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Abstract

The recently introduced subspace modeling techniques revolutionized the field of
speaker recognition. Dramatic performance improvements were observed in both speed
and accuracy, which have increased the scale of viable speaker-id systems by several
orders of magnitude. This habilitation thesis reviews the concept of channel com-
pensation, which builds on the subspace modeling idea, and the concept of i-vectors
representing sequences of continuous speech features by a low-dimensional fixed length
vector. The main part of the thesis is an annotated collection of research publications
covering various topics related to these subspace modeling techniques. Different vari-
ants of channel compensation techniques and i-vector models are analyzed and their
applications to different speech processing problems such as speaker, language or emo-
tion recognition are described. A publication that introduces the nowadays popular
technique for i-vector based discriminative adaptation of a speech recognition system
is also included. Conceptually new i-vector based approaches to fusion and to dicrim-
inative training of speaker verification systems are proposed. Recent extensions and
variations of the i-vector concept are discussed: Subspace n-gram model was intro-
duced to model sequences of discrete features in prosodic speaker recognition or to
represent phonotactics in language recognition. A simplified i-vector extraction model
and its dicriminative training is proposed in order to facilitate implementation of i-
vector into resource limited embedded devices. Finally, extensions of i-vector extractor
robust to additive background noise are proposed in the included publications.
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Chapter 1

Introduction

The recently introduced subspace modeling techniques revolutionized the field of
speaker recognition [25, 24, 12, 9]. Dramatic performance improvements were observed
in both speed and accuracy. Over the past few years, error rates have decreased by a
factor of five or more. At the same time, these new techniques have resulted in mas-
sive speed-ups, which have increased the scale of viable speaker-id systems by several
orders of magnitude. These improvements stem from a recent shift in the speaker
modeling paradigm. Only a few years ago, the model for each individual speaker was
trained using data from only that particular speaker. Now, we make use of large
speaker-labeled databases to learn distributions describing inter- and intra-speaker
variability. This allows us to reveal the speech characteristics that are important for
discriminating between speakers.

So-called i-vectors [9], where speech utterances are encoded into low dimensional
fixed-length vectors that preserve information about speaker identity, further revolu-
tionized the fields of speaker recognition. The concept of i-vectors, which now forms
the basis of state-of-the-art systems, enabled new machine learning approaches to
be applied to the speaker identification problem [9, 26, 7]. Inter- and intra-speaker
variability can now be easily modeled using Bayesian approaches, which leads to su-
perior performance [46, 5|. New training strategies can now benefit from the simpler
statistical model form and the inherent speed-up [9, 19, 20].

The concept of subspace modeling, which form the basis of the aforementioned
advances in speaker recognition, is also the focus of this habilitation thesis. The
thesis, which takes form of commented collection of research paper, can be seen as a
summary of my contribution to the topic. The included papers map my original work
and the work done under my supervision or with my significant contribution.

1.1 Organization of the thesis
The thesis starts with a short introduction into speech processing and speaker ver-

ification, where we also discus the main challenge in this task — channel variability.
The thesis continues with a short tutorial on subspace modeling and channel compen-
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sation techniques, which should make the collected research papers more accessible
for a non-expert reader. The final part of the thesis is the collection of publications
organized into three chapters:

Chapter 4 covers publications on the channel compensation techniques based on
subspace modeling. The publications in this chapter describe and analyze different
variants of Joint Factor Analysis model (see section 3.2) and their applications to not
only speaker recognition (sections 4.2, 4.3, 4.7), but also to other speech processing
problems such as language or emotion recognition [23, 29] (sections 4.5, 4.6). It is
worth to note that a great deal of the success of the channel compensation techniques,
which revolutionized speaker recognition and the related fields, has to be attributed
to BUT Speech@FIT research group. In particular, I have developed the channel
compensation techniques for STBU! systems [4] participating in the prestigious NIST
Speaker Recognition Evaluations (SRE) [40]. In NIST SRE 2006 [37] (and the following
evaluations), we have demonstrated the superior performance of the systems based on
the channel compensation techniques described in the included papers (sections 4.2 and
4.3), which resulted in a broad acceptance and further development of these techniques
by the scientific community. After the initial success with the new techniques, I have
put together and led a group of top researchers from the speaker recognition field at
Johns Hopkins University (JHU) Summer Workshop [8]. This research group made
further major progress in the development of the subspace modeling techniques: The
simplified fast scoring techniques, which made the new models even more appealing for
practical applications were developed and described under my supervision in the PhD
thesis by Ondfej Glembek [17]. A shorter description of the scoring techniques [18] is
also included as the paper in section 4.4.

At the JHU Summer Workshop, i-vectors were also introduced [12], which
are the focus of the publications collected in chapter 5. The included publica-
tions [34, 36, 10, 44] demonstrate the applicability of i-vectors to other than speaker
recognition problems (sections 5.1, 5.2, 5.3, 5.7). Conceptually new approaches to fu-
sion (section 5.5) [28] and to dicriminative training (section 5.4) [7] of speaker verifica-
tion systems are described, which build on the concept of i-vectors. Originally, i-vectors
were proposed to represent sequences of continuous feature vectors. The publications
extending this concept to sequences of discrete features are also included [44, 27].
For this purpose, a new subspace multinomial model (section 5.6) and subspace n-
Gram model (section 5.7) were proposed. A publication that introduces the nowadays
popular technique for i-vector based discriminative adaptation of speech recognition
system [10] is also included (section 5.3).

Chapter 6 deals with different extensions and modifications of the model for i-vector
extraction. A simplified i-vector extraction model is proposed (section 6.1) in order
to facilitate implementations of i-vector extraction into resource-limited embedded
devices. Discriminative training of such simplified model is proposed (section 6.2) to
compensate for the performance loss introduce by the approximations used. Finally,

!Consortium formed by Spescom DataVoice (South Africa), TNO (The Netherlands), Brno Uni-
versity of Technology (Czech Republic) and University of Stellenbosch (South Africa)
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extensions of i-vector extractor robust to additive background noise are proposed [32,
35] in papers from sections 6.3 and 6.4.
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Chapter 2

Basics of speech processing

2.1 Feature extraction

In speech processing, speech signal is typically represented by a sequence of speech
frames: O = [01, 09, ..., 07|, where each frame oy is a feature vector describing a short
(typically 10 ms) stationary part of the signal. The standard speech features describ-
ing short-term spectral property of a frame are Mel Frequency Cepstral Coeeflicients
(MFCCQC) [11] or Predictive Linear Prediction (PLP) [22] coefficients.

2.2 Speaker verification

Many of the techniques described in this document were originally proposed for the
task of speaker verification. In this section, the problem of speaker verification will be
briefly described and the main challenges in this task will be discussed. We will also
outline the basic scheme of speaker verification, which will serve as a starting point
for development of the more advanced techniques described in this document.

Given an example recording(s) of a speaker, the task in speaker verification is to
detect other recordings of the same speaker. Alternatively, the problem can be formu-
lated as making a decision whether a pair of recordings (or more generally two sets of
recording) comes from the same speaker or not. Although these are just two formu-
lations of exactly the same problem, they roughly correspond to the two approaches
depicted in Figure 2.1.

2.2.1 Traditional approach to speaker verification

The approach from Figure 2.1(a) is the traditional one, where a Universal Background
Model (UBM) is trained on training data from many different speakers to model the
general distribution of speech features. UBM is typically a Gaussian Mixture Model

C
P00 = 37 weN(o me, o), &1
c=1

5
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Figure 2.1: Approaches to speaker verification.
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where C' is a number of Gaussian components in the mixture (typically few thousands),
w, are mixture weights and m. and 3. are means and covariance matrices of the
individual Gaussian components.

A speaker model describing the speaker-specific distribution p(s)(ot) is usually
derived from the UBM by its adaptation to a speaker enrollment recording. A simple
relevance MAP adaptation [14] was traditionally used for this purpose. In section 3.1,
however, we will describe more recent Eigenvoice adaptation technique — an instance
of the subspace modeling, which is the focus of this document.

To verify whether the test recording Os.s) comes from a target speaker s, speaker
verification score can be calculated as a log likelihood ratio

(s)
score(Oest, s) = log P (Orest) (2.2)
p

(UBM) (Otest) ’

where the likelihoods of the feature sequences are calculated using the frame inde-
pendency assumption simply as p(O) = [[, p(o¢). To make the final binary speaker
verification decision, the verification score score(O) is compared to an appropriately
set decision threshold.

2.3 Channel variability

An important challenge in speaker recognition is to deal with the intersession variabil-
ity. Intersession variability is any variability in the speech signal that makes recordings
of the same speaker to sound different. We can distinguish between eztrinsic and in-
trinsic intersession variability. The extrinsic intersession variability can be attributed
to the causes external to the speaker: different transmission channel (landline, cellu-
lar, VoIP, ...), microphones (electret, carbon-button, ... ), acoustic environment and
background noise (car, office, airport, restaurant, street, ...), and so on. The intrin-
sic intersession variability corresponds to the differences in speaker’s voice caused, for
example, by a variation in the vocal effort or by the speaker’s emotional state (calm,
nervous, stress, drunk, ill, ...). Since the variability attributable to the transmission
channel is often considered to be the most relevant, we often talk only about channel
variability or channel of a specific utterance. This term will, however, represent any
of the variability causes mentioned above.

The channel variability can often cause variations in a speech signal energy that
are larger than the differences caused by changing speakers. Therefore, it is important
to introduce models that can model and decompose the variability in a signal into
the useful between-speaker variability and the harmful channel variability. We will
introduce such models in section 3.2.

To demonstrate the problem with channel variability, Figure 2.2 compares perfor-
mances of the same speaker verification system on two conditions from NIST Speaker
Recognition Evaluations (SRE) 2008 [38]. For both conditions, verification trials (the
pairs of speech segments to be compared) consist of speech segments recorded over
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Figure 2.2: Degradation in speaker verification performance caused by microphone
mismatch.

several different microphones placed in the recording room. For one of the condi-
tions, however, the two recording in a verification trial always come from the same
microphone, while for the other condition, a microphone mismatch is allowed. In Fig-
ure 2.2, the performance on the two conditions is compared in terms of Detection Error
Tradeoff (DET) curve, showing tradeoff between probability of false alarms (false ac-
ceptance) and miss probability (false rejection) as obtained for different settings of the
decision threshold. As can be seen, more than three times higher error rates should be
expected when dealing with the microphone mismatch. It is important to note that
the system in this experiment already employs the channel compensation techniques
discussed in section 3.2. Without using any channel compensation techniques, the
performance gap between the two conditions would be much larger as will be obvious
from the results reported later in this document.



Chapter 3

Subspace modeling and channel
compensation

A subspace model, as we understand it in the context of this document, is a generative
statistical model, where the parameters of the model are constrained to live in a low
dimensional subspace. A particular instance of the model (i.e. probability distribution
represented by the model) can be then represented by a low-dimensional vector of
coordinates in the subspace. In this chapter, an overview of the subspace modeling
techniques and channel compensation techniques based on subspace modeling will be
given in the chronological order of their development.

3.1 Eigenvoice adaptation

An early example of using such subspace model in speech processing is a technique
called Eigenvoice speaker adaptation [30]. This technique was originally proposed
for adapting the Hidden Markov Model (HMM) based speech recognition system to
a particular speaker or to a specific acoustic environment. For simplicity, and to
keep the continuity of the presentation, we will describe the Eigenvoice adaptation in
the context of speaker verification as a technique for adapting UBM to a particular
speaker [45] (i.e. enrolling a speaker model).

Using Eigenvoice adaptation, GMM specific to speaker s can obtained by modifying
the equation (2.1) as follows:

C
P (0r) =Y weN(oy; me + Vey®, Se), (3.1)

where w,., m, and 3. are the UBM parameters, V. are component-specific matrices
describing subspace with large speaker variability and y(®) is a speaker specific vector
(or speaker factors). When setting the vector y = 0, we recover the original UBM.
In order to obtain good speaker model using an enrollment recording, we search for a
speaker specific vector y(®) that shifts the speaker specific means ugs) = m.+V.y® to

9
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better match the distribution of the enrollment feature sequence. Note that there is no
attempt to adapt other GMM parameters (i.e. the weights and covariance matrices),
which will be also the case for the similar subspace models described later.

It will be instructive to define p(®) as a vector that is constructed by concatenating
all mean vectors ugs) from all Gaussian components into one long speaker-specific
mean super-vector. Similarly, we can construct a super-vector of UBM means m and
a matrix V' by stacking vectors m. and matrices V., respectively. The dimensionality
of the resulting matrix V' will be F'C' x R, where F' is the dimensionality of speech
features o, C' is the number of Gaussian components and R is the dimensionality of
the speaker specific vector y(®). Typically R < FC, and therefore V is a tall low-rank
matrix. We can redefine Eigenvoice adaptation in terms of the super-vectors simply
as

p® =m+ vy® (3.2)

Now, it is easy to see that all the parameters in the high-dimensional vector p(®) (typi-
cally hundreds of thousands of parameters) can be adapted to model a speaker specific
distribution by estimating only small number of coefficients in the low-dimensional vec-
tor y(®) (typically few hundreds of coefficients). This makes the Eigenvoice adaptation
effective for very small amounts of adaptation data (few seconds) as opposed to other
popular adaptation techniques (MLLR [31], MAP adaptation [33]), which need more
data for adaptation to be effective.

3.1.1 Estimating Eigenvoices

In order to enroll a speaker model, the matrix V has to be estimated first. We
would like to obtain V spanning a subspace of the mean super-vector space with
a large between speaker variability. In other words, the columns of V| which are
called eigenvoices, should be bases capturing the correlations between the coefficients
in mean super-vectors and they should point in the directions where speaker specific
super-vectors vary the most. Probably the most straightforward way of estimating
V [30] is to obtain speaker specific models for all speakers from the training data.
Each speaker specific model can be obtained by simply re-training UBM on training
data from one speaker, provided that reasonable amount of training data is available
for each speaker. Preferably, speaker specific model is obtained by adapting UBM by
means of another adaptation technique (typically MAP adaptation [33]). In the next
step, mean super-vectors are extracted from each speaker specific model. Note, that it
is important to keep the corresponding order of the mean components in the super-
vectors extracted for different speakers. Finally, Principal Component Analysis (PCA)
is applied to such super-vector dataset in order to find the subspace with the largest
super-vectors variability (i.e. columns of V' are given by eigenvectors corresponding to
the largest eigenvalues of the covariance matrix estimated on the mean super-vectors).!

!Before applying PCA, it is also useful to normalize the individual means in the super-vectors by
multiplying them with inverse square root of the corresponding covariance matrix. Inverse operation
is then performed to “un-normalize” the resulting eigenvoices — collumns of V. See [6] for details.
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FEigenvoice adaptation was inspired by a similar technique used in face recognition,
which was named Eigenfaces [43] — hence the name Eigenvoices. However, it is worth
noting that for Eigenfaces, PCA is applied in the feature domain rather than in the
domain of model parameters. Therefore, it is not an instance of subspace modeling as
understood in this document.

3.1.2 ML estimation of speaker factors and eigenvoices

Once the matrix V is derived from training data, we can obtain the speaker adapted
mean super-vector (and thus the speaker specific model) from equation (3.2) by prop-
erly estimating the speaker specific vector y(®). As proposed in [30], y¥(®) can be
estimated to maximize the likelihood of the adaptation (enrollment) data:

Tenrolt
argmaxp(s)(oenmll) = argmax H p(s) (Ot)’ (33)
y(®) ¥y

where p®)(0y) is defined as in (3.1).

As an alternative to the PCA based estimation of V', this matrix can be also
estimated under the maximum likelihood (ML) framework. In [15], an iterative Ex-
pectation Maximization (EM) [13] based procedure is described, where vectors y(®)
are ML estimated, one for each speaker in the training data, using a fixed matrix
V. Then V is re-estimated to maximize the likelihood of the training data given the
fixed speaker vectors. This procedure is iterated until convergence. Similar training
procedure is also used in case of the channel compensation techniques described in the
next section.

3.1.3 Eigenvoice adaptation for speech recognition

Figenvoice adaptation was originally proposed to adapt HMM based speech recog-
nition system to a particular speaker or a specific acoustic environment in order to
improve its recognition performance. This technique can be applied to HMMs where
probability distributions corresponding to HMM states are modeled by GMMs. It is
straightforward to apply the model described above to such HMM base recognizer by
simply forming the speaker specific mean super-vector using means from all Gaussian
components from all HMM states. The detailed description of HMM as a generative
model and the HMM based speech recognition is beyond the scope of this document,
but the interested reader is kindly referred to [2, 48, 42].

It is worth to note, that Eigenvoices model the speaker variability, which is the
harmful variability in the task of speech recognition. This is in contrast with speaker
verification, where speaker variability is the useful variability. Therefore, Eigenvoices
in speech recognition are in spirit very similar to Eigenchannels, which will be now
introduced to cope with the unwanted variability in the speaker verification task.
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3.2 Channel compensation

3.2.1 Simplfied JFA model

In [25, 24], Joint Factor Analysis (JFA) was proposed as a new model for speaker
verification. This model can be seen as an extension of the Eigenvoice adaptation
model, where a matrix of eigenchannels is introduced to model the unwanted channel
variability. In fact, JFA is more complex model combining ideas of Eigenvoice adap-
tation and MAP adaptation [33] by treating speaker factors (and newly introduced
channel factors) as probabilistic latent variables. As we will see, the model also allows
for more theoretically sound definition of verification scores based on a more advanced
Bayesian inference. However, to keep the presentation focused and comprehensible,
we first introduce a simplified variant of the JFA model and we will later sketch its
extensions towards its full version.
The Eigenvoice model (3.2) can be extended to represent speaker and channel
specific distribution as
pt =m 4+ vyl U™, (3.4)

where u(Sh) is now speaker and channel specific mean super-vector, U is matrix of
eigenchannels representing a subspace with a large channel (or intersession) variability
in the mean super-vector space and " is a channel specific low-dimensional vector
of channel factors. By channel specific, we usually understand recording specific as we
usually assume that each recording comes from one channel and channel can change
from recording to recording. Let us assume that we are given matrices of eigenvoices
and eigenchannels, V and U, that already well represent the subspaces with the
large speaker and channel variability, respectively. By fixing ™ and trying different
values of y(®), we get different mean super-vectors corresponding to models of different
speakers recorded over the same channel represented by the vector ). Similarly, by
fixing y(®) and varying over different values of ("), we get models of the same speaker
recorded over different channels.

3.2.2 Verification with JFA model

To use this model for speaker verification, we can proceed as follows: Both speaker
factors y® and channel factors (") are estimated to maximize likelihood of an en-
rollment recording. This way, we obtain speaker model, which is not only specific to
the speaker but also to the channel of the enrollment recording. To score the speaker
model against a test recording, channel factors (" are first ML re-estimated on the
test recording, which corresponds to adapting the speaker model to the channel of the
test recording. Finally, we can evaluate likelihood of the test recording p(s) (Otest) from
equation (2.2) using the speaker and channel adapted model. To evaluate the com-
plete log likelihood ratio verification score (2.2), we also need the likelihood from the
denominator p(VEM )(Otest). This is usually evaluated using a model where y®) = 0
and ™ is adapted to the test recording (i.e. UBM adapted to the test recording
channel).
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3.2.3 JFA model estimation

Before using the proposed model for verification, we need to estimate matrices V' and
U on training data. It is also possible to re-estimate the remaining model parameters
(i,e. m and GMM component weights and covariance matrices) together with V
and U. However, it was found that these parameters can be simply taken from the
pre-trained UBM without sacrificing any verification performance. To estimate the
matrices V and U, we use a procedure similar to the one described in section 3.1.2,
where we iterate between ML estimation of y® and & for fixed V' and U, and
the other way around, starting from a randomly initialized V' and U. The training
data should comprise recordings of many speakers each recorded in several sessions.
During training, there is one vector y®) for each training speaker s and one ™ for
each training recording. In other words, speaker factors y(®) are constrained to be the
same for all recordings of the same speaker, while different channel factors ) are
estimated for each individual training recording.

3.2.4 Full JFA model

So far, we have described JFA as a model where the speaker and channel factors,
y®) and xM, are parameters of the model, which can be estimated under the maxi-
mum likelihood framework. In the original JFA model [25, 24], however, speaker and
channel factors are treated as latent random variables having standard normal prior
distributions

ply) = N(y;0,1I) (3.5)
p(x) = N(x;0,1I).

We rewrite the JFA equation for mean super-vector using the latent variables:
m=pu+Vy+Uxz. (3.7)

This equations defines m as a random variable in terms of the random variables y and
. Therefore, JFA model can be seen as a two-level generative model assuming that a
sequence of speech features is generated from a GMM whose mean super-vector is first
itself generated from (3.7). We can interpret this equation as a model making LDA-
like assumptions about mean super-vectors. In particular, the across-speaker (across-
class) distribution of super-vectors is assumed to be p + Vy, which corresponds to
a Gaussian distribution with a global mean g and across-speaker covariance matrix
VVT. The within-speaker (within-class) covariance matrix is then given by UUT.
Note that, since V' and U are typically low-rank matrices, the covariance matrices
VVT and UUT will be also low-rank. Therefore, the mean super-vectors will be
Gaussian distributed only in the subspace spanned by basis V' and U.

The main advantage of this new probabilistic definition of JFA model is that the
bases V' and U not only represent the sub-spaces in which mean super-vectors live,
but they also represent the amounts of within-speaker and across-speaker variability
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in these subspaces (i.e. they represent the corresponding covariance matrices). Specif-
ically, each column of V is a vector pointing to a direction with a large across-speaker
variability in the super-vectors space and the magnitude (length) of this vector rep-
resents the standard deviation in this direction. The matrix U can be interpreted
similarly in terms of within-speaker variability.

In the original JFA model [25, 24]

m=p+Vy+Ux+e¢, (3.8)

one more factor € ~ N(0, D?) can be found, which is a random variable describing
the residual speaker variability not covered by V.2 With this term, we obtain full-
rank across-speaker covariance VV'T 4+ D?, which corresponds to the standard factor
analysis model [2].> This allows super-vectors to live outside of the subspaces defined
by V and U. However, the residual variability represented by e is typically very
small, which means that it is very unlikely for a super-vector to be far from those
subspaces. In real applications, however, inclusion of € does not seem to have any
practical advantage, at least when dealing with text independent speaker verification
and recordings containing no more than few minutes of speech. Therefore, we omit
this term in the following discussion.

The parameters of the full JFA model can be ML estimated using a similar iterative
EM algorithm as described in the previous section. However, rather than taking the
point estimates of the latent variables, the training algorithm can consider their full
posterior distributions. A detailed description of the training procedure is out of the
scope of this brief introduction and the kind reader is referred to [25, 3] for more
details.

3.2.5 Inference in the full JFA model

In most of the practical speaker verification systems based on the full JFA model, the
model is used to infer point estimates of speaker and channel factors y®) and =™ in
very much the same way as described in section 3.2.2. However, given the priors on the
latent variables, y and @ and given a recording O, we can infer posterior distribution
of the factors

p(y,z[0) o p(Oly, z)p(y)p(z), (3.9)

where p(O|y, x) is a likelihood calculated for a GMM corresponding to a specific set-
ting of factors y and . As the point estimates for y®) and ), we can now select their
most probable values based on the posterior (3.9). In other words, we use maximum
a-posteriori (MAP) estimates of y(s) and ™ rather than ML estimates proposed in
section 3.2.2. Equivalently, we can say that we obtain the most probable super-vectors
(and thus GMM) specific to the the speaker and channel of the recording O. Note that

Z¢ is often represented as Dz, where D is diagonal square matrix and z is standard normal

distributed latent vector — so called common factors
3 Although, here, factor analysis is applied in the space of GMM model parameters rather than
directly to the observed data, which is more common.
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unlike ML estimation, MAP estimation takes into account the information about the
amount of variability in different directions of the super-vector space as encoded in the
matrices V' and U and as learned from the training data. Loosely speaking, a mean
super-vector can easily move in the high-variance directions, while a lot of support
from data is necessary to move the super-vector in a direction with low speaker or
channel variance. This way, JFA model combines the ideas of Eigenvoice adaptation
and MAP adaptation [33].

As before, to evaluate a speaker model on a test recording, we can fix y(s) and
adapt the model to the channel of the test recording by obtaining new MAP point
estimate of ("), With the latent variables, however, the likelihood from numerator
of (2.2) can be evaluated in more principled and theoretically sound way as

P (Opest) = p(Oresty™) = / P(Orestly™, 2)p(x)da, (3.10)

where we take into account any possible channel of the test recording by integrating
over the channel factors. Similarly, to enroll speaker factors while taking into ac-
count any possible channel of the enrollment recording Oenyo, we should find y(®)
maximizing posterior distribution

p(yyoenroll) = /p(yawoenroll)p(a:)dzy (3.11)

where we integrated out the channel factors from equation (3.9).
Finally, the log likelihood score that is best theoretically justified for this model
can be calculated as

[ P(Orest|y)p(y|Ocrron)dy
[ p(Orestly)p(y)dy

where, in the numerator, we evaluate likelihood of the test recording for an enrolled
speaker like in (3.10). However, now we integrate over any possible speaker model as
represented by the posterior distribution of speaker factors p(y|Ocpron). The denom-
inator corresponds to the likelihood of the test recording “given any speaker” (i.e. we
integrate over the prior distribution of y). It can be shown, that the score (3.12) can
be equivalently expressed in terms of so called Bayes factors as

J P(Oiest|y)p(Ocnron|y)p(y)dy
p(Otest )p(oenroll) ’

where the terms in the denominator can be evaluated as p(O) = [p(Oly)p(y)dy.
The numerator in (3.13) is the likelihood of the hypothesis that both the enrollment
and the test recording were produced by the same speaker, while the denominator
is the likelihood of generating p(Oyest) and p(Oepron) independently (i.e from two
different speakers). Such scoring now corresponds to the scheme from figure 2.1(b),
where likelihoods from two models representing same-speaker and different-speaker
hypotheses are compared. Note the symmetrical role of both recordings in (3.13) (i.e.

SCOT‘G(Otesh Oenroll) = lOg

(3.12)

score(Oyest, Oenront) = log

(3.13)
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the score does not change when switching roles of recordings Oycst and Ogpyopr). This
is in contrast to (2.2), where speaker model is trained on one recording and evaluated
on the other one.

Unfortunately, it is intractable to analytically evaluate the score (3.13). A Varia-
tional Bayes inference was proposed [2, 49] to approximate the score. However, this
inference was not adopted in the practical applications as it is computationally expen-
sive to evaluate and leads to very limited improvements over the more approximate
inference described in the beginning of this section.

More details on JFA model scoring are given in the included paper 4.4, where some
of the approximations described above are compared in terms of computational cost
and verification performance. In this paper, it was found that very crude approx-
imations can be implemented, allowing for extremely fast score evaluation without
sacrificing any verification performance. Such scoring made JFA even more appealing
for the practical application. It is worth to note that, regardless the exact way of
calculating verification scores, rather ad-hoc normalization techniques such as t-norm
or z-norm [1, 47, 9] are necessary to calibrate scores for different speakers and/or test
utterances in order to obtain good verification performance. This is the case even when
the score is calculated in the theoretically correct way according to equation (3.13).

3.3 1i-vectors

Although JFA model provided an excellent verification performance compared to the
earlier techniques, the effectiveness of all the approximations and the ad-hoc nor-
malizations in the score evaluation makes the validity of JFA as a proper generative
model questionable. Since the point MAP estimates of speaker factor y®) were found
sufficient to represent a speaker model, they must contain enough of the relevant in-
formation about the speaker of the corresponding recording. This led us to the idea of
performing verification based on a mere comparison of the speaker factors extracted
from the two recordings in a verification trial. At JHU 2008 summer workshop [8], the
experiments were carried out where speaker factors were used as a low-dimensional,
fixed-length features representing individual recordings. It was soon discovered that
not only the speaker factors but also the channel factors estimated on a recording
contain a considerable amount of speaker specific information. This finally led to
the proposal of i-vectors as a feature extraction technique, where each recording is
represented by a low-dimensional, fixed-length vector.

The model for extracting i-vectors is essentially the same as JFA model, except
that it comes only with one subspace T' describing all the inter-recording variability
comprising both the speaker and channel variability:

m = p+ Tw. (3.14)

The subspace T is sometimes referred to as total variability subspace. The procedure
for model training is also essentially the same as for JFA, albeit simpler, as there are
no speaker factors, only the recording specific latent variables w, which can be inferred
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independently one for each recording. Therefore, there is no need for having speaker
labeled training data and the subspace T' can be trained in an unsupervised way on a
large amount of unlabeled recordings. It is only assumed that each training recording
contains speech of only one speaker.

As was already said, the main conceptual difference between using i-vector and JFA
models is that the i-vector model is used only as a feature extractor. It is not used
to evaluate any verification scores as in the case of JFA. Instead, i-vector is obtained
for each recording as a MAP point estimate of the latent variable w. It is used as
a low-dimensional feature vector (typically few hundreds of dimensions) representing
the recording.

Since the i-vector model makes no attempt to separate the speaker and channel
specific variability, the extracted i-vector contains information about both speaker
and channel. This needs to be handled by the following back-end classification model,
which is used to produce the final verification score. The concept of i-vectors opened
the door for experimenting with different and often very simple back-end classifiers:
In the original work on i-vectors [12], cosine distance metric together with the within-
class covariance normalization (WCCN) [21] was found to produce quality verification
scores outperforming JFA model. Currently, Probabilistic Linear Discriminant Anal-
ysis (PLDA) [41, 26, 7] is considered the state-of-the-art model for i-vector based
speaker verification. This model makes LDA-like assumptions similar to those de-
scribed for JFA in section 3.2.5. However, now the model is applied in the i-vector
(feature) domain rather than in the domain of mean super-vectors. In this simpler
case, the proper Bayesian inference for verification score evaluation (3.13) is analyti-
cally tractable and, in fact, computationally very efficient as described in the included
paper 5.4.

3.4 Effectiveness of Channel compensation techniques

Performances of the different channel compensation techniques introduced in this sec-
tion are compared in figure 3.1. The figure shows DET curves for systems evaluated
on the data from NIST SRE 2010, condition 5 (telephone-telephone trials) [39]. As a
baseline, we see the performance for the system based on relevance MAP adaptation,
which was the state-of-the-art technique before the introduction of the subspace-based
channel compensation techniques. This system already uses some earlier techniques
to cope with the problem of channel mismatch, most of which became obsolete after
the introduction of the subspace-based techniques as demonstrated in the included
paper 4.2.

Eigenchannel adaptation is a simplified variant of JFA system, where speaker mod-
els are still enrolled using the relevance MAP adaptation, but afterward the models
are adapted to the channel of a test utterance using the eigenchannel subspace as in
the JFA model. Also, a PCA-based estimation of the eigenchannel subspace is used
that is similar to the one described for Eigenvoice adaptation in section 3.1.1. The
detailed description of this system is given in the included papers 4.2 and 4.3. These
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papers describe the system submitted into NIST SRE 2006 evaluations demonstrating
the effectiveness of the subspace-based channel compensation, which resulted in the
broad acceptance of these techniques by the scientific community.

As can be seen from figure 3.1, full version of the JFA model as described in sec-
tion 3.2.5 outperforms the simpler Eigenchannel adaptation method. Different variants
of JFA model are analyzed in more detail in the included paper 4.1. The concept of
i-vectors brought additional significant improvements especially after introduction of
i-vector postprocessing steps known as length normalization [16].

In this text, we have presented the channel compensation techniques and i-vectors
applied to the task of speaker verification. Although originally proposed and devel-
oped for this task, they quickly found their way into different related fields of speech
processing. Applications of these techniques to various problems (e.g. language recog-
nition, emotion recognition, speaker adaptation for speech recognition, ...) is covered
by the following included papers.
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Figure 3.1: Comparison of different channel compensation techniques on NIST SRE
2010 condition, 5 (telephone-telephone trials) task.
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Chapter 4

Applications of Channel
Compensation

This chapter covers publications on channel compensation techniques based on sub-
space modeling. They describes and analyze different variants of Joint Factor Analysis
model (sections 4.1 and 4.4) and their applications not only to speaker recognition
(sections 4.2, 4.3, 4.7), but also to other speech processing problems such as language
or emotion recognition (sections 4.5, 4.6). The included papers 4.2 and 4.3 describe the
very successful system participating in NIST SRE 2006 evaluations, which introduced
the channel compensation techniques to the broad scientific community.

21
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Abstract

In this paper, we have investigated into JFA used for speaker
recognition. First, we performed systematic comparison of full
JFA with its simplified variants and confirmed superior per-
formance of the full JFA with both eigenchannels and eigen-
voices. We investigated into sensitivity of JFA on the number
of eigenvoices both for the full one and simplified variants. We
studied the importance of normalization and found that gender-
dependent zt-norm was crucial. The results are reported on
NIST 2006 and 2008 SRE evaluation data.

Index Terms: speaker recognition, joint factor analysis.

1. Introduction

Nowadays speaker recognition systems are usually based on
Universal Background Model-Gaussian Mixture Modeling
(UBM-GMM) and employ a number of techniques that improve
GMM modeling capability and help fight against the main prob-
lem in speaker verification - the inter-session variability. This
is caused by differences in channels, acoustic conditions and
other factors varying across the speech segments being com-
pared [2]. In several past years, systems based on Joint Factor
Analysis (JFA) [4] obtained wide attention due to their ability
to explicitly model the inter-session variability. However, dif-
ferent research labs adopted different variants JFA and it was
unclear how do these variants compare in terms of recognition
performance. The aim of this paper is to provide the compari-
son of such JFA variants and give some insight into the process
of building state-of-the-art JEFA system.

JFA model is a two-level generative model assuming that
speech segments are generated from a GMM whose mean super-
vector M — vector of concatenated GMM means — is first itself
generated from the following distributions:

M =m+ Vy + Dz + Ux, €8}

where m is speaker-independent mean super-vector, U is a sub-
space with high intersession variability (eigenchannels'), V is
a subspace with high speaker variability (eigenvoices) and D
is a diagonal matrix describing remaining speaker variability
not covered by V. Speaker factors y, z and channel factors x
are assumed to be normally distributed random variables. For

This work was partly supported by European projects MOBIO
(FP7-214324) and AMIDA (FP6-033812), by Grant Agency of Czech
Republic project No. 102/08/0707, and by Czech Ministry of Education
project No. MSM0021630528. We would like to thank MIT-LL team
for creating the sets with the microphone conditions and Patrick Kenny
for fruitful discussions helpful advices

'We refer to “eigenvoices” and “eigenchannels” following the ter-
minology defined in [4] although these sub-spaces are estimated using
EM-algorithm, not PCA.
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segments of the same speaker, speaker factors are assumed to
be the same, while channel factors are allowed to differ. For
details, we recommend Kenny’s paper [4] that served us as in-
spiration for building the baseline JFA systems presented in this
paper.

The results in this paper are presented on NIST SRE 2006
evaluation data, especially the 1conv4w-1conv4w all-trials con-
dition (detl — tel-tel). The sets for other conditions (tel-mic,
mic-tel, mic-mic) were defined by MIT-LL and are described in

[7].

2. Baseline systems

As a baseline for the analysis presented in this paper, we have
chosen two JFA systems developed for NIST SRE 2008 evalua-
tions. The two systems differs mainly in the feature extraction.

The first system is based on features that are short time
gaussianized MFCC 12 + C0O augmented with their delta, dou-
ble delta and triple delta coefficients. The dimensionality of the
resulting features is reduced from 52 to 39 using HLDA. HLDA
classes correspond to UBM Gaussians. These features were
previously used in our NIST SRE 2006 submission [2]. The
system based on these features will be denoted MFCC13=-39.

Inspired by the outstanding performance of the system de-
scribed in [4], features used for our second baseline system are
short time gaussianized MFCC 19 + energy augmented with
their delta and double delta coefficients, making 60 dimensional
feature vector without any dimensionality reduction . The sys-
tem making use of these features will be denoted MFCC20=-60.

In both cases, the features are derived with classical analy-
sis window of 20 ms with shift of 10 ms and short-time gaus-
sianization using window of 300 frames (3 sec). Speech/silence
segmentation is performed by our Hungarian phone recognizer
[1, 2], where all phoneme classes are linked to ’speech’ class.
Several heuristics based on short-term energy are used for two-
channel telephone data to eliminate cross-talks [2].

The training of the JFA systems closely follows the descrip-
tion of “Large Factor Analysis model” in Patrick Kenny’s pa-
per [4]. First, UBM model with 2048 Gaussian components is
trained using Switchboard II Phases 2 and 3, Switchboard Cel-
lular Parts 1 and 2, and NIST SRE 2004 and 2005 telephone
data, which is in turn used to collect zero and first order statistic
for training the JFA systems. The mean super-vector m from (1)
was set to the UBM mean and on contrary to [4] was never re-
trained. The variances of Gaussian components are also taken
from UBM and not re-trained in the training of JFA.

First, for each JFA system, 300 eigenvoices (matrix V') are
trained using EM algorithm [4] on the same data as UBM. For
the estimated eigenvoices, MAP estimates of speaker factors
are obtained and fixed for the following training of eigenchan-
nels. A set of 100 eigenchannels is trained on NIST SRE 2004



and 2005 telephone data. Another set of 100 eigenchannels is
trained on SRE 2005 auxiliary microphone data to allow the
system to deal with the microphone speech segments. Both
sets are stacked to form the final matrix U. On contrary to
Kenny’s paper [4], the diagonal matrix describing the remaining
speaker super-vector variability (matrix D in (1)) is estimated
on top of eigenvoices and eigenchannels. A small disjoint set
of NIST SRE 2004 speakers (recordings of only 44 females and
13 males) is used for training of D using fixed MAP point es-
timates of speaker and channel factors. To obtain speaker mod-
els, MAP point estimates of all the factors are estimated on en-
rollment segments using Gauss-Seidel-like iterative method [6].
For details about the training data and its splits for training the
different sets of hyperparameters see [7]. In all the experiments
described in this paper, the standard 10-best Expected Log Like-
lihood Ratio frame-by-frame scoring was used. It was based on
the MAP point estimates of the channel factors®.

Unless stated otherwise, all results were obtained with scores
normalized using zt-norm. We have used 221 females and 149
males z-norm segments, 200 females and 159 males t-norm
models, together 729 segments taken each from one speaker of
NIST SRE 2004 and 2005 data.

In the case of systems developed for NIST SRE 2008 eval-
uations, single gender-independent (GI) system MFCC13=-39
was trained and evaluated using the data of both genders, while
two gender-dependent (GD) systems MFCC20=-60 were
trained and evaluated using the data of only the corresponding
gender. However, note that gender dependent zt-norm was ap-
plied in both cases (i.e. even for system MFCC13=-39, only
z-norm segments and t-norm models of corresponding gender
were used to normalize scores). The performance of these sys-
tems is demonstrated in Fig 1. On the left, we can see that the
larger (GD, feature dimensionality 60) system MFCC20=-60
outperforms the smaller (GI, feature dimensionality 39) sys-
tem MFCC13=-39 when evaluating on tel-tel condition. To
see, whether the improvement comes from using GD models
or from using different features, we have also trained GI ver-
sion of MFCC20=-60 system, which is also shown in the fig-
ure. It seems that most of the improvement comes from the
features with more detailed spectral resolution as the perfor-
mances of both GD and GI versions are comparable. How-
ever, for low false-alarm region, which is the region of main
interest in NIST evaluations, performance of the GD system
is superior. Conversely, MFCC13=-39 system performs bet-
ter on mic-mic trials shown on the right panel in Fig 1. The
most probable reason for it is that large MFCC20=-60 system
is overtrained to telephone data, which is the only type of data
used for training UBM and speaker subspace hyperparameters.
This hypothesis is also supported by the improved performance
of MFCC20=-60 system when halving the number of system
parameters by using GI instead of GD version. Unless stated
otherwise, the GI version of MFCC20=-60 system will be used
in the following experiments.

3. Analysis of JFA
3.1. Variants of Joined Factor Analysis

In the past years, different research labs adopted simplified vari-
ants of full JFA dropping some of the terms in (1) and using
different methods for the hyperparameter estimation. In this

2Note that in [10], we have shown that similar or better results can
be obtained with different approximate scoring schemes, while signifi-
cantly speeding up the scoring process.
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Figure 1: Performance of JFA systems based on different fea-
tures and gender dependent or gender independent variants. Re-
sults on NIST 2006 data. Left panel: tel-tel trials, right panel:
mic-mic trials.

section, we present a comparison of some of the JFA variants
and we show that the baseline (full JFA) systems provide su-
perior performance. Systems with only 50 eigenchannels are
used in these experiments to allow for fair comparison as this
was found to be the optimal number of eigenchannels for the
simplified JFA variants described here.

3.1.1. Relevance MAP adaptation

The standard relevance MAP adaptation [9] can be actually seen
as a special simplest case of JFA. Dropping the terms with eigen-
voices and eigenchannels in equation (1), we obtain M = m +
Dz. For relevance MAP we simply set D? = 3 /7, where
3 is diagonal matrix with super-vector of UBM variances in
the diagonal and T is the relevance factor. For point MAP esti-
mates of factors z, it is then easy to show that the speaker model
represented by M is equivalent to that obtained with standard
relevance MAP re-estimation formulae [9].

3.1.2. Eigenchannel adaptation

The systems with eigenchannel adaptation [3, 2] use relevance
MAP for enrolling speaker model. In the test phase, each speaker
model is MAP adapted to the channel of test utterance by es-
timating the channel factors x. Unlike the case of other JFA
variants, PCA is used to estimate the eigenchannel matrix U
instead of the EM algorithm. No eigenvoices are considered by
this system. See [2] for thorough description of eigenchannel
adaptation and its comparison with a system without channel
compensation.

3.1.3. JFA without eigenvoices with relevance-MAP-like D

In [6, 8], JFA systems without eigenvoices are described, where
only the eigenchannel matrix U is trained using EM algorithm
on top of the D matrix, which is set as in the case of the rele-
vance MAP. On contrary to the system system based on eigen-
channel adaptation, here, the inter-session variability is con-
sidered also for enrollment. In both [6] and [8], given the en-
rollment segment, MAP point estimates of factors z and x are
estimated jointly using Gauss-Seidel-like iterative method. The
processing of a test segment is the same as for eigenchannel
adaptation.

3.1.4. JFA without eigenvoices with D matrix trained on data
As an alternative to the previous JFA variant, the D matrix in
systems without eigenvoices can be also trained using EM al-
§0rithm (see the system with zero speaker factors in [4]). In
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Figure 2: Flavors of JFA. Results on NIST 2006 data.

our experiment with this system, D matrix is trained first (un-
like for the baseline system) and it is fixed for the following
training of the eigenchannel matrix U. Note also that all the
data that are used for training eigenvoices in the baseline sys-
tem, are now used for training D. In the case of relevance
MAP, the relevance factor 7 has an intuitive interpretation. It
specifies the number of frames in the adaptation data associated
with a given UBM Gaussian component, which makes the MAP
adaptation to shift the Gaussian component right in a half way
between its original position and mean of the adaptation data.
Training the matrix D from the data can be seen as training
specific relevance factor for each coefficient of each Gaussian
component. As proposed by Kenny, effective relevance factor
Tep = trace(X)/trace(D?) can be used in this case, which
can be loosely interpreted as a number of frames needed in av-
erage for each component to make the adaptation effective.

3.1.5. Results with JFA variants

The results on NIST 2006 data obtained with the JFA variants
described above are shown in Fig 2. All the JFA variants with-
out eigenvoices provide comparable performance for both types
of features MFCC13=-39 features and MFCC20=-60. The sim-
ple eigenchannel adaptation seems to be somewhat more robust,
though. The exception is the system with D trained on features
MFCC13=-39, which fails to perform well. The effective rele-
vance factor 7.y = 236.1 for this system is significantly higher
than for MFCC20=-60 (7. = 81.2), which probably prevented
the system to effectively adapt to enrollment data. The reason
for this failure is still unclear and deserves further investigation.
Finally, the full JFA system with eigenvoices significantly out-
performs all the other JFA configurations on both feature sets.

3.2. Sensitivity of JFA to the number of eigenchannels

In Fig. 3, the three solid lines show again the performance of
three JFA variants from the previous section, where 50 eigen-
channels were trained for each system. The dashed lines show
the change in the performance with increased number of 100
eigenchannels. We observe degradation in performance for the
two variants without eigenvoices, namely the eigenchannel adap-
tation and the JFA with D trained on data. These systems seem
not to be able to robustly estimate the increased number of
eigenchannels. However, in the case of full JFA system, we
benefit from more eigenchannels significantly after explaining
the speaker variability in the model space by eigenvoices. o4
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Figure 3: The effect of number of eigenchannels for JFA with
D trained on data and full JFA. Results on NIST 2006 data.
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3.3. Effect of zt-norm

The importance of using zt-norm for getting good performance
with JFA systems was previously reported in [6, 5]. On con-
trary, our experience was that omitting zt-norm was not critical
for eigenchannel adaptation based system. To verify these con-
tradictory findings, we evaluated both eigenchannel adaptation
and full JFA system with and without using zt-norm. As can be
seen in Fig. 4, without zt-norm, both eigenchannel adaptation
and full JFA system provide very similar performance. How-
ever, while only small gain was obtained with zt-norm for eigen-
channel adaptation, dramatic improvement was obtained for full
JFA system. Note again that gender-dependent zt-norm was
used in both cases, which is crucial for good performance even
for GI version of full JFA system. With gender-independent zt-
norm (results are not shown in the figure), no significant gain
was obtained for eigenchannel adaptation [2] and significant
degradation in performance was observed for full JFA system
compared to the system without zt-norm.

3.4. Training eigenchannels for different channel conditions

As described in section 2, our baseline JFA systems were pri-
marily developed for telephone data. All the hyperparameters
are trained on telephone data, only 100 additional eigenchan-
nels were trained on microphone data. This strategy was al-
ready found to be effective [4] to allow the system to deal with
the microphone speech segments. In Fig. 5, results are pre-
sented for all four conditions, where enrollment and test seg-
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ments are recorded either over telephone or microphone. On
the left, results are presented for NIST SRE 2006 data described
in section 1. On the right, results on corresponding conditions
from NIST SRE 2008 evaluations® are presented for compari-
son. The dotted lines represents performance of systems with
only 100 eigenchannels trained on SRE04, SREOQS telephone
data while systems represented by solid lines make also use of
the additional 100 eigenchannels trained also on SRE0S micro-
phone data. We can see that augmenting the original 100 eigen-
channels by those trained on microphone data brought negli-
gible degradation for tel-tel condition and large improvement
particularly on mic-mic condition. An interesting observation
is that, when dropping eigenchannels trained on microphone
data, much smaller degradation in performance is obtained for
conditions with either enrollment or test segment recorded over
telephone compared to the case where both the segments are
recoded over microphone.

4. Conclusions

In this paper, we have investigated into different variants of JFA
used for speaker recognition. We have shown that the full JFA
with both eigenchannels and eigenvoices outperforms all sim-
plified variants. The presence of eigenvoices allows for use
of increased number of eigenchannels, which would otherwise
lead to over-training of the system. We found that gender-

3http://www.nist.gov/speech/tests/sre/2008/
sre08 evalplan release4.pdf

dependent zt-norm was crucial for good performance of the
full JFA system. This suggests, that further conditioning on
other dominant speaker characteristics might be beneficial and
calls for further investigation.

Although our system was primarily trained on and tuned
for telephone data, JFA subsystems can be simply augmented
with eigenchannels trained on microphone data, which makes
the system performing well also on microphone conditions.
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Abstract—In this paper, several feature extraction and channel
compensation techniques found in state-of-the-art speaker veri-
fication systems are analyzed and discussed. For the NIST SRE
2006 submission, Cepstral Mean Subtraction, Feature Warping,
RASTA filtering, HLDA, Feature Mapping and Eigenchannel
Adaptation were incrementally added to minimize the system’s
error rate. The paper deals with Eigenchannel Adaptation
in more detail, and includes its theoretical background and
implementation issues. The key part of the paper is however
the post-evaluation analysis, undermining a common myth that
“the more boxes in the scheme, the better the system”. All results
are presented on NIST SRE 2005 and 2006 data.

Index Terms—Speaker recognition, GMM, Feature Warping,
RASTA, HLDA, Feature Mapping, Eigenchannel Adaptation.

EDICS Category: SPE-SPKR

I. INTRODUCTION

In the NIST 2006 Speaker Recognition Evaluation [1], the
Brno University of Technology (BUT) participated with its
own submission and also contributed to systems developed by
the STBU! consortium. Both the BUT and STBU primary sys-
tems were fusions of several individual subsystems, namely:
systems based on Gaussian Mixture Modeling (GMM) [2], and
systems based on sequence kernel Support Vector Machines
(SVM) classifying either GMM mean supervectors [3] or
vectors constructed from Maximum Likelihood Linear Regres-
sion (MLLR) transformations [4], which are transformations
commonly used in speech recognition for speaker adaptation.
In this paper, we provide an analysis of the BUT GMM system
that took part in both the BUT and STBU primary systems,
and which was also submitted as a BUT stand-alone secondary
system. The overall description of the BUT and STBU systems
can be found in [5], [6].

The BUT GMM system is based on a standard Univer-
sal Background Model-Gaussian Mixture Modeling (UBM-
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GMM) paradigm [2] and employs a number of techniques
that have previously proven to improve GMM modeling ca-
pability and help fight against the main problem in speaker
verification - diversity in channel and acoustic conditions.
These techniques are: Cepstral Mean Subtraction, Feature
Warping [7], RelAtive SpecTrAl (RASTA) filtering [8], Het-
eroscedastic Linear Discriminant Analysis (HLDA) [9], Fea-
ture Mapping [10] and Eigenchannel Adaptation [11]. The aim
of this paper is to analyze the importance of the individual
techniques in terms of their contribution to overall system
performance.

The paper is organized as follows: A detailed description
of the BUT GMM speaker recognition system is provided
in section II. Section III documents building the system and
reports the improvements in performance obtained by adding
individual techniques. Section IV presents our post-evaluation
activity and analyzes the importance of the individual tech-
niques in the full system. The result obtained by fusing the
GMM system with the SVM-based systems are presented in
section V. We conclude the paper in section VI.

