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Abstract
In this habilitation thesis, we discuss the problem of verification of programs with pointers
and dynamic memory allocation. One of the main components needed in verification
of these programs is a suitable representation of a (potentially infinite) set of memory
configurations often called shape graphs. Shape graphs are in fact unrestricted oriented
graphs, and, moreover, we have to work with infinite sets of these objects. A suitable
symbolic model of memory configurations must satisfy the following properties: First, it
must describe in a finite way an infinite number of shape graphs. Second, it must allow
an execution of program statements on the level of the symbolic model. And finally, some
acceleration technique must exists to guarantee a termination of the execution on the level
of the used symbolic model. In this thesis, we discuss various types of automata and
logics as natural tools to represent infinite sets of objects, which can be used as symbolic
models of shape graphs. In the area of automata, we describe use of finite automata, tree
automata, forest automata, counter automata, and we discuss also the concept of graph
automata. In the area of logics, we concentrate mostly on monadic second-order logic
and separation logic. The main part of this thesis is a collection of original research
papers, where the author of this thesis is the key contributor.

Keywords
Formal verification, shape analysis, finite automata, tree automata, separation logic, monadic
second-order logic, decidability.
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Chapter 1

Introduction

Computers and computer-controlled systems are nowadays integral part of everyday life.
Almost everyone has a personal computer and other computer powered personal devices
such as a mobile phone, a DVD player, or a smart TV set. Moreover, computers are used
as real-time controllers embedded in cars, planes, train control systems, medical devices
or power plants. During the years, people got used to rely on computers as error-free
devices which do its work even better than humans. However, a problem is that computer
systems are not error-free, they contain plenty of errors which may appear after a long
time of reliable usage. An error in a critical system may cause a huge financial loss and
sometimes even fatalities1. Contrary to humans, a computer often does not recognize that
it made an error, and if so, it is incapable to improvise to bypass the consequences. At the
same time, the size of computer systems is growing, and the systems themselves become
more and more complex. Together with the rising size and complexity, the probability
of a critical error is also rising. Therefore automated techniques to improve, and even
guarantee, reliability of computer systems (including hardware and software) are strongly
demanded. The frequently used techniques are various methods of intelligent testing and
formal verification.

1.1 Testing

Testing is a widely used technique for improving reliability of computer systems. The
naive way is to take a computer system and run it many times with different input data.
Whenever an error is detected, the tester is sure that it is a real bug, and, moreover, it
can be often easily reproduced2. But the naive testing methods stop to work when the
number of problematic inputs (i.e. the inputs leading to an error behavior) is very low
in comparison with the correctly working inputs. The problematic inputs may be related,
e.g., to a single branch of a program which is almost never executed. Many more problems
arise in concurrent programs, where the particular threads can be mutually scheduled in

1CBCNews: Toyota ”Unintended Acceleration” Has Killed 89,
http://www.cbsnews.com/news/toyota-unintended-acceleration-has-killed-89/

2A problem is to reproduce bugs in parallel and other nondeterministic systems
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many different ways and only some of these schedules can cause problematic behavior
such as deadlocks, data races, or livelocks—see. e.g. [FKLV12].

Therefore various intelligent methods of testing were proposed [AO08]. Most of them
are based on code coverage metrics, and the tester (or automated testing engine) is produc-
ing inputs such that he/she achieves (almost) full coverage of the tested system. Coverage
metrics for single threaded programs as, e.g., path coverage or loop coverage, are quite
well established. In the case of concurrent programs, the situation is much more compli-
cated due to the number of possible mutual schedulings of parallel processes. Moreover,
various concurrent coverage metrics were also established recently—see e.g. [Let12].

The latest advances in testing allow programmers to produce computer systems with
a very low probability of error behavior. Nevertheless, despite of the huge progress in
various testing methods, testing cannot (in most of the cases) guarantee correctness for
all possible inputs. This is not such a big problem in production software designed for
personal devices, but it is a huge problem for computer systems serving as real-time con-
trollers of critical applications. Therefore methods for proving program correct w.r.t.
some specification are welcome.

1.2 Formal Verification

By formal verification, we understand methods based on a formal mathematical basis de-
signed to prove or disprove whether a system satisfies given requirements. In the case
of disprovement, it is useful when the verification method provides a concrete counterex-
ample run leading to an error behavior. Techniques of formal verification differ in the
used mathematical principles, level of automation, constructions allowed in the checked
system and types of properties which can be checked.

Computer systems can be roughly divided into ones with finite state space and ones
with infinite state space. For a system with a finite state space, one can (at least in the-
ory) enumerate all possible states reachable from the initial one and then check whether
a given property holds. But when the size of the state space starts to be very large or
even infinite, it is impossible to explicitly enumerate all the reachable states. At the same
time, systems with infinite states space are quite natural in practice. The infinity can
be caused, e.g., by a use of unbounded data structures (stacks, queues, etc.), real time,
or unrestricted parallelism. To deal with infinite state spaces, one can use techniques
of automated abstractions [GS97, BBLS00, BLBS01, McM06], cut-offs [GS92, EN96],
automated induction [WL89, KM95, MQS00, LHR97, CR00, PRZ01] or symbolic ver-
ification [BCM+92, KMM+01, BJNT00]. The last possibility is the one tackled in our
research and in this thesis.

Symbolic verification

In symbolic verification, a large or infinite number of states is represented in a compact
symbolic formalism such as, e.g., binary decision diagrams [BCM+92], various types of
automata [BJNT00, Abd12, Leg12, BHRV12], logics [Rey02, SRW02, MPQ11, MS01],
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or grammars [LYY05, HJKN15]. For each concrete step of a verified system, one has to
provide a symbolic transformer manipulating the possibly infinite number of configura-
tions on the level of the symbolic representation. In order to make the symbolic verifi-
cation terminate in case of infinite state space systems, one has to employ some accel-
eration technique such as widening [BJNT00, BT12] or automated abstraction [BHV04,
BHRV05, BHRV12] that overapproximates the set of reachable states.

1.3 Programs with Pointers and Dynamic Memory Allo-
cation

Dynamically allocated data structures linked by pointers are a widely used construct in
low-level programming languages such as the C language. They present a powerful tech-
nique which allows one to implement data structures with variable sizes, such as lists,
stacks, or trees. Pointers are often used in system code, such as operating system kernels,
standard libraries, or implementation of data containers, used in higher-level program-
ming languages, such as C++ or Java. However, the use of pointers may be quite intricate,
hence this kind of programs can easily contain hidden errors. The most common bugs in
pointer programs are the following:

• Null and undefined pointer dereference: the program tries to access a memory cell
using null or invalid pointer value.

• Garbage: there are parts of allocated memory inaccessible from the program vari-
ables.

• Data structure inconsistency: the data structure does not satisfy the considered
property—e.g., in doubly-linked lists, x→ next→ back is not equal to x.

Due to the intricate behavior of pointer programs and the usage of pointers in critical
system code in general, techniques for automated analysis are quite needed here. The
memory configuration of a pointer program is in fact an unrestricted oriented graph (of-
ten called a shape-graph), where nodes are allocated memory cells and edges represent
pointer links between these cells. Hence, for automated analysis, one needs to be able to
handle unbounded sets of unrestricted graphs.

Plenty of techniques for symbolic representation of shape-graphs were proposed by
numerous research teams. Despite the progress in the last 20 years, the state-of-the-art
is still far from satisfactory. The techniques can be divided into three main categories as
follows:

• Automata based: a set of shape graphs is represented by some kind of (finite-state)
machine, such as finite automata, tree automata, or forest automata—see Chapter 2.

• Logic based: a set of shape graphs is represented using a logical formula in some
suitable logic, such as separation logic or 3-valued predicate logic with transitive
closure—see Chapter 3.
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• Other approaches: the shape graphs can also be represented and manipulated by
graph grammars [LYY05, HJKN15], memory patterns [YKB02, ČEV07b, ČEV07a],
Petri nets [BCK01], or other techniques as, e.g., [WKZ+06, CR07, LAIS06].

1.4 Structure of the Thesis
The rest of the thesis is organized as follows: Chapter 2 presents a brief introduction into
automata-based techniques for representation and manipulation of shape graphs, Chapter
3 describes logic-based techniques, Chapter 4 summarizes contributions of the thesis, and,
finally, Chapter 5 concludes the thesis and discusses the possible directions of the future
research.
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Chapter 2

Automata-based Techniques for
Analysis of Pointer Programs

Various kinds of automata are commonly used in computer science as finite representa-
tions of infinite sets of objects. In order to represent sets of shape graphs (i.e. memory
configurations of pointer programs)1 it is a natural way to represent them by some kind of
graph automata as, e.g., [MP11, Tho91]. The concept of graph automata used in [MP11]
with their full definition is presented in Sec. 2.4. Unfortunately, due to the complexity
and undecidability issues related to emptiness and inclusion problems, graph automata
cannot be easily employed in verification. Therefore several encodings of graphs into
words, trees, forests, or even vectors of integers were proposed in order to use finite word,
tree or counter automata. This chapter presents a short overview of these encodings.

2.1 Finite (Word) Automata
In this section, we introduce two remarkable applications of finite automata to analysis of
pointer programs.

One Selector Linked Lists in Regular Model Checking

In [BHMV05], the authors proposed an encoding of programs manipulating linked lists
into the framework of regular model checking [BHV04]. The idea of the encoding is
based on the fact that a garbage-free linked list can be always split into a finite number
of uninterrupted singly-linked segments2. Moreover, the number of these segments is lin-
ear in the number of pointer variables. These segments are then linearized into a word,
pointer variables are placed directly at the places where they point-to, and references be-
tween these segments are encoded by means of so-called marker pairs. A marker pair
contains a from marker mf placed at the end of a segment and a to marker mt placed on

1As was already mentioned in Sec. 1.3, a memory configuration of a pointer manipulating program can
be viewed as an unrestricted oriented graph with edges labeled by selectors.

2A segment may be interrupted by a node pointed by a pointer variables or by a node representing a join
of two segments.
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an arbitrary position except the end of a segment. A from marker mf represents the start-
ing point of the edge leading to the corresponding to markermt. There can only be a finite
number of segment, which implies a finite number of marker pairs in the alphabet.

Example: Fig. 2.1 shows a memory configuration contains of three uninterrupted singly-
linked segments. This configuration can be encoded as a word x///m1

f |ym2
t///m

1
f |m1

t//m
2
f |

where / states for next selector and | is a segment separator.

x

y

Figure 2.1: An example memory configuration.
2

A regular set of heaps can then be naturally encoded as a finite automaton, pointer up-
dates are encoded as finite state transducers and the technique of regular model checking
can be used to compute (an overapproximation of) the set of reachable configurations.

Automata in May-Alias Analysis

The work [Ven99] (continuation of earlier works [Jon81, Deu94]) considered the special
problem of may-alias analysis—an analysis used for discovering a potential aliasing be-
tween pointers. In particular, this analysis searches for pointers and pointer sequences
which can point to the same location during a program execution. Memory structures are
represented as tuples of finite automata (one automaton for each pointer variable) and an
alias relation. To accelerate the fixpoint computation, a special widening designed for
these structures was proposed.

2.2 Tree Automata

In this section, we introduce three different approaches to encode dynamic data structures
by tree automata. The first one based on Tree Automata and Graph Types [BHRV06]
is the most general one, but the encoding can easily break down after higher number of
destructive updates performed on an unbounded loop. The second one based on Forest
Automata [HHR+11] is less expressive then the first one, but the encoding is robust due
to ideas of local reasoning inspired by Separation logic (see Sec. 3.2). The last encoding
based on Top-Down Parity Tree Automata [DEG06] allow one to encode wide class of
properties to be verified, but the programming language is restricted to a single procedure
without nested loops.
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Tree Automata and Graph Types

In [BHRV06], we proposed an original encoding based on tree automata combined with
graph types [KS93]. In graph types, nodes are linked by two types of edges: standard
edges and extra edges. The standard edges form a tree and the extra edges are described
by regular expressions over an alphabet based on two components: (i) directions in the
tree composed from the standard edges and (ii) types of nodes (node with k next selectors,
leaf, root, etc.). These regular expressions are placed into nodes from where the extra
edges originate.

In mode detail, the main idea of the above tree encoding of a graph is to use a tree
backbone and a finite number of routing expressions. A node with n outgoing selectors is
then encoded by an alphabet symbol from 2V ar×2M×(D∪E∪{null , undefined})n. Var
is a set of pointer variables, D is a set of directions in the backbone tree, where a symbol
x ∈ D represents the fact that the edge leads to the xth son of the node (0 is used for the
parent). E is a finite set of references to routing expressions (stored externally of the tree
encoding). Each routing expression is a regular expression over ΣR = D ∪ {leaf , root}
and it is coupled with a marker from M . Let ei ∈ E be a reference to a routing expression
placed in a node p in the backbone tree. Then the destination of an ei-labeled edge is
a node r marked with a corresponding marker mi ∈ M such that the path from the node
p to the node r satisfies the routing expression coupled with the reference ei. The number
of routing expressions is usually fixed to the number of destructive pointer updates (x→
s = y) in the program such that each destructive update has its own routing expression.

Example: As an example, let us take a binary tree with root pointers where pointer
variable x points to the root. The data structure and its encoding are depicted in Fig 2.2.
The reference E1 corresponds to the routing expression 0∗ and is coupled with the marker
M1.

E1
E121

E1 E1 E1

E1M1

1null

null null null null null null

21xx

null

null nullnull nullnullnull

l

l

l ll

l

r

r

r

r

r r

p p

p pp

Figure 2.2: A binary tree with parent pointers (left) and its encoding based on backbone
tree and the routing expression E1 = 0∗. 2

Above, we spoke about an encoding a single graph. When one need to encode a
set of graphs, one have to capture a set of tree backbones and the routing expressions.
Regular sets of tree backbones are symbolically captured by a TA and each routing ex-
pression by a TA as well. Program statements are then encoded as tree transducers with a
single exception—a destructive update is encoded as a tree transducer coupled with rout-
ing expression update. This encoding allows one to use the technique of regular (tree)
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model checking to compute an overapproximation of reachable states [BHRV12]3. The
technique was applied on a various kind of small programs manipulating non-trivial data
structures such as DLLs, or various kinds of trees including trees, where leaves are linked
into a singly-linked list. The main disadvantage of this approach is that the tree backbone
is fixed during the whole computation. If destructive updates performed on a loop does
not fit the idea of routing expressions then the routing expression will easily become Σ∗R
and false positives will appear as a consequence.

In [IR13]4, the overapproximation of reachable states was used to translate the orig-
inal pointer program into a Büchi automaton allowing one to prove its termination by
reduction to the language emptiness problem of Büchi automata.

Forest Automata

In [HHR+11]5, we proposed a concept of Forest automata. The crucial idea is that each
oriented graph with a finite number of input nodes (e.g. nodes pointed by pointer vari-
ables) can be decomposed into an ordered forest where the root of each forest is either (i)
an input node or (ii) a node with more then one incoming edge. Both the nodes of type (i)
and (ii) are called cutpoints. Each leaf of the tree may contain null or a reference to a root
of some component in the forest. The semantics of a forest is an oriented graph obtained
by gluing all root references with the corresponding roots.

A forest automaton (FA) is then a tuple of tree automata accepting a graph language.
A graph is a part of the language iff it can be decomposed into an ordered forest where
the ith tree is accepted by the ith tree automaton from the FA.

A single FA accepts a graph language where all graphs have an equal number of
cutpoints. Hence, sets of forest automata (SFA) are used instead of a single FA to cover
graph languages with various numbers of cutpoints. The SFA are closed under union and
intersection and their inclusion problem is decidable.

The SFA cover a wide class of graph languages but its disadvantage is that the number
of cutpoints must be bounded. Hence, an SFA is not enough to represent, e.g., the lan-
guage of all DLLs (doubly-linked lists) of an arbitrary size. Each node in a DLL (except
for the head and tail nodes) is a cutpoint with two incoming edges. In order to cover graph
languages with an unbounded number of cutpoints, hierarchical FA were introduced. In
hierarchical FA (resp. SFA), the accepted graphs can contain special k-ary hyperedges
called boxes with one node called the input port and k nodes called output ports. Such
edges can be simply used in the rules of TA. Each box represents a reference to a graph
language represented again by a hierarchical SFA where the input nodes correspond to
the ports of the box. A strict hierarchy is required6. Hierarchical SFA are closed w.r.t.
union, and a sound semi-algorithm for inclusion checking was proposed for them. They
are used as a symbolic model in the shape analysis tool called Forester and the tool was

3Appendix C
4Appendix A
5Appendix B
6This restriction can be in theory lifted, but as a consequence, some pointer updates can not be symbol-

ically executed any more.
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applied on a set of small, but pointer intensive, programs manipulating various kinds of
lists (including skip-lists) and trees. The boxes needed to verify a certain program (or
class of programs) were provided manually in the first version of the tool, and in the later
versions, a heuristics is used to learn them automatically [HLR+13]7.

Top-Down Parity Tree Automata

Another automata based approach was proposed in [DEG06]. It is based on parity tree
automata (top-down tree automata with the parity acceptance condition). These automata
work on memory shape graphs unfolded into infinite trees in a natural way. The principle
allows one to encode wide range of properties like reachability of a memory node, cy-
cles in the memory, sharing, dangling pointers, null pointer dereferences, etc. The main
limitation is that the programming language is rather restricted—the technique can be ap-
plied on a single procedure without a call to other procedures, the verified procedure must
have a special pointer called cursor and all modifications of the memory configuration
are done in a finite neighborhood of it, and no nested loops are allowed. The procedure is
automatically translated into the considered automata. Then, a product of the automaton
describing the input data structure, the automaton describing the procedure, and the bad
property automaton is computed. The resulting automaton is then checked for emptiness.

2.3 Simulation by Counter Automata
A counter automaton (CA) is a finite automaton equipped with a finite set of integer vari-
ables called counters. A transition between two states is labeled by a logical expression
on current and next values of counters, where the next value of a variable x is usually
denoted as x′. The expression encodes both a guard and an action. A counter automaton
can perform any move satisfying the particular expression on a transition. A run starts in
an initial state with unconstrained values of variables and terminates when no transition
can be fired. A CA is a natural model for integer programs. However, as shown below, it
can be used to encode and analyze programs working with other data too.

The reachability and termination problems for CA are in general undecidable, but
various successful semi-algorithmic approaches were proposed as, e.g., ARMC [Ryb],
Terminator [CPR06], or FLATA [BIKV].

Let us now have a look how to use CA for dealing with pointer programs. The main
advantage is that one can verify properties such as, e.g., termination of the procedure, or
balanceness of a tree. On the other hand one have to analyze machines with unbounded
counters with all disadvantages related to it. The basic idea of using CA for verification of
programs with pointers is to establish numerical measures (sometimes called norms) on
data structures such as the length of the list segment pointed by a variable x, the number of
nodes in a tree, etc. Then the original pointer program is replaced by an integer program
updating these numerical measures. The new numerical program is constructed in such
a way that it simulates (or bisimulates) the original pointer program.

7Appendix E
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In [BBH+06, BFL06], the authors showed that pointer programs manipulating singly
linked lists are bisimular to counter automata. The idea is based on the fact that a number
of uninterrupted SLL segments is linear to the number of pointer variables. Up to the
data values, each heap can be represented by remembering the interconnection of its SLL
segments and the lengths of the particular segments. The number of possible interconnec-
tions of SLL segments is finite, hence each interconnection is represented as a state in the
finite control of CA. The lengths of particular segments are represented by counters. The
verification tools for CA can be easily applied.

In [HIRV07], we proposed an encoding of programs manipulating trees into CA based
on the following numerical measures—for each pointer variable, one assigns two counters
representing the size (the number of nodes), respective the height of the tree pointed
by the variable. The constructed CA then simulates the original pointer program hence
reachability (resp. termination) proof for the CA implies reachability (resp. termination)
proof for the pointer program.

The most general technique is the one proposed in the THOR tool [MTLT08]. The
numerical measures are not fixed for the concrete type of data structures, and the user can
define its own data structures together with the numerical measures. The data structures
are defined in separation logic (c.f. Section 3.2) extended with numerical constraints.
The authors demonstrated their approach on DLLs and trees and implemented it in a tool
called THOR. However, to the best of our knowledge, the implementation of THOR has
hard-wired DLL definition and other type of data structures cannot be easily added.

2.4 Graph Automata
Now, we proceed to notion of graph automata mentioned in the work [MP11]8. We con-
sider this notion interesting, because it allows one to describe wide class of graph lan-
guages as, e.g., a language of all 3-colorable graphs (see below). Despite the notion of
graph automata sounds promising, it is not that useful for verification because there are
no known efficient algorithms for language inclusion and emptiness problems.

Let us consider a class C of oriented edge-labeled graphs and let Σ be a finite set of
edge labels (the alphabet). A graph automaton (GA) over Σ is a triple
A = (Q, {Ta}a∈Σ, type), where

• Q is a finite set of states,

• Ta ⊆ Q×Q is a tiling relation,

• type : Q→ 2Σ × 2Σ is a type relation.

A graph is accepted by a GA iff each node of the graph can be labeled by a state such
that (i) each edge satisfies the tiling relation and (ii) the incoming and outgoing edges of
each node conform to the type relation. Formally, a graph G = (V, {Ea}a∈Σ) is accepted
by the automaton G if there exists a mapping ρ : V → Q such that the following holds:

8The version used in [Tho91] differs in some details, but the main spirit is equal.
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• ∀(v1, v2) ∈ Ea : (ρ(v1), ρ(v2)) ∈ Ta
• ∀v ∈ V : type(ρ(v)) = (In,Out), where In = {a|∃v′.(v′, v) ∈ Ea} and Out =
{a|∃v′.(v, v′) ∈ Ea}.

Example: Let us fix Σ = {x}. The automaton A = ({q1, q2, q3}, {Tx = {(q, r) | q 6=
r}, type} where type(q) = ({x}, {x}) for each q ∈ {q1, q2, q3} accepts all 3-colorable
graphs where each node has at least one incoming and one outgoing edge. 2

Closure Properties and Decidable Problems

The class of graph automata is closed under union and intersection, but it is not closed
under complement. Moreover, the inclusion and emptiness problems are not decidable in
general.

The inclusion and emptiness become decidable, when one restricts the class of graphs
to the graphs with bounded tree width [MP11]. The decidability result is then based on
a reduction from graph automata to MSO on graphs (see Section 3.1) which leads to
a NONELEMENTARY decision procedure. This decision procedure is a theoretical one
and we are not aware of any heuristic technique targeting these problems for GA. There-
fore, in the current state of the art, GA can not be practically applied within verification.
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Chapter 3

Logic-based Techniques for Analysis of
Pointer Programs

Various kinds of logics represent a popular way to encode potentially infinite sets of ele-
ments. In the case of shape graphs, one of the most general is MSO logic on graphs. But,
it is not clear how to symbolically execute program statements on the level of MSO on
graphs (c.f. Section 3.1). Moreover, MSO on graphs is undecidable in general. There-
fore more specialized logic approaches are in use when aiming at an efficient analysis of
pointer manipulating programs. In the last 10 years, the most popular logic is probably
separation logic (c.f. Sec. 3.2).

3.1 Monadic Second-Order Logic
Monadic second-order logic (MSO) is a powerful logic, which can be interpreted over
various domains. In this section, we provide a brief introduction to MSO interpreted on
strings, trees, and graphs. MSO logics on strings and trees play important role because
they are decidable, and, despite the worst case complexity of the decision procedures,
efficient heuristic-based algorithms are implemented in the state-of-the-art tools.

The syntax of MSO is based on the following components:

• First order variables VAR1 : A first order variable is a logical representation of
a single element, such as a position in a string, word, or tree; or a vertex in a graph.
First order variables are denoted by small letters (x, y, z, . . . ).

• Second order variables VAR2 : A second order variable is a logical representation
of a (potentially empty) set of elements, such as a set of positions in a string or
tree; or a set of vertices. Second order variables are denoted by capital letters
(X, Y, Z, . . . ).

• Quantifiers ∃x,∀x,∃X, ∀X: Each x ∈ VAR1 and X ∈ VAR2 may be quantified
existentially or universally.

• Predicate A(x): for x ∈ VAR1 and A ∈ VAR2 : A(x) is valid iff x ∈ A.

12



• Other predicate symbols depending on the domain on which the MSO is interpreted.

• Standard logical connectives: ∧,∨,¬,→

MSO on Strings and Trees

In order to interpret MSO on strings, one needs to add a predicate succ(x, y), which
states that x and y are successor positions in the string. The expressive power of MSO
interpreted over strings (MSOS) is equal to Büchi automata [Büc60].

If the quantification of second-order variables is restricted to finite sets only, then the
logic is called weak. Weak MSO on strings is often denoted as WS1S (Weak Second
order theory of One Successor), and its power is equal to finite automata. See, e.g.,
[Tho90, KM01] for more details.

To interpret MSO on k-ary trees, a set of predicates {succi(x, y) | 0 < i ≤ k} must
be added, where succi(x, y) states that the position y is the ith son of the position x. As in
the case of strings, the theory is called weak if the quantification of second-order variables
is restricted to finite sets only. WSkS then denotes a Weak monadic Second order theory
of k Successors. The power of WSkS is equivalent to finite tree automata [Tho90].

Automata-Logic Connection

As we have already mention above, for the string case as well as the tree case, the WSkS
logic is tightly connected to finite (tree) automata. For a WSkS formula φ, one can ef-
ficiently create a finite (tree) automaton Aφ such that w |= φ ⇔ w ∈ L(Aφ) and also
an automaton A can be translated into an equivalent formula φA. Within the translation,
subsets of second order variables are mapped to alphabet symbols, ∨ is mapped to lan-
guage union, ∧ to language intersection, ¬ to complement, etc. This translation leads to
a decision procedure for WSkS, which belongs in general to the NONELEMENTARY
complexity class. For a given formula φ with k quantifier alternations, the decision pro-

cedure has DTIME (22...
2(|φ|)|

︸ ︷︷ ︸
k+1

) worst case complexity.

The automata-based decision procedure was, with many optimizations, for the first
time implemented in the MONA tool [KM01]. MONA uses a binary encoding of alpha-
bet symbols, a semi-symbolic encoding of deterministic finite (tree) automata using BDDs
[Bry92], and a number of other optimizations to make the decision procedure tractable.
Last year, a novel technique based on anti-chains was implemented in the tool dWiNA
[FHLV15], where the state-of-the art algorithms for nondeterministic automata were em-
ployed to avoid the EXPTIME worst case complexity of the determinization in a lot of
practical cases and subsequently increase practical limits of the decision procedure for
WSkS. The anti-chain-based technique was recently significantly improved by a number
of heuristics [FHJ+16].
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PALE: Verification Based on MSO on Trees

Here, we shortly introduce the Pointer Assertion Logic Engine (PALE) [MS01] as an ex-
ample of successful application of MSO on trees in verification. PALE uses an approach
for encoding a set of shape graphs as a set of trees using Graph types [KS93]. As was
already mentioned in Sec. 2.2, graph types represent a data structure by a tree together
with extra non-tree edges. The non-tree edges are represented by means of so-called rout-
ing expressions placed in source nodes. A (possibly infinite) set of trees with routing
expression can be encoded as a formula in MSO interpreted on trees. The tree backbone
cannot be easily changed within verification because this would invalidate all the routing
expression. Therefore each destructive pointer update such as x → s = y is performed
by a change of the corresponding routing expressions only. This allows one to express
an effect of a finite block of code with no loops in MSO. Together with user provided in-
variants for each loop and each procedure call and exit, PALE is able to prove correctness
of programs by using MONA [KM01] as its backend.

MSO on Graphs

MSO can be interpreted on graphs as well. The needed component is a set of predicates
{edgea(x, y)|a ∈ Σe}, where Σe is a set of edge labels. The predicate edgea(x, y) is valid,
if there is an a-labeled edge between the nodes x and y.

MSO interpreted on graphs is in general undecidable. Nevertheless, for each k ∈ N,
MSO interpreted over the class of graphs restricted to the tree width of at most k is decid-
able. The proof of decidability is based on a reduction of formula φG in MSO on graphs
to a formula φT in MSO on trees such that |=k φG ⇔ |= φT . The reduction adds a small
fixed number of quantifier alternations to the number of quantifier alternations occurring
in φG and leads to a NONELEMENTARY decision procedure—see the Courselle theo-
rem [FG06] for more details.

Potential Problems of Verification Based on MSO on Graphs

The idea of using MSO interpreted on graphs of bounded tree width as a symbolic model
for shape graphs seems to be nice on the first view. One can encode sets of graphs as,
e.g., singly/doubly linked lists of any length, trees (with parent or root pointers), trees
with linked leaves, etc. But there are few drawbacks which make MSO on graphs non-
suitable for the purpose of verification. The main problem is related to execution of
destructive updates as, e.g., x → s = y. In order to interpret this statement, one needs
to disconnect the original s-labeled edge from the node x and connect it to the node y,
and, moreover, this must be done on a set of graphs. But one cannot simply remove a
predicate edges(x, z) from the original formula because some other edges can be defined
using paths in the graph going via the edges(x, z)—a removal of a single edge can break
an unbounded number of other edges.

Example: Let us consider the conjunction of the following 4 formulae describing a set
of all possible SLLs (Singly-linked lists) where the pointer variable head points to the
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first element of the list, tail points to the last element of the list and x points somewhere
to the middle.

1. ∃LIST. x ∈ LIST

2. ∀e ∈ LIST. e = head ∨
(∃y ∈ LIST. edgen(y, e) ∧ ∀z ∈ LIST. edgen(z, e)→ z = y)

3. tail ∈ LIST ∧ edgen(tail, null)

4. ∀X.(head ∈ X ∧ ∀y ∈ X.edge(y, q)→ q = null ∨ q ∈ X)→ LIST ⊆ X

Condition (1) guarantees that x points somewhere to the list, (2) guarantees that each el-
ement of the list has unique predecessor or it is equal to head, (3) guarantees that tail is
the last element of the list, and condition (4) guarantee that everything is reachable from
head—LIST is the smallest set satisfying the conditions above. A potential execution of
the statement x→ next = y leads to a need of global change of this formula. 2

The second drawback of MSO on graphs is that within verification, one often needs
to decide validity of implication to check a fixpoint condition. Due to the NON−
ELEMENTARY worst case, one has to employ some (heuristic-based) efficient algo-
rithms to make decision procedure for MSO on graphs tractable, and, to the best of our
knowledge, such efficient algorithms does not exists in current state of the art. On the
other hand, MSO on graphs can be used within theoretical decidability proofs of other
symbolic models such as separation logic (c.f. Section 3.2) or forest automata (c.f. Sec-
tion 2.2).

3.2 Separation Logic
Separation logic (SL) [Rey02] is a widely used symbolic representation of dynamic data
structures generated by pointer programs. In the past years, several academic tools (e.g.
Space Invader [BCC+07], Sleek [NC08], or Predator [DPV11]) as well as industrial tools
(e.g. Infer [CD11]) were built on top of SL or were based on its main ideas.

The crucial principle of SL is the principle of local reasoning. The main idea of
the local reasoning can be characterized as follows: A local change in a small piece of
memory is mapped to a local change in a small subformula of the SL formula. This
allows ones easily analyze a single function or thread. The analyzer considers only a
small subformula corresponding to the heap accessed by the function (resp. thread) and
then results of different functions (resp. threads) of the program are combined.

The basic syntax of SL consist of the following components:

• The empty heap emp.

• The points-to predicate x 7→ (s1, . . . , sk), which denotes the fact that there is an
allocated memory cell labeled by the logical variable x with pointer references to
cells labeled by the logical variables s1, . . . , sk.
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• The separation conjunction ∗. Formula φ∗σ denotes the fact that the set of allocated
cells in φ and in σ are disjoint (they may be connected by the pointer references
only).

These basic components can then be connected using standard logical connectives
(∨,∧,¬, . . . ), the logical variables may be quantified existentially or universally. The
program variables are represented by free variables. For more details in syntax and se-
mantics, see, e.g., [Rey02].

Representation of Infinite Sets by SL

The basic notion of SL allows one to describe a finite set of finite heaps. But, in verifi-
cation, one often needs to represent infinite sets of finite memory configurations as, e.g.,
all possible doubly-linked lists. Therefore the so-called recursive definitions (also called
recursive predicates) were introduced into SL. A recursive predicate P (x1, . . . , xn) may
be defined as a disjunction of rules, where each rule is a SL formula, which may contain
some other recursive predicate calls including P itself. SL with recursive definitions is
denoted as SLRD in the following. Several examples of recursive definitions are depicted
in Fig. 3.1.

list(hd, tl) ::= emp ∧ hd = tl
| ∃x. hd 7→ x ∗ list(x, tl)

dll(hd, p, tl) ::= emp ∧ hd = tl
| ∃x. hd 7→ (x, p) ∗ dll(x, hd, tl)

tree(root) ::= emp ∧ root = nil
| ∃l, r. root 7→ (l, r) ∗ tree(l) ∗ tree(r)

tll(x, ll, lr) ::= x 7→ (nil, nil, lr) ∧ x = ll
| ∃l, r, z. x 7→ (l, r, nil) ∗ tll(l, ll, z)
∗tll(r, z, lr)

nil

tl

hd tl
p

list:

dll:

...

...

hd

roottree: root

ll lr

tll:

nilnil

Figure 3.1: Examples of recursive data structures definable in SLRD.

Entailment Problem in Separation Logic

In order to use SLRD in verification, one of the most important problems to be solved is
the so-called entailment problem. Given two formulae φ and ψ, the problem of entailment

φ
?

|= ψ asks whether each model of formula φ is also a model of ψ.
The entailment problem is in general undecidable. But there are plenty of works

based on various restriction of recursive definitions in order to obtain a decidable (or
semi-decidable) fragment of SLRD.

• Linked lists: A set of works proved decidability of SLRD restricted to linked lists.
The work [CHO+11] provides a PTIME decision procedure for SL with a hard
coded SLL predicate. This work has been generalized to nested and overlayed lists
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[ESS13] too. Recently, a set of works provided reduction from SL with SLL/DLL
recursive definitions into SMT [PWZ13, PR13], which allows one to take advantage
of current SMT solvers. The entailment problem for SL with various kinds on
nested linked lists was also considered in the tool SPEN [ELSV14], which was
later extended also to trees for the price of completeness [ESW15].

• Trees: The problem of sound and complete decision procedure for SLRD restricted
to tree-like structures was tackled in our work [IRV14]1, where the SLRD is trans-
lated into tree automata and hence the entailment problem is reduced into language
inclusion problem. This reduction provides an EXPTIME upper bound. In case of
non-tree data structures, the same reduction provides a sound approximation of the
entailment. Another work [PWZ14] proposed a specialized logic GRIT for trees
and its NPTIME decision procedure based on reduction into SMT. SL restricted to
trees can be easily translated into this logic.

• General structures: A general decidability result for SLRD (with some necessary
restrictions) was provided in our original work [IRŠ13]2. The result is based on
a translation of a formula φ in SLRD into a formula φMSO in MSO on Graphs (c.f.
Section 3.1). The decision procedure for MSO on graphs can then be employed.
This result shows theoretical decidability bounds for SLRD because the decision
procedure for MSO on graphs is in general NONELEMENTARY .

• Semi-decision procedures: SLEEK [NC08] implements an entailment check based
on unfoldings and unifications. The technique behind SLEEK is sound, but its ter-
mination is not guaranteed even if the entailment holds. Another semi-algorithmic
approach is implemented in the tool CYCLIST [BGP12], where two semi-algorithms
are provided—one for proving entailment and one for its disproving [BG15].

Verification with SL

From the beginning, SL was designed as a suitable formalism for verification. Due to
the local reasoning and the separation conjunction, a destructive update x → s = y
can be performed simply by changing the points-to predicate x → (. . . , z︸ ︷︷ ︸

s

, . . . ) to a new

predicate x→ (. . . , y︸ ︷︷ ︸
s

, . . . ) with no influence to the rest of the heap.

However, when recursive definitions are used, one needs to implement fold and un-
fold operations and some variant of the entailment check. The unfold operation is needed,
when a selector hidden inside a predicate is accessed. The more critical is the fold op-
eration, which is needed to compute sets of shape graphs reachable at exit points of un-
bounded loops. Fold is often combined with overapproximation of the current heap. There
is no generic algorithm, so several heuristics are used to tackle the fold operation.

1Appendix F
2Appendix D
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3.3 Other Logics
TVLA: TVLA (the Three Valued Logic Analyzer) [SRW02] uses a symbolic represen-
tation of heap based on the Kleene 3-valued interpretation [Kle87] of predicate logic with
transitive closure over graphs. To encode a set of heaps, a principle of summary nodes is
used. Summary nodes are used for the same reason as boxes in forest automata (c.f. Sec-
tion 2.2) or recursive definitions in separation logic—to represent a complicated shape
graph, or a possibly infinite set of shape graphs, by a single element. A concretization
operation is used to access inner nodes and summarization is used for acceleration of
verification.

STRAND: STRAND [MPQ11] is a logic that allows one to reason about heap and data.
It is based on MSO interpreted on trees enhanced by data constrains. The formulas are
of the form ∃−→x ∀−→y ϕ, where ϕ is an MSO formula over trees (possibly containing more
quantifiers) with additional data constrains. The data constrains can be only over the
variables from −→x and −→y . A combination of MONA [KM01] and the Z3 SMT solver
[MB08] is then used to decide the logic.

Alias Logic: Alias logic [BIL03] presents an other possibility to reason about pointer
programs. The logic is defined on a storeless memory model—a memory configuration is
not represented as a graph. Instead, each heap node is described by the regular language of
paths going to it through the heap. This language is then represented as a finite automaton.
Alias logic then allows one to express regular properties of the heap.
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Chapter 4

Summary of Contributions

This habilitation thesis comprises a collection of journal and conference research papers.
For each paper in the collection, the author of the thesis has contributed in a significant
of key way to the development of concepts behind the paper as well as to the writing of
the papers themselves. Moreover, for the papers included as Appendices A, F, and G,
the author of the thesis is also the author of the implementation used for the experimental
evaluation presented in the particular papers. The papers in the collection are ordered by
the date of their first publication.

Automata-Based Termination Proofs—Appendix A

In this paper, we tackle the termination problem of pointer programs. We proposed an
original abstraction of these programs into Büchi automata and reduced the termination
problem to the language intersection problem. As an underlying technique, we use our
previous encoding of pointer programs into tree automata with routing expressions (c.f.
Sec. 2.2).

This paper was originally published in the Proceedings of International Conference
Implementation and Application of Automata (CIAA) in the year 2009, and later on, its
extended version, attached as appendix A, was published in the Computing and Informat-
ics (CAI) journal in the year 2013.

Forest Automata for Verification of Heap Manipulation—Appendix B

In this paper, we proposed the forest encoding of memory configurations of pointer pro-
grams together with the principles of forest automata and boxes (c.f. Sec. 2.2). This
encoding was employed for a symbolic verification and implemented in the prototype
tool Forester. The technique is fully automated up to the fact that suitable boxes must be
provided manually1.

This paper was originally published in the Proceedings of International Conference on
Computer Aided Verification (CAV) in the year 2011. The version attached as Appendix
B was published in the journal of Formal Methods in System Design in the year 2012 for

1Boxes for most common data structures are included in the implementation.
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which the paper was chosen by the program committee of CAV conference. By now, this
work (the conference together with the journal version) was cited by 5 other papers.

Abstract Regular (Tree) Model Checking—Appendix C

This work is a summary journal paper published in a special issue of the International
Journal on Software Tools for Technology Transfer (STTT) devoted to regular model
checking. The paper summarizes a number of contributions in the area of abstract regular
model checking, out of which a number was proposed by the author of the thesis. By now,
this work was cited by 9 other works.

The Tree Width of Separation Logic with Recursive Definitions—Appendix D

In this paper, we proved that any separation logic formula (c.f. Section 3.2) using rather
general recursively defined predicates is decidable for satisfiability, and, moreover, en-
tailments between such formulae are decidable for validity. These predicates are general
enough to define (doubly-) linked lists, trees, and structures more general than trees, such
as trees whose leaves are chained in a list. The decidability proof is based on a reduction
to MSO on graphs with bounded tree width.

This paper was published in the Proceedings of International Conference on Auto-
mated Deduction (CADE-24) in the year 2013, and it received the best paper award for
proving decidability of satisfiability and entailment problem in a fragment of separation
logic and closing in a creative way a problem open since 2004. By now, this work was
cited by 26 other works.

Fully Automated Shape Analysis Based on Forest Automata—Appendix E

This paper is a follow-up work on the paper Forest Automata for Verification of Heap Ma-
nipulation—Appendix B. We proposed an automated learning of the boxes (see Section
2.2) and increased the level of automation of the forest automata based verification.

This paper was published in the Proceedings of International Conference on Com-
puter Aided Verification (CAV) in the year 2013. By now, this work was cited by 5 other
papers.

Deciding Entailments in Inductive Separation Logic with TA—Appendix F

This work is a continuation of our work on separation logic. In this work, we reduce the
entailment problem for a non-trivial subset of separation logic (c.f. Section 3.2) describing
trees (and beyond) to the language inclusion of tree automata. Our reduction provides
tight complexity bounds for the problem and shows that entailment in our fragment is
EXPTIME-complete.

The paper was published in the Proceeding of International Symposium on Automated
Technology for Verification and Analysis (ATVA) in the year 2014. By now, this work was
cited by 3 other papers.
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Abstraction Refinement and Antichains for Trace Inclusion of Infinite State Systems—
Appendix G

In this work, we tackle the trace inclusion problem of data automata. A data automaton
is a finite automaton equipped with variables (counters or registers) ranging over infinite
data domains. A trace of a data automaton is an alternating sequence of alphabet symbols
and values taken by the counters during an execution of the automaton. Since the prob-
lem is undecidable in general, we give a semi-algorithm based on abstraction refinement,
which is proved to be sound and complete modulo termination. We plan to use this work
as an underlying technique for the entailment problem in separation logic (c.f. Section
3.2) equipped by data values placed in allocated nodes.

This work was published in the Proceedings of International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS) in the year 2016.
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Chapter 5

Conclusions and Future Work

This thesis summarizes the current state of the art in the area of symbolic representations
of memory configurations of programs with pointers. We focused especially on the repre-
sentations based on various kinds of automata and logics. In the area of automata-based
representations, we mostly targeted techniques based on finite word and tree automata.
These techniques can be easily used within the framework of regular model checking to
compute sets of reachable states. In the area of logics, the thesis mostly targeted monadic
second order logic and separation logic. We discussed decidability issues of these logics
and possibilities of symbolic verification based on them. The thesis is based on a col-
lection of papers where the author of the thesis is a key contributor of each particular
one.

Despite the huge progress in the last years, there is still a lot of open questions in the
area of the thesis. The main goal of future work is to establish a fully-automated scalable
technique for production software. To achieve this goal, one can divide the future work
into several categories.

Symbolic encoding for real-life low-level code: The existing symbolic representations
are already quite general, but when one starts to deal with a real life low-level code, one
would find a lot of intricate constructs related to pointer arithmetics (see, e.g., Linux Ker-
nel DLL implementation [DPV13]), and the symbolic verification must be capable to deal
with it. There are already some works targeting pointer programs together with pointer
arithmetics, but there is still a lot of open space for future improvements, especially when
one needs to deal with complex data structures.

Another problem with the real code is that its correctness often depends on a combi-
nation of several domains as, e.g., pointer manipulations together with integer values or
arrays. A lot of work was done for these particular domains, but one needs a combined
symbolic representation to tackle correctness of the code based on a combination of do-
mains. Here, we plan to employ our work on trace inclusion [IRV16]1 as an backend to
separation logic combined with integer values.

1Appendix G
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Scalability: A lot of currently used verification techniques cannot handle large software
projects. The problem is mostly related to the fact that verification must start from the
main function and construct the invariants for the whole project. Therefore some works
based on so-called bi-abduction [CDOY09, LGQC14] were proposed to tackle the prob-
lem with scalability. These techniques can compute invariants for each particular function
separately and then compare whether the results match together. The open problem is to
establish the bi-abduction techniques for some automata-based symbolic domain with a
goal to benefit from advantages of automata-based verification and bi-abduction together.

Decision procedures: Decision procedures for symbolic encodings are an integral part
of logic-based verification. They are quite established for linked lists and trees, but there
is still huge gap in the area of generic data structures—generic techniques are often not
tractable and heuristics often fail. Together with the automated learning of suitable sym-
bolic containers such as recursive predicates, the simple list-like approaches stop to work.
The reason is that the learned containers can be rather tricky and their comparison is
not straightforward. Moreover, when one starts to combine pointer programs with other
domains, one needs to combine various decision procedures into a new one as well.

Termination and bound analysis: Up to some preliminary results, most of the work
targeting verification of pointer programs tackle the problem of safety analysis. But
an important question is also (i) whether the program terminates for all inputs and
(ii) how long does it take to terminate. These kind of techniques are usually based on
providing so-call norms over data structures or their symbolic representations. Such a
norm can be, e.g., the length of the list, height of the tree, number of nodes, etc. With
suitable norms, one can translate a pointer program into an arithmetic one (as e.g. in
[BBH+06, BFL06, HIRV07]) and then use some technique for termination or bound anal-
ysis of arithmetic programs [Ryb, CPR06, BIKV, SZ10]. A problem with this approach
is usually related to the fact that one has to first construct invariants over some symbolic
representation and then derive the norms. But within the invariant construction, one usu-
ally applies some overapproximation, which may be suitable for safety analysis, but not
strong enough to prove termination or even derive some bounds.
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20150209, LIAFA, Université Paris Diderot, France, 2015.

26



[FG06] J. Flum and M. Grohe. Tree width. In Parameterized Complexity Theory,
Texts in Theoretical Computer Science. An EATCS Series, pages 261–299.
Springer Berlin Heidelberg, 2006.
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1 INTRODUCTION

Proving termination is an important challenge for the existing software verification
tools, requiring specific analysis techniques [26, 8, 24]. The basic principle under-
lying all these methods is proving that, in every (potentially) infinite computation
of the program, there exists a suitable measure which decreases infinitely often.
The commonly used measures are from so-called well-founded domains. The well-
foundedness guarantees that in the domain there is no infinite decreasing sequence.
As a consequence, the measure cannot decrease infinitely often, and hence the pro-
gram must terminate.

In this paper, we provide an extended and improved description of our termi-
nation analysis, originally presented in [21]. The proposed termination analysis is
based on the following principles:

1. We consider programs working on infinite data domains 〈D,�1, . . . ,�n〉 equip-
ped with an arbitrary number of well-founded partial orders.

2. For any transformation ⇒⊆ D ×D induced by a program statement, and any

partial order on D �i, 1 ≤ i ≤ n, we assume that the problem ⇒ ∩ �i ?
= ∅ is

decidable algorithmically.

3. An abstraction of the program is built automatically and checked for the exis-
tence of potential non-terminating execution paths. If such a path exists, then
an infinite path of the form σλω (called lasso) is exhibited.

4. Due to the over-approximation involved in the construction of the abstraction,
the lasso found may be spurious, i.e., it may not correspond to a real execution
of the program. In this case we use domain-specific procedures to detect spuri-
ousness, and, if the lasso is found to be spurious, the abstraction is refined by
eliminating it.

The framework described here needs to be instantiated for particular classes of
programs, by providing the following ingredients:

• well-founded relations �1, . . . ,�n on the working domain D. In principle, their
choice is naturally determined by the working domain. As an example, if D is
the set of terms (trees) over a finite ranked alphabet, then �i can be classical
well-founded orderings on terms (e.g., Recursive Path Ordering, Knuth-Bendix
Ordering, etc.);

• a decision procedure for the problems ⇒ ∩ �i ?
= ∅, 1 ≤ i ≤ n, where ⇒ is any

transition relation induced by a program statement. This is typically achieved by
choosing suitable symbolic representations for relations on D, which are closed
under intersection, and whose emptiness problem is decidable. For instance, this
is the case when both ⇒ and �i can be encoded using finite (tree) automata;

• a decision procedure for the spuriousness problem: given a lasso σλω, where σ
and λ are finite sequences of program statements, does there exist an initial data
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element d0 ∈ D such that the program, started with d0, has an infinite execution
along the path σλω?

The main reason why we currently ask the user to provide the relations is that
our technique is geared towards data domains which cannot be encoded by a fi-
nite number of descriptors, such as tree-structured domains, and more complex
pointer structures. Well-founded relations for such classical domains (e.g., terms
over a ranked alphabet) are provided in the literature. Moreover, we are not aware
of efficient techniques for automatic discovery of well-founded relations on such do-
mains, which is an interesting topic for future research.

Providing suitable representations for the well-founded relations, as well as for
the program transitions enables the framework to compute an initial abstraction of
the program. The initial abstraction is an automaton which has the same control
states as the program, and each edge in the control flow graph of the program is
covered by one or more transitions labeled with relational symbols.

The abstraction is next checked for the existence of potentially non-terminating
executions. This check uses the information provided by the well-founded relations,
and excludes all lassos for which there exists a strictly decreasing well-founded rela-
tion �i, 1 ≤ i ≤ n, that holds between the entry and exit of the loop body. This step
amounts to checking non-emptiness of the intersection between the abstraction and
a predefined Büchi automaton. If the intersection is empty, the original program
terminates, otherwise a lasso-shaped counterexample of the form σλω is exhibited.

Deciding spuriousness of lassos is also a domain-dependent problem. For integer
domains, techniques exist in cases where the transition relation of the loop is a dif-
ference bound matrix (DBM) [7] or an affine transformation with the finite monoid
property [18]. For general affine transformations, the problem is currently open,
as [10] mentions it1. For tree-structured data domains, the problem is decidable in
cases, where the loop does not modify the structure of trees [20].

If a lasso is found to be spurious, the program model is refined by excluding the
lasso from the abstraction automaton. In our framework based on Büchi Automata,
this amounts to intersecting the abstraction automaton with the complement of
the Büchi Automaton representing the lasso. Since a lasso is trivially a Weak De-
terministic Büchi Automaton (WDBA), complementation increases the size of the
automaton by at most one state, and is done in constant time. This refinement
scheme can be extended to exclude entire families of spurious lassos, also described
by WDBA.

We have instantiated the framework to the verification of programs handling
tree data structures. The basic statements we consider are data assignments, non-
destructive pointer assignments, creation of leaves, and deletion of leaves. As an
extension, we also allow tree rotations. This is a sufficient fragment for verify-
ing termination of many practical programs over tree-shaped data structures (e.g.,

1 In fact the spuriousness problem for integer affine transition relations covers another
open problem, that of detecting a zero in an integer linear recurrent sequence. The latter
has been shown to be NP-hard in [2] but no decidability results have been found so far.
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AVL trees or red-black trees) used, in general, for storage and a fast retrieval of
data. Moreover, many programs working on singly- and doubly-linked lists fit into
our framework as well. We provide two families of well-founded relations on trees,
(i) a lexicographical ordering on positions of program variables and (ii) a subset re-
lation on nodes labeled with a given data element (from a finite domain). Program
statements as well as the well-founded relations are encoded using tree automata,
which provide an efficient method for checking emptiness of intersections between
relations. For programs on trees without destructive updates, the spuriousness prob-
lem has been shown decidable in [20].

The presented well-founded relations for trees fits very well for the encoding
from [6], where data structures more complex than trees are encoded using a tree-
like backbone and a regular set of extra edges. The encoding itself is quite general
and allows us, on one hand, to handle structures like, e.g., trees with root pointers,
or trees with linked leaves, and, on the other hand, to handle destructive updates.

A prototype tool has been implemented on top of the ARTMC [6, 4] invariant
generator for programs with dynamic linked data structures. Experimental results
include push-button termination proofs for the Deutsch-Schorr-Waite tree traversal,
deleting nodes in red-black trees, as well as for the Linking Leaves procedures. Most
of these programs could not be verified by existing approaches.

Contributions of the Paper:

1. The paper presents our original generic approach for termination analysis of
programs. The approach is based on Büchi automata, well-founded relations,
and CEGAR [11] loop.

2. We provide a set of well-founded relations on trees.

3. We instantiate the generic framework to programs manipulating tree like data
structures as well as programs manipulating more general data structures (en-
coded as a tree-backbone and a regular set of extra edges).

4. We have implemented our technique in the prototype tool based on ARTMC
[6, 4]. We can prove termination of examples which are, to the best of our
knowledge, not handled by any other tool.

Related Work. Efficient techniques have been developed in the past for proving
termination of programs with integer variables [26, 8, 9, 14, 28]. This remains
probably the most extensively explored class of programs, concerning termination.

Recently, techniques for programs with singly-linked lists have been developed
in [3, 17, 23]. These techniques rely on tracking numeric information related to the
sizes of the list segments. An extension of this method to tackle programs handling
trees has been given in our previous work [20]. Unlike the works on singly-linked
lists from [3, 17], where refinement (of the counter model) is typically not needed,
in [20] we considered a basic form of counterexample-driven refinement, based on
a symbolic unfolding of the lasso-shaped counterexample.
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Abstraction refinement for termination has been first considered in [14], where
the refinement consists of discovering and adding new well-founded relations to the
set of relations used by the analysis. Since techniques for the discovery of well-
founded relations (based on, e.g., spurious program loops) are available only for
integer domains, it is not clear for the time being whether the algorithm proposed
in [14] can be also applied to programs handling pointer structures.

Several ideas in this paper can be also found elsewhere. Namely, (1) extract-
ing variance assertions from loop invariants was reported in [1], (2) using Büchi
automata to encode the non-termination condition of the program was introduced
by [24], and (3) proving termination for programs handling tree-like data structures
was also considered in [20]. However, the method presented here distinguishes itself
from the body of existing work, on the following aspects:

1. The framework is general and can be instantiated to any class of programs,
whose semantic domains are known to have well-founded orderings. In particu-
lar, we provide well-founded orderings on a domain of trees, e.g., lexicographical
orderings, that cannot be directly encoded in quantifier-free linear arithmetic,
whereas all variant assertions from [1] are confined to quantifier-free linear arith-
metic. Moreover, we consider examples in which the variant relations considered
track the evolution of an unbounded number of data elements (tree node labels),
whereas in [1] only a finite number of seed variables could be considered.

2. We provide an automated method of abstracting programs into Büchi automata,
whereas the size-change graphs from [24] are produced manually. Moreover, the
use of Büchi automata to encode the termination condition provides us with
a natural way of refining the abstract model, by intersection of the model with
the complement of the counterexample, encoded by a Weak Deterministic Büchi
Automaton.

3. We generalize the refinement based on Weak Deterministic Büchi Automata to
exclude infinite sets of spurious counterexamples, all at once. On the other
hand, the refinement given in [20] could only eliminate one counterexample at
a time, at the cost of expanding the model by unfolding the lasso a number of
times exponential in the number of program variables. In our setting, the size
of the refined model is theoretically bounded by the product between the size
of the model and the size of the lasso. Since in practice the lassos are found
to be rather small, the blowup caused by the refinement does not appear to be
critical.

Automated checking of termination of programs manipulating trees has been
also considered in [25], where the Deutsch-Schorr-Waite tree traversal algorithm
was proved to terminate using a manually created progress monitor, encoded in
first-order logic. In our approach, this example could be verified using the common
well-founded relations on trees, that is without adding case-specific information to
the framework.
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The rest of the paper is organized as follows: Section 2 describes preliminar-
ies. Section 3 contains general description of our termination analysis framework.
Section 4 describes the way, how the framework is instantiated for trees and more
complex data structures. Section 5 presents our experimental results, and finally we
conclude the paper by Section 6.

2 PRELIMINARIES

2.1 Well-founded Relations

Definition 1. Given a set X, a relation �⊆ X ×X is well-founded iff

1. � is a partial order on X

2. ∀x ∈ X there is no infinite sequence x0, x1, x2, . . . such that (i) x0 = x and
(ii) ∀i ≥ 0 : xi+1 � xi ∧ xi+1 6= xi.

As an example of a well-founded relation, we can take a standard ≤ ordering on
natural numbers; but the same standard ≤ ordering on positive real numbers is not
well-founded, because there exists, e.g., the sequence 1 > 0.1 > 0.01 > 0.001 > . . .

2.2 Büchi Automata

This section introduces the necessary notions related to the theory of Büchi au-
tomata [22]. Let Σ = {a, b, . . .} be a finite alphabet. We denote by Σ∗ the set of
finite words over Σ, and by Σω the set of all infinite words over Σ. For an infinite
word w ∈ Σω, let inf(w) be the set of symbols occurring infinitely often in w. If
u, v ∈ Σ∗ are finite words, uvω denotes the infinite word uvvv . . .

Definition 2. A Büchi automaton (BA) over Σ is a tuple A = 〈S, I,→, F 〉, where:
S is a finite set of states, I ⊆ S is a set of initial states,→⊆ S×Σ×S is a transition
relation – we denote (s, a, s′) ∈−→ by s

a−→ s′, and F ⊆ S is a set of final states. The
size of the automaton A is denoted as ||A|| and it is equal to the number of states –
i.e., ||A|| = ||S||.

A run of A over an infinite word a0a1a2 . . . ∈ Σω is an infinite sequence of states
s0s1s2 . . . such that s0 ∈ I and for all i ≥ 0 we have si

ai−→ si+1. A run π of A is
said to be accepting iff inf(π) ∩ F 6= ∅. An infinite word w is accepted by a Büchi
automaton A iff A has an accepting run on w. The language of A, denoted by L(A),
is the set of all words accepted by A.

It is well-known that Büchi-recognizable languages are closed under union, in-
tersection and complement. For two Büchi automata A and B, let A ⊗ B be the
automaton recognizing the language L(A)∩L(B). It can be shown that ||A⊗B|| ≤
3 · ||A|| · ||B||2.

2 Intersection of A and B is done by a synchronous product of these two automata. For
each pair of states, one has to remember an extra information whether a finite state has
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A Büchi automaton A = 〈S, I,→, F 〉 is said to be complete if for every s ∈ S
and a ∈ Σ there exists s′ ∈ S such that s

a−→ s′. A is said to be deterministic
(DBA) if I is a singleton, and for each s ∈ S and a ∈ Σ, there exists at most

one state s′ ∈ S such that s
a−→ s′. A is moreover said to be weak if, for each

strongly connected component C ⊆ S, either C ⊆ F or C ∩F = ∅. It is well-known
that complete weak deterministic Büchi automata can be complemented by simply
reverting accepting and non-accepting states. Then, for any Weak Deterministic
Büchi automaton (WDBA), we have that ||A|| ≤ ||A||+ 1, where A is the automaton
accepting the language Σω \ L(A) – i.e., the complement of A.

2.3 Trees and Tree Automata

Definition 3 (Binary alphabet and tree). For a partial mapping f : A → B we
denote f(x) = ⊥ the fact that f is undefined at some point x ∈ A. The domain of
f is denoted dom(f) = {x ∈ A|f(x) 6= ⊥}. For a set A we denote by A⊥ the set
A ∪ {⊥}.

Given a finite set of colors C, we define the binary alphabet ΣC = C ∪ {�},
where the arity function is ∀c ∈ C.#(c) = 2 and #(�) = 0. Π denotes the set of
tree positions {0, 1}∗. Let ε ∈ Π denote the empty sequence, and p.q denote the
concatenation of sequences p, q ∈ Π. p ≤pre q denotes the fact that p is a prefix of q
and p ≤lex q is used to denote the fact that p is less than q in the lexicographical
order. We denote by p 'pre q the fact that either p ≤pre q, or p ≥pre q. A tree t
over C is a partial mapping t : Π → ΣC such that dom(t) is a finite prefix-closed
subset of Π, and for each p ∈ dom(t):

• if #(t(p)) = 0, then t(p.0) = t(p.1) = ⊥,

• otherwise, if #(t(p)) = 2, then p.0, p.1 ∈ dom(t).

When writing t(p) = ⊥, we mean that t is undefined at position p.

Let tε be the empty tree, tε(p) = ⊥ for all p ∈ Π. A subtree of t starting at po-
sition p ∈ dom(t) is a tree t|p defined as t|p(q) = t(pq) if pq ∈ dom(t), and undefined
otherwise. t[p← c] denotes the tree that is labeled as t, except at position p where
it is labeled with c. t{p← u} denotes the tree obtained from t by replacing the t|p
subtree with u. We denote by T (C) the set of all trees over the binary alphabet ΣC.

Definition 4. A (binary) tree automaton [13, 27] over an alphabet ΣC is a tuple
A = (Q,F,∆) where Q is a set of states, F ⊆ Q is a set of final states, and ∆ is
a set of transition rules of the form:

1. �→ q or

2. c(q1, q2)→ q, c ∈ C.

been seen in the automaton A, in the automaton B or nowhere. Therefore the size of the
resulting automaton is bounded by 3 · ||A|| · ||B||. See, e.g., [22] for details.
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The size of the automaton A is denoted as ||A|| and it is equal to the number of
states – i.e., ||A|| = ||Q||.

A run of A over a tree t : Π → ΣC is a mapping π : dom(t) → Q such that for
each position p ∈ dom(t), where q = π(p), we have:

• if #(t(p)) = 0 (i.e., if t(p) = �), then �→ q ∈ ∆,

• otherwise, if #(t(p)) = 2 and qi = π(p.i) for i ∈ {0, 1}, then t(p)(q0, q1)→ q ∈ ∆.

A run π is said to be accepting if and only if π(ε) ∈ F . The language of A, denoted
as L(A), is the set of all trees over which A has an accepting run. A set of trees
T ⊆ T (C) (a tree relation R ⊆ T (C1×C2)) is said to be rational if there exists a tree
automaton A such that L(A) = T (respectively, L(A) = R).

Example: Let C = {◦, •} and the following tree automaton over ΣC: A = ({q, r},
{r},∆A) with ∆A = {�→ q, ◦(q, q)→ q, •(q, q)→ r, ◦(r, q)→ r, ◦(q, r)→ r}. This
automaton accepts all binary trees which contain exactly one node labeled by •.
An example of runs can be seen in Figure 1. Note that for some trees there is no
run which maps a state to the most-top node (symbol X corresponds to non-existing
mapping), and hence such a tree is not accepted.

run

run

q q

q qq

r

r

r

X

q q

q q qq

q r

r

Figure 1.
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Remark: In this paper, we use only tree automata restricted to binary trees; but
in general, the tree automata can accept trees of arbitrary arity (see [13, 27] for
general definitions). Note that standard finite automata are special case of tree
automata, where all rules are unary (except the initial one �→ q, which represents
the initial state in standard finite automaton).

2.3.1 Rational Tree Relations

A pair of trees (t1, t2) ∈ T (C1)× T (C2) can be encoded by a tree over the alphabet
(C1∪{�,⊥})× (C2∪{�,⊥}), where #(〈⊥,⊥〉) = 0, #(〈α,⊥〉) = #(〈⊥, α〉) = #(α)
if α 6= ⊥, and #(〈α1, α2〉) = 2 if α1 ∈ C1 ∧ α2 ∈ C2. The projection functions
are defined as usual, i.e., for all p ∈ dom(t) we have pr1(t)(p) = c1 if t(p) =
〈c1, c2〉 and pr2(t)(p) = c2 if t(p) = 〈c1, c2〉. Finally, let T (C1 × C2) = {t|pr1(t) ∈
T (C1) and pr2(t) ∈ T (C2)} be a set of all pair trees. A set R ⊆ T (C1×C2) is further
called a tree relation.

