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Preface
Formal Concept Analysis (FCA) is a method of analysis of relational data which
has proved to be useful in many areas of computer science. In its basic setting
FCA is one-valued: it works only with affirmations that objects have attributes. If
a user needs to express a denial of incidence, i.e. that an object does not have an
attribute, he can easily achieve it using a logical negation. This is no longer the case
for graded settings, where the affirmations and denials of incidences between objects
and attributes are a matter of degrees. Management of graded affirmations is well
elaborated in the literature because it represents a direct generalization of a one-
valued character of FCA. In contrast, graded denials have received little attention.
This habilitation thesis provides a thoroughly elaborated framework for handling
data with graded denials and data with both graded denials and graded affirmations
in FCA. A special attention is given to structures behind FCA in a graded setting.
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1 Introduction
The need to extract potentially useful information from an ever-growing amount of
available data is generally recognized by both academia and business. The extracted
information usually comes in the form of a reasonably small number of understand-
able patterns such as clusters, if-then rules (association rules, functional dependen-
cies), etc. The process of such extraction is called Knowledge Discovery in Databases
(KDD). Many KDD methods and techniques have been developed in the past few
decades; one being Formal Concept Analysis (FCA) [29, 23]. Its core notion, formal
concept, is a mathematical formalization of a traditional view of conceptual knowl-
edge. As people naturally reason about reality in terms of concepts the patterns
delivered by FCA are easy to understand and interpret.

Formal Concept Analysis is a method of knowledge representation, information
management and data analysis invented by Rudolf Wille. Solid mathematical and
computational foundations of FCA were developed in the 1980s. In the past two
decades or so, FCA has enjoyed considerable interest in various communities. Many
papers on applications of FCA in various domains have appeared, including those
in premier journals and conferences. The method is based on a formalization of a
certain philosophical view of conceptual knowledge which goes back to Port-Royal
logic [1, 41].

Some of the most interesting applications of FCA are arguably in computer sci-
ence. It has been applied in software engineering [61, 36, 62], web mining [26, 27],
organization of web search results [25, 24], text mining and linguistics [37], analysis
of medical and biological data [17, 40, 39], and crime data [51, 52].

The basic input data for FCA is a flat table, called a formal context, in which rows
represent objects, columns represent attributes. Each entry of the table contains a
cross if the corresponding object has the corresponding attribute, and is otherwise
left blank (Fig. 1).

a b c d e f g
1 ˆ ˆ ˆ ˆ ˆ ˆ

2 ˆ ˆ ˆ ˆ

3 ˆ ˆ

4 ˆ ˆ ˆ ˆ

Figure 1: Formal context with objects 1, 2, 3, 4 and attributes a, b, . . . , g.

The basic notion in FCA is that of a formal concept. A formal concept consists
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extent intent
c1 H Y
c2 t2, 4u ta, b, c, gu
c3 t1u ta, b, d, e, f, gu
c4 t1, 2, 4u ta, b, gu
c5 t1, 3u td, gu
c6 X tgu ‚

c1

‚c2 ‚

c3

‚

c4
‚ c5

‚

c6

Figure 2: The formal concepts of the formal context in Fig. 1 and its concept lattice.

of two collections: extent—a collection of all objects sharing the same attributes, and
intent—a collection of all the shared attributes.

FCA represents knowledge discovered in the input data in two ways. The first
one is a concept lattice—a hierarchy of formal concepts present in the formal context
(Fig. 2). The second one is attribute implications—if-then rules describing dependen-
cies among attributes in the formal context.

FCA in its basic setting deals with one-valued data; i.e. presence of an element
in a formal context, in a concept, or in an attribute implication represents an affir-
mation, while absence represents a lack of affirmation. In particular, each cross in
the formal context is seen as an affirmation of the form

“the object x has the attribute y”.

An absence of such affirmation does not generally mean that the object x does
not have the attribute y. The Port-Royal logic additionally works another object-
attribute incidence—denial of the form

“the object x does not have the attribute y”.

When a denial needs to be processed by FCA, one can easily introduce a negative
attribute, for example ‘not y’, and add the affirmation

“the object x has the attribute ‘not y’”.

This way of managing denials in FCA can be found in [48, 49, 56, 57, 58, 60, 59].
We see that denials are easily handled in the basic setting of FCA with one-valued
data, however this is no longer the case for graded data.
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In everyday life we use concepts which are not sharply bounded (e.g. ‘great
dancer’ or ‘middle aged man’). In terms of FCA, objects and attributes need not be
divided sharply by a formal concept into those to which the formal concept applies
and those to which it does not. That is to say, a formal concept applies to different
objects to different, possibly intermediate, degrees. For example, the concept ‘middle
aged man’ may apply to a 45-year old person to degree 1, to a 55-year old person
to degree 0.5, and to a 65-year old person to degree 0.2. There are several ways to
generalize FCA by which we are able to process such indeterminacy or uncertainty
[8, 9, 54, 47, 38, 22] (see also [53] and references therein). Many of them are based
on Zadeh’s theory of fuzzy sets [68].

In this work, we stick with the graded setting introduced independently by Be-
lohlavek and Pollandt [8, 9, 54] where the formal context contains truth degrees
taken from a particular structure of truth degrees. Truth degree a in entry xx, yy
represents an affirmation that

the object x has the attribute y at least to degree a.

Denials are then statements of the form:

the object x has the attribute y at most to degree b.

Unlike in the basic setting, here we cannot simply substitute denials by affirmations of
negative attributes. The reason is that the law of double negation does not generally
hold true in the graded setting. Consequently, applying negation leads to degradation
of the input data.

Two main kinds of concept-forming operators, antitone (or standard) and isotone
(of attribute/object-oriented), were studied [9, 30, 54, 55], compared [13, 15] and even
covered under a unifying framework [10, 50]. The antitone concept-forming operators
handle object-attribute incidences as affirmations, and concepts are based on sharing
attributes (at least in some degree). The isotone concept-forming operators handle
incidences of objects and attributes as denials, and concepts are based on the absence
of the same attributes (having them at most in some degree).

The graded affirmations in FCA have been thoroughly studied in the literature
while the study of graded denials is the main content of this thesis.

Contributions This thesis consists of eight commented selected papers whose uni-
fying scheme is managing graded denials in FCA. They start with extensive studies
of isotone concept-forming operators in FCA for graded data and lead to a general
framework for FCA that handles both graded affirmations and graded denials.
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The list of the papers follows.1 The bracketed numbers correspond to the refer-
ence numbers in the bibliography.

[43] Jan Konecny. Isotone fuzzy Galois connections with hedges. Information
Sciences, 181(10):1804–1817, 2011.

[16] Radim Belohlavek and Jan Konecny. A calculus for containment of fuzzy
attributes. Soft Computing, pages 1–12, 2017.

[15] Radim Belohlavek and Jan Konecny. Concept lattices of isotone vs. antitone
Galois connections in graded setting: Mutual reducibility revisited. Informa-
tion Sciences, 199:133–137, 2012.

[3] Eduard Bartl and Jan Konecny. L-concept analysis with positive and negative
attributes. Information Sciences, 360:96–111, 2016.

[4] Eduard Bartl and Jan Konecny. Rough fuzzy concept analysis. Fundamenta
Informaticae, 156(2):141–168, 2017.

[44] Jan Konecny and Michal Krupka. Block relations in formal fuzzy concept
analysis. International Journal of Approximate Reasoning, 73:27–55, 2016.

[45] Jan Konecny and Michal Krupka. Complete relations on fuzzy complete lat-
tices. Fuzzy Sets and Systems, 320:64–80, 2017.

[46] Jan Konecny and Manuel Ojeda-Aciego. On homogeneous L-bonds and het-
erogeneous L-bonds. International Journal of General Systems, 45(2):160–186,
2016.

The thesis is structured as follows. Section 2 provides unified preliminaries to all
the enclosed papers. It represents a brief introduction to FCA in the graded setting,
[8, 9, 54]. Section 3 then contains the papers, each preceded by a short summary of
its content.

1Whenever author’s contribution is of interest we declare that all authors contributed equally.
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2 Formal Concept Analysis for Graded Data
We introduce basic notions on complete residuated lattices, fuzzy sets and fuzzy
relations and then we turn to FCA for graded data. The content of this section is
not to be considered a contribution of this thesis. The only exception is the semantics
of graded denials assigned to attribute-oriented concept-forming operators.

2.1 Complete Residuated Lattices
We use complete residuated lattices as basic structures of truth degrees. The truth
degrees taken from these structures are used to express the strength of affirmations
and denials in formal contexts and in both outputs of formal concept analysis.

A complete residuated lattice [8, 34, 64] is a structure L “ xL,^,_,b,Ñ, 0, 1y
such that

• xL,^,_, 0, 1y is a complete lattice, i.e. a partially ordered set in which arbitrary
infima and suprema exist (the partial order of L is denoted by ď);

• xL,b, 1y is a commutative monoid, i.e. b is a binary operation which is com-
mutative, associative, and ab 1 “ a for each a P L;

• b and Ñ satisfy adjointness, i.e. ab b ď c iff a ď bÑ c.

Elements of L are called truth degrees. Operations b (multiplication) and Ñ

(residuum) play the role of truth functions of “fuzzy conjunction” and “fuzzy im-
plication.” 0 and 1 denote the least and greatest elements. Throughout this work, L
denotes an arbitrary complete residuated lattice.

Common examples of complete residuated lattices include those defined on the
unit interval (i.e. L “ r0, 1s), ^ and _ being minimum and maximum, b being a
left-continuous t-norm with the corresponding residuumÑ given by aÑ b “ maxtc |
ab c ď bu. The three most important pairs of adjoint operations on the unit interval
are

• Łukasiewicz
ab b “ maxpa` b´ 1, 0q,
aÑ b “ minp1´ a` b, 1q,

• Gödel
ab b “ minpa, bq,

aÑ b “

#

1 if a ď b,

b otherwise,
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• Goguen (product)
ab b “ a ¨ b,

aÑ b “

#

1 if a ď b,
b
a

otherwise.

Instead of a unit interval we can also consider a finite chain, e.g.

L “ t0, 1
n
, . . . ,

n´ 1
n

, 1u.

All operations on this chain are then defined analogously, see [8].

2.2 Truth-Stressing and Truth-Depressing Hedges
We endow the complete residuated lattices with additional unary operations— truth-
stressing and truth-depressing hedges. These operations will serve as parameters for
semantics of concept-forming operators as well as for semantics of attribute implica-
tions.

Truth-stressing hedges were studied from the point of fuzzy logic as logical con-
nectives ‘very true’, see [35]. Our approach is close to that in [35]. A truth-stressing
hedge is a mapping ˚ : LÑ L satisfying

1˚ “ 1, a˚ ď a, a ď b implies a˚ ď b˚, a˚˚ “ a˚ (1)

for each a, b P L.
On every complete residuated lattice L, there are two important truth-stressing

hedges:

(i) identity, i.e. a˚ “ a pa P Lq;

(ii) globalization, i.e.

a˚ “

"

1, if a “ 1,
0, otherwise.

A truth-depressing hedge is a mapping � : L Ñ L such that following conditions
are satisfied

0� “ 0, a ď a�, a ď b implies a� ď b�, a�� “ a� (2)

for each a, b P L.
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A truth-depressing hedge is a truth function of logical connective ‘slightly true’,
see [63]. In [63] a stricter definition of the truth-depressing hedge with a connection
to truth-stressing hedges is given. For our purposes, it is enough to assume conditions
(2).

On every complete residuated lattice L, there are two important truth-depressing
hedges:

(i) identity, i.e. a� “ a pa P Lq;

(ii) antiglobalization, i.e.

a� “

"

0, if a “ 0,
1, otherwise.

Let ‚ : L Ñ L be a truth-stressing hedge or truth-depressing hedge. By fix p‚q
we denote a set of truth degrees a P L with a “ a‚; that is

fix p‚q “ ta P L | a “ a‚u.

2.3 L-sets and L-relations
In the basic setting, a formal concept is given by two sets—an extent which contains
objects covered by the concept, and an intent which contains attributes covered by
the concept. In the graded setting, the presence of objects and attributes in extents
and intents is a matter of degree. We model the extents and intents using L-sets.
Similarly, incidences between objects and attributes in the input context are a matter
of degree and we model them using L-relations.

An L-set [32, 31] A in a universe set X is a mapping assigning to each x P X
some truth degree Apxq P L. The set of all L-sets in a universe X is denoted LX .
An L-set A P LX is also denoted tApxq{x | x P Xu. If for all y P X distinct from
x1, x2, . . . , xn we have Apyq “ 0, we also write

t
Apx1q{x1,

Apx2q{x1, . . . ,
Apxnq{xnu.

If there is exactly one x P X s.t. Apxq ą 0 (i.e. A “ tApxq{xu) we call A a singleton.
The operations with L-sets are defined componentwise. For instance, for a P L

and A P LX we define L-sets a Ñ A and a b A in X by pa Ñ Aqpxq “ a Ñ Apxq
and pa b Aqpxq “ a b Apxq for all x P X respectively. The intersection of L-sets
A,B P LX is an L-set A X B in X such that pA X Bqpxq “ Apxq ^ Bpxq for each
x P X. Similarly, this is utilized for the union of L-sets.
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˚G ˚3˚1 ˚2 ˚4 ˚5 ˚6 id

1
0.75
0.5
0.25
0

�G �3�1 �2 �4 �5 �6 id

1
0.75
0.5
0.25
0

˚G

˚1 ˚4˚3

˚2 ˚5 ˚6

id

�G

�1 �4�3

�2 �5 �6

id

Figure 3: Truth-stressing hedges (top) and truth-depressing hedges (middle) on a
five element chain and their ordering w.r.t. fix p¨q Ď fix p¨q (bottom).
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Additionally, for a P L and an L-set B P LX we define left a-multiplication abB
left a-shift aÑ B and a-complement B Ñ a respectively by

pabBqpxq “ abBpxq

paÑ Bqpxq “ aÑ Bpxq

pB Ñ aqpxq “ Bpxq Ñ a

for all x P X.
Intersection and union of two L-sets can be generalized to any number of L-sets

and even to L-sets of L-sets. For an L-set U : LX Ñ L, the intersection
Ş

U and
union

Ť

U of U are L-sets in X, defined by
č

Upxq “
ľ

APLX

UpAq Ñ Apxq, (3)
ď

Upxq “
ł

APLX

UpAq b Apxq, (4)

for any x P X.
An L-set A P LX is called crisp if Apxq P t0, 1u for each x P X. Crisp L-sets can

be identified with ordinary sets. For a crisp set A, we also write x P A for Apxq “ 1
and x < A for Apxq “ 0.

For A,B P LX we define the degree of inclusion of A in B by

SpA,Bq “
ľ

xPX

pApxq Ñ Bpxqq. (5)

The degree of inclusion generalizes the classical inclusion relation. Described verbally,
SpA,Bq represents a degree to which A is a subset of B. In particular, we write
A Ď B iff SpA,Bq “ 1. As a consequence, we have A Ď B iff Apxq ď Bpxq for each
x P X. Further, we set

A «X B “ SpA,Bq ^ SpB,Aq. (6)

The value A «X B is interpreted as the degree to which the sets A and B are similar.

A binary L-relation (binary fuzzy relation) between X and Y can be thought of
as an L-set in the universe X ˆ Y . That is, a binary L-relation I P LXˆY between
a set X and a set Y is a mapping assigning to each x P X and each y P Y a truth
degree Ipx, yq P L (a degree to which x and y are related by I). In the case X “ Y
we call such L-relation also an L-relation on X.
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A binary L-relation R on a set X is called reflexive if Rpx, xq “ 1 for any x P X,
symmetric if Rpx, yq “ Rpy, xq for any x, y P X, and transitive if Rpx, yq bRpy, zq ď
Rpx, zq for any x, y, z P X. R is called an L-tolerance, if it is reflexive and symmetric,
L-equivalence if it is reflexive, symmetric and transitive. If R is an L-equivalence
such that for any x, y P X from Rpx, yq “ 1 it follows x “ y, then R is called an
L-equality on X. L-equalities are often denoted by «. The similarity «X of L-sets
(6) is an L-equality on LX .

Let „ be an L-equivalence on X. We say that an L-set A in X is compatible with
„ (or extensional w.r.t. „, if for any x, x1 P X it holds

Apxq b px „ x1q ď Apx1q. (7)

A binary L-relation R on X is compatible with „, if for each x, x1, y, y1 P X,

Rpx, yq b px „ x1q b py „ y1q ď Rpx1, y1q. (8)

Composition Operators We use three composition operators, ˝, Ž, and Ż, and
consider the corresponding compositions I “ A ˝ B, I “ A Ž B, and I “ A Ż B
(for I P LXˆY , A P LXˆF , B P LFˆY ). In the compositions, Ipx, yq is interpreted as
the degree to which the object x has the attribute y; Apx, fq as the degree to which
the factor f applies to the object x; Bpf, yq as the degree to which the attribute
y is a manifestation (one of possibly several manifestations) of the factor f . The
composition operators are defined by

pA ˝Bqpx, yq “
ł

fPF

Apx, fq bBpf, yq, (9)

pA Ž Bqpx, yq “
ľ

fPF

Apx, fq Ñ Bpf, yq, (10)

pA Ż Bqpx, yq “
ľ

fPF

Bpf, yq Ñ Apx, zq. (11)

Note that these operators were extensively studied by Bandler and Kohout, see
e.g. [42]. They have natural verbal descriptions. For instance, pA ˝ Bqpx, yq is the
truth degree of the proposition “there is factor f such that f applies to object x and
attribute y is a manifestation of f”; pA Ž Bqpx, yq is the truth degree of “for every
factor f , if f applies to object x then attribute y is a manifestation of f”. Note
also that for L “ t0, 1u, A ˝ B coincides with the well-known composition of binary
relations.

10



Theorem 1 ([42, 8], associativity and distributivity of composition operators). We
have

R ˝ pS ˝ T q “ pR ˝ Sq ˝ T, (12)
R Ž pS Ż T q “ pR Ž Sq Ż T, (13)
R Ž pS Ž T q “ pR ˝ Sq Ž T, (14)
R Ż pS ˝ T q “ pR Ż Sq Ż T. (15)

Furthermore, we have that

p
ď

i

Riq ˝ S “
ď

i

pRi ˝ Sq, and R ˝ p
ď

i

Siq “
ď

i

pR ˝ Siq, (16)

p
č

i

Riq Ż S “
č

i

pRi Ż Sq, and R Ż p
ď

i

Siq “
č

i

pR Ż Siq, (17)

p
ď

i

Riq Ž S “
č

i

pRi Ž Sq, and R Ž p
č

i

Siq “
č

i

pR Ž Siq. (18)

Remark 1. In [10] it is shown that ˝, Ż, and Ž can be considered to be the same
composition as it can be covered by a general framework. We do not use the general
framework in this thesis because most results contained here use specific properties of
compositions defined by (9),(10), and (11).

2.4 L-Galois Connections, L-closures and L-interiors
Now we introduce the fundamental mappings behind FCA in the graded setting,
specifically antitone and isotone L-Galois connections and L-closure and L-interior
operators.

An antitone L-Galois connection [5] between the sets X and Y is a pair xf, gy of
mappings f : LX Ñ LY , g : LY Ñ LX , satisfying

SpA1, A2q ď SpfpA2q, fpA1qq SpB1, B2q ď SpgpA2q, gpB1qq (19)
A Ď gpfpAqq B Ď fpgpBqq (20)

for every A,A1, A2 P L
X , A,A1, A2 P L

Y .
An isotone L-Galois connection [30] between the sets X and Y is a pair xX, Yy of

mappings X : LX Ñ LY , Y : LY Ñ LX , satisfying

SpA1, A2q ď SpfpA1q, fpA2qq SpB1, B2q ď SpgpA1q, gpB2qq (21)
A Ď gpfpAqq B Ě fpgpBqq (22)

11



for every A,A1, A2 P L
X , A,A1, A2 P L

Y .
The following theorem summarizes properties of both antitone and isotone Galois

connections.
Theorem 2 ([5, 30]). An antitone L-Galois connection xf, ay satisfies the following
properties:

(i) A1 Ď A2 implies fpA2q Ď fpA1q and B1 Ď B2 implies gpB2q Ď gpB1q

(ii) SpA, gpBqq “ SpB, fpAqq

(iii) f p
Ť

iPI Aiq “
Ş

iPI fpAiq and g p
Ť

iPI Biq
Ó
“

Ş

iPI gpBiq

(iv) fpgpfpAqqq “ fpAq and gpfpgpBqqq “ gpBq

for each A,Ai P L
X , B,Bi P L

Y .
An isotone L-Galois connection xf, gy satisfies the following properties:

(i) A1 Ď A2 implies fpA1q Ď fpA2q and B1 Ď B2 implies gpB1q Ď gpB2q

(ii) SpA, gpBqq “ SpfpAq, Bq

(iii) f p
Ť

iPI Aiq “
Ť

iPI fpAiq and g p
Ş

iPI Biq “
Ş

iPI gpBiq

(iv) fpgpfpAqqq “ fpAq and gpfpgpBqqq “ gpBq

for each A,Ai P L
X , B,Bi P L

Y .

Definition 1. [11, 6] A system of L-sets V Ď LX is called an L-interior system if
• V is closed under b-multiplication, i.e. for every a P L and A P V we have

that ab A P V ;

• V is closed under union, i.e. for Aj P V (j P J) we have that
Ť

jPJ Aj P V .
V Ď LX is called an L-closure system if
• V is closed under Ñ-shifts, i.e. for every a P L and A P V we have that
aÑ A P V ;

• V is closed under intersection, i.e. for Aj P V (j P J) we have that
Ş

jPJ Aj P V .
Theorem 3. If xf, gy an antitone L-Galois connection between sets X and Y , then
the composition f ˝ g is an L-closure system on X and the composition g ˝ f in an
L-closure system on Y .
If xf, gy an isotone L-Galois connection between sets X and Y , then the composition
f ˝ g is an L-closure system on X and the composition g ˝ f in an L-interior system
on Y .
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2.5 L-ordered Sets
The set of all formal concepts in the graded setting with particular L-order forms a
structure called L-ordered set. This structure is described in this section.

An L-order on a set U with an L-equality « is a binary L-relation ĺ on U which
is compatible with «, reflexive, transitive and satisfies pu ĺ vq^ pv ĺ uq ď u « v for
any u, v P U (antisymmetry). The tuple U “ xxU,«y,ĺy is called an L-ordered set
[8, 9]. An immediate consequence of the definition is that for any u, v P U it holds

u « v “ pu ĺ vq ^ pv ĺ uq. (23)

If U “ xxU,«y,ĺy is an L-ordered set then the tuple xU, 1ĺy, where 1ĺ is the
1-cut of ĺ, is a (partially) ordered set. We sometimes write ď instead of 1ĺ and use
the symbols ^,

Ź

resp. _,
Ž

for denoting infima resp. suprema in xU, 1ĺy.
For two L-ordered sets U “ xxU,«Uy,ĺUy and V “ xxV,«V y,ĺV y, a mapping

f : U Ñ V is isotone, if pu1 ĺU u2q ď pfpu1q ĺV fpu2qq, and an embedding, if
pu1 ĺU u2q “ pfpu1q ĺV fpu2qq, for any u1, u2 P V .

A mapping f : U Ñ V is called an isomorphism of U and V, if it is both, a
bijection and an embedding. U and V are then called isomorphic.

An antitone mapping and dual embedding are defined by pu1 ĺU u2q ď pfpu2q ĺV

fpu1qq and pu1 ĺU u2q “ pfpu2q ĺV fpu1qq, respectively. A dual isomorphism is a
bijection which is a dual embedding.

Let U be an L-ordered set. For any W P LU and w P U we set

LW pwq “
ľ

uPU

W puq Ñ pw ĺ uq, UW pwq “
ľ

uPU

W puq Ñ pu ĺ wq. (24)

The right-hand side of the first equation is the degree of “For each u P U , if u is in
W , then w is less than or equal to u”, and similarly for the second equation. Thus,
LW pwq (UW pwq) can be seen as the degree to which w is less (greater) than or equal
to each element of W . The L-set LW (resp. UW ) is called the lower cone (resp. the
upper cone) of W .

For u, v P U , u ď v, the L-set ~u, v� “ Utuu X Ltvu is called an L-interval with
bounds u and v. We have

~u, v�pwq “ pu ĺ wq ^ pw ĺ vq. (25)

Let U be an L-ordered set. For any L-setW P LU there exists at most one element
u P U such that LW puq ^ UpLW qpuq “ 1 (resp. UW puq ^ LpUW qpuq “ 1) [9, 8]. If
there is such an element, we call it the infimum of W (resp. the supremum of W ) and

13



denote inf W (resp. supW ); otherwise we say that the infimum (resp. supremum)
does not exist.

U is called completely lattice L-ordered, if for each W P LU , both inf W and
supW exist.

An important example of a completely lattice L-ordered set is the tuple LX “

xxLX ,«Xy, Sy, where X is an arbitrary set and «X and S are given by (6) and
(5), respectively. Infima and suprema in LX are intersections and unions: for any
M P LLX we have

inf M “
č

M, supM “
ď

M. (26)

2.6 Formal L-Concept Analysis
As we have now introduced all essential mathematical notions, we can finally turn
our attention to the formal L-concept analysis. Many ways to generalize FCA can
be found in the literature [8, 9, 54, 47, 38, 22] (see also [53] and references therein).
From here to the end of Section 2 we present the approach of Belohlavek and Pollandt
[8, 9, 54].

An L-context is a triplet xX, Y, Iy where X and Y are (ordinary nonempty) sets
and I P LXˆY is an L-relation between X and Y . Elements of X are called objects,
elements of Y are called attributes, I is called an incidence relation. Ipx, yq “ a is
read:

“the object x has the attribute y at least to degree a”

or

“the object x has the attribute y at most to degree a”

depending on whether the incidence between x and y is seen as an affirmation or
denial.

We consider the following pairs of operators, called concept-forming operators,
induced by an L-context xX, Y, Iy. First, the pair xÒ, Óy of standard concept-forming
operators Ò : LX Ñ LY and Ó : LY Ñ LX is defined, for all A P LX and B P LY , by

AÒpyq “
ľ

xPX

pApxq Ñ Ipx, yqq,

BÓpxq “
ľ

yPY

pBpyq Ñ Ipx, yqq.
(27)
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α β γ
A 0.5 0 1
B 1 0.5 1
C 0 0.5 0.5
D 0.5 0.5 1

Figure 4: Example of L-context with objects A,B,C,D and attributes α, β, γ; L is a
chain 0 ă 0.5 ă 1 with Łukasiewicz operations.

In words, the operator Ò assign to an L-set A of objects the L-set AÒ of attributes
which are shared by all the objects in A. Analogously, the operator Ó assign to an
L-set B of attributes the L-set BÓ of objects which have all the attributes in B.

Second, the pair xX, Yy of attribute-oriented concept-forming operators X : LX Ñ

LY and Y : LY Ñ LX is defined by

AX
pyq “

ł

xPX

pApxq b Ipx, yqq,

BY
pxq “

ľ

yPY

pIpx, yq Ñ Bpyqq.
(28)

In words, the operator X assign to an L-set A of objects the L-set AX of attributes
which at least one object in A has. The operator Y assign to an L-set B of attributes
the L-set BY of objects which have no other attributes than those in B.

Additionally, dual operators to attribute-oriented concept-forming will be some-
times considered. Specifically, a pair of operators ^ : LX Ñ LY and _ : LY Ñ LX

A^
pyq “

ľ

xPX

pIpx, yq Ñ Apxqq,

B_
pxq “

ł

yPY

pBpyq b Ipx, yqq.
(29)

The operators x^, _y are called object-oriented concept-forming operators.
When we need to emphasize which L-relation induces the concept-forming oper-

ators, we use an additional subscript; for example, we write ÒI instead of just Ò.

Example 1. Consider the data (L-context) in Fig. 4, the objects represent employ-
ees, and the attributes represent skills.

(a) One can handle the incidences in the L-context as affirmations and form con-
cepts based on having the same skills at least in some degree; such concepts
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are standard concepts formed by xÒ, Óy. Extents of the concepts can be inter-
preted as collections of employees able to fulfill a task which requires particular
skill set. For example, the collection of employees able to fulfill a task which
requires the skill α in full degree and the skill β in half degree can be found as
tα, 0.5{βuÓ.

(b) Or he can handle the incidences as denials and form concept based on having
the same skills at most in some degree; such concepts are are standard concepts
formed by isotone concept-forming operators xX, Yy. Extents of the concepts can
be interpreted as collections of employees who lack the same skills and need
some training in them. For example, the collection of employees who lack the
skill α and have the skill β at most in degree is can be found as t0.5{β, γuY.

Remark 2. Notice that the three pairs of concept-forming operators can be in-
terpreted as compositions relations. Applying the isomorphisms L1ˆX � LX and
LYˆ1 � LY whenever necessary, one could write them, alternatively, as follows:

AÒ “ A Ž I AX
“ A ˝ I A^

“ A Ż I

BÓ “ I Ż B BY
“ I Ž B B_

“ I ˝B

The concept-forming operators induced by L-contexts are in correspondence with
an antitone and isotone L-Galois connection:

Theorem 4 ([5]). Let xX, Y, Iy be an L-context, xf, gy be an antitone L-Galois
connection between X and Y . Then

(i) xÒI , ÓIy is a Galois connection.

(ii) Ixf,gy defined by
Ixf,gypx, yq “ fpt1{xuqpyq (30)

is an L-relation between X and Y and we have

(iii) xf, gy “ xÒIxf,gy ,
ÓIxf,gy y and I “ IxÒI ,ÓI y.

Theorem 5. Let xX, Y, Iy be an L-context, xf, gy be an isotone L-Galois connection
between X and Y . Then

(i) xXI , YIy is an isotone L-Galois connection.

(ii) Ixf,gy defined by
Ixf,gypx, yq “ fpt1{xuqpyq (31)

is an L-relation between X and Y and we have
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(iii) xf, gy “ xXIxf,gy ,
YIxf,gy y and I “ I

xXI ,YI y
.

Remark 3.

(a) The standard concept-forming operators represent a direct generalization of the
concept-forming operators in the ordinary setting and they become the concept-
forming operators in the ordinary setting when L “ 2.

(b) The two additional pairs of concept-forming operators are not separately studied
in the crisp setting, since there they are easily convertible to the standard pair
of concept-forming operators due to the double negation law.

(c) For an L-set A P LX , the truth degrees in which objects (fully) in A have
attribute y are all in the upper cone of AÒpyq in L (Fig. 5 (left)). In the
case AÒpyq “ 0, objects (fully) in A may have the attribute y in any degree
(Fig. 5 (middle)). In the case AÒpyq “ 1, objects (fully) in A have the attribute
y in full degree (Fig. 5 (right)). As positive information (having an attribute) is
absolute in this setting, we say that the pair of concept-forming operators xÓ, Òy
considers attributes in a positive way – as affirmations. On the contrary, the
truth degrees in which objects (fully) in A have attribute y are all in the lower
cone of AXpyq in L (Fig. 6 (left)). In the case AXpyq “ 0, objects (fully) in A
do not have the attribute y; i.e. they have it in degree 0. (Fig. 6 (middle)). In
the case AXpyq “ 1, objects (fully) in A may have the attribute y in any degree
(Fig. 6 (right)). As negative information (not having an attribute) is absolute in
this setting, we say that the pair of concept-forming operators xY, Xy considers
attributes in a negative way – as denials.

2.7 L-Concept Lattices
The pairs xA,By P LX ˆ LY , such that AÒ “ B and BÓ “ A, are called standard L-
concepts. Analogously, the pairs xA,By P LX ˆ LY , such that AX “ B and BY “ A,
are called attribute-oriented L-concepts. The components A and B in standard or
attribute-oriented L-concept xA,By are called extent and intent respectively.

The set of all formal concepts (along with set inclusion) forms a complete lat-
tice, called L-concept lattice. We denote the sets of all concepts (as well as the
corresponding L-concept lattice) by BÒÓpX, Y, Iq and BXYpX, Y, Iq, i.e.

BÒÓpX, Y, Iq “ txA,By P LX
ˆ LY

| AÒ “ B, BÓ “ Au,

BXYpX, Y, Iq “ txA,By P LX
ˆ LY

| AX
“ B, BY

“ Au.
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‚

AÒpyq

1

0
‚

AÒpyq “ 0

1
‚

AÒpyq “ 1

0

Figure 5: The truth degrees in which objects (fully) in A may have attribute y (gray
area); general case (left), extreme cases AÒpyq “ 0 and AÒpyq “ 1 (middle and right,
respecively).

‚

AXpyq

1

0

‚

AXpyq “ 1

0
‚

AXpyq “ 0

1

Figure 6: The truth degrees in which objects (fully) in A may have attribute y (gray
area); general case (left), extreme cases AXpyq “ 0 and AXpyq “ 1 (middle and right,
respecively).
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6

5 4

3

2 1

0

extent intent
0 t0.5{B, 0.5{Du tα, β, γu
1 t0.5{B, 0.5{C, 0.5{Du tα, 0.5{β, γu
2 t0.5{A,B, 0.5{Du t0.5{α, β, γu
3 t0.5{A,B, 0.5{C,Du t0.5{α, 0.5{β, γu
4 t0.5{A,B,C,Du t0.5{β, 0.5{γu
5 tA,B, 0.5{C,Du t0.5{α, γu
6 tA,B,C,Du t0.5{γu

ĺ 0 1 2 3 4 5 6
0 1 1 1 1 1 1 1
1 0.5 1 0.5 1 1 1 1
2 0.5 0.5 1 1 1 1 1
3 0.5 0.5 0.5 1 1 1 1
4 0 0.5 0 0.5 1 0.5 1
5 0 0 0.5 0.5 0.5 1 1
6 0 0 0 0.5 0.5 0.5 1

Figure 7: L-concept lattice BÒÓpX, Y, Iq (top left) of the L-context in Fig. 4, descrip-
tion of its L-concepts and the L-order ĺ (bottom) .

For an L-concept lattice B#pX, Y, Iq, where B# is either BÒÓ or BXY, denote the
corresponding sets of extents and intents by Ext#

pX, Y, Iq and Int#
pX, Y, Iq. That

is,
Ext#

pX, Y, Iq “ tA P LX
| xA,By P B#

pX, Y, Iq for some Bu,
Int#

pX, Y, Iq “ tB P LY
| xA,By P B#

pX, Y, Iq for some Au.
See examples of standard and attribute oriented L-concept lattices depicted in

Fig. 7 and Fig. 8).
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7

6

5 4

3 2

1

0

extent intent
0 t0.5{Cu H

1 t0.5{A, 0.5{C, 0.5{Du t0.5{γu
2 t0.5{A,C, 0.5{Du t0.5{β, 0.5{γu
3 t0.5{A, 0.5{B, 0.5{C, 0.5{Du t0.5{α, 0.5{γu
4 t0.5{A, 0.5{B,C, 0.5{Du t0.5{α, 0.5{β, 0.5{γu
5 tA, 0.5{B, 0.5{C, 0.5{Du t0.5{α, γu
6 tA, 0.5{B,C,Du t0.5{α, 0.5{β, γu
7 tA,B,C,Du tα, 0.5{β, γu

ĺ 0 1 2 3 4 5 6 7
0 1 1 1 1 1 1 1 1
1 0.5 1 0.5 1 1 1 1 1
2 0.5 0.5 1 0.5 1 0.5 1 1
3 0.5 0.5 0.5 1 1 1 1 1
4 0.5 0.5 0.5 0.5 1 0.5 1 1
5 0 0.5 0.5 0.5 0.5 1 1 1
6 0 0.5 0.5 0.5 0.5 0.5 1 1
7 0 0 0 0.5 0.5 0.5 0.5 1

Figure 8: L-concept lattice BXYpX, Y, Iq (top left) of the L-context in Fig. 4, descrip-
tion of its L-concepts and the L-order ĺ (bottom) .
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2.8 Parameterization with Truth-Stressing Hedges
The standard concept-forming operators parameterized with the truth-stressing hedges
were studied in [7, 12, 18]2. The parametrization goes as follows: let xX, Y, Iy be an
L-context and let ˚, ‚ be truth-stressing hedges on L. The standard concept-forming
operators parameterized by ˚ and ‚ induced by I are defined as

Aòpyq “
ľ

xPX

pApxq˚ Ñ Ipx, yqq

Bópxq “
ľ

yPY

pBpyq‚ Ñ Ipx, yqq
(32)

for all A P LX , B P LY .
The two boundary instances of hedges, namely ˚ being identity and globalization,

are particularly important: With both truth-stressing hedges being identity, one
obtains the standard fuzzy concept lattices of [9, 54], while for one of the truth-
stressing hedge being globalization and the other being identity, one obtains the
one-sided, or crisply generated, fuzzy concept lattices [19, 67, 47].

The meaning of Aò and Bó is essentially the same as that of their unhedged
version. The difference is in that parts of the verbal description of hedged version
contains “very true” and “slightly true” respectively, compared to that of AÒ and
BÓ. For example, AÒpyq is the truth degree of “all x for which it is very true that it
belongs to A have attribute y”.

Standard L-concepts with hedges ˚, ‚ are pairs xA,By P LX ˆ LY which satisfy
Aò “ B and Bó “ A. The set of all such concepts is denoted BÒÓ˚,‚pX, Y, Iq. The
following theorem is an analogy to the main theorem on concept lattices.

Theorem 6. 1. BÒÓ˚,‚pX, Y, Iq equipped with ď, defined by

xA1, B1y ď xA2, B2y iff A1 Ď A2,

is a complete lattice where the infima and suprema are given by
ľ

jPJ

xAj, Bjy “ xp
č

jPJ

Ajq
ÒÓ, p

ď

jPJ

B‚j q
ÓÒ
y,

ł

jPJ

xAj, Bjy “ xp
č

jPJ

A˚j q
ÒÓ, p

č

jPJ

Bjq
ÓÒ
y.

2Parameterization of attribute-oriented concept-forming operators is one of the contribution of
this thesis, see Section A.
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2. Moreover, an arbitrary complete lattice K “ xK,ďy is isomorphic to BÒÓ˚,‚pX, Y, Iq
iff there are mappings µ : fixp˚q ˆX Ñ K, ν : fixp�q ˆ Y Ñ K such that

(a) µpfixp˚q ˆXq is
Ž

-dense in K, νpfixp‚q ˆ Y q is
Ź

-dense in K.
(b) µpa, xq ď νpb, yq iff ab b ď Ipx, yq.

The reason for this parameterization is to have a tool to influence size of the
number of concept lattice.

2.9 L-Attribute Implications
Attribute implications in the fuzzy setting with semantics corresponding to standard
concept-forming operators were thoroughly studied in [20, 21].

Each expression of the form AñB, in which A and B are L-sets of attributes
(i.e. A,B P LY ) is called a fuzzy attribute implication (FAI) over Y . Their intended
meaning the same as in the ordinary case, that is:

if an object has all attributes in A it has also all attributes in B.

Since in a fuzzy setting, object-attribute incidence is a matter of degree, validity of
our formulas is a matter of degree as well.

Let x denote an object and M P LY an L-set representing the attributes of x, i.e.
for each y P Y the degree to which object x has attribute y is M . For the notion of
validity, Belohlavek and Vychodil [20, 21] provide a general definition which subsumes
two particular cases, one for bivalent and one for graded inclusion. For the bivalent
inclusion, the fact that AñB is fully true in M (in symbols }AñB}M “ 1) means:

if A ĎM then B ĎM. (33)

For the graded inclusion, the fact that AñB is fully true in M means:

SpA,Mq ď SpB,Mq, (34)

i.e. a degree of inclusion of A in M is less than or equal to the degree of inclusion
of B in A, cf. (5). Both the approaches can be obtained as particular cases of the
following definition.

}AñB}M “ SpA,Mq˚ Ñ SpB,Mq. (35)

where the truth-stressing hedge ˚ is used as a parameter.
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For a collection M of fuzzy sets M of attributes in Y , we define the degree to
which AñB is valid in M as follows:

}AñB}M “
Ź

MPM }AñB}M . (36)

For an L-context xX, Y, Iy, we define the degree to which AñB is valid in xX, Y, Iy
by

}AñB}xX,Y,Iy “ }AñB}tIx|xPXu, (37)

where Ix denotes an L-set representing the row corresponding to object x, i.e. Ixpyq “
Ipx, yq for each y P Y .

For a fuzzy attribute implication AñB and a fuzzy set M of attributes (of some
object x) we define the degree }AñB}M P L to which AñB is valid in M as follows:

}AñB}M “ SpA,Mq˚ Ñ SpB,Mq. (38)

One easily verifies that if ˚ is globalization and identity, respectively, (42) meets
the above cases corresponding to bivalent and graded inclusion, (40) and (41), re-
spectively.

Given an L-context xX, Y, Iy and a FAI AñB over Y , we have

}AñB}xX,Y,Iy “ }AñB}IntÒÓ˚pX,Y,Iq “ SpB,AÓÒq. (39)

A theory (over Y ) is any set T of FAIs (over Y ). The set ModpT q of all models
of a given theory T is then defined as

ModpT q “ tM P LY
| for each A,B P LY :
T pAñBq ď }AñB}Mu.

ModpT q is an L-closure system.
We say that an FAI AñB semantically follows from theory T , written T  Añ

B, if AñB is valid in every model of T .

Bases We say that a theory is called

• complete in xX, Y, Iy if for any FAI AñB we have

}AñB}xX,Y,Iy “ 1 iff T  AñB;

• non-redundant if for any AñB P T we have T ´ tAñBu  AñB;
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• basis of xX, Y, Iy if it is complete in xX, Y, Iy and non-redundant.

We call a system P of fuzzy sets in Y a system of pseudo-intents (w.r.t. xÒ, Óy) of
L-context xX, Y, Iy if for every L-set P P LY the following holds: P P P iff P , P ÓÒ

and for each Q P P with Q , P we have }QñQÓÒ}P “ 1.

Theorem 7. Let xX, Y, Iy be a formal context and P be a system of pseudo-intents.
Then the theory

tPñP ÓÒ | P P Pu

is a basis of xX, Y, Iy.

The basis defined in Theorem 7 is called the Guigues-Duquenne basis [33, 29]. The
main features of the Guigues-Duquenne basis in the ordinary setting are that it is
unique (as exactly one system of pseudo-intents exist in the context), computationally
tractable, and it is optimal in terms of its size; i.e. no other basis is smaller in terms
of the number of FAIs it contains. It keeps these properties in the graded setting
when globalization is used as the truth-stressing hedge.
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3 Contributions of the Thesis

A Isotone Fuzzy Galois Connections with Hedges
[43] Jan Konecny. Isotone fuzzy Galois connections with hedges. Information

Sciences, 181(10):1804–1817, 2011.
The paper is a thorough study of attribute-oriented concept-forming operators

and concept lattices which are used to handle denials in our setting. Specifically,
we consider their parameterization with hedges in a similar way as their standard
counterparts are parameterized in Section 2.8; however, some of the results can be
considered new even for the “unhedged” operators.

While the standard concept-forming operators parameterized with the truth-
stressing hedges have been extensively studied [7, 12, 18], the attribute-oriented
concept-forming operators received attention only in our works [2, 43].

For a formal L-context xX, Y, Iy we define a pair xX, Yy of mappings X : LX Ñ LY

and Y : LY Ñ LX by
AX
pyq “

Ž

xPXpApxq
˚ b Ipx, yqq,

BY
pxq “

Ź

yPY pIpx, yq Ñ Bpyq�q.

The meaning of AX and BY is essentially the same as that of their unhedged
version. The difference is that parts of the verbal description of the hedged version
contains “very true” and “slightly true” respectively, compared to that of AX and
BY. For example, AXpyq is the truth degree of “there exists x for which it is very
true that it belongs to A and which has y”.

We study formal concepts and concept lattices BXY˚,�pX, Y, Iq formed by the
operators with hedges and provide an analogy of the main theorem for them.

We show that hedges enable us to control the number of formal L-concepts in the
associated L-concept lattice. The whole point of generalizing the attribute-oriented
concept-forming operators xX, Yy by using a truth-stressing and truth-depressing
hedge is to gain control over the size of the resulting L-concept lattice. In the
case of the unhedged attribute-oriented concept-forming operators, the number of
formal L-concepts can be inconveniently big.

In our previous work [2], we have studied a version of attribute-oriented concept-
forming operators parameterized with truth-stressing hedges, specifically the pair
xe, dy given by

Aepyq “
Ž

xPXpApxq
˚ b Ipx, yqq,

Bdpxq “
Ź

yPY pIpx, yq Ñ Bpyq‚q
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where ˚ and ‚ are both truth-stressing hedges. However, we demonstrated that the
pair xX, Yy provided better reduction of size than xe, dy as the reduction with the latter
was too drastic and often led to a trivial two-element concept lattice.

Additionally, we provide a reduction theorem which enables us to elevate partic-
ular results valid in the ordinary setting into the graded setting with hedges.
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We study isotone fuzzy Galois connections and concept lattices parameterized by particu-
lar unary operators. The operators represent linguistic hedges such as ‘‘very’’, ‘‘rather’’,
‘‘more or less’’, etc. Isotone fuzzy Galois connections and concept lattices provide an alter-
native to their antitone counterparts which are the fundamental structures behind formal
concept analysis of data with fuzzy attributes. We show that hedges enable us to control
the number of formal concepts in the associated concept lattice. We also describe the struc-
ture of the concept lattice and provide a counterpoint to the main theorem of concept
lattices.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Antitone fuzzy Galois connections, fuzzy closure operators and concept lattices are fundamental structures behind formal
concept analysis of data with fuzzy attributes, see [6,3,2]. In [7,9], these structures were generalized using particular unary
operations called truth-stressing hedges. These operations are used as parameters which influence the size of concept lat-
tices. In [15,20], the authors developed isotone fuzzy Galois connections—an alternative approach to antitone fuzzy Galois
connections. In classical setting, there is a bijective correspondence between antitone and isotone Galois connections. How-
ever, in a fuzzy setting, this is no longer the case. In [1] we extended the alternative approach by two truth-stressing hedges.
In this paper we investigate another generalization which uses a truth-stressing hedge and a truth-depressing hedge to
parameterize isotone fuzzy Galois connections. Our motivation is to have a parameterized version of isotone Galois connec-
tions where the parameters control the number of fixed points, i.e. clusters extracted from data. We show properties of the
generalized concept-forming operators, investigate the associated concept lattices and provide illustrative examples. In par-
ticular, Section 2 provides preliminaries from fuzzy logic, fuzzy sets and formal concept analysis. In Section 3 we study iso-
tone fuzzy Galois connections with hedges. Section 4 provides an illustrative example. Further issues and conclusions are
summarized in Section 5.

2. Preliminaries

We recall basic facts of residuated lattices, truth-stressing and truth-depressing hedges, and fuzzy sets.

2.1. Residuated lattices and fuzzy sets

We use complete residuated lattices as basic structures of truth degrees. A complete residuated lattice [5,16,22] is a struc-
ture L = hL,^,_,�,?,0,1i such that
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(i) hL,^,_,0,1i is a complete lattice, i.e. a partially ordered set in which arbitrary infima and suprema exist;
(ii) hL,�,1i is a commutative monoid, i.e. � is a binary operation which is commutative, associative, and a � 1 = a for each

a 2 L;
(iii) � and ? satisfy adjointness, i.e. a � b 6 c iff a 6 b ? c.

0 and 1 denote the least and greatest elements. The partial order of L is denoted by 6. Throughout the paper, L denotes an
arbitrary complete residuated lattice.

Elements a of L are called truth degrees. � and ? (truth functions of) ‘‘fuzzy conjunction’’ and ‘‘fuzzy implication’’.
Common examples of complete residuated lattices include those defined on a unit interval, (i.e. L = [0,1]) or on a finite

chain in a unit interval, e.g. L ¼ 0; 1
n ; . . . ; n�1

n ;1
� �

, ^ and _ being minimum and maximum, � being a left-continuous t-norm
with the corresponding ?. The three most important pairs of adjoint operations on the unit interval are

ukasiewicz :
a� b ¼maxðaþ b� 1; 0Þ;
a ! b ¼ minð1� aþ b;1Þ;

Godel :

a� b ¼minða; bÞ;

a ! b ¼
1 a 6 b;

b otherwise;

�

GoguenðproductÞ :

a� b ¼ a � b;

a ! b ¼
1 a 6 b;
b
a otherwise:

(

An L-set (or fuzzy set) A in a universe set X is a mapping assigning to each x 2 X some truth degree A(x) 2 L where L is a sup-
port of a complete residuated lattice. The set of all L-sets in a universe X is denoted LX.

The operations with L-sets are defined componentwise. For instance, the intersection of L-sets A, B 2 LX is an L-set A \ B in
X such that (A \ B)(x) = A(x) ^ B(x) for each x 2 X, etc. An L-set A 2 LX is also denoted {A(x)/xjx 2 X}. If for all y 2 X distinct from
x1, x2, . . ., xn we have A(y) = 0, we also write fAðx1Þ=x1;

Aðx2Þ=x1; . . . ; AðxnÞ=xng. If there is exactly one x 2 X s.t. A(x) > 0 (i.e. A = {A(x)/
x}) we call A a singleton.

Binary L-relations (binary fuzzy relations) between X and Y can be thought of as L-sets in the universe X � Y. That is, a
binary L-relation I 2 LX�Y between a set X and a set Y is a mapping assigning to each x 2 X and each y 2 Y a truth degree
I(x,y) 2 L (a degree to which x and y are related by I). An L-set A 2 LX is called crisp if A(x) 2 {0,1} for each x 2 X. Crisp L-sets
can be identified with ordinary sets. For a crisp A, we also write x 2 A for A(x) = 1 and x R A for A(x) = 0. An L-set A 2 LX is called
empty (denoted by ;) if A(x) = 0 for each x 2 X. For a 2 L and A 2 LX,a � A 2 LX and a ? A 2 LX are defined by

ða� AÞðxÞ ¼ a� AðxÞ and ða ! AÞðxÞ ¼ a ! AðxÞ:

For universe X we define L-relation graded subsethood LX � LX ? L by:

SðA;BÞ ¼
^

x2X
AðxÞ ! BðxÞ: ð1Þ

Graded subsethood generalizes the classical subsethood relation # (note that unlike # , S is a binary L-relation on LX).
Described verbally, S(A,B) represents a degree to which A is a subset of B. In particular, we write A # B iff S(A,B) = 1. As a
consequence, we have A # B iff A(x) 6 B(x) for each x 2 X. In the following we use well-known properties of residuated lat-
tices and fuzzy structures which can be found e.g. in [5,16].

2.2. Linguistic hedges

We use unary operations called truth-stressing and truth-depressing hedges. Truth-stressing hedges were studied from
the point of fuzzy logic as logical connectives ‘‘very true’’, see [17]. Our approach is close to that in [17]. A truth-stressing
hedge is a mapping ⁄: L ? L satisfying the following conditions

1� ¼ 1; ð2Þ

a� 6 a; ð3Þ

ða! bÞ� 6 a� ! b�; ð4Þ

a�� ¼ a� ð5Þ

for each a, b 2 L. Truth-stressing hedges were used to parameterize antitone L-Galois connections e.g. in [4,7,9], and also to
parameterize antitone L-Galois connections in [1].

On every complete residuated lattice L, there are two important truth-stressing hedges:

(i) identity, i.e. a⁄ = a(a 2 L);
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(ii) globalization, i.e.

a� ¼
1; if a ¼ 1;
0; otherwise:

�
ð6Þ

Fig. 1 shows examples of truth-stressing hedges on 5-element chain with Łukasiewicz operations L = h {0,0.25,0.5,0.75,1},
min,max,�,?,0,1i. The left-most truth-stressing hedge idL is identity; the right-most truth-stressing hedge �G is a
globalization.

A truth-depressing hedge with respect to truth-stressing hedge ⁄ is a mapping h: L ? L such that following conditions are
satisfied

0� ¼ 0; ð7Þ

a 6 a�; ð8Þ

ða ! bÞ� 6 a� ! b�; ð9Þ

a�� ¼ a� ð10Þ

for each a, b 2 L. A truth-depressing hedge is a (truth function of) logical connective ‘‘slightly true’’, see [21].
On every complete residuated lattice L, there are two important truth-depressing hedges:

(i) identity, i.e. ah = a(a 2 L);
(ii) antiglobalization, i.e.

a� ¼
0; if a ¼ 0;
1; otherwise:

�
ð11Þ

Fig. 2 shows all truth-depressing hedges on 5-element chain with Łukasiewicz operations L = h{0,0.25,0.5,0.75,1},min,
max,�,?,0,1i. In parentheses are listed the truth-stressing hedges for which the truth-depressing hedge satisfies (9). The
left-most truth-depressing hedge in upper row idL is identity; the right-most truth-depressing hedge in lower row �AG is
antiglobalization.

Remark 1

(a) Note that from (4) follows that any truth-stressing hedge is monotone. If a 6 b then (a ? b)⁄ = 1. From (4) we have
1 6 a⁄? b⁄, i.e. a 6 b implies a⁄ 6 b⁄. Similarly, from (9) we have monotony of truth-depressing hedge.

(b) The identity is a truth-depressing hedge with respect to any truth-stressing hedge.
(c) If h is truth-depressing hedge w.r.t truth-stressing hedge ⁄ then h is truth-depressing hedge w.r.t. globalization �G

(since ða ! bÞ�G
6 ða ! bÞ� 6 a� ! b�). For that reason we do not declare the truth-stressing hedge for which

the truth-depressing hedge satisfies (9), if it is not important.

Fig. 1. Truth-stressing hedges.
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Fig. 2. Truth-depressing hedges.

Fig. 3. Formal concept w.r.t. various concept-forming operators; arrows in (a), (b), and (c) represent mappings. For example in (a), mapping ⁄: LX ? LX is
represented by arrow between A and A⁄ inside LX; A⁄ placed under A means A⁄ # A.
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We need following lemmas.

Lemma 1 [7]. A truth-stressing hedge ⁄ satisfies ð
W

i2Ia
�
i Þ
� ¼

W
i2Ia

�
i .

Lemma 2. A truth-depressing hedge h satisfies
V

i2Ia
�

i

� �
� ¼

V
i2Ia

�

i .

Proof. ‘‘P’’ Obvious from the definition of truth-depressing hedge.
‘‘6’’ From

V
i2Ia

�

i

� �
6 a�i and monotony of h (see Remark 1(a)) we have ð

V
i2Ia

�

i Þ
�
6 a��i ¼ a�i . HenceV

i2Ia
�

i

� �
�

6
V

i2Ia
�

i . h

2.3. Formal concept analysis

In this part we recall basics of formal concept analysis (FCA). The main aim in FCA is to extract interesting clusters (called
formal concepts) from tabular data. A partially ordered collection of all formal concept is called a concept lattice. In the basic
setting, the input data to FCA is organized in a table (formal context) such as the one in Table 1.

A formal context is a triplet hX,Y, Ii, where X and Y are sets of objects and attributes, respectively, and I # X � Y is a relation
between X and Y. The fact that hx,yi 2 I is interpreted as ‘‘object x has an attribute y’’.

A formal context hX,Y, Ii induces operators *I : 2X ! 2Y and +I : 2Y ! 2X:

A*I ¼ fyjhx; yi 2 I for each x 2 Ag; ð12Þ
B+I ¼ fxjhx; yi 2 I for each y 2 Bg: ð13Þ

In words, we can describe the induced operators as follows: A*I is a set of all attributes shared by all objects from A. B+I is a
set of all objects sharing all attributes from B.

A formal concept of hX,Y, Ii is a pair hA,Bi such that

A*I ¼ B and B+I ¼ A: ð14Þ

The set of all formal concepts of hX,Y, Ii is denoted BðX*;Y+; IÞ:

BðX*;Y+; IÞ ¼ fhA;BijA*I ¼ B and B+I ¼ Ag: ð15Þ

A subconcept-superconcept hierarchy of formal concepts is a partial order 6 defined as follows

hA1;B1i 6 hA2;B2i iff A1 # A2; ð16Þ
ðor; equivalently; iff B2 # B1Þ ð17Þ

for each hA1;B1i; hA2;B2i 2 BðX*; Y+; IÞ.
BðX*;Y+; IÞ with 6 forms a complete lattice:

Theorem 3 (Main theorem of concept lattices, [14]). Let hX,Y, Ii be formal context. Then BðX*;Y+; IÞ is complete lattice whose
infima and suprema are defined as follows:

^
j2J

Aj;Bj
� �

¼
\
j2J

Aj;
[
j2J

Bj

 !+** +
; ð18Þ

_
j2J
hAj;Bji ¼

[
j2J

Aj

 !*+
;
\
j2J

Bj;

* +
: ð19Þ

Moreover, an arbitrary complete lattice K = hK,6i is isomorphic to BðX*; Y+; IÞ iff there are mappings l: X ? K, m: Y ? K such
that

1. l(X) is
W

-dense in K, m(Y) is
V

-dense in K;
2. l(x) 6 m(y) iff hx,yi 2 I.

Table 1
Formal context describing objects x1, x2, x3 and their yes/no attributes y1, y2, y3, y4.

y1 y2 y3 y4

x1 1 1 0 0
x2 0 1 1 0
x3 0 0 1 1
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[18] showed that operators h*I ; +I i are in one-to-one correspondence with so-called antitone Galois connections. A pair h*,+i
of mappings *: 2X ? 2Y, +: 2Y ? 2X is said to form antitone Galois connection between sets X and Y if the following the con-
ditions are satisfied:

(i) if A1 # A2 then A*2 # A*1,
(ii) if B1 # B2 then B+2 # B+1,

(iii) A # A*+,
(iv) B # B*+

for A, A1, A2 2 2X and B, B1, B2 2 2Y.
The following theorem explains the correspondence:

Theorem 4 ([18]). Let hX,Y, Ii be formal context, h*,+i be an antitone Galois connection between X and Y. Then

(i) h*I ; +I i is an antitone Galois connection.
(ii) Ih* ;+i defined by

Ih* ;+iðx; yÞ iff y 2 f1=xg* ð20Þ

is a relation between X and Y and we have
(iii) h*; +i ¼ *Ih* ;+i ;

+Ih* ;+i
D E

and I ¼ Ih*I ;+I i.

3. Isotone Galois connections with hedges

3.1. Definition

We start by recalling the definition of and basic facts about the isotone fuzzy Galois connections [15,20]:

Definition 1. An isotone L-Galois connection between sets X and Y is a pair he,di of mappings e: LX ? LY and d: LY ? LX

satisfying S(A,Bd) = S(Ae,B). S is the graded subsethood (1).
Isotone L-Galois connections are sometimes called isotone fuzzy Galois connections. The following theorem provides an

alternative definition using perhaps more comprehensible conditions [15].

Theorem 5. A pair he,di of mappings e: LX ? LY and d: LY ? LX is an isotone Galois connection iff e and d satisfy

SðA1;A2Þ 6 SðAe1 ;A
e

2Þ; ð21Þ
SðB1;B2Þ 6 SðBd1 ;B

d

2 Þ; ð22Þ
A # Aed; ð23Þ
B � Bde: ð24Þ

The importance of Galois connections, both antitone and isotone, derives from the fact that they are induced in a natural
way from binary relations and that the fixpoints (i.e. pairs s.t. hA,Bi s.t. Ae = B and Bd = A) of Galois connections have natural
meaning. A canonical way an isotone Galois connection he,di arises from a binary fuzzy relation I between sets X and Y is
described by:

AeðyÞ ¼
_

x2X
AðxÞ � Iðx; yÞ; ð25Þ

BdðxÞ ¼
^

y2Y
Iðx; yÞ ! BðyÞ: ð26Þ

If X and Y are interpreted as the set of objects and attributes and I(x,y) as a degree to which object x 2 X has attribute y 2 Y,
then Ae(y) is just the truth degree of ‘‘there exists x in A which has y’’ and Bd(x) is the truth degree of ‘‘for all y: if x has y then y
belongs to B’’. That is, Ae is the fuzzy set of attributes shared by at least one object from A and Bd is the fuzzy set of objects
whose attributes are all in B.

Note that in the bivalent case, i.e. when I is an ordinary relation and A and B are ordinary sets, the operators defined by
(25) and (26) are studied in [13]. The operators studied in this paper extend those from [13] in that we assume that I is a
fuzzy relation and A and B are fuzzy sets with truth degrees taken from a complete residuated lattice L. If L is the two-
element Boolean algebra, operators (25) and (26) as well as their parameterized versions (27) and (28) introduced below
studied coincide with those from [13]. Note also that the pairs of mappings (25) and (26) appear in [12,15,20] and also in
[19]. In what follows, we present and study operators which generalize (25) and (26) in that we parameterize (25) and
(26). Technically, we parameterize (25) and (26) by inserting hedges at particular places in (25) and (26). Throughout the
rest of the paper, we assume that ⁄ is truth-stressing hedge on L and h is truth-depressing hedge on L (which does not need
to be a truth-depressing hedge w.r.t. ⁄).
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Let X, Y be sets of objects and attributes respectively, I be an L-relation between X and Y, i.e. I is a mapping I: X � Y ? L.
hX,Y, Ii is called a formal fuzzy context.

For a formal fuzzy context hX,Y, Ii we define a pair h\,[i of mappings \: LX ? LY and [: LY ? LX by

A\ðyÞ ¼
_

x2X
AðxÞ� � Iðx; yÞ; ð27Þ

B[ðxÞ ¼
^

y2Y
Iðx; yÞ ! BðyÞ�: ð28Þ

These mappings play a crucial role in our paper. The meaning of A\ and B[ is essentially the same as that of Ae and Bd. The
difference is in that parts of the verbal description of A\ and B[ contain ‘‘very true’’ and ‘‘slightly true’’ respectively, compared
to that of Ae and Bd. For example, A\(y) is the truth degree of ‘‘there exists x for which it is very true that it belongs to A and
which has y’’.

The fixed points of h\,[i (i.e. pairs hA,Bi such that A\ = B and B[ = B) are called formal (fuzzy) concepts. Operators induced by
formal fuzzy context are usually called concept-forming operators. The set of all formal concepts of hX,Y, Ii is denoted
BðX�\;Y�[; IÞ.

For formal concepts hA1;B1i; hA2;B2i 2 BðX�\;Y�[; IÞ we define

hA1;B1i 6 hA2;B2i iff A1 # A2 ðiff B1 # B2Þ: ð29Þ

As we show later, BðX�\;Y�[; IÞ with 6 forms a complete lattice.

3.2. Basic properties

This section describes the generalization h\,[i of concept-forming operators he,di from [15] and shows basic properties of
h\,[i.

