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Abstrakt
Habilitační práce prezentuje základní výsledky a principy arbologie, nové algoritmické
disciplíny v oblasti zpracování stromů. Jako výpočetní model používá arbologie stan-
dartní zásobníkový automat, který čte lineární zápis stromu. Jednou z hlavních inspirací
pro vytváření arbologických algoritmů je stringologie, která je algoritmickou disciplínou v
oblasti zpracování textu. Práce sestává ze dvou částí. První čast práce obsahuje rozšířený
strukturovaný abstrakt popisující hlavní arbologické výsledky, známé příbuzné výsledky a
témata budoucího výzkumu. Prezentované výsledky jsou rozděleny do čtyř oblastí: for-
mální stromové jazyky, indexování stromu, vyhledávání repetic ve stromu a vyhledávání
vzorků ve stromu. Druhou část práce tvoří kolekce původních článků, které byly vytvořeny
do konce roku 2009.

Abstract
This habilitation thesis presents basic results and principles of arbology, a new algorithmic
discipline dealing with tree processing. As a model of computation arbology uses a standard
pushdown automaton which reads a tree in a linear notation. One of the main inspirations
for creating arbology algorithms is stringology, which is an algorithmic discipline dealing
with string processing. The thesis consists of two parts. The first part contains an extended
structured abstract describing main arbology results, related results, and topics for future
research. The presented results are divided into the following four areas: formal tree
languages, indexing a tree, computing repeats in a tree and tree pattern matching. The
second part of the thesis is a collection of original papers, which were created by the end
of 2009.
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Preface

I started dealing with algorithms on trees in the second half of 2007 when I was introduced
to the theory of tree automata. A bit later, together with my former Ph.D. supervisor
professor Bořivoj Melichar, we started considering a systematic approach to the construction
of algorithms for basic operations on trees. In 2008, together with Bořivoj Melichar and
Ph.D. student Tomáš Flouri, we founded a new algorithmic discipline, which was given the
name arbology from the Spanish word arbol, meaning tree. The most crucial decision to
be done in the beginning was to select an appropriate model of computation. We have
selected a standard pushdown automaton because of particular reasons described in the
introduction of this thesis. Arbology as a new algorithmic discipline was officially first
introduced at London Stringology Days 2009 conference. This habilitation thesis presents
the basic arbology results and principles. Recently our arbology research group has been
growing and topics of our current and future research work are also mentioned in this
thesis.
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Arbology – overview of basic
results and principles
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Chapter 1

Introduction

Trees are one of the fundamental data structures of Computer Science. They are able to
express a hierarchical structure and are widely used in many applications.
The theory of formal string (or word) languages [3, 46, 72] and the theory of formal

tree languages [18, 20, 29, 38, 37] have been extensively studied and developed since the
1950s and 1960s, respectively. Both the theories are important parts of the theory of formal
languages [71]. The theory of formal string languages and its models of computation even
represent the basic and the largest part of the theory of formal languages. Elements of
string and tree languages are strings and trees, respectively. Models of computation of the
theory of string languages are finite string automata, pushdown string automata, linear
bounded automata and Turing machines, whereas models of computation of the theory of
tree languages are various kinds of tree automata.
Trees can also be seen as strings, for example in their prefix (also called preorder) or

postfix (also called postorder) notation. These linear notations can be respectively obtained
by the prefix or postfix traversing of trees. Even, it can be said that every sequential
algorithm processing a tree traverses through nodes of the tree in a linear order and so a
corresponding linear notation of the tree is followed.
This habilitation thesis presents basic results and principles of arbology [9]. Arbology is

a new algorithmic discipline focusing on algorithms on trees whose model of computation
is a standard pushdown automaton which reads a linear notation of trees. We think that
arbology is unique in the sense it represents the first–time systematic approach to solving
tree problems by means of pushdown automata, although some particular tree algorithms
based on pushdown automata, for example Graham-Glanville technique [41] used for code
selection, are known. Pushdown automata seem to be an obvious and natural model of
computation for algorithms on trees because of the following three facts:

1. Many algorithms for processing trees use recursive procedures, which means that the
pushdown store is used for their implementation. For example, finite tree automata
are implemented by recursive procedures.

2. Linear notations of trees are context-free languages and pushdown automata are the
corresponding model of computation for context-free languages [3, 46, 72]. One of
arbology results proves that the class of tree languages whose linear notation can be
accepted by deterministic pushdown automata is a proper superclass of regular tree
languages, which are recognized by finite tree automata.

3. The theory of finite automata has been successfully used in stringology [21, 22, 63, 76],
which is an algorithmic discipline dealing with string processing. We think that

5



arbology deals with similar problems which can be solved in a similar fashion.

As is mentioned above the main inspiration for building arbology algorithms can be
found in stringology [21, 22, 63, 76]. Stringology uses finite automata as a very useful
tool. In arbology we try to apply the stringology principles to trees so that effective tree
algorithms using pushdown automata would be created. In this way we have created new
methods for the following basic operations on trees: indexing trees, computing repeats
in trees, and tree pattern matching. These methods are analogous to methods of string
indexing, of computing repeats in strings, and of string pattern matching, respectively.
There are some differences between finite and pushdown automata theories. For every

nondeterministic finite automaton there exists an equivalent deterministic finite automaton
which can be constructed using well known algorithm. This does not hold generally for
the case of pushdown automata – for some nondeterministic pushdown automata their
equivalent deterministic versions do not exist. Examples of such pushdown automata are
pushdown automata accepting palindromes of the form like wwR. The reason is that a
deterministic automaton reading the palindrome from left to right is not able to find the
centre of it. Generally, it is not known how to decide for a given nondeterministic pushdown
automaton whether there exists a deterministic equivalent or not. Nevertheless, we have
identified three classes of pushdown automata for which such a determinisation is possible.
These classes are called input–driven [79], visible [7] and heigth–deterministic pushdown
automata [66]. We note that many of particular pushdown automata presented in the
subsequent chapters are input–driven pushdown automata.
The thesis consists of two parts. The first part of the thesis is an extended structured

abstract of basic arbology results and principles. The second part of the thesis is a collection
of original papers, which were created by the end of 2009. These papers describe the results
in details.
The first part of the thesis consists of 11 chapters and is organised as follows. Chapter 2

discusses related existing results and algorithms and provides a comparison with arbology
results presented in this thesis. Basic notions are defined in Chapter 3. Chapter 4 contains
results introduced in [49], which deals with formal tree languages and pushdown automata
and is the basic theoretical paper of arbology. Given a finite tree automaton it is proved
that an equivalent LR(0) grammar can be constructed, which means that also an equivalent
deterministic pushdown automaton can be constructed. Moreover, it is proved that deter-
ministic pushdown automata are more powerful than finite tree automata – the class of tree
languages whose linear notation can be accepted by deterministic pushdown automata is
a proper superclass of regular tree languages. A new linear notation for unranked trees is
described in Chapter 5. Chapter 6 describes general properties of linear notations of trees.
These properties are substantial for constructing arbology algorithms. Chapters 8, 9, and
10 contain the descriptions of basic arbology algorithms in brief. An efficient method of
indexing trees, of finding repeats in trees, and of tree pattern matching, respectively, are
described. These methods were introduced in [48, 50], [51], and [32, 34], respectively.
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Chapter 2

Related results and applications

Existing algorithms on trees are described by various formalisms, such as tree automata,
term–rewriting systems, or pushdown automata, or they are directly described by programs
written in appropriate programming languages. As stated in the previous chapter, we
think that arbology represents the first–time systematic approach to the construction of
algorithms on trees whose model of computation is a standard pushdown automaton.
Finite tree automata recognize regular tree languages and may be the most researched

kind of tree automata [18, 20, 38]. As is shown in Chapter 4 ([49]), any problem which can be
solved by a finite tree automaton can also be solved by a deterministic pushdown automaton.
In [52, 67] it is shown that so–called pushdown tree–walking automata recognize exactly
the class of regular tree languages. The underlying principle of a method of transformation
of finite tree automata to pushdown tree–walking automata [67] is similar to the principle
which is used in [49] for transformation of finite tree automata to deterministic pushdown
automata.
Examples of other existing kinds of tree automata can be pushdown tree automata and

generalised tree automata [20].
Comparing arbology algorithms with the known methods from the theory of tree au-

tomata [18, 20], the arbology methods of indexing trees and finding repeats in trees have
not their equivalent known solutions by means of tree automata. Arbology tree pattern
matching method provides directly equivalent solution as the known solution described by
means of tree automata.
Formalisms for describing semantics are also used for tree processing: there exists a tool

YakYak [53], which is a preprocessor for yacc–compatible generators and serves for gener-
ating parsers of the regular tree languages. The output of YakYak is not a syntax defining
context–free grammar only, but it is an attributed context–free grammar in which the con-
straints defining regular tree languages are described not by the syntactic rules but by the
semantic attribute rules (see also [4, 26] for the definition and for further information on
attributed grammars). As a result, the parser generated by the YakYak + yacc–compatible
generator behaves as a deterministic pushdown automaton which recognizes regular tree
languages by an extended attribute semantic evaluation.
An example of a well researched problem whose solutions have been described by var-

ious models of computation is the code selection problem in compiler backends. The task
here is to cover the intermediate program representation, which is in the form of a tree, by
appropriate target machine code instructions, which are represented by tree patterns, and
to select the “best possible” such covering. The best possible covering is usually selected
according to the result of the evaluation of a cost function, which describes the cost of
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the machine code instructions. For the purpose of tree covering various versions of tree
pattern matching are generally used (see [17, 43, 44, 54] for the basic tree pattern matching
methods). A code selection method based on deterministic finite tree automata can be
found in [30], where the cost function is computed by an additional semantic evaluation.
On the other hand, [41, 57, 74] describe the code selection methods based on determin-
istic pushdown automata performing the tree pattern matching, where the tree patterns
are represented by rules of a context–free grammar, and in this way generally ambiguous
and non-LR(0) context–free grammars are created. Consequently, the LR(0) parsers for
those grammars contain conflicts. In [41] these conflicts are resolved by some heuristics;
in [57, 74] a special construction of a deterministic parser is used, which corresponds to a
determinisation of the above–mentioned LR(0) parser with the conflicts.
Another code selection method is provided by a family of tools BURG, IBURG, etc.

(see [35, 36] for example), which use another model of computation, so–called tree rewriting
systems, for the tree pattern matching in the code selection problem.
We note that another code selection method based on the deterministic pushdown au-

tomaton would result from the transformation of the deterministic finite tree automaton
from [30] in the way described in this thesis (where the evaluation of the cost function
would be implemented by an attribute semantic evaluation). In addition, the transfor-
mation gives an unambiguous LR(0) grammar, which means the resulting code generator
could be implemented easily with the use of an existing (yacc–like) parser generator for
that grammar.
Models of computations for various linearised forms of unranked trees and their rela-

tionships to regular tree languages have been studied in some papers: for example, so–called
nested words and visibly pushdown languages are studied in [6] and [7], respectively.

8



Chapter 3

Basic notions

We define notions on trees similarly as they are defined in [3, 18, 20, 37, 44].

3.1 Alphabet

An alphabet is a finite nonempty set of symbols. A ranked alphabet is a finite nonempty
set of symbols each of which has a unique nonnegative arity (or rank). Given a ranked
alphabet A, the arity of a symbol a ∈ A is denoted arity(a). The set of symbols of arity p
is denoted by Ap. Elements of arity 0, 1, 2, . . . , p are respectively called nullary (constants),
unary, binary, . . ., p-ary symbols. We assume that A contains at least one constant. In the
examples we use numbers at the end of the identifiers for a short declaration of symbols
with arity. For instance, a2 is a short declaration of a binary symbol a.

3.2 Tree, tree pattern, tree template

Based on concepts from graph theory (see [3]), a tree over an alphabet A can be defined as
follows:
A directed graph G is a pair (N,R), where N is a set of nodes and R is a set of

lists of edges such that each element of R is of the form ((f, g1), (f, g2), . . . , (f, gn)), where
f, g1, g2, . . . , gn ∈ N , n ≥ 0. This element will indicate that, for node f , there are n edges
leaving f , entering node g1, node g2, and so forth.
A sequence of nodes (f0, f1, . . . , fn), n ≥ 1, is a path of length n from node f0 to node

fn if there is an edge which leaves node fi−1 and enters node fi for 1 ≤ i ≤ n. A cycle is
a path (f0, f1, . . . , fn), where f0 = fn. An ordered dag (dag stands for Directed Acyclic
Graph) is an ordered directed graph that has no cycle. A labelling of an ordered graph
G = (N,R) is a mapping of N into a set of labels. In the examples we use af for a short
declaration of node f labelled by symbol a.
Given a node f , its out-degree is the number of distinct pairs (f, g) ∈ R, where g ∈ N .

By analogy, the in-degree of node f is the number of distinct pairs (g, f) ∈ R, where g ∈ N .
A tree is an acyclic connected graph. Any node of a tree can be selected as a root of

the tree. A tree with a root is called rooted tree.
A tree can be directed. A rooted and directed tree t is a dag t = (N,R) with a special

node r ∈ N , called the root, such that
(1) r has in-degree 0,
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a05

a03 a14 a07

a22 a16

a21

Figure 3.1: Tree t1 from Example 3.1

(2) all other nodes of t have in-degree 1,
(3) there is just one path from the root r to every f ∈ N , where f 6= r.
A labelled, (rooted, directed) tree is a tree having the following property:

(4) every node f ∈ N is labelled by a symbol a ∈ A, where A is an alphabet.
A ranked, (labelled, rooted, directed) tree is a tree labelled by symbols from a ranked

alphabet and out-degree of a node f labelled by symbol a ∈ A is arity(a). Nodes labelled
by nullary symbols (constants) are called leaves.
An ordered, (ranked, labelled, rooted, directed) tree is a tree where direct descendants

af1, af2, . . . , afn of a node af having an arity(af ) = n are ordered.

Example 3.1. Consider a ranked alphabet A = {a2, a1, a0}. Consider a tree t1 over
A t1 = ({a21, a22, a03, a14, a05, a16, a07}, R), where R is a set of the following ordered
sequences of pairs:

((a21, a22), (a21, a16)),
((a22, a03), (a22, a14)),
((a14, a05)),
((a16, a07))

Trees can be represented graphically, and tree t1 is illustrated in Fig. 3.1.

The height of a tree t, denoted by Height(t), is defined as the maximal length of a path
from the root of t to a leaf of t.
To define a tree pattern, we use a special nullary symbol S, not in A, which serves as

a placeholder for any subtree. A tree pattern is defined as a labelled ordered ranked tree
over ranked alphabet A ∪ {S}. By analogy, a tree pattern in prefix notation is defined as
a labelled ordered ranked tree over ranked alphabet A ∪ {S} in prefix notation. We will
assume that the tree pattern contains at least one node labelled by a symbol from A, i.e.
sole S is not allowed to be a tree pattern. A tree pattern containing at least one symbol S
will be called a tree template.
A tree pattern p with k ≥ 0 occurrences of the symbol S matches an object tree t at

node n if there exist subtrees t1, t2, . . . , tk (not necessarily the same) of the tree t such that
the tree p′, obtained from p by substituting the subtree ti for the i-th occurrence of S in p,
i = 1, 2, . . . , k, is equal to the subtree of t rooted at n.
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S11

S9 a110

a28

Figure 3.2: Tree pattern (template) p1 from Examples 3.2

Example 3.2. Consider tree t1 = ({a21, a22, a03, a14, a05, a16, a07}, R) from Example 3.1,
which is illustrated in Fig. 3.1. Consider a tree pattern (template) p1 over A ∪ {S} p1 =
({a28, S9, a110, S11}, R

′), where R′ is a set of the following ordered sequences of pairs:

((a28, S9), (a28, a110)),
((a19, S11))

Tree pattern p1 is illustrated in Fig. 3.2. Tree pattern p1 has two occurrences in tree t1
– it matches at nodes a21 and a22 of t1.

3.3 Trees in prefix and postfix notation, ground terms

Prefix and postfix notations of trees belong to the most popular and used, one–visit, linear
notations of trees.

Definition 3.3. The prefix notation pref(t) of a tree t is defined in this way:

1. pref(t) = a if af is a leaf,
2. pref(t) = a pref(b1) pref(b2) . . . pref(bn), where a is the root of the tree t and

b1, b2, . . . bn are direct descendants of a.

We note that in many papers on the theory of tree languages, such as [18, 20, 37, 44],
labelled ordered ranked trees are defined with the use of ordered ranked ground terms.
Ground terms can be regarded as labelled ordered ranked trees in prefix notation. Therefore,
the notions ground term, tree and tree in prefix notation are often used interchangeably in
many papers.

Definition 3.4. The postfix notation post(t) of a tree t is defined in this way:

1. post(t) = a if af is a leaf,
2. post(t) = post(b1) post(b2) . . . post(bn) a, where a is the root of the tree t and

b1, b2, . . . bn are direct descendants of a.

Example 3.5. Consider a ranked alphabet A = {a2, a1, a0}. Consider a tree t1 over A
from Example 3.1, which is illustrated in Fig. 3.1. Prefix and postfix notations of tree
t1 are strings pref(t1) = a2 a2 a0 a1 a0 a1 a0 and post(t1) = a0 a0 a1 a2 a0 a1 a2,
respectively.
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3.4 Finite tree automata, regular tree languages

A nondeterministic finite (bottom–up) tree automaton (nondeterministic FTA) over a ranked
alphabet A is a 4−tuple µ = (Q,A, Qf ,∆), where Q is a finite set of states, Qf ⊆ Q is the
set of final states, and ∆ is a set of transition rules of the following type:

f(q1, q2, . . . , qn) → q,

where f ∈ An, n ≥ 0, and q, q1, . . . , qn ∈ Q.
If there are no two rules with the same left–hand side, the tree automaton is called a

deterministic finite tree automaton (deterministic FTA).

Example 3.6. A simple example of a deterministic finite tree automaton over an alpha-
bet containing constants b and c, and binary symbol a is finite tree automaton µ1 =
(Q,A, Qf ,∆), where Q = {1, 2, 3}, A = {a2, b0, c0}, Qf = {3} , and ∆ contains these
transition rules:

b0 → 1
c0 → 2

a2(1, 1) → 3
a2(1, 2) → 3

Finite tree automata over a ranked alphabet A run on ground terms over A. Finite
tree automaton starts at the leaves and moves upward, associating along a run a state with
each subterm inductively. A run of an automaton on a ground term is defined as follows:
The leaves are mapped to states q by the initial transition rules of the form a → q, where
a ∈ A0. Now, given a node labelled with f ∈ An, n ≥ 1, suppose its children have been
mapped into states q1, . . . , qn, where f(q1, q2, . . . , qn) → q, then this node gets mapped to
q.
A ground term is accepted by a finite tree automaton if there exists a run on the ground

term such that its root is mapped to a final state.
The tree language L(µ) recognized by a finite tree automaton µ is the set of all ground

terms accepted by the finite tree automaton µ. Two tree automata are equivalent if they
recognize the same tree language. A tree language is recognizable if it is recognized by
some nondeterministic finite tree automaton. A tree language is recognisable if and only if
it is a regular tree language (see [18, 20, 37] for the definition of regular tree languages).
Furthermore, it holds that each nondeterministic (bottom–up) finite tree automaton can
be transformed to an equivalent deterministic (bottom–up) finite tree automaton.

Example 3.7. Finite tree automaton µ1 from Example 3.6 recognizes tree language L(µ1) =
{a2 b0 b0, a2 b0 c0}. Ground term t2 = a2 b0 c0 and the run of finite tree automaton µ1

on ground term t2 are illustrated in Fig. 3.3.

We note that there exist also nondeterministic top–down finite tree automata and de-
terministic top–down finite tree automata. The class of tree languages recognized by non-
deterministic top–down finite tree automata is exactly the class of regular tree languages.
However, it is not possible to transform every nondeterministic top–down finite tree au-
tomaton to an equivalent deterministic top–down finite tree automaton, which is a strictly
less powerful model.
For more details on finite tree automata and regular tree languages, see [18, 20, 37].
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b0 c0

a2

1 2

3

Figure 3.3: Tree t2 (left) and the run of finite tree automaton µ1 from Example 3.6 on tree
t2 (right)

3.5 Language, grammar, finite and pushdown automata

We define notions from the theory of string languages similarly as they are defined in [3, 46].
A language over an alphabetA is a set of strings over A. SymbolA∗ denotes the set of all

strings over A including the empty string, denoted by ε. Set A+ is defined as A+ = A∗\{ε}.
Similarly, for string x ∈ A∗, symbol xm, m ≥ 0, denotes the m-fold concatenation of x with
x0 = ε. Set x∗ is defined as x∗ = {xm : m ≥ 0} and x+ = x∗ \ {ε} = {xm : m ≥ 1}.
A context-free grammar (CFG) is a 4-tuple G = (N,A, P, S), where N and A are finite

disjoint sets of nonterminal and terminal (input) symbols, respectively. P is a finite set of
rules A → α, where A ∈ N , α ∈ (N ∪A)∗. S ∈ N is the start symbol. Relation ⇒ is called
derivation: if αA γ ⇒ αβγ, A ∈ N , and α, β, γ ∈ (N ∪ A)∗, then rule A → β is in P .
Symbols ⇒+, and ⇒∗ are used for the transitive, and the transitive and reflexive closure
of ⇒, respectively. The language generated by a G, denoted by L(G), is the set of strings
L(G) = {w : S ⇒∗ w, w ∈ A∗}.
A nondeterministic finite automaton (NFA) is a five–tuple FM = (Q,A, δ, q0, F ), where

Q is a finite set of states, A is an input alphabet, δ is a mapping from Q ×A into a set of
finite subsets of Q, q0 ∈ Q is an initial state, and F ⊆ Q is the set of final (accepting) states.
A finite automaton FM is deterministic (DFA) if δ(q, a) has no more than one member for
any q ∈ Q and a ∈ A. We note that the mapping δ is often illustrated by its transition
diagram.
Every NFA can be transformed to an equivalent DFA [3, 46]. The transformation

constructs the states of the DFA as subsets of states of the NFA and selects only such
accessible states (ie subsets). These subsets are called d–subsets. In spite of the fact that
d–subsets are standard sets, they are often written in square brackets ([ ]) instead of in
braces ({ }).
A nondeterministic pushdown automaton (nondeterministic PDA) is a seven-tupleM =

(Q,A, G, δ, q0, Z0, F ), whereQ is a finite set of states, A is an input alphabet, G is a pushdown
store alphabet, δ is a mapping from Q× (A∪{ε})×G into a set of finite subsets of Q×G∗,
q0 ∈ Q is an initial state, Z0 ∈ G is the initial pushdown store symbol, and F ⊆ Q is the
set of final (accepting) states. Triple (q, w, x) ∈ Q ×A∗ ×G∗ denotes the configuration of
a pushdown automaton. We will write the top of the pushdown store x on its left hand
side. The initial configuration of a pushdown automaton is a triple (q0, w, Z0) for the input
string w ∈ A∗.
An extended nondeterministic pushdown automaton (nondeterministic PDA) is a seven-

tuple M = (Q,A, G, δ, q0, Z0, F ), where δ is a mapping from Q× (A∪ {ε})×G∗ into a set
of finite subsets of Q×G∗ and all other symbols have the same meaning as above.
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The relation ⊢M⊂ (Q×A∗×G∗)×(Q×A∗×G∗) is a transition of a pushdown automaton
M . It holds that (q, aw, αβ) ⊢M (p, w, γβ) if (p, γ) ∈ δ(q, a, α). The k-th power, transitive
closure, and transitive and reflexive closure of the relation ⊢M is denoted ⊢k

M , ⊢
+
M , ⊢

∗
M ,

respectively.
A pushdown automatonM is a deterministic pushdown automaton (deterministic PDA),

if it holds:

1. |δ(q, a, Z)| ≤ 1 for all q ∈ Q, a ∈ A, Z ∈ inG and δ(q, ε, Z) = ∅ or
2. δ(q, a, Z) = ∅ for all a ∈ A and |δ(q, ε, Z)| ≤ 1.

An extended pushdown automaton M is an deterministic extended pushdown automa-
ton (deterministic PDA), if it holds:

1. |δ(q, a, γ)| ≤ 1 for all q ∈ Q, a ∈ A ∪ {ε}, γ ∈ G∗.
2. If δ(q, a, α) 6= ∅, δ(q, a, β) 6= ∅ and α 6= β then α is not a suffix of β and β is not a
suffix of α.

3. If δ(q, a, α) 6= ∅, δ(q, ε, β) 6= ∅, then α is not a suffix of β and β is not a suffix of α.

A pushdown automaton is input–driven if each of its pushdown operations is determined
only by the input symbol.
A language L accepted by a pushdown automaton M is defined in two distinct ways:

1. Accepting by final state:

L(M) = {x : δ(q0, x, Z0) ⊢
∗
M (q, ε, γ) ∧ x ∈ A∗ ∧ γ ∈ G∗ ∧ q ∈ F}.

2. Accepting by empty pushdown store:

Lε(M) = {x : (q0, x, Z0) ⊢
∗
M (q, ε, ε) ∧ x ∈ A∗ ∧ q ∈ Q}.

If pushdown automaton accepts the language by empty pushdown store, then the set F of
final states is the empty set.
For more details see [3, 46].

3.6 LR(0) parsing

Given a string w, an LR(0) parser for a context–free grammar G = (N,T, P, S) reads the
string w from left to right without any backtracking and is implemented by a deterministic
pushdown automaton.
A string γ is a viable prefix of G if γ is a prefix of αβ, and S ⇒∗

rm αAx ⇒rm αβx is
a rightmost derivation in G; the string β is called the handle. We use the term complete
viable prefix to refer to αβ in its entirety. During parsing, each contents of the pushdown
store correspond to a viable prefix.
The standard LR(0) parser performs two kinds of transitions:

1. When the contents of the pushdown store correspond to a viable prefix containing an
incomplete handle, the parser performs a shift, which reads one symbol a and pushes
a symbol corresponding to a onto the pushdown store.

2. When the contents of the pushdown store corresponds to a viable prefix ending by
the handle β, the parser performs a reduction by a rule A → β. The reduction pops
|β| symbols from the top of the pushdown store and pushes a symbol corresponding
to A onto the pushdown store.
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A context–free grammar G is LR(0) if the two conditions for G:
(1) S ⇒∗

rm αAw ⇒rm αβw,
(2) S ⇒∗

rm γBx ⇒rm αβy,
imply that αAy = γBx, that is, α = γ,A = B, and x = y.

If the context–free grammar G is not an LR(0) grammar, then the pushdown automaton
constructed as an LR(0) parser contains conflicts, which means the next transition to be
performed cannot be determined according to the contents of the pushdown store only.
For context–free grammars without hidden–left and right recursions the number of con-

secutive reductions between the shifts of two adjacent symbols cannot be greater than a
constant, and therefore the LR(0) parser for such a grammar can be optimized by precom-
puting all its reductions beforehand. Then, the optimized resulting LR(0) parser reads one
symbol on each of its transition [10].
For more details on LR parsing, see [3, 2].
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Chapter 4

Regular tree languages, finite tree
automata and pushdown automata

The theory of formal string languages and of formal tree languages are both important
parts of the theory of formal languages. Regular tree languages are recognized by finite
tree automata. Trees in their postfix notation can be seen as strings. This chapter presents
a simple transformation from any given (bottom–up) finite tree automaton recognizing
a regular tree language to a deterministic pushdown automaton accepting the same tree
language in postfix notation. The resulting deterministic pushdown automaton can be im-
plemented easily by an existing parser generator because it is constructed for an LR(0)
grammar, and its size directly corresponds to the size of the deterministic finite tree au-
tomaton. The class of regular tree languages in postfix notation is a proper subclass of
deterministic context-free string languages. Moreover, the class of tree languages which are
in their postfix notation deterministic context-free string languages is a proper superclass
of the class of regular tree languages.

4.1 Transformation of a (bottom–up) finite tree automaton
to an (extended) deterministic pushdown automaton

Definition 4.1. Let µ = (Q,A, Qf ,∆) be a finite tree automaton. Then, a context-free
grammar generating L(µ) in postfix notation with appended right marker ⊣ is context–free
grammar Gµ = (N,T, P, S′), where N = {S′} ∪ {Sq : q ∈ Q}, T = A, and P = {S′ →
Sq ⊣ : q ∈ Qf} ∪ {Sq → Sq1Sq2 . . . Sqn a : a(q1, q2, . . . , qn) → q ∈ ∆}.

Acceptance by the empty pushdown store is achieved in this way.

Definition 4.2. Let µ = (Q,A, Qf ,∆) be a finite tree automaton. Let Gµ = (N,T, P, S′)
be the context–free grammar created according to Def. 4.1 for µ. Then, pushdown automa-
ton accepting L(µ) in postfix notation with appended right marker ⊣ is pushdown automaton
Mµ = ({q}, T,G, δ, q, Z0, ∅), where T = A, G = Q∪{Z0,⊣}, and δ = {δ(q,⊣, Z0α) = (q, ε) :
S′ → α ⊣∈ P} ∪ {δ(q, a, α) = (q, A) : A → αa ∈ P,A 6= S′}.

The transformation in question is demonstrated on the following example:

Example 4.3. Consider tree language L2 of trees representing logical expressions which
are equal to the true value and can contain constants true and false, unary symbol not,
and binary symbol or.
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true0

false0 not1 false0

or2 not1

or2

1

0 0 0

0 1

1

Figure 4.1: Tree t3 ∈ L2 (left) and the run of finite tree automaton µ2 from Example 4.3
on tree t3 (right)

Consider deterministic finite tree automaton µ2 = (Q,A, Qf ,∆), where L(µ2) = L2,
Q = {0, 1}, A = {true0, false0, not1, or2}, Qf = {1}, and ∆ contains these rules:

false0 → 0
true0 → 1

not1(0) → 1
not1(1) → 0
or2(0, 0) → 0
or2(0, 1) → 1
or2(1, 0) → 1
or2(1, 1) → 1

Fig. 4.1 shows a tree t3 ∈ L2 and the run of finite tree automaton µ2 on tree t3.
The context–free grammar created according to Def. 4.1 and generating L(µ2) in postfix

notation is Gµ2 = (N,T, P, S′), where N = {S′, S0, S1}, T = {true0, false0, not1, or2,⊣
}, and P contains the following rules (the rules are written in the same order as their
corresponding transition rules of deterministic finite tree automaton µ2):

S′ → S1 ⊣
S0 → false0
S1 → true0
S1 → S0 not1
S0 → S1 not1
S0 → S0 S0 or2
S1 → S0 S1 or2
S1 → S1 S0 or2
S1 → S1 S1 or2

The pushdown automaton created according to Def. 4.2 for Gµ2 is deterministic push-
down automaton Mµ2 = ({q}, T,G, δ, q, Z0, ∅), where T = {true0, false0, not1, or2,⊣},
G = {Z0, S0, S1}, and δ contains the following transition rules:
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State Pushdown Store Input
q Z0 false0 true0 not1 or2 false0 not1 or2 ⊣
q Z0S0 true0 not1 or2 false0 not1 or2 ⊣
q Z0S0S1 not1 or2 false0 not1 or2 ⊣
q Z0S0S0 or2 false0 not1 or2 ⊣
q Z0S0 false0 not1 or2 ⊣
q Z0S0S0 not1 or2 ⊣
q Z0S0S1 or2 ⊣
q Z0S1 ⊣
q ε ε

accept

Figure 4.2: Trace of deterministic pushdown automaton Mµ2 from Example 4.3

δ(q,⊣, Z0S1) = (q, ε)
δ(q, false0, ε) = (q, S0)
δ(q, true0, ε) = (q, S1)
δ(q, not1, S0) = (q, S1)
δ(q, not1, S1) = (q, S0)

δ(q, or2, S0S0) = (q, S0)
δ(q, or2, S0S1) = (q, S1)
δ(q, or2, S1S0) = (q, S1)
δ(q, or2, S1S1) = (q, S1)

Tree automaton µ2 is deterministic. As a consequence, the right–hand side of every rule
of grammar Gµ2 is also unique and, moreover, that right–hand side is not a suffix of the
right–hand side of any other rule of grammar Gµ2, which means the grammar is LR(0).
Tree t3 in postfix notation is string false0 true0 not1 or2 false0 not1 or2. Fig. 4.2

shows the sequence of transitions (trace) performed by deterministic pushdown automaton
Mµ2 for tree t3 in postfix notation with the appended right marker.

Lemma 4.4. Let µ = (Q,A, Qf ,∆) be a finite tree automaton. Let Gµ = (N,T, P, S′)
be the context–free grammar created according to Def. 4.1 for µ. Then, the context–free
grammar Gµ generates exactly the language L(µ) in postfix notation with appended right
marker ⊣.

Proof. In Part II of the thesis or in [49].

Theorem 4.5. Let µ = (Q,A, Qf ,∆) be a finite tree automaton. Let Gµ = (N,T, P, S′) be
the context–free grammar created according to Def. 4.1 for µ. LetMµ = ({q}, T,G, δ, q, Z0, ∅)
be the pushdown automaton created according to Def. 4.2 for Gµ. Then, the pushdown
automaton Mµ accepts exactly the language L(µ) in postfix notation with appended right
marker ⊣.

Proof. In Part II of the thesis or in [49].

Theorem 4.6. Let µ = (Q,A, Qf ,∆) be a deterministic finite tree automaton. Let Gµ =
(N,T, P, S′) be the context–free grammar created according to Def. 4.1 for µ. Let Mµ =
({q}, T,G, δ, q, Z0, ∅) be the pushdown automaton created according to Def. 4.2 for Gµ.
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Then the context–free grammar Gµ is an LR(0) grammar and the pushdown automaton
Mµ is deterministic.

Proof. In Part II of the thesis or in [49].

Corollary 4.7. The class of regular tree languages in postfix notation is a proper subclass
of deterministic context-free string languages.

Proof. In Part II of the thesis or in [49].

The size of the constructed deterministic pushdown automaton directly corresponds to
the size of the deterministic finite tree automaton.

4.2 Beyond the class of regular tree languages

It is demonstrated by the following example that the deterministic pushdown automaton
is a model of computation which is powerful enough to accept also some non–regular tree
languages in postfix notation.

Example 4.8. Given a ranked alphabet A = {f2, g1, a0}, consider tree language L3 =
{f2 g1i a0 g1i a0 : i > 0}, which contains the symmetry between the two children of binary
symbol f2. It is shown in the details in Example 1.2.1 in [20] that L3 is not a regular tree
language, which means it cannot be recognized by a finite tree automaton.

L3 in postfix notation contains strings of the form a0 g1i a0 g1i f2, where i > 0, which
forms a deterministic context-free language. For example, the following LR(0) grammar
G3 generates L3 in postfix notation with appended right marker ⊣. Context–free grammar
G3 = (N,T, P, S′), where N = {S′, A}, T = {f2, g1, a0,⊣}, and P contains these rules:

S′ → S ⊣
S → a0 A f2
A → g1 A g1
A → g1 a0 g1

Corollary 4.9. The class of tree languages which are in their postfix notation deterministic
context-free string languages is a proper superclass of the class of regular tree languages.

Proof. The corollary follows from Corollary 4.7 and Example 4.8.
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Chapter 5

Linear notations of unranked trees

Definitions of the basic prefix and postfix notations are very useful for ranked trees. If the
tree is not ranked it is necessary to include information concerning the rank of every node.
This can be done in two ways:

1. to represent a node in both notations as a pair (a, arity(a)),
2. to use another principles of linearisation based on incorporation of some special sym-
bols.

The second approach can be illustrated by a bracketted notation in which each subtree
is enclosed in the left and the close bracket. The bar notations are based on the following
observations:

1. there is always the root of a subtree just behind the left bracket in prefix notation,
2. there is always the right bracket just behind the root of a subtree in postfix notation.

It follows from this observation that there is the left (right) bracket redundant in prefix
(postfix) bracketted notation. The bar notations in both cases reduces the number of
symbols in both linear bracketted notations. Instead of different symbols, left or right
brackets, the symbol bar (|) can be used in both cases.

Definition 5.1. The prefix bar notation pref bar(t) and postfix bar notation post bar(t)
of a tree t are defined in this way:

1. pref bar(a) = a | and post bar(a) = | a, respectively.
2. pref bar(t) = a pref bar(b1) pref bar(b2) . . . pref bar(bn) | and

post bar(t) = | post bar(b1) post bar(b2) . . . post bar(bn) a for prefix and postfix bar
notation, respectively, where a is the root of the tree t and b1, b2, . . . bn are direct
descendants of a.

In arbology we use linear bar notatitions for approximate tree pattern matching [33, 77],
where the following three operations on trees are considered:

1. Changing the label of a node.
2. Inserting a node to a tree.
3. Deleting a node from a tree.

The second and the third operation increases and decreases, respectively, the arity of a
node.
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Chapter 6

Properties of linear notations of
trees

In this chapter we describe some general properties of linear notations of trees which are
defined in the previous chapters. These properties are substantial for creating arbology
algorithms.

6.1 Prefix notation

Example 6.1. Consider tree t1 in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0 from
Example 3.1, which is illustrated in Fig. 3.1. Tree t1 contains only subtrees shown in
Fig. 6.1.

Generally, it holds for any tree that each of its subtrees in prefix notation is a substring
of the tree in prefix notation.

Theorem 6.2. Given a tree t and its prefix notation pref(t), all subtrees of t in prefix
notation are substrings of pref(t).

Proof. In Part II of the thesis or in [50, 34].

a0

a0 a1 a0

a2 a1

a2

a2 a2 a0 a1 a0 a1 a0

a0

a0 a1

a2

a2 a0 a1 a0

a0

a1

a1 a0

a0

a0

Figure 6.1: All subtrees of tree t1 from Example 3.1, and their prefix notations
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However, not every substring of a tree in prefix notation is a prefix notation of its
subtree. Just those substrings which themselves are trees in prefix notation are those which
are the subtrees in prefix notation. This property is formalised by the following definition
and theorem.

Definition 6.3. Let w = a1a2 . . . am, m ≥ 1, be a string over a ranked alphabet A. Then,
the arity checksum ac(w) = arity(a1)+arity(a2)+. . .+arity(am)−m+1=

∑m
i=1 arity(ai)−

m+ 1.

Theorem 6.4. Let pref(t) and w be a tree t in prefix notation and a substring of pref(t),
respectively. Then, w is the prefix notation of a subtree of t, if and only if ac(w) = 0, and
ac(w1) ≥ 1 for each w1, where w = w1x, x 6= ε.

Proof. In Part II of the thesis or in [50, 34].

6.2 Postfix notation

In this section we describe the dual principle for the postfix notation. Theorems 6.5 and
6.6 present the direct analogy of properties of the prefix and postfix notations.

Theorem 6.5. Given a tree t and its postfix notation post(t), all subtrees of t in postfix
notation are substrings of post(t).

Theorem 6.6. Let post(t) and w be a tree t in postfix notation and a substring of post(t),
respectively. Then, w is the postfix notation of a subtree of t, if and only if ac(w) = 0, and
ac(w1) ≤ −1 for each w1, where w = xw1, x 6= ε.

6.3 Linear notations of unranked trees

Similar properties hold also for prefix and postfix bar notations of trees.

Theorem 6.7. Given a tree t and its prefix bar notation pref bar(t), all subtrees of t in
prefix bar notation are substrings of pref bar(t).

Theorem 6.8. Given a tree t and its postfix bar notation post bar(t), all subtrees of t in
postfix bar notation are substrings of post bar(t).

Definition 6.9. Let w = a1a2 . . . am, m ≥ 1, be a string over A ∪ {|}. Then, the bar
checksum is defined as follows:

1. bc(a) = 1, and bc(|) = −1.
2. bc(wa) = bc(w) + 1, and bc(w|) = bc(w)− 1.

Theorem 6.10. Let pref bar(t) and w be a tree t in prefix bar notation and a substring of
pref bar(t), respectively. Then, w is the prefix bar notation of a subtree of t, if and only if
bc(w) = 0, and bc(w1) ≥ 1 for each w1, where w = xw1, x 6= ε.

The dual theorem for the postfix bar notation is as follows.

Theorem 6.11. Let post bar(t) and w be a tree t in postfix bar notation and a substring
of post bar(t), respectively. Then, w is the postfix bar notation of a subtree of t, if and only
if bc(w) = 0, and bc(w1) ≤ −1 for each w1, where w = xw1, x 6= ε.
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6.4 Computing arity and bar checksums by pushdown au-
tomata

Pushdown automata presented in the next chapters compute arity or bar checksums by
pushdown operations during the processing of trees. This computing of checksums is for-
mally described by the following four theorems for prefix, postfix, prefix bar and postfix
bar notations of trees.