Definition 5. A tree relation R ⊆ T (C1 × C2) is said to be rational if there exists
a tree automaton A such that L(A) = R.

Definition 6. For two relations R′ ⊆ T (C ×C ′) and R′′ ⊆ T (C ′×C ′′) we define the
composition R′ ◦R′′ = {〈pr1(t′), pr2(t′′)〉|t′ ∈ R′, t′′ ∈ R′′, pr2(t′) = pr1(t′′)}.

It is well known that rational tree languages are closed under union, intersection,
complement and projection. As a consequence, rational tree relations are closed
under composition.

3 THE TERMINATION ANALYSIS FRAMEWORK

In this section, we describe our termination analysis framework and demonstrate its
principles on a simple running example.

3.1 Programs and Abstractions

First we introduce a model for programs handling data from a possibly infinite
domain D equipped by a set of partial orders �1, . . . ,�n, where �i⊆ D × D for
1 ≤ i ≤ n. In the following, we use the notion 〈D,�1, . . . ,�n〉 to denote the data
domain with the partial orders. Then we define program abstractions as Büchi
automata.

Definition 7 (Instruction). Let 〈D,�1, . . . ,�n〉 be a data domain. An instruction
is a pair 〈g, a〉 where g ⊆ D is called the guard and a : D → D is called the action.

The guard represents a condition, which must be true before the action is exe-
cuted. The guards are used to model conditional statements from programming
languages – e.g., one instruction 〈g, a1〉 is used for then branch and another one 〈D\g,
a2〉 for else branch. An unspecified guard is assumed to be the entire domain D.
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748 R. Iosif, A. Rogalewicz

Definition 8 (Program). Let 〈D,�1, . . . ,�n〉 be a data domain and I be a set of
instructions. A program over the set of instructions I is a graph P = 〈I, L, l0,⇒〉,
where L is the set of control locations, l0 ∈ L is the initial location, and⇒⊆ L×I×L
is the edge relation denoted as l

g:a
=⇒ l′. We assume furthermore that there is at most

one instruction in between any two control locations, i.e., if l
g1:a1
=⇒ l′ and l

g2:a2
=⇒ l′

then g1 = g2 and a1 = a2. This condition is common in programming languages.

In the following, we will use both textual and graphical representations of programs.

Definition 9 (Configuration, execution, reachable configuration). Let 〈D,�1, . . . ,
�n〉 be a data domain, P = 〈I, L, l0,⇒〉 a program and D0 ⊆ D be a set of initial
data values. A program configuration is a pair 〈l, d〉 ∈ L × D, where l is a control
location and d is a data value.

An execution is a (possibly infinite) sequence of program configurations
〈l0, d0〉, 〈l1, d1〉, 〈l2, d2〉, . . . starting with the initial program location l0 and some

configuration d0 ∈ D such that for all i ≥ 0 there exists an edge li
g:a

=⇒ li+1 in the
program, such that di ∈ g and di+1 = a(di).

A configuration 〈l, d〉 is said to be reachable if there exists d0 ∈ D0, and the
program P has an execution from 〈l0, d0〉 to 〈l, d〉.

Definition 10 (Invariant). Let 〈D,�1, . . . ,�n〉 be a data domain, P = 〈I, L, l0,⇒〉
a program and D0 ⊆ D be a set of initial data values. An invariant of the program
(with respect to the set D0) is a function ι : L→ 2D such that for each l ∈ L, if 〈l, d〉
is reachable, then d ∈ ι(l). If the dual implication holds, we say that ι is an exact
invariant.

Definition 11. Given a program P = 〈I, L, l0,⇒〉 working over a domain 〈D,�1,
. . . ,�n〉 we define the alphabet Σ(P,D) = L×{>, ./,=}n. For a tuple ρ ∈ {>, ./,=}n,
we define [ρ] ∈ D×D as : d[ρ]d′ if and only if, ρ = 〈r1, . . . , rn〉 and for all 1 ≤ i ≤ n:

• d �i d′ iff ri is >,

• d 6�i d′ iff ri is ./,

• d ≈i d′ iff ri is =.

Definition 12 (Abstraction). Let P = 〈I, L, l0,⇒〉 be a program, and 〈D,�1,
. . . ,�n〉 be a domain. A Büchi automaton A = 〈S, I,→, F 〉 over Σ(P,D) is said
to be an abstraction of P if and only if for every infinite execution of P : 〈l0, d0〉
〈l1, d1〉〈l2, d2〉 . . ., there exists an infinite word 〈l0, ρ0〉〈l1, ρ1〉〈l2, ρ2〉 . . . ∈ L(A) such
that di[ρi]di+1,for all i ≥ 0.

Consequently, if P has a non-terminating execution, then its abstraction A will
be non-empty. However, for reasons related to the complexity of the universal
termination problem, one cannot in general build an abstraction of a program that
will be empty if and only if the program terminates.

41



Automata-Based Termination Proofs 749

3.1.1 The Running Example: A Program and Its Abstraction

We will now demonstrate the abstraction of a real program on our running example.
Let us consider the program in Figure 2, working on a binary tree data structure,
in which each node has two pointers to its left- and right-sons and one pointer
up to its parent. We assume that leaves have null left and right pointers, and the
root has a null up pointer.

1 x := root;
2 while (x.left != null) and (x.left.right != null)
3 x := x.left.right;
4 while (x != null)
5 x := x.up;

Figure 2.

The first loop (lines 2,3) terminates because the variable x is bound to reach
a node with x.left = null (or x.left.right = null), since the tree is finite and
no new nodes are created. The second loop (lines 4,5) terminates because no matter
where x points to in the beginning, by going up, it will eventually reach the root

and then become null. Figure 3 represents the c-like program from Figure 2 as
a program according to Definition 8.

4

5

(x.left.right==null)]
[(x.left==null) or

[(x.left!=null) and
(x.left.right!=null)]

2

3

x:=x.up
x:=x.left.right

[x!=null]

1

x:=root

Figure 3. Guards are represented inside “[ ]” brackets, and actions without brackets. Un-
specified action is equal to identity relation.

Now, we are going to create an abstraction of program in Figure 3 Let us suppose
the following well-founded ordering: for any two trees t1 and t2, we have t1 ≥x t2 if
and only if the position of the pointer variable x in t2 is a prefix of the position of
the variable x in t1. Using the ≥x ordering, we build an abstraction of the program
given in Figure 4. The states in the abstract program correspond to line numbers
in the original program, and every state is considered to be accepting (w.r.t Büchi
accepting condition), initially.

Note that the action x := root is abstracted by two edges – first, labeled by =x,
describes the case when x was originally placed in the root node and the other one,
labeled by >x, describes the cases when x was originally deeper in the tree.
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4

5

21>

3

〈2,=x〉

〈1,=x〉

〈1, >x〉

〈2,=x〉 〈4,=x〉
〈5, >x〉

〈3, ./x〉

Figure 4.

3.2 Building Abstractions Automatically

The first question is how to build abstractions of programs effectively. Here, we
propose a method that performs well under the following assumptions: There exists
a symbolic representation S (e.g., some logic or automata) such that

1. the program instructions can be represented using the S,

2. the well-founded relations on the working domain can be also represented
using S,

3. S is closed under projection, intersection and complement, and

4. the emptiness problem for S is decidable.

In the concrete case of programs with trees (see Section 4), we use finite tree au-
tomata [13] as a suitable symbolic representation S.

Definition 13 (Initial abstraction). Given a program P = 〈I, L, l0,⇒〉 working
over the domain 〈D,�1, . . . ,�n〉, and an invariant ι : L → 2D, with respect to
a set of initial data values D0, the initial abstraction is the Büchi automaton AιP =
〈L, {l0},−→ , L〉, where, for all l, l′ ∈ L and ρ ∈ {>, ./,=}n, we have:

l
〈l,ρ〉−−→ l′ ⇐⇒ l

g:a
=⇒ l′ and pr1(R〈g,a〉 ∩ [ρ]) ∩ ι(l) 6= ∅ (1)

where R〈g,a〉 = {(d, d′) ∈ D|d ∈ g, d′ = a(d)} and, for a relation R ⊆ D × D, we
denote by pr1(R) = {x|∃y ∈ D.〈x, y〉 ∈ R}.

Intuitively, a transition between l and l′ is labeled with a tuple of relational
symbols ρ if and only if there exists a program instruction between l and l′ and
a pair of reachable configurations 〈l, d〉, 〈l′, d′〉 ∈ L × D such that d[ρ]d′ and the
program can move from 〈l, d〉 to 〈l′, d′〉 by executing the instruction 〈g, a〉. The
intuition is that every transition relation induced by the program is “covered” by
all partial orderings that have a non-empty intersection with it. Notice also that,
for any d, d′ ∈ D, there exists ρ ∈ {>, ./,=}n such that d[ρ]d′. For reasons related
to abstraction refinement, that will be made clear in the following, the transition
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in the Büchi automaton AιP is also labeled with the source program location l3.
As an example, Figure 2 b) gives the initial abstraction for the program in Fig-
ure 2 a).

The program invariant ι(l) from (1) is needed in order to limit the coverage
only to the relations involving configurations reachable at line l. In principle, we
can compute a very coarse initial abstraction by considering that ι(l) = D at each
program line. However, using stronger invariants enables us to compute more pre-
cise program abstractions. The following lemma proves that the initial abstraction
respects Definition 12.

Lemma 1. Let P be a program working over the domain 〈D,�1, . . . ,�n〉, and
D0 ⊆ D be an initial set, and ι : L→ 2D be an invariant with respect to the initial
set D0, the Büchi automaton AιP is an abstraction of P .

Proof. Let 〈l0, d0〉〈l1, d1〉〈l2, d2〉 . . . be an arbitrary infinite execution of the pro-

gram P . Then for each i ≥ 0: li
gi:ai
=⇒ li+1, di ∈ gi, and ai(di) = di+1 – i.e.,

(di, di+1) ∈ R〈gi,ai〉, where R〈g,a〉 = {(d, d′) ∈ D|d ∈ g, d′ = a(d)}. Moreover,
di ∈ ι(li) and di+1 ∈ ι(li+1). We know that there exists ρi such that di[ρi]di+1.

Therefore for each i ≥ 0 there exists an edge li
〈li,ρi〉−−−→ li+1 in the automaton AιP , i.e.,

the word 〈l0, ρ0〉〈l1, ρ1〉〈l2, ρ2〉 . . . ∈ L(AιP ), where di[ρi]di+1. �

3.3 Checking Termination on Program Abstractions

In light of Definition 12, if a Büchi automaton A is an abstraction of a program P ,
then each accepting run of A reveals a potentially infinite execution of P . However,
the set of accepting runs of a Büchi automaton is infinite in general, therefore
an effective termination analysis cannot attempt to check whether each run of A
corresponds to a real computation of P . We propose an effective technique, based
on the following assumption:

Assumption 1. The given domain is 〈D,�1, . . . ,�n〉 for a fixed n > 0, and the
partial orders �i are well-founded, for all i = 1, . . . , n.

Consequently, any infinite word 〈l0, ρ0〉〈l1, ρ1〉〈l2, ρ2〉 . . . ∈ L(A) from which we
can extract4 a sequence (ρ0)i(ρ1)i(ρ2)i . . . ∈ (=∗>)ω, for some 1 ≤ i ≤ n, cannot cor-
respond to a real execution of the program, in the sense of Definition 12. Therefore,
we must consider only the words for which, for all 1 ≤ i ≤ n, either:

3 After the abstraction refinement, the relation between program locations and Büchi
automata states is no more 1 : 1 (as in the initial abstraction) but it is m : n. The labels
are then used to relate the edges in the abstract model with the corresponding program
actions.

4 Each element 〈l, ρ〉 in the sequence is first converted into ρ by omitting the l-part.
Then all the relations except the ith one are projected out of ρ. The result is denoted
as (ρ)i
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1. there exists K ∈ N such that, (ρk)i is =, for all k ≥ K, or

2. for infinitely many k ∈ N, (ρk)i is ./.

Si

Ei

Ei
Σ

Σ

s0i

s2is1i

Figure 5.

The condition above can be encoded by a Büchi automaton defined as follows.
Consider that Σ(P,D) = L × {>, ./,=}n is fixed. Let Si = {〈l, (r1, . . . , rn)〉 ∈
Σ(P,D)|ri be ./} and Ei = {〈l, (r1, . . . , rn)〉 ∈ Σ(P,D)|ri be =}, for 1 ≤ i ≤ n.
With this notation, let Bi be the Büchi automaton recognizing the ω-regular lan-
guage Σ∗(SiΣ∗)ω ∪ Σ∗Eω

i . This automaton is depicted in Figure 5. Since the above
condition holds for all 1 ≤ i ≤ n, we need to compute B =

⊗n
i=1 Bi. Finally, the

automaton which accepts all words witnessing potentially non-terminating runs of
the original program is A⊗B.

If A is an abstraction of P and L(A⊗B) = L(A) ∩ L(B) = ∅, we can infer
that P has no infinite runs. Otherwise, it is possible to exhibit a lasso-shaped non-
termination witness of the form σλω ∈ L(A⊗B), where σ, λ ∈ Σ∗ are finite words
labeling finite paths in A⊗B. In the rest of the paper, we refer to σ as to the stem
and to λ as to the loop of the lasso. The following lemma proves the existence of
lasso-shaped counterexamples.

Lemma 2. Let 〈D,�1, . . . ,�n〉 be a well-founded domain, A be a Büchi automaton
representing the abstraction of a program and B =

⊗n
i=1 Bi be a Büchi automaton

representing the non-termination property such that L(A⊗B) 6= ∅. Then there
exists σλω ∈ L(A⊗B) for some σ, λ ∈ Σ∗(P,D), such that |σ|, |λ| ≤ ||A|| · (n+ 1) · 2n.

Proof. If L(A⊗B) 6= ∅, then A⊗B has a run π in which at least one final state s
occurs infinitely often. Let σ be the word labeling the prefix of π from the beginning
to the first occurrence of s, and λ be the word labeling the segment between the
first and second occurrences of s on π. Then σλω ∈ L(A⊗B).

To prove the bound on |λ|, we consider that B is the result of a generalized
product

⊗n
i=1 Bi, whose states are of the form 〈s1, . . . , sn, k〉 where si ∈ {s0

i , s
1
i , s

2
i }

is a state of Bi (cf. Figure 5) and k ∈ {0, 1, . . . , n}. Since λ is the label of a cycle
in A ⊗ B, the projection of the initial and final states on B1, . . . , Bn must be the
same. Then for each state in the cycle, either si ∈ {s0

i , s
1
i } or si = s2

i , for each
1 ≤ i ≤ n. This is because the projection of a cycle from A ⊗ B on Bi, 1 ≤ i ≤ n
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is again a cycle, and the only cycles in Bi are composed either of {s0
i , s

1
i } or {s2

i }.
Hence |λ| ≤ ||A|| · (n + 1) · 2n. A similar reasoning is used to establish the bound
on |σ|. �

Despite the exponential bound on the size of the counterexamples, in practice it
is possible to use efficient algorithms for finding lassos in Büchi automata on-the-fly,
such as for instance the Nested Depth First Search algorithm [16].

3.3.1 The Running Example: The Termination Check

Checking (non-)termination of the abstract program in Figure 4 is done by checking
emptiness of the intersection between the abstraction and the complement of the
Büchi automaton recognizing the language (〈 ,=x〉∗〈 , >x〉)ω (cf. Figure 6). In the
case of our running example, the intersection is not empty, counterexamples being
〈1, >x〉(〈2,=x〉〈3, ./x〉)ω and 〈1,=x〉(〈2,=x〉〈3, ./x〉)ω, which both correspond to the
infinite execution of the first loop, i.e., lines 1(23)ω.

〈 ,=〉
〈 , >〉

〈 , ./〉

〈 ,=〉
〈 , >〉

〈 , ./〉

〈 ,=〉〈 , ./〉

〈 ,=〉

Figure 6.

3.4 Counterexample-Based Abstraction Refinement

If a Büchi automaton A is an abstraction of a program P = 〈I, L, l0,⇒〉 (cf. Defi-
nition 12), D0 ∈ D is a set of initial values, and σλω ∈ L(A) is a lasso, where σ =
〈l0, ρ0〉 . . . 〈l|σ|−1, ρ|σ|−1〉 and λ = 〈l|σ|, ρ|σ|〉 . . . 〈l|σ|+|λ|−1, ρ|σ|+|λ|−1〉, the spuriousness
problem asks whether P has an execution along the infinite path (l0 . . . l|σ|−1)(l|σ| . . .
l|σ|+|λ|−1)ω starting with some value d0 ∈ D0. Notice that each pair of control lo-
cations corresponds to exactly one program instruction, therefore the sequence of
instructions corresponding to the infinite unfolding of the lasso is uniquely identified
by the sequences of locations l0, . . . , l|σ|−1 and l|σ|, . . . , l|σ|+|λ|−1.

Algorithms for solving the spuriousness problem exist, depending on the struc-
ture of the domain D and on the semantics of the program instructions. Details
regarding spuriousness problems for integer and tree-manipulating lassos can be
found in [20].

Given a lasso σλω ∈ L(A), the refinement builds another abstractionA′ of P such
that σλω 6∈ L(A′). Having established that the program path (l0 . . . l|σ|−1)(l|σ| . . .
l|σ|+|λ|−1)ω, corresponding to σλω, cannot be executed for any value from the initial
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set allows us to refine by excluding potentially more spurious witnesses than just
σλω. Let C be the Büchi automaton recognizing the language LσL

ω
λ , where:

Lσ = {〈l0, ρ0〉 . . . 〈l|σ|−1, ρ|σ|−1〉|ρi ∈ {>, ./,=}n, 0 ≤ i < |σ|}
Lλ = {〈l|σ|, ρ0〉 . . . 〈l|σ|+|λ|−1, ρ|λ|−1〉|ρi ∈ {>, ./,=}n, 0 ≤ i < |λ|}.

Then A′ = A⊗C, where C is the complement of C, is the refinement of A that
excludes the lasso σλω, and all other lassos corresponding to the program path
(l0 . . . l|σ|−1)(l|σ| . . . l|σ|+|λ|−1)ω.

On the down side, complementation of Büchi automata is, in general, a costly
operation: the size of the complement is bounded by 2O(n logn), where n is the size of
the automaton [29]. However, the particular structure of the automata considered
here comes to rescue. It can be seen that LσL

ω
λ can be recognized by a WDBA,

hence complementation is done in constant time, and ||A′|| ≤ 3 · (|σ|+ |λ|+ 1) · ||A||.

Lemma 3. Let A be a Büchi automaton that is an abstraction of a program P , and
σλω ∈ L(A) be a spurious counterexample. Then the Büchi automaton recognizing
the language L(A) \ Lσ · Lωλ is an abstraction of P .

Proof. Let 〈l0, d0〉〈l1, d1〉〈l2, d2〉 . . . be an infinite run of P . Since A is an abstraction
of P , by Definition 12 there exists an infinite word 〈l0, ρ0〉〈l1, ρ1〉〈l2, ρ2〉 . . . ∈ L(A)
such that di[ρi]di+1, for all i ≥ 0. Since σλω is a spurious lasso, then the se-
quence of control locations l0, l1, l2, . . . cannot correspond to the sequence of first
positions from σλω. Hence 〈l0, ρ0〉〈l1, ρ1〉〈l2, ρ2〉 . . . 6∈ Lσ · Lωλ . Since the infinite
run 〈l0, d0〉〈l1, d1〉〈l2, d2〉 . . . was chosen arbitrarily, it follows that the automaton
recognizing L(A) \ Lσ · Lωλ is an abstraction of P . �

3.4.1 The Running Example: The Refinement

In the case of our running example, we discovered the lasso 1(23)ω. This execution
is found to be spurious by a specialized procedure that checks whether a given
program lasso can be fired infinitely often. For this purpose, the method given
in [20] could be used here, since the loop 1(23)ω does not change the structure of
the tree. The refinement of the abstraction consists in eliminating the infinite path
1(23)ω from the model. This is done by intersecting the model with the automaton
that recognizes the complement of the language {〈1, >x〉, 〈1,=x〉}(〈2,=x〉〈3, ./x〉)ω,
which corresponds to the program path 1(23)ω. The result of this intersection is
shown Figure 7. Notice that, in this case, the refinement does not increase the size
of the abstraction. Since now, only 4 and 5 are accepting states, another intersection
with the automaton in Figure 6 will be empty and hence the refined abstraction
does not have further non-terminating executions, proving thus termination of the
original program.
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〈2,=x〉

〈1,=x〉

〈1, >x〉

〈2,=x〉 〈4,=x〉
〈5, >x〉

〈3, ./x〉

Figure 7.

3.5 Refinement Heuristics

The refinement technique, based on the closure of ω-regular languages under inter-
section and complement can be generalized to exclude an entire family of counter-
examples, described as an ω-regular language, all at once. In the following we
provide such a refinement heuristics.

The main difficulty here is to generalize from lasso-shaped counterexamples to
more complex sets of counterexamples. In the following, we provide two refinement
heuristics that eliminate entire families of counterexamples, at once. We assume in
the following that we are given an invariant ι : L→ 2D of the program.

Infeasible Elementary Loop Refinement. Let σλω be a lasso representing
a spurious counterexample. To apply this heuristic method, we suppose that there
exists an upper bound B ∈ N, B > 0, on the number of times λ can be iterated,
starting with any data value from ι(l|σ|), where ι(l|σ|) denotes the program invariant
on location reachable in the program by the sequence of instructions σ from the
initial location. The existence of such a bound can be discovered by, e.g., a symbolic
execution of the loop. In case such a bound B exists, let C be a WDBA such that
L(C) = Σ∗(P,D) · LBλ · Σω

(P,D). Then the Büchi automaton A ⊗ C is an abstraction
of P , which excludes the spurious trace σλω, as shown by the following lemma:

Lemma 4. Let P = 〈I, L, l0,⇒〉 be a program, ι : L → 2D be an invariant of P ,
A be an abstraction of P , and λ ∈ Σ∗(P,D) be a lasso starting and ending with ` ∈ L.

If there exists B > 0 such that λB is infeasible, for any d ∈ ι(`), then the Büchi
automaton recognizing the language L(A)\Σ∗(P,D) ·LBλ ·Σω

(P,D) is an abstraction of P .

Proof. Let 〈l0, d0〉〈l1, d1〉〈l2, d2〉 . . . be an infinite run of P . Since A is an abstraction
of P , by Definition 12 there exists an infinite word 〈l0, ρ0〉〈l1, ρ1〉〈l2, ρ2〉 . . . ∈ L(A)
such that di[ρi]di+1, for all i ≥ 0. Since λB cannot be fired for any data element
d ∈ ι(`), then the infinite sequence l0, l1, l2, . . . may not contain the subsequence
(l|σ|l|σ|+1 . . . l|σ|+|λ|−1)B, corresponding to the first positions from λB. Consequently
〈l0, ρ0〉〈l1, ρ1〉〈l2, ρ2〉 . . . 6∈ Σ∗(P,D) · LBλ · Σω

(P,D). Since the infinite run 〈l0, d0〉〈l1, d1〉
〈l2, d2〉 . . . was chosen arbitrarily, it follows that the automaton recognizing L(A) \
Σ∗(P,D) · LBλ · Σω

(P,D) is an abstraction of P . �
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As an example, let us consider the following program:

1 while (x != null)
if (root.data)

2 x := x.left;
3 else x := x.up;

Here we assume that the root of the tree has a Boolean data field, which is used
by the loop to determine the direction (i.e., left, up) of the variable x. The initial
abstraction for this program is:

312

〈2, <x, ./rx〉

〈1,=x,=r
x〉

〈1,=x,=r
x〉

〈3, ./x, <r
x〉

This abstraction uses two well-founded relations, ≤x defined in Section 3, and
≤rx which is a stronger version of the reversed relation (≥x): t1 ≤rx t2 iff dom(t1) =
dom(t2)5 and t2 ≤x t1.

Then a spurious lasso is σλω, where σ is the empty word, and λ is 〈1,=x,
=r
x〉〈2, <x, ./

r
x〉〈1,=x,=

r
x〉〈3, ./x, <r

x〉, which corresponds to the program path 1213.
This path is infeasible for any tree and any position of x, therefore we refine the
abstraction by eliminating the language Σ∗(P,D)LλΣ

ω
(P,D). The refined automaton is

given below.

2 31a1b

〈1,=x,=r
x〉 〈1,=x,=r

x〉

〈3, ./x, <r
x〉〈2, <x, ./rx〉

〈1,=x,=r
x〉

The intersection of the refined automaton with the automaton B = B1 ⊗ B2 is
empty, where Bi, i = 1, 2 are the automata from Figure 5; hence, by Definition 12,
we can conclude that the program terminates.

This heuristic was used to prove termination of the Red-black delete algorithm,
reported in Section 5. Interestingly, this algorithm could not be proved to terminate
using standard refinement (cf. Lemma 3).

Infeasible Nested Loops Refinement. Let us assume that the location l|σ| is
the source (and destination) of k > 1 different elementary loops in A: λ1, . . . , λk.
Moreover, let us assume that:

1. these loops can only be fired in a given total order, denoted λi1 B λi2 B . . . λik ,

for each input value in the set Dσ = {d|〈l0, d0〉 σ⇒ 〈l|σ|, d〉, d0 ∈ D0}6;

5 For a tree t, dom(t) is the set of positions in the tree.
6 Notice that checking the existence of such an ordering amounts to performing at most

k2 feasibility checks, for all paths of the form λi · λj , 1 ≤ i, j ≤ k, i 6= j.
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2. the infinite word σ(λi1 · . . . ·λik)ω is a spurious counterexample for non-termina-
tion, i.e., the corresponding program path is infeasible for any initial value from
D0.

Under these assumptions, let C be the Büchi automaton recognizing the language
Lσ · (Lλ1 ∪ . . . ∪ Lλk)ω. The following lemma shows that A⊗C is an abstraction of
the program, that excludes the spurious lasso σλω.

1 while (x != null)
if (root.data == 0)

2 x := x.left;
else if (root.data == 1)

3 x := x.right;
else if (root.data == 2)

4 x := x.up;
5 root.data := (root.data+1) % 3;

a)

12 4

3

5

〈1,=x,=r
x〉

〈1,=x,=r
x〉

〈5,=x,=r
x〉

〈2, ./x, >r
x〉

〈3, ./x, >r
x〉〈1,=x,=r

x〉

〈4, >x, ./rx〉

b)

Figure 8.

Lemma 5. Let P = 〈I, L, l0,⇒〉 be a program, ι : L → 2D be an invariant of P ,
A be an abstraction of P , and λ1, . . . , λk ∈ Σ∗(P,D) be words labeling different cycles
of A starting and ending with the same location ` ∈ L. Moreover, let σ ∈ Σ∗(P,D) be
the label of a path from l0 to ` in A. If there exists a total order λi1B. . .Bλik in which
the cycles can be executed, for any d ∈ ι(`), and σ·(λi1 ·. . .·λik)ω is moreover spurious,
then the Büchi automaton recognizing the language L(A) \Lσ · (Lλ1 ∪ . . .∪Lλk)ω is
an abstraction of P .

Proof. Let 〈l0, d0〉〈l1, d1〉〈l2, d2〉 . . . be an infinite run of P . Since A is an abstraction
of P , by Definition 12 there exists an infinite word 〈l0, ρ0〉〈l1, ρ1〉〈l2, ρ2〉 . . . ∈ L(A)
such that di[ρi]di+1, for all i ≥ 0. We show that 〈l0, ρ0〉〈l1, ρ1〉〈l2, ρ2〉 . . . 6∈ Lσ · (Lλ1 ∪
. . .∪Lλk)ω. Assume by contradiction that 〈l0, ρ0〉〈l1, ρ1〉〈l2, ρ2〉 . . . ∈ Lσ · (Lλ1 ∪ . . .∪
Lλk)ω. Then the infinite sequence l0l1l2 . . . of first positions can be decomposed into
a prefix corresponding to σ, followed by an infinite succession of blocks corresponding
to some λi, 1 ≤ i ≤ k. Since λi1 B λi2 B . . . λik is the only possible execution order,
these blocks must respect the order B. However, this is in contradiction with the
fact that σ(λi1 · . . . · λik)ω is a spurious lasso. The conclusion follows. �

As an example, let us consider the program in Figure 8 a). Its initial abstraction,
using the relations ≤x and ≤rx, is given in Figure 8 b). The three nested loops are in
the unique execution order: 1251B1351B1451B1251. Moreover, the composed loop
(1251)(1351)(1451) cannot be iterated infinitely often because the pointer variable x,
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moving twice down and once up in the tree, is bound to become null. This fact can be
also detected automatically using, e.g., the technique from [20]. Therefore we can re-
fine the initial abstraction by eliminating the language {〈1,=x,=

r
x〉〈2, ./x, >r

x〉〈5,=x

,=r
x〉, 〈1,=x,=

r
x〉〈3, ./x, >r

x〉〈5,=x,=
r
x〉, 〈1,=x,=

r
x〉〈4, >x, ./

r
x〉〈5,=x,=

r
x〉}ω. The re-

fined abstraction is empty, hence the program has no infinite runs.

Remark. In light of the fact that the universal halting problem in not r.e., in
general, the abstraction-refinement loop is not guaranteed to terminate, even if the
program terminates.

4 PROVING TERMINATION OF PROGRAMS WITH TREES

In this section we instantiate our termination verification framework for programs
manipulating tree-like data structures. We consider sequential, non-recursive C-like
programs working over tree-shaped data structures with a finite set of pointer vari-
ables PV ar. Each node in a tree contains a data value field, ranging over a finite
set Data and three selector fields, denoted left, right, and up.7 For x, y ∈ PV ar
and d ∈ Data, we consider the programs over the set of instructions IT composed
of the following:

• guards: x == null, x == y, x.data == d, and Boolean combinations of the
above,

• actions: x = null, x = y, x = y.{left|right|up}, x.data = d, x.{left
|right} = new and x.{left|right} = null.

0 x := root;
1 while (x!=null)
2 if (x.left!=null) and

(x.left.data!=mark)
3 x:=x.left;
4 else if (x.right!=null) and

(x.right.data!=mark)
5 x:=x.right;

else
6 x.data:=marked;
7 x:=x.up;

Figure 9. Depth-first tree traversal

This set of instructions covers a large class of practical tree-manipulating pro-
cedures8. For instance, Figure 9 shows a depth-first tree traversal procedure, com-

7 Generalizing to trees with another arity is straightforward.
8 Handling general updates of the form x.left|right := y is more problematic, since

in general the result of such instructions is not a tree any more. Up to some extent, this
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monly used in real-life programs. In particular, here PV ar = {x} and Data =
{marked, unmarked}. This program will be used as a running example in the rest
of the section.

In order to use our framework for analyzing termination of programs with trees,
we need to provide (1) well-founded partial orderings on the tree domain, (2) sym-
bolic encodings for the partial orderings as well as for the program semantics and
(3) a decision procedure for the spuriousness problem. The last point was tackled
in our previous work [20], for lassos without destructive updates (i.e., instructions
of the form x.left|right := new|null).

4.1 Abstracting Programs with Trees into Büchi Automata

A memory configuration is a binary tree with nodes labeled by elements of the set
C = Data × 2PV ar ∪ {�}, i.e., a node is either null (�) or it contains a data value
and a set of pointer variables pointing to it (〈d, V 〉 ∈ D × 2PV ar). Each pointer
variable can point to at most one tree node (if it is null, it does not appear in the
tree). For a tree t ∈ T (C) and a position p ∈ dom(t) such that t(p) = 〈d, V 〉, we
denote δt(p) = d and νt(p) = V . For clarity reasons, the semantics of the program
instructions considered is given in Figure 10. First we show that all program actions
considered here can be encoded as rational tree relations.

∀p ∈ dom(t) : x 6∈ ν(t(p))
〈l, t〉 → 〈l′, t〉

p ∈ dom(t) x ∈ ν(t(p))
〈l, t〉 → 〈l′, t[p← 〈δ(t(p)), ν(t(p)) \ {x}〉]〉

x = null

p ∈ dom(t) y ∈ ν(t(p))

t(p.0) 6= � 〈l, t〉 x=null−→ 〈l′, t′〉
〈l, t〉 → 〈l′, t′[p.0← 〈δ(t(p.0)), ν(t(p.0)) ∪ {x}〉]〉

x = y.left(a)

p ∈ dom(t) y ∈ ν(t(p))

t(p.0) = � 〈l, t〉 x=null−→ 〈l′, t′〉
〈l, t〉 → 〈l′, t′〉

∀p ∈ dom(t).y 6∈ ν(t(p))
〈l, t〉 → Err

x = y.left(b)

p ∈ dom(t) x ∈ ν(t(p))
〈l, t〉 → 〈l′, t[p← 〈d, ν(t(p))〉]〉

∀p ∈ dom(t).x 6∈ ν(t(p))
〈l, t〉 → Err

x.data = d

d ∈ Data p ∈ dom(t)
x ∈ ν(t(p)) t(p.0) = �

〈l, t〉 → 〈l′, t[p.0← 〈d, ∅〉, p.0.0← �, p.0.1← �]〉

(∀p ∈ dom(t).x 6∈ ν(t(p))) ∨
(p ∈ dom(t) ∧ x ∈ ν(t(p)) ∧ t(p.0) 6= �)

〈l, t〉 → Err
x.left = new

p ∈ dom(t) x ∈ ν(t(p)) p.0 ∈ dom(t)
t(p.0.0) = t(p.0.1) = �

〈l, t〉 → 〈l′, t[p.0← �, p.0.0← ⊥, p.0.1← ⊥]〉

(∀p ∈ dom(t).x 6∈ ν(t(p))) ∨
(p ∈ dom(t) ∧ x ∈ ν(t(p))∧
(t(p.0) = � ∨ t(p.0.0) 6= � ∨ t(p.0.1) 6= �))

〈l, t〉 → Err
x.left = null

Figure 10. The concrete semantics of program statements – the upper part of a rule repre-
sents a guard and the lower part an action. Err is equal to abnormal termination
of the program (it is not possible to execute the given statement).

kind of programs can be handled by the extension described in Section 4.3.
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Lemma 6. For any program instruction i = 〈g, a〉 ∈ IT , the tree relation Ri =
{〈t, t′〉|t ∈ g, t′ = a(t)} is rational.

Proof. We will now show, how to construct a tree automaton for each guard and
each statement. The automaton for the guarded action is then created as compo-
sition of the corresponding guard and the action. Both the guards and actions are
tree automata A = (Q,F,∆) over the pair alphabet (C ∪ {�,⊥}) × (C ∪ {�,⊥}).
We use the following subsets of the alphabet C within the proof:

• NV = {〈d,X〉 ∈ C|∀x ∈ V.x /∈ X}
• PV = {〈d,X〉 ∈ C|∀x ∈ V.x ∈ X}

guards

• x == null: A = ({q1}, {q1},∆) with ∆ = {

– 〈�,�〉 → q1

– ∀p ∈ N{x}〈p, p〉(q1, q1)→ q1

}
• x == y: A = ({q1}, {q1},∆) with ∆ = {

– 〈�,�〉 → q1

– ∀p ∈ N{x,y}〈p, p〉(q1, q1)→ q1

– ∀p ∈ P{x,y}〈p, p〉(q1, q1)→ q1

}
• x.data == d: A = ({q1, q2}, {q2},∆) with ∆ = {

– 〈�,�〉 → q1

– ∀p ∈ N{x}.〈p, p〉(q1, q1)→ q1}
– ∀〈d,X〉 ∈ P{x}.〈〈d,X〉, 〈d,X〉〉(q1, q1)→ q2

– ∀p ∈ N{x}〈p, p〉(q2, q1)→ q2 and 〈p, p〉(q1, q2)→ q2

}

actions

• x = null: A = ({q1}, {q1},∆) with ∆ = {

– 〈�,�〉 → q1

– ∀p ∈ N{x}〈p, p〉(q1, q1)→ q1

– ∀〈d,X〉 ∈ P{x}〈〈d,X〉, 〈d,X \ {x}〉〉(q1, q1)→ q1

}
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• y = x: A = ({q1}, {q1},∆) with ∆ = {

– 〈�,�〉 → q1

– ∀p ∈ N{x,y}.〈p, p〉(q1, q1)→ q1

– ∀〈d,X〉 ∈ P{x}.〈〈d,X〉, 〈d,X ∪ {y}〉〉(q1, q1)→ q1

– ∀〈d,X〉 ∈ {P{y} \ P{x}}.〈〈d,X〉, 〈d,X \ {y}〉〉(q1, q1)→ q1

}
• y = x.left, A = ({q1, qy, q2}, {q2},∆) with ∆ = {

– 〈�,�〉 → q1

– 〈�,�〉 → qy
– ∀〈d,X〉 ∈ N{x}.〈〈d,X〉, 〈d,X ∪ {y}〉〉(q1, q1)→ qy
– ∀〈d,X〉 ∈ N{x}.〈〈d,X〉, 〈d,X \ {y}〉〉(q1, q1)→ q1

– ∀〈d,X〉 ∈ P{x}.〈〈d,X〉, 〈d,X \ {y}〉〉(qy, q1)→ q2

– ∀〈d,X〉 ∈ N{x}.〈〈d,X〉, 〈d,X \ {y}〉〉(q2, q1)→ q2

– ∀〈d,X〉 ∈ N{x}.〈〈d,X〉, 〈d,X \ {y}〉〉(q1, q2)→ q2

}
• x.data = d: A = ({q1, q2}, {q2},∆) with ∆ = {

– 〈�,�〉 → q1

– ∀p ∈ N{x}.〈p, p〉(q1, q1)→ q1

– ∀〈dorig, X〉 ∈ P{x}.〈〈dorig, X〉, 〈d,X〉〉(q1, q1)→ q2

– ∀p ∈ N{x}.〈p, p〉(q2, q1)→ q2

– 〈p, p〉(q1, q2)→ q2

}
• x.left = new: A = ({q1, qnew, q⊥, q2}, {q2},∆) with ∆ = {

– 〈�,�〉 → q1

– 〈⊥,�〉 → q⊥
– 〈�, 〈dinit, ∅〉〉(q⊥, q⊥)→ qnew
– ∀p ∈ N{x}.〈p, p〉(q1, q1)→ q1

– ∀p ∈ P{x}〈p, p〉(qnew, q1)→ q2

– ∀p ∈ N{x}.〈p, p〉(q2, q1)→ q2

– 〈p, p〉(q1, q2)→ q2

}
• x.left = null. A = ({q1, qdel, q⊥, q2}, {q2},∆) with ∆ = {

– 〈�,�〉 → q1

– 〈�,⊥〉 → q⊥
– ∀p ∈ N{x}〈p,�〉(q⊥, q⊥)→ qdel
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– ∀p ∈ N{x}.〈p, p〉(q1, q1)→ q1

– ∀p ∈ P{x}〈p, p〉(qdel, q1)→ q2

– ∀p ∈ N{x}.〈p, p〉(q2, q1)→ q2

– 〈p, p〉(q1, q2)→ q2

}
Instructions y = x.right and y = x.up are similar to the y = x.left, the instruction
x.right = new to the x.left = new, and the instruction x.right = null to the
x.left = null, �

In order to abstract programs with trees as Büchi automata (cf. Definition 12),
we must introduce the well-founded partial orders on the working domain, i.e., trees.
These well founded orders are captured by Definition 14, and the working domain
will be DT = 〈T (C), {�x,�rx}x∈PV ar, {�d,�rd}d∈Data〉.
Definition 14 (Well-founded orders on trees).

• t1 �x t2, for some x ∈ PV ar iff

1. dom(t1) ⊆ dom(t2), and

2. there exist positions p1 ∈ dom(t1), p2 ∈ dom(t2) such that x ∈ νt1(p1),
x ∈ νt2(p2) and p1 ≤lex p2.

In other words t1 is smaller than t2 if all nodes in t1 are also present in t2 and
the position of x in t1 is lexicographically smaller than the position of x in t2.

• t1 �rx t2, for some x ∈ PV ar iff

1. dom(t1) ⊆ dom(t2), and

2. there exist positions p1 ∈ dom(t1), p2 ∈ dom(t2) such that x ∈ νt1(p1),
x ∈ νt2(p2) and p1 ≥lex p2.

In other words, t1 is smaller than t2 if all nodes in t1 are also present in t2 and
the position of x in t1 is lexicographically bigger than the position of x in t2.

• t1 �d t2, for some d ∈ Data iff for any position p ∈ dom(t1) such that δt1(p) = d
we have p ∈ dom(t2) and δt2(p) = d. In other words, t1 is smaller than t2 if the
set of nodes colored with d in t1 is a subset of the set of nodes colored with d in
t2.

• t1 �rd t2, for some d ∈ Data iff

1. dom(t1) ⊆ dom(t2), and

2. for any position p ∈ dom(t2) such that δt2(p) = d we have p ∈ dom(t1) and
δt1(p) = d.

In other words, t1 is smaller than t2 if all nodes in t1 are also present in t2 and
the set of nodes colored with d in t2 is a subset of the set of nodes colored with d
in t1.
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x.left.data!=mark]

4

5
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Figure 11. The depth-first tree traversal procedure and its initial abstraction

Lemma 7. The relations �x, �rx, x ∈ PV ar and �d,�rd, d ∈ Data are well-founded.

Proof.

• Let us suppose that there exists an infinite sequence of trees t0 �x t1 �x t2 �x
. . . Then according to the definition of �x: ∀i ≥ 0 ∃pi ∈ dom(ti) such that
x ∈ νti(pi) and pi ≥lex pi+1 and dom(ti) ⊇ dom(ti+1). Moreover, due to the fact
that ti+1 �x ti, one of the following holds for each i ≥ 0: (i) pi >lex pi+1 or
(ii) dom(ti) ⊃ dom(ti+1). Note that at least one of the cases (i) or (ii) holds for
infinitely many different values of i.

Therefore in the infinite sequence of trees t0 �x t1 �x t2 �x . . ., there must exist
an infinite subsequence9 t0 �x t1 �x t2 �x . . . such that either (i) or (ii) holds
for all i ≥ 0 in this sequence.

Let us suppose that we have the infinite sequence t0 �x t1 �x t2 �x . . . where

9 An infinite sequence a0, a1, a2, . . . is a subsequence of the infinite sequence b0, b1, b2, . . .
iff exists a mapping σ : N→ N such that ∀i ≥ 0. ai = bσ(i) and i < j ⇒ σ(i) < σ(j).
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the condition (i) holds for all i ≥ 0. Note that for all i ≥ 0.dom(ti) ⊆ dom(t0)
and dom(t0) is finite. Therefore there exists only a finite number of different
positions p0, p1, . . . , pk, hence the sequence t0 �x t1 �x t2 �x . . . cannot be
infinite.

Let us suppose that the condition (ii) holds for all i ≥ 0. Then there must be
an infinite sequence dom(t0) ⊃ dom(t1) ⊃ dom(t2) ⊃ . . .. The dom(t0) is finite,
hence the sequence cannot exist.

The proof of well-foundedness of �rx is similar.

• Let us suppose that for some d ∈ Data there exists an infinite sequence t0 �d
t1 �d t2 �d . . . Let Sd(t) = {p ∈ dom(t) | δt(p) = d} be a set of all positions
labeled by a data value d in the tree t. Then according to the definition of �d:
Sd(t0) ⊃ Sd(t1) ⊃ Sd(t2) ⊃ . . . The dom(t0) is finite, hence the set Sd(t0) is also
finite. Therefore the sequence t0 �d t1 �d t2 �d . . . must be finite.

• Let us suppose that for some d ∈ Data there exists an infinite sequence t0 �rd
t1 �rd t2 �rd . . . Let Sd(t) = {p ∈ dom(t) | δt(p) = d} be a set of all positions
labeled by a data value d in the tree t. Then according to the definition of
�rd: Sd(t0) ⊆ Sd(t1) ⊆ Sd(t2) ⊆ . . . and dom(t0) ⊇ dom(t1) ⊇ dom(t2) ⊇ . . .
Moreover, due to the fact that ∀i ≥ 0. ti+1 �x ti, one of the following situations
holds for each value of i:

1. Sd(ti) ⊂ Sd(ti+1) or

2. dom(ti) ⊃ dom(ti+1).

Therefore in the infinite sequence of trees t0 �rd t1 �rd t2 �rd . . ., there must exist
an infinite subsequence t0 �rd t1 �rd t2 �rd . . . such that either (i) or (ii) holds for
all i ≥ 0 in this sequence.

1. cannot be true in the whole infinite sequence, because ∀i > 0. Si ⊆ dom(t0)
and dom(t0) is finite.

2. cannot be true, because dom(t0) is finite.

Hence the sequence t0 �rd t1 �rd t2 �rd . . . must be finite.

�
Lemma 7 implies that Assumption 1 is valid for the working domain DT =

〈T (C), {�x,�rx}x∈PV ar, {�d,�rd}d∈Data〉, and hence the whole termination analysis
framework presented in Section 3 can be employed.

The choice of relations is ad-hoc for the time being. In practice these relations
are sufficient for proving termination of an important class of programs handling
trees.

Lemma 8. The relations �x, �rx, x ∈ PV ar and �d,�rd, d ∈ Data are rational.

Proof. By the construction of tree automata A = (Q,F,∆) over the pair alphabet
(C ∪ {�,⊥})× (C ∪ {�,⊥}) for each of the proposed relations.
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• t1 �x t2: A = ({q1, qL, qR, qacc}, {qacc},∆) with ∆ = {

– 〈�,�〉 → q1

– 〈⊥,�〉 → q1

– ∀p1, p2 ∈ N{x} ∪ {�,⊥}.〈p1, p2〉(q1, q1)→ q1

– ∀p1, p2 ∈ N{x} ∪ {�,⊥}.〈p1, p2〉(qL, q1)→ qL
– ∀p1, p2 ∈ N{x} ∪ {�,⊥}.〈p1, p2〉(q1, qL)→ qL
– ∀p1, p2 ∈ N{x} ∪ {�,⊥}.〈p1, p2〉(qR, q1)→ qR
– ∀p1, p2 ∈ N{x} ∪ {�,⊥}.〈p1, p2〉(q1, qR)→ qR
– ∀px ∈ P{x}∀p ∈ N{x} ∪ {�,⊥}.〈px, p〉(q1, q1)→ qL
– ∀px ∈ P{x}∀p ∈ N{x} ∪ {�,⊥}.〈p, px〉(q1, q1)→ qR
– ∀p1, p2 ∈ P{x}.〈p1, p2〉(q1, q1)→ qacc
– ∀px ∈ P{x}∀p ∈ N{x}.〈px, p〉(qR, q1)→ qacc
– ∀px ∈ P{x}∀p ∈ N{x}.〈px, p〉(q1, qR)→ qacc
– ∀p1, p2 ∈ N{x}.〈p1, p2〉(qL, qR)→ qacc
– ∀p1, p2 ∈ N{x}.〈p1, p2〉(qacc, q1)→ qacc
– ∀p1, p2 ∈ N{x}.〈p1, p2〉(q1, qacc)→ qacc

}
• t1 �rx t2: A = ({q1, qL, qR, qacc}, {qacc},∆) with ∆ = {

– 〈�,�〉 → q1

– 〈⊥,�〉 → q1

– ∀p1, p2 ∈ N{x} ∪ {�,⊥}.〈p1, p2〉(q1, q1)→ q1

– ∀p1, p2 ∈ N{x} ∪ {�,⊥}.〈p1, p2〉(qL, q1)→ qL
– ∀p1, p2 ∈ N{x} ∪ {�,⊥}.〈p1, p2〉(q1, qL)→ qL
– ∀p1, p2 ∈ N{x} ∪ {�,⊥}.〈p1, p2〉(qR, q1)→ qR
– ∀p1, p2 ∈ N{x} ∪ {�,⊥}.〈p1, p2〉(q1, qR)→ qR
– ∀px ∈ P{x}∀p ∈ N{x} ∪ {�,⊥}.〈px, p〉(q1, q1)→ qL
– ∀px ∈ P{x}∀p ∈ N{x} ∪ {�,⊥}.〈p, px〉(q1, q1)→ qR
– ∀p1, p2 ∈ P{x}.〈p1, p2〉(q1, q1)→ qacc
– ∀px ∈ P{x}∀p ∈ N{x}.〈p, px〉(qL, q1)→ qacc
– ∀px ∈ P{x}∀p ∈ N{x}.〈p, px〉(q1, qL)→ qacc
– ∀p1, p2 ∈ N{x}.〈p1, p2〉(qR, qL)→ qacc
– ∀p1, p2 ∈ N{x}.〈p1, p2〉(qacc, q1)→ qacc
– ∀p1, p2 ∈ N{x}.〈p1, p2〉(q1, qacc)→ qacc

}
• t1 �d t2: A = ({q1}, {q1},∆) with ∆ = {

– 〈�,�〉 → q1

– 〈⊥,�〉 → q1

– 〈�,⊥〉 → q1
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– ∀p1, p2 ∈ C ∪ {⊥}, p1 6= 〈d,X〉 for some X ∈ 2PV ar

〈p1, p2〉(q1, q1)→ q1.

– ∀X1, X2 ∈ 2PV ar.〈〈d,X1〉, 〈d,X2〉〉(q1, q1)→ q1

}
• t1 �rd t2: A = ({q1}, {q1},∆) with ∆ = {

– 〈�,�〉 → q1

– 〈⊥,�〉 → q1

– ∀p1, p2 ∈ C ∪ {⊥}, p2 6= 〈d,X〉 for some X ∈ 2PV ar

〈p1, p2〉(q1, q1)→ q1.

– ∀X1, X2 ∈ 2PV ar.〈〈d,X1〉, 〈d,X2〉〉(q1, q1)→ q1

}

�
The Büchi automaton representing the initial abstraction of the depth-first tree

traversal procedure is depicted in Figure 11. To simplify the figure, we use only the
orders �rx and �rmark. Thanks to these orders, there is no potential infinite run in
the abstraction.

Remark. In practice, one often obtains a more precise initial abstraction by com-
posing several program steps into one. In cases where the program instructions
induce rational tree relations, it is guaranteed that composition of two or more
program steps also induces a rational tree relation.

In order to decide which transitions will be composed, one can use the concept of
so-called cutpoints. Formally, given a program P = 〈I, L, l0,⇒〉, a set of cutpoints
S ⊆ L is a set of control locations such that each loop in the program contains at
least one location l ∈ S [12, 1]. The set of cutpoints can be provided manually or
discovered automatically by means of some heuristics. In our heuristics we provide
one cutpoint on each branch in the control flow.

4.2 Adding Tree Rotations

As a possible extension of the proposed framework, one can allow tree left and right
rotations as program statements [15]. The effect of a left tree rotation on a node
pointed by variable x is depicted in Figure 12 (the effect of the right rotation is
analogous). The concrete semantics of the rotations is depicted in Figure 13, where
uleft = tε{λ ← t|p.1}{0 ← t|p}{0.1 ← t|p.1.0}, and uright = tε{λ ← t|p.0}{1 ←
t|p}{1.0← t|p.0.1}.

Since rotations cannot be described by rational tree relations, we cannot check
whether �x,�rx,�d and �rd hold, simply by intersection. However, we know that
rotations do not change the number of nodes in the tree, therefore we can label
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x,X

x,X

A

B A B

leftRotate(x)

C

C

Y

Y

Figure 12. Left tree rotation on the node pointed by variable x. X, and Y denote two
concrete nodes affected by the rotation and A, B, and C three subtrees.

p ∈ dom(t) x ∈ ν(t(p)) t(p.1) 6= �
〈l, t〉 → 〈l′, t{p← uleft}〉

(∀p ∈ dom(t).x 6∈ ν(t(p))) ∨
(p ∈ dom(t) ∧ x ∈ ν(t(p)) ∧ t(p.1) = �)

〈l, t〉 → Err
leftRotate(x)

p ∈ dom(t) x ∈ ν(t(p)) t(p.0) 6= �
〈l, t〉 → 〈l′, t{p← uright}〉

(∀p ∈ dom(t).x 6∈ ν(t(p))) ∨
(p ∈ dom(t) ∧ x ∈ ν(t(p)) ∧ t(p.0) = �)

〈l, t〉 → Err
rightRotate(x)

Figure 13. Concrete semantics of tree rotations. As in the case of Figure 10, the upper
part of a rule represents a guard and the lower part of a rule represents an action
on a tree. Err is equal to abnormal termination of the program (the rotation is
not possible).

them a posteriori with =d,=
r
d, d ∈ Data, and ./x, ./

r
x, x ∈ PV ar, since the relative

positions of the variables after the rotations are not known10. This extension has
been used to verify termination of the Red-black delete and Red-black insert examples
reported in Section 5.

4.2.1 Example: Red-black Trees – Rebalancing After Delete

Red-black trees [15] are binary search trees with the following red-black balanceness
properties:

1. Every node carries an extra flag set either to red, or black.

2. The root of the tree is black.

3. Every leaf node (node without a child) is black.

4. If a node is red, then both its children are black.

10 We could make this abstraction more precise by labeling with =x,=
r
x for all x ∈ PV ar

situated above the rotation point – the latter condition can be checked by intersection with
a rational tree language.
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5. For each node in the tree, all simple paths from this node to the leaves have
equal number of black nodes.

After deletion of a node from such a tree, the balance property can be broken.
In order to restore the red-black properties, the rebalance procedure displayed in
Figure 15 is executed. In order to simplify the presentation of our termination
analysis framework, we choose a set of cutpoints from the original program. The
initial abstraction using these cutpoints is depicted in Figure 14. We show only the
relation �x, which is important for the termination proof. Note that there is no
edge 14 → 3 and 35 → 3 in the abstraction, because there is no execution of the
program following these edges.

x=3, x=3,

x=4,

x=4,

x6,

x=31,

x=25,

x=25,

x>11,
x>32,

x=10,
x=10,

x=31,

x27,

3

4

6

10

11

25

31

32

3514

27

Figure 14. Red-Black: rebalance after delete - initial abstraction on the simplified control
flow

It can be seen in Figure 14 that there are counterexamples of the following forms:

1. Σ∗(Σ∗〈3,=x〉〈4,=x〉〈6, ./x〉〈10,=x〉〈11, >x〉Σ∗)ω
2. Σ∗(Σ∗〈3,=x〉〈25,=x〉〈27, ./x〉〈31,=x〉〈32, >x〉Σ∗)ω

The abstraction refinement works as follows. First, the counterexample (〈3,=x〉
〈4,=x〉〈6, ./x〉〈10,=x〉〈11, >x〉)ω is taken. There is no execution of the program
following the path 3, 4, 6, 10, 11, 3 in the program, so we can apply Lemma 4
and remove the whole set of counterexamples Σ∗〈3, 〉〈4, 〉〈6, 〉〈10, 〉〈11, 〉(Σ∗)ω.
Note that all counterexamples of type 1 are included. The next counterexample
is (〈3,=x〉〈25,=x〉〈27, ./x〉〈31,=x〉〈32, >x〉)ω. As for the previous one, there is no
execution in the program following the path 3, 25, 27, 31, 32, 3 so according to
Lemma 4, we can remove the counterexamples Σ∗〈3, 〉〈25, 〉〈27, 〉〈31, 〉〈32, 〉(Σ∗)ω
(all counterexamples of type 2 are included).

After this second refinement, there is no counterexample left in the abstraction,
so we can conclude that the Red-Black rebalance procedure terminates.
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procedure rb rebalance(root)
0 while true
1 if x==root then return;
2 if x.color=RED return;
3 if x==x.parrent.left then
4 w=x.parrent.right
5 if w.color==red
6 w.color=black
7 x.parrent.color=red
8 leftrotate(x.parent)
9 w=x.parrent.right
10 if (w.left==null or w.left.color==black) and

(w.right==null or w.right.color==black) then
11 w.color=red
12 x=x.parent
13 continue
14 if (w.right==null or w.right.color==black) then
15 w.left.color=black
16 w.color=red
17 rightrotate(w)
18 w=x.parrent.right
19 w.color=px.color
20 x.parrent.color=black
21 w.right.color=black
22 leftrotate(x.parent)
23 x=root
24 else
25 w=x.parrent.left
26 if w.color==red
27 w.color=black
28 x.parrent.color=red
29 rightrotate(x.parent)
30 w=x.parrent.left
31 if (w.left==null or w.left.color==black) and

(w.right==null or w.right.color==black) then
32 w.color=red
33 x=x.parent
34 continue
35 if (w.left==null or w.left.color==black) then
36 w.right.color=black
37 w.color=red
38 leftrotate(w)
39 w=x.parrent.left
40 w.color=x.parrent.color
41 x.parrent.color=black
42 w.left.color=black
43 rightrotate(x.parent)
44 x=root

Figure 15. Red-Black: rebalance after delete
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4.3 From Trees to Complex Data Structure

In general, programs with pointer data types do not manipulate just lists and trees.
The structures that occur at execution time can be arbitrarily oriented graphs. In
this section we use the termination detection framework for programs that manipu-
late such complex structures. To compute program invariants, we use the approach
from [6], based on encoding of graphs as trees with extra edges. The basic idea of
this encoding is that each structure has an underlying tree (called a backbone) which
remains unchanged during the whole computation.

As in the previous, let PV ar be a finite set of pointer variables, Data a finite set
of data values, N the maximal number of selectors allowed in a single memory node,
and S a finite set of pointer descriptors, which are references to regular expressions
(called routing expressions) over the alphabet of directions in the tree (e.g., left,
right, left-up, right-up, etc.). The backbone is a tree labeled by symbols of the
alphabet C = (Data × 2PV ar × SN) ∪ {�,♦}. The arity function is defined as
follows: #(�) = 0 and #(c) = b for all c ∈ C \ {�}, where b > 0 is a branching
factor fixed for the concrete encoding11. Each node of such a tree is either active,
removed, or unused, as follows:

active nodes represent memory cells present in the memory. These nodes are la-
beled by symbols from the alphabet Data× 2PV ar × SN ;

removed nodes are the nodes which were deleted from the memory. They are
labeled by the symbol ♦. These nodes are kept in the data structure in order to
preserve original shape of the underlying tree;

unused nodes are labeled by � and they are placed in leaves. These nodes can be
changed into active ones by a new statement.

Pointers between the active memory nodes are represented by pointer descrip-
tors (placed in the active nodes). A pointer descriptor corresponding to 1 ≤ i ≤ N
determines the destination of the ith selector field of the node. There are two special
designated pointer descriptors for the null and undefined pointers. The destructive
updates on the data structure can be then performed simply by changing the pointer
descriptors inside the tree followed by an update of the corresponding routing ex-
pression.

A set of such data structures (trees with routing expressions) can be represented
by tree automata. This allows to apply the framework of abstract regular tree model
checking (ARTMC) [5] in order to compute (over-approximations of) the invariants
of programs handling complex data structures. The ARTMC tool derives automa-
tically the set of underlying trees and the corresponding routing expressions.

We apply the termination analysis framework along the same lines as in the
previous. For a tree t ∈ T (C) and a position p ∈ dom(t) such that t(p) =
〈d, V, s1, . . . sN〉, we denote δt(p) = d, νt(p) = V , and ξt(p)[i] = si. If t(p) = ♦,

11 Usually, the branching factor b is equal to the number of selectors N .
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δt(p) = ⊥, νt(p) = ∅, and ξt(p)[i] = undefined, 1 ≤ i ≤ N , i.e., all descriptors
represent undefined pointers.

Now, we need to provide well-founded orders on trees with routing expressions.
We use the fact that the tree backbone is not changed during the whole computation,
hence we can easily employ the orders �x, �rx, �d and �rd defined in Definition 14.
In addition, we define the following well-founded orders based on pointer descriptors
values captured by Definition 15. The working domain will be DT = 〈T (C), {�x,
�rx}x∈PV ar, {�d,�rd}d∈Data, {�1:s,�r1:s}s∈S, . . . , {�N :s,�rN :s}s∈S〉.
Definition 15 (Well-founded orders based on pointer descriptors). • t1 �i:s t2,

for some 1 ≤ i ≤ N and s ∈ S iff for any position p ∈ dom(t1) such that
ξt1(p)[i] = s we have p ∈ dom(t2) and ξt2(p)[i] = s. In other words, t1 is smaller
than t2 if the set of nodes in t1, where the ith descriptor is set to s, is a subset
of the set of nodes in t2, where the ith descriptor is set to s.

• t1 �ri:s t2, for some 1 ≤ i ≤ N and s ∈ S iff (i) dom(t1) ⊆ dom(t2) and (ii) for
any position p ∈ dom(t2) such that ξt2(p)[i] = s we have p ∈ dom(t1) and
ξt1(p)[i] = s. In other words t1 is smaller than t2 if all nodes in t1 are also
present in t2 (i.e., no new nodes were created) and the set of nodes in t2, where
the ith descriptor is set to s, is a subset of the set of nodes in t1, where the
ith descriptor is set to s.

Lemma 9. The relations on pointer descriptor fields �i:s and �ri:s are well-founded
and rational.

Proof. The pointer descriptor is syntactically a data value from a finite set S.
Therefore the proofs of rationality and well-foundedness of �i:s (resp �ri:s) are similar
to the proofs of �d (resp. �rd). �

To understand the use of the relations �i:s,�ri:s, consider the program from
Figure 16. This procedure traverses a binary tree in depth-first order and links all
its nodes into a cyclic singly-linked list using the selector next. In the beginning,
all next selector are set to null. Then the processed nodes have the selector next
non-null. Due to this fact, one can establish termination proof using the orders �Rx
and �next:null. Note that the order based on data values (as in classical depth-first
traversal) cannot be used any more to establish termination.

5 IMPLEMENTATION AND EXPERIMENTAL RESULTS

We have implemented a prototype tool that uses this framework to detect termina-
tion of programs with trees and trees with extra edges. The tool was built as an
extension of the ARTMC [6] verifier for safety properties (null-pointer dereferences,
memory leaks, etc.). We applied our tool to several programs that manipulate.

doubly-linked lists: DLL-insert (DLL-delete) which inserts (deletes) a node in
(from) a doubly-linked list, and DLL-reverse which is the in-place reversal of
the doubly linked list;
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procedure link nodes(root)
0 x := root;
1 last:=root;
2 while (x!=null)
3 if (x.left!=null) and (x.left.next==null)
4 x:=x.left;
5 else if (x.right!=null) and (x.right.next==null)
6 x:=x.right;

else
7 x.next:=last;
8 last:=x;
9 x:=x.up;

Figure 16. Linking nodes in Depth-first order

Example Time Nrefs

DLL-insert 2s 0

DLL-delete 1s 0

DLL-reverse 2s 0

Depth-first search 17s 0

Linking leaves in trees 14s 0

Deutsch-Schorr-Waite 1m 24s 0

Linking Nodes 5m 47s 0

Red-black delete 4m 54s 2

Red-black insert 29s 0

Table 1. Experimental results

trees: Depth-first search and Deutsch-Schorr-Waite which are tree traversals, Red-
black delete (insert) which rebalances a red-black tree after the deletion (inser-
tion) of a node;

tree with extra edges: Linking leaves (Linking nodes) which insert all leaves (no-
des) of a tree in a singly-linked list.

