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Abstract

Understanding of the phenomena involved in mechanics of heterogeneous materials should
enable rational design and optimization of structures made of these materials. Numerical
modeling supported by experimental campaigns can provide description of complex processes
taking place in these materials under various loading conditions. The habilitation thesis
demonstrates, with help of several examples, that the discrete mesoscale approach to modeling
of heterogeneous materials is an excellent choice.

Several discrete model types are presented. The classical lattice model with detail resolu-
tion of material structure and simple elasto-brittle constitutive functions is used for simulation
of concrete fracture. The sequentially linear solver of the lattice model is improved to take
into account redistribution time and loading velocity. Concrete fracture is also simulated
by less detailed particle model using complex inelastic constitutive equations at the contact
facets. The particle model for concrete is enhanced by spatial fluctuation of material pa-
rameters prescribed by a random field. To save computational time, an adaptive technique
is developed for the particle model allowing to reduce discretization density in regions that
are not experiencing inelastic phenomena. Furthermore, the elastic behavior of the model is
derived via principle of virtual work equivalence between the discrete assembly and the ideal
elastic homogeneous continua. However, one can observe derived theoretical elastic behavior
only in the interior part of the model. In the vicinity of boundaries, there is a boundary layer
with different elastic but also inelastic properties. Existence and mechanical implications of
the boundary layer are investigated.

Besides concrete fracture, the thesis presents also particle model developed to simulate
crack growth in ceramics under compressive cyclic loading. The model provides stress and
damage profile along the crack path enabling to derive a new analytical model and determine
its parameters.

The last material studied in the thesis is railway ballast. Dynamic discrete model of
the ballast considering separately each grain is presented. A randomly generated polyhedral
shapes of grains are used and contact forces between the polyhedrons are estimated based on
an intersecting volume. The ballast model is equipped with a crushing technique that may
split a polyhedral grain into several smaller grains when excessive load is detected.

The models are validated by comparing their results to experimental data from literature.
If no data are available, verification is performed by comparison to results of other models.





Contents

1 Introduction 1
1.1 Benefits and drawbacks of discrete models . . . . . . . . . . . . . . . . . . . . 1
1.2 Brief history of discrete modeling . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Lattice models and generalization of sequentially linear methods 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Recapitulation of the classical lattice modeling . . . . . . . . . . . . . . . . . 9
2.3 Recapitulation of the load-unload and force-release sequential methods . . . 10
2.4 Demonstrative example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 General method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Demonstration of the general method . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Indirect control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.8 Non-proportional loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Modeling of fatigue crack growth under cyclic compression 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Formulation of fracture kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Probabilistic discrete mesoscale simulations of concrete fracture 39
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Random geometry of the model . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Elastic behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Inelastic behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5 Coupling of discrete and continuous models . . . . . . . . . . . . . . . . . . . 48
4.6 Probabilistic extension of the model . . . . . . . . . . . . . . . . . . . . . . . 50
4.7 Experimental series and identification of model parameters . . . . . . . . . . 56
4.8 Deterministic modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.9 Effects of spatial randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.10 Analysis of energy dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



5 Adaptive technique for discrete models of fracture 69
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Scaling of the elastic problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3 Inelastic behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4 Adaptive discretization refinement . . . . . . . . . . . . . . . . . . . . . . . . 74
5.5 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Boundary layer effect on behavior of discrete models 87
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3 Demonstrative example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.4 Macroscopic elastic behavior of a discrete system . . . . . . . . . . . . . . . . 91
6.5 Angular bias in the boundary layer . . . . . . . . . . . . . . . . . . . . . . . . 95
6.6 Effects on elastic behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.7 Effects on inelastic behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7 Dynamic simulation of railway ballast using polyhedral particles 103
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.2 Solution of dynamic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.3 Randomly-shaped polyhedral particles . . . . . . . . . . . . . . . . . . . . . . 106
7.4 Contact between polyhedrons . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.5 Simulation of oedometric test . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.6 Crushing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8 Conclusions 119

A Tensor multiplication 121

References 123
References to publications of other authors . . . . . . . . . . . . . . . . . . . . . . 123
References to relevant author’s publications . . . . . . . . . . . . . . . . . . . . . . 135

Nomenclature 137

List of Figures 141

Curriculum Vitæ 145

IV



Chapter 1

Introduction

1.1 Benefits and drawbacks of discrete models
Mechanical behavior of solid materials has always been subject of investigation. Several
theories describing and predicting deformations, stresses, strengths or even reliabilities were
developed. The core assumption of many of them is continuity of the deformation field.

Modern engineering structures, such as bridges, dams, aircrafts, ships, dental implants,
etc., are often made of quasibrittle materials. These are brittle heterogeneous materials, which
include concrete, fiber-reinforced concrete, fiber composites, toughened ceramics, rocks, sea
ice, wood, etc. The failure of these heterogeneous materials is accompanied with cracking, i.e.
discontinuity in the deformation field. Moreover, the heterogeneous nature of these materials
brings characteristic length that needs to be reflected by the model. It seem to be relatively
difficult to incorporate such features into the continuous theory, though large number of such
models exist and shows excellent performance.

In recent decades, class of models that abandons the deformation continuity assumption
appeared. They are typically composed of discrete rigid units and contacts. The discontinuity
of the deformation allows extremely simple crack representation and the size of the discrete
units brings into the model some internal length. The discrete models gained a lot of attention
from the research community, however the practical usage of them is still rather limited.
Nevertheless, the modeling of heterogeneous materials using an assembly of discrete units
became well established approach with several advantages.

• One advantage is relative simplicity in formulating and solving the governing equation
of equilibrium (in static problems) or motion (in dynamic problems). In continuum
theory, these are partial differential equations solved with a help of advanced solution
method, typically the finite element method. In discrete formulations, these equations
become ordinary linear or nonlinear equations (except time variable in equation of
motion) that are significantly easier to solve.

• Similar benefit is seen in simplicity and transparency of constitutive relations. In the
continuum mechanics, the strains and stresses are second order tensors and the relation
between them is provided by fourth order tensor of 81 entries. The assembly of this
tensor is difficult, because the material behavior must be frame invariant – independent
on chosen coordinate system. Therefore, the formulation must be based on invariants of
stress and strain tensors and becomes complicated in nonlinear regime when anisotropic
phenomena (for example cracking) occur. In discrete models, the constitutive equation
is formulated based on stress and strain vectors, which greatly simplifies the task.
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a) b) c)

Figure 1.1: a) One rigid body of a discrete model; b) visualization of the microplane model
at single material point discretized into 42 integration points (microplanes) at the vertices
and mid-edges of the regular Icosahedron (Bažant and Oh 1986); c) transversal tensile forces
in a heterogeneous assembly.

• As the (isotropic) solid deforms and experiences cracking, it becomes anisotropic due to
oriented nature of cracks. The discrete model has an ability to automatically weaken the
modeled material only in directions perpendicular to cracks. Such feature, along with
the vectorial constitutive relations, can be supplemented into the continuous models by
the microplane theory (Carol and Bažant 1997). The discrete and microplane formula-
tions have many common features and they are often viewed as similar concepts (Kuhl
et al. 2000; Cusatis and Zhou 2014). The microplane model has theoretically infinite
number of planes at a material point of infinitesimally small size. Both space and
orientation is however discretized for numerical calculation, see Fig. 1.1b.

• The discrete system brings heterogeneity into the model. If the discrete structure
corresponds to some units of matter in the material (grains, aggregates, particles . . . ),
then the effects of the material heterogeneity is automatically embodied in the model
and does not need to be introduced phenomenologically. In other word, the discrete
model can be understood as a mesoscale model with discrete bodies corresponding
roughly to the material structure. In isotropic material, no directional bias should
be present in the discrete assembly; modifying the orientation distribution of model
geometry may efficiently account for model anisotropy (Yao et al. 2016).
The discrete model can be also used without any relation to the material mesostructure,
i.e. as a pure discretization technique. Though it may bring some advantage, such
usage seems questionable to the author because several effects must be then introduced
phenomenologically.

• One feature, often emphasized, is the ability of the model to yield transversal tensile
stress when subjected to compression. Such ability is lost in the continuous modeling,
because it is a direct product of the heterogeneity. Even the discrete models have, when
averaged over large volume, zero overall transversal stress corresponding to continuous
mechanics, but the local stresses oscillate from tension to compression and provides
splitting cracks and correct failure modes (Fig. 1.1c).

There are also many features discussed critically. The critical view often comes from
misunderstanding. Let us comment on some disadvantages typically raised by scholars.

2
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• To avoid directional bias, the discrete model is usually constructed in some random
process. The model response thus depends on an input random seed and the model
response becomes random as well. This is clear disadvantage when the model is used
without any relation to material mesostructure as there is a strong dependence on
the model geometry. But mesoscale discrete models actually directly reproduce raw
randomness of the material and its response, which shall be seen advantageous.

• The issue is of course the computational cost. Since the model is mesoscale, the size
of the units is inevitably related to mesostructure. When simulating some large size
structure with small characteristic size of heterogeneities, the computational complexity
becomes unbearable. One can either optimize the computation, distribute it over many
processors and devote significant time for the calculation (Alnaggar, Pelessone, et al.
2016), or abandon the mesoscale concept. Adaptive technique developed in Chap. 5
can be helpful as well. However, the same difficulty appears in the continuum theory
if it needs to keep discretization related to the material mesostructure (e.g. nonlocal
models). Looking the other direction towards very small volumes, there is clearly a limit
at which the mesoscale model prepared for certain specimen size looses its meaning and
cannot be used; and again, this is also the case of continuum theories.

• One true disadvantage of the discrete models is their limitations in elastic behavior.
As shown in Sec. 6.4, their are not able to reproduce all meaningful Poisson’s ratios.
Recently, two remedies were published (Asahina, Aoyagi, et al. 2017; Cusatis, Reza-
khani, et al. 2017), but both of them unfortunately lead to loss of some other beneficial
features of the model (e.g. transversal tensile stress).

• The last comment belongs to the boundary layer, which is described in Chap. 6. The
discretization technique unavoidably implies existence of a boundary layer with different
material properties than the bulk material. In mesoscale discrete models, such layer
may represent the same layer in real solid and become an advantage. However, it is still
an ongoing topic of investigation and conclusion of this kind seems to be premature.
When there is no relation between the material mesostructure and discrete units, the
boundary layer shall be understood as a handicap. Yet again, the author believe that
some boundary layer is inevitably present in all models, continuous or discrete, whenever
they attempt to incorporate material internal length in some nonlocal manner.

1.2 Brief history of discrete modeling
The first attempts to replace continuum with discrete structures are made on elastic problems.
Hrennikoff (1941) derived elemental properties necessary to reproduce elastic behavior of
continuum for truss lattices. The rigid-body motion as a basis of kinematic compatibility
equation was published in Kawai (1978). Pioneering attempts to simulate fracture with
a help discrete models come from the community of physicists (Herrmann et al. 1989; Etienne
G. Guyon 1985).

Few years later, the simplest and least phenomenological discrete fracture models for
concrete – so called lattice models – appeared (Schlangen and van Mier 1992; Bolander,
Shiraishi, et al. 1996; Ostoja-Starzewski et al. 1997; Ince et al. 2003). The models were
initially constructed in two dimensions. With a growing power of modern computers, three
dimensional versions appeared (Man and van Mier 2008; Man and van Mier 2011; van Mier
2013; Mungule et al. 2013; Jivkov et al. 2013; Luković et al. 2016). The classical lattice models

3
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Figure 1.2: Discontinuous deformation field in planar discrete models based on Voronoi tessel-
lation: translations in x and y direction and rotations. The translations are linearly changing
over the body region due to the (small) rotations and rigid-body motion. The rotations are
constant within the body.

are composed of two ingredients: the material mesostructure and the independent lattice of
mechanical elements. The material structure is projected onto the lattice and, based on
the projection, its elements are divided into different material phases of different mechanical
properties. It was shown in Schlangen and Garboczi (1997), that the truss elements are not
satisfactory and one needs beam elements to produce realistic results. A comparison of failure
events in the lattice model to acoustic emission measurements during compression test can
be found in Iturrioz et al. 2013. Classical lattice model of this kind is used in Chap. 2 of this
thesis.

Parallel to the lattice models, so called particle models has also been developed. The
discrete structure is generated based on the material mesostructure, not independently as
in the case of the lattice models. Each node corresponds to one aggregate of the material.
An early model of this kind, efficient enough even for the 1970’s computers, was network
model of Burt and Dougill (1977). The truss connections transferring only normal forces
were also used in this branch of discrete modeling (Bažant, Tabbara, et al. 1990; Jirásek and
Bažant 1994; Jirásek and Bažant 1995). The model becomes much more realistic when the
particle rotations and interparticle shear interactions are taken into account (Zubelewicz and
Bažant 1987; Bažant, Tabbara, et al. 1990). Bolander and Saito (1998) introduced model
based on rigid-body motion of particles generated via Voronoi tessellation on randomly placed
nuclei. The displacement field produced by the models is shown in Fig. 1.2, displacement
jumps between the rigid bodies are clearly visible. Further development of this kind of models
can be found for example in Bolander, Hikosaka, et al. (1998), Bolander, Hong, et al. (2000),
Asahina and Bolander (2011), and Gedik et al. (2011).

Both lattice and particle models were originally developed as static, but later formulated
for also dynamic simulations (Frantík et al. 2013; Zhao, Russell, et al. 2014; Sinaie et al.
2016; Hwang et al. 2016). Particle approach for dynamic simulations was greatly improved
by robust constitutive relations in Cusatis et al. (2003) and further refined (Cusatis and
Cedolin 2007; Cusatis, Pelessone, et al. 2011). The model presented there, called the lattice-
particle model, is used in Chaps. 4–6 of this thesis, but only in its static version.

Recent extensions of the lattice and particle models include effects of deterioration, chlo-
ride diffusion and alkali-silica reaction (Šavija et al. 2013; Alnaggar, Cusatis, and Di Luzio
2013; Alnaggar, Di Luzio, et al. 2017), transport phenomena (Grassl and Bolander 2016),

4
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fiber reinforcement (Kang et al. 2014; Kunieda et al. 2011; Montero-Chacón et al. 2017;
Schauffert and Cusatis 2012) or early age concrete behavior (Pan et al. 2017). Besides simu-
lations of processes occurring in the experimental specimens, discrete models are often used
to validate other model types, e.g. continuum based approaches (Grassl, Xenos, et al. 2014).

Third branch of discrete modeling used here is represented by the Discrete Element
Method (DEM) founded by seminal contribution of Cundall and Strack (1979). The DEM is
explicit dynamic approach for large translations and deformations of particles that does not
generate and keep an underlying network of contacts but seek for contacts between particles
in every time step. It is especially suited for granular materials, but also convenient for cohe-
sive heterogeneous materials. The particle shapes are mostly spherical, but also other shapes
were implemented, for example polyhedrons (Cundall 1988; Nezami et al. 2004; Boon et al.
2012). The DEM is used in Chap. 7.

1.3 Structure of the thesis

The thesis is composed of six research papers published by the author and collaborators.
They cover relatively broad range of topics (monotonic & fatigue loading, static & dynamic
solution, different scale of discrete units, concrete & gravel, deterministic & probabilistic
view, . . . ), but all of them employ some discrete approach to some engineering problem.

Chapter 2 introduces two-dimensional classical lattice model, a typical version of the
discrete model of concrete. The solver of this model is sequentially linear, meaning that it
proceeds in linear steps and traces events/changes in the lattice along its way. The chapter
is mostly dedicated to improvement of the sequential solver, but the discrete nature of the
model is elucidated as well.

Chapter 3 brings hysteretic constitutive relation in normal direction developed in order to
simulate crack propagation under compressive cyclic loading. The sequentially linear solver
is replaced by a standard iterative solver. It is the oldest work of the author in the thesis.

Chapter 4 introduces a three-dimensional discrete model, properly defines its kinematics,
elastic and complex inelastic behavior and also probabilistic concept of random-fields. Sim-
ulation of large experimental campaign validates the model and shows its robustness. The
model is further equipped with adaptive refinements to speed up the simulations in Chapter 5.

The most recent work on a boundary bias in the discrete model is presented in Chapter 6.
It is shown that discrete models suffer from biased orientation of the elements close to the
boundary. The mechanical consequences of this phenomena are described and demonstrated.

Finally, Chapter 7 is devoted to different type of discrete model called DEM. It is dynamic
and developed for simulations of granular materials without cohesion. It is used to simulate
railway ballast.

Though there are fundamental differences among the models from these chapters, there
is al large number of similarities, common principles and procedures, that allow to combine
them into an aggregated text of the thesis.

1.4 Objectives

The overall objectives of the presented work are to (i) demonstrate simplicity, robustness
and capabilities of different discrete approaches in mechanics; (ii) compare results of discrete
modeling to experimental data for validation; (iii) develop new techniques and approaches in
the field of discrete modeling.

5
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Particular objectives of individual chapters are following:

• Identify differences between the load-unload and force-release sequential solvers, deter-
mine which one is more realistic and develop general technique comprehending both of
them.

• Elucidate mechanisms of crack propagation under compressive cyclic loading and de-
velop some model to reproduce the experimental data.

• Enhance the discrete model with spatial fluctuation of its material parameters. Assess
the effect of randomness in model parameters on mechanical behavior of the model.

• Develop an adaptive technique that would allow to refine discrete model structure only
at the regions of high stresses that experience inelastic processes. Compare results of
adaptive calculation with fine discrete models and assess computational time savings
achieved by the adaptive technique.

• Determine a source of bias in elastic and inelastic behavior of discrete model in the vicin-
ity of boundaries. Quantify the boundary layer effect and compare its elastic behavior
to analytical formulas derived by homogenization based on virtual work equivalence.

• Formulate new type of contact behavior for dynamic polyhedral discrete models, that
would correctly reflect the overlapping of polyhedrons, and validate it by comparison
to experimental data.

6



Chapter 2

Lattice models and generalization
of sequentially linear methods

This chapter is based on paper: Jan Eliáš (2015). “Generalization of load-unload and force-
release sequentially linear methods”. International Journal of Damage Mechanics 24(2),
pp. 279–293. issn: 1056-7895. doi: 10. 1177/ 1056789514531001

2.1 Introduction

Historically, the lattice models brought seminal contribution to the modeling of concrete
mechanical behavior. The pioneering works such as Herrmann et al. (1989) or Schlangen
and van Mier (1992) showed surprisingly robust yet extremely simple concept establishing
new promising direction in modeling of fracture in heterogeneous media. The classical lattice
models are primitive assembly of nodes and contacts that behave ideally elastically linear up
to some failure criterion. When the criterion is fulfilled, the contact is completely removed
from the assembly. Later, several enhancements via more complex constitutive loads were
introduced. This chapter is included to present one such model and show improvement in
the solution technique.

In nonlinear analysis, a solution is typically obtained by applying load incrementally in
a number of small steps in which an iterative algorithm is employed. The robustness of the
chosen iterative scheme is of importance. The well-known schemes are the Newton-Raphson
(Bathe 2006; Belytschko et al. 2014), arc-length (Riks 1979; Crisfield 1981) and LATIN
methods (Vandoren et al. 2013). Problems with the convergence of iterative methods in the
case of bifurcations, snap-backs, sudden changes in constitutive equation, etc., have led to
the development of non-iterative methods.

For piece-wise linear constitutive equations, the approach developed in Jirásek and Bažant
(1994) can be used. The mechanical system evolves linearly until some event occurs: a healthy
element undergoes damage; an element with increasing damage moves from one linear segment
to another; an element being reloaded reaches its linear limit and starts to accumulate more
damage, etc. A new tangential stiffness is then assembled for the system and the solution
continues linearly until another event occurs. However, even this method is actually iterative,
because one does not know which elements will suffer increasing damage and which will
unload. This is found via iterations after every event. Note that iterations might be overcome
by adding discrete jumps into the elemental constitutive equations (Graça-E-Costa et al.
2012).

http://dx.doi.org/10.1177/1056789514531001
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Figure 2.1: Approximation of equivalent constitutive behavior using different number of saw
teeth according to Rots, Belletti, et al. (2008).

Yet another non-iterative technique, traditionally employed in lattice modeling, exists. It
can be applied to any model type (discrete or continuous) providing that the damage-based
constitutive equations are saw-tooth shaped - the linear branches running through the origin
are followed by discrete jumps to another linear branch. Stress-strain relations in a different
form can be relatively simply transformed into the saw-teeth form with accuracy dependent
on the number of saw-teeth (Fig. 2.1).

In the case of the saw-tooth constitutive equation, the classical load-unload (L-U ) method
is usually used. This solution method was developed for the classical lattice modeling
(Schlangen and Garboczi 1997; van Mier and van Vliet 2003; Man and van Mier 2008;
van Mier 2013) in which researchers used a constitutive equation composed of one saw-tooth
only, i.e. linear-elastic elements which were completely removed after the failure criterion
had been fulfilled. The application for constitutive equations composed of several saw-teeth
was presented e.g. in Bolander, Hikosaka, et al. (1998). This solution strategy has been also
applied in connection with the finite element method for continuous material models (Rots
and Invernizzi 2004; Rots, Belletti, et al. 2008). The L-U method also allows to use elemental
constitutive equation with snap-backs (Invernizzi et al. 2011) and thus makes possible usage
of very large elements compared to the material characteristic length. A comparison of the
L-U sequentially linear method with iterative procedure was published in Hendriks and Rots
(2013). The advantage of the approach is its robustness and simplicity. One disadvantage
that should be mentioned is its problematic application to non-proportional loading paths
(see Sec. 2.8) and also the unclear smoothing procedure for the obtained response, which is
typically composed of a series of disconnected line segments.

Different version of the sequential method applicable to the saw-tooth type of constitutive
equation is the force-release (F-R) method developed to simulate brittle fracture in lattice
models (Li, Jia, et al. 2002; Liu and Liang 2009; Liu and El Sayed 2012) and to improve the
sequentially linear concept for non-proportional loading paths (Eliáš, Frantík, et al. 2010).
The F-R method resembles dynamic process of redistributing released stresses from damaged
elements while the external load is kept unchanged. During the redistribution, the system
evolves from static equilibrium state through unbalanced states until the static equilibrium
is reached again. Its advantage for non-proportional loading is that ruptures always occur
under correct external load. The technique was recently further improved in Vorel and Boshoff
(2015).

The L-U and F-R methods produce different results. This chapter attempts to elucidate
this difference in greater depth. By developing a general method it will be possible to prove
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2.2. Recapitulation of the classical lattice modeling

that the difference between them actually consists in changing the external load during the
redistribution process in the L-U method and keeping it unchanged in the F-R method.
Within one general concept, both the L-U and the F-R method will be exactly reproduced
as special cases. The infinitely many other possible settings of the general method leads to
different sequences of broken elements and therefore to different results. Based on a compar-
ison of redistribution time and the time needed to modify the external load, one can decide
which method (L-U, F-R or general) is more suitable.

2.2 Recapitulation of the classical lattice modeling
The classical mesolevel lattice models have discrete structure independent on mineral grains
of concrete. The discrete structure might have different forms. Here, it is represented by
a two-dimensional rigid-body-spring network (Kawai 1978) with the geometry of rigid bodies
created by Voronoi tessellation and the connectivity between them determined by Delaunay
triangulation (Bolander and Saito 1998; Yip et al. 2005; Berton and Bolander 2006). The
model geometry is random to avoid directional bias that occurs in any regular structure.
The domain of the modeled solid is filled by nuclei with randomly generated positions. These
nuclei are added sequentially and accepted only when the distances to previously placed nuclei
are greater than chosen parameter lmin (see Fig. 2.2). Each of the nuclei serves as one model
node bearing three translational, u, and three rotational, θ, degrees of freedom (DOF).

The domain is considered to be saturated when a new nucleus is rejected for a large
number of subsequent trials. Delaunay triangulation is performed providing connectivity
between the nuclei. A dual diagram called Voronoi tessellation then creates the geometry
of the rigid bodies (see Fig. 2.2). Voronoi region oa associated with nucleus a is a set of all
points that are closer to nucleus a than to any other nucleus.

oa =
⋂
b 6=a
{x; ‖x− xa‖ ≤ ‖x− xb‖} (2.1)

Rigid bodies have common contact facets that are (thanks to the Voronoi tessellation)
planar and perpendicular to their connections. At the centroid of these facets, on can mea-
sure separation of the two bodies (displacement jump), ∆. Normal strain (eN ) and tangential
strain (eT ) are calculated as a displacement jump divided by the distance between the con-
nected nuclei. The stresses in normal (sN ) and tangential (sT ) direction are then obtained by
multiplying strains by elastic constants E0 in normal and αE0 in tangential direction. The
model therefore has two elastic constants: elastic modulus E0 and tangential/normal stiffness

Figure 2.2: Model geometry obtained by the Voronoi tessellation on randomly placed nuclei
with a restricted minimum distance lmin.
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Chapter 2. Lattice models and generalization of sequentially linear methods

Figure 2.3: Left: Three types (phases) of elements in the classical lattice model; right: Mohr-
Coulomb failure criterion with tension cut-off.

ratio α. Relation of these constants to the macroscopic elastic characteristics (elastic modu-
lus E and Poisson’s ratio ν) is derived in Sec. 6.4 on page 91. The complete description of
the model kinematics and elastic constitutive equations are provided in Sec. 4.3 on page 42.

In inelastic regime, elements of classical lattice models break when their stress reaches
a failure criterion g(s) = 0. There is a number of options how to define the criterion, here
the Mohr-Coulomb surface with tension cut-off is used.

g(s) = max (sN − ft, |sT | − fs − γsN ) (2.2)

The surface is determined by three parameters: tensile strength ft, shear strength fs and
parameter γ, which stands for the angle of internal friction. For more details, see Eliáš and
Stang (2012). After an element breaks, sudden drop in its stiffness to zero is assumed, i.e.
complete removal of the element.

The mesolevel concrete structure is generated independently on the geometry of the rigid
bodies assembly. Circular grains with diameters within interval from dmax to dmin distributed
according to the Fuller curve (see van Mier (1996) or Sec. 4.2 on page 40) represent mineral
aggregates in concrete. In a manner similar to the placing of nuclei, circular grains are
sequentially placed at random positions with no overlapping. The grains are then projected
onto the lattice and three types of lattice elements are distinguished: grain elements with
both nuclei inside a grain, matrix elements with both nuclei inside the matrix and interfacial
transition zone (ITZ) elements otherwise. The type of an element determines its elastic (E0,
α) and fracture (ft, fs, γ) parameters. The weakest of those three types are typically the
ITZ elements.

2.3 Recapitulation of the load-unload and force-release se-
quential methods

Damage-based saw-tooth constitutive equations are composed of linear segments (which when
extended pass through the origin of the stress-strain space) followed by immediate jumps to
lower stiffness. The classical solution scheme here called the L-U method proceeds simply by
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releasing the whole load after every rupture event and then loading the system with reduced
stiffness by a load increment that induces reference elemental stresses ∆se =

(
∆seN ∆seT

)
,

where index e refers to individual elements. The load increment (and reference stress) is then
scaled by factor λ to satisfy the following condition

g(λ∆sk) = 0 ∧ ∀ e 6= k : g(λ∆se) < 0 (2.3)

where subscript k denotes the critical element. The critical element is damaged or completely
removed and a new stiffness matrix and corresponding reference stresses are evaluated for
the next step. Multiplier λ is selected so that exactly one (critical) element breaks at each
step. It is found as the minimum of all multipliers λe for which g(λe∆se) = 0.

In contrast with the L-U method, the F-R algorithm does not unload to the origin after
every rupture, but keeps the whole previously applied load acting. It starts from an equilib-
rium state (initially the load-free structure) where elements are exposed to stresses se. As
with the L-U method, reference elemental stresses ∆se caused by an external load increment
are evaluated. Then, critical element k and load multiplier λ are found by satisfying the
following condition

g(sk + λ∆sk) = 0 ∧ ∀ e 6= k : g(se + λ∆se) < 0 (2.4)

Critical element k is damaged. The change in the critical element stiffness gives rise to
unbalanced forces in nodes connected to this element. These unbalanced/disequilibrium
forces are equal to the stiffness change multiplied by the deformation of the critical element.
Again, equation Eq. (2.4) is used but the reference stress ∆se is now the stress in elements
caused by these unbalanced forces only. Full redistribution will be achieved for λ = 1, which
is therefore the upper limit for multiplier λ. If no element breaks during the redistribution,
a new equilibrium state is found by adding all unbalanced forces to the system. However,
if λ < 1, rupture occurs in another critical element. After every additional rupture, the
unbalanced forces needs to be updated by adding newly created unbalanced forces from the
additional critical element to those unbalanced forces from previous ruptures that have not
yet been redistributed.

Equation (2.4) works in two modes: (i) equilibrium mode, where it adds external load
to the linear mechanical system and reference stresses ∆se are induced by increment of
the external load; and (ii) redistribution mode where reference stresses ∆se are induced
by unbalanced forces that need to be redistributed. At the beginning of every step, the
equilibrium mode provides increase of the external load until some rupture event occurs.
After that, the redistribution mode is used to redistribute the stress from the ruptured
element and possibly other elements that were damaged during the redistribution. In the
redistribution mode, the method behaves as if the stiffnesses of ruptured elements are being
reduced gradually and infinitively slowly, while the external load is unchanged. Further
details can be found in Eliáš, Frantík, et al. (2010).

It has been shown that L-U and F-R methods yield different results in the case of non-
proportional loading (Eliáš, Frantík, et al. 2010), but also even when loading is proportional
(Liu and El Sayed 2012). It is difficult to judge which method is better, especially for the
proportional loading path. Both of the methods are rough approximations of a complex
dynamic process (Liu, Deng, et al. 2008; Iturrioz et al. 2014). Therefore, the consideration
of time scales allows some comparison between the methods. It is stated in Liu and El
Sayed (2012) that when the stress release from a broken element is significantly slower than
the relaxation speed of the surrounding lattice, the F-R method works better. The same
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paper also assumes that the L-U method is more appropriate when the lattice relaxation is
significantly slower than the stress release from a broken element. However, the applied load
does not change during the real dynamic process but the L-U method assumes complete load
removal. Therefore even in such a case, the F-R method might be more realistic if the external
load is kept unchanged during redistribution. Based on observations made in Sec. 2.5, the
L-U method appears suitable for cases when load changes during the redistribution process,
i.e. when the loading machine or the external load in general is capable of reacting very fast
to a detected rupture and unloading to prevent additional elemental failures.

2.4 Demonstrative example

All the methods described in the chapter shall be compared using a simple 2D example of
concrete beam with a central notch loaded in three-point bending. This section will only
show the difference between the results of the L-U and F-R methods. Later, in Sec. 2.6,
a comparison with the general method will be added by simulating failure of the same beam.

The dimensions of the beam are: thickness b = 40mm, depth D = 200mm, span S =
1600mm, and notch depth a0 = 20mm. It is loaded in three-point bending by the prescribed
displacement δ up to deflection δmax = 400µm. Parameter lmin is set to 0.8mm in the central
part of the beam and 8mm in areas further from the notch to speed up the simulation.
An area where lmin is linearly changing from 0.8 to 8 mm is inserted between the densely and
coarsely discretized parts. Boundaries and especially concave notch corners are taken into
account during tessellation using an algorithm developed by Bolander, Hong, et al. (2000).
The variability in lmin is justified in Chap. 5, where it is shown that the elastic behavior of
the discrete model is independent on lmin. Treating of the boundary region is described in
detail in Chap. 6. The beam geometry and the underlying lattice/rigid-bodies are shown in
Fig. 2.4.