Theorem 6.12. Let M = ({Q,A, {S}, δ, 0, S, ∅) be an input-driven PDA of which each
transition from δ is of the form δ(q1, a, S) = (q2, S

i), where i = arity(a). Then, if
(q3, w, S) ⊢

+
M (q4, ε, S

j), where w is a tree in prefix notation, then j = ac(w).

Proof. In Part II of the thesis or in [50].

We note that such pushdown operations correspond to the pushdown operations of the
standard top–down parsing algorithm for a context-free grammar with rules of the form

S → a Sarity(a).

For principles of the standard top–down (LL) parsing algorithm see [3].

Theorem 6.13. Let M = ({Q,A, {S}, δ, 0, S, F ) be an input–driven PDA whose each
transition from δ is of the form δ(q1, a, S

i) = (q2, S), where i = arity(a). Then, if
(q3, w, ε) ⊢

+
M (q4, ε, S

j), where w is a tree in postfix notation, then j = −ac(w) + 1.

We note that such pushdown operations correspond to the pushdown operations of the
standard bottom-up (LR) parsing algorithm for a context-free grammar with rules of the
form

S → Sarity(a) a.

Theorem 6.14. Let M = ({Q,A, {S}, δ, 0, S, F ) be an input–driven PDA whose each
transition from δ is of the form δ(q1, a, ε) = (q2, S) or δ(q1, |, S) = (q2, ε). Then, if
(q3, w, ε) ⊢

+
M (q4, ε, S

j), where w is a tree in prefix bar notation, then j = bc(w).

Theorem 6.15. Let M = ({Q,A, {S}, δ, 0, S, F ) be an input–driven PDA whose each
transition from δ is of the form δ(q1, a, S) = (q2, ε) or δ(q1, |, ε) = (q2, S). Then, if
(q3, w, ε) ⊢

+
M (q4, ε, S

j), where w is a tree in postfix bar notation, then j = −bc(w).
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Chapter 7

On determinisation of pushdown
automata

It is well known that in the theory of finite automata there exists the algorithm of transfor-
mation of any nondeterministic finite automaton to an equivalent deterministic one. The
determinisation of a finite automaton contains a creation of sets of states of a nondetermin-
istic automaton. These subsets play the role of states of an equivalent deterministic finite
automaton. The number of states of resulting deterministic finite automaton is less or equal
to 2n, where n is the number of states of the original nondeterministic finite automaton.
Such a universal algorithm for the determinisation of pushdown automata does not

exist. We identified three classes of nondeterministic pushdown automata for which exist
algorithms for determinisation. They are called input–driven [79], visible [7] and heigth–
deterministic pushdown automata [66]. Algorithms for determinisation are different for
these classes.
The principle of determinisation of finite automata can be used for input–driven push-

down automata. A notion of pushdown operation will be frequently used in the following
meaning.

Definition 7.1. Let M = (Q,A,G, δ, q0, Z0, F ) be a pushdown automaton. Let δ(q, a, α)
contains pair (p, β) for p, q ∈ Q, a ∈ A∪ ε, α, β ∈ G∗. Then the notation α 7→ β is used for
operation popping α from the top of the pushdown store and pushing β to the top of the
pushdown store. This operation is called pushdown operation.

Input–driven pushdown automata can be defined formally as follows.

Definition 7.2. A pushdown automaton M = (Q,A,G, δ, q0, Z0, F ) is an input–driven
pushdown automaton if each pushdown operation α 7→ β during every transition is explicitly
determined by the input symbol. In more formal notation: For each Q ∈ Q and a ∈ A∪{ε}
there exists the only mapping δ(q, a, α) = {(p1, β), (p2, β), ..., (pm, β)} for one pair α, β ∈ G∗

and p1, p2, . . . , pm ∈ Q.

Given a nondeterministic input–driven PDA, it can be determinised as follows:

Algorithm 7.3. Transformation of an input–driven nondeterministic PDA to an equivalent
deterministic PDA.
Input: Input–driven nondeterministic PDA Mnx(t) = ({0, 1, 2, . . . , n},A, {S},
δ, 0, S, ∅), where the ordering of its states is such that if δ(p, a, α) = (q, β), then p ≤ q.
Output: Equivalent deterministic PDA Mdx(t) = (Q′,A, {S}, δ′, qI , S, ∅).
Method:
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1. Let cpds(q′), where q′ ∈ Q′, denote a set of strings over {S}. (The abbreviation cpds
stands for Contents of the PushDown Store.)

2. Initially, Q′ = {[0]}, qI = [0], cpds([0]) = {S} and [0] is an unmarked state.
3. (a) Select an unmarked state q′ from Q′ such that q′ contains the smallest possible

state q ∈ Q, where 0 ≤ q ≤ n.
(b) If there is Sr ∈ cpds(q′), r ≥ 1, then for each input symbol a ∈ A:

i. Add transition δ′(q′, a, α) = (q′′, β), where q′′ = {q : δ(p, a, α) = (q, β) for
all p ∈ q′}. If q′′ is not in Q′ then add q′′ to Q′ and create cpds(q′′) = ∅.
Add ω, where δ(q′, a, γ) ⊢Mdx(t) (q

′′, ε, ω) and γ ∈ cpds(q′), to cpds(q′′).

(c) Set the state q′ as marked.
4. Repeat step 3 until all states in Q′ are marked.

Theorem 7.4. Given a input–driven nondeterministic PDA Mnx(t) = (Q,A, {S}, δ, q0, S,
∅), the deterministic PDA Mdx(t) = (Q′,A, {S}, δ′, {q0}, S, ∅) constructed by Alg. 7.3 is
equivalent to PDA Mnx(t).

Proof. In Part II of the thesis or in [50].
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Chapter 8

Indexing trees

Two new kinds of acyclic pushdown automata for trees in prefix notation are presented in
this chapter. First, subtree pushdown automata accept all subtrees of the tree. Second, tree
pattern pushdown automata accept all tree patterns which match the tree. The presented
pushdown automata are input–driven and therefore can be determinised. Given a tree with
n nodes, the deterministic subtree and the deterministic tree pattern pushdown automaton
represent a complete index of the tree, and the search phase of all occurrences of a subtree
or a tree pattern, respectively, of size m is performed in time linear in m and not depending
on n. This is faster than the time of the existing tree pattern matching algorithms, which
depends on n. The total size of the deterministic subtree pushdown automaton is linear in
n. Although the number of distinct tree patterns which match the tree can be exponential
in n, for specific cases of trees the total size of the deterministic tree pattern pushdown
automaton is linear in n.

8.1 Subtree pushdown automata

From the global point of view, comparing the subtree pushdown automata with the string
suffix automaton [14, 24], the deterministic subtree pushdown automaton constructed for
a tree t can have just states and transitions which correspond to states and transitions of
the deterministic string suffix automaton constructed for pref(t), where the transitions of
the subtree pushdown automaton are extended with pushdown operations. The pushdown
operations compute the arity checksum. Moreover, some of the states and the transitions
of the string suffix automaton need not be present in the deterministic subtree pushdown
automaton because the corresponding pushdown operations cannot be performed and there-
fore such states are not accessible.

Definition 8.1. Let t and pref(t) be a tree and its prefix notation, respectively. A subtree
pushdown automaton for pref(t) accepts all subtrees of t in prefix notation.

First, we start with a PDA which accepts the whole subject tree in prefix notation by
empty pushdown store, whose construction is described by Alg. 8.2. The constructed PDA
is deterministic.

Algorithm 8.2. Construction of a PDA accepting pref(t) by empty pushdown store.
Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an, n ≥ 1.
Output: PDA Mp(t) = ({0, 1, 2, . . . , n},A, {S}, δ, 0, S, ∅).
Method:
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0 1 2 3 4 5 6 7

a2|S 7→ SS

a2|S 7→ SS

a0|S 7→ εa1|S 7→ Sa0|S 7→ εa1|S 7→ Sa0|S 7→ ε

Figure 8.1: Transition diagram of deterministic pushdown automatonMp(t1) accepting tree
t1 in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0 from Example 8.3

State Input Pushdown Store
0 a2 a2 a0 a1 a0 a1 a0 S

1 a2 a0 a1 a0 a1 a0 S S

2 a0 a1 a0 a1 a0 S S S

3 a1 a0 a1 a0 S S

4 a0 a1 a0 S S

5 a1 a0 S

6 a0 S

7 ε ε

accept

Figure 8.2: Trace of deterministic pushdown automaton Mp(t1) from Example 8.3 for tree
t1 in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0

1. For each state i, where 1 ≤ i ≤ n, create a new transition δ(i− 1, ai, S) = (i, SArity(ai)),
where S0 = ε.

Example 8.3. A pushdown automaton accepting tree t1 in prefix notation pref(t1) =
a2 a2 a0 a1 a0 a1 a0 from Example 3.1, which has been constructed by Alg. 8.2, is deter-
ministic pushdown automaton Mp(t1) = ({0, 1, 2, 3, 4, 5, 6, 7},A, {S}, δ1, 0, S, ∅)), where the
mapping δ1 is a set of the following transitions:

δ1(0, a2, S) = (1, SS)
δ1(1, a2, S) = (2, SS)
δ1(2, a0, S) = (3, ε)
δ1(3, a1, S) = (4, S)
δ1(4, a0, S) = (5, ε)
δ1(5, a1, S) = (6, S)
δ1(6, a0, S) = (7, ε)

The transition diagram of deterministic pushdown automaton Mp(t1) is illustrated in Fig.
8.1. In this figure, for each transition rule δ1(p, a, α) = (q, β) from δ the edge leading from
state p to state q is labelled by the triple of the form a|α 7→ β.
Fig. 8.2 shows the sequence of transitions (trace) performed by deterministic pushdown

automaton Mp(t1) for tree t1 in prefix notation.

Lemma 8.4. Given a tree t and its prefix notation pref(t), the PDA Mp(t) = ({0, 1, 2, . . . ,
n},A, {S}, δ, 0, S, ∅), where n ≥ 0, constructed by Alg. 8.2 accepts pref(t).

Proof. In Part II of the thesis or in [50].
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0 1 2 3 4 5 6 7

a2|S 7→ SS

a2|S 7→ SS

a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a2|S 7→ SS

a0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

Figure 8.3: Transition diagram of nondeterministic subtree pushdown automaton Mnps(t1)
for tree t1 in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0 from Example 8.6

The construction of the deterministic subtree PDA for trees in prefix notation consists
of two steps. First, a nondeterministic subtree PDA is constructed by Alg. 8.5. This
nondeterministic subtree PDA is an extension of the PDA accepting tree in prefix notation,
which is constructed by Alg. 8.2. Second, the constructed nondeterministic subtree PDA
is transformed to the equivalent deterministic subtree PDA by Alg. 7.3.

Algorithm 8.5. Construction of a nondeterministic subtree PDA for a tree t in prefix
notation pref(t).
Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an, n ≥ 1.
Output: Nondeterministic PDA Mnps(t) = ({0, 1, 2, . . . , n},A, {S}, δ, 0, S, ∅).
Method:

1. Create PDA Mnps(t) as PDA Mp(t) by Alg. 8.2.
2. For each state i, where 2 ≤ i ≤ n, create a new transition

δ(0, ai, S) = (i, SArity(ai)), where S0 = ε.

Example 8.6. A subtree pushdown automaton for tree t1 in prefix notation pref(t1) =
a2 a2 a0 a1 a0 a1 a0 from Example 3.1, which has been constructed by Alg. 8.5, is nondeter-
ministic pushdown automaton Mnps(t1) = ({0, 1, 2, 3, 4, 5, 6, 7},A, {S}, δ2, 0, S, ∅)), where
mapping δ2 is a set of the following transitions:

δ2(0, a2, S) = (1, SS)
δ2(1, a2, S) = (2, SS) δ2(0, a2, S) = (2, SS)
δ2(2, a0, S) = (3, ε) δ2(0, a0, S) = (3, ε)
δ2(3, a1, S) = (4, S) δ2(0, a1, S) = (4, S)
δ2(4, a0, S) = (5, ε) δ2(0, a0, S) = (5, ε)
δ2(5, a1, S) = (6, S) δ2(0, a1, S) = (6, S)
δ2(6, a0, S) = (7, ε) δ2(0, a0, S) = (7, ε)

The transition diagram of nondeterministic pushdown automatonMnps(t1) is illustrated
in Fig. 8.3. Again, in this figure for each transition rule δ2(p, a, α) = (q, β) from δ2 the
edge leading from state p to state q is labelled by the triple of the form a|α 7→ β.
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Theorem 8.7. Given a tree t and its prefix notation pref(t), the PDA Mnps(t) constructed
by Alg. 8.5 is a subtree PDA for pref(t).

Proof. In Part II of the thesis or in [50].

To construct deterministic subtree or tree pattern PDAs from their nondeterministic
versions we use the transformation described by Alg. 7.3.

Example 8.8. The deterministic subtree pushdown automaton for tree t1 in prefix notation
pref(t1) = a2 a2 a0 a1 a0 a1 a0 from Example 3.1, which has been constructed by Alg. 7.3
from nondeterministic subtree pushdown automaton Mnps(t1) from Example 8.6, is de-
terministic pushdown automaton Mdps(t1) = ({[0], [1, 2], [2], [3], [4], [5], [6], [7], [3, 5, 7], [4, 6],
[5, 7]},A, {S}, δ3, [0], S, ∅)), where mapping δ3 is a set of the following transitions:

δ3([0], a2, S) = ([1, 2], SS) δ3([0], a0, S) = ([3, 5, 7], ε)
δ3([1, 2], a2, S) = ([2], SS) δ3([0], a1, S) = ([4, 6], S)
δ3([2], a0, S) = ([3], ε) δ3([1, 2], a0, S) = ([3], ε)
δ3([3], a1, S) = ([4], S) δ3([4, 6], a0, S) = ([5, 7], ε)
δ3([4], a0, S) = ([5], ε)
δ3([5], a1, S) = ([6], S)
δ3([6], a0, S) = ([7], ε)

The contents of the pushdown store in particular states are as follows:

cpds([0]) = {S}, cpds([3, 5, 7]) = {ε},
cpds([1, 2]) = {SS}, cpds([4, 6]) = {S},
cpds([2]) = {SSS}, cpds([5, 7]) = {ε}.
cpds([3]) = {S, SS},
cpds([4]) = {S, SS},
cpds([5]) = {ε, S},
cpds([6]) = {S},
cpds([7]) = {ε},

The transition diagram of deterministic pushdown automaton Mdps(t1) is illustrated in
Fig. 8.4. Again, in this figure for each transition rule δ3(p, a, α) = (q, β) from δ3 the edge
leading from state p to state q is labelled by the triple of the form a|α 7→ β.
We note that there are no transitions leading from states [3, 5, 7], [5, 7] and [7], be-

cause the contents of the pushdown store (cpds) in these state is always ε and therefore
no transition is possible from these states due to the pushdown operations. This means
that deterministic subtree pushdown automaton Mdps(t1) has fewer transitions than the
deterministic string suffix automaton constructed for pref(t1) [21, 63, 76].
Fig. 8.5 shows the sequence of transitions (the trace) performed by deterministic subtree

pushdown automaton Mdps(t1) for an input subtree st in prefix notation pref(st) = a1a0.
The accepting state is [5, 7], which means there are two occurrences of the input subtree st
in tree t1 and their rightmost leaves are nodes a05 and a07.

Lemma 8.9. Given a tree t with n nodes, the number of distinct subtrees of tree t is equal
or smaller than n.

Proof. In Part II of the thesis or in [50].
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[0] [1, 2] [2] [3] [4] [5] [6] [7]

[3, 5
7]

[4, 6] [5, 7]

a2|S 7→ SS

a2|S 7→ SS

a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a0|S 7→ εa0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

Figure 8.4: Transition diagram of deterministic subtree pushdown automaton Mdps(t1) for
tree in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0 from Example 8.8

State Input Pushdown Store
[0] a1 a0 S

[4, 6] a0 S

[5, 7] ε ε

accept

Figure 8.5: Trace of deterministic subtree pushdown automaton Mdps(t1) from Example
8.8 for an input subtree st in prefix notation pref(st) = a1a0

The deterministic subtree PDA has the only pushdown symbol S, and all its states and
transitions correspond to the states and the transitions, respectively, of the deterministic
suffix automaton constructed for pref(t). Therefore, the total size of the deterministic
subtree PDA cannot be greater than the total size of the deterministic suffix automaton
constructed for pref(t).

Theorem 8.10. Given a tree t with n nodes and its prefix notation pref(t), the determin-
istic subtree PDA Mdps(t) constructed by Algs. 8.5 and 7.3 has just one pushdown symbol,
fewer than N ≤ 2n+ 1 states and at most N + n− 1 ≤ 3n transitions.

Proof. In Part II of the thesis or in [50].

8.2 Tree pattern pushdown automata

In this section, algorithms and theorems regarding tree pattern pushdown automata for
trees in prefix notation are given, and the tree pattern pushdown automata and their
construction are demonstrated on an example. A tree pattern can be either a subtree
or a tree template, which contains at least one special nullary symbol S representing a
subtree. Tree pattern pushdown automata are an extension of subtree pushdown automata,
described in the previous section, so that also tree templates would be accepted. New
states and transitions, which are used for processing the special nullary symbols S in tree
templates, are additionally present in the tree pattern s. The pushdown operations are the
same and compute the arity checksum.
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Definition 8.11. Let t and pref(t) be a tree and its prefix notation, respectively. A tree
pattern pushdown automaton for pref(t) accepts all tree patterns in prefix notation which
match the tree t.

Given a subject tree, first we construct a so-called deterministic treetop PDA for this
tree in prefix notation, which accepts all tree patterns that match the subject tree and
contain the root of the subject tree. The deterministic treetop PDA is defined as follows.

Definition 8.12. Let t, r and pref(t) be a tree, its root and its prefix notation, respectively.
A treetop pushdown automaton for pref(t) accepts all tree patterns in prefix notation which
have the root r and match the tree t.

The construction of the treetop PDA is described by the following algorithm. The
treetop PDA is deterministic.

Algorithm 8.13. Construction of a treetop PDA for a tree t in prefix notation pref(t).
Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an, n ≥ 1.
Output: Treetop PDA Mpt(t) = ({0, 1, 2, . . . , n},A ∪ {S}, {S}, δ, 0, S, ∅).
Method:

1. Create Mpt(t) as Mp(t) by Alg. 8.2.
2. Create a set srms = { i : 1 ≤ i ≤ n, δ(i−1, a, S) = (i, ε), a ∈ A0}. The abbreviation
srms stands for Subtree RightMost States.

3. For each state i, where i = n− 1, n− 2, . . . , 1, δ(i, a, S) = (i+ 1, Sp), a ∈ Ap, create
a new transition δ(i, S, S) = (l, ε) such that (i, xy, S) ⊢+

Mp(t)
(l, y, ε) as follows:

If p = 0, create a new transition δ(i, S, S) = (i+ 1, ε).
Otherwise, if p ≥ 1, create a new transition δ(i, S, S) = (l, ε), where l is the p-th
smallest integer such that l ∈ srms and l > i. Remove all j, where j ∈ srms, and
i < j < l, from srms.

Example 8.14. Consider tree t1 in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0
from Example 3.1, which is illustrated in Fig. 3.1. The deterministic treetop pushdown
automaton, constructed by Alg. 8.13, is deterministic pushdown automaton Mpt(t1) =
({0, 1, 2, 3, 4, 5, 6, 7},A, {S}, δ4, 0, S, ∅)), where mapping δ4 is a set of the following transi-
tions:

δ4(0, a2, S) = (1, SS)
δ4(1, a2, S) = (2, SS) δ4(1, S, S) = (5, ε)
δ4(2, a0, S) = (3, ε) δ3(2, S, S) = (3, ε)
δ4(3, a1, S) = (4, S) δ4(3, S, S) = (5, ε)
δ4(4, a0, S) = (5, ε) δ4(4, S, S) = (5, ε)
δ4(5, a1, S) = (6, S) δ4(5, S, S) = (6, ε)
δ4(6, a0, S) = (7, ε) δ4(6, S, S) = (7, ε)

The transition diagram of deterministic treetop pushdown automaton Mpt(t1) is illus-
trated in Fig. 8.6. Again, in this figure for each transition rule δ(p, a, α) = (q, β) from δ

the edge leading from state p to state q is labelled by the triple of the form a|α 7→ β.
Deterministic treetop pushdown automaton Mpt(t1) has been constructed by Alg. 8.13

as follows. We can see that the initial set srms = {3, 5, 7}. Then, new transitions, which
read symbol S, are created in the following order: δ4(6, S, S) = (7, ε), δ4(5, S, S) = (7, ε),
δ4(4, S, S) = (5, ε), δ4(3, S, S) = (5, ε), δ4(2, S, S) = (3, ε), and δ4(1, S, S) = (5, ε).

31



0 1 2 3 4 5 6 7

a2|S 7→ SS

a2|S 7→ SS

a0|S 7→ ε

S|S 7→ ε

a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

S|S 7→ ε S|S 7→ ε

Figure 8.6: Transition diagram of deterministic treetop pushdown automaton Mpt(t1) for
tree in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0 from Example 8.14

Theorem 8.15. Given a tree t and its prefix notation pref(t), the PDA Mpt(t) constructed
by Alg. 8.13 is a treetop PDA for pref(t).

Proof. In Part II of the thesis or in [50].

The nondeterministic tree pattern PDA for trees in prefix notation is constructed as an
extension of the deterministic treetop PDA.

Algorithm 8.16. Construction of a nondeterministic tree pattern PDA for a tree t in
prefix notation pref(t).
Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an, n ≥ 1.
Output: Nondeterministic tree pattern PDA Mnpt(t) = ({0, 1, 2, . . . , n},A∪{S}, {S}, δ, 0,
S, ∅).
Method:

1. Create Mnpt(t) as Mpt(t) by Alg. 8.13.
2. For each state i, where 2 ≤ i ≤ n, create a new transition

δ(0, ai, S) = (i, SArity(ai)), where S0 = ε.

Example 8.17. Consider tree t1 in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0 from
Example 3.1, which is illustrated in Fig. 3.1. The nondeterministic tree pattern pushdown
automaton accepting all tree patterns matching tree t1, which has been constructed by Alg.
8.16, is nondeterministic pushdown automaton Mnpt(t1) = ({0, 1, 2, 3, 4, 5, 6, 7},A, {S}, δ5,
0, S, ∅)), where mapping δ5 is a set of the following transitions:

δ5(0, a2, S) = (1, SS)
δ5(1, a2, S) = (2, SS) δ5(1, S, S) = (5, ε) δ5(0, a2, S) = (2, SS)
δ5(2, a0, S) = (3, ε) δ3(2, S, S) = (3, ε) δ5(0, a0, S) = (3, ε)
δ5(3, a1, S) = (4, S) δ5(3, S, S) = (5, ε) δ5(0, a1, S) = (4, S)
δ5(4, a0, S) = (5, ε) δ5(4, S, S) = (5, ε) δ5(0, a0, S) = (5, ε)
δ5(5, a1, S) = (6, S) δ5(5, S, S) = (6, ε) δ5(0, a1, S) = (6, S)
δ5(6, a0, S) = (7, ε) δ5(6, S, S) = (7, ε) δ5(0, a0, S) = (7, ε)

The transition diagram of nondeterministic tree pattern pushdown automaton Mnpt(t1)
is illustrated in Fig. 8.7. Again, in this figure for each transition rule δ(p, a, α) = (q, β) from
δ the edge leading from state p to state q is labelled by the triple of the form a|α 7→ β.
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0 1 2 3 4 5 6 7

a2|S 7→ SS

a2|S 7→ SS

a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a2|S 7→ SS

a0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε S|S 7→ ε

S|S 7→ ε S|S 7→ ε S|S 7→ ε

Figure 8.7: Transition diagram of nondeterministic tree pattern pushdown automaton
Mnpt(t1) from Example 8.17 for tree in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0

Theorem 8.18. Given a tree t and its prefix notation pref(t), the PDAMnpt(t) constructed
by Alg. 8.16 is a tree pattern PDA for pref(t).

Proof. In Part II of the thesis or in [50].

The nondeterministic tree pattern PDA Mnpt(t) is again an acyclic input-driven PDA,
and therefore can be determinised by Alg. 7.3 to an equivalent deterministic tree pattern
PDA Mdpt(t).

Example 8.19. Consider nondeterministic tree pattern pushdown automaton Mnpt(t1)
from Example 8.17, the transition diagram of which is illustrated in Fig. 8.7. The deter-
ministic tree pattern pushdown automaton Mdpt(t1) constructed by Alg. 7.3 is Mdpt(t1) =
({[0], [1, 2], [2], [3], [4], [5], [6], [7], [3, 5, 7], [3, 5], [4, 6], [5, 7]},A, {S}, δ6, [0], S, ∅)), where map-
ping δ6 is a set of the following transitions:

δ6([0], a0, S) = ([3, 5, 7], ε)
δ6([0], a1, S) = ([4, 6], S)
δ6([0], a2, S) = ([1, 2], SS)
δ6([1, 2], a2, S) = ([2], SS) δ6([1, 2], S, S) = ([3, 5], ε)
δ6([2], a0, S) = ([3], ε) δ6([2], S, S) = ([3], ε)
δ6([3], a1, S) = ([4], S) δ6([3], S, S) = ([5], ε)
δ6([4], a0, S) = ([5], ε) δ6([4], S, S) = ([5], ε)
δ6([5], a1, S) = ([6], S) δ6([5], S, S) = ([7], ε)
δ6([6], a0, S) = ([7], ε) δ6([6], S, S) = ([7], ε)
δ6([3, 5], a1, S) = ([4, 6], S) δ6([3, 5], S, S) = ([5, 7], ε)
δ6([4, 6], a0, S) = ([5, 7], ε) δ6([4, 6], S, S) = ([5, 7], ε)
δ6([1, 2], a0, S) = ([3], ε)
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[0] [1, 2] [2] [3] [4] [5] [6] [7]

[3, 5
7]

[4, 6] [5, 7]

[3, 5]

a2|S 7→ SS

a2|S 7→ SS

a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a0|S 7→ ε

S|S 7→ ε

a0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

S|S 7→ ε

a1|S 7→ ε

S|S 7→ ε

S|S 7→ ε

S|S 7→ ε

S|S 7→ εS|S 7→ ε S|S 7→ ε

Figure 8.8: Transition diagram of deterministic tree pattern pushdown automatonMdpt(t1)
from Example 8.19 for tree in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0

State Input Pushdown Store
[0] a2 S a1 S S

[1, 2] S a1 S SS

[3, 5] a1 S S

[4, 6] S S

[5, 7] ε ε

accept

Figure 8.9: Trace of deterministic pushdown automaton Mdpt from Example 8.19

The transition diagram of deterministic tree pattern pushdown automaton Mdpt(t1) is
illustrated in Fig. 8.8. Again, in this figure for each transition rule δ(p, a, α) = (q, β) from
δ the edge leading from state p to state q is labelled by the triple of the form a|α 7→ β.
Fig. 8.9 shows the sequence of transitions (the trace) performed by deterministic tree

pattern pushdown automaton Mdpt(t1) for input tree pattern p1 = a2 S a1 S, which is
illustrated in Fig. 3.2.

The rest of this section is devoted to a discussion on the space required by the deter-
ministic tree pattern pushdown automaton.

Lemma 8.20. Given a tree t with n nodes, the number of distinct tree patterns which
match the tree t can be at most 2n−1 + n.

Proof. In Part II of the thesis or in [50].

Example 8.21. Figs. 8.12 and 8.13 show the transition diagrams of the deterministic tree
pattern pushdown automata constructed by Algs. 8.16 and 7.3 for the two examples of trees
with the boundary structures illustrated in Figs. 8.10 and 8.11, respectively.
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a11

a12

a13

...

a0n

pref(t4) = (a1)n−1a0

Figure 8.10: A tree t4, which represents a string, and its prefix notation

a(n− 1)1

a102 a203 an−10n. . .

pref(t5) = a(n− 1) a10 a20 . . . an−10

Figure 8.11: A tree t5 with 2n−1 + n distinct tree patterns matching the tree t5 and its
prefix notation

[0]
[1, 2,
3, ...
n − 1]

[2, 3,
...

n − 1]

[3, ...,
n − 1]

. . . [n − 1] [n]

a1|S 7→ S a1|S 7→ S a1|S 7→ S a0|S 7→ ε

a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

Figure 8.12: Transition diagram of the deterministic tree pattern pushdown automaton
Mdpt(t4) for the tree t4 in prefix notation pref(t4) = (a1)n−1a0, where n ≥ 1
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[0] [1] [2] [3] [4] . . . [n− 1] [n]

a(n− 1)|
S 7→ Sn−1

a10|
S 7→ ε

a20|
S 7→ ε

a30|
S 7→ ε

an−10|
S 7→ ε

a10|S 7→ ε

a20|S 7→ ε

a30|S 7→ ε

an−20|S 7→ ε

an−10|S 7→ ε

S|S 7→ εS|S 7→ ε S|S 7→ ε S|S 7→ ε

Figure 8.13: Transition diagram of the deterministic tree pattern pushdown automaton
Mdpt(t3) for the tree t5 in prefix notation pref(t5) = a(n − 1) a10 a20 . . . an−10, where
n ≥ 2 and ai0 6= aj0, i 6= j

As the simplest case, where the total size of the deterministic tree pattern pushdown
automaton is linear in the number of nodes of the tree, we consider a deterministic tree
pattern pushdown automaton that has just the same states as the corresponding determin-
istic subtree pushdown automaton. This occurs for specific cases of trees which are called
trees with periodical subtrees, and are defined by Definition 8.22.

Definition 8.22. Let t be a tree over a ranked alphabet A. The tree t is a tree with
periodical subtrees if there exists a mapping Z of A \ A0 into A+ such that the prefix
notation of each subtree st of the tree t is of the form pref(st) = (ax)my, where a ∈ A,
x ∈ A∗, y ∈ A+, m ≥ 1, Z(a) = xy, and y is a subtree in prefix notation.

Example 8.23. Examples of trees with periodical subtrees are illustrated in Figs. 8.10,
8.11 and 8.14, and the transition diagrams of the corresponding deterministic tree pattern
pushdown automata are illustrated in Figs. 8.12, 8.13 and 8.15, respectively.
In the case of tree t6, which is constructed over ranked alphabet {a2, a1, a0} and is

illustrated in Fig. 8.14, the corresponding mapping Z4 is the following set:

Z4(a2) = a1 a0 a0, where x = a1 a0 and y = a0
Z4(a1) = a0, where x = ε and y = a0

Prefix notations of all subtrees of tree t6 are: a2 a1 a0 a2 a1 a0 a0, a2 a1 a0 a0, a1 a0 and
a0.

The resulting number of states and of transitions of the deterministic tree pattern push-
down automata for trees with determined subtrees are formally proved in Theorem 8.24.
We also present a companion Lemma 8.25 which shows that the deterministic tree pattern
pushdown automaton has more states than the deterministic subtree pushdown automaton
if the condition for the trees with determined subtrees is violated.

Theorem 8.24. Let t be a tree over a ranked alphabet A. If the tree t is a tree with period-
ical subtrees, then the deterministic tree pattern pushdown automaton Mdpt(t) constructed
by Algs. 8.16 and 7.3 has just one pushdown symbol, fewer than N ≤ 2n+ 1 states and at
most 2N + n− 3 ≤ 5n− 1 transitions.
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a06

a07a03 a15

a12 a24

a21

pref(t4) = a2 a1 a0 a2 a1 a0 a0

Figure 8.14: Tree t6 from Example 8.23 and its prefix notation

[0] [1, 4] [2, 5] [3, 6] [4] [5] [6] [7]

[3, 6
7]

a2|S 7→ SS a1|S 7→ S a0|S 7→ ε a2|S 7→ SS a1|S 7→ S a0|S 7→ ε a0|S 7→ ε

a0|S 7→ ε

a1|S 7→ S

S|S 7→ ε

S|S 7→ ε

S|S 7→ ε

S|S 7→ ε S|S 7→ εS|S 7→ ε

Figure 8.15: Transition diagram of deterministic tree pattern pushdown automatonMdpt(t6)
from Example 8.23 for tree in prefix notation pref(t6) = a2 a1 a0 a2 a1 a0 a0
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a04 a05

a23 b06

a22 a07

a21

pref(t5) = a2 a2 a2 a0 a0 b0 a0

Figure 8.16: Tree t7 from Example 8.26 and its prefix notation

Proof. In Part II of the thesis or in [50].

Lemma 8.25. Let t be a tree over a ranked alphabet A. If the tree t is not a tree with
periodical subtrees, then the deterministic tree pattern pushdown automaton Mdpt(t) con-
structed by Algs. 8.16 and 7.3 has more states than the deterministic subtree pushdown
automaton Mdps(t) constructed by Algs. 8.5 and 7.3.

Proof. In Part II of the thesis or in [50].

Example 8.26. Examples of trees which are not trees with periodical subtrees are illus-
trated in Figs. 3.1 and 8.16, and the transition diagrams of the corresponding deterministic
tree pattern pushdown automata are illustrated in Figs. 8.8 and 8.17, respectively. In
Fig. 8.8, state [3, 5] is not in the corresponding deterministic subtree pushdown automaton.
In Fig. 8.17, states [4, 5], [4, 5, 6], [5, 6], [5, 7], [5, 6, 7] and [6, 7] are not in the corresponding
deterministic subtree pushdown automaton.

In general, the deterministic tree pattern pushdown automaton can have more than
linear number of states. For example, given a tree t in prefix notation pref(t) = a2ma0m+1,
m ≥ 1, the corresponding pushdown automaton Mdpt(t) has N = m2+m

2 + 2m + 2 states
and 2(N − m − 1) = m2 + 3m + 2 transitions. This means that the number of distinct
tree patterns which match such a tree t is exponential in the number of nodes of the tree
and the total size of the corresponding deterministic tree pattern pushdown automaton is
quadratic. The maximal numbers of states and transitions of the deterministic tree pattern
pushdown automaton in general remain open problems.
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[0]
[1, 2,
3]

[2, 3] [3] [4] [5] [6] [7]

[4, 5,
7]

[4, 5,
6]

[5, 7]

[5, 6,
7]

[4, 5]

[5, 6]

[6, 7]

S|S 7→ ε

S|S 7→ ε

S|S 7→ ε

a2|S 7→ SS a2|S 7→ SS a2|S 7→ SSa0|S 7→ ε a0|S 7→ ε b0|S 7→ ε a0|S 7→ ε

a0|S 7→ ε b0|S 7→ ε

S|S 7→ ε S|S 7→ ε S|S 7→ ε S|S 7→ ε

a0|S 7→ ε

a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

a0|S 7→ ε b0|S 7→ ε

b0|S 7→ ε
a0|S 7→ ε

a0|S 7→ ε

b0|S 7→ ε

Figure 8.17: Transition diagram of deterministic tree pattern pushdown automatonMdpt(t7)
from Example 8.26 for tree in prefix notation pref(t7) = a2 a2 a2 a0 a0 b0 a0
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Chapter 9

Repeats in trees

Efficient methods of finding various kinds of repeats in a string can be based on construct-
ing and analysing string suffix trees or string suffix automata, which represent complete
indexes of the string for substrings. In the previous chapter we describe subtree pushdown
automata, which are analogous to the string suffix automata and represent complete indexes
of trees for subtrees. This chapter presents a new and simple method of finding various
kinds of all repeats of subtrees in a given tree by constructing and analysing the subtree
pushdown automaton for the tree. Given a tree with n nodes, the finding of all repeats of
subtrees in the tree is performed in O(n) time and O(n) space.
Given a tree, the problem is to find all repeating subtrees of the tree and to compute

kinds and positions of all occurrences of these subtrees. All repeats of subtrees and their
properties are summarised in a subtree repeat table, which is defined by Defs. 9.1, 9.2 and
9.3. We define two versions of the subtree repeat table: the first, basic, version of the table
contains basic information on repeats and its size is linear to the number of nodes of the
tree. The second one, an extended subtree repeat table, contains also further information
such as all the repeating subtrees in prefix notation, which can result in a larger table.

Definition 9.1. Let t be a tree over a ranked alphabet A. A subtree position set sps(st, t),
where st is a subtree of t, is the set sps(st, t) = {i : pref(t) = x pref(st) y, x, y ∈ A∗, i =
|x|+ 1}.

Definition 9.2. Let t be a tree over a ranked alphabet A. Given a subtree st of t, list of
subtree repeats lsr(st, t) is a relation in sps(st, t)× {F, S,Q} defined as follows:

- (i, F ) ∈ lsr(st, t) iff pref(t) = x pref(st) y, i = |x|+ 1, x 6= x1 pref(st) x2,
- (i, S) ∈ lsr(st, t) iff pref(t) = x pref(st) y, i = |x|+ 1, x = x1 pref(st),
- (i, G) ∈ lsr(st, t) iff pref(t) = x pref(st) y, i = |x|+1, x = x1 pref(st) x2, x2 ∈ A+.

Informally, the list of subtree repeats for a subtree st contains kinds of all occurrences of
the subtree st. Abbreviations F , S, and G stand for First occurrence of the subtree, repeat
as a Square, and repeat with a Gap, respectively. In comparison with kinds of repeats in
string [61, 63], repeats of subtrees have no kind which would represent the overlapping of
subtrees because any two different occurrences of the same subtree cannot overlap.

Definition 9.3. Given a tree t, the basic subtree repeat table BSRT (t) is the set of all
lists of subtree repeats lsr(st, t), where st is a subtree with more than one occurrence in
the tree t.
The extended subtree repeat table ESRT (t) is the set of all triplets (sps(st, t), pref(st),

lsr(st, t)), where st is a subtree with more than one occurrence in the tree t.
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a21

a22

a03 a14

a05

a26

a07 a18

a09

pref(t8) = a2 a2 a0 a1 a0 a2 a0 a1 a0

Figure 9.1: Tree t8 from Example 9.4 and its prefix notation

a0

a0 a1

a2

pref(st1) = a2 a0 a1 a0

a0

a1

pref(st2) = a1 a0

a0

pref(st3) = a0

Figure 9.2: Subtrees with more than one occurrence in tree t8 from Example 9.4, and their
prefix notations

Example 9.4. Consider a ranked alphabet A = {a0, a1, a2}. Consider a tree t8 over
A t8 = ({a21, a22, a03, a14, a05, a26, a07, a18, a09}, R8), where R8 is a set of the following
ordered sequences of pairs:

((a21, a22), (a21, a26)),
((a22, a03), (a22, a14)),
((a14, a05)),
((a26, a07), (a26, a18)),
((a18, a09))

Tree t8 in prefix notation is string pref(t8) = a2 a2 a0 a1 a0 a2 a0 a1 a0. Trees tree t8
is illustrated in Fig. 9.1.
Subtrees with more than one occurrence in tree t8 are subtrees st1, st2 and st3, where

pref(st1) = a2 a0 a1 a0, pref(st2) = a1 a0, and pref(st3) = a0. These three subtrees are
illustrated in Fig. 9.2. All other subtrees of tree t8 are present just once in tree t8.
It holds that sps(st1) = {2, 6}, sps(st2) = {4, 8}, sps(st3) = {3, 5, 7, 9}, and the corre-

sponding basic subtree repeat table BSRT (t1) and extended subtree repeat table ESRT (t1)
are illustrated in Fig. 9.3 and Fig. 9.4, respectively.
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List of subtree repeats
(2, F ), (6, S)

(4, F ), (8, G)

(3, F ), (5, G), (7, G), (9, G)

Figure 9.3: Basic subtree repeat table BSRT (t1) from Example 9.4

Subtree position set Subtree in prefix notation List of subtree repeats
2, 6 a2 a0 a1 a0 (2, F ), (6, S)

4, 8 a1 a0 (4, F ), (8, G)

3, 5, 7, 9 a0 (3, F ), (5, G), (7, G), (9, G)

Figure 9.4: Extended subtree repeat table ESRT (t1) from Examples 9.4

Algorithm 9.5. Construction of the basic subtree repeat table for a tree t in prefix notation
pref(t).
Input: A tree t; prefix notation pref(t) = a1a2 . . . an, n ≥ 1.
Output: Basic subtree repeat table BSRT (t).
Method:

1. Initially, BSRT (t) = ∅.
2. Create Mnps(t) = ({0, 1, 2, . . . , n},A, {S}, δ, 0, S, ∅) by Alg. 8.5.
3. Let Q′ denote a set of states. Let pdsl(q′), where q′ ∈ Q′, denote a set of pairs of
integers (the abbreviation pdsl stands for the number of symbols S in the PushDown
Store, and the Length of the subtree.)