II. SYSTEM DESCRIPTION
A. Features

The features used in the system are Mel-frequency cepstral
coefficients (13 MFCC coefficients including CO, 20 ms win-
dow, 10 ms shift, 23 bands in a Mel filter bank). To compensate
for channel mismatch in different conversations, three simple
feature processing techniques were successively applied: the
cepstral mean over the whole conversation is subtracted from
the features, Feature Warping [7] (3 sec window, warping
into a normal distribution) is applied and finally temporal
trajectories of individual feature vector coefficients are filtered
using a standard RASTA filter [8]>. After this processing,
each feature vector is augmented with its first, second and
third order derivatives. This results in 52 dimensional feature
vectors containing information about the context of 13 frames.

B. Segmentation

At this stage, non-speech frames are discarded and only
speech frames are considered in the following stages of train-
ing models and verification. Speech/non-speech segmentation
is performed by our Hungarian phoneme recognizer [12],

2Cepstral Mean Subtraction has no effect after the application of Feature
Warping and RASTA filtering as both techniques also ensure the mean
removal. However, it will be interesting to see the effectiveness of these
techniques compared to Cepstral Mean Subtraction alone.



where all phoneme classes are linked to speech classes.
A postprocessing with two rules based on the short time
energy of the signal is applied: 1) If the average energy in
a speech segment is 30dB less than the maximum energy in
the conversation side, then the segment is labeled as silence.
2) If the energy in the opposite conversation side® is bigger
than the maximum energy minus 3dB in the processed side,
the segment is also labeled as silence.

C. HLDA

As the next step, we have employed Heteroscedastic Linear
Discriminant Analysis (HLDA), which is also in common
use in speech recognition systems. HLDA provides a linear
transformation that can de-correlate the features and reduce
the dimensionality while preserving the discriminative power
of features. The theory of HLDA is described in detail in [9],
[13]. HLDA needs classes to estimate its class-covariance
statistics (which are then used to estimate the transformation
matrix). For this purpose, GMM with 2048 Gaussian compo-
nents is trained on test data from SRE2004 and the feature
frames aligned with individual GMM mixture components
are considered as classes. HLDA transformation reducing the
dimensionality from 52 to 39 is estimated. GMM is then
updated in the new HLDA space (by projecting collected class-
covariance and mean statistics through HLDA transformation).
Features are also projected into HLDA space and GMM
is re-estimated (still only on SRE2004 test data) by few
additional Expectation-Maximization (EM) iterations to obtain
the Universal Background Model (UBM).

D. Feature Mapping

To further compensate for channel mismatch, Feature Map-
ping [10] was applied to all enrollment and test conversations.
Feature Mapping requires a set of models, each adapted from
UBM using data of particular acoustic condition (channel).
We have used 14 such models: 6 models were adapted for
3 channels (cell,cord,stnd) and 2 genders given the labels
from 2004 test data. The remaining 8§ models were initially
adapted for 4 channels (cdma, cord, elec, gsmc) and 2 genders
using the TNO Feature Mapping labels used in SRE-2005.
However, these 8 models were then iteratively used to re-
cluster the training data in an unsupervised fashion and again
adapted using the new clustering (20 iterations lead to stable
clustering) [14].

E. Training speaker model and verification

Each speaker model is obtained by a traditional relevance
Maximum A-Posteriori (MAP) adaptation [15] of UBM using
enrollment conversation. Only means are adapted with a
relevance factor 7 = 19.

In the verification phase, standard Top-N Expected Log
Likelihood Ratio (ELLR) scoring [15] is used to obtain a
verification score, where N = 10 in our system. However,
for each trial, both the speaker model and UBM are adapted

3In NIST SRE2006 evaluations, our system participated only in the primary
condition, where two separate recordings for the two sides of each phone
conversation are available.

to the channel of test conversation using simple Eigenchannel
Adaptation [11] prior to computing the log likelihood ratio
score. Note, that when T-norm [16] is used to normalize the
score, each T-norm model is also adapted to the channel of
relevant tested conversation.

F. Eigenchannel subspace estimation

We adopted the term ‘eigenchannel’ as used in speaker
recognition from Kenny [17]. It was introduced to the NIST
SRE by SDV in 2004 [11], revisited by Kenny and Vogt [18]
in SRE 2005, and again by several sites in various forms in
SRE 2006.

Let supervector be a M D dimensional vector constructed
by concatenating all GMM mean vectors and normalized by
corresponding standard deviations. M is the number if Gaus-
sian mixture components in GMM and D is dimensionality
of features. Before Eigenchannel Adaptation can be applied,
we must identify directions in which the supervector is mostly
affected by a changing channel. These directions, which we
will refer to as eigenchannels, are defined by columns of
MD x R matrix V, where R is the chosen number of
eigenchannels (R = 30 in our system). The matrix V is given
by R eigenvectors of average within class covariance matrix,
where each class is represented by supervectors estimated on
different segments spoken by the same speaker.

More precisely, we have selected all (310) speakers from
NIST SRE2004 data for which at least two conversations
are available. For each speaker, ¢, and all his conversations,
j = 1,...,J;, UBM is adapted to obtain a supervector,
s;j. The corresponding speaker average supervector given by
5 = le;l si;/J; is subtracted from each supervector, s;;,
and resulting vectors form columns of M D x J matrix S,
where J is the number of all conversations from all selected
speakers (J = 2961 in our case). Eigenchannels (columns of
matrix V) are given by R eigenvectors of M D x M D average
within speaker covariance matrix* £SS” corresponding to
R largest eigenvalues. Unfortunately, for our system, where
MD = 2048 x 39 = 79872, direct computation of these
eigenvectors is unfeasible. A possible solution is to compute
eigenvectors, V', of J x J matrix 4S7S; eigenchannels
are then given by V. = SV’. In case the maximum a-
posteriori (MAP) criterion is used for Eigenchannel adaptation
(see below), the length of each eigenchannel must be also
normalized to the average within speaker standard deviation of
supervectors along the direction of the eigenchannel (i.e. each
eigenvector obtained in the previous step must be multiplied
by the square root of the corresponding eigenvalue). This
normalization is irrelevant in the case of maximum likelihood
(ML) criterion.

G. Eigenchannel Adaptation

Once the eigenchannels are identified, a speaker model (or
UBM) can be adapted to the channel of a test conversation by
shifting its supervector in the directions given by eigenchan-
nels to better fit the test conversation data. Mathematically,

4Note that matrix %SST is a true covariance matrix as the zero mean

over columns of S is guaranteed by the subtraction of the speaker average
supervectors described above.
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this can be expressed as finding the channel factors, x, that
maximize the following MAP criterion:

p(O[s + Vx)N(x;0,1), ey

where s is a supervector representing the model to be adapted”,
p(Ols + Vx) is the likelihood of the test conversation given
the adapted supervector (model) and N(+;0,I) denotes a
normally distributed vector. Assuming a fixed occupation of
the Gaussian mixture components by test conversation frames,

o, t = 1,...,T, it can be shown [11] that x maximizing
criterion (1) is given by:
M T o — 1
x=A"" E%V%;vm(t)ta—f, 2)
m= =

where V,,, is M x R part of matrix V corresponding to the m?"
mixture component, ., (t) is the probability of occupation
mixture component m at time ¢, p,,, and o, are the mixture
component’s mean and standard deviation vectors and

M T
A=T+> VIV, (). 3)
m=1 t=1

In our implementation, occupation probabilities, ., (t), are
computed using UBM and assumed to be fixed for given test
conversation. This allows us to pre-compute matrix A ~! only
once for each test conversation. For each frame, only Top-
N occupation probabilities are assumed not to be zero. In
the following ELLR scoring, only the same top-N mixture
components are also considered. All these facts ensure that
adapting and scoring different speaker or T-norm models on a
test conversation can be performed very efficiently.

Eigenchannel Adaptation can be also performed by max-
imizing ML criterion instead of MAP criterion. This corre-
sponds to dropping the prior term, N (x; 0, I), in criterion (1)
and term I in equation 3. In our experiments, there is always
enough adaptation data (test conversations contain approx-
imately 2.5 minutes of speech) making the prior term in
MAP criterion negligible. Therefore, we have not found any
differences in performance when using the two criteria.

Our system uses a very simple scheme of modeling channel
variability that affects only the verification phase. However,
more sophisticated schemes can be considered. In [19] the
verification phase is equivalent to that described here, however,
modeling channel variability is considered also in training
speaker models. This may become important especially when
speaker models are trained using more than one enrollment
conversation.

A very elaborate scheme can be found in [17], where mod-
eling channel variability is considered in all phases: training
background model, training speaker models and verification.
Instead of finding eigenvectors, channel subspace V is ob-
tained also by maximizing MAP criterion similar to (1). For
enrollment data, instead of finding MAP point estimates of
model parameters, posterior probabilities of model parameters
are considered and integrated over to obtain the likelihood
score for a test conversation.

SNote again that by our definition, a supervector is a mean supervector
normalized by the corresponding standard deviations.
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III. BUILDING THE SYSTEM

In the following experiments, results will be presented for
“1-side training, 1-side test, all trials” condition from SRE2005
NIST evaluation, which we have used for system development,
and for primary condition (1-side training, 1-side test, English
only trials) from SRE2006 NIST evaluation. In the tables,
results are presented in terms of EER (Equal Error Rate) and
Cmin 45 defined by SRE2006 NIST evaluation rules [1]. For
SRE2006 primary condition, performances are also presented
in the form of DET (Detection Error Tradeoff) curves.

Table I and figure 1 document the process of building our
system. It shows line-by-line the improvements in performance
obtained by successively adding different techniques. Our
starting point was GMM system with 2048 Gaussian mixture
components, features were 13 MFCC coefficients augmented
with their deltas and processed by cepstral mean subtraction.
The error rate of this system is very high and is almost
halved by simply adding RASTA filtering. Replacing RASTA
with Feature Warping improved the performance; however,
a further small gain was obtained from the combination of
both techniques. The application of RASTA filtering on top
of Feature Warping appeared to be slightly more advanta-
geous than doing it in the opposite order. In the next two
steps, features were also augmented with double-delta and
triple-delta coefficients. While adding double-deltas is clearly
beneficial for both SRE2005 and SRE2006 evaluation sets,
the advantage of adding triple-deltas, which we have seen
during development on SRE2005 data, was not confirmed on
SRE2006.

The following three steps, each significantly improving
the system performance, were: projection of 52 dimensional
features into 39 dimensional HLDA space, application of our
14 classes Feature Mapping and Eigenchannel Adaptation.

So far, all the presented results were obtained without
normalizing the verification scores by any standard tech-
nique, such as T-normalization or Z-normalization (Z-norm/T-
norm) [16]. As can be seen in Table I, T-norm was not effective
in improving the performance of our full system. We have
also experimented with Z-norm and ZT-norm, nevertheless,
results obtained with all normalization techniques were mixed
and unconvincing. This contradicted the conclusions drawn
in [17], [18], [19], where Z-norm or ZT-norm was found
necessary for making channel variability modeling techniques
really effective.

Most of GMM based speaker verification systems, for which
the results are published by various sites, use less than 2048
Gaussian components. The last line of table I show results
for a system with the usual number of only 512 Gaussian
components, which is otherwise identical to our full system.
It can be seen that the performance of a 2048 component
system is superior to this smaller one.

IV. POST-EVALUATION ANALYSIS

In the previous section, we have shown how adding individ-
ual techniques improves system performance. However, it will
be even more interesting to see whether and how the individual
techniques are important in the full system.



System SRE2005 SRE2006
EER Cpin EER Cpin
MFCC+A, CMS, 2048 G. | 26.6% .089 | 23.8% .088
+ RASTA 14.3% .055 11.8% .059
+ Feature Warping 12.4% .052 10.0% .051
+ AA 11.2% .047 9.1% .049
+ AAA 10.6% .047 9.3% .048
+ HLDA (52—39) 9.7% .042 8.2% .041
+ Feature Mapping 7.3% .033 6.2% .032
+ Eigenchannel Adapt. 4.6% .020 4.0% .020
+ T-norm 4.6% .020 4.0% .018
Full system, 512 Gauss. 4.9% .026 4.7% .024
TABLE I

THE IMPROVEMENTS IN PERFORMANCE OBTAINED BY SUCCESSIVELY
ADDING DIFFERENT TECHNIQUES.
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Fig. 1. DET curves showing improvement in successive adding different
techniques.

A. The importance of RASTA and Feature Warping

Table II and figure 2 present results obtained with the
baseline full system® and two of its modifications leaving out
either RASTA filtering or Feature Warping. While Feature
Warping turns out to be an important part of the system,
leaving out RASTA filtering even slightly improves the system
performance. This may support the conclusions in [8], where
RASTA was found to discard important speaker information
lying under its cut-off frequency and a filter more appropriate
for speaker verification was designed.

B. Analyzing the effect of HLDA

The left half of Table III shows the effect of HLDA for
systems without the following Feature Mapping and Eigen-
channel Adaptation. The first two results (already presented
in Table I) demonstrate the effectiveness of HLDA at this

6System with 2 Gender Feature Mapping (see below) is used as a baseline
system in this experiment for efficiency reasons.
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Fig. 2. The importance of RASTA filtering and Feature Warping.
System SRE2005 SRE2006
EER Cg‘ei‘t‘ EER Cg‘ei?
Full system 4.5% .019 3.8% .020
No RASTA 4.4% .019 3.8% .019
No Feature Warping | 5.1% .020 4.3% .021
TABLE I

THE IMPORTANCE OF RASTA AND FEATURE WARPING.

stage. The dimensionality reduction from 52 to 39 was chosen
as exactly the same scheme had already been proven to be
effective for speech recognition [20]. Since it was not clear
whether this scheme is optimal for our speaker verification
system, reductions to various dimensionalities were examined
and the best results were obtained without any dimensionality
reduction’ (last line of Table III).

The situation is different in the right half of Table III,
where Feature Mapping and Eigenchannel Adaptation are
used. Performances of systems using HLDA are still supe-
rior to the one that leaves HLDA out; however, the system
with dimensionality reduction outperforms the one without
reduction. The possible explanation is that the significant
increase in GMM (and supervector) size makes it impossible
to robustly estimate eigenchannels given the limited number
of supervectors available for their estimation. The summary of
HLDA and MLLT results can be also found in figure 3.

C. Eigenchannels vs. Feature Mapping

The left half of Table IV and dotted DET curves in figure 4
show the effect of Feature Mapping for systems without
the following Eigenchannel Adaptation. The first two results
(already presented in Table I) demonstrate the effectiveness

THLDA without dimensionality reduction is often referred to as a Maximum
Likelihood Linear Transform (MLLT) [21]
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System Without channel comp. With channel comp.
SRE2005 SRE2006 SRE2005 SRE2006
EER Cpir | EER Cpin || EER Cpit | EER Cpiv
No HLDA 10.6% .047 9.3% .048 5.1% .024 5.0% .025
HLDA 52 — 39 9.7% 042 | 82%  .041 45% 019 | 3.8%  .020
HLDA 52 — 52 87%  .038 | 75%  .037 46% 023 | 42%  .021
TABLE III

THE EFFECT OF HLDA ON SYSTEM PERFORMANCE.
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Fig. 3. The effect of HLDA and MLLT (HLDA without dimensionality

reduction) on system performance.

of Feature Mapping at this stage. In the third line, the
performance of a system using Feature Mapping based on only
two models adapted on male and female specific data is shown.
This allows us to compensate for the fact that our system uses
only a single UBM instead of the usual approach where two
genders are handled separately using two UBMs. Although
such 2-gender Feature Mapping significantly outperforms the
system leaving Feature Mapping out, it still reaches only about
half of the gain in performance compared to 14 classes Feature
Mapping used in our final system.

The right half of Table IV and solid DET curves in figure 4
show similar results for systems applying also Eigenchan-
nel Adaptation. We can see that without Feature Mapping,
Eigenchannel Adaptation causes an impressive improvement in
system performance (more than 50% relative in both EER and
CBIn poings). There is No advantage in using Feature Mapping
after the Eigenchannel Adaptation is applied, which allows
us to simplify the verification system considerably by leaving
Feature Mapping out. In fact, the use of our 14 classes Feature
Mapping causes even slight degradation in the performance. It
was surprising for us that even 2-gender Feature Mapping did
not turn out to be effective, as eigenchannels are not trained to
model the directions of differences between male and female
specific models.
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Fig. 4. The importance of Feature Mapping and Eigenchannel Adaptation.
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Fig. 5. The dependency of EER on the number of eigenchannels used for

adaptation.

D. Number of eigenchannels

The number of eigenchannels was chosen to be R = 30 for
our system submitted to SRE2006 NIST evaluations. Figure 5
shows the dependency of EER on the number of eigenchannels
used for adaptation. A similar trend has also been observed
for CBIn values. It can be seen that our system is not very
sensitive to the exact selection of the number of eigenchannels.



System Without Eigenchannel Adapt. With Eigenchannel Adapt.
SRE2005 SRE2006 SRE2005 SRE2006
EER Cpir | EER Cpin || EER Cpir | EER CRiv
No Feature Mapping 9.7% .042 8.2% .041 4.6% .019 3.8% .020
14 classes Feature Mapping | 7.3% .033 6.2% .032 4.6% .020 4.0% .020
2-gender Feature Mapping 8.5% .037 7.6% .036 4.5% .019 3.8% .020
TABLE IV

THE IMPORTANCE OF FEATURE MAPPING AND EIGENCHANNEL ADAPTATION.

System SRE2005 SRE2006
EER CBY' | EER  CpP
no T-n., no RASTA, no FM, 50 EA | 4.4% .017 3.6% .018

TABLE V
RESULTS OF THE FINAL TUNED AND SIMPLIFIED SYSTEM.

V. FUSING WITH SVM BASED SYSTEMS

The performance of the GMM system was also tested in
combination with speaker recognition systems based on a
different classification paradigm — Support Vector Machines
(SVM). Figure 6 contains a summary of results for SRE2006
primary condition. Results are presented for BUT stand-alone
systems as well as for fused systems that were BUT and STBU
submissions into the SRE2006 NIST evaluations.

These systems (from the worst to the best) are:

¢ SVM-MLLR, where MLLR and constrained MLLR (CM-
LLR) speaker adaptation matrices from a speech recog-
nition system are classified by SVM. Two variants are
shown: with and without T-norm

+« SVM-GMM, where GMM supervectors are classified by
SVMs. Two variants are shown: with and without T-norm

e GMM is the full system described in this paper. Two
variants (already presented in Table I) are shown: with
and without T-norm

o BUTO?2 is a fusion of 3 systems: GMM, SVM-GMM and
SVM-MLLR, all with T-norm applied

o BUTO1 (BUT primary system) is a fusion of 6 systems:
GMM, SVM-GMM and SVM-MLLR, each in two vari-
ants: with and without T-norm

o STBUI-N is fusion of 10 systems from the partners in
the STBU consortium.

« STBU1-U (STBU primary system) is fusion of the same
10 systems, plus one more SVM-GMM system imple-
menting unsupervised adaptation to test data according
to SRE2006 NIST evaluation rules [1].

A detailed description of different systems can be found in [5],
[6]. The fusion was performed using linear logistic regression
implemented in the FoCal toolkit® and it is also described and
commented on in [6].

VI. CONCLUSION

BUT GMM system contains nothing more than techniques
that were already published — its main contribution is in a
thorough analysis and discussion of these techniques in a full
speaker recognition system. Starting in the feature extraction,

8www.dsp.sun.ac.za/~nbrummer/focal/
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Fig. 6. Fusion of GMM system with SVM based systems.

the main conclusion is that RASTA did not help in the full
system. On the other hand, HLDA significantly improved its
performances, although we know that there is still work to
be done (different dimensionality reductions examined with
the full system, not using triple-deltas, etc.). In fighting the
channel variability, even the simple Eigenchannel Adaptation
turned out to be very effective, erasing the advantages of Fea-
ture Mapping, which is actually not important when applied
together with Eigenchannel Adaptation. Table V presents the
results of the final tuned and simplified system, containing
50 eigenchannels, no T-norm, no RASTA and no Feature
Mapping. All the conclusions may, however, not hold for other
than 1-side training, 1-side test condition examined in this
work. Our current and future work aims at these conditions as
well as at using the described GMM system as an excellent
baseline for further experiments.
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Abstract—This paper describes and discusses the ‘STBU’
speaker recognition system, which performed well in the NIST
Speaker Recognition Evaluation 2006 (SRE). STBU is a consor-
tium of 4 partners: Spescom DataVoice (South Africa), TNO
(The Netherlands), BUT (Czech Republic) and University of
Stellenbosch (South Africa). The STBU system was a combination
of three main Kinds of sub-systems: (1) GMM, with short-
time MFCC or PLP features, (2) GMM-SVM, using GMM
mean supervectors as input to an SVM, and (3) MLLR-SVM,
using MLLR speaker adaptation coefficients derived from an
English LVCSR system. All sub-systems made use of supervector
subspace channel compensation methods—either eigenchannel
adaptation or nuisance attribute projection. We document the
design and performance of all sub-systems, as well as their fusion
and calibration via logistic regression. Finally, we also present a
cross-site fusion that was done with several additional systems
from other NIST SRE-2006 participants.

Index Terms—Speaker recognition, GMM, SVM, eigenchannel,
NAP, Fusion.

I. INTRODUCTION

This paper documents significant elements of the state-of-
the-art in text-independent telephone speaker recognition, as
measured in the NIST Speaker Recognition Evaluation 2006
(SRE), via a description of the design and performance of the
‘STBU’ submission. It expands on a short paper published
at ICASSP [1]. The U.S. National Institute of Standards and
Technology (NIST) organizes yearly SRE evaluations [2], [3]
to contribute to the direction of research efforts and to calibrate
the technical capabilities of different academic and industrial
sites active in text-independent speaker recognition.

The STBU submission to the NIST SRE-2006 was the result
of a collaboration between four institutes:

« Spescom DataVoice (SDV), South Africa,
e TNO, The Netherlands,

The authors appear in alphabetical order

Niko is with Spescom DataVoice, Stellenbosch, South Africa and with
University of Stellenbosch.

Pavel, Lukés, Petr, Ondfej, Martin, FrantiSek and Honza are with
Speech@FIT, Faculty of Information Technology Brno University of Tech-
nology, Czech Republic.

David is with TNO Human Factors, Postbus 23, 3769 ZG Soesterberg, The
Netherlands.

Albert is with University of Stellenbosch, Department of Electrical and
Electronic Engineering, Stellenbosch, South Africa.

o Brno University of Technology (BUT), Czech Republic,
and
o University of Stellenbosch (SUN), South Africa.

The STBU consortium was formed to learn and share the tech-
nologies and available know-how among partners. Another,
equally important, reason to join efforts was that most success-
ful submissions to NIST evaluations fuse the results of several
sub-systems to decrease error rates. Simply put, a consortium
can generate more diverse systems, and even if the theoretical
base is very similar, subtle details in implementation, features,
background models, channel normalization and training can
make the fused system more accurate.

Admittedly, this paper is not for novices in speaker recog-
nition. Rather, it assumes familiarity with basic approaches
such as Universal Background Model-Gaussian Mixture Mod-
elling (UBM-GMM) [4], sequence kernel Support Vector
Machines [5] and more advanced channel compensation ap-
proaches such as Eigenchannel Adaptation [6] and Nuisance
Attribute Projection (NAP) [7]. Further, the reader is assumed
to be familiar with the NIST SRE-2006 task of speaker
detection [8] and specifically with the ‘lconv4w-1lconv4w’
condition', where a detection trial consists of a pair of speech
segments, and where the objective of the exercise is to decide
independently for each of several thousand trials, whether the
two segments were spoken by the same speaker, or by two
different speakers. Speech segment here denotes an excerpt
of approximately 5 minutes, from one of the 2 channels of
a 4-wire recording of a telephone conversation between two
people.

The paper is organized as follows: Section II presents the
basic system types grouped into three categories. Section III
presents the systems from different STBU sites in more
detail. In Section IV, we describe in detail the theory and
implementation of system fusion and calibration using logistic
regression. In particular, we discuss how calibration was done
to meet both the traditional Cye; and the new Cy, metrics.
Results are presented in Section V—this section also analyzes
language dependence which was an important issue in SRE-
2006. Finally, Section VI presents a cross-site fusion of STBU

IFor details see the evaluation plan, via http://www.nist.gov/speech/tests/
spk/2006/
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sub-systems together with several systems from other SRE-
2006 participants. We conclude the paper in Section VIL

II. SYSTEM DESCRIPTION

We used three basic system types: Eigenchannel GMM,
GMM-SVM and MLLR-SVM. All sub-systems had in com-
mon that they used one of two forms of linear supervector sub-
space channel compensation technique: (i) For eigenchannel
adaptation, supervectors were extracted from GMM models,
compensated for channel effects, translated back to adapted
GMM models and then employed in the usual way to score
the tests. (i) In the case of the SVM-based systems, super-
vectors were extracted either from GMMs or from MLLR
adaptation coefficients and were then subjected to nuisance
attribute projection to cancel channel effects. Following that,
the supervectors are employed in the usual way to train SVM
models which can be scored against test supervectors. More
detail follows below.

A. Common signal processing

All sub-systems used standard features such as Mel-
frequency cepstral coefficients (MFCC) or perceptual linear
prediction (PLP) features. The basic cepstral features were
augmented with derivatives up to third order. A set of sev-
eral frame selection criteria were applied: (a) frame energy
must be more than than 30dB below the maximum frame
energy; (b) frame energy at least 3dB above energy in other
channel (cross channel squelch); (c) segmentation from BUT’s
Hungarian phone recognizer; (d) strongly voiced syllable nu-
clei detector; (e) ASR word transcript segmentation provided
by NIST. RASTA (relative spectral) filtering [9], short-time
Gaussianization [10] and heteroscedastic linear discriminant
transformation (HLDA) [11], [12] were used for basic channel
normalization, feature decorrelation and dimensionality reduc-
tion.

B. Feature mapping

TNO and BUT used the channel-compensation technique
of feature mapping [13] to post-process all of their acoustic
features. However, post-evaluation experiments by BUT [14]
strongly suggest that when eigenchannel or NAP channel
compensation are used, then feature mapping becomes unnec-
essary.

In the BUT systems, 8§ feature mapping channels were found
by unsupervised iterative re-clustering of conversations [15],
primed with the TNO feature mapping labels (CDMA, GSM,
carbon button, electret per gender), as used in SRE-2005.
These were augmented with 6 channels determined from
SRE-2004 labels (cellular, cordless, standard per gender).
The TNO feature mapping used 16 classes, and was trained
with balanced quantities from Switchboard (640 speakers) and
Fisher (1000 speakers) databases.

C. Eigenchannel GMM

We adopted the term ‘eigenchannel’ as used in speaker
recognition from Kenny [6]. It was introduced to the NIST
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SRE by SDV in 2004 [16], revisited by Kenny [17], [18] and
Vogt [19] in SRE 2005, and again by several sites in various
forms in SRE-2006 [20].

In our Gaussian mixture model (GMM) system [14], speaker
models were trained in the usual way by adapting from
a universal background model (UBM [4]) by maximum a-
posteriori (MAP) adaptation [21]. Only means of Gaussian
components are adapted.

In the following, we will use the notion of supervectors®:
Since our GMMs differ only in means, each model can be
represented by the concatenation of all the mean vectors of
all the Gaussians in the model. (We normalized each mean by
the corresponding standard deviation.)

In eigenchannel adaptation, a model that has been trained
under one channel condition, may be adapted towards a dif-
ferent channel condition of new test data, to reduce mismatch
when the speaker is the same. Importantly, the adaptation
must be constrained so that adaptation between different
speakers is suppressed. This constraint is effected by adapting
GMM models in supervector space, but only in a very small®
subspace.

The adaptation is effected by maximizing (with a single it-
eration of the Expectation Maximization (EM) algorithm [21])
the MAP-criterion, P({f:}|m + Vx)P(x), w.r.t. the low-
dimensional ‘channel mismatch’ vector x [16], [14]. Here,
{f+} is the sequence of acoustic feature vectors in the test
segment, m is the supervector representing the original model,
V is a low-rank matrix that spans the adaptation subspace,
and P(x) is a zero-mean, unit-covariance Gaussian prior on
the channel mismatch. In later experiments, we found the
prior to be unimportant and that the MAP-criterion could be
replaced by a simpler ML-criterion, by ignoring the prior. The
adaptation subspace V was trained via the same eigen-analysis
that was used to find the NAP-subspace, see Section II-F1.

In the variant of this system without T-norm (test nor-
malization), the score for each trial was calculated as
log P({ft}|mg) — log P({f:}|U,), where m, and U, are
the independently adapted target and universal background
models. In the T-normed variant, the score was normalized in
the usual way [22], but with each T-norm model also indepen-
dently adapted. The EM-algorithm for adaptation of multiple
T-norm models was streamlined by using the state occupancy
probabilities of the UBM for all models, as proposed by [19].

The BUT eigenchannel GMM system and its interaction
with various feature-space compensations such HLDA and
feature mapping is analysed in more detail in [14].

D. GMM-SVM

In this type of system, GMM supervectors, as described
in the previous section, are extracted not only from target-
model training speech segments, but also for all other back-
ground and test speech segments. In other words, each speech
segment (conversation side) is represented by a single GMM

2Supervectors are just rather large vectors, where ‘super’ serves to distin-
guish them from the much smaller short-time feature vectors.

3In this case the subspace was 30-dimensional while the full supervector
dimension was almost 80000.



supervector. The target and background supervectors are then
used to train support vector machine (SVM) speaker models
against which the test supervectors are scored [23], [24]. The
SVM uses a linear kernel in supervector space. Each SVM is
trained using the single available positive example from the
target speaker, and many* negative examples from a pool of
background speakers.

All our SVM sub-systems used NAP as a preprocessing step
before SVM training. This is described in Section II-F.

E. MLLR-SVM

This type of system makes use of large vocabulary con-
tinuous speech recognition (LVCSR). Previous work [25] has
already shown that the adaptation matrices that LVCSR sys-
tems use to adapt towards new speakers are excellent features
for speaker recognition.

The sub-systems in this paper used the coefficients from
constrained maximum likelihood linear regression (CMLLR)
and maximum likelihood linear regression (MLLR) trans-
forms, as estimated by the LVCSR system developed in
AMI project® submitted to NIST Rich Transcription 2005
evaluations [26]. This adaptation was ‘supervised’ by using
the ASR transcripts®, as made available by NIST for all speech
data in SRE-2005 and 2006. Since NIST did not provide
pronunciation dictionary, we used the AMI dictionary and we
generated the missing pronunciations automatically. With this,
we were able to generate the triphone alignment, to apply
vocal tract length normalization (VTLN) and to estimate the
coefficients of CMLLR and MLLR transformations.

These coefficients were normalized and concatenated into
supervectors and then used with SVMs, exactly as described
in the previous subsection for the GMM supervectors.

FE. Nuisance attribute projection (NAP)

All of our SVM sub-systems used NAP [7], [27] to remove
unwanted channel or inter-session variability. There are dif-
ferent ways in which the NAP transform may be estimated
and applied. We give here the general recipe that we applied
in all of the STBU SVM systems. We also show how the
eigenchannel adaptation matrix V was obtained.

1) NAP training: The data collection used in SRE-2004
was specifically designed to contain a large channel variability.
Hence, as training material for the NAP-transforms we used
whole conversation sides from the NIST SRE-2004. This data
includes circa 310 speakers for most of which there are 10 or
more conversation sides, or sessions. The steps for estimating
the NAP transform are:

« Extract a supervector of dimension’ D, for each session
of each speaker.

4Background size was of the order of 2000, which is much smaller than the
supervector dimension. In practice this always results in SVM models with
zero training errors. This makes selection of the SVM regularization constant
irrelevant.

3See http://www.amiproject.org

Sfrom a different English LVCSR system

7For GMM supervectors the dimension is the acoustic feature dimension
times the number of GMM components. Numerical values are given in Table I.

o For each speaker, calculate the mean supervector over
all of the available supervectors of that speaker. Then
subtract the mean from all of the vectors for that speaker.
Pooling all these difference vectors then gives a large
matrix D of supervectors from which most of the speaker
variability has been removed, but where the inter-session
(or nuisance) variability remains. The matrix D has
dimensions Dg, X Nges, Where Ngos iS the total number
of sessions.

o Select the NAP transform dimension, denoted as Dnap.
We typically used Dxap = 40, but this dimension should
be chosen empirically as the one which gives best results.

o Now perform a principal component analysis (PCA)
on D. That is, we need to find the Dnap principal
eigenvectors of the normalized scatter matrix® :-DD7.
Since the number of session vectors is typicallife “several
thousand, and the supervector dimension can be in the
tens of thousands, some careful engineering may be
needed to find these eigenvectors on machines of limited
memory and CPU capacity. Some hints are given in
Section II-H. We denote the Dy, X Dnap matrix of
principal eigenvectors as E.

« Since an iterative eigenvector algorithm typically gives
approximate solutions, it is a good precaution to normal-
ize and mutually orthogonalize the columns of matrix
E, for example by singular value decomposition (SVD)
of E. If the eigenvectors are not orthonormal, the NAP-
transform fails to project the nuisance subspace away
completely.

2) Eigenchannel matrix: If the ML-version (without chan-
nel mismatch prior) of eigenchannel adaptation is used, it suf-
fices to simply set V = E, where V is the matrix mentioned
in Section II-C. However if MAP-adaptation is used, then each
column j of V should be scaled by \/T, where e; is the
corresponding eigenvalue. (Directions in nuisance subspace
with relatively smaller variances are thereby allowed to adapt
to a lesser extent.)

3) NAP-projection: Once the orthonormal’ NAP-subspace
E has been trained as explained above, we may use it to
train SVM speaker models that are more robust against inter-
session variability. The basic NAP-transform is designed to
be applied with linear-kernel SVMs. The transform must be
applied to all supervectors (target and background) before they
are used in SVM model training. That is, each supervector v
is transformed as:

v =v - E(ETv), (1)
where T denotes transpose. By orthonormality, this transfor-
mation is idempotent [27]. This means it is not necessary to
also NAP-transform the test supervectors'?, before they are
scored against the SVM models. Finally, note that the NAP
transform should be applied before SVM training. It does not

8D has zero mean, so that this normalized scatter matrix acts as estimate
of within-speaker covariance.

ETE =1

101t would also not matter if this operation was repeated because of the
idempotence.
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help to apply the NAP-transform afterwards to test vectors or
to models that have been trained on unprojected data.

G. Division of training data

Although not all STBU sites had the same speech databases
at their disposal, a general division of training data was
made early in the design stage to which all sites adhered.
Starting with the most recent collection, we used: SRE-2005
exclusively for sub-system development testing, calibration
and fusion; SRE-2004 for eigenchannel, NAP, UBM, T-norm
and rank normalization; SRE 1999-2003, Fisher, Switchboard
for UBM training, feature mapping, SVM background, and
T-norm.

H. Some notes on computational efficiency

For experiments with these complex systems and large test
databases it is important to have fairly efficient implementa-
tions of the various algorithms. Here we give some hints:

o Store the top-N Gaussian index for each speech frame,
where typically N = 5 [4]. Note that for obtaining this
index for a frame f;, only the distance to the Gaussian
centers needs to be evaluated, and the exponentiation can
be postponed or even omitted in the GMM-SVM case.

o For MAP adaptation of GMM means, only the top-
N Gaussian components need to be evaluated in the
‘expectation-step,” making this typically a factor 100
faster [16]. Since this needs to be performed for each
test segment (in the GMM-SVM case), this makes a big
difference.

o In the estimation of the NAP projection, rather than
calculating the principal Dnyap eigenvectors of DDZ,
calculate the principal eigenvectors of DTD (which is
much smaller), and left-multiply these by D afterwards.

« Using ARPACK or Matlab’s eigs (), explicit calcu-
lation of D7D is not necessary, but rather a function
f(x) = DTDx can be provided. This function can
be calculated without transposing large matrices using
f(x) = (Dx)"D)".

o For training SVM models (e.g., using 1ibSVM [28]),
pre-compute the Gram (kernel) matrix between all
background speakers. Then for each new target/T-norm
speaker, only one row and column needs to be replaced
in the Gram matrix. This speeds up SVM training with
orders of magnitude.

e For SVM scoring, SVM models can be folded, or com-
pacted [5], into a single vector by calculating a weighted
sum of the support vectors. Evaluation of a score is then
just calculation of an inner product and T-normalization
is just a matrix-vector multiplication.

III. SUB-SYSTEMS AND THEIR DIVERSITY

In the fusion of sub-systems, we found it advantageous to
include in each fusion several very similar, but not identical,
systems. Indeed, in post-evaluation experiments we found that
leaving any of the sub-systems out caused significant deteriora-
tion in performance. These sub-systems were different because
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each was built by a different team, using different front-
ends, different development databases and somewhat different
flavours of the subspace channel compensation techniques. See
Table I for a summary of the main characteristics of the various
sub-systems.

Some remarks not captured in the table are the following. In
an attempt to compensate for asymmetric system design, SDV
provided two similar sub-systems: A reverse system swapped
test and train speech segments for each trial, but was otherwise
the same as the forward system. Because one speech segment
is used for training the model and the other for obtaining
a score, this swapping makes the system more symmetric.
Experiments have shown that fusing these to sub-systems leads
to better performance.

The acoustical features from BUT, as well as the MLLR
transform data, were used by SUN. SUN provided two ver-
sions of the MLLR-SVM system, differing in the number of
MLLR transforms.

CMLLR and MLLR transforms were trained for each
speaker. At first, CMLLR was trained with two classes (speech
+ silence). On top of it, MLLR with two (SUN) or three (BUT,
SUN) classes (the two speech classes were obtained by auto-
matic clustering on the LVCSR training data + silence) was
estimated. Using more classes caused missing data problems
for some files, and was found not to lead to better performance.
Both CMLLR and MLLR transform matrices were estimated
as block-diagonal in 13-coefficient wide streams.

IV. FUSION, CALIBRATION AND DECISIONS

The crux of the STBU design was to fuse multiple sub-
systems into a single effective system. By fusion we mean
the following: Let = represent a speaker detection trial'! and
let this trial be processed in parallel by N sub-systems, each
of which produces a real-valued output score, where more
positive scores favour the target hypothesis (same-speaker) and
more negative the non-target hypothesis (different-speakers) .
The score of the ith sub-system is denoted s;(x). These scores
are fused using linear combination:

N
st = s(z,w) = wo + Z w;s;(x) ?2)
i=1
where s; is the fused output score and w = [wg, wy, ..., wWy]
is a vector of real-valued weights. Perhaps counter intuitively,
some of the weights may be negative.

A. Logistic regression

The fusion weights were obtained by logistic regression [29]
training on a database of supervised scores. We used all
lconv4w-1conv4w trials of the NIST SRE-2005 for this pur-
pose. It is important to note that all development of the sub-
systems did not make use of any 2005 data. If for example,
2005 data had been used to train NAP/eigenchannel, then the
scores produced by these systems on the same data would have
been over-optimistic and therefore not suitable for training
fusion and calibration weights.

Recall a trial consists of two speech segments.



TABLE I
SUMMARY OF ALL SUB-SYSTEMS COMPONENTS. LEGEND TO DATA SOURCE: SW: SWITCHBOARD, Snn: NIST SRE-"nn, F1: FISHER RELEASE 1.
FRAME SELECTION METHODS (A)—(E) ARE EXPLAINED IN SECTION II-A.

Site SDV BUT SUN TNO
System GMM-SVM GMM | GMM-SVM MLLR-SVM GMM-SVM MLLR-SVM GMM-SVM
Features 12 MFCC, A 12 MFCC+Cy, A3 12PLP+Cy,A3 | 12 MFCC+Cy, A3 | 12PLP+Cy,A% | 12 PLP + log E, A
HDLA dimension 39 39 39 39 39
Frame selection (b),(d) (a)—(c) (a)—(c) (e) (a)—(c) (e) (a)
Ny 24 39 39 39 39 39 26
UBM sources S$99-S03 S04 S04 S04 SW, S01-S03, F1
Na 512 2048 512 512 512
Feature mapping channels 14 14 14 16
Relevance factor 16 19 19 19 16
Dsy 12288 79872 19968 1638 19968 1092, 1638 13312
Dnap 40 30 40 15 40 15 40
SVM Background speakers > 2000 2866 310 2606 310 1640

source 599-S03 F1, S02 S04 F1 S04 SW, S01-S03, F1
T/Rank norm speakers T: 310 T:260 T: 1080 T: 300 T: 310 T: 310

R: 2866 R:310
source S04 S02 F1, S02 S04 F1 S04 S04

The aim of logistic regression training is two-fold: First, it
should improve discriminative ability, i.e., the DET-curve of
the fused system should be better than the DET-curves of all
the input systems. This is clearly demonstrated in Figs. 2, 3
and 6, which compare DET-plots of sub-systems against their
fusion. Secondly it should calibrate the output score, so that
it functions as a well-calibrated log-likelihood-ratio. That is,
the training strives to achieve

P(s¢| Hyar
szlogp(sf‘ tar) 3)

(S f ‘ H, non)
where Hy,, and H,,, denote target and non-target hypotheses
respectively [30]. With a linear fusion such as (2), the degrees
of freedom, which may be adjusted to optimize calibration,
effectively form an affine transform—i.e., scores can be scaled
and shifted. Scaling and shifting of scores does not affect
discrimination and does not change the DET-plot.

There is a subtle difference between our use of logistic
regression and the way in which it is traditionally applied in
many other pattern recognition problems [31]. As mentioned,
we train the fused score to function as a log-likelihood-ratio,
while in other problems it is appropriate to train the score to
function as posterior log-odds:

P(Huonlsf) 51— Prar (5t Huon)
In other words, the traditional posterior log-odds, s; and our

log-likelihood-ratio, s¢, differ essentially in an additive term,
namely the prior log-odds,

+ log 4)

P, tar (5)
1-P tar
As is shown below, this is easily handled by a small modifi-
cation of the traditional logistic regression objective function.
Let Xi. and Ao, respectively represent sets of target and
non-target trials. Our logistic regression objective function is:

Ptar Z 10g(1 + efs(z,w)flogitPgar)
€ Xyar

HXtarH
1— P Z log(l +es(ar:,w)+logit Ptar)
T€Xnon

|| Anon ||

logit P;., = log

O(W7 Ptar) -
(6)

where || X|| denotes the number of trials in set X'. Note that
the objective is parameterized by the target prior P;,,. This
adaptation of the logistic regression objective function allows
one to set the parameter P;,, independently of the proportion
of target trials in the training database, to match the target prior
of an envisaged application of the fusion. Since the purpose of
this fusion was to optimize for the NIST SRE Cy. objective,
we set [32]

Cmiss
log —— 7
+ log Cr @)

where (Pl,;, Cimiss, Cta) = (0.01,10,1) are the parameters
specified by the evaluation plan'2. This gives P, = 0.0917.
In experiments over a few different NIST SRE evaluation
sets, we have found that, although performance of the logistic
regression is relatively insensitive to the parameter Py, it
does help to set it to the above value.

On the other hand, if the fusion is to be designed to optimize
for the new Cy, objective [32], [33], which was adopted as a
secondary evaluation objective in the most recent NIST SRE
Evaluation plan'3, then it would be better to choose P, =
0.5. Indeed, if (6) is reformulated as a function of the scores,
rather than of w, then at P;,, = 0.5, it is just the C);, objective.

At a fixed value of P, the objective O(w, P,,) is a
convex function of w, and it has a global minimum. This
means it can be efficiently optimized with, for example,
conjugate-gradient methods. We implemented a conjugate-
gradient algorithm in Matlab, based on the work of Minka'4,
but adapted to our variant of the objective function. This code
is freely available as part of the FoCal toolkit'3.

logit P;ay = logit P,

tar

B. Missing trials

We had the complication that not all sub-systems were able
to contribute a score for each trial, because of failure to detect
speech in training or test segment, or lack of transcription.
This necessitated a two step fusion strategy:

12See http://www.nist.gov/speech/tests/spk/

13See http://www.nist.gov/speech/tests/spk/2006/.
14See http://www.stat.cmu.edu/~minka/papers/logreg/
15See http://www.dsp.sun.ac.za/~nbrummer/focal/
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1) First, each sub-system on its own was subjected to
an affine calibration transformation'®, also trained via
logistic regression, with P;,, = 0.5. This calibration
gave the scores a log-likelihood-ratio interpretation. The
training data for this calibration were all trials that
each sub-system could contribute out of the SRE-2005
(Iconv4w-1conv4w) trials.

2) Next, scores (log-likelihood-ratios) of zero were inserted
for all missing trials. Now, all sub-systems had valid
scores for all trials and the fusion could be trained as
explained above.

C. Decisions

The beauty of a score that is calibrated so that approxima-
tion (3) holds is, that decisions with near-optimal expected
cost can be made by using standard, theoretically determined
score thresholds.

In past years, it was standard practice for NIST SRE
participants to empirically determine score thresholds by op-
timizing average Cge¢ performance over a database of su-
pervised scores. This strategy indeed often worked well for
the particular operating point defined via the Cy4. parameters.
But if decisions at different operating points (different prior
or costs) were required for applications other than the NIST
SRE, then the threshold optimization procedure would have to
be repeated.

The advantage of calibrated scores is that the empirical
optimization, e.g. via logistic regression, over the supervised
database needs to be performed once only. Thereafter, theo-
retical thresholds can be used to give good performance over
a wide range of operating points [33]. If the goal is to make
decisions that optimize Cyet, then the theoretical threshold is
just the negative of (7):

Crniss

8
Cr (3)
For (P/,,, Cmiss; Cra) = (0.01,10, 1), this gives fpgr = 2.29.

The decision rule is then:

Oper = — logit P/,, —log

s¢ > OpgpT — accept, ©)

sf < OpgT > reject.
This new calibration-based strategy has indeed worked well,
as demonstrated by small Cqey — Ca" discrepancies in the
system submitted by SDV in the NIST SRE-2005, as well as
for 5 of the best-performing systems!” in the NIST SRE-2006,
all of which used logistic regression-based calibration with a
2.29 threshold.

D. Non-linear calibration (STBU-3)

As mentioned above, we are concerned with optimizing the
discriminative ability (DET-curves), as well as the calibration,
or actual decision-making ability of our scores. The traditional
evaluation tools which are applied to analyse NIST SRE results
include both (i) DET-curves to analyse discriminative ability

16This is the same as a fusion with a single input.
7NIST SRE rules prohibit publishing explicit performance details of other
participants.
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over a wide operating range and (ii) Cgey to analyse actual
decision-making ability at a fixed operating point. The new
Cyyr metric serves to fill this gap: It evaluates average actual
decision-making ability of log-likelihood-ratio scores, over
a wide operating range. For a tutorial introduction to Cy,
see [32] and for a reference implementation to calculate Cy,
and Cn, see the above-mentioned FoCal toolkit.

With our submissions STBU-1 and STBU-3, we tried to op-
timize calibration performance respectively for the traditional
Cgot and for the new Cj,. STBU-1 was a straight-forward
linear fusion (2) optimized with logistic regression with the
parameter Pi,, = 0.0917. As explained, this fusion effects an
affine calibration transformation.

STBU-3 took the score the output, s¢, of STBU-1 and then
subjected it to a further non-linear calibration stage. That is,
the score of STBU-3 was obtained by:

ale® —1)+1
Blest —1)+1

where 0 < f < « < 1. This is a strictly increasing sigmoid
function, which saturates below at approximately — logit o and
above at approximately — logit 5. The parameters « and /3 are
likewise found by optimizing the logistic regression objective,
but here our aim was to optimize for CY, rather than Clyet,
so we set the parameter P, = 0.5. Code for performing this
optimization'® is also available in the FoCal toolkit, as well
as a derivation for the particular form of this saturating non-
linearity.!® As shown in Table IV in the results section, the
STBU-3 strategy did indeed improve calibration as measured
by C]]r.

Sc(sg) = log (10)

V. RESULTS AND DISCUSSION
A. Comments on individual systems

In the development of individual systems, many configu-
rations and parameters were tested and it is not possible to
cover everything in this paper. We will therefore concentrate
on the most important findings. The results will be presented
on DET plots on 2006 data in Fig. 1:

1) Compare the influence that eigenchannel adaptation has
on the GMM system (left) to the influence of NAP
on the GMM-SVM (middle), as both techniques have
similar underlying principles. We have found that, while
eigenchannel greatly helps in the GMM system (and
actually makes feature mapping unnecessary [14]), NAP
helps in the GMM-SVM but to a much smaller extent.
We attribute this to the fact that linear-kernel SVM
models orient the score projection axis approximately
perpendicular to the subspace spanned by all the back-
ground supervectors, which also includes much channel
variation.

2) NAP in the MLLR-SVM sub-system (right) also helps,
but it seems that SVM itself is able to exploit the

8Because of the saturation, the objective function may become non-
convex. This makes it harder to optimize and it may fail to converge if not
appropriately initialized.

19See http://www.dsp.sun.ac.za/~nbrummer/focal/cllr/calibration/s_cal/
derivation.pdf



speaker-discriminative information in LVCSR adaptation
matrices to some extent.

B. Fused systems and their results

Three fused systems were submitted to the evaluation.
The primary submission, STBU-1U (unsupervised adaptation
mode) is an 11-fold fusion of:

1) GMM-SVM forward, T-normed (SDV)

2) GMM-SVM reverse, T-normed (SDV)

Eigen-channel GMM (BUT)
Eigen-channel GMM T-normed (BUT)
5) GMM-SVM T-normed (BUT)

6) MLLR3-SVM (BUT)

7) GMM-SVM T-normed (SUN)

8) MLLR2-SVM (SUN)

9) MLLR3-SVM (SUN)

10) GMM-SVM T-normed, without unsupervised adaptation
(TNO)

11) GMM-SVM T-normed, with unsupervised adaptation
(TNO)

For the non-adaptive variant STBU-1, indicated as STBU-1N
in this paper, we simply omitted the last sub-system.

The second submission, STBU-2, is the same as STBU-1 in
all respects, except that the eigenchannel GMM sub-systems
were omitted. This makes this STBU-2 a pure fusion of SVM
sub-systems. The third submission, STBU-3 is the same as
STBU-1, except that the non-linear calibration described in
Section IV-D was added.

Table II describes results on the primary condition (English
only trials) for development data (SRE-2005) and for evalua-
tion data (SRE-2006). Results are reported for all sub-systems,
together with fused results which are with (U) and without (N)
unsupervised adaptation. Fig. 2 presents the results graphically,
where curves for GMM, GMM-SVM, and MLLR-SVM are
grouped to keep the legend size manageable. Note how the
curves for SRE-2006 are rotated clockwise w.r.t. the curves
for SRE-2005. The little cusps in the MLLR-SVM curves are
a side-effect of the zero-insertions discussed in Section IV-B.

Table III describes results on all trials from development and
evaluation data. Only results of the best sub-system from each
category is presented. Fig. 3 presents the results graphically
with the same grouping of individual systems.