The results obtained on an Intel Core 2 PC with 2.4 GHz CPU and 2 GB RAM
memory are given in Table 1. The field time represents the time necessary to
generate invariants and build the initial abstraction. The field Nrefs represents
the number of refinements. The only case in which refinement was needed is the
Red-black delete example, which was verified using the Infeasible Elementary Loop
refinement heuristic (Section 3.4).

6 CONCLUSIONS

We proposed a new generic termination-analysis framework. In this framework, in-
finite runs of a program are abstracted by Büchi automata. This abstraction is then
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intersected with a predefined automaton representing potentially infinite runs. In
case of non-empty intersection, a counterexample is exhibited. If the counterexam-
ples is proved to be spurious, the abstraction is refined. We instantiated the frame-
work for programs manipulating tree-like data structures and we experimented with
a prototype implementation, on top of the ARTMC invariant generator. Test cases
include a number of classical algorithms that manipulate tree-like data structures.

Future work includes instantiation of the method for the class of programs han-
dled by a tool called Forester [19] based on a tuples of tree automata. The encod-
ing of complex data structures used in Forester is more flexible than that used in
ARTMC and it would allow us to handle much bigger programs, as well as more
complex and tricky pointer manipulations. Using the proposed method, we would
also like to tackle the termination analysis for concurrent programs. Moreover, we
would like to investigate methods for automated discovery of well-founded orderings
on the complex data domains such as trees and graphs.
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est Automata for Verification of Heap Manipulation. In Proc. of CAV 2011, Vol. 6806
of LNCS, Springer Verlag, 2011.

[20] Habermehl, P.—Iosif, R.—Rogalewicz, A.—Vojnar, T.: Proving Termi-
nation of Tree Manipulating Programs. In Proc. of ATVA ’07, Vol. 4762 of LNCS,
Springer, 2007.

[21] Iosif, R.—Rogalewicz, A.: Automata-Based Termination Proofs. In Proc. of
CIAA 2005, Vol. 5642 of LNCS, Springer, 2009.

[22] Khoussainov, B.—Nerode, A.: Automata Theory and Its Applications.
Birkhauser Boston, 2001.

[23] Lahiri, S. K.—Qadeer, S.: Verifying Properties of Well-Founded Linked Lists. In
Proc. of POPL ’06, ACM Press, 2006.

[24] Lee, C. S.—Jones, N. D.—Ben-Amram, A. M.: The Size-Change Principle for
Program Termination. In Proc. of POPL 2001, ACM Press, 2001.

67



Automata-Based Termination Proofs 775

[25] Loginov, A.—Reps, T. W.—Sagiv, M.: Automated Verification of the Deutsch-
Schorr-Waite Tree-Traversal Algorithm. In Proc. of SAS ’06, Vol. 4134 of LNCS,
Springer, 2006.

[26] Podelski, A.—Rybalchenko, A.: Transition Invariants. In Proc. of LICS ’04.
IEEE, 2004.

[27] Rozenberg, G.—Salomaa, A. editors: Handbook of Formal Languages, Vol. 3:
Beyond Words. Springer-Verlag New York, Inc., New York, NY, USA, 1997.

[28] Rybalchenko, A.: ARMC: Abstraction Refinement Model Checker. http://www.
mpi-inf.mpg.de/~rybal/armc/.

[29] Vardi, M. Y.: The Büchi Complementation Saga. In Proc. of STACS ’07, Vol. 4393
of LNCS, Springer, 2007.

Radu Iosif is a full-time researcher at Centre National de
Recherche Scientifique (CNRS), VERIMAG Laboratory (Greno-
ble, France). He received his M. Sc. degree from the Politechnic
University of Bucharest (Romania), and his Ph. D. degree from
Politecnico di Torino (Italy), both in computer science. After
completing his Ph. D., he spent 2 years as a research assistant at
Kansas State University (USA). His main research interests are
in logic, automata theory and program verification.

Adam Rogalewicz is an Assistant Professor at Brno Uni-
versity of Technology, Faculty of Information Technology and
member of VeriFIT research group. He received his M. Sc. de-
gree at Masaryk University Brno and his Ph. D. degree at Brno
University of Technology, both in computer science. After com-
pleting his Ph. D., he worked as a post-doc at Centre National
de Recherche Scientifique (CNRS), VERIMAG Laboratory.

68



Appendix B

Forest Automata for Verification of
Heap Manipulation

69



Form Methods Syst Des (2012) 41:83–106
DOI 10.1007/s10703-012-0150-8

Forest automata for verification of heap manipulation

Peter Habermehl · Lukáš Holík · Adam Rogalewicz ·
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1 Introduction

We address verification of sequential programs with complex dynamic linked data structures
such as various forms of singly- and doubly-linked lists (SLL/DLL), possibly cyclic, shared,
hierarchical, and/or having different additional (head, tail, data, and the like) pointers, as
well as various forms of trees. We in particular consider C pointer manipulation, but our
approach can easily be applied to any other similar language. We concentrate on safety
properties of the considered programs which includes generic properties like absence of null
dereferences, double free operations, dealing with dangling pointers, or memory leakage.
Furthermore, to check various shape properties of the involved data structures one can use
testers, i.e., parts of code which, in case some desired property is broken, lead the control
flow to a designated error location.

For the above purpose, we propose a novel approach of representing sets of heaps via
tree automata (TA). In our representation, a heap is split in a canonical way into several tree
components whose roots are the so-called cut-points. Cut-points are nodes pointed to by
program variables or having several incoming edges. The tree components can refer to the
roots of each other, and hence they are “separated” much like heaps described by formulae
joined by the separating conjunction in separation logic [16]. Using this decomposition,
sets of heaps with a bounded number of cut-points are then represented by a new class of
automata called forest automata (FA) that are basically tuples of TA accepting tuples of trees
whose leaves can refer back to the roots of the trees. Moreover, we allow alphabets of FA
to contain nested FA, leading to a hierarchical encoding of heaps, allowing us to represent
even sets of heaps with an unbounded number of cut-points (e.g., sets of DLL). Intuitively,
a nested FA can describe a part of a heap with a bounded number of cut-points (e.g., a DLL
segment), and by using such an automaton as an alphabet symbol an unbounded number
of times, heaps with an unbounded number of cut-points are described. Finally, since FA
are not closed under union, we work with sets of forest automata, which are an analogy of
disjunctive separation logic formulae.

As a nice theoretical feature of our representation, we show that inclusion of sets of heaps
represented by finite sets of non-nested FA (i.e., having a bounded number of cut-points) is
decidable. This covers sets of complex structures like SLL with head/tail pointers. More-
over, we show how inclusion can be safely approximated for the case of nested FA. Further,
C program statements manipulating pointers can be easily encoded as operations modify-
ing FA. Consequently, the symbolic verification framework of abstract regular tree model
checking [6, 7], which comes with automatically refinable abstractions, can be applied.

The proposed approach brings the principle of local heap manipulation (i.e., dealing with
separated parts of heaps) from separation logic into the world of automata. The motivation
is to combine some advantages of using automata and separation logic. Automata provide
higher generality and flexibility of the abstraction (see also below) and allow us to leverage
the recent advances of efficient use of non-deterministic automata [2, 3]. As further dis-
cussed below, the use of separation allows for a further increase in efficiency compared to a
monolithic automata-based encoding proposed in [7].

We have implemented our approach in a prototype tool called Forester as a gcc plug-in.
In our current implementation, if nested FA are used, they are provided manually (similar to
the use of pre-defined inductive predicates common in works on separation logic). However,
we show that Forester can already successfully handle multiple interesting case studies,
proving the proposed approach to be very promising.

71



Form Methods Syst Des (2012) 41:83–106 85

Related work The area of verifying programs with dynamic linked data structures has
been a subject of intense research for quite some time. Many different approaches based
on logics, e.g., [4, 8, 11, 13–17, 19, 20], automata [5, 7, 9], upward closed sets [1], and
other formalisms have been proposed. These approaches differ in their generality, efficiency,
and degree of automation. Due to space restrictions, we cannot discuss all of them here.
Therefore, we concentrate on a comparison with the two closest lines of work, namely, the
use of automata as described in [7] and the use of separation logic in the works [4, 19]
linked with the Space Invader tool. In fact, as is clear from the above, the approach we
propose combines some features from these two lines of research.

Compared to [4, 19], our approach is more general in that it allows one to deal with tree-
like structures, too. We note that there are other works on separation logic, e.g., [15], that
consider tree manipulation, but these are usually semi-automated only. An exception is [11]
which automatically handles even tree structures, but its mechanism of synthesising induc-
tive predicates seems quite dependent on the fact that the dynamic linked data structures are
built in a “nice” way conforming to the structure of the predicate to be learned (meaning,
e.g., that lists are built by adding elements at the end only).1

Further, compared to [4, 19], our approach comes with a more flexible abstraction. We are
not building on just using some inductive predicates, but we combine a use of our nested FA
with an automatically refinable abstraction on the TA that appear in our representation. Thus
our analysis can more easily adjust to various cases arising in the programs being verified.
An example is dealing with lists of lists where the sublists are of length 0 or 1, which is a
quite practical situation [18]. In such cases, the abstraction used in [4, 19] can fail, leading to
an infinite computation (e.g., when, by chance, a list of regularly interleaved lists of length
0 or 1 appears) or generate false alarms (when modified to abstract even pointer links of
length 1 to a list segment). For us, such a situation is easy to handle without any need to
fine-tune the abstraction manually.

Finally, compared with [7], our newly proposed approach is a bit less general. We can-
not handle structures such as, e.g., trees with linked leaves. To handle these structures, we
would have to introduce into our approach FA nested not just strictly hierarchically but in
an arbitrary, possibly cyclic way, which is an interesting subject for future research. On the
other hand, our new approach is more scalable than that of [7]. This is due to the fact that
the heap representation in [7] is monolithic, i.e., the whole heap is represented by a single
tree skeleton over which additional pointer links are expressed using the so-called routing
expressions. The new encoding is much more structured, and so the different operations on
the heap, corresponding to a symbolic execution of the verified program, typically influ-
ence only small parts of the encoding and not all (or most) of it. The monolithic encoding
of [7] has also problems with deletion of elements inside data structures since the routing
expressions are built over a tree backbone that is assumed not to change (and hence deleted
elements inside data structures are always kept, just marked as deleted). Moreover, the en-
coding of [7] has troubles with detection of memory leakage, which is in theory possible,
but it is so complex that it has never been implemented.

Plan of the paper In Sect. 2, we provide an informal introduction to our proposal of hi-
erarchical forest automata and their use for encoding sets of heaps. In Sect. 3, the notion
of (non-hierarchical) forest automata is formalised, and we examine properties of forest au-
tomata from the point of view of inclusion checking. Subsequently, Sect. 4 generalises the

1We did not find an available implementation of [11], and so we could not try it out ourselves.
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notion of forest automata to hierarchical forest automata. In Sect. 5, we propose a verifica-
tion procedure based on hierarchical forest automata. Section 6 provides a brief description
of the Forester tool implementing the proposed approach as well as results obtained from
experiments with Forester. Finally, Sect. 7 concludes the paper.

2 From heaps to forests

In this section, we outline in an informal way our proposal of hierarchical forest automata
and the way how sets of heaps can be represented by them. For the purpose of the ex-
planation, heaps may be viewed as oriented graphs whose nodes correspond to allocated
memory cells and edges to pointer links between these cells. The nodes may be labelled by
non-pointer data stored in them (assumed to be from a finite data domain) and by program
variables pointing to the nodes. Edges may be labelled by the corresponding selectors.

In what follows, we restrict ourselves to garbage free heaps in which all memory cells are
reachable from pointer variables by following pointer links. However, this is not a restriction
in practice since the emergence of garbage can be checked for each executed program state-
ment. If some garbage arises, an error message can be issued and the symbolic computation
stopped. Alternatively, the garbage can be removed and the computation continued.

It is easy to see that each heap graph can be decomposed into a set of tree components
when the leaves of the tree components are allowed to reference back to the roots of these
components. Moreover, given a total ordering on program variables and selectors, each heap
graph may be decomposed into a tuple of tree components in a canonical way as illustrated
in Fig. 1(a) and (b). In particular, one can first identify the so-called cut-points, i.e., nodes
that are either pointed to by a program variable or that have several incoming edges. Next,
the cut-points can be canonically numbered using a depth-first traversal of the heap graph
starting from nodes pointed to by program variables in the order derived from the order of
the program variables and respecting the order of selectors. Subsequently, one can split the
heap graph into tree components rooted at particular cut-points. These components should

Fig. 1 (a) A heap graph with cut-points highlighted in red, (b) the canonical tree decomposition of the heap
with x ordered before y
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contain all the nodes reachable from their root while not passing through any cut-point, plus
a copy of each reachable cut-point, labelled by its number. Finally, the tree components can
then be canonically ordered according to the numbers of the cut-points representing their
roots.

Our proposal of forest automata builds upon the described decomposition of heaps into
tree components. In particular, a forest automaton (FA) is basically a tuple of tree automata
(TA). Each of the tree automata accepts trees whose leaves may refer back to the roots of
any of these trees. An FA then represents exactly the set of heaps that may be obtained by
taking a single tree from the language of each of the component TA and by gluing the roots
of the trees with the leaves referring to them.

Below, we will mostly concentrate on a subclass of FA that we call canonicity respecting
forest automata (CFA). CFA encode sets of heaps decomposed in a canonical way, i.e., such
that if we take any tuple of trees accepted by the given CFA, construct a heap from them,
and then canonically decompose it, we get the tuple of trees we started with. This means
that in the chosen tuple there is no tree with a root that does not correspond to a cut-point
and that the trees are ordered according to the depth-first traversal as described above. The
canonicity respecting form allows us to test inclusion on the sets of heaps represented by
CFA by testing inclusion component-wise on the languages of the TA constituting the given
CFA.

Note, however, that FA are not closed under union. Even for FA having the same number
of components, uniting the TA component-wise may yield an FA overapproximating the
union of the sets of heaps represented by the original FA (cf. Sect. 3). Thus, we represent
unions of FA explicitly as sets of FA (SFA), which is similar to dealing with disjunctions
of conjunctive separation logic formulae. However, as we will see, inclusion on the sets of
heaps represented by SFA is still easily decidable.

The described encoding allows one to represent sets of heaps with a bounded number
of cut-points. However, to handle many common dynamic data structures, one needs to
represent sets of heaps with an unbounded number of cut-points. Indeed, for instance, in
doubly-linked lists (DLLs), every node is a cut-point. We solve this problem by represent-
ing heaps in a hierarchical way. In particular, we collect sets of repeated subgraphs (called
components) containing cut-points in the so-called boxes. Every occurrence of such com-
ponents can then be replaced by a single edge labelled by the appropriate box. To specify
how a subgraph enclosed within a box is connected to the rest of the graph, the subgraph is
equipped with the so-called input and output ports. The source vertex of a box then matches
the input port of the subgraph, and the target vertex of the edge matches the output port.2 In
this way, a set of heap graphs with an unbounded number of cut-points can be transformed
into a set of hierarchical heap graphs with a bounded number of cut-points at each level of
the hierarchy. Figures 2(a) and (b) illustrate how this approach can basically reduce DLLs
into singly-linked lists (with a DLL segment used as a kind of meta-selector).

In general, we allow a box to have more than one output port. Boxes with multiple output
ports, however, reduce heap graphs not to graphs but hypergraphs with hyperedges having a
single source node, but multiple target nodes. This situation is illustrated on a simple exam-
ple shown in Fig. 3. The tree with linked brothers from Fig. 3(a) is turned into a hypergraph
with binary hyperedges shown in Fig. 3(c) using the box B from Fig. 3(b). The subgraph
encoded by the box B can be connected to its surroundings via its input port i and two output

2Later on, the term input port will be used to refer to the nodes pointed to by program variables too since
these nodes play a similar role as the inputs of components.
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Fig. 2 (a) A part of a DLL,
(b) a hierarchical encoding of the
DLL

Fig. 3 (a) A tree with linked brother nodes, (b) a pattern that repeats in the structure and that is linked in
such a way that all nodes in the structure are cut-points, (c) the tree with linked brother nodes represented
using hyperedges labelled by the box B

ports o1, o2. Therefore, the hypergraph from Fig. 3(c) encodes it by a hyperedge with one
source and two target nodes.

Sets of heap hypergraphs corresponding either to the top level of the representation or
to boxes of different levels can then be decomposed into (hyper)tree components and repre-
sented using hierarchical FA whose alphabet can contain nested FA.3 Intuitively, FA appear-
ing in the alphabet of some superior FA play a role similar to that of inductive predicates
in separation logic.4 We restrict ourselves to automata that form a finite and strict hierarchy
(i.e., there is no circular use of the automata in their alphabets).

The question of deciding inclusion on sets of heaps represented by hierarchical FA re-
mains open. However, we propose a canonical decomposition of hierarchical hypergraphs
allowing inclusion to be decided for sets of heap hypergraphs represented by FA provided
that the nested FA labelling hyperedges are taken as atomic alphabet symbols. Note that
this decomposition is by far not the same as for non-hierarchical heap graphs due to a need

3Since graphs are a special case of hypergraphs, in the following, we will work with hypergraphs only.
Moreover, to simplify the definitions, we will work with hyperedge-labelled hypergraphs only. Node labels
mentioned above will be put at specially introduced nullary hyperedges leaving from the nodes whose label
is to be represented.
4For instance, we use a nested FA to encode a DLL segment of length 1. In separation logic, the corresponding
induction predicate would represent segments of length 1 or more. In our approach, the repetition of the
segment is encoded in the structure of the top-level FA.
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to deal with nodes that are not reachable on the top level, but are reachable through edges
hidden in some boxes. This result allows us to safely approximate inclusion checking on
hierarchically represented heaps, which appears to work quite well in practice.

3 Hypergraphs and their representation

We now formalise the notion of hypergraphs and forest automata.

3.1 Hypergraphs

A ranked alphabet is a finite set Γ of symbols associated with a map # : Γ → N. The value
#(a) is called the rank of a ∈ Γ . We use #(Γ ) to denote the maximum rank of a symbol
in Γ . A ranked alphabet Γ is a hypergraph alphabet if it is associated with a total ordering
�Γ on its symbols. For the rest of the section, we fix a hypergraph alphabet Γ .

An (oriented, Γ -labelled) hypergraph (with designated input/output ports) is a tuple G =
(V ,E,P ) where:

– V is a finite set of vertices.
– E is a finite set of hyperedges such that every hyperedge e ∈ E is of the form

(v, a, (v1, . . . , vn)) where v ∈ V is the source of e, a ∈ Γ , n = #(a), and v1, . . . , vn ∈ V

are targets of e and a-successors of v.
– P is the so-called port specification that consists of a set of input ports IP ⊆ V , a set of

output ports OP ⊆ V , and a total ordering �P on IP ∪ OP .

We use v̄ to denote a sequence v1, . . . , vn and v̄.i to denote its ith vertex vi . For symbols
a ∈ Γ with #(a) = 0, we write (v, a) ∈ E to denote that (v, a, ()) ∈ E. Such hyperedges
may simulate labels assigned to vertices.

A path in a hypergraph G = (V ,E,P ) is a sequence 〈v0, a1, v1, . . . , an, vn〉, n ≥ 0,
where for all 1 ≤ i ≤ n, vi is an ai -successor of vi−1. G is called deterministic iff
∀(v, a, v̄), (v, a′, v̄′) ∈ E: a = a′ =⇒ v̄ = v̄′. G is called well-connected iff each node
v ∈ V is reachable through some path from some input port of G.

As we have already mentioned in Sect. 2, in hypergraphs representing heaps, input ports
correspond to nodes pointed to by program variables or to input nodes of components, and
output ports correspond to output nodes of components. Figure 1(a) shows a hypergraph
with two input ports corresponding to the variables x and y. The hyperedges are labelled
by selectors data and next. All the hyperedges are of arity 1. A simple example of a
hypergraph with hyperedges of arity 2 is given in Fig. 3(c).

3.2 A forest representation of hypergraphs

We will now define the forest representation of hypergraphs. For that, we will first define a
notion of a tree as a basic building block of forests. We will define trees much like hyper-
graphs but with a restricted shape and without input/output ports. The reason for the latter
is that the ports of forests will be defined on the level of the forests themselves, not on the
level of the trees that they are composed of.

Formally, an (unordered, oriented, Γ -labelled) tree T = (V ,E) consists of a set of ver-
tices and hyperedges defined as in the case of hypergraphs with the following additional
requirements: (1) V contains a single node with no incoming hyperedge (called the root of
T and denoted root(T )). (2) All other nodes of T are reachable from root(T ) via some path.
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(3) Each node has at most one incoming hyperedge. (4) Each node appears at most once
among the target nodes of its incoming hyperedge (if it has one). Given a tree, we call its
nodes with no successors leaves.

Let us assume that Γ ∩ N = ∅. An (ordered, Γ -labelled) forest (with designated in-
put/output ports) is a tuple F = (T1, . . . , Tn,R) such that:

– For every i ∈ {1, . . . , n}, Ti = (Vi,Ei) is a tree that is labelled by the alphabet (Γ ∪
{1, . . . , n}).

– R is a (forest) port specification consisting of a set of input ports IR ⊆ {1, . . . , n}, a set of
output ports OR ⊆ {1, . . . , n}, and a total ordering �R of IR ∪ OR .

– For all i, j ∈ {1, . . . , n}, (1) if i �= j , then Vi ∩ Vj = ∅, (2) #(i) = 0, and (3) a vertex v

with (v, i) ∈ Ej is not a source of any other edge (it is a leaf). We call such vertices root
references and denote by rr(Ti) the set of all root references in Ti , i.e., rr(Ti) = {v ∈ Vi |
(v, k) ∈ Ei, k ∈ {1, . . . , n}}.
A forest F = (T1, . . . , Tn,R) represents the hypergraph

⊗
F obtained by uniting the

trees T1, . . . , Tn and interconnecting their roots with the corresponding root references. In
particular, for every root reference v ∈ Vi , i ∈ {1, . . . , n}, hyperedges leading to v are redi-
rected to the root of Tj where (v, j) ∈ Ei , and v is removed. The sets IR and OR then contain
indices of the trees whose roots are to be input/output ports of

⊗
F , respectively. Finally,

their ordering �P is defined by the �R-ordering of the indices of the trees whose roots they
are. Formally,

⊗
F = (V ,E,P ) where:

– V = ⋃n

i=1 Vi \ rr(Ti), E = ⋃n

i=1{(v, a, v̄′) | a ∈ Γ ∧ ∃(v, a, v̄) ∈ Ei ∀1 ≤ j ≤ #(a) :
if ∃(v̄.j, k) ∈ Ei with k ∈ {1, . . . , n}, then v̄′.j = root(Tk), else v̄′.j = v̄.j},

– IP = {root(Ti) | i ∈ IR}, OP = {root(Ti) | i ∈ OR},
– ∀u,v ∈ IP ∪ OP such that u = root(Ti) and v = root(Tj ): u �P v ⇐⇒ i �R j .

3.3 Minimal and canonical forests

We now define the canonical form of a forest which will be important later for deciding
language inclusion on forest automata, acceptors of sets of hypergraphs.

We call a forest F = (T1, . . . , Tn,R) representing the well-connected hypergraph
⊗

F

minimal iff the roots of the trees T1, . . . , Tn correspond to the cut-points of
⊗

F , i.e., those
nodes that are either ports, have more than one incoming hyperedge in

⊗
F , or appear more

than once as a target of some hyperedge. A minimal forest representation of a hypergraph is
unique up to permutations of T1, . . . , Tn.

In order to get a truly unique canonical forest representation of a well-connected deter-
ministic hypergraph G = (V ,E,P ), it remains to canonically order the trees in its minimal
forest representation. To do this, we use the total ordering �P on ports P and the total order-
ing �Γ on hyperedge labels Γ of G. We then order the trees according to the order in which
their roots are visited in a depth-first traversal (DFT) of G. If all nodes are not reachable
from a single port, a series of DFTs is used. The DFTs are started from the input ports in
IP in the order given by �P . During the DFTs, a priority is given to the hyperedges that are
smaller in �Γ . A canonical representation is obtained this way since we consider G to be
deterministic.

Figure 1(b) shows a forest decomposition of the heap graph of Fig. 1(a). The nodes
pointed to by variables are input ports of the heap graph. Assuming that the ports are ordered
such that the port pointed by x precedes the one pointed by y, then the forest of Fig. 1(b) is
a canonical representation of the heap graph of Fig. 1(a).
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3.4 Tree automata

Next, we will work towards defining forest automata as tuples of tree automata encoding sets
of forests and hence sets of hypergraphs. We start by classical definitions of tree automata
and their languages.

Ordered trees Let ε denote the empty sequence. An ordered tree t over a ranked alphabet
Σ is a partial mapping t : N∗ → Σ satisfying the following conditions: (1) dom(t) is a finite,
prefix-closed subset of N∗, and (2) for each p ∈ dom(t), if #(t (p)) = n ≥ 0, then {i | pi ∈
dom(t)} = {1, . . . , n}. Each sequence p ∈ dom(t) is called a node of t . For a node p, the ith
child of p is the node pi, and the ith subtree of p is the tree t ′ such that t ′(p′) = t (pip′) for
all p′ ∈ N∗. A leaf of t is a node p with no children, i.e., there is no i ∈ N with pi ∈ dom(t).
Let T(Σ) be the set of all ordered trees over Σ .

Tree automata A (finite, non-deterministic, bottom-up) tree automaton (abbreviated as TA
in the following) is a quadruple A = (Q,Σ,�,F) where Q is a finite set of states, F ⊆ Q is
a set of final states, Σ is a ranked alphabet, and � is a set of transition rules. Each transition
rule is a triple of the form ((q1, . . . , qn), f, q) where n ≥ 0, q1, . . . , qn, q ∈ Q, f ∈ Σ , and
#(f ) = n. We use f (q1, . . . , qn) → q to denote that ((q1, . . . , qn), f, q) ∈ �. In the special
case where n = 0, we speak about the so-called leaf rules.

A run of A over a tree t ∈ T(Σ) is a mapping π : dom(t) → Q such that, for each node
p ∈ dom(t) where q = π(p), if qi = π(pi) for 1 ≤ i ≤ n, t (p)(q1, . . . , qn) → q . We write
t

π=⇒ q to denote that π is a run of A over t such that π(ε) = q . We use t =⇒ q to denote
that t

π=⇒ q for some run π . The language of a state q is defined by L(q) = {t | t =⇒ q},
and the language of A is defined by L(A) = ⋃

q∈F L(q).

3.5 Forest automata

We will now define forest automata as tuples of tree automata extended by a port specifica-
tion. Tree automata accept trees that are ordered and node-labelled. Therefore, in order to be
able to use forest automata to encode sets of forests, we must define a conversion between
ordered, node-labelled trees and our unordered, edge-labelled trees.

We convert a deterministic Γ -labelled unordered tree T into a node-labelled ordered
tree ot(T ) by (1) transferring the information about labels of edges of a node into the symbol
associated with the node and by (2) ordering the successors of the node. More concretely, we
label each node of the ordered tree ot(T ) by the set of labels of the hyperedges leading from
the corresponding node in the original tree T . Successors of the node in ot(T ) correspond
to the successors of the original node in T , and are ordered w.r.t. the order �Γ of hyperedge
labels through which the corresponding successors are reachable in T (while always keeping
tuples of nodes reachable via the same hyperedge together, ordered in the same way as they
were ordered within the hyperedge). The rank of the new node label is given by the sum of
ranks of the original hyperedge labels embedded into it. Below, we use ΣΓ to denote the
ranked node alphabet obtained from Γ as described above.

The notion of forest automata A forest automaton over Γ (with designated input/output
ports) is a tuple F = (A1, . . . ,An,R) where:

– For all 1 ≤ i ≤ n, Ai = (Qi,Σ,�i,Fi) is a TA with Σ = ΣΓ ∪ {1, . . . , n} and #(i) = 0.
– R is defined as for forests, i.e., it consists of input and output ports IR,OR ⊆ {1, . . . , n}

and a total ordering �R on IR ∪ OR .
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The forest language of F is the set of forests LF (F) = {(T1, . . . , Tn,R) | ∀1 ≤ i ≤ n :
ot(Ti) ∈ L(Ai )}, i.e., the forest language is obtained by taking the Cartesian product of
the tree languages, unordering the trees that appear in its elements, and extending them by
the port specification. The forest language of F in turn defines the hypergraph language of
F which is the set of hypergraphs L(F) = {⊗F | F ∈ LF (F)}.

An FA F respects canonicity iff for each forest F ∈ LF (F), the hypergraph
⊗

F is well-
connected, and F is its canonical representation. We abbreviate canonicity respecting FA as
CFA. It is easy to see that comparing sets of hypergraphs represented by CFA can be done
component-wise as described in the below proposition.

Proposition 1 Let F = (A1, . . . ,An,R) and F ′ = (A′
1, . . . ,A′

m,R′) be two CFA. Then,
L(F) ⊆ L(F ′) iff n = m, R = R′, and ∀1 ≤ i ≤ n : L(Ai ) ⊆ L(A′

i ).

3.6 Transforming FA into canonicity respecting FA

In order to facilitate inclusion checking, each FA can be algorithmically transformed (split)
into a finite set of CFA such that the union of their languages equals the original language.
We describe the transformation in a more detailed way below.

First, we label the states of the component TA of the given FA by special labels. For
each state, these labels capture all possible orders in which root references appear in the
leaves of the trees accepted at this state when the left-most (i.e., the first) appearance of
each root-reference is considered only. Moreover, the labels capture which of the references
appear multiple times. Intuitively, following the first appearances of the root references in the
leaves of tree components is enough to see how a depth first traversal through the represented
hypergraph orders the roots of the tree components. The knowledge of multiple references
to the same root from a single tree is then useful for checking which nodes should really be
the roots.

The computed labels are subsequently used to possibly split the given FA into several FA
such that the accepting states of the component TA of each of the obtained FA are labelled in
a unique way. This guarantees that the obtained FA are canonicity respecting up to the fact
that the roots of some of the trees accepted by component TA need not be cut-points (and up
to the ordering of the component TA). Thus, subsequently, some of the TA may get merged.
Finally, we order the remaining component TA in a way consistent with the DFT ordering
on the cut-points of the represented hypergraphs (which after the splitting is the same for all
the hypergraphs represented by each obtained FA). To order the component TA, the labels
of the accepting states can be conveniently used.

More precisely, consider a forest automaton F = (A1, . . . ,An,R), n ≥ 1, and any of its
component tree automata Ai = (Qi,Σ,�i,Fi), 1 ≤ i ≤ n. We label each state q ∈ Qi by a
set of labels (w,Y ), w ∈ {1, . . . , n}∗, Y ⊆ {1, . . . , n}, for which there is a tree t ∈ L(q) such
that

– w is the string that records the order in which root references appear for the first time
in the leaves of t (i.e., w is the concatenation of the labels of the leaves labelled by root
references, restricted to the first occurrence of each root reference), and

– Y is the set of root references that appear more than once in the leaves of t .

Such labelling can be obtained by first labelling states w.r.t. the leaf rules and then propa-
gating the so-far obtained labels bottom-up. If the final states of Ai get labelled by several
different labels, we make a copy of the automaton for each of these labels, and in each of
them, we preserve only the transitions that allow trees with the appropriate label of the root
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to be accepted.5 This way, all the component automata can be processed and then new forest
automata can be created by considering all possible combinations of the transformed TA.

Clearly, each of the FA created above represents a set of hypergraphs that have the same
number of cut-points (corresponding either to ports, nodes referenced at least twice from a
single component tree, or referenced from several component trees) that get ordered in the
same way in the depth first traversal of the hypergraphs. However, it may be the case that
some roots need not correspond to cut-points. This is easy to detect by looking for a root
reference that does not appear in the set part of any label of some final state and that does
not appear in the labels of two different component tree automata. A useless root can then
be eliminated by adding transition rules of the appropriate component tree automaton Ai to
those of the tree automaton Aj that refers to that root and by gluing final states of Ai with
the states of Aj accepting the root reference i.

It remains to order the component TA within each of the obtained FA in a way consistent
with the DFT ordering of the cut-points of the represented hypergraphs (which is now the
same for all the hypergraphs represented by a single FA due to the performed splitting). To
order the component TA of any of the obtained FA, one can use the w-part of the labels
of its accepting states. One can then perform a DFT on the component TA, considering the
TA as atomic objects. One starts with the TA that accept trees whose roots represent ports
and processes them wrt. the ordering of ports. When processing a TA A, one considers as
its successors the TA that correspond to the root references that appear in the w-part of the
labels of the accepting states of A. Moreover, the successor TA are processed in the order in
which they are referenced from the labels. When the DFT is over, the component TA may
get reordered according to the order in which they were visited.

Subsequently, the port specification R and root references in leaves must be updated to
reflect the reordering. If the original sets IR or OR contain a port i, and the ith tree was
moved to the j th position, then i must be substituted by j in IR , OR , and �R as well as in
all root references. This finally leads to a set of canonicity respecting FA.

Note that, in practice, it is not necessary to tightly follow the above described process.
Instead, one can arrange the symbolic execution of statements in such a way that when
starting with a CFA, one obtains an FA which already meets some requirements for CFA.
Most notably, the splitting of component TA—if needed—can be efficiently done already
during the symbolic execution of the particular statements. Therefore, transforming an FA
obtained this way into the corresponding CFA involves the elimination of redundant roots
and the root reordering only.

3.7 Sets of forest automata

The class of languages of FA (and even CFA) is not closed under union since a forest
language of a FA corresponds to the Cartesian product of the languages of all its compo-
nents, and not every union of Cartesian products may be expressed as a single Cartesian
product. For instance, consider two CFA F = (A,B,R) and F ′ = (A′,B′,R) such that
LF (F) = {(a, b,R)} and LF (F ′) = {(c, d,R)} where a, b, c, d are distinct trees. The forest
language of the FA (A ∪ A′,B ∪ B′,R) is {(x, y,R) | (x, y) ∈ {a, c} × {b, d}}), and there is
no FA with the hypergraph language equal to L(F) ∪ L(F ′).

5More technically, given a labelled TA, one can first make a separate copy of each state for each of its labels,
connect the states by transitions such that the obtained singleton labelling is respected, then make a copy of
the TA for each label of accepting states, and keep the accepting status for a single labelling of accepting
states in each of the copies only.
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Due to the above, we cannot transform a set of CFA obtained by canonising a given FA
into a single CFA. Likewise, when we obtain several CFA when symbolically executing
several program paths leading to the same program location, we cannot merge them into a
single CFA without risking a loss of information. Consequently, we will explicitly work with
finite sets of (canonicity-respecting) forest automata, S(C)FA for short, where the language
L(S) of a finite set S of FA is defined as the union of the languages of its elements. This,
however, means that we need to be able to decide language inclusion on SFA.

Testing inclusion on SFA The problem of checking inclusion on SFA, this is, checking
whether L(S) ⊆ L(S ′) where S,S ′ are SFA, can be reduced to a problem of checking in-
clusion on tree automata. We may w.l.o.g. assume that S and S ′ are SCFA.

We will transform every FA F in S and S ′ into a TA AF which accepts the language of
trees where:

– The root of each of these trees is labelled by a special fresh symbol (parameterised by n

and the port specification of F ).
– The root has n children, one for each tree automaton of F .
– For each 1 ≤ i ≤ n, the ith child of the root is the root of a tree accepted by the ith tree

automaton of F .

Trees accepted by AF are therefore unique encodings of hypergraphs in L(F). We will then
test the inclusion L(S) ⊆ L(S ′) by testing the tree automata language inclusion between the
union of TA obtained from S and the union of TA obtained from S ′.

Formally, let F = (A1, . . . ,An,R) be an FA where Ai = (Σ,Qi,�i,Fi) for each 1 ≤
i ≤ n. Without a loss of generality, assume that Qi ∩ Qj = ∅ for each 1 ≤ i < j ≤ n. We
define the TA AF = (Σ ∪ {�R

n },Q,�, {q top}) where:

– �R
n �∈ Σ is a fresh symbol with #(�R

n ) = n,
– q top �∈ ⋃n

i=1 Qi is a fresh accepting state,
– Q = ⋃n

i=1 Qi ∪ {q top}, and
– � = ⋃n

i=1 �i ∪ �top where �top contains the rule �R
n (q1, . . . , qn) → q top for each

(q1, . . . , qn) ∈ F1 × · · · × Fn.

It is now easy to see that the following proposition holds (in the proposition, “∪” stands for
the usual tree automata union).

Proposition 2 For SCFA S and S ′, L(S) ⊆ L(S ′) ⇐⇒ L(
⋃

F∈S AF ) ⊆ L(
⋃

F ′∈S′ AF ′
).

4 Hierarchical hypergraphs

As discussed informally in Sect. 2, simple forest automata cannot express sets of data struc-
tures with unbounded numbers of cut-points like, e.g., the set of all doubly-linked lists or
the set of all trees with linked brothers (Figs. 2 and 3). To capture such data structures, we
will enrich the expressive power of forest automata by allowing them to be hierarchically
nested. For the rest of the section, we fix a hypergraph alphabet Γ .
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4.1 Hierarchical hypergraphs, components, and boxes

We first introduce hypergraphs with hyperedges labelled by the so-called boxes which are
sets of hypergraphs (defined up to isomorphism).6 A hypergraph G with hyperedges labelled
by boxes encodes a set of hypergraphs. The hypergraphs encoded by G can be obtained by
replacing every hyperedge of G labelled by a box by some hypergraph from the box. The
hypergraphs within the boxes may themselves have hyperedges labelled by boxes, which
gives rise to a hierarchical structure (which we require to be of a finite depth).

Let Υ be a hypergraph alphabet. First, we define an Υ -labelled component as an
Υ -labelled hypergraph C = (V ,E,P ) which satisfies the requirement that |IP | = 1 and
IP ∩ OP = ∅. Then, an Υ -labelled box is a non-empty set B of Υ -labelled components
such that all of them have the same number of output ports. This number is called the rank
of the box B and denoted by #(B). Let B[Υ ] be the ranked alphabet containing all Υ -
labelled boxes such that B[Υ ]∩Υ = ∅. The operator B gives rise to a hierarchy of alphabets
Γ0,Γ1, . . . where:

– Γ0 = Γ is the set of plain symbols,
– for i ≥ 0, Γi+1 = Γi ∪ B[Γi] is the set of symbols of level i + 1.

A Γi -labelled hypergraph H is then called a Γ -labelled (hierarchical) hypergraph of level i,
and we refer to the Γi−1-labelled boxes appearing on edges of H as to nested boxes of H .
A Γ -labelled hypergraph is sometimes called a plain Γ -labelled hypergraph.

Semantics of hierarchical hypergraphs A Γ -labelled hierarchical hypergraph H encodes
a set [[H ]] of plain hypergraphs, called the semantics of H . For a set S of hierarchical
hypergraphs, we use [[S]] to denote the union of semantics of its elements.

If H is plain, then [[H ]] contains just H itself. If H is of level j > 0, then hypergraphs
from [[H ]] are obtained in such a way that hyperedges labelled by boxes B ∈ Γj are substi-
tuted in all possible ways by plain components from [[B]]. The substitution is similar to an
ordinary hyperedge replacement used in graph grammars. When an edge e is substituted by
a component C, the input port of C is identified with the source node of e, and the output
ports of C are identified with the target nodes of e. The correspondence of the output ports
of C and the target nodes of e is defined using the order of the target nodes in e and the
ordering of ports of C. The edge e is finally removed from H .

Formally, given a Γ -labelled hierarchical hypergraph H = (V ,E,P ), a hyperedge e =
(v, a, v̄) ∈ E, and a component C = (V ′,E′,P ′) where #(a) = |OP ′ | = k, the substitution
of e by C in H results in the hypergraph H [C/e] defined as follows. Let o1 �P . . . �P ok

be the ports of OP ordered by �P . W.l.o.g., assume V ∩ V ′ = ∅. C will be connected to
H by identifying its ports with their matching vertices of e. We define for every vertex
w ∈ V ′ its matching vertex match(w) such that (1) if w ∈ IP ′ , match(w) = v (the input
port of C matches the source of e), (2) if w = oi,1 ≤ i ≤ k, match(w) = v̄.i (the output
ports of C match the corresponding targets of e), and (3) match(w) = w otherwise (an inner
node of C is not matched with any node of H ). Then H [C/e] = (V ′′,E′′,P ) where V ′′ =
V ∪ (V ′ \ (IP ′ ∪ OP ′)) and E′′ = (E \ {e}) ∪ {(v′′, a′, v̄′′) | ∃(v′, a′, v̄′) ∈ E′ : match(v′) =
v′′ ∧ ∀1 ≤ i ≤ k : match(v̄′.i) = v̄′′.i}.

6Dealing with hypergraphs and later also automata defined up to isomorphism avoids a need to deal with
classes instead of sets. We will not repeat this fact later on.
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We can now give an inductive definition of [[H ]]. Let e1 = (v1,B1, v̄1), . . . , en =
(vn,Bn, v̄n) be all edges of H labelled by Γ -labelled boxes. Then, G ∈ [[H ]] iff it is ob-
tained from H by successively substituting every ei by a component Ci ∈ [[Bi]], i.e.,

[[H ]] = {H [C1/e1] . . . [Cn/en] | C1 ∈ [[B1]], . . . ,Cn ∈ [[Bn]]}.

Figure 2(b) shows a hierarchical hypergraph of level 1 whose semantics is the (hy-
per)graph of Fig. 2(a). Similarly, Fig. 3(c) shows a hierarchical hypergraph of level 1 whose
semantics is the (hyper)-graph of Fig. 3(a).

4.2 Hierarchical forest automata

We now define hierarchical forest automata that represent sets of hierarchical hypergraphs.
The hierarchical FA are FA whose alphabet can contain symbols which encode boxes ap-
pearing on edges of hierarchical hypergraphs. The boxes are themselves represented using
hierarchical FA.

To define an alphabet of hierarchical FA, we will take an approach similar to the one
used for the definition of hierarchical hypergraphs. First, we define an operator A which for
a hypergraph alphabet Υ returns the ranked alphabet containing the set of all SFA S over (a
finite subset of) Υ such that L(S) is an Υ -labelled box and such that A[Υ ] ∩ Υ = ∅. The
rank of S in the alphabet A[Υ ] is the rank of the box L(S). The operator A gives rise to a
hierarchy of alphabets �0,�1, . . . where:

– �0 = Γ is the set of plain symbols,
– for i ≥ 0, �i+1 = �i ∪ A[�i] is the set of symbols of level i + 1.

A hierarchical FA F over �i is then called a Γ -labelled (hierarchical) FA of level i, and we
refer to the hierarchical SFA over �i−1 appearing within alphabet symbols of F as to nested
SFA of F .

Let F be a hierarchical FA. We now define an operator � that translates any �i -labelled
hypergraph G = (V ,E,P ) ∈ L(F) to a Γ -labelled hierarchical hypergraph H of level i

(i.e., it translates G by transforming the SFA that appear on its edges to the boxes they
represent). Formally, G� is defined inductively as the Γ -labelled hierarchical hypergraph
H = (V ,E′,P ) of level i that is obtained from the hypergraph G by replacing every edge
(v,S, v̄) ∈ E, labelled by a Γ -labelled hierarchical SFA S , by the edge (v,L(S)�, v̄), la-
belled by the box L(S)� where L(S)� denotes the set (box) {X� | X ∈ L(S)}. Then, we
define the semantics of a hierarchical FA F over Γ as the set of Γ -labelled (plain) hyper-
graphs [[ ]]F = [[L(F)�]].

Notice that a hierarchical SFA of any level has finitely many nested SFA of a lower level
only. Therefore, a hierarchical SFA is a finitely representable object. Notice also that even
though the maximum number of cut-points of hypergraphs from L(S)� is fixed (SFA always
accept hypergraphs with a fixed maximum number of cut-points), the number of cut-points
of hypergraphs in [[S]] may be unbounded. The reason is that hypergraphs from L(S)� may
contain an unbounded number of hyperedges labelled by boxes B such that hypergraphs
from [[B]] contain cut-points too. These cut-points then appear in hypergraphs from [[S]],
but they are not visible at the level of hypergraphs from L(S)�.

Hierarchical SFA are therefore finite representations of sets of hypergraphs with possibly
unbounded numbers of cut-points.
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4.3 Inclusion and well-connectedness on hierarchical SFA

In this section, we aim at checking well-connectedness and inclusion of sets of hypergraphs
represented by hierarchical FA. Since considering the full class of hierarchical hypergraphs
would unnecessarily complicate our task, we enforce a restricted form of hierarchical au-
tomata that rules out some rather artificial scenarios and that allows us to handle the au-
tomata hierarchically (i.e., using some pre-computed information for nested FA rather than
having to unfold the entire hierarchy all the time). In particular, the restricted form guaran-
tees that:

1. For a hierarchical hypergraph H , well-connectedness of hypergraphs in [[H ]] is equiv-
alent to the so-called box-connectedness of H . Box-connectedness is a property intro-
duced below that can be easily checked and that basically considers paths from input
ports to output ports and vice versa, in the latter case through hyperedges hidden inside
nested boxes.

2. Determinism of hypergraphs from [[H ]] implies determinism of H .

The two above properties simplify checking inclusion and well-connectedness consid-
erably since for a general hierarchical hypergraph H , well-connectedness of H is neither
implied nor it implies well-connectedness of hypergraphs from [[H ]]. This holds also for
determinism. The reason is that a component C in a nested box of H may interconnect its
ports in an arbitrary way. It may contain paths from output ports to both input and output
ports (including paths from an output port to another output port not passing the input port),
but it may be missing paths from the input port to some of the output ports.

Using the above restriction, we will show below a safe approximation of inclusion check-
ing on hierarchical SFA, and we will also show that this approximation is precise in some
cases. Despite the introduced restriction, the description is quite technical, and it may be
skipped on the first reading. Indeed, it turns out that in practice, an even more aggressive
approximation of inclusion checking in which nested boxes are taken as atomic symbols is
often sufficient.

Properness and box-connectedness Given a Γ -labelled component C of level 0, we define
its backward reachability set br(C) as the set of indices i for which there is a path from the
i-th output port of C back to the input port of C. Given a box B over Γ , we inductively define
B to be proper iff all its nested boxes are proper, br(C1) = br(C2) for any C1,C2 ∈ [[B]],
and the following holds for all components C ∈ [[B]]:
1. C is well-connected.
2. If there is a path from the i-th to the j -th output port of C, i �= j , then i ∈ br(C).7

For a proper box B , we use br(B) to denote br(C) for C ∈ [[B]]. A hierarchical hyper-
graph H is called well-formed iff all its nested boxes are proper. In that case, the conditions
above imply that either all or no hypergraphs from [[H ]] are well-connected and that well-
connectedness of hypergraphs in [[H ]] may be judged based only on the knowledge of br(B)

for each nested box B of H , without a need to reason about the semantics of B (in particular,
Point 2 in the above definition of proper boxes guarantees that we do not have to take into
account paths that interconnect output ports of B). This is formalised below.

7Notice that this definition is correct since boxes of level 0 have no nested boxes, and the recursion stops at
them.
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Let H = (V ,E,P ) be a well-formed Γ -labelled hierarchical hypergraph with a set X

of nested boxes. We define the backward reachability graph of H as the Γ ∪ X ∪ Xbr-
labelled hypergraph H br = (V ,E ∪ Ebr,P ) where Xbr = {(B, i) | B ∈ X ∧ i ∈ br(B)} and
Ebr = {(vi, (B, i), (v)) | B ∈ X ∧ (v,B, (v1, . . . , vn)) ∈ E ∧ i ∈ br(B)}. We say that H is
box-connected iff H br is well-connected. The below proposition clearly holds.

Proposition 3 If H is a well-formed hierarchical hypergraph, then the hypergraphs from
[[H ]] are well-connected iff H is box-connected. Moreover, if hypergraphs from [[H ]] are
deterministic, then both H and H br are deterministic hypergraphs.

We straightforwardly extend the above notions to hypergraphs with hyperedges labelled
by hierarchical SFA, treating these SFA-labels as if they were the boxes they represent.
Particularly, we call a hierarchical SFA S proper iff it represents a proper box [[ ]]S, we
let br(S) = br([[S]]), and for a Γ ∪ Y -labelled hypergraph G where Y is a set of proper
SFA, its backward reachability hypergraph Gbr is defined based on br in the same way as
the backward reachability hypergraph of a hierarchical hypergraph above (just instead of
boxes, we deal with their SFA representations). We also say that G is box-connected iff Gbr

is well-connected.

Checking properness and well-connectedness We now outline algorithms for checking
properness of nested SFA and well-connectedness of SFA.

Properness of nested SFA can be checked relatively easily since we can take advantage of
the fact that nested SFA of a proper SFA must be proper as well. We start with nested SFA of
level 0 which contain no nested SFA, we check their properness and compute the values of
the backward reachability function br for them. To do this we can label TA states similarly
to Sect. 3.6. A unique label of each root in the SFA representing the box guarantees that the
br function will be equal for all hypergraphs hidden in the box. Then, we iteratively increase
the level j and for each j , we check properness of the nested SFA of level j and compute
the values of the function br. For this, we use the values of br that we have computed for the
nested SFA of level j − 1, and we can also take advantage of the fact that the nested SFA
of level j − 1 have been shown to be proper. We can again use the labels attached to all tree
automata states. The difference from level 0 is that we have to extend the labels in order to
capture also the backward reachability of the edges labelled by nested SFA.

Now, given an FA F over Γ with proper nested SFA, we can check well-connectedness
of hypergraphs from [[F]] as follows: (1) for each nested SFA S of F , we compute like
above (and cache for further use) the value br(S), and (2) using this value, we check box-
connectedness of hypergraphs in L(F) without a need of reasoning about the inner structure
of the nested SFA [12].

The problem of checking inclusion on hierarchical FA Checking inclusion on hierarchi-
cal automata over Γ with nested boxes from X, i.e., given two hierarchical FA F and F ′,
checking whether [[F]] ⊆ [[F ′]], is a hard problem, even under the assumption that nested
SFA of F and F ′ are proper. Its decidability is not known. In this paper, we choose a prag-
matic approach and give only a semi-algorithm that is efficient and works well in practical
cases. The idea is simple. Since the implications L(F) ⊆ L(F ′) =⇒ L(F)� ⊆ L(F ′)� =⇒
[[F]] ⊆ [[F ′]] obviously hold, we may safely approximate the solution of the inclusion prob-
lem by deciding whether L(F) ⊆ L(F ′) (i.e., we abstract away the semantics of nested SFA
of F and F ′ and treat them as ordinary labels).
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From now on, assume that our hierarchical FA represent only deterministic well-
connected hypergraphs, i.e., that [[F]] and [[F ′]] contain only well-connected deterministic
hypergraphs. Note that this assumption is in particular fulfilled for hierarchical FA repre-
senting garbage-free heaps.

We cannot directly use the results on inclusion checking of Sect. 3.5, based on a canonical
forest representation and canonicity respecting FA, since they rely on well-connectedness of
hypergraphs from L(F) and L(F ′), which is now not necessarily the case. The reason is
that hypergraphs represented by a not well-connected hierarchical hypergraph H can them-
selves still be well-connected via backward links hidden in boxes. However, by Proposi-
tion 3, every hypergraph G from L(F) or L(F ′) is box-connected, and both G and Gbr are
deterministic. As we show below, these properties are still sufficient to define a canonical
forest representation of G, which in turn yields a canonicity respecting form of hierarchical
FA.

Canonicity respecting hierarchical FA Let Y be a set of proper SFA over Γ . We aim at
a canonical forest representation F = (T1, . . . , Tn,R) of a Γ ∪ Y -labelled hypergraph G =⊗

F which is box-connected and such that both G and Gbr are deterministic. By extending
the approach used in Sect. 3.5, this will be achieved via an unambiguous definition of the
root-points of G, i.e., the nodes of G that correspond to the roots of the trees T1, . . . , Tn, and
their ordering.

The root-points of G are defined as follows. First, every cut-point (port or a node with
more than one incoming edge) is a root-point of Type 1. Then, every node with no incoming
edge is a root-point of Type 2. Root-points of Type 2 are entry points of parts of G that
are not reachable from root-points of Type 1 (they are only backward reachable). However,
not every such part of G has a unique entry point which is a root-point of Type 2. Instead,
there might be a simple loop such that there are no edges leading into the loop from outside.
To cover a part of G that is reachable from such a loop, we have to choose exactly one
node of the loop to be a root-point. To choose one of them unambiguously, we define a total
ordering �G on nodes of G and choose the smallest node wrt. this ordering to be a root-
point of Type 3. After unambiguously determining all root-points of G, we may order them
according to �G, and we are done.

A suitable total ordering �G on V can be defined taking advantage of the fact that Gbr

is well-connected and deterministic. Therefore, it is obviously possible to define �G as the
order in which the nodes are visited by a deterministic depth-first traversal that starts at
input ports. The details on how this may be algorithmically done on the structure of forest
automata may be found in [12].

We say that a hierarchical FA F over Γ with proper nested SFA and such that hyper-
graphs from [[F]] are deterministic and well-connected respects canonicity iff each forest
F ∈ LF (F) is a canonical representation of the hypergraph

⊗
F . We abbreviate canonic-

ity respecting hierarchical FA as hierarchical CFA. Analogically as for ordinary CFA, re-
specting canonicity allows us to compare languages of hierarchical CFA component-wise as
described in the below proposition.

Proposition 4 Let F = (A1, . . . ,An,R) and F ′ = (A′
1, . . . ,A′

m,R′) be hierarchical CFA.
Then, L(F) ⊆ L(F ′) iff n = m, R = R′, and ∀1 ≤ i ≤ n : L(Ai ) ⊆ L(A′

i ).

Proposition 4 allows us to safely approximate inclusion of the sets of hypergraphs en-
coded by hierarchical FA (i.e., to safely approximate the test [[F]] ⊆ [[F ′]] for hierarchical
FA F , F ′). This turns out to be sufficient for all our case studies (cf. Sect. 6). Moreover, the
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described inclusion checking is precise at least in some cases as discussed below. A gen-
eralisation of the result to sets of hierarchical CFA can be obtained as for ordinary SFA.
Hierarchical FA that do not respect canonicity may be algorithmically split into several hi-
erarchical CFA, similarly as ordinary CFA [12].

Precise inclusion on hierarchical FA In many practical cases, approximating the inclusion
[[F]] ⊆ [[F ′]] by deciding L(F) ⊆ L(F ′) is actually precise. A condition that guarantees this
is the following:

Condition 1 ∀H ∈ L(F)� ∀H ′ ∈ L(F ′)� : H �= H ′ =⇒ [[H ]] ∩ [[H ′]] = ∅. Intuitively, this
means that one cannot have two distinct hierarchical hypergraphs representing the same
plain hypergraph.

Clearly, Condition 1 holds if the following two more concrete conditions hold:

Condition 2 Nested SFA of F and F ′ represent a set of boxes X that do not overlap.

Condition 3 Every H ∈ L(F)� ∪ L(F ′)� is maximally boxed by boxes from X.

The notions of maximally boxed hypergraphs and non-overlapping boxes are defined as
follows. A hierarchical hypergraph H is maximally boxed by boxes from a set X iff all its
nested boxes are from X, and no part of H can be “hidden” in a box from X, this is, there
is no hypergraph G and no component C ∈ B,B ∈ X such that G[C/e] = H for some edge
e of G. Boxes from a set of boxes X over Γ do not overlap iff for every hypergraph G

over Γ , there is only one hierarchical hypergraph H over Γ which is maximally boxed by
boxes from X and such that G ∈ [[H ]].

We note that the boxes represented by the nested SFA that appear in the case studies
presented in this paper satisfy Conditions 2 and 3, and so Condition 1 is satisfied too. Hence,
inclusion tests performed within our case studies are precise.

5 The verification procedure based on forest automata

We now briefly describe our verification procedure. As already said, we consider sequential,
non-recursive C programs manipulating dynamic linked data structures via program state-
ments x= y, x= y->s, x= null, x->s= y, malloc(x), and free(x) together with
pointer and data equality tests and common control flow statements as discussed in more
details below.8 Each allocated cell may have several next pointer selectors and contain data
from some finite domain.9 We use Sel to denote the set of all selectors and Data to denote
the data domain. The cells may be pointed by program variables whose set is denoted as Var
below.

8Most C statements for pointer manipulation can be translated to these statements, including most type casts
and restricted pointer arithmetic.
9No abstraction for such data is considered.
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Heap representation As discussed in Sect. 2, we encode a single heap configuration as a
deterministic (Sel ∪ Data ∪ Var)-labelled hypergraph with the ranking function being such
that #(x) = 1 ⇔ x ∈ Sel and #(x) = 0 ⇔ x ∈ Data ∪ Var. In the hypergraph, the nodes rep-
resent allocated memory cells, unary hyperedges (labelled by symbols from Sel) represent
selectors, and the nullary hyperedges (labelled by symbols from Data ∪ Var) represent data
values and program variables.10 Input ports of the hypergraphs are nodes pointed to by pro-
gram variables. Null and undefined values are modelled as two special nodes null and
undef. We represent sets of heap configurations as hierarchical (Sel∪Data∪Var)-labelled
SCFA.

Symbolic execution The symbolic computation of reachable heap configurations is done
over a control flow graph (CFG) obtained from the source program. A control flow action
a applied to a hypergraph G (i.e., to a single configuration) returns a hypergraph a(G) that
is obtained from G as follows. Non-destructive actions x= y, x= y->s, or x= null
remove the x-label from its current position and label with it the node pointed by y, the
s-successor of that node, or the null node, respectively. The destructive action x->s= y
replaces the edge (vx,s, v) by the edge (vx,s, vy) where vx and vy are the nodes pointed
to by x and y, respectively. Further, malloc(x) moves the x-label to a newly created
node, free(x) removes the node pointed to by x (and links x and all aliased variables with
undef), and x->data= dnew replaces the edge (vx,dold) by the edge (vx,dnew). Evaluat-
ing a guard g applied on G amounts to a simple test of equality of nodes or equality of data
fields of nodes. Dereferences of null and undef are of course detected (as an attempt
to follow a non-existing hyperedge) and an error is announced. Emergence of garbage is
detected iff a(G) is not well-connected.11

We, however, compute not on single hypergraphs representing particular heaps but on
sets of them represented by hierarchical SCFA. For now, we assume the nested SCFA used
to be provided by the user. For a given control flow action (or guard) x and a hierarchical
SCFA S , we need to symbolically compute an SCFA x(S) s.t. [[x(S)]] equals {x(G) | G ∈
[[S]]} if x is an action and {G ∈ [[S]] | x(G)} if x is a guard.

Derivation of the SCFA x(S) from S involves several steps. The first phase is materi-
alisation where we unfold nested SFA representing boxes that hide data values or pointers
referred to by x. We note that we are unfolding only SFA in the closest neighbourhood of
the involved pointer variables; thus, on the level of TA, we touch only nested SFA adjacent
to root-points. In the next phase, we introduce additional root-points for every node referred
to by x to the forest representation. Third, we perform the actual update, which due to the
previous step amounts to manipulation with root-points only [12]. Last, we repeatedly fold
(apply) boxes and normalise (transform the obtained SFA into a canonicity respecting form)
until no further box can be applied, so that we end up with an SCFA. We note that like the
operation of unfolding, folding is also done only in the closest neighbourhood of root-points.

Unfolding is, loosely speaking, done by replacing a TA rule labelled by a nested SFA by
the nested SFA itself (plus the appropriate binding of states of the top-level SFA to ports
of the nested SFA). Folding is currently based on detecting isomorphism of a part of the
top-level SFA and a nested SFA. The part of the top-level SFA is then replaced by a single

10Below, to simplify the informal description, we say that a node is labelled by a variable instead of saying
that the variable labels a nullary hyperedge leaving from that node.
11Further, we note that we also handle a restricted pointer arithmetic. This is basically done by indexing
elements of Sel by integers to express that the target of a pointer is an address of a memory cell plus or minus
a certain offset. The formalism described in the paper may be easily adapted to support this feature.
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Fig. 4 A concrete (on the left) and symbolic execution (on the right) of statements y= x->next,
x->next= z, and z= x. For the sake of simplicity, the presented FA are not strictly in their canonical
form

rule labelled by the nested SFA. Note that this may be further improved by using language
inclusion instead of isomorphism of automata.

A simplified example of a symbolic execution is provided in Fig. 4. In the left part of
the figure, we provide concrete heaps (the dashed edges represent sequences of one or more
edges linked into a linked-list), and in the right part, we provide their forest automata repre-

89



Form Methods Syst Des (2012) 41:83–106 103

sentation (for a better readability, top-down tree automata are used). The initial configuration
is depicted in Figs. 4(a), and (b), (c), and (d) represent the sets of heaps obtained after suc-
cessively applying the statements x= y->next, x->next= z, and z= x.

The fixpoint computation The verification procedure performs a classical (forward)
control-flow fixpoint computation over the CFG where flow values are hierarchical SCFA
that represent sets of possible heap configurations at particular program locations. We start
from the input location with the SCFA representing an empty heap with all variables un-
defined. The join operator is the union of SCFA. With every edge from a source location l

labelled by x (an action or a guard), we associate the flow transfer function fx . The func-
tion fx takes the flow value (SCFA) S at l as its input and (1) computes the SCFA x(S),
(2) applies abstraction to x(S), and returns the result.

The abstraction may be implemented by applying the general techniques described in
the framework of abstract regular tree model checking [6] to the individual TA inside FA.
Particularly, the abstraction collapses states with similar languages (based on their languages
up-to certain tree depth or using predicate languages).

To detect spurious counterexamples and to refine abstraction, one can use a backward
run similarly as in [6]. This is possible since the steps of the symbolic execution may be
reversed, and it is also possible to safely approximate intersections of hierarchical SFA.
More precisely, given SCFA S1 and S2, one can compute an SCFA S such that [[S]] ⊆
[[S1]] ∩ [[S2]]. This under-approximation is safe since it can lead neither to false positives
nor to false negatives (it can only cause the computation not to terminate). Moreover, for the
SCFA that appear in the case studies in this paper, the intersection we compute is actually
precise. More details can be found in [12].

6 Implementation and experimental results

We have implemented the proposed approach in a prototype tool called Forester, having the
form of a gcc plug-in. The core of the tool is our own library of TA that uses the recent
technology for handling nondeterministic automata (particularly, methods for reducing the
size of TA and for testing language inclusion on them [2, 3]). The fixpoint computation is
accelerated by the so-called finite height abstraction that is based on collapsing states of TA
that have the same languages up to certain depth [6].

Although our implementation is a prototype, the results are very encouraging with regard
to the generality of structures the tool can handle, precision of the generated invariants as
well as the running times. We tested the tool on sample programs with various types of lists
(singly-linked, doubly-linked, cyclic, nested), trees, and their combinations. Basic memory
safety properties—in particular, absence of null and undefined pointer dereferences, double
free operations, and absence of garbage—were checked.

