
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

INFORMATION EXTRACTION FROM THE WEB
USING VISUAL PRESENTATION ANALYSIS
EXTRAKCE INFORMACÍ Z WWW S VYUŽITÍM ANALÝZY VIZUÁLNÍ PREZENTACE

HABILITATION THESIS
HABILITAČNÍ PRÁCE

AUTHOR RADEK BURGET
AUTOR PRÁCE

BRNO 2020

Abstract

Today’s World Wide Web is a widely used platform for publishing and sharing information
from a wide range of areas. Due to the nature of the Web, information is typically presented
in loosely structured documents, limiting the ways in which it can be accessed to simple
browsing and reading documents. Computer support for information retrieval on the web
is then practically limited to keyword-based indexing and full-text search. Automatic ex-
traction of the information contained in web documents would allow its better accessibility
(for example by contextual search queries) or its integration with structured databases and
information systems. However, despite the progress made in this area in recent years, it
still represents a challenging research problem.

The main feature of the web that makes it especially difficult to automatically process
published information is that web documents are primarily designed to be interpreted by
human readers. This primary objective is also reflected in the technological implementation
of the documents that focuses on aspects of organization and visual presentation of infor-
mation without further computer processing in mind. Therefore, the documents typically
do not contain explicit information on the semantics of the data presented. In order to rec-
ognize and explicitly represent the information contained in documents, current approaches
are mostly based on the analysis of the document code using various combinations of manu-
ally defined and automatically inferred rules and heuristics. More recent research, however,
shows that visual cues provided to human readers can provide more reliable information
about the author’s understanding of the presented content also for computer processing.
For their use, however, it is necessary to develop comprehensive document models that
capture all aspects of content, its organization and presentation, as well as methods for
further analysis and interpretation of these models.

This thesis summarizes my research performed so far in the related sub-tasks of infor-
mation extraction from web documents based on the analysis of visual content presentation.
These tasks include document pre-processing depending on source format and implementa-
tion, detection of basic information blocks with page segmentation methods, overall logical
structure analysis, discovery of structured data records and the integration of the extracted
data to domain-focused applications. The focus on visual presentation analysis allows ap-
plication of the developed methods to heterogeneous document sets and differentiates our
approach from most state-of-the-art methods. As I believe, the approaches and methods
developed together contribute to efforts to make information buried in web documents
accessible to computer applications and ultimately to make it easier to find and use.

1

Acknowledgments

I would like to thank my co-authors for the excellent cooperation leading to the published
results: Jan Zelený, Martin Milička and especially Jaroslav Zendulka, who has been not
only a co-author but above all my valuable mentor throughout my academic career. I also
greatly appreciate the support of other members of the Department of Information Systems,
in particular Dušan Kolář and Tomáš Hruška, who supported me in my work. Last but not
least, I would like to thank my whole family for their support, love and patience.

2

Contents

1 Introduction 5
1.1 The Information Extraction Task in the Web Context 7
1.2 Structure of the Thesis . 8

2 Web Document Modeling 9
2.1 Related Work . 9
2.2 Visual Document Model . 11
2.3 Ontological Model . 12
2.4 Graph-Based Model . 14

3 Web Page Segmentation 17
3.1 State of the Art . 17
3.2 Hierarchical Page Segmentation . 19
3.3 Flat Segmentation Model . 20
3.4 Template-Based Segmentation of Large Sets of Pages 21

4 Classification and Extraction of Semantic Objects 25
4.1 Web Page Element Classification . 26
4.2 Main Content Extraction from Web Pages 29
4.3 Discovery of Logical Relationships among the Page Elements 31

5 Structured Record Extraction 35
5.1 State of the Art . 35
5.2 Heuristics-based Record Extraction . 37
5.3 Ontology-Based Record Extraction . 39
5.4 Graph-Based Record Extraction . 41

6 Conclusions 45

Bibliography 47

A Web Page Segmentation and Document Modeling 61
A.1 Layout Structure Detection . 61
A.2 Box Clustering Segmentation . 69
A.3 Accelerating the Process of Web Page Segmentation via Template Clustering 87

B Entity Classification and Semantic Object Extraction 109
B.1 Visual Area Classification . 109
B.2 Automatic Annotation of Online Articles 117

3

B.3 Modelling Visually Presented Element Relationships in Web Documents . . 143

C Extraction of Structured Records 163
C.1 Information Extraction from Web Sources Based on Multi-aspect Content

Analysis . 163
C.2 Matching Visual Presentation Patterns . 177
C.3 Integration of Unstructured Web Data Sources 197

D Software Tools 207
D.1 CSSBox HTML Rendering Engine . 207
D.2 pdf2dom PDF parser . 207
D.3 FitLayout Framework for Page Analysis . 208

4

Chapter 1

Introduction

World Wide Web is a popular information source widely used to publish information from a
wide range of areas. It is made up of a huge number of interlinked documents with different
content, structure and in diverse formats. Although it was originally designed mainly as a
technical and scientific document sharing platform [19], today’s web has much wider use.
In addition to providing a simple access to published documents, it is often used as an
interface for accessing different types of applications including online databases.

As given by the design and purpose of the web, a document represents the smallest
unit of information that can be uniquely identified by its URI. No further restrictions are
applied to the internal structure and contents of the documents themselves which allows
great flexibility in publishing any type of information. On the other hand, this feature
limits the access to the presented information to simple browsing using a web browser
and interpretation of the displayed documents by human readers. Existing search engines
facilitate the discovery of resources related to given keywords by analyzing the full text of the
documents and building their indexes; final consideration of the context of the keywords in
the discovered documents and finding the desired information in them still requires human
interpretation.

Given the vast and growing number of available documents and the amount of infor-
mation potentially available, this limitation in the information access was recognized soon
after the web started to be used in larger scale [13] and the possibilities of more formal
representation and access to the information on the web have been subject of research for
more than twenty years. Inspired by existing database systems, many query languages
have been proposed for querying the web [73, 79, 91]; however, the documents were still
just treated as unstructured objects organized in a graph [17]. The next step would be to
provide more fine-grained access to the information available inside the documents, which
would allow efficient indexing and querying the contained data and its integration with
other data sources such as structured databases and information systems. To achieve this
goal, it is necessary to acquire more structured and formal representation of the document
content. Due to the nature of current technology used in web design and common ways of
its use, this is still a challenging research problem.

Most of text documents on the web are written in the Hypertext Markup Language
(HTML); other document types such as PDF are commonly used as well. These documents
are often characterized as semistructured documents [17, 96] as opposed to unstructured
(plain) text documents at one side and fully structured data stored for example in rela-
tional databases on the other side [89]. Their text content is usually divided into smaller,
hierarchically organized logical blocks that represent the overall structure of the document.

5

However, this structure is very loose, it does not follow any pre-defined schema and it pro-
vides only a basic information about the individual parts of the content. This corresponds
to the primary objective of web design, which is making the presented information easily
understandable and usable for human readers. This is typically achieved by a carefully
designed visual organization and presentation of the contents on the displayed page. In
other words, the focus is given on presentational aspects of the contents and the document
creators very rarely provide any kind of explicit machine-readable annotations that would
allow the integration of the presented data to computer applications.

The research efforts in the area of web data source modeling and integration try to
bridge the gap between the human-centric, loosely structured web pages and the computer
applications (based on more structured data models) generally in two ways:

∙ The development of new technology that allows the document creators to include
semantic annotations about the contained information and its structure directly in
the documents. Several extensions of the HTML language have been proposed that
allow to link the elements of the document contents with different ad-hoc dictionaries
such as Microformats [67], HTML Microdata [23] or in a more general way with
semantic web resources using for example RDFa [61].

∙ The information extraction approach that consists on analyzing the state-of-the-art
input documents in the same form as they have been published on the web and trans-
forming them to a form that is more suitable for further processing and integration
to computer applications [74].

The first approach is technically cleaner and easier. However, it requires an active
involvement of the web document creators that are often not motivated to add work by
carefully adding additional semantic annotations to their documents. As the result, the
usage of semantic annotations is still not very widespread; the statistics from the Common
Crawl corpus1 show that some kind of semantic annotations was present in 37.1 % of web
pages (out of 2.1 billion pages contained in the data set) or 29.3 % of domains (out of 32.8
million) in November 2019 [21].

Therefore, information extraction from plain (mostly HTML) documents is most often
the only available option for accessing the contained data. Despite the long and extensive
research that has been devoted to the automation of this task, current practice in web
information extraction still consists mainly of creating specialized procedures (tradition-
ally called wrappers) [107]. These procedures are typically written in a general-purpose
programming language and tailored for a particular data source (a single web site or even
every document)2. This typically results in maintaining large sets of wrappers that must
be periodically updated manually as the source documents change and evolve.

Current research in this area (that is gradually cited in subsequent chapters) focuses
on the development of more general information extraction methods, that are not tightly
bound to a single input document and the way of its implementation. One of the possible
solutions is to focus on the visual organization and presentation of the content that is
provided by the document author to the document reader to facilitate understanding of
the content. As mentioned above, this is the primary goal of web design and is therefore

1http://www.commoncrawl.org/
2Let us mention for example the Apify service (https://apify.com/) as an example of a state-of-the

art approach used in large scale. It allows users (or domain experts) to create “scrapers” that are written
mostly in JavaScript separately for each specific web source and later executed for extracting the data.

6

http://www.commoncrawl.org/
https://apify.com/

given much more attention than the document code. In the same time, it must follow some
commonly accepted rules and patterns in order to be comprehensible to the target readers.
As such, visual presentation is a promising source of additional information about published
content that is potentially less volatile than the underlying document code and is therefore
applicable to larger heterogeneous sets of documents.

In order to use the visual presentation for information extraction, it is necessary to
develop methods and algorithms that analyze the complete available information in the
documents in order provide as accurate as possible estimate of the semantics of the individ-
ual parts of the document content. This information includes both the document code (the
implementation aspect) and the resulting visually presented contents of the document (the
result of the author’s intentions regarding the content presentation). Along with additional
background knowledge such as the knowledge of commonly used language and presentation
patterns and possibly knowledge of the subject domain, these methods may estimate the
probability that a human reader would assign a particular meaning to the given part of the
document. Depending on the particular task, this estimate can be made at different gran-
ularity levels, from identifying individual content blocks (such as the page header, footer,
navigation and main article) to recognizing structured data records and individual data
fields that may contain, for example, product or personal data. As a next step, related
parts of the document content may be transformed into a structured form and integrated
into other applications.

My research performed in collaboration with my colleagues that is summarized in this
thesis focuses on the related information extraction approaches with the ultimate goal of
making the information buried in countless diverse web pages available for different web
applications with as little human effort as possible. More specifically, all my research efforts
described further aim at automatically recognizing and extracting specific content from
web documents, which includes the main content of the page (as for example the published
articles) and, above all, structured data records. A common feature of my research in this
area is the emphasis on using available information about the visual presentation of content
in documents to achieve the greatest possible independence on the technical realization
and implementation details of the input documents. This makes the proposed methods
different from most already published works. Details, benefits of the proposed approaches
and comparison with the current state of the art are discussed in the individual chapters.

1.1 The Information Extraction Task in the Web Context
Information extraction (IE) as a general task is not specific for Web environment. It
has been extensively studied in the context of processing and understanding continuous
text documents in English and other human languages based mainly on natural language
processing methods (NLP) [41]. In the context of web documents, the NLP methods are
used as well as for example named entity recognition (NER) [29, 82]. However, compared to
plain text documents, the information extraction task from web (mainly HTML) documents
has certain specifics:

∙ HTML documents contain additional markup that divides the document to individ-
ual elements that are hierarchically organized [147]. A visual style may be defined
for the individual elements which allows to create a rich visual presentation of the
content. Similarly for PDF and other styled document formats, the content is divided
to separate parts with visual style assigned.

7

∙ Structured information on the web is typically not presented as a continuous text in
English or other language. Instead, a structured presentation using lists or tables is
more common [37, 60]. As the result, the content to be extracted is typically not
presented in full sentences and the advanced natural language processing methods
may not be entirely applicable.

On a closer look, the entire information extraction task from web documents involves a
number of separate research problems that include but are not limited to the following:

∙ Design of suitable models of the input documents that would allow to abstract from
irrelevant implementation-related details while preserving the important structure-
and presentation-related aspects of the documents.

∙ Analysis of the document structure that includes the discovery of separate content
blocks and their possible mutual relationships.

∙ Content classification for distinguishing the main content from auxiliary parts such
as navigation or advertisement or even for assigning more fine-grained roles to the
individual parts of the content.

∙ Discovery of repeating presentation or code patterns that may indicate regular data
records.

∙ Alignment of the assumed data records with existing data models in order to integrate
the extracted data into existing applications.

The order of these points corresponds to the usual way of processing web documents
when extracting specific information. First, the input documents must be represented by
models suitable for further processing. Subsequently, their overall structure is analyzed
and finally, the relevant parts or even individual data records are located and extracted. In
my research done so far, I have gradually dealt with all the mentioned problems, which is
reflected by the structure of this thesis.

1.2 Structure of the Thesis
The order of chapters corresponds to the individual document processing steps described
above. In chapter 2, new document models are introduced that allow capturing both the
document content and the information about its visual presentation. These models are later
used for subsequent steps of document processing. Section 3 focuses on page segmentation
which is an important document pre-processing step. In chapter 4, we discuss the methods
of classification and extraction of larger specific content object such as the main document
content (for example published articles) and its individual parts. Finally, chapter 5 is
devoted to the identification and extraction of fine-grained structured data records from
the documents. All sections provide a summary and context of the proposed methods and
achieved results. The most important part of the thesis is formed by journal and conference
papers in Appendices A to C. Appendix D describes the most important software tools
developed during the research mostly with the purpose of evaluation the proposed methods.

8

Chapter 2

Web Document Modeling

With a document model, we understand a representation of an input document suitable
for further analysis by information extraction methods. The choice of the model depends
on the types of information available in the input document and the methods of its further
processing.

Standard web pages are mostly created using some version of the Hypertext Markup
Language (HTML) [44] that allows to define the document content and its structure, which
includes the differentiation of basic document sections, headings, paragraphs and other
commonly used content parts. Visual presentation of the content is typically defined sep-
arately from the HTML code using Cascading Style Sheets (CSS) definitions [22]. Both
the HTML and CSS languages represent a formally defined web standard maintained by
the World Wide Web Consortium (W3C)1. For this reason, most existing information ex-
traction methods mentioned further assume HTML documents on their input and they use
document models that are HTML-specific.

Documents that cannot be easily represented or converted to HTML (such as complex
documents with other than web origin) may be available in other formats; the Portable
Document Format (PDF) [1] is often used for this purpose.2 Unlike HTML, PDF does
not explicitly describe the content structure; it focuses on a detailed representation of the
displayed or printed page at the printer instruction level and therefore, the reconstruction
of the complete content and its structure may be a challenging problem [60]. However, some
document models may be generalized even for PDF documents as we mention in section
2.4.

In this chapter, we describe the state-of-the-art, mainly HTML-specific models in section
2.1. In the next sections, we introduce advanced models that we designed for various
applications as a part of our research work.

2.1 Related Work

Early approaches to information extraction represent the documents as unstructured text
strings containing the document text combined with HTML markup [16, 113] or sequences
of tokens that represent the individual words and tags [36, 52, 63]. When using these flat
models, information extraction from web pages may be performed based on the recognition
of substrings or token sequences that are used for delimiting the relevant data fields in the

1https://www.w3.org/
2PDF is standardized as an ISO 32000-2 standard

9

https://www.w3.org/

source document. A set of such delimiters discovered for a particular document defines
a wrapper, which is a procedure that performs the extraction itself [78]. The delimiters
themselves may be discovered manually; however, most of the research work focuses on an
automatic inference of the wrappers from a set of sample documents in order to reduce
the labor intensity and increase their reliability. This approach is commonly referred to as
wrapper induction [52, 63, 78, 74].

The advantage of these simple models is that the input document may be processed
sequentially using simple algorithms with a very low time and space complexity. On the
other hand, HTML documents naturally exhibit a hierarchical structure that may be used
to provide an additional context to wrappers and increase the extraction precision [74].
Therefore, many wrapper induction approaches use hierarchical document models that
represent the nesting of HTML elements in the document code [37, 48, 74]. Currently,
almost all algorithms that expect HTML documents on their input use the Document
Object Model (DOM) as the document representation [90, 124, 105, 120]. DOM is a widely
used W3C standard that represents the HTML or XML documents as a tree of nodes
(objects with a standardized interface) that represent the whole document (the root node),
the individual HTML elements, their nesting and contents [65].

The code-oriented document representations (which means almost exclusively DOM in
current methods) present a solution that is standardized and widely implemented in web
browsers and other software tools and libraries. However, they describe the document
on the implementation level and although some rough estimate about the purpose of the
individual parts of the document may be made from the usage of certain HTML tags, the
HTML code itself actually does not contain a complete information about how the content
would be finally presented to the user [72, 135, 145]. To get a full picture, the code must be
interpreted by a web browser while considering additional information such as the attached
CSS definitions [14]. Since the visual presentation is an important cue provided to the reader
that is potentially useful for the approximation of the document structure, a logical next
step in document modelling is to enrich DOM with additional information about the visual
style of the individual elements which typically includes font properties, colors, element
sizes and spacing [9, 14, 34, 49, 84, 85, 129, 135]. This approach preserves the simplicity of
DOM while still limiting the applicability of the methods to HTML documents only.

The opposite approach is to represent the input documents as images, which allows to
extend the set of processed documents to any format. Image processing algorithms may be
later used for a precise segmentation documentation such as edge detection and Bayesian
methods [40, 39] or graph grammars [72] applied on web pages or even convolutional neural
networks [136] applied on PDF documents.

In order to combine the simplicity of the hierarchical DOM model that allows a direct
access to the document text content and its structure with the possibility of using a complete
visual information, we have proposed more abstract document models that are described
in the following sections. Our models represent the document content as a tree or a generic
graph of abstract data structures that are not directly bound to the document code. This
allows to represent input documents in any format; however, we assume mainly HTML
and PDF documents in the applications presented further. Similar approach has been later
used by other authors for processing PDF documents as well [54, 106].

10

2.2 Visual Document Model
Our proposed visual model of documents [25, 26, 31] is used mainly in the page segmentation
methods for representing both the input document as well as the result of the segmentation.
Details are discussed in Chapter 3. Another application is the extraction of semantic objects
described in Chapter 4. We have designed the model with the following goals in mind:

∙ Technology independence – the model should be independent on the technology used
for implementing the source documents (for example HTML or PDF) and the way of
its usage (for example the particular choice of used HTML tags).

∙ Representation of complete visual information – the model should represent the doc-
ument content together with the complete available information about the visual
presentation of the individual parts of the content such as the text size, position,
fonts, colors and all available visual properties.

∙ Extensibility – as mentioned above, the model is used in different stages of the doc-
ument processing to represent both the input document as well as the results of the
segmentation and/or object classification. It is therefore assumed that during the
document processing, new derived information is added to the model.

Unlike the code-oriented models mentioned in the previous section, the goal of the visual
model is to describe how the information is visually presented to the user rather than how
it is implemented using a particular markup language.

The model consists of two levels of abstraction:

1. Box model – represents a general rendered page on the lowest level of abstraction. The
model itself is independent on the input document format but it is directly created
by rendering the page by the corresponding (HTML or PDF) renderer.

2. Visual area model – describes the page layout – the division of the page to individual,
visually separated and potentially nested visual areas. It represents the product of
page segmentation as described later in chapter 3.

The box model represents the document contents as a set of boxes:

𝐵 = {𝑏1, 𝑏2, 𝑏3, . . . 𝑏𝑛} (2.1)

where each box represents a rectangular area in the rendered page with a given position and
size containing an arbitrary part of the document content. For HTML documents, the box
creation is defined in detail by the Cascading Style Sheets specification [22]. Typically, a
box is created for each visible HTML element; some elements may generate multiple boxes.
For PDF documents, the boxes are reconstructed by interpreting the corresponding PDF
operators as defined in the specification [1] (e.g. a sequence of a Tf operator for setting the
font properties and a Tj operator for displaying a text string with the selected font).

A box is then defined as a tuple:

𝑏 = (𝑡𝑦𝑝𝑒, 𝑥, 𝑦, 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡, 𝑏𝑔𝑐𝑜𝑙𝑜𝑟, 𝑓𝑜𝑛𝑡𝑠𝑖𝑧𝑒, 𝑤𝑒𝑖𝑔ℎ𝑡, 𝑠𝑡𝑦𝑙𝑒, 𝑏𝑜𝑟𝑑𝑒𝑟, 𝑡𝑒𝑥𝑡) (2.2)

where 𝑡𝑦𝑝𝑒 denotes the type of content (text, graphics or a general HTML element), 𝑥, 𝑦,
𝑤𝑖𝑑𝑡ℎ and ℎ𝑒𝑖𝑔ℎ𝑡 define the position and the size of the box in the rendered page in pixels.

11

The background color (𝑏𝑔𝑐𝑜𝑙𝑜𝑟) is represented as a RGB value or a special 𝑡𝑟𝑎𝑛𝑠𝑝𝑎𝑟𝑒𝑛𝑡
value, if there is no background color defined for the given box. The 𝑤𝑒𝑖𝑔ℎ𝑡 and 𝑠𝑡𝑦𝑙𝑒
properties have the value of 0 for normal font and 1 for bold or italic font respectively.

Very often, several boxes overlap in the page in order to create a more complex visual
structure. For example, a box creates a rectangular area filled with a background color and
other boxes create the text displayed inside of the area. Therefore, we define a box tree that
represents the visual nesting of the boxes in the rendered page as follows:

𝑇𝑏 = (𝐵,𝐸𝑏) (2.3)

where 𝐵 is the set of boxes defined in (2.1) and 𝐸𝑏 is the set of edges that represent the
nesting; ∀𝑏1, 𝑏2 ∈ 𝐵 : (𝑏1, 𝑏2) ∈ 𝐸𝑏 iff 𝑏2 is visually enclosed in 𝑏1 (given their coordinates,
widths and heights). The root node of the resulting tree corresponds to the whole rendered
page area and each parent box encloses all its descendant boxes.

The visual area model is built from the box model using page segmentation. Its structure
is similar to the box model but unlike the box model that describes the content and its visual
properties as a direct result of the document rendering, the visual area model represents the
division of the page to abstract regions created by visual means – visual areas. Similarly
to a box, each visual area is defined as a tuple:

𝑎 = (𝑥, 𝑦, 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡, 𝑏𝑔𝑐𝑜𝑙𝑜𝑟) (2.4)

where 𝑥, 𝑦, 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡 and 𝑏𝑔𝑐𝑜𝑙𝑜𝑟 have the same meaning as for boxes (2.2). The whole
visual area model is hierarchically organized, and it is also defined as a tree that represents
the visual nesting of the areas:

𝑇𝑎 = (𝐴,𝐸𝑎) (2.5)

where 𝐴 = {𝑎1, 𝑎2, 𝑎3, . . . 𝑎𝑚} is the set of all visual areas detected in the page, and 𝐸𝑎 is
the set of edges; ∀𝑎1, 𝑎2 ∈ 𝐴 : (𝑎1, 𝑎2) ∈ 𝐸𝑎 iff 𝑎2 is visually enclosed in 𝑎1.

The proposed models provide a format-independent description of the source document
and are used for representing the document content during different phases of page segmen-
tation (as described in chapter 3) and later for further classification of the individual page
objects (see chapter 4).

More details on the visual document model and its applications can be found in Ap-
pendix A.1 and Appendix B.2.

2.3 Ontological Model
The visual document model presented in the previous section is based on an abstract
definition of the boxes, areas and their hierarchy that has been later implemented3 for the
applications mentioned above. Such model implementations (in our case the corresponding
data structures in Java) are used internally by the respective software tools and since they
have no explicit representation, they cannot be easily shared among software components.
This makes it impossible to easily reuse the document analysis and preprocessing methods
for other applications.

The ontological model that we proposed in [93, 95] provides an explicit representation of
the visual document model that is based the RDF framework [132] and a set of ontologies
specified in the OWL language [99] that define a shared vocabulary for the RDF data.

3As a part of our FitLayout framework described in Appendix D.3.

12

HTML + CSS

*.pdf

*.doc

*.docx

.

.

.

Input document

Document rendering
(format-specific)

HTML Renderer

.

.

.

a:establishes
a:Area

RDF Repository

Model building

Vizualization
visual editor

Box
model

Visual
classification

c:hasTag

Domain
ontology
mapping

Extracted
information

Text
classification

Custom
algorithms

Page
segmentation

c:hasTag

Task
specification

PDF Renderer

Visual area
model

Figure 2.1: General architecture of a document processing system based on the ontological
model with a central RDF repository [95].

The RDF formalism allows representation of different relationships among the individual
document parts and their features using a generic graph structure. The goals of the model
design are the following:

∙ To allow sharing the obtained document models between the document preprocess-
ing algorithms on the one hand (such as the page segmentation and layout analysis
algorithms) and specific applications such as document indexing or classification on
the other hand in a standard way.

∙ To allow semantic reasoning and querying the document model using the existing
software tools and languages such as SPARQL [108] and SWRL [64] in order to infer
new knowledge about the document content.

∙ To simplify the integration of the document content with existing knowledge bases
such as DBPedia [29] or creating new datasets with a given target RDF schema [94].

The chosen RDF technology makes the model very flexible and extensible and moreover,
it also allows to use existing software tools for querying the modeled data and reasoning.
The assumed architecture of a document processing system based on the proposed onto-
logical model is shown in figure 2.1. We assume a central RDF repository that stores the
RDF graph representing the document model. The document may be processed in a vari-
able number of steps. The first step typically involves document rendering; the obtained
box model is represented as an RDF graph and stored in the repository. Subsequently,
page segmentation step may follow that takes the box model as its input and produces a
visual area model, that is represented as an RDF graph again and it is added to the central
repository alongside the box model. The remaining steps (e.g. the content classification
steps) are application-specific and they may add any additional RDF triplets providing ad-
ditional information about the document content elements obtained in the respective steps
(see section 5.2 for an example of its application for a structured record extraction task).

The generic document model discussed in this section covers the page rendering and
page segmentation steps that are commonly used in all the document processing tasks

13

Rectangle

fontSize

fontStyle

fontVariant

fontWeight

Page

b:belongsToheight widthpositionX

positionY

underline

Box

rdfs:subClassOf

ContainerBox ContentBox

rdfs:subClassOf rdfs:subClassOf

sourceUrl

backgroundColor

b:isChildOf

Border

Area

a:isChildOf

Image

ContentObject

rdfs:subClassOf

b:containsObject

imageUrl

color

A) B)

text

Tagb:hasLeftBorder
b:hasRightBorder
b:hasTopBorder

b:hasBottomBorderlineThrough

name

type

support

a:hasTag

a:establishes

rdfs:subClassOf

objectInformation

fontFamily

LogicalArea text

a:consistsOf
a:hasTag

a:isSubordinateTo

Figure 2.2: A) Box tree ontology B) Visual area ontology

discussed in further chapters. We define two ontologies that correspond to the two levels
of document description introduced in Section 2.2:

1. Box tree ontology4 – describes the box model of the given document that represents
the result of the page rendering.

2. Visual area ontology5 – describes the visual area model (page layout) as a product of
page segmentation.

Both ontologies define the basic concepts and properties that are used in the document
description as shown in Figure 2.2. The most important concepts are Box that corresponds
to the box definition (2.2) and Area corresponding to the visual area definition (2.4). More-
over, the visual areas may be assigned different tags that may be used for the classification
of the individual parts of the document content and its integration to existing datasets as
discussed in section 5.2.

More details about the ontological model can be found in Appendix C.1. Formal defini-
tions of the box tree ontology and the visual area ontology are available6 in our FitLayout
framework described in Appendix D.3.

2.4 Graph-Based Model

Although the visual and ontological models presented in the previous sections are inde-
pendent on document format, they still rely on the content structure information provided
in the source documents. For HTML documents, this includes mainly the division of the
content to individual HTML elements that are treated as atomic content units. For some
applications, such granularity may not be sufficient because the extracted information may
only form a part of the content element [30]. For PDF documents, this division may not be

4URL prefix: http://fitlayout.github.io/ontology/render.owl#
5URL prefix: http://fitlayout.github.io/ontology/segmentation.owl#
6https://github.com/FitLayout/FitLayout.github.io

14

https://github.com/FitLayout/FitLayout.github.io

even available at all; their content presentation is often described by individual words or
even characters. Therefore, for the purpose of structured records extraction, we have pro-
posed a graph-based model of the content. Its goal is to capture the possibly relevant parts
of the document contents and their mutual relationships based on their visual presentation
independently on the content division provided in the document code.

The document content model is defined as a graph

𝐷𝑐 = (𝐶,𝐸) (2.6)

where 𝐶 is a set of text chunks that represent the relevant content parts together with their
visual formatting and form the vertices of the graph; 𝐸 ⊆ 𝐶 × 𝐶 is a set of graph edges,
that represent the relationships among the chunks expressed by the document layout.

With a text chunk, we understand any substring of the document text, that possibly
represents a value to be extracted. The discovery of the chunks depends on the target appli-
cation domain; they may be identified for example by regular expressions, NER classifiers
or other means as discussed in section 5.4. A chunk is defined as a tuple

𝑐 = (𝑡𝑐, 𝑠𝑐, 𝑝𝑐) (2.7)

where 𝑡𝑐 is the text of the chunk (the actual substring of the document text), 𝑠𝑐 =
(𝑓𝑠, 𝑤, 𝑠𝑡, 𝑐, 𝑏𝑐) represents the visual style of the text and 𝑝𝑐 where 𝑓𝑠 is the average font
size, 𝑤 ∈ [0, 1] is the average font weight from 0 (normal font) to 1 (bold font), 𝑠𝑡 ∈ [0, 1] is
the average font style (1 for italic font, 0 for regular font) and 𝑐 and 𝑏𝑐 are the computed
foreground and background colors of the displayed chunk. 𝑝𝑐 = (𝑥, 𝑦, 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡) repre-
sents the 𝑥 and 𝑦 coordinates of the chunk in the page and its width 𝑤 and height ℎ in the
rendered page.

The set of edges 𝐸 of the graph represents relationships between pairs of chunks. Given
the set 𝐶 of discovered chunks, we analyze all the chunk pairs (𝑐1, 𝑐2) ∈ 𝐶 × 𝐶 and we
investigate whether there is a relationship between 𝑐1 and 𝑐2 given by their mutual positions
(𝑥1, 𝑦1) and (𝑥2, 𝑦2). We have identified several spatial relationships that are interesting
for further analysis. Each relationship is represented by a relation 𝐸𝑥 ⊆ 𝐶 ×𝐶 and we say
that there is a spatial relationship 𝑥 between 𝑐1 and 𝑐2 iff (𝑐1, 𝑐2) ∈ 𝐸𝑥. For the purpose of
structured record extraction, we consider the relationships such as onRight, below, sameLine
and several more as described in section 5.3.

The resulting graph model represents the page content and its layout in a way that
is completely independent on the document format and the particular implementation in-
cluding the division of the content to elements. In the same time, the graph representation
is suitable for further analysis for example by graph matching algorithms as discussed in
section 5.4.

More details about the document graph model and its usage for structured record ex-
traction can be found in Appendix C.3.

15

16

Chapter 3

Web Page Segmentation

An elaborate visual organization of the content is a typical feature of web pages. In addition
to the main content that corresponds to the primary purpose of the page, the web documents
typically contain additional information of different kinds such as navigation (menus), links
to related sources, headers and footers or advertisement [10, 27, 40, 46, 139]. Even the
main content of the page may be divided into multiple thematically different units, such as
different articles published on one page of a news portal. This inhomogeneity significantly
complicates accessing the page content by non-visual means [40] or mobile devices [38],
document indexing [115, 139], classification [70], duplicate content detection [35], content
integration [25, 106, 120, 131] and other tasks of document content processing.

The goal of web designers is to provide enough visual hints about the actual content
organization, which makes it trivial for a human reader to recognize the different content
units and their purpose. However, the content division to semantic blocks is almost never
explicitly annotated in the document code [5, 20]. The task of web page segmentation is
therefore to analyze the input document and the contained hints intended for the readers
and to provide an explicit decomposition of the page to separate content blocks. This
is regarded an essential task in web information mining [20]. In our work, we use page
segmentation mainly as a document pre-processing step for the classification and extraction
of semantic page objects (as discussed in Chapter 4) and structured records extraction
(Chapter 5). Due to specific requirements of the individual applications, we have developed
two new methods that meet these requirements and can be easily integrated with the
subsequent steps. These methods are introduced in sections 3.2 and 3.3. In section 3.4,
we discuss the possibility of efficient segmentation of large sets of documents based on the
detection of shared templates.

3.1 State of the Art
Since page segmentation represents usually the first step in document processing, it greatly
depends on the used document model as discussed in Chapter 2. From this point of view,
existing segmentation methods may be divided to several categories [47]:

∙ DOM-based approaches that directly process HTML documents represented as a DOM
and attempt to discover a mapping between some HTML elements or their sequences
and visually separated blocks that appear in the resulting page. Since DOM actually
models the code structure rather than the displayed page (as discussed in Section 2.1),
DOM-based approaches typically rely on different heuristics regarding the common

17

usage of individual HTML elements and repeating code patterns in the documents in
order to estimate the role of the element in the resulting visual presentation [62, 35,
110, 66, 123, 124, 127, 134].

∙ Text-based approaches that focus on the properties of the text contained in different
HTML elements while analyzing the DOM. Due to the hierarchical structure of the
DOM, it is possible to find subtrees containing text with consistent properties such as
text density or frequency of specific characters (for example punctuation characters).
Such DOM subtrees then represent the discovered page segments [24, 46, 70, 69, 120].

∙ Vision-based approaches that employ page rendering in order to obtain additional
information about the visual presentation of the individual content elements that is
not directly available in DOM. The usage of this visual information spans from a
simple extension of the DOM-based heuristics by considering the visual properties of
the nodes [34] up to purely graphical representation of the rendered page [40] as we
discuss below in more detail.

∙ Hybrid approaches that combine the DOM-based and vision-based ones [53, 62, 104,
105] or even include text-based approaches [114] in order to obtain higher segmenta-
tion accuracy or for specific applications.

Additionally, page segmentation methods may be divided into two groups based on
the segment analysis direction: In top-down approaches [3, 34, 127, 150], the algorithm
starts with a single segment representing the whole page and tries to divide the segments
recursively until a predefined segmentation granularity is reached. In contrary, the bottom-
up approaches [10, 35, 70] start with the smallest atomic units detected in the page and
build the hierarchy of segments by grouping them into larger units while considering their
visual, textual or DOM properties.

DOM-based and text-based approaches are typically very fast because no complex docu-
ment preprocessing (such as style analysis or rendering) is required. However, their accuracy
greatly depends on the code properties and the used heuristics [144]. For both the web page
designers and readers, the visual information plays an important role in expressing the ac-
tual structure of the document. Therefore, the effort of many authors focuses on exploiting
the visual information in page segmentation methods.

One of the first and definitely the most popular vision-based algorithm is VIPS [34]. It
segments the page based on the detection of visual separators represented by the content el-
ements placed in the rendered page. Although the visual features of the individual elements
(such as font sizes and colors) and their positions in the rendered page are considered, the
segmentation itself depends on a number of heuristic rules that are based on the underlying
DOM and expected usage of particular HTML elements. Therefore, VIPS is sometimes
considered a DOM-based method with visual cues [145]. Newer methods extend VIPS by
adding new heuristics that reflect the evolution of HTML [5, 3] (new and deprecated tags)
or text-related heuristics [80, 150]. Modern vision-based segmentation approaches avoid
the heuristic rules completely and replace them by general graph metrics that include the
visual properties of the DOM elements [10], analysis of the spatial relationships between
DOM elements [85] or the visual similarity and distance of the rendered elements [135, 145].

While the above-mentioned approaches still rely on the DOM representation of the
source document, a few vision-based approaches use entirely graphical representation of
the input document that allows to abstract from the HTML-related implementation details.

18

The segmentation then consists of the discovery of graphical separators in the page image.
This may be achieved by employing edge detection algorithms [40], Hough transform [129]
or a recognition of atomic graphical objects and their grouping [72].

In the following sections, we briefly describe our contribution to the range of page
segmentation methods. Main motivation of our research presented in the sections below is
to achieve the independence on the document format and implementation, which includes
avoiding the usage of DOM for the input document representation and in the same time,
to avoid the complexity of the image processing methods. In Section 3.2, we propose a
method based on hierarchical grouping of abstract content boxes and in Section 3.3, a
non-hierarchical flat model is used together with box clustering methods.

3.2 Hierarchical Page Segmentation

Our page segmentation algorithm used in [25, 26, 31] is built upon the visual page model
introduced in section 2.2. It takes the box tree 𝑇𝑏 = (𝐵,𝐸𝑏) (2.3) as its input and builds an
area tree 𝑇𝑎 = (𝐴,𝐸𝑎) (2.5) in a bottom-up manner in the following steps [26]:

1. Extraction of the smallest visual areas from the box tree. For each box 𝑏 ∈ 𝐵 that
is visible in the rendered page, we create a basic visual area 𝑎 with the same position
and size as the respective box in the source page. The box is considered visible if it
contains a non-empty content (text or image) or it has a background color different
from its parent box or a visible border. By applying this process recursively on the
input box tree from the root node to its leaf nodes, we obtain a tree of basic areas 𝑇𝑎.

2. First clustering phase. We detect groups of areas in 𝑇𝑎 that share the same parent
area and they are not visually separated by different background color or a visible
border. Such areas are joined into a single one. Optionally (depending on the target
application), it may be required that the joined areas share the same font size, weight
and style. This step represents the detection of atomic content blocks (for example
text paragraphs) that consist of several boxes in 𝑇𝑏.

3. Second clustering phase. We look for groups of visual areas that are not separated by
visual separators, but they are delimited with other visually separated areas around.
For every non-leaf area 𝑎 in 𝑇𝑎, we first detect the visual separators between its child
areas that may be created by visible box borders or rivers of white space as defined
in [34]. Then, we try to find the largest new rectangular covering areas that cover
multiple child areas of 𝑇𝑎 and in the same time, they don’t cover any visual separators.
When found, a new covering area 𝑎𝑐 is inserted into 𝑇𝑎 as a child node of 𝑎 and a
parent area of all the covered areas. Then, the whole process is applied recursively.

In order to detect the visual separators and the covering areas, we use an auxiliary
structure of topographical grid 𝑔 which is built for every non-leaf area 𝑎 in 𝑇𝑎. It represents
mutual positions of the child areas of 𝑎 as illustrated in figure 3.1.

The details of our hierarchical bottom-up segmentation method can be found in Ap-
pendix A.1 and Appendix B.2.

19

1
2

2 3

3
4
5
6
7

1 4 5 6 7 8 9 10

Figure 3.1: Mutual positions of the areas in a grid [31].

3.3 Flat Segmentation Model
The segmentation method described in the previous section (as well as most of the above-
mentioned vision-based methods) produces a hierarchy of areas represented by a tree that
models the nesting of the detected visual segments. This corresponds to the usual organi-
zation of the page content as it is expected to be perceived by human readers. However,
for many applications, the complete hierarchy of the detected segments is not useful; only
the leaf areas of the area tree are used because they correspond to the segments of the
expected granularity [28, 35, 94, 106]. Based on this observation, we have developed a
new Box Clustering Segmentation method (BCS) [144], that produces a flat model – a list
of detected visual segments of desired granularity instead of a hierarchical model. The
flat segmentation model allows to avoid repeated iterative merging of the visual areas and
re-calculation of visual separators, which significantly reduces the time complexity of the
whole segmentation process.

Simultaneously, we strictly avoid using DOM and the HTML-based heuristics, in the
BCS method. We use a purely visual representation of the documents using the visual
box model (similarly to [40, 129]) and our hierarchical segmentation method mentioned
in section 3.2. On the other hand, BCS does not include an explicit detection of visual
separators which makes the approach closer to the Web Content Clustering [10].

The whole segmentation process consists of the following steps:

1. Box extraction – we render the page and create the Box model as defined in section
2.2. Then, we choose the leaf boxes that represent a visible text or image in the
rendered page. We obtain a set 𝐵 of content boxes in the page. For each box 𝑏 ∈ 𝐵,
we compute its color, position and size.

2. Area graph creation – we consider all pairs (𝑏1, 𝑏2) ∈ 𝐵×𝐵 and based on their mutual
positions, we check whether 𝑏1 and 𝑏2 are horizontally or vertically aligned so that we
can say that 𝑏1 is above (𝑎), below (𝑏), to the right (𝑟) or to the left (𝑙) of 𝑏2. For the
box pairs that are aligned, we compute their absolute pixel distance 𝑎𝑏𝑠(𝑏1, 𝑏2) in the
corresponding direction. Then, we may define a direct neighborhood 𝑁𝑏 of a box 𝑏 as a
set of boxes 𝑏𝑥 ∈ 𝐵 for which 𝑎𝑏𝑠(𝑏1, 𝑏𝑥) is minimal for some of the four directions (𝑎,
𝑏, 𝑟 or 𝑙). As the result, we obtain a graph of boxes and their direct neighborhoods.

3. Box clustering – based on several box similarity metrics described below, we try to
find a set 𝐶 of clusters that contain the most similar boxes. The process starts with

20

a set of initial clusters formed by pairs of the most similar neighboring boxes and
subsequently, new boxes are incrementally added to their adjacent clusters in the
order of their similarity with the remaining boxes in the cluster. The cluster creation
is finished when the similarity of all the remaining boxes in the direct neighborhood
of the cluster is lower than a predefined threshold 𝐶𝑇 (clustering threshold).

For the clustering step, we define an overall similarity of two boxes 𝑏𝑠𝑖𝑚(𝑏1, 𝑏2) where
𝑏1, 𝑏2 ∈ 𝐵 that is defined as an average value of the following three similarity metrics:

∙ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑏1, 𝑏2) – a relative distance between the boxes within their direct neighbor-
hoods.

∙ 𝑠𝑖𝑚_𝑠ℎ𝑎𝑝𝑒(𝑏1, 𝑏2) – the similarity of the box shapes that includes the size similarity
𝑠𝑖𝑧𝑒(𝑏1, 𝑏2) and aspect ratio similarity 𝑟𝑎𝑡𝑖𝑜(𝑏1, 𝑏2).

∙ 𝑠𝑖𝑚_𝑐𝑜𝑙𝑜𝑟(𝑏1, 𝑏2) – color similarity of the two boxes computed from the values of the
color channels in the RGB model.

The similarity 𝑐𝑠𝑖𝑚(𝑐, 𝑏) of a cluster 𝑐 ∈ 𝐶 and a box 𝑏 ∈ 𝐵 is later computed based
on the similarity of the boxes that are already contained in the cluster 𝑐 with the box 𝑏.
The values of the 𝑏𝑠𝑖𝑚 and 𝑐𝑠𝑖𝑚 similarity functions range from 0 to 1 and they are used
for creating the initial clusters and selecting new boxes for the addition to the clusters
respectively. Simultaneously, the possible overlaps among the clusters and/or unclustered
boxes must be considered as overlaps among the detected clusters are not permitted.

We evaluated the proposed segmentation algorithm on a set of 2400 web pages of differ-
ent types (e.g. complex index pages, article pages, etc.) and we computed the segmentation
accuracy by comparing the results with reference results obtained by manual annotation of
the pages by three independent volunteers. Additionally, we have compared the segmenta-
tion accuracy and the performance of the BCS algorithm with the reference VIPS algorithm.
The results show that our algorithm is almost 90 % faster than the reference algorithm and
the segmentation accuracy is between 47 % and 133 % of the reference algorithm accuracy
depending on the page type.

The detailed description of the BCS method and its experimental evaluation can be
found in Appendix A.2.

3.4 Template-Based Segmentation of Large Sets of Pages
The vision-based methods allow to achieve greater accuracy of page segmentation at the
cost of significantly more complex page processing that includes the acquisition of additional
data files (mainly referenced style sheets) and complete page rendering. Required time for
segmentation may span from 15 ms to 700 ms for BCS and even more for VIPS and other
methods [144], which may be acceptable for processing single pages but it makes the meth-
ods hardly applicable to large web sites containing hundreds or thousands of documents.
Therefore, in [141, 143], we have proposed an optimization approach for page segmentation
based on re-using the segmentation results for complete sets of documents coming from the
same source instead of performing the segmentation individually on each of them.

Our Cluster-based page segmentation (CBS) approach is based on the observation that
in modern web design, the documents contained in large web sites are almost never created
independently on each other. Most often, they are generated using pre-defined templates

21

Figure 3.2: The cluster-based page segmentation approach [143].

that describe the basic organization of the page which is later filled with the content specific
for the individual documents [18]. The problem of template detection itself (i.e. to distin-
guish the part of the page generated from the template from the main content) is a separate
research area which is closely related to page segmentation [57, 126, 125]. However, in the
CBS approach, our goal is different: We only need to recognize pages generated from the
same template in order to reuse the segmentation result for the whole set of pages.

The basic idea behind our approach is shown in figure 3.2. We assume that the pages
coming from the same source (e.g. a website) may be grouped to a few clusters that
correspond to different templates used within the source web site. For each processed page,
we first start with a clustering step, which results in the decision whether the page belongs
to an existing page cluster, i.e. it corresponds to an already known page template. If
no such cluster is found, the page is segmented by a chosen segmentation method and
the segmentation result is stored together with the new page cluster created. On the
contrary, when the page belongs to an existing page cluster, the stored segmentation result
is just applied to the new pages by finding a mapping between the DOM nodes of the
already segmented page and the newly processed one. This makes the template-based
segmentation independent on the actual segmentation method used; it just provides an
additional optimization layer on top of the segmentation itself.

The discovery and matching of the page clusters is based on a DOM-to-DOM compar-
ison using a modified Common Paths Distance algorithm [57]. Each cluster is then rep-
resented by a cluster representative, which is a structure that contains a simplified DOM
of a representative page of the cluster. It contains only the element nodes that are the
most important for further comparison with newly processed pages. The expected number
of page clusters (individual templates) that may be discovered within a single web site is
quite low; according to our experiments [143], it does not exceed 50 clusters even for large
web sites. Figure 3.3 shows the dependency of the number of discovered clusters on the
number of processed pages for several large web sites. Since the number of clusters is low
and the comparison method is fast enough, any newly processed page may be compared
with all the already existing cluster representatives sequentially in order to decide whether
it belongs to an existing cluster or a new cluster should be created.

The mapping of the already segmented pages to the newly processed ones is also per-
formed on the DOM level based on our previous work published in [142]. It is based on
finding common subtrees in both DOM trees with an assumption that the order of child
nodes of any parent node in the DOM tree must be preserved if the page layouts are to

22

10

20

30

40

50

60

70

80

90

100

100 200 300 400 500 600 700 800 900 1000

Te
m

pl
at

es
 fo

un
d

Pages processed

businessinsider.com
e15.cz

gizmodo.com
idnes.cz

slashdot.org
telegraph.co.uk

Figure 3.3: Dependency of cluster count on the number of processed pages [143].

be equal. Therefore, we search for common subtree root nodes by matching their indices
within their ancestor nodes.

More details about the cluster-based segmentation method and its experimental evalu-
ation can be found in Appendix A.3.

23

24

Chapter 4

Classification and Extraction of
Semantic Objects

Page segmentation methods introduced in the previous chapter represent typically the first
step of web page processing. They provide a coarse information about basic division of the
page to separate content blocks or even finer content elements depending on the chosen
segmentation granularity. This information allows to perform subsequent analytical steps
aimed at obtaining more detailed information about the possible roles of individual page
elements and their mutual relations. Typical tasks in this area include the following:

∙ Main content extraction (or web page cleaning) – extraction of the main content (which
is typically a published article, product information, etc.) while discarding additional
content that does not correspond to the main purpose and topic of the whole page.
This is a typical pre-processing step for web content mining and information retrieval
methods where the additional information acts as noise that decreases the precision
of the methods [9, 46, 114, 137, 139].

∙ Recognition of important content elements – the recognition of the parts of the contents
that have a specific role in the document. This may include the discovery of important
parts of the documents such as headers and footers and menus [59, 87, 75, 76], or
at finer level annotating the generic elements such as headings, lists or structure
of presented tables [4, 111, 131] or even the elements containing a domain-specific
information [31, 98, 102].

∙ Logical structure discovery – estimation of mutual relationships among the individual
content elements, mainly the relationships between the headings or labels and the
corresponding contents [45, 90, 121].

As we may notice, these tasks often overlap to some extent and they share similar
methods and approaches. In this chapter, we present our contribution in all the mentioned
areas. In section 4.1, we deal with a general approach to content element classification
based on visual features of the individual elements. In section 4.2 we focus on a specific
application of main content extraction from web pages. Finally, in section 4.3, we discuss the
possibility of an explicit representation of logical relationships among the content elements
using a tree model.

25

h1 main article heading
h2 second-level heading in the article
subtitle the article subtitle
perex the leading paragraph of the article
paragraph an ordinary paragraph
date publication date
author author name
authordate author and the date in a single area
none remaining areas that do not belong to the article

Table 4.1: The classes assigned to the individual visual areas

4.1 Web Page Element Classification

The classification of web page elements represents a possible next step in web information
extraction that follows the page segmentation. Its task is to provide an initial estimation of
the semantic roles of individual parts of the document content, which may be directly used
for the extraction of specific information as we propose in [31] or followed by additional
refinement steps aimed at identifying larger units [27] or structured data records [29] in the
page.

Content classification may be performed based on different content properties that in-
clude the characteristics of the text itself such as the frequencies of the specific character
groups [15], DOM properties [6, 122, 124, 134] or visual features [115]. In our work, we
focused on a pure visual approach that uses the visual presentation features of the contents
such as font properties and positions in the page for recognizing specific page elements using
a classifier that has been previously trained on a manually annotated training set of web
pages.

In [32, 31], we propose a classification approach for extracting news articles published
on the web and their general metadata that include the title of the article, authors and
date of publication (see the complete list in table 4.1). The entire approach is based on
an assumption that the way of visual presentation of the mentioned data follows some
commonly accepted rules that include mainly the relative font sizes and mutual positions
of the individual content elements (for example, headings use larger font than the rest of the
text) and that allow the reader to easily recognize the given information without actually
studying the text content. The whole approach consists of a training and classification
phase as shown in figure 4.1.

In both phases, the first step involves page segmentation using the hierarchical algorithm
described in section 3.2. As the result of page segmentation, we obtain a tree of visual areas
detected in the page (as defined in (2.5) on page 12) where the root area represents the
whole rendered page and leaf areas correspond to the smallest visually consistent elements
of the content. For each visual area, we compute its visual properties that include font
properties (relative size, weight and style), spatial features (its relative position within the
whole page and the numbers of areas above, below, left and right of the given area) and
text features (numbers of lines and different groups of characters such as digits, letters or
punctuation).

For the training phase, we created training examples by manually annotating the visual
areas that contain the particular information in the rendered page. For this purpose, we

26

Page
segmentation

Manual class
annotation

 Visual feature
extraction

Classifier

Layout model
(XML)

Layout model
with class
annotations

 Visual feature
extraction

Training
data

Testing
data

Layout model
with classified

visual areas

HTML
documents

Figure 4.1: Visual area classification workflow [31]. Dashed lines denote the training phase,
solid lines correspond to the classification phase.

none h1 h2 subtitle perex paragraph author date authordate
0,000

0,200

0,400

0,600

0,800

1,000

J48
BayesNet
Perceptron
SVM

Figure 4.2: Comparison of the F-scores of the algorithms for individual classes – training
and testing data mixed from all web sites [31].

implemented a graphical tool that displays the segmented page and allows to assign classes
to the individual areas. The remaining areas which have no specific meaning are marked
with a special class none. The assigned classes together with the computed values of the
visual features for the respective areas are used as the training data for the classifier. Later,
in the classification phase, the trained classifier is used for assigning classes to all visual
areas detected in new documents that have not been previously annotated.

We tested our approach with four classification algorithms available in the WEKA1

package: The J48 tree classifier which is an implementation of the Quinlan’s C4.5 decision
tree algorithm ([101]), Bayesian network, Multilayer perceptron and Support vector ma-
chines. For evaluating the applicability of these algorithms, we collected 559 documents
from 20 different news web sites worldwide. Using our annotation tool, we have manually
annotated four documents from each website and used them as the training data set; the
remaining unannotated documents were used as the testing data set. Figure 4.2 shows the
resulting F-scores obtained for the individual classes and algorithms.

As we may notice, although the documents come from different web sites with different
visual presentation styles, some parts of the articles (such as headings) may be recognized
quite reliably (the F-score obtained for the h1 class using the SVM algorithm is 0.865). On

1https://www.cs.waikato.ac.nz/ml/weka/

27

https://www.cs.waikato.ac.nz/ml/weka/

none h1 h2 subtitle perex paragraph author date authordate
0,000

0,200

0,400

0,600

0,800

1,000

J48
BayesNet
Perceptron
SVM

Figure 4.3: Comparison of the F-scores of the algorithms for individual classes – training
data from different web sites than the testing data [31].

the other hand, the subtitle and author fields are presented in different ways or may not be
even used in the documents so that the obtained F-scores are lower.

As the second alternative, we split the training and testing datasets so that the training
data come from different web sites that the testing data. This represents a very “pessimistic”
scenario where no training data is available for the web site being processed and the classifier
must be trained on the page examples from other web sites. As we may notice in figure
4.3, the resulting F-scores are significantly lower.

As the most common usage scenario, we considered the situation where the training and
testing document sets come from the same web site; i.e. the classifier is trained on a few
manually annotated example pages and later, it is used for extracting the article contents
from a large number of pages from the same web site. For testing this scenario, we have
used the SVM and BayesNet classifiers and the obtained results are shown in table 4.2.

BayesNet SVM
Class P R F P R F
none 0.999 0.917 0.957 1.000 0.999 0.999
h1 1.000 1.000 1.000 1.000 1.000 1.000
h2 0.727 1.000 0.842 1.000 1.000 1.000
subtitle 0.500 1.000 0.667 1.000 1.000 1.000
perex 0.286 1.000 0.444 0.800 1.000 0.889
paragraph 0.381 0.971 0.547 0.986 0.986 0.986
author 0.273 1.000 0.429 0.750 1.000 0.857
date 0.200 0.750 0.316 1.000 0.500 0.667
authordate 0.571 1.000 0.727 1.000 1.000 1.000

Table 4.2: Achieved results (precision, recall and F-score) for the training documents coming
from the same source as the later annotated documents [31].

In this scenario, the precision of the classification is sufficient for extracting most in-
formation about the articles, their basic structure and metadata from the web pages. The
results practically demonstrate the possibility of using the visual features for the recognition
of specific parts of the text content, which has multiple applications. In the following sec-

28

tion 4.2, we describe possible extensions and applications of this approach for main content
identification in web pages.

More information about the proposed visual element classification method and its ex-
perimental evaluation is available in Appendix B.2.

4.2 Main Content Extraction from Web Pages

Main content extraction is one of the most common tasks of web page processing. Most
often, it is related to processing of news (or other) articles that are published on the web
with text mining algorithms [103, 134, 137, 139] but many other applications exist as for
example accessing the article content on small screens [2]. As we have mentioned above, the
web pages typically contain different kinds of additional information which is not directly
related to the main content of the published article and from the text mining view, it may
be viewed as noise that should be removed before the documents are further processed
[9, 137]. Therefore, the same task may be referred to as main content or article extraction
[8, 148, 128] or document cleaning [88, 116]. Often, the additional information in the web
page is actually generated by pre-defined templates which are dynamically filled with the
content to be published. Then, the document cleaning consists of boilerplate detection and
removal [7, 69].

The methods used for the main content extraction are based on similar principles as the
page element classification methods mentioned in the previous section that are more general.
Again, the methods may be roughly divided into text-based (statistical) [57, 69, 134], DOM-
based [7, 8, 125, 137] and vision-based [148, 128]. However, these approaches typically
overlap combining some kind of page segmentation (DOM or vision-based) as the first step
and a subsequent statistical evaluation of the detected blocks as the second step [114].

In [27], we presented an approach to web content restructuring with the goal of im-
proving the accessibility of the main content of the page. In contrast to the main content
extraction methods, our approach preserves the complete content of the source web page;
it just detects the consistent content blocks and reorders them so that the main content
(e.g. a news article) becomes the first one in the web page. For the detection of consistent
content blocks, we use our page segmentation algorithm described in section 3.2. To pre-
vent the segmentation method from dividing the main content into multiple sections that
could be incorrectly reordered later, we added a new logical block detection step. It consists
of estimating the possible headings in the content using simple font size-based heuristics
followed by content layout analysis, which detects content columns that belong to each
heading. Similar approach based on heading detection was later proposed by other authors
in [90]. Finally, the detected logical blocks are ordered based on the average font size of
the detected headings (assuming that the importance of the headings is visually expressed
by the used font size).

In [28] we have combined the above logical block detection method with our page ele-
ment classification methods described in section 4.1 to create a new algorithm for article
extraction from web pages. Our algorithm is based purely on the analysis of the visual
aspects of the rendered page, which is processed in the following steps:

1. Page rendering and segmentation – creation of a visual model of the page.

2. Visual area classification – estimation of the page elements (visual areas) that may
represent a part of the main article for some content.

29

(A) (B)
Left boundary 0 % 6 %
Right boundary 4 % 17 %
Top boundary 0 % 1 %
Bottom boundary 19 % 27 %

(incomplete article) 2 % 13 %
(additional content) 17 % 19 %

Overall failure rate 21 % 29 %
without add. content cases 6 % 19 %

Table 4.3: The percentages of erroneous identification of the individual article boundaries
for the articles from a single source (A) and from mixed sources (B) [28].

3. Article identification – determining the exact bounds of an area on the page that most
probably contains the published article.

