partitions of positive integers into
summands are also discussed. The habilitation dissertation is written in English in the
form of twenty independent articles with commentaries. All the papers presented have
already been published.

Mathematics Subject Classification:

11B39, 11B50, 11D25, 00A69, 11Axx, 05Axx, 01A60, 12E10, 11D45, 05A18, 11Y70.
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INTRODUCTION

The following habilitation dissertation, ”On the modular periodicity of a cubic
generalization of the Fibonacci numbers and related problems ”, is a collection of twenty
papers written by the author in the period 2007 – 2017. A majority of them has
been published in reputable mathematical journals such as: The Fibonacci Quarterly,
Acta Mathematica Sinica, Utilitas Mathematica, Mathematica Slovaca, Czechoslovak
mathematical journal, Mathematica Bohemica and others. A complete list of the au-
thor’s mathematical research papers can be found in the Appendix on pp. 194 – 195.

Primarily, by Mathematics Subject Classification (MSC 2010), the habilitation dis-
sertation is a contribution to the following mathematical branches: 11B39 – Fibonacci
and Lucas numbers and polynomials and generalizations, 11B50 - Sequences (mod m),
11D25 – Cubic and quartic equations, 00A69 – General applied mathematics. Secon-
darily, it is part of the following fields: 11Axx – Elementary number theory, 05Axx –
Enumerative combinatorics, 12E10 – Special polynomials, 11D45 – Counting solutions
of Diophantine equations, 05A18 – Partitions of sets, 11Y70 – Values of arithmetic
function; tables, 01A60 History of mathematics and mathematicians - 20th century.

The habilitation dissertation consists of two basic parts. The first one lists the prin-
cipal results achieved with comments and a short essay on the future of and outlooks
for the studied field. The second part of the dissertation is formed by loosely related
Chapters 1 – 20. The titles and contents of the chapters are identical with those of
the published original papers. Thus, any chapter can be read and studied separately
irrespective of the preceding text. At the beginning of each chapter, the exact reference
can be found to the corresponding paper. The papers presented as Chapters 10 – 17
were written together with Professor Ladislav Skula as a co-author. Furthermore, it
should be mentioned that some of our results have been obtained using the Maple and
Pari GP computer programs.

The second part of the dissertation is organized as follows. Chapters 1 – 3 are devoted
to an interesting, not yet resolved number-theory problem concerning the modular pe-
riodicity of a Fibonacci sequence. This problem is known as Wall’s conjecture. Chapter
1 summarizes all important discoveries and known facts related to Wall’s conjecture
made over 56 years of its existence. The author’s main results concerning Wall’s con-
jecture are presented in Chapters 2 and 3.

In Chapters 4 – 12, we study some problems concerning the modular periodicity of a
cubic generalization of Fibonacci numbers. These numbers are often called Tribonacci
numbers. First, in Chapters 4 and 5, we find the fundamental relations between the
primitive periods of sequences obtained by reducing a Tribonacci sequence by a given
prime modulus p and by its powers pt, t ∈ N. Next, in Chapters 6 and 7, using the
matrix formalism, we study an analogy to Wall’s conjecture for the Tribonacci case.
Consequently, the results of Chapters 4 to 7 enable us to resolve an interesting combi-
natorial problem. The exact formulation of this problem, together with its solution, can
be found in Chapter 8. Next, in Chapter 9, we present some further results concerning
the Tribonacci sequence. For example, we find the exact values of the periods of the
Tribonacci sequence modulo p for any prime p ≤ 5000. A detailed examination of these
values leads us to a new hypothesis proved in Chapter 11. To prove it we need specific
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properties of the cubic character of Tribonacci roots. These properties are derived in
Chapter 10 and some extension to this theory is given in Chapter 12.

A detailed study of the periods and their arithmetic properties in Chapters 4 – 12
points to the necessity of better understanding the problem of the factorization of
monic cubic polynomials with integer coefficients over the Galois fields Fp where p is
a prime. Let D ∈ Z and let CD = {f(x) = x3 + ax2 + bx + c ∈ Z[x]; Df = D} where
Df is the discriminant of f(x). In Chapter 13, we examine in detail the structure of
the set CD. We show, for example, that CD is closely related to the problem of finding
all integer solutions of Mordell’s equation. Furthermore, we thoroughly examine the
set C−44 containing the Tribonacci polynomial proving that all polynomials in C−44

have the same type of factorization over any Galois field Fp where p is a prime. This
surprising property of the set C−44 suggests a fundamental question, namely, for which
D ∈ Z the following theorem holds: Let p be an arbitrary prime. Then, all polynomials
in CD have the same type of factorization over the Galois field Fp. In Chapters 14
– 17, an interesting sufficient condition is given. Moreover, work on this subject still
continues and some new results have already been found.

An important part of the dissertation is devoted to the practical applications of
the number theory. In particular, Chapter 18 is concerned with the applications of
Fibonacci numbers and the golden ratio in physics, chemistry, biology and economy.
An extensive list of chronological references is given. This chapter can be regarded as
an introduction to the study of applications of Fibonacci numbers. Next, Chapter 19
is about applications of modular periodicity of the recurrent linear sequences defined
over finite fields. Finally, Chapter 20 contains some further interesting examples of
real-world applications of the number theory.

Brno, March 2018
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COMMENTS ON THE MAIN RESULTS
OF HABILITATION DISSERTATION

In the first part of the habilitation dissertation we summarize the main achieved
results, which are detailed in Chapters 1 – 20. We begin with a section in which we
focus on the most important applications of the studied subject.

1. Number theory and applications

German mathematician Johann Carl Friedrich Gauss (30 April 1777 – 23 February
1855), regarded as one of the greatest mathematicians of all time, claimed: ”Mathe-
matics is the queen of the sciences and number theory is the queen of mathematics.”
However, for many years number theory had had only few practical applications. It is
well known that the great English number theorist Godfrey Harold Hardy (7 February
1877 – 1 December 1947) believed that number theory had no practical applications.
See his essay ”A Mathematician’s Apology” [18]. Over the 20th and 21st centuries, this
situation has changed significantly. Contrary to Hardy’s opinion, many practical and
interesting applications of number theory have been discovered. Some of the major
ones will be now presented.

The basic concepts studied in the number theory include primes and composite
numbers. The properties of prime and composite numbers play an important role in
modern cryptography and coding systems. The fundamental theorem of arithmetic says
that every positive integer can be written uniquely as the product of primes. Although
many various methods for the factorization of integers are known, it can take years
for a supercomputer to find the prime factors of a large composite number. On the
other hand, the multiplication of large integers lasts only a fraction of second on an
ordinary computer. This salient difference is used by modern coding systems. In 1976,
Whitfield Diffie and Martin E. Hellman [12] proposed a revolutionary cipher system,
called a public-key cryptosystem. Subsequently, in 1978, Ronald L. Rivest, Adi Shamir,
and Leonard Adleman [54] developed a practical way, based on Euler’s Theorem, of
implementing Diffie and Hellman’s elegant concept. At present, this method is known as
the RSA method where RSA is an acronym for Rivest, Shamir, and Adleman. Currently,
the most important modern cryptographic systems are based on the RSA algorithm and
its modifications. The RSA method found wide applications in banking transactions,
electronic communication, digital signatures and data protection. In fact all global
electronic economy is highly dependent on security of transactions and consequently,
on the sophisticated methods of number theory.

Further branches of number theory with significant practical applications include
the theory of the sequences defined over a finite fields Fpn . These fields are also called
Galois fields, after the French mathematician Evariste Galois (25 October 1811 – 31
May 1832). It is well known that sequences over Fpn are closely related to linear recur-
sions modulo p [57]. Many remarkable and important examples of Galois sequences
applications are known. Some of them will be now reminded [34].

One of the basic experiments corroborating the veracity of Einstein’s general-relativity
theory is called the Shapiro time delay. This experiment is based on the idea that radar
signals passing a massive object will travel along a trajectory longer than the one taken
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with no massive object in the vicinity. Thus, by the relativity theory, a radar signal
will travel for a longer time with this time lag being measurable. The radar signal used
in the Shapiro experiment was structured as a Galois sequence with a period length of
63. For details of the experiment see [61] and [62]. Another remarkable application of
Galois sequences is the measurement of ocean temperatures to monitor global warming
[52]. Galois sequences were used to measure sound transmission delays between Heard
Island in the Indian Ocean and Greenland, a distance exceeding 10000 km. In this case,
the time delay of the sound is a function of the average ocean temperature.

Another important field of Galois sequences application is algebraic error correcting
codes such as simplex and Hamming codes [79]. Error-correcting codes are part of
the coding theory, which has recently seen major advances in view of the growing
importance of data encryption and transfers on the Internet. Error-correcting codes
are used in CD players, high speed modems, and mobile phones. Early space probes
such as Mariner used a type of error-correcting code called a block code while more
recent space probes use convolution codes.

Galois sequences have also been used in many other fields. In neuropsychology, for
example, to measure brain–stem responses [14], in atmospheric physics [80], in the non-
destructive evaluation of metallic materials [8] and in concert-hall acoustic [60]. Many
other interesting applications of Galois sequences, such as the generation of pseudo-
random numbers using linear feed-back shift registers, can be found in [57], [58] and
[59]. The problems of applications of sequences defined over finite fields will be discussed
in Chapter 19.

Further important applications of the number theory can be found in the theory of
partition of natural numbers into summands [3]. This remarkable theory has a long
history dating back to 1674. Recall, for example, that Hardy - Ramanujan formula
[17] has been used, with great success, in quantum physics [6] and in solving various
problems of statistical mechanics [4, 10, 48, 66]. The formula played an important role
in the crucial breakthrough of Niels Henrik David Bohr (7 October 1885 – 18 November
1962) in the theory of decomposition of heavy atomic nuclei. The relationship between
the basic problem of the theory of partitions and physics will be presented in Chapter
20. Some historical notes are also included in [39].

Other interesting applications of number theory include the use of the results and
methods of Diophantine analysis. For example, many basic questions in chemistry and
virology lead to some Diophantine equations [39]. In Chapter 20, several interesting
examples will be shown. In particular, we focus on the problem of balancing chemical
equations and the problem of determining the molecular formula. An example concer-
ning the investigation of the virus structures will also be given.

There are many examples of other number theory applications [5]. Some of them
have already become an integral part of our every day life. Recall, for example, that
the number theory has been used in many ways to devise algorithms for efficient com-
puter arithmetic and for computer operations with large integers. Many computers
have preinstalled various internal programs that work thanks to the number theory.
Next, a construction of barcodes, zip codes, International Serial Book Numbers (ISBN),
International Bank Account Numbers (IBAN), International Standard Music Numbers
(ISMN) and vehicle identification numbers are based on elementary number theory. In
this sense the number theory affects our everyday life.
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Finally, a very important part of the number theory having many practical appli-
cations is the theory of Fibonacci numbers and their generalizations. In the following
section we will deal with this topic in more detail.

2. Fibonacci numbers and their applications

The Fibonacci sequence (Fn)∞n=0 was introduced by Italian mathematician Leonardo
Fibonacci (1175 – 1250) in 1202. It is defined recursively

F0 = 0, F1 = 1, and Fn+2 = Fn+1 + Fn for all n ≥ 0.

The golden ratio (also known as golden mean, golden proportion or golden section)
is an irrational number defined as ϕ = (1 +

√
5)/2 = 1.618 · · · . This number and

ϕ = −1/ϕ = (1 − √
5)/2 = 0.618 · · · are the solutions of the quadratic equation

x2 − x− 1 = 0. It is well known that Fibonacci numbers Fn can be computed using ϕ
and ϕ as follows:

Fn =
ϕn − ϕ n

ϕ− ϕ
=

ϕn − (−ϕ−n)√
5

=
1√
5

[(
1 +

√
5

2

)n

−
(

1−√5
2

)n]
, for all n ≥ 0.

This explicit formula for Fn is called Binet’s formula, after the French mathemati-
cian Jacques-Phillipe-Marie Binet (1786 – 1856), who discovered it in 1843. In fact, it
was first discovered in 1718 by Abraham De Moivre (1667 – 1754) using generating
functions, and also arrived at independently in 1844 by Gabriel Lamé (1795 – 1870).

A comprehensive survey of discoveries concerning the number–theoretic properties
of Fibonacci numbers through 1202 – 1919 can be found in History of the Theory of
Numbers [11] written by Leonard Eugene Dicson (1874 – 1954). Tens of books and
monographs as well as thousands of scholary papers have been published on Fibonacci
numbers and the golden ratio. Note that the first known book devoted to the golden
ratio is De Divina Proportione by Luca Pacioli (1445 – 1519). Published in 1509, this
book was illustrated by Leonardo da Vinci. As a good introduction into the study of
Fibonacci numbers, the book [71] by Nicolai Nicolaevich Vorobiev can be recommended
together with the books by Thomas Koshy [44], Steven Vajda [67] and Richard A.
Dunlap [13]. For advanced study, see the journal The Fibonacci Quarterly founded
in 1963 by Alfred Brousseau (1907 – 1988) and Verner Emil Hoggatt (1921 – 1980).
Further important facts on Fibonacci numbers can be found in the proceedings of
international conferences Applications of Fibonacci numbers.

Fibonacci numbers appear in almost every branch of mathematics: in number theory
obviously, but also in differential equations, probability, statistics, numerical analysis,
and linear algebra. Recall, for example, that Fibonacci numbers played an important
role in solving the tenth Hilbert problem (Matijasevich 1970 [49]) and that they are
closely related to the Fermat Last Theorem (Sun–Sun 1992 [64]). In the first place,
however, Fibonacci numbers and the golden ratio have many important and unexpected
applications in physics, chemistry, biology economy, architecture, music, aesthetics and
other fields. In physics, for example, they are used in the network analysis of electric
transmission lines, help study the atomic structures of some materials and investigate
the light reflection paths in optics. In chemistry, they can be found in the theory of
aromatic hydrocarbons and in questions related to the periodic table of elements. In
biology, they are used to derive formulas for form growth, and in economy, they are
part of Elliott’s wave principle. Recently, interesting applications have appeared of
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Fibonacci numbers in the research of the human genome and cancer. In Chapter 18,
we present an extensive list of chronological references to papers on applications of
Fibonacci numbers. This chapter can be taken for an introduction to the study of the
applications of Fibonacci numbers [32].

Applying the recurrence formula Fn+2 = Fn+1 + Fn only to the last digits of the
Fibonacci numbers (using modulo 10 arithmetic), we may be surprised to find that,
after sixty terms, the sequence starts repeating itself:

0 1 1 2 3 5 8 3 1 4 5 9 4 3 7 0 7 7 4 1
5 6 1 7 8 5 3 8 1 9 0 9 9 8 7 5 2 7 9 6
5 1 6 7 3 0 3 3 6 9 5 4 9 3 2 5 7 2 9 1
0 1 1 . . .

Table 1.

We may also notice further regularities. Applying to (Fn)∞n=0 modulo 2 arithmetic, we
obtain a period of length 3, while modulo 5 arithmetic will yield a length 20 period. This
follows immediately from Table 1. Investigation of further cases leads to the discovery
of the following general theorem: Let m ∈ Z and let m ≥ 2. Then (Fn mod m)∞n=0 is
periodic. This remarkable property is called the modular periodicity of (Fn)∞n=0. The
first related discoveries concerning this property goes back to J. L. Lagrange [45, pp.
142 – 147]. See also Dickson’s History [11, p. 393]. A positive integer k(m) is called
the period of Fibonacci sequence modulo m if it is the smallest positive integer for
which Fk(m) ≡ 0 (mod m) and Fk(m)+1 ≡ 1 (mod m). Various properties of k(m) have
been studied in great detail by many authors. For the basic properties of k(m), see
J. C. Kluyver [42], S. Täcklid [65], D. D. Wall [76], D. W. Robinson [55], J. Vinson
[68], and A. Vince [69]. The following two properties of k(m) belong certainly to all-
important [76, pp. 526 – 527]. Let m = pt1

1 · · · ptk
k be the prime factorization of m

and let lcm(k(ptk
1 ), . . . , k(ptk

k )) is the least common multiple of k(ptk
1 ), . . . , k(ptk

k ). Then
k(m) = lcm(k(ptk

1 ), . . . , k(ptk
k )). Furthermore, if p is an arbitrary prime and k(p) =

k(ps) 6= k(ps+1), then k(pt) = pt−sk(p) for any positive integers t ≥ s. Consequently, if
k(p2) 6= k(p), then k(pt) = pt−1k(p) for all t. The relevance of the above statements is
evident. They reduced the investigation of any period k(m) to the periods k(p) with p
a prime.

Now we recall the exact formulation of a very interesting and difficult problem pub-
lished by the American mathematician Donald Dines Wall (August 13, 1921 – Novem-
ber 28, 2000) in 1960. In his famous remark [76, p. 528] Wall poses a question that has
so far remained unanswered:

The most perplexing problem we have met in this study concerns the hypothesis
k(p2) 6= k(p). We have run a test on a digital computer which shows that k(p2) 6= k(p)
for all p up to 10, 000; however, we cannot yet prove that k(p2) = k(p) is impossible.
The question is closely related to another one, ”can a number x have the same order
mod p and mod p2?”, for which rare cases give an affirmative answer (e.g., x = 3,
p = 11; x = 2, p = 1093); hence, one might conjecture that equality may hold for some
exceptional p.

It is well known that k(p2) = k(p) if and only if Fp−(5|p) ≡ 0 (mod p2) where (a|b)
denotes the Legendere symbol of a and b. Crandal, Dilcher, and Pomerence [9] called
primes p > 5 satisfying Fp−(5|p) ≡ 0 (mod p2) the Wall-Sun-Sun primes. These are
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sometimes called Fibonacci-Wieferich primes [43]. It has been conjectured that there
are infinitely many Wall-Sun-Sun primes, but this conjecture remains unproven as well.

Chapters 1 – 3 are the author’s contribution to Wall’s problem. In Chapter 1, we
begin with a detailed historical study [40] in which all related discoveries and known
facts are summarized. Recall now at least the two most important ones. First, in 1992,
Zhi-Hong Sun and Zhi-Wei Sun [64] proved that, if k(p2) 6= k(p) for all primes p, then
xp + yp = zp has no integer solution with p - xyz. Hence, the affirmative answer to the
hypothesis that k(p2) 6= k(p) for all primes p implies the first case of Fermat’s Last
Theorem. For this reason, Wall’s problem is also referred to as Wall-Sun-Sun prime
conjecture in the literature. Further, recall that Wall’s problem is closely related to the
Fibonacci perfect power problem [7] which was resolved in 2006. Finally, note that in
Chapter 1, the important milestones in computer search for Wall-Sun-Sun primes are
also included. Thanks to extensive computations of many authors, we can state that
there is no Wall-Sun-Sun prime less then 1.9× 1017 [53].

In Chapter 2, as the main result, we give certain equivalent formulations of Wall’s
conjecture and derive two interesting criteria that can be used to resolve this conjecture
for particular primes. Let Kp be the splitting field of the Fibonacci characteristic po-
lynomial f(x) = x2 − x − 1 over the field of p-adic numbers Qp and α, β be the roots
of f(x) in Kp. Denote by Rp the ring of integers of Kp. Clearly α, β ∈ Op. Since the
discriminant of f(x) is equal to 5, it follows that, for p 6= 5, Kp/Qp does not ramify and
so the maximal ideal of Rp is generated by p. Moreover, if Kp = Qp, then α, β ∈ Zp,
where Zp is the ring of p-adic integers. For a unit ε ∈ Rp we denote by ordpt(ε) the least
positive rational integer h such that εh ≡ 1 (mod pt). Since εh ≡ 1 (mod p) implies
εph ≡ 1 (mod p2), we have

either ordp2(ε) = ordp(ε) or ordp2(ε) = p · ordp(ε).

Furthermore, it is not difficult to prove that, if p > 2 and ordp(ε) 6= ordp2(ε), then, for
any t ∈ N, we have ordpt(ε) = pt−1ordp(ε). More generally, if ε 6= ±1 and s ∈ N
is the largest integer such that ordps(ε) = ordp(ε), then, for any t ≥ s, we have
ordpt(ε) = pt−sordp(ε). Now we can formulate three main theorems proved in [21].

Theorem 2.1. Let p 6= 5. Then k(pt) = lcm(ordpt(α), ordpt(β)) for any t ∈ N.

Theorem 2.2. (i) Let p = 5. Then k(p2) 6= k(p) and k(5t) = 4 · 5t for any t ∈ N.
(ii) Let p 6= 5. Then k(p2) 6= k(p) if and only if

ordp2(α) ≡ 0 (mod p) and ordp2(β) ≡ 0 (mod p).

Theorem 2.2 reduces Wall’s question to solving the following equivalent problem. Is
there at least one root α ∈ Rp of f(x) for which ordp2(α) 6≡ 0 (mod p) or is this never
possible? Now we state two interesting criteria that can be used, without computing the
roots of f(x) in Rp, to decide whether k(p2) = k(p) or not. Let p 6= 5. Put q = |Rp/(p)|.
Then q = pt where t = [Kp : Qp] ∈ {1, 2}. If f(x) is irreducible over Qp, then Rp/(p)
is a field with p2 elements. If f(x) is not irreducible over Qp, then f(x) has both roots
in the ring Zp and Rp/(p) is a field with p elements.

Theorem 2.3. Let p 6= 5, u ∈ Rp be such that f(u) ≡ 0 (mod p). Then, k(p2) = k(p)
if and only if

u2q − uq − 1 ≡ 0 (mod p2) or equivalently f(u) + (uq − u)f ′(u) ≡ 0 (mod p2)
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where f ′ is the derivative of the Fibonacci characteristic polynomial f .

In Chapter 3 we open an interesting question whether, for some primes, the chance
that they are Wall-Sun-Sun is greater than for others. The conjecture that there are
infinitely Wall-Sun-Sun primes is based on the assumption that the probability that
a prime p is Wall-Sun-Sun is equal to 1/p. Using the arguments presented in [20], we
show that another form of probability can be assumed. Our consideration leads to an
interesting conclusion that the probability of finding the first Wall-Sun-Sun prime is
much greater for primes ending with the digits 1 or 9. Details are given in [20].

3. Cubic generalization of Fibonacci numbers

In 1961, Alwyn Francis Horadam (22 March 1923 – 22 July 2016) suggested that
there are two main directions in which the Fibonacci sequence may be generalized [19,
p. 458]. Namely, either the recurrence relation can be generalized and extended, or the
recurrence relation is preserved, but the first two Fibonacci numbers are replaced by
arbitrary integers. He further suggests that these two techniques could be combined. In
fact, these generalizations were noted earlier by A. Tagiuri, R. Perrin, A. Agronomof
and others. See Dickson’s history [11, pp. 393 – 407].

In Chapters 4 – 12, Horadam’s sugestion will follow. In particular, some problems
concerning the modular periodicity of a cubic generalization of Fibonacci numbers will
be studied. These numbers are often called Tribonacci numbers. The name Tribonacci
was coined by a talented student, Mark Feinberg [15], in 1963. The Tribonacci sequence
(Tn)∞n=0 is defined by the third order linear recurrence Tn+3 = Tn+2 +Tn+1 +Tn with the
triple of initial values [T0, T1, T2] = [a, b, c] where a, b, c are integers. Tribonacci numbers
Tn have been examined by many authors. First by A. Agronomof [1] in 1914 and,
subsequently, by many others [65, 74, 75, 77]. It is well known [77] that (Tn mod m)∞n=0
is periodic for any modulus m > 1. Let us denote the period of (Tn mod m)∞n=0 by
h(m)[a, b, c]. That is, h(m)[a, b, c] is the least positive integer k for which we have
[Tk, Tk+1, Tk+2] ≡ [T0, T1, T2] (mod m). Particularly, if [T0, T1, T2] = [0, 0, 1], then the
period h(m)[0, 0, 1] will be denoted by h(m). It 1931, Morgan Ward (1901 – 1963) [77,
p. 155] proved that, if m = pt1

1 . . . ptk
k is a prime factorization of m, then

h(m)[a, b, c] = lcm(h(pt1
1 )[a, b, c], . . . , h(ptk

k )[a, b, c]).

Consequently, h(m) = lcm(h(pt1
1 ), . . . , h(ptk

k )) [75, p. 347]. Next, in 1978, Marcellus
Emron Waddill (28 April 1930 – 24 August 2016) showed that, for any prime p and for
any positive integers r ≤ t, the following implication holds.

If h(p) = · · · = h(pr) 6= h(pr+1) then h(pt) = pt−rh(p).

Particularly, if r = 1, then h(pt) = pt−1h(p). See [75, pp. 349 – 351]. Up to the present,
no instance of h(p2) = h(p) has been found and the question whether h(p2) = h(p) never
appears is open. In [24], the primes p satisfying h(p2) = h(p) were called Tribonacci-
Wieferich primes.

From the above it follows that the basic arithmetic properties of Fibonacci and
Tribonacci numbers are very similar. However, many properties of Tribonacci numbers
are quite different and new.

In Chapters 4 and 5, we generalize the implication by M. E. Waddill and the
relationships between the numbers h(pt)[a, b, c] and h(p)[a, b, c] will be established.
Some basic properties of h(pt)[a, b, c] are summarized by the following lemma.
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Lemma 3.1. Let p be an arbitrary prime and let [a, b, c] be an arbitrary triple of
integers. Then, the following statements hold.

(i) For any t ∈ N, we have h(pt)[a, b, c]|h(pt).
(ii) For any s, t ∈ N, 1 ≤ s ≤ t, we have h(pt)[pt−sa, pt−sb, pt−sc] = h(ps)[a, b, c].
(iii) For any s, t ∈ N, 1 ≤ s ≤ t, we have h(ps)[a, b, c]|h(pt)[a, b, c]. In particular, we

have h(p)[a, b, c]|h(pt)[a, b, c].

It is evident that Lemma 3.1 restricts the form of the numbers h(pt)[a, b, c], which
reduces the investigation of the periods h(p)[a, b, c] for general triples [a, b, c] to the
case of [a, b, c] 6≡ [0, 0, 0](mod p). As we will see in the sequel, the relations between
h(pt)[a, b, c] and h(p)[a, b, c] highly depend on the form of the factorization of the Tri-
bonacci polynomial t(x) = x3 − x2 − x− 1 over the Galois field Fp where p is a prime.
In the investigation of the periods of Tribonacci sequences beginning with arbitrary
triples [a, b, c], the cubic form

D(a, b, c) = a3 + 2b3 + c3 − 2abc + 2a2b + 2ab2 − 2bc2 + a2c− ac2

plays an important role. In Chapter 4, the following theorem will be proved.

Theorem 3.2. If a triple of initial values [a, b, c] of a Tribonacci sequence (Tn)∞n=0
satisfies (D(a, b, c),m) = 1, then h(m)[a, b, c] = h(m).

The form D(a, b, c) will be also employed to prove the following Theorem 3.3.

Theorem 3.3. Let p be an arbitrary prime such that t(x) is irreducible over Fp. If
[a, b, c] 6≡ [0, 0, 0](mod p) and h(p) 6= h(p2), then

h(pt)[a, b, c] = pt−1 h(p)[a, b, c] = pt−1h(p)

for an arbitrary t ∈ N.

However, if t(x) is not irreducible, it is easy to find examples of triples [a, b, c] for
which D(a, b, c) ≡ 0 (mod p) holds and h(pt)[a, b, c] = h(pt). Consequently, the form
D(a, b, c) cannot be expected to enable us to describe the relationships between the
primitive periods if t(x) has at least one root over Fp. In this case, the following concepts
will be useful. For a t ∈ N, denote by Spt(T ) the set of roots of t(x) in Z/ptZ, that is,
the spectrum of the Tribonacci matrix

T =




0 1 0
0 0 1
1 1 1




over Z/ptZ. Next, for λ ∈ Spt(T ) denote by Ept(λ) = {[a, aλ, aλ2], a ∈ Z/ptZ} the
eigenspace corresponding to the eigenvalue λ. Finally, let us denote by Qp the field of
p-adic numbers and by Zp the ring of p-adic integers. The elements of the spectrum
Spt(T ) play an important role in our further considerations.

Let us now deal with the case of a Tribonacci polynom t(x) having over Fp a fac-
torization of the form t(x) ≡ (x − α1)(x2 − s1x − r1) (mod p), where the polyno-
mial u1(x) = x2 − s1x − r1 is irreducible over Fp. Since α1 is a unique solution to
t(x) ≡ 0 (mod p), by Hensel’s lemma, there is a unique solution αt to the congru-
ence t(x) ≡ 0 (mod pt). Moreover, for αt we have αt ≡ α1 (mod p). This implies
(x − αt)|t(x) and there is a unique polynomial ut(x) = x2 − stx − rt ∈ Z/ptZ[x] such
that t(x) ≡ (x− αt)(x2 − stx− rt) (mod pt) where αt, rt, st are units of the ring Z/ptZ
for which st ≡ 1 − αt (mod pt), rt ≡ 1 + αt − α2

t (mod pt). Hence, the spectrum T
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consists of a single element with Spt(T ) = {αt}. Let us denote by ordpt(αt) the order
of αt in the group of units of the ring Z/ptZ. Now we are ready to formulate our main
theorems.

Theorem 3.4. Let p be an arbitrary prime such that t(x) is factorized over Fp into
the product of a linear factor and an irreducible quadratic factor. Further, let h0 =
ordp(αt). Then, h(pt)[a, b, c]|pt−1h0 if and only if [a, b, c] (mod pt) ∈ Ept(αt). Moreover,
for t > 1, h(pt)[a, b, c] = pt−1h0 if and only if [a, b, c] (mod pt) ∈ Ept(αt), [a, b, c] 6≡
[0, 0, 0] (mod p) and ordp(αt) 6= ordp2(αt).

Theorem 3.5. Let p be an arbitrary prime such that t(x) is factorized over Fp into the
product of a linear factor and an irreducible quadratic factor. Further, let h(p) 6= h(p2),
ordp(α2) 6= ordp2(α2) and [a, b, c] 6≡ [0, 0, 0] (mod p). Then, for any t ∈ N, the following
assertions are true.

(i) If [a, b, c](mod pt) ∈ Ept(αt), then h(pt)[a, b, c] = ordpt(αt) = pt−1ordp(αt).
(ii) If [a, b, c](mod p) /∈ Ep(α1), then h(pt)[a, b, c] = pt−1h(p) = pt−1h(p)[a, b, c].
(iii) If [a, b, c](mod p) ∈ Ep(α1) and [a, b, c](mod pt) /∈ Ept(αt), then

h(pt)[a, b, c] = pt−1h(p) 6= pt−1h(p)[a, b, c].

Let us now focus on the case of the Tribonacci polynomial t(x) completely splitting
over the Galois field Fp into linear factors, that is,

t(x) ≡ (x− α1)(x− β1)(x− γ1) (mod p) and Sp(T ) = {α1, β1, γ1}.
Since the discriminant of t(x) is equal to −44 = −22 · 11, the primes p = 2, 11

are the only primes for which t(x) has multiple roots. The primes p = 2, 11 make an
exception in our theory, which will be examined separately. The assumption p 6= 2, 11
implies that α1, β1, γ1 are distinct, thus t(x) has nonzero first derivatives over Fp at
these points. From Hensel’s lemma, it follows that t(x) can be factorized over Qp

as t(x) = (x − α)(x − β)(x − γ) where α, β, γ ∈ Zp. Let us put αt := α mod pt,
βt := β mod pt, γt := γ mod pt for every t ∈ N. Thus, over the ring Z/ptZ, we have
t(x) ≡ (x−αt)(x−βt)(x− γt) (mod pt) and Spt(T ) = {αt, βt, γt}. Our main results are
as follows.

Theorem 3.6. Let t(x) be factorized over Fp into the product of linear terms and let
p 6= 2, 11. If h(p) 6= h(p2), then there is at most one eigenvalue λ ∈ Spt(T ) satisfying
ordp(λ) = ordp2(λ).

Theorem 3.7. Let t(x) be factorized over Fp, p 6=2, 11, into the product of linear terms.
Further, let [a, b, c] 6≡ [0, 0, 0] (mod p) and, for any t ∈ N, let Spt(T )={αt, βt, γt}.

(i) If λ ∈ Spt(T ) and [a, b, c](mod pt) ∈ Ept(λ), then h(pt)[a, b, c] = ordpt(λ).
Moreover, if, for t > 1, λ ∈ Spt(T ) fulfils the condition ordp(λ) 6= ordp2(λ), then
h(pt)[a, b, c] = pt−1ordp(λ) = pt−1h(p)[a, b, c].

(ii) If [a, b, c](mod pt) 6∈ Ept(αt)∪Ept(βt)∪Ept(γt) and, for every λ ∈ Spt(T ), t > 1,
ordp(λ) 6= ordp2(λ), then h(pt)[a, b, c] = h(pt) = pt−1h(p).

We will now look more closely at the properties of the period h(p). It is well known
[70, p. 310] that the periods h(p) highly depend on the form of the factorization of t(x)
modulo p. For p 6= 2, 11, we have:

If
( p

11

)
= 1, then

{
h(p)|p2 + p + 1 if t(x) is irreducible mod p,

h(p)|p− 1 otherwise.
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If
( p

11

)
= −1, then h(p)|p2 − 1. Here

( p

11

)
denotes the Legendre symbol.

The above statement is a consequence of a well known criterion for the factorability
of cubics mod p, which can be formulated as follows:

Let N be the number of solutions of x3 + ax2 + bx + c ≡ 0 (mod p) where a, b, c ∈ Z
and let D = a2b2−4b3−4a3c−27c2 +18abc be the discriminant of the cubic polynomial
x3 + ax2 + bx + c. If p is a prime, p > 3 and p - D, we have:

(i) N = 1 if and only if (D/p) = −1,
(ii) N = 0 or N = 3 if and only if (D/p) = 1.

This theorem dates from 1894 originating in the thesis of G. F. Voronöı [72]. Consult
also [73, p. 189]. On the other hand, this theorem follows from a more general Stickel-
berger Parity Theorem [63] published in 1897. See also Dickson’s history [11, pp. 249 –
251]. Furthermore, recall that, if K is the splitting field of the Tribonacci polynomial
t(x) over the field Fp, p 6= 2, 11 and α, β, γ are the roots of t(x) in K, then

h(p) = lcm(ordK(α), ordK(β), ordK(γ))

where the numbers ordK(α), ordK(β), ordK(γ) are the orders of α, β, γ in the multipli-
cative group of K and lcm is their least common multiple [70].

Now we focus on our results proved in Chapter 4. Let p 6= 2, 11 be an arbitrary prime
and let Sp(T ) = {α1, β1, γ1}, that is, t(x) completely splits over Fp into linear factors.
Further, let ordp(α1) = h1, ordp(β1) = h2 and ordp(γ1) = h3. Then

lcm(h1, h2) = lcm(h1, h3) = lcm(h2, h3) = lcm(h1, h2, h3) = h(p).

Investigating the orders h1, h2, h3 for the first several hundreds of primes might lead
to a hypothesis that there are always two of the orders h1, h2, h3 that divide the third.
The first counter-example that disproves this hypothesis is p = 4481. Over F4481, t(x)
can be written as t(x) = (x − 2661)(x − 2677)(x − 3625). Denoting α1 = 2661, β1 =
2677, γ1 = 3625, we arrive at ordp(α1) = 2240, ordp(β1) = 640, ordp(γ1) = 896 and
h(p) = lcm(2240, 640, 896) = 4480. Further, if two of the roots α1, β1, γ1 are of the
same order in the multiplicative group of Fp different from the order of the third root,
the following two situations may, theoretically, occur:

ordp(α1) < ordp(β1) = ordp(γ1) and ordp(α1) = ordp(β1) < ordp(γ1).

In [22, p. 286] we showed that the second case can never occur. That is, if ordp(α1) =
ordp(β1) = h, then ordp(γ1)|h. Hence, without loss of generality we can denote the roots
of t(x) over Fp by α1, β1, γ1 so that, for their orders h1, h2, h3 and h(p) = lcm(h1, h2, h3),
exactly one of the four following events occurs:

h1 = h2 = h3 = h(p), p = 103,
h1 < h2 = h3 = h(p), p = 47,
h1 < h2 < h3 = h(p), p = 311,
h1 < h2 < h3 < h(p), p = 4481.

The presented values of the primes p are the least values for which the corresponding
relation occurs. Now we will shortly deal with the results of Chapter 5.

In Chapter 5 we determine the numbers h(pt)[a, b, c] for the case of the exceptional
primes p = 2, 11. The methods used in proofs are mostly based on matrix algebra. The
main results of Chapter 5 can be summarized as follows.
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Theorem 3.8. Let t > 1 and [a, b, c] 6≡ [0, 0, 0] (mod 2). Then, we have

(i) If [a, b, c] ≡ [1, 1, 1] (mod 2), then h(2t)[a, b, c] = 2t.
(ii) If [a, b, c] 6≡ [1, 1, 1] (mod 2), then h(2t)[a, b, c] = 2t+1.

Over the field Q11, t(x) has only one root α = 9 + 2 · 11 + 1 · 112 + · · · ∈ Z11.
Put E(αt) = {[q, qαt, qα

2
t ]; q ∈ Z/11tZ} where αt = α mod 11t. Then, for periods

h(11t)[a, b, c], the following statements hold.

Theorem 3.9. Let t ≥ 1 and [a, b, c] 6≡ [0, 0, 0] (mod 11). Then, we have

(i) If [a, b, c] 6∈ E(αt) and c ≡ 3a + 5b (mod 11), then h(11t)[a, b, c] = 10 · 11t−1.
(ii) If [a, b, c] 6∈ E(αt) and c 6≡ 3a + 5b (mod 11), then h(11t)[a, b, c] = 10 · 11t.
(iii) If [a, b, c] ∈ E(αt), then h(11t)[a, b, c] = ord11t(αt) = 5 · 11t−1.

In Chapters 6 and 7, using the matrix formalism, we will study an analogy to Wall’s
conjecture for the Tribonacci case. Our considerations are placed in the following fra-
mework. Let Lp be the splitting field of the Tribonacci polynomial t(x) over the field
of p-adic numbers Qp and let α, β, γ be the roots of t(x) in Lp. Further, let Op be the
ring of integers of Lp. Clearly, α, β, γ ∈ Op. As the discriminant of t(x) is equal to
−44, the Galois extension Lp/Qp does not ramify for p 6= 2, 11. For any unit ξ ∈ Op

and for any t ∈ N, we denote by ordpt(ξ) the least positive rational integer k such that
ξk ≡ 1 (mod pt). In Chapter 6, the following theorem will be proved.

Theorem 3.10. Let p 6= 2, 11. Then, for any t ∈ N, we have

h(pt) = lcm(ordpt(α), ordpt(β), ordpt(γ)).

Next, for any prime p, we define an integer matrix Ap = [aij] such that

Ap =
1
p

(T h(p) − E)

where E is the 3× 3 identity matrix. In the investigation of the equality h(p) = h(p2)
the matrix Ap plays an important role.

Theorem 3.11. The following statements are true.
(i) For any prime p, we have h(p) 6= h(p2) if and only if Ap 6≡ 0 (mod p).
(ii) For any prime p 6= 2, 11, we have Ap ≡ 0 (mod p) if and only if

ordp2(λ) 6≡ 0 (mod p) for each λ ∈ {α, β, γ}.
(iii) Let p 6= 2, 11 and Ap 6≡0 (mod p). Then, detAp ≡ 0 (mod p) if and only if there is

a unique λ ∈ {α, β, γ} for which ordp2(λ) 6≡ 0 (mod p). Moreover, for this λ, we
have λ ∈ Zp where Zp is the ring of p-adic integers.

(iv) Let t(x) be irreducible over Qp. Then, we have Ap ≡ 0 (mod p) if and only if
detAp ≡ 0 (mod p).

(v) Let p 6= 2, 11. Then, detAp ≡ 0 (mod p) if and only if there is at least one
λ ∈ {α, β, γ} such that ordp2(λ) 6≡ 0 (mod p).

Our results can be summarized in the following theorem.

Theorem 3.12. Let p 6= 2, 11 and let k be the number of roots α, β, γ of t(x) in Op

whose order modulo p2 is divisible by p. Then, the following cases may occur:

Case k = 0: h(p) = h(p2), or equivalently Ap ≡ 0 (mod p).
Case k = 1: This case is impossible.
Case k = 2: h(p) 6= h(p2) and detAp ≡ 0 (mod p).
Case k = 3: h(p) 6= h(p2) and detAp 6≡ 0 (mod p).
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A natural question arises whether there is a prime p satisfying k = 2. Since the
solution of this question seems to be as difficult as the question whether h(p) 6= h(p2)
for all primes p, we state it as a new problem:

Decide whether there is a prime p for which h(p) 6= h(p2) and ordp(α) = ordp2(α)
where α ∈ Z is a solution of x3−x2−x−1 ≡ 0 (mod p2). The prime p satisfying these
conditions may be called Tribonacci-Wieferich prime of the second kind.

Furthermore, in Chapter 6, we derive two interesting criteria that can be used, wi-
thout computing the roots of t(x) in Op, to decide whether h(p) = h(p2) or not. For
p 6= 2, 11 put q = |Op/(p)|. Then, q = pt where t = [Lp : Qp] ∈ {1, 2, 3}.
Theorem 3.13. Let p 6= 2, 11, u ∈ Op such that t(u) ≡ 0 (mod p). Suppose that t(x)
is irreducible over Qp. Then the following statements are equivalent:

(i) h(p) = h(p2),
(ii) u3q − u2q − uq − 1 ≡ 0 (mod p2).
(iii) t(u) + (uq − u)t′(u) ≡ 0 (mod p2),
(iv) 3uq+2 − 2uq+1 − uq − 2u3 + u2 − 1 ≡ 0 (mod p2).

In (iii) t′ is the derivative of the Tribonacci characteristic polynomial t.

The case of t(x) being reducible over Qp is also solved in Chapter 6. By an extensive
computer search, based on Theorem 3.13, we have obtained the following two results:

Theorem 3.14. (i) There is no Tribonacci-Wieferich prime p < 109.
(ii) There is no Tribonacci-Wieferich prime of the second kind p<109.

By analogy with the problem of Tribonacci-Wieferich primes of the second kind, we
can consider a similar problem for a Tetranacci sequence (Mn)∞n=0 defined by Mn+4 =
Mn+3 + Mn+2 + Mn+1 + Mn with M0 = M1 = M2 = 0 and M3 = 1. Now, let h(m)
denote a period of (Mn mod m)∞n=0. Is there a prime p for which h(p) 6= h(p2) and
ordp(α) = ordp2(α) where α ∈ Z is a solution of x4 − x3 − x2 − x − 1 ≡ 0 (mod p2)?
To this problem we find the following solution. For p < 109, there are exactly three
Tetranacci-Wieferich primes of the second kind: p1 = 17, p2 = 191, and p3 = 11351.

In Chapter 7 we provide a method that can substantially extend the results presented
in Theorem 3.14. Implementing this method in Pari GP, the following results have been
obtained.

Theorem 3.15. (i)There is no Tribonacci-Wieferich prime p < 1011.
(ii) There is no Tribonacci-Wieferich prime of the second kind p<1011.

More details related to our computer search for Tribonacci-Wieferich primes can be
found in [25].

The results of Chapters 4 – 7 provide the necessary basis for solving the combinatorial
problem originally formulated by Morgan Ward [78] in 1935. A solution for Fibonacci
sequences was found by A. Andreassian [2] in 1974. In Chapter 8, we resolve Ward’s
problem for the case of Tribonacci sequences. Recall now some basic definitions needed
for the formulation our main results. Let us consider a binary relation ∼ on the set
S = [Z/mZ]3 defined by

[a1, b1, c1] ∼ [a2, b2, c2] if and only if h(m)[a1, b1, c1] = h(m)[a2, b2, c2].

Clearly, ∼ is an equivalence on S and S/ ∼ is a partition of S. Let N(h, m) denote
the number of elements in the class {[a, b, c] ∈ S; h(m)[a, b, c] = h} and let H denote
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the set of all possible periods h(m)[a, b, c]. Since, for a given modulus m, there are m3

different initial conditions, we have

m3 =
∑

h∈H

N(h,m).

Further, for [a1, b1, c1], [a2, b2, c2] ∈ S, we put [a1, b1, c1] ≈ [a2, b2, c2] if and only if, in the
sequence (Tn mod m)∞n=1 that starts with a triple [a1, b1, c1], there is an index i such that
[Ti, Ti+1, Ti+2] ≡ [a2, b2, c2] (mod m). The relation ≈ is also an equivalence on S and
the partition S/ ≈ is a refinement of S/ ∼. Let n(h,m) denote the number of classes
in S/≈ that result from a refinement of the class {[a, b, c] ∈ S; h(m)[a, b, c] = h}. That
is, n(h,m) establishes the number of distinct Tribonacci sequences modulo m whose
period is equal to h. Since we have N(h, m) = n(h,m) · h, it follows that

m3 =
∑

h∈H

n(h,m) · h = c1 · h1 + · · ·+ cr · hr,

where H ={h1, . . . , hr} and ci = n(hi, m) for i ∈ {1, . . . , r}. This relation will be called
a Tribonacci partition formula modulo m, and its left-hand side will be written as [m]3.
For example, if m = 10, then H = {1, 2, 4, 31, 62, 124} and the Tribonacci partition
formula modulo 10 has the form

[10]3 = 2 · 1 + 1 · 2 + 1 · 4 + 8 · 31 + 4 · 62 + 4 · 124.

By analogy, we can define a partition formula for any ∅ 6= R ⊆ S. This formula
will be denoted by [m]3R. The following special case will be useful in the sequel. Let
R = {[a, b, c] ∈ [Z/ptZ]3; [a, b, c] ≡ [0, 0, 0](mod p)}. Then [pt]3R = [pt−1]3 for any t > 1.

In Chapter 8, we find two important methods that use known formulas to construct
some others. These procesess, together with the results obtained in [22], [23], and [24],
enable us to establish the forms of Tribonacci formulas for any modulus m > 1.

Let ∅ 6= S1, S2 ⊆ S = [Z/mZ]3, and S1∩S2 = ∅. Further, let [m]3S1
= c1·h1+· · ·+cr ·hr

and [m]3S2
= c′1 · h′1 + · · ·+ c′s · h′s. We define the sum of [m]3S1

, [m]3S2
as follows

[m]3S1
+ [m]3S2

= c1 · h1 + · · ·+ cr · hr + c′1 · h′1 + · · ·+ c′s · h′s.
Clearly, if there is 1 ≤ j ≤ s such that hi = h′j for some 1 ≤ i ≤ r, then j is unique.
In this case, we shall write cihi + c′jh

′
j as (ci + c′j) · hi and Lemma 3.16 immediately

follows.

Lemma 3.16. Let ∅ 6= {S1, · · · , Sk} be an arbitrary system of nonempty and pairwise
disjunct subsets of S = [Z/mZ]3. Put R = ∪k

i=1Si. Then, we have

[m]3R =
k∑

i=1

[m]3Si
.

Particulary, if {S1, . . . , Sk} is a partition of S, then [m]3 =
∑k

i=1[m]3Si
.

Let m1,m2 > 1 be arbitrary modules such that (m1,m2) = 1. Further assume that
the formulas [m1]3 = c1 · h1 + · · ·+ cr · hr, and [m2]3 = c′1 · h′1 + · · ·+ c′s · h′s are known.
We define the product of [m1]3 and [m2]3 by

[m1]3 · [m2]3 =
r∑

i=1

s∑
j=1

cic
′
jgcd(hi, h

′
j) · lcm(hi, h

′
j).
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Thus, the product of the formulas can be computed as the obvious product of polynomi-
als and the product of ci ·hi and c′j ·h′j will be interpreted as cic

′
j gcd(hi, h

′
j) · lcm(hi, h

′
j).

Finally, after this expansion, we group the terms with the same period.

Lemma 3.17. Let m = pt1
1 . . . ptk

k be a prime factorization of m and let, for any
1 ≤ i ≤ k, the formulas [pti

i ]3 = c
(i)
1 · h(i)

1 + · · ·+ c
(i)
si · h(i)

si be known. Then, we have

[m]3 =[pt1
1 ]3. . . [ptk

k ]3 =
s1∑

i1=1

· · ·
sk∑

ik=1

[c(1)
i1

. . . c
(k)
ik

gcd(h(1)
i1

, . . . , h
(k)
ik

)] · lcm(h(1)
i1

, . . . , h
(k)
ik

).

Moreover,

n(h,m) =
1
h

∑

(h1,...,hk)

N(h1, p
t1
1 ) · · ·N(hk, p

tk
k ),

where the sum extends over all k-tuples (h1, . . . , hk) with lcm(h1, . . . , hk) = h.

Lemma 3.17 has a practical meaning. If we know the partition formulas for the
modulus of the form of powers of primes, then we can use them to construct the
partition formulas for any composite modulus m. Hence, Lemma 3.17 reduced the
investigation of Tribonacci partition formulas to those moduli that are powers of primes.
We show some example. Using Lemma 3.17, we find the Tribonacci partition formula
[12]3. We assume that the formulas [22]3 and [3]3 are known. Since [22]3 = 2 · 1 + 1 · 2 +
3 · 4 + 6 · 8, and [3]3 = 1 · 1 + 2 · 13, Lemma 3.17 yields

[12]3 = [22]3 · [3]3 = (2 · 1 + 1 · 2 + 3 · 4 + 6 · 8) · (1 · 1 + 2 · 13) =

= 2 · 1 + 1 · 2 + 3 · 4 + 6 · 8 + 4 · 13 + 2 · 26 + 6 · 52 + 12 · 104.

Now we focus on the case of Tribonacci partition formulas for powers of primes. We
begin with primes p = 2 and p = 11. By direct computation, we can establish that

[ 2 ]3 = 2 · 1 + 1 · 2 + 1 · 4,

[22]3 = 2 · 1 + 1 · 2 + 3 · 4 + 6 · 8,

[23]3 = 2 · 1 + 1 · 2 + 3 · 4 + 14 · 8 + 24 · 16,

and

[ 11 ]3 = 1 · 1 + 2 · 5 + 11 · 10 + 11 · 110,

[112]3 = 1 · 1 + 2 · 5 + 11 · 10 + 2 · 55 + 1462 · 110 + 1331 · 1210,

[113]3 = 1 ·1 + 2 ·5 + 11 ·10 + 2 ·55+1462 ·110+2 ·605+177022 ·1210 + 161051 ·13310.

In [28], the following general theorems have been proved.

Theorem 3.18. (i) For any t ≥ 3, the Tribonacci partition formula [2t]3 has the form

[2t]3 = 2 · 1 + 1 · 2 + 3 · 22+(7 · 2) · 23+(7 · 23) · 24+· · ·+(7 · 22t−5) · 2t+(3 · 22t−3) · 2t+1.

(ii) For any t ≥ 2, the Tribonacci partition formula [11t]3 has the form

[11t]3=1 · 1 + 11 · 10 +
t−1∑
i=0

2 · (5 · 11i) +
t−2∑
i=1

(133 · 112i−1− 1) · (10 · 11i) + 112t−1 · (10 · 11t).

Theorem 3.19. Let t(x) have no root over the field of p-adic numbers Qp, p 6= 2. Let
r be the largest positive integer such that h(pr) = h(p). Then, for any positive integers
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r < t, we have

[pt]3 = 1 · 1 +
p3r − 1

h
· h +

t−r∑
i=1

p3r+2i−p3r+2i−3

h
· pih where h = h(p).

Particulary, if r = 1, we have

[pt]3 = 1 · 1 +
t−1∑
i=0

p2i(p3 − 1)
h

· pih.

Next we focus on the case of t(x) having exactly one root over Qp. We have:

Theorem 3.20. Let t(x) have exactly one root α in the field of p-adic numbers Qp,
p 6= 11. Let r be the largest positive integer satisfying h(p) = h(pr), and s be the largest
positive integer satisfying ordp(α) = ordps(α). If r < s < t, then we have

[pt]3 =1·1+
ps−1
h1

·h1+
p3r−pr

h
·h+

t−s∑
i=1

ps − ps−1

h1
·pih1+

t−r∑
i=1

p3r+2i−p3r+2i−3−pr+pr−1

h
·pih,

where h1 = ordp(α) and h = h(p). Particulary, for r = s = 1, we have

[pt]3 = 1 · 1 +
t−1∑
i=0

p− 1
h1

· pih1 +
t−1∑
i=0

p2i+3 − p2i − p + 1
h

· pih.

Some examples demonstrating the formulas presented in Theorem 3.19 and 3.20 are
in [28] also included. The most interesting case is that of t(x) having exactly three
roots α, β, γ in Qp. In this case, the forms of the partition formulas heavily depend on
the relationships between the orders of α, β, γ in the multiplicative group of the ring
Z/ptZ. Put h1 = ordp(α), h2 = ordp(β), h3 = ordp(γ), and h = h(p). By Chapter 4,
exactly one of the four following events occurs

(I) h1 <h2 <h3 <h, (II) h1 <h2 <h3 =h, (III) h1 <h2 =h3 =h, (IV) h1 =h2 =h3 =h.

For (I), we have:

Theorem 3.21. Let t(x) have three roots α, β, γ in Qp, and assume that the numbers
h1 = ordp(α), h2 = ordp(β), h3 = ordp(γ), and h = h(p) are distinct. Let r be the largest
positive integer satisfying h(p) = h(pr), and let s > r be the largest positive integer
satisfying ordp(ξ) = ordps(ξ) for a unique ξ ∈ {α, β, γ}. Say, ξ = α. Then, for any
t > s, we have

[pt]3 =1 ·1+
ps − 1

h1
·h1 +

pr − 1
h2

·h2 +
pr − 1

h3
·h3 +

p3r − 3pr + 2
h

·h+
t−s∑
i=1

ps − ps−1

h1
·pih1

+
t−r∑
i=1

pr − pr−1

h2
· pih2 +

t−r∑
i=1

pr − pr−1

h3
· pih3 +

t−r∑
i=1

p3r+2i − p3r+2i−3 − 3pr + 3pr−1

h
· pih.

Particulary, if r = s = 1, we have

[pt]3 =1·1+
t−1∑
i=0

p−1
h1

·pih1+
t−1∑
i=0

p−1
h2

·pih2+
t−1∑
i=0

p−1
h3

·pih3+
t−1∑
i=0

p2i+3−p2i−3p+3
h

·pih.

For the remaining cases (II), (III) and (IV), the following theorems have been estab-
lished:
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Theorem 3.22. If h1 < h2 < h3 = h, then

[pt]3 = 1·1+
ps−1
h1

·h1+
pr−1
h2

·h2+
p3r−2pr+1

h
·h+

t−s∑
i=1

ps−ps−1

h1
·pih1+

t−r∑
i=1

pr − pr−1

h2
·pih2

+
t−r∑
i=1

p3r+2i − p3r+2i−3 − 2pr + 2pr−1

h
· pih.

If h1 < h2 = h3 = h, then

[pt]3 = 1 · 1 +
ps − 1

h1
· h1 +

p3r − pr

h
· h +

t−s∑
i=1

ps − ps−1

h1
· pih1

+
t−r∑
i=1

p3r+2i − p3r+2i−3 − pr + pr−1

h
· pih.

If h1 = h2 = h3 = h, then

[pt]3 = 1 · 1 +
p3r + ps − pr − 1

h
· h +

t−s∑
i=1

p3r+2i−p3r+2i−3+ps−pr+pr−1−ps−1

h
· pih

+
t−r∑

i=t−s+1

p3r+2i − p3r+2i−3 − pr + pr−1

h
· pih.

Specifically, if r = s = 1, then the above formulas have following simple forms:

[pt]3 = 1 · 1 +
t−1∑
i=0

p− 1
h1

· pih1 +
t−1∑
i=0

p− 1
h2

· pih2 +
t−1∑
i=0

p2i+3 − p2i − 2p + 2
h

· pih.

[pt]3 = 1 · 1 +
t−1∑
i=0

p− 1
h1

· pih1 +
t−1∑
i=0

p2i+3 − p2i − p + 1
h

· pih.

[pt]3 = 1 · 1 +
t−1∑
i=0

p2i(p3 − 1)
h

· pih.

In Chapter 9 we complete our preceding research of the modular periodicity of integer
sequences defined by a Tribonacci recurrence [26]. Let I = {3, 5, 23, 31, . . . } be the set
of all primes p for which t(x) is irreducible over Fp, Q = {7, 13, 17, 19, . . . } be the set
of all primes for which t(x) splits over Fp into the product of a linear factor and an
irreducible quadratic factor and let L = {2, 11, 47, 53, . . . } be the set of all primes for
which t(x) completely splits over Fp into linear factors. Recall now that a subset A of
the set of all primes has a natural density d(A) if

d(A) = lim
x→∞

|{p ∈ A; p ≤ x}|
π(x)

.

Using the Frobenius density theorem, we proved that d(I) = 1/3, d(Q) = 1/2, and
d(L) = 1/6. Hence, it follows:

Theorem 3.23. For d(I), d(Q), d(L) we have d(I) : d(Q) : d(L) = 2 : 3 : 1.
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Furthermore, in Chapter 9, the exact values can be found of the periods h(p) for any
prime p ≤ 5000. A detailed examination of these values leads us to a new hypothesis
proved in Chapter 11.

In Chapters 10 – 12, the cubic character of roots of Tribonacci polynomial t(x) over
the Galois fields Fp will be examined [29, 30, 31]. Our main result, proved in Chapter
10, is as follows:

Theorem 3.24. Let p be an arbitrary prime such that p ≡ 1 (mod 3) and let τ be any
root of t(x) in the field Fp. Then,

τ
p−1

3 ≡ 2
2(p−1)

3 (mod p).

Moreover, if τ is any root of t(x) in the splitting field K of t(x) over Fp, then 2τ is a
cubic residue of K, that is, there exists ω ∈ K such that 2τ = ω3.

Further, in Chapter 11 the following identity will be proved:

Theorem 3.25. Let p ∈ I, p ≡ 1 (mod 3) and let τ be an arbitrary root of t(x) in the
splitting field K of t(x) over Fp. Then,

τ
p2+p+1

3 = 1.

In proving the main results the following theorem is needed.

Theorem 3.26. Let p be a prime, p > 3 and let g(x) = x3 + rx + s ∈ Fp[x] with
r 6= 0. Further let dg = r3/27 + s2/4 and λ ∈ Fp2 such that λ2 = dg. Assume that
g(x) is irreducible over Fp or g(x) has three distinct roots in Fp. Then, the following
statements are equivalent:

(i) g(x) has three distinct roots in Fp.
(ii) g(x) has three distinct roots in Fp2.
(iii) A = −s/2− λ is a cubic residue of Fp2.
(iv) B = −s/2 + λ is a cubic residue of Fp2.

Note that Theorem 3.26 also holds in the case of r = 0 if we let A = B = s.

The following statement is due to John Andrew Vince [70, p. 310]. Let p 6= 2, 11 be a
prime. Then

(i) If p ∈ L, then h(p)|p− 1.
(ii) If p ∈ Q, then h(p)|p2 − 1.

(iii) If p ∈ I, then h(p)|p2 + p + 1.
In Chapter 11, using the identity presented in Theorem 3.25, we strengthen Vince’s
result for p ≡ 1 (mod 3) as follows:
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Theorem 3.27. Let p be an arbitrary prime, p ≡ 1 (mod 3).

(i) If p ∈ L, then h(p)|p−1
3 if and only if 2 is a cubic residue of the field Fp.

(ii) If p ∈ Q, then h(p)|p2−1
3 if and only if 2 is a cubic residue of the field Fp.

(iii) If p ∈ I, then h(p)|p2+p+1
3 .

We also proved that part (iii) of Theorem 3.27 holds for any h(p)[a, b, c]. Some
further extension to our theory studying the cubic character of Tribonacci roots is
given in Chapter 12.

At the end of this section, note that the problems of modular periodicity of Fibo-
nacci and Tribonacci sequences are parts of a more general theory of linear recurrence
relations over finite fields. For this theory, see E. S. Selmer [57] and, for the theory of
finite fields in general, consult [46, 51, 56].

4. Law of inertia for the factorization of cubic polynomials

A detailed study of the periods of Tribonacci sequences and their arithmetic proper-
ties points to the necessity of better understanding the problem of the factorization
of cubic polynomials over the Galois fields Fp where p is a prime. In this section the
main results related to our research of the factorization of monic cubic polynomials
with integer coefficients having the same discriminant will be presented.

Let D ∈ Z and let

CD = {f(x) = x3 + ax2 + bx + c ∈ Z[x]; Df = D}
where Df = a2b2 − 4b3 − 4a3c− 27c2 + 18abc is the discriminant of f(x). Put

V1 ={[u, v]∈Z2 : 4u3 + 27v2 =−D} and V2 ={[u, v]∈Z2 : 4u3 + v2 =−27D and 3 - u}.
If D 6= 0, then V1 and V2 are finite sets and, by [35, p. 42], V1 ∩ V2 6= ∅ if and only

if there exists k ∈ Z such that 3 - k and D = 72k6. Next, if D 6= 0, the sets V1 and
V2 can be obtained by using the set of all integer solutions of Mordell’s equation y2 =
x3 + k with k = −432D [33, p. 313]. For theory of Mordell’s equation see, for example,
[50, 47, 16]. On the other hand, if D = 0, then V1 and V2 are infinite sets. This case is
examined in detail in [36, pp. 107 – 108]. The sets V1 and V2 play an important role in
our theory. As we see in Theorem 4.1, using V1 and V2, we can establish all polynomials
in CD. Before formulating Theorem 4.1, we recall one more important concept. For any
f(x) = x3 + ax2 + bx + c ∈ Z[x], we put gf (x) = f(x − a/3) = x3 + rx + s ∈ Q[x].
Then, r = b− a2/3, s = 2a3/27− ab/3 + c and Dgf

= Df . Sometimes the polynomial
gf (x) will be called the reduced form of f(x). Now we are ready to formulate the first
important result of our theory.

Theorem 4.1. Let D ∈ Z and let f(x) = x3 + ax2 + bx + c ∈ Z[x].
(i) If a ≡ 0 (mod 3), then f(x) ∈ CD if and only if there exist [u, v] ∈ V1 and w ∈ Z
such that

a = 3w, b = 3w2 + u, c = w3 + uw + v.

(ii) If a ≡ e (mod 3) and e ∈ {1, 2}, then f(x) ∈ CD if and only if there exist [u, v] ∈ V2,
w ∈ Z such that e3 + 3eu + v ≡ 0 (mod 27), and

a = 3w + e, b = 3w2 + 2ew +
e2 + u

3
, c = w3 + ew2 +

e2 + u

3
w +

e3 + 3eu + v

27
.

Moreover, in (i), we have gf (x) = x3 + ux + v and, in (ii), gf (x) = x3 + (u/3)x + v/27.
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We show some example. Let D = 5. Then, Mordell’s equation Y 2 = X3 − 2160 has
exactly six integer solutions [X,Y ] = [16,±44], [24,±108], [321,±5751]. Consequently,
we have V1 = {[−2,±1]} and V2 = {[−4,±11]}. Hence, using Theorem 4.1, we find
that f(x) ∈ C5 if and only if f(x) = fj(x, w) for some j ∈ {1, 2, 3, 4} and w ∈ Z where

f1(x,w) = x3 + 3wx2 + (3w2 − 2)x + w3 − 2w − 1,
f2(x,w) = x3 + 3wx2 + (3w2 − 2)x + w3 − 2w + 1,
f3(x,w) = x3 + (3w + 1)x2 + (3w2 + 2w − 1)x + w3 + w2 − w,
f4(x,w) = x3 + (3w + 2)x2 + (3w2 + 4w)x + w3 + 2w2 − 1.

Recall now that there exist five distinct types of factorization of f(x) over the Galois
field Fp where p is a prime. For these types, we adopted the notation found in M. Ward
[77, p. 161]:

(i) f(x) is of type [13] if f(x) = (x− α)3 where α ∈ Fp.
(ii) f(x) is of type [12, 1] if f(x) = (x− α)2(x− β) where α, β ∈ Fp and, α 6= β.
(iii) f(x) is of type [1, 1, 1] if f(x) = (x− α)(x− β)(x− γ) where α, β, γ ∈ Fp are

distinct.
(iv) f(x) is of type [2, 1] if f(x) = (x− α)(x2 + βx + γ) where α, β, γ ∈ Fp and,

x2 + βx + γ is irreducible over Fp.
(v) f(x) is of type [3] if f(x) is irreducible over Fp or, equivalently, f(x) has no root

in Fp.

In Chapter 13, we thoroughly examined the set C−44 containing the well-known
Tribonacci polynomial t(x) = x3 − x2 − x− 1 and the following theorem was proved:

Theorem 4.2. Let p be an arbitrary prime. Then, all polynomials in C−44 have the
same type of factorization over the Galois field Fp.

Note, that the set C−44 has a nontrivial structure that can be described using The-
orem 4.1 as follows:

C−44 =
8⋃

j=1

{tj(x,w); w ∈ Z}

where {tj(x,w); w ∈ Z}, j = 1, · · · , 8 are pairwise disjoint sets defined by

t1(x,w)=x3+(3w+1)x2+ (3w2+2w+1)x+w3+w2+w−1,
t2(x,w)=x3+(3w+2)x2+ (3w2+4w+2)x+w3+2w2+2w+2,
t3(x,w)=x3+(3w+2)x2+ (3w2+4w)x+w3+2w2−2,
t4(x,w)=x3+(3w+1)x2+ (3w2+2w−1)x+w3+w2−w+1,
t5(x,w)=x3+(3w+2)x2+ (3w2+4w−10)x+w3+2w2−10w−22,
t6(x,w)=x3+(3w+1)x2+ (3w2+2w−11)x+w3+w2−11w+11,
t7(x,w)=x3+(3w+1)x2+(3w2+2w−31281)x+w3+w2−31281w−2139919,
t8(x,w)=x3+(3w+2)x2+(3w2+4w−31280)x+w3+2w2−31280w+2108638.

This surprising property of the set C−44 suggests a fundamental question [33, p. 318],
namely, for which D ∈ Z the following theorem holds: Let p be an arbitrary prime.
Then, all polynomials in CD have the same type of factorization over the Galois field
Fp. In [35, p. 40], we called this property the law inertia for the factorization in CD.
Along the lines of papers [35, 36, 37, 38], the following implication has been proved:
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Theorem 4.3. Let D ∈ Z be square-free and let 3 - h(−3D) where h(−3D) is the class
number of Q(

√−3D). Let p be an arbitrary prime. Then, all polynomials in CD have
the same type of factorization over Fp.

Clearly, for some D ∈ Z, we have CD = ∅. In this case, Theorem 4.3 holds trivially.
On the other hand, Theorem 4.3 can be applied in many non-trivial cases. Consider, for
example, C−31 and C−23. Finally, it was proved by counterexamples that the inverse
implication does not hold and that none of our assumptions, D is square-free and
3 - h(−3D), can be omitted. In Chapter 14, we proved Theorem 4.3 for any prime
p > 3 and any discriminant D ∈ Z satisfying the conditions

D < 0, D is square-free, 3 - D, 3 - h(−3D).

Next in Chapter 15, we extend our proof for any p > 3 and any D ∈ Z satisfying

D > 0, D is square-free, 3 - D, 3 - h(−3D).

Furthermore, in Chapter 16 we give the proof of Theorem 4.3 for any p > 3 and any
D ∈ Z satisfying

D is square-free, 3 - D, 3 - h(−3D).

Finally in Chapter 17, we prove the validity of Theorem 4.3 also for primes 2 and 3.
In addition, in Chapter 17, some other statements related to the factorization of

monic cubic polynomials over the fields F2 and F3 will be also established. Some of
them are now listed as Proposition 4.4 and 4.5.

Proposition 4.4. Let D ∈ Z be the discriminant of f(x) = x3 + ax2 + bx + c ∈ Z[x].
(i) f(x) is of type [13] or type [12, 1] over F2 if and only if D ≡ 0 (mod 2).
(ii) If D ≡ 0 (mod 2), then f(x) is of type [13] if and only if a ≡ b ≡ c (mod 2).
(iii) f(x) is of type [3] or type [2, 1] over F2 if and only if D ≡ 1 (mod 2).
(iv) If D ≡ 1 (mod 2), then f(x) is of type [2, 1] if and only if a ≡ b 6≡ c (mod 2).
(v) If D ≡ 0 (mod 2), then D ≡ 0 (mod 4).
(vi) Let D ∈ Z be square-free and let f(x), g(x) ∈ CD. Then, D is odd and the

polynomials f(x) and g(x) have the same type of factorization over F2.

Proposition 4.5. Let D ∈ Z be the discriminant of f(x) = x3 + ax2 + bx + c ∈ Z[x].
(i) f(x) is of type [13] or type [12, 1] over F3 if and only if D ≡ 0 (mod 3).
(ii) If D ≡ 0 (mod 3), then f(x) is of type [13] if and only if a ≡ b ≡ 0 (mod 3).
(iii) If f(x) is of type [13] over F3, then 27|D.
(iv) f(x) is of type [3] or type [1, 1, 1] over F3 if and only if D ≡ 1 (mod 3).
(v) If D ≡ 1 (mod 3), then f(x) is of type [1, 1, 1] if and only if c ≡ 0 (mod 3).
(vi) If D ≡ 1 (mod 3) and 3 - a, then f(x) is of type [3] over F3.
(vii) f(x) is of type [2, 1] over F3 if and only if D ≡ 2 (mod 3).
(viii) Let D be square-free, D 6≡ 1 (mod 3), and let f(x), g(x)∈CD. Then, f(x), g(x)

have the same type of factorization over F3.

Finally, we present one more surprising theorem proved in Chapters 15 and 16. With
Theorem 4.6 we conclude this section.

Theorem 4.6. Let f(x) ∈ CD and let D satisfy D > 0, D be square-free, and 3 -
h(−3D). Then, f(x) has a rational integer root.

In the last part of our comments, we summarize our work, briefly suggesting the
future development of the studied subject.
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5. Summary and expected development of the subject

The results presented in this work can be divided into four basic groups:

First, in Chapters 1 – 3, we deal with an interesting, not yet resolved number-theory
problem on the Fibonacci sequence. In the literature, this problem is often referred
to as Wall’s conjecture or Wall-Sun-Sun prime conjecture. Chapters 1 – 3 are our
contribution to this problem. In Chapter 1, we summarize all the previous main results
related to this problem and describe their history. This survey is completed by an
extensive list of bibliography.