The mesolevel concrete structure is generated with dmax = 6mm and dmin = 2mm. The
material parameters used for three different concrete phases are listed in Tab. 2.1, only one
saw-tooth is considered. The concrete mesostructure is projected onto the densely discretized
central part of the beam only. All the elements outside the beam center belong to the matrix
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 trian

g
u
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Figure 2.4: Schematic drawing of the studied beam, the underlying lattice and bonds between
rigid bodies.
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Figure 2.5: Force-deflection responses produced by the L-U and F-R methods.

Table 2.1: Material parameters used in the example.
ITZ matrix grains

tensile strength ft 3 12 24 MPa
shear strength fs 6 24 48 MPa

internal friction parameter γ -0.75
normal modulus E0 36.6 36.6 128 GPa

shear/normal stiff. ratio α 0.45

phase. Omitting the mesostructure further from the beam center causes larger macroscopic
elastic modulus in the central part compared to the rest of the beam. However, since this is
just a demonstration example, this difference is neglected as it has no effect on the demon-
strated solution technique.

More saw-teeth than one could be also assumed (as in Rots, Belletti, et al. (2008)), but
this option is not implemented here for the sake of simplicity. Besides, the difference between
the L-U and F-R methods is most accentuated when using only one saw tooth. If more teeth
are applied, stress redistribution after rupture occurrence would be less dramatic. Therefore,
differences in redistribution process of the L-U and F-R methods would have lower impact on
the overall response. However, difference would remain and it could still result in a completely
different response. In a limit of infinitely many teeth, there is no redistribution at all; the
rupture event immediately leads to static equilibrium as the unbalanced forces tend to zero.
The L-U and F-R methods would coincide.

The bended beam is used to show the difference between the L-U and the F-R algorithms.
The same lattice structure and aggregate pattern were used for both methods. Figure 2.5
displays the calculated force-deflection curves. One can see the difference in the peak force
and the descending branch of the responses. The two methods also produce different crack
patterns, as is obvious from plotting the total crack opening (Fig. 2.6, left)

w =
√
w2
N + w2

T (2.5)

which is the geometrical average of normal opening (wN ) and shear sliding (wT ) at the
damaged inter-particle facet.
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L-U method

F-R method

Figure 2.6: Left: cracks obtained by the L-U and F-R methods; the color of cracks indicates
the total opening calculated as geometrical average of the normal opening and shear sliding;
right: the difference between cracks obtained by the L-U and F-R methods visualized using
parallel coordinates.

The difference can also be demonstrated via parallel coordinates (Fig. 2.6, right). Rupture
events that occurred during one simulation (F-R method) are plotted as dots with equal
horizontal spacing. The spacing is too small, and therefore the dots create a thick continuous
line. Moving along the line in the leftwards (rightwards) direction means moving towards
the beginning (end) of the simulation, respectively. Thus, the horizontal direction represents
the virtual time axis. The second simulation to be compared (the L-U method) is added in
the same way, but below the first one. One can immediately see that fewer elements failed
in the L-U simulation because the event line is shorter; the last rupture occurred earlier in
virtual time. Rupture events in which the same element failed are connected by a thin line. If
two simulations resulted in exactly the same crack development, many parallel vertical lines
with equal spacing would be obtained. If the crack developments were completely different,
there would be no lines connecting the simulations under comparison. Inclined lines would
indicate the rupture of the same element but at a different virtual time. Many parallel
inclined lines would show the same cracking sequence present in both compared models. All
these effects are found in the L-U vs. F-R method comparison. After initial correspondence
(many vertical lines), the cracking sequences obtained via the compared methods start to
differ more and more until completely different crack propagation.

2.5 General method

In this section, a general method that connects the L-U and F-R algorithm will be developed.
This method is essentially nothing else but the F-Rmethod extended to allow the modification
of the external load during redistribution.

Let us first define two reference stress variables, ∆s(L) and ∆s(S), where the former (with
the superscript (L)) is induced by the external load increment and the latter (with superscript
(S)) by unbalanced forces. When the body is loaded by the prescribed displacement δ, the
reaction P = P (δ) arises at the loading point. Then, the redistribution under constant load
means that the reference stress ∆s(S) is evaluated on a system with support at the loading
point. Thus, displacement of the loading point caused by unbalanced forces must be zero and
the corresponding force nonzero: ∆δ(S) = 0 and ∆P (S) 6= 0. The opposite case, with force
loading, would have loading point free for evaluation of ∆s(S), therefore its displacement
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prescribed displ. displacement

Figure 2.7: Possible directions of system response in force-deflection space during redistribu-
tion; left: loading by a prescribed displacement, right: loading by a force.

would be nonzero while the force would be zero: ∆δ(S) 6= 0 and ∆P (S) = 0. Combined
force-displacement loading is also possible with appropriate boundary conditions. Otherwise,
the method remains the same irrespective of the loading type.

The F-R method is simply enhanced by combining the unbalanced force effect ∆s(S) with
stress caused by modification of the external load η∆s(L) during redistribution.

∆s = ∆s(S) + η∆s(L) (2.6)

The factor η determines the ratio between these two effects. High η in absolute value means
that the redistribution is relatively slow compared to the load changes while η close to zero
means the redistribution velocity is high compared to the external load changes. The reference
stress from Eq. (2.6) is plugged into Eq. (2.4) and we obtain final condition which is used to
find the critical element and multiplier λ in the general method

g(sk + λ[∆s(S)
k + η∆s(L)

k ]) = 0 ∧ ∀ e 6= k : g(se + λ[∆s(S)
e + η∆s(L)

e ]) < 0 . (2.7)

A more in-depth explanation is provided in Fig. 2.7. Two variants differing in the loading
type are shown: a system on the left side is loaded by a prescribed displacement, while the
right side shows a system loaded by a force. The figure schematically shows a response of
a system in step l. One can see the response from the previous step l − 1 with stiffness
Kl−1 drawn by the thick black line. In the current step l, the static equilibrium at starting
state A is violated by a rupture of a critical element whose unbalanced forces must now be
redistributed. The critical element was immediately damaged and thus stiffness Kl became
lower. Changes in the diagram due to the increment of external loading are shown by vector
∆L in red. The red vector S shows changes due to the unbalanced forces. The vertical
direction of vector S indicates loading by prescribed displacement, while S is horizontal in
the case of force loading. Unbalanced forces will be fully redistributed when the system
reaches line C − F . By combining S and ∆L using ratio η, one can choose the direction
in which the system will proceed to the new equilibrium state on line C − F . Six selected
options are shown:

• the direction towards point E: The external load is kept constant, ratio η is zero. This
case exactly corresponds to the F-R method.

• the direction towards points D and F : The values of ratio η are chosen arbitrarily,
negative for D and positive for F .
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• the direction towards point C: Ratio η is set so the redistribution finishes exactly at
the time when the external load diminishes, η = −δA/∆δ(L) for loading by prescribed
displacement and or η = −PA/∆P (L) for loading by force, respectively. As will be
shown later, this case exactly corresponds to the L-U method.

• directions B and G: These points/directions represent the theoretical limits η =
{−∞,∞}.

Fig. 2.7 makes impression that there is no difference between the points at which the
system reaches a new equilibrium because in the next step, l + 1, the same stiffness of the
system is reached and the same critical element is found for all directions. This would be
true only if no other element breaks during redistribution. However, different directions may
produce different rupture sequences during redistribution and further degrade the stiffness
to lower values as more elements fail. The direction towards point C is an exception for
which further ruptures during redistribution are not possible; indeed, stresses in all elements
linearly decrease to zero and therefore no additional rupture may occur. The L-U method
is exactly reproduced, because the redistribution has no longer any effect. In every step the
load starts to increase from zero value and only one critical element fails.

Directions B and G demonstrate the simplification hidden in the method. Theoretically,
instead of immediate rupture and the gradual redistribution of unbalanced forces, one would
rather expect the gradual degradation of critical element stiffness with λ. However, the stress
∆s(L) has already been evaluated on a system with fully degraded critical element stiffness.
A somehow more natural situation would be a dependency of ∆s(L) on λ, i.e. with stresses
being evaluated on a system with healthy critical element for λ = 0, fully degraded critical
element for λ = 1 and with a smooth transition in between. Such an continuous method would
produce a smoothly changing redistribution line slope in Fig. 2.7. For η = {−∞,∞}, the line
of slope Kl−1 would appear (instead of slope Kl) and reproduction of the L-U method would
be done by setting η to negative infinity. The L-U method therefore agrees with infinitely
fast load removal after rupture. The continuous method can be developed but the desired
linearity and simplicity would be lost. Therefore the simplification of immediate stiffness
degradation and subsequent gradual redistribution is proposed.

Liu and El Sayed (2014) has proposed another algorithm that is able to reproduce both
the L-U and F-R methods as special cases. It is based on simple linear interpolation of the
displacement field of both methods. Though it provides an interesting and useful framework,
there is no physical process behind it to support the displacement field interpolation. From
that point of view, the general method created by changing the external load seems to be
more reasonable. According to Liu and El Sayed (2014), the L-U method is suitable for
systems in which unbalanced forces are released very fast, while the surrounding material
relaxes very slowly. This assumption is used to describe applications of the interpolating
method. However, as is shown here, the L-U method rather represents an extreme case of
infinitely fast external load removal. The linear combination of the displacement field could
then probably be used to interpolate between infinitely fast (the L-U method) and infinitely
slow (the F-R method) load changes. But the general method is more reasonable because it
is based on the description of the underlying physical process.

2.6 Demonstration of the general method
The general method is tested on the same bended beam as in Sec. 2.4. There are infinitely
many options for choosing the value of ratio η. It can be even changed after every rupture
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Figure 2.8: Force-deflection response produced by the general method with a different setting
for ratio η.

that occurs during the redistribution. Here it is determined using the variable v = ∆δ/∆P
called velocity. The prescribed displacement δ is changed by v during every decrease by one
unit in the loading force P . The velocity parameter is therefore nothing else but compliance
of redistribution line in the force-deflection diagram. The ratio η is then evaluated from the
following equation

η = −∆δ(S) − v∆P (S)

∆δ(L) − v∆P (L) (2.8)

Though ∆δ(S) = 0 under displacement loading, it is kept there to preserve the validity of
Eq. (2.8) also for force loading. The maximal possible velocity is the infinitely large velocity,
vmax =∞, for which the algorithm keeps the loading force constant during the redistribution.
The validity of Eq. (2.8) for negative velocities is limited by the minimum value of ratio η
which is −∞. Replacing η in the limit of Eq. (2.8) with −∞ gives us the minimum possible
velocity vmin = −∆δ(L)/∆P (L), which is just the reciprocal value of the new system stiffness
Kl.

Figure 2.8 shows force-deflection responses for different values of applied velocity v. It
also shows some cases where ratio η was specified directly.

• η = −δ/∆δ(L): This setting leads to unloading along the previous loading path to the
origin. As stated in Sec. 2.5, it exactly mimics the L-U method and no other element
may break during redistribution.

• v = 0: Since ∆δ(S) is zero (loading by prescribed displacement), according to Eq. (2.8)
η = 0. Eq. (2.7) then coincides with Eq. (2.4) and the F-R method is exactly repro-
duced.

• v ∈ {−100,−50, 50, 100, 150}µm/kN: Various values of velocity are applied. Negative
values represent the ability of the testing machine (or the external load in general) to
react to changes in the structural stiffness and trace the snap-back phenomenon. The
lower (i.e. more negative) the velocity, the faster the machine reacts. Positive velocity
means that the external load still increases even during the redistribution.

17



Chapter 2. Lattice models and generalization of sequentially linear methods

Figure 2.9: Cracks obtained by the general method; the color of cracks indicates the total
crack opening.

L-U method

F-R method

v=-150 µm/kN

L-U method

F-R method

v=-50 µm/kN

L-U method

F-R method

v=50 µm/kN

Figure 2.10: Three-way comparison of cracks produced by the general, L-U and F-R methods
visualized using parallel coordinates; left: v = −150 µm/kN; center: v = −50 µm/kN; right:
v = 50 µm/kN.

• v = −150µm/kN: This is a special case that needs additional comments. The velocity
is initially too large compared to the previous system stiffness (Kl−1 > −1/v), and
the response of the system evolves in a direction lying between B and C in Fig. 2.7.
One needs to decide how the external load will behave after reaching its initial value,
δ = 0. It is decided here to stop the unloading there and let the system redistribute
its remaining unbalanced forces under constant external load δ = 0. However, one
can simply assume that the unloading continues further into negative values of δ. The
system response at around zero load is plotted in Fig. 2.8 in a detailed zoom.
This situation is repeated in several steps at the beginning of the simulation but then it
disappears as the system stiffness decreases to lower values (Kl−1 < −1/v). From then
on, unbalanced forces are fully redistributed before the displacement δ reaches zero, the
standard situation is restored.
Such a situation with overly fast unloading (Kl−1 > −1/v) would not happen with
the continuous method, where the critical element stiffness is removed gradually, not
immediately after the rupture is detected.

• v = ∞: This case resembles force loading but it is not exactly the same. Though in
the δ − P graph the responses would coincide, stresses in the system would differ for
the F-R method with force loading and the general method with displacement loading
and infinite velocity. The reason is again the simplification made to preserve linearity -
the immediate stiffness reduction in the critical element. The more realistic continuous
method with gradual stiffness redistribution would yield exactly the same results as the
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F-R method with force loading.
As with the previous item with load limit δ = 0, it is assumed that when external load
reaches its maximum value δ = 400 µm, the external loading stops. The system then
redistributes remaining unbalanced forces under constant external load. This is shown
in Fig. 2.8 by a vertical dotted line at displacement δ = 400µm.

• η =∞: The extreme situation when redistribution is infinitely slow (or the increase in
the external load is infinitely fast) results in a non-decreasing piece-wise linear response
with turning points due to failure events. Again, the continuous method with gradual
stiffness degradation would produce a straight line with the initial elastic stiffness and
no turning points. After the maximum load δ = 400µm is reached, free redistribution
continues under fixed external load.

Selected crack patterns are plotted in Fig. 2.9. These are further compared to cracks
obtained by the L-U and F-R methods using parallel coordinates in Fig. 2.10. The cases of
η = −δ/∆δ(L) and v, η = 0 are not included because the cracks are exactly the same as those
obtained by the L-U and F-R methods, respectively. As one would expect, cracks obtained
with velocities ±50 µm/kN are more similar to the crack from the F-R method whereas the
crack formed at velocity −150 µm/kN is more similar to the crack from the L-U method.

2.7 Indirect control
Up to now, we have limited our attention mostly to cases where the external load is controlled
directly by the chosen ratio η. However, researchers often control their experiments via
another variable c measured on the specimen in real time. It is typically some displacement
variable such as the crack mouth opening displacement (CMOD). Extension of the general
method for such indirect control is straightforward. One simply evaluates the increments
∆c(L) and ∆c(S) of the controlling variable from the nodal displacements caused by the
loading increment and unbalanced forces, respectively. The ratio η is then determined so
that ∆c(S) + η∆c(L) has the required behavior. One can define the controlling variable c
using a single nodal displacement only, or some combination of several nodal displacements,
external nodal forces, internal (elemental) forces, strains or stresses, etc. However, energy
release control as presented in Gutiérrez (2004) is not possible, because the energy is not
dissipated continuously but in discrete steps.

As an example of indirect control, let us first refer to Figure 2.8, to the response curve
with infinite velocity (v =∞). The beam was actually loaded by a prescribed displacement,
but it looks as if it was loaded by a force. The ratio η was calculated to preserve the constant
external force P during redistribution. This can be therefore understood as indirect control
by the external force. Actually, all the curves with defined velocity v can be considered in
such way; the indirect controlling variable is the velocity.

Another example of indirect control employs again the same beam, but now the ratio
η between load increment and unbalanced forces is calculated to keep the CMOD constant
during the redistribution.

η = −∆CMOD(S)

∆CMOD(L) (2.9)

where ∆CMOD(S) is a change in the CMOD caused by unbalanced forces and ∆CMOD(L)

is a CMOD change caused by the loading increment. The beam is still loaded by prescribed

19



Chapter 2. Lattice models and generalization of sequentially linear methods

0 50 100 150 200 250 300 350 400
CMOD, δ [µm]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

lo
ad
in
g
fo
rc
e
P

[k
N
]

force-displ. δ
force-CMOD

Figure 2.11: Comparison of force-deflection and force-CMOD curves obtained from the same
simulation in which CMOD was kept constant during the redistribution process.

deflection δ. Force-CMOD and force-deflection curves obtained with Eq. (2.9) are shown in
Fig. 2.11. One can see how the CMOD does not change during the redistribution process,
but deflection δ does. Though the evolution of δ during the redistribution looks curved,
it is actually composed of piece-wise linear segments of different slopes that connect two
subsequent ruptures. It would also be possible to prescribe any realistic evolution of the
CMOD within the redistribution process (i.e. constant slopes in force-CMOD space as was
done with deflection δ in Fig. 2.8).

2.8 Non-proportional loading
A running discussion takes place regarding the application of sequentially linear approaches
to problems with non-proportional load paths. The discussion was opened in DeJong et al.
(2008), where it was demonstrated that the classical L-U method could be improved. The
reason is that when the L-U method unloads after a rupture from the current loading vector
to zero load, it applies in subsequent reloading the previous loading vectors sequentially and
rupture may occur before one reaches the current loading vector. The improvement presented
in DeJong et al. (2008) was to unload only to the beginning of the current loading vector.
However, as was shown in Eliáš, Frantík, et al. (2010), such an approach helps only partially
because going back to the beginning of the current loading vector may induce additional
ruptures as well. Eliáš, Frantík, et al. (2010) suggested the F-R method be used to overcome
these problems. Comments in Hendriks and Rots (2013) indicate that this is still an open
topic. Some more light can be shed by the general method.

Let us imagine that a rupture occurs during the application of loading vector s. Now,
some redistribution must occur and the time scale matters. If the redistribution process is
infinitely fast and the time to change the load is finite, the external load should be considered
unchanged because the loading machine (or any kind of loading source) cannot modify its
action during the redistribution. In this case, the F-R method, as presented in Eliáš, Frantík,
et al. (2010), seems to be a good choice.

If the redistribution time is large enough to allow the external load to change, one must
specify how the load is modified during the redistribution. The general method is a suitable
concept in such cases. Any load path can be chosen. For example, one can unload directly
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to zero by scaling all the previously applied loading vectors simultaneously by factor −λ
together with the unbalanced forces. Such a choice corresponds to the path towards point
C in Fig. 2.7, and the L-U method would be exactly reproduced because the stress in all
elements would linearly decrease to zero, eliminating the chance of any additional ruptures.

Another natural choice is to use the current loading increment (from the current loading
vector, s) and unload in the opposite direction. After reaching the starting point of the sth
loading vector, one has to decide whether the unloading will continue with loading vector
s − 1 or with loading vector s beyond its validity. A similar scenario has been encountered
during proportional loading in Sec. 2.6 where the prescribed deflection reached either the
maximum or minimum value of 400 µm or 0, respectively, and it was decided to keep the
loading at that value (i.e. unchanged) for the rest of the redistribution.

Any other setting of the parameter η (direct or controlled indirectly by some chosen
variable) might be assumed and applied. The choice should be made based on the real
external load behavior, characteristic times of the redistribution and the load modifications.

Finally, there is one more setting that would exactly reproduce the L-U method for non-
proportional loading, but only for the continuous method with gradual stiffness degradation.
Applying an exactly reverse loading scheme with infinite speed and letting the system freely
redistribute its unbalanced forces after reaching the loading origin must result in the exactly
reverse evolution of elemental stresses. Since no rupture occurred during loading on that
path, no rupture shall occur during unloading. Unfortunately, this is possible only for the
theoretical continuous method, because in the general method with the immediate stiffness
reduction the stress evolution on the reverse unloading path will be different from the stress
evolution during loading.

2.9 Summary
The chapter elucidates the relationship between two different sequentially linear approaches,
the L-U and F-R method. It has been shown that the F-R method is suitable for processes
where the redistribution is much faster than the reaction speed of the external load, whereas
the L-U method is good choice for systems with long redistribution times compared to the
reaction time of the external load. Moreover, it presents an algorithm that allows the external
load to be controlled/modified during the redistribution process. The general algorithm can
be used for indirect control of the simulation and also in connection with non-proportional
loading paths.

The examples of the non-iterative solution technique are performed using the classical
lattice model, historically the most important type of discrete models for concrete fracture.
In further chapters, different type of models will be used (with discrete lattice based on
the concrete mesolevel structure and with iterative nonlinear solvers), however with many
common features and direct references to the classical lattice approach.
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Chapter 3

Modeling of fatigue crack growth
under cyclic compression

This chapter is based on paper: Jan Eliáš and Jia-Liang Le (2012). “Modeling of mode-I fa-
tigue crack growth in quasibrittle structures under cyclic compression”. Engineering Fracture
Mechanics 96, pp. 26–36. issn: 0013-7944. doi: 10. 1016/ j. engfracmech. 2012. 06. 019

3.1 Introduction

The simple elasto-brittle constitutive relations used in the classical lattice modeling are often
replaced by more complex behavior, while the kinematics determined by the rigid body
motion is kept. This chapter shows an application of the discrete model to simulation of
fatigue crack growth using simple 1D inelastic hysteretic behavior of contacts formulated in
rate form.

The importance of fatigue crack growth is obvious. Many engineering structures made of
quasibrittle material experience fatigue loading during their service lifetime. The behavior of
quasibrittle structures under pure tension or tension-compression fatigue has been extensively
researched for decades. The analytical modeling is largely based on the seminal contribution
by Paris and Erdoğan (1963), who proposed that the growth rate of fatigue crack can be
expressed as a power law function of the amplitude of the stress intensity factor (SIF), i.e.
the Paris law. Various experiments have shown that for a wide range of SIF amplitudes
the Paris law could be used to describe the fatigue crack growth in structures made of
quasibrittle materials, such as concrete (Bažant and Xu 1991; Bažant and Schell 1993) and
engineering and dental ceramics (Guiu et al. 1991; Ritchie and Dauskardt 1991; Ewart and
Suresh 1992; Takeshi 1995; Schmitt et al. 1996; Studart et al. 2007). Le and Bažant (2011)
recently proposed a physical justification of the Paris law for quasibrittle structures based
on atomistic fracture mechanics and energetic multiscale transition. In the meanwhile, it is
generally accepted that the Paris law is not applicable when the maximum SIF is close to
the fracture toughness or the SIF amplitude is lower than a threshold value, which has been
confirmed by many fatigue tests on quasibrittle structures (e.g. Okazaki et al. (1991), Ritchie
and Dauskardt (1991), and Studart et al. (2007)). Furthermore, it has been shown that the
crack growth rate is also influenced by the ratio between the minimum and maximum SIF, i.e.
R ratio. Various modifications of the Paris law have been proposed to cover the entire range
of cyclic SIF’s as well as the R ratio effect (Erdoğan 1963; Foreman et al. 1967; Donahue
et al. 1972; Priddle 1976).

http://dx.doi.org/10.1016/j.engfracmech.2012.06.019


Chapter 3. Modeling of fatigue crack growth under cyclic compression

Besides the analytical and experimental investigations, considerable efforts have also been
devoted to the numerical simulation of fatigue crack growth under tensile cyclic loading. The
early attempt of numerical modeling of fracture kinetics heavily relies on the Paris law, where
the crack propagation direction and the associated SIF amplitude are determined by the finite
element analysis and the crack propagation is then calculated by the Paris law (e.g. Zhang
et al. (1992), Fish and Nath (1993), and Lin and Smith (1997)). A more general approach
is to adopt a cyclic cohesive crack model (De-Andrés et al. 1999; Nguyen et al. 2001; Yang,
Mall, et al. 2001; Serebrinsky and Ortiz 2005; Wang and Siegmund 2006), where one does
not need to know the crack growth law a priori. The key feature of the cyclic cohesive
crack model is that it captures the damage accumulation during the loading and unloading
processes through energy hysteresis loops. The cyclic cohesive crack model has also been
extended to the mixed-mode interfacial fatigue of bimaterial structures (Roe and Siegmund
2003).

Compared to tensile cyclic loading, fatigue kinetics of quasibrittle structures under com-
pressive cyclic loading is less studied. Suresh and co-workers (Ewart and Suresh 1986; Ewart
and Suresh 1987; Suresh et al. 1989) experimentally showed that the mode-I crack can grow
stably in quasibrittle structures under far-field cyclic compression. The main underlying
mechanism is that, at the end of each loading cycle, a tensile residual stress zone is developed
at the crack tip, which causes the crack growth (Suresh et al. 1989; Suresh 1990; Vasudevan
and Sadananda 2001). Furthermore, it was also observed that, after a number of cycles, the
crack growth rate decreases and the crack finally arrests. It is believed that the decrease of
crack growth rate can be attributed to several factors, such as the exhaustion of the residual
stress zone, the formation of debris particles due to the cyclic contact between the crack
surfaces, and the crack closure due to the increasing crack length (Suresh 1998). To explain
the experimentally observed mode-I crack propagation under compressive fatigue, Suresh and
co-workers (Brockenbrough and Suresh 1987; Suresh 1990) adopted a constitutive model for
microcracking brittle solids and demonstrated the development of the residual tensile stress
at the end of the first cycle. Since the model does not account for the tensile damage of the
material, it is unable to predict the fracture for the subsequent cycles. More importantly,
very limited attention has been paid to the relation between the rate of compressive fatigue
crack growth and the condition of residual tensile stress zone.

This chapter presents a numerical investigation of the mode-I crack growth in quasibrittle
structures under compressive fatigue based on a cyclic cohesive zone model and 2D discrete
mechanics arising from the rigid body motion. The corresponding fracture kinetics is further
formulated in terms of the tensile residual stress and its associated deformation through
a fracture process zone (FPZ)-equivalence principle.

3.2 Model description
As a crack starts to propagate in quasibrittle structures, there is a FPZ attached at the
crack tip. The FPZ exhibits an inelastic behavior, which can be fully captured by a strain-
softening constitutive model with a localization limiter such as crack band model or nonlocal
model (Bažant and Planas 1997). It has been long recognized that a simple way to model
the FPZ is through the cohesive crack model, where the inelastic behavior of the FPZ is
lumped into a line and the rest part of the structure is considered to be elastic. The cohesive
crack model has been successfully used to study the fracture of quasibrittle structures under
monotonic loading. In the meanwhile, both analytical and numerical studies have demon-
strated that the cohesive crack model can also be applied to the crack growth induced by
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Figure 3.1: Description of discrete model: a) contact between rigid bodies, b) predefined
crack path, c) mesh generation by the Voronoi tessellation.

cyclic loading (Budianksy and Hutchinson 1978; De-Andrés et al. 1999; Yang, Mall, et al.
2001; Nguyen et al. 2001; Roe and Siegmund 2003; Wang and Siegmund 2006). In the nu-
merical implementation, the cohesive crack can be replaced by a layer of inelastic elements
with a finite width, which is usually termed as cohesive zone model.

In this study, the concept of cohesive zone model is adopted due to its simplicity. As
an alternative to conventional finite elements, the structure is modeled by a 2D assembly of
rigid bodies (Fig. 3.1a). The bodies have irregular geometries given by the Voronoi tessellation
on a set of pseudo-randomly placed nuclei with a prescribed minimum mutual distance lmin
(generated in the same process as described in the previous chapter), which is a material
constant determined by the size of material inhomogeneities The tessellation procedure allows
us to increase the mesh density around the notch tip and along the crack path (Fig. 3.1c).
Since the focus is on the mode-I fatigue crack growth, the tessellation is performed in a way,
which results in a straight crack ligament defining the crack path (Fig. 3.1b). The model
kinematics and elastic behavior is the same as briefly described in the previous chapter (proper
and detail explanation is in Sec. 4.3), except no mesostructure was projected this time; all
the nodes and contacts belong to the same phase.

The discrete model is actually chosen here for the sake of author’s preference. The usual
finite elements could be used as well. However, the discrete model can also reflect material
inhomogeneity, because the size of the discrete bodies along the crack path was set approxi-
mately to the real size of the grains.

3.2.1 Cyclic cohesive law

Based on the cohesive zone model, the fatigue process is simulated by a layer of inelastic
contacts along the crack ligament. All the other contacts, which are outside the pre-defined
crack path, are considered to remain linearly elastic. More realistically, the plastic strain
should be allowed to develop also outside the crack path. It is considered here lumped into
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Figure 3.2: Constitutive behavior of cohesive element: a) plastic behavior in compression
regime; b) cyclic traction-separation constitutive behavior in tensile regime (Nguyen et al.
2001); c) complete cyclic stress-strain behavior.

the crack path for sake of simplicity. Since the attention is limited to the mode-I crack
growth only, it is assumed that the shearing and local rotations along the crack ligament
at the crack plane are negligible. The inelastic cohesive law is prescribed to contacts in the
normal direction only whereas the tangential and rotational stiffnesses along the pre-defined
crack path are removed. Hereafter, these inelastic normal contacts are referred as cohesive
elements.

To model compressive fatigue crack growth, it is obvious that the constitutive behavior
of the cohesive elements must account for both tension and compression. Based on Suresh’s
model (Brockenbrough and Suresh 1987; Suresh 1990), a permanent compressive strain must
be present during the unloading process in order to cause the subsequent development of the
residual tensile stress. When the cohesive elements enter the tensile regime and the cohesive
stress reaches the material tensile strength, damage starts to accumulate, which eventually
leads to the crack growth. Consequently, the total normal strain eN can be written as
eN = ee

N + ep
N + ef

N , where ee
N , e

p
N and ef

N denote the elastic, plastic, and fracture strain
components, respectively.

In the compression regime (sN ≤ 0), no damage occurs and the inelastic behavior can
be described by a plastic-type model. The compressive loading path (ėN < 0) is considered
to consist of three branches: (i) linearly elastic branch until the cohesive stress sN reaches
the elastic limit fe, (ii) quadratic hardening branch when sN lies between the elastic limit fe
and the plastic limit fc, and (iii) plastic branch where sN is equal to fc. The entire loading
branch in the compression regime (sN ≤ 0 and ėN < 0) can be written as

ṡN =


E0ėN fe < sN ≤ 0
(2− κ)x2 − 2x+ κ

κ(1 + (κ− 2)x)2 E0ėN fc < sN ≤ fe

0 sN = fc

(3.1)

where κ is a shape parameter, which controls the curvature of the quadratic hardening branch,
x = (eN − et0)E0/(κ(fc − fe)), and et0 is strain at which sN = fe for the tth loading cycle.

For the unloading path in the compression regime (sN ≤ 0 and ˙eN > 0), the unloading
stiffness is equal to the elastic modulus, i.e. ṡN = E0 ˙eN . This implies that the damage
developed in the compression regime is negligible. Fig. 3.2a shows the loading and unloading
paths of the cohesive elements in compression.

During the unloading process, tensile stress starts to develop at the crack tip, which calls
for the cohesive model in the tensile regime. As the cohesive elements experience the tensile
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stress, the corresponding fracturing strain starts to increase, which represents material dam-
age. The tensile cohesive behavior can be described in terms of the fracturing separation wN ,
which is similar to the conventional mode-I cohesive crack model in tension. The fracturing
separation can be simply calculated as wN = ef

NL, where L is a distance between the nodes
of two adjacent bodies.