A comparison of the calibration performances of STBU-1
versus STBU-3 is given in table IV, as measured? on all 2006
lconv4w-1conv4w trials (without unsupervised adaptation).
The fixed-operating-point calibration performance can be
judged by the discrepancy between Cyget, and C(’fgt“, indeed as
planned, STBU-1 performed better than STBU-3. Conversely,
the general calibration as judged by the discrepancy between
Chir and Cff;i“ shows STBU-3, described in Section IV-D, to
be better than STBU-1.

Although the calibration performance of the STBU system
was good enough to make it competitive with the other sub-
missions in the NIST SRE-2006, we note that the calibration

20Recall sub-systems were developed on 2004 and earlier data, fusion and
calibration was trained on 2005 data, and this test was performed on new
unseen 2006 data.

TABLE II
RESULTS OF THE SUB-SYSTEMS AND THE SUBMITTED ONE ON PRIMARY
CONDITION: ENGLISH TRIALS.

system SRE-2005 data SRE-2006 data
ons EER one EER | Clet
GMM (BUT) 0174 | 3.88% | .0178 | 3.44% |
GMM T-norm (BUT) 0170 | 427% | .0159 | 3.44%
GMM-SVM (SUN) 0153 | 4.19% | .0171 | 3.61%
GMM-SVM (BUT) 0158 | 4.66% | .0185 | 3.71%
GMM-SVM-U (TNO) 0116 | 3.72% | .0185 | 3.81%
GMM-SVM (TNO) 0178 | 5.17% | .0190 | 4.10%
GMM-SVM For (SDV) 0221 | 6.05% | .0227 | 491%
GMM-SVM Rev (SDV) .0220 | 6.10% | .0238 | 5.18%
MLLR3-SVM (SUN) 0212 | 6.05% | .0218 | 4.49%
MLLR3-SVM (BUT) 0196 | 6.17% | .0220 | 4.78%
MLLR2-SVM (SUN) 0264 | 7.50% 0270 | 5.56%
STBU-1U .0070 | 2.98% 0132 | 2.26% | 0.0154
STBU-IN .0096 | 3.21% 0126 | 2.32% | 0.0155
STBU-2U .0073 | 3.17% 0147 | 3.07% | 0.0210
STBU-2N .0099 | 3.59% 0147 | 3.07% | 0.0210
STBU-3U 0132 | 2.27% | 0.0161
STBU-3N 0126 | 2.32% | 0.0160
TABLE III

THE BEST PERFORMING SUB-SYSTEMS FROM EACH CATEGORY AND THE
SUBMITTED RESULTS ON ALL TRIALS.

system SRE-2005 data SRE-2006 data
Cmin | EER | Cmin | EER | Cuget
GMM (BUT) .0201 | 4.83% | .0283 | 5.40%
GMM-SVM (TNO) 0192 | 577% | .0285 | 6.04%
MLLR-SVM (BUT) 0224 | 7.15% | .0327 | 7.57%
STBU-1U .0085 | 3.50% | .0208 | 3.30% | 0.0249
STBU-1 0114 | 397% | .0214 | 3.83% | 0.0263

performance in this evaluation was somewhat poorer for most
participants as compared to the 2005 and 2004 evaluations.
It is unlikely that this problem can be solved within the
fusion and calibration paradigm presented here. Rather one
may have to improve the sub-systems and make them more
robust against changes in the nature of the speech data.

C. Unsupervised adaptation

Unsupervised adaptation is an ‘operating mode’ of pro-
cessing the NIST speaker recognition trials. In this mode,
the available speech for a particular trial is extended with
all earlier speech trials that include the same speaker model
as the current trial. The trial index files are built such that
(target) test segments are ordered by recording date for the
same model speaker. The operating mode was proposed by
Claude Barras [34] at the SRE-2003 workshop, adopted in
the following NIST SRE plan as an optional mode, analysed
separately. The rationale for this mode was that for certain
applications, such as access authentication, there will typically
be many target trials available which can provide the system
with more speech of the target speaker so that better models
can be formed [35].

For reasons which we will discuss below, successful ap-
plication in a NIST SRE is hard [36], [37], but it finally
succeeded in SRE-2005 [36]. Although, that year, only one
participant had attempted to run the unsupervised adaptation
mode, it still was considered an interesting research area, so it
was decided that in SRE-2006, unsupervised adaptation mode
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TABLE IV
COMPARISON OF CALIBRATION OF STBU-1 vs STBU-3, SRE-2006 ALL
TRIALS.
[system || Cu [ G | Caer | O |
STBU-1 || 0.198 | 0.152 | 0.0263 | 0.0214

[ STBU-3 || 0.188 | 0.152

0.0274 | 0.0214 |

results could be entered as primary system.

There are different approaches to performing unsupervised
adaptation, ranging from simple threshold-based inclusion of
the test segment as extra training to score-weighted adaptation
of the current model [35], [34], [37], [38], but all of them
depend on proper calibration of the scores. This means that
the calibration will influence the position and shape of the
DET curve, as well as Cqe; and Cyy,. Further, as has been
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pointed out earlier [34], [36], the evaluation priors of target
and non-target trials, as well as the number of target-trials
for each model speaker determine the potential success of
application of unsupervised adaptation. This is different from
the ‘normal mode’ of operation, where the evaluation priors
do not determine the performance measures such as Cyqe and
EER. A last major difference between the two operating modes
is the influence of ‘pathological data’ in the evaluation. In the
much appreciated data collection efforts and quality control it
is inevitable, given the large amount of trials in evaluations
(over 50000 in SRE-2006), that there are speech files which
contain little or no speech, are duplicates, or have the wrong
language or speaker ID associated with it. For the ‘normal
mode’ of operation this causes little problems, because in a
standard post evaluation quality control procedure by NIST,
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trials involving these pathological files are discarded from
further analysis. However, for the unsupervised adaptation
mode, these pathological speech files can cause a major
problem because the adaptive speaker model may deteriorate
if such a file is not properly detected.

One sub-system (TNO) applied a simple adaptation scheme.
It is based on earlier work [36] and extended to include the
GMM-SVM-NAP technology. Basically, for each trial, the T-
normed score s is calculated. If s exceeds a predetermined
threshold a, the speech data in the test segment is used to
MAP adapt the means in the GMM for the current model
speaker, using a relevance factor r. The new means are used
to build a new SVM, which is used for subsequent trials. The
results for the development test (SRE-2005) and evaluation
are summarized in Table V, and the DET-curves are shown
in Fig. 4. Note, that these are the results of only one sub-
system of the STBU submission. Qualitatively, the adaptation
results are similar for the total system, but the effects are
less pronounced due to the importance of several other sub-
systems.

We tuned the parameters ¢ = 4 and r = 36 to obtain
optimum C’(‘{gt“ for SRE-2005, and applied these to SRE-
2006. A speech file was classified as ‘potentially pathological’
if either the range of frame energy did not exceed 30dB
(assuming the file contains no speech) or if the SVM score,
before T-norming, exceeded 0.95 (an assumed copy of a
speech segment). For these trials, no adaptation was carried
out. As it turns out, none of these trials survived the post
evaluation quality control of NIST.

As can be observed from the table and the DET-curves,
the discrimination performance increased dramatically for the
development test (34 % relative drop in Cget), but hardly at
all for the evaluation (6 % relative drop in Cget). The ‘knee’
close to the decision operating point for SRE-2006 is typical
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DET curves for individual and merged systems, all trials. Colours, symbols and line type are the same as for Fig. 2.

of runs where adaptation has been applied too aggressively
(low a and 7). It shows the effect of ‘false adaptations’ which
spoil a speaker model and lead to over-optimistic scores for
subsequent non-target trials. The 53966 trials in SRE-2006
lead to 5003 adaptations, of which 61.4 % were correct, 13.9 %
false adaptations, and 24.7 % unknown, because these trials
were later removed from the official scoring by NIST due
to the various problems described earlier. Even though ‘only’
2518 trials were removed from the original trial index file,
1223 of these (49 %) were used for adaptation of speaker
models. On the other hand, of a potential 3612 target trials,
only 14.9 % were missed for adaptation (see Table V).

As a post-evaluation experiment, ‘postl,” we ran our adap-
tive mode parameters on the list of trials that were kept after
the post evaluation quality control. Oddly enough, we observe
from Table V that the performance decreases under this
condition. Apparently, the ‘pathological files’ that plagued so
many researchers during the evaluation, helped our sub-system
in unsupervised adaptation mode. Perhaps some speakers who
had enrolled twice under a different identity in the data
collection process, and whose ‘non-target trials’ were later
removed, actually helped in adaptation mode.

We attribute the poor adaptation performance to the high
probability of False Adaptation [34], which is an order of
magnitude larger than in the development test. This is not
only due to miscalibration, but also because the DET-curve
has a steeper slope. Indeed, optimizing the threshold as a
post-evaluation experiment ‘post2’ to a = 5 leads to the
expected larger benefit of unsupervised adaptation (21.5%
drop in Cyget), with a much lower False Adaptation probability.

D. Language dependence

We have observed that the performance in the primary
condition (English only trials, Table II), is much better than
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TABLE V
PERFORMANCE MEASURES FOR THE TNO SUB-SYSTEM IN NORMAL AN UNSUPERVISED ADAPTATION MODES, FOR DEVELOPMENT TEST (NO
CALIBRATION, FIXED THRESHOLD OF 3), EVALUATION AND POST-EVALUATION EXPERIMENT. ALL (POST QUALITY CONTROL) TRIALS ARE INCLUDED.
TWO POST-EVALUATION EXPERIMENTS ARE INCLUDED AS WELL. THE LAST TWO COLUMNS INDICATE THE PROBABILITY OF FALSE ADAPTATION AND
MISSED ADAPTATION, RESPECTIVELY.

Mode dataset Caet mit | EER Cur ™ | PraiseAd. | PmissAd.
Normal SRE-2006 | 0.0335 | 0.0286 | 6.04% | 0.262 | 0.220
Adapt. SRE-2006 | 0.0315 | 0.0290 | 5.48% | 0.264 | 0.219 13.9% 149 %
Normal SRE-2005 | 0.0198 | 0.0189 | 5.79% | 0.629 | 0.220
Adapt. SRE-2005 | 0.0130 | 0.0124 | 438% | 0.572 | 0.171 1.1% 13.8 %
Adapt. postl | SRE-2006 | 0.0349 | 0.0316 | 6.06% | 0.284 | 0.236 172 % 20.0 %
Adapt. post2 | SRE-2006 | 0.0262 | 0.0227 | 4.73% | 0.220 | 0.182 5.5% 25.4 %
Unsupervised adaptation TNO 2005/2006 Effect of language
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Fig. 4. DET-curves for the TNO sub-system in normal (solid lines) and Fig. 5. DET-plots of the three different language condition analyzed in

unsupervised adaptation (dashed lines) modes, for evaluation and development
test. Also included is a post-evaluation run with a more optimal threshold
value (post2).

that of the entire evaluation (all trials, Table III). In this
section we will analyse some language effects. A language
dependence may be introduced by several parts of the system:
the UBM, channel compensation, SVM background, score
normalization and calibration. We split all valid trials of SRE-
2006 into three conditions: Same language English, Same
language non-English and Cross language. Note that by design
of the evaluation, all cross-language trials involve English as
one of the two spoken languages. In Table VI we summarize
the important statistics of the three conditions.

Despite the low number of trials available for the non-
English same-language condition, we can observe the fol-
lowing. The discrimination potential of the system seems
similar for English and non-English same-language conditions,
judged from a very similar EER, Cin and CIi". But the
calibration for non-English trials is very poor (Cget, Chy),
compared to the English trials. This result suggests that the
UBM and channel compensation components are less language

dependent, but that there is a possible language dependence
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Table VI. The rectangle indicates the 95 % confidence interval around the
decision point.

in score normalization and definitely in the calibration. Most
sub-systems applied T-norm score normalization [39]. Because
we applied predominantly English T-norm model speakers, we
can imagine that non-English test segments will have lower
scores for the T-norm models than the English test segments.
This would lead to higher T-normed scores for non-English
trials, for both target and non-target, such that the calibration
is skewed towards more false alarms. Indeed, this is what is
observed in Fig. 5.

A genuine discrimination loss is observed in the cross
language trials. Interestingly, the calibration of the cross-
language condition seems to be reasonable. This may be due
to the fact that all cross-language target trials had English as
one of the two speech segment languages. Apparently, having
at least one English speech segment helps the calibration a lot.

All the described effects are qualitatively the same as
observed for just a single sub-system (TNO) of the STBU
fusion.



TABLE VI
LANGUAGE DEPENDENCE OF THE STBU-1 SYSTEM, FOR ENGLISH SAME-LANGUAGE TRIALS, NON-ENGLISH SAME LANGUAGE TRIALS AND CROSS
LANGUAGE TRIALS.

Language Cact | O TEER [ Oy | O™ [ Near | Nuon
English 0.0155 | 0.0126 | 232% | 0.148 | 0.101 | 1854 | 22159
Non-English 0.128 | 0.0154 | 2.54% | 0.721 | 0.099 | 516 | 2857
Cross language | 0.0277 | 0.0272 | 4,60% | 0.199 | 0.180 | 1242 | 22820
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Fig. 6. Cross-site fusion: DET curves for individual and fused systems, for
the English only trials condition of NIST SRE-2006.

VI. CROSS-SITE FUSION

As a final demonstration of the power of fusing diverse sub-
systems, we increased the diversity and tripled the number
of sub-systems by also including sub-systems, that performed
well, from 6 other participating SRE-2006 sites. Together
with 10 of the STBU sub-systems, this gave a total of 31
sub-systems, all non-adaptive. The fusion was trained on the
supervised scores of all 1conv4w-1conv4w trials of SRE-2005
and then tested on the English 1conv4w-1conv4w trials of
SRE-2006. See the DET-curves of Fig. 6, which shows (i)
all 31 sub-systems, (ii) the original STBU-1 fusion, and (iii)
the total fusion of all 31 systems. It is clear that the two
fusions outperform any individual system, and that the bigger
fusion (EER = 1.7 %) outperforms the original STBU fusion
(EER = 2.3%).

VII. CONCLUSION

The STBU system has demonstrated a few important prin-
ciples that were exploited in reaching state-of-the-art speaker
detection performance. (i) GMMs and SVMs are still impor-
tant basic workhorses in speaker recognition, but alternative
strategies like MLLR-SVM are not to be ignored. (ii) An
abundance of suitable development data is perhaps the most
important resource. Without the SRE-2004 and SRE-2005

databases, developing, testing and calibrating the powerful
subspace channel compensation would not have been possible.
Until recently, speaker recognition had been all about training
individual speaker models. The emphasis has now shifted to
the data-driven training of methods that can discriminate be-
tween speakers—we are no longer just training speaker models
in isolation, each on a few minutes of speech. We are now
training whole systems on the hundreds of hours of speech
in whole NIST SRE databases. This is exemplified not only
by eigenchannel and NAP, but also by fusion, which likewise
needs to be trained on entire SRE databases. (iii) Calibration,
in order to make actual decisions, has always been important
in the NIST evaluations, but this had previously been measured
only at the same fixed Cqc¢ operating point. The introduction
of CY); has now widened the scope of the calibration challenge,
and so far not only the STBU system, but several other SRE-
2006 participants have met this challenge successfully.

Despite these successes, several problem areas remain. As
our investigation into the influence of the spoken language
in detection performance shows, there is a strong effect on
our system’s calibration if trials are not English, and there
is a reduction in discrimination if the segments of the trials
are spoken in different languages. Perhaps these issues can be
resolved with techniques similar to the channel compensation
approaches. The unsupervised adaptation mode of processing
trials did not deliver the large benefit we had expected, and we
attribute this to a calibration mismatch, to which adaptation is
very sensitive, and to the mysterious clockwise rotation of the
DET curve observed for all systems that perform well. There
remains the unsolved question of why new data collections
and acoustic conditions seem to have an effect of rotation
of the DET-curve—maybe to a more ‘natural’ state of equal
width target and non-target score distributions. Continuing data
collections, evaluations and research may on the long term
provide us with an answer.
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ABSTRACT

The aim of this paper is to compare different log-likelihoscbr-
ing methods, that different sites used in the latest sththepart
Joint Factor Analysis (JFA) Speaker Recognition systentse dl-
gorithms use various assumptions and have been derivedviiam
ous approximations of the objective functions of JFA. We pare
the techniques in terms of speed and performance. We shatv, th
approximations of the true log-likelihood ratio (LLR) magad to
significant speedup without any loss in performance.

Index Terms— GMM, fast scoring, speaker recognition, joint
factor analysis

1. INTRODUCTION
Joint Factor Analysis (JFA) has become the state-of-théesh-
nique in the problem of speaker recognitiort has been proposed
to model the speaker and session variabilities in the paerapace
of the Gaussian Mixture Model (GMM) [1]. The variabilitieseade-
termined by subspaces in the parameter space, commonrdyl ¢hé
hyper-parameters

Many sites used JFA in the latest NIST evaluations, howeve
they report their results using different scoring methoi®, (3],
[4]). The aim of this paper is to compare these techniquesring
of speed and performance.

The theory about JFA and each technique is given in Sec. 2.

Starting with the conventional frame-by-frame GMM evaioatin
Sec. 2.1, where the whole feature file of each utterance teps®d,
the sections 2.2 to 2.5 describe methods which work with tie c
lected statistics only and which differ mostly in the wayytheeat
channel compensation. In Sec. 2.2, integration over theewtis-
tribution of channel factors for the given test utterancgagormed.
In Sec. 2.3, the likelihood of each utterance given testimglehis
computed using a channel point estimate. In Sec. 2.4, theneha
factor point estimate is estimated using UBM only. In Sec thé
formula is further simplified by using the first order Taylaries
approximation.

2. THEORETICAL BACKGROUND

Joint factor analysis is a model used to treat the problenpeéker
and session variability in GMMs. In this model, each spe&kesp-

1in the meaning of speaker verification

resented by the means, covariance, and weights of a mixfuté o
multivariate Gaussian densities defined in some continfeatsire
space of dimensio”. The GMM for a target speaker is obtained
by adapting the Universal Background Model (UBM) mean param
eters. In Joint Factor Analysis [2], the basic assumptioth#& a
speaker- and channel- dependent supervector of mkamrsn be
decomposed into a sum of two supervectors: a speaker saparve
s and a channel supervector

M=s+c, (1)

wheres andc are normally distributed. In [5], Kenny et al. described
how the speaker dependent supervector and channel depesiden
pervector can be represented in low dimensional spaces.fifBhe
term in the right hand side of (1) is modeled by assuming thats
the speaker supervector for a randomly chosen speaker then

(@)

where m is the speaker and channel independent supervector
(UBM), D is a diagonal matrixV is a rectangular matrix of low
rank andy andz are independent random vectors having standard
pormal distributions. In other words, is assumed to be normally
distributed with meamn and covariance matri¥ V* + DD*. The
components ofy andz are respectively the speaker and common
factors

The channel-dependent supervectgr which represents the
channel effect in an utterance, is assumed to be distritatedrd-

ing to
(©)]

whereU is a rectangular matrix of low rank (known as eigenchannel
matrix), x is a vector distributed with standard normal distribution.
This is equivalent to saying thatis normally distributed with zero
mean and covariancBU”*. The components at are the channel
factors in factor analysis modeling.

The underlying task in JFA is to train the hyperparametéry/,
andD on a large training set. In the Bayesian framework, posterio
distribution of the factors (knowing their priors) can bemguuted
using the enrollment data. The likelihood of test utteraficés then
computed by integrating over the posterior distributionycdndz,
and the prior distribution ok [6]. In [7], it was later shown, that
using mere MAP point estimates gfandz is sufficient. Still, in-
tegration over the prior distribution of was performed. We will
further show, that using the MAP point estimatexofives compa-
rable results. Scoring is understood as computing theilegditiood

s=m+ Vy + Dz,

c = Ux,

47



ratio (LLR) between the target speaker modeind the UBM, for
the test utteranc&’.

(note that this was the only place where second order statiap-
peared, therefore are not needed for scoriligis aC F' x 1 vector,

There are many ways in which JFA can be trained and whiclobtained by concatenating the first order statisi¥ds aC'F' x CF

different sites have experimented with. Not only the tnaénalgo-
rithms differ, but also the results were reported usingedéht scor-
ing strategies.

2.1. Frame by Frame

Frame-by-Frame is based on a full GMM log-likelihood evéila
The log-likelihood of utterancet’ and models is computed as an
average frame log-likelihodt Itis practically infeasible to integrate
out the channel, therefore MAP point estimatexofs used. The
formula is as follows

T C
log P(X[s) = Z log > " we (045 1, Be)

(4)

whereo; is the feature vector at frame 7 is the length (in frames)
for utteranceX’, C' is number of Gaussians in the GMM, and,

3., andp, the cth Gaussian weight, mean, and covariance matrix,

respectively.

2.2. Integrating over Channel Distribution

This approach is based on evaluating an objective functogiven
by Equation (13) in [2]:

P(X]s) / P(X]s, x)N(x; 0, T)dx )
As was said in the previous paragraph, it would be difficuketal-
uate this formula in the frame-by-frame strategy. Howe{#y,can
be approximated by using fixed alignment of frames to Ganssia
i.e., assume that each frame is generated by a single (l@stigc
Gaussian. In this case, the likelihood can be evaluatedrirstef the
sufficient statistics. If the statistics are collected ia Baum-Welch
way, the approximation is equal to the GMM EM auxiliary func-
tion, which is a lower bound to (5). The closed form (logamiih)
solution is then given as:

C

Z N, log

1 1
2tr(Z Ss) 2log|L\

log P(X|s)

F/Q‘E [1/2

LU R ©)
where for the first term(' is the number of Gaussianal. is the
data count for Gaussian F' is the feature vector siz&;. is covari-
ance matrix for Gaussian These numbers will be equal both for
UBM and the target model, thus the whole term will cancel out i
the computation of the log-likelihood ratio.

For the second term of (6% is the block-diagonal matrix of
separate covariance matrices for each GaussSaris the second
order moment oft’ around speakes given as

Ss = S — 2diag(Fs™) + diag(Nss™), (7)

whereS is the CF x C'F block-diagonal matrix whose diagonal
blocks are uncentered second order cumul&atsThis term is in-
dependent of speaker, thus will cancel out in the LLR contpria

2All scores are normalized by frame length of the tested aittee, there-
fore the log-likelihood is average.
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diagonal matrix, whose diagonal blocks avelr, i.e., the occupa-
tion counts for each Gaussiahy(is F' x F' identity matrix).
TheL in the third term of (6) is given as

L=I+U"S"'NU, (8)
wherel is aC F' x C'F identity matrix, U is the eigenchannel matrix,
and the rest is as in the second term. The whole term, howgwes,
not depend on speaker and will cancel out in the LLR compuriati

In the fourth term of (6), leL.'/? be a lower triangular matrix,
such that
L = LY211/2
i.e., L is the inverse of the Cholesky decompositioriof
As was said, terms one and three in (6), and second ordes-stati
tics S in (7) will cancel out. Then the formula for the score is given
as

(©)

—1/2

tr(X~ ' diag(Fs™))
~!diag(Nss*))

Qint(X]s)
1
+§tr(2

1

+§||L’1/2U*E’1FSH2 (10)

2.3. Channel Point Estimate

This function is similar to the previous case, except forfdwat, that
the channel factok is known. This way, there is no need for inte-
grating over the whole distribution &f, and only its point estimate is
taken for LLR computation. The formula is directly adopteahfi [8]
(Theorem 1),

log P(X]s,x) =

ZN log

_itr(E*IS)

F/Z‘E [1/2

+M*S7'F + %M*NE’IM, (11)

whereM is given by (1). In this formula, the first and second terms
cancel out in LLR computation, leading to scoring function

Qx(X]s,x) = M'E'F
+%M*Nz*1M, (12)
hence
LLRx(X|s) = Qx(X[s, xs) — Qx(X|UBM, xusm),  (13)

wherexugwm is a channel factor estimated using UBM, andis a
channel factor estimated using speaker

2.4. UBM Channel Point Estimate

In [3], the authors assumed, that the shift of the model ahbgdhe
channel is identical both to the target model and the UBFhere-
fore, thex factor for utteranceY’ is estimated using the UBM and
then used for scoring. Formally written:

LLRLpr(X][s) Qx(X|s, xuBM)
—Qx(XlUBl\/L xUBM)

(14

3The authors identified themselves under abbreviation LiRFefore we
will refer to this approach as to LPT assumption



Note, that when computing the LLR, tHEx in the linear term
of (11) will cancel out, leaving the compensation to the gaad
term of (11).

2.5. Linear Scoring

Let us keep the LPT assumption andiet be the channel compen-
sated UBM:

m; = m+ec (15)

Furthermore, let us assume, that we move the origin of segév
space tane.

M = M-m (16)
F = F-Nm.. 17)
Eq. (12) can now be rewritten to
Qxmoa(X[M,x) = M*'S7'F
+%1\7I*N2’11\7I. (18)

When approximating (18) by the first order Taylor series (&sa-
tion of M), only the linear term is kept, leading to

Qin(XM,x) = M'ST'F (19)
Realizing, that the channel compensated UBM is now a vedtor
zeros, and substituting (19) to (14), the formula for cormuuthe

LLR simplifies to

LLRjin(X[s,x) = (Vy + Dz)*X"/(F — Nm — Nc).  (20)

LLR

linear score

target
model

Fig. 1. An illustration of the scoring behavior for frame-by-frem
LPT, and linear scoring.

Given the fact, that thé-function is a lower bound approxima-
tion of the real frame-by-frame likelihood function, thexee cases,
when the LPT original function fails. Fig. 1 shows that theelar
function can sometimes be a better approximation of thel iLiR.

3. EXPERIMENTAL SETUP

3.1. Test Set

[0)

The real-time factor was measured on a special test setewher
49 speakers were tested against 50 utterances. The speadtelsm
were taken from the t-norm cohort, while the test utterangese
chosen from the original z-norm cohort, each having appnately
4 minutes, totally giving 105 minutes.

3.2. Feature Extraction

In our experiments, we used cepstral features, extracted s

25 ms Hamming window. 19 mel frequency cepstral coefficients
together with log energy are calculated every 10 ms. This 20-
dimensional feature vector was subjected to feature wgrfio]
using a 3 s sliding window. Delta and double delta coefficemntre
then calculated using a 5 frames window giving a 60-dimeradio
feature vectors. These feature vectors were modeled usiill G
and factor analysis was used to treat the problem of speaier a
session variability.

Segmentation was based on the BUT Hungarian phoneme rec-
ognizer [11] and relative average energy thresholding.oAlsort
segments were pruned out, after which the speech segments we
merged together.

3.3. JFA Training

We used gender independent Universal Background Modelghwh
contain 2048 Gaussians. This UBM was trained using LDC selea
of Switchboard I, Phases 2 and 3; switchboard CellulatsPaand
2 and NIST 2004-2005 SRE. The (gender independent) factd+ an
ysis models were trained on the same quantities of data &$Bhe

Our JFA is composed by 300 speaker factors, 100 channel fac-
tors, and diagonal matrilo. While U was trained on the NIST data
olny, D andV were trained on two disjoint sets comprising NIST
and Switchboard data.

3.4. Normalization

All scores, as presented in the previous sections, werealaread by
the number of frames in the test utterance. In case of nozinglthe
scores (zt-norm), we worked in the gender dependent fashidm
used 220 female, and 148 male speakers for t-norm, and 2Gdem
159 male speakers for z-norm. These segments were a suliket of
JFA training data set.

3.5. Hardware and Software

The frame-by-frame scoring was implemented in C++ codeclvhi
calls ATLAS functions for math operations. Matlab was used f
the rest of the computations. Even though C++ produces npire o
mized code, the most CPU demanding computations are peztbrm
via the tuned math libraries that both Matlab and C++ use.s Thi
fact is important for measuring the real-time factor. Thechiae

on which the real-time factor (RTF) was measured was a DoagC
AMD Opteron 2220 with cache size 1024 KB. For the rest of the
experiments, computing cluster was used.

4. RESULTS

Table 1 shows the results without any score normalizatidre fEa-
son for the loss of performance in the case of LPT scoringccpas-

The results of our experiments are reported on the Detl an@ De sibly be due to bad approximation of the likelihood functamound

conditions of the NIST 2006 speaker recognition evaluaf®RE)
dataset [9].

UBM, ,i.e., the inability to adapt the model to the test witere (in
the U space only). Fig. 1 shows this case.
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Table 1. Comparison of different scoring techniques in terms of EER

and DCF. No score normalization was performed here.

Detl Det3
EER | DCF | EER | DCF
Frame-by-Frame 4.70 | 2.24 | 3.62 | 1.76

Integration 536 | 246 | 417 | 1.95
Point estimate 525 | 246 | 4.17 | 1.96
Point estimate LPT|| 16.70 | 6.84 | 15.05| 6.52
Linear 553 | 297 | 3.94 | 2.35

Table 2 shows the results after application of zt-normindnile/
the frame-by-frame scoring outperformed all the fast swsiin the
un-normalized case, normalization is essential for theratiethods.

Table 2. Comparison of different scoring technigues in terms of EER 2]

and DCF. zt-norm was used as score normalization.

Detl Det3

EER | DCF | EER | DCF
Frame-by-Frame 296 | 150 | 1.80| 0.91
Integration 290 | 148 | 1.78 | 0.91
Point estimate 290 | 1.47 | 1.83 | 0.89
Point estimate LPT|| 3.98 | 2.01 | 2.70 | 1.36
Linear 299 | 1.48 | 1.73 | 0.95

4.1. Speed

The aim of this experiment was to show the approximate rea ti
factor of each of the systems. The time measured includetinga
necessary data connected with the test utterance (feastméstics),
estimating the channel shifts, and computing the likelchoatio.
Any other time, such as reading of hyper-parameters, mpeéts

was not comprised in the result. Each measuring was repéated

times and averaged. Table 3 shows the real time of each tigori
Surprisingly, the integration LLR is faster then the poistimate.

Table 3. Real time factor for different systems

Time [s] RTF
Frame-by-Frame 1010 | 1.60e~ "
Integration 50 7.93¢73
Point estimate 160 2.54e72
Point estimate LPT|| 36 5.71e™®
Linear 13 2.07e73

This is due to implementation, where the channel compesrstgim
in the integration formula is computed once per an utterawbde
in the point estimate case, each model needs to be compérisate
each trial utterance.

5. CONCLUSIONS

We have showed a comparison of different scoring technidfugts
different sites have recently used in their evaluationsil®ym most
cases, the performance does not change dramatically, &es s
evaluation is the major difference. The fastest scoringhobtis
the Linear scoring. It can be implemented by a simple dot ypectd
allowing for fast scoring of huge problems (e.g., z-, t- no1G).
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Abstract

This paper describes the acoustic language recognition sub
systems of Brno University of Technology (BUT) which con-
tributed to the BUT main submission to the NIST LRE 2007.
Two main techniques are employed in the subsystems discrim-
inative training in terms of Maximum Mutual Information, Gn
channel compensation in terms of eigenchannel adaptation i
both, model and feature domain. The complementarity of the
approaches is analyzed.

Index Terms: Language detection, NIST LRE 2007 evalua-
tion, discriminative training, eigenchannel adaptatiomiodel
domain, eigenchannel adaptation in feature domain

1

To date, there is a fair number of methods developed to ingrov
performance of the state-of-the-art acoustic languagegrée

tion systems. Still, two issues are main challenges in thle, ta
inter-session channel variability compensation as rengsbe-
longing to the same language may be obtained through ditfere
channels, and language discrimination as some languages ma

I ntroduction

have common features. This paper addressed both these prob-

lems within the UBM-GMM framework [12]. Here, to com-
pensate on the channel, eigenchannel adaptation techisique
applied; to train the models descriptively, Maximum Mutlral
formation (MMI) is used.

Formerly, a channel compensation method was proposed
task by Kenny [22] in terms of factor analysis (FA). Brimmer
[13] has developed a simplified version of FA, eigenchan-
nel adaptation. These methods were developed within GMM
framework and are implemented in model domain. Later,
Castaldo in [7] has introduced an approximation of eigeneha
nel adaptation, eigenchannel adaptation in feature dorid¢it
channel compensation performed in feature domain, diftere
approaches can be used for the feature distribution model-
ing. Both compensating techniques, eigenchannel adaptati
in model and feature domain, were involved in our systems.

As was proven during LRE 2005 in [2], discriminative
training, by means of MMI, in language recognition task is
highly beneficial and brought a great decrease in EER.

We investigate improvements given by both approaches and
their combination. Further, we examine complementaritthef
both methods and systems based on approaches of different na
ture, such as phonotactic systems.

2. Theoretical Background

This section gives a brief information on the objectivesigée-
channel adaptation and discriminative training.

nmat ej kap| schwarzp}@it.vutbr.cz

2.1. Eigenchannel Adaptation in Model Domain

Let supervector be &/ D dimensional vector constructed by
concatenating all GMM mean vectors and normalized by cor-
responding standard deviationd/ is the number of Gaussian
mixture components in GMM and) is dimensionality of fea-
tures. Before eigenchannel adaptation can be applied, v8& mu
identify directions in which supervector is mostly affettey
changing channel. These directions (eigenchannels) éirede
by columns ofM D x R matrix V, whereR is the chosen num-
ber of eigenchannelsR = 50 in our system). The matriv

is given then byR eigenvectors of average within-class covari-
ance matrix, where each class is represented by supersector
estimated on different segments of the same language.

Once the eigenchannels are identified, language-dependent
model (or language-independent UBM) can be adapted to a test
conversation by shifting its supervector in the directigngen
by eigenchannels to better fit the test conversation datah-Ma
ematically, this can be expressed as finding the channelrfact
x, that maximize the following MAP criterion:

p(Ols + Vx)N(x;0,1) (1)
wheres is supervector representing the model to be adapted,
p(O|s + Vx) is likelihood of the test conversation given the
adapted supervector (model) add(x; 0,I) denotes normally
distributed vector. Assuming fixed occupation of Gaussiats m
ture components by test conversation framest = 1,..., 7T,
it can be shown [13] that maximizing criterion (1) is given by:

M
x=A"" Z v (2)

Om
m=1

T o i
t — Mm
> (i 2t
t=1
whereV,,, is D x R part of matrixV corresponding ton'"
mixture componenty,, (¢) is the probability of occupation mix-
ture componentn at timet, i, ando,, are the mixture com-
ponent’s mean and standard deviation vectors of the model to
be adapted and

M
A=1+)> V5V, 3)
m=1

D m(t).

In our implementation, occupation probabilities, (), are
computed using UBM and assumed to be fixed for given test
conversation.

2.2. Eigenchannel Adaptation in Feature Domain

Adaptation in feature domain aims at projecting every oleser
tion featureo(t) to the session-independent space. Channel fac-
tors, x, are estimated using UBM (and not speaker-dependent

o1



models). The adapted feature vector Is then obtained using
1-best Gaussian in the following way:

’
0, =0¢+ VX

4)

wherem is the index of the best scored Gaussian ¥ is the
part of V corresponding to the:-th Gaussian.

2.3. Maximum Mutual Training

Unlike in the case of ML training which aims to maximize the
overall likelihood of training data given the transcriptm the
MMI objective function to maximize is the posterior probiéyi

of correctly recognizing all training segments:

PA(Orlsr)"" P(Sy)
2 vs PA(Or|s)5r P(s)

wherep (Or|s,) is likelihood of r-th training segmentQ,,
given the correct transcription of the segmest, and model
parameters). R is the number of training segments and the
denominator represents the overall probability denpityO.).
Definition of the re-estimation formula is to be found in [2].

R
Fumr(A) =) log (5)
r=1

3. Experimental Setup

The results are presented in terms of 1@ x Cq.g4 (the for-
mulas are to be found in [17]).

3.1. Data
3.1.1. Training Data

To compile the training data set, different sources weraluse
(NIST1996, NIST2003, NIST2005, CallHome, CallFriend,
Fisher, Mixer, OGI-multilingual, OGI 22 languages, Forsig
Accented Englis, SpeechDat-East) [20]. The amount of train
ing data for different languages greatly varied, framsh for
Thai language t@28h for English.

The training data was divided onto two subsets: the first
subset was used for training the models of languages and the
second was used for training of the back-end parameters.

3.1.2. Evaluation data

NIST LRE2007 data was used as the evaluation data. There are
14 languages defined as detection targets with more Thaf
segments to identify. The evaluation set contains test eatsn
with three nominal durations of speech;: 10 and30 seconds.
Detailed information can be found in the NIST LRE 2007 eval-
uation plan [17].

3.2. Systems
3.2.1. Pre-processing

The voice activity detection (VAD) is performed by our Hun-
garian phoneme recognizer [15], with all the phoneme ckasse
linked to 'speech’ class. The frames containing silenceeare
cluded from the further processing.

3.2.2. Features

All systems use the shifted-delta-cepstra (SDC) [1] togeth
with direct MFCC. The feature extraction was the same as in
our LRE 2005 system [2]:7 MFCC coefficients (including co-
efficient C0O) concatenated with SDC 7-1-3-7, which totalsdn
coefficients per frame.
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The features were transtormed using vocal-tract length nor
malization (VTLN) [5]. The warping factors are estimated us
ing single GMM (512 Gaussians), ML-trained on the whole
CallFriend database (using all the languages). The model wa
trained in standard speaker adaptive training (SAT) faslio
four iterations of alternately re-estimating the modelgmae-
ters and the warping factors for the training data.

3.2.3. GMM system with 2048 Gaussians per lan-
guage with eigenchannel adaptation in model domain:
GWR048- ei gchan

The inspiration comes from our GMM system for speaker
recognition [14] which follow conventional Universal Back
ground Model-Gaussian Mixture Modeling (UBM-GMM)
paradigm [12].

Each language-dependent model is obtained by traditional
relevance MARadaptation [4] of UBM using enroliment con-
versation. Only the means are adapted with the relevanter fac
T =19.

In the verification phase, standard Top-N Expected Log
Likelihood Ratio (ELLR) scoring [4] is used to obtain verifi-
cation score, wheréV. = 10 in our system. However, for
each trial, both the language-dependent model and the UBM
are adapted to the channel of the test conversation usieg-eig
channel adaptation in model domain prior to computing tige lo
likelihood ratio score.

The eigenchannel matrix was composed of eigenchannels
derived in the following way:

1. UBMis trained using the original features.

2. For each utterance, a new GMM is obtained by MAP
adaptation.

. A supervector of means normalized by corresponding
standard deviations is obtained from each GMM.

A maximum of100 supervectors per database and lan-
guage were selected.

. The mean is subtracted from supervectors over each lan-
guage of a database (not over language as one would ex-
pect)

6. Eigenchannels (i.e. directions in which language-
dependent models are adapted for each test utterance)
are given by eigen vectors of the covariance matrix esti-
mated from the supervectors (see [3] for details).

3.2.4. GMM system with 2048 Gaussians per language with
eigenchannel adaptation in feature doma@R048- chcf

A similar set of GMM models witi2048 Gaussians per lan-
guage was trained in UBM-GMM fashion. However, the fea-
tures (both, the training and test set) were first compedsate

ing eigenchannel adaptation in feature domain [10, 11] (ehe
eigenchannel matrix was the same as in the standard approach
see 3.2.3). In the case of the training data, the channel fac-
tors (see equation 1) were estimated using the UBM R048
Gaussians. The test data was channel compensated in the same
manner as the training data. However, due to the short durati

of the segments, to achieve better generalization (as eigen

nels can be estimated more robustly from the covariance ma-
trix), the UBM with 256 Gaussians was used for channel factor
estimation.



Table 1: Performance of our acoustic systems on LRE 2007 data

| | 30 sec| 10sec| 3sec |

GMM2048, baseline 8.03 | 12.89 | 21.77
GMM2048-eigchan 2.76 7.38 | 17.14
GMM2048-chcf 2.94 7.40 | 17.93
GMM256-MMI (15 MMI it) 4.15 8.61 | 18.43
GMM256-MMiI-chcf ( 3 MMI it) 3.73 | 9.81 | 20.98
GMM2048-MMI-chcf ( 3 MMI it) 2.41 7.02 | 16.90

Table 2: Performance of our best-performing acoustic and
phonotactic system, and their fusion

| | 30sec] 10sec| 3sec |

(1) GMM2048-MMI-chcf || 2.41 | 7.02 | 16.90
(2) ENCTree 354 | 10.69 | 22.66
(1) + (2) (LDA fusion) 150 | 527 | 1455

3.2.5. GMM-MMI:GVWR56- WM

This system uses GMM models wits6 Gaussians per lan-

guage as the base models, where mean and variance parameter

were iteratively re-estimated using Maximum Mutual Infarm
tion criterion - the same as for LRE2005 [2]. A relatively dma
number of Gaussians was chosen for high resource consump-
tion during MMI training. The models’ parameters were re-
estimated inl5 iterations.

3.2.6. GMM-MMI with channel compensated
GWR56- MM - chcf , GMMR2048- MM - chcf

The GMM256-MMI-chcf system was trained in an identical
manner as the GMM256-MMI system, however the features
were preliminary compensated by means of eigenchannel adap
tation in feature domain.

In the GMM2048-MMI-chcf system the number of Gaus-
sians per language was increase@ds.

features:

3.3. Normalization and Calibration

In this work, all results are presented for the systems rattol
using linear Gaussian back-end (LDA) and linear logistic re
gression back-end (LLR) [8] used in cascade. During LDA, for
each class, a single full-covariance Gaussian (the cowgia
matrix is shared among all classes) is trained on the vedtor o
scores generated from all models. LLR is trained in a discrim
inative fashion. The FoCal Multi-class toolkit by Niko Bram
mer* was used for this purpose.

4. Results

We used a UBM-GMM system witR048 Gaussians per lan-
guage as the baseline system, where no eigenchannel aofaptat
was employed (GMM2048). Results of the individual systems
described above and the baseline are listed in Table 1.

When eigenchannel adaptation in model domain was ap-
plied, GMM2048-eigchan, the error decreased almost to one
third of the baseline. When eigenchannel adaptation was

Ihttp://niko.brummer.googlepages.com/focalmulticlass

Table 3: Effect of calibration for the GMM2048-MMlI-chcf on
LRE 2007 data

30sec| 10sec| 3sec
No back-end|| 5.75 9.45 | 18.44
LDA+LLR 2.41 7.02 | 16.90

done in feature domain, GMM2048-chcf, the error was slightl
higher than for GMM2048-eigenchan but the approach enables
simple application of additional MMI parameter re-traigito
improve the performance.

Then several experiments were run by applying MMI train-
ing in order to select the best performing configuration. In-
spired by our2005 LID system, GMM-MMI system was first
trained with256 Gaussians. In this case} iterations of the
parameter re-estimations were required to converge. ttoe er
of this system was significantly lower than the error of theeba
line, however the system did not reach the performance of the
GMM2048-eigchan system.

Observing the good performance of the systems employing
eigenchannel adaptation and MMI training, respectivehd a
assuming complementarity of the techniques, our intentias
to combine both techniques in order to achieve further img@ro

ent of the result. When the models with6 Gaussians were
rained on the compensated features and the parameters of th
models were re-estimated by means of MMI, where already
iterations were sufficient, we observed relative improversef
22 % to the accuracy of the GMM256-MMI system 86 sec
condition.

Still, we supposed there was room for further improving of
the recognition by increasing the number of Gaussians. When
the models were trained in the same manner as GMM256-MMI-
chcf only with the number of Gaussians increased2d8
(again, only3 iterations were run), the system out-performed
the 2048GMM-eigchan system B% % relative in30 sec con-
dition.

4.1. Calibration

The calibration of the obtained scores was an important part
in building our systems. To outline the effect of the caltha,

the results of the uncalibrated GMM2048-MMI-chcf system ar
present as well as of the calibrated system (see Tab 3). Haowev
in case of3 sec condition, the decrease of the error is only about
8 % relative, in case 030 sec condition, we could observe more
than50 % of relative reduction of the error.

4.2. Complementarity with the Other System

In order to draw an overview of the performance of our acausti
systems, we present (for sake of comparison) results amthiev
with our best phonotactic system, ENee (see Tab 2) [21].
The approach is based on recognizing of the phonemes using
English phoneme recognizer and following language model-
ing (PRLM). The ENTree system employs binary decision tree
language modeling based on creating a single language inde-
pendent tree (UBM) and adapting its distributions to indibal
language training data, as described in Navratil's work [19.
Binary decision tree is trained on posterior weighted ceunt
from phoneme lattices [2]. When both, our best-performing
acoustic system GMM2048-chcf and ElMee, were fused, we
observed a great reduction in ERR which indicates high com-
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plementarity of the systems. Complementarity of our otlysr s
tems was further examined, for a detailed description sék [2

[0

5. Conclusion

We showed that both eigenchannel adaptation and MMI train-
ing are greatly beneficial in the language recognition task.
was shown that, the approximation of the standard eigemghan
adaptation, eigenchannel adaptation in feature domalmissa

as accurate as the standard approach. Moreover, it hasta grea [11]
advantage, that it allows to apply MMI parameter re-estiomat
without modifying the MMI training algorithm. We showed tha
when eigenchannel adaptation is applied in feature dorhain,

ther improvement of the result can be achieved by subsequent
re-estimating of the parameter of GMM by using MMI training.
We showed that our best acoustic system is complementary and
well fused with our other systems. We have also shown, the cal
ibration of the obtained scores is an important part of bogd

an accurate recognition system.

[10]

[12]
[13]
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Abstract

This paper describes our efforts of transferring feature extraction and statistical modeling techniques from the fields of speaker and
language identification to the related field of emotion recognition. We give detailed insight to our acoustic and prosodic feature extrac-
tion and show how to apply Gaussian Mixture Modeling techniques on top of it. We focus on different flavors of Gaussian Mixture
Models (GMMs), including more sophisticated approaches like discriminative training using Maximum-Mutual-Information (MMI) cri-
terion and InterSession Variability (ISV) compensation. Both techniques show superior performance in language and speaker identifi-
cation. Furthermore, we combine multiple system outputs by score-level fusion to exploit the complementary information in diverse
systems. Our proposal is evaluated with several experiments on the FAU Aibo Emotion Corpus containing non-acted spontaneous emo-
tional speech. Within the Interspeech 2009 Emotion Challenge we could achieve the best results for the 5-class task of the Open Perfor-
mance Sub-Challenge with an unweighted average recall of 41.7%. Further additional experiments on the acted Berlin Database of

Emotional Speech show the capability of intersession variability compensation for emotion recognition.

© 2011 Elsevier B.V. All rights reserved.

Keywords: Emotion recognition; Gaussian mixture models; Maximum-mutual-information; Intersession variability compensation; Score-level fusion

1. Introduction

Spoken emotion recognition is the problem of automat-
ically recognizing the emotional state of a person from
their speech. Different moods may change the attributes
of the human voice, such as pitch, speaking-rate, and
intonation.

In automatic speech processing these properties are usu-
ally represented using the appropriate parametrization of
speech, so called features. Pattern recognition and machine
learning algorithms can then be used to model certain char-
acteristics of emotionally colored speech and recognize
emotions in speech utterances. Typically, classifiers like

* This work was partly supported by European project MOBIO (FP7-
214324), by Grant Agency of Czech Republic project No. 102/08/0707,
and by the Czech Ministry of Education project No. MSM0021630528.
Marcel Kockmann is supported by SVOX Deutschland GmbH, Munich,
Germany.
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E-mail address: kockmann@fit.vutbr.cz (M. Kockmann).

0167-6393/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.specom.2011.01.007

Hidden-Markov-Models (HMMs), Gaussian Mixture
Models (GMMSs), Support Vector Machines (SVMs) or
Neural Networks (NNs) (Bishop, 2006) are used.

While sensing the emotions of an individual from their
speech is a relatively new research field in speech process-
ing, a research community has formed in recent years
and several methods have been applied successfully (Steidl,
2009; Vlasenko et al., 2007; Seppi et al., 2008; Batliner
et al., 2006) and evaluated on special databases containing
emotional speech (Ververidis and Kotropoulos, 2003).

Recently the usage of SVMs to directly model large-
scale feature vectors has become the standard for emotion
recognition (Schuller et al., 2007, 2009). These feature vec-
tors contain diverse kinds of speech parametrization
extracted on a per-utterance basis including acoustic, pro-
sodic and voice quality features. Frame based features
are usually modeled by HMMs to capture the temporal
dynamics of the signal (Schuller et al., 2009).

Using these state-of-the-art techniques, accuracies of
over 80% have been reported for emotion classification
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tasks on acted non-spontaneous data (Schuller et al., 2006).
However, on real life non-acted spontaneous emotionally
colored data these accuracies drop drastically (below
40%) (Schuller et al., 2009).

Besides emotion recognition there are many diverse
research fields with the goal of extracting certain attributes
from speech. These include:

e What is spoken: Automatic Speech Recognition (ASR).

e Who is speaking: Speaker Identification (SID).

e Which language is used: Language Identification (LID).

e Which gender is the speaker: Gender identification
(GID).

e What is the age of the speaker: Age Identification
(AID).

In many of these fields (like SID, LID and GID) the use
of Gaussian Mixture Models has established itself as the
standard (Reynolds et al., 2000). HMMs, as used in
ASR, are usually outperformed by GMMs (which are actu-
ally a HMM containing a single state) on text-independent
tasks. Also, best results in all these fields are often obtained
using more or less standard acoustic features extracted on a
frame-based level, as used in ASR. This is somewhat illog-
ical as features for ASR are optimized to blind out proper-
ties like speaker characteristics. Still, these tools seem to
provide a good framework for diverse kinds of speech
characterization.

As mentioned above, the state-of-the-art for emotion
recognition has moved in a different direction. Gaussian
mixture modeling of short-time acoustic features has been
mostly replaced by Support Vector Machine classification.
A similar trend was observed in the field of Speaker Verifi-
cation as well. However, recent advances in Gaussian Mix-
ture Modeling, like discriminative training or intersession
variability compensation, has significantly raised the per-
formance of GMM based systems and currently defines
the state-of-the-art (Kinnunen and Li, 2010). This is the
main motivation for our work. Our aim is to take basic
and newly evolved features and modeling techniques, as
used in current LID and SID systems and to apply them
to the task of emotion recognition. By doing so we want
to provide another view to the problem of emotion recog-
nition. Further enhancement can then be expected by com-
bining both approaches.

Through this paper, we will investigate standard spectral
features based on Mel-Frequency-Cepstral-Coefficients
(MFCC) (Davis and Mermelstein, 1980) as they are usually
used in ASR. There have been many modifications of stan-
dard MFCC features to better fit the needs of SID and
LID, like longer temporal context and speaker normaliza-
tion. We will evaluate below some of these techniques for
emotion recognition.