4. Q′ = {[0]}, pdsl([0]) = {(1, 0)} and [0] is an unmarked state.
5. (a) Select an unmarked state q′ from Q′ such that q′ contains the smallest possible

state q ∈ Q, where 0 ≤ q ≤ n.
(b) For each (0, l) ∈ pdsl(q′) to BSRT (t) add pairs (x, Z), where x = r − l, r ∈ q′

and:

i. Z = F if x is the smallest such number x,
ii. Z = S if x− 1 ∈ q′′,
iii. Z = G otherwise.

(c) If there is v > 0, (v, w) ∈ pdsl(q′), then for each input symbol a ∈ A:
Compute state q′′ = {q : δ(p, a, α) = (q, β) for all p ∈ q′}.
If q′′ is not in Q′ and |q′′| > 1, then add q′′ to Q′ and create pdsl(q′′) = ∅.
Add pairs (j, k + 1), where (i, k) ∈ pdsl(q′), i > 0, j = i + arity(a) − 1, to
pdsl(q′′).

(d) Set the state q′ as marked.
6. Repeat step 5 until all states in Q′ are marked.

Example 9.6. The basic subtree repeat table BSRT (t1) constructed by Alg. 9.5 for tree
t8 from Example 9.4 is illustrated in Fig. 9.3. During this construction states [0], [1, 2, 6],
[3, 5, 7, 9], [3, 7], [4, 8], [5, 9], and the following set pdsl have been constructed:
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pdsl([0]) = {(1, 0)}, pdsl([3, 5, 7, 9]) = {(0, 1)},
pdsl([1, 2, 6]) = {(2, 1)}, pdsl([3, 7]) = {(1, 2)},

pdsl([4, 8]) = {(1, 1), (1, 3)},
pdsl([5, 9]) = {(0, 2), (0, 4)}.

Theorem 9.7. Given a tree t with n nodes, Alg. 9.5 correctly constructs the basic subtree
repeat table BSRT (t) in time O(n) and space O(n).

Proof. In Part II of the thesis or in [51].
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Chapter 10

Tree Pattern Matching

A systematic approach to the construction of subtree pattern matchers by deterministic
pushdown automata, which read subject trees in prefix and postfix notation, is presented
in this chapter. The method is analogous to the construction of string pattern matchers:
for a given pattern, a nondeterministic pushdown automaton is created and then it is deter-
minised. The size of the resulting deterministic pushdown automata directly corresponds
to the size of the existing string pattern matchers based on finite automata.

Definition 10.1. Let s and pref(s) be a tree and its prefix notation, respectively. Given an
input tree t, a subtree pushdown automaton constructed over pref(s) accepts all matches
of tree s in the input tree t by final state.

10.1 Subtree matching

First, we start with a PDA which accepts the whole subject tree in prefix notation. The
construction of the PDA accepting a tree in prefix notation is described by Alg. 10.2. The
constructed PDA is deterministic.

Algorithm 10.2. Construction of a PDA accepting pref(t) by final state.
Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an, n ≥ 1.
Output: PDA Mp(t) = ({0, 1, 2, . . . , n},A, {S}, δ, 0, S, {n}).
Method:

1. For each state i, where 1 ≤ i ≤ n, create a new transition δ(i− 1, ai, S) = (i, SArity(ai)),
where S0 = ε.

Example 10.3. The PDA constructed by Alg. 10.2, accepting the prefix notation pref(t1) =
a2 a2 a0 a1 a0 a1 a0 of tree t1 from Example 6.1, is the deterministic PDA Mp(t1) =
({0, 1, 2, 3, 4, 5, 6, 7},A, {S}, δ1, 0, S, {n})), where the mapping δ1 is a set of the following
transitions:
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0 1 2 3 4 5 6 7
a2|S 7→ SS a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

Figure 10.1: Transition diagram of deterministic PDA Mp(t1) accepting tree t1 in prefix
notation pref(t1) = a2 a0 a2 a0 a0 a0 from Example 10.3

State Input Pushdown Store
0 a2 a2 a0 a1 a0 a1 a0 S

1 a2 a0 a1 a0 a1 a0 S S

2 a0 a1 a0 a1 a0 S S S

3 a1 a0 a1 a0 S S

4 a0 a1 a0 S S

5 a1 a0 S

6 a0 S

7 ε ε

accept

Figure 10.2: Trace of deterministic PDA Mp(t1) from Example 10.3 for tree t1 in prefix
notation pref(t1) = a2 a2 a0 a1 a0 a1 a0

δ1(0, a2, S) = (1, SS)
δ1(1, a2, S) = (2, SS)
δ1(2, a0, S) = (3, ε)
δ1(3, a1, S) = (4, S)
δ1(4, a0, S) = (5, ε)
δ1(5, a1, S) = (6, S)
δ1(6, a0, S) = (7, ε)

The transition diagram of deterministic PDAMp(t1) is illustrated in Fig. 10.1. Fig. 10.2
shows the sequence of transitions (trace) performed by deterministic PDA Mp(t1) for tree
t1 in prefix notation.

Lemma 10.4. Given a tree t and its prefix notation pref(t), the PDA Mp(t) = ({0, 1, 2, . . . ,
n},A, {S}, δ, 0, S, F ), where n = |t|, constructed by Alg. 10.2, accepts pref(t).

Proof. In Part II of the thesis or in [34].

We present the construction of the deterministic subtree matching PDA for trees in
prefix notation. The construction consists of two steps. First, a nondeterministic subtree
matching PDA is constructed by Alg. 10.5. This nondeterministic subtree matching PDA
is an extension of the PDA accepting trees in prefix notation, which is constructed by
Alg. 10.2. Second, the constructed nondeterministic subtree matching PDA is transformed
to the equivalent deterministic subtree matching PDA by Alg. 7.3.

Algorithm 10.5. Construction of a nondeterministic subtree matching PDA for a tree t
in prefix notation pref(t).
Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an, n ≥ 1.
Output: Nondeterministic subtree matching PDA Mnps(t) = ({0, 1, 2, . . . , n},A, {S}, δ, 0,
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0 1 2 3 4 5 6 7

a0|S 7→ ε
a1|S 7→ S
a2|S 7→ SS

a2|S 7→ SS a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

Figure 10.3: Transition diagram of nondeterministic subtree matching PDAMp(t1) for tree
t1 in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0 from Example 10.6

S, {n}).
Method:

1. Create PDA Mnps(t) as PDA Mp(t) by Alg. 10.2.
2. For each symbol a ∈ A create a new transition δ(0, a, S) = (0, SArity(a)),
where S0 = ε.

Example 10.6. The subtree matching PDA, constructed by Alg. 10.5 from tree t1 having
prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0, is the nondeterministic PDA Mnps(t1) =
({0, 1, 2, 3, 4, 5, 6, 7},A, {S}, δ2, 0, S, {7})), where mapping δ2 is a set of the following tran-
sitions:

δ2(0, a2, S) = (1, SS)
δ2(1, a2, S) = (2, SS) δ2(0, a2, S) = (0, SS)
δ2(2, a0, S) = (3, ε) δ2(0, a1, S) = (0, S)
δ2(3, a1, S) = (4, S) δ2(0, a0, S) = (0, ε)
δ2(4, a0, S) = (5, ε)
δ2(5, a1, S) = (6, S)
δ2(6, a0, S) = (7, ε)

The transition diagram of the nondeterministic PDAMnps(t1) is illustrated in Fig. 10.3.

Theorem 10.7. Given a tree t and its prefix notation pref(t), the PDAMnps(t) constructed
by Alg. 10.5 is a subtree matching PDA for pref(t).

Proof. In Part II of the thesis or in [34].

For the construction of deterministic subtree matching PDA, we use the transformation
described by Alg. 7.3.

Example 10.8. The deterministic subtree matching PDA for tree t8 in prefix notation
pref(t1) = a2 a2 a0 a1 a0 a1 a0, which has been constructed by Alg. 7.3 from nondeterminis-
tic subtree matching PDAMnps(t8), is the deterministic PDAMdps(t8) = ({[0], [0, 1], [0, 1, 2],
[0, 3], [0, 4], [0, 5], [0, 6], [0, 7]},A, {S}, δ3, [0], S, {[0, 7]}), where its transition diagram is il-
lustrated in Fig. 10.5. Fig. 10.4 shows the sequence of transitions (trace) performed by
the deterministic subtree PDA Mdps(t8) for an input tree t9 in prefix notation pref(t9) =
a2 a2 a2 a0 a1 a0 a1 a0 a1 a1 a2 a0 a0. The accepting state is [0, 7]. Fig. 10.6 depicts the
pattern subtree t8 and input tree t9.
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State Input PDS
{0} a2 a2 a2 a0 a1 a0 a1 a0 a1 a1 a2 a0 a0 S

{0, 1} a2 a2 a0 a1 a0 a1 a0 a1 a1 a2 a0 a0 SS

{0, 1, 2} a2 a0 a1 a0 a1 a0 a1 a1 a2 a0 a0 SSS

{0, 1, 2} a0 a1 a0 a1 a0 a1 a1 a2 a0 a0 SSSS

{0, 3} a1 a0 a1 a0 a1 a1 a2 a0 a0 SSS

{0, 4} a0 a1 a0 a1 a1 a2 a0 a0 SSS

{0, 5} a1 a0 a1 a1 a2 a0 a0 SS

{0, 6} a0 a1 a1 a2 a0 a0 SS

{0, 7} a1 a1 a2 a0 a0 match S

{0} a1 a2 a0 a0 S

{0} a2 a0 a0 S

{0, 1} a0 a0 SS

{0} a0 S

{0} ε ε

Figure 10.4: Trace of deterministic subtree PDA Mdps(t8) from Example 10.8 for an input
subtree t9 in prefix notation pref(t9) = a2 a2 a2 a0 a1 a0 a1 a0 a1 a1 a2 a0 a0

[0] [0, 1] [0, 1, 2] [0, 3] [0, 4] [0, 5] [0, 6] [0, 7]
a2|S 7→ SS a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a0|S 7→ ε
a1|S 7→ S a2|S 7→ SS

a2|S 7→ SS

a1|S 7→ S
a0|S 7→ ε

a1|S 7→ S
a0|S 7→ ε

a1|S 7→ S
a0|S 7→ ε

a1|S 7→ S

a1|S 7→ S
a0|S 7→ ε

a2|S 7→ SS
a2|S 7→ SS

a2|S 7→ SS
a2|S 7→ SS

Figure 10.5: Transition diagram of deterministic PDAMdps(t8) for tree t8 in prefix notation
pref(t8) = a2 a2 a0 a1 a0 a1 a0 from Example 10.8
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a0

a0 a1 a0

a2 a1

a2

a0 a0 a0

a0 a1 a0 a2

a2 a1 a1

a2 a1

a2

Figure 10.6: Trees t8 and t9 from Example 10.8

Theorem 10.9. Given a tree t with n nodes in its prefix or postfix notation, the deter-
ministic subtree matching PDA Mpds(t) constructed by Alg. 10.5 and 7.3 is made of exactly
n+ 1 states, one pushdown symbol and |A|(n+ 1) transitions.

Proof. In Part II of the thesis or in [34].

Theorem 10.10. Given an input tree t with n nodes, the searching phase of the determin-
istic subtree matching automaton constructed by Algs. 10.5 and 7.3 is O(n).

Proof. In Part II of the thesis or in [34].

10.2 Multiple subtree matching

Definition 10.11. Let P = {t1, t2, . . . , tm} be a set of m trees and pref(ti), 1 ≤ i ≤ m

be the prefix notation of the i-th tree in P . Given an input tree t, a subtree pushdown
automaton constructed over set P accepts all matches of subtrees t1, t2, . . . , tm in the input
tree t by final state.

Similarly as in Subsection 10.1, our method begins with a PDA which accepts trees
t1, t2, . . . , tm in their prefix notation. The construction of this PDA is described by Alg. 10.12.

Algorithm 10.12. Construction of a PDA accepting a set of trees P = {t1, t2, . . . , tm} in
their prefix notation.
Input: A set of trees P = {t1, t2, . . . , tm} over a ranked alphabet A; prefix notation
pref(ti) = a1a2 . . . ani

, 1 ≤ i ≤ m, ni ≥ 1.
Output: PDA Mp(P ) = ({0, 1, 2, . . . , q},A, {S}, δ, 0, S, F ).
Method:

1. Create PDAs Mp(ti) = (Qi,A, {S}, δi, 0i, S, Fi) by Alg. 10.2
for i = 1, 2, . . . ,m.

2. Create PDA Mp(P ) = (Q,A, {S}, δ, 0, S, F ), where
Q =

⋃m
i=1(Qi \ {0i}) ∪ {0},

δ(q, a, S) = δi(q, a, S),
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δ(0, a, S) = δi(0i, a, S), where q ∈ (Q \ {0}), i = 1, 2, . . . ,m,
F =

⋃m
i=1 Fi.

The correctness of the deterministic PDA constructed by Alg. 10.12, which accepts trees
in prefix notation, is described by the following lemma.

Lemma 10.13. Given a set of k trees P = {t1, t2, . . . , tm} and their prefix notation
pref(ti), 1 ≤ i ≤ m, the PDA Mp(P ) = ({0, 1, 2, . . . , n},A, {S}, δ, 0, S, F ), where 1 +

min(|t1|, |t2|, . . . , |tm|) ≤ n ≤ 1 +
∑k

j=1 |tj |, constructed by Alg. 10.12 accepts pref(ti),
where 1 ≤ ti ≤ m.

Proof. In Part II of the thesis or in [34].

The deterministic subtree matching PDA for multiple tree patterns in prefix notation
can be constructed in a similar fashion to the subtree matching PDA for a single pattern.
First, the PDA accepting a set of trees in their prefix notations, constructed by Alg. 10.12, is
used to construct a nondeterministic subtree matching PDA by Alg. 10.14. The constructed
nondeterministic subtree matching PDA is then transformed to the equivalent deterministic
subtree matching PDA by Alg. 7.3.

Algorithm 10.14. Construction of a nondeterministic subtree matching PDA for a set of
trees P = {t1, t2, . . . , tm} in their prefix notation.
Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an, n ≥ 1.
Output: Nondeterministic subtree matching PDA Mnps(t) = (Q,A, {S}, δ, 0, S, F ).
Method:

1. Create PDA Mnps(t) as PDA Mp(t) = (Q,A, {S}, δ, 0, S, F ) by Alg. 10.12.
2. For each symbol a ∈ A create a new transition δ(0, a, S) = (0, SArity(a)), where S0 =

ε.

Theorem 10.15. Given a set of m trees P = {t1, t2, . . . , tm} and their prefix notation
pref(ti), 1 ≤ i ≤ m, the PDA Mnps(P ) constructed by Algs. 10.12 and 10.14 is a subtree
matching PDA for tree patterns t1, t2, . . . , tm.

Proof. In Part II of the thesis or in [34].

Theorem 10.16. Given a set of m trees P = {t1, t2, . . . , tm} over a ranked alphabet A, the
deterministic subtree matching PDA Mpds(P ) is constructed by Alg. 10.14 and 7.3 in time
Θ(|A|s), requires Θ(|A|s) storage, where s =

∑m
i=1 |ti|, and its pushdown store alphabet

consists of one symbol.

Proof. In Part II of the thesis or in [34].

Theorem 10.17. Given an input tree t with n nodes, the searching phase of the determin-
istic subtree matching automaton constructed by Algs. 10.5 and 7.3 over a set of m trees P
is O(n).

Proof. In Part II of the thesis or in [34].
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Chapter 11

Conclusions, current and future
research

Basic arbology results, principles and algorithms have been created and they are presented
in brief in the first part of this thesis. Algorithms for particular problems on trees are
presented for prefix notation of trees; these algorithms can be easily modified also for
postfix, bar prefix and bar postfix notations in the following way: instead of the pair of
Theorems (6.4, 6.12), the pairs of Theorems (6.6, 6.13), (6.10, 6.14), and (6.11, 6.15),
respectively, can be considered and the pushdown operations can be changed accordingly.
Bořivoj Melichar as an invited speaker [62] is to present a similar overview of basic arbology
results at Language and Automata Theory and Applications conference (LATA 2010). The
detailed descriptions of the results can be found in [34, 48, 49, 50, 51], which can be found
in the second part of this thesis.
Topics for our current and future arbology are:

- Computing repeats of connected subgraphs in a tree. This algorithm has the same
principle as the algorithm computing repeats of subtrees in a tree (see Chapter 9 or
[51]); instead of the subtree pushdown automaton the tree pattern pushdown automa-
ton is used. The first result on this topic has been presented in [56], a detailed paper
is currently under preparation. This result has not an equivalent known solution by
means of tree automata.
- Multiple matching for given tree patterns. This algorithm is again presented as an
analogy to stringology pattern matching automaton [63]. The first result on this
topic has been presented in [56], and a detailed paper, which is an extension of [34], is
currently under preparation [33] and should be submitted soon. The results directly
correspond to the solutions by means of tree automata [18, 20] in the sense of time
and space complexities.
- Constructing deterministic subtree and tree pattern oracle pushdown automata. In
analogy with string factor oracle automaton [5], these automata use less memory than
the original subtree and tree pattern pushdown automata, respectively, and accept
certain additional subtrees and tree patterns, respectively. Our first result on this
topic is to be presented in [69].
- Approximate subtree pattern matching. This problem includes three possible opera-
tions on trees: renaming a node in a tree, inserting a subtree into a tree and deleting
a subtree from a tree. For details of the definition of these three operations see [13].
Our first result is to be presented in [33]. Since the arity of nodes can change as a
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result of these operation, the bar notation of trees defined in Chapter 5 is used.
- Approximate tree indexing. Our first result on this topic is to be presented in [77].
- Nonlinear tree pattern matching. For details of the definition of this problem see [70].
- Particular practical algorithms for processing XML data format.
- Processing unordered trees.
- We think that future arbology results might be also contributive to some problems of
the theory of pushdown automata, for example to the problem of the determinisation
of nondeterministic pushdown automata [7, 66].

For more information on arbology see [9].
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Abstract The theory of formal string languages and of formal tree languages are both
important parts of the theory of formal languages. Regular tree languages are recognized by
finite tree automata. Trees in their postfix notation can be seen as strings. This paper presents
a simple transformation from any given (bottom-up) finite tree automaton recognizing a reg-
ular tree language to a deterministic pushdown automaton accepting the same tree language
in postfix notation. The resulting deterministic pushdown automaton can be implemented
easily by an existing parser generator because it is constructed for an LR(0) grammar, and its
size directly corresponds to the size of the deterministic finite tree automaton. The class of
regular tree languages in postfix notation is a proper subclass of deterministic context-free
string languages. Moreover, the class of tree languages which are in their postfix notation
deterministic context-free string languages is a proper superclass of the class of regular tree
languages.

1 Introduction

The theory of formal string (or word) languages [1,25,37] and the theory of formal tree
languages [10,11,15,20,21] have been extensively studied and developed since the 1950s
and 1960s, respectively. Both the theories are important parts of the theory of formal languages
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534 J. Janoušek, B. Melichar

[38] and describe fundamentals for many computer applications. The theory of formal string
languages and its models of computation even represent the basic and the largest part of
the theory of formal languages. Elements of string and tree languages are strings and trees,
respectively. Models of computation of the theory of string languages are finite string auto-
mata, pushdown string automata, linear bounded automata and Turing machines, whereas
models of computation of the theory of tree languages are various kinds of tree automata.
Some of the classes of tree and string languages are:

– Regular tree languages, which are recognized by finite tree automata (FTAs) and gener-
ated by regular tree grammars.

– Regular string languages, which are accepted by finite string automata and generated by
regular string grammars.

– Context-free string languages, which are accepted by pushdown string automata (PDAs)
and generated by context-free string grammars (CFGs). Further, context-free languages
accepted by deterministic PDAs are called deterministic context-free string languages.
It holds that there exist context-free string languages which are not deterministic, i.e.
which cannot be accepted by a deterministic PDA.

The formalisms related to the same class of languages are always mutually transformable, and
algorithms of these transformations are well-known. This paper deals with tree languages
and with the deterministic PDAs. We show that any FTA can also be simply transformed
to a deterministic PDA, and we discuss some related properties and issues, including basic
demonstrating examples.

In the further text we will omit word “string” when referencing to string languages, string
automata or string grammars. We will use word “tree” whenever referencing to tree languages,
tree automata and tree grammars.

Although FTAs were created originally as a natural extension of finite automata, regular
tree languages are also strongly related to context-free languages. Most important known
relationships between regular tree languages and context-free languages are represented by
the following three properties [10,11,21]:

First, the set of derivation trees of a context-free language is a regular tree language.
Second, a regular tree language yield, which is given by the concatenation of leaves of

the trees, is a context-free language and, conversely, each context-free language is a regular
tree language yield.

Third, there exists a regular tree language which is not the set of derivation trees of a
context-free language.

There are two kinds of FTAs according to the direction in which the trees are processed:
bottom-up (also called frontier-to-root, or this direction is omitted in the name) and top-down
(also called root-to-frontier). FTAs can be deterministic or nondeterministic. Deterministic
top-down FTAs are strictly less powerful than the other kinds which are all equally powerful
and can recognize every regular tree language. This means that every (bottom-up) nondeter-
ministic FTA can be transformed to an equivalent (bottom-up) deterministic FTA recognizing
the same tree language.

An FTA is commonly implemented as a program with recursive functions and appropri-
ate data structures which recursively traverses the tree and evaluates FTA states on the tree
[10,16]. It is clear that the deterministic version of the tree automaton is more suitable for
an effective implementation than its nondeterministic version.

Trees can also be seen as strings, for example in their prefix (also called preorder) or
postfix (also called postorder) notation. We note that prefix or postfix notation of a tree can
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be obtained by its prefix or postfix traversing, respectively, and that many of the existing
algorithms on trees process the trees by prefix or postfix traversing. This paper presents a
simple transformation of a given (bottom-up) FTA A which recognizes a regular tree lan-
guage L to the deterministic PDA which accepts L in postfix notation. This transformation is
presented in the following way: First, a CFG GA generating L in postfix notation is created.
The created CFG GA is in Reversed Greibach Normal Form and its construction is straight-
forward: each state of the FTA A corresponds to one nonterminal symbol of the CFG GA
and each transition rule of the FTA A corresponds to one rule of the CFG GA. Second, a
PDA working in bottom-up fashion is constructed for the CFG GA. The constructed PDA
behaves as a (generalised) LR(0) parser for the CFG GA whose reduce operations have been
precomputed beforehand, and therefore it reads one symbol on every transition. We note that
this optimization of the (generalised) LR(0) parser by precomputing reductions beforehand
was also used in [7]. The size of the constructed PDA directly corresponds to the given FTA:
The constructed PDA has just one state and each of its pushdown symbols, except the ini-
tial pushdown symbol, corresponds to one state of the given FTA and each of its transition
rules, except transition rules operating with the initial pushdown symbol, corresponds to one
transition rule of the given FTA. If the given FTA A is deterministic, then the created CFG
GA is an LR(0) grammar and the resulting PDA is also deterministic. Otherwise, if the given
FTA A is not deterministic, then the created CFG GA is not an LR(0) grammar and the
resulting PDA is also not deterministic. We assume that the given FTA A to be transformed
is deterministic, because any nondeterministic FTA can be transformed to the equivalent
deterministic FTA.

The contributions of this paper are:

1. Simple transformation from an FTA to a deterministic PDA, which contributes to a bet-
ter understanding of the theories of regular tree languages and context-free languages
and gives further possibilities to transform theoretical and practical results between the
two theories. For example, the transformation allows us to transform any FTA solution
of a tree related problem to the equivalent solution described by a deterministic PDA.
The construction of the PDA is described by Definition 2 in the third section. Also,
the presented theory clarifies the theoretical background for related results of specific
problems mentioned in the fifth section.

2. The resulting deterministic PDA represents a simple and fundamental model for effec-
tive implementation of FTA (on condition that the access to input trees in postfix notation
is suitable). Furthermore, the LR(0) grammar that can be created for any FTA can be
directly used as the input of one of the existing deterministic PDA implementing and very
well developed bottom-up parser generators, such as bison [8] or yacc [28] (see [2,25]
for the use of yacc-like parser generators). The creation of the grammar is described by
Definition 1 in the third section.

3. The property of regular tree languages that the class of regular tree languages in postfix
notation is a proper subclass of deterministic context-free languages. This and other
properties are also formally proved in the third section of this paper.

4. It follows from the possibility of transforming any nondeterministic FTA to an equivalent
deterministic FTA that nondeterministic PDAs which can be created by transformation
from nondeterministic FTAs can also be transformed to equivalent deterministic PDAs,
which are created by transformation from the equivalent deterministic FTAs. This is a
contribution to the not yet fully researched problem of how to transform a nondetermin-
istic PDA to an equivalent deterministic PDA (provided that the equivalent deterministic
PDA exists).
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5. It is demonstrated by Example 3 in the fifth section that the deterministic PDA is a model
of computation powerful enough to accept also some tree languages in postfix notation
which are beyond the class of regular tree languages. This means that the class of tree
languages which are in their postfix notation deterministic context-free languages is a
proper superclass of the class of regular tree languages.

The rest of the paper is organised as follows. Basic definitions are given in Sect. 2. The
third section describes the transformation of (bottom-up) FTAs to deterministic PDAs, con-
tains a demonstrating example and considers some properties of languages and automata that
follow from this transformation. The third section also deals with the size of the resulting
deterministic PDA. There are a number of results which study relationships between tree
automata and other formalisms or describe solutions of specific, tree related problems both
by FTAs in some papers and by PDAs (or PDAs extended with attribute evaluation) in some
other papers. Some notes on these results are given in the fourth section. The fifth section
demonstrates on an example that deterministic PDAs can also accept some tree languages in
postfix notation beyond the class of regular tree languages. The last section is the conclusion.

2 Basic notions

2.1 Ranked alphabet, ground term, tree, finite tree automaton, regular tree language

We use notions from the theory of tree languages similarly as they are defined in [10,11,21].
We denote the set of natural numbers by N. A ranked alphabet is a finite nonempty set

of symbols each of which has a unique nonnegative arity (or rank). Given a ranked alpha-
bet F , the arity of a symbol f ∈ F is denoted arity( f ). The set of symbols of arity p
is denoted by Fp . Elements of arity 0, 1, 2, . . . , p are respectively called constants, unary,
binary,. . . , p-ary symbols. We assume that F contains at least one constant. In the examples
we use parentheses and commas for a short declaration of symbols with arity. For instance,
f (, ) is a short declaration of a binary symbol f .

The set T (F) of ground terms over the ranked alphabet F is the smallest set inductively
defined in the following way:

1. F0 ⊆ T (F),
2. If p ≥ 1, f ∈ Fp and t1, . . . , tp ∈ T (F), then f (t1, . . . , tp) ∈ T (F).

Ground terms can be regarded as finite labelled ordered ranked trees in prefix notation,
where each symbol of f ∈ F represents a node with label f , and the arguments are its chil-
dren. Therefore, in this paper we will use the notions tree and ground term interchangeably.

A nondeterministic finite (bottom-up) tree automaton (nondeterministic FTA) over a
ranked alphabet F is a 4-tuple A = (Q, F, Q f ,�), where Q is a finite set of states, Q f ⊆ Q
is the set of final states, and � is a set of transition rules of the following type:

f (q1, q2, . . . , qn) → q,

where f ∈ Fn, n ≥ 0, and q, q1, . . . , qn ∈ Q.
If there are no two rules with the same left-hand side, the tree automaton is called a

deterministic finite tree automaton (deterministic FTA).

Example 1 A simple example of a deterministic FTA over an alphabet containing con-
stants b and c, and binary symbol a is FTA A1 = (Q, F, Q f ,�), where Q = {1, 2, 3},
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Fig. 1 Tree t (left) and the run of
FTA A1 from Example 1 on tree
t (right)

F = {a(, ), b, c}, Q f = {3}, and � contains these transition rules:

b → 1

c → 2

a(1, 1) → 3

a(1, 2) → 3

Finite tree automata over a ranked alphabet F run on ground terms over F . FTA starts at
the leaves and moves upward, associating along a run a state with each subterm inductively.
A run of an automaton on a ground term is defined as follows: The leaves are mapped to
states q by the initial transition rules of the form a → q , where a ∈ F0. Now, given a node
labelled with f ∈ Fn, n ≥ 1, suppose its children have been mapped into states q1, . . . , qn ,
where f (q1, q2, . . . , qn) → q , then this node gets mapped to q .

A ground term is accepted by a finite tree automaton if there exists a run on the ground
term such that its root is mapped to a final state.

The tree language L(A) recognized by an FTA A is the set of all ground terms accepted by
the FTA A. Two tree automata are equivalent if they recognize the same tree language. A tree
language is recognizable if it is recognized by some nondeterministic FTA. A tree language
is recognisable if and only if it is a regular tree language (see [10,11,21] for the definition of
regular tree languages). Furthermore, it holds that each nondeterministic (bottom-up) FTA
can be transformed to an equivalent deterministic (bottom-up) FTA.

Example 1, contd. Finite tree automata A1 recognizes tree language L(A1) = {a(b, b),

a(b, c)}. Ground term t = a(b, c) and the run of FTA A1 on ground term t are illustrated in
Fig. 1.

The height of a ground term t , denoted by Height(t) is inductively defined in the following
way:

1. Height(t) = 0, if t = a, a ∈ F0,
2. Height(t) = 1 + max({Height(ti ) : i = 1, 2, . . . , n}), if t = a(t1, t2, . . . , tn), a ∈ Fn,

n ≥ 1.

We note that there exist also nondeterministic top-down finite tree automata and determin-
istic top-down finite tree automata. The class of tree languages recognized by nondetermin-
istic top-down finite tree automata is exactly the class of regular tree languages. However,
it is not possible to transform every nondeterministic top-down finite tree automaton to an
equivalent deterministic top-down finite tree automaton, which is a strictly less powerful
model.

For more details on FTAs and regular tree languages, see [10,11,21].

2.2 Alphabet, language, context-free grammar, pushdown automaton

We use notions from the theory of languages similarly as are defined in [1,25].
Let an alphabet be a finite nonempty set of symbols. A language over an alphabet T is a

set of strings over T . Symbol T ∗ denotes the set of all strings over T including the empty
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string, denoted by ε. Set T + is defined as T + = T ∗\{ε}. Similarly for string x ∈ T ∗, sym-
bol xm, m ≥ 0, denotes the m-fold concatenation of x with x0 = ε. Set x∗ is defined as
x∗ = {xm : m ≥ 0} and x+ = x∗\{ε}.

A context-free grammar (CFG) is a 4-tuple G = (N , T, P, S), where N and T are finite
disjoint sets of nonterminal and terminal symbols, respectively. P is a finite set of rules
A → α, where A ∈ N , α ∈ (N ∪ T )∗. S ∈ N is the start symbol. A CFG G = (N , T, P, S)

is said to be in Reversed Greibach Normal Form if each rule from P is of the form A → αa,
where a ∈ T and α ∈ N∗.

Relation ⇒ is called derivation: if αA γ ⇒ αβγ, A ∈ N , and α, β, γ ∈ (N ∪ T )∗, then
rule A → β is in P . Symbols ⇒+, and ⇒∗ are used for the transitive, and the transitive and
reflexive closure of ⇒, respectively. A rightmost derivation ⇒rm is a relation αAx ⇒ αβx ,
where x ∈ T ∗. Relation A ⇒+ αAβ is called recursion. Right recursion is a A ⇒+ αA.
Hidden-left recursion is a A ⇒+ BαAβ, where Bα ⇒+ ε.

The language generated by a CFG G, denoted by L(G), is the set of strings L(G) = {w :
S ⇒∗ w,w ∈ T ∗}.

A context-free language is a language generated by a CFG.
An (extended) nondeterministic pushdown automaton (nondeterministic PDA) is a seven-

tuple M = (Q, T, G, δ, q0, Z0, F), where Q is a finite set of states, T is an input alphabet,
G is a pushdown store alphabet, δ is a mapping from Q × (T ∪ {ε}) × G∗ into a set of finite
subsets of Q × G∗, q0 ∈ Q is an initial state, Z0 ∈ G is the initial contents of the pushdown
store, and F ⊆ Q is the set of final (accepting) states. Triplet (q, w, x) ∈ Q × T ∗ × G∗
denotes the configuration of a pushdown automaton. In this paper we will write the top of the
pushdown store x on its right hand side. The initial configuration of a pushdown automaton
is a triplet (q0, w, Z0) for the input string w ∈ T ∗.

The relation (q, aw, βα) �M (p, w, βγ ) ⊂ (Q × T ∗ × G∗) × (Q × T ∗ × G∗) is a tran-
sition of a pushdown automaton M if (p, γ ) ∈ δ(q, a, α). The k-th power, transitive closure,
and transitive and reflexive closure of the relation �M is denoted �k

M ,�+
M ,�∗

M , respectively.
A pushdown automaton M is deterministic pushdown automaton (deterministic PDA), if it
holds:

1. |δ(q, a, γ )| ≤ 1 for all q ∈ Q, a ∈ T ∪ {ε}, γ ∈ G∗.
2. If δ(q, a, α) �= ∅, δ(q, a, β) �= ∅ and α �= β then α is not a suffix of β and β is not a

suffix of α.
3. If δ(q, a, α) �= ∅, δ(q, ε, β) �= ∅, then α is not a suffix of β and β is not a suffix of α.

A language L accepted by a pushdown automaton M is defined in two distinct ways:

1. Accepting by final state:

L(M) = {
x : δ(q0, x, Z0) �∗

M (q, ε, γ ) ∧ x ∈ T ∗ ∧ γ ∈ G∗ ∧ q ∈ F
}
,

2. Accepting by empty pushdown store:

Lε(M) = {
x : (q0, x, Z0) �∗

M (q, ε, ε) ∧ x ∈ T ∗ ∧ q ∈ Q
}
.

If PDA accepts the language by empty pushdown store then the set F of final states is
the empty set. In this paper we will use only PDAs which accept the languages by empty
pushdown store.

The class of languages accepted by nondeterministic PDAs is exactly the class of con-
text-free languages. Languages accepted by deterministic PDAs are called deterministic
context-free languages. There exist context-free languages which are not deterministic, i.e.
for which no deterministic PDA can be constructed.

For more details see [1,25].
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2.3 LR(0) parsing

Given a string w, an LR(0) parser for a CFG G = (N , T, P, S) reads the string w from left
to right without any backtracking and is implemented by a deterministic PDA.

A string γ is a viable prefix of G if γ is a prefix of αβ, and S ⇒∗
rm αAx ⇒rm αβx

is a rightmost derivation in G; the string β is called the handle. We use the term complete
viable prefix to refer to αβ in its entirety. During parsing, each contents of the pushdown
store correspond to a viable prefix.

The standard LR(0) parser performs two kinds of transitions:

1. When the contents of the pushdown store correspond to a viable prefix containing an
incomplete handle, the parser performs a shift, which reads one symbol a and pushes a
symbol corresponding to a onto the pushdown store.

2. When the contents of the pushdown store corresponds to a viable prefix ending by the
handle β, the parser performs a reduction by a rule A → β. The reduction pops |β|
symbols from the top of the pushdown store and pushes a symbol corresponding to A
onto the pushdown store.

A CFG G is L R(0) if the two conditions for G:

(1) S ⇒∗
rm αAw ⇒rm αβw,

(2) S ⇒∗
rm γ Bx ⇒rm αβy, imply that αAy = γ Bx , that is, α = γ, A = B, and x = y.

If the CFG G is not an LR(0) grammar, then the PDA constructed as an LR(0) parser
contains conflicts, which means the next transition to be performed cannot be determined
according to the contents of the pushdown store only.

For CFGs without hidden-left and right recursions the number of consecutive reductions
between the shifts of two adjacent symbols cannot be greater than a constant, and therefore
the LR(0) parser for such a grammar can be optimized by precomputing all its reductions
beforehand. Then, the optimized resulting LR(0) parser reads one symbol on each of its
transition [7]. In this paper, none of CFGs in the examples contains the above-mentioned
recursions and the presented deterministic PDA can be thought of as LR(0) parser optimized
with the precomputed reductions.

For more details on LR parsing, see [1,2].

3 Transformation of a (bottom-up) finite tree automaton to an (extended)
deterministic pushdown automaton

In this section we present a simple transformation of a given FTA A to a deterministic PDA
which accepts L(A) in postfix notation. The transformation is presented in the following
way: First, a CFG GA generating L(A) in postfix notation is created, which is defined by
Definition 1. The created CFG GA is in Reversed Greibach Normal Form and its construc-
tion is simple: each state of FTA A corresponds to one nonterminal symbol of GA and each
transition rule of A corresponds to one rule of GA. Second, a PDA working in bottom-up
fashion is created for CFG GA, which is defined by Definition 2. The constructed PDA
accepts L(A) in postfix notation and behaves as an LR parser for CFG GA whose reduce
operations have been precomputed beforehand and therefore it reads one symbol on every
transition. If the given FTA A is deterministic, then the created CFG GA is an LR(0) grammar
and the resulting PDA is also deterministic. Otherwise, if the given FTA A is not determin-
istic, then the created CFG GA is not an LR(0) grammar and the resulting PDA is also not
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Fig. 2 Tree t1 ∈ L2 (left) and the run of FTA A2 from Example 2 on tree t1 (right)

deterministic. We assume that the given FTA A to be transformed is deterministic because
every nondeterministic FTA can be transformed to an equivalent deterministic FTA.

Definition 1 Let A = (Q, F, Q f ,�) be an FTA. Then, a context-free grammar generat-
ing L(A) in postfix notation with appended right marker � is CFG GA = (N , T, P, S′),
where N = {S′} ∪ {Sq : q ∈ Q}, T = F , and P = {S′ → Sq � : q ∈ Q f } ∪ {Sq →
Sq1 Sq2 , . . . , Sqn a : a(q1, q2, . . . , qn) → q ∈ �}.

Let us note that the right marker � is added to the grammar so that the last operation of
the PDA would read the right marker and would empty the pushdown store. Acceptance by
the empty pushdown store is achieved in this way.

Definition 2 Let A = (Q, F, Q f ,�) be an FTA. Let GA = (N , T, P, S′) be the CFG
created according to Definition 1 for A. Then, PDA accepting L(A) in postfix notation with
appended right marker � is PDA MA = ({q}, T, G, δ, q, Z0,∅), where T = F , G =
Q ∪ {Z0,�}, and δ = {δ(q,�, Z0α) = (q, ε) : S′ → α �∈ P} ∪ {δ(q, a, α) = (q, A) :
A → αa ∈ P, A �= S′}.

The transformation in question is demonstrated on the following example:

Example 2 Consider tree language L2 of trees representing logical expressions which are
equal to the true value and can contain constants true and f alse, unary symbol not , and
binary symbol or .

Consider deterministic FTA A2 = (Q, F, Q f ,�), where L(A2) = L2, Q = {0, 1}, A =
{true, f alse, not (), or(, )}, Q f = {1}, and � contains these rules:

f alse → 0

true → 1

not (0) → 1

not (1) → 0

or(0, 0) → 0

or(0, 1) → 1

or(1, 0) → 1

or(1, 1) → 1

Figure 2 shows a tree t1 ∈ L1 and the run of FTA A2 on tree t1.
The CFG created according to Definition 1 and generating L(A2) in postfix notation is

GA2 = (N , T, P, S′), where N = {S′, S0, S1}, T = {true, f alse, not (), or(, ), �}, and P
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contains the following rules (the rules are written in the same order as their corresponding
transition rules of deterministic FTA A2):

S′ → S1 �
S0 → f alse

S1 → true

S1 → S0 not ()

S0 → S1 not ()

S0 → S0 S0 or(, )

S1 → S0 S1 or(, )

S1 → S1 S0 or(, )

S1 → S1 S1 or(, )

The PDA created according to Definition 2 for GA2 is deterministic PDA MA2 =
({q}, T, G, δ, q, Z0,∅), where T = {true, f alse, not (), or(, ),�}, G = {Z0, S0, S1}, and
δ contains the following transition rules:

δ(q,�, Z0S1) = (q, ε)

δ(q, f alse, ε) = (q, S0)

δ(q, true, ε) = (q, S1)

δ(q, not (), S0) = (q, S1)

δ(q, not (), S1) = (q, S0)

δ(q, or(, ), S0S0) = (q, S0)

δ(q, or(, ), S0S1) = (q, S1)

δ(q, or(, ), S1S0) = (q, S1)

δ(q, or(, ), S1S1) = (q, S1)

Tree automaton A2 is deterministic because the left-hand side of its every rule is unique.
As a consequence, the right-hand side of every rule of grammar GA2 is also unique and,
moreover, that right-hand side is not a suffix of the right-hand side of any other rule of gram-
mar GA2, which means the grammar is LR(0). This means that every pop action of pushdown
automaton MA2, which reads one symbol on every transition, determines the next transition
of PDA MA2 to be performed.