In this study, the cyclic cohesive model developed by Nguyen et al. (2001) is adopted for
the tensile regime (sN ≥ 0), where the loading and unloading paths can be written as

ṡN =
{
K+ẇN (ẇN > 0)
K−ẇN (ẇN < 0)

(3.2)

where K+ and K− are loading and unloading stiffnesses, respectively. In the model, the
unloading stiffness is defined as

K− = sN max
wN max

(3.3)

where sN max, wN max are normal stress and separation at the point of load reversal. It is
clear that the unloading path points to the origin of sN − wN space, which indicates that
the loading cycles in tensile regime does not cause additional plastic strains. The evolution
of the loading stiffness K+ is defined by the following equations (Nguyen et al. 2001)

K̇+ =


−K

+ẇN
wf

(ẇN > 0)

(K+ −K−)ẇN
wf

(ẇN < 0)
(3.4)

where material parameter wf is the characteristic fracturing displacement, which governs the
damage accumulation during the loading cycle. The evolution of K+ naturally gives rise to
the energy hysteresis loop, which represents the energy dissipation due to material damage
during each loading cycle. In addition, the stress-separation state for the cyclic loading is
bounded by the tensile cohesive law under the monotonic loading, which has a linear profile
(Fig. 3.2b).

The in-house software is actually written in incremental (not rate) form. Therefore,
incremental formulations of constitutive Eqs. (3.1), (3.2) and (3.4) are needed. Directly
integrating or solving simple linear differential equations, one arrives at

∆sN =


E0∆eN fe < sN ≤ 0
(fc − fe)(κx− x2)

1 + (κ− 2)x ∆eN fc < sN ≤ fe

0 sN = fc

(3.5)

∆K+ =


K+

prev exp
(
−∆wN

wf

)
(∆wN > 0)[

K+
prev −K−

(
1− exp

(
−∆wN

wf

))]
exp

(
∆wN
wf

)
(∆wN < 0)

(3.6)

where ∆X denotes increments of variable X and subscript Xprev stands for value of variable
at the beginning of the solution step. Unfortunately, first part of Eq. (3.2) cannot be solved
analytically and has to integrated numerically, here the Simpson’s rule is used.
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Chapter 3. Modeling of fatigue crack growth under cyclic compression

Fig. 3.2c shows a complete loading cycle passing through both compression and tensile
regimes. To facilitate the later calculation of the equivalent crack length, a parameter to
quantify the damage of each cohesive element is introduced here. One can calculate this
damage parameter D at each end of the cycle as

D = 1− sN
E0(eN − epN ) (3.7)

D = 0 represents the virgin state and D = 1 represents the complete damage state.
It is worthwhile to comment on the several simplifications introduced in the proposed

model:

• The compression regime is described by a plasticity-type model without strain softening.
The reason for choosing such a model is that the primary interest is in the mode-I
cohesive fracture. If the compressive stress-strain curve exhibits strain softening, then
splitting cracks would have occur, which run parallel to the loading axis. This is clearly
not the failure mechanism that the present study focuses on.

• In the compression regime, small amount of micro-cracking is represented by the non-
linear hardening part of the stress-strain curve (Suresh et al. 1989). It is assumed that
this amount of damage is small and therefore the unloading modulus is equal to the
elastic modulus. By doing this, one maximize the permanent compressive strain upon
unloading (Brockenbrough and Suresh 1987; Suresh 1990), which in turn enhances the
subsequent development of tensile residual stress. It is further considered that the initial
reloading stiffness in the compression regime does not degrade, which is a simplifica-
tion. However, such simplification would not qualitatively change the overall fatigue
behavior.

• The cyclic behavior in the tensile regime does not cause any irrecoverable strain. A more
realistic model may include some amount of irrecoverable strain upon tensile unloading,
which would reduce the total irrecoverable compressive strain as the cohesive element
enters the compression regime. The addition of plastic strain resulted from the tensile
regime can be easily implemented in the present model with a minor change of the
unloading branch (Eq. (3.3)), where the unloading path does not point to the origin of
sN − wN space.

• The present model does not explicitly consider the debris formation in the crack wake.
This is based on the assumption that, for a fixed loading history, the amount of the
debris formed at the advancing crack tip does not change significantly during each
loading cycle. It is clear that the present model is not suitable to study the effect of
debris formation on the crack growth, such as the comparison of fatigue kinetics between
the cases of using and not using the ultrasonic cleaning of the crack surface (Ewart and
Suresh 1986; James et al. 1991). It should be pointed out that explicit incorporation of
effect of debris formation into a continuum model could be a challenging task since the
amount of debris is difficult to calculate and the effect of debris on the model parameters
is hard to quantify. A better approach to accurately account for this effect is to employ
a full scale discrete element model with the appropriate contact laws (e.g. Grassl and
Rasmus (2008)).
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Figure 3.3: Loading history and specimen dimensions (Ewart and Suresh 1986).

3.2.2 Numerical example

The above-mentioned cohesive law is used to simulate the mode-I crack growth in a single edge
notch specimen made of polycrystalline alumina under uniform far field cyclic compression
(Fig. 3.3), which is the same as the specimen used in the compressive fatigue test by Ewart
and Suresh (1986). According to Ewart and Suresh (1986), some basic material properties
of polycrystalline alumina are: Young’s modulus E = 372GPa, Poisson’s ratio ν = 0.2,
tensile strength ft = 260MPa, and compressive strength fc = −2620MPa. The model
parameters are assumed as follows: elastic constant E0 = 387MPa, tangent/normal stiffness
ratio α = 0.4, plane stress 2D simplification, tensile strength ft = 260MPa, compressive
strength fc = −2620MPa, fracture energy Gt = 50 J/m2, wf = 50µm, the elastic limit
of the compression regime fe = 1/3fc and κ = 2. According to Ewart and Suresh (1986),
the average grain size of the material is about 18 µm. To obtain such an average in nodal
distances, the parameter lmin is set to 13 µm.

From the viewpoint of Eq. (6.25) on page 94, the macroscopic elastic modulus is under-
estimated by 14% and Poisson’s ratio by 12%. At the time this analysis was performed, the
meso-macro relations from Eq. (6.25) were not known to the author and simple estimations
from Bolander and Saito (1998) were used instead, including the rotational stiffness between
the rigid bodies.

The specimen considered in the simulation has a dimension of 15.9mm (depth) × 37mm
(length) × 9.4mm (thickness) (see Fig. 3.3). The initial notch length is a0 = 6.3mm. In
the simulation, the minimum applied compressive stress σmin is set to be −297.7MPa. Five
different levels of the maximum compressive stresses (σmax ∈ {−19.8, −29.8, −59.4, −145.8,
−198.5}MPa), which corresponds to different R ratios (R = σmin/σmax ∈ {15, 10, 5, 2, 1.5}),
are considered in the simulations. The load is applied through rigid platens that cannot rotate
and mimics a gluing of the specimen to the loading machine.

Though the specimen considered in the numerical simulation is identical to the test speci-
men used by Ewart and Suresh (1986), the simulation is not aimed to quantitatively reproduce
the test results because an excessive amount of loading cycles (4× 105 cycles) would need to
be simulated, which is beyond the available computational capability. Instead, the objective
of the present study is to qualitatively capture the experimental observations including the
onset of the mode-I crack growth and the final crack arrest.
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Figure 3.4: a) Equivalent crack extension for stress ratio R = σmin/σmax = 10; b) optically
measured crack length during experiments (Ewart and Suresh 1986).

3.3 Results and discussions

The equivalent linear elastic fracture mechanics (LEFM) has been widely adopted to study
the fracture and fatigue of quasibrittle materials (Bažant and Xu 1991; Bažant and Schell
1993; Bažant and Planas 1997; Bažant 2005). In the present study, the equivalent LEFM
crack is used to investigate the fatigue kinetics. The length of equivalent LEFM crack aeq is
determined such that the elastic compliance of the intact structure with crack length aeq is
equal to the actual compliance of the structure with the FPZ (i.e. damage zone) at the real
crack tip quantified in terms of the damage parameter D (Eq. (3.7)). The elastic compliance
of a single edge notch specimen can be easily calculated from its stress intensity factor, which
can be found in Tada et al. (2000).

Fig. 3.4a shows the calculated equivalent crack extension ∆aeq for 4× 104 cycles for the
case of R = 10. It can be seen that the crack grows with a decreasing velocity, which agrees
qualitatively with the experimental observation (Ewart and Suresh 1986) (Fig. 3.4b). The
same behavior has also been seen in other quasibrittle materials (Ewart and Suresh 1987;
Suresh et al. 1989; James et al. 1991). It is expected that, with a proper set of model param-
eters, the proposed numerical model could match the experimental results quantitatively.

Fig. 3.5 shows the corresponding stress profile along the crack ligament at σmax and
σmin at different numbers of loading cycles, specifically in cycle 1, 50, 250, 1000, 10000 and
40000. It can be seen that at the end of each loading cycle (σ = σmax), a considerable
amount of tensile stress is developed at the crack tip, which drives the crack growth, whereas
the rest of the ligament is under compression. At the minimum stress σmin, the entire
ligament experiences compressive stress. It is interesting to note that, as the loading cycle
increases, the magnitude of the maximum compressive stress at σ = σmin decreases, and
the compressive stress is more uniformly distributed along the ligament. Consequently, after
a sufficient number of loading cycles, the stress along the entire ligament “shakes” down
within the elastic limits of the tension and compression regimes, where no additional tensile
damage occurs and therefore the crack arrests.

With the present model, it is easy to extract the information on the evolution of the
residual tensile stress zone. Fig. 3.6 shows the evolution of the sizes of tensile residual stress
zone and the FPZ. The tensile residual stress zone refers to the crack tip region which is
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Figure 3.5: Development of stress profiles along the ligament during cyclic loading for R = 10.
Black and gray lines denote the cohesive stress profiles at σmin and σmax, respectively, for
loading cycle 1, 50, 250, 1000, 10000 and 40000.
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Figure 3.6: Sizes of the residual tensile stress zone and FPZ at σmax.

subjected to the tensile stress whereas the FPZ refers to the zone at the crack tip which
experiences the tensile damage. It can be seen that, for the first few thousand cycles, both
the tensile residual stress zone and FPZ grow. This is due to the fact that, during the initial
stage, more and more cohesive elements start to experience permanent strain upon unloading
(see the cohesive stress profile at σmin in Fig. 3.5), which causes an increase in sizes of tensile
residual stress zone and FPZ. However, at the same time, as the number of loading cycles
increases, the magnitude of compressive cohesive stress at σmin decreases considerably, which
eventually causes the tensile residual stress zone and FPZ to shrink. Though the calculation
shows that the evolution of the sizes of tensile residual stress zone and FPZ exhibits a non-
monotonic trend, the crack growth rate is monotonically decreasing as indicated by Fig. 3.4a.
This implies that the size of FPZ is not directly related to the crack growth rate. As will be
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Figure 3.8: a) Equivalent crack extension for various R ratios; b) experimentally observed
crack extension (James et al. 1991).

shown later, this is because the crack growth rate is not only governed by the FPZ size but
also by the cohesive stress and the deformation of the FPZ.

Fig. 3.7 shows the evolution of the far-field compressive stress σeff during the unloading
process of each cycle at which the tensile residual stress starts to occur. It is seen that,
during the initial stage of cyclic loading, σeff steadily decreases, and soon it approaches
almost a constant. Based on the cyclic cohesive model, similar trend is expected for the
evolution of the far-field compressive stress during the loading process at which the tensile
residual stress vanishes. This implies that for each loading cycle the duration for which the
tensile residual stress is present can be reasonably considered as a constant except for the
first few thousand cycles. This is important for the later formulation of the fracture kinetics
equation.

Fig. 3.8a shows the crack growth profile for different levels of the maximum applied
compressive stress σmax with a fixed minimum applied compressive stress σmin. It can be
seen that as σmax increases the crack extension (or crack velocity) increases. Such a trend
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has been observed in the experiments (James et al. 1991) (see crack extension curves for
R = 2 and 5 in Fig. 3.8b). This is simply because for a fixed σmin one must have sufficient
load amplitude for the cohesive element to enter the softening range of the tensile regime. It
shall be pointed out that the same set of model parameters is used in this simulation, which
implies that the amounts of debris formed for these different stress amplitudes are almost
the same. This is of course a simplification, which is reasonable for a limited range of stress
amplitudes. In fact, the experiments showed that the crack velocity starts to decrease as
σmax is beyond a certain value (see crack extension curve for R = 10 in Fig. 3.8b), which
can be attributed to the fact that the increase in σmax leads to more debris formation in
the crack wake, which shields the crack tip and causes a decrease in crack growth rate. As
mentioned earlier, such a phenomenon cannot be captured by the present model unless the
model parameters are explicitly related to the amount of debris formation.

Overall, it has been shown that the proposed cohesive zone model can qualitatively capture
some essential phenomena of crack growth under compressive fatigue such as the onset of crack
growth, the decrease in crack growth rate, the evolution of compressive stress at the crack
tip, and the exhaustion of tensile residual stress zone and FPZ. The essence of the present
cohesive model lies in two aspects: (i) the plastic-type behavior in the compression regime,
which results in the irrecoverable strain upon unloading, and (ii) the softening behavior in
the tensile regime, which governs the FPZ and drives the crack growth.

3.4 Formulation of fracture kinetics
Though extensive efforts have been devoted to the analytical formulation of the crack growth
rate for tensile fatigue (Paris and Erdoğan 1963; Priddle 1976; Foreman et al. 1967; Donahue
et al. 1972; Priddle 1976; Erdoğan 1963), limited attention has been paid to the fracture
kinetics equation for compressive fatigue (Fleck et al. 1985; Vasudevan and Sadananda 2001).
In this study, the existing kinetics equation for the tensile fatigue crack is extended to the
compressive fatigue based on a FPZ-equivalence principle.

For quasibrittle structures, what governs the crack growth is the FPZ at the crack tip
for both static and cyclic loading (Le, Bažant, and Bazant 2011; Le and Bažant 2011). For
two quasibrittle structures, the crack would grow with the same velocity if the FPZ’s formed
in these two structures are identical. This is analogous to the concept of similitude used
in the LEFM, where the crack growth rate is governed by the applied SIF, i.e. the local
elastic stress at the crack tip. However, the proposed FPZ-equivalence principle is much
more stringent, which requires not only the loading on the FPZ but also the size of the FPZ
to be the same. In this study, the FPZ-equivalent principle can be easily adopted because
the numerical simulation directly yields the detail information of FPZ including its size and
stress and deformation profiles.

Since the fracture kinetics is well studied for tensile fatigue, one might now seek, for a given
structure, the equivalent cyclic tensile stress applied at the far-field that would lead to the
same FPZ that the compressive fatigue loading produces (Fig. 3.9). It is clear that, during
the compressive fatigue, only part of the loading cycle causes damage in FPZ. Therefore, the
equivalent cyclic tensile stress has a zero stress ratio (zero-tension-zero cyclic loading). It is
well known that the growth rate of tensile fatigue crack is related to the cyclic SIF. For zero-
tension-zero cyclic loading, only the maximum equivalent SIF Keq is needed. Therefore, one
just need to calculate Keq from the FPZ of the actual structure at the maximum compressive
stress σmax based on the fact that the equivalent FPZ at the maximum equivalent tensile
stress must be the same as the actual FPZ at σmax.
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Figure 3.9: FPZ equivalence principle.

In this study, Keq is calculated from the energy release rate G through Irwin’s relation
Keq =

√
EG. The energy release rate is obtained by performing the J−integral (Rice 1968)

along the actual cohesive crack at σmax (Fig. 3.10). By careful selection of integration path
Γ, the J integral becomes

G = J = −
∫

Γ
t2
∂u2
∂x

dx (3.8)

where t2 is the cohesive stress (identical to sN ), and u2 is normal displacement of the crack
faces, whose magnitude is equal to wN/2. Note that the plastic deformation is excluded as
it does not contribute to the energy flux to the crack tip for fracturing and elastic energy is
omitted because the crack paths runs only along the crack faces.

The discrete nature of the model does not allow to evaluate J directly since differentiation
of the u2 cannot be obtained. However, the discrete version of J can be constructed thanks
to the regularity of the lattice at the crack path. The J (or G) is computed as an energy
needed to supply to propagate the crack by finite length ∆a (that equals to the size of the
element lmin) divided by new crack area b∆a. This energy equals (but with opposite sign)
according to Eq. (3.8) to work done by cohesive forces in normal directions. To propagate the
crack, the negative cohesive force feN need to increase toward zero to fe−1

N at corresponding
displacements weN/2 and we−1

N /2 (Fig. 3.10). Assuming linear transition in both fN and wN ,
the energy (of negative sign) done in eth element is Ge =

(
we−1
N feN − weNf

e−1
N

)
/4.

G = −2
∑h
e=1Ge
b∆a =

h∑
e=1

weNf
e−1
N − we−1

N feN
2blmin

= lmin
2

h∑
e=1

(
efe
Ns

e−1
N − ef(e−1)

N seN

)
(3.9)

Multiplier 2 stands for two crack faces; substitution feN = blmins
e
N and weN = efe

NL = efe
N lmin

was used. The summation needs to be done over the whole cohesive zone up to the first
elastic element h in Fig. 3.10. No energy dissipation appears outside because of either zero
tractions (e < 1) or zero separations (e > h). The last, hth element needs (before its starts
to dissipate energy on nonzero separations) to increase stress up its strength ft. Thus, fhN
should be considered directly as ftlminb instead.

With knowing Keq, one can use the existing fracture kinetics equation to calculate the
crack growth rate under the equivalent tensile fatigue loading, which would be the same as
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Figure 3.10: Evaluation of J-integral for cohesive zone.

the actual crack growth rate under compressive fatigue. The simplest and the most widely
adopted fatigue kinetics equation for tensile fatigue is the Paris law (Paris and Erdoğan 1963)

daeq
dN = A∆Km = AKm

eq (3.10)

where A and m are constants.
Three comments should be made here: (i) since the equivalent tensile fatigue loading has

a zero stress ratio, there is no need to consider the R−ratio effect on the Paris law. (ii) In
the present model, the waveform of the equivalent tensile cyclic loading is not specifically
consider. It is clear that the waveform can be obtained by tracing the stress and deformation
profiles of FPZ and calculating Keq for the entire loading cycle. The change of waveform
during the entire cyclic loading is small and, as will be shown later, it does not affect the
numerical values of A and m. (iii) It has been shown that, due to the quasibrittleness of the
structure, A and m are generally dependent on the structure size and geometry (Bažant and
Xu 1991; Ciavarella et al. 2008; Ritchie 2005; Kirane and Bažant 2016). Since the focus is
placed on the structure of a particular geometry and size, the size dependence of A and m is
not a concern here.

Now the proposed FPZ-equivalence principle is applied to the numerically simulated
single-edge notched specimens. At the end of each loading cycle, the stress and fracture
strain profile of the FPZ is extracted to calculate the corresponding Keq. Fig. 3.11a shows
the evolution of Keq versus the equivalent crack extension. It can be seen that initially Keq
is equal to K1c, and after a few thousand cycles, Keq starts to decay. The decay of Keq in
terms of the crack extension can be fitted by a linear function

Keq = K0〈1−∆aeq/ac〉 (3.11)

where ∆aeq is an extension of the equivalent crack, K0 and ac are constants, and 〈x〉 =
max(x, 0). It is interesting to note that Fleck et al. (1985) proposed a similar fracture
kinetics equation as Eq. (3.10) and their experimental results indicated a linear decreasing
trend of Keq, though a different definition of Keq is used in their study.

Fig. 3.11b presents the calculated crack growth rate daeq/dN versus the equivalent tensile
SIF amplitude Keq. As seen, the plot of crack growth rate versus Keq consists of two regimes:
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Figure 3.11: a) Evolution of equivalent SIF amplitude Keq and its approximation by
Eq. (3.11); and b) crack velocity versus equivalent SIF amplitude and its fitting by Eq. (3.10).

regime 1 where the crack growth rate decreases at a constant Keq = K1c, and regime 2 where
the crack growth rate decreases with a decreasing Keq. It is clear that regime 2 perfectly
agrees with the Paris law (Eq. (3.10)), whereas regime 1 shows a significant deviation. Based
on fitting of the regime 2, it is obtain A = 2.98× 10−8√m/MPa, and m = 4.30. The perfect
fit indicates that the detail waveform of the equivalent tensile fatigue loading has a negligible
effect on the crack growth rate.

The deviation of regime 1 from the Paris law is not surprising as it is similar to the fast
fracture regime of the conventional tensile fatigue crack growth plot. Nevertheless, note that
there is a salient difference between the regime 1 of the present plot and the conventional fast
fracture regime. In the conventional fast fracture regime, the crack grows at an increasing
rate and eventually becomes unstable as the SIF approaches K1c whereas, in the case of
compressive fatigue, the crack grows at a decreasing rate at Keq = K1c. This difference can
be explained as follows: in the conventional tensile fatigue test, the far-field tensile cyclic
loading is prescribed and the crack would grow unstably as the SIF approaches K1c, which
is similar to the loss of stability after the structure reaches its peak load in the load-control
test. In the compressive fatigue, the simulation shows that, in the regime 1, Keq remains
constant, i.e. Keq = K1c (Fig. 3.11a), which implies that the crack can grow stably. In the
meantime, the duration for which the crack tip region experiences the tensile loading steadily
decreases during the initial stage of the cyclic loading, which leads to a decrease in the crack
velocity in regime 1. It must be pointed that regime 1 is not always present. For example, if
the tensile damage is sufficiently small for the first cycle, then only regime 2 would exist.

It should be mentioned that, unlike the Paris law for tensile fatigue, Eq. (3.10) alone
cannot be readily used to predict the crack growth under compressive fatigue because the
evolution of FPZ over the cycles and Keq are typically unknown. Therefore, one must resort
to the proposed cohesive crack model to predict the FPZ evolution. Nevertheless, excessive
amount of computation would defeat the purpose of adopting an analytical fracture kinetics
equation. Therefore, numerical simulation for a few thousand cycles is performed, from which
one can determine the crack extension in regime 1 if it exists, K0 and ac of Eq. (3.11), as
well as the constants A and m of the Paris law. With the calibrated Eqs. 3.10 and (3.11),
one can then calculate the crack growth for the subsequent tens of thousands loading cycles.
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3.5 Summary
The fatigue behavior of quasibrittle structures under cyclic compression is numerically studied
by a cohesive zone model embedded in 2D assembly of discrete units. The model successfully
simulates the development of tensile residual stress at the end of each loading cycle, which
is responsible for the crack growth. It also correctly captures the exhaustion of the tensile
residual stress, which causes the decrease in crack growth rate and eventually leads to the
crack arrest. Based on the numerically simulated stress and deformation profiles of the FPZ,
a FPZ-equivalence principle is adopted to formulate a fracture kinetics equation, which agrees
well with the numerical simulation results.

Presented application of discrete model shows its ability to provide correct mechanical
description of solids under various loading conditions. The simple 1D inelastic fatigue model
will replaced in the next chapter by complex and robust inelastic contact behavior designed
for concrete fracture simulation.
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Chapter 4

Probabilistic discrete mesoscale
simulations of concrete fracture

This chapter is based on paper: Jan Eliáš, Miroslav Vořechovský, Jan Skoček, and Zdeněk P.
Bažant (2015). “Stochastic discrete meso-scale simulations of concrete fracture: comparison
to experimental data”. Engineering Fracture Mechanics 135, pp. 1–16. issn: 0013-7944.
doi: 10. 1016/ j. engfracmech. 2015. 01. 004

4.1 Introduction

The reliability of reinforced concrete structural members is crucial for modern engineering
structures. The irregular inner structure of concrete, characterized by random spatial ar-
rangement of grains of various sizes and spatial variability of material properties calls for
theoretical model that is able to account for these features. With help of such a model, the
behavior of concrete structures can be studied, understood and predicted, which is needed
for design and assessment of engineering structures. When evaluating the reliability of con-
crete structures, the fracturing of concrete is one of the crucial phenomena that needs to be
included in the analysis.

To evaluate the reliability by computer simulations, a realistic fracture model represent-
ing correctly all the mechanical or coupled effects is needed. However, the modeling of
the fracture process is further complicated by random fluctuations of mechanical properties
in concrete. These fluctuations have several sources, among which the randomness in the
concrete constituents themselves (material properties, geometric properties), the process by
which the constituents are mixed (aggregate locations, non-homogeneous distribution of wa-
ter, cement, finer aggregates and additives), and non-uniform drying are the most significant.
To identify the material spatial randomness in the form of model probabilistic parameters is
extremely difficult. Moreover, the spatial fluctuations of material properties also complicate
identification of parameters for deterministic model because the experimental data are always
“contaminated” by the material randomness.

The mesolevel discrete models have the advantage of incorporating a substantial part of
the randomness through the consideration of the random mesolevel structure of the mate-
rial. To improve the probabilistic description of the material, further random fluctuations of
model parameters are typically used. Fluctuations are then usually included in the form of
a stationary autocorrelated random field (Vořechovský and Sadílek 2008; Grassl and Bažant
2009; Grassl, Grégoire, et al. 2012; Syroka-Korol et al. 2015). Each source of randomness
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has its own characteristic such as the correlation length, probability distribution type, and
coefficient of variation.

This chapter is focused on two sources of randomness, one resulting from random geometry
of the concrete mesostructure which is naturally covered by mesoscale discrete model, and
another lumped here into the spatial variation of the material properties described by single
random field. The effects of randomness on the model output are investigated from the
viewpoint of simulated peak loads, crack patterns, energy dissipation and fracture process
zone shape.

The modeling approach follows the three-dimensional (3D) mesolevel discrete model de-
veloped by Cusatis and Cedolin (2007), which is an extension of Cusatis et al. (2003) and
Cusatis et al. (2006). Several other papers document further development of the model
(Cusatis, Pelessone, et al. 2011; Cusatis, Mencarelli, et al. 2011; Schauffert and Cusatis 2012;
Schauffert, Cusatis, et al. 2012; Smith et al. 2014; Ashari et al. 2017). Dynamic though the
original model is, only the static form of the model is used here. There are several other
simplification such us omitting influence of confinement and reducing the number of input
parameters. The model is here enhanced by random fluctuations of its parameters. It is used
to simulate an extensive experimental series of three-point-bend beam tests recently carried
out at Northwestern University (Hoover, Bažant, et al. 2013; Wendner et al. 2015). This se-
ries included four different beam sizes (with a size ratio of 1:12.5) and variable notch depths
(from no notch at all up to a notch extending to 30% of beam depth). The experiments
were controlled by the crack mouth opening displacement (CMOD), to make it possible to
measure softening.

Two versions of the model are used: (i) the full probabilistic version, and (ii) the original
deterministic version with no additional spatial variability in model parameters. By compar-
ing results from the deterministic and probabilistic models with the experimental data, one
can find what part of the variability in the model response is due to the randomness of grain
size and of spatial distribution. The deterministic model is also used to obtain the mean
values of model parameters by automatic identification based on matching the peak loads
and the areas under the experimental load-CMOD curves.

4.2 Random geometry of the model
The material is represented by an assembly of ideally rigid 3D bodies. The bodies are created
by a tessellation based on the pseudo-random locations and radii of computer generated
spheres, serving as virtual mineral grain in concrete. Every cell contains one grain. The rigid
bodies are connected through their common facets, at which nonlinear cohesive constitutive
relations are defined. An example of body shape in 2D and 3D is shown in Fig. 4.1 as well
as an example of a contact facet.

The process of creation of the model geometry is described in the following items.

• Initially, set of virtual spherical mineral grains is generated according to the Fuller’s
grading curve with exponent 0.5

F (d) =
√

d

dmax
(4.1)

The equation provides fraction of mass of mineral grains with diameter lower than d,
where dmax is the maximum diameter. The minimum diameter dmin, at which this
process is terminated, must be also chosen. Several representative diameters d1, d2, . . .
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Figure 4.1: Sketch of rigid bodies and contacts created by tessellation in 2D and 3D.

are selected within the interval from dmin to dmax and the volumes occupied by grains
with such diameters are estimated based on the Fuller’s curve. Dividing this volumes by
volume of single grain, numbers of grains n1, n2, . . . of diameters d1, d2, . . . are calcu-
lated. All the smaller grains are smeared into the matrix and not explicitly represented
in the model.

• The spheres are placed sequentially and randomly into the specimen domain starting
from the largest. Trial grain position is accepted only when it does not overlap any
previously placed grain or specimen boundary, otherwise new trial position is randomly
generated.

• Delaunay triangulation is performed on the spherical centers creating lattice of contacts
organized into tetrahedrons. The 2D sketch is shown in Fig. 4.1. Each contact line runs
through two spheres and free space in between belonging to the matrix.

• Special tessellation creates shapes of the rigid bodies. One rigid body is created around
every sphere by (i) centroids of matrix part of the the adjacent tetrahedrons, (ii) cen-
troids of the matrix part of the adjacent tetrahedral faces, (iii) centroids (centers) of
the matrix part of the adjacent contact lines. These points are shown in 2D in Fig. 4.1.
There is a blue area symbolizing matrix belonging to certain triangle (or tetrahedron).
The body shape is defined by centroid of such areas in all adjacent triangles (ii) or
tetrahedrons (i). The second types points defining the body shape in the figure are
centers of the contact line segments lying in the matrix (iii).

• The points adjacent to one contact line creates contact surface. To simplify the model,
the points are projected into the plane perpendicular to the contact line, so the contact
surfaces are planar and perpendicular. They are called facets hereinafter.

This special type of tessellation was chosen in Cusatis and Cedolin (2007) in order to
divide the matrix phase equally between the grains. Somehow more natural is to use Voronoi
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tessellation or Power tessellation as employed in Chapters 2, 3,5 and 6. The Power tessellation
also provides uniform distribution of matrix to grains, while keeping all the nice properties
of the Voronoi tessellation.

4.3 Elastic behavior

Let us analyze one contact between nodes a and b of coordinates xa =
(
xa1 xa2 xa3

)
and

xb with central point c, area A and length L, see Fig. 4.1. The translations of point a are
denoted ua =

(
ua1 ua2 ua3

)
and the rotations are θa =

(
θa1 θa2 θa3

)
. The kinematics

of the bodies is dictated by rigid body motion assuming small rotations, and is thus often
called a rigid-body-spring network (Kawai 1978; Bolander, Hong, et al. 2000). From the rigid
body motion, the translation of any point x inside the body associated with nucleus a can
be expressed as

u(x) = ua + θa × (x− xa) = Aa(x) ·
(
ua θa

)
(4.2)

with matrix Aa(x) being

Aa(x) =

 1 0 0 0 x3 − xa3 xa2 − x2
0 1 0 xa3 − x3 0 x1 − xa1
0 0 1 x2 − xa2 xa1 − x1 0

 (4.3)

The displacement discontinuity ∆ab between bodies a and b is measured by their separation
at the common facet centroid c.