Theorem 6. Mappings \,[ defined by (27) and (28) satisfy the following properties:

(i) A\ = A⁄e and B[ = Bhd

(ii) A\ = A⁄\ and B[ = Bh[

(iii) A\ # Ae and Bd # B[

(iv) SðA1;A2Þ� 6 SðA�1;A
�
2Þ 6 SðA\1 ;A

\
2Þ

SðB1;B2Þ�Y
6 SðB�1 ;B

�

2 Þ 6 SðB[1 ;B
[
2Þ where �Y is a truth-stressing hedge for which (9) is satisfied.

(v) A⁄ # A\[ and B[\ # Bh

(vi) A1 # A2 implies A\1 # A\2
B1 # B2 implies B[1 # B[2

(vii) S(A⁄,B[) = S(A\,Bh)
(viii) ð

S
i2IA

�
i Þ
\ ¼

S
i2IA

\
i and ð

T
i2IB

�

i Þ
[ ¼

T
i2IB

[
i

(ix) A\[\[ = A\[ and B\[\[ = B\[

Proof.

(i), (ii) follow immediately from definition of \ and [ and from properties of hedges.
(iii) follows from the fact, that � is monotone and ? is isotone in the second argument.
(iv) SðA1;A2Þ� 6 SðA�1;A

�
2Þ and SðB1;B2Þ�Y

6 SðB�1 ;B
�

2 Þ follow from definitions of the truth-stressing and truth-depressing
hedges and Lemmas 1 and 2. SðA\1 ;A

\
2Þ ¼ SðA�e1 ;A

�e
2 Þ ¼ SðA�1;A

�ed
2 ÞP SðA�1;A

�
2Þ. The second assertion is similar.

(v) A⁄ # A⁄ed = A\d # A\[; B[\ # B[e = Bhde # Bh.
(vi) A1 # A2 implies 1 ¼ SðA1;A2Þ� 6 SðA\1 ;A

\
2Þ. The second claim is similar.

(vii) S(A⁄,B[) = S(A⁄,Bhd) = S(A⁄\,Bh) = S(A\,Bh).
(viii) Using Lemma 1, we have[

i2I
A�i

	 
\
ðyÞ ¼

_
x2X

_
i2I

A�i ðxÞ
� �� � Iðx; yÞ

	 

¼
_

x2X

_
i2I

A�i ðxÞ
	 


� Iðx; yÞ
	 


¼
_

i2I

_
x2X

A�i ðxÞ � Iðx; yÞ
	 


¼
_

i2I
A\i ðyÞ:

Similarly, using Lemma 2, we have

\
i2I

B�i
	 
[

ðxÞ¼
^

y2Y
Iðx;yÞ!

^
i2I

B�i ðyÞ
	 


�

� �
¼
^

y2Y
Iðx;yÞ!

^
i2I

B�i ðyÞ
	 
	 


¼
^

i2I

^
y2Y

Iðx;yÞ!B�i ðyÞ
	 


¼
^

i2I
B[i ðxÞ:

(ix) Using (v) A # A\[ and (vi) two times we get A\[ # A\[\[. Using (v) with B = A\ we have A\[\ # A\h. Using (vi) we
get the first claim. The second claim is similar. h
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Remark 2. Note that the induced concept-forming operators with ⁄, h have very similar properties to those defined by (33)
and (34) which were introduced in [1]. The following list sums up properties of these operators which are analogous to those
from Theorem 6.

(i) A\ ¼ A�Xe and B[ ¼ B�Yd,
(ii) A\ ¼ A�X\ and B[ ¼ B�Y[,

(iii) A\ # Ae and B[ # Bd,
(iv) SðA1;A2Þ�X

6 SðA�X
1 ;A

�X
2 Þ 6 SðA\1 ;A

\
2Þ,

SðB1;B2Þ�Y
6 SðB�Y

1 ;B
�Y
2 Þ 6 SðB[1 ;B

[
2Þ,

(v) B[\ # B�Y ,
(vi) A1 # A2 implies A\1 # A\2 ,

B1 # B2 implies B[1 # B[2 ,
(vii) SðA�X ; B[Þ ¼ SðA\;B�Y Þ,

(viii) ð
S

i2IA
�X
i Þ
\ ¼

S
i2IA

\
i and ð

T
i2IBiÞ[ ¼ ð

T
i2IB

�Y
i Þ
[,

(ix) A\[\# A\�Y and B[\[# B�Y[.

We have extended (25) and (26) and made them parameterizable using truth-stressing hedge and truth-depressing hedge
while we have kept most of their basic properties. In particular we have lost properties Aede = Ae and Bede = Be and replaced
them by the property (ix) in Theorem 6.

3.3. Axiomatization

We now turn to the problem of axiomatization of the mappings defined by (27) and (28). We present characteristic prop-
erties of these mappings.

In this part, we use subscription I to denote operations induced by context hX,Y, Ii (\I and [I ) to distinguish them from
operators introduced in Definition 2. At the end of this part, we show that these operations are the same, thus we do not
need to distinguish them in later parts of this paper.

Isotone Galois connections were axiomatized in [15]. We generalize the approach of [15] as follows:

Definition 2. Let X, Y be two universes. A pair of mappings h\,[i, \: LX ? LY, [: LY ? LX is called isotone L-Galois connection
between X and Y if

SðA�;B[Þ ¼ SðA\;B�Þ; ð30Þ[
i2I

A�i
	 
\

¼
[

i2I
A\i ; ð31Þ

a� � f1=xg\ðyÞ ¼ fa=xg\ðyÞ ð32Þ

Lemma 7. Operators \I and [I defined by (27) and (28) form an isotone L-Galois connection h\I ; [I i with hedges ⁄ and h.

Proof. Due to Theorem 6 (vii) and (viii), it is enough to show that (32) is satisfied. Indeed,

a� � f1=xg\I ðyÞ ¼ a� �
_

x2X
1� Iðx; yÞ ¼

_
x2X

a� � Iðx; yÞ ¼ fa=xg\ðyÞ: �

Lemma 8. For every mapping \: LX ? LY there exist at most one mapping [: LY ? LX satisfying S(A⁄,B[) = S(A\,Bh) for every A 2 LX

and B 2 LY.

Proof. If [0 is another such mapping, we have SðA�;B[0 Þ ¼ SðA\;B�Þ for any A and B. Take any x 2 X and put A = {1/x}. Then

B[ðxÞ ¼ SðA�;B[Þ ¼ SðA�; B[0 Þ ¼ B[
0 ðxÞ:

Therefore, [ coincides with [0 . h

Lemma 9. Let h\,[i be an isotone L-Galois connection with hedges ⁄ and h. Then there exists an L-relation I between X and Y such
that h\; [i ¼ h\I ; [I i.

Proof. We need to find I such that A\ ¼ A\I and B[ ¼ B[I for all A 2 LX, B 2 LY. Due to Lemma 8, it is sufficient to find I for
which A\ ¼ A\I . Namely, h\I ; [I i satisfy S(A⁄,B[) = S(A\,Bh) by Lemma 7. Hence, [I coincides with [ due to Lemma 8.

Define I by I(x,y) = {1/x}\(y). Then we get
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A\ðyÞ ¼ A�\ðyÞ ¼
_

x2X;y2Y
fA�ðxÞ=xg\ðyÞ ¼

_
x2X

_
y2Y

A�ðxÞ � f1=xg\ðyÞ ¼
_

x2X
A�ðxÞ � Iðx; yÞ ¼ A\I ðyÞ:

This finishes the proof. h

Theorem 10. Let hX,Y, Ii be formal fuzzy context, h\,[i be an isotone L-Galois connection with hedges ⁄ and h. Then

� h\I ; [I i is isotone L-Galois connection with hedges ⁄ and h.
� Ih\ ;[i defined by Ih\ ;[iðx; yÞ ¼ f1=xg\ðyÞ is an L-relation between X and Y and we have
� \; [h i ¼ \Ih\ ;[i ;

[Ih\ ;[i
D E

and I ¼ Ih\ ;[i.

Proof. Due to Lemmas 7 and 9, it suffices to show that I ¼ Ih\ ;[i. We have

Ih\ ;[iðx; yÞ ¼ f1=xg\I ðyÞ ¼
_

z2X
f1�=xgðzÞ � Iðz; yÞ ¼ Iðx; yÞ �

Remark 3. Note that we need only \ to define Ih\ ;[i and we need \ to satisfy only (31) and (32). Having such an operation, we
can use Theorem 10 to find corresponding [ as [ ¼ [Ih\ ;[i .

3.4. Why we use a truth-depressing hedge?

In [1] we introduced the following concept-forming operators:

A\ðyÞ ¼
_

x2X
AðxÞ�X � Iðx; yÞ; ð33Þ

B[
0 ðxÞ ¼

^
y2Y

Iðx; yÞ ! BðyÞ�Y ; ð34Þ

where �X and �Y are truth-stressing hedges. Note that the only difference from the concept-forming operators defined by (27)
and (28) is that a truth-stressing hedge �Y is used in (34) while a truth-depressing hedge h is used in (28). In this part we
argue that the use of a truth-depressing hedge is more convenient.

Let us take a look at a geometric interpretation of a formal concept as a fixpoint of isotone L-Galois connection with
hedges ⁄ and h (see Fig. 3(a)).

If a truth-stressing hedge �Y is used we have the situation depicted in Fig. 3(b). B and B�Y degenerate into one point, as
described by the following theorem.

Theorem 11. Let BðX�X\;Y�Y[; IÞ denote the set of all fixpoints of the operators by (27) and (28) and BðX�X\;Y[; IÞ set of all
fixpoints of the same operators for �Y being identity idL . Then we have

BðX�X\;Y�Y[; IÞ ¼ fhA;Bi 2 BðX�X\;Y[; IÞjB ¼ B�Y g: ð35Þ

Proof. ‘‘ # ’’: B ¼ B[
0\# B�Y # B proves, that B ¼ B�Y . For intent B we have B ¼ B[

0\ ¼ B�Yd�Xe ¼ Bd�Xe proving that
B 2 IntðX�X\;Y[; IÞ.

‘‘�’’: B ¼ Bd�Xe ¼ B�Yd�Xe ¼ B[
0\, thus B 2 IntðX�X\;Y�Y[; IÞ. h

�1

�3

�5

�2

�4

�6

�AG

idL

∗2∗3

∗1

idL

∗G

Fig. 4. Truth-depressing hedges from Fig. 2 with 6 (left) and truth-stressing hedges from Fig. 1 with 6 (right).
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Note that Theorem 11 says that using �Y brings just trivial selection of formal concepts.
The use of truth-depressing hedge brings us to analogy of the geometrical interpretation of a formal concept of BðX";Y#; IÞ,

which is depicted in Fig. 3(c).
In the case of concept-forming operators ", ;, we have both composition *+ and +* being closure operators. With truth-

stressing hedges �Y and �X the compositions *�Y+ and +�X* keep to be closure operators. On the other hand, the truth-stressing
hedges �X and �Y are interior operators.1 Similarly, in the case of concept-forming operators \, [, we have the composition ed

being a closure operator. With a truth-depressing hedge h the composition ehd keeps to be a closure operator. A truth-stressing
hedge ⁄ works opposite way to the composition ehd. Dually, the compositions de and d⁄e are interior operators, while h is a
closure operator.

The main benefits of using truth-depressing hedge in (28) are:

� According to Theorem 6 for any isotone L-Galois connection with ⁄ and h we have convenient properties A\[\# A\�Y and
B[\[# B�Y[. Analogous properties do not generally hold true for isotone L-Galois connection with �X and �Y .
� By Theorem 11, using a truth-stressing hedge �Y in (34) turns to be a selection of formal concepts from BðX�X\;Y[; IÞ

based on membership degrees in their intents. Particulary, all concepts from BðX�X\;Y[; IÞ whose intents contain
attributes in other truth degrees than fixð�Y Þ are filtered out. Objects can even completely ‘disappear’ from result-
ing concept lattice not being present in any of its extents. This kind of selection does not seem to be
reasonable.
� The reduction of the size of the associated concept lattice with two truth-stressing hedges is too drastic [1]. Especially

when using �Y ¼ �G , the resulting concept lattice commonly happens to be a trivial lattice containing no interesting infor-
mation. Reduction with truth-stressing hedge and truth-depressing hedge (see Section 4) seems to be more natural in
comparison with the previous one.

3.5. Main theorem on the structure of BðX�\;X�[; IÞ

In this part we show that concept lattice BðX�\;Y�[; IÞ is isomorphic to a concept lattice of a particular ordinary formal
context with *,+. Moreover, we provide a variant of the main theorem of concept lattices for BðX�\;Y�[; IÞ. The content of this
part is inspired by Belohlavek [4], Belohlavek and Vychodil [8].

We need the following notions:

Definition 3. For A 2 LX we define bAc_ 2 2X�L and bAc^ 2 2X�L by

bAc_ ¼ fhx; aija 6 AðxÞg; ð36Þ
bAc^ ¼ fhx; aijAðxÞ 6 ag: ð37Þ

Described verbally, bAc_ can be considered as an area in X � L under the membership function A: X ? L and bAc^ as an area in
X � L above the membership function A: X ? L.

For A0 2 2X�L we define dA0e_ 2 LX and dA0e^ 2 LX by

dA0e_ðxÞ ¼
_
fajhx; ai 2 A0g; ð38Þ

dA0e^ðxÞ ¼
^
fajhx; ai 2 A0g ð39Þ

for each x 2 X.

Definition 4. For A0 # X � L and (truth-stressing or truth-depressing) hedge �: L ? L, define A0� = {hx,a�ijhx,ai 2 A0}.

Lemma 12 ([9]). For A # X � fix (⁄) we have A # bdAe�_c
�
_.

Analogously, we have:

Lemma 13. For B # fix (h) � Y we have B # bdBe�^ c
�

^ .

Proof. Let hy,bi 2 B. Then b P dBe^. Since b 2 fix (h), we have b P dBe�^ . Thus hy; bi 2 bdBe�^ c^. Finally hy; bi 2 bdBe�^ c
�

^ since
b 2 fix (h). h

Define mappings "� : X � fixð�Þ ! Y � fixð�Þ and #� : Y � fix (h) ? X � fix(⁄) by

A"� ¼ bdAe\_c
�

^ and B#� ¼ bdBe[^c
�
_: ð40Þ

1 Further description of BðX";Y#; IÞ is out of scope of this paper, see f.e. [4,7,9] for this topic.
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Lemma 14. The pair h"� ; #� i forms an antitone Galois connection between sets X � fix(⁄) and Y � fix(h).

Proof. Antitony: A1 # A2 implies dA1e_ # dA2e_ which implies dA1e_\ # dA2e_\ which implies bdA2e\_c^# bdA1e\_c^. Similarly
B1 # B2 implies dB2e^ # dB1e^ which implies dB1e^[ # dB2e^[ which implies bdB2e[^c_# bdB1e[^c_.

Extensivity: Using Lemma 12, A"�#� ¼ bdbdAe\_c
�

_ e
[
^c
�
^ ¼ bdbdAe

\
_c_e

�[
^ c

�
^ ¼ bdAe

\�[
_ c�^ � bdAe

�
_c
�
^ � A. Similarly B # B#�"� . h

The following theorem is a direct consequence of the main theorem of concept lattices [14]. It says that concept lattice of
the formal fuzzy context corresponding to isotone Galois connection h"� ; #� i forms a complete lattice and each complete lat-
tice satisfying some particular technical condition is isomorphic to the concept lattice of a formal context hU;V ; Ih"� ;#� iiwhich
is given by the antitone the Galois connection defined by (40) and by (20).

Theorem 15

1. BðU*;V+; Ih"� ;#� iÞ equipped with 6, defined by hA1,B1i 6 hA2,B2i iff A1 # A2, is a complete lattice where the infima and suprema
are given by

^
j2J
hAj;Bji ¼

\
j2J

Aj;
[

j2J
Bj

	 
#�"� �
; ð41Þ

_
j2J
hAj;Bji ¼

[
j2J

Aj

	 
"�#�
;
\

j2J
Bj

 �
: ð42Þ

2. Moreover, an arbitrary complete lattice K = hK, 6 i is isomorphic to BðU;V ; Ih"� ;#� iÞ iff there are mappings l: U ? K, m: V ? K
such that

(a) l(U) is
W

-dense in K, m(V) is
V

-dense in K;
(b) l(u) 6 m(v) iff hu; vi 2 Ih"� ;#� i.

Lemma 16. The (crisp) relation I� ¼ Ih"� ;#� i between X � fix(⁄) and Y � fix (h) corresponding to Galois connection h"� ; #� i defined
by (40) is given by

hhx; ai; hy; bii 2 I� iff Iðx; yÞ 6 a! b: ð43Þ

Proof. We have hhx,ai, hy,bii 2 I� iff hy; bi 2 fhx; aig"� . By definition of "� , this is equivalent to hy; bi 2 bdfhx � aige\_c
�

_ . Since
bdfhx; aige\_c

�

_ ¼ bfa=xg\c�_ and since the smallest c such that hy,ci 2 b{a/x}\ c_h is c = ({a/x}\(y))h, the last assertion is equiv-
alent to ({a/x}\(y))h

6 b. Since b = bh, this is equivalent to ({a/x}\(y)) 6 b. Now, {a/x}\(y) = a⁄ � I(x,y) = a � I(x,y), whence
{a/x}\(y) 6 b is equivalent to I(x,y) 6 a ? b by adjointness. h

Theorem 17. BðX�\;Y�[; IÞ (concept lattice with hedges) is isomorphic to BðX � fixð�Þ"� ; Y � fixð�Þ#� ; I�Þ (ordinary concept
lattice). The isomorphism

h : BðX�\;Y�[; IÞ ! BðX � fixð�Þ"� ;Y � fixð�Þ#� ; I�Þ
and its inverse

g : BðX � fixð�Þ"� ; Y � fixð�Þ#� ; I�Þ ! BðX�\;Y�[; IÞ
are given by

hðhA;BiÞ ¼ hbAc�_; bBc
�

^ i; ð44Þ
gðhA0;B0iÞ ¼ hdA0e\[_ ; dB

0e[\^ i: ð45Þ

Proof. We need to show, that (a) h and g are defined correctly, (b) h is order-preserving, (c) g(h(hA,Bi)) = hA,Bi and
hðgðhA0;B0iÞÞ ¼ hA0;B0i.

(a) For hA,Bi in BðX�\;Y�[; IÞwe have bAc�"�_ ¼ bA\c�^ and bBc�#�^ ¼ bB[c�_ directly from definitions of operators "� and #� (40).
For hA0,B0i in BðX � fixð�Þ"� ;Y � fixð�Þ#� ; I�Þ; dA0e\[\_ ¼ dbdA0e\_c^e

[\
^ ¼ dA

0"�e^ [\ ¼ dbdA0"�e
[
^c_e

\
_ ¼ dA0"�#� e\_ ¼ dA

0e\_. Similarly
ðdB0e[\^ Þ

[ ¼ dB0e[^.
(b) For hA1;B1i; hA2;B2i 2 BðX�\; Y�[; IÞ we have A1 # A2 iff bA1c_ # bA2c_ iff bA1c_⁄ # bA2c_⁄.
(c) For hA,Bi in BðX�\;Y�[; IÞ we have

dbAc�_e
\[
_ ¼ dbA

�c_e
\[
_ ¼ A�\[ ¼ A:
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For hA0,B0i in BðX � fixð�Þ"� ;Y � fixð�Þ#� ; I�Þ we have bdA0e\[_ c
�
_ ¼ bdbdA

0e\_c
�

^ e
[
^c
�
_ ¼ bdA

"� e[^c
�
_ ¼ A0

"�#� ¼ A0 h

Theorem 18

1. BðX�\;Y�[; IÞ equipped with 6, defined by hA1,B1i 6 hA2, B2i iff A1 # A2, is a complete lattice where the infima and suprema are
given by

^
j2J
hAj;Bji ¼

\
j2J

Aj

	 
\[
;
\

j2J
B�j

	 
[\ �
; ð46Þ

_
j2J
hAj;Bji ¼

[
j2J

A�j
	 
\[

;
[

j2J
Bj

	 
[\ �
: ð47Þ

2. Moreover, an arbitrary complete lattice K = hK, 6 i is isomorphic to BðX�\;Y�[; IÞ iff there are mappings l: fix (⁄) � X ? K, m:
fix(h) � Y ? K such that

(a) l(fix (⁄) � X) is
W

-dense in K, m(fix (h) � Y) is
V

-dense in K.
(b) l(a,x) 6 m(b,y) iff I(x,y) 6 a ? b.

Proof. From Theorems 15 and 17. h

4. Reducing the size of concept lattices

The main idea of generalizing concept-forming operators h\,[i by a truth-stressing hedge and a truth-depressing
hedge is to gain control on the size of the resulting concept lattice. In the case of the original isotone concept-
forming operators he,di, the number of formal fuzzy concepts can be inconveniently big. For instance in the
example below, we obtain 207 formal fuzzy concepts from formal context with 6 objects and 4 attributes. Proper selec-
tion of the truth-stressing hedge and truth-depressing hedge decreases the number of formal fuzzy concepts in the
resulting concept lattice as demonstrated in this section. We also provide a theoretical result about sizes of concept
lattice.

Example 1. We demonstrate the influence of hedges by the following example. Consider the formal fuzzy context
represented by Table 2. The table describes six books and their graded attributes. For the five-valued Łukasiewicz chain

L ¼ hf0;0:25;0:5;0:75;1g;min;max;�;!; 0;1i

as our structure of truth degrees, there are 40 combinations of truth-stressing hedge ⁄ and truth-depressing hedge h (5 pos-
sible choices of ⁄ and 8 possible (independent) choices of h, see Figs. 1 and 2). For each combination of ⁄ and h we compute
the corresponding concept lattice BðX�\;Y�[; IÞ. The concept lattices are depicted in Fig. 5. Note that the concept lattices
BðX�\;Y�[; IÞ are displayed in a standard manner by means of their line diagrams (Hasse diagrams).

One can notice that in Fig. 5 we get interesting alternating of big and small sizes of the concept lattices. For instance in the
first column we have sizes 5, 20, 12, 25, 7, 25, 12, and 25. In the rest of this section we explain why this effect occurs.

Let L be a complete residuated lattice and TD(L) the set of all truth-depressing hedges and TS(L) set of all truth-stressing
hedges.

Define partial order 6 in TS(L) by
�1 6

�2 iff fixð�1 Þ# fixð�2 Þ: ð48Þ

And define partial order 6 in TD(L) by

�1 6
�2 iff fixð�1 Þ# fixð�2 Þ: ð49Þ

Table 2
Context of books and their graded properties.

High rating Large no. of pages Low price Top sales rank

1 0.75 0.00 1.00 0.00
2 0.50 1.00 0.25 0.50
3 1.00 1.00 0.25 0.50
4 0.75 0.50 0.25 1.00
5 0.75 0.25 0.75 0.00
6 1.00 0.00 0.75 0.25
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Note that the truth-depressing hedges from Fig. 4 form a partially ordered set depicted in Fig. 4(left), and that the truth-
stressing hedges from Fig. 1 form partially ordered set depicted in Fig. 4(right).

Theorem 19. For a formal fuzzy context hX,Y, Ii, truth-depressing hedges �a ; �b 2 TDðLÞ s.t. �a 6
�b , and truth-stressing hedges

�a ; �b 2 TSðLÞ s.t. �a 6
�b we have

jBðX�a\;Y�a[; IÞj 6 jBðX�b\; Y�b[; IÞj: ð50Þ

Moreover,

ExtðXidL\;Y�a[; IÞ# ExtðXidL\;Y�b[; IÞ; ð51Þ
IntðX�a\;Y idL[; IÞ# IntðX�b\;Y idL[; IÞ: ð52Þ

Proof. Denote hX01;Y
0
1; I
0
1i :¼ hX � fixð�a Þ;Y � fixð�a Þ; I�1 i and hX02; Y

0
2; I
0
2i :¼ hX � fixð�b Þ;Y � fixð�b Þ; I�2 i. Note that hX01;Y

0
1; I
0
1i is a

subcontext of hX02;Y
0
2; I
0
2i; i.e. X 01 # X 02;Y

0
1 # Y 02 and I01 is a restriction of I02 to X 01;Y

0
1: I01 ¼ I02 \ X 01 � Y 01. The theorem follows from

Theorem 17 and properties of subcontexts (see chapter 3 in [14]). h

Remark 4. Note that the second part of Theorem 19 does not generally hold for a truth-stresser ⁄ different from identity. For
instance, for the formal fuzzy context hX,Y, Ii shown in Table 3, truth-stressing hedges �1 , truth-depressing hedges �5 6

�1 (see
Fig. 4),we have: f0:75=x1;

1:00=x2g 2 ExtðX�1\;Y�5[; IÞ but f0:75=x1;
1:00=x2g R ExtðX�1\;Y�1[; IÞ.

∗G ∗3 ∗2 ∗1 idL

�AG

5 9 16 16 16

�6

20 29 36 36 36

�5

12 20 27 27 45

�4

25 36 43 43 94

�3

7 27 22 60 61

�2

25 59 43 98 99

�1

12 42 27 80 130

idL

25 66 43 109 207

Fig. 5. Concept lattices BðX�\;Y�[; IÞ induced by the context from Table 2 and numbers of their formal concepts. The picture shows concept lattices resulting
by all combinations of truth-stressing hedge ⁄ and truth-depressing hedge h from Figs. 1 and 2.
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5. Conclusions and further issues

We have developed foundations of isotone Galois connections with a truth-stressing hedge and a truth-depressing hedge.
We have explored basic calculus of such connections, i.e. on the properties analogous to those which are essential for the
other type of Galois connections studied in the literature. We studied structure of BðX�\;Y�[; IÞ and proved an analogy of
the main theorem of concept lattices for our setting. Moreover, we compared our generalization with the approach studied
in [1]. On an example, we showed how parameterization by hedges influences size of resulting concept lattice.

Further research will include the following topics:

� Optimal decomposition of matrices. We proved in our earlier work that fixed points of Galois connections can be used to
find optimal decompositions of matrices with degrees [10]. Fixed points of isotone Galois connections serve for triangular
decompositions of matrices with degrees. Usage of hedges introduces additional constraints.
� Study of attribute dependencies related to isotone Galois connections with hedges. This topic has been studied recently

(see [11]).
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B A Calculus for Containment of Fuzzy Attributes
[16] Radim Belohlavek and Jan Konecny. A calculus for containment of fuzzy

attributes. Soft Computing, pages 1–12, 2017.

In this paper, we examine the second main output of FCA in the graded setting
with denial—attribute implications using semantics based on the graded denials.

Each expression of the form
AñB,

in which A and B are fuzzy sets of attributes (i.e. A,B P LY ) is called a fuzzy
attribute implication (FAI) over Y . While FAIs are identical with the formulas in
Section 2.9 as far as syntax is concerned, their semantics is different. While those in
Section 2.9 are linked to graded affirmations the present ones are linked to graded
denials. Their intended meaning is:

“if all attributes of an object are contained in A then they are contained
in B”

or, in terms of the graded denials,

“if an object has attributes at most to degrees given by A then it has
attributes at most to degrees given by B.”

Similarly, as in Section 2.9 two natural options for the formalization of the semantics
are possible—assuming the containment as bivalent or as graded. We provide general
semantics which covers both these options as particular cases.

Let x denote an object and M P LY an L-set representing the attributes of x,
i.e. for each y P Y the degree to which object x has attribute y is M . We define
the truth degree, denoted }AñB}M , of AñB in M , i.e. the truth degree to which
Añ B is true for object x. For the bivalent containment, the fact that Añ B is
fully true in M (in symbols }AñB}M “ 1) means

if M Ď A then M Ď B. (40)

For the graded containment, the fact that AñB is fully true in M means

SpM,Aq ď SpM,Bq, (41)

i.e. a degree of inclusion of M in A is less than or equal to the degree of inclusion of
M in B, cf. (5). Analogously, as in Section 2.9, both the options can be obtained as
particular cases of the following definition, in which the truth-stressing hedge ˚ acts

41



as a parameter. We define the degree }AñB}M P L to which AñB is valid in M
as

}AñB}M “ SpM,Aq˚ Ñ SpM,Bq. (42)

Among the main results established in the paper are: results regarding validity of
dependencies, their models, and entailment; connections to existing dependencies for
fuzzy as well as Boolean attributes, connections to interior- and closure-like struc-
tures, definition and properties of semantic entailment including an efficient check
of entailment, various model-theoretical properties, a logical calculus of the depen-
dencies inspired by the well-known Armstrong rules with its ordinary-style as well as
graded-style syntactico-semantical completeness, basic results on bases, i.e. minimal
fully informative sets of dependencies that are true in a given data.
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Abstract
Dependencies in data describing objects and their attributes represent a key topic in understanding relational data. In this paper,
we examine certain dependencies of data described by fuzzy attributes such as green or high performance, i.e. attributes which
apply to objects to certain degrees. Such attributes subsume Boolean attributes as a particular case. We utilize the framework
of residuated structures of truth degrees as developed in modern fuzzy logic and examine several fundamental problems for
our dependencies. These include connections to existing dependencies for fuzzy as well as Boolean attributes, connections to
interior- and closure-like structures, definition and properties of semantic entailment including an efficient check of entailment,
various model-theoretical properties, a logical calculus of the dependencies inspired by the well-known Armstrong rules with
its ordinary-style as well as graded-style syntactico-semantical completeness, fully informative sets of all dependencies that
are valid in given data including a constructive description of minimal such sets, as well as various other problems.

Keywords Fuzzy logic · Dependencies of fuzzy attributes · Fuzzy closure structures · Formal concept analysis

1 Introduction

1.1 Problem setting

We assume that the dependencies we study pertain to data
in the form of a table with rows and columns correspond-
ing to objects x in a set X and their logical attributes y in a
set Y , respectively. While in the classic, Boolean case, every
attribute y either applies or does not apply to any given object
x , we assume a more general setting in which the attributes
are fuzzy. That is, with every attribute y and object x , there is
associated a degree to which y applies to x . We furthermore
assume that these truth degrees form a partially ordered set
L bounded by 0 and 1 (representing falsity and truth, respec-
tively) which is, moreover, equipped with truth functions of
logical connectives such as conjunction and implications, as
detailed below. The classical case then becomes a particular
case in which the onlymembers of L are 0 and 1 and inwhich
the truth functions are the truth functions of Boolean logical
connectives.

Communicated by A. Di Nola.

B Jan Konecny
jan.konecny@upol.cz

1 Department of Computer Science, Palacký University,
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In our paper, we examine certain dependencies which
concern containment of attributes. In particular, we intro-
duce basic syntactic and semantic notions which are inspired
by two basic meanings of containment of fuzzy attributes,
namely binary and graded containment (Sect. 2), explore
connections to interior-like structures and outline ramifica-
tions of these connections (Sect. 3), develop a logic for our
dependencies with two kinds of completeness (Sect. 4), and
provide results regarding minimal fully informative sets of
if–then rules (Sect. 5).

1.2 Preliminaries

As the above-mentioned scales of truth degrees, we use
complete residuated lattices. Since these are well known
(Belohlavek 2012; Goguen 1969; Hájek 1998), we restrict
to recalling basic facts. A complete residuated lattice with
a truth-stressing hedge (shortly, a hedge) is an algebra L =
〈L,∧,∨,⊗,→, ∗, 0, 1〉 such that 〈L,∧,∨, 0, 1〉 is a com-
plete lattice with 0 and 1 being the least and greatest element
of L , respectively; 〈L,⊗, 1〉 is a commutative monoid; ⊗
and → satisfy so-called adjointness property:

a ⊗ b ≤ c iff a ≤ b → c (1)
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for each a, b, c ∈ L; hedge ∗ satisfies

1∗ = 1, a∗ ≤ a, (a → b)∗ ≤ a∗ → b∗, a∗∗ = a∗,
(2)

for each a, b ∈ L , ai ∈ L (i ∈ I ). Elements a of L are
called truth degrees. ⊗ and → are (truth functions of) many-
valued conjunction and implication.Hedge ∗ maybe seen as a
(truth function of) logical connective “very true.” Properties
(2) have natural interpretations, e.g. second one can be read:
“if a is very true, then a is true,” the third one as: “if a → b
is very true and if a is very true, then b is very true.” Note
that other properties of hedges are sometimes imposed, see,
e.g. (Hájek 1998).

A common choice of L is a structure with L = [0, 1]
(unit interval), ∧ and ∨ being minimum and maximum, ⊗
being a left-continuous t-normwith the corresponding→; or
with L being a finite chain with appropriate operations. Two
boundary cases of (truth-stressing) hedges are (i) identity,
i.e. a∗ = a (a ∈ L), and (ii) globalization: a∗ = 1 for
a = 1 and a∗ = 0 for a < 1. An important special case of
a complete residuated lattice with hedge is the two-element
Boolean algebra 〈{0, 1},∧,∨,⊗,→, ∗, 0, 1〉, denoted by 2,
which is the structure of truth degrees of the classical logic.
That is, the operations∧,∨,⊗,→ of 2 are the truth functions
(interpretations) of the corresponding logical connectives of
the classical logic and 0∗ = 0, 1∗ = 1.

We exploit the usual notions and notation: an L-set (fuzzy
set) A in universe U is a mapping A : U → L , A(u) being
interpreted as “the degree to which u belongs to A.” The
collection of allL-sets inU is denoted byLU . The operations
with L-sets are defined componentwise. Binary L-relations
between X and Y can be thought of as L-sets in the universe
X × Y . That is, a binary L-relation I ∈ LX×Y is a mapping
assigning to each x ∈ X and each y ∈ Y a truth degree
I (x, y) ∈ L (a degree to which x and y are related by I ). An
L-set A ∈ LX is called crisp if A(x) ∈ {0, 1} for each x ∈ X .
AnL-set A ∈ LX is called empty (denoted by ∅) if A(x) = 0
for each x ∈ X . For a ∈ L and A ∈ LX , a ⊗ A ∈ LX and
a → A ∈ LX are defined by

(a ⊗ A)(x) = a ⊗ A(x) and (a → A)(x) = a → A(x).

Given A, B ∈ LU , we define a subsethood degree

S(A, B) = ∧
u∈U

(
A(u) → B(u)

)
, (3)

which generalizes the ordinary subsethood relation ⊆.
S(A, B) represents a degree to which A is a subset of B.
In particular, we write A ⊆ B iff S(A, B) = 1. As a conse-
quence, A ⊆ B iff A(u) ≤ B(u) for each u ∈ U . Throughout
the rest of the paper, L denotes an arbitrary complete resid-
uated lattice with a hedge.

In what follows, we utilize the following inequality which
is easy to prove using the definitions.

Lemma 1 For A, B ∈ LU , we have

S(A, B)∗ ≤ S(A∗, B∗). (4)

1.3 Previous work

Explorations of various kinds of dependencies among
Boolean attributes, developments of various logical calculi
describing such dependencies as well as various compu-
tational problems related to these dependencies represent
fundamental issues in data management and have been thor-
oughly studied in the past.

Most important among such dependencies are various
kinds of if–then rules. These rules, which basically describe
that when certain attributes are present then certain other
attributes are present as well, are thoroughly examined along
with their connections to functional dependencies in the clas-
sic book (Maier 1983). They have further been explored for
data analytic purposes, and their algorithmic properties are
examined in the influential paper (Guigues and Duquenne
1986) and in (Ganter and Wille 1999), which works pay a
particular attention to extraction of a smallest fully infor-
mative set of dependencies from Boolean data. Taking into
account almost valid if–then rules leads to association rules
and considerations regarding confidence and support of such
rules. Related explorations represent a major research stream
in data mining, and we refer to (Zhang and Zhang 2002) for
an overview and to (Rauch 2005) for related logical calculi of
these rules aswell as calculi ofmuchmore general dependen-
cies in Boolean data, namely those of (Hájek and Havránek
2012) which subsume association rules as a very particular
case.

Directly connected to the topic of our paper are recent
explorations of dependencies in data with fuzzy rather than
Boolean attributes, i.e. attributes such as for graded attributes,
such as green or high performance. These have been code-
veloped by one of the present authors in a series of papers,
see (Belohlavek and Vychodil 2016, 2017) for a comprehen-
sive treatment and (Belohlavek and Vychodil 2006) for early
explorations. In this paper, we present a logic of if–then rules
A ⇒ B for graded attributes whose basic meaning is: if all
attributes of an object are contained A then they are contained
in B. These rules have the same syntactic form as those in
(Belohlavek and Vychodil 2016, 2017), but have a different
semantics: they represent restrictions on what attributes may
be possessed by objects. The technical difference from the
rules in (Belohlavek and Vychodil 2016, 2017) consists in
the fact that the new rules are closely related to interior-like
structures, while the former rules are related to closure-like
structures. In the Boolean case, the two kinds of dependen-
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cies are mutually reducible: The reducibility derives from
the fact that interior- and closure-like structures are mutu-
ally reducible in the Boolean case. In the setting of fuzzy
attributes, such reducibility is not available, as is well known,
due to the lack of the law of double negation. Consequently,
our new kind of dependencies needs to be carefully explored
anew. In a broader perspective, the new rules manifest the
variety of structures naturally associatedwith object-attribute
data, which has also been examined, e.g. in (Belohlavek and
Konecny 2012; Ciucci et al. 2014; Georgescu and Popescu
2004; Konecny 2011), and further contribute to understand-
ing these structures.

2 Syntax and semantics

Suppose L is a complete residuated lattice with a hedge (i.e.
a scale of grades equipped with logical operations) and Y be
a set of (symbols of) fuzzy attributes. Each expression of the
form

A⇒ B,

in which A and B are fuzzy sets of attributes (i.e. A, B ∈ LY )
is called a fuzzy attribute implication (FAI) over Y ; FAIs
are our basic formulas. While they are identical with the
formulas in (Belohlavek and Vychodil 2016, 2017) as far
syntax is concerned, their semantics is different. Put verbally,
the intended meaning is:

If all attributes of an object are contained in A then they
are contained in B.

Since in a fuzzy setting, whether an object has an attribute
is a matter of degree, validity of our formulas is a matter of
degree as well. In the semantics described, one needs to be
careful about the meaning of containment since there are two
natural options possible—taking containment as bivalent or
graded. We provide a general semantics which covers both
these options as particular cases.

Let x denote an object and M ∈ LY a fuzzy set represent-
ing the attributes of x , i.e. for each y ∈ Y the degree to which
object x has attribute y is M . Our aim is to define the truth
degree, denoted ||A ⇒ B||M , of A ⇒ B in M , i.e. the truth
degree to which A ⇒ B is true for object x . As mentioned
above, we provide a general definition which subsumes two
particular cases, one for bivalent and one for graded contain-
ment. For bivalent containment, the fact that A⇒ B is fully
true in M (in symbols ||A⇒ B||M = 1) means:

if M ⊆ A then M ⊆ B, (5)

where M ⊆ A denotes full containment, i.e. M(y) ≤ A(y)
for all y ∈ Y . For a graded containment, the fact that A⇒ B
is fully true in M means:

S(M, A) ≤ S(M, B), (6)

i.e. a degree of inclusion of M in A is less than or equal to the
degree of inclusion of M in B, cf. (3). Now, both approaches
can be obtained as particular cases of the following definition,
in which the hedge ∗ acts as a parameter (see below):

Definition 1 For a fuzzy attribute implication A⇒ B and a
fuzzy set M of attributes (of some object x), we define the
degree ||A ⇒ B||M ∈ L to which A ⇒ B is valid in M as
follows:

||A⇒ B||M = S(M, A)∗ → S(M, B). (7)

One easily verifies that if ∗ is globalization and identity,
respectively, (7)meets the above cases corresponding to biva-
lent and graded inclusion, (5) and (6), respectively. Let us
emphasize, however, that the degree of validity ||A⇒ B||M
is a general truth degree in L , i.e. it need not be equal to 0 or
1.

Clearly, from the perspective of the current literature on
structures related to fuzzy attributes, our formulas A ⇒ B
may be interpreted in tables with fuzzy attributes. Note that
each such table may be identified with a triplet 〈X ,Y , I 〉, in
which X and Y are sets of objects (table rows) and attributes
(table columns), and I is a fuzzy relation between X and Y
for which I (x, y) is interpreted as the degree to which the
object x has the attribute y. The corresponding definitions
needed are as follows

Definition 2 For a collectionM of fuzzy sets M of attributes
in Y , we define the degree to which A⇒ B is valid in M as
follows:

||A⇒ B||M = ∧
M∈M ||A⇒ B||M . (8)

For a table 〈X , Y , I 〉 with fuzzy attributes, we define the
degree to which A⇒ B is valid in 〈X ,Y , I 〉 by

||A⇒ B||〈X ,Y ,I 〉 = ||A⇒ B||{Ix |x∈X}, (9)

where Ix denotes the fuzzy set representing the row corre-
sponding to object x , i.e. Ix (y) = I (x, y) for each y ∈ Y .

Remark 1 (alternative to failure dependencies) The depen-
dencies just introduced represent a natural alternative to
failure dependencies in the theory of knowledge spaces
(Doignon and Falmagne 2012) in the setting in which mas-
tering pieces of knowledge is a matter of degree (Bartl and
Belohlavek 2011). Recall that in ordinary knowledge spaces,
one deals with subsets of items in a set Q (representing
questions in some area, for instance). If M is a subset of
Q representing a given person’s state of knowledge (a set
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of questions the person is capable of answering correctly), a
failure dependency A⇒ B, where A, B ⊆ Q, holds for M if

A ∩ M = ∅ implies B ∩ M = ∅,

i.e. failure in answering all questions in A implies failure in
answering all questions in B. This notion has been extended
in (Bartl and Belohlavek 2011) to a graded setting in which
M , A, and B are allowed to be fuzzy sets in Q in which the
membership degrees model situations in which mastering of
or failure on a particular question is a matter of degree. In
particular, the degree to which A⇒ B is true in M has been
defined in (Bartl and Belohlavek 2011) by

S(A ⊗ M,∅)∗ → S(B ⊗ M,∅);

here, (A⊗M)(q) = A(q)⊗M(q) is the⊗-based intersection
of fuzzy sets A and M . This definition corresponds directly
to the above definition from the ordinary case, but it has
the disadvantage that it involves the many-valued negation
¬a = a → 0 associated with the underlying structure L of
truth degrees. This property is disadvantageous because such
negation lacks certain properties of ordinary negation (e.g.
the law of double negation) due to which fact only certain
properties from the ordinary setting carry over to the fuzzy
setting.

The dependencies we study in the present paper, never-
theless, offer another way to capture failure dependencies.
Namely, it is easily seen that in the ordinary setting a fail-
ure dependency C ⇒ D is true in a state M ⊆ Q iff the
following holds true: if M ⊆ C then M ⊆ D. Denoting
A = C and B = D, this may be rewritten as: if M ⊆ A
then M ⊆ B. While C and D represent failures on questions
in failure dependencies, A and B in the new kind of depen-
dencies (which is obviously the kind studied in this paper)
represent mastering of questions. Namely, the meaning of
this new kind of dependency is described as: if all questions
the individual has mastered are in A, then all questions he
has mastered are in B as well. Hence, the new type of depen-
dencies may aptly be called mastering dependencies.

A direct generalization of mastering dependencies to a
fuzzy setting clearly yields the dependencies whose seman-
tics is defined by Definition 1. While failure and mastering
dependencies are equivalent in the ordinary setting (due to
the law of double negation, a mastering dependency A⇒ B
is equivalent to the failure dependency A ⇒ B), they are
no longer equivalent in a fuzzy setting (clearly, they are
equivalent if the fuzzy logic connective of negation involved
satisfies the law of double negation, such as the Łukasiewicz
negation for instance). In a fuzzy setting, they both describe
the same type of dependency, but technically, mastering
dependencies, as formalized by Definition 1, are more con-

venient because they do not involve the possibly problematic
logical connective of negation. ��

Our semantics of fuzzy attribute implications is closely
connected to particular Galois-like connections and their fix-
points. These Galois-like connections have been introduced
in (Georgescu and Popescu 2004), see also (Konecny 2011):
For 〈X , Y , I 〉 as above, consider the operators ∩ : LX → LY

and ∪ : LY → LX defined by

A∩(y) = ∨
x∈X (A(x)∗ ⊗ I (x, y)), (10)

B∪(x) = ∧
y∈Y (I (x, y) → B(y)), (11)

for any fuzzy set A in X and B in Y . Let furthermore
B(X∩, Y ∪, I ) = {〈A, B〉 | A∩ = B, B∪ = A} denote the
lattice of the fixpoints of ∩ and ∪ and Int(X∩,Y ∪, I ) = {B |
〈A, B〉 ∈ B(X∩, Y ∪, I ) for some A} the corresponding sys-
temof intents (i.e. of the second components of the fixpoints).
We also use just Int(I ) instead of Int(X∩,Y ∪, I ). The follow-
ing theorem reveals an important relationship: the validity of
our attribute dependencies A⇒ B in a table 〈X , Y , I 〉 coin-
cides with the validity in the intents of 〈X ,Y , I 〉 and also
with the degree to which A∪∩ is contained in B. This theo-
rem is utilized below in a characterization of complete sets
of fuzzy attribute implications.

Theorem 1 Given a table 〈X ,Y , I 〉 with fuzzy attributes and
a fuzzy attribute implication A⇒ B over Y , we have

||A⇒ B||〈X ,Y ,I 〉 = ||A⇒ B||Int(I ) = S(A∪∩, B). (12)

Proof First, we check ||A ⇒ B||〈X ,Y ,I 〉 = ||A ⇒ B||Int(I ).
Observe, that ||A⇒ B||〈X ,Y ,I 〉 ≤ ||A⇒ B||Int(I ) iff for each
M ∈ Int(I ) we have

||A⇒ B||〈X ,Y ,I 〉 ≤ ||A⇒ B||M ,

i.e.

∧
x∈X (S(Ix , A)∗ → S(Ix , B)) ≤ S(M, A)∗ → S(M, B).

As Ix (y) = I (x, y), we have

S(Ix , A) =
∧

y∈Y
Ix (y) → A(y) = A∪(x).

Therefore, the last inequality is equivalent to

∧
x∈X (A∪(x)∗ → B∪(x)) ≤ S(M, A)∗ → S(M, B),

i.e. to

S(A∪, B∪) =
∧

x∈X
(A∪(x)∗ → B∪(x))

≤ S(M, A)∗ → S(M, B),
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which is equivalent to

S(M, A)∗ ⊗ S(A∪, B∪) ≤ S(M, B) (13)

due to adjointness of⊗ and→. Thus, it suffices to prove (13)
for each M ∈ Int(I ). For this purpose, consider the operator
�, the “unhedged” version of ∩ defined by

A�(y) = ∨
x∈X (A(x) ⊗ I (x, y)).

The pair 〈�, ∪〉 forms an isotone L-Galois connection and
hence satisfies S(C1,C2) ≤ S(C�

1,C
�
2), S(D1, D2) ≤

S(D∪
1, D

∪
2), and D∪� ⊆ D. Due to the fact that M = M∪∩

and since S(C, D) ⊗ S(D, E) ≤ S(C, E), we obtain

S(M, A)∗ ⊗ S(A∪, B∪) ≤ S(M∪, A∪)∗ ⊗ S(A∪, B∪)
≤ S(M∪∗, A∪∗) ⊗ S(A∪, B∪)
≤ S(M∪∗, B∪)
≤ S(M∪∗�, B∪�)
= S(M∪∩, B∪�) = S(M, B∪�) ≤ S(M, B),

verifying (13) and thus ||A⇒ B||〈X ,Y ,I 〉 ≤ ||A⇒ B||Int(I ).
To check ||A⇒ B||〈X ,Y ,I 〉 ≥ ||A⇒ B||Int(I ), it is sufficient
to observe that for each x ∈ X , Ix ∈ Int(I ).

Second, we check ||A ⇒ B||〈X ,Y ,I 〉 = S(A∪∩, B). We
have

||A⇒ B||〈X ,Y ,I 〉 = ||A⇒ B||{Ix |x∈X}
=

∧

x∈X
(S(Ix , A)∗ → S(Ix , B))

=
∧

x∈X
(A∪(x)∗ → B∪(x))

=
∧

x∈X
(A∪∗(x) → B∪(x))

= S(A∪∗, B∪)
= S(A∪∗∩, B)

= S(A∪∩, B),

proving the claim. ��
Having defined validity, we now consider theories of our

fuzzy attribute implications and models of these theories.
Recall that according to a seminal work of Pavelka (Pavelka
1979a, b, c), a theory in a fuzzy setting naturally consists of
formulas to which degrees of truth are attached, i.e. a theory
is a fuzzy set of formulas; see also (Gerla 2001; Hájek 1998).
Therefore, we define a theory to be a fuzzy set T of fuzzy
attribute implications. We furthermore say that a theory is
crisp if T is crisp as a fuzzy set, in which case we write A⇒
B ∈ T if T (A⇒ B) = 1 and A⇒ B /∈ T if T (A⇒ B) = 0.

Note that the degree to which an implication A⇒ B is a
member of T , i.e. the degree T (A ⇒ B), may naturally be
interpreted as the degree to which the validity of A ⇒ B is
assumed. In addition, T may alternatively be regarded as a
fuzzy set of dependencies extracted from data, in which case
T (A ⇒ B) is interpreted as the degree to which A ⇒ B is
valid in the data.

The set Mod(T ) of all models of a given theory T is then
defined as

Mod(T ) = {M ∈ LY | for each A, B ∈ LY :
T (A⇒ B) ≤ ||A⇒ B||M }.

Observe that according to this definition,M is amodel of T if
for every implication A⇒ B it holds that the degree to which
A⇒ B is valid in M is greater than or equal than the degree
T (A⇒ B) that the theory “prescribes” for A⇒ B. Clearly,
if T is crisp then Mod(T ) = {M ∈ LY | for each A⇒ B ∈
T : ||A⇒ B||M = 1}.

The degree to which a given implication A⇒ B semanti-
cally follows from a theory T of implications is then naturally
defined by

||A⇒ B||T = ∧
M∈Mod(T ) ||A⇒ B||M .

Interestingly, the general concept of degree of validity of
fuzzy attribute implications may be reduced to the seemingly
narrower, particular concept of full validity (i.e. validity to
degree 1):

Lemma 2 For a fuzzy attribute implication A ⇒ B, a fuzzy
set M of attributes, and a truth degree c ∈ L we have

c ≤ ||A⇒ B||M iff ||A⇒c → B||M = 1.

Proof Using α → (β → γ ) = β → (α → γ ) and α →∧
k βk = ∧

k(α → βk), one easily obtains ||A ⇒ (c →
B)||M = c → ||A⇒ B||M . The claim then follows from the
fact that α → β = 1 iff α ≤ β. ��

Wemay now, in a sense, reduce the concepts of model and
entailment for general theories (i.e. theories which involve
truth degrees) to the concepts of model and entailment for
crisp theories:

Lemma 3 For a theory T of fuzzy attribute implications,
denote by cr(T ) a crisp theory as follows:

cr(T ) = {A⇒T (A⇒ B) → B | A, B ∈ LY

and T (A⇒ B) → B �= Y }. (14)

Then,

Mod(T ) = Mod(cr(T )), and (15)
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||A⇒ B||T = ||A⇒ B||cr(T ) (16)

for any fuzzy attribute implication A⇒ B.

Proof The equality in (15) is a direct consequence of
Lemma 2. The equality in (16) follows by definition from
(15). ��

Interestingly, one may now reduce the concept of general
degree of entailment from a theory to that of bivalent (i.e. to
degree 1) entailment from a crisp theory:

Lemma 4 For a fuzzy attribute implication A ⇒ B and a
theory T of implications, we have

||A⇒ B||T = ∨{c ∈ L | ||A⇒c → B||T = 1},
||A⇒ B||T = ∨{c ∈ L | ||A⇒c → B||cr(T ) = 1}.

Proof Using Lemma 2, we have

||A⇒ B||T = ∧
M∈Mod(T ) ||A⇒ B||M

= ∨{c ∈ L | c ≤ ||A⇒ B||M for each M ∈ Mod(T )}
= ∨{c ∈ L | ||A⇒c → B||T = 1},

establishing the first equality. The second one is a direct con-
sequence of the first and of (16). ��

Lemma 4 is conveniently used when later proving graded
completeness theorem for our logic.

3 Models and their connection to
interior-like structures

Wenow explore the structure ofmodels of theories and estab-
lish important connections to interior-like structures. Let us
recall from (Belohlavek et al. 2005) that an L∗-interior oper-
ator on a set Y is a mapping I : LY → LY which satisfies

I (A) ⊆ A, (17)

S(A1, A2)
∗ ≤ S(I (A1), I (A2)), (18)

I (A) = I (I (A)), (19)

for every A, A1, A2 ∈ LY . Note that when L = {0, 1}
(two-valued Boolean case) then the concept of anL∗-interior
operator coincides (modulo identifying crisp fuzzy sets with
ordinary sets) with the ordinary concept of interior operator.

Let us further recall (Belohlavek et al. 2005) that an L∗-
interior system on Y is a set S ⊆ LY of fuzzy sets in Y
which is closed under unions of fuzzy sets and so-called a∗-
multiplications of fuzzy sets; that is to say, S is required to
satisfy:

if A j ∈ S for every j ∈ J then
⋃

j∈J A j ∈ S, (20)

if A ∈ S and a ∈ L then a∗ ⊗ A ∈ S. (21)

Now again, for L = {0, 1},L∗-interior systems coincidewith
ordinary interior systems.

Let now for an L∗-interior system S on Y and an L∗-
interior operator I onY define themapping IS and the system
SI by

IS(B) =
⋃

i∈I
(S(Ai , B)∗ ⊗ Ai )

and

SI = {A ∈ LY | A = I (A)}.

Then, as proved in (Belohlavek et al. 2005), IS is an L∗-
interior operator on Y and SI is an L∗-interior system on Y ;
furthermore, the mappings sending S to IS and I to SI are
bijective and are mutually inverse.

Interestingly, as the following two theorems show, models
of theories of our formulas are just the L∗-interior systems
on Y .

Theorem 2 Let T be a theory of fuzzy attribute implications
over Y . Then, the system Mod(T ) of all models of T is an
L∗-interior system on Y .

Proof According to the definition, we need to verify that
Mod(T ) satisfies conditions (20) and (21). By virtue of
Lemma 3, we may safely suppose that T is crisp.

For (20): IfMj ∈ Mod(T ) for j ∈ J , then ||A⇒ B||Mj =
1, i.e. S(Mj , A)∗ ≤ S(Mj , B), for any A ⇒ B ∈ T . Now,
since (

∧
j∈J a j )

∗ ≤ ∧
j∈J a

∗
j , we get

S(
⋃

j∈J M j , A)∗ = (
∧

j∈J S(Mj , A))∗

≤ ∧
j∈J S(Mj , A)∗

≤ ∧
j∈J S(Mj , B) = S(

⋃
j∈J M j , B),

proving ||A⇒ B||⋃
j∈J M j = 1, hence

⋃
j∈J M j ∈ Mod(T ).

For (21): If M ∈ Mod(T ), then for each A⇒ B ∈ T we
have ||A⇒ B||M = 1, i.e. S(Mj , A)∗ ≤ S(Mj , B). For each
a ∈ L , we thus have

S(a∗ ⊗ M, A)∗ = (a∗ → S(M, A))∗ ≤ a∗∗ → S(M, A)∗

= a∗ → S(M, A)∗ ≤ a∗ → S(M, B) = S(a∗ ⊗ M, B),

establishing ||A ⇒ B||a∗⊗M = 1, whence a∗ ⊗ M ∈
Mod(T ). ��
Theorem 3 For every L∗-interior system S on Y , there is a
theory T of fuzzy attribute implications over Y whose models
are just the elements of S, i.e. for which S = Mod(T ).

Proof We verify that the theory T = {A⇒ IS(A) | A ∈ LY }
has the required property. Take any M ∈ S. Then, since IS is
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the corresponding operator, M = IS(M). According to (18),
we obtain

S(M, A)∗ ≤ S(IS(M), IS(A)) = S(M, IS(A)).

This way, we proved that ||A ⇒ IS(A)||M = 1, hence
M ∈ Mod(T ). This first inclusion,S ⊆ Mod(T ), is therefore
established.

We establish the second inclusion by showing that if M /∈
S then M /∈ Mod(T ). Take any M /∈ S. Then, clearly, M �=
IS(M). Since IS is an interior operator, we have IS(M) ⊂
M , cf. (17). Consequently, S(M, IS(M)) �= 1 due to the
definition of graded inclusion S. Since

||M⇒ IS(M)||M = S(M, M)∗ → S(M, IS(M))

and since S(M, M)∗ = 1∗ = 1, we obtain

||M⇒ IS(M)||M = 1 → S(M, IS(M))

= S(M, IS(M)) �= 1.

This means that M is not a model of T , i.e. M /∈ Mod(T ),
finishing the proof. ��

SinceMod(T ) is anL∗-interior system on Y , wemay con-
sider for every A ∈ LY the largest model in Mod(T ) covered
by A. This largest model, which is clearly IMod(T )(A), has a
very important property. Namely, as shown in the next the-
orem, the degree ||A ⇒ B||T of entailment of any A ⇒ B
from T equals the degree to which A ⇒ B is valid in this
single model IMod(T )(A), as well as to the degree to which
this model is included in B:

Theorem 4 Let A⇒ B be an arbitrary fuzzy attribute impli-
cation, and let T be any theory of implications. Then,

the degree of entailment ||A⇒ B||T equals

the degree of validity ||A⇒ B||IMod(T )(A) equals

the degree of inclusion S(IMod(T )(A), B).

Proof Since IMod(T )(A) is a model of T , the definition
of semantic entailment yields ||A ⇒ B||T ≤ ||A ⇒
B||IMod(T )(A). Due to property (17), which is obeyed by
IMod(T ), and since 1∗ = 1, we get S(IMod(T )(A), A)∗ = 1.
Now, since by definition,

||A⇒ B||IMod(T )(A)

= S(IMod(T )(A), A)∗ → S(IMod(T )(A), B),

and since 1 → a = a, we easily obtain

||A⇒ B||IMod(T )(A) = S(IMod(T )(A), B).

Consider now anymodelM of T . As IMod(T ) is the interior
operator corresponding to T , we have M = IMod(T )(M).
Applying (18) and M = IMod(T )(M), we obtain

S(M, A)∗ ⊗ S(IMod(T )(A), B)

≤ S(IMod(T )(M), IMod(T )(A)) ⊗ S(IMod(T )(A), B)

≤ S(IMod(T )(M), B) = S(M, B).

The adjointness property applied to the previous inequality
finally yields

S(IMod(T )(A), B) ≤ S(M, A)∗ → S(M, B),

for each M ∈ Mod(T ), which is the required inequality
because S(M, A)∗ → S(M, B) = ||A⇒ B||M . We proved
S(IMod(T )(A), B) ≤ ||A⇒ B||T . ��

4 Syntactico-semantical completeness

In this section, we introduce an axiomatic system for our
logic, which is inspired by the classic Armstrong sys-
tem (Armstrong 1974). We then proceed to establish two
kinds of completeness theorem for our system. First is the
ordinary-style completeness according to which an arbitrary
implication A⇒ B is provable from a crisp theory T of impli-
cations if and only if A⇒ B semantically follows from T to
degree 1. Second is the graded-style completeness according
to which it holds that the degree of provability from a theory
T of an arbitrary implication A ⇒ B equals the degree to
which A⇒ B semantically follows from T .

We start by presenting our basic deduction rules:

(Ax) (from any premises) infer conclusion A⇒ A ∪ B,
(DCut) from premises A⇒ B and B ∩ C ⇒ D infer con-

clusion A ∩ C⇒D,
(Sh) from premise A⇒ B infer conclusion c∗ → A⇒

c∗ → B

for each A, B,C, D ∈ LY , and c ∈ L . Note that the fuzzy
set c∗ → A is defined by (c∗ → A)(y) = c∗ → A(y). Note
furthermore that the rule (Ax) is essentially an axiom, and
that according to this rule, any formula of the form A⇒ A∪B
can be derived in a single inference step.

While (Ax) and (DCut) are inspired by the ordinary rules
of axiom and cut (in fact, (DCut) is dual to the usual rule of
cut), rule (Sh) is a new rule in our setting. It is easy to see that
if the hedge ∗ is the globalization, rule (Sh) may be dropped.
This is because if c equals 1 (Sh) clearly says “from A⇒ B
infer A⇒ B” and is thus a trivial rule. If c < 1, then because
c∗ = 0, rule (Sh) allows us to infer from A⇒ B the trivial
conclusion Y ⇒Y , can be inferred by (Ax) and thus can be
omitted.
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For ordinary provability, we use the usual notions. Thus,
for an ordinary (i.e. crisp) theory T we denote by T �R A⇒
B the fact that A⇒ B is provable from T , which means that
it may be derived from the implications in T using a set R
of deduction rules. Furthermore, we call a deduction rule of
the form “from ϕ1, . . . , ϕn infer ϕ” derivable from a set R
of other rules if {ϕ1, . . . , ϕn} �R ϕ. If the subscript R is
omitted, it means that R consists of (Ax)–(Sh).

It is amatter of routine verification that the following rules
are derivable from (Ax) and (DCut):

(Ref) (from any premises) infer conclusion A⇒ A,
(Wea) from premise A⇒ B infer conclusion A∩C⇒ B,
(Add) from premises A⇒ B and A⇒C infer conclusion

A⇒ B ∩ C ,
(Pro) from premise A⇒ B ∩C infer conclusion A⇒ B,
(Tra) from premises A⇒ B and B⇒C infer conclusion

A⇒C ,

for each A, B,C, D ∈ LY .

4.1 Ordinary-style completeness

Before proving the completeness theorem, we need some
auxiliary results. We call a deduction rule sound if every
model of its premises is also a model of its conclusions,
which for a rule “from ϕ1, . . . , ϕn infer ϕ” means that if
M ∈ Mod({ϕ1, . . . , ϕn}) then M ∈ Mod({ϕ}). Soundness
of a rule thus means that whenever the premises are true, the
conclusion is true as well. Our rules are sound:

Lemma 5 The deduction rules (Ax), (DCut), and (Sh) are
sound.

Proof (Ax): Clearly, for any M we have S(M, A)∗ ≤
S(M, A ∪ B), i.e. ||A ⇒ A ∪ B||M = 1, proving M ∈
Mod({A⇒ A ∪ B}).

(DCut): We need to check that M ∈ Mod({A ⇒ B, B ∩
C ⇒ D}) implies M ∈ Mod({A ∩ C ⇒ D}). We prove a
stronger claim, namely

(||A⇒ B||M )∗ ⊗ (||B ∩ C⇒D||M )∗ ≤ ||A ∩ C⇒D||M .

As one easily observes, this claim is equivalent to

S(M, A ∩ C)∗ ⊗ [
S(M, A)∗ → S(M, B)

]∗

⊗ [
S(M, B ∩ C)∗ → S(M, D)

]∗ ≤ S(M, D).