The first two steps are almost identical with the page element classification process
described in section 4.1; the classifier is used to assign the classes listed in table 4.1 to the
individual areas. The most important step is the subsequent article identification. It is
based on the following assumptions regarding the article presentation on the web:

∙ The article forms a rectangular area in the page.

∙ It usually starts with a heading.

∙ It consists mainly of a consistent flow with text paragraphs with occasional inserted
boxes that may be further structured (for example images or information boxes).

∙ The article content is left-aligned (or right-aligned for languages written in the right-
to-left direction) or block-aligned.

During the article identification, each visual area that has been assigned the h1 class in
the classification step is considered as a possible heading of the article and we try to identify
the largest rectangular area that meets the above assumptions; mainly, that contains an
aligned flow of paragraphs (visual areas with the paragraph class assigned) while allowing
certain number of exceptions (areas not recognized as paragraphs) given by a configurable
threshold.

We evaluated the proposed approach on the dataset of news portal web pages described
in the previous section. Similarly to the classifier evaluation described above, we tested
article extraction for a single web source (i.e. the pages used for training the classifier come
from the same source as the testing pages) and for mixed sources (the training and testing
sets contain mixed documents from all the sources). Table 4.3 shows the error rates in
the identification of the four article boundaries. As we may notice, the bottom boundary
detection is the least reliable, which corresponds to the fact that there is often an additional
information provided below the article (such as links to related articles, discussion forum,
information about the author, etc.) for which it is not always easy to decide (even for the
human reader) whether it does form part of the article or it does not. Therefore, on the

30

Figure 4.4: A conference program [33].

last row of table 4.3, we include the error rates obtained when the additional content at
the end of the article is not considered as an error.

In [29], we have proposed an alternative approach where the published articles are
treated as structured data records that consist of the basic information to be extracted (title,
author name, publication date and the content represented as a sequence of paragraphs).
We assume that there are multiple articles from the same source available and they share
a common presentation style. We use the page element classification method described in
section 4.1 for an initial approximate recognition (tagging) of possible occurences of the
individual article parts and we apply the structured record extraction method presented
further in section 5.3 for extracting the complete articles. The extraction itself is based
on the comparison of multiple articles and the discovery of possible visual presentation
patterns that are later used for the disambiguation of the initial classification results. As
we also show in [29], this additional disambiguation step significantly improves the precision
of the article identification.

More details about both the web content restructuring and the article extraction meth-
ods and their experimental evaluation are available in Appendix B.1. The application of
the structured record extraction method for article identification is described in detail in
Appendix C.2.

4.3 Discovery of Logical Relationships among the Page Ele-
ments

In the previous sections, we addressed the discovery of individual units in the documents
that included atomic page elements (such as specific parts of news articles in section 4.1) or
larger content regions (such as the complete articles in section 4.2). Looking closer, we may
notice that the discovered articles have some internal structure, which is apparent to the
human reader: Each article has the main title and author and its content may be structured
to sections and subsections. In other words, there exist some relationships among the page
elements that form the article.

31

For another example, let’s consider a conference program published on the web (see a
sample program in figure 4.5). It consists of speech titles, times, places and author names
with some relationships among them. However, these relationships are usually not explicitly
annotated in the document itself. They are expressed by different, mostly visual means and
the reader is expected to interpret the visually presented information appropriately in order
to assign for example an appropriate author and time to a speech title.

The logical document structure describes the roles of the individual page elements and
their mutual relationships as they are obtained by analysis and interpretation of the layout
structure [68, 97, 102, 117, 136]. Depending on the target application, the roles of the
page elements may refer to generic document parts such as headings of different levels,
lists, footnotes, etc. [97, 117, 90] or domain-specific data fields [98, 102]. Therefore, we
may say that the logical structure discovery methods are on the borderline between the
content classification as already presented in section 4.1 and structured record extraction
as discussed further in chapter 5. Logical document structure discovery is usually performed
in two steps:

1. Layout analysis – creation of a document layout model by applying some kind of page
segmentation on the source document.

2. Logical structure analysis – analysis of the layout model for discovering the roles and
relationships among the content elements.

As for the logical structure analysis, the existing methods take into account different
visual properties of the content that include positions within the page, spacing and inden-
tation and font properties [117]. Their values are then evaluated using different heuristic
rules [90, 97, 117] or machine learning methods such as Support Vector Machines [68] or
Conditional Random Fields [87] that assign the roles from a pre-defined set to the individual
content elements. In most mentioned approaches, the relationships among the elements are
not represented explicitly; they are silently expected to arise from the assigned roles and
the ordering of the content elements. As the result, the role assignment may be ambiguous
mainly when multiple articles (or generally logical entities) are present in the document.

In [33], we proposed to formalize the mutual relationships between the individual content
elements in the document, as they are presented by visual means, as an additional step that
precedes the role estimation itself and that provides additional information, which is later
usable for the completion of structured data records. Our proposed Logical Relationships
Model (LRM) describes the relationships of logical subordination (see below) among the
content elements as they are visually presented in the document. Unlike the complete
logical structure discovery process, which depends on the target domain as noted above,
LRM is domain-independent; it just represents how the visually presented relationships
among elements can be interpreted without actually assigning any roles or semantics to the
elements.

With logical subordination, we understand the logical relationship that occurs between
a heading and the corresponding article contents, a term and its definition, etc. When we
consider the tree 𝑇𝑎 = (𝐴,𝐸𝑎) of visual areas as defined in (2.5) on page 12 and two visual
areas 𝑎1, 𝑎2 ∈ 𝐴, we say that 𝑎2 is logically subordinate to 𝑎1 if the content of 𝑎2 elaborates
or concertizes the content of 𝑎1. In web documents, this relationship is visually presented
by some commonly accepted visual patterns that are culturally determined (as noted in
[111]). They include mutual positions (including indentation) and visual properties of the
visual areas. In [33], we also proposed a simple way of determining the logical subordination

32

Area 1

Monday 21 May...

Conference venue...

Moderator...

Area 2

11:30

Registration...

Area 3

13:00

Opening session

Welcome
by Silas Olsson...

(eHealth unit)...

(page)

...

(root)

...

Area 1

Monday 21 May...

Conference venue...

Moderator...

Area 2

11:30

Registration...

...

Area 3

13:00

Opening session

Welcome
by Silas Olsson...

+ (eHealth unit)...

(a) Layout structure (b) Logical relationships

Figure 4.5: A layout and logical structure of a conference program [33].

based on the order of elements in the document (𝑎1 precedes 𝑎2 in the document contents)
and the visual weight of the areas (𝑤𝑒𝑖𝑔ℎ𝑡(𝑎1) > 𝑤𝑒𝑖𝑔ℎ𝑡(𝑎2)), where the visual weight is
computed from their indentation and font properties (mainly the font size, boldness and
color properties).

Figure 4.5 shows the layout structure and the corresponding logical structure of the
conference program shown in figure 4.4. The layout structure corresponds to our visual
document model 𝑇𝑎 introduced in section 2.2. The edges of the tree represent the nesting
of visual areas and the tree itself is obtained by page segmentation. On the other hand,
in the logical relationships model, the edges of the tree represent the logical subordination
as indicated by the visual presentation. We may notice that the visual weight of the main
title is higher than the visual weights of the remaining content (mainly because the largest
font size and bold font used) and similarly, the visual weights of the speech titles are higher
than the visual weights of the speaker names. This is reflected by the edges of the LRM in
figure 4.4.

The LRM may be defined as another tree

𝑇𝑙 = (𝐴,𝐸𝑙) (4.1)

where (𝑎1, 𝑎2) ∈ 𝐸𝑙 if 𝑎2 is logically subordinate to 𝑎1 according to their visual presentation.
We evaluated the method of the Logical Relationship Model construction on a dataset

of conference programs and during the experiments 86 % of expected logical subordina-
tion relationships were recognized in the documents. The information about the content
structure represented by the proposed model has applications in logical structure discovery
algorithms as well as in the information retrieval and extractions areas.

More details about the proposed Logical Relationships Model, its evaluation and appli-
cations are available in Appendix B.3.

33

34

Chapter 5

Structured Record Extraction

In addition to other types of content mentioned before, the World Wide Web is also a rich
source of structured data from different domains including product information on e-shops,
real estate information, stock quotes, sports results, timetables and many more. Such data is
potentially interesting for further processing (indexing, comparison, integration with other
data sources, etc.) but although it is often stored in a structured way on the provider’s
side, it is only accessible via a web interface designed for manual browsing. As we already
mentioned in the introduction of this thesis, due to the variability and loose structure of web
documents, current practice in web data extraction is still based on procedural wrappers,
that are specific for each data source and their creation and maintenance is laborious [107].
Therefore, much effort has been dedicated to the research of methods that would automate
the process of the discovery and extraction of structured data records from web documents.

Structured record extraction is one of the most challenging areas of web document
processing. In addition to a single entity identification discussed in the previous chapter,
the goal of record extraction is to identify data records that consist of multiple data fields
composed in flat [112] or even hierarchical [119] structures. Thus, the task requires both
the data field and complete data record identification and extraction. The actual structure
of the records to be extracted may be specified in advance [48, 100, 118] or discovered
dynamically based on the analysis of the source documents [62, 110].

In our research in this area, we focused mainly on the integration of domain-specific
data presented on the web to structured databases and information systems. Therefore, we
assume that the expected structure of the records to be extracted is available in the form of
a conceptual model obtained from the target domain analysis and we focus on the discovery
of the records defined this way in source documents. In section 5.2, we discuss a specific
approach designed for the domain of scholarly publications that uses a set of heuristics that
are based on the visual presentation of the content. Subsequently in 5.4, we generalize this
approach by replacing the heuristic rules by a model of the target domain.

5.1 State of the Art

The extraction of structured data from web pages has been the subject of research in many
contexts. Since in many cases, structured data records on the web are produced as a result
of a user’s query (usually by filling a form in the web browser), extracting data records from
query result pages is one the most popular applications [11, 56, 58, 62, 118, 130, 131, 149].
Other applications include the processing of large data sets that are available as collections

35

of web documents such as conference proceedings [43, 71], extraction of product information
from e-commerce web pages [12, 119, 146] or from online marketing flyers [14, 54], event
data extraction [81] or even published obituaries [48].

Similarly to page segmentation and other previously discussed areas of web document
processing, most approaches are based on processing DOM representation of the document
code [48, 62, 71, 81, 92, 110, 119, 146, 149]. Many newer approaches extend the DOM
model with some kind of visual features gathered from the documents [14, 50, 56, 83, 100,
112, 138], often by including the VIPS-based page segmentation in the preprocessing phase
[11, 84, 131]. Only a few approaches use purely visual document models independent on
the input document format [49, 133].

Regarding the structure of the extracted records, most approaches infer the schema
from the source documents themselves, i.e. the structure of the information is not explicitly
specified in advance [50, 110, 140]. An usual approach is to perform a top-down analysis
of the document structure starting with an identification of the most probable regions
that contain the data records (called a result section [118], data sections [131] or data
region [50, 56]). Then, the individual data records are identified based on the detection of
repeating structures in the model by frequency measures [62] or visual pattern detection
[11, 118, 131]. The structure of the extracted information is inferred from the discovered
records while using additional information such as explicit labels present in the page [11, 118,
131, 149] or even the query interface in case of the query result extraction [118, 130]. This
presentation-driven information extraction is suitable for general data mining; however,
since the structure of extracted data may be arbitrary, this approach is not suitable for
integration with existing structured databases.

Significantly less attention has been paid to the research of the model-driven approaches
where the expected structure of extracted data records is based on a previously known
domain model. Embley et al. [48] use a conceptual domain model that is directly mapped
to HTML code based on different heuristics. In [100] a flat list of extracted data fields
is used and [86] integrates the extracted data with an existing knowledge base. In [109],
a domain ontology is used that combines both the extracted data fields and the classes
related to the data presentation (pages, columns, etc.)

In our work presented in the following sections, we focused on the development of
structured record extraction methods from web documents while pursuing the following
goals:

∙ The method should not rely on the document code directly in order to maintain its
applicability to different documents in different formats and languages that are very
variable may evolve over time.

∙ We assume integration of extracted data records into existing domain-oriented in-
formation systems or databases with a fixed structure. Therefore, in the considered
scenario, the structure of the information is always known in advance and the devel-
oped methods should use it when performing the extraction.

As the result, the presented methods gradually aim to a general approach to visual
identification of data records with fixed structure that are contained in a document or set
of input documents that may be very variable in both their visual presentation and technical
implementation.

36

Domain ontology

Logical tree ontology

Area tree ontology

Box tree ontology

CEUR mapping

Logical
tree building

Segmentation

Rendered page

~

~

Generic text tags

~

~

~
Domain
specific

Domain
independent

Domain-specific tags

domain independent

domain specific

Tagging

Figure 5.1: Document processing steps and the corresponding ontologies [94].

5.2 Heuristics-based Record Extraction

In [94], we published our solution of the Semantic Publishing Challenge at the ESWC 2015
conference. The task of the challenge consisted of extracting data about the workshops
published at the CEUR Workshop Proceedings (CEUR-WS) website1 and its transforma-
tion to a structured RDF representation that later allows to answer given questions about
the workshops, their organization, publications and authors as summarized by the challenge
organizers in [43]. Our approach was evaluated as both the best-performing and the most
innovative one in the challenge.

The source CEUR-WS web site consists of HTML documents representing the individual
workshops that have been added gradually for many years (since 1994) and they are very
variable regarding both their code and visual style as web technology and the way of its
use evolved during that time. Because of this variability, it is not possible to construct a
single DOM-based wrapper for extracting the desired information directly from the HTML
code. Successful solutions from the previous years [71] therefore used a set of templates that
covered all different data presentation styles used in the source documents at HTML level,
which requires a laborious maintenance of the template set as new documents are added.
In our solution, we chose a different approach based on the visual presentation analysis and
the ontological document model presented in section 2.3.

The architecture of our information extraction system is based on a central RDF repos-
itory as shown in figure 2.1 on page 13. The repository stores the results of individual
document processing steps, from the visual model of the rendered document, through page
segmentation and basic content classification, to the resulting domain-specific knowledge.
The individual steps and the corresponding ontologies that are used for describing its results
are shown in figure 5.1.

The initial steps of page rendering and segmentation have been described in detail in
previous chapters and the produced ontology-based description of their output corresponds
to the ontological document model presented in section 2.3. The subsequent tagging step
represents the transition from the domain-independent document representation to the
domain-dependent estimation of the purpose of the individual content elements which is

1http://ceur-ws.org/

37

http://ceur-ws.org/

further refined in subsequent steps. The tags represent named classes that are assigned
to the individual visual areas to indicate its possible purpose; each visual area may have
multiple tags assigned. Two levels of tagging are used:

∙ Domain-independent tags are assigned to the visual areas that contain specific kinds
of data that may be easily recognized by text analysis. We recognize the probable
occurrences of dates, personal names, numbers (that may later represent the page
numbers) and titles.

∙ Domain-specific tags represent the data fields occur in the target domain: the volume
title, location, editor name, workshop date, paper title, paper author, page numbers
and some more.

The domain-independent tags are approximately assigned using a combination of the
Stanford NER classifier [51] and simple regular expressions. Subsequently, they are mapped
to domain-specific tags. As we may notice, the domain-independent tagging may be am-
biguous from the point of view of the target domain; e.g. the recognized personal name
may belong to a paper author as well as to a volume editor and similarly, a recognized
title may belong to both a paper and the whole workshop. In addition, the accuracy of the
entity recognition is limited. Therefore, we have defined a number of heuristics based the
analysis of the source documents that are used for disambiguation and correct assignment
of the domain-specific tags. They are based on the following aspects of the content and its
presentation:

∙ Common visual presentation rules – application of some commonly used rules for
visual formatting of the presented information in a document. E.g. a title or subtitle
is written in larger font or at least bolder than a normal text.

∙ Regularity in presentation style – we assume that all the information of the same
meaning (e.g. all paper titles) is presented with the same visual style (fonts, colors,
etc.) in a single proceedings page.

∙ Regularity in layout – some proceedings put author names before the paper title, some
put them below or on the same line. However, this layout is again consistent through
the whole proceedings page.

∙ Locality of the information – information of the same kind is presented in a single
area of the page. We can identify an area containing editors, papers, etc. The order
of these areas remains the same in all the proceedings pages.

∙ Textual hints – some key phrases such as “Edited by” or “Table of Contents” are
commonly used in most proceedings. When used, they may help identify the section.

The purpose of the subsequent logical tree building step is to extract the particular
information from the contents of the tagged visual areas and to complete the logical rela-
tionships among the extracted data fields that include the relationships between the paper
title and the corresponding authors and page numbers and similarly, between the workshop
title and its editors, location, presented papers, etc. This process is again implemented as a
set of domain-specific rules that take into account the expected cardinality of the relation-
ships and specific presentation habits (e.g. separating author names with commas). The
resulting logical tree consists of nodes that have a text content and a single domain-specific

38

 dc:title

bibo:numPages

Paper
swc:Paper

foaf:Document

foaf:made
dc:creator

bibo:section

foaf:Person foaf:name

Figure 5.2: Sample ontology representing a concept (Paper) and its data and object prop-
erties. The ovals represent the object properties and the rectangles represent its data
properties. [29].

tag assigned. Finally, in the CEUR mapping step, the logical tree is transformed to the
target RDF description based on a specific domain ontology.

More details about the proposed approach may be found in Appendix C.1.

5.3 Ontology-Based Record Extraction

The structured record extraction approach presented in the previous section was tailored
for the domain of workshop proceedings and it was based on a number of heuristics that are
specific for this particular domain. In further research, we have been working to generalize
this approach so that the whole information extraction task is specified by a conceptual
model of the target domain and the goal of the extraction algorithm is to find a mapping
between the concepts or properties in the conceptual model and content elements in the
source document.

In [29], we proposed an approach based on ontologies. The target domain is repre-
sented by an ontology that defines relevant entities and their properties that include object
properties and data properties (also called lexical properties [48]). Figure 5.2 shows a part
of such an ontology for the workshop proceedings domain related to the Paper concept.
Similarly to [48], we assume that each source document contains multiple data records that
represent the instances of the given concept and that consist of individual data fields. The
data fields are then substrings of the document content that correspond to the individual
data properties in the ontology. Then, the information extraction task consists of finding
a mapping between the data properties in the ontology and the content elements in the
source document.

Our approach is based on the analysis of the visual presentation of the content again and
it is a generalization of the approach described in the previous chapter that avoids the use
of domain-specific heuristics. We assume that the data records are presented in a visually
consistent way in the source document and we attempt to discover the most frequent visual
presentation patterns that occur in the source documents and that are used for presenting
the data records. This is performed in the following steps:

1. Document preprocessing – page rendering and segmentation. The segmentation al-
gorithm is simplified to the extraction of visual areas formed by neighboring content
boxes with consistent visual style; the information about larger content blocks is not
useful for the following steps. We obtain a list of visual areas as the result.

2. Initial tagging – we assign tags to the individual visual areas that indicate the possible
contents of each area. This replaces the domain-independent tagging step described
in section 5.2 with a domain-specific classification of the visual areas as described
below. The initial tagging is approximate due to the limited precision of the used

39

techniques and therefore, it is only used as initial estimation that is further refined in
the next step.

3. Tag disambiguation – the relationships among the data fields that result from the
domain model are applied in order to refine the tagging. Based on the expected
structure of the data and the visual presentation of tagged data fields, we find the
occurrences of the data records in the source documents that are visually consistent
and correspond to the initial tagging result the most.

As we may notice, in addition to the domain ontology, which describes the expected
structure of the data records to be extracted, an additional knowledge about the target
domain is required, which is the specification of the possible values for each data property.
In our approach, this information is represented by taggers, where a tagger is a procedure
that is able to recognize the occurrence of the given property in the document with some
precision. In other words, a tagger performs a binary classification on the visual area text
content, which decides whether the given text may or may not represent a value of the
given property and there is always a single tagger assigned to each data property. Different
methods may be used for implementing the taggers including NER classifiers (e.g. for
personal names), DBPedia concept annotation [42], visual classification as presented in
chapter 4, occurrences of keywords or even regular expressions.

During the initial tagging, we mark the visual areas whose content potentially corre-
sponds to the individual data fields. Each visual area may be assigned any number of tags
based on the results of its classification using all individual taggers. It is important to note
that the tagging is approximate at this stage – for example, the titles (as noted in section
5.2) are recognized based on simple regular expressions and they cannot be distinguished
precisely from other content in many cases. Therefore, further refinement is performed in
the next step.

In the tag disambiguation step, we consider pairs of data fields that result from the
domain model (e.g. title – authors or title – pages) and we try to find a repeating visual
presentation pattern in the source document that consistently presents the given pair. With
consistent presentation, we understand both the visual style consistency, which means the
same data fields are presented with the same font style in all occurrences, and the layout
consistency, i.e. mutual positions of both fields in the pair must be consistent for all
considered data records. For evaluating mutual positions of two visual areas, we define four
relations 𝑅𝑠𝑖𝑑𝑒, 𝑅𝑎𝑓𝑡𝑒𝑟, 𝑅𝑏𝑒𝑙𝑜𝑤, 𝑅𝑢𝑛𝑑𝑒𝑟 ⊆ 𝐴× 𝐴 (where 𝐴 is the set of all visual areas in the
document) as follows [29]:

∙ (𝑎1, 𝑎2) ∈ 𝑅𝑠𝑖𝑑𝑒 when 𝑎1 and 𝑎2 are on the same line (their 𝑦 coordinates overlap), 𝑎2
is placed to the right of 𝑎1 without any other visual area being placed between 𝑎1 and
𝑎2 and the horizontal distance between 𝑎1 and 𝑎2 is not larger than 1 em2 (shortly, 𝑎2
placed next to 𝑎1).

∙ (𝑎1, 𝑎2) ∈ 𝑅𝑎𝑓𝑡𝑒𝑟 when 𝑎1 and 𝑎2 are on the same line and 𝑎2 is placed to the right of
𝑎1 anywhere on the line (𝑎2 is on the same line after 𝑎1).

∙ (𝑎1, 𝑎2) ∈ 𝑅𝑢𝑛𝑑𝑒𝑟 when 𝑎1 and 𝑎2 are placed roughly in the same column (their 𝑥
coordinates overlap) and 𝑎2 is placed below 𝑎1 without any other visual area being
placed between 𝑎1 and 𝑎2 and the vertical distance between 𝑎1 and 𝑎2 is not larger
than 0.8 em (𝑎2 is placed just below 𝑎1).

2In typography, 1 em is a length corresponding to the point size of the current font.

40

∙ (𝑎1, 𝑎2) ∈ 𝑅𝑏𝑒𝑙𝑜𝑤 when 𝑎1 and 𝑎2 are placed roughly in the same column (their 𝑥
coordinates overlap) and 𝑎2 is placed anywhere below 𝑎1.

For each pair of data fields, we may discover multiple visually consistent presentation
patterns that are defined by the style used for presenting the two data field values (e.g. title
is presented by a 12pt bold font and author is presented by a 10pt normal font) and their
mutual positions (e.g. author is below the title). Such pattern represents a possible mapping
between the expected structure of the data (the domain model) and the visually presented
data records in the source documents. Usually, it is possible to find multiple such mappings
for each property pair. Therefore, as a next step, we evaluate all discovered mappings
according to their visual consistency and the number of corresponding data records in the
source document and select the best performing one that will be used for the actual record
extraction.

In order to demonstrate its the applicability to different domains, we have experimen-
tally evaluated the method on the following applications:

∙ Conference papers – workshop paper data extraction from CEUR web pages as de-
scribed in section 5.2. The taggers are based on regular expressions and NER classi-
fiers.

∙ Sports results – the extraction of tennis cycling rankings from different web sources.
For recognizing the occurences of the individual players (riders) and their tagging, the
corresponding tagger uses the DBPedia concept annotation using DBPedia Spotlight3.

∙ Timetables – extraction of timetable data (times, stops) from PDF documents by
various publishers in very different formats. The taggers are based on a simple recog-
nitions of numbers in the given range in the text (for tagging hours and minutes) and
regular expressions (stop names).

∙ News articles – extraction of news articles from newspaper websites. For initial tag-
ging, the visual area classification was used as described in section 4.1. Then, the
published articles are treated as individual data records and we try to find the visual
presentation patterns used to publish the individual parts. We already mentioned
more details as a part of the main content extraction topic in section 4.2.

For each application, we prepared a simple model of the target domain and the taggers
for the individual fields as mentioned above and we performed the extraction. The achieved
precision and recall for the individual domains indicate a good overall applicability of the
proposed methods.

Detailed and formal explanation of the whole process as well as the details of its evalu-
ation and achieved results can be found in Appendix C.2.

5.4 Graph-Based Record Extraction
In [30], we further extend and generalize the approach presented in the previous section
in order to make it applicable to more complex domains, where the mapping of individual
pairs of data fields is not sufficient, and more complex source documents, where the visually
defined boundaries of the data fields (based on consistent style of visual areas) are not

3https://www.dbpedia-spotlight.org/

41

https://www.dbpedia-spotlight.org/

Page
rendering

Presentation to
domain model

mapping

HTML
documents

Text chunk
extraction

PDF
documents

Text boxes

Page contents
model

(graph)

Structured
data records

Domain
model

Attributes (properties)

Figure 5.3: Graph-based information extraction process [30].

usable for extracting the values from the source documents. We proposed the following
modifications:

∙ We replace the page segmentation step in the document pre-processing step with a
domain-specific chunk extraction and we represent the document contents with the
graph model introduced in section 2.4 that allows to consider several alternative inter-
pretations of a single part of the document text. This corresponds to the observation
that the same domain-specific information that is encoded in the taggers introduced in
the previous section (NER classifiers, regular expressions, etc.) may not only influence
the possible interpretations of the contents (which is expressed by the tag assignment)
but also the way of extraction of the corresponding values from the document text.
The used graph representation therefore allows to consider the domain-specific knowl-
edge about the possible values of the individual data fields in addition to the visual
properties considered in the ontology-based approach above.

∙ We generalize the matching of data property pairs to a general graph matching prob-
lem. We transform the domain specification to a graph as well and we formulate the
information extraction task as a problem of finding the best mapping between the
domain model graph at one side and the document content graph on the other side.

An overview of the whole approach is shown in Figure 5.3. In the chunk extraction step,
the taggers introduced in the previous sections are used for the discovery of the substrings of
the document text (which we call chunks) that represent the possible values of the individual
data fields. A graph model of the document contents is then created from the discovered
chunks as defined in section 2.4. We obtain a graph 𝐷𝑐 = (𝐶,𝐸) (2.6) where 𝐶 is the set
of chunks and 𝐸 represents spatial relationships between pairs of chunks.

A second graph is created from the domain model. As a domain model, we assume an
Entity-Relationship Diagram (ERD) 𝐷 = (𝐸,𝑃,𝑅), where 𝐸 is a set of entity sets, 𝑃 is a
set of properties (attributes in ERD) and 𝑅 ⊂ (𝐸×(𝐸∪𝑃)) is the set of relationships where
each relationship has a specified cardinality. We divide the properties into groups where
each group represents a set of properties that are always connected with a 1:1 relationship
(including transitive relationships). The resulting domain graph model, is defined as a graph

𝐷𝑔 = (𝐺,𝑅𝑔) (5.1)

where 𝐺 = {𝐺1, 𝐺2, . . . , 𝐺𝑛} is a set of property groups, 𝐺𝑖 ⊂ 𝑃 and 𝐺𝑖 ∩ 𝐺𝑗 = ∅ for
any 1 ≤ 𝑖, 𝑗 ≤ 𝑛 and 𝑅𝑔 ⊂ 𝐺×𝐺 is a set of relationships between groups. The individual

42

groups in 𝐺 and their relationships as 𝑅 are transformed from the domain model in the
following way:

∙ All properties of a single entity set belong to the same group.

∙ If two entity sets are in a 1:1 relationship, all their properties belong to a single group.

∙ The 1:M relationships are transformed to the relationships between the respective
groups.

Having the document contents graph 𝐷𝑐 at one side and the domain graph model 𝐷𝑔

on the other side, the next step is to find an appropriate mapping between 𝐷𝑐 and 𝐷𝑔 that
maps the individual properties from 𝑃 to some chunks in 𝐶. Similarly to the ontology-based
method presented above, we assume that the document contains multiple data records that
are presented in a visually consistent way. The mapping has two components:

∙ Group mapping – for each group 𝐺𝑖 ∈ 𝐺, it assigns a chunk style (as defined in (2.7))
to each property and a spatial relationship (mutual position discussed above) to each
property pair.

∙ Inter-group mapping – for a pair of groups 𝐺𝑖, 𝐺𝑗 ∈ 𝐺, it defines a spatial relationship
between a pair of properties 𝑝𝑖, 𝑝𝑗 , where 𝑝𝑖 ∈ 𝐺𝑖 and 𝑝𝑗 ∈ 𝐺𝑗 .

In other words, the group mapping defines the considered visual presentation of a group
of data fields in a 1:1 relationship and the inter-group mapping defines how the 1:M rela-
tionship between groups is presented in the source document. Again, multiple mappings
can be found for a given source document: We consider all combinations of visual styles
that are applicable to the given document and the number and visual consistency of the
data records that would correspond to each mapping in order to choose the most probable
one.

The details of the method are described formally in Appendix C.3.

43

44

Chapter 6

Conclusions

This thesis summarizes my research conducted over the past nearly 15 years in the area of
using the information about visual organization and presentation of document content for
extracting information from web documents. Although the technology has evolved signifi-
cantly during this time, problems related to the poor accessibility of information published
in web documents for computer applications are still important. In my research, I have ad-
dressed the problems of acquiring and representing information about visual presentation
of document content and application of created models for page segmentation, classifica-
tion and restructuring of content and detection of visual patterns with the ultimate goal of
automatically recognizing and extracting desired information from documents.

The main contributions of my work in this area may can be summarized as follows: (1)
We have designed ways in which information about the visual presentation of content can
be acquired from different types of documents and explicitly represented so that it can be
efficiently used in subsequent content processing tasks. This information includes both the
basic visual organization and style of content elements directly expressed by the document
code, as well as derived document layout and logical structure information obtained by
page segmentation. (2) We have created new methods of extracting information from web
documents based on the designed models that include identifying specific content elements,
extracting the main content of a document, and finally extracting structured data records.
(3) We have developed ways of integration of the web data with structured information
systems based on domain models. (4) We have implemented the proposed solutions as
open-source software libraries and tools (many of which have already been used in third-
party applications) and we have evaluated them on real-world documents on the web.

Our practical results, such as the successful application of the developed tools in the
SemPub 2015 Challenge, indicate that the use of visual presentation models allows to
abstract from the implementation details of the documents and cope with the complexity
and variability of their code. This makes it possible to develop information extraction
methods that are applicable to large sets of heterogeneous documents in terms of their
format and the particular details of their implementation.

There are many open research problems remaining. Especially in the area of structured
record extraction, there are often more equivalent ways of interpreting the presented data
records, and in choosing the right interpretation, human experience has so far outperformed
the proposed algorithms. Similarly, assessing the significance of various anomalies in the
visual presentation of content often requires some practice that our methods do not have.
One possible direction for further research is, for example, the involvement of machine
learning algorithms in this context. Another potentially interesting direction of research

45

may be the greater use of natural language processing methods and the integration of
existing domain-oriented or general knowledge bases that would at least partially substitute
human knowledge of the target domain.

46

Bibliography

[1] Adobe Systems Incorporated: PDF Reference, Version 1.4. Addison-Wesley. 2002.
ISBN 0-201-75839-3.

[2] Ahmadi, H.; Kong, J.: Efficient Web Browsing on Small Screens. In Proceedings of
the Working Conference on Advanced Visual Interfaces. AVI ’08. New York, NY,
USA: Association for Computing Machinery. 2008. ISBN 9781605581415. pp. 23–30.
doi:10.1145/1385569.1385576.

[3] Akpınar, E.; Yeşilada, Y.: Vision Based Page Segmentation: Extended and
Improved Algorithm. Technical Report eMINE Technical Report Deliverable 2 (D2).
Middle East Technical University. Ankara, Turkey. 2012.

[4] Akpınar, M. E.; Yeşilada, Y.: Heuristic Role Detection of Visual Elements of Web
Pages. In Web Engineering, edited by F. Daniel; P. Dolog; Q. Li. Berlin, Heidelberg:
Springer Berlin Heidelberg. 2013. ISBN 978-3-642-39200-9. pp. 123–131.

[5] Akpınar, M. E.; Yeşilada, Y.: Vision Based Page Segmentation Algorithm:
Extended and Perceived Success. In Revised Selected Papers of the ICWE 2013
International Workshops on Current Trends in Web Engineering - Volume 8295.
New York, NY, USA: Springer-Verlag New York, Inc.. 2013. pp. 238–252.

[6] Alarte, J.; Insa, D.; Silva, J.: Webpage Menu Detection Based on DOM. In
SOFSEM 2017: Theory and Practice of Computer Science, edited by B. Steffen;
C. Baier; M. van den Brand; J. Eder; M. Hinchey; T. Margaria. Cham: Springer
International Publishing. 2017. ISBN 978-3-319-51963-0. pp. 411–422.

[7] Alarte, J.; Insa, D.; Silva, J.; et al.: Site-Level Web Template Extraction Based on
DOM Analysis. In Perspectives of System Informatics, edited by M. Mazzara;
A. Voronkov. Cham: Springer International Publishing. 2016. ISBN
978-3-319-41579-6. pp. 36–49.

[8] Alarte, J.; Insa, D.; Silva, J.; et al.: Main Content Extraction from Heterogeneous
Webpages. In Web Information Systems Engineering – WISE 2018, edited by
H. Hacid; W. Cellary; H. Wang; H.-Y. Paik; R. Zhou. Cham: Springer International
Publishing. 2018. ISBN 978-3-030-02922-7. pp. 393–407.

[9] Alassi, D.; Alhajj, R.: Effectiveness of template detection on noise reduction and
websites summarization. Information Sciences. vol. 219. 2013: pp. 41 – 72. ISSN
0020-0255.

[10] Alcic, S.; Conrad, S.: Page segmentation by web content clustering. In Proceedings
of the International Conference on Web Intelligence, Mining and Semantics. WIMS

47

’11. New York, NY, USA: ACM. 2011. ISBN 978-1-4503-0148-0. pp. 24:1–24:9.
doi:10.1145/1988688.1988717.

[11] Anderson, N.; Hong, J.: Visually Extracting Data Records from Query Result
Pages. In Web Technologies and Applications: 15th Asia-Pacific Web Conference,
APWeb 2013, Sydney, Australia, April 4-6, 2013. Proceedings. Berlin, Heidelberg:
Springer. 2013. ISBN 978-3-642-37401-2. pp. 392–403.

[12] Anderson, N.; Hong, J.: Evaluation of Information Extraction Techniques to Label
Extracted Data from E-Commerce Web Pages. In Proceedings of the 23rd
International Conference on World Wide Web. WWW ’14 Companion. New York,
NY, USA: Association for Computing Machinery. 2014. ISBN 9781450327459. pp.
1275–1278. doi:10.1145/2567948.2579703.

[13] Apers, P. M. G.: Identifying Internet-related Database Research. In East/West
Database Workshop, edited by J. Eder; L. Kalinichenko. Workshops in Computing.
London: Springer. 1994.

[14] Apostolova, E.; Pourashraf, P.; Sack, J.: Digital Leafleting: Extracting Structured
Data from Multimedia Online Flyers. In Proceedings of the 2015 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. Denver, Colorado: Association for Computational
Linguistics. May–June 2015. pp. 283–292. doi:10.3115/v1/N15-1032.

[15] Apostolova, E.; Tomuro, N.: Combining Visual and Textual Features for Information
Extraction from Online Flyers. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Doha, Qatar: Association for
Computational Linguistics. October 2014. pp. 1924–1929. doi:10.3115/v1/D14-1206.

[16] Ashish, N.; Knoblock, C. A.: Wrapper Generation for Semi-structured Internet
Sources. SIGMOD Rec.. vol. 26, no. 4. December 1997: pp. 8–15. ISSN 0163-5808.
doi:10.1145/271074.271078.

[17] Atzeni, P.; Mecca, G.; Merialdo, P.: Semistructured and Structured Data in the
Web: Going Back and Forth. SIGMOD Rec.. vol. 26, no. 4. December 1997: pp.
16–23. ISSN 0163-5808. doi:10.1145/271074.271080.

[18] Bar-Yossef, Z.; Rajagopalan, S.: Template Detection via Data Mining and Its
Applications. In Proceedings of the 11th International Conference on World Wide
Web. WWW ’02. New York, NY, USA: ACM. 2002. ISBN 1-58113-449-5. pp.
580–591. doi:10.1145/511446.511522.

[19] Berners-Lee, T.; Cailliau, R.: WorldWideWeb: Proposal for a HyperText Project.
Proposal. CERN. 1990.
Retrieved from: http://www.w3.org/Proposal

[20] Bing, L.; Guo, R.; Lam, W.; et al.: Web Page Segmentation with Structured
Prediction and Its Application in Web Page Classification. In Proceedings of the
37th International ACM SIGIR Conference on Research & Development in
Information Retrieval. SIGIR ’14. New York, NY, USA: ACM. 2014. ISBN
978-1-4503-2257-7. pp. 767–776.

48

http://www.w3.org/Proposal

[21] Bizer, C.; Meusel, R.; Primpeli, A.: Web Data Commons - RDFa, Microdata, and
Microformat Data Sets - Section 3.2 Extraction Results from the November 2018
Common Crawl Corpus. 2019. accessed on 2019-10-25.
Retrieved from: http://webdatacommons.org/structureddata/index.html#toc4

[22] Bos, B.: Cascading Style Sheets Level 2 Revision 2 (CSS 2.2) Specification. W3C
working draft. W3C. April 2016.
http://www.w3.org/TR/2016/WD-CSS22-20160412/.

[23] Brickley, D.; Hickson, I.; Nevile, C.: HTML Microdata. W3C working draft. W3C.
April 2018. https://www.w3.org/TR/2018/WD-microdata-20180426/.

[24] Bu, Z.; Zhang, C.; Xia, Z.; et al.: An FAR-SW based approach for webpage
information extraction. Information Systems Frontiers. vol. 16, no. 5. 2014: pp.
771–785.

[25] Burget, R.: Automatic Document Structure Detection for Data Integration. In
Business Information Systems, edited by W. Abramowicz. Berlin, Heidelberg:
Springer Berlin Heidelberg. 2007. ISBN 978-3-540-72035-5. pp. 391–397.

[26] Burget, R.: Layout Based Information Extraction from HTML Documents. In Ninth
International Conference on Document Analysis and Recognition (ICDAR 2007),
vol. 2. Sep. 2007. ISSN 2379-2140. pp. 624–628. doi:10.1109/ICDAR.2007.4376990.

[27] Burget, R.: Automatic Web Document Restructuring Based on Visual Information
Analysis. In Proceedings of the 6th Atlantic Web Intelligence Conference –
AWIC’2009. Advances in Intelligent and Soft Computing , Vol. 67. Springer Verlag.
2009. ISBN 978-3-642-10686-6. page 10.

[28] Burget, R.: Visual Area Classification for Article Identification in Web Documents.
In 21st International Workshop on Databases and Expert Systems Applications.
IEEE Computer Society. 2010. ISBN 978-0-7695-4174-7. pp. 171–175.

[29] Burget, R.: Information Extraction from the Web by Matching Visual Presentation
Patterns. In Knowledge Graphs and Language Technology: ISWC 2016 International
Workshops: KEKI and NLP&DBpedia. Lecture Notes in Computer Science vol.
10579. Springer International Publishing. 2017. ISBN 978-3-319-68722-3. pp. 10–26.
doi:10.1007/978-3-319-68723-0_2.

[30] Burget, R.: Model-Based Integration of Unstructured Web Data Sources Using
Graph Representation of Document Contents. In 15th International Conference on
Web Information Systems and Technologies. SciTePress. 2019. ISBN
978-989-758-386-5. pp. 326–333.

[31] Burget, R.; Burgetová, I.: Automatic Annotation of Online Articles Based on Visual
Feature Classification. International Journal of Intelligent Information and
Database Systems. vol. 5, no. 4. 2011: pp. 338–360. ISSN 1751-5858.

[32] Burget, R.; Rudolfová, I.: Web Page Element Classification Based on Visual
Features. In 1st Asian Conference on Intelligent Information and Database Systems
ACIIDS 2009. IEEE Computer Society. 2009. ISBN 978-0-7695-3580-7. pp. 67–72.
doi:10.1109/ACIIDS.2009.71.

49

http://webdatacommons.org/structureddata/index.html#toc4

[33] Burget, R.; Smrz, P.: Extracting Visually Presented Element Relationships from
Web Documents. International Journal of Cognitive Informatics and Natural
Intelligence. vol. 7, no. 2. April 2013: pp. 13–29. ISSN 1557-3958.

[34] Cai, D.; Yu, S.; Wen, J.-R.; et al.: VIPS: a Vision-based Page Segmentation
Algorithm. Microsoft Research. 2003.

[35] Chakrabarti, D.; Kumar, R.; Punera, K.: A Graph-theoretic Approach to Webpage
Segmentation. In Proceedings of the 17th International Conference on World Wide
Web. WWW ’08. New York, NY, USA. 2008. ISBN 978-1-60558-085-2. pp. 377–386.
doi:10.1145/1367497.1367549.

[36] Ciravegna, F.: (LP)2 an Adaptive Algorithm for Information Extraction from
Web-related Texts. In In Proceedings of the IJCAI-2001 Workshop on Adaptive Text
Extraction and Mining. 2001.

[37] Cohen, W. W.; Hurst, M.; Jensen, L. S.: A flexible learning system for wrapping
tables and lists in HTML documents. In WWW ’02: Proceedings of the 11th
international conference on World Wide Web. New York, NY, USA: ACM. 2002.
ISBN 1-58113-449-5. pp. 232–241. doi:http://doi.acm.org/10.1145/511446.511477.

[38] Coondu, S.; Chattopadhyay, S.; Chattopadhyay, M.; et al.: Mobile-enabled content
adaptation system for e-learning websites using segmentation algorithm. In The 8th
International Conference on Software, Knowledge, Information Management and
Applications (SKIMA 2014). Dec 2014. ISSN null. pp. 1–8.
doi:10.1109/SKIMA.2014.7083570.

[39] Cormer, M.; Mann, R.; Moffatt, K.; et al.: Towards an Improved Vision-Based Web
Page Segmentation Algorithm. In 2017 14th Conference on Computer and Robot
Vision (CRV). May 2017. pp. 345–352. doi:10.1109/CRV.2017.38.

[40] Cormier, M.; Moffatt, K.; Cohen, R.; et al.: Purely vision-based segmentation of
web pages for assistive technology. Computer Vision and Image Understanding. vol.
2016. 2016. ISSN 1077-3142.

[41] Cowie, J.; Lehnert, W.: Information Extraction. Commun. ACM. vol. 39, no. 1.
January 1996: pp. 80–91. ISSN 0001-0782. doi:10.1145/234173.234209.

[42] Daiber, J.; Jakob, M.; Hokamp, C.; et al.: Improving Efficiency and Accuracy in
Multilingual Entity Extraction. In Proceedings of the 9th International Conference
on Semantic Systems (I-Semantics). 2013.

[43] Di Iorio, A.; Lange, C.; Dimou, A.; et al.: Semantic Publishing Challenge–Assessing
the Quality of Scientific Output by Information Extraction and Interlinking. In
Semantic Web Evaluation Challenges. Springer. 2015. pp. 65–80.

[44] Eden, T.; O’Hara, S.; Wu, X.; et al.: HTML 5.3. W3C working draft. W3C. October
2018. https://www.w3.org/TR/2018/WD-html53-20181018/.

[45] El-Shayeb, M. A.; El-Beltagy, S. R.; Rafea, A.: Extracting the Latent Hierarchical
Structure of Web Documents. In Advanced Internet Based Systems and
Applications, edited by E. Damiani; K. Yetongnon; R. Chbeir; A. Dipanda. Berlin,
Heidelberg: Springer Berlin Heidelberg. 2009. ISBN 978-3-642-01350-8. pp. 305–313.

50

[46] Eldirdiery, H. F.; Ahmed, A. H.: Detecting and Removing Noisy Data on Web
Document using Text Density Approach. International Journal of Computer
Applications. vol. 112, no. 5. February 2015: pp. 32–36. ISSN 0975-8887.

[47] Eldirdiery, H. F.; Ahmed, A. H.: Web Document Segmentation for Better
Extraction of Information: A Review. International Journal of Computer
Applications. vol. 110, no. 3. January 2015: pp. 24–28.

[48] Embley, D. W.; Campbell, D. M.; Jiang, Y. S.; et al.: Conceptual-model-based Data
Extraction from Multiple-record Web Pages. Data Knowl. Eng.. vol. 31, no. 3.
November 1999: pp. 227–251. ISSN 0169-023X.

[49] Estuka, F.; Miller, J.: A Pure Visual Approach for Automatically Extracting and
Aligning Structured Web Data. ACM Trans. Internet Technol.. vol. 19, no. 4.
November 2019: pp. 51:1–51:26. ISSN 1533-5399. doi:10.1145/3365376.

[50] Figueiredo, L. N. L.; de Assis, G. T.; Ferreira, A. A.: DERIN: A data extraction
method based on rendering information and n-gram. Information Processing &
Management. vol. 53, no. 5. 2017: pp. 1120 – 1138. ISSN 0306-4573.
doi:https://doi.org/10.1016/j.ipm.2017.04.007.

[51] Finkel, J. R.; Grenager, T.; Manning, C.: Incorporating non-local information into
information extraction systems by Gibbs sampling. In Proceedings of the 43rd
Annual Meeting on Association for Computational Linguistics. ACL ’05. 2005. pp.
363–370.

[52] Freitag, D.: Information Extraction from HTML: Application of a General Machine
Learning Approach. In AAAI/IAAI. 1998. pp. 517–523.

[53] Fumarola, F.; Weninger, T.; Barber, R.; et al.: Extracting General Lists from Web
Documents: A Hybrid Approach. In Proceedings of the 24th International
Conference on Industrial Engineering and Other Applications of Applied Intelligent
Systems Conference on Modern Approaches in Applied Intelligence - Volume Part I.
IEA/AIE’11. Berlin, Heidelberg: Springer-Verlag. 2011. ISBN 978-3-642-21821-7.
pp. 285–294.

[54] Gallo, I.; Zamberletti, A.; Noce, L.: Content Extraction from Marketing Flyers. In
Computer Analysis of Images and Patterns, edited by G. Azzopardi; N. Petkov.
Cham: Springer International Publishing. 2015. ISBN 978-3-319-23192-1. pp.
325–336.

[55] Gavankar, C.; Kulkarni, A.; Ramakrishnan, G.: Efficient Reuse of Structured and
Unstructured Resources for Ontology Population. In Proceedings of the Ninth
International Conference on Language Resources and Evaluation (LREC’14).
Reykjavik, Iceland: European Language Resources Association (ELRA). May 2014.
pp. 3654–3660.

[56] Goh, P. L.; Hong, J. L.; Tan, E. X.; et al.: Region based data extraction. In Fuzzy
Systems and Knowledge Discovery (FSKD), 2012 9th International Conference on.
May 2012. pp. 1196–1200.

51

[57] Gottron, T.: Bridging the gap: from multi document Template Detection to single
document Content Extraction. In Proceedings of the IASTED International
Conference on Internet and Multimedia Systems and Applications. EuroIMSA 2008.
ACTA Press. 2008. pp. 66–71.

[58] Guo, J.; Crescenzi, V.; Furche, T.; et al.: RED: Redundancy-Driven Data
Extraction from Result Pages? In The World Wide Web Conference. WWW ’19.
New York, NY, USA: ACM. 2019. ISBN 978-1-4503-6674-8. pp. 605–615.
doi:10.1145/3308558.3313529.

[59] Gupta, S.; Kaiser, G.; Neistadt, D.; et al.: DOM-based Content Extraction of
HTML Documents. In WWW2003 proceedings of the 12 Web Conference. 2003. pp.
207–214.

[60] Hassan, T.; Baumgartner, R.: Table Recognition and Understanding from PDF
Files. In Ninth International Conference on Document Analysis and Recognition
(ICDAR 2007), vol. 2. Sep. 2007. ISSN 2379-2140. pp. 1143–1147.
doi:10.1109/ICDAR.2007.4377094.

[61] Herman, I.; Sporny, M.; Adida, B.; et al.: RDFa 1.1 Primer – Third Edition. W3C
note. W3C. March 2015.
http://www.w3.org/TR/2015/NOTE-rdfa-primer-20150317/.

[62] Hong, J. L.; Siew, E.-G.; Egerton, S.: Information Extraction for Search Engines
Using Fast Heuristic Techniques. Data Knowl. Eng.. vol. 69, no. 2. February 2010:
pp. 169–196. ISSN 0169-023X. doi:10.1016/j.datak.2009.10.002.

[63] Hong, T. W.; Clark, K. L.: Using Grammatical Inference to Automate Information
Extraction from the Web. Lecture Notes in Computer Science. vol. 2168. 2001: pp.
216–227.

[64] Horrocks, I.; Patel-Schneider, P. F.; Boley, H.; et al.: SWRL: A Semantic Web Rule
Language. W3C member submission. W3C. May 2004.
https://www.w3.org/Submission/2004/SUBM-SWRL-20040521/.

[65] Hors, A. L.; Hegaret, P. L.; Wood, L.; et al.: Document Object Model (DOM) Level
3 Core Specification. The World Wide Web Consortium. 2004.

[66] Jiang, K.; Yang, Y.: Noise Reduction of Web Pages via Feature Analysis. In
Information Science and Control Engineering (ICISCE), 2015 2nd International
Conference on. April 2015. pp. 345–348.

[67] Khare, R.; Çelik, T.: Microformats: A Pragmatic Path to the Semantic Web. In
Proceedings of the 15th International Conference on World Wide Web. WWW ’06.
New York, NY, USA: ACM. 2006. ISBN 1-59593-323-9. pp. 865–866.
doi:10.1145/1135777.1135917.

[68] Kim, T.; Kim, S.; Choi, S.; et al.: A Machine-Learning Based Approach for
Extracting Logical Structure of a Styled Document. TIIS. vol. 11. 2017: pp.
1043–1056.

52

[69] Kohlschütter, C.; Fankhauser, P.; Nejdl, W.: Boilerplate Detection Using Shallow
Text Features. In Proceedings of the Third ACM International Conference on Web
Search and Data Mining. WSDM ’10. New York, NY, USA: ACM. 2010. ISBN
978-1-60558-889-6. pp. 441–450.

[70] Kohlschütter, C.; Nejdl, W.: A Densitometric Approach to Web Page Segmentation.
In Proceedings of the 17th ACM Conference on Information and Knowledge
Management. CIKM ’08. New York, NY, USA: ACM. 2008. ISBN
978-1-59593-991-3. pp. 1173–1182. doi:10.1145/1458082.1458237.

[71] Kolchin, M.; Kozlov, F.: A Template-Based Information Extraction from Web Sites
with Unstable Markup. In Semantic Web Evaluation Challenge, Communications in
Computer and Information Science, vol. 475, edited by V. Presutti; M. Stankovic;
E. Cambria; I. Cantador; A. Di Iorio; T. Di Noia; C. Lange;
D. Reforgiato Recupero; A. Tordai. Springer International Publishing. 2014. ISBN
978-3-319-12023-2. pp. 89–94. doi:10.1007/978-3-319-12024-9_11.

[72] Kong, J.; Barkol, O.; Bergman, R.; et al.: Web Interface Interpretation Using Graph
Grammars. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews). vol. 42, no. 4. July 2012: pp. 590–602. ISSN 1094-6977.

[73] Konopnicki, D.; Shmueli, O.: Information Gathering in the World-Wide Web: The
W3QL Query Language and the W3QS System. ACM Trans. Database Syst..
vol. 23, no. 4. December 1998: pp. 369–410. ISSN 0362-5915.

[74] Kosala, R.; Bussche, J. V. d.; Bruynooghe, M.; et al.: Information Extraction in
Structured Documents Using Tree Automata Induction. In PKDD ’02: Proceedings
of the 6th European Conference on Principles of Data Mining and Knowledge
Discovery. London, UK: Springer-Verlag. 2002. ISBN 3-540-44037-2. pp. 299–310.

[75] Kravchenko, A.: BERyL: A System for Web Block Classification. Berlin, Heidelberg:
Springer Berlin Heidelberg. 2018. ISBN 978-3-662-58039-4. pp. 61–78.
doi:10.1007/978-3-662-58039-4_4.

[76] Kravchenko, A.: Large-scale holistic approach to Web block classification:
assembling the jigsaws of a Web page puzzle. World Wide Web. vol. 22, no. 5. Sep
2019: pp. 1999–2015. ISSN 1573-1413. doi:10.1007/s11280-018-0634-6.

[77] Kulkarni, A.; Gavankar, C.; Ramakrishnan, G.; et al.: Semi-automatic dictionary
curation for domain-specific ontologies. In 2013 IEEE 25th International Conference
on Tools with Artificial Intelligence. Nov 2013. ISSN 2375-0197. pp. 727–734.
doi:10.1109/ICTAI.2013.112.

[78] Kushmerick, N.: Wrapper induction for information extraction. PhD. Thesis.
University of Washington. 1997.

[79] Lakshmanan, L. V. S.; Sadri, F.; Subramanian, I. N.: A declarative language for
querying and restructuring the Web. In Proceedings RIDE ’96. Sixth International
Workshop on Research Issues in Data Engineering. Feb 1996. pp. 12–21.

[80] Li, L.; Zhou, A. M.; Fang, Y.; et al.: An Improved VIPS-Based Algorithm of
Extracting Web Content. In Material Science, Civil Engineering and Architecture

53

Science, Mechanical Engineering and Manufacturing Technology II, Applied
Mechanics and Materials, vol. 651. Trans Tech Publications. 11 2014. pp. 1806–1810.

[81] Liao, C.; Hiroi, K.; Kaji, K.; et al.: Event.Locky: System of Event-Data Extraction
from Webpages based on Web Mining. Journal of Information Processing. vol. 25,
no. 0. 2017: pp. 321–330. doi:10.2197/ipsjjip.25.321.

[82] Lima, R.; Espinasse, B.; Oliveira, H.; et al.: Information Extraction from the Web:
An Ontology-Based Method Using Inductive Logic Programming. In 2013 IEEE
25th International Conference on Tools with Artificial Intelligence. Nov 2013. ISSN
2375-0197. pp. 741–748. doi:10.1109/ICTAI.2013.114.

[83] Liu, W.; Meng, X.; Meng, W.: Vision-based web data records extraction. In ACM
Ninth International Workshop on the Web and Databases (WebDB 2006). Chicago,
Illinois, USA. 2006. pp. 20–25.

[84] Liu, W.; Meng, X.; Meng, W.: ViDE: A Vision-Based Approach for Deep Web Data
Extraction. IEEE Trans. on Knowl. and Data Eng.. vol. 22, no. 3. March 2010: pp.
447–460. ISSN 1041-4347.

[85] Liu, X.; Lin, H.; Tian, Y.: Segmenting Webpage with Gomory-Hu Tree Based
Clustering. Journal of Software. vol. 6, no. 12. 2011: pp. 2421–2425.

[86] Lockard, C.; Dong, X. L.; Einolghozati, A.; et al.: CERES: Distantly Supervised
Relation Extraction from the Semi-structured Web. Proc. VLDB Endow.. vol. 11,
no. 10. June 2018: pp. 1084–1096. ISSN 2150-8097.

[87] Luong, M.-T.; Nguyen, T. D.; Kan, M.-Y.: Logical Structure Recovery in Scholarly
Articles with Rich Document Features. Int. J. Digit. Library Syst.. vol. 1, no. 4.
October 2010: pp. 1–23. ISSN 1947-9077. doi:10.4018/jdls.2010100101.

[88] M. Baroni, A. K., F. Chantree; Sharoff, S.: CleanEval: a competition for cleaning
Webpages. In Proceedings of the sixth International conference on Language
Resources and Evaluation (LREC 2008). Marrakech, Morocco. 2008.

[89] Madani, A.; Boussaid, O.; Zegour, D. E.: Semi-structured Documents Mining: A
Review and Comparison. Procedia Computer Science. vol. 22. 2013: pp. 330 – 339.
ISSN 1877-0509. 17th International Conference in Knowledge Based and Intelligent
Information and Engineering Systems - KES2013.

[90] Manabe, T.; Tajima, K.: Extracting Logical Hierarchical Structure of HTML
Documents Based on Headings. Proc. VLDB Endow.. vol. 8, no. 12. August 2015:
pp. 1606–1617. ISSN 2150-8097. doi:10.14778/2824032.2824058.

[91] Mendelzon, A. O.; Mihaila, G. A.; Milo, T.: Querying the World Wide Web. In
First Int. Conf. on Parallel and Distributed Information Systems (PDIS’96). 1997.

[92] Miao, G.; Tatemura, J.; Hsiung, W.-P.; et al.: Extracting Data Records from the
Web Using Tag Path Clustering. In Proceedings of the 18th International Conference
on World Wide Web. WWW ’09. New York, NY, USA: Association for Computing
Machinery. 2009. ISBN 9781605584874. pp. 981–990. doi:10.1145/1526709.1526841.

54

[93] Milička, M.; Burget, R.: Web document description based on ontologies. In 2013
Second International Conference on Informatics Applications (ICIA). Sep. 2013. pp.
288–293.

[94] Milička, M.; Burget, R.: Information Extraction from Web Sources based on
Multi-aspect Content Analysis. In Semantic Web Evaluation Challenges,
SemWebEval 2015 at ESWC 2015, Communications in Computer and Information
Science, vol. 2015. Springer International Publishing. 2015. ISBN 978-3-319-25517-0.
ISSN 1865-0929. pp. 81–92.