∆ab =
(

∆ab
1 ∆ab

2 ∆ab
3

)
= Ab(c) ·

(
ub θb

)
−Aa(c) ·

(
ua θa

)
(4.4)

= LBab ·
(
ua θa ub θb

)
where the second order tensor Bab =

(
−Aa(c) Ab(c)

)
/L was conveniently introduced (L

is the distance between nodes a and b).
Contact strains in the global coordinate system are calculated based on the displacement

discontinuity.

gab = ∆ab

L
= Bab ·

(
ua θa ub θb

)
(4.5)

The tensor B thus relates nodal translations and rotations with strains.
Three strains acting at point c in the normal direction, n, and two tangential directions,m

and l, are calculated. For sake of simplicity, the second order tensor R containing directional
vectors n, m and l in rows is introduced.

eab =
(
eN eM eL

)
=

 n
m
l

 · gab = Rab ·Bab ·
(
ua θa ub θb

)
(4.6)

Based on strains, one can express stresses (in elastic regime)

sab =
(
sN sM sL

)
= E0

(
eN αeM αeL

)
= E0α · eab (4.7)
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where the first order tensor α =
(

1 α α
)
. E0 and α are two fundamental elastic param-

eters of the contact providing normal stiffness E0A/L and tangential stiffness αE0A/L.
Three contact forces acting at point c in the normal and shear directions are given by(

fN fM fL
)

= Asab = AE0α ·Rab ·Bab ·
(
ua θa ub θb

)
(4.8)

The forces and moments in global coordinate system acting at nodes a (fab andmab) and
b (fba and mba) due to contact ab can be obtained from the principle of virtual work(

fab mab

)
·
(
δua δθa

)
+
(
fba mba

)
·
(
δub δθb

)
= L

(
fN fM fL

)
· δeab

= L
(
fN fM fL

)
·Rab ·Bab ·

(
δua δθa δub δθb

)
(4.9)

using substitution from Eq. (4.6); symbol δ denotes the virtual quantities. The forces acting
at the nodes are therefore(

fab mab fba mba

)
= L

(
fN fM fL

)
·Rab ·Bab (4.10)

Substituting now from Eq. (4.8) provides(
fab mab fba mba

)
= E0ALB

T
ab ·RT

ab ·α ·Rab ·Bab︸ ︷︷ ︸
Kab

·
(
ua θa ub θb

)
(4.11)

where the first part of right-hand side is the second order tensor providing the differentiation
of the internal potential energy with respect to deformation parameters, known as the stiffness
matrix Kab of element ab.

Kab = E0ALB
T
ab ·RT

ab ·α ·Rab ·Bab (4.12)

Minimization of the total potential energy of the structure leads to solution of a system
of linear equations

K · u = f (4.13)

where the system matrix K is assembled from the element stiffness matrices at rows and
columns corresponding to unknown translations and rotations (u) at nodes loaded by forces
and moments (f).

4.4 Inelastic behavior
The inelastic constitutive model applied at contacts is based on Cusatis and Cedolin (2007).
It is simplified so that it has only two parameters for elastic regime (modulus E0 and tan-
gential/normal stiffness ratio α) and additional two for inelastic regime (tensile strength ft
and tensile fracture energy Gt).

The inelastic behavior is defined in equivalent space using equivalent stress and equivalent
strain. Indices ab are omitted hereinafter.

seq =

√
s2
N + s2

M + s2
L

α
(4.14)

eeq =
√
e2
N + α

(
e2
M + e2

L

)
(4.15)
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Figure 4.2: Elastic limit feq for different ω – Eq. (4.20); material parameters E0 = 60GPa,
α = 0.29, ft = 2.2MPa and Gt = 35 J/m2; length of the element is L = 10mm.

Each contact has single damage parameter, D, which ranges from 0 (healthy material) to
1 (completely damaged material). It does not exhibit any plastic behavior so it cannot
reproduce effects such as friction at the contacts. Equation (4.7) is modified to

s = (1−D)E0α · e (4.16)

The damage parameter D is calculated in the equivalent space

D = 1− seq
E0eeq

(4.17)

The equivalent stress is calculated from equivalent strain

seq = min


(1−Dprev)E0eeq

feq exp
(
K

feq

〈
χ− feq

E0

〉)
 (4.18)

The upper item uses damage from the previous step,Dprev, and assumes no additional increase
of the damage parameter. It is active in the elastic regime or during unloading and reloading
in the inelastic regime. Contrary, the bottom item drives the evolution of the damage. The
angled brackets return the positive part, feq denotes equivalent strength, K is initial slope in
inelastic regime and χ represents history of loading.

Before defining these variables, it is useful to define direction of straining, ω, which is

tanω = eN√
α(e2

M + e2
L)

= sN
√
α√

s2
M + s2

L

(4.19)

When ω = π/2, 0 or −π/2, the facet is loaded in pure tension, shear or compression, respec-
tively.
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Figure 4.3: Relative equivalent traction vs. equivalent separation – Eq. (4.18); material
parameters E0 = 60GPa, α = 0.29, ft = 2.2MPa and Gt = 35 J/m2; length of the element
is L = 10mm.

The equivalent strength is defined as

feq =


16ft√

sin2 ω + α cos2 ω
ω < ω0

ft
4.52 sinω −

√
20.0704 sin2 ω + 9α cos2 ω

0.04 sin2 ω − α cos2 ω
ω ≥ ω0

(4.20)

with ω0 being the direction at which the right sides of Eq. (4.20) equal (see Fig. 4.2). The
value is found in an iterative process.

The history variable χ accounts for irreversibility of fracture. It depends on straining
direction as well

χ =


eeq ω < ω0

eeq
ω

ω0
+ emax

(
1− ω

ω0

)
ω0 ≤ ω < 0

emax ω ≥ 0

(4.21)

where emax =
√

max
(
e2
N

)
+ αmax

(
e2
M + e2

L

)
within the whole loading history.

Finally, the initial slope in the inelastic regime, K, is defined using Kt and Ks, the slopes
for pure tension and shear, respectively. These are dependent on contact length, L, according
to the crack band model.

Kt = 2E0f
2
t L

2E0Gt − f2
t L

Ks = 18αE0f
2
t L

32αE0Gt − 9f2
t L

(4.22)

The initial slope for general straining direction ω is

K =


0.26E0

(
1−

(
ω + π/2
ω0 + π/2

)2)
ω < ω0

−Kt

(
1−

(
ω − π/2
ω0 − π/2

)nt)
ω ≥ ω0

(4.23)
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with

nt = ln (Kt/(Kt −Ks))
ln (1− 2ω0/π) (4.24)

All these equation are taken from Cusatis and Cedolin (2007) using recommended relations
of remaining parameters to ft and Gt: fs = 3ft, Gs = 16Gt, fc = 16ft, Kc = 0.26E, β = 1,
µ = 0.2, nc = 2. The confinement is omitted, λ0 = 0. Definition of these symbols are not
provided here, reader is referred to the original paper.

Note that using nonlinear relations in the constitutive law implies dependence of the
stiffness matrix K on deformations u. The linear system from Eq. (4.13) becomes nonlinear

K(u) · u = f (4.25)

and must be solved iteratively using the Newton-Raphson linearizion scheme or (as in our
case) the Arc-length method (Riks 1979; Crisfield 1981) allowing also tracing snap-backs.

4.4.1 Total energy dissipation in the model

It is interesting to calculate the total energy dissipated per unit crack area in general direction
ω when straining into infinity. Let us focus on directions in tensile regime only (ω ∈ 〈0, π/2〉)
and start with simple definition of total shear stress and shear strain

sT =
√
s2
M + s2

L eT =
√
e2
M + e2

L (4.26)

A simple relation between normal or shear values and equivalent value can be found from
Eqs. (4.15), (4.14) and (4.19)

sN = seq√
1 + 1

tan2 ω

sT =
√
αseq√

1 + tan2 ω

eN = eeq√
1 + 1

tan2 ω

eT = eeq√
α(1 + tan2 ω)

(4.27)

The energy per area is an integral of stress (sN , sT ) over appropriate deformation (LeN ,
LeT ). Here, the total shear strain is directly used instead of its two perpendicular components.

GF(ω) = L

∞∫
0

sNdeN + L

∞∫
0

sTdeT (4.28)

Relations (4.27) provide substitution

GF(ω) = L

∞∫
0

seq

1 + 1
tan2 ω

deeq + L

∞∫
0

seq
1 + tan2 ω

deeq = L

∞∫
0

seqdeeq (4.29)

Therefore, the fracture energy can be directly calculated in the equivalent space for any
direction ω. Since only monotonic loading with ω ∈ 〈0, π/2〉 is considered, the parameter χ
is directly equal to eeq. For initial values of eeq bellow elastic limit feq/E0, the first part of
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4.4. Inelastic behavior

Figure 4.4: Fracture energy dependent on straining direction – Eq. (4.30); material parame-
ters E0 = 60GPa, α = 0.29, ft = 2.2MPa and Gt = 35 J/m2; L = 10mm.

Eq. (4.18) is active with Dprev = 0. Later, the second part of Eq. (4.18) accounts for damage
evolution and inelastic behavior. One can easily integrate (note that K is negative)

GF(ω) = L

feq
E0∫
0

E0eeqdeeq + L

∞∫
feq
E0

feq exp
(
K

feq

〈
eeq −

feq
E0

〉)
deeq = Lf2

eq

( 1
2E0

− 1
K

)

(4.30)
Two specific cases are interesting, the pure tension case and the pure shear case. In pure
tension with ω = π/2 inserted into Eqs. (4.23) and (4.20), one obtainsK = −Kt and feq = ft.

GF(ω = π/2) = Lf2
t

( 1
2E0

+ 1
Kt

)
= Lf2

t

(
1

2E0
+ 2E0Gt − f2

t L

2E0f2
t L

)
= Gt (4.31)

where Kt was substituted by the expression from Eq. (4.22) In pure shear with ω = 0 inserted
into Eqs. (4.23), (4.24) and (4.20), one obtains K = −Ks and feq = 3ft/

√
α.

GF(ω = 0) = 9Lf2
t

α

( 1
2E0

+ 1
Ks

)
= 9Lf2

t
α

(
1

2E0
+ 32αE0Gt − 9f2

t L

18αE0f2
t L

)

= 16Gt
α

+ 9Lf2
t (α− 1)

2α2E0
≈ 16Gt

α

(4.32)

where the second term of the bottom row is about 1.5% of the first one in the typical case
of concrete and it is therefore omitted. A graph showing the fracture energy dependent on
straining direction is plotted in Fig. 4.4.

It should be noted that the energy dissipation is (almost) independent on the length of the
contact L. Small dependence (within 1.5%) is observed for pure shear, the similar situation
improving towards tensile loading is expected for remaining directions. This independence
is created on purpose. It is assumed that only one crack is running between two grains,
and it consumes constant amount of energy per crack area irrespectively of grains distance
and radii. The constitutive law with constant fracture energy independent on element size
is known in continuum modeling as the crack-band model (Bažant and Oh 1983). Here, its
discrete equivalent is used.
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Chapter 4. Probabilistic discrete mesoscale simulations of concrete fracture

4.5 Coupling of discrete and continuous models

To speed up the simulation, one can conveniently replace parts of a simulated structure by
elastic finite elements. The fracture process may take place only in the discrete mesolevel
model especially designed for this purpose, whereas the regimes where no fracture occurs are
represented by efficient continuous description discretized by finite element method (FEM).
Since FEM is just a replacement of the discrete model, the linear bricks should behave as
a representative volume of the particle assembly in elastic regime. The macroscopic elastic
parameters are not known and have to be identified. Levenberg-Marquardt nonlinear fitting
of deformation fields in all three directions (extracted from a prism of particles under low-
level uniaxial tension) by analytical functions from elastic theory is used here and provides
both of the elastic constants. It is decried in detail in Section 5.2.2 on page 71. Another way
identifying these constants is to use analytical equations derived in Section 6.4 on page 91.

The connection of two different models is provided by zero diameter boundary grains/nodes.
These particles are placed in a regular grid along contact planes (Fig. 4.5). As well as the
standard nodes of the discrete model, the boundary nodes have three translational and three
rotational DOF. Rigid bodies associated to these nodes are given by the same triangulation
and tessellation algorithm except that all parts protruding outside the particle region are cut
off.

Each boundary node lies within one finite element (more correctly on its boundary). As
a part of the finite element, one can find natural coordinates (r, s, t) of the boundary grains
in the natural coordinate system of the corresponding isoparametric finite element (though
this leads to set of nonlinear equations). The simplest requirement may dictate that values
of DOF of boundary particle have to be equal to values given by finite element at point (r,
s, t). This method is known as master-slave approach (Bathe 2006; Belytschko et al. 2014).
Boundary node translational DOF can be simply expressed by shape functions N and nodal
displacement u of the brick.

û =
7∑
t=0

Nt(r, s, t)ut (4.33)

where ut is nodal displacement of tth brick node and û is the constrained/slave counterpart of
the boundary particle. Boundary particles behave as slaves following master finite elements.

Figure 4.5: 2D sketch of FEM-particle connection through boundary particles of zero diam-
eter.
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4.5. Coupling of discrete and continuous models

Figure 4.6: Specimen with coupled discrete and continuous model loaded in TPB.

Slave rotational DOF can be prescribed by differentiating the shape functions. However,
proposed procedure simply leaves them independent. Such as free DOF, they are determined
by solving the system of nonlinear equations of the discretized boundary value problem.

Dividing DOF to free part, u, and constrained/slave part, û, one can collect all master-
slave constraints in the matrix M and create the transformation matrix X

û = M · u and thus u =
(
u û

)
=
(

1
M

)
· u = X · u (4.34)

where 1 is the diagonal unit matrix of the appropriate size. The equations for the discretized
boundary value problem are then solved for free DOF

K · u = f where K = XT ·K ·X (4.35)

Load f can be applied only to the free part of DOF. Matrix K is a standard stiffness
matrix that is assembled from all brick and rigid-body contact stiffness matrices.

A similar procedure has been published in Cusatis et al. (2006) but the master-slave
relations were inverted. Brick nodes at contact planes behaved as slaves and their DOF were
determined by translation of three boundary nodes in their vicinity. For fine brick meshes,
difference is negligible. However, for a coarse brick mesh, the discrete assembly is locally
loaded around FEM nodes but relaxed elsewhere. For that reason, the method proposed here
is considered to be more suitable.

Note that there are more sophisticated approaches of coupling discrete and continuous
models. In order to minimize unrealistic wave reflections at the interface between the discrete
and continuous subdomains, the transitional region can be introduced (Xiao and Belytschko
2004). In this region, the discrete and continuum model overlaps with gradually increas-
ing/decreasing stiffness.

Proposed coupling procedure is tested on a notched beam loaded in three-point bending
(TPB). Relative notch depth is α0 =0.15, span to depth ratio is S/D =2.4. The central part
is represented by the discrete model while the rest by linear bricks – see Fig. 4.6. Smooth
displacement field is ensured by master-slave equations collected in the matrix X. Fig. 4.7
shows stress field σx in the beam at the peak force.

As the crack propagates, the load decreases. The simulation was terminated when the
loading force decreased to 50% of the peak load. Crack patterns at the peak load and at the
final stage are shown in Fig. 4.8 by plotting values of damage variable at the contact facets
of the discrete model.

This approach is generally capable of incorporating any constrained equation, e.g. some
special boundary conditions or any kind of rigid connection in the model. For example, it is
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Chapter 4. Probabilistic discrete mesoscale simulations of concrete fracture

Figure 4.7: Stress σ11 in the specimen.

Figure 4.8: Damage in the specimen at the peak load and after significant crack growth.

used in Sec. 5.5.3 on page 83 to correctly apply loading during four-point bending test. The
same matrix X can be also used to transform mass matrix from space of all (constrained
& unconstrained) DOF to the space of purely unconstrained DOF in dynamic calculations.
The approach is essentially the same as used in the dissertation of the author (Eliáš 2009).

4.6 Probabilistic extension of the model

The only source of the randomness in the original formulation of the model is the positioning
of grains within the domain. Here, the formulation is extended by incorporating random
spatial fluctuations of the material properties. At each inter-particle connection, the material
parameters are assigned according to a stationary autocorrelated random field H(x). For
a given coordinate x, H(x) is a random variable H of the cumulative distribution function
(cdf) FH(h). Since the random field is stationary, the FH(h) is identical for any position x.

The strength of quasibrittle structural members is typically governed by the tensile
strength and fracture energy. Realistic fracture models should therefore incorporate the
random spatial variability of at least these two variables. The tensile strength is here consid-
ered to be linearly dependent on the fracture energy (Grassl and Bažant 2009). Thus, both
parameters of the mesolevel discrete model, tensile strength ft and fracture energy in tension
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Figure 4.9: Left: grafted distribution connecting Gaussian body with Weibullian left tail;
right: autocorrelation function for lc = 80mm

Gt, are modeled as linearly dependent. These random variables share the same distribution
type and the same coefficient of variation. The same random field is used to generate values
of them.

ft(x) = µftH(x) Gt(x) = µGtH(x) (4.36)

where µft and µGt are mean values of the strength and fracture energy. The mean value of
the (field) random variable H equals 1.

In Bažant and Pang (2007), Le, Bažant, and Bazant (2011), and Le and Bažant (2011),
it has been shown that the strength distribution of a representative volume element (RVE)
of a quasibrittle material might be approximated by a Gaussian (normal) cdf onto which
a remote Weibullian tail is grafted from the left. This Gauss-Weibull distribution is used for
our H variable

FH(h) =


rf

(
1− exp

(
−
〈
h

s1

〉m))
h ≤ hgr (4.37)

pgr + rf

δG
√

2π

∫ h

hgr
exp

(
−(h− µG)2

2δ2
G

)
dh h > hgr (4.38)

Here 〈·〉 = max(·, 0) is again the positive part, s1 = s0r
1/m
f , m is the Weibull modulus (shape

parameter) and s0 is the scale parameter of the Weibull tail, µG and δG are the mean value
and standard deviation of the Gaussian distribution that describes the Gaussian core and
pgr = FH(hgr) is the probability at the grafting point, hgr. The Weibull-Gauss juncture at the
grafting point hgr requires equality in the probability density: (dFH/dh)|h+

gr
= (dFH/dh)|h−

gr
;

rf is a scaling parameter normalizing the distribution to satisfy the condition FH(∞) = 1.
The distribution has four independent parameters in total.

The spatial fluctuation of the random field is characterized through an autocorrelation
function. It determines the spatial statistical dependence between random variables repre-
senting any pair of nodes. The correlation coefficient ρab between two random variables at
coordinates xa and xb can be assumed to obey the squared exponential function

ρab = exp
(
−
(‖xa − xb‖

lc

)2)
=

dim∏
i=1

exp

−(xai − xbi
lci

)2
 (4.39)
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Figure 4.10: Left: independent variables obtained via eigendecomposition of two dependent
variables; right: eigendecomposition on real specimen - several selected eigenvectors ψk.

This form has been selected because the function is differentiable at zero (Grigoriu 2012) as
opposed to the frequently used exponential function (in which power 1 is used instead of 2).
Also, the separable correlation function enables the usage of (i) different correlation lengths
lct along different dimensions t, and (ii) a simplified algorithm for the spectral decomposition
of a covariance matrix on a regular grid, see 4.6.1. Here, the autocorrelation length lc is
kept constant in all three directions. A regular grid for discretization of random fields, which
enables the usage of EOLE method, is adopted, as described later in this section.

To represent the random field H of a non-Gaussian variable H, a commonly used ap-
proach generates an underlying Gaussian random field Ĥ and then transform it via the
isoprobabilistic (memoryless) transformation

H(x) = F−1
H (Φ(Ĥ(x))) (4.40)

where Φ stands for the cdf of the Gaussian field. Such a transformation distorts the correla-
tion structure of the field H. Thus, when generating the underlying Gaussian field Ĥ, the
correlation coefficients must be modified in order to fulfill the desired pairwise correlations
of the non-Gaussian field H.

ρ̂ab =
∞∫
−∞

∞∫
−∞

(
ha − µH
δH

)(
hb − µH
δH

)
fab(ha, hb)dhadhb (4.41)

where µH = 1 and δH are the mean value and standard deviation of the random field variable
and fab is a probability density of linearly correlated random field variables at nodes xa and
xb. The described transformation is known as the Nataf model. Eq. (4.41) is solved using
an approximation published by Li, Lü, et al. (2008).

There are several methods of generating a Gaussian random field. Here the Karhunen–
Loève expansion is used. It is based on the spectral decomposition of covariance matrix C
(with components Cij = ρij). It transforms the correlated Gaussian variables Ĥ(xi) into
independent standard Gaussian variables ξ, which are simple to generate. The Gaussian
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Figure 4.11: Left: one realization of the autocorrelated random field H on a grid of spacing
lc/3 for lc = 80 mm (top) and lc = 40 mm (bottom). Right: the same realization of the field
H at the element centers of the lattice-particle model.

random field is then obtained using vector ξ of K standard Gaussian random variables

Ĥ(x) =
K∑
k=1

√
λkξkψk(x) (4.42)

where λ and ψ are the eigenvalues and the eigenvectors of the covariance matrix C, and K
is the number of eigenmodes considered. It is not necessary to use all the eigenmodes of C.
Rather, it suffices to consider only K eigenmodes corresponding to K largest eigenvalues, so
that the

∑K
k=1 λk would be about 99% of the trace of the covariance matrix C (Vořechovský

2008). The independent standard Gaussian variables ξ are sampled by Latin Hypercube
Sampling using the mean value of each subinterval. The spurious correlation of these variables
is then minimized by reordering their realizations during a simulated annealing optimization
process (Vořechovský and Novák 2009).

The realizations of the random field need to be evaluated at every shared facet center
(denoted c in Sec. 4.2) of the mesolevel discrete model. This can be computationally de-
manding for a large number of facets, because the covariance matrix is then large as well.
In the present simulations, there may be about 200,000 inter-particle connections. To over-
come this computational burden, the expansion-optimal linear estimation (EOLE) method
developed in Li and Der Kiureghian (1993) is adopted. This method significantly reduces the
time required for random field generation. The field is initially generated on a regular grid
of nodes with spacing lc/3 (see Fig. 4.11) instead of at the facet centers. The values of the
random field at the model facets are then obtained from the expression

Ĥ(x) =
K∑
k=1

ξk√
λk
ψTkCxg (4.43)

where λ and ψ are the eigenvalues and eigenvectors of the covariance matrix of the grid nodes;
Cxg is a covariance vector between the facet center at coordinates x and the grid nodes; and
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ξ are independent standard normal variables. After the Gaussian random field values at
facet centers are obtained by EOLE method (Eq. (4.43)), they need to be transformed to
non-Gaussian space by Eq. (4.40).

Besides significant time savings, another advantage of using EOLE method is that one
can simply use the same field realization for several different granular positions. By keeping
realizations of the decomposed independent variables ξ, the field realization can be adapted
for any configuration of the facets in the mesolevel discrete model. This feature will be used
later when simulating the experimental campaign. The random field realizations on a grid will
be generated only once (24 realizations for every correlation length) and these grid random
fields will be used repetitively for every beam geometry.

4.6.1 Spectral decomposition for EOLE method using a grid of nodes

The spectral decomposition of correlation matrix C can be simplified when using the auto-
correlation function defined in Eq. (4.39). As shown in Vořechovský (2008), such a pattern of
autocorrelation (fully separable correlation) enables one to greatly simplify the computation
of eigenvalues and the associated eigenfunctions (vectors) of the correlation function (matrix).
The solution of the eigenvalue problem is a solution to the Fredholm integral equation of the
second kind, homogeneous, where the correlation function is the kernel (Vořechovský 2008).

Let us now assume a discrete case in which the (squared, symmetric) autocorrelation
matrix C of order N is assembled for N grid nodes (random variables). The grid is formed
by N1 nodes along the x-direction, N2 nodes along the y direction and N3 nodes along the z
direction. Therefore, the order of the correlation matrix is N = N1N2N3. The entries in the
correlation matrix are calculated directly from Eq. (4.39). Each entry in such a correlation
matrix can therefore be written as the product of correlations over individual dimensions.
The number of spatial dimensions considered here is dim = 3.

C : Cij =
3∏
t=1

exp

−(xit − xjt
lct

)2 = ρij1 ρ
ij
2 ρ

ij
3 (4.44)

where indexes i and j denote a pair of points (random variables). The correlation matrix C
can thus be written as a direct product of three considerably smaller correlation matrices,
namely C1, C2 and C3 organized into a second order tensor (matrix)

C = C1 ⊗_C2 ⊗_C3 (4.45)

The three matrices C1, C2 and C3 represent correlation matrices of the three one-dimensional
grids along x, y and z directions. This is why the matrices are symmetric positive (semi)definite
matrices of orders N1, N2 N3.

We now seek N eigenvalues and eigenshapes of this matrix (or, the K dominating modes).
The problem involved in the simulation of random fields using the Karhunen-Loève expansion
is to find such an eigenvalue matrix Λ and associated orthonormal eigenvectors (columns of)
ψ that

C = ψ ·Λ ·ψT (4.46)

The key to simplifying the computation of Λ and ψ lies in the fact that the desired eigenmodes
can be obtained as the solution to three smaller problems

Λ = Λ1 ⊗_ Λ2 ⊗_ Λ3 ψ = ψ1 ⊗_ψ2 ⊗_ψ3 (4.47)
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where Λ1 (ψ1) is the diagonal matrix containing eigenvalues (eigenvectors) of C1, C2 =
ψ2 ·Λ2 ·ψT2 , etc.

This idea, described in detail for a general number of dimensions in Vořechovský (2008),
will now be demonstrated using a two-dimensional problem (N3 = 1), depicted in Fig. 4.12.
Consider a two-dimensional region covered with a grid of N = 20 nodes using N1 = 5 and
N2 = 4 nodal coordinates. For a unidirectional numbering of equidistant nodes along each
direction, the correlation matrices C1 and C2 are symmetric Toeplitz matrices (diagonal-
constant matrices) where (i, j)th elements depend only on the distance between nodes i and
j. Numerical problems involving Toeplitz matrices are typically solved quickly. Specialized
algorithms exist for spectral decomposition (Andrew 1973; Hu and Kung 1985; Coleman
2000). The correlation matrices along the x and y directions read

C1 =



1 2 3 4 5
1 1 ρ1a ρ1b ρ1c ρ1d

2 1 ρ1a ρ1b ρ1c

3 1 ρ1a ρ1b

4 1 ρ1a

5 sym. 1


C2 =



1 6 11 16
1 1 ρ2a ρ2b ρ2c

6 1 ρ2a ρ2b

11 1 ρ2a

16 sym. 1

 (4.48)

and therefore the correlation matrix of the two-dimensional grid can be written as

C = C2 ⊗_C1 =



1− 5 6− 10 11− 15 16− 20
1− 5 C1 ρ2aC1 ρ2bC1 ρ2cC1

6− 10 C1 ρ2aC1 ρ2bC1

11− 15 C1 ρ2aC1

16− 20 sym. C1

 (4.49)

The desired eigenvalue matrix of twenty eigenvalues is constructed as a list of multiplica-
tions between all pairs of eigenvalues for each unidirectional grid

Λ = diag
( 1− 5 6− 10 11− 15 16− 20
λ2aΛ1 λ2bΛ1 λ2cΛ1 λ2dΛ1

)
(4.50)

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

Figure 4.12: Example of a two-dimensional grid for the simulation of a random field within
a beam.
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and similarly the eigenvector matrix can be constructed as a block matrix:

ψ =



1− 5 6− 10 11− 15 16− 20
ψ2(1, 1)ψ1 ψ2(1, 2)ψ1 ψ2(1, 3)ψ1 ψ2(1, 4)ψ1

ψ2(2, 1)ψ1 ψ2(2, 2)ψ1 ψ2(2, 3)ψ1 ψ2(2, 4)ψ1

ψ2(3, 1)ψ1 ψ2(3, 2)ψ1 ψ2(3, 3)ψ1 ψ2(3, 4)ψ1

ψ2(4, 1)ψ1 ψ2(4, 2)ψ1 ψ2(4, 3)ψ1 ψ2(4, 4)ψ1

 (4.51)

Sorting the eigenvalues from the largest to the smallest and simultaneously sorting the
columns of ψ enables us to ignore eigenmodes with small eigenvalues.

Such an exploitation of the separable patterns of correlation matrices leads to considerable
time and memory savings, and also to increased accuracy. Note that Λ and ψ do not have
to be stored in computer memory. For large systems, it is advantageous to save only the
source matrices for unidirectional grids (ψ1,ψ2,Λ1 and Λ2) and expand the entries of Λ
and ψ during computation. In our mesolevel discrete model of bended beams, the grid for
autocorrelation length l = 40mm consists of N = 65 254 nodes. This grid is constructed using
N1 = 79, N2 = 59 and N3 = 14 nodes. Computation of the eigenproblem requires dealing
with a correlation matrix of order N ; to store the N eigenvectors in computer memory, one
must store N2 ≈ 4.25 · 109 values. This can not fit into the RAM memory of a common
computer. The proposed partitioning enables solution of three problems with matrices of
orders N1 = 79, N2 = 59 and N3 = 14. This is considerably easier and the three eigenvector
matrices occupy only N2

1 + N2
2 + N2

3 ≈ 9.9 · 103 values. Six orders of magnitude represents
a noticeable difference.

It shall be pointed out that the decomposition of the correlation structure is not generally
possible when using the Nataf model. Eq. (4.41) destroys the separability of Eq. (4.39).
Fortunately, the Grafted distribution at hand is almost identical to the Gaussian distribution
and the Nataf transformation has almost no effect. The maximum change of the correlation
coefficient is only about 0.05%. Therefore, the separation of the correlation brings only small
error with large speed up of the calculation.

4.7 Experimental series and identification of model parame-
ters

The experiments were performed at Northwestern University by Christian G. Hoover, Zdeněk
P. Bažant and collaborators (Hoover, Bažant, et al. 2013; Hoover and Bažant 2013). Beams
with and without a notch were loaded in three-point bending; the tests were controlled via
CMOD, which ensures stable crack propagation and thus allows to obtain post-peak softening.
The series contains beams of four different depths D = 500, 215, 93 and 40mm, geometrically
similar in two dimensions. They are labeled by the capital letters, A (D = 500mm), B, C and
D (D = 40mm), respectively. The thickness b = 40mm was the same for all the specimens
and the span was 2.176D. Five notch depths were tested: α0 = a0/D = 0.3, 0.15, 0.075,
0.025 and 0. These are denoted by the lower-case letters a (α0 = 0.3), b, c, d and e (α0 = 0).
Between 6 and 12 experiments were performed for all the size-notch depths combinations
except for geometries Cb and Db, which were not not suitable for testing.

Identification of the material parameters in the numerical model is based on simple min-
imization of the difference between the experimentally measured and simulated responses.
No attempt has been made to estimate the model parameters from information about the
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concrete mix composition. The grain diameters were considered to be distributed according
to the Fuller’s curve. The maximum grain size was set to dmax = 10mm according to the
aggregates in the tested material. All grains with diameter bellow dmin = 2mm were not
modeled directly, since they were regarded as an integral part of the matrix.

Only part of the experimental data were used to identify the deterministic model param-
eters, while the rest of the test data is subsequently compared to the deterministic model
predictions. The probabilistic parameters unfortunately could not be identified, and were
merely generated.

4.7.1 Identification of deterministic parameters

To identify the deterministic parameters (E0 and α, ft and Gt), only the responses of beams
with the deepest notch (Aa, Ba, Ca, Da) were used. There are two reasons for limiting the
identification process to the deepest notch only: (i) the presence of a strong stress concentra-
tion induced by a deep notch minimizes the effect of spatial randomness on the mean response
(Eliáš, Vořechovský, and Bažant 2013; Eliáš, Vořechovský, and Le 2013); (ii) simulating the
remaining beam geometries and comparing the results to the experimental data that have
not been used in the identification process reveals whether the model can provide reasonable
predictions.

The macroscopic elastic parameters (used for the surrounding finite elements) were esti-
mated first. The Poisson’s ratio for concrete is approximately ν ≈ 0.19. By trial-error fitting
of the elastic part of the load-CMOD curves, the macroscopic elastic modulus was found to
be E ≈ 36.5 GPa. By fitting a continuous homogeneous displacement field to the displace-
ments of the particle system when both were subjected to low-level uniaxial compression,
the corresponding mesolevel discrete model parameters were identified: E0 = 25 GPa and
α = 0.29.