The latter inequality holds true since

S(M, A ∩ C)∗ ⊗ (S(M, A)∗ → S(M, B))∗

⊗ [
S(M, B ∩ C)∗ → S(M, D)

]∗

≤ (S(M, A)∗ ∧ S(M,C)∗) ⊗ (S(M, A)∗ → S(M, B))∗

⊗ [
S(M, B ∩ C)∗ → S(M, D)

]∗

≤ S(M, A)∗ ⊗ [
S(M, A)∗ → S(M, B)

]∗ ⊗ S(M,C)∗⊗
[
S(M, B ∩ C)∗ → S(M, D)

]

≤ S(M, B)∗ ⊗ S(M,C)∗ ⊗ [
S(M, B ∩ C)∗ → S(M, D)

]

≤ S(M, D).

(Sh): Let M ∈ Mod({A ⇒ B}). We have to show that
M ∈ Mod({c∗ → A ⇒ c∗ → B}). Observe first that
M ∈ Mod({A ⇒ B}) iff ||A ⇒ B||M = 1 iff S(M, A)∗ ≤
S(M, B) iff

for each y ∈ Y : M(y) ⊗ S(M, A)∗ ≤ B(y). (22)

Now, M ∈ Mod({c∗ → A ⇒ c∗ → B}) iff S(M, c∗ →
A)∗ ≤ S(M, c∗ → B) iff for each y ∈ Y we have M(y) ⊗
S(M, c∗ → A)∗ ≤ c∗ → B(y), i.e.M(y)⊗c∗⊗S(M, c∗ →
A)∗ ≤ B(y), which is true:

M(y) ⊗ c∗ ⊗ S(M, c∗ → A)∗

≤ M(y) ⊗ c∗ ⊗ (c∗∗ → S(M, A)∗)
= M(y) ⊗ c∗ ⊗ (c∗ → S(M, A)∗)
≤ M(y) ⊗ S(M, A)∗ ≤ B(y),

the last inequality being true due to (22), proving the sound-
ness of (Sh). ��

Call an ordinary theory T of fuzzy attribute implications
semantically closed if all its semantics consequences are
already contained in T , i.e. if for every A ⇒ B we have
A⇒ B ∈ T if and only if ||A⇒ B||T = 1. Analogously, T
is called syntactically closed if the same is true for its syn-
tactic consequences (formulas provable from T ), i.e. if for
every A⇒ B we have A⇒ B ∈ T if and only if T � A⇒ B.

Lemma 6 If an ordinary theory T of fuzzy attribute implica-
tions is semantically closed, it is also syntactically closed.

Proof One may easily observe that an ordinary theory T of
FAIs is syntactically closed iff we have:

A⇒ A ∪ B ∈ T ,
if A⇒ B ∈ T and B∩C⇒D ∈ T then A∩C⇒D ∈ T ,
if A⇒ B ∈ T then c∗ → A⇒c∗ → B ∈ T

for each A, B,C, D ∈ LY , and c ∈ L . Therefore, we have
to show that for each deduction rule “from ϕ1, . . . , ϕn infer
ϕ,” i.e. one of (Ax)–(Sh), ϕ1, . . . ϕn ∈ T implies ϕ ∈ T . Let
thus ϕ1, . . . ϕn ∈ T . Since {ϕ1, . . . ϕn} ⊆ T , for any model
M ∈ Mod(T ) we have

M ∈ Mod({ϕ1, . . . ϕn}).
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Since each of the rules (Ax)–(Sh) is sound by Lemma 5, we
conclude M ∈ Mod({ϕ}). Since M is an arbitrary model of
T , this shows that ϕ semantically follows from T . Since T
is semantically closed, we get ϕ ∈ T . ��

The following lemma is crucial for our proof of complete-
ness. Note that similarly as in case of Armstrong rules, the
assumption of finitenessmay be dropped if we employ infini-
tary rules (we omit this technical issue).

Lemma 7 If an ordinary theory T of fuzzy attribute implica-
tions over a finite set Y and a finite set L of truth degrees is
syntactically closed, it is also semantically closed.

Proof To verify that a syntactically closed theory T is seman-
tically closed, it is sufficient to verify that {A⇒ B | ||A⇒
B||T = 1} ⊆ T . To check this inclusion, we show that
A⇒ B /∈ T implies A⇒ B /∈ {A⇒ B | ||A⇒ B||T = 1}.
Notice for this purpose that since T is closed syntactically,
it is also closed under any of the derived rules (Ref)–(Tra)
listed above.

Assume A⇒ B /∈ T . We demonstrate that a model M ∈
Mod(T ) exists that is not a model of A⇒ B, and this clearly
implies the required inclusion A ⇒ B /∈ {A ⇒ B | ||A ⇒
B||T = 1}. Consider the fuzzy set M = A− of attributes
defined as follows: A− is the smallest fuzzy set for which
A⇒ A− is in T .

Observe first that such A− exists: Since A⇒ A ∈ T due to
(Ref), the set S = {C | A⇒C ∈ T } is non-empty;moreover,
since Y and L are finite, S is finite; finally, S is closed under
intersections because if A ⇒ C1, . . . , A ⇒ Cn ∈ T then
A⇒⋂n

i=1 Ci ∈ T by a repeated use of (Add).
Next, we show that (a) A− is not a model of A⇒ B, i.e.

||A ⇒ B||A− �= 1, and that (b) A− is a model of T , i.e.
||C⇒D||A− = 1 for every C⇒D ∈ T .

(a): Assume, by way of contradiction, that ||A⇒ B||A− =
1. From A− ⊆ A it follows A− ⊆ B because 1 = ||A ⇒
B||A− = S(A−, A)∗ → S(A−, B) = 1 → S(A−, B) =
S(A−, B). An application of rule (Pro) to A ⇒ A− ∈ T
now yields A ⇒ B ∈ T , which is a contradiction with our
assumption.

(b): For any C ⇒ D ∈ T , we need to check that ||C ⇒
D||A− = 1. That is, to check S(A−,C)∗ → S(A−, D) = 1.
The latter equality holds iff

S(A−,C)∗ ⊗ A− ⊆ D, i.e. iff A− ⊆ S(A−,C)∗ → D.

To verify the last inclusion, we prove

A⇒ S(A−,C)∗ → D ∈ T .

Observe that this is indeed sufficient, as A− is the smallest
fuzzy set with A⇒ A− ∈ T . The following three assertions
are furthermore available:

(i) A⇒ A− ∈ T (directly from the definition of A−),
(ii) A− ⇒ S(A−,C)∗ → C ∈ T

(namely, A− ⇒ S(A−,C)∗ → C is an instance of (Ax)
because A− ⊆ S(A−,C)∗ → C),

(iii) S(A−,C)∗ → C ⇒ S(A−,C)∗ → D ∈ T (just apply
(Sh) to C⇒D ∈ T ).

Applying now (Tra) twice to (i), (ii), and (iii), A ⇒
S(A−,C)∗ → D ∈ T is readily obtained. ��

We thus obtain the ordinary-style completeness for our
logic:

Theorem 5 For finite Y and L, and an ordinary theory T
of fuzzy attribute implications, T � A ⇒ B if and only if
||A ⇒ B||T = 1, i.e. A ⇒ B is provable from T iff A ⇒ B
semantically follows from T .

Proof Denote by syn(T ) and sem(T ) the least syntactically
and semantically closed ordinary theory of FAIs that contains
T , respectively. It is easily shown that both syn and sem are
closure operators and that syn(T ) = {A⇒ B | T � A⇒ B}
and sem(T ) = {A ⇒ B | ||A ⇒ B||T = 1}. To prove the
claim, it is thus sufficient to establish syn(T ) = sem(T ). As
syn(T ) is syntactically closed, it is also semantically closed
by Lemma 7, which means sem(syn(T )) ⊆ syn(T ). There-
fore, since T ⊆ syn(T ), monotony of sem yields

sem(T ) ⊆ sem(syn(T )) ⊆ syn(T ).

In a similar manner, we get syn(T ) ⊆ sem(T ), showing
syn(T ) = sem(T ), completing the proof. ��

4.2 Graded-style completeness

Even though Theorem 5 connects provability and entailment,
one may naturally ask if general degrees of entailment—
different from 1 to which Theorem 5 restricts—may be
characterized by a kind of generalized provability concept.
For this purpose, we employ a concept of degree of provabil-
ity of A⇒ B from T , denoted by |A⇒ B|T .With this concept
in hand, we establish that |A ⇒ B|T = ||A ⇒ B||T , which
equality may be looked at as expressing a completeness-
to-degrees of our logic. This concept is inspired by the
framework of Pavelka-style logic (Pavelka 1979a, b, c), see
also, e.g. (Gerla 2001; Hájek 1998).

Let therefore T be a theory of fuzzy attribute implications,
A ⇒ B be an implication, and define the degree to which
A⇒ B is provable from T by

|A⇒ B|T = ∨{c ∈ L | cr(T ) � A⇒c ⊗ B}. (23)

Note that in this definition, cr(T ) is defined as in Lemma
3. Observe that we made use in this definition of Lemma 4
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which reduces entailment to an arbitrary degree to entailment
to degree 1. One then obtains our graded-style completeness
theorem:

Theorem 6 For a theory T over finite Y and finite L, it holds

|A⇒ B|T = ||A⇒ B||T .

Proof Directly by using Lemma 4 and Theorem 5 and the
above considerations. ��

5 Non-redundant bases

In this section, we describe certain non-redundant fully infor-
mative sets of implications true in a given table 〈X , Y , I 〉.
Definition 3 We call an ordinary theory (i.e. a set) T of fuzzy
attribute implications complete in a table 〈X ,Y , I 〉 if for each
implication A⇒ B we have ||A⇒ B||T = ||A⇒ B||〈X ,Y ,I 〉.
If, moreover, no proper subset of T is complete in 〈X , Y , I 〉,
we call T a base of 〈X ,Y , I 〉.

Clearly, if T is complete then each A⇒ B ∈ T is valid in
〈X ,Y , I 〉 to degree 1 and, furthermore, for any other implica-
tion C⇒D, the degree ||C⇒D||〈X ,Y ,I 〉 to which C⇒D is
valid in 〈X ,Y , I 〉 is equal to the degree ||C⇒D||T to which
C⇒D semantically follows from T . In this sense, bases are
non-redundant ordinary theories with complete information
about validity in data. The following theorem characterizes
complete ordinary theories:

Theorem 7 An ordinary theory T is complete if and only if
Mod(T ) = Int(I ).

Proof Take a complete T and assume that M ∈ Mod(T ), i.e.
M is a model of T . Due to (12), we have ||M⇒M∪∩||Int(I ) =
S(M∪∩, M∪∩) = 1. Hence, ||M ⇒M∪∩||T = 1 because T is
complete and because we have (12). From M ∈ Mod(T ),
we get ||M ⇒ M∪∩||M = 1, hence 1 = S(M, M)∗ ≤
S(M, M∪∩) and, therefore, M ⊆ M∪∩. Now, one always
has M∪∩ ⊆ M , whence M ∈ Int(I ), finishing the proof
of Mod(T ) ⊆ Int(I ).

Let furthermore M ∈ Int(I ). Due to (12), ||A⇒ B||M ≥
||A ⇒ B||Int(I ) = ||A ⇒ B||Mod(T ) = 1 for every A ⇒
B ∈ T . This means that M is a model of T , establishing
Int(I ) ⊆ Mod(T ).

On the other hand, fromMod(T ) = Int(I )weobtain using
(12) that ||A⇒ B||T = ||A⇒ B||Int(I ) = ||A⇒ B||〈X ,Y ,I 〉,
i.e. T is complete. ��

We now describe bases of 〈X ,Y , I 〉 that may be obtained
fromsystemsof so-calledpseudo-intents of 〈X ,Y , I 〉. In case
of attribute implications overBoolean attributes, the notion of
a pseudo-intent goes back to (Guigues and Duquenne 1986)

[see also (Ganter and Wille 1999)]; our notion for graded
attributes is inspired by (Belohlavek and Vychodil 2016,
2017).

Definition 4 We call a system P of fuzzy sets in Y a system
of pseudo-intents of a table 〈X ,Y , I 〉 if for every fuzzy set
P ∈ LY the following holds: P ∈ P if and only if P �= P∪∩
and for each Q ∈ P with Q �= P wehave ||Q⇒Q∪∩||P = 1.

From now on, let P denote a system of pseudo-intents of
〈X , Y , I 〉. We need the following auxiliary results.

Lemma 8 For a systemof pseudo-intentsP of 〈X ,Y , I 〉, con-
sider the set T = {P⇒ P∪∩ | P ∈ P} of implications. Then,
Mod(T ) ⊆ Int(I ), i.e. every model of T in an intent of I .

Proof We proceed by way of contradiction. To show that
Mod(T ) ⊆ Int(I ), we assume M /∈ Int(I ) which means
M �= M∪∩. As M is a model of T , it follows that for each
Q ∈ P one has ||Q⇒Q∪∩||M = 1. By definition of a system
of pseudo-intents,M ∈ P which implies thatM⇒M∪∩ ∈ T .
Now,

||M⇒M∪∩||M = S(M, M)∗ → S(M, M∪∩)
= S(M, M∪∩) �= 1,

a contradiction to M ∈ Mod(T ). ��
Lemma 9 For any A, M ∈ LY , we have ||A⇒ A∪∩||M = 1
for every A ∈ LY and M ∈ Int(I ).

Proof Let M ∈ Int(I ), i.e. M = M∪∩. We have

S(M, A)∗ ≤ S(M∪, A∪)∗
≤ S(M∪∗, A∪∗)
≤ S(M∪∩, A∪∩)
= S(M, A∪∩).

Thus, S(M, A)∗ → S(M, A∪∩) = 1, i.e. ||A⇒ A∪∩||M = 1.
��

Lemma 10 For any system P of pseudo-intents of a table
〈X , Y , I 〉, the set T = {P ⇒ P∪∩ | P ∈ P} is complete in
〈X , Y , I 〉.
Proof Due to (12), it suffices to verify that for any implication
A⇒ B we have

||A⇒ B||T = ||A⇒ B||Int(I )

On the one hand, ||A⇒ B||T ≤ ||A⇒ B||Int(I ) follows from
the fact that every intent in Int(I ) is a model of T , which was
established in Lemma 9. Conversely, ||A ⇒ B||T ≥ ||A ⇒
B||Int(I ) follows from Lemma 8. ��
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We thus obtain the main result in the present section.

Theorem 8 T = {P⇒ P∪∩ | P ∈ P} is a base of 〈X ,Y , I 〉.
Proof By Lemma 10, T is complete. It remains to check
minimality of T . Let T ′ ⊂ T . Take some P ∈ P such that
P ⇒ P∪∩ does not belong to T ′. Definition 4 implies that
||Q ⇒ Q∪∩||P = 1 for every Q ∈ P and Q �= P , which
means P ∈ Mod(T ′). Since ||P ⇒ P∪∩||P = S(P, P∪∩) �=
1, we obtain ||P⇒ P∪∩||T ′ �= 1. On the other hand, Lemma 9
and (12) yield ||P⇒ P∪∩||〈X ,Y ,I 〉 = 1, hence T ′ is not com-
plete in 〈X ,Y , I 〉. ��

In the remainder, we show that if L is finite and ∗ is the
globalization, the base T in Theorem 8 is in fact the smallest
one. For this purpose, we need the following auxiliary result.

Lemma 11 Suppose that fuzzy sets P and Q in Y are pseudo-
intents or intents of 〈X ,Y , I 〉, i.e. P, Q ∈ P ∪ Int(I ),
satisfying

S(Q, P)∗ ≤ S(P ∪ Q, P∪∩)

and

S(P, Q)∗ ≤ S(P ∪ Q, Q∪∩).

Then, P ∪ Q is an intent of 〈X ,Y , I 〉, i.e. P ∪ Q ∈ Int(I ).

Proof Let T be the set of fuzzy attribute implications in
Theorem 8 and consider its subset T ′ = T − {P ⇒
P∪∩, Q ⇒ Q∪∩}. On account of Definition 4 and Lemma
9, we obtain than both P and Q are models of T ′. It fol-
lows that for every implication A ⇒ B in T ′ one has
S(P, A)∗ ≤ S(P, B) and S(Q, A)∗ ≤ S(Q, B). Therefore,
S(P ∪ Q, A)∗ = (S(P, A) ∧ S(Q, A))∗ ≤ S(P, A)∗ ∧
S(Q, A)∗ ≤ S(P, B) ∧ S(Q, B) = S(P ∪ Q, B). This
inequality implies that P ∪ Q ∈ Mod(T ′). On account of
Lemma 8, it remains to prove that P ∪ Q ∈ Mod({P ⇒
P∪∩, Q⇒Q∪∩}). Due to the two inequalities assumed in the
present lemma, S(P∪Q, P)∗ = S(Q, P)∗ ≤ S(P∪Q, P∪∩)
and S(P ∪ Q, Q)∗ = S(P, Q)∗ ≤ S(P ∪ Q, Q∪∩), which
means by definition that both the required conditions, ||P⇒
P∪∩||P∪Q = 1 and ||Q⇒Q∪∩||P∪Q = 1, are met and hence
P ∪ Q ∈ Mod({P⇒ P∪∩, Q⇒Q∪∩}) is indeed the case. ��

Now we obtain:

Theorem 9 Let L be a finite residuated lattice with ∗ being
the globalization, let Y be finite, let T = {P⇒ P∪∩ | P ∈ P}.
If T ′ is complete in 〈X ,Y , I 〉 then |T | ≤ |T ′|.
Proof We prove the claim by showing that for each P ∈
P , T ′ contains an implication A ⇒ B with P ⊆ A and
A∪∩ = P∪∩ and that for mutually different P1, P2 ∈ P , their
corresponding implications in T ′ are also different.

Consider anypseudo-intent P ∈ P . Because, bydefinition
of a pseudo-intent, P �= P∪∩, and because T ′ is complete,
we obtain by virtue of Theorem 7 that an implication A⇒ B
exists in T ′ for which ||A ⇒ B||P �= 1. As ∗ is the glob-
alization, we have P ⊆ A and P � B. Thus, P∪∩ ⊆ A∪∩.
Now, since T ′ is complete and due to (12), we conclude
S(A∪∩, B) = 1, whence A∪∩ ⊆ B. As P � B, we finally get
P � A∪∩.

We now easily obtain that A∪∩ ∪ P /∈ Int(I ): P � A∪∩
implies A∪∩ ⊂ A∪∩∪P; P ⊆ A and A∪∩ ⊆ A yield A∪∩∪P ⊆
A, hence (A∪∩ ∪ P)∪∩ ⊆ A∪∩ by monotony of ∪∩ . To sum up,
(A∪∩ ∪ P)∪∩ ⊂ A∪∩ ∪ P , i.e. A∪∩ ∪ P is not an intent.

We now verify A∪∩ = P∪∩. First, the above-observed fact
P ⊆ A implies P∪∩ ⊆ A∪∩. It remains to prove A∪∩ ⊆ P∪∩.
This inclusion readily follows from A∪∩ ⊆ P which we now
verify. By contradiction, if A∪∩ � P then the fact P � A∪∩
observed above and Lemma 11 yield A∪∩ ∪ P ∈ Int(I ),
contradicting the above observation.

It remains to check that if P1, P2 ∈ P are different, then no
single A⇒ B ∈ T ′ can satisfy P1, P2 ⊆ A and P∪∩

1 = A∪∩ =
P∪∩
2 . By contradiction, assume that A ⇒ B ∈ T ′ has this

property. Observe first that P1 ⊂ P2 cannot be the case: Due
to the definition of a pseudo-intent, P1 ⊂ P2 implies P1 ⊆
P∪∩
2 , hence A∪∩ = P∪∩

1 ⊂ P1 ⊆ P∪∩
2 = A∪∩, a contradiction.

Similarly one observes that P2 ⊂ P1 cannot be the case,
hence we have S(P1, P2) < 1 and S(P2, P1) < 1, and thus,
S(P1, P2)∗ = 0 and S(P2, P1)∗ = 0. Lemma 11 now yields
P1 ∪ P2 ∈ Int(I ). As P1, P2 ⊆ A, we have P1 ∪ P2 ⊆ A and
thus also (P1 ∪ P2)∪∩ ⊆ A∪∩. Since P1 is a pseudo-intent, we
have P∪∩

1 ⊂ P1, hence also P∪∩
1 ⊂ P1 ∪ P2 = (P1 ∪ P2)∪∩ ⊆

A∪∩, a contradiction to the assumption P∪∩
1 = A∪∩. ��

6 Conclusions and further issues

We examined a logic for dependencies describing contain-
ment of fuzzy attributes and established several results for
this logic. The grades are assumed to be members of a com-
plete residuated lattice and our semantics is based on the
operations in this lattice. The dependencies involved may
be seen as dual to those of (Belohlavek and Vychodil 2016,
2017). However, the lack of certain laws in residuated struc-
tures of truth degrees, such as the law of double negation,
prevents a reduction of the present dependencies to those
from (Belohlavek and Vychodil 2016, 2017) and requires a
separate inquiry.

Among the main results established in the paper are:
results regarding validity of dependencies, their models,
and entailment; connections to related structures, particu-
larly to isotone Galois connections and the lattices of their
fixpoints; an axiomatic system for reasoning with the depen-
dencies including two versions of completeness theorem;

123
53



R. Belohlavek, J. Konecny

basic results on bases, i.e. minimal fully informative sets
of dependencies that are true in a given data. To keep the
paper concise, we did not examine related computational
problems. These problems include the problem of computing
a degree of entailment of a given dependency from a given set
of dependencies, the problem of computing various kinds of
bases, including the significant base we described, and vari-
ous other problems ordinarily studied for data dependencies.
Such problems remain a future research topic.
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C Concept Lattices of Isotone vs. Antitone Galois Connec-
tions in Graded Setting: Mutual Reducibility Revisited

[15] Radim Belohlavek and Jan Konecny. Concept lattices of isotone vs. antitone
Galois connections in graded setting: Mutual reducibility revisited. Informa-
tion Sciences, 199:133–137, 2012.

In this paper, we explore relationship between standard concept lattices and
attribute-oriented concept lattices in the graded setting. It is fundamental work for
the framework for handling denial since it shows that the attribute-oriented concept-
forming operators contain an implicit negation which makes it appropriate to use for
handling denial.

It is well known that in the basic setting the standard and attribute-oriented
concept lattices of a formal context and its complement are isomorphic, via a natural
isomorphism which maps the extents to themselves and intents to their complements.
It is also known that in the graded setting, this and similar kinds of reductions fail
to hold. We show that when the usual notion of a complement, based on a residuum
w.r.t. 0, is replaced by a new one, based on residua w.r.t. arbitrary truth degrees,
the above-mentioned reduction remains valid.

On the one hand, it is well known that with L satisfying the double negation law
(  a “ a) the attribute-oriented case is easily reducible to the standard case, and
vice versa, via a set complement. Specifically, the attribute-oriented concept lattice
BXYpX, Y, Iq is isomorphic to the standard concept lattice BÒÓpX, Y, Iq. The isomor-
phism i : BXYpX, Y, Iq Ñ BÒÓpX, Y, Iq, as well as its inverse i´1 : BÒÓpX, Y, Iq Ñ
BXYpX, Y, Iq, is given by

i, i´1 : xA,By ÞÑ xA, By. (43)
Clearly, we also have

ExtXYpX, Y, Iq “ ExtÒÓpX, Y, Iq. (44)

On the other hand, this is no longer the case in the graded setting as the double
negation law does not hold generally. We propose a new notion of complement of
an L-relation: L-complement w.r.t. K Ď L of an L-relation I P LXˆY is L-relation
 KI P L

XˆpYˆKq given by

 KIpx, xy, ayq “ Ipx, yq Ñ a (45)

for all x P X, y P Y, a P K.
Utilizing this notion of complement, we can state one-way reducibility of the

standard case to the attribute-oriented case:
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Theorem 8. Let xX, Y, Iy be an L-context. Then BXYpX, Y, Iq is isomorphic to
BÒÓpX, Y ˆ pLzt0uq, Lzt0uIq with i : xA,AXy ÞÑ xA,AÒy being the isomorphism from
BXYpX, Y, Iq to BÒÓpX, Y ˆ L, Lzt0uIq. Particularly,

ExtXYpX, Y, Iq “ ExtÒÓpX, Y ˆ L, Lzt0uIq.

The result reveals a new, deeper root of the reduction: it is not the availability of
the law of double negation, but rather the fact that negations are implicitly present
in the construction of attribute-oriented concept lattices.

A converse statement to Theorem 8 does not hold. That is, there is no notion of
a complement „ such that for any fuzzy relation I, the set ExtÒÓpX, Y, Iq is equal
to ExtXYpX,Z,„Iq for any suitable Z. This is because for some fuzzy relations I,
ExtÒÓpX, Y, Iq is not a system of extents of any fuzzy relation J w.r.t. the operators
xX,Y y. This was demonstrated in [14].
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It is well known that concept lattices of isotone and antitone Galois connections induced by
an ordinary binary relation and its complement are isomorphic, via a natural isomorphism
mapping extents to themselves and intents to their complements. It is also known that in a
fuzzy setting, this and similar kinds of reduction fail to hold. In this note, we show that
when the usual notion of a complement, based on a residuum w.r.t. 0, is replaced by a
new one, based on residua w.r.t. arbitrary truth degrees, the above-mentioned reduction
remains valid. For ordinary relations, the new and the usual complement coincide. The
result we present reveals a new, deeper root of the reduction: It is not the availability of
the law of double negation but rather the fact that negations are implicitly present in
the construction of concept lattices of isotone Galois connections.

� 2012 Elsevier Inc. All rights reserved.

1. Problem setting

As is well-known, a given ordinary binary relation I 2 {0,1}X�Y (representing, e.g. a yes/no relationship between objects
x 2 X and attributes y 2 Y) induces two important pairs of operators between {0,1}X and {0,1}Y. Namely, a pair h"I ; #I i defined
by

A"I ¼ fy 2 Yj for each x 2 A : hx; yi 2 Ig;
B#I ¼ fx 2 Xj for each y 2 B : hx; yi 2 Ig; ð1Þ

and a pair h\I ;[I i defined by

A\I ¼ fy 2 Yj there exists x 2 A such that hx; yi 2 Ig;
B[I ¼ fx 2 Xj for each y 2 Y : hx; yi 2 I implies y 2 Bg; ð2Þ

for all subsets A of X and B of Y. These operators are employed in several areas including data analysis, such as formal concept
analysis in particular [8] or association rules, logic and reasoning about data [7], or ordered sets and their applications [6]. It
is well known that the two pairs of operators are mutually definable [7]. An important consequence is that with : denoting
the set complement, the sets of fixpoints, i.e. the concept lattices

BðX\I ;Y[I ; IÞ and BðX":I ;Y#:I ;:IÞ are isomorphic as lattices; ð3Þ

0020-0255/$ - see front matter � 2012 Elsevier Inc. All rights reserved.
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(or, equivalently, BðX\:I ; Y[:I ;:IÞ and BðX"I ;Y#I ; IÞ are isomorphic), with hA;Bi# hA;:Bi being an isomorphism. Hence, in
particular,

ExtðX\I ;Y[I ; IÞ ¼ ExtðX":I ;Y#:I ;:IÞ; ð4Þ

i.e. the corresponding sets of extents are equal. Here, the concept lattices and the sets of extents of a binary relation
I 2 {0,1}X�Y are defined by

BðX"I ;Y#I ; IÞ ¼ fhC;Di 2 f0;1gX � f0;1gY jC"I ¼ D;D#I ¼ Cg; ð5Þ
BðX\I ;Y[I ; IÞ ¼ fhC;Di 2 f0;1gX � f0;1gY jC\I ¼ D;D[I ¼ Cg; ð6Þ
ExtðX"I ;Y#I ; IÞ ¼ fC 2 f0;1gX jhC;Di 2 BðX"I ;Y#I ; IÞ for some Dg; ð7Þ
ExtðX\I ;Y[I ; IÞ ¼ fC 2 f0;1gX jhC;Di 2 BðX\I ;Y[I ; IÞ for some Dg: ð8Þ

The above reducibility results mean that, in a sense, one need not investigate the properties of the concept lattices of
h"I ; #I i and h\I ;[I i separately because the properties of one are derivable from those of the other.

However, as shown in [9], when fuzzy relations instead of ordinary relations I are considered (i.e. graded attributes rather
than yes/no attributes are considered), the above mutual reducibility results are no longer true. In this note, we show that
when the notion of a complement of a fuzzy relation is defined in a new way, (3) and (4) remain valid even in the setting of
fuzzy relations. We also show that in the other direction, the reducibility results cannot be saved even with the new notion of
complement. Since in the case of ordinary relations the new notion of complement coincides with the usual one, our result
puts the known reducibility results in a different perspective that we discuss.

2. Result and remarks

We assume that the set L of truth degrees along with the truth functions � of conjunction and ? of implication forms a
complete residuated lattice, i.e. a structure L = hL,^,_,�,?,0,1i satisfying: hL,^,_,0,1i is a complete lattice; hL,�,1i is a com-
mutative monoid; � and ? satisfy adjointness, i.e. a � b 6 c iff a 6 b ? c. We assume that the reader is familiar with exam-
ples and properties of residuated lattices [2,10,11,13].

A fuzzy relation I 2 LX�Y induces two pairs of operators between LX and LY, i.e. the sets of all fuzzy sets in X and Y, defined
by

A"I ðyÞ ¼
V

x2X
ðAðxÞ ! Iðx; yÞÞ; B#I ðxÞ ¼

V
y2Y
ðBðyÞ ! Iðx; yÞÞ; ð9Þ

A\I ðyÞ ¼
W

x2X
ðAðxÞ � Iðx; yÞÞ; B[I ðxÞ ¼

V
y2Y
ðIðx; yÞ ! BðyÞÞ; ð10Þ

for all fuzzy sets A 2 LX and B 2 LY. Clearly, (9) and (10) generalize the above operators defined by (1) and (2) (just put
L = {0,1}). BðX"I ;Y#I ; IÞ, BðX\I ;Y[I ; IÞ, ExtðX"I ;Y#I ; IÞ, and ExtðX\I ;Y[I ; IÞ are defined by the same formulas as in (5)–(8) with
{0,1} replaced by L. For more information we refer, e.g. to [2–4,9].

As was mentioned above, when I is a fuzzy relation (3) and (4) fail to hold. This fact was for the first time observed in [9]
and is well known. In this observation, however, it is crucial that the complement :I of a fuzzy relation I between X and Y is
conceived as a fuzzy relation between X and Y defined by

:Iðx; yÞ ¼ Iðx; yÞ ! 0: ð11Þ

That is, one uses the truth function : of negation defined by

:a ¼ a! 0; ð12Þ

for each a 2 L and the standard way of defining a complement of a fuzzy set by means of :.
As we show in what follows, there is another notion of complement of I. Both :I, as defined above, and the new notion of

complement coincide with the ordinary notion of complement in the ordinary case, i.e. when L = {0,1}. However, the new
notion of complement has the advantage that a part of the reducibility results, namely (3) and (4), remain true even when
I is a fuzzy relation (see Remark 2b for a reducibility result that does not hold with any notion of complement).

The classical notion of complement :I of a fuzzy relation may be looked at the following way. Each attribute y 2 Y in the
data table representing I is replaced by its complement. That it, each fuzzy set Iy 2 LX, representing attribute y, defined by
Iy(x) = I(x,y) is replaced in the table by its complement :Iy defined by

ð:IyÞðxÞ ¼ :ðIyðxÞÞ; i:e: ð:IyÞðxÞ ¼ IyðxÞ ! 0:

The complement (12) is in fact the residuum of a w.r.t. 0. However, one may also consider a residuum of a 2 L w.r.t. to an
arbitrary element b 2 L, i.e. one may consider

:ba ¼ a! b; ð13Þ
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of which :a is a particular case because :a ¼ :0a. In addition to :Iy, the ‘‘negation relative to 0’’ one may therefore also con-
sider :bIy, the ‘‘negation relative to b’’, for other degrees b, defined by

ð:bIyÞðxÞ ¼ :bðIyðxÞÞ; i:e: ð:bIyÞðxÞ ¼ IyðxÞ ! b:

For every original attribute y, Iy may therefore be replaced not just by the complement :0Iy w.r.t. 0 but by several com-
plements :bIy w.r.t. b 2 K with K # L being a set of selected values, bringing us the following definition.

Definition 1. For a set K # L, the K-complement of a fuzzy relation I between X and Y is a fuzzy relation :K I between X and
Y � K defined by

ð:K IÞðx; hy; biÞ ¼ :bIðx; yÞ; ð14Þ

for every x 2 X, y 2 Y, and b 2 K.

Remark 1.

(a) Going from I to :K I may be seen as replacing every attribute y 2 Y, represented by Iy in I, by a collection of new attri-
butes hy,bi 2 Y � K, represented by :bIy in :K I for b 2 K.

(b) Clearly, for K ¼ f0g, :K I may be identified with :I, because Y � {0} may be identified with Y and :K Iðx; hy; f0giÞ ¼
:Iðx; yÞ.

(c) Observe that for L = {0,1} (the ordinary case), :L�f1gI ¼ :f0gI, i.e. in view of (b) of this Remark, :L�f1gI may be identified
with the classical complement :I of I.

In view of Remark 1c, there are two ways to generalize the notion of a complement of an ordinary relation I between X
and Y to a fuzzy setting:

(i) First, a complement of I may be defined as a fuzzy relation between X and Y by (11).
(ii) Second, a complement of I may be defined as a fuzzy relation between X and Y � K by (14) with K = L � {1}.

While (3) and (4) fail to hold in a fuzzy setting for (i), they do hold in a fuzzy setting with the complement understood
according to (ii):

Theorem 1. For a fuzzy relation I between X and Y, let yI denote :L�f1gI. Then BðX\I ; Y[I ; IÞ and BðX"yI ;Y � ðL� f1gÞ#yI ; yIÞ are
isomorphic as lattices, with the mappings hA,Bi´ hA,Di, where

Dðy; bÞ ¼ :bBðyÞ; ð15Þ

for y 2 Y, b 2 L � {1}, and hA,Di´ hA,Bi, where

BðyÞ ¼
V

b2L�f1g
:bDðy; bÞ; ð16Þ

for y 2 Y, being the isomorphism and its inverse. Hence, in particular,

ExtðX\I ;Y[I ; IÞ ¼ ExtðX"yI ;Y � ðL� f1gÞ#yI ; yIÞ: ð17Þ

Proof. We first prove (17). Since "yI#yI is an L-closure operator in X [2], it follows that ExtðX"yI ;Y � ðL� f1gÞ#yI ; yIÞ is an L-clo-
sure system in X, i.e. it is closed under arbitrary

V
-intersections and left ?-multiplications. This means that for all

Aj 2 ExtðX"yI ;Y � ðL� f1gÞ#yI ; yIÞ; j 2 J, we have
V

j2JAj 2 ExtðX"yI ;Y � ðL� f1gÞ#yI ; yIÞ and for each a 2 L and A 2 ExtðX"yI ;
Y � ðL� f1gÞ#yI ; yIÞ we have a! A 2 ExtðX"yI ;Y � ðL� f1gÞ#yI ; yIÞ with a ? A 2 LX defined by (a ? A)(x) = a ? A(x) for each
x 2 X. Moreover, [4, Theorem 2 (10)] implies that ExtðX"yI ;Y � ðL� f1gÞ#yI ; yIÞ is the least L-closure system in X containing
every column of yI, i.e. every :bIy for each b 2 L � {1}.

To prove (17), it is therefore sufficient to show that ExtðX\I ;Y[I ; IÞ is the least L-closure system in X containing every
column of yI. This assertion follows from the fact that ExtðX\I ;Y[I ; IÞ is always an L-closure system and from the following
claim. h

Claim 1. ExtðX\I ;Y[I ; IÞ consists of all possible
V

-intersections of fuzzy sets :bIyðy 2 Y ; b 2 L� f1gÞ.
Namely, if S is an L-closure system that contains every column of yI, it contains all intersections of the columns of yI and, due to

Claim, it contains ExtðX\I ;Y[I ; IÞ. Therefore, to prove (17), it remains to prove Claim.

Proof of Claim 1. Since \I and [I form an isotone Galois connection, we have

R. Belohlavek, J. Konecny / Information Sciences 199 (2012) 133–137 135
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ExtðX\I ;Y[I ; IÞ ¼ fB[I jB 2 LYg: ð18Þ

On one hand, every B[I is an intersection of fuzzy sets of the form :bIy because

B[I ðxÞ ¼
V

y2Y
ðIðx; yÞ ! BðyÞÞ ¼

V
y2Y
:BðyÞIy: ð19Þ

On the other hand, consider an arbitrary intersection A of :bIys, i.e. A ¼
V
hy;bi2P:bIy for some P # Y � (L � {1}). Define

B(y) =
V
hy,bi2Pb. Then

AðxÞ ¼
V

y2Y

V
hy;bi2P

ðIðx; yÞ ! bÞ ¼
V

y2Y
Iðx; yÞ !

V
hy;bi2P

b ¼
V

y2Y
Iðx; yÞ ! BðyÞ ¼ B[I ðxÞ;

hence A 2 ExtðX\I ;Y[I ; IÞ, finishing the proof of Claim and hence also the proof of (17).
Now, since ExtðX\I ; Y[I ; IÞ and ExtðX"yI ;Y � ðL� f1gÞ#yI ; yIÞ are isomorphic as lattices to BðX\I ;Y[I ; IÞ and BðX"yI ;Y � ðL�

f1gÞ#yI ; yIÞ, respectively, it follows that BðX\I ;Y[I ; IÞ and BðX"yI ;Y � ðL� f1gÞ#yI ; yIÞ are isomorphic as lattices.

Take any hA;Bi 2 BðX\I ;Y[I ; IÞ and the corresponding hA;Di 2 BðX"yI ;Y � ðL� f1gÞ#yI ; yIÞ. Then

Dðy; bÞ ¼ A"yI ðy; bÞ ¼
V

x2X
AðxÞ ! yIðx; hy; biÞ ¼

V
x2X

AðxÞ ! ðIðx; yÞ ! bÞ ¼
V

x2X
ððAðxÞ � Iðx; yÞÞ ! bÞ

¼
W

x2X
ðAðxÞ � Iðx; yÞ

� �
! b ¼ A\I ðyÞ ! b ¼ BðyÞ ! b ¼ :bBðyÞ;

verifying (15). To check (16), consider any A 2 LX and the corresponding B ¼ A\I and D ¼ A"yI . Observe first that

BðyÞ 6 :bDðy; bÞ; ð20Þ

for each b 2 L � {1}. Indeed, taking into account a 6 ða! bÞ ! b ¼ :b:ba for any a 2 L and (15), we have BðyÞ 6 :b:bBðyÞ ¼
:bDðy; bÞ. This verifies the ‘‘ 6 ’’ part of (16). Let now c = B(y). If c < 1, then c is one of the degrees from L � {1} over which the
infimum in (16) is taken and since :cDðy; cÞ ¼ :c:cBðyÞ ¼ :c:cc ¼ c ¼ BðyÞ in this case, the infimum in (16) is indeed equal to
B(y). If c = 1 then due to (20), :bDðy; bÞ ¼ 1 for each b 2 L � {1}, hence also the infimum in (16) is equal to 1, i.e. equal to
B(y). h

Remark 2

(a) One easily checks that since :1IyðxÞ ¼ 1 for each x 2 X, one may replace L � {1} by L in Theorem 1.
(b) A converse statement to Theorem 1 does not hold. That is, there is no notion of a complement� such that for any fuzzy

relation I; ExtðX"I ;Y#I ; IÞ is equal to ExtðX\�I ; Z[�I ;� IÞ for any suitable Z. This is because for some fuzzy relations
I;ExtðX"I ;Y#I ; IÞ is not a system of extents of any fuzzy relation J w.r.t. the operators \J and [J [5].

(c) In view of Remark 1c, Theorem 1 generalizes (3) and (4) and its proof does not use the law of double negation.

3. Conclusions

We proposed a new notion of complement of a fuzzy relation. We showed that this notion helps to save certain results
that are known not to hold with the ordinary notion of a complement. A further exploration of the new notion of comple-
ment remains a subject for future research.

It is an interesting question to explore to what extent the new notion may be used in various other areas of fuzzy set the-
ory to replace the usual notion of complement in such a way that the resulting concepts behave as in the classical, bivalent
case. In particular, in the context of closure structures associated to fuzzy relations, it seems reasonable to use the new no-
tion of complement to define a new semantics of failure dependencies in knowledge spaces with graded knowledge states
[1]. Another topic worth further investigation is provided by [12]. One of the main results in [12] is a description of a scaling
of a fuzzy relation I 2 LX�Y to an ordinary relation Ic # (X � L) � (Y � L) such that BðX\I ;Y[I ; IÞ and BðX � L"Ic ;Y � L#Ic ; IcÞ are
isomorphic as lattices. This result is a consequence of Theorem 1. Furthermore, [12] considers general isotone Galois connec-
tions that employ linguistic hedges to parameterize the concept of an isotone Galois connection and to reduce the size of the
resulting concept lattice. An analogous reduction may be obtained by using :K I with K # L � {1}. These issues will be subject
to a future work.
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D L-concept Analysis with Positive and Negative Attributes
[3] Eduard Bartl and Jan Konecny. L-concept analysis with positive and negative

attributes. Information Sciences, 360:96–111, 2016.

We describe an extension of FCA in the graded setting, allowing a user to choose
which incidences are viewed as affirmations and which are viewed as denials. The
two sets are then handled using a combination of the standard and attribute-oriented
concept-forming operators. Specifically, we extend the notion of formal L-context to
contain two L-relations, `I and ´I, between objects and attributes. The membership
degrees in `I present graded affirmations while the membership degrees in ´I present
graded denials. It is natural to assume that `I Ď ´I. The intervals r`Ipx, yq, ´Ipx, yqs
are then seen as sets of truth degrees in which object x can have attribute y. As
intents, we use pairs x`B, ´By P LY ˆ LY , where the L-sets `B, ´B respectively
represent affirmations and and denials about attributes.

The concept-forming operators M : LX Ñ LY ˆ LY and O : LY ˆ LY Ñ LX are
defined as

AM “ xAÒ, AX
y and x`B, ´ByO “ `B

Ó
X
´B

Y (46)

for each A P LX , `B, ´B P LY ; where the pair xÒ, Óy is induced by xX, Y, `Iy and
the pair xX, Yy is induced by xX, Y, ´Iy.

Both the two main outputs of FCA are presented. In the first part, an analogy
of the main theorem of concept lattices and a relationship between the new concept
lattice and the previously studied concept lattices is shown.

In the second part, we describe the second main output of FCA. We present
a general logic of if-then rules A ñ B (A,B P LY ˆ LY ), called L-containment
implications, for graded attributes which can be read: if all attributes of an object
are contained in A then they are contained in B. Specifically, for M Ď LY ˆ LY ,
the degree }Añ B}M in which Añ B is valid in M is defined as }Añ B}M “
Ź

MPM }AñB}M.
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We describe an extension of formal fuzzy concept analysis allowing a user to choose which 

attributes are viewed as positive and which are viewed as negative. The two sets are then 

handled using a combination of previously studied antitone concept-forming operators and 

isotone concept-forming operators, respectively. The two main outputs of formal concept 

analysis, namely concept lattices and attribute implications, in the setting of positive and 

negative attributes are presented. An analogy of the main theorem of concept lattices and 

a relationship between the new concept lattice and the previously studied concept lattices 

is showed. We introduce basic syntactic and semantic notions for attribute implications 

called fuzzy containment implications. We consider two settings, one where the sets of 

positive and negative attributes are crisp sets, and a generalization, where the two sets are 

fuzzy sets. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Formal concept analysis [9,12] is a method of relational data analysis identifying interesting clusters (formal concepts) in 

a collection of objects and their attributes, and organizing them into a structure called concept lattice. The formal concept 

is obtained as a fixed point of so-called concept-forming operators and is characterized by a pair of sets – extent and 

intent. The extent contains all objects covered by the concept and the intent contains all attributes covered by the concept. 

Numerous generalizations of formal concept analysis, which allow to work with graded data, were provided; see [16] and 

references therein. In the present paper we stick with approach of Belohlavek [2] and Pollandt [17] . 

In a graded (fuzzy) setting, two main kinds of concept forming-operators – antitone and isotone one – were studied 

[3,13,17,18] , compared [5,6] and even covered under a unifying framework [4,15] . The antitone concept-forming operators 

handle attributes in a positive way and concepts are based on sharing attributes (at least in some degree), while the isotone 

concept-forming operators handle attributes in a negative way and concepts are based on missing same attributes (or having 

them at most in some degree). 

In order to clarify our motivation, we assume the data ( L -context) in Fig. 1 with objects representing employees, and 

attributes representing skills. 

We consider the following four situations: 

✩ Supported by Grant no. 15-17899S, “Decompositions of Matrices with Boolean and Ordinal Data: Theory and Algorithms”, of the Czech Science Founda- 

tion. 
∗ Corresponding author. Tel.: +420 585634720. 

E-mail address: eduard.bartl@upol.cz (E. Bartl). 

http://dx.doi.org/10.1016/j.ins.2016.04.012 

0020-0255/© 2016 Elsevier Inc. All rights reserved. 
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α β γ

A 0.5 0 1
B 1 0.5 1
C 0 0.5 0.5
D 0.5 0.5 1

Fig. 1. Example of L -context with objects A, B, C, D and attributes α, β , γ ; L is a chain 0 < 0.5 < 1 with Łukasiewicz operations. 

(a) One can handle the attributes in positive way and form concepts based on having the same skills at least in some 

degree. Such concepts are formed by antitone concept-forming operators denoted by 〈↑ , ↓〉 . Extents of the concepts 

can be interpreted as maximal collections of employees able to fulfill a task which requires particular skill set. For 

example, the collection of employees able to fulfill a task which requires the skill α in full degree and the skill β at 

least in half degree can be found as { α, deg 0 . 5 β} ↓ . 
(b) Or, one can handle the attributes in negative way and form concepts based on having the same skills at most in some 

degree. Such concepts are created by isotone concept-forming operators which we denote by 〈 ∩ , ∪ 〉 . Extents of the 

concepts can be interpreted as maximal collections of employees who lack the same skills and need some training to 

gain them. For example, the maximal collection of employees who lack the skill α and have the skill β at most in 

degree 0.5 can be found as { deg 0 . 5 β, γ } ∪ . 
(c) Now, consider a training course for the skill β for which is essential to have the skill α at least in degree 0.5. Concept 

covering just employees appropriate for the training course (i.e. employees who meet the requirement but have not 

mastered β yet) is not formed neither by antitone nor isotone concept-forming operators. While the attribute α is 

positive, β is negative and they must be handled in a different way. 

(d) Finally, consider another training course to master the skill β for which is essential to already have the skill β in 

degree 0.5. In such a case, we are interested in a concept covering just employees having the skill β exactly in degree 

0.5. In such a case, β is considered positively and negatively at the same time. Again, it cannot be formed neither by 

antitone nor isotone concept-forming operators. 

This example motivates us to extend formal concept analysis in such a way that a user is allowed to specify a set + Y 
of positive attributes and a set −Y of negative attributes. Attributes in 

+ Y and 

−Y are then handled using antitone concept- 

forming operators and isotone concept-forming operators, respectively. The present approach enables us to incorporate the 

concepts from (a) and concepts from (b) into one concept lattice, and to form concepts from (c) and (d). 

We study the two main outputs of formal concept analysis, i.e. concept lattices and attribute implications, in the setting 

of positive and negative attributes. 

We have considered a similar setting in [1] where each attribute has both positive and negative occurrence in a formal 

context. Membership degrees of positive and negative attributes in intents serve as their lower and upper approximations, 

respectively, in fuzzy rough set setting. 1 Recently, [19] considered a framework with positive and negative attributes for 

crisp setting. The present work can be considered to be a generalization of both [1] and [19] . 

The paper is structured as follows. In Section 2 we recall basic notions important for the rest of the paper; namely 

residuated lattices, fuzzy sets and fuzzy relations, completely lattice L -ordered sets, and formal fuzzy concept analysis. 

Section 3 introduces the extension of formal concept analysis where a user can select sets + Y and 

−Y of positive and 

negative attributes, respectively. Section 4 then generalizes the results of Section 3 by making + Y and 

−Y fuzzy sets. In 

Section 5 we provide results on attribute implications in the present setting. 

2. Preliminaries 

2.1. Residuated lattices, L -sets and L -relations 

We use complete residuated lattices as basic structures of truth degrees. A complete residuated lattice [2,14,21] is a 

structure L = 〈 L, ∧ , ∨ , �, → , 0 , 1 〉 such that 〈 L , ∧ , ∨ , 0, 1 〉 is a complete lattice, i.e. a partially ordered set in which arbitrary 

infima and suprema exist (the partial order of L is denoted by ≤); 〈 L , �, 1 〉 is a commutative monoid, i.e. � is a binary 

operation which is commutative, associative, and a � 1 = a for each a ∈ L ; � and → satisfy adjointness, i.e. a � b ≤ c iff

a ≤ b → c . Operations � (multiplication) and → (residuum) play the role of truth functions of “fuzzy conjunction” and 

“fuzzy implication.” 0 and 1 denote the least and greatest elements. Throughout this work, L denotes an arbitrary complete 

residuated lattice. 

Common examples of complete residuated lattices include those defined on the unit interval (i.e. L = [0 , 1] ), ∧ and ∨ 

being minimum and maximum, � being a left-continuous t-norm with the corresponding residuum → given by a → b = 

max { c | a � c ≤ b} . The three most important pairs of adjoint operations on the unit interval are 

1 Note that fuzzy interval-valued approaches, e.g. [7,8,10,20] , use lower and upper approximations in formal contexts as well but handle both approxi- 

mations in a positive way. 
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• Łukasiewicz 

a � b = max (a + b − 1 , 0) , 

a → b = min (1 − a + b, 1) , 

• Gödel 

a � b = min (a, b) , 

a → b = 

{
1 if a ≤ b, 

b otherwise. 

• Goguen (product) 

a � b = a · b, 

a → b = 

{
1 if a ≤ b, 
b 
a 

otherwise. 

Instead of unit interval we can also consider a finite chain, e.g. L = { 0 , 1 n , . . . , 
n −1 

n , 1 } . All operations on this chain are then 

defined analogously, see [2] . 

The following lemma summarizes the properties of complete residuated lattices used in this paper. 

Lemma 1. For all a , b , c , a i , b i ∈ L we have 

(a � b) → c = a → (b → c) , (1) 

a → 

∧ 

i b i = 

∧ 

i (a → b i ) , (2) 

∧ 

i (a i → b) = ( 
∨ 

i a i ) → b, (3) 

∧ 

i a i ≤ a i , (4) 

1 → a = a, (5) 

a → a = 1 , (6) 

b ≤ (a → b) → b, (7) 

c = 

∧ 

a ∈ L −{ 0 } 
(c → a ) → a. (8) 

Proof. (1) –(7) can be found in [2] . 

To prove (8) note, that for c = 1 the equality follows directly from (7) . For c ∈ L − { 1 } , we have c ≤ ( c → a ) → a for all 

a ∈ L − { 1 } due (7) . Thus we have 

c ≤
∧ 

a ∈ L −{ 1 } 
(c → a ) → a ≤ (c → c) → c = 1 → c = c 

using (4) –(6) . �

An L -set A in a universe set X is a mapping assigning to each x ∈ X some truth degree A ( x ) ∈ L . The set of all L -sets in a 

universe X is denoted L X . 

The operations with L -sets are defined componentwise. For instance, for a ∈ L and A ∈ L X we define L -sets a → A a a �
A in X by (a → A )(x ) = a → A (x ) and (a � A )(x ) = a � A (x ) for all x ∈ X , respectively. The intersection of L -sets A , B ∈ L X is 

an L -set A ∩ B in X such that (A ∩ B )(x ) = A (x ) ∧ B (x ) for each x ∈ X . Similarly for union of the two L -sets. 

Intersection and union of two L -sets can be generalized to any number of L -sets and even to an L -set of L -sets. For an 

L -set M ∈ L L 
X 
, the intersection 

⋂ M and union 

⋃ M are L -sets in X , defined by ⋂ M = 

⋂ 

A ∈ L X (M (A ) → A ) , 
⋃ M = 

⋃ 

A ∈ L X (M (A ) � A ) . (9) 

An L -set A ∈ L X is also denoted { A ( x ) / x | x ∈ X }. If for all y ∈ X distinct from x 1 , . . . , x n we have A (y ) = 0 , we also write 

{ A (x 1 ) /x 1 , . . . , 
A (x n ) /x n } . An L -set A ∈ L X is called crisp if A ( x ) ∈ {0, 1} for each x ∈ X . Crisp L -sets can be identified with 

ordinary sets. For a crisp set A , we also write x ∈ A for A (x ) = 1 and x �∈ A for A (x ) = 0 . 

For A , B ∈ L X we define the degree of inclusion of A in B by 

S(A, B ) = 

∧ 

x ∈ X (A (x ) → B (x )) . (10) 
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Graded inclusion generalizes the classical inclusion relation. Described verbally, S ( A , B ) represents a degree to which A is a 

subset of B . In particular, we write A ⊆ B iff S(A, B ) = 1 . As a consequence, we have A ⊆ B iff A ( x ) ≤ B ( x ) for each x ∈ X . 

Further, we set 

E(A, B ) = S(A, B ) ∧ S(B, A ) . (11) 

The value E ( A , B ) is interpreted as the degree to which the sets A and B are similar. 

A binary L -relation R between sets X and Y is an L -set in X × Y , i.e. R ∈ L X × Y . A binary L -relation R on a set X is an L -set 

in X × X , i.e. R ∈ L X × X . 

A binary L -relation R on a set X is called reflexive if R (x, x ) = 1 for any x ∈ X , symmetric if R (x, y ) = R (y, x ) for any x , y 

∈ X , and transitive if R ( x , y ) �R ( y , z ) ≤ R ( x , z ) for any x , y , z ∈ X . R is called an L -tolerance if it is reflexive and symmetric, 

and an L -equivalence if it is reflexive, symmetric and transitive. If R is an L -equivalence such that for any x , y ∈ X from 

R (x, y ) = 1 it follows x = y, then R is called an L -equality on X . 

Let ∼ be an L -equivalence on X . We say that a binary L -relation R on X is compatible with ∼, if for each x , x ′ , y , y ′ ∈ X , 

R (x, y ) � (x ∼ x ′ ) � (y ∼ y ′ ) ≤ R (x ′ , y ′ ) . 

2.2. Completely lattice L -ordered sets 

An L -order on a set X with an L -equality ≈ on X is a binary L -relation � on X which is compatible with ≈, reflexive, 

transitive and satisfies ( x � y ) ∧ ( y � x ) ≤ x ≈ y for any x , y ∈ X (antisymmetry). An immediate consequence of the definition 

is that for any x , y ∈ X it holds 

x ≈ y = (x � y ) ∧ (y � x ) . (12) 

The tuple 〈〈 X , ≈〉 , � 〉 is called an L -ordered set. If there is no danger of confusion, we denote L -ordered sets shortly by 

〈 X , � 〉 . 
Let 〈 X , � 〉 be an L -ordered set. For A ∈ L X we define L -sets L (A ) , U(A ) ∈ L X by 

L (A )(y ) = 

∧ 

x ∈ X (A (x ) → (y � x )) , U(A )(y ) = 

∧ 

x ∈ X (A (x ) → (x � y )) 

for all y ∈ X . The right-hand side of the first equation is the degree of “for each x ∈ X , if x is in A , then y is less than or 

equal to x , ” and similarly for the second equation. Thus, L (A )(y ) (resp. U(A )(y ) ) can be seen as the degree to which y is 

less (resp. greater) than or equal to each element of A . L (A ) (resp. U(A ) ) is called the lower cone (resp. the upper cone ) of A . 

For any L -set A ∈ L X there exists at most one element x ∈ X such that L (A )(x ) ∧ U(L (A ))(x ) = 1 (resp. U(A )(x ) ∧ 

L (U(A ))(x ) = 1 ), see [2,3] . If there is such an element, we call it the infimum of A (resp. the supremum of A ) and denote 

it by inf A (resp. sup A ); otherwise we say that the infimum (resp. the supremum) does not exist. For x ∈ X and a ∈ L we 

define 

a → x = inf ({ a /x } ) , a � x = sup ({ a /x } ) . 
An L -ordered set 〈 X , �〉 is called completely lattice L -ordered , if for each A ∈ L X , both inf A and sup A exist. An important 

example of a completely lattice L -ordered set is the tuple L X = 〈〈 L X , E〉 , S〉 , where X is an arbitrary set and E and S are given 

by (11) and (10) , respectively. Infima and suprema in L X are given by intersections and unions: for any M ∈ L L 
X 

we have 

inf M = 

⋂ M , sup M = 

⋃ M . 

Let X = 〈 X, �〉 be a completely lattice L -ordered set. A subset K ⊆ X is {0, 1}-infimally dense (resp. {0, 1}-supremally 

dense) in X if for each x ∈ X there is some K 

′ ⊆ K such that x = inf K 

′ (resp. x = sup K 

′ ). 

2.3. Galois connections, L -closure operators and L -closure systems 

An antitone Galois connection between the L -ordered sets 〈 X , � X 〉 and 〈 Y , �Y 〉 is a pair 〈 f , g 〉 of mappings f : X → Y , g : Y 

→ X , satisfying 

(x �X g(y )) = (y �Y f (x )) (13) 

for every x ∈ X , y ∈ Y . 

An isotone Galois connection between the L -ordered sets 〈 X , �X 〉 and 〈 Y , � Y 〉 is a pair 〈 f , g 〉 of mappings f : X → Y , g : Y 

→ X , satisfying 

(x �X g(y )) = ( f (x ) �Y y ) (14) 

for every x ∈ X , y ∈ Y . 
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An L -closure operator on an L -ordered set 〈 X , �〉 is a mapping c : X → X satisfying 

(x � c(x )) = 1 , 

(x 1 � x 2 ) ≤ (c(x 1 ) � c(x 2 )) , 

c(x ) = c(c(x )) 

for all x , x 1 , x 2 ∈ X . 

An L -interior operator on an L -ordered set 〈 X , �〉 is a mapping i : X → X satisfying 

(i (x ) � x ) = 1 , 

(x 1 � x 2 ) ≤ (i (x 1 ) � i (x 2 )) , 

i (x ) = i (i (x )) 

for all x , x 1 , x 2 ∈ X . 

A system S = { x i ∈ X | i ∈ I} is called an L -closure system on an L -ordered set 〈 X , �〉 if it is closed under general �- 

intersections, i.e. for each x ∈ X it holds true that 

inf 
i ∈ I 

((x � x i ) → x i ) ∈ S. 

A system S = { x i ∈ X | i ∈ I} is called an L -interior system on an L -ordered set 〈 X , �〉 if it is closed under general �-unions, 

i.e. for each x ∈ X it holds true that 

sup 

i ∈ I 
((x i � x ) � x i ) ∈ S. 

There is a close relationship between antitone/isotone Galois connections, L -closure/ L -interior operators, and L -closure/ L - 

interior systems, for more details see [2] . Particularly, for an antitone Galois connection 〈 f , g 〉 between 〈 X , �X 〉 and 〈 Y , �Y 〉 , the 

composite mapping fg is an L -closure operator on 〈 X , �X 〉 , and the composite mapping gf is an L -closure operator on 〈 Y , �Y 〉 . 
Similarly, for an isotone Galois connection 〈 f , g 〉 between 〈 X , �X 〉 and 〈 Y , �Y 〉 , the composite mapping fg is an L -closure 

operator on 〈 X , �X 〉 , and the composite mapping gf is an L -interior operator on 〈 Y , �Y 〉 . Moreover, for L -closure operator c 

on 〈 X , �X 〉 , the system { x ∈ X | x = c(x ) } is an L -closure system on 〈 X , �X 〉 . Similarly, for L -interior operator i on 〈 X , �X 〉 , the 

system { x ∈ X | x = i (x ) } is an L -interior system on 〈 X , �X 〉 . 
2.4. Formal concept analysis of data with fuzzy attributes 

An L -context is a triplet 〈 X , Y , I 〉 where X and Y are (ordinary) sets and I ∈ L X × Y is an L -relation between X and Y . 

Elements of X are called objects, elements of Y are called attributes, I is called an incidence relation. I(x, y ) = a is read: “The 

object x has the attribute y to degree a .” An L -context may be described as a table with the objects corresponding to the 

rows of the table, the attributes corresponding to the columns of the table and I ( x , y ) written in cells of the table (for an 

example see Fig. 1 ). 

Consider the following pairs of operators induced by an L -context 〈 X , Y , I 〉 . First, the pair 〈↑ , ↓〉 of antitone concept- 

forming operators ↑ : L X → L Y and 

↓ : L Y → L X is defined by 

A 

↑ (y ) = 

∧ 

x ∈ X (A (x ) → I(x, y )) , B 

↓ (x ) = 

∧ 

y ∈ Y (B (y ) → I(x, y )) . (15) 

Second, the pair 〈 ∩ , ∪ 〉 of isotone concept-forming operators operators ∩ : L X → L Y and 

∪ : L Y → L X is defined by 

A 

∩ (y ) = 

∨ 

x ∈ X (A (x ) � I(x, y )) , B 

∪ (x ) = 

∧ 

y ∈ Y (I(x, y ) → B (y )) . (16) 

To emphasize that the operators are induced by I , we also denote the operators by 〈↑ I , ↓ I 〉 and 〈 ∩ I , ∪ I 〉 . 
The pairs 〈 A , B 〉 ∈ L X × L Y , such that A 

↑ = B and B ↓ = A are called standard L -concepts. Analogously, the pairs 〈 A , B 〉 ∈ 

L X × L Y , such that A 

∩ = B and B ∪ = A are called attribute-oriented L -concepts. Components A and B in standard or attribute- 

oriented L -concept 〈 A , B 〉 are called extent and intent, respectively. For an L -concept lattice B(X, Y, I) , where B is either B 

↑ ↓ 
or B 

∩∪ , we denote the corresponding sets of extents and intents by Ext( X , Y , I ) and Int( X , Y , I ), respectively, i.e. 

Ext (X, Y, I) = { A ∈ L X | 〈 A, B 〉 ∈ B(X, Y, I) for some B } , 
Int (X, Y, I) = { B ∈ L Y | 〈 A, B 〉 ∈ B(X, Y, I) for some A } . (17) 

Remark 1. For L -set A ∈ L X , the truth degrees in which objects (fully) in A have attribute y are all in the upper cone of 

A 

↑ ( y ) in L ( Fig. 2 (left)). In the case A 

↑ (y ) = 0 , objects (fully) in A may have the attribute y in any degree ( Fig. 2 (middle)). 