We have compared the performance of our tool with that of Space Invader [4], the first
fully automated tool based on separation logic, Predator [10], a new fully automated tool
based in principle on separation logic (although it represents sets of heaps using graphs),
and also with the ARTMC tool [7] based on abstract regular tree model checking.12 The
comparison with Space Invader and Predator was done on examples with lists only since
Invader and Predator do not handle trees. The higher flexibility of our automata abstraction

12Since it is quite difficult to encode the input for ARTMC, we have tried it on some interesting cases only.
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Table 1 Experimental results
Example Forester Invader Predator ARTMC

SLL (delete) 0.01 0.10 0.01 0.50

SLL (reverse) <0.01 0.03 <0.01

SLL (bubblesort) 0.02 Err 0.02

SLL (insertsort) 0.02 0.10 0.01

SLL (mergesort) 0.07 Err 0.13

SLL of CSLLs 0.07 T 0.12

SLL+head 0.01 0.06 0.01

SLL of 0/1 SLLs 0.02 T 0.03

SLLLinux <0.01 T <0.01

DLL (insert) 0.02 0.08 0.03 0.40

DLL (reverse) 0.01 0.09 0.01 1.40

DLL (insertsort1) 0.20 0.18 0.15 1.40

DLL (insertsort2) 0.06 Err 0.03

CDLL <0.01 0.09 <0.01

DLL of CDLLs 0.18 T 0.13

SLL of 2CDDLsLinux 0.03 T 0.19

tree 0.06 3.00

tree+stack 0.02

tree+parents 0.10

tree (DSW) 0.16 o.o.m

shows up, for example, in the test case with a list of sublists of lengths 0 or 1 (discussed
already in the introduction) for which Space Invader does not terminate. Our technique
handles this example smoothly (without any need to add special inductive predicates that
could decrease the performance or generate false alarms). Predator can also handle this test
case, but to achieve that, the algorithms implemented in it must have been manually extended
to use a new kind of list segment of length 0 or 1, together with an appropriate modification
of the implementation of Predator’s join and abstraction operations.13 On the other hand, the
ARTMC tool can, in principle, handle more general structures than we can currently handle
such as trees with linked leaves. However, the used representation of heap configurations is
much heavier which causes ARTMC not to scale that well.

Table 1 summarises running times (in seconds) of the four tools on our case studies. The
value T means that the running time exceeded 30 minutes, o.o.m. means that the tool ran
out of memory, and the value Err stands for a failure of symbolic execution. The names of
experiments in the table contain the name of the data structure handled by the program. In
particular, “SLL” stands for singly-linked lists, “DLL” for doubly linked lists (the prefix “C”
means cyclic), “tree” for binary trees, “tree+parents” for trees with parent pointers. Nested
variants of SLL are named as “SLL of” and the type of the nested list. In particular, “SLL
of 0/1 SLLs” stands for SLL of nested SLL of length 0 or 1. “SLL+head” stands for a list
where each element points to the head of the list, “SLL of 2CDLLs” stands for SLL whose
implementation of lists used in the Linux kernel with restricted pointer arithmetic [10] which

13The operations were carefully tuned not to easily generate false alarms, but the risk of generating them has
anyway been increased.
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we can also handle. All experiments start with a random creation and end with a disposal of
the specified structure. If some further operation is performed in between the creation phase
and the disposal phase, it is indicated in brackets. In the experiment “tree+stack”, a randomly
created tree is disposed using a stack in a top-down manner such that we always dispose a
root of a subtree and save its subtrees into the stack. “DSW” stands for the Deutsch-Schorr-
Waite tree traversal (the Lindstrom variant). We have run our tests on a machine with Intel
T9600 (2.8 GHz) CPU and 4 GB of RAM.

7 Conclusion

We have proposed hierarchically nested forest automata as a new means of encoding sets of
heap configurations when verifying programs with dynamic linked data structures. The pro-
posal brings the principle of separation from separation logic into automata, allowing us to
combine some advantages of automata (generality, less rigid abstraction) with a better scal-
ability stemming from local heap manipulation. We have shown some interesting properties
of our representation from the point of view of inclusion checking. We have implemented
and tested the approach on multiple non-trivial cases studies, demonstrating the approach to
be promising.

In the future, we plan to improve the implementation of our tool Forester, including a
support for predicate language abstraction within abstract regular tree model checking [6].
We also plan to implement the automatic learning of nested FA. From a more theoretical
perspective, it is interesting to show whether inclusion checking is or is not decidable for
the full class of nested FA. Another interesting direction is then a possibility of allowing
truly recursive nesting of FA, which would allow us to handle very general structures such
as trees with linked leaves.
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Abstract Regular model checking is a generic technique
for verification of infinite-state and/or parametrised sys-
tems which uses finite word automata or finite tree auto-
mata to finitely represent potentially infinite sets of reachable
configurations of the systems being verified. The problems
addressed by regular model checking are typically undecid-
able. In order to facilitate termination in as many cases as
possible, acceleration is needed in the incremental computa-
tion of the set of reachable configurations in regular model
checking. In this work, we describe how various incremen-
tally refinable abstractions on finite (word and tree) automata
can be used for this purpose. Moreover, the use of abstrac-
tion does not only increase chances of the technique to ter-
minate, but it also significantly reduces the problem of an
explosion in the number of states of the automata that are
generated by regular model checking. We illustrate the effi-
ciency of abstract regular (tree) model checking in verifica-
tion of simple systems with various sources of infinity such as
unbounded counters, queues, stacks, and parameters. We then
show how abstract regular tree model checking can be used
for verification of programs manipulating tree-like dynamic
data structures. Even more complex data structures can be
handled using a suitable tree-like encoding.
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1 Introduction

Model checking is nowadays widely accepted as a powerful
technique for verification of finite-state systems. However,
many real-life systems exhibit various aspects of infinity. In
the case of discrete systems that we concentrate on in this
paper, infinity can arise due to dealing with various kinds of
unbounded data structures such as push-down stacks needed
for dealing with recursive procedures, queues of waiting pro-
cesses or messages, unrestricted counters (or integer vari-
ables), or dynamic linked data structures (such as lists or
trees). A need to deal with infinite state spaces may also arise
due to various kinds of parameters (such as the maximum
value of some variable, the maximum length of a queue, or
the number of processes in a system) when one wants to ver-
ify a given parametric system for any value of its parameters.
In the last case, to be more precise, we are dealing with infi-
nite families of systems which themselves may be finite-state
or infinite-state. Nevertheless, the need to verify the system
for any member of the family leads anyhow to infinite-state
verification as the union of the state spaces of all the family
members is infinite.

To deal with infinity in model checking, one can, e.g.,
try to identify sufficient finite bounds on the sources of
infinity—the so called cut-offs, one can use various finite-
range abstractions, or techniques of automated induction (for
an overview of such techniques, see, e.g., [58]). Yet another
approach is to use symbolic model checking based on a finite
representation of infinite sets of states by means of logics,
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automata, grammars, etc. Among successful symbolic veri-
fication methods, we have the so-called regular (tree) model
checking R(T)MC, first mentioned in [36], on which we con-
centrate in this paper.

In R(T)MC, configurations of systems are encoded as
words or trees over a finite alphabet whereas transitions
are modelled as finite state transducers or, more generally,
as regularity preserving relations on words or trees.1 Finite
(tree) automata can then naturally be used to represent and
manipulate potentially infinite sets of configurations, allow-
ing reachability properties to be checked by computing tran-
sitive closures of transducers [3,5,10,23,35] or images of
automata by iteration of transducers [16,52]—depending on
whether dealing with reachability relations or reachability
sets is preferred. To facilitate termination of the computa-
tion, which is in general not guaranteed as the problem being
solved is undecidable, various acceleration methods are usu-
ally used.

In this paper, we, in particular, concentrate on using
abstraction as a means of acceleration. The description builds
on our proposal [13,15] of combining R(T)MC with the CE-
GAR loop [21]. Instead of precise acceleration techniques,
we use abstract fixpoint computations in some finite domain
of automata. The abstract fixpoint computations always ter-
minate and provide overapproximations of the reachability
sets (relations). To achieve this, we define techniques that
systematically map any automaton M to an automaton M ′
from some finite domain such that M ′ recognises a super-
set of the language of M . For the case that the computed
overapproximation is too coarse and a spurious counterex-
ample is detected, we provide effective techniques allowing
the abstraction to be refined such that the new abstract com-
putation does not encounter the same counterexample.

Both for the word and tree cases, we discuss two gen-
eral purpose classes of techniques for abstracting auto-
mata.2 They take into account the structure of the automata
and are based on collapsing their states according to some
equivalence relation. The first one is inspired by predicate
abstraction [30]. However, contrary to classical predicate
abstraction, we associate predicates with states of automata
representing sets of configurations rather than with the con-
figurations themselves. An abstraction is defined by a set
of regular predicate languages L P . We consider a state q
of an automaton M to “satisfy” a predicate language L P if
the intersection of L P with the language L(M, q) accepted
from the state q is not empty. Then, two states are equivalent
if they satisfy the same predicates. The second abstraction

1 Such relations can be expressed, e.g., as special operations on auto-
mata.
2 In [12], some specialised abstractions optimised for verification of list
manipulating programs are proposed. These abstractions are, however,
beyond the scope of this paper.

technique is then based on considering two automata states
equivalent if their languages of words up to a certain fixed
length (or trees up to a certain fixed height) are equal. For
both of these two abstraction methods, we provide effective
refinement techniques allowing us to discard spurious coun-
terexamples.

All the aforementioned techniques have up to now been
implemented in prototype tools and tested on various case
studies. In particular, abstract regular word model check-
ing was successfully applied for verification of parametric
networks of processes, pushdown systems, counter automata,
systems with queues, and programs with dynamic singly
linked structures [12,15]. Abstract regular tree model check-
ing was applied for verification of parametric networks of
processes [13] and programs with generic dynamic-linked
data structures [14]. In this paper, we briefly report on all
these applications and describe the last mentioned applica-
tion in more detail.

2 Preliminaries

2.1 Finite word automata and transducers

A (non-deterministic) finite-state automaton is a 5-tuple
M = (Q, �, δ, q0, F) where Q is a finite set of states, �

a finite alphabet, δ : Q × � → 2Q a transition function,
q0 ∈ Q an initial state, and F ⊆ Q a set of final states.
The transition relation −→

M
⊆ Q ×�∗ × Q of M is defined

as the smallest relation satisfying: (1) ∀q ∈ Q : q
ε−→
M

q,

(2) if q ′ ∈ δ(q, a), then q
a−→
M

q ′, and (3) if q
w−→
M

q ′

and q ′ a−→
M

q ′′, then q
wa−→
M

q ′′ for a ∈ �,w ∈ �∗. We

drop the subscript M if no confusion is possible. M is called
deterministic iff ∀q ∈ Q ∀a ∈ � : |δ(q, a)| ≤ 1.

The language recognised by a finite-state automaton M =
(Q, �, δ, q0, F) from a state q ∈ Q is defined by L(M, q) =
{w ∈ �∗ | ∃qF ∈ F : q w−→

M
qF }. The language L(M) of M

is equal to L(M, q0). A set L ⊆ �∗ is a regular set iff there
exists a finite-state automaton M such that L = L(M). We
also define the backward language

←−
L (M, q) = {w | q0

w−→
M

q} and the forward/backward languages of words up to a
certain length: L≤n(M, q) = {w ∈ L(M, q) | |w| ≤ n}
and similarly

←−
L ≤n(M, q). We define the forward/backward

trace languages of states T (M, q) = {w ∈ �∗ | ∃w′ ∈ �∗ :
ww′ ∈ L(M, q)} and similarly

←−
T (M, q). Finally, we define

accordingly forward/backward trace languages T≤n(M, q)

and
←−
T ≤n(M, q) of traces up to a certain length.

Given a finite-state automaton M = (Q, �, δ, q0, F)

and an equivalence relation ∼ on its set of states Q, M/∼
denotes the quotient automaton of M wrt. ∼, M/∼ =
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(Q/∼, �, δ/∼, [q0]/∼, F/∼) where Q/∼ and F/∼ are the par-
titions of Q and F wrt. ∼, respectively, [q0]/∼ is the equiv-
alence class of Q wrt. ∼ containing q0, and δ/∼ is defined

s.t. [q1]/∼ a−→
M/∼
[q2]/∼ for [q1]/∼, [q2]/∼ ∈ Q/∼, a ∈ � iff

q ′1
a−→
M

q ′2 for some q ′1 ∈ [q1]/∼, q ′2 ∈ [q2]/∼.

A finite-state transducer over � is a 5-tuple τ =
(Q, �, δ, q0, F) where Q is a finite set of states, � a finite
input/output alphabet, δ : Q × �ε × �ε → 2Q a transition
function, �ε = � ∪{ε}, q0 ∈ Q an initial state, and F ⊆ Q
a set of final states. A finite-state transducer is called a length-
preserving transducer if its transitions do not contain ε. The
transition relation −→

τ
⊆ Q × �∗ × �∗ × Q is defined as

the smallest relation satisfying (1) q
ε/ε−→
τ

q for every q ∈ Q,

(2) if q ′ ∈ δ(q, a, b), then q
a/b−→
τ

q ′, and (3) if q
w/u−→
τ

q ′ and

q ′ a/b−→
τ

q ′′, then q
wa/ub−→

τ
q ′′ for a, b ∈ �ε,w, u ∈ �∗. The

subscript τ will again be dropped if no confusion is possible.
A finite-state transducer τ = (Q, �, δ, q0, F) defines the

relation �τ = {(w, u) ∈ �∗ ×�∗ | ∃qF ∈ F : q0
w/u−→
τ

qF }.
A relation � ⊆ �∗ × �∗ is a regular relation iff there

exists a finite-state transducer τ such that � = �τ . For a set
L ⊆ �∗ and a relation � ⊆ �∗ × �∗, we denote by �(L)

the set {w ∈ �∗ | ∃w′ ∈ L : (w′, w) ∈ �}. A relation
� ⊆ �∗ ×�∗ is called regularity preserving iff �(L) is reg-
ular for any regular set L ⊆ �∗. Note that not all regularity
preserving relations are regular—as an example of a regu-
larity preserving, non-regular relation, one can take, e.g., the
relation {(w,wR) | w∈�∗}, for wR being the reversal of w,

|�| > 1.

2.2 Finite tree automata and transducers

A finite alphabet � is ranked if there exists a rank function
# : � → N. For each k ∈ N, �k ⊆ � is the set of all
symbols with rank k. Symbols of �0 are called constants.
Let χ be a denumerable set of symbols called variables.
T�[χ ] denotes the set of terms over � and χ . The set T�[∅]
is denoted by T� , and its elements are called ground terms.
A term t from T�[χ ] is called linear if each variable occurs
at most once in t .

A finite ordered tree t over a set of labels L is a mapping
t : Pos(t)→ L where Pos(t) ⊆ N∗ is a finite, prefix-closed
set of positions in the tree satisfying (1) for all p ∈ Pos(t), if
t (p) ∈ �n with n ≥ 1, then { j | pj ∈ Pos(t)} = {1, . . . , n}
and (2) for all p ∈ Pos(t), if t (p) ∈ �0 ∪ χ , then { j | pj ∈
Pos(t)} = ∅. A term t ∈ T�[χ ] can naturally be also viewed
as a tree whose leaves are labelled by constants and variables,
and each node with k sons is labelled by a symbol from �k

[22]. Therefore, below, we sometimes exchange terms and

trees. We denote by N l Pos(t) = {p ∈ Pos(t) | ∃i ∈ N :
pi ∈ Pos(t)} the set of non-leaf positions.

A bottom-up tree automaton over a ranked alphabet � is
a tuple A=(Q, �, F, δ) where Q is a finite set of states, F⊆
Q is a set of final states, and δ is a set of transitions of the fol-
lowing types: (i) f (q1, . . . , qn)→δ q, (ii) a→δ q, and (iii)
q →δ q ′where a ∈ �0, f ∈ �n , and q, q ′, q1, . . . , qn ∈ Q.
Below, we denote bottom-up tree automata simply as tree
automata.

Let t be a ground term. A run of a tree automaton A on t
is defined as follows: First, leaves are labelled with states. If
a leaf is a symbol a ∈ �0 and there is a rule a →δ q ∈ δ,
the leaf is labelled by q. An internal node f ∈ �k is labelled
by q if there exists a rule f (q1, q2, . . . , qk) →δ q ∈ δ and
the first son of the node has the state label q1, the second
one q2, . . ., and the last one qk . Rules of the type q →δ q ′
are called ε-steps and allow us to change a state label from
q to q ′. If the top symbol is labelled with a state from the set
of final states F , the term t is accepted by the automaton A.

A set of ground terms accepted by a tree automaton A
is called a regular tree language and is denoted by L(A).
Let A = (Q, �, F, δ) be a tree automaton and q ∈ Q
a state; then we define the language of the state q—L(A, q)—
as the set of ground terms accepted by the tree automaton
Aq = (Q, �, {q}, δ). The language L≤n(A, q) is defined to
be the set {t ∈ L(A, q) | height (t) ≤ n}.

A bottom-up tree transducer is a tuple τ =(Q, �,�′, F, δ)

where Q is a finite set of states, F ⊆ Q is a set of final states,
� is an input ranked alphabet, �′ is an output ranked alpha-
bet, and δ is a set of transition rules of the following types:
(i) f (q1(x1), . . . , qn(xn))→δ q(u), u ∈ T�′ [{x1, . . . , xn}],
(ii) q(x)→δ q ′(u), u ∈ T�′ [{x}], and (iii) a→δ q(u), u ∈
T�′ where a ∈ �0, f ∈ �n, x, x1, . . . , xn ∈ χ , and
q, q ′, q1, . . . , qn ∈ Q. In the following, we call a bottom-
up tree transducer simply a tree transducer. We always use
tree transducers with � = �′.

A run of a tree transducer τ on a ground term t is similar
to a run of a tree automaton on this term. First, rules of type
(i i i) are used. If a leaf is labelled by a symbol a and there is
a rule a→δ q(u) ∈ δ, the leaf is replaced by the term u and
labelled by the state q. If a node is labelled by a symbol f ,
there is a rule f (q1(x1), q2(x2), . . . , qn(xn))→δ q(u) ∈ δ,
the first subtree of the node has the state label q1, the second
one q2, . . ., and the last one qn , then the symbol f and all
subtrees of the given node are replaced according to the right-
hand side of the rule with the variables x1, . . . , xn substituted
by the corresponding left-hand-side subtrees. The state label
q is assigned to the new tree. Rules of type (ii) are called
ε-steps. They allow us to replace a q-state-labelled tree by
the right-hand side of the rule and assign the state label q ′ to
this new tree with the variable x in the rule substituted by the
original tree. A run of a transducer is successful if the root
of a tree is processed and is labelled by a state from F .
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A tree transducer is linear if all right-hand sides of its rules
are linear (no variable occurs more than once). The class
of linear bottom-up tree transducers is closed under com-
position. A tree transducer is called structure-preserving (or
a relabelling) if it does not modify the structure of input trees
and just changes the labels of their nodes. A transducer τ

defines the relation �τ = {(t, t ′) ∈ T�×T� | t →∗δ q(t ′) for
some q ∈ F}. For a set L ⊆ T� and a relation � ⊆ T�×T� ,
we denote �(L) the set {w ∈ T� | ∃w′ ∈ L : (w′, w) ∈ �}
and �−1(L) the set {w ∈ T� | ∃w′ ∈ L : (w,w′) ∈ �}. If
τ is a linear tree transducer and L is a regular tree language,
then the sets �τ (L) and �−1

τ (L) are regular and effectively
constructible [22,27]. Finally, the notions of regular tree rela-
tions and regularity preserving tree relations can be intro-
duced analogously to the word case.

3 Regular model checking

3.1 The basic idea

As we have already mentioned in the introduction, the basic
idea behind regular model checking is to encode particular
configurations of the considered systems as words over a suit-
able finite alphabet and to represent infinite, but regular, sets
of such configurations by finite-state automata. Transitions
between the configurations, constituting the one-step transi-
tion relation of the given system, are then encoded using (one
or more) finite-state transducers, or, more generally, using
(one or more) regularity preserving relations expressed, e.g.,
by specialised automata operations.3 In this section, we, for
simplicity, concentrate on using a single transducer encoding
the one-step transition relation of a given system.

Before going into more technical details of regular model
checking, we present a simple illustrating example from the
area of verification of parametric networks of processes with
a linear topology. When dealing with such systems, each let-
ter in a word representing a configuration will typically model
the state of a single process, and the length of the word will
correspond to the number of processes in the given instance of
the system. Let us in particular consider a very simple token
passing protocol. We have an arbitrary, but finite number of
processes arranged into a linear network. Each process either
does not have a token and is waiting for a token to arrive from
its left neighbour, or it has a token and then it can pass it to its
right neighbour. We suppose that initially there is only one
token which is owned by the left-most process. To encode

3 Several transducers/regularity preserving relations may always be
united into a single transducer/regularity preserving relation, respec-
tively. Dealing with one complex or more simple transducers or regu-
larity preserving relations may, however, differ in efficiency in different
scenarios.

(a) (b)

Fig. 1 A model of a simple token passing protocol: (a) an automa-
ton I ni t encoding the initial set of configurations I = L(I ni t), (b)
a transducer τ encoding the 1-step transition relation � = �τ

Fig. 2 Divergence of the non-accelerated reachability set computation
�∗(I ) = I ∪ �(I ) ∪ �(�(I )) ∪ . . . for the protocol from Fig. 1

the state of each process in our protocol, we suffice with the
alphabet � = {N , T } where N means that the process does
not have a token, whereas T means the process has a token.
Then, the set I of all possible initial configurations can be
encoded by the automaton I ni t shown in Fig. 1a and the
single-step transition relation by the transducer τ in Fig. 1b.

Once we have a transducer encoding the single-step tran-
sition relation � of the system and an automaton encoding
its set of initial configurations I , there are two basic strate-
gies we can follow. We can either try to directly compute the
set of all reachable configurations �∗(I ), or the reachability
relation �∗ of the system. The set �∗(I ) can be obtained by
repeatedly applying the single-step transition relation � on
the set of the so far reached states and by taking the union
of all such sets, i.e., �∗(I ) = I ∪ �(I ) ∪ �(�(I )) ∪ . . .. On
the other hand, the reachability relation �∗ can be obtained
by repeatedly composing � with the so far computed reach-
ability relation and by taking the union of all such relations,
i.e., �∗ = ι ∪ � ∪ (� ◦ �) ∪ (� ◦ � ◦ �) ∪ . . . where ι is the
identity relation.

The problem is that in the context of parameterised
and infinite-state systems, if we try to compute the above
infinite unions using a straightforward fixpoint computa-
tion, the computation will usually not terminate. We can
illustrate this even on our simple token passing proto-
col. In Fig. 2, we give the first members of the sequence
I, �(I ), �(�(I )), �(�(�(I ))), . . ., which clearly show that
a fixpoint will never be reached (the token can be at the begin-
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(a) (b)

Fig. 3 The simple token passing protocol—automata encoding the set
of (a) reachable and (b) bad configurations

ning, one step to the right, two steps to the right, three steps
to the right, etc.).

In order to make the computation of �∗(I ) or �∗ termi-
nate at least in many practical cases, we need some kind of
acceleration of the computation which will allow us to obtain
the result of an infinite number of the described computation
steps at once (i.e., in some sense, to “jump” to the fixpoint).
We can, e.g., notice that in our example, the token is moving
step-by-step to the right, and we can accelerate the fixpoint
computation by allowing the token to move arbitrarily far
to the right in one step. If we use such an acceleration, we
will immediately reach the fixpoint shown in Fig. 3a, which
represents the set of all reachable configurations of our proto-
col. In the literature, several different approaches to a system-
atic acceleration of fixpoint computations in regular model
checking have been proposed. We will very briefly review
them in Sect. 3.3.

3.2 Verification by regular model checking

It is well known that checking of safety properties can be
reduced to checking that no “bad” states are reachable in the
given system. If the set of bad states, for which we want to
check that they are not reachable in the given system, can
be expressed as a regular set B, we may simply compute the
reachability set �∗(I ) and check that �∗(I ) ∩ B = ∅.

For instance, in our simple token passing protocol, we can
consider as bad the situation when there is no token in the
system or when there appear two or more tokens. The set
of such bad states is encoded by the finite-state automaton
in Fig. 3b, and it is clear that its intersection with the set of
reachable states from Fig. 3a is empty, and thus the system
is safe in the given sense.

Checking of liveness properties within regular model
checking is considerably more difficult. In the world of finite-
state systems, it is known that liveness can be reduced to
the repeated reachability problem. A similar approach can
be taken in the context of regular model checking when the
studied systems are modelled by length-preserving transi-

tion relations, which is typical, e.g., for parameterised net-
works of processes. In such cases, clearly, the only way how
a system can loop is to repeatedly go through some con-
figuration. In a similar way as above, we can then instru-
ment the system by a Büchi automaton4 (or automata)
encoding the undesirable behaviours, and check, e.g., that
�∗(I ) ∩ A ∩ domain(�+ ∩ ι) = ∅. Here, A is the set
of accepting configurations, ι is the identity relation, and
domain is the projection of a relation onto its domain.

Note that in the above described computation, we need to
compute not only the reachability set, but also the reachability
relation. Nevertheless, this step may be avoided by guessing
when an accepting cycle begins, doubling every letter in the
given configuration word, then continuing the computation
only on the even letters and detecting a closure of the loop by
looking for a situation when all the even letters correspond
to the odd ones—we have practically tested this technique in
some of the experiments presented in Sect. 4.5 (and it was
studied more deeply in [49]).

A systematic framework for modelling parameterised net-
works of processes as well as specifying their properties to
be checked via regular model checking (including liveness
properties) has been proposed in [2,3]. The framework uses
as a modelling as well as a specification language LTL(MSO)
that is a combination of the linear time temporal logic LTL for
expressing temporal relations and the monadic second-order
logic on words for expressing properties on configuration
words. (The MSO part is used for specifying, e.g., that every
process in a configuration has to satisfy some condition, or
that in the configuration there must exist a process for which
some condition holds, and so on.) The work also proposes an
automatic translation of the models as well as properties to be
checked over them into an automata framework suitable for
regular model checking. A computation of the reachability
relation is then used for the actual verification.

Finally, checking liveness properties for systems modelled
using non-length-preserving transition relations is even more
complex than checking liveness in the length-preserving
case. This is because a non-length-preserving system may
exhibit infinite behaviours infinitely going through an accept-
ing state of the monitoring Büchi automaton even when it
does not loop at all—it suffices to imagine a system with
a queue that keeps growing beyond every bound. For such
cases, [17] has proposed an approach based on using regu-
lar model checking for automatically computing the greatest
simulation relation on the reachable configurations which is
compatible with the property being tracked. Then, instead
of checking that an accepting configuration can be reached
that is reachable from itself too, one checks that an accepting

4 Büchi automata are finite automata that accept infinite words by infi-
nitely looping through some of their accepting states (for a formal def-
inition and the associated theory see, e.g., [43]).
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configuration c1 is reachable from which an accepting con-
figuration c2 simulating c1 (i.e., allowing at least the same
behaviours from the point of view of the tracked property)
is reachable. An alternative approach based on learning fix-
points of specially proposed modalities from their generated
samples using language inference algorithms has then been
proposed in [56].

3.3 Acceleration in regular model checking

Acceleration methods designed for regular model checking
include acceleration schemes [44], quotienting [5], extrapo-
lation [16,39], inference of regular languages [29,33], and
abstraction of automata [15]. The use of abstraction is
described in detail in Sect. 4. A short description of the other
methods is given below.

The use of acceleration schemes has been proposed in
[44]. Acceleration schemes allow one to derive (from the
original transitions of a system) meta-transitions encoding
the effect of firing some of the original transitions an arbi-
trary number of times. The work [44] has provided three par-
ticular schemes for which it is experimentally checked that
they suffice for verification of many cases of parameterised
networks of processes. In particular, the following schemes
are considered: (1) local acceleration allowing an arbitrary
number of successive transitions of a single process to be
fired at once, (2) global acceleration of unary transitions
allowing any number of processes to fire a certain transi-
tion in a sequential order within one accelerated step, and
(3) global acceleration of binary transitions allowing any
number of processes to fire in a sequential order two consec-
utive transitions each—and thus communicate with both of
its neighbours—in one atomic step (this way, e.g., a token
in a token passing protocol can “jump” any number of posi-
tions ahead in one accelerated step). This method has been
implemented in the TLV[P] tool [50].

The quotienting technique has been elaborated in the
works [4,5,16,23,35,41,42]. Let τ = (Q, �, δ, q0, F) be
a length-preserving transducer encoding the single-step tran-
sition relation � of a system being examined. The basic
idea of the quotienting technique stems from viewing the
result of an arbitrary number of compositions of � encoded
by τ as an infinite-state “history” transducer τhist =
(Q+, �, δhist , {q0}+, F+) whose states5 reflect the history
of their creation in terms of which states of τ have been
passed at a particular position in a word in the first, second,
and further transductions. Therefore, δhist is defined such

that q1q2 . . . qn
a/a′−→
τhist

q ′1q ′2 . . . q ′n for some n ≥ 1 iff there

exist a1, a2, . . . , an+1 ∈ � such that a = a1, a′ = an+1,

and ∀i ∈ {1, . . . , n} : qi
ai /ai+1−→

τ
q ′i . Intuitively, this means

5 We allow here a set of initial states.

that q1q2 . . . qn
a/a′−→
τhist

q ′1q ′2 . . . q ′n represents the composition

of the qi
ai /ai+1−→

τ
q ′i transductions for i = 1, . . . , n. Clearly,

τhist encodes the reachability relation �+. Of course, the his-
tory transducer τhist is of no practical use as it is infinite-state.
The idea is to come up with some column equivalence � on
its states—i.e., on sequences (or, in the original terminol-
ogy, columns) of states of the original transducer τ—such
that the quotient transducer τhist/� is (1) finite-state as often
as possible, and at the same time, (2) describes exactly the
same relation as τhist . Suitable column equivalences have
been proposed along with ways on how to build the quo-
tient transducer incrementally (e.g., by gradually adding new
transitions obtained by composing transitions as described
above while also gradually quotienting the automaton—
obviously, one cannot construct a history transducer and only
then quotient it).

The extrapolation (or widening) approach to regular
model checking [10,16] is based on comparing successive
elements of the sequence I, �(I ), �(�(I )), . . ., trying to
find some repeated growth pattern in it, and adding an arbi-
trary number of its occurrences into the reachability set. In
particular, following [16], let L ⊆ �∗ be a so far com-
puted reachability set and � ⊆ �∗ × �∗ a regular one-
step transition relation. One can check whether there are
regular sets L1, L2, and 	 satisfying the following two
conditions: (C1) L = L1.L2 and �(L) = L1.	.L2 and
(C2) L1.	

∗.L2 = �(L1.	
∗.L2) ∪ L . If the conditions hold,

L1.	
∗.L2 is added to the so far computed reachability set.

Intuitively, C1 means that the effect of applying � is to add 	

between L1 and L2. C2 then ensures that �∗(L) ⊆ L1.	
∗.L2,

and so we add at least all the configurations reachable from L
by iterating �. Note that the exactness of the acceleration—
i.e., whether L1.	

∗.L2 ⊆ �∗(L) holds too—is not guaran-
teed in general. However, [16] gives a sufficient condition
on � under which C1 and C2 lead to an exact acceleration.
This condition in particular requires � to be well-founded,
i.e., not allowing any word to have an infinite number of
predecessors wrt. �. There is also a syntactic criterion for
the so-called simple rewriting relations that are guaranteed
to satisfy the above condition and that seem to appear quite
often in practice.

Regular model checking based on inference of regular lan-
guages was studied in [33] extending [29]. Here, an important
observation is that, for an infinite-state system whose behav-
iour is described by a length-preserving transducer τ , a set
containing all reachable words up to the given length can be
computed by a simple iterative application of τ on the set
of initial configurations. These configurations are taken as
a sample. Then some language inference algorithm may be
applied to learn the whole reachable set (or its overapproxi-
mation) from this sample. As shown in [33], termination of
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the method is guaranteed whenever the set of all reachable
configurations is regular. This is not the case for other acceler-
ation methods. In [54–57], similar results were proved, cov-
ering even omega-regular model checking and checking of
branching-time properties.

4 Abstract regular model checking

Apart from the need to accelerate the reachability compu-
tation to make it terminate in as many practical scenarios
as possible, another crucial problem to be faced in regu-
lar model checking is the state space explosion in automata
(transducer) representations of the sets of configurations (or
reachability relations) being examined. One of the sources of
this problem is related to the nature of the previously men-
tioned regular model checking techniques. Typically, these
techniques try to calculate the exact reachability sets (or rela-
tions) independently of the property being verified. However,
it is often enough to only compute an overapproximation of
the reachability set (or relation) precise enough just to ver-
ify the given property of interest. Indeed, this is the way
how large (or infinite) state spaces are often being success-
fully handled outside the domain of regular model check-
ing using the so-called abstract-check-refine paradigm often
implemented in the form of some counterexample-guided
abstraction refinement (CEGAR) loop [8,21,24,30,34,48].

Inspired by the above, we have proposed in [15] a new
approach to regular model checking which is based on the
abstract-check-refine paradigm. Instead of a precise acceler-
ation, we use abstract fixpoint computations in some finite
domain of automata. As we have already briefly mentioned
in the introduction, the abstract fixpoint computations always
terminate and provide overapproximations of the reachabili-
ty sets (relations). To achieve this, we define techniques that
systematically map any automaton M to an automaton M ′
from some finite domain such that M ′ recognises a superset
of the language of M .

The abstraction techniques we discuss below take into
account the structure of automata and are based on collapsing
their states according to some equivalence relation. The first
one is inspired by predicate abstraction. We consider a state
q of an automaton M to “satisfy” a predicate language L P if
the intersection of L P with the language L(M, q) accepted
from the state q is not empty. Subsequently, two states are
equivalent if they satisfy the same predicates. The second
abstraction technique is then based on considering two auto-
mata states equivalent if their languages of words up to a cer-
tain fixed length are equal. For both of these two abstraction
methods, we provide effective refinement techniques allow-
ing us to discard spurious counterexamples.

We also introduce several natural alternatives to the above
basic approaches, based on backward and/or trace languages

(a)

(b) (c)

(d)

Fig. 4 A transducer τ modelling a modified token passing protocol
and automata describing the initial, bad, and reachable configurations
of the system

of states of automata. For them, it is not always possible to
guarantee the exclusion of a spurious counterexample, but
according to our experience, they still provide good practical
results.

All of our techniques can be applied to dealing with reach-
ability sets (obtained by iterating length-preserving or even
general transducers) as well as length-preserving reachability
relations.

4.1 A running example and some basic assumptions

As a simple running example capable of illustrating the
different techniques of abstract regular model checking
(ARMC) that we discuss here, we consider a slight modi-
fication of the token passing protocol from Fig. 1. The modi-
fication consists in that each process can pass the token to its
third right neighbour (instead of its direct right neighbour).
The one-step transition relation of the system is encoded by
the transducer τ in Fig. 4a. The transducer includes the iden-
tity relation too. In the initial configurations described by
the automaton I ni t from Fig. 4c, the second process has the
token, and the number of processes is divisible by three. We
want to show that it is not possible to reach any configuration
where the last process has the token. This set is described by
the automaton Bad from Fig. 4b.

Note that in the following, in order to shorten the descrip-
tions, we identify a transducer and the relation it represents
and write τ(L) instead of �τ (L). Let ι ⊆ �∗ × �∗ be the
identity relation and ◦ the composition of relations. We define
recursively the relations (transducers) τ 0 = ι, τ i+1 = τ ◦τ i ,
and τ ∗ = ∪∞i=0τ

i . As in our running example, we suppose
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ι ⊆ τ for the rest of the section meaning that τ i ⊆ τ i+1 for
all i ≥ 0.

For our running example, τ ∗(L(I ni t)) is depicted in
Fig. 4d, and the property of interest clearly holds. However,
in general, τ ∗(L(I ni t)) is neither guaranteed to be regular
nor computable. In the following, the verification task is thus
to find a regular overapproximation L ⊇ τ ∗(L(I ni t)) such
that L ∩ L(Bad) = ∅.

4.2 The method of abstract regular model checking

We now describe the general principle of abstract regu-
lar model checking (ARMC) using a generic framework
for automata abstraction based on collapsing states of the
automata. This framework is then instantiated in several con-
crete ways in the following two sections. For simplicity, we
restrict to the case where the one-step transition relation of
the system at hand is given by a single transducer (the more
general cases being analogical). Moreover, we concentrate
on the use of ARMC for computing reachability sets only.
However, ARMC can be applied for dealing with reachabil-
ity relations too—though in the context of length-preserving
transducers only.6

4.2.1 The basic framework of automata abstraction

Let � be a finite alphabet and M� the set of all finite auto-
mata over �. By an automata abstraction function α, we
understand a function that maps every automaton M over �

to an automaton α(M) whose language is an overapproxima-
tion of the one of M . To be more precise, for some abstract
domain of automata A� ⊆M�, α is a mapping M� → A�

such that ∀M ∈M� : L(M) ⊆ L(α(M)). We call α finitary
iff its range A� is finite.

Working conveniently on the level of automata, given
a transition relation expressed as a transducer τ over �

and an automata abstraction function α, we introduce the
abstract transition function τα as follows: For each automa-
ton M ∈ M�, τα(M) = α(τ̂ (M)) where τ̂ (M) is the min-
imal deterministic automaton of τ(L(M)).7 Now, we can
iteratively compute the sequence (τ i

α(M))i≥0. Since we sup-
pose ι ⊆ τ , it is clear that if α is finitary, there exists k ≥ 0
such that τ k+1

α (M) = τ k
α(M). The definition of α implies

L(τ k
α(M)) ⊇ τ ∗(L(M)). This means that in a finite num-

ber of steps, we can compute an overapproximation of the
reachability set τ ∗(L(M)).

6 Indeed, length-preserving transducers over an alphabet � can be seen
as finite-state automata over � ×�.
7 A generalisation of ARMC to dealing with nondeterministic automata
is possible—cf. [11].

Fig. 5 A spurious counterexample in an abstract regular fixpoint com-
putation

4.2.2 Refining automata abstractions

We call an automata abstraction function α′ a refinement of
α iff ∀M ∈ M� : L(α′(M)) ⊆ L(α(M)). A need to refine
α arises when a situation depicted in Fig. 5 happens. Sup-
pose we are checking whether no configuration from the set
described by some automaton Bad is reachable from some
given set of initial configurations described by an automa-
ton M0. We suppose L(M0)∩ L(Bad) = ∅—otherwise, the
property being checked is broken already by the initial con-
figurations. Let Mα

0 = α(M0) and for each i > 0, Mi =
τ̂ (Mα

i−1) and Mα
i = α(Mi ) = τα(Mα

i−1). There exist k and
l (0 ≤ k < l) such that: (1) ∀i : 0 ≤ i < l : L(Mi ) ∩
L(Bad) = ∅. (2) L(Ml) ∩ L(Bad) = L(Xl) �= ∅. (3) If we
define Xi as the minimal deterministic automaton accepting
τ−1(L(Xi+1)) ∩ L(Mα

i ) for all i such that 0 ≤ i < l, then
∀i : k < i < l : L(Xi )∩L(Mi ) �=∅ and L(Xk)∩ L(Mk)=∅
despite L(Xk) �= ∅. Next, we see that either k = 0 or
L(Xk−1) = ∅, and it is clear that we have encountered
a spurious counterexample.

Note that when no l can be found such that L(Ml) ∩
L(Bad) �= ∅, the computation eventually reaches a fixpoint,
and the property is proved to hold. On the other hand, if
L(X0) ∩ L(M0) �= ∅, we have proved that the property is
broken.

The spurious counterexample may be eliminated by refin-
ing α to α′ such that for any automaton M whose language
is disjoint with L(Xk), the language of its α′-abstraction will
not intersect L(Xk) either. Then, the same faulty reachabili-
ty computation (i.e., the same sequence of Mi and Mα

i ) may
not be repeated because we exclude the abstraction of Mk

to Mα
k . Moreover, reachability of the bad configurations is

in general excluded unless there is another reason for it than
overapproximating by subsets of L(Xk).

A slightly weaker way of eliminating the spurious coun-
terexample consists in refining α to α′ such that at least the
language of the abstraction of Mk does not intersect with
L(Xk). In such a case, it is not excluded that some subset of
L(Xk) will again be used for an overapproximation some-
where, but we still exclude a repetition of exactly the same
faulty computation. The obtained refinement can be coarser,
which may lead to more refinements and a slower compu-
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tation. On the other hand, the computation may terminate
sooner due to quickly jumping to the fixpoint and use less
memory due to working with less structured sets of con-
figurations of the systems being verified—the abstraction is
prevented from becoming unnecessarily precise in this case.
For the latter reason, as illustrated later, one may sometimes
successfully use even some more heuristic approaches that
guarantee that the spurious counterexample will only eventu-
ally be excluded (i.e., after a certain number of refinements)
or that do not guarantee the exclusion at all.

An obvious danger of using a heuristic approach that does
not guarantee an exclusion of spurious counterexamples is
that the computation may easily start looping. Notice, how-
ever, that even when we refine automata abstractions such
that spurious counterexamples are always excluded, and the
computation does not loop, we do not guarantee that it will
eventually stop—we may keep refining forever. Indeed, the
verification problem we are solving is undecidable in general.

4.2.3 Abstracting automata by collapsing their states

In the following two sections, we discuss several concrete
automata abstraction functions. They are based on automata
state equivalence schemas that define for each automaton
from M� an equivalence relation on its states. An automa-
ton is then abstracted by collapsing all its states related by this
equivalence. We suppose such an equivalence to reflect the
fact that the future and/or history of the states to be collapsed
is close enough, and the difference may be abstracted away.

Formally, an automata state equivalence schema E assigns
an automata state equivalence ∼E

M⊆ Q × Q to each finite
automaton M = (Q, �, δ, q0, F) over �. We define the
automata abstraction functionαE based on E s.t.∀M ∈M� :
αE(M) = M/ ∼E

M . We call E finitary iff αE is finitary. We
refine αE by refining E such that more states are distinguished
in at least some automata.

The automata state equivalence schemas presented below
are then all based on one of the following two basic princi-
ples: (1) comparing states wrt. the intersections of their for-
ward/backward languages with some predicate languages
(represented by predicate automata) and (2) comparing
states wrt. their forward/backward behaviours up to a cer-
tain bounded length.

4.3 State equivalences based on predicate languages

We start by introducing two automata state equivalence
schemas defined wrt. a finite set of predicate languages rep-
resented by a set P of finite automata, which we denote as
predicate automata. Namely, we introduce the schema FP
based on forward languages of states and the schema BP
based on backward languages. They compare two states of
a given automaton according to the intersections of their

forward/backward languages with the predicates.8 Below, we
first introduce the basic principles of the schemas and then
add some implementation and optimisation notes.

4.3.1 The FP automata state equivalence schema

The automata state equivalence schema FP defines two states
of a given automaton to be equivalent when their languages
have a nonempty intersection with the same predicates of
P . Formally, for an automaton M = (Q, �, δ, q0, F), FP
defines the state equivalence as the equivalence∼P

M such that
∀q1, q2 ∈ Q : q1 ∼P

M q2 ⇔ (∀P ∈ P : L(P)∩L(M, q1) �=
∅ ⇔ L(P) ∩ L(M, q2) �= ∅).

Clearly, as P is finite and there is only a finite number of
subsets of P representing the predicates with which a given
state has a nonempty intersection, FP is finitary.

For our example from Fig. 4, if we take as P the automata
of the languages of the states of Bad, the automaton I ni t
from Fig. 4c is abstracted as follows: All states of I ni t except
the final one become equivalent since their languages have all
empty intersections with the languages accepted from states
0 and 1 of Bad. Hence, when equivalent states are collapsed,
we obtain the automaton in Fig. 6a, which after determinisa-
tion and minimisation gives the automaton in Fig. 6b. Then,
the intersection of τ̂ (α(I ni t)) with the bad configurations—
cf. Fig. 6d—is not empty, and we have to refine the abstrac-
tion.

The FP schema may be refined by adding new predicates
into the current set of predicates P . In particular, we can
extend P by automata corresponding to the languages of all
the states in Xk from Fig. 5. Theorem 1 shows that this pre-
vents abstractions of languages disjoint with L(Xk), such
as—but not only—L(Mk), from intersecting with L(Xk).
Consequently, as we have already explained, a repetition of
the same faulty computation is excluded, and the set of bad
configurations will not be reached unless there is another
reason for this than overapproximating by subsets of L(Xk).

Theorem 1 Let M = (QM , �, δM , q M
0 , FM ) and X =

(Q X , �, δX , q X
0 , FX ) be any two finite automata and let P

be a finite set of predicate automata such that ∀qX ∈ Q X :
∃P ∈ P : L(X, qX ) = L(P). Then, if L(M) ∩ L(X) = ∅,
L(αFP (M)) ∩ L(X) = ∅ too.

Proof We prove the theorem by contradiction. Suppose
L(αFP (M)) ∩ L(X) �= ∅. Let w ∈ L(αFP (M)) ∩ L(X).

8 The use of intersection with predicate languages needs not be the
only possible way of constructing some predicate language abstraction.
Proposing a different abstraction based on predicate languages may
be an interesting subject for further work. However, such an abstrac-
tion should come with some way of counterexample-guided refinement.
This is not straightforward and we are currently not aware of any other
refinable abstractions based on predicate languages than using the FP
and BP schemas.
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 6 An example using abstraction based on predicate languages

As w is accepted by αFP (M), M must accept it when we
allow it to perform a certain number of “jumps” between
states equal wrt.∼P

M —after accepting a prefix of w and get-
ting to some q ∈ QM , M is allowed to jump to any q ′ ∈ QM

such that q ∼P
M q ′ and go on accepting from there (with or

without further jumps).
Suppose that the minimum number of jumps needed to

accept a word from L(αFP (M))∩L(X) in M is i with i > 0,
and let w′ be such a word. Let the last jump within accept-
ing w′ in M be from some state q1 ∈ QM to some q2 ∈
QM such that q1 ∼P

M q2. Let w′ = w1w2 such that w1 is
read (possibly with jumps) just before the jump from q1 to

q2. Clearly, q2
w2−→
M

q3 for some q3 ∈ FM . We know that X

accepts w′. Suppose that after reading w1, it is in some qX ∈
Q X . As w2 ∈ L(X, qX ) and w2 ∈ L(M, q2), L(M, q2) ∩
L(P) �= ∅ for the predicate(s) P ∈ P for which L(P) =
L(X, qX ). Moreover, as q1 ∼P

M q2, L(M, q1) ∩ L(P) �= ∅
too. This implies there exists w′2 ∈ L(P) such that w′2 ∈
L(M, q1) and w′2 ∈ L(X, qX ). However, this means that
w1w

′
2 ∈ L(αFP (M)) ∩ L(X) can be accepted in M with

i − 1 jumps, which is a contradiction to the assumption of i
being the minimum number of jumps needed. ��

In our example, we refine the abstraction by extending P
with the automata representing the languages of the states
of X0 from Fig. 6e. Figure 6f then indicates, for each state
q of I ni t , the predicates corresponding to the states of Bad
and X0 whose languages have a non-empty intersection with
the language of q. For example, the third state from the left
of I ni t is labelled by 5 because it accepts N which is also
accepted by state 5 of X0. The first two states of I ni t are
equivalent and are collapsed to obtain the automaton from
Fig. 6g, which is a fixpoint showing that the property is ver-
ified. Notice that it is an overapproximation of the set of
reachable configurations from Fig. 4d.

The price of refining FP by adding predicates for all the
states in Xk may seem prohibitive, but fortunately this is not

the case in practice. As described later on in Sect. 4.3.3, we
do not have to treat all the new predicates separately. We
exploit the fact that they come from one original automa-
ton and share large parts of their structure. In fact, we can
work just with the original automaton and each of its states
may be considered an initial state of some predicate. This
way, adding the original automaton as the only predicate and
adding predicates for all of its states becomes roughly equal.
Moreover, the refinement may be weakened by taking into
account just some states of Xk as discussed later on.

4.3.2 The BP automata state equivalence schema

The BP automata state equivalence schema is an alternative
of FP using backward languages of states rather than the
forward ones. For an automaton M = (Q, �, δ, q0, F), it
defines the state equivalence as the equivalence ←−∼P

M such
that ∀q1, q2 ∈ Q : q1

←−∼P
M q2 ⇔ (∀P ∈ P : L(P) ∩←−

L (M, q1) �= ∅ ⇔ L(P) ∩←−L (M, q2) �= ∅).
Clearly, BP is finitary for the same reason as FP . It may

also be refined by extending P by automata corresponding
to the languages of all the states in Xk from Fig. 5. Theorem
2 shows that the effect is the same as for FP .

Theorem 2 Let M = (QM , �, δM , q M
0 , FM ) and X =

(Q X , �, δX , q X
0 , FX ) be any two finite automata and let P

be a finite set of predicate automata such that ∀qX ∈ Q X :
∃P ∈P : ←−L (X, qX )= L(P). Then, if L(M) ∩ L(X) = ∅,
L(αBP (M)) ∩ L(X) = ∅ too.

Proof The theorem can be proved by contradiction in
a similar way as Theorem 1. This time, as a consequence
of working with backward languages of states, we do not
deal with the last jump, but the first jump in accepting some
w′ ∈ L(αBP (M))∩L(X) in M . We do not look for a replace-
ment w′2 of w2 to be accepted from q1 instead of q2, but for
a replacement w′1 of w1 to be accepted before q2 rather than
before q1. ��
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4.3.3 Optimising collapsing based on FP / BP

The abstraction of an automaton M wrt. the automata state
equivalence schema FP can be implemented by first label-
ling states of M by the states of predicate automata in P with
whose languages they have a non-empty intersection and then
collapsing the states of M that are labelled by the initial states
of the same predicates (provided the sets of states of the predi-
cate automata are disjoint). The labelling can be done in a way
similar to constructing a backward synchronous product of
M with the particular predicate automata: (1)∀P ∈ P ∀q P

F ∈
FP ∀q M

F ∈ FM : q M
F is labelled by q P

F , and (2) ∀P ∈
P ∀q P

1 , q P
2 ∈ Q P ∀q M

1 , q M
2 ∈ QM : if q M

2 is labelled by q P
2 ,

and there exists a ∈ � such that q M
1

a→
δM

q M
2 and q P

1
a→
δP

q P
2 ,

then q M
1 is labelled with q P

1 . The abstraction of an automaton
M wrt. the BP schema can be implemented analogously.

If the above construction is used, it is then clear that when
refining FP /BP , we can just add Xk into P and modify the
construction such that in the collapsing phase, we simply take
into account all the labels by states of Xk and do not ignore
the (anyway constructed) labels other than q Xk

0 .
Moreover, we can try to optimise the refinement of FP /BP

by replacing Xk in P by its important tail/head part defined
wrt. Mk as the subautomaton of Xk based on the states
of Xk that appear in at least one of the labels of Mk wrt.
FP∪{Xk }/BP∪{Xk }, respectively. The effect of such a refine-
ment corresponds to the weaker way of refining automata
abstraction functions described in Sect. 4.2.2.9 This is due
to the strong link of the important tail/head part of Xk to Mk

wrt. which it is computed. A repetition of the same faulty
computation is then excluded, but the obtained abstraction is
coarser, which may sometimes speed up the computation as
we have already discussed.

A further possible heuristic to optimise the refinement of
FP /BP is trying to find just one or two key states of the
important tail/head part of Xk such that if their languages are
considered in addition toP, L(Mα

k )will not intersect L(Xk).
We close the section by noting that in the initial set of pred-

icates P of FP /BP , we may use, e.g., the automata describing
the set of bad configurations and/or the set of initial configu-
rations. Further, we may also use the domains or ranges of the
transducers encoding the particular transitions in the systems
being examined (whose union forms the one-step transition
relation τ which we iterate). The meaning of the latter pred-
icates is similar to using guards or actions of transitions in
predicate abstraction [8].

9 The key last/first jump in an accepting run of M mentioned in the
proofs of Theorems 1, 2 is between states that can be labelled by some
states of X . The concerned states of X are thus in the important tail/head
part of X , and the proof construction of Theorems 1, 2 can still be
applied.

(b)

(a)

Fig. 7 An example using abstraction based on languages of words up
to length n (for n = 2)

4.4 State equivalences using finite-length languages

We now present the approach of defining automata state
equivalence schemas which is based on comparing automata
states wrt. a certain bounded part of their languages. It is
a simple, yet (according to our practical experience) often
quite efficient approach. As a basic representative of this kind
of schemas, we first present the schema FL

n based on forward
languages of words of a limited length. Then, we discuss its
possible alternatives.

The FL
n automata state equivalence schema defines two

states of an automaton to be equal if their languages of words
of length up to a certain bound n are identical. Formally, for
an automaton M = (Q, �, δ, q0, F), FL

n defines the state
equivalence as the equivalence ∼n

M such that ∀q1, q2 ∈ Q :
q1 ∼n

M q2 ⇔ L≤n(M, q1) = L≤n(M, q2).
FL

n is clearly finitary. It may be refined by incrementally
increasing the bound n on the length of the words consid-
ered. This way, since we work with minimal deterministic
automata, we may achieve the weaker type of refinement
described in Sect. 4.2.2. Such an effect is achieved when n
is increased to be equal or bigger than the number of states
in Mk from Fig. 5 minus one. In a minimal deterministic
automaton, this guarantees that all states are distinguishable
wrt. ∼n

M , and Mk will not be collapsed at all.
In Fig. 7, we apply FL

n to the example from Fig. 4. We
choose n = 2. In this case, the abstraction of the I ni t autom-
aton is I ni t itself. Fig. 7a indicates the states of τ̂ (I ni t) that
have the same languages of words up to size 2 and are there-
fore equivalent. Collapsing them yields the automaton shown
in Fig. 7b (after determinisation and minimisation), which is
a fixpoint. Notice that it is a different overapproximation
of the set of reachable configurations than the one obtained
using FP . If we choose n = 1, we obtain a similar result, but
we need one refinement step of the above described kind.

Let us, however, note that according to our practical expe-
rience, the increment of n by |QM |−1 may often be too big.
Alternatively, one may use a fraction of it (e.g., one half),
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increase n by the number of states in Xk (or a fraction of
it), or increase n just by one. In such cases, an immediate
exclusion of the faulty run is not guaranteed, but clearly,
such a computation will be eventually excluded because n
will sooner or later reach the necessary value. The impact of
working with abstractions refined in a coarser way is then
like in the case of using FP /BP .

Regarding the initial value of n, one may use, e.g., the
number of states in the automaton describing the set of initial
configurations or the set of bad configurations, their fraction,
or again just one.

As a natural alternative to dealing with forward languages
of words of a limited length, one may also use backward
languages of words of a limited length and forward/backward
languages of traces of a limited length. The automata equiv-
alence schemas BL

n , FT
n , as well as BT

n based on them can
be formally defined analogously to FL

n .
Clearly, all these schemas are finitary. Moreover, we can

refine them in a similar way as FL
n . For FT

n and BT
n , however,

no guarantee of excluding a spurious counterexample may be
provided. Using FT

n , e.g., we can never distinguish the last
three states of the automaton in Fig. 7b—they all have the
same trace languages. Thus, we cannot remember that the
token cannot get to the last process. Nevertheless, despite
this, our practical experience shows that the schemas based
on traces may be quite successful in practice.

4.5 Experiments with abstract regular model checking

We have implemented the ideas described above in a pro-
totype tool written in YAP Prolog using the FSA library
[53]. To demonstrate that ARMC is applicable to verification
of a broad variety of systems, we tried to apply the tool to
a number of different verification tasks.

4.5.1 The types of systems verified

Parameterised networks of processes We have consid-
ered several somewhat idealised mutual exclusion algorithms
for arbitrarily many processes (namely, the Bakery, Burns,
Dijkstra, and Szymanski algorithms in versions similar to
[41]). In most of these systems, the particular processes are
finite-state. We encode their global configurations by words
whose length corresponds to the number of participating pro-
cesses, and each letter represents the local state of some pro-
cess. In the case of the Bakery algorithm where each process
contains an unbounded ticket value, this value is not repre-
sented directly, but encoded in the ordering of the processes
in the word.

We verified the mutual exclusion property of the algo-
rithms, and for the Bakery algorithm, we verified that some
process will always eventually get to the critical section
(communal liveness) as well as that each individual process

will always eventually get there (individual liveness) under
suitable fairness assumptions. For checking liveness, we
manually composed the appropriate Büchi automata with the
system being verified. Loop detection was allowed by work-
ing with pairs of configurations consisting of a remembered
potential beginning of a loop (fixed at a certain—randomly
chosen—point of time) and the current configuration. Check-
ing that a loop is closed then consisted in checking that a pair
of the same configurations was reached. To encode the pairs
of configurations using finite automata, we interleaved their
corresponding letters.

Push-down systems We considered a simple system of
recursive procedures—the plotter example from [28]. We
verified a safety part of the original property of interest
describing the correct order of plotter instructions to be
issued. In this case, we use words to encode the contents
of the stack.

Systems with queues We experimented with a model of
the Alternating Bit Protocol (ABP) for which we checked
correctness of the delivery order of the messages. A word
encoding a configuration of the protocol contained two let-
ters representing internal states of the communicating pro-
cesses. Moreover, it contained the contents of the two lossy
communication channels with a letter corresponding to each
message. Let us note that in this case, as well as in the above
and below cases, general (non-length-preserving) transduc-
ers were used to encode transitions of the systems.

Petri nets and systems with counters We examined a gen-
eral Petri net with inhibitor arcs, which can be considered an
example of a system with unbounded counters too. In partic-
ular, we modelled a Readers/Writers system extended with
a possibility of dynamic creation and deletion of processes,
for which we verified mutual exclusion between readers and
writers and between multiple writers. We considered a cor-
rect version of the system as well as a faulty one, in which
we omitted one of the Petri net arcs. Markings of places in
the Petri net were encoded in unary, and the particular val-
ues were put in parallel.10 Further, we also considered the
Bakery algorithm for two processes modelled as a counter
automaton with two unbounded counters. For the actual ver-
ification, a binary encoding of the values of counters like in
NDDs [59] was successfully used.

Dynamic linked data structures As a representative case
study, we considered verification of a procedure for reversing
(non-empty) singly linked lists—cf. Fig. 8.

10 Using this encoding, a marking of a net with places p and q , two
tokens in p, and four in q is written as q|q|pq|pq.

123

106



Abstract regular (tree) model checking 179

Fig. 8 Nonempty list reversal

When abstracting the memory manipulated by the proce-
dure, we focused on the cases where in the memory there are
at most two linked lists linking consecutive cells, the first list
in a descending way and the second one in an ascending way.
We represented configurations of the procedure as words over
the following alphabet: List items were represented by sym-
bols i , left/right pointers by </>, pointer variables were rep-
resented by their names (list is shortened to l), and o was used
to represent the memory outside the list. Moreover, we used
symbols iv (resp. ov) to denote that v points to i (resp. outside
the list). We used | to separate the ascending and descend-
ing lists. Pointer variables pointing to null were not present
in the configuration representations. A typical abstraction of
the memory then looked like i < i < i | il > i ox where
the first list contains three items, the second one two, list
points to the beginning of the second list, x points outside
the two lists, and y points to null. For such an abstraction of
the memory contents (prefixed with the current control line),
it is not difficult to associate transducers with each command
of the procedure. For example, the transducer corresponding
to the command list → next := x at line 4 transforms
a typical configuration 4 i < i x | il > iy > i o to the con-
figuration 5 i < i x < il | iy > i o (the successor of the item
pointed to by l is not anymore the one pointed to by y, but the
one pointed to by x). Then, the transducer τ corresponding
to the whole procedure is the union of the transducers of all
the commands.

If the memory contents did not fit the above described
form, it would be abstracted to a single word with the “don’t
know” meaning. However, starting from configurations like
1 il > i > i o or 1 i < i < il o, the verification showed that
such a situation could not happen. Via a symmetry argument
exploiting the fact that the procedure never refers to concrete
addresses, the results of the verification easily generalise to
lists with items stored at arbitrary memory locations.

By computing an abstraction of the reachability set
τ ∗(I ni t), we checked that the procedure outputs a list. More-
over, by computing an overapproximation of the reachability
relation τ ∗ of the system, we checked that the output list has
the same length as the input one.

In [12], a generalised encoding for 1-selector linked struc-
tures was provided and various list-manipulating procedures
were successfully verified. Moreover, later, abstract regu-

Table 1 Results of experimenting with abstract regular model checking
using the finite-length-languages-based abstractions

Experiment FL
n /FT

n /BL
n /BT

n Tbest

Bakery Fw, FT
n , |Q Bad |/2 0.02

Bakery/comm. liv. Fw, FT
n , |Q Bad | 0.14

Bakery/ind. liv. Fw, FT
n , 1 8.66

Bakery—counters Bw, BL
n , |Q Bad | 0.08

ABP Fw, FL
n , |Q Bad |/2 0.32

Burns Fw, BT
n , 1 0.31

Dijkstra Fw, FT
n , 1 1.75

PDS Bw, FL
n , |Q Bad |/2 0.02

Petri net/Read. Wr. Fw, BT
n , special n 21.07

Faulty PN/Rd. Wr. Fw, FL
n , |Q Bad | 0.73

Szymanski Fw, BT
n , 1 0.25

Rev. Lists Fw,FL
n , |QI nit |/2+ |Q Xk |/2 0.61

Rev. Lists/Transd. Fw, FL
n , |QI nit |/2 21.79

lar tree model checking was used in [14] for verification of
programs with dynamic data structures with more selectors
and various complicated topologies. In this paper in Sect. 6,
we concentrate on the latter, more recent and more general
approach.

4.5.2 A summary of the results

The efficiency of using the FL
n , FT

n , BL
n , or BT

n automata
state equivalence schemas heavily depends on the choice of
the initial value of n and the strategy of increasing it. In
our experiments, we have tried |Q Bad |, |Q Bad |/2, |QI nit |,
|QI nit |/2, and 1 as the initial value of n and |QMk |, |QMk |/2,

|Q Xk |, |Q Xk |/2, and 1 as its increment. The results we
obtained are summarised in Table 1. In the table, we always
mention the scenario for which we obtained the shortest exe-
cution time.11 We first say whether it was in a forward or
backward computation (i.e., starting from the initial config-
urations or the “bad” ones); then the automata state equiva-
lence schema used, followed by the initial value of n, and if
it was needed, the increment of n written behind a plus sym-
bol. In the case of the Readers/Writers example, the time
consumption was relatively high, and we tried to iteratively
find a value of n for which it was the best.

Similarly to the above, the efficiency of using the FP /BP
automata state equivalence schemas depends a lot on the
choice of the initial predicates. As the basic initial predi-
cates in our experiments, we considered using automata rep-
resenting the set of bad or initial configurations. We used
them alone or together with automata corresponding to the
domains or ranges of the transducers encoding the particu-

11 In some cases, a few scenarios gave a very similar result out of which
just one is mentioned.
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Table 2 Results of experimenting with abstract regular model checking
using the predicate-based abstractions

Experiment FP/BP Tbest

Bakery Fw, FP , [Bad] 0.02

Bakery/comm. liv. Fw, FP , [Bad|Grd] 0.13

Bakery/ind. liv. Fw, FP , [Bad], Key St. 19.41

Bakery—counters Bw, BP , [Bad|Grd] 0.09

ABP Fw, BP , [I ni t |Grd] 0.68

Burns Fw, BP , [Bad] 0.06

Dijkstra Fw, BP , [Bad] 0.73

PDS Bw, FP , [Bad] 0.02

Petri net/Read. Wr. Fw, BP , [Bad|Grd] 5.86

Faulty PN/Rd. Wr. Fw, BP , [I ni t |Grd] 0.81

Szymanski Fw, FP , [I ni t |Grd] 0.55

Rev. Lists Fw, BP , [Bad|Grd|Act] 1.29

Rev. Lists/Transd. Fw, BP , [I ni t |Grd|Act] 42.60

lar transitions in the systems being examined. The scenarios
that lead to the best results are listed in Table 2. The heuristic
optimisation of the refinements described in Sect. 4.3.3 had
a very significant positive impact in the case of checking indi-
vidual liveness in the Bakery example. In the other cases, the
effect was neutral or negative.