The tensile strength and fracture energy were identified via the simple automatic mini-
mization of the maximum relative difference between the measured and simulated peak loads
and the areas under the load-CMOD curves. The mean experimentally measured maximal
load, P exp, and the area under the load-CMOD curve up to an opening of 0.15mm, Aexp,
represented the values that should be closely reproduced. The corresponding simulated val-
ues (P sim, Asim) were evaluated for every iteration of the optimization algorithm. The error
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Figure 4.13: Comparison of experimental load-CMOD curves and simulated responses ob-
tained by automatic optimization.
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to minimize was calculated as

max
c

(
|Aexp

c −Asim
c |

Aexp
c

,
|P exp
c − P sim

c |
P exp
c

)
for c ∈ {Aa, Ba, Ca, Da} (4.52)

The simulated quantities Asim and P sim were obtained using the deterministic model with one
(constant) grain position only. For more reliable identification, one should perform several
simulations with different grain positions for every evaluation of the objective function. The
optimization process is shown in Fig. 4.13. The minimum error achieved was 0.067 (6.7%)
for ft = 2.67MPa and Gt = 20.3 J/m2.

4.7.2 Identification of probabilistic parameters

In the probabilistic model, the mean values µft and µGt were taken as corresponding param-
eters of the deterministic model, i.e. µft = 2.67MPa and µGt = 20.3 J/m2. The remaining
unknown is the random field H. At least some of the its parameters were expected to be
identified.

One can separate the local properties of the randomness (distribution FH) from the spatial
properties (correlation length lc) by introducing a strong stress concentrator. By matching
the variability of experimental responses for a deep notch, it should have theoretically been
possible to estimate the coefficient of variation of the random field. Once this was done, one
should have been able to identify the correlation length by matching the peak loads of the
unnotched beams. As shown in the aforementioned papers (Eliáš, Vořechovský, and Bažant
2013; Eliáš, Vořechovský, and Le 2013), the mean value of the peak load strongly depends
on the correlation length.

Unfortunately, this theoretical procedure could not be applied in the current study, for
two reasons. First, the experimental scatter for deep notch beams was already very close to
the statistical scatter of the deterministic model, where the randomness is generated only
by the random locations of grains. The coefficient of variation of H would thus have to be
considered close to zero. Second, introducing randomness into no-notch simulation can only
lead to a decrease in the mean peak loads, but the deterministic model for no-notch beams
already exhibited lower peak loads than those measured experimentally.

This observation suggests that any randomness other than that caused by the locations
of the largest grains was negligible in these tests. Therefore, it was decided that the vari-
ability present in the deterministic model is sufficient for reproducing the randomness in the
experimental series. Instead of using the random field to achieve a closer fit of the measured
data, the numerical analysis was run with an artificial excessive coefficient of variation (0.25)
in order to study the effect of model randomness deeper.

The following parameters of the distribution FH were used: Weibull modulus m = 24;
s1 = 0.486MPa; grafting point hgr = 0.364MPa; standard deviation of the Gaussian core
δG = 0.25MPa. These parameters provide the overall mean value µH ≈ 1; standard deviation
δH ≈ 0.25, and grafting probability FH(hgr) ≈ 10−3. The selection of grafting probability
was based on recommendations by Bažant and Pang (2007) who found that the grafting point
should be at probabilities between 10−5 and 10−2, and most likely around 10−3.

Two correlation lengths lc were considered: a shorter length, lc = 40mm (as found in
Grassl and Bažant (2009)), and a longer length, lc = 80mm (as found in Vořechovský and
Sadílek (2008)).
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4.8 Deterministic modeling

All the experimental beam geometries were modeled using the deterministic parameters iden-
tified from the deeply notched beams. Ten simulations, differing in the random locations of
grains, were preformed for each geometry. The self-weight was applied in the first step. In
the following steps, the external load P was calculated to gain a stable increase in CMOD.
The lengths of CMOD increments were adjusted to keep the number of iterations per step
reasonable.

The CMOD control cannot be applied to beams with a shallow or zero notch, because the
crack location is not known in advance. In such a case, several openings were measured over
several short intervals along the beam span and the simulation was controlled by the largest
of these openings. Because there was no gap between the intervals, the crack had to initiate
inside one of them, and the CMOD could thus be obtained. This is, however, barely possible
in real experiments. Therefore, the experimental opening was measured by one gauge over
only a finite, not too long, base length, with the hope that the crack would occur inside that
base length. The corresponding gauge opening was extracted from the simulations, too, in
order to compare it with the experiments.

It is worth mentioning that it is nearly impossible to simulate smaller beams with the
present model. The specimen of size D has the depth of 4× the maximum grain diameter and
the lattice representing the concrete material is already too coarse. It might also be hard to
simulate unnotched specimens larger than Ae. The model of geometry Ae has approximately
300 thousands degrees of freedom and, when only one processor is used, it takes about a week
to calculate its nonlinear response including the post-peak.

The responses of the experiments and the model are compared in Fig. 4.14. The vertical
axis measures the nominal stress defined as

σ̄n = 3PDS
2bD3 = 3.264P

bD
(4.53)

where the superior bar above σ means that the nominal stress was evaluated using the nominal
beam dimensions, rather than the real dimensions measured on each specimen separately.
The horizontal axis shows the elongation measured along the bottom surface over a distance
corresponding to the gauge length used in experiments (Wendner et al. 2015). Each subgraph
has the mean value and standard deviation of mean nominal strength plotted in its top right
corner; the number at the same position gives the relative difference between the mean
nominal strengths of the model and the experiment. The simulations were terminated as
soon as the loading force decreased below 30% of its maximum value. As mentioned, the
material identification was performed for the leftmost column only; all the other columns are
model predictions. The agreement with tests appears to be satisfactory. Nevertheless, some
problems are present:

• The model underestimates the peak loads for most, but not all beam geometries. This
indicates that the identification is not ideal. Consideration of other beam geometries
for identification would improve the performance of the model, but the illustration of
the predictive capabilities of the model would be lost.

• The elastic parts of the experimental and model responses significantly differ for the
smallest geometry De. The reason appears to be that the underlying lattice of inter-
particle contacts in such small specimens is inevitably too coarse, and also that the
response is affected by the regions with biased tessellation closer to the boundaries. It
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Figure 4.14: Responses obtained by the deterministic model compared to the responses
recorded during experiments.

is shown in Chap. 6 that the boundary layer occupying a large portion of the smallest
specimen exhibit stiffer behavior than interior.

• The two largest unnotched specimens (Ae and Be) had convergence problems right after
the peak, which can be attributed to a sudden strong snap-back present in the load-
deflection curve.

Figure 4.15 shows some damage patterns obtained by the deterministic model. One can
see that the no-notch simulations produce a wide zone of distributed micro-cracking, which
develops prior to reaching the peak load. However, after the localization that develops at
the peak load, the crack looks about the same as in the case of deeply notched specimens.
Another interesting point is the dependence of the damage zone width on the specimen size,
which is clearly visible for the deeply notched beams. The larger the specimen, the wider the
damaged area. This feature was previously reported in Eliáš and Bažant (2011).

4.9 Effects of spatial randomness
The application of additional spatial randomness is not meant to bring the results of the
model closer to those obtained in experiments. It is performed here in order to study the
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Figure 4.15: Some damage patterns obtained by the deterministic mesolevel discrete model.

effects of randomness on the model behavior.
For each geometry and each correlation length, 24 simulations were performed differing

in both random grain positions and random field realizations. However, the 24 random field
realizations for each geometry were obtained from the same 24 random field grid realizations
by using each realization repetitively. The resulting load-gauge opening curves are plotted in
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Figure 4.16: Responses obtained by the probabilistic model (for two different correlation
lengths) compared to the responses recorded during experiments.
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Figure 4.17: Size effect plots comparing nominal strengths measured in experiments and
calculated by models.

Fig. 4.16, along with the means and standard deviations of the peak loads in the upper right
corner of each subplot.

The notches too shallow compared to the grain size induce weak stress concentrations,
which nevertheless suffice, in most cases, to force the crack to start from the notch tip.
However, it may happen that, due to randomness, a crack initiates outside the shallow notch
at midspan. The crack in unnotched beams may initiate away from the midspan as well. If
the gauge length is too small compared to the specimen size, the crack may even initiated
outside of the gauge length, and then the gauge gradually closes during the softening regime.
This is why some of the responses for d and e beams exhibit decreasing gauge opening after
reaching the peak load. Nevertheless, the convergence problems in the unnotched beams are
not as severe as they are in the deterministic analysis. This is explained by the additional
randomness which helps to localize the crack.

Fig. 4.17 shows the size effect plots of nominal strength using Eq. (4.53) and the maxi-
mum load Pmax. The nominal strengths from experiments are taken directly from Hoover,
Bažant, et al. (2013). They are calculated using real dimensions measured directly on spec-
imens, which varied slightly. The deterministic model parameters were optimized using the
nominal dimensions, but even after filtering out the geometrical differences among the test
specimens using their real dimensions, the correspondence between the experimental data
and the deterministic model’s prediction is acceptable.

For the deeply notched specimens, the application of the additional randomness leads
only to an increase in the variance of response. The average peak load does not change,
compared to the deterministic model. The observed increase in variance appears more or
less independent of the correlation length. It was planned to use this expected behavior to
identify the coefficient of variation of H.
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Figure 4.18: Some damage patterns obtained by the probabilistic mesolevel discrete model
for different geometries but the same realization of the random field.

A different situation arises for the unnotched specimens. As discussed few paragraphs
earlier, the unnotched specimens are free of any stress concentrator, allowing the macrocrack
to initiate at the bottom face even far from the midspan. The region with the worst random
combination of stress and local strength will serve as an initiation point. The larger the area
where the crack may initiate and the shorter the correlation length, the weaker the local
strength that may appear. One can thus see that the difference between the deterministic
and probabilistic peak loads increases with increasing size and decreasing correlation length.

Several selected damage patterns obtained with the probabilistic model (lc = 40mm) are
shown in Fig. 4.18. Only one grid realization of the random field, applied to different beam
geometries, is shown. The large zone of distributed cracking prior to the peak load, which
was present in the deterministic simulations of unnotched beams, is reduced. The pre-peak
cracking is already localized into weaker regions only. Geometry Bd shows a crack initiated
outside the shallow notch.

Figure 4.19 documents the positions of macrocracks at the bottom face measured in the
experiments (Wendner et al. 2015) and obtained in the deterministic and both probabilistic
models. The two deepest notches, a and b, led to initiation from the notch tip in all simula-
tions and also in all experiments; they are therefore excluded from the figure. In the case of
shallow notches c and d, experiments and the deterministic simulation also led to initiation
of the macrocrack from the notch tip in all cases.

The probabilistic simulations for these too shallow notches may lead to crack initiation
outside the notch; however, this occurs only rarely, in spite of the large variability and
shallowness of the notches considered. One would expect fewer cracks outside the shallow
notch for smaller beams because the chance for a crack to start outside the notch is now
restricted by very short spans and thus weaker random field fluctuations. But this is true
only for the smallest size D, for which the random field fluctuations are almost suppressed.
Regarding other beam sizes, the initiation of a crack outside the notch is more frequent in
smaller beams. The only value that matters is the absolute, rather than relative, notch
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Figure 4.19: The horizontal position of the macrocrack in the bottommost layer is shown
by a separate marker for each simulation. The beam span is scaled to constant length;
the horizontal positions of supports are marked by black vertical lines, and a dash-and-dot
line shows the midspan. The colorful horizontal lines below the markers show ± standard
deviation (assuming the mean value is at the midspan) of the horizontal position of the
macrocrack. Numbers display the quantity of cracks outside the notch and the total number
of simulations.

depth. As the specimen size decreases, the absolute notch depth decreases as well, and
its stress concentration becomes less important compared to the stress disturbances due to
material heterogeneity. This facilitates crack initiation at locations other than at the notch
tip.

Figure 4.19 also shows the crack positions obtained in the unnotched beam models. The
relative interval in which the cracks occurred increased after the application of randomness,
but it seems to be about the same for both correlation lengths and all the beam sizes. The
comparison to experimental data is difficult, due to the limited number of experiments, but
the variability in crack position measured in experiments is similar to the results of the
deterministic model rather than to the results of the probabilistic models.

4.10 Analysis of energy dissipation

The energy dissipation during fracturing is examined via the energy dissipated per unit crack
area at a specific beam depth, g(y). This energy is calculated by summing the energies Ge
dissipated at individual contacts, e, within a horizontal layer of width 2τ . One selects all
the elements e at depth ye ∈ 〈y − τ, y + τ〉, and then sums their energies released since the
beginning of the simulation. The summation is then normalized by specimen thickness b and
layer width 2τ ;

g(y) =
∑

e: |ye−y|≤τ

Ge
2bτ (4.54)

The layers and energy summation are sketched at Fig. 4.20.
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Figure 4.21: Energies g dissipated at specific beam depths until the maximum load was
reached. The thick line refers to the average value and the shaded area shows ±standard
deviation. Left: deterministic model; right: probabilistic models with lc=40 and 80mm.

Fig. 4.21 shows the energy variable g at the peak load along the specimen depth, for all
the beam geometries. Deterministic simulations are shown on the left hand side, whereas
the right hand side displays the probabilistic results. The mean value (bold line) and stan-
dard deviation (shaded area) of g was evaluated from 10 deterministic or 24 probabilistic
realizations. The layer width was chosen to be the same as the maximum grain size, i.e.
2τ = 10mm. The consecutive layers were always placed so that the notch tip would be
located right at the beginning of some layer.

Except for an increased standard deviation, there is no difference between the probabilistic
and deterministic results when the notch is present. But the unnotched beams exhibit, in
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Figure 4.22: Energies g dissipated at specific beam depths until the termination of the sim-
ulations.

the case of deterministic modeling, a large area of distributed cracking prior to reaching the
peak load. This area is visible in the graph as an increased energy dissipation close to the
bottom surface. The probabilistic model lacks the distributed cracking because the pre-peak
cracking is already localized into weak regions only. Therefore, no increase in g can be seen
for unnotched probabilistic beams. Comparing the probabilistic models with two different
correlation lengths, the figure shows a slightly larger dissipation for a longer correlation length
in the unnotched case, while for the notched beams the situation is opposite.

Fig. 4.22 shows g at the end of the simulation. A stress-free crack developed in the bottom
zone of the beam, and so g should have reached its final value and might be considered to be
equal to the macroscopic mode-I fracture energy.

• There is a clear dependence of g on the specimen size. Smaller beams have smaller
final values of g. This is attributed to the increasing stress gradient that constrains
the development of the fracture process zone for a decreasing beam size. The lower the
constraint, the more the crack branches in the model.

• Although the final value of g for notched beams is about the same irrespective of notch
depth, it was shown in Eliáš and Bažant (2011) that it may significantly decrease for
extreme notch depths of α0 ≥ 0.7.

• In the upper parts of the graphs in Fig. 4.22, g decreases rapidly from its more or less
constant final value because the simulation was stopped before the stress-free crack
reached this depth; i.e. g had not reached its final value yet.
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Figure 4.23: Energy g calculated in the bottommost 20 mm-thick layer until the peak load
was reached or until the termination of the simulation. It is divided into energy dissipated
inside and outside the macrocrack.

Fig. 4.22 shows once again how the randomness affects the energy dissipation. As in Fig. 4.21,
the added randomness again increases the energy dissipation variance only with no effect on
its mean value. The only exception is the unnotched beam, due to the previously discussed
pre-peak distributed cracking.

The presently observed dependency of the energy dissipation on the specimen size and
depth appears to support the frequently expressed idea that macroscopic fracture energy of
heterogeneous quasibrittle material is not constant. However, the differences in the average
dissipated energy (final value of g) in small and large specimens are rather small.

A deeper analysis of energy dissipation in unnotched beams is presented in Fig. 4.23. It
shows energy g averaged over two bottommost layers divided into two parts: (i) the energy
which was dissipated within ±15mm of the macrocrack location, which is labeled as energy
inside the macrocrack; and (ii) the remaining part of the energy, labeled as energy outside
the macrocrack.

Since localization occurs at peak load, the outside energy does not increase much in the
post-peak regime. However, it is strongly dependent on applied randomness. It is larger for
deterministic models, due to the wide zone of distributed cracking and lower for probabilistic
models due to the localization of distributed cracking. It seems to be lower for the shorter
correlation length, probably because the distributed cracking is even more localized than
in the case of the longer correlation length. The outside energy is strongly size dependent
because the outside volume of the material subjected to distributed cracking depends on the
beam size as well.

The inside energy is also affected by the application of the additional randomness. This
is in contradiction with the deep notch results, where the average of the inside energy was
the same for both deterministic and probabilistic models. In unnotched beam geometries, the
crack is not forced to initiate at the specific location but is allowed to choose some weakened
area along the bottom surface. Since the mesolevel strength and fracture energy of rigid-body
contacts are positively correlated, the crack that initiates in a weakened material must also
dissipate less energy.

4.11 Summary

The mesolevel discrete model enhanced by random fluctuations of material parameters has
been presented and also employed to reproduce loads and deformations measured in a re-

67
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cent extensive series of experiments on concrete in three-point bending. An identification
procedure of model parameters obtained using a subset of experimental data confirmed the
robustness of the model by showing reasonable agreement between simulated and experimen-
tal responses for all the data. This verified the predictive capabilities of the model. The
model is able to capture size effects on peak load of both, notched and unnotched, specimens;
these size effects are in good agreement with the experimental data. After the described
simple parameter identification procedure, the model can be used for prediction of behavior
of details of concrete structures or obtaining important data for macroscale models that are
routinely used in engineering design. The main advantage of the model is its ability to mimic
phenomena at mesoscale level that includes gradual transition from distributed damage to
inelastic strains localization into macrocracks.

Both deterministic and probabilistic versions of the model provide results that suggest
dependency of the energy dissipation during fracturing on the specimen size and also notch
depth. Nevertheless, this dependency seems to be weak for the studied configurations, espe-
cially for large sizes.

The deterministic version of the model (which contains randomness due to the random
locations of the largest concrete aggregates) seems to be already sufficient as it reproduces
most of the variability measured in the experiments. But it alone cannot capture the Weibull
type statistical size effect in large unnotched specimens; for larger specimens or different
type of loading (e.g. four point bending or direct tension) the deterministic model would
inevitably fail to reproduce the experimental data (Grassl and Bažant 2009).

The probabilistic study with artificially chosen parameters was performed to further inves-
tigate the effects of randomness. The conclusions are in agreement with natural expectations.

• Additional randomness applied to notched beams only increases the variability in their
strengths and dissipated energies. The mean values of both quantities remain un-
changed.

• Unnotched beams exhibit lower mean strengths with additional randomness than with-
out it. This is due to the possibility that the crack will initiate from and grow in a weak
region along the bottom surface.

• The energy dissipation in unnotched beams is affected by additional randomness as well.
The zone of distributed cracking prior to the peak load is large in the deterministic
model, but highly localized into the weaker regions in the probabilistic model. This
causes an appreciable difference in the dissipated energy between models with and
without additional randomness.

• The energy released inside the macrocrack at the bottom surface of unnotched beams
is lower in the probabilistic model than in the deterministic model. This is due to
the assumed positive correlation between mesolevel strength and fracture energy. The
macrocrack prefers to run through weaker regions, where mesolevel fracture energy is
lower, too.
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Chapter 5

Adaptive technique for discrete
models of fracture

This chapter is based on paper: Jan Eliáš (2016). “Adaptive technique for discrete models
of fracture”. International Journal of Solids and Structures 100-101, pp. 376–387. issn:
0020-7683. doi: 10. 1016/ j. ijsolstr. 2016. 09. 008

5.1 Introduction

The particle approach from the previous chapter offers robust and reliable model for simula-
tion of concrete mechanical behavior. Even though it is greatly simplified from computational
point of view (compared to the classical lattice models presented in Chap. 2), the fine dis-
cretization of the model leads to extreme computational demands for real-size structures.
But it is necessary in order to explicitly capture the heterogeneity of the simulated material.
Too long computational time prohibits its wider usage in practice. Researchers devote a lot
of effort to speed up the simulation, see for example the coarse graining method (Alnaggar
and Cusatis 2012).

This chapter presents a technique for the adaptive refinement of model discretization.
Without this tool, it is necessary to use fine discretization from the beginning and therefore
to create computationally demanding model. If adaptive refinement is available, it allows the
simulation to start with coarse discretization and refine it adaptively during the simulation
run in areas where it is needed. Such technique may significantly reduce computational
demands of the model.

Adaptivity is already a well-established concept in continuum modeling. It was first used
in elastic problems (Babuška and Rheinboldt 1978; Zienkiewicz and Zhu 1987) and later was
also applied to inelastic problems with localization (Selman et al. 1997; Rodríguez-Ferran and
Huerta 2000; Patzák and Jirásek 2004; Pannachet et al. 2010). The classical approach involves
error estimation, a remeshing criterion, mesh re-generation and the transfer of variables onto
the new mesh.

Successful attempts to introduce adaptivity into discrete models already exist (Bolander,
Shiraishi, et al. 1996; Sorg and Bischoff 2014). They are based on the adaptive replacement
of a continuous model with a discrete one, though the discrete model has to have regular
geometry which produces directional bias. The new approach features adaptive refinement
which is performed within the discrete model only and allows the use of irregular geometry.

The proposed algorithm works as follows. Initially, the whole domain is artificially coarsely
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Figure 5.1: One discrete body of random geometry and one contact facet between nuclei a
and b - normal and tangential directions and forces.

discretized. Whenever any region of the coarse model exceeds a criterion based on the equiva-
lent stress, the coarse discretization in its vicinity is replaced by the finer one that corresponds
to the real material heterogeneity. All the inelastic phenomena occur in the fine discretization,
therefore no history variables need to be transfered onto the new model structure.

The same model as in the previous chapter is used, except the model geometry is simplified
using Voronoi tessellation on randomly placed points with minimal mutual distance lmin.
Parameter lmin controls the size of the discrete bodies and therefore should correspond to the
size of the heterogeneities in the material (e.g. aggregate diameter). The variability in grain
diameters is omitted. The random process of sequential adding of points and subsequent
Voronoi tessellation was described in Sec. 2.2 on page 9 in 2D. Here, it is performed in 3D
resulting in convex bodies such as the one shown in Fig. 5.1. The adaptive technique can be
easily modified also for the more complex tessellation procedure taking into accounts grain
diameters. The constitutive behavior of the model is directly taken from the previous chapter
without any change.

5.2 Scaling of the elastic problem

The macroscopic elastic behavior of a discrete system is independent of the size of the discrete
units. This statement is a fundamental assumption of the adaptive technique, but is not
obvious. The proof and numerical verification of this statement are delivered bellow.

5.2.1 Propagation of the scaling factor through the elasticity equations

The equations from Sec. 4.3 on page 42 describing the elastic problem are applied here. Let
us assume some given solution of the elastic problem. We are now interested in the solution
of the identical problem but scaled in size by factor ξ. It means scaling all the coordinates
by this factor. All the variables related to the scaled problem are underlined hereinafter.

The coordinates, contact lengths and areas become x = ξx, L = ξL and A = ξ2A. The
rigid-body-motion second order tensor A is now

Aa(x) = ξ


1
ξ 0 0 0 x3 − xa3 xa2 − x2
0 1

ξ 0 xa3 − x3 0 x1 − xa1
0 0 1

ξ x2 − xa2 xa1 − x1 0

 (5.1)
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We assume the scaled problem to have the same stress, so the external forces must be
scaled with the square factor (f e = ξ2fe) and external moments with the third power of the
factor (me = ξ3me). We now search for displacements and rotations u and θ that satisfy
equilibrium in all nodes. It appears that the unknown DOF are u = ξu and θ = θ. Plugging
this solution into Eq. (4.4) provides

∆ab = Ab(c) ·
(
ξub θb

)
−Aa(c) ·

(
ξua θa

)
= ξ∆ab (5.2)

From scaled Eqs. (4.5), (4.6) and (4.7), one obtains

eab = eab sab = sab (5.3)

so scaled Eq. (4.10) gives us internal forces in the scaled problem

fab = ξ2fab mab = ξ3mab (5.4)

Since the unscaled internal end external forces are in equilibrium, the same clearly holds also
for the scaled counterparts

f e +
∑
b

f
ab

= ξ2
(
fe +

∑
b

fab

)
= 0 (5.5)

me +
∑
b

mab = ξ3
(
me +

∑
b

mab

)
= 0 (5.6)

Indeed, the assumed solution u = ξu and θ = θ is correct.
The macroscopic elastic properties of the (isotropic) material are the Young’s modulus,

E, and Poisson’s ratio, ν. They establish a relation between the stress tensor and the strain
tensor. Any calculation of stress and strain involves the division of forces over areas and
deformations over lengths, respectively. Since both stresses (forces scaled with ξ2 over areas
scaled with ξ2) and strains (deformations scaled with ξ over length scaled with ξ) remain
unchanged, the macroscopic elastic modulus and Poisson’s ratio of the elastic discrete system
built with different control length lmin = ξlmin are constant for arbitrary ξ.

5.2.2 Numerical verification

The analytically derived conclusion is verified numerically here. Volume 1003 mm3 is com-
pressed by low level stress σ33 in z direction. Assuming ideally homogeneous material, con-
stant stress is obtained over the whole domain with the only nonzero component σ33, and
the strain field is constant as well having three nonzero components(

ε11 ε22 ε33
)

= σ33
E

(
−ν −ν 1

)
(5.7)

The deformation field can be obtained from strains

ui = εii(xi − Si) (5.8)

with i ∈ {1, 2, 3} being the Cartesian coordinates and Si the coordinates of a point that
maintains a constant position during loading. The point S is determined by the boundary
conditions.

71



Chapter 5. Adaptive technique for discrete models of fracture

107.0753.542.5
lmin [mm]

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

re
la
ti
ve

va
lu
e

macroscopic Poisson’s ratio ν

macroscopic elastic modulus E

Figure 5.2: Elastic constants identified for a discrete system with different discretization
densities lmin.

When combining Eqs. (5.7) and (5.8), the following equalities hold

u1
σ33

= − ν
E

(x1 − S1) (5.9)
u2
σ33

= − ν
E

(x2 − S2) (5.10)

u3
σ33

= 1
E

(x3 − S3) (5.11)

Simulating the compressed cube using the discrete model, one can simply obtain deformations
u and locations x. Then, least square fitting can be performed to determine the unknown
elastic constants.

Several discretization densities were tested (keeping the cube size constant) and macro-
scopic elastic parameters fitted. The results are shown in Fig. 5.2, where the average value
and standard deviation of the relative quantity (with respect to the one obtained with the
shortest lmin) are computed from 20 realizations for several lmin. The mesoscopic elastic pa-
rameters were E0 = 48GPa and α = 0.29. The average macroscopic constants for the finest
discretization were found to be E = 30.7GPa and ν = 0.181. One can see that

• the difference between the values obtained for both elastic modulus and Poisson’s ratio
is within ±3%. Therefore, the elastic behavior of the discrete system is independent of
the size of the bodies.

• the errors can be attributed to boundary effects. The rigid bodies at the boundary
have statistically slightly different shapes as they have one or more sides determined by
the boundary planes. This results in slightly different elastic properties. The boundary
layer occupies a larger portion of the specimen when lmin is larger, thus amplifying the
boundary effect. The boundary layer effect is investigated and completely elucidated
in Chapter 6.
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5.3. Inelastic behavior

• the standard deviation decreases with decreasing lmin. As the number of bodies in the
model increases, the macroscopic elastic response becomes less sensitive to the random
locations of nodes.

The second point is especially important. The elastic behavior is invariant with respect to
lmin but not with respect to body shapes, e.g. anisotropic elastic behavior can be expected
for bodies elongated in one direction (Yao et al. 2016).

5.2.3 Homogenization

The relation of discrete structures to continuum theory has been extensively studied over
last decades, recently in Rezakhani and Cusatis (2016). The fundamental step is always
the derivation of elastic constants. Limiting ourselves to 3D isotropic Cauchy continuum,
the following equations have been found (Carol and Bažant 1997; Kuhl et al. 2000; Cusatis,
Pelessone, et al. 2011)

E = E0
2 + 3α
4 + α

ν = 1− α
4 + α

(5.12)

The derivation of these relations si performed in detail also for 2D plane stress and plane
strain in Sec. 6.4 on page 91. The derivation is based on equivalence between the virtual
work of the discrete system and the continuum assuming ideal statistical properties of the
lattice and omitting rotations od rigid bodies. In practice, the discrete system may slightly
deviate from Eq. (5.12) (see Stránský et al. (2010) or Sec. 6.4). This is indeed our case, where
Eq. (5.12) provides an elastic modulus of E = 31.1GPa and a Poisson’s ratio of ν = 0.176.
The difference is again small, within 3%.

Since Eq. (5.12) does not depend on the size of the discrete bodies, it is once more
concluded that the elastic behavior of the discrete system is not dependent on the density of
the discretization. On contrary, the inelastic model behavior is strongly affected by the size
of the bodies. This is demonstrated in the next section.

Though invariant macroscopic elastic behavior is expected, the local results around cor-
ners, notches or generally any stress concentrations are affected by discretization density. In
the case that the coarse body size is much larger than the fine one, it would be reasonable to
apply some adaptivity even in the elastic regime to properly capture local stress gradients.
This is, however, not discussed here because the coarse and fine discretization sizes used here
are not too far from each other.

5.3 Inelastic behavior

The inelastic contact model has been adopted from works by Gainluca Cusatis and collabo-
rators (Cusatis et al. 2006; Cusatis and Cedolin 2007; Cusatis, Pelessone, et al. 2011; Cusatis,
Mencarelli, et al. 2011) and presented in detail in Sec. 4.4 on page 43. It is simplified and
have only two parameters: the mesolevel tensile strength, ft, and fracture energy in tension,
Gt. The constitutive equation is based on damage mechanics; every contact facet has single
damage parameter D ∈ 〈0, 1〉 that governs the inelastic response.

In softening regime, the stress-strain equation is adjusted based on the length of the
contact, L, to preserve required energy dissipation. This technique is known as the crack
band model (Bažant and Oh 1983). Because of such regularization, the non-linear model
behavior is independent of body size if the cracking is highly localized. Nonetheless, whenever
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Figure 5.3: Response of a discrete system with different lmin loaded in pure tension.

distributed cracking takes place, the size of discrete bodies becomes influential. Note that
the same behavior of the crack band model is observed in continuum modeling as well (Le
and Eliáš 2016).

Simple uniaxial tension simulations were performed to investigate the effect of discretiza-
tion in an inelastic regime. The beam cross-section was 1002 mm2 and length was 400mm,
while the governing material parameters were ft = 2.66MPa and Gt = 20 J/m2. The beam
elongation is plotted against the relative beam stress in Fig. 5.3. The finer the discretization,
the higher the strength. However, up until approximately 70% of the relative stress, all the
models yields an identical response that corresponds to the ideal elastic behavior.

5.4 Adaptive discretization refinement
The classical approach in adaptivity is based on error estimation, which is available for
elastic problems but not for inelastic models in general. Instead of a rigorous procedure,
rather an intuitive approach is applied here. As was shown in the previous two sections, the
size of the bodies only matters in the inelastic regime. Therefore, the discretization should
be refined before any part of the model undergoes inelastic processes.