In the case A 

↑ (y ) = 1 , objects (fully) in A have the attribute y in full degree ( Fig. 2 (right)). As positive information (having 

an attribute) is absolute in this setting, we say that the pair of concept-forming operators 〈↓ , ↑〉 considers attributes in a 

positive way. On the contrary, the truth degrees in which objects (fully) in A have attribute y are all in the lower cone of 

A 

∩ ( y ) in L ( Fig. 3 (left)). In the case A 

∩ (y ) = 0 , objects (fully) in A do not have the attribute y ; i.e. they have it in degree 

0. ( Fig. 3 (middle)). In the case A 

∩ (y ) = 1 , objects (fully) in A may have the attribute y in any degree ( Fig. 3 (right)). As 

negative information (not having an attribute) is absolute in this setting, we say that the pair of concept-forming operators 

〈 ∪ , ∩ 〉 considers attributes in a negative way. 
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Fig. 2. The truth degrees in which objects (fully) in A may have attribute y (gray area); general case (left), extreme cases A ↑ (y ) = 0 and A ↑ (y ) = 1 (middle 

and right, respectively). 

Fig. 3. The truth degrees in which objects (fully) in A may have attribute y (gray area); general case (left), extreme cases A ∩ (y ) = 0 and A ∩ (y ) = 1 (middle 

and right, respectively). 

The set of all standard L -concepts of 〈 X , Y , I 〉 , together with the L -order � defined by 

〈 A 1 , B 1 〉 � 〈 A 1 , B 2 〉 = S(A 1 , A 2 ) (18) 

for all standard L -concepts 〈 A 1 , B 1 〉 , 〈 A 1 , B 2 〉 , forms a completely lattice L -ordered set called a standard L -concept lattice; 

see example in Fig. 4 . We denote it by B 

↑ ↓ (X, Y, I) . To state this result, we need to introduce following notation. For an L -set 

M in B 

↑ ↓ (X, Y, I) , we put 
⋂ 

X M = 

⋂ 

proj X (M ) , 
⋃ 

X M = 

⋃ 

proj X (M ) , 
⋂ 

Y M = 

⋂ 

proj Y (M ) , 
⋃ 

Y M = 

⋃ 

proj Y (M ) , where 

proj X (M ) is the L -set in Ext ↑↓ ( X , Y , I ) defined by ( proj X (M ))(A ) = M (〈 A, A 

↑ 〉 ) for every A ∈ Ext ↑↓ ( X , Y , I ), and similarly, 

proj Y (M ) is the L -set in Int ↑↓ ( X , Y , I ) defined by ( proj Y (M ))(B ) = M (〈 B ↓ , B 〉 ) for every B ∈ Int ↑↓ ( X , Y , I ). 

Theorem 1. Let K = 〈 X, Y, I〉 be an L -context. 

(a) 〈 B 

↑ ↓ (X, Y, I) , �〉 is a completely lattice L -ordered set with suprema and infima defined as follows for L -set M ∈ 

L B 
↑ ↓ (X,Y,I) . 

inf (M ) = 〈 ⋂ 

X M , ( 
⋃ 

Y M ) ↓ ↑ 〉 , 
sup (M ) = 〈 ( ⋃ 

X M ) ↑ ↓ , 
⋂ 

Y M〉 . 
(b) Moreover, a completely lattice L -ordered set V = 〈 V, � 〉 is isomorphic to 〈 B 

↑ ↓ (X, Y, I) , �〉 iff there are mappings 

˜ γ : X × L → V and ˜ μ : Y × L → V, 

such that ˜ γ (X × L ) is {0, 1} -supremally dense in V , ˜ μ(Y × L ) is {0, 1} -infimally dense in V , and 

( (a � b) → I(x, y ) ) = ( ̃  γ (x, a ) � ˜ μ(y, b) ) (19) 

for all x ∈ X , y ∈ Y , a , b ∈ L. 

Example 1. Consider the standard L -concept lattice B 

↑ ↓ (X, Y, I) in Fig. 4 and 

M = { 0 . 5 / 3 ©, 4 ©, 5 ©, 0 . 5 / 6 ©} . 
One can compute inf (M ) as infimum in completely lattice L -ordered set. We have 

L (M ) = { 0 ©, 1 ©, 2 ©, 3 ©, 0 . 5 / 4 ©, 0 . 5 / 5 ©, 0 . 5 / 6 ©} 
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Fig. 4. Standard L -concept lattice B ↑ ↓ (X, Y, I) (top left) of the L -context in Fig. 1 , description of its L -concepts (top right) and the L -order � (bottom). 

and 

U(L (M )) = { 0 . 5 / 0 ©, 0 . 5 / 1 ©, 0 . 5 / 2 ©, 3 ©, 4 ©, 5 ©, 6 ©} . 
Obviously, L (M )(v ) ∧ U(L (M ))(v ) = 1 only for v = 3 ©. Thus inf (M ) = 3 ©. More conveniently, one can compute inf (M ) us- 

ing Theorem 1 (a). The extent of inf (M ) is equal to ⋂ 

X M = 

⋂ 

proj X (M ) 

= 0 → ext 0 © ∩ 0 → ext 1 © ∩ 0 → ext 2 ©
∩ 0 . 5 → ext 3 © ∩ 1 → ext 4 © ∩ 1 → ext 5 © ∩ 0 . 5 → ext 6 ©
= Y ∩ Y ∩ Y ∩ Y ∩ ext 4 © ∩ ext 5 © ∩ Y 

= { deg 0 . 5 / A , B , C , D } ∩ { A , B , deg 0 . 5 / C , D } 
= { deg 0 . 5 / A , B , deg 0 . 5 / C , D } = ext 3 ©

where ext denotes the extent of a given concept. The reader can check that the intent part matches 3 © as well. 

Analogously, all attribute-oriented L -concepts of 〈 X , Y , I 〉 , together with the L -order (18) forms a completely lattice L - 

ordered set called an attribute-oriented L -concept lattice and we denote it by B 

∩∪ (X, Y, I) , see example in Fig. 5 . We could 

state analogy of Theorem 1 for 〈 B 

∩∪ (X, Y, I) , �〉 . Instead we present a relationship between standard and attribute-oriented 

L -concept lattices from which such result follows. 

In [6] we proposed a new notion of complement of an L -relation: L -complement of an L -relation I ∈ L X × Y is L -relation 

¬L I ∈ L X × ( Y × L ) given by 

¬ L I(x, 〈 y, a 〉 ) = I(x, y ) → a (20) 

for all x ∈ X , y ∈ Y , a ∈ L . 

Theorem 2. Let 〈 X , Y , I 〉 be an L -context. Then 〈 B 

∩∪ (X, Y, I) , �〉 is isomorphic to 〈 B 

↑ ↓ (X, Y × L, ¬ L I) , �〉 with 〈 A , A 

∩ 〉�→〈 A , A 

↑ 〉 
being the isomorphism B 

∩∪ (X, Y, I) → B 

↑ ↓ (X, Y × L, ¬ L I) . Particularly, Ext ∩∪ (X, Y, I) = Ext ↑ ↓ (X, Y × L, ¬ L I) . 

Proof. In [6] we have shown that B 

∩∪ (X, Y, I) and B 

↑ ↓ (X, Y × L, ¬ L I) isomorphic as complete lattices with 〈 A , A 

∩ 〉�→〈 A , A 

↑ 〉 
being the isomorphism B 

∩∪ (X, Y, I) → B 

↑ ↓ (X, Y × L, ¬ L I) . The extension to completely lattice L -ordered sets is trivial as the 

order � is defined via graded subsethood of extents which the isomorphism preserves. �

As it is always clear, what kind of L -concept is referred, we call the standard L -concepts and the attribute-oriented L - 

concepts uniformly L -concepts. Similarly, we call the standard L -concept lattices and the attribute-oriented L -concept lattices 

just L -concept lattices. 
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Fig. 5. Attribute-oriented L -concept lattice B ∩∪ (X, Y, I) (top left) of the L -context in Fig. 1 , description of its L -concepts (top right) and the L -order �
(bottom). 

2.5. System of L -sets of positive and negative attributes 

In this paper, we consider L -concepts with intents which consist of an L -set of positive attributes in 

+ Y and an L -set 

of negative attributes in 

−Y . We denote such pairs of L -sets by boldface uppercase letters and their positive (negative) 

components by matching uppercase letters with plus (minus) written as left superscript; for instance A = 〈 + A , −A 〉 , B = 

〈 + B , −B 〉 , etc. In this section, we describe how we handle such pairs from L 
+ Y × L 

−Y . 

Denote � an L -order on L 
+ Y × L 

−Y defined as 

(A � B ) = S( + B , + A ) ∧ S( −A , −B ) 

for each A , B ∈ L 
+ Y × L 

−Y . We call � an L -containment or graded containment . 

For 〈 + A , −A 〉 , 〈 + B , −B 〉 ∈ L 
+ Y × L 

−Y we define intersection � and union � as 

〈 + A , −A 〉 � 〈 + B , −B 〉 = 〈 + A ∪ 

+ B , −A ∩ 

−B 〉 , 
〈 + A , −A 〉 � 〈 + B , −B 〉 = 〈 + A ∩ 

+ B , −A ∪ 

−B 〉 . (21) 

The intersection and union (21) can be generalized the same way as in (9) : let M ∈ L L 
+ Y ×L 

−Y 
, then 

� M = 〈 ⋃ 

(M (A ) � + A ) , 
⋂ 

(M (A ) → 

−A ) 〉 , (22) 

⊔ M = 〈 ⋂ 

(M (A ) → 

+ A ) , 
⋃ 

(M (A ) � −A ) 〉 . (23) 

Note that 〈 L + Y × L 
−Y , �〉 is a completely lattice L -ordered set and for each M ∈ L L 

+ Y ×L 
−Y 

we have 

inf M = 

� M , sup M = 

⊔ M . 

3. Crisp combinations of isotone and antitone concept-forming operators 

We describe an extension of formal concept analysis where a user can select two sets + Y , −Y of attributes from Y . The 

two sets do not need to be disjoint. Attributes in 

+ Y and 

−Y are then handled using antitone concept-forming operators and 

isotone concept-forming operators, respectively. 
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For better understandability we first present a case where + Y and 

−Y are crisp sets. We omit proofs in this section, 

because in Section 4 we generalize the case, such that + Y and 

−Y are fuzzy sets, and we provide proofs of more general 

results therein. 

Let 〈 X , Y , I 〉 be an L -context and let + Y , −Y ⊆ Y be sets of selected positive and negative attributes, respectively. We call 

〈 X, 〈 + Y , −Y 〉 , I〉 an L -context with positive and negative attributes ; we also denote it by 〈 X , Y , I 〉 , considering Y = 〈 + Y , −Y 〉 . 
Denote by + I = I ∩ (X × + Y ) and 

−I = I ∩ (X × −Y ) . Define � : L X → L 
+ Y × L 

−Y and � : L 
+ Y × L 

−Y → L X as 

A 

� = 〈 A 

↑ , A 

∩ 〉 , 
B 

� = 

+ B 

↓ ∩ 

−B 

∪ 

for each A ∈ L X , B ∈ L 
+ Y × L 

−Y , where 〈↑ , ↓〉 be a pair of antitone concept-forming operators induced by 〈 X, + Y , + I 〉 and 〈 ∩ , 

∪ 〉 be a pair of isotone concept-forming operators induced by 〈 X, −Y , −I 〉 . 
Remark 2. Before we approach to description of properties of 〈 � , � 〉 we need to explain why we model the negative scale 

using the isotone concept-forming operators. 

Let us start with crisp setting. The obvious choice is to use the antitone concept-forming operators induced by a com- 

plement of I ; this is how negative attributes are handled in [19] . However, isotone concept-forming operators induced by I 

provide us an isomorphic concept lattice 

B 

∩∪ (X, Y, I) ≈ B 

↑ ↓ (X, Y, ¬ I) (24) 

with 〈 A , B 〉�→〈 A , ¬B 〉 being the isomorphism, see [11] . That is, both B 

∩∪ (X, Y, I) and B 

↑ ↓ (X, Y, ¬ I) have the same extents, and 

the intents in B 

↑ ↓ (X, Y, ¬ I) are complements of the corresponding intents in B 

∩∪ (X, Y, I) . 

In the fuzzy setting, the above considerations do not hold in general [13] . Unless L satisfies the double negation law, 

applying the complementation on data leads to its degradation; for example, when L is a chain with Gödel operations, 

complement of any L -relation is a crisp relation. 

The new complement defined by (20) is lossless, i.e. one can obtain the original L -relation from its complement. With 

this complement, one can obtain an isomorphism similar to (24) by Theorem 2 : 

B 

∩∪ (X, Y, I) ≈ B 

↑ ↓ (X, Y × L, ¬ L I) . 

To sum up, in the fuzzy setting, we have three options: 

(a) we can use the antitone concept-forming operators induced by ¬I and lose some data, 

(b) we can use the antitone concept-forming operators induced by ¬L I and manage pairs in Y × L instead of simple 

attributes, or 

(c) we can use isotone Galois connections induced by I , which form the same extents as (b). 

We have chosen (c) to avoid degradation of data and to avoid manage the pairs in Y × L . 

Theorem 3. The pair 〈 � , � 〉 forms an isotone Galois connection between L -ordered sets 〈 L X , S 〉 and 〈 L + Y × L 
−Y , �〉 . 

Corollary 1. The system { A ∈ L X | A = A 

� � } is an L -closure system on 〈 L X , S 〉 . The system { B ∈ L 
+ Y × L 

−Y | B = B 

� � } is an L - 

interior system on 〈 L + Y × L 
−Y , �〉 . 

A pair 〈 A , B 〉 is called a formal concept if 

A 

� = B and B 

� = A. 

The set of all formal concepts in 〈 X , Y , I 〉 is denoted by B 

� � (X, Y , I) . On B 

� � (X, Y , I) we define L -order � : 

〈 A 1 , B 1 〉 � 〈 A 2 , B 2 〉 = S(A 1 , A 2 ) 

for 〈 A 1 , B 1 〉 , 〈 A 2 , B 2 〉 ∈ B 

� � (X, Y , I) . Since 

S(A 1 , A 2 ) = S(A 1 , B 

� 

2 ) = (A 

� 
1 

� B 2 ) = (B 1 � B 2 ) , 

we can define the L -order � equivalently by: 

〈 A 1 , B 1 〉 � 〈 A 2 , B 2 〉 = (B 1 � B 2 ) . 

Theorem 4. Let 〈 X , Y , I 〉 be an L -context with positive attributes and negative attributes. 

(a) 〈B 

� � (X, Y , I) , � 〉 is a completely lattice L -ordered set with suprema and infima defined as follows: 

inf (M ) = 〈 ⋂ 

X M , ( 
� 

Y M ) � � 〉 , 
sup (M ) = 〈 ( ⋃ 

X M ) � � , 
⊔ 

Y M〉 
for an L -set M ∈ L B 

� � (X, Y ,I) . 

71



E. Bartl, J. Konecny / Information Sciences 360 (2016) 96–111 105 

(b) Moreover, a completely lattice L -ordered set V = 〈 V, � 〉 is isomorphic to 〈B 

� � (X, Y , I) , � 〉 iff there are mappings 2 

γ : X × L → V and μ : ( + Y ˙ ∪ 

−Y ) × L → V 

such that γ ( X × L ) is {0, 1} -supremally dense in V , μ(( + Y ˙ ∪ 

−Y ) × L ) is {0, 1} -infimally dense in V , and 

(γ (x, a ) � μ(y, b)) = 

{
(a � b) → 

+ I (x, y ) if y ∈ 

+ Y , 
−I (x, y ) → (a → b) if y ∈ 

−Y 

for all x ∈ X , a , b ∈ L . 

Example 2. Consider the L -context from Fig. 1 with positive attributes + Y = { α, γ } and negative attributes −Y = { β, γ } . 
In B 

� � (X, Y , I) the attribute α is handled using antitone concept-forming operators, the attribute β is handled using iso- 

tone concept-forming operators, and γ is handled using both pairs of concept-forming operators. The L -concept lattice 

B 

� � (X, Y , I) is depicted in Fig. 6 . 

Remark 3. For + Y = Y, −Y = ∅ the concept-forming operators 〈 � , � 〉 correspond with the antitone concept-forming opera- 

tors 〈↑ , ↓〉 and for + Y = ∅ , −Y = Y the concept-forming operators 〈 � , � 〉 correspond with the the isotone concept-forming 

operators 〈 ∩ , ∪ 〉 . 

4. Weighted combinations of isotone and antitone concept-forming operators 

Let 〈 X , Y , I 〉 be an L -context with positive and negative attributes such that + Y , −Y ∈ L Y . Define weighted concept-forming 

operators as follows: 

A 

� = 〈 + Y � A 

↑ , −Y ◦ A 

∩ 〉 , 
B 

� = ( + Y ◦ + B ) ↓ ∩ ( −Y � 

−B ) ∪ 

for each A ∈ L X , + B , −B ∈ L Y , where 〈↑ , ↓〉 is a pair of antitone concept-forming operators induced by 〈 X , Y , I 〉 , 〈 ∩ , ∪ 〉 is a 
pair of isotone concept-forming operators induced by 〈 X , Y , I 〉 , and composition operators ◦ and � be defined by 

(Z ◦ B )(y ) = Z(y ) � B (y ) , 

(Z� B )(y ) = Z(y ) → B (y ) 

for each y ∈ Y . 

In what follows we use L -relations + I , −I ∈ L X×Y defined by 

+ I (x, y ) = 

+ Y (y ) → I(x, y ) , 
−I (x, y ) = 

−Y (y ) � I(x, y ) 

for every x ∈ X and y ∈ Y . Using this notation we can rewrite concept-forming operators 〈 � , � 〉 as 

A 

� = 〈 A 

↑ + I , A 

∩ − I 〉 , 
B 

� = 

+ B 

↓ + I ∩ 

−B 

∪ − I , 

where 〈 ↑ + I , ↓ + I 〉 is a pair of antitone concept-forming operators induced by 〈 X, Y, + I 〉 , 〈∩ −I , ∪ −I 〉 is a pair of isotone concept- 

forming operators induced by 〈 X, Y, −I 〉 . 
Theorem 5. The pair 〈 � , � 〉 forms an isotone Galois connection between L -ordered sets 〈 L X , S 〉 and 〈 L Y × L Y , �〉 . 
Proof. We use the fact, that 〈↑ , ↓〉 is an antitone Galois connection between 〈 L X , S 〉 and 〈 L Y , S 〉 , and 〈 ∩ , ∪ 〉 is an isotone 

Galois connection between 〈 L X , S 〉 and 〈 L Y , S −1 〉 . For each A ∈ L X , B ∈ L Y × L Y we have 

S(A, B 

� ) = 

∧ 

x ∈ X 
(A (x ) → (( + Y ◦ + B ) ↓ (x ) ∧ ( −Y � 

−B ) ∪ (x ))) 

= 

∧ 

x ∈ X 
(A (x ) → ( + Y ◦ + B ) ↓ (x )) ∧ 

∧ 

x ∈ X 
(A (x ) → ( −Y � 

−B ) ∪ (x )) 

= S(A, ( + Y ◦ + B ) ↓ ) ∧ S(A, ( −Y � 

−B ) ∪ ) 

= S( + Y ◦ + B , A 

↑ ) ∧ S(A 

∩ , −Y � 

−B ) 

= 

∧ 

y ∈ Y 
(( + Y ◦ + B )(y ) → A 

↑ (y )) ∧ 

∧ 

y ∈ Y 
(A 

∩ (y ) → ( −Y � 

−B )(y )) 

= 

∧ 

y ∈ Y 
(( + Y (y ) � + B (y )) → A 

↑ (y )) ∧ 

∧ 

y ∈ Y 
(A 

∩ (y ) → ( −Y (y ) → 

−B (y ))) 

2 By + Y ̇ ∪ −Y we denote disjoint union of + Y and −Y . 
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Fig. 6. L -concept lattice B � � (X, Y , I) of the L -context from Fig. 1 with positive attributes + Y = { α, γ } and negative attributes −Y = { β, γ } (top); description 

of L -concepts (middle); the L -order � (bottom). 

= 

∧ 

y ∈ Y 
( + B (y ) → ( + Y (y ) → A 

↑ (y ))) ∧ 

∧ 

y ∈ Y 
(( −Y (y ) � A 

∩ (y )) → 

−B (y )) 

= 

∧ 

y ∈ Y 
( + B (y ) → ( + Y � A 

↑ )(y )) ∧ 

∧ 

y ∈ Y 
(( −Y ◦ A 

∩ )(y ) → 

−B (y )) 

= S( + B , + Y � A 

↑ ) ∧ S( −Y ◦ A 

∩ , −B ) 
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= (〈 + Y � A 

↑ , −Y ◦ A 

∩ 〉 � 〈 + B , −B 〉 ) 
= (A 

� � B ) . 

�

Corollary 2. The system { A ∈ L X | A = A 

� � } is an L -closure system on 〈 L X , S 〉 . The system { B ∈ L Y × L Y | B = B 

� � } is an L -closure 

system on 〈 L Y × L Y , �〉 . 
A pair 〈 A , B 〉 is called a formal concept if 

A 

� = B and B 

� = A. 

The set of all formal concepts in 〈 X , Y , I 〉 is denoted by B 

� � (X, Y , I) . On B 

� � (X, Y , I) we define the L -order � : 

〈 A 1 , B 1 〉 � 〈 A 2 , B 2 〉 = S(A 1 , A 2 ) 

for 〈 A 1 , B 1 〉 , 〈 A 2 , B 2 〉 ∈ B 

� � (X, Y , I) . Since 

S(A 1 , A 2 ) = S(A 1 , B 

� 

2 ) = (A 

� 
1 

� B 2 ) = (B 1 � B 2 ) , 

we can define the L -order � equivalently by: 

〈 A 1 , B 1 〉 � 〈 A 2 , B 2 〉 = (B 1 � B 2 ) . 

Theorem 6 (reduction to 〈↑, ↓〉-case) . Let 〈 X , Y , I 〉 be an L -context with positive attributes and negative attributes + Y , −Y ∈ L Y . 

Define a L -relation I ′ ∈ L X × ( Y × L ) as 

I ′ (x, 〈 y, a 〉 ) = 

{
+ Y (y ) → I(x, y ) i f a = 1 , 
−Y (y ) → (I(x, y ) → a ) otherwise. 

Then B 

↑ ↓ (X, Y × L, I ′ ) is isomorphic to B 

� � (X, Y , I) and the corresponding isomorphism i : B 

↑ ↓ (X, Y × L, I ′ ) → B 

� � (X, Y , I) is 

given by 

i (〈 A, A 

↑ 〉 ) = 〈 A, A 

� 〉 
for each 〈 A, A 

↑ 〉 = B 

↑ ↓ (X, Y × L, I ′ ) . 

Proof. Let 〈 A, B 〉 ∈ B 

↑ ↓ (X, Y × L, I ′ ) , then we have 

A = B 

↓ I ′ 

= 

∧ 

〈 y,a 〉∈ Y ×L 

(B (〈 y, a 〉 ) → I ′ (x, 〈 y, a 〉 )) 

= 

( ∧ 

y ∈ Y 
(B (〈 y, 1 〉 ) → ( + Y (y ) → I(x, y ))) 

) 

∧ ( ∧ 

〈 y,a 〉∈ Y ×L −{ 1 } 
(B (〈 y, a 〉 ) → ( −Y (y ) → (I(x, y ) → a ))) 

) 

. 

Denoting 

B 1 (y ) = B (〈 y, 1 〉 ) and B 2 (y ) = 

∧ 

a ∈ L −{ 1 } 
(B (〈 y, a 〉 ) → a )) , 

the first term can be written as ∧ 

y ∈ Y (B 1 (y ) → ( + Y (y ) → I(x, y ))) = 

∧ 

y ∈ Y (( 
+ Y (y ) � B 1 (y )) → I(x, y )) 

= 

∧ 

y ∈ Y ((B 1 ◦ + Y )(y ) → I(x, y )) 

= (B 1 ◦ + Y ) ↓ (x ) 

and the second term can be written as ∧ 

〈 y,a 〉∈ Y ×L −{ 1 } 
(B (〈 y, a 〉 ) → ( −Y (y ) → (I(x, y ) → a ))) = 

∧ 

〈 y,a 〉∈ Y ×L −{ 1 } 
(I(x, y ) → ( −Y (y ) → (B (〈 y, a 〉 ) → a ))) 

= 

∧ 

y ∈ Y 

∧ 

a ∈ L −{ 1 } 
(I(x, y ) → ( −Y (y ) → (B (〈 y, a 〉 ) → a ))) 
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= 

∧ 

y ∈ Y 
(I(x, y ) → ( −Y (y ) → 

∧ 

a ∈ L −{ 1 } 
(B (〈 y, a 〉 ) → a ))) 

= 

∧ 

y ∈ Y 
(I(x, y ) → ( −Y (y ) → B 2 (y ))) 

= 

∧ 

y ∈ Y 
(I(x, y ) → ( −Y � B 2 )(y )) 

= ( −Y � B 2 ) 
∪ (x ) . 

Putting it together, we have 

A = (B 1 ◦ + Y ) ↓ ∩ ( −Y � B 2 ) 
∪ = 〈 B 1 , B 2 〉 � 

showing that A is also an extent in B 

� � (X, Y , I) . One can use the same sequence of equalities backwards denoting B (〈 x, 1 〉 ) = 

B 1 (x ) and B (〈 x, a 〉 ) = B 2 (x ) → a for a ∈ L − { 1 } (and using (8) ). That shows that each extent in B 

� � (X, Y , I) is an extent in 

B 

↑ ↓ (X, Y × L, I ′ ) and proves Ext ↑ ↓ (X, Y × L, I ′ ) = Ext � � (X, Y , I) . The statement of the theorem then easily follows from this 

fact. �

Theorem 7. Let K = 〈 X, Y , I〉 be an L -context with positive attributes and negative attributes such that + Y , −Y ∈ L Y . 

(a) 〈B 

� � (X, Y , I) , � 〉 is a completely lattice L -ordered set with suprema and infima defined as follows for L -set M ∈ 

L B 
� � (X, Y ,I) . 

inf (M ) = 〈 ⋂ 

X M , ( 
� 

Y M ) � � 〉 , 
sup (M ) = 〈 ( ⋃ 

X M ) � � , 
⊔ 

Y M〉 . 
(b) Moreover, a completely lattice L -ordered set V = 〈 V, � 〉 is isomorphic to 〈B 

� � (X, Y , I) , � 〉 iff there are mappings 

˜ γ : X × L → V and ˜ μ : Y × L ˙ × L → V, 

where L ˙ × L = ({ 0 } × L ) ∪ (L × { 1 } ) , such that ˜ γ (X × L ) is {0, 1} -supremally dense in V , ˜ μ(Y × L ˙ × L ) is {0, 1} -infimally 

dense in V , and 

((a � b 1 ) → 

+ I (x, y )) ∧ ( −I (x, y ) → (a → b 2 )) = ( ̃  γ (x, a ) � ˜ μ(y, b 1 , b 2 )) (25) 

for all x ∈ X , y ∈ Y , a ∈ L , 〈 b 1 , b 2 〉 ∈ L ˙ × L . 

Proof. (a): Follows directly from Theorem 6 and [2, Theorem 5.63] . 

(b, “ ⇒ ”): First, we suppose that V is isomorphic to B 

� � (X, Y , I) . From Theorem 6 we also have that there is iso- 

morphism i : B 

� � (X, Y , I) → B 

↑ ↓ (X, Y × L, I ′ ) given by i (〈 A, A 

� 〉 ) = 〈 A, A 

↑ 〉 . Therefore, it is sufficient to find mappings ˜ γ : 

X × L → B 

↑ ↓ (X, Y × L, I ′ ) and ˜ μ : Y × L ˙ × L → B 

↑ ↓ (X, Y × L, I ′ ) of required properties. We define these mappings in the fol- 

lowing way: 

˜ γ = γ ◦ i, where γ : X × L → B 

� � (X, Y , I) , 

γ (x, a ) = 〈{ a /x } � � , { a /x } � 〉 , 
˜ μ = μ ◦ i, where μ : Y × L ˙ × L → B 

� � (X, Y , I) , 

μ(y, b 1 , b 2 ) = 〈〈{ b 1 /y } , { b 2 /y }〉 � , 〈{ b 1 /y } , { b 2 /y }〉 � � 〉 . 
In addition, due to [2, Theorem 5.63] there exist mappings γ ′ : X × L → B 

↑ ↓ (X, Y × L, I ′ ) , μ′ : Y × L × L → B 

↑ ↓ (X, Y × L, I ′ ) 

γ ′ (x, a ) = 〈{ a /x } ↑↓ , { a /x } ↑ 〉 , 
μ′ (y, c, b) = 〈{ b / 〈 y, c〉} ↓ , { b / 〈 y, c〉} ↓ ↑ 〉 

such that γ ′ ( X × L ) is supremally dense in B 

↑ ↓ (X, Y × L, I ′ ) and μ′ ( Y × L × L ) is infimally dense in B 

↑ ↓ (X, Y × L, I ′ ) . To show 

that ˜ γ (X × L ) is supremally dense in B 

↑ ↓ (X, Y × L, I ′ ) and ˜ μ(X × L ˙ × L ) is infimally dense in B 

↑ ↓ (X, Y × L, I ′ ) we just need to 

prove: (i) γ ′ (X × L ) = ˜ γ (X × L ) , and (ii) μ′ (Y × L × L ) = ˜ μ(X × L ˙ × L ) . 

(i) Since the isomorphism i maps an extent to itself, it is sufficient to show that equality 

{{ a /x } ↑↓ | x ∈ X, a ∈ L } = {{ a /x } � � | x ∈ X, a ∈ L } . 
holds true. Indeed, for every x ∈ X , a ∈ L we have 

{ a /x } ↑ ↓ (x 0 ) = 

∧ 

〈 y 0 ,c 0 〉∈ Y ×L 

(a → I ′ (x, 〈 y 0 , c 0 〉 )) → I ′ (x 0 , 〈 y 0 , c 0 〉 ) 

= 

( ∧ 

y 0 ∈ Y 
(a → 

+ I (x, y 0 )) → 

+ I (x 0 , y 0 ) 

) 
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∧ 

( ∧ 

〈 y 0 ,c 0 〉∈ Y ×L \{ 1 } 
(a → ( −I (x, y 0 ) → c 0 )) → ( −I (x 0 , y 0 ) → c 0 ) 

) 

= { a /x } ↑ + I ↓ + I (x 0 ) ∧ { a /x } ∩ − I ∪ − I (x 0 ) 

= { a /x } � � (x 0 ) 

for all x 0 ∈ X . 

(ii) Similarly, we need to prove 

{{ b / 〈 y, c〉} ↓ | y ∈ Y, b, c ∈ L } = {〈{ b 1 /y } , { b 2 /y }〉 � | y ∈ Y, 〈 b 1 , b 2 〉 ∈ L ˙ × L } . 
For any y ∈ Y , b , c ∈ L we have 

{ b / 〈 y, c〉} ↓ (x ) = b → I ′ (x, 〈 y, c〉 ) = 

{
b → 

+ I (x, y ) if c = 1 , 
−I (x, y ) → (b → c) otherwise . 

(26) 

Now, we define 〈 b 1 , b 2 〉 ∈ L ˙ × L such that b 1 = b, b 2 = 1 if c = 1 , and b 1 = 0 , b 2 = b → c otherwise. Therefore, we can 

write 

{ b / 〈 y, c〉} ↓ (x ) = 

{
b 1 → 

+ I (x, y ) if b 2 = 1 , 
−I (x, y ) → b 2 if b 1 = 0 , 

(27) 

so 

{ b / 〈 y, c〉} ↓ (x ) = (b 1 → 

+ I (x, y )) ∧ ( −I (x, y ) → b 2 ) 

= { b 1 /y } ↓ + I (x ) ∧ { b 2 /x } ∪ − I (x ) 

= 〈{ b 1 /y } , { b 2 /y }〉 � (x ) 

for all x ∈ X . 

Conversely, to get (26) from (27) , we define b = b 1 , c = 1 if b 2 = 1 ; for b 1 = 0 we take arbitrary b , c such that c � = 1 

and b → c = b 2 (we can do that because for all x ∈ X it holds { b / 〈 y, c〉} ↓ (x ) = { b ′ / 〈 y, c ′ 〉} ↓ (x ) provided that c , c ′ � = 1 and 

b → c = b ′ → c ′ ). 
Now, we prove identity (25) . From [2, Theorem 5.63] we know that the mappings γ ′ and μ′ satisfy condition ((a � b) → 

I ′ (x, 〈 y, c〉 )) = (γ ′ (x, a ) � μ′ (y, c, b)) for all x ∈ X , y ∈ Y , a , b , c ∈ L . By letting b 1 = b, b 2 = 1 if c = 1 , and b 1 = 0 , b 2 = b → c

otherwise, we obtain (by similar considerations as above) 

(a � b) → I ′ (x, 〈 y, c〉 ) = ((a � b 1 ) → 

+ I (x, y )) ∧ ( −I (x, y ) → (a → b 2 )) . 

Moreover, we have seen above that for such of choice of b 1 and b 2 , { 
a / x } ↑↓ is an extent of γ ′ ( x , a ) as well as of γ ( x , a ), and 

{ b / 〈 y , c 〉 } ↓ is an extent of μ′ ( y , c , b ) as well as of μ( y , b 1 , b 2 ). Therefore, γ ′ (x, a ) = ˜ γ (x, a ) and μ′ (y, c, b) = ˜ μ(y, b 1 , b 2 ) . 

(b, ”⇐ ”): Let ˜ γ : X × L → V and ˜ μ : Y × L ˙ × L → V be mappings satisfying the conditions of the claim. We define mappings 

γ ′ : X × L → V and μ′ : Y × L × L → V : 

γ ′ (x, a ) = ˜ γ (x, a ) , 

μ′ (y, c, b) = 

{
˜ μ(y, b, 1) for c = 1 , 

˜ μ(y, 0 , b → c) otherwise 

for all x ∈ X , y ∈ Y , a , b , c ∈ L . Using the properties of ˜ γ and ˜ μ we get γ ′ ( X × L ) is supremally dense in V , μ′ ( Y × L × L ) 

is infimally dense in V , and ((a � b) → I ′ (x, 〈 y, c〉 )) = (γ ′ (x, a ) � μ′ (y, c, b)) holds true for all x ∈ X , y ∈ Y , a , b , c ∈ L . Due 

to [2, Theorem 5.63] we immediately have that V is isomorphic to B 

↑ ↓ (X, Y × L, I ′ ) . Since B 

↑ ↓ (X, Y × L, I ′ ) is isomorphic to 

B 

� � (X, Y , I) (see Theorem 6 ), the statement is proved. �

5. Fuzzy containment implications 

In this section, we describe the second main output of formal concept analysis. We present a general logic of if-then rules 

A ⇒ B for graded attributes which can be read: if all attributes of an object are contained in A then they are contained in 

B . We introduce basic syntactic and semantic notions. 

Let + Y , −Y are sets of (symbols of) positive and negative graded attributes, respectively . An L -containment implication 

in Y = 〈 + Y , −Y 〉 is an expression 

A ⇒ B , 

where A , B ∈ L 
+ Y × L 

−Y . 

Let M ∈ L 
+ Y × L 

−Y . The degree ‖ A ⇒ B ‖ M 

in which A ⇒ B is valid in M is defined as 

‖ A ⇒ B ‖ M 

= (M � A ) → (M � B ) . 
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Let M ⊆ L 
+ Y × L 

−Y , the degree ‖ A ⇒ B ‖ M 

in which A ⇒ B is valid in M is defined as 

‖ A ⇒ B ‖ M 

= 

∧ 

M ∈M 

‖ A ⇒ B ‖ M 

. 

We are going to evaluate fuzzy containment implications in L -contexts with positive and negative attributes. Let 

〈 X , Y , I 〉 be an L -context with positive and negative attributes. The degree ‖ A ⇒ B ‖ 〈 X , Y , I 〉 in which A ⇒ B is valid in 

〈 X , Y , I 〉 is defined as 

‖ A ⇒ B ‖ 〈 X, Y ,I〉 = ‖ A ⇒ B ‖ { I x | x ∈ X} 
where I x = 〈 + I x , −I x 〉 with 

+ I x (y ) = 

+ I (x, y ) , −I x (y ) = 

−I (x, y ) . 

There is a close relationship between the semantics of fuzzy containment implications, the concept-forming operators 

〈 � , � 〉 , and the lattices of their fixpoints which were studied in the previous chapters. The following theorem shows a basic 

connection between them—the validity of A ⇒ B in a context coincides with the validity of A ⇒ B in the system of its 

intents and with the degree of containment of A 

� � in B . 

Theorem 8. Let 〈 X , Y , I 〉 be an L -context with positive and negative attributes and let A ⇒ B be a fuzzy containment implication 

in Y . We have 

‖ A ⇒ B ‖ 〈 X, Y ,I〉 = ‖ A ⇒ B ‖ Int � � (X, Y ,I) (28) 

= S(A 

� , B 

� ) (29) 

= (A 

� � � B ) . (30) 

Proof. First, we prove (29) . Note that for each x ∈ X, A ∈ L 
+ Y × L 

−Y , I ∈ X × Y we have 

(I x � A ) = A 

� (x ) . (31) 

Indeed, we have 

(I x � A ) = S( + A , + I x ) ∧ S( −I x , 
−A ) 

= 

( ∧ 

y ∈ + Y 
( + A (y ) → 

+ I x (y ) 
)

∧ 

( ∧ 

y ∈ −Y 

( −I x (y ) → 

−A (y )) 
)

= 

( ∧ 

y ∈ + Y 
( + A (y ) → 

+ I (x, y ) 
)

∧ 

( ∧ 

y ∈ −Y 

(
−I (x, y ) → 

−A (y ) 
)

= 

+ A 

↓ 
(x ) ∧ 

−A 

∪ 
(x ) 

= ( + A 

↓ ∩ 

−A 

∪ 
)(x ) 

= A 

� (x ) . 

Using (31) we can prove (29) . 

‖ A ⇒ B ‖ 〈 X, Y ,I〉 = ‖ A ⇒ B ‖ {〈 + I x , −I x 〉 | x ∈ X} 
= 

∧ 

x ∈ X 
‖ A ⇒ B ‖ I x 

= 

∧ 

x ∈ X 
(I x � A ) → (I x � B ) 

= 

∧ 

x ∈ X 
(A 

� (x ) → B 

� (x )) 

= S(A 

� , B 

� ) . 

Now we prove (28) . Since { I x | x ∈ X } ⊆ Int � 

� 

( X , Y , I ) we have 

‖ A ⇒ B ‖ 〈 X, Y ,I〉 ≥ ‖ A ⇒ B ‖ Int � � (X, Y ,I) . 

We need to show that for any M ∈ Int � 

� 

( X , Y , I ) we have 

‖ A ⇒ B ‖ 〈 X, Y ,I〉 ≤ (M � A ) → (M � B ) . 

Since M ∈ Int � 

� 

( X , Y , I ), we have M = M 

� � and 

(M � A ) = (M 

� � � A ) = S(M 

� , A 

� ) , 

we have to show that for any M ∈ Int � 

� 

( X , Y , I ) 

‖ A ⇒ B ‖ 〈 X, Y ,I〉 ≤ S(M 

� , A 

� ) → S(M 

� , B 

� ) . 
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By (29) it is equivalent to 

S(A 

� , B 

� ) ≤ S(M 

� , A 

� ) → S(M 

� , B 

� ) . 

which is equivalent to 

S(M 

� , A 

� ) � S(A 

� , B 

� ) ≤ S(M 

� , B 

� ) , 

which is known to be true. �

6. Conclusions 

We described an extension of formal concept analysis where two sets of positive and negative attributes are selected by 

a user. These two types of attributes were handled using antitone concept-forming operators and isotone concept-forming 

operators, respectively. The two main outputs of formal concept analysis, i.e. concept lattices and attribute implications, in 

this setting were described. 

Our future research in this area includes study of intercontextual information in form of bonds, reduction via block 

relations, and further study of fuzzy containment implications. 

References 

[1] E. Bartl , J. Konecny , Formal L-concepts with rough intents, in: Proceedings of the Eleventh International Conference on Concept Lattices and their 
Applications, October 7–10, 2014, Košice, Slovakia, 2014, pp. 207–218 . 

[2] R. Belohlavek , Fuzzy Relational Systems: Foundations and Principles, Kluwer Academic Publishers, Norwell, USA, 2002 . 

[3] R. Belohlavek, Concept lattices and order in fuzzy logic, Ann. Pure Appl. Log. 128 (1–3) (2004) 277–298, doi: 10.1016/j.apal.2003.01.001 . 
[4] R. Belohlavek, Sup-t-norm and inf-residuum are one type of relational product: Unifying framework and consequences, Fuzzy Sets Syst. 197 (2012) 

45–58, doi: 10.1016/j.fss.2011.07.015 . 
[5] R. Belohlavek, J. Konecny, Closure spaces of isotone Galois connections and their morphisms, in: Proceedings of the Twenty-fourth International 

Conference on Advances in Artificial Intelligence (AI’11), Springer-Verlag, Berlin, Heidelberg, 2011, pp. 182–191, doi: 10.1007/978- 3- 642- 25832- 9 _ 19 . 
[6] R. Belohlavek, J. Konecny, Concept lattices of isotone vs. antitone Galois connections in graded setting: Mutual reducibility revisited, Inf. Sci. 199 (0) 

(2012) 133–137, doi: 10.1016/j.ins.2012.02.064 . 

[7] A. Burusco , R. Fuentes-González , Concept lattices associated with interval-valued l-fuzzy contexts, Notes Intuit. Fuzzy Sets 1 (2) (1995) 104–115 . 
[8] A. Burusco , R. Fuentes-González , The study of the interval-valued contexts, Fuzzy Sets Syst. 121 (3) (2001) 439–452 . 

[9] C. Carpineto , G. Romano , Concept Data Analysis: Theory and Applications, John Wiley & Sons, 2004 . 
[10] Y. Djouadi, H. Prade, Interval-valued fuzzy formal concept analysis, in: J. Rauch, Z. Ra ́s, P. Berka, T. Elomaa (Eds.), Foundations of Intelligent Systems, 

Lecture Notes in Computer Science, 5722, Springer Berlin Heidelberg, 2009, pp. 592–601, doi: 10.1007/978- 3- 642- 04125- 9 _ 62 . 
[11] I. Düntsch , G. Gediga , Modal-style operators in qualitative data analysis, in: Proceedings of the 2002 IEEE International Conference on Data Mining 

(ICDM ’02), IEEE Computer Society, Washington, DC, USA, 2002, p. 155 . 

[12] B. Ganter , R. Wille , Formal Concept Analysis – Mathematical Foundations, Springer, 1999 . 
[13] G. Georgescu , A. Popescu , Non-dual fuzzy connections, Arch. Math. Log. 43 (8) (2004) 1009–1039 . 

[14] P. Hájek , Metamathematics of Fuzzy Logic (Trends in Logic), Springer, 2001 . 
[15] J. Medina, M. Ojeda-Aciego, J. Ruiz-Calvino, Formal concept analysis via multi-adjoint concept lattices, Fuzzy Sets Syst. 160 (2) (2009) 130–144, doi: 10. 

1016/j.fss.20 08.05.0 04 . 
[16] J. Poelmans, D.I. Ignatov, S.O. Kuznetsov, G. Dedene, Fuzzy and rough formal concept analysis: a survey, Int. J. Gen. Syst. 43 (2) (2014) 105–134, 

doi: 10.1080/03081079.2013.862377 . 

[17] S. Pollandt , Fuzzy Begriffe: Formale Begriffsanalyse von unscharfen Daten, Springer-Verlag, Berlin-Heidelberg, 1997 . 
[18] A. Popescu , A general approach to fuzzy concepts, Math. Logic Q. 50 (3) (2004) 265–280 . 

[19] J.M. Rodríguez-Jiménez , P. Cordero , M. Enciso , A. Mora , A generalized framework to consider positive and negative attributes in formal concept anal- 
ysis, in: Proceedings of the Eleventh International Conference on Concept Lattices and their Applications, October 7–10, 2014, Košice, Slovakia, 2014, 

pp. 267–278 . 
[20] P.K. Singh , C.A. Kumar , J. Li , Knowledge representation using interval-valued fuzzy formal concept lattice, Soft Computing (2015) . 

[21] M. Ward , R.P. Dilworth , Residuated lattices, Trans. Am. Math. Soc. 45 (1939) 335–354 . 

78



E Rough Fuzzy Concept Analysis
[4] Eduard Bartl and Jan Konecny. Rough fuzzy concept analysis. Fundamenta

Informaticae, 156(2):141–168, 2017.

We provide a new approach to the fusion of FCA with graded affirmation and
denials and Rough Set Theory (RST). As a starting point we consider affirmations
to represent the lower approximation, while the denials the upper approximation of
a given input. Using the combination of concept-forming operators (46), we transfer
the roughness of the input to the roughness of corresponding formal fuzzy concepts
in the sense that a formal fuzzy concept is considered as a collection of objects
accompanied with two fuzzy sets of attributes—those which are shared by all the
objects and those which at least one object has. In the paper we study the properties
of such formal concepts and show their relationship with concepts formed by well-
known isotone and antitone operators.

We also demonstrate use RST inspired reduction of size of concept lattices based
on equivalences induced by attributes and show that this reduction is natural, i.e. it
preserves extents.
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Rough Set Theory originated by Pawlak [57] is emerging powerful methodology used to study
information systems characterized by inexact, uncertain or vague information with applications in the
field of artificial intelligence such as pattern recognition, machine learning, and automated knowledge
acquisition. A pair of unary set-theoretic operators, called approximation operators, is usually based
on an equivalence relation on a set of objects called the universe. A concept, represented by a set of
objects, is called a definable concept if its lower and upper approximations are equal to the set itself.
An arbitrary concept is approximated from below and above by two definable concepts—lower and
upper approximation, respectively. Pawlak’s rough set model can be generalized to fuzzy environment
to deal with quantitative data, the results are called rough fuzzy sets and fuzzy rough sets. Dubois and
Prade [24, 25] were the first to generalize RST into fuzzy setting and many followed.

Formal Concept Analysis [21, 27] is a method of relational data analysis identifying interesting
clusters (formal concepts) in a collection of objects and their attributes, and organizing them into a
structure called concept lattice.

FCA was proved to be useful for information retrieval, software engineering, and data mining.
The formal concept in FCA is obtained as a fixed point of so-called concept-forming operators and
is characterized by a pair of sets—extent and intent. The extent contains all objects covered by the
concept and intent contains all attributes covered by the concept. Numerous generalizations of FCA,
which allow to work with graded data, were provided; see [42] and references therein. In the present
paper we stick with approach of [6, 43].

In a graded (fuzzy) setting, two main kinds of concept-forming operators—antitone and isotone
one—were studied [7, 28, 43, 44], compared [13, 14], and even covered under a unifying framework
[9, 39]. Many researchers [38, 46, 49, 53] (see also the survey [42]) studied a fusion of (fuzzy) FCA
and RST and observed that intents generated by antitone concept-forming operators behave like lower
approximations and intents generated by isotone concept-forming operators behave like upper approx-
imations in RST. Yao [55] mentions that the two kinds of operators represent two expreme cases in
describing a set of objects based on their properties. To the best of our knowledge, no approach have
considered a combination of the concept-forming operators to obtain both upper and lower approxi-
mation in one concept.

In the present paper we provide such combination. A concept in our setting is a triple consisting of
a (fuzzy) set of objects, a (fuzzy) set of attributes they share, and a (fuzzy) set of attributes possessed
by at least one of the object. The later two serve as the lower and upper approximation, respectively.
We provide concept-forming operators for these concepts and describe their properties.

2. Preliminaries

In this section we summarize the basic notions used in the paper.

Residuated Lattices, L-set and L-relations
We use complete residuated lattices as basic structures of truth-degrees. A complete residuated

lattice [6, 30, 50] is a structure L � xL,^,_,b,Ñ, 0, 1y such that xL,^,_, 0, 1y is a complete lattice,
i.e. a partially ordered set in which arbitrary infima and suprema exist; xL,b, 1y is a commutative
monoid, i.e. b is a binary operation which is commutative, associative, and ab 1 � a for each a P L;
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b and Ñ satisfy adjointness, i.e. a b b ¤ c iff a ¤ b Ñ c. 0 and 1 denote the least and greatest
elements. The partial order of L is denoted by ¤. Throughout this work, L denotes an arbitrary
complete residuated lattice.

Elements of L are called truth degrees. Operations b (multiplication) and Ñ (residuum) play the
role of (truth functions of) “fuzzy conjunction” and “fuzzy implication”. Furthermore, we define the
complement of a P L as  a � a Ñ 0.

An L-set (or fuzzy set) A in a universe set X is a mapping assigning to each x P X some truth
degree Apxq P L. The set of all L-sets in a universe X is denoted LX .

The operations with L-sets are defined componentwise. For instance, the intersection of L-sets
A, B P LX is an L-set AXB in X such that pAXBqpxq � Apxq^Bpxq for each x P X. An L-set A P LX

is also denoted tApxq{x | x P Xu. If for all y P X distinct from x1, . . . , xn we have Apyq � 0, we also
write tApx1q{x1, . . . ,

Apxnq{xnu.
An L-set A P LX is called normal if there is x P X such that Apxq � 1. An L-set A P LX is called

crisp if Apxq P t0, 1u for each x P X. Crisp L-sets can be identified with ordinary sets. For a crisp A,
we also write x P A for Apxq � 1 and x R A for Apxq � 0.

For A, B P LX we define the degree of inclusion of A in B by

S pA, Bq �
©
xPX

Apxq Ñ Bpxq. (1)

Graded inclusion generalizes the classical inclusion relation. Described verbally, S pA, Bq represents a
degree to which A is a subset of B. In particular, we write A � B iff S pA, Bq � 1. As a consequence,
we have A � B iff Apxq ¤ Bpxq for each x P X.

Binary L-relations (binary fuzzy relations) between X and Y can be thought of as L-sets in the
universe X � Y . That is, a binary L-relation I P LX�Y between a set X and a set Y is a mapping
assigning to each x P X and each y P Y a truth degree Ipx, yq P L (a degree to which x and y are related
by I). For L-relation I P LX�Y we define its inverse I�1 P LY�X as I�1py, xq � Ipx, yq for all x P X,
y P Y .

The compositions of L-relations I P LX�Y and J P LY�Z are defined by

pI � Jqpx, zq �
ª
yPY

Ipx, yq b Jpy, zq,

pI � Jqpx, zq �
©
yPY

Ipx, yq Ñ Jpy, zq,

pI � Jqpx, zq �
©
yPY

Jpy, zq Ñ Ipx, yq

for every x P X, z P Z.

We will utilize following associativity properties of the compositions of L-relations.

Lemma 2.1. ([6])
For I P LX�Y , J P LY�Z ,K P LZ�W

pI � Jq � K � I � pJ � Kq and pI � Jq � K � I � pJ � Kq.
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A binary L-relation E on X is called an L-equivalence if for any x, y, z P X it satisfies Epx, xq � 1
(reflexivity), Epx, yq � Epy, xq (symmetry), Epx, yq b Epy, zq ¤ Epx, zq (transitivity).

We say that an L-relation R P LX�Y is compatible w.r.t. L-equivalence E P LY�Y

Rpx, y1q b Epy1, y2q ¤ Rpx, y2q

for any x P X, y1, y2 P Y . Analogously, an L-set B P LY is compatible w.r.t. E P LY�Y if

Bpy1q b Epy1, y2q ¤ Bpy2q

for any y1, y2 P Y .

Leibniz L-equivalence induced by an L-relation R P LX�Y is defined as follows

ERpy1, y2q �
©
xPX

Rpx, y1q Ø Rpx, y2q (2)

for each y1, y2 P Y .

Formal Concept Analysis
For a comprehensive background on FCA, we refer to [27]. The input data to FCA consists of a

table with rows and columns representing objects and attributes, respectively. An entry representing
object x and attribute y contains� (or 1) if x has y (y applies to x), otherwise the entry contains a blank
(or 0). Formally, such a table is represented by a triplet xX,Y, Iy, called a formal context, in which I is
a binary relation between X and Y and xx, yy P I means that the object x has the attribute y. For every
set A � X of objects in X denote by AÒ a subset of attributes in Y defined by

AÒ � ty P Y | for each x P A : xx, yy P Iu.

Similarly, for B � Y denote by BÓ a subset of X defined by

BÓ � tx P X | for each y P B : xx, yy P Iu.

A formal concept of xX,Y, Iy is a pair xA, By of A � X and B � Y satisfying AÒ � B and BÓ � A.
That is, a formal concept consists of a set A of objects and a set B of attributes such that A is the set
of all objects in X sharing all attributes in B and, conversely, B is the collection of all attributes in Y
shared by all objects from A. A and B are called the extent and the intent of xA, By, respectively. This
definition formalizes the traditional approach to concepts which is due to Port-Royal logic [33]. As
an example, consider the concept dog: its extent is the collection of all dogs, while its intent is the
collection of all attributes of dogs such as “has four legs”, “barks”, etc. The set

BpX,Y, Iq � txA, By | AÒ � B, BÓ � Au

of all formal concepts of xX,Y, Iy, called the concept lattice of I, can be equipped with a partial order
¤ defined by xA1, B1y ¤ xA2, B2y if A1 � A2 (or, equivalently, B2 � B1). Therefore, ¤ represents
a subconcept-superconcept hierarchy due to which dog is a subconcept of mammal, etc. BpX,Y, Iq
happens to be a concept lattice whose structure is described by the so-called basic theorem of concept
lattices [27].
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α β γ δ

A 0.5 0 1 0
B 1 0.5 1 0.5
C 0 0.5 0.5 0.5
D 0.5 0.5 1 0.5

Figure 1. Example of L-context with objects A,B,C,D and attributes α, β, γ, δ.

Formal Concept Analysis in Fuzzy Setting
There are several approaches to generalize formal concept analysis to be able to process such

indeterminancy or uncertainty [7, 43, 37, 32, 20]. Many of them are based on Zadeh’s theory of fuzzy
sets [56]. We follow the approach of [7].

An L-context is a triplet xX,Y, Iy where X and Y are (ordinary) sets and I P LX�Y is an L-relation
between X and Y . Elements of X are called objects, elements of Y are called attributes, I is called an
incidence relation. Ipx, yq � a is read: “The object x has the attribute y to degree a.” An L-context
may be displayed as a table with the objects corresponding to the rows of the table, the attributes
corresponding to the columns of the table and Ipx, yq written in cells of the table (for an example see
Fig. 1).

Consider the following pairs of operators induced by an L-context xX,Y, Iy. First, the pair xÒ, Óy
of operators Ò : LX Ñ LY and Ó : LY Ñ LX is defined by

AÒpyq �
©
xPX

Apxq Ñ Ipx, yq,

BÓpxq �
©
yPY

Bpyq Ñ Ipx, yq.
(3)

Second, the pair xX, Yy of operators X : LX Ñ LY and Y : LY Ñ LX is defined by

AXpyq �
ª
xPX

Apxq b Ipx, yq,

BYpxq �
©
yPY

Ipx, yq Ñ Bpyq.
(4)

To emphasize that the operators are induced by I, we also denote the operators by xÒI , ÓIy and
xXI , YIy.

We will utilize the following properties of concept-forming operators and their compositions.

Lemma 2.2. ([12])
Let xX, F, Iy and xF,Y, Jy be L-contexts, let A P LX , B P LY . We have

AXI�J � AXIXJ , BYI�J � BYJYI , (5)

AÒI�J � AXIÒJ , BÓI�J � BÓJYI . (6)
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Fixpoints of these operators are called formal concepts. The set of all formal concepts (along with
set inclusion) forms a complete lattice, called L-concept lattice. We denote the sets of all concepts (as
well as the corresponding L-concept lattice) by BÒÓpX,Y, Iq and BXYpX,Y, Iq, i.e.

BÒÓpX,Y, Iq � txA, By P LX � LY | AÒ � B, BÓ � Au,

BXYpX,Y, Iq � txA, By P LX � LY | AX � B, BY � Au
(7)

For an L-concept lattice B�pX,Y, Iq, where B� is either BÒÓ or BXY, denote the corresponding sets
of extents and intents by ExtpX,Y, Iq and IntpX,Y, Iq. That is,

Ext�pX,Y, Iq � tA P LX | xA, By P BpX,Y, Iq for some Bu,

Int�pX,Y, Iq � tB P LY | xA, By P BpX,Y, Iq for some Au.
(8)

When displaying L-concept lattices, we use labeled Hasse diagrams to include all the information
on extents and intents. In BÒÓpX,Y, Iq, for any x P X, y P Y and formal L-concept xA, By we have
Apxq ¥ a and Bpyq ¥ b if and only if there is a formal concept xA1, B1y ¤ xA, By, labeled by a{x and
a formal concept xA2, B2y ¥ xA, By, labeled by b{y. We use labels x resp. y instead of 1{x resp. 1{y
and omit redundant labels (i.e., if a concept has both the labels a{x and b{x then we keep only that with
the greater degree; dually for attributes). The whole structure of concept lattice BÒÓpX,Y, Iq can be
determined from the labeled diagram using the results from [7] (see also [6]).

In BXYpX,Y, Iq, for any x P X, y P Y and formal L-concept xA, By we have Apxq ¥ a and Bpyq ¤
b if and only if there is a formal concept xA1, B1y ¤ xA, By, labeled by a{x and a formal concept
xA2, B2y ¥ xA, By, labeled by b{y (see examples depicted in Fig. 2).



0.5{γ

A, 0.5{α, γ  C, 0.5{β, 0.5{δ

D

0.5{C, β, δ  0.5{A,B, α


0.5{B, 0.5{D


B, 0.5{β, 0.5{δ

D, 0.5{α

A, 0{β, 0{δ  0.5{γ

0.5{B  C, 0{α

0.5{A, 0.5{D


0.5{C, 0{γ

Figure 2. L-concept lattices BÒÓpX,Y, Iq (left) and BXYpX,Y, Iq (right) of the L-context defined in Fig. 1.
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An pL1,L2q-Galois connection between the sets X and Y is a pair x f , gy of mappings f : LX
1 Ñ LY

2 ,
g : LY

2 Ñ LX
1 , satisfying

S pA, gpBqq � S pB, f pAqq (9)

for every A P LX
1 , B P LY

2 .

One can easily observe that the couple xÒ, Óy forms an pL,Lq-Galois connection between X and
Y , while xX, Yy forms an pL,L�1q-Galois connection between X and Y .

Rough Set Theory
For a comprehensive background on Rough Set Theory (RST), we refer to [41]. Pawlak introduced

RST where uncertain elements are approximated with respect to an equivalence relation representing
indiscernibility. Formally, given Pawlak approximation space xU, Ey, where U is a non-empty set of
elements (universe) and E is an equivalence relation on U, the rough approximation of a crisp set
A � U by E is the pair xAóE , AòEy of sets in U defined by

x P AóE iff for all y P U, xx, yy P E implies y P A,

x P AòE iff there exists y P U such that xx, yy P E and y P A.

The AóE and AòE are called lower and upper approximation of the set A by E, respectively (see Fig. 3).
A pair xA1, A2y of sets in U is called a rough set in xU, Ey if there is a set A in U such that A1 � AóE

and A2 � AòE (c.f. [41]).

Figure 3. Schema of a rough set: grid represents the equivalence classes of E, dashed line represents an
approximated set A, the dark gray area is its lower approximation AóE , and union of light gray area and dark
gray area is its upper approximation AòE .

Pawlak approximation space xU, Ey may be too restricting for some applications. Thefore, a
number of various generalizations of the setting have been considered, including E being a tolerance
on U or even a general relation between some sets [47, 54, 58].
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Rough Set Theory in Fuzzy Setting
In the fuzzy setting, we consider E to be an L-equivalence on U and generalize xAóE , AòEy as in

[24, 25, 45],
AóE pxq �

©
yPU

pEpx, yq Ñ Apyqq,

AòE pxq �
ª
yPU

pApyq b Epx, yqq.
(10)

That is, óE is equivalent to YE , and òE is equivalent to XE ; i.e.

xóE ,òEy � xYE , XEy. (11)

Note that for L-set A, AóE is its largest subset compatible1 with E and AòE is its smallest superset
compatible with E. Similarly, for L-relation I, I � E is the largest subrelation of I compatible with E,
and I � E is the smallest superrelation of I compatible with E. Approximations of L-sets induced by
a L-relations were also studied in [19, 26].

For handling an generalization of rough sets, we introduce the following notation. By L�1 we
denote L with dual lattice order; we do not describe its properties (they can be easily derived from
properties of L). In this paper we use L�1 in order to describe and grasp L-rough sets in an easier,
unified way.

Let xU, E, Ey be an L-approximation space; i.e. U is a universe, E and E are L-equivalences on
U.2 An L-rough set in an L-approximation space xU, E, Ey is a pair of L-sets xA, Ay P pL � L�1qU

such that A is compatible with E and A is compatible with E. The set A is called a lower approximation
and the set A is called an upper approximation. Analogously, L-rough relations are pL� L�1q-sets in
X � Y compatible with E and E (in the same way as above).

The set operations are defined componentwise, i.e.

£
iPI

xA, Ay � x
£
iPI

A,
£
iPI

�1
Ay � x

£
iPI

A,
¤
iPI

Ay,

¤
iPI

xA, Ay � x
¤
iPI

A,
¤
iPI

�1
Ay � x

¤
iPI

A,
£
iPI

Ay.

Similarly, the graded subsethood is then applied componentwise

S pxA, Ay, xB, Byq � S pA, Bq ^ S�1pA, Bq � S pA, Bq ^ S pB, Aq

and the crisp subsethood is then defined using the graded subsethood:

xA, Ay � xB, By iff S pxA, Ay, xB, Byq � 1, iff A � B and B � A.

An L-rough set xA, Ay is called natural if A � A.

1In terms of Rough Set Theory, compatible sets are called definable sets.
2We assume setting with different equivalence for lower and upper approximation similarly as in [29].
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Remark 2.3.

(a) Naturally, we want the lower approximation to be a subset of the upper approximation. Nonethe-
less, the results covered in the present paper work well even for non-natural L-rough sets and
L-rough relations.

(b) Concept lattices we study in this paper contain concepts with both natural and non-natural in-
tents. The presence of non-natural intents can be seen as inconvenient for practical applications.
Fortunately, the concept lattice can be cut to two iceberg lattices3—one containing only con-
cepts with natural intents, one containing only concepts with non-natural intents; we show this
in Section 4. Figures 5 and 8 depict this cut.