Second, in Chapters 4 – 12 we solve a number of problems concerning the cubic
generalization of Fibonacci numbers. These numbers are often called the Tribonacci
numbers. In Chapters 4 – 7, the modular periodicity of Tribonacci numbers is examined
in detail with many interesting results. Subsequently, the main theorems proved in
Chapters 4 – 7 are applied to solving the combinatorial problem of Morgan Ward. In
Chapter 8, the concept of the Tribonacci partition formula modulo m is introduced
and Ward’s problem for the Tribonacci case is completely resolved. In Chapters 9 –
12, some further properties of Tribonacci numbers are revealed and several previous
results extended or strengthened. We also discover the remarkable properties of the
cubic character of the Tribonacci roots and, subsequently, use them in the investigation
of the periods of Tribonacci sequences. The table of the periods is also given.

Third, in Chapters 13 – 17 we deal with the basic questions about the factorization
of monic cubic polynomials with integer coefficients having the same discriminant. The
problems of the factorization is studied over the Galois fields Fp where p is a prime.
Above all, we focused on the question concerning the validity of the law of inertia for
the factorization of cubic polynomials. In spite of our results having quite an integrated
form, new questions and problems arise.

Finally, an important part of this work is devoted to the practical applications of
the number theory. In Chapters 18 – 20 we show a whole range of examples which
describe natural situations where the number theory problems can arise. In more detail,
we especially deal with applications of the Fibonacci numbers and with the use of
sequences over finite fields. Some applications of Diophantine equations and the theory
of partitions of positive integers into summands are also discussed. All the results
presented in this work have already been published [20] – [40].

Now we attempt to describe the possible consequences of our work for further de-
velopment of the branch. First, the historical survey in Chapter 1, together with the
included bibliography, may be valuable for getting a better understanding of the sub-
ject and for further research. We also hope that our pessimistic opinion on the existence
of Wall-Sun-Sun primes presented in [40, p. 49], will direct the attention of mathemati-
cians to finding some comprehensive theory rather than to searching a counterexample
on computer. Our alternative formulations of the problem can also be useful. In this
sense, Chapters 1 – 3 can help to resolve Wall’s problem.

We also hope that our results concerning the Tribonacci-Wieferich primes [24, 25]
will attract the attention of other mathematicians who will continue our work and
some new discoveries will soon be made. Next, our methodology described in Chapter
8, can easily be modified to find partition formulas in a general case. Hence, the use
of our method by other authors can be presumably expected. Furthermore, the results
deduced in Chapters 4 – 12 can stimulate an interest in the study of the modular



25

periodicity of various generalizations of Fibonacci numbers. Moreover, our results evoke
further relevant questions [24, p. 294].

Similarly, our theory [33, 35, 36, 37, 38] related to the law of inertia for the fac-
torization of cubic polynomials over the Galois fields can be further developed and
generalized. For example, we could ask under which conditions the law of inertia for
the factorization of cubic polynomials holds in a Galois field Fq where q is a power of
a prime. Another possible generalization is finding out whether this law also holds for
polynomials of an order greater than three [36, p. 109]. Our work on this subject still
continues and some new results have already been found [41].

Finally, our articles [27, 32, 34, 39] concerning the practical applications of the num-
ber theory can be an inspiration for a wide range of scientific and technician workers
and stimulate a deeper interest in the field. This interest is the first step on the path
that may change the results of the pure mathematics into a practical usable form.
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CHAPTER 1

DONALD DINES WALL’S CONJECTURE
F

Abstract. Wall’s conjecture is an interesting, not yet resolved number-theory
problem concerning a Fibonacci sequence. The problem took on a new significance
after its connection was discovered with Fermat’s Last Theorem. What follows is a
summary of all important discoveries and known facts related to Wall’s conjecture
made over 56 years of its existence.

Dedicated to Ladislav Skula on the occasion of his 80th birthday.

1. Wall’s question - state of problem

The Fibonacci sequence (Fn)∞n=0 was introduced by Italian mathematician
Leonardo Fibonacci (1175 – 1250) in 1202. It is defined recursively: F0 = 0, F1 = 1,
and Fn+2 = Fn+1+Fn for all n ≥ 0. Fix a positive integer m > 1. It is well-known that,
reducing (Fn)∞n=0 modulo m and taking least positive residues, we obtain a sequence
(Fn mod m)∞n=0 which is periodic. The first related discovery concerning this property
goes back to J. L. Lagrange [34, pp. 142–147]. See also Dickson’s History [14, p. 393].
A positive integer k(m) is called the period of Fibonacci sequence modulo m if it is
the smallest positive integer for which Fk(m) ≡ 0 (mod m) and Fk(m)+1 ≡ 1 (mod m).
Various properties of k(m) have been studied in great detail by many authors. For the
basic properties of k(m), see J. C. Kluyver [32], S. Täcklid [59], D. D. Wall [65], D. W.
Robinson [49], and J. Vinson [61]. In 1928, J. C. Kluyver [32, p. 278] discovered that, if
p is a prime, p ≡ ±1 (mod 10), then k(p)|p− 1. If p ≡ ±3 (mod 10), then k(p)|2(p+1)
but k(p) - p + 1. See also [65, p. 528]. In 1960, D. D. Wall [65, p. 527] proved that,
if p is an arbitrary prime and k(p) = k(ps) 6= k(ps+1), then k(pt) = pt−sk(p) for any
positive integers t ≥ s. Consequently, if k(p2) 6= k(p), then k(pt) = pt−1k(p) for all t.
Wall [65, p. 528] poses a question that has so far remained unanswered:

The most perplexing problem we have met in this study concerns the hypothesis
k(p2) 6= k(p). We have run a test on a digital computer which shows that k(p2) 6= k(p)
for all p up to 10, 000; however, we cannot yet prove that k(p2) = k(p) is impossible.
The question is closely related to another one, ”can a number x have the same order
mod p and mod p2?”, for which rare cases give an affirmative answer (e.g., x = 3,
p = 11; x = 2, p = 1093); hence, one might conjecture that equality may hold for some
exceptional p.

Note that the equality k(m2) = k(m) may be true if m is not a prime. For example,
if m = 12, then k(122) = k(12) = 24, see [26, p. 347].

In 1997, R. E. Crandall, K. Dilcher and C. Pomerance [12] called primes p satisfying
the equality k(p2) = k(p) the Wall-Sun-Sun primes. In the literature, these primes are

F
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also often referred to as Fibonacci-Wieferich primes. This name was first used in 2005
by J. Knauer and J. Richstein [33].

This paper aims to summarize all important discoveries concerning Wall’s conjecture
made in the period 1960–2016.

2. First partial answer of S. E. Mamangakis

In 1961, S. E. Mamangakis [39] furnished a proof of the hypothesis k(p2) 6= k(p)
under the following assumptions: If p is an arbitrary prime and, for some n, Fn = cp
with (c, p) = 1, then k(p2) 6= k(p) [39, Theorem 1]. Next, if (c, p) = 1, t ≤ s, and
Fj = cps is the first multiple of p to occur in (Fn)∞n=0, then k(pt) = k(p) if and only
if Fj−1 has the same order modulo p and modulo pt [39, Theorem 2]. Furthermore,
in [39, p. 649], Mamangakis posed the question whether [39, Theorem 1] can be
strengthened as follows: If c and p are relatively prime, then cp occurs in (Fn)∞n=0 and
k(p2) 6= k(p). The generalization of [39, Theorem 1] for sequences (Gn)∞n=0 defined by
Gn+2 = aGn+1 + bGn with G0 = 0, G1 = 1 where a, b are integers is given by C. C.
Yalavigi [73, p. 125]. Yalavigi also claims [72] that the answer to Mamangakis question
is affirmative.

3. Rank of appearance and the Fibonacci quotient

In 1877, E. Lucas [35] discovered the following law of appearance of primes in the
Fibonacci sequence: If p is a prime, p ≡ ±1 (mod 10), then p|Fp−1. If p ≡ ±3 (mod 10)
then p|Fp+1. See also [14, p. 398]. Let (a/p) be the Legendere-Jacobi symbol. For
p 6= 2, 5, using quadratic reciprocity law, we see that

(
5

p

)
=

(p

5

)
= 5

p−1
2 =

{
1 if p ≡ ±1 (mod 10),

−1 if p ≡ ±3 (mod 10).

Hence, for p 6= 2, we have Fp−(5/p) ≡ 0 (mod p) and Fp−(5/p)/p is a positive integer.
Four different proofs of this fact have been given by G. H. Hardy and E. M. Wright
[24], D. W. Robinson [49], J. H. Halton [22], and L. E. Sommer [55]. The number
Fp−(5/p)/p is called the Fibonacci quotient.

Next, a positive integer z(m) is called the rank of appearance (or also the rank of
apparition) of Fibonacci sequence modulo m if it is the smallest positive integer such
that Fz(m) ≡ 0 (mod m). As has been pointed out by P. Ribenboim [48, p. 45], the
term ”apparition” stems from a bad translation of the French ”loi d’apparition”, which
means ”law of appearance”, not ”law of apparition”. The number z(m) is also often
called Fibonacci entry point or restricted period in the literature. Many interesting
properties of z(m) are known [22, 61, 63]. For example, if p is an odd prime and
z(p2) 6= z(p), then z(pt) = pt−1z(p) for all positive integers t. Moreover, we have
z(p)|p− (5/p) for any odd prime p. See [22, p. 223] or [61, p. 43].

The relationship of rank of appearance z(m) to the period k(m) is also well-known.
D. D. Wall [65, p. 526] showed that z(m)|k(m) and J. Vinson [61, p. 39] proved that,
if p is an odd prime and t any positive integer, then

k(pt) = 4z(pt) if z(pt) 6≡ 0 (mod 2),
k(pt) = z(pt) if z(pt) ≡ 2 (mod 4),
k(pt) = 2z(pt) if z(pt) ≡ 0 (mod 4).
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Combining the above properties [23, pp. 347–348], it can be shown that the following
statements (i)-(v) are equivalent:

(i) k(p2) = k(p), (ii) z(p2) = z(p), (iii) Fz(p) ≡ 0 (mod p2),

(iv) Fp−(5/p) ≡ 0 (mod p2), and (v) Fp−1Fp+1 ≡ 0 (mod p2).

Unfortunately, there is no known way to resolve Fp−(5/p) (mod p2), other than
through explicit computations. A detailed study of the Fibonacci quotient Fp−(5/p)/p
has yielded the following results:

In 1969, G. H. Andrews [2] proved the following, rather complicated, formulas for
the Fibonacci quotient: If p ≡ ±1 (mod 5), then

Fp−1

p
≡ 2(−1)

p−1
2

∑

|m|<p
m ≡ 5,7 (mod 10)

(
m+1

5

) (−1
m

)

p−m
(mod p)

and, if p ≡ ±2 (mod 5), then

Fp+1

p
≡ 2(−1)

p−1
2

∑

|m|<p
m ≡ 1,5 (mod 10)

(
m+1

5

) (−1
m

)

p−m
(mod p).

In 1982, H. C. Williams [69] showed that, if p 6= 2, 5 is an arbitrary prime and [p/5]
denotes the greatest integer not exceeding p/5, then

Fp−( 5
p
)

p
≡ 2

5

p−1−[p/5]∑

k=1

(−1)k

k
(mod p).

In 1992, Z.-H. Sun and Z.-W. Sun [56, p. 381] proved for any p 6= 2, 5 the following
simple and beautiful formula

Fp−( 5
p
)

p
≡ −2

p−1∑

k=1
k≡2p (mod 5)

1

k
≡ 2

p−1∑

k=1
5|p+k

1

k
(mod p).

In 1996, A. Granville and Z.-W. Sun also discovered an interesting connection of
Fibonacci quotient with Bernoulli numbers. See [20, p. 135].

4. Ward’s Last Theorem

In 1640 P. de Fermat stated that, if p is any prime and a is any integer not divisible
by p, then ap − 1 is divisible by p. See [14, p. 59]. The quotient qp(a) = (ap−1 − 1)/p
is called the Fermat quotient of p with base a. Let Φn(x) = x + x2/2 + · · ·+ xn/n, and
let p be an arbitrary odd prime greater then 5. Then,

Fz(p) ≡ 0 (mod p2) if and only if Φ p−1
2

(
5

9

)
≡ 2qp

(
3

2

)
(mod p).

This statement is often called Ward’s Last Theorem in honour of Morgan Ward (1901-
1963). It was posed by the late brilliant mathematician in [66]. For a proof, see the
paper by L. Carlitz [9] and, for an alternative proof, consult the papers by J. H. Halton
[23] and J. E. Desmond [13]. Since Fz(p) ≡ 0 (mod p2) if and only if k(p2) = k(p),
Ward yields a new equivalent condition to Wall’s question.
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5. Further discoveries related to Wall’s conjecture

In 1975, A. J. Vince [62] stated the following problem. Prove or disprove: if m2|Fn,
then m|n. In 1976, D. E. Penney and C. Pomerance [44] showed that Vince’s statement
is the equivalent to Wall’s conjecture that k(p2) 6= k(p) for all primes p.

In 1998, S. Jakubec [27, p. 376] discovered the following connection of Wall’s con-
jecture to cyclotomic fields: Let q be an odd prime and let l, p be primes such that
p = 2l + 1, l ≡ 3 (mod 4) and p ≡ −5 (mod q). Suppose that the order of q modulo l
is (l− 1)/2. If q divides the class number of the real cyclotomic field Q(ζp + ζ−1

p ), then
q is a Wall-Sun-Sun prime.

In 1999, Hua–Chieh Li [36, p. 83] showed that, if p is an odd prime satisfying
(5/p) = 1 and α is a solution to x2 − x− 1 ≡ 0 (mod p), then k(p2) = k(p) if and only
if 2αp+1 − αp − α2 − 1 ≡ 0 (mod p2). Next, if p > 2, (5/p) = −1 and α is a solution
x2 − x − 1 ≡ 0 (mod p) in the ring Z[(1 +

√
5)/2] modulo p, then k(p2) = k(p) if and

only if 2αp2+1 − αp2 − α2 − 1 ≡ 0 (mod p2).
In 2006, V. Andrejič [1, p. 42] proved that, if (Ln)∞n=0 is the Lucas sequence defined

by L0 = 2, L1 = 1, and Ln+2 = Ln+1 + Ln for all n ≥ 0, then p is a Wall-Sun-Sun
prime if and only if Lp ≡ 1 (mod p2). Next, by [1],

k(p2) = k(p) if and only if

(p−1)/2∑

k=1

5k − 1

k
≡ 0 (mod p).

Furthermore, it is well known [49] that the Fibonacci numbers can be computed by
taking powers of a matrix. Namely, if

F =

[
F0 F1

F1 F2

]
=

[
0 1
1 1

]
, then F n =

[
Fn−1 Fn

Fn Fn+1

]
.

Let Qp = (F k(p) − I)/p, where I is a 2 × 2 identity matrix. In 2008, J. Klaška [28]
proved that k(p2) = k(p) if and only if Qp ≡ 0 (mod p2). Moreover, if p 6= 5, then
Qp ≡ 0 (mod p2) if and only if det Qp ≡ 0 (mod p2). Let Kp be the splitting field of
f(x) = x2−x−1 over the field of p-adic numbers Qp and let α, β be the roots of f(x) in
Kp. Denote by Op the ring of integers of Kp and, for a unit ε ∈ Op, denote by ordpt(ε),
t ∈ N the least positive rational integer h such that εh ≡ 1 (mod pt). If p 6= 5, then, by
[28, p. 1244], k(pt) = lcm(ordpt(α), ordpt(β)) for any t ∈ N and we have k(p2) 6= k(p)
if and only if ordp2(α) ≡ 0 (mod p) and ordp2(β) ≡ 0 (mod p). Furthermore, by [28, p.
1245] we have: if p 6= 5, u ∈ Op and f(u) ≡ 0 (mod p), then k(p2) = k(p) if and only
if u2q − uq − 1 ≡ 0 (mod p2).

Some further results related to Wall’s conjecture can be found in [18, p. 208], [25,
p. 117], [37, p. 348] and [50, p. 82].

6. Wall’s conjecture and Fibonacci perfect power problem

The following interesting statement is closely related to Wall’s question: The only
perfect powers in the Fibonacci sequence are F0 = 0, F1 = F2 = 1, F6 = 8 and,
F12 = 144. By definition, Fn is a perfect power if there exist integers x, q such that
q > 1 and Fn = xq. The first attempt to prove the theorem was made by F. Buchanan
[6] in 1964. Unfortunately, the proof presented in [6] was incorrect being later retracted
by the author [7]. A mistake in Buchanan’s proof consists in the false assumption
that a formula z(pt) = pt−1z(p) holds for an arbitrary prime p. In fact, we have
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z(pt) = pt−1z(p) only for p satisfying z(p2) 6= z(p). Hence, if k(p2) 6= k(p) for all
primes p, then the only perfect powers in the Fibonacci sequence are 0, 1, 8 and, 144.
A complete solution of Fn = xq was given for q = 2 by J. H. E. Cohn [10, 11] and by
O. Wyler [71], and for q = 3 by H. London and R. Finkelstein [38]. The solution for
q = 5 was found by A. Pethö [45] and for q = 5, 7, 11, 13, 17 by McLaughlin [41]. In
general, the statement that 0, 1, 8 and, 144 are the only positive perfect powers in the
Fibonacci sequence was proved in 2006 by Y. Bugeaud, M. Mignotte and S. Siksek [8].
An extensive list of references concerning the Fibonacci perfect powers can be found
in [1, 8, 45] and, for short historical surveys, see [8, pp. 973–975] or [1, pp. 38–39].

7. Wall’s conjecture and Fermat Last Theorem

Around 1637 Pierre de Fermat (1601–1665) stated that the Diophantine equation
xn + yn = zn has no integer solution when n > 2 and x, y, z 6= 0. This proposition
is known as Fermat’s Last Theorem. In a marginal note, Fermat claimed to have
discovered a truly remarkable proof. However, all the greatest mathematicians tried
to find such proof without success over 350 years. The first accepted proof of Fermat’s
Last Theorem was published in 1995 by A. Wiles and R. Taylor [58, 68]. An extensive
history of this problem can be found, for example, in [47]. It is well known that a
solution of Fermat’s problem can be reduced to the case of n = p being an odd prime.
Traditionally, two cases are then considered: case one if p - xyz and case two otherwise.

A central role in the study of the first case of Fermat’s Last Theorem is played by
Fermat quotients 1 qp(a) and the congruence qp(a) ≡ 0 (mod p), which can be written
equivalently as ap−1 ≡ 1 (mod p2). In 1909, A. Wieferich [63] proved that, if there
exists a solution of Fermat’s equation xp + yp = zp such that p - xyz where p is an
odd prime, then ap−1 ≡ 1 (mod p2) holds for a = 2. This implication is known as the
Wieferich criterion and the primes p satisfying 2p−1 ≡ 1 (mod p2) are called Wieferich
primes. At present, only two Wieferich primes are known: 1093 was found by W.
Meissner in 1913 and 3511 was found by N. Beeger in 1922. The Wieferich’s result has
been extended by many authors. See, for example, [19, 42, 57, 60]. The last result due
to J. Suzuki [57] stated that, if there exists a prime p satisfying xp + yp = zp where
p - xyz, then ap−1 ≡ 1 (mod p2) for any prime a ≤ 113.

The two following results connecting the first case of Fermat’s Last Theorem with
Wall’s conjecture are known. In 1972, G. Brückner [5] stated that, if k(p2) 6= k(p) for
all primes p, then the Diophantine equation αp +βp +γp = 0 has no solution in integers
α, β, γ of Q(

√
5) such that (γ, p) = 1 and α = a1 + a2

√
5, β = b1 + b2

√
5 satisfy the

condition a1b2 − a2b1 6≡ 0 (mod p). Brückner also stated that γp may be replaced by
εγp, where ε is a unit in Q(

√
5).

In 1992, Zhi-Hong Sun and Zhi-Wei Sun [56] proved that, if k(p2) 6= k(p) for all
primes p, then xp +yp = zp has no integer solution with p - xyz. Hence, the affirmative
answer to Wall’s question implies the first case of Fermat’s Last Theorem.

8. A Computer Search for Fibonacci-Wieferich primes

In this section we recall the most important historical milestones in a computer search
for Fibonacci-Wieferich primes. First, D. D. Wall [65] showed that k(p2) 6= k(p) for
any prime p < 10.000. In [23] J. H. Halton claims that k(p2) 6= k(p) has been verified

1Note that the connection of the first case of Fermat’s Last Theorem with the Fermat quotients has
been extensively studied also by Ladislav Skula, a Czechoslovak mathematician. See [51, 52, 53, 54].
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thanks to Wunderlich’s computations for p ≤ 28.837. D. E. Penney and C. Pomerance
[44] inform us that k(p2) 6= k(p) for p ≤ 177.409. In [16] L. A. G. Dresel verified that
k(p2) 6= k(p) for p < 106. According to H. C. Williams [69, 70], k(p) 6= k(p2) for every
prime p < 109. By P. L. Montgomery [43], there is no Fibonacci-Wieferich prime less
then 232. From a search conducted by R. J. McIntosh [12, p. 447], we learn that there
are no Fibonacci-Wieferich primes p < 2×1012. An extensive computer search by A.-S.
Elsenhans and J. Jahnel [17] leads to an extension of the bound up to 1014. According
to a report by R. J. McIntosh and E. L. Roettger [40], k(p2) 6= k(p) for p < 2 × 1014.
F. G. Dorais and D. Klyve [15] proved that there exists no Fibonacci-Wieferich prime
p < 9.7× 1014.

Next, in December 2011, a PrimeGrid project [46] was started searching for Fibonacci-
Wieferich primes. In 2011-2016 PrimeGrid extended the search limit to 1.9 × 1017

without finding any such primes. Finally, note that some computational results have
been verified retrospectively. For example in [4, p. 228] for p < 100.000 and in [3, p.
62] for p < 108. Our short historical survey is summarized in Table 1.

Year Author Search limit

1960 D. D. Wall p < 10.000

1967 J. H. Halton p ≤ 28.837

1976 D. E. Penny, C. Pomerance p ≤ 177.409

1977 L. A. G. Dresel p < 106

1982 H. C. Williams p < 109

1993 P. L. Montgomery p < 4.294.967.296 = 232

1997 R. J. McIntosh p < 2× 1012

2004 A.– S. Elsenhans, J. Jahnel p < 1014

2007 R. J. McIntosh, E. L. Roettger p < 2× 1014

2011 F. G. Dorais, D. Klyve p < 9.7× 1014

2012 PrimeGrid p < 6× 1015

2014 PrimeGrid p < 2.8× 1016

2015 PrimeGrid p < 1.2× 1017

2016 PrimeGrid p < 1.9× 1017

Table 1

The computer search for Fibonacci-Wieferich primes is also closely related to the
following statistical considerations. By the heuristic argument [12, pp. 446–447] and
[40, p. 2091] the number N of Fibonacci-Wieferich primes in an interval [x, y] is
expected to be

N =
∑

x≤p≤y

1

p
≈

y∑
n=x

1

n ln n
≈

∫ y

x

dt

t ln t
= ln(ln y)− ln(ln x).
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On the other hand, using the arguments presented in [29, p. 23], we have

N =
∑

x≤p≤y

1

q
, where

{
q = p2, if p ≡ 3, 7 (mod 10),

q = p, if p ≡ 1, 9 (mod 10).

The mild conflict of these two heuristics is reconciled by G. Grell and W. Peng [21].

9. Some analogical problems

Analogies to the equality k(p2) = k(p) have also been examined for other linear
recurrence sequences. Let K(m) be the period of (Gn mod m)∞n=0 where G0 = 0,
G1 = 1, and Gn+2 = aGn+1 + bGn for all n ≥ 0, i.e. K(m) is the least positive integer
satisfying [GK(m), GK(m)+1] ≡ [0, 1]( mod m). For example, if [a, b] = [2, 1] we get the
Pell sequence. In this case, all primes p ≤ 108 for which K(p2) = K(p) are 13, 31,
and 1546463. See [70, p. 86]. In general, K(pt) = K(p) can also be true for t > 2. If
[a, b] = [5, 1], then K(33) = K(32) = K(3) = 8. Consult [64, p. 305].

Similarly, let us denote by h(m) the period of (Tn mod m)∞n=0 where T0 = T1 = 0,
T2 = 1, and Tn+3 = Tn+2 + Tn+1 + Tn, i.e. h(m) is the least positive integer satisfying
[Th(m), Th(m)+1, Th(m)+2] ≡ [0, 0, 1]( mod m). A prime p is called Tribonacci-Wieferich
[30] if h(p2) = h(p). By J. Klaška [31, p. 19], no Tribonacci-Wieferich prime exists
below 1011. Up to the present, no instance of h(p2) = h(p) has been found and it
is an open question whether h(p2) = h(p) never appears. Finally, some results for
Tetranacci-Wieferich primes are also known [30, p. 296].

10. Concluding remark

The long failure to find Wall-Sun-Sun primes supports the original conjecture of
Donald Dines Wall, namely, that k(p2) 6= k(p) holds for all primes p. Therefore, the
attention of the mathematicians should focus on finding a proof of this conjecture
rather than on searching for a counterexample. However, it is evident that, until the
proof of Wall’s conjecture is found, the computer search for Wall-Sun-Sun primes will
continue.
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CHAPTER 2

CRITERIA FOR TESTING WALL’S QUESTION
F

Abstract. In this paper we find certain equivalent formulations of Wall’s question
and derive two interesting criteria that can be used to resolve this question for par-
ticular primes.

1. Introduction

In 1960, D. D. Wall published a well-known paper [6] concerning the modular peri-
odicity of a Fibonacci sequence. In this paper an interesting problem was formulated,
often referred to as Wall’s question (see [6, p. 528]), which has remained unsolved up
to the present. Let us outline this problem.

Let (Fn)∞n=0 denote the Fibonacci sequence defined by Fn+2 = Fn+1+Fn with F0 = 0,
F1 = 1. Let m > 0 be an arbitrary integer. Reducing Fn modulo m and taking the
least nonnegative residues, we obtain the sequence (Fn mod m)∞n=0, which is periodic.
A positive integer k(m) is called the period of the Fibonacci sequence modulo m if it is
the smallest positive integer for which Fk(m) ≡ 0 (mod m) and Fk(m)+1 ≡ 1 (mod m).
For a fixed prime p, Wall proved that, if k(p) = k(ps) 6= k(ps+1), then k(pt) = pt−sk(p)
for t ≥ s > 0. Wall asked whether k(p) = k(p2) is possible. This is still an open
question.

In [6] Wall noted that for p < 104, a counterexample of k(p) 6= k(p2) does not exist.
According to [7], k(p) 6= k(p2) for p < 109. Using extensive search by computer, in [2]
this result was extended to p < 1014. Finally, according to the last report from 2007
(see [4]) there exists no such prime p < 2×1014. Finding the answer to Wall’s question
can be extremely difficult. In 1992, Zhi-Hong Sun and Zhi-Wei Sun [5] showed that, if
p - xyz and xp + yp = zp, then k(p) = k(p2). Consequently, an affirmative answer to
Wall’s question implies the first case of Fermat’s last theorem.

It is well known that k(p) = k(p2) if and only if Fp−(5|p) ≡ 0 (mod p2) where
(a|b) denotes the Legendere symbol of a and b. Crandal, Dilcher, and Pomerence [1]
called primes p > 5 satisfying Fp−(5|p) ≡ 0 (mod p2) the Wall-Sun-Sun primes. These
are sometimes called Fibonacci-Wieferich primes. See [4] for example. It has been
conjectured that there are infinitely many Wall-Sun-Sun primes, but the conjecture
remains unproven.

2. Wall’s question and its equivalent formulations

It is well known that Fn can be computed by taking the powers of a matrix. Namely,
if

F
Published in J. Klaška, Criteria for testing Wall’s question, Czechoslovak Math. Journal, 58.4

(2008), 1241–1246.
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F =

[
F0 F1

F1 F2

]
=

[
0 1
1 1

]
, then F n =

[
Fn−1 Fn

Fn Fn+1

]
. (2.1)

Consequently, k(p) is the period of (Fn mod p)∞n=0 if and only if k(p) is the smallest
positive integer k for which F k ≡ E(mod p) and k(p2) is the period of (Fn mod p2)∞n=0

if and only if k(p2) is the smallest positive integer l satisfying F l ≡ E (mod p2), where
E is the 2 × 2 identity matrix. For any prime p, let us now define the integer matrix
Ap = [aij] such that

Ap =
1

p
(F k(p) − E). (2.2)

From (2.1) it follows that

Ap =

[
a11 a21

a21 a11 + a21

]
. (2.3)

Lemma 2.1. For any prime p we have k(p) 6= k(p2) if and only if Ap 6≡ 0 (mod p).

Proof. This follows from (2.2). ¤
Lemma 2.2. Let p 6= 5. Then Ap ≡ 0 (mod p) if and only if detAp ≡ 0 (mod p).

Proof. Let p 6= 2. Put k = k(p). From (2.2) and (2.3), it follows that

detF k = 1 + p(2a11 + a21) + p2detAp where detAp = a2
11 + a11a21 − a2

21. (2.4)

Since detF = −1, (2.4) implies 2a11 + a21 ≡ 0 (mod p) and detAp ≡ −5a2
11 (mod p).

Consequently, we have a11 ≡ 0 (mod p) if and only if a21 ≡ 0 (mod p), and thus,
detAp ≡ 0 (mod p) implies Ap ≡ 0 (mod p). The validity of the converse implication
is evident. On the other hand, for p = 2, we can easily verify that A2 6≡ 0 (mod 2) and
detA2 6≡ 0 (mod 2). ¤
Remark 2.3. For p = 5, we have A5 6≡ 0 (mod 5) and detA5 ≡ 0 (mod 5).

Our next considerations will take place in the following framework. Let Lp be the
splitting field of the Fibonacci characteristic polynomial f(x) = x2 − x − 1 over the
field of p-adic numbers Qp and α, β be the roots of f(x) in Lp. Denote by Op the
ring of integers of Lp. Clearly α, β ∈ Op. Since the discriminant of f(x) is equal to
5, it follows that, for p 6= 5, Lp/Qp does not ramify and so the maximal ideal of Op is
generated by p. Moreover, if Lp = Qp, then α, β ∈ Zp, where Zp is the ring of p-adic
integers.

For a unit ε ∈ Op we denote by ordpt(ε) the least positive rational integer h such
that εh ≡ 1 (mod pt). Since εh ≡ 1 (mod p) implies εph ≡ 1 (mod p2), we have

either ordp2(ε) = ordp(ε) or ordp2(ε) = p · ordp(ε) (2.5)

Furthermore, it is not difficult to prove that if p > 2 and ordp(ε) 6= ordp2(ε), then
for any t ∈ N we have ordpt(ε) = pt−1ordp(ε). More generally, if ε 6= ±1 and s ∈ N
is the largest integer such that ordps(ε) = ordp(ε), then, for any t ≥ s, we have
ordpt(ε) = pt−sordp(ε).

Lemma 2.4. Let p 6= 5. We have either ordpt(α) = ordpt(β) or ordpt(α) = 2ordpt(β)
or 2ordpt(α)=ordpt(β).
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Proof. From Viète’s equation αβ = −1 in Lp it follows that α = ±1 if and only if
β = ±1. Hence, if αr = 1, then βr = ±1, and consequently, β2r = 1. This implies
ordpt(β)| 2ordpt(α). By analogy, we can obtain ordpt(α)| 2ordpt(β). ¤
Corollary 2.5. For any prime p 6= 5 we have

ordp2(α) ≡ 0 (mod p) if and only if ordp2(β) ≡ 0 (mod p). (2.6)

Proof. This is a consequence of Lemma 2.4 if p 6= 2. For p = 2, the polynomial f(x) is
irreducible over Q2 and so ord2t(α) = ord2t(β). ¤

In Theorem 2.6 we generalize [3, Lemma 2.4] also to the case of f(x) being irreducible
over Qp.

Theorem 2.6. Let p 6= 5. Then k(pt) = lcm(ordpt(α), ordpt(β)) for any t ∈ N.

Proof. Over Lp we can write Fn = Aαn + Bβn for suitable A,B ∈ Lp. The
coefficients A,B are uniquely determined by the equations A + B = 0 and Aα + Bβ =
1 over Lp. The determinant of the matrix of this system is equal to β − α. As
α 6≡ β (mod p), the Cramer rule gives A = −(β − α)−1, B = (β − α)−1. More-
over, A,B are units in Op. Let k = k(pt). Then [Aαk + Bβk, Aαk+1 + Bβk+1] ≡
[A + B, Aα + Bβ](mod pt). This system can be reduced to an equivalent form[

1 1
α β

] [
A(αk − 1)
B(βk − 1)

]
≡

[
0
0

]
(mod pt). (2.7)

As the determinant of the matrix in (2.7) is not divisible by p, (2.7) has only one
solution

A(αk − 1) ≡ 0 (mod pt), B(βk − 1) ≡ 0 (mod pt).

This implies αk ≡ 1 (mod pt) and βk ≡ 1 (mod pt). Thus, we have ordpt(α)|k and
ordpt(β)|k, which implies lcm(ordpt(α), ordpt(β))|k. As A,B are not divisible by p,
the periods of the sequences (Aαn mod pt)∞n=0 and (Bβn mod pt)∞n=0 are ordpt(α) and
ordpt(β). Consequently, the period k of (Aαn + Bβn mod pt)∞n=0 divides lcm(ordpt(α),
ordpt(β)) and the theorem follows. ¤
Theorem 2.7. Let p 6= 5. Then k(p) 6= k(p2) if and only if

ordp2(α) ≡ 0 (mod p) and ordp2(β) ≡ 0 (mod p). (2.8)

Proof. It follows from (2.8) that lcm(ordp2(α), ordp2(β)) ≡ 0 (mod p) and, by Theorem
2.6, we have k(p2) ≡ 0 (mod p). Using Theorem 2.6 for t = 1 and recalling that
(p) is the maximal ideal of Op, we have k(p) 6≡ 0 (mod p), which, together with
k(p2) ≡ 0 (mod p), gives k(p) 6= k(p2).

Conversely, if k(p) 6= k(p2), then k(p2) = p · k(p). From Theorem 2.6 it now follows
that lcm(ordp2(α), ordp2(β)) ≡ 0 (mod p). This implies that ordp2(α) ≡ 0 (mod p) or
ordp2(β) ≡ 0 (mod p), which together with (2.6) proves (2.8). ¤
Remark 2.8. If p = 5, then k(p) 6= k(p2) and k(5t) = 4 · 5t for any t ∈ N. See [6].

Our results can be summarized in the following theorem.

Theorem 2.9. Let p 6= 5 and let s be the number of roots α, β of f(x) in Op whose
order modulo p2 is divisible by p. Then there are the following possibilities:

Case s = 0: k(p) = k(p2), or equivalently Ap ≡ 0 (mod p).
Case s = 1: This case is impossible.
Case s = 2: k(p) 6= k(p2), or equivalently detAp 6≡ 0 (mod p).
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Proof. By Theorem 2.6 we have that s = 0 if and only if k(p) = k(p2). Lemma
2.1 states that k(p) = k(p2) if and only if Ap ≡ 0 (mod p), which is equivalent to
detAp ≡ 0 (mod p) by Lemma 2.2. By Corollary 2.5 we see that the case of s = 1 is
impossible. The proof is complete. ¤

Our results reduce Wall’s question to solving the following equivalent problem. Is
there at least one root α ∈ Op of f(x) for which ordp2(α) 6≡ 0 (mod p) or is this never
possible?

Now we derive two interesting criteria that can be used, without computing the roots
of f(x) in Op, to decide whether k(p) = k(p2) or not. Let p 6= 5. Put q = |Op/(p)|.
Then q = pt where t = [Lp : Qp] ∈ {1, 2}. If f(x) is irreducible over Qp, then Op/(p) is
a field with p2 elements. If f(x) is not irreducible over Qp, then f(x) has both roots in
the ring Zp and Op/(p) is a field with p elements. For a proof of our criteria, we shall
need the following lemma.

Lemma 2.10. We have ordp2(α) 6≡ 0 (mod p) if and only if αq−1 ≡ 1 (mod p2).

Proof. Put s = ordp2(α). Clearly, [Op/(p
2)]× has q(q − 1) elements and so s|q(q − 1).

Let p - s. As q = pt, we have s|q−1 and αq−1 ≡ 1 (mod p2) follows. On the other hand,
let αq−1 ≡ 1 (mod p2). Then s|q − 1. As p - q − 1, we have ordp2(α) 6≡ 0 (mod p). ¤
Theorem 2.11. Let p 6= 5, u ∈ Op be such that f(u) ≡ 0 (mod p). Then k(p) = k(p2)
if and only if

u2q − uq − 1 ≡ 0 (mod p2) (2.9)

or equivalently

f(u) + (uq − u)f ′(u) ≡ 0 (mod p2) (2.10)

where f ′ is the derivative of the Fibonacci characteristic polynomial f .

Proof. Let u ∈ Op, u2 − u − 1 ≡ 0 (mod p). Then we have u ≡ α (mod p) or
u ≡ β (mod p). We can assume u ≡ α (mod p). Then uq ≡ αq (mod p2). If
k(p) = k(p2), then uq ≡ αq ≡ α (mod p2) and u2q − uq − 1 ≡ α2 − α− 1 = 0 (mod p2).

On the other hand, assume u2q − uq − 1 ≡ 0 (mod p2). Let uq = α + pv. Then
(α+pv)2−(α+pv)−1 ≡ pv(2α−1) ≡ 0 (mod p2). Now p 6= 5 implies 2α−1 6≡ 0 (mod p)
and so v ≡ 0 (mod p). Consequently, uq ≡ α (mod p2) and αq−1 ≡ uq(q−1) ≡
1 (mod p2). This, together with Lemma 2.10, yields ordp2(α) 6≡ 0 (mod p) and
k(p) = k(p2) follows by Theorem 2.7 and Corollary 2.5.

Furthermore, let u = α + pw. Then (2.10) is equivalent to

(αq − α)(2α + 2pw − 1) ≡ 0 (mod p2). (2.11)

If k(p) = k(p2), then αq ≡ α (mod p2) and (2.11) follows.
Conversely, assume (2.11). As p 6= 5, we have 2α + 2pw − 1 ≡ 2u − 1 ≡

f ′(α) 6≡ 0 (mod p). Consequently, (2.11) gives αq − α ≡ 0 (mod p2). This, together
with Lemma 2.10, implies k(p) = k(p2) as required. ¤
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CHAPTER 3

SHORT REMARK ON FIBONACCI-WIEFERICH

PRIMES
F

Abstract. This paper has been inspired by the endeavour of a large number of
mathematicians to discover a Fibonacci-Wieferich prime. An exhaustive computer
search has not been successful up to the present even though there exists a conjecture
that there are infinitely many such primes. This conjecture is based on the assumption
that the probability that a prime p is Fibonacci-Wieferich is equal to 1/p. According
to our computational results and some theoretical considerations, another form of
probability can be assumed. This observation leads us to interesting consequences.

1. Introduction

A prime p is called a Fibonacci-Wieferich prime if

Fp−(p/5) ≡ 0 (mod p2) (1.1)

where Fn denotes the n-th Fibonacci number defined by Fn+2 = Fn+1 + Fn with
F0 = 0, F1 = 1, and (a/b) denotes the Legendere symbol of a and b. Fibonacci-
Wieferich primes are mostly studied in relation to the first case of Fermat’s last theorem.
In 1992, Zhi-Hong Sun and Zhi-Wei Sun [8] showed that, if p - xyz and xp + yp = zp,
then (1.1) is valid. Fibonacci-Wieferich primes are sometimes referred to as Wall-Sun-
Sun primes. See [1].

Reducing Fn modulo m, we obtain the sequence (Fn mod m)∞n=1, which is periodic. A
positive integer k(m) is called the period of a Fibonacci sequence modulo m if it is the
smallest positive integer for which Fk(m) ≡ 0 (mod m) and Fk(m)+1 ≡ 1 (mod m). For
a fixed prime p, D. D. Wall [9, Theorem 5] has proved that, if k(p) = k(ps) 6= k(ps+1),
then k(pt) = pt−sk(p) for t ≥ s. Wall asked whether k(p) = k(p2) is always impossible.
This is still an open question. It is well known (see e.g. [3]) that k(p) = k(p2) if
and only if p satisfies (1.1). Consequently, no Fibonacci-Wieferich prime p is known.
Fibonacci-Wieferich primes were studied by many authors. From an extensive list of
references let us recall at least the papers [3], [4], [7] and [10]. The problem of finding
Fibonacci-Wieferich primes is in close analogy to the problem of finding Wieferich
primes. See [1]. In 2007, R. McIntosh and E. L. Roettger [6] showed that there is
no Fibonacci-Wieferich prime p for p < 2 × 1014. On the other hand, by statistical
considerations [1, p. 447], in an interval [x, y], there are expected to be

∑
x≤p≤y

1

p
≈ ln(ln y/ ln x) (1.2)

F
Published in J. Klaška, Short remark on Fibonacci-Wieferich primes, Acta Math. Univ. Ostrav.

15 (2007), 21–25.
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Fibonacci-Wieferich primes. By (1.2), this means that, in the interval [2, 2 × 1014],
we can expected about 3.86 Fibonacci-Wieferich primes. The results presented in this
paper suggest that, for the number of Fibonacci-Wieferich primes in an interval [x, y],
a formula different from (1.2) is more likely to be valid. As we see, there exist two
kinds of primes and, for each of these, the estimate is principally different.

2. Basic observations

Let Lp be the splitting field of the Fibonacci characteristic polynomial f(x) over
the field of p-adic numbers Qp and α, β be the roots of f(x) in Lp. Denote by Op the
ring of integers of Lp. As the discriminant of f(x) is equal to 5, it follows that, for
p 6= 5, Lp/Qp does not ramify and so the maximal ideal of Op is generated by p. Put
q = |Op/(p)|. Then q = pt where t = [Lp : Qp] ∈ {1, 2}. If f(x) is irreducible over Qp,
then Op/(p) is a field with p2 elements and Op/(p

2) is a ring with p4 elements. If f(x)
is not irreducible over Qp, then Op/(p) is a field with p elements and Op/(p

2) has p2

elements. For a unit ξ ∈ Op, we denote by ordpt(ξ) the least positive rational integer
h such that ξh ≡ 1 (mod pt). Let us now recall some results derived in [5].

Lemma 2.1. For any prime p 6= 5, we have
(i) k(pt) = lcm(ordpt(α), ordpt(β)) for any t ∈ N.
(ii) ordpt(α) = ordpt(β) or ordpt(α) = 2 · ordpt(β) or 2 · ordpt(α) = ordpt(β).
(iii) k(p) 6= k(p2) if and only if ordp2(α) ≡ 0 (mod p) and ordp2(β) ≡ 0 (mod p).
(iv) ordp2(α) ≡ 0 (mod p) if and only if ordp2(β) ≡ 0 (mod p).

From (iii) and (iv), it now follows that p is a Fibonacci-Wieferich prime if and only
if

ordp2(α) 6≡ 0 (mod p) and ordp2(β) 6≡ 0 (mod p). (2.1)

Let I denote the set of all primes for which f(x) is irreducible over Qp and I(x) be
the number of all p ∈ I, p ≤ x. Similarly, let L denote the set of all primes p for which
f(x) is factorized over Qp into linear factors and L(x) be the number of all p ∈ L,
p ≤ x. Clearly, I ∩L = ∅ and I ∪L is the set of all primes. Hence, I(x) + L(x) = π(x)
where π(x) is the number of all primes p not exceeding x.

The following beautiful characterization of the sets I and L is known. See [9, Theo-
rems 6 and 7].

Lemma 2.2. For the sets I and L, we have:
(i) p ∈ I if and only if p = 2, 5 or p ≡ 3 (mod 10) or p ≡ 7 (mod 10).
(ii) p ∈ L if and only if p ≡ 1 (mod 10) or p ≡ 9 (mod 10).

Theorem 2.3. Let q = p[Lp:Qp]. Then, in the multiplicative group [Op/(p
2)]×, there

exist exactly q − 1 elements ξ satisfying ξq−1 ≡ 1 (mod p2).

Proof. If ε1, . . . , εq is a complete residue system of Op/(p), then εi + pεj where
i, j ∈ {1, . . . , q} is a complete residue system of Op/(p

2). Clearly, εi + pεj is a unit
in Op/(p

2) if and only if εi 6= 0. It follows that [Op/(p
2)]× has (q − 1)q elements.

Consequently, [Op/(p
2)]× ∼= G × H where G is a group of order q − 1 and H is a

group of order q. For any [u, v] ∈ G×H, we have [u, v]q−1 = [1, v−1]. This implies that
[u, v]q−1 = [1, 1] if and only if v = 1 and u is arbitrary. As u can be chosen in q−1 ways,
there exist exactly q − 1 elements ξ ∈ [Op/(p

2)]× satisfying ξq−1 ≡ 1 (mod p2). ¤



44 CHAPTER 3

By Theorem 2.3, the number of ξ ∈ [Op/(p
2)]× satisfying ξp−1 ≡ 1 (mod p2) strongly

depends on the form of the factorization of f(x) over Qp. Put Q(p) = {ξ ∈ [Op/(p
2)]×;

ξq−1 ≡ 1 (mod p2)}. Clearly, Q(p) is a subgroup of order q − 1 of [Op/(p
2)]×. Let α, β

be the roots of f(x) in Op and let α2, β2 be the images of α, β in [Op/(p
2)]×. By (2.1),

we have α2 ∈ Q(p) if and only if β2 ∈ Q(p). Moreover, the Viéte equation α2β2 = −1
implies that β2 = −α−1

2 in [Op/(p
2)]×.

Remark 2.4. In my opinion, the results of Theorem 2.3 rather indicate that the
probability P of inclusion {α2, β2} ⊆ Q(p) is equal to

P =

{
1/p2, if p ∈ I,

1/p, if p ∈ L.
(2.2)

For this reason, the sum in (1.2) should be replaced by

∑
x≤p≤y

1

q
, where

{
q = p2, if p ∈ I,

q = p, if p ∈ L.
(2.3)

Of course, one knows in advance which of the cases {α2, β2} ⊆ Q(p) and {α2, β2} 6⊆
Q(p) will occur as the roots α2, β2 are uniquely determined for any prime p.

3. Statistical consequences

Let us now consider the series

R =
∑
p∈I

1

p2
=

1

4
+

1

9
+

1

25
+

1

49
+

1

169
+

1

289
+ · · · (3.1)

and

S =
∑
p∈L

1

p
=

1

11
+

1

19
+

1

29
+

1

31
+

1

41
+

1

59
+ · · · . (3.2)

Since
∑

p∈I
1
p2 <

∑
p

1
p2 = ζp(2), we have

Lemma 3.1. The series R converges.

Remark 3.2. The convergence of ζp(2) =
∑

p
1
p2 is logarithmic and therefore extremely

slow. The estimate ζp(2) = 0.45224 · · · comes from Euler (1748). On the other hand,

we have 0.42151 · · · < ∑p<10
p∈I

1
p2 . Computing yields

R =
∑
p∈I

1

p2
= 0.43648 · · · (3.3)

which is a good match with 0.42151 · · · < ∑
p∈I

1
p2 < 0.45224 · · · .

The probability P of finding a Fibonacci-Wieferich prime ending with digits 3 or 7
will virtually not increase as the search set becomes larger. Consequently, the existence
of a Fibonacci-Wieferich prime p ∈ I, p > 2×1014 is very improbable. As the following
lemma is valid by Dirichlet’s theorem on primes in arithmetic progression, for a prime
that ends with 1 or 9, the situation is more optimistic.

Lemma 3.3. The series S diverges.
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Remark 3.4. It is well known (see e.g. [2, p. 57]) that

p≤x∑

p≡l (mod k)

1

p
=

1

φ(k)
ln ln x + A(k, l) + O((ln x)−1) (3.4)

where φ is the Euler function. From (3.4) it follows that
∑

p∈L∩[x,y]

1

p
≈ 1

2

∑

p∈[x,y]

1

p
≈ 1

2
ln(ln y/ ln x). (3.5)

Moreover, for I(x) and L(x), we have

lim
x→∞

I(x)

L(x)
= 1. (3.6)

Put S(x) =
p≤x∑
p∈L

1
p
. A certain idea of the above functions can be obtained from Table 1.

x I(x) L(x) π(x) I(x) : L(x) S(x)
102 15 10 25 1.50000 0.30599
103 90 78 168 1.15384 0.49500
104 620 609 1229 1.01806 0.63822
105 4815 4777 9592 1.00795 0.74875
106 39288 39210 78498 1.00198 0.83970
107 332443 332136 664579 1.00092 0.91673
108 2880971 2880484 5761455 1.00016 0.98342

Table 1.

From the results derived, it seems to be worthwile to direct attention only to the
primes ending with the digits 1 or 9. In this case, to decide whether p is a Fibonacci-
Wieferich prime, we can use some of the criteria derived in [5, Theorem 2.11]. The
main advantage of such criteria is that they do not involve calculating with Fibonacci
numbers but rather with the solution of the congruence f(x) ≡ 0 (mod p). We have

Theorem 3.5. Let p ≡ 1 (mod 10) or p ≡ 9 (mod 10). Further, let a be any solution of
f(x) ≡ 0 (mod p) and let f ′ be a derivative of the Fibonacci characteristic polynomial
f . Then the following statements are equivalent:

(i) p is Fibonacci - Wieferich prime,
(ii) a2p − ap − 1 ≡ 0 (mod p2),
(iii) f(a) + (ap − a)f ′(a) ≡ 0 (mod p2).

Proof. If p ≡ 1 (mod 10) or p ≡ 9 (mod 10), then by Lemma 2.2, part (ii), we have
p ∈ L and |Op/(p)| = p. The equivalence of (i), (ii), and (iii) is now a straightforward
consequence of [5, Theorem 2.11]. ¤

Anyone searching for a Fibonacci-Wieferich prime using a computer is facing an
immediate problem of completing the search of the interval [2 × 1014, 1015]. By (3.4),
theoretically, there should be about 0.02 Fibonacci-Wieferich primes within this interval
ending with 1 or 9. In the following interval [1015, 1016] then, there should be about
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0.03 primes. Even though the odds are not much favourable, there is still hope that a
Fibonacci-Wieferich prime will be discovered.
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CHAPTER 4

TRIBONACCI MODULO pt F

Abstract. Our research was inspired by the relations between the primitive periods
of sequences obtained by reducing Tribonacci sequence by a given prime modulus p
and by its powers pt, which were deduced by M. E. Waddill. In this paper we derive
similar results for the case of a Tribonacci sequence that starts with an arbitrary
triple of integers.

1. Introduction - known results

Let (gn)∞n=1 be a Tribonacci sequence 0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, . . . defined by the
recurrence gn+3 = gn+2 + gn+1 + gn and the triple [0, 0, 1] of initial values. Further, let
(Gn)∞n=1 be the Tribonacci sequence, defined by an arbitrary triple of integers [a, b, c].
It is well known that the sequences (gn mod m)∞n=1 and (Gn mod m)∞n=1 are periodical
for an arbitrary modulus m > 1. We denote by h(m) and h(m)[a, b, c] the primitive
periods of these sequences. In this paper we derive a relationship between the numbers
h(p)[a, b, c] and h(pt)[a, b, c] where p is an arbitrary prime, p 6= 2, 11 and t ∈ N =
{1, 2, 3, . . . }. The case of the primes p = 2, 11 is solved in [2]. It can be proved
that, if L is the splitting field of the Tribonacci polynomial g(x) = x3 − x2 − x − 1
over the field Fp = Z/pZ, p 6= 2, 11 and α, β, γ are the roots of g(x) in L, then
h(p) = lcm(ordL(α), ordL(β), ordL(γ)) where the numbers ordL(α), ordL(β), ordL(γ)
are the orders of α, β, γ in the multiplicative group of L and lcm is their least common
multiple. See [5]. Let T be a Tribonacci matrix where

T =




0 1 0
0 0 1
1 1 1


 and T n =




gn gn−1 + gn gn+1

gn+1 gn + gn+1 gn+2

gn+2 gn+1 + gn+2 gn+3


 for n > 1. (1.1)

Clearly, for an arbitrary n ∈ N and an arbitrary modulus m, T n assumes a unique form
T n = B +mA where A = [aij], B = [bij] are integer matrices such that 0 ≤ bij ≤ m−1
and aij are nonnegative integers. Specifically, if n = h(m), then T h(m) ≡ E (mod m)
where E is the identity matrix. Thus, we can express T h(m) as T h(m) = E + mA. We
will use this fact in an alternative proof of Theorem 1.1 published by M. E. Waddill
in 1978, see [6, p. 349]. The proof that we will submit is based on matrix algebra. Its
modification can also be used for the general case of linear recurrences of order k. This
particularly applies to the case of Fibonacci sequences. For a proof of this, see [7, p.
527].

Theorem 1.1. Let p be an arbitrary prime and h(p) 6= h(p2). Then

h(pt) = pt−1h(p) (1.2)

for all t ∈ N.

F
Published in J. Klaška, Tribonacci modulo pt, Mathematica Bohemica 133.3 (2008), 267–288.
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Proof. We can write matrix T h(pt) as T h(pt) = E + ptA. Using binomial expansion, we
have

T ph(pt) = (E + ptA)p =

p∑
i=0

(
p

i

)
Ep−i(ptA)i.

Passing from equality to congruence by the modulus pt+1, we get

T ph(pt) ≡ E (mod pt+1).

Since h(pt+1) is the primitive period, we have h(pt+1)|ph(pt). Next, it is obvious that
h(pt)|h(pt+1), which means that exactly one of the following equations is true:

h(pt+1) = h(pt) or h(pt+1) = ph(pt). (1.3)

Now we use induction by t. For t = 1 the assertion is evident and for t = 2 it follows
from the assumption. Assuming that h(pt) = ph(pt−1) = pt−1h(p) holds for a number
t ≥ 1, we will prove this equation for t + 1. The induction assumption h(pt−1) 6= h(pt)

implies T h(pt−1) = E + pt−1A where p - A. Thus we have

T ph(pt−1) = (E + pt−1A)p =

p∑
i=0

(
p

i

)
Ep−i(pt−1A)i.

Hence T h(pt) = T ph(pt−1) 6≡ E (mod pt+1) and h(pt) 6= h(pt+1). Next, from (1.3) we
have h(pt+1) = ph(pt) and h(pt+1) = pth(p). ¤

Remark 1.2. The congruence T ph(pt−1) ≡ E + ptA (mod pt+1) does not hold for
p = 2, t = 2. This fact, however, is irrelevant for the proof of 1.1. We omit the details.

Theorem 1.3. Let s ∈ N satisfy h(p) = h(p2) = · · · = h(ps) 6= h(ps+1). Then, for an
arbitrary t ≥ s, we have h(pt) = pt−sh(p).

Proof. We proceed by analogy with 1.1. ¤
Problem 1.4. The question of whether the assumption h(p) 6= h(p2) is necessary or
whether the equality h(p) = h(p2) never occurs is open. Up to the present, no instance
has been found of h(p) = h(p2). Neither is it proved that such an equality can never
hold. However, for sequences defined by a general linear recurrence of order three, the
condition analogous to h(p) 6= h(p2) need not be satisfied. For example, if (fn)∞n=1 is a
sequence defined by the recurrence fn+3 = 2fn+2 − fn+1 + fn and the triple of initial
values [0, 0, 1], then (fn mod 2)∞n=1 and (fn mod 4)∞n=1 have the same period equal to
7. A similar problem is also discussed in the case of a Fibonacci sequence (Fn)∞n=1

defined by Fn+2 = Fn+1 + Fn with F1 = 1 and F2 = 1. In [4], it is proved that, if
(Fn mod p)∞n=1 and (Fn mod p2)∞n=1 have distinct primitive periods for all primes p,
then the first case of Fermat’s last theorem holds. However, questions related to the
validity of the equation h(p) = h(p2) are not investigated in this paper. In the sequel,
we will always assume h(p) 6= h(p2).

2. Elementary Observations

The primary aim of this paper is to prove theorems similar to 1.1 for the case
of a Tribonacci sequence beginning with an arbitrary triple [a, b, c] of integers. Ev-
idently, the relation h(pt)[a, b, c] = pt−1h(p)[a, b, c] is generally not valid. We have,
for instance, h(p)[0, 0, 0] = h(pt)[0, 0, 0] = 1 for arbitrary p, t. Put x0 = [a, b, c]τ and
xn = [Gn+1, Gn+2, Gn+3]

τ where τ is the transposition. Then xn can be expressed in
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terms of x0 using the equation xn = T nx0. If a Tribonacci sequence is determined by
the triple [0, 0, 1], then h(m) is the smallest number h for which T h ≡ E(mod m). In
the following example, we will show that, to an arbitrary triple [a, b, c], this rule need
not apply.

Example 2.1. Let p=7 and x0 = [1, 3, 2]τ . We can verify easily that T 6 6≡E(mod 7)
while T 6x0 ≡ x0 (mod 7). Since the congruence T hx0 ≡ x0 (mod 7) holds for no h < 6,
we have h(7)[1, 3, 2] = 6. Assuming results analogous to 1.1, one could expect that
h(72)[1, 3, 2] = 42. However, h(72)[1, 3, 2] = 336.

The relationships between the numbers h(pt)[a, b, c] and h(p)[a, b, c] clearly seem to
be more complex and are worth closer study. First we will prove two simple but
important lemmas.

Lemma 2.2. Let p be an arbitrary prime. Then, for every t ∈ N and 1 ≤ i ≤ t, we
have

h(pt)[pt−ia, pt−ib, pt−ic] = h(pi)[a, b, c]. (2.1)

Proof. (2.1) follows from the equality

(pt−iGn mod pt)∞n=1 = pt−i · (Gn mod pi)∞n=1.

¤
Using (2.1), the investigation of the periods for general triples [a, b, c] can be re-

duced to the case with [a, b, c] 6≡ [0, 0, 0](mod p). Particularly, for i = 1, (2.1) yields
h(pt)[pt−1a, pt−1b, pt−1c] = h(p)[a, b, c].

Lemma 2.3. Let p be an arbitrary prime. For every triple [a, b, c] and every s, t ∈ N
where s≤ t, we have h(ps)[a, b, c]|h(pt)[a, b, c]. In particular, we have

h(p)[a, b, c]|h(pt)[a, b, c]. (2.2)

Proof. Put h = h(ps)[a, b, c], k = h(pt)[a, b, c] and x0 = [a, b, c]τ . Then, from T kx0 ≡
x0(mod pt), it follows that T kx0 ≡ x0(mod ps). This means that k is a period of the
Tribonacci sequence beginning with the triple [a, b, c] reduced by the modulus ps. Since
the primitive period divides an arbitrary period, we have h|k. ¤

Moreover, T h(pt) ≡ E (mod pt) implies T h(pt)x0 ≡ x0 (mod pt) for any x0 = [a, b, c]τ

and t ∈ N and therefore xh(pt) ≡ x0 (mod pt). Consequently, we have

h(pt)[a, b, c]|h(pt). (2.3)

Lemma 2.3 together with (2.3) restricts the form of the numbers h(pt)[a, b, c]. As we
will see in the sequel, the relations between h(pt)[a, b, c] and h(p)[a, b, c] also depend
on the form of the factorization of the polynomial g(x) over the field Fp.

3. Irreducible case

In the investigation of primitive periods of Tribonacci sequences beginning with
arbitrary triples [a, b, c], the cubic form

D(a, b, c) = a3 + 2b3 + c3 − 2abc + 2a2b + 2ab2 − 2bc2 + a2c− ac2 (3.1)

plays an important role. By means of D(a, b, c), we can prove a theorem similar to 1.1
for the case of g(x) being irreducible over Fp. (3.1) was studied in other circumstances
as well. See [1].
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Theorem 3.1. If a triple of initial values [a, b, c] of a Tribonacci sequence (Gn)∞n=1

satisfies (D(a, b, c),m) = 1, then h(m)[a, b, c] = h(m).

Proof. For n ≥ 1, the sequences (gn)∞n=1 and (Gn)∞n=1 satisfy

Gn+3 = bgn+1 + (a + b)gn+2 + cgn+3. (3.2)

If we put h(m)[a, b, c] = h, we have [Gh+1, Gh+2, Gh+3] ≡ [a, b, c] (mod m). By substi-
tuting into (3.2) and after some simplification, we get


c− b− a b− a a

a c− b b
b a + b c


 ·




gh+1

gh+2

gh+3


 ≡




a
b
c


 (mod m). (3.3)

The system of congruences (3.3) can be further modified to the form


c− b− a b− a a
a c− b b
b a + b c


 ·




gh+1

gh+2

gh+3 − 1


 ≡




0
0
0


 (mod m), (3.4)

where the determinant of the matrix of system (3.4) depends only on a, b, c and is
equal to D(a, b, c). System (3.4) has only one solution if and only if the numbers
D(a, b, c),m are coprime. In this case, we have [gh+1, gh+2, gh+3] ≡ [0, 0, 1] (mod m)
and thus h(m)|h. Since also h|h(m), h = h(m) follows. ¤
Corollary 3.2. Let u1 = [a, b, c], u2 = [b, c, a + b + c], u3 = [c, a + b + c, a + 2b + 2c].
Then u1, u2, u3 are linearly independent over Fp if and only if D(a, b, c) 6≡ 0 (mod p).
Moreover, the linear independence of u1, u2, u3 implies h(p)[a, b, c] = h(p).

Proof. By elementary column transformations, the matrix of system (3.4) can be con-
verted to the form

M =




a b c
b c a + b + c
c a + b + c a + 2b + 2c


 where detM = −D(a, b, c).

Hence, it follows that the rows of M are linearly independent over Fp if and only if
D(a, b, c) 6≡ 0 (mod p). Now, from 3.1 it follows that h(p)[a, b, c] = h(p). ¤
Remark 3.3. Generally, the equality of periods h(p)[a, b, c] = h(p) does not imply
linear independence of u1, u2, u3 over Fp.

Lemma 3.4. A triple [a, b, c] satisfies the congruence D(a, b, c) ≡ 0 (mod p) if and
only if the sequence (Gn mod p)∞n=1 determined by [a, b, c] can be defined by a first or
second order recurrence formula.

Proof. If D(a, b, c) ≡ 0 (mod p), then it follows from 3.2 that u1, u2, u3 are linearly
dependent. Let first u1, u2 be linearly dependent. Then there is a q ∈ Z such that

q[a, b, c] ≡ [b, c, a + b + c](mod p). (3.5)

Matching the terms, we obtain Gn ≡ aqn−1(mod p) from (3.5) by induction, which
means that (Gn mod p)∞n=1 can be defined over Fp by the first order recurrence
Gn+1 ≡ qGn(mod p) where G1 = a. Suppose that u1, u2 are independent and u1, u2, u3

dependent. This means that there are q1, q2 ∈ Z such that

q1[a, b, c] + q2[b, c, a + b + c] ≡ [c, a + b + c, a + 2b + 2c](mod p). (3.6)
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By analogy, it follows from (3.6) that (Gn mod p)∞n=1 can be defined over Fp by a
recurrence Gn+2 ≡ q1Gn + q2Gn+1(mod p) where G1 = a,G2 = b.

Conversely, suppose that (Gn mod p)∞n=1 can be defined by a recurrence of order
at most two. This implies that u1, u2, u3 are dependent over Fp and, by 3.2, we have
D(a, b, c) ≡ 0 (mod p). ¤
Remark 3.5. There are sequences (Gn mod p)∞n=1 that can be defined over Fp by a
recurrence formula of order at most two and h(p)[a, b, c] = h(p).

Let us now investigate the number of all the solutions of the congruence

D(a, b, c) ≡ 0 (mod p). (3.7)

As we shall see in Lemmas 3.6 and 3.7, the number of solutions of (3.7) depends on
the form of the factorization of g(x) = x3 − x2 − x− 1 over Fp.

Lemma 3.6. Let g(x) be irreducible over Fp. Then the only solution of (3.7) is
[a, b, c] ≡ [0, 0, 0] (mod p).

Proof. Let L be the splitting field of g(x) over Fp. The irreducibility of g(x) gives that
[L : Fp] = 3. The Galois group of L/Fp is generated by the Frobenius automorphism
σ : L → L determined by σ(t) = tp for any t ∈ L. Let α ∈ L be a root of g(x). Then
β = σ(α) and γ = σ(β) are the other roots of g(x) and we have αp = β, βp = γ,
γp = α. There are unique A,B, C ∈ L such that

Gn mod p = Aαn + Bβn + Cγn (3.8)

for each n ∈ N. Moreover, Gn ∈ Z, and so Aαn + Bβn + Cγn = σ(Aαn + Bβn + Cγn)
= σ(A)βn + σ(B)γn + σ(C)αn, which gives

B = σ(A) = Ap, C = σ(B) = Bp, A = σ(C) = Cp. (3.9)

It follows from (3.9) that A,B,C are either all non-zero or A = B = C = 0. Hence
by (3.8), the sequence (Gn mod p)∞n=1 cannot be, with the exception of the sequence
beginning with [0, 0, 0], defined by a recurrence formula of the first or second order.
Lemma 3.6 now follows from 3.4. ¤
Lemma 3.7. Let g(x) be factorized over Fp, p 6= 2, 11 into the product of a linear
factor and an irreducible quadratic factor. Then (3.7) has exactly p2 + p− 1 solutions.
Let g(x) be factorized over Fp, p 6= 2, 11 into the product of linear factors. Then (3.7)
has exactly 3p2 − 3p + 1 solutions.

Proof. If p 6= 2, 11 then g(x) has only simple roots in the splitting field L
of g(x) over Fp, and so a Tribonacci sequence can be expressed in the form
Gn = c1α

n + c2β
n + c3γ

n where α, β, γ are the roots of g(x) in L and ci ∈ L. It
is evident that D(a, b, c) ≡ 0 (mod p) if and only if ci = 0 for some i = 1, 2, 3. The
assertion of the lemma can now be proved by a suitable use of the inclusion - exclusion
principle. We leave the details to the reader. ¤
Corollary 3.8. Let p 6= 2, 11. Then the number of all triples [a, b, c] where
0 ≤ a, b, c ≤ pt − 1 such that D(a, b, c) 6≡ 0 (mod p) is equal to p3(t−1)(p3 − 1) if
g(x) is irreducible over Fp, p3(t−1)(p3 − 3p2 + 3p− 1) if g(x) can be factorized over Fp

into the product of linear factors, and p3(t−1)(p3 − p2 − p + 1) otherwise.
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Proof. Let D(a0, b0, c0) 6≡ 0 (mod p) for 0 ≤ a0, b0, c0 ≤ p − 1. Then also D(a, b, c) 6≡
0 (mod p) for arbitrary 0 ≤ a, b, c ≤ pt− 1 such that [a, b, c] ≡ [a0, b0, c0] (mod p). The
claim now follows from 3.6 and 3.7. ¤
Remark 3.9. The case of g(x) having multiple roots over Fp leads to the
investigation of the primes p = 2, 11 (see [2]). For p = 2, (3.7) has exactly 4 solu-
tions and, for p = 11, it has exactly 231 solutions.

Theorem 3.10. Let p be an arbitrary prime such that g(x) is irreducible over Fp. If
[a, b, c] 6≡ [0, 0, 0](mod p) and h(p) 6= h(p2), then

h(pt)[a, b, c] = pt−1 h(p)[a, b, c] = pt−1h(p) (3.10)

for an arbitrary t ∈ N.

Proof. The proof follows immediately from 1.1, 3.1 and 3.6. ¤
If g(x) is not irreducible, it is easy to find examples of triples [a, b, c] for which (3.7)

holds and h(pt)[a, b, c] = h(pt). Consequently, the form D(a, b, c) cannot be expected
to enable us to describe the relationships between the primitive periods if g(x) has at
least one root over Fp.

4. The case of an irreducible quadratic factor

Let us now deal with the case of a Tribonacci polynom g(x) having over Fp a factor-
ization of the form

g(x) ≡ (x− α1)(x
2 − s1x− r1) (mod p), (4.1)

where the polynomial g1(x) = x2− s1x− r1 is irreducible over Fp. Since α1 is a unique
solution to g(x) ≡ 0 (mod p), by Hensel’s lemma there is a unique solution αt to the
congruence g(x) ≡ 0 (mod pt). Moreover, for αt we have αt ≡ α1 (mod p). This implies
(x − αt)|g(x) and there is a unique polynomial gt(x) = x2 − stx − rt ∈ Z/ptZ[x] such
that g(x) ≡ (x−αt)(x

2− stx− rt) (mod pt) where αt, rt, st are units of the ring Z/ptZ
for which

st ≡ 1− αt (mod pt), rt ≡ 1 + αt − α2
t (mod pt). (4.2)

Let us denote by ordpt(αt) the order of αt in the group of units of the ring Z/ptZ.
Clearly, ordpt(αt)|pt−1(p− 1).

Lemma 4.1. Let (Gn)∞n=1 be the Tribonacci sequence determined by [a,aαt,aα2
t ]. Then,

for (Hn)∞n=1 defined by Hn+1 = αtHn and H1 = a, we have Gn ≡ Hn (mod pt) for any
n ∈ N.

Proof. Clearly, for n = 1, 2, 3, the claim holds. Let n > 3. Then Hn = αtHn−1 ≡
α3

t Hn−3 ≡ (1 + αt + α2
t )Hn−3 ≡ Hn−3 + Hn−2 + Hn−1 ≡ Gn (mod pt). ¤

Remark 4.2. Generally, the primitive period of a sequence (aαn
t mod pt)∞n=0

where a ∈ N does not depend only on the order of αt in Z/ptZ, but also on the
coefficient a. If p - a, then the primitive period of this sequence is equal to ordpt(αt).
If pi||a where 0 ≤ i ≤ t− 1, then the primitive period equals ordpt−i(αt−i).

Lemma 4.3. Let (Gn)∞n=1 be the Tribonacci sequence determined by [a, b, rta + stb].
Then for (Hn)∞n=1 defined by Hn+2 = rtHn + stHn+1 with H1 = a and H2 = b we have
Gn ≡ Hn (mod pt) for any n ∈ N.
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Proof. For n = 1, 2, 3, the congruence Gn ≡ Hn (mod pt) holds. Let n > 3. Then

Hn ≡ rtHn−2 + stHn−1 ≡ (rt + s2
t )Hn−2 + rtstHn−3 (mod pt). (4.3)

The congruences (4.2) and α3
t ≡ α2

t + αt + 1 (mod pt) imply

rtst ≡ 2 + αt − α2
t (mod pt), s2

t ≡ 1− 2αt + α2
t (mod pt). (4.4)

By substituting (4.4) into (4.3) we obtain Hn ≡ (2 − αt)Hn−2 + (2 + αt − α2
t )Hn−3 ≡

(1 + st)Hn−2 + (1 + rt)Hn−3 ≡ Hn−1 + Hn−2 + Hn−3 ≡ Gn (mod pt). ¤

Remark 4.4. It is easy to find triples [a, b, c] with 0 ≤ a, b, c ≤ pt − 1 and t > 1 such
that D(a, b, c) ≡ 0 (mod pt) while (Gn mod pt)∞n=1 cannot be defined by a recurrence
of order one or two. Thus, an analogue of Lemma 3.4 for the rings Z/ptZ cannot be
proved. On the other hand, it is not difficult to prove that the sequences in 4.1 and
4.3 are the only ones that can be defined by lower order recurrences. In this case, of
course, we have D(a, b, c) ≡ 0 (mod pt).

