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• M. Štumpf. Modeling of electromagnetic fields in parallel-plane struc-
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• M. Štumpf. Time-domain analysis of rectangular power-ground struc-
tures with relaxation. IEEE Transactions on Electromagnetic Compat-

ibility, vol. 56, no. 5, pp. 1095–1102, Oct. 2014

• M. Štumpf. The pulsed EM plane-wave response of a thin planar an-
tenna. Journal of Electromagnetic Waves and Applications, vol. 30,
no. 9, pp. 1133–1146, May 2016.

• M. Štumpf. Time-domain mutual coupling between power-ground struc-
tures. In Proceedings 2014 IEEE International Symposium on Electro-

magnetic Compatibility. Raleigh, (NC, USA), 3–8 August 2014, pp.
240–243.

• M. Štumpf. The equivalent Thévenin-network representation of a pulse-
excited power-ground structure. IEEE Transactions on Electromag-

netic Compatibility, vol. 59, no. 1, pp. 249–255, Feb. 2017.

In order to translate this material to a coherent story, the papers have
been supplemented with several new sections and appendices.
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Chapter 1

Introduction

With the still increasing data rates on high-speed digital interconnection
structures, two major concerns can be distinguished. At first, the need for
low-cost engineering design calls for efficient modeling methodologies that
enable a proper (i.e. space-time) ElectroMagnetic (EM) characterization of
such structures. Secondly, the aspect of particular importance is the EM
interference analysis that secure such systems’ proper performance as well as
smooth co-existence complying with the international regulations on Elec-
troMagnetic Interference (EMI).

A widely used building block of modern high-speed multilayered Printed-
Circuit Boards (PCBs) and planar antennas is based on the parallel-plane
structure. Since the pulsed-field characteristics of such a structure play the
crucial role in the overall system behavior, TD analysis of its EM trans-
mission and radiation properties is the main subject of this thesis. A con-
ventional numerical method capable of analyzing planar circuits in the Fre-
quency Domain (FD) is known as the Contour-Integral Method (CIM). The
CIM was pioneered by Okoshi and Miyoshi for solving various problems in
microwave engineering [69]. Since its introduction at the beginning of the
1970’s, the method has been successfully applied to FD modeling of planar
circuits [61, 62, 67, 68, 70], microstrip antennas [35, Sec. 9.3.3] and waveguid-
ing structures [43, 84]. The main advantages of CIM lie in its low compu-
tational demands and high versatility enabling the straightforward handling
of arbitrarily-shaped planar circuits and embedding of additional circuit ele-
ments. Accordingly, CIM is still preferable in numerical modeling and opti-
mization of complex systems where full-wave electromagnetic solvers would
require exceedingly high computational resources [28, 115].

Despite the still increasing interest in TD modeling of high-speed VLSI
interconnects [2, 81], signal integrity issues on PCBs [3, 26] or UWB antennas
[30], the corresponding time-domain CIM has not been described in a coher-
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ent manner so far. The main purpose of this thesis, therefore, is to fill this
gap and provide a unified description of the Time-Domain Contour-Integral
Method (TD-CIM) (see [108]), with its applications to signal-transfer and
EM interference analysis.

The standard CIM is based on the so-called cavity model [51]. Owing
to its simplicity, it has been widely used at the time of onset of microstrip
circuits and rendered many valuable insights into their transmission as well
as radiation EM behavior. The cavity model is based on the assumption that
the EM field within the microstrip structure does not vary across the dielec-
tric slab and is fully confined within the structure enclosed with a vanishing
tangential magnetic field along its rim (magnetic wall). The vertical compo-
nent of the electric field is then taken into account only and the analysis is
reduced to solving a two-dimensional boundary value problem that admits
the closed-form eigenfunction expansion for simple shapes of the planar cir-
cuit [12, Sec. 4.14]. The assumption of the perfect-magnetic wall breaks down
once the height of the circuit becomes comparable to the wavelength. In such
a case the effects as fringing fields or/and surface waves (if exist) may gain
in significant importance and one has to resort to a full-wave technique [59].
Although the cavity model as such does not radiate any energy, radiation
losses may be accounted for by introducing the equivalent dielectric loss or
by imposing impedance boundary conditions along the circuit periphery [34,
Sec. 2.3].

The history of CIM traces back to the 1960’s and its developments are
associated especially with the field of acoustics. The early origins are con-
nected with the solution of static potential problems described in papers of
Jaswon [41] and Symm [93] and later introduced by Harrington et al. [37] in
electrostatics. As far as time-dependent problems are concerned, three basic
approaches may be distinguished:

• Time-stepping methods based on the finite-difference approximation of
time derivatives;

• Integral-transform methods based on the Laplace or Fourier transform;

• Direct methods based on the time-dependent fundamental solution.

The first attempts to solve the time-dependent integral-equation formulations
numerically are connected with the time-stepping approach and can be found
in works of Friedman and Shaw [32] and Bennett and Weeks [7] for acoustics
and electromagnetics, respectively. In their approach, a discretized integral
equation (or a system of integral equations) is converted into a system of al-
gebraic equations that is solved in an step-by-step updating manner known
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as the Marching-On in Time (MOT) method. The time-stepping approach
uses finite-difference approximations of pertaining time derivatives. Beside
others, the most popular time-integration schemes are based on the New-
mark, Houbolt or Wilson θ methods [95]. Although the MOT method may
suffer from serious instabilities [99, Sec. 13.3], it has become popular for tack-
ling the transient scattering problems and its development is still in progress
(see [79], for example). The stability issues have been later avoided with the
aid of conjugate-gradient approaches [85, 104] and the relaxation method [98,
Chapter 3], but at the expense of higher computational demands.

The second class of numerical approaches leans heavily on the application
of integral transforms with respect to time. The pioneering works employing
the Laplace transform are those of Cruse and Rizzo [14, 15]. One of the main
disadvantages of the transform-based methods is the need for the proper
choice of parameters required by inversion techniques [29, Sec. 4.2]. The
corresponding integral-equation methods based on the Fourier transform can
be found in [66, 96], for instance. A formulation of the direct TD integral
equation method for both 2D and 3D relaxation-free scalar wave equations
has been proposed by Mansur and Brebia [53, 54]. In these initial studies,
a TD weighted-residual form is the starting point for a numerical solution.
More recent approaches are based on the convolution quadrature method [86]
or on the symmetric Galerkin procedure [9]. For a detailed historical survey
of the subject we refer the reader to the book of Dominguez [27].

The formulation of TD-CIM as formulated in this thesis is based on
the reciprocity theorem of the time-convolution type [20, Sec. 28]. In the
reciprocity theorem, one of the EM-field states represents the ‘actual’ state
while the second one is the ‘testing’ (or ‘computational’) state. The prob-
lem formulation can be then envisaged as a ‘weak’ form of the correspond-
ing boundary-value problem. In contrast to the three-dimensional integral-
equation formulations that require discretization of the entire surface of a
conducting surface [59], the CIM accounts for only its rim, which consider-
ably reduces the solution space. On top of this, the corresponding space-time
fundamental solution is known in closed (or semi-closed) form, which avoids
the elaborate numerical evaluation of inverse-Fourier integrals [60, Chapter
8]. On the other hand, the applicability of TD-CIM is limited and lies in
the range where the circuit’s thickness is small with respect to the spatial
support of the excitation pulse. The proposed TD-CIM may therefore find
its wide applications in the fast modeling of pulse-shaped signal transfers
via parallel-plane structures, in the TD analysis of arbitrarily-shaped planar
circuits and antennas and in handling of related signal/power integrity and
EMI issues.
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1.1 Synopsis

In Chapter 2 a cavity model a planar circuit is described in terms of an
initial-boundary value formulation and a reciprocity-based integral relation.
The both formulations are applied throughout the thesis to modeling the
pulsed-signal transfer over planar circuits. The final section describes the
incorporation of an excitation port in the reciprocity-based integral-equation
formulation. This part is supplemented with Appendix A where the relevant
Green-function spatial singularities are handled analytically.

Chapter 3 describes a computational method for solving the reciprocity-
integral relation for the case of a loss-free, instantaneously-reacting planar
circuit. In order to validate TD-CIM-based numerical results, closed-form an-
alytical expressions are derived for a rectangular circuit. A demo MATLABr

implementation of the introduced method is briefly given in Appendix B. Fi-
nally, the results are shown to agree very well with the ones evaluated using
the (three-dimensional) Finite-Integration Technique (FIT).

The relation of the classic real-FD CIM formulation and the reciprocity
relation from Chapter 3 is revealed in Chapter 4. In this chapter, two CIM-
based numerical schemes are discussed. Namely, it is shown that the clas-
sic point-matching solution can be also interpreted as a special case of the
pulse-matching solution to which the 1-point Gaussian quadrature is applied.
Accuracy of sample numerical results is briefly discussed with the help of a
closed-form analytical formula pertaining to a rectangular planar circuit.

A topic of special importance in signal integrity on high-speed PCBs is the
incorporation of dissipation and relaxation mechanisms. A semi-analytical
technique for TD analysis of rectangular planar circuits with relaxation is
hence introduced in Chapter 5. The technique is based on a ray-like expan-
sion and heavily leans on the numerical inversion of the Laplace transforma-
tion as detailed in Appendix G. The latter makes possible to account for
general relaxation behavior. The relation of the ray-type and the standard
eigenfunction expansions is discussed. Numerical results are evaluated for
two types of the dielectric relaxation function and validated, again, with the
help of FIT.

In Chapter 6 the incorporation of relaxation behavior in TD-CIM is inves-
tigated. Again, the proposed approach makes use of the numerical Laplace-
transform inversion introduced in Appendix G. The extension in this di-
rection thus enables us to analyze arbitrarily-shaped planar circuits showing
general relaxation behavior. All the obtained results are compared with the
corresponding ones evaluated using the FIT.

In order to analyze radiation properties of microstrip antennas or EMI
issues related to PCBs, the pulsed radiation characteristics of arbitrarily-
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shaped planar circuits are studied in Chapter 7. The comparison of TD-CIM-
based and FIT-based results shows that TD-CIM may serve the purpose very
well.

In Chapter 8 the computational model for efficient analysis of TD EM
mutual coupling between arbitrarily-shaped planar circuits is developed with
the aid of the reciprocity theorem of the time-convolution type. The inter-
action model makes possible to evaluate the induced pulsed-voltage response
of a receiving planar circuit due to the impulsive electric-current excitation
applied to a transmitting planar circuit. Sample numerical results show the
considerable reduction of computational demands with respect to the refer-
ential FIT.

The reciprocity theorem of the time-convolution type can also be applied
to link the pulsed EM radiation characteristics to the circuit’s pulsed-voltage
response to a plane wave while operating in the receiving state. This is ex-
actly demonstrated in Chapter 9, where the relevant self-reciprocity relation
concerning a general planar circuit is derived. In this chapter it is demon-
strated that such a relation can be very useful for benchmarking numerical
EM solvers.

The reciprocity analysis is further generalized to the N -port case in Chap-
ter 10. In this chapter it is shown that the systematic use of the reciprocity
theorem leads to the Kirchhoff-type network representation of an N -port pla-
nar circuit. The equivalent Thévenin circuit of a 2-port planar circuit is then
discussed in detail. An application of the equivalent-circuit representation
is finally demonstrated on sample numerical calculations of the pulsed EM
radiation characteristics of a 2-port planar circuit using TD-CIM and FIT.

Chapter 11 introduces reciprocity-based closed-form expressions for the
evaluation of pulsed EM-field radiated susceptibility concerning a planar cir-
cuit. Specifically, the derived relations express the pulsed voltage response
of a planar structure to an external impulsive EM plane wave via a one-
dimensional contour integral. In addition to the high computational effi-
ciency of the introduced approach, the derived TD integral representations
provide physical insights into the dominant (space-time) EM-coupling mech-
anism. Again, the formulated computational model is validated with the aid
of the referential FIT.

1.2 Basic conventions

The localize a point in a Cartesian space R
3, the orthogonal right-handed

Cartesian reference frame is employed. The spatial reference frame is de-
fined with respect to the origin O and the three mutually perpendicular base
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vectors {i1, i2, i3} of unit length each; they form in the indicated order, a
right-handed system. The position vector is x = x1i1 + x2i2 + x3i3. The
time coordinate is denoted by t.

Except for the chapters where the three-dimensional radiation character-
istics and reciprocity come into the play (e.g. Ch. 7, 8, 9 and 11), the EM field
quantities in the problem configurations are independent along the vertical
direction i3. As a consequence, it is convenient to decompose all field quan-
tities along the horizontal plane (parallel with respect to x3 = 0) and along
the vertical direction. Then all symbols associated with the two-dimensional
Cartesian vectors with respect to {i1, i2} are typeset in bold-face Romain or
bold-face Greek. The corresponding position vector, for example, then just
reads

x = x1i1 + x2i2 (1.1)

Throughout the thesis, light-faced Roman or Greek symbols stand for scalars.
Latin and Greek subscripts stand for {1, 2, 3} and {1, 2}, respectively. The
spatial differentiation with respect to xm is denoted as ∂m for each m =
{1, 2, 3}. For example, let κ be a Cartesian vector which is differentiable
with respect spatial coordinates xm. Then κµ denotes a component of κ for
each µ = {1, 2}, whose derivatives with spatial coordinates ∂mκ are again
vector functions with components ∂mκµ. The only exceptions are ∂t that
is reserved for the partial differentiation with respect to time and ∂ν that
denotes the directional derivative along ν. The dot product and the cross
product of two vectors are denoted by · and ×, respectively.

All investigated problem configurations are supposed to be time invari-
ant. To tackle such problems we preferably apply the one-sided Laplace

transformation with respect to time accounting for the property of causality.
The one-sided Laplace transformation of some bounded physical quantity is
defined as

û(x, s) =

∫ ∞

t=0

exp(−st)u(x, t)dt (1.2)

with u(x, t) = 0 for t < 0. Here, the transformation parameter s ∈ C

(complex frequency) is chosen to have a positive real part, large enough
to ensure the convergence of the Laplace integral. The corresponding time
convolution of two transient space-time functions u1 = u1(x, t) and u2 =
u2(x, t) defined on t ∈ R is given as

(u1 ∗ u2)(x, t) =
∫

τ∈R

u1(x, τ)u2(x, t− τ)dτ

=

∫

τ∈R

u1(x, t− τ)u2(x, τ)dτ = (u2 ∗ u1)(x, t) (1.3)



Basic conventions 7

which shows the commutative properties of the time convolution. Other
basic properties of the convolution are (1) linearity; (2) associative property;
(3) distributive property. Applying the Laplace transformation to Eq. (1.3)
yields the convolution theorem

(u1 ∗ u2)(x, t) = L−1[û1(x, s)û2(x, s)] (1.4)

where the symbol L−1(.) represents the inverse Laplace transformation. The
convolution theorem only makes sense if there exists a strip in the complex
s-plane in which the definition integrals for û1(x, s) and û2(x, s) converge
simultaneously [20, Appendix B]. Finally, the time integration operator is
defined as

It u(x, t) =

∫ t

τ=−∞

u(x, τ)dτ (1.5)

All EM quantities are, in accordance with the international conventions,
expressed in SI units (The International System of Units) [20, General Intro-
duction].
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Chapter 2

Basic formulation

The main purpose of this chapter is to present two basic formulations for
TD modeling of thin planar circuits. Namely, we describe a boundary-
value formulation with the corresponding eigenfunction expansion and an
integral-equation formulation based on the reciprocity theorem of the time-
convolution type. As will become clear later, the former formulation is useful
for validation purposes while the latter serves as the point of departure for
TD-CIM.

In accordance with the definition given by Okoshi [67, Sec. 1.1.4], the
planar circuit is defined here as a parallel-plane circuit whose thickness is
negligible with respect to the spatial support of the excitation pulse. It is
shown that under this condition, the excited EM field does not vary across
the slab and the problem boils down to solving the (transverse magnetic) set
of EM-field equations. The field equations, supplemented with the relevant
boundary, initial and causality conditions, are then solved on a bounded sur-
face domain. The problem may be thus formulated as an initial-boundary
value problem and solved, when possible, with the help of conventional meth-
ods such as the separation of variable technique or the method of images.
Unfortunately, application of these methods is very limited and allows to
analyze circuits of elementary shapes only such as rectangles, circles and tri-
angles, for instance. A way to circumvent this limitation is to approach the
problem via the contour-integral formulation based on the reciprocity the-
orem of the time-convolution type. Computational implementations of the
latter formulation is exactly the main purpose of this thesis.

The present chapter is organized as follows. At first, the EM field equa-
tions together with the accompanying boundary and initial conditions are
introduced. Secondly, the complex-frequency domain boundary value prob-
lem is formulated and solved in Sec. 2.1.1. Here, the solution is written out
in terms of the classical eigenfunction expansion also known as the double-
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summation formula. In this section we define the transmission impedance
– a parameter that turns out to be proportional to a double integral of the
relevant fundamental solution. Subsequently, the reciprocity-based integral-
equation formulation is introduced in Sec. 2.1.2. Its relation with the boundary-
value formulation is briefly sketched in the following Sec. 2.1.3. Finally, mod-
eling strategies concerning the embedding of excitation ports is described in
Sec. 2.1.4.

2.1 2D model of a planar circuit

We shall analyze the planar circuit shown in Fig. 2.1. Such a planar structure
consists of a homogeneous layer that is sandwiched between two PEC planes
of vanishing thickness, i.e. the upper plane (also called as the power plane or
the patch) Ω and the bottom plane (or the ground plane). The EM properties
of the slab are specified by its (Boltzmann-type) dielectric relaxation function
κ = κ(t) and magnetic permeability µ = µ0. Its thickness is d. The dielectric
relaxation function is supposed to be causal in its EM behavior. In the
case of an instantaneously reacting slab the dielectric relaxation function is
impulsive, i.e. κ(t) = ǫδ(t), and is proportional to electric permittivity ǫ.
The corresponding EM wave speed is then c = (ǫµ)−1/2 > 0. The structure
is activated by a prescribed electric-current surface density along a section of
circuit’s periphery ∂Ω (i.e. boundary contour) or/and by a vertical electric-
current density injected into the conducting patch Ω.

To arrive at EM field equations describing the actual field within the
planar circuit under the thin-slab approximation we write the field quantities
in their Taylor expansions around x3 = 0. After retaining only the lowest-
order (x3-independent) terms we end up with the transverse-magnetic (with

×O
i3

i2i1

ν

Ω

∂Ω

d

Figure 2.1: Planar circuit. Taken from [108], with permission from IEEE,
c© 2014 IEEE.
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respect to x3) system of equations, i.e.

−∂1H2 + ∂2H1 + κ ∗ ∂tE3 = −J3 (2.1)

∂2E3 + µ∂tH1 = 0 (2.2)

−∂1E3 + µ∂tH2 = 0 (2.3)

for x ∈ Ω and t > 0. The initial values of the EM field components are
assumed to be zero

{E3,H}(x, 0) = {0, 0} (2.4)

for all x ∈ Ω∪ ∂Ω. Along the circuit periphery we may prescribe the excita-
tion electric-current surface density via the boundary-excitation condition

(i3 × ν) · H(x+ δν, t) = ν(x) · ∂J(x+ δν, t) as δ ↓ 0 (2.5)

for all x ∈ ∂S and t > 0. Here, supp[∂J(x, t)] = ∂S ⊂ ∂Ω and ν is the unit
vector normal to ∂Ω pointing away from Ω. The classical resonator model
assumes the vanishing tangential magnetic field along a source-free part of
the (magnetic-wall) boundary

(i3 × ν) · H(x+ δν, t) = 0 as δ ↓ 0 (2.6)

for all x ∈ ∂Ω/∂S and t > 0. Equations (2.1)–(2.6) constitute an initial-
boundary value problem whose solution is the main subject of the following
chapters. In the vertical electric current density J3 introduced in Eq. (2.1) we
may distinguish between the external (or active) part describing the action
of the source port and the induced (or passive) part describing the current
flowing through an element connected between the PEC plates of the circuit.
The latter can be viewed as an equivalent contrast-source volume density
producing the scattered field and is hence field-dependent.

The system of field equations (2.1)–(2.6) represent the starting point for
developments that follow. Namely, we shall further distinguish between a
boundary-value and a CIM formulation. While the latter will serve for mod-
eling of arbitrarily-shaped planar circuits, the former formulation will become
useful for analytical description of planar circuits having a simple shape (e.g.
rectangular circuit).

2.1.1 Boundary-value formulation

Let us consider the planar structure with the perfect open boundary (cf.
Eq. (2.6)) that is excited by the vertical electric-current volume density J3.
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Upon applying the Laplace transformation to Eqs. (2.1)–(2.3) with (2.4) and
(2.6) we may formulate the following boundary-value problem, i.e.

(∂21 + ∂22 − γ̂2)Ê3 = sµĴ3 in Ω (2.7)

∂νÊ3 = 0 on ∂Ω (2.8)

where γ̂ = γ̂(s) is the propagation coefficient that is equal to γ̂ = s/c for
an instantaneously-reacting, loss-free planar circuit. Recall that ∂ν denotes
the directional derivative taken along the normal vector ν (see Sec. 1.2).
The problem can be solved using Green’s function that satisfies the same
boundary condition along ∂Ω as the unknown electric field strength, i.e.

(∂21 + ∂22 − γ̂2)Ĝ = −δ(x− xS) in Ω (2.9)

∂νĜ = 0 on ∂Ω (2.10)

which implies the linear relation between the source and the vertical electric
field

Ê3(x
S, s) = −sµ

∫

x∈ΩS

Ĝ(x|xS, s)Ĵ3(x, s)dA(x) (2.11)

for xS ∈ Ω, ΩS = supp(Ĵ3) ⊂ Ω. The introduced Green’s function can be
represented using (a complete set of) eigenfunctions that satisfy

(∂21 + ∂22 + k2mn)ψmn = 0 in Ω (2.12)

∂νψmn = 0 on ∂Ω (2.13)

It can be shown that for (2.12)–(2.13) the eigenvalues k2mn are always real-
valued, the corresponding eigenfunctions can be normalized to satisfy the
orthonormality condition

∫

x∈Ω

ψmpψnqdA(x) = δm,nδp,q (2.14)

and form a complete set enabling us to expand the Green’s function in a
series

Ĝ(x|xS, s) =
∑

m,n

Âmn(s)ψmn(x) (2.15)

The expansion coefficients are found upon substituting Eq. (2.15) in Eq. (2.9)
and integrating the result multiplied by ψpq over Ω. Taking into account the
orthonormality condition we finally arrive at

Ĝ(x|xS, s) =
∑

m,n

ψmn(x)ψmn(x
S)

γ̂2 + k2mn
(2.16)
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The Green-function method may be applied to describe pulsed EM transmis-
sion between source and receiver ports of a planar circuit. To this end, the
electric current applied to the excitation port is written as

Î(s) =

∫

x∈ΩS

Ĵ3(x, s)dA(x) (2.17)

where ΩS is the domain occupied by the excitation port. Similarly, the
probed voltage at the receiving port is expressed as

V̂ (s) = − d

|ΩP |

∫

x∈ΩP

Ê3(x, s)dA(x) (2.18)

where ΩP is the domain occupied by the receiving port and |ΩP | denotes its
surface area. Consequently, the probed voltage V̂ (s) can be related to the
electric-current density according to

V̂ (s) =
sµd

|ΩP |

∫

xS∈ΩP

dA(xS)

∫

x∈ΩS

Ĝ(x|xS, s)Ĵ3(x, s)dA(x) (2.19)

from which the s-domain transfer impedance follows, i.e.

Ẑ(s) =
V̂ (s)

Î(s)
=

sµd

|ΩP | · |ΩS|

∫

xS∈ΩP

dA(xS)

∫

x∈ΩS

Ĝ(x|xS, s)dA(x) (2.20)

where we have assumed the constant distribution of the source electric-
current density over the surface of the port. For a number of special cases
eigenfunctions ψmn and hence the integration in Eq. (2.20) admit analytical
representations. Finally, the pulsed voltage at x ∈ ΩP due to the action of the
source at x ∈ ΩS follows from the time convolution of the excitation electric-
current pulse with the TD counterpart of the transmission impedance, i.e.

V(t) = Z(t) ∗ I(t) (2.21)

The time convolution can be for special cases calculated analytically, which
will later serve for the validation of TD-CIM introduced in Chapter 3.