3. L-rough contexts and L-rough concept lattices

In our approach we identify the generalized L-approximation space xX,Y, I, Iy with a tabular data.
That is, X and Y are sets of objects and attributes, respectively, and I, I represent lower and upper
approximations of an incidence relation, respectively. The meaning of I and I is as follows: Ipx, yq
(resp. Ipx, yq) is the truth degree to which the object x surely (resp. possibly) has the attribute y. The
quadruple xX,Y, I, Iy is called an L-rough context.

The L-rough context induces two operators defined as follows.

Definition 3.1. Let xX,Y, I, Iy be an L-rough context. Define L-rough concept-forming operators as

AM � xAÒI , AXIy,

xB, By
O
� BÓI X B

YI
(12)

for A P LX , B, B P LY . Fixed points of xM,Oy, i.e. tuples xA, xB, Byy P LX � pL�L�1qY such that
AM � xB, By and xB, By

O
� A, are called L-rough concepts. The B and B are called lower intent

approximation and upper intent approximation, respectively.

The interpretation of AM is “the set of all attributes surely shared by all objects in A and the set all
attributes which at least one object possibly has”; while the interpretation of xB, By

O
is “the set of all

objects, such that they surely share all attributes in B and have no other attributes than those in B.”
To simplify notation in this paper, we declare that in what follows, the operators Ò, Ó are always

induced by I and X, Y are always induced by I; unless stated otherwise. Also, we identify xA, xB, Byy
with xA, B, By. Fig. 4 depicts schema of an L-rough concept for L � t0, 1u.

Theorem 3.2. The pair xM,Oy of L-rough concept-forming operators is a pL,L�L�1q-Galois con-
nection between X and Y .

3By iceberg lattice we mean a meet- or a join-semilattice accompanied by the greatest or the lowest element, respectively.
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0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 1 0 0
0 0 0 1 1 1 0 0 0
0 0 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0

upper intent approximation

lower intent approximation

extent

Figure 4. Schema of an L-rough concept (in the case L � t0, 1u).

Proof:
We use the fact, that xÒ, Óy is an pL,Lq-Galois connection between X and Y , and xX, Yy is an pL,L�1q-
Galois connection between X and Y: For each A P LX , xB, By P pL�L�1qY we have

S pA, xB, By
O
q �
©
xPX

�
Apxq Ñ

�
BÓpxq ^ B

Y
pxq
		

�
©
xPX

�
Apxq Ñ BÓpxq

�
^
©
xPX

�
Apxq Ñ B

Y
pxq
	

� S pA, BÓq ^ S pA, B
Y
q

� S pB, AÒq ^ S pAX, Bq

� S pxB, By, AMq.

[\
From Theorem 3.2 we can obtain following properties [6].

Corollary 3.3. The L-rough concept-forming operators satisfy the following properties for each A, A1, A2 P
LX , xB, By, xB1, B1y, xB2, B2y P pL� L�1qY :

(a) A � AMO and xB, By � xB, By
OM

,

(b) S pA1, A2q ¤ S pAM
2 , A

M
1 q and S pxB1, B1y, xB2, B2yq ¤ S pxB2, B2y

O
, xB1, B1y

O
q,

(c) A1 � A2 implies AM
2 � AM

1 ,
and xB1, B1y � xB2, B2y implies xB2, B2y

O
� xB1, B1y

O
,

(d) AM � AMOM and xB, By
O
� xB, By

OMO
.

We denote the set of all fixed-points of xM,Oy, analogously to (7), as BMOpX,Y, I, Iq and we call
it L-rough concept lattice. We define a partial order ¤ on BMOpX,Y, I, Iq by means of subsethood of
extents; i.e.

xA1, B1, B1y ¤ xA2, B2, B2y iff A1 � A2 (13)
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for each xA1, B1, B1y, xA2, B2, B2y P BMOpX,Y, I, Iq. By Corollary 3.3 (c,d), we can equivalently define
¤ by means of subsethood of intents

xA1, B1, B1y ¤ xA2, B2, B2y iff xB2, B2y � xB1, B1y

(i.e. iff B2 � B1 and B1 � B2).

Later in this section, we state an analogy of so-called Main theorem on concept lattices [27] saying,
among others, that BMOpX,Y, I, Iq is a complete lattice. That justifies the word ‘lattice’ in the name ‘L-
rough concept lattice.’ We prove the Main theorem by showing that the present setting is covered by
the general framework introduced in [8] (the framework is summarized in Appendix A). The theorem
then follows from results on Cartesian representation for general concept lattices published in [15].

Theorem 3.4. Consider the aggregation structure xL,L� L�1,L� L�1,�y with � defined by

a � xb, by � xab b, a Ñ by

for each a, b, b P L, and let xX,Y, I, Iy be a pL � L�1q-context. Then the pair of derived operators
xT,Uy is equal to L-rough concept-forming operators xM,Oy.

Proof:
From the related definitions; compare Definition 3.1 and Definition 6.2 in Appendix A. [\

Theorem 3.5. (Main theorem on L-rough concept lattices)
(a) L-rough concept lattice BMOpX,Y, I, Iq is a complete lattice with suprema and infima defined as

follows ©
i

xAi, Bi, Biy � x
£

i

Ai, x
¤

i

Bi,
£

i

Biy
OM
y,

ª
i

xAi, Bi, Biy � xp
¤

i

Aiq
MO,
£

i

Bi,
¤

i

Biy.

(b) Moreover, a complete lattice V � xV,¤y is isomorphic to BMOpX,Y, I, Iq iff there are mappings

γ : X � L Ñ V and µ : Y � L� L Ñ V

such that γpX � Lq is supremally dense in V, µpY � L� Lq is infimally dense in V, and

ab b ¤ Ipx, yq and Ipx, yq ¤ a Ñ b is equivalent to γpx, aq ¤ µpy, b, bq

for all x P X, y P Y, a, b, b P L.

Proof:
It is a specification of Theorem from Appendix A. [\
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When drawing an L-rough concept lattice we label nodes as inBÒÓ for lower intent approximations
and BXY for upper intent approximations. We write a{y or a{y instead of just a{y to distinguish them.
Fig. 5 (middle) shows an L-rough concept lattice for the L-context from Fig. 1.

The next theorem says, that if xI, Iy is a natural L-rough relation, then the concept-forming opera-
tor M maps normal L-sets to natural L-rough sets.

Theorem 3.6. For natural L-rough relation xI, Iy we have if A P LX is normal L-set then AM is natural
L-rough set.

Proof:
Since A is normal, there is x P X such that Apxq � 1. Then we have AÒpyq �

�
xPX Apxq Ñ Ipx, yq ¤

Apxq Ñ Ipx, yq � Ipx, yq ¤ Ipx, yq � Apxq b Ipx, yq ¤
�

xPX Apxq b Ipx, yq � AXpyq for each y P Y .
[\

Directly from Theorem 3.6 we have the following corollary

Corollary 3.7. For an L-rough context with natural xI, Iy we have that normal extents have natural
intents.

It is worth nothing, that a converse of Theorem 3.6 does not hold true generally as the following
example shows.

Example 3.8. Assume L-rough context with one object x and one attribute y, Lbeing three-element
Łukasiewicz chain, and Ipx, yq � 0, Ipx, yq � 1. Now consider

xt0.5{yu, t0.5{yuy
O
pxq � pt0.5{yuÓ X t0.5{yuYqpxq

� pt0.5{yupyq Ñ Ipx, yqq ^ pIpx, yq Ñ t0.5{yupyqq

� p0.5 Ñ 0q ^ p1 Ñ 0.5q � 0.5.

Therefore, the natural L-rough set is mapped to the non-normal L-set.

Since xM,Oy is defined via xÒ, Óy and xX, Yy, one can expect that there is a strong relationship
between the associated concept lattices. In the rest of this section, we examine such relationship.

Theorem 3.9. For S � LX , let rSs denote an L-closure span of S, i.e. the smallest L-closure system
containing S. We have

rExtÒÓpX,Y, Iq Y ExtXYpX,Y, Iqs � ExtMOpX,Y, I, Iq.

Proof:
“�”: Let A P ExtMOpX,Y, I, Iq and let xB, By � AM. Then we have A � BÓ X BY P rExtÒÓpX,Y, Iq Y
ExtXYpX,Y, Iqs since BÓ P ExtÒÓpX,Y, Iq and BY P ExtXYpX,Y, Iq.

“�”: Let A P ExtÒÓpX,Y, Iq. Then A � A X X � xAÒ,YyO P ExtMOpX,Y, I, Iq. Similarly for
A P ExtXYpX,Y, Iq. [\
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From Theorem 3.9 one can also observe that no extent from ExtÒÓpX,Y, Iq and ExtXYpX,Y, Iq is
lost.

Corollary 3.10. ExtÒÓpX,Y, Iq � ExtMOpX,Y, I, Iq and ExtXYpX,Y, Iq � ExtMOpX,Y, I, Iq.

In addition, no concept from BÒÓpX,Y, Iq and BXYpX,Y, Iq is lost.

Corollary 3.11. For each xA, By P BÒÓpX,Y, Iq there is xA, B, AXy P BMOpX,Y, I, Iq. For each xA, By P
BXYpX,Y, Iq there is xA, AÒ, By P BMOpX,Y, I, Iq.

Moreover, BMOpX,Y, I,Hq is isomorphic to BÒÓpX,Y, Iq and xA, B,Hy ÞÑ xA, By is the isomor-
phism.
BMOpX,Y, X � Y, Iq is isomorphic to BXYpX,Y, Iq and xA,Y, By ÞÑ xA, By is the isomorphism.

Remark 3.12. One can observe from Fig. 5 that in ExtMOpX,Y, I, Iq there exist extents which are
present neither in ExtÒÓpX,Y, Iq nor in ExtXYpX,Y, Iq. On the other hand, upper intent approxima-
tions are exactly those from IntXYpX,Y, Iq and lower intent approximations are exactly those from
IntÒÓpX,Y, Iq.

With results on mutual reducibility from [14] we can state the following theorem on representation
of BMO by BÒÓ.

Theorem 3.13. For xX,Y, I, Iy, consider L-context xX,Y � L, Jy where J is defined by

Jpx, xy, ayq �

#
Ipx, yq if a � 1,
Ipx, yq Ñ a otherwise.

Then we have that BÒÓpX,Y � L, Jq is isomorphic to BMOpX,Y, I, Iq as a lattice.
In addition,

ExtÒÓpX,Y � L, Jq � ExtMOpX,Y, I, Iq.

Theorem 3.13 shows how we can obtain an L-concept lattice formed by xÒ, Óywhich is isomorphic
to L-rough concept lattice of given L-rough context. On the other hand, from results in [13] we can
state that there exist such L-rough contexts that are not isomorphic to any L-concept lattice formed by
xX, Yy.

xα, 1y xβ, 1y xγ, 1y xδ, 1y xα, 0.5y xβ, 0.5y xγ, 0.5y xδ, 0.5y xα, 0y xβ, 0y xγ, 0y xδ, 0y

A 0.5 0 1 0 1 1 0.5 1 0.5 1 0 1
B 1 0.5 1 0.5 0.5 1 0.5 1 0 0.5 0 0.5
C 0 0.5 0.5 0.5 1 1 1 1 1 0.5 0.5 0.5
D 0.5 0.5 1 0.5 1 1 0.5 1 0.5 0.5 1 0.5

Figure 6. L-context J from Theorem 3.13 of the L-rough context xX,Y, I, Iy from Fig. 1.

93



E. Bartl and J. Konecny / Rough Fuzzy Concept Analysis 155

Example 3.14. For illustration, in Fig. 6 we show a representation described in Theorem 3.13 of L-
rough context xX,Y, I, Iy from Fig. 1.

The last result in this section is representation theorem on rough L-concept lattices.

Theorem 3.15. The L-rough concept lattice BMOpX,Y, I, Iq is isomorphic to the ordinary concept lat-
tice BÒÓpX � L,Y � L� L, I�q where

xxx, ay, xy, b, byy P I� iff ab b ¤ Ipx, yq and a Ñ b ¥ Ipx, yq.

Proof:
It is a specification of Theorem from Appendix A. [\

4. Rough approximation of L-rough concept lattices

In this section we study an application of L-equivalences to influence both granularity and size of
L-rough concept lattices.

First we show that for any A P LX , the AM is an L-rough set in L-approximation space xY, EI , EIy,
where EI and EI are Leibniz L-equivalences induced by I and I, respectively.

Theorem 4.1. Let xX,Y, I, Iy be an L-rough context, xB, By be its arbitrary intent, and EI , EI be the
equivalences induced by I and I, respectively. Then B is compatible with EI and B is compatible with
EI .

Proof:
Let A be the extent corresponding to xB, By, i.e. A � xB, By

O
. We have

Bpy1q b EIpy1, y2q � AÒpy1q b EIpy1, y2q

�
�©

xPX

Apxq Ñ Ipx, y1q
	
b
�©

xPX

Ipx, y1q Ø Ipx, y2q
	

¤
©
xPX

pApxq Ñ Ipx, y1qq b pIpx, y1q Ø Ipx, y2qq

¤
©
xPX

pApxq Ñ Ipx, y1qq b pIpx, y1q Ñ Ipx, y2qq

¤
©
xPX

Apxq Ñ Ipx, y2q � Bpy2q.
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Similarly, we have

Bpy1q b EIpy1, y2q � AXpy1q b EIpy1, y2q

�
�ª

xPX

Apxq b Ipx, y1q
	
b
�©

xPX

Ipx, y1q Ø Ipx, y2q
	

¤
ª
xPX

Apxq b Ipx, y1q b pIpx, y1q Ø Ipx, y2qq

¤
ª
xPX

Apxq b Ipx, y1q b pIpx, y1q Ø Ipx, y2qq

¤
ª
xPX

Apxq b Ipx, y1q b pIpx, y1q Ñ Ipx, y2qq

¤
ª
xPX

Apxq b Ipx, y2q � Bpy2q.

[\

Remark 4.2. [6] considers L-equivalences induced by formal L-contexts and standard L-concept lat-
tices, and showed that they are equal. Analogous equality can be proved for object-oriented and
attribute-oriented concept lattices [22, 35].

As L-rough concept lattices combine standard and attribute-oriented concept lattices, this property
is naturally inherited. We demonstrate that in this section.

L-rough concept lattice BMOpX,Y, I, Iq induces L-equivalences EIntMO , EIntMO on Y as follows:

EIntMOpy1, y2q �
©

xB,ByPIntMOpX,Y,I,Iq

Bpy1q Ø Bpy2q,

EIntMOpy1, y2q �
©

xB,ByPIntMOpX,Y,I,Iq

Bpy1q Ø Bpy2q.

In words, two attributes are similar w.r.t. EIntMO (resp. EIntMO) if they are not separated by any
lower (resp. upper) intent approximation in BMOpX,Y, I, Iq.

For L-rough context xX,Y, I, Iy we have

EIntMO � EI and EIntMO � EI .

Remark 4.3. Clearly, in the case I � I we also have EI � EI; whence we obtain the setting with a
single L-relation for both lower and upper approximation.

As we have I � I�EI and I � I�EI , we can assume the L-rough context to be xX,Y, I � EI , I � EIy
and consider replacing the two induced L-equivalences EI , EI with rougher ones to influence granu-
larity of intents.

In this section we consider L-rough contexts xX,Y, I � E, I � Ey where E � EI , E � EI . We will
denote E � xE, Ey.

95



E. Bartl and J. Konecny / Rough Fuzzy Concept Analysis 157

Obviously, the L-rough concept-forming operators (denoted here as xME ,OEy) then become

AME � xAÒI�E , AXI�Ey,

xB, By
OE
� BÓI�E X B

YI�E .
(14)

For this special case, we denote L-rough concept lattice and associated set of its extents and intents
by BMEOE pX,Y, I, Iq,ExtMEOE pX,Y, I, Iq and IntMEOE pX,Y, I, Iq, respectively.

As before, we want to know how the roughness of E influences the corresponding L-rough con-
cepts. In other words, we are interested in description of L-rough concept-forming operators xME ,OEy
using operators (10).

Theorem 4.4. Let xX,Y, I, Iy be an L-context, E � xE, Ey be a pair of L-equivalences on Y . Then

AME � xAÒIóE , AXIòEy,

xB, By
OE
� BòEÓI X B

óEYI .

In addition, if xB, By P IntMOpX,Y, I, Iq, then xB � E, B � Ey P IntMEOE pX,Y, I, Iq.

Proof:
Directly from Lemma 2.2 and (11). [\

Remark 4.5. Note that by Theorem 8, we can interpretBMEOE pX,Y, I, Iq as an L-rough concept lattice
of xX,Y, I, Iy with the requirement that both lower and upper approximations of every intent must be
compatible with E.

The following theorem shows that a rougher L-equivalence relation leads to a reduction of size of
the L-rough concept lattices. Furthermore, this reduction preserves extents.

Theorem 4.6. Let xX,Y, I, Iy be an L-rough context, and E1 � xE1, E1y, E2 � xE2, E2y be L-
equivalences on Y , such that E1 � E2, E1 � E2. Then

|BME2OE2 pX,Y, Iq| ¤ |BME1OE1 pX,Y, I, Iq|. (15)

In addition, we have
ExtME2OE2 pX,Y, I, Iq � ExtME1OE1 pX,Y, I, Iq. (16)

Proof:
First, note that for the pairs of L-equivalences E1, E2 P LY�Y such that E1 � E2, E1 � E2, we have

E2 � E1 � E2 � E2 � E1 and E2 � E1 � E2 � E2 � E1. (17)
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By Corollary 3.3(d), for arbitrary extent A P ExtME2OE2 pX,Y, I, Iq there is an L-rough set xB, By such
that A � xB, By

OE2 . Now, we have

xB, By
OE2 � BÓI�E2 X B

YI�E2 by (14)

� BÓI�pE2�E1q X B
YI�pE2�E1q due (17)

� BÓpI�E2q�E1q X B
YpI�E2q�E1 by Lemma 2.1

� pB � E2q
ÓI�E1 X pB � E2q

YI�E1 by Theorem 4.4

� xB � E2, B � E2y
OE1 by (14).

Thus, A is also an extent in ExtME1OE1 pX,Y, I, Iq. That proves the inclusion (16). The inequality (15) is
then a direct consequence of (16). [\

Example 4.7. Fig. 8 shows the rough L-concept lattice of the L-context in Fig. 1 and rough L-concept
lattice approximated using the L-equivalence relation on Y in Fig. 7. To demonstrate the second part
of Theorem 4.6, the concepts with the same extents in the two lattices are connected in Fig. 8.

α β γ δ

α 1 0.5 0 0
β 0.5 1 0 0
γ 0 0 1 0.5
δ 0 0 0.5 1

Figure 7. L-equivalence used in Example 4.7.

Remark 4.8. For approximation by general L-relations we can prove a weaker version of Theo-
rem 4.6: let xX,Y, I, Iy be an L-rough context and R,R P LY�Y , then we have

ExtMOpX,Y, I, Iq � ExtMOpX,Y, I � R, I � Rq. (18)

5. Reduction of size

The number of the L-rough concepts obtained from a given data is usually too large. When used as a
tool of exploratory data analysis, the resulting concept lattice may be incomprehensible and unreadable
for a user due its size. When used as a method of preprocessing data, the resulting number of L-rough
concepts may be too large to be efficiently processed by other algorithms.

For this reason, reducing the size of a concept lattice has become one of the most recognized
problems in FCA. In Section 4, we showed application of L-equivalences to obtain rougher intents, and
thus smaller concept lattice. Here, we describe two methods of reduction of size which were previously
studied for both standard and attribute-oriented L-concept lattices and can be easily adjusted for the
present setting.
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0.5{γ, 0.5{, 0.5{δ


A, 0.5{α, 0.5{β

 0.5{δ

 
B, 0.5{α, 0.5{β, γ


C, 0.5{γ

 D



0{δ



0.5{A, 0{α, 0{β
 δ

 

0.5{B, α, β



0.5{C, 0{γ
 0.5{D





0.5{γ, 0.5{β, 0.5{δ


0.5{β, 0.5{δ



0.5{α, 0.5{γ
 0.5{α

  


B, α


D



0.5{γ
 A, 0{β, 0{δ

  C, 0{α

 
α, β





0.5{B


0.5{A




0.5{D
 0.5{C, 0{γ



Figure 8. Rough L-concept lattices BMOpX,Y, I, Iq (left) and BMEOE pX,Y, Iq (right) with L being three-element
Łukasiewicz chain. The corresponding extents are connected. Dashed lines separate natural concepts (above
the lines) and non-natural concepts (below the lines).

Truth-Stressing and Truth-Depressing Hedges
In [16, 34] the authors addressed the problem of size of L-concept lattices BÒÓ and BXY by

parametrization of the concept-forming operators with particular unary operation—a truth-stressing
or truth-depressing hedge. Selection of the hedge influences the size of concept lattice. In this part,
we show how the same idea can be applied in the present setting.

The truth-stressing hedges were studied from the point of fuzzy logic as logical connectives “very
true”, see [31]. Our approach is close to that in [31]. A truth-stressing hedge is a mapping � : L Ñ L
satisfying the following conditions

1� � 1, a� ¤ a, a ¤ b implies a� ¤ b�, a�� � a� (19)

for each a, b P L; i.e. it is an interior operator on L which preserves one.
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A truth-depressing hedge is a mapping � : L Ñ L such that following conditions are satisfied

0� � 0, a ¤ a�, a ¤ b implies a� ¤ b�, a�� � a� (20)

for each a, b P L; i.e. it is a closure operator on L which preserves zero. The truth-depressing hedge
is a (truth function of) logical connective “slightly true” [48].

The truth-stressing and truth-depressing hedges were used to parametrize antitone as well as iso-
tone concept-forming operators:

AÒ�pyq �
©
xPX

Apxq� Ñ Ipx, yq, BÓ�pxq �
©
yPY

Bpyq� Ñ Ipx, yq, (21)

AX�pyq �
ª
xPX

Apxq� b Ipx, yq, BY�pxq �
©
yPY

Ipx, yq Ñ Bpyq�; (22)

for more details see e.g. [3, 5, 11, 18, 34]

We naturally extend application of truth-stressing/truth-depressing hedges to L-sets:

A�pxq � Apxq�

for all x P U.

Let r, q be truth-stressing hedges on L and let ♠ be a truth-depressing hedge on L. We parametrize
the L-rough concept-forming operators as follows

AN � xAÒr , AXry, xB, By
NH
� BÓq X B

Y♠
. (23)

for A P LX , B � B P LY .

With the concept-forming operators (23) one obtains L-rough concept lattice with smaller or equal
number of L-rough concepts than with (23). Using various combinations of truth-stressing and truth-
depressing hedges, one can influence its size. Reader can find detailed results on use of hedges in this
setting in [4].

Factorization by Tolerances
Complete tolerance on lattice K � xK,¤y is a reflexive, symmetric relation φ � K � K such that

aiφbi for each i P In (In being an index set) implies p
�

iPIn aiq φ p
�

iPIn biq, and p
�

iPIn aiq φ p
�

iPIn biq.
A maximal set B with aφb for each a, b P K is called a block of tolerance φ.

Czédli [23] showed that blocks of tolerance are intervals in K and that they form a complete lattice.
We call this complete lattice a factorization of K by φ. Wille [51] proved that in the complete toler-
ances on a concept lattice BpX,Y, Iq (in crisp setting) are in one-to-one correspondence with block
relations of formal context xX,Y, Iy, i.e. relations J � X � Y , s.t. ExtpX,Y, Jq � ExtpX,Y, Iq and
IntpX,Y, Jq � IntpX,Y, Iq. Belohlavek [6] used a particular group of tolerances for factorization of
standard concept lattice BÒÓpX,Y, Iq, namely, a-cuts of a similarity of formal L-concepts. The similar-
ity � of formal L-concepts is defined by means of equivalence of extents (or equivalently, intents):

xA1, B1y � xA2, B2y � S pA1, A2q ^ S pA2, A1q

� S pB1, B2q ^ S pB2, B1q
(24)
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for each xA1, B1y, xA2, B2y P BÒÓpX,Y, Iq. For a P L, an a-cut of � is a (crisp) relation �a given by

xA1, B1y �
a xA2, B2y iff pxA1, B1y � xA2, B2yq ¥ a (25)

for each xA1, B1y, xA2, B2y P BÒÓpX,Y, Iq.
For factorization of BÒÓpX,Y, Iq by a-cut of similarity one does not need to compute the blocks of

tolerance, since it is isomorphic to BÒÓpX,Y, a Ñ Iq [10]. In [22] one can find analogous results for
object-oriented and attribute-oriented concept lattices.

In [36] we generalize the results of [23, 51]. While a study of block relations for present setting is
yet to be developed we can easily apply approach of [6, 10].

Define similarity of L-rough concepts analogously as in (24):

xA1, B1y � xA2, B2y � S pA1, A2q ^ S pA2, A1q

� S pB1, B2q ^ S pB2, B1q ^ S pB1, B2q ^ S pB2, B1q
(26)

It can be showed that its a-cuts are complete tolerances on BMOpX,Y, I, Iq. The factorization of the
L-rough concept lattice BMOpX,Y, I, Iq is then isomorphic to BMOpX,Y, a Ñ I, ab Iq.

6. Future research & conclusions

The present results on L-rough concept analysis open several ways to continue the research. Here we
summarize three of them.

Optimal Decompositions of L-rough Relations. Belohlavek studied in [8] decompositions of ma-
trices with entries from residuated lattices in a general framework of aggregation structures. Main
result there are that formal concepts are optimal and universal factors for the decomposition. Since by
Theorem 3.4 the general framework covers L-rough contexts, we can apply these results here.

We concern with a decomposition of an L-rough relation xI, Iy between X and Y to product

xI, Iy � R � xS , S y (27)

of an L-relation R between X and F and an L-rough relation xS , S y between F and Y with |F| being
as small as possible. The operation � in (27) is defined as

R � xS , S y � xR � S ,R � S y. (28)

By [8] the L-rough concepts of xX,Y, I, Iy can be used to find the optimal decomposition.
In addition, [2] considers decomposition of L-relation to product of an ordinary relation and L-

relation. This approach can be adapted to the present setting to concern with decompositions of the
form (27) where R is and ordinary relation between F and Y .

[2] also provides a greedy algorithm to find an approximation of decomposition. The fact that we
work with the lower and upper approximation instead of a single L-relation gives us more freedom
for the optimization condition in the algorithm, for example we can use weights to say that we prefer
lower or upper approximation more. That deserves more study and experimentation.

100



162 E. Bartl and J. Konecny / Rough Fuzzy Concept Analysis

L-rough Attribute Implications. Besides concept lattices, second main output of FCA are attribute
implications—if-then rules describing the formal context. In the setting of L-rough contexts, the
attribute implications have the form

xA, Ay ñ xB, By.

The intended meaning is: “if an object has all attributes in L-rough set xA, Ay (i.e. it has all attributes
from A and no other attributes than those in A) then it has all attributes in L-rough set xB, By.”

The general framework of aggregation structures does not handle attribute implications. Proper
study of the L-rough attribute implications could provide some clues for further development of the
framework.

More Connections of RST with FCA. We intend to study problems of Rough Set Theory in terms
of the Formal Concept Analysis. We believe that the present contribution is a great start of such work.
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doi:10.1016/j.fss.2016.08.007 .

[52] Wu W-Z, Mi J-S, and Zhang W-X. Generalized fuzzy rough sets. Information Sciences, 2003;151:263–
282. URL https://doi.org/10.1016/S0020-0255(02)00379-1.

[53] Yao Y-Q, and Mi J-S. Fuzzy concept lattices determined by pθ, σq-fuzzy rough approximation opera-
tors. In Peng Wen, Yuefeng Li, Lech Polkowski, Yiyu Yao, Shusaku Tsumoto, and Guoyin Wang, editors,
Rough Sets and Knowledge Technology, volume 5589 of Lecture Notes in Computer Science, pp. 601–609.
Springer Berlin Heidelberg, 2009. URL https://doi.org/10.1007/978-3-642-02962-2_76.

[54] Yao Y. Relational interpretations of neighborhood operators and rough set approximation operators.
Information Sciences, 1998;111(1-4):239–259. URL https://doi.org/10.1016/S0020-0255(98)
10006-3.

[55] Yao Y. A comparative study of formal concept analysis and rough set theory in data analysis. In Shusaku
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Appendix A – General Framework

The notion of a sup-preserving aggregation structure has been introduced in [8] and studied further in
[9], see also [1, 17, 37, 39, 40] for related works, to which we refer for more details.
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Supremum-preserving aggregation structure (or just aggregation structure) is a quadruple L �
xL1,L2,L3,�y where L1,L2,L3 are complete lattices; � is a mapping � : L1 � L2 Ñ L3 which
commutes with suprema of L1,L2,L3, i.e.�ª

1 jPJ
a j

	
� b �

ª
3 jPJ

�
a j � b

�
,

a �
�ª

2 jPJ
b j

	
�
ª

3 jPJ

�
a � b j

�
,

for all a, a j P L1, b, b j P L2.

We denote the operations on Li by adding the subscript i. For example, the infima, suprema, the
least, and the greatest element in L2 are denoted by

�
2,
�

2, 02, and 12. For mnemonic reasons we use
analogical convention to denote the elements of Li, that is, the elements of Li are denoted as ai, bi, etc.
Unless stated otherwise L � xL1,L2,L3,�y.

Define �
ÝÑ

: L1 � L3 Ñ L2 and �
ÐÝ

: L3 � L2 Ñ L1 as

a1 �
ÝÑ

a3 �
ª

2
ta2 | a1 � a2 ¤3 a3u,

a3 �
ÐÝ

a2 �
ª

1
ta1 | a1 � a2 ¤3 a3u.

Example 6.1. (a) L1 � L2 � L3 � xL,^,_,b,Ñ, 0, 1y is complete residuated lattice; � is b:

a1 �
ÝÑ

a3 � a1 Ñ a3,

a3 �
ÐÝ

a2 � a2 Ñ a3.

(b) L1 � xL,^,_,b,Ñ, 0, 1y, L2 � L3 � xL,¤�1y; � isÑ:

a1 �
ÝÑ

a3 � a1 b a3,

a3 �
ÐÝ

a2 � a3 Ñ a2.

(c) L2 � xL,^,_,b,Ñ, 0, 1y, L1 � L3 � xL,¤�1y; � isÐ:

a1 �
ÝÑ

a3 � a3 Ñ a1,

a3 �
ÐÝ

a2 � a2 b a3.

Definition 6.2. Let J P LX�F
1 ,K P LF�Y

2 , I P LX�Y
3 . Define relational compositions as follows

pJ � Kqpx, yq �
ª

3
fPF

Jpx, f q� Kp f , yq,

pJ�1 �
ÝÑ

Iqp f , yq �
©

2
xPX

Jpx, f q�
ÝÑ

Ipx, yq,

pI �
ÐÝ

K�1qpx, f q �
©

1
yPY

Ipx, yq�
ÐÝ

Kp f , yq.

To enable us to apply the relational compositions to L-sets, we identify LX with Lt1u�X and with
LX�t1u.
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Concept-forming operators

Let xX,Y, Iy be a L3-context. Define concept-forming operators as follows. Let A P Lt1u�X
1 , B P

LY�t1u
2 . Define

AT � A�
ÝÑ

I and BU � I �
ÐÝ

B (29)

In what follows, we write just Apxq instead of Ap1, xq, and Bpyq instead of Bpy, 1q.
Note that for A P LX

1 we have

ATpyq � pA�
ÝÑ

Iqpyq �
©

2
xPX

Apxq�
ÝÑ

Ipx, yq �
©

2
xPX

Apxq�
ÝÑ

Iypxq � A�
ÝÑ

Iy,

where Iy P LX
3 is defined by Iypxq � Ipx, yq. Similarly, for B P LY

2 we have BUpxq � Ix �
ÐÝ

B where
Ix P LY

3 is defined by Ixpyq � Ipx, yq.

Example 6.3. With settings as in Example 6.1, one obtains following concept-forming operators:

(a)
AT � AÒ and BU � BÓ,

(b)
AT � AX and BU � BY,

(c)
AT � A^ and BU � B_.

Furthermore, BpX,Y, Iq denotes the set of all formal concepts of I formed by xT,Uy, i.e.

BpX,Y, Iq � txA, By P L1
X � L2

Y | AT � B, BU � Au.

Theorem 6.4. ([15])
Let xL1,L2,L3,�y be a supremum-preserving aggregation structure. Let xX,Y, Iy be an L3-context
xX,Y, Iy.

(1) BpX,Y, Iq equipped with ¤ is a complete lattice with infima and suprema described as:

©
jPJ

xA j, B jy �

C£
jPJ

A j, p
¤
jPJ

B jq
TU

G
,

ª
jPJ

xA j, B jy �

C
p
¤
jPJ

A jq
UT,
£
jPJ

B j

G
.

(2) Moreover, a complete lattice V � xV,¤y is isomorphic to BpX,Y, Iq iff there are mappings
γ : X�L1 Ñ V and µ : Y�L2 Ñ V such that γpX�L1q is supremally dense in V, µpY�L2q is infimally
dense in V, and a � b ¤3 Ipx, yq is equivalent to γpx, aq ¤ µpy, bq for all x P X, y P Y, a P L1, b P L2.
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Theorem 6.5. ([15])
The concept lattice BpX,Y, Iq over xL1,L2,L3,�y is isomorphic to the ordinary concept lattice BpX�
L1,Y � L2, I�q where I� � pX � L1q � pY � L2q is defined by

xxx, ay, xy, byy P I� iff a � b ¤3 Ipx, yq.
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The papers F-H represent an elevation of some results known in the ordinary
setting of FCA into the graded setting. We consider all three kinds of concept-forming
operators which are of interest in the graded setting (standard, attribute-oriented,
and object-oriented).

F Complete Relations on Fuzzy Complete Lattices
[45] Jan Konecny and Michal Krupka. Complete relations on fuzzy complete lat-

tices. Fuzzy Sets and Systems, 320:64–80, 2017.

We focus on complete fuzzy tolerances. A (crisp) tolerance on a set is a reflexive
and symmetric binary relation. A block of a tolerance is a set whose elements are
pairwise related. A maximal block is a block which is maximal w.r.t. set inclusion.
The set of all maximal blocks of a tolerance is called the factor set. One of basic
results on tolerances on complete lattices in the basic setting is that complete lattices
can be factorized by complete tolerances [28, 65]. That is, an ordering on the set of
all maximal blocks of a complete tolerance can be introduced in a natural way, such
that the factor set, together with this ordering, is again a complete lattice.

We show that this result hold true for complete L-tolerances on completely lattice
L-ordered sets. More precisely, we use the usual definition of fuzzy tolerance and
corresponding factor set and introduce an L-order on the factor set of a completely
lattice L-ordered set by a complete L-tolerance, such that the new L-order is again a
complete lattice L-order. To prove this main result, we more deeply investigate prop-
erties of complete L-tolerances. We use similar techniques to those used in classical
ordered sets. However, we also introduce a result that is new even in the classical
case: we show that complete fuzzy tolerances are in one-to-one correspondence with
so-called extensive isotone fuzzy Galois connections.
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Abstract

We generalize the notion of complete binary relation on complete lattice to residuated lattice valued ordered sets and show its 
properties. Then we focus on complete fuzzy tolerances on fuzzy complete lattices and prove they are in one-to-one correspon-
dence with extensive isotone Galois connections. Finally, we prove that any fuzzy complete lattice factorized by a complete fuzzy 
tolerance is again a fuzzy complete lattice.
© 2016 Elsevier B.V. All rights reserved.

Keywords: Fuzzy tolerance; Fuzzy order; Fuzzy Galois connection; Factorization

1. Introduction

In classical algebra, a complete relation on a complete lattice is a relation which preserves arbitrary infima and 
suprema. For instance, a binary relation ∼ on a complete lattice U is complete if for each system {〈ui, vi〉}i∈I of pairs 
of elements from U, ui ∼ vi for each i ∈ I implies 

∧
i∈I ui ∼ ∧

i∈I vi and 
∨

i∈I ui ∼ ∨
i∈I vi .

One of the goals of this paper is to define a notion of complete relation for fuzzy sets. That is, we need to state an 
appropriate condition for completeness of a fuzzy relation on a set possessing an appropriate structure of a complete 
lattice in fuzzy sense. However, the above definition cannot be used as is.

As it turns out, there is an equivalent condition to that of completeness of a relation on a complete lattice, that 
involves extending relations between sets to relations between power sets (i.e. sets of all subsets). This situation is 
known from theory of power algebras [1] which offers a natural way to extend a binary relation R on a set X to 
a binary relation R+ on the power set 2X.

This extension allows us formulate the following equivalent condition for completeness of binary relations: a binary 
relation ∼ on a complete lattice U is complete if and only if for any two subsets V1, V2 in U, V1 ∼+ V2 implies ∧

V1 ∼ ∧
V2 and 

∨
V1 ∼ ∨

V2.

* Corresponding author.
E-mail addresses: jan.konecny@upol.cz (J. Konecny), michal.krupka@upol.cz (M. Krupka).
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In [2], Georgescu extended the theory of power algebras to a fuzzy setting. He shows a way of extending any fuzzy 
n-ary relation R on a set X to a fuzzy n-ary relation on the set of all fuzzy sets in X. In this paper, we use these results 
to define a notion of a complete binary fuzzy relation on a complete fuzzy lattice.

As a general framework, we use L-valued fuzzy sets where L is a complete residuated lattice, thus covering 
[0, 1]-valued fuzzy sets with arbitrary left-continuous t-norm on [0, 1] as a special case. Under this framework, we 
use a notion of L-ordered set which is, basically, a set with an L-relation satisfying requirements of reflexivity, 
antisymmetry and transitivity. A complete fuzzy lattice, or, more precisely, a completely lattice L-ordered set, is then 
an L-ordered set whose each L-subset has a (properly defined) infimum and supremum.

L-valued fuzzy sets, completely lattice L-ordered sets and other standard basic notions of fuzzy set theory (e.g. 
isotone L-Galois connections and L-closure and L-interior operators) are introduced in Sec. 2.

Section 3 is devoted to some basic parts of the Georgescu’s theory of fuzzy power structures and its applications 
to L-ordered sets. We start with recalling the notion of power binary L-relations and their basic properties and then 
we prove some results on power relations of L-orders. Sec. 4 contains our definition of complete binary L-relation on 
completely lattice L-ordered set. We also prove some basic properties of complete L-relations.

In the main part of the paper, Sec. 5, we focus on complete fuzzy tolerances. A (crisp) tolerance on a set is a reflexive 
and symmetric binary relation. A block of a tolerance is a set whose elements are pairwise related. A maximal block is 
a block which is maximal w.r.t. set inclusion. The set of all maximal blocks of a tolerance is called the factor set. One 
of basic results on tolerances on complete lattices is that complete lattices can be factorized by complete tolerances 
[3,4]. That is, there can be introduced in a natural way an ordering on the set of all maximal blocks of a complete 
tolerance, such that the factor set, together with this ordering, is again a complete lattice.

We show that the same holds for complete L-tolerances on completely lattice L-ordered sets. More precisely, we 
use the usual definition of fuzzy tolerance and corresponding factor set and introduce an L-order on the factor set 
of completely lattice L-ordered set by a complete L-tolerance such that the new L-order is again a complete lattice 
L-order.

To prove this main result, we investigate properties of complete L-tolerances. We use similar techniques to those 
used in classical ordered sets. We also introduce a result that is new even in the classical case: we show that complete 
fuzzy tolerances are in one-to-one correspondence with so-called extensive isotone fuzzy Galois connections.

Note that factorization of complete lattices, either in ordinary or fuzzy setting, has been studied in the past [4–8] as 
it is useful for reducing dimensionality of concept lattices. The present paper can be viewed as a contribution to this 
area.

The paper is an extended and thoroughly rewritten version of a part of [9]. We fix some inaccuracies that appeared 
in the original paper.

2. Preliminaries

2.1. Residuated lattices and fuzzy sets

A complete residuated lattice [7,10,11] is a structure L = 〈L, ∧, ∨, ⊗, →, 0, 1〉 such that

(i) 〈L, ∧, ∨, 0, 1〉 is a complete lattice, i.e. a partially ordered set in which arbitrary infima and suprema exist, 
0 = ∧

L, 1 = ∨
L;

(ii) 〈L, ⊗, 1〉 is a commutative monoid, i.e. ⊗ is a binary operation which is commutative, associative, and a⊗1 = a

for each a ∈ L;
(iii) ⊗ and → satisfy adjointness, i.e. a ⊗ b ≤ c iff a ≤ b → c.

The partial order of L is denoted by ≤. Throughout the paper, L denotes an arbitrary complete residuated lattice.
Elements of L are called truth degrees. ⊗ and → are (truth functions of) “fuzzy conjunction” and “fuzzy implica-

tion”.
Common examples of complete residuated lattices include those defined on [0, 1], (i.e. L = [0, 1]), ∧ being mini-

mum, ∨ maximum, ⊗ being a left-continuous t-norm with the corresponding →.
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The three most important pairs of adjoint operations on the unit interval are

Łukasiewicz:
a ⊗ b = max(a + b − 1,0)

a → b = min(1 − a + b,1)

Gödel:
a ⊗ b = min(a, b)

a → b =
{

1 a ≤ b

b otherwise

Goguen (product):
a ⊗ b = a · b
a → b =

{
1 a ≤ b
b
a

otherwise

An L-set (or fuzzy set) A in a universe set X is a mapping assigning to each x ∈ X a truth degree A(x) ∈ L. The 
set of all L-sets in a universe X is denoted LX .

Operations with L-sets are defined element-wise. For instance, the union of L-sets A, B ∈ LX is the L-set A ∪ B

in X satisfying (A ∪ B)(x) = A(x) ∨ B(x) for each x ∈ X. An L-set A ∈ LX is also denoted {A(x)/x | x ∈ X}. If for 
all y ∈ X distinct from x1, x2, . . . , xn we have A(y) = 0, we also write {A(x1)/x1, A(x2)/x1, . . . , A(xn)/xn}.

Binary L-relations (binary fuzzy relations) between X and Y can be thought of as L-sets in the universe X×Y . That 
is, a binary L-relation I ∈ LX×Y between a set X and a set Y is a mapping assigning to each x ∈ X and each y ∈ Y

a truth degree I (x, y) ∈ L (a degree to which x and y are related by I ). The inverse relation I−1 to the L-relation I
is an L-set in Y × X and is defined by I−1(y, x) = I (x, y). Binary L-relations between X and X are called simply 
binary L-relations on X.

The composition R ◦ T of binary L-relations R ∈ LX×Y and T ∈ LY×Z [12] is a binary L-relation between X and 
Z defined by

(R ◦ T )(x, z) =
∨
y∈Y

R(x, y) ⊗ T (y, z). (1)

L-sets in a set X can be naturally identified with binary L-relations between {1} and X, resp. X and {1}. Thus, we can 
also consider composition of an L-set and a binary L-relation and even composition of two L-sets: for A, A1, A2 ∈ LX , 
B ∈ LY and R ∈ LX×Y we have

(A ◦ R)(y) =
∨
x∈X

A(x) ⊗ R(x, y), (R ◦ B)(x) =
∨
y∈Y

R(x, y) ⊗ B(y) (2)

and

A1 ◦ A2 =
∨
x∈X

A1(x) ⊗ A2(x). (3)

An L-set A ∈ LX is called crisp if A(x) ∈ {0, 1} for each x ∈ X. Crisp L-sets can be identified with ordinary sets. 
For a crisp L-set A we also write x ∈ A for A(x) = 1 and x /∈ A for A(x) = 0. An L-set A ∈ LX is called empty
(denoted by ∅) if A(x) = 0 for each x ∈ X. For a ∈ L and A ∈ LX , a ⊗ A ∈ LX and a → A ∈ LX are defined by

(a ⊗ A)(x) = a ⊗ A(x) and (a → A)(x) = a → A(x).

For an L-set A ∈ LX and a ∈ L, the a-cut of A is a crisp subset aA ⊆ X such that x ∈ aA iff a ≤ A(x). This 
definition applies also to binary L-relations, whose a-cuts are classical (crisp) binary relations.

For a universe X we define an L-relation of graded subsethood LX × LX → L by:

S(A,B) =
∧
x∈X

A(x) → B(x). (4)

Graded subsethood generalizes the classical subsethood relation ⊆. Indeed, in the crisp case (i.e. L = {0, 1}) 
S(A, B) = 1 iff x ∈ A implies x ∈ B for each x ∈ X. Described verbally, S(A, B) represents the degree to which 
A is a subset of B . In particular, we write A ⊆ B iff S(A, B) = 1. As a consequence, we have A ⊆ B iff A(x) ≤ B(x)

for each x ∈ X.
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We set

A ≈X B = S(A,B) ∧ S(B,A). (5)

The value A ≈X B is interpreted as the degree to which the L-sets A and B are similar.
A binary L-relation R on a set X is called reflexive if R(x, x) = 1 for any x ∈ X, symmetric if R(x, y) = R(y, x)

for any x, y ∈ X, and transitive if R(x, y) ⊗ R(y, z) ≤ R(x, z) for any x, y, z ∈ X. R is called an L-tolerance if it 
is reflexive and symmetric, L-equivalence if it is reflexive, symmetric and transitive. If R is an L-equivalence such 
that for any x, y ∈ X from R(x, y) = 1 it follows x = y then R is called an L-equality on X. L-equalities are often 
denoted by ≈. The similarity ≈X of L-sets (5) is an L-equality on LX.

Let ∼ be an L-equivalence on X. We say that an L-set A in X is compatible with ∼ (or extensional w.r.t. ∼) if for 
any x, x ′ ∈ X it holds

A(x) ⊗ (x ∼ x′) ≤ A(x′). (6)

A binary L-relation R on X is compatible with ∼ if for each x, x′, y, y′ ∈ X,

R(x, y) ⊗ (x ∼ x′) ⊗ (y ∼ y′) ≤ R(x′, y′). (7)

Zadeh’s extension principle [13] allows extending any mapping f : X → Y to L-sets in X by setting for each 
A ∈ LX

f (A)(y) =
∨

x∈X,f (x)=y

A(x). (8)

Note that, historically, the symbol for the mapping f is used in the notation f (A). This cannot cause any confusion 
and is in accordance with the classical notation for the image of a set w.r.t. a mapping.

In this paper, we use well-known properties of residuated lattices and fuzzy structures which can be found e.g. in 
[7,10].

2.2. L-ordered sets

In this and two subsequent sections, we recall basic definitions and results of the theory of L-ordered sets. All 
results are either trivial or standard. Basic references are [14,7] and the references therein. Some results appear also 
in other sources (e.g. [15–17]).

An L-order on a set U with an L-equality ≈ is a binary L-relation � on U which is compatible with ≈, reflexive, 
transitive and satisfies (u � v) ∧ (v � u) ≤ u ≈ v for any u, v ∈ U (antisymmetry). The tuple U = 〈〈U, ≈〉, �〉 is called 
an L-ordered set. An immediate consequence of the definition is that for any u, v ∈ U it holds

u ≈ v = (u � v) ∧ (v � u). (9)

Note that as discovered by Yao [18], for any binary L-relation � which is reflexive, transitive and satisfies

(u � v) ∧ (v � u) implies u = v, (10)

〈〈U, ≈〉, �〉 with ≈ given by (9) is an L-ordered set. This alternative possibility of defining fuzzy ordered sets can be 
used if no L-equality is given on U in advance. Fan [19] was first who defined fuzzy ordered sets this way.

If U = 〈〈U, ≈〉, �〉 is an L-ordered set then the tuple 〈U, 1�〉, where 1� is the 1-cut of �, is a (partially) ordered 
set. We sometimes write ≤ instead of 1� and use the symbols ∧, 

∧
resp. ∨, 

∨
for denoting infima resp. suprema in 

〈U, 1�〉.
For two L-ordered sets U = 〈〈U, ≈U 〉, �U 〉 and V = 〈〈V, ≈V 〉, �V 〉, a mapping f : U → V is isotone (or order-

preserving) if (u1 �U u2) ≤ (f (u1) �V f (u2)) for any u1, u2 ∈ V . The mapping f is called an isomorphism of U and 
V if it is a bijection and (u1 �U u2) = (f (u1) �V f (u2)) for any u1, u2 ∈ V . U and V are then called isomorphic.

In classical theory of ordered sets, a subset V of an ordered set is called a lower set if for each element u such that 
there is v ∈ V satisfying u ≤ v it holds u ∈ V . Equivalently, for a lower set V it holds: if u ≤ v then v ∈ V implies 
u ∈ V .
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Analogously, for an L-ordered set U, an L-set V ∈ LU is called a lower set (resp. an upper set) if for each u, v ∈ U

it holds

u � v ≤ V (v) → V (u) (resp. u � v ≤ V (u) → V (v)). (11)

The lower (resp. upper) set of an L-set V ∈ LU is the L-set ↓V (resp. ↑V ), defined by

↓V (u) = (� ◦ V )(u) =
∨
v∈U

(u � v) ⊗ V (v), (12)

↑V (u) = (V ◦ �)(u) =
∨
v∈U

V (v) ⊗ (v � u). (13)

In a similar manner we define the lower and upper cone of V ∈ LU . For any v ∈ U we set

L V (v) =
∧
u∈U

V (u) → (v � u), U V (v) =
∧
u∈U

V (u) → (u � v). (14)

The right-hand side of the first equation is the degree of “For each u ∈ U , if u is in V then v is less than or equal to u”, 
and similarly for the second equation. Thus, L V (v) (U V (v)) can be seen as the degree to which v is less (greater) 
than or equal to each element of V , that is the degree to which v is a lower (upper) bound of V .

In the case L V (v) = 1 (resp. U V (v) = 1) we say simply v is a lower (upper) bound of V . L V (resp. U V ) is 
called the L-set of lower bounds (resp. upper bounds) of V , or the lower cone (resp. the upper cone) of V .

Directly from definition we obtain the following property of cones of singleton L-sets:

L {v}(u) = u � v, U {v}(u) = v � u. (15)

If u, v ∈ U , v ≤ u, then the L-set �v, u� = U {v} ∩ L {u} is called an L-interval (or simply an interval) in U.
We set [v, u] = 1 �v,u�. Thus, [v, u] denotes the classical interval with respect to the 1-cut of �: [v, u] = {u′ | v ≤

u′ ≤ u}.
An L-set V ∈ LU is convex if V = ↓V ∩ ↑V . The “⊆” inclusion always holds as the lower set as well as upper set 

of V always contains V as a subset. For any V ∈ LU , each of the following L-sets is convex: ↓V , ↑V , L V , U V . 
Every L-interval �v, u� in U is convex as well. Every convex L-set in U is compatible with ≈.

2.3. Completely lattice L-ordered sets

For any L-set V ∈ LU there exists at most one element u ∈ U such that L V (u) ∧U (L V )(u) = 1 (resp. U V (u) ∧
L (U V )(u) = 1) [14,7]. If there is such an element, we call it the infimum of V (resp. the supremum of V ) and denote 
infV (resp. supV ); otherwise we say that the infimum (resp. supremum) does not exist.

If infV exists and V (infV ) = 1 then it is called the minimum of V and denoted minV . Similarly, if supV exists 
and V (supV ) = 1 then we call it the maximum of V and denote maxV .

An L-ordered set U is called completely lattice L-ordered if for each V ∈ LU both infV and supV exist.
An important example of a completely lattice L-ordered set is the following. For a set X, the tuple 〈〈LX, ≈X〉, S〉

is a completely lattice L-ordered set with infima and suprema given by

(infV )(u) =
∧

W∈LX

V (W) → W(u), (supV )(u) =
∨

W∈LX

V (W) ⊗ W(u). (16)

This fact follows easily e.g. from the main theorem of fuzzy concept lattices (fuzzy order version) [7,14].
The following holds for infima and suprema of L-intervals:

v = min�v,u�, u = max�v,u�. (17)

Evidently, u = infV iff for each v ∈ U

V (v) ≤ u � v, L V (v) ≤ v � u. (18)

Similarly, u = supV iff for each v ∈ U

V (v) ≤ v � u, L V (v) ≤ u � v. (19)
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Thus, infimum (supremum) of V is a lower (upper) bound of V and, in the same time, an upper bound of L V (a lower 
bound of U V ).

First inequalities in (18) and (19) together with (15) imply

Lemma 1. If infV exists then V ⊆ U {infV }. If supV exists then V ⊆ L {supV }.

In some papers (e.g. [20]), (18) (resp. (19)) is used as definition of infimum (resp. supremum). The following result 
[20] is a simple consequence of definition.

Lemma 2. For u ∈ U it holds u = infV iff for each v ∈ U

L V (v) = v � u (20)

and u = supV iff for each v ∈ U

U V (v) = u � v. (21)

The following is a trivial consequence of [7, Lemma 4.54].

Lemma 3. For any L-sets V1, V2 in a completely lattice L-ordered set it holds

S(V1,V2) ≤ infV2 � infV1, S(V1,V2) ≤ supV1 � supV2 (22)

2.4. Isotone L-Galois connections

Basics of the theory of isotone Galois connections come from [21], other references are [22,16,15].
An isotone L-Galois connection between L-ordered sets U and V is a pair 〈f, g〉 where f : U → V , g : V → U

are mappings such that for each u ∈ U , v ∈ V it holds

f (u) � v = u � g(v). (23)

An isotone Galois connection between U and U is called simply an isotone Galois connection on U.
By isotone L-Galois connection between sets X and Y we understand an isotone L-Galois connection between 

completely lattice L-ordered sets LX and LY (16).
The following theorem summarizes well-known basic properties of isotone L-Galois connections. Proofs can be 

found e.g. in [22,16,15].

Theorem 1 (Basic properties of isotone L-Galois connections). Let 〈f, g〉 be an isotone L-Galois connection between 
L-ordered sets U and V. Then

(a) u ≤ g(f (u)) for each u ∈ U , f (g(v)) ≤ v for each v ∈ V .
(b) f and g are isotone.
(c) f (g(f (u))) = f (u), g(f (g(v))) = g(v).
(d) Let U and V be completely lattice L-ordered sets. For U ′ ∈ LU and V ′ ∈ LV we have

f (infU ′) ≤ inff (U ′), g(supV ′) ≥ supg(V ′).

Let 〈f, g〉 be an isotone L-Galois connection between U and V. A pair 〈u, v〉 where u ∈ U and v ∈ V is called 
a fixpoint of 〈f, g〉 if f (u) = v and g(v) = u.

Suppose 〈u1, v1〉, 〈u2, v2〉 are two fixpoints of 〈f, g〉. We have by (23),

u1 � u2 = u1 � g(v2) = f (u1) � v2 = v1 � v2

and by (9),

u1 ≈ u2 = v1 ≈ v2.
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We denote the set of all fixpoints of 〈f, g〉 by Fix〈f,g〉. For L-relations ≈Fix〈f,g〉 and �Fix〈f,g〉 defined on Fix〈f,g〉 by

〈u1, v1〉 ≈Fix〈f,g〉 〈u2, v2〉 = u1 ≈ u2 (= v1 ≈ v2), (24)

〈u1, v1〉 �Fix〈f,g〉 〈u2, v2〉 = u1 � u2 (= v1 � v2), (25)

we obtain an L-ordered set Fix〈f,g〉 = 〈〈Fix〈f,g〉, ≈Fix〈f,g〉 〉, �Fix〈f,g〉 〉. In the rest of the paper, we will usually write ≈
instead of ≈Fix〈f,g〉 and � instead of �Fix〈f,g〉 .

We denote the set of all isotone Galois connections between L-ordered sets U and V by IGal(U, V) and consider 
the following binary L-relations ≈IGal(U,V), �IGal(U,V) on IGal(U, V):

〈f1, g1〉 ≈IGal(U,V) 〈f2, g2〉 =
∧
u∈U

(f2(u) ≈ f1(u)) ∧
∧
v∈V

(g1(v) ≈ g2(v)), (26)

〈f1, g1〉 �IGal(U,V) 〈f2, g2〉 =
∧
u∈U

(f2(u) � f1(u)) ∧
∧
v∈V

(g1(v) � g2(v)). (27)

Lemma 4. 〈〈IGal(U, V), ≈IGal(U,V)〉, �IGal(U,V)〉 is an L-ordered set.

Proof. Straightforward. �
For an L-ordered set U, an isotone L-Galois connection 〈f, g〉 on U is called extensive if

f (u) ≤ u or equivalently g(u) ≥ u (28)

for each u ∈ U . The set of all extensive isotone L-Galois connections on U is denoted EIGal(U).

2.5. L-closure and L-interior operators

We recall briefly basic definitions and results on L-closure and L-interior operators we will need in what follows. 
More details can be found in [23,14,21,15].

For an L-ordered set U, a mapping C : U → U is called an L-closure operator if the following holds for each 
u, u1, u2 ∈ U :

C(u) ≥ u, (29)

C(C(u)) = C(u), (30)

u1 � u2 ≤ C(u1) � C(u2). (31)

A mapping I : U → U is called an L-interior operator if for each u, u1, u2 ∈ U ,

I (u) ≤ u, (32)

I (I (u)) = I (u), (33)

u1 � u2 ≤ I (u1) � I (u2). (34)

By L-closure (resp. L-interior) operator on a set X we mean an L-closure (resp. L-interior) operator on the completely 
lattice L-ordered set LX (16).

An element u ∈ U is a fixpoint of C (resp. fixpoint of I ) if C(u) = u (resp. I (u) = u). The set of all fixpoints of C
(resp. I ) will be denoted FixC (resp. FixI ). The sets FixC and FixI inherit a structure of an L-ordered set from U.

The following result has been proved in [23, Theorem 17] for L-closure operators; the version for L-interior 
operators is dual.

Theorem 2. Let U be a completely lattice L-ordered set. Then FixC is closed w.r.t. arbitrary infima (i.e. for any L-set 
V ∈ LU , V ⊆ FixC , we have infV ∈ FixC ) and FixI is closed w.r.t. arbitrary suprema (i.e. for any L-set V ∈ LU , 
V ⊆ FixI , we have supV ∈ FixI ). Consequently, FixC and FixI are completely lattice L-ordered sets.
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A subset V ⊆ U which is closed w.r.t. arbitrary infima (resp. suprema) is called an L-closure (resp. L-interior) 
system in U. The above theorem says that FixC (resp. FixI ) is an L-closure (resp. L-interior) system in U. In the case 
U = LX for some set X we also talk about L-closure (resp. L-interior) system in X.

Let 〈f, g〉 be an isotone L-Galois connection on U. From Theorem 1 it easily follows that the composition C given 
by C(u) = g(f (u)) is an L-closure operator on U and the composition I , I (v) = f (g(v)) is an L-interior operator 
on V .

We have the following simple result for the L-ordered sets of fixpoints of these operators and of the L-Galois con-
nection 〈f, g〉 itself. It has been proved in [21] for isotone L-Galois connections between completely lattice L-ordered 
sets LX and LY . As we shall see in the proof, it follows easily from Theorem 2.

Theorem 3. Let U be a completely lattice L-ordered set. Then the L-ordered sets Fix〈f,g〉, FixC , FixI are isomorphic. 
Consequently, Fix〈f,g〉 is a completely lattice L-ordered set. The isomorphism Fix〈f,g〉 → FixC is given by 〈u, v〉 → u

and the isomorphism Fix〈f,g〉 → FixI is given by 〈u, v〉 → v.

Proof. Evidently, 〈u, f (u)〉 is a fixpoint of 〈f, g〉 iff u is a fixpoint of C. Thus, the assignment 〈u, v〉 → u is a bijection 
between Fix〈f,g〉 and FixC . (25) implies it is an isomorphism. Similarly for I .

The fact that Fix〈f,g〉 is a completely lattice L-ordered set now follows from Theorem 2. �
3. Power structures of L-ordered sets

A power structure [1] is an algebraic structure constructed by “lifting” operations and relations on a (ordinary) set 
to its power set, i.e. the set of all its (ordinary) subsets. The theory goes back to Frobenius and recently [2] has been 
generalized to a fuzzy setting.

In this section, we recall basic definitions and results from [2] to the extent we need in this paper. We also show 
some results from [7,24]. Then we prove some properties of power structures of fuzzy ordered sets we will need later.

Note that in [2], fuzzy power structures are studied under the framework of continuous t-norms. However, it is 
straightforward to generalize the results we use in this paper to complete residuated lattices.

Let R be a binary L-relation on a set X. We set for any L-sets A, B ∈ LX

R→(A,B) = S(A,R ◦ B) =
∧
x∈X

⎛
⎝A(x) →

∨
y∈X

R(x, y) ⊗ B(y)

⎞
⎠ , (35)

R←(A,B) = (R−1)→(B,A) = S(B,R−1 ◦ A) = S(B,A ◦ R)

=
∧
y∈X

(
B(y) →

∨
x∈X

R(x, y) ⊗ A(x)

)
. (36)

Since S(A, R ◦ B) is the degree to which A is a subset of R ◦ B , R→(A, B) can be viewed as the degree to which 
each element of A is related to an element of B . We set

R+(A,B) = R→(A,B) ∧ R←(A,B), (37)

obtaining a binary L-relation, called power L-relation, R+ on the set LX . In the following, we prove some basic 
properties of the power L-relation R+ for R being a binary L-relation on a set X and later on an L-ordered set 
〈〈U, ≈〉, �〉.

The following result is straightforward and has been proved in [7, Theorem 4.41].

Lemma 5. For any binary L-relation R ∈ LX it holds

1. if R is reflexive then so is R+,
2. if R is symmetric then so is R+,
3. if R is transitive then so is R+.

The following has been proved in [24, Theorem 2].
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Theorem 4. For any two L-relations R, Q ∈ LX it holds

R+ ◦ Q+ ⊆ (R ◦ Q)+. (38)

In the next two theorems we show some basic properties of power relations of L-equivalences. In the first of them 
we use the L-relation ≈X on L-sets in X defined by (5). Notice that this L-relation does not depend on ∼.

Theorem 5. Let ∼ be an L-equivalence on a set X, M ⊆ LX a subset containing only L-sets compatible with ∼. Then 
∼+ is equal to ≈X on M and is therefore an L-equality on M .

Proof. Let A, B ∈ M . By compatibility, 
∨

x′∈X(x ∼ x′) ⊗ A(x′) ≤ A(x). As (x ∼ x) ⊗ A(x) = A(x), the opposite 
inequality also holds true and we have ∼ ◦ A = A. Similarly, ∼ ◦ B = B . Thus,

A ∼+ B = (A ∼→ B) ∧ (A ∼← B) = S(A,∼ ◦ B) ∧ S(B,∼ ◦ A) = S(A,B) ∧ S(B,A)

= A ≈X B. �
Theorem 6. Let R be compatible with an L-equivalence ∼ on X. Then R+ is compatible with the power L-equivalence 
∼+.

Proof. By Lemma 5, ∼+ is indeed an L-equivalence. Compatibility of R with ∼ means ∼◦R◦∼ ⊆ R. By Theorem 4, 
∼+ ◦ R+ ◦ ∼+ ⊆ (∼ ◦ R ◦ ∼)+ ⊆ R+. �

The following is our main result on power relations of L-orders.