Theorem 4.5. Let p be an arbitrary prime, p 6= 2, 11 and let h = h(p) 6= h(p2).
Further, let A = 1

p
(T h − E). The system

T pt−2hx ≡ x (mod pt) (4.5)

has p3(t−1) trivial solutions [a, b, c] ≡ [0, 0, 0] (mod p). If p - detA then (4.5) has no
nontrivial solution. If p|detA then (4.5) has (p − 1)p3(t−1) non-congruent nontrivial
solutions.

Proof. From h(p) 6= h(p2) and 1.1 we can show by induction that, for an arbitrary
t > 1, we have

T pt−2h ≡ E (mod pt−1), T pt−2h ≡ E + pt−1A (mod pt) (4.6)

and p - A. By (4.6), the system (4.5) is equivalent to the system (E + pt−1A)x ≡
x (mod pt) and thus to the system Ax ≡ 0 (mod p). Clearly, this system has a unique
solution x ≡ 0 (mod p) if and only if p - detA. In this case, the solution of (4.5) is
formed exactly by triples of the form [a, b, c] ≡ [0, 0, 0] (mod p) and the number of
non-congruent solutions of this form is equal to p3(t−1).

Let A=[aij]. It follows form (4.6) that det T pt−2h can be written as

det T pt−2h ≡ 1 + pt−1(a11 + a22 + a33) + p2(t−1)

3∑
i=1

detAi + p3(t−1)detA (mod pt),

where Ai is a submatrix of A obtained by deleting the i-th row and i-th column in A.
For t > 1, this implies

det T pt−2h ≡ 1 + pt−1(a11 + a22 + a33) (mod pt). (4.7)

Since det T = 1, by the Cauchy theorem we have det T n = 1 for an arbitrary n ∈ N.
This yields det T pt−2h ≡ 1 (mod pt). Combining this with (4.7), we get

a11 + a22 + a33 ≡ 0 (mod p). (4.8)



54 CHAPTER 4

From (1.1) it follows that each of the entries of A = [aij] reduced by modulus p can be
expressed using only the three values a11, a21, a31 so that

A ≡



a11 a31 − a21 a21

a21 a11 + a21 a31

a31 a21 + a31 a11 + a21 + a31


 (mod p). (4.9)

Now it follows from (4.8) that

3a11 + 2a21 + a31 ≡ 0 (mod p). (4.10)

Using (4.10) we can simplify (4.9) to

A ≡



a11 −3a11 − 3a21 a21

a21 a11 + a21 −3a11 − 2a21

−3a11 − 2a21 −3a11 − a21 −2a11 − a21


 (mod p). (4.11)

Suppose that p|detA. Then the rows of A are linearly dependent over Fp. Suppose
first that the first two rows of A are dependent. Then there is q∈Z such that

q[a11,−3a11 − 3a21, a21] ≡ [a21, a11 + a21,−3a11 − 2a21] (mod p). (4.12)

Matching the terms and using p - A, we obtain

3q2 + 4q + 1 ≡ 0 (mod p) and q2 + 2q + 3 ≡ 0 (mod p). (4.13)

It follows from (4.13) that 2q + 8 ≡ 0 (mod p). As p 6= 2, we have q ≡ −4 (mod p).
Substituting into the second congruence in (4.13) yields 11 ≡ 0 (mod p). Hence p = 11,
and we get a contradiction.

Next suppose that the first two rows of A are independent and p|detA. It follows
from (4.11) and from p - A that at least one of the relations p - a11 and p - a21 is true.
Suppose p|a11 and p - a21. Then from (4.11) we have detA ≡ −14a3

21 (mod p) and thus
14 ≡ 0 (mod p). As p 6= 2, we have p = 7. We can verify that h(7) = 48. Then for the
corresponding matrix A we have

A ≡ 1

7
(T 48mod 72 − E) ≡




4 2 0
0 4 2
2 2 6


 (mod 7).

Hence a11 ≡ 4(mod 7), which is a contradiction with p|a11. It follows now from the
above that there is ε ∈ Z such that

a21 ≡ a11ε (mod p). (4.14)

Substituting (4.14) into (4.11) then yields

detA ≡ a3
11(14ε3 + 58ε2 + 78ε + 38) (mod p). (4.15)

Since p - a11, p 6= 2 and p|detA, it follows from (4.15) that

7ε3 + 29ε2 + 39ε + 19 ≡ 0 (mod p). (4.16)

The facts that p|detA and that the two rows of A are independent prove the existence
of a linear combination of the first and second rows of A which can be used to eliminate
the third row. Using (4.14), Ax ≡ 0 (mod p) can now be reduced to

a − 3(1 + ε)b + εc ≡ 0 (mod p),
εa + (1 + ε)b − (3 + 2ε)c ≡ 0 (mod p).

(4.17)
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Substituting a ≡ 3(1+ε)b−εc into the second congruence of (4.17) we have (3ε2 +4ε+
1)b ≡ (ε2 +2ε+3)c. Using (4.16) and p 6= 2, 11 it is easy to show that p divides neither
3ε2 + 4ε + 1 nor ε2 + 2ε + 3. This means that every solution of (4.17) is congruent
modulo p to a solution of the form

[q(5ε2 + 14ε + 9), q(ε2 + 2ε + 3), q(3ε2 + 4ε + 1)], where q ∈ Z. (4.18)

Thus, exactly p− 1 non-congruent solutions [a, b, c] exists to system (4.17) that satisfy
[a, b, c] 6≡ [0, 0, 0] (mod p) and therefore (p−1)p3(t−1) noncongruent solutions satisfying
[a, b, c] 6≡ [0, 0, 0] (mod p) exist to (4.5). ¤

For a t ∈ N, denote by Spt(T ) the set of roots of g(x) in Z/ptZ, i.e., the spectrum
of the Tribonacci matrix T over Z/ptZ. Next, for λ ∈ Spt(T ) denote by Ept(λ) =
{[a, aλ, aλ2], a ∈ Z/ptZ} the eigenspace corresponding to the eigenvalue λ. Specifically
for this paragraph, due to Hensel’s lemma, the spectrum T consists of a single element
with Spt(T ) = {αt}. The elements of the spectrum Spt(T ) play an important role
in further considerations. Regarding their orders in the group of units of Z/ptZ, the
following lemma can easily be proved by modifying the proof of Theorem 1.1.

Lemma 4.6. Let p > 2 be an arbitrary prime, λ ∈ Z, λ 6= ±1 and p - λ. If ordp(λ) 6=
ordp2(λ), then, for any t ∈ N,

ordpt(λ) = pt−1ordp(λ). (4.19)

More generally, if s ∈ N is the largest number such that ordps(λ) = ordp(λ), then, for
any t ≥ s, ordpt(λ) = pt−sordp(λ).

Theorem 4.7. Let p be an arbitrary prime, p 6= 2, 11 and h = h(p) 6= h(p2). The

solution [a, b, c] of the system T pt−2hx ≡ x (mod pt) for t > 1 satisfies [a, b, c] 6≡
[0, 0, 0] (mod p) if and only if [a, b, c] (mod p) ∈ Ep(α1) where α1 ∈ Sp(T ).

Proof. By 4.5 it is sufficient to prove that there exists a q ∈ Z such that
[q(5ε2 +14ε+9), q(ε2 +2ε+3), q(3ε2 +4ε+1)] ≡ [1, α1, α

2
1] (mod p), where α1∈Sp(T ).

Using (4.16) and p 6= 2, 11, it is easy to show that p - 5ε2 + 14ε + 9. This implies
q = (5ε + 9)−1(ε + 1)−1 and α1 = (5ε + 9)−1(ε + 1)−1(ε2 + 2ε + 3). Let us now prove
that α2

1 = q(3ε2 + 4ε + 1). As α2
1 = (5ε + 9)−2(ε + 1)−2(ε2 + 2ε + 3)2, it is sufficient to

prove that

(5ε + 9)−2(ε + 1)−2(ε2 + 2ε + 3)2 ≡ (5ε + 9)−1(ε + 1)−1(3ε2 + 4ε + 1) (mod p).

However, this congruence is equivalent to (4.16), which holds. What remains to be
proved is that α1 ∈ Sp(T ). Now α3

1 can be expressed in terms of α1 and α2
1 to derive

the congruence (5ε+9)2(ε+1)(α3
1−α2

1−α1− 1) ≡ −6(7ε3 +29ε2 +39ε+19) (mod p).
Hence α3

1 − α2
1 − α1 − 1 ≡ 0 (mod p) and thus α1 ∈ Sp(T ). ¤

Let us denote by Qp the field of p-adic numbers and by Zp the ring of p-adic integers.

Theorem 4.8. Let p be an arbitrary prime, p 6= 2, 11 and h = h(p) 6= h(p2). Further,
let g(x) be factorized over Fp into the product of a linear factor and an irreducible
quadratic factor. Then p|detA if and only if ordp(α2)=ordp2(α2) where α2∈Sp2(T ).

Proof. Let Lp be the splitting field of g(x) over Qp and let α, β, γ be the roots of g(x)
in Lp. Clearly, α, β, γ are in the ring Op of integers of the field Lp. It follows from the
form of the factorization of g(x) over Fp that exactly one of the roots α, β, γ is in Zp. As
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the primes p 6= 2, 11 do not divide the discriminant g(x), which is equal to −44, Lp/Qp

does not ramify and so the maximal ideal Op is generated by p and α, β, γ are mutually
different. Further, let L = Op/(p) be the residue field and α1, β1, γ1 be the images of
α, β, γ in L. Over the field Lp the Tribonacci matrix T is similar to D, whose diagonal
is formed by α, β, γ. Thus, there exists an invertible matrix H such that T = HDH−1

and thus T h = HDhH−1. Next, h(p) 6= h(p2) implies that T h = E + pA where p - A.
Thus, over Lp we have E + pA = HDhH−1, which yields pH−1AH = Dh − E. By the
Cauchy theorem and other known properties of determinants we obtain

p3 · detA = (αh − 1)(βh − 1)(γh − 1). (4.20)

As h = lcm(ordL(α1), ordL(β1), ordL(γ1)), we have αh
1 = 1, βh

1 = 1, γh
1 = 1, which

implies that p divides each of the differences αh − 1, βh − 1, γh − 1 in Op. Now using
p|detA and equality (4.20) we deduce that at least one of such differences is divisible
by p2. Suppose that α ∈ Zp and p2 - αh − 1. Then p2 divides at least one of the
differences βh− 1, γh− 1. Assume, without loss of generality, that p2|βh− 1. Applying
the Frobenius automorphism yields p2|γh−1. From this fact it follows that p2|βhγh−1.
Next, raising the Viète equation αβγ = 1 to the h-th power in Op yields αhβhγh = 1.
Since p2|βhγh − 1, we have p2|αh − 1. Consequently, if α ∈ Zp, then p2|αh − 1. Let us
now denote by α2 the image of α in Op/(p

2). As α ∈ Zp, we have that α2 ∈ Z/p2Z,
which means α2 ∈ Sp2(T ). It follows from p2|αh− 1 in Op that p2|αh

2 − 1 in Z/p2Z and
so ordp2(α2)|h. Next we prove that ordp(α2) = ordp2(α2). By 4.6, exactly one of the
equations ordp2(α2) = p · ordp(α2) and ordp2(α2) = ordp(α2) holds. Put h0 = ordp(α2)
and suppose that ordp2(α2) = ph0. Then ph0|h. However, this is not possible because
p - h for p 6= 2, 11. In this case, p - h because of the fact that h divides the order of the
multiplicative group of L, which is equal to p2 − 1.

Conversely, suppose that ordp(α2) = ordp2(α2). Since α1 ≡ α2(mod p), we have
ordp(α1) = ordp(α2). Moreover, it is evident that ordp(α1) = ordL(α1). Combining
it with ordp(α2) = ordp2(α2) we find that ordp2(α2) = ordL(α1). Therefore from
h = lcm(ordL(α1), ordL(β1), ordL(γ1)) it follows that ordp2(α2)|h. Thus p2|αh

2 − 1 in
Op/(p

2) and p2|αh − 1 in Op. Next, h = lcm(ordL(α1), ordL(β1), ordL(γ1)) yields that
p|βh − 1 and p|γh − 1 in Op. Combining p2|α2 − 1, p|βh − 1, p|γh − 1 with (4.20) we
get p|detA, as required. ¤
Lemma 4.9. Let g(x) be factorized over Fp, into the product of a linear factor and an
irreducible quadratic factor. If h(p) = h(p2) then ordp(α2) = ordp2(α2).

Proof. Put h0 = ordp(α2) and suppose that ordp(α2) 6= ordp2(α2). Then, by 4.6, we
have ordp2(α2) = ph0. Consider now any triple of the form [a, aα2, aα2

2] where p -
a. Obviously, h(p2)[a, aα2, aα2

2] = ph0 and, by (2.3), ph0|h(p2). Hence, using the
hypothesis h(p) = h(p2), we deduce that p|h(p). However, this is not possible as
(h(p), p) = 1. ¤
Problem 4.10. No prime p and λ ∈ Spt(T ) where t > 1 are known such that (4.19) does
not hold. Neither is there a proof of (4.19) holding for any λ ∈ Spt(T ). However, 4.8
implies that (4.19) is not a consequence of h(p) 6= h(p2). It may be extremely difficult
either to prove that (4.19) is generally true or find a counter-example. This means that
we cannot even show a prime p 6= 2, 11 for which the system Ax ≡ 0 (mod p) has a
non-trivial solution. For p = 2, 11, however, p|detA and Ax ≡ 0 (mod p) does have a
non-trivial solution. Unfortunately, not even for p = 2, 11 there is a counter-example to
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(4.19). In the remaining part of this paper we shall no longer deal with issues whether
(4.19) holds in general and, when formulating assertions, we will assume that (4.19) is
true for any λ ∈ Spt(T ).

Theorem 4.11. Let g(x) be factorized over Fp as in (4.1) and let, for any t ∈ N,
Spt(T ) = {αt}. Further, let h0 = ordp(αt). Then h(pt)[a, b, c]|pt−1h0 if and only if
[a, b, c] (mod pt) ∈ Ept(αt). Moreover, for t > 1, h(pt)[a, b, c] = pt−1h0 if and only if
[a, b, c] (mod pt) ∈ Ept(αt), [a, b, c] 6≡ [0, 0, 0] (mod p) and ordp(αt) 6= ordp2(αt).

Proof. Let L be the splitting field of g(x) over Fp. Considering that [L : Fp] = 2 and
using the Frobenius automorphism we can prove, in a way similar to that used in 3.6,
that the Tribonacci sequence (Gn)∞n=1 defined by the initial conditions [a, b, c] can be
written over L as

Gn = Aαn
1 + Bβn

1 + Bp(βp
1)

n, (4.21)

where α1, β1, β
p
1 are different roots of g(x) in L and the coefficients A,B are uniquely

determined by [a, b, c]. Clearly, A,α1 ∈ Fp and β1 ∈ L. Moreover, for the or-
ders of α1, β1, β

p
1 in the multiplicative group of L we have ordL(β1) = ordL(βp

1) and
ordL(α1)|ordL(β1) with ordL(α1) < ordL(β1) because the multiplicative group of L
is cyclic. From h(p) = lcm(ordL(α1), ordL(β1), ordL(βp

1)) it now follows that h(p) =
ordL(β1). Further, we have from (4.21) that

h(p)[a, b, c] =





1 if A = 0, B = 0,
h0 = ordp(α1) if A 6= 0, B = 0,

h(p) = ordL(β1) if B 6= 0.
. (4.22)

Thus the only primitive periods (Gn mod p)∞n=1 possible are 1, h0, and h(p). From
(4.21) and (4.22) we have that h(p)[a, b, c]|h0 if and only if [a, b, c] ≡ [0, 0, 0] (mod p)
or [a, b, c] ≡ [a, aα1, aα2

1] (mod p), i.e., if [a, b, c] (mod p) ∈ Ep(α1).
Suppose now that the assertion is true for any t ≥ 1 and let us prove it for t + 1.

Let h(pt+1)[a, b, c]|pth0. By 4.2 and 4.6, h(pt+1)[a, aαt+1, aα2
t+1]|pth0 and so

h(pt+1)[0, b− aαt+1, c− aα2
t+1]|pth0. (4.23)

It also follows from h(pt+1)[a, b, c]|pth0 that h(p)[a, b, c]|h0. Therefore we have
[a, b, c] (mod p) ∈ Ep(α1). This yields [a, b, c] ≡ [a, aαt+1, aα2

t+1] (mod p) and thus
[0, b − aαt+1, c − aα2

t+1] ≡ [0, 0, 0] (mod p). Hence [0, (b − aαt+1)/p, (c − aα2
t+1)/p] ∈

Z3. From (4.23) we have h(pt)[0, (b − aαt+1)/p, (c − aα2
t+1)/p]|pth0. As h(pt)[0, (b −

aαt+1)/p, (c−aα2
t+1)/p]|h(pt) and h(pt)|pt−1h(p), where p - h(p), we obtain h(pt)[0, (b−

aαt+1)/p, (c − aα2
t+1)/p]|pt−1h0. By the induction hypothesis, [0, (b − aαt+1)/p, (c −

aα2
t+1)/p] (mod pt) ∈ Ept(αt). Thus, there is a q ∈ Z such that

[
0,

b− aαt+1

p
,
c− aα2

t+1

p

]
≡ q[1, αt, α

2
t ] (mod pt). (4.24)

From (4.24) we obtain q ≡ 0 (mod pt) and so (b − aαt+1)/p ≡ (c − aα2
t+1)/p ≡

0 (mod pt). This yields b ≡ aαt+1 (mod pt+1), c ≡ aα2
t (mod pt+1) and therefore

[a, b, c] (mod pt+1) ∈ Ept+1(αt+1).
Conversely, let [a, b, c] (mod pt) ∈ Ept(αt) for any t ≥ 1. Then [a, b, c] ≡ [a, αt, aα2

t ]
(mod pt) and, by 4.1, for the sequence defined by this triple we have Gn ≡ aαn−1

t (mod pt).
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From 4.2, it follows that h(pt)[a, b, c]|ordpt(αt) and, by 4.6, this means that
h(pt)[a, b, c]|pt−1h0.

Let us now prove the second part of 4.11. Let t > 1 and h(pt)[a, b, c] = pt−1h0. Sup-
pose first that [a, b, c]≡ [0, 0, 0](mod p). Then [a/p, b/p, c/p] ∈ Z3. From 2.2 and from
h(pt−1)[a, b, c]|pt−2h(p) it follows that h(pt)[a, b, c] = h(pt−1)[a/p, b/p, c/p]|pt−2h(p). Since
(h(p), p) = 1, we get a contradiction. Suppose next that ordp(αt) = ordp2(αt). From
h(pt)[a, b, c] = pt−1h0 we have that [a, b, c] (mod pt) ∈ Ept(αt) and so, for any n ∈ N,
Gn ≡ aαn−1

t (mod pt). By 4.2, for a primitive period of this sequence we have
h(pt)[a, b, c]|ordpt(αt). Next, from 4.6 and from ordp(αt) = ordp2(αt) it follows that
ordpt(αt)|pt−2ordp(αt) = pt−2h0, contradiction.

Conversely, let t > 1, [a, b, c] (mod pt) ∈ Ept(αt), [a, b, c] 6≡ [0, 0, 0] (mod p)
and ordp(αt) 6= ordp2(αt). From the hypothesis [a, b, c] (mod pt) ∈ Ept(αt) it fol-
lows that for the sequence determined by this triple, Gn ≡ aαn−1

t (mod pt) and
[a, b, c] 6≡ [0, 0, 0] (mod p) implies p - a. Thus, by 4.2, h(pt)[a, b, c] = ordpt(αt). From
4.6 and from ordp(αt) 6= ordp2(αt) we now obtain h(pt)[a, b, c] = pt−1h0. The proof is
complete. ¤

Let us now formulate the main theorem of this section.

Theorem 4.12. Let p be an arbitrary prime such that g(x) is factorized over Fp into the
product of a linear factor and an irreducible quadratic factor. Further, let h(p) 6= h(p2),
ordp(α2) 6= ordp2(α2) and [a, b, c] 6≡ [0, 0, 0] (mod p). Then, for any t ∈ N, the following
assertions are true.

If [a, b, c](mod pt) ∈ Ept(αt) then

h(pt)[a, b, c] = ordpt(αt) = pt−1ordp(αt). (4.25)

If [a, b, c](mod p) /∈ Ep(α1) then

h(pt)[a, b, c] = pt−1h(p) = pt−1h(p)[a, b, c]. (4.26)

If [a, b, c](mod p) ∈ Ep(α1) and [a, b, c](mod pt) /∈ Ept(αt) then

h(pt)[a, b, c] = pt−1h(p) 6= pt−1h(p)[a, b, c]. (4.27)

Proof. The validity of (4.25) follows from 4.11.
Let [a, b, c] (mod p) /∈ Ep(α1). Then, by 4.11 and [a, b, c] 6≡ [0, 0, 0] (mod p), we

have h(p)[a, b, c] = h(p) and, by (2.2), we have h(p)|h(pt)[a, b, c]. Next, from h(p) 6=
h(p2), 1.1 and (2.3) it follows that h(pt)[a, b, c]|pt−1h(p). Combining these equations
yields h(pt)[a, b, c] = pih(p) for some i ∈ {0, 1, . . . t − 1}. Next, from ordp(α2) 6=
ordp2(α2) and 4.8 we have p - detA. Therefore, by 4.5, there exists no solution [a, b, c] 6≡
[0, 0, 0] (mod p) of T pt−2h(p)x ≡ x (mod pt) for t > 1, which implies that h(pt)[a, b, c] -
pt−2h(p). Thus we conclude that (4.26) holds.

Let [a, b, c] (mod p) ∈ Ep(α1) and [a, b, c](mod pt) /∈ Ept(αt). From 4.11 and
[a, b, c](mod pt) /∈ Ept(αt) it follows that h(pt)[a, b, c] - pt−1h0 where h0 = ordp(αt).
Moreover, by 4.11, for [a, b, c] 6≡ [0, 0, 0] (mod p) exactly one of the equalities
h(pt)[a, b, c] = pih(p) and h(pt)[a, b, c] = pih0 holds for some i ∈ {0, . . . , t − 1}.
Combining the above, we obtain h(pt)[a, b, c] = pih(p). We shall show that
h(pt)[a, b, c] - pt−2h(p). Indeed, suppose that h(pt)[a, b, c]|pt−2h(p). Theorem 4.5 and
[a, b, c] 6≡ [0, 0, 0] (mod p) then give p|detA. By 4.8 we have ordp(α2) = ordp2(α2), a con-
tradiction. Since h(pt)[a, b, c]|pt−1h(p), we obtain h(pt)[a, b, c] = pt−1h(p). In addition,
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it follows from 4.11 and from [a, b, c](mod p) ∈ Ep(α1) that h(p)[a, b, c] = ordL(α1) 6=
ordL(β1) = h(p), which, together with the preceding facts, proves (4.27). ¤

5. The case of factorization into the product of linear terms

What remains to be investigated is the case of the Tribonacci polynomial g(x) being
factorized over Fp into the product of linear terms, i.e.,

g(x) ≡ (x− α1)(x− β1)(x− γ1) (mod p) and Sp(T ) = {α1, β1, γ1}. (5.1)

The assumption p 6= 2, 11 implies that α1, β1, γ1 are distinct, thus g(x) has nonzero
first derivatives over Fp at these points. From Hensel’s lemma it follows that g(x) can
be factorized over Qp as g(x) = (x− α)(x− β)(x− γ) where α, β, γ ∈ Zp. Let us put
αt := α mod pt, βt := β mod pt, γt := γ mod pt for every t ∈ N. Thus, over the
ring Z/ptZ, we have g(x) ≡ (x−αt)(x− βt)(x− γt) (mod pt) and Spt(T ) = {αt, βt, γt}.
Since Z ⊂ Zp ⊂ Qp, the terms of the triple [a, b, c] can be viewed as elements of the
field Qp. Thus, over Qp, the terms of the Tribonacci sequence (Gn)∞n=1 can be uniquely
written as

Gn = Aαn + Bβn + Cγn, where A,B,C ∈ Qp. (5.2)

The equation (5.2) defines a 1-1 correspondence between the triples of initial values
[a, b, c] ∈ Q3

p and the triples of p-adic numbers [A,B, C] ∈ Q3
p.

Lemma 5.1. Let g(x) be factorized over Fp, p 6= 2, 11 into the product of linear terms.
Then the terms of the sequence (Gn mod pt)∞n=1 defined by an arbitrary triple of initial
values [a, b, c] can be uniquely written as

Gn mod pt ≡ Atα
n
t + Btβ

n
t + Ctγ

n
t (mod pt), (5.3)

where 0 ≤ At, Bt, Ct ≤ pt − 1 are nonnegative integers.

Proof. Let us first show that [A, B, C] ∈ Z3
p. By substituting n = 1, 2, 3 into (5.2) we

obtain the system of equations over Qp


α β γ
α2 β2 γ2

α3 β3 γ3







A
B
C


 =




a
b
c


 . (5.4)

The determinant of the matrix M of the system (5.4) is the well-known Vandermonde
determinant, for which we have det M = αβγ(α − β)(α − γ)(γ − β). Since α, β, γ are
pairwise incongruent modulo p, none of the differences α− β, α− γ, γ − β is divisible
by p. From this fact and from αβγ = 1, it follows that p - det M . Thus, det M is
an invertible element of the ring Zp and matrix M is invertible over Zp. Multiplying
(5.4) by M−1 we obtain [A,B, C] as a Zp-linear combination of [a, b, c] and so [A,B, C] ∈
Z3

p. Let us now put At := A mod pt, Bt := B mod pt, Ct := C mod pt. It is not difficult
to prove that [A,B, C] ≡ [A′, B′, C ′](mod pt) if and only if [a, b, c] ≡ [a′, b′, c′](mod pt).
Thus there exists a 1-1 correspondence between the triples [a, b, c] ∈ (Z/ptZ)3 and the
triples [At, Bt, Ct] ∈ (Z/ptZ)3. Congruence (5.3) is now obtained by reducing (5.2) by
pt. ¤
Lemma 5.2. Let the primitive periods of the sequences (Atα

n
t mod pt)∞n=1,

(Btβ
n
t mod pt)∞n=1, (Ctγ

n
t mod pt)∞n=1 be k1, k2, k3. Then the primitive period of the

sequence (Atα
n
t + Btβ

n
t + Ctγ

n
t mod pt)∞n=1 is lcm(k1, k2, k3).
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Proof. Clearly, lcm(k1, k2, k3) is a period of (Atα
n
t + Btβ

n
t + Ctγ

n
t mod pt)∞n=1 and,

therefore, it is sufficient to prove that this period is primitive. Suppose there is a
primitive period k < lcm(k1, k2, k3). Since k is a period, we have

[Atα
k+1
t + Btβ

k+1
t + Ctγ

k+1
t , Atα

k+2
t + Btβ

k+2
t + Ctγ

k+2
t , Atα

k+3
t + Btβ

k+3
t + Ctγ

k+3
t ]

≡ [Atαt + Btβt + Ctγt, Atα
2
t + Btβ

2
t + Ctγ

2
t , Atα

3
t + Btβ

3
t + Ctγ

3
t ](mod pt).

This system of congruences can be reduced to the equivalent form


αt βt γt

α2
t β2

t γ2
t

α3
t β3

t γ3
t







At(α
k
t − 1)

Bt(β
k
t − 1)

Ct(γ
k
t − 1)


 ≡




0
0
0


 (mod pt). (5.5)

As the determinant of the system matrix of (5.5) is not divisible by p, (5.5) has only
one solution

At(α
k
t − 1) ≡ 0 (mod pt), Bt(β

k
t − 1) ≡ 0 (mod pt), Ct(γ

k
t − 1) ≡ 0 (mod pt). (5.6)

Next, from (5.6) we have Atα
k+1
t ≡ Atαt (mod pt), Btβ

k+1
t ≡ Btβt (mod pt), Ctγ

k+1
t ≡

Ctγt (mod pt). This implies that k is a period for each of the sequences
(Atα

n
t mod pt)∞n=1, (Btβ

n
t mod pt)∞n=1, (Ctγ

n
t mod pt)∞n=1. Consequently, we have k1|k,

k2|k, k3|k, which contradicts the hypothesis k < lcm(k1, k2, k3). ¤
Lemma 5.3. Let p 6= 2, 11 be an arbitrary prime and let Sp(T ) = {α1, β1, γ1}. Further,
let ordp(α1) = h1, ordp(β1) = h2 and ordp(γ1) = h3. Then

lcm(h1, h2) = lcm(h1, h3) = lcm(h2, h3) = lcm(h1, h2, h3) = h(p). (5.7)

Proof. Put k = gcd(h1, h2). Then there exist r, s ∈ N such that h1 = kr, h2 =
ks with (r, s) = 1. Thus, we have lcm(h1, h2) = krs. Next, the Viète equation
α1β1γ1 ≡ 1 (mod p) yields (α1β1γ1)

krs ≡ (αkr
1 )s · (βks

1 )r · γkrs
1 ≡ γkrs

1 ≡ 1 (mod p).
Then we have h3|krs, which implies lcm(h1, h2) = lcm(h1, h2, h3). By analogy, we
can prove that lcm(h1, h3) = lcm(h1, h2, h3) and lcm(h2, h3) = lcm(h1, h2, h3). Next,
using (5.4) and Cramer’s rule, we can show that, for the coefficients At, Bt, Ct cor-
responding to [0, 0, 1], At ≡ ε · βγ(γ − β)(mod pt), Bt ≡ ε · αγ(α − γ)(mod pt),
Ct ≡ ε · αβ(β − α)(mod pt), where ε ≡ (detM)−1 (mod pt). Hence none of the co-
efficients At, Bt, Ct is divisible by p. Applying now (5.3) to the module p and the
triple [0, 0, 1], we can use Lemma 5.2 to show that h(p) = lcm(h1, h2, h3). This proves
(5.7). ¤
Remark 5.4. Investigating the orders h1, h2, h3 for the first several hundreds of primes
might lead to a hypothesis that there are always two of the orders h1, h2, h3 that divide
the third. That is, if h1 < h2 < h3, all the terms in (5.7) are equal to h3. The
first counter-example that disproves this hypothesis is p = 4481. Over F4481, g(x)
can be written as g(x) = (x − 2661)(x − 2677)(x − 3625). Denoting α1 = 2661,
β1 = 2677, γ1 = 3625, we arrive at ordp(α1) = 2240, ordp(β1) = 640, ordp(γ1) = 896
and h(p) = lcm(2240, 640, 896) = 4480. Further, if two of the roots α1, β1, γ1 are of the
same order in the multiplicative group of Fp different from the order of the third root,
the following two situations may, theoretically, occur:

ordp(α1) < ordp(β1) = ordp(γ1) and ordp(α1) = ordp(β1) < ordp(γ1).

Let us prove that the second case can never occur.

Lemma 5.5. If ordp(α1) = ordp(β1) = h, then ordp(γ1)|h.
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Proof. By raising the Viète equation α1β1γ1 ≡ 1 (mod p) to the h-th power we obtain
γh

1 ≡ αh
1β

h
1 γh

1 ≡ 1 (mod p) and so ordpγ1|h. ¤

Remark 5.6. Without loss of generality we can denote the roots of g(x) over Fp by
α1, β1, γ1 so that, for their orders h1, h2, h3 and h(p) = lcm(h1, h2, h3), exactly one of
the four following events occurs:

h1 = h2 = h3 = h(p), p = 103,
h1 < h2 = h3 = h(p), p = 47,
h1 < h2 < h3 = h(p), p = 311,
h1 < h2 < h3 < h(p), p = 4481.

(5.8)

The values of the primes p shown in (5.8) are the least values for which the situation
in question occurs.

Theorem 5.7. Let g(x) be factorized over Fp into the product of linear terms and
let p 6= 2, 11. If h = h(p) 6= h(p2), then there is at most one eigenvalue λ ∈ Spt(T )
satisfying

ordp(λ) = ordp2(λ). (5.9)

Proof. Suppose that in Spt(T ) there are two eigenvalues satisfying (5.9). Without loss
of generality, let ordp(αt) = ordp2(αt) = h1 and ordp(βt) = ordp2(βt) = h2. From (5.7)
we obtain lcm(h1, h2) = h and thus ordp2(α2) = ordp2(β2)|h. By raising the Viète
equation α2β2γ2 ≡ 1 (mod p2) to the h-th power, we obtain αh

2β
h
2 γh

2 ≡ 1 (mod p2),
which implies γh

2 ≡ 1 (mod p2). Applying (5.3) to the triple [0, 0, 1] and the module
p2, we obtain

[Gh+1, Gh+2, Gh+3] ≡ [A2α2 + B2β2 + C2γ2, A2α
2
2 + B2β

2
2 + C2γ

2
2 , A2α

3
2 + B2β

3
2 + C2γ

3
2 ]

≡ [G1, G2, G3] (mod p2). (5.10)

From (5.10) we conclude h(p2)|h. By (2.2), also h|h(p2), which yields h = h(p2). ¤

Remark 5.8. By slightly modifying the proof of Theorem 4.8 we can show that
ordp(λ) = ordp2(λ) if and only if p|detA. We can also prove that it is not possible
that h(p) = h(p2) if there is a λ ∈ Spt(T ) = {αt, βt, γt} such that ordp(λ) 6= ordp2(λ).
Thus, h(p) = h(p2) implies ordp(λ) = ordp2(λ) for every λ ∈ Spt(T ). The proof can be
done by analogy with 4.9.

Theorem 5.9. Let g(x) be factorized over Fp, where p 6= 2, 11, into the product of
linear terms. Further, let [a, b, c] 6≡ [0, 0, 0] (mod p) and, for any t ∈ N, let Spt(T ) =
{αt, βt, γt}. If λ ∈ Spt(T ) and [a, b, c](mod pt) ∈ Ept(λ) then

h(pt)[a, b, c] = ordpt(λ). (5.11)

Moreover, if, for t > 1, λ ∈ Spt(T ) fulfils the condition ordp(λ) 6= ordp2(λ), then

h(pt)[a, b, c] = pt−1ordp(λ) = pt−1h(p)[a, b, c]. (5.12)

If [a, b, c](mod pt) 6∈ Ept(αt) ∪ Ept(βt) ∪ Ept(γt) and, for every λ ∈ Spt(T ), t > 1,
ordp(λ) 6= ordp2(λ), then

h(pt)[a, b, c] = h(pt) = pt−1h(p). (5.13)
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Proof. By (5.3) we have [a, b, c] ≡ [0, 0, 0] (mod p) if and only if [At, Bt, Ct] ≡ [0, 0, 0]
(mod p). Thus [a, b, c] 6≡ [0, 0, 0] (mod p) implies that at least one of the coefficients
At, Bt, Ct is not divisible by p. If [a, b, c](mod pt) ∈ Ept(λ), for some λ ∈ Spt(T ), then
exactly two of the coefficients At, Bt, Ct are divisible by pt. Now, from (5.3) it follows
that h(pt)[a, b, c] = ordpt(λ), which proves (5.11). Moreover, if ordp(λ) 6= ordp2(λ),
then (4.19) implies (5.12).

Let [a, b, c](mod pt) 6∈ Ept(αt) ∪ Ept(βt) ∪ Ept(γt). Then at least two of the co-
efficients At, Bt, Ct in (5.3) are not divisible by pt and at least one of them is not
divisible by p. Without loss of generality we can denote αt, βt, γt so that p - At and
pt - Bt. Hence (4.19) implies that that the primitive period of (Atα

n
t mod pt)∞n=1

is k1 = ordpt(αt) = pt−1ordp(αt) and the primitive period of (Btβ
n
t mod pt)∞n=1 is

k2 = piordp(βt) for some i ∈ {0, . . . , t − 1}. If we put h1 = ordp(αt), h2 = ordp(βt),
then lcm(k1, k2) = pt−1lcm(h1, h2). By (5.7) we have lcm(h1, h2) = h(p) and thus
lcm(k1, k2) = pt−1h(p) = h(pt). Now, from 5.2 we conclude that h(pt)[a, b, c] =
lcm(k1, k2, k3). As lcm(k1, k2)|lcm(k1, k2, k3) we have h(pt)|h(pt)[a, b, c]. This fact to-
gether with (2.3) yields (5.13). ¤
Remark 5.10. If [a, b, c](mod p) 6∈ Ep(α1) ∪ Ep(β1) ∪ Ep(γ1), then in (5.13) we have
h(p) = h(p)[a, b, c]. In the opposite case, we have h(p)[a, b, c] = ordp(λ) for some
λ ∈ Spt(T ) and the equality h(p)[a, b, c] = h(p) may not hold in general. See (5.8).

We will use the results obtained in this paper along with the results proved in [2] to
solve a problem in combinatorics which is closely related to the modular periodicity of
Tribonacci sequences. See [3].
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CHAPTER 5

TRIBONACCI MODULO 2t AND 11t F

Abstract. Our previous research was devoted to the problem of determining the
primitive periods of the sequences (Gn mod pt)∞n=1 where (Gn)∞n=1 is a Tribonacci
sequence defined by an arbitrary triple of integers. The solution to this problem was
found for the case of powers of an arbitrary prime p 6= 2, 11. In this paper, which
could be seen as a completion of our preceding investigation, we find solution for the
case of singular primes p = 2, 11.

1. Introduction

Having a linear recurrence formula of order k with integer coefficients we can con-
struct the corresponding characteristic polynomial f(x). If f(x) has no multiple roots
then its discriminant is a non zero integer and so it is divisible by only a finite number
of prime divisors. When investigating modular periodicity of the sequences defined
by these formulas, the primes that divide the discriminant of f(x) form exceptions
and have to be considered separately. The exceptional primes p correspond to the
cases of f(x) having multiple roots over the field Fp = Z/pZ of residue classes modulo
p. In this paper, which could be seen as an extension of our previous paper [1], we
focus on the Tribonacci case. It is well known, see for example [2, p. 310], that the
primes p = 2, 11 are the only primes for which the Tribonacci characteristic polynomial
g(x) = x3 − x2 − x− 1 has multiple roots.

Let us now review the notations introduced in [1]. Let (gn)∞n=1 denote a Tribonacci
sequence defined by the recurrence formula gn+3 = gn+2 + gn+1 + gn and the triple of
initial values [0, 0, 1]. Let further (Gn)∞n=1 denote the generalized Tribonacci sequence
defined by an arbitrary triple [a, b, c] of integers. We will denote the primitive peri-
ods of the sequences (gn mod m)∞n=1 and (Gn mod m)∞n=1 by h(m) and h(m)[a, b, c]
respectively. In 1978, M. E. Waddill [3, Theorem 8], proved that for any prime p and
t ∈ N = {1, 2, 3, . . . }, we have:

If h(p) 6= h(p2), then h(pt) = pt−1h(p). (1.1)

This paper aims at determining the numbers h(pt)[a, b, c] and find the relationships
between h(pt)[a, b, c] and h(p)[a, b, c] for the primes p = 2, 11. The case of p 6= 2, 11 is
solved in [1]. The methods used in proofs of this paper will mostly be based on matrix
algebra. As usual, by T we will denote the Tribonacci matrix

T =




0 1 0
0 0 1
1 1 1


 and T n =




gn gn−1 + gn gn+1

gn+1 gn + gn+1 gn+2

gn+2 gn+1 + gn+2 gn+3


 for n > 1. (1.2)

F
Published in J. Klaška, Tribonacci modulo 2t and 11t, Mathematica Bohemica 133.4 (2008),

377–387.
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Put x0 = [a, b, c]τ and xn = [Gn+1, Gn+2, Gn+3]
τ where τ denotes the transposition.

Then the triple xn may be expressed by means of x0 as follows: xn = T nx0. Thus
the primitive period of the sequence (Gn mod m)∞n=1 defined by a triple [a, b, c] for
an arbitrary module m > 1 is equal to the smallest number h for which T hx0 ≡
x0 (mod m). By [1, Lemma 2.1], the investigation of the primitive periods of Tri-
bonacci sequences modulo pt is restricted to sequences beginning with the triples
[a, b, c] 6≡ [0, 0, 0] (mod p). In the opposite case, for any t ∈ N and 1 ≤ i ≤ t, we
have h(pt)[pt−ia, pt−ib, pt−ic] = h(pi)[a, b, c]. For this reason, we will investigate only
the triples satisfying [a, b, c] 6≡ [0, 0, 0] (mod p).

2. Tribonacci modulo 2t

We can easily calculate h(2) = 4 and h(22) = 8. By (1.1), we have h(2t) = 2t−1h(2) =
2t+1 and so h(2t)[a, b, c]|2t+1 for any [a, b, c]. For p = 2, the multiplicity of the root α = 1
of the polynomial g(x) is greater than char(F2) = 2 and therefore (Gn mod 2)∞n=1 cannot
be expressed as Gn mod 2 = c1 + c2n + c3n

2 as usual. The sequences (1)∞n=1, (n)∞n=1,
(n2)∞n=1 are dependent over F2 and do not form a basis. Despite that, for some triples
[a, b, c] 6≡ [0, 0, 0] (mod 2), the numbers h(2t)[a, b, c] can be determined using the
results derived in [1]. In the first place, it is proved in [1, Theorem 3.1], that, if
(D(a, b, c),m) = 1 where D(a, b, c) is a cubic form defined by

D(a, b, c) = a3 + 2b3 + c3 − 2abc + 2a2b + 2ab2 − 2bc2 + a2c− ac2, (2.1)

then h(m)[a, b, c] = h(m) for any modulus m > 1. The following theorem is an easy
consequence of the above assertions.

Theorem 2.1. If D(a, b, c) is an odd number, then h(2t)[a, b, c] = h(2t) = 2t+1. Hence,
we have h(2t)[a, b, c] = 2t−1 · h(2)[a, b, c].

It is easy to verify that the premise of Theorem 2.1 is true if and only if [a, b, c] is
congruent modulo 2 with some of the triples [0, 0, 1], [1, 0, 0], [1, 1, 0], [0, 1, 1]. Therefore
it suffices to investigate the cases of the triple [a, b, c] being congruent modulo 2 with
some of the triples [0, 1, 0], [1, 0, 1], [1, 1, 1]. The following assertions will be important
for the proofs of the main theorems 2.4, 2.5, and 2.6.

Lemma 2.2. For any modulus of the form 2t where t ≥ 5, the following congruences
hold:

g2t−1−1 ≡ −1 (mod 2t), g2t−1 ≡ 2t−2 + 1 (mod 2t),
g2t−1+1 ≡ 0 (mod 2t), g2t−1+2 ≡ 2t−2 (mod 2t),
g2t−1+3 ≡ 2t−1 + 1 (mod 2t).

(2.2)

Proof. Using methods of matrix algebra, we will prove all the congruences in (2.2)
simultaneously. Let us consider a Tribonacci matrix T . Due to (1.2), it suffices to
prove that, for any t ≥ 5, we have

T 2t−1≡



2t−2 +1 2t−2 0
0 2t−2 +1 2t−2

2t−2 2t−2 2t−1+1


≡ E + 2t−2A (mod 2t), where A =




1 1 0
0 1 1
1 1 2



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and E is an identity matrix. Let us first prove the congruence for t = 5. By direct
calculation, we can verify that

T 24

=




1705 2632 3136
3136 4841 5768
5768 8904 10609


 ≡




23 + 1 23 0
0 23 + 1 23

23 23 24 + 1


 (mod 25).

Let us further assume that the congruence holds for t ≥ 5. Since AE = EA, we have
T 2t ≡ (E + 2t−2A)2 ≡ E + 2t−1A (mod 2t+1), which proves (2.2). ¤
Consequence 2.3. For any modulus of the form 2t where t ≥ 3, the following con-
gruences hold:

g2t−1 ≡ −1 (mod 2t), g2t ≡ 2t−1 + 1 (mod 2t),
g2t+1 ≡ 0 (mod 2t), g2t+2 ≡ 2t−1 (mod 2t),
g2t+3 ≡ 1 (mod 2t).

(2.3)

Proof. For t = 3, (2.3) can be verified by direct calculation. For t ≥ 4, (2.3) follows
from (2.2). ¤
Theorem 2.4. If [a, b, c] ≡ [0, 1, 0] (mod 2), then, for t > 1 we have

h(2t)[a, b, c] = 2t+1. (2.4)

Proof. Clearly, it is sufficient to prove that x2t 6≡ x0 (mod 2t), that is, that 2t is not a
period. The triple [a, b, c] can be written as x0 = [2a1, 1+2b1, 2c1]

τ where a1, b1, c1 ∈ Z.
For t = 2 we have

T 22

x0 =




1 2 2
2 3 4
4 6 7







2a1

1 + 2b1

2c1


 ≡




2 + 2a1

3 + 2b1

2 + 2c1


 (mod 22).

Suppose that T 22
x0 ≡ x0(mod 22). Then we have

[2 + 2a1, 3 + 2b1, 2 + 2c1] ≡ [2a1, 1 + 2b1, 2c1](mod 22).

Hence [2, 3, 2] ≡ [0, 1, 0](mod 22), which is a contradiction. If t ≥ 3, then by (2.3) we
have

T 2t

x0 ≡



2t−1 + 1 2t−1 0
0 2t−1 + 1 2t−1

2t−1 2t−1 1







2a1

1 + 2b1

2c1


 ≡




2a1 + 2t−1

1 + 2b1 + 2t−1

2c1 + 2t−1


 (mod 2t).

Suppose that T 2t
x0 ≡ x0 (mod 2t). Then we have

[2a1 + 2t−1, 2t−1, 2c1 + 2t−1] ≡ [2a1, 1 + 2b1, 2c1] (mod 2t).

By matching terms, we obtain 2t−1 ≡ 0 (mod 2t) and thus a contradiction. ¤
It is not difficult to rephrase Theorem 2.4 to include the triples [a, b, c] ≡ [1, 0, 1].

Clearly, there is exactly one triple of the form x0 = [2(c1 − a1 − b1), 1 + 2a1, 2b1]
τ

corresponding to each triple x1 = [1+2a1, 2b1, 1+2c1]
τ . Since Tx0 = x1, the triples x0

and x1 define sequences with identical primitive periods. By 2.4, this primitive period
equals 2t+1. This proves the following theorem.

Theorem 2.5. If [a, b, c] ≡ [1, 0, 1] (mod 2), then, for t > 1 we have

h(2t)[a, b, c] = 2t+1. (2.5)
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We can also use the procedure from 2.4 to prove the following theorem:

Theorem 2.6. If [a, b, c] ≡ [1, 1, 1] (mod 2), then for t > 1 we have

h(2t)[a, b, c] = 2t. (2.6)

Proof. The triple [a, b, c] can be written as x0 = [1 + 2a1, 1 + 2b1, 1 + 2c1]
τ where

a1, b1, c1 ∈ Z. Suppose t ≥ 5. Then by Lemma 2.2 we have T 2t
x0 ≡ x0 (mod 2t) and

so h(2t)[a, b, c]|2t. It is now sufficient to prove that x2t−1 6≡ x0 (mod 2t), that is, that
2t−1 is not a period. By (2.2) we have

x2t−1 ≡ T 2t−1

x0 ≡



2t−2 + 1 2t−2 0
0 2t−2 + 1 2t−2

2t−2 2t−2 2t−1 + 1







1 + 2a1

1 + 2b1

1 + 2c1


 (mod 2t).

It follows that

x2t−1 ≡ [1 + 2a1 + 2t−1(1 + a1 + b1), 1 + 2b1 + 2t−1(1 + b1 + c1), 1 + 2c1 + 2t−1(a1 + b1)]
τ .

Suppose x2t−1≡x0(mod 2t). Matching the terms yields that

2t−1(1 + a1 + b1) ≡ 0, 2t−1(1 + b1 + c1) ≡ 0, 2t−1(a1 + b1) ≡ 0 (mod 2t).

Hence 1 ≡ 0 (mod 2) and a contradiction follows. To prove the cases of t = 2, 3, 4 is
easy and can be left to the reader. ¤

Remark 2.7. Theorems 2.4, 2.5, and 2.6 are true for t > 1. In particular, for t = 1,
we have h(2)[1, 1, 1] = 1 and h(2)[0, 1, 0] = h(2)[1, 0, 1] = 2.

Corollary 2.8. If a triple [a, b, c] is congruent modulo 2 with some of the triples [0, 1, 0],
[1, 0, 1], [1, 1, 1], then for any t > 1 we have h(2t)[a, b, c] = 2t · h(2)[a, b, c].

3. Tribonacci modulo 11t

The determination of primitive periods modulo 11t will be somewhat more compli-
cated. We can directly verify that h(11) = 110 and h(112) = 1210. Now it follows
from (1.1) that h(11t) = 10 · 11t for any t ∈ N and thus, for any triple [a, b, c], we have
h(11t)[a, b, c]|10 · 11t. As x3 − x2 − x − 1 ≡ (x − 9)(x − 7)2 (mod 11) and (9n)∞n=1,
(7n)∞n=1, (n7n)∞n=1 are linearly independent over F11, we have

Gn ≡ c1 · 9n + (c2 + c3n) · 7n (mod 11), (3.1)

where the coefficients c1, c2, c3 are uniquely determined by the triple [a, b, c]. Let
ord11(ε) denote the order of ε 6≡ 0 (mod 11) in the multiplicative group of F11. It is
easy to see that ord11(9) = 5 and ord11(7) = 10. Now yields (3.1) that for any [a, b, c] 6≡
[0, 0, 0](mod 11), h(11)[a, b, c] is equal exactly one of the numbers 5, 10 and 110. This,
together with h(11)[a, b, c]|h(11t)[a, b, c], implies that for [a, b, c] 6≡ [0, 0, 0](mod 11), the
only forms of the periods h(11t)[a, b, c] are 5·11i and 10·11i where i ∈ {0, 1, . . . , t}. Con-
sequently, there exists no triple [a, b, c] for which h(11t)[a, b, c] = 2 · 11i. In some cases,
h(11t)[a, b, c] can be determined using a form D(a, b, c). However, there are triples for
which h(11t)[a, b, c] = h(11t) and also D(a, b, c) ≡ 0 (mod 11). Thus D(a, b, c) cannot
be used to determine all the triples for which h(11t)[a, b, c]=h(11t).

Lemma 3.1. Let t ≥ 3 and h = 10 · 11t−2. Then we have the following congruences:
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gh−1 ≡ 25 · 11t−2 − 1 (mod 11t), gh ≡ 65 · 11t−2 + 1 (mod 11t),
gh+1 ≡ 26 · 11t−2 (mod 11t), gh+2 ≡ 116 · 11t−2 (mod 11t),
gh+3 ≡ 86 · 11t−2 + 1 (mod 11t).

(3.2)

Proof. By (1.2), it is sufficient to prove that

T 10·11t−2 ≡



65 · 11t−2 + 1 90 · 11t−2 26 · 11t−2

26 · 11t−2 91 · 11t−2 + 1 116 · 11t−2

116 · 11t−2 21 · 11t−2 86 · 11t−2 + 1


 (mod 11t),

i.e. T 10·11t−2 ≡ E + 11t−2A (mod 11t), where A =




65 90 26
26 91 116
116 21 86


 .

In the first induction step, we verify that the congruence is true for t = 3.

T 10·11 ≡



716 990 286
286 1002 1276
1276 231 947


 ≡ E + 11A (mod 113).

Suppose now that the assertion is true for a fixed t ≥ 3 and let us prove it for t + 1.
Since A,E commute, using the binomial expansion, we obtain that T 10·11t−1 ≡

≡ (E + 11t−2A)11 ≡
11∑
i=0

(
11

i

)
(11t−2A)i ≡ E + 11t−1A + 5 · 112t−3A2 (mod 11t+1)

and A2 ≡ 0 (mod 11) proves (3.2). ¤

Consequence 3.2. Let t ≥ 1 and h = 10 · 11t−1. Then, for any modulus of the form
11t, the following congruences hold:

gh−1 ≡ 3 · 11t−1 − 1 (mod 11t), gh ≡ 10 · 11t−1 + 1 (mod 11t),
gh+1 ≡ 4 · 11t−1 (mod 11t), gh+2 ≡ 6 · 11t−1 (mod 11t),
gh+3 ≡ 9 · 11t−1 + 1 (mod 11t).

(3.3)

Proof. For t = 1, (3.3) can be easily verified by direct calculation. For t ≥ 2, (3.3)
follows from (3.2). ¤

Theorem 3.3. For any t ∈ N, we have h(11t)[a, b, c]|10 · 11t−1 if and only if
c ≡ 3a + 5b (mod 11). Moreover, for any t > 1, if h(11t)[a, b, c]|10 · 11t−2 then
[a, b, c] ≡ [0, 0, 0] (mod 11).

Proof. Let h(11t)[a, b, c]|10 · 11t−1. Then (3.3) implies



10 · 11t−1 + 1 2 · 11t−1 4 · 11t−1

4 · 11t−1 3 · 11t−1 + 1 6 · 11t−1

6 · 11t−1 10 · 11t−1 9 · 11t−1 + 1







a
b
c


 ≡




a
b
c


 (mod 11t).

A simple modification of the system yields



10 2 4
4 3 6
6 10 9







a
b
c


 ≡




0
0
0


 (mod 11).
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The congruences of this system are linearly dependent over F11 with the entire system
being equivalent to the single congruence 10a + 2b + 4c ≡ 0 (mod 11). Hence, we have
c ≡ 3a + 5b (mod 11).

Let h(11t)[a, b, c]|10 · 11t−2. The validity of the implication for t = 2 is not difficult
to verify by direct calculation. If t ≥ 3, then by (3.2), we have


65 · 11t−2 + 1 90 · 11t−2 26 · 11t−2

26 · 11t−2 91 · 11t−2 + 1 116 · 11t−2

116 · 11t−2 21 · 11t−2 86 · 11t−2 + 1







a
b
c


 ≡




a
b
c


 (mod 11t).

This system is equivalent to


65 90 26
26 91 116
116 21 86







a
b
c


 ≡




0
0
0


 (mod 112).

The last system has exactly 121 non-congruent solutions over Z/112Z that can be
written as [11r, 11s, 11(3r + 5s)] where r, s are integers. ¤
Remark 3.4. It follows from 3.3 that, if t ≥ 1 and [a, b, c] 6≡ [0, 0, 0] (mod 11), then
h(11t)[a, b, c] is equal to some of the numbers 5 · 11t−1, 10 · 11t−1, 5 · 11t, 10 · 11t. The
following lemmas will help us determine which of the cases will occur for a given [a, b, c].
We will also prove that there exists no triple for which h(11t)[a, b, c] = 5 · 11t.

Lemma 3.5. For any t ∈ N we have

T 5·11t ≡ A (mod 11) where A =




7 4 6
6 2 10
10 5 1


 . (3.4)

Moreover, A2t ≡ E (mod 11).

Proof. For t = 1, (3.4) is true since

T 55=




35731770264967 55158741162067 65720971788709
65720971788709 101452742053676 120879712950776
120879712950776 186600684739485 222332455004452


≡




7 4 6
6 2 10
10 5 1


.

Let now (3.4) be true for a fixed t ≥ 1. Then T 5·11t+1
= (T 5·11t

)11 ≡ A11(mod 11)
and it suffices to prove that A11 ≡ A (mod 11). Since A2 ≡ E (mod 11), we have
A2t ≡ (A2)t ≡ Et ≡ E (mod 11) for any t ∈ N. Consequently, A11 ≡ A (mod 11),
which proves 3.5. ¤
Lemma 3.6. For any t ∈ N we have det(T 5·11t − E) ≡ 0 (mod 11t+1).

Proof. If t = 1, then

det(T 55 − E) = 2 · 112 · 397 · 3742083511 ≡ 0 (mod 112).

Let the assertion be true for a fixed t ≥ 1. First, it is evident that T 5·11t+1 −E can be
written as

T 5·11t+1 − E = (T 5·11t − E) · (E + T 5·11t

+ T 2·5·11t

+ · · ·+ T 10·5·11t

). (3.5)

Now it follows from the induction hypothesis, from (3.5) and from Cauchy’s theorem
that it suffices to prove that

det(E + T 5·11t

+ T 2·5·11t

+ · · ·+ T 10·5·11t

) ≡ 0 (mod 11).
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From (3.4), it follows that

E + T 5·11t

+ T 2·5·11t

+ · · ·+ T 10·5·11t ≡ E + A + A2 + · · ·+ A10 ≡ 6E + 5A (mod 11).

As congruent matrices have congruent determinants, we have

det(E + T 5·11t

+ T 2·5·11t

+ · · ·+ T 10·5·11t

) ≡ det(6E + 5A) = 132 ≡ 0 (mod 11).

This proves 3.6. ¤
Theorem 3.7. For any t ∈ N, the system of congruences

(T 5·11t − E)x ≡ 0 (mod 11t+1) (3.6)

has exactly 11t+1 solutions and the number of solutions satisfying x 6≡ 0 (mod 11) is
equal to 10 · 11t. Moreover, if αt+1 is a solution of g(x) ≡ 0 (mod 11t+1), then each
solution of (3.6) can be expressed as [q, qαt+1, qα

2
t+1], where q ∈ Z.

Proof. Put W = T 5·11t − E (mod 11t+1). From (3.4) it follows that all the entries of

W , except for w33, are units of the ring Z/11t+1Z. Since 11 - det

[
6 4
6 1

]
, there are

coefficients r, s, that are also units of the ring Z/11t+1Z, for which

r(w11, w12) + s(w21, w22) ≡ (w31, w32) (mod 11t+1).

Thus there is a linear combination of the first and second rows of W transforming
Wx ≡ 0 (mod 11t+1) to an equivalent form


w11 w12 w13

w21 w22 w23

0 0 w′
33







a
b
c


 ≡




0
0
0


 (mod 11t+1). (3.7)

Let us now prove that w′
33 ≡ 0 (mod 11t+1). Multiplying the first row in (3.7) by a

suitable unit and, subsequently, adding it to the second row yields


w11 w12 w13

0 w′
22 w′

23

0 0 w′
33







a
b
c


 ≡




0
0
0


 (mod 11t+1). (3.8)

The determinant of the matrix of (3.8) is w11w
′
22w

′
33 and, by Lemma 3.6, we have

w11w
′
22w

′
33 ≡ 0 (mod 11t+1). Now it follows from (3.4) that w11 and w′

22 are units
of Z/pt+1Z and thus w′

33 ≡ 0 (mod 11t+1). This implies that the system Wx ≡
0 (mod 11t+1) is equivalent to the system

w11a + w12b + w13c ≡ 0 (mod 11t+1),
w21a + w22b + w23c ≡ 0 (mod 11t+1),

(3.9)

in which all the coefficients are units of Z/pt+1Z. As no subdeterminant of the system
matrix of (3.9) is divisible by 11, any of the unknowns a, b, c can be chosen as a
parameter to express the other unknowns in a unique manner. Thus, each solution of
Wx ≡ 0 (mod 11t+1) can be written as [qu1, qu2, qu3] for a fixed triple of units u1, u2, u3

and a parameter q ∈ Z. Therefore the number of non-congruent solutions to (3.6) is
equal to the number of elements of the ring Z/11t+1Z, which is 11t+1, and the number
of solutions of the form x 6≡ 0 (mod 11) is equal to the number of units of this ring,
which is 10 · 11t.

Let us now prove that the solutions to (3.6) are exactly the triples [q, qαt+1, qα
2
t+1]

where q ∈ Z. As the number of non-congruent triples [q, qαt+1, qα
2
t+1] is equal to 11t+1,
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it suffices to show that h(11t+1)[q, qαt+1, qα
2
t+1]|5 · 11t. As α = 9 is a simple root of

g(x) ≡ 0 (mod 11), we obtain by Hensel’s lemma, that for each t ∈ N there is αt, which
is uniquely determined modulo 11t, satisfying g(x) ≡ 0 (mod 11t) such that α1 = α
and αt ≡ αt−1 (mod 11t−1). Let ord11t(ε) for ε 6≡ 0 (mod 11) denote the order of ε in
the multiplicative group of Z/11tZ. Clearly, h(11t+1)[q, qαt+1, qα

2
t+1] = ord11t+1(αt+1)

for any q ∈ Z where q 6≡ 0 (mod 11). From ord11(α1) = 5 and αt+1 ≡ α1 (mod 11) it
now follows α5

t+1 ≡ 1 (mod 11) for any t ∈ N and thus α5·11t

t+1 ≡ 1 (mod 11t+1). Hence
ord11t+1(αt+1)|5 · 11t. ¤

According to Theorem 3.7, the set of all non-congruent solutions to (3.6) can be
written as E(αt+1) = {[q, qαt+1, qα

2
t+1], q ∈ Z/pt+1Z} and viewed as the eigenspace

associated with the eigenvalue αt+1.

Remark 3.8. The equality ord11t(αt) = 5 · 11t−1 is a non-trivial consequence of 3.3
and 3.7 for each t ∈ N. See also Lemma 4.6 in [1].

Lemma 3.9. There exists no triple [a, b, c] for which h(11t)[a, b, c] = 5 · 11t.

Proof. It suffices to prove that the systems (T 5·11t−1 − E)x ≡ 0 (mod 11t) and
(T 5·11t − E)x ≡ 0 (mod 11t) have identical solution sets for any t ≥ 1. Denote by

X the set of all solutions of (T 5·11t−1 − E)x ≡ 0 (mod 11t) and by Y the set of all
solutions of (T 5·11t − E)x ≡ 0 (mod 11t). The inclusion X ⊆ Y follows immediately
from the equality

T 5·11t − E = (E + T 5·11t−1

+ T 2·5·11t−1

+ · · ·+ T 10·5·11t−1

) · (T 5·11t−1 − E).

Modifying the proof of 3.7, we can determine that (T 5·11t −E)x ≡ 0 (mod 11t) has 11t

solutions, thus the same number as (T 5·11t−1 −E)x ≡ 0 (mod 11t). The equality of the
sets X and Y follows from their finiteness. ¤

Now we can summarize our results in the main theorem:

Theorem 3.10. For any triple [a, b, c] 6≡ [0, 0, 0] (mod 11), we have:
If [a, b, c] 6∈ E(αt) and c ≡ 3a + 5b (mod 11), then h(11t)[a, b, c] = 10 · 11t−1.
If [a, b, c] 6∈ E(αt) and c 6≡ 3a + 5b (mod 11), then h(11t)[a, b, c] = 10 · 11t.
If [a, b, c] ∈ E(αt), then h(11t)[a, b, c] = ord11t(αt) = 5 · 11t−1.
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CHAPTER 6

ON TRIBONACCI-WIEFERICH PRIMES F

Abstract. The problem of the existence of Fibonacci-Wieferich primes has
already been investigated by many authors. In this paper we shall study a simi-
lar problem for the sequence of Tribonacci numbers. Using matrix algebra, we find
certain equivalent formulations of this problem and also derive some criteria that can
be used to effectively test particular primes. A computer search showed that the
problem has no solution for primes p ≤ 109.

1. Introduction

Let (Fn)∞n=0 be the Fibonacci sequence defined by Fn+2 = Fn+1 +Fn with F0 = 0 and
F1 = 1. It is well known [9, p. 525] that (Fn mod m)∞n=0 is periodic for any modulus
m > 1. Let k(m) denote the period of (Fn mod m)∞n=0. That is, k(m) is the least
positive integer such that Fk(m) ≡ 0 and Fk(m)+1 ≡ 1 (mod m). In 1960, D. D. Wall
[9, Theorem 5] proved that for any prime p, we have: if k(p) = k(ps) 6= k(ps+1), then
k(pt) = pt−sk(p) for t ≥ s. Wall [9, p. 528] asked whether k(p) = k(p2) is always
impossible. This problem has not yet been resolved. The primes p satisfying the
relation k(p) = k(p2) are often referred to as Wall-Sun-Sun primes [1] or as Fibonacci-
Wieferich primes [5].

Finding an answer to Wall’s question can be extremely difficult. In 1992, Zhi-Hong
Sun and Zhi-Wei Sun [6] showed that, if p - xyz and xp + yp = zp, then k(p) = k(p2).
Consequently, an affirmative answer to Wall’s question implies the first case of Fermat’s
last theorem. From this point of view, there is a similarity to the well-known Wieferich
primes. Recall that an odd prime p is called Wieferich if 2p−1 ≡ 1 (mod p2). In 1909,
A. Wieferich [10] proved that, if p - xyz and xp +yp = zp, then 2p−1 ≡ 1 (mod p2). The
only Wieferich primes known are 1093 and 3511; this has been verified up to 1.25×1015

[3].
In this paper we focus on a similar problem related to the Tribonacci sequence.

Recall that the Tribonacci sequence (Tn)∞n=0 is defined by Tn+3 = Tn+2 +Tn+1 +Tn with
T0 = 0, T1 = 0, T2 = 1. It is well known [8, Theorem 1] that (Tn mod m)∞n=0 is periodic.
Let h(m) denote the period of (Tn mod m)∞n=0. In [8, pp. 349–351], M. E. Waddill
proved that, if h(p) = h(ps) 6= h(ps+1), then h(pt) = pt−sh(p) for t ≥ s. By analogy
with the Fibonacci case, the primes p satisfying h(p) = h(p2) may be called Tribonacci-
Wieferich primes. Up to the present, no instance of h(p) = h(p2) has been found, and
it is an open question whether h(p) = h(p2) never appears.

F
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2. Matrix characterization of h(p) = h(p2)

The Tribonacci numbers Tn can be computed by taking the powers of the Tribonacci
companion matrix T . If

T =




0 1 0
0 0 1
1 1 1


 , then T n =




Tn−1 Tn−2 + Tn−1 Tn

Tn Tn−1 + Tn Tn+1

Tn+1 Tn + Tn+1 Tn+2


 for n > 1. (2.1)

Clearly, h(p) is the period of (Tn mod p)∞n=0 if and only if h(p) is the smallest positive
integer h for which T h ≡ E (mod p) and h(p2) is the period of (Tn mod p2)∞n=0 if and
only if h(p2) is the smallest positive integer k satisfying T k ≡ E (mod p2) where E is
the 3× 3 identity matrix. For any prime p we define an integer matrix Ap = [aij] such
that

Ap =
1

p
(T h(p) − E). (2.2)

From (2.1) it follows now that

Ap =




a11 a31 − a21 a21

a21 a11 + a21 a31

a31 a21 + a31 a11 + a21 + a31


 . (2.3)

Lemma 2.1. For any prime p, we have h(p) 6= h(p2) if and only if Ap 6≡ 0 (mod p).

Proof. This follows from (2.2). ¤

Lemma 2.2. For any prime p, the elements a11, a21, a31 in (2.3) satisfy

3a11 + 2a21 + a31 ≡ 0 (mod p). (2.4)

Proof. From (2.2) and (2.3), we obtain that

det T h(p) ≡ 1 + p(3a11 + 2a21 + a31) (mod p2)

and the lemma follows from det T = 1. ¤

From (2.3) and (2.4) it follows that the elements of Ap mod p can be expressed by
means of a11, a21 alone. Of course, if Ap ≡ 0 (mod p), then detAp ≡ 0 (mod p). On
the other hand, we have the following proposition.

Proposition 2.3. Let p 6= 2. If detAp ≡ 0 (mod p) and Ap 6≡ 0 (mod p), then there is
an ε ∈ Z such that

7ε3 + 29ε2 + 39ε + 19 ≡ 0 (mod p) and a21 ≡ a11ε (mod p).

Proof. Using (2.3) and (2.4), we obtain after some simplification

detAp ≡ −(38a3
11 + 78a2

11a21 + 58a11a
2
21 + 14a3

21)(mod p). (2.5)

Suppose p|a11 and p - a21. Then, from (2.5), we have detAp ≡ −14a3
21 (mod p) and

thus 14 ≡ 0 (mod p). As p 6= 2, we have p = 7. We can verify that h(7) = 48. Then,
for A7, we have

A7 =
1

7
(T 48 − E) ≡




4 2 0
0 4 2
2 2 6


 (mod 7).



CHAPTER 6 73

Hence, a11 ≡ 4 (mod 7), which is a contradiction to p|a11. Consequently, there is an
ε ∈ Z such that a21 ≡ a11ε (mod p). From (2.5) it now follows that

detAp ≡ −a3
11(14ε3 + 58ε2 + 78ε + 38) (mod p). (2.6)

Since p - a11, p 6= 2 and p|detAp, it follows from (2.6) that

7ε3 + 29ε2 + 39ε + 19 ≡ 0 (mod p).

¤
Let Lp be the splitting field of the Tribonacci characteristic polynomial t(x)=x3−

x2−x−1 over the field of p-adic numbers Qp and let α, β, γ be the roots of t(x) in Lp.
Clearly, α, β, γ are in the ring Op of integers of the field Lp. By a simple calculation
we find that the discriminant of t(x) is M t(x) = −44. See also [7, p. 310]. This implies
that Lp/Qp does not ramify for p 6= 2, 11 and so the maximal ideal of Op is generated
by p. Finally, for a unit u ∈ Op, we denote by ordpt(u) the least positive rational
integer k such that uk ≡ 1(mod pt). As uk ≡ 1 (mod p) implies upk ≡ 1 (mod p2), we
have either ordp2(u) = ordp(u) or ordp2(u) = p · ordp(u).

Theorem 2.4. Let p 6= 2, 11. Then, for any t ∈ N, we have

h(pt) = lcm(ordpt(α), ordpt(β), ordpt(γ)). (2.7)

Proof. Over Lp, we can write Tn = Aαn + Bβn + Cγn for suitable A,B, C ∈ Lp. The
coefficients A,B,C are uniquely determined by the system of equations A+B+C = 0,
Aα + Bβ + Cγ = 0 and Aα2 + Bβ2 + Cγ2 = 1 over Lp. The determinant of the matrix
of this system is equal to (α− β)(α− γ)(γ − β). As α 6≡ β(mod p), α 6≡ γ(mod p) and
β 6≡ γ(mod p), Cramer’s rule gives A = [(α − β)(α − γ)]−1, B = [(α − β)(γ − β)]−1,
C = −[(α − γ)(γ − β)]−1. Moreover, A,B,C are units in Op. Let k = h(pt). Then
[Aαk+Bβk+Cγk, Aαk+1+Bβk+1+Cγk+1, Aαk+2+Bβk+2+Cγk+2] ≡ [A+B+C,Aα+
Bβ + Cγ,Aα2 + Bβ2 + Cγ2](mod pt). This system can be reduced to the equivalent
form 


1 1 1
α β γ
α2 β2 γ2







A(αk − 1)
B(βk − 1)
C(γk − 1)


 ≡




0
0
0


 (mod pt). (2.8)

As the determinant of the matrix in (2.8) is not divisible by p, (2.10) has only one
solution

A(αk − 1) ≡ 0 (mod pt), B(βk − 1) ≡ 0 (mod pt), C(γk − 1) ≡ 0 (mod pt).