Furthermore, prosodic features (incorporating duration,
pitch and energy) are often used to enhance the perfor-
mance of MFCC based systems. Different from spectral
features, prosodic features are usually extracted over a

56

longer time span, like on a syllable basis. We examined a
prosodic feature extraction method successfully used for
GMM based speaker recognition (Kockmann and Burget,
2008).

All these features will be modeled using different flavors
of Gaussian Mixture Models. It should be noted, that in all
cases we model frame or syllable based features using mod-
els without any temporal dependencies. This statistical
method of creating a “footprint” has been very successful.
We will investigate in detail basic GMM approaches used
in speaker and language identification. Furthermore, more
sophisticated techniques evolved in the last few years are
examined for their applicability in emotion recognition.
These include discriminative training of GMMs and inter-
session variability compensation. Intersession variability
for emotion recognition may refer to different acoustic con-
ditions, different speakers or simply the spoken content of
the utterance. All these attributes are a nuisance for the
task of emotion recognition and we want to “ignore” them
during modeling.

To evaluate the performance of the proposed techniques
we provide experiments on two independent emotional dat-
abases, one containing non-acted spontaneous speech and
the other acted non-spontaneous speech. Results on the
first database include our submission to the Interspeech
2009 Emotion Challenge (Kockmann et al., 2009) where
we could achieve very good results using the techniques
described above.

The paper is organized as follows: Section 2 describes
the acoustic features we used in our experiments while Sec-
tion 3 explains the prosodic features used. Section 4 gives
detailed information on the Gaussian Mixture Models we
used and their training and evaluation procedures. In Sec-
tions 5, 6 we present results to evaluate the proposed
approaches for emotion recognition. In Section 7 we draw
conclusions to our approaches and consider future
research.

2. Spectral features

This section will introduce the used MFCC features and
the additional techniques applied to make them more suit-
able for the given task.

2.1. Basic acoustic features

The most widely used features in speech processing are
MFCCs (Davis and Mermelstein, 1980). They have been
applied successfully for speech recognition as well as for
speaker recognition and language identification. We will
use them as our basic features for the emotion recognition
task. MFCC vectors are generated every 10 ms on a 20 ms
frame of speech weighted by a Hamming window. Fast-
Fourier-Transform (FFT) output of each speech window
is processed by a Mel filter bank with 25 bands. The output
is transformed by Discrete Cosine Transform (DCT) and
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13 cepstral coefficients including CO are generated. CO rep-
resents an energy measure of the speech window.

2.2. Channel normalization

The temporal trajectories of individual cepstral coeffi-
cients are filtered using a standard RelAtive SpecTrAl
(RASTA) filter (Hermansky and Morgan, 1994) to remove
slow and very fast spectral changes which do not appear to
be characteristic for natural speech. We use the standard
IIR filter:

24z —z3 0
HE) =0 =g 0g 1) M
Furthermore, cepstral mean subtraction (CMS) is applied
on each coefficient per utterance for simple channel
normalization.

2.3. Speaker normalization

We do not want to model the characteristics of the indi-
vidual speaker by the position of the formants based on the
length of the vocal tract. We use Vocal Tract Length Nor-
malization (VTLN) (Cohen et al., 1995) for simple speaker
normalization. The spectrum (during FFT) is either com-
pressed (usually for females) or expanded (for male speak-
ers) based on a warping factor estimate for each utterance.

Warping factors for training and test data are estimated
using a rather small GMM trained on all unnormalized
training data to represent average characteristics of the tar-
get population. Warped MFCCs are then created for all
files with warping factors in a range from 0.88-1.12 with
a step-size of 0.02. This results in 13 feature sets: 6 com-
pressed, 1 neutral and 6 expanded. The optimal warping
factor per utterance is obtained by evaluating the likeli-
hood of all warped instances against the unnormalized
GMM and selecting the maximum. This way we select
the factor that best fits the average speaker. The warped
utterances are then used for standard model training. Refer
to Section 4.1 for implementation details for GMM train-
ing and likelihood scoring. For spectrum manipulation
we use a linear piecewise warping function with a warping
cutoff of 0.875 x Ny where N,is the Nyquist frequency.

2.4. Temporal context

Simple MFCCs do not model any temporal charac-
teristics which are most likely informative for emotion
recognition. As our classifier also does not model feature
sequences, we generate delta, double and triple delta
regression coefficients of the static features to model co-
articulations in speech. We use a standard formula (Young
et al., 2006):

_ ZV@Q(CH~9 - Ct—@)

d
l 2> ve e’

(2)

with d, being the regression coefficient of static coefficient ¢,
and the shift vector @ = [2] for delta, ® = [2,4] for double
delta and ® =[2,4,6] for triple deltas. This results in 26, 39
and 52 dimensional feature vectors containing information
spanning a context of 5, 9 and 13 frames, respectively.

2.5. Shifted delta cepstra

The importance of an even broader temporal informa-
tion has been shown for LID (Torres-Carrasquillo et al.,
2002). The so-called Shifted Delta Cepstra (SDC) is created
by stacking delta coefficients computed across multiple
speech frames, as depicted in Fig. 1. Multiple delta coeffi-
cients with a shift of +1 are computed for a context of
+10 frames, without overlap and concatenated in one fea-
ture vector.

For static features ¢, shifted deltas are defined:

Ac, = C(1+iP+d) — C(1+iP—d) (3)

fori=[—3...0...3])with shift P = 3 and the window shift
d =1 over which deltas are computed.

The basic features in our system are 7 static MFCC coef-
ficients (including coefficient C0) concatenated with delta
cepstra which totals 56 SDC coefficients per frame, span-
ning a context of 21 frames. This configuration has been
successfully used in our language identification systems
(Matejka et al., 2008, 2006).

2.6. Post processing: voice activity detection

For all our frame based spectral features, non-speech
frames are discarded and only speech frames are consid-
ered in the following stages of training models and verifica-
tion. Speech/non-speech segmentation is performed by our
Hungarian phone recognizer (Schwarz et al., 2006). This
step is performed based on the final feature vectors ensur-
ing that RASTA and regression coefficients are correctly
estimated.

3. Prosodic features

Prosodic information based on the lexical context
might be useful for this task and is complementary to the
acoustic short time features. For this purpose, we use our
detector of syllable-based feature contours as presented in
(Kockmann and Burget, 2008). It processes classical pro-
sodic features like duration, pitch and energy in a sylla-
ble-like temporal context. The trajectories of each feature
are continuously modeled over the time span of a syllable
and are represented by discrete cosine transformation
(DCT) coefficients, as depicted in Fig. 2. The pseudo-
syllable segmentation is based on a phone recognizer
where vowels are considered as nuclei for the syllables.
The segments are non-overlapping and undefined frames
are discarded prior to DCT approximation. Additionally,
we also capture the temporal contours of MFCCs and form
a single feature vector out of duration, pitch, energy and
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Fig. 1. Computation of SDC features for a single static feature stream, incorporating 21 consecutive static MFCCs, results in 7-dimensional SDC vector

for each frame.
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Fig. 2. Example of a pitch contour over a syllable consisting of three phones. Top: Original pitch values with phone and pseudo-syllable boundaries
(horizontal lines). Bottom: Original (points) and DCT approximated curve (solid line).

the MFCC contours. Frame-based pitch and energy are
generated first and are mean subtracted over the voiced
part of the utterance before approximating the temporal
trajectory. We use the syllable duration (number of frames)
and 6 DCT coefficients per feature contour which results in
13-dimensional vectors for the prosodic and 85-dimen-
sional vectors for the combined prosodic and MFCC
contours.

4. Classifier

In this section, we introduce four statistical models that
are used in our experimental part. The first two are flavors
of Universal Background Model (UBM)-GMM models as
used in speaker verification, with and without session var-
iability compensation. The third and fourth are classical
GMMs trained in generative and discriminative manner
as often used in language identification. We provide most
of the needed formulas to easily allow the reader to repro-
duce our results.

o8

4.1. UBM based models

Our first two GMM systems are based on a standard
Universal Background Model-Gaussian Mixture Modeling
(UBM-GMM) paradigm (Reynolds et al., 2000). All
GMMs used are multivariate with dimension D and using
diagonal co-variances.

Prior to any class-dependent model training a class-
independent model is trained on the pooled feature vectors
o of all development data of all classes. Following speaker
recognition terminology we call this a Universal Back-
ground Model. Weights 7, means g and variances X of
the UBM are trained in a maximum-likelihood way with
an Expectation-Maximization (EM) algorithm (Bishop,
2006).

EM is an iterative algorithm that alternates between
estimating the responsibilities y,(n) (E-Step, alignment of
frame n=1... N to Gaussian components k=1...K)
and re-estimation of the parameters using the current
responsibilities (M-Step):



1176 M. Kockmann et al. | Speech Communication 53 (2011) 1172-1185

E-Step:
TN (041, Z
o) = e Ol 2 @)
Z/‘:lnkN(”ﬂ‘”kv Zk)
M-Step:
| &
new _ " y(n)o,, 5
B = 2 n (5
1 & T
B =5 D nos - ) o - i)' ©)
n=1
Ny
new __ 'K 7
—— (7)
with
N
Ne= " n(n) (8)

and likelihood function N (o,|n;, X) is

1 1 1 Tool }
—————expy—=(0, — ) X, (0, — 1 9
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for feature vector o, with feature dimension D.

Data log-likelihood for the whole GMM and all data o

N K
Inp(o|p, X, 7) = Z annkN(o,,\ﬂk,Ek) (10)
n=1 k=1

is checked for convergence after each iteration.

For UBM training we initialize a single Gaussian com-
ponent with a global mean and variance of all background
data and keep splitting the components in two (after sev-
eral iterations when convergence of data log-likelihood is
achieved) until the final size is reached. For this purpose,
the copied weights 7 are halved, variances X are kept and
copied means p are shifted by +0.2v/Z.

Following UBM training, the individual emotion-class
models are obtained by relevance Maximum-A-Posteriori
(MAP) adaptation (Reynolds et al., 2000) of the mean
parameters using class specific feature vectors only.
Weights and variances are kept fix. The UBM mean serves
as a prior for posterior distribution of class model means
and the relevance factor further restricts their movement.
The point estimate of the posterior mean distribution can
be seen as a compromise between the prior (UBM) mean
and the maximum likelihood solution (using feature vec-
tors for emotion class e only):

p” = o + (1 — )™ (11)
with adaptation coefficients

N
o = Zn:l/k(n) (12)

S e(n) + 7
and relevance factor = 16. If some components are not
occupied at all by the training data, the parameters keep
their prior values; while for unlimited amount of data the
MAP estimate would equal the ML estimate.

During testing the models are evaluated using the log-
likelihood ratio (LLR) between the class model- and the
UBM log-likelihood for the test data, evaluating Eq. (10)
for both the class model and UBM. For computational effi-
ciency, only top scoring Gaussians (determined based on
the UBM) are evaluated for the class models per frame.
We will call this model simply GMM-UBM model.

The described GMM-UBM framework can be expanded
to cope with intersession variability (e.g. different channel,
language, gender, etc. between training and test utter-
ances). This technique allows us to adapt the supervector
of means (concatenated mean parameters of all Gaussian
components) in directions of large intersession variability
during verification to better match the test utterance.

In Fig. 3 we try to visualize the meaning of this tech-
nique for emotion recognition on a simple toy example.
We assume GMMs containing a single mixture component
each in a two dimensional feature space. The figure shows
only the mean parameters of the GMMs. We should
assume two utterances for each of the three emotion classes
Anger (black star), Neutral (cyan diamond) and Joy
(magenta x-mark).

After the training of the UBM (blue cross) on all utter-
ances we do one additional ML iteration using data from
each utterance only. The new mean parameter ML esti-
mates for each utterance are depicted in the figure, same
colors belong to same emotion classes. It can be observed
that most of the variability between different utterances
belonging to the same emotion classes can be projected
on a one-dimensional latent space (Intersession variability
direction, dash-dotted line). This subspace can be robustly
estimated on many diverse utterances belonging to different
emotion classes (after UBM training, prior to class model
training). Emotion class models are then derived by

GMM mean space

~,

Dimension 2
4

+ UBMmean
® ML estimates Anger
ML estimates Neutral
ML estimates Joy
‘‘‘‘‘ Intersession variability directiol
MAP estimate Neutral
MAP estimate Joy
Channel estimate Neutral
= = = Channel estimate Joy
T T

-4 .

0 1 2 3 4 5 6
Dimension 1

Fig. 3. Toy example of intersession variability compensation in a 2D
mean parameter space. 1D subspace is estimated based on differences
between utterances belonging to the same class. Model parameters can be
moved along this space during verification to adapt to the test
environment.
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standard MAP adaptation as for the GMM-UBM model
(shown for Neutral and Joy in plot).

During verification, the MAP adapted means of the
model to be tested can be moved along the intersession var-
iability subspace to adapt to the condition in the test utter-
ance (acoustic condition, gender, linguistic content, etc.).
This is illustrated for two utterances tested against class
models for Joy and Neutral by the dashed lines drawn from
the top of the solid lines (MAP estimate).

In a real application the subspace usually maps out from
a very high dimensional supervector space (up to 100,000
dimensions) down to a low dimensional latent space (e.g.
50 dimensions) allowing it to robustly adapt model param-
eters on small amounts of data.

The adapted mean supervector can be represented as

m, + Ux, (13)

and is distributed with a mean of m, and a co-variance of
UU”. m, is the class (emotion) dependent supervector of
MAP adapted means (from standard GMM-UBM model).
U defines the low-dimensional subspace matrix (size
DK x S with subspace size S <« DK) of the full GMM
space with high intersession variability. The utterance
dependent factors x, define the shift of the model parame-
ters within the subspace. These factors are assumed to be
normally distributed random variables making the whole
thing a probabilistic model.

The subspace is usually estimated for on a large amount
of data (similar to UBM), either using Principle Compo-
nent Analysis (PCA) (Burget et al., 2007) or by an EM
algorithm (Kenny et al., 2008). Please refer to these cita-
tions for detailed descriptions.

Once the subspace is estimated, emotion models (or
UBM) can be adapted by shifting its mean supervector in
the directions given by an intersession variability subspace
to better fit the test utterance data. Mathematically, this
can be expressed as finding the factors x,, that maximize
the following MAP criterion:

plo,\m, + Ux,)N (x,;0,1), (14)

where p(o,|m, + Ux,) is the likelihood of the test conversa-
tion r given the adapted supervector (model) and A/ (-;0,1)
denotes a normally distributed vector. Assuming a fixed
occupation of Gaussian mixture components (responsibili-
ties) by test conversation frames, o,, n=1,..., N, it can be
shown (Briimmer, 2004) that x, maximizing criterion (14) is
given by:

N,

K
_ 0, —
x =AY UTY g B (15)
k=1

n=1 Ok

where Uy is the D x S part of matrix U corresponding
to kth mixture component; y,(n) is the probability of
occupation mixture component k at time n, g, and o are
the mixture component’s mean and standard deviation
vectors and
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K N,
A=1+Y UUD 3(n). (16)
k=1 n=1

In our implementation, occupation probabilities, y.(n), are
computed using UBM and assumed to be fixed for a given
test conversation. This allows one to pre-compute matrix
A~! only once for each test conversation.

Note, that both model and UBM means are adapted to
the test utterance and afterwards scoring is done exactly as
for the UBM-GM M model (LLR).

We will call this model incorporating intersession vari-
ability compensation ISV model.

4.2. Generative and discriminative GMMs

Emotion recognition is a closed-set identification task
(similar to Language identification) and usually large
amounts of data are available to train the separate class
models. In this section we propose to train each class model
using an EM algorithm as described in the previous section
for the UBM. Our assumption is that we have enough data
to robustly estimate weight, mean and variance parameters
for each emotion class individually.

Furthermore, we propose to re-estimate the model
parameters using a discriminative training technique suc-
cessfully applied to language identification (Matejka
et al., 2000).

As depicted in Fig. 4 discriminative techniques aim to
precisely model the boundary between the competing mod-
els in such a way that the correct estimation of class affili-
ation is improved rather than maximizing the likelihood of
the training data. This way model parameters are mostly
used to estimate precisely the boundaries between separa-
ble regions in the features space. Highly overlapping areas
are neglected.

Our first set of models is trained per class under the con-
ventional Maximum Likelihood (ML) framework, as used
for the UBM (see Section 4.1, Egs. (4)—(10)), but only using
class specific data. Note, that we re-estimate not only
means, but also weights and variances per emotion class.
We will call these models simply ML models.

Easily recognizable~ ~

No need to precisely
model the distributions

| Necesery to precisely
model the boundary.

Highly overlaped classes,
low discriminative power
. |

Fig. 4. Effect of discriminative training for two classes in 2D feature
space. The model parameters are used to precisely model the boundary
between separable data while highly overlapping areas are neglected.
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These serve as a starting point for further discriminative
re-estimations of means and variances using the Maximum
Mutual Information (MMI) criterion.

Unlike in the case of ML training, which aims to maxi-
mize the overall likelihood of training data given the tran-
scriptions, the MMI objective is to maximize the posterior
probability of correctly recognizing all training segments
(utterances):

21

where the numerator is the likelihood of r-th training seg-
ment or, given the correct emotion class model of the seg-
ment, e'; R is the number of training segments and the
denommator represents the overall probability density,
p(o,) (likelihood given any emotion class). So, the MMI
parameter re-estimates aim to maximize the ration between
true class likellhood and overall likelihood of each
segment.

It can be shown (Povey, 2003) that the MMI objective
function (17) is increased by re-estimating model parame-
ters using extended Baum-Welch algorithm (similar to
standard EM training) with the following formula for
updating mean and variances:

F MMI —

07‘”3 s et T ) (17)
Yo P, Leyme)

num den dcn
g = L) vn;i (yif 2t (18)
v 0" (0) = 05" (0%) + 208 (S + 1) oot (19)
2 num + yden ek
The terms:
R N,
05" (0) = > v (n (20)
n=1

r=1
R N,
num § § num
0{’ ’yékr )
n=1

—
R N,
m:m § 2 N mAm
Vek Y ekr

are mixture component specific first and second order sta-
tistics and occupation counts corresponding to the numer-
ator of the objective function (17). Denominator statistics
can be expressed by similar equations, where all super-
scripts num are merely replaced by den. Note that the
numerator statistic are ordinary ML statistics. Therefore,
the numerator posterior probability of occupying mixture
component ek by n-th frame of training segment r,

num ,ye r(n)
Vekr (}1) = { *

for e =™,

. (21)
0 otherwise

is non-zero only for mixture components corresponding to

the correct emotion class. To estimate the posterior proba-

bilities for the denominator:
en plo.ln,, X, )
yjkr( ) = Vekr(n) . 2

—_— (22)
Zf:lp(of‘”q7 X, m,)

Note, that the fraction on the right-hand side is the poster-
ior probability of the current emotion class given the whole
segment that n belongs to.

Finally,

nekN(or(”)‘:uek: Zek)
Ej'{:]nf/'/\/’(o/’(n)‘ueﬂ Ze)

where 7, is mixture component weight and K is the num-
ber of mixture components in model e.

Starting from the ML models of final size, the mean and
variance parameters are re-estimated using MMI for sev-
eral iterations.

For both models, verification is done frame-by-frame
for the test utterance with full log-likelihood computation
according to Eq. (10). Note, that we always evaluate all
Gaussian components for these two model types.

Vekr(n) =

(23)

5. Experiments on the FAU Aibo emotion corpus

In this section we present experimental results to evalu-
ate the techniques presented in Sections 2-4. All used
feature configurations and classifiers are summarized in
Table 1. Experiments on feature types and modeling tech-
niques are performed on the FAU Aibo corpus.

5.1. Database

The FAU AIBO database is a corpus with recordings of
children of age 10 to 13 interacting with a pet robot called
Aibo. The emotionally colored speech is non-rehearsed, as
the children believed that the robot was following their
commands, so their reactions evoke emotions due to
behavior or misbehavior. Actually, the actions of the robot
were in a fixed order, controlled by an operator and similar
for all participants.

The whole corpus consists of 9.2 hours of high quality
speech which was annotated by human labelers and
assigned to emotional classes by majority voting. All ses-
sions are split on a chunk level to achieve homogeneity
of emotional state within a unit and results in about
18,000 chunks.

The database was recorded at two different schools, con-
sisting in a total number of recordings of 51 children. The
first portion consists of 13 male and 13 female speakers.
Within the Emotion Challenge 2009, the first part was pro-
vided as a combined training and development set, while
the second part was defined to be the test set. The emotion
labels for the second part were not provided and results
could only be evaluated within the Interspeech 2009 Emo-
tion Challenge. As a consequence, we will provide two dif-
ferent results in this chapter. First, we will describe
progress in system development on our own defined devel-
opment set and afterwards, we will give the official results
obtained in the challenge with our final systems.

All annotated emotion labels of each chunk were
mapped to two broader sets of emotions: A 5-class set
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Table 1
Summary of feature sets and model types used in experimental part.
Feature type Description Dimension
MFCC C0+12 MFCCs with CMS, VAD 13
RASTA C0+12 MFCCs with RASTA and CMS, VAD 13
RASTA-A C0+12 MFCCs with RASTA and deltas, CMS, VAD 26
RASTA-AA C0+12 MFCCs with RASTA, deltas and double deltas, CMS, VAD 39
RASTA-AAA C0+12 MFCCs with RASTA, deltas, double and triple deltas, CMS, VAD 52
SDC C0+6 MFCCs+delta cepstra over 21 frames, CMS, VAD 56
DPE Duration+syllable contours (6 DCT coefficients each) for pitch and energy 13
DPEC Duration+syllable contours (6 DCT coefficients each) for pitch, energy and MFCCs 85
Model type Description Components
GMM-UBM GMM with MAP adapted means from UBM 8-128
ISV GMM with MAP adapted means from UBM and intersession variability compensation 8-128
ML ML-trained GMM (weights, means, variances) 16-128
MMI ML-trained GMM (weights, means, variances) with further MMI training (means, variances) 16-128

containing Anger, Emphatic, Neutral, Positive and Rest,
and a 2-class set comprising NEGative and IDLe. Detailed
information on the database and its design is given in
(Steidl, 2009). To keep our experimental part clear for
the reader we present only results on the 5-class task
(obviously the more difficult task).

The total number of chunks available for training/devel-
opment of the 5-class models are in Table 2. Note that the
numbers differ from Schuller et al. (2009), as our voice
activity detection did not identify any speech frames for
several chunks.

5.2. Development set

We use subsets of the training data for system develop-
ment. We use a full jackknifing approach for the whole
training set. Thirteen splits are created out of the training
set, each excluding 1 male and 1 female (so speaker in train-
ing and test are always distinct), resulting in circa 700
chunks for the testing of each split. We train a separate sys-
tem for each split on the remaining chunks. This is a very
expensive procedure, but this way we can use all available
data for training and testing, while the training and test
portions are always distinct. Results are presented in terms
of two accuracies: The Weighted Accuracy (WA) means
the percentage of correctly recognized chunks, in the total
for all chunks over all classes of the development data. The
Unweighted Accuracy (UA) means the percentage of cor-
rectly recognized chunks per class, which are then averaged
over all classes. As the class affiliation is highly unbalanced
(see Table 2), we will use the unweighted accuracy as our
primary measure for system development.

Table 2
Number of chunks in the AIBO corpus development set to train each
classifier for 5 classes.

Positive
616

Neutral
5024

Anger
830

Emphatic
1890

Rest >
642 9002
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Table 3
Results for static MFCCs features with longer temporal context using
GMM-UBM with 64 components [%].

Static Longer context

Feature UA WA Feature UA WA

MFCC 36.4 40.4 RASTA-A 41.8 41.3

RASTA 374 40.9 RASTA-AA 43.5 429
RASTA-AAA 42.6 40.7
SDC 41.9 41.0

5.3. Spectral features

We start with investigations of spectral features using a
fixed classifier to compare the performance of the different
feature sets. We use a GMM-UBM system for this purpose.
Preliminary experiments indicate that 64 Gaussians work
well for the first GMM-UBM system.

As we are using an adaptation from the background to
class model it is important to define a balanced set for the
UBM training due to the unbalanced amount of class affil-
iation in the training data (see Table 2). Otherwise, the
background model would be biased to the more dominant
classes (Neutral and Emphatic) and adapted models for the
under-represented classes might be poor. For this purpose,
we select 500 chunks from each of the 5 classes to train a
model that serves as the UBM. Emotion class models are
then obtained by relevance MAP adaptation of the mean
parameters.

Results are presented in the left column of Table 3. With
36.4%, the unweighted accuracy is very low for the simple
MFCC features. Still, these results correspond with the
results reported in a similar test set of the AIBO corpus
for a frame based HMM system (Schuller et al., 2009). A
significant' improvement is achieved through the use of a
simple RASTA filter.

The use of Vocal Tract Length Normalization did not
give conclusive results and no significant gains could be

! At a significance level of o = 0.1.
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Table 4
Results for syllable based feature contours modeled
by 64 component GMM-UBM [%)].

Feature UA WA
DPE 32.3 39.6
DPEC 36.0 38.3

achieved. The ineffectiveness of VTLN might be explained
by an analysis of the observed distribution of the warping
factors. Generally, for data of adults a separation of males
and females in the form of a bimodal distribution can be
observed. In our experiments there was no separation of
warping factors for male and female speech at all which
might be caused by the fact that we handle children’s
speech. Probably a more adjusted grid search than using
warping factors 0.88-1.12 (which is somehow optimized
for adult speech) can be more effective. As a consequence,
we use only RASTA processed features for the following
experiments.

As a next step we apply techniques to cover a broader
temporal context. Up to now features only model a
quasi-static period of approximately 30 ms. We augment
the RASTA features with their delta (RASTA-A), dou-
ble-delta (RASTA AA) and triple-delta (RASTA-AAA)
regression coefficients.

Results are presented in the column on the right of
Table 3. Significant improvements are obtained through
all examined configurations and the task clearly benefits
from broadening the temporal context. The best results
are achieved with RASTA-AA features which significantly
outperform the single delta and SDC features.

One interpretation might be that enlarging the context
keeps improving the accuracy but triple delta and SDC fea-
ture dimensions are already too high for this scenario.
Keep in mind that a higher feature dimension also raises
the free parameters in the model dramatically.

Following these experiments, we will use the RASTA-
AA coeflicients as our primary spectral feature set.

5.4. Prosodic features

The following experiments are performed to evaluate the
prosodic features proposed in Section 3.

We use the same GMM-UBM model type as for our pre-
vious experiments with features containing the following
feature subsets: duration and temporal contours of pitch
and energy (DPE) and duration, pitch, energy and MFCC
temporal contours (DPEC, see also Table 1).

Results are presented in Table 4. The best results of 36%
UA are achieved with the DPEC features. These features
show a similar performance as the simple MFCC features
without any temporal context. However, the spectral
frame-based features incorporating an equal temporal con-
text still perform significantly better. This is a result we also
observe in speaker or language identification. High-level fea-
tures like these usually perform worse on their own but add

complementary information. This is then exploited by score-
level fusion of the diverse recognition systems.

Another reason for the huge degradation might be the fact
that we use statistical classifiers with very little data. As these
features are based on syllable regions spanning a context of
up to several hundred milliseconds, often only a few or no
feature vectors can be extracted per utterance. Clearly, the
performance of this feature type suffers greatly from the fact
that the test utterances are very short in the AIBO corpus.

5.5. GMM-UBM models

Now we start evaluating the modeling techniques pro-
posed in Section 4. For this purpose, we will use the spec-
tral RASTA-AA features that performed best in the
previous section.

After selecting 64 Gaussians somehow ad-hoc for the
initial feature experiments, additional experiments are car-
ried out to find optimal sizes for GMM-UBM as well as for
ML systems for this task.

The use of up to 2048 Gaussian components is typical in
high-performing speaker and language identification sys-
tems, where much more data is available for each class or
for the background model (Burget et al., 2007; Matejka
et al., 2006). The used databases of emotional speech are
rather small, so (1) we have little data to train the back-
ground model and the class model; and (2) the test utter-
ances are also quite short (only up to several seconds).
For this reason, we expect the optimum GMM size to be
much smaller than for SID/LID systems.

As we use an EM training algorithm that splits Gaussian
components after some iterations, we evaluate GMM sizes
from 8 to 128, doubling the size after each step. It should
be noted that we will also provide class-specific accuracies
in this section to show the relation of the GMM size and
the amount of available training data.

Results in Table 5 for a GMM-UBM system indicate
that a size of 64-128 components is optimal for this task.
Using a larger number of mixture components did not
increase UA. WA usually kept rising as the major classes
(like Neutral) benefit from larger amount of model param-
eters while the others get overtrained.

5.6. ML models

Furthermore, for the proposed model types in Section
4.2 an independent GMM is trained for each class on the

Table 5
Unweighted, weighted and class specific accuracies for different GMM
sizes with RASTA-AA features for GMM-UBM.

GMM size UA WA A E N P R
8 40.8 37.8 62.3 33.5 359 69.0 3.1
16 41.7 41.3 62.1 333 42.5 67.1 3.6
32 42.4 43.6 59.6 37.1 45.8 66.1 3.4
64 43.5 429 60.8 36.5 43.6 71.4 5.3
128 43.6 43.7 61.2 35.8 453 70.8 5.0
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available target training data only, without any adaptation
from a background model. According to Table 2 we only
have several hundred chunks available for some classes.
For this purpose and to further confirm the GMM size,
we proceed with experiments using a different number of
Gaussian components for simple ML trained models with-
out any background model adaptation.

We evaluate sizes of 16 to 128 Gaussians. The results are
presented in Table 6.

Interestingly, for these models we see a similar trend as
for the MAP adapted models. We obtain the best results of
about 44% UA with 32 and 64 Gaussians. Again, 64 Gaus-
sians seem to be a good choice. Also the models for which
only small amount of data is available, such as A, P or R,
already seem to get overtrained with 128 Gaussians.

If we compare the results for the GMM-UBM system
and the ML system in Tables 5 and 6 we observe a similar
overall performance. Comparing same sized models, we see
that the ML models are significantly better for the smaller
models. This seems reasonable as the small ML models
might have more discriminative power due to their individ-
ual weight and variance parameters. However, for the lar-
ger models the amount of training data might still be too
small to estimate all these parameters robustly.

5.7. MMI models

After evaluating the two basic GMM models we move
on with experiments using more sophisticated modeling
approaches.

First, we use the MMI criterion to retrain all generative
class GMMs (ML models) to discriminative models. This is
done in addition to 10 iterations, always increasing the
MMI objective function in (17). Comparing the numbers
in Table 7 for MMI models with previous ML experiments
(see Table 6) gives somewhat disappointing results.

Except for the small GMM with 16 Gaussians (not sig-
nificant), all other recognition rates even decrease due to
MMI training. This loss of performance is also not signif-
icant but seems to show a trend. Only when looking at very
small number of Gaussians (e.g. 2) we could spot a signif-
icant gain due to MMI, but these models obviously per-
form much worse than the larger ones.

It should be mentioned here that the proposed technique
of discriminative re-training of models leads to huge
improvements on NIST evaluation sets for language iden-
tification (Matejka et al., 2006) with similar number of clas-

Table 6
Unweighted, weighted and class specific accuracies for different GMM
sizes with RASTA-AA features for the ML model.

GMM size UA WA A E N P R
16 42.7 46.2 54.0 40.2 47.5 46.4 16.2
32 4.3 48.2 559 45.5 51.5 46.3 22.1
64 44.0 49.2 51.5 45.0 54.1 46.3 23.1

128 42.8 51.3 48.6 43.6 59.6 42.9 19.2
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Table 7
Unweighted, weighted and class specific accuracies for different GMM
sizes with RASTA-AA features for the MMI model.

GMM size UA WA A E N P R
16 42.9 46.9 53.6 49.1 48.8 44.5 18.5
32 44.2 48.5 53.4 45.7 523 44.5 25.0
64 43.7 49.5 49.5 45.1 55.0 44.0 24.8

128 42.2 51.4 47.1 43.4 60.5 39.9 20.2

ses. More than 50% improvement can be achieved on 30 s
long test utterances. Interestingly, on 3 s long utterances
(which is more similar to our scenario here) the gain also
reduces to less than 10% relative. Another difference is
the amount of data to train the class models, which is much
higher (hundreds of hours per class) in the case of the NIST
LID task (NIST, 2005).

5.8. ISV models

In the following experiments we want to evaluate the
intersession variability compensation approach as pro-
posed in Section 4.1. The system is mainly a GMM-UBM
system as used in the initial feature experiments with addi-
tional intersession variability compensation during testing.

As a first step the low dimensional subspace defining the
directions of intersession variability has to be estimated on
the training data. The usage of the available training data is
crucial during this step and defines what kinds of interses-
sion variability can be compensated for.

The AIBO database comprises many chunks for the
same class and the same speaker. So we can learn differ-
ences according to acoustic environment, speaker or lin-
guistic content. Our main assumption is that we do not
have many channel effects caused by different microphones
or transmission channels. As all recordings are done using
the same equipment in the same room, the within-class-
covariance will mainly cover speaker and intrinsic varia-
tions (Shriberg et al., 2009). Still, acoustic channel compen-
sation might be an issue for the test set as this is recorded in
a different school under different acoustic conditions.

As the segments are rather short in this database we use
a method to learn more reliable subspace directions. We
concatenate all segments belonging to the same speaker
and class and estimate U as to describe the difference
between speakers. This way our intersession variability
compensation serves more as a speaker compensation than
an acoustic channel compensation.

Before starting the subspace training, we initialize U by
PCA (Burget et al., 2007) to ensure a good starting point
and faster convergence. Then we iteratively re-train U in
10 iterations.

Once the subspace is estimated, emotion class models
are trained by relevance MAP adaptation exactly as for
the GMM-UBM models. Also, the scoring part itself
(LLR) is the same. The only difference is that we adapt
the obtained MAP means towards the test utterance along
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the low-dimensional subspace U. This is done by estimat-
ing the “channel” factors x for each test utterance using
Egs. (15), (16).

We perform several experiments to determine the opti-
mal number S of intersession variability directions (size
of the subspace). Fig. 5 shows unweighted accuracies for
up to 5 subspace directions. We can observe that using
more than 1 eigenchannel always decreases the perfor-
mance. We get non-significant improvement over the rele-
vance MAP model with 44.2% for 1 eigenchannel (dashed
line), but it drops consistently when increasing the number
of subspace directions, which significantly decreases the
performance.

One explanation might be that the test utterances in this
corpus are simply to short (often below one second of
speech) to reliably estimate the x factors that control the
adaptation of the model mean parameters. Similar degra-
dation of intersession compensation techniques due to
small amount of test data has been observed for speaker
(Dehak et al., 2009) as well as language identification
(Hubeika et al., 2008) tasks incorporating only a few sec-
onds of speech. Also, the subspace U is usually trained
on hundreds of hours of speech.

5.9. System calibration!/ Fusion

It is advisable to calibrate the system outputs as the
obtained scores for our systems do not represent proper
posterior probabilities for the classes. A certain GMM
may generally produce higher scores than the others in
the set. Furthermore, a consequent step is to fuse several
of the systems that incorporate partly complementary
information, as we have created many different systems
based on diverse features and modeling techniques. We
have observed huge gains in performance using this tech-
nique (Briimmer et al., 2007) even for system configura-
tions that differ only slightly (e.g. only different feature
sets).

45
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Unweighted accuracy [%]
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Fig. 5. Effect of eigenchannel subspace size on AIBO corpus. UA for
RASTA-AA features and ISV model with 64 components.

For these purposes we use multi-class linear logistic
regression (MLLR) (Briimmer and du Preez, 2006) to per-
form calibrated fusion of our system outputs. Posterior
probabilities of class C, given the score vector ¢ are then
given by:

exp(a.)

pClP) = =———— (24)
> expla)

with activations

a, =w¢ (25)

and ¢ containing the concatenated scores from all systems
to be fused. The fusion parameters w, are trained on each
split of the development set and are then averaged to en-
sure fair circumstances.

First we perform fusions of two systems that are using
the same features but four different modeling techniques.
Fusion results for all combinations are presented in Table
8 and are mostly better than the best single ISV system with
44.2%. Significant gains are achieved due to fusion of two
heterogeneous systems, like one background model based
(GMM-UBM or ISV system) and one standard GMM
model (ML or MMI system). Fusion of systems where
one is derived from the other, like ML and MMI, results
only in a small improvement. Fusion of all 4 systems does
not result in further improvement.

Furthermore, we evaluate the effect of fusing systems
using different feature sets while keeping the modeling
approach fixed (ISV). For this purpose we have selected
4 different feature sets that should be most complementary.
We select the RASTA MFCCs without further temporal
context (37.4%); the SDC features (41.9%); the simple pro-
sodic DPE features (32%); and our standard RASTA-AA
features (44.2%). Results in Table 9 show the same trend
as our previous fusion experiments. All combinations are
better than the best incorporated single system. Significant
gains can be achieved and the best result of 45.9% is
obtained for a fusion of RASTA-AA and SDC features.
Again, we fuse all 4 systems without any further
improvement.

To conclude these experiments we change both variables
(features and modeling techniques) at once. We fuse differ-
ent combinations but without any further improvement.

5.10. Emotion challenge 2009

This section shows the results for the systems we have
selected to submit for the official Open Performance

Table 8
Results (UA) for fusion of 2 systems with same features (RASTA-AA) and
different modeling approaches [%].

GMM-UBM ISV ML MMI
GMM-UBM - 44.1 45.5 45.3
INY - 455 45.1
ML - 443
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Table 9
Results (UA) for fusion of 2 systems with same modeling technique (ZSV)
but different feature sets [%o].

SDC RASTA-AA DPE
RASTA 439 44.5 39.3
SDC - 45.9 44.5
RASTA-AA - 442

Sub-Challenge (Schuller et al., 2009) of the Interspeech
Emotion Challenge 2009. Results are presented with the
official metric on 5-class tasks, similar to our results on
the development set. As classes are highly unbalanced,
the rules stipulated the use of the unweighted average recall
(UA) as the primary measure and the weighted average
recall (WA) as the secondary measure.

We have selected the four different modeling approaches
(ML, MMI, GMM-UBM, ISV) we used in the system
development for the best performing features on the test
set. They are based on MFCCs generated with RASTA fil-
ter, double-deltas, CMS and VAD (RASTA-AA). Note,
that the scores computed on the test set could only be
uploaded up to 25 times. So we had to select the most
promising configurations. In Schuller et al. (2009) baseline
recognition results on the test set are provided for two dif-
ferent baseline systems. A dynamic modeling approach
using frame-based features and a Hidden-Markov-Model
(HMM) as a classifier; and the second static approach uses
high-dimensional chunk based features fed to a Support
Vector Machine classifier. The best baseline results on the
proposed primary measure are 35.9% for the HMM base-
line and 38.2% for the SVM baseline.

Table 10 shows the results for the 5-class task for the 4
submitted models. We achieve the best results for the ISV
system with 41.3%. Surprisingly, the ML and the MM sys-
tem perform significantly worse with only about 38.5%,
unlike than on the development set. This might indicate
that even the ML trained model is already over-adapted
to the training data and does not generalize well. The sim-
ple GMM-UBM system performs significantly better than
the ML/MMI approaches. We get improvement (not sig-
nificant) from the intersession variability compensation.
On the UA we achieve a 15%/8% relative improvement
to the HMM and SVM modeling, respectively, which was
provided as a baseline.

As proposed in the last section, we want to combine sev-
eral complementary systems to achieve the best results. We
select the most promising fusion of two systems as evalu-
ated in Table 9. We fuse 2 systems using the same ISV

Table 10
Submitted systems for the S-class task [%]. All using
RASTA-AA features.

Feature UA WA
GMM-UBM 40.8 41.0
JFA 41.3 439
ML 38.5 45.4
MMI 38.7 46.0

66

model with 64 Gaussians, one with RASTA-AA features
and one with SDC features. The fusion parameters are
the same as used in our system development.

We get another improvement and achieve an unweighted
average recall of 41.7%. This is the highest recognition rate
achieved in the Interspeech 2009 Emotion Challenge for
the 5-class task. Still, our result was not significantly better
than that of some other participants. The organizers
(Schuller et al., 2009) could show that further fusion of
the (completely independent) participating systems could
significantly increase the recognition rate to over 44%.

6. Berlin database of emotional speech

In this section we will present some additional experi-
ments mainly to further investigate the effect of intersession
compensation for emotion recognition. As test utterances
are extremely short on the FAU Aibo corpus we selected
a database with longer test utterances. The Berlin Database
of Emotional Speech (Burkhardt et al., 2005) consists
entirely of whole sentences that are several seconds long.

6.1. Database

This database contains acted emotional speech. Ten
actors (5 male and 5 female) simulated seven different emo-
tions on ten German utterances (5 short and 5 long). Emo-
tion classes are Anger, Fear, Neutral, Joy, Sadness, Disgust
and Boredom. The recordings are studio-quality and the
whole database contains 535 sentences. It should be noted,
that although the single utterances are longer than for the
AIBO corpus, the overall amount of speech data is much
smaller (less than one hour).

6.2. Development set

Similar to the AIBO database we use a full jackknifing
approach for the whole training set. Ten splits are created
out of the training set, each excluding one speaker. The
actual number of sentences available to train the classifiers
are depicted in Table 11. Similar to Section 5.2, results are
presented in terms of unweighted accuracy (UA). It should
be noted, as the amount of speech data for class D is extre-
mely low and preliminary testing fails completely in this
class, we discard class D from our development set and
take only 6-classes into account.

6.3. ISV model

We perform experiments on a similar system as used for
the Interspeech Emotion Challenge. We create MFCC
Table 11

Number of utterances in the Berlin Database of Emotional Speech to train
each classifier.

A B D F J S N >
127 81 46 69 71 62 79 535
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features, apply the RASTA filter and CMS and augment
the features with delta and double-deltas. Afterwards,
speech frames are selected using voice activity detection
(RASTA-AA).

These spectral features are first used to train a UBM
with 64 Gaussians. We again use a class-balanced data
set for background model training. A single UBM for each
split consists of approximately 300 sentences, 50 for each
class. After UBM training we train the intersession vari-
ability subspace U. We use the same recipe for subspace
estimation as in the previous experiments: PCA initializa-
tion of U with successive ML-training. We again concate-
nate all utterances per speaker to train the intersession
variability subspace. The whole database was recorded in
an anechoic chamber using high-quality equipment so
channel effects are minimal. Effects of speaker normaliza-
tion might be even more meaningful than for the AIBO
corpus as the database consists of adult speech.

Experiments are carried out to investigate the effect of
intersession compensation for this database. For this pur-
pose we train and evaluate GMM-UBM and ISV models
as described in the previous sections. In Fig. 6 an interest-
ing trend can be observed which is different from the exper-
iments on the AIBO corpus. While we reach an unweighted
accuracy of 57% using relevance MAP, we achieve a signif-
icant improvement by using the same system incorporating
intersession variability compensation. As depicted by the
dashed line in Fig. 6 we reach a recognition rate of 63%
with the use of one subspace direction. The use of a larger
subspace further increases the performance and the best
unweighted accuracy of 67% is achieved with a subspace
size of 5. This is a significant improvement of an absolute
10% UA over the GMM-UBM baseline.

We are aware that better recognition rates have been
reported on this database. In (Schuller etal., 2006) accuracies
of over 80% are reached but only by using much more com-
plex large-scale feature sets. For these studio-quality record-
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Fig. 6. Effect of eigenchannel subspace size on Berlin Database of
Emotional Speech corpus. UA for RASTA-AA features and ISV model
with 64 components.

ings, features like pitch and voice quality will be of high
accuracy and might explain the huge difference in recogni-
tion performance. In (Gaurav, 2008), frame-based MFCCs
using GMM s are also evaluated and performed in a similar
way to our baseline system. Furthermore, GMMs are out-
performed by SVM approaches in that work. Our conclusion
for the performance gap to the state-of-the art SVM systems
is that SVMs might be better suitable to handle the general
small amount of training data in this database.

Nevertheless, our experiments show the capability
of intersession compensation techniques for emotion
recognition.

7. Conclusions

We show that feature extraction and statistical modeling
methods that are usually used in speaker and language rec-
ognition can be successfully used for emotion recognition
as well.

We could achieve the best results for the 5-class task in
the Interspeech Emotion Challenge 2009 and significantly
outperformed the provided state-of-the-art baseline
systems.

The submitted system incorporated quite simple acous-
tic features. We did not make use of excessive spectral, pro-
sodic or lexical features. Eventually, we used two different
feature sets both derivatives of MFCC features. Several
experiments on our development set indicated that MFCC
features using RASTA filter and augmented with first and
second order derivatives performed the best for this task. It
should be noted, that this feature set is very close to those
used in automatic speech recognition. As a complementary
feature set we use Shifted Delta Cepstra with an even
broader temporal context.

Our prosodic feature set showed bad performance com-
pared to the spectral features. While this is a common effect
also observed in other fields of speech based pattern recog-
nition tasks, we can conclude that in this case the given test
utterances are really too short to exploit a syllable based
long-temporal span feature extraction. Future work should
consider exploiting a simpler prosodic feature set like frame
based pitch values or functionals computed on shorter
fixed size windows.

The proposed GMM based modeling approaches gener-
ally perform very well. However, the more sophisticated
approaches, namely discriminative training and interses-
sion variability compensation, were not convincing on the
FAU AIBO corpus. While both approaches have proven
their potential in terms of language identification we could
only reach marginal improvements. Our conclusion is that
this effect is mainly due to the short test utterances and the
general small amount of training data per class. In the men-
tioned NIST evaluations for language identification the
core condition consists of test utterances with durations
of 30 s. In this task MMI as well as intersession variability
compensation has shown up to 50% relative improvement,
while on a 3 s task the gain degrades to approximately 10%
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relative improvement, both for MMI and intersession var-
iability compensation.

That there is indeed a capability for intersession vari-
ability compensation for emotion recognition is shown in
the Berlin Database of Emotional Speech. Here we can
obtain significant gains through the use of the ISV model.
Still, it should be mentioned that in both cases we used ISV
mainly to reduce the effects of intersession variability repre-
senting speaker characteristics instead of channel charac-
teristics as is usually done.

Large-scale feature SVM modeling still seems to be
superior on acted non-spontaneous studio-quality record-
ings, unlike that on real-world data. Our impression is that
prosodic and voice-quality features are very accurate on
this type of recordings and yield the high accuracies. Still,
SVMs seem to be a good choice to handle very small
amounts of training data while generative statistical models
like GMMs get simply overtrained.

Furthermore, we could show that system combinations
by score level fusion can significantly enhance perfor-
mance. In conclusion, in this way diverse modeling tech-
niques (like SVM or GMMs) and feature sets (acoustic,
prosodic, chunk or frame based, etc.) can be exploited
for high accuracy in emotion recognition tasks.
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ABSTRACT

In this paper we use acoustic and prosodic features jointly in a long-
temporal lexical context for automatic speaker recognition from
speech. The contours of pitch, energy and cepstral coefficients are
continuously modeled over the time span of a syllable to capture
the speaking style on phonetic level. As these features are affected
by session variability, established channel compensation techniques
are examined. Results for the combination of different features on a
syllable-level as well as for channel compensation are presented for
the NIST SRE 2006 speaker identification task. To show the comple-
mentary character of the features, the proposed system is fused with
an acoustic short-time system, leading to a relative improvement of
10.4%.

Index Terms— Speaker recognition, Prosody, GMM, Channel
Compensation

1. INTRODUCTION

State-of-the-art systems for text independent speaker identification
usually make use of acoustic short-time features in a Gaussian Mix-
ture Model (GMM) framework with Universal Background Model
(UBM) [1]. As these systems are strongly affected by session vari-
ability, new techniques have been successfully developed in the last
few years to compensate for these channel effects [2]. Still, most
acoustic systems do not make use of information from a higher level
of speech, like the phonetic, prosodic or lexical layer. Different
studies have shown that adding phonotactic- or prosodic characteris-
tics to an acoustic baseline system can yield to a better overall per-
formance, especially when a large amount of data is available per
speaker [3]. Dehak et al. [4] also reported gain in recognition per-
formance on shorter tasks, where only a few hundred feature vectors
are available to train and test each speaker.

The work in this paper is based on the use of classical prosodic
features like duration, pitch and energy in a syllable-like temporal
context. The trajectories of each feature is continuously modeled
over the time span of a syllable and is represented by coefficients
from a discrete cosine transformation (DCT). Additionally we also
capture the contour of acoustic features in form of Mel-frequency
cepstral coefficients (MFCC) and form a single feature vector out
of duration and pitch, energy and the MFCC contours. All these
features are jointly modeled using a GMM. As this mixed feature
vector will also be affected by variations in the channel, established
techniques for the compensation of session variability are applied.
Since each feature vector represents one syllable in the utterance,
there are only a few hundred features per recording, which makes it
hard to reliably estimate the channel factors that determine how far

a model is shifted in the channel subspace. We will investigate if
channel compensation in the model or in the feature domain is more
appropriate for this small amount of feature vectors.

The performance of the proposed system is presented in terms
of equal error rate for the text-independent NIST SRE 2006 speaker
identification task [5].

The organization of the paper is as follows: section 2 describes
the extraction of the syllable based features, including the basic fea-
tures itself, the way the utterance is segmented into syllable-like
units and based on this, the actual modeling of the temporal trajec-
tory of the basic features. Section 3 briefly describes the algorithms
used to perform the channel compensation. Section 4 presents the
experiments and results obtained with the system and conclusions
are given in section 5.

2. SYLLABLE BASED FEATURE CONTOURS

This section describes how a feature vector for each syllable is ob-
tained by continuously modeling the temporal trajectory of various
frame based features.

2.1. Basic features

Different basic features are extracted at 10-ms intervals. Pitch
frequencies are computed with the Average Magnitude Difference
Function from the Snack Sound Toolkit [6]. Snack is also used to
obtain windowed log power values. All these features are extracted
with Snacks default settings. Furthermore 12 Mel-frequency cepstral
coefficients (20ms Hamming window, 23 bands in Mel filter bank)
are generated.