Theorem 7. Let U = 〈〈U, ≈〉, �〉 be an L-ordered set, M ⊆ LU a subset containing only convex L-sets in U. Then 
〈〈M, ≈+〉, �+〉 is an L-ordered set.

Proof. Since convex L-sets are compatible with ≈, ≈+ is an L-equality by Theorem 5. By Theorem 6, �+ is com-
patible with ≈+ and by Lemma 5, �+ is reflexive and transitive.

Let V1, V2 ∈ LU be convex. We have

(V1 �+ V2) ∧ (V2 �+ V1) = (V1 �→ V2) ∧ (V1 �← V2) ∧ (V2 �→ V1) ∧ (V2 �← V1)

= (V1 �→ V2) ∧ (V2 �→ V1) ∧ (V2 �← V1) ∧ (V1 �← V2)

= S(V1,↓V2) ∧ S(V1,↑V2) ∧ S(V2,↓V1) ∧ S(V2,↑V1)

= S(V1,↓V2 ∩ ↑V2) ∧ S(V2,↓V1 ∩ ↑V1) = S(V1,V2) ∧ S(V2,V1) = V1 ≈X V2

= V1 ≈+ V2

(the last equality following by Theorem 5), proving antisymmetry. �
The following two lemmas show values of power relations ≈+ and �+ can be computed efficiently on intervals.

Lemma 6. Let V1, V2 ∈ LU be two L-sets in an L-ordered set having minimum and maximum, minV1 = u1, maxV1 =
v1, minV2 = u2, maxV2 = v2. Then V1 �+ V2 = (u1 � u2) ∧ (v1 � v2).

Proof. We have {v2} ⊆ V2, which implies ↓{v2} ⊆ ↓V2. On the other hand, since w � v2 = ↓{v2}(w), the first in-
equality in (19) gives V2 ⊆ ↓{v2}, which yields ↓V2 ⊆ ↓↓{v2} = ↓{v2}. Thus, ↓V2(w) = w � v2 for each w.

Now,

(V1 �→ V2) =
∧
w∈U

V1(w) → ↓V2(w) =
∧
w∈U

V1(w) → (w � v2) = U V1(v2)

= v1 � v2

by (21).
One can prove similarly that (V1 �← V2) = u1 � u2 and obtain the desired equality. �
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Lemma 7. Let V1 = �u1, v1 � and V2 = �u2, v2 � be intervals in an L-ordered set. Then V1 ≈+ V2 = (u1 ≈ u2) ∧
(v1 ≈ v2).

Proof. According to Theorem 7, 〈〈M, ≈+〉, �+〉 with M = {V1, V2} is an L-ordered set. Therefore, by (9) and 
Lemma 6,

V1 ≈+ V2 = (V1 �+ V2) ∧ (V2 �+ V1) = (u1 � u2) ∧ (v1 � v2) ∧ (u2 � u1) ∧ (v2 � v1)

= (u1 ≈ u2) ∧ (v1 ≈ v2). �
4. Complete L-relations

In classical theory of complete lattices (see e.g. [5]), a binary relation R on a complete lattice U is called 
complete if for each system {〈uj , vj 〉}j∈J of pairs of elements of U from uj R vj for each j ∈ J it follows (∧

j∈J uj

)
R

(∧
j∈J vj

)
and 

(∨
j∈J uj

)
R

(∨
j∈J vj

)
.

It can be easily checked that the following condition is equivalent to the above condition of completeness of R: if 
V1, V2 ⊆ U are such that for each v1 ∈ V1 there is v2 ∈ V2 satisfying v1 R v2 and for each v2 ∈ V2 there is v1 ∈ V1
satisfying v1 R v2 then 

(∧
V1

)
R

(∧
V2

)
and 

(∨
V1

)
R

(∨
V2

)
.

This leads us to the following definition. A binary L-relation R on a completely lattice L-ordered set U = 〈〈U,

≈〉, �〉 is called complete if it is compatible with ≈ and for any two L-sets V1, V2 ∈ LU it holds

R+(V1,V2) ≤ R(infV1, infV2), (39)

R+(V1,V2) ≤ R(supV1, supV2). (40)

The following are basic properties of complete relations on a completely lattice L-ordered set U = 〈〈U, ≈〉, �〉.
Lemma 8. If R is complete then so is R−1.

Proof. By definition,

(R−1)+(V1,V2) = (R−1)→(V1,V2) ∧ (R−1)←(V1,V2) = R←(V2,V1) ∧ R→(V2,V1)

= R+(V2,V1) ≤ R(infV2, infV1) = R−1(infV1, infV2),

and similarly for suprema. �
Theorem 8. The system of all complete binary L-relations on U is an L-closure system in the set U × U , hence 
a completely lattice L-ordered set.

Proof. We will show that 1. if Rj , j ∈ J , are complete then so is 
⋂

j∈J Rj and 2. for each a ∈ L and R complete the 
shift a → R is complete as well. Since the system of all binary L-relations that are compatible with ≈ is an L-closure 
system, there is no need to prove compatibility of the relations.

1. We have⎛
⎝⋂

j

Rj

⎞
⎠ ◦ V (v) =

∨
w∈U

⎛
⎝∧

j

Rj (v,w)

⎞
⎠ ⊗ V (w) ≤

∧
j

∨
w∈U

Rj (v,w) ⊗ V (w)

=
∧
j

(Rj ◦ V )(v).

Thus, (
⋂

j Rj ) ◦ V ⊆ ⋂
j (Rj ◦ V ). Now,⎛

⎝⋂
j

Rj

⎞
⎠

→
(V1,V2) = S

⎛
⎝V1,

⎛
⎝⋂

j

Rj

⎞
⎠ ◦ V2

⎞
⎠ ≤ S

⎛
⎝V1,

⋂
j

(
Rj ◦ V2

)⎞⎠ =
∧
j

S(V1,Rj ◦ V2)

=
∧
j

(Rj )
→(V1,V2)
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and, finally,⎛
⎝⋂

j

Rj

⎞
⎠

+
(V1,V2) =

⎛
⎝⋂

j

Rj

⎞
⎠

→
(V1,V2) ∧

⎛
⎝⋂

j

Rj

⎞
⎠

←
(V1,V2)

≤
∧
j

(Rj )
→(V1,V2) ∧ (Rj )

←(V1,V2) =
∧
j

(Rj )
+(V1,V2)

≤
∧
j

Rj (infV1, infV2) =
⎛
⎝⋂

j

Rj

⎞
⎠ (infV1, infV2).

Similarly for suprema.
2. We have

((a → R) ◦ V )(v) =
∨
w∈U

(a → R(v,w)) ⊗ V (w) ≤ a →
∨
w∈U

R(v,w) ⊗ V (w)

= a → (R ◦ V )(v).

Thus, (a → R) ◦ V ⊆ a → (R ◦ V ). Now,

(a → R)→(V1,V2) = S(V1, (a → R) ◦ V2) ≤ S(V1, a → (R ◦ V2)) = a → S(V1,R ◦ V2)

and, finally,

(a → R)+(V1,V2) = (a → R)→(V1,V2) ∧ (a → R)←(V1,V2)

≤ (a → R→(V1,V2)) ∧ (a → (R←(V1,V2)) = a → (R→(V1,V2) ∧ R←(V1,V2))

≤ a → R(infV1, infV2) = (a → R)(infV1, infV2).

Similarly for suprema. �
Lemma 9. The following holds for each V1, V2 ∈ LU :

V1 �→ V2 ≤ supV1 � supV2, V1 �← V2 ≤ infV1 � infV2.

Proof. We have by (22) and Lemma 3,

V1 �→ V2 = S(V1,� ◦ V2) = S(V1,↓V2) ≤ supV1 � sup↓V2.

Now, by direct computation one obtains U ↓V2 = U V2 which gives supV1 � sup↓V2 = supV1 � supV2 and proves 
the first part. The second part is obtained similarly. �
Theorem 9. The L-relations � and ≈ on U are complete.

Proof. By Lemma 9, for each V1, V2 ∈ LU , V1 �+ V2 ≤ (V1 �→ V2) ≤ supV1 � supV2 and V1 �+ V2 ≤ V1 �←
V1 ≤ infV1 � infV2, proving completeness of �.

Since ≈= � ∩ �, completeness of ≈ follows from Lemma 8 and Theorem 8. �
5. Complete tolerances

5.1. Basic properties

Recall that an L-tolerance on a set X is a reflexive and symmetric binary L-relation on X. For an L-tolerance ∼
on a set X, an L-set B ∈ LX is called a block of ∼ if for each x1, x2 ∈ X it holds B(x1) ⊗ B(x2) ≤ (x1 ∼ x2). A block 
B is called maximal if for each block B ′ from B ⊆ B ′ it follows B = B ′. The set of all maximal blocks of ∼ always 
exists by Zorn’s lemma, is called the factor set of X by ∼ and denoted by X/∼.

Further we set for each x ∈ X, �x�∼(y) = x ∼ y, obtaining an L-set �x�∼ called the class of ∼ determined by x.
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Let ∼ be a complete L-tolerance on a completely lattice L-ordered set U = 〈〈U, ≈〉, �〉. From reflexivity of ∼ we 
have V ⊆ ∼ ◦ V for each V ∈ LU and from symmetry ∼−1 = ∼.

For each u ∈ U we set

u∼ = inf�u�∼, u∼ = sup�u�∼. (41)

We denote the system of all complete L-tolerances on a completely lattice L-ordered set U by CTol U and consider 
it together with the L-equality ≈U×U and L-order S.

Theorem 10. CTol U is an L-closure system in the set U × U , hence a completely lattice L-ordered set.

Proof. Evidently, if ∼ is an L-tolerance then so is a → ∼ for each a ∈ L and if ∼j , j ∈ J , are L-tolerances then ⋂
j∈J ∼j is also an L-tolerance. Thus, the theorem follows from Theorem 8. �

5.2. From complete tolerances to isotone Galois connections

Lemma 10. For each u ∈ U , u ∼ u∼ = u ∼ u∼ = 1.

Proof. Let V1 = {u}, V2 = �u�∼. Since V1 ⊆ V2, we have V1 ∼→ V2 = 1. Further, (∼ ◦ V1)(v) = v ∼ u = �u�∼(v). 
Thus, V1 ∼← V2 = S(�u�∼, �u�∼) = 1. Now,

V1 ∼+ V2 = (V1 ∼→ V2) ∧ (V1 ∼← V2) = 1

and by completeness of ∼, 1 = infV1 ∼ infV2 = u ∼ u∼ and 1 = supV1 ∼ supV2 = u ∼ u∼. �
Lemma 11. For each u ∈ U it holds

u∼∼ ≥ u, u∼∼ ≤ u. (42)

Proof. By Lemma 10, �u�∼(u∼) = 1. This means that also �u∼�∼(u) = 1. Since u∼∼ = sup�u∼�∼, we have the first 
inequality.

The second inequality is analogous. �
Lemma 12. For each u, v ∈ U it holds

(u � v) ≤ (u∼ � v∼), (u � v) ≤ (u∼ � v∼). (43)

Proof. Let a = u � v, V1 = {a/u, v}, V2 = {a/u∼, v∼} (recall that V1 is the L-set satisfying V1(u) = a, V1(v) = 1
and V1(w) = 0 for every w /∈ {u, v}; similarly for V2). By Lemma 10, u ∼ u∼ = v ∼ v∼ = 1. Thus, V1 ⊆ ∼ ◦ V2, 
V2 ⊆ ∼ ◦ V1 and we have V1 ∼+ V2 = 1. By completeness of ∼, supV1 ∼ supV2 = 1.

By direct computation (e.g. using (21)), supV1 = v. Thus, v ∼ supV2 = 1, which means supV2 ≤ v∼. On the other 
hand, since V2(v

∼) = 1, we have supV2 ≥ v∼, whence supV2 = v∼. Using the first inequality in (19), a = V2(u
∼) ≤

u∼ � v∼ and the second inequality in (43) is proved.
The first inequality is proved similarly. �

Theorem 11. The pair 〈∼, ∼〉 is an extensive isotone Galois connection on U.

Proof. Let u, v ∈ U . We have by Lemma 12, Lemma 11, and transitivity of �,

(u∼ � v) ≤ (u∼∼ � v∼) ≤ (u � v∼).

The converse inequality (u � v∼) ≤ (u∼ � v) is proved analogously. Together, 〈∼, ∼〉 is an isotone Galois connection.
Extensivity of 〈∼, ∼〉 follows trivially from reflexivity of �. �
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5.3. Structure of maximal blocks

Lemma 13. If 〈u, v〉 is a fixpoint of 〈∼, ∼〉 then �v, u� is a block of ∼.

Proof. 1. We will prove that for each w,

�v,u�(w) ≤ u ∼ w (44)

(i.e. “if w belongs to �v, u� then it is similar to u”).
Let a = w � u, b = v � w, V1 = {u, a/w}, V2 = {b/v, w}. By direct computation (e.g. using (21)), supV1 = u and 

supV2 = w.
Now using Lemma 10,

(∼ ◦ V1)(v) = ((v ∼ u) ⊗ V1(u)) ∨ ((v ∼ w) ⊗ V1(w)) = (1 ⊗ 1) ∨ ((v ∼ w) ⊗ a) = 1,

(∼ ◦ V1)(w) = ((w ∼ u) ⊗ V1(u)) ∨ ((w ∼ w) ⊗ V1(w)) = ((w ∼ u) ⊗ 1) ∨ (1 ⊗ a) ≥ a,

(∼ ◦ V2)(u) = ((u ∼ v) ⊗ V2(v)) ∨ ((u ∼ w) ⊗ V2(w)) = (1 ⊗ b) ∨ ((u ∼ w) ⊗ 1) ≥ b,

(∼ ◦ V2)(w) = ((w ∼ v) ⊗ V2(v)) ∨ ((w ∼ w) ⊗ V2(w)) = ((w ∼ v) ⊗ b) ∨ (1 ⊗ 1) = 1.

Thus,

S(V1,∼ ◦ V2) = (V1(u) → (∼ ◦ V2)(u)) ∧ (V1(w) → (∼ ◦ V2)(w)) ≥ b,

S(V2,∼ ◦ V1) = (V2(v) → (∼ ◦ V1)(v)) ∧ (V2(w) → (∼ ◦ V1)(w)) ≥ a

and by completeness of ∼,

�v,u�(w) = a ∧ b ≤ S(V1,∼ ◦ V2) ∧ S(V2,∼ ◦ V1) = V1 ∼+ V2 ≤ supV1 ∼ supV2 = u ∼ w,

proving (44).
2. Let w1, w2 ∈ U , a1 = �v, u�(w1), a2 = �v, u�(w2), b1 = w1 � u, b2 = w2 � u. By (44), a1 ≤ b1, a2 ≤ b2. Let 

V1 = {b1/u, w1}, V2 = {b2/u, w2}. By similar direct calculations as above we obtain

a1 ⊗ a2 ≤ a1 ⊗ b2 = (b1 → b2) ∧ (1 → b2 ⊗ a1) ≤ V1 ∼→ V2.

Similarly, a1 ⊗ a2 ≤ V1 ∼← V2 and

a1 ⊗ a2 ≤ V1 ∼+ V2 ≤ infV1 ∼ infV2 = w1 ∼ w2,

proving �v, u� is a block. �
To understand the following lemma, recall that B ∪{infB} denotes the union of the L-set B and the singleton L-set 

{infB}.

Lemma 14. If B is a block of ∼ then so is B ∪ {infB}.

Proof. Let u = infB . It suffices to prove B(v) ≤ u ∼ v for each v ∈ U .
Let V = {v}. By adjointness and definition of block, B(w) → (v ∼ w) ≥ B(v) for each w ∈ U . Therefore, B ∼→

V = ∧
w∈U B(w) → (v ∼ w) ≥ B(v), and by direct calculation, B ∼← V = B(v). Thus,

B(v) ≤ B ∼+ V ≤ infB ∼ infV = u ∼ v

and the lemma is proved. �
Lemma 15. For each block B of ∼ there is a fixpoint 〈u, v〉 of 〈∼, ∼〉 such that B ⊆ �v, u�.

Proof. Let w = infB , u = w∼, v = u∼. Since 〈∼, ∼〉 is an isotone Galois connection (Theorem 11), 〈u, v〉 is a fix-
point. By Lemma 14, the L-set B ′ = B ∪ {w} is again a block. By the first inequality in (18), B ′ ⊆ U {w} ⊆ U {v}. 
Since B ′ is a block, for each w′ it holds B ′(w′) ≤ w′ ∼ w. Thus, by definition of class, B ′ ⊆ �w�∼, whence 
supB ′ ≤ sup�w�∼ = u (22). This yields B ′ ⊆ L {u} and we can conclude B ⊆ B ′ ⊆ U {v} ∩ L {u} = �v, u�. �
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Theorem 12. Maximal blocks of ∼ are exactly intervals �v, u�, where 〈u, v〉 are fixpoints of 〈∼, ∼〉.

Proof. Follows from the above lemmas. �
5.4. Structure of classes

Theorem 13. For each u ∈ U , the class �u�∼ is equal to the interval �u∼, u∼�.

Proof. By Lemma 1, �u�∼ ⊆ U {inf�u�∼} = U {u∼} and similarly �u�∼ ⊆ L {u∼}. Thus, �u�∼ ⊆ �u∼, u∼�.
Let u′ ∈ U , a = �u∼, u∼�(u′) = (u∼ � u′) ∧ (u′ � u∼). We will show that the L-set V = {a/u′, u} is a block. For 

the lower cone of V we have

L V (w) = (w � u) ∧ (a → (w � u′)). (45)

Let v = infV . Lemma 1 gives V ⊆ U {v}. By Lemma 11, v∼∼ ≤ v, whence V ⊆ U {v∼∼}.
Now consider membership degrees of u and u′ in the lower cone L {v∼}. Since a ≤ u∼ � u′ then (45) L V (u∼) =

1 ∧ (a → (u∼ � u′)) = 1. Thus, 1 = u∼ � v = u � v∼ = L {v∼}(u), obtaining L {v∼}(u) = 1.
For L {v∼}(u′) we first notice by (45), L V (u′∼) = u′∼ � u = u′ � u∼ ≥ a. By Lemma 1 and (15), L V (u′∼) =

L {v}(u′∼) = u′∼ � v and L {v∼}(u′) = u′ � v∼ = u′∼ � v ≥ a. Thus, V ⊆ L {v∼}.
Together, V ⊆ U {v∼∼} ∩L {v∼} = �v∼∼, v∼�. By Theorem 12, �v∼∼, v∼� is a block. Thus, V is also a block and 

by definition of block we obtain �u∼, u∼�(u′) = V (u′) = V (u′) ⊗V (u) ≤ u′ ∼ u = �u�∼(u′). Thus, �u∼, u∼� ⊆ �u�∼
and the theorem is proved. �

The following is an important consequence of Theorem 13 which we will use later to prove our main result.

Lemma 16. For each u, v ∈ U we have

u ∼ v = (u∼ � v) ∧ (v � u∼). (46)

Proof. The right-hand side is equal to �u∼, u∼�(v), which is by Theorem 13 equal to �u�∼(v) = u ∼ v. �
We use the above results in the proof of the following lemma. By Theorem 11, for each complete L-tolerance 

∼ on U the pair 〈∼, ∼〉 is an isotone L-Galois connection. Thus, we can L-order such L-Galois connections by the 
L-relation �IGal(U,U) (27).

Lemma 17. For any two complete L-tolerances ∼1, ∼2 on U we have

S(∼1,∼2) = 〈∼1 ,
∼1〉 �IGal(U,U) 〈∼2 ,

∼2〉.

Proof. By definitions of S and �IGal(U,U) we have to prove the following equality:∧
u,v∈U

(u ∼1 v) → (u ∼2 v) =
∧
u∈U

(u∼2 � u∼1) ∧
∧
u∈U

(u∼1 � u∼2). (47)

We will proceed by proving both inequalities “≤” and “≥”.
“≤”: Since u ∼1 u∼1 = 1 (Lemma 10), the left-hand side of (47) is ≤ ∧

u∈U(u ∼1 u∼1) → (u ∼2 u∼1) =∧
u∈U u ∼2 u∼1 . Now by Theorem 13 and (15) we have

u ∼2 u∼1 = �u∼1 �∼2(u) = L {(u∼1)∼2}(u) ∧ U {(u∼1)∼2}(u)

≤ U {(u∼1)∼2}(u) = (u∼1)∼2 � u = u∼1 � u∼2 .

Thus, 
∧

u,v∈U(u ∼1 v) → (u ∼2 v) ≤ ∧
u∈U u∼1 � u∼2 . The inequality 

∧
u,v∈U(u ∼1 v) → (u ∼2 v) ≤ ∧

u∈U u∼2 �
u∼1 is proved similarly.

“≥”: by Theorem 13 and (15) again and by transitivity of � we have
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(u∼1 � u∼2) ⊗ (u ∼1 v) = (u∼1 � u∼2) ⊗ �u�∼1(v) = (u∼1 � u∼2) ⊗ (
(v � u∼1) ∧ (u∼1 � v)

)
≤ (u∼1 � u∼2) ⊗ (v � u∼1) ≤ v � u∼2 .

Similarly (u∼2 � u∼1) ⊗ (u ∼1 v) ≤ (u∼2 � v), thereby (Theorem 13 and (15))

u ∼2 v = �u�∼2(v) = (u∼2 � v) ∧ (v � u∼2) ≥ (
(u∼1 � u∼2) ⊗ (u ∼1 v)

) ∧ (
(u∼2 � u∼1) ⊗ (u ∼1 v)

)
≥ (

(u∼1 � u∼2) ∧ (u∼2 � u∼1)
) ⊗ (u ∼1 v).

By adjointness,

(u ∼1 v) → (u ∼2 v) ≥ (u∼1 � u∼2) ∧ (u∼2 � u∼1),

yielding the “≥” part of (47). �
5.5. From extensive isotone Galois connections to complete tolerances

Let 〈f, g〉 be an extensive isotone L-Galois connection on a completely lattice L-ordered set U = 〈〈U, ≈〉, �〉. We 
set for each u, v ∈ U ,

u ∼〈f,g〉 v = (f (u) � v) ∧ (v � g(u)). (48)

The following theorem summarizes main properties of the L-relation ∼〈f,g〉.

Theorem 14. ∼〈f,g〉 is a complete tolerance such that for each u ∈ U ,

u∼〈f,g〉 = f (u), u∼〈f,g〉 = g(u). (49)

Proof. The L-relation ∼〈f,g〉 is evidently reflexive and symmetric, hence an L-tolerance.
Set R(u, v) = u � g(v). We have u ∼〈f,g〉 v = R(u, v) ∧R−1(u, v). Thus, by Lemma 8 and Theorem 8, in order to 

prove completeness of ∼〈f,g〉 it is sufficient to prove that R is complete.
Let V ∈ LU . Using the obvious inequality V (w) ≤ g(V )(g(w)) we have

(R ◦ V )(v) =
∨
w∈U

R(v,w) ⊗ V (w) =
∨
w∈U

(v � g(w)) ⊗ V (w)

≤
∨
w∈U

(v � g(w)) ⊗ g(V )(g(w)) ≤
∨

w′∈U

(v � w′) ⊗ g(V )(w′)

= (� ◦ g(V ))(v)

and

(R−1 ◦ V )(v) =
∨
w∈U

R(w,v) ⊗ V (w) =
∨
w∈U

(v � f (w)) ⊗ V (w)

≤
∨
w∈U

(v � f (w)) ⊗ f (V )(f (w)) ≤
∨

w′∈U

(v � f (w)) ⊗ f (V )(w′)

= (� ◦ f (V ))(v),

whence R→(V1, V2) = S(V1, R ◦ V2) ≤ S(V1, � ◦ g(V2)) = V1 �→ g(V2) and R←(V1, V2) = S(V2, R−1 ◦ V1) ≤
S(V2, � ◦ f (V1)) = f (V1) �← V2.

Now by Lemma 9 and Theorem 1 (d),

R+(V1,V2) ≤ R→(V1,V2) ≤ V1 �→ g(V2) ≤ supV1 � supg(V2)

≤ supV1 � g(supV2) = R(supV1, supV2),

R+(V1,V2) ≤ R←(V1,V2) ≤ f (V1) �← V2 ≤ inff (V1) � infV2

≤ f (infV1) � infV2 = R(infV1, infV2),

proving completeness of R.
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To prove (49), we notice that for each u ∈ U the class �u�∼〈f,g〉 is equal to the interval �f (u), g(u)�:

�u�∼〈f,g〉(v) = u ∼〈f,g〉 v = (f (u) � v) ∧ (v � g(u))

= U {f (u)}(v) ∧ L {g(u)}(v) = �f (u), g(u)�(v).

Now, u∼〈f,g〉 = inf�f (u), g(u)� = f (u) and u∼〈f,g〉 = sup�f (u), g(u)� = g(u). �
5.6. Factorization theorem, representation theorem

By Theorem 12, the factor set U/∼ consists of intervals. Therefore, by Theorem 7, the tuple U/∼ =
〈〈U/∼, ≈+〉, �+〉 is an L-ordered set. By Theorem 11, the pair 〈∼, ∼〉 is an extensive isotone Galois connection. 
The following theorem connects U/∼ with the completely lattice L-ordered set Fix〈∼, ∼〉.

Theorem 15 (Factorization theorem). The L-ordered set U/∼ is isomorphic to the completely lattice L-ordered set 
Fix〈∼, ∼〉 and is therefore a completely lattice L-ordered set as well. The isomorphism is given by �v, u� → 〈u, v〉.
Proof. Follows directly from Lemma 7, 6 and definition of L-order on Fix〈∼, ∼〉. �

The second main result is that complete tolerances on completely lattice L-ordered sets can be represented by 
extensive isotone Galois connections.

Theorem 16 (Representation theorem). The mapping

∼ �→ 〈∼, ∼〉
is an isomorphism between CTol U and EIGal(U). Its inverse is

〈f,g〉 �→ ∼〈f,g〉.
CTol U and EIGal(U) are both completely lattice L-ordered sets.

Proof. Follows from Theorem 11, Lemma 16, Theorem 14, Lemma 17, and Theorem 10. �
6. Conclusion

We introduced a notion of complete binary fuzzy relation on complete fuzzy lattice (completely lattice fuzzy 
ordered set). The notion leads in ordinary (crisp) case to the classical notion of complete relation on complete lattice, 
but re-formulated in terms of the theory of power structures. We proved some basic properties of power structures of 
fuzzy ordered sets.

In the main part of the paper, we defined complete fuzzy binary relations and complete fuzzy tolerances and 
investigated their properties. Our main results are covered by Theorem 15 and 16. We show that a fuzzy complete 
lattice can be factorized by means of a complete fuzzy tolerance and that there is a naturally-defined structure of fuzzy 
complete lattice on the factor set. This result corresponds to the known result from the ordinary case [3,4].

In addition, we found an isomorphism between the fuzzy ordered sets of all complete fuzzy tolerances and extensive 
isotone fuzzy Galois connections on a fuzzy complete lattice. This result is useful for testing fuzzy tolerances for 
completeness.

Our future research will focus on applying results from this paper to formal concept analysis of data with fuzzy 
attributes [7]. In ordinary setting, there is a correspondence between complete tolerances on a concept lattice and so 
called block relations of the associated formal context [4,5]. Theorem 15 and 16 will help establish a link between 
complete fuzzy tolerances on a fuzzy concept lattice and (properly defined) block relations on the formal context. This 
will allow generalize results from [4,5] to fuzzy concept lattices.2

One consequence of our results is that the condition of compatibility from the definition of complete relation on 
a completely lattice L-ordered set (Sec. 4) is redundant for L-tolerances. This leads to an open problem, namely, 
whether the condition of compatibility follows from the other conditions of the definition.

2 Meanwhile, these results have been published in [25].
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One of the main problems in FCA, especially in the graded setting, is to reduce
a concept lattice of a formal context to an appropriate size to make it graspable and
understandable by a human user. A natural way to do it is to substitute the formal
context by its block relation which is equivalent to factorization of the concept lattice
by a complete tolerance. We generalize the known results on the correspondence of
block relations of formal contexts and complete tolerances on concept lattices to the
graded setting.

We provide a definition of block L-relation—a convenient generalization of the
notion of block-relation from [66]. We show, that the block L-relations are in one-
to-one correspondence to particular automorphisms on concept lattices. We describe
the structure of systems of all block L-relations. All the results are considered for
all three kinds of concept-forming operators.
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One of the main problems in formal concept analysis (especially in fuzzy setting) is to 
reduce a concept lattice of a formal context to appropriate size to make it graspable and 
understandable. A natural way to do it is to substitute the formal context by its block 
relation which is equivalent to factorization of the concept lattice by a complete tolerance. 
We generalize known results on the correspondence of block relations of formal contexts 
and complete tolerances on concept lattices to fuzzy setting and we provide an illustrative 
example of using block relations to reduce the size of a concept lattice.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The present paper studies block relations and related structures in formal fuzzy concept analysis.
Formal concept analysis (FCA) [16,14] is a method of exploratory data analysis based on a formalization of a philosophical 

view of conceptual knowledge. The basic notion in FCA is that of a formal concept which consists of two sets: extent – a set 
of all objects sharing the same attributes, and intent – a set of all the shared attributes. This definition of formal concept 
comes from traditional (Port-Royal) logic [1,22]. The input data for FCA (in basic setting), called a formal context, is a flat 
table in which rows represent objects and columns represent attributes. Entries of the table contain 1 (or ×), which means 
that the corresponding object has the corresponding attribute, or 0 (blank) which means the opposite. The main output is 
a hierarchy of formal concepts in the table.

In everyday life we use concepts which are not sharply bounded (e.g. ‘great dancer’ or ‘middle aged man’). In terms of 
FCA, the formal concepts do not divide objects and attributes sharply into those which are covered and which are not; it 
is rather a matter of degree. There are several approaches to generalize formal concept analysis to work with graded data 
[8,5,29,27,21,13]. Many of them are based on the Zadeh’s theory of fuzzy sets [33]. Our work follows approach of [8].

One of the main problems in FCA (especially in fuzzy setting) is to reduce the size of a concept lattice to make it 
graspable and understandable. One method to achieve it is to use a block relation and obtain rougher data which contain a 
smaller number of formal concepts. That (in the crisp case) corresponds to particular factorization of the associated concept 
lattice [32,16], or to particular automorphism of the concept lattice. We generalize these known results to fuzzy setting.

In [26] we have studied a generalization of bonds—intercontextual structures binding two fuzzy contexts—and related 
morphisms of associated concept lattices. A few specific cases of these structures (in the crisp case) deserve a special 
attention at their generalization to fuzzy setting. For instance, infomorphisms, scale measures, and presently studied block 
relations are such cases. We study block relations in fuzzy setting for two main reasons. First, in the crisp setting they 

* Corresponding author.
E-mail address: jan.konecny@upol.cz (J. Konecny).
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correspond to another interesting notion—complete tolerances on associated concept lattices [32,16]. Second, they provide a 
natural way to reduce a concept lattice [28].

The paper is structured as follows. Section 2 recalls notions used in the paper. In Sections 3.1–3.3 we separately study 
three instances of block L-relations. In addition, Sections 2.4, 3.1, 3.3, and 3.5 contain a central running example of this 
paper.

2. Preliminaries

2.1. Residuated lattices, fuzzy sets, and fuzzy relations

We use complete residuated lattices as basic structures of truth degrees. A complete residuated lattice is a structure 
L = 〈L, ∧, ∨, ⊗, →, 0, 1〉 such that

(i) 〈L, ∧, ∨, 0, 1〉 is a complete lattice, i.e. a partially ordered set in which arbitrary infima and suprema exist;
(ii) 〈L, ⊗, 1〉 is a commutative monoid, i.e. ⊗ is a binary operation which is commutative, associative, and a ⊗ 1 = a for 

each a ∈ L;
(iii) ⊗ and → satisfy adjointness, i.e. a ⊗ b ≤ c iff a ≤ b → c.

0 and 1 denote the least and greatest element, respectively. The partial order of L is denoted by ≤. Throughout this work, 
L denotes an arbitrary complete residuated lattice.

Elements a of L are called truth degrees. Operations ⊗ (multiplication) and → (residuum) play the role of (truth func-
tions of) “fuzzy conjunction” and “fuzzy implication”. Furthermore, we define the complement of a ∈ L as

¬a= a→ 0 (1)

An L-set A in a universe set X is a mapping assigning to each x ∈ X some truth degree A(x) ∈ L [20,19]. The set of all 
L-sets in a universe X is denoted L X .

Operations with L-sets are defined componentwise. For instance, the intersection of L-sets A, B ∈ L X is an L-set A ∩ B in 
X such that (A ∩ B)(x) = A(x) ∧ B(x) for each x ∈ X , etc.

Intersection and union of two L-sets can be generalized to any number of L-sets and even to L-sets of L-sets. For an 
L-set U : L X → L, the intersection 

⋂
U and union 

⋃
U of U are L-sets in X , defined by⋂

U (x)=
∧

A∈L X

U (A)→ A(x),
⋃

U (x)=
∨

A∈L X

U (A)⊗ A(x), (2)

for any x ∈ X .
We often use the following notation to specify fuzzy sets. If x1, x2, . . . , xn ∈ X are pairwise distinct and a1, a2, . . . , an ∈ L

then {a1/x1, a2/x2, . . . , an/xn} denotes the L-set A given by A(x) = ak if x = xk for some k ∈ {1, 2, . . . , n} and A(x) = 0 otherwise. 
More generally, for an index set K , let for each k ∈ K , ak ∈ L and xk ∈ X be pairwise distinct. We denote by {ak/xk | k ∈ K }
the L-set A satisfying A(x) = ak if x = xk for some k ∈ K and A(x) = 0 otherwise.

Sometimes, it is useful to allow repeated occurrences of elements of X in this notation. In this case the membership 
degree of each element is obtained as supremum of all its listed degrees: if A = {a1/x1, a2/x2, . . . , an/xn} then

A(x)=
∨
{ak | k ∈ {1, . . . ,n} and xk = x}

and if A = {ak/xk | k ∈ K } then

A(x)=
∨
{ak | k ∈ K and xk = x}.

An L-set A ∈ L X is called crisp if A(x) ∈ {0, 1} for each x ∈ X . Crisp L-sets can be identified with ordinary sets. For a 
crisp A, we also write x ∈ A for A(x) = 1 and x �∈ A for A(x) = 0. An L-set A ∈ L X is called empty (denoted by ∅) if A(x) = 0
for each x ∈ X . For a ∈ L and A ∈ L X , the L-sets a ⊗ A ∈ L X , a → A, A → a, and ¬A in X are defined by

(a⊗ A)(x)= a⊗ A(x), (3)

(a→ A)(x)= a→ A(x), (4)

(A → a)(x)= A(x)→ a, (5)

¬A(x)= A(x)→ 0. (6)

For A ∈ L X the L-sets a ⊗ A, a → A, A → a are called a-multiplication, a-shift, and a-complement, respectively. By (2) we 
have a ⊗ A =⋃{a/A} and a → A =⋂{a/A}.
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Given A, B ∈ L X , we define the subsethood degree

S(A, B)=
∧
x∈X

(
A(x)→ B(x)

)
, (7)

which generalizes the ordinary subsethood relation ⊆. S(A, B) represents a degree to which A is a subset of B . In particular, 
we write A ⊆ B iff S(A, B) = 1. As a consequence, A ⊆ B iff A(x) ≤ B(x) for each x ∈ X .

Further, we set

A ≈X B = S(A, B)∧ S(B, A). (8)

The value A ≈X B is interpreted as the degree to which the sets A and B are equal.

2.2. Binary L-relations

Binary L-relations between X and Y can be thought of as L-sets in the universe X × Y . That is, a binary L-relation 
I ∈ L X×Y between a set X and a set Y is a mapping assigning to each x ∈ X and each y ∈ Y a truth degree I(x, y) ∈ L (the 
degree to which x and y are related by I).

A binary L-relation R on a set X (i.e. R ∈ L X×X ) is called reflexive if R(x, x) = 1 for any x ∈ X , symmetric if R(x, y) =
R(y, x) for any x, y ∈ X , and transitive if R(x, y) ⊗ R(y, z) ≤ R(x, z) for any x, y, z ∈ X . R is called an L-tolerance if it is 
reflexive and symmetric, and an L-equivalence if it is reflexive, symmetric and transitive. If R is an L-equivalence such that 
for any x, y ∈ X , R(x, y) = 1 implies x = y, then R is called an L-equality on X .

Let ∼ be an L-equivalence on X . We say that a binary L-relation R on X is compatible with ∼ if for each x, x′, y, y′ ∈ X ,

R(x, y)⊗ (x∼ x′)⊗ (y ∼ y′)≤ R(x′, y′).

Various composition operators for binary L-relations were extensively studied by Bandler and Kohout, see e.g. [23]; we 
will use the following three composition operators, defined for relations A ∈ L X×F and B ∈ L F×Y :

(A ◦ B)(x, y)=
∨
f ∈F

A(x, f )⊗ B( f , y), (9)

(A � B)(x, y)=
∧
f ∈F

A(x, f )→ B( f , y), (10)

(A � B)(x, y)=
∧
f ∈F

B( f , y)→ A(x, f ). (11)

All of them have natural verbal descriptions. For instance, (A ◦ B)(x, y) is the truth degree of the proposition “there is 
a factor f such that f applies to object x and attribute y is a manifestation of f ”; (A � B)(x, y) is the truth degree of “for every 
factor f , if f applies to object x then attribute y is a manifestation of f ”. Note also that for L = {0, 1}, A ◦ B coincides with the 
well-known composition of binary relations.

We will occasionally use some of the following properties concerning associativity of several composition operators.

Theorem 1. (See [8].) Associativity of composition operators. We have

R ◦ (S ◦ T )= (R ◦ S) ◦ T , (12)

R � (S � T )= (R � S) � T , (13)

R � (S � T )= (R ◦ S) � T , (14)

R � (S ◦ T )= (R � S) � T . (15)

Distributivity of composition operators. We have

(
⋃

i

Ri) ◦ S =
⋃

i

(Ri ◦ S), and R ◦ (
⋃

i

Si)=
⋃

i

(R ◦ Si), (16)

(
⋂

i

Ri) � S =
⋂

i

(Ri � S), and R � (
⋃

i

Si)=
⋂

i

(R � Si), (17)

(
⋃

i

Ri) � S =
⋂

i

(Ri � S), and R � (
⋂

i

Si)=
⋂

i

(R � Si). (18)
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2.3. L-ordered sets

An L-order on a set U with an L-equality ≈ is a binary L-relation � on U which is compatible with ≈, reflexive, 
transitive and satisfies (u � v) ∧ (v � u) ≤ u ≈ v for any u, v ∈ U (antisymmetry). The tuple U = 〈〈U , ≈〉, �〉 is called an 
L-ordered set. An immediate consequence of the definition is that for any u, v ∈ U it holds

u ≈ v = (u � v)∧ (v � u). (19)

If U = 〈〈U , ≈〉, �〉 is an L-ordered set then the tuple 〈U , 1�〉, where 1� is the 1-cut of �, is a (partially) ordered set. We 
sometimes write ≤ instead of 1� and use the symbols ∧, 

∧
resp. ∨, 

∨
for denoting infima resp. suprema in 〈U , 1�〉.

For two L-ordered sets U = 〈〈U , ≈U 〉, �U 〉 and V = 〈〈V , ≈V 〉, �V 〉, a mapping f : U → V is isotone, if (u1 �U u2) ≤
( f (u1) �V f (u2)), and an embedding, if (u1 �U u2) = ( f (u1) �V f (u2)), for any u1, u2 ∈ V .

A mapping f : U → V is called an isomorphism of U and V, if it is both, a bijection and an embedding. U and V are then 
called isomorphic.

An antitone mapping and dual embedding are defined by (u1 �U u2) ≤ ( f (u2) �V f (u1)) and (u1 �U u2) = ( f (u2) �V

f (u1)), respectively. A dual isomorphism is a bijection which is a dual embedding.
Let U be an L-ordered set. For any W ∈ LU and w ∈ U we set

LW (w)=
∧
u∈U

W (u)→ (w � u), UW (w)=
∧
u∈U

W (u)→ (u � w). (20)

The right-hand side of the first equation is the degree of “For each u ∈ U , if u is in W , then w is less than or equal to u”, 
and similarly for the second equation. Thus, LW (w) (UW (w)) can be seen as the degree to which w is less (greater) than 
or equal to each element of W . The L-set LW (resp. UW ) is called the lower cone (resp. the upper cone) of W .

For u, v ∈ U , u ≤ v , the L-set �u, v � = U{u} ∩L{v} is called the L-interval with bounds u and v . We have

�u, v �(w)= (u � w)∧ (w � v). (21)

Let U be an L-ordered set. For any L-set W ∈ LU there exists at most one element u ∈ U such that LW (u) ∧
U(LW )(u)= 1 (resp. UW (u) ∧ L(UW )(u) = 1) [5,8]. If there is such an element, we call it the infimum of W (resp. the 
supremum of W ) and denote inf W (resp. sup W ); otherwise we say that the infimum (resp. supremum) does not exist.

U is called completely lattice L-ordered, if for each W ∈ LU , both inf W and sup W exist.
An important example of a completely lattice L-ordered set is the tuple LX = 〈〈L X , ≈X 〉, S〉, where X is an arbitrary set 

and ≈X and S are given by (8) and (7), respectively. Infima and suprema in LX are intersections and unions: for any M ∈ LL X

we have

inf M =
⋂

M, sup M =
⋃

M. (22)

2.4. Formal fuzzy concept analysis

An L-context is a triplet 〈X, Y , I〉 where X and Y are (ordinary) sets and I ∈ L X×Y is an L-relation between X and Y . 
Elements of X are called objects, elements of Y are called attributes, I is called an incidence relation. I(x, y) = a is read: 
“The object x has the attribute y to the degree a.”

Consider the following pairs of operators, called concept-forming operators, induced by an L-context 〈X, Y , I〉. First, the 
pair 〈↑, ↓〉 of operators ↑ : L X → LY and ↓ : LY → L X is defined, for all A ∈ L X and B ∈ LY , by

A↑(y)=
∧
x∈X

A(x)→ I(x, y), B↓(x)=
∧
y∈Y

B(y)→ I(x, y). (23)

Second, the pair 〈∩, ∪〉 of operators ∩ : L X → LY and ∪ : LY → L X is defined by

A∩(y)=
∨
x∈X

A(x)⊗ I(x, y), B∪(x)=
∧
y∈Y

I(x, y)→ B(y). (24)

Third, the pair 〈∧, ∨〉 of operators ∧ : L X → LY and ∨ : LY → L X is defined by

A∧(y)=
∧
x∈X

I(x, y)→ A(x), B∨(x)=
∨
y∈Y

B(y)⊗ I(x, y). (25)

Throughout this paper we often need to emphasize which L-relation induces particular pair of operators. In such cases 
we write the associated L-relation into the subscript; for instance we write ↑I instead of just ↑ to emphasize that it is a 
concept-forming operator induced by the L-relation I .
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c1 c2 c3 c4 c5

BV 0.4 0.4 0.2 0.4 0.6
LH 0.8 0.8 0.8 1 1
MD 0.8 0.4 1 0.8 1
TSS 0.4 0.4 0.8 0.6 0.4

Fig. 1. Formal context of movies (“Blue Velvet” (BV), “Lost Highway” (LH), “Mulholland Drive” (MD), and “The Straight Story” (TSS)), reviewers (David Sterritt 
(c1), Desson Thomson (c2), Jonathan Rosenbaum (c3), Owen Gleiberman (c4) and Roger Ebert (c5)) and their ratings on the 6-element Łukasiewicz chain 
L = {0, 0.2, 0.4, 0.6, 0.8, 1}. Data taken from www.metacritic.com on March 20, 2011.

Remark 1. Notice that the three pairs of concept-forming operators can be interpreted as compositions relations. Applying 
the isomorphisms L1×X ∼= L X and LY×1 ∼= LY whenever necessary, one could write them, alternatively, as follows:

A↑ = A � I A∩ = A ◦ I A∧ = A � I
B↓ = I � B B∪ = I � B B∨ = I ◦ B

Furthermore, denote the corresponding sets of fixpoints by B��(X, Y , I), where B�� is either of B↑↓ , B∩∪ , or B∧∨ , i.e.

B↑↓(X, Y , I)= {〈A, B〉 ∈ L X × LY | A↑ = B, B↓ = A},
B∩∪(X, Y , I)= {〈A, B〉 ∈ L X × LY | A∩ = B, B∪ = A},
B∧∨(X, Y , I)= {〈A, B〉 ∈ L X × LY | A∧ = B, B∨ = A}.

The sets of fixpoints are completely lattice L-ordered sets with L-equality ≈ and L-order � given by

〈A1, B1〉 ≈ 〈A2, B2〉 = A1 ≈X A2 = B1 ≈Y B2 (26)

〈A1, B1〉 � 〈A2, B2〉 =

⎧⎪⎨
⎪⎩

S(A1, A2)= S(B2, B1) for 〈�,�〉 = 〈↑,↓〉
S(A1, A2)= S(B1, B2) for 〈�,�〉 = 〈∩,∪〉
S(A2, A1)= S(B2, B1) for 〈�,�〉 = 〈∧,∨〉

(27)

and called the standard (resp. object-oriented, resp. property-oriented) L-concept lattices associated with I , and their ele-
ments are called standard (resp. object-oriented, resp. property-oriented) formal L-concepts. In this paper we call them just 
L-concepts as it is always clear which kind is considered.

For a concept lattice B��(X, Y , I), denote the corresponding sets of extents and intents by Ext��(X, Y , I) and 
Int��(X, Y , I). That is,

Ext��(X, Y , I)= {A ∈ L X | 〈A, B〉 ∈ B��(X, Y , I) for some B},
Int��(X, Y , I)= {B ∈ LY | 〈A, B〉 ∈ B��(X, Y , I) for some A}.

The operators induced by an L-context and their sets of fixpoints have extensively been studied, see e.g. [3,5,6,18,29].
We will need the following result.

Theorem 2. (See [10].) Consider L-contexts 〈X, Y , I〉, 〈X, F , A〉, and 〈F , Y , B〉.

(a) Int∩∪(X, Y , I) ⊆ Int∩∪(F , Y , B) if and only if there exists A′ ∈ L X×F such that I = A′ ◦ B,
(b) Ext∧∨(X, Y , I) ⊆ Ext∧∨(X, F , A) if and only if there exists B ′ ∈ L F×Y such that I = A ◦ B ′ ,
(c) Int↑↓(X, Y , I) ⊆ Int↑↓(F , Y , B) if and only if there exists A′ ∈ L X×F such that I = A′ � B,
(d) Ext↑↓(X, Y , I) ⊆ Ext↑↓(X, F , A) if and only if there exists B ′ ∈ L F×Y such that I = A � B ′ ,
(e) Ext↑↓(X, Y , I) ⊆ Ext∩∪(X, F , A) if and only if there exists B ′ ∈ L F×Y such that I = A � B ′ ,
(f) Int↑↓(X, Y , I) ⊆ Int∧∨(F , Y , B) if and only if there exists A′ ∈ L X×Y such that I = A′ � B.

In addition,

(g) Ext∩∪(X, Y , A ◦ B) ⊆ Ext∩∪(X, F , A).
(h) Int∧∨(X, Y , A ◦ B) ⊆ Int∧∨(F , Y , B).

2.4.1. Illustrative example (start)
Let L be the 6-element Łukasiewicz chain (i.e. L = {0, 0.2, 0.4, 0.6, 0.8, 1}) and 〈X, Y , I〉 be a formal L-context, where 

X = {BV, LH, MD, TSS}, Y = {c1, c2, c3, c4, c5}, and I is depicted in Fig. 1. Elements of X are four selected movies by the 
director David Lynch, elements of Y are five film critics, and values of I are ratings the critics assigned to the movies, taken 
from www.metacritic.com and rescaled to the six-element scale. The context is our central example and we work with 
it throughout the paper. For now, we use it just to give an example of an L-concept lattice.
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Fig. 2. L-concept lattice B↑↓(X, Y , I) of movies, critics and ratings (from Fig. 1).

Note that our data are suitable for interpreting by means of fuzzy logic. A movie rating (usually given by a number of 
“stars” or by a percentage) can be interpreted as the truth degree of the proposition “Critic y likes movie x”. It is clear that 
in this situation we need a finer scale of truth degrees than just 0 and 1. Also, there are no doubts about the truth degree 
assigned to the proposition (especially, if given by a film critic).

The L-concept lattice B↑↓(X, Y , I) is depicted in Fig. 2. When displaying L-concept lattices, we use labeled Hasse dia-
grams to include all the information on the corresponding formal L-context as well as extents and intents of all concepts. 
For each x ∈ X and a ∈ L, the formal L-concept 〈{a/x}↑↓, {a/x}↑〉 is labeled by a/x and for each y ∈ Y and b ∈ L, the formal 
L-concept 〈{b/y}↓, {b/y}↓↑〉 is labeled by b/y. We use labels x resp. y instead of 1/x resp. 1/y in the diagram and omit redun-
dant labels (i.e., if a concept has labels a1/x and a2/x then we keep only that with the greater degree; dually for attributes).

By the crisp order version of the Basic Theorem of fuzzy concept lattices [4, Theorem 5], for each x ∈ X and y ∈ Y , I(x, y)

is equal to the greatest a ⊗ b, such that 〈{a/x}↑↓, {a/x}↑〉 ≤ 〈{b/y}↓, {b/y}↓↑〉. Thus, the L-relation I can be reconstructed from 
the diagram. Moreover, for any x ∈ X , y ∈ Y and formal L-concept 〈A, B〉 we have A(x) ≥ a and B(y) ≥ b if and only if there 
is a formal L-concept 〈A1, B1〉 ≤ 〈A, B〉, labeled by a/x and a formal L-concept 〈A2, B2〉 ≥ 〈A, B〉, labeled by b/y.

For example, if 〈A, B〉 is the L-concept labeled by c4 in the diagram then A = {0.4/BV, LH, 0.8/MD, 0.4/TSS} and B =
{0.8/c1, 0.6/c2, 0.8/c3, c4}.

In B∩∪(X, Y , I) (Fig. 3), for any x ∈ X , y ∈ Y and formal L-concept 〈A, B〉 we have A(x) ≤ a and B(y) ≥ b if and only if 
there is a formal L-concept 〈A1, B1〉 ≤ 〈A, B〉 labeled by a/x and a formal L-concept 〈A2, B2〉 ≥ 〈A, B〉 labeled by b/y.

2.5. Fuzzy Galois connections, fuzzy closure and interior systems

An antitone L-Galois connection [6] between L-ordered sets U and V is a pair 〈↑, ↓〉 of mappings ↑ : U → V , ↓ : V → U , 
satisfying

u � v↓ = v � u↑ (28)
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Fig. 3. L-concept lattice B∩∪(X, Y , I) of movies, critics and ratings (from Fig. 1).

for every u ∈ U and v ∈ V . An antitone L-Galois connection between sets X and Y is an antitone L-Galois connection 
between the L-ordered sets LX and LY .

An isotone L-Galois connection [18] between L-ordered sets U and V is a pair 〈∩, ∪〉 of mappings ∩ : U → V , ∪ : V → U , 
satisfying

u � v∪ = u∩ � v (29)

for every u ∈ U and v ∈ V .
For U = V, the isotone L-Galois connection 〈∩, ∪〉 is called extensive if for each u ∈ U we have u ≤ u∪ (which is equivalent 

with u∩ ≤ u).
An isotone L-Galois connection between sets X and Y is defined as an isotone L-Galois connection between the L-ordered 

sets LX and LY .

Remark 2. We purposely denote antitone (resp. isotone) L-Galois connection by the same symbols as concept-forming op-
erators (23) (resp. (24)), because each pair of concept-forming operators 〈↑, ↓〉 (resp. 〈∩, ∪〉) on a formal L-context 〈X, Y , I〉
is an antitone (resp. isotone) L-Galois connection and for each antitone (resp. isotone) L-Galois connection between sets X
and Y there is an L-relation I which induces it as a pair of concept-forming operators [6,18].

Note also that (28) and (29) become

S(A, B↓)= S(B, A↑) and S(A, B∪)= S(A∩, B),

respectively, for A ∈ LX , B ∈ LY .
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A system of L-sets V ⊆ L X is called an L-interior system [12] if

– V is closed under a-multiplication for every a ∈ L, i.e. for every C ∈ V and a ∈ L we have a ⊗ C ∈ V ;
– V is closed under union, i.e. 

⋃
j∈ J

C j ∈ V whenever C j ∈ V for all j ∈ J .

The above two conditions can be replaced with the following single condition: V is closed under unions of fuzzy subsets, 
i.e. 

⋃
U ∈ V for each U ∈ L X , U ⊆ V .

V ⊆ L X is called an L-closure system [3] if

– V is closed under a-shifts for every a ∈ L; i.e. for every C ∈ V and a ∈ L we have a → C ∈ V ;
– V is closed under intersection, i.e. 

⋂
j∈ J

C j ∈ V whenever C j ∈ V for all j ∈ J .

Again, the above two conditions can be replaced with the following one: V is closed under intersections of fuzzy subsets, 
i.e. 

⋂
U ∈ V for each U ∈ L X , U ⊆ V .

Remark 3. It is worth noting that the notions of antitone and isotone L-Galois connection, L-closure system, and L-interior 
system are proper generalizations of their crisp counterparts. That is, they become their crisp counterparts when L is the 
two-element Boolean algebra.

Remark 4. One can find examples of L-closure and L-interior systems in the framework of formal fuzzy concept analysis 
as follows: for an L-context 〈X, Y , I〉, the sets Ext↑↓(X, Y , I), Ext∩∪(X, Y , I), Int∧∨(X, Y , I), and Int↑↓(X, Y , I) are L-closure 
systems [3,18], while Ext∧∨(X, Y , I) and Int∩∪(X, Y , I) are L-interior systems [12,18].

3. Results

First, we provide a definition of block L-relation—a convenient generalization of the notion of block-relation from [32]. 
In Sections 3.1–3.3 we separately study three instances of block L-relations: with respect to antitone concept-forming oper-
ators and a weaker and a stronger version of block L-relations with respect to isotone concept-forming operators. Then, in 
Section 3.4 we show that block L-relations correspond to particular automorphisms on associated concept lattices. Finally, 
in Section 3.5, we show that they also correspond to extensive isotone L-Galois connections and complete L-tolerances on 
associated concept lattices.

Definition 1. Let I ∈ L X×Y be an L-relation.
J ∈ L X×Y , J ⊇ I , is called a block L-relation of I w.r.t. 〈↑, ↓〉 if

Ext↑↓(X, Y , J )⊆ Ext↑↓(X, Y , I),

Int↑↓(X, Y , J )⊆ Int↑↓(X, Y , I).
(30)

J ∈ L X×Y , J ⊆ I , is called a block L-relation of I w.r.t. 〈∩, ∪〉 if

Ext∩∪(X, Y , J )⊆ Ext∩∪(X, Y , I),

Int∩∪(X, Y , J )⊆ Int∩∪(X, Y , I).
(31)

J ∈ L X×Y , J ⊆ I , is called a block L-relation of I w.r.t. 〈∧, ∨〉 if

Ext∧∨(X, Y , J )⊆ Ext∧∨(X, Y , I),

Int∧∨(X, Y , J )⊆ Int∧∨(X, Y , I).
(32)

Denote the set of block relations of I w.r.t. operators 〈�, �〉 by BR��(X, Y , I).

Remark 5. Wille [32] defines block relation (w.r.t. 〈↑, ↓〉) as a relation J ⊇ I where each row is an intent of I and each 
column is an extent of I . We prove in Theorem 3(e) that the notion of block L-relation is a proper generalization of crisp 
block relation for the case of antitone concept-forming operators 〈↑, ↓〉, since {x}↑ J s and {y}↓ J s correspond to rows and 
columns of J , respectively.

3.1. Block L-relations w.r.t. antitone concept-forming operators

In this section, we study only the case 〈�, �〉 = 〈↑, ↓〉. The other two cases are studied in Section 3.2. The following 
theorem provides characterizations of block L-relations w.r.t. 〈↑, ↓〉.
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Theorem 3. Let I ∈ L X×Y be an L-relation. The following statements are equivalent:

(a) J ∈ BR↑↓(X, Y , I).
(b) J = I � SY with SY ∈ LY×Y and for the induced mapping ∧SY we have B∧SY ∈ Int↑↓(X, Y , I) and B ⊆ B∧SY for each 

B ∈ Int↑↓(X, Y , I).
(c) J = S X � I with S X ∈ L X×X and for the induced mapping ∪S X we have A∪S X ∈ Ext↑↓(X, Y , I) and A ⊆ A∪S X for each A ∈

Ext↑↓(X, Y , I).
(d) I ⊆ J = S X � I = I � SY for some S X ∈ L X×X and SY ∈ LY×Y .
(e) I ⊆ J ; {x}↑ J ∈ Int↑↓(X, Y , I) for each x ∈ X and {y}↓ J ∈ Ext↑↓(X, Y , I) for each y ∈ Y .

Proof. First we show (a)⇔ (b):
“⇒”: By (30) we have Ext↑↓(X, Y , J ) ⊆ Ext↑↓(X, Y , I). Using Theorem 2, we have that there exists SY ∈ LY×Y s.t. J =

I � SY . Now, by (30) we have Int↑↓(X, Y , I � SY ) ⊆ Int↑↓(X, Y , I), thus

A↑I�SY = A � (I � SY )= (A � I) � SY ∈ Int↑↓(X, Y , I)

for each A ∈ L X . Since A � I = A↑I represents any intent B in Int↑↓(X, Y , I) we obtain that B � SY = B∧SY ∈ Int↑↓(X, Y , I)
for all B ∈ Int↑↓(X, Y , I).

Finally, we need to show that B ⊆ B∧SY for each B ∈ Int↑↓(X, Y , I). There exists A ∈ L X s.t. A↑I = B . Since I ⊆ J , we 
have

B = A � I ⊆ A � J = A � (I � SY )= (A � I) � SY = B∧SY .

“⇐”: From Theorem 2 we have Ext↑↓(X, Y , J ) ⊆ Ext↑↓(X, Y , I). Directly from assumptions we have for every A ∈ L X

A↑ J = A � J = A � (I � SY )= (A � I) � SY = B∧SY ,

where B is the intent A↑I . Hence we have Int↑↓(X, Y , J ) ⊆ Int↑↓(X, Y , I).
Now, consider rows of L-relation I as L-sets Ix ∈ LY given by

Ix(y)= I(x, y)= {x}↑I (y) for all y ∈ Y ;

analogously for J . Since rows Ix are in Int↑↓(X, Y , I), by definition of � and Remark 1 we have

Ix ⊆ I
∧SY
x = Ix � SY = J x

showing that Ix ⊆ J x for each x ∈ X , thus I ⊆ J .
Proof of (a)⇔ (c) is similar; proof of (a)⇔ (d) follows directly from Theorem 2.
(a)⇔ (e): Since we can write every A ∈ L X as A =⋃

x∈X A(x) ⊗ {x} then for all y ∈ Y we have

A↑ J (y)=
∧

x′∈X

A(x′)→ J (x′, y)

=
∧
x′∈X

(
⋃
x∈X

A(x)⊗ {x})(x′)→ J (x′, y)

=
∧
x′∈X

(
∨
x∈X

A(x)⊗ {x}(x′))→ J (x′, y)

=
∧
x∈X

A(x)→
∧

x′∈X

({x}(x′))→ J (x′, y)

=
∧
x∈X

A(x)→{x}↑ J (y)

= (
⋂
x∈X

A(x)→{x}↑ J )(y).

Since {x}↑ J ∈ Int↑↓(X, Y , I) and Int↑↓(X, Y , I) is an L-interior system we obtain that A↑ J ∈ Int↑↓(X, Y , I). Because every 
intent in Int↑↓(X, Y , J ) has the form A↑ J for some A ∈ L X we conclude that Int↑↓(X, Y , J ) ⊆ Int↑↓(X, Y , I). Similarly, one 
can show that {y}↓ J ∈ Ext↑↓(X, Y , I) for each y ∈ Y implies Ext↑↓(X, Y , J ) ∈ Ext↑↓(X, Y , I).

The converse is trivial. �
Theorem 4. Let I ∈ L X×Y be an L-relation between X and Y .

(a) BR↑↓(X, Y , I) is an L-closure system.
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J c1 c2 c3 c4 c5

BV 0.6 0.6 0.4 0.6 0.8
LH 1 1 1 1 1
MD 1 0.6 1 1 1
TSS 0.6 0.6 1 0.8 0.6

S X BV LH MD TSS

BV 0.8 0 0 0
LH 0 0.8 0 0
MD 0 0 0.8 0
TSS 0 0 0 0.8

SY c1 c2 c3 c4 c5

c1 0.8 0 0 0 0
c2 0 0.8 0 0 0
c3 0 0 0.8 0 0
c4 0 0 0 0.8 0
c5 0 0 0 0 0.8

Fig. 4. Block L-relation J = 0.8→ I w.r.t. 〈↑,↓〉 (top) of the L-context in Fig. 1 and the corresponding L-relations S X (middle) and SY (bottom).

(b) The set of all S X for all block relations J of I (from Theorem 3) is an L-interior system.
(c) The set of all SY for all block relations J of I (from Theorem 3) is an L-interior system.

Proof. (a) We need to show that BR↑↓(X, Y , I) is closed under intersections and a-shifts for all a ∈ L.
First, we show closedness under intersections. Let us have a collection of block L-relations J i of I w.r.t. 〈↑, ↓〉. Let 

J =⋂
i J i and let B ∈ Int↑↓(X, Y , J ), hence B = A↑ J for some A ∈ L X . By definition of ↑ J and (18) we have

A↑ J = A � J = A � (
⋂

i

J i)=
⋂

i

(A � J i)=
⋂

i

A↑ J i .

Thus we have A↑ J = ⋂
i A↑ J i ∈ Int↑↓(X, Y , I) since Int↑↓(X, Y , I) is an L-closure system. Similarly, B↓ J = ⋂

i B↓ J i ∈
Ext↑↓(X, Y , I). From I ⊆ J i we have I ⊆⋂

i J i = J , whence J ∈ BR↑↓(X, Y , I).
Now we prove that BR↑↓(X, Y , I) is closed under all a-shifts. For any A ∈ L X , a ∈ L, and a block L-relation J ∈

BR↑↓(X, Y , I) we have

A↑a→ J = A � (a→ J )= A � (Ida � J )= (A ◦ Ida) � J =
= (Ida ◦ A) � J = Ida � (A � J )= a→ (A � J )= a→ A↑ J .