[95] Milička, M.; Burget, R.: Multi-aspect Document Content Analysis using Ontological
Modelling. In Proceedings of 9th Workshop on Intelligent and Knowledge Oriented
Technologies (WIKT 2014). Vydavateĺstvo STU. 2014. ISBN 978-80-227-4267-2. pp.
9–12.

[96] Muslea, I.; Minton, S.; Knoblock, C. A.: Hierarchical Wrapper Induction for
Semistructured Information Sources. Autonomous Agents and Multi-Agent Systems.
vol. 4, no. 1. Mar 2001: pp. 93–114. ISSN 1573-7454. doi:10.1023/A:1010022931168.

[97] Namboodiri, A.; Jain, A.: Document Structure and Layout Analysis. In Digital
Document Processing, edited by B. B. Chaudhuri. Advances in Pattern Recognition.
Springer London. 2007. ISBN 978-1-84628-726-8. pp. 29–48.

[98] Nojoumian, M.; Lethbridge, T. C.: Extracting Document Structure to Facilitate a
Knowledge Base Creation for The UML Superstructure Specification. In Proceedings
of the International Conference on Information Technology. ITNG ’07. Washington,
DC, USA: IEEE Computer Society. 2007. ISBN 0-7695-2776-0. pp. 393–400.

[99] Parsia, B.; Patel-Schneider, P.; Motik, B.: OWL 2 Web Ontology Language
Structural Specification and Functional-Style Syntax (Second Edition). W3C
recommendation. W3C. December 2012.
Retrieved from: http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/

[100] Potvin, B.; Villemaire, R.: Robust Web Data Extraction Based on Unsupervised
Visual Validation. In Intelligent Information and Database Systems. Cham:
Springer International Publishing. 2019. ISBN 978-3-030-14799-0. pp. 77–89.

[101] Quinlan, J. R.: C4.5: programs for machine learning. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.. 1993. ISBN 1-55860-238-0.

[102] Rauf, R.; Antkiewicz, M.; Czarnecki, K.: Logical structure extraction from software
requirements documents. In Requirements Engineering Conference (RE), 2011 19th
IEEE International. 2011. pp. 101 –110.

[103] Reis, D. C.; Golgher, P. B.; Silva, A. S.; et al.: Automatic Web News Extraction
Using Tree Edit Distance. In Proceedings of the 13th International Conference on
World Wide Web. WWW ’04. New York, NY, USA: ACM. 2004. ISBN
1-58113-844-X. pp. 502–511. doi:10.1145/988672.988740.

[104] Safi, W.; Maurel, F.; Routoure, J.-M.; et al.: A Hybrid Segmentation of Web Pages
for Vibro-Tactile Access on Touch-Screen Devices. In 3rd Workshop on Vision and
Language (VL 2014) associated to 25th International Conference on Computational
Linguistics (COLING 2014). dublin, Ireland. Aug 2014. pp. 95 – 102.

55

http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/

[105] Sanoja, A.; Gancarski, S.: Block-o-Matic: A web page segmentation framework. In
Multimedia Computing and Systems (ICMCS), 2014 International Conference on.
April 2014. pp. 595–600. doi:10.1109/ICMCS.2014.6911249.

[106] Sarkhel, R.; Nandi, A.: Visual Segmentation for Information Extraction from
Heterogeneous Visually Rich Documents. In Proceedings of the 2019 International
Conference on Management of Data. SIGMOD ’19. New York, NY, USA: ACM.
2019. ISBN 978-1-4503-5643-5. pp. 247–262. doi:10.1145/3299869.3319867.

[107] Schulz, A.; Lässig, J.; Gaedke, M.: Practical Web Data Extraction: Are We There
Yet? – A Short Survey. In 2016 IEEE/WIC/ACM International Conference on Web
Intelligence (WI). Oct 2016. pp. 562–567. doi:10.1109/WI.2016.0096.

[108] Seaborne, A.; Harris, S.: SPARQL 1.1 Query Language. W3C recommendation.
W3C. March 2013. http://www.w3.org/TR/2013/REC-sparql11-query-20130321/.

[109] Shi, J.; Liu, L.: Web information extraction based on news domain ontology theory.
In Web Society (SWS), 2010 IEEE 2nd Symposium on. Aug 2010. pp. 416–419.

[110] Shi, S.; Liu, C.; Shen, Y.; et al.: AutoRM: An effective approach for automatic Web
data record mining. Knowledge-Based Systems. vol. 89. 2015: pp. 314–331.

[111] Shreve, G. M.: Corpus Enhancement and computer-assisted localization and
Translation. In Perspectives on Localization, edited by K. J. Dunne.
Amsterdam/Philadelphia: John Benjamins Publishing Company. 2006. pp. 309–332.

[112] Simon, K.; Lausen, G.: ViPER: Augmenting Automatic Information Extraction
with Visual Perceptions. In Proceedings of the 14th ACM International Conference
on Information and Knowledge Management. CIKM ’05. New York, NY, USA:
Association for Computing Machinery. 2005. ISBN 1595931406. pp. 381–388.
doi:10.1145/1099554.1099672.

[113] Soderland, S.: Learning to Extract Text-based Information from the World Wide
Web. In Proceedings of Third International Conference on Knowledge Discovery and
Data Mining (KDD-97). 1997.

[114] Song, D.; Sun, F.; Liao, L.: A hybrid approach for content extraction with text
density and visual importance of DOM nodes. Knowledge and Information Systems.
vol. 42, no. 1. 2015: pp. 75–96. ISSN 0219-3116. doi:10.1007/s10115-013-0687-x.

[115] Song, R.; Liu, H.; Wen, J.-R.; et al.: Learning block importance models for web
pages. In WWW ’04: Proceedings of the 13th international conference on World
Wide Web. New York, NY, USA: ACM. 2004. ISBN 1-58113-844-X. pp. 203–211.

[116] Spousta, M.; Marek, M.; Pecina, P.: Victor: the Web-Page Cleaning Tool. In
Proceedings of the 4th Web as Corpus Workshop (WAC4) at the sixth International
conference on Language Resources and Evaluation (LREC 2008). Marrakech,
Morocco. 2008.

[117] Stoffel, A.; Spretke, D.; Kinnemann, H.; et al.: Enhancing document structure
analysis using visual analytics. In Proceedings of the 2010 ACM Symposium on
Applied Computing. SAC ’10. New York, NY, USA: ACM. 2010. ISBN
978-1-60558-639-7. pp. 8–12.

56

[118] Su, W.; Wang, J.; Lochovsky, F. H.: ODE: Ontology-assisted Data Extraction.
ACM Trans. Database Syst.. vol. 34, no. 2. July 2009: pp. 12:1–12:35. ISSN
0362-5915. doi:10.1145/1538909.1538914.

[119] Su, W.; Wang, J.; Lochovsky, F. H.; et al.: Combining Tag and Value Similarity for
Data Extraction and Alignment. IEEE Transactions on Knowledge and Data
Engineering. vol. 24, no. 7. July 2012: pp. 1186–1200. ISSN 2326-3865.
doi:10.1109/TKDE.2011.66.

[120] Sun, F.; Song, D.; Liao, L.: DOM Based Content Extraction via Text Density. In
Proceedings of the 34th International ACM SIGIR Conference on Research and
Development in Information Retrieval. SIGIR ’11. New York, NY, USA: ACM.
2011. ISBN 978-1-4503-0757-4. pp. 245–254. doi:10.1145/2009916.2009952.

[121] Tatsumi, Y.; Asahi, T.: Analyzing Web Page Headings Considering Various
Presentation. In Special Interest Tracks and Posters of the 14th International
Conference on World Wide Web. WWW ’05. New York, NY, USA: ACM. 2005.
ISBN 1-59593-051-5. pp. 956–957. doi:10.1145/1062745.1062816.

[122] Utiu, N.; Ionescu, V.: Learning Web Content Extraction with DOM Features. In
2018 IEEE 14th International Conference on Intelligent Computer Communication
and Processing (ICCP). Sep. 2018. ISSN null. pp. 5–11.
doi:10.1109/ICCP.2018.8516632.

[123] Uzun, E.; Agun, H. V.; Yerlikaya, T.: Web content extraction by using decision tree
learning. In 2012 20th Signal Processing and Communications Applications
Conference (SIU). April 2012. ISSN 2165-0608. pp. 1–4.
doi:10.1109/SIU.2012.6204476.

[124] Uzun, E.; Agun, H. V.; Yerlikaya, T.: A hybrid approach for extracting informative
content from web pages. Information Processing & Management. vol. 49, no. 4.
2013: pp. 928 – 944. ISSN 0306-4573.

[125] Vieira, K.; da Costa Carvalho, A. L.; Berlt, K.; et al.: On Finding Templates on
Web Collections. World Wide Web. vol. 12, no. 2. Jun 2009: pp. 171–211. ISSN
1573-1413. doi:10.1007/s11280-009-0059-3.

[126] Vieira, K.; da Silva, A. S.; Pinto, N.; et al.: A Fast and Robust Method for Web
Page Template Detection and Removal. In Proceedings of the 15th ACM
International Conference on Information and Knowledge Management. CIKM ’06.
New York, NY, USA: ACM. 2006. ISBN 1-59593-433-2. pp. 258–267.
doi:10.1145/1183614.1183654.

[127] Vineel, G.: Web page DOM node characterization and its application to page
segmentation. In 2009 IEEE International Conference on Internet Multimedia
Services Architecture and Applications (IMSAA). Dec 2009. pp. 1–6.
doi:10.1109/IMSAA.2009.5439444.

[128] Wang, J.; He, X.; Wang, C.; et al.: News Article Extraction with
Template-Independent Wrapper. In Proceedings of the 18th International
Conference on World Wide Web. WWW ’09. New York, NY, USA: Association for

57

Computing Machinery. 2009. ISBN 9781605584874. pp. 1085–1086.
doi:10.1145/1526709.1526868.

[129] Wei, T.; Lu, Y.; Li, X.; et al.: Web page segmentation based on the Hough
transform and vision cues. In 2015 Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference (APSIPA). IEEE. 2015. pp. 865–872.

[130] Weng, D.; Hong, J.; Bell, D. A.: Extracting Data Records from Query Result Pages
Based on Visual Features. In Advances in Databases: 28th British National
Conference on Databases, BNCOD 28, Manchester, UK, July 12-14, 2011, Revised
Selected Papers. Berlin, Heidelberg: Springer. 2011. ISBN 978-3-642-24577-0. pp.
140–153. doi:10.1007/978-3-642-24577-0_16.

[131] Weng, D.; Hong, J.; Bell, D. A.: Automatically Annotating Structured Web Data
Using a SVM-Based Multiclass Classifier. In Web Information Systems Engineering
– WISE 2014: 15th International Conference, Thessaloniki, Greece, October 12-14,
2014, Proceedings, Part I. Cham: Springer International Publishing. 2014. ISBN
978-3-319-11749-2. pp. 115–124. doi:10.1007/978-3-319-11749-2_9.

[132] Wood, D.; Cyganiak, R.; Lanthaler, M.: RDF 1.1 Concepts and Abstract Syntax.
W3C recommendation. W3C. February 2014.
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/.

[133] Wu, S.; Hsiao, L.; Cheng, X.; et al.: Fonduer: Knowledge Base Construction from
Richly Formatted Data. In Proceedings of the 2018 International Conference on
Management of Data. SIGMOD ’18. New York, NY, USA: ACM. 2018. ISBN
978-1-4503-4703-7. pp. 1301–1316. doi:10.1145/3183713.3183729.

[134] Wu, Y.-C.: Language independent web news extraction system based on text
detection framework. Information Sciences. vol. 342. 2016: pp. 132 – 149. ISSN
0020-0255.

[135] Xu, Z.; Miller, J.: Identifying semantic blocks in Web pages using Gestalt laws of
grouping. World Wide Web. 2015: pp. 1–22.

[136] Yang, X.; Yumer, E.; Asente, P.; et al.: Learning to Extract Semantic Structure
from Documents Using Multimodal Fully Convolutional Neural Networks. In 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 2017.
ISSN 1063-6919. pp. 4342–4351. doi:10.1109/CVPR.2017.462.

[137] Yi, L.; Liu, B.; Li, X.: Eliminating Noisy Information in Web Pages for Data
Mining. In Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. ACM. 2003.

[138] You, Y.; Xu, G.; Cao, J.; et al.: Leveraging Visual Features and Hierarchical
Dependencies for Conference Information Extraction. In Web Technologies and
Applications, Lecture Notes in Computer Science, vol. 7808, edited by Y. Ishikawa;
J. Li; W. Wang; R. Zhang; W. Zhang. Springer Berlin Heidelberg. 2013. ISBN
978-3-642-37400-5. pp. 404–416. doi:10.1007/978-3-642-37401-2_41.

[139] Yu, S.; Cai, D.; Wen, J.-R.; et al.: Improving Pseudo-Relevance Feedback in Web
Information Retrieval Using Web Page Segmentation. Microsoft Research. 2002.

58

[140] Yuliana, O. Y.; Chang, C.-H.: A novel alignment algorithm for effective web data
extraction from singleton-item pages. Applied Intelligence. vol. 48, no. 11. Nov 2018:
pp. 4355–4370. ISSN 1573-7497. doi:10.1007/s10489-018-1208-0.

[141] Zeleny, J.; Burget, R.: Cluster-based Page Segmentation-a Fast and Precise Method
for Web Page Pre-processing. In Proceedings of the 3rd International Conference on
Web Intelligence, Mining and Semantics. WIMS ’13. New York, NY, USA: ACM.
2013. ISBN 978-1-4503-1850-1. pp. 7:1–7:12.

[142] Zeleny, J.; Burget, R.: Isomorphic mapping of DOM trees for Cluster-Based Page
Segmentation. In Proceedings of the Twelfth International Conference on
Informatics INFORMATICS’2013. The University of Technology Košice. 2013.
ISBN 978-80-8143-127-2. pp. 256–261.

[143] Zeleny, J.; Burget, R.: Accelerating the Process of Web Page Segmentation via
Template Clustering. Int. J. Intell. Inf. Database Syst.. vol. 9, no. 2. March 2016:
pp. 134–154. ISSN 1751-5858.

[144] Zeleny, J.; Burget, R.; Zendulka, J.: Box clustering segmentation: A new method
for vision-based web page preprocessing. Information Processing & Management.
vol. 53, no. 3. 2017: pp. 735 – 750. ISSN 0306-4573.
doi:https://doi.org/10.1016/j.ipm.2017.02.002.

[145] Zeng, J.; Flanagan, B.; Hirokawa, S.; et al.: A Web Page Segmentation Approach
Using Visual Semantics. IEICE Transactions on Information and Systems. vol.
E97-D, no. 2. February 2014: pp. 223–230. ISSN 1745-1361.

[146] Zhai, Y.; Liu, B.: Web Data Extraction Based on Partial Tree Alignment. In
Proceedings of the 14th International Conference on World Wide Web. WWW ’05.
New York, NY, USA: Association for Computing Machinery. 2005. ISBN
1595930469. pp. 76–85. doi:10.1145/1060745.1060761.

[147] Zhang, Q.; Hu, G.; Yue, L.: Chinese Organization Entity Recognition and
Association on Web Pages. In Business Information Systems, edited by
W. Abramowicz; D. Fensel. Berlin, Heidelberg: Springer Berlin Heidelberg. 2008.
ISBN 978-3-540-79396-0. pp. 12–23.

[148] Zheng, S.; Song, R.; Wen, J.-R.: Template-Independent News Extraction Based on
Visual Consistency. In Proceedings of the 22nd National Conference on Artificial
Intelligence - Volume 2. AAAI’07. AAAI Press. 2007. ISBN 9781577353232. pp.
1507–1512.

[149] Zheng, X.; Gu, Y.; Li, Y.: Data Extraction from Web Pages Based on
Structural-semantic Entropy. In Proceedings of the 21st International Conference on
World Wide Web. WWW ’12 Companion. New York, NY, USA: ACM. 2012. ISBN
978-1-4503-1230-1. pp. 93–102. doi:10.1145/2187980.2187991.

[150] Zhu, W.; Dai, S.; Song, Y.; et al.: Extracting news content with visual unit of web
pages. In Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD), 2015 16th IEEE/ACIS International
Conference on. June 2015. pp. 1–5.

59

60

Appendix A

Web Page Segmentation and
Document Modeling

A.1 Layout Structure Detection
Burget, R.: Layout Based Information Extraction from HTML Documents. In Ninth In-
ternational Conference on Document Analysis and Recognition (ICDAR 2007), vol. 2. Sep.
2007. ISSN 2379-2140. pp. 624–628. doi:10.1109/ICDAR.2007.4376990.

61

62

Layout Based Information Extraction from HTML Documents

Radek Burget
Brno University of Technology

Faculty of Information Technology
Bozetechova 2, 612 66 Brno, Czech Republic

burgetr@fit.vutbr.cz

Abstract

We propose a method of information extraction from
HTML documents based on modelling the visual informa-
tion in the document. A page segmentation algorithm is
used for detecting the document layout and subsequently,
the extraction process is based on the analysis of mutual po-
sitions of the detected blocks and their visual features. This
approach is more robust that the traditional DOM-based
methods and it opens new possibilities for the extraction
task specification.

1 Introduction

Regarding the growing number of documents available
in the on-line repositories such as the World Wide Web or
being exchanged via e-mail, the task of automatic process-
ing of the contained data becomes important. Since most
of these documents are created for human readers and they
contain no or very poor explicit structure description, it is
necessary to develop methods for extracting the useful in-
formation from the documents in order to allow its integra-
tion to the existing databases or information systems.

In case of HTML documents, most current approaches
to information extraction work with a document representa-
tion, which directly comes from the underlying document
code. The information extraction process is then based
on some assumptions on the HTML usage that include the
names of the tags appearing in the neighborhood of the ex-
tracted content [8] or certain shapes of the document code
tree [7]. However, considering the variability of the HTML
language especially when used together with the Cascading
Style Sheet technology, these assumptions generally cannot
be ensured. This is the main cause of the low robustness of
the traditional information extraction methods from HTML
documents.

In this paper, we deal with an information extraction ap-
proach, which is based on the analysis of the rendered doc-

ument instead of analyzing the document code. We propose
a general model of document that describes the resulting
document layout and the important visual properties of the
content in a form suitable for information extraction. This
model is obtained by page rendering and its subsequent seg-
mentation. Once this model is created, the information ex-
traction process can be based on more general rules that
consider the visual appearance and organization of the con-
tents rather than the properties of the underlying code. This
way, we ensure that the information extraction process is
independent on the document implementation.

The proposed approach focuses on HTML documents.
However, with some minor modifications, it can be applied
to other document formats that explicitly contain the doc-
ument text such as the PDF, PostScript or MS Word doc-
uments. On the other hand, we don’t consider hand writ-
ten documents and the documents that require any sort of
character recognition for reconstructing the contained text
content.

2 Information Extraction Approach

The general overview of the proposed approach is shown
in Figure 1. The extraction process contains of two pre-
processing phases that aim to obtaining an abstract of the
processed document. The last step of the information ex-
traction is then performed on this model.

First, the document is rendered in order to obtain its final
appearance. The document code is interpreted and the ren-
dered document is represented as a set of boxes according to
the CSS visual formatting model [1], where a box represents
a unit of the document content placed on a particular place
on the resulting page. Since the boxes can be nested, we
generally obtain a tree of boxes. This operation is provided
by a rendering engine for the particular document format.
Some output formats such as PDF or PostScript directly
contain the positions of the individual boxes and therefore,
no sophisticated rendering is required. On the other hand,
for the HTML/CSS documents, the rendering may present

63

Document code

Document

rendering

Box tree

Page

segmentation

Document layout model

Extraction

parametres Information

extraction

Extracted data

Figure 1. General overview of the information
extraction approach

a complex task. However, several rendering engines are al-
ready available.

As the second step, we use a segmentation algorithm for
detecting the visual organization of the document. In this
phase, the visual areas such as paragraphs or columns are
detected in the document including their mutual positions.
This information is then represented by a document layout
model together with the document content and its visual
properties. We have proposed a hierarchical document lay-
out model, which is described in section 4. In section 5, we
propose the page segmentation algorithm used for this task.

As the last step, the information extraction is performed.
The extraction task is described based on the mutual posi-
tions of the content and its other visual properties. This step
is described in section 6.

It may seem that the way of creating the document layout
model by page rendering and segmentation is unnecessarily
complex since the visual areas detected by the page seg-
mentation should directly correspond to certain elements in
the HTML code. From this point of view, using a DOM
tree for the same purpose seems more logical and simple.
However, in practical use, the relation between the code
tree and the visual appearance is uncertain and it depends
on many block features that are computed as late as in time
of page rendering. Therefore, we believe that analyzing the
rendered document is the only approach that allows consid-
ering all the information contained in the code without any
simplifying assumptions.

3 Related Work

The information extraction from HTML documents has
been investigated for a relatively long time. Most of the
work focuses on generating wrappers that identify the ap-
propriate data directly in the HTML code. Such wrappers
can be generated automatically based on various machine
learning techniques [5, 8]. Modern approaches are usually
based on the analysis of the document DOM tree [4].

The investigation of the document layout analysis and
page segmentation methods is usually not directly related
to information extraction. For HTML documents, the DOM
tree analysis can be used as well [3, 7]. The most sophisti-
cated approaches work directly with the visual representa-
tion of the rendered document [6, 2]. The advantage of this
approach is that it is more general, more robust and it is not
limited to the HTML documents only. Therefore, our page
segmentation method proposed in section 5 is mostly based
on this approach.

The page segmentation has been often investigated in the
context of document transformation to a structured format
(mainly the PDF documents or OCR) where the XY-Cut ap-
proach is usually used [9, 10].

4 Document Layout Model

The model of a document layout should describe all the
information contained in the document, that can be used for
information extraction. In our approach, we require that the
model contains following information:

• The document content – text and images contained di-
rectly in the document code or referenced from the
code

• Visual style of each part of the content such as font
properties, size or color – produced by the rendering
engine

• Visual organization of the document – produced by the
page segmentation algorithm

4.1 Document Content and its Visual
Properties

For representing the document content, we define the no-
tion of content element e as the smallest unit of the content.
We distinguish two types of the content elements:

Text element – an atomic part of the document text with
visual attributes. We define a text element as a tuple

et = (text, family, size, weight, style,

variant, decoration, color)

64

Attribute Meaning Values
family Font family serif, sans-serif,

monospace
size Font size size in points (pt)
weight Font weight normal, bold
style Font style normal, italic
variant Font variant normal, small-caps
decoration Text decoration none, underline,

overline, line-through
color Text color Color in RGB model

Table 1. Visual attributes of a text element

where text is the text string that forms the element and
the remaining components correspond to the visual at-
tributes as defined in Table 1.

Image element – represents images in the content (for ex-
ample photographs). The image element is defined as
a tuple ei = (width, height, data) where the width
and height correspond to the image size and data rep-
resents the image data in some image format.

Both the text and image elements are created from the
appropriate text and image boxes obtained during the page
rendering. The visual attributes of the text elements are
taken from the computed style of the corresponding box.
From the rendered document, we obtain a set Et of text
elements and a set Ei of image elements in the document.
Then, a continuous part of the document content can be rep-
resented as string

t = e1e2e3 . . . en (1)

where ei ∈ Et ∪ Ei;∀i ∈ 〈1, n〉.

4.2 Visual Organization

The document visual organization is obtained by a page
segmentation described further in section 5. During this
process, a set A of visual areas is detected. A visual area
a ∈ A represents a rectangular region in the page that is vi-
sually separated from the remaining content by any mean
(for example by a frame around or by a different back-
ground). Each area may be further divided in sub-areas, i.e.
the areas may be nested. Therefore, we represent the visual
organization of the document by a tree of visual areas

Tv = (A,E) (2)

where E ⊂ A×A is the set of the tree edges.
We can say that A = Al∪An where Al is a set of leaf ar-

eas in the tree and An is a set of non-leaf areas. The non-leaf

1 3 4 5 6 7

1

4

5

6

3

2

2

Figure 2. Representing the mutual positions
of the area in a grid

visual areas may only contain nested visual areas. The leaf
visual areas directly contain a part of the document content.

In case of non-leaf areas, it is necessary to represent the
mutual positions of the nested areas. For each non-leaf area
we define a topographical grid g that represents the posi-
tions of the nested areas as shown in Figure 2. The grid
defines the division of the visual area to m columns and n
rows and the width and height of each row and column. The
position of each nested area is then defined by its top-left
row and column in the grid of the parent area and the num-
ber of rows and columns it occupies. Therefore, a non-leaf
area an ∈ An can be defined as

an = (x, y, w, h, g) (3)

where x and y is the position of the area in the parent area
grid, w and h is the number of columns and rows the area
occupies in the grid and g is the new grid defined for the
area itself.

The leaf areas have no grid defined since they only con-
tain a part of the document content. We define a leaf area
al ∈ Al as

al = (x, y, w, h, t) (4)

where x, y, w and h have the same meaning as in (3) and
t is a part of the document content contained in the visual
area as defined in (1).

The resulting tree of areas (2) describes all the required
information about the document content – a hierarchical
structure of visual areas, mutual positions of the areas and
the document content together with its visual attributes.

5 Page Segmentation Algorithm

The purpose of the page segmentation is to discover the
visual areas contained in the document and their hierarchy.
We propose a segmentation algorithm based on two levels
of box clustering (bottom-up approach).

The input of the algorithm is a set B of boxes produced
by the rendering engine. Each box is characterized by its

65

position and size on the resulting page. We consider a rect-
angular coordinate system on the page with the origin in the
top left corner of the page. The position of a box b ∈ B can
be defined as pb = (xb, yb, wb, hb) where xb and yb is the
position of the top-left corner of the box and wb and hb are
the width and height of the box. This allows that some box
b1 is placed within the area of another box b2. In this case,
we say that b1 is enclosed in b2.

The segmentation algorithm works in following steps:

1. We create a tree Tb = (B,Eb) from the set B which
represents the box nesting, that means ∀b1, b2 ∈ B :
(b1, b2) ∈ Eb iff b2 is enclosed in b1. As a result, we
obtain a tree of boxes where each parent box encloses
all its descendant boxes.

2. We create a tree Ta of basic areas. A basic area is
always formed by a single box from B that is visually
separated by one of the following means:

• It directly contains a text or an image (leaf boxes
in Tb)

• It has some background color defined that is dif-
ferent from the background color of its parent
box

• It is separated by a visible frame at least at one
side

The tree Ta is created recursively: if a box b from Tb

is visually separated, we add a new corresponding area
an to Ta. Then, we recursively apply the same algo-
rithm to the child boxes of b and the eventual new areas
are added to Ta as the child areas of an. For each non-
leaf visual area of the resulting tree, the grid positions
according to (3) are computed.

3. First box clustering phase – we detect all the visual ar-
eas that are placed in the adjoining cells of the area grid
and they are not visually separated from each other by
the above means. Such areas are joined into a single
area. This step corresponds to the detection of con-
tent blocks (for example text paragraphs) that consist
of several boxes.

4. Second box clustering phase – we look for areas that
are not separated but they are delimited with the vi-
sually separated areas around. We make a post-
order traversal through Ta. For each area in Ta,
we try to cover its children by several new areas.
Let’s consider an area ap from Ta and its child areas
ap1, ap2, . . . , apn. We create a covering area ac and
we start with ac = ap1. Then, we try to expand ac to
all four directions in the grid of ap until we reach some
visually separated areas in the grid in all the directions
or until we reach the grid border. We make ac a new

child of ap and we move all children of ap covered
by ac to ac. These steps are repeated until no further
covering areas can be detected in ap.

After the last step, the resulting tree corresponds to Tv

defined in (2).

6 Information Extraction

The information extraction process consists of identify-
ing the appropriate content elements in the obtained docu-
ment layout tree. As it results from (4), the content elements
are only contained in the leaf nodes of the tree Tv (2) of vi-
sual areas. Thus, for the identification of the appropriate
content element, we can use the characteristics of the con-
taining area and the properties of the content element itself.

Regarding the visual areas, we can consider the hierar-
chical relations among the areas that result from the tree
model and the mutual positions of the areas at the same tree
level expressed by a area grid.

In case of the content element properties, we can dis-
tinguish the content type (image or text) and in case of text
elements, we can consider both the visual properties and the
format of the text string – that means if it contains numbers,
letters, etc.

For each piece of the extracted information, an extrac-
tion rule must be defined. In simple cases, the rules may
be specified manually. In this case, the rule usually con-
sists of a simple condition specifying the required values of
some of the above mentioned properties of the content box.
Since the tree model of the document layout is sufficiently
general, such rules may apply for a large set of documents.
We include a simple example in section 7. However, for
more complex tasks, machine learning techniques can be
adopted for inferring the identification rules from a set of
sample documents, as usual in the information extraction
area [5, 8]. Then, the rules may include probabilistic values
assigned to various properties.

7 Experimental Testing

We have created a prototype implementation of the pro-
posed method, which includes our own HTML/CSS render-
ing engine and the page segmentation. Further, we have
created a simple information extraction task for extracting
the image descriptions from the documents.

First, we find all the image boxes in the area tree. For
simplicity, we assume that the image description is placed
below the image or at the right side as common in news
portals. We allow certain whitespace between the image
and the description. Therefore, we try to find a visual area
containing the description in the area grid in the distance of

66

Figure 3. Detected visual areas in the docu-
ment and the corresponding parts of the area
tree

one or two cells below the image. When no appropriate area
is found, we look the same way on the right of the image.

Figure 3 shows an example of a news page and the cor-
responding parts of the visual area tree. The important de-
tected areas are marked with numbers. The grid positions
are in the square brackets in the form [x1, y1, x2, y2], where
x1 and y1 denote the grid position of the top left corner and
x2 and y2 the position of the bottom right corner.

The areas (1), (2), (3) and (4) share a common parent
area (5). When we focus on the first image (1) [5, 8, 5, 16],
we are looking for a description area in the grid of its parent
area. There is no area in the direction down (the parent
area ends just below the image). On the right side, we find
a grey rectangular [5, 8, 8, 14] area that partly overlaps the
image. The content of this area is assumed to be the image
description and it is formed by a single sub-area (2). The
same situation occurs for the image (3) and the appropriate
situation (4). However, in case of the last image (6), we the
menu (7) is incorrectly taken for the description instead of
the better choice (8).

We have run the above extraction task on 20 web news
portals such as cnn.com, nytimes.com, and similar.
We have taken 10 documents from each of them. Due to the
amount of the information presented, the news portal pages
are quite complex with many visual sections. We have run
the extraction task and compared the extraction results with
the manual description identification. Although the extrac-
tion rules are extremely simple, we have reached 73% recall
(available descriptions detected) and 90% precision (correct
descriptions) in the description extraction.

This simple extraction task shows that the proposed in-
formation extraction method allows using general extrac-
tion rules that are not dependent on the document code.
Moreover, the grid representation of the layout is suitable

for specifying the relative distances between the layout
blocks and their mutual positions without introducing any
exact distance values that may be document-specific.

8 Conclusions

We have proposed a method of information extraction
from HTML documents based on using the page segmenta-
tion for document preprocessing. Since the information ex-
traction is performed on an abstract model of the document
obtained by the page segmentation, it can be based on gen-
eral rules that consider the document content, its layout and
visual presentation. This makes the extraction method inde-
pendent on the document format and more robust in com-
parison to the methods based on the direct analysis of the
document code.

This research was supported by the Research Plan No.
MSM 0021630528 – Security-Oriented Research in Infor-
mation Technology.

References

[1] B. Bos, H. W. Lie, C. Lilley, and I. Jacobs. Cascading Style
Sheets, level 2, CSS2 Specification. The World Wide Web
Consortium, 1998.

[2] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma. VIPS: a Vision-
based Page Segmentation Algorithm. Microsoft Research,
2003.

[3] J. Chen, B. Zhou, J. Shi, H. Zhang, and Q. Fengwu.
Function-based object model towards website adaptation. In
Proceedings of the 10th International Wold Wide Web Con-
verence, 2001.

[4] C. Y. Chung, M. Gertz, and N. Sundaresan. Reverse engi-
neering for web data: From visual to semantic structures. In
18th International Conference on Data Engineering. IEEE
Computer Society, 2002.

[5] D. Freitag. Information extraction from HTML: Applica-
tion of a general machine learning approach. In AAAI/IAAI,
pages 517–523, 1998.

[6] X.-D. Gu, J. Chen, W.-Y. Ma, and G.-L. Chen. Visual
based content understanding towards web adaptation. In
Proc. Adaptive Hypermedia and Adaptive Web-Based Sys-
tems, pages 164–173, 2002.

[7] S. Gupta, G. Kaiser, D. Neistadt, and P. Grimm. Dom-based
content extraction of html documents. In WWW2003 pro-
ceedings of the 12 Web Conference, pages 207–214, 2003.

[8] T. W. Hong and K. L. Clark. Using grammatical inference
to automate information extraction from the Web. Lecture
Notes in Computer Science, 2168:216+, 2001.

[9] Y. Ishitani. Document transformation system from papers
to xml data based on pivot xml document method. ICDAR,
01:250, 2003.

[10] J.-L. Meunier. Optimized xy-cut for determining a page
reading order. ICDAR, 0:347–351, 2005.

67

68

A.2 Box Clustering Segmentation
Zeleny, J.; Burget, R.; Zendulka, J.: Box clustering segmentation: A new method for vision-
based web page preprocessing. Information Processing & Management. vol. 53, no. 3. 2017:
pp. 735 – 750. ISSN 0306-4573. doi:https://doi.org/10.1016/j.ipm.2017.02.002.

69

70

Information Processing and Management 53 (2017) 735–750

Contents lists available at ScienceDirect

Information Processing and Management

journal homepage: www.elsevier.com/locate/infoproman

Box clustering segmentation: A new method for vision-based

web page preprocessing

Jan Zeleny

∗, Radek Burget , Jaroslav Zendulka

Brno University of Technology, Faculty of Information Technology, Centre of Excellence IT4Innovations, Bozetechova 2, 61266 Brno, Czech

Republic

a r t i c l e i n f o

Article history:

Received 5 May 2016

Revised 1 December 2016

Accepted 2 February 2017

Available online 16 February 2017

Keywords:

Clustering

Segmentation

Vision-based page segmentation

VIPS

a b s t r a c t

This paper presents a novel approach to web page segmentation, which is one of sub-

stantial preprocessing steps when mining data from web documents. Most of the current

segmentation methods are based on algorithms that work on a tree representation of web

pages (DOM tree or a hierarchical rendering model) and produce another tree structure as

an output.

In contrast, our method uses a rendering engine to get an image of the web page,

takes the smallest rendered elements of that image, performs clustering using a custom

algorithm and produces a flat set of segments of a given granularity. For the clustering

metrics, we use purely visual properties only: the distance of elements and their visual

similarity.

We experimentally evaluate the properties of our algorithm by processing 2400 web

pages. On this set of web pages, we prove that our algorithm is almost 90% faster than the

reference algorithm. We also show that our algorithm accuracy is between 47% and 133%

of the reference algorithm accuracy with indirect correlation of our algorithm’s accuracy

to the depth of inspected page structure. In our experiments, we also demonstrate the

advantages of producing a flat segmentation structure instead of an hierarchy.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Web page segmentation presents one of substantial preprocessing steps for data mining from web documents. There

has been a lot of development in the area of web page partitioning. While some of the designed methods are targeted

at specific problems like cleaning the noise from the web page, others, including page segmentation, are more generic in

terms of possible utilization of their results. The problem with most of the segmentation algorithms is that they are quite

slow, they depend on implementation details of the documents they process and they produce a hierarchical output that is

difficult to process.

The objective this paper pursues is the development of a new web page segmentation method that is purely vision-based,

independent of any HTML-related heuristics and implementation details of the processed documents. This requirement is

present to make out method resilient to potential future changes in technologies used on the web. Moreover, the method

should produce a flat model of the segmented page consisting of a list of visual segments with a consistent granularity level.

∗ Corresponding author.

E-mail addresses: izeleny@fit.vutbr.cz (J. Zeleny), burgetr@fit.vutbr.cz (R. Burget), zendulka@fit.vutbr.cz (J. Zendulka).

http://dx.doi.org/10.1016/j.ipm.2017.02.002

0306-4573/© 2017 Elsevier Ltd. All rights reserved.

71

736 J. Zeleny et al. / Information Processing and Management 53 (2017) 735–750

And finally, the method must be unsupervised. The quality criteria against which this new method is evaluated include both

speed and precision of the algorithm.

1.1. Background

Even though from the technological point of view, the web pages are considered as atomic carriers of information in the

World Wide Web, in some research areas, it has been clear for some time (Cai, Yu, Wen, & Ma, 2003) that this granularity

is too coarse for processing the contained information. Most web pages are logically split in smaller pieces. From the data

mining point of view, some of these pieces can be thrown away as their informational value is negligible. Others can be

then used for various purposes by different data mining techniques.

Page segmentation usually presents a preprocessing step in a more complex document processing task. From this point

of view, we may find several application domains of page segmentation. Information retrieval and content classification

techniques use page segmentation to improve both precision and performance by eliminating those parts of web pages that

don’t contain useful content Win and Thwin (2014) . Separation of multiple topics in one web page is used for example in

content classification. This important process can also use segmentation to gain precision Yu, Cai, Wen, and Ma (2003) . In

the adaptive view transformation (Aguado, 2015; Coondu, Chattopadhyay, Chattopadhyay, & Chowdhury, 2014), segmentation

is used to identify coherent parts of the web page that should be kept undivided. Finally, in the information extraction

area, page segmentation may be used for the identification of the data-intensive document sections Weng, Hong, and Bell

(2011) or even the individual data fields Mili ̌cka and Burget (2015) .

Depending on the target application, different segmentation granularity may be required. The granularity corresponds to

visual consistency of segments identified in the page. For the typical applications mentioned above, the following granularity

levels may be considered:

• Informative content blocks level – for the page cleaning tasks in the information retrieval and document cleaning areas,

the page segmentation is required to discover the basic blocks in the page such as the main content area, header, footer,

etc. (Alassi & Alhajj, 2013; Uzun, Agun, & Yerlikaya, 2013; Win & Thwin, 2014; Wu, 2016).
• Paragraph level – for some applications such as vision-based classification of logical parts of the published information

Burget (2010) ; Weng, Hong, and Bell (2014) , a finer granularity is required that corresponds to the individual logical parts

of the content such as headings, paragraphs, list items, etc.
• Data field level – the finest granularity level is required usually in the information extraction area when the individual

data fields have to be identified and extracted Mili ̌cka and Burget (2015) .

Current page segmentation methods such as VIPS and its successors (described in detail in Section 2) produce a hierar-

chical model of the segmented page that is created by a recursive division (in case of the top-down approaches) or grouping

(for the bottom-up approaches) of the detected visual blocks. The required granularity level then corresponds to the size of

the leaf nodes of the produced hierarchy and for most segmentation methods, it can be adjusted by setting different pa-

rameters of the particular segmentation method such as the degree of coherence parameter in VIPS. However, for most of

the above mentioned applications, the leaf nodes of the hierarchy are actually the most important ones. The content classi-

fication or information extraction methods examine the visual segments of the required granularity and actually do not use

the complete hierarchy produced. Therefore, for several applications we have investigated recently (Burget, 2010; Mili ̌cka &

Burget, 2015), we found it more efficient to directly obtain a list of visual segments of the required granularity instead a

hierarchical model.

In this paper, we propose the Box Clustering Segmentation (BCS) method that meets the requirements presented in the

beginning of this section. Our method is built from ground up and it has virtually nothing in common with existing tree-

based algorithms. We embrace a different, so far very marginally explored approach to the page segmentation problem. It

is based on processing the rendered page using only very general visual cues. In contrast to the most of current methods,

our algorithm does not produce a hierarchy of areas; instead, it aims to put together tiles on the same level of hierarchy. If

detected correctly, the tile representation is a much more accurate representation of a web page in terms of user perception

and it is more suitable for many application as discussed above. In contrast to most of the existing methods, we don’t

use any tree-processing approach. Instead, we rely on clustering techniques with a proper distance model in place. The

simplified tile representation also allows to achieve a significantly faster segmentation which is traditionally an important

issue in case of the vision-based methods.

The rest of our paper is organized as follows: Section 2 introduces the state of the art in the area of web page segmenta-

tion. Section 3 then introduces the main concept of the Box Clustering Segmentation. Sections 4, 5 and 7 explain the individ-

ual parts of the algorithm in detail. Section 6 covers the metrics we use for the clustering algorithm. Section 8 presents the

results of our algorithm and compares them to the reference algorithm and finally, Sections 9 and 10 sum up the achieved

results.

2. Related work

Our research deals with the issue of splitting up a web page into smaller segments. There has been a lot of research

in this area in recent years and several types of algorithms exist to address this problem. Note that we don’t compare

72

J. Zeleny et al. / Information Processing and Management 53 (2017) 735–750 737

our method to any algorithms used for segmentation of scanned documents, as the nature of the input data is completely

different.

Template detection algorithms belong to the first type. Their goal is to identify and filter out those parts of a web page

that repeatedly occur on similar pages. The assumption is that these parts together constitute a template, sort of a skeleton

of the page that can be dropped without loosing the relevant content (Alarte, Insa, Silva, & Tamarit, 2015; Barua, Patel, &

Agrawal, 2014; Gao & Fan, 2014). Template detection methods (Kulkarni & Patil, 2014; Kulkarni & Kulkarni, 2015; Lundgren,

Papapetrou, & Asker, 2015) are usually quite fast when compared with other methods for page pre-processing and they

scale well. Another positive aspect is that they are usually unsupervised. The problem is that they usually need more than

one web page to even work and their precision is often highly dependent on higher number of inspected pages. When

considering our applications, their other problem is that they typically distinguish only between the useful content and the

template (Barua et al., 2014) and they do not offer finer granularity levels.

Compared to template detection, wrapper generation is more similar to page segmentation. It is a procedure of creating

wrappers – programs that can be later used for extracting particular areas from the given web page. From our perspec-

tive, each wrapper can be perceived as a descriptor of a particular segment on the page. However, compared to web page

segmentation, literature concerned with wrappers mostly focuses only on information extraction tasks (Dalvi, Kumar, & Soli-

man, 2011; Ferrez, Groc, & Couto, 2013; Xiang, Yu, & Kang, 2015). The focus on information extraction is logical considering

that each wrapper extracts a segment of the page.

The area of web page segmentation itself has also been researched extensively. In general, we may say that page segmen-

tation gives the best results in terms of combination of granularity (superior to template detection) and generality of their

subsequent usage (superior to both template detection and wrappers). Various methods belong to this group of algorithms.

They can be divided into partially or fully supervised (Bing, Guo, Lam, Niu, & Wang, 2014; Bu, Zhang, Xia, & Wang, 2014;

Fragkou, 2013) and unsupervised (Burget, 2007; Cai et al., 2003; Hong, Siew, & Egerton, 2010; Liu, Meng, & Meng, 2010;

Shi, Liu, Shen, Yuan, & Huang, 2015) methods. In this work, considering the goals and applications we formulated in the

introduction, we consider only the unsupervised page segmentation methods.

Depending on the underlying model used for the representation of the source documents, the web page segmentation

methods are usually divided in up to four categories (Eldirdiery & Ahmed, 2015a): DOM-based approaches, text-based ap-

proaches, vision-based approaches and hybrid approaches. The DOM-based approaches (Hong et al., 2010; Jiang & Yang,

2015; Shi et al., 2015) operate on an object representation of the HTML code (Document Object Model) that represents the

individual HTML elements contained in the code and their nesting. Some related information extraction (Uzun, Agun, &

Yerlikaya, 2012) and document cleaning (Uzun et al., 2013; Wu, 2016) approaches share the same concept too. Because the

information available in the DOM is very limited and it does not include the visual features of the individual elements, the

DOM-based approaches include many heuristics that are used for an approximate estimation of the purpose of the indi-

vidual HTML elements in order to identify those that form the page segments based on their typical usage in web design.

Similarly, the text-based approaches (Bu et al., 2014; Eldirdiery & Ahmed, 2015b; Kohlschütter, Fankhauser, & Nejdl, 2010)

focus on the properties of the text content, such as density, to detect the content segments. The segmentation methods

based on both the DOM-based and text-based approaches are typically very fast because no complex document preprocess-

ing (such as style analysis or rendering) is required. On the other hand, they operate on a simple approximation of the

document based on its code and/or text content and therefore, the accuracy of the segmentation

1 greatly depends on the

code properties and the used heuristics.

The vision-based approaches focus on the analysis of visual features of the document contents as they are perceived by

a human reader. In case of HTML documents, obtaining the necessary visual information requires processing the document

by an HTML rendering engine in order to compute the style and layout of the individual elements. Considering the visual

information allows to achieve a higher segmentation accuracy in comparison to the DOM-based approaches. On the other

hand, the necessity of page rendering and more complex document models processed typically in multiple steps make the

vision-based approaches significantly slower and less scalable than the DOM-based ones.

VIPS (Cai et al., 2003) is probably one of the first and most popular vision-based algorithms. Even some template de-

tection algorithms use VIPS instead of the usual DOM-based approach for detecting the visual structure of the page that is

further analyzed in order to distinguish the template from the content (Alassi & Alhajj, 2013; Krishna & Dattatraya, 2015).

The VIPS algorithm operates in the following steps: first, the page is divided into visual blocks; then, visual separators are

discovered in the page and finally, the resulting page structure is constructed. Although the visual features of the individual

elements (such as font sizes and colors) and their positions in the rendered page are taken into account, mainly the first

visual block extraction step depends on a number of heuristic rules that are based on the underlying DOM and the HTML

elements. Therefore, the VIPS method is sometimes considered as a DOM-based method with visual cues (Zeng, Flanagan,

Hirokawa, & Ito, 2014). Since the heuristic rules strongly depend on particular usage of certain HTML elements, the VIPS

method is no more directly usable for current web pages due to the evolution of web design techniques and the HTML lan-

guage itself. Therefore, many extensions have been proposed in order to overcome these limitations: Akpinar and Yesilada

(2012, 2013) extend the set of heuristic rules in order to cover the new tags introduced in modern versions of the HTML

language and the new web design techniques. Li, Zhou, Fang, Liu, and Wu (2014) employ text statistics in order to recognize

1 The accuracy is usually defined as a consistency between the result and human perception of the page.

73

738 J. Zeleny et al. / Information Processing and Management 53 (2017) 735–750

similar visual blocks and Zhu, Dai, Song, and Lu (2015) use text features instead of the particular HTML tags in some VIPS

heuristics. The latest approaches avoid the usage of the heuristics completely by using alternative ways of block detections.

Burget (2007) uses a bottom-up grouping of visually aligned blocks, Alcic and Conrad (2011) use a clustering technique

based on several distance metrics such as DOM-based, geometric and semantic distance. Liu, Lin, and Tian (2011) construct

a graph of spatial relationships among the rendered elements that is later partitioned with a Gomory-Hu clustering algo-

rithm and Zeng et al. (2014) compute a seam degree and content similarity of the individual blocks in order to divide larger

visual blocks to smaller parts. Finally, Xu and Miller (2015) apply the Gestalt laws of grouping on the extracted visual blocks.

In contrast to VIPS and its successors, other vision-based approaches use entirely graphical representation of the in-

put document that allows to abstract from the HTML-related implementation details. Cormier, Moffatt, Cohen, and Mann

(2016) use an edge detection algorithm for detecting the visual separators between the content blocks. Similarly, Wei, Lu,

Li, and Liu (2015) use Hough transform for the same purpose and Kong et al. (2012) recognize atomic objects using image

processing methods and perform their grouping by using a spatial graph grammar.

The hybrid approaches combine the DOM-based and vision-based ones in order to obtain higher segmentation accuracy

or for specific applications. Sanoja and Ganarski (2014) and Manabe and Tajima (2015) both combine the content structure

(DOM) with the visual information obtained from a web browser in order to increase the accuracy in comparison to the VIPS

algorithm. Safi, Maurel, Routoure, Beust, and Dias (2014) process the input document in two steps: first, a visual information

analysis is performed and in the second step, DOM tree filtering is performed based on the analysis results with the aim

of supporting visually impaired users. Finally, Fumarola, Weninger, Barber, Malerba, and Han (2011) combine the DOM with

a visual information model in order to extract visually presented lists from the input documents. More generic content

extraction use case is presented by Song, Sun, and Liao (2015)

In our Box Clustering Segmentation method, we strictly avoid using DOM and the HTML-based heuristics. We use a

purely visual representation of the documents which makes our method closer to other methods based on the graphical

document representation (Cormier et al., 2016; Wei et al., 2015). On the other hand, we don’t detect the visual separators

explicitly and the clustering approach is closer to the Web Content Clustering by Alcic and Conrad (2011) .

Comparing our Box Clustering Segmentation to the VIPS and the Web Content Clustering, we find two major advantages

of our approach. First, strictly utilizing just the visual information gives our algorithm an advantage of being more robust,

as it doesn’t depend on features of DOM model or HTML language which are subject to change. In the context of web page

segmentation, this feature is especially visible on highly dynamic web pages where the DOM tree may actually be quite

misleading because there is a lot of relative and absolute positioning utilized on these web pages. That makes the resulting

positions and the relations between the visual areas quite different from the relations between their respective DOM nodes.

Out of the context of web page segmentation, the advantage of our method it that it is applicable on other documents than

web pages; it can be used on any document where we can retrieve information about position, size and color of all the

elements with some content (e.g. images and text bounding boxes), which is true for example for most PDF documents

available on the web. Second, we find our flat area model much more comprehensible and convenient for further processing

than the tree model produced by VIPS. This is further discussed in Section 9 .

3. Box clustering segmentation

The Box Clustering Segmentation (BCS) is designed to be a pure vision-based method. Also, in contrast to other segmen-

tation methods, BCS is designed to give flat results. That means, it produces a tiled arrangement of segments rather than

their hierarchy, which is the usual layout of segmentation results.

The entire process of the BCS is outlined in Fig. 1 . Each box in the figure represents a state of the data being processed.

Each transition between the states then represents an action that is taken. The first box marked Web page represents the

input of the entire algorithm – a web page in a form of the HTML code or the corresponding DOM tree. The rendering step is

done outside of the BCS and is therefore partially independent; any rendering engine can be used for this action. In our BCS

implementation, we use the CSSBox rendering engine 2 , as it offers the most convenient application interface for accessing

the rendered page model. The rendering result is represented as a rendering tree that describes the final appearance of the

rendered page as described in Section 4 .

The Box Clustering Segmentation itself consists of three steps. The first one, called box extraction , takes the rendering tree

and filters out those parts of the tree that are not useful for the subsequent clustering. The distances between the remaining

boxes are computed in the second step based on the criteria described below. Several functions are created as a product

of the distance computation. The clustering step finally processes the entities and identifies segments of the web page by

clustering boxes belonging to the same segment.

4. Box extraction

The box extraction is the first step of the Box Clustering Segmentation. It is possible to think of it as a preprocessing

step. Before we explain in detail what takes place during the preprocessing, let us inspect the rendering step and its output.

2 http://cssbox.sourceforge.net/ .

74

J. Zeleny et al. / Information Processing and Management 53 (2017) 735–750 739

Fig. 1. Architecture of Box Clustering Segmentation.

A rendering engine generally transforms the input document represented as a DOM tree accompanied by Cascading Style

Sheet (CSS) definitions and other additional data to a visual formatting model that is suitable for displaying the resulting

page. The visual formatting model itself and the way how it is created is defined by the Cascading Style Sheet Specification

(Bos, Celik, Hickson, & Lie, 2011). It is basically a tree of boxes where each box represents a rectangular area in the rendered

page. We call this tree a rendering tree in this paper. Each box in the rendering tree corresponds to a particular node in the

input DOM tree or its part; i.e. it is always possible to identify the source DOM node which generated that particular box.

The leaf nodes of the rendering tree are elementary visual boxes that represent atomic units of the content, for example

lines of text. Non-leaf nodes correspond to elements in the source DOM and they serve as either wrappers or groups of the

visual boxes, for example paragraphs.

The box extraction algorithm performs a pre-order traversal of the rendering tree during which it selects the boxes that

will be used in the next steps of the BCS. Among other things, each box contains some basic information that is necessary

for computing the box similarity in the next clustering step. This information includes:

• The color of the box
• Box position in the page
• The size and shape of the box (derived from its width and height)

The idea of the box selection is to consider only those boxes that are actually visually rendered in the page. This is

usually true for the leaf nodes of the rendering tree, as they represent the actual content of the page. However, several

exceptions from this rule exist. The following list provides an explanation of the box extraction process:

1. Text nodes are always leaf nodes. They contain a line or its part. Graphically, each text box is a minimal bounding box

of the text contained. These nodes are always selected.

2. Image nodes are always leaf nodes. They represent a particular image and therefore, they share its properties like posi-

tion and size. These nodes are always selected.

3. Childless boxes that don’t fall into previous categories are omitted.

4. One-child boxes that don’t fall into previous categories are viewed as subtrees rooted at the child box. These subtrees are

then inspected for branches and if no branches exist, the smallest box in the subtree with a non-transparent background

is selected. If there is no such box, the leaf box is selected.

After the traversal is completed, it is remotely possible that some extracted boxes will visually contain other boxes. If

this happens, all such cases are identified and the larger boxes are deselected.

5. Connecting the boxes

After all useful boxes are selected, we virtually connect them by detecting their adjacency. The first step to do that is

to detect their semi-alignment. This is one of the important elements in the design of Box Clustering Segmentation. The

following definitions describe box structure and semi-alignment of two boxes.

75

740 J. Zeleny et al. / Information Processing and Management 53 (2017) 735–750

Fig. 2. Absolute distance measurement between boxes.

Definition 1 (Box structure) . Let the box be defined as seven-tuple m = (le f t, right, top, bottom, width, height, color) where

left, right, top and bottom are integer values that represent positions of respective edges of the box; width = right − le f t;

height = bottom − top and color represents dominating color of the box in RGB format.

Definition 2 (Projected overlap and semi-alignment) . Let m and n be two boxes on a web page. The projected overlap of

boxes m and n is defined as a function pov : (m, n) → { x, y, o } where x and y indicate projected overlap on the respective

coordinate axes of the web page and o designates “no projected overlap”. The following rules apply:

pov (m, n) =

{

x if m.right ≥ n.l e f t ∧ m.l e f t ≤ n.right
y if m.b ottom ≥ n.top ∧ m.top ≤ n.bottom

o otherwise
(1)

The two boxes m and n are in semi-alignment if pov (m, n) � = o .

Mutual position is a finer grained version of the projected overlap that is used when determining the distance between

boxes.

Definition 3 (Mutual position of two boxes) . Let a set of possible positions be P = { a, b, l, r, o} where a, b, l, r designate

position above, below, left and right respectively and o designates “other position”. The position of box m relative to box n

is defined as a function pos : (m, n) → P where the following rules apply:

pos (m, n) =

⎧ ⎪ ⎪ ⎨

⎪ ⎪ ⎩

a if m.bottom ≤ n.top ∧ pov (m, n) = x
b if m.top ≥ n.bottom ∧ pov (m, n) = x
l if m.right ≤ n.le f t ∧ pov (m, n) = y
r if m.le f t ≥ n.right ∧ pov (m, n) = y
o otherwise

(2)

Besides being used for defining the neighborhood of each box, semi-alignment is also used for limiting the domain

of the similarity function as described in Section 6 . There are two reasons for limiting both the domain of the similarity

function and the number of boxes included in the neighborhood detection. The first one is purely practical – it is easier

for the clustering algorithm to extract the neighboring boxes when the number of candidates is limited. The same applies

for calculating the similarity – it helps to reduce the number of similarity calculations. The second reason is based on our

observation that boxes that are visually related are always organized this way (placed right next to each other or right below

each other).

Now, for the adjacency itself. In this paper, we use a term direct neighborhood to express a set of boxes adjacent to

a specific box. To understand the direct neighborhood, it’s important to know how absolute distances between boxes are

calculated. These distances, graphically outlined in Fig. 2 , are formally expressed by the function abs () that is included in

Definition 4 .

Definition 4 (Absolute Distance, Direct Neighborhood of a Box) . Let B be a set of boxes on a web page and let m, n ∈ B .

Absolute distance between two boxes is a function abs : B × B → R :

abs (m, n) =

⎧ ⎪ ⎪ ⎨

⎪ ⎪ ⎩

n.t op − m.bott om if pos (m, n) = a
m.t op − n.bott om if pos (m, n) = b
n.le f t − m.right if pos (m, n) = l
m.le f t − n.right if pos (m, n) = r
∞ otherwise

(3)

Direct neighborhood of a box m is defined as N m

= { n | n ∈ B ∧ pos (m, n) � = o ∧ � k ∈ B : (pos (m, k) = pos (m, n) ∧ abs (m, k) <

abs (m, n)) }

76

J. Zeleny et al. / Information Processing and Management 53 (2017) 735–750 741

Fig. 3. Hierarchy of clusters and the corresponding boxes.

Direct neighborhoods of all the boxes in a web page essentially create virtual connections that are being used in further

calculations and, subsequently, the clustering algorithm itself.

6. Similarity model

A proper model for evaluating the similarity of elements in a web page is a core piece of any segmentation algorithm.

In this paper, we use a compound similarity model that consists of two parts. To understand both of them, it’s necessary to

understand the organization of elements in a web page as we represent it.

Boxes have already been described in Section 4 . A cluster is the second element type that we use in BCS. Together, the

two types of elements form a two-level hierarchy as outlined in Fig. 3 .

As stated before, we use two different similarity metrics. The first one, called base similarity , is based on the visual

features of boxes. The second one, called cluster similarity , is then used to express the similarity between two elements

where at least one of them is a cluster.