This implies αk ≡ 1 (mod pt), βk ≡ 1 (mod pt) and γk ≡ 1 (mod pt). Thus, we have
ordpt(α)|k, ordpt(β)|k and ordpt(γ)|k, which implies

lcm(ordpt(α), ordpt(β), ordpt(γ))|k.

As A,B,C are not divisible by p, the periods of (Aαn mod pt)∞n=0, (Bβn mod pt)∞n=0

and (Cγn mod pt)∞n=0 are ordpt(α), ordpt(β) and ordpt(γ) . Consequently, the period
k of (Aαn + Bβn + Cγn mod pt)∞n=0 divides lcm(ordpt(α), ordpt(β), ordpt(γ)) and the
theorem follows. ¤
Remark 2.5. If p 6= 2, 11 then Op/(p) is the field with p[Lp:Qp] elements where
[Lp : Qp] ∈ {1, 2, 3}. Thus, for any λ ∈ {α, β, γ}, ordp(λ)|p[Lp:Qp] −1, and by (2.7),
we have h(p)|p[Lp:Qp]− 1. This implies that, for any prime p 6= 2, 11, h(p) 6≡ 0 (mod p).
If p = 2, 11, then h(p) ≡ 0 (mod p). Exactly, h(2t)=2t+1 and h(11t)=10 · 11t for any
t ∈ N.
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Lemma 2.6. For any prime p 6= 2, 11, we have Ap ≡ 0 (mod p) if and only if
ordp2(λ) 6≡ 0 (mod p) for each λ ∈ {α, β, γ}.
Proof. From Lemma 2.1 it follows that Ap ≡ 0 (mod p) if and only if h(p) = h(p2).
As p 6= 2, 11, by Remark 2.5, we have p - h(p), which, together with (2.7), yields
h(p) = h(p2) if and only if lcm(ordp2(α), ordp2(β), ordp2(γ)) 6≡ 0 (mod p). ¤
Lemma 2.7. Let p 6= 2, 11. Then lcm(ordpt(α), ordpt(β)) = lcm(ordpt(α), ordpt(γ))
= lcm(ordpt(β), ordpt(γ)) = lcm(ordpt(α), ordpt(β), ordpt(γ)) for any t ∈ N.

Proof. This follows from the Viète equation αβγ = 1. ¤
Theorem 2.8. Let p 6= 2, 11 and Ap 6≡ 0 (mod p). Then detAp ≡ 0 (mod p) if and
only if there is a unique λ ∈ {α, β, γ} for which ordp2(λ) 6≡ 0 (mod p). Moreover, for
this λ, we have λ ∈ Zp where Zp is the ring of p-adic integers.

Proof. Over the field Lp, the Tribonacci matrix T is similar to the diagonal matrix D
with α, β, γ on the diagonal. Thus, an invertible matrix H exists such that T = HDH−1

and thus T h = HDhH−1 where h = h(p). On the other hand, T h = E + pAp where
Ap 6≡ 0 (mod p). If we combine these two expressions, we have E + pAp = HDhH−1,
which implies pH−1ApH = Dh−E. By the well-known properties of determinants, we
easily obtain that

p3 · detAp = (αh − 1)(βh − 1)(γh − 1). (2.9)

Let detAp ≡ 0 (mod p). From (2.7) and (2.9), it now follows that at least one of
the differences αh − 1, βh − 1, γh − 1 is divisible by p2. Consequently, for at least one
λ ∈ {α, β, γ}, we have ordp2(λ) 6≡ 0 (mod p). Since Ap 6≡ 0 (mod p), it follows from
Lemmas 2.6 and 2.7 that this λ is unique. Without loss of generality, we can assume
λ = α. Suppose that α /∈ Zp. The Galois group Gal(Lp/Qp) is cyclic, generated by
the Frobenius automorphism σ. Then ασ 6= α and so ασ ∈ {β, γ}, say ασ = β. Then
ordp2(β) = ordp2(α) 6≡ 0 (mod p), which is a contradiction as α is the unique root with
this property.

Conversely, let α be the unique λ ∈ {α, β, γ} such that ordp2(λ) 6≡ 0 (mod p).
Consequently, we have ordp2(α) = ordp(α). Put r = ordp(α). Then we have p2|αr − 1
in Op. From (2.7), it follows that r|h and thus p2|αh − 1 in Op. Further from (2.7),
it follows that p|βh − 1 and p|γh − 1. If we combine these facts, we obtain p4|(αh −
1)(βh − 1)(γh − 1). From (2.9), it now follows that detAp ≡ 0 (mod p). ¤
Corollary 2.9. Let t(x) be irreducible over Qp. Then we have

Ap ≡ 0 (mod p) if and only if detAp ≡ 0 (mod p). (2.10)

Proof. If t(x) is irreducible over Qp, then there is no root of t(x) in Zp. ¤
Corollary 2.10. Let p 6= 2, 11. Then detAp ≡ 0 (mod p) if and only if there is at least
one λ ∈ {α, β, γ} such that ordp2(λ) 6≡ 0 (mod p).

Proof. This follows from Theorem 2.8 and Lemma 2.6. ¤
Our results can be summarized in the following theorem.

Theorem 2.11. Let p 6= 2, 11 and let k be the number of roots α, β, γ of t(x) in Op

whose order modulo p2 is divisible by p. Then the following cases may occur:

Case k = 0: h(p) = h(p2), or equivalently Ap ≡ 0 (mod p).
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Case k = 1: This case is impossible.
Case k = 2: h(p) 6= h(p2) and detAp ≡ 0 (mod p).
Case k = 3: h(p) 6= h(p2) and detAp 6≡ 0 (mod p).

Proof. Theorem 2.4 gives that k = 0 if and only if h(p) = h(p2). Lemma 2.1 states
that h(p) = h(p2) if and only if Ap ≡ 0 (mod p). Using Lemma 2.7, we see that the
case k = 1 is impossible and Theorem 2.8 distinguishes the remaining two cases. ¤

A natural question arises whether there is a prime p satisfying k = 2. Since the
solution of this question seems to be as difficult as the question whether h(p) 6= h(p2)
for all primes p, we state it as

Problem 2.12. Decide whether there is a prime p for which h(p) 6= h(p2) and
ordp(α)=ordp2(α) where α∈Z is a solution of x3−x2−x−1 ≡ 0 (mod p2). The prime
p satisfying this conditions may be called Tribonacci-Wieferich prime of the second
kind.

3. Criteria for testing Tribonacci-Wieferich primes

In this section we derive two interesting criteria that can be used, without computing
the roots of t(x) in Op, to decide whether h(p) = h(p2) or not. Let p 6= 2, 11. Put
q = |Op/(p)|. By Remark 2.5, q = pt where t = [Lp : Qp] ∈ {1, 2, 3}. For proofs of our
criteria, we shall need the following lemma.

Lemma 3.1. Let p 6= 2, 11. Then, for a unit u ∈ Op, we have

ordp2(u) 6≡ 0 (mod p) if and only if uq−1 ≡ 1 (mod p2). (3.1)

Proof. Put s = ordp2(u). Clearly, [Op/(p
2)]× has q(q − 1) elements and so s|q(q − 1).

Let p - s. As q = pt, we have s|q−1 and uq−1 ≡ 1 (mod p2) follows. On the other hand,
let uq−1 ≡ 1 (mod p2). Then s|q − 1. As p - q − 1, we have ordp2(u) 6≡ 0 (mod p). ¤

Now we are ready for the following theorem.

Theorem 3.2. Let p 6= 2, 11, u ∈ Op such that t(u) ≡ 0 (mod p). Let t(x) be
irreducible over Qp. Then the following statements are equivalent:

(i) h(p) = h(p2),
(ii) u3q − u2q − uq − 1 ≡ 0 (mod p2).

Proof. Let u ∈ Op, t(u) ≡ 0 (mod p). Then we have u ≡ α (mod p) or u ≡ β (mod p)
or u ≡ γ (mod p). We can assume u ≡ α (mod p). Then uq ≡ αq (mod p2). If h(p) =
h(p2), then uq ≡ αq ≡ α (mod p2) and u3q−u2q−uq− 1 ≡ α3−α2−α−1 = 0 (mod p2).
On the other hand, assume u3q − u2q − uq − 1 ≡ 0 (mod p2). Let uq = α + pv. Then
(α + pv)3 − (α + pv)2 − (α + pv) − 1 ≡ pv(3α2 − 2α − 1) ≡ pv · t′(α) ≡ 0 (mod p2).
Now p 6= 2, 11 implies t′(α) 6≡ 0 (mod p) and so v ≡ 0 (mod p). Consequently,
uq ≡ α (mod p2) and αq−1 ≡ uq(q−1) ≡ 1 (mod p2). This, together with Lemma 3.1,
yields ordp2(α) 6≡ 0(mod p) and, by Corollary 2.10, we have detAp ≡ 0 (mod p). As
t(x) is irreducible over Qp, Corollary 2.9 yields Ap ≡ 0 (mod p) and h(p) = h(p2)
follows using Lemma 2.1. ¤
Theorem 3.3. Let p 6= 2, 11, u ∈ Op such that t(u) ≡ 0 (mod p). Suppose that t(x) is
irreducible over Qp. Then the following statements are equivalent:

(i) h(p) = h(p2),
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(ii) t(u) + (uq − u)t′(u) ≡ 0 (mod p2),
(iii) 3uq+2 − 2uq+1 − uq − 2u3 + u2 − 1 ≡ 0 (mod p2),

where t′ is the derivative of the Tribonacci characteristic polynomial t.

Proof. Let α, β, γ are the roots of t(x) in Op and let u ∈ Op, t(u) ≡ 0 (mod p). We can
assume u ≡ α (mod p). Let u = α + pw. Then (ii) is equivalent to

(αq − α)(t′(α) + pw · t′′(α)) ≡ 0 (mod p2). (3.2)

If h(p) = h(p2), then by Lemmas 2.1 and 2.6 we have ordp2(α) 6≡ 0 (mod p) which,
together with Lemma 3.1, yields αq ≡ α (mod p2) and (3.2) follows. Conversely,
assume (3.2). As p 6= 2, 11, we have t′(α) + pw · t′′(α) = 3α2 − 2α− 1 + 6αpw − 2α ≡
3(α + pw)2 − 2(α + pw)− 1 ≡ f ′(u) 6≡ 0 (mod p). Consequently, (3.2) yields αq − α ≡
0 (mod p2). Using Lemma 3.1 and Corollary 2.10, we have detAp ≡ 0 (mod p) and the
irreducibility of t(x) yields Ap ≡ 0 (mod p) by (2.10). This, together with Lemma 2.1,
implies h(p) = h(p2) as required. Finally, by expansion of (ii) we obtain (iii) and the
proof is finished. ¤

Remark 3.4. The result of Theorem 3.3, part (iii), is similar to that found by Li [4,
p. 83] for a Fibonacci sequence.

Remark 3.5. Theorems 3.2 and 3.3 have been proved on the assumption that t(x) is
irreducible over Qp. Let us now discuss the case of this assumption not being fulfilled.
Clearly, the proofs of the (i) ⇒ (ii) implications of both theorems remain valid even if
the assumption of irreducibility of t(x) is omitted. When proving the reverse (ii) ⇒ (i)
implication, the following two cases may occur.

If α is the unique root with the property ordp2(α) 6≡ 0 (mod p) then, by Lemma
2.6, we have Ap 6≡ 0 (mod p) and thus h(p) 6= h(p2). By Theorem 2.8, we have
detAp ≡ 0 (mod p). Consequently, p is a Tribonacci-Wieferich prime of the second
kind. In the opposite case, Lemma 2.6 and Lemma 2.7 yield Ap ≡ 0 (mod p), and
h(p) = h(p2) follows.

4. Computer investigation of Tribonacci-Wieferich primes

In addition to the main result formulated in Theorem 4.3, our computer search for
the Tribonacci-Wieferich primes brought an interesting discovery.

Let I denote the set of all primes for which t(x) is irreducible over Qp and I(x) be
the number of all p ∈ I, p ≤ x. Further, let Q denote the set of all primes p for which
t(x) is factorized over Qp into a product of a linear factor and a quadratic irreducible
factor, and Q(x) be the number of all p ∈ Q, p ≤ x. Finally, let L denote the set of all
primes p for which t(x) is factorized over Qp into linear factors and L(x) be the number
of all p ∈ L, p ≤ x. Clearly, I ∪Q ∪ L is the set of all primes and I, Q, L are pairwise
disjoint. Consequently, I(x) + Q(x) + L(x) = π(x) where π(x) is the number of all
primes p not exceding x. Note that 2 ∈ I and 11 ∈ Q. The result of our computer
examination of the exact values I(x), Q(x), L(x) is summarized in the following table.
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x I(x) Q(x) L(x) π(x)
102 11 12 2 25
103 59 84 25 168
104 412 616 201 1229
105 3212 4805 1575 9592
106 26135 39305 13058 78498
107 221524 332459 110596 664579
108 1920148 2881402 959905 5761455
109 16949462 25425162 8472910 50847534

(4.1)

Table 1.

From Table 1, we can see that, approximately, we have

I(x) : Q(x) : L(x) ≈ 2 : 3 : 1. (4.2)

Recall now that a subset A of the set of all primes has a natural density d(A) if

d(A) = lim
x→∞

|{p ∈ A; p ≤ x}|
π(x)

. (4.3)

Using the Frobenius density theorem [2], we can prove that d(I) = 1/3, d(Q) = 1/2,
and d(L) = 1/6. Thus we can formulate

Theorem 4.1. For d(I), d(Q), d(L) we have d(I) : d(Q) : d(L) = 2 : 3 : 1.

This means that our computer observation (4.2) is a consequence of Theorem 4.1.

Remark 4.2. An interesting question is whether for some primes, the chance that
they are Tribonacci-Wieferich is greater than for the others. This is supported by
the fact that the following assertion holds: If q = p[Lp:Qp], then in the multiplicative
group [Op/(p

2)]× there exist exactly q − 1 elements α satisfying αq−1 ≡ 1 (mod p2).
Consequently, the number of α ∈ [Op/(p

2)]× satisfying αq−1 ≡ 1 (mod p2) strongly
depends on the form of factorization of t(x) over Qp. Supposing that the images of
the roots α, β, γ in [Op/(p

2)]× are randomly distributed (such as when rolling a die)
the probability strongly depends on which of the sets I,Q, L the prime p belongs to.
A similar reasoning for the case of a Fibonacci sequence would lead to an interesting
conclusion that the probability of finding the first Fibonacci-Wieferich prime is much
greater for primes ending with the digits 1 or 9.

Now we state the main theorem. By means of an extensive computer search we have
obtained the following two results:

Theorem 4.3. (i) There is no Tribonacci-Wieferich prime p < 109. (ii) There is no
Tribonacci-Wieferich prime of the second kind p < 109.

Remark 4.4. By analogy with Problem 2.12, we can consider a similar problem for
a Tetranacci sequence (Mn)∞n=0 defined by Mn+4 = Mn+3 + Mn+2 + Mn+1 + Mn with
M0 = M1 = M2 = 0 and M3 = 1. Now, let h(m) denote a period of (Mn mod m)∞n=0.
Is there a prime p for which h(p) 6= h(p2) and ordp(α) = ordp2(α) where α ∈ Z is a
solution of x4 − x3 − x2 − x− 1 ≡ 0 (mod p2)? To this problem we find the following
solution.

Theorem 4.5. For p < 109, there are exactly three Tetranacci-Wieferich primes of the
second kind: p1 = 17, p2 = 191, and p3 = 11351.
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CHAPTER 7

A SEARCH FOR TRIBONACCI - WIEFERICH

PRIMES
F

Abstract. Such problems as the search for Wieferich primes or Wall-Sun-Sun primes
are intensively studied and often discussed at present. This paper is devoted to a sim-
ilar problem related to the Tribonacci numbers.

1. Introduction

Let Tn denote the n-th Tribonacci number defined by Tn+3 = Tn+2 + Tn+1 + Tn with
T0 = 0, T1 = 0, and T2 = 1. Tribonacci numbers has been examined by many authors.
First by A. Agronomof [1] in 1914 and subsequently by many others. See, for example,
[2], [5], [7], [8], [9], [10]. It is well known that (Tn mod m)∞n=0 is periodic for any modulus
m > 1. The least positive integer h satisfying [Th, Th+1, Th+2] ≡ [T0, T1, T2] (mod m) is
called a period of (Tn mod m)∞n=0 and denoted by h(m).

Two problems remain open: 1. Is there a prime p satisfying h(p) = h(p2) (M. E.
Waddill 1978, [10])? 2. Is there a prime p such that h(p) 6= h(p2) and ordp(α) =
ordp2(α) where α ∈ Z is a solution of x3 − x2 − x − 1 ≡ 0 (mod p2) (J. Klaška 2007,
[5])? Here, ordpt(α) denotes the order of α in the multiplicative group of the ring
Z/ptZ, t ∈ N. See also [6, Problem 3.2]. In [6], the primes p satisfying h(p) = h(p2)
are called Tribonacci - Wieferich primes and the primes for which h(p2) 6= h(p) and
ordp(α) = ordp2(α) where α ∈ Z is a solution of x3 − x2 − x − 1 ≡ 0 (mod p2) are
called Tribonacci-Wieferich primes of the second kind. In [6] we proved that neither
of this problems has a solution for p < 109. In the present paper we substantially
extend these results focussing on the case of the Tribonacci characteristic polynomial
t(x) = x3 − x2 − x− 1 being irreducible modulo p.

2. Tribonacci modulo p2 - an irreducible case

Let I = {3, 5, 23, 31, . . . } be the set of all primes p for which t(x) is irreducible over
Fp = Z/pZ. Let K be the splitting field of t(x) over Fp, p ∈ I and α, β, γ the roots of
t(x) in K. Clearly, K = GF (p3) and the multiplicative group of K has p3−1 elements.

Using the Frobenius authomorphism, we can easily prove that β = αp and γ = αp2
.

This implies that α, β, γ have the same order in the multiplicative group of K. It is
well known, see e.g. [5], [6], [8], that for any prime p 6= 2, 11:

h(p) = lcm(ordL(α), ordL(β), ordL(γ)) (2.1)

where L is the splitting field of t(x) over Fp and ordL(α), ordL(β), ordL(γ) are the orders
of α, β, γ in the multiplicative group of L. Consequently, for p ∈ I, we can state

F
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Lemma 2.1. Let p ∈ I. Then h(p) = ordK(α) where α is any root of t(x) in a splitting
field K of t(x) over Fp.

Lemma 2.2. For any prime p ∈ I we have h(p)|p2 + p + 1.

Proof. The Viète equation αβγ = 1 together with β = αp and γ = αp2
yields αp2+p+1 =

1. This implies ordK(α)|p2 +p+1 and the relation h(p)|p2 +p+1 follows from Lemma
2.1. ¤

Remark 2.3. In the relation h(p)|p2 + p + 1 it is often, but not always, true that
h(p) = p2+p+1. For example, h(3) = 32+3+1 = 13 but h(31) = (312+31+1)/3 = 331.

In 1978, M. E. Waddill [10, Theorem 8] proved that for any prime p:

If h(p) 6= h(p2), then h(pt) = pt−1h(p) for any t ∈ N. (2.2)

Consequently, we have either h(p2) = p ·h(p) or h(p2) = h(p). If we combine Waddill’s
result (2.2) with Lemma 2.2, we obtain

Lemma 2.4. For any prime p ∈ I, h(p) = h(p2) if and only if h(p2)|p2 + p + 1.

Now we show that to calculate the powers of α in the multiplicative group of K we
need to calculate with Tribonacci numbers.

Lemma 2.5. For any positive integer n ≥ 3 we have the identity

xn = Tnx
2 + (Tn−1 + Tn−2)x + Tn−1 + sn(x)t(x) where sn(x) =

n∑

k=1

Tkx
n−k. (2.3)

Proof. Using induction on n. ¤

Reducing the identity (2.3) by the double modulus modd(m, t(x)) where m > 1 is
an arbitrary positive integer, we obtain the congruence

xn ≡ Tnx
2 + (Tn−1 + Tn−2)x + Tn−1(modd m, t(x)). (2.4)

From (2.4) now it follows that

xn ≡ 1(modd m, t(x)) if and only if [Tn, Tn+1, Tn+2] ≡ [0, 0, 1](mod m). (2.5)

Particulary, if m = p, p ∈ I and x = α where α is any root of t(x) in K, (2.5) implies
Lemma 2.1.

Example 2.6. Let p = 3. Then p2 + p + 1 = 13 and by (2.4) we have x13 ≡ 504x2 +
423x + 274 ≡ 4 6≡ 1(modd 32, t(x)). From (2.5) now it follows that h(3) 6= h(32) and
thus p = 3 is not a Tribonacci - Wieferich prime. Moreover, from Lemma 2.2 and
h(3) 6= 1, it follows that h(3) = 13 and by (2.2) we have h(32) = 39.

Let q ∈ I. By Iq denote the set of all primes p ∈ I not exceeding q. Theoretically,
we have two posibilites when searching for Tribonacci - Wieferich primes in Iq. First,

we can calculate a finite sequence (Tn)q2+q+1
n=0 and, subsequently, for any particular

primes p ∈ Iq, test whether [Tp2+p+1, Tp2+p+2, Tp2+p+3] ≡ [0, 0, 1] (mod p2). Second, we

compute the reduced sequences (Tn mod p2)p2+p+1
n=0 for any p ∈ Iq.



CHAPTER 7 81

Let us now show that the first possibility is virtually excluded as it uses an enormous
amount of computer memory. It can be easily proved that the Tribonacci polynomial
t(x) has one real root

τ =
1

3

(
3

√
19 + 3

√
33 +

3

√
19− 3

√
33 + 1

)
≈ 1.839 286 755 214 161 132 · · · (2.6)

and two complex roots σ, σ ( σ is the complex conjugate of σ ) where

σ =
1

6

(
2− 3

√
19 + 3

√
33− 3

√
19− 3

√
33

)
+

√
3i

6

(
3

√
19 + 3

√
33− 3

√
19− 3

√
33

)
.

(2.7)

Put ε = τ 2/|τ − σ|2 ≈ 0.618 419 922 319 392 550 · · · . In [7], W. R. Spickerman proved
that for Tn we have

Tn = [ε · τn + 0.5]. (2.8)

Here [x] denotes the greatest integer not exceeding x. Clearly, if x is positive, then [x]
is simply the integer part of x. Note that, in [7], σ is incorrect. See [7, p. 119]. From
(2.8) it follows that, for log Tn, we have

log Tn ≈ n · log τ where log τ = 0.264 649 443 484 250 871 · · · . (2.9)

Evidently, Tn has exactly k digits for n > 1 if and only if k − 1 ≤ log Tn < k. This,
together with (2.9) yields an estimate for the number of digits of Tn. The following
example may provide a more precise idea of the greatness of Tribonacci numbers Tn.

Example 2.7. The Tribonacci number T100 has 26 digits, T1000 has 264 digits, and
T10000 has 2646 digits. Consider now the greatest prime p from the interval [2, 109]
for which t(x) is irreducible modulo p. This p is equal to 999999929. To test whether
h(p) = h(p2) we need to find [Tq, Tq+1, Tq+2] where q = p2+p+1 = 999999859000004971.
Since, by (2.9), Tq has more than 5 · 1015 digits, we need about 106 GB of memory for
Tq, assuming that one byte is needed for one digit.

In this paper, we use a method based on matrix algebra to search for Tribonacci -
Wieferich primes on a given set Iq using a computer. It is well known ( see e.g. [5],
[9] ) that Tribonacci numbers can be computed by powers of the Tribonacci matrix T
where

T =




0 1 0
0 0 1
1 1 1


 and T n+1 =




Tn Tn−1 + Tn Tn+1

Tn+1 Tn + Tn+1 Tn+2

Tn+2 Tn+1 + Tn+2 Tn+3


 for n ∈ N. (2.10)

Clearly, h(m) is the period of (Tn mod m)∞n=0 if and only if h(m) is the smallest
positive integer h for which T h ≡ E (mod m) where E is the 3 × 3 identity matrix.
This, together with Lemma 2.4, yields

Lemma 2.8. For any p ∈ I we have h(p) = h(p2) if and only if T p2+p+1 ≡ E (mod p2)
where E is the 3× 3 identity matrix.

Now we briefly describe the algorithm used to prove the main theorem of this section.
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Algorithm for testing h(p) = h(p2) for p ∈ I

First, we find a 2-adic expansion of p2 + p + 1 = c0 + 2c1 + 22c2 + · · ·+ 2kck. Second,
we define the matrix T mod p2 and, subsequently, we compute k matrices T 2i

mod p2

for i = 1, . . . , k. Third, we compute the matrix

T p2+p+1 mod p2 =
k∏

i=0

(T 2i

mod p2)ci . (2.11)

Finally, we test whether T p2+p+1 mod p2 is equal to the identity matrix E. This process
is repeated for every prime p ∈ I.

Implementing this algorithm in Pari GP, we have obtained the following result:

Theorem 2.9. For any prime p ∈ I, p < 1011 we have h(p) 6= h(p2).

Let us remark that, achieving this result takes about 1500 hours of CPU time on a
1.6 GHz processor computer.

3. Searching for Tribonacci - Wieferich primes p 6∈ I

In the case of p /∈ I we can use the criteria derived in [6] to search for Tribonacci -
Wieferich primes. Moreover, when dealing with this case, Tribonacci - Wieferich primes
of the second kind may also be found easily. Indeed, by [5], from h(p) = h(p2), we have
ordp(ξ) = ordp2(ξ) for any solution ξ ∈ Z of t(x) ≡ 0 (mod p2). Next, according to [6],
if α ∈ Z is the unique root of t(x) modulo p with the property

3αp+2 − 2αp+1 − αp − 2α3 + α2 − 1 ≡ 0 (mod p2) (3.1)

or, equivalently, with the property

α3p − α2p − αp − 1 ≡ 0 (mod p2) (3.2)

then p is the Tribonacci-Wieferich prime of the second kind. It should be stressed that
the criteria (3.1) and (3.2) make it possible to find Tribonacci - Wieferich primes of the
second kind and thus also Tribonacci - Wieferich primes p with p 6∈ I without having
to calculate with Tribonacci numbers. The following result has been obtained using
(3.1) in Pari GP.

Theorem 3.1. There is no prime p 6∈ I, p < 1011 satisfying ordp(ξ) = ordp2(ξ) where
ξ ∈ Z is a solution of t(x) ≡ 0 (mod p2). Consequently, there is no Tribonacci-
Wieferich prime of the second kind less than 1011.

Note that, as compared with Theorem 2.9, only about 700 hours of CPU time are
needed to obtain Theorem 3.1 on the same computer.

Corollary 3.2. For any prime p 6∈ I, p < 1011, we have h(p) 6= h(p2).

If we combine Corollary 3.2 with Theorem 2.9, we obtain the main theorem of this
paper:

Theorem 3.3. There is no Tribonacci - Wieferich prime p < 1011.

Moreover, based on (2.2), we can now state

Corollary 3.4. For any prime p < 1011 and for any t ∈ N, we have h(pt) = pt−1h(p).
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Remark 3.5. Like in the problem of finding Fibonacci - Wieferich primes (see [3], [4])
also in the Tribonacci case a question may be raised whether the probability of some
primes being Tribonacci - Wieferich is greather than that of others. Using a reasoning
similar to that used in [4], we can conclude that further search of the set I for p > 1011

will virtually not increase the probability of finding a Tribonacci - Wieferich prime.
Consequently, the chances of finding Tribonacci - Wieferich primes on a computer
seem to be greater for primes not in I, particulary, for those for which t(x) can be
factorized into linear terms over Fp.
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CHAPTER 8

TRIBONACCI PARTITION FORMULAS

MODULO m F

Abstract. Each Tribonacci sequence starting with an arbitrary triple of integers is
periodic modulo m for any modulus m > 1. For a given m, the mapping between
the set S of all m3 triples of initial values and the set of their corresponding periods
define a partition of the set S. In this paper we shall investigate some basic questions
related to these partitions from the point of view of enumerative combinatorics.

1. Preliminary results

Let (Tn)∞n=0 be a Tribonacci sequence defined by Tn+3 = Tn+2 + Tn+1 + Tn with
the triple of initial values [T0, T1, T2] = [a, b, c] where a, b, c are integers. It is well
known, see for example [9], that (Tn mod m)∞n=0 is periodic for any modulus m > 1.
Let us denote the period of (Tn mod m)∞n=0 by h(m)[a, b, c]. That is, h(m)[a, b, c] is
the least positive integer k for which we have [Tk, Tk+1, Tk+2] ≡ [T0, T1, T2] (mod m).
Particularly, if [T0, T1, T2] = [0, 0, 1], then the period h(m)[0, 0, 1] will be denoted by
h(m). It is well known [9, p. 155] that, if m = pt1

1 . . . ptk
k is a prime factorization of m,

then

h(m)[a, b, c] = lcm(h(pt1
1 )[a, b, c], . . . , h(ptk

k )[a, b, c]).

Consequently, h(m) = lcm(h(pt1
1 ), . . . , h(ptk

k )). See also [8, p. 347]. Furthermore, for
any prime p and for any positive integers r ≤ t, we have:

If h(p) = · · · = h(pr) 6= h(pr+1) then h(pt) = pt−rh(p).

Particularly, if r = 1, then h(pt) = pt−1h(p). See [8, pp. 349–351]. Up to the present,
no instance of h(p) = h(p2) has been found and the question whether h(p) = h(p2)
never appears is open. In [5], the primes p satisfying h(p) = h(p2) were called
Tribonacci-Wieferich primes. Note that, for a composite modulus m, the equality
h(m) = h(m2) can occur. For example, for m = 208919 we have m = p1p2 where
p1 = 59, and p2 = 3541. Now it is not difficult to verify that h(m) = lcm(h(p1), h(p2)) =
lcm(3541, 181720) = 643470520, and h(m2) = lcm(h(p2

1), h(p2
2)) = lcm(59 · 3541, 3541 ·

181720) = h(m).
Let Lp be the splitting field of the Tribonacci polynomial t(x) = x3−x2−x− 1 over

the field of p-adic numbers Qp and let α, β, γ be the roots of t(x) in Lp. Further, let
Op be the ring of integers of Lp. Clearly, α, β, γ ∈ Op. As the discriminant of t(x) is
equal to −44, the Galois extension Lp/Qp does not ramify for p 6= 2, 11. For any unit
ξ ∈ Op and for any t ∈ N, we denote by ordpt(ξ) the least positive rational integer k

F
Published in J. Klaška, Tribonacci partition formulas modulo m, Acta Mathematica Sinica,

English Series, 26.3 (2010), 465–476.
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such that ξk ≡ 1 (mod pt). If p 6= 2, 11, then, by [5, Theorem 2.4], we have

h(pt) = lcm(ordpt(α), ordpt(β), ordpt(γ)). (1.1)

From (1.1) it follows easily that h(p) = h(pr) implies ordp(ξ) = ordpr(ξ) for any ξ ∈
{α, β, γ}. Consequently, if r is the largest positive integer satisfying h(p) = h(pr) and
s is the largest positive integer satisfying ordp(ξ) = ordps(ξ), then r ≤ s. In [5] an
interesting question was opened whether the case r < s really occurs and the primes p
satisfying ordp(ξ) = ordp2(ξ) and h(p) 6= h(p2) were called Tribonacci-Wieferich primes
of the second kind. Computer search in [5] showed that, for p ≤ 109, there is neither a
Tribonacci-Wieferich nor a Tribonacci-Wieferich prime of the second kind. Moreover,
if r < s, then there is exactly one root ξ ∈ {α, β, γ} satisfying ordp(ξ) = ordps(ξ). In
this case, ξ ∈ Zp where Zp is the ring of p-adic integers. It is also well known that the
periods h(p) highly depend on the form of factorization of t(x) modulo p. For p 6= 2, 11,
we have (see [7, Theorem 4]):

If
( p

11

)
= 1, then

{
h(p)|p2 + p + 1 if t(x) is irreducible mod p,

h(p)|p− 1 otherwise.

If
( p

11

)
= −1, then h(p)|p2 − 1. Here

( p

11

)
denotes the Legendre symbol.

The relations between the periods h(p)[a, b, c] and h(pt)[a, b, c] are examined in detail
in [3] and [4]. Let p 6= 2, 11 and [a, b, c] 6≡ [0, 0, 0] (mod p). If t(x) is irreducible over
Qp and h(p) = · · · = h(pr) 6= h(pr+1), then, by [3], we have

h(pt)[a, b, c] =

{
h(p) for t ≤ r,

pt−rh(p) for t > r.
(1.2)

In the opposite case, there is at least one root ξ of t(x) such that ξ ∈ Zp. Putting
ξ mod pt = ξt, we can, for any t ∈ N, define E(ξt) = {[q, qξt, qξ

2
t ]; q ∈ Z/ptZ}. Let

ordp(ξ) = · · · = ordps(ξ) 6= ordps+1(ξ). Put h0 = ordp(ξ). If [a, b, c] ∈ E(ξt), we have

h(pt)[a, b, c] =

{
h0 for t ≤ s,

pt−sh0 for t > s.
(1.3)

On the other hand, if [a, b, c] 6∈ E(ξt) for no root ξ of t(x) and r is the largest positive
integer satisfying h(p) = h(pr), we have (1.2).

2. Concept of partition formulas

Let us consider a binary relation ∼ on the set S = [Z/mZ]3 defined by

[a1, b1, c1] ∼ [a2, b2, c2] if and only if h(m)[a1, b1, c1] = h(m)[a2, b2, c2]. (2.1)

Clearly, ∼ is an equivalence on S and S/ ∼ is a partition of S. Let N(h,m) denote
the number of elements in the class {[a, b, c] ∈ S; h(m)[a, b, c] = h}, and let H denote
the set of all possible periods h(m)[a, b, c]. Since, for a given modulus m, there are m3

different initial conditions, we have

m3 =
∑

h∈H

N(h,m). (2.2)

Further, for [a1, b1, c1], [a2, b2, c2] ∈ S, we put [a1, b1, c1] ≈ [a2, b2, c2] if and only if, in the
sequence (Tn mod m)∞n=1 that starts with a triple [a1, b1, c1], there is an index i such that
[Ti, Ti+1, Ti+2] ≡ [a2, b2, c2] (mod m). The relation ≈ is also an equivalence on S and the
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partition S/ ≈ is a refinement of S/ ∼. Let n(h,m) denote the number of classes in a
partition S/≈ that result from a refinement of the class {[a, b, c] ∈ S; h(m)[a, b, c] = h}.
That is, n(h,m) establishes the number of distinct Tribonacci sequences modulo m
whose period is equal to h. Since we have N(h,m) = n(h,m) · h, from (2.2) it follows
that

m3 =
∑

h∈H

n(h,m) · h = c1 · h1 + · · ·+ cr · hr, (2.3)

where H ={h1, . . . , hr} and ci = n(hi,m) for i ∈ {1, . . . , r}. The relation (2.3) will be
called a Tribonacci partition formula modulo m, and the left-hand side of (2.3) will be
writen as [m]3. If, in (2.3), ci = 1 occurs for some 1 ≤ i ≤ r, then we shall write 1 ·hi or
hi for short. For example, if m = 10, then H = {1, 2, 4, 31, 62, 124} and the Tribonacci
partition formula modulo 10 has the form [10]3 = 2 · 1 + 2 + 4 + 8 · 31 + 4 · 62 + 4 · 124.

In a way similar to that in (2.3), we can define a partition formula for any ∅ 6= R ⊆ S.
This formula will be denoted by [m]3R. The following example will be useful in the
sequel. Let R = {[a, b, c] ∈ [Z/ptZ]3; [a, b, c] ≡ [0, 0, 0](mod p)}. Then [pt]3R = [pt−1]3

for any t > 1.
The combinatorial problem to establish the numbers n(h,m) for sequences defined

by a given linear recurrence of order k was originally formulated by M. Ward [10] in
1935. A solution for Fibonacci sequences has been found by A. Andreassian [1]. In the
present paper we resolve this problem for the case of Tribonacci sequences.

3. Sum and product of the formulas

In this section, we find two important methods that use known formulas to construct
some others. These procesess, together with the results obtained in [3], [4], and [5],
enable us to establish the forms of Tribonacci formulas for any modulus m > 1.

Let ∅ 6= S1, S2 ⊆ S = [Z/mZ]3, and S1∩S2 = ∅. Further, let [m]3S1
= c1·h1+· · ·+cr·hr

and [m]3S2
= c′1 · h′1 + · · ·+ c′s · h′s. We define the sum of [m]3S1

, [m]3S2
as follows

[m]3S1
+ [m]3S2

= c1 · h1 + · · ·+ cr · hr + c′1 · h′1 + · · ·+ c′s · h′s. (3.1)

Clearly, if there is 1 ≤ j ≤ s such that hi = h′j for some 1 ≤ i ≤ r, then j is unique.
In this case, in (3.1), we shall write cihi + c′jh

′
j as (ci + c′j) · hi. From (3.1) we can now

establish

Theorem 3.1 Let ∅ 6= {S1, · · · , Sk} be an arbitrary system of nonempty and pairwise
disjunct subsets of S = [Z/mZ]3. Put R = ∪k

i=1Si. Then we have

[m]3R =
k∑

i=1

[m]3Si
. (3.2)

Particulary, if {S1, . . . , Sk} is a partition of S, then [m]3 =
∑k

i=1[m]3Si
.

Let m1,m2 > 1 be arbitrary modules such that (m1,m2) = 1. Further assume that
the formulas [m1]

3 = c1 · h1 + · · ·+ cr · hr, and [m2]
3 = c′1 · h′1 + · · ·+ c′s · h′s are known.

We define the product of [m1]
3 and [m2]

3 by

[m1]
3 · [m2]

3 =
r∑

i=1

s∑
j=1

cic
′
jgcd(hi, h

′
j) · lcm(hi, h

′
j). (3.3)



CHAPTER 8 87

Thus, the product of the formulas can be computed as the obvious product of polynomi-
als and the product of ci ·hi and c′j ·h′j will be interpreted as cic

′
j gcd(hi, h

′
j) · lcm(hi, h

′
j).

Finally, after this expansion, in (3.3), we group the terms with the same period.

Theorem 3.2 Let m = m1m2 and (m1,m2) = 1. Then we have [m]3 = [m1]
3 · [m2]

3.

Proof Let h1 = h(m1)[a1, a2, a3], h2 = h(m2)[b1, b2, b3]. By the Chinese Remainder
Theorem, it follows that any two triples [a1, a2, a3](mod m1), [b1, b2, b3](mod m2) deter-
mine exactly one triple [c1, c2, c3](mod m1m2) such that [c1, c2, c3]≡ [a1, a2, a3](mod m1)
and [c1, c2, c3] ≡ [b1, b2, b3](mod m2). Moreover, for [c1, c2, c3], we have h(m1m2)[c1, c2,
c3] = lcm(h(m1)[c1, c2, c3], h(m2)[c1, c2, c3]) = lcm(h(m1)[a1, a2, a3], h(m2)[b1, b2, b3]) =
lcm(h1,h2) = h. Hence, the number of all triples which determine modulo m = m1m2

a period h = lcm(h1, h2) is equal to N(h1,m1)N(h2,m2). Consequently, we have

N(h,m) =
∑

(h1,h2)

N(h1,m1)N(h2,m2) and n(h,m) =
1

h

∑

(h1,h2)

N(h1,m1)N(h2,m2),

where the sum extends over all pairs (h1, h2) satisfying lcm(h1, h2) = h. Further, let
H1 = {h1, . . . , hr} be the set of all possible periods modulo m1, and H2 = {h′1, . . . , h′s}
be the set of all possible periods modulo m2. Then H = {lcm(hi, h

′
j); hi ∈ H1, h

′
j ∈ H2}

is the set of all periods modulo m = m1m2. Using (2.2), and (3.3), we have

[m]3 =
∑

h∈H

n(h, m) · h

=
∑

h∈H

∑

(hi,h′j)

N(hi,m1)N(h′j,m2)

=
∑

hi∈H1

∑

h′j∈H2

n(hi,m1)n(h′j,m2)gcd(hi, h
′
j) · lcm(hi, h

′
j)

=
r∑

i=1

s∑
j=1

cic
′
jgcd(hi, h

′
j) · lcm(hi, h

′
j) = [m1]

3 · [m2]
3.

By induction, we can easily extend Theorem 3.2 to an arbitrary finite number of
pairwise relatively prime factors mi. Particulary, we have

Corollary 3.3 Let m = pt1
1 . . . ptk

k be a prime factorization of m and let, for any

1 ≤ i ≤ k, the formulas [pti
i ]3 = c

(i)
1 · h(i)

1 + · · ·+ c
(i)
si · h(i)

si be known. Then we have

[m]3 =[pt1
1 ]3. . . [ptk

k ]3 =

s1∑
i1=1

· · ·
sk∑

ik=1

[c
(1)
i1

. . . c
(k)
ik

gcd(h
(1)
i1

, . . . , h
(k)
ik

)] · lcm(h
(1)
i1

, . . . , h
(k)
ik

).

(3.4)

Moreover,

n(h,m) =
1

h

∑

(h1,...,hk)

N(h1, p
t1
1 ) · · ·N(hk, p

tk
k ), (3.5)

where the sum extends over all k-tuples (h1, . . . , hk) with lcm(h1, . . . , hk) = h.

Corollary 3.3 has a practical meaning. If we know the partition formulas for the
modulus of the form of powers of primes, then we can use them to construct the
partition formulas for any composite modulus m. By means of (3.4), we reduced
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the investigation of Tribonacci partition formulas to those moduli that are powers of
primes.

Example 3.4 Using Theorem 3.2, we find the Tribonacci partition formula [12]3. We
assume that the formulas [22]3 and [3]3 are known. Since [22]3 = 2 · 1 + 2 + 3 · 4 + 6 · 8,
and [3]3 = 1 + 2 · 13, Theorem 3.2 yields

[12]3 = [22]3 · [3]3 = (2 · 1 + 1 · 2 + 3 · 4 + 6 · 8) · (1 · 1 + 2 · 13) =

= 2 · 1 + 2 + 3 · 4 + 6 · 8 + 4 · 13 + 2 · 26 + 6 · 52 + 12 · 104.

4. Tribonacci partition formulas for powers of primes

We start our investigation with p = 2. By [4], for periods h(2t)[a, b, c] we have

Lemma 4.1 Let t > 1 and [a, b, c] 6≡ [0, 0, 0] (mod 2). Then we have

(i) If [a, b, c] ≡ [1, 1, 1] (mod 2), then h(2t)[a, b, c] = 2t.
(ii) If [a, b, c] 6≡ [1, 1, 1] (mod 2), then h(2t)[a, b, c] = 2t+1.

By direct computation, we can establish

[ 2 ]3 = 2 · 1 + 2 + 4,

[22]3 = 2 · 1 + 2 + 3 · 4 + 6 · 8,
[23]3 = 2 · 1 + 2 + 3 · 4 + 14 · 8 + 24 · 16.

See also [6, p. 84]. Now we are ready to prove

Theorem 4.2 For any t ≥ 3, the Tribonacci partition formula [2t]3 has the form

[2t]3 = 2 · 1 + 2 + 3 · 22+(7 · 2) · 23+(7 · 23) · 24+. . .+(7 · 22t−5) · 2t+(3 · 22t−3) · 2t+1.
(4.1)

Proof Put S =[Z/2tZ]3, S1 ={[a, b, c]∈S; [a, b, c]≡ [0, 0, 0](mod 2)}, S2 = {[a, b, c] ∈
S; [a, b, c] ≡ [1, 1, 1](mod 2)}, and S3 =S− (S1∪S2). Clearly, {S1, S2, S3} is a partition
of S. By elementary combinatorial formulas we derive |S1| = 23(t−1), |S2| = 23(t−1), and
|S3| = 6 · 23(t−1). Let t > 1. From Lemma 4.1, it follows that [2t]3S2

= 22t−3 · 2t, and
[2t]3S3

= (3 · 22t−3) · 2t+1. Since [2t]3S1
= [2t−1]3, using Theorem 3.1, we have

[2t]3 = [2t−1]3 + 22t−3 · 2t + (3 · 22t−3) · 2t+1. (4.2)

Let t ≥ 3. In the first induction step, we verify that (4.1) is true for t = 3. Since
[22]3 = 2 · 1 + 2 + 3 · 4 + 6 · 8, from (4.2), it follows that [23]3 = [22]3 + 8 · 8 + 24 · 16 =
2 · 1 + 2 + 3 · 4 + 14 · 8 + 24 · 16, and (4.1) holds. Furthermore, we assume that (4.1) is
true for a fixed t ≥ 3 and prove this for t + 1. Using (4.2), we have

[2t+1]3 = 2 · 1 + 2 + 3 · 22 +
t∑

i=3

(7 · 22i−5) · 2i + (3 · 22t−3) · 2t+1

+ 22t−1 · 2t+1 + (3 · 22t−1) · 2t+2

= 2 · 1 + 2 + 3 · 22 +
t+1∑
i=3

(7 · 22i−5) · 2i + (3 · 22t−1) · 2t+2.

Now we shall deal with the case of the prime p = 11. Over the field Q11, t(x) has
only one root α = 9+2 ·11+1 ·112 + · · · ∈ Z11. Put E(αt) = {[q, qαt, qα

2
t ]; q ∈ Z/11tZ}

where αt = α mod 11t. By [4], for periods h(11t)[a, b, c] we have:
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Lemma 4.3 Let t ≥ 1 and [a, b, c] 6≡ [0, 0, 0] (mod 11). Then we have

(i) If [a, b, c] 6∈ E(αt) and c ≡ 3a + 5b (mod 11), then h(11t)[a, b, c] = 10 · 11t−1.
(ii) If [a, b, c] 6∈ E(αt) and c 6≡ 3a + 5b (mod 11), then h(11t)[a, b, c] = 10 · 11t.
(iii) If [a, b, c] ∈ E(αt), then h(11t)[a, b, c] = ord11t(αt) = 5 · 11t−1.

Moreover, we have

Lemma 4.4 If [a, b, c] ∈ E(αt) then c ≡ 3a + 5b (mod 11).

Proof Let [a, b, c] ∈ E(αt). Then there is a q such that [a, b, c] ≡ [q, qαt, qα
2
t ](mod 11).

As α ≡ 9 (mod 11), we have c ≡ qα2
t ≡ 4q ≡ 3q + 5qαt ≡ 3a + 5b (mod 11).

Next, by direct calculation, we can find that

[ 11 ]3 = 1 + 2 · 5 + 11 · 10 + 11 · 110,

[112]3 = 1 + 2 · 5 + 11 · 10 + 2 · 55 + 1462 · 110 + 1331 · 1210,

[113]3 = 1 + 2 · 5 + 11 · 10 + 2 · 55+1462 · 110+2 · 605+177022 · 1210 + 161051 · 13310.

Now we are ready to state

Theorem 4.5 For any t ≥ 2 the Tribonacci partition formula [11t]3 has the form

[11t]3=1 + 11 · 10 +
t−1∑
i=0

2 · (5 · 11i) +
t−2∑
i=1

(133 · 112i−1 − 1) · (10 · 11i) + 112t−1 · (10 · 11t).

Proof Let t ≥ 2. Put S = [Z/11tZ]3, S1 = {[a, b, c] ∈ S; [a, b, c] ≡ [0, 0, 0] (mod 11)},
S2 = E(αt)− S1, S3 = {[a, b, c] ∈ S; c ≡ 3a + 5b (mod 11)} − (S1 ∪ S2), S4 =S − (S1 ∪
S2∪S3). From Lemma 4.4 it follows that {S1, S2, S3, S4} is a partition of S. After short
calculation, we obtain |S1|=113(t−1), |S2|=10 · 11t−1, |S3|=120 · 113(t−1) − 10 · 11t−1,
and |S4|=1210 · 113(t−1). Lemma 4.3 now implies that [11t]3S2

= 2 · (5 · 11t−1), [11t]3S3
=

(12 · 112(t−1) − 1) · (10 · 11t−1), [11t]3S4
= 112t−1 · (10 · 11t). This, together with [11t]3S1

=
[11t−1]3 and Theorem 3.1 yields

[11t]3 =[11t−1]3+2 · (5 · 11t−1)+(12 · 112t−2−1) · (10 · 11t−1)+112t−1 · (10 · 11t). (4.3)

Using (4.3), we can now easily finish the proof by induction.

For the proofs of the subsequent theorems, the following partition {S0, S1, . . . , St} of
the set S = [Z/ptZ]3 will be useful:

S0 = {[a, b, c]; [a, b, c] 6≡ [0, 0, 0](mod p)},
Sj = {[a, b, c]; [a, b, c]≡ [0, 0, 0](mod pj) and [a, b, c] 6≡ [0, 0, 0](mod pj+1)}, 1≤j ≤ t−1,

St = {[0, 0, 0]}. (4.4)

Evidently, |Sj| = p3(t−j) − p3(t−j−1) for any 0 ≤ j ≤ t− 1 and |St| = 1.

In our investigation, we shall continue with a case of t(x) being irreducible over Qp.

Theorem 4.6 Let t(x) have no root over the field Qp, p 6= 2. Let r be the largest
positive integer such that h(pr) = h(p). Then, for any positive integers r < t, we have

[pt]3 = 1 +
p3r − 1

h
· h +

t−r∑
i=1

p3r+2i − p3r+2i−3

h
· pih where h = h(p). (4.5)
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Particulary, if r = 1, we have

[pt]3 = 1 +
t−1∑
i=0

p2i(p3 − 1)

h
· pih. (4.6)

Proof Let {S0, S1, . . . St} be the partition defined by (4.4). If [a, b, c] ∈ Sj where
0 ≤ j ≤ t− r − 1, then by (1.2) we have h(pt)[a, b, c] = pt−r−jh. This implies that

[pt]3Sj
=

p3(t−j) − p3(t−j−1)

pt−r−jh
· pt−r−jh =

p2t+r−2j − p2t+r−2j−3

h
· pt−r−jh.

Using (3.2) and putting i = t− r − j, we obtain

t−r−1∑
j=0

[pt]3Sj
=

t−r∑
i=1

[pt]3Si
=

t−r∑
i=1

p3r+2i − p3r+2i−3

h
· pih. (4.7)

Further, for any [a, b, c] ∈ Sj where t− r ≤ j ≤ t− 1, we have h(pt)[a, b, c] = h. Hence

t−1∑
j=t−r

[pt]3Sj
=

p3r − 1

h
· h. (4.8)

Combining (4.7) and (4.8) with [pt]3St
= 1 · 1 and using Theorem 3.1, we obtain (4.5).

Finally, for r = 1, from (4.5) we come to (4.6) and the proof is complete.

Example 4.7 We establish the form of the Tribonacci partition formula modulo 3t.
Clearly, t(x) is irreducible over Q3. Let L be a splitting field of t(x) over F3 and let ε be
any root of t(x) in L. As L = GF (p3), the multiplicative group of L has 26 elements and
thus ordL(ε)|26. To determine the exact value of ordL(ε), we can use the fact that ε is
the root of t(x). The powers of ε that are greather then 2 can be reduced by the equality
ε3 = ε2 + ε + 1 in L. Hence, we have ε4 = 2ε2 + 2ε + 1, . . . , ε12 = ε2 + 2ε + 2, ε13 = 1.
This implies that h(3) = ordL(α) = 13. Since h(3) 6= h(32) = 39, we have r = 1 and
(4.6) yields [3t]3 = 1 +

∑t−1
i=0(2 · 32i) · (13 · 3i). Particulary, for t = 1, 2, 3 we have:

[ 3 ]3 = 1 + 2 · 13, [32]3 = 1 + 2 · 13 + 18 · 39, and [33]3 = 1 + 2 · 13 + 18 · 39 + 162 · 117.

Next we focus on a case of t(x) having exactly one root over Qp. We have:

Theorem 4.8 Let t(x) have exactly one root α in the field of p-adic numbers Qp,
p 6= 11. Let r be the largest positive integer satisfying h(p) = h(pr), and s be the largest
positive integer satisfying ordp(α) = ordps(α). If r < s < t, then we have

[pt]3 = 1 +
ps − 1

h1

· h1 +
p3r − pr

h
· h +

t−s∑
i=1

ps − ps−1

h1

· pih1+

+
t−r∑
i=1

p3r+2i − p3r+2i−3 − pr + pr−1

h
· pih,

(4.9)

where h1 = ordp(α) and h = h(p). Particulary, for r = s = 1, we have

[pt]3 = 1 +
t−1∑
i=0

p− 1

h1

· pih1 +
t−1∑
i=0

p2i+3 − p2i − p + 1

h
· pih. (4.10)

Proof Let us consider the partition {S0, S1, · · · , St} defined by (4.4). For 0 ≤ j ≤ t−
1 we have |Sj∩E(αt)| = pt−j−pt−j−1 and |Sj−E(αt)| = p3(t−j)−p3(t−j−1)−pt−j+pt−j−1.
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Let 0 ≤ j ≤ t − s − 1. If [a, b, c] ∈ Sj − E(αt), then h(pt)[a, b, c] = pt−r−jh. On the
other hand, if [a, b, c] ∈ Sj ∩ E(αt), then h(pt)[a, b, c] = pt−s−jh1. This follows from
(1.2), and (1.3). Put B1 = ∪t−s−1

j=0 Sj. Using (3.2), and performing short calculation,
we obtain

[pt]3B1
=

t−s−1∑
j=0

ps − ps−1

h1

· pt−s−jh1 +
t−s−1∑
j=0

p2t+r−2j − p2t+r−2j−3 − pr + pr−1

h
· pt−r−jh.

Further, put B2 = ∪t−r−1
j=t−sSj. By analogy, we deduce that

[pt]3B2
=

ps − pr

h1

· h1 +
t−r−1∑
j=t−s

p2t+r−2j − p2t+r−2j−3 − pr + pr−1

h
· pt−r−jh.

Similary, if B3 = ∪t−1
j=t−rSj, then [pt]3B3

=
pr − 1

h1

· h1 +
p3r − pr

h
· h. Since [pt]3St

= 1 · 1,

using Theorem 3.1 we get

[pt]3 = 1 +
ps − 1

h1

· h1 +
p3r − pr

h
· h +

t−s−1∑
j=0

ps − ps−1

h1

· pt−s−jh1+

+
t−r−1∑
j=0

p2t+r−2j − p2t+r−2j−3 − pr + pr−1

h
· pt−r−jh.

Putting i = t− s− j, and i = t− r − j respectively, we obtain (4.9). Since (4.10) is a
direct consequence of (4.9), the theorem is proved.

Example 4.9 We find the partition formula [7t]3. Since t(x) has only one root α =
3 + 2 · 7 + 3 · 72 + · · · ∈ Q7, we can establish [7t]3 by Theorem 4.8. In much the same
way as in Example 4.7, we find that 48 = h(7) 6= h(72) = 336. Hence r = 1. Further
calculation yields ord7(α) = 6 and ord72(α) = 42. This implies s = 1. Consequently,
the partition formula [7t]3 can be established by (4.10):

[7t]3 = 1 +
t−1∑
i=0

1 · (6 · 7i) +
t−1∑
i=0

57 · 72i − 1

8
· (48 · 7i).

Particulary, for t = 1, 2, 3 we have [ 7 ]3 = 1+6+7·48, [72]3 = 1+6+42+7·48+349·336,
and [73]3 = 1 + 6 + 42 + 294 + 7 · 48 + 349 · 336 + 17107 · 2352.

The most interesting case is that of t(x) having exactly three roots α, β, γ in Qp.
In this case, the forms of the partition formulas highly depend on the relationships
between the orders of α, β, γ in the multiplicative group of the ring Z/ptZ. Put h1 =
ordp(α), h2 = ordp(β), h3 = ordp(γ), and h = h(p). By [3, Lemma 5.3], we have

lcm(h1, h2) = lcm(h1, h3) = lcm(h2, h3) = lcm(h1, h2, h3) = h.

Moreover, by [3], exactly one of the four following events occurs

(i) h1 <h2 <h3 <h, (ii) h1 <h2 <h3 =h, (iii) h1 <h2 =h3 =h, (iv) h1 =h2 =h3 =h.
(4.11)

Note that (i) occurs for the first time for p = 4481, (ii) for p = 311, (iii) for p = 47,
and (iv) for p = 103. See also [2, p. 66]. For (i) in (4.11), we have
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Theorem 4.10 Let t(x) have three roots α, β, γ in Qp, and assume that the numbers
h1 = ordp(α), h2 = ordp(β), h3 = ordp(γ), and h = h(p) are distinct. Let r be the
largest positive integer satisfying h(p) = h(pr), and let s > r be the largest positive
integer satisfying ordp(ξ) = ordps(ξ) for a unique ξ ∈ {α, β, γ}. Say, ξ = α. Then, for
any t > s, we have

[pt]3 = 1 +
ps − 1

h1

· h1 +
pr − 1

h2

· h2 +
pr − 1

h3

· h3 +
p3r − 3pr + 2

h
· h

+
t−s∑
i=1

ps − ps−1

h1

· pih1 +
t−r∑
i=1

pr − pr−1

h2

· pih2 +
t−r∑
i=1

pr − pr−1

h3

· pih3

+
t−r∑
i=1

p3r+2i − p3r+2i−3 − 3pr + 3pr−1

h
· pih.

(4.12)

Particulary, if r = s = 1, we have

[pt]3 = 1 +
t−1∑
i=0

p− 1

h1

· pih1 +
t−1∑
i=0

p− 1

h2

· pih2 +
t−1∑
i=0

p− 1

h3

· pih3

+
t−1∑
i=0

p2i+3 − p2i − 3p + 3

h
· pih.

(4.13)

Proof Proceeding in much the same way, as in the proofs of the preceding theorems,
we decompose the set S = [Z/ptZ]3 of p3t triples into t + 1 mutually disjunct subsets
S0, S1, . . . , St defined by (4.4). Let 0 ≤ j ≤ t− 1. Clearly, |Sj ∩ E(ξt)| = pt−j − pt−j−1

for any ξt ∈ {αt, βt, γt} and

|Sj − (E(αt) ∪ E(βt) ∪ E(γt))| = p3(t−j) − p3(t−j−1) − 3pt−j + 3pt−j−1.

Let

B1 =
t−s−1⋃
j=0

Sj, B2 =
t−r−1⋃
j=t−s

Sj and B3 =
t−1⋃

j=t−r

Sj.

If 0 ≤ j ≤ t− s− 1, then, by (1.2) and (1.3), we have

h(pt)[a, b, c] =





pt−r−jh, if [a, b, c] ∈ Sj − (E(αt) ∪ E(βt) ∪ E(γt)),

pt−s−jh1, if [a, b, c] ∈ Sj ∩ E(αt),

pt−r−jh2, if [a, b, c] ∈ Sj ∩ E(βt),

pt−r−jh3, if [a, b, c] ∈ Sj ∩ E(γt),

(4.14)

and

[pt]3B1
=

t−s−1∑
j=0

ps − ps−1

h1

· pt−s−jh1 +
t−s−1∑
j=0

pr − pr−1

h2

· pt−r−jh2

+
t−s−1∑
j=0

pr − pr−1

h3

· pt−r−jh3

+
t−s−1∑
j=0

p2t+r−2j − p2t+r−2j−3 − 3pr + 3pr−1

h
· pt−r−jh.
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If t− s ≤ j ≤ t− r− 1, then (4.14) is valid except for the case of [a, b, c] ∈ Sj ∩E(αt).
Since, by (1.3), for these triples we have h(pt)[a, b, c] = h1, from (3.2) now it follows
that

[pt]3B2
=

ps − pr

h1

· h1 +
t−r−1∑
j=t−s

pr − pr−1

h2

· pt−r−jh2 +
t−s−1∑
j=t−s

pr − pr−1

h3

· pt−r−jh3

+
t−r−1∑
j=t−s

p2t+r−2j − p2t+r−2j−3 − 3pr + 3pr−1

h
· pt−r−jh.

Similarly, for B3 we have

[pt]3B3
=

pr − 1

h1

· h1 +
pr − 1

h2

· h2 +
pr − 1

h3

· h3 +
p3r − 3pr + 2

h
· h.

This, together with Theorem 3.1, yields

[pt]3 = 1 +
ps − 1

h1

· h1 +
pr − 1

h2

· h2 +
pr − 1

h3

· h3 +
p3r − 3pr + 2

h
· h

+
t−s−1∑
j=0

ps − ps−1

h1

· pt−s−jh1 +
t−r−1∑
j=0

pr − pr−1

h2

· pt−r−jh2

+
t−r−1∑
j=0

pr − pr−1

h3

· pt−r−jh3 +
t−r−1∑
j=0

p2t+r−2j − p2t+r−2j−3 − 3pr + 3pr−1

h
· pt−r−jh.

(4.15)

Using a suitable change of indexing in (4.15), we obtain (4.12) and (4.13) then follows.

In a similar way, we can also prove the following theorem which resolves the remaing
cases in (4.11):

Theorem 4.11 If h1 < h2 < h3 = h, then

[pt]3 = 1 +
ps − 1

h1

· h1 +
pr − 1

h2

· h2 +
p3r − 2pr + 1

h
· h +

t−s∑
i=1

ps − ps−1

h1

· pih1

+
t−r∑
i=1

pr − pr−1

h2

· pih2 +
t−r∑
i=1

p3r+2i − p3r+2i−3 − 2pr + 2pr−1

h
· pih.

(4.16)

If h1 < h2 = h3 = h, then

[pt]3 = 1 +
ps − 1

h1

· h1 +
p3r − pr

h
· h +

t−s∑
i=1

ps − ps−1

h1

· pih1

+
t−r∑
i=1

p3r+2i − p3r+2i−3 − pr + pr−1

h
· pih.

(4.17)
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If h1 = h2 = h3 = h, then

[pt]3 = 1 +
p3r + ps − pr − 1

h
· h +

t−s∑
i=1

p3r+2i − p3r+2i−3 + ps − pr + pr−1 − ps−1

h
· pih

+
t−r∑

i=t−s+1

p3r+2i − p3r+2i−3 − pr + pr−1

h
· pih.

(4.18)

Specifically, if r = s = 1, then the formulas (4.16), (4.17), and (4.18) have more simple
forms (4.16′), (4.17′), and (4.18′):

[pt]3 = 1 +
t−1∑
i=0

p− 1

h1

· pih1 +
t−1∑
i=0

p− 1

h2

· pih2 +
t−1∑
i=0

p2i+3 − p2i − 2p + 2

h
· pih. (4.16′)

[pt]3 = 1 +
t−1∑
i=0

p− 1

h1

· pih1 +
t−1∑
i=0

p2i+3 − p2i − p + 1

h
· pih. (4.17′)

[pt]3 = 1 +
t−1∑
i=0

p2i(p3 − 1)

h
· pih. (4.18′)

Example 4.12 We find the partition formula [4481t]3. Over Q4481, t(x) has three roots
α = 2677+3998·4481+· · · , β = 3625+1879·4481+· · · , and γ = 2661+3083·4481+· · · .
Using simple calculation we obtain h1 = 640, h2 = 896, h3 = 2240, and h = 4480.
Moreover, we have r = s = 1. From (4.13) now it follows that

[ 4481t ]3 = 1 +
t−1∑
i=0

7 · (640 · 4481i) +
t−1∑
i=0

5 · (896 · 4481i) +
t−1∑
i=0

2 · (2240 · 4481i)+

+
t−1∑
i=0

(20083843 · 44812i − 3) · (4480 · 4481i).
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CHAPTER 9

FURTHER RESEARCH OF MODULAR

PERIODICITY OF TRIBONACCI SEQUENCE
F

Abstract. This paper deals with certain properties of a Tribonacci polynomial over
finite fields. It can be viewed as a continuation of our preceding research of modular
periodicity of integer sequences defined by a Tribonacci recurrence.

1. Introduction

Our extensive research [1], [2], [3] of modular periodicity of a Tribonacci sequence
(Tn)∞n=0 defined by the recurrence

Tn+3 = Tn+2 + Tn+1 + Tn with T0 = a, T1 = b, T2 = c (1.1)

where a, b, c are arbitrary integers will now be completed by some further results.
Particulary, an alternative proof will be found of the well known fact that p = 2 and
p = 11 are only ramified primes of the Tribonacci polynomial t(x) = x3 − x2 − x− 1.
Further, using the Frobenius density theorem, we prove Theorem 4.1 in [3]. In [3] this
theorem was presented without a proof. Finally, a period h(p) will be established of
(Tn mod p)∞n=0 for primes p ≤ 5000.

2. Tribonacci ramified primes

It is well known (see e.g. [4, p. 86]) that the discriminant d(a, b, c) of a cubic equation

x3 + ax2 + bx + c = 0 (2.1)

is equal to

d(a, b, c) = a2b2 + 18abc− 4a3c− 4b3 − 27c2. (2.2)

If we apply (2.2) to t(x), we obtain d = −44 = −22 · 11. See also [5, p. 310]. The
primes p satisfying p|d are often referred to as ramified primes. Consequently, for a
Tribonacci polynomial t(x), there are only two ramified primes, p = 2 and p = 11.
When investigating the modular periodicity of (Tn mod p)∞n=0, the primes that divide
the discriminant of t(x) represent exceptions which must be examined separately, see
[2]. Clearly, these primes correspond one-to-one to the cases of t(x) having multiple
roots over the field Fp = Z/pZ of residue classes modulo p. In the subsequent lemma,
we will prove, without using a discriminant, that the primes p = 2, 11 are the only
primes for which the Tribonacci polynomial t(x) has multiple roots.

Theorem 2.1. The congruence x3 − x2 − x − 1 ≡ 0 (mod p) has a triple root if and
only if p = 2 and a double root if and only if p = 11.

F
Published in J. Klaška, Further research of modular periodicity of Tribonacci sequence, Univ. S.

Boh. Dept. of Mathematics Report Series 16 (2008), 57–63.
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Proof. Let us first assume that the congruence has a triple root α. Then we have
x3 − x2 − x− 1 ≡ (x− α)3 (mod p). By expanding the right-hand side and matching
the coefficients at identical powers of x, we get 3α ≡ 1, 3α2 ≡ −1, α3 ≡ 1. From
the first two congruences, it follows α ≡ −1, which, together with α3 ≡ 1, yields
2 ≡ 0 (mod p). Hence, we have p = 2 and α = 1.

Let us next assume that the congruence has a double root β. Then x3−x2−x−1 ≡
(x − α)(x − β)2 (mod p), with α 6≡ β (mod p). By matching the coefficients, we now
obtain the congruences α + 2β ≡ 1, β2 + 2αβ ≡ −1, αβ2 ≡ 1. From the first one, we
get α ≡ 1− 2β. Substituting into the second and third ones yields

3β2 − 2β − 1 ≡ 0 (mod p) and 2β3 − β2 + 1 ≡ 0 (mod p). (2.3)

Adding the congruences in (2.3) yields 2β(β2 + β − 1) ≡ 0. Since p 6= 2 and β = 0 is
not a solution of (2.3) for any prime p, we have 2β 6≡ 0. Hence

β2 + β − 1 ≡ 0 (mod p). (2.4)

By multiplying the first congruence in (2.3) by 2β and subtracting it from the second
congruence in (2.3) multiplied by 3, we have

β2 + 2β + 3 ≡ 0 (mod p). (2.5)

From (2.4) and (2.5), we obtain β ≡ −4 which, together with α ≡ 1 − 2β, implies
α ≡ 9. Now, it follows from β2 + 2αβ ≡ −1 that 55 ≡ 0 (mod p) and, from αβ2 ≡ 1,
we get 143 ≡ 0 (mod p). Combining this facts, we have 11 ≡ 0 (mod p). It follows
now that p = 11 and α = 9, β = 7. The validity of the inverse implications is obvious
in both cases. ¤

Note that, for a Fibonacci polynomial f(x) = x2 − x− 1, there is only one ramified
prime p = 5. See for example [7, p. 528]. The table below can give us a more exact
idea of the ramified primes corresponding to the polynomials of the form fk(x) =
xk − · · · − x − 1. It contains prime factorizations of the discriminants dk of these
polynomials for 1 < k ≤ 15.

Looking at Table 1, we can see, for example, that, for a Tetranacci polynomial, there
is only one ramified prime p = 563, (see also [6, p. 237]), for a Pentanacci polynomial
there are two ramified primes p = 2 and p = 599, etc.

3. Tribonacci and Frobenius density theorem

Let f(x) be a monic polynomial with integer coefficients of degree n. Recall that
f(x) is monic if the leading coefficient of f(x) is 1. Assume that the discriminant d
of f(x) does not vanish. This implies that f(x) has n distinct roots α1, . . . , αn in a
suitable extension field K of the field Q of rational numbers. Let K = Q(α1, . . . , αn).
The Galois group G = Gal(K/Q) of f(x) is the group of field automorphisms of K. As
each g ∈ G permutes the roots α1, . . . , αn of f(x), we may consider G as a subgroup
of the group Sn of permutations of n symbols. If we write g ∈ G as a product of
disjoint cycles, then the lengths of these cycles define the cycle pattern of g, which is
a partition of n. Recall that a partition of n is an ordered set (n1, . . . , nk) of positive
integers n1 ≥ · · · ≥ nk with n = n1 + · · ·+ nk. Let p be a prime such that p - d. Then
we can write f(x) modulo p as a product f1(x) · · · fk(x) of distinct irreducible factors
over Fp. Let the degrees of f1(x), . . . , fk(x) be n1, . . . , nk. Since n1 + · · · + nk = n,
the partition (n1, . . . , nk) forms the splitting type τ of f(x) modulo p. This is also
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Table 1

d2 = 5

d3 = −22 · 11

d4 = −563

d5 = 24 · 599

d6 = 205 937

d7 = −26 · 84 223

d8 = −1 319 · 126 913

d9 = 28 · 17 · 487 · 2 851

d10 = 7 · 35 616 734 267

d11 = −210 · 19 · 131 · 4 550 179

d12 = −10 607 · 211 723 · 267 679

d13 = 212 · 6 317 · 1 328 851 967

d14 = 112 589 · 219 361 · 87 132 013

d15 = −214 · 241 · 2 347 · 2 879 · 5 484 307

a partition of n. Let S denote the set of unramified primes of f(x), i.e., the set of
primes p - d. Consider the set Sτ of unramified primes for which f(x) factors with the
splitting type τ . The natural density d(Sτ ) of primes p ∈ Sτ is defined as follows

d(Sτ ) = lim
x→∞

|{p ∈ Sτ ; p ≤ x}|
|{p ∈ S; p ≤ x}| . (3.1)

Now we can state

Frobenius density theorem (1886). The set Sτ of all primes p for which f(x) has
the splitting type τ over Fp has a natural density d(Sτ ) = |Gτ |/|G| where |Gτ | is the
number of all permutations g ∈ G with cycle type τ .