2.1.2 Reciprocity-based integral formulation

As the point of departure for the transient analysis of arbitrarily-shaped
planar circuits we take the reciprocity theorem of the time-convolution type
[20, Sec. 28.2]. For later convenience we further proceed with our analysis
in the complex-FD (see Sec. 1.2). Then taking into the account the zero
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Ω

∂Ω

ν

x1

x2

O×

Figure 2.2: Bounded domain to which the reciprocity theorem is applied.

initial conditions (2.4), the actual wave field satisfies the (complex-FD) field
equations (cf. Eqs. (2.1)–(2.3))

−∂1Ĥ2 + ∂2Ĥ1 + sǫ̂Ê3 = −Ĵ3 (2.22)

∂2Ê3 + sµĤ1 = 0 (2.23)

−∂1Ê3 + sµĤ2 = 0 (2.24)

for all x ∈ Ω. To arrive at a weak formulation of the formulated problem,
let us consider a causal testing (B) wave field that satisfies the following
complex-FD equations

−∂1ĤB
2 + ∂2Ĥ

B
1 + sǫ̂ÊB

3 = −ĴB3 (2.25)

∂2Ê
B
3 + sµĤB

1 = 0 (2.26)

−∂1ÊB
3 + sµĤB

2 = 0 (2.27)

for all x ∈ R2. Note that the contrast in the EM properties between the
both states is assumed to be zero and the condition of causality is replaced
by the requirement of boundedness along the ‘sphere at infinity’. Upon com-
bining Eqs. (2.22)–(2.24) with Eqs. (2.25)–(2.27) we then arrive at the local

interaction quantity

∂1

(

Ê3Ĥ
B
2 − ÊB

3 Ĥ2

)

− ∂2

(

Ê3Ĥ
B
1 − ÊB

3 Ĥ1

)

= Ê3Ĵ
B
3 − ÊB

3 Ĵ3 (2.28)
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x ∈ Ω. In the next step the local interaction quantity is integrated over the
surface of the patch Ω (see Fig. 2.2) and with the aid of Gauss’ theorem its
global form is found

χΩ(x
S)

∫

x∈Ω

Ê3(x, s)Ĵ
B
3 (x|xS, s)dA(x)

−
∫

x∈∂Ω

Ê3(x, s)ν(x) · ∂ĴB(x|xS, s)dl(x)

=

∫

x∈Ω

ÊB
3 (x|xS, s)Ĵ3(x, s)dA(x)

−
∫

x∈∂Ω

ÊB
3 (x|xS, s)ν(x) · ∂Ĵ(x, s)dl(x) (2.29)

where χΩ(x) is the characteristic function χΩ(x) = {1, 1/2, 0} for x ∈
{Ω, ∂Ω,Ω′} (Ω′ denotes the complement of Ω in R

2). Note that the second
term on the right-hand side of Eq. (2.29) is zero for a planar circuit having
the perfect magnetic wall along its boundary ∂Ω (see Eq. (2.6)). Following
Eqs. (2.25)–(2.27), the test wave fields are linearly related to their source via

ÊB
3 (x|xS, s) = −sµ

∫

xT∈R2

Ĝ∞[r(x|xT ), s]ĴB3 (xT |xS, s)dA(xT ) (2.30)

∂ĴBκ (x|xS, s) = −
∫

xT∈R2

∂κĜ∞[r(x|xT ), s]ĴB3 (xT |xS, s)dA(xT ) (2.31)

where Ĝ∞(r, s) is the bounded fundamental solution of the two-dimensional
(modified) Helmholtz equation in R2 and

r(x|xT ) = |x− xT | (2.32)

is the Eucledian distance between the points specified by position (two-
dimensional) vectors x and xT . To get a boundary-contour relation, the
testing surface electric current density is applied to the periphery of the cir-
cuit

ĴB3 (x|xS, s) = ∂ĴB3 (x|xS, s)δ(x− xS) (2.33)
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where δ(x−xS) being the Dirac delta distribution operative along xS ∈ ∂Ω.
In this way we get the following reciprocity relation

1
2

∫

x∈∂Ω

Ê3(x, s)∂Ĵ
B
3 (x|xS, s)dl(x)

−
∫

x∈∂Ω

Ê3(x, s)ν(x) · ∂ĴB(x|xS, s)dl(x)

=

∫

x∈Ω

ÊB
3 (x|xS, s)Ĵ3(x, s)dA(x)

−
∫

x∈∂Ω

ÊB
3 (x|xS, s)ν(x) · ∂Ĵ(x, s)dl(x) (2.34)

with

ÊB
3 (x|xS, s) = −sµ

∫

xT∈∂Ω

Ĝ∞[r(x|xT ), s]∂ĴB3 (xT |xS, s)dl(xT ) (2.35)

∂ĴBκ (x|xS, s) = −
∫

xT∈∂Ω

∂κĜ∞[r(x|xT ), s]∂ĴB3 (xT |xS, s)dl(xT ) (2.36)

Reciprocity relation (2.34) with Eqs. (2.35)–(2.36) serves as the basis for
TD-CIM. This method yields the electric-field space-time distribution along
the circuit boundary ∂Ω, which is sufficient to characterize the planar circuit
at hand. In particular, the superposition of the resulting field distribution
along ∂Ω results in the field within circuit’s domain Ω. The corresponding
expression directly follows again from Eq. (2.29) along with the magnetic-wall
boundary condition (2.5), i.e.

Ê3(x
S, s) = −sµ

∫

x∈Ω

Ĝ∞[r(x|xS), s]Ĵ3(x, s)dA(x)

−
∫

x∈∂Ω

Ê3(x, s)∂νĜ∞[r(x|xS), s]dl(x) (2.37)

for xS ∈ Ω, where we have let ĴB3 (x|xS, s) = δ(x− xS). Obviously, the first
term on the right-hand side can be interpreted as the primary field due to the
excitation port whose action is accounted for by Ĵ3, while the second term
represents the superposition of secondary contributions emanating from the
circuit rim. It should be stressed that Eq. (2.37) is not an integral equation to
solve but rather a formula to be evaluated for the (known) excitation and the
field distribution on ∂Ω. A numerical example concerning the superposition
integral can be found in Sec. 6.2.1.
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2.1.3 An alternative formulation

Yet another formulation that shows a relation between the boundary-value
and reciprocity-based formulations may be studied. To this end, let the
testing field satisfies the complex-FD field equations (2.25)–(2.27) for all
x ∈ Ω with the magnetic-wall boundary condition, i.e.

(i3 × ν) · ĤB(x+ δν, s) = 0 as δ ↓ 0 (2.38)

for all x ∈ ∂Ω. Further, without loss of generality, let us assume that the
circuit is activated via a vertical electric-current port only, i.e. with no cur-
rent injected into the circuit’s rim. Taking into account that the actual field
state remains the same as in Sec. 2.1, the corresponding global reciprocity
relation reads (cf. Eq. (2.29))
∫

x∈Ω

Ê3(x, s)Ĵ
B
3 (x|xS, s)dA(x) =

∫

x∈Ω

ÊB
3 (x|xS, s)Ĵ3(x, s)dA(x) (2.39)

with

ÊB
3 (x|xS, s) = −sµ

∫

xT∈Ω

Ĝ[r(x|xT ), s]ĴB3 (xT |xS, s)dA(xT ) (2.40)

∂ĴBκ (x|xS, s) = −
∫

xT∈Ω

∂κĜ[r(x|xT ), s]ĴB3 (xT |xS, s)dA(xT ) (2.41)

where the Green’s function satisfies the boundary-value problem defined in
(2.9) and (2.10). Obviously, for a spatially concentrated point source

ĴB3 (x|xS, s) = ÎB(s)δ(x− xS) (2.42)

with the Dirac distribution operative at xS ∈ Ω one arrives back at the field
representation (2.11) provided that we invoke the condition that the resulting
relation has to hold for arbitrary values of ÎB(s).

2.1.4 Modeling of excitation ports

Microstrip-line feeds and vertical ports are the most common means for ex-
citing EM fields in planar circuits. Accordingly, in this section we describe
a way how these ports can be implemented in CIM-based techniques. An
example of the circuit with a microstrip excitation port on the circuit pe-
riphery (PORT 1), a vertical excitation port (PORT 2), and two observation
probes (PROBE 1 and PROBE 2) is shown in Fig. 2.3.

Let us first describe the excitation port activated by the electric-current
surface density according to the excitation condition (2.5). Along (relatively
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PATCH

×
PORT 2

PROBE 1

▽

PROBE 2
▽

PORT 1

×

Figure 2.3: Planar circuit with its excitation ports and measurement probes.

small) line elements of the port’s periphery, we assume the constant electric-
current distribution (see Fig. 2.4). For the normal component of the excita-
tion current injected into a line element △Ω[P ] ⊂ ∂Ω we write

ν(x) · ∂Ĵ(x, s) = −Î(s)Π[P ](x)/|△Ω[P ]| (2.43)

where Î(s) is the electric current applied to the excitation segment, Π[P ](x)
is the rectangular function defined as

Π[P ](x) =

{

1 if x ∈ △Ω[P ]

0 elsewhere
(2.44)

and |△Ω[P ]| denotes the length of the excitation segment. In Eq. (2.43) one
has to take care of the orientation of the injected current. In this respect
it is worth to note that the right-hand side of Eq. (2.34) shows equivalence
between the vertical and horizontal excitation current densities in the for-
mulated two-dimensional model (see also [35, Sec. 9.3.1]). This implies that
in the two-dimensional model it does not make sense to strictly distinguish
between the action of the vertical electric-current density J3 and the horizon-
tal electric-current density −ν · ∂J injected into the circuit periphery ∂Ω.
Upon combining the second term on the right-hand side of Eq. (2.34) with
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x[P−1] x[P ] x[P+1] x[P+2]
0

1

x

T [P ](x)

T [P+1](x)

Π[P ](x)

Figure 2.4: Modeling of the injected excitation current over a line element.

Eqs. (2.35) and (2.43) we finally arrive at
[

−sµÎ(s)/|△Ω[P ]|
]

∫

xT∈∂Ω

∂ĴB3 (xT |xS, s)
∫

x∈△Ω[P ]

Ĝ∞[r(x|xT ), s]dl(x)dl(xT ) (2.45)

The integrals in Eq. (2.45) do not present any difficulties except for overlap-
ping discretization segments where the Green’s function shows the logarith-
mic singularity at x = xT . In such a case, one can use the generic integral
given in Appendix A to evaluate the inner integral. Since the testing source
density ĴB3 is assumed to be a piecewise linear function composed of T [m](x)
(see Fig. 2.4), the outer integral over xT easily follows.

Alternatively, one may avoid the singularity by assuming a vertical port
of the circular cross-section whose boundary contour does not belong to ∂Ω.
The starting point now is the first term on the right-hand side of Eq. (2.34)
with Eq. (2.35), i.e.

(−sµ/2π)
∫

xT∈∂Ω

∂ĴB3 (x
T |xS, s)

∫

x∈ΩQ

Ĵ3(x, s)K0[γ̂(s)r(x|xT )]dA(x)dl(xT ) (2.46)

where K0(x) is the modified Bessel function of the second kind and the zeroth
order that represents the (bounded) fundamental solution of the modified
Helmholtz equation in R2 [58, Sec. 11.2] (see also Sec. 2.1.1). In Eq. (2.46),
ΩQ = supp[Ĵ3(x, s)] ⊂ Ω is the support of the excitation vertical electric-
current volume density. Now, if we assume that ΩQ is a circular domain
whose radius ρ is sufficiently small with respect to the spatial support of the
excitation electric-current pulse, we may approximately take

Ĵ3(x, s) ≃ Î(s)/πρ2 for x ∈ ΩQ (2.47)
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Consequently, with the aid of the addition theorems for Bessel functions (see
[92, Sec. 6.11] and [1, (9.6.3), (9.6.4)]), the inner integral can be evaluated
analytically, i.e.

1

πρ2
1

2π

∫

x∈ΩQ

K0[γ̂(s)r(x|xT )]dA(x)

=
1

π

1

γ̂(s)ρ
I1[γ̂(s)ρ]K0[γ̂(s)r(x

C |xT )] (2.48)

where xT ∈ ∂Ω and xC ∈ Ω gives the center of the circular excitation-port
domain. Upon collecting the results and using the limit limx↓0 I1(x)/x = 1/2,
the interaction integral (2.46) can be finally simplified to

[

−sµÎ(s)/2π
]

∫

xT∈∂Ω

∂ĴB3 (x
T |xS, s)K0[γ̂(s)r(x

C |xT )]dl(xT ) (2.49)

Since the circular port is placed in domain Ω occupied by the conducting
plates, it is clear that the logarithmic singularity is in Eq. (2.49) avoided.
The second way, on the other hand, is limited to the excitation ports of
the circular cross-section. Illustrative MATLABr implementations of the
described TD-CIM excitation ports can be found in Sec. B.3.

2.2 Conclusions

It has been demonstrated that a planar circuit can be analyzed with the aid
of the eigenfunction-expansion method and the reciprocity-based contour-
integral formulation. Since the former approach yields closed-form analyti-
cal solutions for generic circuit shapes, this method is suitable for validating
computational techniques such as TD-CIM. Owing to the fact that any nu-
merical modeling of EM field excitation mechanisms has the decisive impact
on the proper evaluation of a planar circuit, a great deal of attention has
been paid to the embedding of its excitation ports. The introduced formu-
lations provide the solid basis for the subsequent chapter where TD-CIM is
described in detail.



Chapter 3

Instantaneously-reacting planar
circuits

The present chapter1 provides a numerical procedure for solving the contour-
integral reciprocity relation in TD for the case of a loss-free, instantaneously
reacting planar circuit [108]. Without loss of generality, we assume that the
planar circuit is excited by the electric-current surface density injected into
its periphery. Owing to the equivalence noted in Sec. 2.1.4, the vertical exci-
tation port may be modeled along the same lines. Since the loss-free section
of the circuit’s rim constitutes the perfect magnetic wall with the vanishing
tangential component of the magnetic field strength, such a structure cannot
in principle radiate and may be thus viewed as a closed resonator.

It turns out that the proposed approach leads to a system of algebraic
equations that is solvable in an updating step-by-step manner. Within the
tested input parameters it was observed that the resulting numerical scheme
is stable provided that the relevant matrix elements are evaluated accurately
enough to prevent from the error-accumulation instabilities (see [99]). The
proposed technique thus makes possible to investigate the pulse-shaped signal
transfer between source and receiver ports placed along the periphery of an
arbitrarily-shaped planar circuit.

The following sections are organized as follows. The chapter starts with
the numerical solution of the reciprocity-based contour-integral relation. In
order to validate the numerical results, an analytical closed-form solution is
constructed for a rectangular circuit in Sec. 3.2. The closed-form solution is
based on the eigenfunction expansion as given in Sec. 2.1.1. Finally, sample
numerical calculations are presented in Sec. 3.3. Here, the introduced com-

1This chapter is largely based on Reference [108]. Adapted with permission from IEEE,
c© 2014 IEEE.
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putational procedure is validated using the analytical eigenfunction-based
expressions and with the aid of FIT.

3.1 Numerical solution of the reciprocity for-

mulation

With the help of the bounded fundamental solution of the modified Helmholtz
equation in R2 [58, Sec. 11.2], Eqs. (2.34)–(2.36) lead to

∫

x∈∂Ω

Ê3(x, s)∂Ĵ
B
3 (x|xS, s)dl(x)

= (s/cπ)

∫

x∈∂Ω

Ê3(x, s)

∫

xT∈∂Ω

K1

[

sr(x|xT )/c
]

∂ĴB3 (xT |xS, s) cos[θ(x|xT )]dl(xT )dl(x)

+(sµ/π)

∫

x∈∂S

ν(x) · ∂Ĵ(x, s)
∫

xT∈∂Ω

K0

[

sr(x|xT )/c
]

∂ĴB3 (xT |xS, s)dl(xT )dl(x) (3.1)

for xS ∈ ∂Ω, with ∂S ⊂ ∂Ω and cos(θ) = ∂νr. Although the reciprocity-
based relation (3.1) will be numerically solved in TD, it is convenient to
perform a few next steps in complex-FD. As to the problem discretization,
the time coordinate {t ∈ R; t > 0} is discretized in NT instants with the
constant time step △t

T = {tk ∈ R; tk = k△t,△t > 0, k = 1, ..., NT} (3.2)

and the circuit periphery ∂Ω is discretized into N disjoint line segments

∂Ω ≃ ∪Nm=1△Ω[m] (3.3)

and |△Ω[m]| = |x[m+1] − x[m]| is the length of the m-th segment and x[m] is
the position vector of the m-th discretization node. The approximation of
the circuit periphery by straight-line segments is shown in Fig. 3.1. In the
next step, the electric field strength is expanded piecewise linearly both in
space and time, i.e.

Ê3(x, s) =

N
∑

m=1

NT
∑

k=1

e
[m]
[k] T

[m](x)T̂[k](s) (3.4)
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x1

x2

O×
Ω

∪m△Ω[m]

Figure 3.1: Boundary contour and its approximation by straight-line seg-
ments. From [108], adapted with permission from IEEE, c© 2014 IEEE.

where e
[m]
[k] is the yet unknown coefficient, T [m](x) is the triangular function

associated with the m-th node along ∂Ω

T [m](x) =

{

(

x− x[m−1]
)

/|△Ω[m−1]| if x[m−1] ≤ x ≤ x[m]

(

x[m+1] − x
)

/|△Ω[m]| if x[m] ≤ x ≤ x[m+1]
(3.5)

for all m = {1, · · · , N} and T̂[k](s) is the complex-FD counterpart of the
temporal triangle function (see Appendix E.1)

T[k](t) =

{

1− k + t/△t if k − 1 ≤ t/△t ≤ k

1 + k − t/△t if k ≤ t/△t ≤ k + 1
(3.6)

for all k = {1, · · · , NT}. The testing surface current density is taken to be
piecewise linear in space and its complex-FD counterpart at the S-th node is

∂ĴB3 (x|xS, s) = ĵ
[S]
3 (s)T [S](x) (3.7)

for all S = {1, · · · , N} and where we take ĵ
[S]
3 (s) = 1 which corresponds to

the ‘point matching’ in time. The injected electric-current surface density is
assumed to be constant over segments modeling the excitation port. Substi-
tuting of Eqs. (3.4) and (3.7) into a discretized form of Eq. (3.1) we end up
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with the system of algebraic equations

(

I −Q[0]

) · E[p] =

p−1
∑

k=1

Q[p−k] · E[k] + F [p] (3.8)

that can be solved in a step-by-step manner for all p = {1, · · · , NT}. Here,
E[p] is a 2D-array of [N × NT ] unknown coefficients at tp = p△t, I is a
three-diagonal [N ×N ] 2D-array with elements

(I)S,m =
(

△Ω[S−1]/6
)

δS−1,m

+
(

△Ω[S−1]/3 +△Ω[S]/3
)

δS,m +
(

△Ω[S]/6
)

δS+1,m (3.9)

and Q[p−k] is a time-dependent [N ×N ×NT ] 3D-array whose elements are
given as

(Q[p−k])S,m =
1

πc△t

∫

xT∈∂Ω

T [S](xT )

∫

x∈∂Ω

T [m](x)

Ψ[r(x|xT ), (p− k)△t] cos[θ(x|xT )]dl(x)dl(xT ) (3.10)

for all S = {1, · · · , N}, m = {1, · · · , N} and t ∈ T . The excitation is
accounted for via an [N ×NT ] 2D-array F [p] whose elements read

(F [p])S =
1

π|∂S|

∫

xT∈∂Ω

T [S](xT )

∫

x∈∂S

Φ[r(x|xT ), p△t]dl(x)dl(xT ) (3.11)

for all S = {1, · · · , N} and all t ∈ T , where |∂S| denotes the arc length of
∂S ⊂ ∂Ω. The time-dependent functions in Eqs. (3.10) and (3.11) are

Ψ(r, t) = ψ(r, t+△t)− 2ψ(r, t) + ψ(r, t−△t) (3.12)

ψ(r, t) = (c2t2/r2 − 1)1/2H(t− r/c) (3.13)

Φ(r, t) = −µ∂tI(t) ∗ (t2 − r2/c2)−1/2H(t− r/c) (3.14)

where I(t) is the source signature of the electric current injected into the cir-
cuit periphery and I(t) = 0 for t < 0. It is worth noting that the source signa-
ture must be smooth enough to get an integrable singularity in Eq. (3.14) as
r ↓ 0. For piecewise constant/linear excitation signatures such as the rectan-
gular or trapezoidal pulses, the time-integrated equivalent of the reciprocity
relation (3.1) seems to be the shortest way to circumvent the limitation. The
spatial singularity as x approaches xT must be carefully handled via the
limiting analytical procedure [120]. To this end, it is convenient to start over
with Eq. (3.1) and use a small-argument expansion of the modified Bessel
function [1, Eq. (9.6.13)]

K0(x) = ln(2/x)− γ +O(x2) as x ↓ 0 (3.15)
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where γ is Euler’s constant. The corresponding integrals of the logarithmic
function and its normal derivative are evaluated in Appendix A. As is shown,
the latter integral gives a zero contribution for the self-coupling terms in
Eq. (3.10). Since the 2D-arrays on the left-hand side of Eq. (3.8) do not
depend on time, the matrix inversion is needed only once. Moreover, if
c△t < minS,m[r(x|xT )], then all elements of Q[0] are zero and only the three-
diagonal matrix inversion is required. For this case, efficient algorithms do
exist (e.g. [38, Sec. 1.5]). More details on implementation aspects along with
the corresponding demo MATLABr codes can be found in Appendix B.

Finally note that under certain circumstances it may happen that in the
effort to keep the left-hand side of Eq. (3.8) as simple as possible, a smoother
temporal expansion is necessary. For such a case, several suitable expansion
functions are given in Appendix E. The use of the the quadratic expansion
functions B[k](t) (see Sec. E.2), for instance, yields

Ψ(r, t) = ψ(r, t+△t)− 2ψ(r, t+△t/2)
+ 2ψ(r, t−△t/2)− ψ(r, t−△t) (3.16)

ψ(r, t) = (2t/△t)
(

c2t2/r2 − 1
)1/2

H(t− r/c)

− (2r/c△t) ln
[

ct/r +
(

c2t2/r2 − 1
)1/2

]

H(t− r/c) (3.17)

which simply replace Eqs. (3.12) and (3.13), respectively.

3.2 Analytical solutions based on the eigen-

function expansion

The main concern of this section is to provide analytical closed-form solutions
that will serve for validation of TD-CIM. To this end we analyze a planar
circuit of the rectangular shape for which the eigenfunction expansion (2.16)
is well-known in closed form.

At first let us assume a rectangular circuit of dimensions L × W that
is excited by a microstrip port placed along the circuit periphery ∂ΩS =
{x ∈ R

2;T − P/2 ≤ x1 ≤ T + P/2, x2 = 0} (see Fig. 3.2a). Then for the
receiving probe of the rectangular shape ΩP = {x ∈ R2; xP1 −W P

1 /2 ≤ x1 ≤
xP1 +W

P
1 /2, x

P
2 −W P

2 /2 ≤ x2 ≤ xP2 +W
P
2 /2}, Eq. (2.20) with the integrations

taken over ∂ΩS and ΩP leads to the following complex-FD transfer impedance

Ẑ(s) =
sµd

LW

∞
∑

m=0

∞
∑

n=0

e2me
2
n

k2m + k2n + s2/c2
F S
mnF

P
mn (3.18)
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Figure 3.2: Rectangular planar circuits excited via a (a) microstrip-line
source; (b) vertical-probe source. From [108], adapted with permission from
IEEE, c© 2014 IEEE.

where

F S
mn = cos(kmT )sinc(kmP/2) (3.19)

F P
mn = cos(kmx

P
1 ) cos(knx

P
2 )sinc(kmW

P
1 /2)sinc(knW

P
2 /2) (3.20)

with em = 1 for m = 0 and em =
√
2 for m 6= 0 and km = mπ/L and

kn = nπ/W . Here, the results of Sec. 2.1.1 are used. Note that a probe
of vanishing dimensions can be handled via a limiting process. For a point
probe, for instance, we get

F P
mn = cos(kmx

P
1 ) cos(knx

P
2 ) (3.21)

as W P
1 ↓ 0 and W P

2 ↓ 0. The TD counterpart of Ẑ(s) can be found by
applying the inverse Laplace transform to the terms in the sum of Eq. (3.18).
With the help of [1, Eqs. (29.3.1),(29.3.16)] we find

Z(t) =
d

LW

1

ǫ

∞
∑

m=0

∞
∑

n=0

e2me
2
n cos[ct(k

2
m + k2n)

1/2]H(t)F S
mnF

P
mn (3.22)

As the second example we take the rectangular circuit excited by a vertical
excitation port placed on the patch Ω (see Fig. 3.2b). In such a case, the
excitation port occupies a rectangular domain ΩS = {x ∈ R2; xS1 −W S

1 /2 ≤
x1 ≤ xS1 +W

S
1 /2, x

S
2 −W S

2 /2 ≤ x2 ≤ xS2 +W
S
2 /2}. Again, the TD impedance

follows from Eq. (3.22) with (3.20) in which F S
mn is modified accordingly

F S
mn = cos(kmx

S
1 ) cos(knx

S
2 )sinc(kmW

S
1 /2)sinc(knW

S
2 /2) (3.23)
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Figure 3.3: The bell-shaped excitation signature. Taken from [108] with
permission from IEEE, c© 2014 IEEE.

Finally, the transient voltage V(t) at the position of the probe due to the
impulsive source I(t) can be found with the help of the time convolution in
Eq. (2.21).

3.3 Validation of numerical results

In this section we analyze the loss-free rectangular planar circuits whose
configurations are shown in Fig. 3.2. In the both cases we consider the
planar circuit of dimensions L = 0.1 [m] and W = 0.2 [m] with the dielectric
filling of thickness d = 1.50 [mm] showing the electric permittivity ǫ = 2.0 ǫ0
and magnetic permeability µ = µ0. The corresponding EM wave speed in
the dielectric layer is c = (ǫµ)−1/2.

The circuits are excited using the bell-shaped pulse being defined in Ap-
pendix D with the amplitude A = 1.0 [A] and with the pulse time width
ctw = 0.10 [m] (see Fig. 3.3). Note that the thin-layer assumption ctw ≫ d
is then satisfied. The transient voltage responses are observed within the
finite time window {0 ≤ ct ≤ 3.0} [m]. For the numerical solution, the cir-
cuit periphery is divided into the line segments of length |△Ω[n]| = 0.02 [m],
which corresponds to a fifth of the excitation pulse spatial support ctw . The
spatial integrals in Eqs. (3.10) and (3.11) are evaluated using the 12-point
Gauss-Legendre quadrature [1, (25.4.30)]. As the reference solution we use
Eq. (3.22), where the number of terms is truncated as m = {0, . . . ,M} and
n = {0, . . . , N}, with M = N = 1000.
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Figure 3.4: Computational models of the analyzed rectangular circuits with
probes (the solid triangles on the circuit peripheries); (a) a microstrip port
feeding (the bold line); (b) a vertical port (the dots on the patch).

3.3.1 Rectangular circuit fed by a microstrip port

In the first example we analyze the pulse propagation over the circuit excited
by the microstrip port with the parameters T = 0.03 [m] and P = 0.02 [m].
The pulsed voltage is observed along an edge of the circuit at a discretization
point placed at {xP1 , xP2 } = {0.1, 0.16} [m] with W P

1 ↓ 0 and W P
2 ↓ 0 (see

Fig. 3.4a).
The pulse shape found via TD-CIM is compared with the analytical solu-

tion evaluated using the truncated modification of Eq. (3.22) with Eqs. (3.19),
(3.21) and (2.21). The corresponding results are shown in Fig. 3.5a. Despite
the coarse spatial discretization, the resulting pulse shapes agree very well.