6.1. Base similarity

The base similarity can be calculated for any pair of boxes. However, for the reasons explained in Section 5 we calculate

it only for those pairs that are semi-aligned. We have chosen a simple similarity model based on several visual properties of

the compared boxes. The reason for this choice was to make the algorithm both transferrable to other types of documents

and resilient to any potential HTML, CSS or DOM changes in the future.

The base similarity is essentially an arithmetic mean of three components that are described further: distance, shape

similarity and color similarity :

bsim (m, n) =

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨

⎪ ⎪ ⎪ ⎪ ⎪ ⎩

0 if distance (m, n) = 0

1 if distance (m, n) = 1 ⎛

⎝

distance (m, n)+

sim _ shape (m, n)+

sim _ color(m, n)

⎞

⎠

3

otherwise

(4)

6.1.1. Distance

Distance between elements of a web page is the primary way how web designers separate the visual and semantic

blocks in the web page. As such, it is also often used as the primary indicator of the separation in segmentation algorithms,

including VIPS Cai et al. (2003) . Our distance model is based on some ideas that come from our prior work Burget (2007) .

In the current model, we use relative distances that are computed in two steps. The first step – detecting direct neigh-

borhood – was already covered in Section 5 . Using the direct neighborhood, we then transform the absolute distances to

relative distances, expressed by the distance () function.

Definition 5 (Relative distance) . Let B be a set of all boxes on a web page. For each box m ∈ B and its direct neighborhood

N m

, there is a maximal neighborhood distance maxd(m) = abs (m, k) where k ∈ N m

∧ �l ∈ N m

: abs (m, l) > abs (m, k). For each

n ∈ N m

the relative distance, designated distance (m, n), is calculated as:

rel m

(m, n) =

abs (m, n)

maxd(m)
(5)

rel n (m, n) =

abs (m, n)

maxd(n)
(6)

distance (m, n) =

r el m

+ r el n

2

(7)

77

742 J. Zeleny et al. / Information Processing and Management 53 (2017) 735–750

Table 1

Colors that are assigned to basic box types.

Box type Assigned color

Images Color tone of the image

Text Font color of the text

Other leaf boxes Background color of the box

The relative distance expresses how far the two boxes are from each other in context of their direct neighborhoods. The

function as formulated in Definition 5 can obviously assume values in the range < 0, 1 > with direct correlation between

the distance and the value rel (m, n).

6.1.2. Shape

When comparing the shapes of two boxes, we base our calculation on a premise that the boxes that look similar are

likely to belong to the same cluster. This metric was included after our observation that the shape similarity is often what

visually binds together blocks of text or items in menus. On the other hand, some other cases exist in which we don’t

necessarily want to group the boxes that are similar in some way. To distinguish between the different types of similarity,

we came up with a system utilizing the aspect ratio and the size of the two compared boxes.

Let’s have two boxes m, n ∈ B . For the aspect ratio comparison of the boxes, we use the following formulas:

r m

=

m.width

m.height
(8)

r n =

n.width

n.height
(9)

ratio(m, n) =

max { r m

, r n } − min { r m

, r n }
max { r m

, r n } 2 − 1

max { r m

, r n }
(10)

The second part of shape similarity measurement is the size comparison. We use the following formulas for evaluating

the size similarity of two boxes m, n ∈ V :

s m

= m.width ∗ m.height (11)

s n = n.width ∗ n.height (12)

size (m, n) = 1 − min { s m

, s n }
max { s m

, s n } (13)

The final shape similarity is simply calculated as a mean value of ratio and size :

sim _ shape (m, n) =

ratio(m, n) + size (m, n)

2

(14)

6.1.3. Color

Color difference presents another method that both web developers and segmentation algorithms use to separate visual

segments of web. The boxes in a web page may contain many colors such as the text (foreground) color, background color,

borders or even more colors in case of images. For computing the color distance of two boxes, we assign each box a single

color depending on its type as shown in Table 1 .

The color distance itself is a metric used to quantify the difference between two colors. It is commonly denoted as �E

and there exist many formulas to calculate it. The actual choice of the most suitable formula depends on the application

(Sharma, 2004).

The International Commission on Illumination came up with several formulas that work on Lab and LCH color spaces.

They are all based on the fact that the human eye is more sensitive to changes in chroma than to changes in lightness

(Sharma, 2004). As opposed to RGB color space, both Lab and LCH color spaces allow a separate calculation for lightness and

chroma.

In our application, we have experimented with both Lab and LCH based color distances; however, we have evaluated a

simple euclidean RGB -based difference as the one with the best results. Our observations showed that the reason is most

likely that the web designers most often use different hue rather than chroma to distinguish between the components that

don’t belong to each other.

78

J. Zeleny et al. / Information Processing and Management 53 (2017) 735–750 743

Because the results of the color distance have to match all the other components of the box comparison, we have nor-

malized the euclidean distance by dividing it by the maximal diagonal distance in the RGB color space. In our color rep-

resentation, we use the standard RGB model where each color channel can assume values in the range < 0, 1 > and the

maximal diagonal distance is
√

3 .

Definition 6 (Color similarity) . Let m, n be two boxes and let m.color = (R m

, G m

, B m

) and n.color = (R n , G n , B n) be their color

representations. The color similarity sim _ color is defined as

sim _ color =

√

(R n − R m

) 2 + (G n − G m

) 2 + (B n − B m

) 2 √

3

(15)

6.2. Cluster similarity

When grouping single boxes into clusters, it is necessary to extend the similarity model to accommodate the clusters;

that means, we need to evaluate the similarity of two clusters or a cluster and a box. Unfortunately, the characteristics of

clusters cannot be simply inherited from the characteristics of the individual boxes constituting the clusters, mainly as it is

difficult to interpret the contribution of individual boxes to the whole cluster.

Therefore, we use a model that is based on clusters’ inner similarity indicators. This model builds on base similarity

and follows the idea of Degree of Coherence in VIPS and box clustering in Burget (2007) . The inner similarity is basically

a mean value of base similarity that is calculated using the boxes within a cluster. As a prerequisite of this representation,

the definition of direct neighborhood must be extended so it can accommodate both clusters and boxes. The model derives

direct neighborhood of each cluster from direct neighborhoods of all the boxes contained in that cluster.

Definition 7 (Unclustered Boxes, Cluster Direct Neighborhood) . Let B and C respectively be sets of boxes and clusters on a

web page. Furthermore, let B c ∈ C be a set of boxes constituting cluster c and let N m

designate direct neighborhood of box

m . A set of unclustered boxes on the page is defined as B U = { b| b ∈ B ; � B c ∈ C : (b ∈ B c) } .
For a cluster c , its direct neighborhood is defined as N c = { m | m ∈ B U ∧ ∃ n ∈ B c : n ∈ N m

} ∪ { B d | B d ∈ C ∧ ∃ m ∈ B c : ∃ n ∈ B d :

n ∈ N m

} .
Corresponding to the previous definition, the value of similarity between a cluster and any entity in its direct neighbor-

hood represents the mean value of similarities between that entity and all the boxes contained in the cluster. The previous

text implies only connections between pairs of boxes that are adjacent where each such pair has a corresponding similarity

value. However, the concepts of connection cardinality and cumulative similarity introduce additional functions card () and

cumul () which are defined as follows:

Definition 8 (Connection cardinality and cumulative similarity) . Let B, B U and C respectively be sets of boxes, unclustered

boxes and clusters on a web page. Also, let N e designate direct neighborhood of entity e . Functions card : C × C ∪ B U → N

and cumul : C × C ∪ B U → R respectively represent connection cardinality and cumulative similarity. Note that the cumulative

similarity uses the function s () which is defined in Section 6.3 . Both functions are defined as follows:

card(c, e) = |{ m | m ∈ B c ∧ e ∈ N m

}| (16)

cumul(c, e) =

∑

∀ m ∈ B c
s (m, e) (17)

When a cluster is being created, all the unclustered boxes are scanned and those ones that are about to become the

cluster neighbors are selected for processing. For each of these future neighbors, the value of the cumulative similarity and

the cardinality is calculated and the final similarity csim is then calculated as their quotient:

csim (c, b) =

cumul(c, b)

card(c, b)
(18)

6.3. Entity similarity

Now when both compounds of the similarity model are described, their combined usage is straightforward:

Definition 9 (Entity similarity) . Let B and C be sets of boxes and clusters on a web page respectively and let e 1 , e 2 ∈ B ∪ C

be two entities. The entity similarity s is defined as:

s (e 1 , e 2) =

{

bsim (e 1 , e 2) if e 1 ∈ B ∧ e 2 ∈ B

csim (e 1 , e 2) if e 1 ∈ C
csim (e 2 , e 1) if e 1 / ∈ C ∧ e 2 ∈ C

(19)

79

744 J. Zeleny et al. / Information Processing and Management 53 (2017) 735–750

7. Clustering

The set of boxes B and the value of a Clustering Threshold , designated CT and described further, are the only inputs of

the clustering algorithm. It outputs a set of identified clusters C . The clustering algorithm has four main parts that will be

closely described in this section:

1. Creation of cluster seeds

2. Entity selection for merging – creation of candidate clusters

3. Overlap handling

4. Cluster verification and commission

The main algorithm loop and its initialization are shown in Fig. 1 . The main loop itself covers the first two parts of

the entire algorithm – the creation of the cluster seeds and the selection of entities for further merging. They are almost

equivalent; the only difference is in the type of their input entities. The idea is to find the most similar couples of boxes

and then, to select them for merging. If at least one of the entities is a cluster, a new candidate cluster is created. If both

entities are boxes, a new cluster seed is created instead. However, even the seed should be considered just as a candidate

seed at first. After it is committed, it becomes a valid cluster seed.

The selection of the two entities for merging is performed on line 6 of the Algorithm 1 . The selected relation is then

removed from the set to avoid infinite loops. With the two entities selected, we have to check if the similarity between

them is within an acceptable range before the candidate is created. This is simple for two boxes; however, for clusters,

we have to employ the formula from Section 6.2 to get the real value of similarity. Picking the right similarity value is

abstracted by function sim (). If the difference between the selected entities is too big, the candidate is not created at all.

Algorithm 1 The clustering algorithm.

1: function bcs (IN: CT, IN OUT: G, OUT: C)

2: loop

3: if | B U | < 2 then

4: return

5: end if

6: m, n ← m, n ∈ B U ∪ C : � x, y ∈ B U ∪ C : (s (x, y) < s (m, n))

7: if s (m, n) > CT then

8: return

9: end if

10: create cluster candidate cc

11: if ∃ c ∈ C : c ov erlaps cc then

12: continue

13: end if

14: if ∃ b ∈ B : b ov erlaps cc then

15: mergeOverlaps (B, cc)

16: end if

17: commit (cc, G, C)

18: end loop

19: end function

The Clustering Threshold CT , used on line 7, is a static real number that can assume values in the range of < 0, 1 > .

The Clustering Threshold corresponds to the Permitted Degree of Coherence (PDoC) used in VIPS algorithm. It has to be

set in advance and it remains constant for the entire page. Picking the right value of CT is a difficult task and every web

page has a different optimal value. If it’s too low, many boxes will end up unclustered. On the other hand, if picked too

high, some clusters that should be separate are merged instead. Compared to VIPS, there is also another consequence: The

results can also look completely different with different values of CT . That is caused by the overlap merging phase. Selecting

the right value of CT for the web page is out of scope of this paper, much like VIPS doesn’t cover selection of the PDoC.

In practical applications, we assume several approaches, for example an iterative or bisective approach with the number of

unclustered boxes being used as an indicator when to stop. This solution is feasible with the support of our Cluster-based

page segmentation (Zeleny & Burget, 2013) that can record the optimal value for one page and re-use it on other web pages

that are similar.

Some tests are performed on the new candidate after it is created. These tests are the reason we create just a candidate –

failing the tests prevents the cluster creation from being verified and in such cases it is easier to dispose of the cluster

candidate than to undo the merging step.

1. An overlap with another cluster. Such overlaps are not allowed by definition in our method and therefore, if the candidate

overlaps with another cluster, it is marked as invalid and it is removed.

80

J. Zeleny et al. / Information Processing and Management 53 (2017) 735–750 745

2. An overlap with other boxes. This step is one of the most important ones. Both creating the cluster seed and extending

the cluster by merging it with a nearby box can make the cluster overlap with other boxes. The overlap with a box can

eventually end up being an overlap with another cluster. Since this is not acceptable, we have to consider the overlapped

box or boxes for merging into the cluster right at the moment when the overlap is created. If the candidate boxes don’t

cause any new overlaps, they are accepted and merged into the cluster. Otherwise, the cluster candidate is removed as

invalid. This is represented by the mergeOverlaps() function.

The entire cluster creation is then encapsulated in the function commit() . If the cluster candidate passes all the tests

and it is not marked as invalid, it is marked as verified and committed to be a valid cluster. Several partial actions have to

be carried out during this operation:

1. All new boxes in the candidate cluster are marked as members of the final cluster.

2. The inner similarity indicators of the cluster are re-calculated.

3. If the cluster candidate was created by merging other clusters, these clusters are deleted from the cluster set C and

removed.

4. The new cluster is added to the cluster set C .

After the processing of all the boxes is finished, some boxes that don’t belong to any group may still remain. These boxes

are ignored in the result as they are likely not important in the web page in terms of information retrieval. If the usage

context of the algorithm is content filtering, these boxes can be safely dropped.

8. Experimental evaluation

In order to verify our design, we have created a reference implementation. We use Java as a platform for the implemen-

tation for the reasons explained further. As a rendering engine, we use CSSBox that is written in Java. CSSBox is the most

capable rendering engine in terms of access to internals and the platform independence.

The goal of the experimental evaluation is to compare our implementation with the existing algorithms. We use VIPS

algorithm as a baseline. To make the comparison as accurate as possible, we use Java implementation of VIPS 3 , which

is based on the original paper (Cai et al., 2003). For achieving an accurate comparison, both segmentation programs are

written in Java and both use the same CSSBox rendering engine. Therefore, the performance comparison is not influenced

by the differences that can be caused by a different platform or rendering engine. Also the comparison of accuracy is more

precise due to the same rendering engine being used.

In the comparison, we watch the following three criteria:

• Time the algorithm spent segmenting the web page.
• How accurate the results are.
• How stable across web pages the results are.

With respect to the watched criteria, the testing of every web page was performed as follows:

1. Pick a web page.

2. Let a user create reference segmentation of the web page.

3. Render box representation of the web page.

4. Run each algorithm multiple times, each time with different value of the Clustering Threshold and Permitted Degree of

Coherence respectively.

5. Compute the mean run time of each algorithm and select the CT/PDoC that leads to the most accurate segmentation

result.

6. Compare the run times and the accuracy of results.

The first step in the process is to pick a web page on which the segmentation is performed. To test the robustness of

both compared algorithms, it was necessary to identify as wide variety of page layouts as possible and test at least one web

page for every layout identified. There are several layout types of web pages we consider:

• Complex index pages – pages like news indexes or listings are characterized by a high degree of structure, as there are

multiple topic areas covered on a single page, every area being represented by only a handful of boxes. E-commerce

systems are also good representatives of this category of pages. The main difference is that the e-commerce systems

usually have stronger structure in terms of similarity between individual elements.
• Articles – pages like these contain one main block of text, usually consisting of multiple paragraphs and image elements.

Besides this one big block, there are some smaller areas that are usually related to navigation and some small pieces of

generic information (like contact or news on company web sites).
• Simple web pages – this is a good example of some minimalistic web pages, usually educational ones. The main charac-

teristics of web pages like these is a minimal amount of elements (and subsequently also visual areas) other than the

main content.

3 https://github.com/tpopela/vips_java.

81

746 J. Zeleny et al. / Information Processing and Management 53 (2017) 735–750

Table 2

Algorithm run time comparison.

page VIPS time BCS time

businessinsider.com (article) 522 ms 20 ms

idnes.cz (index) 1079 ms 39 ms

idnes.cz (article) 723 ms 53 ms

novinky.cz (index) 28126 ms 699 ms

novinky.cz (article) 390 ms 18 ms

reuters.com (index) 475 ms 15 ms

reuters.com (article) 442 ms 37 ms

yahoo news (article) 342 ms 21 ms

We have created an evaluation dataset of real web pages containing all the mentioned page types as we describe further.

8.1. Evaluation dataset preparation

For creating the evaluation data set, we have identified 8 different types of pages from 5 news web sites that are listed in

Table 2 . Note that the businessinsider.com and yahoo news sites don’t use paging and we were therefore unable to statistically

process their respective index pages. We have collected a set of 100 pages for every type, which means 800 pages in total.

Then, we asked three volunteers to independently create a reference segmentation for every page from the set.

To facilitate the work of the volunteers and to ensure consistent annotation of all pages of each of the eight types by a

single volunteer, we have used a semi-automatic annotation approach. This approach is based on the fact that all the pages

of the same type share the same template that is used for generatig their HTML code. We have created a graphical tool that

allows the volunteer to interactively mark the visual clusters in one sample page of every type. Then, the tool maps the

manually created segments to a DOM model of the sample page and subsequently, it automatically creates equal segments

in the remaining 99 pages of the same type. Finally, the volunteer is able to browse the results of the automatic annotation

graphically in order to verify its correctness. The annotation results are stored as text files containing the positions of the

annotated segments for every page as well as PNG images showing the annotated segments graphically for later verification.

As a result, we have obtained 2400 annotated pages in total from our three volunteers.

8.2. Performance evaluation

Table 2 demonstrates the first part of the algorithm evaluation – the mean run times of both algorithms on the evaluation

data set. As the Table 2 demonstrates, our algorithm is superior to the VIPS in terms of time required to process a web page.

This difference gets bigger with decreasing complexity of evaluated web page.

8.3. Accuracy and stability evaluation

Evaluating the accuracy is a more complex task. In the area of page segmentation, there is no commonly used method

for evaluating the accuracy. In statistical analysis in general, the F-score is a common way how to evaluate the accuracy. In

Kreuzer, Hage, and Feelders (2013) , the F-score is used, even though the underlying method for matching segments is rather

crude. There is, however, an alternative that we can use. As this paper proposes, the page segmentation task, regardless

of how it’s performed, is basically a clustering task – each segment being a cluster of page elements. In data clustering,

Adjusted Rand Index (ARI) (Hubert & Arabie, 1985) is being used to measure similarity between two clusterings. In this

paper, we compare BCS and VIPS using both methods.

For ARI, each segmented web page is viewed as a clustering and every segment in that web page is a cluster of boxes

rendered on that page. In case of F-score, we take a similar approach. We create pairs of automatically detected areas and

manually annotated areas which share at least one rendered box. For each such pair, we calculate the precision and recall

of that pair. If there are any manually selected areas that do not share boxes with any automatically detected areas, we set

the recall value for each of them to 0. The resulting F-score is calculated using average values of precision and recall for

the entire page. In both cases, we measure the accuracy using rendered boxes and their pertinence to visual areas in the

reference segmentation. There are several rules when creating the reference segmentation:

• Each box is assigned to at most one visual area.
• There are no empty visual areas in the web pages –i.e. those that would contain no boxes.
• There are no overlapping visual areas in the page.
• Every visual area has to meet the semantic condition : The boxes in the area have to constitute one unit of content that

is coherent visually, semantically or (preferably) both.

Evaluating one reference web page of a given type from a given site might be misleading, as there is no guarantee or

even indication that segmenting other pages would generate any kind of corresponding results. That’s why we performed

statistical evaluation on a large set of pages.

82

J. Zeleny et al. / Information Processing and Management 53 (2017) 735–750 747

Table 3

Algorithm accuracy comparison using the ARI and F-score metrics.

page BCS ARI VIPS ARI BCS F VIPS F

businessinsider.com (a) 0 ,5704 0 ,7010 0 ,6345 0 ,7394

idnes.cz (article) 0 ,6629 0 ,7240 0 ,5570 0 ,5720

idnes.cz (index) 0 ,5954 0 ,7926 0 ,5522 0 ,7259

novinky.cz (article) 0 ,7670 0 ,7877 0 ,6446 0 ,7191

novinky.cz (index) 0 ,5303 0 ,9121 0 ,4265 0 ,9043

reuters.com (article) 0 ,6123 0 ,6786 0 ,5914 0 ,6943

reuters.com (index) 0 ,5832 0 ,8160 0 ,5145 0 ,7569

yahoo news (article) 0 ,7556 0 ,5626 0 ,7102 0 ,5446

Table 4

Algorithm stability comparison: Standard deviation of the results in the

dataset.

page BCS ARI VIPS ARI BCS F VIPS F

businessinsider.com (a) 0 ,1275 0 ,1740 0 ,0358 0 ,0721

idnes.cz (article) 0 ,0646 0 ,0766 0 ,0424 0 ,0794

idnes.cz (index) 0 ,0733 0 ,0078 0 ,0108 0 ,0070

novinky.cz (article) 0 ,1274 0 ,1406 0 ,0404 0 ,0731

novinky.cz (index) 0 ,0529 0 ,0140 0 ,0558 0 ,0219

reuters.com (article) 0 ,1316 0 ,1687 0 ,0301 0 ,0847

reuters.com (index) 0 ,0328 0 ,0516 0 ,0203 0 ,0336

yahoo news (article) 0 ,2089 0 ,1658 0 ,10 0 0 0 ,0539

One problem remains in the evaluation system presented above and that is the hierarchy of visual area presented by VIPS.

To eliminate the ambiguity that the hierarchy presents, only the leaf areas of the hierarchy will be used for the evaluation.

The Table 3 shows the comparison of accuracy of both BCS and VIPS. The F-score value is a real number between 0 and

1, where higher values are better. ARI score is between −1 and 1, higher values are better.

The results show that the accuracy of VIPS is slightly better, especially when processing structured pages. The reason is

that BCS is too aggressive when creating clusters, thus effectively overlooking the structure. VIPS on the other hand does

much better job in finding repeating patterns in the web page. When processing pages with less structure, the accuracy of

BCS and VIPS is comparable, in some cases BCS is even better than VIPS.

Stability of both algorithms can be also calculated using the same data that was used to populate Table 3 . We calculated

stability in each data set, specifically as standard deviation of results in the set. The results are displayed in Table 4 .

Again, both algorithms are comparable. In some cases the stability of BCS is almost three times better than that of VIPS,

in others, it’s exactly the opposite. Not looking at the degree of superiority, the stability of BCS is better in 5 data sets, i.e.

62.5% of measurements.template but across the templates as well

9. Discussion

Looking at the results in Section 8 , the most important practical implication of the results emerges. Significantly increas-

ing performance of vision-base page segmentation algorithms while not losing their level of accuracy opens them way to

practical application, as speed is very important in modern data mining systems. Using just generic visual cues supports

that attractivity, as one algorithm can be used for processing multiple document types and it is resilient to possible future

changes in technologies like HTML.

The flat structure BCS produces is as important for the practical application as performance. Being able to easily con-

sume the output of segmentation algorithm significantly lowers the barrier for using it. Note that this was even proven in

Section 8 where extra measures had to be taken to make the results of VIPS comparable to the results of BCS.

To better demonstrate the advantage of the flat output of the Box Clustering Segmentation (BCS) in the evaluation pro-

cess, the difference between the two output models is displayed in Fig. 4 . The BCS flat model is quite straightforward – it is

just a set of groups, each of which can be further processed right away. The VIPS tree model on the other hand is not that

simple. Fig. 4 visualizes the different levels of the output tree with different shades of gray and the internal consistency

level by numbers in the leaf areas. It may be understandable for a human observer; however, in context of an automatic

processing, one needs to performs a subsequent deep analysis of the segmented result to select the right area set, as we

don’t necessarily want to always pick the leaf nodes of the tree. Even though the tree model offers some bright sides like

the possibility to compensate for some potential defects in the output, we don’t find them that significant. Therefore, we

consider the flat model to be the most distinct advantage of BCS when compared to VIPS and other hierarchy-producing

algorithms.

Section 8 briefly describes a brute force approach to selecting the best values of PDoC and CT. That highlights another

aspect that is important in practical application – selecting the right value of the target granularity parameter. As the original

83

748 J. Zeleny et al. / Information Processing and Management 53 (2017) 735–750

Fig. 4. Output model comparison: (a) VIPS tree model and (b) BCS flat model.

VIPS paper points out, different applications might need different output granularity and set the PDoC accordingly. That is

our perception of CT as well. For that reason, any deeper investigation of the PDoC/CT selection process does not belong to

this paper. But, since we are comparing BCS and VIPS, let’s compare practical use of their respective granularity parameters.

In both cases, the parameters are limited to fixed range of values and their change significantly influences the results of

algorithms they are used in. We see the flexibility of CT being a real number to be a great advantage over PDoC which is

integer. On the other hand, PDoC and how VIPS behaves when it changes is a great advantage over CT, as the results of

changed PDoC are more predictable than the results of BCS when its CT changes.

In the field of theory, our paper opens new research area: new group of vision-based document segmentation can be

explored. This area has a lot of potential, further research can improve both the accuracy and performance of vision-based

clustering segmentation techniques. The overall potential of the Box Clustering Segmentation may be even greater consider-

ing it currently uses very low amount of information to perform the segmentation.

10. Conclusion

In this paper, we have presented a new web page segmentation method called Box Clustering Segmentation. We showed

that its precision is comparable to VIPS in some cases and slightly worse in others. We have also shown that its performance

is superior to the VIPS performance and we have presented two major advantages the Box Clustering Segmentation has over

the existing algorithms. First of them is the strict usage of visual information only which makes our method transferrable

to other document types. It also makes it resilient to changes in HTML, DOM and other technologies used on the web. The

second advantage is the output structure that is more comprehensive and convenient for further processing.

The assumed applications of the proposed page segmentation method include the document cleaning, automatic adapta-

tion of web pages for small screen devices, page preprocessing for information retrieval and document classification, logical

structure discovery and information extraction tasks. By setting the appropriate values of the input parameters, the segmen-

tation may be performed on any granularity level depending on the particular task.

Acknowledgment

This work was supported by The Ministry of Education, Youth and Sports of the Czech Republic from the National Pro-

gramme of Sustainability (NPU II); project IT4Innovations excellence in science – LQ1602.

References

Aguado, J. (2015). Emerging perspectives on the mobile content evolution. Advances in multimedia and interactive technologies: IGI global . URL https://books.
google.cz/books?id=Omm2CgAAQBAJ

Akpinar, E., & Yesilada, Y. (2012). Vision based page segmentation: Extended and improved algorithm. Tech. Rep. eMINE Technical Report Deliverable 2 (D2),
Middle East Technical University, Ankara, Turkey.

Akpinar, M. E. , & Yesilada, Y. (2013). Vision based page segmentation algorithm: Extended and perceived success. In Revised selected papers of the ICWE 2013

international workshops on current trends in web engineering - Vol. 8295 (pp. 238–252). New York, NY, USA: Springer-Verlag New York, inc .
Alarte, J., Insa, D., Silva, J., & Tamarit, S. (2015). Temex: The web template extractor. In Proceedings of the 24th international conference on world wide web,

WWW ’15 companion (pp. 155–158). New York, NY, USA: ACM. doi: 10.1145/2740908.2742835 .
Alassi, D. , & Alhajj, R. (2013). Effectiveness of template detection on noise reduction and websites summarization. Information Sciences, 219 , 41–72 .

Alcic, S., & Conrad, S. (2011). Page segmentation by web content clustering. In Proceedings of the international conference on web intelligence, mining and
semantics, WIMS ’11, ACM, new york, NY, USA (pp. 24:1–24:9). doi: 10.1145/1988688.1988717 .

84

J. Zeleny et al. / Information Processing and Management 53 (2017) 735–750 749

Barua, J., Patel, D., & Agrawal, A. K. (2014). Removing noise content from online news articles. In Proceedings of the 20th international conference on manage-
ment of data, COMAD ’14, computer society of india, mumbai, india, india (pp. 113–116) . URL http://dl.acm.org/citation.cfm?id=2726970.2726988

Bing, L. , Guo, R. , Lam, W. , Niu, Z.-Y. , & Wang, H. (2014). Web page segmentation with structured prediction and its application in web page classification.
In Proceedings of the 37th international ACM SIGIR conference on research & development in information retrieval, SIGIR ’14 (pp. 767–776). New York, NY,

USA: ACM .
Bos, B. , Celik, T. , Hickson, I. , & Lie, H. W. (2011). Cascading style sheets level 2 revision 1 (CSS 2.1) specification. W3c recommendation .

Bu, Z. , Zhang, C. , Xia, Z. , & Wang, J. (2014). An far-sw based approach for webpage information extraction. Information Systems Frontiers, 16 (5), 771–785 .

Burget, R. (2007). Layout based information extraction from HTML documents. In Proceedings of the ninth international conference on document analysis and
recognition - Vol. 02, ICDAR ’07, IEEE computer society, Washington, DC, USA (pp. 624–628) .

Burget, R. (2010). Visual area classification for article identification in web documents. In Proceedings of the 2010 workshops on database and expert systems
applications, DEXA ’10, IEEE Computer Society, Washington, DC, USA (pp. 171–175). doi: 10.1109/DEXA.2010.49 .

Cai, D. , Yu, S. , Wen, J. r. , & Ma, W. y. (2003). VIPS: A vision-based page segmentation algorithm. Microsoft technical report MSR-TR-2003-79 .
Coondu, S., Chattopadhyay, S., Chattopadhyay, M., & Chowdhury, S. R. (2014). Mobile-enabled content adaptation system for e-learning websites using

segmentation algorithm. In Software, knowledge, information management and applications (SKIMA), 2014 8th international conference on (pp. 1–8). doi: 10.
1109/SKIMA.2014.7083570 .

Cormier, M. , Moffatt, K. , Cohen, R. , & Mann, R. (2016). Purely vision-based segmentation of web pages for assistive technology. Computer vision and image

understanding .
Dalvi, N. , Kumar, R. , & Soliman, M. (2011). Automatic wrappers for large scale web extraction. VLDB Endowment , 230 .

Eldirdiery, H. F. , & Ahmed, A. H. (2015a). Article: Web document segmentation for better extraction of information: A review. International Journal of
Computer Applications, 110 (3), 24–28 .

Eldirdiery, H. F. , & Ahmed, A. H. (2015b). Detecting and removing noisy data on web document using text density approach. International Journal of Computer
Applications, 112 (5), 32–36 .

Ferrez, R. , Groc, C. , & Couto, J. (2013). Mining product features from the web: A self-supervised approach. In J. Cordeiro, & K.-H. Krempels (Eds.), Web

information systems and technologies, Vol. 140 of lecture notes in business information processing, Springer Berlin Heidelberg (pp. 296–311) .
Fragkou, P. (2013). Information extraction versus text segmentation for web content mining. International Journal of Software Engineering and Knowledge

Engineering, 23 (08), 1109–1137 .
Fumarola, F. , Weninger, T. , Barber, R. , Malerba, D. , & Han, J. (2011). Extracting general lists from web documents: A hybrid approach. In Proceedings of the

24th international conference on industrial engineering and other applications of applied intelligent systems conference on modern approaches in applied
intelligence - Vol. Part I, IEA/AIE’11, Springer-Verlag, Berlin, Heidelberg (pp. 285–294) .

Gao, B. , & Fan, Q. (2014). Multiple template detection based on segments. In Advances in data mining. applications and theoretical aspects, Springer (pp. 24–38) .

Hong, J. L. , Siew, E.-G. , & Egerton, S. (2010). Information extraction for search engines using fast heuristic techniques. Data & Ledge Engineering, 69 (2),
169–196 .

Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2 (1), 193–218. doi: 10.1007/BF01908075 .
Jiang, K. , & Yang, Y. (2015). Noise reduction of web pages via feature analysis. In Information science and control engineering (ICISCE), 2015 2nd international

conference on (pp. 345–348) .
Kohlschütter, C. , Fankhauser, P. , & Nejdl, W. (2010). Boilerplate detection using shallow text features. In Proceedings of the third ACM international conference

on web search and data mining, WSDM ’10, ACM, New York, NY, USA (pp. 441–450) .

Kong, J. , Barkol, O. , Bergman, R. , Pnueli, A. , Schein, S. , Zhang, K. , & Zhao, C. (2012). Web interface interpretation using graph grammars. IEEE Transactions on
Systems, Man, and Cybernetics. Part C (Applications and Reviews), 42 (4), 590–602 .

Kreuzer, R. , Hage, J. , & Feelders, A. (2013). A quantitative comparison of semantic web page segmentation algorithms . Universiteit Utrecht, Faculty of Science
Master’s thesis .

Krishna, S. S. , & Dattatraya, J. S. (2015). Schema inference and data extraction from templatized web pages. In Pervasive computing (ICPC), 2015 international
conference on (pp. 1–6) .

Kulkarni, A. , & Patil, B. (2014). Template extraction from heterogeneous web pages with cosine similarity. International Journal of Computer Applications,

87 (3), 5 .
Kulkarni, H. H. , & Kulkarni, M. K. (2015). Template extraction from heterogeneous web pages. International Journal of Electrical, Electronics and Computer

Engineering, 4 (1), 125 .
Li, L. , Zhou, A. M. , Fang, Y. , Liu, L. , & Wu, Q. (2014). An improved VIPS-based algorithm of extracting web content. In Material science, civil engineering

and architecture science, mechanical engineering and manufacturing technology II, Vol. 651 of applied mechanics and materials, Trans Tech Publications
(pp. 1806–1810) .

Liu, W. , Meng, X. , & Meng, W. (2010). ViDE: A vision-based approach for deep web data extraction. IEEE Transactions on Knowledge and Data Engineering,

22 (3), 447–460 .
Liu, X. , Lin, H. , & Tian, Y. (2011). Segmenting webpage with gomory-hu tree based clustering. Journal of Software, 6 (12), 2421–2425 .

Lundgren, E. , Papapetrou, P. , & Asker, L. (2015). Extracting news text from web pages: An application for the visually impaired. In Proceedings of the 8th
ACM international conference on PErvasive technologies related to assistive environments, PETRA ’15, ACM, New York, NY, USA (pp. 6 8:1–6 8:4) .

Manabe, T. , & Tajima, K. (2015). Extracting logical hierarchical structure of html documents based on headings. Proceedings of the VLDB Endowment, 8 (12),
1606–1617 .

Mili ̌cka, M. , & Burget, R. (2015). Information extraction from web sources based on multi-aspect content analysis. In Semantic web evaluation challenges,
semwebeval 2015 at ESWC 2015, Vol. 2015 of communications in computer and information science, Springer International Publishing (pp. 81–92) .

Safi, W. , Maurel, F. , Routoure, J.-M. , Beust, P. , & Dias, G. (2014). A hybrid segmentation of web pages for vibro-tactile access on touch-screen devices. 3rd

workshop on vision and language (VL 2014) associated to 25th international conference on computational linguistics (COLING 2014), Dublin, Ireland . 95–02
Sanoja, A., & Ganarski, S. (2014). Block-o-matic: A web page segmentation framework. In Multimedia computing and systems (ICMCS), 2014 international

conference on (pp. 595–600). doi: 10.1109/ICMCS.2014.6911249 .
Sharma, A. (2004). Understanding color management . Graphic Design/Interactive Media Series, Thomson/Delmar Learning .

Shi, S. , Liu, C. , Shen, Y. , Yuan, C. , & Huang, Y. (2015). Autorm: An effective approach for automatic web data record mining. Knowledge-Based Systems, 89 ,
314–331 .

Song, D., Sun, F., & Liao, L. (2015). A hybrid approach for content extraction with text density and visual importance of dom nodes. Knowledge and Informa-

tion Systems, 42 (1), 75–96. doi: 10.1007/s10115- 013- 0687- x .
Uzun, E., Agun, H. V., & Yerlikaya, T. (2012). Web content extraction by using decision tree learning. In 2012 20th signal processing and communications

applications conference (SIU) (pp. 1–4). doi: 10.1109/SIU.2012.6204476 .
Uzun, E. , Agun, H. V. , & Yerlikaya, T. (2013). A hybrid approach for extracting informative content from web pages. Information Processing & Management,

49 (4), 928–944 .
Wei, T. , Lu, Y. , Li, X. , & Liu, J. (2015). Web page segmentation based on the hough transform and vision cues. In 2015 asia-pacific signal and information

processing association annual summit and conference (APSIPA), IEEE (pp. 865–872) .

Weng, D. , Hong, J. , & Bell, D. A. (2011). Extracting data records from query result pages based on visual features. In Advances in databases: 28th British
national conference on databases, BNCOD 28, Manchester, UK, July 12–14, 2011, revised selected papers, Springer, Berlin, Heidelberg (pp. 140–153) .

Weng, D. , Hong, J. , & Bell, D. A. (2014). Automatically annotating structured web data using a svm-based multiclass classifier. In Web information systems
engineering – WISE 2014: 15th international conference, thessaloniki, greece, october 12–14, 2014, proceedings, part I, Springer International Publishing, Cham

(pp. 115–124) .

85

750 J. Zeleny et al. / Information Processing and Management 53 (2017) 735–750

Win, C. S. , & Thwin, M. M. S. (2014). Web page segmentation and informative content extraction for effective information retrieval. International Journal of
Computer & Communication Engineering Research, 2 (2), 35–45 .

Wu, Y.-C. (2016). Language independent web news extraction system based on text detection framework. Information Sciences, 342 , 132–149 .
Xiang, Z. L., Yu, X. R., & Kang, D. K. (2015). Wrapper induction of news information for feeding to social networking service on smartphone. In 2015 17th

international conference on advanced communication technology (ICACT) (pp. 292–295). doi: 10.1109/ICACT.2015.7224806 .
Xu, Z. , & Miller, J. (2015). Identifying semantic blocks in web pages using gestalt laws of grouping. World Wide Web , 1–22 .

Yu, S., Cai, D., Wen, J.-R., & Ma, W.-Y. (2003). Improving pseudo-relevance feedback in web information retrieval using web page segmentation. In Proceedings

of the 12th international conference on world wide web, WWW ’03, ACM, New York, NY, USA (pp. 11–18). doi: 10.1145/775152.775155 .
Zeleny, J. , & Burget, R. (2013). Cluster-based page segmentation – A fast and precise method for web page pre-processing. In Proceedings of the 3rd interna-

tional conference on web intelligence, mining and semantics, WIMS ’13, ACM, New York, NY, USA .
Zeng, J. , Flanagan, B. , Hirokawa, S. , & Ito, E. (2014). A web page segmentation approach using visual semantics. IEICE Transactions on Information and Systems,

E97-D (2), 223–230 .
Zhu, W. , Dai, S. , Song, Y. , & Lu, Z. (2015). Extracting news content with visual unit of web pages. In Software engineering, artificial intelligence, networking

and parallel/distributed computing (SNPD), 2015 16th IEEE/ACIS international conference on (pp. 1–5) .

86

A.3 Accelerating the Process of Web Page Segmentation via
Template Clustering

Zeleny, J.; Burget, R.: Accelerating the Process of Web Page Segmentation via Template
Clustering. Int. J. Intell. Inf. Database Syst.. vol. 9, no. 2. March 2016: pp. 134–154.
ISSN 1751-5858.

87

88

Accelerating the process of web page segmentation via
template clustering

Jan Zeleny
Faculty of Information Technology
Brno University of Technology
Brno, Czech Republic E-mail: izeleny@fit.vutbr.cz

Radek Burget

Faculty of Information Technology
Brno University of Technology
IT4Innovations Centre of Excellence
Brno, Czech Republic E-mail: burgetr@fit.vutbr.cz

Abstract: Segmenting a web page is often one of the initial steps when performing
some data mining on that page. We acknowledge that there is a lot of research in
the area of segmentation based on visual perception of the web page. In this paper
we propose a method how to improve the efficiency of virtually all vision-based
segmentation algorithms. Our method, called Cluster-based Page Segmentation,
takes the widely spread concept of web templates and utilizes it to improve
the efficiency of vision-based page segmentation by clustering web pages and
performing the segmentation on the cluster instead of on each page in that cluster.
To prove the efficiency of our algorithm we offer experimental results gathered
using three different vision-based segmentation algorithms.

Keywords: VIPS, vision-based page segmentation, clustering, template,
template detection

Biographical notes: Jan Zeleny is a PhD student at the Brno University of
Technology, Czech Republic. His reserach interests are in the area of Web Data
Mining and Information Retrieval in general. He is also interested in the area of
electronic privacy in context of these two topics.

Radek Burget received his PhD in Information Technology in 2004 from the
Brno University of Technology. He is an assistant professor at the Faculty
of Information Technology, Brno University of Technology. His research
interests include data mining methods, semi-structured data modeling, knowledge
engineering and the semantic web.

1 Introduction

In recent years, the World Wide Web has become perhaps the most important source of
information in the world. A family of algorithms to process that information grows with it.
There are several tasks that we might want to perform on the data on the Web. The largest

Copyright © 2009 Inderscience Enterprises Ltd.

89

2 J. Zeleny et al.

group of tasks falls into the area of data mining. These are tasks like information retrieval,
content extraction and classification and others. Another big group of tasks targets web page
restructuring for mobile devices.

All algorithms working with the data on the web require one common step – initial
preprocessing in a form of web page segmentation. The segmentation step works with a
simple premise – that the web page is not one coherent block of information. Instead, it
contains multiple such blocks, each one containing different type of content [1]. The goal
of segmentation algorithms is to identify these blocks so they can be processed separately.
In case of the data mining tasks, the segmentation is often complemented by classification
with the intended result being identification of blocks that are either relevant in the context
of the web page or that are important for the subsequent algorithm. In case of restructuring
for mobile devices, the subsequent goal is to rearrange the web page, maybe even remove
some blocks that are not considered important.

There is a variety of ways how to perform the segmentation. They differ in all possible
aspects, starting with the requirements on the input side and ending with granularity of the
output.

Template detection (further referred to as TD) methods are a good example of that. In
the literature it is considered being just remotely related but we see some common parts.
For example TD identifies page segments as well, even though it just distinguishes two –
useful content and the rest. The results of segmentation methods are more generic. It’s a
set of various blocks, each block being internally consistent in some way, most often either
visually or logically.

In our work we focus on unsupervised page segmentation. Although this area has been
extensively researched, there are just two usual ways how to approach the task. The first one
usually utilizes DOM tree of a web page or its textual content and focuses on performance
with the result being potentially inaccurate [2, 3, 4, 5]. The source of this inaccuracy is
that large portions of information from the web page, such as computed CSS styles, are
dropped. The second one on the other hand strongly prefers accurate results even at the
expense of the result being produced more slowly [6, 7, 8, 9]. The most distinct feature of
these algorithms is that they work on every web page independently. This feature is both
their benefit (no need to have more pages on the input) and problem (scaling).

The motivation of our research is to remove the negative aspect of the independent
processing of single web pages by eliminating the need to perform the segmentation on
every inspected web page. This significantly boosts performance and scaling of vision-
based page segmentation. To achieve the goal, we use clustering algorithm that is based
on methods used in template detection. This combination of template detection and vision-
based page segmentation addresses the greatest issue of vision-based page segmentation
(time complexity) while keeping its level of accuracy. It also keeps the positive aspect of
the independent page processing (only a single page is required for the segmentation itself).
The method, called Cluster-based Page Segmentation (further referred to as CPS), is in fact
a complementary algorithm. Its potential usage is not limited to any particular algorithm,
it is not even bound to the area of vision-based page segmentation if the complemented
algorithm in question and its implementation keep some basic rules.

In this paper we describe structures and algorithms that are comprised in CPS. We then
use the theoretical and practical description and demonstrate the efficiency of our algorithm
by selecting three vision-based segmentation methods and running them with and without
the CPS.

90

Accelerating the process of web page segmentation via template clustering 3

2 Related work

Our research belongs into the extended area of web page segmentation. It is extended
because we are not strictly focused on page segmentation, as explained above. While the
core of our research is in the wider area because we examine possible utilization of template
detection, the state of the art is more important in the area of web page segmentation itself.

To understand the area of web page segmentation, it is first important to properly classify
possible motivations. Reorganizing a web page for devices with small display is a motivation
that is only marginally relevant to our research, therefore it won’t be analyzed further.

The most important motivation to segment web pages is preprocessing for data mining
techniques. This needs to be done because web pages are semi-structured documents
that contain other elements among the useful content, for example HTML tags, various
descriptors and other metadata. The most simple option how to perform the preprocessing
would be to strip all the metadata. However that approach is not entirely accurate because
not all the metadata is easily detectable. A significant portion of what in fact belongs to
metadata or is strictly speaking just a noise is presented as a data to user who looks at the
page [10]. Back to the motivation, the most obvious is to clean up the metadata and the
noise. That can be done by virtually every segmentation method but the template detection
methods focus solely on this goal [11, 12]. Built on top of that, the next motivation is to
identify semantically distinguished blocks that the page contains [8].

The goal of page segmentation is to find blocks that are internally consistent more than
the page itself. The consistency can be either logical or visual, based on input parameters
and used segmentation method. Both types of consistency often overlap.

The logical consistency is targeted by DOM-based and text-based segmentation methods
[2, 3, 4, 5]. These analyze only textual representation of a web page, either in a form
of source code of the page or a DOM tree which is just a model of this text form. The
distinctive feature of these methods is that they don’t need any complex transformations
to perform their task, they completely depend on heuristics applied on some form of the
textual representation of the analyzed page. The set of heuristics is also the only factor
defining the quality of segmentation results. The array of heuristics can vary from pure text
evaluation [2] to complex algorithms taking a wide variety of properties into account [5].
However because these methods don’t perform any complex transformation of the textual
representation of the page, they always fail to take one very important aspect into account
and that is the real layout of the inspected page. Even the text-based DOM model doesn’t
accurately describe the real relations of individual blocks in consideration of their visual
appearance [6]. When we consider CSS rules in all their complexity, the DOM tree and the
corresponding tree representing the visual appearance can be very different. As an example,
figure 1 demonstrates how individual parts of a web page can be moved or transformed
by CSS. The example is very simple and yet the CSS changed the appearance of the page
completely.

Contrary to the DOM processing algorithms, vision-based page segmentation methods
are based on a simple concept with quite large computing demands. They address the issue
of real layout by calculating real values of attributes defining the layout. In its complexity
this calculation corresponds to real rendering of a web page, thus it will be referred to as
such. The process of rendering is very complex due to complexity of both HTML and CSS
specifications. That implies quite high demands both for computational power and time to
process one page and that’s even before the segmentation itself. Rendered page is often
segmented in several iterations [6] which is also very demanding. The most commonly

91

4 J. Zeleny et al.

Figure 1 Influence of CSS: a) is a slice of raw page, b) is the same page with CSS applied

used algorithm in the area of vision base segmentation is VIPS [7] and algorithms using
it as a black box and improving its results [8, 9]. Another approach, partially derived
from the original VIPS specification, has been offered by Burget [6]. In this paper we
will demonstrate results of Cluster-based Page Segmentation working on top of several
known implementations of vision-based page segmentation, including VIPS as an industry
standard.

Template detection can be perceived as a special type of page segmentation. Template
detection methods [11, 12, 13, 14, 15] are used to identify the noise on the processed web
page so it can be removed afterwards. Algorithms in the template detection group are based
on the concept of page templates [16]. This concept comes from the area of modern web
design where a relatively small number of templates is used to dynamically build all the
content on a web site. Each template defines core structure of a large set of pages within
that site. Physically, each template is a pre-defined code which creates a frame with marked
spaces in it. Based on user input, a data set is fetched from the underlying data source and
a web page is created by filling these fetched data into the frame. While being a great help
to web designers and content authors, templates pose a problem for information retrieval
algorithms. A substantial part of every page contains information unrelated to the core
topic of the page – for example navigation, advertisement and other noise. In the context of
templates and template detection, all this unrelated content is considered to be a part of the
template. The job of template detection methods is to correctly separate the aforementioned
blank spaces from the pre-defined code.

The focus of template detection methods implies one of the disadvantages these methods
have. They can be only used to distinguish between the template and the content, no finer
granularity is available. Because of their design, they also usually lack the ability to perform
inspection on a single web page. On the other hand they are usually designed to be as fast
as possible and they scale very well.

One subset of the template detection methods makes them closely related to our research.
Its a subset containing methods that are based on DOM tree comparison [11, 13, 15, 17].
Their core functionality can be used to determine a degree of similarity between two web

92

Accelerating the process of web page segmentation via template clustering 5

pages. This can be represented for example by a simple probability-based equality indicator.
If the value of such indicator goes over a pre-defined threshold, the two pages are considered
to be significantly similar. In the context of template detection, the significant similarity
translates to both pages being based on the same template.

3 Cluster-based Segmentation

In our work we consider the following scenario where page segmentation is used as the key
part: we have a crawling algorithm that wants to index as many documents as possible. For
the initial description of the use case we can define a constraint that only a specific web site
will be scanned. Every web page on that site is supposed to be segmented and the result
further processed. At this point it doesn’t matter what is the subsequent processing going
to be, it might be anything starting from information retrieval and ending with semantic
classification.

With the standard segmentation approach, every scanned web page is going to be
segmented. For some large servers like world-wide news servers this means performing the
segmentation task hundreds of thousands of times. Obviously this doesn’t scale at all and
the time required to process mid- to large-size web site is unacceptably long.

In our research we propose a new way how to deal with scaling and performance
problems when processing large sets of web pages. One of the advantages is that the bigger
the set of web pages is, the greater optimization this approach achieves. Another advantage
is that our algorithm doesn’t require all the pages to be processed at once, partial data set
can be retrieved, the process interrupted and continued any time later. Our algorithm can
be summarized in the following proposition.

Proposition 1: When processing more pages within the same site, it is possible to increase
the performance of a segmentation algorithm by performing the actual segmentation only
for a limited number of pages and transform these pages to represent their respective
template-based clusters. When a page can be matched to an existing cluster, an isomorphic
mapping between the page and the structure representing the corresponding cluster can be
used to get the results of page segmentation without performing it.

Most often, the clustering is performed on a complete set of values. However in our
case it is not convenient to store all pages and perform the clustering on the entire set of
pages. One of the reasons is that it is not possible to estimate upfront how many pages
will be in the set. Also there is the issue of continuous content generation. Big web sites
like news servers keep publishing new content, therefore the set of web pages will never
be completed. All these reasons lead to the conclusion that some form of stream clustering
algorithm is required.

This aligns with another preferred feature – to store as few data as possible in order to
optimize memory and disk space consumption in practical application. To achieve this goal,
we don’t store processed web pages at all, we just store minimal structures representing the
individual cluster. These structures will be further called Cluster Representatives. Note that
while we aim for the structure to be minimal, the basic requirement is to store all the data
for situations where the Cluster Representative is used. These will be analyzed further in
the following sections.

93

6 J. Zeleny et al.

Figure 2 Block schema of the entire approach

The high-level overview of Cluster-based Page Segmentation is outlined on figure 2. Our
design starts at the clustering step where we try to identify which cluster the page belongs
to. If such cluster is identified, an isomorphic mapping between the Cluster Representative
and the page is performed and, by extension of that action, all interesting parts of the web
page identified without performing the segmentation. If there is no cluster corresponding to
a page on the input, we have to create a new cluster and use the input web page as an initial
representative of this cluster. Before we create the representative, we need to segment the
page first, as the segmentation result is an important part of each Cluster Representative.
The segmentation process is considered to be a black box taking DOM tree as an input and
returning a set or hierarchy of visual areas on the output. Any algorithm acting in conformity
with these requirements can be used for the segmentation. Section 7 covers experiment with
three different segmentation algorithms.

4 Segmentation methods

Before going more deeply into the structures and algorithms of Cluster-based Page
Segmentation, we need to take a closer look at the segmentation methods this algorithm is
primarily meant for. This section will be divided into two parts. The first part will cover
some currently used segmentation methods that are described in the literature. The second
part will be oriented towards an alternative segmentation method that we have designed. In
both cases we will outline how these methods work and we will especially focus on their
output format. That will be important for the subsequent design of data structures we use
in the Cluster-based Page Segmentation.

4.1 Hierarchical segmentation methods

There are two methods that will be described here as representatives of hierarchical
segmentation methods. Their common feature is the output format. While the specifics are
different, the main characteristic is the same for both – the output format is structured as a
tree.

The first representative of this algorithm group is VIPS [7]. It segments the page in three
steps. The first step is a top-down analysis of the DOM tree where the algorithm identifies
visual blocks on the web page using various heuristics. For each identified block a decision is

94

Accelerating the process of web page segmentation via template clustering 7

made whether or not will the block be recursively split further – that creates a tree of blocks.
In the second step the algorithm identifies separators between previously identified blocks.
The approach is top-down again – at first the entire web page is considered a separator and
it is recursively split to smaller ones. The last step of VIPS is content structure construction.
In involves merging some boxes to achieve the right granularity.

After being processed by VIPS, the web page is represented by a set of blocksO, a set of
separators Φ and a relation between blocks δ(two blocks are in relation if they are adjacent).
The most important feature of blocks is that they are not overlapping. Each block in the
set is recursively segmented and then represented by another set of blocks, separators and
relation. Formally, it is designated as follows [7]: Ω = (O,Φ, δ) whereO = Ω1,Ω2, . . .Ωn

and every Ωi is defined in the same way as Ω. This definition implies the tree structure of
the returned result.

For each block the information about its position and size is absolutely essential, as well
as its internal coherence. Also the alignment with its parent is used [9]. For separators it is
important to store their visual impact, which can be in form of width or visibility.

Compared to VIPS, Burget takes the opposite approach in his work [6]. First of all
his algorithm doesn’t work on a DOM tree itself. The web page is rendered first and the
algorithm then processes another structure that is called render tree. This tree basically
represents a hierarchy of visual boxes as they are really placed on the web page.

After the render tree is created, the analysis goes bottom-up. In the next step a new tree
is created – a tree of visual areas. Each visual area corresponds to exactly one box in the
render tree. Only those boxes that are visually distinct from adjacent boxes are considered.
After the initial tree of visual areas is created, it is modified by merging similar visual areas
(for example adjacent paragraphs of a text). Finally the significant areas are identified using
some slightly modified techniques used by VIPS.

The result of Burget’s algorithms is different from the result of VIPS in several ways.
First of all, the tree produced by Burget’s algorithm contains two node types: visual areas
and content nodes called boxes. All visual areas contain information about the position
and dimensions of the area but the system is completely different. Burget assigns a special
topographical grid to each non-leaf visual area and puts all child areas on the grid. A position
of each area is represented by the grid cell in which the top-left corner of the area is.
Area dimensions are represented by the number of rows and columns the area takes. This
grid representation provides the possibility to disregard real distances between boxes while
keeping the information about their mutual position. Every non-leaf visual area in the tree
can contain only other visual areas. Each leaf visual area contains just a list of contained
boxes representing either images or text. Each of these types contains different attributes
describing its appearance.

4.2 Box Clustering Segmentation

The Box Clustering Segmentation is included in this paper for two reasons: 1) it is designed
specifically to remove the hierarchy from the result of page segmentation and 2) it is
much faster than both of the methods above, therefore by including it in the result set we
demonstrate that the variety of algorithms that can be improved by Cluster-based Page
Segmentation is very wide.

First it is important to outline how the algorithm works and then what its results look
like. Unlike the previous two, our algorithm is based on building everything from basic
elements on the web page – elementary boxes. To get these boxes, the first step is to render

95

8 J. Zeleny et al.

the web page, similarly to Burget’s original approach [6]. After we have the tree of boxes, it
is filtered so only the smallest visible boxes remain. These are often leaf nodes in the render
tree output.

On this set of boxes we create a graph structure G = (B,E, sim) where B is a set of
boxes on the web page, E is a set of edges and sim is a similarity function. To get more
performance from the segmentation algorithm we optimize the graph creation by creating
edges only between boxes that share at least one pixel column or row on the rendered page.

This graph structure is then used for the next step – clustering. Each cluster is started
and then grown by merging boxes with other boxes or clusters. The process it iterative – in
every iteration we take the most similar entities in the graph and if nothing blocks it, we
merge them. The merging step includes detection of possible overlaps of the new cluster
with other boxes and their subsequent inclusion in the cluster. The clustering stops when a
threshold value of similarity is reached. This threshold must be set upfront and its optimal
value differs for every processed page.

The mutual similarity if given by our specially designed similarity two-fold model. For
simple boxes, the similarity is calculated based on similarity of their shape, size and color
and by their mutual position. For clusters we then remember the mean similarity between
the boxes in each cluster and use a set of special formulas to calculate the resulting cluster
similarity.

There are two entities playing role in the output of Box Clustering Segmentation: boxes
and clusters. Clusters represent the identified visual areas after the algorithm run is complete.
For every cluster we disregard the boxes it contain. However some boxes might remain
unclustered after the algorithm finishes. Those are somewhat important but they can be
safely dropped in the Cluster-based Page Segmentation process because they most likely
don’t contain any content that might be worth storing for future retrieval.

Taking that into account, only the clusters remain useful for the Cluster-based Page
Segmentation. Because we disregard the boxes they contain and there is not tree structure
involved in the result of the segmentation process, they are just simple boxes represented
by their position and dimensions, both measured in pixels. This demonstrates the simplicity
of the result compared to the methods described in section 4.1.

5 Cluster set data structures

We will describe the maximally optimized cluster set as introduced in section 3. That means
each cluster consists only of the Cluster Representative. There are three parts we have to
consider:

• templates represented by DOM trees

• trees or sets of visual areas

• mapping between the previous two

Before going deeper, let’s formally define the cluster set in general:

Definition 1: Let the cluster set be defined as a set of Cluster RepresentativesS = {Ci|0 <
i < n} where n is the number of elements in the set and each Cluster Representative is
defined as an n-tuple C = (D,V,MV D). V represents a result of segmentation performed

96

Accelerating the process of web page segmentation via template clustering 9

on the Cluster Representative, D represents its DOM tree and MV D represents mapping
between V and D.

Each of these parts will be explained in detail in the following parts of the paper.

5.1 DOM tree

In our work we use a pruned DOM tree to represent the web page. The following definitions
therefore define the pruned version of the DOM tree, as used in each Cluster Representative.