As there is only one permutation in Sn with the cycle pattern (1, . . . , 1), we have

Consequence 3.1. The set of primes p for which f(x) modulo p splits completely into
linear factors has density 1/|G|.

Now we are ready to apply the Frobenius density theorem to a case of the Tribonacci
polynomial t(x) = x3 − x2 − x − 1. By Theorem 2.1, the only ramified primes are
2 and 11. The degree of t(x) is 3 and, for the number 3, there are the following
partitions: 3, 2 + 1, 1 + 1 + 1. Thus, the splitting types of t(x) are τ1 = (3), τ2 = (2, 1),
and τ3 = (1, 1, 1). For the Galois group G of t(x), we have G = S3. Clearly, S3

consists of 6 permutations which can be written as a product of disjoint cycles as
follows g1 = (1)(2)(3), g2 = (1, 2)(3), g3 = (1, 3)(2), g4 = (2, 3)(1), g5 = (1, 2, 3),
and g6 = (1, 3, 2). This implies that |Gτ1| = 2, |Gτ2| = 3, |Gτ3| = 1. Now we
recall the notation used in [3]. Let I denote the set of all primes for which t(x) is
irreducible over Fp, Q denote the set of all primes p for which t(x) is factorized over
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Fp into the product of a linear factor and a quadratic irreducible factor and L denote
the set of all unramified primes for which t(x) splits completely into linear factors.
Since Sτ1 = I, Sτ2 = Q, and Sτ3 = L, using Frobenius density theorem, we have
d(I) = 1/3, d(Q) = 1/2, d(L) = 1/6. Consequently, the natural densities of I, Q, L
satisfy

d(I) : d(Q) : d(L) = 2 : 3 : 1 (3.2)

and we have [3, Theorem 4.1]:

Theorem 3.2. For d(I), d(Q), d(L) it hold d(I) : d(Q) : d(L) = 2 : 3 : 1.

4. Exact values of the primitive periods h(p).

Let L be the splitting field of t(x) over Fp, p 6= 2, 11 and α, β, γ be the roots of t(x)
in L. Then we have

h(p) = lcm(ordL(α), ordL(β), ordL(γ)) (4.1)

where the numbers ordL(α), ordL(β), ordL(γ) are the orders of α, β, γ in the multiplica-
tive group of L and lcm is their least common multiple. See [5]. In the following table,
we present the exact values of h(p) for p ≤ 5000. Note that, up to present, no table of
the periods h(p) has been published.
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Table 2. Table of primitive periods h(p) for p ≤ 5000.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p h(p)
2 4
3 13
5 31
7 48
11 110
13 168
17 96
19 360
23 553
29 140
31 331
37 469
41 560
43 308
47 46
53 52
59 3541
61 1860
67 1519
71 5113
73 5328
79 3120
83 287
89 8011
97 3169
101 680
103 51
107 1272
109 990
113 12883
127 5376
131 5720
137 18907
139 3864
149 7400
151 2850
157 8269
163 162
167 9296
173 2494
179 32221
181 10981
191 36673
193 4656
197 3234
199 198
211 5565
223 16651
227 17176
229 17557
233 9048
239 4760
241 29040
251 63253
257 256
263 23056
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p h(p)
269 268
271 73440
277 12788
281 13160
283 13348
293 28616
307 31416
311 310
313 32761
317 100807
331 36631
337 16224
347 40136
349 17400
353 124963
359 42960
367 45019
373 139128
379 48007
383 147073
389 151711
397 132
401 400
409 41820
419 418
421 420
431 61920
433 62641
439 6424
443 196693
449 202051
457 34808
461 35420
463 71611
467 218557
479 76480
487 79219
491 10045
499 166
503 42168
509 259591
521 271963
523 273528
541 58536
547 149604
557 103416
563 52828
569 53960
571 40755
577 111169
587 293
593 3256
599 598
601 24080
607 184224
613 46971
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p h(p)
617 616
619 127927
631 132931
641 411523
643 138031
647 419257
653 22477
659 72380
661 145861
673 113232
677 11752
683 682
691 159391
701 54600
709 167797
719 517681
727 176419
733 89548
739 22755
743 46004
751 188251
757 756
761 193040
769 591360
773 386
787 309684
797 636007
809 218160
811 36540
821 28085
823 226051
827 227976
829 229357
839 704761
853 181902
857 61204
859 246247
863 862
877 769128
881 777043
883 441
887 131128
907 906
911 910
919 46920
929 928
937 877968
941 147580
947 897757
953 302736
967 467544
971 943813
977 136501
983 967273
991 990
997 331336
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p h(p)
1009 509040
1013 1027183
1019 43265
1021 340
1031 354320
1033 1067088
1039 360187
1049 1101451
1051 73640
1061 1126783
1063 70623
1069 95230
1087 1086
1091 99190
1093 398581
1097 200568
1103 1217713
1109 1108
1117 40248
1123 1122
1129 1274640
1151 5520
1153 443521
1163 450856
1171 457471
1181 590
1187 469656
1193 1424443
1201 1442400
1213 490861
1217 246848
1223 166192
1229 503480
1231 757680
1237 618
1249 780000
1259 1586341
1277 1632077
1279 545707
1283 274348
1289 12040
1291 1290
1297 210276
1301 1693903
1303 566371
1307 653
1319 579920
1321 582121
1327 34528
1361 308720
1367 683
1373 1886503
1381 381432
1399 652400
1409 1986691
1423 675451
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p h(p)
1427 678776
1429 1021020
1433 1432
1439 719
1447 2093808
1451 701800
1453 704221
1459 236520
1471 360640
1481 365560
1483 733591
1487 184264
1489 739537
1493 743016
1499 2248501
1511 2284633
1523 2321053
1531 58599
1543 1542
1549 800317
1553 14356
1559 405080
1567 1566
1571 1570
1579 207770
1583 417648
1597 212534
1601 854400
1607 2584057
1609 1608
1613 867256
1619 145620
1621 810
1627 882376
1637 2681407
1657 305072
1663 1382784
1667 926296
1669 2785560
1693 409464
1697 1696
1699 566
1709 2922391
1721 2963563
1723 494788
1733 500548
1741 32611
1747 1017919
1753 584
1759 3094080
1777 150368
1783 1060291
1787 3195157
1789 533420
1801 1081200
1811 1093240
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p h(p)
1823 1107776
1831 1118131
1847 1137136
1861 91140
1867 1742844
1871 500359
1873 1872
1877 1174376
1879 1177507
1889 237888
1901 3615703
1907 1906
1913 304964
1931 1242920
1933 1245496
1949 1266200
1951 1269451
1973 3894703
1979 1305480
1987 1974084
1993 3972048
1997 147704
1999 666000
2003 2002
2011 1348711
2017 1356769
2027 4110757
2029 1372957
2039 2038
2053 4214808
2063 709328
2069 2068
2081 360880
2083 1446991
2087 120988
2089 290928
2099 4407901
2111 67520
2113 704
2129 302176
2131 4541160
2137 1522969
2141 1527960
2143 1531531
2153 772568
2161 1557361
2179 1583407
2203 1618471
2207 1623616
2213 408114
2221 1233210
2237 2236
2239 1002624
2243 838508
2251 844500
2267 5141557
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p h(p)
2269 1716877
2273 26909
2281 1735081
2287 1743456
2293 1753381
2297 5278507
2309 161560
2311 1781011
2333 5445223
2339 227955
2341 1827541
2347 1836919
2351 1842400
2357 5557807
2371 5621640
2377 1884169
2381 2380
2383 236612
2389 5707320
2393 954408
2399 5757601
2411 242205
2417 973648
2423 5873353
2437 742371
2441 397232
2447 5990257
2459 403112
2467 2029519
2473 2039401
2477 2045176
2503 3132504
2521 6355440
2531 6408493
2539 1269
2543 2155616
2549 166600
2551 325380
2557 167713
2579 1289
2591 149184
2593 1680912
2609 1134480
2617 402864
2621 2620
2633 365017
2647 1000944
2657 2353216
2659 883785
2663 7094233
2671 890
2677 2389669
2683 7198488
2687 7222657
2689 2411137
2693 7254943
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p h(p)
2699 1041043
2707 2443519
2711 7352233
2713 7360368
2719 7392960
2729 2728
2731 910
2741 313045
2749 2519000
2753 1083109
2767 79753
2777 2776
2789 1296420
2791 519312
2797 1398
2801 2615200
2803 2802
2819 7949581
2833 1337648
2837 2682856
2843 2842
2851 8128200
2857 8162448
2861 8188183
2879 460480
2887 2779219
2897 1448
2903 1404568
2909 8465191
2917 1418148
2927 1463
2939 575848
2953 984
2957 8746807
2963 8782333
2969 587664
2971 2943271
2999 374750
3001 3003001
3011 755510
3019 434161
3023 9141553
3037 3075469
3041 3040
3049 9296400
3061 3124261
3067 3136519
3079 9480240
3083 9507973
3089 9545011
3109 9665880
3119 3242720
3121 1391520
3137 1640128
3163 3334856
3167 3343296
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p h(p)
3169 3348577
3181 421615
3187 10156968
3191 3190
3203 142489
3209 1716280
3217 3450769
3221 10378063
3229 1737740
3251 352300
3253 2645502
3257 3256
3259 1086
3271 509653
3299 725560
3301 3633301
3307 5468124
3313 5487984
3319 1573680
3323 3322
3329 3694080
3331 3699631
3343 3725216
3347 11205757
3359 11286241
3361 5648160
3371 11367013
3373 541768
3389 11488711
3391 1130
3407 1934608
3413 1664569
3433 1716
3449 3965200
3457 3984769
3461 998210
3463 1154
3467 1001674
3469 4012477
3491 12190573
3499 1749
3511 12327120
3517 1546161
3527 148092
3529 4152457
3533 2080348
3539 2087420
3541 181720
3547 4194919
3557 12655807
3559 12666480
3571 12752040
3581 356210
3583 6418944
3593 4303216
3607 542102
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p h(p)
3613 516
3617 13086307
3623 1811
3631 1210
3637 6613884
3643 13271448
3659 2231380
3671 4492080
3673 1226448
3677 3676
3691 13623480
3697 4557169
3701 3700
3709 1719585
3719 13834681
3727 4631419
3733 3732
3739 13980120
3761 4715040
3767 14194057
3769 109272
3779 1586760
3793 3792
3797 200239
3803 4820936
3821 14603863
3823 2435888
3833 14695723
3847 14799408
3851 14834053
3853 963
3863 4974256
3877 1938
3881 15066043
3889 630180
3907 1908081
3911 2549320
3917 2192401
3919 3918
3923 1709992
3929 5145680
3931 5152231
3943 1314
3947 15582757
3967 15737088
3989 530404
4001 1334000
4003 16024008
4007 2003
4013 1003
4019 16156381
4021 8084220
4027 1342
4049 16398451
4051 5471551
4057 5487769
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p h(p)
4073 16593403
4079 4078
4091 697345
4093 4092
4099 4200450
4111 16900320
4127 5677376
4129 5684257
4133 1423474
4139 4138
4153 1437284
4157 960036
4159 5767147
4177 726972
4201 88242
4211 17736733
4217 17787307
4219 17799960
4229 17888671
4231 8950680
4241 5995360
4243 18003048
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p h(p)
4253 6029336
4259 1209272
4261 6053461
4271 18245713
4273 6087601
4283 18348373
4289 6131840
4297 18464208
4327 6242419
4337 4336
4339 6277087
4349 4348
4357 6329269
4363 19035768
4373 6374376
4391 3213480
4397 805567
4409 4408
4421 1303016
4423 6522451
4441 19722480
4447 6593419
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p h(p)
4451 3301900
4457 6621616
4463 1106576
4481 4480
4483 2512161
4493 20191543
4507 10156524
4513 6790561
4517 1700274
4519 6808627
4523 6819176
4547 4546
4549 6897800
4561 10401360
4567 3476248
4583 7001296
4591 2295
4597 7044136
4603 7064071
4621 4620
4637 895907
4639 4304064
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p h(p)
4643 21562093
4649 7204400
4651 7212151
4657 7230769
4663 7247856
4673 4672
4679 21897721
4691 22010173
4703 7372736
4721 7429280
4723 4722
4729 7454480
4733 22406023
4751 3762000
4759 7549360
4783 7627291
4787 7638456
4789 4788
4793 3828808
4799 23035201
4801 7684801
4813 23164968
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p h(p)
4817 7734496
4831 11669280
4861 1389960
4871 2435
4877 23790007
4889 23907211
4903 24039408
4909 8034397
4919 8065520
4931 4930
4933 4932
4937 2468
4943 4942
4951 2475
4957 24571848
4967 342654
4969 352728
4973 24735703
4987 4986
4993 958848
4999 4998
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CHAPTER 10

THE CUBIC CHARACTER OF THE

TRIBONACCI ROOTS
F

Abstract. If τ is any root of the Tribonacci polynomial t(x) = x3 − x2 − x − 1 in
the Galois field Fp where p is a prime, p ≡ 1 (mod 3), then

τ
p−1
3 ≡ 2

2(p−1)
3 (mod p).

More generally, if χ is a root of t(x) in any field extension G of Fp, then 2χ is a cubic
residue of the field G.

1. Introduction

The quadratic character of the root θ = (1 +
√

5)/2 of the Fibonacci polynomial
f(x) = x2−x−1 was examined by E. Lehmer in [2]. The way we understand Lehmer’s
Theorem 1 in [2, p. 137], which was written in a different form, is as follows. Let p
be a prime in the form p = a2 + b2 where a, b ∈ Z and a ≡ 1 (mod 4). Furthermore,
suppose that θ is a root of f in the Galois field Fp; then we have

θ
p−1
2 =

(
θ

p

)
=

{
1 if p = 20m + 1, b ≡ 0 (mod 5) or p = 20m + 9, a ≡ 0 (mod 5)

−1 if p = 20m + 1, a ≡ 0 (mod 5) or p = 20m + 9, b ≡ 0 (mod 5).

In this paper we let τ be an arbitrary root of the Tribonacci polynomial t(x) =
x3 − x2 − x − 1 in the Galois field Fp where p is a prime, p ≡ 1 (mod 3). The
purpose of our article is to prove the following identity for the cubic character of τ
and 2 in Fp:

τ
p−1
3 =

(
τ

p

)

3

= 2
2(p−1)

3 .

Moreover, if χ is a root of t(x) in any field extension G of Fp, then we show that 2χ is
a cubic residue of the field G, i.e. there exists ω ∈ G such that 2χ = ω3.

2. Preliminaries

Let F be a field in which there exists an element ε 6= 1 such that ε3 = 1. Then
char F 6= 3 and ε2 + ε + 1 = 0. For a, b, c ∈ F, put

w1(x) = x3 + ax2 + bx + c,

w2(x) = w1(εx) = x3 + ε2ax2 + εbx + c,

w3(x) = w1(ε
2x) = x3 + εax2 + ε2bx + c.

By direct calculation we get the following lemma.

F
Published in J. Klaška, L. Skula, The cubic character of the Tribonacci roots, The Fibonacci

Quarterly 48.1 (2010), 21–28.
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Lemma 2.1. w1(x)w2(x)w3(x) = x9 + (a3 − 3ab + 3c)x6 + (b3 − 3abc + 3c2)x3 + c3.

For c ∈ F put

A(c) = −18c2 + 3,

B(c) = −9c2 − 27c− 24,

C(c) = 9c2 − 27c + 28,

f(x, c) = x3 + A(c)x2 + B(c)x + C(c) ∈ F[x].

Clearly, f(x,−1) = x3 − 15x2 − 6x + 64 = (x− 2)g(x), where g(x) = x2 − 13x− 32.
Furthermore, we shall consider the following polynomials over the field F:

t(x) = x3 − x2 − x− 1, u(x) = t(x3) = x9 − x6 − x3 − 1.

The polynomial t(x) is the well-known Tribonacci polynomial. Let c ∈ {−1,−ε,−ε2}.
Using the identities c3 = −1, c4 = −c, c6 = 1 and c−1 = −c2, we obtain the following
lemma.

Lemma 2.2. For any c ∈ {−1,−ε,−ε2}, b ∈ F, b 6= 0, we have

(b3 + 3c2 + 1)3

27b3c3
− b3+3c2+1

c
+ 3c + 1 = −b9 + A(c)b6 + B(c)b3 + C(c)

27b3
= −f(b3, c)

27b3
.

Theorem 2.3. Let char F 6= 2, 7. Then we have u(x) = w1(x)w2(x)w3(x) if and only
if

c ∈ {−1,−ε,−ε2}, f(b3, c) = 0, b 6= 0 and a =
b3 + 3c2 + 1

3bc
. (2.1)

Proof. Using Lemma 2.1 we have u(x) = w1(x)w2(x)w3(x) if and only if

a3 − 3ab + 3c = −1,

b3 − 3abc + 3c2 = −1, (2.2)

c3 = −1.

First, assume that the identities (2.2) are valid. Then c ∈ {−1,−ε,−ε2}. If b = 0,
then from the second identity in (2.2) we get 3c2 = −1 and thus 27 = −1, which is
a contradiction with char F 6= 2, 7. Consequently, b 6= 0 and a = (b3 + 3c2 + 1)/3bc.
Substituting into the first identity in (2.2), we have

(b3 + 3c2 + 1)3

27b3c3
− b3 + 3c2 + 1

c
+ 3c + 1 = 0.

Combining Lemma 2.2 with c3 = −1, we obtain f(b3, c) = 0 and (2.1) follows.
Conversely, let c ∈ {−1,−ε,−ε2}, f(b3, c) = 0, b 6= 0, and a = (b3 + 3c2 + 1)/3bc.

Then c3 = −1 and, from a = (b3 + 3c2 + 1)/3bc, we have b3 − 3abc + 3c2 = −1. Put
d = a3 − 3ab + 3c. Then by Lemma 2.2 we have

d =
(b3 + 3c2 + 1)3

27b3c3
− b3 + 3c2 + 1

c
+ 3c = −f(b3, c)

27b3
− 1 = −1

as required. ¤
Now we recall a well known Stickelberger parity theorem [3] for the case of a cubic

polynomial [5, p. 189]. See also Dickson’s history [1, pp. 249 – 251] or consult [4, p. 42].
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Theorem 2.4. Let N be the number of solutions of x3 + Ax2 + Bx + C ≡ 0 (mod p)
where A,B, C ∈ Z and let

D = A2B2 − 4B3 − 4A3C − 27C2 + 18ABC (2.3)

be the discriminant of the cubic polynomial x3 + Ax2 + Bx + C. If p is a prime, p > 3
and p - D, we have:

N = 1 if and only if (D/p) = −1,

N = 0 or N = 3 if and only if (D/p) = 1.
(2.4)

Particulary, for the Tribonacci polynomial t(x), we obtain the following corollary.

Corollary 2.5. Let N be the number of distinct roots of the Tribonacci polynomial
t(x) in the field Fp where p is an arbitrary prime, p 6= 2, 11. Then t(x) does not have
multiple roots in Fp, and we have:

N = 1 if and only if (p/11) = −1,

N = 0 or N = 3 if and only if (p/11) = 1.
(2.5)

Proof. By (2.3), D = −44 = −22 · 11. For p = 3, we have (3/11) = 1 and N = 0.
Calculating the Legendre - Jacobi symbol, we get (−44/p) = (p/11) and (2.5) follows
from (2.4). ¤
Lemma 2.6. For c ∈ {−1,−ε,−ε2}, let Dc be the discriminant of f(x, c). Then
Dc = 866052 = 22 · 39 · 11 and (Dc/p) = (p/11).

Proof. For c = −1 we have A(−1) = −15, B(−1) = −6, C(−1) = 64 and, from (2.3),
it follows that D−1 = 866052. For c ∈ {−ε,−ε2} we use the identity c2 − c + 1 = 0 to
determine Dc. From the quadratic reciprocity law and from further properties of the
Legendre - Jacobi symbol it follows that

(
866052

p

)
=

(
3

p

)(
11

p

)
= (−1)

p−1
2

(p

3

)
(−1)

5(p−1)
2

( p

11

)

= (−1)3(p−1)

(
1

3

)( p

11

)
=

( p

11

)
.

¤
From now on, we will assume that p is an arbitrary prime such that p ≡ 1 (mod 3)

and F is an arbitrary finite field with characteristic p. Then there is an n ∈ N such that
F = Fpn . Let F× denote the multiplicative group of the field F. This group is cyclic of
order pn − 1 and its generator will be denoted by g. For any ξ ∈ F×, there is exactly
one integer ind ξ such that ξ = gind ξ and 0 ≤ ind ξ ≤ pn − 2. Clearly, for ξ1, ξ2 ∈ F×,
we have ind ξ1ξ2 ≡ ind ξ1 + ind ξ2 (mod pn − 1). We can assume that ε = g(pn−1)/3.
Then ind ε = (pn − 1)/3 and ind ε2 = 2(pn − 1)/3. For e ∈ {0, 1, 2} put

Ce = {ξ ∈ F×; ind ξ ≡ e (mod 3)} = {ξ ∈ F×; ξ = g3k+e, k ∈ Z, 0 ≤ k < (pn − 1)/3}.
We will call the sets C0, C1, C2 the cubic classes of the field F. Clearly, {C0, C1, C2} is
a partition of F×. For ξ ∈ F× we have ξ ∈ C0 if and only if there exists ω ∈ F× such
that ω3 = ξ. Let us call the elements ξ′s with this property the cubic residues of the
field F.
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Lemma 2.7. Let α, β, γ ∈ F and αβγ ∈ C0. Then there exists e ∈ {0, 1, 2} such that
{α, β, γ} ⊆ Ce or α, β, γ belong to distinct cubic classes of the field F.

Proof. Suppose that there are e1, e2 ∈ {0, 1, 2}, e1 6= e2 such that α, β ∈ Ce1 , γ ∈ Ce2 .
Then ind αβγ ≡ ind α+ind β+ind γ (mod pn−1) and thus ind αβγ ≡ 2e1+e2 (mod 3).
On the other hand, we have ind αβγ ≡ 0 (mod 3), which implies 2e1 + e2 ≡ 0 (mod 3).
Consequently, we have e1 = e2 and a contradiction follows. ¤

For the next theorem we need the following lemma which can be verified by direct
computation.

Lemma 2.8. The Tribonacci polynomial t(x) has a unique root in F7 equal to 3. In
the field F49, the polynomial t(x) has three distinct roots 3,−1 + 5i,−1 − 5i where
i ∈ F49, i2 = −1. These roots belong to the same residue class of F49 and, for any
χ ∈ {3,−1 + 5i,−1 − 5i}, we have (2χ)(72−1)/3 = 1. Consequently, if t(x) has three
distinct roots in an extension field F of F7, then F is an extension field of F49 and
3,−1 + 5i,−1− 5i are roots of t(x) in F belonging to the same cubic class of F.

Theorem 2.9. Let t(x) have three distinct roots α, β, γ ∈ F. Then
(i) There is an e1 ∈ {0, 1, 2} such that {α, β, γ} ⊆ Ce1.
(ii) If char F 6= 7, then, for each c ∈ {−1,−ε,−ε2}, the polynomial f(x, c) has three

distinct roots in F belonging to the same cubic class Ce2 of F where e2 ∈ {0, 1, 2} and
e1 + e2 ≡ 0 (mod 3). In particular, for any τ ∈ {α, β, γ}, the element 2τ is a cubic
residue of the field F.

Proof. (i) For p = 7 the first part of the theorem follows from Lemma 2.8. Let p 6= 7.
Suppose that for some e ∈ {0, 1, 2} the inclusion {α, β, γ} ⊆ Ce is not valid. From the
Viète equation αβγ = 1 it follows that αβγ ∈ C0 and, by Lemma 2.7, the roots α, β, γ
belong to distinct cubic classes of F. We can assume that α ∈ C0, β ∈ C1, γ ∈ C2.
Then there is ξ1 ∈ F such that α = ξ3

1 and thus t(x) = (x − ξ3
1)(x − β)(x − γ). This

implies that ξ3
1βγ = 1.

Since β ∈ C1, the polynomial x3 − β is irreducible over F. Let K be the splitting
field of x3−β over F. Then there is ξ2 ∈ K such that β = ξ3

2 and x3−β = (x− ξ2)(x−
εξ2)(x − ε2ξ2). Let ξ3 = 1/(ξ1ξ2). As ξ3

1βγ = 1, we have ξ3
3 = 1/(ξ3

1ξ
3
2) = 1/(ξ3

1β) = γ
and thus x3−γ = (x−ξ3)(x−εξ3)(x−ε2ξ3). Let w1(x) = (x−ξ1)(x−ξ2)(x−ξ3), w2(x) =
w1(εx) = (x− ε2ξ1)(x− ε2ξ2)(x− ε2ξ3), w3(x) = w1(ε

2x) = (x− εξ1)(x− εξ2)(x− εξ3).
In K we have t(x) = (x − ξ3

1)(x − ξ3
2)(x − ξ3

3). Hence u(x) = w1(x)w2(x)w3(x).
Let a = −ξ1 − ξ2 − ξ3, b = ξ1ξ2 + ξ1ξ3 + ξ2ξ3. Then w1(x) = x3 + ax2 + bx − 1,
w2(x) = x3 + ε2ax2 + εbx − 1, w3(x) = x3 + εax2 + ε2bx − 1. Using Theorem 2.3 we
get b 6= 0 and f(b3,−1) = 0. After a short calculation we obtain

b3 = ξ3
1ξ

3
2 + ξ3

1ξ
3
3 + ξ3

2ξ
3
3 +3(ξ3

1ξ
2
2ξ3 + ξ3

1ξ2ξ
2
3 + ξ2

1ξ
3
2ξ3 + ξ1ξ

3
2ξ

2
3 + ξ2

1ξ2ξ
3
3 + ξ1ξ

2
2ξ

3
3)+6ξ2

1ξ
2
2ξ

2
3 .

Let u = ξ3
1ξ

3
2+ξ3

1ξ
3
3+ξ3

2ξ
3
3+6ξ2

1ξ
2
2ξ

2
3 , v = ξ3

1ξ
2
2ξ3+ξ3

1ξ2ξ
2
3+ξ2

1ξ
3
2ξ3+ξ1ξ

3
2ξ

2
3+ξ2

1ξ2ξ
3
3+ξ1ξ

2
2ξ

3
3 .

Then b3 = u+3v and, for u, we have u = αβ +αγ +βγ +6 = 5. Clearly, ξ3 = ξ2
2/(ξ1β)

and ξ2
3 = ξ2/(ξ

2
1β). This implies that

v =
ξ3
1ξ

4
2

ξ1β
+

ξ3
1ξ

2
2

ξ2
1β

+
ξ2
1βξ2

2

ξ1β
+

ξ1βξ2

ξ2
1β

+ξ2
1ξ2γ +ξ1ξ

2
2γ = ξ2

2(
ξ1

β
+ξ1 +ξ1γ)+ξ2(ξ

2
1 +

1

ξ1

+ξ2
1γ).

Let r = ξ1/β+ξ1+ξ1γ, s = ξ2
1+1/ξ1+ξ2

1γ. Then r, s ∈ F and b3 = 3rξ2
2+3sξ2+5. Since,

for b3 6= 2, we have g(b3) = 0 and [K : F] = 3, we obtain b3 ∈ F. Clearly, the elements
1, ξ2, ξ

2
2 ∈ K are linear independent over F and thus we have r = s = 5− b3 = 0. Hence
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b3 = 5. Consequently, 5 ≡ 2 (mod p) or 5 is a root of g(x) in F. As g(5) = −23 ·32 = 0,
we have a contradiction with char F 6= 2, 3. This proves part (i).

(ii) According to (i) there exists e1 ∈ {0, 1, 2} such that {α, β, γ} ⊆ Ce1 . Therefore,
there exist ω1, ω2 ∈ F with the property β = αω3

1, γ = αω3
2 and 1 6= ω3

1 6= ω3
2 6= 1. Let

c ∈ {−1,−ε,−ε2}. Since 1 = αβγ = α3ω3
1ω

3
2, we can choose the element ω1 such that

αω1ω2 = −c. Let K be the splitting field of x3−α and let ξ ∈ K such that ξ3 = α. Then
ξ3ω1ω2 = −c. Set H1 = ω1+ω2+ω1ω2, H2 = ω1+εω2+ε2ω1ω2, H3 = ω1+ε2ω2+εω1ω2.
Using 1 6= ω3

1 6= ω3
2 6= 1, we can prove H3

1 6= H3
2 6= H3

3 6= H3
1 . Furthermore, set

w11(x) = (x− ξ)(x− ξω1)(x− ξω2) = x3 + a1x
2 + b1x + c,

w21(x) = (x− εξ)(x− ε2ξω1)(x− ξω2) = x3 + a2x
2 + b2x + c,

w31(x) = (x− ε2ξ)(x− εξω1)(x− ξω2) = x3 + a3x
2 + b3x + c,

and, for i ∈ {1, 2, 3}, set wi2(x) = wi1(εx), wi3(x) = wi1(ε
2x). Then bi = ξ2Hi,

i ∈ {1, 2, 3}. Since εjξ, εjξω1, εjξω2, j ∈ {0, 1, 2} are distinct roots of u(x), we have
u(x) = wi1(x)wi2(x)wi3(x) for each i ∈ {1, 2, 3}. Theorem 2.3 then implies f(b3

i , c) = 0,
bi 6= 0. Thus, b3

i , i ∈ {1, 2, 3} are distinct roots of f(x, c). Since b3
i α = ξ6H3

i α = (αHi)
3,

i ∈ {1, 2, 3}, there exists e2 ∈ {0, 1, 2} such that bi ∈ Ce2 for each i ∈ {1, 2, 3} and
e1 + e2 ≡ 0 (mod 3). The theorem is proved. ¤
Remark 2.10. The second part of the proof of Theorem 2.9 gives explicit formulas for
the roots of the polynomial f(x, c), namely α2H3

1 , α2H3
2 , α2H3

3 .

3. The cubic character of the Tribonacci roots

Let t(x) be irreducible over Fp and p ≡ 1 (mod 3). Let K be the splitting field of
t(x) over Fp. Then [K : Fp] = 3 and the multiplicative group K× of the field K is of
order p3−1 = (p−1)(p2 +p+1). We denote the generator of K× by g. Let α, β, γ ∈ K
satisfy t(x) = (x − α)(x − β)(x − γ). With respect to the automorphism ξ → ξp of

the field K, we can assume that β = αp, γ = αp2
. Consequently, the roots α, β, γ are

distinct. Let α = gu where u ∈ Z, 0 < u < p3 − 1. Then 1 = α1+p+p2
= gu(1+p+p2) and

thus u(1 + p + p2) ≡ 0 (mod p3 − 1). This implies p − 1|u and thus there is a k ∈ Z,
1 ≤ k < p2 + p + 1 such that u = k(p− 1). We get α = gk(p−1) and ind α = k(p− 1) in
K. Put

ξα = g
k(p−1)

3 , ξβ = ξp
α = g

kp(p−1)
3 , ξγ = ξp

β = ξp2

α = g
kp2(p−1)

3 .

Then ξα, ξβ, ξγ ∈ K×, ξ3
α = α, ξ3

β = β, ξ3
γ = γ and (ξαξβξγ)

3 = 1. This implies that

ξαξβξγ ∈ {1, ε, ε2}. Further, put c(p) = −ξαξβξγ = −ξ1+p+p2

α ∈ {−1,−ε,−ε2}. It can
be shown that c(p) depends only on the prime p. By investigating the relation C(c) = 0
for c ∈ {−1,−ε,−ε2}, we get the following lemma.

Lemma 3.1. If f(0, c)=0 for an element c∈{−1,−ε,−ε2} of F, then char F=2 or 7.

Theorem 3.2. Let t(x) be irreducible over Fp. Then f(x, c(p)) has three distinct roots
in Fp belonging to distinct cubic classes of the field Fp.

Proof. Let w1(x) = (x − ξα)(x − ξβ)(x − ξγ) = x3 + ax2 + bx + c where a = −ξα −
ξβ − ξγ, b = ξαξβ + ξαξγ + ξβξγ, c = c(p) = −ξαξβξγ. Since ap = a, bp = b, we
have a, b, c ∈ Fp and w1(x), w2(x), w3(x) ∈ Fp[x] where w2(x) = w1(εx) and w3(x) =
w1(ε

2x). Furthermore, we have w2(x) = (x − ε2ξα)(x − ε2ξβ)(x − ε2ξγ) and w3(x) =
(x−εξα)(x−εξβ)(x−εξγ). Clearly, εiξα, εiξβ, εiξγ, i ∈ {0, 1, 2} are the distinct roots of
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u(x) and u(x) = w1(x)w2(x)w3(x). By Theorem 2.3 we have b 6= 0 and f(b3, c(p)) = 0.
From Theorem 2.4 and Lemma 2.6 it follows that there exist ρ, σ ∈ Fp such that

ρ 6= b3 6= σ 6= ρ, f(ρ, c(p)) = f(σ, c(p)) = 0. Suppose that there is b′ ∈ Fp, b′3 = ρ. Let

w′
1(x) = x3 + a′x2 + b′x + c, c = c(p), where a′ = (b′3 + 3c2 + 1)/3b′c, w′

2(x) = w′
1(εx),

w′
3(x) = w′

1(ε
2x). By Theorem 2.3 we have u(x) = w′

1(x)w′
2(x)w′

3(x). Since b3 6= ρ =
b′3, we have {w1(x), w2(x), w3(x)} ∩ {w′

1(x), w′
2(x), w′

3(x)} = ∅. Consequently, there
exists τ ∈ Fp such that u(τ) = 0. Hence τ 3 is a root of t(x) which is a contradiction.
Therefore exactly one root of f(x, c(p)) is a cubic residue of Fp. Since C(−1) = 43,
C(−ε) = 18ε+19 = (ε+3)3 and C(−ε2) = 18ε2 +19 = (ε2 +3)3, we get, using Lemma
2.7, that the roots of f(x, c(p)) belong to distinct cubic classes of Fp. ¤
Lemma 3.3. Let t(x) be irreducible over Fp, c1, c2 ∈ {−1,−ε,−ε2} and b1, b2 ∈ Fp. If
f(b3

1, c1) = f(b3
2, c2) = 0, then c1 = c2.

Proof. For i ∈ {1, 2}, let wi1(x) = x3 + aix
2 + bix + ci where ai = (b3

i + 3c2
i + 1)/3bici.

Further, put wi2(x) = wi1(εx), wi3(x) = wi1(ε
2x). Then, by Theorem 2.3, we have

u(x) = wi1(x)wi2(x)wi3(x), i ∈ {1, 2}. If c1 6= c2, then {w11(x), w12(x), w13(x)} ∩
{w21(x), w22(x), w23(x)} = ∅, and thus there is τ ∈ Fp such that u(τ) = 0. Since τ 3 is
a root of t(x) in Fp, a contradiction follows. ¤
Theorem 3.4. Let c ∈ {−1,−ε,−ε2} and let f(x, c) have three distinct roots in Fp

belonging to distinct cubic classes of Fp. Then t(x) is irreducible over Fp and c = c(p).

Proof. Let ρ be the root of f(x, c) in Fp such that ρ ∈ C0. Then there is b ∈ Fp such
that b3 = ρ. Put a = (b3 + 3c2 + 1)/3bc, w1(x) = x3 + ax2 + bx + c, w2(x) = w1(εx),
w3(x) = w1(ε

2x). By Theorem 2.3 we have u(x) = w1(x)w2(x)w3(x).
Suppose that t(x) is not irreducible over Fp. Since f(x, c) has three distinct roots

in Fp, then by Theorem 2.4 and Lemma 2.6, we have (p/11) = 1. By (2.5), there
are distinct elements τ1, τ2, τ3 ∈ Fp such that t(x) = (x− τ1)(x− τ2)(x− τ3) and thus
u(x) = (x3−τ1)(x

3−τ2)(x
3−τ3). For any i ∈ {1, 2, 3}, there is k = k(i) ∈ {1, 2, 3} such

that 1 ≤ deg(gcd(x3−τi, wk(x))) ≤ 2. Thus there is ξi ∈ Fp which is the root of x3−τi.
Since εξ1, ε2ξi are also the roots of x3− τi, we have x3− τi = (x− ξi)(x− εξi)(x− ε2ξi)
for i ∈ {1, 2, 3}. This implies that u(x) completely splits over Fp into the product of
the linear terms x− εiξj, i ∈ {0, 1, 2}, j ∈ {1, 2, 3}. We can assume

w1(x) = (x− ξ1)(x− ξ2)(x− ξ3),

w2(x) = w1(εx) = (x− ε2ξ1)(x− ε2ξ2)(x− ε2ξ3),

w3(x) = w1(ε
2x) = (x− εξ1)(x− εξ2)(x− εξ3).

It follows that b = ξ1ξ2 + ξ1ξ3 + ξ2ξ3 and c = −ξ1ξ2ξ3. Put

w1(x) = (x− εξ1)(x− ε2ξ2)(x− ξ3),

w2(x) = w1(εx) = (x− ξ1)(x− εξ2)(x− ε2ξ3),

w3(x) = w1(ε
2x) = (x− ε2ξ1)(x− ξ2)(x− εξ3).

Letting a = −εξ1−ε2ξ2−ξ3 and b = ξ1ξ2+εξ1ξ3+ε2ξ2ξ3, we get w1(x) = x3+ax2+bx+c.

Since u(x) = w1(x)w2(x)w3(x), it follows from Theorem 2.3 that f(b
3
, c) = 0.

We prove that b 6∈ {b, εb, ε2b}. Suppose that b = b. Then ξ1ξ2 + ξ1ξ3 + ξ2ξ3 =
ξ1ξ2+εξ1ξ3+ε2ξ2ξ3 and thus ξ2ξ3(ε

2−1)+ξ1ξ3(ε−1) = 0. Hence ξ2(ε+1) = −ξ1. Since
(ε + 1)3 = −1 we have τ2 = ξ3

2 = ξ3
1 = τ1, which is a contradiction. Similarly we can



108 CHAPTER 10

prove that b 6= εb and b 6= ε2b. Hence b 6∈ {b, εb, ε2b}, and thus b3 6= b
3
. Consequently,

the roots b3, b
3

of f(x, c) belong to the same cubic class and a contradiction follows.
Thus t(x) is irreducible over Fp. From Theorem 3.2 we get that f(x, c(p)) has a root
b3
1 where b1 ∈ Fp and Lemma 3.3 implies c = c(p). ¤

Theorem 3.5. Let t(x) have exactly one root τ in the field Fp and p 6= 7. Then, for
any c ∈ {−1,−ε,−ε2}, there exists the unique ρ = ρ(c) ∈ Fp such that f(ρ, c) = 0.
Furthermore, ρτ is a cubic residue of the field Fp.

Proof. According to Corollary 2.5 we have (p/11) = −1. Let F = Fp2 . Then t(x) has
three distinct roots τ, α, β ∈ F and t(x) = (x−τ)(x−α)(x−β). Let c ∈ {−1,−ε,−ε2}.
Using Theorem 2.9, we get that τ, α, β belong to the same cubic class Ce1 of the field
F and f(x, c) has three distinct roots in F which belong to the same cubic class Ce2 ,
e2 ∈ {0, 1, 2} of F and e1 + e2 ≡ 0 (mod 3).

Using Theorem 2.4 and Lemma 2.6, we get that there exists exactly one element
ρ = ρ(c) ∈ Fp such that f(ρ, c) = 0. Since τ ∈ Ce1 and ρ ∈ Ce2 , there exists
ω ∈ F = Fp2 such that ρτ = ω3. The element ρτ belongs to Fp and [F : Fp] = 2, thus
ω ∈ Fp and the result follows. ¤

The case p = 7 will be investigated separately. The polynomial t(x) has only one
root τ = 3 in the field F7. The set {−1,−ε,−ε2} = {3, 5, 6} and the polynomials
f(x, c), c = 3, 5, 6 have the following roots in F7:

c ρ = ρ(c) ρ(p−1)/3 = ρ2 (ρτ)(p−1)/3 = (ρτ)2

3 0 0 0

5 5 4 1

6 2 4 1

where ρ = ρ(c) is the only root of f(x, c) in F7. Therefore, we can state the following
proposition.

Proposition 3.6. Let p = 7. Then the Tribonacci polynomial t(x) has a unique root
τ = 3 in F7 and, for c ∈ {−1,−ε,−ε2}− {3}, there exists a unique ρ = ρ(c) ∈ F7 with
f(ρ, c) = 0 and ρτ is a cubic residue in F7.

Combining Theorem 3.5 with Proposition 3.6, we obtain the following theorem.

Theorem 3.7. Let t(x) have a unique root τ in the field Fp. Then 2τ belongs to the
cubic class C0 of Fp and therefore

τ
p−1
3 ≡ 2

2(p−1)
3 (mod p).

Using Theorem 2.9 we get the following theorem.

Theorem 3.8. Let t(x) have three distinct roots α, β, γ ∈ Fp. Then there exists e1 ∈
{0, 1, 2} such that {α, β, γ} ⊆ Ce1 and any polynomial f(x, c), c ∈ {−1,−ε,−ε2}
has three distinct roots in Fp which belong to the same cubic class Ce2 of Fp where
e2 ∈ {0, 1, 2} and e1 +e2 ≡ 0 (mod 3). In particular, for any τ ∈ {α, β, γ}, the element
2τ belongs to the cubic class C0 of Fp and thus

τ
p−1
3 ≡ 2

2(p−1)
3 (mod p).
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4. Conclusion

In conclusion, we prove a theorem on the relation between the roots of t(x) and the
number 2 in any extension of the field Fp.

Theorem 4.1. Let G be an arbitrary extension of the field Fp and χ ∈ G be a root of
t(x) in G. Then there exists ω ∈ G such that 2χ = ω3.

Proof. We will discuss three cases. (i) Let t(x) be irreducible over Fp. Then t(x)
has three distinct roots α, β, γ in the splitting field K over Fp. Thus K ⊆ G and
χ ∈ {α, β, γ}. Using Theorem 2.9, we see that 2χ is a cubic residue of the field K and
the result follows.

(ii) Let t(x) have the unique root τ in the field Fp. By Theorem 3.7, the element 2τ
is a cubic residue of the field Fp ⊆ G. Thus, for χ = τ , the theorem is valid. If χ 6= τ ,
then χ ∈ Fp2 . Since Fp2 ⊆ G, we get the result from Theorem 2.9 provided that p 6= 7.
For p = 7, we get the assertion from Lemma 2.8.

(iii) Let t(x) have three distinct roots in Fp. According to Theorem 3.8, the element
2χ is a cubic residue of the field Fp and hence 2χ = ω3 for an element ω ∈ Fp ⊆ G.
The proof is complete. ¤
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CHAPTER 11

PERIODS OF THE TRIBONACCI SEQUENCE

MODULO A PRIME P ≡ 1 (MOD 3)
F

Abstract. Let the Tribonacci polynomial t(x) = x3−x2−x− 1 be irreducible over
the Galois field Fp where p is an arbitrary prime such that p ≡ 1 (mod 3) and let τ be
any root of t(x) in the splitting field K of t(x) over Fp. We prove that τ (p2+p+1)/3 = 1.
Using this identity we show that the period h(p) of the sequence (Tn mod p)∞n=0 where
Tn is the nth Tribonacci number divides (p2 + p + 1)/3. Similar results will also be
obtained for t(x) being reducible over Fp. In this case we prove that the period h(p)
divides (q − 1)/3 where q is the number of elements of the splitting field of t(x) over
Fp if and only if 2 is a cubic residue of Fp.

1. Introduction and preliminaries

The Tribonacci sequence (Tn)∞n=0 is defined by the third order linear recurrence
Tn+3 = Tn+2 + Tn+1 + Tn with a triple of initial values T0 = 0, T1 = 0 and T2 = 1. It
is well-known, [9, Theorem 1] that (Tn mod m)∞n=0 is simply periodic for any modulus
m > 1. That is, the first three terms which are repeated in (Tn mod m)∞n=0 are
0, 0, 1. The least positive integer h(m) satisfying Th(m) ≡ Th(m)+1 ≡ 0 (mod m) and
Th(m)+2 ≡ 1 (mod m) is called a period of (Tn mod m)∞n=0. If m = p is a prime,
h(p) depends in an essential way on the form of the factorization of the Tribonacci
polynomial t(x) = x3−x2−x−1 over the Galois field Fp. Let K denote the splitting field
of t(x) over Fp and let α, β, γ be the roots of t(x) in K. Since the discriminant of t(x)
is equal to −22 · 11, for p 6= 2, 11, the roots α, β, γ are distinct. For any 0 6= ξ ∈ K, let
ordK(ξ) denote the order of ξ in the multiplicative group K× of K. By [10, Section 8],
the problem of determining h(p) is equivalent to the problem of determining the orders
of α, β, γ in K×. See also [1], [2], [7]. Let I = {3, 5, 23, 31, . . . } be the set of all primes p
for which t(x) is irreducible over Fp, Q = {7, 13, 17, 19, . . . } be the set of all primes for
which t(x) splits over Fp into the product of a linear factor and an irreducible quadratic
factor and let L = {2, 11, 47, 53, . . . } be the set of all primes for which t(x) completely
splits over Fp into linear factors. Then we can state the following theorem.

Theorem 1.1. Let p 6= 2, 11 be a prime. Then

(i) h(p) = lcm(ordK(α), ordK(β), ordK(γ)).
(ii) If p ∈ I, then h(p) = ordK(τ) where τ is any root of t(x) in K.
(iii) p ∈ I or p ∈ L if and only if the Legendere-Jacobi symbol (p/11) = 1.
(iv) p ∈ I if and only if T 2

p ≡ −4/11 (mod p).
(v) p ∈ L if and only if Tp ≡ 0 (mod p).

F
Published in J. Klaška, L. Skula, Tribonacci sequence modulo a prime p ≡ 1(mod 3), The

Fibonacci Quarterly 48.3 (2010), 228–235.
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Statements (i) and (ii) are well-known. For example, see [1, p. 292], [7, p. 306]
or consult [10, p. 161]. Statement (iii) is a consequence of more general results of L.
Stickelberger [5] and G. Voronöı [8]. For details see [3]. Finally, statements (iv) and
(v) are straightforward consequences of [6, Theorem 4.3].

The following theorem is due to A. Vince. See [7, Theorem 4].

Theorem 1.2. Let p 6= 2, 11 be a prime. Then

(i) If p ∈ L, then h(p)|p− 1.
(ii) If p ∈ Q, then h(p)|p2 − 1.
(iii) If p ∈ I, then h(p)|p2 + p + 1.

In Theorem 4.1 of this paper, we strengthen Vince’s result for p ≡ 1 (mod 3) as
follows:

(i) If p ∈ L, then h(p)|p−1
3

if and only if 2 is a cubic residue of the field Fp.

(ii) If p ∈ Q, then h(p)|p2−1
3

if and only if 2 is a cubic residue of the field Fp.

(iii) If p ∈ I, then h(p)|p2+p+1
3

.

To prove this statement, we shall need the following result presented in [3].

Theorem 1.3. Let p be an arbitrary prime such that p ≡ 1 (mod 3) and let τ be any
root of t(x) in the field Fp. Then

τ
p−1
3 ≡ 2

2(p−1)
3 (mod p). (1.1)

Moreover, if τ is any root of t(x) in the splitting field K of t(x) over Fp, then 2τ is a
cubic residue of K, i.e., there exists ω ∈ K such that 2τ = ω3.

2. A way to distinguish the cases p ∈ L and p ∈ I
for primes (p/11) = 1, p ≡ 1 (mod 3)

Let F be a finite field with prime characteristic p ≡ 1 (mod 3). Then F = Fpn

for a positive integer n and there exists an ε ∈ F× with the property ε3 = 1, ε 6= 1.
Therefore, ε2 +ε+1 = 0. Let F× denote the multiplicative group of F with a generator
g. For e ∈ {0, 1, 2}, put Ce = {ξ ∈ F×; ξ = g3k+e, k ∈ Z, 0 ≤ k < (pn − 1)/3}. The sets
Ce are called the cubic classes of F and the elements of C0 the cubic residues of F. The
following lemma can be found in [3, Lemma 2.7].

Lemma 2.1. Let α, β, γ ∈ F. If αβγ is the cubic residue of F, then either α, β, γ
belong to distinct cubic classes of F or α, β, γ belong to the same cubic class of F.

Let f(x) = x3 + rx + s ∈ F[x], r, s 6= 0. Assume that f(x) is irreducible over F or

f(x) has three distinct roots in F. Put d = s2

4
+ r3

27
. Since char F 6= 2, 3, the element d

is well defined. Next, assume that there exists a λ ∈ F such that λ2 = d. Let

A = −s

2
+ λ and B = −s

2
− λ. (2.1)

Then AB = s2

4
− d = (− r

3
)3, which implies that

A is a cubic residue of F if and only if B is a cubic residue of F. (2.2)

The following lemma is essentially Cardano’s formula for the field F.

Lemma 2.2. Let A, B be cubic residues of the field F. Then there exist α, β ∈ F such
that α3 = A, β3 = B, αβ = − r

3
and α + β is a root of f(x) in F.
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Proof. Since A, B are cubic residues of F, there exist α, γ ∈ F such that α3 = A,
γ3 = B. Then (αγ)3 = AB = (− r

3
)3 and, consequently, there exists e ∈ {0, 1, 2} such

that αγεe = − r
3
. Let β = γεe. Then β3 = B, αβ = − r

3
and f(α + β) = (α + β)3 +

r(α+β)+s = A+3αβ(α+β)+B +rα+rβ +s = −s−r(α+β)+rα+rβ +s = 0. ¤
Lemma 2.3. Let f(x) have three distinct roots in F. Then A,B are cubic residues of
F.

Proof. Suppose that A and B are not cubic residues of F and let G be the splitting
field of x3 − A over F. Since A is a cubic residue of G, B is a cubic residue of G by
(2.2). Applying Lemma 2.2 to the field G, we see that there exist α, β ∈ G such that
α3 = A, β3 = B, αβ = − r

3
and α + β is a root of f(x) in G. As assumed, the roots

of f(x) belong to F and thus α + β ∈ F. Since 1, α, α2 is a basis of the extension
G/F, there exist a, b, c ∈ F such that β = aα2 + bα + c. Furthermore, α + β ∈ F and
α + β = aα2 + (b + 1)α + c, implies a = 0, b = −1 and thus β = −α + c. Then
B = β3 = −α3 + 3α2c − 3αc2 + c3 = −A + 3α2c − 3αc2 + c3, which implies A + B =
3α2c− 3αc2 + c3. Next, A + B ∈ F implies c = 0. Hence, − s

2
− λ = B = −A = s

2
− λ,

which yields s = 0, and a contradiction follows. ¤
Combining (2.2), Lemma 2.2 and Lemma 2.3 we get the following theorem.

Theorem 2.4. The following statements are equivalent:

(i) The polynomial f(x) = x3 + rx + s ∈ F[x] has three distinct roots in F.
(ii) A = − s

2
+ λ is a cubic residue of F.

(iii) B = − s
2
− λ is a cubic residue of F.

Now we apply Theorem 2.4 to a Tribonacci polynomial t(x) and field F = Fp where
p is an arbitrary prime such that p ≡ 1 (mod 3) and (p/11) = 1.

The assumption (p/11) = 1 implies, by Theorem 1.1, part (iii), that t(x) is irreducible
over Fp, or t(x) has three distinct roots in Fp. Using the substitution x = y + 1

3
, we

can easily convert t(x) to the form t(y) = y3 − 4
3
y − 38

27
. Hence, r = −4

3
, s = −38

27
, and

d = 11
27

. Since (19/11) = −1, we have r, s, d 6= 0 in the field Fp where p ≡ 1 (mod 3)
and (p/11) = 1. After some calculation, we find that (d/p) = (33/p) = 1 and thus
there exists λ ∈ Fp such that λ2 = d. Put κ = 9λ. Then κ2 = 33 and (2.1) yields
A = 1

27
(19 + 3κ) and B = 1

27
(19− 3κ).

From this and from Theorem 2.4, we get the following criterion, which can be used
for t(x) and for a prime p ≡ 1 (mod 3), (p/11) = 1 to decide whether p ∈ L or p ∈ I.

Theorem 2.5. Let p be a prime, p ≡ 1 (mod 3) and let (p/11) = 1. Then the following
statements are equivalent:

(i) The Tribonacci polynomial t(x) has three distinct roots in Fp.
(ii) 19 + 3κ is a cubic residue of Fp.
(iii) 19− 3κ is a cubic residue of Fp.

The following proposition will be needed in the next section.

Proposition 2.6. Let p be a prime, p ≡ 1 (mod 3) and let (p/11) = 1. Furthermore,
let ρ = (13 + 3κ)/2 and σ = (13 − 3κ)/2 where κ ∈ Fp such that κ2 = 33. Then the
following statements are equivalent:

(i) The elements 2, ρ, σ belong to the same cubic class of Fp.
(ii) 26 + 6κ is a cubic residue of Fp.
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(iii) 26− 6κ is a cubic residue of Fp.

Proof. The equivalence of (ii) and (iii) follows from the equality (26 + 6κ)(26 − 6κ)
= (−8)3. We prove that (i) implies (ii). Since 2 and ρ belong to the same cubic class
of Fp, there exists ω ∈ Fp such that ρ = 2ω3. Hence ω3 = ρ/2 = (13 + 3κ)/4 =
(26 + 6κ)/8, which proves that 26 + 6κ is a cubic residue of Fp. Conversely, assume
(ii). Then (26 + 6κ)/8 is a cubic residue of Fp and thus there exists ω ∈ Fp such that
ω3 = (26 + 6κ)/8. Hence, we have 2ω3 = (13 + 3κ)/2 = ρ, which means that 2 and
ρ belong to the same cubic class of Fp. In a similar way, we can deduce that 2 and σ
belong to the same cubic class of Fp. Hence, (ii) implies (i). The proof is complete. ¤

3. The existence and properties of the roots of the polynomial x3 − τ
in the field extension K/Fp for a prime p ∈ I

Let p ∈ I. Recall that K is the splitting field of t(x) over Fp and α, β, γ are the

roots of t(x) in K. Then {α, β, γ} = {τ, τ p, τ p2} for any τ ∈ {α, β, γ}. Together with

the Viète equation αβγ = 1, this yields τ p2+p+1 = 1. Now we can prove

Lemma 3.1. Let p ∈ I, p ≡ 1 (mod 3) and let τ be an arbitrary root of t(x) in K.
Then there exist exactly three distinct roots ξ1, ξ2, ξ3 of x3 − τ in K.

Proof. Since K is a finite field, the multiplicative group K× is cyclic. Let g be a
generator of K×. Then τ = gt for a positive integer t. Since 1 = τ p2+p+1 = gt(p2+p+1),
we have p − 1|t. Hence 3|t. Set ξi = gt/3+(i−1)(p3−1)/3 for i ∈ {1, 2, 3}. Then ξ1, ξ2, ξ3

are three distinct roots of x3 − τ in K. ¤
The proofs of the following lemmas are easy to see.

Lemma 3.2. Let p ∈ I, p ≡ 1 (mod 3) and let τ be an arbitrary root of t(x) in K.
Furthermore, let ξ1, ξ2, ξ3 be the roots of x3 − τ in K. Then:

(i) {ξ1, ξ2, ξ3} = {ξ, εξ, ε2ξ} for any ξ ∈ {ξ1, ξ2, ξ3}.
(ii) ξ1ξ2ξ3 = τ .
(iii) ξ1 + ξ2 + ξ3 = ξ2

1 + ξ2
2 + ξ2

3 = ξ1ξ2 + ξ1ξ3 + ξ2ξ3 = 0.

Let p ∈ I, p ≡ 1 (mod 3) and let τ be an arbitrary root of t(x) in K. Further, let ξ be

an arbitrary root of x3−τ in K. Put c(p) = −ξp2+p+1. It is easy to see that c(p) does not

depend on the choice of ξ and τ . Since ξ3 = τ and τ p2+p+1 = 1, we have c(p)3 = −1.

Hence c(p) ∈ {−1,−ε,−ε2}. Furthermore, put w(x) = (x − ξ)(x − ξp)(x − ξp2
).

Then w(x) ∈ Fp[x] and w(x) is irreducible over Fp. For further considerations we will
need the following polynomials defined in [3, Section 2]. For c = c(p), put f(x, c) =
x3+A(c)x2+B(c)x+C(c) ∈ Fp[x] where A(c) = −18c2+3, B(c) = −9c2−27c−24, and
C(c) = 9c2−27c+28. In particular, for c = −1 we have f(x,−1) = x3−15x2−6x+64.

Lemma 3.3. For any prime p ∈ I, p ≡ 1 (mod 3), the following is true:
(i) f(x, c(p)) has three distinct roots in Fp belonging to distinct cubic classes of Fp.
(ii) Let c1, c2 ∈ {−1,−ε,−ε2} and b1, b2 ∈ Fp. If f(b3

1, c1) = f(b3
2, c2) = 0 then c1 = c2.

For a proof of (i) see [3, Theorem 3.2] and for a proof of (ii) consult [3, Lemma 3.3].
The validity of the following lemma is easy to verify.

Lemma 3.4. Let p be a prime, p ≡ 1 (mod 3) and let (p/11) = 1. Then the polynomial
f(x,−1) = x3 − 15x2 − 6x + 64 completely splits into linear factors over the field Fp
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and has three distinct roots 2, ρ = (13 + 3κ)/2, and σ = (13 − 3κ)/2 where κ ∈ Fp

such that κ2 = 33.

Now we are ready for the following theorem.

Theorem 3.5. Let p ∈ I and p ≡ 1 (mod 3). Then c(p) = −1.

Proof. By Theorem 2.5, 19 − 3κ is not a cubic residue of the field Fp. Since (19 −
3κ)(26 + 6κ) = (−1 +κ)3, the element 26 + 6κ is not a cubic residue of Fp either. By
Lemma 3.4, the polynomial f(x,−1) has three distinct roots 2, ρ, σ in Fp and Lemma
2.1, together with Proposition 2.6, yields that 2, ρ, σ belong to distinct cubic classes
of Fp. Hence, there exists a b2 ∈ Fp such that b3

2 ∈ {2, ρ, σ} and f(b3
2,−1) = 0. By

Lemma 3.3, part (i), there exists b1 ∈ Fp such that f(b3
1, c(p)) = 0 and from Lemma

3.3, part (ii) we get c(p) = −1. ¤
Theorem 3.6. Let p ∈ I, p ≡ 1 (mod 3) and let τ be an arbitrary root of t(x) in the
splitting field K of t(x) over Fp. Furthermore, let ξ be any root of x3 − τ in K. Then

ξp2+p+1 = 1 and

τ
p2+p+1

3 = 1. (3.1)

Proof. From Theorem 3.5 and the definition of c(p) we immediately get ξp2+p+1 = 1.

Since ξ3 = τ , we have τ (p2+p+1)/3 = ξp2+p+1 = 1 as required. ¤
Corollary 3.7. Let p ∈ I and p ≡ 1 (mod 3). Then u(x) := t(x3) = x9 − x6 − x3 − 1
factors over Fp into the product of three irreducible polynomials w(x), w(εx), w(ε2x)
with constant terms equal to −1.

Remark 3.8. (i) Let p ∈ I and τ be an arbitrary root of t(x) in the splitting field K
of t(x) over Fp. It is easy to prove by induction that

τ k = Tkτ
2 + (Tk−1 + Tk−2)τ + Tk−1, k > 1. (3.2)

From equality (3.2) it follows for k > 1 that

τ k = ε if and only if Tk ≡ Tk+1 ≡ 0 (mod p) and Tk+2 ≡ ε (mod p). (3.3)

(ii) Put H =< gp−1 > where g is the generator of K×. Then H is a cyclic group of

order p2 + p + 1. Since τ p2+p+1 = 1, we have τ ∈ H and G =< τ > is a subgroup of
H. Let p ≡ 1 (mod 3). Then in H, there exist exactly three elements belonging to Fp.
These are 1, ε, ε2. Moreover, together with 9 - p2 + p + 1, (3.1) yields ε, ε2 6∈ G.

Theorem 3.9. Let p ∈ I, p ≡ 1 (mod 3) and let τ be an arbitrary root of t(x) in the
splitting field K of t(x) over Fp. Furthermore, let ξ ∈ {ξ1, ξ2, ξ3} be any root of x3 − τ
in K. Then ordK(ξ) = ordK(τ) or ordK(ξ) = 3 · ordK(τ). Moreover, exactly one of
the roots ξ1, ξ2, ξ3 is of an order equal to ordK(τ) and two roots are of orders equal to
3 · ordK(τ).

Proof. For brevity, put ordK(τ) = h and ordK(ξ) = k. We have ξ3 = τ and so
ξ3h = τh = 1, which means that k|3h. On the other hand, ξk = 1 implies ξ3k = 1.
Together with ξ3 = τ this yields τ k = 1 and h|k follows. Consequently, there exist
positive integers c1, c2 such that c1 · k = 3 · h and k = c2 · h. Hence, we have c1c2 = 3,
which yields c1 = 1, c2 = 3 or c1 = 3, c2 = 1. Consequently, ordK(ξ) = ordK(τ) or
ordK(ξ) = 3 · ordK(τ).
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Since the orders of the elements ξ1, ξ2, ξ3 can only take on two values h and 3h, at least
two of them have the same order. Denote this order by h0. Without loss of generality,
we can assume ordK(ξ1) = ordK(ξ2) = h0. Put ξ1 = ξ. Since {ξ1, ξ2, ξ3} = {ξ, εξ, ε2ξ},
either ordK(ξ) = ordK(εξ) = h0 or ordK(ξ) = ordK(ε2ξ) = h0. Hence, it easily follows
that 3|h0 and thus h0 = 3r for some positive integer r. Using Lemma 3.2, part (ii),
we get τ 3r = (ξ1ξ2ξ3)

h0 = ξh0
3 = τ r. Hence, τ 2r = 1. Since 2 - h, we have h|r. This,

together with h0 ∈ {h, 3h}, yields h0 = 3h. Consequently, we have either

ordK(ξ1) = ordK(ξ2) = ordK(ξ3) = 3 · ordK(τ) = 3h (3.4)

or

ordK(ξ1) = ordK(ξ2) = 3 · ordK(τ) and ordK(ξ3) = ordK(τ). (3.5)

In both cases, there exist u, v ∈ {ε, ε2} such that ξh
1 = u, and ξh

2 = v. First, assume
that u 6= v. Then ξh

1 ξh
2 = ε3 = 1, which yields ξh

3 = (ξ1ξ2ξ3)
h = τh = 1. Hence, we

have ordK(ξ3)|h and (3.5) follows. Further, assume that u = v. Since we have put
ξ1 = ξ, we have either ξh = εhξh or ξh = ε2hξh. Hence 3|h. Suppose (3.4). Then
ordK(ξ3) = 3h and, thus, 9|ordK(ξ) for any ξ ∈ {ξ1, ξ2, ξ3}. Since 9 - p2 + p + 1, we

have ξp2+p+1 6= 1, which is a contradiction to Theorem 3.6. Hence, we have (3.5) and
the theorem follows. ¤

Corollary 3.10. Let p ∈ I, p ≡ 1 (mod 3) and let τ be an arbitrary root of t(x) in the
splitting field K of t(x) over Fp. Then x9 − τ has exactly 9 distinct roots in K.

Proof. Since τ
p2+p+1

3 = 1, the proof is a simple modification of the proof of Lemma
3.1. ¤

Example 3.11. Let p = 37. Then p ≡ 1 (mod 3) and it can be verified that p ∈ I.
Let K be the splitting field of t(x) over F37 and let τ be any root of t(x) in K. By
Lemma 3.1, the polynomial x3 − τ has three distinct roots ξ1, ξ2, ξ3 in K. In the field
F37 we have ε = 10, and Lemma 3.2, part (i), yields ξ2 = 10ξ1 and ξ3 = 15ξ1. Using
the basis 1, τ, τ 2 of the field extension K/Fp, ξ1, ξ2, ξ3 can be written in the form

ξ1 = 2 + 16τ + 24τ 2, ξ2 = 20 + 12τ + 18τ 2, ξ3 = 15 + 9τ + 32τ 2.

By direct calculation we obtain ordK(τ) = 469, ordK(ξ1) = ordK(ξ2) = 1407 and
ordK(ξ3) = 469. Consequently, by Theorem 1.1, part (ii), and Theorem 3.9, h(37) =
ordK(τ) = ordK(ξ3) = 469. Furthermore, by Corollary 3.10, there exist 9 distinct roots
of x9 − τ in K:

ξ11 = 4 + 36τ + 12τ 2, ξ12 = 3 + 27τ + 9τ 2, ξ13 = 30 + 11τ + 16τ 2,
ξ21 = 21 + 4τ + 26τ 2, ξ22 = 25 + 3τ + τ 2, ξ23 = 28 + 30τ + 10τ 2,
ξ31 = 11 + 25τ + 33τ 2, ξ32 = 27 + 21τ + 7τ 2, ξ33 = 36 + 28τ + 34τ 2.

Moreover, for any i, j ∈ {1, 2, 3}, we have ξ3
ij = ξi. Put w1(x) = x3 + 17x2 + 31x − 1,

w2(x) = w1(εx) = x3 + 22x2 + 29x − 1, and w3(x) = w1(ε
2x) = x3 + 35x2 + 14x − 1.

Then ξi, ξp
i , ξp2

i , i ∈ {1, 2, 3} are the roots of wi(x) and

x9 − x6 − x3 − 1 ≡ w1(x)w2(x)w3(x)(mod 37)

as required by Corollary 3.7.
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4. Periods of the Tribonacci sequence modulo a prime p ≡ 1 (mod 3)

Recall that, for a prime p, h(p) denotes the period of (Tn mod p)∞n=0. In this section
we prove our main theorem extending Vince’s result [7, Theorem 4].

Theorem 4.1. Let p be an arbitrary prime, p ≡ 1 (mod 3).

(i) If p ∈ L, then h(p)|p−1
3

if and only if 2 is a cubic residue of the field Fp.

(ii) If p ∈ Q, then h(p)|p2−1
3

if and only if 2 is a cubic residue of the field Fp.

(iii) If p ∈ I, then h(p)|p2+p+1
3

.

Proof. The congruence p ≡ 1 (mod 3) implies p 6= 2, 11.
(i) Let p ∈ L and let τ be any root of t(x) in Fp. If 2 is a cubic residue of Fp, it follows

from (1.1) that τ (p−1)/3 ≡ 1 (mod p). Hence, ordFp(τ)|p−1
3

and Theorem 1.1, part (i),

imply h(p)|p−1
3

. On the other hand, if h(p)|p−1
3

, then ordFp(τ)|p−1
3

for any root τ of

t(x) in Fp. Consequently, τ (p−1)/3 ≡ 1 (mod p) and (1.1) yields 22(p−1)/3 ≡ 1 (mod p).
This implies that either 2(p−1)/3 ≡ −1 (mod p) or 2 is a cubic residue of Fp. Suppose
that 2(p−1)/3 ≡ −1 (mod p). Then 1 ≡ 2p−1 ≡ (2(p−1)/3)3 ≡ (−1)3 ≡ −1, which yields
2 ≡ 0 (mod p). Since p 6= 2, a contradiction follows.

(ii) Let p ∈ Q. Then the multiplicative group K× of the splitting field K of t(x) over
Fp has p2 − 1 elements. Let τ be any root of t(x) in K. Then, by Theorem 1.3, there

exists ω ∈ K such that 2τ = ω3. Let 2 be a cubic residue of Fp. Then 2(p2−1)/3 = 1

in K and so τ (p2−1)/3 = (2τ)(p2−1)/3 = ωp2−1 = 1. This implies ordK(τ)|p2−1
3

and

Theorem 1.1, part (i), yields h(p)|p2−1
3

. Conversely, assume that h(p)|p2−1
3

. Then

ordK(τ)|p2−1
3

for any root τ of t(x) in K and τ (p2−1)/3 = 1. From 2τ = ω3, we get

(2τ)(p2−1)/3 = ωp2−1 = 1, which implies 2(p2−1)/3 = 1 in K. Clearly, 1 ≡ 2(p2−1)/3 ≡
(2(p−1)/3)p+1 ≡ 22(p−1)/3 (mod p). Using an argument similar to that in (i), we obtain
2(p−1)/3 ≡ 1 (mod p) and (ii) follows.

(iii) Let p ∈ I and let τ be any root of t(x) in the splitting field K of t(x) over Fp.

Then, by (3.1), we have τ (p2+p+1)/3 = 1. This implies ordK(τ)|p2+p+1
3

and part (ii) of

Theorem 1.1 yields h(p)|p2+p+1
3

as required. ¤
Remark 4.2. If p ≡ 1 (mod 3), then 2 is a cubic residue of the field Fp if and only if
there are integers u and v such that p = u2 + 27v2. See [4, p. 119].

Let m be a positive integer, m > 1. In 1978, M. E. Waddill [9, Theorem 2] proved:

If Tk ≡ Tk+1 ≡ 0 (mod m), then T 3
k+2 ≡ 1 (mod m). (4.1)

Moreover, if k is the least positive integer such that Tk ≡ Tk+1 ≡ 0 (mod m), then
either Tk+2 ≡ 1 (mod m) or T3k+2 ≡ 1 (mod m) and the period h(m) of (Tn mod m)∞n=0

is k or 3k. See [9, Theorem 10]. If m = p ∈ I, we can say more.

Proposition 4.3. Let k be the least positive integer such that Tk ≡ Tk+1 ≡ 0 (mod p).
If p ∈ I, then h(p) = k.

Proof. By (4.1), the congruences Tk ≡ Tk+1 ≡ 0 (mod p) imply T 3
k+2 ≡ 1 (mod p).

Suppose that Tk+2 6≡ 1 (mod p). First, it is evident that, for p ≡ 2 (mod 3), we have
T 3

k+2 ≡ 1 (mod p) if and only if Tk+2 ≡ 1 (mod p). Hence, p ≡ 1 (mod 3) or p = 3.
Let p ≡ 1 (mod 3). Then Tk+2 6≡ 1 (mod p) implies Tk+2 ≡ ε (mod p) and (3.3) yields
τ k = ε. Since, by Remark 3.8, we have ε 6∈ G =< τ >, a contradiction follows. Finally,
for p = 3, the proof can be done by direct calculation. ¤
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Let (tn)∞n=0 = (a, b, c, a + b + c, a + 2b + 2c, . . . ) be a generalized Tribonacci sequence
beginning with an arbitrary triple of integers t0 = a, t1 = b, t2 = c. In 2008, J. Klaška [2]
investigated the period h(m)[a, b, c] of the sequence (tn mod m)∞n=0 where the modulus
m is a power of a prime. In particular, if m = p ∈ I, then, by [2, pp. 271–274], we
have h(p)[a, b, c] = h(p) if and only if [a, b, c] 6≡ [0, 0, 0] (mod p). Together with part
(iii) of Theorem 4.1 this yields the following proposition.