2.2. Syllable segmentation

The segmentation into syllable-like units is based on the phoneti-
cally alignment from a phoneme recognizer with long temporal con-
text [7]. We use a Hungarian recognizer, whose tokens are mapped
to classes silence, consonant and vowel. Then each speech segment
between two pauses is equally divided based on the number of vow-
els in this segment. Figure 1 shows how each vowel is considered
as the nucleus of a syllable. In a second step, the estimated sylla-
ble boundary between two vowels can be shifted with regard to the
measured pitch at the potential boundary candidates. This is done in
order to preserve consecutive pitch contours that proceed for exam-
ple from a vowel to a voiced consonant.
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2.3. Contour modeling
2.3.1. Pre-processing

All basic features are pre-processed before actually modeling the
temporal contour of them. Feature warping [8] (blind warping into
normal distribution) is applied to all MFCCs and the logarithm is
computed for the pitch frequencies. Finally, mean subtraction is ap-
plied to all features. Note that the mean was computed over the
voiced parts of the whole utterance only (obtained by valid pitch).
Small gaps (1 frame) in the pitch contour are smoothed by a median
filter.

2.3.2. Temporal trajectory

The temporal contour of each feature can be approximated by a curve
fitting tool, as shown in Figure 1. We use the first n DCT bases
to model the trajectory, which correspond to characteristics of the
curve, like mean, slope and finer details. The contour is represented
by its DCT coefficients in the feature vector. The advantage of using
discrete cosine transformation instead of a simple polynomial curve
fitting is, that mapping the contour segment to a fixed length is not
necessary and that the coefficients are already decorrelated. As pitch
may be undefined over parts of the syllable, one can consider differ-
ent approaches to model the other features which are always defined
within the syllable. In this work, jointly modeling the unvoiced and
voiced part and modeling only the voiced part of each syllable is
investigated for the other features.
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Fig. 1. Example for pitch contour over syllable with three phonemes.
Top: Original pitch values with phoneme and pseudo-syllable
boundaries (horizontal lines). Bottom: Original (dotted line) and
DCT approximated curve (solid line).

2.4. Final feature vector

The number of voiced/unvoiced frames inside the syllable also
serves as a discrete duration feature. The final feature vector for
each syllable consists of the duration followed by the representation
of the temporal contour for each basic feature like pitch, energy and
MFCCs. Syllable segments that contain less frames than the number
of DCT coefficients used to model the contour are omitted.
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3. CHANNEL COMPENSATION

Prosodic features like pitch and energy shall be used along with
acoustic features like MFCCs. Channel compensation has proved to
be beneficial for both of these feature types [4]. Challenging is the
use of channel compensation with relatively sparse feature vectors as
it is the case here. For this purpose, eigenchannel compensation was
performed in both, feature and model domain as it was proposed in
[9] and [10]. This section gives a brief overview how the jointly used
eigenchannel subspace was estimated as well as to the principles of
the two different compensation techniques.

3.1. Eigenchannel Subspace

The eigenchannel subspace is a low dimensional representation of
how the means of a GMM representing a speaker can be affected
by changing channel. This subspace is estimated as described in
[9]. Briefly, a corpus with multiple recordings for each speaker un-
der various conditions is needed. After adapting the UBM to each
training utterance, mean supervectors are formed by concatenating
all mean vectors and dividing them by corresponding standard devi-
ation. The eigenchannels are the eigenvectors of the average within-
speaker covariance matrix. It is sufficient to keep only the the di-
rections that cover most of the variability caused by channel effects
(largest eigenvalues).

3.2. Eigenchannel Compensation in model and feature domain

Eigenchannel compensation in model domain is only applied to test
conversations. During a single MAP-iteration, channel factors are
estimated for the UBM as well as for each speaker model in test.
These factors determine, how far each model is shifted towards the
test-utterance in the directions defining the eigenchannel subspace.
A simplified implementation for estimating the channel factors is
used for computational efficiency as described in [9].

A more simplified approach of channel compensation leads to
the possibility of shifting the features itself, rather than the models
as proposed in [10]. One can assume to globally estimate the chan-
nel factors according only to the UBM. The change in means of the
mixture component with the highest occupation probability is then
applied to the feature vector itself. The channel compensated fea-
tures can be used to train and test a standard GMM system.

4. EXPERIMENTS

4.1. Data

Experiments were performed on the core condition of the NIST 2006
speaker recognition evaluation (SRE) [5], which contains English
trials only. The 1-side training I-side test condition is considered,
where approximately 2.5min of speech is available from a 5min
telephone conversation to train each speaker and for each test trial.
This set originally contains 462 female and 354 male training utter-
ances (where multiple utterances can arise from one speaker) and
51448 test trials. Results are presented in terms of equal error rate
(EER)'. The UBM model is trained on 7880 5min utterances from
the NIST 2004 and 2005 SRE data sets. The eigenchannel subspaces
were estimated on 3399 sessions from 310 speakers (at least 8 ses-
sions per speaker) from the NIST 2004 SRE training set. The same

Note that evaluation key version 9 from NIST was used to measure the
system performance.



corpus was used to normalize verification scores via z-norm [11] us-
ing 248 utterances.

4.2. Framework

The GMM framework used for the whole system is the same as
used for an acoustic baseline system [9]. The gender-independent
UBM is obtained by Expectation-Maximization (EM) Training and
the speaker models are derived by MAP-Adaptation with 7 = 19.
Discrete as well as continuous features are used within one feature
vector, so variance flooring is crucial while EM training. Variances
are floored to 1/100 of the global variance. If not mentioned other-
wise, all results are obtained with 256 Gaussians, no eigenchannel
compensation and no z-norm.

4.3. Prosodic contour features

First experiments were performed with a classical prosodic feature
vector, which comprises the duration of the syllable as well as the
approximated pitch and energy contours, which are modeled with
6 DCT coefficients (minimal segment length is 60ms). Results for
different assortments of the feature vector are presented in Table 1.
As can be seen it is most beneficial to use duration, pitch and energy
jointly which also conforms to similar results in [4].

Table 1. Different prosodic feature vectors with 6 coefficients per
contour.

‘ Feature Vector ‘ Dim ‘ EER [%] ‘

Pitch Contour 6 29.67
Duration, Pitch Contour 7 29.1

Pitch & Energy Contour 12 28.37
Duration, Pitch & Energy Contour 13 25.73

As the feature vector will grow through the augmentation of
MEFECC features, we want to use the smallest number of coefficients
to properly approximate the temporal contour in terms of recogni-
tion performance. Table 2 shows that modeling even finer details is
not beneficial and that only a slight degradation has to be accepted
by reducing the resolution to 4 DCT coefficients.

Table 2. Pitch & Energy contours modeled by different number of

DCT coefficients.
[ # of coefficients | EER [%] |
4 26.11
5 25.77
6 25.73
7 27.29

The best performing 13-dimensional feature vector was also
used to study the treatment of unvoiced parts within a syllable. Either
the duration and the energy contour may correspond to the whole syl-
lable or only to the voiced part. As can be seen in Table 3, it is ben-
eficial to use only the voiced part of the syllable. Note also that the
mean subtraction of the basic features in the pre-processing step is
based only on the voiced parts as well. Using all speech segments as
determined by the phoneme recognizer to compute the mean yields
to much worse results.

Table 3. Modeling whole syllable or only voiced part.

[ EER [%] |
whole Duration, Pitch & whole Energy Contour 25.73
voiced Duration, Pitch & voiced Energy Contour 24.4

[ Feature Vector

4.4. Expansion of feature vectors

For the following experiments, the number of DCT coefficients was
reduced to 4. As the minimal segment length also is reduced to
40ms, about 10% more feature vectors could be extracted for each
utterance. This and additional feature warping of the energy coef-
ficients reduced the EER to 22.3%, which serves as a reference for
expanding the feature vector with MFCC contours.

In order to add a simple acoustic information, the prosodic fea-
ture vector was augmented with the means of 12 MFCCs over the
syllable. This results in a drastic gain in recognition performance to
14.07%. The benefit of adding all coefficients for the MFCC con-
tours can be seen in Table 4. Adding information about the temporal
contour of all MFCCs yields to an EER of 9.87%, which is a relative
improvement of 55% compared to the purely prosodic system. Even
the contours of the higher MFCCs are beneficial and omitting them
always results in worse performance (see also Table 4). Also the
addition of the cepstral contours does not make the prosodic infor-
mation negligible, as performance degrades to 10.63% for cepstral
contours only.

Table 4. Augmentation of prosodic feature vector (baseline: dura-
tion, pitch & energy contour). Contours are modeled with 4 coeffi-
cients, voiced parts only.

Feature Vector | Dim | EER [%] |
Baseline 9 22.3
Baseline + 12 MFCC means 21 14.07
Baseline + 12 MFCC Contours 57 9.87

Baseline + 11 MFCC Contours 53 10.14
Baseline + 10 MFCC Contours 49 10.57
Baseline + 9 MFCC Contours 45 11.22
Baseline + 8 MFCC Contours 41 11.27
12 MFCC Contours 48 10.63

4.5. Channel Compensation

The effectiveness of eigenchannel compensation in model and
feature domain was investigated for a system trained on a 57-
dimensional vector containing duration and the temporal trajecto-
ries for pitch, energy and 12 cepstral coefficients. 10 eigenchannels
were used in the experiments. Note that only approximately 500 fea-
ture vectors are available in this syllable-framework to estimate the
channel factors that determine the compensation of each utterance.
Table 5 shows the effect of the channel compensation for GMMs
with different number of Gaussians. For small models with only
32 Gaussians, the channel factors can be estimated quite well and
the compensation in model as well as in feature domain results in
30% relative improvement, while for a model with 512 Gaussians,
the gain is only about 5%. Unfortunately the small models perform
much worse before applying the channel compensation, and EER
is still worse after eigenchannel adaptation. However, for the model
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with 256 Gaussians the EER could still be reduced by 11% to 8.74%,

even with this small amount of data.

Table 5. Effects of channel compensation for different sized GMMs
(10 Eigenchannels) in EER [%].

[ # of Gaussians [ No CC | Model Domain | Feature Domain |

512 9.44 9.06 9.06
256 9.87 8.8 8.74
128 10.89 8.8 8.75
64 12.35 9.3 9.3

32 14.88 10.41 10.42

Eigenchannel compensation in feature domain bears the oppor-
tunity to compensate the features on an eigenchannel subspace cre-
ated on a smaller UBM and do the model training and evaluation
with a larger GMM. This technique assumes that the properly es-
timated channel directions and channel factors also fit for the big-
ger GMM. In our experiments the features were compensated on
GMM sizes where the standard compensation showed adequate per-
formance. These compensated features were used to train model
sizes that performed best without channel compensation. As can be
seen in Table 6, this approach to handle the sparse data results in
better performance than the normal eigenchannel adaptation. The
relative improvement compared to the standard compensation is 6%
and 8% for the GMM sizes 256 and 512, respectively.

Table 6. Different sized models with features compensated on
smaller Eigensubspace (sizes in # of Gaussians).

‘ Speaker UBM ‘ Subspace UBM ‘ EER [%] ‘

5. CONCLUSIONS

We have shown that syllable based prosodic feature vectors can be
successfully expanded and jointly modeled with acoustic cepstral
features by the use of DCT coefficients to represent the tempo-
ral contour of each phonetically motivated segment. The addition
of cepstral contours achieves over 50% improvement compared to
a classical prosodic system with duration, pitch and energy only.
Without any compensation for session variability, the performance
of such a system is comparable to a frame-based acoustic system
and comprises complementary information through different kinds
of features like pitch and a different temporal context. As the ef-
fect of channel compensation (frame-based acoustic systems im-
prove relatively about 50%) decreases for the proposed system due
to the small amount of features in the test utterance, an approach
could be presented to gain more improvement through the use of
channel compensation in feature domain, where features are com-
pensated through a smaller and more robust eigenchannel subspace.
When combining this system with best-performing baseline acoustic
system it results in a 10.4% improvement of overall performance.
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512 128 8.31
512 64 8.36
256 128 8.2
256 64 8.36
128 64 8.9

4.6. Combination with acoustic baseline system

Finally the complementary information of this syllable-based sys-
tem to a short-time acoustic system is to be investigated by fusing
it with a state-of-the-art acoustic GMM system (2048 Gaussians, 13
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Table 7. Fusion of best performing syllable-based system with
acoustic baseline.

[ System [ EER [%] |
Duration, Pitch, Energy & 12 MFCC Contours
256 Gaussians, z-norm 7.66
2048 Gaussians acoustic baseline 3.07

‘ Fusion ‘ 2.75 ‘
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Chapter 5

Applications of i-vectors

The publications included in this section demonstrate the applicability of i-vectors
to other than speaker recognition problem (sections 5.1, 5.2, 5.3, 5.7). Conceptually
new approaches to fusion (section 5.5) and to dicriminative training 5.4 of speaker
verification systems are described, all building on the concept of i-vectors. Originally,
i-vectors were proposed to represent sequences of continuous feature vectors. The
publications extending this concept to sequences of discrete features are also included.
For this purpose, a new subspace multinomial model (section 5.6) and subspace n-
Gram model (section 5.7) were proposed. A publication that introduces a nowadays
popular technique for i-vector based discriminative adaptation of speech recognition
system is also included (section 5.3).
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Abstract

The concept of so called iVectors, where each utterance is rep-
resented by fixed-length low-dimensional feature vector, has
recently become very successfully in speaker verification. In
this work, we apply the same idea in the context of Language
Recognition (LR). To recognize language in the iVector space,
we experiment with three different linear classifiers: one based
on a generative model, where classes are modeled by Gaussian
distributions with shared covariance matrix, and two discrim-
inative classifiers, namely linear Support Vector Machine and
Logistic Regression. The tests were performed on the NIST
LRE 2009 dataset and the results were compared with state-
of-the-art LR based on Joint Factor Analysis (JFA). While the
iVector system offers better performance, it also seems to be
complementary to JFA, as their fusion shows another improve-
ment.

Index Terms: Acoustic Language Recognition, iVectors, Joint
Factor Analysis.

1. Introduction

Joint Factor Analysis (JFA) [15], which is a statistical model
originally proposed for Speaker Recognition, has become very
successful also for acoustic Language Recognition (LR) [3, 2].
The idea behind JFA is to consider not only the inter-class vari-
ability in the space of model parameters (we have different
model parameters for different languages in LR), but also the
inter-session variability (parameters for a language can change
from utterance to utterance because of the differences in chan-
nel, speaker, etc.). We will refer to the latter variability simply
as channel variability. When the likelihood of a test utterance
is evaluated for a certain language, the corresponding model is
adapted to the channel of that test utterance. This is done by
finding the point MAP (or ML) estimate of a low-dimensional
latent variable vector - channel factors, which are coordinates
in a highly channel-variable subspace of the model parameter
space.

Recently, systems based on iVectors [4, 16] have provided
superior performance in speaker recognition. iVector is a fixed-
length low-dimensional vector, which is extracted for each ut-
terance based on the JFA-like idea of estimating latent variables
corresponding to high variability subspace. The principal dif-
ference from JFA is that we are not interested in evaluating the
adapted model. Instead, the latent variables - i Vectors - are used
as features for another (possibly very simple) classifier. Also,
the underlying model for iVector extraction does not attempt to
separate inter-class and channel variability. Instead, it consider-
ers only single total variability subspace corresponding to both
sources of variability. The advantage is that the model for iVec-
tor extraction can be trained in unsupervised manner (without
providing speaker or language identities for speaker or language
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recognition respectively). On the other hand, iVector contains
information about both the class and the channel; this has to be
taken into account in the following classifier.

Inspired by the success of iVectors in speaker recognition,
we apply the same idea in the context of language recognition
in this work. As a classifier in the iVector space, we use the
linear generative model, where the distribution of iVectors for
each language is Gaussian with full covariance matrix shared
across languages. This model is analogue to Probabilistic Lin-
ear Discriminant Analysis (PLDA) [1], which is currently the
most successful model for modeling iVectors in speaker recog-
nition [16, 13]. Unlike in PLDA, we do not need to explicitly
model distributions of class means. We deal here only with
a closed-set problem, where means for a limited number of
classes (languages) can be robustly obtained as the ML esti-
mates. However, note that the PLDA approach, thanks to that
inter-class distribution modeling, could be useful when dealing
with an open-set LR problem, where also unknown out-of-set
languages have to be detected.

Low dimensionality of iVectors makes it also convenient
to apply discriminative classifiers. We have experimented with
linear Support Vector Machines (SVM) and Logistic Regression
in combination with Nuisance Attribute Projection (NAP) [11]
as a channel compensation technique.

The performance of the proposed techniques is compared
with state-of-the-art JFA based system on the NIST LRE 2009.
On 30s condition, the best performing individual system is i Vec-
tor based generative model, where C'q,g = 0.0188 corresponds
to 7% improvement over the JFA baseline. Further improve-
ments (up to 18% over the JFA baseline) can be obtained by
fusing the JFA and iVector based systems.

Note that in [9], another iVector based approach is applied
to phonotactic language recognition, where recently proposed
Subspace Multinomial Model [5] is used to extract i Vector from
phone n-gram counts.

The rest of the paper is organized as follows: in Section
2, iVectors fundamentals are revisited; in Section 3, the classi-
fiers used for the experimentation are reviewed; in Section 4,
the experimental setup is described; in Section 5, the results are
presented; and in Section 6, the conclusions are derived.

2. iVectors
The iVector approach has become state-of-the-art in the speaker
verification field [4] and, in this work, we show that it can be
successfully applied also to language recognition. The approach
provides an elegant way of reducing high-dimensional sequen-
tial input data to a low-dimensional fixed-length feature vec-
tor while retaining most of the relevant information. The main
idea is that the language- and channel-dependent supervectors
of concatenated Gaussian Mixture Model (GMM) means can be



modeled as
M =m + Tw, 1

where m is the language- and channel-independent component
of the mean supervector, T is a matrix of bases spanning the
subspace covering the important variability (both speaker- and
session-specific) in the supervector space, and w is a standard-
normally distributed latent variable. For each observation se-
quence representing an utterance, our iVector is the Maximum
A Posteriori (MAP) point estimate of the latent variable w. Our
iVector extractor training procedure is based on the efficient im-
plementation suggested in [7].

3. Classifiers

3.1. Generative model

In the case of the generative model, distribution of iVectors for
each language is modeled by a Gaussian distribution, where full
covariance matrix is shared across all languages. For an iVector
w corresponding to a test utterance, we evaluate log-likelihood
for each language as:

1 _ _ 1 _
1np(w|l):—§wTZ 'wiw's 1,ul—5p,lTE !, +const,

where p; is the mean vector for language [, X is the com-
mon covariance matrix and const is a language- and iVector-
independent constant. If the log-likelihoods In p(w|l) were di-
rectly used to decide about the language (or estimate the pos-
terior probability of a language), the quadratic term w’ X~ 'w
could be ignored as it is independent of the class thanks to the
shared covariance matrix. This would lead to linear classifier as
the remaining terms are only linear in w. In our case, however,
the log likelihoods are used as inputs to another classifier, the
calibration back-end described in section 4.3. For this reason,
we include the quadratic term, and thus, we avoid the iVector
(utterance) dependent shift in our scores.

3.2. Discriminative Classifiers

We have also experimented with discriminative linear classi-
fiers: linear Support Vector Machines (SVM) and Logistic Re-
gression with L2 regularization. In both cases, binary classifiers
are trained and one-versus-all strategy is used to obtain scores
for all languages. We use implementations from LIBSVM [10]
and LIBLINEAR [12] for SVM and logistic regression, respec-
tively. Although, we have used binary logistic regression in our
experiments, our problem could be addressed more directly us-
ing a single multi-class logistic regression classifier. For exam-
ple, the experiments in [3], where multi-class logistic regression
was applied to recognize languages from GMM mean supervec-
tors, can be now carried out in iVector space with significantly
reduced computational cost and space complexity.

4. Experimental Setup
4.1. Training and Development Data

Our training data were taken from the same databases as in
[2]: Callfriend, Fisher English Part 1 and 2, Fisher Levantine
Arabic, HKUST Mandarin, Mixer (data from NIST SRE 2004,
2005, 2006, 2008). We have defined two sets with data from
the 23 NIST LRE 2009 target languages only: the first contains
all the utterances in the databases for these languages and it is
further denoted full. The second contains a maximum of 500
utterances per language (we do not have 500 utterances for all

languages), and it is further denoted balanced. For training the
iVector extractor, the full dataset has been taken, but no degra-
dation in performance was seen when using the balanced one.
For training the classifiers, the balanced dataset has been taken,
because it was found that having equal amount of data per class
leads to lower error rates.

The calibration back-end described in section 4.3 was
trained on development dataset, which comprises data from
NIST LRE 2007, OGI-multilingual, OGI 22 languages, Foreign
Accented English, SpeechDat-East, Switch Board and Voice
of America radio broadcast. Only data of the 23 target lan-
guages are used. This set was based on segments of previous
NIST LRE evaluations plus additional segments extracted from
CTS, VOA3 and human-audited VOA2 data, not contained in
the training dataset, and is the same as in [2].

4.2. Feature Extraction

Standard 7 Mel Frequency Cepstral Coefficients (MFCC) (in-
cluding Co) are used. Vocal Tract Length Normalization
(VTLN) [8] and Cepstral Mean and Variance Normalization is
applied in MFCC computation. Then, Shifted Delta Cepstral
(SDC) coefficients [6] with usual 7-1-3-7 configuration are ob-
tained, and concatenated to MFCCs, to obtain a final feature
vector of 56 coefficients. For each utterance, the correspond-
ing feature sequence is finally converted to an iVector using
an iVector extractor based on a GMM with 2048-components
trained on pooled features from all 54 languages included in
our training data.

4.3. Calibration Back-end

For calibration and fusion, a Gaussian Back-end followed by a
Discriminative Multi-Class Logistic Regression is used to post-
process scores obtained from the described classifiers. Note that
the Gaussian Back-end is essentially the same model as our
generative classifier. However, its inputs are the scores from
the classifiers described above rather than the iVectors. Also,
it is trained on the separate development dataset to obtain well-
calibrated scores.

5. Results

All results are for the closed-set condition. We use the NIST
LRE 2009 dataset, which contains 23 target languages, and files
of 3, 10 and 30 s. Results are shown in terms of Cl. g % 100 de-
fined in the NIST LRE 2009 Evaluation Plan'. Since at the out-
put of the backend well-calibrated log-likelihoods are obtained,
the threshold is set analytically.

5.1. Results for Generative Linear Classifier

In Table 1, we show the effect of iVectors dimensionality for
three conditions corresponding to the three nominal durations
of test utterances (3, 10 and 30 s). We can see that the appropri-
ate iVector dimensionality is 600. A lower dimensionality does
not give the same level of accuracy and higher dimensionality
does not offer further improvements, while the computational
complexity is increased. Also, duration-independent (DI) cal-
ibration back-end is compared to the duration-dependent (DD)
back-end, where a separate back-end is trained for each condi-
tion. As we can see, no significant difference between DI and
DD back-end for the 30 s condition is found. However, for the
3 and 10 s conditions, the DI back-end performs better. This

Uhttp://www.itl.nist.gov/iad/mig/tests/lIre/2009/LRE09_EvalPlan_v6.pdf
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Condition | 200D | 300D | 400D | 500D | 600D | 700D

3sDI 14.78 | 14.54 | 14.35 | 14.30 | 14.10 | 14.12
3sDD 16.29 | 15.87 | 15.63 | 15.50 | 15.29 | 15.25

10s DI 4.63 | 433 | 426 | 414 | 4.04 | 4.05
10s DD 555 | 525 | 5.11 | 490 | 476 | 479

30s DI 229 | 207 | 1.94 | 1.94 1.91 2.01
30s DD 236 | 208 | 1.88 | 1.90 | 1.88 | 1.93

Table 1: Cyvg X 100 for the generative model with 200 to 700
dimensions, for the 3, 10 and 30 s conditions, and for the DI
and DD back-ends

indicates that scores obtained from the generative model are in-
dependent of the duration of the test utterances and we can ben-
efit from training the back-end on larger amount of data pooled
from the three conditions. For this reason, only the DI back-end
is used in the remaining experiments.

In speaker recognition, significantly improved performance
was observed when the dimensionality of iVectors was re-
duced by LDA and/or length of each iVector was normalized
to unity [14] prior to applying the PLDA model. In Table 2,
we can see that none of these techniques leads to an improve-
ment in LR. The maximum number of useful dimensions that
LDA can identify is the number of classes minus one. Since we
have only 23 target languages, iVectors are reduced to 22 di-
mensions when applying LDA. Note that, since LDA and the
generative model are both based on the same assumption of
the common within-class covariance matrix, LDA dimension-
ality reduction would not have any effect if the classification
decision was based directly on the generative model (for simi-
lar reasons as described in section 3.1). However, LDA causes
utterance-dependent shifts to the likelihood scores (common to
all classes) corresponding to the discarded dimensions, which
makes the difference when using the generative model in con-
junction with the following back-end.

Condition | Generative | +NORM | +LDA
3s 14.10 14.57 14.41
10s 4.04 4.32 4.13
30s 1.91 2.03 1.96

Table 2: Cqug X 100 for the iVectors and generative models

5.2. Results for Discriminative Classifiers

First, we carried out experiments to find appropriate regular-
ization constant for both SVM and logistic regression. Figure 1
and Figure 2 show performance obtained with SVM and logistic
regression for different values of regularization parameter C' as
defined in LIBSVM and LIBLINEAR (smaller C leads to more
aggressive regularization). The optimal performance was ob-
tained with 400 dimensional iVectors and C=0.001 in the case
of SVM, and with 600 dimensional iVectors and C=0.01 in the
case of logistic regression. The following results are reported
for these configurations.

In Tables 3 and 4, results obtained with SVM and logis-
tic regression are shown. For both classifiers, we also experi-
mented with three modifications. The first one is the applica-
tion of Nuisance Attribute Projection [11], which projects N di-
rections with the largest channel variability out of the iVectors.
The second modification is the LDA dimensionality reduction
of iVectors applied in the same way as in the case of the gen-
erative classifier. The third modification is iVector length nor-
malization followed by LDA. As we can see, better results are
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Figure 1: Tuning of C value for SVM with iVectors of dimension
400 and 600 with the DI back-end
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Figure 2: Tuning of C value for logistic regression with iVectors
of dimension 400 and 600 with the DI back-end

generally obtained with logistic regression, where particularly
good performance is obtained with NAP and with LDA (with-
out iVector normalization).

Note that LDA dimensionality reduction and NAP are very
similar techniques when applied in iVector space. First, NAP
projects out the high channel variability directions while pre-
serving the original dimensionality of iVectors. Although this is
unnecessary with low dimensional iVectors, where appropriate
linear transformation can be applied to remove the correspond-
ing dimensions, just like in the case of LDA. Furthermore, the
iVector extractor is trained in such a way that iVectors (at least
those corresponding to training utterances) are standard normal
distributed (i.e. variance of iVectors is one in all directions).
Therefore, the directions with the largest ratio between across-
class and within-class variance (preserved by LDA) are also the
directions with the smallest within-class variance (preserved by
NAP). However, unlike in the case of LDA, NAP allows us to
preserve more than 22 dimensions, which might be found useful
by the discriminative classifier. The search for optimal dimen-
sionality of channel subspace in NAP is shown in Figure 3, for
both SVM and logistic regression (only the 10 s condition is
plotted for a clearer representation, the 3 s and 30 s condition
follow the same trend). In both cases the optimal dimension is
N = 60, and this is the dimension used to run experiments.

5.3. Comparison with JFA and fusion

Table 5 shows results for JFA (as described in [3]), for the best
performing iVector based systems, and for fusion of both ap-
proaches. Both generative and discriminative classifiers based
on iVectors outperform the state-of-the art JFA system and fu-
sion of JFA and iVector based systems leads to additional im-
provements. It is interesting to see that most of the improve-



Condition | SVM | +NAP | +LDA | +NORM+LDA
3s 15.84 | 15.71 | 14.99 14.66
10s 5.16 | 5.00 4.56 4.39

30s 224 | 2.03 2.10 2.28

Table 3: Cqug % 100 obtained with SVM classifier. Experiments
with 400 dimensional iVectors

Condition | LgR | +NAP | +LDA | +NORM+LDA
3s 15.14 | 13.86 | 14.05 14.25
10s 4.88 4.06 4.03 4.17
30s 205 | 1.92 1.93 2.17

Table 4: Cavg x 100 obtained with logistic regression classifier.
Experiments with 600 dimensional iVectors
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Figure 3: Tuning of NAP dimensionality for SVM with 400D
iVectors and LgR with 600D iVectors, for the 10 s condition

System| JFA |Generative|SVM+LDA |LgR+LDA| Fusl | Fus2
3s |14.57) 14.10 14.66 14.05 |[13.88(13.81
10s |4.89 4.04 4.39 4.03 3.86 | 3.82
30s |2.02 1.88 2.10 1.90 1.70 | 1.66

Table 5: Cavg X 100 for the JFA system from [3], the best
performing iVector based systems, and for fusion of both ap-
proaches:
Fusl: fusion of JFA and Generative
Fus2: fusion of JFA, Generative, SVM+LDA and LgR+LDA

ment is obtained when fusing JFA with only one single iVector
system based on generative model and that fusion of all the in-
dividual systems in Table 5 leads only to insignificant additional
Cavg reductions.

6. Conclusions

We have introduced a novel approach for language recognition.
Three classifiers (linear generative model, SVM and logistic re-
gression) have been tested in the iVector space, and all outper-
form the state-of-the-art JFA system. Very simple and fast clas-
sifier based on linear generative model provides excellent per-
formance over all conditions. The advantage of this classifier
is also its scalability: addition of a new language only requires
estimating the mean over the corresponding iVectors. Most of
the computational load is in the iVector generation. Hence, as a
next step, we will try to obtain iVectors from the utterances and
the corresponding sufficient statistics in a more direct way.
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ABSTRACT

Prosody is the part of speech where rhythm, stress, and into-
nation are reflected. In language identification tasks, these
characteristics are assumed to be language dependent, and
thus the language can be identified from them. In this pa-
per, an automatic language recognition system that extracts
prosody information from speech and makes decisions about
the language with a generative classifier based on iVectors is
built. The system is tested on the NIST LRE(09 dataset. The
results are still not comparable to state-of-the-art acoustic and
phonotactic systems. However, they are promising and the fu-
sion of the new approach with an iVector-based acoustic sys-
tem is found to bring further improvements over the latter.

Index Terms— Language Identification, Prosody, iVec-
tors, Joint Factor Analysis.

1. INTRODUCTION

In recent years, we have seen great improvements in acous-
tic and phonotactic language identification (LID) systems.
Among the most popular modeling techniques used in acous-
tic systems are joint factor analysis (JFA) [2] and iVectors
[1], which are usually applied to model spectral features such
as mel frequency cepstral coefficients (MFCC). In contrast,
phoneme n-gram statistics are modeled in order to recognize
languages in phonotactic approaches [3, 4].

Several approaches have been also investigated to extract
prosodic information from speech and employ it in LID sys-
tems. In [6], the authors extract a set of features based on
the three components of prosody: rhythm, stress, and intona-
tion. However, the extraction procedure is computationally
expensive since an automatic speech recognition (ASR) sys-
tem is required. In [7], pitch contours are approximated using
Legendre polynomials over long temporal intervals, which
seems to be logical and useful for prosody modeling. This
approach has also been recently adopted for speaker identifi-
cation (SID) [8, 9, 10], where pitch contours and also energy
contours are approximated using linear combination of Leg-
endre polynomials over syllable or syllable-like units. The re-
gression coefficients together with durations of corresponding
segments are the features describing the three characteristics
of prosody.
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When modeling prosodic features for SID, different tech-
niques have been proposed in the literature [8, 9, 10, 11, 12].
Until recently, one of the most popular approaches was to
use a standard JFA model [8, 10]. Recently, the standard
iVector approach [14], initially proposed to model MFCC
features, was tested on polynomial coefficient prosodic fea-
tures [11], showing remarkable performance on a speaker
verification task, comparable to that obtained using the JFA
approach. Note that these approaches are applicable only
to features that are always defined and are relatively low-
dimensional, like the polynomial coefficient features de-
scribed above. For more complex sets of features, another
subspace modeling technique called the subspace multino-
mial model (SMM) [12] was introduced, which models the
vector of weights from a background Gaussian mixture model
(GMM) that takes into account probabilities of undefined val-
ues. Recently, SMM-based iVectors were also successfully
used as low-dimensional representations of n-gram counts in
a phonotactic LID system [5].

In our work, we adopt the standard iVector paradigm [14]
to model the prosodic polynomial features for LID, and cre-
ate a classification system similar to the one from [1], where
an iVector system is built based on acoustic features, and a
generative Gaussian model for each of the languages with a
shared covariance matrix is used as the classifier. Our systems
are tested on the NIST LRE 2009 dataset [16], on which no
previous results based on prosodic features are available. We
hope that this can be useful as a baseline for future research
on this topic.

The rest of the paper is organized as follows: in Section
2, the prosodic feature extraction process is described; in Sec-
tion 3, the generative Gaussian LID system based on iVectors
is revised; in Section 4, the experimental setup and results are
shown; in Section 5, the conclusions are drawn.

2. PROSODIC FEATURE EXTRACTION

2.1. Pitch and Energy Contour Extraction

Our prosodic features carry information about the evolution
of pitch and energy along time. To extract pitch and energy
contours we use The Snack Sound Toolkit [15]. The pitch and
energy values are converted to log domain, to simulate human



perception. In the next step, energy is normalized by subtract-
ing its maximum value in the log scale. This makes it more
robust to language-independent phenomena such as channel
variations. The log pitch values are normalized by subtracting
mean and dividing by standard deviation estimated over each
recording. In SID no normalization of pitch is required, since
the absolute value contains information about the speaker. In
LID, we are interested only in the information about the lan-
guage and we believe that pitch normalization reduces the un-
wanted across-speaker variability. We have also experimented
with only mean normalization, which resulted in very similar
performance to mean and variance normalization, and for this
reason, only results for mean and variance normalization will
be shown.

2.2. Segment Definition

After extracting pitch and energy contours for whole speech
recordings, every recording is divided into segments and co-
efficients describing pitch and energy contours are extracted
for each such segment. In [10], different segment definitions
were tested and segmentation based on syllables detected us-
ing an ASR system was found to perform the best. Since the
language is unknown in the case of LID, we wanted to avoid
the use of ASR. Therefore, we experimented with the other
two segment definitions proposed in [10]: segment bound-
aries defined by energy valleys and fixed-length segments.
For the energy valley based segments, segment boundaries are
determined by local minima in the energy contour. This ap-
proach tries to find syllable boundaries in a very simple way.
In the case of fixed-length segments, the signal is split into
segments of 200 ms with an overlap of 150 ms. Compared
to the segment length of 300 ms proposed in [10], our seg-
ments are closer to the average syllable duration of 120 ms.
Also, shorter segments and larger overlap allow us to obtain
more training examples for languages with small amounts of
training data.

2.3. Contour Modeling

For each segment, we drop all unvoiced frames for which no
pitch was detected. Then pitch and energy contours are ap-
proximated by linear combination of Legendre polynomials
as

M
F6) =" aiPi(t) e
i=0

where f(t) is the contour being modeled and P;(t) is the i
Legendre polynomial. Each coefficient a; represents a char-
acteristic of the contour shape: a( corresponds to the mean,
a; to the slope, a9 to the curvature, and higher order repre-
sents more precise detail of the contour. In our implementa-
tion, Legendre polynomials of order 5 give six coefficients for
pitch and six for energy.

Finally, 13-dimensional feature vectors are obtained by
augmenting the coefficients with the number of voiced frames
in the segment. Thus, we can consider that our features con-
tain information of the three components of prosody: intona-
tion in the pitch, rhythm in the duration, and stress in both
the energy and in the duration. These are the features used
to build our GMM universal background model (UBM). Su-
pervectors of Baum-Welch statistics can then be estimated for
each utterance, as in [14]. They are of dimension 13 times the
number of Gaussians in the UBM.

3. IVECTORS AND CLASSIFICATION

3.1. iVector Extraction

The idea behind the iVector approach is that the language-
and channel-dependent supervectors of concatenated GMM
means can be modeled as

M=m+ Tw, 2)

where m is a language- and channel-independent supervector
of concatenated UBM means, T is a matrix of bases span-
ning the subspace covering the important variability (both
language- and session-specific) in the supervector space, and
w is a standard normally distributed latent variable. For each
observation sequence representing an utterance, our iVector is
the maximum a posteriori (MAP) point estimate of the latent
variable w. For more detail on iVector extraction see [14].

3.2. Classifier

Once the iVectors for our training data are obtained, a linear
generative classifier is trained as proposed in [1]. The distri-
butions of iVectors for individual languages are modeled by
Gaussian distributions with a single within-class (WC) full
covariance matrix shared by all the languages.

For an iVector w corresponding to a test utterance, the
loglikelihood for each language is

1 1
Inp(wll) = 7§WT271W+WT271[LZ75“?271M1+601’L8t,

where p, is the mean vector for language [, ¥ is the common
covariance matrix, and const is a language- and iVector-
independent constant irrelevant for making decisions. The
quadratic term WTE_lw, which is constant over classes,
would be also irrelevant, if the log-likelihoods were directly
used to obtain posterior probabilities of classes. However,
since the likelihoods are used only as input features to the
calibration backend, it makes a difference in our system, as
explained in [1].

3.3. Fusion and Calibration Backend

For calibration, a Gaussian backend followed by discrimi-
native multiclass logistic regression is used to postprocess
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scores obtained from the described classifiers. Note that the
Gaussian backend is essentially the same model as our gen-
erative classifier. However, its inputs are the scores from the
classifiers described above rather than the iVectors. Also, it
is trained on the separate development dataset to obtain well-
calibrated scores. When fusing multiple systems, a separate
Gaussian backend is trained for each subsystem and outputs
of the Gaussian backends are fused by multiclass logistic re-
gression. A detailed description of the backend, which also
uses information about the recording duration for calibration,
can be found in [13].

4. EXPERIMENTS AND RESULTS

4.1. Test Data

Our results are reported for a closed-set task of 3, 10 and 30
seconds of the NIST LRE 2009 evaluation [16]. The data
comprises 31178 recordings of 23 target languages. Results
are reported in Cy, 4, Which is an error metric defined in [16].

4.2. Training and Development Data

Our training data is from the following databases: CALL-
FRIEND, NIST LREO3, NIST LREOS, NIST LREO7, and
VOA3. The data comprises 51 languages, which are all used
to train our UBM. For training iVector extractor matrices T,
we use data of only the 23 target languages. For training the
generative classifier, we use only 500 files per language, in
the same way as in [1].

A separate dataset was used for training the fusion/calibration

backend, which includes data from the following databases:
CALLFRIEND, CALLHOME, Fisher, NIST LREOS, NIST
LREOQ7, Mixer, OGI22, and VOA.

4.3. Results with Prosodic Features

Several parameters can be tuned in the system. We have stud-
ied the influence of the number of Gaussians, the iVector di-
mensionality, and the type of segment definition as described
in Section 2.2.

Table 1 compares performance of prosodic features with
1) energy valley based segments and 2) fixed-length seg-
ments. UBM with 512 Gaussian components is used in
extraction of 300-dimension iVectors. As can be seen,
fixed-length segments provide better performance, which
is in agreement with the previous experiments on the SID
task [10]. Prosodic features with fixed-length segments are
used in all the following experiments.

Next, we experimented with the number of Gaussian com-
ponents in iVector extraction and with iVector dimensional-
ity. Recent experiments in SID [11] show that a reasonable
configuration for prosodic systems is 512 Gaussian compo-
nents and 300-dimension iVectors. Table 2 compares perfor-
mance of systems with different numbers of Gaussian compo-
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nents. Improvement can be seen when increasing the number
of components from 512 to 2048. As for acoustic features [1],
increasing the dimensionality of iVectors improves the system
accuracy. 400-dimension iVectors were found to be optimal
and no additional gains were observed for higher dimensions.

Condition | Energy valley | Fixed length
3s 35.08 34.57
10s 25.83 24.45
30s 19.27 17.28

Table 1. C,,y x 100 on NIST LRE 2009 for the prosodic
features with energy valley based segments and fixed-length
segments, 512 Gaussian components, 300-dimension iVectors

Condition | 512 Gaussians | 1024 Gaussians | 2048 Gaussians
3s 32.56 31.97 31.76
10s 22.52 21.89 21.12
30s 15.58 14.60 13.78

Table 2. Cy,y x 100 on NIST LRE 2009 for the prosodic fea-
tures with fixed-length segments, 512, 1024 and 2048 Gaus-
sian components, 400-dimension iVectors

4.4. Fusion with Acoustic iVectors-based System
4.4.1. Acoustic system

The state-of-the-art-acoustic system is built in the same fash-
ion as in [1]. It uses the same configuration (SDC 7-1-3-7,
2048 Gaussians, 600-dimension iVectors) except for not us-
ing vocal tract length normalization (VTLN) and having a dif-
ferent training dataset. The UBM, iVector extractor, Gaussian
classifier, and backend are trained in the same way and on the
same data as described for the prosodic system in Section 4.1.
Therefore, the improvements obtained from fusing the acous-
tic and prosodic system can be attributed to the complemen-
tarity of prosodic and cepstral features and not to combining
information from different data sources.

4.4.2. Fusion results

Table 3 shows the results for the state-of-the-art acoustic
system, our best prosodic system (2048 Gaussians, 400-
dimension iVectors) and the fusion of both systems. As can
be seen, the fusion with the prosodic system improves perfor-
mance in all conditions. The relative improvements obtained
over the acoustic system are: 10.93% for 3 seconds; 15.24%
for 10 seconds; and 9.39% for 30 seconds.

5. CONCLUSIONS

A LID system based on prosodic features has been intro-
duced. Extraction of the pitch, energy, and duration allows
us to represent the three components of prosody: stress,



Condition | Acoustic | Prosodic || Fusion
3s 19.13 31.76 17.04
10s 6.30 21.12 5.34
30s 3.09 13.78 2.80

Table 3. C,y x 100 for the generative iVectors-based acous-
tic system, generative iVectors-based prosodic system and fu-
sion of both systems

intonation, and rhythm. Unvoiced frames where the pitch
is undefined are discarded, permitting us to treat the fea-
tures as continuous. Thus, the same classifier successfully
applied for acoustic LID, based on iVectors and a generative
model, can be adapted for our prosodic features. Fixed-length
segments, 2048 Gaussians, and 400 dimensions, have been
found to be a good configuration for the system. Although
the performance of the prosodic system alone does not give
outstanding results, it is in the fusion with another LID sys-
tem where this approach is really powerful. The combination
with a prosodic system resulted in significant performance
improvements over the state-of-the-art iVectors-based acous-
tic system on all conditions of the NIST LRE 2009 task. We
consider this technique to be very promising as there are still
many possibilities for experimenting with additional prosodic
features such as AM modulation or formants that could pro-
vide further improvements. For this reason, we believe that
prosodic features can play an important role in future LID
systems. At the same time, a baseline for prosodic systems
on the NIST LRE 2009 dataset has been established in this
work.
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Abstract—We presented a novel technique for discriminative
feature-level adaptation of automatic speech recognition system.
The concept of iVectors popular in Speaker Recognition is
used to extract information about speaker or acoustic environ-
ment from speech segment. iVector is a low-dimensional fixed-
length representing such information. To utilized iVectors for
adaptation, Region Dependent Linear Transforms (RDLT) are
discriminatively trained using MPE criterion on large amount of
annotated data to extract the relevant information from iVectors
and to compensate speech feature. The approach was tested
on standard CTS data. We found it to be complementary to
common adaptation techniques. On a well tuned RDLT system
with standard CMLLR adaptation we reached 0.8% additive
absolute WER improvement.

I. INTRODUCTION

We propose new method for discriminative adaptation of
automatic speech recognition (ASR) system, which is based
on combination of two successful techniques: From speaker
recognition field, we have borrowed the idea of represent-
ing speech segment using so called iVector. iVector is an
information-rich low-dimensional fixed length vector extracted
from the feature sequence. Recently, systems based on iVec-
tors [1], [2], [3] extracted from cepstral features have provided
excellent performance in speaker verification, which classifies
iVectors as good candidates for representing information about
speaker. Just like MLLR transformations for ASR adaptation
became popular features in speaker recognition [4], we believe
that iVectors — successful in speaker recognition — can
be used as compact representations for ASR adaptation. For
brevity, we will describe the proposed method only from the
perspective of speaker adaptation. Keep in mind, however, that
iVector represents information about both speaker and acoustic
environment of the corresponding segment and therefore, the
proposed technique is expected to effectively adapt ASR
system to both speaker and acoustic environment.

In order to utilize information encoded in iVectors for
adaptation of speech recognition system, we build on the idea
of Region Dependent Linear Transform (RDLT) [5]. In the
original version, RDLT is a nonlinear feature transformation,
which is typically discriminatively trained using Minimum
Phone Error (MPE) criterion [6]. More precisely, each feature
vector is transformed by a linear transformation, which is se-
lected from an ensemble of transformations depending on the
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acoustic region of the current frame. To apply this framework
for discriminatively trained feature-level adaptation, we use the
same form of frame-dependent transformation. However, the
fixed iVector is transformed by such varying transformation
and the resulting vector is added as a bias to the original
feature vector.

The paper is organized as follows: the following section II
presents the state-of-the-art in discriminative techniques for
speaker adaptation and positions our proposal. Section III
briefly introduces iVectors while IV defines the RDLT scheme
and recipes. Section V suggests the the iVector adaptation.
The following section VI describes the experimental setup
including the baseline systems and VII presents the results
with RDLT systems including the proposed iVector adaptation.
Section VIII contains the conclusions and directions for future
work.

II. CURRENT TECHNIQUES FOR DISCRIMINATIVE
ADAPTATION AND POSITION OF OUR PROPOSAL

The idea of using discriminative training criterion for adap-
tation is not new. In the early works on this topic [7], [8],
[9], acoustic model parameters or features were adapted using
transformations of the same form as in Maximum Likelihood
Linear Regression (MLLR) or Constrained MLLR (CMLLR),
where the adaptation transformations were estimated on adap-
tation data by optimizing discriminative rather than Maximum
Likelihood (ML) criterion. While this approach provided ex-
cellent performance for supervised adaptation, it appeared to
be too sensitive to the quality of the initial hypothesis in the
case of unsupervised adaptation. Fortunately, our technique
does not suffer form such problem as only the RDLT part
is trained using MPE criterion on large amount of annotated
training data. RDLT discriminatively adapts speech features
based on the information encoded in the iVector. The iVectors
estimated on adaptation data are, however, robustly obtained
by optimizing Maximum a-posteriori (MAP) criterion. More-
over, there is no need for any initial hypothesis as iVectors are
estimated using simple Gaussian Mixture Model (GMM).

Our technique is similar in spirit to Discriminative Map-
ping transforms (DMT) [10], [11], where MLLR or CMLLR
transformations are estimated on adaptation data using ML



criterion first. The adapted model parameters are further post-
processed by an ensemble of discriminatively trained linear
transformations (typically 64), where each transformation cor-
responds to a cluster of Gaussian components from the acous-
tic model. The transformations are discriminatively trained on
large amount of annotated training data to refine the adapted
models and to compensate for the discriminative power that
could be taken away from discriminatively acoustic trained
models when adapted using ML estimated transformations.

DMT can be seen as some form of region dependent
transforms, where the regions in acoustic space are defined
by the Gaussian clusters rather than by a dedicated GMM as
it is in the case of RDLT. From this perspective, CMLLR-
based DMT [11] is very similar to standard RDLT jointly
trained with the following CMLLR adaptation as described
in [5]. Therefore, it can be expected that, just like RDLT,
DMT would bring improvements even without ML trained
adaptation transformations. Unfortunately, the papers on DMT
do not provide such analysis and it is not clear how much
improvement is to be attributed to improved adaptation and
how much to the improved discriminative acoustic model
training.

In our approach, however, we do not estimate any feature
or model transformations to adapt the acoustic model to the
adaptation data. Instead, we estimate iVector summarizing
information about the speaker and the acoustic environment
of adaptation data independently of any ASR acoustic model.
Also, the discriminatively trained transformation does no di-
rectly operate on speech features or model parameters. Instead,
for each speech frame, it is trained to extract a correction
bias vector from iVector. In our implementation, zero iVector,
which is the expected value of iVector on training data, leads to
zero correction bias and therefore to no adaptation. Therefore,
it is easy to separately analyze the effect of RDLT used
for adaptation and RDLT used, in the standard way, as a
discriminative feature transformation.

IITI. IVECTORS

The iVector approach has become state of the art in the
speaker verification field [1]. In this work, we show that it
can be successfully applied to extract information useful for
adapting ASR system. The approach provides an elegant way
of reducing large-dimensional sequential input data to a low-
dimensional fixed length feature vector while retaining most
of the relevant information.

In the iVector framework, a GMM model is adapted to
observation sequence representing a speech segment that we
want to extract speaker information from. Only the mean
parameters of a pre-trained GMM are adapted. The super-
vector of concatenated mean vectors for the adapted GMM
is obtained as

s =m + Ti, (D)

where m is the segment-independent component of the mean
supervector, T is a matrix of basis spanning the subspace
covering the important variability (both useful and useless

for adaptation) in the supervector space, and i is a low-
dimensional latent variable representing coordinates in the
subspace. We assume standard normal prior for the latent
variable i. GMM is adapted to the observation sequence by
finding i that maximizes MAP criterion. This MAP point
estimate of i, which is obtained with single iteration of EM
algorithm, is taken as the iVector representing the segment.
The parameters of the GMM and the subspace are trained
in unsupervised manner using EM algorithm on a collection
of speech segment covering variety of speakers and acoustic
environments. We use an efficient implementation of the
training procedure suggested in [12].

IV. REGION DEPENDENT LINEAR TRANSFORMS

In the RDLT framework, an ensemble of linear trans-
formations is trained discriminatively. Each transformation
corresponds to one region in partitioned feature space. Each
feature vector is then transformed by a linear transformation
corresponding to the region that the vector belongs to. The re-
sulting (generally nonlinear) transformation has the following
form:

N
Frprr(o) = Z’Yr(t)(Aroz +b,), 2
r=1

where o, is input feature vector at time ¢, A, and b, are linear
transformation and biases corresponding rth region and -, ()
is probability that the vector o; belongs to rth region. The
probabilities ~,.(¢) are typically obtained using GMM (pre-
trained on the input features) as mixture component posterior
probabilities. Usually, RDLT parameters A,, b, and ASR
acoustic model parameters are alternately updated in several
iterations. While RDLT parameters are updated using MPE
criterion, ML update is typically used for acoustic model pa-
rameters. As proposed in [13] and described in RDLT context
in [5], ML update of acoustic model parameters must be taken
into account when optimizing RDLT parameters. Otherwise,
the discriminative power obtained from MPE training of RDLT
feature transformation is mostly lost after ML acoustic model
re-training. In our experiments, we closely follow the training
recipe described in [5].