Definition 2: Let a DOM tree be defined as a three-tuple D = (VD, vr, PD) where VD
is a set of vertices, vr is a root node and PD is a set of paths. Each vertex in the set VD
represents a node of the DOM tree, i.e. DOM node. A structure of the tree is encapsulated
within these DOM nodes.

Some general features of the DOM tree which should be considered when storing
it follow [18, 19]. There are four basic data types in the DOM tree: string, timestamp
represented by an integer number, user data blob and object. The last one represents a
reference to any other DOM node. Each DOM node can have, depending on its type, 0..N
child nodes. Similarly, a DOM node can have 0..N attributes. These attributes can be
represented either by one of basic data types as element properties (deprecated) or by child
nodes of Attr type.

Definition 3: Let a DOM node be defined as an n-tuple v = (pv, Cv, Av), where pv ∈ VD
is a parent of the node, Cv represents an ordered set of its child nodes and Av is a set of its
attributes.

As it was stated above, tags in HTML follow one another in a specific order and this
order usually matters for rendering. That means the same order has to be preserved in the
DOM tree. The following definition specifies the relation on top of elements of Cv which
makes the set ordered.

Definition 4: Let Cv be an ordered set of child nodes of node v: Cv =
{u1, u2, . . . , un};∀i : ui ∈ VD. The element order preservation in Cv can be expressed
as: let ui, uj ∈ Cv; i 6= j, then the following condition must be obliged i < j ↔
ui precedes uj in the HTML code.

The unordered set of attributes Av can contain virtually any HTML attribute as well as
style definition. All these attributes can be later used for both more accurate matching of
DOM trees and more accurate mapping of DOM nodes. In this paper only one attribute is
important and that is the id attribute. All other attributes can be dropped from the set Av .
The formal definition of set Av follows.

Definition 5: Let the set of node attributes of node v be defined as Av = {(k, v)}, that is
a set of key-value pairs, where k designates a name of the attribute and v its value.

The algorithm for matching DOM trees works with path sets. It is highly inconvenient
to retrieve paths by traversing the tree every time we need to match a Cluster Representative

97

10 J. Zeleny et al.

to new page. Thus the best option is to create the set and store it as a part of the DOM tree
itself. The path set is designated PD and is defined as follows.

Definition 6: Let a path in the tree be defined as an n-tuple p = (vr, v1, . . . , vn−2, vl) with
the following conditions met:
v1 ∈ Cvr ; vl ∈ Cvn−2

;∀0 < i < n− 2 : vi+1 ∈ Cvi , Cvn = ∅.
Path set is an unordered set of paths PD = {p}.

Note that the path set is not a multiset. The DOM tree itself can contain multiple identical
paths that lead to different nodes of the tree. However the intended application of the path
sets doesn’t require this property to be preserved so only one instance of each element is
kept in the set.

Each piece of text in the web page is always considered to be a special node in the DOM
tree. Text on a web page is split into these pieces by any occurrence of an HTML element.
As it will be explained in section 6, DOM nodes representing text are excluded from paths
in the path set, however we still need them for mapping DOM nodes between the Cluster
Representative and inspected page. Therefore we keep them in the DOM tree but just as
bare DOM nodes, the content itself won’t be included. The same applies for images – only
the DOM node will be included, not their content. In this context it’s important to note that
some properties of both the image and the text might be stored in our representation, as they
might be important for some steps following the Cluster-base Page Segmentation. These
will be then stored in the set of attributes Av .

5.2 Visual areas

Section 4 demonstrates that the representation of segmentation results varies significantly
and each method has some specifics. However we need just a single and generic enough
representation that will unify the results.

We need to start the definitions from the building blocks – visual areas:

Definition 7: Let the visual node v ∈ VV be defined as v = (Av, Cv, Dv), where Av =
{(k, v)} is an implementation specific set of area attributes, defined as key-value pairs. Cv

is a set of child nodes and Dv is a set of corresponding DOM nodes.

This representation of visual area allows both the tree structure of Burget’s algorithm and
VIPS and also for the flat structure of Box Clustering Segmentation. In the last case, the set
of child nodes will be empty for all visual areas.

The set of attributes can contain attributes like position, visual features, size and others
that might be required in further processing. What is important about the attribute Cv is
that unlike in case of DOM tree, this time the order of children doesn’t matter. The same
situation applies to Dv , therefore both these attributes are plain sets.

The attribute setAv is a solution of the requirement for the design to be generic for any
type of tree of visual areas, as it can be simply ignored in generic implementation. Attributes
Cv and Dv reflect common properties of outputs of all the segmentation algorithms
described in section 4.

Similarly to the visual area, we need to define generic enough structure that will hold
all the visual areas. We call this structure tree of visual areas, even though the tree might
have just one level of nodes in some cases.

98

Accelerating the process of web page segmentation via template clustering 11

Definition 8: Let the tree of visual areas be defined as a two-tuple V = (VV , vr) where
VV is a set of visual vertices and vr is a root node of the tree. Each vertex in the set VV
represents a node in the tree of visual areas, i.e. a visual area. A structure of the tree is
encapsulated within these visual areas.

When using the tree to contain the results of Box Clustering Segmentation, root node vr
will be set to nil value and it won’t be further used. The tree of visual areas is derived from
the DOM tree, the main difference between the two is just in their nodes.

5.3 Tree mapping

The description in sections 5.1 and 5.2 leads to a conclusion that the cluster set can be
viewed as a forest ofD and V . If references from nodes of V to nodes inD are not omitted,
it can be also viewed as one big tree rooted at node vr ∈ V .

References from V to D are important and only their basic version has been described.
Because these connections are utilized in some algorithms working on top of vision-based
page segmentation [8, 9], the mapping between both trees should be well defined:

Definition 9: Let the relationship A ⊃ B,A ∈ VV , B ∈ VD be defined as A visually
contains entireB. Let the mappingMV D betweenV andD be defined as a set of two-tuples:
MV D = {(v, d)|v ∈ VV , d ∈ VD, v ⊃ d, @v1(v1 ⊃ d, v1 ∈ Cv)}.

In order to be consistent with previous sections, we amend the definition of a visual area
by the following definition:

Definition 10: Let Dv be a set of DOM nodes corresponding to a visual area v. This set
is defined as Dv = {d|(v, d) ∈MV D}.

6 CPS Algorithms

Now that all structures related to cluster set and Cluster Representatives have been described,
algorithms working on top of them can be defined. Algorithm 1 displays the Cluster-based
Page Segmentation algorithm, utilizing structures defined in section 5. The Algorithm 1 is
more formal expression of figure 2. All the following algorithms are written in pseudo-code
based on Python syntax.

The algorithm is fully automatic, no human intervention is needed. Also no learning
phase is necessary, it “learns” new templates while processing the web site. Based on the
algorithm outline, it is possible to identify three distinct non-trivial parts. Their description
follows.

Creating a Cluster Representative

This task consists of series of small transformations of DOM tree of the original page and
the corresponding set or tree of visual areas with the result being the initial form of the
Cluster Representative. This transformation leads to the Cluster Representative’s n-tuple
C = (V,D,MV D).

Before the structure V is built, the simplified representation of DOM tree D has to
be created by cleaning the original DOM tree of redundant nodes, according to definition

99

12 J. Zeleny et al.

Algorithm 1 Segmentation using the CPS algorithm
def segment_cps(page, cluster_set):

dom = parse_page(page)
representatives = cluster_set.get_all()
for representative in representatives:

if dom.matches(representative):
return dom.visual_tree()

visual = segment_page(dom)
cluster_set.store(dom, visual)
return visual

in section 5.1. This step is straightforward – a simple recursive, post-order tree traversing
algorithm can be used. Creating the graph structure D is trivial, it can be done as a part of
the traversing algorithm.

Since V is very similar to the output returned by segmenting algorithm, the only thing
remaining to build V is to ensure that each node has a set of DOM nodes it visually contains.
This is done during the creation of MV D. For purpose of this paper, the assumption is
that this is handled by the segmenting algorithm in use, since the algorithm is the only
component that has this information. With this assumption in consideration, we have Dv

for every node v at the moment V is created and we just have to extract all the information
into MV D and then verify that MV D is correct by checking its conformity with definitions
9 and 10. After this step, we have a valid Cluster Representative which can be added into
the cluster set.

Matching DOM tree to the cluster set

After everything is stored, the trivial approach would be to segment another page. But with
the Cluster-based Page Segmentation we can utilize having the cluster set and try to find a
cluster which the new page belongs to. A comparison with all loaded Cluster Representatives
for the site (more specifically with their D elements) has to be performed first. As it was
outlined in section 3, a simple iteration over the set D containing all clusters and matching
one by one can be performed. Because there is only a small number of clusters for each site,
performing a simple iteration is sufficient to gain considerable performance boost against
the plain page segmentation. The only condition that has to be met is for the DOM-to-DOM
matching algorithm to be fast.

For this DOM-to-DOM matching we use modification of Common Paths Distance
measuring algorithm [13] as it has been proven significantly faster than tree-edit-distance
algorithms while still being precise enough to match the DOM tree to the correct template.
However in our practical evaluation we needed to adjust the original algorithm for better
precision. Our modifications are as follows:

• Filter out all nodes that are not representing particular HTML elements (e.g. attribute
nodes, text nodes, etc.)

• If any element has an id, don’t use the plain element name in the path, use it in
combination with the id

100

Accelerating the process of web page segmentation via template clustering 13

These simple modifications improved results of the matching algorithm significantly
and enabled higher level of result granularity. That means more clusters are created, thus
less false-positives for cluster matches are encountered.

When a web page is matched to a D belonging to some Cluster Representative, it is
possible to use the corresponding structure V containing visual areas that associated with
the DOM tree. If no matching Cluster Representative is found, we consider the page to be
based on a template that the algorithm hasn’t encountered yet. In such case the segmentation
process has to be performed on it and the result has to be used to create a new Cluster
Representative.

Mapping nodes of both DOM trees

Mapping nodes of the processed page to those stored in the matched Cluster Representative
is the last step for the Cluster-based Page Segmentation to return useful results. We need this
step so the actual content of visual areas can be retrieved, as that is the next process that is
likely to be performed on the result of the Cluster-based Page Segmentation. The mapping
procedure is trivial for Cluster Representatives themselves, as the mapping is already a part
of its stored structure.

However in case of any other page in the cluster the process is more difficult. Again,
we have a set of visual blocks of the Cluster Representative in which we are interested
and the corresponding set of Cluster Representative’s DOM nodes. Now we need to find
the corresponding DOM node of the input page for every DOM node of the Cluster
Representative. If we designate the DOM tree on inputDI , we are looking for a Tree mapping
between DI and D. The tree-mapping problem for two DOM trees is quite complex in
general, as many examples demonstrate [11, 17]. However, as we explain in our previous
work [20], our scenario is very specific so we can afford some simplifications.

We are not looking for a mapping of each node, we are looking for a subtree rooted at
corresponding node. Therefore the assumption is that once we find a root, all descendant
nodes will correspond in both trees. For finding the root we use a distinguished path to a node.
In its simplest version, this path is defined below. We acknowledge that this representation
is rather crude but it serves our purpose well. Possible improvements are covered in our
previous work [20].

Definition 11: Let the distinguished path pN from root of given DOM tree to a node in
that DOM tree N be defined as n-tuple of two-tuples:
pN = ((p1, c1), (p2, c2), . . . , (pk, ck)) where pi is a position of a node withing its siblings
and ci is a total count of siblings including that node. i is an index designating a level of
DOM tree from its root, i.e. how many nodes deep in the structure is the selected node and
its siblings.

This indexing approach is based on the premise stated in section 5.1 that order of DOM
nodes within DOM tree has to be preserved to preserve the content layout on the web
page. Therefore if a certain node in Cluster Representative was on position 3/5 within
its siblings, its corresponding DOM nodes from other pages in that cluster will again be
positioned as 3/5. This condition will be always true when traversing the part of DOM
tree that corresponds to template. Once out of the template scope, thus in a particular data
region, the condition might not be true but the assumption is that interesting visual areas
don’t have root outside of the template scope. To add at least some level of error detection

101

14 J. Zeleny et al.

in case DOM nodes of Cluster Representative and inspected page don’t correspond, there
is the ci parameter which is used as a simple failsafe mechanism – if ci differs for Cluster
Representative and inspected web page, two things could have caused this. Either the page
has been incorrectly matched to the Cluster Representative or the node identified on level i
is already outside the template and within one of its data regions. In any case, the algorithm
stops at that moment, as the result would be wrong anyway.

With the indexing approach described above, the algorithm using it will need to store
these distinguished paths somewhere or they have to be constructed on the fly. If they are
stored as part of DOM nodes or visual areas of Cluster Representatives, the algorithm for
finding the DOM node within inspected page can be used directly.

Algorithm 2 Finding a node within given DOM tree
def find_dom_node(distinguished_path, root_node):

node = root_node
for (position, count) in distinguished_path:

if node == None or count != len(node.C):
return None

node = node.C[position]
return node

If distinguished paths are not stored as a part of Cluster Representatives, we need to use
algorithm 3 for their construction first. After construction of each path, algorithm 2 can be
be used again for finding corresponding DOM node within inspected web page using the
path.

Algorithm 3 Construction of the path from root to the given node
def get_path(node):

if node.p == None:
path = () # empty tuple

else:
path = get_path(node.p)
sibling_count = len(node.p.C)
node_pos = 0
for n in node.p.C:

if n == node:
break

node_pos += 1
path.prepend((node_pos, sibling_count))

return path

102

Accelerating the process of web page segmentation via template clustering 15

7 Experimental evaluation

An experimental implementation has been designed and realized as a proof of concept.
We used our Java implementation of all three algorithms in question. The Box
Clustering segmentation and Burget’s segmentaion algorithm are both original. Our VIPS
implementation gives comparable results as the original with slightly worse performance.
We use this implementation so the all three algorithms are based on the same rendering core
and are thus comparable.

Implemented scenario

The following scenario is considered: we have a simple crawler program, which is given
a web site to process in a form of starting URL. It is processing the site page by page and
extracting an interesting content from that page. If the page contains multiple areas with
the interesting content, the algorithm extracts all of them.

For each algorithm we selected a different content type to be designated as interesting.
The selection was based on capabilities of the algorithm – because the content classification
is not our primary concern, we selected what was easiest for the algorithm to detect. For
Box Clustering segmentation it was a body of an article - basically all the areas significantly
bigger than the mean size of areas on the page. Within results of VIPS and Burget’s algorithm
we detect headlines – areas with font size significantly bigger than then average size on the
page. When common web page design is considered, there is usually one heading for one
article body, thus the number of selected areas should be similar for all the algorithms.

The crawling algorithm takes a very simple breadth-first-search approach. We need a
global list of all links which are planned to be inspected. The crawler always takes the
first URL in this list that has not yet been visited and loads the page on this URL for
further processing. The second list contains visited links so we can quickly filter out already
visited pages and not visit them again. Not performing this would cause deviations in our
measurement. The last list contains links that lead out of the site(usually recognized by the
same second-level domain) that is currently processed.

If a link leads to different site than the one that is currently inspected, instead of
processing it is just stored for later usage. The crawling mechanism doesn’t start parsing
new site before the entire site it is currently parsing is processed. At that point, we stop
our inspection but the program has capability to continue to the other site by clearing the
Extracted list, adding the first link from Outgoing list into it and continue crawling on the
new site.

The reason for the program to process one site at a time is simple: there is only a very
limited number of templates for each site. Our measurements show us that the number of
templates on a single site is quite low (see table 1 for details). Since the number of Cluster
Representatives is equal to the number of templates used on the web site, having this number
small makes it simple to store all the Cluster Representatives in memory while inspecting
the web site they belong to. Such approach is highly convenient because we want fast access
to these Cluster Representatives when processing the site. However storing them only in
memory would mean that all Cluster Representatives of the site are dropped once inspection
of that site finishes. That’s not something we want because it would mean longer processing
of the site the next time. Rather than that we store all Cluster Representatives in persistent
storage. Once a site is selected for processing, all its Cluster Representatives are loaded
from database and after the processing finished, the database is updated if necessary.

103

16 J. Zeleny et al.

site clusters hit ratio
iDnes.cz 42 91.6%
e15.cz 27 94.6%
telegraph.co.uk 32 93.6%
slashdot.org 18 96.4%
businessinsider.com 16 96.8%
gizmodo.com 11 97.8%

Table 1 Cluster counts for different sites

Implementation details

We used in-memory database in form of a simple list of Cluster Representatives. This
list is retrieved from persistent storage managed by OrientDB object-oriented database
engine before processing any pages on the site. When matching DOM trees, we made one
modification in the implementation for the sake of simplicity – section 6 suggests that the
algorithm is working on the tree structureD, however the implementation works with string
representation of all paths. A set of paths of a DOM tree is constructed when the DOM tree
is prepared for matching and in case the DOM tree is used for a Cluster Representative, this
set of paths is used along with it. The algorithm just iterates over all Cluster Representatives
from the web site and compares the path set of the input DOM tree with their respective
path sets one-by-one. After the DOM tree is matched, its segmented counterpart is fetched
and desired content is extracted.

Testing and measurements

The implementation has been tested on several Czech and world-wide web sites. Three of
them are quite extensive news sites (iDnes.cz, novinky.cz, telegraph.co.uk) and two of them
are highly focused CMS-based portals. Each testing set contained 500 pages recursively
fetched from index page of that site. Test were performed on following hardware: Intel
Core2Duo P8700 2.53GHz, 4GB RAM, HDD 5400RPM.

Table 1 illustrates how many clusters were detected per site. The column clusters gives
the actual number of clusters on the site, while hit ratio illustrates how many percent of
pages were matched when 500 pages were inspected. Note that matched page doesn’t have
to be segmented therefore the higher the hit ratio is the more time saving is achieved. One
important observation has been made during the testing and that is that during the first
inspection of a site, the majority of clusters is usually detected early in the process. If the
number of total processed web pages has been doubled, the number of detected templates
has risen for at most 33%. This demonstrates logarithmic growth of cluster set size, leading
to confirmation that the number of clusters is low compared to number of the web pages
on the site. Figure 3 demonstrates graphically that the number of templates on a single site
converges fast to a relatively small number.

Tables 2, 3 and 4 demonstrate time difference between standard segmentation methods
and Cluster-based Page Segmentation for each web site. The plain column tells the
time necessary to segment inspected 500 pages within the site. The time includes only
segmentation and retrieval of all desired data. The CPS column contains the time necessary
to retrieve the same data with Cluster-based Page Segmentation. The time includes
segmentation of pages when creating a new cluster, comparison of incoming pages against

104

Accelerating the process of web page segmentation via template clustering 17

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 200 300 400 500 600 700 800 900 1000

T
em

pl
at

es
 fo

un
d

Pages processed

businessinsider.com
e15.cz

gizmodo.com
idnes.cz

slashdot.org
telegraph.co.uk

Figure 3 Dependency of cluster count on page count

existing Cluster Representatives and retrieval of desired content from the page through node
mapping. The time represents the worst case scenario for CPS, i.e. the first processing of
the site. This scenario is the worst case because if the site is already processed and the
corresponding Cluster Representatives are retrieved from database, the time to do this is
orders of magnitude better than the time necessary to create Cluster Representatives by
segmentation, even if the cluster set to create is very small. The time saved intuitively
demonstrates how many percent of the time necessary for each segmentation algorithm
to process the page set is saved when using Cluster-based Page segmentation. Both plain
and CPS times are measured as a sum of times necessary to retrieve the data from all 500
processed pages.

site plain CPS time saved
iDnes.cz 1 158 s 145 s 87.5%
e15.cz 661 s 55 s 91.7%
telegraph.co.uk 2 719 s 841 s 69.1%
slashdot.org 1 925 s 89 s 95.4%
businessinsider.com 766 s 38 s 95.0%
gizmodo.com 560 s 39 s 93.0%

Table 2 Performance measurements of the VIPS

105

18 J. Zeleny et al.

site plain CPS time saved
iDnes.cz 4 019 s 282 s 93.0%
e15.cz 420 s 34 s 91.9%
telegraph.co.uk 1 569 s 97 s 93.8%
slashdot.org 946 s 30 s 96.8%
businessinsider.com 587 s 29 s 95.1%
gizmodo.com 832 s 38 s 95.4%

Table 3 Performance measurements of the Burget’s algorithm

site plain CPS time saved
iDnes.cz 1 423 s 195 s 86.3%
e15.cz 411 s 42 s 89.7%
telegraph.co.uk 1 521 s 603 s 60.3%
slashdot.org 597 s 50 s 91.6%
businessinsider.com 530 s 34 s 93.6%
gizmodo.com 771 s 49 s 93.6%

Table 4 Performance measurements of the BCS

Our results clearly prove that Cluster-based Page Segmentation offers high performance
boost. This is confirmed by another result not visible in table 3. The time necessary for
retrieving data from page belonging to existing cluster is lower by one to three orders of
magnitude compared to the time necessary for retrieving the data from page not belonging
to any cluster. The accuracy of the Cluster-based Page Segmentation is the same as accuracy
of the used algorithm because that is the element performing the segmentation itself, no
further modifications of returned results are performed. Moreover it is not purpose of this
paper to evaluate accuracy, as it is depending solely on the used segmentation algorithm
and selection of the algorithm is virtually not limited.

8 Conclusion

In this paper we presented a new way how to deal with performance shortcomings of vision-
base page segmentation algorithms. Templates, one of fundamental concepts of modern
web, have been used for significant performance boost of these algorithms. By combining
precision of vision-based segmentation algorithms with performance superiority of template
detection algorithms, it is possible to create an algorithm both precise and fast while keeping
its universality.

We showed that Cluster-based Page Segmentation significantly improves performance
of vision-based page segmentation when used on large sites and it therefore compensates
for the greatest disadvantage of plain vision-based page segmentation algorithms.

We have also shown an alternative segmentation method called Box Clustering
Segmentation and its possible usage in the Cluster-based Page Segmentation. When
combined to perform the segmentation on entire web sites, these two algorithms vastly
outperform any known segmentation method.

106

Accelerating the process of web page segmentation via template clustering 19

This research laid down solid base for future research. That might include improved
adaptation of the Cluster-based Page Segmentation to potential post-processing algorithms
and further integration with the Box Clustering Segmentation.

Acknowledgement

This paper is a revised and expanded version of a paper entitled Cluster-based Page
Segmentation - a fast and precise method for web page pre-processing presented at WIMS
’13, June 12-14 2013, Madrid, Spain. This work was supported by the BUT FIT grant
FIT-S-11-2 and the IT4Innovations Centre of Excellence CZ.1.05/1.1.00/02.0070.

References

[1] Shipeng Yu, Deng Cai, Ji-Rong Wen, and Wei-Ying Ma. Improving pseudo-relevance
feedback in web information retrieval using web page segmentation. In Proceedings
of the 12th international conference on World Wide Web, WWW ’03, pages 11–18,
New York, NY, USA, 2003. ACM.

[2] Eduardo Sany Laber, Críston Pereira de Souza, Iam Vita Jabour, Evelin Carvalho Freire
de Amorim, Eduardo Teixeira Cardoso, Raúl Pierre Rentería, Lúcio Cunha Tinoco,
and Caio Dias Valentim. A fast and simple method for extracting relevant content
from news webpages. In Proceedings of the 18th ACM conference on Information and
knowledge management, CIKM ’09, pages 1685–1688, New York, NY, USA, 2009.
ACM.

[3] Jer Lang Hong, Eu-Gene Siew, and Simon Egerton. Information extraction for search
engines using fast heuristic techniques. Data Knowl. Eng., 69(2):169–196, February
2010.

[4] Bing Liu, Robert Grossman, and Yanhong Zhai. Mining data records in web pages.
In Proceedings of the ninth ACM SIGKDD international conference on Knowledge
discovery and data mining, KDD ’03, pages 601–606, New York, NY, USA, 2003.
ACM.

[5] Miroslav Spousta, Michal Marek, and Pavel Pecina. Victor: the Web-Page Cleaning
Tool. In Proceedings of the 4th Web as Corpus Workshop, LREC, 2008.

[6] R. Burget. Layout based information extraction from HTML documents. In
Proceedings of the Ninth International Conference on Document Analysis and
Recognition - Volume 02, ICDAR ’07, pages 624–628, Washington, DC, USA, 2007.
IEEE Computer Society.

[7] Deng Cai, Shipeng Yu, Ji rong Wen, and Wei ying Ma. VIPS: a vision-based page
segmentation algorithm. Microsoft technical report MSR-TR-2003-79, November
2003.

[8] Petasis G., P. Fragkou, A. Theodorakos, V. Karkaletsis, and C. D. Spyropoulos.
Segmenting HTML pages using visual and semantic information. In Proceedings of the
4th Web as a Corpus Workshop, 6th Language Resources and Evaluation Conference.,
LREC 2008, pages 18–25, June 2008.

107

20 J. Zeleny et al.

[9] Wei Liu, Xiaofeng Meng, and Weiyi Meng. ViDE: A vision-based approach for deep
web data extraction. IEEE Trans. on Knowl. and Data Eng., 22(3):447–460, March
2010.

[10] David Gibson, Kunal Punera, and Andrew Tomkins. The volume and evolution of
web page templates. In Special interest tracks and posters of the 14th international
conference on World Wide Web, WWW ’05, pages 830–839, New York, NY, USA,
2005. ACM.

[11] D. C. Reis, P. B. Golgher, A. S. Silva, and A. F. Laender. Automatic web news extraction
using tree edit distance. In Proceedings of the 13th international conference on World
Wide Web, WWW ’04, pages 502–511, New York, NY, USA, 2004. ACM.

[12] Lan Yi, Bing Liu, and Xiaoli Li. Eliminating noisy information in web pages for
data mining. In Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’03, pages 296–305, New York, NY,
USA, 2003. ACM.

[13] Thomas Gottron. Bridging the gap: from multi document template detection to single
document content extraction. In Proceedings of the IASTED International Conference
on Internet and Multimedia Systems and Applications, EuroIMSA ’08, pages 66–71,
Anaheim, CA, USA, 2008. ACTA Press.

[14] Karane Vieira, André Luiz Costa Carvalho, Klessius Berlt, Edleno S. Moura,
Altigran S. Silva, and Juliana Freire. On finding templates on web collections. World
Wide Web, 12(2):171–211, June 2009.

[15] Karane Vieira, Altigran S. da Silva, Nick Pinto, Edleno S. de Moura, João M. B.
Cavalcanti, and Juliana Freire. A fast and robust method for web page template
detection and removal. In Proceedings of the 15th ACM international conference on
Information and knowledge management, CIKM ’06, pages 258–267, New York, NY,
USA, 2006. ACM.

[16] Ziv Bar-Yossef and Sridhar Rajagopalan. Template detection via data mining and its
applications. In Proceedings of the 11th international conference on World Wide Web,
WWW ’02, pages 580–591, New York, NY, USA, 2002. ACM.

[17] Gabriel Valiente. An efficient bottom-up distance between trees. In Proceedings of the
8th International Symposium of String Processing and Information Retrieval, pages
212–219. Press, 2001.

[18] Arnaud Le Hors, Philippe Le Hegaret, Lauren Wood, Gavin Nicol, Jonathan Robie,
Mike Champion, and Steve Byrne. Document object model (DOM) level 3 document
object model core. W3C Recommendation, April 2004.

[19] Johnny Stenback, Philippe Le Hegaret, and Arnaud Le Hors. Document object model
(DOM) level 2 document object model html. W3C Recommendation, January 2003.

[20] Jan Zeleny and Radek Burget. Isomorphic mapping of dom trees for cluster-based page
segmentation. In Proceedings of the Twelfth International Conference on Informatics
INFORMATICS’2013, INFORMATICS ’13, 2013.

108

Appendix B

Entity Classification and Semantic
Object Extraction

B.1 Visual Area Classification
Burget, R.: Visual Area Classification for Article Identification in Web Documents. In 21st
International Workshop on Databases and Expert Systems Applications. IEEE Computer
Society. 2010. ISBN 978-0-7695-4174-7. pp. 171–175.

109

110

Visual Area Classification for Article Identification in Web Documents

Radek Burget
Faculty of Information Technology

Brno University of Technology
Bezetechova 2, 612 66 Brno, Czech Republic

Email: burgetr@fit.vutbr.cz

Abstract—In the World Wide Web, the news and other
articles are usually published in complex HTML documents
containing many types of additional information that is not
explicitly marked. In this paper, we propose a visual infor-
mation analysis approach to the article discovery in complex
HTML documents. We use a classification approach for the
identification the important parts of the article within the page
and we propose an algorithm for the detection of the article
bounds within the page. Finally, we provide the results of an
experimental evaluation.

Keywords-article extraction; document cleaning; page seg-
mentation; visual analysis

I. INTRODUCTION

The articles available in web news portals, online maga-
zines, weblogs and other online sources are usually pub-
lished in HTML documents with quite a complex struc-
ture. These documents often contain many other types of
additional contents such as navigation or advertisement that
are not explicitly annotated. This complicates accessing the
article contents for both the human readers (for example
using portable devices) and the automatic agents used for
the content indexing, retrieval or other automatic processing
[1]. The solution may be the methods of article extraction
from documents (often called web page cleaning).

Most of current approaches to this problem are based
on processing the HTML code of the documents. This
approach brings two significant drawbacks: First, it ignores
the information provided outside of the HTML code (e.g.
style sheets). And second, it depends on a particular way of
HTML use that may apply for a limited set of documents
only.

In this paper, we propose a different approach based on the
analysis of the visual aspects of the page that is presented to
the reader. It is based on an assumption that there exist some
common visual features that are shared among the content
parts with the same meaning across the web sites. We use
a classification approach for identifying important parts of
the document based on their visual appearance and the page
layout and we propose an algorithm for the detection of the
article bounds based on this information.

II. RELATED WORK

Our work belongs to the area of information block discov-
ery in documents. Moreover, it is closely related to the areas

of page segmentation and document content classification.
Most page segmentation methods in the area of HTML

document processing are based on DOM tree analysis [2].
However, our work is more related to the visual information
based methods such as VIPS [3].

The area of information block detection (or document
cleaning) is overlapping with page segmentation to some
extent. From the point of view of the used document model,
most of existing approaches are based on the analysis of the
HTML code tree as well [2], [4], [5], [1]. Some approaches
work with a visual page representation obtained by page
segmentation. The work published by Yu et al. [6] is based
on a visual page segmentation using the VIPS algorithm.
Similarly, the work of Song et al. [7] is based on the visual
block classification.

Regarding the method used for the information block dis-
covery, most the existing approaches are based on some pre-
defined heuristic rules used for recognizing block purpose
[2], [4], [1]. Other methods are based on some classification
algorithm [7], [5] applied to different features of parts of
the document. This allows obtaining better flexibility of
the block discovery. In [7], the RBF networks and Support
Vector Machines are used whereas in [5], the Conditional
Random Fields method is used.

Our method presented in this paper is based on a visual
page model obtained by a page segmentation algorithm
and the application of classification methods on the visual
features of the detected areas. It combines and extends the
results of our previously published work: In [8], we have
proposed an algorithm for the article detection based on
pre-defined heuristic rules and in [9], we have presented
an approach to visual area classification based on selected
visual features. Unlike the DOM-based methods, our method
does not depend on actual structure of the document code
and therefore, it should be suitable for processing sets of
documents from heterogeneous sources.

III. METHOD OVERVIEW

Our article identification method works with a visual
representation of the web page. From the HTML code
of the document and the eventual Cascading Style Sheet
definitions, we create a model of the page layout that de-
scribes all the visual features of each piece of the document

2010 Workshops on Database and Expert Systems Applications

1529-4188/10 $26.00 © 2010 IEEE

DOI 10.1109/DEXA.2010.49

171111

contents. This model is used for detecting standalone visual
blocks in the page. To each block, we assign its estimated
purpose within the assumed article based on the values
of its different visual attributes. From the positions of its
estimated individual parts, we finally determine the bounds
of the whole article in the page. The whole process can be
summarized in following steps:

1) Page rendering – obtaining the positions, sizes and
other visual features of the individual pieces of the
document content from the HTML code and the re-
lated CSS specifications.

2) Page segmentation – detection of the basic visually
consistent blocks on the page.

3) Visual block classification – assigning each detected
block a class that corresponds to its purpose in the
article such as “heading” or “paragraph”. The classifi-
cation is based on the values of various visual features
that are computed for each block.

4) Article identification – determining the exact bounds
of an area on the page that most probably contains the
published article.

For rendering the web page, we use our own layout
engine CSSBox1. After processing a web page, this engine
provides a model of the resulting page layout. For each
piece of the page content (for each HTML element), the
model contains a complete information about the values of
its individual visual properties. These properties include an
exact position and size on the resulting page, font properties,
color properties (text color, background), border information
(CSS allows to create a border around any HTML element)
and the text content itself. These properties are then further
processed in the next step described below.

IV. DETECTION OF THE BASIC VISUALLY CONSISTENT
BLOCKS USING PAGE SEGMENTATION

The information obtained from the rendering engine
describes the resulting page layout at the finest possible
granularity level – it works with the smallest identifiable
pieces of the content. These pieces usually correspond to
displayed atomic text strings or other atomic content (such
as images) and we will call them the content elements. Each
content element can be assigned a set of its visual properties.
The next step in our method is discovering the basic visually
consistent blocks formed by sets of content elements that
potentially correspond to some part of the article with a
particular purpose.

For the recognition of such blocks, we use our previously
published page segmentation algorithm [9]. Basically, the
algorithm consists of one top-down and two bottom-up
segmentation steps:

1) Basic visual area detection (top-down step) – at start,
we consider the whole page to be a single visual

1http://cssbox.sourceforge.net/

Table I
THE CLASSES ASSIGNED TO THE INDIVIDUAL PARTS OF THE ARTICLES

h1 main article heading
h2 second-level heading in the article
subtitle the article subtitle
perex the leading paragraph of the article
paragraph an ordinary paragraph
date publication date
author author name
authordate author and the date in a single block
none remaining areas that do not belong to the article

area. We detect the separators in this area that may be
formed by rivers of whitespace, border lines contained
in the contents or special separating objects. We split
the page to sub-areas according to the detected sepa-
rators. Then, we repeat the same operation recursively
on the detected areas until no more visual separators
are detected. As the result of this step, we obtain
a hierarchy of visual areas in the document. The
smallest visual areas in this hierarchy (the leaf areas)
are the individual content elements. In the following
two bottom-up steps, we detect specific groups of the
visual areas for each parent area in the hierarchy.

2) Line detection – we detect the leaf areas that are
vertically aligned to form a single line of text and
we join them to a single area. That means, we make
a text line the smallest identifiable element.

3) Visually consistent block detection – for each parent
area, we create groups of its adjoining child areas that
have consistent text style. We consider two content
elements to have a consistent text style if the difference
in their font size, weight and style is under a certain
pre-defined threshold. During this process, we also
consider the previously detected area separators; we
do not group the explicitly separated visual areas
together. We will call the groups detected in this step
the visually consistent blocks.

The result of the page segmentation phase is a hierarchy
of visual areas detected in the document and a set of visually
consistent blocks detected in these areas.

V. VISUAL BLOCK CLASSIFICATION

Some of the detected visually consistent blocks poten-
tially form specific parts of the published article. Based on
various visual features, we assign a class to each consistent
block. For this purpose, we have identified a set of block
classes summarized in Table I that are commonly present
in the articles published on the web. The last class none
corresponds to any other area in the document that does not
form part of the published article.

For the classification of documents, we use all the visual
features available in the segmented documents. Since the

172112

Table II
FONT FEATURES

fontsize Average font size in percent where the average
font size of the whole document is considered
to be 100 %.

weight Average font weight from the range 0..1. The
regular font characters are assigned the weight
of 0, bold characters have the weight of 1.

style Average font style from the range 0..1 (normal
or italic style) computed analogically to the
average weight.

Table III
SPATIAL FEATURES

aabove,
abelow,
aleft, aright

Numbers of areas that are placed above, below,
on the left and on the right of the area within
its parent area.

relx, rely Relative position of the area within the whole
page. 0 means the left edge or top of the page
respectively, 1 means the right edge or bottom.

depth Height of the visual area hierarchy subtree with
the root in this area.

Table IV
TEXT FEATURES

nlines Number of text lines in the area.
ncols Number of columns in the area, i.e. number

of child areas placed at different horizontal
positions.

tlength Total length of the contained text.
pdigits, plower, pup-
per, pspaces, ppunct

Percentages of digits, lowercase letters, up-
percase letters, whitespaces and punctuation
characters in the contained text.

documents come from different sources, it is important that
the chosen visual features be comparable for the whole
set. Therefore, we have avoided using absolute values such
as absolute font size and we prefer relative values of all
features. Following visual features are computed for all the
visual areas of all the processed documents:

• Font features (Table II) are computed as average values
for the whole visual area weighted by the number of
characters with a particular value of that feature.

• Spatial features (Table III) describe the position of the
given visual area in the page and the relations to other
area.

• Text features (Table IV) describe the text content
properties. The text content of an area is a text string
obtained as a concatenation of all the text boxes covered
with the area.

• Color features (Table V) include the color properties of
the area background and the average color properties of
the text. In order to obtain some comparable values, we
have used the luminosity and contrast rates according
to the WCAG recommendation ([10]).

The values of the individual features are computed for

Table V
COLOR FEATURES

tlum Average text luminosity.
bglum Background luminosity. If the given area has a

transparent background, we consider the back-
ground color of its parent area.

contrast Average color contrast computed from the text
and background luminosities.

cperc Percentage of text of the same color in the
document. This value tells how much this text
color is unique or prevalent within the given
document.

each area and they are used as input for the area classi-
fication. First, the classifier must be trained using a set of
documents where the classes have been assigned manually to
the individual document parts. Then, the classifier is used to
assign classes to all the visual ares in new, previously unseen
documents. The particular data sets used for our experiments
are described in section VII.

As the result, we obtain a document with the contained
areas assigned either to one of the article part classes from
table I or to the class none that indicates no part of the
article. The last step is then the article identification itself.

VI. ARTICLE IDENTIFICATION

For the article identification, we use a segmented doc-
ument where some areas have been recognized as parts
of the article. However, the article identification algorithm
must assume somehow limited overall precision of the
classification that – according to our experiments – varies
from 60% to 98% depending on the properties of the training
and testing document sets. In other words, not all the visual
areas in the document are correctly classified.

In our approach, we combine the classification result
with a few heuristic rules that are used for obtaining the
most probable bounds of the article. The rules are based on
following observations:

• The article forms a rectangular area in the page.
• It usually starts with a heading that is easily identifiable.

As we have shown in our previous work, the headings
can be easily recognized in the page using even simple
heuristic rules [8] as well as using the classification
methods [9].

• It consists mainly of a consistent text flow with occa-
sional inserted boxes that may be further structured (for
example images or information boxes).

• The article contents is left-aligned (or right-aligned
for languages written in the right-to-left direction) or
block-aligned.

The consistent flow of text in our visual area model
corresponds to a sequence of areas corresponding to text
paragraphs placed below each other. These areas have only
one column, i.e. the ncols visual property has the value of 1.

173113

Moreover these areas are not further structured, i.e. the value
of depth property of the area is low (typically depth < 3 if
we allow some nested visual areas formed for example by
a box drawn around the block).

According to these observations, our algorithm uses head-
ings as the starting points of the article discovery. For each
visual area that has been assigned the h1 class during the
classification, the algorithm identifies the rectangular area in
the page (that we will call the article bounds) as follows:

1) We identify the parent area of the given heading area.
The whole process is performed within this parent
area.

2) At start, the article bounds are equal to the heading
bounds within the parent area.

3) We take all the visual areas placed directly below the
current article bounds and we compute the probability
that these areas belong to the article as explained
below.

4) If the probability is sufficient, we expand the article
bounds down to cover the new visual areas. This may
also include expanding the bounds to the left or to the
right if necessary. We repeat with the step 3.

5) If there is no such area or the probability is not
sufficient, we have encountered the end of the article
and the process ends.

For estimating the probability that a visual area belongs
to the article, we assign the examined areas one of following
probability levels:

• Level 3 (classified) – the area or its part has been
assigned a class different from none.

• Level 2 (probable) – the area corresponds to the simple
text flow. There is a single visual area below the current
bounds and it has the visual features ncols = 1 and
depth < 3. Even if this area has not been classified as
a part of the article, it most probably corresponds to a
paragraph of text.

• Level 1 (possible) – there are multiple areas placed
below the current bounds or the area has more complex
structure (ncols > 1 or depth ≥ 3). These areas may
present a more complex structures within the article
(for example an info box) or they might indicate that
the article has finished.

• Level 0 (not possible) – the area requires expanding
the article bounds to the left – it breaks the article
alignment on the left side.

The visual areas of the levels 0 and 1 possibly indicate
the end of the article. For determining the bottom bound of
the article more precisely, we use an error counter errcnt.
In the beginning, we set errcnt = 0. If the level 0 or 1
areas are encountered, the errcnt value is increased by some
value depending on the area level. If the level 2 area is
encountered, errcnt is reset to 0. If the errcnt value exceeds
certain threshold, we have encountered the end of the article.

Table VI
THE PERCENTAGES OF ERRONEOUS IDENTIFICATION OF THE

INDIVIDUAL ARTICLE BOUNDS FOR THE ARTICLES FROM A SINGLE
SOURCE (A) AND FROM MIXED SOURCES (B)

(A) (B)
Left bound 0 % 6 %
Right bound 4 % 17 %
Top bound 0 % 1 %
Bottom bound 19 % 27 %

(incomplete article) 2 % 13 %
(additional content) 17 % 19 %

Overall failure rate 21 % 29 %
without add. content cases 6 % 19 %

In that case, we revert the article bounds to the last value
where the visual area level was at least 2 (“probable”). In
other words, we allow the “possible” and “not possible” level
areas to form part of the article only if there is some higher
level area placed in a sufficient distance below them.

At the end this process, we obtain probable rectangular
bounds of the article in the page. If there are multiple
h1 headings detected in the page, we obtain the bounds
for multiple articles. The article contents correspond to the
contents of all the visual areas contained in the obtained
bounds. Moreover, the classes assigned to the visual areas
inside of the discovered article bounds indicate further article
structure.

VII. EXPERIMENTAL RESULTS

For running the experiments, we have implemented a page
segmentation tool that performs the page segmentation and
it computes the values of all the visual features for each
visual area. For the classification, we have tested several
classifiers from the WEKA2 package that we have integrated
to our tool. We have obtained the best overall precision and
recall values using the Support Vector Machines algorithm.
Therefore, in this section, we present the results obtained
using this method.

Our segmentation tool also allows to manually assign
classes to the detected visual areas using a graphical user
interface. This feature has been used for creating a training
set of documents with manually assigned classes.

We have created a list of European and American web
news portals containing 20 portals in total. Each of these
portals provides an RSS feed that contains the URLs of the
latest published articles. We have automatically segmented
all the articles in the RSS feeds. From each website, from
5 to 15 documents have been obtained according to the
different sizes of the RSS feeds. In total, we have obtained
559 documents and during the segmentation, 198 129 visual
areas have been detected in these documents.

2http://www.cs.waikato.ac.nz/ml/weka/

174114

We have created a training set of documents by manually
annotating the classes for 3 documents from each website.
This set was used for training the classifiers. Then, we have
applied our article identification algorithm to all remaining
pages from all the websites. We have tested the article
extraction for two use cases:

1) Extraction from a single source – the training set and
testing set of documents contain the documents from
the same news portal; however, the sets are disjoint.
We have repeated the tests for all the source portals
separately.

2) Extraction from multiple sources – the training and
testing sets contain mixed documents from all the
sources (the sets are disjoint again).

The combination of the training and testing set influences
the percentage of correctly identified visual areas in the
documents and thus, it also influences the precision of the
article identification. The errcnt threshold for the bottom
bound detection has been set to 10 in our experiments.

During the evaluation, we have observed the percentages
of correct bounds identification separately for the top, bot-
tom, left and right bound of the article. The results for both
use cases are shown in Table VI. The top and left bounds
are usually correctly determined. The left bound is usually
detected from the left visual area alignment; the top bound
is always determined from the heading position. The failure
in the top bound indicates that the heading has not been
found correctly and it implies the failure in the remaining
bounds as well. However, this has only occurred for 1 % of
the documents.

The discovery of the bottom bound is the least reliable.
Therefore, we have included separate failure rates for the
cases when an incomplete article has been detected (the
bottom bound was placed above the correct position) and
the opposite case, where an additional content has been
included in the article (the bottom bound was placed below
the correct position). However, in most cases, the additional
content detected as a part of the article below the text itself
includes links to related articles, discussion related to the
topic. The bottom bound of the article is then not clear
even for a human reader and for many applications, this is
an acceptable result of the article extraction. Therefore, in
addition to the overall failure rate, we include the failure rate
without the cases where some acceptable additional content
has been added below the article text in table VI.

For this case, the results show 94 % and 81 % of correctly
identified articles depending on the training and testing set
combination. Better results might be reached by further
experiments with the errcnt computing and threshold. These
results are comparable or slightly better than the results of a
HTML-based method published in [5]. However, since the
task specification and the document sets were different in
both cases, the comparison is only informative.

VIII. CONCLUSION

In this paper, we have proposed a method for article
discovery in web pages based on the analysis of the visual
appearance of the individual elements and of the page
layout. Unlike the HTML-based methods, our approach
does not require any specific way of the HTML usage to
be shared among the processed documents or web sites.
The experiments indicate that a sufficient precision may be
reached.

ACKNOWLEDGMENT

This work was partially supported by the BUT FIT grant
FIT-S-10-2 and the research plan MSM0021630528.

REFERENCES

[1] L. Yi, B. Liu, and X. Li, “Eliminating noisy information
in web pages for data mining,” in Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery
& Data Mining. ACM, 2003.

[2] M. Kovacevic, M. Diligenti, M. Gori, and V. Milutinovic,
“Recognition of common areas in a web page using visual
information: a possible application in a page classification,” in
ICDM ’02. Washington, DC, USA: IEEE Computer Society,
2002, p. 250.

[3] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma, VIPS: a Vision-based
Page Segmentation Algorithm. Microsoft Research, 2003.

[4] S.-H. Lin and J.-M. Ho, “Discovering informative content
blocks from web documents,” in KDD ’02: Proceedings of
the eighth ACM SIGKDD international conference. New
York, NY, USA: ACM, 2002, pp. 588–593.

[5] M. Spousta, M. Marek, and P. Pecina, “Victor: the web-page
cleaning tool,” in Proceedings of the 4th Web as Corpus
Workshop (WAC4) at the sixth International conference on
Language Resources and Evaluation (LREC 2008), Mar-
rakech, Morocco, 2008.

[6] S. Yu, D. Cai, J.-R. Wen, and W.-Y. Ma, Improving Pseudo-
Relevance Feedback in Web Information Retrieval Using Web
Page Segmentation. Microsoft Research, 2002.

[7] R. Song, H. Liu, J.-R. Wen, and W.-Y. Ma, “Learning block
importance models for web pages,” in WWW ’04: Proceedings
of the 13th international conference on World Wide Web.
New York, NY, USA: ACM, 2004, pp. 203–211.

[8] R. Burget, “Automatic web document restructuring based on
visual information analysis,” in Advances in Intelligent Web
Mastering - 2, Proceedings of the 6th Atlantic Web Intelli-
gence Conference - AWIC’2009, ser. Advances in Intelligent
and Soft Computing , Vol. 67. Springer Verlag, 2010, pp.
61–70.

[9] R. Burget and I. Rudolfová, “Web page element classifica-
tion based on visual features,” in 1st Asian Conference on
Intelligent Information and Database Systems ACIIDS 2009.
IEEE Computer Society, 2009, pp. 67–72.

[10] B. Caldwell, M. Cooper, L. G. Reid, and G. Vanderheiden,
Web Content Accessibility Guidelines 2.0. The World Wide
Web Consortium, 2008.

175115

116

B.2 Automatic Annotation of Online Articles
Burget, R.; Burgetová, I.: Automatic Annotation of Online Articles Based on Visual Fea-
ture Classification. International Journal of Intelligent Information and Database Systems.
vol. 5, no. 4. 2011: pp. 338–360. ISSN 1751-5858.

117

118

 338 Int. J. Intelligent Information and Database Systems, Vol. 5, No. 4, 2011

 Copyright © 2011 Inderscience Enterprises Ltd.

Automatic annotation of online articles based on
visual feature classification

Radek Burget* and Ivana Burgetová
Faculty of Information Technology,
Brno University of Technology,
Bozetechova 2, 612 66 Brno, Czech Republic
E-mail: burgetr@fit.vutbr.cz
E-mail: burgetova@fit.vutbr.cz
*Corresponding author

Abstract: When applying the traditional data mining methods to World Wide
Web documents, the typical problem is that a normal web page contains a
variety of information of different kinds in addition to its main content. This
additional information such as navigation, advertisement or copyright notices
negatively influences the results of the data mining methods as for example the
content classification. In this paper, we present a method of interesting area
detection in a web page. This method is inspired by an assumed human reader
approach to this task. First, basic visual blocks are detected in the page and
subsequently, the purpose of these blocks is guessed based on their visual
appearance. We describe a page segmentation method used for the visual block
detection, we propose a way of the block classification based on the visual
features and finally, we provide an experimental evaluation of the method on
real-world data.

Keywords: automatic annotation; online articles; page segmentation; document
preprocessing; visual features; visual analysis; data mining; classification.

Reference to this paper should be made as follows: Burget, R. and
Burgetová, I. (2011) ‘Automatic annotation of online articles based on visual
feature classification’, Int. J. Intelligent Information and Database Systems,
Vol. 5, No. 4, pp.338–360.

Biographical notes: Radek Burget received his PhD in Information
Technology in 2004 from the Brno University of Technology. He is an
Assistant Professor at the Faculty of Information Technology, Brno
University of Technology. His research interests include data mining methods,
semi-structured data modelling, knowledge engineering and the semantic web.

Ivana Burgetová received her PhD in Computer Science and Engineering in
2009 from the Brno University of Technology. Currently, she is an Assistant
Professor at the Faculty of Information Technology, Brno University of
Technology. Her research focuses on bioinformatics, data mining and
theoretical computer science.

119

 Automatic annotation of online articles based on visual feature classification 339

1 Introduction

In the last years, almost all the information published in the classical printed media is also
available electronically via the World Wide Web. Newspapers, magazines and press
agencies maintain their online versions and a large number of electronic magazines,
weblogs and other types of online media make the web a vast source of electronically
published articles.

It is the specific feature of the web that the articles themselves are usually buried in
other content that forms the web page such as the web navigation, related articles,
discussion or advertisement. As shown in Yi et al. (2003), this feature of web pages
significantly complicates further application of data mining and information retrieval
methods on the published articles. When applying the text classification methods on the
whole web documents, the additional information in the page can be viewed as a noise
that reduces the precision of the classification. Therefore, it is desirable to remove the
additional content before further computer processing of the article. This requires the
application of a detection algorithm that recognises the main article in the web page and
eliminates the remaining information.

Similar situation occurs when automatically processing the article contents. The
articles usually consist of several content blocks with a different meaning that include
headings, author, publication date, lead paragraph and text paragraphs. The identification
of these parts is also important for further article processing. For example, different
weights may be assigned to different content blocks when a search index is being built.

Currently used web publication technology provides very limited options for an
explicit annotation of the purpose of the individual content blocks and often, even these
limited options are not used by the publisher. Therefore, the automatic identification of
the article in the web page and the recognition of the purpose of its individual parts
require a thorough analysis of the document. One of the possible ways is analysing the
visual information that is provided for human readers.

The human readers usually use the visual features of the content for finding the main
article in the page and for identifying the purpose of its individual parts. The designers of
the web pages help the users by maintaining some style rules commonly accepted for this
kind of contents. An article usually forms a visually separated block in the page with a
different visual style than the surrounding information. Its main heading can be easily
identified in the whole page thanks to its visual features, mainly the font size and style.
The internal structure of the article is expressed visually as well. The leading paragraph,
publication date, eventual subheadings and other blocks are clearly visually separated
from the main text of the article.

Although the visual presentation of the document content is apparently important for
human readers, most of the existing approaches to the automatic content block
recognition are based on the analysis of the document code usually represented as a DOM
tree. On the other hand, very few authors have examined the role of the actual visual
features of the content. In this paper, we propose an approach to automatic annotation of
important web page elements based on the above observations regarding the visual
content presentation. We propose a model that describes the human perception of the
page as exactly as possible. In order to use all the visual information that is available to
the human reader, we work with a model of the rendered page instead of a more common
approach based on modelling the document code. We propose detecting the basic blocks

120

 340 R. Burget and I. Burgetová

in the page by an adopted page segmentation algorithm and subsequently, we propose a
way of classification of the detected blocks based on their mutual positions and other
visual features. As the result, we can assign a class to each detected block that helps to
decide if the block forms a part of an article and eventually its meaning in the article.
This information is potentially useful for further automatic processing of the documents.

We present the results of our experimental application of the proposed approach on
real web documents. According to our experiments, the results can be used for detecting
the important areas in web documents and the method can be used as an alternative to the
existing DOM-based approaches or eventually, both approaches may be combined.

2 Related work

From a general point of view, our paper belongs to a broader area of information
extraction from web documents. The research in this area has been running from the late
‘90s and during this time, many different approaches have been developed. Most of the
methods are based on specialised procedures called wrappers that identify a particular
information in a document based on recognising HTML code patterns that typically
surround the desired information in a defined set of documents (Kushmerick, 1997).
Since a manual construction of the wrappers is a time-consuming work, many methods
have been proposed for automatic wrapper construction based on a set of annotated
sample documents. The most important approaches include grammatical or automata
inference (Freitag, 1997; Kosala et al., 2002) and relational machine learning (Cohen
et al., 2002). The main problem of the wrapper is their sensitivity to changes in the
documents (often called brittleness) which may cause the wrapper to stop working
properly at any time (Kushmerick, 2000). Therefore, some approaches introduce more
general models of the processed documents. This allows separating the extraction
algorithm from the details of the document code. For example, Burget (2004) proposes a
conceptual modelling approach. Some of the existing tools provide a human-assisted
visual wrapper definition (Baumgartner et al., 2001; Liu et al., 2001) where the resulting
wrappers are described using an abstract language in order to obtain greater flexibility.

The area of web page cleaning and information block detection in web pages can be
viewed as a specific application of the general information extraction methods. Most of
the existing approaches are based on the analysis of the HTML code of the document
which is usually represented by a DOM (e.g., Chakrabarti et al., 2008; Gupta et al., 2003;
Kovacevic et al., 2002; Lin and Ho, 2002; Mukherjee et al., 2003; Yi et al., 2003). The
advantage of the DOM approach is generally its simplicity and scalability. On the other
hand, the DOM itself gives an approximation of the resulting page only. For example, it
does not contain any information about the positions of the individual content blocks and
their visual style. In order to obtain the complete picture, the actual visual features of the
content must be computed according to the attached style sheets, used fonts and other
information which actually results in document rendering.

The approaches based on the rendered document processing usually work with a
visual page representation obtained by page segmentation. The work published by Yu
et al. (2002) is based on a visual page segmentation using the VIPS algorithm Cai et al.
(2003). The closest to our approach is the work of Song et al. (2004) that is also based on
the visual block classification. It assigns one of the four importance levels to each block
based on its visual features. In contrast to this approach, we do not evaluate an overall

121

 Automatic annotation of online articles based on visual feature classification 341

importance of the blocks. Instead, we assign more specific classes to the visual blocks in
order to distinguish their purpose. Moreover, we have chosen a different set of visual
features used for classification that we found more suitable as discussed in Section 5.

Our approach is based on a modification of our previously published page
segmentation algorithm Burget (2007). Similarly to Song et al. (2004), we work with
visual blocks detected in the rendered documents. However, our approach models the
page division with finer granularity and it looks for areas consistent in their visual style.
As the next step, we use the classification approach based on the visual features only for
recognising the particular areas in the page. In contrast to the algorithms based on the
HTML code analysis, there are no additional requirements on the underlying HTML code
such as the usage of particular HTML elements. Moreover, the method is independent on
the document language since only the visual features are used.

This paper is an extended version of a previously published paper Burget and
Rudolfová (2009). In contrast to the original paper, we have introduced a new set of
visual features used for the classification that allowed increasing the achieved precision
significantly. We have greatly extended the experimental testing part by using larger sets
of data and more classification methods. And lastly, we provide a more detailed
description of the proposed approach and its evaluation.

3 Overview of the approach

Our approach is inspired by the way the human readers read the web pages. When
looking for the article in a web page, the readers accomplish the following tasks:

1 identification of the basic visual blocks in the web page

2 classification of these blocks based on various features in order to determine their
meaning

3 choosing the appropriate block that is worth reading.

In this paper, we focus on the first two tasks. The detection of the basic visual blocks in
the page is accomplished by employing a page segmentation algorithm. For
accomplishing the second task, various visual attributes of the detected blocks are
extracted and a classification algorithm is used for assigning classes to the individual
blocks.

The whole visual area classification process is illustrated in Figure 1. It consists of
two phases – a training phase and the classification phase itself.

In both phases, the first step is page segmentation. In this step, the page is rendered
and basic visual blocks are detected. The details are described in Section 4. As the result,
we obtain a model of the page layout stored in an XML file. The whole page is
represented as a tree of visual blocks that describe the page layout from the root block
(the whole page) to the smallest detected blocks. For each block, the model contains its
position and other visual properties.

For the training phase, we segment a sample set of web pages and we manually
annotate the visual blocks that form part of a contained article such as headings, text
paragraphs, etc. Then, we extract the visual properties of all the visual blocks in the
sample set of web pages and use them as the training examples for the classifier together
with the manual annotations.

122

 342 R. Burget and I. Burgetová

Figure 1 A schema of the visual area classification process

Note: Dashed lines show the training phase, solid lines show the classification phase.