Proposition 4.4. Let a, b, c be arbitrary integers and (tn)∞n=0 the generalized Tribonacci
sequence beginning with t0 = a, t1 = b, t2 = c. If p is a prime, p ∈ I, p ≡ 1 (mod 3)

then h(p)[a, b, c]|p2+p+1
3

.
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CHAPTER 12

A NOTE ON THE CUBIC CHARACTERS

OF TRIBONACCI ROOTS
F

Abstract. In this paper we complete our preceding research concerning the cubic
character of the roots of the Tribonacci polynomial t(x) = x3 − x2 − x − 1 over the
Galois field Fp where p is an arbitrary prime, p ≡ 1 (mod 3).

1. Introduction

Let τ be any root of the Tribonacci polynomial t(x) = x3 − x2 − x− 1 in the Galois
field Fp where p is a prime, p ≡ 1 (mod 3). In [1], we proved that

τ
p−1
3 =

(
τ

p

)

3

= 2
2(p−1)

3 . (1.1)

Next, in [2], we showed that, if t(x) is irreducible over Fp, p ≡ 1 (mod 3) and τ is
any root of t(x) in the splitting field of t(x) over Fp, then

τ
p2+p+1

3 = 1. (1.2)

The number-theoretic results (1.1) and (1.2) were used in [2] to investigate the period
h(p) of the Tribonacci sequence (Tn)∞n=0 reduced by a modulus p. Recall that (Tn)∞n=0

is defined recursively by Tn+3 = Tn+2 + Tn+1 + Tn with T0 = T1 = 0, T2 = 1 and
that the period h(p) of (Tn mod p)∞n=0 is the least positive integer satisfying Th(p) ≡
Th(p)+1 ≡ 0 (mod p), Th(p)+2 ≡ 1 (mod p). Let I be the set of all primes p for which
t(x) is irreducible over Fp, Q be the set of all primes for which t(x) splits over Fp into
the product of a linear factor and an irreducible quadratic factor, and let L be the set
of all primes for which t(x) completely splits over Fp into linear factors. Furthermore,
let D = −22 · 11 be the discriminant of t(x). By [1, Corollary 2.5], p ∈ Q if and only
if

(
p
11

)
= −1. Moreover, if p 6= 2, 11, then p ∈ I ∪ L if and only if

(
p
11

)
= 1. In [2], we

established, for p ≡ 1 (mod 3), the following properties of h(p):

If p ∈ L, then h(p)|p−1
3

if and only if 2 is a cubic residue of the field Fp.

If p ∈ Q, then h(p)|p2−1
3

if and only if 2 is a cubic residue of the field Fp.

If p ∈ I, then h(p)|p2+p+1
3

.

(1.3)

In the proofs of (1.1) – (1.3), which were presented in [1] and [2], a significant role
is played by the cubic polynomials f(x, c) = x3 + A(c)x2 + B(c)x + C(c) ∈ Fp[x],
p ≡ 1 (mod 3) with

A(c) = −18c2 + 3, B(c) = −9c2 − 27c− 24, C(c) = 9c2 − 27c + 28, (1.4)

F
Published in J. Klaška, L. Skula, A note on the cubic characters of Tribonacci roots, The Fibonacci
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and c ∈ {−1,−ε,−ε2}. Here, ε ∈ Fp denotes a primitive third root of unity so that
ε2 + ε + 1 = 0. Let Dc be the discriminant of f(x, c). Then Dc = 22 · 39 · 11 for any
c ∈ {−1,−ε,−ε2} and, by [1, Lemma 2.6], we have

(
Dc

p

)
=

(
D

p

)
=

( p

11

)
. (1.5)

Consequently, the Stickelberger parity theorem [1, Theorem 2.4] can be used to prove
the following lemma:

Lemma 1.1. Let p be an arbitrary prime, p ≡ 1 (mod 3) such that
(

p
11

)
= −1. Then

the Tribonacci polynomial t(x) has exactly one root in the field Fp if and only if each
of the polynomials f(x, c), c ∈ {−1,−ε,−ε2} has exactly one root in Fp.

Since 2 is the root of f(x,−1) in any Galois field Fp, to find the further relations
between the number of roots of t(x) and f(x,−1) is quite easy. The polynomial f(x,−1)
has three distinct roots in Fp if and only if t(x) has no root or three distinct roots in
Fp. By means of the results derived in [1] and [2], these two cases may be distinguished
as follows: The Tribonacci polynomial t(x) has no root in Fp if and only if all three
roots of f(x,−1) belong to distinct cubic classes of Fp. On the other hand, t(x) has
three distinct roots in Fp if and only if all three roots of f(x,−1) belong to a single
cubic class of Fp.

In the present short note we complete what we know about the relations between the
Tribonacci polynomial t(x) and the polynomials f(x, c), c ∈ {−ε,−ε2}. In particular,
we prove that, in any Galois field Fp, where p ≡ 1 (mod 3), these polynomials have the
same number of roots.

2. The number of roots of the polynomials t(x), f(x,−ε), f(x,−ε2) over
the Galois field Fp where p ≡ 1 (mod 3)

For proof of our main result, we shall need the following two statements:

(i) Let p be a prime, p ≡ 1 (mod 3) and let g(x) = x3 + rx + s ∈ Fp[x], r, s 6= 0.

Assume that there exists λ ∈ Fp such that λ2 = d where d = s2

4
+ r3

27
. Further assume

that g(x) is irreducible over Fp or g(x) has three distinct roots in Fp. Then g(x) is
irreducible over Fp if and only if A = − s

2
+ λ is not a cubic residue of Fp.

(ii) For an arbitrary prime p, p ≡ 1 (mod 3), there exists κ ∈ Fp such that κ2 = 33.
If p ≡ 1 (mod 3) and

(
p
11

)
= 1, then t(x) is irreducible over Fp if and only if 19− 3κ

is not a cubic residue of Fp.

Part (i) is a direct consequence of [2, Theorem 2.4]. For (ii), see [2, Theorem 2.5].

Theorem 2.1. Let p be an arbitrary prime, p ≡ 1 (mod 3) such that
(

p
11

)
= 1. Then

the Tribonacci polynomial t(x) is irreducible over the field Fp if and only if f(x,−ε),
f(x,−ε2) are irreducible over Fp.

Proof. After substituting x = y − A(−ε)
3

, the polynomial f(x,−ε) becomes a cubic
polynomial g(y) = y3 + ry + s ∈ Fp[y] with

r=
1

3
(3B(−ε)−A(−ε)2) and s=

1

27
(2A(−ε)3−9A(−ε)B(−ε)+27C(−ε)). (2.1)
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From (1.4), we obtain A(−ε) = 18ε+21, B(−ε) = 36ε− 15, and C(−ε) = 18ε+19.
Substituting into (2.1) and using the identity ε2 + ε + 1 = 0, r and s can be written in
the form

r = −2 · 33(2ε + 1), s = 2 · 33(6ε− 1). (2.2)

We show that r, s 6= 0. Suppose r = 0. From (2.2) we have 2ε + 1 = 0. This implies
9 = 0, which yields a contradiction with p ≡ 1 (mod 3). Next suppose s = 0. Then
6ε− 1 = 0 and 215 = 5 · 43 = 0 follows. Since 5 6≡ 1 (mod 3) and (43

11
) = −1, we have

a contradiction.
By (ii), there exists κ ∈ Fp such that κ2 = 33. Let d = s2

4
+ r3

27
, µ = 2ε + 1, ν = κ

µ
,

λ = 27ν, and A = − s
2

+ λ. Then d = −36 · 11, λ2 = d, and A = (−3)3(−4 + 3µ− ν).
It is evident that f(x,−ε) and g(y) have the same number of roots in Fp. Hence,

the assumption
(

p
11

)
= 1 implies that g(y) is irreducible over Fp or has three distinct

roots in Fp. Moreover, according to (i),

g(y) is irreducible if and only if − 4 + 3µ− ν is not a cubic residue of Fp. (2.3)

By direct calculation, we can verify that

(19− 3κ)(−4 + 3µ− ν) = (2− µ− ν)3. (2.4)

By (ii), t(x) is irreducible over Fp if and only if 19− 3κ is not a cubic residue of Fp.
From (2.4), it follows that 19−3κ is not a cubic residue of Fp if and only if −4+3µ−ν
is not cubic residue of Fp. Finally, using (2.3), we conclude that g(y) and f(x,−ε) are
irreducible over Fp. Since we can replace ε by ε2, this is also true for f(x,−ε2). This
completes the proof. ¤

Together with Lemma 1.1, Theorem 2.1 yields the desired result.

Theorem 2.2. Let p be an arbitrary prime, p ≡ 1 (mod 3). Then the polynomials
t(x), f(x,−ε), f(x,−ε2) have the same number of roots over the field Fp.
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CHAPTER 13

MORDELL’S EQUATION AND THE

TRIBONACCI FAMILY
F

Abstract. We define a Tribonacci family as the set T of all cubic polynomials
f(x) = x3 + ax2 + bx + c ∈ Z[x] having the same discriminant as the Tribonacci
polynomial t(x) = x3 − x2 − x − 1. Using integral solutions of Mordell’s equation
Y 2 = X3 + 297, we establish explicit forms of all polynomials in T . As the main
result we prove that all polynomials in T have the same type of factorization over
any Galois field Fp where p is a prime.

1. Introduction

Mordell’s equation

Y 2 = X3 + k, 0 6= k ∈ Z. (1.1)

has had a long and interesting history. A synopsis of the first discoveries concerning
(1.1) is given in Dickson [1, pp. 533–539]. See also [6, pp. 1–5]. In 1909, A. Thue
[9] showed that (1.1) has only a finite number of solutions in integers X, Y . Various
methods for finding the integral solutions of (1.1) are known [3, 6, 7]. Extensive lists
of further references related to (1.1) can be found in [3] and [6].

In this paper we show an interesting application of integral solutions of (1.1) with
k = 297 to the theory of factorizations of the cubic polynomials f(x) = x3 +ax2 + bx+
c ∈ Z[x] with a discriminant Df = −44 over a Galois field Fp where p is a prime. In
particular, we prove that the set

T = {f(x) = x3 + ax2 + bx + c ∈ Z[x]; Df = −44}
contains infinitely many polynomials, which can be partitioned into eight pairwise
disjoint classes such that the polynomials of each class are given by a simple formula
that depends on some integral solution of Y 2 = X3 + 297. Since the Tribonacci
polynomial t(x) = x3−x2−x−1 belongs to T , we call T the Tribonacci family. As the
main result we prove that, over any Galois field Fp where p is a prime, all polynomials
in T have the same type of factorization and, consequently, the same number of roots
in Fp. We do this by combining the Stickelberger Parity Theorem [8] for the case of
a cubic polynomial [10], a modification of the results presented in [5, pp. 229–230],
and the relations between the cubic characters of certain elements of the field Fp2

corresponding to integral solutions of Y 2 = X3 + 297. In general, we show that, for
any D ∈ Z, the set

C = {f(x) = x3 + ax2 + bx + c ∈ Z[x]; Df = D}
F

Published in J. Klaška, L. Skula, Mordell’s equation and the Tribonacci family, The Fibonacci
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can be obtained by means of integral solutions of Mordell’s equation Y 2 =X3−432D.
This fact opens an interesting question, namely, for which D∈Z can our main result
be generalized.

2. Connection between Mordel’s equation Y 2 = X3 − 432D and cubic
polynomials with discriminant D

Let f(x) = x3 + ax2 + bx + c ∈ Q[x] and let Df = a2b2 − 4b3 − 4a3c− 27c2 + 18abc
be the discriminant of f(x). Let g

f
(x) = f(x − a/3). Then Dg

f
= Df and gf (x) =

x3 + rx + s ∈ Q[x] where

r = b− a2

3
and s =

2a3

27
− ab

3
+ c. (2.1)

Next, let

df =
r3

27
+

s2

4
. (2.2)

Then Df = −108df and df = dgf
. If f(x) ∈ Z[x], then (2.1) implies

r, s ∈ Z ⇐⇒ 3|a. (2.3)

On the other hand, for f(x) ∈ Z[x],

3 - a ⇐⇒ there exists u, v ∈ Z : r =
u

3
, s =

v

27
, 3 - uv. (2.4)

Moreover, by (2.1), we obtain

u = 3b− a2 and v = 2a3 − 9ab + 27c. (2.5)

For e ∈ {0, 1, 2}, let De denote the set of all d ∈ Q for which there exists f(x) =
x3 + ax2 + bx + c ∈ Z[x] such that a ≡ e (mod 3) and df = d. Some basic properties
of De will be established in the following lemma.

Lemma 2.1. For D0, D1 and D2 we have

D0 =

{
d ∈ Q; d =

4u3 + 27v2

108
, u, v ∈ Z

}
(2.6)

and D1 = D2 ={
d ∈ Q; d =

4u3 + v2

2916
, u, v ∈ Z, u ≡ 2 (mod 3), 3u + v + 1 ≡ 0 (mod 27)

}
. (2.7)

Proof. (i) Let d ∈ D0. Then there exists f(x) = x3 + ax2 + bx + c ∈ Z[x] such that 3|a
and df = d. By (2.3), gf (x) = x3 +rx+s ∈ Z[x]. Put u = r, v = s. Then u, v ∈ Z and,
by (2.2), d = df = (4u3 + 27v2)/108. Conversely, assume that d = (4u3 + 27v2)/108
where u, v ∈ Z. For any w ∈ Z, let

a = 3w, b = 3w2 + u, c = w3 + uw + v. (2.8)

Then f(x) = x3 +ax2 +bx+c ∈ Z[x], 3|a and, gf (x) = x3 +rx+s ∈ Z[x]. Substituting
(2.8) into (2.1), we obtain r = u and s = v, which together with (2.2) yields d = df =
(4u3 + 27v2)/108. This proves (2.6).

(ii) Let e ∈ {1, 2}. First show

De =

{
d∈Q; d =

4u3+v2

2916
, u, v∈Z, u≡2 (mod 3), e3+3eu+v ≡ 0 (mod 27)

}
. (2.9)



CHAPTER 13 123

Let d ∈ De. Then there exists f(x) = x3 + ax2 + bx+ c ∈ Z[x] such that a ≡ e (mod 3)
and, df = d. By (2.4), gf (x) = x3 + ux/3 + v/27 ∈ Q[x] where u, v ∈ Z and 3 - uv.
Hence, by (2.2), d = df = (4u3 + v2)/2916. Moreover, from (2.5) it follows that
u = 3b − a2 ≡ −e2 ≡ 2 (mod 3). Since a = 3w + e for some w ∈ Z, the first
identity of (2.1) yields b = (a2 + u)/3 = 3w2 + 2ew + (u + e2)/3. Hence, by (2.5),
v ≡ 2(3w + e)3 − 9(3w + e)(3w2 + 2ew + (u + e2)/3) ≡ −3eu − e3 (mod 27), and
e3 +3eu+ v ≡ 0 (mod 27) follows. Conversely, assume that d = (4u3 + v2)/2916 where
u, v ∈ Z such that u ≡ 2 (mod 3) and e3 + 3eu + v ≡ 0 (mod 27). For any w ∈ Z, put
a = 3w + e, b = (a2 + u)/3, c = (−2a3 + 9ab + v)/27. Since u ≡ 2 (mod 3), we have
a2 + u ≡ e2 + 2 ≡ 0 (mod 3). Hence, b ∈ Z. Next, after some calculation, we obtain
−2a3+9ab+v ≡ −2(3w+e)3+9(3w+e)(3w2+2ew+(u+e2)/3)−e3−3eu ≡ 0 (mod 27).
Hence, c ∈ Z. Let f(x) = x3+ax2+bx+c. Using (2.1), we get gf (x)=x3+ux/3+v/27
and (2.2) yields df = (4u3 + v2)/(4 · 272) = d as required. This proves (2.9).

It remains to prove D1 = D2. Let u be an integer, u ≡ 2 (mod 3). Then 9u + 9 ≡
0 (mod 27), which implies

v + 3u + 1 ≡ 0 (mod 27) ⇐⇒ −v + 6u + 8 ≡ 0 (mod 27) (2.10)

for any v ∈ Z. Clearly, if d = d(u, v) = (4u3 + v2)/2916, then d(u, v) = d(u,−v). This,
together with (2.9) and (2.10), yields (2.7). The proof is complete. ¤
Remark 2.2. Let D = D1 = D2. Then D0∩D, D0−D, and D−D0 are nonempty sets.
For example, 23/108 ∈ D0 ∩ D, −13/108 ∈ D0 − D, and 11/27 ∈ D− D0.

For any d ∈ Q let

C(d) = {f(x) = x3 + ax2 + bx + c ∈ Z[x]; df = d}.
Then, C(d)= {f(x)=x3+ax2+bx+c∈Z[x]; Df = −108d}. Furthermore, C(d) = ∅ if
and only if d ∈ Q− (D0 ∪ D). For d ∈ D0 ∪ D, the following theorem can be stated.

Theorem 2.3. Assume that f(x) = x3 + ax2 + bx + c ∈ Z[x].
(i) Let d ∈ D0. Then f(x) ∈ C(d) if and only if there exists u, v, w ∈ Z such that

a = 3w, b = 3w2 + u, c = w3 + uw + v and, 4u3 + 27v2 = 108d. (2.11)

(ii) Let d ∈ De and e ∈ {1, 2}. Then f(x) ∈ C(d) if and only if there exist u, v, w ∈ Z
such that

a=3w+e, b=3w2+2ew+
e2+u

3
, c=w3+ew2+

e2+u

3
w+

e3+3eu+v

27
(2.12)

and

4u3 + v2 = 2916d where u ≡ 2 (mod 3), e3 + 3eu + v ≡ 0 (mod 27). (2.13)

Moreover, in (i) we have gf (x) = x3 + ux + v and, in (ii), gf (x) = x3 + ux/3 + v/27.

Proof. (i) Let d ∈ D0 and f(x) ∈ C(d). Then there exist w ∈ Z such that a = 3w
and, by (2.3), gf (x) = x3 + rx + s ∈ Z[x]. Let u = r and v = s. By (2.2), d = df =
(4u3+27v2)/108 and 4u3+27v2 = 108d follows. Since a = 3w, the first equation of (2.1)
implies b = 3w2 + u. Similarly, the second equation of (2.1) together with a = 3w and
b = 3w2+u yields c = w2+uw+v. Hence (2.11) follows. Conversely, assume that a, b, c
satisfy (2.11). Substituting a = 3w, b = 3w2 + u and c = w3 + uw + v into (2.1), after
short calculation, we get, r = u and s = v. Hence, by (2.2), df = (4u3 +27v2)/108 = d
and f(x) ∈ C(d) follows. This proves (i).
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(ii) Let d ∈ De, e ∈ {1, 2}, and f(x) ∈ C(d). Then there exists w ∈ Z such that
a = 3w+e and, by (2.4), gf (x) = x3+ux/3+v/27 ∈ Q[x] where u, v ∈ Z and, 3 - uv. By
(2.2), d = df = (4u3 + v2)/2916 and 4u3 + v2 = 2916d follows. Substituting a = 3w + e
into the first equality of (2.1), we obtain, b = 3w2+2ew+(u+e2)/3. This together with
the second equality of (2.1) yields c = w3 + ew2 + (u + e2)w/3 + (3eu + v + e3)/27 and
(2.13) follows. Conversely, assume that a, b, c satisfy (2.12) and (2.13). Substituting
(2.12) into (2.1), we get r = u/3 and s = v/27. Hence, gf (x) = x3 + ux/3 + v/27 and,
by (2.2), we conclude that df = (4u3 + v2)/2916 = d. ¤

The following corollary states that both Diophantine equations 4u3 + 27v2 = 108d
and 4u3 + v2 = 2919d can be reduced to the same Mordell equation Y 2 = X3 − 432D
with D = −108d. Consequently, the coefficients a, b, c from (2.12) and (2.13) can be
given by the integral solutions of Y 2 = X3 − 432D.

Corollary 2.4. (i) Let d ∈ D0 and D = −108d. Then f(x) = x3 +ax2 + bx+ c ∈ C(d)
if and only if there exist w, X, Y ∈ Z such that

a = 3w, b = 3w2 − X

12
, c = w3 − X

12
w +

Y

108
(2.14)

and

Y 2 = X3 − 432D where 12|X, 108|Y.

(ii) Let d ∈ De, e ∈ {1, 2} and D = −108d. Then f(x) = x3 + ax2 + bx + c ∈ C(d) if
and only if there exist w,X, Y ∈ Z such that

a=3w+e, b=3w2+2ew+
4e2−X

12
, c=w3+ew2+

4e2−X

12
w+

4e3−3eX+Y

108
(2.15)

and

Y 2 =X3−432D where 4|X, 4|Y,X≡1 (mod 3), 4e3−3eX+Y ≡ 0(mod 27).

Corollary 2.4 can be easily obtained from Theorem 2.3 by the substitutions X =
−12u, Y = 108v in case (i) and X = −4u, Y = 4v in case (ii).

Remark 2.5. The coefficients a, b, c given by (2.11), (2.12), (2.14) and (2.15) can be
written using derivatives as follows: if c = c(w), then b = c′(w) and a = c′′(w)/2.

Remark 2.6. A straightforward application of Corollary 2.4 with d = 11/27 leads to
Mordell’s equation (1.1) with k = 19008. In the following section, we show that the set
C(11/27) can also be obtained by means of integral solutions of (1.1) with k = 297.

3. The Tribonacci family

Let t(x) = x3 − x2 − x− 1 be the Tribonacci polynomial. First, observe that

Dt = −44, dt =
11

27
and gt(x) = x3 − 4

3
x− 38

27
.

Since

t(x) ∈ T = {f(x) = x3 + ax2 + bx + c ∈ Z[x]; Df = −44} = C(11/27),

the set T can be called the Tribonacci family. In this section, explicit forms of all
polynomials in T will be given.
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Lemma 3.1. Assume that f(x) = x3 + ax2 + bx + c ∈ Z[x].
(i) We have 11/27 /∈ D0.
(ii) f(x) ∈ T if and only if there exists e ∈ {1, 2} and w, X, Y ∈ Z such that

a=3w+e, b=3w2+2ew+
e2−X

3
, c=w3+ew2+

e2−X

3
w+

e3−3eX+2Y

27
(3.1)

and

Y 2 = X3 + 297 where X ≡ 1 (mod 3) and e3 − 3eX + 2Y ≡ 0 (mod 27). (3.2)

Moreover, gf (x) = x3 + rx + s where r = −X/3, s = 2Y/27 with X, Y satisfying (3.2).

Proof. (i) Suppose 11/27 ∈ D0. Then, by (2.12), there exist u, v ∈ Z such that 4u3 +
27v2 = 44. Hence, 2|v and u3 + 27k2 = 11 for some k ∈ Z. Since u3 ≡ 11 (mod 27) has
no solution, we get a contradiction. Consequently, 11/27 /∈ D0 and 3 - a. Part (ii) can
be obtained easily from Theorem 2.3 by substituting u = −X, v = 2Y . ¤

Theorem 3.2. Mordell’s equation Y 2 = X3+297 has exactly eighteen integral solutions
(X, Y ): (−6,±9), (−2,±17), (3,±18), (4,±19), (12,±45), (34,±199), (48,±333),
(1362,±50265), and (93844,±28748141).

See Table 3 in [2, p. 96] or consult [6, p. 127].

Corollary 3.3. There exist exactly eight integral solutions (X,Y ) of Y 2 = X3 + 297
satisfying X ≡ 1 (mod 3) and e3 − 3eX + 2Y ≡ 0 (mod 27) where e = 1 or e = 2:
(−2,±17), (4,±19), (34,±199), and (93844,±28748141).

Combining Lemma 3.1 and Corollary 3.3, we see that there exist exactly eight poly-
nomials gj(x) = x3 + rjx + sj ∈ Q[x], j ∈ {1, · · · , 8} with Dgj

= −44:

g1(x) = x3+ 2
3
x− 34

27
, g2(x) = x3+ 2

3
x + 34

27
,

g3(x) = x3− 4
3
x− 38

27
, g4(x) = x3− 4

3
x + 38

27
,

g5(x) = x3− 34
3
x− 398

27
, g6(x) = x3− 34

3
x + 398

27
,

g7(x) = x3− 93844
3

x− 57496282
27

, g8(x) = x3− 93844
3

x + 57496282
27

.

(3.3)

Next, letting k = w in (3.1) and using Corollary 3.3, we find that f(x) ∈ T if and only
if f(x) = tj(x, k) for some j ∈ {1, · · · , 8} and k ∈ Z where

t1(x, k)=x3+(3k+1)x2+ (3k2+2k+1)x+k3+k2+k−1,
t2(x, k)=x3+(3k+2)x2+ (3k2+4k+2)x+k3+2k2+2k+2,
t3(x, k)=x3+(3k+2)x2+ (3k2+4k)x+k3+2k2−2,
t4(x, k)=x3+(3k+1)x2+ (3k2+2k−1)x+k3+k2−k+1,
t5(x, k)=x3+(3k+2)x2+ (3k2+4k−10)x+k3+2k2−10k−22,
t6(x, k)=x3+(3k+1)x2+ (3k2+2k−11)x+k3+k2−11k+11,
t7(x, k)=x3+(3k+1)x2+(3k2+2k−31281)x+k3+k2−31281k−2139919,
t8(x, k)=x3+(3k+2)x2+(3k2+4k−31280)x+k3+2k2−31280k+2108638.

(3.4)

Consequently, T can be written as T =
⋃8

j=1{tj(x, k); k ∈ Z} where {tj(x, k); k ∈ Z}
are pairwise disjoint sets. Finally, by (3.4), t(x) = t3(x,−1).
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4. The cubic character of the field Fp2

We start this section with a more general theorem.

Theorem 4.1. Let H be a subfield of the field G, [G : H] = 2, char H 6= 2, 3 and let
g(x) = x3 + rx + s ∈ H[x] with r 6= 0. Assume that g(x) is irreducible over H or g(x)
has three distinct roots in H. Further let dg = r3/27 + s2/4 and ε, λ ∈ G be such that
ε2 + ε + 1 = 0 and λ2 = dg. Then the following statements are equivalent:

(i) g(x) has three distinct roots in H.
(ii) g(x) has three distinct roots in G.
(iii) A = −s/2− λ is a cubic residue of G.
(iv) B = −s/2 + λ is a cubic residue of G.

Proof. Clearly, (i) implies (ii). Assume (ii) and suppose that g(x) is irreducible over H.
Then G is a splitting field of g(x) over H. Hence, [G : H] = 3 which is a contradiction.
This proves that (i) and (ii) are equivalent. Next, a simple calculation yields AB =
(−r/3)3. Since r 6= 0, it follows that (iii) and (iv) are equivalent.

Let K be an arbitrary over-field of G such that A,B are cubic residues of K. Then
there exists α, γ ∈ K satisfying α3 = A, γ3 = B. Since (αγ)3 = AB = (−r/3)3 there
exist i ∈ {0, 1, 2} such that αγεi = −r/3. Let β = γεi. Then β3 = B and αβ = −r/3.
Since A + B = −s, we have g(α + β) = A + B + (α + β)(3αβ + r) + s = 0.

Hence, it follows for K = G that (iii) implies (ii). Finally, assume (ii) and suppose
that A is not a cubic residue of G. Let S be a splitting field of x3−A over G. Then A
is a cubic reside of S and AB = (−r/3)3 yields that B is a cubic reside of S, too. By
what was proved above, in the field K = S, there exist α, β such that g(α + β) = 0.
Since g(x) has three distinct roots in G, we have α + β ∈ G. Put η = α + β. Then
−s = A+B = α3+(η−α)3 = 3α2η−3αη2+η3. Since 1, α, α2 is a base of the extension
S/G, we have η = 0 and s = 0. Let ρ = −3λ/r. Then ρ ∈ G and λ2 = dg = r3/27
yields ρ3 = −27λ3/r3 = −λ = A, a contradiction. Hence, (ii) implies (iii) as required.
The proof is complete. ¤

Note that Theorem 4.1 generalizes the results obtained in [5, pp. 229–230]. The
following statement which is an easy consequence of Theorem 4.1 will be used in proving
the main result presented in Section 5.

Theorem 4.2. Let p be a prime, p > 3 and let g(x) = x3 + rx + s ∈ Fp[x] with r 6=0.
Assume that g(x) is irreducible over Fp or g(x) has three distinct roots in Fp. Then
the following statements are equivalent:

(i) g(x) has three distinct roots in Fp.
(ii) g(x) has three distinct roots in Fp2.
(iii) A = −s/2− λ is a cubic residue of Fp2.
(iv) B = −s/2 + λ is a cubic residue of Fp2.

Remark 4.3. Theorems 4.1 and 4.2 also hold in the case of r = 0 if we let A = B = s.

Let F×p2 denote the multiplicative group of the Galois field Fp2 where p is a prime,

p > 3. Recall that the cubic character χ of Fp2 is a mapping χ : F×p2 → F×p2 defined by

χ(ξ) = ξ(p2−1)/3 for any ξ ∈ F×p2 . Let ε ∈ F×p2 be such that ε2 + ε + 1 = 0. Then ε3 = 1

and ε 6= 1. Clearly, if ξ ∈ F×p2 , then χ(ξ) = εi for some i ∈ {0, 1, 2}. Next, recall the
following familiar properties of χ:
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If ξ1, ξ2 ∈ F×p2, then χ(ξ1 · ξ2) = χ(ξ1) · χ(ξ2).

If ξ ∈ F×p2, then χ(ξ) = 1 if and only if ξ is a cube in the field Fp2.

If ξ ∈ F×p and χ(ξ) = 1, then ξ is a cube in the field Fp.

Let λ ∈ Fp2 be such that λ2 = dt = 11/27 ∈ Fp and gj(x) = x3 + rjx + sj,
j ∈ {1, · · · , 8} be the cubic polynomials established in (3.3) considered as polynomials
in Fp[x]. For any j ∈ {1, · · · , 8}, we define the elements A(yj), B(yj) ∈ Fp2 as follows:

A(yj) = − yj

27
− 1

9
κ, B(yj) = − yj

27
+

1

9
κ where yj =

27

2
sj and κ = 9λ.

Let Y= {yj, j = 1, · · · , 8}. Then Y = {±17,±19,±199,±28748141} and A(y), B(y)
6= 0 in Fp2 for any y ∈ Y and p 6= 17, 29, 809. Furthermore, it is easy to verify that

χ(A(y)) = χ(B(−y)) and χ(A(y)) · χ(A(−y)) = 1 for any y ∈ Y. (4.1)

Let

R={A(17), B(−17), A(−19), B(19), A(−199), B(199), A(28748141), B(−28748141)},
S ={A(−17), B(17), A(19), B(−19), A(199), B(−199), A(−28748141), B(28748141)}.
The fundamental relations between the cubic characters of the elements of R and S

will be stated in the following lemma.

Lemma 4.4. Let p be an arbitrary prime, p 6= 2, 3, 17, 29, 809. Then
(i) All elements of R have the same cubic character in Fp2.
(ii) All elements of S have the same cubic character in Fp2.
(iii) If ρ ∈ R and σ ∈ S, then χ(ρ) · χ(σ) = 1.

Proof. By direct calculation we can easily verify that

(19 + 3
√

33)· (17 + 3
√

33) = (5 +
√

33)3,

(19 + 3
√

33)· (199− 3
√

33) = (13 +
√

33)3,

(19 + 3
√

33)·(28748141 + 3
√

33) = (692 + 56
√

33)3.

(4.2)

Since the mapping H : Z[
√

33] → Fp2 defined by H(α + β
√

33) = α + βκ is a ho-

momorphism of Z[
√

33] into Fp2 , (4.2) yields that χ(19 + 3κ) · χ(17 + 3κ) = χ(19 +
3κ) · χ(199 − 3κ) = χ(19 + 3κ) · χ(28748141 + 3κ) = 1. Multiplying by χ(19 − 3κ)
and using the second equality of (4.1) for y = 19 we get χ(B(−17)) = χ(A(−199)) =
χ(B(−28748141)) = χ(A(−19)). This together with the first equality of (4.1) implies
that all elements of R have the same cubic character. Since S can be written in the
form S = {A(−y); A(y) ∈ R}∪{B(−y); B(y) ∈ R}, the second equality of (4.1) implies
that all elements of S have the same cubic character and that χ(ρ) · χ(σ) = 1 for any
ρ ∈ R and σ ∈ S. ¤

5. The main theorem

There exist five types of factorization of the cubic polynomial f(x) = x3 +ax2 +bx+
c ∈ Z[x] over the Galois field Fp with p a prime:

Type I: f(x) is irreducible over Fp, i.e., f(x) has no root in Fp.
Type II: f(x) splits over Fp into a linear factor and an irreducible quadratic factor.
Type III: f(x) has three distinct roots in Fp.
Type IV: f(x) has a double root in Fp.
Type V: f(x) has a triple root in Fp.
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Cases I–V can partially be distinguished using the quadratic character of Df . Let
(Df/p) denote the Legendere–Jacobi symbol. By the Stickelberger Parity Theorem [8]
for the case of a cubic polynomial [10, p. 189], we can distinguish case II from cases I
and III as follows:

Let N be the number of distinct roots of f(x) = x3 + ax2 + bx + c ∈ Z[x] over the
Galois field Fp with p a prime, p > 3 and p - Df . Then

N = 1 if and only if (Df/p) = −1,
N = 0 or N = 3 if and only if (Df/p) = 1.

(5.1)

For distinguishing the types I and III, we can use the cubic character and the field
Fp2 by Theorem 4.2 as follows: Let p > 3 and (Df/p) = 1. Set r = b − a2/3,
s = 2a3/27 − ab/3 + c, d = r3/27 + s2/4 and let λ ∈ Fp2 with λ2 = d. Further let
A = −s/2 − λ, B = −s/2 + λ if a2 6≡ 3b (mod p) and A = B = s if a2 ≡ 3b (mod p).
Then

f(x) is of the type III if and only if A and B are cubic residues of Fp2.

Furthermore, for an arbitrary prime p, f(x) has a multiple root in Fp if and only if
p|Df . Clearly, for p > 2, the condition p|Df is equivalent to (Df/p) = 0. Moreover, if
p > 2 and p|Df , then using Viètes relations between the roots and coefficients of f(x),
it is easy to see that

f(x) is of the type

{
IV if and only if p - ab− 9c or p - a, p|b, p|c,
V otherwise.

Our next considerations will be restricted to polynomials f(x) belonging to the
Tribonacci family T . In this case, Df = −44 and, for any prime p 6= 2, 11, we have
(Df/p) = (−44/p) = (p/11). See also [4, p. 23]. To prove the main theorem, we will
need the following proposition.

Proposition 5.1. Let p be a prime, p > 3 and (p/11) = 1. Then all polynomials in T
have the same type of factorization over Fp.

Proof. It is evident that, for any fixed j ∈ {1, · · · , 8}, the polynomials gj(x) and
tj(x, k), k ∈ Z defined by (3.3) and (3.4) have the same type of factorization over an
arbitrary Galois field Fp with p a prime, p > 3. Hence, it follows that all polynomials
in T have the same type of factorization over Fp if and only if the polynomials gj(x) =
x3 + rjx+ sj ∈ Fp[x], j ∈ {1, · · · , 8} have the same type of factorization over Fp . Now
we show that, if p > 3 and (p/11) = 1, then rj 6= 0 in Fp for any gj(x). Suppose that
rj = 0 for some j. Then it follows from (3.4) that p ∈ {17, 29, 809}. Since (p/11) = −1
for any p ∈ {17, 29, 809}, a contradiction follows. Furthermore, if p > 3 and (p/11) = 1,
then, by (5.1), any gj(x), j ∈ {1, · · · , 8} is of type I or type III. By Lemma 4.4, for any
τ1, τ2 ∈ R∪S, we have χ(τ1) = 1 if and only if χ(τ2) = 1. This together with Theorem
4.2 concludes the proof. ¤

Now we can to prove our main theorem.

Main Theorem 5.2. Let p be an arbitrary prime. Then all polynomials in T have
the same type of factorization over the Galois field Fp.

Proof. If p > 3 and (p/11) = −1, then the Stickelberger Parity Theorem says that each
polynomial in T is of the type II over Fp. If p > 3 and (p/11) = 1, then all polynomials
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in T have the same type of factorization over Fp by Proposition 5.1. Moreover, by the
Stickelberger Parity Theorem, this type is either I or III.

Let p = 2. Substituting k = 0, 1 into (3.4), we obtain the following identities over
F2[x]: t1(x, 0) = t2(x, 1) = t3(x, 1) = t4(x, 0) = t5(x, 1) = t6(x, 0) = t7(x, 0) = t8(x, 1)
= (x − 1)3, and t1(x, 1) = t2(x, 0) = t3(x, 0) = t4(x, 1) = t5(x, 0) = t6(x, 1) = t7(x, 1) =
t8(x, 0) = x3. This proves that each polynomial in T if of type V over F2. Let p = 3.
Substituting k=0, 1, 2 into (3.4), we get the following identities over F3[x]:

t1(x, 0) = t4(x, 1) = t6(x, 0) = t7(x, 2) = x3 + x2 + x + 2,
t1(x, 1) = t4(x, 2) = t6(x, 1) = t7(x, 0) = x3 + x2 + 2,
t1(x, 2) = t4(x, 0) = t6(x, 2) = t7(x, 1) = x3 + x2 + 2x + 1,
t2(x, 0) = t3(x, 2) = t5(x, 0) = t8(x, 1) = x3 + 2x2 + 2x + 2,
t2(x, 1) = t3(x, 0) = t5(x, 1) = t8(x, 2) = x3 + 2x2 + 1,
t2(x, 2) = t3(x, 1) = t5(x, 2) = t8(x, 0) = x3 + 2x2 + x + 1.

(5.2)

By direct calculation, it is easy to verify, that all polynomials in (5.2) are irreducible
over F3. This means that each polynomial in T is of type I over F3.

Finally, let p = 11. Then the polynomials gj(x), j ∈ {1, · · · , 8} established in (3.3),
have the following factorizations over F11:

g1(x) = (x + 10)2(x + 2), g2(x) = (x + 1)2(x + 9),
g3(x) = (x + 8)2(x + 6), g4(x) = (x + 3)2(x + 5),
g5(x) = (x + 4)2(x + 3), g6(x) = (x + 7)2(x + 8),
g7(x) = (x + 9)2(x + 4), g8(x) = (x + 2)2(x + 7).

(5.3)

From (5.3) it follows that each polynomial in T is of type IV over F11. The proof is
complete. ¤

6. Conclusion

The results presented in Theorem 2.3 and Corollary 2.4 make it possible to find the
set of all cubic polynomials f(x) = x3 + ax2 + bx + c ∈ Z[x] with a given discriminant
0 6= D ∈ Z if all integral solutions of Mordell’s equation Y 2 = X3 + k, k = 432D
are known. Thanks to the computations made by Gebel, Pethö and Zimmer [3], all
integral solutions of this equation are determined for any 0 6= |k| ≤ 105 and thus, for
any 0 6= |D| ≤ 231. Consequently, the method used in proving the Main Theorem
5.2 can actually be applied to any particular 0 6= |D| ≤ 231. These facts open a
new and interesting question, namely, for which D ∈ Z can the Main Theorem 5.2 be
generalized. However, to determine all such D′s can be a difficult problem.
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CHAPTER 14

LAW OF INERTIA FOR THE FACTORIZATION

OF CUBIC POLYNOMIALS – THE REAL CASE
F

Abstract. Let D ∈ Z and CD := {f(x) = x3 + ax2 + bx + c ∈ Z[x];Df = D}
where Df is the discriminant of f(x). Assume that D < 0, D is square-free, 3 - D,
and 3 - h(−3D) where h(−3D) is the class number of Q(

√−3D). We prove that all
polynomials in CD have the same type of factorization over any Galois field Fp, p
being a prime, p > 3.

1. Introduction

Let f(x) = x3 + ax2 + bx + c ∈ Z[x] and let

Df = a2b2 − 4b3 − 4a3c− 27c2 + 18abc (1.1)

be the discriminant of f(x). Next, for any D ∈ Z, put

CD := {f(x) = x3 + ax2 + bx + c ∈ Z[x]; Df = D}. (1.2)

In [8] we thoroughly examined the set C−44 containing the Tribonacci polynomial t(x) =
x3−x2−x−1. As the main result we proved that all polynomials in C−44 have the same
type of factorization and, consequently, the same number of roots over an arbitrary
Galois field Fp with p a prime. This result suggested an interesting question, namely,
for which D ∈ Z it can be generalized. Recall [8, p. 316] that there exist five distinct
types of factorization of f(x) over the Galois field Fp with p a prime. For these types,
we shall use the standard notation found in M. Ward [17, p. 161]:

Case Type of f(x) over Fp Number of roots of f(x) in Fp

I [3] f(x) has no root in Fp

II [2,1] f(x) has exactly one root in Fp

III [1,1,1] f(x) has three distinct roots in Fp

IV [12, 1] f(x) has a double root in Fp

V [13] f(x) has a triple root in Fp

In case I, f(x) is irreducible over Fp, in case II, f(x) splits over Fp into a linear factor
and an irreducible quadratic factor and, in cases III, IV, and V, f(x) completely splits
over Fp into linear factors. Note that, in any case, the factorization is unique.

F
Published in J. Klaška, L. Skula, Law of inertia for the factorization of cubic polynomials – the

real case, Utilitas Mathematica, 102 (2017), 39–50.
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As the main result of this paper, we state a general theorem for a discriminant D ∈ Z
satisfying the conditions

D < 0, D is square-free, 3 - D, 3 - h(−3D) (1.3)

where h(−3D) is the class number of Q(
√−3D). Our main result is the following:

Main theorem 1.1. Let p > 3 be a prime and let f(x), g(x) ∈ Z[x] be monic cubic
polynomials with the same discriminant D ∈ Z satisfying (1.3). Then f(x) and g(x)
have the same type of factorization over the field Fp. Consequently, if CD 6= ∅, then all
polynomials in CD have the same type of factorization over Fp.

Note that for an arbitrary D ∈ Z, D < 0 the statement does not hold. Consider, for
example, D = −61 · 191, f(x) = x3 + 2x2 − 14x− 41, and g(x) = x3 − 9x2 + 23x + 6.
Then Df = Dg = D and h(−3D) = 6. However, f(x) is of type [1, 1, 1] and g(x) of
type [3] over F13. Next, consider D = −22 · 6011, f(x) = x3 + x2 − 11x − 37, and
g(x) = x3 − 3x2 + 17x + 7. Then Df = Dg = D and h(−3D) = 1. However, f(x) is of
type [3] and g(x) of type [1, 1, 1] over F7.

If the factorization type of all polynomials in CD 6= ∅ is the same, for any fixed prime
p, we can call this property the law of inertia for the factorization in CD. Of course, if
CD = ∅, the law of inertia in CD holds trivially.

2. Preliminaries

Let f(x) = x3 +ax2 + bx+ c ∈ Q[x] and let g
f
(x) := f(x−a/3) = x3 + rx+ s ∈ Q[x].

First observe that Df = Dgf
. Next, if f(x) ∈ Z[x], then, for any prime p 6= 3, f(x)

and gf (x) can be regarded as polynomials in Fp[x]. In this case, f(x) and gf (x) have
the same type of factorization over Fp.

For our next considerations, it will be important to give a condition for CD 6= ∅.
The following Theorem 2.1 follows from Theorem 2.3 in [8, p. 312].

Theorem 2.1. Let D ∈ Z. Then D is a discriminant of some monic cubic polynomial
with integer coefficients if and only if there exist u, v ∈ Z satisfying

4u3 + 27v2 = −D (2.1)

or there exist u, v ∈ Z and a unique e ∈ {1, 2} satisfying

4u3 + v2 = −27D, u ≡ 2 (mod 3), e3 + 3eu + v ≡ 0 (mod 27). (2.2)

Moreover, if f(x) = x3 + ax2 + bx + c ∈ Z[x] and Df = D, then we have:

(i) If a ≡ 0 (mod 3) then there exist u, v ∈ Z satisfying (2.1) and

gf (x) = x3 + ux + v.

(ii) If a ≡ e (mod 3) where e ∈ {1, 2}, then there exist u, v ∈ Z satisfying (2.2) and

gf (x) = x3 +
u

3
x +

v

27
.

For fixed D ∈ Z, put V1 := {[u, v] ∈ Z2 : satisfying (2.1)} and V2 := {[u, v] ∈ Z2 :
satisfying (2.2)}. In the following Proposition 2.2 we show that condition (2.2) defining
the set V2 can be simplified significantly.
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Proposition 2.2. Let D, u, v ∈ Z, 3 - u and 4u3 + v2 = −27D. Then, u ≡ 2 (mod 3)
and there exists a unique e ∈ {1, 2} satisfying e3+3eu+v ≡ 0 (mod 27). Consequently,

V2 = {[u, v] ∈ Z2 : 4u3 + v2 = −27D and 3 - u}.
Proof. Let 4u3 + v2 = −27D and 3 - u. Then 3 - v and u3 +1 ≡ 0 (mod 3). Hence, u ≡
2 (mod 3). Next, direct calculation yields that the congruence 4u3 + v2 ≡ 0 (mod 27)
has exactly eighteen solutions [u, v] with u ≡ 2 (mod 3):

[2,±20], [5,±11], [8,±2], [11,±20], [14,±11],

[17,±2], [20,±20], [23,±11], [26,±2]. (2.3)

Since any [u, v] in (2.3) satisfies either 1+3u+v ≡ 0 (mod 27) or 8+6u+v ≡ 0 (mod 27),
we are done. ¤

Now we can characterize the discriminants D for which V1 ∩ V2 6= ∅.
Proposition 2.3. Let 0 6= D ∈ Z. Then V1 ∩ V2 6= ∅ if and only if there exists T ∈ Z
such that 3 - T and D = 72T 6. In this case,

V1 ∩ V2 = {[−7T 2, 7T 3], [−7T 2,−7T 3]}. (2.4)

Proof. Let [u, v] ∈ V1 ∩ V2. Then 4u3 + 27v2 = −D, 4u3 + v2 = −27D and 3 - u.
Hence, 4 · 27u3 + 272v2 = 4u3 + v2, which yields u3 = −7v2, 7|u, 7|v. Since D 6= 0,
there exist U, V ∈ Z, U < 0, V 6= 0 such that u = 7U , v = 7V and U3 = −V 2

follows. If U = −1, then V = ±1 and [u, v] = [−7,±7]. Hence, for T = ±1, we obtain
(2.4). Let U < −1 and let p be a prime such that p|U . Then, p|V and there exist
α(p), β(p) ∈ N, A,B ∈ Z, A ≤ −1 such that U = pα(p)A, V = pβ(p)B, p - AB. From
U3 = −V 2, it follows now that 3α(p) = 2β(p). Hence, there exists γ(p) ∈ N such that
U = p2γ(p)A and V = p3γ(p)B. Putting T =

∏
p|U pγ(p), we obtain U = −T 2, V = ±T 3

and [u, v] = [−7T 2,±7T 3]. Since 3 - u, we have 3 - T and 4u3 + 27v2 = −D yields
D = 72T 6.

Let D = 72T 6 for some T ∈ Z satisfying 3 - T . Put u = −7T 2 and v = 7T 3. Then
4u3 + 27v2 = −D and 4u3 + v2 = −27D. Since 3 - T , we have 3 - u and Proposition
2.2 yields [−7T 2, 7T 3], [−7T 2,−7T 3] ∈ V1 ∩ V2 6= ∅. ¤
Remark 2.4. The finding of all integer solutions of 4u3 + 27v2 = −D and 4u3 + v2 =
−27D can be reduced to the finding of all integer solutions of Mordell’s equation
Y 2 = X3 − 432D. We can use a substitution X = −12u, Y = 108v in the case of
4u3 + 27v2 = −D and a substitution X = −4u, Y = 4v in the case of 4u3 + v2 = −D.
See [8, p. 313].

The following very old Theorem 2.5 is dating from 1894 and originating in the thesis
of G. F. Voronöı [14]. Consult also [15, p. 329], [16, p. 189] and [4, p. 137]. On the
other hand, Theorem 2.5 follows from a more general Stickelberger Parity Theorem
[12] published in 1897.

Theorem 2.5. (G. F. Voronöı, 1894). Let f(x) be a monic cubic polynomial with
integer coefficients having a discriminant D. Then, for any prime p > 3, p - D, it
holds:

(i) f(x) is of type [2, 1] over Fp if and only if
(

D
p

)
= −1.

(ii) f(x) is either of type [3] or type [1, 1, 1] over Fp if and only if
(

D
p

)
= 1.
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To distinguish types [3] and [1, 1, 1], we can use the following theorem, which follows
from Theorem 4.2 and Remark 4.3 in [8, p. 315]. Consult also Dickson [5, p. 2].

Theorem 2.6. Let p be a prime, p > 3, and let g(x) = x3 + rx + s ∈ Z[x]. Assume
that g(x) is of type [3] or of type [1, 1, 1] over Fp. Next, assume that D = Dg, d = −3D
and ω ∈ Fp2 such that ω2 = d in Fp2. Let

A =

{
(ω − 9s)/18 for r 6= 0 in Fp2 ,

s for r = 0 in Fp2 .
(2.5)

Then, g(x) is of type [1, 1, 1] over Fp if and only if A is a cubic residue in Fp2.

The next lemma is needed in the proof of Theorem 2.8, which yields a new possibility
of distinguishing types [12, 1] and [13]. Compare with [8, p. 317].

Lemma 2.7. Let p be a prime, X, Y ∈ Z and p - XY . If X3 ≡ Y 2 (mod p), there
exists Z ∈ Z such that p - Z, X ≡ Z2 (mod p) and Y ≡ Z3 (mod p).

Proof. The lemma can be proved by the usual method using index modulo p. ¤
Theorem 2.8. Let D ∈ Z be the discriminant of a monic cubic polynomial f(x) ∈ Z[x]
and let

gf (x) = x3 + ux + v where u, v ∈ Z and 4u3 + 27v2 = −D (2.6)

or

gf (x) = x3 +
u

3
x +

v

27
where u, v ∈ Z, 3 - u and 4u3 + v2 = −27D. (2.7)

Let p be a prime, p > 3 and let p|D. Then we have:

(i) f(x) is of type [12, 1] over Fp if and only if p - uv.
(ii) f(x) is of type [13] over Fp if and only if p|uv.

Consequently, if p|D and p2 - D, the polynomial f(x) is of type [12, 1] over Fp.

Proof. (i) Assume that p - uv. Let X,Y ∈ Z such that X = −u/3, Y = v/2 in
Fp in case (2.6), and X = −u, Y = v/2 in Fp in case (2.7). Then, in both cases,
X3 ≡ Y 2 (mod p) and p - XY . By Lemma 2.7, there exists Z ∈ Z satisfying p - Z,
X ≡ Z2 (mod p) and Y ≡ Z3 (mod p). Hence,

gf (x) =

{
(x + 2Z)(x− Z)2 in case (2.6),

(x + 2
3
Z)(x− 1

3
Z)2 in case (2.7),

which means that f(x) is of type [12, 1] over Fp.
(ii) Assume p|uv. Since p|D, we have p|u and p|v in both cases (2.6) and (2.7).

Consequently, gf (x) = x3 in Fp[x] and f(x) is of type [13] over Fp. ¤

3. The diophantine equations 4u3 + 27v2 = −D and 4u3 + v2 = −27D

For convenience, let D ∈ Z be square-free and 3 - D in the sequel. Next, we will

assume CD 6= ∅, that is, V1∪V2 6= ∅. Put d = −3D and θ = (1+
√

d)/2. Since CD 6= ∅,
we have D ≡ d ≡ 1 (mod 4) and the ring of integers of the quadratic field Q(

√
d) is

equal to the ring R = Z[θ]. Denote by J(R) the multiplicative semigroup of nonzero
ideals of R. For α ∈ R and I ∈ J(R), denote by α′ and I ′ the conjugates of α and I,
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respectively. Clearly, if α = a + bθ ∈ R, then α′ = a + b− bθ. Finally, we will assume
that the class number h(d) of Q(

√
d) satisfies 3 - h(d).

For any [u, v] ∈ V1, put A1(v) = 3(9v + 1)/2 − 3θ and, for any [u, v] ∈ V2, put
A2(v) = (v + 3)/2 − 3θ. Observe that, if [u, v] ∈ V1 ∪ V2, v is odd and 3 - u. Hence,
A1(v), A2(v) ∈ R. Now we are ready for Theorem 3.1.

Theorem 3.1. Let i ∈ {1, 2}. Then, for any [u, v] ∈ Vi, there exists a unit ε of the
ring R and β ∈ R such that Ai(v) = εβ3.

Proof. (i) Assume [u, v] ∈ V1 and consider the identity 4u3 + 27v2 = −D in R. Then,

12u3 + 81v2 = d and (9v −
√

d)(9v +
√

d) = −12u3 follows. Hence,
(

9v + 1

2
− θ

)(
9v − 1

2
+ θ

)
= −3u3. (3.1)

Since 3|d, there exists a prime ideal P of R such that P = P ′ and P 2 = (3). Next, the
relations 3 - u and ((9v + 1)/2− θ)′ = (9v − 1)/2 + θ together with (3.1) yield

P |
J(R)

(
9v + 1

2
− θ

)
, P 2 -

J(R)

(
9v + 1

2
− θ

)
,

P |
J(R)

(
9v − 1

2
+ θ

)
, P 2 -

J(R)

(
9v − 1

2
+ θ

)
.

Hence, there exists an ideal J of R such that
(

9v + 1

2
− θ

)
= PJ,

(
9v − 1

2
+ θ

)
= PJ ′ and P -

J(R)

J.

From (3.1), it now follows

JJ ′ = (u)3. (3.2)

We will prove that J and J ′ are relatively prime. Assume that Q is a prime ideal of R
such that Q|J , Q|J ′ and Q 6= P in J(R). Next, let q be a rational prime such that Q|(q)
in J(R). Then, q|u by (3.2). First, suppose that q|d. Then, 4u3 + 27v2 = −D yields
q|v and q2|D, which is a contradiction. Next, suppose that q - d. If (q) = QQ′ and
Q 6= Q′, then Q′|J and (q)|J follows. If (q) = Q, then (q)|J . Hence, (q)|((9v+1)/2−θ)
in J(R) and, therefore, q|(9v + 1)/2− θ in R, which is a contradiction.

Since J and J ′ are relatively prime, from (3.2) it follows that there exists an ideal
I of R such that J = I3. Hence, ((9v + 1)/2 − θ) = PI3 and (A1(v)) = (PI)3 follow.
Since 3 - h(d), the ideal PI is principal. Consequently, there exist a unit ε ∈ R and a
β ∈ R satisfying A1(v) = εβ3.

(ii) Assume [u, v] ∈ V2 and consider the identity 4u3 + v2 = −27D with 3 - u in R.
Since A2(v)′ = (v − 3)/2 + 3θ, from 4u3 + v2 = −27D, we get

A2(v)A2(v)′ = (−u)3. (3.3)

We will prove that the principal ideals (A2(v)), (A2(v))′ of R are relatively prime.
Let P be a prime ideal of R such that P |(A2(v)) and P |(A2(v))′ in J(R). Next, let p be

a rational prime, satisfying P |(p) in J(R). Hence, we get P |(v) and P |(3
√

d) in J(R).
Since 3 - v, we have p|v and p|d. Hence, p|u and thus p2|D, which is a contradiction.
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From (3.3) now, it follows that there exists an ideal I of R such that (A2(v)) = I3.
Finally, from 3 - h(d), we get that I is a principal ideal and, therefore, for [u, v] ∈ V2,
there exist a unit ε ∈ R and a β ∈ R such that A2(v) = εβ3. The theorem is proved. ¤

Now we focus on the case D < 0, that is, d > 0. Then, R is the ring of integers of
the real quadratic field Q(

√
d).

Theorem 3.2. Let d > 0, i ∈ {1, 2}, [u, v] ∈ Vi and let ε∗ be the fundamental unit of

Q(
√

d). Then, there exist e(v) ∈ {1, 2} and α(v) ∈ R such that Ai(v) = (ε∗)e(v)α(v)3.
Moreover, e(v) and α(v) are uniquely determined and e(v) + e(−v)=3.

Since the numbers e(v) and α(v) also depend on u, they should actually be denoted,
say, by e(u, v) and α(u, v). However, for simplicity, we will keep the notation e(v) and
α(v).

Proof. (i) By Theorem 3.1, there exist a unit ε ∈ R and β ∈ R such that Ai(v) = εβ3.
Let n be a rational integer satisfying ε = (ε∗)n or ε = −(ε∗)n. Let n = 3m+e(v) where
m ∈ Z and e(v) ∈ {0, 1, 2}. Put α(v) = β(ε∗)m for ε = (ε∗)n and α(v) = −β(ε∗)m for
ε = −(ε∗)n. Then, (ε∗)e(v)α(v)3 = ±ε3m+e(v)β3 = εβ3 = Ai(v).

(ii) We will prove that e(v) 6= 0. Suppose that e(v) = 0 and let α(v) = k+lθ, k, l ∈ Z.
Then, Ai(v) = (k + lθ)3 = k3 +3kl2(d− 1)/4+ l3(d− 1)/4+ l(3k2 +3kl + l2(d+3)/4)θ.
Hence, l(3k2+3kl+3l2(−D+1)/4) = −3 and l = ±1 follows. If l = 1, we get a quadratic
equation k2 +k +(−D +5)/4 = 0 with the discriminant D− 4. Since D < 0 and k is a
root, we have a contradiction. Similarly, if l = −1, we get k2− k− (D + 3)/4 = 0 with
the discriminant D + 4 which is negative for D ≤ −5. Since D ≡ 1 (mod 4), we have
D = −3, for −4 ≤ D ≤ −1, which is a contradiction with 3 - D. Hence, e(v) ∈ {1, 2}.

(iii) We will prove that e(v) and α(v) are uniquely determined. Let e, f ∈ {1, 2}
and β, γ ∈ R such that Ai(v) = (ε∗)eβ3 = (ε∗)fγ3. Suppose e 6= f . Without loss of
generality, we can assume, e = 1 and f = 2. Hence, (ε∗β)3 = ε∗(ε∗γ)3 and (β/γ)3 = ε∗.
Since R is integrally closed, we see that β/γ is a unit of R, and a contradiction follows.
Hence, e = f and β3 = γ3. Consequently, (β/γ)3 = 1 and β/γ is a real unit of R,
which yields β/γ = 1 and β = γ follows.

(iv) From (3.1), we get A1(v)A1(v)′ = (−3u)3 and, by (3.3), A2(v)A2(v)′ = (−u)3.
Since Ai(v)′ = −Ai(−v), there exists a β ∈ R such that

β3 = Ai(v)Ai(−v) = (ε∗)e(v)+e(−v)(α(v)α(−v))3

and e(v) + e(−v) = 3 follows. The proof is complete. ¤

4. The field Fp2

Let p > 3 be a prime and let ω ∈ Fp2 be such that ω2 = d in Fp2 . Recall that
d = −3D > 0 and that ε∗ denotes the fundamental unit of the ring R = Z[θ]. Let

θ̃ = (1+ω)/2 and, for α = a+bθ ∈ R, put H(α) = a+bθ̃ = a+b/2+bω/2. Then, H is
a homomorphism of R into the field Fp2 . Next, for α, β ∈ F×p2 , put α ≈ β if and only if

there exists γ ∈ F×p2 such that α = βγ3. Then, ≈ is a congruence relation on the group

F×p2 by its subgroup (F×p2)
3 = {ξ3 : ξ ∈ F×p2}. As usual, F×p2 denotes the multiplicative

group of the field Fp2 .
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Proposition 4.1. Let i ∈ {1, 2}, [u, v] ∈ Vi and let p > 3 be a prime such that p - u.
Then

H(A1(v))=
3

2
(9v − ω) 6= 0, H(A2(v))=

1

2
(v − 3ω) 6= 0, H(ε∗) 6= 0 in Fp2 (4.1)

and,

H(Ai(v)) ≈ H(ε∗)e(v). (4.2)

Proof. The identities H(A1(v)) = 3(9v−ω)/2 and H(A2(v)) = (v−3ω)/2 immediately
follow from the definitions of A1(v), A2(v), and H. Suppose H(A1(v)) = 0. Then,
81v2 ≡ d (mod p) and the identity 4u3+27v2 = −D yields p|u, which is a contradiction.
Similarly, from H(A2(v)) = 0, we obtain v2 ≡ 9d (mod p) and 4u3 + v2 = −27D yields
p|u, which is a contradiction. Hence, H(Ai(v)) 6= 0 for i ∈ {1, 2}. Finally, from

H(ε∗)H(ε∗
−1

) = 1 we obtain H(ε∗) 6= 0, and from Theorem 3.2 we get H(Ai(v)) ≈
H(ε∗)e(v). ¤
Proposition 4.2. Let i ∈ {1, 2}, [u, v] ∈ Vi and let p > 3 be a prime such that p|u.
Then p - Dv and H(Ai(v))H(Ai(−v)) = 0 where either H(Ai(v)) 6= 0 or H(Ai(−v)) 6=
0. Moreover, if H(Ai(−v)) = 0, then H(Ai(v)) 6= 0 and

H(Ai(v)) =

{
27v for i = 1,

v for i = 2.

Proof. Since p|u, the relation p|Dv implies p2|D, which is a contradiction. Let i = 1.
Then, H(A1(v))H(A1(−v)) = −9(9v − ω)(9v + ω)/4 = −9(81v2 − ω2)/4 = −9(81v2 +
3D)/4 = −27(27v2 + D)/4 = 0 in Fp2 . If H(A1(−v)) = 0, then 9v = −ω, which yields
H(A1(v)) = 3(9v − ω)/2 = 27v 6= 0 in Fp2 . The case i = 2 can be proved in a similar
manner. ¤
Remark 4.3. In Proposition 4.2, it is not possible to determine when H(Ai(v)) 6= 0
and when H(Ai(−v)) = 0. This follows from the fact that the element ω ∈ Fp2 is not
uniquely determined. Therefore, if p|u, we put

v =

{
v if H(Ai(v)) 6= 0,

−v if H(Ai(−v)) 6= 0.
(4.3)

Combining Theorem 3.2 with Proposition 4.2, we get the following proposition.

Proposition 4.4. Let i ∈ {1, 2}, [u, v] ∈ Vi and let p > 3 be a prime such that p|u.
Then H(Ai(v)) 6= 0, H(ε∗) 6= 0, H(Ai(v)) ≈ H(ε∗)e(v) and H(Ai(v)) ≈ v.

Extending the definition of v to the case of p - u by putting v = v or v = −v, from
Proposition 4.1 and Proposition 4.4, we get immediately:

Theorem 4.5. Let i ∈ {1, 2}, [u, v] ∈ Vi and let p > 3 be a prime. Then H(Ai(v)) is
a cubic residue in Fp2 if and only if H(ε∗) is a cubic residue in Fp2.

Now we are ready to formulate the principal theorem of this section.

Theorem 4.6. Let f(x) ∈ Z[x] be a monic cubic polynomial with a discriminant D
satisfying (1.3). Let p > 3 be a prime such that p - D and let (D/p) = 1. Then f(x) is
of type [1, 1, 1] over Fp if and only if H(ε∗) is a cubic residue in Fp2.
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Proof. By Theorem 2.1, there exists [u, v] ∈ V1 ∪ V2 such that

gf (x) =

{
x3 + ux + v, if [u, v] ∈ V1,

x3 + u
3
x + v

27
, if [u, v] ∈ V2.

(4.4)

Denote gu,v(x) = gf (x). Then we see that gu,v(x) = −gu,−v(−x) and that f(x), gu,v(x)
and gu,−v(x) have the same type of factorization over Fp. Consequently, we can set
v = v. Now, by Theorem 4.5, H(Ai(v)) is the cubic residue in Fp2 if and only if H(ε∗)
is the cubic residue in Fp2 . Next, for any [u, v] ∈ V1 ∪ V2, define A ∈ Fp2 as follows

A =





(ω − 9v)/18, if [u, v] ∈ V1 and p - u,

v, if [u, v] ∈ V1 and p|u,

(3ω − v)/54, if [u, v] ∈ V2 and p - u,

v/27, if [u, v] ∈ V2 and p|u.

(4.5)

By Proposition 4.1 and Proposition 4.2, for any i ∈ {1, 2} and [u, v] ∈ Vi, we get

H(Ai(v)) =

{
−27A, for p - u,

27A, for p|u.
(4.6)

Hence, A ≈ H(Ai(v)). From Theorem 4.5, it follows that A is the cubic residue in Fp2

if and only if H(ε∗) is the cubic residue in Fp2 . Finally, from Theorems 2.5 and 2.6,
our claim follows. ¤

5. The main theorem

Main theorem 5.1. Let p > 3 be a prime and let f(x), g(x) ∈ Z[x] be monic cubic
polynomials with the same discriminant D ∈ Z satisfying

D < 0, D is square-free, 3 - D, 3 - h(−3D).

Then, f(x) and g(x) have the same type of factorization over the field Fp. Consequently,
if CD 6= ∅, then all polynomials in CD have the same type of factorization over Fp.

Proof. Let p be a prime, p > 3. If p|D, then Theorem 2.8 states that f(x) and g(x)
are of type [12, 1] over Fp and that type [13] will never occur. If p - D and (D/p) = −1,
then, by part (i) of Theorem 2.5, f(x) and g(x) are of type [2, 1] over Fp. Finally,
assume that p - D and (D/p) = 1. Then, by part (ii) of Theorem 2.5, f(x), g(x) are of
type [3] or type [1, 1, 1] over Fp and Theorem 4.6 says that both polynomials f(x) and
g(x) are of the same type. In particular, f(x) and g(x) are of type [1, 1, 1] if and only
if H(ε∗) is a cubic residue in Fp2 . The theorem is proved. ¤

As a direct consequence of Main theorem 5.1, the law of inertia for the factorization of
cubic polynomials applies to the sets C−23 and C−31 for any prime p > 3. As a concrete
example covering the possible factoring types in a CD, any polynomial in C−23 (such as
p(x) = x3 − x− 1) has factoring type [12, 1] over F23 (p(x) factors as (x + 20)(x + 13)2

over F23), factoring type [1, 1, 1] over F59 (p(x) factors as (x + 17)(x + 46)(x + 55) over
F59), factoring type [2, 1] over F5 (p(x) factors as (x2 + 2x + 3)(x + 3) over F5), and
factoring type [3] over F13 (p(x) is irreducible over F13).

Moreover, it can be proved by analogy with [8, pp. 317–318] that, in C−23 and C−31,
the law of inertia holds for p = 2 and p = 3, too. Hence, Corollary 5.2 follows.
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Corollary 5.2. Let p be an arbitrary prime. Then

(i) All polynomials in C−23 have the same type of factorization over Fp.
(ii) All polynomials in C−31 have the same type of factorization over Fp.

Recall that C−23 contains a well-known Perrin polynomial p(x) = x3−x−1 and that
C−31 contains another interesting polynomial q(x) = x3 − x2 − 1. These polynomials,
together with the Tribonacci polynomial t(x) = x3 − x2 − x − 1, are studied in the
literature in various contexts. See, for example, [1], [6] and [11]. For recent papers, see
[2], [7], [9] and [13]. Next, it is remarkable that the discriminants D = −23,−31,−44
play a significant role in the theory of binary cubic forms. See Delone [3] and Nagell
[10].

6. Conclusion

To conclude, let us note that Main theorem 5.1 can be extended for any D ∈ Z
satisfying

D > 0, D is square-free, 3 - D, 3 - h(−3D).

It is, however, clear that, to prove this, some results concerning the ring of integers of
the imaginary quadratic field Q(

√
d) where d = −3D < 0 will be necessary. As the

nature of imaginary quadratic fields differs considerably from that of the real ones, we
will present a proof in a future paper.
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CHAPTER 15

LAW OF INERTIA FOR THE FACTORIZATION

OF CUBIC POLYNOMIALS – THE IMAGINARY

CASE
F

Abstract. Let D ∈ Z, D > 0 be square-free, 3 - D, and 3 - h(−3D) where h(−3D)
is the class number of Q(

√−3D). We prove that all cubic polynomials f(x) = x3 +
ax2 + bx + c ∈ Z[x] with a discriminant D have the same type of factorization over
any Galois field Fp where p is a prime, p > 3. Moreover, we show that any polynomial
f(x) with such a discriminant D has a rational integer root. A complete discussion
of the case D = 0 is also included.

1. Introduction

In our recent paper [4] we presented the following result: Let D ∈ Z be such that

D < 0, D is square-free, 3 - D, and 3 - h(−3D) (1.1)

where h(−3D) is the class number of Q(
√−3D). Let

Df = a2b2 − 4b3 − 4a3c− 27c2 + 18abc (1.2)

be the discriminant of f(x) = x3 + ax2 + bx + c ∈ Z[x]. Then all polynomials in

CD = {f(x) = x3 + ax2 + bx + c ∈ Z[x]; Df = D} (1.3)

have the same type of factorization over any Galois field Fp where p is a prime, p > 3.
In [4] we called this property the law of inertia for factorization of cubic polynomials
in CD.

In this paper we extend our previous research to show that the law of inertia for
factorization of cubic polynomials also holds for any CD with D ∈ Z satisfying the
conditions

D > 0, D is square-free, 3 - D, and 3 - h(−3D). (1.4)

Moreover, we prove an interesting fact that any polynomial belonging to CD, with D
satisfying (1.4), has a rational integer root. Note that, for D ∈ Z satisfying (1.1), an
analogous statement does not hold. Finally, combining our new result with [4], we
obtain the following:

Main theorem 1.1. Let 0 6= D ∈ Z be square-free, 3 - D, and 3 - h(−3D). Then all
polynomials in CD have the same type of factorization over any Galois field Fp where
p is a prime, p > 3.

F
Published in J. Klaška, L. Skula, Law of inertia for the factorization of cubic polynomials – the

imaginary case, Utilitas Mathematica, 103 (2017), 99–109.
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This result can be considered as a partial answer to a question asked in [3, p. 310],
namely, for which D ∈ Z the law of inertia for factorization of cubic polynomials holds.