Tree t1 in postfix notation is string f alse true not () or(, ) f alse not () or(, ). Figure 3
shows the sequence of transitions (trace) performed by deterministic PDA MA2 for tree t1
in postfix notation with the appended right marker. The top of the pushdown store is on its
right hand side. An accept occurs if the automaton has read the whole input string, which is
the given tree in postfix notation with the appended right marker, and ends with an empty
pushdown store.

As is demonstrated in Example 2, each PDA constructed according to Definition 2 behaves
according to the following principle: after reading any subtree in postfix notation the PDA
has a symbol Sqi on the top of the pushdown store if and only if a run of the given FTA maps
the root of the subtree to the corresponding state qi .

Since the constructed PDA behaves as an LR(0) parser, it also checks the syntactic structure
of the postfix notation of the given tree and reports a possible error as soon as it appears.
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Fig. 3 Trace of deterministic PDA MA2 from Example 2

Finite tree automata are often extended with an output function for their states, for example
as is done in FTAs for tree pattern matching, where the output function emits output symbols
announcing that particular tree patterns have been found in subject trees (see [10]). We note
that the constructed PDA can also be simply extended with the same output function in the
following way: when a pushdown symbol Sqi is put onto the top of the pushdown store,
the same output symbols as for the corresponding FTA state qi are emitted. In this way, an
equivalent translation PDA can be constructed for any FTA with the output function for the
FTA states.

In the rest of this section we formally prove the correctness of the transformation in ques-
tion, describe some related properties of languages, grammars and automata, and discuss the
total size of the resulting deterministic PDA for a regular tree language in postfix notation.

Lemma 1 Let A = (Q, F, Q f ,�) be an FTA. Let GA = (N , T, P, S′) be the CFG created
according to Definition 1 for A. Then, the CFG GA generates exactly the language L(A) in
postfix notation with appended right marker �.

Proof Assume Q = {q1, q2, . . . , qn}, n ≥ 1, and N = {S′, Sq1 , Sq2 , . . . , Sqn }. Let post (t)
denote the postfix notation of the ground term t . It holds that:

1. If t = a, where a ∈ F0, then post(t) = a,
2. If t = a(t1, t2, . . . , tm), where m ≥ 1, a ∈ Fm and t1, t2, . . . , tm are ground terms, then

post(t) = post(t1)post(t2), . . . , post(tm) a.

First, we prove the following claim by induction on the height of the ground term:

(*) Given a ground term t over the ranked alphabet F it holds that Sqi ⇒∗
rm post(t), Sqi ∈

N , if and only if a run of the FTA A maps the root of t to the state qi .

1. If t = a, a ∈ F0, then Height(t) = 0, post(t) = a and for each transition rule a →
qi ∈ � there is the rule Sqi → a ∈ P , and therefore Sqi ⇒ a = post(t).

2. Assume that claim (*) holds for ground terms t1, t2, . . . , tn , where n ≥ 1, Height(t1) ≤
m, Height(t2) ≤ m, . . . , Height(tn) ≤ m, m ≥ 0. This means there are the deriva-
tions Sqt1 ⇒∗ post(t1), Sqt2 ⇒∗ post(t2), . . . , Sqtn ⇒∗ post(tn), where the roots of
t1, t2, . . . , tn are mapped to the corresponding states qqt1, qqt2, . . . , qqtm ∈ Q, respec-
tively, by the FTA A. We have to prove that claim (*) holds also for each term t =
a(t1, t2, . . . , tn), where Height(t) = m + 1:
For each transition rule a(qqt1, qqt2, . . . , qqtm) → qi ∈ � there is the rule Sqi →
Sqt1Sqt2, . . . , Sqtm a ∈ P , which means Sqi ⇒∗ post(t).

No other transition rules of the FTA A exist.
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Given a ground term t ∈ L(A), there is at least one run of the FTA A such that the root
of t is mapped to a state qi ∈ Q f . The CFG G contains the rule S′ ⇒ Sqi � and therefore
S′ ⇒∗ post(t) �.

Given a ground term t /∈ L(A), there is no run of the FTA A such that the root of t is
mapped to a state qi ∈ Q f . Therefore, the CFG G contains no rule of the form S′ ⇒ Sqi �
and therefore the CFG G does not generate post(t) �. ��
Theorem 1 Let A = (Q, F, Q f ,�) be an FTA. Let GA = (N , T, P, S′) be the CFG cre-
ated according to Definition 1 for A. Let MA = ({q}, T, G, δ, q, Z0,∅) be the PDA created
according to Definition 2 for GA. Then, the PDA MA accepts exactly the language L(A) in
postfix notation with appended right marker �.

Proof The PDA MA behaves as the LR(0) parser with the precomputed reductions before-
hand for the CFG GA, which is in Reversed Greibach Normal Form. Since the CFG GA
generates exactly the language L(A) in postfix notation with appended right marker �, as is
proved in Lemma 1, the theorem holds. ��
Theorem 2 Let A = (Q, F, Q f ,�) be a deterministic FTA. Let GA = (N , T, P, S′) be
the CFG created according to Definition 1 for A. Let MA = ({q}, T, G, δ, q, Z0,∅) be the
PDA created according to Definition 2 for GA. Then the CFG GA is an LR(0) grammar and
the PDA MA is deterministic.

Proof Since the FTA A is deterministic, the left-hand side of each of its transition rules from
� is unique. Therefore, the right-hand side of each grammar rule from P is also unique.
Each grammar rule from P is of the form Sq → Sq1 Sq2 , . . . , Sqn a, where n = ari ty(a),
and therefore no right-hand side of a grammar rule from P is a suffix of the right-hand
side of any other grammar rule from P . Furthermore, it holds for any prefix αβ such that
S′ ⇒∗

rm αAw ⇒rm αβw,w ∈ T ∗, that αβ ∈ N∗T . Therefore, the two conditions:

(1) S ⇒∗
rm αAw ⇒rm αβw,

(2) S ⇒∗
rm γ Bx ⇒rm αβy,

imply that α = γ, A = B, and x = y. Thus, the CFG GA is an LR(0) grammar.
Since no right-hand side of a grammar rule from P is a suffix of the right-hand side of

any other grammar rule from P , the pop action of each transition of the PDA MA unambig-
uously determines the next transition of the PDA MA to be performed. Thus, the PDA MA
is deterministic. ��
Corollary 1 The class of regular tree languages in postfix notation is a proper subclass of
deterministic context-free string languages.

Proof Any regular tree language L can be recognized by a deterministic FTA A. The deter-
ministic FTA A can be transformed to the deterministic PDA constructed according to Defi-
nition 2, which accepts L in postfix notation with the appended right marker, as is proved in
Theorems 1 and 2. Thus, the class of regular tree languages in postfix notation is a subclass
of deterministic context-free string languages.

There exist deterministic context-free languages, such as L = {an : n ≥ 0} for an unary
symbol a, which are not tree languages in postfix notation. Thus, the subset is a proper subset
and the corollary holds. ��

It is easy to see that the size of the PDA constructed according to Definition 2 directly
corresponds to the size of the given FTA: the constructed PDA has just one state and each
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of its pushdown symbols, except the initial pushdown symbol Z0, corresponds to one state
of the given FTA. Each transition of the constructed PDA, except transitions operating with
the initial pushdown symbol, which read the appended right marker, corresponds to one
transition of the given FTA.

Thus, the size of the constructed deterministic PDA directly corresponds to the size of the
deterministic FTA. The deterministic FTA, as described in [11], can be constructed for every
nondeterministic FTA and has the following size: the transformation from a given nondeter-
ministic FTA to an equivalent deterministic FTA is based on the construction of subsets of the
nondeterministic FTA states, by analogy to the transformation from a nondeterministic finite
string automaton to an equivalent deterministic finite string automaton [1,25]. Consequently,
the number of states of the equivalent deterministic FTA can be exponential in the number of
states of the given nondeterministic FTA; however, in practice, it often turns out that many
states are not accessible and only the accessible states are considered (see [11]).

4 Notes on some related results and applications

For trees there exist also other models of computation than the finite tree automata. In [39,29]
it is shown that so-called pushdown tree-walking automata recognize exactly the class of
regular tree languages. The underlying principle of a method of transformation of finite tree
automata to pushdown tree-walking automata [39] is similar to the principle which is used
in this paper for transformation of finite tree automata to deterministic pushdown automata.

Models of computations for various linearised forms of unranked trees and their relation-
ships to regular tree languages have been extensively studied in many papers: for example,
so-called nested words and visibly pushdown languages are studied in [4] and [5], respec-
tively.

As is demonstrated in this paper, any problem which can be solved by an FTA can also
be solved by a deterministic PDA. In the rest of this section we discuss some existing results
for specific, tree related problems whose solutions are described both by FTAs and by PDAs
from the point of view of automata and the theories of formal string and tree languages.

There exists a tool YakYak [30], which is a preprocessor for yacc-compatible genera-
tors and serves for generating parsers of the regular tree languages. However, the output of
YakYak is not a syntax defining CFG only, but it is an attributed CFG in which the constraints
defining regular tree languages are described not by the syntactic rules but by the semantic
attribute rules (see also [3,14] for the definition and for further information on attributed
grammars). As a result, the parser generated by the YakYak + yacc-compatible generator
behaves as a deterministic PDA which recognizes regular tree languages by an extended
attribute semantic evaluation.

An example of a problem with solutions that are described by both FTAs and PDAs is
the code selection problem in compiler backends. Many code selection methods based on
various models of computation have been described. The task here is to cover the interme-
diate program representation, which is in the form of a tree, by appropriate target machine
code instructions, which are represented by tree patterns, and to select the “best possible”
such covering. The best possible covering is usually selected according to the result of the
evaluation of a cost function, which describes the cost of the machine code instructions. For
the purpose of tree covering various versions of tree pattern matching are generally used (see
[9,23,24,31] for the basic tree pattern matching methods). A code selection method based on
deterministic FTAs can be found in [16], where the cost function is computed by an additional
semantic evaluation. On the other hand, [22,33,36] describe the code selection methods based
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on deterministic PDAs performing the tree pattern matching, where the tree patterns are rep-
resented by rules of a CFG, and in this way generally ambiguous and non-LR(0) CFGs are
created. Consequently, the LR(0) parsers for those grammars contain conflicts. In [22] these
conflicts are resolved by some heuristics; in [33,36] a special construction of a deterministic
parser is used, which corresponds to a determinization of the above–mentioned LR(0) parser
with the conflicts.

Here we mention also a family of tools BURG, IBURG, etc. (see [18,19] for example),
which use another model of computation, so-called tree rewriting systems, for the tree pattern
matching in the code selection problem.

Let us note that another code selection method based on the deterministic PDA would
result from the transformation of the deterministic FTA from [16] in the way described in
this paper (where the evaluation of the cost function would be implemented by an attribute
semantic evaluation). In addition, the transformation gives an unambiguous LR(0) grammar,
which means the resulting code generator could be implemented easily with the use of an
existing (yacc-like) parser generator for that grammar.

5 Beyond the class of regular tree languages

Although non-regular tree languages are beyond the main scope of this paper, it is demon-
strated by the following example that the deterministic PDA is a model of computation which
is powerful enough to accept also some non-regular tree languages in postfix notation.

Example 3 Given a ranked alphabet F = { f (, ), g(), a}, consider tree language L3 =
{ f (gi (a), gi (a)) : i > 0}, which contains the symmetry between the two children of binary
symbol f (, ). It is shown in the details in Example 1.2.1 in [11] that L3 is not a regular tree
language, which means it cannot be recognized by an FTA.

L3 in postfix notation contains strings of the form ag()i ag()i f (, ), where i > 0, which
forms a deterministic context-free language. For example, the following LR(0) grammar G3

generates L3 in postfix notation with appended right marker �. CFG G3 = (N , T, P, S′),
where N = {S′, A}, T = { f (, ), g(), a,�}, and P contains the following rules:

S′ → S �
S → a A f (, )

A → g() A g()

A → g() a g()

Corollary 2 The class of tree languages which are in their postfix notation deterministic
context-free string languages is a proper superclass of the class of regular tree languages.

Proof The corollary follows from Corollary 1 and Example 3. ��

6 Conclusion and future work

Given an FTA recognizing a tree language L , we have described how to create an LR(0)
grammar in Reversed Greibach Normal Form which generates the tree language L in postfix
notation, and how to construct a deterministic PDA which accepts the tree language L in
postfix notation. The presented transformation from the FTA to the deterministic PDA is
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simple, and the size of the resulting deterministic PDA directly corresponds to the size of the
deterministic FTA recognizing the tree language L .

The presented transformation contributes to a better understanding of the theories of tree
and string formal languages and allows the transformation of any solution of a problem
described by FTA to the equivalent solution described by a deterministic PDA. Also, the
created LR(0) grammar can be directly used as the input for the existing and well developed
(LA)LR parser generators, such as yacc-like generators.

Further, it is shown that the deterministic PDA as a model of computation is powerful
enough to accept also some tree languages beyond the class of regular tree languages.

Regarding specific tree algorithms whose model of computation is the standard deter-
ministic pushdown automaton, recently we have introduced principles of such three new
algorithms. First, a new and simple method how to construct tree pattern matchers as deter-
ministic PDAs directly from given tree patterns without constructing finite tree automata as
an intermediate product [17,32]. Second, so-called subtree and tree pattern PDAs, which
represent a complete index of the tree and the search phase of all occurrences of a subtree or
a tree pattern, respectively, of size m is performed in time linear in m and not depending on
the size of the tree [26,27,32]. These automata representing indexes of trees are analogous in
their properties to the string suffix and factor automata [12,13,34]. Third, a method how to
find all repeats of connected subgraphs in trees with the use of subtree or tree pattern PDAs
[35,32]. More details on these results and related information can also be found on [6].
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Department of Computer Science
Faculty of Information Technologies
Czech Technical University in Prague

Zikova 1905/4, 166 36 Prague 6, Czech Republic
Jan.Janousek@fit.cvut.cz

Abstract. String suffix automata accept all suffixes of a given string and belong to the
fundamental stringology principles. Extending their transitions by specific pushdown
operations results in new subtree pushdown automata, which accept all subtrees of a
given subject tree in prefix notation and are analogous to the suffix automata in their
properties. The deterministic subtree pushdown automaton accepts an input subtree
in time linear to the number of nodes of the subtree and its total size is linear to the
number of nodes of the given subject tree.

Keywords: tree, subtree, string suffix automata, tree pattern matching, pushdown
automata

1 Introduction

The theory of formal string (or word) languages [1,10,17] and the theory of formal
tree languages [4,5,9] are important parts of the theory of formal languages [16]. The
most famous models of computation of the theory of tree languages are various kinds
of tree automata [4,5,9]. Trees can also be seen as strings, for example in their prefix
(also called preorder) or postfix (also called postorder) notation. [11] shows that the
deterministic pushdown automaton (PDA) is an appropriate model of computation
for labelled ordered ranked trees in postfix notation and that the trees in postfix
notation acceptable by deterministic PDA form a proper superclass of the class of
regular tree languages, which are accepted by finite tree automata. In the further text
we will omit word “string” when referencing to string languages or string automata.

Tree pattern matching is often declared to be analogous to the problem of string
pattern matching [4]. One of the basic approaches used for string pattern matching
can be represented by finite automata constructed for the text, which means that the
text is preprocessed. Examples of these automata are suffix automata [6]. Given a
text of size n, the suffix automaton can be constructed for the text in time linear in
n. The constructed suffix automaton represents a complete index of the text for all
possible suffixes and can find all occurrences of a string suffix and their positions in
the text. The main advantage of this kind of finite automata is that the deterministic
suffix automaton performs the search phase in time linear in the size of the input
subtree and not depending on n.

This paper presents a new kind of acyclic PDAs for trees in prefix notation, which
is analogous to string suffix automata and their properties: subtree PDAs accept all

⋆ This research has been partially supported by the Ministry of Education, Youth and Sports
under research program MSMT 6840770014, and by the Czech Science Foundation as project
No. 201/09/0807.
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subtrees of the tree. The basic idea of the subtree PDAs has been presented in [13].
This paper deals with the subtree PDAs in more details. [12] contains the detailed
description of the subtree PDAs, related formal theorems, lemmas, and their proofs,
many of which are skipped in this paper. Moreover, [12] describes an extension of the
subtree PDAs – tree pattern PDAs, which accept all tree patterns matching the tree
and are analogous to string factor automata in their basic properties.

By analogy with the string suffix automaton, the subtree PDA represents a com-
plete index of the tree for all possible subtrees. Given a tree of size n, the main
advantage of the deterministic subtree PDA is again that the search phase is per-
formed in time linear in the size of the input subtree and not depending on n. We
note that this cannot be achieved by any standard tree automaton because the stan-
dard deterministic tree automaton runs always on the subject tree, which means the
searching by tree automata can be linear in n at the best.

Moreover, the presented subtree PDAs have the following two other properties.
First, they are input-driven PDAs [20], which means that each pushdown operation is
determined only by the input symbol. Input-driven PDAs can always be determinised
[20]. Second, their pushdown symbol alphabets contain just one pushdown symbol and
therefore their pushdown store can be implemented by a single integer counter. This
means that the presented PDAs can be transformed to counter automata [3,19], which
is a weaker and simpler model of computation than the PDA.

The rest of the paper is organised as follows. Basic definitions are given in section
2. Some properties of subtrees in prefix notation are discussed in the third section.
The fourth section deals with the subtree PDA. The last section is the conclusion.

2 Basic notions

2.1 Ranked alphabet, tree, prefix notation

We define notions on trees similarly as they are defined in [1,4,5,9].
We denote the set of natural numbers by N. A ranked alphabet is a finite nonempty

set of symbols each of which has a unique nonnegative arity (or rank). Given a ranked
alphabet A, the arity of a symbol a ∈ A is denoted Arity(a). The set of symbols of
arity p is denoted by Ap. Elements of arity 0, 1, 2, . . . , p are respectively called nullary
(constants), unary, binary, . . ., p-ary symbols. We assume that A contains at least
one constant. In the examples we use numbers at the end of the identifiers for a short
declaration of symbols with arity. For instance, a2 is a short declaration of a binary
symbol a.

Based on concepts from graph theory (see [1]), a labelled, ordered, ranked tree
over a ranked alphabet A can be defined as follows:

An ordered directed graph G is a pair (N,R), where N is a set of nodes and R
is a set of linearly ordered lists of edges such that each element of R is of the form
((f, g1), (f, g2), . . . , (f, gn)), where f, g1, g2, . . . , gn ∈ N , n ≥ 0. This element would
indicate that, for node f , there are n edges leaving f , the first entering node g1, the
second entering node g2, and so forth.

A sequence of nodes (f0, f1, . . . , fn), n ≥ 1, is a path of length n from node f0 to
node fn if there is an edge which leaves node fi−1 and enters node fi for 1 ≤ i ≤ n.
A cycle is a path (f0, f1, . . . , fn), where f0 = fn. An ordered dag (dag stands for
Directed Acyclic Graph) is an ordered directed graph that has no cycle. A labelling
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of an ordered graph G = (A,R) is a mapping of A into a set of labels. In the examples
we use af for a short declaration of node f labelled by symbol a.

Given a node f , its out-degree is the number of distinct pairs (f, g) ∈ R, where
g ∈ A. By analogy, the in-degree of the node f is the number of distinct pairs
(g, f) ∈ R, where g ∈ A.

A labelled, ordered, ranked and rooted tree t over a ranked alphabetA is an ordered
dag t = (N,R) with a special node r ∈ A called the root such that
(1) r has in-degree 0,
(2) all other nodes of t have in-degree 1,
(3) there is just one path from the root r to every f ∈ N , where f 6= r,
(4) every node f ∈ N is labelled by a symbol a ∈ A and out-degree of af is Arity(a).

Nodes labelled by nullary symbols (constants) are called leaves.
Prefix notation pref (t) of a labelled, ordered, ranked and rooted tree t is obtained

by applying the following Step recursively, beginning at the root of t:
Step: Let this application of Step be to node af . If af is a leaf, list a and halt. If af is
not a leaf, let its direct descendants be af1 , af2 , . . . , afn . Then list a and subsequently
apply Step to af1 , af2 , . . . , afn in that order.

Example 1. Consider a ranked alphabet A = {a2, a1, a0}. Consider a tree t1 over A
t1 = ({a21, a22, a03, a14, a05, a16, a07}, R), where R is a set of the following ordered
sequences of pairs:

((a21, a22), (a21, a16)),
((a22, a03), (a22, a14)),
((a14, a05)),
((a16, a07))

Tree t1 in prefix notation is string pref (t1) = a2 a2 a0 a1 a0 a1 a0. Trees can be
represented graphically and tree t1 is illustrated in Fig. 1. ⊓⊔

a05

a03 a14 a07

a22 a16

a21

pref(t1) = a2 a2 a0 a1 a0 a1 a0

Figure 1. Tree t1 from Example 1 and its prefix notation

The height of a tree t, denoted by Height(t), is defined as the maximal length of
a path from the root of t to a leaf of t.

2.2 Alphabet, language, pushdown automaton

We define notions from the theory of string languages similarly as they are defined
in [1,10].
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Let an alphabet be a finite nonempty set of symbols. A language over an alphabet
A is a set of strings over A. Symbol A∗ denotes the set of all strings over A including
the empty string, denoted by ε. Set A+ is defined as A+ = A∗ \ {ε}. Similarly for
string x ∈ A∗, symbol xm, m ≥ 0, denotes the m-fold concatenation of x with x0 = ε.
Set x∗ is defined as x∗ = {xm : m ≥ 0} and x+ = x∗ \ {ε} = {xm : m ≥ 1}.

A nondeterministic finite automaton (NFA) is a five-tuple FM = (Q,A, δ, q0, F ),
where Q is a finite set of states, A is an input alphabet, δ is a mapping from Q × A
into a set of finite subsets of Q, q0 ∈ Q is an initial state, and F ⊆ Q is the set of
final (accepting) states. A finite automaton FM is deterministic (DFA) if δ(q, a) has
no more than one member for any q ∈ Q and a ∈ A. We note that the mapping δ is
often illustrated by its transition diagram.

Every NFA can be transformed to an equivalent DFA [1,10]. The transformation
constructs the states of the DFA as subsets of states of the NFA and selects only
such accessible states (ie subsets). These subsets are called d-subsets. In spite of the
fact that d-subsets are standard sets, they are often written in square brackets ([ ])
instead of in braces ({ }).

An (extended) nondeterministic pushdown automaton (nondeterministic PDA) is
a seven-tupleM = (Q,A, G, δ, q0, Z0, F ), where Q is a finite set of states, A is an input
alphabet, G is a pushdown store alphabet, δ is a mapping from Q × (A ∪ {ε}) × G∗

into a set of finite subsets of Q × G∗, q0 ∈ Q is an initial state, Z0 ∈ G is the
initial pushdown symbol, and F ⊆ Q is the set of final (accepting) states. Triplet
(q, w, x) ∈ Q×A∗ ×G∗ denotes the configuration of a pushdown automaton. In this
paper we will write the top of the pushdown store x on its right hand side. The initial
configuration of a pushdown automaton is a triplet (q0, w, Z0) for the input string
w ∈ A∗.

The relation ⊢M⊂ (Q×A∗ ×G∗)× (Q×A∗ ×G∗) is a transition of a pushdown
automaton M . It holds that (q, aw, αβ) ⊢M (p, w, γβ) if (p, γ) ∈ δ(q, a, α). The k-
th power, transitive closure, and transitive and reflexive closure of the relation ⊢M

is denoted ⊢k
M , ⊢+

M , ⊢∗
M , respectively. A pushdown automaton M is deterministic

pushdown automaton (deterministic PDA), if it holds:

1. |δ(q, a, γ)| ≤ 1 for all q ∈ Q, a ∈ A ∪ {ε}, γ ∈ G∗.
2. If δ(q, a, α) 6= ∅, δ(q, a, β) 6= ∅ and α 6= β then α is not a suffix of β and β is not

a suffix of α.
3. If δ(q, a, α) 6= ∅, δ(q, ε, β) 6= ∅, then α is not a suffix of β and β is not a suffix of

α.

A pushdown automaton is input-driven if each of its pushdown operations is de-
termined only by the input symbol.
A language L accepted by a pushdown automaton M is defined in two distinct ways:

1. Accepting by final state:

L(M) = {x : δ(q0, x, Z0) ⊢∗
M (q, ε, γ) ∧ x ∈ A∗ ∧ γ ∈ G∗ ∧ q ∈ F}.

2. Accepting by empty pushdown store:

Lε(M) = {x : (q0, x, Z0) ⊢∗
M (q, ε, ε) ∧ x ∈ A∗ ∧ q ∈ Q}.

If PDA accepts the language by empty pushdown store then the set F of final states
is the empty set. The subtree PDAs accept the languages by empty pushdown store.

For more details see [1,10].
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2.3 Example of string suffix automaton

Example 2. Given the prefix notation pref (t1) = a2 a2 a0 a1 a0 a1 a0 of tree t1 from
Example 1, the corresponding nondeterministic suffix automaton is
FMnsuf (pref(t1)) = ({0, 1, 2, 3, 4, 5, 6, 7},A, δn, 0, {7})), where its transition diagram
is illustrated in Fig. 2. (For the construction of the nondeterministic suffix automaton
see [14].)

After the standard transformation of a nondeterministic suffix automaton to a
deterministic one [10], the deterministic suffix automaton for pref(t1) is
FMdsuf (pref(t1)) = ({[0], [1, 2], [2], [3], [4], [5], [6], [7], [3, 5, 7], [4, 6], [5, 7]},
A, δd, 0, {[7], [3, 5, 7], [5, 7]})), where its transition diagram is illustrated in Fig. 3.

0 1 2 3 4 5 6 7

a2 a2 a0 a1 a0 a1 a0

a2

a0

a1

a0

a1

a0

Figure 2. Transition diagram of nondeterministic suffix automaton for string
a2 a2 a0 a1 a0 a1 a0

[0] [1, 2] [2] [3] [4] [5] [6] [7]

[3, 5
7]

[4, 6] [5, 7]

a2 a2 a0 a1

a1

a1

a0 a1 a0

a0a0

a1

a0

Figure 3. Transition diagram of deterministic suffix automaton for string
a2 a2 a0 a1 a0 a1 a0

3 Properties of subtrees in prefix notation

In this section we describe some general properties of the prefix notation of a tree
and of its subtrees. These properties are important for the construction of subtree
PDA, which is described in the next section.
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Example 3. Consider tree t1 in prefix notation pref (t1) = a2 a2 a0 a1 a0 a1 a0 from
Example 1, which is illustrated in Fig. 1. Tree t1 contains only subtrees shown in
Fig. 4.

a0

a0 a1 a0

a2 a1

a2

a2 a2 a0 a1 a0 a1 a0

a0

a0 a1

a2

a2 a0 a1 a0

a0

a1

a1 a0

a0

a0

Figure 4. All subtrees of tree t1 from Example 1, and their prefix notations

Generally, it holds for any tree that each of its subtrees in prefix notation is a
substring of the tree in prefix notation.

Theorem 4. Given a tree t and its prefix notation pref (t), all subtrees of t in prefix
notation are substrings of pref (t).

Proof. In [12]. ⊓⊔

However, not every substring of a tree in prefix notation is a prefix notation of its
subtree. This can be easily seen from the fact that for a given tree with n nodes there
can be O(n2) distinct substrings, but there are just n subtrees – each node of the
tree is the root of just one subtree. Just those substrings which themselves are trees
in prefix notation are those which are the subtrees in prefix notation. This property
is formalised by the following definition and theorem.

Definition 5. Let w = a1a2 · · · am, m ≥ 1, be a string over a ranked alphabet A.
Then, the arity checksum ac(w) = arity(a1) + arity(a2) + · · ·+ arity(am)−m+ 1=∑m

i=1 arity(ai)−m+ 1.

Theorem 6. Let pref (t) and w be a tree t in prefix notation and a substring of
pref (t), respectively. Then, w is the prefix notation of a subtree of t, if and only if
ac(w) = 0, and ac(w1) ≥ 1 for each w1 , where w = w1x, x 6= ε.

Proof. In [12]. ⊓⊔

We note that in subtree PDAs the arity checksum is computed by pushdown
operations, where the contents of the pushdown store represents the corresponding
arity checksum. For example, an empty pushdown store means that the corresponding
arity checksum is equal to 0.

4 Subtree pushdown automaton

This section deals with the subtree PDA for trees in prefix notation: algorithms and
theorems are given and the subtree PDA and its construction are demonstrated on
an example.
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Definition 7. Let t and pref (t) be a tree and its prefix notation, respectively. A
subtree pushdown automaton for pref (t) accepts all subtrees of t in prefix notation.

First, we start with a PDA which accepts the whole subject tree in prefix nota-
tion. The construction of the PDA accepting a tree in prefix notation by the empty
pushdown store is described by Alg. 1. The constructed PDA is deterministic.

Algorithm 1. Construction of a PDA accepting a tree t in prefix notation pref (t).
Input: A tree t over a ranked alphabet A; prefix notation pref (t) = a1a2 · · · an,
n ≥ 1.
Output: PDA Mp(t) = ({0, 1, 2, . . . , n},A, {S}, δ, 0, S, ∅).
Method:

1. For each state i, where 1 ≤ i ≤ n, create a new transition
δ(i− 1, ai, S) = (i, SArity(ai)), where S0 = ε. ⊓⊔

Example 8. A PDA accepting tree t1 in prefix notation pref (t1) = a2 a2 a0 a1 a0 a1 a0
from Example 1, which has been constructed by Alg. 1, is deterministic PDAMp(t1) =
({0, 1, 2, 3, 4, 5, 6, 7},A, {S}, δ1, 0, S, ∅)), where the mapping δ1 is a set of the following
transitions:

δ1(0, a2, S) = (1, SS)
δ1(1, a2, S) = (2, SS)
δ1(2, a0, S) = (3, ε)
δ1(3, a1, S) = (4, S)
δ1(4, a0, S) = (5, ε)
δ1(5, a1, S) = (6, S)
δ1(6, a0, S) = (7, ε)

The transition diagram of deterministic PDA Mp(t1) is illustrated in Fig. 5. In this
figure for each transition rule δ1(p, a, α) = (q, β) from δ the edge leading from state
p to state q is labelled by the triple of the form a|α 7→ β.

0 1 2 3 4 5 6 7

a2|S 7→ SS

a2|S 7→ SS

a0|S 7→ εa1|S 7→ Sa0|S 7→ εa1|S 7→ Sa0|S 7→ ε

Figure 5. Transition diagram of deterministic PDA Mp(t1) accepting tree t1 in prefix
notation pref (t1) = a2 a2 a0 a1 a0 a1 a0 from Example 8

Fig. 6 shows the sequence of transitions (trace) performed by deterministic PDA
Mp(t1) for tree t1 in prefix notation. ⊓⊔

It holds that every input-driven PDA that has the same pushdown operations
as they are defined for the above deterministic PDA Mp(t) for tree t in prefix nota-
tion behaves such that the contents of its pushdown store corresponds to the arity
checksum. This is described by the following theorem. We note that such pushdown
operations correspond to the pushdown operations of the standard top-down parsing
algorithm for a context-free grammar with rules of the form

S → a Sarity(a).

For principles of the standard top–down (LL) parsing algorithm see [1].
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State Input Pushdown Store
0 a2 a2 a0 a1 a0 a1 a0 S
1 a2 a0 a1 a0 a1 a0 S S
2 a0 a1 a0 a1 a0 S S S
3 a1 a0 a1 a0 S S
4 a0 a1 a0 S S
5 a1 a0 S
6 a0 S
7 ε ε
accept

Figure 6. Trace of deterministic PDA Mp(t1) from Example 8 for tree t1 in prefix
notation pref (t1) = a2 a2 a0 a1 a0 a1 a0

Theorem 9. Let M = ({Q,A, {S}, δ, 0, S, ∅) be an input-driven PDA of which each
transition from δ is of the form δ(q1, a, S) = (q2, S

i), where i = arity(a). Then, if
(q3, w, S) ⊢+

M (q4, ε, S
j), then j = ac(w).

Proof. In [12]. ⊓⊔

The correctness of the deterministic PDA constructed by Alg. 1, which accepts
trees in prefix notation, is described by the following lemma.

Lemma 10. Given a tree t and its prefix notation pref (t), the PDA Mp(t) = ({0, 1, 2,
. . . , n},A, {S}, δ, 0, S, ∅), where n ≥ 0, constructed by Alg. 1 accepts pref (t).

Proof. In [12]. ⊓⊔

We present the construction of the deterministic subtree PDA for trees in prefix
notation. The construction consists of two steps. First, a nondeterministic subtree
PDA is constructed by Alg. 2. This nondeterministic subtree PDA is an extension
of the PDA accepting tree in prefix notation, which is constructed by Alg. 1. Sec-
ond, the constructed nondeterministic subtree PDA is transformed to the equivalent
deterministic subtree PDA. Although a nondeterministic PDA cannot generally be
determinised, the constructed nondeterministic subtree PDA is an input-driven PDA
and therefore can be determinised [20].

Algorithm 2. Construction of a nondeterministic subtree PDA for a tree t in prefix
notation pref (t).
Input:A tree t over a ranked alphabet A; prefix notation pref (t) = a1a2 · · · an, n ≥ 1.
Output:Nondeterministic subtree PDAMnps(t) = ({0, 1, 2, . . . , n},A, {S}, δ, 0, S, ∅).
Method:

1. Create PDA Mnps(t) as PDA Mp(t) by Alg. 1.
2. For each state i, where 2 ≤ i ≤ n, create a new transition

δ(0, ai, S) = (i, SArity(ai)), where S0 = ε. ⊓⊔

Example 11. A subtree PDA for tree t1 in prefix notation
pref (t1) = a2 a2 a0 a1 a0 a1 a0 from Example 1, which has been constructed by
Alg. 2, is nondeterministic PDA Mnps(t1) = ({0, 1, 2, 3, 4, 5, 6, 7},A, {S}, δ2, 0, S, ∅)),
where mapping δ2 is a set of the following transitions:
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δ2(0, a2, S) = (1, SS)
δ2(1, a2, S) = (2, SS) δ2(0, a2, S) = (2, SS)
δ2(2, a0, S) = (3, ε) δ2(0, a0, S) = (3, ε)
δ2(3, a1, S) = (4, S) δ2(0, a1, S) = (4, S)
δ2(4, a0, S) = (5, ε) δ2(0, a0, S) = (5, ε)
δ2(5, a1, S) = (6, S) δ2(0, a1, S) = (6, S)
δ2(6, a0, S) = (7, ε) δ2(0, a0, S) = (7, ε)

The transition diagram of nondeterministic PDA Mnps(t1) is illustrated in Fig.
7. Again, in this figure for each transition rule δ2(p, a, α) = (q, β) from δ2 the edge
leading from state p to state q is labelled by the triple of the form a|α 7→ β.

A comparison of Figs. 7 and 2 shows that the states and the transitions of non-
deterministic subtree PDA Mnps(t1) correspond to the states and the transitions,
respectively, of the nondeterministic string suffix automaton for pref (t1); the transi-
tions of the subtree PDA are extended by pushdown operations so that it holds that
the number of symbols S in the pushdown store is equal to the corresponding arity
checksum. ⊓⊔

0 1 2 3 4 5 6 7

a2|S 7→ SS

a2|S 7→ SS

a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a2|S 7→ SS

a0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

Figure 7. Transition diagram of nondeterministic subtree PDA Mnps(t1) for tree t1
in prefix notation pref (t1) = a2 a2 a0 a1 a0 a1 a0 from Example 11

Theorem 12. Given a tree t and its prefix notation pref (t), the PDA Mnps(t) con-
structed by Alg. 2 is a subtree PDA for pref (t).

Proof. In [12]. ⊓⊔

It is known that each nondeterministic input-driven PDA can be transformed to
an equivalent deterministic input-driven PDA [20]. To construct deterministic subtree
or tree pattern PDAs from their nondeterministic versions we use the transformation
described by Alg. 3. This transformation is a simple extension of the well known
transformation of a nondeterministic finite automaton to an equivalent deterministic
one [10]. Again, the states of the resulting deterministic PDA correspond to subsets of
the states of the original nondeterministic PDA, and these subsets are again called d-
subsets. Moreover, the original nondeterministic PDA is assumed to be acyclic with a
specific order of states, and Alg. 3 precomputes the possible contents of the pushdown
store in particular states of the deterministic PDA according to pushdown operations
and selects only those transitions and accessible states of the deterministic PDA for
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which the pushdown operations are possible. The assumption that the PDA is acyclic
results in a finite number of possible contents of the pushdown store. Furthermore,
the assumption of the specific order of states allows us to compute these contents of
the pushdown store easily in a one-pass way.

Algorithm 3. Transformation of an input-driven nondeterministic PDA to an equi-
valent deterministic PDA.
Input: Acyclic input-driven nondeterministic PDAMnx(t) = ({0, 1, 2, . . . , n},A,{S},
δ, 0, S, ∅), where the ordering of its states is such that if δ(p, a, α) = (q, β), then p < q.
Output: Equivalent deterministic PDA Mdx(t) = (Q′,A, {S}, δ′, qI , S, ∅).
Method:

1. Let cpds(q′), where q′ ∈ Q′, denote a set of strings over {S}. (The abbreviation
cpds stands for Contents of the PushDown Store.)

2. Initially, Q′ = {[0]}, qI = [0], cpds([0]) = {S} and [0] is an unmarked state.
3. (a) Select an unmarked state q′ from Q′ such that q′ contains the smallest possible

state q ∈ Q, where 0 ≤ q ≤ n.
(b) For each input symbol a ∈ A:

i. Add transition δ′(q′, a, α) = (q′′, β), where q′′ = {q : δ(p, a, α) = (q, β) for
all p ∈ q′}. If q′′ is not in Q′ then add q′′ to Q′ and create cpds(q′′) = ∅.
Add ω, where δ(q′, a, γ) ⊢Mdx(t) (q

′′, ε, ω) and γ ∈ cpds(q′), to cpds(q′′).
(c) Set the state q′ as marked.

4. Repeat step 3 until all states in Q′ are marked. ⊓⊔
The deterministic subtree automaton for a tree in prefix notation is demonstrated

by the following example. The PDA reads an input subtree in prefix notation and
the accepting state corresponds to the rightmost leaves of all occurrences of the input
subtree in the subject tree.

Example 13. The deterministic subtree PDA for tree t1 in prefix notation
pref (t1) = a2 a2 a0 a1 a0 a1 a0 from Example 1, which has been constructed by Alg. 3
from nondeterministic subtree PDA Mnps(t1) from Example 11, is deterministic PDA
Mdps(t1) = ({[0], [1, 2], [2], [3], [4], [5], [6], [7], [3, 5, 7], [4, 6], [5, 7]},A, {S}, δ3, [0], S, ∅)),
where mapping δ3 is a set of the following transitions:

δ3([0], a2, S) = ([1, 2], SS) δ3([0], a0, S) = ([3, 5, 7], ε)
δ3([1, 2], a2, S) = ([2], SS) δ3([0], a1, S) = ([4, 6], S)
δ3([2], a0, S) = ([3], ε) δ3([1, 2], a0, S) = ([3], ε)
δ3([3], a1, S) = ([4], S) δ3([4, 6], a0, S) = ([5, 7], ε)
δ3([4], a0, S) = ([5], ε)
δ3([5], a1, S) = ([6], S)
δ3([6], a0, S) = ([7], ε)

We note that there are no transitions leading from states [3, 5, 7], [5, 7] and [7],
because the pushdown store in these state is always empty and therefore no transition
is possible from these states due to the pushdown operations. This means that the
deterministic subtree PDAMdps(t1) has fewer transitions than the deterministic string
suffix automaton constructed for pref (t1) [6,14,18], as can be seen by comparing
Figs. 3 and 8.