The intuitive refinement criterion is based on the average stress in rigid bodies. The
average stress tensor in the ath body can be calculated as

σaij = 1
V a

0

∫∫∫
V a

0

σijdV a
0 (5.13)

with i and j being the Cartesian indices and V a
0 is the volume of the ath body. Using the

divergence (Gauss–Ostrogradsky) theorem, one can transform the volume integral into the
surface one and obtain so called fabric stress tensor ; derivation can be found e.g. in Li,
Yu, et al. (2009). The fabric stress tensor can be utilized to evaluate average stress tensor
components in the body associated with node a

σaij = 1
V a

0

∑
b

fabi c
ab
j (5.14)

where b runs over all nodes in contact with the node a; fab is a vector of contact force, cab is
the centroid of the contact facet.
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5.4. Adaptive discretization refinement

Figure 5.4: Adaptive refinement of discretization in steps; a) schematic explanation; b)-g)
application to a 2D model

Mazars’ equivalent stress (Mazars 1984) serves as a measure of the stress level in the body

σmaz =

√√√√√ III∑
p=I
〈σp〉2 (5.15)

with σI−III being the principal stresses and 〈·〉 returning the positive part of the argument.
After every solution step, stress tensors in all rigid bodies found in the coarse discretization
region are evaluated (Eq. (5.14)). Then, principal stresses and Mazars’ equivalent stresses
(Eq. (5.15)) are calculated. Whenever

σmaz
ft

> γ (5.16)

the discretization is refined and the node associated with that rigid body serves as a center
of the refinement sphere. Eq. (5.16) introduces new model parameter γ defining relative
stress level at which the refinements take place. Based on the uniaxial tension simulations
(Fig. 5.3), its reasonable value seems to be about γ = 0.7.

Two types of nodes are distinguished: those that belong to the fine discretization region
of the target body size lmin = lf , and the rest. Initially, the coarse discretization is generated
using lmin = lc and all nodes belong to the latter group. Non-linear behavior is only allowed
at facets connecting nuclei from the fine discretization region; any connection that involves
a nucleus from the coarser discretization region behaves in a linearly elastic manner.

The adaptive refinement of discretization is performed within a sphere of radius rc. All
nodes inside this sphere that do not belong to the fine discretization region are removed.
Then, new nuclei are added using the same procedure as when creating the original model.
The parameter lmin is set to lf inside the inner sphere of radius rf and then changes linearly

75



Chapter 5. Adaptive technique for discrete models of fracture

with the distance from the sphere center r

lmin =


lf for r < rf

lf + (r − rf)
lc − lf
rc − rf

for r ∈ 〈rf , rc〉

lc r > rc

(5.17)

The described replacement of nuclei is schematically shown in Fig. 5.4. The linear transition
from coarse to fine discretization is included to keep the shape of the bodies approximately
the same in statistical sense. If the transitional regimes were omitted, the sharp change in
discretization density would produce significantly elongated body shapes, directional bias and
anisotropy.

Triangulation and tessellation are performed on the newly created nuclei. Since there are
no history variables associated with the constitutive equation in the refined region yet (only
elastic connections), no transfer needs to be performed from the old to the new discretization.
The new stiffness matrix is assembled. It includes all the inelastic phenomena accumulated
in the model so far because none of the inelastic bond is changed. Furthermore, it includes all
newly created elastic connections. The calculation continues from scratch at the load which
required last refinement.

The adaptivity model introduces four additional parameters: coarse discretization density
lc, radii rc and rf and the relative stress limit γ.

5.4.1 Adaptivity in probabilistic modeling

In some applications of fracture simulations, it might be important to consider additional
material randomness (besides that which is covered by the random location of nodes in
the discrete model), a phenomenon usually represented by random fields (Vořechovský and
Sadílek 2008; Yang, Su, et al. 2009; Georgioudakis et al. 2014). An extension of the discrete
model via the fluctuation of material parameters according to a random field was developed
in Chap. 4.

In the adaptive model, new contacts are created after every refinement, meaning that
the random field values at the new contact centers must be determined. This is effectively
done using kriging. Initially, standard Gaussian random field realizations (Ĥ) are generated
on points arranged in a regular grid with the spacing lc/4. The random field value at facet
centroid c is then estimated using the optimal linear estimation method by Eq. (4.43) on
page 53. Finally the standard Gaussian field Ĥ is transformed onto the Weibull-Gauss field
(Ĥ →H) using Eq. (4.40) (isoprobabilistic transformation).

Assuming that the random field does not change too much within one discrete unit of the
model (lc � lmin), it is then reasonable to estimate the strength of hypothetical newly-created
contacts within the ath coarse discrete unit according to the strength at node a. The criteria
for refinement at node a (Eq. (5.16)) can thus be updated

σmaz
µftH(xa)

> γ (5.18)

5.5 Numerical examples

The performance of the proposed adaptive algorithm is demonstrated on several numerical
examples. In the following subsections, the adaptive concept is applied in the simulation of (i)
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the three-point bending test of notched and unnotched beams, (ii) the Nooru-Mohamed test
(loading path 4C), and (iii) four-point bending test with incorporated material randomness.

5.5.1 Three-point bending

The first demonstration focuses on the three-point bending of concrete beams. An experimen-
tal campaign published in Grégoire et al. (2013) is simulated. Note that these experiments
were already modeled via mesoscale discrete model, see Grassl, Grégoire, et al. (2012). The
experiments were performed for four different beam sizes (A-D) and three notch depths (a-c).
The simulations are limited to the largest beam size only. The beams were 400mm in depth,
1000mm in span and 50mm thick (see Fig. 5.5). A central notch of depth a0 = 200mm
(a), 80mm (b) or 0mm (c) was introduced. The central part of the beam is represented
by a discrete system while the supports and side regions are modeled using linear elastic
continuum and discretized with the finite element procedure (Sec. 4.5 on page 48). This is
only performed because it is convenient for the in-house software used.

The mesoscopic elastic constants were estimated as E0 = 60GPa and α = 0.29 providing
the macroscopic elastic parameters E = 37GPa and ν = 0.21. These numbers agree with
the experimental measurements (Grégoire et al. 2013). The mesoscale fracture parameters of
the model were identified via automatic optimization, as presented in Sec. 4.7.1 on page 57.
The governing parameters were found to be ft = 2.2MPa and Gt = 35 J/m2. According to
the maximal aggregates in the real material, the length lf was considered to be 10mm. The
coarse discretization length was lc = 30mm, the radii of the adapted region were rf = 60mm
and rc = 120mm, and the limit for refinement was γ = 0.7.

The results are computed for three model types:

• a fine model, where the fine discretization lmin = lf is used throughout the whole
specimen right from the beginning

• a coarse model, where the coarse discretization lmin = lc is used throughout the speci-
men and no adaptivity is considered

• an adaptive model, where lmin is adaptively modified, initially staring as lc everywhere
but changed to lf if needed.

Because of their different computer-generated mesoscale structures, the model types cannot
be directly compared. Therefore, a statistical comparison will typically be presented. The
only exemption is a special case where one simulation with the fine model is compared to
one simulation with the modified adaptive model. In this case, the nuclei are not generated
randomly during the refinement but instead are copied from the fine model. As a result, the
fine and adaptive models have the same mesostructure in the areas where the discretization

Figure 5.5: Dimensions of a simulated beam loaded in three-point bending.
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Figure 5.6: Load-deformation curves for beams with a deep notch a0/D = 0.5 (Aa), a shallow
notch a0/D = 0.2 (Ab) and no notch (Ac). The gray area shows the experimental range (Gré-
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Figure 5.7: Damage patterns developed during three-point bending test simulation. Two
stages are shown – the solution step when the maximum load was reached and the end of the
simulation. Approximate number of DOF is reported.

was refined. The results of these special simulations are shown in Fig. 5.6. It can be seen
that there is a negligible difference in the responses of those two models for all notch depths.

The damage patterns obtained from the simulations are compared in Fig. 5.7. The damage
parameter in the last step of the calculation is shown for notched specimens AA and Ab, while
the damage in three solution steps, at the beginning, at the maximum load and at the final
step, is plotted for the unnotched beam Ac. The cracks from fine and adaptive model are
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Figure 5.9: Average response of the model with fine, adaptive and coarse discretization for
different notch depths. Average values are shown by thick lines and ±standard deviations by
thin lines.

almost identical in all the cases. One can also see that a much smaller region had to be refined
when the notch was present. Unnotched beams experience extensive distributed cracking and
therefore more refinement is required.

The standard random generation of nodes during refinement was employed in the later
simulations. 100 realizations differing in the initial mesostructure were calculated for each
of the model types considered. The statistical characteristics of the peak load, Pmax, and
total dissipated energy, G, are presented in Fig. 5.8. The fine model is taken as the reference
solution and relative deviations from it are measured. The adaptive model provides almost
identical characteristics (within 1% as regards the average peak load and 3% in the case of the
average energy, and with similar standard deviations) while the statistics obtained with the
coarse model become more deviated from the reference values as the notch depth decreases.
The reason for the coarse model being close to the reference fine solution in the deep notch
case is the energy regularization incorporated inside the contact constitutive equation (Crack
band model). As long as the cracking is highly localized, the regularization ensures correct
behavior irrespective of discretization density. However, any distributed cracking inevitably
leads to incorrect coarse model behavior.

Average load-deformation curves are presented in Fig. 5.9. The averaging is performed for
100 model responses at constant compliances, i.e. at approximately the same crack lengths.
Again, one can see perfect agreement between the reference fine model and the adaptive one.

79



Chapter 5. Adaptive technique for discrete models of fracture

0 0.2 0.4 0.6 0.8 1 0.8 0.6 0.4
loading force [×Pmax]

0

5

10

15

20

25

30

35

40

45

d
eg
re
es

of
fr
ee
d
om

[×
10

3
]

adaptive model

Aa

Ab

Ac

75

80

85

fine model Aa≈Ab≈Ac

Figure 5.10: Change in the number of degrees of freedom during the simulation of three-point
bending. The average values (solid lines) and standard deviations (dotted lines) have been
calculated from 100 simulations; the vertical dotted line marks the peak load.

30 60 120
rf [mm]

0.08

0.10

0.12

0.14

0.16

0.18

0.20

co
m
p
u
t.

ti
m
e
fr
ac
ti
on

t a
/t

f

Aa

30 60 120
rf [mm]

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

co
m
p
u
t.

ti
m
e
fr
ac
ti
on

t a
/t

f

Ab

30 60 120
rf [mm]

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

co
m
p
u
t.

ti
m
e
fr
ac
ti
on

t a
/t

f

Ac

Figure 5.11: Fractions of computational times needed to calculate the responses of the models.
A value 0.2 means that the model with adaptive discretization is 5× faster to compute than
the one with fine discretization. The figure shows dependence of this time fraction on the
radius rf .

The coarse model is (on average) close to the reference curve in both notched cases, but the
variability of the response is significantly higher. In the unnotched case, the coarse model
also deviates on average.

Since the fine and adaptive models provide identical results, one may freely choose which
one is more convenient. The adaptive model has the advantage of a lower number of degrees
of freedom (DOF), but needs to perform adaptive refinements every once in a while. The
number of DOF during the calculation is shown in Fig. 5.10. The fine model has about 80
thousands DOF. The adaptive model starts with 6-8 thousands DOF and finishes with 18, 24
or 42 thousands DOF. The increase in DOF is strongly dependent on structural geometry.
In the unnotched beam, the zone of distributed cracking that develops prior to reaching the
peak load requires extensive refinements and therefore the rate of the increase in DOF is
higher than in the two notched cases. However, after the peak load is reached, the crack is
already localized and propagates without a distributive cracking zone. The increase in DOF
is therefore slower. The presence of the deep notch eliminates the distributed cracking and
therefore the increase in DOF is slow even prior to the peak.

Finally, computational times are presented. The large number of simulations were per-
formed on eight different computers capable of running 24 threads simultaneously. The
computers are used for both educational and scientific purposes, with both students and
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researchers having access to them. Though these eight computers were originally identical
(with the same hardware and software), there might be differences in computational speed
due to different usage histories and the influence of other educational and scientific tasks run-
ning on them during the calculations. Nevertheless, an attempt to compare the effectiveness
of the adaptivity concept has been made.

The performance of the adaptive model depends on the chosen parameters. In par-
ticular, the radii rf and rc are subjected to an arbitrary choice of the user. A simple
study has been performed to estimate their optimal values. Five variants are considered:
rf ∈ {30, 42.4, 60, 84.9, 120}mm and rc = rf + 60mm. 100 realization had already been
computed for variant rf = 60mm, the remaining variants were represented by 30 realizations
only. The fraction between the computational time of the adaptive model, ta, and the average
computational time required for the fine model, tf , is shown in Fig. 5.11. For notched cases,
the value rf = 60mm seems to be optimal choice as it speeds up the simulations approxi-
mately 10 times for the deeply notched beam Aa and 7 times for the shallowly notched beam
Ab. For unnotched beams, the data are not very clear. Here the price was paid for using
different computers: one cannot see any trend. It seems that larger rf values might lead to
better performance. In any case, the solution is obtained about 2-3 times faster.

5.5.2 Nooru-Mohamed test, path 4C

In order to show performance of the adaptive model on some complex example, the Nooru-
Mohamed test is simulated. Nooru-Mohamed tested double-notched concrete specimens
in several different loading scenarios by combining shearing and tensile loading (Nooru-
Mohamed 1992; Nooru-Mohamed et al. 1993). One of the most challenging scenarios is
loading path 4C, which starts with pure shear with restricted vertical deformation until the
maximal shear force, Ps,max, is reached. The experiment then continues with tensile load-
ing while the shear force Ps,max is kept acting. Again, only the largest tested specimen is
simulated here. The dimensions of the specimen, loading forces and gauges measuring defor-
mations are shown in Fig. 5.12. Similarly to other simulation of this test published in the
literature, the model contains an elastic regions that prevent development of cracks along
the specimen boundaries. The figure also shows two experimentally observed cracks running

Figure 5.12: Dimensions of the specimens used in Nooru-Mohamed’s experiments, location
of gauges and experimentally observed cracks for path 4C (Nooru-Mohamed 1992).

81



Chapter 5. Adaptive technique for discrete models of fracture

−200−150−100−500
δs [µm]

0

5

10

15

20

25

30
P
s
[k
N
]

experiment

fine discretization

adaptive discretization

refinements

0 20 40 60 80 100 120 140
δ [µm]

−5

−4

−3

−2

−1

0

1

P
[k
N
]

Figure 5.13: Load-deformation responses measured during experiment (path 4C) and simu-
lation using fine and adaptive discretization.

d
am

ag
e 
D

1

0

adaptive, initial
13000 DOF

adaptive, max. shear
111000 DOF

adaptive, final
125000 DOF

fine, max. shear
126000 DOF

fine, final

Figure 5.14: Damage patterns developed during Nooru-Mohamed test simulations at the
maximum shear force and at the end of the simulation; approximate number of DOF.

from the notch tips and gradually changing their directions.
The material used in the experiments was a concrete mix with the maximum aggregate

size 2mm. In order to reduce the large computational demands of the simulation, lf was set
to 4mm though it does not reflect the real heterogeneity in the material. The coarse graining
length was lc = 12mm and the adaptive radii were rf = 48mm and rc = 72mm. The
mesoscale elastic parameters of the model were set to E0 = 48GPa and α = 0.24, resulting
in the macroscopic elastic properties E = 29GPa and ν = 0.2. The governing mesoscale
fracture parameters were estimated to be ft = 2.2MPa and Gt = 25 J/m2.

The three model types described in the previous section were employed here as well.
In a similar manner as with the three-point bending, the analysis starts with the direct
comparison of one realization of the fine model and one realization of the special adaptive
model generating fine discretization according to the fine model’s grain locations. The graph
in the left part of Fig 5.13 shows shear force, Ps, dependent here on horizontal deformation, δs;
the graph in the right part shows tensile force, P , dependent here on vertical deformation, δ.
Both models provide almost identical results. They significantly differ from the experiments,
though the behavior is qualitatively the same. Fig. 5.14 presents damage patterns obtained
from the models when the maximal shear force is reached, and at the end of the simulation.
The macrocracks correspond to the experimentally observed cracking.

The fine, coarse and adaptive (with randomly generated refinement nuclei) models were
also compared statistically. 30 realizations of each model were calculated: the average re-
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sponse in shear and tension is presented in Fig 5.15, as well as statistics for the maximum
shear force and the minimum tensile force. The fine and adaptive models are in agreement
while the coarse model deviates.

The reduction in computational time when using the adaptive model is practically nil.
On average, the adaptive model needed 98% of the fine model calculation time to obtain the
same results. The reason is that the specimen experiences distributed cracking throughout
its whole volume. Therefore, the adaptive model reaches the same number of DOF at the end
of the simulation as the fine model. Moreover, a large number of DOF is already attained at
the beginning of the simulation, before maximum shear is reached. In this particular case, the
usage of the adaptive model does not provide any benefit. On the other hand, the example
shows that the proposed adaptivity can be used in very complex situations without devaluing
the results.

5.5.3 Probabilistic four-point bending

The last example presented here is a four-point bending simulation. Four-point bending
experiments (Koide et al. 1998; Koide et al. 2000) allow spatial material randomness to be
emphasized, and therefore such randomness should be reflected in simulations as well (Grassl
and Bažant 2009).

The beam geometry is shown in Fig 5.16. The deterministic model parameters were
adopted from the example of the three-point bending in Sec. 5.5.1. Also, the adaptive algo-
rithm used the same parameters. The parameters of the probabilistic extension were taken
from Chap. 4. The correlation length and the coefficient of variation of the random field were

Figure 5.16: Dimensions of the simulated beam loaded in four-point bending
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80mm and 0.25, respectively.

Fig. 5.17 shows on the left-hand side the identical responses of one simulation using the
fine model and one simulation using the adaptive model with the same refined mesostructure
and also the same random field realization. The resulting crack patterns as well as the applied
random field are shown in Fig. 5.18.

The same three model types as before were also compared statistically for four-point
bending. The same 30 random field realizations were used for each model type. The average
responses (center) and statistics for the peak load and dissipated energy (right-hand side)
are shown in Fig. 5.17. The fine and adaptive models provide the same response while the
coarse model again deviates from them. On average, the computational time needed for the
adaptive model was 47% of the time for the fine model.
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5.6 Summary
The adaptive refinement of discretization for static discrete mesoscale fracture models was
presented. This adaptivity is performed in a model with random geometry created via Voronoi
tessellation. The concept relies on capability of the model to exhibit the same elastic behavior
irrespective of the size of the rigid bodies. The invariant elastic behavior was theoretically
proven and numerically demonstrated.

The adaptive concept was verified on simulations of (i) beams both with and without
a notch that were subjected to three-point bending, (ii) the Nooru-Mohamed test (loading
path 4C), and (iii) beams loaded in four point bending. Reasonable time savings were achieved
while no change in results was detected.

All the simulations were terminated after a long period of crack propagation. In the case
that only the peak load was of importance, the time savings could be even larger. The largest
time savings can be expected in problems where material inelasticity is localized within a small
portion of the modeled element, but the location of such a region is not known in advance.
One might also try to increase the γ parameter to speed up the simulations. However, the
larger the γ parameter used, the larger the expected error.

Finally, it was demonstrated that the adaptive concept can also be successfully applied in
probabilistic modeling where the material parameters fluctuate according to a random field.
In such a case, the random field discretization needs to be refined adaptively as well.
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Chapter 6

Boundary layer effect on behavior
of discrete models

This chapter is based on paper: Jan Eliáš (2017). “Boundary layer effect on behavior of
discrete models”. Materials 10, p. 157. issn: 1996-1944. doi: 10. 3390/ ma10020157

6.1 Introduction

Possible boundary layer effect in discrete models was discussed in the previous chapter,
Sec. 5.2.2 on page 71. This topic is thoroughly elaborated in this chapter.

The presence of a boundary is inevitable for any solid. The material in the vicinity of the
boundary often has different material properties to that lying further from the boundary due
to various effects. In concrete, one of the main effects is that the boundary layer typically
contains lower amount of larger mineral aggregates and more small aggregates and mortar
compared to the interior material (Bažant and Planas 1997). The boundary layer thick-
ness is determined by the sieve curve of the material and is independent of the size of the
specimen/member. The presence of the boundary layer may affect the elastic and inelastic
mechanical behavior of concrete members.

In the numerical analysis of concrete members using continuous homogeneous models, the
boundary layer is typically not represented. However, some approaches lead to the creation of
a boundary layer that is different from the interior (nonlocal models in Havlásek et al. (2016),
for example), or a boundary layer is directly created on purpose (Vořechovský and Sadílek
2008). In the case of mesoscale models, the different distribution of mineral aggregates in the
boundary layer can be directly imposed when creating the model.

It will be demonstrated that the boundary layer is inevitable in discrete models, and
affects its mechanical behavior. For a positive Poisson’s ratio, the boundary layer becomes
more compliant than the bulk material, while for a negative Poisson’s ratio, it becomes
stiffer. In the nonlinear regime, the boundary layer is weaker and less ductile than the
interior material. All these phenomena are consequences of geometrical bias in the boundary
layer. While the elements inside the specimen are oriented with the same probability in any
direction, the boundary layer has more elements oriented parallel to the boundary.

When the discrete model is understood to be only some kind of discretization technique,
the presence of a boundary layer with a thickness related to the discretization density is
inconvenient. Recently, an iterative technique capable of removing both elastic stress fluctu-
ations and the elastic effects of the boundary layer with no limits in Poisson’s ratio has been

http://dx.doi.org/10.3390/ma10020157
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Figure 6.1: Voronoi tessellation and Power diagram for the same set of nuclei.

developed (Asahina, Ito, et al. 2015; Asahina, Aoyagi, et al. 2017). The disadvantage of this
approach is the loss of transversal tensile forces under compression. However, the boundary
layer might still have an effect in the nonlinear regime, depending on the applied constitutive
equation. Another approach with similar consequences uses a constitutive equation based on
the volumetric-deviatoric split of a strain tensor (Cusatis, Rezakhani, et al. 2017).

Viewing the discrete particle model not as a discretization technique but as a mesolevel
model mimicking real material structure, the aforementioned boundary layer might also be
viewed as realistic, but the underlying origin of it is in the numerical model completely differ-
ent from a real heterogeneous solid. Because there are no experiments known to the author
that evaluates the boundary layer effect, it is not possible to determine its appropriateness
in the model.

The author was confronted with boundary layer effects for the first time in Vořechovský
and Eliáš (2010), where the elastic tensorial stress in the boundary layer layer clearly deviated
from the theoretical behavior and exhibited strong dependence on Poisson’s ratio. Another
influence of the boundary layer in the elastic regime was noted in Sec. 5.2.2 on page 71. The
macroscopic elastic modulus and Poisson’s ratio deviated for decreasing discretization density.
This was caused by the increasing fraction of the boundary layer in the specimen volume.
Finally, in the nonlinear regime, the adaptive technique from Chap. 5 showed sensitivity to
the construction of the model geometry in the boundary region. All these effects are explained
by the findings presented in this chapter.

6.2 Model

The studied model is again a discrete system of rigid bodies connected at common facets by
linear or nonlinear contacts. The constitutive equations are taken from Cusatis and Cedolin
(2007) and simplified. A full description of both linear and nonlinear constitutive equations
and model kinematics is provided in Secs. 4.3 and 4.4 on page 42. Both the 2D and 3D
versions of the model are used in this chapter.

Each body has three degrees of freedom (DOF) in two dimensions (2×translation u,
1×rotation θ), and 6 in three dimensions (3×translation u, 3×rotation θ). The orientation of
the contact facet is described by its normal direction, n; the length of the contact is denoted
L = ‖xa − xb‖, its area is A and centroid is c.

Three algorithms are used for geometry construction. The first two types are controlled
by the parameter lmin, while the third type needs a sieve curve of the mineral aggregates on
input. The differences between the tessellation types are schematically demonstrated in 2D
in Fig. 6.2 left.
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• In the first type (denoted A), the specimen domain is randomly filled with nuclei that are
not closer to each other than lmin. The filling is carried out sequentially, one nucleus at
a time, and stops after a large number of trial nuclei have been rejected due to violation
of the minimum distance. Then, Voronoi tessellation is performed to divide the domain
into bodies. The rigid body associated with nucleus a encompasses all the points x
that are closer to a than to any other nucleus (recapitulating Eq. (2.1))

oa =
⋂
b6=a
{x; ‖x− xa‖ ≤ ‖x− xb‖} (6.1)

Voronoi faces, here referred to as facets, represents the bonds between two bodies. It
is exactly the algorithm used already in 3D in Chap. 5 and in 2D in Chaps. 2 and
3. The boundary region requires special treatment. According to Bolander, Hong, et
al. (2000), the nuclei are mirrored across the boundary before performing the Voronoi
tessellation. The tessellation then creates the boundaries of the rigid bodies exactly at
the boundaries of the specimen.

• The second tessellation type (denoted B) differs only slightly from the first. The nuclei
are randomly placed into a larger volume than needed. After the random placing is
complete, nuclei outside the true specimen domain are removed. The tessellation and
the treatment of the boundary region both proceed exactly as in case A. The only
difference between the A and B tessellation is in the random placing of the nuclei in the
boundary region. In the case A, the presence of the boundary already affects the placing
process; while in the case B, the boundary is effective only during the tessellation.

• Finally, tessellation type C accounts for different aggregate sizes. Spherical aggregates
of different diameters are generated based on the sieve curve. The Fuller curve with 75%
of aggregate volume with diameters within the range dmax = lmin and dmin = 0.2lmin is
used (see Sec. 4.2 on page 40). The aggregates are sequentially randomly placed into the
domain, starting with the largest ones. No overlapping of the boundary is allowed, and
the minimal mutual distance between two spherical centers is 1.1×sum of their radii.
The power diagram (Aurenhammer 1987) is used instead of the Voronoi tessellation. It
is a weighted version of Voronoi tessellation based on the power of a point to a sphere
defined as r2 − d2/4, where r is the distance of the point from the spherical center and
d is the sphere diameter. The body of the power diagram associated with sphere a is

Figure 6.2: Left: Different tessellation types in the boundary region; right: 2D sketch of
a periodic structure with and without boundary.
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a set of all points with lower power to sphere a than to any other sphere.

oa =
⋂
b 6=a

{
x; ‖x− xa‖2 −

d2
a

4 ≤ ‖x− xb‖
2 − d2

b

4

}
(6.2)

The power diagram is computed with a help of an external software (Szczelina and
Murzyn 2014).

The last modification of tessellation procedure is periodic repetition of the model struc-
ture. The periodicity allows to completely remove the boundary. Though it can be generally
used with tessellation types A or C, it is here employed only in connection with A. Dur-
ing random placement of nuclei, every nucleus is periodically repeated twice in the y and z
directions. The tessellation is then performed on a periodic structure that is 3× larger in
both the y and z directions. When solving the mechanical system, periodic images of nuclei
have dependent DOFs and only one periodic image of each contact contributes to the strain
energy and is therefore included in the stiffness matrix. This approach completely removes
boundaries and creates ideal directionally unbiased geometry. When boundaries are present
in the periodic structure, the nuclei in the central part of the prismatic specimen are mirrored
across the xy and xz plane. After tessellation, the planes xy and xz behave in the same way
as a specimen boundary with directionally biased geometry in its vicinity. An example of the
periodic boundary free and periodic bounded structures in 2D is shown in Fig. 6.2.

All of the three tessellation types have two fundamental features used later in the the-
oretical derivations: (i) the facets on the contacts of the rigid bodies are perpendicular to
the vector connecting corresponding nuclei, (xb − xa)/L = n; (ii) the volume is filled by
bodies with no space left. Based on these two properties, the volume of the whole discretized
specimen can be computed via summation over all contacts e

V =


1
2
∑
e

AeLe 2D

1
3
∑
e

AeLe 3D
(6.3)

As the system deforms, a displacement jump, ∆, occurs between bodies and gives rise
to stresses (Sec. 4.3 on page 42). However, instead of two shear strain scalars, eM and
eL, in mutually perpendicular directions, m and l, shear strain vector eT = eMm + eLl
perpendicular to n is used here. The normal strain is represented by scalar and its direction
is always n. Similarly to Eq. (4.6), one can write

eN = n ·∆
L

eT = ∆
L
− eNn (6.4)

Using this notation, Eq. (4.16) becomes

sN = (1−D)E0eN sT = (1−D)E0αeT (6.5)

where sT = sMm + sLl is the shear stress vector. Elastic parameters of the model, E0 and
α, were already used in previous chapters.
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Figure 6.3: Left: one element inclined by γ with normal and tangential stress projected into
the x direction; center: simple structure strained in the x direction with normalized stress s1
for three different α parameters; right: dependence of s1 on γ - Eq. (6.7).

6.3 Demonstrative example
Imagine a simple 2D setup of width h sketched in Fig. 6.3. Eight bodies are strained in
the x direction by ε11 with restricted rotations and translations in the y direction. The
displacement jump at all the contacts is clearly ∆ =

(
hε11 0

)
. Denoting γ ∈ 〈0, π/2〉

is the angular deviation from the x axis, the normal is n =
(
± cos γ ± sin γ

)
and length

L = h/ cos γ. The elastic normal and tangential stresses are (from Eqs. (6.4) and (6.5))

sN = E0ε11 cos2 γ ‖sT ‖ = E0αε11 sin γ cos γ (6.6)

and the stress acting in the x direction on the projection of the facet to the y direction is

s1 =
n ·
(
sN ‖sT ‖

)
cos γ = E0ε11

(
cos2 γ + α sin2 γ

)
(6.7)

The stress s1 transferred by the facet projections is shown in Fig. 6.3 for three values of α.
It increases with angular deviation γ for α > 1, but decreases with γ for α < 1 (see Fig. 6.3).
Therefore, the elements more inclined away from the straining direction behaves in a stiffer or
more compliant manner when α is larger or lower than 1, respectively. The inclined elements
also have lower normal stress; shear stress becomes maximal when γ = π/4.

This is the simple idea which lies behind this chapter. In reality, there are also rotations
and translations perpendicular to the stress direction. Nevertheless, when the element normal
is parallel to the straining direction, the active stress component is mainly normal stress.
When inclined, shear stress is activated. Because the elements in the boundary layer are
aligned with the boundary, the properties of the boundary layer differs. The same effect was
recently used for generating anisotropic discrete model via introducing systematic bias into
the angular distribution of the elements (Yao et al. 2016).

6.4 Macroscopic elastic behavior of a discrete system
It is convenient to derive now general elastic properties of a discrete system with unbiased
geometry. This derivation has already been performed in 3D in Kuhl et al. (2000). The
reader may wish to skip the following details regarding such derivation, moving straight to
Eq. (6.25), which summarizes the results.

91



Chapter 6. Boundary layer effect on behavior of discrete models

The analytical equations are hereinafter based on a simple assumption about the dis-
placements and rotations of the bodies in the system when subjected to macroscopic uniform
strain. It is assumed that all the rotations are null (θ = 0) and the difference in displacements
between any two nodes is

ub − ua = ε · (xb − xa) (6.8)

The second order tensor ε is the applied uniform strain. This assumption is clearly not
satisfied exactly, except in one special case when α = 1. However, it will be shown that the
real system behavior is not very far from this assumption.