The times presented in Tables 1 and 2 are in seconds and
were obtained on a computer with a 1.7 GHz Intel Pentium 4
processor. They do not include the time needed for read-
ing the input model. Taking into account that the tool used
was an early prototype written in YAP Prolog using the FSA
library [53],12 the results are very positive. For example, the
Uppsala Regular Model Checker [5] took from about 8 to 11
seconds when applied to a comparable encoding of the Burns,
Szymanski, and Dijkstra examples (and the situation did not
change much with [42]). Finally, Tables 1 and 2 also show that
apart from cases where the approaches based on languages
of words/traces up to a bounded length and the ones based
on intersections with predicate languages are roughly equal,
there are really cases where either the former or the latter
approach is faster. This experimentally justifies our interest
in both of the techniques.

5 Regular tree model checking

As was already noted, regular tree model checking is a gener-
alisation of regular (word) model checking to trees. A config-
uration of a system is encoded as a term (tree) over a ranked
alphabet and a set of such terms as a regular tree automaton.

12 Prolog was chosen as a rapid, but still relatively efficient, prototyping
environment.

The transition relation of a system is typically encoded as
a linear tree transducer τ .13

To illustrate the use of tree automata and transducers, let
us consider a simple example—namely, a generalisation of
the simple token passing protocol from Sect. 3.1 to trees.
We suppose having a tree-shaped network of processes of an
arbitrary size. Initially, a token is situated in one of the leaf
nodes. Then, it is to be sent up to the root. We would like to
check that the token does not disappear nor duplicate.

The initial configurations of the simple tree token pass-
ing protocol is encoded by the tree automaton I ni t =
(QI nit , �, FI nit , δI ni t ) where � = �0 ∪ �2 with �0 =
{T0, N0} and �2 = {T, N },14 QI nit = {p0, p1}, FI nit =
{p1}, and δI ni t contains the following transitions:

N0 → p0 T0 → p1

N (p0, p0)→ p0

N (p1, p0)→ p1 N (p0, p1)→ p1

The one-step transition relation is represented by the tree
transducer τ with � used as the input/output alphabet, Qτ =
{q0, q1, q2}, Fτ = {q2}, and the following transitions15:

N0/N0 → q0 T0/N0 → q1

N/N (q0, q0)→ q0 T/N (q0, q0)→ q1

N/T (q1, q0)→ q2 N/T (q0, q1)→ q2

N/N (q2, q0)→ q2 N/N (q0, q2)→ q2

Finally, the set of bad configurations is encoded by the
tree automaton Bad with � as its ranked alphabet, Q Bad =
{r0, r1, r2}, FBad = {r0, r2}, and the following transitions:

N0 → r0 T0 → r1

N (r0, r0)→ r0 T (r0, r0)→ r1

N (r1, r0)→ r1 N (r0, r1)→ r1

T (r1, r0)→ r2 T (r0, r1)→ r2

N or T (r1, r1)→ r2 N or T (r0 or r1, r2)→ r2

N or T (r2, r0 or r1)→ r2 N or T (r2, r2)→ r2

Similarly to the case of classical word regular model
checking, the basic safety verification problem of regular tree
model checking consists in deciding whether �∗τ (L(I ni t)) ∩
L(Bad) = ∅ holds. Of course, this problem is again in gen-
eral undecidable, an iterative computation of �∗τ (L(I ni t))
does not necessarily terminate, and so some acceleration
techniques are needed to make it terminate as often as pos-
sible. Generalisations of the various acceleration schemes

13 Like in RMC, another possibility is to use several transducers and/or
special-purpose operations on tree automata.
14 To respect the formal definition of a ranked alphabet, we distinguish
leaf and non-leaf nodes with/without a token.
15 We are dealing with a relabelling transducer and for a better read-
ability, we write its transitions in the form f/g(q1, q2) → q where f
is an input symbol and g an output symbol.
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from regular model checking into trees have been consid-
ered—see, e.g., [6,7,18,19,50,51]. Below, we concentrate
on a generalisation of using abstraction for this purpose.

5.1 Abstract regular tree model checking

A generalisation of ARMC to trees was originally consid-
ered in [13]. The proposed approach allows one to deal with
structure-preserving as well as non-preserving tree transduc-
ers. Similarly to the word case, the introduction of an auto-
mated abstraction with a counterexample-guided refinement
brings in not only an efficient acceleration technique, but also
a quite efficient way for fighting the state explosion problem
in the number of tree automata states.

In particular, two abstractions for tree automata have been
proposed. Similarly to abstract word regular model check-
ing, both of them are based on collapsing automata states
according to a suitable equivalence relation. The first is based
on considering two tree automata states equivalent if their
languages of trees up to a certain fixed height are equal. The
second abstraction is defined by a set of regular tree predi-
cate languages as an analogy to the word automata predicate
abstraction.

The proposed technique was successfully applied for ver-
ification of parametric tree networks of processes [13] and
also programs with complex dynamic data structures [14],
which we will discuss in detail in Sect. 6.

5.1.1 The framework of ARTMC

We can formalise the basic framework of abstract regular tree
model checking (ARTMC) in a way quite similar to word
regular model checking. We basically phrase all the needed
concepts not for classical finite automata, but for finite tree
automata.

Note that in the following as in ARMC, in order to shorten
the descriptions, we identify a tree transducer and the rela-
tion it represents and write τ(L) instead of �τ (L). Let ι ⊆
T� × T� be the identity relation and ◦ the composition of
relations. We define recursively the relations τ 0 = ι, τ i+1 =
τ ◦ τ i and τ ∗ = ∪∞i=0τ

i . Below, we suppose ι ⊆ τ meaning
that τ i ⊆ τ i+1 for all i ≥ 0.

Let � be a ranked alphabet and M� the set of all tree auto-
mata over �. We define an abstraction function as a mapping
α :M� → A� where A� ⊆M� and ∀M ∈M� : L(M) ⊆
L(α(M)). An abstraction α′ is called a refinement of the
abstraction α if ∀M ∈ M� : L(α′(M)) ⊆ L(α(M)). Given
a tree transducer τ and an abstraction α, we define a map-
ping τα : M� → M� as ∀M ∈ M� : τα(M) = τ̂ (α(M))

where τ̂ (M) is a minimal automaton describing the language
τ(L(M)). An abstraction α is finite range if the set A� is
finite.

Let I ni t be a tree automaton representing the set of ini-
tial configurations and Bad be a tree automaton represent-
ing the set of bad configurations. Now, we may iteratively
compute the sequence (τ i

α(I ni t))i≥0. Since we suppose ι ⊆
τ , it is clear that if α is finitary, there exists k ≥ 0 such
that τ k+1

α (I ni t) = τ k
α(I ni t). The definition of α implies

L(τ k
α(I ni t)) ⊇ τ ∗(L(I ni t)). This means that in a finite num-

ber of steps, we can compute an overapproximation of the
reachability set τ ∗(L(I ni t)).

If L(τ k
α(I ni t)) ∩ L(Bad) = ∅, then the safety verifica-

tion problem checking whether τ ∗(L(I ni t))∩ L(Bad) = ∅
has a positive answer. Otherwise, the answer is not nec-
essarily negative since during the computation of the set
τ ∗α (L(I ni t)), the abstraction α may introduce extra behav-
iours leading to L(Bad). Let us examine this case. Assume
τ ∗α (I ni t) ∩ L(Bad) �= ∅, meaning that there is a symbolic
path I ni t, τα(I ni t), τ 2

α(I ni t), . . . , τ n
α (I ni t) such that

L(τ n
α (I ni t)) ∩ L(Bad) �= ∅. We analyse this path by

computing the sets Xn = L(τ n
α (I ni t)) ∩ L(Bad), and for

every k ≥ 0, Xk = L(τ k
α(I ni t)) ∩ τ−1(Xk+1). Two cases

may occur: (1) X0 = L(I ni t) ∩ (τ−1)n(Xn) �= ∅, which
means that the safety verification problem has a negative
answer, or (2) there is a k ≥ 0 such that Xk = ∅, and this
means that the considered symbolic path is actually a spuri-
ous counterexample due to the fact that α is too coarse. In this
last situation, we need to refine α and iterate the procedure.
Therefore, ARTMC is based on abstraction schemas allowing
to compute families of (automatically) refinable abstractions.

5.1.2 Abstractions over tree automata

Below, we discuss two tree automata abstraction schemas
based on tree automata state equivalences. First, tree auto-
mata states are split into several equivalence classes by an
equivalence relation. Then, states from each equivalence
class are collapsed into one state. Formally, a tree automata
state equivalence schema E is defined as follows: To each
tree automaton M = (Q, �, F, δ) ∈ M� , an equivalence
relation∼E

M⊆ Q×Q is assigned. Then the automata abstrac-
tion function αE corresponding to the abstraction schema E
is defined as ∀M ∈ M� : αE(M) = M/ ∼E

M . We call
E finitary if αE is finitary (i.e., there is a finite number of
equivalence classes). We refine E by making ∼E

M finer.

Abstraction based on tree languages of finite height We
now present the possibility of defining automata state equiva-
lence schemas which are based on comparing automata states
wrt. a certain bounded part of their languages. The abstrac-
tion schema Hn is a generalisation of the schema based on
languages of words up to a certain length (cf. Sect. 4.4).
The Hn schema defines two states of a tree automaton M
as equivalent if their languages up to the given height n are
identical.
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Fig. 9 A problem with the forward tree predicate abstraction

Formally, for a tree automaton M = (Q, �, F, δ), Hn

defines the state equivalence as the equivalence∼n
M such that

∀q1, q2 ∈ Q : q1 ∼n
M q2 ⇔ L≤n(M, q1) = L≤n(M, q2).

There is a finite number of languages of trees with a max-
imal height n, and so this abstraction is finite range. Refining
of the abstraction can be done by increasing the value of n.

One can implement the abstraction schema Hn much like
minimisation of tree automata [22], by simply stopping the
main minimisation loop after n iterations.

Abstraction based on predicate tree languages We next
introduce a predicate-based abstraction schema PP that is
inspired by the predicate-based abstraction on words dis-
cussed in Sect. 4.3.

Let P = {P1, P2, . . . , Pn} be a set of predicates. Each
predicate P ∈ P is a tree language represented by a tree
automaton. Let M = (Q, �, F, δ) be a tree automaton,
then two states q1, q2 ∈ Q are equivalent if their lan-
guages L(M, q1) and L(M, q2) have a nonempty intersec-
tion with exactly the same subset of predicates from the
set P . Formally, for an automaton M = (Q, �, F, δ), PP
defines the state equivalence as the equivalence∼P

M such that
∀q1, q2 ∈ Q : q1 ∼P

M q2 ⇔ (∀P ∈ P : L(P)∩L(M, q1) �=
∅ ⇔ L(P) ∩ L(M, q2) �= ∅).

Clearly, since P is finite and there is only a finite num-
ber of subsets of P representing the predicates with which
a given state has a nonempty intersection, PP is finitary. It
can be refined by adding new predicates into P in a way anal-
ogous to the word case (cf. Sect. 4.3). Thus, we can show that
a spurious counterexample can be eliminated by extending
the predicate set P by the languages of all states of the tree
automaton representing Xk+1 in the analysis of the spurious
counterexample (recall that Xk = ∅) as presented in Sect. 5.1.
Similar optimisations like those in Sect. 4.3.3 apply here too.

Above, we discussed the PP abstraction schema inspired
by the predicate-based abstraction from word ARMC. In par-
ticular, it is inspired by the backward predicate-based abstrac-
tion schema BP . Interestingly, as illustrated in Fig. 9, it is
impossible to obtain a tree analogy with the forward predi-
cate-based abstraction schema FP of word ARMC. The tree
analogy would be to label a state with a predicate state if
the languages of their contexts—i.e., trees where we sub-
stitute �∗ for the language of the node being labelled/used

for labelling—have a non-empty intersection. However, in
this case, the refinement schema we use in all our predicate-
based abstractions does not work. For instance, consider tree
automata whose fractions are shown in Fig. 9. In the figure,
Li below a state means that the language of that state is Li ,
and we assume that Li ∩ L j = ∅ for any i �= j . Suppose
we start with no predicates and want to refine the abstrac-
tion so that the refined abstraction of M does not intersect
the language of Bad. To ensure this using our refinement
schema, we should take the context languages of the states
of Bad as the new predicates. Assume we do so and try to
abstract M . In Fig. 9, the upper index of the states of M shows
by which states of Bad they are labelled when abstracting M
(the minus sign means that no state appears in the label). The
abstraction would now collapse states q2, q5, q6, and q7.
Consequently, as the arrows show, the resulting automaton
could accept trees f (t1, t2) for t1 ∈ L2 and t2 ∈ L5 belong-
ing to L(Bad) despite L(M) does not contain such trees. So,
the refinement has not excluded trees from L(Bad) from the
language of the abstraction of M and there is no way how to
refine the abstraction further using our refinement schema.

6 Verification of programs with pointers

This section discusses our fully automated method for ana-
lysing various important properties of programs manipulat-
ing complex dynamic linked data structures that was first
published in [14]. We consider non-recursive, sequential C
programs manipulating dynamic linked data structures with
possibly several next pointer selectors, storing data from
finite domains. The properties to be checked include basic
consistency of pointer manipulations (i.e., checking that there
are no null pointer assignments, no use of undefined point-
ers, and no references to deleted elements). Moreover, fur-
ther undesirable behaviours of the programs at hand (such as,
for instance, disobedience of certain shape invariants, e.g.,
due to introducing undesirable sharing, cycles, etc.) may be
detected via testers written in C and attached to the verified
programs. Then, verification of such properties reduces to
reachability of a designated error location.

Our verification method uses the approach of abstract
regular tree model checking. In order to be able to apply
it on programs manipulating dynamic linked data struc-
tures whose configurations (naturally viewed as the so-called
shape graphs) need not be tree-like, we proceed as follows.
We use trees to encode the tree skeletons of shape graphs.
The edges of a shape graph that are not directly encoded in
the tree skeleton are represented by routing expressions over
the tree skeleton—i.e., regular expressions over directions in
a tree (such as left up, right down, etc.) and the kind of nodes
that can be visited on the way. The routing expressions are
referred to from the tree skeletons. Both the tree skeletons
and the routing expressions are automatically discovered by
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our method. The idea of using routing expressions is inspired
by PALE [40] and graph types [38].

We implemented our method in a prototype tool built
on top of the Mona tree libraries [37]. We have tested it
on a number of non-trivial procedures manipulating singly
linked lists (SLL), doubly linked lists (DLL), trees (includ-
ing the Deutsch–Schorr–Waite tree traversal), lists of lists,
and also trees with linked leaves. All the procedures were
automatically verified for absence of null pointer derefer-
ences, absence of manipulation with undefined pointers, and
absence of dereferencing of deleted objects. Additionally,
further shape properties (such as absence of sharing, acyc-
licity, preservation of input elements, etc.) were also verified
for some of the procedures.

6.1 Related approaches

The area of research on automated verification of programs
manipulating dynamic linked data structures is very active.
Various approaches to verification of such programs differ-
ing in their principles, degree of automation, generality, and
scalability have emerged. They are based, e.g., on monadic
second-order logic [40], 3-valued predicate logic with transi-
tive closure [47], separation logic [20,31,45,60],16 or auto-
mata [12,14,25]. Among all of these approaches, the method
presented here is one of the most general and fully automated
at the same time.

The closest approach to what we present here is the one
of PALE that also uses tree automata (derived from WSkS
formulae) as well as the idea of a tree skeleton and routing
expressions. However, first, the encoding of PALE is different
in that the routing expressions must deterministically choose
their target, and also, for a given memory node, selector, and
program line, the expression is fixed and cannot dynamically
change during the run of the analysed program. Further, pro-
gram statements are modelled as transformers on the level
of WSkS formulae, not as transducers on the level of tree
automata. Finally, the approach of PALE is not fully auto-
matic as the user has to manually provide loop invariants
and all needed routing expressions, which are automatically
synthesised in our approach.

6.2 The considered programs

We consider standard, non-recursive, sequential C programs
manipulating dynamic linked data structures with possibly
several next pointer selectors. We do not consider pointer
arithmetics, and we suppose all non-pointer data to be
abstracted to a finite domain by some of the existing tech-
niques before our method is applied. The abstract syntax of
the considered programs is given in Fig. 10a, where Lab

16 We briefly comment on these approaches in Sect. 6.8 too.

is a finite set of program labels (one for each control loca-
tion), V is a finite set of pointer variables, D is a finite set
of data values, and S is a finite set of selectors. We suppose
other commonly used statements (such as while loops or
nested dereferences) to be encoded by the listed statements.
An example of a typical program that our method can han-
dle is the reversion of doubly linked lists (DLLs) shown in
Fig. 10b, which we also use as our running example.

Memory configurations Memory configurations of the
considered programs with a finite set of pointer variables V ,
a finite set of selectors S = {1, . . . , k}, and a finite domain
D of data stored in dynamically allocated memory cells can
be described as shape graphs of the following form. A shape
graph is a tuple SG = (N , S, V, D) where N is a finite
set of memory nodes, N ∩ {⊥,�} = ∅ (we use ⊥ to rep-
resent null, and � to represent an undefined pointer value),
N⊥,� = N ∪ {⊥,�}, S : N × S → N⊥,� is a successor
function, V : V → N⊥,� is a mapping that defines where the
pointer variables are currently pointing to, and D : N → D
defines what data are stored in the particular memory nodes.

6.3 The considered properties

First of all, the properties we intend to check include basic
consistency of pointer manipulations, i.e., absence of null
and undefined pointer dereferences and references to already
deleted nodes. Further, we would like to check various shape
invariance properties such as absence of sharing, acyclicity,
or, e.g., the fact that if x->next == y (and y is not null)
in a DLL, then also y->prev == x, etc. To define such
properties, we use the so-called shape testers written in the
C language. They can be seen as instrumentation code try-
ing to detect violations of the memory shape properties at
selected control locations of the original program.

For defining testers, we slightly extend the C language
by allowing next pointers to be followed backwards and by
non-deterministic branching. The testers become a part of
the code being verified. An error is announced when a line
denoted by an error label is reached. This way, we can check
a whole range of properties, including acyclicity, absence
of sharing, and other shape invariants such as the relation
of next and previous pointers in DLLs—cf. Fig. 10c. Shape
testers can be directly written by the user, or they can be gen-
erated from a more declarative specification based, e.g., on
the specialised logic proposed in [14].

In theory, bad shapes may be described directly using
a tree automata memory encoding. The problem is to not miss
any of their possible encodings since—as we will see—the
memory encoding that we are going to use is not canonical.
This problem does not arise when using shape testers as in
their case, only reachability of a certain line is tested and
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(a) (b) (c)

Fig. 10 (a) Abstract syntax of the considered programs. (b) A running example: reversion of DLLs. (c) A shape tester example

the choice of a suitable encoding is subject to the automatic
abstraction refinement.

6.4 The verification problem

Above, we have explained that for checking preservation of
shape invariants, we use shape testers, for which we need to
check unreachability of their designated error location. More-
over, we model all program statements such that if some basic
memory consistency error (like a null pointer assignment)
happens, the control is automatically transferred to a unique
error control location. Thus, we are in general interested in
checking unreachability of certain error control locations in
a program.

6.5 Encoding the programs in tree automata

In this section, we describe our encoding of memory con-
figurations of the considered programs into trees and tree
automata and our encoding of program statements using tree
transducers and specialised automata operations.

6.5.1 Encoding of sets of memory configurations

As was described in Sect. 6.2, memory configurations of the
considered programs with a finite set of pointer variables V ,
a finite set of selectors S = {1, . . . , k}, and a finite domain
D of data stored in dynamically allocated memory cells can
be described as shape graphs SG = (N , S, V, D). We sup-
pose � ∈ D—the data value � is used to denote “zombies”
of deleted nodes, which we keep and detect all erroneous
attempts to access them.

To be able to describe the way we encode sets of shape
graphs using tree automata, we first need a few auxiliary

notions. First, to allow for dealing with more general shape
graphs than tree-like, we do not simply identify the next
pointers with the branches of the trees accepted by tree auto-
mata. Instead, we use the tree structure just as a backbone over
which links between the allocated nodes are expressed using
the so-called routing expressions, which are regular expres-
sions over directions in a tree (like move up, move left down,
etc.) and over the nodes that can be seen on the way. From
nodes of the trees described by tree automata, we refer to the
routing expressions via their symbolic names called pointer
descriptors—we suppose dealing with a finite set of pointer
descriptors R. Moreover, we couple each pointer descrip-
tor with a unique marker from a set M (and so |R| = |M|).
The routing expressions may identify several target nodes for
a single source memory node and a single selector. Markers
associated with the target nodes can then be used to decrease
the non-determinism of the description (only nodes marked
with the right marker are considered as the target).

Let us now fix the sets V, S, D, R, and M. We use
a ranked alphabet � = �2 ∪ �1 ∪ �0 consisting of sym-
bols of ranks k = |S|, 1, and 0. Symbols of rank k represent
allocated memory nodes or nodes that were allocated, but
later they have been deleted (freed). Allocated nodes may
be pointed to by pointer variables whereas deleted nodes
are not pointed to by any variables since we make all vari-
ables pointing to such nodes undefined. Allocated as well
as deleted nodes may be marked by some markers as tar-
gets of some next pointers, they contain some data, and have
k next pointers that are either null, undefined (which is the
only possibility for deleted nodes), or given by some next
pointer descriptor. Thus, �2 = �2,a ∪ �2,d where �2,a =
2V × 2M × D × (R ∪ {⊥,�})k × {alloc} and �2,d =
{∅} × 2M ×D × {�}k × {del}. Given an element n ∈ �2,
we use the notation n.var, n.mark, n.data, and n.s (for
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s ∈ S) to refer to the pointer variables, markers, data, and
descriptors associated with n, respectively. �1 is used for
specifying nodes with undefined and null pointer variables,
and so �1 = 2V . Finally, in our trees, the leaves are all the
same (with no special meaning), and so �0 = {•}.

We can now specify the tree memory backbones we use
to encode memory configurations as the trees that belong
to the language of the tree automaton with the following
rules17: (1) • → qi , (2) �2(qi/qm, . . . , qi/qm) → qm ,
(3) �1(qm/qi ) → qn , and (4) �1(qn) → qu . Intuitively,
qi , qm, qn , and qu are automata states where qi accepts the
leaves, qm accepts the memory nodes, qn accepts the node
encoding null variables, and qu , which is the accepting state,
accepts the node with undefined variables. Note that there is
always a single node with undefined variables, a single node
with null variables, and then a sub-tree with the memory
allocated nodes. Thus, every memory tree t can be written as
t = undef (null(t ′)) for undef , null ∈ �1. We say a memory
tree t = undef (null(t ′)) is well-formed if the pointer vari-
ables are assigned unique meanings, i.e., undef ∩ null =
∅ ∧ ∀p ∈ N l Pos(t ′) : t ′(p).var ∩ (null ∪ undef ) =
∅ ∧ ∀p1 �= p2 ∈ N l Pos(t ′) : t ′(p1).var ∩ t ′(p2).var = ∅.

We let S−1 = {s−1 | s ∈ S} be the set of “inverted selec-
tors” allowing one to follow the links in a shape graph in the
reverse order. A routing expression is then formally defined
as a regular expression on pairs s.p ∈ (S ∪ S−1).�2. Intu-
itively, each pair used as a basic building block of a routing
expression describes one step over the tree memory back-
bone: The step follows a certain branch up or down after
which a certain kind of node should be encountered (most
often, we will use the node components of routing expres-
sions to check whether a certain marker is set in the target
node).

A tree memory encoding is a tuple (t, μ) where t is a tree
memory backbone and μ a mapping from the set of pointer
descriptors R to routing expressions over the set of selec-
tors S and the memory node alphabet �2 of t . An example
of a tree memory encoding for a doubly linked list (DLL) is
shown in Fig. 11.

Let (t, μ), t = undef (null(t ′)), be a tree memory encod-
ing with a set of selectors S and a memory node alphabet �2.
We call π = p1s1 . . . plsl pl+1 ∈ �2.((S ∪ S−1).�2)

l

a path in t of length l ≥ 1 iff p1 ∈ Pos(t ′) and ∀i ∈
{1, . . . , l} : (si ∈ S∧ pi .si = pi+1∧ pi+1 ∈ Pos(t ′))∨(si ∈
S−1 ∧ pi+1.si = pi ). For p, p′ ∈ N l Pos(t ′) and a selector
s ∈ S, we write p

s−→ p′ iff (1) t ′(p).s ∈ R, (2) there
is a path p1s1 . . . plsl pl+1 in t for some l ≥ 0 such that

17 We use a set of symbols instead of a single input symbol in a transi-
tion rule to concisely describe a set of rules using any of the symbols in
the set. Similarly, a use of q1/q2 instead of a single state means that one
can take either q1 or q2, and if there is a k-tuple of states, one considers
all possible combinations of the states.

Fig. 11 A tree memory encoding for a doubly linked list (DLL). The
descriptors are mapped as follows: D1 : 1.M1 and D2 : 1.M2. Only
allocated nodes are present; hence the alloc flag is omitted

p = p1, pl+1 = p′, and (3) s1t ′(p2) . . . t ′(pl)sl t ′(pl+1) ∈
μ(t ′(p).s).

The set of shape graphs represented by a tree mem-
ory encoding (t, μ) with t = undef (null(t ′)) is denoted
by [[(t, μ)]] and given as all the shape graphs SG =
(N , S, V, D) for which there is a bijection β : Pos(t ′)→ N
such that

1. ∀p, p′ ∈ N l Pos(t ′) ∀s ∈ S : (t ′(p).s �∈ {⊥,�} ∧
p

s−→ p′) ⇔ S(β(p), s) = β(p′), i.e., the links
between memory nodes are respected.

2. ∀p ∈ N l Pos(t ′) ∀s ∈ S ∀x ∈ {⊥,�} : t ′(p).s = x ⇔
S(β(p), s) = x , i.e., null and undefined successors are
respected.

3. ∀v ∈ V ∀p ∈ Pos(t ′) : v ∈ t ′(p).var ⇔ V (v) =
β(p), i.e., assignment of memory nodes to variables is
respected.

4. ∀v ∈ V : (v ∈ null ⇔ V (v) = ⊥) ∧ (v ∈ undef ⇔
V (v) = �), i.e., assignment of null and undefinedness
of variables are respected.

5. ∀p ∈ N l Pos(t ′) ∀d ∈ D : t ′(p).data = d ⇔
D(β(p)) = d, i.e., data stored in memory nodes is
respected.

A tree automata memory encoding is a tuple (A, μ) where
A is a tree automaton accepting a regular set of tree mem-
ory backbones and μ is a mapping as above. Naturally,
A represents the set of shape graphs defined by [[(A, μ)]] =
⋃

t∈L(A) [[(t, μ)]].
The tree automata memory encoding is clearly not canon-

ical, i.e. two tree automata having different languages might
represent the same set of shape graphs. Nevertheless, as
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we show below, program statements can still be encoded
faithfully, partly using relabelling tree transducers and partly
specialised operations on tree automata. Another important
property of the encoding is that given a tree automata mem-
ory encoding (A, μ), the set [[(A, μ)]] can be empty although
L(A) is not empty (since the routing expressions can be
incompatible with the tree automaton). Of course, if L(A)

is empty, then [[(A, μ)]] is also empty. Therefore, checking
emptiness of [[(A, μ)]] (which is important for applying the
ARTMC framework, see Sect. 6.7) can be done in a sound
way by checking emptiness of L(A).

6.5.2 Pointer descriptors and routing expressions

As for the set of pointer descriptors R, we restrict ourselves
to a unique pointer descriptor for each destructive update
x->s = y that appears in the program. This is because
statements of this kind establish new links among the allo-
cated memory nodes and having one descriptor per such
a statement appears to be sufficient according to our prac-
tical experience. In addition, we might have some further
descriptors if they are a part of the specification of the input
configurations (see Sect. 6.7).

Further, in our automata-based framework, we encode
routing expressions using tree transducers. A transducer rep-
resenting a routing expression r simply copies the input tree
memory backbone on which it is applied up to (1) look-
ing for a data node n1 that is labelled with a special token
� �∈ V ∪M ∪D and (2) moving � to a data node n2 that is
the target of the next pointer described by r and that is also
marked with the appropriate marker. As described in the next
section, we can then implement program statements that fol-
low the next pointers (e.g., x = y->s) by putting the token
� to a node pointed to by y, applying the transducer imple-
menting the appropriate routing expression, and making x
point to the node to which � was moved. Due to applying
abstraction, the target may not always be unique—in such
a case, the transducer implementing the routing expression
simply returns a set of trees in which � is put to some target
data node such that all possibilities where it can get via the
given routing expression are covered.

Note that the use of tree transducers for encoding routing
expressions allows us in theory to express more than using
just regular expressions. In particular, we can refer to the tree
context of the nodes via which the given route is going. In our
current implementation, we, however, do not use this fact.

6.5.3 Encoding of program statements

We encode the considered pointer-manipulating statements
as relabelling tree transducers or sets of such transducers
being applied sequentially, in one case combined with an
application of an additional specialised operation on the tree

automata being handled.18 When simulating the various pro-
gram statements, we expect the tree memory encoding to be
extended by a new root symbol, corresponding to the current
program line or to an error indicator when an error is found
during the analysis. The encoding of the program statements
works in such a way that the effect of the statements is sim-
ulated on any set of shape graphs represented by a tree auto-
mata memory encoding. If a shape graph SG represented by
a tree memory encoding is changed by a program statement
to a shape graph SG ′, then the encoding of the statement
transforms the tree memory encoding such that it represents
SG ′. This makes sure that although the memory encoding is
not canonical, we simulate program statements faithfully.

Non-destructive updates and tests The simplest state-
ment to encode is thex = NULL assignment. The transducer
implementing it simply goes through the input tree and cop-
ies it to the output with the exception that (1) it removes x
from the labelling of the node in which it currently is, (2) it
adds x to the labelling of the null node, and (3) it changes
the current line appropriately. The transducer implementing
an assignment x = y is similar, it just puts x not to the null
node, but to the node which is currently labelled by y.

The transducers encoding conditional statements of the
form if (x == NULL) goto l1; else goto l2;
are very similar to the above—of course, they do not change
the node in which x is, but only change the current program
line to either l1 or l2 according to whether x is in the null
node or not. If x is in undef, an error indication is used instead
of l1 or l2. The transducers encoding statements if (x
== y) goto l1; else goto l2; are similar—they
test whether or not x and y appear in the same node (both
being different from undef).

The transducer for an x = y->s statement is a union of
several complementary actions. If y is in null or undef, an
error is indicated. If y is in a regular data node and its s-th next
pointer node contains either ⊥ or �, the transducer removes
x from the node it is currently in and puts it into the null or
undef node, respectively. If y is in a regular data node n and
its s-th next pointer node contains some pointer descriptor
r ∈ R, the � token is put to n. Then, the routing expression
transducer associated with r is applied. Finally, x is removed
from its current node and put into the node to which � was
moved by the applied routing expression transducer. If the
target is marked as deleted, an error is announced.

Destructive updates Destructive pointer updates of the
form x->s = y are implemented as follows: If x is in null
or undef, an error is announced. If x is defined and y is in null

18 The primary reason for this is to avoid a need of implementing non-
structure preserving transducers on top of the MONA tree automata
library [37], which we use to implement our techniques.
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or undef, the transducer puts⊥ or� into the s-th next pointer
node below x, respectively. Otherwise, the transducer puts
the pointer descriptor r associated with the particular x->s
= y statement being fired into the s-th next pointer node
below x, and it marks the node in which y is by the marker
coupled with r . Then, the routing expression transducer asso-
ciated with r is updated such that it includes the path from
the node of x to the node of y.

One could think of various strategies how to extract the
path going from the node of x to the node of y. We con-
sider a simple strategy, which is, however, successful in many
practical examples as our experiments show. We extract the
shortest path between x and y on the tree memory backbone,
which consists of going some number of steps upwards to the
closest common parent of x and y and then going some num-
ber of steps downwards. The upward or the downward phase
can also be skipped when going just down or up, respec-
tively. When extracting this shortest path, we project away all
information about nodes we see on the way and about nodes
not directly lying on the path. Only the directions (left/right
up/down) and the number of steps are preserved.

Note that we, in fact, perform the operation of routing
expression extraction on a tree automaton, and we extract all
possible paths between where x and ymay currently be. The
result is transformed into a transducer τxy that moves the
token � from the position of x to the position of y, and τxy
is then united with the current routing expression transducer
associated with the given pointer descriptor r . The extraction
of the routing paths is done partly by rewriting the input tree
automaton via a special transducer τπ that in one step iden-
tifies all the shortest paths between all x and y positions and
projects away the non-necessary information about the nodes
on the way. The transducer τπ is simple. It just checks that
one follows some branch up from x and then some branch
down to y where the up and down sweeps meet in a single
node. The transition relation of the resulting transducer is
then post-processed by changing the context of the path to
an arbitrary one, which is done by directly modifying the
structure of the transducer.19

Dynamic allocation and deallocation Statements of the
form x = malloc() are implemented by rewriting the
right-most • leaf node to a new data node pointed to by x.
All the k next pointers are set to �.

To be able to exploit the regularity that is mostly pres-
ent in algorithms allocating new data structures, which typi-
cally add new elements at the end/leaves of the structure, we
also explicitly support a statement of the form x.s = mal-
loc(). We even try to pre-process programs and compact
all successive pairs of statements of the form x = mal-

19 A more precise, but also more costly, approach would be to preserve
(some of) the context.

loc(); y->s = x (provided x is not used any further)
to y->s= malloc(). This statement is then implemented
by adding the new element directly under the node pointed to
by y (provided it is a leaf) and joining it by a simple routing
expression of the form “one level down via a certain branch”.
This typically yields much simpler and more precise routing
expressions.

Finally, statements of the form free(x) are imple-
mented by transducers that move all variables that are cur-
rently in the node pointed to by x to the undef node (if x is
in null or undef, an error is announced). Then, the node is
denoted as deleted, but it stays in our tree memory encoding
with all its current markers set.

6.6 Input structures for the verified programs

In order to encode the input structures, we can directly
use the tree automata memory encoding. Such an encod-
ing can be provided manually or derived automatically from
a description of the concerned linked data structure provided,
e.g., as a graph type [38]. The main advantage is that the ver-
ification process starts with an exact encoding of the set of all
possible instances of the considered data structure. Another
possibility is to attach a constructor written in C before the
verified procedure. The verification then starts with the empty
shape graph.

6.7 Applying ARTMC

Apparently, we assume ARTMC to be used in its more gen-
eral form, having the one-step transition relation split into
several transducers that are applied in some particular order,
together with one special operation on the tree automata used
when extracting the routing expressions. We compute an
overapproximation of the reachable configurations for each
program line in such a way that we start from an initial set of
shape graphs represented by a tree automata memory encod-
ing (possibly representing the empty heap when an input
constructor is used) and we iterate the abstract fixpoint com-
putation described in Sect. 5.1 along the control flow graph
of the program (using the depth-first strategy). The fixpoint
computation stops if the abstraction α that is used is fini-
tary. In such a case, the number of abstracted tree automata
that encode sets of memory backbones which can arise in
the program being checked is finite. Moreover, the number
of the arising routing expressions is also finite since they are
extracted from the bounded number of tree automata describ-
ing the encountered sets of memory backbones.20

20 The non-canonicity of our encoding does not prevent the computa-
tion from stopping. It may just take longer since several encodings for
the same graph could be added.
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During the computation, we check whether a designated
error location in the program is reached, a basic pointer
exception is detected during simulating the effect of some
statement, or whether a fixpoint is attained. In the latter case,
the program is found correct. In the former case, we compute
backwards along the path in the CFG that is being currently
explored to check if the obtained counterexample is spurious
as explained in Sect. 5.1. However, as said in Sect. 6.5.1, the
check for emptiness is not exact and therefore we might con-
clude that we have obtained a real counterexample although
this is not the case. However, such a situation has never hap-
pened in any of our experiments.21

We use a slight refinement of the basic finite-height and
predicate abstractions described in Sect. 5.1. Concretely, we
prevent the abstraction from allowing a certain pointer var-
iable to point to several memory nodes at the same time. In
particular, this amounts to prohibiting collapsing of states
that would create a loop over a node pointed to by some
pointer variable.

Apart from the basic abstraction schemas, we support one
more abstraction schema called the neighbour abstraction.
Under this schema, only the tree automata states are collapsed
that (1) accept nodes with equal labels and (2) that directly
follow each other (i.e., they are neighbours). This strategy is
very simple, yet it proved useful in some practical cases.

Finally, we allow the abstraction to be applied either at
all program lines or only at the loop closing points. In some
cases, the latter approach is more advantageous due to that
some critical destructive pointer updates are done without
being interleaved with abstraction. This way, we may avoid
having to remove lots of spurious counterexamples that may
otherwise arise when the abstraction is applied while some
important shape invariant is temporarily broken.

6.8 Experimental results

We have implemented the above proposed method in a pro-
totype tool22 based on the Mona tree automata library [37].
We have performed a set of experiments with singly linked
lists (SLL), doubly linked lists (DLL), trees, lists of lists, and
trees with linked leaves. As one of the most complicated case
studies, we have also considered the so-called task-lists. The
task-list structure is showed in Fig. 12 and it is inspired by
the structures often used in operating systems [9].

All three mentioned types of automata abstraction—
the finite-height abstraction (with the initial height being
one), predicate abstraction (with no initial predicates), and
neighbour abstraction—proved useful in different exper-
iments. All case studies were automatically verified for

21 A precise (but more costly) spuriousness check is to replay the
obtained path from the beginning without using abstraction.
22 www.fit.vutbr.cz/research/groups/verifit/tools/artmc/

Fig. 12 The “task-list” data structure

null/undefined/deleted pointer exceptions. Additionally,
some further shape properties (such as absence of sharing,
acyclicity, preservation of input elements, etc.) were verified
in some case studies too. For a detailed overview of the case
studies and verified properties, see [46].

Table 3 contains verification times for our experiments.
We give the best result obtained using one of the three men-
tioned abstraction schemas and say for which schema the
result was obtained. The note “restricted” accompanying
the abstraction means that the abstraction was applied at
the loop points only. The experiments were performed on
a 64 bit Opteron at 2.8 GHz. The column |Q| gives infor-
mation about the size (in numbers of states) of the big-
gest encountered automaton while Nref gives the number of
refinements. The column S P provides information whether
preservation of some shape properties was verified (together
with the default checks of undesired manipulation of null,
undefined, or deleted objects).

Despite the prototype nature of our tool, which can still
be optimised in many ways (some of them are mentioned
below), the results are quite positive. For example, for check-
ing the Deutsch–Schorr–Waite tree traversal, TVLA (version
2) took 1 minute on the same machine with manually pro-
vided instrumentation predicates and predicate transformers.
In the case of the trees with linked leaves, we are not aware of
any other fully automated tool with which experiments with
this structure have been performed.

Recent fully automated tools based on separation logic
appear to be more scalable, but the abstraction used in them
is much more restricted to a particular shape of data structures
(usually lists of lists [9,20,60] like in the case of task-lists23)

23 In [31], more complex structures are automatically manipulated, but
they are built by the programs in some “nice” way, suitable for the
inductive predicates being constructed and used.
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Table 3 Results of experiments
with analysing programs
manipulating dynamic data
structures

Example Time Abstraction method |Q| Nref S P

Creation of SLLs 1 s Predicates, restricted 25 0 Yes

Reversion of SLLs 5 s Predicates 52 0 Yes

Deletion from DLLs 6 s Finite height 100 0 Yes

Insertion into DLLs 10 s Neighbour, restricted 106 0 Yes

Reversion of DLLs 7 s Predicates 54 0 Yes

Insertsort of DLLs 2 s Predicates 51 0 No

Inserting into trees 23 s Predicates, restricted 65 0 Yes

Depth-first search 11 s Predicates 67 1 Yes

Linking leaves in trees 40 s Predicates 75 2 Yes

Inserting into a list of lists 5 s Predicates, restricted 55 0 Yes

Deutsch–Schorr–Waite tree traversal 47 s Predicates 126 0 No

Insertion into task-lists 11 m 25 s Finite-height, restricted 277 0 Yes

Deletion in task-lists 1 m 41 s Predicates, restricted 420 0 Yes

and their particular properties. For example, the abstraction
of [60] is fine-tuned not to report spurious errors in the con-
sidered experiments and the authors themselves make a note
on usefulness of automated refinement.

7 Conclusions

We have discussed the approach of abstract regular (tree)
model checking as a generic technique for verification of
parameterised and infinite-state programs, using finite word
and tree automata for finitely representing possibly infinite
sets of reachable configurations. As a possible application
of ARTMC, we have discussed verification of programs
manipulating complex dynamic data structures. Other appli-
cations include verification of parameterised networks of pro-
cesses or systems with unbounded queues, stacks, counters,
etc.

An important on-going research on (abstract) regular
(tree) model checking includes improvements in the
underlying automata technology. This especially concerns
the use of non-deterministic word or tree automata. For
them to be useful, one needs to be able to perform all
the needed operations without determinising the automata.
This is problematic in the case of inclusion checking and
reduction (minimisation) of the automata. However, recent
advances in using antichain-based and/or simulation-based
approaches [1,26] have overcome this obstacle, although
further improvements are still possible. Very significant
improvements in the performance of ARTMC have already
been reported on some case studies [11]. Further, develop-
ment of abstractions and encodings particularly suitable for
various application areas is needed. For instance, an inter-
esting question is how to introduce the principle of sepa-
ration (frame rule), which underlies the scalability of sepa-

ration-logic-based approaches, into automata, combining it
with automated refinement and higher generality while still
retaining full automation [32].
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Abstract. Separation Logic is a widely used formalism for describing dynam-
ically allocated linked data structures, such as lists, trees, etc. The decidability
status of various fragments of the logic constitutes a long standing open problem.
Current results report on techniques to decide satisfiability and validity of entail-
ments for Separation Logic(s) over lists (possibly with data). In this paper we
establish a more general decidability result. We prove that any Separation Logic
formula using rather general recursively defined predicates is decidable for satis-
fiability, and moreover, entailments between such formulae are decidable for va-
lidity. These predicates are general enough to define (doubly-) linked lists, trees,
and structures more general than trees, such as trees whose leaves are chained in
a list. The decidability proofs are by reduction to decidability of Monadic Second
Order Logic on graphs with bounded tree width.

1 Introduction

Separation Logic (SL) [17] is a general framework for describing dynamically allo-
cated mutable data structures generated by programs that use pointers and low-level
memory allocation primitives. The logics in this framework are used by an important
number of academic (SPACE INVADER [1], SLEEK [16] and PREDATOR [9]), as well
as industrial-scale (INFER [7]) tools for program verification and certification. These
logics are used both externally, as property specification languages, or internally, as
e.g., abstract domains for computing invariants, or for proving verification conditions.
The main advantage of using SL when dealing with heap manipulating programs, is the
ability to provide compositional proofs, based on the principle of local reasoning i.e.,
analyzing different sections (e.g., functions, threads, etc.) of the program, that work on
disjoint parts of the global heap, and combining the analysis results a-posteriori.

The basic language of SL consists of two kinds of atomic propositions describing
either (i) the empty heap, or (ii) a heap consisting of an allocated cell, connected via a
separating conjunction primitive. Hence a basic SL formula can describe only a heap
whose size is bounded by the size of the formula. The ability of describing unbounded
data structures is provided by the use of recursive definitions. Figure 1 gives several
common examples of recursive data structures definable in this framework.

The main difficulty that arises when using Separation Logic with Recursive Def-
initions (SLRD) to reason automatically about programs is that the logic, due to its
expressiveness, does not have very nice decidability properties. Most dialects used in
practice restrict the language (e.g., no quantifier alternation, the negation is used in a
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c© Springer-Verlag Berlin Heidelberg 2013
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list(hd, tl) ::= emp∧hd = tl
| ∃x. hd �→ x∗ list(x, tl)

dll(hd, p, tl) ::= emp∧hd = tl
| ∃x. hd �→ (x, p)∗dll(x,hd, tl)

tree(root) ::= emp∧ root = nil
| ∃l,r. root �→ (l,r)∗ tree(l)∗ tree(r)

tll(x, ll, lr) ::= x �→ (nil,nil, lr)∧ x = ll
| ∃l,r,z. x �→ (l,r,nil)∗ tll(l, ll,z)
∗tll(r,z, lr)

nil

tl

hd tl
p

list:

dll:

...

...

hd

roottree: root

ll lr

tll:

nilnil

Fig. 1. Examples of recursive data structures definable in SLRD

very restricted ways, etc.) and the class of models over which the logic is interpreted
(typically singly-linked lists, and slight variations thereof). In the same way, we ap-
ply several natural restrictions on the syntax of the recursive definitions, and define the
fragment SLRDbtw, which guarantees that all models of a formula in the fragment have
bounded tree width. Indeed, this ensures that the satisfiability and entailment problems
in this fragment are decidable without any restrictions on the type of the recursive data
structures considered.

In general, the techniques used in proving decidability of Separation Logic are ei-
ther proof-based ([16,2]), or model-based ([5,8]). It is well-known that automata the-
ory, through various automata-logics connections, provides a unifying framework for
proving decidability of various logics, such as (W)SkS, Presburger Arithmetic or MSO
over certain classes of graphs. In this paper we propose an automata-theoretic approach
consisting of two ingredients. First, SLRDbtw formulae are translated into equivalent
Monadic Second Order (MSO) formulae over graphs. Second, we show that the models
of SLRDbtw formulae have the bounded tree width property, which provides a decid-
ability result by reduction to the satisfiability problem for MSO interpreted over graphs
of bounded tree width [18], and ultimately, to the emptiness problem of tree automata.

Related Work. The literature on defining decidable logics for describing mutable data
structures is rather extensive. Initially, first-order logic with transitive closure of one
function symbol was introduced in [11] with a follow-up logic of reachability on com-
plex data structures, in [19]. The decision procedures for these logics are based on
reductions to the decidability of MSO over finite trees. Along the same lines, the logic
PALE [15] goes beyond trees, in defining trees with edges described by regular routing
expressions, whose decidability is still a consequence of the decidability of MSO over
trees. More recently, the CSL logic [4] uses first-order logic with reachability (along
multiple selectors) in combination with arithmetic theories to reason about shape, path
lengths and data within heap structures. Their decidability proof is based on a small
model property, and the algorithm is enumerative. In the same spirit, the STRAND logic
[14] combines MSO over graphs, with quantified data theories, and provides decidable
fragments using a reduction to MSO over graphs of bounded tree width.

On what concerns SLRD [17], the first (proof-theoretic) decidability result on a re-
stricted fragment defining only singly-linked lists was reported in [2], which describe
a coNP algorithm. The full basic SL without recursive definitions, but with the magic
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wand operator was found to be undecidable when interpreted in any memory model
[6]. Recently, the entailment problem for SLRD over lists has been reduced to graph
homomorphism in [8], and can be solved in PTIME. This method has been extended
to reason nested and overlaid lists in [10]. The logic SLRDbtw, presented in this paper
is, to the best of our knowledge, the first decidable SL that can define structures more
general than lists and trees, such as e.g. trees with parent pointers and linked leaves.

2 Preliminaries

For a finite set S, we denote by ||S|| its cardinality. We sometimes denote sets and se-
quences of variables as x, the distinction being clear from the context. If x denotes a
sequence, (x)i denotes its i-th element. For a partial function f : A ⇀ B, and ⊥ /∈ B, we
denote f (x) =⊥ the fact that f is undefined at some point x∈ A. By f [a← b] we denote
the function λx . if x = a then b else f (x). The domain of f is denoted dom( f ) = {x∈A |
f (x) �=⊥}, and the image of f is denoted as img( f ) = {y ∈ B | ∃x ∈ A . f (x) = y}. By
f : A ⇀ f in B we denote any partial function whose domain is finite. Given two partial
functions f ,g defined on disjoint domains, we denote by f ⊕ g their union.

Stores, Heaps and States. We consider PVar = {u,v,w, . . .} to be a countable infinite
set of pointer variables and Loc = {l,m,n, . . .} to be a countable infinite set of memory
locations. Let nil ∈ PVar be a designated variable, null ∈ Loc be a designated location,
and Sel = {1, . . . ,S}, for some given S > 0, be a finite set of natural numbers, called
selectors in the following.

Definition 1. A state is a pair 〈s,h〉 where s : PVar ⇀ Loc is a partial function mapping
pointer variables into locations such that s(nil) = null, and h : Loc ⇀ f in Sel ⇀ f in Loc
is a finite partial function such that (i) null �∈ dom(h) and (ii) for all � ∈ dom(h) there
exist k ∈ Sel such that (h(�))(k) �=⊥.

Given a state S = 〈s,h〉, s is called the store and h the heap. For any k ∈ Sel, we write

hk(�) instead of (h(�))(k), and �
k−→ �′ for hk(�) = �′. We sometimes call a triple �

k−→ �′ an

edge, and k is called a selector. Let Img(h) =
⋃

�∈Loc img(h(�)) be the set of locations
which are destinations of some selector edge in h. A location � ∈ Loc is said to be
allocated in 〈s,h〉 if � ∈ dom(h) (i.e. it is the source of an edge), and dangling in 〈s,h〉
if � ∈ [img(s)∪ Img(h)] \ dom(h), i.e., it is either referenced by a store variable, or
reachable from an allocated location in the heap, but it is not allocated in the heap itself.
The set loc(S) = img(s)∪dom(h)∪ Img(h) is the set of all locations either allocated or
referenced in a state S = 〈s,h〉.

Trees. Let Σ be a finite label alphabet, and N∗ be the set of sequences of natural num-
bers. Let ε ∈ N∗ denote the empty sequence, and p.q denote the concatenation of two
sequences p,q ∈ N∗. A tree t over Σ is a finite partial function t : N∗ ⇀ f in Σ, such that
dom(t) is a finite prefix-closed subset of N∗, and for each p ∈ dom(t) and i ∈ N, we
have: t(p.i) �=⊥⇒∀0≤ j < i . t(p. j) �=⊥. Given two positions p,q ∈ dom(t), we say
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that q is the i-th successor (child) of p if q = p.i, for i ∈ N. Also q is a successor of p,
or equivalently, p is the parent of q, denoted p = parent(q) if q = p.i, for some i ∈ N.

We will sometimes denote by D(t) = {−1,0, . . . ,N} the direction alphabet of t,
where N = max{i ∈ N | p.i ∈ dom(t)}. The concatenation of positions is defined over
D(t) with the convention that p.(−1) = q if and only if p = q.i for some i ∈ N. We
denote D+(t) = D(t)\ {−1}. A path in t, from p1 to pk, is a sequence p1, p2, . . . , pk ∈
dom(t) of pairwise distinct positions, such that either pi = parent(pi+1) or pi+1 =
parent(pi), for all 1 ≤ i < k. Notice that a path in the tree can also link sibling nodes,
not just ancestors to their descendants, or viceversa. However, a path may not visit the
same tree position twice.

Tree Width. A state (Def. 1) can be seen as a directed graph, whose nodes are loca-
tions, and whose edges are defined by the selector relation. Some nodes are labeled by
program variables (PVar) and all edges are labeled by selectors (Sel). The notion of
tree width is then easily adapted from generic labeled graphs to states. Intuitively, the
tree width of a state (graph) measures the similarity of the state to a tree.

Definition 2. Let S = 〈s,h〉 be a state. A tree decomposition of S is a tree t : N∗ ⇀ f in

2loc(S), labeled with sets of locations from loc(S), with the following properties:

1. loc(S) =
⋃

p∈dom(t) t(p), the tree covers the locations of S

2. for each edge l1
s−→ l2 in S, there exists p ∈ dom(t) such that l1, l2 ∈ t(p)

3. for each p,q,r ∈ dom(t), if q is on a path from p to r in t, then t(p)∩ t(r)⊆ t(q)

The width of the decomposition is w(t) = maxp∈dom(t){||t(p)||− 1}. The tree width of S
is tw(S) = min{w(t) | t is a tree decomposition of S}.

A set of states is said to have bounded tree width if there exists a constant k ≥ 0 such
that tw(S)≤ k, for any state S in the set. Figure 2 gives an example of a graph (left) and
a possible tree decomposition (right).

{1,4}

5 {2,4,5}

2

3{2,3,4}

4

1

1 2 3 4 5
{1,2,4} {1,4}

Fig. 2. A graph and a possible tree decomposition of width 2

2.1 Syntax and Semantics of Monadic Second Order Logic

Monadic second-order logic (MSO) on states is a straightforward adaptation of MSO on
labeled graphs [13]. As usual, we denote first-order variables, ranging over locations,
by x,y, . . . , and second-order variables, ranging over sets of locations, by X ,Y, . . . . The
set of logical MSO variables is denoted by LVarmso, where PVar∩LVarmso = /0.
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We emphasize here the distinction between the logical variables LVarmso and the
pointer variables PVar: the former may occur within the scope of first and second order
quantifiers, whereas the latter play the role of symbolic constants (function symbols of
zero arity). For the rest of this paper, a logical variable is said to be free if it does not
occur within the scope of a quantifier. By writing ϕ(x), for an MSO formula ϕ, and a
set of logical variables x, we mean that all free variables of ϕ are in x.

The syntax of MSO is defined below:

u ∈ PVar; x,X ∈ LVarmso; k ∈ N
ϕ ::= x = y | varu(x) | edgek(x,y) | null(x) | X(x) | ϕ∧ϕ | ¬ϕ | ∃x.ϕ | ∃X .ϕ

The semantics of MSO on states is given by the relation S, ι,ν |=mso ϕ, where S = 〈s,h〉
is a state, ι : {x,y,z, . . .}⇀ f in Loc is an interpretation of the first order variables, and ν :
{X ,Y,Z, . . .}⇀ f in 2Loc is an interpretation of the second order variables. If S, ι,ν |=mso ϕ
for all interpretations ι : {x,y,z, . . .}⇀ f in Loc and ν : {X ,Y,Z, . . .}⇀ f in 2Loc, then we
say that S is a model of ϕ, denoted S |=mso ϕ. We use the standard MSO semantics [18],
with the following interpretations of the vertex and edge labels:

S, ι,ν |=mso null(x) ⇐⇒ ι(x) = nil
S, ι,ν |=mso varu(x) ⇐⇒ s(u) = ι(x)

S, ι,ν |=mso edgek(x,y) ⇐⇒ hk(ι(x)) = ι(y)

The satisfiability problem for MSO asks, given a formula ϕ, whether there exists a state
S such that S |=mso ϕ. This problem is, in general, undecidable. However, one can show
its decidability on a restricted class of models. The theorem below is a slight variation
of a classical result in (MSO-definable) graph theory [18]. For space reasons, all proofs
are given in [12].

Theorem 1. Let k ≥ 0 be an integer constant, and ϕ be an MSO formula. The problem
asking if there exists a state S such that tw(S)≤ k and S |=mso ϕ is decidable.

2.2 Syntax and Semantics of Separation Logic

Separation Logic (SL) [17] uses only a set of first order logical variables, denoted
as LVarsl , ranging over locations. We suppose that LVarsl ∩ PVar = /0 and LVarsl ∩
LVarmso = /0. Let Varsl denote the set PVar∪LVarsl . A formula is said to be closed if
it does not contain logical variables which are not under the scope of a quantifier. By
writing ϕ(x) for an SL formula ϕ and a set of logical variables x, we mean that all free
variables of ϕ are in x.

Basic Formulae. The syntax of basic formula is given below:

α ∈ Varsl \ {nil}; β ∈ Varsl; x ∈ LVarsl

π ::= α = β | α �= β | π1∧π2

σ ::= emp | α �→ (β1, . . . ,βn) | σ1 ∗σ2 , for some n > 0
ϕ ::= π∧σ | ∃x . ϕ
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A formula of the form
∧n

i=1 αi = βi ∧
∧m

j=1 α j �= β j defined by π in the syntax above
is said to be pure. If Π is a pure formula, let Π∗ denote its closure, i.e., the equivalent
pure formula obtained by the exhaustive application of the reflexivity, symmetry, and
transitivity axioms of equality. A formula of the form �k

i=1αi �→ (βi,1, . . . ,βi,n) defined
by σ in the syntax above is said to be spatial. The atomic proposition emp denotes the
empty spatial conjunction. For a spatial formula Σ, let |Σ| be the total number of variable
occurrences in Σ, e.g. |emp|= 0, |α �→ (β1, . . . ,βn)|= n + 1, etc.

The semantics of a basic formula ϕ is given by the relation S, ι |=sl ϕ where S = 〈s,h〉
is a state, and ι : LVarsl ⇀ f in Loc is an interpretation of logical variables from ϕ. For a
closed formula ϕ, we denote by S |=sl ϕ the fact that S is a model of ϕ.

S, ι |=sl emp ⇐⇒ dom(h) = /0
S, ι |=sl α �→ (β1, . . . ,βn) ⇐⇒ h = {〈(s⊕ ι)(α),λi . if i≤ n then (s⊕ ι)(βi) else ⊥〉}
S, ι |=sl ϕ1 ∗ϕ2 ⇐⇒ S1, ι |=sl ϕ1 and S2, ι |=sl ϕ2 where S1�S2 = S

The semantics of =, �=, ∧, and ∃ is classical. Here, the notation S1 � S2 = S means
that S is the union of two states S1 = 〈s1,h1〉 and S2 = 〈s2,h2〉 whose stacks agree on
the evaluation of common program variables (∀α ∈ PVar . s1(α) �= ⊥∧ s2(α) �= ⊥⇒
s1(α) = s2(α)), and whose heaps have disjoint domains (dom(h1)∩dom(h2) = /0) i.e.,
S = 〈s1∪ s2,h1⊕h2〉. Note that we adopt here the strict semantics, in which a points-to
relation α �→ (β1, . . . ,βn) holds in a state consisting of a single cell pointed to by α,
with exactly n outgoing edges towards dangling locations pointed to by β1, . . . ,βn, and
the empty heap is specified by emp.

Every basic formula ϕ is equivalent to an existentially quantified pair Σ∧Π where Σ
is a spatial formula and Π is a pure formula. Given a basic formula ϕ, one can define
its spatial (Σ) and pure (Π) parts uniquely, up to equivalence. A variable α ∈Var is said
to be allocated in ϕ if and only if α �→ (. . .) occurs in Σ. It is easy to check that an
allocated variable may not refer to a dangling location in any model of ϕ. A variable β
is referenced if and only if α �→ (. . . ,β, . . .) occurs in Σ for some variable α. For a basic
formula ϕ≡ Σ∧Π, the size of ϕ is defined as |ϕ|= |Σ|.

Lemma 1. Let ϕ(x) be a basic SL formula, S = 〈s,h〉 be a state, and ι : LVarsl ⇀ f in Loc
be an interpretation, such that S, ι |=sl ϕ(x). Then tw(S)≤max(|ϕ|, ||PVar||).

Recursive Definitions. A system P of recursive definitions is of the form:

P1(x1,1, . . . ,x1,n1) ::= |m1
j=1 R1, j(x1,1, . . . ,x1,n1)

. . .
Pk(xk,1, . . . ,xk,nk ) ::= |mk

j=1 Rk, j(xk,1, . . . ,xk,nk)

where P1, . . . ,Pk are called predicates, xi,1, . . . ,xi,ni are called parameters, and the for-
mulae Ri, j are called the rules of Pi. Concretely, a rule Ri, j is of the form Ri, j(x) ≡
∃z . Σ∗Pi1(y1)∗ . . .∗Pim(ym) ∧ Π, where Σ is a spatial SL formula over variables x∪z,
called the head of Ri, j, 〈Pi1(y1), . . . ,Pim(ym)〉 is an ordered sequence of predicate oc-
currences, called the tail of Ri, j (we assume w.l.o.g. that x∩ z = /0, and that yk ⊆ x∪ z,
for all k = 1, . . . ,m), Π is a pure formula over variables x∪ z.
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Without losing generality, we assume that all variables occurring in a rule of a recur-
sive definition system are logical variables from LVarsl – pointer variables can be passed
as parameters at the top level. We subsequently denote head(Ri, j) ≡ Σ, tail(Ri, j) ≡
〈Pik(yk)〉mk=1 and pure(Ri, j) ≡ Π, for each rule Ri, j. Rules with empty tail are called
base cases. For each rule Ri, j let ||Ri, j||var = ||z||+ ||x|| be the number of variables,
both existentially quantified and parameters, that occur in Ri, j. We denote by ||P ||var =
max{||Ri. j||var | 1 ≤ i ≤ k, 1 ≤ j ≤ mi} the maximum such number, among all rules in
P . We also denote by D(P ) = {−1,0, . . . ,max{|tail(Ri, j)| | 1≤ i≤ k, 1≤ j≤mi}−1}
the direction alphabet of P .

Example. The predicate tll describes a data structure called a tree with parent pointers
and linked leaves (see Fig. 3(b)). The data structure is composed of a binary tree in
which each internal node points to left and right children, and also to its parent node. In
addition, the leaves of the tree are kept in a singly-linked list, according to the order in
which they appear on the frontier (left to right).

tll(x, p, lea fl , lea fr) ::= x �→ (nil,nil, p, lea fr)∧ x = lea fl (R1)
| ∃l,r,z. x �→ (l,r, p,nil)∗ tll(l,x, lea fl ,z)∗ tll(r,x,z, lea fr) (R2)

The base case rule (R1) allocates leaf nodes. The internal nodes of the tree are allocated
by the rule (R2), where the ttl predicate occurs twice, first for the left subtree, and
second for the right subtree. ��
Definition 3. Given a system of recursive definitions P =

{
Pi ::= |mi

j=1 Ri, j
}n

i=1, an
unfolding tree of P rooted at i is a finite tree t such that:

1. each node of t is labeled by a single rule of the system P ,
2. the root of t is labeled with a rule of Pi,
3. nodes labeled with base case rules have no successors, and
4. if a node u of t is labeled with a rule whose tail is Pi1(y1) ∗ . . .∗Pim(ym), then the

children of u form the ordered sequence v1, . . . ,vm where v j is labeled with one of
the rules of Pi j for all j = 1, . . . ,m.