The transition diagram of deterministic PDA Mdps(t1) is illustrated in Fig. 8.
Again, in this figure for each transition rule δ3(p, a, α) = (q, β) from δ3 the edge
leading from state p to state q is labelled by the triple of the form a|α 7→ β.
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[0] [1, 2] [2] [3] [4] [5] [6] [7]

[3, 5
7]

[4, 6] [5, 7]

a2|S 7→ SS

a2|S 7→ SS

a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a0|S 7→ εa0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

Figure 8. Transition diagram of deterministic subtree PDA Mdps(t1) for tree in prefix
notation pref (t1) = a2 a2 a0 a1 a0 a1 a0 from Example 13

Fig. 9 shows the sequence of transitions (trace) performed by deterministic subtree
PDAMdps(t1) for an input subtree st in prefix notation pref (st) = a1a0. The accepting
state is [5, 7], which means there are two occurrences of the input subtree st in tree
t1 and their rightmost leaves are nodes a05 and a07. ⊓⊔

State Input Pushdown Store
[0] a1 a0 S
[4, 6] a0 S
[5, 7] ε ε
accept

Figure 9. Trace of deterministic subtree PDA Mdps(t1) from Example 13 for an input
subtree st in prefix notation pref (st) = a1a0

Theorem 14. Given an acyclic input-driven nondeterministic PDA Mnx(t) = (Q,A,
{S}, δ, q0, S, ∅), the deterministic PDA Mdx(t) = (Q′,A, {S}, δ′, {q0}, S, ∅) construc-
ted by Alg. 3 is equivalent to PDA Mnx(t).

Proof. In [12]. ⊓⊔
We note that trees with the structure pref (t) = (a1)n−1a0 represent strings. Such

a tree is illustrated in Fig. 10. It can be simply shown that the deterministic subtree
PDAs for such trees have the same number of states and transitions as the determin-
istic suffix automata constructed for pref (t) and accept the same language.

It is obvious that the number of distinct subtrees in a tree can be at most the
number of nodes of the tree.

Lemma 15. Given a tree t with n nodes, the number of distinct subtrees of tree t is
equal or smaller than n.

Proof. In [12]. ⊓⊔
At the end of this section we discuss the total size of the constructed deterministic

subtree PDA, which cannot be greater than the total size of the deterministic suffix
automaton constructed for pref (t) [6,7]. We recall that the deterministic subtree
PDA can have even fewer states and transitions than the corresponding deterministic
string suffix automaton as certain states and transitions need not be accessible due
to pushdown operations.
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a1

a1

a1

...

a0

pref(t2) = (a1)n−1a0

Figure 10. A tree t2, which represents a string, and its prefix notation

Theorem 16. Given a tree t with n nodes and its prefix notation pref (t), the deter-
ministic subtree PDA Mdps(t) constructed by Algs. 2 and 3 has just one pushdown
symbol, fewer than N ≤ 2n+ 1 states and at most N + n− 1 ≤ 3n transitions.

Proof. The deterministic subtree PDA in question may have only states and tran-
sitions which correspond to the states and the transitions, respectively, of the de-
terministic suffix automaton constructed for pref (t). Therefore, the largest possible
numbers of states and transitions of the deterministic subtree PDA are the same as
those of the deterministic suffix automaton. The numbers of states and transitions
of the deterministic suffix automaton are proved in Theorems 6.1 and 6.2 in [7] or in
Theorem 5.3.5 in [18]. We note that these proofs are based on the following principle:
Given a substring u, the d-subset of the state in which the deterministic suffix au-
tomaton is after reading u is called the terminator set of u [18]. It holds for any two
substrings u1 and u2 that their terminator sets cannot overlap; in other words, the
terminator sets of a deterministic suffix automaton correspond to a tree structure. It
has been proved that this tree structure is such that the above-mentioned numbers
of states and transitions hold. ⊓⊔

5 Conclusion

We have described a new kind of pushdown automata: subtree PDAs for trees in
prefix notation. These pushdown automata are in their properties analogous to suffix
automata, which are widely used in stringology. The presented subtree PDAs repre-
sent a complete index of the subject tree with n nodes for all possible subtrees and
the deterministic version allows to find all occurrences of input subtrees of size m in
time linear in m and not depending on n.

Regarding specific tree algorithms whose model of computation is the standard
deterministic pushdown automaton, recently we have introduced principles of other
three new algorithms. First, a new and simple method for constructing subtree pattern
matchers as deterministic pushdown automata directly from given subtrees without
constructing finite tree automata as an intermediate product [8,13]. Second, tree
pattern pushdown automata, which represent a complete index of the tree for all tree
patterns matching the tree and the search phase of all occurrences of a tree pattern
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of size m is performed in time linear in m and not depending on the size of the
tree [12,13]. These automata representing indexes of trees for all tree patterns are
analogous in their properties to the string factor automata [6,7] and are an extension
of the subtree PDA presented in this paper. Third, a method for finding all repeats
of connected subgraphs in trees with the use of subtree or tree pattern PDA [15,13].
More details on these results and related information can also be found on [2].

I would like to thank to Bořivoj Melichar and anonymous referees – their comments
have contributed to improving the text significantly.
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5. H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,

and M. Tommasi: Tree automata techniques and applications. Available on: http://www.
grappa.univ-lille3.fr/tata, 2007, release October, 12th 2007.

6. M. Crochemore and C. Hancart: Automata for matching patterns, in Handbook of For-
mal Languages, G. Rozenberg and A. Salomaa, eds., vol. 2 Linear Modeling: Background and
Application, Springer-Verlag, Berlin, 1997, ch. 9, pp. 399–462.

7. M. Crochemore and W. Rytter: Jewels of Stringology, World Scientific, New Jersey, 1994.
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1 Introduction

Trees are one of the fundamental data structures used in Computer Science. Finding

occurrences of tree patterns in trees is an important problem with many applications

such as compiler code selection, interpretation of nonprocedural languages or various

tree finding and tree replacement systems.

The theory of formal string (or word) languages [1, 23, 33] and the theory of formal

tree languages [7, 9, 18] are important parts of the theory of formal languages [32].

Elements of string and tree languages are strings and trees, respectively. The main

models of computation of the theory of string languages are finite string automata,

pushdown string automata (PDAs), linear bounded automata and Turing machines,

whereas models of computation of the theory of tree languages are various kinds of

tree automata. Trees can also be seen as strings, for example in their prefix (also called

preorder) or postfix (also called postorder) notation. We note that the prefix or postfix

notation of a tree can be obtained by prefix or postfix traversing, respectively, and that

many of the existing algorithms on trees process the trees by prefix or postfix traversing.

[25] shows that the deterministic PDA is an appropriate model of computation for

labelled ordered ranked trees in postfix notation and that the trees in postfix notation

acceptable by deterministic PDA form a proper superclass of the class of regular tree

languages, which are accepted by finite tree automata.

In the further text we will omit the word “string” when referring to string languages

or string automata.

Tree pattern matching is often declared to be analogous to the problem of string

pattern matching [4, 7, 21]. String pattern matching is the problem of finding all

occurrences of string patterns and their positions in a text. A model of computation

for string pattern matching can be a finite automaton [11]. One of the basic approaches

for string pattern matching is represented by the use of finite automata which are

constructed for string patterns. In other words, the patterns are preprocessed. Given

a text of size n, such finite automata typically perform the search phase in time linear

in n (see [11, 12, 29, 35] for a survey).

Another basic approach for string pattern matching is represented by the use of fi-

nite automata constructed for the text. In other words, the subject text is preprocessed.

Examples of these automata are suffix or factor automata [11, 12, 29, 35]. A factor of a

text is defined as a subword of the text. Given a text of size n, the suffix or the factor

automaton can be constructed for the text in time linear in n. The constructed suffix

or factor automaton represents a complete index of the text for all possible suffixes or

factors, respectively, and can find all occurrences of a string suffix or a string factor,

respectively, and their positions in the text. The main advantages of this kind of finite

automata are:

– Given an input string suffix or string factor of sizem, the suffix or factor automaton,

respectively, performs the search phase in time linear in m and not depending on

n.

– Although the number of possible factors in the text can be quadratic in n, the total

size of the suffix or the factor automaton is linear in n.

Thus, suffix and factor automata are advantageous especially in cases when we want to

perform string pattern matching very fast and more times in the same text, and they

can also be used for large texts. There exist many effective applications of string suffix

and factor automata for problems such as data compression, finding repeats in text,
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backward string matching, and approximate string pattern matching (see [11, 22, 29]

for a survey).

Tree pattern matching is defined as the problem of finding all occurrences and their

positions of matches of tree patterns in a subject tree. A tree is defined as an acyclic

connected graph and a tree pattern represents an acyclic connected subgraph. Although

many tree pattern matching methods have been described [6, 7, 8, 13, 14, 16, 17, 20,

21, 27, 31, 34], all of them use the approach where tree patterns are preprocessed and

the search phase is performed in time linear to the size of the tree at best. We note that

some of these algorithms also preprocess the subject tree. In other words, none of these

existing tree pattern matching methods is analogous to the abovementioned approach

which is represented by string suffix or factor automata for the string matching problem

with all the corresponding analogous advantages.

This paper presents two new kinds of acyclic PDAs for trees in prefix notation,

which are analogous to string suffix and factor automata and their properties:

– First, subtree PDAs accept all subtrees of the tree.

– Second, tree pattern PDAs accept all tree patterns which match the tree. We note

that the task of finding occurrences of tree patterns which match a tree is equivalent

to the task of tree pattern matching.

Moreover, the subtree PDAs and the tree pattern PDAs can find the rightmost

leaves of all occurrences of the input subtree and the input tree pattern, respectively.

An early presentation of the basic idea of subtree and tree pattern PDAs can be

found in [26]. A brief description of subtree PDAs, theorems and lemmas regarding

subtree PDAs without their proofs can be found in [24]. This paper contains a detailed

description, more examples, theorems, lemmas, and their proofs and other related

information for both subtree and tree pattern PDAs, in detail.

By analogy with the string suffix or factor automaton, the subtree PDA and tree

pattern PDA represent complete indexes of the tree for all possible subtrees and for all

tree patterns which match the tree, respectively. Given a tree of size n, the advantages

of the deterministic subtree or the deterministic tree pattern PDA are:

– Given an input subtree or input tree pattern of size m, the subtree PDA or the

tree pattern PDA, respectively, performs the search phase in time linear in m and

not depending on n. This is faster than the time of the existing abovementioned

tree pattern matching algorithms, which depends on n. This is also faster than the

time that could be theoretically achieved by any standard tree automaton because

the standard deterministic tree automaton runs on the subject tree, which means

that searching by tree automata can be linear in n at best.

– The number of subtrees of the tree is n and the total size of the deterministic

subtree PDA is linear in n.

Although the number of possible distinct tree patterns which match the tree can

be exponential in n, we prove that for specific cases of trees the total size of the de-

terministic tree pattern pushdown automaton is linear in n. We also show a case of

trees for which the total size of the deterministic tree pattern pushdown automaton

is quadratic in n. The maximal total size of the deterministic tree pattern PDA in

general remains an open problem.

Thus, deterministic subtree PDAs and deterministic tree pattern PDAs are again ad-

vantageous especially in cases when we want to perform the searching of subtrees and

tree patterns, respectively, very fast and more times in the same tree. Also, they can

be used for large trees.
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Both kinds of PDAs presented in this paper have the following two other properties:

– They are input–driven PDAs [37], which means that each pushdown operation

is determined only by the input symbol. Input–driven PDAs can always be de-

terminised [37]. Moreover, they have their logarithmic-time work–optimal parallel

versions, the principles of which are described in [19]. We note that a parallel algo-

rithm is work–optimal if its cost, which is the product of the number of steps and

the number of processors, is of the same order as the cost of the best sequential

algorithm [19].

– Their pushdown symbol alphabets contain just one pushdown symbol and therefore

their pushdown store can be implemented by a single integer counter. This means

that the presented PDAs can be transformed to counter automata [3, 36], which

are a weaker and simpler model of computation than the PDA. We present the

automata in this paper as PDAs, because the PDA is a more fundamental and

more widely-used model of computation than the counter automaton.

The deterministic subtree PDA and the deterministic tree pattern PDA presented

in this paper are constructed in the following way: given a tree in prefix notation, a

nondeterministic PDA is constructed for this tree. After that, the constructed nonde-

terministic PDA is transformed to the deterministic PDA. Although a nondeterministic

PDA cannot in general be determinised, the constructed nondeterministic subtree and

tree pattern PDAs can be determinised because they are input–driven PDAs.

We prove that the prefix notation of any subtree is a substring of the prefix no-

tation of the tree. This important property of trees allows us to use the principles

of suffix and factor automata for the construction of subtree PDAs and tree pattern

PDAs, respectively. Given a subject tree t in prefix notation pref(t), the nondetermin-

istic subtree PDA has the same states as the nondeterministic string suffix automaton

constructed for pref(t) [29]. Moreover, its transitions are also the same but further

extended with pushdown operations so that the contents of the pushdown store can

determine the ends of subtrees of the subject tree. The resulting deterministic subtree

PDA can possibly have fewer states and transitions than the deterministic suffix au-

tomaton [11, 12, 29, 35], because some of the states created during the determinisation

need not be accessible due to pushdown operations. All the PDAs presented in this

paper accept the input tree patterns not by a final state but by empty pushdown store.

A subtree is a special case of a tree pattern, and tree pattern PDAs are an extension

of subtree PDAs. This extension adds some new transitions, which represent transitions

over subtrees so that the tree pattern PDAs will accept those subsequences of prefix

notation which represent subtrees with gaps described by tree patterns that match the

subject tree.

The rest of the paper is organised as follows. Basic definitions are given in section

2. Some properties of subtrees in prefix notation are discussed and proved in the third

section. The fourth and fifth sections deal with subtree PDAs and tree pattern PDAs,

respectively, for trees in prefix notation. The last section is the conclusion.

2 Basic notions

2.1 Ranked alphabet, tree, prefix notation, tree pattern, tree template, tree pattern

matching

We define notions on trees similarly as they are defined in [1, 7, 9, 18, 21].
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We denote the set of natural numbers by N. A ranked alphabet is a finite nonempty

set of symbols each of which has a unique nonnegative arity (or rank). Given a ranked

alphabet A, the arity of a symbol a ∈ A is denoted Arity(a). The set of symbols of

arity p is denoted by Ap. Elements of arity 0, 1, 2, . . . , p are respectively called nullary

(constants), unary, binary, . . ., p-ary symbols. We assume that A contains at least one

constant. In the examples we use numbers at the end of the identifiers for a short

declaration of symbols with arity. For instance, a2 is a short declaration of a binary

symbol a.

Based on concepts from graph theory (see [1]), a labelled, ordered, ranked tree over

a ranked alphabet A can be defined as follows:

An ordered directed graph G is a pair (N,R), where N is a set of nodes and R

is a set of linearly ordered lists of edges such that each element of R is of the form

((f, g1), (f, g2), . . . , (f, gn)), where f, g1, g2, . . . , gn ∈ N , n ≥ 0. This element will indi-

cate that, for node f , there are n edges leaving f , the first entering node g1, the second

entering node g2, and so forth.

A sequence of nodes (f0, f1, . . . , fn), n ≥ 1, is a path of length n from node f0 to

node fn if there is an edge which leaves node fi−1 and enters node fi for 1 ≤ i ≤ n.

A cycle is a path (f0, f1, . . . , fn), where f0 = fn. An ordered dag (dag stands for

Directed Acyclic Graph) is an ordered directed graph that has no cycle. A labelling of

an ordered graph G = (A,R) is a mapping of A into a set of labels. In the examples

we use af for a short declaration of node f labelled by symbol a.

Given a node f , its out-degree is the number of distinct pairs (f, g) ∈ R, where

g ∈ A. By analogy, the in-degree of node f is the number of distinct pairs (g, f) ∈ R,

where g ∈ A.

A labelled, ordered and rooted ranked tree t over a ranked alphabet A is an ordered

dag t = (N,R) with a special node r ∈ A, called the root, such that

(1) r has in-degree 0,

(2) all other nodes of t have in-degree 1,

(3) there is just one path from the root r to every f ∈ N , where f 6= r,

(4) every node f ∈ N is labelled by a symbol a ∈ A and the out-degree of af is

Arity(a).

Nodes labelled by nullary symbols (constants) are called leaves.

The prefix notation pref(t) of a labelled, ordered, ranked and rooted tree t is ob-

tained by applying the following Step recursively, beginning at the root of t:

Step: Let this application of Step be to node af . If af is a leaf, list a and halt. If af is

not a leaf, let its direct descendants be af1 , af2 , . . . , afn . Then list a and subsequently

apply Step to af1 , af2 , . . . , afn in that order.

We note that in many papers on the theory of tree languages, such as [7, 9, 18, 21],

labelled ordered ranked trees are defined with the use of ordered ranked ground terms.

Ground terms can be regarded as labelled ordered ranked trees in prefix notation.

Therefore, the notions ground term, tree and tree in prefix notation are used inter-

changeably in these papers.

Example 1 Consider a ranked alphabet A = {a2, a1, a0}. Consider a tree t1 over A
t1 = ({a21, a22, a03, a14, a05, a16, a07}, R), where R is a set of the following ordered

sequences of pairs:
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a05

a03 a14 a07

a22 a16

a21

pref(t1) = a2 a2 a0 a1 a0 a1 a0

Fig. 1 Tree t1 from Example 1 and its prefix notation

((a21, a22), (a21, a16)),

((a22, a03), (a22, a14)),

((a14, a05)),

((a16, a07))

Tree t1 in prefix notation is string pref(t1) = a2 a2 a0 a1 a0 a1 a0. Trees can be

represented graphically, and tree t1 is illustrated in Fig. 1. ut

The height of a tree t, denoted by Height(t), is defined as the maximal length of a

path from the root of t to a leaf of t.

To define a tree pattern, we use a special nullary symbol S, not in A, which serves as

a placeholder for any subtree. A tree pattern is defined as a labelled ordered ranked tree

over ranked alphabet A ∪ {S}. By analogy, a tree pattern in prefix notation is defined

as a labelled ordered ranked tree over ranked alphabet A ∪ {S} in prefix notation. We

will assume that the tree pattern contains at least one node from A (i.e. sole S is not

allowed to be a tree pattern). A tree pattern containing at least one symbol S will be

called a tree template.

A tree pattern p with k ≥ 0 occurrences of the symbol S matches an object tree t at

node n if there exist subtrees t1, t2, . . . , tk (not necessarily the same) of the tree t such

that the tree p′, obtained from p by substituting the subtree ti for the i-th occurrence

of S in p, i = 1, 2, . . . , k, is equal to the subtree of t rooted at n.

Example 2 Consider tree t1 = ({a21, a22, a03, a14, a05, a16, a07}, R) from Example 1,

which is illustrated in Fig. 1. Consider a tree pattern (template) p1 over A ∪ {S}
p1 = ({a28, S9, a110, S11}, R′), where R′ is a set of the following ordered sequences of

pairs:

((a28, S9), (a28, a110)),

((a19, S11))

Tree pattern p1 in prefix notation is string pref(p1) = a2 S a1 S. Tree pattern p1
is illustrated in Fig. 2. Tree pattern p1 has two occurrences in tree t1 – it matches at

nodes a21 and a22 of t1. ut
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S11

S9 a110

a28

pref(p1) = a2 S a1 S

Fig. 2 Tree pattern (template) p1 from Examples 2 and 9 and its prefix notation

2.2 Alphabet, context–free grammar, language, finite automaton, pushdown

automaton

We define notions from the theory of string languages similarly as they are defined in

[1, 23].

Let an alphabet be a finite nonempty set of symbols. A language over an alphabet

A is a set of strings over A. Symbol A∗ denotes the set of all strings over A including

the empty string, denoted by ε. Set A+ is defined as A+ = A∗ \ {ε}. Similarly, for

string x ∈ A∗, symbol xm, m ≥ 0, denotes the m-fold concatenation of x with x0 = ε.

Set x∗ is defined as x∗ = {xm : m ≥ 0} and x+ = x∗ \ {ε} = {xm : m ≥ 1}.
A context-free grammar (CFG) is a 4-tuple G = (N,A, P, S), where N and A are

finite disjoint sets of nonterminal and terminal (input) symbols, respectively. P is a

finite set of rules A → α, where A ∈ N , α ∈ (N ∪ A)∗. S ∈ N is the start symbol.

Relation ⇒ is called derivation: if αA γ ⇒ αβγ, A ∈ N , and α, β, γ ∈ (N ∪ A)∗, then
rule A → β is in P . Symbols ⇒+, and ⇒∗ are used for the transitive, and the transitive

and reflexive closure of ⇒, respectively. The language generated by a G, denoted by

L(G), is the set of strings L(G) = {w : S ⇒∗ w, w ∈ A∗}.
A nondeterministic finite automaton (NFA) is a five-tuple FM = (Q,A, δ, q0, F ),

where Q is a finite set of states, A is an input alphabet, δ is a mapping from Q × A
into a set of finite subsets of Q, q0 ∈ Q is an initial state, and F ⊆ Q is the set of

final (accepting) states. A finite automaton FM is deterministic (DFA) if δ(q, a) has

no more than one member for any q ∈ Q and a ∈ A. We note that the mapping δ is

often illustrated by its transition diagram.

Every NFA can be transformed to an equivalent DFA [1, 23]. The transformation

constructs the states of the DFA as subsets of states of the NFA and selects only such

accessible states (ie subsets). These subsets are called d-subsets. In spite of the fact

that d-subsets are standard sets, they are often written in square brackets ([ ]) instead

of in braces ({ }).
An (extended) nondeterministic pushdown automaton (nondeterministic PDA) is a

seven-tuple M = (Q,A, G, δ, q0, Z0, F ), where Q is a finite set of states, A is an input

alphabet,G is a pushdown store alphabet, δ is a mapping fromQ×(A∪{ε})×G∗ into a set

of finite subsets ofQ×G∗, q0 ∈ Q is an initial state, Z0 ∈ G is the initial pushdown store

symbol, and F ⊆ Q is the set of final (accepting) states. Triple (q, w, x) ∈ Q×A∗ ×G∗

denotes the configuration of a pushdown automaton. In this paper we will write the top
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of the pushdown store x on its right hand side. The initial configuration of a pushdown

automaton is a triple (q0, w, Z0) for the input string w ∈ A∗.
The relation `M⊂ (Q × A∗ × G∗) × (Q × A∗ × G∗) is a transition of a pushdown

automaton M . It holds that (q, aw, αβ) `M (p, w, γβ) if (p, γ) ∈ δ(q, a, α). The k-

th power, transitive closure, and transitive and reflexive closure of the relation `M

is denoted `k
M , `+

M , `∗
M , respectively. A pushdown automaton M is a deterministic

pushdown automaton (deterministic PDA), if it holds:

1. |δ(q, a, γ)| ≤ 1 for all q ∈ Q, a ∈ A ∪ {ε}, γ ∈ G∗.
2. If δ(q, a, α) 6= ∅, δ(q, a, β) 6= ∅ and α 6= β then α is not a suffix of β and β is not a

suffix of α.

3. If δ(q, a, α) 6= ∅, δ(q, ε, β) 6= ∅, then α is not a suffix of β and β is not a suffix of α.

A pushdown automaton is input–driven if each of its pushdown operations is de-

termined only by the input symbol.

A language L accepted by a pushdown automaton M is defined in two distinct ways:

1. Accepting by final state:

L(M) = {x : δ(q0, x, Z0) `∗
M (q, ε, γ) ∧ x ∈ A∗ ∧ γ ∈ G∗ ∧ q ∈ F}.

2. Accepting by empty pushdown store:

Lε(M) = {x : (q0, x, Z0) `∗
M (q, ε, ε) ∧ x ∈ A∗ ∧ q ∈ Q}.

If PDA accepts the language by empty pushdown store, then the set F of final states

is the empty set. In this paper we will use only PDAs which accept the languages by

empty pushdown store.

For more details see [1, 23].

2.3 String suffix and factor automata

String suffix and factor automata are finite automata and were introduced in [5, 10] as

a mechanism for eliminating redundancy in string suffix trees [11, 12, 29, 35]. Given

a string s ∈ A∗, the suffix and factor automaton constructed for the string s accepts

all suffixes and substrings, respectively, of the string s in time linear to the length

of the input suffix and the input substring, respectively, and not depending on the

length of the string s. In [11, 12, 35] suffix and factor automata are defined as such

minimal deterministic finite automata. In [29], their basic nondeterministic versions

are also presented. In some literature, the deterministic suffix automaton is also called

the directed acyclic word graph (DAWG).

Example 3 Given the prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0 of tree t1 from

Example 1, the corresponding nondeterministic suffix automaton is

FMnsuf (pref(t1)) = ({0, 1, 2, 3, 4, 5, 6, 7},A, δn, 0, {7})), where its transition diagram

is illustrated in Fig. 3. (For the construction of the nondeterministic suffix automaton

see [29].)

After the standard transformation of a nondeterministic suffix automaton to a

deterministic one [23], the deterministic suffix automaton for pref(t1) is

FMdsuf (pref(t1)) = ({[0], [1, 2], [2], [3], [4], [5], [6], [7], [3, 5, 7], [4, 6], [5, 7]},
A, δd, 0, {[7], [3, 5, 7], [5, 7]})), where its transition diagram is illustrated in Fig. 4. ut
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0 1 2 3 4 5 6 7

a2 a2 a0 a1 a0 a1 a0

a2

a0

a1

a0

a1

a0

Fig. 3 Transition diagram of the nondeterministic string suffix automaton FMnsuf (pref(t1))
for prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0 of tree t1 from Example 1

[0] [1, 2] [2] [3] [4] [5] [6] [7]

[3, 5
7]

[4, 6] [5, 7]

a2 a2 a0 a1

a1

a1

a0 a1 a0

a0
a0

a1

a0

Fig. 4 Transition diagram of the deterministic suffix automaton FMdsuf (pref(t1)) for prefix
notation pref(t1) = a2 a2 a0 a1 a0 a1 a0 of tree t1 from Example 1

3 Properties of subtrees in prefix notation

In this section we prove some general properties of the prefix notation of a tree and of

its subtrees. These properties are important for the construction of subtree PDAs and

tree pattern PDAs, which are described in the next sections.

Example 4 Consider tree t1 in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0 from

Example 1, which is illustrated in Fig. 1. Tree t1 contains only subtrees shown in Fig. 5.

ut

Generally, it holds for any tree that each of its subtrees in prefix notation is a

substring of the tree in prefix notation.

Theorem 1 Given a tree t and its prefix notation pref(t), all subtrees of t in prefix

notation are substrings of pref(t).

Proof By induction on the height of the subtree:
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a0

a0 a1 a0

a2 a1

a2

a2 a2 a0 a1 a0 a1 a0

a0

a0 a1

a2

a2 a0 a1 a0

a0

a1

a1 a0

a0

a0

Fig. 5 All subtrees of tree t1 from Example 5, and their prefix notations

1. If a subtree t′ has just one node a, where Arity(a) = 0, then Height(t′) = 0,

pref(t′) = a and the claim holds for that subtree.

2. Assume that the claim holds for subtrees t1, t2, . . . , tp, where p ≥ 1, Height(t1) ≤
m, Height(t2) ≤ m, . . ., Height(tp) ≤ m, m ≥ 0. We have to prove that the claim

also holds for each subtree t′ = at1t2 . . . tp, where Arity(a) = p,Height(t′) = m+1:

As pref(t′) = a pref(t1) pref(t2) . . . pref(tp), the claim holds for the subtree t′.

Thus, the theorem holds. ut

However, not every substring of a tree in prefix notation is a prefix notation of

its subtree. This can be easily seen from the fact that for a given tree with n nodes

there can be O(n2) distinct substrings, but there are just n subtrees – each node of the

tree is the root of just one subtree. Just those substrings which themselves are trees

in prefix notation are those which are the subtrees in prefix notation. This property is

formalised by the following definition and theorem.

Definition 1 Let w = a1a2 . . . am, m ≥ 1, be a string over a ranked alphabet A.

Then, the arity checksum ac(w) = arity(a1) + arity(a2) + . . . + arity(am) − m + 1=∑m
i=1 arity(ai) − m+ 1.

Theorem 2 Let pref(t) and w be a tree t in prefix notation and a substring of pref(t),

respectively. Then, w is the prefix notation of a subtree of t, if and only if ac(w) = 0,

and ac(w1) ≥ 1 for each w1, where w = w1x, x 6= ε.

Proof It is easy to see that for any two subtrees st1 and st2 it holds that pref(st1) and

pref(st2) are either two different strings or one is a substring of the other. The former

case occurs if the subtrees st1 and st2 are two different trees with no shared part and

the latter case occurs if one tree is a subtree of the other tree. No partial overlapping

of subtrees is possible in ranked ordered trees. Moreover, it holds for any two subtrees

which are adjacent siblings that their prefix notations are two adjacent substrings.

– If: By induction on the height of a subtree st, where w = pref(st):

1. We assume that Height(st) = 0, which means we consider the case w = a.

where arity(a) = 0. Then, ac(w) = 0. Thus, the claim holds for the case

Height(st) = 0.
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2. Assume that the claim holds for the subtrees st1, st2, . . . , stp where p ≥ 1,

Height(st1) ≤ n, Height(st2) ≤ n, . . ., Height(stp) ≤ n, ac(pref(st1)) = 0,

ac(pref(st2)) = 0, . . ., ac(pref(stp)) = 0.

We are to prove that it holds also for a subtree w of height n + 1. Assume

w = a pref(st1) pref(st2) . . . pref(stp), where arity(a) = p. Then

ac(w) = p+ac(pref(st1))+ac(pref(st2))+ . . .+ac(pref(stp))−(p+1)+1 = 0

and ac(w1) ≥ 1 for each w1 , where w = w1x, x 6= ε.

Thus, the claim holds for the case Height(st) = n+ 1.

– Only if : Assume ac(w) = 0, and w = a1a2 . . . am, where m ≥ 1, arity(a1) = p.

Since ac(w1) ≥ 1 for each w1, where w = w1x, x 6= ε, none of the substrings

w1 can be a subtree in prefix notation. This means that the only possibility for

ac(w) = 0 is that w is of the form w = a pref(t1) pref(t2) . . . pref(tp), where

p ≥ 0, and t1, t2 . . . tp are subtrees which are adjacent siblings. In such a case

ac(w) = p+ 0 − (p+ 1) + 1 = 0.

No other possibility of the form of w for ac(w) = 0 is possible. Thus, the claim

holds.

Thus, the theorem holds. ut
We note that in subtree PDAs and tree pattern PDAs the arity checksum is com-

puted by pushdown operations, where the contents of the pushdown store represent

the corresponding arity checksum. For example, an empty pushdown store means that

the corresponding arity checksum is equal to 0.

4 Subtree pushdown automata

This section deals with the subtree PDAs for trees in prefix notation: algorithms and

theorems are given and the subtree PDAs and their construction are demonstrated on

an example.

Definition 2 Let t and pref(t) be a tree and its prefix notation, respectively. A subtree

pushdown automaton for pref(t) accepts all subtrees of t in prefix notation.

From the global point of view, comparing the subtree PDAs with the string suffix

automaton, the deterministic subtree PDA constructed for a tree t can have just states

and transitions which correspond to states and transitions of the deterministic string

suffix automaton constructed for pref(t), where the transitions of the subtree PDA

are extended with pushdown operations. The pushdown operations compute the arity

checksum, which was defined in the previous section. Moreover, some of the states and

the transitions of the string suffix automaton need not be present in the deterministic

subtree PDA because the corresponding pushdown operations cannot be performed

and therefore such states are not accessible. All PDAs in this paper accept the input

by empty pushdown store, which means the arity checksum is 0.

First, we start with a PDA which accepts the whole subject tree in prefix notation.

The construction of the PDA accepting a tree in prefix notation by empty pushdown

store is described by Alg. 1. The constructed PDA is deterministic.

Algorithm 1 Construction of a PDA accepting a tree t in prefix notation pref(t).

Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an, n ≥ 1.

Output: PDA Mp(t) = ({0, 1, 2, . . . , n},A, {S}, δ, 0, S, ∅).
Method:
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0 1 2 3 4 5 6 7

a2|S 7→ SS
a2|S 7→ SS

a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

Fig. 6 Transition diagram of deterministic PDA Mp(t1) accepting tree t1 in prefix notation
pref(t1) = a2 a2 a0 a1 a0 a1 a0 from Example 5

State Input Pushdown Store
0 a2 a2 a0 a1 a0 a1 a0 S
1 a2 a0 a1 a0 a1 a0 S S
2 a0 a1 a0 a1 a0 S S S
3 a1 a0 a1 a0 S S
4 a0 a1 a0 S S
5 a1 a0 S
6 a0 S
7 ε ε
accept

Fig. 7 Trace of deterministic PDA Mp(t1) from Example 5 for tree t1 in prefix notation
pref(t1) = a2 a2 a0 a1 a0 a1 a0

1. For each state i, where 1 ≤ i ≤ n, create a new transition

δ(i − 1, ai, S) = (i, SArity(ai)), where S0 = ε. ut

Example 5 A PDA accepting tree t1 in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0

from Example 1, which has been constructed by Alg. 1, is deterministic PDA

Mp(t1) = ({0, 1, 2, 3, 4, 5, 6, 7},A, {S}, δ1, 0, S, ∅)), where the mapping δ1 is a set of the

following transitions:

δ1(0, a2, S) = (1, SS)

δ1(1, a2, S) = (2, SS)

δ1(2, a0, S) = (3, ε)

δ1(3, a1, S) = (4, S)

δ1(4, a0, S) = (5, ε)

δ1(5, a1, S) = (6, S)

δ1(6, a0, S) = (7, ε)

The transition diagram of deterministic PDA Mp(t1) is illustrated in Fig. 6. In this

figure, for each transition rule δ1(p, a, α) = (q, β) from δ the edge leading from state p

to state q is labelled by the triple of the form a|α 7→ β.

Fig. 7 shows the sequence of transitions (trace) performed by deterministic PDA

Mp(t1) for tree t1 in prefix notation. ut

We show that every input-driven PDA that has the same pushdown operations as

are defined for the above deterministic PDA Mp(t) for tree t in prefix notation behaves

such that the contents of its pushdown store correspond to the arity checksum. This is

proved by the following theorem. We note that such pushdown operations correspond to

the pushdown operations of the standard top-down parsing algorithm for a context-free

grammar with rules of the form

S → a Sarity(a).
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For principles of the standard top–down (LL) parsing algorithm see [1].

Theorem 3 Let M = ({Q,A, {S}, δ, 0, S, ∅) be an input-driven PDA of which each

transition from δ is of the form δ(q1, a, S) = (q2, S
i), where i = arity(a).

Then, if (q3, w, S) `+
M (q4, ε, S

j), then j = ac(w).

Proof By induction on the length of w:

1. Assume w = a. Then, (q3, a, S) `M (q4, ε, S
j), where j = arity(a) = ac(a). Thus,

the claim holds for the case w = a.

2. Assume that the claim holds for a string w = a1a2 . . . am, where k ≥ 1. This

means that (q3, a1a2 . . . am, S) `k
M (q4, ε, S

j), where j = ac(a1a2 . . . am). We have

to prove that the claim also holds for w = a1a2 . . . am a.

It holds that (q3, a1a2 . . . ama, S) `k
M (q4, a, S

j) `M (q5, ε, S
l), where

l = j + arity(a) − 1 = ac(w) + arity(a) − 1

= arity(a1) + arity(a2) + . . .+ arity(am) − k + 1 + arity(a) − 1

= ac(a1a2 . . . ama).

Thus, the claim holds for the case w = a1a2 . . . am a.

Thus, the theorem holds. ut

The correctness of the deterministic PDA constructed by Alg. 1, which accepts

trees in prefix notation, is proved by the following lemma.

Lemma 1 Given a tree t and its prefix notation pref(t), the PDA Mp(t) = ({0, 1, 2, . . . ,
n},A, {S}, δ, 0, S, ∅), where n ≥ 0, constructed by Alg. 1 accepts pref(t).

Proof By induction on the height of tree t:

1. If tree t has just one node a, where Arity(a) = 0, then Height(t) = 0, pref(t) = a,

δ(0, a, S) = (1, ε) ∈ δ, (0, a, S) `Mp(t) (1, ε, ε) and the claim holds for that tree.

2. Assume that the claim holds for trees t1, t2, . . . , tp, where p ≥ 1, Height(t1) ≤ m,

Height(t2) ≤ m, . . ., Height(tp) ≤ m, m ≥ 0.

We have to prove that the claim also holds for each tree t such that

pref(t) = a pref(t1)pref(t2) . . . pref(tp), Arity(a) = p, and Height(t) ≥ m+ 1:

Since δ(0, a, S) = (1, Sp) ∈ δ, and

(0, a pref(t1)pref(t2) . . . pref(tp), S)

`Mp(t) (1, pref(t1)pref(t2) . . . pref(tp), S
p)

`∗
Mp(t)

(i, pref(t2) . . . pref(tp), S
p−1)

`∗
Mp(t)

. . .

`∗
Mp(t)

(j, pref(tp), S)

`∗
Mp(t)

(k, ε, ε),

the claim holds for that tree.

Thus, the lemma holds. ut

We present the construction of the deterministic subtree PDA for trees in pre-

fix notation. The construction consists of two steps. First, a nondeterministic subtree

PDA is constructed by Alg. 2. This nondeterministic subtree PDA is an extension of

the PDA accepting tree in prefix notation, which is constructed by Alg. 1. Second, the

constructed nondeterministic subtree PDA is transformed to the equivalent determinis-

tic subtree PDA. Although a nondeterministic PDA cannot generally be determinised,

the constructed nondeterministic subtree PDA is an input–driven PDA and therefore

can be determinised [37].
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0 1 2 3 4 5 6 7

a2|S 7→ SS
a2|S 7→ SS

a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a2|S 7→ SS

a0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

Fig. 8 Transition diagram of nondeterministic subtree PDA Mnps(t1) for tree t1 in prefix
notation pref(t1) = a2 a2 a0 a1 a0 a1 a0 from Example 6

Algorithm 2 Construction of a nondeterministic subtree PDA for a tree t in prefix

notation pref(t).

Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an, n ≥ 1.

Output: Nondeterministic subtree PDA Mnps(t) = ({0, 1, 2, . . . , n},A, {S}, δ, 0, S, ∅).
Method:

1. Create PDA Mnps(t) as PDA Mp(t) by Alg. 1.

2. For each state i, where 2 ≤ i ≤ n, create a new transition

δ(0, ai, S) = (i, SArity(ai)), where S0 = ε. ut

Example 6 A subtree PDA for tree t1 in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0

from Example 1, which has been constructed by Alg. 2, is nondeterministic PDA

Mnps(t1) = ({0, 1, 2, 3, 4, 5, 6, 7},A, {S}, δ2, 0, S, ∅)), where mapping δ2 is a set of the

following transitions:

δ2(0, a2, S) = (1, SS)

δ2(1, a2, S) = (2, SS) δ2(0, a2, S) = (2, SS)

δ2(2, a0, S) = (3, ε) δ2(0, a0, S) = (3, ε)

δ2(3, a1, S) = (4, S) δ2(0, a1, S) = (4, S)

δ2(4, a0, S) = (5, ε) δ2(0, a0, S) = (5, ε)

δ2(5, a1, S) = (6, S) δ2(0, a1, S) = (6, S)

δ2(6, a0, S) = (7, ε) δ2(0, a0, S) = (7, ε)

The transition diagram of nondeterministic PDA Mnps(t1) is illustrated in Fig. 8.

Again, in this figure for each transition rule δ2(p, a, α) = (q, β) from δ2 the edge leading

from state p to state q is labelled by the triple of the form a|α 7→ β.

A comparison of Figs. 8 and 3 shows that the states and the transitions of non-

deterministic subtree PDA Mnps(t1) correspond to the states and the transitions, re-

spectively, of the nondeterministic string suffix automaton for pref(t1); the transitions

of the subtree PDA are extended by pushdown operations so that it holds that the

number of symbols S in the pushdown store is equal to the corresponding arity check-

sum. ut
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We prove the correctness of the constructed subtree PDA.

Theorem 4 Given a tree t and its prefix notation pref(t), the PDA Mnps(t) con-

structed by Alg. 2 is a subtree PDA for pref(t).

Proof According to Theorem 1 each subtree in prefix notation is a substring of pref(t).

Since the PDA Mnps(t) has just states and transitions equivalent to the states and

transitions, respectively, of the string suffix automaton, the PDA Mnps(t) reads just

all the substrings of pref(t).

According to Theorem 3 the PDA Mnps(t) behaves such that that if

(q3, w, S) `+
Mnps(t)

(q4, ε, S
j), then j = ac(w). The input is accepted by the empty

pushdown store, which agrees with Theorem 2 – input w is the prefix notation of a

subtree of t if and only if ac(w) = 0, and ac(w1) ≥ 1 for each w1 , where w = w1x,

x 6= ε.