Using assumption (6.8) and perpendicularity of the facet area to the element, the dis-
placement jump is determined by the strain tensor

∆ = Lε · n (6.9)

The facet strains in the normal and tangential direction are (from Eqs. (6.4) and (6.9))

eN = n · ε · n eT = ε · n− (n · ε · n)n (6.10)

According to Kuhl et al. (2000), one can define the second order tensor N = n ⊗ n, fourth
order tensor III = Iijkl = (δikδjl + δilδjk)/2 with δij being the Kronecker delta (second order
unit tensor), and third order tensor T = n ·III −n⊗n⊗n. Then, Eq. (6.10) can be rewritten
as

eN = N : ε eT = T : ε (6.11)

The constitutive equation in the elastic regime yields

sN = E0eN = E0N : ε sT = E0αeT = E0αT : ε (6.12)

The virtual work done by one element on virtual strain δε is

δW = AL (sNδeN + sT · δeT ) = ALE0
(
ε : N ⊗N : δε+ αε : T T · T : δε

)
= ALE0ε :

(
N ⊗N + αT T · T

)
: δε (6.13)

To derive macroscopic elastic parameters, one starts with the equivalence of virtual work
done by a mesoscopic discrete system and by a macroscopic homogenized elastic continuum
(Kuhl et al. 2000)

δWmes = δWmac (6.14)

The virtual work of elastic continua in volume V , using σ = D : ε, is simply

δWmac = V σ : δε = V ε : D : δε (6.15)

while the work done by the discrete system is a summation of all contributions from individual
contacts

δWmes =
∑
e

δWe =
∑
e

AeLeE
e
0ε :

(
Ne ⊗Ne + αT Te · Te

)
: δε (6.16)
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6.4. Macroscopic elastic behavior of a discrete system

The fourth order tensor of elastic constants follows on from Eqs. (6.15) and (6.16)

D = 1
V

∑
e

AeLeE
e
0

(
Ne ⊗Ne + αT Te · Te

)
(6.17)

In the model used here, the normal stiffness, E0, is identical for all the elements and can
thus be moved outside the summation. Further simplification of this equation is possible
providing the model geometry is properly constructed. When there is no directional bias, the
tensors N and T do not have any statistical dependence on elemental area, A, and length,
L. Therefore, the summation can be rewritten using the mean value (E[−]) of terms with N
and T .

D = E0
V

(
E [N ⊗N ] + αE

[
T T · T

])∑
e

AeLe (6.18)

Both N and T are functions of normal n only; the normal should have the same prob-
ability of occurrence for any possible orientation. Using two independent random angles, ξ
and ζ, with the following probability distribution function (pdf)

fξ(ξ) =


1

2π for ξ ∈ (0, 2π)

0 otherwise
fζ(ζ) =


sin ζ

2 for ζ ∈ (0, π)

0 otherwise
(6.19)

the normal is n =
(

cos ξ sin ξ
)
in 2D and n =

(
cos ξ sin ζ sin ξ sin ζ cos ζ

)
in 3D. The

mean values are calculated by analytical integration. Having arbitrary function G = g(ξ, ζ)
dependent on 2 (or 1 in 2D) statistically independent random variables ξ and ζ with the
probability distribution function fξ,ζ (ξ, ζ) = fξ (ξ) fζ (ζ) (or fξ (ξ) in 2D), the mean value of
G is

µG = E[G] =
∞∫
−∞

g(ξ)fξ(ξ)dξ 2D µG =
∞∫
−∞

∞∫
−∞

g(ξ, ζ)fξ,ζ(ξ, ζ)dξdζ 3D (6.20)

Evaluating Eq. (6.20) for G = N ⊗N and G = T T · T yields

E[N ⊗N ] =



2π∫
0

N ⊗N 1
2πdξ = 1

4

(
III + 3

2III vol
)

2D

2π∫
0

π∫
0

N ⊗N sin ζ
4π dζdξ = 2

15III + 1
5III vol 3D

(6.21)

E[T T · T ] =



2π∫
0

T T · T 1
2πdξ = 1

4

(
III − 3

2III vol
)

2D

2π∫
0

π∫
0

T T · T sin ζ
4π dζdξ = 1

5
(
III −III vol

)
3D

(6.22)

where III vol = 1/3 δ ⊗ δ; δ is the second order unit tensor (Kronecker delta).
Combining Eqs. (6.3), (6.18), (6.21) and (6.22), one obtains analytical formulas for the

tensor of elastic constants

D =


E0

(1 + α

2 III + 3− 3α
4 III vol

)
2D

E0

(2 + 3α
5 III + 3− 3α

5 III vol
)

3D
(6.23)
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Chapter 6. Boundary layer effect on behavior of discrete models

For an isotropic elastic continuum, strain tensor D has the following form

D =


E

1 + ν
III + 3Eν

1− ν2III vol 2D plane stress
E

1 + ν
III + 3Eν

(1 + ν)(1− 2ν)I
II vol 3D & 2D plane strain

(6.24)

where E and ν are Young’s modulus and Poisson’s ratio. Solving Eqs. (6.23) and (6.24), a set
of equations relating elastic constants of homogenized continua, E and ν, and the discrete
system, E0 and α, is derived.

α = 1− 3ν
1 + ν

E0 = E

1− ν ⇔ ν = 1− α
3 + α

E = E0
2 + 2α
3 + α

2D, plane stress

α = 1− 4ν E0 = E

(1− 2ν)(1 + ν) ⇔ ν = 1− α
4 E = E0

(1 + α)(5− α)
8 2D, plane strain

α = 1− 4ν
1 + ν

E0 = E

1− 2ν ⇔ ν = 1− α
4 + α

E = E0
2 + 3α
4 + α

3D (6.25)

These equations establish limitations in Poisson’s ratio for discrete models. Using theoretical
meaningful limits 0 and ∞ for parameter α, the maximum and minimum Poisson’s ratio can
be calculated as (−1, 1/3) for 2D plane stress, (−∞, 1/4) for 2D plane strain and (−1, 1/4) for
3D model. Fortunately, representation of concrete with Poisson’s ratio around 0.2 is possible
in all cases.

6.4.1 Numerical verification

The set of Eqs. (6.25) is numerically verified here. A large prism is loaded by stress σ11 in
x direction. The elastic parameters E and ν are found by fitting the displacements of the
rigid bodies; see Sec. 5.2.2 on page 71. Fig. 6.4 shows a comparison of the analytical formulas
from Eq. (6.25) and numerical results. An exact match only happens in case of α = 1.
Increasing or decreasing α, the discrete system yields a lower elastic modulus and higher
Poisson’s ratio than values derived analytically. When α is close to zero, the system becomes
unstable. Some improvement can be gained by calculating the elemental response not only
at one point (centroid) but along the whole facet area, where the stresses generally differ due

3D
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Figure 6.4: Comparison of macroscopic elastic modulus and Poisson’s ratio estimated ana-
lytically (Eq. (6.25)) and computed numerically on a large discrete system.
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6.5. Angular bias in the boundary layer

to the rotations of rigid bodies. The results with an improved 2D model that uses five points
to integrate the stress on the facet are shown in Fig. (6.25) as well. Since this improvement
basically adds additional rotational stiffness to the elements, rigid body rotations are reduced
and the system is stabilized. It shows slightly better agreement with analytical formulas.

6.5 Angular bias in the boundary layer

The boundary layer shows strong bias in elemental orientation. In the ideal case where all
the directions have the same probability, the angular deviation from the x direction should
have the following probability density

2D 3D

fγ(γ) =
{

2/π for γ ∈ (0, π/2)
0 otherwise

=
{

sin(γ) for γ ∈ (0, π/2)
0 otherwise

(6.26)

The mean value (already defined in (6.20)) and standard deviation of any function G = g(γ)
dependent on γ are from the definition

µG =
∞∫
−∞

g(γ)fγ(γ)dγ δG =

√√√√√ ∞∫
−∞

(g(γ)− µG)2fγ(γ)dγ (6.27)

To calculate the mean and standard deviation of γ, Eq. (6.27) is used with g(γ) = γ.

µγ =


π

4 2D

1 3D
δγ =


π

4
√

3
2D

√
π − 3 3D

(6.28)

These numbers are compared to analysis of the actual discrete system in 2D (Fig. 6.5) and
3D (Fig. 6.6). In 2D, the discrete system was generated 500 times in a rectangular domain
of size 20lmin × 100lmin, with a different seed of random generator each time. The weighted
average and standard deviation of elemental inclination γ were calculated for different y
locations; the weights were facet areas. Fig. 6.5 shows one symmetrical half of the cross section
in the range y = 0 (center of the cross section) up to y = 10lmin (boundary). The interior
part is unbiased, while a boundary layer shows a strong decrease in the mean indicating that
the elements are more aligned with the boundary. Between the interior and the boundary,
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π/4

3π/8
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γ
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µγ ± δγ (Eq. 6.28)
µγ (Eq. 6.28)

Figure 6.5: Statistical characteristics of the angular deviation from the x direction in 2D.
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mean value of γ

0.50 0.75 1.00
[rad]

µγ (Eq. 7.28)

standard dev. of γ

0.24 0.32 0.40
[rad]

δγ (Eq. 7.28)

Figure 6.6: Statistical characteristics of the angular deviation from the x direction in 3D.

there is also a layer that exhibits lower amount of aligned elements. All three tessellation
types are investigated, and similar trends are observed.

In 3D, only tessellation type A is used. The discrete system was generated 3000 times
in a prismatic domain 10lmin × 10lmin × 50lmin. The average and standard deviation of γ
(weighted by facet area) are calculated for different locations in the cross section. Fig. 6.6
shows a symmetrical quarter of the cross section ranging from y, z = 0 (center of the cross
section) up to y, z = 5lmin (boundary). The bias in the boundary layer is similar to what
was seen in 2D; it gets strongly emphasized in corners, where two boundaries intersect.

6.6 Effects on elastic behavior

The rectangle and prism from the previous section were loaded by straining in the x direction
(ε11), while deformations in the y and z direction were unconstrained. Such loading results
in a single tensorial stress component σ11 and the following relations (these can be derived
from Eq. (6.24))

3D & 2D plane stress ε11 = σ11
E

ε22 = ε33 = −νσ11
E

= −νε11

2D plane strain ε11 = σ11(1− ν2)
E

ε22 = −σ11(ν + ν2)
E

= ν

ν − 1ε11
(6.29)

Combining Eqs.(6.29) and (6.11), and assuming the rotation of the 3D coordinate system
around the x axis takes place in such a manner that elements are always parallel to plane xy,
the normal and tangential strain can be evaluated.

eN = ε11 cos2 γ + ε22 sin2 γ (6.30)

eT =
(

cos γ sin2 γ(ε11 − ε22) cos2 γ sin γ(ε22 − ε11)
)

(6.31)

and the magnitude of the shear strain is

‖eT ‖ =
√

cos2 γ sin4 γ(ε11 − ε22)2 + cos4 γ sin2 γ(ε22 − ε11)2 = ‖ε11 − ε22‖ sin γ cos γ (6.32)

Finally, strains ε11 and ε22 are substituted by Eq. (6.29) and elastic constants E and ν
by Eq. (6.25). The stresses sN and sT are obtained by multiplying strains with E0 and α
according to Eq. (6.12). All the three cases – 3D, 2D plane strain and 2D plane stress –
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Figure 6.7: Average and standard deviation of normal stress (sN , first row), shear stress (sT ,
second row) and tensorial stress s11 (third row) calculated on a quarter cross section under
tensile loading; 2D model.

collapse into one

sN = ε11E0

(
cos2 γ − 1− α

3 + α
sin2 γ

)
(6.33)

‖sT ‖ = ε11E0α sin γ cos γ 4
3 + α

(6.34)

Assuming no directional bias, the mean value and standard deviations are calculated (Eq. (6.27))

µsN =


ε11E0

1 + α

3 + α
2D

ε11E0
1 + 3α

3(3 + α) 3D
δsN =


ε11E0

√
2

3 + α
2D

ε11E0
8

3
√

5(3 + α)
3D

(6.35)

µ‖sT ‖ =


ε11E0α

4
π(3 + α) 2D

ε11E0α
4

3(3 + α) 3D
δ‖sT ‖ =


ε11E0α

√
2(π2 − 8)
π(3 + α) 2D

ε11E0α
4

3
√

5(3 + α)
3D

(6.36)

These characteristics are based on (i) an ideal unbiased directional distribution of elements,
therefore only the interior parts will behave accordingly; (ii) assumption (6.8), therefore these
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Figure 6.8: Average and standard deviation of normal, shear and tensorial stress; 3D model.

will be exactly satisfied only for α = 1. For α 6= 1, the deformations do not obey Eq. (6.8)
exactly and rotations are nonzero.

A comparison with a real discrete system behavior is shown for 2D and 3D in Figs. 6.7
and 6.8 in the first two rows for selected α parameters. The value α = 0.29 has been chosen
for 3D model because it is typical for concrete. The normal and shear stresses are normalized
by ε11E0; the calculation of the mean and standard deviation was weighted by facet area.
Only tessellation type A is shown, as the other two types perform very similarly. One can
see reasonable approximation of the stresses by analytical formulas (6.35) and (6.36) in the
interior. In the boundary layer, the normal stress increases while the shear stress decreases.
Moving further from the boundary, there is an opposite stress deviation as the amount of
elements parallel with the boundary decreases.

Besides the stress at the contacts, one can also look at the average stress in the bodies.The
tensorial stress, σ11, can be computed in three ways
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6.7. Effects on inelastic behavior

• from the theoretical homogenized elastic continua, Eqs. (6.25) and (6.29)

σ11 = E0ε11
2 + 2α
3 + α

2D σ11 = E0ε11
2 + 3α
4 + α

3D (6.37)

• from the total applied loading force, P , as P/S with S being the cross section area

• in every rigid body using a fabric stress tensor σ with components σij (Eq. (5.14))

σij = 1
V0

∑
e

ceif
e
j ⇒ σ11 = 1

V0

∑
e

ce1f
e
1 (6.38)

where V0 is the volume of the rigid body, and ce and fe are centroid and contact force
of bond e; e runs over all contacts of one rigid body. An alternative approach for
calculation of the average tensorial stresses in the bodies (Bolander, Yoshitake, et al.
1999) can be also employed with similar results.

The average and standard deviation (weighted by V0) of tensorial stress s11 are plotted
in Figs. 6.7 and 6.8 in the third row. The stress is normalized by P/S and also compared to
theoretical σ11. The boundary layer with a higher fraction of elements aligned with straining
direction is stiffer for a < 1 and more compliant for a > 1.

It worths exploring whether α = 1 is a sufficient condition to obtain elastically uniform
structure. The contact force is f = A(nsN + sT ) = AE0(neN + αeT ), but reduces to
AE0∆/L for α = 1. In case that facets are perpendicular to elements, Eq. (6.9) holds and
f = AE0ε · n. Starting with Eq. (6.38) and assuming the same E0 for all the elements, one
arrives at

σij = E0
V0

∑
e

ceiA
e (ε · ne)j = E0

V0

∑
e

∑
k

ceiA
eεjkn

e
k = E0

V0

∑
k

εjk
∑
e

ceiA
enek (6.39)

where the second and third expressions are just expanded multiplication and reordered sum-
mation. Finally, when all the facets of the rigid body forms enclosed object, the last sum-
mation can be greatly simplified. Expression

∑
e c
e
iA

enek is either 0 for i 6= k or V0 for i = k.
Thanks to the symmetry of the strain tensor, one can write

σij = E0εij (6.40)

Three conditions were used to obtain the elastically uniform structure: (i) α = 1; (ii) facets
are perpendicular to elements; and (iii) the rigid bodies are enclosed. All three tessellation
types from Sec. 6.2 meet these conditions.

6.7 Effects on inelastic behavior
The inelastic behavior of bonds, taken from Sec. 4.4 on page 43, is dependent on straining
direction as well. A typical constitutive behavior is weaker and less ductile in tensile loading
than in shear. Since the boundary layer contains more aligned elements, it becomes weaker
and more brittle under straining along its direction than the interior part. Note that there are
also inelastic formulations independent on the element orientation such as the one presented
in Berton and Bolander (2006).

The results are reported only for the 3D model. The model parameters are: E0 = 60GPa,
α = 0.29, ft = 2.2MPa andGt = 35 J/m2. They were obtained by fitting a large experimental
series (Grégoire et al. 2013).
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Chapter 6. Boundary layer effect on behavior of discrete models

6.7.1 Periodic tension

In the first example, specimens with and without a boundary (tessellation type A) are com-
pared. The removal of the boundary is achieved by periodic repetition of the model structure.
Periodic prisms of 200mm in length with square cross section 50mm, 100mm and 200mm
in size are loaded in tension; discretization size is lmin = 10mm. The nominal stress and
elongation of the prisms are calculated 30 times with different geometry of discrete structure
and averaged. Two variants are considered: (i) α = 0.29 corresponding to typical concrete,
and (ii) α = 1.0 to show behavior of an elastically uniform model in the inelastic regime.
Examples of damage patterns (localized into the macrocrack) in the specimen are shown in
Fig. 6.9. Note the mirrored structure in the central part of the bounded model.

The results are shown in Figs. 6.10 and 6.11. One observes that both strength and
dissipated energy grow with the size of the specimen. This phenomenon originates in the

Figure 6.9: Damage in a 3D periodic model loaded in tension along the x axis with and
without a boundary.
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Figure 6.10: Left: averaged responses of an elastically uniform periodic 3D model (α = 1.0)
loaded in pure tension. Models with boundaries (bounded) and without boundaries (free) of
different size are compared. Right: comparison of strength and dissipated energy.
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Figure 6.11: Left: average responses of a periodic 3D model of concrete with α = 0.29 loaded
in pure tension; right: comparison of strength and dissipated energy.
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Figure 6.12: Left: beam loaded in three-point bending; right: results averaged over 100
simulations.

tortuosity of the crack; the crack path is more planar in smaller specimens simply because
of the random nature of the geometry. The difference between the bounded and boundary
free model decreases with size as the weak boundary layer occupies a lower portion of the
specimen. In the worst case (the smallest specimen), the strength decreases by 10% (4%)
and energy dissipation by 31% (24%) for α = 1.0 (α = 0.29, respectively) when boundaries
are added.

6.7.2 Three-point bending

The second example involves the three point bending of a concrete beam. Two tessellation
types, A and B, are compared on the second largest unnotched specimen tested in Grégoire
et al. (2013). The depth of the beam is 200mm, span is 500mm and thickness is 50mm, while
the discretization size is lmin = 10mm. The beam model with a localized macrocrack is shown
in Fig. 6.12, left. Investigated tessellation types A and B differ only in the initial placement
of nuclei. Type A places nuclei only into the specimen domain while type B samples them
into larger domain and then cuts those outside. 100 simulations were computed for each case.
The loading force and opening of the virtual gauge at the bottom surface were measured.
A comparison of averaged responses, strengths and dissipated energies is shown in Fig. 6.12
on the right hand side. Tessellation type B is stronger by 4% and dissipates 7% more energy.

6.8 Summary
Discrete models with random geometry based on Voronoi and power tessellation were in-
vestigated under straining parallel with the boundary. It was found that, due to strong
directional bias, the boundary layer has substantially different behavior than the interior
part of the specimens. Analytical formulas for the interior part were derived and compared
to the model behavior with reasonable agreement.

It was reported that stress in the boundary layer is transferred prevailingly by normal
stress, while shear stress is reduced. Consequently, the boundary layer becomes stiffer for
α < 1 and more compliant for α > 1. For a typical inelastic constitutive relations, the
boundarylayer has lower strength and lower ductility than the interior, irrespective of α.
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Chapter 7

Dynamic simulation of railway
ballast using polyhedral particles

This chapter is based on paper: Jan Eliáš (2014). “Simulation of railway ballast using crush-
able polyhedral particles”. Powder Technology 264, pp. 458–465. issn: 0032-5910. doi:
10. 1016/ j. powtec. 2014. 05. 052

7.1 Introduction

The previous chapters deal with static models only. However, large portion of discrete models
are developed for applications in dynamics. One such example is presented here. So called
Discrete Element Method (DEM) is employed to simulate granular material with no cohesion.

The DEM treats every grain as an ideally rigid body which interacts with other particles
through forces at their common contacts. In most cases, the simplest spherical elemental
shapes are used. However, it has been reported that particle shape has strong influence on
the resultant behavior of a particle assembly (Estrada et al. 2011; Höhner, Wirtz, and Scherer
2013; Höhner, Wirtz, and Scherer 2014). Real grains in granular materials usually have very
complex geometry (Asahina and Taylor 2011; Bullard and Garboczi 2013), and therefore more
realistic elemental shapes are being considered. This is often achieved by clumping spheres
into larger aggregations (Favier et al. 2001; Ferellec and McDowell 2010). Such a method has
the advantage of simplicity and computational speed. Another approach involves the direct
implementation of some non-spherical elements. In this case, a specially designed contact
detection algorithm and an algorithm for the determination of contact forces between non-
spherical particles must be developed, e.g. for elliptical (Bathurst and Rothenburg 1992;
Džiugys and Peters 2001; Emeriault and Claquin 2004) or tablet shapes (Song et al. 2006;
Kodam et al. 2012).

An extensive effort has also been made to use polyhedral particle shapes. A technique
developed by Cundall (Cundall 1988; Hart et al. 1988) called the common plane method
is often used. It replaces the contact between two polyhedrons with two plane-polyhedron
contacts. This method was further improved by fast determination of the common plane
(Nezami et al. 2004; Nezami et al. 2006). A similar method based on the distance between
two convex objects is presented in (Wachs et al. 2012). Another approach involves rounding
sharp edges and vertices to obtain sphero-polyhedra (Fraige et al. 2008; Wang, Yu, et al.
2011). The probability-based contact algorithm of (Jin et al. 2011) simplifies the shapes of
polyhedrons into spheres but then modifies the contact law to obtain statistically similar
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behavior. Another algorithm is based on inner potential function (Boon et al. 2012). A com-
parison of results obtained using multisphere aggregations and polyhedrons is presented in
Höhner, Wirtz, Kruggel-Emden, et al. (2011) and Szarf et al. (2012) in 2D and 3D.

Railway ballast is used worldwide to support sleepers and rails on both normal and high
speed railways. However, its short and long term behavior is still not fully understood. It is
a highly heterogeneous material with strongly nonlinear behavior further complicated by its
previous compaction and crushing. Robust models of ballast are needed to improve design of
sleepers, under sleeper pads, and ballast itself, as well as to determine optimal maintenance
schedules for tracks.

There have been several attempts to simulate railway ballast using DEM. The reported
results seem to be promising. Ballast particles are represented either by spherical clumps (Lim
and McDowell 2005), polygons (Saussine et al. 2006) or polyhedrons (Huang 2010; Tutumluer
et al. 2013). An important part of ballast behavior is its crushability. The crushing of ballast
might be modeled as splitting of clumps (Lim and McDowell 2005; Hossain et al. 2007;
Ergenzinger et al. 2012) or by replacing the damaged particle with two or more smaller
particles (Lobo-Guerrero and Vallejo 2006). A comprehensive list of crushing techniques can
be found in Weerasekara et al. (2013).

In this chapter, a simulation of a railway ballast experiment – large-scale oedometric
test – performed at the University of Nottingham (Lim and McDowell 2005; Lim 2004)
using randomly-shaped crushable polyhedral particle is presented. Three novel techniques
are introduced: (i) the generation of random convex polyhedral particle shapes via Voronoi
tessellation; (ii) a method of estimating the contact force between two polyhedrons based
on calculation of the intersecting volume; and (iii) the crushing of particles due to excessive
mechanical loading. Any of these three algorithms can also be used separately in connection
with other approaches available in the literature.

Unlike all the previous models described in the previous chapters, that were computed
using in-house software written by the author and collaborators, here the open-source software
YADE is used (Šmilauer et al. 2015; Kozicki and Donzé 2008). The developed algorithms
were just implemented there and made available for the community of users (and already
used several times, e.g. in Zhao, Zhou, and Liu (2015), Zhao, Zhou, Liu, and Lai (2015),
and Gladky and Kuna (2017)). The manipulation of polyhedrons as well as the computation
of convex hulls and least square fitting by plane was performed with help of CGAL library
(Kettner 1999; CGAL 2013).

7.2 Solution of dynamic equations
The dynamic models needs to solve equations of motion. There are several methods available,
all of them proceeds in time steps of length ∆t. Two distinct classes can be distinguished:
explicit and implicit methods. Both of them are interested in the state of the system at the
end of the time step (at time t + ∆t) assuming knowledge of the system states it previous
time steps. With some simplification, they can be described in the following manner.

• The explicit methods assemble the equations of motion at the beginning of the time
step (t). Since positions and velocities are known, the solution process can be greatly
simplified and usually there is no need for solution of a system of linear equations. The
price is however conditional stability depending on the time step length.

• The implicit methods, on the other hand, solve the equations of motion at the end of
the step (t+∆t) and the process involves solution of a large linear of possibly nonlinear
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system of equations. An advantage is that the stability is unconditional, any step length
can be used, but of course larger time steps result in lower accuracy.

Both implicit and explicit approaches can be used in discrete modeling, but usually the
explicit one is utilized. It is extremely effective when short time spans are solved and it is
relatively easy to incorporate both the material and geometrical nonlinearities. It is also
employed here, though the author with one of his student already developed an in-house
solver based on the Newmark implicit solution technique (Květoň and Eliáš 2017).

Contrary to the static problems, dynamics requires more degrees of freedom to be found:
besides the translations u and rotations θ, there are also linear and angular velocities u̇ and
θ̇ and accelerations ü and θ̈. These are binded through the equations of motion

mü = f (7.1)

I · θ̈ + θ̇ ×
(
I · θ̇

)
= m (7.2)

with m being the mass and I the moment of inertia tensor of a particle; f and m are forces
and torques acting on a particle, dependent of translations, rotations and their derivatives.
The set of equations (7.1) are known as Newton’s second law, while the equations (7.2) are
called Euler’s equations.

The Newton’s equations are solved in YADE (Šmilauer et al. 2015) using leapfrog explicit
method. The name refers to the technique which evaluates even derivatives of translations
and rotations at times 0, ∆t, 2∆t, . . . while odd derivatives at times ∆t/2, 3∆t/2, 5∆t/2, . . . .
Using superscripts ◦ to denote current time t and −−, −, + and ++ to denote times t −∆t,
t−∆t/2, t+ ∆t/2 and t+ ∆t in this order, one can estimate acceleration as

ü◦ = u−− − 2u◦ + u++

∆t2 (7.3)

and velocity as

u̇− = u◦ − u−−

∆t (7.4)

Combining these two equations to avoid u−− which is not stored in computer memory, one
arrives at

u++ = ü◦∆t2 + u̇−∆t+ u◦ (7.5)

Further simplifications are achieved by calculating the velocity u̇+ at time t+∆t/2 (Eq. (7.4)
at different time) when combined with Eq. (7.5)

u̇+ = u++ − u◦

∆t = ü◦∆t+ u̇− (7.6)

Then, one express u̇− from this equation and use it again in Eq. (7.5)

u++ = u̇+∆t+ u◦ (7.7)

Equations (7.6) and (7.7) provide velocities and translations at the next time step based on
known velocities, translations and accelerations at the previous time step. The accelerations
at the next time step are then computed from Newton’s second law after evaluation of the
acting forces f (Eq. (7.1)).
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The Euler’s equations cannot be solved with the leapfrog method since there are also
terms with θ̇. YADE employs algorithm published in Allen and Tildesley (1989). The reader
is referred to the original source or YADE documentations for details.

The evaluation of the acting forces and torques requires detection of contacts between
rigid bodies and application of some constitutive equations at these contacts. Both of these
model components are described in later sections.

7.3 Randomly-shaped polyhedral particles

Particles are created using a procedure that contains a random process; however, control
of particle size and aspect ratio is kept. This method of particle creation was inspired by
author’s previous experience with discrete static models and also by paper of Asahina and
Bolander (2011). It is yet again based on Voronoi tessellation and schematically shown in 2D
in Fig. 7.1.

Initially, a volume 5×5×5 units in size is filled by nuclei with the minimal mutual distance

initial scaled scaled & rotated

Figure 7.1: Particle creation (from left to right): random placing of nuclei; Voronoi tessel-
lation; extraction of Voronoi cell associated with the central nucleus; scaling of the particle;
random rotation.

basic, aspect ratio 1:1:1
A B C

elongated, aspect ratio 2:1:1
A B C

flat, aspect ratio 2:2:1
A B C

B

C

Figure 7.2: Randomly shaped particles generated via Voronoi tessellation. The three variants
differ by scaling factors along the x, y and z axes. Each polyhedral particle is shown in front
(A), side (B) and bottom (C) view.
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Figure 7.3: Definition of a convex polyhedron as an intersection of halfspaces bounded by
planes oriented outside the polyhedron.

lmin. Starting with the central nucleus c0 =
(

0 0 0
)
in the center of the volume, other

nuclei with random coordinates are accepted if their distance to all previously placed nuclei
exceeds lmin. This is repeated until no nucleus is accepted for 500 subsequent trials. The
restricting distance lmin is set to 0.75 units, because then the average distance between nuclei
is close to one unit. Voronoi tessellation is performed and the Voronoi cell associated with the
central nucleus c0 with vertices ṽ =

(
ṽ1 ṽ2 ṽ3

)
is extracted and used as a basic particle

shape.
This Voronoi cell is further rescaled in all three directions by factor s =

(
s1 s2 s3

)
.

Every vertex ṽ of the basic polyhedron is thereby transformed to v̄ = ṽ·s =
(
ṽ1s1 ṽ3s2 ṽ3s3

)
.

Because the scaling procedure scales along axes x, y and z, the scaled polyhedron shape is
also randomly rotated to prevent directional bias to its final configuration with vertices v.

The volume, centroid and inertia of the polyhedral particle are calculated by dividing the
polyhedron into simplexes (tetrahedrons). The contributions of these tetrahedrons to each
of the required quantities are found using analytical formulas from Tonon (2004). Figure 7.2
shows some resultant random polyhedrons. Three aspect ratios are shown in the figure: (i)
a basic case where the aspect ratio defined by components of the scaling factor s1:s2:s3 is
1:1:1; (ii) an elongated case with aspect ratio 2:1:1; and (iii) a flat case with aspect ratio
2:2:1. These aspect ratios will be used later for simulation of the ballast experiment.

7.4 Contact between polyhedrons

Different approaches are currently being used when dealing with contact between polyhe-
drons in DEM. Yet, another approach is introduced here. It is straightforward and simple
to understand; these are the main reasons for developing it. Its computational complexity
is higher than that of other available algorithms such as the common plane method (Cun-
dall 1988) or inner potential approach (Boon et al. 2012), however no comparison has been
performed so far.

Let us start with the definition of the convex polyhedron P, which represents single ballast
particle. The convex polyhedron is defined as intersection of halfspaces h

P =
n⋂
t=1

ht (7.8)

where every halfspace ht is defined by a bounding plane pt ≡ atx1 + btx2 + ctx3 + dt = 0 and
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contains all points x =
(
x1 x2 x3

)
on the negative side of the bounding plane

ht = {x : atx1 + btx2 + ctx3 + dt ≤ 0} (7.9)

Vector nt =
(
at bt ct

)
is a normal vector of the tth bounding plane, pt, pointing outwards

from the polyhedron. Polyhedron vertices are denoted v. A 2D sketch of the defined variables
can be found in Fig. 7.3.

7.4.1 Contact detection

At every time step, there is a loop seeking all possible contacts between polyhedral elements.
This is simply performed by creating bounding boxes around every polyhedron and detecting
any overlapping between the bounding boxes. Box overlapping exists if and only if bounding
boxes overlap along all three Cartesian axes. The problem is therefore reduced to the triple
overlap detection of segments in 1D. If bounding box overlapping is detected, one must
examine the actual overlapping of the polyhedrons, denoted PA and PB. This can be solved
by calculating the “distance” between polyhedrons (Nezami et al. 2006; Wachs et al. 2012).
Here, it is done through searching for a separation plane described in the following paragraph.

The polyhedral intersection is assumed to exist until some separation plane is found. Only
a limited set of candidates for the separation plane must be tested to prove or disprove its
existence. The minimal set of candidates contains (i) bounding planes of the polyhedron PA;
(ii) bounding planes of the polyhedron PB; and (iii) planes determined by one edge from PA
and another edge from PB. A loop over all these candidates is browsed. Every time this is
performed, a trial separation plane s ≡ asx1 + bsx2 + csx3 + ds = 0 is constructed so that the
centroid of the polyhedron PA lies on the positive side of the trial plane. Then, if all vertices
from the first polyhedron PA lie in the positive halfspace and all vertices from the second
polyhedron PB lie in the negative halfspace of plane s, the trial plane is approved.