In our experiments, we do not use the bias terms b, (the
number of their parameters would anyway be only a small
proportion of parameters in matrices A,). In agreement with
results reported in [5], we have found that omitting the bias
terms has little effect on the performance.

RDLT can be seen as a generalization of previously pro-
posed fMPE discriminative feature transformation. The special
case of RDLT with square matrices A, (i.e. without dimen-
sionality reduction of input features) was shown [5] to be
equivalent to fMPE with offset features as described in [14].
This is also the configuration used in our experiments. From
fMPE recipe [13], we have also take the idea of incorporating
context information by considering 7, (t) corresponding not
only to the current frame but also to the neighboring frames
(see section VII-A for more details). From our experience, this
style of incorporation context information leads to significantly
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better results compared to to the style previously considered
in the context of RDLT [5], where feature vectors of multiple
frames were stacked at the RDLT input and transformations
with dimensionality reduction were used to recover the original
feature dimensionality. Therefore, our RDLT baseline system
configuration is very similar to the one described in the
fMPE recipe. Still, we prefer to use the more general RDLT
abstraction as it can be easily extended by the proposed iVector
based adaptation.

V. IVECTOR BASED ADAPTATION

To utilize the RDLT framework for adaptation, we use
transformation of the following form:

N
Fivec(ot) =0; + Z’Yr(t)Arisn (3)
r=1
where i, is iVector estimated on adaptation data corresponding
to speaker s. Typically, iVector dimensionality is larger than
the dimensionality of feature vector, therefore A, are matrices
reducing the dimensionality of iVector to the one of feature
vectors. The same MPE training framework as described in the
previous section can be used to train RDLT to discriminatively
extract the corrective term from iVector iy, which is added to
the original feature vector o; in order to adapt the features
to the model. Note that, although the iVector stays constant,
its transformation depends or region of current feature frame
so that different pieces of information can be extracted from
iVector to compensate feature frames from different regions
of acoustic space.

We again use the iterative training scheme where, after
updating RDLT parameters, acoustic model parameters are
retrained on the compensated features. The resulting procedure
can be seen as another form of speaker adaptive training
(SAT) [15], [16].

Finally, we can combine both ideas of using RDLT for
adaptation and discriminative feature transformation. Since the
whole RDLT framework has to be implemented to deal with
either of the two problems, it makes a little sense to use RDLT
only for adaptation without using it also for feature transfor-
mation, which is expected to provide an additional significant
gain. If the same data and the same region definitions are used
to train RDLT for both problems, which is the case in our
experiments, we can simply concatenate each feature vector
with the appropriate iVector and process the resulting extended

vectors
o) = [ o } @)
1s
just as in the standard RDLT framework corresponding to
equation (2). A, will perform dimensionality reduction.
VI. EXPERIMENTAL SETUP
A. ASR training and testing data

The acoustic model was trained on ctstrain04 training set,
a subset of the h5train03 set, defined at the University of
Cambridge. It contains about 278 hours of well transcribed
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Database

[[ Amount of data [hours] |

Switchboard I 248.52
Switchboard cellular 15.27
Call Home English 13.93
[ Total i 277.72

TABLE I
CTS TRAINING DATA DESCRIPTION.

Models WER [%]
ML 34.7
ML - CMLLR 32.1
ML - CMLLR-SAT 31.9

TABLE II
BASELINE: ML TRAINED SYSTEMS

speech data from Switchboard LII and Call Home English
(see Table I).

All recognition results are reported on the Hub5 EvalO1 test
set (defined during 2001 NIST CTS evaluation) composed of 3
subsets of 20 conversations from Switchboard-1, Switchboard-
2 and Switchboard-cellular corpora, for a total length of more
than 6 hours of audio data.

A bigram language model was used for recognition. It was
adopted from AMI speech recognition system for NIST Rich
Transcriptions 2007 [17].

B. Baseline ASR systems

The speech recognition system is HMM-based cross-word
tied-states triphones, with approximately 8500 tied states
and 28 Gaussian mixtures per state. The features were 13
VTLN normalized Mel-Frequency PLP coefficients generated
by HTK, augmented with their deltas, double-deltas and triple-
deltas. Cepstral mean and variance normalization was applied
with the mean and variance vectors estimated on each conver-
sation side. HLDA was estimated with Gaussian components
as classes and the dimensionality was reduced from 52 to 39.
This model is denoted as ML in table 1I

Using this model, CMLLR adaptation transforms were
generated for training and test data, one for each conver-
sation side. This model also served for generating lattices,
which were used for MPE training of RDLT. Only a single
CMLLR transformation was used in our system, as we did
not observe any significant gain from using multiple CMLLR
or MLLR transformations with our system on this task.
Table II shows 2.6% absolute improvement in Word Error Rate
(WER)obtained from CMLLR adaptation and additional 0.2%
WER improvement when the acoustic model was retrained in
SAT fashion [16]. Unless stated otherwise, CMLLR SAT sys-
tem forms the basis of all systems described in the following
sections.

C. iVector extraction

In principle, both ASR acoustic models and iVector extrac-
tion could be based on the same features and trained on the
same data. Also, iVector extraction and definition of regions



in RDLT could be based on the same GMM model. In our
experiments, however, we use two different GMMs trained on
different features, since we simply took iVectors extracted by
our existing system optimized for speaker verification task [3].

The features used for the iVector extraction were 19 Mel fre-
quency cepstral coefficients (with log-energy) calculated every
10 ms using 25 ms Hamming window. This 20-dimensional
feature vector was subjected to short time mean and variance
normalization using a 3s sliding window. Delta and double
delta coefficients were then calculated using a 5-frame window
giving 60-dimensional feature vectors. The iVector extraction
was based on Semi-Tied Covariance (STC) GMM with 2048
mixture components, which was trained on NIST SRE 2004
and 2005 telephone data. The subspace matrix T was trained
on more than 2500 hours of data from the following telephone
databases: NIST SRE 2004, 2005, 2006, Switchboard II Phases
2 and 3, Switchboard Cellular Parts 1 and 2, Fisher English
Parts 1 and 2. The results are reported with 400 dimensional
iVectors. Similarly to CMLLR transformations, iVectors were
generated per conversation side for training and test data.

One could object that the iVector extraction is trained
on much more data than the baseline ASR system, which
makes the comparison of systems unfair. However, the iVector
extraction is trained in wunsupervised manner on data that
are mostly not transcribed and therefore unusable for ASR
training. Also, while large amount of training data is necessary
to obtain good performance is speaker verification, we believe
that it is not the case in these experiments, as RDLT, which is
trained to extract the adaptation information from the iVector,
is still trained on the same data as baseline ASR system.

VII. RDLT EXPERIMENTS
A. RDLT for discriminative feature extraction

In this section, we examine different configurations of
RDLT used only in the usual way as a discriminative feature
extraction. In the trivial case, where all feature frames are
considers to belong to only one single region, RDLT comprises
only one discriminatively trained linear transform. This con-
figuration, which is also know as Discriminative HLDA [18],
brings 0.5% absolute WER improvement compared to “ML
CMLLR-SAT” baseline, as we can see in the first line of
Table III.

The second line of the table reports additional 1.1% absolute
WER improvement obtained from using 1000 regions. To
define the regions in the acoustic space, all Gaussians from
ML trained HMM model are pooled and clustered using ag-
glomerative clustering to create GMM with desired number of
components (see [19] for detailed description of the clustering
algorithm).

In the following experiment, we incorporated also the in-
formation about context by using region posterior probabilities
also from neighboring frames as suggested in [13]. Posterior
probabilities of the GMM components for a current frame are
stacked with the averages of posteriors for adjacent frames 1-
2, 3-5 and 6-9 on the right and likewise for the left context
(i.e. 7 groups spanning 19 frames in total). The resulting 7000

[ Models [[ WER [%] |
[ RDLT 1 regions [ 314 |
[ RDLT 1000 regions  [[ 303 |
[ RDLT 7x1000 regions [ 27.3 |
[ RDLT 7x500 regions [[  27.6 |
| RDLT 7x250 regions || 277 |

TABLE III
RESULTS WITH RDLT USED AS FEATURE TRANSFORMATION FOR
CMLLR-SAT ADAPTED SYSTEM.

[ Models [[ WER [%] |
iVector RDLT 1 region 31.3
iVector RDLT 250 regions 30.2
iVector RDLT 500 regions 30.0
iVector RDLT 1000 regions 29.9

TABLE 1V
RESULTS WITH RDLT USED ONLY FOR IVECTORS BASED ADAPTATION
APPLIED ON TOP OF CMLLR-SAT ADAPTATION.

dimensional vector served as weights ~,.(t) in equation (2)
corresponding to 7000 transformations (39x39 matrices).
Block diagram demonstrating such RDLT configuration is
shown in Figure 1. The use of context brings large additional
improvement (3% absolute) as can be seen in Table III in line
denoted as “RDLT 7x1000 regions”.

Next, we tested scaled-down systems to see a degradation
of performance with smaller number of regions. A difference
in WER between 1000 and 250 regions is 0.4%. This suggests
that it is more important to invest parameters into context
modeling than increasing the number of regions for the current
frame.

B. iVector based adaptation

Table IV shows the behavior of the proposed adaptation ap-
proach with various number of transforms. To find the optimal
configuration, we first considered the case corresponding to
equation (3), where RDLT is used only for the adaptation. The
optimal number of transformations saturates again on 1000
giving 2% absolute WER improvement over the CMLLR-
SAT baseline. The differences between 500 and 1000 mixture
components (and hence regions) is only 0.1% absolute.

We also experimented with incorporating the context infor-
mation using the region posteriors form neighboring frames,
but we found it ineffective when using RDLT for adaptation.

In table V, we compare the effect of CMLLR adaptation,
iVector adaptation and combination of both for systems with
and without RDLT used as discriminative feature transfor-
mation. For RDLT as feature transformation, we use the
configuration with 7000 transformations as described in the
previous section. For iVector adaptation, RDLT uses only
1000 transformations corresponding only to the regions for
the current frame. This is the case even when both RDLT for
feature transformation and RDLT for adaptation are combined.
In this case, only 1000 transformations (39x439 matrices)
corresponding to the current frame of GMM posteriors pro-
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[ Adaptation | ML | RDLT |
none 34.7 29.7
iVector 32.1 28.7
CMLLR-SAT || 31.9 273
both 29.9 26.5

TABLE V

SUMMARY OF DIFFERENT TECHNIQUES.

cesses 39-dimensional feature vector concatenated with 400
dimensional iVector. The remaining transformations (39 x39
matrices) corresponding to context posteriors process only the
39-dimensional feature vector.

The first line of table V shows the results without any
adaptation. As can be seen, RDLT provides impressive im-
provement 5% absolute in this case. Comparing the following
two lines, we see that iVector adaptation on its own appears
to be slightly less effective than CMLLR transformation for
this task. However, the two adaptation techniques seem to
be complementary and the best result is obtained from their
combination as can be seen from the last line in the table.

VIII. CONCLUSIONS AND FUTURE WORK

We presented a novel technique for feature compensa-
tion based on iVectors — a popular technique in Speaker
Recognition. We found it to be complementary approach to
common adaptation techniques. On a well tuned RDLT system
with standard CMLLR adaptation, we reached 0.8% additive
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RDLT with context transformations.

absolute WER improvement. Without CMLLR adaptation,
1.0% absolute improvement was obtained.

Unsupervised estimation of CMLLR requires an additional
decoding pass to obtain the adaptation hypothesis. On contrary,
our approach only requires to extract the iVector from adap-
tation data which takes only a fraction of time necessary for
decoding. Forwarding features through the set of transforms
is also fast as only few transformations (usually only one or
two) are applied per frame due to the sparsity of posterior
probabilities. Therefore, our approach could be considered for
decoding in the first pass of multi-pass systems or in one-pass
systems.

This paper presents the first results of the proposed tech-
nique, in short-term, we will face the following issues:

1) Lattices used for discriminative training were generated

using model with more than 8% higher WER compared
to the performance of the final model. Further improve-
ment could be obtain from lattices that would better
reflect errors made by the final system.
iVector extraction was optimized for Speaker Recogni-
tion and the optimal configuration for speech recognition
can be very different. Also, iVector extraction based
on ASR features and GMM taken from RDLT would
greatly simplify the system.
Finally, we would like to integrate the proposed ap-
proach into our full-featured system including other
advanced techniques such as MPE model parameter
training or neural network bottle-neck features.

2)

3)



This paper describe only one special instance of a more
general scheme, where nonlinear transformation is trained
discriminatively to compensate features based on external
source of information useful for adaptation. Other forms of
discriminatively trained nonlinear transformations can be con-
sidered (e.g. artificial neural networks), and different external
sources of adaptation information can be found useful (e.g.
noise spectrum estimate for noise robust speech recognition).
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ABSTRACT

Recently, i-vector extraction and Probabilistic Linear Discriminant
Analysis (PLDA) have proven to provide state-of-the-art speaker
verification performance. In this paper, the speaker verification score
for a pair of i-vectors representing a trial is computed with a func-
tional form derived from the successful PLDA generative model. In
our case, however, parameters of this function are estimated based on
a discriminative training criterion. We propose to use the objective
function to directly address the task in speaker verification: discrimi-
nation between same-speaker and different-speaker trials. Compared
with a baseline which uses a generatively trained PLDA model, dis-
criminative training provides up to 40% relative improvement on the
NIST SRE 2010 evaluation task.

Index Terms— Speaker verification, Discriminative training,
Probabilistic Linear Discriminant Analysis

1. INTRODUCTION

In this paper, we show that discriminative training can be used to
improve the performance of state-of-the-art speaker verification sys-
tems based on i-vector extraction and Probabilistic Linear Discrim-
inant Analysis (PLDA). Recently, systems based on i-vectors [1, 2]
extracted from cepstral features have provided superior performance
in speaker verification. The so-called i-vector is an information-rich
low-dimensional fixed length vector extracted from the feature se-
quence representing a speech segment (see section 2 for more details
on i-vector extraction). A speaker verification score is then produced
by comparing the two i-vectors corresponding to the segments in the
verification trial. The function taking two i-vectors as an input and
producing the corresponding verification score is typically designed
to give a good approximation of the log-likelihood ratio between
the “same-speaker” and “different-speaker” hypotheses. Typically,
the function is also designed to produce a symmetric score (i.e. to
produce output that is independent of which segment is enrollment
and which is test — unlike traditional systems, which distinguish
the two). In [1], good performance was reported when scores were
computed as cosine distances between i-vectors normalized using
within-class covariance normalization (WCCN). Best performance,
however, is currently obtained with PLDA [2] — a generative model
that models i-vector distributions allowing for direct evaluation of

This work was funded by the Office of the Director of National Intelli-
gence (ODNI), Intelligence Advanced Research Projects Activity (IARPA),
through the Army Research Laboratory (ARL). All statements of fact, opin-
ion or conclusions contained herein are those of the authors and should not be
construed as representing the official views or policies of IARPA, the ODNI,
or the U.S. Government. The work was also partly supported by the Grant
Agency of Czech Republic project No. 102/08/0707, and Czech Ministry of
Education project No. MSM0021630528.
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the desired log-likelihood ratio verification score (see section 3 for
details on the specific form of PLDA used in our work).

In this paper, we propose to estimate verification scores using a
discriminative model rather than a generative PLDA model. More
specifically, the speaker verification score for a pair of i-vectors is
computed using a function having the functional form derived from
the PLDA generative model. The parameters of the function, how-
ever, are estimated using a discriminative training criterion. We use
an objective function that directly addresses the speaker verification
task, i.e. the discrimination between “same-speaker” and “different-
speaker” trials. In other words, a binary classifier that takes a pair of
i-vectors as an input, is trained to answer the question of whether
or not the two i-vectors come from the same speaker. We show
that the functional form derived from PLDA can be interpreted as
a binary linear classifier in a nonlinearly expanded space of i-vector
pairs. We have experimented with two discriminative linear clas-
sifiers, namely linear support vector machines (SVM) and logistic
regression. The advantage of logistic regression is its probabilistic
interpretation: the linear output of this classifier can be directly in-
terpreted as the desired log-likelihood ratio verification score. On
the NIST SRE 2010 evaluation task, we show that up to 40% rela-
tive improvement over the PLDA baseline can by obtained with such
discriminatively trained models.

There has been previous work on discriminative training for
speaker recognition, such as GMM-SVM [3]. This and similar ap-
proaches, however, do not directly address the objective of discrim-
inating between same-speaker and different-speaker trials. Instead,
SVMs are trained as discriminative models representing each tar-
get speaker. As a consequence, this approach cannot fully benefit
from discriminative training, as there is a very limited number of
positive examples (usually only one enrollment segment) available
for training of each model. In contrast, in our approach, a model is
trained using a large number of positive and negative examples, each
of which is one of many possible same-speaker or different-speaker
trials that can be constructed from the training segments.

The very same idea of discriminatively training a PLDA-like
model for speaker verification was originally proposed in [4] and
some initial work has been done in [5]. At that time, however,
speaker factors extracted using Joint Factor Analysis (JFA) [6] were
used as a suboptimal input for the classifier, and state-of-the-art per-
formance would not have been achieved.

2. I-VECTORS

The i-vector approach has become state of the art in the speaker veri-
fication field [1]. The approach provides an elegant way of reducing
large-dimensional input data to a small-dimensional feature vector
while retaining most of the relevant information. The technique was
originally inspired by the JFA framework [6]. The basic principle
is that on some data, we train the i-vector extractor and then for



each speech segment, we extract the i-vector as a low-dimensional
fixed length representation of the segment. The main idea is that the
speaker- and session-dependent supervectors of concatenated Gaus-
sian mixture model (GMM) means can be modeled as

s =m + Tx, (D

where m is the Universal Backgroung Model (UBM) GMM mean
supervector, T is a matrix of bases spanning the subspace covering
the important variability (both speaker- and session-specific) in the
supervector space, and x is a standard-normally distributed latent
variable. For each observation sequence representing a segment, our
i-vector ¢ is the MAP point estimate of the latent variable x.

3. PLDA

3.1. Two covariance model

To facilitate comparison of i-vectors in a verification trial, we model
the distribution of i-vectors using a Probabilistic LDA model [7, 2].
We first consider only a special form of PLDA, a two-covariance
model, in which speaker and inter-session variability are modeled
using across-class and within-class full covariance matrices ¥,. and
3we. The two-covariance model is a generative linear-Gaussian
model, where latent vectors y representing speakers (or more gener-
ally classes) are assumed to be distributed according to prior distri-
bution

p(y) = N(y; p, Zac). @
For a given speaker represented by a vector y, the distribution of
i-vectors is assumed to be

P(ly) = N(d:9, Bwe). ©)

The ML estimates of the model parameters, g, 3¢, and 3¢, can
be obtained using an EM algorithm as in [2]. The training i-vectors
come from a database comprising recordings of many speakers (to
capture across-class variability), each recorded in several sessions
(to capture within-class variability).

In the more general case, the speaker and/or inter-session vari-
ability can be modeled using subspaces [1]. For example, in our
baseline system, speaker variability is not modeled using a full co-
variance matrix. Instead a low rank across-class covariance matrix
is modeled as 4. = VTV, which limits speaker variability to live
in a subspace spanned by the columns of the reduced rank matrix V.

3.2. Evaluation of verification score

Consider the process of generating two i-vectors ¢ and ¢2 forming
a trial. In the case of a same-speaker trial, a single vector y repre-
senting a speaker is generated from the prior p(y), for which both ¢¢
and ¢ are generated from p(¢|y). For a different-speaker trial, two
latent vectors representing two different speakers are independently
generated from p(y). For each latent vector, one of the i-vectors ¢1
and ¢ is generated. Given a trial, we want to test two hypotheses:
‘Hq that the trial is a different-speaker trial and H, that the trial is a
same-speaker trial. The speaker verification score can now be calcu-
lated as a log-likelihood ratio between the two hypotheses H and
Hga as

(1, P2|Hs)
HE TN @
_ lOgfp(dnIy)p(qﬁzl.‘y)p(y)dy )

p(¢1)p(2) '

where in the numerator we integrate over the distribution of speaker
vectors and, for each possible speaker, the likelihood of producing

both i-vectors from the speaker is calculated. In the denominator, we
simply multiply the marginal likelihoods p(¢) = [ p(¢|y)p(y)dy.
The integrals, which can be interpreted as convolutions of Gaussians,
can be evaluated analytically giving

¢1 12 Etot 2a,c
l .
OgN ( |:¢2 BN Yae Dot
b1 n ot 0
— 1 : 6
where the total covariance matrix is given as X0t = Xge + Zwe-

By expanding the log of Gaussian distributions and simplifying the
final expression, we obtain

»
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We recall that the computation of a bilinear form x” Ay can be
expressed in terms of the Frobenius inner product as x Ay =
(A, xyT) = vec(A) vec(xy?), where vec(-) stacks the columns
of a matrix into a vector. Therefore, the log-likelihood ratio score
can be written as a dot product of a vector of weights w’, and an
expanded vector ¢ (¢1, ¢2) representing a trial:

w'o(¢1, p2)

vec(A)] " [vec(dp19p3 + paopT)
_ | vee(T) vec(dp1¢] + p2p3) 9)
Z @1 + @2 .
1

s

Hence, we have obtained a generative generalized linear classi-
fier [8], where the probability for a same-speaker trial can be
computed from the log-likelihood ratio score using the sigmoid
activation function as

p(Hs|d1, d2) = o(s) = (1 + exp(—s)) " (10)

Here, we have assumed equal priors for both hypotheses. To allow
for different priors, we can simply adjust the constant k in the vector
of weights by adding logit(p(Hs)).

4. DISCRIMINATIVE CLASSIFIERS

In this section, we describe how we train the weights w di-
rectly, in order to discriminate between same-speaker and different-
speaker trials, without having to explicitly model the distributions
of i-vectors. To represent a trial, we keep the same expansion
@ (1, ¢2) as defined in (9). Hence, we reuse the functional form
for computing verification scores that provided excellent results with
generative PLDA. We consider two standard discriminative linear
classifiers, namely logistic regression and SVMs.
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4.1. Objective functions

The set of training examples, which we continue referring to as train-
ing trials, comprises both different-speaker and same-speaker trials.
Let us use the coding scheme ¢t € {—1, 1} to represent labels for
the different-speaker, and same-speaker trials, respectively. Assign-
ing each trial a log-likelihood ratio s and the correct label ¢, the log
probability of recognizing the trial correctly can be expressed as

log p(t|é1, p2) = —log(1 + exp(—st)). (11)

This is easy to see from equation (10) and recalling that o(—s) =
1 — o(s). In the case of logistic regression, the objective function to
maximize is the log probability of correctly classifying all training
examples, i.e. the sum of expressions (11) evaluated for all training
trials. Equivalently, this can be expressed by minimizing the cross-
entropy error function, which is a sum over all training trials

N
A
B(w) =3 anBrr(tasn) + 5w, (12)
n=1

where the logistic regression loss function
ErLr(ts) =log(l 4 exp(—ts)) (13)

is simply the negative log probability (11) of correctly recognizing a
trial. We have also added the regularization term 3 || w||®, where X is
a constant controlling the tradeoff between the error function and the
regularizer. The coefficients «,, allow us to weight individual trials.
Specifically, we use them to assign different weights to same-speaker
and different-speaker trials. This allows us to select a particular op-
erating point, around which we want to optimize the performance of
our system without relying on the proportion of same- and different-
speaker trials in the training set. The advantage of using the cross-
entropy objective for training is that it reflects performance of the
system over a wide range of operating points (around the selected
one). For this reason, a similar function was also proposed as a per-
formance measure for the speaker verification task [9]. Another ad-
vantage of using the logistic regression classifier is its probabilistic
nature: It trains the weights so that the score s = w” (1, ¢p2) can
be interpreted as the log-likelihood ratio between hypotheses H s and
Ha.
Taking (12) and replacing Er,r(ts) with hinge loss function

Esvy (ts) = max(0,1 — ts), (14)

we obtain an SVM, which is a classifier traditionally understood to
maximize the margin separating class samples. Alternatively, one
can see the hinge loss function as a piecewise approximation to the
logistic regression loss function. Therefore, one can assume that
the score s = w” @(¢p1, =) obtained from an SVM classifier will
still be a reasonable approximation to the log-likelihood ratio (after
a linear calibration).

4.2. Gradient evaluation
In order to numerically optimize the parameters w of the classifier,
we want to evaluate the gradient of the error function

N
VEw) =" an%% +Aw, (15)
n=1

Sn OW

where the derivation of the loss function E(t, 8, ), W.L.t. score sy,
depends on the particular choice of the loss function. For the logistic
regression loss function, it is defined as

8ELR(tS)

s = —to(—ts) (16)
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while for the hinge loss function it becomes

an

OFEsv(ts) J0 if ts>1
Os B

—t otherwise.

Finally, the derivation of the score w.r.t. the classifier parameters just
gives the expanded trial vector

05 _ 0 T (i, o) = @b, ba). (18)

ow  ow

4.3. Efficient score and gradient evaluation

Given a trained classifier, we can obtain a verification score for a trial
by forming the expanded vector ¢ (¢1, ¢p2) and computing the dot
product (9). However, as we have already seen, the same score can
be obtained using the two original i-vectors ¢1, ¢2 and using the
formula (7), which is both memory and computationally efficient.
Now, consider two sets of i-vectors stored as columns of the matrices
P, and P,. For illustration, let us call these sets enrollment and test
trials, although they play symmetrical roles in our scoring scheme.
We can efficiently score each enrollment trial against each test trial
and obtain the full matrix of scores as

287 A®,
+(@®IT) o ®H)117 + 117 (®, 0 (T D))
+®Tc1” + 17, + k117, (19)

S =

where o denotes the Hadamard, or “entrywise” product. Similarly,
the naive way of evaluating the gradient would be to explicitly ex-
pand every training trial and then to apply equations (15) to (18).
However, again taking into account the functional form for com-
puting scores (7), the gradient can be evaluated much more effi-
ciently without any need for explicit trial expansion. Let all the i-
vectors, which we have available for training, be stored in columns
of a matrix ®. Now consider forming a training trial using every
possible pair of i-vectors from the matrix. Let s;; be the score for
the trial formed by the i-th and j-th columns of ® calculated us-
ing the parameters w for which we wish to evaluate the gradient.
Let ¢;; and «;; be the corresponding label and trial weight, respec-
tively. Further, let d;; be the corresponding derivation of loss func-
tion E(ti;s:;) w.r.t. the score s;; given in (16) or (17) depending on
the loss function used. The gradient can now be efficiently evaluated
as

VAL 2 - vec (<I>G<I>T)
_|vrL 2 vec (®[®" o (G117)])
VEW) =191 2.17[@7 o (G117)] | TV
Vil 17G1
(20)

where elements of matrix G are g;; = dij - ovj.

5. EXPERIMENTS

The i-vector extractor and the baseline PLDA system is taken from
the ABC system submitted to NIST SRE 2010 evaluation [10]. The
i-vector extractor uses 60-dimensional cepstral features and a 2048-
component full covariance GMM. The UBM and i-vector extractor
are trained on NIST SRE 2004, 2005 and 2006, Switchboard and
Fisher data. All PLDA systems and discriminative classifiers are
trained using 400 dimensional i-vectors extracted from 21663 seg-
ments from 1384 female speakers and 16969 segments from 1051
male speakers from NIST SRE 2004, NIST SRE 2005, NIST SRE
2006, Switchboard IT Phases 2 and 3, and Switchboard Cellular Parts
1 and 2. Table 1 presents results for the extended condition 5 (tel-tel)



Female Set Male Set Pooled
System minDCF | oldDCF | EER || minDCF | oldDCF | EER || minDCF | oldDCF | EER
PLDA 0.40 0.15 3.57 0.42 0.13 2.86 0.41 0.14 3.23
LR 0.40 0.12 2.94 0.39 0.10 222 0.40 0.11 2.62
SVM 0.39 0.11 2.35 0.31 0.08 1.55 0.37 0.10 1.94
HT-PLDA 0.34 0.11 222 0.33 0.08 1.47 0.34 0.10 1.88

Table 1. Normalized newDCEF, oldDCF and EER for the extended condition 5 (tel-tel) from the NIST SRE 2010 evaluation.

from NIST SRE 2010 evaluation. The reported numbers are Equal
Error Rate (EER) and normalized minimum Decision Cost Functions
for the two operating points as defined by NIST for the SRE 2008
(oldDCF) and SRE 2010 (newDCF) evaluations [11].

The system denoted as PLDA, which serves as our baseline, is
based on a generatively trained PLDA model with a 90-dimensional
speaker variability subspace [10]. On telephone data, this configura-
tion was found to give the best newDCF, which was the primary per-
formance measure in the NIST SRE 2010 evaluation, which focused
on low false alarm rates. As a tradeoff, the system gives somewhat
poorer performance at the oldDCF and EER.

The system denoted as LR is the discriminative linear classifier,
where parameters were initialized from the baseline system using (8)
and retrained to optimize the logistic regression objective function.
‘We have used the conjugate gradient trust region method [12] as im-
plemented in [13] to numerically optimize the parameters. No regu-
larization was used in this case. Significant improvements compared
to the baseline can be observed, especially at oldDCF and EER.

Even larger improvements were observed for the SVM-based
classifier, where 10%, 30% and 40% relative improvements over the
baseline were obtained for newDCEF, oldDCF and EER respectively.
The improvements over the LR system can probably be attributed
mainly to the presence of the regularization term. Often, SVM clas-
sifiers are trained using a solver to the dual problem, where a Gram
matrix needs to be evaluated. The Gram matrix is a matrix com-
prising dot products between every pair of training examples, which
are the trials in our case. Since we decided to construct a training
trial for every pair of i-vectors, the size of the Gram matrix would
be unmanageably large (the number of training i-vectors to the 4th
power). Therefore, we train a linear SVM by again solving the pri-
mal problem using a solver [14], which makes use of the efficient
evaluation of gradient. To make SVM regularization effective, we
have found that it is necessary to first normalize input i-vectors using
within-class covariance normalization (WCCN) [1], i.e. to normalize
i-vectors to have identity within-class covariance matrix. More de-
tails on the SVM-based system described in this paper can be found
in our parallel paper [15].

Finally, for comparison, we also include results with Heavy-
tailed PLDA (HT-PLDA) [2], which are so far the best results we
have obtained with the same set of training and test i-vectors. In
heavy-tailed PLDA, speaker and intersession variability are modeled
using Student’s ¢, rather than Gaussian distributions. In our system,
the dimensionality of i-vectors was first reduced from 400 to 120
and the final vectors were modeled with full-rank speaker and in-
tersession subspaces. Nevertheless, the price paid for the excellent
results obtained with heavy-tailed PLDA is the very computationally
demanding score evaluation. As we can see, competitive results can
be obtained with our discriminatively trained models, for which the
score evaluation is several orders of magnitude faster.

6. CONCLUSIONS

Recent advances in speaker verification build on i-vector extraction
and Probabilistic Linear Discriminant Analysis (PLDA). In this pa-
per, we have proposed to use a PLDA-like functional for evaluat-

ing the speaker verification score for a pair of i-vectors represent-
ing a trial. However, estimation of the function parameters is based
on a discriminative rather than a generative training criterion. We
have shown the benefit of using the objective function to directly ad-
dress the task in speaker verification: discrimination between same-
speaker and different-speaker trials. On the NIST SRE 2010 eval-
uation task, our results show a significant (up to 40%) relative im-
provement from this approach, compared to a baseline that uses a
generatively trained PLDA model.

In future work, we would like to test our method on additional
conditions beyond the telephone speech, and to develop techniques
for adapting the trained system to be able to cope with new chan-
nel conditions. Various methods for regularizing logistic regression
training are also worth investigating. We would also like to experi-
ment with models based on more general forms of the PLDA model.
Functional forms for verification scores derived from PLDA with
low-rank speaker or channel subspaces would allow us to control
the number of trainable parameters. Another interesting alternative
would be a functional form that would more closely simulate the
heavy-tailed PLDA generative model [2], which is currently provid-
ing better performance than PLDA based on Gaussian distributions.
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Abstract

In this paper we apply the promising iVector extraction tech-
nique followed by PLDA modeling to simple prosodic contour
features. With this procedure we achieve results comparable to
a system that models much more complex prosodic features us-
ing our recently proposed SMM-based iVector modeling tech-
nique. We then propose a combination of both prosodic iVec-
tors by joint PLDA modeling that leads to significant improve-
ments over individual systems with an EER of 5.4% on NIST
SRE 2008 telephone data. Finally, we can combine these two
prosodic iVector front ends with a baseline cepstral iVector sys-
tem to achieve up to 21% relative reduction in new DCF.
Index Terms: speaker verification, prosody, JFA, iVector,
SMM, fusion

1. Introduction

High-level information has been used for over a decade to fur-
ther enhance short-time, cepstral-based speaker verification sys-
tems. Many approaches make use of acoustic attributes of
speech prosody that mainly involve variations in syllable length,
loudness, and pitch. In recent NIST Speaker Recognition Eval-
uations [1, 2], two families of prosodic feature sets were pre-
sented. One family corresponds to syllable-based, non-uniform
extraction region features (SNERFs) [3], which are highly com-
plex prosodic features originally proposed by SRI. These fea-
tures in combination with specialized parameterization methods
and support vector machine (SVM) modeling [4] result in a very
good prosodic system.

Another family of systems uses a set of very simple
prosodic features, originally proposed for language identifica-
tion [5]. These features model the temporal trajectory of pitch
and energy over the time span of a syllable. Joint Factor Anal-
ysis (JFA) modeling for these features was originally proposed
by [6] and showed very promising results. This framework for
prosodic modeling has been adopted by several sites and inves-
tigated thoroughly [7, 8]. The main reason for its success lies
in JFA modeling, which is capable of coping with the problem
of speaker and session variability in Gaussian mixture model
(GMM)-based speaker verification [9] and has become the de
facto standard for modeling low- and high-level features.

Moreover, excellent results on cepstral features were ob-
tained with a simplified variant of JFA [10], where separate

This work was funded by the Office of the Director of National
Intelligence (ODNI), Intelligence Advanced Research Projects Activ-
ity (IARPA), through the Army Research Laboratory (ARL). All state-
ments of fact, opinion, or conclusions contained herein are those of the
authors and should not be construed as representing the official views
or policies of TARPA, the ODNI, or the U. S. Government. The work
was also partly supported by Czech Ministry of Education project No.
MSM0021630528, and Grant Agency of Czech Republic project No.
GP102/09/P635. Marcel Kockmann was supported by SVOX Deutsch-
land GmbH.
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subspaces for channel and speaker variability are replaced by a
single subspace covering the total variability. This model can be
used to extract compact low-dimensional feature vectors repre-
senting a whole utterance, often called iVectors. Based on this
idea, we proposed a framework where the subspace modeling
technique normally used to model means of GMMs is adapted
to model occupation counts using a multinomial model. This
so-called Subspace Multinomial Model (SMM) [11] is applica-
ble to the complex SNERFs to extract iVectors.

Probabilistic Linear Discriminant Analysis (PLDA) [12]
has been proposed to model the speaker and channel variability
in both types of iVectors, directly generating likelihood ratios
for the trials [13, 14]. iVector modeling of SNERFs by SMMs
with successive PLDA has been shown to give the best results
for a prosodic speaker verification system so far [15].

To date, the iVector approach — using a total variability sub-
space followed by PLDA — has not been used (to our knowl-
edge) for the simple prosodic features that are usually modeled
by JFA.

In this paper, we present results on the prosodic JFA system
as presented by Brno University of Technology in SRE 2010
and apply iVector modeling and PLDA back end to the same
features. We show that the iVector approach is superior to the
standard JFA modeling even for simple prosodic features.

In this way we have two diverse prosodic systems that
achieve similar performance on our test sets: an iVector sys-
tem that models means of GMMs based on simple well-defined
prosodic features and an iVector system that models counts of
multinomial distributions based on SNERFs. A combination of
both systems seems relevant due to their complementary nature
in terms of features and modeling. We propose an elegant way
of combining these systems by simple concatenation of indi-
vidual iVectors followed by a single joint PLDA model. This
combination achieves an equal error rate (EER) of 5.4% on our
NIST SRE 2008 telephone test set, a 23% gain over the best of
the two systems.

Justification for use of a higher-level systems usually lies
in an overall improvement by fusion with a cepstral baseline
system. Usually, combination of low- and high-level systems
is done by score-level fusion using a separate development set
to train the fusion parameters. As the best-performing cepstral
systems to date are also based on iVector modeling followed by
PLDA modeling [13, 14, 16], we are inspired by the success-
ful combination of two prosodic iVector front ends to further
combine the cepstral and prosodic systems in the same manner.
We achieve a relative reduction in terms of the challenging new
detection cost function (DCF) [2] of 17% for SRE 2010 data
and 21% for SRE 2008 data. The iVector combination consis-
tently outperforms standard score-level fusion (11% and 13%)
with no need for a separate development set to train the fusion
parameters.



2. Prosodic features
This section describes the two prosodic feature sets used in the
paper.
2.1. DCT contour features

The DCT contour feature generation closely follows the de-
scription in [7]. The features incorporate duration, pitch and
energy measurements. Pitch and energy values are estimated
every 10 ms, and energy is further normalized by its maximum.
The temporal trajectory of pitch and energy is modeled by a
discrete cosine transform (DCT), over a fixed frame long tem-
poral window of 300 ms, with a 50 ms frame shift. The first
six DCT coefficients of both pitch and energy trajectories form
a fixed-length feature vector. Only voiced frames (where pitch
is detected) are used to estimate the DCT. Duration informa-
tion measured as the number of voiced frames within the 30-
frame interval is appended and treated as a continuous value
when modeling the distributions.

2.2. SNEREF features

We use SNERFs, which are syllable-based prosodic features
based on estimated pitch, energy, and duration information.
Characteristics like minimum, maximum, mean, and slope of
pitch and energy trajectories are extracted for each detected syl-
lable in an utterance and its nucleus, as well as duration of onset,
nucleus, and coda of the syllable. All values are further normal-
ized with different techniques and form several hundred fea-
tures for each syllable. The used syllable segmentation is gen-
erated from the output of a large-vocabulary continuous speech
recognition (LVCSR) system using a simple maximum onset al-
gorithm (Section 3.4.1 of [17]) on the phone-level alignments.
Detailed information on SNERFs is given in [3].

‘We use 182 basic features that are extracted for each sylla-
ble. Furthermore, temporal dependencies are modeled by con-
structing small vectors concatenating features from consecutive
syllables and pauses. These so-called tokens are formed for
each basic feature by concatenating as many as three values
(feature values and duration of pauses; more details are given
in [4]). Nine different n-gram tokens are used.

The SNERFs are parameterized by use of GMMs. This can
be seen as a soft binning of each SNERF value into a meaning-
ful set of discrete classes and makes it possible to accumulate
soft counts for all SNERFs and tokens extracted for one utter-
ance (for details see [4]).

3. Subspace models for prosodic features

The basic assumption in subspace modeling is that the natural
parameters of a model usually live in a much smaller subspace
than the full parameter space. This subspace can be learned by
introducing latent variables in the model.

3.1. iVectors based on GMMs

The classical formulation of JFA for speaker verification [9] as-
sumes that the concatenated mean vectors ¢caussipa 0f 2 GMM
are distributed according to a subspace model with separate sub-
spaces for speaker and channel variability:

¢GaussJFA =m+ Vy + UX, (1)

where m is a speaker- and channel-independent supervector,
and V and U span linear subspaces (for speaker and channel
variability) in the original mean parameter space. The compo-
nents of y and x are the low-dimensional latent variables corre-
sponding to the speaker and channel subspaces.

A simplified variant of JFA [10] assumes that speaker and
channel subspaces are not decoupled and uses only one sub-
space covering the total variability in an utterance:

Piaussty = m + Tw. )

Again, T spans a linear subspace in the original mean parameter
space and the components of w are the low-dimensional latent
variables corresponding to the total variability subspace. The
low-dimensional vectors w are also known as iVectors.

In the latter approach, the JFA-like model serves only as
the extractor of the vectors w, which can be seen as low-
dimensional fixed-size representations of utterances, and which
are in turn used as inputs to another classifier.

Both techniques, the JFA (GaussJFA) as well as the iVec-
tor modeling (GaussIV), are applicable to mean supervectors
of GMMs trained on the low-dimensional well-defined DCT
features as presented in Section 2.1. All model parameters are
trained using an expectation-maximization (EM) algorithm [9].

3.2. iVectors based on multinomial distributions

The weights of a GMM can also be modeled under the sub-
space paradigm. To do this, we consider the individual mix-
ture components in the GMM to be discrete classes which can
be modeled using a multinomial distribution. Similar to Gaus-
sIV, SMM assumes that there is a low-dimensional subspace
of the parameter space in which the parameters of the multino-
mial distributions for individual utterances live. The probability
dmutintv Of cth class of the multinomial distribution is given by
é _ exp(m+tew)

MultinIV Zlc;l exp(m T tlw) )
where w is a latent variable and t. is the cth row of subspace
matrix T, which spans a linear subspace in the log-probability
domain. Due to the softmax function, this corresponds to a pos-
sibly nonlinear subspace in the simplex that the multinomial
distributions live in.

Given the parameters m and T we can extract w vectors
(which we will also call iVectors) for new data. Similar to the
GausslV system, the SMM is used as a feature extractor and
each iVector can be seen as a low-dimensional representation of
the whole utterance.

This technique (MultinlV) can be used to model soft counts
of high-dimensional, heterogenecous SNERFs as presented in
Section 2.2. See [11] for further details of how all SNERFs can
be represented using a single low-dimensional iVector and how
the model parameters are trained using an iterative optimization
scheme.

3.3. PLDA modeling of iVectors

The fixed-length iVectors extracted per utterance (from the
GaussIV as well as from the MultinIV model) can now be used
as input to a pattern recognition algorithm. Note that unlike
in the standard JFA, where two subspaces are used to account
for speaker and intersession variability, the iVector variant uses
a single subspace accounting for all the variability. Therefore,
the extracted vectors w are not free of channel effect, and in-
tersession compensation must be eventually considered during
classification.

For speaker verification a PLDA model [12] has been
proposed to provide a probabilistic framework for modeling
speaker and intersession variability in the iVector space. Model
parameters can be trained using an EM algorithm [13]. Using
the PLDA model, one can directly evaluate the log-likelihood
ratio for the hypothesis test corresponding to “the two iVectors

3
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were generated by the same speaker or not”. This can be evalu-
ated analytically, and scoring can be performed very efficiently
as described in [14].

4. Experiments

This section describes the experimental setup and results for the
individual prosodic systems and for the combination of these
systems with each other and with a baseline cepstral system.

4.1. Data

Results are presented on the telephone core conditions of the
NIST Speaker Recognition Evaluations 2008 [1] (dev) and
2010 [2] (eval). Trials involve English conversational speech
recorded over various telephone channels. Our development set
is based on the original NIST SRE 2008 evaluation set, but was
extended to include about two orders of magnitude more impos-
tor samples, to adjust for the new DCF point. It includes 1,154
target and 1,516,837 nontarget trials. Our evaluation set corre-
sponds to the official extended condition 5 of NIST SRE 2010
and contains 7,169 target and 408,950 nontarget trials.

Training of background, subspace, and PLDA models is
performed on data from Switchboard corpora as well as NIST
SRE 2004 — 2006 corpora. This set includes 13,482 recordings
from 752 male and 16,782 recordings from 963 female speak-
ers.

4.2. Prosodic systems

Experiments are carried out to evaluate the performance of the
iVector modeling approach for the simple DCT features. For
both, the GaussJFA and the GaussIV systems, we extract 13-
dimensional DCT contour features (1 duration, 6 pitch and 6
energy values) and train gender-dependent multivariate univer-
sal background models (UBMs) with 512 Gaussian components
and diagonal covariances. The GaussJFA and the GaussIV mod-
els are trained using sufficient statistics extracted for all back-
ground data using the same UBMs. For the GaussJFA model we
train 100-dimensional speaker subspace V and 50-dimensional
channel subspace U. For the GaussIV model we train 300-
dimensional total variability subspace T on the same data.
These subspace sizes were found optimal in earlier experiments.
The GaussJFA model is evaluated directly by log-likelihood ra-
tio using a fast scoring technique [18] followed by zt-norm. The
extracted DCT iVectors for all background data are used to train
a full rank PLDA model. The PLDA model is then used to eval-
uate the log-likelihood ratio for speaker trials. Figure 1 shows
results for the two DCT-based systems (green markers). The
DCT-GausslV system with PLDA (square) clearly outperforms
the DCT-GaussJFA system (triangle) on all operating points on
both test sets.

To compare the simple DCT-GaussIV system with the best
prosodic system presented so far [15], we train a SNERF-
MultinlV system on the same setup. The SMM models an en-
semble of 1,638 multinomial distributions representing 9 differ-
ent n-gram tokens of 182 individual SNERFs. We obtain 300
dimensional iVectors. While the SNERF-MultinlV system (blue
diamonds in Figure 1) is still superior on both test sets for EER
and old DCF, we achieve better results with the DCT-GaussIV
system on both test sets in terms of new DCF.

As both prosodic systems perform very well, but are sig-
nificantly different in terms of features as well as modeling ap-
proach, a combination of both seems natural. Since both model-
ing techniques translate the long-temporal prosodic feature vec-
tors of variable size to a single fixed-length feature vector per
utterance (what we call iVector), it is possible to simply con-
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catenate the iVectors resulting from these diverse models and
to model them jointly with a PLDA model. We train a single
full-rank PLDA model on 600-dimensional iVectors. The ef-
fectivity of the joint modeling of complementary iVectors can
be observed in Figure 1. The combination of DCT-GaussIV and
SNERF-MultinlV iVectors (cyan hexagons) results in significant
improvement over the best individual system on all operating
points on both test sets, achieving an EER of 5.4% and a new
DCF of 0.72 on 2008 data, which are (to our knowledge) the
best results reported for a purely prosodic system.

4.3. Combination with cepstral baseline system

Our baseline system is a cepstral iVector system followed by
a PLDA model (CEP-GausslV). This system was the best-
performing individual system from the ABC NIST SRE 2010
submission [16]. It is based on 60-dimensional cepstral features
and a 2048-component full covariance UBM. Four hundred-
dimensional iVectors are used and the dimension is further re-
duced to 200 by standard LDA and normalized by their length’
before PLDA modeling. The first row of Table 1 gives the re-
sults for our two data sets?.

Again, the iVector nature of our baseline system allows
us to use a novel way of combining low- and high-level sys-
tems by simple concatenation of their iVectors and joint PLDA
modeling. First, we apply an LDA reduction to 200 dimen-
sions and length normalization to both 300-dimensional sets of
prosodic iVectors. In this way we have three same sized sets
of 200 dimensional iVectors (one cepstral and two prosodic).
Next, we concatenate the cepstral iVectors separately with each
of our prosodic iVectors to obtain two sets of four hundred-
dimensional iVectors. Then we train a standard PLDA model
with full rank of 400 for each type of combination. The sec-
ond and third row of Table 1 give the results for these combi-
nations. We see that we can achieve significant improvements
for both iVector fusions of cepstral and prosodic features. Fi-
nally, we concatenate all three iVector types (one cepstral and
two prosodic) and train a PLDA model with full rank of 600.
The fourth row of Table 1 gives the results for this combination.
We achieve further improvements leading to reductions as high
as 21% relative on the challenging new DCF measure.

As a last experiment we compare this approach to the con-
ventional score-level fusion. For this purpose we train a lin-
ear logistic regression [19] to fuse the three individual system
scores on the development set and apply this fusion to the eval-
uation set. The last row of Table 1 indicates that consistent
gains are also achieved by score-level fusion (as high as 13%
on new DCF), but joint PLDA training of concatenated iVectors
remains superior. iVector fusion of the cepstral system and the
simple prosodic DCT-GaussIV system already outperforms the
score-level fusion of all three systems.

5. Conclusions and Lookout

We present the first results on the use of total variability model-
ing of the mean supervector space for a set of prosodic features.
We show that this iVector approach outperforms the standard
JFA approach originally proposed for these features. We note
that this improvement over JFA is observed only when the iVec-
tors are modeled using the PLDA back end. No gain was ob-
served during SRE 2010 system development [16] when iVec-
tors were modeled with simpler scoring techniques [6].

I This pre-processing of iVectors is very helpful for cepstral iVectors
but did not show any improvement for our prosodic iVectors

2We are aware that better results are reported in the literature, simply
by training the PLDA on more data, which we did not have for SNERFs.
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Figure 1: Results for SRE 2008 (dev) versus SRE 2010 (eval) in terms of EER, old DCF and new DCF, from left to right, for three

different prosodic systems and combination of the two best.

System DEV SRE 2008 EVAL SRE 2010

EER old DCF new DCF EER old DCF new DCF
Cepstral iVector system CEP-GaussIV 2.02 0.090 0.471 3.14 0.155 0.504
Concatenated CEP-GaussIV + DCT-GaussIV 1.69 0.080 0.400 2.72 0.136 0.431
Concatenated CEP-GausslV + SNERF-MultinlV 1.65 0.080 0.389 2.74 0.134 0.444
Concatenated CEP-GaussIV + DCT-GaussIV + SNERF-MultinlV  1.70 0.075 0.368 2.63 0.129 0.421
Score fusion CEP-GausslV + DCT-GaussIV + SNERF-MultinlV 1.92 0.078 0.406 3.09 0.149 0.447

Table 1: Results for single cepstral baseline system (CEP-GausslV) and for combinations with one or two prosodic iVector systems.

Furthermore, we present combination results of two
prosodic systems, one where iVectors based on GMMs are used
to model simple DCT features extracted from uniform regions
and another one where iVectors based on multinomial distribu-
tions are used to model a complex set of syllable-level features.
These two systems are different at both the feature and model-
ing levels. We show gains on the order of 20% when combining
these two systems with respect to the single best. The combina-
tion is performed using an iVector-level fusion: the individual
iVectors for the two systems are concatenated and the joint iVec-
tor is modeled using PLDA. An important advantage of iVector-
level fusion compared to score-level fusion is that it can make
use of the full information encoded in the iVectors while for the
score-level fusion all information is already reduced to a single
number.