Thus, the theorem holds. ut

It is known that each nondeterministic input–driven PDA can be transformed to an

equivalent deterministic input–driven PDA [37]. To construct deterministic subtree or

tree pattern PDAs from their nondeterministic versions we use the transformation de-

scribed by Alg. 3. This transformation is an extension of the well known transformation

of a nondeterministic finite automaton to an equivalent deterministic one [23]. Again,

the states of the resulting deterministic PDA correspond to subsets of the states of

the original nondeterministic PDA, and these subsets are again called d-subsets. More-

over, the original nondeterministic PDA is assumed to be acyclic with a specific order

of states, and Alg. 3 precomputes the possible contents of the pushdown store in par-

ticular states of the deterministic PDA according to pushdown operations and selects

only those transitions and accessible states of the deterministic PDA for which the

pushdown operations are possible. The assumption that the PDA is acyclic results in a

finite number of possible contents of the pushdown store. Furthermore, the assumption

of the specific order of states allows us to compute these contents of the pushdown

store easily in a one-pass way.

Algorithm 3 Transformation of an input–driven nondeterministic PDA to an equiv-

alent deterministic PDA.

Input: Acyclic input–driven nondeterministic PDA Mnx(t) = ({0, 1, 2, . . . , n},A, {S},
δ, 0, S, ∅), where the ordering of its states is such that if δ(p, a, α) = (q, β), then p < q.

Output: Equivalent deterministic PDA Mdx(t) = (Q′,A, {S}, δ′, qI , S, ∅).
Method:

1. Let cpds(q′), where q′ ∈ Q′, denote a set of strings over {S}. (The abbreviation

cpds stands for Contents of the PushDown Store.)

2. Initially, Q′ = {[0]}, qI = [0], cpds([0]) = {S} and [0] is an unmarked state.

3. (a) Select an unmarked state q′ from Q′ such that q′ contains the smallest possible

state q ∈ Q, where 0 ≤ q ≤ n.

(b) If there is Sr ∈ cpds(q′), r ≥ 1, then for each input symbol a ∈ A:

i. Add transition δ′(q′, a, α) = (q′′, β), where q′′ = {q : δ(p, a, α) = (q, β) for

all p ∈ q′}. If q′′ is not in Q′ then add q′′ to Q′ and create cpds(q′′) = ∅.
Add ω, where δ(q′, a, γ) `Mdx(t) (q

′′, ε, ω) and γ ∈ cpds(q′), to cpds(q′′).
(c) Set the state q′ as marked.

4. Repeat step 3 until all states in Q′ are marked. ut
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The deterministic subtree PDA for a tree in prefix notation is demonstrated by

the following example. The PDA reads an input subtree in prefix notation and the

accepting state corresponds to the rightmost leaves of all occurrences of the input

subtree in the subject tree.

Example 7 The deterministic subtree PDA for tree t1 in prefix notation

pref(t1) = a2 a2 a0 a1 a0 a1 a0 from Example 1, which has been constructed by Alg. 3

from nondeterministic subtree PDA Mnps(t1) from Example 6, is deterministic PDA

Mdps(t1) = ({[0], [1, 2], [2], [3], [4], [5], [6], [7], [3, 5, 7], [4, 6], [5, 7]},A, {S}, δ3, [0], S, ∅)),
where mapping δ3 is a set of the following transitions:

δ3([0], a2, S) = ([1, 2], SS) δ3([0], a0, S) = ([3, 5, 7], ε)

δ3([1, 2], a2, S) = ([2], SS) δ3([0], a1, S) = ([4, 6], S)

δ3([2], a0, S) = ([3], ε) δ3([1, 2], a0, S) = ([3], ε)

δ3([3], a1, S) = ([4], S) δ3([4, 6], a0, S) = ([5, 7], ε)

δ3([4], a0, S) = ([5], ε)

δ3([5], a1, S) = ([6], S)

δ3([6], a0, S) = ([7], ε)

The contents of the pushdown store in particular states are as follows:

cpds([0]) = {S}, cpds([3, 5, 7]) = {ε},
cpds([1, 2]) = {SS}, cpds([4, 6]) = {S},
cpds([2]) = {SSS}, cpds([5, 7]) = {ε}.
cpds([3]) = {S, SS},
cpds([4]) = {S, SS},
cpds([5]) = {ε, S},
cpds([6]) = {S},
cpds([7]) = {ε},

The transition diagram of deterministic PDA Mdps(t1) is illustrated in Fig. 9.

Again, in this figure for each transition rule δ3(p, a, α) = (q, β) from δ3 the edge leading

from state p to state q is labelled by the triple of the form a|α 7→ β.

We note that there are no transitions leading from states [3, 5, 7], [5, 7] and [7],

because the contents of the pushdown store (cpds) in these state is always ε and

therefore no transition is possible from these states due to the pushdown operations.

This means that deterministic subtree PDA Mdps(t1) has fewer transitions than the

deterministic string suffix automaton constructed for pref(t1) [11, 29, 35], as can be

seen by comparing Figs. 4 and 9.

Fig. 10 shows the sequence of transitions (the trace) performed by deterministic

subtree PDA Mdps(t1) for an input subtree st in prefix notation pref(st) = a1a0. The

accepting state is [5, 7], which means there are two occurrences of the input subtree st

in tree t1 and their rightmost leaves are nodes a05 and a07. ut

We prove the correctness of Alg. 3, which constructs the deterministic input–driven

PDA for a given acyclic nondeterministic input–driven PDA. The proof is done sim-

ilarly as the proof of the equivalence of a nondeterministic finite automaton and its

corresponding equivalent deterministic finite automaton [1].

Theorem 5 Given an acyclic input–driven nondeterministic PDA Mnx(t) = (Q,A,

{S}, δ, q0, S, ∅), the deterministic PDA Mdx(t) = (Q′,A, {S}, δ′, {q0}, S, ∅) constructed
by Alg. 3 is equivalent to PDA Mnx(t).
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[0] [1, 2] [2] [3] [4] [5] [6] [7]

[3, 5
7]

[4, 6] [5, 7]

a2|S 7→ SS
a2|S 7→ SS

a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a0|S 7→ εa0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

Fig. 9 Transition diagram of deterministic subtree PDA Mdps(t1) for tree in prefix notation
pref(t1) = a2 a2 a0 a1 a0 a1 a0 from Example 7

State Input Pushdown Store
[0] a1 a0 S
[4, 6] a0 S
[5, 7] ε ε
accept

Fig. 10 Trace of deterministic subtree PDA Mdps(t1) from Example 7 for an input subtree
st in prefix notation pref(st) = a1a0

Proof First, we prove the following claim by induction on i:

(*): (q′
1, w, S) `i

Mdx(t)
(q′

2, ε, S
j) if and only if

q′
2 = {p : (q, w, S) `i

Mnx(t)
(p, ε, Sj) for some q ∈ q′

1}.
1. Assume i=1.

– if : if (q′
1, a, S) `Mdx(t) (q′

2, ε, S
j), then there exists a state q ∈ q′

1, where

(q, a, S) `Mnx(t) (p, ε, S
j), p ∈ q′

2.

– only if : if (q, a, S) `Mnx(t) (p, ε, β), then for each q′
1 ∈ Q′, where q ∈ q′

1, it

holds that (q′
1, a, S) `Mdx(t) (q

′
2, ε, S

j), where p ∈ q′
2.

2. Assume that claim (*) holds for i = 1, 2, . . . , k, k ≥ 1.

This means that (q′
1, w, S) `k

Mdx(t)
(q′

2, ε, S
j) if and only if

q′
2 = {p : (q, w, S) `k

Mnx(t)
(p, ε, Sj) for some q ∈ q′

1}. We have to prove that claim

(*) also holds for i = k + 1.

– if : if (q′
1, w, S) `k

Mdx(t)
(q′

2, a, S
l) `Mdx(t) (q

′
3, ε, S

j) , then there exists a state

q ∈ q′
2, where (q, a, Sl) `Mnx(t) (p, ε, S

j), p ∈ q′
3.

– only if : if (q0, pref(t), S) `k
Mnx(t)

(q, a, Sl) `Mnx(t) (p, ε, Sj), then for each

q′
1 ∈ Q′, where q ∈ q′

1, it holds that (q
′
1, a, S

l) `Mdx(t) (q
′
2, ε, S

j), where p ∈ q′
2.

As a special case of claim (*), ({q0}, pref(t), S) `i
Mdx(t)

(q′, ε, ε) if and only if

(q0, pref(t), S) `i
Mnx(t)

(q1, ε, ε). Thus, the theorem holds. ut

We note that trees with the structure pref(t) = (a1)n−1a0 represent strings. Such

a tree is illustrated in Fig. 11. It can be simply shown that the deterministic subtree

PDAs for such trees have the same number of states and transitions as the deterministic

suffix automata constructed for pref(t) and accept the same language.
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a11

a12

a13

...

a0n

pref(t2) = (a1)n−1a0

Fig. 11 A tree t2, which represents a string, and its prefix notation

Is is obvious that the number of distinct subtrees in a tree can be at most the

number of nodes of the tree.

Lemma 2 Given a tree t with n nodes, the number of distinct subtrees of tree t is

equal or smaller than n.

Proof It is clear that each node of the tree t is the root of a subtree, which gives just

n subtrees. Since some subtrees may be equal, the lemma holds. ut

At the end of this section we discuss the total size of the constructed deterministic

subtree PDA. The deterministic subtree PDA has the only pushdown symbol S, and all

its states and transitions correspond to the states and the transitions, respectively, of

the deterministic suffix automaton constructed for pref(t). Therefore, the total size of

the deterministic subtree PDA cannot be greater than the total size of the deterministic

suffix automaton constructed for pref(t). In other words, the total size is linear to the

number of nodes of the tree. More precisely, the exact maximal numbers of states and

transitions are described by the following theorem.

Theorem 6 Given a tree t with n nodes and its prefix notation pref(t), the determin-

istic subtree PDA Mdps(t) constructed by Algs. 2 and 3 has just one pushdown symbol,

fewer than N ≤ 2n+ 1 states and at most N + n − 1 ≤ 3n transitions.

Proof The deterministic subtree PDA in question may have only states and transitions

which correspond to the states and the transitions, respectively, of the deterministic

suffix automaton constructed for pref(t). Therefore, the largest possible numbers of

states and transitions of the deterministic subtree PDA are the same as those of the

deterministic suffix automaton. The numbers of states and transitions of the determin-

istic suffix automaton are proved in Theorems 6.1 and 6.2 in [12] or in Theorem 5.3.5

in [35]. We note that these proofs are based on the following principle:

Given a substring u, the d-subset of the state in which the deterministic suffix au-

tomaton is after reading u is called the terminator set of u [35]. It holds for any two
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substrings u1 and u2 that their terminator sets cannot overlap; in other words, the

terminator sets of a deterministic suffix automaton correspond to a tree structure. It

has been proved ([12, 35]) that this tree structure is such that the abovementioned

numbers of states and transitions hold. ut

5 Tree pattern pushdown automata

In this section, algorithms and theorems regarding tree pattern PDAs for trees in prefix

notation are given, and the tree pattern PDAs and their construction are demonstrated

on an example. A tree pattern can be either a subtree or a tree template, which contains

at least one special nullary symbol S representing a subtree. Tree pattern PDAs are an

extension of subtree PDAs, described in the previous section, so that also tree templates

would be accepted. New states and transitions, which are used for processing the special

nullary symbols S in tree templates, are additionally present in the tree pattern s. The

pushdown operations are the same and compute the arity checksum.

Definition 3 Let t and pref(t) be a tree and its prefix notation, respectively. A tree

pattern pushdown automaton for pref(t) accepts all tree patterns in prefix notation

which match the tree t.

Given a subject tree, first we construct a so-called deterministic treetop PDA for

this tree in prefix notation, which accepts all tree patterns that match the subject tree

and contain the root of the subject tree. The deterministic treetop PDA is defined as

follows.

Definition 4 Let t, r and pref(t) be a tree, its root and its prefix notation, respec-

tively. A treetop pushdown automaton for pref(t) accepts all tree patterns in prefix

notation which have the root r and match the tree t.

The construction of the treetop PDA is described by the following algorithm. The

treetop PDA is deterministic.

Algorithm 4 Construction of a treetop PDA for a tree t in prefix notation pref(t).

Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an, n ≥ 1.

Output: Treetop PDA Mpt(t) = ({0, 1, 2, . . . , n},A ∪ {S}, {S}, δ, 0, S, ∅).
Method:

1. Create Mpt(t) as Mp(t) by Alg. 1.

2. Create a set srms = { i : 1 ≤ i ≤ n, δ(i − 1, a, S) = (i, ε), a ∈ A0}. The

abbreviation srms stands for Subtree RightMost States.

3. For each state i, where i = n−1, n−2, . . . , 1, δ(i, a, S) = (i+1, Sp), a ∈ Ap, create

a new transition δ(i, S, S) = (l, ε) such that (i, xy, S) `+
Mp(t)

(l, y, ε) as follows:

If p = 0, create a new transition δ(i, S, S) = (i+ 1, ε).

Otherwise, if p ≥ 1, create a new transition δ(i, S, S) = (l, ε), where l is the p-th

smallest integer such that l ∈ srms and l > i. Remove all j, where j ∈ srms, and

i < j < l, from srms. ut

The construction of treetop PDA by Alg. 4 is illustrated in the following example.
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0 1 2 3 4 5 6 7

a2|S 7→ SS

a2|S 7→ SS
a0|S 7→ ε

S|S 7→ ε

a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

S|S 7→ ε S|S 7→ ε

Fig. 12 Transition diagram of deterministic treetop PDA Mpt(t1) for tree in prefix notation
pref(t1) = a2 a2 a0 a1 a0 a1 a0 from Example 8

Example 8 Consider tree t1 in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0 from

Example 1, which is illustrated in Fig. 1. The deterministic treetop PDA, constructed

by Alg. 4, is deterministic PDA Mpt(t1) = ({0, 1, 2, 3, 4, 5, 6, 7},A, {S}, δ4, 0, S, ∅)),
where mapping δ4 is a set of the following transitions:

δ4(0, a2, S) = (1, SS)

δ4(1, a2, S) = (2, SS) δ4(1, S, S) = (5, ε)

δ4(2, a0, S) = (3, ε) δ3(2, S, S) = (3, ε)

δ4(3, a1, S) = (4, S) δ4(3, S, S) = (5, ε)

δ4(4, a0, S) = (5, ε) δ4(4, S, S) = (5, ε)

δ4(5, a1, S) = (6, S) δ4(5, S, S) = (6, ε)

δ4(6, a0, S) = (7, ε) δ4(6, S, S) = (7, ε)

The transition diagram of deterministic treetop PDA Mpt(t1) is illustrated in Fig.

12. Again, in this figure for each transition rule δ(p, a, α) = (q, β) from δ the edge

leading from state p to state q is labelled by the triple of the form a|α 7→ β.

Deterministic treetop PDA Mpt(t1) has been constructed by Alg. 4 as follows.

We can see that the initial set srms = {3, 5, 7}. Then, new transitions, which read

symbol S, are created in the following order: δ4(6, S, S) = (7, ε), δ4(5, S, S) = (7, ε),

δ4(4, S, S) = (5, ε), δ4(3, S, S) = (5, ε), δ4(2, S, S) = (3, ε), and δ4(1, S, S) = (5, ε). ut

Theorem 7 Given a tree t and its prefix notation pref(t), the PDA Mpt(t) constructed

by Alg. 4 is a treetop PDA for pref(t).

Proof Let r be the root of t. The PDA Mpt(t) is a simple extension of the PDA

Mpt(t), which is constructed by Alg. 1 and accepts the tree t in prefix notation (see

Lemma 1). It holds for new added transitions, which read the special nullary symbol

S, that δ(q1, S, S) = (q2, ε) if and only if (q1, w, S) `+
Mpt(t)

(q2, ε, ε) and q1 is not the

initial state 0. This matches with Theorem 2 so that the new added transitions reading

S correspond just to subtrees not containing the root r. Thus, the PDA Mpt(t) accepts

all tree patterns in prefix notation which contain the root r and match the tree t. ut

The nondeterministic tree pattern PDA for trees in prefix notation is constructed

as an extension of the deterministic treetop PDA: for each state of the treetop PDA

with an incoming transition which reads a symbol a ∈ A we add the same transition

from the starting state to that state. This construction is described by the following

algorithm.
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Algorithm 5 Construction of a nondeterministic tree pattern PDA for a tree t in

prefix notation pref(t).

Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an, n ≥ 1.

Output: Nondeterministic tree pattern PDA Mnpt(t) = ({0, 1, 2, . . . , n},A ∪ {S},
{S}, δ, 0, S, ∅).
Method:

1. Create Mnpt(t) as Mpt(t) by Alg. 4.

2. For each state i, where 2 ≤ i ≤ n, create a new transition

δ(0, ai, S) = (i, SArity(ai)), where S0 = ε. ut

Example 9 Consider tree t1 in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0 from

Example 1, which is illustrated in Fig. 1. The nondeterministic tree pattern PDA

accepting all tree patterns matching tree t1, which has been constructed by Alg. 5,

is nondeterministic PDA Mnpt(t1) = ({0, 1, 2, 3, 4, 5, 6, 7},A, {S}, δ5, 0, S, ∅)), where

mapping δ5 is a set of the following transitions:

δ5(0, a2, S) = (1, SS)

δ5(1, a2, S) = (2, SS) δ5(1, S, S) = (5, ε) δ5(0, a2, S) = (2, SS)

δ5(2, a0, S) = (3, ε) δ3(2, S, S) = (3, ε) δ5(0, a0, S) = (3, ε)

δ5(3, a1, S) = (4, S) δ5(3, S, S) = (5, ε) δ5(0, a1, S) = (4, S)

δ5(4, a0, S) = (5, ε) δ5(4, S, S) = (5, ε) δ5(0, a0, S) = (5, ε)

δ5(5, a1, S) = (6, S) δ5(5, S, S) = (6, ε) δ5(0, a1, S) = (6, S)

δ5(6, a0, S) = (7, ε) δ5(6, S, S) = (7, ε) δ5(0, a0, S) = (7, ε)

The transition diagram of nondeterministic tree pattern PDA Mnpt(t1) is illus-

trated in Fig. 13. Again, in this figure for each transition rule δ(p, a, α) = (q, β) from δ

the edge leading from state p to state q is labelled by the triple of the form a|α 7→ β. ut

In the following theorem we prove the correctness of the constructed tree pattern

PDA.

Theorem 8 Given a tree t and its prefix notation pref(t), the PDA Mnpt(t) con-

structed by Alg. 5 is a tree pattern PDA for pref(t).

Proof The PDA Mnpt(t) is a simple extension of the PDA Mpt(t), which is constructed

by Alg. 4 and accepts all tree patterns in prefix notation which contain the root r of the

tree t and match the tree t by empty pushdown store. The PDA Mnpt(t) contains new

added transitions of the form δ(0, ai, S) = (i, SArity(ai)). These transitions correspond

just to the possibility that the first symbol of a tree pattern to be accepted can be any

node of the tree t. Thus, the PDA Mnpt(t) accepts all tree patterns in prefix notation

which match the tree t. ut

The nondeterministic tree pattern PDA Mnpt(t) is again an acyclic input-driven

PDA, and therefore can be determinised by Alg. 2 to an equivalent deterministic tree

pattern PDA Mdpt(t).

Example 10 Consider nondeterministic tree pattern PDA Mnpt(t1) from Example 9,

the transition diagram of which is illustrated in Fig. 13. The deterministic tree pattern

PDA Mdpt(t1) constructed by Alg. 2 is

Mdpt(t1) = ({[0], [1, 2], [2], [3], [4], [5], [6], [7], [3, 5, 7], [3, 5], [4, 6], [5, 7]},A, {S}, δ6, [0],

S, ∅)), where mapping δ6 is a set of the following transitions:
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0 1 2 3 4 5 6 7

a2|S 7→ SS

a2|S 7→ SS
a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a2|S 7→ SS

a0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε S|S 7→ ε

S|S 7→ ε S|S 7→ ε S|S 7→ ε

Fig. 13 Transition diagram of nondeterministic tree pattern PDA Mnpt(t1) from Example 9
for tree in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0

δ6([0], a2, S) = ([1, 2], SS) δ6([0], a0, S) = ([3, 5, 7], ε)

δ6([1, 2], a2, S) = ([2], SS) δ6([0], a1, S) = ([4, 6], S)

δ6([2], a0, S) = ([3], ε) δ6([1, 2], a0, S) = ([3], ε)

δ6([3], a1, S) = ([4], S) δ6([4, 6], a0, S) = ([5, 7], ε)

δ6([4], a0, S) = ([5], ε) δ6([4, 6], S, S) = ([5, 7], ε)

δ6([5], a1, S) = ([6], S) δ6([1, 2], S, S) = ([3, 5], ε)

δ6([6], a0, S) = ([7], ε) δ6([3, 5], a1, S) = ([4, 6], S)

δ6([3, 5], S, S) = ([5, 7], ε)

The transition diagram of nondeterministic tree pattern PDAMdpt(t1) is illustrated

in Fig. 14. Again, in this figure for each transition rule δ(p, a, α) = (q, β) from δ the

edge leading from state p to state q is labelled by the triple of the form a|α 7→ β.

Fig. 15 shows the sequence of transitions (the trace) performed by deterministic

tree pattern PDA Mdpt(t1) for input tree pattern p1 = a2 S a1 S, which is illustrated

in Fig. 2. ut
The rest of this section is devoted to a discussion on the space required by the

deterministic tree pattern PDA. Some other examples are also presented. In comparison

with the nondeterministic subtree PDA, the nondeterministic tree pattern PDA has

added transitions, which read the special nullary symbol S. As a consequence, the

deterministic tree pattern PDA has more transitions than the deterministic subtree

PDA and in many cases it has also more states. Although the number of distinct tree

patterns matching a tree with n nodes can be exponential in n, we show that for specific

cases of trees the total size of the constructed deterministic tree pattern PDA is linear

in n.

Lemma 3 Given a tree t with n nodes, the number of distinct tree patterns which

match the tree t can be at most 2n−1 + n.
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[0] [1, 2] [2] [3] [4] [5] [6] [7]

[3, 5
7]

[4, 6] [5, 7]

[3, 5]

a2|S 7→ SS
a2|S 7→ SS

a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a0|S 7→ ε

S|S 7→ ε

a0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

S|S 7→ ε

a1|S 7→ ε

S|S 7→ ε

S|S 7→ ε

S|S 7→ ε

S|S 7→ ε S|S 7→ ε

Fig. 14 Transition diagram of deterministic tree pattern PDA Mdpt(t1) from Example 10 for
tree in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0

State Input Pushdown Store
[0] a2 S a1 S S
[1, 2] S a1 S SS
[3, 5] a1 S S
[4, 6] S S
[5, 7] ε ε
accept

Fig. 15 Trace of deterministic PDA Mdpt from Example 10

Proof First, subtrees of any subtree of the tree t can be replaced by the special

nullary symbol S and the tree template resulting from such a replacement is a tree

pattern which matches the tree. Given a tree with n nodes, the maximal number

of subsets of subtrees that can be replaced by the special nullary symbol S occurs

for the case of a tree t3 whose structure is given by the prefix notation pref(t3) =

a(n − 1) a10 a20 . . . an−10, where n ≥ 2. Such a tree is illustrated in Fig. 16. In this

tree, each of the nullary symbols a10, a20, . . . , an−10 can be replaced by nullary symbol

S, and therefore we can create 2n−1 distinct tree templates which are tree patterns

matching the tree t3.

Second, the tree t itself and all its subtrees not containing the root are tree patterns

which match the tree, which gives n other distinct tree patterns (provided all the

subtrees are unique).

Thus, the total number of distinct tree patterns matching the tree t can be at most

2n−1 + n, and the lemma holds. ut

Example 11 Figs. 17 and 18 show the transition diagrams of the deterministic tree

pattern PDAs constructed by Algs. 5 and 2 for the two examples of trees with the

boundary structures illustrated in Figs. 11 and 16, respectively. ut
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a(n − 1)1

a102 a203 an−10n. . .

pref(t3) = a(n − 1) a10 a20 . . . an−10

Fig. 16 A tree t3 with 2n−1 + n distinct tree patterns matching the tree t3 and its prefix
notation

[0]
[1, 2,
3, ...
n − 1]

[2, 3,
...
n − 1]

[3, ...,
n − 1]

. . . [n − 1] [n]

a1|S 7→ S a1|S 7→ S a1|S 7→ S a0|S 7→ ε

a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

Fig. 17 Transition diagram of the deterministic tree pattern PDA Mdpt(t2) for the tree t2 in

prefix notation pref(t2) = (a1)n−1a0, where n ≥ 1

[0] [1] [2] [3] [4] . . . [n − 1] [n]

a(n − 1)|
S 7→ Sn−1

a10|
S 7→ ε

a20|
S 7→ ε

a30|
S 7→ ε

an−10|
S 7→ ε

a10|S 7→ ε

a20|S 7→ ε

a30|S 7→ ε

an−20|S 7→ ε

an−10|S 7→ ε

S|S 7→ εS|S 7→ ε S|S 7→ ε S|S 7→ ε

Fig. 18 Transition diagram of the deterministic tree pattern PDA Mdpt(t3) for the tree t3 in
prefix notation pref(t3) = a(n − 1) a10 a20 . . . an−10, where n ≥ 2 and ai0 6= aj0, i 6= j

As the simplest case, where the total size of the deterministic tree pattern PDA is

linear in the number of nodes of the tree, we consider a deterministic tree pattern PDA

that has just the same states as the corresponding deterministic subtree PDA. In such

a case, the added transitions reading nullary symbol S have to lead only to states which
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a06

a07a03 a15

a12 a24

a21

pref(t4) = a2 a1 a0 a2 a1 a0 a0

Fig. 19 Tree t4 from Example 12 and its prefix notation

are already states of the deterministic subtree PDA. This occurs for specific cases of

trees which are called trees with periodical subtrees, and are defined by Definition 5.

Definition 5 Let t be a tree over a ranked alphabet A. The tree t is a tree with

periodical subtrees if there exists a mapping Z of A \ A0 into A+ such that the prefix

notation of each subtree st of the tree t is of the form pref(st) = (ax)my, where a ∈ A,

x ∈ A∗, y ∈ A+, m ≥ 1, Z(a) = xy, and y is a subtree in prefix notation.

The informal meaning of Def. 5 is that in a tree with periodical subtrees it holds

for each label a that all subtrees with the root labelled by a respectively have their

subtrees equal from the leftmost to the rightmost but one subtree and string x is the

concatenation of prefix notations of these subtrees. String axy in Def. 5 is the prefix

notation of the subtree with the root a which has the fewest number of nodes, and

string y is the prefix notation of its rightmost subtree.

Example 12 Examples of trees with periodical subtrees are illustrated in Figs. 11, 16

and 19, and the transition diagrams of the corresponding deterministic tree pattern

PDAs are illustrated in Figs. 17, 18 and 20, respectively.

In the case of tree t4, which is constructed over ranked alphabet {a2, a1, a0} and

is illustrated in Fig. 19, the corresponding mapping Z4 is the following set:

Z4(a2) = a1 a0 a0, where x = a1 a0 and y = a0

Z4(a1) = a0, where x = ε and y = a0

Prefix notations of all subtrees of tree t4 are: a2 a1 a0 a2 a1 a0 a0, a2 a1 a0 a0, a1 a0

and a0. ut
The resulting number of states and of transitions of the deterministic tree pattern

PDAs for trees with determined subtrees are formally proved in Theorem 9. We also

present a companion Lemma 4 which shows that the deterministic tree pattern PDA

has more states than the deterministic subtree PDA if the condition for the trees with

determined subtrees is violated.

Theorem 9 Let t be a tree over a ranked alphabet A. If the tree t is a tree with

periodical subtrees, then the deterministic tree pattern PDA Mdpt(t) constructed by
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[0] [1, 4] [2, 5] [3, 6] [4] [5] [6] [7]

[3, 6
7]

a2|S 7→ SS a1|S 7→ S a0|S 7→ ε a2|S 7→ SS a1|S 7→ S a0|S 7→ ε a0|S 7→ ε

a0|S 7→ ε

a1|S 7→ S

S|S 7→ ε

S|S 7→ ε

S|S 7→ ε

S|S 7→ ε S|S 7→ εS|S 7→ ε

Fig. 20 Transition diagram of deterministic tree pattern PDA Mdpt(t4) from Example 12 for
tree in prefix notation pref(t4) = a2 a1 a0 a2 a1 a0 a0

Algs. 5 and 3 has just one pushdown symbol, fewer than N ≤ 2n+1 states and at most

2N + n − 3 ≤ 5n − 1 transitions.

Proof Part I. In the first part of the proof we describe a general common property

of the deterministic string suffix automaton, the deterministic subtree PDA and the

deterministic tree pattern PDA.

A well-known general property of the deterministic string suffix automaton con-

structed for a string over an alphabet T is that the d-subset of a state in which the

string suffix automaton is after reading a substring x, where x ∈ T+, is the set of

positions of the last symbols of all occurrences of the substring x [28].

The transitions of the deterministic subtree PDA Mdps(t) are extensions of tran-

sitions of the deterministic string suffix automaton, and therefore the same general

property also holds for the PDA Mdps(t): the d-subset of a state in which the PDA

Mdps(t) is after reading a substring x, where x ∈ A+, is the set of the last nodes of all

occurrences of x in prefix notations of subtrees.

For example, deterministic tree pattern PDA Mdps(t1) from Example 7, which is

illustrated in Fig 9, is in state [5, 7] after reading string a1 a0. This means that nodes

a05 and a07 are the last nodes of all occurrences of a1 a0 in prefix notations of subtrees

of tree t1, which is illustrated in Fig. 1.

The deterministic tree pattern PDA Mdpt(t) has also added transitions reading

nullary symbol S, which represents subtrees. This means that the d-subset of a state in

which the PDA Mdpt(t) is after reading a substring y, where y ∈ A(A ∪ {S})∗, is the

union of d-subsets of states in which the PDA Mdps(t) is after reading all substrings

which are matched with y.

For example, deterministic tree pattern PDA Mdpt(t1) from Example 10, which

is illustrated in Fig 14, is in state [3, 5] after reading template a2 S. Template a2 S

matches prefix notations a2 a0 and a2 a2 a0 a1 a0 (we note that tree t1 is not a tree

with periodical subtrees). This means that nodes a03 and a05 are the last nodes of all

occurrences of a2 a0 and a2 a2 a0 a1 a0 in prefix notations of subtrees of tree t1, which

is illustrated in Fig. 1.

Part II. In the second part of the proof we consider the maximal number of states.

The deterministic tree pattern PDA Mdpt(t) is constructed for a tree t with peri-

odical subtrees, which means that for each subtree with a root a, where Arity(a) ≥ 1,
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there is always only one substring which can be matched with each symbol S represent-

ing a subtree from the leftmost to the rightmost but one subtree. Further, the prefix

notation of the rightmost subtree may be only of the form (ax)py, where p ≥ 0 and

y is a subtree in prefix notation. This means that the rightmost leaf of the rightmost

subtree is the rightmost leaf of the subtree in prefix notation y. Thus, every state of

the deterministic tree pattern PDA Mdpt(t) with an incoming transition reading S is

also a state of the deterministic subtree PDA Mdps(t) constructed by Algs. 2 and 3,

ie. Mdpt(t) has fewer than N ≤ 2n+ 1 states (see Theorem 6).

Part III. In the third part of the proof we consider the maximal number of tran-

sitions. In comparison with the deterministic subtree PDA Mdps(t), the PDA Mdpt(t)

has added transitions reading nullary symbol S. There is just one transition reading

nullary symbol S which leads from each state except the initial and the last state, in

which the pushdown store is always empty. Thus, there are N − 2 such added tran-

sitions, where N is the number of states. The maximal number of transitions of the

PDA Mdps(t) is N + n − 1 ≤ 3n (see Theorem 6) and therefore the overall maximal

number of transitions of the PDA Mdpt(t) is 2N + n − 3 ≤ 5n − 1. ut
Lemma 4 Let t be a tree over a ranked alphabet A. If the tree t is not a tree with

periodical subtrees, then the deterministic tree pattern PDA Mdpt(t) constructed by

Algs. 5 and 3 has more states than the deterministic subtree PDA Mdps(t) constructed

by Algs. 2 and 3.

Proof The deterministic tree pattern PDA Mdpt(t) is an extension of the deterministic

subtree PDA Mdps(t) and all states of the PDA Mdps(t) are also states of the PDA

Mdpt(t). We show that the PDA Mdpt(t) has at least one transition which reads nullary

symbol S and leads to a state which is not present in the PDA Mdps(t):

The tree t is not a tree with periodical subtrees, which means that one of the

following two cases occurs for some two subtrees st1 and st2 with a same root a ∈ A\A0:

1. There are two different substrings which can be matched with a symbol S repre-

senting the i-th subtree of st1 and of st2, where i < Arity(a) (the i-th subtree

is from the leftmost to the rightmost but one subtrees). Since the d-subset of a

state with an incoming transition reading the symbol S is the union of d-subsets

of states of the PDA Mdps(t) for these two matched substrings, a new state of the

PDA Mdpt(t) which is not present in the PDA Mdps(t) is created.

For example, tree t1, which is illustrated in Fig. 1, has two substrings a2 a0 and

a2 a2 a0 a1 a0 which are matched with tree template a2 S, where S does not

represent the rightmost subtree. Therefore, new state [3, 5] of PDA Mdpt(t1) from

Example 10, which is illustrated in Fig 14, has been created.

2. The prefix notations of the rightmost subtrees are not of the form (ax)py, where

p ≥ 0, and y is the prefix notation of a subtree. This means that these righmost

subtrees are neither equal nor have the same rightmost leaf as the subtree in prefix

notation axp and a new state of the PDA Mdpt(t) which is not present in the PDA

Mdps(t) is created. ut

Example 13 Examples of trees which are not trees with periodical subtrees are illus-

trated in Figs. 1 and 21, and the transition diagrams of the corresponding deterministic

tree pattern PDAs are illustrated in Figs. 14 and 22, respectively. In Fig. 14, state [3, 5]

is not in the corresponding deterministic subtree PDA, which is illustrated in Fig. 9. In

Fig. 22, states [4, 5], [4, 5, 6], [5, 6], [5, 7], [5, 6, 7] and [6, 7] are not in the corresponding

deterministic subtree PDA. ut
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a04 a05

a23 b06

a22 a07

a21

pref(t5) = a2 a2 a2 a0 a0 b0 a0

Fig. 21 Tree t5 from Example 13 and its prefix notation

[0]
[1, 2,
3]

[2, 3] [3] [4] [5] [6] [7]

[4, 5,
7]

[4, 5,
6]

[5, 7]

[5, 6,
7]

[4, 5]

[5, 6]

[6, 7]

S|S 7→ ε

S|S 7→ ε

S|S 7→ ε

a2|S 7→ SS a2|S 7→ SS a2|S 7→ SS a0|S 7→ ε a0|S 7→ ε b0|S 7→ ε a0|S 7→ ε

a0|S 7→ ε b0|S 7→ ε

S|S 7→ ε S|S 7→ ε S|S 7→ ε S|S 7→ ε

a0|S 7→ ε

a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

a0|S 7→ ε b0|S 7→ ε

b0|S 7→ ε
a0|S 7→ ε

a0|S 7→ ε

b0|S 7→ ε

Fig. 22 Transition diagram of deterministic tree pattern PDA Mdpt(t5) from Example 13 for
tree in prefix notation pref(t5) = a2 a2 a2 a0 a0 b0 a0
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In general, the deterministic tree pattern PDA can have more than linear number

of states. For example, given a tree t in prefix notation pref(t) = a2ma0m+1, m ≥ 1,

the corresponding PDA Mdpt(t) has N = m2+m
2 + 2m+ 2 states and 2(N −m− 1) =

m2 + 3m+ 2 transitions. This means that the number of distinct tree patterns which

match such a tree t is exponential in the number of nodes of the tree and the total

size of the corresponding deterministic tree pattern PDA is quadratic. The maximal

numbers of states and transitions of the deterministic tree pattern PDA in general

remain open problems.

6 Conclusion

We have described two new kinds of deterministic pushdown automata: subtree PDAs

and tree pattern PDAs for trees in prefix notation. These pushdown automata are

analogous in their properties to suffix or factor automata, which are widely used in

stringology. The presented pushdown automata represent a complete index of the sub-

ject tree with n nodes, and allow us to find all occurrences of input patterns of size m

in time linear in m and not depending on n.

The future work should focus on the numbers of states and transitions of deter-

ministic tree pattern PDAs for various cases of trees and on the on-line construction

of the deterministic tree pattern PDA directly from a given tree.

Regarding other tree algorithms whose model of computation is the standard deter-

ministic pushdown automaton, we have recently introduced principles for two other new

algorithms. First, a new and simple method for constructing tree pattern matchers as

deterministic pushdown automata directly from given tree patterns without construct-

ing finite tree automata as an intermediate product [15, 26]. Second, a method for

finding all repeats of subtrees and connected subgraphs in trees with the use of subtree

PDAs and tree pattern PDAs, respectively [30, 26]. More details on these results and

related information can also be found on [2].

Acknowledgements We would like to thank Robin Healey for his helpful comments on drafts
of this paper.
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Abstract. Efficient methods of finding various kinds of repeats in a
string can be based on constructing and analysing string suffix trees or
string suffix automata, which represent complete indexes of the string for
substrings. In [9, 11] we have introduced subtree pushdown automata,
which are analogous to the string suffix automata and represent com-
plete indexes of trees for subtrees. This paper presents a new and simple
method of finding various kinds of all repeats of subtrees in a given tree
by constructing and analysing the subtree pushdown automaton for the
tree. Given a tree with n nodes, the finding of all repeats of subtrees in
the tree is performed in O(n) time and O(n) space.

1 Introduction

Trees are one of the fundamental data structures used in Computer Science.
Given a tree, finding beforehand unknown repeating subtrees of the tree is an
important problem with many applications – data compression, compiler code
optimization, processing data tree structures such as XML and so on.

Periodicity in strings have been of interest since the beginning of the 20th
century and effective methods for finding various kinds of repetitions and repeats
in a string form an important part of well-researched stringology theory [7, 15,
16]. Some of these methods are based on constructing and analysing string suffix
trees or string suffix automata, which represent complete indexes of the string
for substrings [2, 4, 6, 13, 14].

[10] shows that string pushdown automata are an appropriate model of com-
putation for processing labelled ordered ranked trees in a linear notation. We
note that the prefix or postfix linear notation of a tree can be obtained by prefix
or postfix traversing, respectively, and that every sequential algorithm process-
ing a tree visits nodes of the tree in a linear order. In [9, 11] we have introduced

? This research has been partially supported by the Ministry of Education, Youth
and Sports under research program MSMT 6840770014, and by the Czech Science
Foundation as project No. 201/09/0807.
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subtree pushdown automata, which are analogous to string suffix automata and
represent complete indexes of trees for subtrees. This paper presents a new and
simple method of finding various kinds of all repeats of subtrees in a given tree
by constructing and analysing the subtree pushdown automaton for the tree.
The presented method is similar to the method of finding repeats of substrings
in a string by constructing and analysing the string suffix automaton [14, 15].
Given a tree with n nodes, the finding of all repeats of subtrees in the tree is
performed in O(n) time and O(n) space. We are not aware of any other known
method which would find all repeats of subtrees in a tree in linear time and
space. An early presentation of the basic idea of the presented method of finding
repeats of subtrees can be found in [12].

The rest of the paper is organised as follows. Basic definitions are given in
section 2. The third and the fourth section deal with subtree pushdown automata
and finding repeats of subtrees by constructing and analysing the subtree push-
down automata, respectively. The last section is the conclusion.

2 Basic notions

2.1 Ranked alphabet, tree, prefix notation

We define notions on trees similarly as they are defined in [1, 5, 8].
We denote the set of natural numbers by N. A ranked alphabet is a finite

nonempty set of symbols each of which has a unique nonnegative arity (or rank).
Given a ranked alphabet A, the arity of a symbol a ∈ A is denoted Arity(a).
The set of symbols of arity p is denoted by Ap. Elements of arity 0, 1, 2, . . . , p
are respectively called nullary (constants), unary, binary, . . ., p-ary symbols. We
assume that A contains at least one constant. In the examples we use numbers
at the end of the identifiers for a short declaration of symbols with arity. For
instance, a2 is a short declaration of a binary symbol a.

Based on concepts from graph theory (see [1]), a labelled, ordered, ranked
tree over a ranked alphabet A can be defined as follows:

An ordered directed graph G is a pair (N,R), where N is a set of nodes and R
is a set of linearly ordered lists of edges such that each element of R is of the form
((f, g1), (f, g2), . . . , (f, gn)), where f, g1, g2, . . . , gn ∈ N , n ≥ 0. This element will
indicate that, for node f , there are n edges leaving f , the first entering node g1,
the second entering node g2, and so forth.