Remarks. Notice that the recursive predicate P(x) ::= ∃y . x �→ y ∗P(y) does not have
finite unfolding trees. However, in general a system of recursive predicates may have
infinitely many finite unfolding trees. ��

In the following, we denote by Ti(P ) the set of unfolding trees of P rooted at i. An
unfolding tree t ∈ Ti(P ) corresponds to a basic formula of separation logic φt , called
the characteristic formula of t, and defined in what follows. For a set of tree positions
P ⊆ N∗, we denote LVarP = {xp | x ∈ LVar, p ∈ P}. For a tree position p ∈ N∗ and
a rule R, we denote by Rp the rule obtained by replacing every variable occurrence x
in R by xp. For each position p ∈ dom(t), we define a formula φp

t , by induction on the
structure of the subtree of t rooted at p:

– if p is a leaf labeled with a base case rule R, then φp
t ≡ Rp

– if p has successors p.1, . . . , p.m, and the label of p is the recursive rule R(x) ≡
∃z . head(R)∗�m

j=1Pij(y j)∧ pure(R), then:

φp
t (xp)≡ ∃zp . head(Rp)∗�m

j=1[∃xp.i
i j

. φp.i
t (xp.i

i j
)∧yp

j = xp.i
i j

]∧ pure(Rp)

127



28 R. Iosif, A. Rogalewicz, and J. Simacek

In the rest of the paper, we write φt for φε
t . Notice that φt is defined using the set of

logical variables LVardom(t), instead of LVar. However the definition of SL semantics
from the previous carries over naturally to this case.

Example. (cont’d) Fig. 3(a) presents an unfolding tree for the tll predicate given in the
previous example. The characteristic formula of each node in the tree can be obtained
by composing the formulae labeling the children of the node with the formula labeling
the node. The characteristic formula of the tree is the formula of its root. ��

∃lε,rε,zε.xε �→ (lε,rε, pε,nil)∧
∃x0, p0, lea f 0

l , lea f 0
r ,x1, p1, lea f 1

l , lea f 1
r .

lε = x0 ∧ xε = p0 ∧ lea f ε
l = lea f 0

l ∧ zε = lea f 0
r ∧

rε = x1 ∧ xε = p1 ∧ zε = lea f 1
l ∧ lea f ε

r = lea f 1
r

∃l0,r0,z0.x0 �→ (l0,r0, p0,nil)∧
∃x00, p00, lea f 00

l , lea f 00
r ,x01, p01, lea f 01

l , lea f 01
r .

l0 = x00 ∧ x0 = p00 ∧ lea f 0
l = lea f 00

l ∧ z0 = lea f 00
r ∧

r0 = x01 ∧ x0 = p01 ∧ z0 = lea f 01
l ∧ lea f 0

r = lea f 01
r

x00 �→ (nil,nil, p00, lea f 00
r )

∧ x00 = lea f 00
l

x01 �→ (nil,nil, p01, lea f 01
r )

∧ x01 = lea f 01
l

∃l1,r1,z1.x1 �→ (l1,r1, p1,nil)∧
∃x10, p10, lea f 10

l , lea f 10
r ,x11, p11, lea f 11

l , lea f 11
r .

l1 = x10 ∧ x1 = p10 ∧ lea f 1
l = lea f 10

l ∧ z1 = lea f 10
r ∧

r1 = x11 ∧ x1 = p11 ∧ z1 = lea f 11
l ∧ lea f 1

r = lea f 11
r

x10 �→ (nil,nil, p10, lea f 10
r )

∧ x10 = lea f 10
l

x11 �→ (nil,nil, p11, lea f 11
r )

∧ x11 = lea f 11
l

∗

∗
∗

∗

∗
∗

zε

z0 z1

(a)

1 2

2
3333 11 2
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4 4 4

(b)

Fig. 3. (a) An unfolding tree for tll predicate and (b) a model of the corresponding formula

Given a system of recursive definitions P =
{

Pi ::= |mi
j=1 Ri, j

}n
i=1, the semantics of

a recursive predicate Pi is defined as follows:

S, ι |=sl Pi(xi,1, . . . ,xi,ni) ⇐⇒ S, ιε |=sl φt(x
ε
i,1, . . . ,x

ε
i,ni

), for some t ∈ Ti(P ) (1)

where ιε(xε
i, j)

de f
= ι(xi, j) for all j = 1, . . . ,ni.

Remark. Since the recursive predicate P(x) ::= ∃y . x �→ y ∗P(y) does not have finite
unfolding trees, the formula ∃x.P(x) is unsatisfiable. ��

Top Level Formulae. We are now ready to introduce the fragment of Separation Logic
with Recursive Definitions (SLRD). A formula in this fragment is an existentially quan-
tified formula of the following form: ∃z . ϕ∗Pi1 ∗ . . . ∗Pin , where ϕ is a basic formula,
and Pij are occurrences of recursive predicates, with free variables in PVar∪ z. The se-
mantics of an SLRD formula is defined in the obvious way, from the semantics of the
basic fragment, and that of the recursive predicates.

Example. The following SLRD formulae, with PVar = {root,head}, describe both the
set of binary trees with parent pointer and linked leaves, rooted at root, with the leaves
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linked into a list pointed to by head. The difference is that ϕ1 describes also a tree
containing only a single allocated location:

ϕ1 ≡ tll(root,nil,head,nil)
ϕ2 ≡ ∃l,r,x.root �→ (l,r,nil,nil)∗ tll(l,root,head,x)∗ tll(r,root,x,nil) ��
We are interested in solving two problems on SLRD formulae, namely satisfiability and
entailment. The satisfiability problem asks, given a closed SLRD formula ϕ, whether
there exists a state S such that S |=sl ϕ. The entailment problem asks, given two closed
SLRD formulae ϕ1 and ϕ2, whether for all states S, S |=sl ϕ1 implies S |=sl ϕ2. This is
denoted also as ϕ1 |=sl ϕ2. For instance, in the previous example we have ϕ2 |=sl ϕ1,
but not ϕ1 |=sl ϕ2.

In general, it is possible to reduce an entailment problem ϕ1 |= ϕ2 to satisfiability of
the formula ϕ1∧¬ϕ2. In our case, however, this is not possible directly, because SLRD
is not closed under negation. The decision procedures for satisfiability and entailment
is the subject of the rest of this paper.

3 Decidability of Satisfiability and Entailment in SLRD

The decision procedure for the satisfiability and entailment in SLRD is based on two
ingredients. First, we show that, under certain natural restrictions on the system of re-
cursive predicates, which define a fragment of SLRD, called SLRDbtw, all states that
are models of SLRDbtw formulae have bounded tree width (Def. 2). These restrictions
are as follows:

1. Progress: each rule allocates exactly one variable
2. Connectivity: there is at least one selector edge between the variable allocated by a

rule and the variable allocated by each of its children in the unfolding tree
3. Establishment: all existentially quantified variables in a recursive rule are eventu-

ally allocated

Second, we provide a translation of SLRDbtw formulae into equivalent MSO formulae,
and rely on the fact that satisfiability of MSO is decidable on classes of states with
bounded tree width.

3.1 A Decidable Subset of SLRD

At this point we define the SLRDbtw fragment formally, by defining the three restrictions
above. The progress condition (1) asks that, for each rule R in the system of recursive
definitions, we have head(R) ≡ α �→ (β1, . . . ,βn), for some variables α,β1, . . . ,βn ∈
Varsl . The intuition between this restriction is reflected by the following example.

Example. Consider the following system of recursive definitions:

ls(x,y) ::= x �→ y | ∃z, t . x �→ (z,nil)∗ t �→ (nil,y)∗ ls(z, t)

The predicate ls(x,y) defines the set of structures {x( 1−→)nz �→ t(
2−→)ny | n ≥ 0}, which

clearly cannot be defined in MSO. ��
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The connectivity condition (2) is defined below:

Definition 4. A rule R of a system of recursive definitions, such that head(R) ≡ α �→
(β1, . . . ,βn) and tail(R)≡ 〈Pi1(y1), . . . ,Pim(ym)〉, m≥ 1, is said to be connected if and
only if the following hold:

– for each j = 1, . . . ,m, (y j)s = β′, for some 1 ≤ s ≤ ni j , where ni j is the number of
parameters of Pi j

– βt = β′ occurs in pure(R)∗, for some 1≤ t ≤ n
– the s-th parameter xi j ,s of Pi j is allocated in the heads of all rules of Pi j .

In this case we say that between rule R and any rule Q of Pij , there is a local edge,
labeled by selector t. F (R, j,Q) ⊆ Sel denotes the set of all such selectors. If all rules
of P are connected, we say that P is connected.

Example. The following recursive rule, from the previous tll predicate, is connected:

∃l,r,z . x �→ (l,r, p,nil)∗ tll(l,x, lea fl ,z)∗ tll(r,x,z, lea fr) (R2)

R2 is connected because the variable l is referenced in R2 and it is passed as the first
parameter to tll in the first recursive call to tll. Moreover, the first parameter (x) is
allocated by all rules of tll. R2 is connected, for similar reasons. We have F (R2,1,R2)=
{1} and F (R2,2,R2) = {2}. ��
The establishment condition (3) is formally defined below.

Definition 5. Let P(x1, . . . ,xn) = |mj=1R j(x1, . . . ,xn) be a predicate in a recursive system
of definitions. We say that a parameter xi, for some i = 1, . . . ,n is allocated in P if and
only if, for all j = 1, . . . ,m:

– either xi is allocated in head(R j), or
– (i) tail(R j) = 〈Pi1(y1), . . . ,Pik(yk)〉, (ii) (y�)s = xi occurs in pure(R j)

∗, for some
� = 1, . . . ,k, and (iii) the s-th parameter of Pi� is allocated in Pi�

A system of recursive definitions is said to be established if and only if every existentially
quantified variable is allocated.

Example. Let llextra(x) ::= x �→ (nil,nil) | ∃n,e. x �→ (n,e)∗ llextra(n) be a recursive
definition system, and let φ ::= llextra(head), where head ∈ PVar. The models of the
formula φ are singly-linked lists, where in all locations of the heap, the first selector
points to the next location in the list, and the second selector is dangling i.e., it can
point to any location in the heap. These dangling selectors may form a squared grid of
arbitrary size, which is a model of the formula φ. However, the set of squared grids does
not have bounded tree width [18]. The problem arises due to the existentially quantified
variables e which are never allocated. ��
Given a system P of recursive definitions, one can effectively check whether it is es-
tablished, by guessing, for each predicate Pi(xi,1, . . . ,xi,ni) of P , the minimal set of pa-
rameters which are allocated in Pi, and verify this guess inductively1. Then, once the
minimal set of allocated parameters is determined for each predicate, one can check
whether every existentially quantified variable is eventually allocated.

1 For efficiency, a least fixpoint iteration can be used instead of a non-deterministic guess.
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Lemma 2. Let P = {Pi ::=|mi
j=1 Ri j(xi,1, . . . ,xi,ni)}k

i=1 be a established system of recur-
sive definitions, and S = 〈s,h〉 be a state, such that S, ι |=sl Pi(xi,1, . . . ,xi,ni) for some
interpretation ι : LVarsl ⇀ f in Loc and some 1≤ i≤ k. Then tw(S)≤ ||P ||var.

The result of the previous lemma extends to an arbitrary top-level formula:

Theorem 2. Let P = {Pi ::=|mi
j=1 Ri j(xi,1, . . . ,xi,ni)}k

i=1 be a established system of re-
cursive definitions, and S = 〈s,h〉 be a state, such that S |=sl ∃z . ϕ(y0)∗Pi1(y1)∗ . . . ∗
Pin(yn), where ϕ is a basic SL formula, and Pi j are predicates of P , and yi ⊆ z, for all
i = 0,1, . . . ,n. Then tw(S)≤max(||z||, |ϕ|, ||PVar||, ||P ||var).

4 From SLRDbtw to MSO

This section describes the translation of a SL formula using recursively defined predi-
cates into an MSO formula. We denote by Π(X0, . . . ,Xi,X) the fact that X0, . . . ,Xi is a
partition of X , and by Σ(x,X) the fact that X is a singleton with x as the only element.

4.1 Converting Basic SL Formulae to MSO

For every SL logical variable x ∈ LVarsl we assume the existence of an MSO logical
variable x ∈ LVarmso, which is used to replace x in the translation. For every program
variable u ∈ PVar \ {nil} we assume the existence of a logical variable xu ∈ LVarmso.
The special variable nil ∈ LVarsl is translated into xnil ∈ LVarmso (with the associated
MSO constraint null(xnil)). In general, for any pointer or logical variable α ∈Varsl , we
denote by α, the logical MSO variable corresponding to it.

The translation of a pure SL formula α = β, α �= β, π1 ∧ π2 is α = β, ¬(α = β),
π1∧π2, respectively, where π(α1, . . . ,αk) is the translation of π(α1, . . . ,αk). Spatial SL
formulae σ(α1, . . . ,αk) are translated into MSO formulae σ(α1, . . . ,αk,X), where X is
used for the set of locations allocated in σ. The fact that X actually denotes the domain
of the heap, is ensured by the following MSO constraint:

Heap(X)≡ ∀x
||Sel||∨

i=1

(∃y . edgei(x,y))↔ X(x)

The translation of basic spatial formulae is defined by induction on their structure:

emp(X) ≡ ∀x . ¬X(x)

(α �→ (β1, . . . ,βn))(X) ≡ Σ(α,X) ∧ ∧n
i=1 edgei(α,βi) ∧

∧||Sel||
i=n+1∀x . ¬edgei(α,x)

(σ1 ∗σ2)(X) ≡ ∃Y∃Z . σ1(Y ) ∧ σ2(Z) ∧ Π(Y,Z,X)

The translation of a closed basic SL formula ϕ in MSO is defined as ∃X . ϕ(X), where
ϕ(X) is defined as (π∧σ)(X)≡ π∧σ(X), and (∃x . ϕ1)(X)≡∃x . ϕ1(X). The following
lemma proves that the MSO translation of a basic SL formula defines the same set of
models as the original SL formula.
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Lemma 3. For any state S = 〈s,h〉, any interpretation ι : LVarsl ⇀ f in Loc, and any ba-
sic SL formula ϕ, we have S, ι |=sl ϕ if and only if S, ι,ν[X ← dom(h)] |=mso ϕ(X) ∧
Heap(X), where ι : LVarmso ⇀ f in Loc is an interpretation of first order variables,
such that ι(xu) = s(u), for all u ∈ PVar, and ι(x) = ι(x), for all x ∈ LVarsl , and ν :
LVarmso ⇀ f in 2Loc is any interpretation of second-order variables.

4.2 States and Backbones

The rest of this section is concerned with the MSO definition of states that are models of
recursive SL formulae, i.e. formulae involving recursively defined predicates. The main
idea behind this encoding is that any part of a state which is the model of a recursive
predicate can be decomposed into a tree-like structure, called the backbone, and a set
of edges between the nodes in this tree. Intuitively, the backbone is a spanning tree that
uses only local edges. For instance, in the state depicted in Fig. 3(b), the local edges are
drawn in solid lines.

Let Pk(x1, . . . ,xn) be a recursively defined predicate of a system P , and S, ι |=sl

Pk(x1, . . . ,xn), for some state S = 〈s,h〉 and some interpretation ι : LVarsl → Loc. Then
S, ι |=sl φt , where t ∈ Tk(P ) is an unfolding tree, φt is its characteristic formula, and
µ : dom(t)→ dom(h) is the bijective tree that describes the allocation of nodes in the
heap by rules labeling the unfolding tree. Recall that the direction alphabet of the sys-
tem P is D(P ) = {−1,0, . . . ,N − 1}, where N is the maximum number of predicate
occurrences within some rule of P , and denote D+(P ) = D(P ) \ {−1}. For each rule
Ri j in P and each direction d ∈ D(P ), we introduce a second order variable Xd

i j to de-

note the set of locations � such that (i) t(µ−1(�)) ≡ Ri j and (ii) µ−1(�) is a d-th child,

if d ≥ 0, or µ−1(�) is the root of t, if d = −1. Let
−→
X be the sequence of Xk

i j variables,
enumerated in some order. We use the following shorthands:

Xi j(x) ≡
∨

k∈D(P )

Xk
i j(x) Xi(x) ≡

∨

1≤ j≤mi

Xi j(x) Xk
i (x) ≡

∨

1≤ j≤mi

Xk
i j(x)

to denote, respectively, locations that are allocated by a rule Ri j (Xi j), by a recursive
predicate Pi (Xi), or by a predicate Pi, who are mapped to a k-th child (or to the root, if
k =−1) in the unfolding tree of P , rooted at i (Xk

i ).
In order to characterize the backbone of a state, one must first define the local edges:

local edged
i, j,p,q(x,y) ≡

∧
s∈F (Ri, j ,d,Rpq) edges(x,y)

for all d ∈ D+(P ). Here F (Ri j,d,Rpq) is the set of forward local selectors for direc-
tion d, which was defined previously – notice that the set of local edges depends on
the source and destination rules Ri j and Rpq, that label the corresponding nodes in the
unfolding tree, respectively. The following predicate ensures that these labels are used
correctly, and define the successor functions in the unfolding tree:

succd(x,y,
−→
X ) ≡ ∨

Xi j(x) ∧ Xk
pq(y) ∧ local edged

i, j,p,q(x,y)
1 ≤ i, p ≤ M
1 ≤ j ≤ mi
1 ≤ q≤ mp
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for all d ∈ D+(P ). The definition of the backbone of a recursive predicate Pi in MSO
follows tightly the definition of the unfolding tree of P rooted at i (Def. 3):

backbonei(r,
−→
X ,T )≡ tree(r,

−→
X ,T ) ∧ X−1

i (r) ∧ succ labels(
−→
X )

where tree(r,
−→
X ,T ) defines a tree2 with domain T , rooted at r, with successor functions

defined by succ0, . . . ,succN−1, and succ labels ensures that the labeling of each tree
position (with rules of P ) is consistent with the definition of P :

succ labels(
−→
X ) ≡ ∧

Xi j(x)→
∧ri j−1

d=0 ∃y . Xd
kd

(y)∧ succd(x,y,
−→
X )

1 ≤ i≤ M
1 ≤ j ≤ mi

∧ ∀y .
∧||Sel||

p=si j+1¬edgep(x,y)

where we suppose that, for each rule Ri j of P , we have head(Ri j)≡ α �→ (β1, . . . ,βsi j )
and tail(Ri j) = 〈Pk1 , . . . ,Pkri j

〉, for some ri j ≥ 0, and some indexing k1, . . . ,kri j of pred-
icate occurrences within Ri j. The last conjunct ensures that a location allocated in
Ri j does not have more outgoing edges than specified by head(Ri j). This condition is
needed, since, unlike SL, the semantics of MSO does not impose strictness conditions
on the number of outgoing edges.

4.3 Inner Edges

An edge between two locations is said to be inner if both locations are allocated in the

heap. Let µ be the bijective tree defined in Sec. 4.2. The existence of an edge �
k−→ �′ in

S, between two arbitrary locations �,�′ ∈ dom(h), is the consequence of:

1. a basic points-to formula α �→ (β1, . . . ,βk, . . . ,βn) that occurs in µ(�)

2. a basic points-to formula γ �→ (. . .) that occurs in µ(�′)
3. a path µ(�) = p1, p2, . . . , pm−1, pm = µ(�′) in t, such that the equalities βp1

k = δp2
2 =

. . . = δpm−1
m−1 = γpm are all logical consequences of φt , for some tree positions

p2, . . . , pm−1 ∈ dom(t) and some variables δ2, . . . ,δm−1 ∈ LVarsl .

Notice that the above conditions hold only for inner edges. The (corner) case of edges
leading to dangling locations is dealt with in [12].

Example. The existence of the edge from tree position 00 to 01 in Fig. 3(b), is a conse-
quence of the following: (1) x00 �→ (nil,nil, p00, lea f 00

r ), (2) x01 �→ (nil,nil, p01, lea f 01
r ),

and (3) lea f 00
r = z0 = lea f 01

l = x01. The reason for other dashed edges is similar. ��
The main idea here is to encode in MSO the existence of such paths, in the unfolding
tree, between the source and the destination of an edge, and use this encoding to define
the edges. To this end, we use a special class of tree automata, called tree-walking
automata (TWA) to recognize paths corresponding to sequences of equalities occurring
within characteristic formulae of unfolding trees.

2 For space reasons this definition can be found in [12].
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Tree Walking Automata. Given a set of tree directions D = {−1,0, . . . ,N} for some
N ≥ 0, a tree-walking automaton3, is a tuple A = (Σ,Q,qi,q f ,Δ) where Σ is a set of
tree node labels, Q is a set of states, qi,q f ∈ Q are the initial and final states, and
Δ : Q× (Σ∪{root})× (Σ∪{?})→ 2Q × (D ∪ {ε}) is the (non-deterministic) transition
function. A configuration of A is a pair 〈p,q〉, where p ∈ D∗ is a tree position, and
q ∈ Q is a state. A run of A over a Σ-labeled tree t is a sequence of configurations
〈p1,q1〉, . . . ,〈pn,qn〉, with p1, . . . , pn ∈ dom(t), such that for all i = 1, . . . ,n− 1, we
have pi+1 = pi.k, where either:

1. pi �= ε and (qi+1,k) ∈ Δ(qi, t(pi), t(pi.(−1))), for k ∈D ∪{ε}
2. pi = ε and (qi+1,k) ∈ Δ(qi,σ,?), for σ ∈ {t(pi)∪ root} and k ∈D ∪{ε}

The run is said to be accepting if q1 = qi, p1 = ε and qn = q f .

Routing Automata. For a system of recursive definitions P =
{

Pi(xi,1, . . . ,xi,ni) ::=

|mi
j=1Ri j(xi,1, . . . ,xi,ni)

}k
i=1, we define the TWA AP = (ΣP ,QP ,qi,q f ,ΔP ), where ΣP =

{Rk
i j | 1 ≤ i≤ k, 1 ≤ j ≤ mi, k ∈ D(P )}, QP = {qvar

x | x ∈ LVarsl}∪{qsel
s | s ∈ Sel}∪

{qi,q f }. The transition function ΔP is defined as follows:

1. (qi,k),(qsel
s ,ε) ∈ Δ(qi,σ,τ) for all k ∈ D+(P ), all s ∈ Sel and all σ ∈ ΣP ∪{root},

τ∈ ΣP ∪{?} i.e., the automaton first moves downwards chosing random directions,
while in qi, then changes to qsel

s for some non-deterministically chosen selector s.
2. (qvar

βs
,ε) ∈ Δ(qsel

s ,Rk
i j,τ) and (q f ,ε) ∈ Δ(qvar

α ,Rk
i j,τ) for all k ∈D(P ) and τ ∈ ΣP ∪

{?} if and only if head(Ri j)≡ α �→ (β1, . . . ,βs, . . . ,βm), for some m > 0 i.e., when
in qsel

s , the automaton starts tracking the destination βs of the selector s through the
tree. The automaton enters the final state when the tracked variable α is allocated.

3. for all k ∈ D+(P ), all � ∈ D(P ) and all rules R�q of P�(x�,1, . . . ,x�,n�
), we have

(qvar
x�, j

,k) ∈ Δ(qvar
y j

,Rl
i j,τ), for all τ ∈ ΣP ∪{?}, and (qvar

y j
,−1) ∈ Δ(qvar

x�, j
,Rk

�q,R
l
i j) if

and only if tail(Ri j)k ≡ P�(y1, . . . ,yn�
) i.e., the automaton moves down along the k-

th direction tracking x�, j instead of y j, when the predicate P�(y) occurs on the k-th
position in Ri j. Symmetrically, the automaton can also move up tracking y j instead
of x�, j, in the same conditions.

4. (qvar
β ,ε) ∈ Δ(qvar

α ,Rk
i j,τ) for all k ∈ D(P ) and all τ ∈ ΣP ∪{?} if and only if α =

β occurs in pure(Ri j) i.e., the automaton switches from tracking α to tracking β
when the equality between the two variables occurs in Ri j, while keeping the same
position in the tree.

The following lemma formalizes the correctness of the TWA construction:

Lemma 4. Given a system of recursive definitions P , and an unfolding tree t ∈ Ti(P )
of P , rooted at i, for any x,y ∈ LVarsl and p,r ∈ dom(t), we have |=sl φt → xp = yr if
and only if AP has a run from 〈p,qvar

x 〉 to 〈r,qvar
y 〉 over t, where φt is the characteristic

formula of t.

3 This notion of tree-walking automaton is a slightly modified but equivalent to the one in [3].
We give the translation of TWA into the original definition in [12].
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To the routing automaton AP corresponds the MSO formula ΦAP (r,
−→
X ,T,

−→
Y ), where r

maps to the root of the unfolding tree,
−→
X is the sequence of second order variables Xk

i j

defined previously, T maps to the domain of the tree, and
−→
Y is a sequence of second-

order variables Xq, one for each state q ∈ QP . We denote by Y sel
s and Yf the variables

from
−→
Y that correspond to the states qsel

S and q f , for all s ∈ Sel, respectively. For space
reasons, the definition of ΦAP is given in [12]. With this notation, we define:

inner edges(r,
−→
X ,T )≡∀x∀y

∧

s∈Sel

∃−→Y . ΦAP (r,
−→
X ,T,

−→
Y )∧Y sel

s (x)∧Yf (y)→ edges(x,y)

4.4 Double Allocation

In order to translate the definition of a recursively defined SL predicate P(x1, . . . ,xn)
into an MSO formula P, that captures the models of P, we need to introduce a sanity
condition, imposing that recursive predicates which establish equalities between vari-
ables allocated at different positions in the unfolding tree, are unsatisfiable, due to the
semantics of the separating conjunction of SL, which implicitly conjoins all local for-
mulae of an unfolding tree. A double allocation occurs in the unfolding tree t if and
only if there exist two distinct positions p,q ∈ dom(t) and:

1. a basic points-to formula α �→ (. . .) occurring in t(p)
2. a basic points-to formula β �→ (. . .) occurring in t(q)
3. a path p = p1, . . . , pm = q in t, such that the equalities αp = γp2

2 = . . . = γpm−1
m−1 = βq

are all logical consequences of φt , for some tree positions p2, . . . , pm−1 ∈ dom(t)
and some variables γ2, . . . ,γm−1 ∈ LVarsl

The cases of double allocation can be recognized using a routing automaton BP =
(ΣP ,Q′P ,qi,q f ,Δ′P ), whose states Q′P = {qvar

x | x ∈ LVarsl}∪{q0,qi,q f } and transitions
Δ′P differ from AP only in the following rules:

– (q0,ε) ∈ Δ(qi,σ,τ) for all σ ∈ ΣP ∪ {root} and all τ ∈ ΣP ∪ {?}, i.e. after non-
deterministically chosing a position in the tree, the automaton enters a designated
state q0, which occurs only once in each run.

– (qvar
α ,ε) ∈ Δ(q0,Rk

i j,τ) for all k ∈ D(P ) and all τ ∈ ΣP ∪ {?} if and only if
head(Ri j) = α �→ (. . .), while in the designated state q0, the automaton starts track-
ing the variable α, which is allocated at that position.

This routing automaton has a run over t, which labels one position by q0 and a distinct
one by q f if and only if two positions in t allocate the same location. Notice that BP
has always a trivial run that starts and ends in the same position – since each position
p ∈ dom(t) allocates a variable α, and 〈qi,ε〉, . . . ,〈q0, p〉,〈qvar

α , p〉,〈q f , p〉 is a valid run
of BP . The predicate system has no double allocation if and only if these are the only
possible runs of BP .

The existence of a run of BP is captured by an MSO formula ΦBP (r,
−→
X ,T,

−→
Y ), where

r maps to the root of the unfolding tree,
−→
X is the sequence of second order variables

Xk
i j defined previously, T maps to the domain of the tree, and

−→
Y is the sequence of

135



36 R. Iosif, A. Rogalewicz, and J. Simacek

second-order variables Yq, taken in some order, each of which maps to the set of tree
positions visited by the automaton while in state q ∈ Q′P – we denote by Y0 and Yf

the variables from
−→
Y that correspond to the states q0 and q f , respectively. Finally, we

define the constraint: no double alloc(r,
−→
X ,T )≡ ∀−→Y . ΦBP (r,

−→
X ,T,

−→
Y )→ Y0 = Yf

4.5 Handling Parameters

The last issue to be dealt with is the role of the actual parameters passed to a recursively
defined predicate Pi(xi,1, . . . ,xi,k) of P , in a top-level formula. Then, for each parameter
xi, j of Pi and each unfolding tree t ∈ Ti(P ), there exists a path ε = p1, . . . , pm ∈ dom(t)
and variables α1, . . . ,αm ∈ LVarsl such that xi, j ≡ α1 and αp�

� = αp�+1
�+1 is a consequence

of φt , for all � = 1, . . . ,m− 1. Subsequently, there are three (not necessarily disjoint)
possibilities:

1. head(t(pm))≡ αm �→ (. . .), i.e. αm is allocated
2. head(t(pm))≡ β �→ (γ1, . . . ,γp, . . . ,γ�), and αm ≡ γp, i.e. αm is referenced
3. αm ≡ xi,q and pm = ε, for some 1≤ q≤ k, i.e. αm is another parameter xi,q

Again, we use slightly modified routing automata (one for each of the case above)
Ci, j

P ,c = (ΣP ,Q′′P ,qi,q f ,Δi, j
c ) for the cases c = 1,2,3, respectively. Here Q′′P = {qvar

x | x ∈
LVarsl}∪{qsel

s | s ∈ Sel}∪{qi,a | 1 ≤ a ≤ k}∪{qi,q f } and Δi, j
c , c = 1,2,3 differ from

the transitions of AP in the following:

– (qi, j,ε) ∈ Δi, j
x (qi,root,?), i.e. the automaton marks the root of the tree with a des-

ignated state qi, j, that occurs only once on each run
– (qvar

xi, j
,ε) ∈ Δi, j

x (qi, j,R−1
ik ,?), for each rule Rik of Pi, i.e. the automaton starts tracking

the parameter variable xi, j beginning with the root of the tree

– (q f ,ε) ∈ Δi, j
1 (qvar

α ,Rk
i j,τ), for all k ∈D(P ), τ ∈ ΣP ∪{?} iff head(Ri j)≡ α �→ (. . . )

is the final rule for Ci, j
P ,1

– (qsel
s ,ε) ∈ Δi, j

2 (qvar
γ ,Rk

i j,τ), for all k ∈D(P ) and τ ∈ ΣP ∪{?} iff head(Ri j)≡ α �→
(β1, . . . ,βs, . . . ,βn) and γ ≡ βs i.e., qsel

s is reached in the second case, when the
tracked variable is referenced. After that, Ci, j

P ,2 moves to the final state i.e., (q f ,ε) ∈
Δi, j

2 (qsel
s ,σ,τ) for all s ∈ Sel, all σ ∈ ΣP ∪{root} and τ ∈ ΣP ∪{?}

– (qi,a,ε) ∈ Δi, j
3 (qvar

xi,a
,root,?) and (q f ,ε) ∈ Δi, j

3 (qi,a,root,?), for each 1 ≤ a ≤ k and

a �= j i.e., are the final moves for Ci, j
P ,3

The outcome of this construction are MSO formulae Φ
Ci, j

P ,c
(r,
−→
X ,T,

−→
Y ), for c = 1,2,3,

where r maps to the root of the unfolding tree, respectively,
−→
X is the sequence of second

order variables Xk
i j defined previously, T maps to the domain of the tree, and

−→
Y is

the sequence of second order variables corresponding to states of Q′′P – we denote by

Yf ,Y i,a,Y sel
s ∈

−→
Y the variables corresponding to the states q f , qi,a, and qsel

s , respectively.
The parameter xi, j of Pi is assigned by the following MSO constraints:
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param1
i, j(r,
−→
X ,T ) ≡ ∃−→Y . Φ

Ci, j
P ,1
∧ Y i, j

0 (xi, j) ∧ ∀y . Yf (y)→ xi, j = y

param2
i, j(r,
−→
X ,T ) ≡ ∃−→Y . Φ

Ci, j
P ,2
∧ Y i, j

0 (xi, j) ∧
∧

s∈Sel ∀y . Y sel
s (y)→ edges(y,xi, j)

param3
i, j(r,
−→
X ,T ) ≡ ∃−→Y . Φ

Ci, j
P ,3
∧ Y i, j

0 (xi, j) ∧
∧

1≤a≤k∀y . Y i,a(y)→ xi, j = xi,a

where xi, j is the first-order MSO variable corresponding to the SL parameter xi, j.
Finally, the constraint parami, j is conjunction of the paramc

i, j, c = 1,2,3 formulae.

4.6 Translating Top Level SLRDbtw Formulae to MSO

We define the MSO formula corresponding to a predicate Pi(xi,1, . . . ,xi,ni), of a system
of recursive definitions P = {P1, . . . ,Pn}:

Pi(xi,1, . . . ,xi,ni ,T ) ≡ ∃r∃−→X . backbonei(r,
−→
X ,T ) ∧ inner edges(r,

−→
X ,T ) ∧

no double alloc(r,
−→
X ,T ) ∧ ∧

1≤ j≤ni
parami, j(r,

−→
X ,T )

The following lemma is needed to establish the correctness of our construction.

Lemma 5. For any state S = 〈s,h〉, any interpretation ι : LVarsl → f in Loc, and any
recursively defined predicate Pi(x1, . . . ,xn), we have S, ι |=sl Pi(x1, . . . ,xn) if and only
if S, ι,ν[T ← dom(h)] |=mso Pi(x1, . . . ,xk,T )∧Heap(T ), where ι : LVarmso ⇀ f in Loc is
an interpretation of first order variables, such that ι(xu) = s(u), for all u ∈ PVar, and
ι(x) = ι(x), for all x∈ LVarsl , and ν : LVarmso ⇀ f in 2Loc is any interpretation of second-
order variables.

Recall that a top level SLRDbtw formula is of the form: ϕ ≡ ∃z . φ(y0) ∗ Pi1(y1) ∗
. . .Pik(yk), where 1 ≤ i1, . . . , ik ≤ n, and y j ⊆ z, for all j = 0,1, . . . ,k. We define the
MSO formula:

ϕ(X)≡ ∃z∃X0,...,k . φ(y0,X0) ∧ Pi1(y1,X1) ∧ . . . ∧ Pik(yk,Xk) ∧ Π(X0,X1, . . . ,Xk,X)

Theorem 3. For any state S and any closed SLRDbtw formula ϕ we have that S |=sl ϕ
if and only if S |=mso ∃X . ϕ(X) ∧ Heap(X).

Theorem 2 and the above theorem prove decidability of satisfiability and entailment
problems for SLRDbtw, by reduction to MSO over states of bounded tree width.

5 Conclusions and Future Work

We defined a fragment of Separation Logic with Recursive Definitions, capable of de-
scribing general unbounded mutable data structures, such as trees with parent pointers
and linked leaves. The logic is shown to be decidable for satisfiability and entailment,
by reduction to MSO over graphs of bounded tree width. We conjecture that the com-
plexity of the decision problems for this logic is elementary, and plan to compute tight
upper bounds, in the near future.
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Abstract. Forest automata (FA) have recently been proposed as a tool for shape
analysis of complex heap structures. FA encode sets of tree decompositions of
heap graphs in the form of tuples of tree automata. In order to allow for represent-
ing complex heap graphs, the notion of FA allowed one to provide user-defined
FA (called boxes) that encode repetitive graph patterns of shape graphs to be used
as alphabet symbols of other, higher-level FA. In this paper, we propose a novel
technique of automatically learning the FA to be used as boxes that avoids the
need of providing them manually. Further, we propose a significant improvement
of the automata abstraction used in the analysis. The result is an efficient, fully-
automated analysis that can handle even as complex data structures as skip lists,
with the performance comparable to state-of-the-art fully-automated tools based
on separation logic, which, however, specialise in dealing with linked lists only.

1 Introduction

Dealing with programs that use complex dynamic linked data structures belongs to
the most challenging tasks in formal program analysis. The reason is a necessity of
coping with infinite sets of reachable heap configurations that have a form of complex
graphs. Representing and manipulating such sets in a sufficiently general, efficient, and
automated way is a notoriously difficult problem.

In [6], a notion of forest automata (FA) has been proposed for representing sets of
reachable configurations of programs with complex dynamic linked data structures. FA
have a form of tuples of tree automata (TA) that encode sets of heap graphs decom-
posed into tuples of tree components whose leaves may refer back to the roots of the
components. In order to allow for dealing with complex heap graphs, FA may be hierar-
chically nested by using them as alphabet symbols of other, higher-level FA. Alongside
the notion of FA, a shape analysis applying FA in the framework of abstract regular tree
model checking (ARTMC) [2] has been proposed in [6] and implemented in the Forester
tool. ARTMC accelerates the computation of sets of reachable program configurations
represented by FA by abstracting their component TA, which is done by collapsing
some of their states. The analysis was experimentally shown to be capable of proving
memory safety of quite rich classes of heap structures as well as to be quite efficient.
However, it relied on the user to provide the needed nested FA—called boxes—to be
used as alphabet symbols of the top-level FA.

In this paper, we propose a new shape analysis based on FA that avoids the need of
manually providing the appropriate boxes. For that purpose, we propose a technique of
automatically learning the FA to be used as boxes. The basic principle of the learning

N. Sharygina and H. Veith (Eds.): CAV 2013, LNCS 8044, pp. 740–755, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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prev(a)

DLL DLL

next

prev(b)

Fig. 1. (a) A DLL, (b) a hierarchi-
cal encoding of a DLL

stems from the reason for which boxes were originally
introduced into FA. In particular, FA must have a sepa-
rate component TA for each node (called a join) of the
represented graphs that has multiple incoming edges.
If the number of joins is unbounded (as, e.g., in doubly
linked lists, abbreviated as DLLs below), unboundedly
many component TA are needed in flat FA. However,
when some of the edges are hidden in a box (as, e.g.,
the prev and next links of DLLs in Fig. 1) and replaced
by a single box-labelled edge, a finite number of com-
ponent TA may suffice. Hence, the basic idea of our
learning is to identify subgraphs of the FA-represented graphs that contain at least
one join, and when they are enclosed—or, as we say later on, folded—into a box, the
in-degree of the join decreases.

There are, of course, many ways to select the above mentioned subgraphs to be used
as boxes. To choose among them, we propose several criteria that we found useful
in a number of experiments. Most importantly, the boxes must be reusable in order to
allow eliminating as many joins as possible. The general strategy here is to choose boxes
that are simple and small since these are more likely to correspond to graph patterns that
appear repeatedly in typical data structures. For instance, in the already mentioned case
of DLLs, it is enough to use a box enclosing a single pair of next/prev links. On the
other hand, as also discussed below, too simple boxes are sometimes not useful either.

Further, we propose a way how box learning can be efficiently integrated into the
main analysis loop. In particular, we do not use the perhaps obvious approach of incre-
mentally building a database of boxes whose instances would be sought in the generated
FA. We found this approach inefficient due to the costly operation of finding instances
of different boxes in FA-represented graphs. Instead, we always try to identify which
subgraphs of the graphs represented by a given FA could be folded into a box, followed
by looking into the so-far built database of boxes whether such a box has already been
introduced or not. Moreover, this approach has the advantage that it allows one to use
simple language inclusion checks for approximate box folding, replacing a set of sub-
graphs that appear in the graphs represented by a given FA by a larger set, which some-
times greatly accelerates the computation. Finally, to further improve the efficiency, we
interleave the process of box learning with the automata abstraction into a single itera-
tive process. In addition, we propose an FA-specific improvement of the basic automata
abstraction which accelerates the abstraction of an FA using components of other FA.
Intuitively, it lets the abstraction synthesize an invariant faster by allowing it to combine
information coming from different branches of the symbolic computation.

We have prototyped the proposed techniques in Forester and evaluated it on a num-
ber of challenging case studies. The results show that the obtained approach is both
quite general as well as efficient. We were, e.g., able to fully-automatically analyse pro-
grams with 2-level and 3-level skip lists, which, according to the best of our knowledge,
no other fully-automated analyser can handle. On the other hand, our implementation
achieves performance comparable and sometimes even better than that of Predator [4]
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(a winner of the heap manipulation division of SV-COMP’13) on list manipulating pro-
grams despite being able to handle much more general classes of heap graphs.

Related Work. As discussed already above, we propose a new shape analysis based
upon the notion of forest automata introduced in [6]. The new analysis is extended
by a mechanism for automatically learning the needed nested FA, which is carefully
integrated into the main analysis loop in order to maximize its efficiency. Moreover,
we formalize the abstraction used in [6], which was not done in [6], and subsequently
significantly refine it in order to improve both its generality as well as efficiency.

From the point of view of efficiency and degree of automation, the main alternative to
our approach is the fully-automated use of separation logic with inductive list predicates
as implemented in Space Invader [12] or SLAyer [1]. These approaches are, however,
much less general than our approach since they are restricted to programs over certain
classes of linked lists (and cannot handle even structures such as linked lists with data
pointers pointing either inside the list nodes or optionally outside of them, which we
can easily handle as discussed later on). A similar comparison applies to the Predator
tool inspired by separation logic but using purely graph-based algorithms [4]. The work
[9] on overlaid data structures mentions an extension of Space Invader to trees, but this
extension is of a limited generality and requires some manual help.

In [5], an approach for synthesising inductive predicates in separation logic is pro-
posed. This approach is shown to handle even tree-like structures with additional point-
ers. One of these structures, namely, the so-called mcf trees implementing trees whose
nodes have an arbitrary number of successors linked in a DLL, is even more general
than what can in principle be described by hierarchically nested FA (to describe mcf
trees, recursively nested FA or FA based on hedge automata would be needed). On the
other hand, the approach of [5] seems quite dependent on exploiting the fact that the
encountered data structures are built in a “nice” way conforming to the structure of the
predicate to be learnt (meaning, e.g., that lists are built by adding elements at the end
only), which is close to providing an inductive definition of the data structure.

The work [10] proposes an approach which uses separation logic for generating nu-
merical abstractions of heap manipulating programs allowing for checking both their
safety as well as termination. The described experiments include even verification of
programs with 2-level skip lists. However, the work still expects the user to manually
provide an inductive definition of skip lists in advance. Likewise, the work [3] based on
the so-called separating shape graphs reports on verification of programs with 2-level
skip lists, but it also requires the user to come up with summary edges to be used for
summarizing skip list segments, hence basically with an inductive definition of skip
lists. Compared to [10,3], we did not have to provide any manual aid whatsoever to our
technique when dealing with 2-level as well as 3-level skip lists in our experiments.

A concept of inferring graph grammar rules for the heap abstraction proposed in [8]
has recently appeared in [11]. However, the proposed technique can so far only handle
much less general structures than in our case.

2 Forest Automata

Given a word α = a1 . . .an,n ≥ 1, we write αi to denote its i-th symbol ai. Given a total
map f : A → B, we use dom( f ) to denote its domain A and img( f ) to denote its image.
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Graphs. A ranked alphabet is a finite set of symbols Σ associated with a mapping # :
Σ → N0 that assigns ranks to symbols. A (directed, ordered, labelled) graph over Σ
is a total map g : V → Σ ×V ∗ which assigns to every node v ∈ V (1) a label from Σ,
denoted as �g(v), and (2) a sequence of successors from V ∗, denoted as Sg(v), such
that #�g(v) = |Sg(v)|. We drop the subscript g if no confusion may arise. Nodes v with
S(v) = ε are called leaves. For any v ∈ V such that g(v) = (a,v1 · · ·vn), we call the pair
v �→ (a,v1 · · ·vn) an edge of g. The in-degree of a node in V is the overall number of its
occurrences in g(v) across all v ∈ V . The nodes of a graph g with an in-degree larger
than one are called joins of g.

A path from v to v′ in g is a sequence p = v0, i1,v1, . . . , in,vn where v0 = v, vn = v′,
and for each j : 1 ≤ j ≤ n, v j is the i j-th successor of v j−1. The length of p is defined
as length(p) = n. The cost of p is the sequence i1, . . . , in. We say that p is cheaper than
another path p′ iff the cost of p is lexicographically smaller than that of p′. A node u is
reachable from a node v iff there is a path from v to u or u = v. A graph g is accessible
from a node v iff all its nodes are reachable from v. The node v is then called the root
of g. A tree is a graph t which is either empty, or it has exactly one root and each of its
nodes is the i-th successor of at most one node v for some i ∈ N.

Forests. Let Σ ∩ N = /0. A Σ-labelled forest is a sequence of trees t1 · · · tn over (Σ ∪
{1, . . . ,n}) where ∀1 ≤ i ≤ n : #i = 0. Leaves labelled by i ∈ N are called root references.

The forest t1 · · · tn represents the graph ⊗t1 · · · tn obtained by uniting the trees of
t1 · · · tn, assuming w.l.o.g. that their sets of nodes are disjoint, and interconnecting their
roots with the corresponding root references. Formally, ⊗t1 · · · tn contains an edge v �→
(a,v1 · · ·vm) iff there is an edge v �→ (a,v′

1 · · ·v′
m) of some tree ti,1 ≤ i ≤ n, s.t. for all

1 ≤ j ≤ m, v j = root(tk) if v′
j is a root reference with �(v′

j) = k, and v j = v′
j otherwise.

Tree Automata. A (finite, non-deterministic, top-down) tree automaton (TA) is a quadru-
ple A = (Q,Σ,Δ,R) where Q is a finite set of states, R ⊆ Q is a set of root states, Σ is
a ranked alphabet, and Δ is a set of transition rules. Each transition rule is a triple of
the form (q,a,q1 . . .qn) where n ≥ 0, q,q1, . . . ,qn ∈ Q, a ∈ Σ, and #a = n. In the special
case where n = 0, we speak about the so-called leaf rules.

A run of A over a tree t over Σ is a mapping ρ : dom(t) → Q s.t. for each node
v ∈ dom(t) where q = ρ(v), if qi = ρ(S(v)i) for 1 ≤ i ≤ |S(v)|, then Δ has a rule q →
�(v)(q1 . . .q|S(v)|). We write t =⇒ρ q to denote that ρ is a run of A over t s.t. ρ(root(t)) =
q. We use t =⇒ q to denote that t =⇒ρ q for some run ρ. The language of a state q is
defined by L(q) = {t | t =⇒ q}, and the language of A is defined by L(A) =

⋃
q∈R L(q).

Graphs and Forests with Ports. We will further work with graphs with designated input
and output points. An io-graph is a pair (g,φ), abbreviated as gφ, where g is a graph
and φ ∈ dom(g)+ a sequence of ports in which φ1 is the input port and φ2 · · ·φ|φ| is
a sequence of output ports such that the occurrence of ports in φ is unique. Ports and
joins of g are called cut-points of gφ. We use cps(gφ) to denote all cut-points of gφ. We
say that gφ is accessible if it is accessible from the input port φ1.

An io-forest is a pair f = (t1 · · · tn,π) s.t. n ≥ 1 and π ∈ {1, . . . ,n}+ is a sequence of
port indices, π1 is the input index, and π2 . . .π|π| is a sequence of output indices, with
no repetitions of indices in π. An io-forest encodes the io-graph ⊗ f where the ports of
⊗t1 · · · tn are roots of the trees defined by π, i.e., ⊗ f = (⊗t1 · · · tn,root(tπ1) · · · root(tπn)).
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Forest Automata. A forest automaton (FA) over Σ is a pair F = (A1 · · ·An,π) where
n ≥ 1, A1 · · ·An is a sequence of tree automata over Σ∪{1, . . . ,n}, and π ∈ {1, . . . ,n}+

is a sequence of port indices as defined for io-forests. The forest language of F is the
set of io-forests Lf (F) = L(A1)×·· ·×L(An)×{π}, and the graph language of F is the
set of io-graphs L(F) = {⊗ f | f ∈ Lf (F)}.

Structured Labels. We will further work with alphabets where symbols, called struc-
tured labels, have an inner structure. Let Γ be a ranked alphabet of sub-labels, ordered
by a total ordering �Γ. We will work with graphs over the alphabet 2Γ where for ev-
ery symbol A ⊆ Γ, #A = ∑a∈A #a. Let e = v �→ ({a1, . . . ,am},v1 · · ·vn) be an edge of
a graph g where n = ∑1≤i≤m #ai and a1 �Γ a2 �Γ · · · �Γ am. The triple e〈i〉 = v →
(ai,vk · · ·vl), 1 ≤ i ≤ m, from the sequence e〈1〉 = v → (a1,v1 · · ·v#a1), . . . ,e〈m〉 = v →
(am,vn−#am+1 · · ·vn) is called the i-th sub-edge of e (or the i-th sub-edge of v in g). We
use SE(g) to denote the set of all sub-edges of g. We say that a node v of a graph is iso-
lated if it does not appear within any sub-edge, neither as an origin (i.e., �(v) = /0) nor as
a target. A graph g without isolated nodes is unambiguously determined by SE(g) and
vice versa (due to the total ordering �Γ and since g has no isolated nodes). We further
restrict ourselves to graphs with structured labels and without isolated nodes.

A counterpart of the notion of sub-edges in the context of rules of TA is the notion of
rule-terms, defined as follows: Given a rule δ = (q,{a1, . . . ,am},q1 · · ·qn) of a TA over
structured labels of 2Γ, rule-terms of δ are the terms δ〈1〉 = a1(q1 · · ·q#a1), . . . ,δ〈m〉 =
am(qn−#am+1 · · ·qn) where δ〈i〉,1 ≤ i ≤ m, is called the i-th rule-term of δ.

Forest Automata of a Higher Level. We let Γ1 be the set of all forest automata over 2Γ

and call its elements forest automata over Γ of level 1. For i > 1, we define Γi as the
set of all forest automata over ranked alphabets 2Γ∪Δ where Δ ⊆ Γi−1 is any nonempty
finite set of FA of level i−1. We denote elements of Γi as forest automata over Γ of level
i. The rank #F of an FA F in these alphabets is the number of its output port indices.
When used in an FA F over 2Γ∪Δ, the forest automata from Δ are called boxes of F . We
write Γ∗ to denote ∪i≥0Γi and assume that Γ∗ is ordered by some total ordering �Γ∗ .

An FA F of a higher level over Γ accepts graphs where forest automata of lower lev-
els appear as sub-labels. To define the semantics of F as a set of graphs over Γ, we need
the following operation of sub-edge replacement where a sub-edge of a graph is substi-
tuted by another graph. Intuitively, the sub-edge is removed, and its origin and targets
are identified with the input and output ports of the substituted graph, respectively.

Formally, let g be a graph with an edge e ∈ g and its i-th sub-edge e〈i〉 = v1 →
(a,v2 · · ·vn),1 ≤ i ≤ |Sg(v1)|. Let g′

φ be an io-graph with |φ| = n. Assume w.l.o.g. that
dom(g)∩dom(g′) = /0. The sub-edge e〈i〉 can be replaced by g′ provided that ∀1 ≤ j ≤
n : �g(v j)∩ �g′(φ j) = /0, which means that the node v j ∈ dom(g) and the corresponding
port φ j ∈ dom(g′) do not have successors reachable over the same symbol. If the re-
placement can be done, the result, denoted g[g′

φ/e〈i〉], is the graph gn in the sequence
g0, . . . ,gn of graphs defined as follows: SE(g0) = SE(g)∪SE(g′)\ {e〈i〉}, and for each
j : 1 ≤ j ≤ n, the graph g j arises from g j−1 by (1) deriving a graph h by replacing the
origin of the sub-edges of the j-th port φ j of g′ by v j, (2) redirecting edges leading to
φ j to v j, i.e., replacing all occurrences of φ j in img(h) by v j, and (3) removing φ j.

If the symbol a above is an FA and g′
φ ∈ L(a), we say that h = g[g′

φ/e〈i〉] is an
unfolding of g, written g ≺ h. Conversely, we say that g arises from h by folding g′

φ into
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e〈i〉. Let ≺∗ be the reflexive transitive closure of ≺. The Γ-semantics of g is then the set
of graphs g′ over Γ s.t. g ≺∗ g′, denoted �g�Γ, or just �g� if no confusion may arise. For
an FA F of a higher level over Γ, we let �F� =

⋃
gφ∈L(F)(�g�×{φ}).

Canonicity. We call an io-forest f = (t1 · · · tn,π) minimal iff the roots of the trees t1 · · · tn
are the cut-points of ⊗ f . A minimal forest representation of a graph is unique up to
reordering of t1 · · · tn. Let the canonical ordering of cut-points of ⊗ f be defined by the
cost of the cheapest paths leading from the input port to them. We say that f is canon-
ical iff it is minimal, ⊗ f is accessible, and the trees within t1 · · · tn are ordered by the
canonical ordering of their roots (which are cut-points of ⊗ f ). A canonical forest is thus
a unique representation of an accessible io-graph. We say that an FA respects canon-
icity iff all forests from its forest language are canonical. Respecting canonicity makes
it possible to efficiently test FA language inclusion by testing TA language inclusion
of the respective components of two FA. This method is precise for FA of level 1 and
sound (not always complete) for FA of a higher level [6].

In practice, we keep automata in the so called state uniform form, which simplifies
maintaining of the canonicity respecting form [6] (and it is also useful when abstracting
and “folding”, as discussed in the following). It is defined as follows. Given a node v of
a tree t in an io-forest, we define its span as the pair (α,V ) where α ∈ N∗ is the sequence
of labels of root references reachable from the root of t ordered according to the prices
of the cheapest paths to them, and V ⊆ N is the set of labels of references which occur
more than once in t. The state uniform form then requires that all nodes of forests from
L(F) that are labelled by the same state q in some accepting run of F have the same
span, which we denote by span(q).

3 FA-Based Shape Analysis

We now provide a high-level overview of the main loop of our shape analysis. The
analysis automatically discovers memory safety errors (such as invalid dereferences
of null or undefined pointers, double frees, or memory leaks) and provides an FA-
represented over-approximation of the sets of heap configurations reachable at each
program line. We consider sequential non-recursive C programs manipulating the heap.
Each heap cell may have several pointer selectors and data selectors from some finite
data domain (below, PSel denotes the set of pointer selectors, DSel denotes the set of
data selectors, and D denotes the data domain).

Heap Representation. A single heap configuration is encoded as an io-graph gsf over
the ranked alphabet of structured labels 2Γ with sub-labels from the ranked alphabet Γ =
PSel∪(DSel×D) with the ranking function that assigns each pointer selector 1 and each
data selector 0. In this graph, an allocated memory cell is represented by a node v, and
its internal structure of selectors is given by a label �g(v) ∈ 2Γ. Values of data selectors
are stored directly in the structured label of a node as sub-labels from DSel × D, so,
e.g., a singly linked list cell with the data value 42 and the successor node xnext may
be represented by a node x such that �g(x) = {next(xnext),(data,42)(ε))}. Selectors
with undefined values are represented such that the corresponding sub-labels are not
in �g(x). The null value is modelled as the special node null such that �g(null) = /0.
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The input port sf represents a special node that contains the stack frame of the analysed
function, i.e. a structure where selectors correspond to variables of the function.

In order to represent (infinite) sets of heap configurations, we use state uniform FA of
a higher level to represent sets of canonical io-forests representing the heap configura-
tions. The FA used as boxes are learnt during the analysis using the learning algorithm
presented in Sec. 4.

Symbolic Execution. The verification procedure performs standard abstract interpreta-
tion with the abstract domain consisting of sets of state uniform FA (a single FA does
not suffice as FA are not closed under union) representing sets of heap configurations
at particular program locations. The computation starts from the initial heap configura-
tion given by an FA for the io-graph gsf where g comprises two nodes: null and sf

where �g(sf) = /0. The computation then executes abstract transformers corresponding
to program statements until the sets of FA held at program locations stabilise. We note
that abstract transformers corresponding to pointer manipulating statements are exact.
Executing the abstract transformer τop over a set of FA S is performed separately for
every F ∈ S . Some of boxes are first unfolded to uncover the accessed part of the heaps,
then the update is performed. The detailed description of these steps can be found in [7].

At junctions of program paths, the analysis computes unions of sets of FA. At loop
points, the union is followed by widening. The widening is performed by applying box
folding and abstraction repeatedly in a loop on each FA from S until the result stabilises.
An elaboration of these two operations, described in detail in Sec. 4 and 5 respectively,
belongs to the main contribution of the presented paper.

4 Learning of Boxes

Sets of graphs with an unbounded number of joins can only be described by FA with the
help of boxes. In particular, boxes allow one to replace (multiple) incoming sub-edges
of a join by a single sub-edge, and hence lower the in-degree of the join. Decreasing the
in-degree to 1 turns the join into an ordinary node. When a box is then used in a cycle
of an FA, it effectively generates an unbounded number of joins.

The boxes are introduced by the operation of folding of an FA F which transforms
F into an FA F ′ and a box B used in F ′ such that �F� = �F ′�. However, the graphs
in L(F ′) may contain less joins since some of them are hidden in the box B, which
encodes a set of subgraphs containing a join and appearing repeatedly in the graphs of
L(F). Before we explain folding, we give a characterisation of subgraphs of graphs of
L(F) which we want to fold into a box B. Our choice of the subgraphs to be folded
is a compromise between two high-level requirements. On the one hand, the folded
subgraphs should contain incoming edges of joins and be as simple as possible in order
to be reusable. On the other hand, the subgraphs should not be too small in order not
to have to be subsequently folded within other boxes (in the worst case, leading to
generation of unboundedly nested boxes). Ideally, the hierarchical structuring of boxes
should respect the natural hierarchical structuring of the data structures being handled
since if this is not the case, unboundedly many boxes may again be needed.
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4.1 Knots of Graphs

A graph h is a subgraph of a graph g iff SE(h)⊆ SE(g). The border of h in g is the subset
of the set dom(h) of nodes of h that are incident with sub-edges in SE(g)\SE(h). A trace
from a node u to a node v in a graph g is a set of sub-edges t = {e0, . . . ,en} ⊆ SE(g)
such that n ≥ 1, e0 is an outgoing sub-edge of u, en is an incoming sub-edge of v, the
origin of ei is one of the targets of ei−1 for all 1 ≤ i ≤ n, and no two sub-edges have the
same origin. We call the origins of e1, . . . ,en the inner nodes of the trace. A trace from
u to v is straight iff none of its inner nodes is a cut-point. A cycle is a trace from a node
v to v. A confluence of gφ is either a cycle of gφ or it is the union of two disjoint traces
starting at a node u, called the base, and ending in the node v, called the tip (for a cycle,
the base and the tip coincide).

Given an io-graph gφ, the signature of a sub-graph h of g is the minimum subset
sig(h) of cps(gφ) that (1) contains cps(gφ) ∩ dom(h) and (2) all nodes of h, except

h

ux

v

y
Fig. 2. Closure

the nodes of sig(h) themselves, are reachable by straight traces
from sig(h). Intuitively, sig(h) contains all cut-points of h plus
the closest cut-points to h which lie outside of h but which are
needed so that all nodes of h are reachable from the signature.
Consider the example of the graph gu in Fig. 2 in which cut-
points are represented by •. The signature of gu is the set {u,v}.
The signature of the highlighted subgraph h is also equal to
{u,v}. Given a set U ⊆ cps(gφ), a confluence of U is a confluence of gφ with the signa-
ture within U . Intuitively, the confluence of a set of cut-points U is a confluence whose
cut-points belong to U plus in case the base is not a cut-point, then the closest cut-point
from which the base is reachable is also from U . Finally, the closure of U is the smallest
subgraph h of gφ that (1) contains all confluences of U and (2) for every inner node v of
a straight trace of h, it contains all straight traces from v to leaves of g. The closure of
the signature {u,v} of the graph gu in Fig. 2 is the highlighted subgraph h. Intuitively,
Point 1 includes into the closure all nodes and sub-edges that appear on straight traces
between nodes of U apart from those that do not lie on any confluence (such as node u
in Fig. 2). Note that nodes x and y in Fig. 2, which are leaves of gu, are not in the closure
as they are not reachable from an inner node of any straight trace of h. The closure of
a subgraph h of gφ is the closure of its signature, and h is closed iff it equals its closure.

Knots. For the rest of Sec. 4.1, let us fix an io-graph gφ ∈ L(F). We now introduce the
notion of a knot which summarises the desired properties of a subgraph k of g that is to
be folded into a box. A knot k of gφ is a subgraph of g such that: (1) k is a confluence,
(2) k is the union of two knots with intersecting sets of sub-edges, or (3) k is the closure
of a knot. A decomposition of a knot k is a set of knots such that the union of their
sub-edges equals SE(k). The complexity of a decomposition of k is the maximum of
sizes of signatures of its elements. We define the complexity of a knot as the minimum
of the complexities of its decompositions. A knot k of complexity n is an optimal knot
of complexity n if it is maximal among knots of complexity n and if it has a root. The
root must be reachable from the input port of gφ by a trace that does not intersect with
sub-edges of the optimal knot. Notice that the requirement of maximality implies that
optimal knots are closed.

147



748 L. Holı́k et al.

The following lemma, proven in [7], implies that optimal knots are uniquely identi-
fied by their signatures, which is crucial for the folding algorithm presented later.

Lemma 1. The signature of an optimal knot of gφ equals the signature of its closure.

Next, we explain what is the motivation behind the notion of an optimal knot:
Confluences. As mentioned above, in order to allow one to eliminate a join, a knot

must contain some join v together with at least one incoming sub-edge in case the knot
is based on a loop and at least two sub-edges otherwise. Since gφ is accessible (meaning
that there do not exist any traces that cannot be extended to start from the same node),
the edge must belong to some confluence c of gφ. If the folding operation does not fold
the entire c, then a new join is created on the border of the introduced box: one of its
incoming sub-edges is labelled by the box that replaces the folded knot, another one is
the last edge of one of the traces of c. Confluences are therefore the smallest subgraphs
that can be folded in a meaningful way.

Fig. 3. A list with
head pointers

Uniting knots. If two different confluences c and c′ share an
edge, then after folding c, the resulting edge shares with c′ two
nodes (at least one being a target node), and thus c′ contains a join
of gφ. To eliminate this join too, both confluences must be folded
together. A similar reasoning may be repeated with knots in gen-
eral. Usefulness of this rule may be illustrated by an example of the set of lists with
head pointers. Without uniting, every list would generate a hierarchy of knots of the
same depth as the length of the list, as illustrated in Fig. 3. This is clearly impractical
since the entire set could not be represented using finitely many boxes. Rule 2 unites
all knots into one that contains the entire list, and the set of all such knots can then be
represented by a single FA (containing a loop accepting the inner nodes of the lists).

Complexity of knots. The notion of complexity is introduced to limit the effect of
Rule 2 of the definition of a knot, which unites knots that share a sub-edge, and to hope-
fully make it follow the natural hierarchical structuring of data structures. Consider, for
instance, the case of singly-linked lists (SLLs) of cyclic doubly-linked lists (DLLs). In
this case, it is natural to first fold the particular segments of the DLLs (denoted as DLSs
below), i.e., to introduce a box for a single pair of next and prev pointers. This way, one
effectively obtains SLLs of cyclic SLLs. Subsequently, one can fold the cyclic SLLs
into a higher-level box. However, uniting all knots with a common sub-edge would cre-
ate knots that contain entire cyclic DLLs (requiring unboundedly many joins inside the
box). The reason is that in addition to the confluences corresponding to DLSs, there
are confluences which traverse the entire cyclic DLLs and that share sub-edges with all
DLSs (this is in particular the case of the two circular sequences consisting solely of
next and prev pointers respectively). To avoid the undesirable folding, we exploit the
notion of complexity and fold graphs in successive rounds. In each round we fold all
optimal knots with the smallest complexity (as described in Sec. 4.2), which should
correspond to the currently most nested, not yet folded, sub-structures. In the previous
example, the algorithm starts by folding DLSs of complexity 2, because the complexity
of the confluences in cyclic DLLs is given by the number of the DLSs they traverse.