2. Background results and notations

In this section we recall some facts presented in [3] and [4] important for our next
considerations. First, for any D ∈ Z, we define

V1 := {[u, v] ∈ Z2 : 4u3 + 27v2 = −D} (2.1)

and

V2 := {[u, v] ∈ Z2 : 4u3 + v2 = −27D and 3 - u}. (2.2)

Then V1 and V2 are finite sets for any 0 6= D ∈ Z. Next, for any f(x) = x3+ax2+bx+c ∈
Z[x], we put gf (x) = f(x − a/3). Then Dgf

= Df and, gf (x) = x3 + rx + s ∈ Q[x]
where

r = b− a2

3
and s =

2a3

27
− ab

3
+ c. (2.3)

Using V1 and V2, we can establish all polynomials in CD as follows:

Theorem 2.1. Let D ∈ Z and let f(x) = x3 + ax2 + bx + c ∈ Z[x].
(i) If a ≡ 0 (mod 3), then f(x) ∈ CD if and only if there exist [u, v] ∈ V1 and w ∈ Z
such that

a = 3w, b = 3w2 + u, c = w3 + uw + v. (2.4)

(ii) If a ≡ e (mod 3) and e ∈ {1, 2}, then f(x) ∈ CD if and only if there exist [u, v] ∈ V2,
w ∈ Z such that e3 + 3eu + v ≡ 0 (mod 27) and

a = 3w + e, b = 3w2 + 2ew +
e2 + u

3
,

c = w3 + ew2 +
e2 + u

3
w +

e3 + 3eu + v

27
. (2.5)

Moreover, in (i) we have gf (x) = x3 + ux + v and, in (ii), gf (x) = x3 + (u/3)x + v/27.

For proof, see [3, Theorem 2.3] and [4, Proposition 2.2].

Let D ∈ Z be square-free, 3 - D and CD 6= ∅ in the sequel. Put d = −3D and

θ = (1 +
√

d)/2. Since CD 6= ∅, it follows from (1.2) that D ≡ d ≡ 1 (mod 4) and the

ring of integers of the quadratic field Q(
√

d) is equal to the ring Z[θ]. Finally, we will

assume that the class number h(d) of the field Q(
√

d) satisfies 3 - h(d).
Now, for any [u, v] ∈ V1, we put

A1(v) :=
27v + 3

2
− 3θ (2.6)

and, for any [u, v] ∈ V2, we put

A2(v) :=
v + 3

2
− 3θ. (2.7)

Since D ≡ 1 (mod 4), (2.1) and (2.2) implies that 2 - v for any [u, v] ∈ V1 ∪ V2, and
thus, A1(v), A2(v) ∈ Z[θ]. In [4, Theorem 3.1] we established the following significant
property of the numbers A1(v) and A2(v).
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Theorem 2.2. Let i ∈ {1, 2}. Then, for any [u, v] ∈ Vi, there exists a unit ε of the
ring Z[θ] and β ∈ Z[θ] such that Ai(v) = εβ3.

After this short recapitulation we are ready for new results.

3. Main results

We begin with two useful lemmas.

Lemma 3.1. Let D ∈ Z, D > 1 satisfy (1.4). If i ∈ {1, 2}, [u, v] ∈ Vi, then there exist
uniquely determined k, l ∈ Z such that Ai(v) = (k + lθ)3.

Proof. Since D > 0, the quadratic field Q(
√

d) is imaginary and the group of the units
of the ring Z[θ] has only two elements ±1. Hence, by Theorem 2.2, there exist k, l ∈ Z
such that Ai(v) = (k + lθ)3 for any i ∈ {1, 2}. Since Z[θ] is integrally closed, the
numbers k, l ∈ Z are uniquely determined. ¤
Lemma 3.2. Let D ∈ Z and D > 5. Then D − 4 and D + 4 cannot be both squares.

Proof. Suppose that there exist positive integers r, s such that D−4 = r2 and D +4 =
s2. Then r < s and s2 − r2 = 8. Hence, s − r = 1, s + r = 8 or s − r = 2, s + r = 4.
The first case is not possible for r, s ∈ Z and the second yields [r, s] = [1, 3]. Hence,
D = 5 follows, which is a contradiction. ¤

The following Theorem 3.3 can be regarded as a key for proving of our main result.

Theorem 3.3. Let D ∈ Z be such that D > 5, D is square-free, 3 - D, and 3 - h(−3D).
If V1 ∪ V2 6= ∅, then either D − 4 or D + 4 is a square and we have:

(i) If V1 6= ∅ and D − 4 is a square, then D ≡ 1 (mod 3) and

V1 =
{[1−D

3
,±
√

D − 4 · (2D + 1)

27

]}
. (3.1)

(ii) If V1 6= ∅ and D + 4 is a square, then D ≡ 2 (mod 3) and

V1 =
{[−1−D

3
,±
√

D + 4 · (2D − 1)

27

]}
. (3.2)

(iii) If V2 6= ∅ and D − 4 is a square, then D ≡ 2 (mod 3) and

V2 = {[1−D,±
√

D − 4 · (2D + 1)]}. (3.3)

(iv) The case of V2 6= ∅ and D + 4 being a square never occurs.

Consequently, if V1 6= ∅, then V2 = ∅.
Proof. Since θ = (1 +

√
d)/2, we have θ2 = (d− 1)/4 + θ and θ3 = (d− 1 + (d + 3)θ)/4.

Hence, by Lemma 3.1, there exist uniquely determined k, l ∈ Z satisfying the equations

k3 + 3kl2
d− 1

4
+ l3

d− 1

4
= wi(v) (3.4)

and

l

(
3k2 + 3kl + l2

d + 3

4

)
= −3 (3.5)
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where i ∈ {1, 2} and

wi(v) =

{
(27v + 3)/2 for i = 1,

(v + 3)/2 for i = 2.

Since k, l ∈ Z, (3.5) yields l ∈ {±1,±3}. For l = ±3, (3.5) then becomes ±(3k2 ±
9k + 9(d + 3)/4) = −1, which is a contradiction with k ∈ Z. Therefore, l = ±1. Using
d = −3D, (3.5) results in

k2 − k − D + 3

4
= 0 and k2 + k +

−D + 5

4
= 0 (3.6)

with the roots

κ1 =
1−√D + 4

2
, κ2 =

1 +
√

D + 4

2
and

κ3 =
−1−√D − 4

2
, κ4 =

−1 +
√

D − 4

2
(3.7)

for l = −1 and l = 1, respectively.
Since, by Lemma 3.2, only one of the numbers D − 4 and D + 4 can be a square,

we can assume that either D − 4 = r2 or D + 4 = s2 for some positive integers r, s.
Denote the left-hand side of (3.4) by F (k, l). By direct calculation, we now obtain

2F (κ1,−1) = 2s3 − 9s + 3 > 0, 2F (κ2,−1) = −(2s3 − 9s− 3) < 0, (3.8)

and

2F (κ3, 1) = 2r3 + 9r + 3 > 0, 2F (κ4, 1) = −(2r3 + 9r − 3) < 0. (3.9)

We prove (3.1) and (3.2). Taking i = 1, we can write (3.4) as 2F (k, l) = 27v+3. First
assume that D−4 = r2. Then l = 1 and, from (3.9), we get 3|r and v = ±r(2r2+9)/27
follows. Since 3|r and r2 = D−4, we have v = ±√D − 4(2D+1)/27 ∈ Z. Substituting
v into 4u3 + 27v2 = −D, we obtain u = (1−D)/3. Since 3|r, we have 9|D − 4, which
implies D ≡ 1 (mod 3). Hence, u ∈ Z. If v = 0, then 4u3 + 27v2 = −D implies
D ≡ 0 (mod 4), which is a contradiction. This proves (3.1).

Next assume that D + 4 = s2. Then l = −1 and, from (3.8), we get 3|s and
v = ±s(2s2 − 9)/27 follows. Since 3|s and s2 = D + 4, we have v = ±√D + 4(2D −
1)/27 ∈ Z. Substituting v into 4u3 + 27v2 = −D, we obtain u = (−1 − D)/3. Since
3|s, we have 9|D + 4, which implies D ≡ 2 (mod 3). Hence, u ∈ Z. This proves (3.2).

Next, we prove (3.3). Taking i = 2, we can write (3.4) as 2F (k, l) = v + 3 and,
using (2.2), we obtain 3 - v. Assume D − 4 = r2. Then l = 1 and, by (3.9), we get
3 - 2F (κ3, 1) and 3 - 2F (κ4, 1). Hence, 3 - r. Since r2 = D−4, we have D 6≡ 1 (mod 3),
which, together with 3 - D, yields D ≡ 2 (mod 3). Let v > −3. Then, by (3.9),
2F (κ3, 1) = 2r3 + 9r + 3 = v + 3 > 0. Hence, v = r(2r2 + 9) =

√
D − 4(2D + 1)

and, from 4u3 + v2 = −27D, we obtain u = 1 − D. If v < −3, then (3.9) yields
2F (κ4, 1) = −(2r3 + 9r − 3) = v + 3 < 0 and v = −r(2r2 + 9) = −√D − 4(2D + 1)
follows. Hence, using 4u3 + v2 = −27D, we obtain u = 1−D. To complete the proof
of (3.3) note that for v = −3 we get a contradiction with 3 - v.

Finally, let V2 6= ∅ and D + 4 = s2. Then l = −1 and, from (3.8), it follows that
3 - 2F (κ1,−1) and 3 - 2F (κ2,−1). Hence, we have 3 - s, which yields s2 ≡ 1 (mod 3).
Since s2 = D + 4, we get 3|D, which is a contradiction. The proof is complete. ¤
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Remark 3.4. We also established the least value of D for which any of the cases
(3.1)–(3.3) in Theorem 3.3 occurs. We find D = 13 for (3.1), D = 221 for (3.2), and
D = 53 for (3.3).

Let us now recall that there exist five distinct types of factorization of cubic polyno-
mial f(x) = x3 + ax2 + bx + c ∈ Z[x] over a Galois field Fp with p a prime. For these
types, we adopted in [4] the notation found in M. Ward [5, p. 161]. The polynomial
f(x) is of type [3] over Fp if f(x) is irreducible over Fp, f(x) is of type [2, 1] if f(x)
splits over Fp into a linear factor and an irreducible quadratic factor, and f(x) is of
type [1, 1, 1] if f(x) splits over Fp into three distinct linear factors. Furthermore, f(x)
is of type [12, 1] if f(x) has a double root in Fp, and f(x) is of type [13] if f(x) has a
triple root in Fp. For more details see [3, pp. 316–317] or consult [4].

Theorem 3.5. Let D ∈ Z, D > 5 be square-free, 3 - D, and 3 - h(−3D). Then all
polynomials in CD have the same type of factorization over any Galois field Fp, p being
a prime, p > 3.

Proof. Let h(x), k(x) ∈ CD and let gh(x) 6= gk(x). Next assume that i, j ∈ {1, 2}, i 6= j
and Vi 6= ∅. Then, by Theorem 3.3, Vi = {[u, v], [u,−v]} for some u, v ∈ Z and Vj = ∅.
By Theorem 2.1, we can now assume that gh(x) = x3 + rx + s and gk(x) = x3 + rx− s
where [r, s] = [u, v] for i = 1 and [r, s] = [u/3, v/27] for i = 2. Since gh(−x) = −gk(x),
we conclude that the polynomials h(x) and k(x) have the same type of factorization
over Fp for any prime p, p > 3. ¤

Note that, for any D ∈ Z, D > 5, the law of inertia for factorization in CD does
not hold. We have the following examples: If f(x) = x3 + 12x2 − 28x + 15, g(x) =
x3 + 2x2 − 4x − 7, then Df = Dg = 229 is a prime and h(−3 · 229) = 12. A short
calculation shows that f(x) is of type [1, 1, 1] and g(x) is of type [3] over F5. As a
further example, consider f(x) = x3 + 9x2 − 22x + 12 and g(x) = x3 + x2 − 13x− 23.
Then Df = Dg = 22 · 37 and h(−3 · 22 · 37) = 8. Over F7, f(x) is of type [1, 1, 1] and
g(x) is of type [3].

Our next lemma will be needed to resolve the remaining cases 0 < D ≤ 5. In fact,
by (1.4), it remains to examine only D = 1 and D = 5.

Lemma 3.6. (i) Mordell’s equation Y 2 = X3 − 432 has exactly two integer solutions
[X, Y ] = [12,±36]. Consequently, for D = 1, we have V1 ∪ V2 = ∅ and there exists no
cubic polynomial f(x) = x3 + ax2 + bx + c ∈ Z[x] with a discriminant Df = D = 1.

(ii) Mordell’s equation Y 2 = X3 − 2160 has exactly six integer solutions [X, Y ] =
[16,±44], [24,±108], [321,±5751]. Consequently, for D = 5, we have V1 = {[−2,±1]}
and V2 = {[−4,±11]}.

Recall that, thanks to Gebel, Pethö and Zimmer [1], all integer solutions of Mordell’s
equation Y 2 = X3 + k, 0 6= k ∈ Z are known for any 0 < |k| ≤ 105. For tables of
solutions, see [2]. Hence, Lemma 3.6 follows. Further, note that, for D = 5, the sets V1

and V2 can also be obtained by (3.4) and (3.5). We leave the details of the computation
to the reader.

For the next theorem, we adopt the following useful notation. For any D ∈ Z, D > 5
satisfying (1.4) and V1∪V2 6= ∅, we let C be a positive integer such that D−4 = C2 or
D + 4 = C2. Obviously, by Lemma 3.2 and Theorem 3.3, such C exists and is unique.
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Theorem 3.7. Let f(x) = x3+ax2+bx+c ∈ Z[x], gf (x) = x3+rx+s and let Df = D
where D satisfies (1.4). Then, f(x) has a rational integer root ξ.

In particular, if D > 5, then

ξ =

{
(C − a)/3 if s > 0,

−(C + a)/3 if s < 0
(3.10)

and, if D = 5, then

ξ =





−(3 + a)/3 if a ≡ 0 (mod 3) and s = −1,

(3− a)/3 if a ≡ 0 (mod 3) and s = 1,

(1− a)/3 if a ≡ 1 (mod 3),

−(1 + a)/3 if a ≡ 2 (mod 3).

(3.11)

Proof. First assume D > 5. Put

η =

{
C/3 if s > 0,

−C/3 if s < 0.
(3.12)

Since gf (x) = f(x−a/3), we have f(ξ) = 0 if and only if gf (η) = 0. This, together with
Theorem 3.3, reduces the proof of (3.10) to six distinct cases corresponding to (3.1) –
(3.3). In cases (3.1) and (3.2), we have gf (x) = x3 + rx + s where [r, s] = [u, v] ∈ V1

and, in case (3.3), we have gf (x) = x3 +rx+s where [r, s] = [u/3, v/27] and [u, v] ∈ V2.
In all cases, the validity of gf (η) = 0 can be verified readily by a direct calculation.
The fact that ξ ∈ Z in the cases (3.1) and (3.2) is evident. In case (3.3), we have
s = (2a3 − 9ab + 27)/27 = v/27, which implies v ≡ 2a3 (mod 3). Assume s > 0.
Then, by (3.3), v =

√
D − 4(2D + 1) = C(2C2 + 9), which yields v ≡ −C (mod 3).

Combining the above, we get 2a3 ≡ −C (mod 3) and a ≡ C (mod 3) follows. Hence,
ξ = (C − a)/3 ∈ Z. The proof for s < 0 is similar.

If D = 5, then, by part (ii) of Lemma 3.6, we have V1 = {[−2,±1]} and V2 =
{[−4,±11]}. Hence, using Theorem 2.1, we find that f(x) ∈ C5 if and only if f(x) =
fj(x,w) for some j ∈ {1, 2, 3, 4} and w ∈ Z where

f1(x,w) = x3 + 3wx2 + (3w2 − 2)x + w3 − 2w − 1,
f2(x,w) = x3 + 3wx2 + (3w2 − 2)x + w3 − 2w + 1,
f3(x,w) = x3 + (3w + 1)x2 + (3w2 + 2w − 1)x + w3 + w2 − w,
f4(x,w) = x3 + (3w + 2)x2 + (3w2 + 4w)x + w3 + 2w2 − 1.

(3.13)

A straightforward calculating argument yields that

f1(−1− w, w) = 0, f2(1− w,w) = 0,

f3(−w, w) = 0, f4(−1− w, w) = 0 (3.14)

for any w ∈ Z. From (3.14), (3.11) follows immediately, as desired. ¤

We now proceed to prove the Main Theorem.

Main theorem 3.8. Let D ∈ Z, D 6= 0 be square-free, 3 - D, and 3 - h(−3D). Then
all polynomials in CD have the same type of factorization over any Galois field Fp, p
being a prime, p > 3.
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Proof. Since, for D < 0, the claim is true by [4], we can assume that D > 0. For
D > 0, the proof splits into three parts. First, it is evident that, for D > 5 and p > 3,
the assertion holds by Theorem 3.5. Next, if D = 5 and p > 5, then Theorem 3.7
states that any polynomial f(x) ∈ C5 has a rational integer root. This means that
f(x) is not of type [3] over Fp. Since p - 5, by Voronöı [4, Theorem 2.5], f(x) is of type
[2, 1] if and only if (5/p) = −1 and f(x) is of type [1, 1, 1] if and only if (5/p) = 1.
Finally, if D = 5 and p = 5, then from (3.13) it follows that gf1(x) = (x + 1)(x− 3)2,
gf2(x) = (x − 1)(x − 2)2, gf3(x) = (x − 2)(x + 1)2 and gf4(x) = (x + 2)(x − 1)2 over
F5. This implies that any polynomial f(x) ∈ C5 is of type [12, 1] over F5. The proof is
complete. ¤

4. The case D = 0

In this section, we give a complete discussion of the case D = 0. Recall that the sets
V1 and V2 defined by (2.1) and (2.2) are finite for any 0 6= D ∈ Z. In the following
lemma we show that, for D = 0, both sets

V1 = {[u, v] ∈ Z2 : 4u3 + 27v2 = 0}
and

V2 = {[u, v] ∈ Z2 : 4u3 + v2 = 0 and 3 - u}
are infinite. Above all, we find simple formulas determining all elements in V1 and V2.

Lemma 4.1. We have: (i) V1 = {[−3α2, 2α3] : α ∈ Z}.
(ii) V2 = {[−α2, 2α3] : α ∈ Z and 3 - α}.

Proof. We prove (i). Let [u, v] ∈ V1 and uv 6= 0. Then 3|u, 2|v and, thus, there exist
U, V ∈ Z satisfying u = 3U , v = 2V . Hence, V 2 = −U3. Let p be any prime such that
p|U or, equivalently, p|V . Then, there exist a, b ∈ N satisfying pa|V , pb|U and pa+1 - V ,
pb+1 - U . Therefore, V = paV1, U = pbU1 for some U1, V1 ∈ Z where p - U1 and p - V1.
From V 2 = −U3, we now obtain 2a = 3b, which means that there exist a1, b1 ∈ N such
that a = 3a1 and b = 2b1. Since 2a = 3b implies a1 = b1, we can put c(p) = a1 = b1.
Then, V = p3c(p)V1, U = p2c(p)U1 and V 2

1 = −U3
1 . Let A be the set of all primes p

satisfying p|U . For A 6= ∅, put α = Πp∈Apc(p) in case v < 0 and α = −Πp∈Apc(p) in
case v > 0. Next, for A = ∅, put α = 1 for v > 0 and α = −1 for v < 0. Then,
[U, V ] = [−α2, α3], which yields [u, v] = [−3α2, 2α3]. On the other hand, it is evident
that {[−3α2, 2α3] : α ∈ Z} ⊆ V1.

In case uv = 0, we put α = 0. This proves (i). The proof of (ii) can be done in a
similar manner. ¤
Theorem 4.2. Let p be a prime, f(x) = x3 + ax2 + bx + c ∈ Z[x] and let Df = 0.
Then we have:

(i) If p 6= 3, then f(x) is of type [12, 1] over Fp if and only if p - a2 − 3b.
(ii) If p 6= 3, then f(x) is of type [13] over Fp if and only if p|a2 − 3b.
(iii) If p = 3 and 3|a, then f(x) is of type [13] over F3.
(iv) If p = 3 and 3 - a, then f(x) is of type [12, 1] over F3.

Proof. First assume 3|a. Combining Theorem 2.1 with part (i) of Lemma 4.1, we
get gf (x) = x3 + ux + v where [u, v] ∈ {[−3α2, 2α3] : α ∈ Z}. Therefore, gf (x) =
x3 − 3α2x + 2α3 = (x − α)2(x + 2α) for some α ∈ Z. Hence, by (2.3), assertions (i),
(ii), and (iii) follow.
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Next, assume 3 - a. Then, Theorem 2.1 together with part (ii) of Lemma 4.1 yields
that gf (x) = x3 + (u/3)x + v/27 where [u, v] ∈ {[−α2, 2α3] : α ∈ Z and 3 - α}.
Therefore, gf (x) = x3 − (α2/3)x + 2α3/27 = (x − α/3)2(x + 2α/3) for some α ∈ Z.
Hence, by (2.3), (i) and (ii) follow. Finally, (iv) can be verified by direct calculation
using (2.5). ¤

As a direct consequence of Theorem 4.2, we get that, in C0, the law of inertia for
factorization of cubic polynomials does not hold. For illustration, we give an example.
If f(x) = x3 + 3x2 − 9x + 5 and g(x) = x3 + x2 − 16x + 20, then Df = Dg = 0. A
simple calculation yields that, over F7, f(x) is of type [12, 1] and g(x) is of type [13].

5. Conclusion

The results presented in this paper and in [4] provide a partial answer to the question
[3, p. 310], that is, for which sets CD, D ∈ Z, the law of inertia for factorization of cubic
polynomials holds. Moreover, for D < 0, an interesting connection of the problem with
the fundamental unit of the quadratic field Q(

√−3D) has been found. For D > 0,
our investigation has brought a new result on the rational integer roots of monic cubic
polynomials with integer coefficients. Finally, the relationship between the arithmetic
property 3 - h(−3D) and our guess is also remarkable.

It is evident that, in connection with the problems studied, further relevant questions
can be stated. For example, we could ask under which conditions the law of inertia
for factorization of cubic polynomials holds in a Galois field Fq where q is a power of
a prime. Another possible generalization is finding out whether this law also holds for
polynomials of an order greater than three.
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[4] J. Klaška, L. Skula, Law of inertia for the factorization of cubic polynomials – the real case,
Utilitas Mathematica, 102 (2017), 39–50.

[5] M. Ward, The characteristic number of a sequences of integers satisfying a linear recursion rela-
tion, Trans. Amer. Math. Soc. 33 (1931), 153–165.

MSC 2010: 11T06, 11D25, 12D05



CHAPTER 16

LAW OF INERTIA FOR THE FACTORIZATION

OF CUBIC POLYNOMIALS – THE CASE OF

DISCRIMINANTS DIVISIBLE BY THREE
F

Abstract. In this paper we extend our recent results concerning the validity of the
law of inertia for the factorization of cubic polynomials over the Galois field Fp, p
being a prime. As the main result, the following theorem will be proved: Let D ∈ Z
and let CD be the set of all cubic polynomials x3 + ax2 + bx + c ∈ Z[x] with a
discriminant equal to D. If D is square-free and 3 - h(−3D) where h(−3D) is the
class number of Q(

√−3D), then all cubic polynomials in CD have the same type of
factorization over any Galois field Fp where p is a prime, p > 3.

1. Introduction

In [2] and [3], we proved the following theorem: Let D ∈ Z be such that

D is square-free, 3 - D and 3 - h(−3D) (1.1)

where h(−3D) is the class number of the quadratic field Q(
√−3D). Let

Df = a2b2 − 4b3 − 4a3c− 27c2 + 18abc (1.2)

be the discriminant of f(x) = x3 + ax2 + bx + c ∈ Z[x] and let p be a prime, p > 3.
Then, all polynomials in

CD = {f(x) = x3 + ax2 + bx + c ∈ Z[x]; Df = D} (1.3)

have the same type of factorization over the Galois field Fp.
Recall that there exist five distinct types of factorization of f(x) over the field Fp

where p is a prime. For these types, we adopted the notation found in M. Ward [7,
p. 161]: A polynomial f(x) is of type [3] over Fp if f(x) is irreducible over Fp, f(x)
is of type [2, 1] if f(x) splits over Fp into a linear factor and an irreducible quadratic
factor, and f(x) is of type [1, 1, 1] if f(x) splits over Fp into three distinct linear factors.
Furthermore, f(x) is of type [12, 1] if f(x) has a double root in Fp, and f(x) is of type
[13] if f(x) has a triple root in Fp. If the factorization type of all polynomials in
CD 6= ∅ is the same, for any fixed prime p, we call this property the law of inertia for
the factorization in CD.

In [2] and [3], we also found examples of discriminants D proving that neither of
the assumptions, D is square-free and 3 - h(−3D), can be omitted. On the other

F
Published in J. Klaška, L. Skula, Law of inertia for the factorization of cubic polynomials – the

case of discriminants divisible by three, Math. Slovaca 66.4 (2016), 1019–1027.
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hand, extensive computer search found no example of a discriminant D satisfying the
conditions

D is square-free, 3|D and 3 - h(−3D) (1.4)

such that the law of inertia for factorization in CD does not hold.
The purpose of this paper is to extend our previous results presented in [2] and [3]

and prove that all polynomials in CD where D satisfies (1.4) have the same type of
factorization over any Galois field Fp where p is a prime, p > 3. Consequently, this
extension together with [2] and [3] yields the following Theorem 1.1.

Theorem 1.1. Let D ∈ Z be square-free and 3 - h(−3D). Then, all polynomials in
CD have the same type of factorization over any Galois field Fp where p is a prime,
p > 3.

2. Background results

In this section, we briefly recall some known facts which will be needed for our next
considerations. First, in [2] we defined, for any D ∈ Z, the sets

V1 = {[u, v] ∈ Z2 : 4u3 + 27v2 = −D} (2.1)

and

V2 = {[u, v] ∈ Z2 : 4u3 + v2 = −27D and 3 - u}. (2.2)

Next, for any f(x) = x3 + ax2 + bx + c ∈ Z[x], we put gf (x) = f(x − a/3). Then,
Dgf

= Df and gf (x) = x3 + rx + s ∈ Q[x] where

r = b− a2

3
and s =

2a3

27
− ab

3
+ c. (2.3)

Using V1 and V2, we can establish all polynomials in CD = {f(x) = x3 +ax2 + bx+ c ∈
Z[x]; Df = D} as follows:

Theorem 2.1. Let D ∈ Z and let f(x) = x3 + ax2 + bx + c ∈ Z[x].
(i) If a ≡ 0 (mod 3), then f(x) ∈ CD if and only if there exists [u, v] ∈ V1 and w ∈ Z
such that

a = 3w, b = 3w2 + u, c = w3 + uw + v. (2.4)

(ii) If a ≡ e (mod 3) and e ∈ {1, 2}, then f(x) ∈ CD if and only if there exist [u, v] ∈ V2,
w ∈ Z such that e3 + 3eu + v ≡ 0 (mod 27) and

a = 3w + e, b = 3w2 + 2ew +
e2 + u

3
,

c = w3 + ew2 +
e2 + u

3
w +

e3 + 3eu + v

27
. (2.5)

Moreover, in (i) we have gf (x) = x3 + ux + v and, in (ii), gf (x) = x3 + (u/3)x + v/27.

See [1, Theorem 2.3] and [2, Proposition 2.2].
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Theorem 2.2. Let f(x) be a monic cubic polynomial with integer coefficients having
a discriminant D. If p > 3 is a prime such that p - D, then the statements (i), (ii),
and (iii) hold:

(i) f(x) is of type [2, 1] over Fp if and only if (D/p) = −1.
(ii) f(x) is of type [3] or type [1, 1, 1] over Fp if and only if (D/p) = 1.
(iii) Let gf (x) = x3 + rx + s and gf (x) be of type [3] or type [1, 1, 1] over Fp. Next,

assume that d = −3D and Ω ∈ Fp2 such that Ω2 = d in Fp2. Let

A =

{
(Ω− 9s)/18 for r 6= 0 in Fp2 ,

s for r = 0 in Fp2 .

Then, gf (x) is of type [1, 1, 1] over Fp if and only if A is a cubic residue in Fp2.
Furthermore, for any prime p > 3, we have (iv):
(iv) If p|D and p2 - D, then f(x) is of type [12, 1] over Fp.

The statements (i) and (ii) are well-known and have their origin in the master’s
dissertation of G. F. Voronöı [6] from 1894. See also [7]. On the other hand, (i) and
(ii) are also known as consequences of Stickelberger Parity Theorem [5] published in
1897. The statement (iii) is a simple modification of Theorem 2.6 presented in [2].
Finally, for (iv) see [2, Theorem 2.8].

3. Two lemmas

The considerations in this paper will be placed in the following framework: We
assume that D ∈ Z, D is square-free, and 3|D. For D 6= ±3, we put δ = −D/3

and θ = (1 +
√

δ)/2. If CD 6= ∅, it follows from (1.2) that D ≡ δ ≡ 1 (mod 4) and

the ring of integers of the quadratic field Q(
√

δ) is equal to the ring Z[θ]. Next, we

assume that the class number h(δ) of Q(
√

δ) satisfies 3 - h(δ). Finally, observe that

Q(
√

δ) = Q(
√−3D) and, thus, h(δ) = h(−3D).

We begin with a simple lemma, which substantially simplifies the proof of Theorem
1.1 for the case of D satisfying (1.4).

Lemma 3.1. Let D ∈ Z be square-free and 3|D. Then, V1 = ∅. Moreover, if D = −3,
we have V2 = {[2,±7]} and, if D = 3, we have C3 = ∅.
Proof. Since 3|D, we have D = 3d for some d ∈ Z. Suppose that [u, v] ∈ V1. Then,
4u3 + 27v2 = −3d, which implies 3|u. Hence, we have 27|D, which is a contradiction.

Let D = −3. By London and Finkelstein [4, p. 128], the Mordell equation Y 2 =
X3 + 1296 has exactly eight integral solutions [X, Y ]: [−8,±28], [0,±36], [9,±45] and
[72,±612]. Since the substitutions X = −4u and Y = 4v transform Y 2 = X3 + 1296
to 4u3 + v2 = 81, we find, after some calculation, V2 = {[2,±7]}.

Finally, if D = 3, then D 6≡ 1 (mod 4) and, C3 = ∅ follows.
¤

Combining Lemma 3.1 and part (i) of Theorem 2.1, we get Corollary 3.2.

Corollary 3.2. Let D ∈ Z be square-free and 3|D. Then, there is no cubic polynomial
f(x) = x3 + ax2 + bx + c ∈ Z[x] such that Df = D and 3|a.
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Now we focus on V2. First, observe that, if [u, v] ∈ V2, then v is odd and 3 - v. Next,
for an arbitrary [u, v] ∈ V2, we define A(v) such that

A(v) =
v + 9

2
− 9θ. (3.1)

Since v is odd, we have A(v) ∈ Z[θ]. Some basic properties of the numbers A(v) will
be given in the following Lemma 3.3.

Lemma 3.3. Let D ∈ Z be square-free, 3|D, 3 - h(δ) and [u, v] ∈ V2. Then, (i), (ii),
and (iii) hold:
(i) In the ring Z[θ], we have A(v)A(−v) = u3.
(ii) The principal ideals (A(v)) and (A(−v)) are coprime in the semigroup of the ideals
of the ring Z[θ].
(iii) There exist a unit ε of the ring Z[θ] and β ∈ Z[θ] such that A(v) = εβ3.

Proof. (i) Since D = −3δ and
√

δ = 2θ− 1, we can write 4u3 + v2 = −27D in the form
(v − 18θ + 9)(v + 18θ − 9) = −4u3. Hence, by (3.1), A(v)A(−v) = u3 follows.

(ii) Suppose that P is a prime ideal of Z[θ] such that P |(A(v)), P |(A(−v)) and let p
be a prime satisfying P |(p). Then, P |(A(v)− A(−v)) = (v), which implies p|v. Since
v is odd and 3 - v, we have p 6= 2, 3. Next, P |(A(v) + A(−v)) = (9(1 − 2θ)), which
implies P |(9) or P |(1 − 2θ). Since p 6= 3, we have P |(1 − 2θ). Hence, we obtain p|δ,
which means p|D. Since p|v, from 4u3 + v2 = −27D, we obtain p|u, which yields p2|D,
a contradiction.

(iii) Consider the identity 4u3 + v2 = −27D with 3 - u in Z[θ]. Then, it follows from
(i) and (ii) that, in the semigroup of ideals of Z[θ], there exists an ideal I of Z[θ] such
that (A(v)) = I3. From 3 - h(δ), we obtain that I is a principal ideal and, therefore,
for [u, v] ∈ V2, there exist a unit ε ∈ Z[θ] and β ∈ Z[θ] such that A(v) = εβ3. ¤

The numbers A(v) have a key role in further proving. However, as we will see in

the sequel, their specific properties highly depend on whether the field Q(
√

δ) is real
or imaginary.

4. The case of real quadratic field

Throughout this section, we shall assume that D ∈ Z satisfies

D < −3, D is square-free, 3|D and 3 - h(δ) (4.1)

where δ = −D/3 and h(δ) is the class number of the real quadratic field Q(
√

δ).
Further, we shall assume that V2 6= ∅. Under these assumptions, we can say more
about the numbers A(v).

Theorem 4.1. Let D ∈ Z satisfy (4.1), [u, v] ∈ V2 and let ε∗ be the fundamental unit

of Q(
√

δ). Then, there exist e(v) ∈ {1, 2} and α(v) ∈ Z[θ] such that

A(v) = (ε∗)e(v)α(v)3. (4.2)

Moreover, e(v) and α(v) are uniquely determined and e(v) + e(−v) = 3.

Note that e(v) and α(v) in (4.2) also depend on u. However, for simplicity, we will
keep the notation e(v) and α(v).
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Proof. By part (iii) of Lemma 3.3, there exist a unit ε ∈ Z[θ] and β ∈ Z[θ] such that
A(v) = εβ3. Since ε is a unit, we have ε = (ε∗)n or ε = −(ε∗)n for some n ∈ Z. Let
n = 3m + e(v) where m ∈ Z and e(v) ∈ {0, 1, 2}. Put

α(v) =

{
(ε∗)mβ for ε = (ε∗)n,

−(ε∗)mβ for ε = −(ε∗)n.

Then,

(ε∗)e(v)α(v)3 = ±β3(ε∗)3m+e(v) = β3ε = A(v). (4.3)

Suppose e(v) = 0. Then, by (4.3), A(v) = α(v)3 where α(v) = k + lθ for some
k, l ∈ Z. Since θ2 = (δ − 1)/4 + θ and θ3 = (δ − 1)/4 + (δ + 3)θ/4, we have

A(v) = (k + lθ)3 = k3 + 3kl2
δ − 1

4
+ l3

δ − 1

4
+

(
3k2l + 3kl2 + l3

δ + 3

4

)
θ.

On the other hand, by definition (3.1), we have A(v) = (v + 9)/2− 9θ. Matching the
coefficients, we now obtain

k3 + 3kl2
δ − 1

4
+ l3

δ − 1

4
=

v + 9

2
(4.4)

and

l

(
3k2 + 3kl + l2

δ + 3

4

)
= −9. (4.5)

Since k, l ∈ Z, (4.5) yields l ∈ {±1,±3,±9}. First assume l = ±1. Then, (4.5) leads
to the relation 3|δ, which is a contradiction with D being square-free. Next, assume
l = ±9. Then, reducing (4.5) modulo 27, we obtain 0 ≡ −9 (mod 27). Hence, we see
that there is no k ∈ Z satisfying (4.5). Finally, if l = ±3, then (4.5) leads to quadratic
equation

k2 ± 3k +
3δ + 9± 4

4
= 0 (4.6)

with the discriminant 4±3 = −3δ ∓ 4. For l = 3, we have 43 ≡ −1 (mod 3), which
means that 43 is not a square and, therefore, k2 + 3k + (3δ + 13)/4 = 0 has no integer
solution. If l = −3, then 4−3 = −3δ + 4. Since δ > 0, we get δ = 1 and D = −3,
which is a contradiction. Hence, e(v) ∈ {1, 2}.

Now we prove that e(v) and α(v) are uniquely determined. Assume that e1, e2 ∈
{1, 2} and β1, β2 ∈ Z[θ] such that A(v) = (ε∗)e1β3

1 = (ε∗)e2β3
2 . Suppose e1 6= e2.

Without loss of generality, we can assume e1 = 1 and e2 = 2. Hence, (ε∗β1)
3 = ε∗(ε∗β2)

3

and (β1/β2)
3 = ε∗. Since Z[θ] is integrally closed, we see that β1/β2 is a unit of Z[θ]

and a contradiction follows. Hence, e1 = e2 and β3
1 = β3

2 . Consequently, (β1/β2)
3 = 1

and β1/β2 is a real unit of Z[θ], which yields β1/β2 = 1 and β1 = β2 follows.
Finally, combining part (i) of Lemma 3.3 with (4.2), we obtain u3 = A(v)A(−v) =

(ε∗)e(v)+e(−v)(α(v)α(−v))3. Hence, e(v) + e(−v) ≡ 0 (mod 3), which yields e(v) +
e(−v) = 3, as required. ¤

Let p > 3 be a prime and let ω ∈ Fp2 be such that ω2 = δ in Fp2 . Put θ̃ = (1+ω)/2 ∈
Fp2 and, for α = a + bθ ∈ Z[θ], put H(α) = a + bθ̃ = a + b/2 + bω/2. Then, H is a
homomorphism of Z[θ] into the field Fp2 . Next, for α, β ∈ F×p2 , put α ≈ β if and only if
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there exists γ ∈ F×p2 such that α = βγ3. Then, ≈ is a congruence relation on the group

F×p2 by its subgroup {ξ3 : ξ ∈ F×p2}.
Lemma 4.2. Let D ∈ Z satisfy (4.1), [u, v] ∈ V2 and let p > 3 be a prime.
(i) If p - u, then H(A(v)) = (v−9ω)/2 6= 0, H(ε∗) 6= 0 in Fp2 and H(A(v)) ≈ H(ε∗)e(v).
(ii) If p|u, then p - Dv and H(A(v)) · H(A(−v)) = 0 where either H(A(v)) 6= 0 or
H(A(−v)) 6= 0. Moreover, if H(A(−v)) = 0, then H(A(v)) 6= 0 and H(A(v)) = v.

Proof. (i) The identity H(A(v)) = (v− 9ω)/2 immediately follows from the definitions
of A(v) and H. Suppose H(A(v)) = 0. Then, v = 9ω in Fp2 . Hence, v2 = 81δ = −27D,

which is a contradiction with p - u. Next, H(ε∗) · H(ε∗
−1

) = 1 implies H(ε∗) 6= 0.
Finally, Theorem 4.1 yields H(A(v)) = H(ε∗)e(v)H(α(v))3 ≈ H(ε∗)e(v).

(ii) Suppose p|Dv. Since p|u, it follows from 4u3 + v2 = −27D that p|v. Hence,
p2|D, which is a contradiction. Next, we have H(A(v)) ·H(A(−v)) = (v − 9ω)(−v −
9ω)/4 = −(v2 + 27D)/4 = u3 = 0 in Fp2 . If H(A(−v)) = 0, then v = −9ω and
H(A(v)) = (v − 9ω)/2 = v. Since p - v, we have H(A(v)) 6= 0 in Fp2 . ¤

Since the element ω ∈ Fp2 is not uniquely determined, in part (ii) of Lemma 4.2, it
is not possible to determine when H(A(v)) 6= 0 and when H(A(−v)) = 0. Therefore,
if p|u, we put

v =

{
v if H(A(v)) 6= 0,

−v if H(A(−v)) 6= 0.

Furthermore, if p - u, we put v = v or v = −v. Combining Theorem 4.1 with Lemma
4.2, we now get the following Corollary 4.3.

Corollary 4.3. Let D ∈ Z satisfy (4.1), [u, v] ∈ V2 and let p > 3 be a prime. Then
H(A(v)) is a cubic residue in Fp2 if and only if H(ε∗) is a cubic residue in Fp2.

Theorem 4.4. Let f(x) ∈ Z[x] be a monic cubic polynomial with a discriminant D
satisfying (4.1). Let p > 3 be a prime such that p - D and let (D/p) = 1. Then, f(x)
is of type [1, 1, 1] over Fp if and only if H(ε∗) is a cubic residue in Fp2. Consequently,
the factorization type over Fp is the same for all polynomials in CD.

Proof. Combining Theorem 2.1 with Lemma 3.1, we obtain that there exists [u, v] ∈ V2

such that gf (x) = x3 + (u/3)x + v/27. Observe that f(x), gf (x), and −gf (−x) =
x3 + (u/3)x− v/27 have the same type of factorization over Fp. Therefore, we can set
v = v. Now, by Corollary 4.3, H(A(v)) is the cubic residue in Fp2 if and only if H(ε∗)
is the cubic residue in Fp2 . Next, for any [u, v] ∈ V2, define A ∈ Fp2 such that

A =

{
(9ω − v)/54 if p - u,

v/27 if p|u.

Applying Lemma 4.2, we now obtain

H(A(v)) =

{
−27A if p - u,

27A if p|u.

Hence, we have A ≈ H(A(v)) and, thus, A is a cubic residue in Fp2 if and only if H(ε∗)
is a cubic residue in Fp2 . Put Ω = 3ω. Then, Ω2 = 9δ = −3D and, from part (iii) of
Theorem 2.2, our claim follows. ¤
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Proposition 4.5. Let p > 3 be a prime and let f(x), g(x) ∈ C−3. Then, f(x) and g(x)
have the same type of factorization over the field Fp.

Proof. By Lemma 3.1, we have V1 = ∅ and V2 = {[2,±7]}. Therefore, without loss of
generality, we can assume that

gf (x) = x3 +
2

3
x +

7

27
and gg(x) = x3 +

2

3
x− 7

27
.

Since, gf (x) = −gg(−x), the polynomials gf (x) and gg(x) have the same type of fac-
torization over Fp. Hence, our claim follows. ¤

5. The case of imaginary quadratic field

In this section, we shall assume that D ∈ Z is such that

D > 3, D is square-free, 3|D and 3 - h(δ) (5.1)

where δ = −D/3 and h(δ) is the class number of the imaginary quadratic field Q(
√

δ).

Lemma 5.1. Let D ∈ Z satisfy (5.1) and let [u, v] ∈ V2. Then, there exist uniquely
determined k, l ∈ Z such that A(v) = (k + lθ)3 in Z[θ].

Proof. First recall that δ ≡ 1 (mod 4) and 3 - δ. Hence, δ /∈ {−1,−3}, which implies
that the group of the units of Z[θ] has only two elements ±1. Using part (iii) of Lemma
3.3, we now obtain that there exist k, l ∈ Z such that A(v) = (k + lθ)3. Since δ 6= 3,
the elements k, l ∈ Z are uniquely determined. ¤
Theorem 5.2. Let D ∈ Z satisfy (5.1). Then, V2 6= ∅ if and only if there exists a
positive integer C ∈ Z such that D + 4 = C2. In this case,

V2 = {[−D − 1,±(2D − 1)
√

D + 4]}. (5.2)

Proof. If [u, v] ∈ V2, then, by Lemma 5.1, there exist uniquely determined k, l ∈ Z such
that A(v) = (k + lθ)3. In the same way as in the proof of Theorem 4.1, we find that
k, l satisfy the equations (4.4) and (4.5):

k3 + 3kl2
δ − 1

4
+ l3

δ − 1

4
=

v + 9

2
and

l

(
3k2 + 3kl + l2

δ + 3

4

)
= −9.

The last equation implies l ∈ {±1,±3,±9} and, by arguments similar to those in the
proof of Theorem 4.1, we obtain that the cases l ∈ {±1, 3,±9} lead to a contradiction.
However, for l = −3, we get the quadratic equation

k2 − 3k +
3δ + 5

4
= 0 (5.3)

with the discriminant −3δ +4 = D +4 > 0. Since k ∈ Z, we have D +4 = C2 for some
positive integer C and the roots of (5.3) can be written in the form k1 = (3+C)/2 and
k2 = (3− C)/2. Substituting l = −3, k = k1 = (3 + C)/2, δ = −D/3 and C2 = D + 4
into (4.4), we find v =

√
D + 4(1 − 2D). Similarly, for l = −3, k = k2 = (3 − C)/2,

δ = −D/3 and C2 = D + 4, we obtain v = −√D + 4(1 − 2D). Finally, to determine
u, we use the identity 4u3 + v2 = −27D. Hence, u = −D − 1 follows.
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Since the validity of the inverse implication can be verified easily by direct calcula-
tion, the proof is complete. ¤
Lemma 5.3. Let f(x) = x3 + ax2 + bx+ c ∈ Z[x], gf (x) = x3 + rx+ s and let Df = D
where D satisfies (5.1). Then, f(x) has a rational integer root ξ. In particular,

ξ =

{
(
√

D + 4− a)/3 if s > 0,

−(
√

D + 4 + a)/3 if s < 0.
(5.4)

Proof. Put

η =

{ √
D + 4/3 if s > 0,

−√D + 4/3 if s < 0.

Since gf (x) = f(x − a/3), we have f(ξ) = 0 if and only if gf (η) = 0. The validity
of gf (η) = 0 can be verified readily by direct calculation. The fact ξ ∈ Z follows
immediately from ξ ∈ Q and f(x) being monic. ¤

Recall that, in [3, Theorem 3.7], we proved the same statement under the assump-
tions D > 0, D is square-free, 3 - D and 3 - h(−3D). Consequently, Lemma 5.3
together with [3] yields the following Theorem 5.4.

Theorem 5.4. Let f(x) ∈ CD and let D satisfy D > 0, D be square-free, and 3 -
h(−3D). Then, f(x) has a rational integer root.

6. The main theorem

We proceed to prove our main theorem.

Theorem 6.1. Let p > 3 be a prime and let f(x), g(x) ∈ Z[x] be monic cubic poly-
nomials with the same discriminant D ∈ Z satisfying (1.4): D is square-free, 3|D and
3 - h(−3D). Then, f(x) and g(x) have the same type of factorization over the field Fp.

Proof. First if p|D, then part (iv) of Theorem 2.2 states that f(x) and g(x) are of type
[12, 1] over Fp and that type [13] will never occur. If p - D and (D/p) = −1, then,
by part (i) of Theorem 2.2, f(x) and g(x) are of type [2, 1] over Fp. Next, if p - D
and (D/p) = 1, then, by part (ii) of Theorem 2.2, f(x) and g(x) are of type [3] or
type [1, 1, 1] over Fp. If D < 0, then Theorem 4.4 and Proposition 4.5 says that both
polynomials f(x) and g(x) are of the same type over Fp. In particular, for D 6= −3,
f(x) and g(x) are of type [1, 1, 1] if and only if H(ε∗) is a cubic residue in Fp2 . If
D > 0, then, by Lemma 3.1 and Theorem 5.2, V1 = ∅ and V2 = {[u, v], [u,−v]} for
some u, v ∈ Z. Hence, gf (x) = ±gg(±x). Therefore, f(x) and g(x) have the same type
of factorization over Fp for any prime p > 3. The proof is complete. ¤

Theorem 6.1 together with the results presented in [2] and [3] proves the validity of
Theorem 1.1.

7. Conclusion

Theorem 1.1 constitutes a partial answer to a question raised in [1, p. 310], namely,
for which D ∈ Z, the law of inertia for the factorization of cubic polynomials holds.
Moreover, as shown in [2] and [3], none of our assumptions, D is square-free and
3 - h(−3D), can be omitted. Finally, note that each polynomial in CD where D > 0
meets the above conditions has a rational integer root.
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CHAPTER 17

LAW OF INERTIA FOR THE FACTORIZATION

OF CUBIC POLYNOMIALS – THE CASE OF

PRIMES 2 AND 3
F

Abstract. Let D ∈ Z and let CD be the set of all monic cubic polynomials x3 +
ax2 + bx+ c ∈ Z[x] with the discriminant equal to D. Along the line of our preceding
papers, the following theorem has been proved: If D is square-free and 3 - h(−3D)
where h(−3D) is the class number of Q(

√−3D), then all polynomials in CD have the
same type of factorization over the Galois field Fp where p is a prime, p > 3. In this
paper, we prove the validity of the above implication also for primes 2 and 3.

1. Introduction

Let D ∈ Z and let CD = {f(x) = x3 + ax2 + bx + c ∈ Z[x]; Df = D} where
Df = a2b2−4b3−4a3c−27c2 +18abc is the discriminant of f(x). In [1], we thoroughly
examined the set C−44 and the following theorem was proved: Let p be an arbitrary
prime. Then, all polynomials in C−44 have the same type of factorization over the
Galois field Fp. Furthermore, in [1, p. 318], we raised an interesting question for which
D ∈ Z our result can be generalized. Recall that there exist five distinct types of
factorization of f(x) over Fp:

(i) f(x) is of type [13] if f(x) = (x− α)3 in Fp,
(ii) f(x) is of type [12, 1] if f(x) = (x− α)2(x− β) where α, β ∈ Fp and, α 6= β,
(iii) f(x) is of type [1, 1, 1] if f(x) = (x− α)(x− β)(x− γ) where α, β, γ ∈ Fp are

distinct,
(iv) f(x) is of type [2, 1] if f(x) = (x− α)(x2 + βx + γ) where α, β, γ ∈ Fp and,

x2 + βx + γ is irreducible over Fp,
(v) f(x) is of type [3] if f(x) is irreducible over Fp, or equivalently, f(x) has no root

in Fp.

For these types, we adopted the notation found in M. Ward [5, p. 161]. If the
factorization type of all polynomials in CD is the same, for any fixed prime p, we call
this property the law of inertia for the factorization of cubic polynomials in CD. See
[2]. Along the line of papers [2,3,4], the following theorem has been proved:

Theorem 1.1. Let D ∈ Z be square-free and let 3 - h(−3D) where h(−3D) is the
class number of Q(

√−3D). Let p be an arbitrary prime greater than 3. Then, all
polynomials in CD have the same type of factorization over Fp.

F
Published in J. Klaška, L. Skula, Law of inertia for the factorization of cubic polynomials – the

case of primes 2 and 3, Math. Slovaca 67.1 (2017), 71–82.
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Clearly, for some D ∈ Z, we have CD = ∅. In this case, Theorem 1.1 holds trivially.
On the other hand, Theorem 1.1 can be applied in many non-trivial cases. Consider, for
example, C−31, C−23 and, C5. Finally, in [2] and [3], it was proved by counterexamples
that none of our assumptions, D is square-free and 3 - h(−3D), can be omitted.

The aim of this paper is to prove that Theorem 1.1 also holds for primes p = 2 and
p = 3. Indeed, for p = 2 we show that the implication holds in a stronger form because
the assumption 3 - h(−3D) is not needed. Still, the proof of case p = 2 is not difficult.
On the other hand, the proof for p = 3 requires more complex reasoning and much
computation in the ring of integers of the quadratic field Q(

√−3D). Some background
results for the proof will also be needed.

2. The set CD

In this section, we recall some known facts on the set CD. For any D ∈ Z, we define
sets V1 and V2 such that

V1 = {[u, v] ∈ Z2 : 4u3 + 27v2 = −D} (2.1)

and

V2 = {[u, v] ∈ Z2 : 4u3 + v2 = −27D and 3 - u}. (2.2)

Next, for any f(x) = x3 + ax2 + bx + c ∈ Z[x], we put gf (x) = f(x − a/3). Then,
Dgf

= Df and gf (x) = x3 + rx + s ∈ Q[x] where

r = b− a2

3
and s =

2a3

27
− ab

3
+ c. (2.3)

Using V1 and V2, we can establish all polynomials in CD as follows:

Theorem 2.1. Let D ∈ Z and let f(x) = x3 + ax2 + bx + c ∈ Z[x].
(i) If a ≡ 0 (mod 3), then f(x) ∈ CD if and only if there exist [u, v] ∈ V1 and w ∈ Z
such that

a = 3w, b = 3w2 + u, c = w3 + uw + v. (2.4)

(ii) If a ≡ e (mod 3) and e ∈ {1, 2}, then f(x) ∈ CD if and only if there exist [u, v] ∈ V2,
w ∈ Z such that e3 + 3eu + v ≡ 0 (mod 27), and

a = 3w + e, b = 3w2 + 2ew +
e2 + u

3
,

c = w3 + ew2 +
e2 + u

3
w +

e3 + 3eu + v

27
. (2.5)

Moreover, in (i), we have gf (x) = x3 +ux+ v and, in (ii), gf (x) = x3 +(u/3)x+ v/27.

For proof of Theorem 2.1, see [1, Theorem 2.3] and [2, Proposition 2.2].

Finally, recall that V1 and V2 can be obtained by using the set of all integral solutions
to Mordell’s equation y2 = x3 + k with k = −432D. Consult [1, p. 313].
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3. Basic statements

Now we give some statements concerning the factorization of monic cubic polynomi-
als over the fields F2 and F3. First, it is evident that, over F2, there exist exactly eight
monic cubic polynomials. Therefore, it is easy to get their list and, using it, establish
the relationships between the factorization type of a polynomial over F2 and the parity
of its discriminant as follows:

Lemma 3.1. Let D ∈ Z be the discriminant of f(x) = x3 + ax2 + bx + c ∈ Z[x].
(i) f(x) is of type [13] or type [12, 1] over F2 if and only if D ≡ 0 (mod 2).
(ii) If D ≡ 0 (mod 2), then f(x) is of type [13] if and only if a ≡ b ≡ c (mod 2).
(iii) f(x) is of type [3] or type [2, 1] over F2 if and only if D ≡ 1 (mod 2).
(iv) If D ≡ 1 (mod 2), then f(x) is of type [2, 1] if and only if a ≡ b 6≡ c (mod 2).
(v) If D ≡ 0 (mod 2), then D ≡ 0 (mod 4).

Theorem 3.2. Let D ∈ Z be square-free and let f(x), g(x) ∈ CD. Then, D is odd and
the polynomials f(x) and g(x) have the same type of factorization over F2.

Proof. First, from part (v) of Lemma 3.1, it follows that D is odd and, by part (iii) of
Lemma 3.1, any polynomial in f(x) ∈ CD is of type [2, 1] or type [3] over F2. Assume
that f(x) is of type [2, 1] over F2. Then, by part (iv) of Lemma 3.1, there exist r, s, t ∈ Z
such that f(x) = f1(x) or f(x) = f2(x) where

f1(x) = x3 + 2rx2 + 2sx + 2t + 1, f2(x) = x3 + (2r + 1)x2 + (2s + 1)x + 2t.

Reducing Df1 and Df2 by modulus 8, we get Df1 ≡ 5+4(r(r+1)+s(s+1)+ t(t+1)) ≡
5 (mod 8) and Df2 ≡ 5 + 4t(t + 1) ≡ 5 (mod 8). Hence, Df ≡ 5 (mod 8).

Suppose now that g(x) is of type [3] over F2. Then, there exist u, v, w ∈ Z such that
g(x) = g1(x) or g(x) = g2(x) where

g1(x) = x3 + 2ux2 + (2v + 1)x + 2w + 1, g2(x) = x3 + (2u + 1)x2 + 2vx + 2w + 1.

Reducing Dg1 and Dg2 by modulus 8, we get Dg1 ≡ 1+4(u(u+1)+w(w+1)) ≡ 1 (mod 8)
and Dg2 ≡ 1 + 4(v(v + 1) + w(w + 1)) ≡ 1 (mod 8). Hence, Dg ≡ 1 (mod 8) and a
contradiction follows. ¤

In the following Lemma 3.3, we establish the basic relationships between the fac-
torization type of a cubic polynomial over F3 and the arithmetic properties of its
discriminant. The proofs of all parts (i)-(viii) of Lemma 3.3 are easy and can be left
to the reader.

Lemma 3.3. Let D ∈ Z be the discriminant of f(x) = x3 + ax2 + bx + c ∈ Z[x].
(i) f(x) is of type [13] or type [12, 1] over F3 if and only if D ≡ 0 (mod 3).
(ii) If D ≡ 0 (mod 3), then f(x) is of type [13] if and only if a ≡ b ≡ 0 (mod 3).
(iii) If f(x) is of type [13] over F3, then 27|D.
(iv) f(x) is of type [3] or type [1, 1, 1] over F3 if and only if D ≡ 1 (mod 3).
(v) If D ≡ 1 (mod 3), then f(x) is of type [1, 1, 1] if and only if c ≡ 0 (mod 3).
(vi) If D ≡ 1 (mod 3) and 3 - a, then f(x) is of type [3] over F3.
(vii) f(x) is of type [2, 1] over F3 if and only if D ≡ 2 (mod 3).
(viii) Let D be square-free, D 6≡ 1 (mod 3), and let f(x), g(x)∈CD. Then, f(x), g(x)
have the same type of factorization over F3.

We close this section with an example proving that, for D ≡ 1 (mod 3), an analogy
to part (viii) of Lemma 3.3 does not hold.
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Example 3.4. (i) Let f(x) = x3 + 2x2 − 14x + 13 and g(x) = x3 − 18x2 + 32x − 15.
Then, Df = Dg = 229 ≡ 1 (mod 3), f(x) is of type [3], and g(x) is of type [1, 1, 1]
over F3. (ii) Let f(x) = x3 − 3x2 + 17x − 10 and g(x) = x3 − 9x2 + 23x + 6. Then,
Df = Dg = −61 · 191 ≡ 1 (mod 3), f(x) is of type [3], and g(x) is of type [1, 1, 1] over
F3.

Now we will examine in detail the case of D ≡ 1 (mod 3).

4. The ring Z[θ]

In this section, we prove some auxiliary results necessary to solve the case of D ≡
1 (mod 3) where D < 0. Let D ∈ Z such that

D < 0, D ≡ 1 (mod 4) and D ≡ δ (mod 27) where δ ∈ {4, 13, 22}. (4.1)

Then, D ≡ 1 (mod 3) and D ≡ 4 (mod 9). Put d = −3D and θ = (1 +
√

d)/2.
Consider now the ring of integers Z[θ] = {x + yθ : x, y ∈ Z} of the real quadratic

field Q(
√

d). First, observe that

θ2 =
d− 1

4
+ θ ≡ 17 + θ (mod 27). (4.2)

Next, as usual, the norm of the element ξ = x + yθ ∈ Z[θ] is defined by

N(ξ) = ξξ′ = x2 + xy − d− 1

4
y2.

Hence, N(ξ) ≡ x2 + xy + 10y2 (mod 27). Finally, for any α = a + bθ, β = c + dθ ∈ Z[θ]
and m ∈ Z, m ≥ 2, put α ≡ β (mod m) if and only if [a, b] ≡ [c, d] (mod m). In this
case, we will say that α, β are congruent modulo m.

In the following Lemma 4.1, using the norm, we establish, the set of all units of Z[θ]
not-congruent modulo 27.

Lemma 4.1. Let ε = a + bθ ∈ Z[θ]. Then, N(ε) ≡ a2 + ab + 10b2 ≡ −1 (mod 27)
has no solution and, N(ε) ≡ a2 + ab + 10b2 ≡ 1 (mod 27) has exactly 54 not-congruent
solutions [a, b] (mod 27), shown by the below Table 1:

a 1 2 3 4 5 6 7 8 9
b 0 21 2 11 15 7 14 1 19
b 8 22 22 21 25 14 15 9 26

a 10 11 12 13 14 15 16 17 18
b 9 3 4 3 7 16 23 10 1
b 17 4 11 20 24 23 24 18 8

a 19 20 21 22 23 24 25 26 0
b 18 12 13 2 6 5 5 0 10
b 26 13 20 12 16 25 6 19 17

Table 1

Proof. The solution of both congruences N(ε) ≡ ±1 (mod 27) can be obtained by
direct calculation, possibly using a computer algebra system. ¤
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Now, for any K = x + yθ ∈ Z[θ], let us define ρ
D
(x, y), σ

D
(x, y) ∈ Z such that

ρ
D
(x, y) = x3 − 3xy2 1 + 3D

4
− y3 1 + 3D

4
(4.3)

and,

σ
D
(x, y) = 3y

(
x2 + xy + y2 1−D

4

)
. (4.4)

Then, K3 = ρ
D
(x, y) + σ

D
(x, y)θ and the following relation holds:

Lemma 4.2. (i) 3|ρ
D
(x, y) if and only if x ≡ y (mod 3). (ii) If 3|ρ

D
(x, y), then

ρ
D
(x, y)

3
≡ x3 − y3

3
+ y3 1−D

4
+ 17xy2 (mod 27). (4.5)

(iii) If 3 - xy, then 9|σ
D
(x, y) if and only if x 6≡ y (mod 3).

Proof. From (4.3), ρ
D
(x, y) ≡ x − y (mod 3) follows immediately, which proves (i).

Next, (4.3) can be written in the form

ρ
D
(x, y) = x3 − y3 + 3y3 1−D

4
− 3xy2 1 + 3D

4
. (4.6)

Hence, (4.5) follows. Finally, (4.4) together with D ≡ 4 (mod 9) yields σ
D
(x, y) ≡

3xy(x+y) (mod 9). Since 3 - xy, we have x+y ≡ 0 (mod 3) if and only if x 6≡ y (mod 3).
This proves (iii). ¤
Lemma 4.3. Let K = x + yθ ∈ Z[θ], 3 - xy and let K3 = ρ

D
(x, y) + σ

D
(x, y)θ.

(i) If x ≡ y ≡ 1 (mod 3), then[
ρ

D
(x, y)

3
,
σ

D
(x, y)

3

]
(mod 27) ∈ {[5, 17], [14, 26], [23, 8]}. (4.7)

(ii) If x ≡ y ≡ 2 (mod 3), then[
ρ

D
(x, y)

3
,
σ

D
(x, y)

3

]
(mod 27) ∈ {[13, 1], [22, 10], [4, 19]}. (4.8)

Proof. The relationships between the numbers ρ
D
(x, y)/3 (mod 27) and

σ
D
(x, y)/3(mod 27) can be established by direct calculation. First observe that,

for any e ∈ {1, 2}, i, j ∈ {1, 2, 3} and k, l ∈ Z, the following implication holds: If
[k, l] ≡ [i, j] (mod 3), then ρ

D
(e + 3k, e + 3l)/3 ≡ ρ

D
(e + 3i, e + 3j)/3 (mod 27) and

σ
D
(e + 3k, e + 3l)/3 ≡ σ

D
(e + 3i, e + 3j)/3] (mod 27).

We prove (i). For i, j ∈ {1, 2, 3}, put rij = ρ
D
(1 + 3i, 1 + 3j)/3 and sij = σ

D
(1 +

3i, 1 + 3j)/3. Now, using (4.5) and (4.4), we obtain the congruences for R = (rij) and
S = (sij) as follows:

If D ≡ 4 (mod 27), then

R ≡



14 5 14
5 5 23
14 23 23


 (mod 27) and S ≡




26 17 26
17 17 8
26 8 8


 (mod 27). (4.9)

If D ≡ 13 (mod 27), then

R ≡



5 23 5
23 23 14
5 14 14


 (mod 27) and S ≡




17 8 17
8 8 26
17 26 26


 (mod 27). (4.10)
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If D ≡ 22 (mod 27), then

R ≡



23 14 23
14 14 5
23 5 5


 (mod 27) and S ≡




8 26 8
26 26 17
8 17 17


 (mod 27). (4.11)

Statement (i) now immediately follows from (4.9) – (4.11). The proof of part (ii) of
Lemma 3.3 is much the same. ¤

For any odd v ∈ Z, let us now define A1(v) ∈ Z[θ] such that

A1(v) = 3

(
9v + 1

2
− θ

)
. (4.12)

Lemma 4.4. Let v ∈ Z, v ≡ 3 (mod 6), K ∈ Z[θ] and let ε = a + bθ be a unit of the
ring Z[θ]. If εA1(v) = K3, then

[a, b] (mod 27) ∈ {[1, 0], [8, 9], [10, 9], [17, 18], [19, 18], [26, 0]}. (4.13)

Proof. Since v ≡ 3 (mod 6), there exists a w ∈ Z such that v = 6w + 3 and, by (4.12),
A1(v) = 3(27w + 14− θ). Put A(a, b) = 14a− 17b and B(a, b) = 13b− a. Then,

εA1(v)

3
= (a + bθ)(27w + 14− θ) ≡ A(a, b) + B(a, b)θ (mod 27). (4.14)

To establish A(a, b) (mod 27) and, B(a, b) (mod 27), we use Table 1. Hence, Table
2 follows:

a b A(a,b) B(a,b) a b A(a,b) B(a,b) a b A(a,b) B(a,b)
1 0 14 26 10 9 14 26 19 18 14 26
1 8 13 22 10 17 13 22 19 26 13 22
2 21 22 1 11 3 22 1 20 12 22 1
2 22 5 14 11 4 5 14 20 13 5 14
3 2 8 23 12 4 19 13 21 13 19 13
3 22 19 13 12 11 8 23 21 20 8 23
4 11 4 4 13 3 23 26 22 2 4 4
4 21 23 26 13 20 4 4 22 12 23 26
5 15 4 1 14 7 23 23 23 6 4 1
5 25 23 23 14 24 4 1 23 16 23 23
6 7 19 4 15 16 19 4 24 5 8 14
6 14 8 14 15 23 8 14 24 25 19 4
7 14 22 13 16 23 22 13 25 5 22 13
7 15 5 26 16 24 5 26 25 6 5 26
8 1 14 5 17 10 14 5 26 0 13 1
8 9 13 1 17 18 13 1 26 19 14 5
9 19 19 22 18 1 19 22 0 10 19 22
9 26 8 5 18 8 8 5 0 17 8 5

Table 2

Let K = x + yθ ∈ Z[θ] be such that εA1(v) = K3. Then, K3 = ρ
D
(x, y) + σ

D
(x, y)θ

where ρD(x, y) and σD(x, y) satisfy (4.3) and (4.4). Since 3|A1(v), we have 3|ρD(x, y),
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3|σD(x, y) and (4.14) yields
[
ρ

D
(x, y)

3
,
σ

D
(x, y)

3

]
≡ [A(a, b), B(a, b)] (mod 27). (4.15)

From Table 2, we see that 3 - A(a, b) and 3 - B(a, b), which, together with (4.15), yields
9 - ρ

D
(x, y) and 9 - σ

D
(x, y). Next, reducing (4.4) by modulus 27, we obtain

σ
D
(x, y) ≡ 3y(x2 + xy + 6y2) (mod 27). (4.16)

Since 9 - σ
D
(x, y), 3 - xy follows from (4.16) and, by part (iii) of Lemma 4.2, we have

x ≡ y (mod 3). Applying Lemma 4.3, we now get
[
ρ

D
(x, y)

3
,
σ

D
(x, y)

3

]
(mod 27) ∈ {[5, 17], [14, 26], [23, 8], [13, 1], [22, 10], [4, 19]}.

Matching these values with [A(a, b), B(a, b)] (mod 27) in Table 2, the result follows. ¤
Theorem 4.5. Let v, V ∈ Z be such that v ≡ 3 (mod 6) and V ≡ 1 (mod 6). Then,
for any unit ε = a + bθ ∈ Z[θ], the following statements hold:

(i) εA1(v) and εA1(V ) are not cubes in Z[θ].
(ii) εA1(v) and ε2A1(V ) are not cubes in Z[θ].

Proof. Since V ≡ 1 (mod 6), there exists a w ∈ Z such that V = 6w+1 and, by (4.12),
A1(V ) = 3(27w + 5− θ). Put C(a, b) = 5a− 17b and D(a, b) = 4b− a. Then,

εA1(V )

3
= (a + bθ)(27w + 5− θ) ≡ C(a, b) + D(a, b)θ (mod 27). (4.17)

First, suppose that K, L ∈ Z[θ] are such that εA1(v) = K3 and εA1(V ) = L3.
Since εA1(v) = K3, Lemma 4.4 yields [a, b] (mod 27) ∈ {[1, 0], [8, 9], [10, 9], [17, 18],
[19, 18], [26, 0]}. Hence,

[C(a, b), D(a, b)] (mod 27) ∈ {[5, 26], [22, 1]}. (4.18)

On the other hand, if L = x + yθ, then L3 = ρ
D
(x, y) + σ

D
(x, y)θ = εA1(V ). Since

3|A1(V ), we have 3|ρ
D
(x, y), 3|σ

D
(x, y) and (4.17) yields

[
ρ

D
(x, y)

3
,
ρ

D
(x, y)

3

]
≡ [C(a, b), D(a, b)] (mod 27). (4.19)

Combining (4.18) and (4.19), we now get 9 - σ
D
(x, y). Hence, by (4.4), 3 - xy and, by

part (iii) of Lemma 4.2, we obtain x ≡ y (mod 3). Finally, by Lemma 4.3,
[
ρ

D
(x, y)

3
,
σ

D
(x, y)

3

]
(mod 27)∈{[5, 17], [14, 26], [23, 8], [13, 1], [22, 10], [4, 19]}, (4.20)

which is a contradiction with (4.18). This proves (i).
Next, suppose that K, L ∈ Z[θ] is such that εA1(v) = K3 and ε2A1(V ) = L3. Since

εA1(v) = K3, we have (4.13). Put ε2 = α+βθ. Using (4.2), we obtain ε2 ≡ a2 +17b2 +
(2ab+ b2)θ (mod 27) and (4.13) yields [α, β] (mod 27) ∈ {[1, 0], [10, 9], [19, 18]}. Hence,

ε2A1(V )

3
= (α+βθ)(27w+5−θ) ≡ C(α, β)+D(α, β)θ ≡ 5 + 26θ (mod 27). (4.21)

On the other hand, if L = x+ yθ, then, as in the proof of part (i), we get (4.20), which
is a contradiction with (4.21). The proof is complete. ¤
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For any odd V ∈ Z, let us define A2(V ) ∈ Z[θ] such that

A2(V ) =
V + 3

2
− 3θ. (4.22)

Theorem 4.6. Let v, V ∈ Z, v ≡ 3 (mod 6), V ≡ ±1 (mod 6) and let ε = a + bθ be
a unit of Z[θ]. If εA1(v) is a cube in Z[θ], then εA2(V ) and ε2A2(V ) are not cubes in
Z[θ].

Proof. Let εA1(v) be a cube in Z[θ]. Then, by (4.13), 3 - a and 9|b. Therefore, there
exists c ∈ Z such that b = 9c. Put w = (V + 3)/2. Then,

εA2(V ) = (a + 9cθ)(w − 3θ) ≡ aw + 3(3cw − a)θ (mod 27).