In the classification phase, we process new HTML documents that have not been
manually annotated. Each document is segmented using the same algorithm and the same
visual features of the detected blocks are extracted directly from the obtained layout
model. Obtained data forms an input of the previously trained classifier that assigns
classes to the individual blocks.

The details of both the training set preparation and the used classification algorithms
are provided in Section 5.

4 Page segmentation approach

The purpose of the page segmentation is to detect the visual blocks that can be assigned a
meaning in context of the article (for example a heading or a paragraph). Therefore, we
are looking for separated groups of text lines in the page where the whole group has a
consistent visual style.

The segmentation method we have used is based on our previously published method
(Burget, 2007) with significant modifications. We have redefined the purpose of the box
clustering phases so that the algorithm consists of a line detection phase and a subsequent
block detection phase that includes the visual style comparison. As the result, we obtain a
larger number of smaller areas with consistent style from the segmentation process. This
result is more suitable for the following step of area classification described in Section 5.

The input of the page segmentation algorithm is an HTML document and the related
Cascading style sheets required for rendering the document. The output is a tree of
detected areas that models the visual properties of the areas and their eventual nesting.
The whole segmentation process consists of the following steps:

1 page rendering – obtaining the information about the positions of the basic document
elements on the page and about their visual style.

2 detecting basic visual areas – detecting the elements that form visual areas in the
page and creating a tree of areas based on their nesting

3 text line detection – joining the areas on the same line

123

 Automatic annotation of online articles based on visual feature classification 343

4 block detection – detecting the larger areas with the same visual style of the blocks

In the following sections, we briefly describe the individual phases.

4.1 Page rendering

For rendering the web page, we have used an experimental CSSBox layout engine
(http://cssbox.sourceforge.net/) that has been designed mainly for this purpose. The task
of the rendering engine is to load the HTML code of a document and all the
corresponding CSS style sheets and subsequently, to determine the positions and visual
features of all the elements on the resulting page. The way of determining these features
is given mainly by the CSS specification (Bos et al., 1998).

The rendering is performed on a virtual canvas with the initial size of 1,000 × 800
pixels which may be adjusted according to the resulting style (computed widths and
heights) of the rendered elements. The result of the rendering is (according to the
CSSBox terminology) a set of boxes. By a box, we understand a rectangular area in the
resulting page with a given position and size on the canvas containing an arbitrary part of
the document content. Generally, there is a box created for each DOM element (so called
element boxes), for each connected text string in the document (text boxes) and for each
inserted object such as an image (so called replaced boxes). For each box, the following
visual features are computed by the rendering engine:

• size and position on the page – the x and y coordinates and the width and height; we
will call this the box bounds

• background colour (some boxes may have transparent background)

• font properties (font size, weight and style)

• border properties – in CSS, there may be a border (a frame) of an arbitrary width
defined around a box

• if the box is formed by a text, we obtain the text string.

For further analysis, each box may be represented as a tuple:

(, , , , , , , , , ,)b type x y width height bgcolor fontsize weight style border text= (1)

where type is either the element box, text box or replaced box as defined above and the
other members correspond to the above mentioned visual features. All the positions and
sizes are measured in pixels. The background colour (bgcolor) is represented as a RGB
value or a special transparent value, if there is no background colour defined for the
given box. The weight and style properties have the value of 0 for normal font and 1 for
bold or italic font respectively.

The whole rendered document may be then represented as a set of boxes

{ }1 2 3, , ,..., nB b b b b= (2)

where n is the total number of boxes in the document. Subsequently, this set of boxes is
analysed in the next phase of the page segmentation algorithm in order to discover the
visual blocks in the page.

124

 344 R. Burget and I. Burgetová

Figure 2 shows an example of a simple HTML document and the rendered page. The
bounds of the individual boxes are marked with dashed lines. As we may see, more text
boxes may be generated for a continuous text because of the automatic line wrapping that
is applied according to the CSS specification.

Figure 2 An example of an HTML document and the boxes obtained by document rendering

4.2 Detecting basic visual areas

In HTML documents, one of the following means may be used for creating visually
separated blocks in the page:

• using a box that is visually separated from the remaining content, e.g., by a different
background colour or a frame

• creating groups of boxes that are separated from the remaining content by other
visual means that include line separators and rivers of white space.

In this phase of the page segmentation, we detect the boxes from the set B that form
standalone visual blocks, i.e., the first one of the above mentioned cases. We say that a
box is visually separated if at least one of the following conditions holds:

• the box is created by the document root element and thus, it represents the whole
rendered page

• the box is a text box or a replaced box as defined in Section 4.1. These boxes
represent the actual document contents

• the background of the box is not transparent or there is a visible border defined
around the box, i.e., the box is apparent on the resulting page.

Each box that meets the above definition is perceived by the user as a basic standalone
unit of the page and we will call it a basic visual area. The bounds of this area
correspond to the bounds of the appropriate box. Let a(bi) be a basic visual area that
corresponds to the box bi ∈ B. In this step, we create a set of basic visual areas:

(){ }; is visually separatedi i iA a b b B b= ∈ ∧ (3)

125

 Automatic annotation of online articles based on visual feature classification 345

In many cases, the areas are overlapping in the page. A typical example is a colour box in
the page that contains several lines of text. Each text line is represented by a text box
bi ∈ B and it is placed inside of the bounds of an element box bj ∈ B; i ≠ j with a colour
background. We say, that the text boxes bi are fully enclosed in the background box bj. In
our example in the Figure 2, this is the case of the paragraph <p> and its content boxes.
In HTML documents, this is a very frequent situation that is simply created by two or
more nested HTML elements with the appropriate visual properties.

Very rarely, two boxes may be detected in the document that overlap only partially;
than means, the areas overlap but we cannot say that one of the areas is fully enclosed in
the other one. In this case, we consider the box drawing order defined in the CSS
specification and we say that the box bi is enclosed in bj when bi is drawn in front of bj
according to the CSS specification.

We model the box overlapping by creating a tree of visual areas:

(,)AT A E= (4)

where A is the set of basic visual areas (3) and E is the set of tree edges, where
(a(bj), a(bi)) ∈ E if and only if bi is enclosed in bj.

The resulting tree represents the visual area nesting as perceived by the user. Its root
area represents the whole page (it corresponds to the document root element) and the leaf
areas correspond to the individual pieces of text or other content. The remaining areas
correspond to other boxes that are visually separated for example by a colour border or
background.

The tree of basic areas obtained from the sample document from the Figure 2 is
shown in the Figure 4(a). The <div> and <i> boxes are not visually separated and thus,
they do not create a visual area. The <p> box is separated by a colour background and the
remaining boxes are the text boxes and the document root.

4.2.1 Area grid

The above defined tree of visual areas represents the area nesting. For the further steps of
the page segmentation, it is also necessary to represent the mutual positions of the areas
within their parent area. For this purpose, we define an area grid gi for each area a(bi) ∈ A
that describes the mutual positions of all the child areas of a(bi) in TA. Examples of such a
grid are shown in the Figure 3.

Figure 3 Examples of two area grids used for line detection (a) with three lines detected,
(b) with a box preventing the first two lines from being detected

(a) (b)

126

 346 R. Burget and I. Burgetová

Figure 4 The basic visual area tree, (a) the resulting tree after the line detection phase
(b) the block detection phase (c) the resulting bounds of the detected visual areas

All the child areas of a(bi) are placed in a grid with variable column widths and row
heights where each area occupies an arbitrary number of rows and columns. The position
of each area is determined by its starting and ending column and row in the grid. Using
this representation, we can quickly determine the mutual positions of an arbitrary pair of
child areas. Similar grids are created for all the child areas recursively. These grids are
primarily used for locating the directly neighbouring areas in the page and for the line
and block detection as described in next chapters.

4.3 Text line detection

The purpose of this phase is to join the areas that form a single text line. In our approach,
we consider a text line to be the smallest visual area that is not broken to even smaller
pieces. In order to detect the lines, we look for the areas that share the same rows in the
appropriate area grid and the bounds of the line do not overlap with any other detected
line or existing area. When found, we check if the areas are not visually separated from
each other. In this case, we require that the areas have the same background colour and
there is no separating border between the areas.

If the areas are not visually separated, we join them into a single area representing the
whole line. The areas a(bi), a(bj) ∈ A that share the same parent area in TA will be
replaced by a new area a(bi, bj) ∈ A. The bounds of the resulting area then cover all the
joined areas and the area corresponds to a set of boxes instead of a single box. The set of
child areas of the new area in TA is the union of the sets of child areas of a(bi) and a(bj).

For example, in the Figure 3, we detect three lines in the grid (a): the first line spans
for the grid rows (1, 2), the second one is (3, 5) and the third one is (6, 7). In contrast, in
the grid (b), the first two lines will not be detected because they would overlap with the
box in the column 9. This corresponds to the fact that the areas form a more complicated
structure that does not correspond to simple lines of text.

In our example in the Figure 4, the text ‘of the div’ is created by two boxes that
correspond to the two elements in the original document. After applying the line
detection algorithm, these two boxes are joined to a single one. The resulting tree of
visual areas is shown in the Figure 4(b).

127

 Automatic annotation of online articles based on visual feature classification 347

4.4 Block detection

The last step of the page segmentation is the detection of visually consistent blocks. In
this phase, we create new areas in TA that group together adjacent areas with the same
style. The purpose of this step is to detect the paragraphs of a consistent style (most
frequently the headings consisting of multiple lines or the simple paragraphs of text) that
can be later classified as standalone areas. Two areas are considered to have a consistent
style if they share the same average font size and style of their text contents.

Moreover, we consider the visual separators that may appear in the page and that can
be created by other visually separated areas or by rivers of white space. For the detection
of these separators, we use the block division algorithm published in Cai et al. (2003).

For each area, we have a set of separators and a set of child areas with the given style.
When detecting the covering areas, we find the largest rectangular areas that cover the
child areas with the same style. At the same time, we require that the new areas do not
cover any of the separators. When such a covering area is found, it is added to the area
tree at the appropriate point so that the tree still represents the area nesting.

In our example, the first two lines of text have a consistent style and they are not
visually separated by any separator. We create a new area that covers these text lines. The
resulting tree of areas is shown in the Figure 4(c) where the newly created area is marked
as block.

4.5 Segmentation result

As the result of the above described segmentation process, we obtain a tree of areas,
where the root area corresponds to the whole page; the leaf areas correspond to the
individual text lines and the remaining areas corresponds to some visually distinguished
blocks in the page. This model is built based on both the visual properties of the page
elements and various kinds of separators. Therefore, the obtained tree represents the
visual page organisation as it is perceived by a user.

For the purpose of its further analysis, we serialise the obtained tree of areas to an
XML file. This file contains the description of all the detected visual areas including their
positions in the page and in the layout grid described in Section 4.2.1. For the leaf visual
areas, the information about contained text boxes and their visual properties is included
as well. Thus, each XML file contains all information necessary both for displaying the
original page contents and for determining the visual properties of each detected area.

5 Page element classification

All the non-leaf nodes of the visual area tree obtained from the page segmentation
correspond to some visual areas detected in the page. For each of these visual areas, we
determine the values of various visual properties that are used for the area classification.
The task of the classifier is to assign a class to each area based on these properties.

The classification process consists of two phases. In the learning phase, we train the
classifier using a training set of segmented documents where the classes have been
manually assigned to the individual areas. Then, in the classification phase, new

128

 348 R. Burget and I. Burgetová

documents are segmented and the discovered areas are assigned classes using the
previously trained classifier.

5.1 Obtaining the visual features of the areas

For the classification of large sets of documents from different sources, it is important
that the chosen visual features be comparable for the whole set of previously unknown
documents. Therefore, we have avoided using absolute values such as absolute font size
and we prefer relative values of all features.

For obtaining the values of all the features, we have implemented a feature extraction
tool. This software tool reads a set of XML files containing a segmentation result for a set
of documents as described in Section 4.5 and it produces a file in the ARFF format that
can be used as an input for the WEKA classifier described below. This file contains a list
of all the visual areas in the document set where each area is represented by the values of
the individual features.

The following visual features are computed for all the visual areas of all the processed
documents.

5.1.1 Font features

The font features are computed as the average values for the whole visual area evaluated
weighted by the number of characters with a particular value of that feature. The
following values are computed:

• fontsize – average font size in percent where the average font size of the whole
document is considered to be 100%. Thus, the value tells whether the font size for a
particular area is below or above average.

• weight – an average font weight from the range 0..1. The regular font characters are
assigned the weight of 0; bold characters have the weight of 1.

• style – an average font style from the range 0..1 (normal or italic style) computed
analogically to the average weight.

5.1.2 Spatial features

Spatial features describe the position of the given area in the page and the relations to
other areas.

• aabove, abelow, aleft, aright – the number of areas that are placed above, below, on
the left and on the right of the area within its parent area.

• relx, rely – the relative position of the area within the whole page. 0 means the left
edge or top of the page respectively, 1 means the right edge or bottom.

5.1.3 Text features

The text content of an area is a text string obtained as a concatenation of all the text boxes
covered with the area. The following values are computed for each area:

• nlines – number of text lines in the area.

129

 Automatic annotation of online articles based on visual feature classification 349

• tlength – total length of the contained text in characters.

• pdigits, plower, pupper, pspaces, ppunct – percentages of digits, lowercase letters,
uppercase letters, whitespaces and punctuation characters in the text content of the
area.

5.1.4 Colour features

Colour features include the colour properties of the area background and the average
colour properties of the text. In order to obtain some comparable values, we do not
consider the colours themselves but we compute the following values:

• tlum – an average text luminosity computed according to the WCAG
recommendation (Caldwell et al., 2008). The appropriate formula in this
recommendation considers the real properties of the human vision and therefore, it
seems to be suitable for this purpose.

• bglum – the background colour luminosity computed using the same formula. If the
given area has a transparent background, we consider the background colour of its
parent area.

• contrast – the average colour contrast computed from the text and background
luminosities according to the WCAG recommendation.

• cperc – the percentage of text of the same colour in the document. This value tells
how much this text colour is unique or prevalent within the given document.

5.2 Training data preparation

For preparing the training set of documents, we have implemented a graphical annotation
tool that allows displaying a segmented page stored in an XML file and assigning a
particular class to the displayed visual areas. The assigned class is then stored back to the
XML file. The extraction tool can then include the assigned class in the input data for the
classifier together with the computed feature values. The classifier input obtained this
way is then used as the training dataset. This process corresponds to the training phase
illustrated in Figure 1.

Moreover, the graphical annotation tool can be used for displaying the visual feature
values of the individual detected areas and after the classification phase is finished, it is
able to display the results obtained by the automatic classification and eventually, to
compare them graphically with the manually assigned classes.

The overview of the classes used for annotation is in Table 1. These classes
correspond to the individual parts of articles that are commonly used in internet sources.
A special class none is automatically assigned to all remaining areas detected in the page
that do not form part of the article contents.

It is a special feature of the dataset prepared this way that the number of areas
assigned to the none class significantly exceeds the number of areas assigned to the other
classes. This corresponds to the fact that in a normal web page, most of the detected areas
do not correspond to any standalone part of the articles. Many of them correspond to the
single text lines that form only a part of some paragraph, some areas correspond to other
type of additional content.

130

 350 R. Burget and I. Burgetová

Table 1 The classes assigned to the individual visual areas

h1 Main article heading
h2 Second-level heading in the article
subtitle The article subtitle
perex The leading paragraph of the article
paragraph An ordinary paragraph
date Publication date
author Author name
authordate Author and the date in a single area
none Remaining areas that do not belong to the article

5.3 Classification algorithms

For the classification itself, we have used the University of Waikato WEKA data mining
tool (http://www.cs.waikato.ac.nz/˜ml/index.html) that offers a variety of implemented
classification methods based on various principles. WEKA can read both the training and
testing datasets produced by our software tools and it also allows evaluating the results of
classification, mainly the precision and recall rates for the individual classes.

We have tested the following classification methods for our data:

• the J48 tree classifier which is an implementation of the Quinlan’s (1993) C4.5
algorithm

• Bayesian network classifier

• multilayer perceptron – a neural network with backpropagation

• support vector machines.

The advantage of the J48 algorithm is that it produces a decision tree that is interesting
for our further research. Therefore, we have used this algorithm in our previous works
and we include it for comparison in this work. Bayesian network presents a classical
classification method. We have chosen it for its reliable results in our previous
experiments. The neural network classifier and the SVM classifier have been chosen for
comparison with the results published by Song et al. (2004).

We have experimentally compared these algorithms on datasets we have created from
real web data. All the selected methods produced acceptable results. The detailed data
about our experiments are provided in section 6.

6 Experimental evaluation

For the experimental evaluation, we have implemented several tools according to the
Figure 1 introduced in the overview. The segmentation tool implements the page
segmentation algorithm described in Section 4. For each segmented document, the
resulting tree of visual areas is serialised to XML and stored to a separate file. Secondly,
the graphical annotation tool allows to display the XML files obtained from segmentation
and to manually assign classes to the individual areas. And finally, the feature extraction

131

 Automatic annotation of online articles based on visual feature classification 351

tool processes a set of segmented pages (either annotated or not annotated), it computes
the values of all the visual features for all the visual areas contained in these files and
stores the obtained values into an ARFF file that may be used as a training or testing
dataset for the WEKA classifier. All our tools have been implemented in the Java
environment.

We have tested our classification approach on a set of web documents obtained from
the websites of various newspapers worldwide. We segmented all the downloaded
documents using our segmentation tool and we manually annotated a subset of
documents from each website. Subsequently, we have computed the visual features of all
the visual areas detected in all the documents and tested the classification algorithms on
various subsets of these data. As the next step, we have tested selected algorithms in
situations that correspond to the assumed real use of the method.
Table 2 The websites used as sources of the testing documents and the corresponding RSS

feed URLs

Website RSS feed

Aktualne.cz http://aktualne.centrum.cz/export/rss-hp.phtml

Idnes.cz http://servis.idnes.cz/rss.asp?c=zpravodaj

Novinky.cz http://novinky.cz/rss2/

Lupa.cz http://rss.lupa.cz/2/clanky/

Root.cz http://www.root.cz/rss/clanky/

Lidovky.cz http://www.lidovky.cz/export/rss.asp?r=ln domov

El Mundo http://rss.elmundo.es/rss/descarga.htm?data2=4

El Pais http://www.elpais.com/rss/feed.html?feedId=1022

La Vanguardia http://feeds.feedburner.com/lavanguardia/alminuto

LA Times http://feeds.latimes.com/latimes/news?format=xml

USA Today http://rssfeeds.usatoday.com/usatoday-NewsTopStories

Zeit Online http://newsfeed.zeit.de/index

Focus Online http://rss.focus.de/fol/XML/rss folnews.xml

Stern.de http://www.stern.de/feed/standard/all/

Le Figaro http://rss.lefigaro.fr/lefigaro/laune?format=xml

Le Parisien http://rss.leparisien.fr/leparisien/rss/actualites-a-la-une.xml

20minutes.fr http://www.20minutes.fr/rss/flux/une.xml

Corriere Della Sera http://www.corriere.it/rss/homepage.xml

La Repubblica http://rss.feedsportal.com/c/32275/f/438637/index.rss

Il Sole 24 ore http://feeds.ilsole24ore.com/c/32276/f/438662/index.rss

6.1 Source data

We have manually created a list of source websites that is provided in Table 2. Each of
these websites provides an RSS feed that contains the URLs of the latest published
articles. We have automatically segmented all the articles in the RSS feeds. From each

132

 352 R. Burget and I. Burgetová

website, from five to 15 documents have been obtained according to the different sizes of
the RSS feeds. In total, we have obtained 559 documents and during the segmentation,
198,129 visual areas have been detected in these documents.

Using the annotation tool, we have manually annotated four documents from each
website. In total, we have manually annotated 784 areas in these documents. From the
annotated documents, we have created various training and testing datasets for testing the
classification method in different situations. The remaining segmented documents have
been used for visual evaluation of the classification results using our graphical tool.

We have used the obtained datasets for two basic experiments:

1 We have compared the precision and recall of the selected classification algorithms
listed in 5.3 in two different situations regarding the combination of training a testing
sources. The aim of these experiments was to check the fitness of the individual
algorithms for the given purpose. These experiments are further discussed in the
Section 6.2. Based on the obtained values, we have chosen the SVM and BayesNet
classifiers for further experiments.

2 With the selected classification methods, we have run thorougher experiments in
order to verify the classification results for the expected use cases of our approach.
We have tested more different combinations of the training and testing sets in order
to minimise the influence of possible specific features of the individual web sources.
These experiments are discussed in the Section 6.3.

6.2 Classification algorithm evaluation

According to our previous experiments, the resulting precision and recall of the
individual classification algorithms greatly depends on the actual combination of the
datasets used for training and testing. This is caused mainly by the difference in the way
of the visual article presentation among various web sources where some sources are
more similar to each other than the other ones. Therefore, the first step of our
experimental evaluation was to find the classification algorithms that give satisfactory
results for both the favourable combinations, where the way of visual presentation is
similar in the training and testing data sources and the unfavourable combinations, where
the visual presentation differs significantly. Based on the obtained results, we choose the
algorithms that should be the most suitable for the application on real use-cases that are
described in the Section 6.3.

For comparing the classification algorithms, we have created two datasets:

• The first dataset is used for testing the algorithms in an ‘optimistic’ situation when
the training and testing documents come from the same sources. Both the training
and testing sets contain two annotated documents from each source in Table 2,
however, different documents from these sources have been used for creating the
training and testing sets.

• The second dataset simulates a ‘pessimistic’ variant when the training set of pages is
created from different sources than the testing set. We have randomly split the set of
sources in two parts of the same size and we have used all the annotated documents
from these sources to create the training and testing sets respectively.

133

 Automatic annotation of online articles based on visual feature classification 353

These datasets should represent the favourable and unfavourable conditions for the
classification. Now, our task is to choose the algorithms that give satisfactory results for
both datasets.
Table 3 Obtained precision, recall and F-measure values of the classification algorithms for

the individual classes

J48 BayesNet
Class

P R F P R F

none 0.986 0.992 0.989 0.996 0.936 0.965

h1 0.727 0.889 0.800 0.400 0.889 0.552

h2 1.000 0.737 0.848 0.673 0.921 0.778

subtitle 0.500 0.143 0.222 0.081 0.429 0.136

perex 0.455 0.714 0.556 0.524 0.786 0.629

paragraph 0.743 0.663 0.701 0.386 0.961 0.550

author 0.200 0.091 0.125 0.273 0.273 0.273

date 1.000 0.222 0.364 0.292 0.778 0.424

authordate 1.000 0.300 0.462 0.600 0.600 0.600

Perceptron SVM

P R F P R F

none 0.988 0.982 0.985 0.991 0.986 0.988

h1 0.889 0.889 0.889 0.842 0.889 0.865

h2 0.906 0.763 0.829 0.886 0.816 0.849

subtitle 0.500 0.286 0.364 0.500 0.143 0.222

perex 0.417 0.714 0.526 0.524 0.786 0.629

paragraph 0.612 0.795 0.691 0.674 0.787 0.726

author 0.000 0.000 0.000 0.417 0.455 0.435

date 0.000 0.000 0.000 0.500 0.556 0.526

authordate 0.000 0.000 0.000 0.700 0.700 0.700

Note: The training and testing dataset are coming from the same sources (optimistic variant).

Table 3 shows the classification results for the first dataset. We include the values of
precision, recall and the F-measure value computed as

2 P RF
P R
⋅ ⋅

=
+

The graphical comparison of the F-measure values for the individual classification
methods and classes is in Figure 5. We can see that all the methods are able to identify
most visual areas that belong to the h1, h2, paragraph and perex classes. Such visual
areas are contained in most of the annotated documents and they usually have some

134

 354 R. Burget and I. Burgetová

specific visual features that make them easy to recognise. On the other hand, some
methods fail for the remaining classes such as author or date. These visual areas are often
not contained in the documents and the way of their presentation is very variable. The
subtitle class is used in very few web sources and therefore, it is rarely identified
correctly. SVM classifier gives stable results for all the classes, the J48 and BayesNet
classifier work for most classes too.

Figure 5 Comparison of the F-measures of the algorithms for individual classes
(optimistic variant)

The results for the pessimistic variant are quite different. In this case, the visual
properties of the individual area classes are much more different than in the optimistic
case. The obtained values are shown in Table 4 and the graphical comparison in Figure 6.
In this situation, only the BayesNet classifier was able to identify at least some visual
areas from all the classes; other methods fail mainly for the classes with more variable
presentation.

Figure 6 Comparison of the F-measures of the algorithms for individual classes
(pessimistic variant)

The results show that none of the classification methods can be considered to be the most
suitable one for the classification of visual areas. However, SVM gives reliable results in
situations where the content is presented in a consistent manner. On the other hand,
BayesNet classifier is usable even when the content presentation style varies
significantly.

For these reasons, we have selected both the SVM and the BayesNet classifiers for
running more tests that simulate the expected use cases of the proposed method.

135

 Automatic annotation of online articles based on visual feature classification 355

Table 4 Obtained precision, recall and F-measure values of the classification algorithms for
the individual classes

J48 BayesNet
Class

P R F P R F
none 0.991 0.967 0.979 0.996 0.960 0.978
h1 0.714 0.625 0.667 0.341 0.938 0.500
h2 0.079 0.176 0.109 0.429 0.529 0.474
subtitle 0.000 0.000 0.000 0.095 0.500 0.160
perex 0.000 0.000 0.000 0.250 0.813 0.382
paragraph 0.487 0.736 0.586 0.375 0.757 0.501
author 0.000 0.000 0.000 0.063 0.300 0.103
date 0.000 0.000 0.000 0.043 1.000 0.083
authordate 0.000 0.000 0.000 0.000 0.000 0.000

Perceptron SVM
P R F P R F

none 0.977 0.998 0.987 0.978 0.994 0.986
h1 0.308 0.500 0.381 0.333 0.125 0.182
h2 0.875 0.412 0.560 0.333 0.059 0.100
subtitle 0.000 0.000 0.000 0.000 0.000 0.000
perex 0.000 0.000 0.000 0.333 0.188 0.240
paragraph 0.810 0.115 0.201 0.537 0.196 0.287
author 0.000 0.000 0.000 0.000 0.000 0.000
date 0.000 0.000 0.000 0.000 0.000 0.000
authordate 0.000 0.000 0.000 0.000 0.000 0.000

Note: The training and testing dataset are coming from different sources (pessimistic variant).

6.3 Results for expected use cases

The aim of the following experiment was to test the method behaviour for two typical use
cases of our proposed method of automatic article annotation:

1 The training documents come from the same source as the later annotated
documents. In this case, the method is used for identifying the articles or parts of
articles coming from a single, previously known source.

2 There is a fixed set of training documents obtained from larger number of sources
and the documents being automatically annotated come from other, previously
unknown source or sources. This can be the case of sources where no training
examples are available in advance.

We consider the first case to be more probable in practical application since the article
sources are usually known in advance. However, the second case may occur too; for
example when the data sources may be dynamically added by users or when using the
method for processing ad hoc documents found on the web.

136

 356 R. Burget and I. Burgetová

The main difference from the experiments previously discussed in Section 6.2 is that
we have tested more combinations of sources for creating the training and testing sets in
order to eliminate possible specific features of the individual web sources.

In the first case, only a single source is considered. Therefore, we had to increase the
number of annotated documents. We have annotated 20 documents coming from the
same source and we have used 6 documents for creating the training set and the rest of
the documents for testing. We have repeated this for four different sources. Table 5
shows the average results for the individual classes.
Table 5 Achieved results for the training documents coming from the same source as the later

annotated documents

BayesNet SVM
Class

P R F P R F
none 0.999 0.917 0.957 1.000 0.999 0.999
h1 1.000 1.000 1.000 1.000 1.000 1.000
h2 0.727 1.000 0.842 1.000 1.000 1.000
subtitle 0.500 1.000 0.667 1.000 1.000 1.000
perex 0.286 1.000 0.444 0.800 1.000 0.889
paragraph 0.381 0.971 0.547 0.986 0.986 0.986
author 0.273 1.000 0.429 0.750 1.000 0.857
date 0.200 0.750 0.316 1.000 0.500 0.667
authordate 0.571 1.000 0.727 1.000 1.000 1.000

Since all the documents from a single source usually maintain a consistent style of
presentation, we can see that both methods give very reliable results. In this case the
SVM classifier gives better results that the BayesNet classifier.

For simulating the second use case, we have used the annotated documents from one
source as a testing set and the documents from the remaining sources as the training set.
Again, we have repeated the test for four different combinations of sources. The results
are shown in Table 6.
Table 6 Achieved results for documents coming from other, previously unknown source

BayesNet SVM
Class

P R F P R F
none 0.998 0.879 0.934 0.971 0.998 0.984
h1 1.000 0.750 0.857 0.667 0.500 0.571
h2 0.833 0556 0.667 0.800 0.444 0.571
subtitle 0.254 0.928 0.399 0.000 0.000 0.000
perex 0.400 1.000 0.571 0.136 0.300 0.187
paragraph 0.247 0.899 0.388 0.972 0.507 0.667
author 0.250 0.667 0.364 0.000 0.000 0.000
date 0.500 0.333 0.400 0.000 0.000 0.000
authordate 0.125 0.167 0.143 0.000 0.000 0.000

In this case, the BayesNet method gives more reliable results. Generally, the results are
acceptable for more common classes such as headings and paragraphs. The values for

137

 Automatic annotation of online articles based on visual feature classification 357

less frequent and differently presented classes such as author and date are quite low for
the reasons mentioned above. The results in both cases overcome our previous results
published in Burget and Rudolfová (2009) where we have used a lower number of visual
features for the visual area classification.

6.4 Comparison with other approaches

In order to compare our results with the results published in Song et al. (2004), we have
followed the same scenario as described in the paper. With all the annotated data, we
have conducted a five-fold cross validation using the SVM classification method.

Table 7 shows the results of the cross validation for our dataset. In Song et al. (2004),
the classes are defined in a more general way according to the relevance of the given
content block to the article: Actual parts of the article are marked with Level 4, other
areas of the page relevant to the document topic or useful for the user are marked with
Level 3 and Level 2 and the remaining parts (noisy information) are marked with Level 1.
For the classification, the levels 2 and 3 are regarded as a single class. Since in our
dataset, we have only annotated the parts of the article itself, all our classes different from
none correspond to Level 4 and the none class corresponds basically to the levels 1 to 3.
We have mapped the classes as described. The comparisons of the obtained results with
the results of Song et al. (2004) are in the Table 8.
Table 7 Results of the five-fold cross validation for our method by classes

Class P R F
none 0.995 0.997 0.996
h1 0.795 0.861 0.827
h2 0.767 0.836 0.800
subtitle 1.000 0.417 0.588
perex 0.826 0.731 0.776
paragraph 0.912 0.907 0.910
author 0.706 0.414 0.522
date 0.778 0.667 0.718
authordate 0.750 0.882 0.811

We can see that the results for the Level 4 class are comparable or slightly better for our
method. The results for the remaining classes are more difficult to compare because our
none class does not directly correspond to a single class in the reference paper. However,
the results demonstrate that the visual features of the document content can be used for
automatic content annotation with a sufficient precision.
Table 8 Comparison of the five-fold cross validation results

Our method Song et al. (2004)
Class

P R F P R F
Level 1 0.995 0.997 0.996 0.763 0.776 0.769
Level 2 0.796 0.804 0.800
Level 4 0.917 0.873 0.895 0.839 0.770 0.803

138

 358 R. Burget and I. Burgetová

7 Applications and possible improvements

The proposed method is suitable for pre-processing the documents before their further
automatic indexing, classification or other processing by a computer. It can be used for
cleaning the document from the noisy information or for supplying the further processing
tools with an additional information about the individual parts of the document structure.

The results show that our approach is able to automatically annotate visual areas in a
page with quite a high precision at least when applied to a single source of documents. In
that case, it is able to correctly annotate most of the repeating parts of the articles.

When used on new, previously unknown sources, the method can be used for
detecting the most common parts of the article such as headings. For certain applications
such as the page preprocessing for data mining mentioned in the introduction, the
obtained precision and recall of the classification seems to be satisfactory. This precision
allows to determine most of the visual areas that belong to the article and to detect the
approximate bounds of the main article on the page.

In order to determine the bounds of articles in previously unknown documents more
precisely, the method could be extended by using a kind of heuristics that would
represent some commonly used habits in the article publication on the web. For example,
in Burget (2009), we have proposed and tested some heuristics concerning the layout of
the text placed below a header.

Since only visual attributes of the contents are used, the presented approach is
independent on the document language. Regarding the properties of the text contents of
the document, our approach is only based on some statistical properties of the text. As the
next step, the visual features could be combined with the traditional text classification
methods by analysing for example the term frequencies in the individual visual areas.
However, this would introduce the dependency on a particular language.

8 Conclusions

In this paper, we have introduced a method of interesting area detection in the web pages.
We have proposed a method of page segmentation tailored especially for this purpose in
order to detect the basic visual blocks in the page that have a consistent visual style.
Further, we have proposed the way of the detected block classification based on a set of
their visual features. Finally, we have tested the proposed method on real-world data.

According to the results of the experiments, the method is suitable for an approximate
detection of a published article in the web page. In case of using only one, previously
known source of documents, the obtained precision allows a reliable identification of
article elements in the page.

In comparison to the methods based on document code (DOM) analysis, our approach
allows extracting more different visual features of the document contents, especially
regarding the spatial and colour features. As shown by the experimental results, this
allows achieving an interesting precision while preserving independence on the document
language. However, both the visual features and the DOM model can be arbitrarily
combined. The combination of the visual features with the information obtained from the
DOM model seems to be a promising way for improving the quality of the page
segmentation and the classification itself.

139

 Automatic annotation of online articles based on visual feature classification 359

Acknowledgements

This work was partially supported by the BUT FIT grant FIT-S-10-2 and the research
plan MSM0021630528.

References
Baumgartner, R., Flesca, S. and Gottlob, G. (2001) ‘Visual web information extraction with lixto’,

VLDB ‘01: Proceedings of the 27th International Conference on very Large Data Bases,
Morgan Kaufmann Publishers Inc., pp.119–128.

Bos, B., Lie, H.W., Lilley, C. and Jacobs, I. (1998) ‘Cascading style sheets, level 2’, CSS2
Specification: The World Wide Web Consortium.

Burget, R. and Rudolfová, I. (2009) ‘Web page element classification based on visual features’,
IEEE Computer Society, 1st Asian Conference on Intelligent Information and Database
Systems ACIIDS 2009, pp.67–72.

Burget, R. (2004) ‘Hierarchies in HTML documents: linking text to concepts’, IEEE Computer
Society, 15th International Workshop on Database and Expert Systems Applications,
pp.186–190.

Burget, R. (2007) ‘Layout based information extraction from HTML documents’, IEEE Computer
Society, ICDAR 2007, pp.624–629.

Burget, R. (2009) ‘Automatic web document restructuring based on visual information analysis’,
Proceedings of the 6th Atlantic Web Intelligence Conference – AWIC’2009, Vol. 10, Springer
Verlag.

Cai, D., Yu, S., Wen, J-R. and Ma, W-Y. (2003) ‘VIPS: a vision-based page segmentation
algorithm’, Microsoft Research.

Caldwell, B., Cooper, M., Reid, L.G. and Vanderheiden, G. (2008) ‘Web content accessibility
guidelines 2.0’, The World Wide Web Consortium.

Chakrabarti, D., Kumar, R. and Punera, K. (2008) ‘A graph-theoretic approach to webpage
segmentation’, 17th International World Wide Web Conference.

Cohen, W.W., Hurst, M. and Jensen, L.S., (2002) ‘A flexible learning system for wrapping tables
and lists in html documents’, ACM, WWW ‘02: Proceedings of the 11th international
conference on World Wide Web, pp.232–241.

Freitag, D. (1997) ‘Using grammatical inference to improve precision in information extraction’,
ICML-97Workshop on Automata Induction, Grammatical Inference, and Language
Acquisition.

Gupta, S., Kaiser, G., Neistadt, D. and Grimm, P. (2003) ‘DOM-based content extraction of HTML
documents’, WWW2003 proceedings of the 12 Web Conference, pp.207–214.

Kosala, R., Bussche, J.V.D., Bruynooghe, M. and Blockeel, H. (2002) ‘Information extraction in
structured documents using tree automata induction’, PKDD ‘02: Proceedings of the 6th
European Conference on Principles of Data Mining and Knowledge Discovery, pp.299–310,
Springer-Verlag.

Kovacevic, M., Diligenti, M., Gori, M. and Milutinovic, V. (2002) ‘Recognition of common areas
in a web page using visual information: a possible application in a page classification’, IEEE
Computer Society, ICDM ‘02, p.250.

Kushmerick, N. (1997) Wrapper induction for information extraction’, PhD thesis.
Kushmerick, N. (2000) Wrapper Verification: World Wide Web, Vol. 3, No. 2, pp.79–94.
Lin, S-H. and Ho, J-M. (2002) ‘Discovering informative content blocks from web documents’,

ACM, KDD ‘02: Proceedings of the Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp.588–593.

140

 360 R. Burget and I. Burgetová

Liu, L., Pu, C. and Han, W. (2001) ‘An XML-enabled data extraction toolkit for web sources’, Inf.
Syst., Vol. 26, No. 8, pp.563–583.

Mukherjee, S., Yang, G., Tan, W. and Ramakrishnan, I., (2003) ‘Automatic discovery of semantic
structures in HTML documents’, IEEE Computer Society, International Conference on
Document Analysis and Recognition.

Quinlan, J.R. (1993) C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA.

Song, R., Liu, H., Wen, J-R. and Ma, W-Y. (2004) ‘Learning block importance models for web
pages’, ACM, WWW ‘04: Proceedings of the 13th international conference on World Wide
Web, pp.203–211.

Yi, L., Liu, B. and Li, X. (2003) ‘Eliminating noisy information in web pages for data mining’,
ACM, Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining.

Yu, S., Cai, D., Wen, J-R. and Ma, W-Y. (2002) ‘Improving pseudo-relevance feedback in web
information retrieval using web page segmentation’, Microsoft Research.

141

142

B.3 Modelling Visually Presented Element Relationships in
Web Documents

Burget, R.; Smrz, P.: Extracting Visually Presented Element Relationships from Web
Documents. International Journal of Cognitive Informatics and Natural Intelligence. vol. 7,
no. 2. April 2013: pp. 13–29. ISSN 1557-3958.

143

144

International Journal of Cognitive Informatics and Natural Intelligence, 7(2), 13-29, April-June 2013 13

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

ABSTRACT
Many documents in the World Wide Web present structured information that consists of multiple pieces of data
with certain relationships among them. Although it is usually not difficult to identify the individual data values
in the document text, their relationships are often not explicitly described in the document content. They are
expressed by visual presentation of the document content that is expected to be interpreted by a human reader.
In this paper, the authors propose a formal generic model of logical relationships in a document based on an
interpretation of visual presentation patterns in the documents. The model describes the visually expressed
relationships between individual parts of the contents independently of the document format and the particu-
lar way of presentation. Therefore, it can be used as an appropriate document model in many information
retrieval or extraction applications. The authors formally define the model, the authors introduce a method
of extracting the relationships between the content parts based on the visual presentation analysis and the
authors discuss the expected applications. The authors also present a new dataset consisting of programmes
of conferences and other scientific events and the authors discuss its suitability for the task in hand. Finally,
the authors use the dataset to evaluate results of the implemented system.

Extracting Visually Presented
Element Relationships
from Web Documents

Radek Burget, Faculty of Information Technology, IT4Innovations Centre of Excellence, Brno
University of Technology, Brno, Czech Republic

Pavel Smrz, Faculty of Information Technology, IT4Innovations Centre of Excellence, Brno
University of Technology, Brno, Czech Republic

Keywords: Document Analysis, Element Relationships, Logical Document Structure, Page Segmentation,
Web Documents

INTRODUCTION

The World Wide Web is traditionally viewed as a
web of linked documents. A great research effort
has been put to the analysis and modeling of the
relationships among the individual documents
(Page et al., 1999) or even analyzing semantic
document relationships in order to obtain more
information about the web organization (Luo
et al., 2009; Luo et al., 2011). From this point

of view, the documents are usually regarded
as atomic units with certain properties such
as the individual keyword frequencies. On the
other hand, a remarkably less effort has been
devoted to modeling the information structure
in the documents themselves.

The WWW documents often present
structured information that consists of multiple
pieces of data of different kinds together with
certain relationships among them. A typical

DOI: 10.4018/ijcini.2013040102

145

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

14 International Journal of Cognitive Informatics and Natural Intelligence, 7(2), 13-29, April-June 2013

example may be a conference programme that
consists of speech titles, times, places and author
names. However, the relationships are often not
explicitly described in the document content.
They are expressed by different, mostly visual
means and the human reader is expected to
interpret the visual presentation of the content
appropriately in order to assign for example the
appropriate author and time to a speech title.

Existing approaches to structured informa-
tion identification in web documents are usually
based on an analysis of a larger set of documents
that follow the same presentation guidelines.
Then, based on a set of sample documents, we
may infer a set of rules that may be later ap-
plied to other documents that follow the same
guidelines. However, this does not solve a very
frequent situation when we have a set of docu-
ments where each one comes from a different
author and follows a different presentation style.

Let’s consider two conference programmes
presented in Figure 1. Both documents provide
information about conference sessions, starting
times, and the titles and authors of the individual
presentations. However, this information is pre-
sented differently regarding the content layout,
order of the individual data fields, colors and
other properties and only a single exemplar of
each such document is available. Moreover,
the document formats may be different (for
example, the HTML or PDF documents may
be used).

Despite of the different formats, for a hu-
man reader, the presented relationships between
the content elements remain the same and they
correspond to the structure shown in Figure 2.

In this example, both documents assign some
times and sessions to the individual speech titles
and authors. These relationships are presented
visually by different font properties, indenta-
tion and other means that allow the reader to
interpret the relationships without reading the
text or even without understanding the used
language. We may expect that these logical
relationships are similar in all the conference
programmes independently on how they are
actually presented. Generally, we may expect
that the documents presenting data of the same
topic will share the same logical relationships
between the individual content elements al-
though presented in different ways. To give
more examples: Published articles present the
relationships between their title, authors, date of
publication or even the sections and subsections.
Timetables represent the relationships between
the lines, places and times, etc.

In this paper, we propose a hierarchical logi-
cal relationship model that explicitly models the
intra-document logical relationships that may be
obtained by interpreting the visual presentation
of the contents. This model has applications in
information extraction, retrieval and other areas.
Moreover, we address the problem of the auto-
matic discovery of the logical relationships in a
document. We analyze the visual presentation
and content features that can be examined in
order to obtain the logical relationship model.
Lastly, we evaluate the proposed approach on
real-world documents and we show that it can
give comparable results for different document
from various sources.

Figure 1. Different presentation styles of conference programmes

146

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Cognitive Informatics and Natural Intelligence, 7(2), 13-29, April-June 2013 15

RELATED WORK

In the area of information extraction from web
documents, several authors already noted that
the hierarchical relationships among the content
blocks may be used for refining the identification
of the particular information blocks in docu-
ments (Burget, 2004; You et al., 2013). However,
in these methods, the content hierarchy is usually
constructed based on some heuristics during
the information extraction process and there
is no explicit model defined for representing
the intra-document relationships. Therefore,
in this paper, we aim to create an application-
independent model of the logical relationship
constructed using a clearly defined algorithm.

The problem of the relationship represen-
tation and discovery in documents is closely
related to the areas of document layout analysis
and logical structure discovery. However, unlike
our proposed logical relationship model, the
logical structure discovery is usually domain-
oriented as explained further.

Logical structure of electronic documents
has been studied by many authors for quite a
long time. It is usually defined as a hierarchy of
page segments that correspond to some visually
distinguished components of its contents (Klink
et al., 2000; Namboodiri & Jain, 2007; Shreve,
2006; Summers, 1995; Yashiro et al., 1989). The
logical structure should be distinguished from
the layout structure: the layout (or geometric)
structure models the relationships between the
document segments based on their visual presen-
tation; the logical structure focuses on logical
relationships that are given by the expected
meaning of the document segments (Klink et

al., 2000; Yashiro et al., 1989). The resulting
logical structure is commonly represented us-
ing hierarchical structures (trees) (Klink et al.,
2000; Summers, 1995) or grammars (Yashiro
et al., 1989).

Discovering the logical structure usually
includes assigning a meaning to the individual
discovered components. The assigned meaning
may be either a generic document section such
as title, heading, footnote, list, etc. (Klink et
al., 2000; Shreve, 2006) or a domain-specific
meaning when focusing on a specific applica-
tion (Nojoumian & Lethbridge, 2007; Rauf et
al., 2011). Some authors even limit the logical
structure discovery to the discovery of important
parts of the document without explicitly model-
ing their relationships; for example in Luong
et al. (2010), important parts of scholar articles
are identified, which may be rather viewed as
a classification task.

The discovery of the logical structure is
usually based on an analysis of the page layout
together with different visual features of the
content. Shreve (2006) notes that the logical
structure reflects cultural norms of document
organization and the logical relationships of
document elements, and that the relationships
of logical structure to physical layout are also
culturally determined. Stoffel and Spretke (Stof-
fel et al., 2010) use the positions of the text lines,
their indentation, spacing and font style for the
logical document structure discovery. Similarly,
in Klink et al. (2000) and Namboodiri and Jain
(2007), the document layout is analyzed in or-
der to obtain the logical structure. In our older
paper (Burget, 2004), we have also proposed a

Figure 2. Expected logical structure of a conference programme

147

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

16 International Journal of Cognitive Informatics and Natural Intelligence, 7(2), 13-29, April-June 2013

rule-based approach to HTML document code
analysis for obtaining the logical structure.

Basically, the approach shared by all the
mentioned approaches consists of three steps
that are often analyzed together:

1. Obtaining the physical layout of the content
by applying a kind of page segmentation
or layout analysis algorithm.

2. Transforming the layout to structure based
on pre-defined or learned rules (common
document structure recognition in Klink
et al. (2000)).

3. Interpretation of selected segments by as-
signing a meaning to them based on given
rules (domain dependent labeling (Klink et
al., 2000)) or classification (Luong et al.,
2010).

In our paper, we focus on the second step,
i.e. creating a domain-independent document
model that reflects the content presentation
and interprets the cultural norms of the pre-
sentation as mentioned above. However, the
domain knowledge is often necessary for a
correct interpretation the logical relationships
between the presented elements (Namboodiri
& Jain, 2007). Therefore, in section “LRM
Refinement by Adding Domain Knowledge”,
we also propose a way of incorporating domain
knowledge for improving the obtained logical
structure.

On the other hand, unlike most of the
mentioned methods, we don’t claim to assign a
meaning to the individual parts of the obtained
structure (the third step listed above). We con-
sider this to be one of the possible applications
of the proposed model, as we mention in section
“Logical Relationship Model in Applications”.

LOGICAL RELATIONSHIP
MODEL

When modeling the document structure, two
kinds of models are usually distinguished
(Klink et al., 2000; Yashiro et al., 1989): The
layout structure (also called a physical model)

describes the division of the document content
to information blocks laid out on a page or
pages. Generally, it is a hierarchical model that
describes the basic blocks created for example
by page headers, columns and other visually
identifiable blocks in the documents. These
blocks may be further divided to smaller sub-
blocks. This model is domain-independent and
it is created based on the page organization
analysis.

On the other hand, the logical structure
is domain-dependent: it assigns a meaning to
selected parts of the document content and it
represents the logical relationships between
them as for example the hierarchical relation-
ships between the semantic components such
as headings, sub-headings and paragraphs in a
document (Summers, 1995).

The purpose of the proposed Logical
Relationship Model (LRM) is to provide a
formally defined intermediate step between
the layout structure and the logical structure.
We claim that the interpretation of the visually
presented relationships in the document should
be separated from assigning the meaning to the
individual parts of the document.

The LRM represents the logical relation-
ships between the individual parts of the docu-
ment content as they are expressed by visual
means and as they are interpreted by a human
reader. In the same time, it remains domain-
independent although the domain knowledge
may be used additionally for refining the model
as proposed in section “LRM Refinement by
Adding Domain Knowledge”. Then the LRM
may be used as a general model of the document
suitable for different applications.

The Layout and Logical
Relationship Model

For defining the LRM, we will use the layout
(physical) model of the document as defined
by many authors, e.g. (Klink et al., 2000). Both
the layout model and the LRM represent the
relationships between content elements. With
a content element we understand the smallest
identifiable piece of the document content

148

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Cognitive Informatics and Natural Intelligence, 7(2), 13-29, April-June 2013 17

(usually text) that can be viewed as an atomic
unit. For our purpose, we will define the content
element as follows:

Definition 1 (Content Element): Each dis-
played line of the text is considered to be
a content element as long as it is visually
consistent. For the text lines that consist of
multiple parts with different visual proper-
ties, we consider the individual visually
consistent parts to be separate content
elements.

The difference between the layout model
and the LRM is illustrated in Figure 3. Both trees
correspond to the first conference programme
displayed in Figure 1. The left tree shows the
layout model. The whole page is split to several
areas: a header (Area 1) and several items of
the conference programme (Area 2, Area 3,
etc.) visually separated by whitespace or other
delimiters. The child nodes of each area cor-
respond to the content elements or other areas
that are placed inside the given area on the
page. Further, we will call the detected visually
separated areas the content blocks. As we can
see from the example, the content blocks may
be nested. The content elements then form the
leaf nodes of the layout structure tree.

Definition 2 (Content Block): A content block
is a visually separated rectangular area in
the page detected by the page segmentation
algorithm. A content block may contain
either other detected content blocks or
directly the content elements placed inside
of the given rectangular area of the page.
Therefore, we may speak about a hierarchy
of content blocks in the page.

The right tree shows the LRM. It consists
of the same nodes representing the content
blocks and elements. However, the parent – child
relationships between the nodes correspond to
their visually presented logical relationships.
More specifically, the parent – child relation-
ship in the LRM means that the child node is
visually presented to be logically subordinate
to the parent node.

Definition 3 (Logical Subordination): Let b
1

and b

2
 be two content blocks detected in

the page. We say that b
2
 is logically sub-

ordinate to b
1

 if the content of b
2
 elaborates

or concertizes the content of b
1

.

The most common examples of logical
subordination relationships in documents are
for example title – subtitle – paragraph, term

Figure 3. The layout and the logical structure of a conference programme

149

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

18 International Journal of Cognitive Informatics and Natural Intelligence, 7(2), 13-29, April-June 2013

– definition, label – value, etc. In our example
LRM in Figure 3, Area 1 is visually interpreted
as the heading of the programme. Therefore,
all the programme items are represented as
child nodes of Area 1 in the tree. Similarly, in
each item of the programme (Area 2 and Area
3), the time is used as a label introducing all
the remaining information. We say that Area 2
and Area 3 are logically subordinate to Area
1. Similarly, in Area 3, we can see a deeper
structure because two more content elements
are present that may be interpreted as sub-labels:
the session title and subtitle.

The layout structure is generally obtained
as a product of page segmentation. The pur-
pose of the segmentation is to detect the visu-
ally separated content blocks in the page and
represent their nesting. The LRM is given by
the expected reader’s interpretation of the in-
dividual content elements. In our approach, the
logical subordination relationships mentioned
above are obtained from the analysis of the vi-
sual presentation only. That means, we analyze
whether the content blocks are presented to be
logically subordinate and we do not analyze
their exact semantics. From this point of view,
the LRM remains domain-independent.

The details of the visual presentation
analysis are provided in section “Overview of
the Visual Analysis Approach”. Further, we also
provide the exact definitions of the processed
layout model and the resulting LRM.

Expected Applications of the LRM

Creating a domain-independent formal model
of the visually presented relationships in the
document is motivated by the necessity of pro-
cessing large sets of heterogeneous documents
mainly for the following tasks:

• Logical Structure Detection: The visually
presented relationships are essential for
identifying the internal structure of docu-
ments that means the headings, sub-head-
ings, labels, etc. The generic model of these
relationships may provide the information
necessary for both the rule-based (Klink et

al., 2000) and the machine learning-based
(Luong et al., 2010) methods.

• Information Extraction: Explicitly de-
scribed relationships in the document using
LRM are suitable for extracting mainly
structured data records. Then, it is possible
to match the expected record structure
with the structure presented in the page
and to identify the content elements that
correspond to the individual record fields
as proposed for example in (Burget, 2004).

• Information Retrieval. The LRM may
be also used for weighting the individual
parts of the document during their index-
ing and retrieval. This may improve the
retrieval results as shown for example in
(Yu et al., 2002).

We provide more details about the expected
use of the LRM in the mentioned applications
in the final part of this article.

OVERVIEW OF THE VISUAL
ANALYSIS APPROACH

A general overview of our approach is shown
in Figure 4. First, the layout structure is ob-
tained using a page segmentation algorithm
and represented as a hierarchical layout tree.
We provide the details of this process in the
following section. Subsequently, this tree is
further processed in several steps in order to
build the LRM.

First, we assume that the logical rela-
tionships between the content elements are
presented to the reader using some commonly
used visual means that the reader is expected to
interpret properly. These visual means include
for example using different font sizes, colors
or indentation. We use the visual features of the
contents for assigning different weights to the
individual content elements and we construct
a basic logical tree based in these weights. The
details of this process are provided further in
this article.

Regarding the processed document for-
mats, we consider HTML documents including

150

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Cognitive Informatics and Natural Intelligence, 7(2), 13-29, April-June 2013 19

the style information expressed by Cascading
Style Sheets and PDF documents that are also
frequently used on the web. These formats are
supported by our implementation of the pro-
posed method and were used for evaluation.
However, the method is applicable to any docu-
ment format that includes the textual informa-
tion together with its visual presentation such
as various popular office document formats.

LAYOUT STRUCTURE
DISCOVERY USING PAGE
SEGMENTATION

The purpose of page segmentation is to discover
the individual content blocks in the page and
to create the layout tree. Many segmentation

algorithms have been proposed for processing
the web documents as for example VIPS (Cai
et al., 2003). For our purpose we use the seg-
mentation algorithm that we have published in
Burget and Burgetová (2011) because it is ap-
plicable to any of the above mentioned document
formats. However the further processing steps
do not depend on the actual page segmentation
method used.

The result of page segmentation is a tree
model of the document layout structure. It can
be defined as a tree:

L V E
L L

= (,) (1)

Figure 4. An overview of the LRM construction process

151

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

20 International Journal of Cognitive Informatics and Natural Intelligence, 7(2), 13-29, April-June 2013

where V
L

 is an ordered set of the tree nodes
and E

L
 is a set of edges. The nodes in V

L
 cor-

respond to the individual visual blocks de-
tected in the page or directly to the individual
content elements. E

L
 is a set of two-tuples that

represent the visual nesting:

∀ ∈ ∈ ⇔v v V v v

v v
i j L i j

i

, : (,) E
L

j
 is directly nested in

 (2)

This definition corresponds to Figure 3 (a)
where the nodes correspond to the content ele-
ments (in case of leaf nodes) or content blocks
(the remaining nodes). In case of more complex
page layout, the tree depth is typically higher.

The segmentation usually defines an or-
dering of the tree nodes. For our segmentation
algorithm, the node order corresponds to the
order in which the individual content elements
appear in the HTML or PDF code of the analyzed
document (so called document order):

∀ ∈ <
⇔
v v V

v v
i j L

i j

, : v

v
i

j
 precedes in the document code

(3)

Based on this order, we can define the
order of the child nodes of every non-leaf node
from E

L
.

CONSTRUCTION
OF THE LOGICAL
RELATIONSHIP MODEL

The aim of the document authors is to make the
logical structure apparent to the reader. There-
fore, we analyze the common visual means used
for presenting the logical relationships between
the content elements and subsequently, we use
the results of this analysis for constructing the
LRM.

Presentation of the Logical
Structure in Documents

Logical structure of a document is presented to
the reader according to existing cultural norms
of document organization (Shreve, 2006). These
norms represent the usual way of presenting
the individual parts of the contents and their
inter-relationships. For obtaining the basic
awareness of the document structure, the fol-
lowing attributes of the content are important
to a human reader:

• Visual Properties of the Text: The used
font size, boldness, underlining or colors
are often used for expressing the impor-
tance and even purpose of the individual
content elements. For example, headings
are usually clearly recognizable by their
font size; often, there are even several
levels of the headings distinguished in the
document. Similarly, using a bold typeface
or a different color indicates the importance
of the element.

• Content Layout: Very often, the logical
relationships between the content elements
are indicated by the mutual positions of
the elements. The most frequent means
used in this category include indentation
that is commonly used for presenting the
elements subordinate to another element
or columns that group the related parts of
the content together. Tables can be also
viewed as a special case of the content
layout with a defined meaning given by
the relationships between the table header
and the subordinate table cells.

In order to interpret the visual and layout
properties, we assign weights to the individual
nodes of the layout model as described in the
following section. As the next step, the LRM
is constructed based on these weights.

152

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Cognitive Informatics and Natural Intelligence, 7(2), 13-29, April-June 2013 21

Assigning Weights to
Layout Model Nodes

The visual and layout properties mentioned in
the previous section allow the user to distinguish
the level of logical superiority or subordination
of the individual content blocks and elements.
We express this level by assigning a weight to
every node of the layout model defined in (1).
A greater weight means that the corresponding
content element appears to be more important in
the document. For example, the main heading
of a document should have the greatest weight,
the sub-headings or smaller labels should have
lower weights and plain document text that can-
not be interpreted as a heading or label should
have the lowest weight.

The weight is computed based on various
visual properties of the text and the layout.
Based on an analysis of real documents avail-
able on the web such as newspaper articles,
conference programmes, timetables or even
menus of the day, we have manually chosen a
set of properties that are commonly used for
indicating the logical superiority of the text.
For each content element v V

c L
∈ (i.e. the leaf

node of the layout tree), we compute the values
of these properties. Similarly, for each non-leaf
node (a content block) v V

n L
∈ , the value of

the same property is computed as an average
of the property values of its child nodes.