Closure of knots. The closure is introduced for practical reasons. It allows one to
identify optimal knots by their signatures, which is then used to simplify automata
constructions that implement folding on the level of FA (cf. Sec. 4.2).
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Root of an optimal knot. The requirement for an optimal knot k to have a root is to
guarantee that if an io-graph hψ containing a box B representing k is accessible, then the
io-graph hψ[k/B] emerging by substituting k for a sub-edge labelled with B is accessible,
and vice versa. It is also a necessary condition for the existence of a canonical forest
representation of the knot itself (since one needs to order the cut-points w.r.t. the prices
of the paths leading to them from the input port of the knot).

4.2 Folding in the Abstraction Loop

1 Unfold solitaire boxes
2 repeat
3 Normalise
4 Abstract
5 Fold
6 until fixpoint

Alg. 1: Abstraction Loop

In this section, we describe the operation of folding to-
gether with the main abstraction loop of which folding
is an integral part. The pseudo-code of the main abstrac-
tion loop is shown in Alg. 1. The algorithm modifies a
set of FA until it reaches a fixpoint. Folding on line 5 is
a sub-procedure of the algorithm which looks for sub-
structures of FA that accept optimal knots, and replaces
these substructures by boxes that represent the corre-
sponding optimal knots. The operation of folding is itself composed of four consecutive
steps: Identifying indices, Splitting, Constructing boxes, and Applying boxes. For space
reasons, we give only an overview of the steps of the main abstraction loop and folding.
Details may be found in [7].

Fig. 4. DLL

Unfolding of Solitaire Boxes. Folding is in practice applied on FA
that accept partially folded graphs (only some of the optimal knots
are folded). This may lead the algorithm to hierarchically fold data
structures that are not hierarchical, causing the symbolic execution
not to terminate. For example, consider a program that creates a DLL of an arbitrary
length. Whenever a new DLS is attached, the folding algorithm would enclose it into
a box together with the tail which was folded previously. This would lead to creation
of a hierarchical structure of an unbounded depth (see Fig. 4), which would cause the
symbolic execution to never reach a fixpoint. Intuitively, this is a situation when a repe-
tition of subgraphs may be expressed by an automaton loop that iterates a box, but it is
instead misinterpreted as a recursive nesting of graphs. This situation may happen when
a newly created box contains another box that cannot be iterated since it does not appear
on a loop (e.g, in Fig. 4 there is always one occurrence of a box encoding a shorter DLL
fragment inside a higher-level box). This issue is addressed in the presented algorithm
by first unfolding all occurrences of boxes that are not iterated by automata loops before
folding is started.

Normalising. We define the index of a cut-point u ∈ cps(gφ) as its position in the canon-
ical ordering of cut-points of gφ, and the index of a closed subgraph h of gφ as the set of
indices of the cut-points in sig(h). The folding algorithm expects the input FA F to sat-
isfy the property that all io-graphs of L(F) have the same indices of closed knots. The
reason is that folding starts by identifying the index of an optimal knot of an arbitrary
io-graph from L(F), and then it creates a box which accepts all closed subgraphs of the
io-graphs from gφ with the same index. We need a guarantee that all these subgraphs
are indeed optimal knots. This guarantee can be achieved if the io-graphs from L(F)
have equivalent interconnections of cut-points, as defined below.

149



750 L. Holı́k et al.

We define the relation ∼gφ⊆ N×N between indices of closed knots of gφ such that
N ∼gφ N′ iff there is a closed knot k of gφ with the index N and a closed knot k′ with
the index N′ such that k and k′ have intersecting sets of sub-edges. We say that two
io-graphs gφ and hψ are interconnection equivalent iff ∼gφ = ∼hψ .

Lemma 2. Interconnection equivalent io-graphs have the same indices of optimal knots.

Interconnection equivalence of all io-graphs in the language of an FA F is achieved by
transforming F to the interconnection respecting form. This form requires that the lan-
guage of every TA of the FA consists of interconnection equivalent trees (when viewing
root references and roots as cut-points with corresponding indices). The transformation
is described in [7]. The normalisation step also includes a transformation into the state
uniform and canonicity respecting form.

Abstraction. We use abstraction described in Sec. 5 that preserves the canonicity re-
specting form of TA as well as their state uniformity. It may break interconnection
uniformity, in which case it is followed by another round of normalisation. Abstraction
is included into each round of folding for the reason that it leads to learning more gen-
eral boxes. For instance, an FA encoding a cyclic list of one particular length is first
abstracted into an FA encoding a set of cyclic lists of all lengths, and the entire set is
then folded into a single box.

Identifying Indices. For every FA F entering this sub-procedure, we pick an arbitrary
io-graph gφ ∈ L(F), find all its optimal knots of the smallest possible complexity n, and
extract their indices. By Lemma 2 and since F is normalised, indices of the optimal
knots are the same for all io-graphs in L(F). For every found index, the following steps
fold all optimal knots with that index at once. Optimal knots of complexity n do not
share sub-edges, the order in which they are folded is therefore not important.

Splitting. For an FA F = (A1 · · ·An,π) and an index I of an optimal knot found in the
previous step, splitting transforms F into a (set of) new FA with the same language. The
nodes of the borders of I-indexed optimal knots of io-graphs from L(F) become roots
of trees of io-forests accepted by the new FA. Let s ∈ I be a position in F such that the
s-indexed cut-points of io-graphs from L(F) reach all the other I-indexed cut-points.
The index s exists since an optimal knot has a root. Due to the definition of the closure,
the border contains all I-indexed cut-points, with the possible exception of s. The s-th
cut-point may be replaced in the border of the I-indexed optimal knot by the base e of
the I-indexed confluence that is the first one reached from the s-th cut-point by a straight
path. We call e the entry. The entry e is a root of the optimal knot, and the s-th cut-point
is the only I-indexed cut-point that might be outside the knot. If e is indeed different
from the s-th cut-point, then the s-th tree of forests accepted by F must be split into two
trees in the new FA: The subtree rooted at the entry is replaced by a reference to a new
tree. The new tree then equals the subtree of the original s-th tree rooted at the entry.

The construction is carried out as follows. We find all states and all of their rules that
accept entry nodes. We denote such states and rules as entry states and rules. For every
entry state q, we create a new FA F0

q which is a copy of F but with the s-th TA As split
to a new s-th TA A′

s and a new (n + 1)-th TA An+1. The TA A′
s is obtained from As by

changing the entry rules of q to accept just a reference to the new (n+1)-th root and by
removing entry rules of all other entry states (the entry states are processed separately in
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Fig. 5. Creation of Fq and Bq from F0
q . The subtrees that contain references i, j ∈ J are taken into

Bq, and replaced by the Bq-labelled sub-edge in Fq.

order to preserve possibly different contexts of entry nodes accepted at different states).
The new TA An+1 is a copy of As but with the only accepting state being q. Note that the
construction is justified since due to state uniformity, each node that is accepted by an
entry rule and that does not appear below a node that is also accepted by an entry rule
is an entry node. In the result, the set J = (I \ {s})∪{n + 1} contains the positions of
the trees of forests of F0

q rooted at the nodes of the borders of I-indexed optimal knots.

Constructing Boxes. For every F0
q and J being the result of splitting F according to an

index I, a box Bq is constructed from F0
q . We transform TA of F0

q indexed by the elements
of J. The resulting TA will accept the original trees up to that the roots are stripped from
the children that cannot reach a reference to J. To turn these TA into an FA accepting
optimal knots with the index I, it remains to order the obtained TA and define port in-
dices, which is described in detail in [7]. Roughly, the input index of the box will be the
position j to which we place the modified (n+1)-th TA of F0

q (the one that accepts trees
rooted at the entry). The output indices are the positions of the TA with indices J \ { j}
in F0

q which accept trees rooted at cut-points of the border of the optimal knots.

Applying Boxes. This is the last step of folding. For every F0
q , J, and Bq which are the

result of splitting F according to an index I, we construct an FA Fq that accepts graphs
of F where knots enclosed in Bq are substituted by a sub-edge with the label Bq. It
is created from F0

q by (1) leaving out the parts of root rules of its TA that were taken
into Bq, and (2) adding the rule-term Bq(r1, . . . ,rm) to the rule-terms of root rules of the
(n+1)-th component of F0

q (these are rules used to accept the roots of the optimal knots
enclosed in Bq). The states r1, . . . ,rm are fresh states that accept root references to the
appropriate elements of J (to connect the borders of knots of Bq correctly to the graphs
of Fq—the details may be found in [7]). The FA Fq now accepts graphs where optimal
knots of graphs of L(F) with the signature I are hidden inside Bq. Creation of Bq and of
its counterpart Fq from F0

q is illustrated in Fig. 5 where i, j, . . . ∈ J.
During the analysis, the discovered boxes must be stored in a database and tested for

equivalence with the newly discovered ones since the alphabets of FA would otherwise
grow with every operation of folding ad infinitum. That is, every discovered box is given
a unique name, and whenever a semantically equivalent box is folded, the newly created
edge-term is labelled by that name. This step offers an opportunity for introducing an-
other form of acceleration of the symbolic computation. Namely, when a box B is found
by the procedure described above, and another box B′ with a name N s.t. �B′� ⊂ �B� is
already in the database, we associate the name N with B instead of with B′ and restart the
analysis (i.e., start the analysis from the scratch, remembering just the updated database
of boxes). If, on the other hand, �B� ⊆ �B′�, the folding is performed using the name N
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of B′, thus overapproximating the semantics of the folded FA. As presented in Sec. 6,
this variant of the procedure, called folding by inclusion, performs in some difficult
cases significantly better than the former variant, called folding by equivalence.

5 Abstraction
The abstraction we use in our analysis is based on the general techniques described in
the framework of abstract regular (tree) model checking [2]. We, in particular, build on
the finite height abstraction of TA. It is parameterised by a height k ∈ N, and it collapses
TA states q,q′ iff they accept trees with the same sets of prefixes of the height at most k
(the prefix of height k of a tree is a subgraph of the tree which contains all paths from
the root of length at most k). This defines an equivalence on states denoted by ≈k. The
equivalence ≈k is further refined to deal with various features special for FA. Namely,
it has to work over tuples of TA and cope with the interconnection of the TA via root
references, with the hierarchical structuring, and with the fact that we use a set of FA
instead of a single FA to represent the abstract context at a particular program location.

Refinements of ≈k. First, in order to maintain the same basic shape of the heap after
abstraction (such that no cut-point would, e.g., suddenly appear or disappear), we re-
fine ≈k by requiring that equivalent states must have the same spans (as defined in
Sec. 2). When applied on ≈1, which corresponds to equivalence of data types, this re-
finement provided enough precision for most of the case studies presented later on, with
the exception of the most difficult ones, namely programs with skip lists [13]. To ver-
ify these programs, we needed to further refine the abstraction to distinguish automata
states whenever trees from their languages encode tree components containing a differ-
ent number of unique paths to some root reference, but some of these paths are hidden
inside boxes. In particular, two states q,q′ can be equivalent only if for every io-graph
gφ from the graph language of the FA, for every two nodes u,v ∈ dom(gφ) accepted by
q and q′, respectively, in an accepting run of the corresponding TA, the following holds:
For every w ∈ cps(gφ), both u and v have the same number of outgoing sub-edges (se-
lectors) in �gφ� which start a trace in �gφ� leading to w. According to our experiments,
this refinement does not cost almost any performance, and hence we use it by default.

Abstraction for Sets of FA. Our analysis works with sets of FA. We observed that ab-
stracting individual FA from a set of FA in isolation is sometimes slow since in each
of the FA, the abstraction widens some selector paths only, and it takes a while until
an FA in which all possible selector paths are widened is obtained. For instance, when
analysing a program that creates binary trees, before reaching a fixpoint, the symbolic
analysis generates many FA, each of them accepting a subset of binary trees with some
of the branches restricted to a bounded length (e.g., trees with no right branches, trees
with a single right branch of length 1, length 2, etc.). In such cases, it helps when the
abstraction has an opportunity to combine information from several FA. For instance,
consider an FA that encodes binary trees degenerated to an arbitrarily long left branch,
and another FA that encodes trees degenerated to right branches only. Abstracting these
FA in isolation has no effect. However, if the abstraction is allowed to collapse states
from both of these FA, it can generate an FA accepting all possible branches.

Unfortunately, the natural solution to achieve the above, which is to unite FA before
abstraction, cannot be used since FA are not closed under union (uniting TA component-
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wise overapproximates the union). However, it is possible to enrich the automata struc-
ture of an FA F by TA states and rules of another one without changing the language of
F , and in this way allow the abstraction to combine the information from both FA. In
particular, before abstracting an FA F = (A1 · · ·An,π) from a set S of FA, we pre-process
it as follows. (1) We pick automata F ′ = (A′

1 · · ·A′
n,π) ∈ S which are compatible with

F in that they have the same number of TA, the same port references, and for each
1 ≤ i ≤ n, the root states of A′

i have the same spans as the root states of Ai. (2) For all
such F ′ and each 1 ≤ i ≤ n, we add rules and states of A′

i to Ai, but we keep the original
set of root states of Ai. Since we assume that the sets of state of TAs of different FA are
disjoint, the language of Ai stays the same, but its structure is enriched, which helps the
abstraction to perform a coarser widening.

6 Experimental Results

We have implemented the above proposed techniques in the Forester tool and tested
their generality and efficiency on a number of case studies. In the experiments, we
compare two configurations of Forester, and we also compare the results of Forester
with those of Predator [4], which uses a graph-based memory representation inspired
by separation logic with higher-order list predicates. We do not provide a comparison
with Space Invader [12] and SLAyer [1], based also on separation logic with higher-
order list predicates, since in our experiments they were outperformed by Predator.

In the experiments, we considered programs with various types of lists (singly and
doubly linked, cyclic, nested, with skip pointers), trees, and their combinations. In the
case of skip lists, we had to slightly modify the algorithms since their original versions
use an ordering on the data stored in the nodes of the lists (which we currently do
not support) in order to guarantee that the search window delimited on some level of
skip pointers is not left on any lower level of the skip pointers. In our modification,
we added an additional explicit end-of-window pointer. We checked the programs for
memory safety only, i.e., we did not check data-dependent properties.

Table 1 gives running times in seconds (the average of 10 executions) of the tools on
our case studies. “Basic” stands for Forester with the abstraction applied on individual
FA only and “SFA” stands for Forester with the abstraction for sets of FA. The value T
means that the running time of the tool exceeded 30 minutes, and the value Err means
that the tool reported a spurious error. The names of the examples in the table contain the
name of the data structure manipulated in the program, which is “SLL” for singly linked
lists, “DLL” for doubly linked lists (the “C” prefix denotes cyclic lists), “tree” for binary
trees, “tree+parents” for trees with parent pointers. Nested variants of SLL (DLL) are
named as “SLL (DLL) of” and the type of the nested structure. In particular, “SLL of
0/1 SLLs” stands for SLL of a nested SLL of length 0 or 1, and “SLL of 2CDLLs”
stands for SLL whose each node is a root of two CDLLs. The “+head” flag stands
for a list where each element points to the head of the list and the subscript “Linux”
denotes the implementation of lists used in the Linux kernel, which uses type casts and
a restricted pointer arithmetic. The “DLL+subdata” stands for a kind of a DLL with data
pointers pointing either inside the list nodes or optionally outside of them. For a “skip
list”, the subscript denotes the number of skip pointers. In the example “tree+stack”, a
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Table 1. Results of the experiments

Example basic SFA boxes Predator

SLL (delete) 0.03 0.04 0.04
SLL (bubblesort) 0.04 0.04 0.03
SLL (mergesort) 0.08 0.15 0.10
SLL (insertsort) 0.05 0.05 0.04
SLL (reverse) 0.03 0.03 0.03
SLL+head 0.05 0.05 0.03
SLL of 0/1 SLLs 0.03 0.03 0.11
SLLLinux 0.03 0.03 0.03
SLL of CSLLs 2.07 0.73 3 / 4 0.12
SLL of 2CDLLsLinux 0.16 0.17 13 / 5 0.25
skip list2 0.66 0.42 - / 3 T
skip list3 T 9.14 - / 7 T

Example basic SFA boxes Predator

DLL (reverse) 0.04 0.06 1 / 1 0.03
DLL (insert) 0.06 0.07 1 / 1 0.05
DLL (insertsort1) 0.35 0.40 1 / 1 0.11
DLL (insertsort2) 0.11 0.12 1 / 1 0.05
DLL of CDLLs 5.67 1.25 8 / 7 0.22
DLL+subdata 0.06 0.09 - / 2 T
CDLL 0.03 0.03 1 / 1 0.03
tree 0.14 0.14 Err
tree+parents 0.18 0.21 2 / 2 T
tree+stack 0.09 0.08 Err
tree (DSW) 1.74 0.40 Err
tree of CSLLs 0.32 0.42 - / 4 Err

randomly constructed tree is deleted using a stack, and “DSW” stands for the Deutsch-
Schorr-Waite tree traversal (the Lindstrom variant). All experiments start with a random
creation and end with a disposal of the specified structure while the indicated procedure
(if any) is performed in between. The experiments were run on a machine with the Intel
i7-2600 (3.40 GHz) CPU and 16 GiB of RAM.

The table further contains the column “boxes” where the value “X/Y” means that X
manually created boxes were provided to the analysis that did not use learning while
Y boxes were learnt when the box learning procedure was enabled. The value “-” of
X means that we did not run the given example with manually constructed boxes since
their construction was too tedious. If user-defined boxes are given to Forester in ad-
vance, the speedup is in most cases negligible, with the exception of “DLL of CDLLs”
and “SLL of CSLLs”, where it is up to 7 times. In a majority of cases, the learnt boxes
were the same as the ones created manually. However, in some cases, such as “SLL of
2CDLLsLinux”, the learning algorithm found a smaller set of more elaborate boxes than
those provided manually.

In the experiments, we use folding by inclusion as defined in Sec. 4.2. For simpler
cases, the performance matched the performance of folding by equivalence, but for the
more difficult examples it was considerably faster (such as for “skip list2” when the
time decreased from 3.82 s to 0.66 s), and only when it was used the analysis of “skip
list3” succeeded. Further, the implementation folds optimal knots of the complexity
≤ 2 which is enough for the considered examples. Finally, note that the performance of
Forester in the considered experiments is indeed comparable with that of Predator even
though Forester can handle much more general data structures.

7 Conclusion

We have proposed a new shape analysis using forest automata which—unlike the pre-
viously known approach based on FA—is fully automated. For that purpose, we have
proposed a technique of automatically learning FA called boxes to be used as alpha-
bet symbols in higher-level FA when describing sets of complex heap graphs. We have
also proposed a way how to efficiently integrate the learning with the main analysis
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algorithm. Finally, we have proposed a significant improvement—both in terms of gen-
erality as well as efficiency—of the abstraction used in the framework. An implemen-
tation of the approach in the Forester tool allowed us to fully-automatically handle
programs over quite complex heap structures, including 2-level and 3-level skip lists,
which—to the best of our knowledge—no other fully-automated verification tool can
handle. At the same time, the efficiency of the analysis is comparable with other state-
of-the-art analysers even though they handle less general classes of heap structures.

For the future, there are many possible ways how the presented approach can be fur-
ther extended. First, one can think of using recursive boxes or forest automata using
hedge automata as their components in order to handle even more complex data struc-
tures (such as mcf trees). Another interesting direction is that of integrating FA-based
heap analysis with some analyses for dealing with infinite non-pointer data domains
(e.g., integers) or parallelism.
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Abstract. Separation Logic (SL) with inductive definitions is a natural formal-
ism for specifying complex recursive data structures, used in compositional ver-
ification of programs manipulating such structures. The key ingredient of any
automated verification procedure based on SL is the decidability of the entailment
problem. In this work, we reduce the entailment problem for a non-trivial subset
of SL describing trees (and beyond) to the language inclusion of tree automata
(TA). Our reduction provides tight complexity bounds for the problem and shows
that entailment in our fragment is EXPTIME-complete. For practical purposes,
we leverage from recent advances in automata theory, such as inclusion checking
for non-deterministic TA avoiding explicit determinization. We implemented our
method and present promising preliminary experimental results.

1 Introduction

Separation Logic (SL) [22] is a logical framework for describing recursive mutable
data structures. The attractiveness of SL as a specification formalism comes from the
possibility of writing higher-order inductive definitions that are natural for describ-
ing the most common recursive data structures, such as singly- or doubly-linked lists
(SLLs/DLLs), trees, hash maps (lists of lists), and more complex variations thereof,
such as nested and overlaid structures (e.g. lists with head and tail pointers, skip-lists,
trees with linked leaves, etc.). In addition to being an appealing specification tool, SL
is particularly suited for compositional reasoning about programs. Indeed, the principle
of local reasoning allows one to verify different elements (functions, threads) of a pro-
gram, operating on disjoint parts of the memory, and to combine the results a-posteriori,
into succinct verification conditions.

However, the expressive power of SL comes at the price of undecidability [6]. To
avoid this problem, most SL dialects used by various tools (e.g. SPACE INVADER [2],
PREDATOR [9], or INFER [7]) use hard-coded predicates, describing SLLs and DLLs,
for which entailments are, in general, tractable [8]. For graph structures of bounded tree
width, a general decidability result was presented in [14]. Entailment in this fragment
is EXPTIME-hard, as proven in [1].

In this paper, we present a novel decision procedure for a restriction of the decidable
SL fragment from [14], describing recursive structures in which all edges are local with
respect to a spanning tree. Examples of such structures include SLLs, DLLs, trees and
trees with parent pointers, etc. For structures outside of this class (e.g. skip-lists or trees
with linked leaves), our procedure is sound (namely, if the answer of the procedure is
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positive, then the entailment holds), but not complete (the answer might be negative
and the entailment could still hold). In terms of program verification, such a lack of
completeness in the entailment prover can lead to non-termination or false positives,
but will not cause unsoundness (i.e. classify a buggy program as correct).

The method described in the paper belongs to the class of automata-theoretic
decision techniques: We translate an entailment problem ϕ |= ψ into a language inclu-
sion problem L(Aϕ) ⊆ L(Aψ) for tree automata (TA) Aϕ and Aψ that (roughly speak-
ing) encode the sets of models of ϕ and ψ, respectively. Yet, a naı̈ve translation of
the inductive definitions of SL into TA encounters a polymorphic representation prob-
lem: the same set of structures can be defined in several different ways, and TA sim-
ply mirroring the definition will not report the entailment. For example, DLLs with
selectors next and prev for the next and previous nodes, respectively, can be de-
scribed by a forward unfolding of the inductive definition: DLL(head, prev, tail,next) ≡
∃x. head �→ (x, prev)∗DLL(x,head, tail,next) | emp∧head = tail ∧ prev = next, as well
as by a backward unfolding of the definition: DLLrev(head, prev, tail,next) ≡ ∃x. tail �→
(next,x)∗DLLrev(head, prev,x, tail) | emp∧head = tail∧ prev = next. Also, one can de-
fine a DLL starting with a node in the middle and unfolding backward to the left of this
node and forward to the right: DLLmid(head, prev, tail,next)≡∃x,y,z . DLL(y,x, tail,next)
∗DLLrev(head, prev,z,x). The circular entailment: DLL(a,b,c,d) |= DLLrev(a,b,c,d) |=
DLLmid(a,b,c,d) |= DLL(a,b,c,d) holds, but a naı̈ve structural translation to TA might
not detect this fact. To bridge this gap, we define a closure operation on TA, called
canonical rotation, which adds all possible representations of a given inductive defini-
tion, encoded as a tree automaton.

The translation from SL to TA provides also tight complexity bounds, showing
that entailment in the local fragment of SL with inductive definitions is EXPTIME-
complete. Moreover, we implemented our method using the VATA [17] tree automata
library, which leverages from recent advances in non-deterministic language inclusion
for TA [4], and obtained quite encouraging experimental results.

Related Work. Given the large body of literature on logics for describing mutable data
structures, we need to restrict this section to the related work that focuses on SL [22].
The first (proof-theoretic) decidability result for SL on a restricted fragment defining
only SLLs was reported in [3], which describe a co-NP algorithm. The full basic SL
without recursive definitions, but with the magic wand operator was found to be unde-
cidable when interpreted in any memory model [6]. A PTIME entailment procedure for
SL with list predicates is given in [8]. Their method was extended to reason about nested
and overlaid lists in [11]. More recently, entailments in an important SL fragment with
hardcoded SLL/DLL predicates were reduced to Satisfiability Modulo Theories (SMT)
problems, leveraging from recent advances in SMT technology [20,18]. The work re-
ported in [10] deals with entailments between inductive SL formulae describing nested
list structures. It uses a combination of graphs and TA to encode models of SL, but
it does not deal with the problem of polymorphic representation. Recently, a decision
procedure for entailments in a fragment of multi-sorted first-order logic with reacha-
bility, hard-coded trees and frame specifications, called GRIT (Graph Reachability and
Inverted Trees) has been reported in [21]. Due to the restriction of the transitive closure
to one function symbol (parent pointer), the expressive power of their logic, without
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data constraints, is strictly lower than ours (regular properties of trees cannot be en-
coded in GRIT). However, GRIT can be extended with data, which has not been, so far,
considered for SL.

Closer to our work on SL with user-provided inductive definitions is the fragment
used in the tool SLEEK, which implements a semi-algorithmic entailment check, based
on unfoldings and unifications [19]. Along this line of work, the theorem prover CY-
CLIST builds entailment proofs using a sequent calculus. Neither SLEEK nor CYCLIST

are complete for a given fragment of SL, and, moreover, these tools do not address the
polymorphic representation problem.

Our previous work [14] gave a general decidability result for SL with inductive defi-
nitions interpreted over graph-like structures, under several necessary restrictions, based
on a reduction from SL to Monadic Second Order Logic (MSOL) on graphs of bounded
tree width. Decidability of MSOL on such graphs relies on a combinatorial reduction
to MSOL on trees (see [12] for a proof of Courcelle’s theorem). Altogether, using the
method from [14] causes a blowup of several exponentials in the size of the input prob-
lem and is unlikely to produce an effective decision procedure.

The work [1] provides a rather complete picture of complexity for the entailment in
various SL fragments with inductive definitions, including EXPTIME-hardness of the
decidable fragment of [14], but provides no upper bound. The EXPTIME-completeness
result in this paper provides an upper bound for a fragment of local definitions, and
strengthens the EXPTIME-hard lower bound as well, i.e. it is showed that even the
entailment between local definitions is EXPTIME-hard.

2 Definitions

The set of natural numbers is denoted by N. If x = 〈x1, . . . ,xn〉 and y = 〈y1, . . . ,ym〉
are tuples, x ·y = 〈x1, . . . ,xn,y1, . . . ,ym〉 denotes their concatenation, |x| = n denotes the
length of x, and (x)i = xi denotes the i-th element of x. For a partial function f : A ⇀ B,
and ⊥ /∈ B, we denote by f (x) = ⊥ the fact that f is undefined at some point x ∈ A. The
domain of f is denoted dom( f ) = {x ∈ A | f (x) �= ⊥}, and the image of f is denoted as
img( f ) = {y ∈ B | ∃x ∈ A . f (x) = y}. By f : A ⇀ f in B, we denote any partial function
whose domain is finite. Given two partial functions f ,g defined on disjoint domains,
i.e. dom( f )∩dom(g) = /0, we denote by f ⊕ g their union.

States. We consider Var = {x,y,z, . . .} to be a countably infinite set of variables and
nil ∈ Var be a designated variable. Let Loc be a countably infinite set of locations and
null ∈ Loc be a designated location.

Definition 1. A state is a pair 〈s,h〉 where s : Var ⇀ Loc is a partial function mapping
pointer variables into locations such that s(nil) = null, and h : Loc ⇀ f in N ⇀ f in Loc
is a finite partial function such that (i) null �∈ dom(h) and (ii) for all � ∈ dom(h) there
exists k ∈ N such that (h(�))(k) �= ⊥.

Given a state S = 〈s,h〉, s is called the store and h the heap. For any l, l′ ∈ Loc, we

write �
k−→S �′ instead of (h(�))(k) = �′ for any k ∈ N called a selector. We call the

triple �
k−→S �′ an edge of S. When the S subscript is obvious from the context, we
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sometimes omit it. Let Img(h) =
⋃

�∈Loc img(h(�)) be the set of locations which are
destinations of some edge in h. A location � ∈ Loc is said to be allocated in 〈s,h〉 if
� ∈ dom(h) (i.e. it is the source of an edge). The location is called dangling in 〈s,h〉
if � ∈ [img(s)∪ Img(h)] \ dom(h), i.e. it is referenced by a store variable or reachable
from an allocated location in the heap, but it is not allocated in the heap itself. The
set loc(S) = img(s) ∪ dom(h)∪ Img(h) is the set of all locations either allocated or
referenced in the state S.

For any two states S1 = 〈s1,h1〉 and S2 = 〈s2,h2〉 such that (i) s1 and s2 agree on
the evaluation of common variables (∀x ∈ dom(s1) ∩ dom(s2) . s1(x) = s2(x)) and
(ii) h1 and h2 have disjoint domains (dom(h1) ∩ dom(h2) = /0), we denote by S1 �S2 =
〈s1 ∪ s2,h1 ⊕ h2〉 the disjoint union of S1 and S2. The disjoint union is undefined if one
of the above conditions does not hold.

Trees and Tree Automata. Let Σ be a countable alphabet and N∗ be the set of se-
quences of natural numbers. Let ε ∈ N∗ denote the empty sequence and p.q denote the
concatenation of two sequences p,q ∈ N∗. We say that p is a prefix of q if q = p.q′ for
some q′ ∈ N∗. A set X ⊆ N∗ is prefix-closed iff p ∈ X ⇒ q ∈ X for each prefix q of p.

A tree t over Σ is a finite partial function t : N∗ ⇀ f in Σ such that dom(t) is a finite
prefix-closed subset of N∗ and, for each p ∈ dom(t) and i ∈ N, we have t(p.i) �= ⊥
only if t(p. j) �= ⊥, for all 0 ≤ j < i. The sequences p ∈ dom(t) are called positions
in the following. Given two positions p,q ∈ dom(t), we say that q is the i-th successor
(child) of p if q = p.i, for some i ∈ N. We denote by D(t) = {−1,0, . . . ,N} the direction
alphabet of t, where N = max{i ∈ N | ∃p ∈ N∗ . p.i ∈ dom(t)}, and we let D+(t) =
D(t) \ {−1}. By convention, we have (p.i).(−1) = p, for all p ∈ N∗ and i ∈ D+(t).
Given a tree t and a position p ∈ dom(t), we define the arity of the position p as #t(p) =
max{d ∈ D+(t) | p.d ∈ dom(t)}+ 1.

A (finite, non-deterministic, bottom-up) tree automaton (abbreviated as TA in the
following) is a quadruple A = 〈Q,Σ,Δ,F〉, where Σ is a finite alphabet, Q is a finite set
of states, F ⊆ Q is a set of final states, Σ is an alphabet, and Δ is a set of transition rules
of the form σ(q1, . . . ,qn) → q, for σ ∈ Σ, and q,q1, . . . ,qn ∈ Q. Given a tree automaton
A = 〈Q,Σ,Δ,F〉, for each rule ρ = (σ(q1, . . . ,qn) −→ q), we define its size as |ρ| = n+1.
The size of the tree automaton is |A| = ∑ρ∈Δ |ρ|. A run of A over a tree t : N∗ ⇀ f in Σ
is a function π : dom(t) → Q such that, for each node p ∈ dom(t), where q = π(p), if
qi = π(p.i) for 1 ≤ i ≤ n, then Δ has a rule (t(p))(q1, . . . ,qn) → q. We write t

π
=⇒ q

to denote that π is a run of A over t such that π(ε) = q. We use t =⇒ q to denote that
t

π
=⇒ q for some run π. The language of A is defined as L(A) = {t | ∃q ∈ F, t =⇒ q}.

2.1 Separation Logic

The syntax of basic formulae of Separation Logic (SL) is given below:

α ∈ Var \ {nil}; x ∈ Var;
Π ::= α = x | Π1 ∧Π2

Σ ::= emp | α �→ (x1, . . . ,xn) | Σ1 ∗ Σ2 , for some n > 0
ϕ ::= Σ∧Π | ∃x . ϕ

A formula of the form
∧n

i=1 αi = xi defined by the Π nonterminal in the syntax above
is said to be pure. The atomic proposition emp, or any formula of the form �k

i=1αi �→
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(xi,1, . . . ,xi,ni), for some k > 0, is said to be spatial. A variable x is said to be free in ϕ if
it does not occur under the scope of any existential quantifier. We denote by FV (ϕ) the
set of free variables. A variable α ∈ FV (Σ)\ {nil} is said to be allocated (respectively,
referenced) in a spatial formula Σ if it occurs on the left-hand (respectively, right-hand)
side of a proposition α �→ (x1, . . . ,xn) of Σ.

In the following, we shall use two equality relations. The syntactic equality, denoted
σ ≡ ς, means that σ and ς are the same syntactic object (formula, variable, tuple of
variables, etc.). On the other hand, by writing x =Π y, for two variables x,y ∈ Var and
a pure formula Π, we mean that the equality of the values of x and y is implied by Π.

A system of inductive definitions (inductive system) P is a set of rules of the form
{

Pi(xi,1, . . . ,xi,ni) ≡ |mi
j=1 Ri, j(xi,1, . . . ,xi,ni)

}k

i=1
(1)

where {P1, . . . ,Pk} is a set of predicates, xi,1, . . . ,xi,ni are called formal parameters,
and the formulae Ri, j are called the rules of Pi. Each rule is of the form Ri, j(x) ≡
∃z . Σ∗ Pi1(y1)∗ . . .∗ Pim(ym) ∧ Π, where x ∩ z = /0, and the following holds:
1. Σ �≡ emp is a non-empty spatial formula1, called the head of Ri, j.
2. Pi1(y1), . . . ,Pim(ym) is a tuple of predicate occurrences, called the tail of Ri, j, where

|y j| = ni j , for all 1 ≤ j ≤ m.
3. Π is a pure formula, restricted such that, for all formal parameters β ∈ x, we allow

only equalities of the form α =Π β, where α is allocated in Σ.2

4. for all 1 ≤ r,s ≤ m, if xi,k ∈ yr, xi,l ∈ ys, and xi,k =Π xi,l , for some 1 ≤ k, l ≤ ni, then
r = s; a formal parameter of a rule cannot be passed to two or more subsequent
occurrences of predicates in that rule.3

The size of a rule R is denoted by |R| and defined inductively as follows: |α = x| =
1, |emp| = 1, |α �→ (x1, . . . ,xn)| = n + 1, |ϕ• ψ| = |ϕ| + |ψ|, |∃x . ϕ| = |ϕ| + 1, and
|P(x1, . . . ,xn)| = n. Here, α ∈ Var \ {nil}, x,x1, . . . ,xn ∈ Var, and • ∈ {∗,∧}. The size
of an inductive system (1) is defined as |P | = ∑k

i=1 ∑mi
j=1 |Ri, j|. A rooted system 〈P ,Pi〉

is an inductive system P with a designated predicate Pi ∈ P .
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Fig. 1. Top: A DLL. Bottom: A TLL

Example 1. To illustrate the use of in-
ductive definitions (with the above re-
strictions), we first show how to define
a predicate DLL(hd, p, tl,n) describing
doubly-linked lists of length at least one.
As depicted on the top of Fig. 1, the for-
mal parameter hd points to the first allo-
cated node of such a list, p to the node
pointed to by the prev selector of hd, tl
to the last node of the list (possibly equal
to hd), and n to the node pointed to by the next selector from tl. This predicate
can be defined as follows: DLL(hd, p, tl,n) ≡ hd �→ (n, p) ∧ hd = tl | ∃x. hd �→
(x, p)∗DLL(x,hd, tl,n).

1 In practice, we allow frontier or root rules to have empty heads.
2 This restriction can be lifted at the expense of an exponential blowup in the size of the TA.
3 The restriction can be lifted by testing double allocation as in [14] (with an exponential cost).
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Another example is the predicate TLL(r, ll, lr) describing binary trees with linked
leaves whose root is pointed to by the formal parameter r, the left-most leaf is pointed to
by ll, and the right-most leaf points to lr as shown in the bottom of Fig. 1: TLL(r, ll, lr) ≡
r �→ (nil,nil, lr) ∧ r = ll | ∃x,y,z. r �→ (x,y,nil)∗TLL(x, ll,z)∗TLL(y,z, lr). �

The semantics of SL is given by the model relation |=, defined inductively, on the
structure of formulae, as follows:

S |= emp ⇐⇒ dom(h) = /0
S |= α �→ (x1, . . . ,xn) ⇐⇒ s = {(α, �0),(x1, �1), . . . ,(xn, �n)} and

h = {〈�0,λi . if 1 ≤ i ≤ n then �i else ⊥〉}
for some �0, �1, . . . , �n ∈ Loc

S |= ϕ1 ∗ ϕ2 ⇐⇒ S1 |= ϕ1 and S2 |= ϕ2 for some S1,S2 : S1 �S2 = S
S |= ∃x . ϕ ⇐⇒ 〈s[x ← �],h〉 |= ϕ for some � ∈ Loc
S |= Pi(xi,1, . . . ,xi,ni) ⇐⇒ S |= Ri, j(xi,1, . . . ,xi,ni), for some 1 ≤ j ≤ mi, in (1)

The semantics of = and ∧ are classical for first order logic. Note that we adopt here the
strict semantics, in which a points-to relation α �→ (x1, . . . ,xn) holds in a state consist-

ing of a single cell pointed to by α that has exactly n outgoing edges s(α)
k−→S s(xk),

1 ≤ k ≤ n, leading either towards the single allocated location s(α) (if s(xk) = s(α)) or
towards dangling locations (if s(xk) �= s(α)). The empty heap is specified by emp.

A state S is a model of a predicate Pi iff it is a model of one of its rules Ri, j. For a state
S that is a model of Ri, j, the inductive definition of the semantics implies existence of
a finite unfolding tree: this is a tree labeled with rules of the system in such a way that,
whenever a node is labeled by a rule with a tail Pi1(y1), . . . ,Pim(ym), it has exactly m
children such that the j-th child, for 1 ≤ j ≤ m, is labeled with a rule of Pij (see the
middle part of Fig. 2—a formal definition is given in [16].

Given an inductive system P , predicates Pi(x1, . . . ,xn) and Pj(y1, . . . ,yn) of P with
the same number of formal parameters n, and a tuple of variables x where |x| = n, the en-
tailment problem is defined as follows: Pi(x) |=P Pj(x) : ∀S . S |= Pi(x) ⇒ S |= Pj(x).

2.2 Connectivity, Spanning Trees and Local States

In this section, we define two conditions ensuring that entailments in the restricted SL
fragment can be decided effectively. The notion of a spanning tree is central for these
definitions. Informally, a state S has a spanning tree t if all allocated locations of S can
be placed in t such that there is always an edge in S in between every two locations
placed in a parent-child pair of positions (see Fig. 2 for two spanning trees).

Definition 2. Given a state S = 〈s,h〉, a spanning tree of S is a bijective tree t : N∗ →
dom(h) such that ∀p ∈ dom(t)∀d ∈ D+(t) . p.d ∈ dom(t) ⇒ ∃k ∈ N . t(p)

k−→S t(p.d).

Given an inductive system P , let S = 〈s,h〉 be a state and Pi ∈ P be an inductive
definition such that S |= Pi. Our first restriction, called connectivity (Def. 3), ensures
that the unfolding tree of the definition of Pi is also a spanning tree of S (cf. Fig. 2,
middle). In other words, each location � ∈ dom(h) is created by an atomic proposition
of the form α �→ (x1, . . . ,xn) from the unfolding tree of the definition Pi, and, moreover,
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by Def. 2, there exists an edge �
k−→S �′ for any parent-child pair of positions in this tree

(cf. the next edges in Fig. 2).
For a basic quantifier-free SL formula ϕ ≡ Σ∧Π and two variables x,y ∈ FV (ϕ), we

say that y is ϕ-reachable from x iff there is a sequence x =Π α0, . . . ,αm =Π y, for some
m ≥ 0, such that, for each 0 ≤ i < m, αi �→ (βi,1, . . . ,βi,pi) is an atomic proposition in
Σ, and βi,s =Π αi+1, for some 1 ≤ s ≤ pi. A variable x ∈ FV (Σ) is called a root of Σ if
every variable y ∈ FV (Σ) is ϕ-reachable from x.

Definition 3. Given a system P = {Pi ≡ |mi
j=1Ri, j}n

i=1 of inductive definitions, a rule
Ri, j(xi,1, . . . ,xi,k) ≡ ∃z . Σ ∗ Pi1(y1) ∗ . . . ∗ Pim(ym)∧ Π of a predicate Pi(xi,1, . . . ,xi,k) is
connected iff there exists a formal parameter xi,� of Pi, 1 ≤ � ≤ k, such that (i) xi,� is
a root of Σ and (ii) for each j = 1, . . . ,m, there exists 0 ≤ s < |y j| such that (y j)s is
(Σ∧Π)-reachable from xi,� and xi j ,s is a root of the head of each rule of Pi j . The system
P is said to be connected if all its rules are connected.

For instance, the DLL and TLL systems from Ex. 1 are both connected. Our second

restriction, called locality, ensures that every edge �
k−→S �′, between allocated locations

�,�′ ∈ dom(h), involves locations that are mapped to a parent-child pair of positions in
some spanning tree of S.

Definition 4. Let S = 〈s,h〉 be a state and t : N∗ → dom(h) be a spanning tree of S. An

edge �
k−→S �′ with �,�′ ∈ dom(h) is said to be local w.r.t. a spanning tree t iff there exist

p ∈ dom(t) and d ∈ D(t)∪{ε} such that t(p) = � and t(p.d) = �′. The tree t is a local
spanning tree of S iff t is a spanning tree of S and S has only local edges w.r.t. t. The
state S is local iff it has a local spanning tree.

[ DLL2 ]

[ DLL2 ]

[ DLL2 ]

[ DLL2 ]

[ DLL1 ]

hd
p

next prev

tl
n

next prev

next prev

next prev

prev

next

Fig. 2. Two spanning trees of
a DLL. The middle one is an
unfolding tree when labeled by
DLL1 ≡ hd �→ (n, p) ∧ hd = tl
and DLL2 ≡ ∃x. hd �→ (x, p) ∗
DLL(x,hd, tl,n).

For instance, the DLL system of Ex. 1 is local, while
the TLL system is not (e.g. the n edges between leaves
cannot be mapped to parent-child pairs in the spanning
tree that is obtained by taking the l and r edges of the
TLL). In this paper, we address the locality problem by
giving a sufficient condition (a syntactic check of the
inductive system, prior to the generation of TA) able
to decide the locality on all of the practical examples
considered (Sec. 3.2). The decidability of locality of
general inductive systems is an interesting open prob-
lem, considered for future research.

Definition 5. A system P = {Pi(xi,1, . . . ,xi,ni)}k
i=1 is

said to be local if and only if each formal parameter
xi, j of a predicate Pi is either (i) allocated in each rule
of Pi and (y) j is referenced at each occurrence Pi(y),
or (ii) referenced in each rule of Pi and (y) j is allo-
cated at each occurrence Pi(y).

This gives a sufficient (but not necessary) condition ensuring that any state S, such that
S |= Pi, has a local spanning tree, if P is a connected local system. The condition is
effective and easily implemented (see Sec. 3.2) by the translation from SL to TA.
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3 From Separation Logic to Tree Automata

The first step of our entailment decision procedure is building a TA for a given inductive
system. Roughly speaking, the TA we build recognizes unfolding trees of the inductive
system. The alphabet of such a TA consists of small basic SL formulae describing the
neighborhood of each allocated variable, together with a specification of the connec-
tions between each such formula and its parent and children in the unfolding tree. Each
alphabet symbol in the TA is called a tile. Due to technical details related to the en-
coding of states as trees of SL formulae, the most space in this section is dedicated to
the definition of tiles. Once the tile alphabet is defined, the states of the TA correspond
naturally to the predicates of the inductive system, and the transition rules correspond
to the rules of the system.

3.1 Tiles, Canonical Tiles, and Quasi-canonical Tiles

A tile is a tuple T = 〈ϕ,x−1,x0, . . . ,xd−1〉, for some d ≥ 0, where ϕ is a basic SL
formula, and each xi is a tuple of pairwise distinct variables, called a port. We further
assume that all ports contain only free variables from ϕ and that they are pairwise
disjoint. The variables from x−1 are said to be incoming, the ones from x0, . . . ,xd−1 are
said to be outgoing, and the ones from par(T ) = FV (ϕ)\ (x−1 ∪ . . .∪xd−1) are called
parameters. The arity of a tile T = 〈ϕ,x−1, . . . ,xd−1〉 is the number of outgoing ports,
denoted by #(T ) = d. We denote form(T ) ≡ ϕ and porti(T ) ≡ xi, for all −1 ≤ i < d.

Given tiles T1 = 〈ϕ,x−1, . . . ,xd−1〉 and T2 = 〈φ,y−1, . . . ,ye−1〉 such that FV (ϕ) ∩
FV (φ) = /0, we define the i-composition, for some 0 ≤ i < d, such that |xi| = |y−1|:
T1�i T2 = 〈ψ,x−1, . . .xi−1,y0, . . . ,ye−1,xi+1, . . . ,xd−1〉 where ψ ≡ ∃xi∃y−1 . ϕ∗φ∧xi =
y−1.4 For a position q ∈ N∗ and a tile T , we denote by T 〈q〉 the tile obtained by renaming
each variable x in the ports of T by x〈q〉. A tree t labeled with tiles corresponds to
a tile defined inductively, for any p ∈ dom(t), as: T (t, p) = t(p)〈p〉 �0 T (t, p.0)�1

T (t, p.1) . . . �#(p)−1 T (t, p.(#t(p)−1)). The SL formula Φ(t) ≡ form(T (t,ε)) is said
to be the characteristic formula of t.

Canonical Tiles. We first define a class of tiles that encode local states (Def. 4) with
respect to the underlying tile-labeled spanning trees. We denote by T = 〈(∃z) z �→
(y0, . . . ,ym−1) ∧ Π,x−1, . . . ,xd−1〉 a tile whose spatial formula is either (i) ∃z . z �→
(y0, . . . ,ym−1) or (ii) z �→ (y0, . . . ,ym−1) with z ∈ par(T ). A tile T = 〈(∃z) z �→ (y0, . . . ,
ym−1)∧ Π, x−1, . . . ,xd−1〉 is said to be canonical if each port xi can be factorized as
x f w

i ·xbw
i (distinguishing forward links going from the root to the leaves and backward

links going in the opposite direction, respectively) such that:

1. xbw
−1 ≡ 〈yh0 , . . . ,yhk〉, for some ordered sequence 0 ≤ h0 < .. . < hk < m, i.e. the back-

ward incoming tuple consists only of variables referenced by the unique allocated
variable z, ordered by the corresponding selectors.

2. For all 0 ≤ i < d, x f w
i ≡ 〈y j0 , . . . ,y jki

〉, for some ordered sequence 0 ≤ j0 < .. . <
jki < m. As above, each forward outgoing tuple consists of variables referenced by
the unique allocated variable z, ordered by the corresponding selectors.

4 For two tuples x = 〈x1, . . . ,xk〉 and y = 〈y1, . . . ,yk〉, we write x = y for
∧k

i=1 xi = yi.
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3. For all 0 ≤ i, j < d, if (x f w
i )0 ≡ yp and (x f w

j )0 ≡ yq, for some 0 ≤ p < q < m (i.e.
yp �≡ yq), then i < j. This means that the forward outgoing tuples are ordered by the
selectors referencing their first element.

4. (x f w
−1 ∪xbw

0 ∪ . . .∪xbw
d−1)∩{y0, . . . ,ym−1} = /0 and Π ≡ x f w

−1 = z ∧ ∧d−1
i=0 xbw

i = z.5

We denote by port f w
i (T ) and portbw

i (T ) the tuples x f w
i and xbw

i , respectively, for all
−1 ≤ i < d. The set of canonical tiles is denoted as T c.

Definition 6. A tree t : N∗ ⇀ f in T c is called canonical iff #(t(p)) = #t(p) for any p ∈
dom(t) and, moreover, for each 0 ≤ i < #t(p), |port f w

i (t(p))| = |port f w
−1(t(p.i))| and

|portbw
i (t(p))| = |portbw

−1(t(p.i))|.

An important property of canonical trees is that each state that is a model of the
characteristic formula Φ(t) of a canonical tree t (i.e. S |= Φ(t)) can be uniquely de-
scribed by a local spanning tree u : dom(t) → Loc, which has the same structure as
t, i.e. dom(u) = dom(t). Intuitively, this is because each variable yi, referenced in an
atomic proposition z �→ (y0, . . . ,ym−1) in a canonical tile, is allocated only if it belongs
to the backward part of the incoming port xbw

−1 or the forward part of some outgoing

port x f w
i . In the first case, yi is equal to the variable allocated by the parent tile, and

in the second case, it is equal to the variable allocated by the i-th child. An immediate
consequence is that any two models of Φ(t) differ only by a renaming of the allocated
locations, i.e. they are identical up to isomorphism.
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Fig. 3. The DLL from Fig. 1 with two of its canonical trees (related by
a canonical rotation r)

Example 2 (cont.
of Ex. 1). To il-
lustrate the notion
of canonical trees,
Fig. 3 shows two
canonical trees for
a given DLL. The
tiles are depicted as
big rectangles con-
taining the appro-
priate basic formula
as well as the in-
put and output ports.
In all ports, the first
variable is in the
forward and the
second in the back-
ward part. �
Quasi-canonical tiles. We next define a class of tiles that encode non-local states in
order to extend our decision procedure to handle entailments between non-local induc-
tive systems. In addition to local edges between neighboring tiles, quasi-canonical tiles

5 For a tuple x = 〈x1, . . . ,xk〉, we write x = z for
∧k

i=1 xi = z.
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x0   y0

/\ ll = x0

n
ϕ: ll     (nil,nil,y0)

l r

y1   x2y0   x1

nroot

x0   x1

y0   x2 y1   x3   x4

l r
n

ϕ: ∃z. z     (y0,y1,nil)
/\ z = x0
/\ x2 = x3
/\ x1 = x4

x0   x1

y1   x4y0   x2   x3

l r

ϕ: ∃z. z     (y0,y1,nil)
/\ z = x0
/\ x1 = x2
/\ x3 = x4

ϕ: root     (y0,y1,nil) /\ x1 = x2

n

l r
ll

x0   x1   y0

n

l r
ϕ: ∃z. z     (nil,nil,y0)

/\ z = x0
/\ z = x1

x0   x1   y0

n

l r
ϕ: ∃z. z     (nil,nil,y0)

/\ z = x0
/\ z = x1

x0   x1

l r
lr

ϕ: ∃z. z     (nil,nil,lr)
/\ z = x0
/\ z = x1

n

Fig. 4. A quasi-canonically tiled tree for the tree with linked leaves from Fig. 1

allow to define sequences of equalities between remote tiles. This extension is used
to specify non-local edges within the state. A tile T = 〈ϕ ∧ Π,x−1, . . . ,xd−1〉 is said
to be quasi-canonical if and only if each port xi can be factorized as x f w

i · xbw
i · xeq

i ,

〈ϕ, x f w
−1 ·xbw

−1, . . . , x f w
d−1 ·xbw

d−1〉 is a canonical tile, Π is pure formula, and:
1. for each 0 ≤ i < |xeq

−1|, either (xeq
−1)i ∈ FV (ϕ) or (xeq

−1)i =Π (xeq
k ) j for some unique

indices 0 ≤ k < d and 0 ≤ j < |x f w
k |.

2. for each 0 ≤ k < d and each 0 ≤ j < |xeq
k |, either (xeq

k ) j ∈ FV (ϕ) or exactly one of
the following holds: (i) (xeq

k ) j =Π (xeq
−1)i for some unique index 0 ≤ i < |xeq

−1| or
(ii) (xeq

k ) j =Π (xeq
r )s for some unique indices 0 ≤ r < d and 0 ≤ s < |xeq

r |.
3. For any x,y ∈ ⋃d−1

i=−1 xeq
i , we have x =Π y only in one of the cases above.

We denote porteq
i (T ) ≡ xeq

i , for all −1 ≤ i < d. The set of quasi-canonical tiles is
denoted by T qc. The next definition of quasi-canonical trees extends Def. 6 to the case
of quasi-canonical tiles.

Definition 7. A tree t : N∗ ⇀ f in T qc is quasi-canonical iff #(t(p)) = #t(p) for any

p ∈ dom(t) and, moreover, for each 0 ≤ i < #t(p), |port f w
i (t(p))| = |port f w

−1(t(p.i))|,
|portbw

i (t(p))| = |portbw
−1(t(p.i))|, and |porteq

i (t(p))| = |porteq
−1(t(p.i))|.

Example 3 (cont. of Ex. 1). For an illustration of the notion of quasi-canonical trees,
see Fig. 4, which shows a quasi-canonical tree for the TLL from Fig. 1. The figure uses
the same notation as Fig. 3. In all the ports, the first variable is in the forward part, the
backward part is empty, and the rest is the equality part. �

3.2 Building a TA for an Inductive System

In the rest of this section, we consider that P is a connected inductive system (Def. 3)—
our construction will detect and reject disconnected systems. Given a rooted system
〈P ,Pr〉, the first ingredient of our decision procedure for entailments is a procedure for
building a TA that recognizes all unfolding trees of the inductive definition of Pr in
the system P . The first steps of the procedure implement a specialization of the rooted
system with respect to a tuple α = 〈α1, . . . ,αnr 〉 of actual parameters for Pr, not used
in P . For space reasons, the specialization steps are described only informally here (for
a detailed description of these steps, see [16]).

The first step is an elimination of existentially quantified variables that occur within
equalities with formal parameters or allocated variables from all rules of P . Second,
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each rule of P whose head consists of more than one atomic proposition α �→ (x1, . . . ,xn)
is split into several new rules, containing exactly one such atomic proposition. At
this point, any disconnected inductive system (Def. 3) passed to the procedure is de-
tected and rejected. The final specialization step consists in propagating the actual pa-
rameters α through the rules. A formal parameter xi,k of a rule Ri, j(xi,1, . . . ,xi,ni) ≡
∃z . Σ ∗ Pi1(y1) ∗ . . . ∗ Pim(ym) ∧ Π is directly propagated to some (unique) parameter
of a predicate occurrence Pij , for some 1 ≤ j ≤ m, if and only if xi,k �∈ FV (Σ) and
xi,k ≡ (yi j )�, for some 0 ≤ � < |yi j |, i.e. xi,k is neither allocated nor pointed to by the
head of the rule before being passed on to Pij . We denote direct propagation of parame-
ters by the relation xi,k � xi j ,� where xi j ,� is the formal parameter of Pij which is mapped
to the occurrence of (yi j)�. We say that xi,k is propagated to xr,s if xi,k �

∗ xr,s where �∗

denotes the reflexive and transitive closure of the � relation. Finally, we replace each
variable y of P by the actual parameter α j provided that xr, j �

∗ y. It is not hard to
show that the specialization procedure runs in time O(|P |), hence the size of the output
system is increased by a linear factor only.

Example 4 (cont. of Ex. 1). As an example of specialization, let us consider the pred-
icate DLL from Ex. 1, with parameters DLL(a,b,c,d). After the parameter elimination
and renaming the newly created predicates, we have a call Q1 (without parameters) of
the following inductive system:

Q1() ≡ a �→ (d,b) ∧ a = c | ∃x. a �→ (x,b)∗ Q2(x,a)
Q2(hd, p) ≡ hd �→ (d, p) ∧ hd = c | ∃x. hd �→ (x, p)∗ Q2(x,hd)

�

We are now ready to describe the construction of a TA for a specialized rooted sys-
tem 〈P ,Pr〉. First, for each predicate Pj(x j,1, . . . ,x j,n j) ∈ P , we compute several sets of

parameters, called signatures: sig f w
j = {x j,k | x j,k is allocated in each rule of Pj, and

(y)k is referenced in each occurrence Pj(y) of Pj}, sigbw
j = {x j,k | x j,k is referenced

in each rule of Pj, and (y)k is allocated at each occurrence Pj(y) of Pj}, and, finally,

sig
eq
j = {x j,1, . . . ,x j,n j } \ (sig

f w
j ∪sigbw

j ). The signatures of an inductive system can
be used to implement the locality test (Def. 5): the system P = {P1, . . . ,Pk} is local if
and only if sigeq

i = /0 for each 1 ≤ i ≤ k.

Example 5 (cont. of Ex. 4). The signatures for the system in Ex. 4 are: sig f w
1 = sigbw

1 =

sig
eq
1 = /0 and sig

f w
2 = {hd},sigbw

2 = {p},sig
eq
2 = /0. The fact that, for each i = 1,2,

we have sigeq
i = /0 implies that the DLL system is local. �

The procedure for building a TA from a rooted system 〈P ,Pr〉 with actual parameters
α is denoted as SL2TA(P ,Pr,α) in the following. For each rule R j,� in the system, the
SL2TA procedure creates a quasi-canonical tile whose incoming and outgoing ports xi

are factorized as x f w
i ·xbw

i ·xeq
i according to the precomputed signatures sig f w

j , sigbw
j ,

and sig
eq
j , respectively. The backward part of the input port xbw

−1 and the forward parts

of the output ports {x f w
i }i≥0 are sorted according to the order of incoming selector

edges from the single points-to formula which constitutes the head of the rule. The out-
put ports {xi}i≥0 are sorted within the tile according to the order of the selector edges
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pointing to (x f w
i )0 for each i ≥ 0. Finally, each predicate name Pi is associated with

a state qi, and for each inductive rule, the procedure creates a transition rule in the TA.
The final state of the TA then corresponds to the root of the system (see Algorithm
in [16]). The invariant used to prove the correctness of this construction is that when-
ever the TA reaches a state qi it reads an unfolding tree whose root is labeled with a
rule Ri, j of the definition of a predicate Pi. The following lemma summarizes the TA
construction:

Lemma 1. Given a rooted system 〈P ,Pr(xr,1, . . . ,xr,nr)〉 where P = {Pi}k
i=1 is a con-

nected inductive system, 1 ≤ r ≤ k, and α = 〈α1, . . . ,αni〉 is a tuple of variables not in
P , let A = SL2TA(P ,Pr,α). Then, for every state S, we have S |= Pr(α) iff there exists
t ∈ L(A) such that S |= Φ(t). Moreover, |A| = O(|P |).

Δ =

⎧
⎨
⎩

〈a �→ (d,b)∧a = c, /0〉() → q1 〈a �→ (x,b), /0,(x,a)〉(q2) → q1
〈∃hd′.hd′ �→ (d, p)∧hd = c∧hd′ = hd,(hd, p)〉() → q2
〈∃hd′.hd′ �→ (x, p)∧hd′ = hd,(hd, p),(x,hd)〉(q2) → q2

⎫
⎬
⎭

Example 6 (cont.
of Ex. 5). For the
specialized induc-
tive system P =
{Q1,Q2} from Ex. 4, we obtain the TA A = SL2TA(P ,Q1,〈a,b,c,d〉) =
〈Σ,{q1,q2},Δ,{q1}〉 where Δ is shown above. �

4 Rotation of Tree Automata

In this section we deal with polymorphic representations of states, i.e. situations when a
state can be represented by different spanning trees, with different tilings. In this section
we show that, for states with local spanning trees only (Def. 4), these trees are related
by a rotation relation.

4.1 Rotation as a Transformation of TA

We start by defining rotation as a relation on trees. Intuitively, two trees t1 and t2 are re-
lated by a rotation whenever we can obtain t2 from t1 by picking a position p ∈ dom(t1)
and making it the root of t2, while maintaining in t2 all edges from t1 (Fig. 5).

Definition 8. Given two trees t1, t2 : N∗ ⇀ f in Σ and a bijective mapping r : dom(t1) →
dom(t2), we say that t2 is an r-rotation of t1, denoted by t1 ∼r t2 if and only if: ∀p ∈
dom(t1)∀d ∈ D+(t1) : p.d ∈ dom(t1) ⇒ ∃e ∈ D(t2) . r(p.d) = r(p).e. We write t1 ∼ t2
if there exists a bijective mapping r : dom(t1) → dom(t2) such that t1 ∼r t2.

t1 t2
ε

0 1

00 01

ε

0
1 2

20

r

Fig. 5. An example of a rotation

An example of a rotation r of a tree t1
to a tree t2 such that r(ε) = 2, r(0) = ε,
r(1) = 20, r(00) = 0, and r(01) = 1 is
shown in Fig. 5. Note that, e.g., for p =
ε ∈ dom(t1) and d = 0 ∈ D+(t1), where
p.d = ε.0 ∈ dom(t1), we get e = −1 ∈
D(t2), and r(ε.0) = 2.(−1) = ε.

In the rest of this section, we define rotation on canonical and quasi-canonical trees.
These definitions are refinements of Def. 8. Namely, the change in the structure of the
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tree is mirrored by a change in the tile alphabet labeling the tree in order to preserve the
state which is represented by the (quasi-)canonical tree.

A substitution is an injective partial function σ : Var ⇀ f in Var. Given a basic formula
ϕ and a substitution σ, we denote by ϕ[σ] the result of simultaneously replacing each
variable x (not necessarily free) that occurs in ϕ by σ(x). For instance, if σ(x) = y,
σ(y) = z, and σ(z) = t, then (∃x,y . x �→ (y,z)∧ z = x)[σ] ≡ ∃y,z . y �→ (z, t) ∧ t = y.

Definition 9. Given two canonical trees t,u : N∗ ⇀ f in T c and a bijective mapping r :
dom(t) → dom(u), we say that u is a canonical rotation of t, denoted t ∼c

r u, if and only
if t ∼r u and there exists a substitution σp : Var ⇀ f in Var for each p ∈ dom(t) such that
form(t(p))[σp] ≡ form(u(r(p))) and, for all 0 ≤ i < #t(p), there exists j ∈ D(u) such
that r(p.i) = r(p). j and:

port f w
i (t(p))[σp] ≡ if j ≥ 0 then port f w

j (u(r(p))) else portbw
−1(u(r(p)))

portbw
i (t(p))[σp] ≡ if j ≥ 0 then portbw

j (u(r(p))) else port f w
−1(u(r(p)))

We write t ∼c u if there exists a mapping r such that t ∼c
r u.

Example 7 (cont. of Ex. 2). The notion of canonical rotation is illustrated by the canon-
ical rotation r relating the two canonical trees of a DLL shown in Fig. 3. In its case, the
variable substitutions are simply the identity in each node. Note, in particular, that when
the tile 0 of the left tree (i.e., the second one from the top) gets rotated to the tile 1 of the
right tree (i.e., the right successor of the root), the input and output ports get swapped
and so do their forward and backward parts. �

The following lemma is the key for proving completeness of our entailment checking
for local inductive systems: if a (local) state is a model of the characteristic formulae of
two different canonical trees, then these trees must be related by canonical rotation.

Lemma 2. Let t : N∗ ⇀ f in T c be a canonical tree and S = 〈s,h〉 be a state such that
S |= Φ(t). Then, for any canonical tree u : N∗ ⇀ f in T c, we have S |= Φ(u) iff t ∼c u.