3.3.2 Rectangular circuit fed by a vertical port

As the second example we observe the pulse propagation over the circuit
excited by a vertical port having the rectangular cross section placed at
{xS1 , xS2 } = {0.03, 0.05} [m] with W S

1 = W S
2 = 2.0 [mm]. The resulting volt-

age response is probed at {xP1 , xP2 } = {0.02, 0.2} [m] (see Fig. 3.4b). In the
analytical expression (3.22) we use Eqs. (3.21) and (3.23). As can be seen
from Fig. 3.5b, the results are almost identical. Even better agreement can
be achieved with a finer discretization or/and with a higher number of points
in the Gauss-Legendre quadrature.

3.4 Comparison with an alternative numeri-

cal technique

Another way to validate the introduced TD-CIM is to compare its results
with the corresponding outputs from alternative numerical techniques. To
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Figure 3.5: The pulsed voltage evaluated using TD-CIM and the eigen-
function expansion method (EIG-E) as observed at the (a) probe shown in
Fig. 3.4a; (b) probe shown in Fig. 3.4b. From [108], adapted with permission
from IEEE, c© 2014 IEEE.

this end, we may use FIT as implemented in CST Microwave Studior, for
example. As to the circuits excitation, we use the model of a vertical port.
For the TD-CIM simulation, the port has a hexagonal cross-section of the
circumradius 1.0 [mm], while in the FIT-based simulation the circular port
of radius 1.0 [mm] is used. The port is activated by the bell-shaped source
signature plotted in Fig. 3.3. The distance between the PEC planes is again
d = 1.50 [mm] and the electric permittivity of the loss-free dielectric filling
is ǫ = 2.50 ǫ0. The transient voltage response is observed at a specified
position on the circuit periphery within the finite time window of observation
{0 ≤ ct ≤ 3.0} [m]. The FIT models are discretized with a hexahedral
mesh. The upper and bottom planes are assumed to be perfectly electrically
conducting. The sidewalls of the surrounding box are defined as the magnetic
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Figure 3.6: Computational models of the analyzed circuits with probes (the
solid triangles on the circuit peripheries) and with vertical ports (the dots
on the patch); (a) the rectangular circuit; (b) the irregularly-shaped circuit.

walls with the vanishing tangential magnetic-field component.

Our first structure is of the rectangular shape and its model as discretized
for TD-CIM is shown in Fig. 3.6a. The excitation port has its center at
{xS1 , xS2 } = {0.025, 0.075} [m]. The discretization of circuit’s rim is uniform
with the line segment of length |△Ω[n]| = 0.025 [m], which corresponds to
a quarter of the excitation pulse spatial support ctw = 0.10 [m]. The total
number of the discretization segments along the circuit periphery is 20. Our
reference FIT-based model consists of about 65 of thousands mesh cells.
The voltage pulses observed at {xP1 , xP2 } = {0.1, 0.075} [m] are shown in
Fig. 3.7a. As the excited field quantities causally evolve in time, we can
conclude that the good agreement of the early-time responses implies a very
good correspondence of our simplified excitation model with the reference one
used in the FIT-based analysis. On the other hand, the differences become
evident at the late-time part of the response. This observation implies slightly
different behavior of the sidewalls where the reflections take place. This can
be naturally expected by virtue of the different numerical strategies to tackle
the problem.

The effect of the circuit boundary is even more pronounced in the second
example shown in Fig. 3.6b. Its excitation port has its center at {xS1 , xS2 } =
{0.03, 0.05} [m]. The discretization is again uniform with |△Ω[n]| = 0.0167 [m],
which corresponds to a sixth of the excitation pulse spatial support ctw =
0.10 [m]. The total number of the discretization segments along the circuit
periphery is then 30, while the FIT model consists of 78 of thousands mesh
cells. The voltage pulse shapes observed at {xP1 , xP2 } = {0.0167, 0.15} [m] are
shown in Fig. 3.7b. The deviations at the late-time part of the responses
can be attributed to different boundary conditions along the circuit’s rim.
While the CIM-based model assumes the perfect magnetic wall along the
entire periphery, the magnetic wall in the FIT-based model is placed along
the sidewalls of the surrounding box x1 = {0, 0.10} [m], x2 = {0, 0.15} [m]
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Figure 3.7: The pulsed voltage evaluated using the proposed TD-CIM and
the referential FIT as observed at the (a) probe shown in Fig. 3.6a; (b) probe
shown in Fig. 3.6b.

only and not along the cuts {0.05 ≤ x1 ≤ 0.10, x2 = 0.1} [m] and {x1 =
0.05, 0.10 ≤ x2 ≤ 0.15} [m].

3.5 Conclusions

Starting from the reciprocity-based contour-integral formulation, the Time-
Domain Contour-Integral Method (TD-CIM) has been formulated. It has
been demonstrated that this approach results in a stable step-by-step updat-
ing scheme that readily yields the desired space-time field distribution along
the circuit’s rim.

Furthermore, the introduced computational procedure has been validated
with the help of the eigenfunction expansion method applied to a loss-free
rectangular planar circuit as well as with the aid of FIT applied to an
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irregularly-shaped planar circuit. TD-CIM may find its applications in TD
modeling of various double-plane circuit topologies including passive planar
circuits and thin microstrip antennas and in solving related signal/power in-
tegrity issues in multilayered PCBs. Several extensions and applications of
the introduced TD-CIM will be closely described in the following chapters.



Chapter 4

Relation to the classic CIM

The FD Contour-Integral Method (CIM) is a well-established numerical tech-
nique for the efficient analysis of planar circuits of arbitrary shape [67, 69].
Thanks to its simplicity and versatility, the method is applicable to signal
and power integrity analysis of complex high-speed multilayered PCBs, for
which it readily provides their parallel-plate impedances [82, 119], as well as
to tackling closely related EMI issues [28, 115].

The CIM formulation is based on a classic 2D contour-integral repre-
sentation for cylindrical waves (e.g. [69, Eq. (3)]). This integral relation is
traditionally solved upon applying the point-matching procedure [36, Sec. 1-
4] along with the piecewise-constant field expansion over each of (relatively
small) line segments approximating the circuit’s rim. This choice of testing
and expansion functions leads to an impedance matrix describing the self-
and mutual interactions between the dividing segments, whose elements are
easy to calculate [69, Eqs. (14)–(15)]. On the other hand, the point-matching
solution may not converge to the actual solution. A straightforward way that
may improve the convergence of the method is to employ the rectangular
testing functions. Introducing such a numerical solution is exactly the main
objective of this chapter1.

The following sections are organized as follows. Adopting the problem
configuration from the previous Chapter 3, this chapter starts by interrelating
the complex-FD reciprocity-based formulation with the classic formulation
of CIM as introduced by Okoshi [69]. In Sec. 4.2, the relevant integral equa-
tion is solved with the aid of the point-matching procedure. Subsequently
in Sec. 4.3, the point-matching solution is generalized upon ‘weighting’ the
integral equation with the sequence of rectangular testing functions. Finally,
numerical examples that illustrate convergence properties of the numerical

1This chapter is largely based on Reference [113]. The permission to reuse the material
originally published in the Radioengineering journal is gratefully acknowledged.
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solutions are presented in Sec. 4.4.

4.1 Basic CIM formulation

To arrive at the classic CIM formulation, the testing electric-current sur-
face density is chosen to show the Dirac-delta behavior, i.e. we substitute
∂ĴB3 (x|xS, s) = δ(x− xS) in Eq. (3.1) and get

Ê3(x
S, s) = (s/cπ)

∫

x∈∂Ω

Ê3(x, s)K1

[

sr(x|xS)/c
]

cos[θ(x|xS)]dl(x)

+ (sµ/π)

∫

x∈∂S

ν(x) · ∂Ĵ(x, s)K0

[

sr(x|xS)/c
]

dl(x) (4.1)

for xS ∈ ∂Ω. Note that this choice of the impulsive testing source is known
as the point-matching procedure. Next, taking the limit {s = δ + iω, δ ↓
0, ω ∈ R}, the integral equation can be re-written in the real-FD, viz

V̂ (xS, iω) = (k/2i)

∫

x∈∂Ω

V̂ (x, iω)H
(2)
1

[

kr(x|xS)
]

cos[θ(x|xS)]dl(x)

− (ωµd/2)

∫

x∈∂S

ν(x) · ∂Ĵ(x, iω)H(2)
0

[

kr(x|xS)
]

dl(x) (4.2)

for xS ∈ ∂Ω, where V̂ = −dÊ3, k = ω/c. In Eq. (4.2) we have used [1,
(9.6.4)] to express the modified Bessel functions with the complex argument
using the Hankel functions of the second kind.

In the following sections, the integral equation (4.2) is solved numeri-
cally. To this end, the circuit’s rim is first approximated by a set of line
segments ∂Ω ≃ ∪Nm=1△Ω[m] (see Fig. 3.1). Subsequently, upon employing
the piecewise-constant expansion, the equation is cast into its matrix form,
i.e.

U · V = H · I (4.3)

in which V is the voltage 1D-array of [N × 1] (unknown) coefficients, I is
the electric-current 1D-array of [N × 1] (prescribed) excitation coefficients
and U and H are [N × N ] 2D-arrays. Clearly, the corresponding [N × N ]
impedance matrix directly follows from Eq. (4.3) as Z = U−1 · H .

4.2 Point-matching solution

In the first step, the unknown voltage distribution along the approximated
circuit’s periphery is expanded in terms of the rectangular functions (see
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Eq. (2.44)), i.e.

V̂ (x, iω) =

N
∑

m=1

v̂[m]Π[m](x) (4.4)

where v̂[m] are the expansion coefficients of vector V . Upon enforcing the
equality in Eq. (4.2) at isolated points located at the centers of the dividing
segments denoted by x[m;c] for m = {1, · · · , N} we end up with (cf. [69,
Sec. III] and [67, Eq. (3.26)])

(U )S,m = −
(

k△Ω[m]/2i
)

H
(2)
1

[

kr(x[m;c]|x[S;c])
]

cos
[

θ(x[m;c]|x[S;c])
]

(4.5)

(H)S,m = (ωµd/2)H
(2)
0

[

kr(x[m;c]|x[S;c])
]

(4.6)

for all S 6= m and

(U)S,m = 1 (4.7)

(H)S,m =
ωµd

2

{

1− 2i

π

[

ln

(

k△Ω[m]

4

)

− 1 + γ

]}

(4.8)

for all S = m. The latter expression has been found using the small-argument
expansion of the Hankel function [1, Eq. (9.1.8)]

H
(2)
0 (x) = (2i/π) ln(2/x)− (2i/π)γ + 1 +O(x2) as x ↓ 0 (4.9)

and the following integral (cf. Appendix A)

∫ 1

λ=0

ln[|(1− λ)(−△Ω/2) + λ△Ω/2|] = ln(△Ω/2)− 1 (4.10)

for {△Ω ∈ R;△Ω > 0}. A sample MATLABr implementation of the point-
matching solution can be found in Sec. C.1.1.

4.3 Pulse-matching solution

Instead of applying the point-matching procedure we can start over with
the real-FD version of the reciprocity-based relation (3.1) and associate the
corresponding testing-source density with the rectangular function, i.e. we
let ∂ĴB3 (x|xS, s) = Π[S](x). This choice in combination with the piecewise-
constant expansion (4.4) leads to the system of algebraic equations (4.3)
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Figure 4.1: Computational model of the analyzed rectangular circuit with a
vertical excitation port (the dots on the patch).

with

(U)S,m = −
(

k△Ω[m]/2i
)

∫ 1

λ=0

dλ

∫ 1

λT=0

H
(2)
1

{

kr[x(λ)|xT (λT )]
}

cos
{

θ[x(λ)|xT (λT )]
}

dλT (4.11)

(H)S,m = (ωµd/2)

∫ 1

λ=0

dλ

∫ 1

λT=0

H
(2)
0

{

kr[x(λ)|xT (λT )]
}

dλT (4.12)

in which

x(λ) = x[m] + λ
(

x[m+1] − x[m]
)

∈ △Ω[m] (4.13)

xT (λT ) = x[S] + λT
(

x[S+1] − x[S]
)

∈ △Ω[S] (4.14)

for all S 6= m. Similarly to the previous section, the diagonal terms are
handled analytically. In this way, we after a few steps of algebra obtain

(U)S,m = 1 (4.15)

(H)S,m =
ωµd

2

{

1− 2i

π

[

ln

(

k△Ω[m]

2

)

− 3

2
+ γ

]}

(4.16)

for all S = m. Finally it is noted that Eqs. (4.5)–(4.6) can be understood
as a special case of (4.11)–(4.12) to which the 1-point Gaussian quadrature
(see [1, Eq. (25.4.30)]) is applied. A sample MATLABr implementation of
the pulse-matching solution can be found in Sec. C.1.2.

4.4 Numerical results

In this section we shall analyze a rectangular planar circuit of dimensions L =
0.10 [m] and W = 0.15 [m] (see Fig. 4.1). The thickness of the planar circuit
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is d = 1.50 [mm]. The dielectric filling is described by its electric permittivity
ǫ = 4.50 ǫ0 and magnetic permeability µ = µ0. The corresponding EM wave
speed in the dielectric layer is c = (ǫµ)−1/2. The circuit is assumed to show
low losses such that the corresponding (complex-valued) wavenumber k can
be approximated according to [67, Sec. 2.2.1]

k ≃ (ω/c) {1 + [tan(δ) + δs/d] /2i} (4.17)

where the dielectric loss is accounted for via tan(δ) = 0.0045, the skin
depth of the conductor is found from δs =

√

2/ωµσ with conductivity
σ = 5.80 · 107 [S/m]. The planar circuit is activated using the excitation
vertical port that has its center at {xS1 , xS2 } = {0.075, 0.1125} [m]. The CIM
model of the port has a hexagonal cross-section of circumradius 1.50 [mm].
All the calculations that follow are performed in the frequency range {50 ≤
f = ω/2π ≤ 2000} [MHz] at 200 uniformly-spaced frequency points. The
circuit’s boundary is discretized such that maxn(|△Ω[n]|) < 0.12 c/max(f).
The integrations in Eqs. (4.11) and (4.12) are carried out using the Gauss-
Legendre quadrature, symbolically written as

∫ 1

λ=0

f(λ)dλ ≃
K
∑

k=1

wkf(λk) (4.18)

where the corresponding abscissas λk and weights wk for {0 ≤ λ ≤ 1}, K =
{1, . . . , 8} of the quadrature can be found in [1, p. 921], for example. Recall
that for K = 1 for which w1 = 1, λ1 = 1/2, Eqs. (4.11)–(4.12) become fully
equivalent to Eqs. (4.5)–(4.6). For validation purposes, the input impedance
is also evaluated using a special case of the double-summation formula (3.18),
namely

Ẑ(iω) =
iωµd

LW
lim

M,N→∞

M
∑

m=0

N
∑

n=0

e2me
2
n

k2m + k2n − k2
F S
mnF

P
mn (4.19)

with F S
mn = F P

mn, where

F S
mn = cos(kmx

S
1 ) cos(knx

S
2 )sinc(kmW

S
1 /2)sinc(knW

S
2 /2) (4.20)

where we take W S
1 = W S

2 = 1.0 [mm]. In the actual calculations, the sum-
mations in Eq. (4.19) are truncated to N =M = 1000.

The results are summarized in Fig. 4.2. In Figs. 4.2a and 4.2b we have
shown the point-matching and pulse-matching solutions, respectively, to-
gether with the FD response calculated according to the analytical solution
(4.19). As can be observed, the both CIM-based solutions agree with the
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reference well. In order to clearly assess the accuracy of the numerical so-
lutions, the absolute error of the calculated input impedance with respect
to the referential solution (4.19) has been plotted in Fig. 4.2c. Apparently,
the calculated error curves attain their peak values at the circuit’s resonance
frequencies. Comparing the point-matching and pulse-matching approaches,
the latter solution leads, except for the very high-frequency part of the fre-
quency range, to more accurate results. The difference is most evident at
low frequencies. Finally it has been observed that doubling the number of
the integration from K = 6 to K = 12 does not imply a significant im-
provement. For a related study on the impact of the width of rectangular
testing functions on such numerical results’ accuracy we refer the reader to
[55, Sec. 5.2.2].

4.5 Conclusions

In this chapter, we have demonstrated the link between the reciprocity-based
relation given in Chapter 3 and the classic real-FD CIM formulation. The
resulting integral equation has been then solved for two different sequences
of the testing-source density. In this respect, it has been shown that the
classic point-matching solution can be viewed as a special case of the pulse-
matching solution to which the 1-point Gaussian quadrature is applied. With
the aid of the analytical solution based on the eigenfunction expansion, it has
been finally demonstrated that the pulse-matching solution may provide more
accurate results than the classic point-matching one. On the other hand, as
the pulse-matching solution requires computation of integrals, one should
carefully consider whether the improvement is worth the effort for practical
purposes.
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|Ẑ
(i

ω
)|

[Ω
]

 

 

EIG-E

FD-CIM: K = 6

b

0 500 1000 1500 2000
10

−3

10
−2

10
−1

10
0

10
1

10
2

f [MHz]

|δ
Ẑ
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Figure 4.2: Input impedance of the rectangular planar circuit evaluated us-
ing FD-CIM and the eigen-function expansion method (EIG-E). (a) Point-
matching solution with EIG-E; (b) pulse-matching solution with EIG-E; (c)
the absolute error of the FD-CIM solutions with respect to the referential
EIG-E solution.
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Chapter 5

Rectangular planar circuits
with relaxation

The advent of modern high-speed digital interconnect technologies has evoked
the need for efficient but still reliable modeling techniques capable of describ-
ing transmission of pulsed signals over planar structures. A group of tech-
niques that falls in this category is based on the cavity model that was used
in Chapter 3 for TD analysis of instantaneously-reacting, loss-free planar cir-
cuits. With still increasing clock speeds and edge rates, however, relaxation
mechanisms start to play a significant role with the indispensable impact on
the signal transfer [42]. Accordingly, the main concern of this chapter1 is
to provide a modeling technique that allows to analyze the field distribution
within a rectangular planar circuit with relaxation behavior in its dielectric
filling. To this end, the method of images is combined with a robust nu-
merical inversion of the Laplace transformation. In this way we arrive at a
field expansion that can be interpreted as to be composed of ‘ray-like’ TD
constituents propagating via the reflections against circuit’s periphery.

The vast majority of previous works on rectangular power-ground struc-
tures tackle the problem traditionally in the real-FD [47–49, 100]. Here,
two solutions, mutually connected via the Poisson summation formula [121,
Sec. 7.5], can be in principle distinguished. The first solution is based on the
eigenfunction expansion [47–49], while the second one is represented through
the expansion in (source) images [100]. The both FD expansions contain
infinite summations and their applicability depends on a frequency range of
interest [57, Sec. 7.2]. This feature has advantageous consequences in TD.
In particular, the TD image-source expansion shows the property that each

1This chapter is largely based on Reference [107]. Adapted with permission from IEEE,
c© 2014 IEEE.
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‘higher’ constituent appears later then the previous one, which makes possible
to account for only a finite number of image terms without any loss of accu-
racy. This fact has been previously recognized in the paper of Parker [71] who
introduced closed-form expressions for the TD voltage response of rectangu-
lar double-plane structures. The latter work, however, is limited to loss-free
structures and to special cases of the excitation pulse shape. Accordingly,
the main purpose of this chapter is the construction of novel space-time ex-
pressions describing the pulsed-signal transmission over a rectangular planar
circuit showing (Boltzmann-type) relaxation in its dielectric filling [107]. The
obtained closed-form expressions are physically intuitive, easy-to-implement
and may serve for benchmarking of purely numerical techniques.

The present chapter is organized as follows. At first, the relation between
the ray-like solution and the ‘classical’ eigenfunction expansion is discussed
for a rectangular circuit with the instantaneously reacting filling. The second
part provides a closed-form solution concerning a rectangular circuit whose
dielectric losses are included in its electric conductivity. Subsequently, a gen-
eral technique that makes possible to account for relaxation behavior of the
dielectric layer is proposed. Potentialities of the technique are demonstrated
on Debije’s model of an isotropic dielectric. Finally, the obtained results are
validated with the aid of FIT.

5.1 Modal and ray-like TD expansions

The initial-boundary value problem defined in Eqs. (2.1)–(2.4) with (2.6) may
be solved analytically in closed form for the planar circuit of rectangular
shape with Ω = {x ∈ R2; 0 ≤ x1 ≤ L, 0 ≤ x2 ≤ W}. In such a case
one may either apply the separation of variable technique [121, Sec. 4.2]
or the method of images [121, Sec. 7.5]. The former leads to the classical
eigenfunction expansion discussed in Sec. 2.1.1, while the latter yields the
ray-type expansion that can be viewed as a collection of rays propagating via
reflections against the circuit periphery. The both approaches are discussed
in this section for the impulsive dielectric relaxation function κ(t) = ǫδ(t).
Incorporation of relaxation effects is addressed in the following sections.

The rectangular circuit as shown in Fig. 5.1 is supposed to be activated
via a spatially concentrated electric-current source

J3(x, t) = I(t)δ(x − xS) (5.1)

with I(t) = 0 for t < 0. Considering a vanishing spatial support of the
receiving probe, the excited pulsed voltage response observed at x = xP can
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Figure 5.1: Rectangular planar circuit. Taken from [107], with permission
from IEEE, c© 2014 IEEE.

be written as

V(t) = µd∂tI(t) ∗G(xP |xS, t) (5.2)

where we have used the results from Sec. 2.1.1. The complex-FD counterpart
of the Green’s function satisfies the modified Helmholtz equation (2.9) with
the Neumann-type boundary condition (2.10). The boundary-value problem
has for the given rectangular shape of Ω the closed-form analytical solution
that reads (cf. Eq. (2.16))

Ĝ(x|xS, s) = 1

LW
lim

M,N→∞

M
∑

m=0

N
∑

n=0

e2me
2
n

k2m + k2n + γ̂2
Fmn(x|xS) (5.3)

with

Fmn = cos(kmx1) cos(knx2) cos(kmx
S
1 ) cos(knx

S
2 ) (5.4)

where γ̂ = s/c for the loss-free, instantaneously reacting dielectric layer,
c = (ǫµ0)

−1/2 and em = 1 for m = 0 and em =
√
2 for m 6= 0, km = mπ/L,

kn = nπ/W . Equation (5.3) can be with the help of [1, (29.3.15)] transformed
into TD, which in combination with (5.2) yields

V(t) = µd∂tI(t) ∗
c

LW

∑

m,n

e2me
2
n

(k2m + k2n)
1/2

Fmn(x
P |xS) sin

[

ct(k2m + k2n)
1/2

]

H(t) (5.5)

where we have used the shorthand notation for the double sum in (5.3). The
lowest-order term m = n = 0 requires a special attention and follows as

V [0,0](t) = (d/ǫLW )

∫ t

τ=0

I(τ)dτ (5.6)
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which clearly represents the charge accumulation on a parallel-plate capaci-
tor.

An alternative solution relies on the method of images. In this method,
the total solution G(.) is composed of the fundamental solution G∞(.) satis-
fying the wave equation with the causality condition and of a secondary part
that is adjusted such that G(.) satisfies the (Neumann) boundary condition
along ∂Ω. In this way we arrive at

V(t) = µd∂tI(t) ∗
P
∑

p=−P

Q
∑

q=−Q
{

G∞(xP1 |xS1 + 2pL, xP2 |xS2 + 2qW, t)|++

+G∞(xP1 |xS1 + 2pL, xP2 |2qW − xS2 , t)|+−

+G∞(xP1 |2pL− xS1 , x
P
2 |xS2 + 2qW, t)|−+

+G∞(xP1 |2pL− xS1 , x
P
2 |2qW − xS2 , t)|−−

}

(5.7)

where

G∞(xP1 |xS1 , xP2 |xS2 , t) = (1/2π)(t2 − r2/c2)−1/2H(t− r/c) (5.8)

is the lossless two-dimensional fundamental solution and r = r(xP |xS) de-
notes the Eucledian distance between the source and field points

r(xP |xS) =
[

(xP1 − xS1 )
2 + (xP2 − xS2 )

2
]1/2

(5.9)

Upon inspection of (5.7) with (5.8) we may identify the arrival times of the
corresponding TD constituents, viz

c T
[pq]
++ =

[

(xP1 − xS1 − 2pL)2 + (xP2 − xS2 − 2qW )2
]1/2

(5.10)

c T
[pq]
+− =

[

(xP1 − xS1 − 2pL)2 + (xP2 + xS2 − 2qW )2
]1/2

(5.11)

c T
[pq]
−+ =

[

(xP1 + xS1 − 2pL)2 + (xP2 − xS2 − 2qW )2
]1/2

(5.12)

c T
[pq]
−− =

[

(xP1 + xS1 − 2pL)2 + (xP2 + xS2 − 2qW )2
]1/2

(5.13)

From Eqs. (5.10)–(5.13) it is immediately clear that the arrival times increase
with |p| + |q| that is proportional to the number of reflections against the
circuit’s edges. Consequently, the TD constituents in (5.7) arrive at the
field point in a successive manner and hence, in any finite time window of
observation, only a finite number of them is necessary to build the exact
solution up. On the other hand, the situation is very different for the modal
expansion (5.5). In it, all the modal constituents start at the same instant
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t = 0 and to obtain the exact solution one would need to include an unlimited
number of them. In practice, of course, their number is always truncated once
the prescribed precision is reached. Further properties of the modal and ray-
like expansions shall be discussed in Sec. (5.4). For related works on the
subject we refer the reader to [105, 116].