For any layout node v V
L

∈ , we compute
the values of the following properties:

• Font Size: Font size fsize(v) is computed
as a value relative to the average font size
of the whole document. That means, for the
visual nodes with greater font size than the
average the resulting value is fsize(v) > 1;
for example, fsize(v) = 2.0 means that the
font used in v is twice as large as the aver-
age font size of the document. Similarly,
fsize(v) < 1 means that the font size in v is
smaller than the document average.

• Font Boldness: The font boldness fbold(v)
is equal to 1 for the nodes that use bold font
only, fbold(v) = 0 means that the node does
not contain any bold text.

• Colors: During the analysis, we find all the
text colors used in the document and for
each used color, we compute the percentage
of the text of the given color in the whole
text content. The value cperc(v) = 1 means
that the whole document content uses the
same color as the node v. Small values of
cperc(v) mean that the color is quite rare in
the document and therefore, it may indicate
greater importance of v. During the color
analysis, we apply a quantization to the
color channels (we use four bits per red,
green and blue channel) so that very similar
colors are considered as a single color.

• Indentation: The subordinate content ele-
ments are often indicated by their indenta-
tion. For each content block, we consider
up to four levels of indentation based on
the comparison of the mutual positions its
child elements. The level 0 (not indented)
child elements obtain indent(v) = 1, the ele-
ments indented by one step obtain indent(v)
= 0.75, etc. Finally the elements indented
by more than four steps obtain indent(v)=0.

• Centering: We detect the child elements
that are horizontally centered within their
parent block by analyzing their position
within the parent block and by comparing
it with the positions of the preceding and
following siblings. Centered elements
have center(v) = 1, the remaining elements
have center(v) = 0. When the element is
centered, its indentation is not analyzed and
we automatically consider indent(v) = 1.

Each of the above mentioned visual proper-
ties has different importance for computing the
resulting weight. For example, the font size is
the most important: a text written in larger font
size is always interpreted to be superior to the
text of a smaller font size. The relationships
between the elements of the same size can be
further distinguished by indentation etc.

In order to determine the actual importance of
the individual properties computed above,
we have analyzed a large set of web docu-
ments from the areas mentioned above and

153

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

22 International Journal of Cognitive Informatics and Natural Intelligence, 7(2), 13-29, April-June 2013

we have manually investigated how the
content structure is presented i.e. what are
the influences of the computed visual
feature values (such as the font size, color,
etc.) to the expected resulting weight of
the layout nodes. As a result, we have
obtained the following formula for comput-
ing the weight of a layout node v V

L
∈ :

weight(v) = 1000.0 ⋅ fsize(v) + 2.0 ⋅ fbold(v)
+ 0.5 ⋅ (1 − cperc(v))
+ 5.0 ⋅ indent(v) + center(v) (4)

This formula puts weights to the individual
computed features according to their observed
importance. The weight on font size is very
high because a very small change in the rela-
tive font size has a great impact to the weight
of the node. For example, with a 12pt average
font size, 18pt text (i.e. fsize = 1.5) is usually
the most important header that is recognizable
independently on its remaining features.

The resulting formula and the chosen set
of analyzed presentation features reflect the
presentation styles common in western tradition.
As we show later in the evaluation section, it is
generally applicable to a wide set of documents.

Logical Relationship
Model Construction

The definition of the logical structure is similar
to the definition of the layout structure (1). It
is also defined as a tree:

S V E
s s

= (,) (5)

Where V
S

 is a set of tree nodes; V V
S L
=

as defined in (1). E
S

 is a set of tree edges that
represent the logical relationships between the
tree nodes. It is constructed using algorithm
6.3.

This algorithm recursively goes through
the layout tree L . The functions firstChild(),
nextChild() and parent() are used for obtaining

the child and parent nodes in L . For each node
v V
n L
∈ , we compare the weights of its child

nodes and we try to find the most appropriate
parent node for each child node. Then, we add
the appropriate two-tuples (,)v v

i j
 to the result-

ing set E
S

. For each (,)v v E
i j S

∈ it must hold

that weight v weight v
i j

() ()> and we try to find
the closest parent element where this condition
is met.

As the result of this last step, we obtain a
domain-independent model of the logical rela-
tionships as they come from the interpretation
of the visual presentation of the content.

LRM REFINEMENT BY ADDING
DOMAIN KNOWLEDGE

In some cases, using additional domain knowl-
edge is necessary in order to interpret the logi-
cal relationships correctly. The most important
problem is to detect the content elements in the
layout model that form a single logical entity.
In the first conference programme shown in
Figure 1, the names and affiliations of the
authors are often presented in two lines, that
means two separate content elements accord-
ing to Definition 1 as shown in Figure 3 (a).
However, from a logical point of view, they form
a single logical element as shown in Figure 3
(b). This is particularly important for headings
that span for multiple lines and which need to
be represented as a single node in the logical
structure in order to be able to assign the child
nodes appropriately.

The basic problem here is to decide whether
two or more neighboring visual blocks form a
single information entity (e.g. a title split to
several pages) or separate entities with different
meaning (e.g. a title and author). Partially, this
problem may be solved in the page segmenta-
tion phase by merging the neighboring content
elements having the same visual style. Then,
we obtain larger, visually consistent content
blocks from the page segmentation as we have
presented in (Burget and Burgetová, 2011).
However, in some cases, the presentation style

154

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Cognitive Informatics and Natural Intelligence, 7(2), 13-29, April-June 2013 23

of two different elements may be equal and the
reader is expected to recognize the different na-
ture of the presented information which is often
domain-dependent (e.g. the personal names of
the article authors). In other words, the reader is
expected to recognize and distinguish the most
common types of information from the given
domain such as dates, times, personal names,
places, etc. In such cases, it is not sufficient to
analyze the visual presentation; an additional

knowledge about the text content itself must
be included into the LRM.

As a generic way of representing the ad-
ditional information about the text, we propose
adding tags to the individual nodes of the LRM
that represent the domain knowledge about the
content. Based on these tags, we may recognize
the groups of nodes that possibly form a single
information entity and we may refine the LRM.
The whole process then consists of two phases:

Algorithm 1. Logical relationship tree creation

155

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

24 International Journal of Cognitive Informatics and Natural Intelligence, 7(2), 13-29, April-June 2013

• Logical Tree Tagging: To each node
v V

s
∈ , a set of tags is assigned. These

tags indicate the nature of their content as
for example time, authors, locations, etc.
They are domain dependent and they are
assigned based on the analysis of the text
for example using regular expressions or
by employing a NER classifier. The tags
and the way of their assignment must be
chosen according to the application do-
main. The details for our testing domain
of conference programmes are provided
in the evaluation section. For other do-
mains, a different set of tags should be
used.

• Tree Node Merging: We go through the
tree S and for each subsequent nodes
v v V
i j S
, ∈ that share the same parent node,

we compare the tag sets assigned to these
nodes. If the intersection of the tag sets is
not empty, we replace these nodes with a
single node that contains the text content
and the child elements of the two nodes.
Similarly, a longer sequence of nodes may
be reduced to a single one.

The tagging itself may seem to be closely
related to logical structure detection or infor-
mation extraction tasks where the meaning of
some content parts is also analyzed. However,
in our approach, the tagging is only used for a
quick and approximate estimation of the ele-
ment purpose in order to refine the LRM. As
it comes from the above descriptions, only the
tags of the neighboring areas are compared and
therefore, we do not require a great tagging
accuracy across the whole model.

For example, a simple regular expression
is sufficient for tagging the speech titles in
conference programmes because its purpose is
not to discover all the speech titles accurately
but to mark the content elements that “might
look as a speech title” at first glance. For a
precise information extraction, a more thorough
analysis of the LRM must be implemented as
we discuss further in the application section.

After the refinement process, the result-
ing LRM should correspond to the reader’s

interpretation of the hierarchical logical rela-
tionships in the document.

METHOD EVALUATION

We have implemented the proposed method of
the LRM construction in Java. For the page seg-
mentation we have used our implementation of
the segmentation algorithm published in (Burget
and Burgetová, 2011). This implementation is
based on the CSSBox1 rendering engine that is
able to render both the HTML and PDF docu-
ments. The resulting tool has both the graphical
and web-based user interfaces that allow inves-
tigating the obtained layout structure visually
and the LRM and their relationship to the actual
page presentation (see Figure 5 and 6). The aim
of the evaluation is to show, that the LRM may
be used as a presentation-independent model of
documents, i.e. that the structure of the obtained
models is comparable for the documents from
the same domain independently on how the
document format and the presentation style.

As the testing domain, we have chosen the
conference programmes. We have analyzed 68
different conference programmes from different
areas (computer science, health, etc.) manu-
ally downloaded from the web. Each of the
programmes uses a different way of the visual
presentation of the given information. There
were 7 PDF documents and 61 HTML pages
in the analyzed set.2

For assigning the labels that represent
the additional domain knowledge about the
content, we have used the Stanford NER
classifier (Finkel et al., 2005) for recognizing
authors (personal names) and locations (that
are recognized but not used for evaluation). For
recognizing the content elements containing the
remaining data (date, title, etc.), we have used
regular expressions.

For the evaluation, we have expected that
each programme contains the information about
the individual speeches. We have focused on
the speech date, time, title and the names of the
authors or presenters. We have processed all
the documents with the described algorithms
in order to obtain their LRMs and we have

156

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Cognitive Informatics and Natural Intelligence, 7(2), 13-29, April-June 2013 25

manually investigated whether the expected
relationships shown in Figure 2 have been
successfully detected and represented in the
model. We have checked the following three
relationships:

• Date – Time: Typically, there are multiple
presentations or sessions taking place in
the same day and this is usually taken
into account in the presentation of the pro-
gramme. The content element containing
the date should be an ancestor node of the
element containing the time of the same
presentation. In some cases, the date is
not explicitly presented in the programme

(especially in case of one-day workshops),
i.e. this relationship does not have to be
present in the document.

• Time – Title: In the programmes the
time is usually assigned to the individual
speeches or to a whole session (one time
element shared by multiple speeches). In
both cases the content element containing
the time should be an ancestor of the ele-
ment containing the speech title.

• Names (Time – Names or Title – Names):
The content elements containing the author
names and the speech title should share the
same time ancestor element. In case the
Time – Title relationship was not properly

Figure 5. An interactive application used for evaluating the obtained logical relationship models

Figure 6. Structured record extraction using LRM and tree matching

157

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

26 International Journal of Cognitive Informatics and Natural Intelligence, 7(2), 13-29, April-June 2013

detected for some reason, it would not be
possible to evaluate this relationship. In
that case, we have checked whether the
author names can be uniquely assigned to
the correct speech in the obtained LRM,
that means there exists a parent-child
relationship between the title and authors
elements of the same speech or they both
share a unique ancestor element marked
(presentation) in Figure 2.

We expect that all the relationships are
presented consistently in a single programme.
Therefore, we have considered the LRM struc-
ture to be correct, if the relationships are present
in the LRM for at least 90% of the speeches
presented in the programme. This allows a
few speeches presented in an unexpected way
(e.g. special highlighting, etc.) The results of
the evaluation are shown in Table 1. We have
expected the Date – Time and Time – Title
relationships to be present in all 68 documents;
the date was contained in 44 documents. From
the total 180 relationships, 155 were correctly
detected that gives the overall success ratio
of 86%.

As for the incorrectly processed docu-
ments, the most common problem is a more
complex way of data presentation than expected
– typically a table with a more complicated
(two-dimensional) structure that is not analyzed
properly. In a few cases, there was an insuffi-
cient weight assigned to the time content blocks
which caused the time to be represented as a
sibling of the title and authors instead of the
ancestor. This indicates that the evaluation of the
presentational cues could be further improved.

LOGICAL RELATIONSHIP
MODEL IN APPLICATIONS

The motivation for creating the LRM was to
provide a general document model for the tasks
mentioned below. These tasks are usually solved
separately; however, from the point of the LRM
usage, they overlap significantly.

Logical Structure Detection

When discovering the logical document
structure, the task is usually to recognize the
important parts of the documents such as head-
ings, labels, publication dates or authors and to
model their relationships. Existing approaches
are based either on pre-defined rules (Klink et
al., 2000) or machine learning methods (for ex-
ample, Conditional Random Fields approach is
used in Luong et al. (2010)). In both cases, LRM
may provide an important information regarding
the visually presented relationships between
the individual content parts that is not directly
available in the document. This information may
be used for the rule construction (e.g. the author
must be subordinate to an article heading) or
for an automatic classification. This approach
may be combined with further classification of
the elements based on different criteria (such
as font properties) as proposed for example in
Burget and Burgetová (2011).

Information Extraction

Information extraction presents the most impor-
tant expected application of the LRM. With the
hierarchical LRM, the information extraction
problem may be viewed as a generalization
of the logical structure detection. While in

Table 1. Results of the relationship identification in conference programmes

Relationship Expected Discovered Ratio

Date – Time 44 35 0.80

Time – Title 68 56 0.82

Names 68 64 0.94

Total 180 155 0.86

158

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Cognitive Informatics and Natural Intelligence, 7(2), 13-29, April-June 2013 27

the logical structure detection, the task is to
identify the headings and labels, in information
extraction, the task is to identify generally any
information contained in the document such as
for example names, presentation titles, personal
data, etc. The visually expressed relationships
may provide an important cue for identifying
the pieces of data that form a single extracted
record.

Since the LRM represents an explicitly and
formally described structure of a document, it
can be used for identifying a particular informa-
tion element in a way similar to the above logical
structure detection task. When an approximate
content element tagging is applied to the LRM,
the logical relationships represented in the
LRM may be used for the disambiguation of
the meaning of the individual content elements.
For this, the tree matching methods may be used
that compare the individual LRM subtrees with
the expected structure of the information to be
extracted in order to identify complete data
records. Based on this comparison, we may
decide which relationships are (not) acceptable
in the extracted records and we may choose the
most probable candidate elements that contain
particular information.

This approach is demonstrated in Figure 6.
The left part shows the output LRM tree obtained
from a real conference programme using our
implemented tool and visualized using a web
interface. The different background colors and
the annotations show the tags that have been
assigned to the individual LRM nodes during
the refinement phase. We may note that the
tagging gives only approximate information in
this stage. For example, an erroneous speech
title (invited paper) starting with a colon has
not been detected properly. Further, it is usually
difficult to distinguish the session titles and the
speech title without some additional heuristics
or deeper natural language analysis. Therefore,
the session titles have both the title (the speech
title) and session (the session title) tags mean-
ing that the particular node may be potentially
interpreted in both ways. In addition, the same
nodes have the time tag assigned because they
also contain the time information in this case.

The right part of the figure shows the
expected data record structure. Using a tree
matching algorithm as proposed for example in
Burget (2004), we search for the best matching
subtrees in the LRM. Using the approximate
matching that allows some missing or overlap-
ping tags, we may resolve the above mentioned
duplicities and missing tags. Compared to the
previous work (Burget, 2004), LRM provides a
more generic, formalized and robust model of
the document structure while the information
extraction process remains very similar. Our
preliminary experiments with the tree matching
algorithms show that the combination of the
logical relationship model and the text analysis
including the NER tagging gives very promising
results in the extraction of structured records
from documents.

Similarly, in You et al. (2013), the discov-
ered hierarchical relationships are used as an
input for a Tree-structured Conditional Random
Fields classifier (Tang et al., 2006). Again, our
proposed LRM may be used to formalize this
approach in a similar way.

Information Retrieval

Using the LRM for information retrieval tasks
allows considering the document structure in
the document indexing and retrieval. Thus, this
task overlaps with the logical structure detection
as well. For example in Yu et al. (2002), page
segmentation is used to recognize the important
parts of the page to be indexed. With the LRM,
we may assign weights to the individual content
elements based on their position in the LRM
tree (for example based on the distance from
root node or from some recognized important
node such as main heading). This may be used
for distinguishing the relevance of the indi-
vidual parts of the document contents. During
the document retrieval, the LRM may be used
for answering structured queries (e.g. retriev-
ing documents containing certain keywords
in a particular hierarchical relationship) or for
evaluating the similarity of document structure.

159

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

28 International Journal of Cognitive Informatics and Natural Intelligence, 7(2), 13-29, April-June 2013

CONCLUSION

In this paper, we have proposed a format and
presentation-independent document model
(LRM) that represents the visually presented
relationships in the document contents. We
have also presented a method of extracting the
logical relationship model from HTML and PDF
documents based on the interpretation of their
visual presentation. The obtained model may be
further refined using a domain-dependent text
content analysis including a NER classification.

In order to evaluate the proposed LRM
construction methods and to show the general-
ity of the model, we have created a testing set
of conference programmes in various formats
and with very different presentation styles and
we have proposed evaluation criteria regarding
the discovered resulting structure. We have
also implemented an interactive tool that al-
lows investigating the obtained structure and
comparing it with the actual presentation in
the document.

The obtained results show that the method
gives comparable results for documents from
different sources that use different formats and
visual presentation. This demonstrates that the
Logical Relationships Model may be used as
a presentation-independent model for further
document processing such as logical structure
discovery, information retrieval or extraction.

Finally, we have suggested a way of using
the LRM in the most important web document
processing tasks with a focus to information
extraction based on tree matching algorithms.
Our preliminary experiments show that the ex-
plicitly modeled content element relationships
represented by the LRM may be very useful
mainly for extracting structured records from
the documents.

ACKNOWLEDGEMENT

This work was supported by the IT4Innovations
Centre of Excellence CZ.1.05/1.1.00/02.0070.
The research leading to these results has received
funding from the European Community’s 7th

Framework Programme FP7/2007-2013 under
grant agreement number 270001 – Decipher.

REFERENCES

Burget, R. (2004). Hierarchies in HTML docu-
ments: Linking text to concepts. In Proceedings of
the 15th International Workshop on Database and
Expert Systems Applications (pp. 186–190). IEEE
Computer Society.

Burget, R., & Burgetová, I. (2011). Automatic an-
notation of online articles based on visual feature
classification. International Journal of Intelligent
Information and Database System, 5(4), 338–360.
doi:10.1504/IJIIDS.2011.041322

Cai, D., Yu, S., Wen, J.-R., & Ma, W.-Y. (2003).
VIPS: A vision-based page segmentation algorithm.
Microsoft Research.

Finkel, J. R., Grenager, T., & Manning, C. (2005).
Incorporating non-local information into information
extraction systems by Gibbs sampling. In Proceed-
ings of the 43rd Annual Meeting on Association for
Computational Linguistics (ACL ’05) (pp. 363–370).

Klink, S., Dengel, A., & Kieninger, T. (2000). Docu-
ment structure analysis based on layout and textual
features. In Proc. of International Workshop on Docu-
ment Analysis Systems, Brazil (pp. 99–111). IAPR.

Luo, X., Xu, Z., Li, Q., Hu, Q., Yu, J., & Tang, X.
(2009). Generation of similarity knowledge flow for
intelligent browsing based on semantic link networks.
Concurrency and Computation, 21(16), 2018–2032.
doi:10.1002/cpe.1460

Luo, X., Xu, Z., Yu, J., & Chen, X. (2011). Building
association link network for semantic link on web
resources. Automation Science and Engineering.
IEEE Transactions on, 8(3), 482–494.

Luong, M.-T., Nguyen, T. D., & Kan, M.-Y. (2010).
Logical structure recovery in scholarly articles with
rich document features. International Journal of
Digital Library Systems, 1(4), 1–23. doi:10.4018/
jdls.2010100101

Namboodiri, A., & Jain, A. (2007). Document struc-
ture and layout analysis. In B. B. Chaudhuri (Ed.),
Digital document processing, Advances in pattern
recognition (pp. 29–48). Springer London.

Nojoumian, M., & Lethbridge, T. C. (2007). Extract-
ing document structure to facilitate a knowledge base
creation for the uml superstructure specification.
In Proceedings of the International Conference on
Information Technology (pp. 393–400).

160

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Cognitive Informatics and Natural Intelligence, 7(2), 13-29, April-June 2013 29

Page, L., Brin, S., Motwani, R., & Winograd, T.
(1999). The pagerank citation ranking: Bringing
order to the web. Technical Report 1999-66, Stan-
ford InfoLab.

Rauf, R., Antkiewicz, M., & Czarnecki, K. (2011).
Logical structure extraction from software require-
ments documents. In Proceedings of the Require-
ments Engineering Conference (RE), 2011 19th IEEE
International (pp. 101–110).

Shreve, G. M. (2006). Corpus enhancement and
computer-assisted localization and translation. In
K. J. Dunne (Ed.), Perspectives on localization (pp.
309–332). Amsterdam, Philadelphia: John Benjamins
Publishing Company.

Stoffel, A., Spretke, D., Kinnemann, H., & Keim, D.
A. (2010). Enhancing document structure analysis
using visual analytics. In Proceedings of the 2010
ACM Symposium on Applied Computing (SAC ’10)
(pp. 8–12). New York, NY: ACM.

Summers, K. (1995). Toward a taxonomy of logical
document structures. In Electronic Publishing and
the Information Superhighway: Proceedings of the
Dartmouth Institute for Advanced Graduate Studies
(pp. 124–133).

Tang, J., Hong, M., Li, J., & Liang, B. (2006). Tree-
structured conditional random fields for semantic
annotation. In Cruz, I., Decker, S., Allemang, D.,
Preist, C., Schwabe, D., Mika, P., … Aroyo, L.
(Eds.), The semantic web - ISWC 2006 (Vol. 4273
of Lecture Notes in Computer Science, pp. 640–653).
Springer Berlin Heidelberg.

Yashiro, H., Murakami, T., Shima, Y., Nakano, Y.,
& Fujisawa, H. (1989). A new method of document
structure extraction using generic layout knowledge.
In Proceedings of the International Workshop on
Industrial Applications of Machine Intelligence and
Vision, Tokyo, Japan (pp. 282–287).

You, Y., Xu, G., Cao, J., Zhang, Y., & Huang, G.
(2013). Leveraging visual features and hierarchical
dependencies for conference information extraction.
In Ishikawa, Y., Li, J., Wang, W., Zhang, R., & Zhang,
W. (Eds.), Web technologies and applications (Vol.
7808 of Lecture Notes in Computer Science, pp.
404–416). Springer Berlin Heidelberg.

Yu, S., Cai, D., Wen, J.-R., & Ma, W.-Y. (2002).
Improving pseudo-relevance feedback in web in-
formation retrieval using web page segmentation.
Microsoft Research.

ENDNOTES
1 http://cssbox.sourceforge.net
2 A complete table with the programme URLs

and their evaluation and the copies of the
documents are available at http://www.fit.
vutbr.cz/~burgetr/publications/ijcini

Radek Burget received his PhD in Information Technology in 2004 from the Brno University of
Technology. He is an assistant professor at the Faculty of Information Technology, Brno Uni-
versity of Technology. His research interests include data mining methods, semi-structured data
modeling, knowledge engineering and the semantic web.

Pavel Smrz is an associate professor and research project leader at the Faculty of Informa-
tion Technology, Brno University of Technology. His research interests include knowledge
technologies, large-scale information extraction from text and multimedia, and acceleration of
machine-learning algorithms by means of parallel platforms. He authored more than 60 papers
in scientific journals and conference proceedings.

161

162

Appendix C

Extraction of Structured Records

C.1 Information Extraction from Web Sources Based on Multi-
aspect Content Analysis

Milička, M.; Burget, R.: Information Extraction from Web Sources based on Multi-aspect
Content Analysis. In Semantic Web Evaluation Challenges, SemWebEval 2015 at ESWC
2015, Communications in Computer and Information Science, vol. 2015. Springer Inter-
national Publishing. 2015. ISBN 978-3-319-25517-0. ISSN 1865-0929. pp. 81–92.

163

164

Information Extraction from Web Sources
Based on Multi-aspect Content Analysis

Martin Milicka(B) and Radek Burget

Faculty of Information Technology, IT4Innovations Centre of Excellence,
Brno University of Technology, Bozetechova 2, 612 66 Brno, Czech Republic

{imilicka,burgetr}@fit.vutbr.cz

Abstract. Information extraction from web pages is often recognized as
a difficult task mainly due to the loose structure and insufficient seman-
tic annotation of their HTML code. Since the web pages are primarily
created for being viewed by human readers, their authors usually do not
pay much attention to the structure and even validity of the HTML code
itself. The CEUR Workshop Proceedings pages are a good illustration
of this. Their code varies from an invalid HTML markup to fully valid
and semantically annotated documents while preserving a kind of unified
visual presentation of the contents. In this paper, as a contribution to the
ESWC 2015 Semantic Publishing Challenge, we present an information
extraction approach based on analyzing the rendered pages rather than
their code. The documents are represented by an RDF-based model that
allows to combine the results of different page analysis methods such
as layout analysis and the visual and textual feature classification. This
allows to specify a set of generic rules for extracting a particular infor-
mation from the page independently on its code.

Keywords: Document modeling · Information extraction · Page
segmentation · Content classification · Ontology · RDF

1 Introduction

The documents available on the web present a large and ever growing source
of information. However, extracting information from the HTML documents
remains a challenging tasks mainly because of the high variability of the markup,
loose structure of the documents and very rare use of any kind of semantic
annotations that could be used for recognizing a particular information in the
document.

The research in this area includes many different approaches including a
direct HTML code analysis by different methods [7,8], DOM analysis [6], page
layout [2] or other visual feature analysis [10]. As the research results show, the
web documents are too variable for the a simple and straightforward solution.
The document processing cannot be based only on single aspect such as the text
content, visual features or document structure because each approach is suitable

c© Springer International Publishing Switzerland 2015
F. Gandon et al. (Eds.): SemWebEval 2015, CCIS 548, pp. 81–92, 2015.
DOI: 10.1007/978-3-319-25518-7 7 165

82 M. Milicka and R. Burget

for a different kind of documents. Therefore, we propose an approach that can
combine multiple aspects of the document.

The documents may be described on different levels of abstraction starting
with the code through the rendered page layout and visual features of the con-
tents to a logical structure as it is expected to be interpreted by a human reader.
We propose an ontology-based document model that is able to capture all the
mentioned kinds of information. For each level of the description, we use a spe-
cific ontology. The highest abstraction level represents the target domain of the
extracted information.

In this paper, we apply this approach to the processing of the CEUR Work-
shop proceedings as a part of the ESWC 2015 Semantic Publishing Challenge.
We employ a combination of algorithms such as page segmentation or content
classification for building the proposed model from source documents. Based on
a combination of different features, we propose the way of extracting the logical
structure of the document. This structure is finally transformed to the specific
domain ontology. This approach allows to abstract from the HTML implemen-
tation details and increase the robustness of the extraction.

2 System Architecture

The presented information extraction system is based on our recently developed
FITLayout1 framework [9] – a generic framework for web page segmentation
and its further analysis. The complete architecture overview is shown in Fig. 1.
Implementation details specific for the Semantic Publishing Challenge 2015 are
described later in Sect. 4.

Unlike most existing information extraction systems, our system does not
analyze the HTML or CSS code of the input documents directly. Instead, it
operates on the rendered page trying to use the same information as the user
who is actually browsing the page. This allows to abstract from the HTML-
related problems such as irregular code structure, invalid markup, etc.

The individual documents (CEUR pages) are processed independently on
each other. The processing consists of several steps. The results of each step are
stored to an internal RDF repository; each step adds more information to the
model of the processed document. First, source pages are rendered using a built-
in rendering engine that provides the information about the layout and visual
features of the individual pieces of the contents. Additionally, basic text analysis
steps are applied on the document in order to recognize important entities in the
text such as dates, times, capitalized sequences or personal names. Subsequently,
the obtained model is analyzed and the desired information such as editors, paper
titles, authors, etc. is recognized using a set of quite simple rules based on the
actual presentation of the individual content parts. Based on the recognized
parts of the contained information, we build a logical structure of the document
that represents the semantic relationships. Finally, this structure is transformed
to the resulting linked data set.

1 http://www.fit.vutbr.cz/∼burgetr/FITLayout/.

166

Information Extraction from Web Sources 83

ESWC
SPARQL
queries

Workshop pages

Rendering Extracted
Linked Data

Domain independent

Box
model

Text
classification

CEUR entity
classification

Logical
structure

construction

Visual area
detection

Output
formating

Resulting CSV

Document
model (RDF)

Transformation
to domain ontology

FITLayout framework

Domain specific

CSSBox renderer

http://ceur-ws.org/Vol-1317/
http://ceur-ws.org/Vol-1186/
http://ceur-ws.org/Vol-1128/
http://ceur-ws.org/Vol-1123/
http://ceur-ws.org/Vol-1116/
http://ceur-ws.org/Vol-1111/
http://ceur-ws.org/Vol-1085/
http://ceur-ws.org/Vol-1081/

...

Index page

http://ceur-ws.org/

Extracted
data (CSV)

data extraction

Index page data
cross-checking

Fig. 1. Extraction system architecture

2.1 Page Rendering

The rendering engine processes the input HTML and the linked CSS files and
produces the information about the content layout in the page. The layout is
represented by a box model generally defined in the CSS specification [1]. This
model describes the positions of the individual pieces of content in the resulting
page and their further visual properties (fonts, colors, etc.) Each box corresponds
to a rectangular area in the rendered page. The boxes are organized in a hierar-
chical structure called a box tree that roughly corresponds to the source DOM
structure.

The obtained box tree is transformed to RDF data using the FITLayout
box model ontology described in Sect. 3.1. In the subsequent steps of the model
building, more information is added to the page model as the result of the
individual analysis methods.

2.2 Model Building

The model building phase consists of four analysis steps. The first two of them
are domain-independent; they are not specific for the SemPub2015 task. The
other two steps are specific for the target domain. The details of the individual
steps are described later in Sect. 4.

1. Visual area detection. We identify all the boxes in the box tree that are
visually distinguishable in the resulting pages. These boxes form the basic

167

84 M. Milicka and R. Burget

visual areas. We construct a tree of visual areas based on their visual nesting
in the rendered page. The resulting area tree is described using the corre-
sponding FITLayout segmentation ontology (see Sect. 3.2). Later, each area
may be assigned any number of text tags that represent the expected meaning
of the area at different levels.

2. Text classification. We go through the leaf areas of the visual area tree
and we identify important generic entities in the text such as dates, times
or personal numbers. Based on the discovered entities, we assign tags to the
areas that indicate the type of their content.

3. CEUR entity classification. Based on the previous two steps, i.e. the lay-
out model and the properties of the text, we identify the CEUR entities such
as the workshop title, editor names, paper titles and authors, etc. Their dis-
covery is based on mutual positions of the corresponding areas and regular
patterns in the presentation styles. The areas that correspond to the individ-
ual CEUR entities are again marked by the appropriate tags. For example,
a visual area that obtained a persons tag in the previous text classification
step (i.e. it contains some personal names) is likely to obtain the editors or
authors tag depending on where the area is placed within the page.

4. Logical structure construction. The purpose of the logical structure is to
represent the relationships among the CEUR entities tagged in the previous
steps. For example, the title, authors and page numbers that belong to a single
paper, papers that belong to a single section, etc. In a domain-dependent
way, we transform the tagged area tree to the logical structure tree where the
logical nodes correspond to particular text strings (e.g. the names themselves)
and the parent-child relationships correspond to the semantic subordination
of the entities (e.g. the title, authors and pages are child nodes of a paper
node). Each node is marked with a single tag that specifies its semantic.

The whole process corresponds to the transition from the rendered page
model (the box tree) through the page layout model (the visual area tree) to
its semantic interpretation (the logical area tree). In the next step, the resulting
logical model can be transformed to the target domain ontology.

2.3 Output Dataset Generation

The resulting logical structure tree that is obtained from the model building
phase and stored in the intrenal RDF repository contains the complete infor-
mation extracted from the source page together with its structure. The output
dataset generation only consists of transforming the data represented using the
FITLayout internal visual area ontology to the target domain ontology described
in Sect. 3.5. This is implemented as a single SPARQL query2 on the internal RDF
repository.

2 https://github.com/FitLayout/ToolsEswc/blob/master/sparql/logicalTree2domain.
sparql.

168

Information Extraction from Web Sources 85

3 Ontological Model

The ontological model describes the processed document at multiple levels of
abstraction. We have defined five abstraction levels of document description
where each higher level adds specific knowledge to the previous one. Each level
of description is characterized by its ontology. The hierarchy of levels is shown
in Fig. 2. We can see that all the levels can be divided in two groups: domain-
independent and domain-specific. The tagging level in the middle joins the two
parts together.

Fig. 2. Ontological model

3.1 Rendered Page Level

At the level of the rendered page, the ontology-based model corresponds to the
document box model where its rendering is based on the source data presented
in the HTML document and visual features defined by Cascading Style Sheets
(CSS).

The schema of the presented Box model ontology is on Fig. 3(A). Every class
is based on the Rectangle class which defines characteristic size, position and
visual features. A Box denotes a base displayed document element. It follows the
definition from the CSS formatting model [1]. The boxes may be nested, which
creates a hierarchical structure similar to the Document Object Model (DOM).
The Page class represents the whole rendered page. The belongsTo property
denotes the relationship between the Page and some rectangular objects (boxes)
that create the contents of the page. The Box can be further specialized into
the ContainerBox or ContentBox classes where the ContainerBox may contain
other boxes (allows nesting). The ContentBox represents a Box that contains
a connections of content objects like images, textual information or common
objects like Flash, video, etc.

3.2 Segmentation Level

Page segmentation generally detects the visually distinguished segments in the
rendered page (we call them visual areas in this paper). There exist many page
segmentation algorithms; one of the most popular ones is called VIPS [4].

169

86 M. Milicka and R. Burget

Fig. 3. (A) Box tree ontology (http://fitlayout.github.io/ontology/render.owl#) (B)
Area based ontology (http://fitlayout.github.io/ontology/segmentation.owl#)

The segmentation model extends the Box model by a possibility of represent-
ing the visual areas. In the Fig. 3(B) we can see a part of segmentation ontology
design. The basic Area class is defined as a specialization of the Rectangle class
from the Box model ontology. It represents the visual areas detected during the
page segmentation. A visual area is usually created by a collection of boxes con-
tained in this visual segment. Visual areas may be nested and create a hierarchy
based on their visual nesting similarly to boxes.

3.3 Tagging Level

The tags are represented by the Tag class (in Fig. 3(B)); multiple tags may be
assigned to a single visual area. Each tag is represented by its name and type
where the type represents a set of tags with the same purpose (e.g. the tags
obtained from text classification) and the name corresponds to the actual tag
value.

In Sect. 4, we give an overview of the tags used for the given domain. Some of
them are domain-independent (Table 1), some are domain-dependent (Table 2).

3.4 Logical Tree Level

The logical structure represents the actual interpretation of the tagged visual
areas in the target domain. Each logical area corresponds to a semantic entity
identified as a text string contained in some visual areas (e.g. an author name). It
is represented by the LogicalArea class in (Fig. 3). Each logical area has a single
tag assigned that denotes its meaning in the target domain (e.g. a paper title).

170

Information Extraction from Web Sources 87

The logical areas are organized to a hierarchical structure again (using the
isSubordinateTo property). However, unlike the visual areas, where the hierar-
chy represents the visual nesting, for logical areas, the hierarchy corresponds to
the logical relationships among the entities – e.g. a paper and its title or page
numbers.

The resulting logical area tree provides a generic representation of the
extracted information and its structure and it can be directly mapped to the
target domain ontology.

3.5 Domain Level

The domain ontology defines the entities and their properties in the target
domain. It is used for the resulting data set produced by our extraction tool. For
the the CEUR proceedings domain, we use a combination of existing ontologies
shown in Fig. 4 that is greatly inspired by [8] with some simplifications.

Fig. 4. Domain ontology – ESWC proceedings

4 System Implementation

The FITLayout framework used as a base for our system implements a vari-
ety of general tasks such as page rendering, page segmentation and text feature
analysis. Moreover, it allows to implement custom extensions and add them to
the page processing chain. For the purpose of the CEUR proceedings process-
ing, we have implemented several domain-specific extensions that include the
CEUR entity recognition and a custom logical structure builder specific for this
particular task3.

We made several experiments with using the microformats available in some
of the CEUR volume pages for training a visual feature classifier that would

3 https://github.com/FitLayout/ToolsEswc.

171

88 M. Milicka and R. Burget

be later used for the remaining volumes. However, the presentation style of
the individual volumes is quite variable in terms of the used fonts, layout or
information ordering. Therefore, we have decided to process the individual pages
independently. In the final version of our tools, we do not use any kind of classifier
training (apart from the pre-trained Stanford NER classifier used for recognizing
the personal names as described in Sect. 4.2). Instead of this, we just gather
statistic about the frequently used presentation patterns and styles used in the
currently processed page and we assume the most frequent one to be consistently
used in the page as described in Sect. 4.3. The microformats are not used at all
in the end because their availability is not guaranteed.

In the following sections, we explain the most important details of the whole
information extraction process.

4.1 Layout Analysis

The FITLayout framework assumes a usage of a page segmentation method for
the construction of the visual area tree. However, due to the relatively sim-
ple layout of the CEUR proceedings, we decided not to use a full-featured page
segmentation algorithm. Instead, we just use a basic visual area recognition algo-
rithm that corresponds to the initial step of our previously published page seg-
mentation algorithm [3]. From the box tree obtained from rendering, we choose
the boxes that are visually distinguishable in the page: they directly represent
a piece of text or image content or they have some visible visual separator: a
separating background color or a border around the box.

For the CEUR proceedings, the resulting layout model is usually very flat:
Most of the content areas are directly the child nodes of the root node because
there is usually no visual nesting used in the layout. The only exception is the
title of some of the proceedings that is visually framed.

4.2 Generic Text Tagging

Area tagging is used to roughly classify the visual areas that contain certain
kind of information. The FITLayout framework provides a set of general purpose
taggers that assign tags of the FitLayout.TextTag type to the visual areas by
a simple analysis of the contained text mainly using regular expressions. Table 1
describes the text tags we have used for the given task and the way of their
assignment to the visual areas.

The used regular expressions are quite general (especially for the paper titles),
and the used generic NER classifier is not 100 % accurate neither. Therefore, the
tag assignment obtained in this phase provides just a rough and approximate
classification of the areas. Further refining is performed in the following CEUR
entity recognition phase.

4.3 CEUR Entity Recognition

The CEUR entity recognition consists of assigning another set of tags to the dis-
covered visual areas. These tags correspond to the individual types of information

172

Information Extraction from Web Sources 89

Table 1. Tags added during the text feature analysis (tag type FitLayout.TextTag)

Tag Meaning Way of recognition

dates A date in recognizable format Regular expressions and specific
keywords (months)

pages Page span specification Regular expression

persons Personal names Stanford NER classifier [5]

title Paper title Regular expression

that we want to extract from the source document. The complete list of the
assigned tags (with the type ESWC) and their meaning is in Table 2.

Table 2. Tags used for the CEUR entity annotation (tag type ESWC)

Tag Meaning

vtitle Volume title
vcountry Workshop location (country)
veditor Editor name
vdate Date(s) of the workshop

Tag Meaning

subtitle Volume subtitle (proceedings)
title Paper title
authors Paper author(s)
pages Paper pages

The transition from the general text tags listed in Table 1 to the semantic tags
listed in Table 2 corresponds to the disambiguation and refining of the rough text
classification. We assume that some text tags may be missing or may have been
assigned incorrectly. Some tags are ambiguous, e.g. the persons tag may indicate
author or editor names depending on context.

For assigning the semantic tags, our refining algorithms take into account
the following aspects:

– Common visual presentation rules – there exist some commonly used rules for
visual formatting of the presented information in a document. E.g. a title or
subtitle is written in larger font or at least bolder than a normal text.

– Regularity in presentation style – we assume that all the information of the
same meaning (e.g. all paper titles) is presented with the same visual style
(fonts, colors, etc.) in a single proceedings page.

– Regularity in layout – some proceedings put author names before the paper
title, some put them below or on the same line. However, this layout is again
consistent through the whole proceedings page.

– Locality of the information – information of the same kind is presented in one
area of the page. We can identify an area containing editors, papers, etc. The
order of these area remains the same in all the proceedings pages.

– Textual hints – some key phrases such as “Edited by” or “Table of Contents”
are commonly used in most of the proceedings. When they are found in the
page, they can be used to refine the expected area where a particular infor-
mation is located within the page.

173

90 M. Milicka and R. Burget

Our algorithm works in the following steps:

1. We discover the position of the workshop title and the repeating layout and
style patterns that (together with the assigned text tags from Table 1) cor-
respond to the published papers and their authors and similarly for editors
and their affiliations.

2. Based on the discovered patterns, we guess approximate areas in the rendered
page that are likely to contain a particular information: the workshop title,
subtitle (proceedings information), editors, papers and submission details. If
the text hints such as “Edited by” are present in the pages, the expected area
bounds are adjusted appropriately.

3. In these areas, we find the most frequent font style used for each type of infor-
mation (e.g. author names) and the most frequent layout pattern (authors
before or after the title, etc.) Then, we assign the appropriate semantic tags
from Table 2 to all the visual areas using the same font style that correspond
to the discovered layout pattern. This solves the possible inaccuracy of the
text tag assignment.

The workshop title is discovered by its font size (it’s always written with the
largest font size used in the page). The editor area is guessed by searching per-
sonal names between the workshop title and the papers (the “Table of contents”
text may be used as a hint when present) and the subtitle is located between
the title and the editors.

As the result, we obtain a refined tagging of the visual areas that indicates
their semantics.

4.4 Logical Structure Construction

The last logical structure construction phase has two main goals:

– Extract the text data from the tagged visual areas. The area may contain
multiple kinds of information (e.g. several author names, several editors or
some additional text that should be omitted).

– Put together the information that belongs to a single entity: the name and
affiliation of a single editor or the title, authors and pages of a single paper.

These goals correspond to the construction of a tree of logical areas as defined
in Sect. 3.4. The text extraction corresponds to the identification of the logical
areas and the relationships among the areas (denoted using the a:isChildOf prop-
erty) are used for creating a tree of logical areas where the child nodes specify
the properties of its parent node.

We have implemented a custom logical tree builder that goes through the
visual area tree and creates the logical areas organized in subtrees depending
on the assigned semantic tags. For this, some more text processing is usually
required: splitting the author area to several author names by separators, com-
pleting the editor affiliations by matching the different kinds of symbols and
bullets and extracting the data such as workshop date from longer text lines.

174

Information Extraction from Web Sources 91

The countries in the editor affiliations are recognized by a simple matching
with a fixed list of countries and their DBPedia resource IRIs (a CSV extracted
from DBPedia).

The workshop and conference acronym extraction is based on a simple text
parser that recognizes all the acronyms and the ordinals in the text. In order
to distinguish between the workshop and the conference acronyms, we try to
locate the particular keywords (e.g. “colocated with”) in the subtitle and we
also compare the sets of acronyms found in the title and the subtitle since the
conference acronym is very rarely present in the main title.

Some information such as the paper IRIs must be obtained from the underly-
ing code from the id or href attributes. Therefore, in our stored rendered page
model, we maintain the information about the source DOM nodes that produce
the given box displayed in the page.

The resulting logical structure description is added to the FITLayout internal
RDF repository and it can be directly transformed to the output linked data set
by mapping to the target ontology.

4.5 CEUR Index Page Processing

The CEUR proceedings index page is a specific source of information. We use this
page for locating the related workshops (the see also) information, the date of
publication. We also use the volume title from the index page in the final output
because the title in the individual pages is slightly different in some cases.

Since the index page is just a single HTML document with a specific style
and quite a regular structure, we have just used a simple “old school” Unix
awk script for extracting this data directly from the HTML code. This script
produces a CSV output that is used by the logical tree builder to complete the
logical structure.

5 Conclusions

In this paper, we have presented a web information extraction approach based
on a complex modelling of different aspects of the processed document. Our
system analyzes the rendered document and in multiple steps, it guesses and
later disambiguates the semantics of the individual text parts by combining
the page segmentation and text classification methods with specific extraction
rules based on visual presentation of the content. This approach allows to avoid
HTML-related implementation details. The extraction task is specified on quite
a high level of abstraction that ensures the tolerance of the method to different
variations in the processed documents.

Acknowledgments. This work was supported by the BUT FIT grant FIT-S-14-2299
and the IT4Innovations Centre of Excellence CZ.1.05/1.1.00/02.0070.

175

92 M. Milicka and R. Burget

References

1. Bos, B., Lie, H.W., Lilley, C., Jacobs, I.: Cascading style sheets, level 2, CSS2
specification. The World Wide Web Consortium (1998)

2. Burget, R.: Layout based information extraction from HTML documents. In:
ICDAR 2007, pp. 624–629. IEEE Computer Society (2007)

3. Burget, R., Rudolfová, I.: Web page element classification based on visual features.
In: 1st Asian Conference on Intelligent Information and Database Systems ACIIDS
2009, pp. 67–72. IEEE Computer Society (2009)

4. Cai, D., Yu, S., Wen, J.R., Ma, W.Y.: VIPS: a Vision-based page segmentation
algorithm. Microsoft Research (2003)

5. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into
information extraction systems by gibbs sampling. In: Proceedings of the 43rd
Annual Meeting on Association for Computational Linguistics, ACL 2005, pp.
363–370 (2005)

6. Hong, J.L., Siew, E.G., Egerton, S.: Information extraction for search engines
using fast heuristic techniques. Data Knowl. Eng. 69(2), 169–196 (2010).
http://dx.doi.org/10.1016/j.datak.2009.10.002

7. Hong, T.W., Clark, K.L.: Using grammatical inference to automate information
extraction from the web. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS
(LNAI), vol. 2168, pp. 216–227. Springer, Heidelberg (2001)

8. Kolchin, M., Kozlov, F.: A template-based information extraction from web sites
with unstable markup. In: Presutti, V., et al. (eds.) SemWebEval 2014. CCIS,
vol. 475, pp. 89–94. Springer, Heidelberg (2014). http://dx.doi.org/10.1007/978-3-
319-12024-9 11

9. Milicka, M., Burget, R.: Multi-aspect document content analysis using ontological
modelling. In: Proceedings of 9th Workshop on Intelligent and Knowledge Oriented
Technologies (WIKT 2014), pp. 9–12. Vydavatelstvo STU (2014)

10. You, Y., Xu, G., Cao, J., Zhang, Y., Huang, G.: Leveraging visual features and hier-
archical dependencies for conference information extraction. In: Ishikawa, Y., Li,
J., Wang, W., Zhang, R., Zhang, W. (eds.) APWeb 2013. LNCS, vol. 7808, pp. 404–
416. Springer, Heidelberg (2013). http://dx.doi.org/10.1007/978-3-642-37401-2 41

176

C.2 Matching Visual Presentation Patterns
Burget, R.: Information Extraction from the Web by Matching Visual Presentation Pat-
terns. In Knowledge Graphs and Language Technology: ISWC 2016 International Work-
shops: KEKI and NLP&DBpedia. Lecture Notes in Computer Science vol. 10579. Springer
International Publishing. 2017. ISBN 978-3-319-68722-3. pp. 10–26. doi:10.1007/978-3-
319-68723-0_2.

177

178

Information Extraction from the Web
by Matching Visual Presentation Patterns

Radek Burget(B)

Faculty of Information Technology, Centre of Excellence IT4Innovations,
Brno University of Technology, Bozetechova 2, 612 66 Brno, Czech Republic

burgetr@fit.vutbr.cz

Abstract. The documents available in the World Wide Web contain
large amounts of information presented in tables, lists or other visu-
ally regular structures. The published information is however usually
not annotated explicitly or implicitly and its interpretation is left on a
human reader. This makes the information extraction from web docu-
ments a challenging problem. Most existing approaches are based on a
top-down approach that proceeds from the larger page regions to indi-
vidual data records, which depends on different heuristics. We present
an opposite bottom-up approach. We roughly identify the smallest data
fields in the document and later, we refine this approximation by match-
ing the discovered visual presentation patterns with the expected seman-
tic structure of the extracted information. This approach allows to effi-
ciently extract structured data from heterogeneous documents without
any kind of additional annotations as we demonstrate experimentally on
various application domains.

Keywords: Web data integration · Information extraction · Structured
record extraction · Page segmentation · Content classification · Ontology
mapping

1 Introduction

The World Wide Web contains a vast amount of documents containing data
records presented in a regular, visually consistent way using different kinds of
lists, tables or other logical structures. Typical examples include product data,
events, exchange rates, sports results, timetables and many more. Although the
structure of the presented information is generally predictable for every applica-
tion domain, the actual data records may be presented in the HTML documents
in countless ways.

For large and consistent data sources such as Wikipedia, it is possible to
define extraction templates that may be reused for a great number of pages.
However, for heterogeneous sources where every document may use different
presentation patterns, this approach is not feasible. The great variability in pre-
sentation and almost no semantic annotations available in HTML documents

c© Springer International Publishing AG 2017
M. van Erp et al. (Eds.): ISWC 2016 Workshops, LNCS 10579, pp. 10–26, 2017.
https://doi.org/10.1007/978-3-319-68723-0_2 179

Information Extraction from the Web 11

make the automatic integration of such web sources to structured datasets (such
as DBPedia) a challenging problem.

In this paper, we present a method for the discovery and extraction of struc-
tured records in web documents. In contrast to most current approaches that
perform a complex analysis of the document HTML code or its visual organi-
zation in order to detect repeating structures (top-down approach) [1,8,13,14],
we use an opposite (bottom-up) approach: We start with the smallest consistent
text elements and we match the visual relationships among these elements with
the expected structure of the extracted records. This way, we are able to auto-
matically discover the visual patterns used for presenting the data records in the
given document.

The most important benefits of the presented approach are the following:

– The extraction task specification is based only on a generic domain knowledge
consisting of the logical relationships among the individual data fields to be
extracted and a very general specification of allowed values for each data field.

– No templates need to be used and no labels or annotations are required in
the source documents.

– The method can be easily adapted for any target domain as it allows integra-
tion of arbitrary domain-specific knowledge (such as dictionaries or extracted
data formats) and different data field recognition methods (from domain-
specific heuristics to general NLP methods such as named entity recognition).
We demonstrate the method application to different target domains in Sect. 9.

– The method is independent on the format of the input documents. We use
the HTML and PDF documents as the most important information source
but any other document type where the styled text is available may be used
as well.

We also demonstrate that our information extraction method may be inte-
grated with DBPedia in two ways: (1) DBPedia may be used for the recognition
of candidate data fields in the extracted records and (2) the extracted records
may contain new data that may be linked back to existing DBPedia resources.
This allows integrating new web sources to DBPedia.

2 Related Work

Information extraction from web documents is a research area that is interesting
for different applications. The most important application areas include extract-
ing data results from query result pages [1,8,9,12–15] (obtained either from
general search engines or specialized ones such as product search) or obtaining
structured data buried in large sets of web documents [5,10].

When considering the recently published approaches, we may identify two
basic groups from the perspective of the used representation of the input doc-
ument: (1) code-based approaches that use a representation of the input docu-
ment code (mainly DOM for HTML documents) [6,9,10,15] and (2) vision-based

180

12 R. Burget

approaches that use some kind of visual representation of the rendered page that
may be obtained by adding some visual features to the document code model
[1,8] or by using a standard page segmentation algorithm [13,14]. However,
regardless of the used document representation, all the mentioned approaches
expect HTML documents at the input.

Most existing methods are based on a top-down approach which is basically
presentation-driven. After creating the document model as mentioned above, the
model is usually preprocessed in order to filter the content blocks regarded as
noise or to locate the most probable regions of interest (called a result section
[12], data sections [14] or data region [8]). Then, the individual data records
are identified based on the detection of repeating structures in the model by
frequency measures [9] or visual pattern detection [1,12,14]. The structure of
the extracted information is inferred from the discovered records while using
additional information such as explicit labels present in the page [1,12,14,15]
or even the query interface in case of the query result extraction [12,13]. This
presentation-driven approach is suitable for many applications such as the deep
web crawling. On the other hand, in case of information extraction from web
sources for the semantic web, structured databases or particular applications,
the structure of the extracted information is typically available in advance (for
example as a domain ontology) and the task is to locate the corresponding data
records in the input documents.

We have identified only a few approaches that are based on a previously
known ontological model of the information being extracted. The classical work
by Embley et al. [6] uses a conceptual domain model that defines the lexical
and non-lexical classes and the relationships among them. However, before the
conceptual model may be used for information extraction, a complex input doc-
ument preprocessing is required that does not take the into account the domain
model and it is based on heuristics tightly related to the HTML language con-
structions. Similarly, our earlier work [2] uses complex vision-based document
preprocessing for creating a logical model of the processed document in a form
that can be later matched with an ontology-based domain model.

Our approach we present in this paper shares many ideas regarding the onto-
logical specification of the target domain with the work of Embley et al. [6]. How-
ever, instead of a complicated document preprocessing that presents a potential
point of failure, we attempt to use the ontological specification as early as pos-
sible. As we mention in the introduction, our approach proceeds in a bottom-up
manner leaving the presentation style analysis to later stages. This allows to
avoid the complex document preprocessing that is usually HTML-specific and it
presents a potential source of errors.

We have successfully tested some of the presented concepts during the Sem-
Pub 2015 challenge [5]. Our solution [11] was however tailored to a given par-
ticular application. In this paper, we present a new method based on a general
model of the target domain.

181

Information Extraction from the Web 13

3 Task Specification

The goal of our method is extracting information corresponding to ontological
concepts (classes) from documents. In Fig. 1, we show a sample class (a conference
paper) that is taken from a larger ontology we used for a particular information
extraction task [11].

dc:title

bibo:numPages

Paper
swc:Paper

foaf:Document
foaf:made
dc:creator

bibo:section

foaf:Person foaf:name

Fig. 1. Sample ontology representing a concept (Paper) and its data and object prop-
erties using the concepts and properties from the Bibliographic Ontology, FOAF Ontol-
ogy and the Semantic Web Conference Ontology. The ovals represent the object prop-
erties and the rectangles represent its data properties.

According to the usual terminology in this area (for example [6]), the infor-
mation about the instances of the given class (individuals) is represented by data
records in the source documents. Each data record consists of multiple data fields,
sometimes also called data units [13] that provide the lexical representation of
some data properties (lexical properties) of the individual. The data fields are
represented as text strings contained in the document text. Thus, a data record
can be defined as a set of data fields that describe the same individual.

The task we investigate in this paper is to recognize all the data records in
the source documents that belong to a single entity that is known in advance.
Considering the Paper class in Fig. 1 as the input concept specification, the
task is to recognize all the data records in the source documents that contain
the information about individual papers containing their titles, author names,
sections and pages.

4 Method Overview

We assume processing of web documents containing multiple data records cor-
responding to the same concept. The data records are presented in one or more
source documents in a visually consistent way (we discuss the visual consistency
in more detail in Sect. 7). The key idea is to discover the most frequent visual
presentation patterns that occur in the source documents and that are used for
presenting the data records. Subsequently, the data records are extracted using
the discovered patterns. The method in general does not involve any learning
phase on a training set of documents. For every extraction task, it only analy-
ses the presentation patterns in the given source document. However, a trained

182

14 R. Burget

Page
rendering

Tag
disambiguation
and refinement

HTML
documents

Page
preprocessing

PDF
documents

Text boxes

Initial
content tagging

Visual
areas

Content
extraction

Tagged
visual
areas

Logical
groups

Extracted
records

Fig. 2. Method overview

classifier may be used as one of the sources of the necessary background knowl-
edge for certain application domains. We demonstrate one such application in
Sect. 9.4.

Figure 2 shows the overview of our method. It operates on a visual repre-
sentation of the source documents that is independent on the underlying code.
Therefore, the first step is the document preprocessing that consists of creating
an uniform representation of the source documents as a set of visual areas.

Next, in the initial tagging step, we perform an approximate recognition
of the individual parts of the document content. This step gives a rough idea
about the possible meaning of the individual visual areas; that means which
visual areas might possibly correspond to some particular data fields. The result
is represented by adding tags to the respective visual areas. Since the initial
tagging is only approximate, some visual areas may obtain multiple tags and
some of them may be tagged incorrectly.

Therefore, in the next step, we discover the most frequent presentation pat-
terns used in the source documents and we use them to disambiguate and refine
the assigned tags. The most supported visual patterns are then used for recog-
nizing the desired data records.

In the following sections, we discuss the details of all the individual steps.

5 Input Document Preprocessing and Representation

The purpose of the input document preprocessing is to create a unified, format-
independent model of the document content and its visual presentation. This
step is typical for all the visually oriented information extraction approaches; we
may mention the Visual block model used in [1], Page layout model [2] or the
Visual block tree in [13].

Typically, all these models have a hierarchical structure which corresponds
to the typical visual organization of the content in a web page. However, in our
approach, we do not take into account the overall visual organization of the

183

Information Extraction from the Web 15

page such as visually separated block or sections. Instead, we employ a bottom-
up approach, that considers only the individual parts of the text content, their
visual style and mutual visually expressed relationships. Therefore, we do not
need to represent the complete visual hierarchy of the page and we use only a
simplified flat model consisting of a set of visual areas as we define below.

The input of the preprocessing step is a set of text boxes contained in the
source document. With a text box, we understand a rectangular area in the
displayed page with a know position, size containing a portion of the document
text. For HTML documents, the information about the text boxes is available
from a rendering engine after the document has been rendered. In case of PDF
documents, this information is directly available in the source document. In both
cases, the information about the visual style of the contained text (such as the
used font or color) is also available for each box.

In the preprocessing step, we create visual areas from the text boxes. A
visual area provides an abstraction over the rendered boxes. It is a rectangular
area in the rendered page that corresponds to one or more displayed text boxes
depending on the chosen granularity as we explain below. We define a visual
area a as follows:

a = (rect, text, style,B) (1)

where rect = (x, y, w, h) is a rectangle representing the area position and size in
the rendered page, text is the text string contained in the area and style is the
area style:

style = (fs, w, st, c, bc) (2)

where fs is the average font size used in the visual area, w ∈ [0, 1] is the average
font weight where 1 means the whole area written in bold font and 0 means the
whole area written in regular font, st ∈ [0, 1] is the average font style (1 for italic
font, 0 for regular font) and c and bc are the foreground and background colors
used in the area. Finally, B = b1, b2, . . . , bn is the set of boxes contained in the
area (n > 0).