∀v ∈ PA : asv1 + bsv2 + csv3 + ds ≥ 0 (7.10)
∀v ∈ PB : asv1 + bsv2 + csv3 + ds ≤ 0 (7.11)

Whenever this condition is fulfilled, the separation plane is found and polyhedrons do not
overlap. If the loop finishes without approving any separation plane, contact between poly-
hedrons must exist.

To save computational time, one can store the separation plane from the last time step
and try it prior to testing all the possible candidates. An even better approach is to store the
structure of the previous separation plane (the faces or edges from which it was created) and
construct it again using updated polyhedral positions and orientations. Time savings can be
also gained for polyhedrons, which were in contact at the last time step. One can simply
check if the centroid cI =

(
c1 c2 c3

)
of the polyhedral intersection PI from the previous

time step still lies in both polyhedrons. This is performed by a loop running through all the
bounding planes of both polyhedrons that checks if the centroid cI is on the negative side of
all those planes.

∀ p ∈ PA and PB : ac1 + bc2 + cc3 + d < 0 (7.12)

7.4.2 Normal force

When two particles come into contact, repulsive force arises. In DEM simplification, the
particles are ideally rigid and the contact between them is accompanied by overlapping of
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cone cylinderspherea) b) c)

Figure 7.4: a) Volume repulsive force acting throughout the overlapping volume (2D sketch);
b) derivation of force-penetration dependence for contacts of some typical bodies with a half-
space; c) 2D sketch of intersecting polygons with estimation of normal directions.

particles. In the case of convex polyhedrons, the intersection is a convex polyhedron as well.
It is denoted PI , its volume is VI and its centroid is cI . It is assumed that constant repulsive
volume force acts throughout the whole overlapping volume (Fig. 7.4a). Integrating this
volume force over the intersecting volume gives us the total normal force fN and moment,
which should be applied to both particles. Since the volume force is constant, the magnitude
of the normal force is linearly proportional to the intersecting volume.

‖fN‖ = VIkN (7.13)

where kN [N/m3] is a material parameter called volumetric stiffness. To represent also the
moment resulting from volume forces, the normal force acts at the centroid of the intersection.
2D equivalent of such volumetric contact law that linearly relates normal force to overlapping
area can be found in D’Addetta et al. (2002).

Equation (7.13) implies scaling of the contact stiffness with depth of penetration δ by
power law with exponent dependent on shape/curvature of the protruding bodies. Some
basic cases are shown in Fig. 7.4b – for spherical contact, the force increases with δ2, for
conical contact with δ3, and for cylindrical contact with δ. Two of these exponents differ
from generally accepted Hertz’s spherical contact model (Hertz 1882) with exponent 3/2 or
Sneddon’s model (Sneddon 1965) for cone and cylinder with exponents 2 and 1, respectively.
Taking into consideration other simplifications such as that the penetration depth δ is calcu-
lated based on assumption of ideal rigidity of the bodies, that the local shape of the bodies
at their contact is much more complicated than the polyhedral representation, or that there
is local comminution at the contact, the deviations of exponents from the contact mechanics
might be neglected. Further comparison to experimental data shall be performed to properly
evaluate its applicability (Goddard 1990; Gu and Yang 2013).

The definition of normal force requires quantification of the intersecting volume. This
operation is computationally demanding. The dual approach (Muller and Preparata 1978) is
used here to find the exact polyhedral intersection.

• It is necessary to transform the coordinate system so that its origin lies inside the
polyhedral intersection. Initially, when a new contact is established, a point inside
the intersection must be found. The intersections between edges and faces of both
polyhedrons are tested, and when it exists, the inside point is found by moving a small
distance from the intersection inwards. This algorithm is not efficient, but since it is not
run too often, it was not optimized for presented simulations. For an existing contact,
the centroid cI from the last time step is taken as the inside point; however, this can be
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standard space dual space standard space

Figure 7.5: Scheme of two subsequent dual transformations of planes into points leading to
the intersecting polyhedron.

performed only if it remains in both polyhedrons with updated positions. Otherwise,
the initial edge-face intersection searching loop must be run again.
The inside point is then used as the origin of the coordinate system.

• Both of the intersecting polyhedrons are dualized. Bounding planes p from both poly-
hedrons are transformed into dual points p′.

∀ p ∈ PA and PB → p′ =
(
a

d

b

d

c

d

)
(7.14)

Because d is the denominator, the points p′ in dual space can be only obtained for
nonzero d. However, d = 0 only when plane p passes through the origin, which cannot
happen if the origin is an inside point.

• The convex hull P ′Q of all dual points p′ is found. This convex hull is again a convex
polyhedron in dual space determined by its dual bounding planes q′.

• The polyhedron P ′Q in dual space which was found in the previous item is dualized as
well.

∀ q′ ∈ P ′Q → q =
(
a′

d′
b′

d′
c′

d′

)
(7.15)

Resulting points q are actually points in real space as we project them from the dual
space by the second dualization.

• Finally, the convex hull of points q gives us the intersecting convex polyhedral object
PI .

The process of calculation the intersecting volume is schematically shown in Fig. 7.5. Volume
VI and centroid cI of the intersection are then easily found via dividing PI into tetrahedrons.

7.4.3 Normal direction

Besides the magnitude of the normal force, its direction must be estimated as well. The
inspiration for the presented algorithm originates from the 2D sketches shown in Fig. 7.4c.
The straightforward approach would assume the normal direction to be perpendicular to the
line connecting two polygonal hull intersections (D’Addetta et al. 2002). However, the hull
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A

C

B

D

A B

C

D

Figure 7.6: Two polyhedral particles in contact, intersecting polyhedron PI with the centroid
and normal direction of the intersection.

intersection in 3D space is a non-planar enclosed piece-wise linear curve. Normal direction is
estimated to be perpendicular to a plane taken as the least-squares fit of the hull intersection
curve.

After a polyhedral intersection PI is found, its faces are divided into those belonging
originally to the polyhedron PA and PB, respectively. The edges on the boundary between
these two groups (the hull intersection curve) are then interpolated by a plane with normal
vector n using the least-squares fitting. Force fN is then given by equation

fN = n

‖n‖
‖fN‖ (7.16)

Figure 7.6 shows two particles in contact and their polyhedral intersection. The hull
intersection fitted by plane is shown in the figure in red.

7.4.4 Shear force

Shear force fT is calculated by a standard incremental algorithm (Šmilauer et al. 2015). It
involves the correction of the shear force from the previous time step for changes in the nor-
mal direction and for rigid-body motion. Then, an additional shear displacement increment
caused by the mutual movements and rotations of polyhedrons ∆uT is calculated and the
shear force is adjusted by the following increment

∆fT = ∆uTkT (7.17)

where kT stands for the shear stiffness of the material.
Standard Coulomb friction is applied. Therefore, whenever the shear force violates the

following condition

‖fT ‖ ≤ ‖fN‖ tanϕ (7.18)

it is proportionally reduced to fulfill the equality in Eq. (7.18). Coefficient ϕ is called the
internal friction angle.
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7.5 Simulation of oedometric test

The proposed model was validated by simulating a large-scale oedometric test on railway
ballast performed and published by Lim (2004). Lim tested several different ballasts, from
which variant a with a grading of 37.5-50mm was chosen. A steel cylinder of diameter
300mm and depth 150mm was filled with the ballast and compacted on a vibration table
with a surcharge force of 250N. Then, it was loaded in compression up to force 1.5MN (mean
stress 21.2MPa). The total duration of the experiment was about 40 minutes. The same
experiment was simulated by Lim and McDowell (2005) using cohesive sphere aggregations
(clumps). The loading time was shortened to approx. 0.4 s. The published results agree with
the experimental data except the initial loading stages, because vibration was not simulated.

The same test was simulated with polyhedral particles. Initially, randomly shaped poly-
hedrons were generated at random positions in a cylinder with a magnified depth of 1 meter
with no overlapping. This was done by sequentially placing trial polyhedrons in the cylinder;
whenever any collision with previously placed particles occurred, the trial polyhedron was
rejected. The polyhedrons then fell freely under 5 times magnified gravitational acceleration
and with a reduced friction angle (0.05 radians). Both gravity and friction changes were
made to increase compaction of the granular assembly. After the unbalanced forces (ratio
of mean force acting on polyhedrons and mean force of the interactions) dropped bellow
0.5, indicating stabilized system, all polyhedrons exceeding the depth limit of 0.18m were
removed. Then, a steel loading plate was placed at the top of the granular assembly with
a surcharge force of 250N; the gravity and the friction angle were set to their normal values.
The simulation continued until the unbalanced forces reached value 0.5 again. At that point,
loading by sinusoidal wave started. As with Lim and McDowell (2005), the time of loading
was shortened to 1/3 s.

The polyhedrons used in the simulation were generated by Voronoi tessellation, described
in Sec. 7.3. About 400 of them were initially placed, but only about 120 polyhedrons remained
in the simulation after the removal of those exceeding depth 0.18m. The scaling factors s1,
s2 and s3 were chosen randomly from the uniform distribution, and independently in all three
directions. Three variants differing in aspect ratio were studied. (i) a basic variant with all
three scaling factor within the interval 30–45mm; (ii) an elongated variant with an aspect
ratio of 2:1:1 (see Fig. 7.2) where the three random scaling factors were taken from the
same interval and multiplied by 2/ 3√2, 1/ 3√2 and 1/ 3√2, respectively; (iii) a flat variant with
an aspect ratio of 2:2:1 and multipliers 2/ 3√4, 2/ 3√4 and 1/ 3√4, respectively. The multipliers
were chosen to provide the required aspect ratios and ensure the particles had approximately

Table 7.1: Material properties used in simulations of oedometric tests.

ballast

normal volumetric stiffness kNb N/m3 2× 1013

shear stiffness kTb N/m 2× 108

friction angle ϕb rad 0.6
density ρb kg/m3 2600

steel

normal volumetric stiffness kNs N/m3 2× 1014

shear stiffness kTs N/m 2× 109

friction angle ϕs rad 0.4
density ρs kg/m3 7800

112



7.5. Simulation of oedometric test

Figure 7.7: Polyhedral sphere, truncated icosahedron with 60 vertices, 90 edges and 32 faces.

equal volume for all three variants (assuming that the volume can be estimated by the volume
of an ellipsoid 4/3πs1s2s3).

The last variant of polyhedral geometry are spheres modeled as truncated icosahedrons
(Fig. 7.7). The circumscribed radii of icosahedrons are again sampled randomly to provide
volume distribution similar to the previous variants of particle geometries.

Material parameters of the ballast and steel are specified in Tab. 7.1. The shear stiffness
and friction angle were estimated; the normal volumetric stiffness of steel was assumed to
be 10 times larger than the ballast’s normal stiffness, which was approximately identified in
Eliáš (2013). The damping coefficient was set to 0.3.

Five simulations were computed for every considered variant, differing in the input ran-
dom seed controlling the random generation of particle shapes and the placement of the
polyhedrons into the domain. Initial simulations with the basic aspect ratio (labeled “with-
out vibration”) showed that compaction of the samples was not satisfactory. To increase
the compaction, the action of the vibration table was mimicked by loading the sample with

a) b) c)

d) e) f)

Figure 7.8: a)-c) Snapshots of basic ballast particles during simulation: at the beginning of
loading; at the maximum load; after releasing all the load. d)-f) Snapshots of elongated, flat
and spherical ballast particles at the maximum load.
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Figure 7.9: Load-displacement responses of the large-scale oedometric test and its simulations.
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Figure 7.10: Void ratio at different simulation stages - means and standard deviations.

alternating acceleration in horizontal directions at 5 times the magnitude of gravity. Each
vibration cycle consisted of four intervals of duration 0.02 s with constant acceleration in
directions +x, −x, +y and −y, respectively. Three vibration cycles were performed before
compressive loading started.

Views of the ballast assembly at the beginning of loading, at maximum load and after the
load was released are shown in Figure 7.8. Since no crushing was considered at this point,
the polyhedral shapes do not change.

Displacement δ of the steel loading plate was measured; it is plotted against the loading
force P in Fig. 7.9. The compaction achieved prior to the loading seems to be a crucial
factor, whereas aspect ratio does not affect the response significantly. The flat particles
shapes resulted in the largest deformations, whereas the spherical variant deformed the least.
This was probably again caused by the different compaction levels achieved for different
particle geometries; stiffness of the unloading branches appears identical.

The effect of compaction can be also seen in Fig. 7.10. The void ratio computed as 1 −
Vpar/Vtot(δ), where Vpar is (constant) volume occupied by particles and Vtot(δ) is (changing)
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interior volume of the oedometer, is plotted at different stages of the simulation. All three
random geometries decreases their void ration by approx. 9 percentage points and later during
loading by another 11 percentage points. The flat (basic) variant has the largest (smallest)
void ratio, which corresponds to the largest (smallest) displacements δ, respectively. The
changes of void ratio in sample of spherical particles are lower, only approx. 6 percentage
points due to the vibration and 8 percentage points due to the loading. Though the spherical
particles have the largest amount of voids, they deform the least. The ability to reorganize
the particles towards lower void ratio is reduced; the spheres samples are compacted better
than samples with random particle geometry.

Though there is a correspondence between experiment and simulation as regards unload-
ing stiffness, the overall experimental and simulation responses are different. The loading
branch cannot be correct without the implementation of the crushing phenomenon which
was extensively present in the experiment.

7.6 Crushing

The crushing of ballast grains is responsible for the degradation of ballast and modeling
should take it into account. Implementation of the crushing phenomenon is simply done
via splitting the polyhedral particles into smaller polyhedrons whenever they fulfill a certain
failure criterion. Since the particle is assumed ideally rigid, there is no information about
stress inside the particle in the DEM model. Unless an additional detailed analysis of each
particle is performed (e.g. finite element modeling as done in Bagherzadeh-Khalkhali et al.
(2008)), some approximate phenomenological criterion must be used to detect ruptures.

7.6.1 Simple model of crushing

The criterion is based on the comparison of equivalent stress and size dependent strength. In
the case of a polyhedron, no expression exists for the estimation of the splitting stress, as it
is derived for cylinders (Lobo-Guerrero and Vallejo 2005; ASTM standard C496/C496M-11
2001). Establishing this definition on average principal stresses seems to be a reasonable
way. The average Cauchy stress tensor in the particle can be expressed using Eq. (5.14) on
page 74. The stress vector is symmetrized by averaging opposite non-diagonal members; then,
principle stresses (σI > σII > σIII) and their directions are found by eigenvalue analyses.
The equivalent stress entering the failure criterion (adopted from Esnault and Roux (2013))
is the von Mises stress expressed as

σmis =

√
(σI − σII)2 + (σI − σIII)2 + (σII − σII)2

2 (7.19)

The equivalent stress is compared to material strength fr, which is (according to Lobo-
Guerrero and Vallejo (2005)) dependent on particle size. The particle size is simply taken as
the equivalent particle radius, req, which is a radius of a sphere with the same volume.

fr = f0
req

= f0
3

√
4π
3V0

(7.20)

where V0 is the volume of the polyhedral particle and f0 is a material parameter with dimen-
sion of kPa·m; it is the theoretical strength of a particle of diameter 1m.
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a)

c)

b)

Figure 7.11: a) Problematic splitting of a polyhedron into halves along the direction of
minimal principal stress; b) crushing of a particle into four smaller elements; c) close up
snapshot of the simulation: particle before being crushed; immediately after crushing; and
later on after many time steps.

Whenever splitting stress exceeds the strength of some particle, the polyhedron breaks.
Initial attempts to break the particle into halves along the direction of the minimal principal
stress through the particle centroid were abandoned, because the resulting pieces sometimes
suffered the same external load as the original particle. This led to subsequent ruptures of the
pieces. This rupture chain is demonstrated in Fig. 7.11a. Possible remedy would be to divide
the particle along some other direction. Instead of that, crushing into four smaller pieces
was implemented. Each polyhedron is cut through its centroid by two perpendicular planes
that are parallel to the second principal stress, σII , and form angle π/4 with the remaining
principal stresses (see Fig. 7.11b). After the breakage, translational and rotational velocities
are assigned to the polyhedral pieces according to the current velocities of the original particle.
In the future, the crushing model should be enhanced by some consideration of the energy
balance (elastic, kinetic & fracture). Figure 7.11c shows a 3D view of a particle before,
immediately after and some time after crushing.

7.6.2 Application to oedometric experiment

The initial grading of the experimental sample was 37.5–50mm. Measurement of the sieve
curve after finishing the experiment showed a substantial amount of debris had been created
by crushing the gravel. The crushing model described in the previous section was applied to
incorporate the crushing phenomenon into the simulation.

Evaluation of the failure criterion was run every 0.001 s. Broken particles with volumes
lower than 1 cm3 were removed from the simulation as they are less relevant to the overall
response but slow down the simulation substantially. Three variants of strength f0 were
tested: 800 kPa·m, 1000 kPa·m and 1200 kPa·m. Results are shown in Fig. 7.12; 1000 kPa·m
gives the best correspondence with the experimental record. Crushing occurs also during
unloading, especially for the lower values of f0 and close to the peak load. However, such
breakage is artificially induced due to excessively short loading interval.

The sieve size of a particle can be estimated from its volume, but such method does not
take into account the shape of the particle. Thus, the following primitive method is used
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Figure 7.12: Load-displacement response of the model with crushable particles.
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Figure 7.13: Sieve curves computed after finishing the oedometric test simulation (including
the fine particles that were removed).

instead. The sieve size is measured in a plane perpendicular to the lowest inertia axis of the
polyhedron (the longest dimension of an elongated particle is perpendicular to that plane).
The side of the smallest square enclosing the particle projection into the plane is then taken as
its sieve size. For sake of simplicity, it is assumed that the greatest inertia axis of polyhedron
is identical to the diagonal of the square sieve (so a flat particle will extend from one corner
of the sieve to the opposite one).

The sieve curves at the end of the simulations are shown in Fig. 7.13. These curves also
contain small particles of a volume lower than 1 cm3, which were removed from the model.
For the weakest variant (f0 = 800 kPa·m), about half of the volume is occupied by particles
smaller than 30mm. The plateau between sieve sizes 30 and 40mm is caused by the fact that
the particles are always crushed into four pieces of similar sizes. Therefore, particles with
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a sieve size between the size of the original particle and its four pieces are missing. Similar
plateau could be expected when the debris are crushed for the second time (or more). This
plateau is however blurred because the debris have sieve size distribution much wider than
the original polyhedrons and the sieve sizes of debris and its crushed pieces overlaps.

7.7 Summary
This chapter presents a dynamical discrete model of granular material. Random convex poly-
hedral shapes for ballast particles are generated using Voronoi tessellation. The randomness
is brought into the algorithm by random sequential placing of nuclei on which Voronoi tes-
sellation is built. Scaling of Voronoi cells allows the user to specify size and aspect ratio of
particles.

The repulsive force and the normal direction between two overlapping polyhedrons is
based on the calculation of volumetric and hull intersections. The linear relation of the
repulsive force and the intersection volume implies a power-law dependence of the contact
stiffness on the penetration depth with exponent dependent on shape/curvature of the pro-
truding bodies.

Crushing of grains is represented in the model by dividing polyhedral particles into four
smaller pieces. The criterion for deciding whether some particle breaks or not is based on
estimation of von Mises stress inside the particle, which is compared to size-dependent particle
strength.

The DEM model is employed in simulations of a large-scale oedometric test (Lim and
McDowell 2005). The polyhedral particles are generated in three variants with random ge-
ometry differing in aspect ratio and one variant with regular geometry resembling sphere.
Effect of the particle geometry on simulation results is not crucial because of the confinement
of the oedometric test. The major influence has the compaction level. The spherical particles
are simple to compact, however their void ratio is large. The random polyhedrons can reach
lower void ratios, but it is more difficult to achieve it.

Crushing of particles is necessary to bring simulation responses closer to the experimental
data. Without the crushing, the simulated displacement of the upper plate is much lower
than the experimental one.
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Chapter 8

Conclusions

Mechanics of heterogeneous materials is important for many research and industrial fields.
The habilitation thesis is devoted to modeling of mechanical behavior of such materials under
various loading conditions (monotonic tension, bending, shear and compression and cyclic
compression). Major of the thesis is devoted to concrete material, as it is widely used in
civil engineering for load-bearing but also architectural elements. Minor part of the thesis is
devoted to railway ballast, material used worldwide on railway tracks, and ceramics.

The heterogeneous nature of these materials calls for mesoscale models capable of captur-
ing inner structural effect. Otherwise, complex and not well understood implications of the
heterogeneity must be somehow introduced into the model phenomenologically. The thesis
demonstrates that an assembly of interconnected ideally rigid bodies, called discrete model,
is a convenient approach for mesoscale simulations of heterogeneous materials.

The thesis describe development and application of mesoscale discrete models for several
engineering problems. The main outcomes of the thesis are listed bellow, divided according
to the individual chapters.

• The classical lattice model of concrete with projected concrete mesostructure and se-
quentially linear solver is introduced in Chap. 2. The chapter extends two types of
known sequentially linear solvers (load-unload and force-release) into a general scheme
that allows smooth transition between them and also beyond. The developed general
method has clear physical basis based on redistribution time and load velocity and
allows to determine which method (or time parameters) is suitable for given problem.

• Chapter 3 builds two-dimensional particle model of ceramics applied to simulation of
fatigue crack growth. The notched specimen is loaded by cyclic compressive load that
drives transversal crack propagation. An experimental measurements show that the
crack velocity slows down with number of cycles and eventually drop to zero. The
discrete model is, when enhanced with simple damage-plastic constitutive equation in
normal direction, capable to simulate the experimental data qualitatively. Moreover,
it provides interesting information about evolution of the fracture process zone that
allows to derive analytical equations describing the crack kinetics.

• A particle model of concrete, introduced in Chap. 4, is already three-dimensional. It
is used for probabilistic simulations of concrete fracture and, for that purpose, it is
enhanced by spatial fluctuations of material parameters according to a random field.
The effect of the random field on peak load and energy dissipation is studied on beams
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of variable size and notch depth loaded in three-point bending. It is shown that ran-
domness compete with stress concentration and therefore has significant effects only in
the case unnotched beams. Whenever a notch is present, the impact of random fluctu-
ation on the response is only in increased variability. The chapter also shows extensive
comparison of the model results to an experimental data with fair correspondence.

• The mesoscale discrete structure is actually required in the inelastic regime only where
the inner structural effects plays significant role. In elastic regime, the solid can be dis-
cretized into larger discrete bodies with possible savings in computational complexity.
This is derived and demonstrated in Chap. 5 together with development of an adaptive
algorithm that refines the discretization whenever any part of a simulated solid experi-
ences inelastic processes. Several examples are used for verification. The adaptivity is
extended also for probabilistic models with spatial fluctuations of material parameters
according to a random field.

• Chap. 6 resolves question of boundary effect on discrete models, that was for long
time unclear to the author. The boundary affects the tessellation process and creates
a boundary layer of thickness related to size of the discrete units. The boundary
layer is produced by strongly biased orientation of facets in the vicinity of a boundary
and exhibit stiffer or more compliant response depending on the Poisson’s ratio. In
the inelastic regime, it is typically weaker and less ductile compared to the interior.
The chapter also presents a detail derivation of analytical formulas estimating elastic
properties of discrete models.

• All the previous models are static and utilize the assumption of small rotations (tan θ ≈
θ). Chap. 7 describes dynamic geometrically nonlinear model for railway ballast. The
individual grains of ballast are represented by convex polyhedrons. New type of contact
between the polyhedrons based on the intersecting volume is derived and tested on
simulation of railway ballast in oedometric test. The polyhedrons are enhanced by
crushing technique, which splits them into four smaller pieces whenever certain stress
criterion is fulfilled. It is shown that incorporation of crushing is necessary in order to
get reasonable agreement between the model results and experimental data.
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Appendix A

Tensor multiplication

The habilitation thesis uses several types of symbols referring to different quantities. The
regular lower-case symbols usually represent scalars. The boldface lower-case symbols are
typically first order tensors also referred to as vectors. The bold upper-case or Greek symbols
usually denote second, third or fourth order tensors. The second order tensors are also referred
to as matrices. The indicial notation that represent the Cartesian components of tensors uses
regular (lightface) symbols with lower-case subscripts i, j, k and l. Indices a, b or e are
reserved to refer to particular nodes or elements in the structure. When the tensor itself has
some index and indicial notation is used, the original subscript is raised to superscript. For
example the third order tensor projecting into tangential direction that belongs to an element
e has indicial notation Te = T eijk.

The list of operations defined on these quantities and used in the thesis is provided here.

• Multiplication of scalars with any quantity (scalar or tensor of any order) results into
a quantity of the same dimension, with each element multiplied by the scalar.

aB = (aB)ij... = aBij...

As an example, Eq. (7.1) on page 105 is used. The scalar m multiplies the vector ü.

f = mü = m
(
ü1 ü2 ü3

)
⇔ fi = müi

• Dot product (or contraction) of two tensors of order rank(A) and rank(B) results into
a tensor of order rank(A ·B) = rank(A) + rank(B)− 2 with summation running over
one inner index. Multiplying e.g. two second order tensors gives

A ·B = (A ·B)ij =
∑
k

AikBkj

Dot product of two vectors is a scalar. As an example, Eq. (4.13) on page 43 is used.
The matrix K is multiplied by the vector u.

f = K · u ⇔ fi =
∑
j

Kijuj

• Double dot product (or double contraction) of two tensors of order rank(A) and rank(B)
returns a tensor of order rank(A : B) = rank(A)+rank(B)−4 with summation running
over two inner indices. Multiplying e.g. second and fourth order tensors results into

A : B = (A : B)ij =
∑
k

∑
l

AklBklij
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Double dot product of two matrices is a scalar. As an example, the second Equation
of (6.11) on page 92 is used. The third order tensor T is multiplied by the second order
tensor ε.

eT = T : ε ⇔ eTi =
∑
s

∑
t

Tijkεjk

• Direct product of two tensors of order rank(A) and rank(B) results into a tensor of
order rank(A ⊗ B) = rank(A) + rank(B). Multiplying e.g. second and first order
tensors is

A⊗ b = (A⊗ b)ijk = Aijbk

The definition of volumetric tensor presented after Eq. (6.22) on page 93 is used as
an example. Two second order unit tensors δ (Kronecker deltas) are multiplied.

III vol = 1
3 δ ⊗ δ ⇔ I vol

ijkl = 1
3δijδkl

• An additional, nonstandard version of direct product is employed in Sec. 4.6.1 on page 54
for second order tensors multiplications with symbol ⊗_. The direct product result is
reorganized into the second order tensor again.

A⊗_B =
(
A11 A12
A21 A22

)
⊗_
 B11 B12 B13
B21 B22 B23
B31 B32 B33

 =
(
A11B A12B
A21B A22B

)

=



A11B11 A11B12 A11B13 A12B11 A12B12 A12B13
A11B21 A11B22 A11B23 A12B21 A12B22 A12B23
A11B31 A11B32 A11B33 A12B31 A12B32 A12B33
A21B11 A21B12 A21B13 A22B11 A22B12 A22B13
A21B21 A21B22 A21B23 A22B21 A22B22 A22B23
A21B31 A21B32 A21B33 A22B31 A22B32 A22B33


• Cross product (or vector product) of two vectors of size 3 results into another vector of

size 3 perpendicular to both of the original vectors.

c = a× b ⇔
(
c1 c2 c3

)
=
(
a2b3 − a3b2 a3b1 − a1b3 a1b2 − a2b1

)
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Nomenclature

Abbreviations
cdf cumulative distribution function
CMOD crack mouth opening displacement
DEM discrete element method
DOF degree of freedom
EOLE expansion-optimal linear estimation
FEM finite element method
FPZ fracture process zone
ITZ interfacial transition zone
LEFM linear elastic fracture mechanics
pdf probability density function
RVE representative volume element
SIF stress intensity factor
TPB three-point bending

Roman symbols
a, a0 crack length, notch depth
A area of contact facet, constant of Paris law
A matrix of rigid body motion
b beam thickness
B matrix relating translations and rotations with strains
c controlling variable, e.g. CMOD
c centroid, centroid of contact facet
C covariance matrix
d diameter
D damage variable, beam depth
D[X] variance of variable X
D fourth order tensor of elastic constants
e vectorial strain
E, E0 macroscopic elastic modulus, elastic constant of discrete contacts
E[X] mean value (expectation) of variable X
f , fc, ft, fs, fe, fr, f0 force, compressive, tensile and shear strength, elastic limit in compression,

crushing strength and material parameter of crushing model
f vector of forces
F () cumulative distribution function
g, g() energy dissipated per area, failure criterion
G, Gt, GF dissipated energy, fracture energy in tension, fracture energy
h halfspace, realization of random variable H
H random variable of Weibull-Gauss grafted distribution



References

H random field of variable H
I second order tensor of moments of inertia
J J-integral
k stiffness scalar
K stress intensity factor, slope in elemental traction-separation relation
K stiffness matrix
l, lmin, lc length, minimum distance of random nuclei, correlation length
l second tangential direction
L length of contact
m constant of Paris law, Weibull modulus, mass
m first tangential direction, moments, torques
M matrix of constraints
n normal direction
N shape function of finite element
N auxiliary second order tensor projecting strain tensor into normal direction
p plane
P loading force
r radius, distance
R ratio between maximum and minimum load in one fatigue cycle
R rotational matrix
s vectorial stress, vector of scaling factors
S beam span, area of cross section
S fixed point remaining at constant position during deformation
t time
T auxiliary third order tensor projecting strain tensor into tangential direction
u translational degrees of freedom
v velocity, compliance, vertex of polyhedron
V , V0 volume, volume of one rigid body
W strain energy
x spatial coordinate
X transformation matrix

Greek symbols
α, α0 tangential/normal stiffness ratio, relative notch depth
γ slope of failure criterion, parameter controlling adaptive refinements, angular deviation from

x axis
δ, δX , δX displacement of loading point, prescribed displacement, separation, standard deviation of

variable X, virtual quantity of variable X
δ Kronecker delta ≡ second order unit tensor
∆X increment of variable X
∆ displacement jump between two rigid bodies
ε tensorial strain
ζ auxiliary random variable
η multiplier of load increment during redistribution
θ rotational degrees of freedom
κ shape parameter of fatigue constitutive law
λ eigenvalue of covariance matrix, multiplier of increments of external load or unbalanced forces
Λ matrix of eigenvalues
µX mean value of variable X
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ν Poisson’s ratio
ξ auxiliary random variable, scaling parameter
ρ correlation coefficient
σ tensorial stress
τ layer thickness
ϕ angle of internal friction
Φ cdf of the standard Gaussian distribution
ψ eigenvector of covariance matrix
ω straining direction

Accents, superscripts, subscripts
Ẋ first derivative with respect to time
Ẍ second derivative with respect to time
X free/unconstrained part of X, average of X
X̂ Gaussian version of variable X, constrained part of vector X
X quantity X in the scaled model
X ′ plane dualized to point
X(S) variable associated with unbalanced forces
Xa variable related to adaptive discretization
Xc variable related to coarse discretization
Xeff effective quantity
Xeq equivalent quantity
Xf variable related to fine discretization
XI subscript referring to intersection of polyhedrons
XI–XIII principal values of X
XL subscript referring to tangential direction
XM subscript referring to tangential direction
XN subscript referring to normal direction
XT subscript referring to tangential direction

Other symbols
III , III vol auxiliary fourth order tensors
G energy release rate
P polyhedron
∀ universal quantification, for all, for each
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