5.2 Conduction-loss dielectric relaxation

The simplest way to model a lossy dielectric compatible with the property of
causality is to specify its relative permittivity ǫr and electric conductivity σ.
The corresponding dielectric relaxation function has then the following form

κ(t) = ǫ0[ǫrδ(t) + (σ/ǫ0)H(t)] (5.14)

The presence of non-zero conducting current in (2.1) manifests itself by a
diffusive term in the corresponding dissipative wave equation

(∂21 + ∂22)G∞ − c−2(∂2t + τ−1
c ∂t)G∞ = −δ(x− xS)δ(t) (5.15)

that is solved for x ∈ R2 and t > 0 together with the zero initial conditions
and the condition of causality. Here, τc = ǫ/σ is the conduction relax-
ation time and c = (ǫrǫ0µ0)

−1/2 is the corresponding wave speed. To solve
Eq. (5.15) analytically, one may either apply the extended Cagniard-DeHoop
method [21] or start with the solution of the three-dimensional dissipative
wave equation [20, Sec. 26.5] and apply Hadamard’s method of descent [13,
III -§4.4]. The latter procedure was used in [57, Sec. 7.4], for instance. Based
on the results given in Appendix F, the fundamental solution is written as
(cf. Eq. (F.12))

G∞(xP1 |xS1 , xP2 |xS2 , t) = (1/2π)(t2 − r2/c2)−1/2H(t− r/c)
{

1 + 2 sinh2
[

(t2 − r2/c2)1/2/4τc
]}

exp(−t/2τc) (5.16)

Obviously, Eq. (5.8) is a special case of (5.16) for σ = 0. Its first part rep-
resents an attenuated fundamental solution of the loss-free two-dimensional
wave equation, while the second part represents a dispersive contribution
introduced by the diffusive term in (5.15). Finally, the total electric field
follows upon substituting of (5.16) in (5.7).

5.3 Debije’s dielectric relaxation

Relaxation behavior of an isotropic dielectric slab may be modeled via the
first-order Debije model (see [39, Sec. 8.4], for example). The corresponding
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dielectric relaxation function has the following form

κ(t) = ǫ0{ǫ∞δ(t) + [(ǫr − ǫ∞)/τr] exp(−t/τr)H(t)} (5.17)

where ǫr and ǫ∞ are the characteristic relative permittivities for which 0 <
ǫ∞ < ǫr and τr is the relaxation time. The corresponding wave equation then
reads (cf. Eq. (H.1))

(∂21 + ∂22)G∞ − c−2
∞ ∂2t

{

G∞ + (ǫr/ǫ∞ − 1)τ−1
r

∫ t

τ=−∞

exp[−(t− τ)/τr]G∞(x, τ)dτ

}

= −δ(x− xS)δ(t) (5.18)

where c∞ = (ǫ∞ǫ0µ0)
−1/2. Following the method described in Appendix H,

the fundamental solution is expressed as

G∞(x1|xS1 , x2|xS2 , t) =
1

2π

H(t− r/c∞)

(t2 − r2/c2∞)1/2
exp [−(t/2τr)(ǫr − ǫ∞)]

+
1

2π

∫ t

τ=r/c∞

F (t, τ) dτ

(τ 2 − r2/c2∞)1/2
(5.19)

for t > τ , where the integrated function F (t, τ) follows from the Bromwich
integral

F (t, τ) =
1

2πi

∫

s∈B

exp(st)F̂ (s, τ)ds (5.20)

where

F̂ (s, τ) = exp
[

−L̂(s)τ
]

− exp
[

−L̂∞(s)τ
]

(5.21)

L̂(s) = s [(s+ α)/(s+ β)]1/2 (5.22)

L̂∞(s) = s+ (α− β)/2 (5.23)

with α = (ǫr/ǫ∞)/τr and β = 1/τr. Here, where L̂∞(s) denotes the leading
terms of L̂(s) in the asymptotic expansion as |s| → ∞. The Bromwich
integration contour B in (5.20) runs parallel to Re(s) = 0 and is shifted
to the right of all singularities in the complex s-plane. Here, we encounter
two algebraic branch points on the negative real axis at s = {−α,−β}.
The corresponding branch cuts are chosen such that Re[(s + α)1/2] ≥ 0 and
Re[(s + β)1/2] ≥ 0 for all s ∈ C, which implies two overlapping branch cuts
along the negative real axis {s ∈ C;−∞ < Re(s) ≤ −α, Im(s) = 0} and



Numerical results 47

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

vt [m]

I
(t

)
[A

]

v Tw = 0.10 [m]

A = 1.0 [A]

Figure 5.2: The triangular excitation signature.

{s ∈ C;−∞ < Re(s) ≤ −β, Im(s) = 0}. The Bromwich contour is then in
virtue of Jordan’s lemma closed to the right and the resulting contour is, in
view of Cauchy’s theorem, contracted to a new contour Γ ∪ Γ∗ along which
the integral is carried out numerically. For details concerning the hyperbolic
contour we refer the reader to Appendix G.

Similarly to the previous section, the fundamental solution (5.19) consists
of two parts. The first one is an attenuated two-dimensional Green’s function
of the corresponding loss-free wave equation and the second one represents
the relaxation behavior. The latter part vanishes close to the wavefront at
t = r/c∞, which is in fact a typical feature of dispersive phenomena [31].

5.4 Numerical results

In order to illustrate the application of the results introduced in the previous
sections, sample calculations are performed for a rectangular power-ground
structure of dimensions L = 100 [mm] and W = 75.0 [mm] (see Fig. 5.1).
The rectangular circuit is excited by the triangular electric-current pulse
(see Fig. 5.2 and Eq. (D.4))

I(t) = 2A

[

t

tw
H(t)− 2

(

t

tw
− 1

2

)

H

(

t

tw
− 1

2

)

+

(

t

tw
− 1

)

H

(

t

tw
− 1

)

]

(5.24)

via a spatially localized vertical port placed at {xS1 , xS2 } = {25.0, 20.0} [mm]
(see Fig. 5.3). Here, A is the pulse amplitude, tw corresponds to the length
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Figure 5.3: Model of the analyzed rectangular planar circuit with a field
probe (the solid triangle) and an excitation port (the cross symbol).

of the base and tw/2 is equal to the pulse rise and fall time. For the fol-
lowing examples we take A = 1.0 [A] and v tw = 0.10 [m]. The pulse voltage
response is probed at {x1, x2} = {80.0, 60.0} [mm] within the time window of
observation {0 ≤ vt ≤ 1.0} [m] (see Fig. 5.3). Here, v = c = (ǫrǫ0µ0)

−1/2 or
v = c∞ = (ǫ∞ǫ0µ0)

−1/2 for the conduction-loss or Debije dielectric relaxation,
respectively.

5.4.1 Modal and ray time-domain constituents

The first example is related to Sec. 5.1 and demonstrates the main features
of the modal and ray time-domain expansions. The EM properties of the
dielectric layer are described here by its scalar electric permittivity ǫ = 4.50 ǫ0
and magnetic permeability µ0. Four low-order terms from the right-hand side
of Eq. (5.5) are shown in Fig. 5.4a.

As already noted in Sec. 5.1, all the modal constituents start at t = 0
and the property of causality turns up once a sufficient number of them is
included. For the field evaluation itself it is important to note that as the
rate of oscillations increases with the order of the constituents, one may find
difficult to evaluate the time convolution with (the time derivative of) the
excitation pulse shape for (strongly oscillatory) high-order terms. This is
not an issue, however, for special cases of the excitation pulse shape such
as the triangular one (5.24), for example, for which the time convolution
integral exists in closed form. The pulse shapes of low-order ray constituents
as evaluated using Eq. (5.7) are shown in Fig. 5.4b. Here we may observe
the direct source/probe wave constituent (++) and the reflected constituents
that are associated with the image sources. As can be seen in Fig. 5.4b, all
the reflected constituents reach the field point after the direct wave making
the evaluated total field strictly causal. This fact is illustrated in Fig. 5.5a,
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Figure 5.4: Time-domain constituents. (a) The oscillatory modal type; (b)
the progressing ray type. From [107], adapted with permission from IEEE,
c© 2014 IEEE.

where the total field responses, as evaluated using Eq. (5.5) withM = N = 25
and Eq. (5.7) with P = Q = 7, are compared. While the ray-type expansion
already provides the exact results, the modal solution is evidently still missing
high-frequency components (see Fig. 5.5b). In this example, the total number
of the modal constituents is M × N = 625, while the total number of the
ray constituents that appear in the chosen time window is only 423 out of
4× (2P + 1)× (2Q+ 1) = 900.

5.4.2 Inclusion of conduction loss

The second example illustrates the results described in Sec. 5.2. The EM
properties of the dielectric slab are described with its scalar electric per-
mittivity ǫ = 4.50 ǫ0, electric conductivity σ = 0.02 [S/m] and magnetic
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Figure 5.5: The voltage responses represented using (a) the ray-like (RAY)
and modal solutions (EIG-E); (b) the early-time part of the responses.

permeability µ0. The corresponding conduction relaxation time τc is a small
fraction of the excitation pulse time width tw/2, namely tw/τc ≃ 3 · 104.

The following examples were evaluated with the help of Eqs. (5.7) with
(5.16) as well as with FIT as implemented in CST Microwave Studior. In
short only, the reference FIT model is placed in homogeneous, isotropic and
loss-free (‘normal’) embedding. The model consists of a homogeneous layer
described with the corresponding electric permittivity, electric conductiv-
ity, magnetic permeability and its thickness d = 1.50 [mm]. Note that the
layer is very thin with respect to the spatial of the excitation pulse since
d/ctw = 0.015. The layer is sandwiched between two PEC sheets of vanish-
ing thickness. The model is finely discretized into about 600 of thousands
hexahedral mesh cells. Sidewalls of the surrounding box are defined as the
magnetic walls with vanishing tangential magnetic-field components. The
model is activated through the electric-current discrete port having a van-
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Figure 5.6: The pulsed voltage responses of the circuit with the conductive-
loss dielectric relaxation as evaluated using the ray-type expansion (RAY)
and the referential FIT.

ishing radius. As can be seen, the corresponding results as shown in Fig. 5.6
agree well. In fact, the ray-type expansion is exact and thus may provide an
useful tool for benchmarking purely numerical techniques.

5.4.3 Inclusion of Debije’s dielectric relaxation

The last example illustrates the results concerning the Debije relaxation func-
tion as described in Sec. 5.3. The following results were evaluated with the
help of Eqs. (5.7), (5.19) and again, with FIT as implemented in CST Mi-
crowave Studior. In the first step, the dispersion characteristics of ‘FR-4
(lossy)’ as defined in the CST Material Library were used to find the param-
eters of the corresponding dielectric relaxation function (5.17). The corre-
sponding complex (steady-state) dielectric relaxation function reads

Re[κ̂(iω)]/ǫ0 = ǫ∞ + (ǫr − ǫ∞)/(1 + ω2τ 2) (5.25)

Im[κ̂(iω)]/ǫ0 = (ǫr − ǫ∞)ωτ/(1 + ω2τ 2) (5.26)

for ω = 2πf ∈ R. Its real and imaginary parts for ǫr = 4.410, ǫ∞ = 4.195
and τr = 1.630 · 10−11 [s] are plotted in Figs. 5.7. In the real-frequency range
f = (0...12) [GHz], that covers four main lobes of the amplitude-frequency
spectrum of the excitation pulse, the dispersion characteristics are almost
identical. Except for the dielectric filling, the FIT model was defined as
described in the previous subsection 5.4.2. The corresponding pulsed voltage
responses are shown in Fig. 5.8. Again, the observed pulse shapes agree very
well thus validating the proposed method.
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Figure 5.8: The pulsed voltage responses of the circuit with the Debije-
dielectric relaxation as evaluated using the ray-type expansion (RAY) and
the referential FIT.
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5.5 Conclusions

A TD technique for analyzing the pulsed EM-field transmission over a rect-
angular planar circuit has been described. This technique is based on the
method of images and allows for the inclusion of rather general relaxation
mechanisms. The TD analysis has been first carried out for the loss-free
case demonstrating the main features of the ray-type and modal expansions.
Subsequently, two dielectric relaxation models have been analyzed in detail.
Namely, we have focused on the conduction-loss and Debije-dielectric relax-
ation functions for an isotropic dielectric.

The proposed technique is very easy-to-implement, physically intuitive,
and in combination with the technique given in Appendix H, it makes possi-
ble to account for general (Boltzmann-type) relaxation mechanisms. These
properties make the introduced computational model suitable for the fast
broadband analysis of rectangular circuits as well as for benchmarking com-
putational techniques such as the TD finite-difference method, for instance.
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Chapter 6

Arbitrarily-shaped planar
circuits with relaxation

The two-dimensional circuit model with the ideal open-circuit boundary rep-
resents a loss-free resonator whose TD response never dies down. In order to
set up a more realistic model, one has to account for relaxation and dissipa-
tion effects of the dielectric layer. On the other hand, effects of non-perfectly
conducting planes can be for practical cases neglected (see [102, Fig. 8]).

Generally speaking, the dissipation and relaxation mechanisms in the
FD description manifest themselves by the imaginary part of the wavenum-
ber making their inclusion straightforward [67, Sec. 2.2.1]. As far as the TD
analysis is concerned, their inclusion in the TD is much more challenging (see
e.g. [33]). In TD, the inclusion of material dissipation and relaxation phe-
nomena changes the form of the field equations and hence the corresponding
fundamental solution (see Appendix F). Except for special cases, the time
convolutions occurring in the reciprocity relations must be then calculated
numerically and the analysis becomes computationally more involved. In this
chapter1 it is demonstrated that a promising way to solve this drawback is
the numerical Laplace-transform inversion based on the deformation of the
Bromwich contour into a hyperbolic one (see Appendix G). Although the
attention is primarily paid to the relaxation behavior of an isotropic dielec-
tric described via the finite-conductivity and Debije-type relaxation models,
the proposed modeling techniques are very general and allow to include more
complex relaxation behavior such the Lorentzian absorption line, for exam-
ple. Finally, a few sample calculations are performed and their results are
validated using FIT.

1This chapter is largely based on Reference [110]. Adapted with permission from IEEE,
c© 2015 IEEE.
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6.1 Inclusion of relaxation behavior

Let us consider a planar circuit activated by the controlled vertical electric-
current surface density ∂Ĵ3 applied to a part of the rim ∂S ⊂ ∂Ω. The rest
of the circuit periphery forms the perfect magnetic wall to which the explicit-
type boundary condition (2.6) applies. The corresponding reciprocity-integral
relation has then the following form (cf. Eq. (3.1))

∫

x∈∂Ω

Ê3(x, s)∂Ĵ
B
3 (x|xS, s)dl(x)

= [γ̂(s)/π]

∫

x∈∂Ω

Ê3(x, s)

∫

xT∈∂Ω

K1

[

γ̂(s)r(x|xT )
]

∂ĴB3 (xT |xS, s) cos[θ(x|xT )]dl(xT )dl(x)

+(sµ/π)

∫

x∈∂S

∂Ĵ3(x, s)

∫

xT∈∂Ω

K0

[

γ̂(s)r(x|xT )/c
]

∂ĴB3 (xT |xS, s)dl(xT )dl(x) (6.1)

where γ̂ = γ̂(s) is the propagation coefficient (see Sec. 2.1.1) that obviously
depends on relaxation behavior of the dielectric slab. Besides the instanta-
neously reacting medium as described in Chapter 3 for which γ̂(s) = s/c,
two other models of an isotropic dielectric are analyzed:

• The finite-conductivity relaxation model defined via its relative electric
permittivity ǫr with and electric conductivity σ. The corresponding
propagation coefficient has the form γ̂(s) = [s(s + α)]1/2/c with c =
(ǫrǫ0µ0)

−1/2, where α is related to the conduction relaxation time as
α = 1/τc = σ/ǫ.

• The Debije dielectric relaxation model defined via its relative charac-
teristic permittivities ǫr and ǫ∞ and the relaxation time τr. The cor-
responding propagation coefficient has the form γ̂(s) = s[(s + α)/(s+
β)]1/2/c∞ with c∞ = (ǫ∞ǫ0µ0)

−1/2, where α = (ǫr/ǫ∞)/τr, β = 1/τr.

Details concerning the Laplace inversion are discussed for the both cases in
the following subsections.

6.1.1 Conduction-loss dielectric model

The following analysis is carried out for the piecewise linear temporal ex-
pansion of the electric field strength (viz Chapter 3). Other types of the
time expansion may be readily handled in a similar way. With reference to
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Eq. (6.1), the inverse Laplace transformation of the following expressions will
be found

γ̂(s)K1[γ̂(s)r]/s
2 = [s(s+ α)]1/2K1

{

[s(s+ α)]1/2r/c
}

/cs2 (6.2)

K0[γ̂(s)r] = K0

{

[s(s+ α)]1/2r/c
}

(6.3)

where α = σ/ǫ, ǫ = ǫrǫ0 and c = (ǫrǫ0µ0)
−1/2. It is worth to note that as

σ ↓ 0, one may find the corresponding Laplace inversions analytically with
the help of (cf. Eqs. (3.13) and (3.14))

L−1[K1(sr/c)/s] = (c2t2/r2 − 1)1/2H(t− r/c) (6.4)

L−1[K0(sr/c)] = (t2 − r2/c2)−1/2H(t− r/c) (6.5)

Although the inversion of expressions (6.2) and (6.3) can be in principle
carried out analytically with the aid of the Schouten-van-der-Pol theorem
[87, 101], the numerical procedure described in Appendix G is, for the sake
of generality, applied. To this end, one needs to study the analytical prop-
erties of the expressions in the complex s-plane. Here, we encounter two
branch points on the negative real axis at s = {0,−α} and a (double) pole
singularity at s = 0 in Eq. (6.2). The corresponding branch cuts are chosen
such that Re[(s+α)1/2] ≥ 0 and Re(s1/2) ≥ 0 for all s ∈ C, which implies two
overlapping branch cuts along the negative real axis {s ∈ C;−∞ < Re(s) ≤
0, Im(s) = 0}, {s ∈ C;−∞ < Re(s) ≤ −α, Im(s) = 0} together with

cγ̂(s) = s+ α +O(s−1) (6.6)

as |s| → ∞. On account of the large-argument expansions

K0,1(sr/c) = (πc/2r)1/2s−1/2 exp(−sr/c)
[

1 +O(s−1)
]

(6.7)

as |s| → ∞, the original Bromwich integration contour can be closed to the
right for t > r/c and the corresponding integration is in view of Cauchy’s
theorem carried out along the hyperbolic contour Γ ∪ Γ∗ (here ∗ denotes
complex conjugate) sketched in Fig. 6.1. Here, only the non-overlapping part
of the branch cuts is depicted. For further details concerning the numerical
integration along the hyperbolic contour we refer the reader to Appendix G.

Finally, the unknown expansion coefficients follow upon solving Eq. (3.8)
provided that the integrated functions ψ and Φ defined in Eqs. (3.13) and
(3.14) are replaced by their corresponding (numerical) inversions

ψ(r, t) = L−1
{

[s(s+ α)]1/2K1

{

[s(s+ α)]1/2r/c
}

/s2
}

(6.8)

Φ(r, t) = −µ∂tI(t) ∗ L−1
{

K0

{

[s(s + α)]1/2r/c
}

}

(6.9)

for t > r/c.
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Figure 6.1: Complex s-plane related to the finite-conductivity model. Taken
from [110] with permission from IEEE, c© 2015 IEEE.

6.1.2 Debije dielectric model

As in the previous subsection 6.1.1, the following considerations are related to
the piecewise linear temporal expansion. Again, with reference to Eq. (6.1),
the inverse Laplace transformation of the following expressions will be found
(cf. Eqs. (6.2) and (6.3))

γ̂(s)K1[γ̂(s)r]/s
2 = s[(s+ α)/(s+ β)]1/2

K1

{

s[(s+ α)/(s+ β)]1/2r/c∞
}

/c∞s
2 (6.10)

K0[γ̂(s)r] = K0

{

s[(s+ α)/(s+ β)]1/2r/c∞
}

(6.11)

Since no straightforward closed-form inversion of (6.10) and (6.11) does exist,
the numerical technique as described in Appendix G is applied. In the corre-
sponding complex s-plane we encounter two branch points at s = {−α,−β}
and a double pole at s = 0 in Eq. (6.10). Also, the corresponding prop-
agation coefficient γ̂ shows the inverse-square root singularity at s = −β
causing that Eq. (6.10) is unbounded there. The corresponding branch cuts
are chosen such that Re[(s+ α)1/2] ≥ 0 and Re[(s+ β)1/2] ≥ 0 for all s ∈ C,
which implies two overlapping branch cuts along the negative real axis {s ∈
C;−∞ < Re(s) ≤ −α, Im(s) = 0}, {s ∈ C;−∞ < Re(s) ≤ −β, Im(s) = 0}
together with

c∞γ̂(s) = s+ (α− β)/2 +O(s−1) (6.12)

as |s| → ∞. Based on the large-argument expansions (6.7), the Bromwich in-
version contour can be closed to the right for t > r/c∞ and the corresponding
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Figure 6.2: Complex s-plane related to the Debije model. Taken from [110]
with permission from IEEE, c© 2015 IEEE.

integration is in view of Cauchy’s theorem carried out along the hyperbolic
contour Γ∪Γ∗ (here ∗ denotes complex conjugate) shown in Fig. 6.2. Owing
to the inverse square-root singularity affecting the inversion of Eq. (6.10), the
new integration path should not be too close to the singularity at s = −β.
In Fig. 6.2, only the non-overlapping part of the branch cuts is shown. For
further details concerning the numerical integration along the hyperbolic
contour we refer the reader to Appendix G.

Finally, the unknown expansion coefficients follow upon solving (3.8) pro-
vided that the integrated functions ψ and Φ defined in Eqs. (3.13) and (3.14)
are replaced by their corresponding (numerical) inversions

ψ(r, t) = L−1
{

s[(s+ α)/(s+ β)]1/2

K1

{

s[(s + α)/(s+ β)]1/2r/c∞
}

/s2
}

(6.13)

Φ(r, t) = −µ∂tI(t) ∗ L−1
{

K0

{

s[(s+ α)/(s+ β)]1/2r/c∞
}

}

(6.14)

for t > r/c∞.

6.2 Numerical results

This section is divided into two parts and presents sample numerical calcu-
lations concerning the inclusion of the dielectric Boltzmann-type relaxation
mechanisms via the finite-conductivity and Debije-type models. All the ob-
tained results are compared with the corresponding results evaluated using
FIT of CST Microwave Studior.
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Figure 6.3: Computational model of the analyzed circuit with probes (the
solid triangles) and a vertical excitation port (the dots on the patch).

6.2.1 Inclusion of conduction loss

The present subsection is related to Sec. 6.1.1 and provides a sample numer-
ical result concerning a rectangular planar circuit with the conductive and
dielectric filling and with the perfect magnetic wall along its rim. The EM
properties of the slab are now defined via its electric permittivity ǫ = 2.50ǫ0
and electric conductivity σ = 0.02 [m]. Its thickness is again d = 1.50 [mm].
The model of the circuit as used for the TD-CIM simulation is shown in
Fig. 6.3.

As the excitation pulse we take, again, the waveform shown in Fig. 3.3.
The structure is activated via a vertical cylindrical port of radius 1.0 [mm]
with its center placed at {xS1 , xS2 } = {0.0250, 0.0375} [m]. The time-domain
electric-field response is probed at (a) {xP1 , xP2 } = {0.100, 0.075} [m] (PROBE
1) and (b) {xP1 , xP2 } = {0.075, 0.125} [m] (PROBE 2) both within the time
window of observation {0 ≤ ct ≤ 3.0} [m]. The discretization of circuit’s rim
is uniform with the the line segment of length |△Ω[n]| = 0.0125 [m], which
corresponds to a eighth of the excitation pulse spatial support ctw = 0.10 [m].
The reference FIT model is composed of about 65 of thousands mesh cells
and its lateral sides are defined as the perfect magnetic wall. The corre-
sponding attenuated pulsed voltage responses are shown in Figs. 6.4a and
6.4b. Obviously, the obtained TD-CIM- and FIT-based signals are almost
identical.

6.2.2 Inclusion of Debije’s dielectric relaxation

The numerical example that follows is related to Sec. 6.1.2. The following
numerical experiment validates the proposed inclusion of the Debije dielectric
relaxation model in TD-CIM. In this example, the EM properties of the slab
are defined via its relative electric permittivities ǫr = 4.410, ǫ∞ = 4.195 and
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relaxation time τr = 1.630 · 10−11 [s]. The material parameters correspond to
‘FR-4 (lossy)’ as defined in the CST Material Library. Except for the mate-
rial filling, the numerical models used for the TD-CIM and FIT simulations
remain the same as in the previous section. The voltage pulses evaluated at
{xP1 , xP2 } = {0.100, 0.075} [m] (PROBE 1) are shown in Fig. 6.4c. Obviously,
the signals resulting from TD-CIM and FIT almost overlap each other. It
is worth to note that the early parts of the corresponding pulsed responses
for conduction losses (viz Fig. 6.4a) and Debije’s relaxation behavior (viz
Fig. 6.4c) are almost identical. This observation is in agreement with the
fact that any dispersion phenomenon shows itself in a transition region after
the relevant wavefront has passed [31].

6.3 Conclusions

In order to incorporate the relaxation behavior of a planar circuit into TD-CIM
its extension has been proposed. Namely, the inclusion of relaxation effects
has been accomplished by a dedicated Laplace-transform inversion. The lat-
ter makes use of the Bromwich-contour deformation in the complex-frequency
plane and allows for the inclusion of rather general relaxation mechanisms.
The corresponding numerical examples concerning the conduction-loss and
Debije-type relaxation functions have shown a very good agreement with
respect to (three-dimensional) FIT.
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Figure 6.4: The pulsed voltage responses as evaluated using the proposed
TD-CIM and the referential FIT of the rectangular circuit with (a) conduc-
tion loss evaluated at PROBE 1; (b) conduction loss evaluated at PROBE 2;
(c) Debije’s relaxation evaluated at PROBE 1.



Chapter 7

Far-field radiation
characteristics

Modeling of pulsed EM radiation is of interest for the TD performance anal-
ysis of microstrip antennas as well as for the evaluation of unintentional EMI
due to switching noise induced on PCBs. In case of planar structures one
may take the advantage of their (relatively) low thickness and make use of a
simplified radiation model. In that model, the electric-current surface den-
sity on conducting plates is neglected against the magnetic-current surface
density along the lateral sides of a planar circuit. In this way, the radiated
EM field is represented via (the slant-stack transformation of) the equivalent
magnetic-current surface density distributed along the circuit’s rim. This
approximation works well for thin planar circuits and was formerly applied
to FD radiation-field analysis of patch antennas (e.g. [51, 115]). The present
chapter develops the corresponding TD formulation.