A sequence of nodes (f0, f1, . . . , fn), n ≥ 1, is a path of length n from node
f0 to node fn if there is an edge which leaves node fi−1 and enters node fi for
1 ≤ i ≤ n. A cycle is a path (f0, f1, . . . , fn), where f0 = fn. An ordered dag
(dag stands for Directed Acyclic Graph) is an ordered directed graph that has
no cycle. A labelling of an ordered graph G = (A,R) is a mapping of A into a
set of labels. We use af for a short declaration of node f labelled by symbol a.

Given a node f , its out-degree is the number of distinct pairs (f, g) ∈ R,
where g ∈ A. By analogy, the in-degree of node f is the number of distinct pairs
(g, f) ∈ R, where g ∈ A.
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A labelled, ordered and rooted ranked tree t over a ranked alphabet A is an
ordered dag t = (N,R) with a special node r ∈ A, called the root, such that
(1) r has in-degree 0,
(2) all other nodes of t have in-degree 1,
(3) there is just one path from the root r to every f ∈ N , where f 6= r,
(4) every node f ∈ N is labelled by a symbol a ∈ A and the out-degree of af is
Arity(a).

Nodes labelled by nullary symbols (constants) are called leaves.
The prefix notation pref(t) of a labelled, ordered, ranked and rooted tree t

is obtained by applying the following Step recursively, beginning at the root of
t: Step: Let this application of Step be to node af . If af is a leaf, list a and halt.
If af is not a leaf, let its direct descendants be af1 , af2 , . . . , afn . Then list a and
subsequently apply Step to af1 , af2 , . . . , afn in that order.

We note that in many papers on the theory of tree languages, such as [5, 8],
labelled ordered ranked trees are defined with the use of ordered ranked ground
terms. Ground terms can be regarded as labelled ordered ranked trees in prefix
notation.

Example 1. Consider a ranked alphabet A = {a0, a1, a2}. Consider a tree t1
over A t1 = ({a21, a22, a03, a14, a05, a26, a07, a18, a09}, R1), where R1 is a set of
the following ordered sequences of pairs:

((a21, a22), (a21, a26)),
((a22, a03), (a22, a14)),
((a14, a05)),
((a26, a07), (a26, a18)),
((a18, a09))

Tree t1 in prefix notation is string pref(t1) = a2 a2 a0 a1 a0 a2 a0 a1 a0.
Trees can be represented graphically, and tree t1 is illustrated in Fig. 1. ut

2.2 Alphabet, pushdown automaton

We define notions from the theory of string languages similarly as they are
defined in [1].

Let an alphabet be a finite nonempty set of symbols. A language over an
alphabet A is a set of strings over A. Symbol A∗ denotes the set of all strings
over A including the empty string, denoted by ε. Set A+ is defined as A+ =
A∗ \ {ε}. Similarly, for string x ∈ A∗, symbol xm, m ≥ 0, denotes the m-fold
concatenation of x with x0 = ε. Set x∗ is defined as x∗ = {xm : m ≥ 0} and
x+ = x∗ \ {ε} = {xm : m ≥ 1}. Given a string x, |x| denotes the length of x.

An (extended) nondeterministic pushdown automaton (nondeterministic PDA)
is a seven-tuple M = (Q,A, G, δ, q0, Z0, F ), where Q is a finite set of states,
A is an input alphabet, G is a pushdown store alphabet, δ is a mapping from
Q × (A ∪ {ε}) × G∗ into a set of finite subsets of Q × G∗, q0 ∈ Q is an initial
state, Z0 ∈ G is the initial pushdown store symbol, and F ⊆ Q is the set of final
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a21

a22

a03 a14

a05

a26

a07 a18

a09

pref(t1) = a2 a2 a0 a1 a0 a2 a0 a1 a0

Fig. 1. Tree t1 from Example 1 and its prefix notation

(accepting) states. Triple (q, w, x) ∈ Q×A∗ ×G∗ denotes the configuration of a
pushdown automaton. In this paper we will write the top of the pushdown store
x on its right hand side. The initial configuration of a pushdown automaton is
a triple (q0, w, Z0) for the input string w ∈ A∗.

The relation `M⊂ (Q × A∗ × G∗) × (Q × A∗ × G∗) is a transition of a
pushdown automaton M . It holds that (q, aw, αβ) `M (p, w, γβ) if (p, γ) ∈
δ(q, a, α). The k-th power, transitive closure, and transitive and reflexive closure
of the relation `M is denoted `k

M , `+
M , `∗

M , respectively. A pushdown automaton
M is a deterministic pushdown automaton (deterministic PDA), if it holds:

1. |δ(q, a, γ)| ≤ 1 for all q ∈ Q, a ∈ A ∪ {ε}, γ ∈ G∗.
2. If δ(q, a, α) 6= ∅, δ(q, a, β) 6= ∅ and α 6= β then α is not a suffix of β and β is

not a suffix of α.
3. If δ(q, a, α) 6= ∅, δ(q, ε, β) 6= ∅, then α is not a suffix of β and β is not a suffix

of α.

A pushdown automaton is input–driven if each of its pushdown operations is
determined only by the input symbol.
A language L accepted by a pushdown automaton M is defined in two distinct
ways:

1. Accepting by final state:

L(M) = {x : δ(q0, x, Z0) `∗
M (q, ε, γ) ∧ x ∈ A∗ ∧ γ ∈ G∗ ∧ q ∈ F}.

2. Accepting by empty pushdown store:

Lε(M) = {x : (q0, x, Z0) `∗
M (q, ε, ε) ∧ x ∈ A∗ ∧ q ∈ Q}.

If PDA accepts the language by empty pushdown store, then the set F of fi-
nal states is the empty set. In this paper we use only PDAs which accept the
languages by empty pushdown store.

For more details see [1].
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3 Subtree pushdown automata

This section gives basic information on nondeterministic and deterministic sub-
tree pushdown automata [9, 11]. A subtree pushdown automaton represents a
complete index of a given tree for subtrees and accepts all subtrees of the tree by
the empty pushdown store. For the deterministic subtree pushdown automata
the search phase of all occurrences of an input subtree is performed in time lin-
ear in the size of the input subtree and not depending on the size of the tree.
We note that subtree pushdown automaton has only one pushdown symbol and
therefore their pushdown store can be implemented by a single integer counter.

Generally, it holds for any tree that each of its subtrees in prefix notation is
a substring of the tree in prefix notation. This important property allows to use
principles of effective string algorithms for processing trees in prefix notation.
However, not every substring of a tree in prefix notation is a prefix notation of
its subtree. In subtree pushdown automata their pushdown operations determine
which of the substrings of trees in prefix notation are those representing subtrees.

Theorem 1. Given a tree t and its prefix notation pref(t), prefix notations of
all subtrees of the tree t are substrings of pref(t).

Proof. In [11]. ut

Definition 1. Let t and pref(t) be a tree and its prefix notation, respectively.
A subtree pushdown automaton for pref(t) accepts all subtrees of t in prefix
notation.

Algorithm 1. Construction of a nondeterministic subtree PDA for a tree t in
prefix notation pref(t).
Input: A tree t; prefix notation pref(t) = a1a2 . . . an, n ≥ 1.
Output: Nondeterministic subtree PDA Mnps(t) = ({0, 1, 2, . . . , n},A, {S}, δ, 0,
S, ∅).
Method:

1. For each state i, where 1 ≤ i ≤ n, create a new transition
δ(i− 1, ai, S) = (i, SArity(ai)), where S0 = ε.

2. For each state i, where 2 ≤ i ≤ n, create a new transition
δ(0, ai, S) = (i, SArity(ai)), where S0 = ε. ut

Example 2. Consider tree t1 from Example 1, which is illustrated in Fig. 1. A
subtree PDA for tree t1 in prefix notation pref(t1) = a2 a2 a0 a1 a0 a2 a0 a1 a0
which has been constructed by Alg. 1, is nondeterministic PDA Mnps(t1) =
({0, 1, 2, 3, 4, 5, 6, 7, 8, 9},A, {S}, δ1, 0, S, ∅)), where mapping δ1 is illustrated in
the transition diagram of Mnps(t1) in Fig. 2. In this figure for each transition
rule δ(p, a, α) = (q, β) the edge leading from state p to state q is labelled by the
string of the form a|α 7→ β. ut

Theorem 2. Given a tree t and its prefix notation pref(t), the PDA Mnps(t)
constructed by Alg. 1 is a subtree PDA for pref(t).
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0 1 2 3 4 5 6 7 8 9

a2|S 7→ SS
a2|S 7→ SS

a0|S 7→ ε
a1|S 7→ S

a0|S 7→ ε
a2|S 7→ SS

a0|S 7→ ε
a1|S 7→ S

a0|S 7→ ε

a2|S 7→ SS

a0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

a2|S 7→ SS

a0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

Fig. 2. Transition diagram of nondeterministic subtree PDA Mnps(t1) for tree t1 in
prefix notation pref(t1) = a2 a2 a0 a1 a0 a2 a0 a1 a0 from Example 2

Proof. In [11]. ut

It is known that each nondeterministic input–driven PDA can be transformed
to an equivalent deterministic input–driven PDA. An algorithm of such a de-
terminisation of the nondeterministic subtree PDA is described by Alg. 2. This
algorithm is a simple extension of the standard algorithm of transformation of
a nondeterministic finite automaton to an equivalent deterministic one [1].

Algorithm 2. Transformation of an acyclic input–driven nondeterministic PDA
to an equivalent deterministic PDA.
Input: Acyclic input–driven nondeterministic PDAMnx(t) = ({0, 1, 2, . . . , n},A,
{S}, δ, 0, S, ∅), where the ordering of its states is such that if δ(p, a, α) = (q, β),
then p < q.
Output: Equivalent deterministic PDA Mdx(t) = (Q′,A, {S}, δ′, qI , S, ∅).
Method:

1. Let spds(q′), where q′ ∈ Q′, denote a set of integers (the abbreviation spds
stands for the number of Symbols S in the PushDown Store.)

2. Initially, Q′ = {[0]}, qI = [0], spds([0]) = {1} and [0] is an unmarked state.
3. (a) Select an unmarked state q′ from Q′ such that q′ contains the smallest

possible state q ∈ Q, where 0 ≤ q ≤ n.
(b) If there is v > 0, v ∈ spds(q′), then for each input symbol a ∈ A:

i. Add transition δ′(q′, a, α) = (q′′, β), q′′ = {q : δ(p, a, α) = (q, β) for
all p ∈ q′}. If q′′ is not in Q′ then add q′′ to Q′ and create spds(q′′) =
∅. Add j, where δ(q′, a, Si) `Mdx(t) (q′′, ε, Sj) and i ∈ spds(q′), to
spds(q′′).
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(c) Set the state q′ as marked.
4. Repeat step 5 until all states in Q′ are marked. ut

Example 3. The deterministic subtree PDA for tree t1 from Example 1, which
has been constructed by Alg. 2 from nondeterministic subtree PDA Mnps(t1)
from Example 2, is deterministic PDAMdps(t1) = ({[0], [1, 2, 6], [2], [3], [4], [5], [6],
[7], [8], [9], [3, 5, 7, 9], [3, 7], [4, 8], [5, 9]},A, {S}, δ2, [0], S, ∅)), where mapping δ2 is
illustrated by the transition diagram Mdps(t1) in Fig. 3. Again, in this figure for
each transition rule δ3(p, a, α) = (q, β) from δ3 the edge leading from state p to
state q is labelled by the string of the form a|α 7→ β. ut

[0]
[1, 2,
6] [2] [3] [4] [5] [6] [7] [8] [9]

a2|S 7→ SS
a2|S 7→ SS

a0|S 7→ ε
a1|S 7→ S

a0|S 7→ ε
a2|S 7→ SS

a0|S 7→ ε
a1|S 7→ S

a0|S 7→ ε

[3, 5,
7, 9]

[3, 7] [4, 8] [5, 9]

a0|S 7→ ε

a0|S 7→ ε

a1|S 7→ S

a1|S 7→ S

a0|S 7→ ε

Fig. 3. Transition diagram of deterministic subtree PDA Mdps(t1) for tree in prefix
notation pref(t1) = a2 a2 a0 a1 a0 a2 a0 a1 a0 from Example 3

Theorem 3. Given an acyclic input–driven nondeterministic PDA Mnx(t) =
(Q,A, {S}, δ, q0, S, ∅), the deterministic PDA Mdx(t) = (Q′,A, {S}, δ′, {q0}, S, ∅)
constructed by Alg. 2 is equivalent to PDA Mnx(t).

Proof. In [11]. ut
The maximal total size of deterministic subtree pushdown automata is de-

scribed by the following theorem.

Theorem 4. Given a tree t with n nodes and its prefix notation pref(t), the
deterministic subtree PDA Mdps(t) constructed by Algs. 1 and 2 has just one
pushdown symbol, fewer than N ≤ 2n + 1 states and at most N + n − 1 ≤ 3n
transitions.

Proof. In [11]. ut
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4 Finding repeats of subtrees

4.1 Definition of the problem

Given a tree, the problem is to find all repeating subtrees of the tree and to
compute kinds and positions of all occurrences of these subtrees. All repeats of
subtrees and their properties are summarised in a subtree repeat table, which is
defined by Defs. 2, 3 and 4. We define two versions of the subtree repeat table:
the first, basic, version of the table contains basic information on repeats and its
size is linear to the number of nodes of the tree. The second one, an extended
subtree repeat table, contains also further information such as all the repeating
subtrees in prefix notation, which can result in a larger table. We note that the
linear size of the table is important for linear time and space complexities of the
algorithm constructing the table.

Definition 2. Let t be a tree over a ranked alphabet A. A subtree position
set sps(st, t), where st is a subtree of t, is the set sps(st, t) = {i : pref(t) =
x pref(st) y, x, y ∈ A∗, i = |x|+ 1}.

Informally, the subtree position set for a subtree st contains positions of the
roots of all occurrences of the subtree st in prefix notation.

Definition 3. Let t be a tree over a ranked alphabet A. Given a subtree st of t,
list of subtree repeats lsr(st, t) is a relation in sps(st, t) × {F, S,Q} defined as
follows:

– (i, F ) ∈ lsr(st, t) iff pref(t) = x pref(st) y, i = |x|+1, x 6= x1 pref(st) x2,
– (i, S) ∈ lsr(st, t) iff pref(t) = x pref(st) y, i = |x|+ 1, x = x1 pref(st),
– (i, G) ∈ lsr(st, t) iff pref(t) = x pref(st) y, i = |x|+1, x = x1 pref(st) x2,

x2 ∈ A+.

Informally, the list of subtree repeats for a subtree st contains kinds of all
occurrences of the subtree st. Abbreviations F , S, and G stand for First occur-
rence of the substree, repeat as a Square, and repeat with a Gap, respectively. In
comparison with kinds of repeats in string [14, 15], repeats of subtrees have no
kind which would represent the overlapping of subtrees because any two different
occurrences of the same subtree cannot overlap.

Definition 4. Given a tree t, the basic subtree repeat table BSRT (t) is the set
of all lists of subtree repeats lsr(st, t), where st is a subtree with more than one
occurrence in the tree t.

The extended subtree repeat table ESRT (t) is the set of all triplets
(sps(st, t), pref(st), lsr(st, t)), where st is a subtree with more than one occur-
rence in the tree t.

Example 4. Consider tree t1 from Example 1, which is illustrated in Fig. 1.
pref(t1) = a2 a2 a0 a1 a0 a2 a0 a1 a0. Subtrees with more than one occurrence in
tree t1 are subtrees st1, st2 and st3, where pref(st1) = a2 a0 a1 a0, pref(st2) =
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a1 a0, and pref(st3) = a0. These three subtrees are illustrated in Fig. 4. All
other subtrees of tree t1 are present just once in tree t1.

It holds that sps(st1) = {2, 6}, sps(st2) = {4, 8}, sps(st3) = {3, 5, 7, 9}, and
the corresponding basic subtree repeat table BSRT (t1) and extended subtree
repeat table ESRT (t1) are illustrated in Fig. 5 and Fig. 6, respectively. ut

a0

a0 a1

a2

pref(st1) = a2 a0 a1 a0

a0

a1

pref(st2) = a1 a0

a0

pref(st3) = a0

Fig. 4. Subtrees with more than one occurrence in tree t1 from Example 1, and their
prefix notations

List of subtree repeats

(2, F ), (6, S)

(4, F ), (8, G)

(3, F ), (5, G), (7, G), (9, G)

Fig. 5. Basic subtree repeat table BSRT (t1) from Example 4

Subtree position set Subtree in prefix notation List of subtree repeats

2, 6 a2 a0 a1 a0 (2, F ), (6, S)

4, 8 a1 a0 (4, F ), (8, G)

3, 5, 7, 9 a0 (3, F ), (5, G), (7, G), (9, G)

Fig. 6. Extended subtree repeat table ESRT (t1) from Examples 4
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4.2 Constructing subtree repeat table

A well-known general property of the deterministic string suffix automaton con-
structed for a string is that a state in which the deterministic string suffix au-
tomaton is after reading a substring x corresponds to the set of positions of the
last symbols of all occurrences of the substring x in the string [14].

The transitions of the deterministic subtree PDA Mdps(t) are extensions of
transitions of the deterministic string suffix automaton, and therefore the same
general property also holds for the PDA Mdps(t): a state in which the PDA
Mdps(t) is after reading a substring x corresponds to the set of the last nodes of
all occurrences of x in prefix notations of subtrees.

The deterministic subtree PDA constructed for a tree t accepts prefix nota-
tions of all subtrees of t by the empty pushdown store. States of the deterministic
subtree PDA which are multiple subsets and their spds sets (see Alg. 2) contain
0, which represents the empty pushdown store, are the positions of the right-
most nodes of all repeating subtrees of the tree. Therefore, the construction of
a subtree repetition table for the tree t can be similar to the construction of the
deterministic subtree PDA. States of the deterministic subtree PDA which are
single subsets are omitted and elements of the subtree repeat table are computed
from the above-mentioned states representing the empty pushdown store.

Algorithm 3. Construction of the basic subtree repeat table for a tree t in
prefix notation pref(t).
Input: A tree t; prefix notation pref(t) = a1a2 . . . an, n ≥ 1.
Output: Basic subtree repeat table BSRT (t).
Method:

1. Initially, BSRT (t) = ∅.
2. Create Mnpt(t) = ({0, 1, 2, . . . , n},A, {S}, δ, 0, S, ∅) by Alg. 1.
3. Let Q′ denote a set of states. Let pdsl(q′), where q′ ∈ Q′, denote a set of

pairs of integers (the abbreviation pdsl stands for the number of symbols S
in the PushDown Store, and the Length of the subtree.)

4. Q′ = {[0]}, pdsl([0]) = {(1, 0)} and [0] is an unmarked state.
5. (a) Select an unmarked state q′ from Q′ such that q′ contains the smallest

possible state q ∈ Q, where 0 ≤ q ≤ n.
(b) For each (0, l) ∈ pdsl(q′) to BSRT (t) add pairs (x, Z), where

x = r − l, r ∈ q′ and:
i. Z = F if x is the smallest such number x,
ii. Z = S if x− 1 ∈ q′′,
iii. Z = G otherwise.

(c) If there is v > 0, (v, w) ∈ pdsl(q′), then for each input symbol a ∈ A:
Compute state q′′ = {q : δ(p, a, α) = (q, β) for all p ∈ q′}.
If q′′ is not in Q′ and |q′′| > 1, then add q′′ to Q′ and create pdsl(q′′) = ∅.
Add pairs (j, k + 1), where (i, k) ∈ pdsl(q′), i > 0, j = i+Arity(a)− 1,
to pdsl(q′′).

(d) Set the state q′ as marked.
6. Repeat step 5 until all states in Q′ are marked. ut
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Example 5. The basic subtree repeat table BSRT (t1) constructed by Alg. 3 for
tree PDA t1 from Example 1 is illustrated in Fig. 5. During this construction
states [0], [1, 2, 6], [3, 5, 7, 9], [3, 7], [4, 8], [5, 9], and the following set pdsl have
been constructed:

pdsl([0]) = {(1, 0)}, pdsl([3, 5, 7, 9]) = {(0, 1)},
pdsl([1, 2, 6]) = {(2, 1)}, pdsl([3, 7]) = {(1, 2)},

pdsl([4, 8]) = {(1, 1), (1, 3)},
pdsl([5, 9]) = {(0, 2), (0, 4)}.

ut

It is easy to see that the algorithm of the construction of the extended subtree
repeat table is a simple extension of Alg. 3. The extended subtree repeat table
contains the repeating subtrees in prefix notation, which can be computed by
the following principle: instead of a set pdsl of pairs we can use a set spdsl
of triplets (x, y, z), where x ∈ A∗, y, z ≥ 0 (the abbreviation spdsl stands for
Subtree in prefix notation, the number of symbols S in the PushDown Store,
and the Length of the subtree). Initially, spdsl([0]) = {(ε, 1, 0)} (see step 4 of
Alg. 3)). When a new element (x, y, z) is added to a spdsl(q′′), the subtree in
prefix notation x is computed as the concatenation of x′, spdsl(q′) = (x′, y′, z′),
and the input symbol a which is being processed (see step 5c of Alg. 3)).

Theorem 5. Given a tree t with n nodes, Alg. 3 correctly constructs the basic
subtree repeat table BSRT (t) in time O(n) and space O(n).

Proof. The computation of the basic subtree repeat table by Alg. 3 is based on
the construction of the deterministic subtree pushdown automaton for pref(t)
(see Algs. 1 and 2). The deterministic subtree pushdown automaton accepts
all prefix notations of subtrees of the tree t by the empty pushdown store and
its states are analogous to states of the deterministic string suffix automaton.
Therefore, positions of the rightmost nodes of all occurrences of particular pre-
fix notations correspond to the created states [14, 15]. Only states which are
multiple sets and correspond to the rightmost leaves of occurrences of subtrees,
which correspond to the empty pushdown store, are added to the basic subtree
repeat table. Positions of the roots of these occurrences are computed from the
rightmost leaves and from the numbers of nodes of the subtrees.

Both nondeterministic and deterministic subtree pushdown automata have
O(n) states and transitions (see Theorem 4), and the maximal number of repeats
of subtrees is also O(n). Therefore, O(n) time and O(n) space are used. ut

5 Conclusion

More details on tree algorithms using pushdown automata and related informa-
tion can also be found on [3].
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1 Department of Computer Science and Engineering
Faculty of Electrical Engineering

Czech Technical University in Prague
Karlovo nám. 13, 121 35 Prague 2, Czech Republic

flourtom@fel.cvut.cz,
2 Department of Theoretical Computer Science

Faculty of Information Technology
Czech Technical University in Prague

Kolejnı́ 550/2, 160 00 Prague 6, Czech Republic
{Jan.Janousek,Borivoj.Melichar}@fit.cvut.cz

Abstract. Subtree matching is an important problem in Computer Sci-
ence on which a number of tasks, such as mechanical theorem prov-
ing, term-rewriting, symbolic computation and nonprocedural program-
ming languages are based on. A systematic approach to the construction
of subtree pattern matchers by deterministic pushdown automata, which
read subject trees in prefix and postfix notation, is presented. The method
is analogous to the construction of string pattern matchers: for a given
pattern, a nondeterministic pushdown automaton is created and is then
determinised. In addition, it is shown that the size of the resulting deter-
ministic pushdown automata directly corresponds to the size of the exist-
ing string pattern matchers based on finite automata.

Keywords: subtree, subtree matching, pushdown automata.

1. Introduction

The theory of formal string (or word) languages [2, 16, 24] and the theory of
formal tree languages [6, 8, 14] are important parts of the theory of formal lan-
guages [23]. While the models of computation of the theory of string languages
are finite automata, pushdown automata, linear bounded automata and Turing
machines, the most famous models of computation of the theory of tree lan-
guages are various kinds of tree automata [6, 8, 14]. Trees, however, can also
be seen as strings, for example in their prefix (also called preorder) or postfix
(also called postorder) notation. Recently it has been shown that the determin-
istic pushdown automaton (PDA) is an appropriate model of computation for
labelled, ordered, ranked trees in postfix notation and that the trees in post-
fix notation, acceptable by deterministic PDA, form a proper superclass of the
class of regular tree languages, which are accepted by finite tree automata [18].
? This research has been partially supported by the Ministry of Education, Youth and

Sports under research program MSM 6840770014, and by the Czech Science Foun-
dation as project No. 201/09/0807.
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Trees represent one of the fundamental data structures used in Computer
Science and thus tree pattern matching, the process of finding occurrences
of subtrees in trees, is an important problem with many applications, such as
compiler code selection, interpretation of non-procedural languages or various
tree finding and tree replacement systems.

Tree pattern matching is often declared to be analogous to the problem of
string pattern matching [6]. One of the basic approaches used for string pattern
matching can be represented by finite automata constructed for the pattern,
which means that the pattern is preprocessed. Examples of these automata
are the string matching automata [9, 10, 22, 26]. Given a pattern P of size m,
the string matching automaton can be constructed for the pattern P in time lin-
ear to m. The constructed string matching automaton accepts the set of words
containing pattern P as a suffix, and thus it can find all occurrences of string
P in a given text T . The main advantage of this kind of finite automata is that
the deterministic string matching automaton can be constructed in time linear to
the size of the given pattern P , and the search phase is in time linear to the in-
put text. A generalization of the mentioned string matching problem can be the
string matching problem with multiple patterns [1, 22, 26]. Given a set of pat-
terns P = {p1, p2, . . . , pm}, the string matching automaton can be constructed
in time linear to the number of symbols of patterns in set P . The constructed
string matching automaton accepts the set of words having any of the patterns
in P as a suffix, and thus it can find all occurrences of strings p1, . . . , pm in a
given text T .

Although there are many tree pattern matching methods (see [5–7, 11, 15,
25] for these methods), they fail to present a simple and systematic approach
with a linear time searching phase which would also be directly analogous to
the basic string pattern matching method.

This paper, being an extended version of [12], presents a new kind of PDAs
for trees in prefix and postfix notations called subtree matching PDAs, which are
directly analogous to string matching automata and their properties. A subtree
matching PDA, constructed from a given tree s, can find all occurrences of
subtree s within a given tree t in time O(n), where n is the number of nodes of t.
Subtree matching, as with string matching, can also be generalized to subtree
matching with multiple patterns. Subtree matching PDAs can be constructed
from a set of trees P = {t1, t2, . . . , tm} in the same manner as string matching
automata, retaining their property of linear searching phase O(n), where n is
the number of nodes of the subject tree t.

Moreover, the presented subtree matching PDAs have the following two
other properties. First, they are input–driven PDAs [28], which means that each
pushdown operation is determined only by the input symbol. The input–driven
PDAs can be always determinised [28]. Second, their pushdown symbol alpha-
bets contain just one pushdown symbol and therefore their pushdown store can
be implemented by a single integer counter. This means that the presented
PDAs can be transformed to counter automata [4, 27], which is a weaker and
simpler model of computation than the PDA.
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The rest of the paper is organised as follows. Basic definitions are given in
section 2. Some properties of subtrees in prefix notation are discussed in the
third section. Sections 4 and 5 deal with the subtree matching PDA constructed
over a single and multiple patterns, respectively. Section 6 shows the dual prin-
ciple for the postfix notation and the last section is the conclusion.

2. Basic Notions

2.1. Ranked alphabet, tree, prefix notation, postfix notatio n, subtree
matching

We define notions on trees similarly as they are defined in [2, 6, 8, 14].
We denote the set of natural numbers by N. A ranked alphabet is a finite,

nonempty set of symbols, each of which has a unique nonnegative arity (or
rank). Given a ranked alphabet A, the arity of a symbol a ∈ A is denoted by
Arity(a). The set of symbols of arity p is denoted by Ap. Elements of arity
0, 1, 2, . . . , p are respectively called nullary (constants), unary, binary, . . . , p-ary
symbols. We assume that A contains at least one constant. In the examples
we use numbers at the end of identifiers for a short declaration of symbols with
arity. For instance, a2 is a short declaration of a binary symbol a.

Based on concepts from graph theory (see [2]), a labelled, ordered, ranked
tree over a ranked alphabet A can be defined as follows:

An ordered directed graph G is a pair (N,R), where N is a set of nodes
and R is a set of linearly ordered lists of edges such that each element of R is
of the form ((f, g1), (f, g2), . . . , (f, gn)), where f, g1, g2, . . . , gn ∈ N , n ≥ 0. This
element would indicate that, for node f , there are n edges leaving f , the first
entering node g1, the second entering node g2, and so forth.

A sequence of nodes (f0, f1, . . . , fn), n ≥ 1, is a path of length n from node
f0 to node fn if there is an edge which leaves node fi−1 and enters node fi for
1 ≤ i ≤ n. A cycle is a path (f0, f1, . . . , fn), where f0 = fn. An ordered dag
(dag stands for Directed Acyclic Graph) is an ordered directed graph that has
no cycle. Labelling of an ordered graph G = (A,R) is a mapping of A into a set
of labels. In the examples we use af for a short declaration of node f , labelled
by symbol a.

Given a node f , its out-degree is the number of distinct pairs (f, g) ∈ R,
where g ∈ A. By analogy, in-degree of node f is the number of distinct pairs
(g, f) ∈ R, where g ∈ A.

A labelled, ordered, ranked and rooted tree t over a ranked alphabet A is an
ordered dag t = (N,R) with a special node r ∈ A called the root such that
(1) r has in-degree 0,
(2) all other nodes of t have in-degree 1,
(3) there is just one path from the root r to every f ∈ N , where f 6= r,
(4) every node f ∈ N is labelled by a symbol a ∈ A and out-degree of af is
Arity(a).

Nodes labelled by nullary symbols (constants) are called leaves.
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Prefix notation pref(t) of a labelled, ordered, ranked and rooted tree t is
obtained by applying the following Step recursively, beginning at the root of t:
Step: Let this application of Step be node af . If af is a leaf, list a and halt.
If af is not a leaf, having direct descendants af1 , af2 , . . . , afn , then list a and
subsequently apply Step to af1 , af2 , . . . , afn in that order.
Postfix notation post(t) of t is formed by changing the last sentence of Step to
read “Apply Step to af1 , af2 , . . . , afn in that order and then list a.”

Example 1. Consider a tree t1 = ( {a21, a22, a03, a14, a05, a16, a07}, R ) over
A = {a2, a1, a0} , where R is a set of the following ordered sequences of pairs:

((a21, a22), (a21, a16)),
((a22, a03), (a22, a14)),
((a14, a05)),
((a16, a07))

The prefix and postfix notations of tree t1 are strings pref(t1) = a2 a2 a0 a1
a0 a1 a0 and post(t1) = a0 a0 a1 a2 a0 a1 a2, respectively. Trees can be repre-
sented graphically, and tree t1 is illustrated in Fig. 1. ut

a05

a03 a14 a07

a22 a16

a21

pref(t1) = a2 a2 a0 a1 a0 a1 a0

Fig. 1. Tree t1 from Example 1 and its prefix notation

The number of nodes of a tree t is denoted by |t|.
The height of a tree t, denoted by Height(t), is defined as the maximal length

of a path from the root of t to a leaf of t.
A subtree p matches an object tree t at node n if p is equal to the subtree of

t rooted at n.

2.2. Alphabet, language, pushdown automaton

We define notions from the theory of string languages similarly as they are
defined in [2, 16].
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Let an alphabet be a finite nonempty set of symbols. A string x over a given
alphabet is a finite, possibly empty sequence of symbols. A language over an
alphabet A is a set of strings over A. Set A∗ denotes the set of all strings over
A including the empty string, denoted by ε. Set A+ is defined as A+ = A∗ \{ε}.
Similarly for string x ∈ A∗, xm, m ≥ 0, denotes the m-fold concatenation of x
with x0 = ε. Set x∗ is defined as x∗ = {xm : m ≥ 0} and x+ = x∗ \ {ε} = {xm :
m ≥ 1}.

An (extended) nondeterministic pushdown automaton (nondeterministic
PDA) is a seven-tuple M = (Q,A, G, δ, q0, Z0, F ), where Q is a finite set of
states, A is the input alphabet, G is the pushdown store alphabet, δ is a map-
ping from Q× (A∪{ε})×G∗ into a set of finite subsets of Q×G∗, q0 ∈ Q is the
initial state, Z0 ∈ G is the initial content of the pushdown store, and F ⊆ Q is
the set of final (accepting) states. The triplet (q, w, x) ∈ Q×A∗×G∗ denotes the
configuration of a pushdown automaton. In this paper we will write the top of the
pushdown store x on its left hand side. The initial configuration of a pushdown
automaton is a triplet (q0, w, Z0) for the input string w ∈ A∗.

The relation `M⊂ (Q×A∗ ×G∗)× (Q×A∗ ×G∗) is a transition of a push-
down automaton M . It holds that (q, aw, αβ) `M (p, w, γβ) if (p, γ) ∈ δ(q, a, α).
The k-th power, transitive closure, and transitive and reflexive closure of the re-
lation `M is denoted `kM , `+M , `∗

M , respectively. A pushdown automaton M is a
deterministic pushdown automaton (deterministic PDA), if it holds:

1. |δ(q, a, γ)| ≤ 1 for all q ∈ Q, a ∈ A ∪ {ε}, γ ∈ G∗.
2. If δ(q, a, α) 6= ∅, δ(q, a, β) 6= ∅ and α 6= β then α is not a suffix of β and β is

not a suffix of α.
3. If δ(q, a, α) 6= ∅, δ(q, ε, β) 6= ∅, then α is not a suffix of β and β is not a suffix

of α.

A pushdown automaton is input–driven if its each pushdown operation is
determined only by the input symbol.
A language L accepted by a pushdown automaton M is defined in two distinct
ways:

1. Accepting by final state:

L(M) = {x : δ(q0, x, Z0) `∗
M (q, ε, γ) ∧ x ∈ A∗ ∧ γ ∈ G∗ ∧ q ∈ F}.

2. Accepting by empty pushdown store:

Lε(M) = {x : (q0, x, Z0) `∗
M (q, ε, ε) ∧ x ∈ A∗ ∧ q ∈ Q}.

If a PDA accepts the language by empty pushdown store then the set F of
final states may be the empty set. The subtree PDAs accept the languages by
empty pushdown store.

In the rest of the text, we use the following notation for labelling edges
when illustrating transition diagrams of various PDAs: For each transition rule
δ1(p, a, α) = (q, β) from the transition mapping δ of a PDA, we label its edge
leading from state p to state q by the triplet of the form a|α 7→ β.

For more details on pushdown automata see [2, 16].
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[0] [0, 1] [0, 1, 2] [0, 3] [0, 4] [0, 5] [0, 6] [0, 7]
a2 a2 a0 a1 a0 a1 a0

a0, a1
a2

a1, a0

a2

a1
a0

a1
a0

a1
a1, a0

a2
a2

a2
a2

Fig. 2. Transition diagram of deterministic string matching automaton for pattern x =
a2 a2 a0 a1 a0 a1 a0 from Example 2

2.3. Examples of string matching automaton

Example 2. The transition diagram of the deterministic string matching automa-
ton constructed for string a2 a2 a0 a1 a0 a1 a0 is illustrated in Fig. 2. ut

Example 3. The transition diagram of the deterministic string matching automa-
ton constructed for a set of strings P = {a2 a2 a0 a0 b0, a2 b1 a0 a0, a2 a0 a0} is
illustrated in Fig. 3. ut

See [2, 9, 22] for definitions of finite automata and construction of the deter-
ministic string matching automaton.

3. Properties of subtrees in prefix notation

In this section we describe some general properties of the prefix notation of a
tree and of its subtrees. These properties are important for the construction of
the subtree matching PDA, which is described in the next two sections.

Example 4. Consider tree t1 in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0
from Example 1, which is illustrated in Fig. 1. Tree t1 contains only subtrees
shown in Fig. 4.

Generally, for any tree, the following theorem holds.

Theorem 1. Given a tree t and its prefix notation pref(t), all subtrees of t in
prefix notation are substrings of pref(t).

Proof. By induction on the height of the subtree.
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136



Subtree Matching by Pushdown Automata

0 0, 1

0, 1, 2 0, 3, 9 0, 4, 10 0, 5

0, 6 0, 7 0, 8

0, 9 0, 10

a2

a2

a0 a0 b0

b1

a0 a0

a0

a0

a0, b0, b1

b0

a2

b0

b1

b0, b1

a2

a0, b1

a2

a0, b0, b1

a2

a2

b0, b1

a2

b0, b1

a2

a0, b0, b1

b0, b1

a2
a0, b0, b1

a2

Fig. 3. Transition diagram of deterministic string matching automaton (Aho-Corasick) for
patterns {a2 a2 a0 a0 b0, a2 b1 a0 a0, a2 a0 a0}

1. If a subtree t′ has just one node a, where Arity(a) = 0, then Height(t′) = 0,
pref(t′) = a and the claim holds for that subtree.

2. Assume that the claim holds for subtrees t1, t2, . . . , tp, where p ≥ 1 and
Height(t1) ≤ m, Height(t2) ≤ m, . . ., Height(tp) ≤ m, m ≥ 0. We have
to prove that the claim holds also for each subtree t′ = at1t2 . . . tp, where
Arity(a) = p and Height(t′) = m+ 1:
As pref(t′) = a pref(t1) pref(t2) . . .pref(tp), the claim holds for the subtree
t′.

Thus, the theorem holds. ut

However, not every substring of a tree in prefix notation is its subtree in
prefix notation. This can be easily seen on the fact that for a given tree with n
nodes in prefix notation, there can be O(n2) distinct substrings but there is just
n subtrees – each node of the tree is the root of just one subtree. Just those
substrings which themselves are trees in prefix notation are those which are the
subtrees in prefix notation. This property is formalised by the following definition
and theorem.
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a0

a0 a1 a0

a2 a1

a2

pref(t) = a2 a2 a0 a1 a0 a1 a0

post(t) = a0 a0 a1 a2 a0 a1 a2

a0

a0 a1

a2

pref(t) = a2 a0 a1 a0

post(t) = a0 a0 a1 a2

a0

a1

pref(t) = a1 a0

post(t) = a0 a1

a0

pref(t) = a0

post(t) = a0

Fig. 4. All subtrees of tree t1 from Example 1, and their prefix and postfix notations

Definition 1. Let w = a1a2 . . . am, m ≥ 1, be a string over a ranked alphabet A.
Then, the arity checksum ac(w) = Arity(a1)+Arity(a2)+ . . .+Arity(am)−m+1=∑m

i=1 Arity(ai)−m+ 1.

Theorem 2. Let pref(t) and w be a tree t in prefix notation and a substring of
pref(t), respectively. Then, w is the prefix notation of a subtree of t, if and only
if ac(w) = 0, and ac(w1) ≥ 1 for each w1, where w = w1x, x 6= ε.

Proof. It is easy to see that for any two subtrees st1 and st2 it holds that pref(st1)
and pref(st2) are either two different strings or one is a substring of the other.
The former case occurs if the subtrees st1 and st2 are two different trees with
no shared part and the latter case occurs if one tree is a subtree of the other
tree. No partial overlapping of subtrees is possible in ranked ordered trees.
Moreover, for any two neighbouring subtrees it holds that their prefix notations
are two adjacent substrings.

– If: By induction on the height of a subtree st, where w = pref(st):
1. We assume that Heigth(st) = 1, which means we consider the case

w = a, where Arity(a) = 0. Then, ac(w) = 0. Thus, the claim holds for
the case Height(st) = 1.

2. Assume that the claim holds for the subtrees st1, st2, . . . , stp where
p ≥ 1, Height(st1) ≤ m, Height(st2) ≤ m, . . ., Height(stp) ≤ m and
ac(pref(st1)) = 0, ac(pref(st2)) = 0, . . ., ac(pref(stp)) = 0.
We are to prove that it holds also for a subtree of height m+1. Assume
w = a pref(st1) pref(st2) . . . pref(stp), where Arity(a) = p. Then
ac(w) = p+ac(pref(st1))+ac(pref(st2))+. . .+ac(pref(stp))−(p+1)+1 =
0 and ac(w1) ≥ 1 for each w1 , where w = w1x, x 6= ε.
Thus, the claim holds for the case Height(st) = m+ 1.

– Only if : Assume ac(w) = 0, and w = a1a2 . . . ak, where k ≥ 1, Arity(a1) = p.
Since ac(w1) ≥ 1 for each w1, where w = w1x, x 6= ε, none of the substrings
w1 can be a subtree in prefix notation. This means that the only possibility
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for ac(w) = 0 is that w is of the form w = a pref(t1) pref(t2) . . . pref(tp),
where p ≥ 0, and t1, t2 . . . tp are neighbouring subtrees. In such case,
ac(w) = p+ 0− (p+ 1) + 1 = 0.
No other possibility of the form of w for ac(w) = 0 is possible. Thus, the
claim holds.