As the result of the preprocessing step, we obtain a set A of all the visual
areas in the page:

A = a1, a2, . . . , am (3)

where m is the total number of visual areas in the page. Then, for any pair
of visual areas ai, aj ∈ A the corresponding sets of boxes Bi, Bj are disjoint
(Bi ∩ Bj = �) and the corresponding rectangles recti, rectj do not overlap.

5.1 Visual Area Granularity

The granularity of the visual areas generally depends on the application domain.
In Sect. 9, we give several examples of the application domains and we discuss the
chosen visual area granularity for each of them. The highest possible granularity

184

16 R. Burget

is obtained when for each visual area ai ∈ A, the corresponding set of boxes
Bi contains a single box (|Bi| = 1). However, for most application, we choose a
higher granularity (|Bi| ≥ 1). Typical choices are the following:

– Inline-level granularity – the visual areas are formed by sets of neighboring
boxes (based on their positions on the page) that are vertically aligned to a
single line and they share a consistent visual style as defined in (2). This level
approximately corresponds to inline-level elements used in HTML documents.

– Block-level granularity – the visual areas are formed by sets of boxes that form
a visually separated block of text in the page (for example a text paragraph).
We use a simple block detection method proposed in [3] that is based on the
discovery of clusters of adjacent boxes based on their positions in the page.

Depending on the chosen granularity, we obtain a larger or smaller set A of
visual areas that represent the elementary pieces of the document content in the
following steps of information extraction.

6 Initial Content Tagging

The purpose of the initial content tagging is to recognize all the visual areas that
possibly might correspond to an extracted data field. Shortly, we want to identify
the pieces of information that possibly “look like” some data field (for example
a paper author name) when viewed separately. Each visual area is considered
separately and it is assigned tags that indicate its possible meanings.

Based on the target domain, we define a set T = t1, t2, . . . , tn of tags that may
be assigned to visual areas. Each tag is identified by its name and it represents a
particular data field to be extracted. For example, for the domain of conference
papers shown in Fig. 1, we obtain the following set of tags corresponding to the
data properties of the papers:

T = {title, authors, section,pages} (4)

where the individual tags denote the paper title, author names, section title
and page numbers respectively. For each tag, we define a tagging function that
assigns a support to every visual area and tag:

tagging : A × T → R[0,1] (5)

For a visual area a ∈ A and a tag t ∈ T , the assigned support is a number
s ∈ [0, 1] that represents the probability that the visual area has the meaning
that corresponds to the given tag. When s > 0, we say that the tag t has been
assigned to a with the given support; for s = 0, we say that t has not been
assigned to a. Multiple tags may be assigned to a single area (for example, the
number “15” may be recognized as both hour and minutes in the time domain).

The initial tagging represents a highly approximate estimation of the mean-
ing of the individual visual areas which is used as a starting point for further

185

Information Extraction from the Web 17

refining. We note that some of the tags (such as title and section) cannot be
reliably distinguished when considering the visual areas separately. In that case,
the visual area may obtain both tags (that means it may correspond to both
the paper and section title) and later, the tags are disambiguated using the
presentation context as described in Sect. 7.

From the practical point of view, we implement the tagging function as a set
of taggers where the tagger is a procedure that is responsible for computing the
support of a single particular tag given a visual area. The tagger implementation
may be very variable but generally, we consider the following approaches to the
tag assignment that may be combined arbitrarily:

– DBPedia concept annotation for example using the Spotlight tool [4].
– Named entity recognition (NER) may be used for recognizing the entities such

as personal names or locations depending on the used NER classifier.
– Occurrences of keywords (for example month names), numerical values in

given ranges or specific regular expressions.
– Visual classification. As we have shown in our earlier work [3], it is possible

to use the visual features of the areas such as the used font, colors, position
within the page or amount of contained text to create a classifier, that is first
trained on a set of manually annotated documents and then, it may be used
for recognizing the meaning of new, previously unseen visual areas in new
documents. Unlike the remaining tagging methods, the visual classification
approach requires a training set of documents for setting up the classifier as
we show on a practical example in Sect. 9.4. However, the trained classifier
may be later used for a whole set of documents coming even from different
web sources.

For each tag, there is a single tagger defined that takes into account different
criteria. The tagger may combine multiple methods with different supports. For
example, the personal names may be recognized by DBPedia concept annotation
(with the highest support) but the NER classifier may be used as a fallback solu-
tion (with a lower support) for recognizing the names that have no corresponding
DBPedia resource.

7 Tag Disambiguation

After the visual areas have been approximately tagged, we disambiguate the tags
by considering combinations of the data fields that are expected in the extracted
data records (for example considering the title – authors or title – pages combina-
tion in our example in Fig. 1). We assume that all the data records are presented
in a visually consistent way in the source document. Based on this assumption,
we define presentation constraints on the data records that must apply for con-
sidering the records to be visually consistent. Then, the disambiguation task
consists of finding the best matching record presentation and layout that meets
the visual consistency constraints on one side and covers as many tagged visual
areas as possible on the other side.

186

18 R. Burget

7.1 Visual Presentation Constraints

For considering the data records to be visually consistent, we require both the
consistent presentation style of the individual data fields and consistent layout
of the individual fields that form a single data record.

Text Style Consistency. For the individual text fields, we require that the
visual areas with the same tag assigned (for example all the paper titles) have
the same visual style in the document. We have defined the area style as a tuple
of visual features (2). Let’s consider a set of set of visual areas At that have the
tag t assigned and let St be a set of styles of all the visual areas in At. Then,
let nf be the number of visual features that have equal values for all the styles
s ∈ St. We say that At has a consistent style if nf is over certain threshold.

Based on our practical experiments, we allow one visual feature that is often
used by the document authors to further distinguish the individual records (for
example some papers considered to be more important have a bold title or use
a different color). Therefore, we use nf = 4 for our experiments.

Content Layout Consistency. The layout consistency constraint is based on
our assumption that the layout relationships between the individual data fields
expressed by their mutual positions in the page are the same for all data records.
For this purpose, we define four relations Rside, Rafter, Rbelow, Runder ⊆ A × A
that are defined based on the positions of the areas in the page. Considering a
pair of visual areas a1, a2 ∈ A and their respective positions rect1, rect2 in the
page, we define the relations as follows:

– (a1, a2) ∈ Rside when a1 and a2 are on the same line (their y coordinates
overlap), a2 is placed to the right of a1 without any other visual area being
placed between a1 and a2 and the horizontal distance between a1 and a2 is
not larger than 1 em1 (shortly, a2 placed next to a1).

– (a1, a2) ∈ Rafter when a1 and a2 are on the same line and a2 is placed to the
right of a1 anywhere on the line (a2 is on the same line after a1).

– (a1, a2) ∈ Runder when a1 and a2 are placed roughly in the same column
(their x coordinates overlap) and a2 is placed below a1 without any other
visual area being placed between a1 and a2 and the vertical distance between
a1 and a2 is not larger than 0.8 em (a2 is placed just below a1).

– (a1, a2) ∈ Rbelow when a1 and a2 are placed roughly in the same column
(their x coordinates overlap) and a2 is placed anywhere below a1.

As we may notice, Rside ⊆ Rafter and Runder ⊆ Rbelow. For each pair of
data fields, we choose the most supported one by trying to cover as many tagged
visual areas as possible using each relation. Since one-to-many relationships are
allowed between the data fields, any of the above relations may turn out to be
the most supported one.

1 In typography, 1 em is a length corresponding to the point size of the current font.

187

Information Extraction from the Web 19

7.2 Matching the Visual and Semantic Relationships

The tag disambiguation in our approach is based on discovering the most sup-
ported combinations of the tagged areas in the page. Considering the target
domain described by an ontology (such as our example in Fig. 1), we find the
binary relationships with the one-to-many or one-to-one cardinality between the
different data properties in the ontology. We assume that the same semantic
relationships between two data properties are represented by the same layout
relation between the corresponding visual areas for all the data records in the
page and in the same time, the visual areas corresponding to the same data type
properties have the consistent visual style as defined in Sect. 7.1.

In our sample ontology, we may identify the following one-to-many (or one-
to-one) relationships that are expected to have a corresponding visual represen-
tation in the document: section – title, title – author, title – pages. Note that the
paper title may be viewed as a record-identifying field here as defined in [6].

Let’s consider a single relationship between the properties represented by the
tags t1 and t2 ∈ T . Let smin be a minimal value of the tag support (5) that is
required for considering the area to have the given tag assigned and let At1 and
At2 be the sets of visual areas that have the respective tags assigned:

At1 = {a ∈ A : ((a, t1), s) ∈ tagging ∧ s ≥ smin} (6)

At2 = {a ∈ A : ((a, t2), s) ∈ tagging ∧ s ≥ smin} (7)

and let St1 and St2 be the sets of all styles (2) of the visual areas that belong
to At1 and At2 respectively. We define a configuration of a record extractor as
follows:

c = (st1 , st2 , R) (8)

where st1 ∈ St1 , st2 ∈ St2 and R is a layout relation as defined in Sect. 7.1. For
each such configuration, we may find a set of matching pairs of visual areas:

Mc = {(a1, a2) : a1 ∈ At1 ∧ a2 ∈ At2 ∧ style(a1) = st1 ∧ style(a2) = st2

∧ (a1, a2) ∈ R} (9)

where style(a1) and style(a2) are the styles of a1 and a2 respectively. The goal
of the tag disambiguation to find a configuration c with the largest set Mc of
the corresponding area pairs.

The whole tag disambiguation algorithm for a pair of tags t1, t2 corresponding
to a one-to-many relationship in the domain ontology may be summarized in the
following steps:

1. Compute At1 , At2 and the corresponding sets of styles St1 and St2 with the
minimal support smin set to a higher value (we use smin = 0.6 for considering
only the tags assigned with some safe support).

2. Compute Mc for all possible configurations c and find the resulting configu-
ration cx = (st1x, st2x, Rx) where Mcx

is the largest set of matching pairs.

188

20 R. Burget

3. Decrease smin and recompute At1 , At2 and St1 and St2 in order to consider
even the areas with the tags assigned with a low support (we use smin = 0.1).

4. Recompute Mcx
for the previously discovered configuration cx.

After the last step, Mcx
contains visually consistent pairs of visual areas (a1, a2)

that correspond to the same pairs of data fields in the data records.
This process may be generalized to consider multiple one-to-many relation-

ships: we just search for multiple configurations c while maintaining the consis-
tency of st1 and st2 and we obtain one set Mcx

for each one-to-many relationship.
For the one-to-one relationships, the process is equal; the only difference is in
the Mc size computation where we consider all the (a1, ai) pairs (for all available
values of i) as a single pair when computing the size of Mc.

8 Record Extraction

The obtained sets of matches Mc identify the visual areas that contain the cor-
responding data fields from all the data records discovered in the document.
Since the visual areas are directly linked to text boxes from the source docu-
ment (1), the text content contained in the area may be obtained by a simple
concatenation of the text contents of the text boxes.

Depending on the target domain and the area granularity chosen in the pre-
processing step (see Sect. 5.1), it may be necessary to further postprocess the
extracted text. The postprocessing includes converting the text content to par-
ticular data types (such as numbers or dates) or cleaning the text from an addi-
tional content. Finally, the obtained values may be mapped to the appropriate
ontological properties.

9 Experimental Evaluation

We have implemented the proposed method of data records extraction in Java
using our FITLayout framework2. The framework is able to process the HTML
and PDF input documents by using the CSSBox rendering engine3. In order to
demonstrate the applicability of the method, we have chosen four application
domains, each having some specific features. Although it is not our primary
aim to outperform the existing methods in terms of precision, we provide the
evaluation of the achieved precision and recall for each sample application in
order to show that the obtained results are usable in practice.

9.1 Conference Papers

For the conference paper domain, we have used a dataset from the Semantic Pub-
lishing Challenge at the ESWC 2015 conference [5]. The input dataset consists

2 http://www.fit.vutbr.cz/∼burgetr/FITLayout/.
3 http://cssbox.sourcegorge.net/.

189

Information Extraction from the Web 21

Table 1. Results for the conference papers task: number of records extracted, precision,
recall and F-measure for two different data sets.

Data set #rec P R F

(A) Complete dataset (115 documents) 2420 0.976 0.955 0.966

(B) Only documents containing page numbers 883 0.997 0.975 0.986

of 148 selected CEUR workshop proceedings pages4 from the years 1994–2014
containing the metadata about 2,500+ papers. The input HTML documents are
very variable regarding both the code and the visual style. On this dataset, we
would like to demonstrate that our approach is able to automatically adapt to
the presentation style used in each document and based on the specified domain
knowledge, it is able to extract the paper information from a large set of diverse
documents.

The extraction task is defined by ontology in Fig. 1 and a set of taggers
for assigning the title, authors, section and pages tags. For tagging the possible
authors, we have used the Stanford NER classifier [7] for personal name recogni-
tion. The remaining taggers are implemented using regular expressions defining
the allowed format of the corresponding data fields.

Since not all the documents contain the page numbers and sections, we have
run two experiments: (A) on the complete data set (148 documents) with match-
ing only the title – authors pairs and (B) on a subset of documents containing the
sections and page numbers (67 documents) with matching the complete records.
We have used the evaluation data provided by the SemPub Challenge organizers
to evaluate our results and we provide the obtained results in Table 1. As we may
notice, we have obtained better results for the (B) dataset which has two main
reasons: first, the (B) dataset contains newer documents that are more visually
consistent and second, by adding pages and section tags, the disambiguation is
more efficient (more inconsistent combinations may be excluded from the result).

9.2 Sports Results

For the demonstration of the DBPedia concept matching usage, we have chosen
the sports results domain as an example of integrating a rapidly changing exter-
nal data source with DBPedia. We have extracted the records containing athlete
name, country and current points from the current tennis and cycling rankings
available on the web.

We have used DBPedia Spotlight web service for recognizing the athlete
names (the matched DBPedia resource should be instance of dbo:Athlete) and
countries (instance of dbo:Country). Moreover, we have used Stanford NER
classifier for recognizing the personal names a locations in case no corresponding
resource is available in DBPedia. All visual areas containing a numeric value are
considered a possible points value and tagged with the corresponding tag.

4 http://ceur-ws.org/.

190

22 R. Burget

For every source document5, we have prepared the “golden standard” data for
evaluation by manually transforming the source HTML code to a structured CSV
table using a text editor. The results in Table 2 show that based on the assigned
tags, our method is able to automatically infer the presentation pattern used for
presenting the data records and extract the records with a high precision. In a few
cases, the personal names are not identified correctly (there is no corresponding
DBPedia resource and the NER classifier failed to recognize the name) which
is the reason of lower recall. The resulting extracted records are linked to the
corresponding athlete resources in DBPedia. This demonstrates the possibility of
an easy integration of an external resource with DBPedia without any predefined
templates.

9.3 Timetables

Timetables provide a data source containing an extremely low amount of labels
and other additional information that could be used for the data interpreta-
tion. Actually, a timetable often contains only the data (hours, minutes, station
names) formatted in a specific way leaving its interpretation to a great extent
on the experience of the human reader. Motivated by a practical need, we have
used the timetables available at the official Czech public transportation timetable
portal.6 The timetables are published here in PDF files (see Fig. 3 for an example)
providing a good example of processing data-rich PDF documents.

Table 2. The sports results tasks

Source #rec P R F

ATP rankings (tennis.com) 200 1.000 0.935 0.966

WTA rankings (tennis.com) 200 1.000 0.925 0.961

Road cycling rankings (uci.ch) 2488 1.000 0.933 0.965

Mountain bike rankings (uci.ch) 1627 1.000 0.978 0.989

Fig. 3. A sample timetable

5 The URLs of the source documents were http://www.tennis.com/rankings/
ATP/, http://www.tennis.com/rankings/ATP/, http://www.uci.ch/road/ranking/
and http://www.uci.ch/mountain-bike/ranking/ respectively.

6 http://portal.idos.cz.

191

Information Extraction from the Web 23

time:hour

time:minute time:DateTime
Description

transit:departureTime
transit:serviceStop

rdfs:labeltransit:Stop

transit:stop

Fig. 4. Ontology used for timetables. The concepts and properties come from the OWL
Time ontology and Transit ontology

The domain knowledge is represented by an ontological description in Fig. 4
and taggers for the tags hours and minutes based on the recognition of numbers
in the corresponding range and for stops (stop names) based on matching with
a fixed list of existing stops (which is available in this domain) combined with
regular expressions used when the matching fails.

We have tested our method on 30 different time table documents from the
above mentioned portal. The extracted data was compared with a golden stan-
dard that was created manually by transforming the PDF files to CSV data
using a semi-automatic transformation based on regular expressions tailored for
the particular documents. Because the time tables contain a large amount of
(hour,minute, stop) records (we have obtained 5130 records in total), the tag
disambiguation works very efficiently in this case and we have extracted all the
records correctly (P = R = 1.0). It is worth noting that all the hour and minute
pairs have been identified correctly although the initial tagging is very ambiguous
(many visual areas share both tags after the initial text classification).

9.4 News Articles

We have chosen the news articles domain to demonstrate a different application
scenario. Unlike the documents in the previous domains that typically contained
many data records (papers or times), the news web pages usually contain one
full article in a document. However, each news website contains many such doc-
uments that follow a visually consistent presentation style. Therefore, we may
treat a set of documents as a single input page containing multiple articles.

For this task, we view the individual news articles as data records containing
data fields that we have assigned the following tags: title (article title), author
(author name), pubdate (date of publication) and paragraph (a paragraph of
text). Considering the title to be the record-identifying field, the title – paragraph
pairs correspond to a one-to-many relation, the title – author and title – pubdate
pairs are one-to-one relations.

Due to the specific properties of the news domain where it may be difficult to
recognize the individual parts such as titles and subtitles by text classification
only, we employ a visual classification approach that allows to assign the tags to
the areas based on their visual appearance. This approach that we have presented
in detail in [3] uses the visual features of the individual visual areas: Font features
such as the font size, weight and style, spatial features (position in the page
and size), text features (numbers of characters and lines) and color features

192

24 R. Burget

Table 3. Results for the news articles task: precision, recall and F-measure with and
without using tag disambiguation

Method Precision Recall F-measure

Visual classifier only 0.593 0.790 0.678

Visual classifier + disambiguation 0.978 0.986 0.982

(luminosity, contrast). The values of the features are expressed numerically and
used as an input for a generic classifier7. Therefore, in contrast to the other
applications presented in the previous sections, a training set of documents is
required for setting up the classifier. Later in the classification step, the trained
classifier directly assigns tags to the visual areas in new documents.

For testing, we have used the news articles on reuters.com and cnn.com news
portals. We have taken 30 documents with articles from each website. We have
manually annotated the source documents by manually assigning the appropriate
tags to the individual visual areas in the documents.8 Then, 5 documents from
each web site were used for training the classifiers (one for each source website)
based on the visual features of the manually tagged areas. Later, the trained
classifiers were used for assigning tags to all the visual areas in the complete
dataset from the given website.

The results obtained are shown in Table 3. The first row shows the values
obtained by comparing the classification results with the manually assigned tags.
This corresponds to the scenario presented in [3]. The second line shows the
result with disambiguation where the visual classification results were used as
the initial tagging for the tag disambiguation process described in Sect. 7. As we
may see, the disambiguation greatly improves the resulting precision and recall.

10 Conclusions

We have presented a record extraction approach from web documents that is
based on searching the most frequent visual presentation patterns in the docu-
ments while assuming that multiple instances of the records are available in the
documents. The extraction itself is based only on the knowledge available for the
target domain that includes the expected structure of the extracted records and
an estimation of possible values (or alternatively a style) of the data fields. We
consider this as the main benefit of the presented approach. As the result, the
method is independent on the source document format, and it does not rely on
any kind of templates used or labels or annotations present in the source docu-
ments. The experimental results demonstrate the applicability of the approach
for different scenarios and document sources.

7 For our experiments, we have used the J.48 classifier from the WEKA package (which
is an implementation of the C4.5 decision tree classifier) mainly for its speed.

8 The used FITLayout framework provides a graphical annotation tool that was used
for this task.

193

Information Extraction from the Web 25

Acknowledgments. This work was supported by The Ministry of Education,
Youth and Sports from the National Programme of Sustainability (NPU II); project
IT4Innovations excellence in science – LQ1602.

References

1. Anderson, N., Hong, J.: Visually extracting data records from query result
pages. In: Ishikawa, Y., Li, J., Wang, W., Zhang, R., Zhang, W. (eds.) APWeb
2013. LNCS, vol. 7808, pp. 392–403. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-37401-2 40

2. Burget, R.: Hierarchies in HTML documents: linking text to concepts. In: 15th
International Workshop on Database and Expert Systems Applications, pp. 186–
190. IEEE Computer Society (2004)

3. Burget, R., Burgetová, I.: Automatic annotation of online articles based on visual
feature classification. Int. J. Intell. Inf. Database Syst. 5(4), 338–360 (2011)

4. Daiber, J., Jakob, M., Hokamp, C., Mendes, P.N.: Improving efficiency and accu-
racy in multilingual entity extraction. In: Proceedings of the 9th International
Conference on Semantic Systems (I-Semantics) (2013)

5. Iorio, A.D., Lange, C., Dimou, A., Vahdati, S.: Semantic publishing challenge –
assessing the quality of scientific output by information extraction and interlink-
ing. In: Gandon, F., Cabrio, E., Stankovic, M., Zimmermann, A. (eds.) SemWe-
bEval 2015. CCIS, vol. 548, pp. 65–80. Springer, Cham (2015). doi:10.1007/
978-3-319-25518-7 6

6. Embley, D.W., Campbell, D.M., Jiang, Y.S., Liddle, S.W., Lonsdale, D.W., Ng,
Y.K., Smith, R.D.: Conceptual-model-based data extraction from multiple-record
web pages. Data Knowl. Eng. 31(3), 227–251 (1999)

7. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into
information extraction systems by Gibbs sampling. In: Proceedings of the 43rd
Annual Meeting on Association for Computational Linguistics, ACL 2005, pp.
363–370 (2005)

8. Goh, P.L., Hong, J.L., Tan, E.X., Goh, W.W.: Region based data extraction. In:
2012 9th International Conference on Fuzzy Systems and Knowledge Discovery
(FSKD), pp. 1196–1200, May 2012

9. Hong, J.L., Siew, E.G., Egerton, S.: Information extraction for search engines using
fast heuristic techniques. Data Knowl. Eng. 69(2), 169–196 (2010). doi:10.1016/j.
datak.2009.10.002

10. Kolchin, M., Kozlov, F.: A template-based information extraction from web sites
with unstable markup. In: Presutti, V., Stankovic, M., Cambria, E., Cantador, I.,
Di Iorio, A., Di Noia, T., Lange, C., Reforgiato Recupero, D., Tordai, A. (eds.)
SemWebEval 2014. CCIS, vol. 475, pp. 89–94. Springer, Cham (2014). doi:10.1007/
978-3-319-12024-9 11

11. Milicka, M., Burget, R.: Information extraction from web sources based on multi-
aspect content analysis. In: Gandon, F., Cabrio, E., Stankovic, M., Zimmermann,
A. (eds.) SemWebEval 2015. CCIS, vol. 548, pp. 81–92. Springer, Cham (2015).
doi:10.1007/978-3-319-25518-7 7

12. Su, W., Wang, J., Lochovsky, F.H.: ODE: ontology-assisted data extraction. ACM
Trans. Database Syst. 34(2), 121–1235 (2009). doi:10.1145/1538909.1538914

194

26 R. Burget

13. Weng, D., Hong, J., Bell, D.A.: Extracting data records from query result pages
based on visual features. In: Fernandes, A.A.A., Gray, A.J.G., Belhajjame, K.
(eds.) BNCOD 2011. LNCS, vol. 7051, pp. 140–153. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-24577-0 16

14. Weng, D., Hong, J., Bell, D.A.: Automatically annotating structured web data
using a SVM-based multiclass classifier. In: Benatallah, B., Bestavros, A.,
Manolopoulos, Y., Vakali, A., Zhang, Y. (eds.) WISE 2014. LNCS, vol. 8786, pp.
115–124. Springer, Cham (2014). doi:10.1007/978-3-319-11749-2 9

15. Zheng, X., Gu, Y., Li, Y.: Data extraction from web pages based on structural-
semantic entropy. In: Proceedings of the 21st International Conference on World
Wide Web, WWW 2012 Companion, pp. 93–102. ACM, New York (2012). doi:10.
1145/2187980.2187991

195

196

C.3 Integration of Unstructured Web Data Sources
Burget, R.: Model-Based Integration of Unstructured Web Data Sources Using Graph Rep-
resentation of Document Contents. In 15th International Conference on Web Information
Systems and Technologies. SciTePress. 2019. ISBN 978-989-758-386-5. pp. 326–333.

197

198

Model-based Integration of Unstructured Web Data Sources using
Graph Representation of Document Contents

Radek Burget a

Faculty of Information Technology, Brno University of Technology, Bozetechova 2, Brno, Czech Republic

Keywords: Information Integration, Domain Modelling, Document Processing, Structured Record Extraction.

Abstract: Unstructured or semi-structured documents on the web are often used as a media for publishing structured,
domain-specific data which is not available from other sources. Integration of such documents as a data
source to a standard information system is still a challenging problem because of the very loose structure of
the input documents and usually missing semantic annotation of the published data. In this paper, we propose
an approach to data integration that exploits the domain model of the target information system. First, we
propose a graph-based model of the input document that allows to interpret the contained data in different
alternative ways. Further, we propose a method of aligning the document model with the target domain model
by evaluating all possible mappings between the two models. Finally, we demonstrate the applicability of the
proposed approach on a sample domain of public transportation timetables and we present the preliminary
results achieved with real-world documents available on the web.

1 INTRODUCTION

Despite much effort dedicated to the development of
different technical means for annotating the semantics
of the presented data such as Microformats1, RDFa2

and others, the World Wide Web is still an extremely
large source of mostly unannotated documents. These
documents often contain structured and potentially
useful data presented in a way that is convenient for
human readers but it is completely unsuitable for au-
tomated processing. Therefore, using the documents
as a data source for traditional information systems
that are based on structured data models presents a
challenging task.

A typical domain-oriented information system
uses a structured data representation and storage (for
example a relational database), which has been de-
signed based on the analysis of the target domain,
identification of the individual entities, their proper-
ties and the relationships among them. However, on
the web, many potential sources of domain-specific
data have the form of documents designed primarily
for human readers. Although the data contained in
these documents follow basically the same structure
that comes from the target domain, their integration

a https://orcid.org/0000-0001-5233-0456
1https://microformats.io/
2https://rdfa.info/

to an existing information system is difficult because
of the very loose way of their presentation without
any formal annotation.

In (Burget, 2017), we have mentioned several
domains, where this situation is quite typical such
as scholarly data (conference proceedings contents),
sports results or public transport time tables. In all
these (and many other) domains, the data has a fixed
and predictable structure that potentially allows its
integration to existing applications in the respective
domains. However, the corresponding data sources
often have the form of periodically published docu-
ments (mostly web pages; PDF documents are typical
for some domains such as timetables) whose human
interpretation is assumed for understanding the pre-
sented data.

Traditionally, the integration of such web sources
is implemented using different kinds of wrappers
that recognize data fields in the documents by an-
alyzing the underlying document code – mostly
the HTML code represented as a Document Object
Model (DOM) (Schulz et al., 2016). For each data
source (the source of the input documents), the corre-
sponding code patterns are different and therefore, a
specific wrapper must be prepared. Such approach is
reliable and feasible when considering a limited num-
ber of previously known data sources that provide a
larger number of documents but it is not practical at

326
Burget, R.
Model-based Integration of Unstructured Web Data Sources using Graph Representation of Document Contents.
DOI: 10.5220/0008350103260333
In Proceedings of the 15th International Conference on Web Information Systems and Technologies (WEBIST 2019), pages 326-333
ISBN: 978-989-758-386-5
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved199

all, when the input documents come from previously
unknown sources, each document has been prepared
independently and uses a completely different way of
data presentation.

In this paper, we propose a model-based approach
aiming to overcome the specific details of the in-
dividual documents by an automatic discovery of a
mapping between the previously defined domain data
model and the presented data records. The main pre-
sented contributions are the following:

• We present a technology- and language-
independent graph-based model of the document
contents that allows to interpret the contained
data in different alternative ways.

• We propose a method for evaluating the possible
mappings between the created document model
and the target domain model that describes the
expected structure of the contained data and for
choosing the best mapping based on a statistical
analysis.

• We demonstrate the application of the described
approach on a sample domain of public transport
timetables.

We also include preliminary results of this work in
progress that show the applicability of the proposed
document model and mapping methods on real-world
documents.

2 RELATED WORK

The research in the topic of data record extraction
from web documents has been running for over 20
years. Apart from historical HTML-based approaches
(Schulz et al., 2016), due to the evolution of the web
technology (mainly in the HTML and CSS languages
and the dynamic web pages) and the increasing com-
plexity of web documents, the recent approaches usu-
ally combine the analysis of the document code, with
visual presentation properties (Potvin and Villemaire,
2019; Shi et al., 2015). However, most of the cur-
rent methods use DOM3 as the primary document
representation (Figueiredo et al., 2017; Guo et al.,
2019; Lockard et al., 2018; Shi et al., 2015; Yu-
liana and Chang, 2018). This limits the applicability
of the methods to specific HTML documents where
the DOM elements accurately delimit the desired data
fields.

From the data integration point of view, the cur-
rent methods infer the schema of the extracted records
from the source documents themselves (Figueiredo

3https://www.w3.org/DOM/

et al., 2017; Shi et al., 2015; Yuliana and Chang,
2018). In all cases, the approach is to find a specific
region or multiple regions (Figueiredo et al., 2017)
that contain the records and then, a flat internal struc-
ture of the records is determined based on finding the
regular patterns in the document code and by com-
paring the similarity and other characteristics of the
repeating sequences. This approach allows easy ap-
plication of the methods to any document indepen-
dently on its domain; however, the integration of the
extracted data to a domain information system re-
quires further interpretation and transformation of the
extracted records.

In contrast to the above mentioned data-driven ap-
proaches, there has been significantly less attention
given to the research of the model-driven approaches.
(Embley et al., 1999) uses a conceptual domain model
that is directly mapped to HTML code based on dif-
ferent heuristics. In (Potvin and Villemaire, 2019) a
flat list of extracted data field is used and (Lockard
et al., 2018) integrates the extracted data with an ex-
isting knowledge base.

In our previous research (Burget, 2017), we have
proposed a basic approach for matching individual bi-
nary relationships in a domain model to visual pre-
sentation patterns in the documents. In this paper, we
generalize the matching to the whole domain mod-
els and above all, we introduce a formal graph-based
document model of the input documents that makes
the matching possible.

3 THE DATA INTEGRATION
TASK

The data integration task we consider in this paper
is the following: We have a (potentially unlimited)
collection of unstructured input documents on the
source side and a structured domain-specific informa-
tion system on the target side.

The target information system is typically de-
signed based on the analysis of the particular domain,
which results in a domain data model such as a entity-
relationship diagram (ERD) or its equivalent depend-
ing on the used design methodology. The model cap-
tures the basic entity sets, their properties (attributes)
and the relationships among them. Independently on
whether an ERD or another formalism is used, we
may define a domain model for our purpose as fol-
lows:
Definition 1. A domain model is a tuple D=(E,P,R),
where E is a set of entity sets, P is a set of properties
(attributes in ERD) and R ⊂ (E× (E ∪P)) is the set
of relationships.

Model-based Integration of Unstructured Web Data Sources using Graph Representation of Document Contents

327

200

Figure 1 shows a simple ERD for the public trans-
port timetables domain. Note that we consider just a
part of the ERD that is relevant to the considered data
sources; the complete ERD for a real-world informa-
tion system would be obviously significantly larger.

Figure 1: An entity-relationship model for the domain of
public transportation timetables with two entity sets (Time,
Stop), three properties (Hour, Minute, Name) and one rela-
tionship (stops at).

At the input, we assume a collection of documents
that contain visually presented structured data records
consisting of several data fields. The documents come
generally from different sources and therefore, the
way of data presentation, formatting or the implemen-
tation may be different for every single document.
However, we put the following assumptions on the
input documents:
• We assume formatted text documents where the

document creator may specify the visual proper-
ties (fonts, colors, etc.) for every part of the docu-
ment text as well as the visual organization of the
contents (alignment, spacing, etc.) by any means.
For the web sources, the HTML web pages and
PDF documents are the most typical but our con-
tent model presented below in section 4 is inde-
pendent on the actual technology.

• Every document contains multiple data records
consisting of the data fields that may be directly
mapped to the properties in the target ERD (i.e.
without any additional transformations) and the
records are consistent regarding their structure
and visual presentation (their visual properties
and organization as mentioned above).
Figure 2 gives the overview of the document pro-

cessing process. First, the visual properties and posi-
tions of all parts of the document text are computed.
This is the only task that depends on the document
type. For some document types such as HTML, this
requires rendering the document by a web browser. In
PDF documents, the necessary information is avail-
able directly. In the next steps, we identify the text

chunks that represent the candidate substrings of the
document text that potentially could represent a data
field. Based on the extracted text chunks, we build
a page contents model, which is basically a graph
that describes the visual properties of the individ-
ual chunks and the visually presented relationships
among them. We describe the model and its construc-
tion below in section 4.

The key part of the information integration pro-
cess consists of finding the most appropriate mapping
between the created document contents graph and the
domain model. For this purpose, we also represent
the domain model as a graph of the entity properties
and the relationships among them and we search for a
best mapping between the two graphs. The details of
this process are described in section 5.

In the following sections, we will use the already
mentioned public transport timetables as a sample do-
main. Our goal is to integrate the data about the stops
and the corresponding times from the timetable docu-
ments as shown in Figure 1. We believe, this domain
is suitable for illustrating the individual steps for the
following reasons:

• It is challenging. The timetables are a good exam-
ple of source documents that present data in a very
ambiguous way and even the human readers need
some experience to interpret the data properly in
some more complex cases.

• It is practically useful. Although there exist differ-
ent portals and aggregators in this domain, they
are usually limited to certain countries, regions
or groups of companies and they typically do not
provide their structured data to third parties.

• There are many highly diverse documents from
different transportation companies available on
the web.

However, the presented integration approach is
not limited to a single domain as long as the above
mentioned assumptions on the input documents are
met.

4 DOCUMENT CONTENTS
MODEL

The goal of the proposed document contents model is
to capture the possibly relevant parts of the document
contents and their mutual relationships based on their
visual presentation. We define the model as a graph:

Definition 2. The document contents model is defined
as a graph G = (C,E), where C is a set of text chunks

WEBIST 2019 - 15th International Conference on Web Information Systems and Technologies

328

201

Page
rendering

Presentation to
domain model

mapping

HTML
documents

Text chunk
extraction

PDF
documents

Text boxes

Page contents
model

(graph)

Structured
data records

Domain
model

Attributes (properties)

Figure 2: An overview of the data integration process.

Lincoln | County Hospital

Monday to Satu rday except Bank Holidays

Lincoln Bus Station 0700 0720 0745 15 45
Monks Road 12 0710 0730 0755 25 55
Tower Estate 0712 0732 0757 27 57
County Hospital 0719 0739 0805 35 05
Tower Estate 0722 0742 0808 38 08
Monks Road 12 0725 0745 0811 41 11
Lincoln Bus Station 0740 0800 0825 55 25

Lincoln Bus Station 1545 1620 1650 1720 1750
Monks Road 12 1555 1630 1700 1730 1800
Tower Estate 1557 1632 1702 1732 1802
County Hospital 1605 1640 1710 1740 1810
Tower Estate 1608 1643 1713 1743 1813
Monks Road 12 1611 1646 1716 1746 1816
Lincoln Bus Station 1625 1700 1730 1800 1830

for Sunday journeys see line 17 & 18 timetables

th
en

 e
ve

ry
3
0

m
in

s

u
n
ti

l

Figure 3: An example time table.

that represent the relevant parts of the contents to-
gether with their visual formatting and form the ver-
tices of the graph; E ⊂C×C is a set of graph edges,
that represent the relationships among the chunks as
expressed by the document layout.

With a text chunk, we understand any piece of
content (a substring of the document text), that pos-
sibly represents a value of a domain property. In the
moment of the chunk extraction, we do not decide,
whether the given substring really represents a part of
a data record; the goal is to identify all substrings that
“look like” a value of a given property when consid-
ered separately.

Definition 3. A text chunk is a tuple c = (tc,sc, pc),
where tc is the text of the chunk (the actual substring
of the document text), sc represents the visual style of
the text and pc represents the position of the chunk as
displayed in the resulting page.

Definition 4. The chunk style is further defined as
sc = (f s,w,st,c,bc) where f s is the average font size,
w ∈ [0,1] is the average font weight from 0 (normal
font) to 1 (bold font), st ∈ [0,1] is the average font
style (1 for italic font, 0 for regular font) and c and bc
are the computed foreground and background colors
of the displayed chunk.

Definition 5. The position pc = (x,y,w,h) describes
the x and y coordinates of the chunk in the page and
its width w and height h.

The edges E of the graph represent the mutual re-
lationships among the chunk pairs. Based on their
mutual positions, we identify specific relationships
that are interesting for further analysis of the whole
data record organization. For example, two chunks
may be in a onRight, below, sameLine or another re-
lation as described in section 4.2.

Both the chunks and the relationships are ex-
tracted from rendered documents as shown in Figure
2. In the next sections, we provide the details of the
chunk and relationship extraction.

4.1 Chunk Extraction

For the chunk extraction, we use a connected line as a
smallest unit of the rendered document.

Definition 6. A connected line represents a part of
the document text that is positioned on a single line
(considering the y coordinates of the individual char-
acters) and it does not contain an empty space wider
than a certain threshold ∆x.

In our experimental setup, we have used ∆x =
2.5 f where f is the average font size used at the con-
sidered line. The goal of this setting is to ensure
that the normal text formed by space-separated words
forms single lines and the parts separated with a larger
space create separate connected lines.

Example 1. In the example timetable in Figure 3, the
header and footer text forms continuous text lines;
however, the stop names and the time data are sep-
arated by a larger space. Thus, we obtain the
connected lines “Lincoln Bus Station”, “0700 0720
0745”, “15” and “45” for the first line of the sched-
ule, etc. Note that the connected lines are not neces-
sarily consistent regarding their style; they may con-
tain text with different font weights, colors, etc. as we
may notice for the station names.

Model-based Integration of Unstructured Web Data Sources using Graph Representation of Document Contents

329

202

For each domain model property p ∈ P (see Def-
inition 1), we extract a set Cp of chunks from all the
connected lines. The algorithm for the chunk discov-
ery within the connected lines depends greatly on the
type of the property p. For our sample domain, we
have used a simple algorithm that finds all one- or
two-digit numbers in the appropriate range for hours
and minutes; the chunks for stop names are discov-
ered using a simple regular expression allowing a se-
quence of alphanumeric characters and some com-
monly used punctuation. In our previous experiments
on other domains (Burget, 2017), we have also men-
tioned the usage of named entity classifiers (Finkel
et al., 2005) for recoginizing personal names and
locations or even using the DBPedia Spotlight tool
(Daiber et al., 2013) for recoginizing entities from the
DBPedia dataset. Advanced algorithms for numeric
value discovery have been proposed as well (Neu-
maier et al., 2016).

As the result of the chunk extraction, we ob-
tain a complete set of chunks for all the properties
C = Cp1 ∪Cp2 ∪ . . .∪Cpn where n = |P|. Note that
the chunk detection itself may be quite inaccurate as
we use very approximate methods for the chunk ex-
traction. The extracted chunks may even overlap; e.g.
in the “Monks Road 12” string, we discover three
chunks: the whole string forms the name chunk, the
“12” substring forms the hour and minute chunks be-
cause both interpretations are possible. It is the task
of the mapping phase (described in section 5) to com-
plete the data records and exclude the incorrectly dis-
covered chunks.

4.2 Relationship Modelling

After the chunks have been detected, we analyze all
the chunk pairs (c1,c2) ∈ C×C and we investigate
whether there is an relationship between c1 and c2
given by their mutual positions (x1,y1) and (x2,y2).
We have identified several relationships that are in-
teresting for further analysis. Every relationship is
defined by a relation Ex ⊂ C×C and we say that
there is a spatial relationship x between c1 and c2 iff
(c1,c2) ∈ Ex. Currently, we consider the following
relationships:

• onRight – (c1,c2) ∈ EonRight when c1 and c2 are
placed on the same line just next to each other and
c2 is on the right side of c1.

• after – c2 is on the same line anywhere to the right
of c1.

• sameLine – c1 and c2 are on the same line regard-
less their mutual positions.

• below – c2 is placed just below c1.

• lineBelow – c2 is placed on a line that is just below
c1.

As we may see, a chunk pair may belong to multi-
ple relations as the spatial relationships (e.g. after and
sameLine) are not mutually exclusive.

Finally, the complete set of relationships is then
E =

⋃
Ex for all the relations x listed above. Together

with the set C of chunks, it creates the document con-
tent graph as defined in Definition 2.

5 MAPPING TO THE DOMAIN
MODEL

Our information integration approach is based on the
assumption that some of the extracted text chunks
may be mapped to the individual properties of the
domain model as defined in Definition 1 and sim-
ilarly, some discovered spatial relationships among
them may be mapped to the domain model relation-
ships. During the mapping phase, we find all possi-
ble mappings from the constructed document contents
graph to the domain model, we evaluate them and fi-
nally, we use the best mapping found.

Below, we describe the representation of the do-
main model used for the final mapping. Further in
section 5.2, we define a mapping formally and finally
in section 5.3, we discuss the way of evaluating the in-
dividual mappings and finding the most suitable one.

5.1 Domain Model Transformation

As the first step, we transform the domain model to a
simplified graph model that describes only the proper-
ties and relationships as the entity sets have no direct
representation in the documents. An example model
for the timetables domain is shown in Figure 4. The
properties are divided into groups (the dashed boxes)
where each group corresponds to a set of properties
that are always presented together in a 1:1 relation-
ship.

Definition 7. The domain graph model is a graph
Dg = (G,Rg) where G = {G1,G2, . . . ,Gn} is a set
of property groups, Gi ⊂ P and Gi ∩ G j = ∅ for
any 1 ≤ i, j ≤ n. P is the set of domain properties.
Rg ⊂ G×G is a set of relationships between groups.

The domain graph is constructed from the domain
model defined in Definition 1 as follows:

• All the properties of a single entity set belong to
the same group.

• If two entity sets are in a 1:1 relationship, all their
properties belong to a single group.

WEBIST 2019 - 15th International Conference on Web Information Systems and Technologies

330

203

name
(Stop)

minute
(Time)

1

nG1

G2

hour
(Time)

Figure 4: A domain graph model corresponding to the do-
main model shown in Figure 1 that represents the property
groups and the relationships among them.

• The 1:M relationships are transformed to the rela-
tionships between the respective groups.

Currently, we don’t consider M:N relationships in
our method because they are difficult to represent in
the documents in an understandable way and there-
fore, they are very rarely used in source documents.

Considering the example from Figure 1, we obtain
two groups of properties: G1 = {hour,minute} and
G2 = {name} as shown in Figure 4. Subsequently, we
analyze the possible mappings between the document
contents graph and the domain graph model.

5.2 Mapping Representation

When considering a particular document represented
by the document contents graph, there exist many
possible mappings between the chunks and the prop-
erties in the domain graph and similarly, between the
relationships in the two graphs. In our approach, a
mapping presents a hypothesis about the visual pre-
sentation of data records, which is subsequently eval-
uated and compared with other hypotheses.

Based on the above mentioned assumption that
there exist multiple visually consistent data records in
the source documents, a mapping basically describes
two aspects of the records:

1. The visual style of the text chunks used for pre-
senting each property p ∈ P in the input docu-
ment.

2. The actual spatial relationships (as mentioned in
section 4.2) among the property values.

Let’s consider the chunk style defined in Defini-
tion 4 and let S be a set of all distinct chunk styles
used in the input document. Further, let Rs be the set
of all spatial relationships between chunks discovered
in the input document. Then, we may define the map-
ping between a property group Gi in the domain graph
and the document contents graph as follows:

Definition 8 (Group Mapping.). For each group Gi ∈
G, the mapping is defined as mi = (fsi, fri) where fsi :
Gi 7→ S is a morphism that assigns a chunk style to
each property in Gi and fri : Gi ×Gi 7→ Rs assigns
spatial relationships to the property pairs.

The frg morphism does not necessarily assign a re-
lationship to all possible property pairs. For a unique
description of the mapping, it is sufficient that the
property pairs form a connected graph. For example,
considering three properties a, b and c, the mapping
may contain (a,b) 7→ onRight, (a,c) 7→ below (which
can be read as b is on the right side of a and c is be-
low a). We obtain a connected graph of properties
and therefore, it is not necessary to find any relation-
ship for the remaining combinations such as (b,c).
Considering the group G1 in Figure 4, it is sufficient
to find one of the morphisms (hour,minute) 7→ r or
(minute,hour) 7→ r, where r ∈ Rs.

Similarly, we define an inter-group mapping that
corresponds to the way how the connection of two
groups is visually presented in the document:

Definition 9 (Inter-group Mapping.). For a pair of
groups (Gi,G j) ∈ G×G, the inter-group mapping is
mi j = (pi, p j,r) where pi ∈ Gi, p j ∈ G j and r ∈ Rs.

In other words, we define a spatial relationship r
between two properties where the first property be-
longs to the first group and the second property be-
longs to the second group. Again, we have to find
enough mappings between the group pairs so that we
obtain a connected graph of groups. Then, the com-
plete mapping is m=(MG,MI) where MG is a set con-
taining a group mapping for each group in G and MI
is a set of the inter-group mappings.

Example 2. When considering our example
timetable in Figure 3 and the domain graph in
Figure 4, we find many different styles used for
the presentation of the hour values in the document
(when considering the style of all the chunks in Chour)
and similarly for the minute and name properties (the
style morphisms fs1 and fs2). Moreover, we find
different ways how the (hour,minute) pair is possibly
presented, e.g. minute is on the right side of hour or
minute is below hour or hour is below minute, etc.
(the fri morphism). And finally, we find the possible
presentation of the inter-group relation, e.g. hour is
on the same line as name. Since hour and name are in
separate groups in the domain graphs, we know that
hour actually represents a complete (hour,minute)
group and there may exist multiple such pairs related
to a single name because of the 1:N relationship
between the groups.

By considering all combinations of chunk styles,
and the applicable intra-group and inter-group rela-

Model-based Integration of Unstructured Web Data Sources using Graph Representation of Document Contents

331

204

tionship representations, we obtain a set M of all pos-
sible mappings from the contents graph to the domain
model graph.

5.3 Evaluation of the Mappings

The last step is the evaluation all the mappings and
choosing the most suitable one. For each mapping
m ∈ M, we apply the style and spatial relationship
mappings on the document text chunks and as a re-
sult, we obtain a set of candidate data records, where
each data field of the record is represented by a text
chunk.

For the evaluation, the following aspects of the
discovered candidate records are important:

• The number of chunks actually covered by the
records. Although we admit that some of the
chunks may have been incorrectly identified, we
assume that the correctly identified ones prevail
and thus, more chunks contained in the discovered
records indicate a better result.

• Visual consistency of the records. The given map-
ping defines the actual visual style of the chunks
mapped to the individual properties as well as the
spatial relationships among them (e.g. hours and
minutes being at the same line). However, the
records may differ in the distance and alignment
of the particular chunks. When evaluating con-
sistency, we compare the individual records and
we observe the variance of the corresponding dis-
tances among the chunks. The lower the overall
variance is, the more consistent (and thus better)
are the records.

Additionally, we allow using certain number of
wildcards in style specifications. It is quite common
in visual presentation that some of the records or data
fields are distinguished from the others by a differ-
ent background color, font style, etc. In our experi-
ments, we allow one wildcard in the chunk style, i.e.
based on the style defined in Definition 4, one the
(f s,w,st,c,bc) attributes may be disregarded.

As we may notice, the two evaluation criteria
mentioned above are contradictory to some extent. It
is easy to cover a large number of chunks and dis-
cover many data records when we allow low visual
consistency of records and vice versa. For our ex-
periments we have empirically set the total mapping
score to s = 0.6p + 0.4c where p is the percentage
of chunks contained in the records and c is the visual
consistency, p,c ∈ [0..1].

6 EXPERIMENTAL EVALUATION

For the evaluation on real-world documents, we have
implemented the proposed method in Java. For in-
put document processing, we have used the CSSBox4

rendering engine for HTML documents and the PDF-
Box5 library for reading PDF documents.

Our preliminary tests (being this a work in
progress) were run on 30 timetables in PDF available
online on the websites of various transportation com-
panies that operate in different en countries (Czechia,
Spain, Italy and the United States). As a second use
case, we have extracted the publication data (authors,
titles and sessions) from CEUR Workshop Proceed-
ings6 (HTML documents).

The tests have shown the practical usability of the
proposed document contents model described in sec-
tion 4 as well as the domain mapping method. How-
ever, in about 10% of input documents, the correct
mapping was not evaluated as the best one and the
evaluation function had to be adjusted for obtaining
correct results. Therefore, we consider the mapping
evaluation the main issue for our ongoing research.

7 CONCLUSIONS

In this paper, we have proposed an approach to the
integration of the data contained in web documents
to structured information systems. Unlike most of the
existing approaches that derive the data structure from
the input documents, our method is driven by a pre-
viously defined domain model of the information sys-
tem.

In order to make the information integration pos-
sible, we have designed a graph-based model of the
document contents and subsequently, we have pro-
posed a method for finding the best mapping of the
document contents model to the domain model. Our
preliminary results show that the approach allows in-
tegration of real-world HTML and PDF documents
and mapping of the published data to the fixed do-
main model. The evaluation of the possible mappings
seems to be the most challenging topic for our next
research.

4http://cssbox.sourceforge.net
5https://pdfbox.apache.org/
6http://ceur-ws.org/

WEBIST 2019 - 15th International Conference on Web Information Systems and Technologies

332

205

ACKNOWLEDGEMENTS

This work was supported by the Ministry of the In-
terior of the Czech Republic as a part of the project
Integrated platform for analysis of digital data from
security incidents VI20172020062.

REFERENCES

Burget, R. (2017). Information extraction from the web
by matching visual presentation patterns. In Knowl-
edge Graphs and Language Technology: ISWC 2016
International Workshops: KEKI and NLP&DBpedia,
Lecture Notes in Computer Science vol. 10579, pages
10–26. Springer International Publishing.

Daiber, J., Jakob, M., Hokamp, C., and Mendes, P. N.
(2013). Improving efficiency and accuracy in mul-
tilingual entity extraction. In Proceedings of the
9th International Conference on Semantic Systems (I-
Semantics).

Embley, D. W., Campbell, D. M., Jiang, Y. S., Lid-
dle, S. W., Lonsdale, D. W., Ng, Y.-K., and Smith,
R. D. (1999). Conceptual-model-based data extrac-
tion from multiple-record web pages. Data Knowl.
Eng., 31(3):227–251.

Figueiredo, L. N. L., de Assis, G. T., and Ferreira, A. A.
(2017). Derin: A data extraction method based on
rendering information and n-gram. Information Pro-
cessing & Management, 53(5):1120 – 1138.

Finkel, J. R., Grenager, T., and Manning, C. (2005). Incor-
porating non-local information into information ex-
traction systems by gibbs sampling. In Proceedings
of the 43rd Annual Meeting on Association for Com-
putational Linguistics, ACL ’05, pages 363–370.

Guo, J., Crescenzi, V., Furche, T., Grasso, G., and Gott-
lob, G. (2019). Red: Redundancy-driven data extrac-
tion from result pages? In The World Wide Web Con-
ference, WWW ’19, pages 605–615, New York, NY,
USA. ACM.

Lockard, C., Dong, X. L., Einolghozati, A., and Shiralkar,
P. (2018). Ceres: Distantly supervised relation extrac-
tion from the semi-structured web. Proc. VLDB En-
dow., 11(10):1084–1096.

Neumaier, S., Umbrich, J., Parreira, J. X., and Polleres, A.
(2016). Multi-level semantic labelling of numerical
values. In The Semantic Web – ISWC 2016, pages
428–445, Cham. Springer International Publishing.

Potvin, B. and Villemaire, R. (2019). Robust web data ex-
traction based on unsupervised visual validation. In
Intelligent Information and Database Systems, pages
77–89, Cham. Springer International Publishing.

Schulz, A., Lässig, J., and Gaedke, M. (2016). Practical web
data extraction: Are we there yet? – a short survey.
In 2016 IEEE/WIC/ACM International Conference on
Web Intelligence (WI), pages 562–567.

Shi, S., Liu, C., Shen, Y., Yuan, C., and Huang, Y.
(2015). Autorm: An effective approach for automatic

web data record mining. Knowledge-Based Systems,
89:314 – 331.

Yuliana, O. Y. and Chang, C.-H. (2018). A novel
alignment algorithm for effective web data extrac-
tion from singleton-item pages. Applied Intelligence,
48(11):4355–4370.

Model-based Integration of Unstructured Web Data Sources using Graph Representation of Document Contents

333

206

Appendix D

Software Tools

The following software tools have been implemented and used for the evaluation of the
methods proposed in most of the published papers.

D.1 CSSBox HTML Rendering Engine

Project web site: http://cssbox.sourceforge.net/
License: GNU Lesser General Public License v3.0 (LGPL)

CSSBox is an (X)HTML/CSS rendering engine written in Java. Its primary purpose is to
provide a complete and further processable information about the rendered page contents
and layout. The input of the rendering engine is the document DOM tree and a set of style
sheets referenced from the document.

The output is an object-oriented model of the page layout. This model can be directly
displayed but mainly, it is suitable for further processing by the layout analysis algorithms
as for example the page segmentation or information extraction algorithms.

The availability of an explicitly represented and fine-grained model of the rendered is
the main difference from the conventional rendering engines such as WebKit or Gecko.

CSSBox was used by several other researchers for evaluating their methods related
to web document processing [53, 55, 77, 129]. CSSBox or its components are used by
several third-party software products that include Atlassian JIRA (uses the CSS parser,
which is a part of CSSBox), Vaadin Liferay Portal (its Tori component), Daisy pipeline
(document transformations into accessible formats for people with print disabilities) or
Atlassian Botocss tool (CSS transformations for e-mail). Currently (March 2020), GitHub
reports 84 third-party repositories mentioning CSSBox in its dependencies.

D.2 pdf2dom PDF parser

Project web site: http://cssbox.sourceforge.net/pdf2dom/
License: GNU Lesser General Public License v3.0 (LGPL)

Pdf2Dom is a PDF parser that converts the input documents to a HTML DOM representa-
tion. The obtained DOM tree may be then serialized to a HTML file or further processed.
The inline CSS definitions contained in the resulting document are used for making the
HTML page as similar as possible to the PDF input. A command-line utility for converting
the PDF documents to HTML is included in the distribution package. Pdf2Dom may be

207

http://cssbox.sourceforge.net/
http://cssbox.sourceforge.net/pdf2dom/

also used as an independent Java library with a standard DOM interface for DOM-based
applications or as an alternative parser for the CSSBox rendering engine in order to add
the PDF processing capability to CSSBox.

Currently (March 2020), GitHub reports 260 third-party repositories mentioning Pdf2Dom
in its dependencies.

D.3 FitLayout Framework for Page Analysis
Project web site: http://www.fit.vutbr.cz/~burgetr/FITLayout/
License: GNU Lesser General Public License v3.0 (LGPL)

FitLayout is an extensible web page segmentation and analysis framework written in Java.
It defines a generic Java application interface for representing a rendered web page and its
division to visual areas using the visual document model described in section 2.2. In the
same time, the ontology-based representation of the document content and its storage in
an RDF repository is supported.

The FitLayout framework was used for implementing all the designed page processing
methods including the designed page segmentation methods from chapter 3, content clas-
sification based on visual features and logical structure discovery presented in chapter 4 as
well as the structured record extraction discussed in chapter 5.

Finally, the framework also provides tools for controlling page analysis process and ex-
amining the obtained results through a graphical user interface as well as for the preparation
and interactive annotation of training data sets.

208

http://www.fit.vutbr.cz/~burgetr/FITLayout/

	Introduction
	The Information Extraction Task in the Web Context
	Structure of the Thesis

	Web Document Modeling
	Related Work
	Visual Document Model
	Ontological Model
	Graph-Based Model

	Web Page Segmentation
	State of the Art
	Hierarchical Page Segmentation
	Flat Segmentation Model
	Template-Based Segmentation of Large Sets of Pages

	Classification and Extraction of Semantic Objects
	Web Page Element Classification
	Main Content Extraction from Web Pages
	Discovery of Logical Relationships among the Page Elements

	Structured Record Extraction
	State of the Art
	Heuristics-based Record Extraction
	Ontology-Based Record Extraction
	Graph-Based Record Extraction

	Conclusions
	Bibliography
	Web Page Segmentation and Document Modeling
	Layout Structure Detection
	Box Clustering Segmentation
	Accelerating the Process of Web Page Segmentation via Template Clustering

	Entity Classification and Semantic Object Extraction
	Visual Area Classification
	Automatic Annotation of Online Articles
	Modelling Visually Presented Element Relationships in Web Documents

	Extraction of Structured Records
	Information Extraction from Web Sources Based on Multi-aspect Content Analysis
	Matching Visual Presentation Patterns
	Integration of Unstructured Web Data Sources

	Software Tools
	CSSBox HTML Rendering Engine
	pdf2dom PDF parser
	FitLayout Framework for Page Analysis