The following sections are organized as follows. At first, in Sec. 7.1,
the electric-field and magnetic-field radiation characteristics are represented
via a line integral of the tangential magnetic-current surface density on the
circuit periphery. Secondly, in the following Sec. 7.2, upon accounting for the
piecewise linear expansion of the equivalent magnetic-current surface density,
the radiation integral is approximated by a sum of the nodal electric-field
coefficients resulting from TD-CIM. In Sec. 7.3, calculated pulse shapes
of the relevant pulsed EM radiation characteristics are compared with ones
found using FIT. Finally, time-varying three-dimensional radiation patterns
of an irregularly-shaped planar antenna are presented.
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Figure 7.1: Radiation from a planar circuit. From [106], adapted with per-
mission from IEEE, c© 2014 IEEE.

7.1 Radiation model of a planar circuit

Let us consider an arbitrarily shaped planar circuit that is placed in the ho-
mogeneous and isotropic embedding D0 described by its electric permittivity
ǫ0 and magnetic permeability µ0 (see Fig. 7.1). The corresponding EM wave
speed is c0 = (ǫ0µ0)

−1/2.
For planar circuits whose thickness d is negligible with respect to the spa-

tial support of an excitation pulse, the total radiated EM field is dominantly
generated by a magnetic-current surface density on the lateral sides of the
circuit [4, Sec. 14.2.2]. For field points placed far from a circuit, the EM field
components admit the far-field expansion

{E,H}(x, t) = {E∞,H∞} (ξ, t− |x|/c0)
4π|x|

[

1 +O
(

|x|−1
)]

(7.1)

as |x| → ∞ for {t ∈ R; t > 0}, where {E∞,H∞} are the electric-field
and magnetic-field vector radiation characteristics, respectively, and ξ =
x/|x| is the unit vector in the direction of observation. Note that, in con-
trast to the previous sections, all bold Greek and Latin symbols stand for
three-dimensional vectors. Interpreting the lateral sides of a circuit as Huy-
gens’ surfaces, the electric-field radiation characteristic is represented as [106,
Eq. (9)]

ItE∞(ξ, t) =
d

c0
ξ ×

∫

x′∈∂Ω

E3(x
′, t+ ξ · x′/c0)τ (x

′)dl(x′) (7.2)

where the integrand is assumed to be constant along the x3-direction and
τ = i3 × ν is the unit vector tangential with respect to the circuit periphery
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∂Ω. It can be easily verified that the radiation characteristics are interrelated
via the plane-wave relation

ξ ×E∞(ξ, t) = (µ0/ǫ0)
1/2H∞(ξ, t) (7.3)

Once the space-time distribution of the vertical electric field strength is
known, the TD radiation characteristics of a planar circuit can be evaluated
according to (7.2) and (7.3) for a given direction specified via the observation
angle ξ.

7.2 Evaluation of the radiation integral

Except for special cases the radiation integral given in Eq. (7.2) has to be
evaluated numerically. As far as TD-CIM is concerned, the vertical electric-
field strength is provided in terms of coefficients along the discretized circuit
rim and the time axis. Specifically, the electric-field strength is represented
as a piecewise linear function of space (cf. Eqs. (3.4)–(3.5))

E3(x, t) =

N
∑

m=1

e[m](t)T [m](x) (7.4)

Since the integration of a piecewise linear function along a line segment can
be carried out analytically, the spatial integral in (7.2) can be approximately
written as the sum of the nodal field coefficients, i.e.

ItE∞(ξ, t) ≃ d

2c0

N
∑

m=1

△Ω[m]
(

ξ × τ [m]
) [

e[m](t + ξ · x[m]
c /c0)

+ e[m+1](t+ ξ · x[m]
c /c0)

]

(7.5)

where e[m](t) and e[m+1](t) are the time-dependent nodal values at the end-
points of the m-th segment, τ [m] = (x[m+1] − x[m])/|x[m+1] − x[m]| is a unit

vector tangential to the m-th segment and finally, x
[m]
c = (x[m+1] + x[m])/2

localizes its central point. Since the computation runs along a discrete time
axis only, the nodal values in (7.5) are appropriately interpolated between
the neighboring instants.

7.3 Numerical results

In this section, the radiation characteristics are calculated for a planar cir-
cuit of irregular shape. We assume the loss-free dielectric slab of thickness
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Figure 7.2: Computational model of the analyzed circuit with an electric-
current vertical port (the dot on the patch).

d = 1.50 [mm] showing the electric permittivity ǫ = 4.0ǫ0 and magnetic per-
meability µ = µ0. The TD-CIM model of the circuit with its discretized
rim is shown in Fig. 7.2. The circuit is activated by the bell-shaped pulse
with the amplitude A = 1.0 [A] and the pulse time width ctw = 0.10 [m]
(see Fig. 3.3). The pulse is applied to a vertical excitation probe placed at
{xS1 , xS2 } = {0.075, 0.05} [m]. The electric-field radiation characteristics are
observed within the time window of observation {0 ≤ c0t < 3.0} [m]. For val-
idation purposes, we make use of FIT as implemented in the CST Microwave
Studior.

For the TD-CIM model, we assume the vertical excitation port with a
hexagonal cross-section of circumradius 0.10 [mm] and the magnetic wall
along the circuit periphery. The total number of the discretization line
elements is 58 and the length of all discretization segments is less than a
tenth of the spatial width of the excitation pulse. More precisely, we have
maxm

(

|△Ω[m]|
)

/ctw ≃ 0.083. On the other hand, the reference FIT model
consists of a circular excitation port with radius 0.1 [mm] and the ‘open’
boundary condition on the surrounding box. The total number of mesh cells
is about 70 of thousands.

The electric-field radiation characteristics are evaluated with the help of
Eq. (7.5) with the far-field origin (the phase center) placed at (0.050, 0.075, 0)
[m]. At first, for a given observation angle ξ, the contributions from the line
segments on the right-hand side of Eq. (7.5) are added up and secondly, the
time difference is taken to get values of E∞(ξ, t). For the sake of convenience,
the TD radiation characteristics are expressed in terms of components with
respect to the spherical coordinate system {0 ≤ R < ∞, 0 ≤ φ ≤ 2π, 0 ≤
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θ ≤ π}

E∞;θ = E∞;1 cos(φ) cos(θ) + E∞;2 sin(φ) cos(θ)− E∞;3 sin(θ) (7.6)

E∞;φ = −E∞;1 sin(φ) + E∞;2 cos(φ) (7.7)

where E∞;k for k = {1, 2, 3} denotes a Cartesian component of the three-
dimensional radiation vector. Then the direction of observation can be
uniquely determined by the spherical angles, i.e. ξ = ξ(φ, θ).

The pulse shapes of the θ- and φ-components of the radiation vector are
shown in Figs. 7.3 and 7.4 for two observation angles {φ, θ} = {π/4, π/4}
and {φ, θ} = {0, π/3}, respectively. As can be observed, the results calcu-
lated using TD-CIM and FIT agree well at the early part of the response
and start to deviate at later observation times. This can be expected due
to different nature of the boundary conditions imposed along the circuit pe-
riphery. While the TD-CIM model assumes the perfect magnetic wall here,
the circuit boundary in the (three-dimensional) FIT model is fully ‘open’.
Note that the same behavior was observed in Sec. 3.4, where the vertical
component of the electric-field strength along ∂Ω is evaluated. The latter,
in fact, corresponds to the equivalent magnetic-current surface density that
generates the observed far-field amplitude.

In the next step, three-dimensional, time-varying radiation patterns were
calculated. Their surface was constructed, for a fixed point in time, by
mapping the absolute values of the far field to a set of observation points
on the unit sphere. Consequently, the actual values of the radiated field
were represented with a color scale. The results are shown in Figs. 7.5–7.7
for the θ-, φ-components and absolute values of the electric-field radiation
characteristic, respectively. In order to demonstrate its time evolution, we
take c0t = {0.60, 1.20, 1.80, 2.40} [m] as the observation time points.

7.4 Conclusions

The pulsed EM radiation from a planar circuit has been analyzed in the con-
text of TD-CIM. It has been shown that the electric-field (time-integrated)
far-field amplitude can be expressed using the slant-stack transformation of
the equivalent magnetic-current surface density distributed along circuit’s
rim. A straightforward numerical solution of the integral representation
has been proposed and numerically validated for the case of an irregularly-
shaped planar circuit. The resulting radiated pulse shapes have shown a very
good agreement with respect to the ones evaluated with the aid of (three-
dimensional) FIT.
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Figure 7.3: The radiated pulse shapes evaluated using the proposed TD-CIM
and the referential FIT at {φ, θ} = {π/4, π/4} for the (a) θ-component; (b)
φ-component of the vectorial electric-field radiation characteristic.
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Figure 7.4: The radiated pulse shapes evaluated using the proposed TD-CIM
and the referential FIT at {φ, θ} = {0, π/3} for the (a) θ-component; (b) φ-
component of the vectorial electric-field radiation characteristic.
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Figure 7.5: Time-varying radiation diagram of the θ-component of the vec-
torial electric-field radiation characteristic.
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Chapter 8

Time-domain mutual coupling
between planar circuits

The recent trend in still increasing bit and edge rates of bit-like signals on
high-speed digital systems puts severe demands on their performance as well
as on the corresponding computational tools [2, 81]. The generation of switch-
ing noise together with still increasing crowding of components on PCBs
urgently call for a thorough study into time-domain coupling phenomena.
Proper understanding of TD mutual coupling between planar structures,
that represent the basic building blocks of advanced digital systems [118],
is therefore of major importance in the efficient prevention of accompanying
signal integrity issues.

Mutual coupling effects between microstrip elements have been inten-
sively studied in the real-FD (see e.g. [40, 52, 64, 73, 74], for example). Here,
basically, two main approaches can be distinguished. The first approach is
based on the concept of reaction [83] combined with the cavity model [51]
and its description in terms of the eigenfunction field expansion [52, 73]. The
second one is more general and relies on a full wave solution via the method
of moments [64, 74].

Despite the fact that high-speed digital circuits inherently operate in
TD, the corresponding TD analysis, that would shed light on the mutual
interaction of parallel-plate radiators, is lacking in literature on the subject.
The main purpose of this chapter1, therefore, is to fill this gap and provide
the interference analysis of planar circuits entirely in space-time. To this end,
the reciprocity theorem of the time-convolution type [20, Sec. 28.2] is taken as
the point of departure. It is shown that its combination with TD-CIM yields

1This chapter is largely based on Reference [109]. Adapted with permission from IEEE,
c© 2014 IEEE.
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Figure 8.1: Problem configuration consisting of two arbitrarily-shaped pla-
nar circuits that are electromagnetically coupled. From [109], adapted with
permission from IEEE, c© 2014 IEEE.

a promising computational tool that serves the purpose very well. Finally it
is worth to note that the TD EM coupling is largely a desired phenomenon
for intra- and inter-chip wireless interconnections [11, 44]. Mastery of the
pulsed-field transfer between two EM radiators is the key point towards the
full utilization of wireless interconnects in practice. Here, too, compliance
with the international regulations on EMI is of crucial importance [45].

The following sections are organized as follows. For the sake of com-
pleteness, the starting reciprocity-based contour-integral formulation for the
TD-CIM analysis of a single planar circuit is given in Sec. 8.2. Subsequently,
the main results of this chapter are presented in Sec. 8.3 using the systematic
application of the reciprocity theorem of the time-convolution type. Here it
is shown that the pulsed-voltage response of a receiving (or victim) planar
circuit can be expressed via straightforward rim-to-rim relations consisting of
two contour integrations over transmitting- and receiving-circuits’ rims. Fi-
nally, the resulting coupling model is implemented and validated in Sec. 8.4,
where EM coupling of two irregularly-shaped planar circuits is numerically
analyzed.

8.1 Coupling model

The problem configuration consists of a transmitting planar circuit (the emit-
ter) DT ⊂ R3 and a receiving planar circuit (the susceptor) DR ⊂ R3 that
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are placed in the linear, isotropic, homogeneous and loss-free embedding D0

whose EM properties are described by its electric permittivity ǫ0 and mag-
netic permeability µ0 (see Fig. 8.1). The corresponding EM wave speed is
c0 = (ǫ0µ0)

−1/2 > 0. Each planar circuit is described by its surface domain
ΩT,R ⊂ R

2, its thickness dT,R and by its relative electric permittivity ǫT,Rr

of the dielectric filling. The EM wave speed in the dielectric layer is then
cT,R = c0(ǫ

T,R
r )−1/2. The outer unit vector with respect to the circuit rims

∂ΩT,R ⊂ R is denoted by νT,R = νT,R(x) and τ T,R = τ T,R(x) = i3 × νT,R.
The main goal of the following interference analysis is to find the pulsed

voltage induced in the receiving circuit DR due to the pulsed electric-current
excitation applied to the transmitting circuit DT .

8.2 A single planar circuit

In this section, a global reciprocity relation is formulated for a single planar
circuit. Throughout this section, we do not distinguish between the transmit-
ting and the receiving circuit. As a consequence, Ω and ∂Ω stand for ΩT,R

and ∂ΩT,R, respectively. The reciprocity theorem of the time-convolution
type is applied to the actual and testing (B) wave fields and to the surface
domain of a planar circuit Ω. Considering the testing source density along
the circuit periphery only, we finally end up with (cf. Eq. (2.34))

1
2

∫

x∈∂Ω

E3(x, t) ∗ ∂JB3 (x|xS, t)dl(x) =
∫

x∈Ω

EB
3 (x|xS, t) ∗ J3(x, t)dA(x)

+

∫

x∈∂Ω

E3(x, t) ∗ ν(x) · ∂JB(x|xS, t)dl(x) (8.1)

where the testing fields are linearly related to their source according to

EB
3 (x|xS, t) = −µ∂t

∫

xT∈∂Ω

G∞[r(x|xT ), t] ∗ ∂JB3 (xT |xS, t)dl(xT ) (8.2)

∂JBκ (x|xS, t) = −∂κ
∫

xT∈∂Ω

G∞[r(x|xT ), t] ∗ ∂JB3 (xT |xS, t)dl(xT ) (8.3)

for all xS ∈ ∂Ω and t > 0. Here, r(x|xT ) = |x − xT | is the Eucledian dis-
tance between positions given by the position vectors x and xT and G∞(r, t)
denotes a fundamental solution of the two-dimensional wave equation that
satisfies the zero initial conditions and the causality condition. In the in-
terference analysis that follows, Eq. (8.1) is solved numerically for the both
transmitting and receiving planar circuits using TD-CIM. The correspond-
ing solution procedure for a loss-free planar circuit is closely described in
Chapter 3.
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8.3 Coupling between two planar circuits

In this section, the study into the TD mutual coupling between the planar
circuits is carried out. To this end, the total field in the receiving state (R)
is written as the superposition of incident (i) and scattered (s) wave fields,
i.e.

{ER,HR} = {Ei +Es,H i +Hs} (8.4)

As the testing state (B) we take the testing wave field {EB,HB} generated
by a vertical excitation port

JB(x, t) = IB(t)δ(x− xS)i3 (8.5)

for xS ∈ DR, where IB is the source signature for which IB(t) = 0 for
t < 0. The testing wave field satisfies the magnetic-wall boundary condition
νR · HB(x, t) = 0 for all x ∈ ∂ΩR and t > 0 (cf. Eq. (2.6)). At this point it
is noted that in the analysis we neglect multiple scattering between the planar
circuits meaning that the testing wave field does not account for the presence
of the transmitting circuit. This assumption, however, does not introduce
any error up to the instant when a scattered field due to the presence of
the transmitter gets back to the receiver. Consequently, the early part of
the pulsed voltage response is exact, whatever coupling strength. Beyond
this limit, especially in applications where multiple scattering effects are of
crucial importance, one has to resort to a full-wave numerical solver.

In the first step, the reciprocity theorem is applied to the domain exterior
to the receiving structure and to the scattered and testing wave fields, which
gives

∫

x∈∂DR

[

EB(x, t)
∗

×Hs(x, t)

−Es(x, t)
∗

×HB(x, t)
]

· νR(x)dA(x) = 0 (8.6)

for all t > 0. Substitution of Eq. (8.4) in (8.6) yields
∫

x∈∂DR

[

EB(x, t)
∗

×HR(x, t)

−ER(x, t)
∗

×HB(x, t)
]

· νR(x)dA(x)
=

∫

x∈∂DR

[

EB(x, t)
∗

×H i(x, t)

−Ei(x, t)
∗

×HB(x, t)
]

· νR(x)dA(x) (8.7)
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for all t > 0 Secondly, the reciprocity theorem is applied to the domain
occupied by the receiving circuit DR and to the total wave fields in the both
states

∫

x∈∂DR

[

EB(x, t)
∗

×HR(x, t)−ER(x, t)
∗

×HB(x, t)
]

· νR(x)dA(x)
=

∫

x∈DR

JB(x, t)
∗· ER(x, t)dV (x) (8.8)

In virtue of the thin-slab approximation and the magnetic-wall boundary
condition satisfied by the testing wave field, we arrive, upon combining
Eqs. (8.7)–(8.8), at the final expression

VR(xS, t) ∗ IB(t) ≃ −
∫

x∈∂ΩR

VB(x|xS, t) ∗ τR(x) · H i(x, t)dl(x) (8.9)

for all xS ∈ ΩR and t > 0. In Eq. (8.9), VR is the TD voltage induced
in the receiving circuit due to the tangential magnetic field strength radi-
ated from the transmitting circuit and VB(x|xS, t) represents the TD testing
voltage along the rim of the receiving circuit x ∈ ∂ΩR activated via the
electric-current point source placed at xS ∈ ΩR (see Eq. (8.5)). The in-
cident magnetic field strength is given via the following Kirchhoff-Huygens
electromagnetic field representations

H i = H i;NF +H i;IF +H i;FF (8.10)

where

H i;NF(xR, t) ≃ −µ−1
0

∫

x∈∂ΩT

ItVT (x, t− |xR − x|/c0)
4π|xR − x|3

[

3ξ(xR − x)ξT(xR − x)− I
] · τ T (x)dl(x) (8.11)

H i;IF(xR, t) ≃ −η0
∫

x∈∂ΩT

VT (x, t− |xR − x|/c0)
4π|xR − x|2

[

3ξ(xR − x)ξT(xR − x)− I
] · τ T (x)dl(x) (8.12)

H i;FF(xR, t) ≃ −ǫ0
∫

x∈∂ΩT

∂tVT (x, t− |xR − x|/c0)
4π|xR − x|

[

ξ(xR − x)ξT(xR − x)− I
] · τ T (x)dl(x) (8.13)

for all xR ∈ ∂ΩR and t > 0, where VT is the voltage on a rim of the transmit-
ting structure, ξ(x) = x/|x| is the unit vector in the direction of x, I is the
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3× 3 identity matrix, T denotes transposition and η0 = (ǫ0/µ0)
1/2 > 0. It is

worth noting that combination of Eq. (8.9) with Eqs. (8.10)–(8.13) provides
a useful space/time relation between the interacting planar structures.

In conclusion, the described approach consists of the following steps.
Starting with the transmitting structure, the pulsed voltage distribution VT
is evaluated for all x ∈ ∂ΩT in a given time window and for a given excitation
electric-current pulse IT (t). This step can be done, for an arbitrarily-shaped
planar structure, with the aid of TD-CIM as introduced in Chapter 3. The
evaluated voltage distribution VT is subsequently substituted in Eqs. (8.11)–
(8.13), which yields the incident magnetic field strength at points along the
rim of the receiving structure ∂ΩR. Since domains occupied by the inter-
acting planar circuits are disjoint, Eqs. (8.11)–(8.13) are free of the spatial
singularities, and their evaluation, therefore, do not present any difficulties.
In the next step, the testing pulsed voltage VB due to the electric-current
pulse shape IB is evaluated for all x ∈ ∂ΩR in a given time window. This
step is accomplished through TD-CIM again. Finally, once the time convo-
lution on the right-hand side of Eq. (8.9) is evaluated, VR may be readily
recovered for a convenient choice of the testing electric-current pulse shape
IB(t). The shortest way to obtain VR from the known convolution VR ∗ IB
would be to choose the Dirac delta test-source signature IB(t) = δ(t). This
option, apparently, is not possible as the corresponding voltage response VB
is evaluated using TD-CIM that requires a somewhat smoother excitation
signature (see Eq. (3.14)). In case of the bell-shaped electric-current signa-
ture (cf. Eq. (D.6))

IB(t) = 2

(

t

tw

)2

H(t)− 4

(

t

tw
− 1

2

)2

H

(

t

tw
− 1

2

)

+ 4

(

t

tw
− 3

2

)2

H

(

t

tw
− 3

2

)

− 2

(

t

tw
− 2

)2

H

(

t

tw
− 2

)

(8.14)

one may employ, for example, the following two-step deconvolution proce-
dure. In this procedure, the bell-shaped pulse is written as the time convo-
lution of the rectangular and triangular functions, which finally yields

VR(xS, t) = ∂2t T T (xS, t) + 2VR(xS, t− tw/2)− VR(xS, t− tw) (8.15)

where

T T (xS, t) = t2w∂tVR(xS, t) ∗ IB(t)/4 + T T (xS, t− tw) (8.16)

corresponds to the time convolution of the sought voltage response VR with
the triangular pulse T(t, tw) (see Eq. (D.4)). For an alternative closed-form
deconvolution algorithm we refer the reader to Eq. (10.22).
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Figure 8.2: Computational model of the analyzed configuration in which the
transmitting structure is activated by an electric-current vertical port (the
cross symbol) and the induced voltage response is observed by a probe (the
solid triangle).

8.4 An illustrative numerical example

This section provides an illustrative numerical example concerning the TD
mutual coupling between two planar circuits both lying in one plane x3 = 0.
The analyzed problem configuration is shown in Fig. 8.2. In this config-
uration, the transmitting circuit is excited by a vertical electrical-current
source centered at xT = {25.0, 37.5, 0}, [mm] (see the red dot in Fig. 8.2).
The pulse shape of the electric-current source is shown in Fig. 3.3. Here,
c = cR = cT since the both studied circuits show the relative electric permit-
tivity ǫT,Rr = 4.0. Their thickness is dT,R = 1.50 [mm].

The pulsed voltage response is observed at xR = {230, 135, 0} [mm] in the
receiving planar circuit (see the blue dot in Fig. 8.2). In order to validate the
developed computational model, the problem has also been analyzed using
FIT as implemented in CSTMicrowave Studior. The three-dimensional FIT-
based model consists of about 620 of thousands hexahedral mesh cells, while
the developed model requires to account for only (48 + 52) of line segments
along the peripheral rims (see the black dots in Fig. 8.2). The results are
shown in Fig. 8.3. Considering the huge reduction of the solution space, the
observed signals agree very well.

It is worth noting that calculation of the pulsed-voltage response via the
rim-to-rim expressions (8.9)–(8.13) involves the one-dimensional integrations
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Figure 8.3: The pulsed voltage response at the probe as evaluated using the
proposed coupling model and the referential FIT. From [109], adapted with
permission from IEEE, c© 2014 IEEE.

only, whatever the emitter/susceptor distance. This property along with the
omission of multiple scattering effects make the constructed model suitable
for applications where the emitter/susceptor distance related to the spatial
support of an excitation pulse is relatively large and the traditional direct-
discretization numerical approaches require an exceedingly high number of
discretization cells within their (truncated) three-dimensional computational
domain.

8.5 Conclusions

Space-time mutual EM coupling between two planar circuit has been de-
scribed in closed form directly in TD. Besides providing physical insights into
the mutual (space-time) coupling mechanism, the proposed coupling model
indicates huge savings of computational resources with respect to the tra-
ditional direct-discretization numerical methods such as FIT. Accordingly,
the use of the constructed model is especially profitable in configurations
where the spatial support of an excitation pulse is relatively short with re-
spect to the emitter/susceptor distance. Thanks to its high efficiency, the
introduced methodology may find its applications in optimizing TD coupling
effects between planar circuits, wireless interconnections or simple antenna
arrays.



Chapter 9

Time-domain self-reciprocity of
a one-port planar circuit

The concept of reciprocity is without doubt among the most intriguing con-
cepts in EM theory. The reciprocity theorem furnishes a solid foundation for
the uniqueness theorem [22], encompasses the ‘weak’ formulations of direct
and inverse scattering/source problems [18], it has wealthy applications in
computational electromagnetics [19] and facilitates the rigorous study into
the fundamental transmission/reception properties of general antenna sys-
tems [24]. The vast majority of works on reciprocity are traditionally carried
out in the real-FD [17, 23, 78, 94], [103, Sec. 8.7],[12, Sec. 5.1]. Despite the still
growing interest in purely TD applications such as Ultra Wide Band (UWB)
radio systems [56] or inter/intra-chip wireless interconnections [11, 45], the
pulsed-field antenna and EMC/EMI aspects were much less discussed so far.
Only a few exceptions in this respect do exist. The general antenna-system
description in TD can be found in [5, 24, 89] and a small-antenna UWB radio
link and its optimization is investigated in [76, 77]. The main purpose of this
chapter1, therefore, is to construct a purely TD self-reciprocity relation that
makes possible to find the pulsed EM radiation characteristics of a planar
circuit through its reaction on an incident plane wave in the receiving state.

The following sections are organized as follows. At first, Secs. 9.1–9.3 in-
troduce the reader to the transmitting and receiving situations of a one-port
planar circuit. Subsequently, the main results of the chapter are developed
in Sec. 9.4, where the desired self-reciprocity relation is derived using the
reciprocity theorem of the time-convolution type. Apart from its application
to constructing the pulsed EM radiation characteristics, it is finally demon-

1This chapter is largely based on Reference [106]. Adapted with permission from IEEE,
c© 2014 IEEE.
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Figure 9.1: Planar circuit in its transmitting state. From [106], adapated
with permission from IEEE, c© 2014 IEEE.

strated in Sec. 9.5 that the introduced self-reciprocity relation is useful for
consistency benchmarks of purely numerical EM-field solvers.