We have A↑a→ J = a → A↑ J ∈ Int↑↓(X, Y , I) since Int↑↓(X, Y , I) is an L-closure system. Similarly, one can show that B↓a→ J ∈
Ext↑↓(X, Y , I). From I ⊆ J we have I ⊆ a → J i and a → J ∈ BR↑↓(X, Y , I).

This proves that BR↑↓(X, Y , I) of I is an L-closure system.
(b) Let 〈X, Y , I〉 be an L-context. We need to show that the system SX of all L-relations S X ∈ LX×X s.t. S X � I ∈

BR↑↓(X, Y , I) is closed under unions and a-multiplications for all a ∈ L.
First, we show closedness under unions. Let us have a collection of L-relations S X i ∈ SX . From Theorem 4(a) and (18)

we have that

BR↑↓(X, Y , I) �
⋂

i

(S X i � I)= (
⋃

i

S X i) � I;

whence (
⋃

i S X i) ∈ SX .
Now we show closedness under a-multiplications for all a ∈ L. Consider S X ∈ SX and arbitrary a ∈ L. Then from Theo-

rem 4(a), we have

BR↑↓(X, Y , I) � a→ (S X � I)= Ida � (S X � I)= (Ida ◦ S X ) � I = (a⊗ S X ) � I;
whence a ⊗ S X ∈ SX . We conclude that SX is an L-interior system.

(c) can be proved similarly as (b). �
Example (cont.)

By Theorem 4, for each a ∈ L the L-relation a → I is a block relation of 〈X, Y , I〉. In Fig. 4 (top), it is depicted the block 
relation J = 0.8 → I for our example formal context 〈X, Y , I〉. In the same figure, we can see L-relations S X and SY from 
Theorem 3.

In Fig. 5, we can see a more interesting example of a block relation, together with corresponding L-relations S X and SY . 
Will explain the way this block relation was constructed later.
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J c1 c2 c3 c4 c5

BV 0.6 0.4 0.4 0.6 0.6
LH 1 0.8 1 1 1
MD 1 0.6 1 1 1
TSS 0.4 0.4 0.8 0.6 0.4

S X BV LH MD TSS

BV 0.8 1 1 0.8
LH 0.2 0.8 0.6 0.4
MD 0.2 0.8 0.8 0.4
TSS 0.4 1 1 1

SY c1 c2 c3 c4 c5

c1 0.8 1 0.6 0.8 0.8
c2 0.4 0.8 0.4 0.4 0.4
c3 0.6 0.8 0.8 0.6 0.6
c4 0.8 1 0.8 0.8 0.8
c5 1 1 0.6 0.8 1

Fig. 5. Block L-relation J (top) w.r.t. 〈↑,↓〉 of the L-context in Fig. 1 and the corresponding L-relations S X (middle) and SY (bottom).

3.2. Block L-relations w.r.t. isotone concept-forming operators

In this section we study the case of block L-relations w.r.t. 〈∩, ∪〉; the case of 〈∧, ∨〉 is omitted since it is dual. First, we 
provide a characterization of block L-relations w.r.t. 〈∩, ∪〉.

Theorem 5. Let I ∈ L X×Y be an L-relation. The following statements are equivalent:

(a) J ∈ BR∩∪(X, Y , I).
(b) J = S X ◦ I with S X ∈ L X×X and for the induced mapping ∪S X we have A∪S X ∈ Ext∩∪(X, Y , I) and A ⊆ A∪S X for each A ∈

Ext∩∪(X, Y , I).

Proof. (a) ⇒ (b): From Int∩∪(X, Y , J ) ⊆ Int∩∪(X, Y , I) and Theorem 2(b) we have J = S X ◦ I for some S X ∈ L X×X . Now, 
since Ext∩∪(X, Y , J ) ⊆ Ext∩∪(X, Y , I) and since each element of Ext∩∪(X, Y , J ) is in the form B∪ J for some B ∈ LY , we can 
write

B∪ J = J � B = (S X ◦ I) � B = S X � (I � B)= (B∪I )∪S X .

This shows that A∪S X ∈ Ext∩∪(X, Y , I) for each A ∈ Ext∩∪(X, Y , I).
Finally, we need to show that ∪S X is extensive. We have J ⊆ I whence J � B ⊆ I � B for each B ∈ LY . Thus, we have

A∪S X = A∩I∪I∪S X = S X � (I � (A ◦ I))= S X � (I � B)= (S X ◦ I) � B = J � B ⊇ I � B = A.

(b)⇒ (a): From J = S X ◦ I we have Int∩∪(X, Y , J ) ⊆ Int∩∪(X, Y , I) by Theorem 2(a).
Since each extent A in Ext∩∪(X, Y , J ) has the form A = B∪ J we have

B∪ J = J � B = (S X ◦ I) � B = S X � (I � B)= (B∪I )∪S X ∈ Ext∩∪(X, Y , I)

proving that Ext∩∪(X, Y , J ) ⊆ Ext∩∪(X, Y , I).
Finally, we have A ⊆ A∪S X for each A ∈ Ext∩∪(X, Y , I), thus we have

I � B = B∪I ⊆ (B∪I )∪S X = S X � (I � B)= (S X ◦ I) � B = J � B

for each B ∈ LY . Thus J ⊆ I . �
Remark 6.

(a) Note that in the isotone case we cannot characterize the notion of block L-relation a similar way as in Theorem 3(e). 
While rows of J are still intents of B∩∪(X, Y , I), the columns generally are not extents. In Section 3.3 we study a 
stronger version of isotone block L-relations which makes a characterization analogous to the Theorem 3(e) possible.

(b) Note, that the opposite decomposition ( J = S X ◦ I), analogous to Theorem 5(a), does not always exist, as Example 1
shows.

Example 1. Consider L being a four-element chain 0 < a < b < 1 with ⊗ being a drastic product [30], i.e.

x⊗ y =
{

x∧ y if x= 1 or y = 1,

0 otherwise,
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for each x, y ∈ L. One can easily see that x ⊗ ∨
j y j = ∨

j(x ⊗ y j) and thus an adjoint operation → exists such that 
〈L, ∧, ∨, ⊗, →, 0, 1〉 is a complete residuated lattice. Namely, → is given as follows:

x→ y =

⎧⎪⎨
⎪⎩

1 if x≤ y,

y if x= 1,

b otherwise,

for each x, y ∈ L.
Now, consider the following L-relation I

I y1 y2 y3

x1 0 1 a
x2 b 1 b

One can check that the following L-relation J is a block L-relation of 〈X, Y , I〉 w.r.t. 〈∩, ∪〉.
J y1 y2 y3

x1 0 0 0
x2 0 a 0

While we have J = S X ◦ I for

S X x1 x2

x1 0 0
x2 0 a

there is no SY ∈ LY×Y such that J = I ◦ SY .

Theorem 6. Let I ∈ L X×Y be an L-relation between X and Y .

(a) BR∩∪(X, Y , I) is an L-interior system.
(b) The set of all S X of all block L-relations of I (from Theorem 5) is an L-interior system.

Proof. We need to show that BR∩∪(X, Y , I) is closed under unions and a-multiplications for all a ∈ L.
First, we show closedness under unions. Let us have a collection of block L-relations J i of I w.r.t. 〈∩, ∪〉. Let J =⋃

i J i
and let B ∈ Int∩∪(X, Y , J ). There exists A ∈ L X s.t. B = A∩ J . By Remark 1 and (16) we have

A∩ J = A ◦ J = A ◦ (
⋃

i

J i)=
⋃

i

(A ◦ J i)=
⋃

i

A∩ J i .

Hence, A∩ J = ⋃
i A∩ J i ∈ Int∩∪(X, Y , I), since Int∩∪(X, Y , I) is an L-interior system. Thus we have Int∩∪(X, Y , J ) ⊆

Int∩∪(X, Y , I).
Similarly, let A ∈ Ext∩∪(X, Y , J ). There exists B ∈ LY s.t. A = B∪ J . By Remark 1 and (17) we have

B∪ J = J � B = (
⋃

i

J i) � B =
⋂

i

( J i � B)=
⋂

i

B∪ J i ,

thus B∪ J = ⋂
i B∪ J i ∈ Ext∩∪(X, Y , I), since Ext∩∪(X, Y , I) is an L-closure system. Thus we have Ext∩∪(X, Y , J ) ⊆

Ext∩∪(X, Y , I).
Since I ⊇ J i for all i, we also have I ⊇⋃

i J i . Hence 
⋃

i J i ∈ BR∩∪(X, Y , I).
Now we prove that BR∩∪(X, Y , I) is closed under all a-multiplications. For any a ∈ L, A ∈ L X , B ∈ LY and block L-relation 

J we have

A∩a⊗ J = A ◦ (Ida ◦ J )= (A ◦ Ida) ◦ J =
= (Ida ◦ A) ◦ J = Ida ◦ (A ◦ J )= a⊗ A↑ J .

A∩ J ∈ Int∩∪(X, Y , I) implies a ⊗ A∩ J ∈ Int∩∪(X, Y , I) because Int∩∪(X, Y , I) is an L-interior system. Thus we have 
Int∩∪(X, Y , a ⊗ J ) ⊆ Int∩∪(X, Y , I).

Similarly, let A ∈ Ext∩∪(X, Y , J ). There exists B ∈ LY s.t. B∪ = A. We have

B∪a⊗ J = (Ida ◦ J ) � B = Ida � ( J � B)= a→ B∪.

We have B∪a⊗ J = a → B∪ J ∈ Ext∩∪(X, Y , I) since Ext∩∪(X, Y , I) is an L-closure system. Thus we have Ext∩∪(X, Y , a ⊗ J ) ⊆
Ext∩∪(X, Y , I). Finally, from I ⊇ J we have I ⊇ a ⊗ J . Hence a ⊗ J ∈ BR∩∪(X, Y , I).

We conclude that BR∩∪(X, Y , I) is an L-interior system.
(b) can be proved similarly. �
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3.3. Strong block L-relations w.r.t. isotone concept-forming operators

In this section, we provide a notion of a block L-relation defined by means of both isotone concept-forming operators, 
〈∩, ∪〉 and 〈∧, ∨〉. This notion happens to be stronger than the one studied in Section 3.2.

Definition 2. Let I ∈ L X×Y be an L-relation. J ⊆ I is called a strong block L-relation of I if

Ext∧∨(X, Y , J )⊆ Ext∧∨(X, Y , I),

Int∩∪(X, Y , J )⊆ Int∩∪(X, Y , I).
(33)

The following theorem provides characterizations of strong block L-relations.

Theorem 7. The following statements are equivalent.

(a) J ∈ BR∩∪(X, Y , I) ∩ BR∧∨(X, Y , I).
(b) J is a strong block L-relation of I .
(c) I ⊇ J = S X ◦ I = I ◦ SY for some S X ∈ L X×X , SY ∈ LY×Y .
(d) I ⊇ J ; {x}∩ J ∈ Int∩∪(X, Y , I) for each x ∈ X and {y}∨ J ∈ Ext∧∨(X, Y , I) for each y ∈ Y .
(e) J = S X ◦ I and the induced mapping ∨S X satisfies A∨S X ∈ Ext∧∨(X, Y , I) and A∨S X ⊆ A for each A ∈ Ext∧∨(X, Y , I).
(f) J = I ◦ SY and the induced mapping ∩SY satisfies B∩SY ∈ Int∩∪(X, Y , I) and B∩S X ⊆ B for each B ∈ Int∩∪(X, Y , I).

Proof. (a)⇔ (b)⇔ (c) follows directly from Theorem 2; (a)⇒ (d) is trivial.
(d)⇒ (a): Since we can write every A ∈ L X as A =⋃

x∈X A(x) ⊗ {x} we have for all y ∈ Y

A∩ J (y)=
∨
x′∈X

A(x′)⊗ J (x′, y)

=
∨
x′∈X

(
⋃
x∈X

A(x)⊗ {x})(x′)⊗ J (x′, y)

=
∨
x′∈X

(
∨
x∈X

A(x)⊗ {x}(x′))⊗ J (x′, y)

=
∨
x∈X

A(x)⊗
∨
x′∈X

{x}(x′)⊗ J (x′, y)

=
∨
x∈X

A(x)⊗ {x}∩ J (y)

= (
⋃
x∈X

A(x)⊗ {x}∩ J )(y).

Since {x}∩ J ∈ Int∩∪(X, Y , I) and Int∩∪(X, Y , I) is an L-interior system we obtain that A∩ J ∈ Int∩∪(X, Y , I). Because every 
intent in Int∩∪(X, Y , J ) has the form A∩ J for some A ∈ L X we conclude that Int∩∪(X, Y , J ) ⊆ Int∩∪(X, Y , I). Similarly, one 
can show that {y}∨ J ∈ Ext∧∨(X, Y , I) for all y ∈ Y implies Ext∧∨(X, Y , J ) ⊆ Ext∧∨(X, Y , I).

(a) ⇒ (f): From (33) we have Ext∧∨(X, Y , J ) ⊆ Ext∧∨(X, Y , I). Using Theorem 2(b) we get that there exists SY ∈ LY×Y

s.t. J = I ◦ SY . Since Int∩∪(X, Y , I ◦ SY ) ⊆ Int∩∪(X, Y , I), by (33), and each B ∈ Int∩∪(X, Y , I) can be written as B = A∩I for 
some A ∈ L X , we have

B∩SY = (A∩I )∩SY = (A ◦ I) ◦ SY = A ◦ (I ◦ SY )= A ◦ J = A∩ J ∈ Int∩∪(X, Y , I) (34)

for each B ∈ Int∩∪(X, Y , I). In addition, we have that J ⊆ I implies A∩I ⊇ A∩ J . As A∩ J = (A∩I )∩SY we obtain that B∩SY ⊆ B .
(f)⇒ (a): From J = I ◦ SY we have Ext∧∨(X, Y , J ) ⊆ Ext∧∨(X, Y , I) by Theorem 2(b). For each B ∈ Int∩∪(X, Y , I) there is 

some A ∈ L X s.t. A∩I = B . We have

Int∩∪(X, Y , I) � B∩SY = (A∩I )∩SY = (A ◦ I) ◦ SY = A ◦ (I ◦ SY )= A ◦ J = A∩ J . (35)

As all intents from Int∩∪(X, Y , J ) are of the form A∩ J , we obtain that Int∩∪(X, Y , J ) ⊆ Int∩∪(X, Y , I). Finally, B∩SY ⊆ B for 
each B ∈ Int∩∪(X, Y , I) is equivalent to (A∩I )∩SY ⊆ A∩I for each A ∈ L X . As (A∩I )∩SY = A∩ J , we get that J ⊆ I .

(a)⇔ (e) can be proved similarly as (a)⇔ (f). �
Remark 7. If the Double Negation Law holds true in L, i.e. if for all a ∈ L we have ¬¬a = a, the notions of block L-relation 
w.r.t. 〈∩, ∪〉, block L-relation w.r.t. 〈∧, ∨〉, and strong block L-relation become the same notion [9]. In the general setting, it 
is not the case, as one can check in Example 1.
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J c1 c2 c3 c4 c5

BV 0.2 0.2 0 0.2 0.4
LH 0.6 0.6 0.6 0.8 0.8
MD 0.6 0.2 0.8 0.6 0.8
TSS 0.2 0.2 0.6 0.4 0.2

S X BV LH MD TSS

BV 0.8 0 0 0
LH 0 0.8 0 0
MD 0 0 0.8 0
TSS 0 0 0 0.8

SY c1 c2 c3 c4 c5

c1 0.8 0 0 0 0
c2 0 0.8 0 0 0
c3 0 0 0.8 0 0
c4 0 0 0 0.8 0
c5 0 0 0 0 0.8

Fig. 6. Block L-relation J = 0.8⊗ I w.r.t. 〈∩,∪〉 (top) of the L-context in Fig. 1 and the corresponding L-relations S X (middle) and SY (bottom).

J c1 c2 c3 c4 c5

BV 0.2 0.2 0.2 0.2 0.4
LH 0.6 0.6 0.8 0.8 0.8
MD 0.6 0.4 0.8 0.6 0.8
TSS 0.2 0.2 0.6 0.4 0.4

S X BV LH MD TSS

BV 0.8 0.2 0.2 0.4
LH 1 0.8 0.8 1
MD 1 0.6 0.8 1
TSS 0.8 0.4 0.4 0.8

SY c1 c2 c3 c4 c5

c1 0.4 0.4 0.6 0.6 0.6
c2 0.4 0.4 0.6 0.6 0.6
c3 0.6 0.4 0.8 0.6 0.8
c4 0.6 0.6 0.8 0.8 0.8
c5 0.6 0.6 0.8 0.8 0.8

Fig. 7. Block L-relation J (top) w.r.t. 〈∩,∪〉 of the L-context in Fig. 1 and the corresponding L-relations S X (middle) and SY (bottom).

Theorem 8.

(a) The system of all strong block L-relations of I is an L-interior system.
(b) The system of all L-relations S X (from Theorem 7) is an L-interior system.
(c) The system of all L-relations SY (from Theorem 7) is an L-interior system.

Proof. (a) From Theorem 7 we have that each strong block L-relation is a block L-relation w.r.t. both 〈∩, ∪〉 and 〈∧, ∨〉. Thus, 
the system of all strong block L-relations is an intersection of two L-interior systems—BR∩∪(X, Y , I) and BR∧∨(X, Y , I). It is 
therefore an L-interior system. Similarly for (b) and (c). �
Example (cont.)

We present two examples, analogous to the examples from Section 3.1. Theorem 8(a) yields that for each a ∈ L the 
product a ⊗ I is a strong block relation of the formal L-context w.r.t. both isotone concept-forming operators. Fig. 6 shows 
the strong block relation 0.8 ⊗ I of our example formal context 〈X, Y , I〉, together with L-relations S X and SY .

In Fig. 7, we can see a more interesting example of a strong block relation, together with relations S X and SY .

3.4. Block L-relations and automorphisms of closure and interior systems

In this section we show that block L-relations are in correspondence with particular automorphisms of L-closure and 
L-interior systems.

Definition 3. (See [10].)

(a) A mapping h : V → W from an L-interior system V ⊆ L X into an L-interior system W ⊆ LY is called an i-morphism if it 
is a ⊗- and 

∨
-morphism, i.e.
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– h(a ⊗ C) = a ⊗ h(C) for each a ∈ L and C ∈ V ;
– h(

∨
k∈K Ck) =∨

k∈K h(Ck) for every collection of Ck ∈ V (k ∈ K ).
An i-morphism h : V → W is said to be an extendable i-morphism if h can be extended to an i-morphism of L X to LY , 
i.e. if there exists an i-morphism h′ : L X → LY such that for every C ∈ V we have h′(C) = h(C).

(b) A mapping h : V → W from an L-closure system V ⊆ L X into an L-closure system W ⊆ LY is called a c-morphism if it 
is a →- and 

∧
-morphism and it preserves a-complements, i.e. if

– h(a → C) = a → h(C) for each a ∈ L and C ∈ V ;
– h(

∧
k∈K Ck) =∧

k∈K h(Ck) for every collection of Ck ∈ V (k ∈ K );
– if C is an a-complement then h(C) is an a-complement.
A c-morphism h : V → W is called an extendable c-morphism if h can be extended to a c-morphism of L X to LY , i.e. if 
there exists a c-morphism h′ : L X → LY such that for every C ∈ V we have h′(C) = h(C).

An {i, c}-morphism h : V → V is called {i, c}-automorphism on V .

In this paper we will consider only extendable {i, c}-morphisms. The following results will be used in the proof of 
Theorem 9.

Lemma 1. (See [10].) For V ⊆ L X ,

(a) if h : V → LY is an i-morphism then there exists an L-relation R ∈ L X×Y such that h′(C) = C ◦ R for every C ∈ L X .
(b) if h : V → LY is a c-morphism then there exists an L-relation R ∈ L X×Y such that h′(C) = C � R for every C ∈ L X .

Lemma 2. (See [10].) Let R ∈ LY×X ,

(a) the mapping hR : L X → LY defined by hR(C) = R ◦ C for all C ∈ L X and the mapping gR : LY → L X defined by gR(D) = D ◦ R
for all D ∈ LY are i-morphisms.

(b) the mapping hR : L X → LY defined by hR(C) = R � C for all C ∈ L X and the mapping gR : LY → L X defined by gR(D) = D � R
for all D ∈ LY are c-morphisms.

Now, we can prove that there is a bijection between above defined morphisms and block relations.

Theorem 9.

(a) There is a bijection between BR↑↓(X, Y , I) and the set of all extensive c-automorphisms on Int↑↓(X, Y , I). There is a bijection 
between BR↑↓(X, Y , I) and the set of all c-automorphisms on Ext↑↓(X, Y , I).

(b) There is a bijection between BR∩∪(X, Y , I) and the set of all intensive c-automorphisms on Ext∩∪(X, Y , I). There is a bijection 
between BR∧∨(X, Y , I) and the set of all intensive c-automorphisms on Int∧∨(X, Y , I).

(c) There is a bijection between the set of all strong block L-relations of I ⊆ L X×Y and intensive i-automorphisms on Ext∧∨(X, Y , I)
and with intensive i-automorphisms on Int∩∪(X, Y , I).

Proof. (a) First, we show that for each block L-relation of I w.r.t. 〈↑, ↓〉 we can obtain an extensive c-automorphism on 
Int↑↓(X, Y , I): Let J ⊇ I ∈ L X×Y be a block L-relation of I w.r.t. 〈↑, ↓〉. By Theorem 3 we have J = I � SY , s.t. ∧SY is 
extensive mapping from Int↑↓(X, Y , I) → Int↑↓(X, Y , I). By Lemma 2(b) ∧SY is a c-morphism. To sum up, ∧SY is an extensive 
c-automorphism on Int↑↓(X, Y , I).

Second, we show that for each extensive c-automorphism on Int↑↓(X, Y , I) we can obtain a block L-relation of I w.r.t. 
〈↑, ↓〉: Let f : Int↑↓(X, Y , I) → Int↑↓(X, Y , I) be an extensive c-automorphism. By Lemma 1 there is SY ∈ LY×Y s.t. B∧SY =
f (B) for each B ∈ Int↑↓(X, Y , I). The L-relation I ⊆ J = I � SY is a block L-relation of I w.r.t. 〈↑, ↓〉 by Theorem 3.

One can check that the two procedures are mutually inverse. The second statement in (a) can be proved similarly.
(b) First we show that for each L-relation of I w.r.t. 〈∩, ∪〉 we can obtain an extensive c-automorphism on Ext∩∪(X, Y , I): 

Let J ⊆ I be a block L-relation of I ∈ L X×Y w.r.t. 〈∩, ∪〉. By Theorem 5 we have J = S X ◦ I , s.t. ∪S X is extensive mapping 
from Ext∩∪(X, Y , I) → Ext∩∪(X, Y , I). By Lemma 2(b), ∪S X is a c-morphism. To sum up, ∪S X is an extensive c-automorphism 
on Ext∩∪(X, Y , I).

Second, we show that for each extensive c-automorphism on Ext∩∪(X, Y , I) we can obtain a block L-relation of I w.r.t. 
〈∩, ∪〉: Let f : Ext∩∪(X, Y , I) → Ext∩∪(X, Y , I) be an extensive c-automorphism. By Lemma 1 there is S X ∈ L X×X s.t. A∪S X =
f (A) for each A ∈ Ext∩∪(X, Y , I). By Theorem 5 the L-relation J = S X ◦ I is a block L-relation of I w.r.t. 〈∩, ∪〉.

One can check that the two procedures are mutually inverse. The second statement in (b) can be proved similarly.
(c) First we show that for each strong L-relation of I we can obtain an extensive i-automorphism on Ext∧∨(X, Y , I): 

Let J ⊆ I be a strong block L-relation of I ∈ L X×Y . By Theorem 7 we have J = S X ◦ I , s.t. ∨S X is intensive mapping from 
Ext∧∨(X, Y , I) → Ext∧∨(X, Y , I). By Lemma 2(b) ∨S X is an i-morphism. To sum up, ∨S X is an intensive i-automorphism of 
Ext∧∨(X, Y , I).
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Second, we show that for each extensive i-automorphism on Ext∩∪(X, Y , I) we can obtain a strong block L-relation of I: 
Let f : Ext∧∨(X, Y , I) → Ext∧∨(X, Y , I) be an intensive i-automorphism. By Lemma 1 there is S X ∈ L X×X s.t. A∨S X = f (A)

for each A ∈ Ext∧∨(X, Y , I). By Theorem 7 the L-relation J = S X ◦ I is a strong block L-relation of I .
One can check that the two procedures are mutually inverse. �

3.5. Factorizations of concept lattices

As mentioned in the introduction, one of vital problems in formal concept analysis, esp. in fuzzy setting, is the problem 
of reduction of the size of a concept lattice. In this section, we present some results on reducing the size of concept lattices 
by means of factorization. We generalize the results from the crisp case [31] (see also [16]) to our fuzzy setting. Our results 
also cover results from [28] as a special case (see example below).

The basic idea is as follows. Sometimes we do not need to distinguish between concepts we consider in some sense sim-
ilar or indistinguishable. The exact notion of indistinguishability between concepts depends on our needs. If it is expressed 
by a complete L-tolerance relation (see below for definition) then it can be used for factorization of the concept lattice, 
resulting in a smaller completely lattice L-ordered set [24]. As we show in this section, this completely lattice L-ordered set 
is, in fact, isomorphic to the L-concept lattice of a block relation, which can be easily computed based on the used complete 
L-tolerance.

In the crisp case, a complete tolerance on a complete lattice is a tolerance ∼ (i.e. a reflexive and symmetric relation) 
that preserves arbitrary suprema and infima: If ui ∼ vi for each i ∈ I then 

∧
i∈I ui ∼∧

i∈I vi and 
∨

i∈I ui ∼∨
i∈I vi .

A quotient (factor) set X/∼ of a set X by a tolerance ∼ on X is the set of all maximal blocks of ∼, i.e. all maximal 
(w.r.t. set inclusion) sets, containing only pairwise tolerant elements. In the case X is a complete lattice and ∼ is complete, 
a natural extension of the ordering on X to X/∼ leads to a complete lattice ordering [15,31,16].

There is a bijection between the set of block relations and the set of complete tolerances on associated concept lattices. 
Moreover, it is known that a concept lattice, factorized by a complete tolerance, is isomorphic to the concept lattice of the 
corresponding block relation [31,16].

Now we turn to the fuzzy case. We start by introducing a few necessary notions and results. See [24] for details.
For any binary L-relation R on a set X and L-sets A1, A2 ∈ L X we set [17]

R+(A1, A2)= S(A1, R ◦ A2)∧ S(A2, A1 ◦ R), (36)

obtaining a binary L-relation on L X .
For an L-tolerance ∼ on X , an L-set B ∈ L X is called a block of ∼ if for each x1, x2 ∈ X it holds B(x1) ⊗ B(x2) ≤ (x1 ∼ x2)

[8]. A block B is called maximal if for each block B ′ , B ⊆ B ′ implies B = B ′ . The set of all maximal blocks of ∼, which 
always exists by Zorn’s lemma, is called the quotient (factor) set of X by ∼ and denoted X/∼.

We set for each x ∈ X , �x�∼(y) = x ∼ y, obtaining an L-set �x�∼ ∈ L X called the class of ∼ determined by x.
An L-tolerance ∼ on a completely lattice L-ordered set U = 〈〈U , ≈〉, �〉 is called complete [24] if it is compatible with ≈

and for any two L-sets V 1, V 2 ∈ LU it holds

V 1 ∼+ V 2 ≤ inf V 1 ∼ inf V 2, V 1 ∼+ V 2 ≤ sup V 1 ∼ sup V 2. (37)

In crisp case, the conditions (37) become the above standard condition of completeness of ∼.
We set for each u ∈ U

u∼ = inf�u�∼, u∼ = sup�u�∼. (38)

(Note that as �u�∼ is an L-set in U , its infimum is an element of U : u∼ ∈ U . Similarly, u∼ ∈ U .) It holds

�u�∼ = �u∼, u∼�. (39)

The pair 〈∼, ∼〉 is an extensive isotone L-Galois connection on U.
In [24] we generalized the above results from [15,32,16] on complete tolerances on complete lattices to complete 

L-tolerances on completely lattice L-ordered sets. The results we will need are the following.

Theorem 10. (See [24].) Let ∼ be a complete L-tolerance on a completely lattice L-ordered set U = 〈〈U , ≈〉, �〉. Maximal blocks of ∼
are exactly intervals �u, v � where 〈v, u〉 are fixpoints of 〈∼, ∼〉. The L-relations ≈+ and �+ on the quotient set U/∼ satisfy for each 
u1, u2, v1, v2 ∈ U

�u1, v1 � ≈+ �u2, v2 � = u1 ≈ u2 = v1 ≈ v2,

�u1, v1 � �+ �u2, v2 � = u1 � u2 = v1 � v2.

〈〈U/∼, ≈+〉, �+〉 is a completely lattice L-ordered set.
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By [24], the system CTol U of complete L-tolerances on a completely lattice L-ordered set U is an L-closure system. 
Consequently 〈〈CTol U, ≈U×U 〉, S〉 is a completely lattice L-ordered set with infima given by intersections (2).

In [24] we also introduced a structure of L-ordered set on the set IGal(U, V) of isotone L-Galois connections between U
and V by

〈 f1, g1〉 ≈IGal(U,V) 〈 f2, g2〉 =
∧
u∈U

( f2(u)≈ f1(u))∧
∧
v∈V

(g1(v)≈ g2(v)), (40)

〈 f1, g1〉 �IGal(U,V) 〈 f2, g2〉 =
∧
u∈U

( f2(u)� f1(u))∧
∧
v∈V

(g1(v)� g2(v)). (41)

This definition can be simplified using the following lemma.

Lemma 3. For each 〈 f1, g1〉, 〈 f2, g2〉 ∈ IGal(U, V) it holds

〈 f1, g1〉 ≈IGal(U,V) 〈 f2, g2〉 =
∧
u∈U

( f2(u)≈ f1(u))=
∧
v∈V

(g1(v)≈ g2(v)), (42)

〈 f1, g1〉 �IGal(U,V) 〈 f2, g2〉 =
∧
u∈U

( f2(u)� f1(u))=
∧
v∈V

(g1(v)� g2(v)). (43)

Proof. We will prove the second equality of (43) by finding for each u ∈ U an element v ∈ V such that g1(v) � g2(v) ≤
f2(u) � f1(u) and for each v ∈ V an element u ∈ U such that f2(u) � f1(u) ≤ g1(v) � g2(v). The first equality will then 
follow by (41).

First, for u ∈ U we set v = f1(u). The definition of isotone L-Galois connections immediately yields u ≤ g1( f1(u)). Thus, 
by definition and transitivity of �,

g1(v)� g2(v)= f2(g1(v))� v = f2(g1( f1(u)))� f1(u)≤ f2(u)� f1(u).

For v ∈ V we set u = g1(v) and prove the second inequality similarly.
(42) now follows by (19). �
By [24], IGal(U, V), together with ≈IGal(U,V) and �IGal(U,V) , is an L-ordered set.
For a completely lattice L-ordered set U, we denote by EIGal(U) the subset of IGal(U, U) consisting of extensive isotone 

L-Galois connections. This set inherits the structure of L-ordered set from IGal(U, U) (40), (41).

Theorem 11. (See [24].) The mapping ∼ �→ 〈∼, ∼〉 is an isomorphism between CTol U and EIGal(U). Its inverse is 〈 f , g〉 �→ ∼〈 f ,g〉 , 
where ∼〈 f ,g〉 is given by

u ∼〈 f ,g〉 v = ( f (u)� v)∧ ( f (v)� u). (44)

As we already mentioned, 〈〈CTol U, ≈U×U 〉, S〉 is a completely lattice L-ordered set. Thus, by the above theorem, EIGal(U)

is also a completely lattice L-ordered set. In the next theorem, we show an explicit expression for infima in EIGal(U). We 
need a result on intersection of a system of intervals, which is proved in the following lemma.

Lemma 4. Let U be a completely lattice L-ordered set, H ∈ LLU
an L-set of L-intervals in U , H = {ak/�uk, vk � | k ∈ K }. Denote by Hmin , 

resp. Hmax , the associated L-set in U of lower, resp. upper, bounds of the intervals:

Hmin = {ak/uk | k ∈ K }, Hmax = {ak/vk | k ∈ K }. (45)

Finally, denote u = sup Hmin and v = inf Hmax . Then if u ≤ v then 
⋂

H = �u, v �.

Proof. By definition of interval, �u, v � = U{u} ∩L{v}. It can be shown by definition of supremum that U{u} = U{sup Hmin} =
U Hmin (the upper cone of a set is equal to the upper cone of its supremum) and similarly, L{v} = LHmax. For the upper 
cone of Hmin we have

U Hmin(w)=
∧

w ′∈U

Hmin(w ′)→ (w ′ � w)=
∧
k∈K

ak → (uk � w)

and, similarly, LHmax(w) =∧
k∈K ak → (w � vk). Thus by (45), (21), and (2),
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�u, v �(w)= U{u}(w)∧L{v}(w)= U Hmin(w)∧LHmax(w)

=
( ∧

k∈K

ak → (uk � w)

)
∧

( ∧
k∈K

ak → (w � vk)

)

=
∧
k∈K

ak → (uk � w)∧ (w � vk)=
∧
k∈K

ak → �uk, vk �(w)

=
⋂

H(w). �
For classical sets, the above lemma tells the well-known fact that if the intersection of a system of intervals in a complete 

lattice is non-empty then it is equal to an interval. The lower bound of this interval is the supremum of lower bounds of 
the intervals from the system and the upper bound is the infimum of upper bounds of the intervals from the system.

Now we give the promised theorem on infima of L-sets of extensive isotone L-Galois connections.

Theorem 12. Let M ∈ LEIGal(U) be an L-set of extensive isotone L-Galois connections on a completely lattice L-ordered set U, M =
{ak/〈 fk, gk〉 | k ∈ K }. Then inf M = 〈 f , g〉, where f and g are given by

f (u)= sup{ak/ fk(u) | k ∈ K }, g(v)= inf{ak/gk(v) | k ∈ K }. (46)

Proof. We will use the isomorphism of CTol (U) and EIGal(U) from Theorem 11. Set ∼k =∼〈 fk,gk〉 . We have u∼k = fk(u) and 
u∼k = gk(u) for each u ∈ U , k ∈ K . For T = {ak/ ∼k| k ∈ K } and ∼=⋂

T it holds inf M = 〈∼, ∼〉 (Theorem 11).
For the class �u�∼ of an element u ∈ U we have

�u�∼(v)= �u�⋂
T (v)=

(⋂
T
)

(〈u, v〉)=
∧
k∈K

ak → (u ∼k v)

=
∧
k∈K

ak → �u�∼k (v)=
(⋂

{ak/�u�∼k | k ∈ K }
)

(v).

Thus, �u�∼ =⋂{ak/�u�∼k | k ∈ K }. As �u�∼ = �u∼, u∼� and �u�∼k = �u∼k , u
∼k � = � fk(u), gk(u)� (39), we can use Lemma 4

and obtain (46). �
3.5.1. The correspondence with block L-relations

Now we are ready to introduce the correspondence between block relations on a formal L-context and extensive isotone 
L-Galois connections on the associated concept lattice. In the following lemma, int(C) (resp. ext(C)) denotes the intent 
(resp. extent) of a formal L-concept C . As before, symbols �, � denote one of the pairs 〈↑, ↓〉, 〈∩, ∪〉, 〈∧, ∨〉.

Lemma 5. Let J ∈ BR��(X, Y , I). Denote by 〈 f J , g J 〉 a pair of mappings on B��(X, Y , I) defined by

f J (〈A, B〉)= 〈A� J �I , A� J 〉, g J (〈A, B〉)= 〈B� J , B� J �I 〉
for each 〈A, B〉 ∈B��(X, Y , I). The mapping J �→ 〈 f J , g J 〉 is a bijection between BR��(X, Y , I) and EIGal(B��(X, Y , I)). Its inverse 
〈 f , g〉 �→ J 〈 f ,g〉 is given by

• Case 〈�, �〉 = 〈↑, ↓〉:
J 〈 f ,g〉(x, y)= int( f (〈{x}↑I↓I , {x}↑I 〉))(y)

= ext(g(〈{y}↓I , {y}↓I↑I 〉))(x),

• Case 〈�, �〉 = 〈∩, ∪〉:
J 〈 f ,g〉(x, y)= int( f (〈{x}∩I∪I , {x}∩I 〉))(y),

• Case 〈�, �〉 = 〈∧, ∨〉:
J 〈 f ,g〉(x, y)= ext(g(〈{y}∨I , {y}∨I∧I 〉))(x).

Proof. We prove the lemma only for the case 〈�, �〉 = 〈↑, ↓〉; the proof for the other two cases is similar.
First, we show that for a block L-relation J of I ∈ LX×Y w.r.t. 〈↑, ↓〉 the pair of mappings 〈 f J , g J 〉 is an isotone L-Galois 

connection on B↑↓(X, Y , I). This follows from
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f J (〈A, B〉)� 〈A′, B ′〉 = S(A↑ J↓I , A′)
= S(A↑ J↓I , B ′ ↓I )

= S(B ′, A↑ J↓I↑I )

= S(B ′, A↑ J )

= S(A, B ′ ↓ J )

= 〈A, B〉 � g J (〈A′, B ′〉)
(the third and fifth equality follow by basic properties of � (27), and A↑ J↓I↑I = A↑ J since A↑ J is an intent of I). We need 
to show that g J is extensive; i.e. 〈A, B〉 ≤ g J (〈A, B〉); that is A ⊆ B↓ J for each A ∈ LX . Since A is an extent of B↑↓(X, Y , I), 
the latter inclusion is equivalent to B↓I ⊆ B↓ J , which is true by I ⊆ J .

To prove the converse: Let 〈 f , g〉 be an extensive isotone L-Galois connection on B↑↓(X, Y , I). Consider the following 
operators ⇑: L X → LY and ⇓: LY → L X defined as

A⇑ = int( f (〈A↑I↓I , A↑I 〉))
B⇓ = ext(g(〈B↓I , B↓I↑I 〉)) (47)

for all A ∈ L X , B ∈ LY . Now we show that 〈⇑, ⇓〉 forms an antitone L-Galois connection. For all A ∈ LX , B ∈ LY we have (27)

S(A, B⇓)= S(A,ext(g(〈B↓I , B↓I↑I 〉)))
= S(A, int(g(〈B↓I , B↓I↑I 〉))↓I )

= S(int(g(〈B↓I , B↓I↑I 〉)), A↑I )

= S(int(g(〈B↓I , B↓I↑I 〉)), A↑I↓I↑I )

= S(A↑I↓I , int(g(〈B↓I , B↓I↑I 〉))↓I )

= S(A↑I↓I ,ext(g(〈B↓I , B↓I↑I 〉)))
= 〈A↑I↓I , A↑I 〉 � g(〈B↑I↓I , B↑I 〉).

Similarly, we have

S(B, A⇑)= S(B, int( f (〈A↑I↓I , A↑I 〉)))
= S(B,ext( f (〈A↑I↓I , A↑I 〉))↑I )

= S(ext( f (〈A↑I↓I , A↑I 〉)), B↓I )

= f (〈A↑I↓I , A↑I 〉)� 〈B↓I , B↓I↑I 〉;
whence we have S(A, B⇓) = S(B, A⇑), proving that 〈⇑, ⇓〉 is an antitone L-Galois connection between L X and LY . By [2]
there is an L-relation J such that 〈⇑, ⇓〉 = 〈↑ J , ↓ J 〉. J is given by J (x, y) = {x}⇑(y) = {y}⇓(x).

Directly from (47) we have Ext↑↓(X, Y , J ) ⊆ Ext↑↓(X, Y , I) and Int↑↓(X, Y , J ) ⊆ Int↑↓(X, Y , I). From extensivity of g we 
have

〈B↓I , B↓I↑I 〉 ≤ g(〈B↓I , B↓I↑I 〉)
for each B ∈ LY . From that we get B↓I ⊆ ext(g(〈B↓I , B↓I↑I 〉)) = B↓ J for each B ∈ LY , proving that J ⊇ I .

It is easy to observe that these procedures are mutually inverse. �
By Theorem 4, the set BR↑↓(X, Y , I) of all block relations of I w.r.t. 〈↑, ↓〉 is an L-closure system. Together with the 

L-equality ≈X×Y and the graded subsethood relation S (both restricted accordingly), it is a completely lattice L-ordered set.
Analogously, BR∩∪(X, Y , I) and BR∧∨(X, Y , I) are L-interior systems by Theorem 6. Together with the L-equality ≈X×Y

and the graded subsethood relation S (both restricted accordingly), they are completely lattice L-ordered sets.

Lemma 6. The mapping J �→ 〈 f J , g J 〉 from Lemma 5 is an isomorphism of L-ordered sets.

Proof. We prove the lemma only for the case 〈�, �〉 = 〈↑, ↓〉; the proof for the isotone cases is similar. It suffices to show 
that for any two block relations J1, J2 it holds

〈 f J1 , g J1〉 � 〈 f J2 , g J2〉 = S( J1, J2), (48)
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Fig. 8. L-concept lattice of movies, critics and ratings (from Fig. 1) factorized with respect to the threshold a= 0.8 (left) and a= 0.6 (right).

where � denotes �IGal(B↑↓(X,Y ,I)) . The left-hand side is equal to (by (43))∧
C∈B↑↓(X,Y ,I)

( f J2(C)� f J1(C))

which by Lemma 5 and (27) equals∧
A∈Ext↑↓(X,Y ,I)

S(A↑ J1 , A↑ J2 ).

For the right-hand side of (48) we have

S( J1, J2)=
∧
x∈X

∧
y∈Y

J1(x, y)→ J2(x, y)=
∧
x∈X

∧
y∈Y

{x}↑ J1 (y)→{x}↑ J2 (y)

=
∧
x∈X

S({x}↑ J1 , {x}↑ J2 )=
∧
x∈X

S({x}↑I↓I↑ J1 , {x}↑I↓I↑ J2 )

≥
∧

A∈Ext↑↓(X,Y ,I)

S(A↑ J1 , A↑ J2 ),

proving the “≤” part of (48).
Now for each extent A we have

S(A↑ J1 , A↑ J2 )= S(A � J1, A � J2)≥ S( J1, J2)

by properties of compositions operators. That proves the converse inequality. �
Theorem 13. There is an isomorphism between the L-set of block L-relations of I w.r.t. 〈�, �〉 and the L-set of complete L-tolerances 
on B��(X, Y , I). The isomorphism and its inverse are given by

J �→ ∼ J and ∼ �→ J∼,

where

〈A1, B1〉 ∼ J 〈A2, B2〉 = S(A1, B
� J

2 )∧ S(A2, B
� J

1 ), (49)

• Case 〈�, �〉 = 〈↑, ↓〉
J∼(x, y)= int(〈{x}↑I↓I , {x}↑I 〉∼)(y)

= ext(〈{y}↓I , {y}↓I↑I 〉∼)(x),
(50)

• Case 〈�, �〉 = 〈∩, ∪〉
J∼(x, y)= int(〈{x}∩I∪I , {x}∩I 〉∼)(y), (51)
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Fig. 9. L-concept lattices from Fig. 8 (left) depicted as a lattice of intervals (crisp parts of maximal blocks) of the original L-concept lattice.

• Case 〈�, �〉 = 〈∧, ∨〉
J∼(x, y)= ext(〈{y}∨I , {y}∨I∧I 〉∼)(x). (52)

Proof. It follows from Lemma 5, Lemma 6, and Theorem 11. �
The following theorem shows a simple way of computing the quotient completely lattice L-ordered set B��(X, Y , I)/∼

for given complete L-tolerance ∼: it is isomorphic to the L-concept lattice B��(X, Y , J ), where J is the block relation 
associated with ∼ by means of Theorem 13.
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Fig. 10. L-concept lattices from Fig. 8 (right) depicted as a lattice of intervals (crisp parts of maximal blocks) of the original L-concept lattice.

Theorem 14. Let ∼ be a complete L-tolerance on B��(X, Y , I), J be the block L-relation of I w.r.t. 〈�, �〉 associated with ∼ by means 
of Theorem 13. Then the completely lattice L-ordered sets B��(X, Y , I)/∼ and B��(X, Y , J ) are isomorphic.

Proof. By Lemma 5, if 〈C1, C0〉 is a fixpoint of 〈 f J , g J 〉 then the extent of C1 is an extent of 〈X, Y , J 〉 and vice versa, each 
extent of 〈X, Y , J 〉 is also the extent of some C1 ∈ B��(X, Y , I) such that 〈C1, C0〉 is a fixpoint of 〈 f J , g J 〉 for some C0. This 
way we obtain a bijection between the set of all fixpoints of 〈 f J , g J 〉 and Ext��(X, Y , J ). Using Theorem 10 and (27) we 
obtain a bijection between B��(X, Y , I)/∼ and B��(X, Y , J ) which is evidently an isomorphism of L-ordered sets. �
3.6. Factorization by similarity

By similarity of concepts we mean any a-shift of the L-equality ≈ (27), where a ∈ L is arbitrary threshold. The L-relation 
≈ itself is a complete L-tolerance on B��(X, Y , I), which follows easily from (44) where we set 〈 f , g〉 to be the trivial 
isotone Galois connection f (u) = g(u) = u. The a-shift ∼a = a →≈ of ≈ is also a complete L-tolerance because the system 
of all complete L-tolerances on B��(X, Y , I) is an L-closure system [24].

For two L-concepts C1 = 〈A1, B1〉, C2 = 〈A2, B2〉 from B��(X, Y , I) we have C1 ∼a C2 = 1 iff C1 ≈ C2 ≥ a. Thus, the 
concepts are fully indistinguishable by ∼a iff the degree to which they are similar w.r.t. ≈ is at least a.

Now let 〈�, �〉 = 〈↑, ↓〉 and J = a → I . We already know that J is a block relation. By Theorem 13 (49), the associated 
complete L-tolerance is given by

C1 ∼ J C2 = S(A1, B
↓ J

2 )∧ S(A2, B
↓ J

1 )

= S(A1,a→ B
↓I
2 )∧ S(A2,a→ B

↓I
1 )

= (a→ S(A1, A2))∧ (a→ S(A2, A1))= a→ (A1 ≈X A2)

= a→ (C1 ≈ C2)= C1 ∼a C2.

Thus, ∼ J is equal to ∼a and by Theorem 14, the factor completely lattice L-ordered set B↑↓(X, Y , I)/a→≈ is isomorphic to 
B↑↓(X, Y , a → I).

148



J. Konecny, M. Krupka / International Journal of Approximate Reasoning 73 (2016) 27–55 49

Fig. 11. L-concept lattice B∩∪(X, Y , a ⊗ I) of movies, critics and ratings (from Fig. 1), factorized with respect to the threshold a = 0.8 (left) and a = 0.6
(right).

This approach corresponds to results from [7]. The isomorphism of the crisp part of the factor concept lattice with the 
crisp part of B↑↓(X, Y , a → I) has been noted in [11].

Similar results can be proved for the isotone cases: For 〈�, �〉 = 〈∩, ∪〉 we know that J = a ⊗ I is a block relation. By 
Theorem 13 (49), the associated complete L-tolerance is given by

C1 ∼ J C2 = S(A1, B
∪ J

2 )∧ S(A2, B
∪ J

1 )

= S(A1,a→ B∪I
2 )∧ S(A2,a→ B∪I

1 )
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Fig. 12. L-concept lattice of movies, critics and ratings (form Fig. 1), factorized with respect to an L-set of important objects X ′ = {0.8/BV, LH, MD, TSS}
and L-set of important attributes Y ′ = {c1, 0.8/c2, c3, c4, c5} (left) and with respect to an L-set of important objects X ′ = {BV, LH, MD, TSS} and L-set of 
important attributes Y ′ = {c1, 0.6/c2, c3, c4, c5} (right).

= (a→ S(A1, A2))∧ (a→ S(A2, A1))= a→ (A1 ≈X A2)

= a→ (C1 ≈ C2)= C1 ∼a C2.

Thus, ∼ J is equal to ∼a and by Theorem 14, the factor completely lattice L-ordered set B↑↓(X, Y , I)/a→≈ is isomorphic to 
B∩∪(X, Y , a ⊗ I).

The case 〈�, �〉 = 〈∧, ∨〉 is similar.

Illustrative example (cont.)
Consider again our formal L-context 〈X, Y , I〉 of movies, critics and ratings from Fig. 1. In Fig. 4 we showed the block 

relation 0.8 → I . In Fig. 8 (top), it is depicted the L-concept lattice B↑↓(X, Y , 0.8 → I). In addition, in the same figure (right) 
we can see the L-concept lattice B↑↓(X, Y , a → I) for the threshold a = 0.6. These concept lattices are isomorphic to the 
factor completely lattice L-ordered sets B↑↓(X, Y , I)/∼0.8 and B↑↓(X, Y , I)/∼0.6 , respectively. In Fig. 9 and Fig. 10, we can 
see crisp parts of these factor completely lattice L-ordered sets depicted as a lattice of the crisp parts of corresponding 
maximal blocks.

In the isotone case, factorization of the L-concept lattice B∩∪(X, Y , I) by ∼a produces a lattice isomorphic to 
B∩∪(X, Y , a ⊗ I). By Theorem 8, the L-relation a ⊗ I is a strong block L-relation of I . Fig. 11 displays associated concept 
lattices B∩∪(X, Y , a ⊗ I) for a = 0.8 and a = 0.6.

3.7. Approximations in fuzzy concept lattices

To show another, more general application of Theorem 13 and Theorem 14, we first generalize some results from [28] to 
our fuzzy setting.

Let i and c be an L-interior and L-closure operator on a completely lattice L-ordered set U, respectively, with the respec-
tive sets of fixpoints denoted by Fix i and Fix c. For u ∈ U , i(u) (resp. c(u)) can be regarded lower (resp. upper) approximation 
of u.

We call an extensive isotone L-Galois connection 〈 f , g〉 on U (i, c)-compatible if for each u ∈ U , f (u) ∈ Fix i and 
g(u) ∈ Fix c. A complete L-tolerance ∼ on U is (i, c)-compatible if the extensive isotone L-Galois connection 〈∼, ∼〉 is 
(i, c)-compatible.

Lemma 7.

(a) The set of all (i, c)-compatible complete L-tolerances on U is an L-closure system in CTol U.
(b) The set of all (i, c)-compatible extensive isotone L-Galois connections on U is an L-closure system in EIGal(U).

Proof. We will prove (b), (a) will then follow by definition and isomorphism between CTol U and EIGal(U) (Theorem 11). 
Let M = {ak/〈 fk, gk〉 | k ∈ K } be an L-set in EIGal(U) such that 〈 fk, gk〉 is (i, c)-compatible for each k ∈ K . As EIGal(U) is 
a completely lattice L-ordered set, the L-set M has infimum. By Theorem 12, inf M = 〈 f , g〉 where f (u) = sup Fu and 
g(v) = inf G v for Fu = {ak/ fk(u) | k ∈ K } and G v = {ak/gk(v) | k ∈ K }.
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Fig. 13. L-concept lattice B∩∪(X, Y , J i X ′ ,cY ′ ) of movies, critics and ratings (form Fig. 1), factorized with respect to an L-set of important objects 
X ′ = {0.8/BV, LH, MD, TSS} and L-set of important attributes Y ′ = {c1, 0.8/c2, c3, c4, c5} (left) and with respect to an L-set of important objects X ′ =
{BV, LH, MD, TSS} and L-set of important attributes Y ′ = {c1, 0.6/c2, c3, c4, c5} (right).

Since fk(u) ∈ Fix i for each k ∈ K , Fu ⊆ Fix i. As Fix i is an interior system, sup Fu = f (u) ∈ Fix i. Similarly we obtain 
inf G v = g(v) ∈ Fix c and conclude 〈 f , g〉 is (i, c)-compatible. �

Denote by ∼i,c the smallest (w.r.t. L-set inclusion) (i, c)-compatible complete L-tolerance on U. According to the previous 
lemma, ∼i,c always exists. Further denote by 〈 f i,c,, gi,c〉 the smallest (w.r.t. the L-order (41)) (i, c)-compatible element of 
EIGal(U). By the same lemma, 〈 f i,c,, gi,c〉 exists and by Theorem 11, it holds 〈 f i,c,, gi,c〉 = 〈∼i,c , ∼i,c 〉.

Now let U = B��(X, Y , I) for some formal L-context 〈X, Y , I〉 and let J be a block relation of I w.r.t. 〈�, �〉. J is called 
(i, c)-compatible, if for each A ∈ L X and B ∈ LY , A� J is the intent of a concept from Fix i and B� J is the extent of a concept 
from Fix c.

Lemma 8.

(a) J is (i, c)-compatible iff the extensive isotone L-Galois connection 〈 f J , g J 〉 from Lemma 5 is (i, c)-compatible.
(b) The set of all (i, c)-compatible block relations of I w.r.t. 〈↑, ↓〉 is an L-closure system in BR↑↓(X, Y , I). The set of all 

(i, c)-compatible block relations of I w.r.t. 〈∩, ∪〉 (〈∧, ∨〉) is an L-interior system in BR∩∪(X, Y , I) (BR∧∨(X, Y , I)).

Proof. (a) follows directly from definition of 〈 f J , g J 〉. (b) follows from (a). �
Denote by J i,c the smallest (w.r.t. L-set inclusion) (i, c)-compatible block relation of I . J i,c always exists by the above 

lemma. By Lemma 6, 〈 f i,c, gi,c〉 = 〈 f J i,c , g Ji,c 〉.
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Fig. 14. L-concept lattice from Fig. 12 (left) depicted as a lattice of intervals (crisp parts of maximal blocks) of the original L-concept lattice.

Note that our results cover results from Sec. 3.6 as a special case. Namely, if we set ia(u) = (ua→≈)a→≈ and ca(u) =
(ua→≈)a→≈ we obtain a→≈=∼ia,ca and a → I = J ia,ca .
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Fig. 15. L-concept lattice from Fig. 12 (right) depicted as a lattice of intervals (crisp parts of maximal blocks) of the original L-concept lattice.

Illustrative example (cont.)
In the last part of our running example, we show how the above considerations can be used for reducing the size of an 

L-concept lattice by assigning degrees of importance to objects and attributes. Again, we follow the approach from [28].
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For a formal L-context 〈X, Y , I〉 we select two L-sets X ′ ∈ L X and Y ′ ∈ LY and interpret them as L-sets of “important 
objects” and “important attributes”, respectively. Thus, for an object x ∈ X , the value X ′(x) is the degree to which x is 
important and similarly for attributes. Intents of the form A↑I where A ⊆ X ′ are considered important and similarly for 
intents.

Now, the idea is to approximate from below any concept by the greatest smaller concept with important intent and from 
above by the smallest greater concept with important extent. The approximations are realized by an interior operator i X ′
and a closure operator cY ′ , defined as follows.

i X ′(〈A, B〉)= 〈(A ∩ X ′)↑I↓I , (A ∩ X ′)↑I 〉,
cY ′(〈A, B〉)= 〈(B ∩ Y ′)↓I , (B ∩ Y ′)↓I↑I 〉.

We apply the above considerations to our example. Suppose we consider the film BV less important than the other films 
(perhaps because we have not seen BV) and the critic c2 less important than the other critics (because we do not like his 
opinion on MD). More precisely, set X ′ = {a/BV, LH, MD, TSS} and Y ′ = {c1, b/c2, c3, c4, c5}, where a, b ∈ L. The associated 
block relation J i X ′ ,cY ′ w.r.t. 〈↑, ↓〉 for a = 0.8 is depicted in Fig. 5. In Fig. 12 we can see the resulting concept lattices 
B↑↓(X, Y , J i X ′ ,cY ′ ) in two cases: first a = b = 0.8 and second a = 1 and b = 0.6.

In the isotone case, the approximations are realized by an interior operator i X ′ and a closure operator cY ′ , defined as 
follows.

i X ′(〈A, B〉)= 〈(A ∩ X ′)∩I∪I , (A ∩ X ′)∩I 〉,
cY ′(〈A, B〉)= 〈(B ∪ Y ′)∪I , (B ∪ Y ′)∪I∩I 〉.

The associated block relation J i X ′ ,cY ′ w.r.t. 〈∩, ∪〉 for a = b = 0.8 is depicted in Fig. 7. In Fig. 13 we can see the resulting 
concept lattices for a = b = 0.8 and for a = 1 and b = 0.6.

In Fig. 14 and Fig. 15 we can see lattices of the crisp part of each of the maximal blocks.

4. Conclusions

We have provided a proper generalization of block relations to fuzzy setting. Our future research in this area includes 
study and generalization of other interesting cases of morphisms in FCA, especially infomorphisms and scale measures. Also, 
we find interesting the idea to investigate ‘heterogeneous’ block L-relations whose conditions combine the cases 〈↑, ↓〉 and 
〈∩, ∪〉.
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In this paper, we deal with suitable generalizations of the notion of bond be-
tween contexts. We study different generalizations of the notion of bond within the
L-fuzzy setting. Specifically, given a formal context, there are three prototypical
pairs of concept-forming operators, and this immediately leads to three possible ver-
sions of the notion of bond (so-called homogeneous bond w.r.t. a certain pair of
concept-forming operators). The first results show a close correspondence between a
homogeneous bond between two contexts and certain special types of mappings be-
tween the sets of extents (or intents) of the corresponding concept lattices. Later, we
introduce the so-called heterogeneous bonds (considering simultaneously two types
of concept-forming operators) and generalize the previous relationship to mappings
between the sets of extents (or intents) of the corresponding concept lattices.

For all the defined bonds we provide their characterization, description of a struc-
ture they form and their relationship to direct products of relations. Finally, we
explain the relationship of the bonds to the morphisms of L-closure systems and
L-interior systems.

156



INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2016
VOL. 45, NO. 2, 160–186
http://dx.doi.org/10.1080/03081079.2015.1072926

On homogeneous L-bonds and heterogeneous L-bonds

Jan Konecnya and Manuel Ojeda-Aciegob

aData Analysis and Modeling Lab, Department of Computer Science, Palacky University, Olomouc, Czech
Republic; bDepartamento de Matemática Aplicada, Universidad de Málaga, Málaga, Spain

ABSTRACT

In this paper, we deal with suitable generalizations of the notion
of bond between contexts, as part of the research area of Formal
Concept Analysis. We study different generalizations of the notion of
bond within the L-fuzzy setting. Specifically, given a formal context,
there are three prototypical pairs of concept-forming operators, and
this immediately leads to three possible versions of the notion of
bond (so-called homogeneous bond wrt certain pair of concept-
forming operators). The first results show a close correspondence
between a homogeneous bond between two contexts and certain
special types of mappings between the sets of extents (or intents)
of the corresponding concept lattices. Later, we introduce the so-
called heterogeneous bonds (considering simultaneously two types of
concept-forming operators) and generalize the previous relationship
to mappings between the sets of extents (or intents) of the
corresponding concept lattices.
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1. Introduction

Formal concept analysis (FCA) has become a very active research topic, both theoretical
and practical; its wide applicability justifies the need of a deeper knowledge of its underlying
mechanisms, and one important way to obtain this extra knowledge turns out to be via
generalization.

Since the seminal paper (Burusco and Fuentes-González 1994), several fuzzy variants
of generalized FCA have been introduced and developed both from the theoretical and the
practical side. The consideration of the adjointness property in residuated lattices as the
main building blocks of fuzzy concept lattices was an important milestone simultaneously
developed by Pollandt (1997) and Belohlavek (1998).

More recently, a number of new generalizations have been introduced, either based on
fuzzy set theory (Alcalde, Burusco, and Fuentes-González 2010; Alcalde et al. 2011), or
themulti-adjoint framework (Medina, Ojeda-Aciego, and Ruiz-Calviño 2009;Medina and
Ojeda-Aciego 2010, 2013) or heterogeneous approaches (Butka, Pócsová, and Pócs 2012;
Medina and Ojeda-Aciego 2012; Díaz, Medina, and Ojeda-Aciego 2014).

FCA has been extended as well by considering alternative paradigms, for instance, one
can find generalizations of the framework and scope of FCA based on from possibility

CONTACT Jan Konecny jan.konecny@upol.cz
© 2015 Taylor & Francis
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theory (Dubois and Prade 2012) or rough set theory (Wu and Liu 2009; Lei and Luo 2009;
Lai and Zhang 2009; Medina 2012; Kang et al. 2013).

Concerning applications of techniques of generalized FCA, one can see papers ranging
fromontologymerging (Chen, Bau, andYeh 2011) and resolution of fuzzy ormulti-adjoint
relational equations (Alcalde, Burusco, and Fuentes-González 2012; Díaz and Medina
2013) to applications to the semantic web using the notion of concept similarity or rough
sets (Formica 2012), and from noise control in document classification (Li and Tsai 2011)
to ontology-based sentiment analysis (Kontopoulos et al. 2013), or the study of fuzzy
databases, in areas such as functional dependencies (Mora et al. 2012), or even linguistics
(Falk and Gardent 2014).

All the generalizations stated above focused on the development of a general framework
of FCA including extra features (fuzzy, possibilistic, rough, etc.) and some of its possible
applications. However, not much has been published on the suitable general version of
certain specific notions, such as the bonds between formal contexts.

One of the motivations for introducing the notion of bond was to provide a tool for
studyingmappings between formal contexts, somehowmimicking the behaviour of Galois
connections between their corresponding concept lattices. In this paper, we deal with
generalizations of the notion of bond for which, to the best of our knowledge, only one
general version has been introduced, see (Krídlo, Krajči, and Ojeda-Aciego 2012), wrt the
standard concept-forming operators used in Belohlavek (1998).

The notions of bonds, scale measures and informorphisms were studied by Krötzsch,
Hitzler, and Zhang (2005), aiming at a thorough study of the theory of morphisms in
FCA; in areas related to ontology research, just infomorphisms are used, whereas more
general approaches, namely more general heterogenous bonds, could be utilized. Krídlo
et al. (2013) use bonds to include background knowledge into data; the heterogeneous
bonds described in this paper enable us to give an alternative semantics, the background
knowledge. Another application of bonds can be seen in Meschke (2010) where bonds
are used to approximate concepts, allowing to focus on just a sub context without losing
implicational knowledge and, hence, reducing the size of a concept lattice.

We study generalizations of the notion of bond within the L-fuzzy setting. Specifically,
given a formal context, there are three prototypical pairs of concept-forming operators,
and this immediately leads to three possible versions of the notion of bond (so-called
homogeneous bond wrt certain pair of concept-forming operators). The first results show
a close correspondence between a homogeneous bond between two contexts and certain
special types of mappings between the sets of extents (or intents) of the corresponding
concept lattices. Later, we introduce the so-called heterogeneous bonds (considering simul-
taneously two types of concept-forming operators) and generalize the previous relationship
to mappings between the sets of extents (or intents) of the corresponding concept lattices.