The iVector-level fusion technique followed by PLDA mod-
eling can also be applied to fuse heterogeneous features, such
as low-level cepstral and high-level prosodic features. Using
this procedure we achieve 20% relative improvement on new
DCF over a cepstral iVector baseline, significantly outperform-
ing score-level fusion. These are, to our knowledge, the largest
relative gains obtained in speaker recognition from combination
of cepstral systems with prosodic features in several years.
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ABSTRACT

We describe recent progress in the field of prosodic modeling for
speaker verification. In a previous paper, we proposed a technique
for modeling syllable-based prosodic features that uses a multino-
mial subspace model for feature extraction and within-class covari-
ance normalization or linear discriminant analysis for session vari-
ability compensation. In this paper, we show that performance can
be significantly improved with the use of probabilistic linear discrim-
inant analysis (PLDA) for session variability compensation. This
system does not require score normalization. We report an equal er-
ror rate below 7% on a NIST 2008 task. To our knowledge, this is the
best reported result to date for a prosodic system for speaker recog-
nition. Fusion of this system with a state-of-the-art acoustic baseline
system yields 10% relative improvement in the new detection cost
function (DCF) as defined by NIST.

Index Terms— Prosodic speaker verification, SNERFs, MSM,
iVector, PLDA

1 INTRODUCTION

Using high-level information to further enhance short-time, cepstral-
based speaker verification systems has been popular for several
years. In [1], several high-level features (phonetic, prosodic, lin-
guistic, etc.) were leveraged to enhance the Equal Error Rate (EER)
on the NIST 2001 speaker recognition evaluation task up to 70% rel-
ative. This gain from using high-level features was enabled by the
introduction of evaluation conditions with large train and test dura-
tions (of 2.5 minutes for testing and up to 8 times that amount for
training). High-level features are sparser than lower-level acoustic
features and, hence, benefit more from large amounts of data. Dur-
ing subsequent NIST evaluations, challenging new corpora and rapid
performance improvements for systems using standard cepstral fea-
tures generally made gaining an advantage from the fusion of high-
level features difficult [2].

Nevertheless, in 2004, high-level features were shown to provide
performance gains greater than 30% when combined with a baseline
acoustic system on the NIST 2004 tasks [3]. The success was mainly
due to SRI’s newly proposed, syllable-based, non-uniform extraction
region features (SNERFs) [4]. These features in combination with
specialized parameterization methods and Support Vector Machine
(SVM) modeling [5] resulted in the best-performing prosodic system

This work was funded by the Office of the Director of National Intelli-
gence (ODNI), Intelligence Advanced Research Projects Activity (IARPA),
through the Army Research Laboratory (ARL). All statements of fact, opin-
ion or conclusions contained herein are those of the authors and should not be
construed as representing the official views or policies of IARPA, the ODNI,
or the U. S. Government. The work was also partly supported by European
project MOBIO (FP7-214324), Grant Agency of Czech Republic project No.
102/08/0707, Czech Ministry of Education project No. MSM0021630528
and by BUT FIT grant No. FIT-10-S-2. Marcel Kockmann was supported by
SVOX Deutschland GmbH.
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at the time. But, the SNERF system was complex and for this reason,
was not broadly adopted by the community.

The introduction of joint factor analysis (JFA) [6] for speaker
verification brought the performance of acoustic systems for speaker
recognition to a new level, leading to improvements on the order
of 50% over previous state-of-the-art systems. As a consequence of
these dramatic improvements in the baseline performance of speaker
recognition systems, obtaining gains from high-level features, par-
ticularly if they could not capitalize on the JFA improvements ob-
tained for acoustic systems, was increasingly difficult. A first step in
using JFA for prosodic systems was proposed by [7] for a set of very
simple prosodic features. This framework for prosodic modeling has
been adopted by several sites and investigated thoroughly [8, 9].

Unfortunately, the JFA framework cannot be directly applied to
the SNERFs due to their high dimensionality and to the existence
of undefined values. In [9], we showed that the SNERF system still
outperforms a simpler set of features modeled with JFA. This was
our motivation for trying to transfer the underlying idea of JFA — to
model speaker and intersession variability in low-dimensional sub-
spaces — to a model that can handle SNERFs. Recently, we pre-
sented a theoretic framework for the modeling of SNERFs using a
multinomial subspace model (MSM), which achieved very promis-
ing results [10].

This paper describes our latest progress in using Probabilistic
Linear Discriminant Analysis (PLDA) modeling for session variabil-
ity compensation of features obtained with MSM. Significant gains
are achieved over previous performance, resulting in an equal error
rate (EER) of 6.9% on the telephone data of the NIST 2008 Speaker
Recognition Evaluation [11]. To our knowledge, these are the best
results in the literature for a prosodic speaker verification system.
Furthermore, no score normalization techniques are needed. In ad-
dition, we present fusion experiments with a state-of-the-art acoustic
JFA system showing gains of up to 10% in detection cost function
(DCF). A major goal of this paper is to clearly describe the complex
system-building process. All important steps — from raw SNERF
features to final PLDA modeling — are explained in Section 2. In
Section 3, our experimental setup is described and different prosodic
systems are evaluated and compared. Fusion results with a baseline
acoustic system are also shown. We present our conclusions in Sec-
tion 4.

2 SYSTEM

This section describes the five major steps of the system-building
process. All steps are explained using a simplified example. Please
refer to the citations for algorithmic descriptions.

2.1 Syllable-based NERFs (SNERFs)

We use SNERFs [4], which are syllable-based, non-uniform extrac-
tion region features based on F0, energy, and duration information.
Characteristics like minimum, maximum, mean, and slope of the
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Fig. 1. Top row: Extraction of three SNERF parameters from a speech segment containing 10 single-syllable words: Syllable duration
(determined by black vertical lines), mean pitch value per syllable (blue squares), and mean energy per syllable (red stars). Middle row:
Parameterization of SNERF sequences: Small GMMs are trained on background data for each individual SNERF. Two mixtures are used
for duration, three mixtures for pitch, and four mixtures for energy. Occupation counts for the values extracted in the top row (here as bars)
are collected using the GMMs. Bottom row: Multinomial model spaces for duration, pitch, and energy. The colored lines show various
one-dimensional iVectors (the values are mapped to colors) projected to the full ensemble of multinomial spaces.

pitch and energy trajectories are extracted for each detected syllable
in an utterance and for its nucleus, as well as the duration of on-
set, nucleus and coda of the syllable. All values are further normal-
ized with different techniques, resulting in a few hundred features
for each syllable (174 in our current implementation). The syllable
segmentation is generated from the output of a large vocabulary con-
tinuous speech recognition (LVCSR) system. The phone alignments
of the recognized words are used to generate English syllables. De-
tailed information on SNERFs is given in [4].

Temporal dependencies are modeled by concatenating features
from consecutive syllables and pauses. New vectors are formed for
each basic feature by concatenating consecutive values. If a pause
is found within the sequence, the length of the pause is used as a
feature. For each sequence length, each feature, and each pattern of
pause/non-pause, we obtain a separate feature vector. For example,
for trigrams, we obtain five different vectors: (S, S, S), (P, S,S),
(S,P,S), (S,S,P), (P,S, P) for each feature. Each pair {feature,
pattern} determines what we call a foken (see [5] for details). Our
current implementation uses sequences of lengths 1, 2, and 3. The
first line of plots in Figure 1 shows an example of the feature extrac-
tion process. The segments are given by the syllables found from the
ASR output. The pitch (blue curve) and energy (red curve) signals
are estimated from the waveform. For our example, we assume that
we extract only three features per segment: its duration (from one
vertical black line to the next), the mean pitch value (blue squares),
and the mean energy value (red stars).

2.2 Background GMMs

For each token, we train a separate Gaussian Mixture Model (GMM)
with a small number of mixture components on the background data.
Because basic features may be undefined (e.g., when no pitch is de-
tected or when the syllable lacks onset or coda), a special GMM is
needed using an additional parameter for the probability of a feature
being undefined. In the first pass, all GMMs are trained using frames
with defined features only, where the additional parameter is set to
one and the model falls back to a standard GMM. The GMMs are

then retrained with all feature vectors, allowing the new parameter to
adapt to the data. Details of the modified expectation-maximization
algorithm are given in [12]. The second line of Figure 1 shows a toy
example in which three small GMMs are trained on a background
data set. A two-component model is trained for the syllable dura-
tions, a three-component model for mean pitch values, and a four-
component GMM for means of syllable energies.

2.3 Parameterization of SNERF sequences

After training the background models for each token, we gather
Gaussian component occupation counts for each utterance (zero or-
der sufficient statistics from the modified EM algorithm [12]). These
are accumulated soft counts describing the responsibilities of each
individual mixture component toward generating the frames in the
utterance. Using these parameters, we transform the sequence of
SNERFs (one feature vector per syllable) to fixed length vectors (one
vector of statistics per utterance). The values from the exemplified
feature extraction process (syllable duration, mean pitch, and mean
energy) are further depicted as bars in the middle row of Figure 1.
The occupation counts (the numbers next to the mixtures) are the re-
sponsibilities for each Gaussian component in generating these val-
ues. Each Gaussian component can be seen as a discrete class and
the occupation counts can be seen as soft-counts of discrete events.

2.4 Multinomial Subspace Model

As a generative model, a multinomial distribution appears as a natu-
ral choice for modeling the counts resulting from the previous step.
More precisely, a set of £/ multinomial distributions is required, one
for each GMM in the ensemble. Each multinomial distribution cor-
responds to a set of C. probabilities, one probability ¢.. for each
Gaussian ¢ in the GMM e. For each frame, each GMM is expected
to generate a feature by one of its components with probability given
by the multinomial distribution. This corresponds to co-occurring
events that should be modeled by separate multinomial distributions
(as all tokens are modeled independently of each other). Each multi-
nomial distribution lives in a n-dimensional simplex and the space



of all parameters is the cartesian product of all the simplexes. The
bottom row of Figure 1 illustrates this for our toy example where
the parameters of the duration model exist on a line; the pitch model
parameters, in a 2D simplex; and the energy parameters, in a 3D
simplex space.

We use a Multinomial Subspace Model (MSM) [10] where we
assume that the multinomial distributions differ from utterance to ut-
terance. In the case of SNERFs, we need to estimate parameters of
many multinomial distributions. Therefore, we search for a way to
estimate all the parameters robustly given a limited amount of data
available for each utterance. With MSM, we assume that there is a
low-dimensional subspace of the parameter space in which the pa-
rameters for individual utterances live. For this reason we introduce
an explicit latent variable w through which the probability ¢c. of cth
class of each multinomial distribution e in the ensemble is given by

tec
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with t.. being the cth row of eth block of subspace matrix T (size
Zle C. X 1) which spans a linear subspace that might be non-
linear in the original parameter space due to the softmax function.
Figure 1 shows how the subspace restricts the movement in the full
parameter-space in a non-linear way (colored lines). By drawing val-
ues for a one-dimensional variable w from minus infinity to infinity
we move in all three simplexes simultanuously along the non-linear,
low-dimensional manifolds. Now, all the multinomial distributions
corresponding to one utterance can be represented by a low dimen-
sional vector w. This way, we can (1) reduce the number of free
parameters to efficiently model differences between individual utter-
ances, and (2) learn dependencies between the individual SNERFs.

The MSM parameters are estimated by iteratively re-estimating
the latent variables w for each utterance in the training data to max-
imize the likelihood function based on the current estimate of T and
vice-versa. Using the final estimate of T' we can extract w vectors
(which we will call iVectors) for new data. This way, the MSM is
used as a feature extractor and each iVector can be seen as a low-
dimensional representation of the whole utterance.

2.5 PLDA modeling

For verification of speaker trials we use a special case of Proba-
bilistic Linear Discriminant Analysis (PLDA) [13], a two-covariance
model, providing a probabilistic framework where speaker and inter-
session variability in the iVectors is modeled using across-class and
within-class covariance matrices 3. and 3,,.. We assume that la-
tent vectors y representing speakers are distributed according to

p(y) = N(¥; 1, Zac) (@)
and for a given speaker y the iVectors are distributed as
p(wly) = N(w;y, Bwe). ©))

Model parameters p, 3, and 3, are trained using an EM algo-
rithm [14]. Using the PLDA model, one can directly evaluate the
log-likelihood ratio for the hypothesis test corresponding to “the two
iVectors were generated by the same speaker or not™:

S p(wily)p(wa|y)p(y)dy
p(w1)p(wz)

The numerator gives the marginal likelihood of producing both iVec-
tors from the same speaker, while the denominator is the product of
the marginal likelihoods that both iVectors are produced from differ-
ent speakers. The integrals can be evaluated analytically and scoring
can be performed very efficiently as described in [15].

s = log 4)
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3 EXPERIMENTS AND RESULTS

This section describes our results for three individual prosodic sys-
tems, including two previously-proposed systems. We also show
results when fusing the prosodic systems with a state-of-the-art cep-
stral system.

3.1 Data

The task used to present results uses data from the NIST 2008
speaker recognition evaluation. The original NIST tasks are ex-
tended to include two orders of magnitude more impostor samples.
This was done to support the new DCF metric introduced by NIST
for the 2010 evaluation [16]. In this paper, we show results only for
the telephone condition, in which both training and test samples are
given by telephone conversations recorded over a telephone channel.
The number of target and impostor samples for this task are 1,108
and 1,453,237, respectively. As background data to train UBMs,
JFA, MSM and PLDA we use data from the 2004 and 2005 SRE,
2008 interview development data and from the Switchboard-II cor-
pus.

3.2 Prosodic systems

We evaluate three different prosodic systems: (1) a system based
on JFA-modeling of means of low-dimensional polynomial features
(Prospol) describing pitch and energy trajectories, originally pro-
posed in [7] and further extended and improved as described in [9];
(2) the baseline SNERF system with SVM modeling (SNERF-
SVM) of the counts as originally described in [5]; and (3) the re-
cently introduced subspace model [10] with additional PLDA mod-
eling applied to the SNERF counts (SNERF-IV-PLDA).

The Prospol system models a small set of 13 features, includ-
ing polynomial approximations of the pitch and energy profiles and
the duration of the region for three different region definitions: (1)
energy valleys (as originally proposed in [7]); (2) uniform windows
of 300 msec shifted by 10 msec (as proposed in [8]); and (3) syl-
lable regions (identical to those used for the SNERFs). Further, se-
quences of length 2 are also modeled. For each region and each
sequence length, a separate system is created. The resulting scores
are combined with fixed weights determined empirically from de-
velopment data. The baseline SNERF system directly uses the oc-
cupation counts (divided by the number of frames) as features for an
SVM model (steps 2.1-2.3). Session variability compensation can
be applied to this model using nuisance attribute projection [17], but
we found no significant gains from this approach. For the SNERF-
IV-PLDA system the occupation counts are used to train an MSM
with a subspace dimension =200 following [10]. Next, iVectors are
extracted using this model for all background, training and test ut-
terances. The PLDA model is then trained' on iVectors extracted
for all background data and is used to perform verification between
speaker trials. Figure 2 shows the DET curves for the three prosodic
systems. Both SNERF systems outperform the Prospol system at all
operating points of interest. Further, the proposed modeling tech-
nique for the SNERFs is significantly better than the older method
based on SVMs for most operating points resulting in an EER of
6.9%. Moreover, the PLDA modeling significantly outperforms the
cosine distance scoring with LDA as used in our previous work with
MSMs (9% EER) [10].

3.3 Acoustic system

The cepstral GMM baseline system uses a 300-3300 Hz bandwidth
front-end consisting of 24 Mel filters to compute 20 cepstral coeffi-

"We thank Niko Briimmer for providing his PLDA implementation.



Table 1. Relative improvement over cepstral JFA baseline [%)].

System new DCF  old DCF  EER
g BaselinetProspol 6.25 -1.37 -5.26
'z Baseline+SNERF-SVM 7.21 3.70 10.53
P~ Baseline+SNERF-IV-PLDA 9.62 5.08 5.27

cients with cepstral mean subtraction, and their delta, double delta
coefficients, producing a 60-dimensional feature vector. The result-
ing features are mean- and variance-normalized over the utterance.
The feature vectors are modeled by a 1024-component, gender-
independent GMM. We use a full Joint Factor Analysis model (JFA)
in which 600 eigenvoices are trained and 250 eigenchannels are
trained separately for telephone and interview data and are concate-
nated. The diagonal term is trained with the same data as used
to train the speaker factors. Scores are normalized using gender-
dependent ZTnorm, resulting in an EER of 1.65%, an old DCF of
0.073, and a new DCF of 0.42.

3.4 Fusion

Fusion results are obtained using a cross-validation paradigm. To
this end, the complete set of speakers is split into two disjoint sets.
The trials involving only speakers from each of these sets are then
selected. In the process, half of the impostor trials (those correspond-
ing to one speaker from one set and another speaker from the other
set) are discarded. The fusion parameters are then trained using stan-
dard linear logistic regression on one of the sets and then applied
to the other set, and conversely. The results shown in Table 1 are
computed on the concatenation of these two sets. The fusion results
show that the SNERF systems result in larger and more consistent
gains over the baseline. This justifies using the SNERF features over
the simpler polynomial features. Further, even though both SNERF
systems give somewhat similar gains in combination, the proposed
modeling technique should be more robust to noisy conditions and
other types of variabilities, because the SNERF-SVM approach does
not implement any kind of session variability compensation.

4 CONCLUSION

We have proposed a technique for modeling complex prosodic fea-
tures, such as SNERFs, using a multinomial subspace model for fea-
ture extraction and probabilistic linear discriminant analysis for ses-
sion variability compensation. The proposed system achieves more
than 20% relative improvement with respect to the current prosodic
systems on EER and old DCF metrics. An interesting finding is that
the large gains from the proposed modeling technique decrease as
the cost metric moves toward the low false acceptance region. In
fact, at the recently introduced new DCF metric, which corresponds
to very low false acceptance rates, both SNERF systems perform
similarly. Comparing the performance of the polynomial prosodic
features to the SNERFs, we see that SNERFs greatly outperform
the simpler features. This behavior requires further investigation to
understand whether it is due to the difference in the nature of the fea-
tures, to the new modeling technique, or to both factors. Although
SNERFs cannot be modeled with JFA, polynomial features could be
modeled using the proposed MSM/PLDA technique. However, ini-
tial results in this direction did not show gains with respect to JFA
modeling for these features.

In the future, we plan to investigate the performance of prosodic
systems on diverse channel conditions and for different speech styles
(interview conversations and telephone calls recorded over micro-
phones other than telephone handsets). Further investigation is also
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Fig. 2. DET curves for the three prosodic systems. The three mark-
ers in each line correspond to the new DCEF, the old DCF, and the
EER (as used by NIST to evaluate SRE 2008 [11] and 2010 [16]),
from left to right.

needed to understand the influence of the subspace size. Finally, we
plan to explore the use of heavy-tailed distributions in PLDA [14],
which has been shown to give significant improvements for acoustic
systems.

5 References

[1] D. Reynolds et al., “The SuperSID project: Exploiting high-level in-
formation for high-accuracy,” in in Proc. International Conference on
Audio, Speech, and Signal Processing, Hong Kong, 2003, pp. 784-787.

[2] ——, “The 2004 MIT lincoln laboratory speaker recognition system,”
pp. 177 — 180, 2005.

[3] S.S. Kajarekar et al., “SRIs 2004 nist speaker recognition evaluation
system,” in in Proc. ICASSP, 2005, pp. 173-176.

[4] E. Shriberg et al., “Modeling prosodic feature sequences for speaker
recognition,” Speech Communication, Jan 2005.

[5] L. Ferrer et al., “Parameterization of prosodic feature distributions for
SVM modeling in speaker recognition,” Proc. ICASSP, Taipei, vol. 4,
pp. 233-236, 2007.

[6] P. Kenny ef al., “A study of inter-speaker variability in speaker verifi-
cation,” IEEE Trans. Audio, Jan 2008.

[7]1 N. Dehak et al., “Modeling prosodic features with joint factor analysis
for speaker verification,” Audio, Speech and Language Processing, Jan
2007.

[8] M. Kockmann et al., “Investigations into prosodic syllable contour fea-
tures for speaker recognition,” Proc. of ICASSP, Dallas, Sep 2010.

[9] L. Ferrer et al., “A comparison of approaches for modeling prosodic
features in speaker recognition,” in Proc. ICASSP, Dallas, 2010.

[10] M. Kockmann et al., “Prosodic speaker verification using subspace
multinomial models with intersession compensation,” in Proc. Inter-
speech, Tokyo, 2010.

[11] NIST, “The NIST year 2008 speaker recognition evaluation plan,” pp.
1-10, Apr 2008.

[12] S. Kajarekar et al., “Modeling NERFs for speaker recognition,” in
Proc. Odyssey, Toledo, 2004, pp. 51-56.

[13] S.J.D. Prince, “Probabilistic linear discriminant analysis for inferences
about identity,” in /CCV, 2007.

[14] P. Kenny, “Bayesian speaker verification with heavy tailed priors,” in
Keynote presentation, Odyssey, 2010.

[15] L. Burget et al., “Discriminatively trained probabilistic linear discrimi-
nant analysis for speaker verification,” in /[CASSP, 2011.

[16] NIST, “The NIST year 2010
tion evaluation plan,” 2010.
http://www.itl.nist.gov/iad/mig//tests/sre/2010

[17] A. Solomonoff et al., “Channel compensation for SVM speaker recog-
nition,” in Odyssey, 2004, pp. 57-62.

speaker
[Online].

recogni-
Available:

99



Regularized Subspace n-Gram Model for Phonotactic iVector Extraction

Mehdi Souﬁfar]’z, Lukas Burgetl , Old¥ich Plchot’, Sandro Cumani®?, Jan “Honza” Cv'ernocky’l

! Brno University of Technology, BUT Speech@FIT and IT4I Centre of Excellence, Czech Republic
2 Department of Electronics and Telecommunications, NTNU, Trondheim, Norway
3 Politecnico di Torino, Italy

gsoufifar@stud.fit.vutbr.cz, {burget , cumani, cernocky, iplchot}@ fit.vutbr.cz

Abstract

Phonotactic language identification (LID) by means of n-gram
statistics and discriminative classifiers is a popular approach
for the LID problem. Low-dimensional representation of the
n-gram statistics leads to the use of more diverse and efficient
machine learning techniques in the LID. Recently, we proposed
phototactic iVector as a low-dimensional representation of the
n-gram statistics. In this work, an enhanced modeling of the
n-gram probabilities along with regularized parameter estima-
tion is proposed. The proposed model consistently improves the
LID system performance over all conditions up to 15% relative
to the previous state of the art system. The new model also alle-
viates memory requirement of the iVector extraction and helps
to speed up subspace training. Results are presented in terms of
Cavg over NIST LRE2009 evaluation set.

Index Terms: Language identification, Subspace modeling,
Subspace multinomial model

1. Introduction

State—of—the—art approaches to language identification (LID)
can be mainly divided into two main categories: phonotactic
LID and acoustic LID [1]. The phonotactic approach comprises
techniques that use linguistic abstraction in speech modeling,
while acoustic models try to infer the language of an utterance
by directly modeling the spectral content of the utterance. This
paper focuses on the phonotactic approach.

A successful representation of the phonetic content of ut-
terances are n-gram statistics, which are often used as features
for different language classifiers. However, the huge size of
n-gram statistics poses some serious limitations on the choice
of the LID backend classifier. Many solutions have been pro-
posed to deal with the problem of n-gram vectors dimension-
ality. In [2], discriminative selection of the n-grams was pro-
posed to discard less relevant n-grams. Many other phono-
tactic LID systems use principal component analysis (PCA)
to reduce the dimensionality of the n-gram vectors [3, 4, 5].
We recently proposed a feature extraction technique based on

This work was partly supported by the Defense Advanced Research
Projects Agency (DARPA) under Contract No. D10PC20015, by Czech
Ministry of Trade and Commerce project No. FR-TI1/034, and by
European Regional Development Fund in the IT4Innovations Centre
of Excellence project (CZ.1.05/1.1.00/02.0070). Sandro Cumani was
supported by The European Social Fund (ESF) in the project Support
of Interdisciplinary Excellence Research Teams Establishment at BUT
(CZ.1.07/2.3.00/30.0005).
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subspace modeling of multinomial distribution parameters [6],
where we showed that our approach outperforms former state of
the art techniques based on n-gram statistics. This technique is
inspired by the idea of iVector in acoustic speaker identification
(SID) [7], where a low—dimensional vector is used to represent
an utterance—dependent GMM supervector. In our context, we
use a low—dimensional vector to represent the parameters of an
utterance—dependent n-gram model.

The iVector extraction procedure presented in our previous
work [6] was based on simpler Subspace Multinominal Model
(SMM), where we assumed that n-grams are independent events
generated from a single multinomial distribution and iVectors
were computed as to maximize the likelihood of the observed
n-grams. While this approach allows to obtain good results,
the corresponding objective function is not directly related to
the likelihood of the observed phoneme sequences. This is be-
cause the n-grams observed in a phoneme sequence are not in-
dependent. Using an n-gram model, likelihood of a phoneme
sequence can be calculated as a product of the conditional prob-
abilities of the individual phonemes given their histories. Such
likelihood function is maximized in order to extract phonotactic
iVectors using the Subspace n-Gram Model (SnGM) proposed
in this work.

We found SnGM to be prone to over-fitting especially for
short sequences, where only few different n-grams were ob-
served. This was also one of the reasons for the former use
of SMM, which is more robust to over-fitting. We show that
this problem can be mitigated using regularization applied for
both the subspace training and iVector extraction, which results
in the superior performance of the newly proposed SnGM tech-
nique.

The paper is organized as follows: Section 2 describes the
multinomial subspace model and details the subspace training
and iVector extraction procedure. Section 3 describes our exper-
imental setup. and compares the proposed method with PCA—
based techniques and the multinomial model in [6]. An analy-
sis of the model parameters is given in Section 4. Experimental
results are reported in Section 5 and conclusions are drawn in
Section 6.

2. Subspace multinomial model

In phonotactic LID, every speech utterance is tokenized to a
sequence of phoneme labels. The n-gram model assumes that
the probability of observing a phoneme is dependent only on
the n — 1 previous observed tokens. The log-likelihood of a



sequence of phonemes ; . . .
= Z log P(Lilli—ns1li—ny2 ... liz1)
i
@

In order to model the phoneme generation process, we as-
sume that the conditional distribution of a phoneme [ given a
history A is a multinomial distribution with parameters ¢n, i.e.

log P(l|h) = log ¢hl? (2)

with ¢p; > 0 and Zl ¢ri = 1. The joint log-likelihood of a
sequence of phonemes [; ... Iys can then be computed as

= "log P(;|h:)

where hiy = (li—nt1li—nt+2...li—1) denotes the history for
the observed phoneme I;. The v;; denotes number of times
the n-gram hl (i.e. phoneme [ with history h) appears in the
phoneme sequence, we can rewrite (3) as

Zmem )

It is worth noting the difference between (3) and the objec-
tive that was maximized to obtain iVectors in [6] as:

M
> log P(ha, i) = >3 viilog i, 5)
i=1 h l

where n-grams were assumed to be generated independently
from a single multinomial distribution (i.e. >, >, b = 1.
This objective allows to obtain good performance. However,
the corresponding iVectors do not maximize the likelihood of
the observed phoneme sequence. In the following, we show
how to build a phonotactic iVector extractor where iVectors are
estimated in order to maximize the likelihood of the observed
phoneme sequences under the n-gram model assumptions.

Our first step towards the phonotactic iVector extractor is
to make assumption that, phoneme sequence from each utter-
ance s was generated from an utterance—specific n-gram distri-
bution. Next, we assume that, the parameters of the correspond-
ing multinomial distributions ¢n;(s) can be represented as

[y can therefore be computed as

log P(l1l2l3...l]w)

log P(lyl2l3...1ar) = 210g¢h,:lm 3

log P(l1lals...lar)

exp(mni + trw(s))
>, exp(mni + thiw(s))’

where my,; is the log-probability of n-gram hl calculated over
all the training data, t5; is a row of a low—rank rectangular ma-
trix T and w(s) is utterance—specific low—dimensional vector,
which can be seen as low—dimensional representation of the
utterance-specific n-gram model. The parameters {my,;} and
the matrix T are the parameters of the proposed SnGM. Given
these parameters, w(s) maximizing log-likelihood in (3) can be
taken as the phonotactic iVector representing the an utterance s.
Before iVectors can be extracted, however, the SnGM parame-
ters have to be trained on a set of training utterances. This is
done in an iterative EM-like process alternating between max-
imum likelihood (ML) updates of vectors w(s) (one for each
training utterance s) and ML updates of SnGM parameters.

In the case of standard GMM based iVectors, the utterance—
dependent parameters similar to w(s) are treated as latent ran-
dom variables with standard normal priors. The subspace pa-
rameters are then trained using standard EM algorithm, where

(6

ni(s) =

the M-step integrates over the latent variable posterior distribu-
tions from the E-step. Unfortunately, calculation of posterior
distribution for w(s) is intractable in the case of SnGM. In-
stead, SnGM parameters are updated using only w(s) point es-
timates, which can negatively affect the robustness of SnGM
parameter estimation. To mitigate this problem, we propose
to regularize the ML objective function using L2 regulariza-
tion terms for both the subspace matrix T and the vectors
w (). This corresponds to imposing an isotropic Gaussian prior
on both the SnGM parameters and w(s), and obtaining MAP
rather than ML point estimates. This is in contrast to our pre-
vious work [6], where only ordinary ML estimates of SnGm
parameters and iVectors were used. In order to train our model,
we maximize the regularized likelihood function

S
1
ST S T wnils) ogbuals) — gAllbndl* — SAIw(s)]2),
s=1 h l
(7

where the sum extends over all .S training utterances. The term
A is the regularization coefficient for both the model parameters
T and for w(s). Notice that we should regularize both T and
w since limiting magnitude of T without regularizing w would
be compensated by a dynamic range increase in w.

2.1. Parameter estimation

The model parameters mp,; are shared for all utterances and can
be initialized as the logarithm of the conditional probability of a
phoneme given its history computed over all training utterances:

In the following, we assume that the terms m; do not require
retraining. In order to alternately maximize the objective func-
tion (7) with respect to T and w, we adapt the approach pro-
posed in [8]. For a fixed T, Newton Raphson-like update of
w(s) is given by:

mp = log ( (8)

w(s)" " = w(s) + H, () Vs, ©)

where the V() is the gradient of the objective function (7)
with respect to w(s)

V(s = Z Zthl vni(s) — ohr’(s) Z vhi(s)) — Aw(s),

(10
where the terms ¢%'¢(s) are the model parameters computed
from the current estimate of w(s). H,, ) is an approximation
to the Hessian matrix proposed in [8] as

Hw(s) =

Z Z tF 60 max(vn(s), oni( Z vni(s

Similarly, to update the T matrix, we keep all w(s) fixed and
update each row of T as

. (D

Y = th + Vi, Hy (12)

where V', , is the gradient of the objective function (7) with
respect to the row tp; of T

Vi = Z(Vhl s)— ¢h1 ZVM

s

T Xtni, (13)
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and

H;,, = Z max(vni(s), prr(s) Z vhi(s))w(s)w(s)T—AL

(14)

Notice that in (13), since we only need the n-gram statistics
corresponding to n-gram history A, there is no need to load the
whole vector of n-gram statistics. This reduces memory over-
head of the T matrix update. Moreover, update of T rows be-
longing to different histories are completely independent, which
simplifies parallel estimation of T.

In our experiments Matrix T is initialized with small ran-
dom numbers. Update of T or w(s) may fail to increase the
objective function in (7). In that case, we keep backtracking
by halving the update step. In case the objective function did
not improve after certain number of backtracking, we retain the
value of t5; or w(s) from the previous iteration. The iterative
parameter estimation continues until the change in the objective
function becomes negligible. Once the SnGM is trained and
fixed, it can be used to extract iVectors from new utterances by
iteratively applying w(s) update formulas (9)-(11).

3. Experimental setup

To keep the results comparable to previously reported ones in
[6], we report performance of the system over NIST LRE2009.
We briefly explain the system description and the tuning. Inter-
ested readers are referred to the corresponding detailed system
description [9].

3.1. Data

The LREO9 task comprises 23 languages. The EVAL set con-
tains telephone data and narrowband broadcast data. The train-
ing data is divided into two sets denoted as TRAIN and DEV,
both of which comprises data from 23 languages correspond-
ing to the target list of the NIST LREQ9 task [10]. The TRAIN
set is filtered in order to keep at most 500 utterances per lan-
guage as proposed in [9], resulting in 9763 segments (345 hours
of recording). This allows to have almost balanced amounts
of training data per language, thus avoiding biasing the clas-
sifiers toward languages with lots of training data. The DEV
set contains 38469 segments mainly from the previous NIST
LRE tasks plus some extra longer segments from the standard
conversational telephone speech (CTS) databases (CallFriend,
Switchboard, etc.) and voice of America (VOA). The TRAIN
and the DEV sets contain disjoint sets of speakers. The DEV set
is used to tune parameters and score calibration in the backend.
A full description of the used data is given in [9].

3.2. Vector of n-gram counts

The n-gram counts were extracted using the Brno university of
technology (BUT) Hungarian phone recognizer, which is an
ANN/HMM hybrid [11]. The Hungarian phoneme list con-
tains 51 phonemes. We map short and long variations of simi-
lar phonemes to the same token, obtaining 33 phonemes. This
results in 33° = 35937 3-grams. Since neither 2-grams nor
1-grams improved the system performance we use only 3-gram
counts. The 3-gram expected counts are extracted from phone
lattices generated by the Hungarian phone recognizer.

3.3. Back end

We showed in [12] that iVector normalization is necessary to
good LID performance using phonotactic iVectors. For this
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Table 1: Caug x 100 for different systems on NIST LRE09
Evaluation task over 30s, 10s and 3s conditions.

System Reg. Coef. 30s 10s 3s

PCA - 293 829 22.60
SMM - 2.81 833 21.39
SnGM - 268 8.63 2315
RSnGM 0.01 252 7.06 19.11

work, after mean removal, length normalized iVectors are used
to train 23 logistic regression (LR) classifiers in one-vs-all con-
figuration using LIBLINEAR'. The scores generated by 23 LR
classifiers are calibrated on DEV data by means of a linear gen-
erative model followed by a multi-class LR as described in [13].

4. Analysis of the model parameters

Optimizing the objective function in (7) with L2 regularizer can
be seen as obtaining MAP point estimate of the model parame-
ters T and w with Gaussian priors. In Figure 2, the histogram
of 10 random dimensions of w over TRAIN set and histogram
of 10 random rows of the matrix T are depicted. The y axis
in both cases is the frequency of the bin. It can be seen from
Figure 2 that the values in case of w are Gaussian distributed,
which confirms assumption of the Gaussian priors over w vec-
tors is appropriate. On the other hand, in the case of T rows,
values seem to be Laplace distributed. This is mainly because
the subspace matrix T is expanding the iVector space to the
sparse original space of n-gram log-probabilities. Intuitively,
this suggests use of an L1 regularizer that corresponds to the
assumption of Laplace prior over estimation of the T matrix.

5. System evaluation & analysis

‘We showed in [12] that 600 is a reasonable choice for the sub-
space dimension over LRE2009 task. A 600 dimensional sub-
space and 5 iterations of parameter estimation is used since the
value of the objective function over TRAIN set seems to con-
verge after 4 iterations.

In Table 1, performance of the proposed SnGM (without
regularization) is compared with subspace multinomial model
(SMM) [6] and PCA-based feature extraction that is developed
according to the recipe from [4]. The PCA system was widely
used by the participants of NIST LRE11 as a phonotactic state
of the art system. Aside from marginal degradation for 10s
condition, the SMM outperforms PCA.

The SnGM system shows notable improvement over the
baseline for the 30s condition. However, it also shows perfor-
mance degradation over shorter conditions. We also noticed big
dynamic range for the iVectors corresponding to the short utter-
ances. Intuitively, for utterances with only few n-grams, there
can be subspace basis (columns of T') that do not (significantly)
affect multinomial distributions corresponding to the seen his-
tories. When estimating iVectors, its coefficients corresponding
to such basis can take “arbitrary” values without affecting the
likelihood of the observed n-grams. Note that SMM with single
multinomial distribution does not suffer from this problem, and
as such can be more robust to over-fitting.

To address the problem with over-fitting, we proposed
SnGM with regularized parameter estimation (RSnGM). We

Uhttp://www.csie.ntu.edu.tw/ cjlin/liblinear
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use a grid search with logarithmic scale to tune the regularizer
coefficient A. This is depicted in Figure 1. The A value is tuned
over the DEV set. Figure 1 shows that the best LID performance
in terms of the C,4 over DEV set is obtained with A = 0.01.
We also depicted the system performance on the held out EVAL
set to study generalization of the A tuning to other unseen data.
Interestingly, Figure 1 shows that the tuning of A over the DEV
set generalizes well to the LRE0O9 EVAL set since the best per-
formance on the NIST LRE09 EVAL set over all conditions are
also obtained with A = 0.01.

Table 1 shows effect of the regularized parameter estima-
tion on the overall system performance. Results show that the
RSnGM system shows significant improvement over the other
state of the art systems.

6. Conclusion & future works

We proposed an enhanced phonotactic iVector extraction model
over the n-gram counts. In the first step, a subspace n-gram
model is proposed to model conditional n-gram probabilities.
Modeling different 3-gram histories with separated multino-
mial distributions shows promising results for the long condi-
tion however, we observed model over-fitting for the short du-
ration conditions.

Dealing with the model over-fitting problem, a regularized

parameter estimation is proposed. Comparing the effect of the
regularized and non-regularized parameter estimation on the
overall system performance shows that the regularized parame-
ter estimation is necessary to avoid over fitting of the subspace
to the TRAIN set particularly for the short utterances. The pro-
posed regularized subspace n-gram model shows consistent and
significant improvement compared to the state of the art phono-
tactic systems as our baseline over all conditions. To the very
best knowledge of the author, this is the best result reported on
this task.

The Subspace n-gram model also reduces memory require-
ment for the parameter estimation and simplifies parallel param-
eter estimation that leads to a faster model training.

Our experiment with the proposed model shows importance
of the numerical optimization during the parameter estimation.
Since the T matrix is expanding iVector to a huge sparse space
of the n-gram log-probabilities, use of an LI regularizer for es-
timating the T matrix may give us a better subspace model and
will be explored in future.
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Chapter 6

Extensions of the i-vectors
concept

This chapter deals with different extensions and modifications of the model for i-vector
extraction. A simplified i-vector extraction model is proposed (section 6.1) in order
to facilitate implementations of i-vector extraction into resource limited embedded
devices. Discriminative training of such simplified model is proposed (section 6.2) to
compensate for the performance loss introduced by the approximations used. Finally,
extensions of i-vector extractor robust to additive background noise are proposed in
papers from sections 6.3 and 6.4.
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ABSTRACT

This paper introduces some simplifications to the i-vector
speaker recognition systems. I-vector extraction as well as train-
ing of the i-vector extractor can be an expensive task both in terms
of memory and speed. Under certain assumptions, the formulas for
i-vector extraction—also used in i-vector extractor training—can be
simplified and lead to a faster and memory more efficient code. The
first assumption is that the GMM component alignment is constant
across utterances and is given by the UBM GMM weights. The sec-
ond assumption is that the i-vector extractor matrix can be linearly
transformed so that its per-Gaussian components are orthogonal. We
use PCA and HLDA to estimate this transform.

Index Terms— speaker recognition, i-vectors, Joint Factor
Analysis, PCA, HLDA

1. INTRODUCTION

The i-vector systems have become the state-of-the-art technique in
the speaker verification field [1]. They provide an elegant way of re-
ducing the large-dimensional input data to a small-dimensional fea-
ture vector while retaining most of the relevant information. The
technique was originally inspired by Joint Factor Analysis frame-
work introduced in [2, 3].

The computational requirements for training the i-vector sys-
tems and estimating the i-vectors, however, are too high for certain
types of applications. In this paper we propose simplifications to the
original i-vector extraction and training schemes, which would dra-
matically decrease their complexity while retaining the recognition
performance.

Our main motivation was running robust speaker verification
systems on small scale devices such as mobile phones, as well as
speeding up the process of speaker verification in real-time systems.

This paper is organized as follows: Section 2 introduces theo-
retical background of i-vector extraction and training of the i-vector
extractor, Sections 3 and 4 introduce the proposed methods for i-
vector extraction, Section 5 describes the experimental setup, Sec-
tion 6 presents the recognition, speed, and memory performance,
and Section 7 concludes the paper.

2. THEORETICAL BACKGROUND

Let us first state the motivation for the i-vectors. The main idea is
that the speaker- and channel-dependent GMM supervector s can be
modeled as:

s=m+ Tw (1)
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where m is the UBM GMM mean supervector, T is a low-rank ma-
trix representing M bases spanning subspace with important vari-
ability in the mean supervector space, and w is a standard normal
distributed vector of size M.

For each observation X, the aim is to estimate the parameters of
the posterior probability of w:

p(W|X) = N(w;wa, L") )

The i-vector is the MAP point estimate of the variable w, i.e. the
mean wy of the posterior distribution p(w|X’). It maps most of
the relevant information from a variable-length observation X to a
fixed- (small-) dimensional vector. T is referred to as the i-vector
extractor.

2.1. Data

The input data for the observation X is given as a set of zero- and
first-order statistics — nx and fx. These are extracted from F' di-
mensional features using a GMM UBM with C' mixture components,
defined by a mean supervector m, component covariance matrices
(), and a vector of mixture weights w. For each Gaussian compo-
nent c, the statistics are given respectively as:

N§ > 3)
t

> 0, @)

t

where o, is the feature vector in time ¢, and %@ is its occupation
probability. The complete zero- and first-order statistics supervec-
/ AN ’
tors are fx = (f;(\}) ,...,ffyc) ) ,and ny = <N§{1),...,N)((C>> .
For convenience, we center the first order statistics around the

UBM means, which allows us to treat the UBM means effectively as
a vector of zeros:

£y =

£ « £ - NYm®
m® — o0

Similarily, we “normalize” the first-order statistics and the matrix T
by the UBM covaricances, which again allows us to treat the UBM
covariances as an identity matrix':

£ — mO3f

TO@ L nE- 3 T
»(©

!Part of the factor estimation is a computation of T/ X~ f, where the de-
composed X~ can be projected to the neigboring terms, see [2] for detailed
formulae.
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where 292 is a Cholesky decomposition of an inverse of (),
and T(®) is a F' x M sub-matrix of T corresponding to the ¢ mixture

/
component such that T = <T(1)/, o T<C),> .

2.2. Parameter Estimation

As described in [2] and with the data transforms from previous sec-
tion, for an observation X, the corresponding i-vector is computed
as a point estimate:

wx = Ly T'fx (5)
where L is the precision matrix of the posterior distribution, com-
puted as:

c

Ly =1+ N{TOT® ()
c=1

The computational complexity of the whole estimation for one ob-

servation is O(CFM + CM? + M?). The first term represents

the T'f+ multiplication. The second term represents the sum in (6)

and includes the multiplication of L;l with a vector. The third term

represents the matrix inversion.

The memory complexity of the estimation is O(C'F M +CM?).
The first term represents the storage of all the input variables in (5),
and the second term represents the pre-computed matrices in the sum
of (6).

Note that the computation complexity grows quadratically with
M in the sum of (6), and linearily with C. This becomes the bottle-
neck in the i-vector computation, resulting in high memory and CPU
demands.

2.3. Model Training

Model hyper-parameters T are estimated using the same EM algo-
rithm as in case of JFA [2]. Note that our algorithm makes use of
an additional minimum divergence update step [3, 4], which yields a
quicker convergence, but is not described here.

In the E step, the following accumulators are collected using all
training observations 4:

C=> fiw] ™

AP =3 N (L7 + wiw)) (8)

where w; and L; are the estimates from (5) and (6) for observation
1. The M step update is given as follows:

T = CcA©@™' ©)

3. SIMPLIFICATION 1: CONSTANT GMM COMPONENT
ALIGNMENT

In this method, we apply the assumption that the GMM component
alignment is constant across segments, i.e. the posterior occupation
probabilities v(*) in (3) are replaced by their prior probabilities rep-
resented by the UBM GMM weights. The new zero-order statistics
are then:

N = 0Ny (10)

where w(c_) is the GMM UBM weight of component ¢, and Nx =
Z]C:l N/.(YJ). Substituting N)(:) in (6) by ]\7/.(;) from (10), we get

Ly =1+ NxW (1D

where

c
W= r© (12)

c=1

Exploiting this simplification in the i-vector extractor training
can be done at two stages: substituting L; in (8) by (11), and sub-
stituting [V, i(c) in (8) by (10). Based on our experiments, only the
former turned out to be effective, therefore we will not report any
results with the latter one.

Note that W in (12) is independent of data and can be pre-
computed. Its resulting size is M x M yielding faster computation
and less memory demands. The computational copmlexity of this al-
gorithm reduces to O(C'FM + M?) with the dominating inversion
step. The memory complexity reduces to O(CFM + M?).

4. SIMPLIFICATION 2: I-VECTOR EXTRACTOR
ORTHOGONALIZATION

Let us assume, that we can find a linear (orthogonal) transformation
G which would orthogonalize all individual per-component sub-
matrices T(). Orthogonalizing T would diagonalize L, which
would need to be rotated back using G. We can then express (6) as

Ly = GOV LGt (13)
where
< 1
Ly =G'G+Y NYGTO' TG (14)
c=1

Assuming that Ly is diagonal, we can rewrite it as
Lx = Diag (diag(G'G) + Vnx) (15)

where V is a M x C matrix whose cth column is diag(G’T“),T(c) G).
Diag(-) maps a vector to a diagonal matrix, while diag(-) maps a
matrix diagonal to a vector. Combining (13) and (5), we get

wx = GLy'G'T'fx (16)

The computational complexity of this approach is O(C'F M) as we
can effectively simplify the matrix inversion to a vector element-
wise inversion. The memory complexity is O(CFM + M?+CM),
where M? represents the extra diagonalization matrix G, and C M
represents V from (15).

The task is to estimate the orthogonalization matrix G. Let us
take a look at two approaches we investigated:

4.1. Eigen-decomposition

Let W be the weighted average per-component covariance matrix
from (12). We assume W to be a full-rank matrix with M linearly
independent eigenvectors. Then W can be factorized as

W=QAQ " an
where Q is a square M x M matrix whose ith column is the eigen-
vector q; of W and A is a diagonal matrix whose diagonal elements

are the corresponding eigenvalues. Matrix Q clearly orthogonalizes
the space given by W, therefore we can set G = Q.
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4.2. Heteroscedastic Linear Discriminant Analysis

If the average covariance matrix W from (12) is close to diagonal,
then the eigen-decomposition is not effective in diagonalizing the
per-component covariances.

HLDA is a supervised method, which allows us to derive such
projection that best de-correlates features associated with each par-
ticular class (maximum likelihood linear transformation for diago-
nal covariance modeling [5]). An efficient iterative algorithm [6]
was used in our experiments to estimate matrix G. In our task, the
classes were defined as Gaussian mixture components. The within-
class covariance matrices were given by T(C)IT(C), and the occupa-
tion counts were provided as the mixture weights w(®.

Note that the well known Linear Discriminant Analysis (LDA)
can be seen as special case of HLDA, where it is assumed that co-
variance matrices of all classes are the same.

5. EXPERIMENTAL SETUP

5.1. Feature Extraction

In our experiments, we used cepstral features, extracted using a
25 ms Hamming window. 19 Mel frequency cepstral coefficients
together with log-energy were calculated every 10 ms. This 20-
dimensional feature vector was subjected to short time mean and
variance normalization using a 3s sliding window. Delta and dou-
ble delta coefficients were then calculated using a 5-frame window
giving 60-dimensional feature vectors.

Segmentation was based on the BUT Hungarian phoneme recog-
nizer and relative average energy thresholding. Also, short segments
were pruned out, after which the speech segments were merged to-
gether.

5.2. System Training

One gender-independent universal background model was repre-
sented as a diagonal covariance, 2048-component GMM. It was
trained using LDC releases of Switchboard II, Phases 2 and 3;
switchboard Cellular, Parts 1 and 2 and NIST 2004-2005 SRE.

One (gender-dependent) i-vector extractor was trained on the fe-
male part of the following telephone data: NIST SRE 2004, NIST
SRE 2005, NIST SRE 2006, Switchboard I Phases 2 and 3, Switch-
board Cellular Parts 1 and 2, Fisher English Parts 1 and 2 giving 8396
female speaker in 1463 hours of speech, and 6168 male speakers in
1098 hours of speech (both after voice activity detection).

Originally, 400 dimensional i-vector extractor was chosen as a
reference. As mentioned later, training of the 800 dimensional sys-
tem got feasible using one of the proposed methods. We trained such
system to demonstrate the potentials of the proposed methods.

5.3. Scoring and Normalization

The same technique as in [1] was used. The extracted i-vectors were
scaled down using an LDA matrix to 200 dimensions, and further
normalized by a within-class covariance matrix. Both of these ma-
trices were gender-dependent and were estimated on the same data
as the i-vector extractor, except the Fisher data was excluded, result-
ing in 1684 female speakers in 715 hours of speech and 1270 male
speakers in 537 hours of speech.

Cosine distance of the two input vectors was used as the raw
score:

<Wtarget ) Wtest>

score (Wearget; Weest) = Tweargeo [ TWrent]
arge es

(18)
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The cosine distance scores were normalized using gender-dependent
s-norm [7] with a cohort of 400 speakers having 2 utterances per
speaker.

5.4. Test Setup

The results of our experiments are reported on the female part of the
Condition 5 (telephone-telephone) of the NIST 2010 speaker recog-
nition evaluation (SRE) dataset [8]. The recognition accuracy is
given as a set of equal error rate (EER), and the normalized DCF
as defined both in the NIST 2010 SRE task (DCFew) and the pre-
vious SRE evaluations (DCF4).

The speed and memory performance of i-vector extraction were
tested on a set of 50 randomly chosen utterances from the MIXERO0S
database. The input data (given as a set of fixed-size zero- and first-
order statistics) and all of the input parameters were included in
the general memory requirements. The following algorithm-specific
terms were pre-computed (thus not included in the reported times),
and comprised in the algorithm-specific memory requirements:

o T©'T® in (6)
e Win(12)
e Gand TG in (13) and (16), and V in (15)
The algorithms were tested in MATLAB (R2009b) 64-bit, running in

a single thread and the default double-precision mode. The machine
was an Intel(R) Xeon(R) CPU X5670 2.93GHz, with 36GB RAM.

6. RESULTS

In the following section, we will reference the systems according to
the i-vector dimensionality and to the extraction method used. Base-
line stands for the original method as in Sec. 2.2, and simple I and
simple 2 reference to the proposed simplifications.