9.1 Model definition

Let us assume a one-port planar circuit that occupies a domain D ⊂ R3

bounded by ∂D ⊂ R2. The circuit is placed in the linear, isotropic, homo-
geneous and loss-free embedding D0 whose EM properties are described by
its electric permittivity ǫ0 and magnetic permeability µ0. The corresponding
EM wave speed is c0 = (ǫ0µ0)

−1/2 > 0. The EM properties of the dielectric
slab are described by its electric permittivity ǫ and magnetic permeability
µ0. The electrically conducting plate of the circuit occupies a surface do-
main Ω ⊂ ∂D bounded by its rim ∂Ω ⊂ R. The normal outer unit vector is
denoted by ν. Partial differentiation with respect to the spatial coordinates
is, for the sake of conciseness, denoted by ∇ = ∂1i1 + ∂2i2 + ∂3i3. In the
following sections we find a reciprocity relation between transmitting and
receiving properties of a one-port planar circuit.

9.2 Transmitting state of a planar circuit

The planar circuit is in its transmitting state activated via the vertical exci-
tation probe (see Fig. 9.1) with defined electric-current density JT = JT i3.
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The transmitted (T ) EM field then satisfies

∇×HT − ǫ∂tE
T = JT (9.1)

∇×ET + µ0∂tH
T = 0 (9.2)

for all x ∈ D and t > 0, where the thin-slab approximation is tacitly assumed
(cf. Eqs. (2.1)–(2.2)). In the domain exterior to the circuit the transmitted
EM field satisfies

∇×HT − ǫ0∂tE
T = 0 (9.3)

∇×ET + µ0∂tH
T = 0 (9.4)

for all x ∈ D0 and t > 0 together with the ‘radiation condition’. By virtue
of causality, the radiated EM field admits the far-field representation (7.1)
and hence its contribution from the ‘sphere at infinity’ vanishes. Finally,
upon neglecting the contribution of the electric-current surface density on
the circuit’s conducting surfaces, we may find the corresponding radiation
characteristics as (cf. (7.2))

ItE
T
∞(ξ, t) =

d

c0
ξ ×

∫

x′∈∂Ω

ET (x′, t+ ξ · x′/c0)× ν(x′)dl(x′) (9.5)

Equation (9.5) expresses the pulsed EM radiation characteristics in terms of
the (equivalent) magnetic-current surface density on the circuit’s periphery.

9.3 Receiving state of a planar circuit

The planar circuit is in its receiving state activated via a uniform impulsive
plane (see Fig. 9.1) defined via

Ei(x, t) = α ei(t− β · x/c0) (9.6)

H i(x, t) = (ǫ0/µ0)
1/2β ×α ei(t− β · x/c0) (9.7)

where ei(t) is the plane-wave signature, α is the polarization vector and β

is a unit vector in the direction of propagation. In the receiving state, the
presence of the circuit is accounted for by the scattered field (cf. Eq. (8.4))

{Es,Hs} = {ER −Ei,HR −H i} (9.8)

where superscript R denotes the total field in the receiving state. The scat-
tered field is outside the circuit source-free and satisfies

∇×Hs − ǫ0∂tE
s = 0 (9.9)

∇×Es + µ0∂tH
s = 0 (9.10)

together with the ‘radiation condition’ at infinity.
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receiving state
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Figure 9.2: Planar circuit in its receiving state. From [106], adapted with
permission from IEEE, c© 2014 IEEE.

9.4 Reciprocity relations

Similarly to Sec. 8.3, the reciprocity theorem is in the first step applied to
the domain exterior to the circuit and to the transmitted (T ) and scattered
(s) wave fields. This step yields

∫

x∈∂D

[

ET (x, t)
∗

×Hs(x, t)

−Es(x, t)
∗

×HT (x, t)
]

· ν(x)dA(x) = 0 (9.11)

for all t > 0. Substitution of Eq. (9.8) in (9.11) gives
∫

x∈∂D

[

ET (x, t)
∗

×HR(x, t)

−ER(x, t)
∗

×HT (x, t)
]

· ν(x)dA(x)
=

∫

x∈∂D

[

ET (x, t)
∗

×H i(x, t)

−Ei(x, t)
∗

×HT (x, t)
]

· ν(x)dA(x) (9.12)

In the second step, the reciprocity theorem is applied to the domain occupied
by the circuit D and to the total wave fields in the both states, i.e.

∫

x∈∂D

[

ET (x, t)
∗

×HR(x, t)−ER(x, t)
∗

×HT (x, t)
]

· ν(x)dA(x)
=

∫

x∈D

JT (x, t)
∗· ER(x, t)dV (x) (9.13)
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Figure 9.3: Computational model of the analyzed circuit activated by a ver-
tical electric-current port (the dot on the patch).

In the final step, we combine (9.5) with (9.7) and (9.12) with (9.13), which
finally yields

α · ET
∞(−β, t) ≃ VR(xS, t) (9.14)

provided that

ei(t) = µ0∂tIT (t) (9.15)

where we have assumed the spatially concentrated vertical electric-current
excitation port described via

JT (x, t) = IT (t)δ(x− xS) i3 (9.16)

The final result (9.14) with (9.15) relates the pulsed EM radiation character-
istics ET

∞ of a planar circuit in the transmitting state with the pulsed-voltage
response VR on the plane wave in its receiving state. Equations (9.14) and
(9.15) thus provide a means for determining the pulsed EM radiation charac-
teristics of a thin planar antenna in the transmitting state using its reaction
on the plane wave in the receiving state (see Figs. 9.2 and 9.1).

9.5 Numerical results

The derived reciprocity relation (9.14) with (9.15) is validated using FIT as
implemented in CST Microwave Studior. To this end we take four observa-
tion directions ξ = −β such that the polarization and propagation vectors
read

α = [0, cos(γ), sin(γ)] (9.17)

β = [0,− sin(γ), cos(γ)] (9.18)
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respectively, for γ = {3/4, 5/6, 11/12, 1}π. Note that α · β = 0. The calcu-
lations are carried out for the planar circuit shown in Fig. 9.3. The dielectric
slab of the circuit has thickness d = 1.50 [mm], electric permittivity ǫ = 4.0ǫ0
and magnetic permeability µ = µ0. The time window of observation is taken
as {0 ≤ c0t ≤ 3.0} [m].

The planar circuit is in its transmitting state excited via the vertical
electric-current port with its center at {xT1 , xT2 } = {75.0, 112.5} [mm]. As
the corresponding electric-current excitation we take the power-exponential
pulse shape [80]

IT (t) = A(t/tr)
ν exp[−ν(t/tr − 1)]H(t) (9.19)

with ctw = 0.10 [m], ν = 4 and A = 1.0 [A]. The pulse time width tw is then
related to tr and ν via tw = tr ν

−ν−1Γ(ν + 1) exp(ν) where Γ(x) is the Eu-
ler gamma function. The corresponding electric-current excitation signature
IT for the transmitting state and the electric-field plane-wave signature ei

in the receiving state are shown in Fig. 9.4. In the transmitting state, the
circuit is excited by the electric-current excitation pulse and the pulsed radi-
ation field is observed using the ‘far-field probes’. The obtained transmitted
electric-field vector ET

∞(−β, t) is then projected onto the polarization direc-
tion specified by α. Subsequently, the TD voltage responses VR on the corre-
sponding pulsed plane waves are evaluated in the receiving state. The results
are shown in Figs. 9.5–9.6. As can be observed, the pulse shapes evaluated
in the transmitting and the receiving state overlap each other validating the
introduced (time-derivative) reciprocity relation (9.14)–(9.15). Since these
pulses were evaluated via two distinct ways, we may conclude that the CST
Microwave Studior has passed the consistency check very well.

9.6 Conclusions

Self-reciprocity properties of a planar one-port circuit has been closely stud-
ied in TD. The derived transmission-reception ‘time-derivative’ self-reciprocity
relation links the planar circuit’s pulsed EM radiation characteristics to its
pulsed-voltage response to a plane wave in the receiving situation. It has
been shown that the introduced relation is applicable to consistency bench-
marking of purely numerical EM solvers.
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Figure 9.4: Excitation pulse shapes. (a) The power-exponential electric-
current signature in the transmitting state; (b) the plane-wave signature in
the receiving state.
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Figure 9.5: The pulsed voltage responses on the plane-wave excitation and
the co-polarized pulsed radiation electric-field characteristics at ξ = −β

specified by (a) γ = 3π/4; (b) γ = 5π/6. From [106], adapted with permission
from IEEE, c© 2014 IEEE.
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Figure 9.6: The pulsed voltage responses on the plane-wave excitation and
the co-polarized pulsed radiation electric-field characteristics at ξ = −β

specified by (a) γ = 11π/12; (b) γ = π. From [106], adapted with permission
from IEEE, c© 2014 IEEE.
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Chapter 10

Thévenin’s circuit of an N-port
planar circuit

The Kirchhoff-type equivalent representation of an antenna system is a corol-
lary of the Lorentz reciprocity theorem of the time-convolution type that
illuminates their transmission/reception properties and thus facilitates effi-
cient design and measurement methodologies. In EMC, the objective is to
secure the proper operation of an electronic device in the presence of an EM
disturbance (i.e. the receiving state) without introducing intolerable EM
emissions (i.e the transmitting state). Accordingly, the relation between the
transmitting and receiving situations is of particular interest in EMC, too
(e.g. [72, Ch. 8]).

The transmitting state of parallel-plane structures is traditionally studied
with the aid of the cavity model that has proved to be computationally
efficient and physically instructive in analyzing such structures of simple [49,
107] as well as irregular shapes [108, 115]. For the corresponding EM radiated
susceptibility analysis concerning the plane-wave coupling into PCB traces,
efficient computational models have been proposed and successfully validated
(e.g. [50]). Despite the well-know benefits from applying the property of
reciprocity (e.g. [6]), it seems that its potentialities in analyzing radiated EM
emissions/susceptibility of planar circuits have not been fully appreciated so
far. Indeed, except for the reciprocity-based calculations in transmission-line
theory (see e.g. [97, Sec. 7.5.2]), the vast majority of relevant works on the
subject keep the transmission and reception situations apart. Hence, the
main purpose of this chapter1 is to generalize the results of Chapter 9 and
introduce a reciprocity-based description that will shed some light on the

1This chapter is largely based on Reference [112]. Adapted with permission from IEEE,
c© 2016 IEEE.



92 Thévenin’s circuit of an N -port planar circuit

transmitting state

×

×
IT ;1

×

×
IT ;2

×

×
IT ;3

×O
i3

i2i1

ξ = −β

D0 {ǫ0, µ0}

∂Ωa
IT ;m

VT ;mm

b

Figure 10.1: Transmitting state. (a) Emitting N -port planar circuit; (b)
a feeding port. From [112], adapted with permission from IEEE, c© 2016
IEEE.

transmitting/receiving states of N -port planar circuits.

The following sections are organized as follows. After introducing the
problem configuration in Sec. 10.1, a reciprocity-based analysis of an N -port
planar circuit is carried out. This analysis results in the N -port Thévenin-
network representation of a planar circuit, which is the main result of this
chapter. Subsequently, application of the result is illustrated on a 2-port
planar circuit, whose equivalent circuit is discussed in detail. Specifically,
it is shown how the equivalent circuit can be applied to calculate the cir-
cuit’s pulsed EM radiation characteristics. Finally, the obtained results are
validated using FIT.

10.1 Model definition

Let us analyze a multiport planar circuit that occupies a domain D ⊂ R3

bounded by ∂D ⊂ R2. The circuit is placed in the linear, isotropic, homo-
geneous and loss-free embedding D0 whose EM properties are described by
its electric permittivity ǫ0 and magnetic permeability µ0. The corresponding
EM wave speed is c0 = (ǫ0µ0)

−1/2 > 0. The EM properties of the dielectric
slab are described by its electric permittivity ǫ and magnetic permeability
µ0. The electrically conducting plate of the circuit occupies a surface domain
Ω ⊂ ∂D bounded by its rim ∂Ω ⊂ R. The normal outer unit vector is de-
noted by ν. In the following sections we find a reciprocity relation between
transmitting and receiving properties of an N -port planar circuit.
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10.2 Transmitting state of an N-port planar

circuit

The planar circuit is in the transmitting state (see Fig. 10.1) activated by
vertical electric-current ports whose action is accounted for by the electric-
current volume density JT (x|xm, t), for m = {1, . . . , N}, where xm is the
position and IT ;m denotes the electric-current pulse shape of the m-th port.
The corresponding pulsed voltage response VT ;nm at xn is linearly related to
the excitation current at xm via

VT ;nm(t) = ZT ;nm(t) ∗ IT ;m(t) (10.1)

for n = {1, . . . , N}, where ZT ;nm is the corresponding transfer impedance.
Consequently, the planar circuit manifests itself via the transmitted EM wave
field {ET ,HT}(x, t) radiated into the embedding where it admits the far-
field expansion [20, Sec. 26.12]

{ET ,HT}(x, t) =

N
∑

m=1

{ET
∞,H

T
∞}(ξ, t− |x|/c0)|IT ;m(t)=δ(t)

4π|x| ∗ IT ;m(t)

[1 +O(|x|−1)] (10.2)

as |x| → ∞, where {ET
∞,H

T
∞} = {ET

∞,H
T
∞}(ξ, t) are the electric- and

magnetic-field vector radiation characteristics, respectively, and ξ = x/|x|
is the unit vector in the direction of observation. The TD surface-source
radiation-characteristics representation follows as [106, Eq. (8)]

ItE
T
∞(ξ, t) = µ0ξ × ξ ×

∫

x∈∂D

ν(x)×HT (x, t+ ξ · x/c0)dA(x)
− c−1

0 ξ ×
∫

x∈∂D

ν(x)×ET (x, t+ ξ · x/c0)dA(x) (10.3)

with ξ ×ET
∞ = η0H

T
∞ and ξ · ET

∞ = 0.

10.3 Receiving state of an N-port planar cir-

cuit

Similarly to Sec. 9.3, the planar circuit is in its receiving situation (see
Fig. 10.2) irradiated by an uniform plane wave defined in Eqs. (9.6) and (9.7).
The total field in the configuration {ER,HR}(x, t) is then the superposition
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Figure 10.2: Receiving state. (a) Receiving N -port planar circuit; (b) a load
impedance. From [112], adapted with permission from IEEE, c© 2016 IEEE.

of the incident field {Ei,Hi}(x, t) and the scattered field {Es,Hs}(x, t)
that is thus defined according to Eq. (9.8).

The planar structure is at xn, for n = {1, . . . , N}, loaded by lumped
impedances. The corresponding electric-current volume density is then de-
scribed via JR(x, t), with IR;n being the (induced) electric current flowing
across the n-th load. The voltage across the load is then linearly related to
the load current according to

VR;n(t) = ZL;n(t) ∗ IR;n(t) (10.4)

where ZL;n denotes n-th load’s impedance.

10.4 Reciprocity relations

The present reciprocity analysis overlaps in part with the one given in Sec. 9.4.
At first, combination of the surface-integral representation of the transmitted-
field radiation amplitude (10.3) with Eqs. (9.6)–(9.7) results in the following
interaction integral

∫

x∈∂D

[

ET (x, t)
∗

×H i(x, t)−Ei(x, t)
∗

×HT (x, t)
]

· ν(x)dA(x)
= −µ−1

0 αei(t)
∗· ItET

∞(−β, t) (10.5)

Thanks to the fact that the transmitted and scattered wave fields are causal
and that the embedding is self-adjoint in its EM behavior we can further
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write

∫

x∈∂D

[

ET (x, t)
∗

×Hs(x, t)

−Es(x, t)
∗

×HT (x, t)
]

· ν(x)dA(x) = 0 (10.6)

which in combination with (10.5) and (9.8) leads to

∫

x∈∂D

[

ET (x, t)
∗

×HR(x, t)−ER(x, t)
∗

×HT (x, t)
]

· ν(x)dA(x)
= −µ−1

0 αei(t)
∗· ItET

∞(−β, t) (10.7)

Application of the reciprocity theorem to the domain occupied by the planar
circuit and to the total fields in the transmitting and receiving situations
yields

∫

x∈∂D

[

ET (x, t)
∗

×HR(x, t)−ER(x, t)
∗

×HT (x, t)
]

· ν(x)dA(x)
=

∫

x∈D

[

JT (x, t)
∗· ER(x, t)− JR(x, t)

∗· ET (x, t)
]

dV (x) (10.8)

where we have assumed that the medium in D is self-adjoint in its EM
properties. Subsequently, combination of (10.7) with (10.8) leads to

∫

x∈D

[

JT (x, t)
∗· ER(x, t)− JR(x, t)

∗· ET (x, t)
]

dV (x)

= −µ−1
0 αei(t)

∗· ItET
∞(−β, t) (10.9)

Owing to the thin-slab assumption, the latter relation can be rewritten as

IT ;m(t) ∗ VR;m(t) +
N
∑

n=1

IR;n(t) ∗ VT ;nm(t)

= µ−1
0 αei(t)

∗· ItET
∞(−β, t) (10.10)

for m = {1, . . . , N}, where the orientation of the source/load currents and
voltages is depicted in Figs. 10.1b and 10.2b. Equation (10.10) makes possible
to introduce Norton’s and Thévenin’s equivalent network of an N -port planar
circuit. As these equivalent circuits are fully equivalent [25], we shall further
limit our analysis to the Thévenin network only. To this end, we assume
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Figure 10.3: Equivalent circuit of a 2-port planar circuit.

that the planar circuit is in its transmitting state activated by prescribed
electric-current source signatures IT ;m and rewrite Eq. (10.10) as

VR;m(t) +
N
∑

n=1

ZT ;nm(t) ∗ IR;n(t) = VG;m(t) (10.11)

with

VG;m(t) = µ−1
0 αei(t)

∗· ItET
∞(−β, t)|IT ;m(t)=δ(t) (10.12)

form = {1, . . . , N}, being the Thévenin voltage generator. Equations (10.11)
and (10.12) define the Thévenin network representation of an N -port planar
circuit. The conditions under which the impedance matrix ZT is symmetrical
have been discussed in [112].

10.5 An illustrative example

The main result of the previous section will be next illustrated on a 2-port pla-
nar circuit. The relevant definition equations follow directly from Eq. (10.11)
for N = 2, here given in the explicit matrix form

(

VG;1

VG;2

)

=

(

VR;1
VR;2

)

+

(

ZT ;11 ZT ;21

ZT ;12 ZT ;22

)

∗
(

IR;1
IR;2

)

(10.13)

A network representation of the 2-port planar circuit is then shown in Fig. 10.3.
Next it is observed that we may decouple the system of equations (10.13)

by taking its special cases, namely the open-circuited port 2 for which IR;2 =
0, i.e.

VR;1(t) + ZT ;11(t) ∗ IR;1(t) = VG;1(t) (10.14)

VR;2(t) + ZT ;12(t) ∗ IR;1(t) = VG;2(t) (10.15)
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and, the case when port 1 is open-circuited, i.e. IR;1 = 0, which implies

VR;1(t) + ZT ;21(t) ∗ IR;2(t) = VG;1(t) (10.16)

VR;2(t) + ZT ;22(t) ∗ IR;2(t) = VG;2(t) (10.17)

Now, taking into account relation (10.12) it is seen that we may use either
Eq. (10.14) or (10.16) to calculate the pulsed EM characteristics due to the
electric-current source of port 1, i.e. IT ;1, while the use of either Eq. (10.15)
or (10.17) leads to the pulsed EM characteristics due to IT ;2. In the numer-
ical examples that follow we shall consider the former case and rewrite the
corresponding equations to the form that is practical for our calculations,
namely

IT ;1(t) ∗ VR;1(t) + VT ;11(t) ∗ IR;1(t)
= IT ;1(t) ∗ VG;1(t) for IR;2(t) = 0 (10.18)

IT ;1(t) ∗ VR;1(t) + VT ;21(t) ∗ IR;2(t)
= IT ;1(t) ∗ VG;1(t) for IR;1(t) = 0 (10.19)

The procedure then goes along the following lines

• For a given excitation pulse IT ;1, calculate (or measure) the pulsed
voltage responses VT ;11 or VT ;21 in the transmitting state. Such calcu-
lations can be readily carried out using TD-CIM.

• For the corresponding plane-wave pulse ei (see Eq. (10.21)), calculate
(or measure) the pulsed voltage or/and current responses {VR;1, IR;1}
with IR;2 = 0 or {VR;1, IR;2} with IR;1 = 0.

• With the pulsed responses at our disposal we can perform the opera-
tions indicated in Eq. (10.18) or (10.19) and get IT ;1 ∗ VG;1. Recovery
of VG;1 apparently calls for a deconvolution algorithm. An example of
the latter is specified in the following Sec. 10.6.

• The Thévenin voltage generator VG;1 is subsequently identified with the
corresponding TD EM radiation characteristics via (cf. Eq. (10.12))

VG;1(t) = α · ET
∞(−β, t)|IT ;1(t)=δ(t)∗ IT ;1(t) (10.20)

provided that the plane-wave signature is related to the electric-current
pulse shape in the following way

ei(t) = µ0∂tIT ;1(t) (10.21)

Finally note that Eqs. (10.20)–(10.21) are known as the transmission-reception
time-derivative relation [106, Sec. IVb].
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Figure 10.4: Computational model of the analyzed circuit with two accessible
ports (the dots on the patch). From [112], adapted with permission from
IEEE, c© 2016 IEEE.

10.6 Numerical results

In order to validate the proposed methodology, the irregularly-shaped planar
circuit shown in Fig. 10.4 is analyzed. Its accessible ports are placed at
x1 = {75.0, 112.5, 0} [mm] (PORT 1) and at x2 = {25.0, 37.5, 0} [mm] (PORT
2), its thickness is taken as d = 1.50 [mm] and the relative permittivity of the
dielectric slab is ǫr = 4.2. The corresponding EM wave speed in the slab is
c = c0/

√
ǫr. For validation purposes, the transmitting state is analyzed using

TD-CIM, while the pulsed responses in the receiving situation are evaluated
with the help of FIT of CST Microwave Studior.

According to the methodology outlined in Sec. 10.5, the planar circuit is
first analyzed in its transmitting state. To this end, the planar structure is
activated at its PORT 1 by the electric-current pulse defined in Appendix D
with the amplitude A = 1.0 [A] and the spatial pulse width ctw = 0.15 (m)
(see Fig. 10.5a). The resulting pulsed-voltage responses VT ;11 and VT ;21 at
PORT 1 and PORT 2 are shown in Figs. 10.6a and 10.6b, respectively. In the
second step, the structure is irradiated by the incident uniform plane-wave
(see Eqs. (9.6) and (9.7)) whose polarization and direction of propagation is
defined according to Eqs. (9.17) and (9.18) where we substitute γ = 5π/6, for
the present example. The plane-wave pulse shape calculated from Eq. (10.21)
is shown in Fig. 10.5b. In line with Eqs. (10.18) and (10.19), we distinguish
between two receiving situations. In the first one pertaining to Eq. (10.18),
PORT 2 is left open-circuited (i.e. IR;2 = 0) and we calculate the pulsed
response VR;1 at PORT 1. For this case we have chosen the purely resistive
(instantaneously-reacting) load ZL;1(t) = RL;1δ(t) with RL;1 = 240.0 [Ω] and
calculated the pulsed-voltage response across the element. The result is plot-
ted in Fig. 10.7a. Since the corresponding electric-current response IR;1 is
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Figure 10.5: Excitation pulse shapes. (a) The bell-shaped electric-current
signature in the transmitting state; (b) the plane-wave signature in the re-
ceiving state.

just a scaled copy of VR;1, its plot is omitted.
The second receiving state is associated with Eq. (10.19) and corresponds

to the situation with the open-circuited PORT 1 (i.e. IR;1 = 0). In this case,
we have calculated the open-circuited voltage response VR;1 and the electric-
current pulse IR;2 in the chosen capacitive impedance ZL;2(t) = (CL;2)−1H(t)
at PORT 2 with CL;2 = 500 [pF]. The resulting pulse shapes are shown in
Figs. 10.7b and 10.7c, respectively.

With all the signals at hand we may evaluate the time convolutions on the
left-hand sides of Eqs. (10.18) and (10.19) and get Q(t) = IT ;1(t) ∗ VG;1(t).
For the electric-current excitation pulse specified in Appendix D, the closed-
form deconvolution algorithm that yields VG;1 at once does exist, viz

VG;1(t) =
t2w
4A

∞
∑

n=0

2(n+ 2)2 − 1 + (−1)n+2

8
∂3tQ(t− ntw/2) (10.22)
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Figure 10.6: The pulsed voltage responses in the transmitting situation that
are observed at (a) PORT 1; (b) PORT 2. From [112], adapted with permis-
sion from IEEE, c© 2016 IEEE.

Obviously, the number of terms in (10.22) is finite in any (bounded) time-
window of observation.

The sought pulse shapes of the pulsed EM radiation characteristics as
calculated from Eqs. (10.18)–(10.19) are shown in Fig. 10.8. In order to
validate the results, the radiated electric field has also been evaluated with
the help of the ‘far-field probes’ implemented in CST Microwave Studior. As
can be seen, the final results agree very well. The visible discrepancy in the
late part of the response found from (10.19) is largely attributed to fact that
VT ;21 was obtained upon integrating the space-time voltage distribution along
the circuit rim (see Eq. (2.37)) under the thin-slab assumption implicit in
the formulation of TD-CIM. Obviously, the additional contour integration as
well as the thin-slab approximation introduce errors that typically manifest
themselves in the late-part of the response.
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Figure 10.7: The pulsed responses in the receiving situation. (a) Voltage
across RL;1 at PORT 1; (b) open-circuited voltage at PORT 1 with CL;2

connected at PORT 2; (c) electric current across CL;2 at PORT 2 with PORT

1 open-circuited.
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10.7 Conclusions

Thévenin’s equivalent network of a planar circuit with N accessible ports
has been constructed with the aid of the TD reciprocity theorem of the
time-convolution type. As has been demonstrated, such a representation
closely relates the transmitting and receiving states of the planar circuit
and may hence provide new physical insights into its radiation and reception
pulsed EM-field behavior. Furthermore, the presented description may reveal
new reciprocity relations that can be applied to benchmark purely numerical
EM solvers. Consistency of the proposed equivalent-network representation
has been validated with the aid of TD-CIM and (three-dimensional) Finite-
Integration Technique (FIT).