2. Preliminaries

2.1. Residuated lattices, fuzzy sets and fuzzy relations

We use complete residuated lattices as basic structures of truth degrees. A complete
residuated lattice is a structure L = 〈L,∧,∨,⊗,→, 0, 1〉, such that
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(i) 〈L,∧,∨, 0, 1〉 is a complete lattice, i.e. a partially ordered set in which arbitrary
infima and suprema exist;

(ii) 〈L,⊗, 1〉 is a commutative monoid, i.e. ⊗ is a binary operation which is commuta-
tive, associative and a⊗ 1 = a for each a ∈ L;

(iii) ⊗ and→ satisfy adjointness, i.e. a⊗ b ≤ c iff a ≤ b→ c.

Recall that the partial order of L is denoted by ≤, elements 0 and 1 denote the least and
greatest elements and, note that throughout this work, L denotes an arbitrary complete
residuated lattice whose multiplicative unit is also its greatest element in the spirit of
Goguen (1967).

Elements a of L are called truth degrees. Operations ⊗ (multiplication) and
→ (residuum) play the role of (truth functions of ) “fuzzy conjunction” and “fuzzy impli-
cation”. Furthermore, we define the complement of a ∈ L as

¬a = a→ 0 (1)

An L-set (or L-fuzzy set) A in a universe set X is a mapping assigning to each x ∈ X
some truth degree A(x) ∈ L. The set of all L-sets in a universe X is denoted LX .

The operations with L-sets are defined componentwise. For instance, the intersection
of L-sets A,B ∈ LX is an L-set A ∩ B in X, such that (A ∩ B)(x) = A(x) ∧ B(x) for each
x ∈ X, etc. An L-set A ∈ LX is also denoted {A(x)/x | x ∈ X}. If, for all y ∈ X distinct from
x1, x2, . . . , xn, we have A(y) = 0, we also write{

A(x1)/x1, A(x2)/x2, . . . , A(xn)/xn
}

. (2)

Furthermore, in (2), we write just x instead of 1/x.
An L-set A ∈ LX is called crisp if A(x) ∈ {0, 1} for each x ∈ X. Crisp L-sets can be

identified with ordinary sets. For a crisp A, we also write x ∈ A for A(x) = 1 and x �∈ A
for A(x) = 0. An L-set A ∈ LX is called empty (denoted by ∅) if A(x) = 0 for each x ∈ X.
For a ∈ L and A ∈ LX , the L-sets a⊗ A, a→ A, A→ a and ¬A in X are defined by

(a⊗ A)(x) = a⊗ A(x), (3)
(a→ A)(x) = a→ A(x), (4)
(A→ a)(x) = A(x)→ a, (5)
¬A(x) = A(x)→ 0. (6)

For A ∈ LX , the L-sets a ⊗ A, a → A,A → a are called a-multiplication, a-shift and
a-complement, respectively.

Binary L-relations (binary L-fuzzy relations) between X and Y can be thought of as
L-sets in the universe X × Y . That is, a binary L-relation I ∈ LX×Y between a set X and a
set Y is a mapping, assigning to each x ∈ X and each y ∈ Y a truth degree I(x, y) ∈ L (a
degree to which x and y are related by I). By IT we denote the transpose of I ; i.e. IT ∈ LY×X
with IT(y, x) = I(x, y) for all x ∈ X, y ∈ Y .

Various composition operators for binary L-relations were extensively studied by
Kohout and Bandler (1985); we will use the following three composition operators, defined
for relations A ∈ LX×F and B ∈ LF×Y :
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(A ◦ B)(x, y) =
∨
f ∈F

A(x, f )⊗ B(f , y), (7)

(A � B)(x, y) =
∧
f ∈F

A(x, f )→ B(f , y), (8)

(A � B)(x, y) =
∧
f ∈F

B(f , y)→ A(x, f ). (9)

All of them have natural verbal descriptions. For instance, (A ◦ B)(x, y) is the truth
degree of the proposition “there is factor f, such that f applies to object x and attribute y is a
manifestation of f ”; (A�B)(x, y) is the truth degree of “for every factor f, if f applies to object
x then attribute y is a manifestation of f ”. Note also that for L = {0, 1}, A ◦ B coincides
with the well-known composition of binary relations.

We will occasionally use some of the following properties concerning the associativity
of several composition operators (see Belohlavek 2002).
Theorem 1: The operators above have the following properties concerning composition.

• Associativity:

R ◦ (S ◦ T) = (R ◦ S) ◦ T , (10)
R � (S � T) = (R � S) � T , (11)
R � (S � T) = (R ◦ S) � T , (12)
R � (S ◦ T) = (R � S) � T . (13)

• Distributivity:(⋃
i

Ri

)
◦ S =

⋃
i

(
Ri ◦ S

)
, and R ◦

(⋃
i

Si

)
=
⋃
i

(
R ◦ Si

)
, (14)

(⋂
i

Ri

)
� S =

⋂
i

(
Ri � S

)
, and R �

(⋃
i

Si

)
=
⋂
i

(
R � Si

)
, (15)

(⋃
i

Ri

)
� S =

⋂
i

(
Ri � S

)
, and R �

(⋂
i

Si

)
=
⋂
i

(
R � Si

)
. (16)

2.2. Formal fuzzy concept analysis

An L-context is a triplet 〈X,Y , I〉, where X and Y are (ordinary non-empty) sets and
I ∈ LX×Y is an L-relation between X and Y . Elements of X are called objects, elements of
Y are called attributes and I is called an incidence relation. I(x, y) = a is read: “The object
x has the attribute y to degree a”.

Consider the following pairs of operators induced by an L-context 〈X,Y , I〉. First, the
pair 〈↑, ↓〉 of operators ↑ : LX → LY and ↓ : LY → LX is defined, for all A ∈ LX and
B ∈ LY , by

A↑(y) =
∧
x∈X

A(x)→ I(x, y), B↓(x) =
∧
y∈Y

B(y)→ I(x, y). (17)
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Second, the pair 〈∩, ∪〉 of operators ∩ : LX → LY and ∪ : LY → LX is defined by

A∩(y) =
∨
x∈X

A(x)⊗ I(x, y), B∪(x) =
∧
y∈Y

I(x, y)→ B(y), (18)

Third, the pair 〈∧, ∨〉 of operators ∧ : LX → LY and ∨ : LY → LX is defined by

A∧(y) =
∧
x∈X

I(x, y)→ A(x), B∨(x) =
∨
y∈Y

B(y)⊗ I(x, y), (19)

The three previous pairs are those more commonly used in the literature related to
residuated lattice-based generalizations of FCA. In this respect, it is worth to note that
there exists a fourth pair of concept-forming operators not considered in the present work
which can be viewed as a double dualization on the first pair.
Remark 1: Notice that the three different pairs of concept-forming operators can be int-
erpreted as instances of the composition operators between relations. Applying the iso-
morphisms L1×X ∼= LX and LY×1 ∼= LY whenever necessary, one could write them,
alternatively, as follows:

A↑ = A � I A∩ = A ◦ I A∧ = A � I

B↓ = I � B B∪ = I � B B∨ = I ◦ B
Furthermore, denote the corresponding sets of fixedpoints byB↑↓(X,Y , I),B∩∪(X,Y , I)

and B∧∨(X,Y , I), i.e.

B↑↓(X,Y , I) = {〈A,B〉 ∈ LX × LY | A↑ = B, B↓ = A},
B∩∪(X,Y , I) = {〈A,B〉 ∈ LX × LY | A∩ = B, B∪ = A},
B∧∨(X,Y , I) = {〈A,B〉 ∈ LX × LY | A∧ = B, B∨ = A}.

The sets of fixpoints are complete lattices (Pollandt 1997; Belohlavek 1999; Georgescu
and Popescu 2004), called the standard (resp. object-oriented and property-oriented) L-
concept lattices associated with I , and their elements are called formal concepts.

For a concept lattice B��(X,Y , I), where B�� is either of B↑↓, B∩∪ or B∧∨, denote the
corresponding sets of extents and intents by Ext��(X,Y , I) and Int��(X,Y , I). That is,

Ext��(X,Y , I) = {A ∈ LX | 〈A,B〉 ∈ B��(X,Y , I) for some B},
Int��(X,Y , I) = {B ∈ LY | 〈A,B〉 ∈ B��(X,Y , I) for some A},

The operators induced by an L-context and their sets of fixpoints have extensively been
studied (see e.g. Pollandt 1997; Belohlavek 1999, 2001, 2004; Georgescu and Popescu 2004).

We will need the following result by Belohlavek and Konecny (2012b).
Theorem 2: Consider L-contexts 〈X,Y , I〉, 〈X, F,A〉 and 〈F,Y ,B〉.
(a) Int∩∪(X,Y , I) ⊆ Int∩∪(F,Y ,B) if and only if there exists A′ ∈ LX×F , such that

I = A′ ◦ B,
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(b) Ext∧∨(X,Y , I) ⊆ Ext∧∨(X, F,A) if and only if there exists B′ ∈ LF×Y , such that
I = A ◦ B′,

(c) Int↑↓(X,Y , I) ⊆ Int↑↓(F,Y ,B) if and only if there exists A′ ∈ LX×F , such that
I = A′ � B,

(d) Ext↑↓(X,Y , I) ⊆ Ext↑↓(X, F,A) if and only if there exists B′ ∈ LF×Y , such that
I = A � B′.

(e) Ext↑↓(X,Y , I) ⊆ Ext∩∪(X, F,A) if and only if there exists B′ ∈ LF×Y , such that
I = A � B′,

(f) Int↑↓(X,Y , I) ⊆ Int∧∨(F,Y ,B) if and only if there exists A′ ∈ LX×F , such that
I = A′ � B.

In addition, we also have

(g) Ext∩∪(X,Y ,A ◦ B) ⊆ Ext∩∪(X, F,A).
(h) Int∧∨(X,Y ,A ◦ B) ⊆ Int∧∨(F,Y ,B).

We will also utilize the following lemma by Belohlavek and Konecny (2011).

Lemma 1: Let I , J ∈ LX×Y . We have B∪I = B∪J for each B ∈ LY iff I = J .

2.3. Morphisms of closure and interior systems

A system of L-sets V ⊆ LX is called an L-interior system if

• V is closed under ⊗-multiplication, i.e. for every a ∈ L and C ∈ V , we have a ⊗
C ∈ V ;
• V is closed under union, i.e.

⋃
j∈J

Cj ∈ V whenever Cj ∈ V for all j ∈ J .

V ⊆ LX is called an L-closure system if

• V is closed under left→-multiplication (or→-shift), i.e. for every a ∈ L and C ∈ V ,
we have a→ C ∈ V ;
• V is closed under intersection, i.e.

⋂
j∈J

Cj ∈ V whenever Cj ∈ V for all j ∈ J .

One can find examples of L-closure and L-interior systems in the framework of for-
mal fuzzy concept analysis as follows: for an L-context 〈X,Y , I〉, the sets Ext↑↓(X,Y , I),
Ext∩∪(X,Y , I), Int∧∨(X,Y , I), and Int↑↓(X,Y , I) are L-closure systems, while
Ext∧∨(X,Y , I) and Int∩∪(X,Y , I) are L-interior systems (see Belohlavek and Konecny
2011, 2012b; Konecny 2012).

Definition 1:

(a) A mapping h : V → W from an L-interior system V ⊆ LX into an L-interior
systemW ⊆ LY is called an i-morphism if it is a⊗- and∨-morphism, i.e.

• h(a⊗ C) = a⊗ h(C) for each a ∈ L and C ∈ V ;
• h(

∨
k∈K Ck) =∨k∈K h(Ck) for every collection of Ck ∈ V (k ∈ K).

An i-morphism h : V → W is said to be an extendable i-morphism if h can be
extended to an i-morphism of LX to LY , i.e. if there exists an i-morphism h′ : LX →
LY , such that for every C ∈ V , we have h′(C) = h(C).
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(b) Amapping h : V →W from an L-closure systemV ⊆ LX into an L-closure system
W ⊆ LY is called a c-morphism if it is a→- and

∧
-morphism and it preserves

a-complements, i.e. if

• h(a→ C) = a→ h(C) for each a ∈ L and C ∈ V ;
• h(

∧
k∈K Ck) =∧k∈K h(Ck) for every collection of Ck ∈ V (k ∈ K);

• if C is an a-complement, then h(C) is an a-complement.
A c-morphism h : V →W is called an extendable c-morphism if h can be extended
to a c-morphism of LX to LY , i.e. if there exists a c-morphism h′ : LX → LY , such
that for every C ∈ V , we have h′(C) = h(C).

(c) A mapping h : V → W from an L-interior system V ⊆ LX into an L-closure
systemW ⊆ LY is called an a-morphism if

• h(a⊗ C) = a→ h(C) for each a ∈ L and C ∈ V ;
• h(

∨
k∈K Ck) =∧k∈K h(Ck) for every collection of Ck ∈ V .

An a-morphism h : V →W is called an extendable a-morphism if h can be extended
to an a-morphism of LX to LY , i.e. if there exists an a-morphism h′ : LX → LY ,
such that for every C ∈ V , we have h′(C) = h(C).

In this paper, we will consider only extendable morphisms, for which the following
results will be used hereafter (see Belohlavek and Konecny 2011, 2012b; Konecny 2012).
Lemma 2: For V ⊆ LX,

(a) if h : V → LY is an i-morphism, then there exists an L-relation R ∈ LX×Y , such that
h(C) = C ◦ R for every C ∈ V.

(b) if h : V → LY is a c-morphism, then there exists an L-relation R ∈ LX×Y , such that
h(C) = C � R for every C ∈ V.

(c) if h : V → LY is an a-morphism, then there exists an L-relation R ∈ LX×Y , such
that h(C) = C � R for every C ∈ V.

Lemma 3: Let R ∈ LY×X,
(a) the mapping hR : LX → LY defined by hR(C) = R ◦ C and the mapping gR : LY →

LX defined by gR(C) = C ◦ R are i-morphisms.
(b) the mapping hR : LX → LY defined by hR(C) = R � C and the mapping gR : LY →

LX defined by gR(C) = C � R are c-morphisms.
(c) themapping gR : LX → LY definedbyhR(C) = R�C and themapping gR : LY → LX

defined by gR(C) = C � R are a-morphisms.

The previous lemmas together with Remark 1 allow for establishing a link between
{i, c, a}-morphisms with formal fuzzy concept analysis in that, for instance, hR(C) in
(a) coincides with C∨ just using R as incidence relation (hence, we will denote the
corresponding concept-forming operator as ∨R). Similarly, we will use ↓R, ∪R and so
on.

3. Homogeneous L-bonds

This section introduces somenewnotions studied in thiswork. To beginwith,we introduce
the notion of homogeneous L-bond as a convenient generalization of bond. Firstly, it will
be convenient to recall the classical notion of bond.

163



INTERNATIONAL JOURNAL OF GENERAL SYSTEMS 167

A bond between two contexts K1 = 〈X1,Y1, I1〉 and K2 = 〈X2,Y2, I2〉 is a relation
β ⊆ X1 × Y2, such that

(B1) For all x ∈ X1, the set β(x) is an intent of 〈X2,Y2, I2〉;
(B2) For all y ∈ Y2, the set β−1(y) is an extent of 〈X1,Y1, I1〉;

where β(x) ⊆ Y2,β−1(y) ⊆ X1 s.t. (β(x))(y) = β(x, y) = β−1(y)(x).
Note that, in the classical case, these conditions are equivalent to

(B1′) Each extent of 〈X1,Y2,β〉 is an extent of 〈X1,Y1, I1〉.
(B2′) Each intent of 〈X1,Y2,β〉 is an intent of 〈X2,Y2, I2〉.

These conditions lead us to the following generalization to the L-fuzzy case.

Definition 2: Ahomogeneous bondwrt 〈�,�〉between twoL-contextsK1 = 〈X1,Y1, I1〉
and K2 = 〈X2,Y2, I2〉 is an L-relation β ∈ LX1×Y2 s.t.

Ext��(X1,Y2,β) ⊆ Ext��(X1,Y1, I1) and Int��(X1,Y2,β) ⊆ Int��(X2,Y2, I2).

Now, we can explain the use of the term homogeneous in that the same pair of concept-
forming operators is used in both inclusions in the definition above. Later, in Section 4, we
will consider heterogeneous bonds in which the concept-forming operators appear mixed
in the inclusions above.

In this section, we study homogeneous bonds with respect to 〈∩,∪〉 and homogeneous
bonds with respect to 〈∧,∨〉.
Remark 2:

(a) Note that homogeneous bonds with respect to 〈↑,↓ 〉 were studied in Krídlo, Krajči,
andOjeda-Aciego (2012). In Section 4.2, wewill provide a comparison of our results
with those in the previous reference. See also Remark 5.

(b) One can observe that homogeneous bondswrt 〈∧,∨〉 from 〈X1,Y1, I1〉 to 〈X2,Y2, I2〉
are transposes of homogeneous bonds wrt 〈∩,∪〉 from 〈Y2,X2, IT2 〉 to 〈Y1,X1, IT1 〉.

Homogeneous bonds can be put in relation to that of c-morphism.

Theorem 3:

(a) The homogeneous bonds from 〈X1,Y1, I1〉 to 〈X2,Y2, I2〉 wrt 〈∩,∪〉 are in one-to-one
correspondence with the c-morphisms from Ext∩∪(X2,Y2, I2) to Ext∩∪(X1,Y1, I1).

(b) The homogeneous bonds from 〈X1,Y1, I1〉 to 〈X2,Y2, I2〉 wrt 〈∧,∨〉 are in one-to-one
correspondence with the c-morphisms from Int∧∨(X1,Y1, I1) to Int∧∨(X2,Y2, I2).

Proof:

(a) We show procedures to obtain the c-morphism from a homogeneous bond and vice
versa.
“⇒”: Let β be a homogeneous bond from 〈X1,Y1, I1〉 to 〈X2,Y2, I2〉 wrt 〈∩,∪〉.
By Definition 2, we have Int∩∪(X1,Y2,β) ⊆ Int∩∪(X2,Y2, I2); thus by Theorem 2,
there exists R ∈ LX1×X2 , such that β = R ◦ I2. Now, by Lemma 3, the induced
operator of this type ∪R : LX2 → LX1 , such that C∪R = R � C, is a c-morphism.
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It only remains to check that when C is an extent of K2, its image R � C is an extent
of K1. Assume C ∈ Ext∩∪(X2,Y2, I2), then we have that C = D∪I2 = I2 � D for
some D ∈ LY2 ; now using this expression in R � C, we have

R � C = R � (I2 � D) = (R ◦ I2) � D = β � D = D∪β

and, as a result, we obtain that R � C is in Ext∩∪(X1,Y2,β) and, therefore, as β is a
homogeneous bond, it is also an extent of K1.
Now, let us show that the previous construction, given a homogeneous bond
β from 〈X1,Y1, I1〉 to 〈X2,Y2, I2〉 wrt 〈∩,∪〉, produces a unique c-morphism
fβ : Ext∩∪(X2,Y2, I2)→ Ext∩∪(X1,Y1, I1).
It is enough to check that the construction does not depend on the relation used

to factorize β , i.e. for any R, S ∈ LX1×X2 satisfying β = R ◦ I2 = S ◦ I2, we have
that the equality

C∪R = C∪S (20)

holds for all C ∈ Ext∩∪(X2,Y2, I2). Now, by definition, Ext∩∪(X2,Y2, I2) = {D∪I2 |
D ∈ LY2} the equality (20) is equivalent to

D∪I2∪R = D∪I2∪S for all D ∈ LY2 . (21)

but we have that

D∪I2∪R = R � (I2 � D) = (R ◦ I2) � D = β � D
D∪I2∪S = S � (I2 � D) = (S ◦ I2) � D = β � D

Thus, equality (21) holds true, and both relations R and S induce the same
c-morphism fβ : Ext∩∪(X2,Y2, I2)→ Ext∩∪(X1,Y1, I1).
“⇐”: For a c-morphism f : Ext∩∪(X2,Y2, I2)→ Ext∩∪(X1,Y1, I1), by Lemma 2,

there is an L-relation S ∈ LX2×X1 s.t. f (C) = C∪S = ST � C= C � S for each
C ∈ Ext∩∪(X2,Y2, I2).
By considering β = ST ◦ I2, and using Theorem 2(a) one obtains that

Int∩∪(X1,Y2,β) ⊆ Int∩∪(X2,Y2, I2). For the inclusion between the extents, it is
sufficient to show that Ext∩∪(X1,Y2,β) ⊆ Im(f ): assume C ∈ Ext∩∪(X1,Y2,β),
then there exists a D, such that C = β � D. Unfolding the definition of β and
applying some relational equalities, we obtain the following:

C = β � D = (ST ◦ I2) � D = ST � (I2 � D) = (I2 � D)T � S = f ((I2 � D)T)

As, by assumption, Im(f ) ⊆ Ext∩∪(X1,Y1, I1), we have that β is a homogeneous
bond from 〈X1,Y1, I1〉 to 〈X2,Y2, I2〉 wrt 〈∩,∪〉.
Let us prove now that this construction produces a unique homogeneous bond

βf from 〈X1,Y1, I1〉 to 〈X2,Y2, I2〉 for a given c-morphism f : Ext∩∪(X2,Y2, I2) →
Ext∩∪(X1,Y1, I1) wrt 〈∩,∪〉. It is enough to show

RT ◦ I2 = ST ◦ I2. (22)
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for all relations R, S ∈ LX2×X1 satisfying

f (C) = C � R = C � S for all C ∈ Ext∩∪(X2,Y2, I2) (23)

Since Ext∩∪(X2,Y2, I2) = {D∪I2 | D ∈ LY2}, the condition (23) is equivalent to

f (D∪I2 ) = D∪I2 � R = D∪I2 � S for all D ∈ LY2 . (24)

We have D∪I2 � R = (I2 � D) � R = RT � (I2 � D) = (RT ◦ I2) � D and similarly
D∪I2 � S = (ST ◦ I2) � D, hence the condition (23) is equivalent to

f (D∪I2 ) = (RT ◦ I2) � D = (ST ◦ I2) � D
= D↓RT◦I2 = D↓ST◦I2 for all D ∈ LY2 .

By Lemma 1, we have RT ◦ I2 = ST ◦ I2, and (22) is satisfied and βf is well defined.
Finally, the one-to-one correspondence stated by the theorem will be completely

proved if βfβ = β and fβf = f . For this, it is worth to recall both directions of the
correspondence in purely relational terms:

• Given β , if β = R ◦ I2, then fβ(C) = R � C = C � RT

• Given f , if f (C) = C � S, then βf = ST ◦ I2
Assume that β = R ◦ I2, then βfβ = ST ◦ I2 for some relation S which is a right

factor of fβ wrt �; by definition of fβ , it is possible to consider ST = R. As a result,
we obtain βfβ = β .
Now, assume f can be written as f (C) = C � S, then βf = ST ◦ I2 which, in its

turn, implies that fβf = ST � C = C � S = f .
(b) Follows from (a) and Remark 2(b). �
The previous remark and theorem show that the homogeneous bonds wrt 〈∩,∪〉 are

different from homogeneous bonds wrt 〈∧,∨〉
Theorem 4: The system of all homogeneous bonds wrt 〈∩,∪〉 (resp. wrt 〈∧,∨〉) from K1
to K2 is an L-interior system.
Proof: We prove the result only for 〈∩,∪〉; the other part then follows from Remark 2(b).

Consider a family {βj ∈ LX1×X2 | j ∈ J} of homogeneous bonds from K1 to K2, and
let us show that β = ⋃j βj is a homogeneous bond, i.e. that A∩β ∈ Int∩∪(X2,Y2, I2) and
B∪β ∈ Ext∩∪(X1,Y1, I1).

A∩β = A ◦ β = A ◦
⎛
⎝⋃

j

βj

⎞
⎠ =⋃

j

(
A ◦ βj

) =⋃
j

A∩βj

Thus, we have that A∩β = ⋃
j∈J A

∩βj , proving that A∩β ∈ Int∩∪(X2,Y2, I2) since
Int∩∪(X2,Y2, I2) is an L-interior system.

Similarly, we have

B∪β = β � B =
⎛
⎝⋃

j

βj

⎞
⎠ � B =⋂

j

(βj � B) =
⋂
j

B∪βj
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Thus, we have that B∪β = ⋂
j∈J B

∪βj , proving that B∪β ∈ Ext∩∪(X2,Y2, I2) since
Ext∩∪(X2,Y2, I2) is an L-closure system.

Second, we show that if β is a homogeneous bond from 〈X1,Y1, I1〉 to 〈X2,Y2, I2〉, then
a⊗ β is a homogeneous bond as well. For every A ∈ LX1 , we have

A∩a⊗β = A ◦ (Ida ◦ β) = (A ◦ Ida) ◦ β = (a⊗ A)∩β ,

where Ida the identity relation on X1 multiplied by a ∈ L; i.e. Ida = a ⊗ Id. Thus,
A∩a⊗β = (a⊗ A)∩β ∈ Int∩∪(X2,Y2, I2).

For every B ∈ LY2 , we have

B∪a⊗β = (Ida ◦ β) � B = Ida � (β � B) = a→ B∪β .

Thus, B∪a⊗β = a→ B∪β , proving that B∪a⊗β ∈ Ext∩∪(X2,Y2, I2) since Ext∩∪(X2,Y2, I2)
is an L-closure system.

The systemof all homogeneous bonds is closed under union andmultiplication, whence
it is an L-interior system. �

3.1. Strong homogeneous bonds

In this section, we will consider homogeneous bonds wrt both pairs of isotone concept-
forming operators simultaneously; the antitone pair 〈↑,↓ 〉will be considered in Section 4.2.
Formally, we introduce the notion of strong homogeneous bond as follows:
Definition 3: A strong homogeneous bond from L-context K1 = 〈X1,Y1, I1〉 to
L-context K2 = 〈X2,Y2, I2〉 is an L-relation β ∈ LX1×Y2 s.t. β is a homogeneous bond
wrt both 〈∩,∪〉 and 〈∧,∨〉.

The following shows that there exist homogeneous bonds which are not strong homo-
geneous bonds, as the following example shows.
Example 1: Consider L a finite chain 0 < a < b < 1 with⊗ defined as follows:

x ⊗ y =
{
x ∧ y if x = 1 or y = 1,
0 otherwise,

for each x, y ∈ L. One can easily see that x ⊗∨j yj =
∨

j (x ⊗ yj), and thus an adjoint
operation→ exists, such that 〈L,∧,∨,⊗,→, 0, 1〉 is a complete residuated lattice. Namely,
→ is given as follows for all x, y ∈ L:

x→ y =

⎧⎪⎨
⎪⎩
1 if x ≤ y,
y if x = 1,
b otherwise,

Consider the sets X1 = X2 = {x}, Y1 = Y2 = {y} and the relations I1 = {a/〈x, y〉} and
I2 = {b/〈x, y〉}. One can check that we have Ext∩∪({x}, {y}, I1) = Ext∩∪({x}, {y}, I2) =
{{b/x}, {x}} and, trivially, Int∩∪({x}, {y}, I2) = Int∩∪({x}, {y}, I2). Thus, I2 is a homoge-
neous bond between I1 and I2 wrt 〈∩,∪〉. On the other hand, I2 is not a homogeneous
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bond between I1 and I2 wrt 〈∧,∨〉 since Ext∧∨({x}, {y}, I1) = {∅, {a/x}} � {∅, {b/x}} =
Ext∧∨({x}, {y}, I2).

The following lemma introduces alternative characterizations of the notion of strong
homogeneous bond.
Lemma 4: The following statements are equivalent:

(1) β is a strong homogeneous bond from K1 = 〈X1,Y1, I1〉 to K2 = 〈X2,Y2, I2〉.
(2) β satisfies both Ext∧∨(X1,Y2,β) ⊆ Ext∧∨(X1,Y1, I1) and Int∩∪(X1,Y2,β) ⊆

Int∩∪(X2,Y2, I2).
(3) β satisfies both {y}∨β ∈ Ext∧∨(X1,Y1, I1) and {x}∩β ∈ Int∩∪(X2,Y2, I2) for each

x ∈ X1, y ∈ Y2.
(4) β = Se ◦ I2 = I1 ◦ Si for some Se ∈ LX1×X2 and Si ∈ LY1×Y2 .

Proof: (1)⇒ (2): directly from definition of strong homogeneous bond.
(2)⇒ (3): trivial since {y}∨β ∈ Ext∧∨(X1,Y2,β) and {x}∩β ∈ Int∩∪(X1,Y2,β).
(3⇒ (4): each L-set A in LX1 can be written in the following form

⋃
x∈X1

A(x) ⊗ {x}.
Then, we have:

A∩β (y) =
∨
x′∈X1

( ⋃
x∈X1

A(x)⊗ {x}
)

(x′)⊗ β(x′, y)

=
∨
x′∈X1

( ∨
x∈X1

A(x)⊗ {x}(x′)
)
⊗ β(x′, y)

=
∨
x∈X1

∨
x′∈X1

A(x)⊗ {x}(x′)⊗ β(x′, y)

=
∨
x∈X1

A(x)⊗
∨
x′∈X
{x}(x′)⊗ β(x′, y)

=
∨
x∈X1

A(x)⊗ {x}∩β (y)

=
( ⋃

x∈X1

A(x)⊗ {x}∩β

)
(y).

As a result, we obtain A∩β ∈ Int∩∪(X2,Y2, I2) since {x}∩β ∈ Int∩∪(X2,Y2, I2) for each x ∈
X1 and Int∩∪(X2,Y2, I2) is an L-interior system. Because each intent in Int∩∪(X1,Y2,β)

has the form A∩β , we get Int∩∪(X1,Y2,β) ⊆ Int∩∪(X2,Y2, I2). The existence of Se now
follows from Theorem 2. The existence of Si can be proved similarly.

(4)⇒ (1): by Theorem 2 items (a),(b),(g),(h). �
Remark 3: It is worth noting that although conditions (B1′)–(B2′) are equivalent to
(B1)–(B2) for the concept-forming operators 〈↑,↓ 〉, they are no longer equivalent for other
concept-forming operators, i.e. 〈∩,∪〉 and 〈∧,∨〉; instead the conditions (B1′)–(B2′) are
weaker. Definition 3 corresponds to conditions (B1)–(B2) as Lemma 4 (3) shows.

Strong homogeneous bonds can be related to the i-morphisms.
Theorem 5: The strong homogeneous bonds from K1 = 〈X1,Y1, I1〉 to K2 = 〈X2,Y2, I2〉
are in one-to-one correspondence with
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(a) i-morphisms from Int∩∪(X1,Y1, I1) to Int∩∪(X2,Y2, I2).
(b) i-morphisms from Ext∧∨(X2,Y2, I2) to Ext∧∨(X1,Y1, I1).

Proof: We prove only (a); the proof of (b) is dual. We show procedures to obtain the
i-morphism from Int∩∪(X1,Y1, I1) to Int∩∪(X2,Y2, I2) from a strong homogeneous bond
and vice versa.

“⇒”: Let β be a strong homogeneous bond fromK1 = 〈X1,Y1, I1〉 toK2 = 〈X2,Y2, I2〉.
By Lemma 4, there is Si ∈ LY1×Y2 , such that β = I1 ◦ Si. The induced operator ∩Si is an
i-morphism from Int∩∪(X1,Y1, I1) to Int∩∪(X2,Y2, I2) by Lemma 3(a).

“⇐”: For i-morphism f , fromInt∩∪(X1,Y1, I1) to Int∩∪(X2,Y2, I2), there is anL-relation
Si s.t. f (B) = B∩Si for each B ∈ Int∩∪(X1,Y1, I1) by Lemma 2(a). Denote β = I1 ◦ Si.

Each C ∈ Int∩∪(X1,Y2,β) is equal to A∩β for some A ∈ LX1 and A∩β = A ◦ β =
A ◦ (I1 ◦ Si) = (A ◦ I1) ◦ Si = (A ◦ I1)∩Si = f (A ◦ I1) ∈ Im(f ).

Thus, we have Int∩∪(X1,Y2,β) ⊆ Im(f ) ⊆ Int∩∪(X2,Y2, I2); furthermore, we have
Ext∧∨(X1,Y2,β) ⊆ Ext∧∨(X1,Y1, I1) by Theorem 2(b). Hence, β is a strong homogeneous
bond by Lemma 4.

The fact that the two mappings between bonds and i-morphisms are mutually inverse
can be checked as in the proof of Theorem 3. �

Theorem 6: The system of all strong homogeneous bonds is an L-interior system.

Proof: Using Lemma 4 (2), it is an intersection of the L-interior systems from
Theorem 4. �

3.2. Direct ◦-products
In the previous section, we have studied the properties of homogeneous bonds, in partic-
ular its one-to-one correspondence with c-morphisms and i-morphisms. In this section,
somehow paraphrasing (Ganter 2007), we introduce the parameterized direct product of
contexts in order to elegantly describe the different families of generalized bonds between
two given contexts.

Definition 4: Let K1 = 〈X1,Y1, I1〉 and K2 = 〈X2,Y2, I2〉 be L-contexts. The direct
◦-product of K1 and K2 is defined as the L-context

K1 � K2 = 〈X2 × Y1,X1 × Y2,�〉

with �(〈x2, y1〉, 〈x1, y2〉) = I1(x1, y1)⊗ I2(x2, y2).

Theorem 7:

(a) The 〈∩,∪〉-intents of K1 � K2 are strong homogeneous bonds from K1 to K2.
(b) The 〈∧,∨〉-extents of K1 � K2 are strong homogeneous bonds from K2 to K1.
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Proof: We prove only (a); the (b) part is dual. We have

φ∩�(x1, y2) =
∨

〈x2,y1〉∈X2×Y1
φ(x2, y1)⊗�(〈x2, y1〉, 〈x1, y2〉)

=
∨

〈x2,y1〉∈X2×Y1
φ(x2, y1)⊗ I1(x1, y1)⊗ I2(x2, y2)

=
∨
y1∈Y1

∨
x2∈X2

φ(x2, y1)⊗ I1(x1, y1)⊗ I2(x2, y2)

=
∨
y1∈Y1

I1(x1, y1)⊗
∨

x2∈X2

φ(x2, y1)⊗ I2(x2, y2)

=
∨
y1∈Y1

I1(x1, y1)⊗ (φT ◦ I2)(y1, y2)

= (I1 ◦ φT ◦ I2)(x1, y2).

Now, notice that (I1 ◦ φT) ◦ I2 = I1 ◦ (φT ◦ I2) = β is a strong homogeneous bond
by Lemma 4. �
Remark 4: It is worth mentioning that not every strong homogeneous bond is included
in Int∩∪(X1 × Y2,X2 × Y1,�) since there are strong homogeneous bonds which are not
of the form of I1 ◦ φT ◦ I2. For instance, using the same structure of truth degrees and I1
as in Example 1, obviously I1 is a strong homogeneous bond on K1 (i.e. from K1 to K1),
but Int∩∪(X1 × Y2,X2 × Y1,�) contains only an empty set.
Corollary 1: The intents of K1 � K2 are exactly those strong homogeneous bonds from
K1 to K2 which can be decomposed as I1 ◦ φT ◦ I2 for some φ ∈ LX2×Y1 .
Proof: The final line of the proof of Theorem 7 explains which strong homogeneous
bonds are intents of K1 � K2. �
Remark 5: The relationship with the homogeneous bonds wrt 〈↑,↓ 〉, introduced in
Krídlo, Krajči, and Ojeda-Aciego (2012), is the following: If the double negation law holds
true in L, we have the equality Ext↑↓(X,Y , I) = Ext∩∪(X,Y ,¬I). Thus, for a strong
homogeneous bond β ∈ LX1×Y2 = Se ◦ I2 = I1 ◦ Si from K1 to K2, we have

(¬β)(x1, y2) = ¬(Se ◦ I2)(x1, y2)

=
⎛
⎝ ∨

x2∈X2

(
Se(x1, x2)⊗ I2(x2, y2)

)⎞⎠→ 0

=
∧

x2∈X2

(Se(x1, x2)⊗ I2(x2, y2))→ 0)

=
∧

x2∈X2

(Se(x1, x2)→ (I2(x2, y2)→ 0))

= (Se � ¬I2)(x1, y2)

for each x1 ∈ X1, y2 ∈ Y2. Similarly, we can show that ¬β = ¬I1 � Si. Thus, ¬β is a
homogeneous bond wrt 〈↑,↓ 〉 from ¬K1 to ¬K2.

170



174 J. KONECNY ANDM. OJEDA-ACIEGO

Some papers (Ganter 2007; Krídlo, Krajči, and Ojeda-Aciego 2012) have considered
direct products in the crisp and the fuzzy settings, respectively, for the concept-forming
operators 〈↑,↓ 〉. In Krídlo, Krajči, andOjeda-Aciego (2012), conditions are specified under
which a homogeneous bondwrt 〈↑,↓ 〉 is present in the concept lattice of the direct product.
Corollary 1 and Remark 5 provide a simplification of these conditions.

A different direct product of contextsK1 �K2 = 〈X2 × Y1,X1 × Y2,�〉was defined in
Krídlo, Krajči, and Ojeda-Aciego (2012), with the incidence relation given by

�(〈x2, y1〉, 〈x1, y2〉) = ¬I1(x1, y1)→ I2(x2, y2)
( = ¬I2(x2, y2)→ I1(x1, y1)). (25)

For the concept-forming operator ↑� , we have

φ↑�(x1, y2) =
∧

〈x2,y1〉∈X2×Y1
φ(x2, y1)→ (¬I1(x1, y1)→ I2(x2, y2))

=
∧

〈x2,y1〉∈X2×Y1
¬I1(x1, y1)→ (φ(x2, y1)→ I2(x2, y2))

=
∧

x2∈X2

∧
y1∈Y1
¬I1(x1, y1)→ (φ(x2, y1)→ I2(x2, y2))

=
∧
y1∈Y1
¬I1(x1, y1)→

∧
x2∈X2

(φ(x2, y1)→ I2(x2, y2))

=
∧
y1∈Y1
¬I1(x1, y1)→ (φT � I2)(y1, y2)

= [¬I1 � (φT � I2)](x1, y2)
= [(¬I1 ◦ φT) � I2)](x1, y2)
= [¬(¬I1 ◦ φT ◦ ¬I2)](x1, y2).

Whence a stronghomogeneous bondwrt 〈↑,↓ 〉 is an intent of the concept lattice ofK1�K2,
iff it is possible to write it as ¬(¬I1 ◦ φT ◦ ¬I2), i.e. if its complement is an intent of
¬K1 � ¬K2.

Example 2: Consider formal L-context

Figure 1 depicts a lattice of all homogeneous bonds from K to K wrt 〈∩,∪〉 and 〈∧,∨〉.

4. Heterogeneous L-bonds

This section introduces heterogeneous L-bonds in the sense that conditions generalizing
(B1′) and (B2′) relate different pairs of concept-forming operators. Particularly, we study
the so-called a-bonds and c-bonds defined as follows.
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Figure 1. Lattice of all homogeneous bonds wrt isotone concept-forming operators on K from
Example 2. Homogeneous bonds wrt 〈∩,∪〉 are drawn with dashed border; homogeneous bonds
wrt 〈∧,∨〉 are drawn with dotted border; strong homogeneous bonds are drawn with solid border; and
intents ofK � K are drawn with double border.

Definition 5:

(a) An a-bond from K1 = 〈X1,Y1, I1〉 to K2 = 〈X2,Y2, I2〉 is an L-relation β ∈ LX1×Y2 ,
such that

Ext↑↓(X1,Y2,β) ⊆ Ext∩∪(X1,Y1, I1)
Int↑↓(X1,Y2,β) ⊆ Int↑↓(X2,Y2, I2). (26)

(b) A c-bond from K1 = 〈X1,Y1, I1〉 to K2 = 〈X2,Y2, I2〉 is an L-relation β ∈ LX1×Y2
s.t.

Ext↑↓(X1,Y2,β) ⊆ Ext↑↓(X1,Y1, I1)
Int↑↓(X1,Y2,β) ⊆ Int∧∨(X2,Y2, I2). (27)
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Remark 6:

(a) The terms a-bond and c-bond have been chosen to match with the notions of
a-morphism and c-morphism (Belohlavek and Konecny 2011, 2012b; Konecny
2012). Later, in Theorem 9, we will show that a-bonds (resp. c-bonds) are in one-
to-one correspondence with a-morphisms (resp. c-morphisms) on associated sets
of intents.

(b) Notice that both the sets of extents and intents in (26) and (27) areL-closure systems.
From this point of view, the condition of subsethood is natural.

(c) Notice also that a-bonds from 〈X1,Y1, I1〉 to 〈X2,Y2, I2〉 are transposed versions of
c-bonds from 〈Y2,X2, IT2 〉 to 〈Y1,X1, IT1 〉.

The following theorem brings a characterization of a-bonds (resp. c-bonds) in terms of
relational compositions.
Theorem 8:

(a) β ∈ LX1×Y2 is an a-bond from K1 = 〈X1,Y1, I1〉 to K2 = 〈X2,Y2, I2〉, iff there exist
L-relations Si ∈ LY1×Y2 and Se ∈ LX1×X2 , such that

β = I1 � Si = Se � I2.

(b) β ∈ LX1×Y2 is a c-bond from K1 = 〈X1,Y1, I1〉 to K2 = 〈X2,Y2, I2〉, iff there exist
L-relations Si ∈ LY1×Y2 and Se ∈ LX1×X2 , such that

β = I1 � Si = Se � I2.

Proof:

(a) Follows from Definition 5 and Theorem 2, items (c) and (e).
(b) Follows from Definition 5 and Theorem 2, items (d) and (f). �

Theorem 9:

(a) The a-bonds from K1 = 〈X1,Y1, I1〉 to K2 = 〈X2,Y2, I2〉 are in one-to-one corre-
spondence with
• a-morphisms from Int∩∪(X1,Y1, I1) to Int↑↓(X2,Y2, I2);
• c-morphisms from Ext↑↓(X2,Y2, I2) to Ext∩∪(X1,Y1, I1).

(b) The c-bonds from K1 = 〈X1,Y1, I1〉 to K2 = 〈X2,Y2, I2〉 are in one-to-one corre-
spondence with
• c-morphisms from Int↑↓(X1,Y1, I1) to Int∧∨(X2,Y2, I2);
• a-morphisms from Ext∧∨(X2,Y2, I2) to Ext↑↓(X1,Y1, I1).

Proof: (a) Let β be an a-bond from K1 to K2. By Theorem 8(a), we have β = I1 � Si. By
Lemma 3 (c), f : LX2 → LX1 defined by

f (B) = B � Si ( = B↑Si )

is an a-morphism. We need to show that it maps intents in Int∩∪(X1,Y1, I1) to intents in
Int↑↓(X2,Y2, I2).

173



INTERNATIONAL JOURNAL OF GENERAL SYSTEMS 177

For each 〈A,B〉 ∈ B∩∪(X1,Y1, I1), we have B = A∩I1 , which is equivalent to B = A ◦ I1
by Remark 1. Then, we have

f (B) = B � Si = (A ◦ I1) � Si = A � (I1 � Si) =
= A � β = A↑β ∈ Int↑↓(X1,Y2,β) ⊆ Int↑↓(X2,Y2, I2).

For the c-morphism, by Theorem 8(a), we have β = Se � I2. By Lemma 3 (b), f : LX2 →
LX1 defined by

f (A) = Se � A ( = A∪Se )

is a c-morphism. We need to show that it maps extents in Ext↑↓(X2,Y2, I2) to extents in
Ext∩∪(X1,Y1, I1). For each 〈A,B〉 ∈ B↑↓(X2,Y2, I2), we haveA = B↓I2 , which is equivalent
to A = I2 � B by Remark 1. Then, we have

f (A) = Se � A = Se � (I2 � B) = (Se � I2) � B =
= β � B = B↓β ∈ Ext↑↓(X1,Y2,β) ⊆ Ext∩∪(X1,Y1, I1).

We have just shown how to construct the associated c-morphism and the associated
a-morphism for a given a-bond. Now, we show the inverse procedures.

Given an a-morphism f from Int∩∪(X1,Y1, I1) to Int↑↓(X2,Y2, I2), using Lemma 2 (c),
there is an L-relation Si ∈ LY1×Y2 , such that f (B) = B � Si for each B ∈ LY1 . Now, we
consider βf = I1 � Si, and we need to show that it is an a-bond from K1 to K2.

Firstly, by Theorem 2 (e), we have Ext↑↓(X1,Y2,βf ) ⊆ Ext∩∪(X1,Y1, I1).
Now, all the elements in Int↑↓(X1,Y2,βf ) have the form A↑βf for some A ∈ LX1 . Thus,

we can write
A↑βf = A � βf = A � (I1 � Si) = (A ◦ I1) � Si

and since A ◦ I1 = A∩I1 ∈ Int∩∪(X1,Y1, I1),

(A ◦ I1) � Si = A∩I1 � Si = f (A∩I1 ) ∈ Int↑↓(X2,Y2, I2),

proving that Int↑↓(X1,Y2,βf ) ⊆ Int↑↓(X2,Y2, I2), and βf is an a-bond from K1 to K2.
Similarly, let g be a c-morphism from Ext↑↓(X2,Y2, I2) to Ext∩∪(X1,Y1, I1). By

Lemma 2 (b), there is an L-relation R ∈ LX2×X1 , such that g(A) = A � R for each A ∈ LX2 .
That is equivalent to g(A) = RT � A. Denoting Se = RT, we get g(A) = Se � A for each
A ∈ LX2 . We consider βg = Se � I2 and we need to show that it is an a-bond from K1 to
K2.

By Theorem 2 (e), we directly have Int↑↓(X1,Y2,βg ) ⊆ Int↑↓(X2,Y2, I2).
Now, all the elements in Ext↑↓(X1,Y2,βg ) have the form B↓βg for some B ∈ LY2 . Thus,

we can write
B↓βg = (Se � I2) � B = Se � (I2 � B)

and since I2 � B = B↓I2 ∈ Ext↑↓(X2,Y2, I2),

Se � (I2 � B) = Se � B↓I2 = g(B↓I2 ) ∈ Ext∩∪(X1,Y1, I1),

proving that Ext↑↓(X1,Y2,βg ) ⊆ Ext∩∪(X1,Y1, I1), and βg is an a-bond from K1 to K2.
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The fact that the two pairs of mappings between bonds and a-morphisms (resp.
c-morphisms) are mutually inverse can be checked as in the proof of Theorem 3.

The proof of (b) is similar. �
Theorem 10:

(a) The system of all a-bonds from K1 to K2 is an L-closure system.
(b) The system of all c-bonds from K1 to K2 is an L-closure system.

Proof: (a) Consider a family {βj ∈ LX1×X2 | j ∈ J} of a-bonds from K1 to K2 and let us
show that

⋂
j βj is an a-bond. By Theorem 8, a-bonds βj are of the form

βj = I1 � Sij = Sej � I2 for each j ∈ J .

We have the following two expressions for
⋂

j∈J βj

⋂
j∈J

βj =
⋂
j∈J

(I1 � Sij) = I1 �
(⋂

j∈J
Sij
)
;

⋂
j∈J

βj =
⋂
j∈J

(Sej � I2) =
(⋃

j∈J
Sej
)
� I2.

Thus, by Theorem 8,
⋂

j∈J βj is an a-bond.
Similarly, consider an a-bond β , hence β = I1 � Si = Se � I2. Let us show that a→ β is

an a-bond as well:

a→ β = β � Ida = (I1 � Si) � Ida = I1 � (Si � Ida);
a→ β = Ida � β = Ida � (Se � I2) = (Ida ◦ Se) � I2.

Thus, a→ β is an a-bond from K1 to K2 by Theorem 8. We showed that the system of all
a-bonds is closed under intersections and shifts, whence it is an L-closure system.

Proof of (b) is similar. �

4.1. Direct �-product and direct �-product
In this part, we focus on direct products of L-contexts which are related to a-bonds and
c-bonds.
Definition 6: Let K1 = 〈X1,Y1, I1〉,K2 = 〈X2,Y2, I2〉 be L-contexts.
(a) A direct �-product of K1 and K2 is defined as the L-context

K1�→K2 = 〈X2 × Y1,X1 × Y2,�〉 with �(〈x2, y1〉, 〈x1, y2〉) = I1(x1, y1) →
I2(x2, y2) for all x1 ∈ X1, x2 ∈ X2, y1 ∈ Y1, y2 ∈ Y2.

(b) A direct �-product of K1 and K2 is defined as the L-context
K1�←K2 = 〈X2 × Y1,X1 × Y2,�〉 with �(〈x2, y1〉, 〈x1, y2〉) = I2(x2, y2) →
I1(x1, y1) for all x1 ∈ X1, x2 ∈ X2, y1 ∈ Y1, y2 ∈ Y2.

The following theorem shows that K1�→K2 (resp. K1�←K2) induces a-bonds (resp.
c-bonds) as its intents.
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Theorem 11:

(a) The intents ofK1�→K2 wrt 〈↑,↓ 〉 are a-bonds fromK1 toK2, i.e. for each φ ∈ LX2×Y1 ,
φ↑ is an a-bond from K1 to K2.

(b) The intents ofK1�←K2 wrt 〈↑,↓ 〉 are c-bonds fromK1 toK2, i.e. for each φ ∈ LX2×Y1 ,
φ↑ is a c-bond from K1 to K2.

Proof: (a) For φ ∈ LX2×Y1 , we have

φ↑(x1, y2) =
∧

〈x2,y1〉∈X2×Y1
φ(x2, y1)→ �(〈x2, y1〉, 〈x1, y2〉)

=
∧

x2∈X2

∧
y1∈Y1

φ(x2, y1)→ (I1(x1, y1)→ I2(x2, y2))

=
∧

x2∈X2

∧
y1∈Y1

I1(x1, y1)→ (φ(x2, y1)→ I2(x2, y2))

=
∧
y1∈Y1

I1(x1, y1)→
∧

x2∈X2

φ(x2, y1)→ I2(x2, y2)

=
∧
y1∈Y1

I1(x1, y1)→
∧

x2∈X2

φT(y1, x2)→ I2(x2, y2)

=
∧
y1∈Y1

I1(x1, y1)→ (φT � I2)(y1, y2)

= [I1 � (φT � I2)](x1, y2)
= [(I1 ◦ φT) � I2](x1, y2).

Thus, φ↑ is an a-bond by Theorem 8 (a). Proof of (b) is similar. �
A similar proposition can be stated also for extents of direct �-products and direct

�-products. More exactly, extents of K1�←K2 are c-morphisms from K2 to K1, and extents
of K1�→K2 are a-morphisms from K2 to K1.
Remark 7: It is worth to note that not all a-bonds need to be intents of the direct product
as the following examples show.
Example 3: Consider the L-context K = 〈{x}, {y}, {0.5/〈x, y〉}〉 with L being the three-
element Lukasiewicz chain. Consider β to be the L-relation {0.5/〈x, y〉}. We have

Ext∩∪({x}, {y},β) = {0.5/x, x} = Ext↑↓({x}, {y}, {0.5/〈x, y〉}),

and Int↑↓({x}, {y},β) ⊆ Int↑↓({x}, {y}, {0.5/〈x, y〉}) is trivial. Thus, β is an a-bond from
K to K. We have K�→K = 〈{〈x, y〉}, {〈x, y〉}, {〈x, y〉, 〈x, y〉}〉. The only intent of K�→K is
{〈x, y〉}; thus, the a-bond β = {0.5/〈x, y〉} is not among its intents.
Example 4: Consider the following L-context with L being three-element Lukasiewicz
chain.
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Figure 2. System of a-bonds betweenK1 andK2 from Example 4. The a-bonds with double border are
those which are intents ofK1 �→K2.

There are 11 a-bonds from K1 to K2, but K1�→K2 has only 9 concepts (see Figure 2).

4.2. Relationship to homogeneous bonds with respect to 〈↑,↓ 〉
In this section, we establish a relationship of a-bonds and c-bonds with homogeneous
bonds with respect to 〈↑,↓ 〉. Firstly, we will introduce the notion of strong heterogeneous
bond and, then, will prove that they are a special case of homogeneous bond wrt 〈↑,↓ 〉.
Then, we study equality of homogeneous bonds wrt 〈↑,↓ 〉with a-bonds and c-bonds under
special conditions.
Definition 7: An L-relation β is called strong heterogeneous bond from 〈X1,Y1, I1〉 to
〈X2,Y2, I2〉 if it is both a-bond and c-bond from 〈X1,Y1, I1〉 to 〈X2,Y2, I2〉.

Let us start with the analogous version of Lemma 4 (with alternative characterizations)
for homogeneous bonds wrt 〈↑,↓ 〉.
Lemma 5: The following statements are equivalent:

(1) β is a homogeneous bond wrt 〈↑,↓ 〉 from K1 = 〈X1,Y1, I1〉 to K2 = 〈X2,Y2, I2〉.
(2) β satisfies both {y}↓β ∈ Ext↑↓(X1,Y1, I1) and {x}↑β ∈ Int↑↓(X2,Y2, I2) for each

x ∈ X1, y ∈ Y2.
(3) β = Se � I2 = I1 � Si for some Se ∈ LX1×X2 and Si ∈ LY1×Y2 .
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Proof: (1) ⇒ (2): trivially, we have that {y}↓β ∈ Ext↑↓(X1,Y2,β) and {x}↑β ∈ Int↑↓
(X1,Y2,β).

(2)⇒ (3): each L-set A in LX1 can be written in the form
⋃

x∈X A(x) ⊗ {x}. Thus, we
have

A↑β (y) =
∧
x′∈X

(⋃
x∈X

A(x)⊗ {x}
)

(x′)→ β(x′, y)

=
∧
x′∈X

(∨
x∈X

A(x)⊗ {x}(x′)
)
→ β(x′, y)

=
∧
x′∈X

∧
x∈X

A(x)→ ({x}(x′)→ β(x′, y))

=
∧
x∈X

A(x)→
∧
x′∈X
{x}(x′)→ β(x′, y)

=
∧
x∈X

A(x)→ {x}↑β (y)

=
(⋂
x∈X

A(x)→ {x}↑β

)
(y).

As a result, we haveA↑β ∈ Int↑↓(X2,Y2, I2) since {x}↑β ∈ Int↑↓(X2,Y2, I2) for each x ∈ X1
and Int↑↓(X2,Y2, I2) is an L-closure system. Because each intent in Int↑↓(X1,Y2,β) has
the form A↑β , we get Int↑↓(X1,Y2,β) ⊆ Int↑↓(X2,Y2, I2). The existence of Se now follows
from Theorem 2. Similarly, the existence of Si can be proved.

(c)⇒ (a): from Theorem 2 (c) and (d). �
One can easily observe that each strong heterogeneous bond is a homogeneous bond

wrt 〈↑,↓ 〉. The following example shows that the converse is not true in general.
Example 5: Use L = 2; obviously, the empty relation is a homogeneous bond wrt 〈↑,↓ 〉
between two formal contexts with empty incidence relation. On the other hand, it is not
an a-bond because |Ext∩∪(X1,Y1, ∅)| = 1 < 2 = |Ext↑↓(X1,Y2, ∅)|. Specifically, the only
concept inB∩∪(X1,Y1, ∅) is 〈X1, ∅〉, whereas the two concepts inB↑↓(X1,Y2, ∅) are 〈X1, ∅〉
and 〈∅,Y2〉.

4.2.1. Assuming the double negation law
If the double negation law holds true in L, each pair of the concept-forming operators we
have been using so far (namely, 〈↑,↓ 〉, 〈∩,∪ 〉 and 〈∧,∨ 〉) can define the other two.

As a consequence, for instance, we have that B↑↓(X,Y , I) and B∩∪(X,Y ,¬I) are
isomorphic as lattices with 〈A,B〉 �→ 〈A,¬B〉 being the isomorphism.

In order to prove this, note that A ∈ Ext↑↓(X,Y , I) iff A = A↑I↓I and that A ∈
Ext∩∪(X,Y ,¬I) iff A = A∩¬I∪¬I . We have

A∩¬I∪¬I = ¬I � (A ◦ ¬I)
= ¬I � (¬Id � ((A ◦ ¬I) � ¬Id))

= ¬I � (¬Id � (A � (¬I � ¬Id)))

= ¬I � (¬Id � (A � I))
= (¬I � ¬Id) � (A � I))
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= (I � (A � I)) = A↑I↓I .

That shows that
Ext↑↓(X,Y , I) = Ext∩∪(X,Y ,¬I) (28)

As the ordering between the extents is defined to be the fuzzy subsethood ordering (which
is independent from the concept-forming pair used to build the concept lattice), one can
obtain that both lattices are isomorphic.

To justify the intent part of the isomorphism, note that for each A ∈ LX ,B ∈ LY , we
have

¬B = ¬(A↑I ) = ¬(A↑¬¬I ) = ¬(A � ¬¬I) = ¬(A � (¬I � ¬Id)) =
= ¬((A ◦ ¬I) � ¬Id) = ¬¬(A ◦ ¬I) = (A ◦ ¬I) = A∩¬I .

Similarly, B↑↓(X,Y , I) and B∧∨(X,Y ,¬I) are isomorphic as lattices with 〈A,B〉 �→
〈¬A,B〉 being the isomorphism. The proof follows the line of the previous one, but showing

Int∧∨(X,Y ,¬I) = Int↑↓(X,Y , I). (29)

Using that we can state the following theorem.
Theorem 12: Assume that the double negation holds true in L. Then, homogeneous bonds
wrt 〈↑,↓ 〉 from 〈X1,Y1, I1〉 to 〈X2,Y2, I2〉 are exactly a-bonds from 〈X1,Y1,¬I1〉 to
〈X2,Y2, I2〉; and c-bonds from 〈X1,Y1, I1〉 to 〈X2,Y2,¬I2〉.
Proof: Directly from the definitions and Equations (28) and (29). �

Note that with the double negation law, the incidence relation � in �-direct product
〈X1,Y1, I1〉�→ 〈X2,Y2, I2〉 becomes

�(〈x2, y1〉, 〈x1, y2〉) = ¬I1(x1, y1)→ I2(x2, y2)

and the incidence relation � in direct �-product K1�←K2 becomes

�(〈x2, y1〉, 〈x1, y2〉) = ¬I2(x2, y2)→ I1(x1, y1),

which coincides with the direct product (25) fromKrídlo, Krajči, andOjeda-Aciego (2012).

4.2.2. Using an alternative notion of complement
Themutual reducibility of concept-forming operators (17)–(19) does not hold generally. In
Belohlavek and Konecny (2012a), a new notion of complement of L-relation was proposed
in order to overcome that. Using this notion we showed that each for each I ∈ LX×Y , and
fixed an element a ∈ L, one can define ¬I ∈ LX×(Y×L) as

¬I(x, 〈y, a〉) = I(x, y)→ a,

and obtain
Ext↑↓(X,Y × L, ¬I) = Ext∩∪(X,Y , I), (30)

and similarly,
Int↑↓(X × L,Y , ( ¬IT)T) = Int∧∨(X,Y , I). (31)
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That is, for any I ∈ LX×Y , one can find a relation which induces the same structure of
extents (resp. intents) wrt 〈↓,↑ 〉 as I induces wrt 〈∪,∩〉 (resp. wrt 〈∨,∧〉). Unfortunately,
the converse does not hold true in general; i.e. there are relations I ∈ LX×Y , such that no
relation induces the same structure of extents wrt 〈∪,∩〉 (resp. intents wrt 〈∨,∧〉), as I
induces wrt 〈↓,↑ 〉. Only for those L-relations I ∈ LX×Y whose set of extents Ext↑↓(X,Y , I)
is a c-closure system (Belohlavek and Konecny 2011); i.e. an L-closure system generated
by a system of all a-complements of some T ⊆ LX .

Theorem 13: If Ext↑↓(X1,Y1, I1) is a c-closure system, the i-bonds wrt 〈↑,↓ 〉 from
〈X1,Y1, I1〉 to 〈X2,Y2, I2〉 are exactly a-bonds from 〈X1,Y1 × L, ¬I1〉 to 〈X2,Y2, I2〉. If
Int↑↓(X2,Y2, I2) is a c-closure system, the i-bonds wrt 〈↑,↓ 〉 from 〈X1,Y1, I1〉 to 〈X2,Y2, I2〉
are exactly c-bonds from 〈X1,Y1, I1〉 to 〈X2 × L,Y2, ( ¬IT2 )T)〉.

Proof: Directly from Definitions and (28) and (29). �

5. Conclusions

Continuing with our study of generalized forms of FCA, we have focused on the different
natural extensions of the notion of bond.

To the best of our knowledge, only Krídlo, Krajči, and Ojeda-Aciego (2012) had
introduced a generalized definition of bond, but it turns out that, in a generalized frame-
work, several alternatives can be considered, depending essentially on the pair(s) of
concept-forming operators one relies on. In this paper, we have introduced the notion of
homogeneous L-bond, namely, a generalized bond wrt a pair of isotone concept-forming
operators, and presented a thorough study of them.

Specifically, homogeneous bonds with respect to 〈∩,∪〉 (resp. 〈∧,∨〉) have been proved
to be in one-to-one correspondence with c-morphisms from extents (resp. intents) of
the corresponding concept lattices. Moreover, the set of all homogeneous bonds (of either
case) is proved to form an L-interior system. The natural notion of homogeneous bondwrt
the two pairs of isotone concept-forming operators simultaneously (strong homogeneous
bond) is proved to be in one-to-one correspondence with i-morphisms between intents
of 〈∩,∪〉 and also with i-morphisms between extents of 〈∧,∨〉. Obviously, the set of all
strong homogeneous bonds is an L-interior system. The study is concluded by presenting
the existing relationship with the direct ◦-product of contexts.

A different notion of bond ariseswhen one allows the interaction of isotone and antitone
concept-forming operators, and this leads to the so-called heterogeneous bonds, which are
proved to be closely related to the a-morphisms and c-morphisms. Specific types of product
were needed in order to establish the connection between these new types of bonds with
the direct product of contexts.

It is worth to remark that one can see applied papers in the area of information retrieval,
see for instance (Valverde-Albacete 2006), which directly calls for heterogeneous bonds,
specifically for some a-, c- and i-morphisms.

The obtained results shed new light on the structure and properties of generalized
versions of bond between contexts: on the one hand, the results are abstract versions of
those already known in the classical case and, on the other hand, generalize as well those
published in Krídlo, Krajči, and Ojeda-Aciego (2012).
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As future work, on the one hand, it seems worth to consider a further generalization
in terms of complete idempotent semifields, which satisfy all the properties of residuated
lattices, except that the multiplicative unit need not be the top element of the lattice. In this
new framework, it makes sense to consider the fourth pair of concept-forming operators
not considered in the present work, which can be viewed as a double dualization on the
first pair, see Valverde-Albacete and Peláez-Moreno (2011) for these connections defined
over completed idempotent semifields.
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