Thus, the theorem holds. ut

We note that in subtree matching PDAs, the arity checksum is computed by
pushdown operations, where the contents of the pushdown store represents the
corresponding arity checksum. For example, the empty pushdown store means
that the corresponding arity checksum is equal to 0.

4. Subtree Matching pushdown automaton

This section deals with the subtree matching PDA for trees in prefix notation:
algorithms and theorems are given and the subtree matching PDA and its con-
struction are demonstrated with an example.

Problem 1 (Subtree Matching). Given two trees s and t, find all occurrences of
tree s in tree t.

Definition 2. Let s and pref(s) be a tree and its prefix notation, respectively.
Given an input tree t, a subtree pushdown automaton constructed over pref(s)
accepts all matches of tree s in the input tree t by final state.

First, we start with a PDA which accepts the whole subject tree in prefix
notation. The construction of the PDA accepting a tree in prefix notation is de-
scribed by Alg. 1. The constructed PDA is deterministic.

Algorithm 1. Construction of a PDA accepting a tree t in prefix notation pref(t).
Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an,
n ≥ 1.
Output: PDA Mp(t) = ({0, 1, 2, . . . , n},A, {S}, δ, 0, S, {n}).
Method:

1. For each state i, where 1 ≤ i ≤ n, create a new transition δ(i− 1, ai, S) =
(i, SArity(ai)), where S0 = ε. ut

Example 5. The PDA constructed by Alg. 1, accepting the prefix notation
pref(t1) = a2 a2 a0 a1 a0 a1 a0 of tree t1 from Example 1, is the deterministic
PDA Mp(t1) = ({0, 1, 2, 3, 4, 5, 6, 7},A, {S}, δ1, 0, S, {n})), where the mapping δ1
is a set of the following transitions:
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0 1 2 3 4 5 6 7
a2|S 7→ SS a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

Fig. 5. Transition diagram of deterministic PDA Mp(t1) accepting tree t1 in prefix notation
pref(t1) = a2 a0 a2 a0 a0 a0 from Example 5

δ1(0, a2, S) = (1, SS)
δ1(1, a2, S) = (2, SS)
δ1(2, a0, S) = (3, ε)
δ1(3, a1, S) = (4, S)
δ1(4, a0, S) = (5, ε)
δ1(5, a1, S) = (6, S)
δ1(6, a0, S) = (7, ε)

The transition diagram of deterministic PDA Mp(t1) is illustrated in Fig. 5.
Fig. 6 shows the sequence of transitions (trace) performed by deterministic PDA
Mp(t1) for tree t1 in prefix notation. ut

State Input Pushdown Store
0 a2 a2 a0 a1 a0 a1 a0 S
1 a2 a0 a1 a0 a1 a0 S S
2 a0 a1 a0 a1 a0 S S S
3 a1 a0 a1 a0 S S
4 a0 a1 a0 S S
5 a1 a0 S
6 a0 S
7 ε ε
accept

Fig. 6. Trace of deterministic PDA Mp(t1) from Example 5 for tree t1 in prefix notation
pref(t1) = a2 a2 a0 a1 a0 a1 a0

Theorem 3. Let M = ({Q,A, {S}, δ, 0, S, F ) be an input–driven PDA whose
each transition from δ is of the form δ(q1, a, S) = (q2, S

i), where i = Arity(a).
Then, if (q3, w, S) `+M (q4, ε, S

j), then j = ac(w).

Proof. By induction on the length of w:

1. Assume w = a. Then, (q3, a, S) `M (q4, ε, S
j), where j = Arity(a) = ac(a).

Thus, the claim holds for the case w = a.
2. Assume that the claim holds for a string w = a1a2 . . . ak, where k ≥ 1. This

means that (q3, a1a2 . . . ak, S) `kM (q4, ε, S
j), where j = ac(a1a2 . . . ak). We

have to prove that the claim holds also for w = a1a2 . . . ak a.
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It holds that (q3, a1a2 . . . aka, S) `kM (q4, a, S
j) `M (q5, ε, S

l), where l =
j+Arity(a)−1 = ac(w)+Arity(a)−1 = Arity(a1)+Arity(a2)+. . .+Arity(ak)−
k + 1 + Arity(a)− 1 = ac(a1a2 . . . aka).
Thus, the claim holds for the case w = a1a2 . . . ak a.

Thus, the theorem holds. ut

The correctness of the deterministic PDA constructed by Alg. 1, which ac-
cepts trees in prefix notation, is described by the following lemma.

Lemma 1. Given a tree t and its prefix notation pref(t), the PDA Mp(t) =
({0, 1, 2, . . . , n},A, {S}, δ, 0, S, F ), where n = |t|, constructed by Alg. 1, accepts
pref(t).

Proof. By induction on the height of the tree t:

1. If tree t has just one node a, where Arity(a) = 0, then Height(t) = 0,
pref(t) = a, δ(0, a, S) = (1, ε) ∈ δ, (0, a, S) `Mp(t) (1, ε, ε) and the claim
holds for that tree.

2. Assume that claim holds for trees t1, t2, . . . , tp, where p ≥ 1, Height(t1) ≤ m,
Height(t2) ≤ m, . . ., Height(tp) ≤ m, m ≥ 0.
We have to prove that the claim holds also for each tree t such that
pref(t) = a pref(t1)pref(t2) . . . pref(tp), Arity(a) = p, and Height(t) ≥ m+ 1:
Since δ(0, a, S) = (1, Sp) ∈ δ, and (0, a pref(t1)pref(t2) . . . pref(tp), S)
`Mp(t) (1, pref(t1)pref(t2) . . . pref(tp), Sp)
`∗
Mp(t)

(i, pref(t2) . . .pref(tp), Sp−1)

`∗
Mp(t)

. . .

`∗
Mp(t)

(j, pref(tp), S)
`∗
Mp(t)

(k, ε, ε),
the claim holds for that tree.

Thus, the lemma holds. ut

We present the construction of the deterministic subtree matching PDA for
trees in prefix notation. The construction consists of two steps. First, a nondeter-
ministic subtree matching PDA is constructed by Alg. 2. This nondeterministic
subtree matching PDA is an extension of the PDA accepting trees in prefix nota-
tion, which is constructed by Alg. 1. Second, the constructed nondeterministic
subtree matching PDA is transformed to the equivalent deterministic subtree
matching PDA. In spite of the fact that the determinisation of a nondeterministic
PDA is not possible generally, the constructed nondeterministic subtree match-
ing PDA is an input–driven PDA and therefore can be determinised [28].

Algorithm 2. Construction of a nondeterministic subtree matching PDA for a
tree t in prefix notation pref(t).
Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an,
n ≥ 1.
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0 1 2 3 4 5 6 7

a0|S 7→ ε
a1|S 7→ S
a2|S 7→ SS

a2|S 7→ SS a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

Fig. 7. Transition diagram of nondeterministic subtree matching PDA Mp(t1) for tree t1
in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0 from Example 6

Output: Nondeterministic subtree matching PDA Mnps(t) = ({0, 1, 2, . . . , n},A,
{S}, δ, 0, S, {n}).
Method:

1. Create PDA Mnps(t) as PDA Mp(t) by Alg. 1.
2. For each symbol a ∈ A create a new transition δ(0, a, S) = (0, SArity(a)),

where S0 = ε.

Example 6. The subtree matching PDA, constructed by Alg. 2 from tree t1 hav-
ing prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0, is the nondeterministic PDA
Mnps(t1) = ({0, 1, 2, 3, 4, 5, 6, 7},A, {S}, δ2, 0, S, {7})), where mapping δ2 is a
set of the following transitions:

δ2(0, a2, S) = (1, SS)
δ2(1, a2, S) = (2, SS) δ2(0, a2, S) = (0, SS)
δ2(2, a0, S) = (3, ε) δ2(0, a1, S) = (0, S)
δ2(3, a1, S) = (4, S) δ2(0, a0, S) = (0, ε)
δ2(4, a0, S) = (5, ε)
δ2(5, a1, S) = (6, S)
δ2(6, a0, S) = (7, ε)

The transition diagram of the nondeterministic PDA Mnps(t1) is illustrated in
Fig. 7. ut

Theorem 4. Given a tree t and its prefix notation pref(t), the PDA Mnps(t) con-
structed by Alg. 2 is a subtree matching PDA for pref(t).

Proof. According to Theorem 2, given an input tree t, each subtree in prefix
notation is a substring of pref(t). Since the PDA Mnps(s) has just states and
transitions equivalent to the states and transitions, respectively, of the string
matching automaton, the PDA Mnps(t) accepts all matches of subtree s in tree
t by final state. ut

For the construction of deterministic subtree PDA, we use the transformation
described by Alg. 3. This transformation is based on the well known transfor-
mation of nondeterministic finite automaton to an equivalent deterministic one,
which constructs the states of the deterministic automaton as subsets of states
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of the nondeterministic automaton and selects only a set of accessible states
(i.e. subsets) [16]. Again, states of the resulting deterministic PDA correspond
to subsets of states of the original nondeterministic PDA.

Algorithm 3. Transformation of an input–driven nondeterministic PDA to an
equivalent deterministic PDA.
Input: Input–driven nondeterministic PDA Mnx(t) = ({0, 1, 2, . . . , n},A, {S}, δ,
0, S, F )
Output: Equivalent deterministic PDA Mdx(t) = (Q′,A, {S}, δ′, qI , S, F ′).
Method:

1. Initially, Q′ = {{0}}, qI = {0} and {0} is an unmarked state.
2. (a) Select an unmarked state q′ from Q′.

(b) For each input symbol a ∈ A:
i. q′′ = {q : δ(p, a, α) = (q, β) for all p ∈ q′}.
ii. Add transition δ′(q′, a, S) = (q′′, SArity(a)).
iii. If q′′ /∈ Q then add q′′ to Q and set it as unmarked state.

(c) Set state q′ as marked.
3. Repeat step 2 until all states in Q′ are marked.
4. F ′ = { q′ | q′ ∈ Q′ ∧ q′ ∩ F 6= ∅ }. ut

The deterministic subtree matching automaton Mdps(t) for a tree t with prefix
notation pref(t) is demonstrated by the following example.

Example 7. The deterministic subtree matching PDA for tree t1 in prefix nota-
tion pref(t1) = a2 a2 a0 a1 a0 a1 a0 from Example 1 , which has been con-
structed by Alg. 3 from nondeterministic subtree matching PDA Mnps(t1) from
Example 6, is the deterministic PDA Mdps(t1) = ({[0], [0, 1], [0, 1, 2], [0, 3], [0, 4],
[0, 5], [0, 6], [0, 7]},A, {S}, δ3, [0], S, {[0, 7]}), where its transition diagram is illus-
trated in Fig. 9.

We note that the deterministic subtree matching PDA Mdps(t1) has a very
similar transition diagram to the deterministic string matching automaton con-
structed for pref(t1) [9, 22], as can be seen by comparing Figs. 2 and 9. The
only difference between the two types of automata are the pushdown opera-
tions appearing in the subtree matching PDA, which ensure the validity of the
input tree. The input tree is valid only if the pushdown store of the subtree PDA
is emptied after the last symbol from the prefix notation of the input tree is read.

Fig. 8 shows the sequence of transitions (trace) performed by the deter-
ministic subtree PDA Mdps(t1) for an input tree t2 in prefix notation pref(t2) =
a2 a2 a2 a0 a1 a0 a1 a0 a1 a1 a2 a0 a0. The accepting state is {0, 7}. Fig. 10
depicts the pattern subtree t1 and input tree t2. ut

Theorem 5. Given a nondeterministic input–driven PDA Mnx(t) = (Q,A, {S},
δ, q0, S, F ), the deterministic PDA Mdx(t) = (Q′,A, {S}, δ′, {q0}, S, F ′) which is
constructed by Alg. 3 is equivalent to PDA Mnx(t).
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State Input PDS
{0} a2 a2 a2 a0 a1 a0 a1 a0 a1 a1 a2 a0 a0 S
{0, 1} a2 a2 a0 a1 a0 a1 a0 a1 a1 a2 a0 a0 SS
{0, 1, 2} a2 a0 a1 a0 a1 a0 a1 a1 a2 a0 a0 SSS
{0, 1, 2} a0 a1 a0 a1 a0 a1 a1 a2 a0 a0 SSSS
{0, 3} a1 a0 a1 a0 a1 a1 a2 a0 a0 SSS
{0, 4} a0 a1 a0 a1 a1 a2 a0 a0 SSS
{0, 5} a1 a0 a1 a1 a2 a0 a0 SS
{0, 6} a0 a1 a1 a2 a0 a0 SS
{0, 7} a1 a1 a2 a0 a0 match S
{0} a1 a2 a0 a0 S
{0} a2 a0 a0 S
{0, 1} a0 a0 SS
{0} a0 S
{0} ε ε

Fig. 8. Trace of deterministic subtree PDA Mdps(t1) from Example 7 for an input subtree
t2 in prefix notation pref(t2) = a2 a2 a2 a0 a1 a0 a1 a0 a1 a1 a2 a0 a0

[0] [0, 1] [0, 1, 2] [0, 3] [0, 4] [0, 5] [0, 6] [0, 7]
a2|S 7→ SS a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a0|S 7→ ε
a1|S 7→ S a2|S 7→ SS

a2|S 7→ SS

a1|S 7→ S
a0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

a1|S 7→ S

a1|S 7→ S
a0|S 7→ ε

a2|S 7→ SS
a2|S 7→ SS

a2|S 7→ SS
a2|S 7→ SS

Fig. 9. Transition diagram of deterministic PDA Mdps(t1) for tree t1 in prefix notation
pref(t1) = a2 a2 a0 a1 a0 a1 a0 from Example 7
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Proof. First, we prove the following claim by induction on i:
(*): (q′

1, w, S) `iMdx(t)
(q′

2, ε, S
j) if and only if

q′
2 = {p : (q, w, S) `iMnx(t)

(p, ε, Sj) for some q ∈ q′
1}.

1. Assume i=1.
– if : if (q′

1, a, S) `Mdx(t) (q
′
2, ε, S

j), then there exists a state q ∈ q′
1, where

(q, a, S) `Mnx(t) (p, ε, S
j), p ∈ q′

2.
– only if : if (q, a, S) `Mnx(t) (p, ε, β), then for each q′

1 ∈ Q′, where q ∈ q′
1,

it holds that (q′
1, a, S) `Mdx(t) (q

′
2, ε, S

j), where p ∈ q′
2.

2. Assume that claim (*) holds for i = 1, 2, . . . , k, k ≥ 1.
This means that (q′

1, w, S) `kMdx(t)
(q′

2, ε, S
j) if and only if

q′
2 = {p : (q, S, w) `kMnx(t)

(p, ε, Sj) for some q ∈ q′
1}. We have to prove that

claim (*) holds also for i = k + 1.
– if : if (q′

1, w, S) `kMdx(t)
(q′

2, a, S
l) `Mdx(t) (q′

3, ε, S
j) , then there exists a

state q ∈ q′
2, where (q, a, Sl) `Mnx(t) (p, ε, S

j), p ∈ q′
3.

– only if : if (q0, pref(t), S) `kMnx(t)
(q, a, Sl) `Mnx(t) (p, ε, Sj), then for

each q′
1 ∈ Q′, where q ∈ q′

1, it holds that (q′
1, a, S

l) `Mdx(t) (q′
2, ε, S

j),
where p ∈ q′

2.

As a special case of claim (*), ({q0}, pref(t), S) `iMdx(t)
(q′, ε, ε) if and only

if (q0, S, pref(t)) `iMnx(t)
(q1, ε, ε). Thus, the theorem holds.

a0

a0 a1 a0

a2 a1

a2

pref(t1) = a2 a2 a0 a1 a0 a1 a0

post(t1) = a0 a0 a1 a2 a0 a1 a2

a0 a0 a0

a0 a1 a0 a2

a2 a1 a1

a2 a1

a2

pref(t2) = a2 a2 a2 a0 a1 a0 a1 a0 a1 a1 a2 a0 a0

post(t2) = a0 a0 a1 a2 a0 a1 a2 a0 a0 a2 a1 a1 a2

Fig. 10. Trees t1 and t2 from Example 7 along with their prefix and postfix notations

Theorem 6. Given a tree t with n nodes in its prefix or postfix notation, the
deterministic subtree matching PDA Mpds(t) constructed by Alg. 2 and 3 is
made of exactly n+ 1 states, one pushdown symbol and |A|(n+ 1) transitions.
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Proof. Let Mnps(t) = ({0, 1, 2, . . . , n},A, {S}, δ, 0, S, {n} be an automaton con-
structed from tree t with a prefix notation pref(t) = a1 a2 . . . an over ranked
alphabet A by Alg. 2. We will prove that this automaton is directly analogous to
the string matching automaton and accepts the same language if we ignore the
pushdown operations, which actually do not affect the process of determinisa-
tion as Mpds is an input–driven automaton. From Alg 2 and 3, Mnps(t) has tran-
sitions δ(0, a, S) = (0, SArity(a)) for all a ∈ A and δ(i − 1, ai, S) = (i, ε, SArity(ai)).
The proof is a mutual induction of the following n+ 1 statements:
(1) δ∗(0, w, S) = (0, ε, Sac(w)), w ∈ A∗.
(2) δ∗(0, w, S) = (1, ε, Sac(w)) if and only if w = w1a1, w1 ∈ A∗

(i) δ∗(0, w, S) = (i− 1, ε, Sac(w)) if and only if w = w1a1a2 . . . ai−1 , w1 ∈ A∗

1. Assume that |w| = 0, which means w = ε. Statement (1) holds, since
δ∗(0, ε, S) = (0, ε, S). Statements (i), 1 < i ≤ n+1, do not hold as δ∗(0, ε, S)
contains, from its basic definition, only (0, ε, S).

2. Assume w = w1a, where w1 ∈ Ak, that is |w1| = k and a ∈ A. We may
assume that statements (i) 1 < i ≤ n+ 1 hold for w1, and we need to prove
them for w. We assume the inductive hypothesis for k and prove it for k+1.
(a) There exists a series of transitions (0, w1, S) `∗ (0, ε, Sac(w1)), since

δ(0, a, S) = (0, ε, SArity(a)) are transitions of automaton Mnps.Thus state-
ment (1) is proved for w.

(b) We now prove statements i, where 1 < i ≤ n+ 1:
– If: Assume that w1 = w2a1a2 . . . ai−2, where w2 ∈ A∗ and a =

ai−1. By statement (i − 1) applied to w1, we know from our induc-
tion hypothesis that there exists a series of transitions (0, w1, S) `∗

(i − 2, ε, Sac(w1)). Since for all 1 ≤ j ≤ n there exists a transi-
tion δ(j − 1, aj, S) = (j, SArity(aj)), we conclude that δ∗(0, w, S) =
(i − 1, ε, Sac(w)).

– Only if: Suppose there exists a series of transitions (0, w, S) `∗

(i− 1, ε, Sac(w)). From the inductive assumption we know that there
exists a series of transitions (0, w1, S) `∗ (i− 2, ε, Sac(w1)). By state-
ment (i− 1) applied to w1, we know that w1 = w2a1a2 . . . ai−2. Thus
w = w2a1a2 . . . ai−1, and we have proved statement (i).

Thus, from statements 1, . . . , n+1, if we ignore the pushdown operations, Mpds

accepts the language L = {w.pref(t)}, where w ∈ A∗. Since the subtree match-
ing PDA is directly analogous to the string matching automaton, we can use the
proof from [10, 22] for space and time complexities. ut
Theorem 7. Given an input tree t with n nodes, the searching phase of the
deterministic subtree matching automaton constructed by Algs. 2 and 3 isO(n).
Proof. The searching phase consists of reading tree t once, symbol by symbol
from left to right. The appropriate transition is taken each time a symbol is read,
resulting in exactly n transitions. Each transition consumes a constant time be-
cause the time of each pushdown operation is limited by the maximal arity of
nodes. Occurrences of the subtree to find are matched by transitions leading to
the final states. ut
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Finally, we note that trees having structure pref(t) = (a1)n−1a0 represent
strings. The deterministic subtree matching PDA for such trees has the same
number of states and transitions as the deterministic string matching automaton
constructed for pref(t) and accepts the same language.

5. Multiple subtree matching

In this section we present a generalization of Problem 1. We deal with the con-
struction of subtree matching PDA over a finite set of trees. The whole concept
is demonstrated with an example.

Problem 2 (Multiple Subtree Matching). Given a tree t and a set of m trees
P = {t1, t2, . . . , tm}, find all occurrences of trees t1, t2, . . . , tm in tree t.

Definition 3. Let P = {t1, t2, . . . , tm} be a set of m trees and pref(ti), 1 ≤ i ≤ m
be the prefix notation of the i-th tree in P . Given an input tree t, a subtree
pushdown automaton constructed over set P accepts all matches of subtrees
t1, t2, . . . , tm in the input tree t by final state.

Similarly as in Section 4, our method begins with a PDA which accepts trees
t1, t2, . . . , tm in their prefix notation. The construction of this PDA is described
by Alg. 4

Algorithm 4. Construction of a PDA accepting a set of trees P = {t1, t2, . . . , tm}
in their prefix notation.
Input: A set of trees P = {t1, t2, . . . , tm} over a ranked alphabet A; prefix nota-
tion pref(ti) = a1a2 . . . ani , 1 ≤ i ≤ m, ni ≥ 1.
Output: PDA Mp(P ) = ({0, 1, 2, . . . , q},A, {S}, δ, 0, S, F ).
Method:

1. Let q ← 0 and F ← ∅
2. For each tree ti = ai1 ai2 . . . ai|ti|, 1 ≤ i ≤ m, do

(a) Let l← 0
(b) For j = 1 to |ti| do

i. If the transition δ(l, aij , S) is not defined then
A. Let q ← q + 1

B. Create a transition δ(l, aij , S)← (q, SArity(ai
j))

C. Let l ← q
ii. Else if transition δ(l, aij, S) is defined

A. l← p where (p, γ)← δ(l, aj , S)
(c) F ← F ∪ {l}

Example 8. Consider a set of trees P = {t1, t2, t3}, with their prefix notations
being pref(t1) = a2 a2 a0 a0 b0, pref(t2) = a2 b1 a0 a0 and pref(t3) = a2 a0 a0.
The deterministic PDA constructed by Alg. 4 accepting the prefix notation of
trees in P is Mp(P ) = ({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, A, {S}, δ1, 0, S, {5, 8, 10})),
where mapping δ1 is a set of the following transitions:
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0 1

2 3 4 5

6 7 8

9 10

a2|S 7→ SS

a2|S 7→ SS
a0|S 7→ ε a0|S 7→ ε b0|S 7→ ε

b1|S 7→ S

a0|S 7→ ε a0|S 7→ ε

a0|S 7→ ε

a0|S 7→ ε

Fig. 11. Transition diagram of deterministic PDA Mp(P ) accepting the trees with prefix
notation {a2 a2 a0 a0 b0, a2 b1 a0 a0, a2 a0 a0} from Example 8

δ1(0, a2, S) = (1, SS)
δ1(1, a2, S) = (2, SS)
δ1(2, a0, S) = (3, ε)
δ1(3, a0, S) = (4, ε)
δ1(4, b0, S) = (5, ε)
δ1(1, b1, S) = (6, S)
δ1(6, a0, S) = (7, ε)
δ1(7, a0, S) = (8, ε)
δ1(1, a0, S) = (9, ε)
δ1(9, a0, S) = (10, ε)

The transition diagram of deterministic PDA Mp(P ) is illustrated in Fig. 11.
Fig. 12 shows the sequence of transitions (trace) performed by deterministic

PDA Mp(P ) for trees t1, t2, t3 ∈ P in prefix notation. ut

The correctness of the deterministic PDA constructed by Alg. 4, which ac-
cepts trees in prefix notation, is described by the following lemma.

Lemma 2. Given a set of k trees P = {t1, t2, . . . , tm} and their prefix notation
pref(ti), 1 ≤ i ≤ m, the PDA Mp(P ) = ({0, 1, 2, . . . , n},A, {S}, δ, 0, S, F ), where
1 + min(|t1|, |t2|, . . . , |tm|) ≤ n ≤ 1 +

∑k
j=1 |tj |, constructed by Alg. 4 accepts

pref(ti), where 1 ≤ ti ≤ m.

Proof. By induction on the height of trees t1, t2, . . . , tm:

1. If trees t1, t2, . . . , tm have just one node, a1, a2, . . . , ak respectively, where
Arity(ai) = 0, for all 1 ≤ i ≤ k, then Height(ti) = 0, pref(ti) = ai, δ(0, ai, S) =
(i, ε) ∈ δ, (0, ai, S) `Mp(P ) (i, ε, ε) for all 1 ≤ i ≤ k and the claim holds.
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State Input Pushdown Store
0 a2 a2 a0 a0 b0 S
1 a2 a0 a0 b0 S S
2 a0 a0 b0 S S S
3 a0 b0 S S
4 b0 S
5 ε ε
accept
0 a2 b1 a0 a0 S
1 b1 a0 a0 S S
6 a0 a0 S S
7 a0 S
8 ε ε
accept
0 a2 a0 a0 S
1 a0 a0 S S
9 a0 S
10 ε ε
accept

Fig. 12. Trace of deterministic PDA Mp(P ) from Example 8 for trees in prefix notation
{a2 a2 a0 a0 b0, a2 b1 a0 a0, a2 a0 a0}

2. Assume that the claim holds for trees t11, t
1
2, . . . , t

1
p1
, t21, t

2
2, . . . , t

2
p2
, . . . , tk1 , t

k
2 ,

. . . , tkpk
where pi ≥ 1 for all 1 ≤ i ≤ k, Height(ti1) ≤ m, Height(ti2) ≤ m, . . .,

Height(tip) ≤ m, m ≥ 0, for all 1 ≤ i ≤ k.
We have to prove that the claim holds also for each tree ti, 1 ≤ i ≤ k, such
that
pref(ti) = ai pref(ti1)pref(ti2) . . .pref(tipi

), Arity(ai) = pi, and Height(ti) ≥
m+ 1:
Since δ(0, ai, S) = (i, Sp) ∈ δ, and (0, a pref(ti1)pref(ti2) . . . pref(tipi

), S)

`Mp(ti) (i, pref(ti1)pref(ti2) . . . pref(tipi
), Sp)

`∗
Mp(ti)

(ji, pref(ti2) . . . pref(tipi
), Spi−1)

`∗
Mp(ti)

. . .

`∗
Mp(ti)

(`i, pref(tipi
), S)

`∗
Mp(ti)

(f i, ε, ε)

the claim holds for that tree.

Thus, the lemma holds. ut

The deterministic subtree matching PDA for multiple tree patterns in prefix
notation can be constructed in a similar fashion to the subtree matching PDA for
a single pattern. First, the PDA accepting a set of trees in their prefix notations,
constructed by Alg. 4, is used to construct a nondeterministic subtree matching
PDA by Alg. 5. The constructed nondeterministic subtree matching PDA is then
transformed to the equivalent deterministic subtree matching PDA.
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0 1

2 3 4 5

6 7 8

9 10

a2|S 7→ SS

a2|S 7→ SS
a0|S 7→ ε a0|S 7→ ε b0|S 7→ ε

b1|S 7→ S

a0|S 7→ ε a0|S 7→ ε

a0|S 7→ ε

a0|S 7→ ε

a2|S 7→ SS
b1|S 7→ S
b0|S 7→ ε
a0|S 7→ ε

Fig. 13. Transition diagram of nondeterministic subtree matching PDA Mp(P ) con-
structed over trees in set P from Example 9

Algorithm 5. Construction of a nondeterministic subtree matching PDA for a
set of trees P = {t1, t2, . . . , tm} in their prefix notation.
Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an,
n ≥ 1.
Output: Nondeterministic subtree matching PDA Mnps(t) = (Q,A, {S}, δ, 0, S,
F ).
Method:

1. Create PDA Mnps(t) as PDA Mp(t) = (Q,A, {S}, δ, 0, S, F ) by Alg. 4.
2. For each symbol a ∈ A create a new transition δ(0, a, S) = (0, SArity(a)),

where S0 = ε.
ut

Example 9. The subtree matching PDA constructed by Alg. 2 over the set of
trees P from Example 8 is the nondeterministic PDA Mnps(P ) = ({0, 1, 2, 3, 4, 5,
6, 7, 8, 9, 10},A, {S}, δ2, 0, S, {5, 8, 10})), where mapping δ2 is a set of the follow-
ing transitions:

δ2(0, a2, S) = (1, SS)
δ2(1, a2, S) = (2, SS) δ2(0, a2, S) = (0, SS)
δ2(2, a0, S) = (3, ε) δ2(0, b1, S) = (0, S)
δ2(3, a0, S) = (4, ε) δ2(0, b0, S) = (0, ε)
δ2(4, b0, S) = (5, ε) δ2(0, a0, S) = (0, ε)
δ2(1, b1, S) = (6, S)
δ2(6, a0, S) = (7, ε)
δ2(7, a0, S) = (8, ε)
δ2(1, a0, S) = (9, ε)
δ2(9, a0, S) = (10, ε)
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0 0, 1

0, 1, 2 0, 3, 9 0, 4, 10 0, 5

0, 6 0, 7 0, 8

0, 9 0, 10

a2|S 7→ SS

a2|S 7→ SS

a0|S 7→ ε a0|S 7→ ε b0|S 7→ ε

b1|S 7→ S

a0|S 7→ ε a0|S 7→ ε

a0|S 7→ ε

a0|S 7→ ε

a0|S 7→ ε
b0|S 7→ ε
b1|S 7→ S

b0|S 7→ ε

a2|S 7→ SS

b0|S 7→ ε

b1|S 7→ S

b0|S 7→ ε
b1|S 7→ S

a2|S 7→ SS

a0|S 7→ ε
b1|S 7→ S

a2|S 7→ SS

a0|S 7→ ε
b0|S 7→ ε
b1|S 7→ S

a2|S 7→ SS

a2|S 7→ SS

b0|S 7→ ε
b1|S 7→ S

a2|S 7→ SS

b0|S 7→ ε
b1|S 7→ S

a2|S 7→ SS

a0|S 7→ ε
b0|S 7→ ε
b1|S 7→ S

b0|S 7→ ε
b1|S 7→ S

a2|S 7→ SSa0|S 7→ ε
b0|S 7→ ε
b1|S 7→ S

a2|S 7→ SS

Fig. 14. Transition diagram of deterministic PDA Mdps(P ) constructed over trees in set
P from Example 10

The transition diagram of nondeterministic PDA Mnps(P ) is illustrated in
Fig. 13. ut

Theorem 8. Given a set of m trees P = {t1, t2, . . . , tm} and their prefix nota-
tion pref(ti), 1 ≤ i ≤ m, the PDA Mnps(P ) constructed by Alg. 5 is a subtree
matching PDA for tree patterns t1, t2, . . . , tm.

Proof. According to Theorem 2, given an input tree t, each subtree in prefix no-
tation is a substring of pref(t). Since the PDA Mnps(P ) has just states and tran-
sitions equivalent to the states and transitions, respectively, of the Aho-Corasick
string matching automaton , the PDA Mnps(P ) accepts all matches of subtrees
t1, t2, . . . , tm in tree t by final state. ut

For the construction of deterministic subtree PDA, we use the transformation
described by Alg. 3 from Section 4.

The deterministic subtree matching automaton Mdps(P ) for a set of trees
P = {t1, t2, . . . , tm} with prefix notations pref(ti), 1 ≤ i ≤ k is demonstrated by
the following example.

Example 10. The deterministic subtree matching PDA for the set of trees P
from Example 8, constructed by Alg. 3 from the nondeterministic subtree match-
ing PDA Mnps(P ) from Example 9, is Mdps(P ) = ({[0], [0, 1], [0, 1, 2], [0, 3, 9],
[0, 4, 10], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10]},A, {S}, δ3, [0], S, {[0, 4, 10], [0, 5],
[0, 8], [0, 10]}), with its transition diagram illustrated in Fig. 14.
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We note that the deterministic subtree matching PDA Mdps(P ) has a very
similar transition diagram to the Aho-Corasick string matching automaton con-
structed for the strings representing the prefix notations of trees in set P from
Example 8 (see also [1, 9, 22]), as can be seen by comparing Figs. 4 and 14.

Fig. 15 shows the sequence of transitions (trace) performed by the de-
terministic subtree PDA Mdps(P ) for the input tree t having prefix notation
pref(t) = a2 a2 a2 a0 a0 a2 a2 a0 a0 b0 a2 b1 a0 a0. The final states are
{[0, 4, 10], [0, 5], [0, 8], [0, 10]}. Fig. 16 depicts the pattern subtrees from set P
and the input tree t. ut

State Input PDS
{0} a2 a2 a2 a0 a0 a2 a2 a0 a0 b0 a2 b1 a0 a0 S
{0, 1} a2 a2 a0 a0 a2 a2 a0 a0 b0 a2 b1 a0 a0 SS
{0, 1, 2} a2 a0 a0 a2 a2 a0 a0 b0 a2 b1 a0 a0 SSS
{0, 1, 2} a0 a0 a2 a2 a0 a0 b0 a2 b1 a0 a0 SSSS
{0, 3, 9} a0 a2 a2 a0 a0 b0 a2 b1 a0 a0 SSS
{0, 4, 10} a2 a2 a0 a0 b0 a2 b1 a0 a0 match SS
{0, 1} a2 a0 a0 b0 a2 b1 a0 a0 SSS
{0, 1, 2} a0 a0 b0 a2 b1 a0 a0 SSSS
{0, 3, 9} a0 b0 a2 b1 a0 a0 SSS
{0, 4, 10} b0 a2 b1 a0 a0 match SS
{0, 5} a2 b1 a0 a0 match S
{0, 1} b1 a0 a0 SS
{0, 6} a0 a0 SS
{0, 7} a0 S
{0, 8} ε match ε

Fig. 15. Trace of deterministic subtree PDA Mdps(P ) from Example 10 for tree t2 in prefix
notation pref(t) = a2 a2 a2 a0 a0 a2 a2 a0 a0 b0 a2 b1 a0 a0.

Theorem 9. Given a set of m trees P = {t1, t2, . . . , tm} over a ranked alphabet
A, the deterministic subtree matching PDA Mpds(P ) is constructed by Alg. 5
and 3 in time Θ(|A|s), requires Θ(|A|s) storage, where s =

∑m
i=1 |ti|, and its

pushdown store alphabet consists of one symbol.

Proof. Since the subtree matching PDA for multiple patterns is directly analo-
gous to the Aho-Corasick string matching automaton (this can be proved from
proof of Theorem 6), we can use the proof from [1] and [26]. ut

Theorem 10. Given an input tree t with n nodes, the searching phase of the
deterministic subtree matching automaton constructed by Algs. 2 and 3 over a
set of m trees P is O(n).

Proof. The searching phase consists of reading tree t once, symbol by symbol
from left to right. The appropriate transition is taken each time a symbol is read,
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a0 a0

a2 b0

a2

pref(t) = a2 a2 a0 a0 b0

post(t) = a0 a0 a2 b0 a2

a0

b1 a0

a2

pref(t) = a2 b1 a0 a0

post(t) = a0 b1 a0 a2

a0 a0

a2

pref(t) = a2 a0 a0

post(t) = a0 a0 a2

a0 a0

a0 a0 a2 b0 a0

a2 a2 b1 a0

a2 a2

a2

pref(t) = a2 a2 a2 a0 a0 a2 a2 a0 a0 b0 a2 b1 a0 a0

post(t) = a0 a0 a2 a0 a0 a2 b0 a2 a2 a0 b1 a0 a2 a2

Fig. 16. Pattern subtrees from set P and the input tree from Example 10 along with their
prefix and postfix notations

resulting in exactly n transitions. Each transition consumes a constant time be-
cause the time of each pushdown operation is limited by the maximal arity of
nodes. Occurrences of the subtree to find are matched by transitions leading to
the final states. ut

6. Subtree matching in postfix notation

In this section we show the dual principle for the postfix notation. Theorems
11 and 12 present the direct analogy of properties of the prefix and postfix
notations. Theorem 13 is analogous to Theorem 3.

Theorem 11. Given a tree t and its postfix notation post(t), all subtrees of t in
postfix notation are substrings of post(t).

Theorem 12. Let post(t) and w be a tree t in postfix notation and a substring
of post(t), respectively. Then, w is the postfix notation of a subtree of t, if and
only if ac(w) = 0, and ac(w1) ≤ −1 for each w1, where w = xw1, x 6= ε.

ComSIS Vol. V, No. N, Month 2010. 23

153
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0 1 2 3 4 5 6 7

a0|ε 7→ S
a1|S 7→ S
a2|SS 7→ S

a0|ε 7→ S a0|ε 7→ S a1|S 7→ S a2|SS 7→ S a0|ε 7→ S a1|S 7→ S a2|SS 7→ S

Fig. 17. Transition diagram of nondeterministic subtree matching PDA Mp(t1) for tree t1
in postfix notation post(t1) = a0 a0 a1 a2 a0 a1 a2 from Example 6

Theorem 13. Let M = ({Q,A, {S}, δ, 0, S, F ) be an input–driven PDA whose
each transition from δ is of the form δ(q1, a, S

i) = (q2, S), where i = Arity(a).
Then, if (q3, w, ε) `+M (q4, ε, S

j), then j = −ac(w) + 1.

From the above Theorems, we can easily transform Algorithms 1-5 to work
with the postfix notation of trees. The only change required is in the pushdown
operations. All transitions of the form δ(q, a, S) = (p, SArity(ai)) must be changed
to the form δ(q, a, SArity(ai)) = (p, S). The subtree matching PDA also requires
no initial pushdown store symbol, while after processing a valid tree in postfix
notation, the pushdown store contains a single symbol ’S’.

Fig. 17 illustrates the nondeterministic subtree matching PDA Mp(t1) con-
structed from the postfix notation of the tree from Example 6.

Fig. 18 illustrates the deterministic subtree matching PDA Mdps(t1) con-
structed from the postfix notation of the tree from Example 6.

[0] [0, 1] [0, 1, 2] [0, 3] [0, 4] [0, 5] [0, 6] [0, 7]
a0|ε 7→ S a0|ε 7→ S a1|S 7→ S a2|SS 7→ S a0|ε 7→ S a1|S 7→ S a2|SS 7→ S

a0|ε 7→ S
a1|S 7→ S a2|SS 7→ S

a2|SS 7→ S

a1|S 7→ S
a0|ε 7→ S

a1|S 7→ S

a0|ε 7→ S

a1|S 7→ S

a0|ε 7→ S

a1|S 7→ S

a1|S 7→ S
a0|ε 7→ S

a2|SS 7→ S
a2|SS 7→ S

a2|SS 7→ S
a2|SS 7→ S

Fig. 18. Transition diagram of deterministic PDA Mdps(t1) for tree t1 in postfix notation
post(t1) = a0 a0 a1 a2 a0 a1 a2 from Example 7
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7. Conclusion

We have introduced a new kind of pushdown automata: subtree matching PDAs
for trees in prefix and postfix notations. These pushdown automata are in their
properties analogous to string matching automata, which are widely used in
stringology [9, 10, 22, 26].

Regarding specific tree algorithms whose model of computation is the stan-
dard deterministic pushdown automaton, we have recently introduced princi-
ples of other three new algorithms. First, the tree pattern matching PDA [13,
21] which is an extension of the subtree matching PDA presented in this paper.
Second, the subtree and tree pattern PDAs, which represent a complete index
of a given tree by preprocessing it. Searching for all occurrences of a subtree or
a tree pattern of size m is then performed in time linear to m and not depending
on the size of the preprocessed tree [17, 19, 21]. These automata representing
indexes of trees are analogous in their properties to the string suffix and factor
automata [9, 10, 22, 26]. Third, a method on how to find all repeats of connected
subgraphs in trees with the use of subtree or tree pattern PDAs [21, 20]. More
details on these results and related information can also be found on [3].
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13. Flouri, T., Janoušek, J., Melichar, B.: Tree pattern matching by deterministic push-
down automata (2009), draft

14. Gecseg, F., Steinby, M.: Tree languages. In: Rozenberg, G., Salomaa, A. (eds.)
Handbook of Formal Languages, vol. 3 Beyond Words. Handbook of Formal Lan-
guages, pp. 1–68. Springer–Verlag, Berlin (1997)

15. Hoffmann, C.M., O’Donnell, M.J.: Pattern matching in trees. J. ACM 29(1), 68–95
(1982)

16. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, lan-
guages, and computation. Addison-Wesley, Boston, 2nd edn. (2001)
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