Chapter 11

Time-domain radiated
susceptibility of a planar circuit

The two-dimensional cavity model as formulated in Sec. 2.1 proved to be use-
ful and efficient for analyzing the radiation characteristics of planar circuits
(see Chapter 7). Based on reciprocity considerations, it may be hence antici-
pated that this model will do well in the corresponding receiving situation in
which a planar circuit is irradiated by an external EM source. The confirma-
tion of this expectation is basically a spin-off of the present chapter, where
straightforward expressions for the efficient calculation of the pulsed-voltage
response to an external EM disturbance are constructed.

Closely related scattering problems are dominantly solved using the stan-
dard real-FD numerical techniques. Examples in this category are Method-of-
Moments-based solutions [63, 75] or the Finite-Element-based analysis con-
cerning a microstrip structure and related topologies (see [10, 117], for ex-
ample). As to EM plane-wave coupling, the previous works on the subject
analyze the aperture coupling to a perfectly-conducting box [65, 88, 91] and
approximate models of a PCB trace [8, 50], for instance, relying on the clas-
sical transmission-line theory [97, Chapter 7].

In this chapter1, the reciprocity theorem of the time-convolution type is
applied to express the pulsed voltage induced within a planar circuit via a
straightforward one-dimensional integration of the testing (or auxiliary) field
distribution along a circuit periphery. As is shown, this approach is in par-
ticular efficient when combined with TD-CIM, whose basic formulation was
introduced in Sec. 3, or the TD ray-type Green’s function representation as
given in Sec. 5, for example. While the former leads directly to the required

1This chapter is largely based on Reference [111]. Adapted, with permission from
Taylor & Francis, c© 2016 Taylor & Francis.
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space-time testing voltage distribution on the circuit’s rim, the latter ex-
presses the solution in terms of (a finite number of) the causality-preserving
TD ‘generalized-ray’ constituents. In this way, the introduced methodology
makes possible to readily evaluate the TD radiated susceptibility of a planar
circuit with very low computational efforts and yet reasonable accuracy.

11.1 Reciprocity relations

Let us, again, assume a planar circuit that is, in its receiving state (see
Fig. 9.2), irradiated by an impulsive plane wave defined via Eqs. (9.6) and
(9.7). The receiving circuit is again placed in the linear, isotropic, homo-
geneous and loss-free embedding D0 whose EM properties are described by
its electric permittivity ǫ0 and magnetic permeability µ0. The corresponding
EM wave speed is c0 = (ǫ0µ0)

−1/2 > 0. The EM properties of the dielectric
slab are described by its electric permittivity ǫ and magnetic permeability
µ0. The electrically conducting plate of the circuit occupies a surface domain
ΩR ⊂ ∂DR bounded by its rim ∂ΩR ⊂ R. The normal outer unit vector is
denoted by ν, while the corresponding tangent vector is τ = i3 × ν.

In order to describe the TD radiated susceptibility in closed form, we fol-
low in part the procedure described in Sec. 8.3. Upon enforcing the magnetic-
wall boundary condition for the testing field state, Eq. (8.7) can be, under
the thin-slab approximation, rewritten as

∫

x′∈∂ΩR

VB(x′|xS, t) ∗ τ (x′) · HR(x′, t)dl(x′)

=

∫

x′∈∂ΩR

VB(x′|xS, t) ∗ τ (x′) · H i(x′, t)dl(x′) (11.1)

for all t > 0, where VB(x|xS, t) denotes the testing voltage distribution along
the rim of the receiving planar circuit ∂ΩR. Now it is worth noting that the
tangential part (with respect to ∂ΩR) of the (total) field HR in Eq. (11.1)
should be, too, in virtue of the thin-slab approximation, taken as zero. As
the TD optical (extinction) theorem [114] tells, however, the cavity model
in such a case does not absorb any energy. The boundary perturbation that
allows for a non-vanishing tangential part of HR is also commonly used in
the corresponding transmitting situation (see [90, Sec. 4.7] and [34, Sec. 2.3],
for example).

In the second step, the reciprocity theorem is applied to the domain
occupied by the receiving planar circuit and to the total-field (R) and the
testing-field (B) states, which, under the thin-slab approximation, yields
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(cf. Eq. (9.13))
∫

x′∈∂ΩR

VB(x′|xS, t) ∗ τ (x′) · HR(x′, t)dl(x′)

= − VR(xS, t) ∗ IB(t) (11.2)

where VR = −dER
3 is the total voltage induced in the planar circuit at xS ∈

Ω. Upon combining the latter with Eq. (11.1) we end up with (cf. Eq. (8.9)

VR(xS, t) ∗ IB(t) = −
∫

x′∈∂ΩR

VB(x′|xS, t) ∗ τ (x′) · H i(x′, t)dl(x′) (11.3)

which expresses the induced (total) voltage VR in the planar circuit though
the testing voltage distribution VB and the tangential part of the incident
plane wave H i along the circuit rim ∂ΩR. Now, taking into the account that
Eq. (11.3) should hold for arbitrary IB(t), we arrive at

VR(xS, t) = −d c−1
0 (β ×α)∂te

i(t)

∗·
∫

x′∈∂ΩR

G(x′|xS, t− β · x′/c0)τ (x
′)dl(x′) (11.4)

where we have made use of (9.7) in (11.3) and

VB(x|xS, t) = µ0d∂tIB(t) ∗G(x|xS, t) (11.5)

for the concentrated electric-current testing source (8.5) (see Eq. (2.11)).
Here, G(x|xS, t) is the two-dimensional TD Green’s function whose closed-
form ray and modal representations for the rectangular domain ΩR are given
in Chapter 5. This strikingly straightforward relation makes possible to
readily evaluate the pulsed-voltage response to the incident impulsive plane.
Owing to its simplicity it may be useful for estimating the (worst-case) pulsed
radiated EM susceptibility of planar circuits.

It is interesting to note that Eq. (11.5) can also be derived from the
contour-integral representation of the (time-dependent) far-field radiation
characteristic (see Eq. (7.1))

EB
∞(ξ, t) = −d c−1

0 µ0∂
2
t IB(t)

∗
∫

x′∈∂ΩR

GB(x′|xS, t+ ξ · x′/c0)ξ × τ (x′)dl(x′) (11.6)

and the property of self-reciprocity that relates the circuit’s receiving and
transmitting (or testing) states according to (9.14) and (9.15).

In the following sections, Eqs. (11.3) and (11.4) are applied to evaluate
the plane-wave response VR of an irregularly-shaped and a rectangular planar
structure, respectively. For the former equation, the testing voltage distri-
bution VB is found via TD-CIM, while the latter makes use of the ray-type
field representation as given in in Chapter 5.
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Figure 11.1: The triangular plane-wave signature. From [111], adapted with
permission from Taylor & Francis, c© 2016 Taylor & Francis.

11.2 Numerical results

The pulsed voltage response of both irregularly-shaped and rectangular pla-
nar structures is evaluated via Eqs. (11.3) and (11.4), respectively, and
the referential Finite-Integration Technique (FIT) as implemented in CST
Microwave Studior. The circuits are irradiated by the (impulsive) inci-
dent plane wave that is defined via its polarization and propagation vectors
(cf. Eqs. (9.6)–(9.7))

α = [cos(φ) cos(θ), sin(φ) cos(θ),− sin(θ)] (11.7)

β = [− cos(φ) sin(θ),− sin(φ) sin(θ),− cos(θ)] (11.8)

respectively, and its (bipolar) triangular pulse shape (cf. (D.6))

ei(t) =
2em
tw

[

tH(t)− 2

(

t− tw
2

)

H

(

t− tw
2

)

+ 2

(

t− 3tw
2

)

H

(

t− 3tw
2

)

− (t− 2tw) H (t− 2tw)

]

(11.9)

as shown in Fig. 11.1. Its amplitude is taken as em = 1 · 103 [V/m] and the
zero-crossing time as ctw = 1.0D/

√
ǫr, where c = c0/

√
ǫr. The reference

FIT-based models are finely meshed such that the maximum mesh step is
always less than ctw/50. The boundary condition on the surrounding box
is set to ‘open’. Two different plane-wave excitations will be considered (a)
{φ, θ} = {π/2, π/4} (PW 1); (b) {φ, θ} = {π/4, π/4} (PW 2). The resulting



Numerical results 107

0

0.05

0.1

0

0.05

0.1

0.15

x1 [m]

PROBE 2

PROBE 1

x2 [m]a 0

0.02

0.04

0

0.02

0.04

0.06

0.08

x1 [m]

PROBE 1PROBE 2

x2 [m]
b

Figure 11.2: Computational models of the analyzed circuits with field probes
(the solid triangles). (a) The irregularly-shaped circuit; (b) The rectangular
circuit.

voltage responses are observed in the time window of observation {0 < ct ≤
10D/

√
ǫr}. In the following examples we take ǫr = 4.50, D = 50.0 [mm] and

d = 1.50 [mm] is circuits’ thickness.

11.2.1 An irregularly-shaped planar circuit

At first, the pulsed response of the irregularly-shaped circuit as shown in
Fig. 11.2a is evaluated via Eq. (11.3). It is assumed that at t = 0 plane
wave PW 1 hits the top edge x2 = 140 [mm], while PW 2 at that ori-
gin hits the top-left corner {x1, x2} = {120, 140} [mm]. The pulsed volt-
age responses are observed at {xS1 , xS2 } = {50, 100} [mm] (PROBE 1) and
{xS1 , xS2 } = {30, 10} [mm] (PROBE 2) (see Fig. 11.2a).

The corresponding results are shown in Figs. (11.3) and (11.4). As can
be seen, the pulses evaluated via Eq. (11.3) agree very well with the FIT-
based ones. The observable discrepancies may be dominantly attributed to
different strategies in modeling the circuit’s boundary conditions. While
the TD-CIM-based model assumes the perfect magnetic wall along ∂ΩR, the
three-dimensional FIT model has the ‘open boundary’ accounting for the
fringing fields.

11.2.2 A rectangular planar circuit

The pulsed voltage response of a rectangular circuit Ω = {0 < x1 < L, 0 <
x2 < W} of dimensions {L,W} = {50, 75} [mm] (see Fig. 11.2b) is evaluated
with the help of (11.4) and (5.7) with (5.16). In this example, we assume
conductive losses incorporated in the dielectric relaxation function according
to Eq. (5.14) with σ = 0.02 [S/m]. The pulsed voltage responses are eval-
uated at two observation points {xS1 , xS2 } = {L/2,W/10} (PROBE 1) and
{xS1 , xS2 } = {0,W/3} (PROBE 2) (see Fig. 11.2b.). It is assumed that at
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Figure 11.3: The pulsed voltage evaluated using the proposed coupling model
and the referential FIT as observed at PROBE 1 of the irregularly-shaped
circuit due to the plane wave (a) {φ, θ} = {π/2, π/4} (PW 1); (b) {φ, θ} =
{π/4, π/4} (PW 2). From [111], adapted with permission from Taylor &
Francis, c© 2016 Taylor & Francis.

t = 0 plane wave PW 1 hits the top edge x2 = 75 [mm], while PW 2 at that
origin hits the top-left corner {x1, x2} = {50, 75} [mm].

The corresponding results are given in Figs. 11.5 and 11.6. Here, again,
the differences with respect to the FIT-based results can be mainly attributed
to the different boundary conditions imposed along the circuit periphery ∂ΩR.
In this respect, it is interesting to interpret the discrepancies in the early part
of the response in Fig. 11.6a. Owing to the fact that the incident magnetic-
field vector is perpendicular to the tangential vector τ of the circuit’s edges
along x1 = 0 and x1 = L, these edges, where also PROBE 2 is located, do
not contribute to the response (cf. Eq. (11.4)). On the other hand, with the
FIT-based ‘open-boundary model’, also the neighborhood of the observation
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Figure 11.4: The pulsed voltage evaluated using the proposed coupling model
and the referential FIT as observed at PROBE 2 of the irregularly-shaped
circuit due to the plane wave (a) {φ, θ} = {π/2, π/4} (PW 1); (b) {φ, θ} =
{π/4, π/4} (PW 2). From [111], adapted with permission from Taylor &
Francis, c© 2016 Taylor & Francis.

probe yields the (relatively weak) contribution with its arrival time at about
cTarr = (2W/3) sin(π/4)/

√
ǫr ≃ 0.0167 [m]. The latter contribution observed

at PROBE 2 obviously manifests itself earlier than the contributions from the
edges along x2 = {0,W} that form the response of the analytical coupling
model.

As the last example, the time evolution of the pulsed voltage distribu-
tion is illustrated. To this end, the TD response to the second plane {φ, θ} =
{π/4, π/4} (PW 2) is evaluated for a set of field points on ΩR. The results for
the consecutive (scaled) observation times ct = {

√
2/30,

√
2/20,

√
2/15} [m]

are given in Fig. 11.7. Such analysis may help to localize ‘hot spots’ when
assessing the vulnerability of PCBs to an external pulsed EM disturbance.
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Figure 11.5: The pulsed voltage evaluated using the proposed coupling model
and the referential FIT as observed at PROBE 1 of the rectangular circuit due
to the plane wave (a) {φ, θ} = {π/2, π/4} (PW 1); (b) {φ, θ} = {π/4, π/4}
(PW 2). From [111], adapted with permission from Taylor & Francis, c© 2016
Taylor & Francis.

Moreover, thanks to the fact that the pulsed voltage response has been ex-
pressed in the closed form whose evaluation is computationally very efficient,
the result can find its application in solving optimization problems (e.g. [46]),
which mostly necessitates (time-consuming) repeated calculations of the ob-
jective function.

11.3 Conclusions

The closed-form expressions for the efficient TD radiated susceptibility anal-
ysis of a planar circuit have been derived using the concept of reciprocity.
From them it is immediately clear that a planar circuit can be in its receiving
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Figure 11.6: The pulsed voltage evaluated using the proposed coupling model
and the referential FIT as observed at PROBE 2 of the rectangular circuit due
to the plane wave (a) {φ, θ} = {π/2, π/4} (PW 1); (b) {φ, θ} = {π/4, π/4}
(PW 2). From [111], adapted with permission from Taylor & Francis, c© 2016
Taylor & Francis.

state viewed as to be excited along the circuit periphery via the tangential
component of an incident magnetic field.

The derived relations express the pulsed voltage response of a planar
structure to an impulsive EM plane wave via the one-dimensional contour
integral. It has been demonstrated that the presented approach is well suited
for its combination with TD-CIM and the relevant TD ‘ray-type’ Green’s
function representation. In addition to the high computational efficiency of
the presented methodology, the derived TD integral representations provide
physical insights into the dominant (space-time) EM-coupling mechanism of
planar structures. All the derived integral representations have been vali-
dated using (three-dimensional) FIT.
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Figure 11.7: Time evolution of the voltage distribution at (a) ct =
√
2/30 [m];

(b) ct =
√
2/20 [m]; (c) ct =

√
2/15 [m]. From [111], adapted with permission

from Taylor & Francis, c© 2016 Taylor & Francis.



Appendix A

Integrals of the logarithmic
function

The two-dimensional Green’s function that appears in CIM shows the loga-
rithmic singularity that must be integrated over a line segment of the bound-
ary contour. On this account, let us consider the following integral

I =

∫

x∈ΩAB

ln[r(x|xC)]dl(x) (A.1)

where ΩAB is the line segment determined by points A and B, r(x|xC)
denotes the Eucledian distance between a point on ΩAB and point C lying
off the segment. The position of each pointis specified by the position vector
x (see Sec. 1.2).

Upon introducing the parametrization for x ∈ ΩAB

x = xA + λ(xB − xA) forλ ∈ (0, 1) (A.2)

we arrive at the one-dimensional integral that can be solved analytically. In
this way we end up with

I = RCP
{

tan(ψBC)
[

ln(RBC)− 1
]

− tan(ψAC)
[

ln(RAC)− 1
]

+ ψBC − ψAC
}

(A.3)

where ψAC and ψBC are oriented angles between the perpendicular line from
point C to segment ΩAB and the lines of points C with A and C with B,
respectively (see Fig. A.1).

If point C lies on the same line as points A and B then the integral is
easily found via the limiting process. Note that for such a case the derivative
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Figure A.1: Integration along the line segment.

of the logarithmic function along the direction parallel to the normal vector
ν

∂ν ln[r(x|xC)] = ν · (x− xC)/r2(x|xC) (A.4)

is zero.



Appendix B

Implementation of TD-CIM

In this section, a demo implementation of TD-CIM in MATLABr is de-
scribed. For the sake of simplicity, we shall limit ourselves to the description
of a code capable of analyzing an instantaneously-reacting planar circuit
(see Chapter 3) that is activated by a simple vertical circular port whose
singularity-free model is described in Sec. 2.1.4.

B.1 Geometry of the circuit pattern

At first, the circuit’s contour in a plane must be defined. This can be done,
for example, by giving two 1D arrays that specify the polygon’s vertices in
the (x1, x2)-plane with respect to the chosen origin. The corners of the circuit
shown in Fig. B.1 can be arranged in the following way

x = [0 0.10 0.10 0];

y = [0 0 0.15 0.15];

along the x1- and x2-direction, respectively. Once the vertices are specified,
the circuit rim is divided into N straight-line sections. As a rule of thumb, the
maximum length of the sections should be shorter than a tenth of the spatial
support of the excitation pulse. Nevertheless, it has been demonstrated that
even when this rule is violated, it may well be that the results are accurate
enough. The line segments and the dividing points are numbered in coun-
terclockwise direction as illustrated in Fig. B.1b. The co-ordinates of the
dividing nodes of the sample circuit from Fig. B.1a then read

X = [0 0.025 0.050 0.075 0.100 0.100 0.100 0.100 0.100 0.075 0.050

0.050 0.050 0.025 0 0 0 0 0];

Y = [0 0 0 0 0 0.025 0.050 0.075 0.100 0.100 0.100 0.125 0.150

0.150 0.150 0.120 0.090 0.060 0.030];
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Figure B.1: The sample circuit pattern. (a) The dividing points along the
circuit periphery; (b) the numbering of the line segments and the nodal
points.

For possibly multiply connected circuit patterns, it is convenient to define an
auxiliary variable, say IND, that assigns to each line segment the number of its
bounding nodes. It is straightforward to find the elements of such a variable
automatically for a general circuit geometry. Concerning the example from
Fig. B.1, this information can be stored in the following way

IND.’ =

[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19;

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 1]

Then, for example, IND(19,1) and IND(19,2) return 19 and 1, respectively,
which are the numbers of the discretization points bounding segment 19

(cf. Fig. B.1a). Furthermore, it is also useful to define another variable, say
SEG, that assigns to each dividing node the number of its adjacent segments.
For the sample circuit given in Fig. B.1 it may have the following form

SEG.’ =

[19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18;

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]

For instance, for the first node at the origin we get SEG(1,1) = 19 and
SEG(1,2) = 1 (cf. Fig. B.1b). With the auxiliary variable at hand, we may
further evaluate the sine and cosine functions of the angle that is found
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between the tangent to the n-th line segment (recall the contour orientation)
and the x1-axis, i.e.

for n = 1 : N

COSW(n) = (X(IND(n,2)) - X(IND(n,1)))/W(n);

SINW(n) = (Y(IND(n,2)) - Y(IND(n,1)))/W(n);

end

where W(n) is length of the n-th segment. Regarding the sample geometry,
this leads to

COSW = [1.0 1.0 1.0 1.0 0 0 0 0 -1.0 -1.0 0 0 -1.0 -1.0 0 0 0 0

0];

for the array of segment’s lengths (cf. Fig. B.1a)

W = [0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025

0.025 0.025 0.025 0.025 0.030 0.030 0.030 0.030 0.030];

For example, find(COSW == -1) = [9 10 13 14] are then linked to the
numbers of those line segments whose tangent vectors have the opposite
orientation with respect to the x1-axis (see Fig. B.1b). Arrays COSW and SINW

will be used to evaluate cos(θ) that appears in the elements of Q matrix (see
Eq. (3.10)).

B.2 Numerical integration

Since evaluation of Q matrix and F vector requires computation of line
integrals, it is convenient to specify the position on the k-th line segment in
terms of parameter lambda whose values range from 0 to 1, i.e.

XS = @(lambda,k) X(IND(k,1)) + lambda*(X(IND(k,2)) - X(IND(k,1)));

YS = @(lambda,k) Y(IND(k,1)) + lambda*(Y(IND(k,2)) - Y(IND(k,1)));

where we have used the concept of anonymous functions with two arguments
lambda and k. In the implementation that follows, the former argument
represents the abscissas of the Gauss-Legendre quadrature. Other numerical
integration routines may serve the purpose as well. For example, we may use
the 6-point quadrature [1, p. 921], i.e.

WINT.’ = [0.0856622462 0.1803807865 0.2339569673 0.2339569673

0.1803807865 0.0856622462];

LINT.’ = [0.0337652429 0.1693953068 0.3806904070 0.6193095930

0.8306046932 0.9662347571];

and define the following 6× 6 matrices
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NI = 6;

LINT1 = repmat(LINT,[1 NI]);

LINT2 = LINT1.’;

These auxiliary vectors and matrices will be used in the following sections.

B.3 Computation of excitation vector F

The simplified excitation model evaluates the elements of excitation vector
F using Eq. (2.49). In this relation, the position of the excitation port is
specified by the position vector xC . The probe must be placed inside the
polygon specified by x and y arrays and hence we may take

XC = 0.10/4; YC = 0.15/4;

In the next step, the electric-current pulse shape is chosen. For example, let
us implement the unipolar triangular pulse signature described by Eq. (5.24)
(see Fig. 5.2). For such a choice, the relevant Laplace-transform inversion
can be carried out analytically, viz

L−1[sÎ(s)K0(sr/c)] = (2A/tw)[ζ(r, t)− 2ζ(r, t− tw/2) + ζ(r, t− tw)] (B.1)

where ζ(r, t) is defined as ln[ct/r+(c2t2/r2 − 1)
1/2

]H(t−r/c). After creating
the zero excitation vector

F = zeros(N,NT);

and defining the time axis, e.g.

cT = linspace(0, 3.0, NT);

in which NT is its length, the excitation vector’s elements may be evaluated
for each dividing node in a loop, viz

for m = 1 : N

% ascending +

R = sqrt((XC - XS(LINT,SEG(m,1))).^2 ...

+ (YC - YS(LINT,SEG(m,1))).^2);

HLP = repmat(LINT,[1 NT]) .* ETA(R,cT);

F(m,:) = F(m,:) - (mu/pi)*W(SEG(m,1))*WINT.’*HLP;

% descending -

R = sqrt((XC - XS(LINT,SEG(m,2))).^2 ...

+ (YC - YS(LINT,SEG(m,2))).^2);

HLP = repmat(1-LINT,[1 NT]) .* ETA(R,cT);
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F(m,:) = F(m,:) - (mu/pi)*W(SEG(m,2))*WINT.’*HLP;

end

Apparently, the procedure consists of two similar parts depending whether
we are ‘testing’ on the ‘ascending’ or on the ‘descending’ half of the triangu-
lar testing function T [S](xT ). The latter is here represented by LINT and by
1-LINT in auxiliary variable HLP. Next, R is a NI×1 1D array that represents
r(xC |xT ) (viz Eq. (2.48)), i.e. the array of the Eucledian distances from the
circular excitation port to ‘testing’ points along the relevant line segment. Fi-
nally, ETA(R,cT) is a NI×NT 2D array that represents the space-time function
given in Eq. (B.1) evaluated for each distance stored in R and each instant
stored in cT. This can be most efficiently done using vectorization.

B.4 Computation of system matrix Q

This section describes a simple implementation of the time-dependent system
matrixQ whose elements will be next calculated according to Eq. (3.10). The
demo implementation starts by initializing a zero 3D array, i.e.

Q = zeros(N,N,NT);

The matrix elements may be evaluated in two nested loops that each runs
over all the dividing points. Similarly to the previous section, the calculation
procedure can be divided into similar parts. Owing to the double integration
in Eq. (3.10), we now have four similar blocks. For the sake of brevity, we
closely describe only the part that refers to the case when both the ‘test-
ing’ and ‘expansion’ take place on the ‘ascending’ halves of the triangular
testing and expansion functions T [S](xT ) and T [m](xT ), respectively. Imple-
mentation of the remaining combinations is then straightforward. Hence, the
procedure may run along the following lines

for m = 1 : N

for n = 1 : N

% ascending/ascending +/+

if (m ~= n)

R = sqrt((XS(LINT1,SEG(n,1)) - XS(LINT2,SEG(m,1))).^2 ...

+ (YS(LINT1,SEG(n,1)) - YS(LINT2,SEG(m,1))).^2);

COS = ((XS(LINT1,SEG(n,1)) - XS(LINT2,SEG(m,1)))./R) ...

* SINW(SEG(n,1)) ...

- ((YS(LINT1,SEG(n,1)) - YS(LINT2,SEG(m,1)))./R) ...

* COSW(SEG(n,1));

HLP = repmat(LINT2.*LINT1.*COS,[1 1 NT]).*PSI(R,cT);

Q(m,n,:) = squeeze(Q(m,n,:)) ...
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+ W(SEG(n,1))*W(SEG(m,1))*(1/pi/cdT) ...

*(reshape(WINT.’*HLP(:,:),[NI NT])).’*WINT;

end

%

% + next similar blocks ...