Suppose that εA2(V ) = K3 for some K = x + yθ ∈ Z[θ]. Then, K3 = ρ
D
(x, y) +

σ
D
(x, y)θ ≡ aw + 3(−a + 3cw)θ (mod 27). Since 3 - a, we have 9 - σ

D
(x, y). Hence, by

(4.4), 3 - xy. Next, combining part (i) and part (iii) of Lemma 4.2, we get 3|ρ
D
(x, y),

which means that 3|aw. Hence, it follows 3|V , which is a contradiction.
Next, suppose that ε2A2(V ) = L3 for some L = x + yθ ∈ Z[θ]. Then,

ε2A2(V ) = (a + 9cθ)2(w − 3θ) ≡ a2w + 3a(6cw − a)θ (mod 27)

and L3 = ρ
D
(x, y) + σ

D
(x, y)θ. Hence, σ

D
(x, y) ≡ a(6cw − a) (mod 9). Since 3 - a, we

have 9 - σ
D
(x, y) and (4.4) yields 3 - xy. Using Lemma 4.2, we now obtain 3|ρ

D
(x, y),

which means that 3|a2w. Hence, 3|V , which is a contradiction. ¤
Now we are ready to solve the case of D ≡ 1 (mod 3) where D < 0.

5. Case of negative discriminant D ≡ 1 (mod 3)

First, for any D ∈ Z, put A = {f(x) = x3 + ax2 + bx + c ∈ CD : 3|a} and
B = {f(x) = x3 + ax2 + bx + c ∈ CD : 3 - a}. If f(x) ∈ A, then, by part (i)
of Theorem 2.1, there exist uniquely determined u, v ∈ Z such that [u, v] ∈ V1 and
gf (x) = f(x− a/3) = x3 + ux + v. Moreover, by (2.3), v = (2a3 − 9ab + 27c)/27. Let
k ∈ {0, 1, 2} and, let Ak = {f(x) ∈ A : v ≡ k (mod 3)}. Then, A0, A1, A2, B are
pairwise disjunct and, A0 ∪A1 ∪A2 ∪B = CD. Next, observe that, for any D ∈ Z, the
following implication holds: if D is square-free and CD 6= ∅, then D ≡ 1 (mod 4).

Further in this section, we will assume that D ∈ Z is such that

D < 0, D ≡ 1 (mod 3), D ≡ 1 (mod 4), D is square-free and, 3 - h(−3D) (5.1)

where h(−3D) is the class number of the real quadratic field Q(
√−3D).

Let f(x) = x3 +ax2 + bx+ c ∈ CD where D ∈ Z satisfies (5.1). Then, V1∪V2 6= ∅. If
V1 = ∅, then A = ∅ and CD = B. Since D ≡ 1 (mod 3), by part (vi) of Lemma 3.3, any
f(x) ∈ CD = B is of type [3] over F3. On the other hand, if V1 6= ∅, then there exist
u, v ∈ Z such that 4u3 + 27v2 = −D. Hence, D ≡ −4u3 (mod 27), which, together
with D ≡ 1 (mod 3), yields D ≡ δ (mod 27) where δ ∈ {4, 13, 22}. Consequently, if
V1 6= ∅, the results of Section 4 can be used. Finally, recall that, in (4.12) and (4.22),
we defined, for any odd v, V ∈ Z, the numbers A1(v), A2(V ) ∈ Z[θ] such that

A1(v) = 3

(
9v + 1

2
− θ

)
and A2(V ) =

V + 3

2
− 3θ.

These numbers were studied extensively in [2,3,4]. Particularly in [2, Theorem 3.2],
the following result was proved:
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Theorem 5.1. Let D ∈ Z be such that

D < 0, 3 - D, D ≡ 1 (mod 4), D is square-free and, 3 - h(−3D)

where h(−3D) is the class number of the real quadratic field Q(
√−3D). Let i ∈ {1, 2},

[u, v] ∈ Vi and let ε∗ be the fundamental unit of Q(
√−3D). Then, there exist e(v) ∈

{1, 2} and α(v) ∈ Z[θ] such that

Ai(v) = (ε∗)e(v)α(v)3. (5.2)

Moreover, e(v) and α(v) are uniquely determined and e(v) + e(−v) = 3.

Note that e(v) and α(v) also depend on u and should actually be denoted, say, by
e(u, v) and α(u, v). However, for simplicity, we will keep the notation e(v) and α(v).

The key to the main result of this section is the following lemma.

Lemma 5.2. Let D ∈ Z satisfy (5.1). If A0 6= ∅, then A1 ∪ A2 ∪ B = ∅.
Proof. The proof consists of two steps. First, we show that

if A2 6= ∅, then A1 6= ∅. (5.3)

Let f(x) ∈ A2. Then, gf (x) = x3 + ux + v for some [u, v] ∈ V1 where v ≡ 2 (mod 3).
Put h(x) = −gf (−x) = x3 + ux− v. Then, −v ≡ 1 (mod 3) and h(x) ∈ A1.

Next, we show that,

if A0 6= ∅, then A1 ∪ B = ∅. (5.4)

Let f(x) ∈ A0. Then, gf (x) = x3 + ux + v for some [u, v] ∈ V1 where v ≡ 0 (mod 3).
Since D is square-free, v ≡ 1 (mod 2) follows from 4u3 + 27v2 = −D. Therefore,
v ≡ 3 (mod 6). Next, by Theorem 5.1, there exist a ∈ {1, 2} and α(v) ∈ Z[θ] such that
A1(v) = (ε∗)aα(v)3. Put ε = (ε∗)3−a and K = ε∗α(v). Then, ε is a unit of the ring
Z[θ], K ∈ Z[θ], and K3 = (ε∗)3−a(ε∗)aα(v)3 = εA1(v).

Suppose now that there exists an h(x) ∈ A1 ∪ B. Since, A1 ∩ B = ∅, we have
either h(x) ∈ A1 or h(x) ∈ B. If h(x) ∈ A1, then there exist [U, V ] ∈ V1 such that
gh(x) = x3 + Ux + V where V ≡ 1 (mod 3). Since D is square-free, V ≡ 1 (mod 2)
follows from 4U3 + 27V 2 = −D. Hence, V ≡ 1 (mod 6). On the other hand, if
h(x) ∈ B, then there exist [U, V ] ∈ V2 such that gh(x) = x3 + (U/3)x + V/27 where
U 6≡ 0 (mod 3). Since D is square-free, V ≡ 1 (mod 2) and V 6≡ 0 (mod 3) follows
from 4U3 + V 2 = −27D. Hence, V ≡ ±1 (mod 6). Next, let us put

i =

{
1 if h(x) ∈ A1,

2 if h(x) ∈ B.

Then, by Theorem 5.1, there exist b ∈ {1, 2} and α(V ) ∈ Z[θ] such that Ai(V ) =
(ε∗)bα(V )3. If a = b, put L1 = ε∗α(V ). Then, L1 ∈ Z[θ] and we have L3

1 =
(ε∗)3−a(ε∗)aα(V )3 = εAi(V ). Next, if a 6= b, put L2 = (ε∗)2+cα(V ) where

c =

{
0 if [a, b] = [1, 2],

−1 if [a, b] = [2, 1].

Then, b = 2a + 3c, L2 ∈ Z[θ] and L3
2 = (ε∗)6+3cα(V )3 = (ε∗)6−2a+2a+3cα(V )3 =

(ε∗)6−2a(ε∗)bα(V )3 = ε2Ai(V ). Combining the identities εAi(V ) = L3
1 and ε2Ai(V ) =
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L3
2 with εA1(v) = K3 yields a contradiction. In particular, for i = 1, we get a con-

tradiction with Theorem 4.5 and, for i = 2, we get a contradiction with Theorem 4.6.
This proves (5.4).

Finally, combining (5.3) and (5.4) we get the desired result. ¤

We are now ready to state and prove the main theorem of this section.

Theorem 5.3. Let D ∈ Z satisfy (5.1) and let CD 6= ∅. Then, all polynomials in CD

have the same type of factorization over F3.

Proof. First, from Lemma 5.2, it follows that either CD = A0 or CD = A1 ∪ A2 ∪ B.
Next, part (iv) of Lemma 3.3 says that any f(x) = x3 + ax2 + bx + c ∈ CD is of type
[3] or type [1, 1, 1] over F3. We prove that f(x) is of type [1, 1, 1] over F3 if and only if
f(x) ∈ A0.

Let f(x) ∈ A0. Then, 3|a and, by part (i) of Theorem 2.1, b = 3w2+u, c = w3+uw+v
for some w ∈ Z and [u, v] ∈ V1. Since 4u3 + 27v2 = −D, we have u ≡ −D (mod 3),
which, together with D ≡ 1 (mod 3), yields u ≡ 2 (mod 3). Hence, b ≡ 2 (mod 3) and
c ≡ v (mod 3). Since f(x) ∈ A0, we have v ≡ 0 (mod 3) and c ≡ 0 (mod 3) follows.
Hence, f(x) ≡ x3 + 2x ≡ x(x + 1)(x + 2) (mod 3), which yields that f(x) is of type
[1, 1, 1] over F3.

On the other hand, assume that f(x) is of type [1, 1, 1] over F3. Then, f(x) ≡
x(x + 1)(x + 2) ≡ x3 + 2x (mod 3). Therefore, a ≡ 0 (mod 3), b ≡ 2 (mod 3) and
c ≡ 0 (mod 3). Since a ≡ 0 (mod 3), we have, by part (i) of Theorem 2.1, b = 3w2 + u
and, c = w3 + uw + v. Therefore, u ≡ 2 (mod 3) and c ≡ v (mod 3) follows. Since,
c ≡ 0 (mod 3), we have v ≡ 0 (mod 3), which implies f(x) ∈ A0. ¤

We conclude this section by examples which prove that if D satisfies (5.1), both cases
CD =A0 6=∅ and CD = A1 ∪ A2 ∪ B 6= ∅ can occur.

Example 5.4. (i) Let f(x) = x3 − 3x2 + 5x− 2 and g(x) = x3 + 5x2 + 7x + 4. Then,
f(x), g(x) ∈ C−59 and D = −59 satisfies (5.1). Next, f(x) ∈ A1, g(x) ∈ B and f(x),
g(x) are of type [3] over F3. (ii) Let f(x) = x3−x+3. Then, f(x) ∈ C−239, D = −239
satisfies (5.1), f(x) ∈ A0 and f(x) is of type [1, 1, 1] over F3.

6. Case of positive discriminant D ≡ 1 (mod 3)

Throughout this section, we will assume that D ∈ Z is such that

D > 0, D ≡ 1 (mod 3), D is square-free, and 3 - h(−3D) (6.1)

where h(−3D) is the class number of the imaginary quadratic field Q(
√−3D).

Theorem 6.1. Let D ∈ Z satisfy (6.1) and let CD 6= ∅. Then, (i) and, (ii) hold.

(i) The set V1 has two elements and V2 = ∅.
(ii) If f(x) ∈ CD, then f(x) has a rational integer root.

For proof of (i), see [3, Theorem 3.3] and [3, part (i) of Lemma 3.6]. For proof of
(ii), consult [3, Theorem 3.7].

Theorem 6.2. Let D ∈ Z satisfy (6.1) and let CD 6= ∅. Then, all polynomials in CD

have the same type of factorization over F3. Moreover, this type is [1, 1, 1].



168 CHAPTER 17

Proof. Assume that f(x), g(x) ∈ CD where D satisfies (6.1). Then, by Theorem 6.1,
V1 = {[u, v], [u,−v]} and, V2 = ∅. By part (i) of Theorem 2.1, we can now assume that
gf (x) = x3 + ux + v and, gg(x) = x3 + ux− v. Since gf (x) = −gg(−x), f(x) and g(x)
have the same type of factorization over F3. Moreover, part (iv) of Lemma 3.3 says
that f(x) is of type [3] or of type [1, 1, 1] over F3 and, from part (ii) of Theorem 6.1, it
follows that f(x) is of type [1, 1, 1] over F3. ¤

From Theorem 6.2 we immediately obtain the following corollary.

Corollary 6.3. If D ∈ Z satisfies (6.1) and CD 6=∅, then A0 6= ∅ and A1 ∪A2 ∪B = ∅.
Finally, we present an example showing that the case CD = A0 6= ∅ can occur.

Example 6.4. Let f(x) = x3 − 4x + 3. Then, f(x)∈C13 and D = 13 satisfies (6.1).

7. Conclusion

In this paper, we extended our preceding results presented in [2,3,4] to primes 2 and
3. Our main result is the following:

Theorem 7.1. Let D ∈ Z be square-free and let 3 - h(−3D) where h(−3D) is the class
number of Q(

√−3D). Let p be an arbitrary prime. Then, all polynomials in CD have
the same type of factorization over Fp.
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APPLICATIONS OF FIBONACCI NUMBERS AND

THE GOLDEN RATIO IN PHYSICS, CHEMISTRY,

BIOLOGY AND ECONOMY
F

Abstract. The purpose of this paper, which was inspired by Hebrew mathematician
Dov Jarden, is to give an extensive list of references to applications of Fibonacci
numbers and the golden ratio in physics, chemistry, biology and economy. We focus,
above all, on those published from 1963 to 2011. Our list can be interesting not only
for students of applied mathematics but also for their teachers.

1. Introduction

The numbers Fn defined by Fn+2 = Fn+1 + Fn with F0 = 0, F1 = 1 for all
n = 0, 1, 2 · · · are known as the Fibonacci numbers. These numbers were named
by nineteenth-century French mathematician François-Edouard-Anatole Lucas (1842–
1891) after Italian mathematician Leonardo Pisano Bigollo (c. 1170–1250) also known
as Leonardo of Pisa, Leonardo Bonacci, Leonardo Fibonacci or just Fibonacci.

The golden ratio (also known as golden mean, golden proportion or golden section)
is an irrational number defined as Φ := (1 +

√
5)/2 = 1.618 · · · . This number and

ϕ := −1/Φ = (1 − √
5)/2 = 0.618 · · · are the solutions of the quadratic equation

x2 − x− 1 = 0. It is well known that Fibonacci numbers Fn can be computed using Φ
and ϕ as follows:

Fn =
Φn − ϕn

Φ− ϕ
=

Φn − (−Φ−n)√
5

, for all n = 0, 1, 2, · · · .

This explicit formula for Fn is called Binet’s formula, after the French mathematician
Jacques-Phillipe-Marie Binet (1786–1856), who discovered it in 1843. In fact, it was
first discovered in 1718 by Abraham De Moivre (1667–1754) using generating functions,
and also arrived at independently in 1844 by Gabriel Lamé (1795–1870).

A comprehensive survey of discoveries concerning the number–theoretic properties
of Fibonacci numbers through 1202–1919 can be found in History of the Theory of
Numbers [24] written by Leonard Eugene Dicson (1874–1954). Tens of books and
monographs as well as thousands of scholary papers have been published on Fibonacci
numbers and the golden ratio. Note that the first known book devoted to the golden
ratio is De Divina Proportione by Luca Pacioli (1445–1519). Published in 1509, this
book was illustrated by Leonardo da Vinci.

F
Published in J. Klaška, Applications of Fibonacci numbers and the golden ratio in physics, chem-

istry, biology and economy, 7th Conference on Mathematics and Physics on Technical Universities,
Brno (2011), 243–254.
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As a good introduction into the study of Fibonacci numbers, the book [30] by Nicolai
Nicolaevich Vorobiev can be recommended together with the books by Thomas Koshy
[153], Steven Vajda [123] and Richard A. Dunlap [145]. For advanced study, see the
journal The Fibonacci Quarterly founded in 1963 by Alfred Brousseau (1907–1988) and
Verner Emil Hoggatt (1921 – 1980). Further important facts on Fibonacci numbers
can be found in the proceedings of international conferences Applications of Fibonacci
numbers 1–14:

1984 Greece, Patras,
1986 US, CA, San Jose,
1988 Italy, Pisa,
1990 US, NC, Winston-Salem,
1992 Scotland, St. Andrews,
1994 US, WA, Pullman,
1996 Austria, Graz,

1998 US, NY, Rochester,
2000 Luxembourg,
2002 US, AZ, Flagstaff,
2004 Germany, Braunschweig,
2006 US, CA, San Francisco,
2008 Greece, Patras,
2010 Mexico, Morelia.

Fibonacci numbers appear in almost every branch of mathematics: in number theory
obviously, but also in differential equations, probability, statistics, numerical analysis,
and linear algebra. Recall, for example, that Fibonacci numbers played an important
role in solving the tenth Hilbert problem (Matijasevich 1970 [61]) and that they are
closely related to the Fermat Last Theorem (Sun–Sun 1992 [133]). In the first place,
however, Fibonacci numbers and the golden ratio have many important and unexpected
applications in physics, chemistry, biology economy, architecture, music, aesthetics and
other fields.

In physics, for example, they are used in the network analysis of electric transmission
lines, help study the atomic structures of some materials and investigate the light
reflection paths in optics. In chemistry, they can be found in the theory of aromatic
hydrocarbons and in questions related to the periodic table of elements. In biology,
they are used to derive formulas for form growth, and in economy, they are part of
Elliott’s wave principle. Recently, interesting applications have appeared of Fibonacci
numbers in the research of the human genome and cancer.

This paper should provide the reader with a list of references to papers on applica-
tions of Fibonacci numbers. It consists of three parts in chronological order. First we
recall some oldest works from the period 1611–1938. In the second part, we mention
the most important works from the period 1939–1962. Finally, we give a complete
list of all references to papers published in The Fibonacci Quarterly (1963–2010) and
presented at the international conferences Applications of Fibonacci Numbers (1984–
2010). What follows can be taken for an introduction to the study of the applications
of Fibonacci numbers.

2. Part I. Applications of Fibonacci Numbers

(Chronological Bibliography by D. Jarden 1611-1938)

In 1947, Dov Jarden [29] published in Riveon Lematematika (mathematical Journal
in Hebrew with English summaries) Bibliography of the Fibonacci sequence. In [29, p.
45], you can also find the following selection of references related to applications of
Fibonacci numbers in natural sciences in the period 1611–1938:
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1611

1. J. Kepler, Sterna seu de nive sexangula, Opera, Frisch 7 (1611), 722–723.

1830

2. A. Braun, Vergleichende Untersuchung über die Ordnung der Schuppen an den
Tannenzapfen als Einleitung zur Untersuchung der Blätterstellung überhaupt,
Nova Acta Acad. Caes. Leopoldina 15 (1830), 199–401.

1835

3. K. F. Schimper, Beschreibung des Symphytum Zeyheri etc., Geiger’s Magazin
für Pharmacie 29 (1835).

4. A. Braun, Dr. K. Schimpers Vorträge über die Möglichkeit eines wissenschaft-
lichen Verständnisses der Blattstellung etc., Flora 18 (1835).

1837

5. L. Bravais et A., Essai sur la disposition des feuilles curvisériées, Ann. des.
Sc. Nat. (2)7 (1837), 42–110.

1838

6. L. Bravais et A., Mémorie sur la disposition géométrique des feuilles et des
inflorescenses, Paris, (1838).

1850

7. B. Peirce, Mathematical investigation of the fractions which occur in Phyl-
lotaxis, Amer. Assoc. Adv. Sc. Proc. 2 (1850), 444–447.

1851

8. A. Braun, Betrachtungen über die Erscheinung der Verjüngung in der Natur,
insbesondere in der Lebens-und Bildungsgeschichte der Pflanzen (1851), 125.

1852

9. F. Unger, Botanische Briefe, Wien (1852).

1856

10. C. Wright, On the phyllotaxis, Astron. Il. 5 (1856), 22–24.

1863

11. R. L. Ellis, On the theory of vegetable spirals, The mathematical and other
writings, Cambridge (1863), 358–372.

1865

12. C. de Candolle, Théorie de l’angle unique en phyllotaxie, Archives des Sc.
Phys. et Nat. 23 (1865).

1871

13. A. Dickson, On some abnormal cases of pinus pinaster, Trans. Roy. Soc.
Edinburgh 26 (1871), 505–520.

14. C. Wright, The uses and origin of the arrangements of leaves in plants, Mem.
Amer. Acad. 9, part 2, Cambridge, Mass. (1871), p. 384.

1872

15. P. G. Tait, On phyllotaxis, Proc. Roy. Soc. Edinburgh 7 (1872), 391–394.

1873

16. H. Airy, On leaf arrangement, Proc. Roy. Soc. London 21 (1873), 176–179.
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1879

17. S. Günther, Das mathematische Grundgesetz im Bau des Pflanzenkörpers, Kos-
mos (2)4, (1879) 270–284.

1883

18. F. Ludwig, Einige wichtige Abschnitte aus der mathematischen Botanik, Zeit-
schrift für Math. u. Naturwiss. Unterricht 14 (1883), p. 161-.

1889

19. F. Ludwig, Über Zahlen und Masse im Pflanzenreich, Wiss. Rundsch. d.
Münch. Neuest. Nachrichten 84 (1889).

1896

20. F. Ludwig, Weiteres über Fibonaccicurven, Botanisches Centralbl. 68 (1896),
1–8.

1904

21. A. H. Church, On the relation of phyllotaxis to mechanical laws (1904).

1907

22. G. van Iterson, Mathematische und mikroskopisch – anatomische Studien über
Blattstellungen, Jena (1907).

1917

23. D’A. W. Thompson, On growth and form, Cambridge (1917), p. 643.

1919

24. L. E. Dickson, History of the Theory of Numbers, Vol. I, Carnegie Institute of
Washington, (1919), 393–411.

1928

25. E. Žyliňski, O liczbach Fibonacciego w statystyce biologicznej, Kosmos 53 (1928),
511–516.

1932

26. J. Hambidge, Practical applications of dynamic symmetry, New Haven (1932),
27–29.

1936

27. R. E. Moritz, On the beauty of geometrical forms, Scripta Math. 4 (1936),
28–31.

1938

28. H. Geppert, S. Kotler, Erbmathematik, Kap. 3, Par. 15, Leipzig (1938), p.
236.

3. Part II. Applications of Fibonacci Numbers

(Chronological Bibliography 1939–1962)

The second part of our paper contains selected works on the applications of Fibonacci
numbers published from 1939 to the foundation of The Fibonacci Association in 1963.

1947

29. D. Jarden, Bibliography of the Fibonacci sequence, Riveon Lematematika 2
(1947-8), 36–45.
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1951

30. N. N. Vorobiev, Chisla Fibonacci, Gosudarstv. Izdat. Tehn.-Teor. Lit.,
Moscow-Leningrad, (1951), (1th edition), Fibonacci numbers, Birkhäuser, (2002).

1952

31. A. Turing, The chemical basis of morphogenesis, Philosophical Transactions of
the Royal Society of London, Series B, Biological Sciences, vol. 237, no. 641
(1952), 37–72.

1953

32. H. S. M. Coxeter, The golden section, phyllotaxis, and Wythoff’s game, Scripta
Mathematica, 19 (1953), 48–49.

1959

33. A. M. Morgan-Voyce, Ladder-network analysis using Fibonacci numbers, Proc.
IRE. Trans. on Circuit Theory, Vol. CT- 6, Sept. (1959), 321–322.

34. J. M. Fair, Applications of the Fibonacci sequence, (1959).

1960

35. F. E. Binet, R. T. Leslie, The coefficients of inbreeding in case of repeated
full-sib-matings, J. of Genetics, June (1960), 127–130.

1961

36. H. S. M. Coxeter, Introduction to Geometry, John Wiley and Sons, (1961), pp.
169–172, A complete chapter on phyllotaxis and Fibonacci numbers appears
in easily digestible treatment.

4. Part III. Applications of Fibonacci Numbers

(Chronological Bibliography by J. Klaška 1963–2011)

In this section we give a complete list of references to papers on applications of Fi-
bonacci numbers published in The Fibonacci Quarterly from 1963 to 2010 and to those
presented at the international conferences Applications of Fibonacci Numbers from 1984
to 2010. Other interesting references to papers from various scientific journals are also
included.

1963

37. S. L. Basin, The Appearance of Fibonacci Numbers and the Q-Matrix in Elec-
trical Network Theory, Mathematics Magazine, 36.2 (1963), 84–97.

38. S. L. Basin, The Fibonacci sequence as it appears in nature, The Fibonacci
Quarterly, 1.1 (1963), 53–56.

39. A. F. Horadam, Further appearance of the Fibonacci sequence, The Fibonacci
Quarterly, 1.4 (1963), 41–42, 46.

40. M. de Sales, Phyllotaxis, The Fibonacci Quarterly, 1.4 (1963), 57–60, 71.

41. J. Wlodarski, The ”Golden ratio” and the Fibonacci numbers in the world of
atoms, The Fibonacci Quarterly, 1.4 (1963), 61–63.

42. L. Moser, Some reflections, Problem B-6, The Fibonacci Quarterly, 1.4 (1963),
75–76.
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1964

43. H. Norden, Proportions in music, The Fibonacci Quarterly, 2.3 (1964), 219–
222.

44. R. Brian, The problem of the little old lady trying to cross the busy street or
Fibonacci gained and Fibonacci relost, The Fibonacci Quarterly, 2.4 (1964),
310–313.

45. B. L. Swensen, Application of Fibonacci numbers to solutions of system of
linear equations, The Fibonacci Quarterly, 2.4 (1964), 314–316.

46. A. J. Faulconbridge, Fibonacci summation economics part I, The Fibonacci
Quarterly, 2.4 (1964), 320–322.

1965

47. E. J. Karchmar, Phyllotaxis, The Fibonacci Quarterly, 3.1 (1965), 64–66.

48. J. Arkin, Ladder network analysis using polynomials, The Fibonacci Quarterly,
3.2 (1965), 139–142.

49. J. Wlodarski, The Fibonacci numbers and the ”magic” numbers, The Fibonacci
Quarterly, 3.3 (1965), 208.

50. A. J. Faulconbridge, Fibonacci summation economics part II, The Fibonacci
Quarterly, 3.4 (1965), 309–314.

1966

51. M. N. S. Swamy, Properties of the polynomials defined by Morgan-Voyce, The
Fibonacci Quarterly, 4.1 (1966), 73–81.

1967

52. J. Wlodarski, Achieving the ”golden ratio” by grouping the ”elementary” par-
ticles, The Fibonacci Quarterly, 5.2 (1967), 193–194.

1968

53. A. Brousseau, On the trail of the california pine, The Fibonacci Quarterly, 6.1
(1968), 69–76.

54. C. R. S. Beard, The Fibonacci drawing board design of the great pyramid of
Gizeh, The Fibonacci Quarterly, 6.1 (1968), 85–87.

55. J. Wlodarski, More about the ”Golden ratio” in the world of atoms, The Fi-
bonacci Quarterly, 6.4 (1968), 244, 249.

56. D. A. Preziosi, Harmonic design in Minoan architecture, The Fibonacci Quar-
terly, 6.6 (1968), 370–384, 317.

1969

57. E. A. Parberry, A recursion relation for populations of diatoms, The Fibonacci
Quarterly, 7.5 (1969), 449–456, 463.

58. H. E. Huntley, Fibonacci and the atom, The Fibonacci Quarterly, 7.5 (1969),
523–524.

59. A. Brousseau, Fibonacci statistics in conifers, The Fibonacci Quarterly, 7.5
(1969), 525–532.

60. V. E. Hoggatt, Fibonacci and Lucas Numbers, section 13: Fibonacci Numbers
in Nature (1969), 79–82.
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1970

61. Y. V. Matijasevich, Enumerable sets are Diophantine, Doklady Akademii Nauk,
vol. 191 (1970), pp. 279–282. English translation: Soviet Math. Doklady vol.
11 (1970): pp. 354–358.

62. R. E. M. Moore, Mosaic units: patterns in ancient mosiacs, The Fibonacci
Quarterly, 8.3 (1970), 281–310, 334.

63. B. A. Read, Fibonacci series in the solar system, The Fibonacci Quarterly, 8.4
(1970), 428–438, 448.

64. P. B. Onderdonk, Pineapples and Fibonacci numbers, The Fibonacci Quar-
terly, 8.5 (1970), 507–508.

1971

65. J. Wlodarski, The possible end of the periodic table of elements and the ”golden
ratio”, The Fibonacci Quarterly, 9.1 (1971), 82, 92.

66. J. P. Munzenrider, A new anthesis, The Fibonacci Quarterly, 9.2 (1971), 163–
176.

67. J. Wlodarski, The golden ratio in an electrical network, The Fibonacci Quar-
terly, 9.2 (1971), 188, 194.

68. T. A. Davis, Why Fibonacci sequence for palm leaf spirals?, The Fibonacci
Quarterly, 9.3 (1971), 237–244.

69. T. A. Davis, T. K. Bose, Fibonacci system in aroids, The Fibonacci Quarterly,
9.3 (1971), 253–263.

70. D. Mangeron, M. N. Oguztorelli, V. E. Poterasu, On the generation of Fi-
bonacci numbers and the ”polyvibrating” extension of these numbers, The Fi-
bonacci Quarterly, 9.3 (1971), 324–328, 323.

71. E. L. Lowman, An example of Fibonacci numbers used to generate rhythmic
values in modern music, The Fibonacci Quarterly, 9.4 (1971), 423–426, 436.

72. E. L. Lowman, Some striking proportions in the music of Bela Bartók, The
Fibonacci Quarterly, 9.5 (1971), 527–528, 536–537.

1972

73. Ch. Witzgall, Fibonacci search with arbitrary first evaluation, The Fibonacci
Quarterly, 10.2 (1972), 113–134.

74. L. E. Blumenson, A characterization ot the Fibonacci numbers suggested by
a problem arising in cancer research, The Fibonacci Quarterly, 10.3 (1972),
262–264, 292.

75. R. A. Deininger, Fibonacci numbers and water pollution control, The Fibonacci
Quarterly, 10.3 (1972), 299–300, 302.

76. H. Norden, Proportions and the composer, The Fibonacci Quarterly, 10.3
(1972), 319–323.

77. R. H. Shudde, A golden section search problem, The Fibonacci Quarterly, 10.4
(1972), 422.

78. I. McCausland, A simple optimal control sequence in terms Fibonacci numbers,
The Fibonacci Quarterly, 10.6 (1972), 561–564, 608.

79. W. E. Sharp, Fibonacci drainage patterns, The Fibonacci Quarterly, 10.6
(1972), 643–650, 655.
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80. B. Davis, Fibonacci numbers in physics, The Fibonacci Quarterly, 10.6 (1972),
659–660, 662.

1973

81. H. Hosoya, Topological index and Fibonacci numbers with relation to chemistry,
The Fibonacci Quarterly, 11.3 (1973), 255–266.

82. B. Junge, V. E. Hoggatt, Polynomials arising from reflections across multiple
plates, The Fibonacci Quarterly, 11.3 (1973), 285–291.

83. L. Moser, M. Wyman, Multiple reflections, The Fibonacci Quarterly, 11.3
(1973), 302–306.

84. D. C. Fielder, A discussion of subscript sets with some Fibonacci counting help,
The Fibonacci Quarterly, 11.4 (1973), 420–428.

85. M. F. Lynch, A Fibonacci-related series in an aspect of information retrieval,
The Fibonacci Quarterly, 11.5 (1973), 495–500.

1974

86. V. E. Hoggatt, M. Bicknell, A primer for the Fibonacci numbers: part xiv, The
Morgan–Voyce polynomials, The Fibonacci Quarterly, 12.2 (1974), 147–156.

1975

87. A. Recski, On the generalization of the Fibonacci numbers, The Fibonacci
Quarterly, 13.4 (1975), 315–317.

1976

88. L. G. Zukerman, Fibonacci ratio in electric wave filters, The Fibonacci Quar-
terly, 14.1 (1976), 25–26.

89. T. G. Lewis, B. J. Smith, M. Z. Smith, Fibonacci sequences and memory man-
agement, The Fibonacci Quarterly, 14.1 (1976), 37–41.

90. P. P. Majumder, A. Chakravarti, Variation in the number of ray - and disc
-florets in four species of compositae, The Fibonacci Quarterly, 14.2 (1976),
97–100.

91. H. Norden, Per Nørg̊ard’s ”canon”, The Fibonacci Quarterly, 14.2 (1976),
126–128.

92. W. E. Greig, Bode’s rule and folded sequences, The Fibonacci Quarterly, 14.2
(1976), 129–134.

93. D. A. Klarner,A model for population growth, The Fibonacci Quarterly, 14.3
(1976), 277–281.

94. K. Fischer, The Fibonacci sequence encountered in nerve physiology, The Fi-
bonacci Quarterly, 14.4 (1976), 377–379.

95. H. Hedian, The Golden section and the artist, The Fibonacci Quarterly, 14.5
(1976), 406–418, 426.

1977

96. W. E. Greig, The reciprocal period law, The Fibonacci Quarterly, 15.1 (1977),
17–21.

97. A. A. Morton, The Fibonacci series and the periodic table of elements, The
Fibonacci Quarterly, 15.2 (1977), 173–175.
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98. A. Brousseau, Fibonacci numbers in diatoms?, The Fibonacci Quarterly, 15.4
(1977), 370.

99. G. J. Mitchison, Phyllotaxis and the Fibonacci series, Science, New Series,
196.4287 (1977), 270–275.

1978

100. F. A. Zenz, The fluid mechanics of bubbling beds, The Fibonacci Quarterly,
16.2 (1978), 171–183.

101. J. de Vita, Fibonacci, insects, and flowers, The Fibonacci Quarterly, 16.4
(1978), 315–317.

102. H. R. P. Ferguson, The Fibonacci pseudogroup, characteristic polynomials and
eigenvalues of tridiagonal matrices, periodic linear recurrence systems and ap-
plication to quantum mechanics, The Fibonacci Quarterly, 16.5 (1978), 435–
447.

103. P. Larson, The Golden section in the earliest notated western music, The Fi-
bonacci Quarterly, 16.6 (1978), 513–515.

104. W. E. Greig, Folded sequences and bode’s problem, The Fibonacci Quarterly,
16.6 (1978), 530–539.

1979

105. W. I. McLaughlin, Note on a Tetranacci alternative to bode’s law, The Fi-
bonacci Quarterly, 17.2 (1979), 116–118.

106. V. E. Hoggatt, M. Bicknell–Johnson, Reflections across two and three glas
plates, The Fibonacci Quarterly, 17.2 (1979), 118–142.

107. J. P. Gallinar, Fibonacci ratio in a thermodynamical case, The Fibonacci Quar-
terly, 17.3 (1979), 239–241.

108. T. A. Davis, R. Altevogt, Golden mean of the human body, The Fibonacci
Quarterly, 17.4 (1979), 340–344, 384.

1980

109. R. J. Kinney, Fibonacci sequence can serve physicians and biologists, 18th
Anniversary Volume of the Fibonacci Association, (1980), 210–212.

1981

110. M. J. Magazine, The number of states in a class of serial queueing systems,
The Fibonacci Quarterly, 19.1 (1981), 43–45.

1982

111. L. C. Botten, On the use of Fibonacci recurrence relations in the design of long
wavelength filters and interferometers, The Fibonacci Quarterly, 20.1 (1982),
1–6.

112. D. H. Fowler, A generalization of the Golden section, The Fibonacci Quarterly,
20.2 (1982), 146–158.

113. W. P. Risk, Thevenin equivalents of ladder networks, The Fibonacci Quarterly,
20.3 (1982), 245–248.

114. R. M. Ricketts, The biologic significance of the divide proportion and Fibonacci
series, American Journal of Orthodontics, 81.5 (1982), 351–370.

1983



178 CHAPTER 18

115. J. Šána, Lucas triangle, The Fibonacci Quarterly, 21.3 (1983), 192–195.

1984

116. O. W. Lombardi, M. A. Lombardi, The Golden mean in the solar system, The
Fibonacci Quarterly, 22.1 (1984), 70–75.

117. G. R. Arce, Fibonacci and related sequences indigital filtering, The Fibonacci
Quarterly, 22.3 (1984), 208–217.

1986

118. J. – P. Gallinar, The Fibonacci ratio in a thermodynamical problem: a combi-
natorial approach, The Fibonacci Quarterly, 24.3 (1986), 247–250.

119. I. Bruce, Sequences generated by multiple reflections, The Fibonacci Quarterly,
24.3 (1986), 268–272.

120. P. G. Anderson, Fibonaccene, Fibonacci Numbers and Their Applications, Rei-
del, Dordrecht, (1986), 1–8.

121. J. Lahr, Fibonacci and Lucas numbers and the Morgan–Voyce polynomials in
ladder networks and in electric line theory, Fibonacci Numbers and Their Ap-
plications, Reidel, Dordrecht, (1986), 141–161.

1989

122. J. A. Brooks, A general recurrence relation for reflections in multiple glass
plates, The Fibonacci Quarterly, 27.3 (1989), 267–271.

123. S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section, Horwood,
Chichester (1989).

1990

124. I. Gutman, S. J. Cyvin, A result on 1-factors related to Fibonacci numbers,
The Fibonacci Quarterly, 28.1 (1990), 81–84.

125. M. Nodine, Note on the resistance through a static carry look–ahead gate, The
Fibonacci Quarterly, 28.2 (1990), 102–106.

126. J. T. Butler, On the number of propagation paths in multiplayer media, The
Fibonacci Quarterly, 28.4 (1990), 334–338.

127. P. Filipponi, E. Montolivo, Representation of natural numbers as sums of Fi-
bonacci numbers: an application to modern cryptography, Applications of Fi-
bonacci Numbers, Vol. 3, Kluwer Academic Publishers, Dordrecht (1990),
89–99.

128. J. Lahr, Recurrence relations in sinusoids and their applications to spectral
analysis and to the resolution of algebraic equations, Applications of Fibonacci
Numbers, Vol. 3, Kluwer Academic Publishers, Dordrecht (1990), 223–228.

129. R. A. Dunlap, Periodicity and aperiodicity in mathematics and crystallography,
Sci. Progress Oxford 74 (1990) 311–346.

1991

130. R. Tǒsić, O. Bodroža, An algebraic expression for the number of Kekulé struc-
tures of benzenoid chains, The Fibonacci Quarterly, 29.1 (1991), 7–12.

1992

131. G. Ferri, M. Faccio, A. D’Amico, Fibonacci numbers and ladder network impe-
dance, The Fibonacci Quarterly, 30.1 (1992), 62–67.
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132. W. Lang, A combinatorial problem in the Fibonacci number system and two-
variable generalizations of Chebyshev’s polynomials, The Fibonacci Quarterly,
30.3 (1992), 199–210.

133. Z.-H. Sun, Z.-W. Sun, Fibonacci numbers and Fermat’s Last Theorem, Acta
Arith., 60 (1992), 371–388.

134. G. Markowsky, Misconceptions about the Golden Ratio, The College Math. J,
23.1 (1992), 2–19.

1993

135. C. Bender, Fibonacci transmission lines, The Fibonacci Quarterly, 31.3 (1993),
227–238.

136. N. Imada, A sequence arising from reflections in multiple glas plates, Applica-
tions of Fibonacci Numbers, Vol. 5, Kluwer Academic Publishers, Dordrecht
(1993), 379–386.

137. S. Sato, Fibonacci sequence and its generalizations hidden in algorithms for
generating Morse codes, Applications of Fibonacci Numbers, Vol. 5, Kluwer
Academic Publishers, Dordrecht (1993), 481–486.

138. A. G. Shannon, R. L. Ollerton, D. R. Owens, A Cholesky decomposition in
matching insulin profiles, Applications of Fibonacci Numbers, Vol. 5, Kluwer
Academic Publishers, Dordrecht (1993), 497–506.

1994

139. Z. W. Trzaska, Modified numerical triangle and the Fibonacci sequence, The
Fibonacci Quarterly, 32.2 (1994), 124–129.

140. W. T. Hung, A. G. Shannon, B. S. Thornton, The use of a second-order re-
currence relation in the diagnosis of breast cancer, The Fibonacci Quarterly,
32.3 (1994), 253–259.

1996

141. Z. W. Trzaska, On Fibonacci hyperbolic trigonometry and modified numerical
triangles, The Fibonacci Quarterly, 34.2 (1996), 129–138.

142. F. Dubeau, A. G. Shannon, A Fibonacci model of infectious disease, The Fi-
bonacci Quarterly, 34.3 (1996), 257–270.

1997

143. O. Bodroa–Pantić, I. Gutman, S. J. Cyvin, Fibonacci numbers and algebraic
structure count of some non-benzenoid conjugated polymers, The Fibonacci
Quarterly, 35.1 (1997), 75–83.

144. G. Ferri, The appearance of Fibonacci and Lucas numbers in the simulation
of electrical power lines supplied by two sides, The Fibonacci Quarterly, 35.2
(1997), 149–155.

145. R. A. Dunlap, The Golden Ratio and Fibonacci numbers, World Scientific,
Singapore (1997).

146. I. Adler, D. Barabe, R. V. Jean, A history of the study of Phyllotaxis, Annals
of Botany, 80 (1997), 231–244.
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1998

147. A. J. Reuben, A. G. Shannon, Ellipses, cardioids, and Penrose tiles, The Fi-
bonacci Quarterly, 36.1 (1998), 45–54.

148. A. Stakhov, The Golden section and modern harmony mathematics, Applica-
tions of Fibonacci Numbers, Vol. 7, Kluwer Academic Publishers, Dordrecht
(1998), 393–399.

1999

149. M. N. S. Swamy, Network properties of a pair of generalized polynomials, The
Fibonacci Quarterly, 37.4 (1999), 350–360.

150. J. A. Biles, Composing with sequences: ... but is it art?, Applications of
Fibonacci Numbers, Vol. 8, Kluwer Academic Publishers, Dordrecht (1999),
61–73.

2000

151. M. N. S. Swamy, Generalizations of modified Morgan–Voyce polynomials, The
Fibonacci Quarterly, 38.1 (2000), 8–16.

152. J. Abrahams, Nonexhaustive generalized Fibonacci trees in unequal costs coding
problems, The Fibonacci Quarterly, 38.2 (2000), 127–135.

2001

153. T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley, New York,
(2001).

2002

154. W. Hasenpusch, Mathematical bionics: Fibonacci series of numbers in nature,
CLB Chemie in Labour and Biotechnik, 53.7 (2002), 260–263.

2003

155. A. E. Park, J. J. Fernandez, K. Schmedders, M. S. Cohen, Fibonacci sequence:
Relationship to the human hand, Journal of Hand Surgery, 28.1 (2003), 157–
160.

156. J. C. A. Boeyens, Number patterns innature, Crystal Engineering, 6 (2003),
167–185.

2006

157. M. I. Al-Suwaiyel, D. Alani, A. Al-Swailem, An investigation of Fibonacci-
like sequences in biology and mathematics, Int. J. of Nonlinear Sciences and
Numerical Simulation, 7.2 (2006), 133–136.

158. T. J. Cooke, Do Fibonacci numbers reveal the involvement of geometrical im-
peratives or biological interactions in phyllotaxis?, Botanical Journal of the
Linnean Society, 150 (2006), 3–24.

2007

159. O. Bodroža–Pantić, A. Ilić–Kovačević, Algebraic structure count of angular
hexagonal – square chains, The Fibonacci Quarterly, 45.1 (2007), 3–9.
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2008

160. M. E. B. Yamagishi, A. I. Shimabukuro, Nucleotide frequences in human genome
and Fibonacci numbers, Bulletin of Mathematical Biology, 70 (2008), 643–653.

2010

161. J. C. A. Boeyens, A molecular – structure hypothesis, International Journal of
Molecular Sciences, 11 (2010), 4267–4284.

2011

162. P. D. Shipman, Z. Sun, M. Pennybacker, A. C. Nowell, How universal are
Fibonacci patterns?, Eur. Phys. J. D, 62 (2011), 5–17.

163. L. Debnath, A short history of the Fibonacci and golden numbers with their
applications, International Journal of Mathematical Education in Science and
Technology, 42.3 (2011), 337–367.

5. Conclusion

The author believes that the references presented in the paper will inspire further
research of the applications of Fibonacci numbers.



CHAPTER 19

APPLICATIONS OF SEQUENCES OVER

FINITE FIELDS
F

Abstract. This paper mainly aims to inform the reader on engineering applications
of sequences over finite fields. It may also provide students and teachers of applied
mathematics with a creative inspiration.

1. Introduction

For the last 15 years I have been concerned with questions and problems concerning
Fibonacci numbers and their cubic generalization called Tribonacci numbers. See, for
example, [2,3] and, [4,5,6,7]. It is well known, that Fibonacci numbers have many
practical applications outside mathematics such as in physics, chemistry, biology, and
economy. In my recent paper [8] (published in 2011), I pointed out the immense extent
of such applications giving an extensive list of relevant references. It has in fact helped
two mathematical engineering students at the BUT Faculty of Mechanical Engineering
in writing their final projects, [14] and [22]. In this paper, which can be seen as a free
continuation of [8], I will briefly deal with applications of sequences over finite fields.

2. Sequences over finite fields

We begin with a short example. Let us consider the Fibonacci sequence

(Fn)∞n=0 = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . . )

defined by Fn+2 = Fn+1 + Fn with F0 = 0, F1 = 1. Applying the recurrence formula
Fn+2 = Fn+1 + Fn only to the last digits of the Fibonacci numbers (using modulo 10
arithmetic), we may be surprised to find that, after sixty terms, the sequence starts
repeating itself:

0 1 1 2 3 5 8 3 1 4 5 9 4 3 7 0 7 7 4 1

5 6 1 7 8 5 3 8 1 9 0 9 9 8 7 5 2 7 9 6

5 1 6 7 3 0 3 3 6 9 5 4 9 3 2 5 7 2 9 1

0 1 1 . . .

Table 1.

We may also notice further regularities. Applying to (Fn)∞n=0 modulo 2 arithmetic, we
obtain a period of length 3, while modulo 5 arithmetic will yield a length 20 period. This
follows immediately from Table 1. Investigation of further cases leads to the discovery

F
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of the following general theorem: Let m ∈ Z and let m ≥ 2. Then (Fn mod m)∞n=0 is
periodic. This remarkable property is called the modular periodicity of (Fn)∞n=0. Let
k(m) denote the length of the period of (Fn mod m)∞n=0 and let m = pt1

1 · · · ptk
k be

the prime factorization of m. Then k(m) = lcm(k(ptk
1 ), . . . , k(ptk

k )). Furthermore, if
k(p2) 6= k(p), then k(pt) = pt−1k(p) for any positive integer t. These and many similar
results are well-known. For more information, consult the first issues of the journal
The Fibonacci Quarterly.

However, the modular periodicity of the Fibonacci sequence is only one from many
examples of a more general theory of linear recurrence relations over finite fields. For
this theory, see E. S. Selmer [15] and, for theory of finite fields in general, see [9,11,13].
Recall that, finite fields are also called Galois fields, after the French mathematician
Evariste Galois (1811–1832). The tragic life story of this mathematical genius can be
found in a book by M. Livio [10, pp. 112–157].

The basic theorem of the finite fields theory says that the number of elements in any
finite field equals pn where p is a prime, and n is a positive integer. Moreover, any two
finite fields with the same number of elements are isomorphic. A finite field with pn

elements is usually denoted by Fpn or by GF(pn). If n = 1, then Fp = Z/pZ. However,
for any n > 1, Z/pnZ is not a field. If n > 1, then we can write Fpn = Fp[x]/(f(x))
where f(x) is any monic irreducible polynomial of degree n in Fp[x] and (f(x)) denotes
the ideal generated by f(x). Sequences defined over Fpn are called the Galois sequences
and they are closely related to linear recursions modulo p. See [15]. In the following
sections we will show some remarkable and important examples of Galois sequences
applications to real-world problems.

3. Einstein’s Theory of General Relativity and Global Warming

One of the important experiments corroborating the veracity of Einstein’s general-
relativity theory is one called the Shapiro time delay. Being one of the four classic
solar system experiments testing the general relativity, it is based on the idea that
radar signals passing a massive object will travel along a trajectory longer that the
one taken with no massive object in the vicinity. Thus, by the relativity theory, a
radar signal will travel for a longer time with this time lag being measurable. The
radar signal used in the Shapiro experiment was structured as a Galois sequence with
a period length of 26−1 = 63. For details of the experiment see [19] and [20]. Note that
the Shapiro experiment has been repeated many times with different modifications.

Further remarkable application of Galois sequences is the measurement of ocean
temperatures to monitor global warming [12]. Galois sequences were used to measure
sound transmission delays between Heard Island in the Indian Ocean and Greenland,
a distance exceeding 10000 km. In this case, the time delay of the sound is a function
of the average ocean temperature.

4. Error correcting codes and further applications

Another important field of Galois sequences application is algebraic error correcting
codes such as simplex and Hamming codes, see [21]. Error-correcting codes are used
in CD players, high speed modems, and mobile phones. Early space probes such as
Mariner used a type of error-correcting code called a block code while more recent
space probes use convolution codes.
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For illustration, we now give a short example of a simplex code. Let us consider
Fpm with p = 2 and m = 3. Then p(x) = x3 + x + 1 is a primitive polynomial
over F8 and the corresponding linear recurrence is given by Pn+3 = Pn+1 + Pn. Let
P1 = 1, P2 = 1 and P3 = 1. Reducing this sequence by the modulus 2, we obtain
the sequence 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, · · · with a period length of 23 − 1 = 7. In the
context of coding theory, this is the simplex code of length 7. The initial conditions
(1, 1, 1) represent the information bits, while the rest of the period (0, 0, 1, 0) is used
for the check bits. The geometric representation of the code words is a simplex, in our
example, in three dimensions. Note that the general binary simplex code has a length
of 2m − 1, with m information bits and 2m − 1 −m check bits. In a Hamming code,
the roles of information and check bits are reversed.

Error-correcting codes are part of the coding theory, which has recently seen major
advances in view of the growing importance data encryption and transfers on the
Internet.

Galois sequences have also been used in many other fields. In neuropsychology,
for example, [1] to measure brain–stem responses, in atmospheric physics [23], and in
concert-hall acoustic [18]. Many other interesting applications of Galois sequences can
be found in [16] and [17].

5. Conclusion

The above application examples of sequences over finite fields may serve as creative
inspirations for mathematical engineering students writing their final projects on this
subject.

References

[1] U. Eysholdt, C. E. Schreiner, Maximum Length Sequences – A Fast Method for Measuring Brain–
Stem–Evoked Responses, Audiology 21 (1982), 242–250.
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CHAPTER 20
REAL - WORLD APPLICATIONS OF NUMBER

THEORY
F

Abstract. The present paper is concerned with practical applications of the number
theory and is intended for all readers interested in applied mathematics. Using exam-
ples we show how human creativity can change the results of the pure mathematics
into a practical usable form. Some historical notes are also included.

Dedicated to the eminent Czechoslovak mathematician Ladislav Skula

1. Introduction

German mathematician Johann Carl Friedrich Gauss (30 April 1777 - 23 February
1855), regarded as one of the greatest mathematicians of all time, claimed: ”Mathe-
matics is the queen of the sciences and number theory is the queen of mathematics.”
However, for many years number theory had only few practical applications. It is well
known that the great English number theorist Godfrey Harold Hardy (7 February 1877
- 1 December 1947) believed that number theory had no practical applications. See
his essay ”A Mathematician’s Apology” [16]. Over the 20th and 21st centuries, this
situation has changed significantly. Contrary to Hardy’s opinion, many practical and
interesting applications of number theory have been discovered. The present paper
brings some remarkable examples of number theory applications in the real world. The
paper can be regarded as a loose continuation of the author’s preceding work [19] and
[20].

2. Diophantine equations

Diophantine analysis is a branch of the theory of numbers studying polynomial
equations in two or more unknowns which are to be solved in integers. The equations
themselves are called Diophantine. Note, that the name Diophantine refers to the
Greek mathematician Diophantus of Alexandria who lived in the third century B.C.
Finding solutions of polynomial equations in integers is one of the oldest mathematical
problems. Traditionally, the following basic questions are solved:

(i) Find whether a given Diophantine equation has at least one integer solution.
(ii) Decide whether the number of integer solutions is finite or infinite.
(iii) Establish all integer solutions of a given Diophantine equation.

It is also natural to ask whether there is an algorithm that will find the solutions to
any given Diophantine equation. This question is known as Hilbert’s tenth problem. In
1970, Russian mathematician Yuri Vladimirovich Matiyasevich [24] showed that such
a general algorithm does not exist. However, for many specific Diophantine equations,

F
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the general algorithm is well known. As an example, the theory of linear Diophantine
equations can be given.

Let n be a positive integer, n ≥ 2. Then, the equation

a1x1 + · · ·+ anxn = m (2.1)

is said to be a linear Diophantine equation if all unknowns x1, . . . , xn and all coefficients
a1, . . . , an,m are integers. It is well known that an integer solution of (2.1) exists if
and only if the greatest common divisor of a1, . . . , an divides m. For general methods
for solving (2.1), see for example [5], [25], and [27, pp. 27–31].

In the following sections we give three interesting examples of using Diophantine
equations in the natural sciences.

3. Balancing of chemical equations

As the first example we show some application of a linear Diophantine equation
to problems in chemistry. In particular, we will deal with the balancing of chemical
equations. See [6]. Consider a chemical equation written in the form

x1Aa1Bb1Cc1 · · ·+ x2Aa2Bb2Cc2 · · ·+ · · · → x′1Aa′1Bb′1Cc′1 · · ·+ x′2Aa′2Bb′2Cc′2 · · ·+ · · ·
where A, B, C, · · · are the elements occurring in the reaction, a1, b1, c1, · · · , a′1, b

′
1, c

′
1, · · ·

are positive integers or 0, and x1, x2, · · · , x′1, x
′
2, · · · are the unknown coefficients of the

reactants and products. Then, we have

x1a1 + x2a2 + · · · = x′1a
′
1 + x2a

′
2 + · · ·

x1b1 + x2b2 + · · · = x′1b
′
1 + x2b

′
2 + · · ·

x1c1 + x2c2 + · · · = x′1c
′
1 + x2c

′
2 + · · ·

· · ·
(3.1)

Clearly, each equation of (3.1) expresses the law of conservation of the number of
atoms for any particular element A,B,C, · · · . Finding all integer solutions [x1, x2, · · · , x′1, x

′
2, · · · ]

of (3.1) is a nice elementary problem of Diophantine analysis.

We show a concrete example. Let us consider the chemical equation

x1KMnO4 + x2H2SO4 + x3H2O2 → x′1K2SO4 + x′2MnSO4 + x′3H2O + x′4O2. (3.2)

From (3.2) we immediately obtain

4x1 + 4x2 + 2x3 = 4x′1 + 4x′2 + x′3 + 2x′4 for O
x1 = x′2 for Mn
x1 = 2x′1 for K
x2 = x′1 + x′2 for S

2x2 + 2x3 = 2x′3 for H

(3.3)

This system is easily reduced to

5x1 + 2x3 − 4x′4 = 0. (3.4)

Clearly, (3.4) is a linear Diophantine equation in three variables with a solution [x1, x3, x
′
4] =

[2, 1, 3]. Hence, [x1, x2, x3, x
′
1, x

′
2, x

′
3, x

′
4] = [2, 3, 1, 1, 2, 4, 3]. Consequently,

2KMnO4 + 3H2SO4 + H2O2 → K2SO4 + 2MnSO4 + 4H2O + 3O2. (3.5)
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It is evident that (3.5) is not the only solution of our balancing problem. In fact, after
a short calculation, we see that the set S of all positive integer solutions of (3.3) is
infinite and can be written in the form

S = {[2u, 3u, v, u, 2u, 3u + v, (5u + v)/2] : u, v, (5u + v)/2 ∈ N}. (3.6)

Observe now that the solution (3.5) can be obtained from (3.6) by putting u = v = 1.
Hence, (3.5) is the smallest possible solution of the balancing problem (3.2). Finally,
we see that (5u + v)/2 ∈ N if and only if u ≡ v (mod 2). Hence, it readily follows that
S can be written in the form S = S1 ∪ S2 where

S1 = {[4r − 2, 6r − 3, 2s− 1, 2r − 1, 4r − 2, 6r + 2s− 4, 5r + s− 3] : r, s ∈ N}
and,

S2 = {[4r, 6r, 2s, 2r, 4r, 6r + 2s, 5r + 2] : r, s ∈ N}.
For further examples of balancing equations see R. Crocker [6, p. 732].

4. Determination of the molecular formula

In this section we show how linear Diophantine equations can be used to determine
the molecular formula [6]. Assume that a substance with a molecular weight of m con-
tains elements A,B, C, · · · with atomic weights a, b, c, · · · and that x, y, z, · · · represent
the numbers of atoms of A,B,C, · · · in a molecule. Then, we have

ax + by + cz + · · · = m. (4.1)

Let α, β, γ, · · · denote the integers nearest the values a, b, c, · · · and µ denote the integer
nearest m. Then, (4.1) can be replaced by the linear Diophantine equation

αx + βy + γz + · · · = µ. (4.2)

If we require that the values x, y, z, · · · in (4.2) should be reasonably small, we can
solve (4.2) under a condition

−1

2
< (a− α)x + (b− β)y + (c− γ)z + · · · < 1

2
. (4.3)

If more solutions of (4.2) are obtained, the true values may be found by substituting
into (4.1) and finding which of them satisfies (4.1) with minimum deviation from m.

The following problem will be now solved: The molecular weight of a substance
containing only hydrogen and sulfur is 66.146. What is the molecular formula?

Let a denote the atomic weight of hydrogen and b the atomic weight of sulfur. Using
the periodic table of elements, we find that a = 1.008 and b = 32.065. Hence, we
have 1.008x + 32.065y = 66.146. Next, we see that α = 1, β = 32, µ = 66 and that
x ≤ 34, y ≤ 2. Subject to these conditions, it is easy to obtain that the Diophantine
equation x + 32y = 66 has only two positive integer solutions [x, y] = [34, 1] and
[x, y] = [2, 2]. Since a molecule of this size is not likely to contain 34 hydrogen atoms
and 1 sulfur atom, this possibility may be eliminated. Therefore, [x, y] = [2, 2] and, the
resulting molecular formula is H2S2. However, in solving this problem, we can proceed
in a more efficient way. The equation 1.008x + 32.065y = 66.146 can be converted to
the Diophantine equation 1008x + 32065y = 66146, which has infinitely many integer
solutions [x, y] = [2 + 32065 · k, 2− 1008 · k], k ∈ Z. Since x, y ∈ N and x ≤ 34, y ≤ 2,
the solution [x, y] = [2, 2] immediately follows.
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5. Structure of viruses

In this section we focus on an interesting problem in virology. Recall, that virus
particles consist of protein subunits ordered geometrically according to strict symmetry
rules. These rules highly depend on the chemical properties of the protein. For example,
it is well known that spherical viruses prefer the icosahedral symmetry and that the
total number N of nearly identical subunits that may be regularly ordered on the closed
icosahedral surface is given by Goldberg’s formula [8]

N = 10(a2 + ab + b2) + 2 = 10T + 2, where a, b ∈ N ∪ {0}. (5.1)

Using (2.11) we readily find, that

N ∈ {12, 32, 42, 72, 92, 122, 132, · · · }.
On the other hand, it is known that an icosahedron has 30 axes of twofold symmetry,
20 axes of threefold symmetry and 12 axes of fivefold symmetry. Therefore, all sub-
units on the surface of an icosahedral virus may be divided into 30 identical groups
each having a twofold symmetry, 20 groups with threefold symmetries and 12 groups
with fivefold symmetries. These groups are often called disymmetrons, trisymmetrons
and pentasymmetrons, respectively. Assume now that any disymmetron contains du

subunits, any trisymmetron contains tv subunits and any pentasymmetron contains pw

subunits. Then, by [22], we have

N = 30du + 20tv + 12pw = 10T + 2, (5.2)

where

du = u− 1, tv =
(v − 1)v

2
, pw =

5(w − 1)w

2
+ 1 and, u, v, w ∈ N. (5.3)

For each value of N defined by (5.1), the number f(N) of all the solutions of (5.2)
corresponds to the number of theoretically possible ways of making a virus with N
subunits, but with different combinations of symmetrons. For example, if N = 42,
then (5.2) has the unique solution 42 = 30 · 1 + 20 · 0 + 12 · 1, if N = 72, then (5.2) has
exactly three solutions: 72 = 30·2+20·0+12·1 = 30·0+20·3+12·1 = 30·0+20·0+12·6.

Putting x = 2v − 1, y = 2w − 1, z = u − 1 and using (5.3) equation (5.2) can be
transformed, after some calculations, to the equivalent form

x2 + 3y2 + 12z = 4T. (5.4)

In this way, the problem of describing the structure of viruses by means of geometric
symmetries is reduced to the following Diophantine problem:

Find all odd positive integers x, y and all non-negative integers z, satisfying
x2 + 3y2 + 12z = 4(a2 + ab + b2) for any given values a, b ∈ N ∪ {0}.
There is no simple solution to this problem. In [22], W. Ljunggren proved that the

total number f(N) of solutions of (5.4) is equal to

f(N) =
π
√

3

180
N + k

√
N, (5.5)

where the number k is bounded and independent of N . Furthermore, from (5.5) it can
be easily deduced that f(N) increases linearly with N . Surprising is that this increase
is bi-modal. Geometrically, this means that, if [x, y, z] is any solution of (5.4), then
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[x, y] lies in the neighbourhood of exactly one of two lines y = 0.03x and y = 0.015x.
A detailed analysis of this fact can be found in [22, pp. 54–56].

In [10] A. Grytczuk presented an effective method for determining all solutions of
(5.4) in odd positive integers x, y and non-negative integers z. Moreover, in [11] A.
Grytczuk and K. Grytczuk proved that (5.4) can be reduced to the form

x2 + 3y2 = 4(R2 + 3S2), (R, S) = 1 (5.6)

and that all solutions of (5.6) in odd positive integers x, y are given by the formulas

x = |R− 3S|, y = R + S or x = |R + 3S|, y = |R− S|. (5.7)

Consequently, (5.7) gives the full solution of our Diophantine problem.
Note that, in fact, the solution (5.7) has been established earlier by G. Xeroudakes.

Consult [30, p. 102]. Finally, a mathematical description of some viruses, using the
above theory, can be found in [12] and [13]. In particular, parvovirus T = 1, N = 12,
poliovirus T = 3, N = 32, togavirus T = 4, N = 42, reovirus T = 13, N = 132,
herpesvirus T = 16, N = 162, and adenovirus T = 25, N = 252 are studied in detail
and their geometrical models are presented.

6. Partitio numerorum and quantum physics

A partition of a natural number n is any non-increasing sequence of natural numbers
whose sum is n. The number of partitions of n is denoted by p(n). For example, if
n = 5 then, 5 = 4+1 = 3+2 = 3+1+1 = 2+2+1 = 2+1+1+1 = 1+1+1+1+1.
Hence, p(5) = 7. The problem of establishing the number p(n) has a very long history
and it is known under the name of partitio numerorum. Since 1674, when the problem
was first mentioned by Gottfried Wilhelm Leibniz (1 July 1646 - 14 November 1716),
many results concerning p(n) have been discovered. For the basic theory of p(n), see
the books [2] and [17, pp. 361–392]. Some recent results on p(n) can be found in the
author’s paper [18].

For small values of n, it can be found readily that

{p(n)}∞n=1 = {1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, · · · }.
About 1916, Percy Alexander MacMahon (26 September 1854 - 25 December 1929)
established the values of p(n) for all n up to 200 [15, pp. 114-115]. For example, he
found that

p(100) = 1905692292 and p(200) = 3972999029388.

In 1934, H. Gupta [14] extended MacMahon’s table up to n = 300 and later, in 1937,
up to 600. For further historical notes, see [17, p. 391]. Nowadays, using a computer,
we can establish that

p(1000) = 24061467864032622473692149727991 ≈ 2.40615 · 1031

and

p(10000) ≈ 3.61673 · 10106.

As we see, the growth of p(n) is very rapid. It is, therefore, natural to ask about the
size of p(n). The answer to this question is given by the asymptotic formula

p(n) ∼ 1

4n
√

3
· exp

(
π

√
2n

3

)
for n →∞, (6.1)
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which shows that the growth of p(n) is subexponential. The formula (6.1) was discov-
ered in 1917 by G. H. Hardy and the brilliant Indian mathematician Srinivasa Ramanu-
jan (22 December 1887 - 26 April 1920). For a proof of (6.1) see [15]. It is remarkable
that the formula (6.1) is extremely accurate and has found important applications in
physics. Two interesting connections between the problem partitio numerorum and
physics will now be mentioned.

First recall that the Hardy-Ramanujan formula has been used, with great success,
in quantum physics. The connection between the theory of partitions and quantum
physics was first discovered by Niels Henrik David Bohr (7 October 1885 - 18 November
1962) and talented physicist Fritz Kalckar (13 February 1910 - 6 January 1938) in their
famous paper [4]. In [4], using Ramanujan - Hardy formula (6.1), Bohr and Kalckar
achieved a crucial breakthrough in quantum physics: they described the decomposition
of heavy atomic nuclei. Later Bohr pointed out the connection between the decompo-
sition of Uranium 235 with the theory of partitions of natural numbers and the main
idea of the nuclear bomb was clearly indicated. In this sense, the ideological creator of
the nuclear bomb was Niels Bohr [23, p. 249].

The second very important application of Hardy-Ramanujan formula can be found
in the problems of statistical mechanics. The significant role of (6.1) in this branch
has been discussed by many authors. See, for example, the papers of C. Van Lier and
G. E. Uhlenbeck [29], F. C. Auluck and D. S. Kothari [1], N. H. V. Temperly [28] and,
L. Debnath [7]. Now we will give some details to one of these problems. In quantum
theory, a boson is a particle that satisfies Bose-Einstein statistics. Examples of bosons
are particles such as photons, gluons, W and Z bosons and the recently discovered
Higgs boson. For basic definitions see [9, pp. 74-78].

Let us now consider a quantum system of N identical bosons. It is well known that
such system can be viewed as a collection of one-dimensional harmonic oscillators.
The energy levels of a quantum harmonic oscillator are determined by the equation
Ek = (k + 1/2)~ω where k is non-negative integer, h = 2π~ is the Planck constant and
ω is the angular frequency. For k = 0, we obtain the so-called ground state energy and,
for k = 1, 2, · · · , we get the excited states. Hence, in the ground state of the system,
all bosons occupy the lowest level with k = 0. When an excitation energy is given
to the system, there are many ways in which this energy can be distributed among
N bosons. The fundamental problem is now to determine this number. In fact, this
problem is the same as that of finding the number p(n). This follows from the fact
that the indistinguishability of boson particles is equivalent to the property that the
order of summands is not significant in partitions.

Let us denote by w(N, n) the number of all possible ways of distributing among
N bosons the exciting energy E = n~ω. If N ≥ n, then w(N,n) = p(n) and, for
1 < N < n, we have w(N, n) = pN(n) where pN(n) is the number of partitions of n
into exactly N or less than N parts. Consequently, the asymptotic form of w(N,n) for
N ≥ n is precisely the Hardy-Ramanujan formula (6.1).

Now we explain, using a short example, the basic idea of the correspondence between
the number p(n) and the number w(N, n) of states of quantum system of N bosonic
harmonic oscillators. Assume that N = 6 and n = 4. Then, we have 4 = 3 + 1 =
2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1, which yields p(4) = 5. Consider now all possible
realizations of the state with energy E = 4~ω in the system of six harmonic oscillators.
Clearly, there are exactly five ways (W1 – W5) to achieve the energy E = 4~ω: (W1)
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to put one boson into excited state with k = 4, (W2) to put one boson to the state
with k = 3 and one boson into the state k = 1, (W3) to put two bosons to the state
with k = 2, (W4) to put one boson to the state with k = 2 and two bosons to the state
with k = 1, (W5) to put four bosons into the state k = 1. All remaining non-excited
bosons in (W1-W5) remain in the ground state k = 0.

In the below figure, the correspondence between p(4) and w(6, 4) considered will be
represented graphically.

4 3 + 1 2 + 2 2 + 1 + 1 1 + 1 + 1 + 1
k = 4 •
k = 3 •
k = 2 •• •
k = 1 • •• • • • •
k = 0 • • • • • • • •• • • •• • • • ••

W1 W2 W3 W4 W5

(6.2)

Figure 1.

Readers interested in the relationship between statistical mechanics and the problem
of partitio numerorum will find large lists of references in [7], [23], and [26].

7. Concluding remarks

Finally, some further significant applications of the number theory will be shortly
mentioned. Above all, it is well known that the theory of Fibonacci numbers has
many applications in physics, chemistry, biology, economy, and architecture. Listing
163 chronological references to papers published from 1611 to 2011, paper [19] can
serve as an introduction to this field. Further fields of number theory with important
applications include the theory of sequences over finite fields [20]. This theory found
an application in the testing of Einstein’s general relativity or in testing the global
warming of oceans. Furthermore, using methods of elementary number theory, prac-
tical problems have been solved concerning to the splicing of telephone cables [21].
Many further interesting applications can be found in the book Number Theory and
the Periodicity of Matter [3]. Lastly, new attractive applications of the number the-
ory include cryptography, coding theory, and random number generation. With the
rise of computers, these fields develop very rapidly with their importance continuously
increasing.
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[28] J. Klaška, Donald Dines Wall’s conjecture, The Fibonacci Quarterly 56.1 (2018), 43–51.
ISSN 0015-0517
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branch: Mathematical Analysis, degree of RNDr.
1990 – 1991: Study stay at Faculty of Science Masaryk University in Brno
1992 – 1993: Internal doctoral study at Faculty of Science Masaryk University in

Brno
1994 – 1996: External doctoral study at the Faculty of Science Masaryk University

in Brno, study branch:
Algebra and Number Theory

1996 – 1997: External doctoral study at the Institute of Mathematics BUT Faculty
of Mechanical Engineering, academic degree of Dr.

Career overview

1993 – until now: senior lecturer at the Institute of mathematics FME BUT

Pedagogic activities

Teaching at Faculty of Science Masaryk University in Brno:
- seminars: Introduction into Set Theory, Discrete Mathematics, Combinatorics and

Graph Theory, Linear Algebra, Mathematical Analysis in R
Teaching at BUT Faculty of Mechanical Engineering:
- seminars: Mathematics I, II, III-B, Numerical Methods I, Combinatorial Analysis
- lectures: Mathematics I, II, II-B, III, Combinatorial Analysis
Author of 2 university textbooks

Scientific activities

- enumerative combinatorics, finite partially ordered sets,
- modular periodicity of integer sequences, Fibonacci numbers with applications,
- cubic polynomials over finite fields
Author or coauthor of 29 scientific papers

Non-University activities

Member of The Fibonacci Association, 2009 – until now

196


	01-TITLE
	02-koment
	03-CH-01
	04-CH-02
	05-CH-03
	06-CH-04
	07-CH-05
	08-CH-06
	09-CH-07
	10-CH-08
	11-CH-09
	12-CH-10
	13-CH-11
	14-CH-12
	15-CH-13
	16-CH-14
	17-CH-15
	18-CH-16
	19-CH-17
	20-CH-18
	21-CH-19
	22-CH-20
	23-LIST
	24-curriculum