In the following, we extend the notion of rotation to quasi-canonical trees:

Definition 10. Given two quasi-canonical trees t,u : N∗ ⇀ f in T qc and a bijective map-
ping r : dom(t) → dom(u), we say that u is a quasi-canonical rotation of t, denoted
t ∼qc

r u, if and only if t ∼c
r u and |porteq

i (t(p))| = |porteq
j (u(r(p)))| for all p ∈ dom(t)

and all 0 ≤ i < #t(p), −1 ≤ j < #t(p) such that r(p.i) = r(p). j. We write t ∼qc u if there
exists a mapping r such that t ∼qc

r u.
The increase in expressivity (i.e. the possibility of defining non-local edges) comes

at the cost of a loss of completeness. The following lemma generalizes the necessity
direction (⇐) of Lemma 2 for quasi-canonical tiles. Notice that the sufficiency (⇒)
direction does not hold in general.

Lemma 3. Let t,u : N∗ ⇀ f in T qc be quasi-canonical trees such that t ∼qc u. For all
states S, if S |= Φ(t), then S |= Φ(u).
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Algorithm 1. Rotation Closure of Quasi-canonical TA
input a quasi-canonical TA A = 〈Q,Σ,Δ,F〉
output a TA Ar where:
L(Ar) = {u : N∗ ⇀ f in T qc | ∃t ∈ L(A) . u ∼qc t}
function ROTATETA(A)

Ar ← A
assume Ar ≡ 〈Qr,Σ,Δr ,Fr〉
for all ρ ∈ Δ do

assume ρ ≡ T (q0, . . . ,qk) → q
assume T ≡ 〈ϕ,x−1,x0 , . . . ,xk〉
if x−1 �= /0 or q �∈ F then

assume x−1 ≡ x f w
−1 ·xbw

−1 ·xeq
−1

if xbw
−1 �= /0 then
Qrev ← {qrev | q ∈ Q}
(Qρ,Δρ) ← (Q∪Qrev ∪{qf

ρ},Δ)

p ← POSITIONOF (xbw
−1,ϕ)

xswap ← xbw
−1 ·x f w

−1 ·xeq
−1

Tnew ← 〈ϕ,〈〉,x0, . . . ,xp ,xswap, . . . ,xk〉
Δρ ← Δρ ∪{Tnew(q0 . . .qp,qrev . . .qk) −→ qf

ρ}
(Δρ, ) ← ROTTR(q,Δ,Δρ, /0,F)

Aρ ← 〈Qρ,Σ,Δρ ,{qf
ρ}〉

Ar ← Ar ∪Aδ
return Ar

function ROTTR(q,Δ,Δnew ,V,F)
V← V∪{q}
for all (U(s0, . . . ,s�) → s) ∈ Δ do

for all 0 ≤ j ≤ � such that s j = q do
assume U = 〈ϕ,x−1,x0 , . . . ,x j , . . . ,x�〉
assume x j ≡ x f w

j ·xbw
j ·xeq

j
if x−1 = /0 and s ∈ F then

xswap ← xbw
j ·x f w

j ·xeq
j

U ′ ← 〈ϕ,xswap,x0, . . . ,x j−1,x j+1 , . . . ,x�〉
Δnew ← Δnew ∪{U ′(s0 . . . s j−1 . . . s�) −→ qrev}

else
x−1 ≡ x f w

−1 ·xbw
−1 ·xeq

−1

if xbw
−1 �= /0 then
ports ← 〈x0, . . . ,x j−1 ,x j+1 , . . . ,x�〉
states← (s0, . . . ,s j−1,s j+1, . . . ,s�)

xswap ← xbw
−1 ·x f w

−1 ·xeq
−1

p ← INSERTOUTPORT(xswap,ports,ϕ)
INSERTLHSSTATE (srev,states, p)

Unew ← 〈ϕ,xbw
j ·x f w

j ·xeq
j ,ports〉

Δnew ← Δnew ∪{Unew(states) → qrev}
if s �∈ V then

(Δnew,V) ← ROTTR(s,Δ,Δnew,V,F)

return (Δnew,V)

4.2 Implementing Rotation as a Transformation of TA

This section describes the algorithm that produces the closure of a quasi-canonical tree
automaton (i.e. a tree automaton recognizing quasi-canonical trees only) under rota-
tion. The result is a TA that recognizes all trees u : N∗ ⇀ f in T qc such that t ∼qc u for
some tree t recognized by the input TA A = 〈Q,Σ,Δ,F〉. Algorithm 1 (the ROTATETA
procedure) describes the rotation closure whose result is a language-theoretic union
of A and the TA Aρ, one for each rule ρ of A. The idea behind the construction of

Aρ = 〈Qρ,Σ,Δρ,{q f
ρ}〉 can be understood by considering a tree t ∈ L(A), a run π :

dom(t) → Q, and a position p ∈ dom(t), which is labeled with the right hand side of the
rule ρ = T (q1, . . . ,qk) −→ q of A. Then L(Aρ) will contain the rotated tree u, i.e. t ∼qc

r u,
where the significant position p is mapped into the root of u by the rotation function
r, i.e. r(p) = ε. To this end, we introduce a new rule Tnew(q0, . . . ,qrev, . . . ,qk) −→ q f

ρ
where the tile Tnew mirrors the change in the structure of T at position p, and qrev ∈
Qρ is a fresh state corresponding to q. The construction of Aρ continues recursively
(procedure ROTTR), by considering every rule of A that has q on the left hand side:
U(q′

1, . . . ,q, . . . ,q′
�) −→ s. This rule is changed by swapping the roles of q and s and

producing a rule Unew(q′
1, . . . ,s

rev, . . .q′
�) −→ qrev where Unew mirrors the change in the

structure of U . Intuitively, the states {qrev|q ∈ Q} mark the unique path from the root of
u to r(ε) ∈ dom(u). The recursion stops when either (i) s is a final state of A, (ii) The
tile U does not specify a forward edge in the direction marked by q, or (iii) all states of
A have been visited.

Lemma 4. Let A = 〈Q,T qc,Δ,F〉 be a TA, and Ar = ROTATETA(A) be the TA defining
the rotation closure of A. Then L(Ar) = {u | u : N∗ ⇀ f in T qc, ∃t ∈ L(A) . u ∼qc t}.
Moreover, |Ar| = O(|A|2).
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The main result of this paper is given by the following theorem. The entailment
problem for inductive systems is reduced, in polynomial time, to a language inclusion
problem for tree automata. The inclusion test is always sound (if the answer is yes, the
entailment holds), and complete, if the right-hand side is a local system (Def. 4).

Theorem 1. Let P =
{

Pi ≡ |mi
j=1 Ri, j

}k

i=1
be a connected inductive system. Then, for

any two predicates Pi(xi,1, . . . ,xi,ni) and Pj(x j,1, . . . ,x j,n j ) of P such that ni = n j, and
for any tuple of variables α = 〈α1, . . . ,αni〉 not used in P , the following holds for A1 =
SL2TA(P ,Pi,α) and A2 = SL2TA(P ,Pj,α):

– (Soundness) Pi(α) |=P Pj(α) if L(A1) ⊆ L(Ar
2) and

– (Completness) Pi(α) |=P Pj(α) only if L(A1) ⊆ L(Ar
2) provided 〈P ,Pj〉 is local.

Δ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

〈a �→ (b,d)∧a = c, /0〉() → q1 〈a �→ (x,b), /0,(x,a)〉(q2 ) → q1
〈∃hd′.hd′ �→ (d, p)∧hd = c∧hd′ = hd,(hd, p)〉() → q2
〈∃hd′.hd′ �→ (x, p)∧hd′ = hd,(hd, p),(x,hd)〉(q2 ) → q2
〈∃hd′.hd′ �→ (d, p)∧hd = c∧hd′ = hd, /0,(p,hd)〉(qrev

2 ) → qf in
〈a �→ (x,b),(a,x)〉() → qrev

2
〈∃hd′.hd′ �→ (x, p)∧hd′ = hd,(hd,x),(p,hd)〉(qrev

2 ) → qrev
2

〈∃hd′.hd′ �→ (x, p)∧hd′ = hd, /0,(x,hd),(p,hd)〉(q2 ,qrev
2 ) → qf in

⎫
⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

Example 8 (cont. of
Ex. 6). When ap-
plied on the tree
automaton A, the
operation of rotation
closure produces the
tree automaton Ar = 〈Σ,{q1,q2,qrev

2 ,q f in},Δ,{q1,q f in}〉 where Δ is shown above. �

5 Complexity

In this section, we provide tight complexity bounds for the entailment problem in the
fragment of SL with inductive definitions under consideration, i.e., with the connectiv-
ity and locality restrictions. The first result shows the need for connectivity within the
system: allowing disconnected rules leads to undecidability of the entailment problem.
As a remark, the general undecidability of entailments for SL with inductive definitions
has already been proven in [1]. Our proof stresses the fact that undecidability occurs
due the lack of connectivity within some rules.

Theorem 2. Entailment is undecidable for inductive systems with disconnected rules.

The second result of this section provides tight complexity bounds for the entail-
ment problem for local connected systems. We must point out that EXPTIME-hardness
of entailments in the fragment of [14] was already proved in [1]. The result below is
stronger since the fragment under consideration is a restriction of the fragment from
[14] obtained by applying the locality condition.

Theorem 3. Entailment is EXPTIME-complete for local connected inductive systems.

6 Experiments

We implemented a prototype tool called SLIDE (Separation Logic with Inductive DEfi-
nitions) [15] that takes as input two rooted systems 〈Plhs,Plhs〉 and 〈Prhs,Prhs〉 and tests
the validity of the entailment Plhs |=Plhs∪Prhs Prhs. Table 1 lists the entailment queries
on which we tried out our tool; all examples are public and available on the web [15].
The upper part of the table contains local systems, whereas the bottom part contains
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Table 1. Experimental results. The upper table contains local systems, while the lower table non-
local ones. Sizes of initial TA (col. 3,4) and rotated TA (col. 5) are in numbers of states/transitions.

Entailment LHS |= RHS Answer |Alhs| |Arhs| |Ar
rhs|

DLL(a,nil,c,nil) |= DLLrev(a,nil,c,nil) True 2/4 2/4 5/8
DLLrev(a,nil,c,nil) |= DLLmid(a,nil,c,nil) True 2/4 4/8 12/18
DLLmid(a,nil,c,nil) |= DLL(a,nil,c,nil) True 4/8 2/4 5/8

∃x,n,b. x �→ (n,b)∗DLLrev(a,nil,b,x)∗DLL(n,x,c,nil) |= DLL(a,nil,c,nil) True 3/5 2/4 5/8
DLL(a,nil,c,nil) |= ∃x,n,b. x �→ (n,b)∗DLLrev(a,nil,b,x)∗DLL(n,x,c,nil) False 2/4 3/5 9/13

∃y,a. x �→ (y,nil)∗y �→ (a,x)∗DLL(a,y,c,nil) |= DLL(x,nil,c,nil) True 3/4 2/4 5/8
DLL(x,nil,c,nil) |= ∃y,a. x �→ (nil,y)∗y �→ (a,x)∗DLL(a,y,c,nil) False 2/4 3/4 8/10

∃x,b.DLL(x,b,c,nil)∗DLLrev(a,nil,b,x) |= DLL(a,nil,c,nil) True 3/6 2/4 5/8
DLL(a,nil,c,nil) |= DLL0+(a,nil,c,nil) True 2/4 2/4 5/8

TREEpp(a,nil) |= TREErev
pp (a,nil) True 2/4 3/8 6/11

TREErev
pp (a,nil) |= TREEpp(a,nil) True 3/8 2/4 5/10

TLLpp(a,nil,c,nil) |= TLLrev
pp (a,nil,c,nil) True 4/8 4/8 13/22

TLLrev
pp (a,nil,c,nil) |= TLLpp(a,nil,c,nil) True 4/8 4/8 13/22

∃l,r,z. a �→ (l,r,nil,nil)∗TLL(l,c,z)∗TLL(r,z,nil) |= TLL(a,c,nil) True 4/7 4/8 13/22
TLL(a,c,nil) |= ∃l,r,z. a �→ (l,r,nil,nil)∗TLL(l,c,z)∗TLL(r,z,nil) False 4/8 4/7 13/21

non-local systems. Apart from the DLL and TLL predicates from Sect. 2.1, the con-
sidered entailment queries contain the following predicates: DLLrev (resp. DLLmid) that
encodes a DLL from the end (resp. middle), DLL0+ that encodes a possibly empty DLL,
TREEpp encoding trees with parent pointers, TREErev

pp that encodes trees with parent
pointers defined starting with an arbitrary leaf, TLLpp encoding TLLs with parent point-
ers, and TLLrev

pp which encodes TLLs with parent pointers starting from their leftmost
leaf. Columns |Alhs|, |Arhs|, and |Ar

rhs| of Table 1 provide information about the number
of states/transitions of the respective TA. The tool answered all queries correctly (de-
spite the incompleteness for non-local systems), and the running times were all under 1
sec. on a standard PC (Intel Core2 CPU, 3GHz, 4GB RAM).

We also compared the SLIDE tool to the CYCLIST [5] theorem prover on the exam-
ples from the CYCLIST distribution [13]. Both tools run in less than 1 sec. on the ex-
amples from their common fragment of SL. CYCLIST does not handle examples where
rotation is needed, while SLIDE fails on examples that generate an unbounded number
of dangling pointers and are outside of the decidable fragment of [14].

7 Conclusion

We presented a novel decision procedure for the entailment problem in a non-trivial
subset of SL with inductive predicates, which deals with the problem that the same
recursive structure may be represented differently, when viewed from different entry
points. To this end, we use a special operation, which closes a given TA representation
w.r.t. the rotations of its spanning trees. Our procedure is sound and complete for induc-
tive systems with local edges. We have implemented a prototype tool which we tested
through a number of non-trivial experiments, with encouraging results.
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Abstraction Refinement and Antichains for Trace
Inclusion of Infinite State Systems
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Abstract. A data automaton is a finite automaton equipped with variables (coun-
ters or registers) ranging over infinite data domains. A trace of a data automaton
is an alternating sequence of alphabet symbols and values taken by the counters
during an execution of the automaton. The problem addressed in this paper is
the inclusion between the sets of traces (data languages) recognized by such au-
tomata. Since the problem is undecidable in general, we give a semi-algorithm
based on abstraction refinement, which is proved to be sound and complete mod-
ulo termination. Due to the undecidability of the trace inclusion problem, our
procedure is not guaranteed to terminate. We have implemented our technique in
a prototype tool and show promising results on several non-trivial examples.

1 Introduction

In this paper, we address a trace inclusion problem for infinite-state systems. Given
(i) a network of data automata A “ xA1, . . . ,ANy that communicate via a set of shared
variables xA , ranging over an infinite data domain, and a set of input events ΣA , and
(ii) a data automaton B whose set of variables xB is a subset of xA , does the set of (finite)
traces of B contain the traces of A? Here, by a trace, we understand an alternating
sequence of valuations of the variables from the set xB and input events from the set
ΣA XΣB, starting and ending with a valuation. Typically, the network of automata A is
an implementation of a concurrent system and B is a specification of the set of good
behaviors of the system.

Consider, for instance, the network xA1, . . . ,ANy of data automata equipped with the
integer-valued variables x and v shown in Fig. 1 (left). The automata synchronize on the
init symbol and interleave their a1,...,N actions. Each automaton Ai increases the shared
variable x and writes its identifier i into the shared variable v as long as the value of x is
in the interval rpi´1q∆, i∆´1s, and it is inactive outside this interval, where ∆ě 1 is an
unbounded parameter of the network. A possible specification for this network might
require that each firing sequence is of the form init a˚1,...,N a2 a˚2,...,N . . .ai ai̊ for some
1 ď i ď N, and that v is increased only on the first occurrence of the events a2, . . . ,ai,
in this order. This condition is encoded by the automaton B (Fig. 1, right). Observe that
only the v variable is shared between the network xA1, . . . ,ANy and the specification

‹ Supported by the French National Research Agency project VECOLIB (ANR-14-CE28-0018).
‹‹ Supported by the Czech Science Foundation project 14-11384S, the IT4IXS: IT4Innovations

Excellence in Science project (LQ1602), and the internal BUT project FIT-S-14-2486.
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p0qi
0 p1

v1 “ 1
init a2

a1...N

v1 “ v`1

a2...N aN

aN

v1 “ v`1
pN. . .qi

1

x1 “ 0

init
v1 “ 1

v1 “ v

p2

v1 “ v v1 “ v

ai
ąą

Ai“1,...,N Bpi´1q∆ď xă i∆
∆1 “ ∆v1 “ ix1 “ x`1

Fig. 1. An instance of the trace inclusion problem.

automaton B—we say that v is observable in this case. An example of a trace, for ∆“ 2
and N ě 3, is: pv“ 0q init pv“ 1q a1 pv“ 1q a1 pv“ 1q a2 pv“ 2q a2 pv“ 2q a3 pv“ 3q.
Our problem is to check that this, and all other traces of the network, are included in
the language of the specification automaton, called the observer.

The trace inclusion problem has several applications, some of which we detail next.
As the first potential application domain, we mention decision procedures for logics de-
scribing array structures in imperative programs [17, 16] that use a translation of array
formulae to integer counter automata, which encode the set of array models of a for-
mula. The expressiveness of such logics is currently limited by the decidability of the
emptiness (reachability) problem for counter automata. If we give up on decidability,
we can reduce an entailment between two array formulae to the trace inclusion of two
integer counter automata, and use the method presented in this paper as a semi-decision
procedure. To assess this claim, we have applied our trace inclusion method to several
verification conditions for programs with unbounded arrays of integers [7].

Another application is within the theory of timed automata and regular specifica-
tions of timed languages [2] that can be both represented by finite automata extended
with real-valued variables [14]. The verification problem boils down to the trace inclu-
sion of two real-valued data automata. Our method has been tested on several timed
verification problems, including communication protocols and boolean circuits [27].

When developing a method for checking the inclusion between trace languages of
automata extended with variables ranging over infinite data domains, the first problem
is the lack of determinization and/or complementation results. In fact, certain classes
of infinite state systems, such as timed automata [2], cannot be determinized and are
provably not closed under complement. This is the case due to the fact that the clock
variables of a timed automaton are not observable in its timed language, which records
only the time lapses between successive events. However, if we require that the values
of all variables of a data automaton be part of its trace language, we obtain a deter-
minization result, which generalizes the classical subset construction by taking into
account the data valuations. Building on this first result, we define the complement of
a data language and reduce the trace inclusion problem to the emptiness of a product
data automaton LpAˆBq “ H. It is crucial, for this reduction, that the variables xB of
the right-hand side data automaton B (the one being determinized) are also controlled
by the left-hand side automaton A, in other words, that B has no hidden variables.

The language emptiness problem for data automata is, in general, undecidable [23].
Nevertheless, several semi-algorithms and tools for this problem (better known as the
reachability problem) have been developed [3, 19, 22, 15]. Among those, the technique
of lazy predicate abstraction [19] combined with counterexample-driven refinement us-
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ing interpolants [22] has been shown to be particularly successful in proving emptiness
of rather large infinite-state systems. Moreover, this technique shares similar aspects
with the antichain-based algorithm for language inclusion in the case of a finite alpha-
bet [1]. An important similarity is that both techniques use a partial order on states, to
prune the state space during the search.

The main result of this paper is a semi-algorithm that combines the principle of the
antichain-based language inclusion algorithm [1] with the interpolant-based abstraction
refinement semi-algorithm [22], via a general notion of language-based subsumption
relation. We have implemented our semi-algorithm in a prototype tool and carried out
a number of experiments, involving hardware, real-time systems, and array logic prob-
lems. Since our procedure tests inclusion within a set of good traces, instead of empty
intersection with a set of error traces, we can encode rather complex verification condi-
tions concisely, by avoiding the blowup caused by an a-priori complementation of the
automaton encoding the property.

1.1 Overview

pxq1
1 ,q

2
1y,H,Jq

∆ă x

pxq1
1 ,q

2
1y,H,v“ 1q

v“ 2

init

a1 a2

pxq1
1 ,q

2
1y,H,∆ă xq

a1
pxq1

1 ,q
2
1y,tp2u,

∆ă x^ v“ 2q

v“ 1
pxq1

1 ,q
2
1y,tp1u,Jq

a1

pxq1
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1y,tp1u,v“ 1q
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1y,tp1u,v“ 1q pxq1
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1y,tp1u,v“ 1q
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1 ,q

2
1y,tp1u,v“ 1q

pivot

pxq1
1 ,q

2
1y,tp1u,v“ 1q

pxq1
1 ,q

2
1y,tp2u,

pxq1
1 ,q

2
1y,tp1u,
v“ 1q

a2

a2

∆ă x^ v“ 2q(c) (d)

init

pxq1
0 ,q

2
0y,tp0u,Jq pxq1

0 ,q
2
0y,tp0u,Jq

pxq1
0 ,q

2
0y,tp0u,Jq pxq1

0 ,q
2
0y,tp0u,Jq

init init

Fig. 2. Sample run of our semi-algorithm.

We introduce the reader to our
trace inclusion method by means
of an example. For space reasons,
all proofs are given in an extended
version of the paper [21].

Let us consider the network
of data automata xA1,A2y and the
data automaton B from Fig. 1. We
prove that, for any value of ∆, any
trace of the network xA1,A2y, ob-
tained as an interleaving of the ac-
tions of A1 and A2, is also a trace
of the observer B. To this end,
our procedure will fire increas-
ingly longer sequences of input
events, in search for a counterex-
ample trace. We keep a set of predicates associated with each state pxq1,q2y,Pq of the
product automaton where qi is a state of Ai and P is a set of states of B. These predicates
are formulae that define over-approximations of the data values reached simultaneously
by the network, when Ai is the state qi, and by the observer B, in every state from P.

The first input event is init, on which A1 and A2 synchronize, moving together from
the initial state xq1

0,q
2
0y to xq1

1,q
2
1y. In response, B can chose to either (i) move from

tp0u to tp1u, matching the only transition rule from p0, or (ii) ignore the transition rule
and move to the empty set. In the first case, the values of v match the relation of the

rule p0
init,v1“1ÝÝÝÝÑ p1, while in the second case, these values match the negated relation

 pv1 “ 1q. The second case is impossible because the action of the network requires
x1 “ 0^ v1 “ 1. The only successor state is thus pxq1

1,q
2
1y,tp1uq in Fig. 2 (a). Since no

predicates are initially available at this state, the best over-approximation of the set of
reachable data valuations is the universal set (J).
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The second input event is a1, on which A1 moves from q1
1 back to itself, while A2

makes an idle step because no transition with a1 is enabled from q2
1. Again, B has the

choice between moving from tp1u either toH or tp1u. Let us consider the first case, in
which the successor state is pxq1

1,q
2
1y,H,Jq. Since q1

1 and q2
1 are final states of A1 and

A2, respectively, and no final state of B is present inH, we say that the state is accepting.
If the accepting state (in dashed boxes in Fig. 2) is reachable according to the transition
constraints along the input sequence init.a1, we have found a counterexample trace that
is in the language of xA1,A2y but not in the language of B.

To verify the reachability of the accepting state, we check the satisfiability of the
path formula corresponding to the composition of the transition constraints x1 “ 0^
v1 “ 1 (init) and 0 ď x ă ∆^ x1 “ x` 1^ v1 “ 1^ pv1 “ vq (a1) in Fig. 2 (a). This
formula is unsatisfiable, and the proof of infeasibility provides the interpolant xv“ 1y.
This formula is an explanation for the infeasibility of the path because it is implied by
the first constraint and it is unsatisfiable in conjunction with the second constraint. By
associating the new predicate v “ 1 with the state pxq1

1,q
2
1y,tp1uq, we ensure that the

same spurious path will never be explored again.
We delete the spurious counterexample and recompute the states along the input

sequence init.a1 with the new predicate. In this case, pxq1
1,q

2
1y,Hq is unreachable, and

the outcome is pxq1
1,q

2
1y,tp1u,v“ 1q. However, this state was first encountered after the

sequence init, so there is no need to store a second occurrence of this state in the tree.
We say that init.a1 is subsumed by init, depicted by a dashed arrow in Fig. 2 (b).

We continue with a2 from the state pxq1
1,q

2
1y,tp1u,v“ 1q. In this case, A1 makes an

idle step and A2 moves from q2
1 to itself. In response, B has the choice between moving

from tp1u to either (i) tp1u with the constraint v1 “ v, (ii) tp2u with the constraint
v1 “ v`1, (iii) tp1, p2u with the constraint v1 “ v^ v1 “ v`1ÑK (this possibility is
discarded), (iv) H for data values that satisfy  pv1 “ vq^ pv1 “ v`1q. The last case
is also discarded because the value of v after init constrained to 1 and the A2 imposes
further the constraint v1 “ 2 and v“ 1^v1 “ 2^ pv1 “ vq^ pv1 “ v`1qÑK. Hence,
the only a2-successor of pxq1

1,q
2
1y,tp1u,v“ 1q is pxq1

1,q
2
1y,tp2u,Jq, in Fig. 2 (b).

By firing the event a1 from this state, we reach pxq1
1,q

2
1y,H,v“ 1q, which is, again,

accepting. We check whether the path init.a2.a1 is feasible, which turns out not to
be the case. For efficiency reasons, we find the shortest suffix of this path that can be
proved infeasible. It turns out that the sequence a2.a1 is infeasible starting from the state
pxq1

1,q
2
1y,tp1u,v “ 1q, which is called the pivot. This proof of infeasibility yields the

interpolant xv“ 1,∆ă xy, and a new predicate ∆ă x is associated with pxq1
1,q

2
1y,tp2uq.

The refinement phase rebuilds only the subtree rooted at the pivot state, in Fig. 2 (b).
The procedure then builds the tree on Fig. 2 (c) starting from the pivot node and finds

the accepting state pxq1
1,q

2
1y,H,∆ ă xq as the result of firing the sequence init.a2.a2.

This path is spurious, and the new predicate v “ 2 is associated with the location
pxq1

1,q
2
1y,tp2uq. The pivot node is the same as in Fig. 2 (b), and, by recomputing the

subtree rooted at this node with the new predicates, we obtain the tree in Fig. 2 (d), in
which all frontier nodes are subsumed by their predecessors. Thus, no new event needs
to be fired, and the procedure can stop reporting that the trace inclusion holds.
Related Work The trace inclusion problem has been previously addressed in the con-
text of timed automata [25]. Although the problem is undecidable in general, decidabil-

179



ity is recovered when the left-hand side automaton has at most one clock, or the only
constant appearing in the clock constraints is zero. These are essentially the only known
decidable cases of language inclusion for timed automata.

The study of data automata [5, 6] usually deals with decision problems in logics de-
scribing data languages for simple theories, typically infinite data domains with equal-
ity. Although our notions of data words and data languages are similar to the classical
ones in the literature [5, 6], the data automata defined in this paper are different from [5],
as well as [6]. The main difference consists in the fact that the existing notions of data
automata are controlled by equivalence relations of finite index, whereas in our case,
the transitions are defined by unrestricted formulae in the first-order theory of the data
domain. Moreover, the emptiness problems [5, 6] are decidable, whereas we consider
an undecidable model that subsumes the existing ones.

Data words are also studied in the context of symbolic visibly pushdown automata
(SVPA) [11]. Language inclusion is decidable for SVPAs with transition guards from
a decidable theory because SVPAs are closed under complement and the emptiness can
be reduced to a finite number of queries expressible in the underlying theory of guards.
Decidability comes here at the cost of reducing the expressiveness and forbidding com-
parisons between adjacent positions in the input (only comparisons between matching
call/return positions of the input nested words are allowed).

Another related model is that of predicate automata [13], which recognize lan-
guages over integer data by labeling the words with conjunctions of uninterpreted pred-
icates. The emptiness problem is undecidable for this model and becomes decidable
when all predicates are monadic. Exploring further the connection between predicate
automata and our definition of data automata could also provide interesting examples
for our method, stemming from verification problems for parallel programs.

Finally, several works on model checking infinite-state systems against CTL [4]
and CTL* [9] specifications are related to our problem as they check inclusion between
the set of computation trees of an infinite-state system and the set of trees defined by
a branching temporal logic specification. The verification of existential CTL formu-
lae [4] is reduced to solving forall-exists quantified Horn clauses by applying coun-
terexample guided refinement to discover witnesses for existentially quantified vari-
ables. The work [9] on CTL* verification of infinite systems is based on partial sym-
bolic determinization, using prophecy variables to summarize the future program exe-
cution. For finite-state systems, automata are a strictly more expressive formalism than
temporal logics3. Such a comparison is, however, non-trivial for infinite-state systems.
Nevertheless, we found the data automata considered in this paper to be a natural tool
for specifying verification conditions of array programs [17, 16, 7] and regular proper-
ties of timed languages [2].

2 Data Automata

Let N denote the set of non-negative integers including zero. For any k, ` P N, k ď `,
we write rk, `s for the set tk,k`1, . . . , `u. We write K and J for the boolean constants

3 For (in)finite words, the class of LTL-definable languages coincides with the star-free lan-
guages, which are a strict subclass of (ω-)regular languages.
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false and true, respectively. Given a possibly infinite data domain D , we denote by
ThpDq “ xD, p1, . . . , pn, f1, . . . , fmy the set of syntactically correct first-order formulae
with predicate symbols p1, . . . , pn and function symbols f1, . . . , fm. A variable x is said
to be free in a formula φ, denoted as φpxq, iff it does not occur under the scope of
a quantifier.

Let x “ tx1, . . . ,xnu be a finite set of variables. A valuation ν : x Ñ D is an as-
signment of the variables in x with values from D . We denote by Dx the set of such
valuations. For a formula φpxq, we denote by ν |ùThpDq φ the fact that substituting each
variable x P x by νpxq yields a valid formula in the theory ThpDq. In this case, ν is
said to be a model of φ. A formula is said to be satisfiable iff it has a model. For
a formula φpx,x1q where x1 “ tx1 | x P xu and two valuations ν,ν1 P Dx, we denote by
pν,ν1q |ùThpDq φ the fact that the formula obtained from φ by substituting each x with
νpxq and each x1 with ν1px1q is valid in ThpDq.
Data Automata. Data Automata (DA) are extensions of non-deterministic finite au-
tomata with variables ranging over an infinite data domain D , equipped with a first
order theory ThpDq. Formally, a DA is a tuple A“ xD,Σ,x,Q, ι,F,∆y, where:

– Σ is a finite alphabet of input events and ˛ P Σ is a special padding symbol,
– x“ tx1, . . . ,xnu is a set of variables,
– Q is a finite set of states, ι P Q is an initial state, F Ď Q are final states, and

– ∆ is a set of rules of the form q
σ,φpx,x1qÝÝÝÝÑ q1 where σ P Σ is an alphabet symbol and

φpx,x1q is a formula in ThpDq.
A configuration of A is a pair pq,νq P QˆDx. We say that a configuration pq1,ν1q is
a successor of pq,νq if and only if there exists a rule q σ,φÝÑ q1 P ∆ and pν,ν1q |ùThpDq φ.

We denote the successor relation by pq,νq σ,φÝÑ Apq1,ν1q, and we omit writing φ and A
when no confusion may arise. We denote by succApq,νq “ tpq1,ν1q | pq,νq ÝÑ Apq1,ν1qu
the set of successors of a configuration pq,νq.

A trace is a finite sequence w “ pν0,σ0q, . . . ,pνn´1,σn´1q,pνn,˛q of pairs pνi,σiq
taken from the infinite alphabet DxˆΣ. A run of A over the trace w is a sequence of
configurations π : pq0,ν0q σ0ÝÑ pq1,ν1q σ1ÝÑ . . .

σn´1ÝÝÝÑ pqn,νnq. We say that the run π is
accepting if and only if qn P F , in which case A accepts w. The language of A, denoted
LpAq, is the set of traces accepted by A.
Data Automata Networks. A data automata network (DAN) is a non-empty tuple
A “ xA1, . . . ,ANy of data automata Ai “ xD,Σi,xi,Qi, ιi,Fi,∆iy, i P r1,Ns whose sets
of states are pairwise disjoint. A DAN is a succinct representation of an exponentially
larger DA Ae “ xD,ΣA ,xA ,QA , ιA ,FA ,∆Ay, called the expansion of A , where:

– ΣA “ Σ1Y . . .YΣN and xA “ x1Y . . .YxN ,
– QA “ Q1ˆ . . .ˆQN , ιA “ xι1, . . . , ιNy and FA “ F1ˆ . . .ˆFN ,
– xq1, . . . ,qNy σ,ϕÝÑxq11, . . . ,q1Ny if and only if (i) for each i P I, there exists ϕi P ThpDq

such that qi
σ,ϕiÝÝÑ q1i P ∆i, (ii) for all i R I, qi “ q1i, and (iii) ϕ ”Ź

iPI ϕi^Ź
jRI τ j,

where I “ ti P r1,Ns | qi
σ,ϕiÝÝÑ q1i P ∆iu is the set of DA that can move from qi to

q1i while reading the input symbol σ, and τ j ”Ź
xPx jzpŤiPI xiq x1 “ x propagates the

values of the local variables in A j that are not updated by tAiuiPI .
Intuitively, all automata that can read an input symbol synchronize their actions on that
symbol whereas the rest of the automata make an idle step and copy the values of their
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local variables which are not updated by the active automata. The language of the DAN
A is defined as the language of its expansion DA, i.e. LpAq “ LpAeq.
Trace Inclusion. Let A be a DAN and Ae“xD,Σ,xA ,QA , ιA ,FA ,∆Ay be its expansion.
For a set of variables y Ď xA , we denote by νÓy the restriction of a valuation ν P DxA

to the variables in y. For a trace w“ pν0,σ0q, . . . ,pνn,˛q P pDxA ˆΣAq˚, we denote by
wÓy the trace pν0Óy,σ0q, . . . ,pνn´1Óy,σn´1q,pνnÓy,˛q P pDyˆΣq˚. We lift this notion
to sets of words in the natural way, by defining LpAqÓy “

 
wÓy | w P LpAq(.

We are now ready to define the trace inclusion problem on which we focus in this
paper. Given a DAN A as before and a DA B “ xD,Σ,xB,QB, ιB,FB,∆By such that
xB Ď xA , the trace inclusion problem asks whether LpAqÓxB

Ď LpBq? The right-hand
side DA B is called observer, and the variables in xB are called observable variables.

2.1 Boolean Closure Properties of Data Automata

Let A “ xD,Σ,x,Q, ι,F,∆y be a DA for the rest of this section. A is said to be deter-
ministic if and only if, for each trace w P LpAq, A has at most one run over w. The
first result of this section is that, interestingly, any DA can be determinized while pre-
serving its language. The determinization procedure is a generalization of the classi-
cal subset construction for Rabin-Scott word automata on finite alphabets. The reason
why determinization is possible for automata over an infinite data alphabet DxˆΣ is
that the successive values taken by each variable x P x are tracked by the language
LpAq Ď pDxˆΣq˚. This assumption is crucial: a typical example of automata over an
infinite alphabet, that cannot be determinized, are timed automata [2], where only the
elapsed time is reflected in the language, and not the values of the variables (clocks).

Formally, the deterministic DA accepting the language LpAq is defined as Ad “
xD,Σ,x,Qd , ιd ,Fd ,∆dy, where Qd “ 2Q, ιd “ tιu, Fd “ tPĎ Q | PXF ‰Hu and ∆d

is the set of rules P σ,θÝÑ P1 such that:
– for all p1 P P1 there exists p P P and a rule p σ,ψÝÑ p1 P ∆,
– θpx,x1q ”Ź

p1PP1
Ž

p
σ,ψÝÑp1P∆

pPP

ψ^Ź
p1PQzP1

Ź
p

σ,ϕÝÑp1P∆
pPP

 ϕ .

The main difference with the classical subset construction for Rabin-Scott automata
is that here we consider all sets P1 of states that have a predecessor in P, not just the
maximal such set. The reason is that a set P1 is not automatically subsumed by the union
of all such sets due to the data constraints on the variables x. Observe, moreover, that
Ad can be built for any theory ThpDq that is closed under conjunction and negation.

Lemma 1. Given a DA A“ xD,Σ,x,Q, ι,F,∆y, (1) for any w P pDxˆΣq˚ and P PQd ,
Ad has exactly one run on w that starts in P, and (2) LpAq “ LpAdq.

The construction of a deterministic DA recognizing the language of A is key to
defining a DA that recognizes the complement of A. Let A“xD,Σ,x,Qd , ιd ,QdzFd ,∆dy.
In other words, A has the same structure as Ad , and the set of final states consists of those
subsets that contain no final state, i.e. tPĎ Q | PXF “Hu. Using Lemma 1, it is not
difficult to show that LpAq “ pDxˆΣq˚ zLpAq.

Next, we show closure of DA under intersection. Let B “ xD,Σ,x,Q1, ι1,F 1,∆1y be
a DA and define AˆB“ xD,Σ,x,QˆQ1,pι, ι1q,FˆF 1,∆ˆy, where pq,q1q σ,ϕÝÑ pp, p1q P
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∆ˆ if and only if q σ,φÝÑ p P ∆, q1 σ,ψÝÑ p1 P ∆1 and ϕ” φ^ψ. It is easy to show that LpAˆ
Bq “ LpAqXLpBq. DA are also closed under union, since LpAqYLpBq “ LpAˆBq.

Let us turn now to the trace inclusion problem. The following lemma shows that
this problem can be effectively reduced to an equivalent language emptiness problem.
However, note that this reduction does not work when the trace inclusion problem is
generalized by removing the condition xB Ď xA. In other words, if the observer uses lo-
cal variables not shared with the network4, i.e. xBzxA ‰H, the generalized trace inclu-
sion problem LpAqÓxAXxB

Ď LpBqÓxAXxB
has a negative answer iff there exists a trace

w“pν0,σ0q, . . . ,pνn,˛q PLpAq such that, for all valuations µ0, . . . ,µn PDxBzxA , we have
w1 “ pν0 ÓxAXxB

Y µ0,σ0q, . . . ,pνn ÓxAXxB
Y µn,˛q R LpBq. This kind of quantifier alter-

nation cannot be easily accommodated within the framework of language emptiness, in
which only one type of (existential) quantifier occurs.

Lemma 2. Given DA A “ xD,Σ,xA,QA, ιA,FA,∆Ay and B “ xD,Σ,xB,QB, ιB,FB,∆By
such that xB Ď xA. Then LpAqÓxB

Ď LpBq if and only if LpAˆBq “H.

The trace inclusion problem is undecidable, which can be shown by reduction from
the language emptiness problem for DA (take B such that LpBq “ H). However the
above lemma shows that any semi-decision procedure for the language emptiness prob-
lem can also be used to deal with the trace inclusion problem.

3 Abstract, Check, and Refine for Trace Inclusion

This section describes our semi-algorithm for checking the trace inclusion between
a given network A and an observer B. Let Ae denote the expansion of A , defined in
the previous. In the light of Lemma 2, the trace inclusion problem LpAqÓxB

Ď LpBq,
where the set of observable variables xB is included in the set of network variables, can
be reduced to the language emptiness problem LpAeˆBq “H.

Although language emptiness is undecidable for data automata [23], several cost-
effective semi-algorithms and tools [18, 22, 15, 3] have been developed, showing that it
is possible, in many practical cases, to provide a yes/no answer to this problem. How-
ever, to apply one of the existing off-the-shelf tools to our problem, one needs to build
the product automaton AeˆB prior to the analysis. Due to the inherent state explosion
caused by the interleaving semantics of the network as well as by the complementation
of the observer, such a solution would not be efficient in practice.

To avoid building the product automaton, our procedure builds on-the-fly an over-
approximation of the (possibly infinite) set of reachable configurations of AeˆB. This
over-approximation is defined using the approach of lazy predicate abstraction [18],
combined with counterexample-driven abstraction refinement using interpolants [22].
We store the explored abstract states in a structure called an antichain tree. In general,
antichain-based algorithms [28] store only states which are incomparable w.r.t. a partial
order called subsumption. Our method can be thus seen as an extension of the antichain-
based language inclusion algorithm [1] to infinite-state systems by means of predicate

4 For timed automata, this is the case since the only shared variable is the time, and the observer
may have local clocks.
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abstraction and interpolation-based refinement. Since the trace inclusion problem is
undecidable in general, termination of our procedure is not guaranteed; in the following,
we shall, however, call our procedure an algorithm for the sake of brevity.

3.1 Antichain Trees

We define antichain trees, which are the main data structure of the trace inclusion proce-
dure. Let A “xA1, . . . ,ANy be a network of automata where Ai“xD,Σi,xi,Qi, ιi,Fi,∆iy,
for all i P r1,Ns, and let B “ xD,Σ,xB,QB, ιB,FB,∆By be an observer such that xB ĎŤN

i“1 xi. We also denote by Ae “ xD,ΣA ,xA ,QA , ιA ,FA ,∆Ay the expansion of the net-
work A and by AeˆB “ xD,ΣA ,xA ,Qp, ιp,F p,∆py the product automaton used for
checking language inclusion.

An antichain tree for the network A and the observer B is a tree whose nodes are
labeled by product states (see Fig. 2 for examples). Intuitively, a product state is an
over-approximation of the set of configurations of the product automaton AeˆB that
share the same control state. Formally, a product state for A and B is a tuple s“pq,P,Φq
where (i) pq,Pq is a state of AeˆB with q“ xq1, . . . ,qNy being a state of the network
expansion Ae and P being a set of states of the observer B, and (ii) ΦpxAq P ThpDq
is a formula which defines an over-approximation of the set of valuations of the vari-
ables xA that reach the state pq,Pq in Ae ˆ B. A product state s “ pq,P,Φq is a fi-
nite representation of a possibly infinite set of configurations of Ae ˆB, denoted as
rrsss “ tpq,P,νq | ν |ùThpDq Φu.

To build an over-approximation of the set of reachable states of the product au-
tomaton, we need to compute, for a product state s, an over-approximation of the set of
configurations that can be reached in one step from s. To this end, we define first a finite
abstract domain of product states, based on the notion of predicate map. A predicate
map is a partial function that associates sets of facts about the values of the variables
used in the product automaton, called predicates, with components of a product state,
called substates. The reason behind the distribution of predicates over substates is two-
fold. First, we would like the abstraction to be local, i.e. the predicates needed to define
a certain subtree in the antichain must be associated with the labels of that subtree only.
Second, once a predicate appears in the context of a substate, it should be subsequently
reused whenever that same substate occurs as part of another product state.

Formally, a substate of a state pxq1, . . . ,qNy,Pq PQp of the product automaton Aeˆ
B is a pair pxqi1 , . . . ,qiky,Sq such that (i) xqi1 , . . . ,qiky is a subsequence of xq1, . . . ,qNy,
and (ii) S‰H only if SXP‰H. We denote the substate relation by pxqi1 , . . . ,qiky,Sq Ÿpxq1, . . . ,qNy,Pq. The substate relation requires the automata Ai1 , . . . ,Aik of the network
A to be in the control states qi1 , . . . ,qik simultaneously, and the observer B to be in
at least some state of S provided S ‰ H (if S “ H, the state of B is considered to be
irrelevant). Let SxA ,By “ tr | Dq P Qp . r Ÿ qu be the set of substates of a state of AeˆB.

A predicate map Π : SxA ,By Ñ 2ThpDq associates each substate pr,Sq P Qi1 ˆ . . .ˆ
Qik ˆ2QB with a set of formulae πpxq where (i) x “ xi1 Y . . .Yxik YxB if S ‰H, and
(ii) x“ xi1Y . . .Yxik if S“H. Notice that a predicate associated with a substate refers
only to the local variables of those network components Ai1 , . . . ,Aik and of the observer
B that occur in the particular substate.
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We are now ready to define the abstract semantics of the product automaton AeˆB,
induced by a given predicate map. For convenience, we define first a set Postpsq of
concrete successors of a product state s “ pq,P,Φq such that pr,S,Ψq P Postpsq if and
only if (i) the product automaton AeˆB has a rule pq,Pq σ,θÝÑ pr,Sq P ∆p and ΨpxAq Û
K, where ΨpxAq ” Dx1A . Φpx1Aq^θpx1A ,xAq. The set of concrete successors does not
contain states with empty set of valuations; these states are unreachable in AeˆB.

Given a predicate map Π, the set PostΠpsq of abstract successors of a product state
s is defined as follows: pr,S,Ψ7q P PostΠpsq if and only if (i) there exists a product state
pr,S,Ψq P Postpsq and (ii) Ψ7pxAq ”

Ź
rŸpr,Sq

Źtπ PΠprq |ΨÑ πu. In other words,
the set of data valuations that are reachable by an abstract successor is the tightest over-
approximation of the concrete set of reachable valuations, obtained as the conjunction
of the available predicates from the predicate map that over-approximate this set.

Finally, an antichain tree (or, simply antichain) T for A and B is a tree whose
nodes are labeled with product states and whose edges are labeled by input symbols and
concrete transition relations. Let N˚ be the set of finite sequences of natural numbers
that denote the positions in the tree. For a tree position p PN˚ and i PN, the position p.i
is a child of p. A set SĎN˚ is said to be prefix-closed if and only if, for each p P S and
each prefix q of p, we have q P S as well. The root is denoted by the empty sequence ε.

Formally, an antichain T is a set of pairs xs, py, where s is a product state and
p P N˚ is a tree position, such that (1) for each position p P N˚ there exists at most
one product state s such that xs, py P T , (2) the set tp | xs, py P T u is prefix-closed,
(3) prootxA ,By,εq P T where rootxA ,By “ pxι1, . . . , ιNy,tιBu,Jq is the label of the root,
and (4) for each edge pxs, py,xt, p.iyq in T , there exists a predicate map Π such that t P
PostΠpsq. For the latter condition, if s“ pq,P,Φq and t “ pr,S,Ψq, there exists a unique
rule pq,Pq σ,θÝÑ pr,Sq P ∆p, and we shall sometimes denote the edge as s σ,θÝÑ t or simply
s θÝÑ t when the tree positions are not important.

Each antichain node n “ ps,d1 . . .dkq P T is naturally associated with a path from

the root to itself ρ : n0
σ1 ,θ1ÝÝÝÑ n1

σ2 ,θ2ÝÝÝÑ . . .
σ2 ,θkÝÝÑ nk. We denote by ρi the node ni for each

i P r0,ks, and by |ρ| “ k the length of the path. The path formula associated with ρ is
Θpρq ”Źk

i“1 θpxi´1
A ,xi

Aq where xi
A “

 
xi | x P xA

(
is a set of indexed variables.

3.2 Counterexample-driven Abstraction Refinement

A counterexample is a path from the root of the antichain to a node which is labeled
by an accepting product state. A product state pq,P,Φq is said to be accepting iff pq,Pq
is an accepting state of the product automaton AeˆB, i.e. q P FA and PXFB “ H.
A counterexample is said to be spurious if its path formula is unsatisfiable, i.e. the
path does not correspond to a concrete execution of AeˆB. In this case, we need to
(i) remove the path ρ from the current antichain and (ii) refine the abstract domain in
order to exclude the occurrence of ρ from future state space exploration.

Let ρ : rootxA ,By “ pq0,P0,Φ0q θ1ÝÑ pq1,P1,Φ1q θ2ÝÑ . . .
θkÝÑ pqk,Pk,Φkq be a spurious

counterexample in the following. For efficiency reasons, we would like to save as much
work as possible and remove only the smallest suffix of ρ which caused the spurious-
ness. For some j P r0,ks, let Θ jpρq ” Φ jpx0

Aq^
Źk

i“ j θipxi´ j
A ,xi´ j`1

A q be the formula
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defining all sequences of data valuations that start in the set Φ j and proceed along the
suffix pq j,Pj,Φ jq ÝÑ . . .ÝÑ pqk,Pk,Φkq of ρ. The pivot of a path ρ is the maximal posi-
tion j P r0,ks such that Θ jpρq “ K, and ´1 if ρ is not spurious.

Finally, we describe the refinement of the predicate map, which ensures that a given
spurious counterexample will never be found in a future iteration of the abstract state
space exploration. The refinement is based on the notion of interpolant [22].

Definition 1. Given a formula Φpxq and a sequence xθ1px,x1q, . . . ,θkpx,x1qy of formu-
lae, an interpolant is a sequence of formulae I “ xI0pxq, . . . , Ikpxqy where: (1) ΦÑ I0,
(2) Ik ÑK, and (3) Ii´1pxq^θipx,x1q Ñ Iipx1q for all i P r1,ks.
Any given interpolant is a witness for the unsatisfiability of a (suffix) path formula
Θ jpρq. Dually, if Craig’s Interpolation Lemma [10] holds for the considered first-order
data theory ThpDq, any infeasible path formula is guaranteed to have an interpolant.

Given a spurious counterexample ρ with pivot jě 0, an interpolant I“xI0, . . . , Ik´ jy
for the infeasible path formula Θ jpρq can be used to refine the abstract domain by aug-
menting the predicate map Π. As an effect of this refinement, the antichain construction
algorithm will avoid every path with the suffix pq j,Pj,Φ jq ÝÑ . . .ÝÑ pqk,Pk,Φkq in a fu-
ture iteration. If Ii ô C1

i py1q^ . . .^Cmi
i pymiq is a conjunctive normal form (CNF) of

the i-th component of the interpolant, we consider the substate pr`i ,S`i q for each C`
i py`q

where l P r1,mis:
– r`i “ xqi1 , . . . ,qihy where 1 ď i1 ă . . . ă ih ď N is the largest sequence of indices

such that xigXy` ‰H for each g P r1,hs and the set xig of variables of the network
component DA Aig ,

– S`i “ Pj if xBXy` ‰H, and S`i “H, otherwise.

A predicate map Π is said to be compatible with a spurious path ρ : s0
θ1ÝÑ . . .

θkÝÑ sk
with pivot j ě 0 if s j “ pq j,Pj,Φ jq and there is an interpolant I “ xI0, . . . , Ik´ jy of the
suffix xθ1, . . . ,θky wrt. Φ j such that, for each clause C of some equivalent CNF of Ii,
i P r0,k´ js, it holds that C P Πprq for some substate r Ÿ si` j. The following lemma
proves that, under a predicate map compatible with a spurious path ρ, the antichain
construction will exclude further paths that share the suffix of ρ starting with its pivot.

Lemma 3. Let ρ : pq0,P0,Φ0q θ0ÝÑ pq1,P1,Φ1q θ1ÝÑ . . .
θk´1ÝÝÑ pqk,Pk,Φkq be a spurious

counterexample and Π be a predicate map compatible with ρ. Then, there is no se-
quence of product states pq j,Pj,Ψ0q, . . . ,pqk,Pk,Ψk´ jq such that: (1) Ψ0 Ñ Φ j and
(2) pqi`1,Pi`1,Ψi´ j`1q P PostΠppqi,Pi,Ψi´ jqq for all i P r j,k´1s.

Observe that the refinement induced by interpolation is local since Π associates
sets of predicates with substates of the states in AeˆB, and the update impacts only the
states occurring within the suffix of that particular spurious counterexample.

3.3 Subsumption

The main optimization of antichain-based algorithms [1] for checking language inclu-
sion of automata over finite alphabets is that product states that are subsets of already
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visited states are never stored in the antichain. On the other hand, language empti-
ness semi-algorithms, based on predicate abstraction [22] use a similar notion to cover
newly generated abstract successor states by those that were visited sooner and that rep-
resent larger sets of configurations. In this case, state coverage does not only increase
efficiency but also ensures termination of the semi-algorithm in many practical cases.

In this section, we generalize the subset relation used in classical antichain algo-
rithms with the notion of coverage from predicate abstraction, and we define a more
general notion of subsumption for data automata. Given a state pq,Pq of the product
automaton AeˆB and a valuation ν P DxA , the residual language Lpq,P,νqpAeˆBq is
the set of traces w accepted by Ae ˆ B from the state pq,Pq such that ν is the first
valuation which occurs on w. This notion is then lifted to product states as follows:
LspAeˆBq “Ť

pq,P,νqPrrsssLpq,P,νqpAeˆBq where rrsss is the set of configurations of the
product automaton AeˆB represented by the given product state s.

Definition 2. Given a DAN A and a DA B, a partial order Ď is a subsumption provided
that, for any two product states s and t, we have s Ď t only if LspAeˆBq Ď LtpAeˆBq.

A procedure for checking the emptiness of AeˆB needs not continue the search
from a product state s if it has already visited a product state t that subsumes s. The in-
tuition is that any counterexample discovered from s can also be discovered from t. The
trace inclusion semi-algorithm described below in Section 3.4 works, in principle, with
any given subsumption relation. In practice, our implementation uses the subsumption
relation defined by the lemma below:

Lemma 4. The relation defined s.t. pq,P,ΦqĎimg pr,S,Ψqô q“ r, PĚ S, and ΦÑΨ
is a subsumption.

3.4 The Trace Inclusion Semi-algorithm

With the previous definitions, Algorithm 1 describes the procedure for checking trace
inclusion. It uses a classical work-list iteration loop (lines 2-30) that builds an antichain
tree by simultaneously unfolding the expansion Ae of the network A and the comple-
ment B of the observer B, while searching for a counterexample trace w P LpAeˆBq.
Both Ae and B are built on-the-fly, during the abstract state space exploration.

The processed antichain nodes are kept in the set Visited, and their abstract suc-
cessors, not yet processed, are kept in the set Next. Initially, Visited“H and Next“ 

rootA ,B
(

. The algorithm uses a predicate map Π, which is initially empty (line 1). We
keep a set of subsumption edges Subsume Ď VisitedˆpVisitedYNextq with the
following meaning: pxs, py,xt,qyq P Subsume for two antichain nodes, where s, t are
product states and p,q P N˚ are tree positions, if and only if there exists an abstract
successor s1 P PostΠpsq such that s1 Ď t (Definition 2). Observe that we do not explic-
itly store a subsumed successor of a product state s from the antichain; instead, we add
a subsumption edge between the node labeled with s and the node that subsumes that
particular successor. The algorithm terminates when each abstract successors of a node
from Next is subsumed by some node from Visited.

An iteration of Algorithm 1 starts by choosing an antichain node curr“ xs, py from
Next and moving it to Visited (line 3). If the product state s is accepting (line 5) we
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Algorithm 1 Trace Inclusion Semi-algorithm
input:

1. a DAN A “ xA1, . . . ,ANy such that Ai “ xD,Σi,xi,Qi, ιi,Fi,∆iy for all i P r1,Ns,
2. a DA B“ xD,Σ,xB,QB, ιB,FB,∆By such that xB ĎŤN

i“1 xi .
output: true if LpAqÓxB

Ď LpBq, otherwise a trace τ P LpAqÓxB
zLpBq .

1: ΠÐH, VisitedÐH, NextÐxrootxA ,By,εy, SubsumeÐH
2: while Next‰H do
3: choose curr P Next and move curr from Next to Visited
4: match curr with xs, py
5: if s is an accepting product state then
6: let ρ be the path from the root to curr and k be the pivot of ρ
7: if kě 0 then
8: ΠÐ REFINEPREDICATEMAPBYINTERPOLATIONpΠ,ρ,kq
9: remÐ SUBTREEpρkq
10: for pn,mq P Subsume such that m P rem do
11: move n from Visited to Next
12: remove rem from pVisited,Next,Subsumeq
13: add ρk to Next
14: else
15: return EXTRACTCOUNTEREXAMPLEpρq
16: else
17: iÐ 0
18: for t P PostΠpsq do
19: if there exists m“ xt1, p1y P Visited such that t Ď t1 then
20: add pcurr,mq to Subsume
21: else
22: remÐtn P Next | n“ xt1, p1y and t1 < tu
23: succÐxt, p.iy
24: iÐ i`1
25: for n P Visited such that n has a successor m P rem do
26: add pn,succq to Subsume

27: for pn,mq P Subsume such that m P rem do
28: add pn,succq to Subsume

29: remove rem from pVisited,Next,Subsumeq
30: add succ to Next

check the counterexample path ρ, from the root of the antichain to curr, for spurious-
ness, by computing its pivot k. If k ě 0, then ρ is a spurious counterexample (line 7),
and the path formula of the suffix of ρ, which starts with position k, is infeasible. In this
case, we compute an interpolant for the suffix and refine the current predicate map Π by
adding the predicates from the interpolant to the corresponding substates of the product
states from the suffix (line 8).

The computation of the interpolant and the update of the predicate map are done
by the REFINEPREDICATEMAPBYINTERPOLATION function using the approach de-
scribed in Section 3.2. Subsequently, we remove (line 12) from the current antichain the
subtree rooted at the pivot node ρk, i.e. the k-th node on the path ρ (line 9), and add ρk
to Next in order to trigger a recomputation of this subtree with the new predicate map.
Moreover, all nodes with a successor previously subsumed by a node in the removed
subtree are moved from Visited back to Next in order to reprocess them (line 11).

On the other hand, if the counterexample ρ is found to be real (k “ ´1), any valu-
ation ν PŤ|ρ|i“0 Dxi

A that satisfies the path formula Θpρq yields a counterexample trace
w P LpAq ÓxB

zLpBq, obtained by ignoring all variables from xAzxB (line 15).
If the current node is not accepting, we generate its abstract successors (line 18). In

order to keep in the antichain only nodes that are incomparable w.r.t. the subsumption
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relation Ď, we add a successor t of s to Next (lines 23 and 30) only if it is not subsumed
by another product state from a node m P Visited. Otherwise, we add a subsumption
edge pcurr,mq to the set Subsume (line 20). Furthermore, if t is not subsumed by
another state in Visited, we remove from Next all nodes xt 1, p1y such that t strictly
subsumes t 1 (lines 22 and 29) and add subsumption edges to the node storing t from all
nodes with a removed successor (line 26) or a removed subsumption edge (line 28).

The following theorem shows completeness modulo termination.

Theorem 1. Let A “ xA1, . . . ,ANy be a DAN such that Ai “ xD,Σi,xi,Qi, ιi,Fi,∆iy for
all i P r1,Ns, and let B “ xD,Σ,xB,QB, ιB,FB,∆By be a DA such that xB ĎŤN

i“1 xi. If
Algorithm 1 terminates and returns true on input A and B, then LpAqÓxB

Ď LpBq.
The soundness question “if there exists a counterexample trace w PLpAqÓxB

zLpBq,
will Algorithm 1 discover it?” has a positive answer, when exploring paths in breadth-
first order5. The reason is that any real counterexample corresponds to a finite path
in the antichain, which will be eventually processed. Moreover, a real counterexample
always results in an abstract counterexample, for any given predicate map.

4 Experimental Results

We have implemented Algorithm 1 in a prototype tool6 using the MATHSAT SMT
solver [8] for answering the satisfiability queries and computing the interpolants. The
results of the experiments are given in Tables 1 and 2. The results were obtained on an
Intel i7-4770 CPU @ 3.40GHz machine with 32GB RAM.

Table 1. Experiments with single-component networks.
Example A (|Q|/|∆|) B (|Q|/|∆|) Vars. Res. Time
Arrays shift 3/3 3/4 5 ok ă 0.1s
Array rotation 1 4/5 4/5 7 ok 0.1s
Array rotation 2 8/21 6/24 11 ok 34s
Array split 20/103 6/26 14 ok 4m32s
HW counter 1 2/3 1/2 2 ok 0.2s
HW counter 2 6/12 1/2 2 ok 0.4s
Synchr. LIFO 4/34 2/15 4 ok 2.5s
ABP-error 14/20 2/6 14 cex 2s
ABP-correct 14/20 2/6 14 ok 3s

Table 1 contains experiments
where the network A consists of
a single component. We applied
the tool on several verification con-
ditions generated from imperative
programs with arrays [7] (Array
shift, Array rotation 1+2, Array
split) available online [24]. Then,
we applied it on models of hard-
ware circuits (HW Counter 1+2,
Synchronous LIFO) [26]. Finally, we checked two versions (correct and faulty) of the
timed Alternating Bit Protocol [29].

Table 2 provides a list of experiments where the network A has N ą 1 components.
First, we have the example of Fig. 1 (Running). Next, we have several examples of real-
time verification problems [27]: a controller of a railroad crossing [20] (Train) with
T trains, the Fischer Mutual Exclusion protocol with deadlines ∆ and Γ (Fischer), and
a hardware communication circuit with K stages, composed of timed NOR gates (Stari).
Third, we have modelled a Producer-Consumer example [12] with a fixed buffer size B.
Fourth, we have experimented with several models of parallel programs that manipulate
arrays (Array init, Array copy, Array join) with window size ∆.

5 In fact, our implementation uses a queue to represent the Next set.
6 http://www.fit.vutbr.cz/research/groups/verifit/tools/includer/

189



Table 2. Experiments with multiple-component networks (e.g., 2ˆ2{2`2ˆ3{3 in column A means that A
is a network with 4 components, of which 2 DA with 2 states and 2 rules, and 2 DA with 3 states and 3 rules).

Example N A (|Q|/|∆|) B (|Q|/|∆|) Vars. Res. Time
Running 2 2ˆ2/2 3/4 3 ok 0.2s
Running 10 10ˆ2/2 11/20 3 ok 25s
Train (T “ 5) 7 5ˆ3/3 + 4/4 + 4/4 2/38 1 ok 4s
Train (T “ 20) 22 20ˆ3/3 + 4/4 + 4/4 2/128 1 ok 6m26s
Fischer (∆“ 1, Γ“ 2) 2 2ˆ5/6 1/10 4 ok 8s
Fischer (∆“ 1, Γ“ 2) 3 3ˆ5/6 1/15 4 ok 2m48s
Fischer (∆“ 2, Γ“ 1) 2 2ˆ5/6 1/10 4 cex 3s
Fischer (∆“ 2, Γ“ 1) 3 3ˆ5/6 1/15 4 cex 32s
Stari (K “ 1) 5 4/5 + 2/4 + 5/7 + 5/7 + 5/7 3/6 3 ok 0.5s
Stari (K “ 2) 8 4/5 + 2/4 + 2ˆ5/7 + 2ˆ5/7 + 2ˆ5/7 3/6 3 ok 0.5s
Prod-Cons (B“ 3) 2 4/4 + 4/4 2/7 2 ok 10s
Prod-Cons (B“ 6) 2 4/4 + 4/4 2/7 2 ok 2m32s
Array init (∆“ 2) 5 5ˆ2/2 2/6 2 ok 3s
Array init (∆“ 2) 15 15ˆ2/2 2/16 2 ok 3m15s
Array copy (∆“ 20) 20 20ˆ2/2 2/21 3 ok 0.3s
Array copy (∆“ 20) 150 150ˆ2/2 2/151 3 ok 43s
Array join (∆“ 10) 4 2ˆ2/2 + 2ˆ3/3 2/3 2 ok 6s
Array join (∆“ 20) 6 3ˆ2/2 + 3ˆ3/3 2/4 2 ok 1m9s

For the time being, our implementation is a proof-of-concept prototype that leaves
plenty of room for optimization (e.g. caching intermediate computation results) likely
to improve the performance on more complicated examples. Despite that, we found the
results from Tables 1 and 2 rather encouraging.

5 Conclusions

We have presented an interpolation-based abstraction refinement method for trace in-
clusion between a network of data automata and an observer where the variables used
by the observer are a subset of those used by the network. The procedure builds on
a new determinization result for DAs and combines in a novel way predicate abstrac-
tion and interpolation with antichain-based inclusion checking. The procedure has been
successfully applied to several examples, including verification problems for array pro-
grams, real-time systems, and hardware designs. Future work includes an extension of
the method to data tree automata and its application to logics for heaps with data. Also,
we foresee an extension of the method to handle infinite traces.
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