%

end

end

in which cdT is the time step. In order to exclude the ‘self-coupling’ overlap-
ping terms, it is noted that the matrix-element calculation is carried out in
the relevant if-block. In contrast to the previous section, R is now a NI×NI

2D array that represents r(x|xT ) (viz Eq. (3.10)), i.e. the array of the Eu-
cledian distances from ‘actual-field-expansion’ points to ‘testing-field’ points
along the relevant line segments. Variable COS calculated on the following
line is, again, a NI×NI 2D array and represents a discrete form cos[θ(x|xT )]
appearing in Eq. (3.10). The integrand of the latter equation is consequently
stored in the auxiliary variable HLP. The latter is composed from the product
of (the ‘ascending’ parts of) the expansion and testing spatial functions LINT1
and LINT2, respectively, of 2D array COS and a NI×NI×NT 3D array named
PSI. This 3D array is a representative of the space-time function Ψ(r, t) (viz
Eq. (3.12)) being evaluated for each distance from R and each instant from
cT. Again, its evaluation is most efficiently done using vectorization.

B.5 Step-by-step updating procedure

With the excitation vector F and system matrix Q at our disposal, we may
proceed with searching for the unknown field vector E by solving Eq. (3.8) in
a step-by-step manner. To this end, we begin with the three-diagonal square
matrix I. Starting with its initialization, i.e.

I = zeros(N,N);

its filling can be done according to Eq. (3.9), viz

for m = 1 : N

for n = 1 : N

if (n == m)

I(m,n) = (W(SEG(m,1)) + W(SEG(m,2)))/3;

elseif (SEG(m,1) == SEG(n,2))

I(m,n) = W(SEG(m,1))/6;

elseif (SEG(m,2) == SEG(n,1))

I(m,n) = W(SEG(m,2))/6;
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end

end

end

After inverting the matrix on the left-hand side of Eq. (3.8), i.e.

M = inv(I - Q(:,:,2));

and initializing the N×NT 2D array allocated for the unknown field distribu-
tion

E = zeros(N,NT);

E(:,2) = M * F(:,2);

we may launch the step-by-step updating procedure. Its implementation may
look as follows (cf. Eq. (3.8))

for p = 3 : NT

SUM = zeros(N,1);

for m = 3 : p

SUM = SUM + Q(:,:,m) * E(:,p-m+2);

end

E(:,p) = M*(F(:,p) + SUM);

end

Once the procedure is terminated, E-array contains the desired electric-field
(space-time) distribution at the dividing points along the circuit periphery
and at time points along the time axis.
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Appendix C

Implementation of FD-CIM

In this section, demo implementations of the classic FD-CIM in MATLABr

are described. The given description follows Chapter 4, where two CIM-based
numerical procedures are derived from the complex-FD reciprocity relation
(3.1).

Since the spatial aspects of the problem remain the same as in TD-CIM,
the variables defined in Secs. B.1 and B.2 are applicable to the implemen-
tation of FD-CIM as well. The difference starts by defining the frequency
axis F along which the resulting U and H matrices are evaluated. For the
frequency range {50 ≤ f = ω/2π ≤ 2000} [MHz], this can be done as follows

F = linspace(50,2000,NF)*1e+6;

in which NF is the number of frequency points. The calculations are then
carried out in a loop at each frequency point of F vector, i.e.

for k = 1 : NF

om = 2*pi*F(k);

t = sqrt(2/(om*mu0*sigma));

k1 = om/c; k2 = (k1/2)*(tand + t/d);

KWN = k1 - 1i*k2;

% to be continued

end

in which om stands for the angular frequency ω, sigma is electrical conduc-
tivity σ of the plates, t is their skin depth, tand corresponds to tan(δ) and
finally KWN is the complex-valued wave number k (see Eq. (4.17)).

C.1 Computation of U and H matrices

In the first step, we allocate 2D arrays
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U = zeros(N+NP,N+NP);

H = zeros(N+NP,N+NP);

that correspond to U and H , respectively. As has been demonstrated in
Chapter 4, computation of the elements of U and H matrices (see Eq. (4.3))
depends on the choice of the testing electric-current surface density ∂ĴB3 used
in the starting reciprocity relation (3.1). Accordingly, this section is divided
in two parts.

C.1.1 Point-matching solution

In this section we evaluate the matrix elements according to Eq. (4.5)–(4.8).
Having defined the wave number KWN, the elements of U and H can be
evaluated as follows

for k = 1 : NF

% ...

% U-matrix and H-matrix

for m = 1 : N+NP

for n = 1 : N+NP

R = sqrt((XS(0.5,m) - XS(0.5,n))^2 ...

+ (YS(0.5,m) - YS(0.5,n))^2);

COS = ((XS(0.5,n) - XS(0.5,m))*SINW(n) ...

- (YS(0.5,n) - YS(0.5,m))*COSW(n))/R;

U(m,n) = -(KWN/2/1i)*COS*besselh(1,2,KWN*R)*W(n);

H(m,n) = (om*mu0*d/2)*besselh(0,2,KWN*R);

end

end

U(logical(eye(size(U)))) = 1;

H(logical(eye(size(H)))) = (om*mu0*d/2)*(1-(2*1i/pi) ...

*(log(KWN*W/4) - 1 + GAMMA));

% to be continued

end

where the nested loops run over the line segments. In them, R is the distance
between the centers of the m-th and n-th segments and XS, YS, W with SINW

and COSW have been specified in Secs. B.1 and B.2. The diagonal elements
corresponding to the overlapping segments (m = n) are subsequently evalu-
ated in line with Eqs. (4.7) and (4.8), where Euler’s constant is represented by
GAMMA = 0.577215664901532. Once U and H matrices are known, we can
evaluate the impedance matrix Z and the input impedance corresponding to
the excitation port, i.e.
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for k = 1 : NF

% ...

% Z-matrix

Z = U \ H;

Z11(k) = sum(sum(Z(1:NP,1:NP)))/NP^2;

end

where the ‘matrix-reduction approach’ introduced in [115, Sec. III] is applied
to obtain the input impedance Z11 of a port consisting of NP uniformly-
excited line segments.

C.1.2 Pulse-matching solution

The use of the rectangular-pulse testing current density results in the matrix
elements specified in terms of the double integration taken along the actual
and the testing line segments (see Eqs. (4.11) and (4.12)). These integrals
are handled using the Gauss-Lengendre quadrature as described in Sec. B.2.
Along these lines, the input impedance can be evaluated as follows

for k = 1 : NF

om = 2*pi*F(k);

t = sqrt(2/(om*mu0*sigma));

k1 = om/c; k2 = (k1/2)*(tand + t/d);

KWN = k1 - 1i*k2;

% U-matrix and H-matrix

for m = 1 : N+NP

for n = 1 : N+NP

R = sqrt((XS(LINT1,n) - XS(LINT2,m)).^2 ...

+ (YS(LINT1,n) - YS(LINT2,m)).^2);

COS = ((XS(LINT1,n) - XS(LINT2,m))./R)*SINW(n) ...

- ((YS(LINT1,n) - YS(LINT2,m))./R)*COSW(n);

U(m,n) = -(KWN/2/1i)*W(n)*WINT.’ ...

*((COS.*besselh(1,2,KWN*R))*WINT);

H(m,n) = (om*mu0*d/2) * WINT.’*(besselh(0,2,KWN*R)*WINT);

end

end

U(logical(eye(size(U)))) = 1;

H(logical(eye(size(H)))) = (om*mu0*d/2)*(1-(2*1i/pi)

*(log(KWN*W/2) - 3/2 + GAMMA));

% Z-matrix

Z = U \ H;

Z11(k) = sum(sum(Z(1:NP,1:NP)))/NP^2;

end
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Here, R corresponds to r[x(λ)|xT (λT )] that appears in Eqs. (4.11) and (4.12),
COS stands for cos

{

θ[x(λ)|xT (λT )]
}

and the diagonal terms are calculated
via Eqs. (4.15) and (4.16). The final input impedance is at each frequency
from 1D-array F calculated using the procedure from [115, Sec. III], again.
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The bell-shaped pulse

In this section we derive the expression for the excitation pulse signature
that is frequently used throughout the book. In general, a unipolar pulse
can defined by its amplitude A, pulse time width tw, pulse rise time tr and if
applicable, by its pulse fall time tf . The pulse time width of the pulse I(t)
is defined as

tw =

∫ ∞

t=0

I(t)dt/A (D.1)

and the pulse rise time is defined as the time instant where the pulse reaches
its maximum I(tr) = A. A detailed description of practical waveforms is
given by Quak [80].

The bell-shaped source signature can be viewed as to be generated by
the time convolution of the rectangular function and the triangular function.
The basic building block is the rectangular function of the finite duration
△t > 0 that is defined as

R(t,△t) = H(t)− H(t−△t) (D.2)

where H(t) is the Heaviside function defined as

H(t) =







0 if t < 0
1/2 if t = 0
1 if t > 0

(D.3)

Consequently, the triangular function of the duration △t can be found from
the time convolution of two rectangular functions, i.e.

T(t,△t) = R(t,△t/2) ∗ R(t,△t/2) (D.4)
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Figure D.1: Time signature of the bell-shaped pulse.

and finally, the bell-shaped function B(t,△t) follows from the time convolu-
tion of the triangular function with the rectangular function, i.e.

B(t,△t) = T(t,△t/2) ∗ R(t,△t/2)
= R(t,△t/4) ∗ R(t,△t/4) ∗ R(t,△t/2) (D.5)

In this manner, we may arrive at the electric current bell-shaped waveform
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(D.6)

that is for illustration shown in Fig. D.1. Obviously, the bell-shaped pulse is
continuously differentiable, its rise time is equal to the pulse time width and
has a finite support, which is suitable for modeling causal phenomena.
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Expansion functions

In this section we describe expansion functions {T[k], B[k], Q[k]}(t) used in the
main text for the temporal expansion of the unknown field quantity. To this
end, let us consider a temporal function U(t) that is approximated by a set
of expansion functions F[k](t) according to

U(t) ≃
NT
∑

k=1

c[k]F[k](t) (E.1)

where c[k] are coefficients and F[k](t) can stand for {T[k], B[k], Q[k]}(t). All
these expansion functions have a finite support extending over two time steps
supp(F[k]) = 2△t, △t > 0, they have value one at one of the discrete time
points F[k](k△t) = 1 and zero in the neighboring points F[k][(k ± 1)△t] = 0
and differ in their differentiability class.

E.1 Linear expansion functions

The linear expansion function (also called as triangular or hat function) can
be described as

T[k](t) =
[

(t− tk−1)H(t− tk−1)− 2(t− tk)H(t− tk)

+ (t− tk+1)H(t− tk+1)
]

/△t (E.2)

where H(t) is the Heaviside function (see Eq. (D.3)), tk = k△t and k =
{1, ..., NT}. The sequence of shifted linear expansion functions and their sum
are shown in Fig. E.1. Upon taking the Laplace transform (see Eq. (1.2)) of
Eq. (E.2) we arrive at

T̂[k](s) =
[

exp(−stk−1)− 2 exp(−stk) + exp(−stk+1)
]

/s2△t (E.3)
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Figure E.1: Linear expansion functions.

A function expanded using the set of {T[k](t), k = 1, 2, ...} is continuous but
its first derivative shows jumps at a finite number of time instants, i.e. the
function is of class C0.

E.2 Quadratic expansion functions

The quadratic expansion function can be described as

B[k](t) = 2
[

(t− tk−1)
2H(t− tk−1)− 2(t− tk−1/2)

2H(t− tk−1/2)

+ 2(t− tk+1/2)
2H(t− tk+1/2)− (t− tk+1)

2H(t− tk+1)
]

/(△t)2 (E.4)

where H(t) is the Heaviside function (see Eq. D.3), tk = k△t and k =
{1, ..., NT}. The sequence of shifted quadratic expansion functions and their
sum are shown in Fig. E.2. Upon taking the Laplace transform (see Eq. (1.2))
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Figure E.2: Quadratic expansion functions.
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Figure E.3: Cubic expansion functions.

of Eq. (E.4) we arrive at

B̂[k](s) = 4
[

exp(−stk−1)− 2 exp(−stk−1/2)

+ 2 exp(−stk+1/2)− exp(−stk+1)
]

/s3(△t)2 (E.5)

A function expanded using the set of {B[k](t), k = 1, 2, ...} is continuously
differentiable, i.e. the function is of class C1.

E.3 Cubic expansion functions

The cubic expansion function can be described as

Q[k](t) = 16
[

(t− tk−1)
3H(t− tk−1)− 2(t− tk−3/4)

3H(t− tk−3/4)

+2(t− tk−1/4)
3H(t− tk−1/4)− 2(t− tk)

3H(t− tk)

+2(t− tk+1/4)
3H(t− tk+1/4)− 2(t− tk+3/4)

3H(t− tk+3/4)

+(t− tk+1)
3H(t− tk+1)

]

/3(△t)3 (E.6)

where H(t) is the Heaviside function (see Eq. (D.3)), tk = k△t and k =
{1, ..., NT}. The sequence of shifted cubic expansion functions and their sum
are shown in Fig. E.3. Upon taking the Laplace transform (see Eq. (1.2)) of
Eq. (E.6) we arrive at

Q̂[k](s) = 32
[

exp(−stk−1)− 2 exp(−stk−3/4) + 2 exp(−stk−1/4)

− 2 exp(−stk) + 2 exp(−stk+1/4)− 2 exp(−stk+3/4)

+ exp(−stk+1)
]

/s4(△t)3 (E.7)

A function expanded using the set of {Q[k](t), k = 1, 2, ...} is continuous
including its second derivative, i.e. the function is of class C2.
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Appendix F

Green’s function of the
dissipative scalar 2D wave
equation

In this section we derive the causal solution G∞ = G∞(x, t) of the two-
dimensional dissipative wave equation

(∂21 + ∂22)G∞ − c−2(∂2t + 2α∂t)G∞ = −δ(x, t) (F.1)

with the zero-value initial conditions G∞(x, 0) = 0 and ∂tG∞(x, 0) = 0 for all
x ∈ R2. Here, c is the wave speed (a positive and real-valued constant) and
α is a real non-negative real constant accounting for conductive (diffusive)
losses.

The dissipative wave equation (F.1) is solved with the aid of a modi-
fication of the Cagniard-DeHoop method [16]. To this end, the one-sided
Laplace transformation (1.2) is combined with the dissipative-wave slowness
field representation either along x1- or x2-direction. For the former direction
we take

Ĝ∞(x1, x2, s) =
L̂(s)

2πi

∫ i∞

p=−i∞

exp
[

−L̂(s)px1
]

G̃∞(p, x2, s)dp (F.2)

where L̂(s) = [s(s + 2α)]1/2 and ∂1 is transformed to ∂̃1 = −L̂(s)p. The
square-root expression shows two algebraic branch points at s = {−2α, 0} in
the complex s-plane. The corresponding branch cuts are chosen such that
Re(s1/2) > 0 and Re[(s + 2α)1/2] > 0 for all s ∈ C, which introduces two
overlapping branch cuts running along the negative real axis {s ∈ C;−∞ <
Re(s) < 0, Im(s) = 0} and {s ∈ C;−∞ < Re(s) < −2α, Im(s) = 0}, respec-
tively. The choice of the branch cuts then implies an asymptotic expansion
L̂(s) = s +O(1) as |s| → ∞.
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Owing to the slowness representation (F.2) the transform-domain dissi-
pative wave equation transforms to

∂22G̃∞ − L̂2(s)γ2(p)G̃∞ = −δ(x2) (F.3)

where γ(p) is the propagation coefficient

γ(p) = (1/c2 − p2)1/2 with Re(.)1/2 > 0 (F.4)

The bounded transform-domain solution of (F.3) is then substituted in (F.2),
which finally yields

Ĝ∞(x1, x2, s) =
1

2πi

∫ i∞

p=−i∞

exp
{

−L̂(s) [px1 + γ(p)|x2|]
} dp

2γ(p)
(F.5)

A few next steps follow the classical procedure of the Cagniard-DeHoop
method. The original contour in the complex p-plane is deformed into the
Cagniard-DeHoop contour defined as

px1 + γ(p)|x2| = τ (F.6)

where {τ ∈ R; r/c ≤ τ < ∞} and r = (x21 + x22)
1/2 > 0. The deformation

is admissible by virtue of Cauchy’s theorem and Jordan’s lemma. After the
mapping of the variable of integration from the complex p-plane to the real
τ -axis we find

Ĝ∞(x1, x2, s) =
1

2π

∫ ∞

τ=r/c

exp
[

−L̂(s)τ
] dτ

(τ 2 − r2/c2)1/2
(F.7)

Note that Eq. (F.7) formally resembles the result of the standard Cagniard-
DeHoop method [16, Eq. (2.18)] for the loss-free wave motion when L̂(s) is
equal to s. Now, however, we use [1, (29.3.96)] and Eq. (F.7) is transformed
into TD

G∞(x1, x2, t) = (α/2π)

∫ t

τ=r/c

τ I1
[

α(t2 − τ 2)1/2
]

exp(−αt)

(t2 − τ 2)−1/2(τ 2 − r2/c2)−1/2dτ

+ (1/2π)(t2 − r2/c2)−1/2H(t− r/c) exp(−αt) (F.8)

where I1(.) is the modified Bessel function of the first kind and the first order.
Note that the integral in Eq. (F.8) shows the inverse square-root singularities
in the both upper and lower limits of the integration that can be extracted
through the following substitution

τ 2 = (r/c)2 cos(ψ) + t2 sin2(ψ) for 0 ≤ ψ ≤ π/2 (F.9)
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With the aid of Eq. (F.9) we then arrive at

G∞(x1, x2, t) = (α/2π) exp(−αt)H(t− r/c)
∫ π/2

ψ=0

I1
[

α(t2 − r2/c2)1/2 cos(ψ)
]

dψ

+ (1/2π)(t2 − r2/c2)−1/2H(t− r/c) exp(−αt) (F.10)

The integral in (F.10) can be carried out in closed form, viz

∫ π/2

ψ=0

I1 [β cos(ψ)] dψ = 2 sinh2(β/2)/β (F.11)

with {β ∈ R; β > 0}, which finally leads to

G∞(x1, x2, t) = (1/2π)(t2 − r2/c2)−1/2H(t− r/c)
{

1 + 2 sinh2[(α/2)(t2 − r2/c2)1/2]
}

exp(−αt) (F.12)

An alternative way to obtain (F.12) is to start with the corresponding three-
dimensional solution [20, Sec. 26.5] and apply Hadamard’s method of descent
[13, III - §4.4].
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Appendix G

Numerical inversion of the
Laplace transformation

In order to account for relaxation behavior of planar circuits, a numerical
inversion of the Laplace transformation is employed in the main text. This
inversion is based on the Bromwich integral

f(t) =
1

2πi

∫

s∈B

exp(st)F̂ (s)ds (G.1)

for t > 0, where B is the Bromwich integration contour that runs to the
right of all singularities of F̂ (s). The Bromwich integration contour may be
deformed into an equivalent contour Γ ∪ Γ∗ (∗ denotes complex conjugate)
provided that |F̂ (s)| → 0 in Re(s) < 0 as |s| → ∞ and a new integration
contour encloses all singularities of F̂ (s) in view of Jordan’s lemma and
Cauchy’s theorem, respectively. A promising candidate is the hyperbolic
integration contour defined according to

Γ = {s(v) = σ0 − σ cosh(v) + iν sinh(v)} (G.2)

for {v ∈ R; 0 ≤ v ≤ v∞}, where σ0 ∈ R, {σ, ν ∈ R; σ > 0, ν > 0}, v∞ =
acosh[(σ0 + σ∞)/σ] with Re[s(v∞)] = −σ∞. Upon combining the upper and
lower integration contours we arrive at

f(t) =
1

π
Im

∫ v∞

v=0

exp[s(v)t]F̂ [s(v)]
ds

dv
dv (G.3)

where the relevant Jacobian reads

ds/dv = −σ sinh(v) + iν cosh(v) (G.4)
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An efficient way to solve (G.3) is the trapezoidal rule that leads to the fol-
lowing approximation

f(t) ≃ 1

π

v∞
2N

Im

{

Ĝ[s(0)] + 2

N−1
∑

k=1

Ĝ[s(vk)] + Ĝ[s(v∞)]

}

(G.5)

where

Ĝ[s(v)] = exp[s(v)t]F̂ [s(v)][ds(v)/dv] (G.6)

and vk = kv∞/N for k = {0, ..., N}.



Appendix H

Green’s function of the scalar
2D wave equation with
relaxation

Consider the following wave equation

(∂21 + ∂22)G∞ − c−2∂2t (G∞ + χ ∗G∞) = −δ(x, t) (H.1)

with the zero-value initial conditions G∞(x, 0) = 0 and ∂tG∞(x, 0) = 0 for
all x ∈ R2. Here, c is the wave speed (a positive and real-valued constant)
and χ = χ(t) is the (causal) relaxation function, i.e. χ(t) = 0 for all t < 0.

The wave equation (H.1) is solved with the aid of a modification of the
Cagniard-DeHoop method [16]. To this end, the one-sided Laplace transfor-
mation (1.2) is combined with the dispersive-wave slowness field representa-
tion either along x1- or x2-direction. For the former direction we take

Ĝ∞(x1, x2, s) =
[

s(1 + χ̂)1/2
]

/2πi
∫ i∞

p=−i∞

exp
[

−s(1 + χ̂)1/2px1
]

G̃∞(p, x2, s)dp (H.2)

where χ̂ = χ̂(s) is real and positive for real and positive values of s and mono-
tonically decreases toward zero as s→ ∞. As a consequence of the slowness
representation, ∂1 is transformed to ∂̃1 = −s(1 + χ̂)p and the transform-
domain wave equation reads

∂22G̃∞ − s2(1 + χ̂)γ2(p)G̃∞ = −δ(x2) (H.3)

where γ(p) is the propagation coefficient

γ(p) = (1/c2 − p2)1/2 with Re(.)1/2 > 0 (H.4)



140 Green’s function of the scalar 2D wave equation with relaxation

The bounded transform-domain solution of (H.3) is then substituted in (H.2),
which finally yields

Ĝ∞(x1, x2, s) = (1/2πi)
∫ i∞

p=−i∞

exp
{

−s(1 + χ̂)1/2 [px1 + γ(p)|x2|]
}

dp/2γ(p) (H.5)

A few next steps follow the classical procedure of the Cagniard-DeHoop
method. The original contour in the complex p-plane is deformed into the
Cagniard-DeHoop contour defined as

px1 + γ(p)|x2| = τ (H.6)

where {τ ∈ R; r/c ≤ τ < ∞} and r = (x21 + x22)
1/2 > 0. The deformation

is admissible by virtue of Cauchy’s theorem and Jordan’s lemma. After the
mapping of the variable of integration from the complex p-plane to the real
τ -axis we find

Ĝ∞(x1, x2, s) =
1

2π

∫ ∞

τ=r/c

exp
[

−s(1 + χ̂)1/2τ
] dτ

(τ 2 − r2/c2)1/2
(H.7)

Note that up to this point, the described procedure is similar to the one for
the dissipative wave equation from Appendix F. Now, however, we assume a
general relaxation behavior, for which the exponential kernel does not have
a closed form Laplace-transform inversion. For such a case we start with the
Bromwich inversion integral and write

E(t, τ) =
1

2πi

∫

s∈B

exp(st) exp
[

−L̂(s)τ
]

ds (H.8)

where L̂(s) = s(1 + χ̂)1/2 as used in Appendix F and B is the Bromwich
contour. The Bromwich contour is parallel with Re(s) = 0 and is shifted to
the right of all singularities in the complex s-plane. For standard relaxation
models L̂(s) shows algebraic branch points due to square roots for which we
choose Re[(.)1/2] > 0 for all s ∈ C. This implies the (overlapping) branch
cuts along the negative real axis in the complex s-plane. Then, the following
asymptotic expansion holds

L̂(s) = L̂∞(s) +O(s−1) (H.9)

as |s| → ∞, where L̂∞(s) = s + ω, {ω ∈ R;ω ≥ 0}. In virtue of Jordan’s
lemma we therefore rewrite (H.8) as

E(t, τ) =
1

2πi

∫

s∈B

exp(st)
{

exp
[

−L̂(s)τ
]

− exp
[

−L̂∞(s)τ
]}

ds

+
1

2πi

∫

s∈B

exp(st) exp
[

−L̂∞(s)τ
]

ds (H.10)
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Obviously, the second term in Eq. (H.10) represents the (attenuated) Dirac
delta distribution

1

2πi

∫

s∈B

exp(st) exp
[

−L̂∞(s)τ
]

ds = δ(t− τ) exp(−ωτ) (H.11)

while the first term can be handled numerically along the lines described
in Appendix G. In this process, the Bromwich contour is for t > τ closed
to the right by supplementing it with a semi-circle of radius ∆ → ∞ and
the resulting contour is in view of Cauchy’s theorem contracted into the
hyperbolic contour Γ ∪ Γ∗ provided that all singularities are enclosed. Once
the numerical integration is carried out, we arrive at

E(t, τ) = F (t, τ)H(t− τ) + δ(t− τ) exp(−ωτ) (H.12)

Upon substituting Eq. (H.12) into the TD counterpart of (H.7) we end up
with

G∞(x1, x2, t) = (1/2π)(t2 − r2/c2)−1/2H(t− r/c) exp(−ωt)

+ (1/2π)

∫ t

τ=r/c

(τ 2 − r2/c2)−1/2F (t, τ)dτ (H.13)

where we have used the sifting property of the Dirac distribution. The first
part in Eq. (H.13) is the (attenuated) fundamental solution of the two-
dimensional wave equation, while the second one represents the effect of
(Boltzmann-type) relaxation. The latter is negligible close to the wavefront
as t ↓ r/c, which is a general feature of dispersive phenomena [31]. Finally
note that the dissipative wave equation solved in Appendix F is a special
case of Eq. (H.1) for χ(t) = 2αH(t).
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[106] M. Štumpf. Pulsed EM field radiation, mutual coupling and reciprocity
of thin planar antennas. IEEE Transactions on Antennas and Propa-

gation, 62(8):3943–3950, August 2014.

[107] M. Štumpf. Time-domain analysis of rectangular power-ground struc-
tures with relaxation. IEEE Transactions on Electromagnetic Compat-

ibility, 56(5):1095–1102, October 2014.
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