Table 1 summarizes the systems with respect to verification ac-
curacy. Fig. 1 visualizes the different systems on a constellation plot.
The “800 baseline” system is clearly the winner, however “800 sim-
ple 2 - HLDA” is a tight competitor to the “400 baseline”.

norm old DCF x 100

X 400 baseline
+ 400 simple 1
O 400 simple 2 - eigen
O 400 simple 2 - HLDA
" < 800 baseline
o 800 simple 1
A 800 simple 2 - eigen|
% 800 simple 2 - HLDA
)

35 38 ) iz
norm new DCF x 100

Fig. 1. Constellation plot of the individual systems

6.1. Speed and Memory

As described earlier in Sec. 5.4, the computation time does not in-
clude reading of the necessary data and pre-computation of some
terms. The results are reported in Tab. 2. The dominating complex-
ity of matrix inversion makes “simple 2” faster than “simple 17, as
described in Sec. 3 and 4.



Table 1. Comparison of the proposed i-vector extraction methods in
terms of normalized DCFs and EER

DCFrew DCFoa  EER
400 baseline 0.5395 0.1651  3.58
400 simple 1 0.6664 02124  4.62
400 simple 2 - eigen 0.6627 0.2065  4.40
400 simple 2 - HLDA  0.6236 0.1899  4.19
800 baseline 0.4956 0.1468  3.05
800 simple 1 0.6057 0.1976  4.06
800 simple 2 - eigen 0.5414 0.1879  3.92
800 simple 2 - HLDA  0.5694 0.1822  3.84

Table 2. Comparison of the proposed i-vector extraction methods in
processing speed.

absolute [sec]  relative to 400 baseline

400 baseline 13.70 100.00%
400 simple 1 1.01 7.37%
400 simple 2 0.54 3.94%
800 baseline 65.75 480.00%
800 simple 1 3.64 26.57%
800 simple 2 1.11 8.10%

Tab. 3 shows memory allocation for different systems. We see
that for most of the current hardware configurations, the baseline
systems could be a problem.

Table 3. Comparison of the proposed i-vector extraction methods
in memory allocation (in MB). The “constant” term depends on the
i-vector dimensionality.

constant  algorithm specific total
400 baseline 422.96 2,500.00  2,923.00
400 simple 1 ? 1.22 424.18
400 simple 2 ” 7.47 430.43
800 baseline 802.84 10,000.00  10,802.84
800 simple 1 ? 4.88 807.83
800 simple 2 ” 17.38 820.23

Note that prior to the scoring, WCCN and LDA dimensional-
ity reduction are applied to the i-vectors (see Sec. 5.3). Projecting
this linear transformation directly into the leftmost G of (16) could
further decrease the complexity of the “simple 2" algorithm.

6.2. Simplification 1 in Training

While none of the simplifications had positive contribution to the
test accuracy, the training phase simplification results in negligible
accuracy changes while exploiting some of the speed and memory
advantages as described in the previous section. Table 4 shows the
difference.

Time and memory complexity of collecting the accumulators A
from (8) is almost identical to the computation of L in (6). The
proposed method still keeps the same accumulator collection, how-
ever, avoiding the expensive computation of (6) decreases the E step
time and memory complexity by a factor of 2.

Table 4. Comparison of the proposed i-vector extractor training
methods in terms of normalized DCFs and EER

DCFuew DCFola EER
400 baseline 0.5460 0.1722  3.40
400 simple 1 0.5376 0.1729  3.42

7. CONCLUSIONS

We managed to reduce the memory requirements and processing
time for the i-vector extractor training so that higher dimensions can
be now used while retaining the recognition accuracy. As for i-vector
extraction, we managed to reduce the complexity of the algorithm
with sacrificing little recognition accuracy, which makes this tech-
nique usable in small-scale devices.

As a practical result, Simplification 1 was used in the MOBIO
project, when porting a speaker verification system on a mobile
phone platform.

Not only we managed to scale down the complexity of the sys-
tem in terms of real-world applications, but also we have prepared a
set of simplified formulas which could potentially find use in a future
research, such as discriminative training.
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Abstract

We propose a strategy for discriminative training of the i-
vector extractor in speaker recognition. The original i-vector
extractor training was based on the maximum-likelihood gener-
ative modeling, where the EM algorithm was used. In our ap-
proach, the i-vector extractor parameters are numerically opti-
mized to minimize the discriminative cross-entropy error func-
tion. Two versions of the i-vector extraction are studied—the
original approach as defined for Joint Factor Analysis, and the
simplified version, where orthogonalization of the i-vector ex-
tractor matrix is performed.

Index Terms: speaker verification, i-vectors, PLDA, discrimi-
native training

1. Introduction

Recently, systems based on i-vectors [1, 2] (extracted from cep-
stral features) have provided superior performance in speaker
verification. The so-called i-vector is an information-rich low-
dimensional fixed-length vector extracted from the feature se-
quence representing a speech segment (see Section 2 for de-
tails on i-vector extraction). A speaker verification score is
produced by comparing two i-vectors corresponding to the seg-
ments in the verification trial. The function taking two i-vectors
as an input and producing the corresponding verification score
is designed to give the log-likelihood ratio between the “same-
speaker” and “different-speaker” hypotheses. Best performance
is currently obtained with Probabilistic Linear Discriminant
Analysis (PLDA) [2]—a generative model that models i-vector
distributions allowing for direct evaluation of the desired log-
likelihood ratio verification score (see Section 2.4 for details).
In [3], it was shown that discriminatively training the PLDA
parameters can lead to improvement in recognition perfor-
mance. In this paper, we go deeper in the speaker recognition
chain and we show that a similar discriminative training frame-
work can be adopted for training the parameters of the i-vector
extractor. We apply this technique in two kinds of i-vector ex-
tractor. In the first case, the traditional extraction—as proposed
in [1]—is studied. It will be further referred to as the full i-
vector extractor. Its parameters are given by a single matrix
T. In the second case, the simplified extraction (referred to as
“Simplification 2” in [4]) is addressed. Its parameters are given

BUT researchers carrying on this work were funded by the Office
of the Director of National Intelligence (ODNI), Intelligence Advanced
Research Projects Activity (IARPA), through the Army Research Lab-
oratory (ARL). All statements of fact, opinion or conclusions contained
herein are those of the authors and should not be construed as repre-
senting the official views or policies of IARPA, the ODNI, or the U. S.
Government.
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by three matrices—T, G, and V. It will be further referred to
as the simplified i-vector extractor.

This paper is organized as follows: Section 2 introduces
a theoretical background of the individual parts of the speaker
recognition chain, Section 3 introduces the technique of dis-
criminative training, Section 4 describes the experimental setup
and results, and Section 5 concludes the paper.

2. Theoretical background

The i-vectors provide an elegant way of reducing large-
dimensional input data to a small-dimensional feature vector
while retaining most of the relevant information. The technique
was originally inspired by Joint Factor Analysis (JFA) frame-
work introduced in [5, 6].

The main idea is that the speaker- and channel-dependent
Gaussian Mixture Model (GMM) supervector s can be modeled
as:

s=m+ Tw nH

where m is the Universal Background Model (UBM) GMM
mean supervector, T is a low-rank matrix representing M bases
spanning subspace with important variability in the mean super-
vector space, and w is a latent variable of size M/ with standard
normal distribution.

For each observation X, the aim is to compute the parame-
ters of the posterior probability of w:

p(w|X) = N(w;wx,Ly') )

The i-vector ¢ is the Maximum a Posteriori (MAP) point esti-
mate of the variable w, i.e., the mean w x of the posterior distri-
bution p(w|X). It maps most of the relevant information from
a variable-length observation X to a fixed- (small-) dimensional
vector. Ly is the precision of the posterior distribution.

2.1. Sufficient statistics

The input data for the observation X' is given as a set of zero-
and first-order statistics — nx and fr. These are extracted
from F' dimensional features using a GMM UBM with C' mix-
ture components, defined by a mean supervector m, component
covariance matrices (), and a vector of mixture weights w.
For each Gaussian component c, the statistics are given respec-
tively as

NG = Yo 3)
t

£ = > 4% @
t



where o; is the feature vector in time ¢, and 'y,£c> is its occu-
pation probability. The complete zero- and first-order statis-

’ "N/
tics supervectors are fr = (f)(cl) ,...,ff\{C) ) ,and ny =

!
(N;”, o Nﬁf)) .
For convenience, we center the first-order statistics around
the UBM means, which allows us to treat the UBM means ef-
fectively as a vector of zeros:

£ « £ - NYm®
m® «— 0
Similarly, we “normalize” the first-order statistics and the ma-

trix T by the UBM covariances, which again allows us to treat
the UBM covariances as an identity matrix:'

£« mO-)
T L wE-ip©
IR |
where 3972 is a Cholesky decomposition of an inverse of
(9, and T(© is an F x M submatrix of T corresponding to
/
the ¢ mixture component such that T = (T(l),7 ... 7T(C)/) .

2.2. i-vector extraction

As described in [5] and with the data transforms from the pre-
vious section, for an observation X, the corresponding i-vector
is computed as a point estimate:

dr =Ly T'fx ®)

where L is the precision matrix of the posterior distribution,
computed as

C
Ly =1+ NOT'T® (6)

c=1

2.3. i-vector extraction—simplified version

According to [4], the i-vector extraction can be simplified to
reduce the computation complexity. Assuming there is a lin-
ear (orthogonal) transformation G that would orthogonalize all
individual per-component submatrices T, the i-vector extrac-
tion can be expressed as

¢ = GL'G'T'fx ©)

where .

Lx = Diag (I+ Vny) ©)
where V is, an M x C matrix whose cth column is
diag(G'T®'T()G). Diag(-) maps a vector to a diagonal
matrix.

2.4. PLDA

To facilitate comparison of i-vectors in a verification trial, we
use a Probabilistic Linear Discriminant Analysis (PLDA) model
[7,2]. It can be seen as a special case of JFA with a single Gaus-
sian component. Given a pair of i-vectors, PLDA allows to com-
pute the log-likelihood for the same-speaker hypothesis and for

!Part of the factor computation is the evaluation of T/X~'f, where
the decomposed X~ can be projected to the neighboring terms, see [5]
for detailed formulae.

the different-speaker hypothesis. One can directly evaluate the
log-likelihood ratio of the same-speaker and different-speaker
trial using

s(¢y,¢,) = ¢?A¢2 + ¢§A¢’1 + ¢?F¢1 + ¢§I‘¢2
+ (D1 +y) c+E, ©

where A, T', c, k are derived from the parameters of PLDA as
in [3].

2.5. i-vector length normalization

PLDA assumes that the input i-vectors are normally distributed.
However, in earlier studies ([2]), it has been shown that this
assumption is not met.

Length normalization [1, 8] of the i-vectors forces them to
lie on a unity sphere, which brings them closer to the Gaussian
distribution shell where most of the probability density mass is
concentrated. The transformation is given as

5. ¢ __ ¢
L ol oo

(10)

3. Discriminative classifier

We describe how we train the i-vector extractor parameters 6
in order to discriminate between same-speaker and different-
speaker trials, without having to explicitly model the distribu-
tions of i-vectors.

The set of training examples, which we continue referring
to as training trials, comprises both different-speaker, and same-
speaker trials. Let us use the coding scheme ¢ € {—1, 1} to rep-
resent labels for the different-speaker, and same-speaker trials,
respectively. Assigning each trial a log-likelihood ratio s and
the correct label ¢, the log probability of recognizing the trial
correctly can be expressed as

log p(t|1, ¢2) = —1og(1 + exp(—st)). (1n

In the case of logistic regression, the objective function to be
maximized is the log probability of correctly classifying all
training examples, i.e., the sum of expressions (11) evaluated
for all training trials. Equivalently, this can be expressed by
minimizing the cross-entropy error function, which is a sum
over all training trials

N

A
E(0) =Y anEra(tnsn) + Sle - ouLl®,  (12)

n=1

where the logistic regression loss function
ErLr(ts) = log(1 + exp(—ts)) (13)

is simply the negative log probability (11) of correctly rec-
ognizing a trial. We have also added the regularization term
21|16 — 6w ||*, where X is a constant controlling the trade-
off between the error function and the regularizer, and Gy, is
the original maximum-likelihood estimate of the given parame-
ter. This kind of regularization is similar to the sum-of-squares
penalty; however, it controls the distance from the original pa-
rameters rather than the parameter range itself. This way, op-
timizing the error function fine tunes the already good parame-
ters.

The coefficients ., allow us to weight individual trials.
Specifically, we use them to assign different weights to same-
speaker and different-speaker trials. This allows us to select
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a particular operating point, around which we want to optimize
the performance of our system without relying on the proportion
of same- and different-speaker trials in the training set. The ad-
vantage of using the cross-entropy objective for training is that
it reflects performance of the system over a wide range of oper-
ating points (around the selected point).

3.1. Gradient evaluation
In order to numerically optimize the parameters 8, we want to

express the gradient of the error function

N
VE@©) = on L“gg"s")

n=1

+ A6 — Om1). 14)

We see that the loss function Erz(tnsr) is not directly depen-
dent on 6; therefore, the chain rule must be subsequently ap-
plied.

Let us start by deriving the loss function w.r.t. the direct
parameters of Err

OELr o OELRr Os

90— 0s 06 (1)
The first r.h.s. fraction of (15) is defined as
OFLRr (ts) .
95 = —to(—ts), (16)

where o (-) is the logistic function. Noting that the score s is a
function of a length-normalized i-vector pair

s = 3(&17 &2)7
we get
aﬂ — (¢1a ¢2) a(zbl + 5(&1_7 (2)2) % (17)
00 dp, 06 o¢p, 00
From (9), knowing that A and I are symmetrical, we can derive
300¢2) _ 540 A 4 2gT 4 c (18)
09,

Note that the two sides of the trial can be swapped so that an
analogous equation applies when deriving w.r.t. ¢»,. Again, we
apply the chain rule to derive through the length normalization:

96 0400
where 8(2)
1
56 = g (1~ (@%)). (@0)

At this point, it is trivial to express the cross-entropy E
as a function of some arbitrary set of M i-vectors & =

(61, , ). With the given formulas for derivatives, it is
also straightforward to express the gradient a(Eaf:). To derive

through the i-vector extractor, we will make use of the chain
rule for differentials, where the following holds:

OF 22
=N dpi; =Y —dby. 21
%ja% b5 =2 _ g, @1

By making use of the matrix differentials, we can express d® as
a function of d@. For the full i-vector extractor, the differential
for j-th column of d® is given as

d¢; = —L; 'dL;L; ' T't; + L; 'dT'; 22)
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dL; =S N (dT(“VT“> T T<C>’dT<C>) 23)

In the case of the simplified i-vector extractor, the corre-

sponding differentials w.r.t. the matrices T, G, and V are given
respectively as

d¢p;, = GL;'GdT'f; (24)
dpg; = (dGi,;lc;’ + Gﬁ;ldG/) T'f; (25
dpy; = 7GI;;1Diag(anj)f,;1G'Tlfj (26)

where L is defined in (8). Substituting one of the d¢p from the
above catalogue to (21), we can find the gradient aE(e)

In the case of the full i-vector extractor, the derlvatlve can
be expressed as

M

IE(T) <~ [;-10E I~

o —g ( ikl +¢]a¢ )TNJ
,16E

+L; a(pf @7

where IN; is a diagonal matrix, whose entries are
(N;U7 e ,N;l),N]@), e ,NJ(Q), -++), where every N;l) of
n; is expanded to match the feature dimensionality.

For the simplified i-vector extraction, the derivatives of the
parameters are

OB(T) Ry OB o iy
5 = ij ad)‘GLj G (28)
J=1 J
OEB(G) i OE  OFE
preii ;ch; Tf,6¢ +6¢/J (29)
E(V) M OF
’ / r —2
v = > -n; (87)(; o f{TGL; ) (30)
j=1 J

where the o stands for the Hadamard product.

4. Experiments
4.1. Test setup

The results of our experiments are reported on the female part
of Condition 5 of the NIST 2010 speaker recognition evalua-
tion (SRE) dataset [9]. The recognition accuracy is given as
a set of equal error rate (EER), and the normalized detection
cost function (DCF) as defined in both the NIST 2010 SRE task
(DCFpew) and the previous SRE evaluations (DCF14).

4.2. Feature extraction

In our experiments, we used cepstral features, extracted using
a 25 ms Hamming window. 19 mel frequency cepstral coeffi-
cients together with log energy were calculated every 10 ms.
This 20-dimensional feature vector was subjected to short time
gaussianization [10] using a 3 s sliding window. Delta and dou-
ble delta coefficients were then calculated using a five-frame
window giving a 60-dimensional feature vector.

Segmentation was based on the Brno University of Tech-
nology (BUT) Hungarian phoneme recognizer and relative av-
erage energy thresholding. Also, short segments were pruned
out, after which the speech segments were merged.



4.3. System Setup

One gender-independent UBM was represented as a diagonal
covariance, 64-component GMM. It was trained using LDC
releases of Switchboard II Phases 2 and 3, Switchboard Cellular
Parts 1 and 2, and NIST 2004-2005 SRE.

The initial i-vector extractor T was trained on the female
portion of the following telephone data: NIST SRE 2004, NIST
SRE 2005, NIST SRE 2006, Switchboard II Phases 2 and 3,
Switchboard Cellular Parts 1 and 2, Fisher English Parts 1 and
2, giving 8396 female speakers in 1463 hours of speech. The
dimensionality of the i-vectors was set to 400. The initial or-
thogonalization matrix G was estimated using heteroscedastic
linear discriminant analysis (HLDA), as described in [4].

As described in Section 2.5, length normalization was ap-
plied after i-vector extraction.

PLDA was trained using the same data set as the T matrix.
Only the Fisher portion was trimmed off, reducing the amount
of data by approximately 50%. The across-class covariance ma-
trix (eigen-voices) was of rank 90, and the within-class covari-
ance matrix (eigen-channels) was full-rank.

The training dataset for the discriminative training was
identical to the dataset of PLDA. The cross-entropy function
was evaluated on the complete trial set, i.e., all training samples
were scored against each other, giving 378387 same-speaker tri-
als, and over 468 million different-speaker trials.

4.4. Numerical optimization

The numerical optimization of the parameters was performed
in matlab using the optimization and differentiation tools in the
BOSARIS Toolkit [11]. It uses the trust region Newton conju-
gate gradient method, as described in [12, 13]. In addition to
the first derivatives as given in Section 3.1, this method needs
to evaluate the second order Hessian-vector product [14], which
can be effectively computed via the ‘complex step differentia-
tion’ [15].

Different values for the regularization coefficient A were
tested. Good convergence and stability were observed when
setting it to 0.2 for the full i-vector extractor parameters, and
0.8 for the simplified version. In the case of the simplified
version, the matrices G and T were optimized subsequently.
It was found, however, that even though optimizing V kept
on decreasing the error function, it would always decrease the
recognition performance on the test set. Different regularizers
were also tested; however, it turned out that together with good
initialization, the discriminative training works only as a “fine-
tuner” of the initial parameters.

Table 1 shows the situation when training the full i-vector
extractor. There is only a slight improvement in performance.
In the case of the simplified i-vector extractor, the improvement

Table 1: Comparison of ML and discriminatively trained full
i-vector extractors in terms of normalized DCFs and EER

DCFnew DCFoa  EER

ML 0.6678 0.2200 4.74
discriminative 0.6478 0.2144 4.41

is more apparent—see Table 2 for results. We see that the sim-
plified system is still worse than the full one; however, discrim-
inative training has shown its potential.

Table 2: Comparison of ML and discriminatively trained sim-
plified i-vector extractors in terms of norm. DCFs and EER

DCFnew DCFoa  EER

ML 0.7496 0.2710 6.18
discriminative 0.6691 0.2403 5.41

5. Conclusions

We have proposed a technique for discriminative training of the
i-vector extractor parameters using cross-entropy as the error
function. We have applied the technique both to the original
i-vector extractor and to its simplified version. In both cases,
the discriminative training was effective, giving higher relative
improvement in the simplified case.
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ABSTRACT

We propose a novel approach for noise-robust speaker recognition,
where the model of distortions caused by additive and convolu-
tive noises is integrated into the i-vector extraction framework. The
model is based on a vector taylor series (VTS) approximation widely
successful in noise robust speech recognition. The model allows for
extracting “cleaned-up” i-vectors which can be used in a standard
i-vector back end. We evaluate the proposed framework on the
PRISM corpus, a NIST-SRE like corpus, where noisy conditions
were created by artificially adding babble noises to clean speech
segments. Results show that using VTS i-vectors present significant
improvements in all noisy conditions compared to a state-of-the-
art baseline speaker recognition. More importantly, the proposed
framework is robust to noise, as improvements are maintained when
the system is trained on clean data.

Index Terms— speaker recognition, Vector Taylor Series, i-
vector, noisy speaker verification, noise compensation

1. INTRODUCTION

Recently, the speaker verification community has seen a significant
increase in accuracy from the successful application of the i-vector
extraction paradigm [1]. Along with a Bayesian back-end such as
probabilistic linear discriminant analysis (PLDA) [2, 3, 4], it has be-
come the state of the art in speaker verification. In this framework,
each speech utterance with variable duration is projected into an i-
vector — a single low-dimensional feature vector, typically of a few
hundred components. More specifically, an i-vector is a point es-
timate of a latent variable vector representing a Gaussian mixture
model (GMM) adapted to the corresponding utterance. A PLDA
model is then used to compare i-vectors representing different utter-
ances and to produce verification scores.

This work is focused on the robustness of speaker verification
systems in the presence of noisy speech. With recent widespread
use of speech-enabled services for consumers and growing impor-
tance of speaker recognition in security and defence, the need for
noise-robust techniques is on the rise. Although current state-of-
the-art speaker recognition systems achieve very high performance
on clean data, there are few studies of noisy conditions. In a pre-
vious study [5], we have successfully proposed a robust strategy to

The research by authors at SRI International was funded through
a development contract with Sandia National Laboratories (#DE-AC04-
94AL85000). The views herein are those of the authors and do not neces-
sarily represent the views of the funding agencies. This work was done while
Lukas Burget was at SRI International.
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compensate for degradations from noise by adopting a multi-style
training approach for the PLDA backend. While significant im-
provements were obtained, worse performance by an order of mag-
nitude are still observed when comparing clean to degraded condi-
tions. In this work, we propose to tackle the problem at an earlier
stage, where the i-vector extractor explicitly takes into account the
potential degradations in the speech data.

Our approach is inspired by a successful acoustic modeling tech-
nique for noise robust automatic speech recognition (ASR) [6, 7],
where a VTS approximation is used to model non-linear distortions
in the mel-cepstral domain caused by both additive and convolutive
noise. In ASR, the VTS approximation is used to synthesize acous-
tic model of noisy speech from a given clean speech model and from
estimated noise distributions. Results observed in [7, 8, 9] show that
a significant improvement can be obtained from the VTS approach
in noisy environments.

In contrast to ASR, where VTS is used to synthesize noisy
model, we use the approach in a somewhat opposite manner where
our goal is to obtain a clean version of an i-vector. In our work,
VTS is used to decompose the GMM adapted to a noisy speech
segment into i) a clean GMM represented by “clean” i-vector and
ii) the distributions of the noise. One of the main benefit is that the
resulting i-vector can be used in a standard PLDA backend.

It is worth to point out the similarity between our technique and
joint factor analysis (JFA) [10], where the low-dimensional GMM
representation is also decomposed into speaker and channel factors.
However, the channel factors, which are responsible for modeling
the unwanted variability (such as additive and convolutive noise),
can only model linear additive effects in the GMM mean super-
vector domain. In contrast, our technique considers highly non-
linear effects that an additive noise has on GMM all parameters (both
means and covariances). Moreover, our noise compensation tech-
nique is integrated into the more modern i-vector framework, which
has been shown to be superior to JFA [1].

2. UBM ADAPTATION USING VTS

The first step of the standard i-vector extraction is to compute the
zero and first order sufficient statistics for a universal background
model (UBM). In our approach, the sufficient statistics are collected
from a noisy UBM synthesized for each speech segment using the
VTS based distortion model from the UBM trained on clean data
and from the additive and convolutive noise distributions. Such VTS
noise adaptation is essentially the same as the one in noise robust
ASR [7] for HMM models.

We first present the formulas for adapting the UBM to noisy



speech while assuming known distributions of the additive and con-
volutive noise. We then derive the expectation-maximization (EM)
algorithm to estimate the noise distribution directly from the speech
segments. More detailed discussion and derivation of the presented
formulas can be found in [8].

2.1. UBM adaptation to noisy speech

The VTS approach is based on the knowledge of the speech fea-
ture extraction process. Here the mel-frequency cepstrum coefficient
(MFCC) features are used to derive the adaptation formulas. In the
cepstrum extraction process, the noisy speech y can be modeled as

y=x+h+g(n—x-—h), [€))

where y, x, h, n are the cepstrum vectors corresponding to the noisy
speech, clean speech, channel, and additive noise, respectively. The
non-linear function g is:

g(n—x —h) = Clog(1 + exp(C'(n — x — h))), @

where C is the discrete cosine transform (DCT) matrix and Ctisits
pseudo-inverse.

Assuming simple Gaussian distributions for both additive and
convolutive noise, the mean vector of the m-th component of the
noise adapted UBM can be approximated using a VTS expansion at

Kz, 05 B0y Bpo) @S

By R a0t Hao + (o = Bayo = Hio)
+Gm (s, = Ba,o) + G (1, = f40)
+Fm (M, — Bno)s 3)
where g, is the mean of the corresponding component in the clean

UBM, ,un ‘and p,, are the means of the additive and convolutive
noise distributions, respectively. G, and F',,, are defined as:

1
G,, = C-dia Nell
& (1 + exp(CT (t,0 — M0 — P'ho)))
4)
F, = I-G,. (©)]

To synthesize the noisy UBM, the VTS expansion is done at the
point (4, o = My, s Hpo = Hps Bpo = Kp,), Which reduces (3) to

= Hyo)- ©)

The more general formula (3) is nevertheless useful for the the fol-
lowing derivations.
The noise-adapted covariance matrix can be approximated as

Sy & GnE, Gl +F,2,FL, %)

By 0 Ry o+ o+ 9(Bno = a0

Tm

where 3, is covariance matrix of m-th Gaussian component from
the clean UBM, X, is the additive noise covariance matrix and X,
is set to zero since the channel is usually considered to be fixed.

In addition, the first and second order derivatives (A and A?) of
the MFCC features are commonly used for speaker recognition. The
means and covariances of these dynamic features can be approxi-
mated as

Bay, = Gmbag,, ®)

EAym ~ Gn EAEm G7n + F’mzAnFmv (©)

where we assume the noise to be stationary so that pt,,, and pa,
are set to zero for simplicity.

2.2. Noise model estimation

For each utterance, we initialize our noise models using estimates
from non-speech portions of the signal. Both additive and convo-
lutive noise models are further updated using several EM iterations
to better fit the noise adapted UBM to the noisy speech. The EM
auxiliary function can be written as

DI BT
i t m

1 i — 7
500 =) E0) w0

where ’sz is the posterior probability that the component m from
the current noise-adapted UBM generated the frame ¢ from speech
segment ¢. Substituting (3) into (10) and solving for noise means
by maximizing the EM auxiliary function gives us the following up-
dates:
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where ugjio is given by (6) and symbols with subscript 0 corre-
sponds to the current estimates of the parameters. In ASR, the co-
variance matrix 3, is usually diagonalized for efficiency. In our
work, however, all covariance matrices, including those in UBM,
are full. Since there is no closed-form solution to estimate X,,, we
use the L-BFGS-B algorithm [11] to maximize the () function. For
convenience, 3, is represented using its Cholesky decomposition
to assure positive-definiteness of the covariance matrix during the
optimization process:

=0 = ud U, (13
where Ugf ) is the upper triangle matrix. The gradient of the auxiliary
function (10) w.r.t. U(z) is
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For the dynamic features, the covariance matrices (e.g., 3a, and
3 A2,) can be estimated in a similar way. From these equations, we
observe that the updates for the means and covariance matrices are
not independent. Therefore, we alternate the means and covariance

updates where the posteriors 7(1) are recalculated.
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3. NOISE COMPENSATED I-VECTOR EXTRACTION

We lay out the new i-vector framework that fits with the VTS com-
pensation scheme proposed earlier. In the standard i-vector frame-
work, (clean) speech frames x® from i-th speech segment are as-
sumed to be generated from a GMM:

Zﬂ'mN(

W ~ N(0,I), 14)

Mz, 0 + me(i)7 Eam,,,),

where N'(,,, o, 2z, ) and 7., are UBM Gaussian components and
their weights, T, matrices describe a low-rank subspace (called to-
tal variability subspace) in which GMM means can be adapted to a
particular speech segment and w®isa segment-specific standard
normal distributed latent vector. For a speech segment, the i-vector
is extracted as the maximum a posteriori (MAP) point estimate of
the latent vector w®.

The model for i-vector extraction can be now adapted to noise
by substituting the clean model (14) into equations (3) and (7). We
perform the VTS expansion at (t,, o, Ky, Hpo) that corresponds
to the clean UBM and noise means estimated using the EM algo-
rithm from the previous section (i.e. w,,, and p, are set to values
obtained form updates (11) and (12), respectively). This results in
the following noise-adapted model:

S maN(pg) o+ G TR 20, (15)

where Gg,?, /‘1(;7)" and E(l) are given by equations (4), (6) and (7).
This noise-adapted model can be used for i-vector extraction where
the resulting i-vectors should be (to a large extent) independent of
additive and convolutive noise. They can therefore better represent
the remaining variability present in speech segments, which is likely
to be informative for speaker recognition.

For the convenience, let us define the following statistics col-
lected from a noisy speech segment using the noise-adapted UBM:

£ = 340G My - ul)
t

(G (=5,

Ym

o (i) i
(2,07 )G (16)
For a fixed soft frame alignment y(’) it can be shown that the pos-

terior distribution of w from equation (15) is Gaussian with mean
and covariance matrix:

i —1p(z
<w( )) L )ZT ym f(
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The i-vector extracted for segment s is given by taking a MAP esti-
mate for this distribution (w®).

Finally, we derive the corresponding EM algorithm to train the
subspace parameters T';,, in the i-vector extraction model (15). In the
E-step, the posterior distribution of the latent vector w@ is estimated
for each training segment using eq (17). The matrices T, can be

116

updated in the M-step using:

vee(T) = (Z( 0 (@) >)®<2LZ>1>
XVGCZ 1f(l) T
<w(i)w(i)T> L(’)—l—(w(l))(w(l)) , (18)

where ® is the Kronecker product and vec is an operator which cre-
ates a column vector from a matrix by stacking its columns. The
i-vector model for the dynamic features is very similar to the one
for the static feature replacing the calculation of ,ugfw)] in (15) with

M(Aﬂy,n = Gs:L)/"‘AOM‘

4. EXPERIMENTAL SETUP

Our speaker recognition system frontend extracts 20 MFCC co-
efficients (including CO), augmented with first and second order
derivatives. A 512 diagonal component UBM is trained in a gender-
dependent fashion on NIST telephone data from the speaker recog-
nition evaluation (SRE) 2004 and 2005. A i-vector extractor of
dimension 400 is then trained on a larger set (NIST SRE ’04, ’05,
’06, Switchboard, and Fisher). The dimensionality of i-vectors is
further reduced to 200 by LDA, followed by length normalization
and PLDA.

Results are shown on a part of the PRISM set described in [5,
12], where different noisy speech samples are added to the training,
enrollment, and test sets without any overlap at three different signal-
to-noise ratios (SNR) (20dB, 15dB, and 8dB). System performance
is reported in terms of detection cost function (DCF) on three SNRs.
The detection cost function (DCF) effective prior is the one from
NIST SRE 2010 [13].

The baseline system employs the above configuration and uses
mean and variance normalization (MVN) on the MFCC features es-
timated using the speech portion of the audio file. We compare this
baseline system and a system where MVN was replaced by our VTS
compensation. In the case of a VTS compensated system, we first
train the i-vector extractor as follows:

1. A UBM model is trained on clean data, with no artificially
added noise.

2. The UBM is adapted to each speech segment using 4 itera-
tions of EM described in section 2.2, where the covariance
matrices are updated in the second iteration and the means
are updated in the others.

3. This noise-adapted UBM is used to extract sufficient statis-
tics (16) from each speech segment.

4. Using 5 EM iterations from section 3:

(a) Estimate the posterior distribution of the latent variable
using (17) for each segment.

(b) Update matrices T, using (18).

After this training process, i-vectors are extracted for each enroll-
ment and test segments using steps 2, 3 and 4a).

5. RESULTS

Table 1 presents the DCF performance of the baseline (MVN) and
VTS system at different SNR. Two PLDA backends were evaluated:



a clean backend, where the model was trained exclusively on clean
data; a multistyle backend, where the model was trained on clean
and noisy data as proposed in [5]. Results clearly show a very large
gains obtained using our VTS based approach over the state-of-the-
art system, especially on low SNR conditions.

Although multistyle training brought a large improvement for
the MVN system, the VTS system using a clean backend still out-
performs the latter in the noisy conditions. A multistyle VTS system
brings an additional gain which show the complementarity of both
approaches. Similar behavior was observed at the equal error rate
(EER). Figure 1 shows the DET curves of all four systems at a SNR
of 8dB for a more detailed performance comparison.

clean multistyle
Eval. condition | MVN | VTS | MVN | VTS
SNR=8dB 0.975 | 0.639 | 0.810 | 0.480
SNR=15dB 0.661 | 0.269 | 0.437 | 0.234
SNR=20dB 0.350 | 0.179 | 0.260 | 0.170
Clean 0.082 | 0.146 | 0.086 | 0.145

Table 1. DCF performance of a state-of-the-art baseline system
compared to our VIS approach where both clean and multistyle
backends were used. The VTS system significantly outperforms the
baseline system in low SNR conditions.
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Fig. 1. Comparison of four systems at SNR=8dB. MVN means using
MVN on MFCC features; VTS means using VTS for compensation;
clean means using a backend model trained on clean data only; mul-
tistyle means using a backend model trained on clean and noisy data.

6. CONCLUSIONS

In this study, we successfully adapted the VTS approach to speaker
recognition by proposing a new i-vector extraction framework. We
show how improvements observed for VTS in speech recognition
can be also obtained for speaker recognition. The proposed ap-
proach, while computationally more expensive than the standard i-
vector framework, presents a relative improvement in low SNR con-
ditions (e.g. 15 and 8db). For example, as can be also seen in fig-
ure 1, for a miss probability around 10%, the relative improvements

in flase alarm rate are on the order of 70% to 80% compared to a
state-of-the-art system.

We also show that our approach is robust to new and unseen
data as a VTS-based system trained on clean data only outperforms
a baseline system trained in a multistyle fashion in noisy conditions.
This makes this approach very attractive for realistic operational sce-
narios where the type of degradation may not be known in advance.

We have identified two directions for future work. First, the
computational requirements of the method are very high and it is
impractical to scale our UBM beyond 512 Gaussians or the ivector
dimension beyond 400. A substantial effort need to be put into op-
timizations and simplifications of the framework. Second, in speech
recognition, VTS is used during the UBM model training as to ‘clean
up’ the model for degradations caused by noise. We will explore a
similar strategy for speaker recognition.

7. REFERENCES

[1] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-
end factor analysis for speaker verification,” IEEE Trans. ASLP, vol.
19, pp. 788-798, May 2010.

[2] S.J.D. Prince, “Probabilistic linear discriminant analysis for inferences
about identity,” in /CCV-11th. IEEE, 2007, pp. 1-8.

[3] P. Kenny, ‘“Bayesian speaker verification with heavy-tailed priors,”
in Odyssey 2010-The Speaker and Language Recognition Workshop.
IEEE, 2010.

[4] D. Garcia-Romero and C.Y. Espy-Wilson, “Analysis of i-vector length
normalization in speaker recognition systems,” in Interspeech-2011,
August 2011, pp. 249-252.

[5]1 Y. Lei, L. Burget, L. Ferrer, M. Graciarena, and N. Scheffer, “Towards
noise-robust speaker recognition using probabilistic linear discriminant
analysis,” in ICASSP-2012. IEEE, March 2012, pp. 4253-4256.

[6] P.J. Moreno, Speech recognition in noisy environments, Ph.D. thesis,
Carnegie Mellon University, 1996.

[7]1 A.Acero, L. Deng, T. Kristjansson, and J. Zhang, “Hmm adaptation us-
ing vector taylor series for noisy speech recognition,” in /CSLP, 2000,
vol. 3, pp. 229-232.

[8] O. Kalinli, M. Seltzer, J. Droppo, and A Acero, “Noise adaptive train-
ing for robust automatic speech recognition,” IEEE Trans. ASLP, vol.
18, pp. 1889-1901, Nov. 2010.

[9] H Liao, Uncertainty Decoding for Noise Robust Speech Recognition,
PhD dissertation, University of Cambridge, Sept. 2007.

[10] P. Kenny, P. Ouellet, N. Dehak, V. Gupta, and P. Dumouchel, “A study

of inter-speaker variability in speaker verification,” IEEE Trans. ASLP,
vol. 16, pp. 980-988, July 2008.

[11] R. H. Byrd, P. Lu, and J. Noceda, “A limited memory algorithm for
bound constrained optimization,” SIAM Journal on Scientific and Sta-
tistical Computing, vol. 16, pp. 1190-1208, Nov. 1995.

[12] L. Ferrer, H. Bratt, L. Burget, J. Cernocky, O. Glembek, M. Graciarena,
A. Lawson, Y. Lei, P. Matejka, O. Plchot, and N. Scheffer, “Promoting
robustness for speaker modeling in the community: the PRISM evalu-
ation set,” in Proceedings of NIST 2011 Workshop, 2011.

[13] “NIST SRE10 evaluation plan,”

http://www.itl.nist.gov/iad/mig/tests/sre/2010/NIST_SRE10_evalplan.r6.pdf.

117



UNSCENTED TRANSFORM FOR IVECTOR-BASED NOISY SPEAKER RECOGNITION

David Martinez', Lukds BurgetQ, Themos Stafylakis3, Yun Lei*, Patrick Kenny3, Eduardo Lleida!

! Aragon Institute for Engineering Research (I3A), University of Zaragoza, Spain
2Speech@FIT, Brno University of Technology, Czech Republic
3Centre de Recherche Informatique de Montreal (CRIM), Canada
4Speech Technology and Research Laboratory, SRI International, Menlo Park, CA, USA

ABSTRACT

Recently, a new version of the iVector modelling has been proposed
for noise robust speaker recognition, where the nonlinear function
that relates clean and noisy cepstral coefficients is approximated by
a first order vector Taylor series (VTS). In this paper, it is proposed to
substitute the first order VTS by an unscented transform, where un-
like VTS, the nonlinear function is not applied over the clean model
parameters directly, but over a set of sampled points. The result-
ing points in the transformed space are then used to calculate the
model parameters. For very low signal-to-noise ratio improvements
in equal error rate of about 7% for a clean backend and of 14.50%
for a multistyle backend are obtained.

Index Terms— Noise Robust Speaker Recognition, Unscented
Transform, Vector Taylor Series, iVector

1. INTRODUCTION

Speaker recognition is one of the most important research fields in
the speech technology industry. The main applications are found in
banking, defense, forensics, video games, and also as front-end of
other speech-related tasks like speech recognition. During the last
decade, important technological advances have been achieved in this
field. One important milestone was the development of the joint
factor analysis (JFA) algorithm, a technique that makes possible to
model simultaneously the inter- and intra-speaker variabilities of the
features [1]. Currently, a new dimensionality reduction technique in-
spired by JFA is used, which allows representing a speech utterance
by a low-dimension fixed length vector, or iVector, which is used for
recognition [2]. The state-of-the-art recognizer is called probabilis-
tic linear discriminant analysis (PLDA), and also allows modelling
inter- and intra-speaker variability in the iVectors [3].

All these advances have brought a substantial improvement in
performance and the researchers start to focus on other challenges.
One important research direction is speaker recognition in noisy en-
vironments. This is not a new topic in speaker recognition [4, 5], but
the interest currently lies in making the high-accuracy state-of-the-
art JFA-based techniques robust to noise.

In [6], the authors present the PRISM evaluation set, a database
to experiment speaker recognition systems under several noisy con-
ditions with the aim of providing a common testbed to the commu-
nity. They include language, channel, speech style, and vocal effort
variabilities, also seen in NIST SRE evaluations, and other types not
available on standard databases, like severe noise, and reverberation.
In [7], a subset of this database is tested on different signal-to-noise
ratios (SNR) and it is shown how the performance of a PLDA sys-
tem modelling iVectors extracted from Mel-frequency cepstral co-
efficients (MFCC) is quickly degraded when the SNR decreases. It
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is observed that adding noisy data to the PLDA training gives rela-
tive improvements of up to 30% compared to the case where only
clean data are used. The same behaviour is observed with prosodic
features. By adding noisy data to train the iVector extractor no sig-
nificant gains are obtained.

In [8], the authors propose a first order vector Taylor series
(VTS) approximation [9] to extract noise-compensated iVectors.
The approach is inspired by the VTS successfully applied in the
field of automatic speech recognition (ASR) to compensate the
models distorted by the nonlinear effects of noise in the cepstral
domain [10, 11]. For the same PRISM subset as above, relative im-
provements of up to 80% compared to a state-of-the-art system with
cepstral mean and variance normalization (CMVN) are observed
for the speaker recognition problem, however the training process
is very slow. To make it lighter, in [12] a simplified VTS (sVTS)
version is proposed, where most of the improvement is kept, while
the computational load is largely reduced.

In this work, the unscented transform (UT) is presented as a new
approach to approximating the nonlinearity caused by noise in the
cepstral domain in order to adapt the model parameters to noise. We
compare UT to the first order VTS approximation. UT is a method
to propagate the mean and covariance information through nonlinear
tansformations [13]. It is more accurate, easier to implement, and in
the same order of computational expense as the linearization used
with VTS, and it has been already proven to be useful for noise ro-
bust ASR [14, 15]. As shown in the experimental part of the work,
UT is especially useful for very low SNR, when the nonlinear dis-
tortion is stronger.

The rest of the paper is organized as follows: in section 2 a de-
scription of the iVector approach in noisy environments is given, to-
gether with the role of VTS and UT to approximate the nonlinear
relationship between clean and noisy MFCC; in section 3 the exper-
imental part of the work is shown; and in section 4 the conclusions
are drawn.

2. UNSCENTED TRANSFORM AND VTS IN AN
IVECTOR-BASED SYSTEM

2.1. Standard iVector System

In the standard iVector extraction process, it is assumed that the in-
put features, in our case MFCCs, follow a Gaussian mixture model
(GMM) distribution in which the mean vector of each Gaussian is
assumed to be utterance-specific. Thus the MFCCs of utterance i,
x( , are evenually modelled as

x® ~ Zwk/\/(u,k_ + Tkw(i)7 ), €))
k



being 7k, fie,, and 3z, , the weight, mean, and covariance, re-
spectively, of Gaussian k of a pre-trained GMM, the universal
background model (UBM), T a low-rank matrix spanning a sub-
space referred to as total variability subspace that describes in-
tersession variability in the space of GMM mean parameters, and
w® a segment-specific low-dimension latent variable with standard
normal distributed prior.

The training of this model is performed via maximum likeli-
hood (ML) in two parts. Firstly, the UBM is pre-trained using the
expectation-maximization (EM) algorithm, and 7%, pe,, and 3.,
are obtained for all the Gaussians. Secondly, the sufficient statistics
are computed as defined in [2] using fixed Gaussian alignments given
by the UBM, and they are used for the training of the T, matrices,
which is also performed with the EM algorithm [2].

The iVector of utterance i is defined as the maximum a posteriori
(MAP) point estimate of w®. The posterior probablhty dlstrlbutlon
of w® is Gaussian with mean, (w®¥), and covariance, L?, and thus
the iVector is equal to (w(i)). The expressions to compute it are

(@) =L TEY @
k
LY = (1+ Z NG~ &)

where ¥, = szPZk, w1th P, lower triangular by Cholesky
decomposition, T, = PJc Py Tk, and
SR

NG =" w), £ =
t
are the zeroth and whitened first order sufficient statistics pre-
collected using the UBM as proposed in [16]. The first order
statistic whitening (u(l) subtraction and multiplication by P ;) not
only leads to a more efficient implementation, but it also plays an
important role in the sVTS approach described in section 2.3.

Y = k) (@)

2.2. VTS-Based iVector System for Noisy Environments

According to the model of the environment presented in [9], a clean
MEFCC vector affected by additive and convolutional noise is dis-
torted as

y=x+h+g(n—x-h), )
where y, X, h, and n are the cepstral vectors of the noisy speech,
clean speech, channel, and additive noise, respectively, and g is the
nonlinear function defined as

g =Cln(1+ ezxp(C'(n —x — h))), (6)

with C and C' the discrete cosine transform matrix and its pseudo-
inverse, respectively. The corresponding relationship in the model
space for the UBM means [11], assuming that both types of noise
follow a Gaussian distribution, is approximated by a first order VTS
expansion at (fix, 0, 4ho, [n0),

p) 2 o + g

+G§g)(l"’”¢k

+g(ply — Mmofﬂg)

paro) + G (s — pyg) O]
+FV (15— 1)),

where Gy, is the Jacobian of g with respect to xy, and with respect
to h, and F;, with respect to n. They are defined as

1
1 Cr )
+exp(CT(tyg — fay, — Hpg))

G\’ = C - diag( )-cf, ®

F)=7-G". ©)
To compute the means of the noise-adapted UBM, iy, 0, the VTS is
evaluated at (Lix,, = fix, 0, flh = [h0, fbn = [in0),
Hyoo 2 ey + 140 + 9(H0h — Hano = p10) (10)
The relationship of the UBM covariances [11], following the same
reasoning as for the mean, is

2, ~Gs, GV L FOsOROT (1)

where Zﬁf ) is the additive noise covariance matrix, and Egli) is set
to zero since the channel is considered to be fixed. Finally, the mean
and covariance of the model for the noisy MFCC first derivative (A)
are calculated with the continuous-time approximation also used in
[11]. That is,

i, ~ Gk, (12)
7 i )T i i )T
B8, ~ G San, GUT +FUS0FYT, (13)

and identically for the MFCC second derivative (A?), substituting
Aby A%,

One important role of the VTS approximation is to make the
EM objective function of the noise-adapted UBM differentiable, so
closed form update formulae of the model parameters are obtained.
As per [8] the objective function becomes

Q= ZZZ%)(M[ 71 =50

14

v~ T (g1

,5( ¢ 1y (¥ (4) (i) ),
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In order to include the total variability subspace in the model
of the noisy MFCC of every utterance, y(”, iz, 1s substituted by

fhay 0+ Trow® in (7), and also considering (11), it can be shown that
~ Z TN (g + G TRw®, 26). (15)

This model is tralned using the EM algorithm and the equations are
detailed in [8].

2.3. Simplified VTS

The major drawback of the VTS approach presented in previous sec-
tion is the computational cost of the EM training algorithm for the
total variability subspace T of (15). In particular, in the M step the
computation of the Kronecker product and large matrix inversion
given in equation (18) of [8] is several orders of magnitude more
computationally and memory demanding than the calculations re-
quired for training the standard model of (1). The main differences
between the two techniques are that in the VTS approach the UBM
mean and covariance are utterance-dependent, and that the total vari-
ability subspace is adapted to noise differently for each utterance
through the term Gg)Tk in (15).

In [12], a new approach is proposed that largely simplifies the
equations and reduces the computational cost, the sVTS. In the
sVTS, first, the UBM is adapted to each file as described in section
2.2. Then, the zeroth and whitened first order sufficient statistics of
utterance i are collected over its noise-adapted UBM as

NG =390, B =PRSS A0 (k) (v - ul),

t t
16)
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where B{) = P%PL’;T by Cholesky decomposition. In this way
the dependence on 4.\, 5, and G{” completely disappears from
the training, and the equations, and therefore the complexity, are re-
duced to the ones of the standard iVector training algorithm. Also for
iVector extraction equations (2) and (3) can still be used, but replac-
ing the sufficient statistics defined in (4) with those defined in (16).
This transformation of the sufficient statistics moves the noise com-
pensation operation to the domain of the sufficient statistics, while
the former VTS approach introduced in [8] is a model domain com-
pensation technique. In spite of the complexity reduction, the ex-
periments made in [12] show that the sVTS preserve most of the
improvements obtained with the VTS-based iVector model.

2.4. Simplified Unscented Transform

The UT is used to substitute the first order VTS in the model parame-
ter adaptation. The goal is to obtain more accurate estimates of ,uf],}
and E,(fk) when the linear approximation is not good enough. The
first UT method explained in [14] is followed here. Given the clean
and noisy mean cepstral estimates, fi., 0 and qu >, an augmented sig-
nal 8 = &7 ADT]T is built by sampling as

80 = ludyo w7

§§clj) = [Mgko + ( V QDEIk )j M;?)T]T
(7 T 1) TT
sgc()j#»D) = [:u'ﬂka) - (\/ 2Dzwk)j :u'(nl) ] (17)
A(i T i\T i)\ 1T
810 4ap) = [0 1T+ (y2DE);)
A T i\T i)y 1T
S)(;(>]‘+3D) = [Mmko Nsﬁ - ( 2D2S))j]
where D is the feature dimension, j = 1...D, therefore égj) con-
tains 4D+1 2D-dimension sampled vectors, and (A); denotes the jrh
column of matrix A. Observe that the means and covariance matri-
ces calculated from these samples match the actual means and co-

variances from which the samples were derived. Next, the sampled
points are transformed using the nonlinear function
I (4)
(Xe)s = to)

(PG = 3175 = Ry + i) + 9(D);
(18)
to obtain the noisy version of the sampled points. The mean and

covariance of the noise-adapted UBM are the mean and covariance

of the 4D+1 D-dimension vectors y,(j% respectively,

S ),

A1)
s _ 2% (G - m@N -
v 4D +1 :

Likewise, the Jacobians G, and Fy, used in the update formulae of
the noise parameters and in the continuous-time approximation of
the A and A? model parameters, also depend on the sampled points
and are calculated as

4D A 1 . +
& _ 2i=0 C - diag( 1+exp<ct-<<ﬁ<i>>r<>‘ck>,w§,?3>>) c
k 4D +1
_ _ @1
=7 G (22)

Once the noise-adapted UBM mean and covariance, and the Jaco-
bians are estimated, the rest of the training is exactly the same as for
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the VTS case. To avoid the computational complexity of the exact
noise-compensated iVector extraction presented before, the simpli-
fied version is also used with the UT. Hence, this approach is named
simplified UT (sUT). Note that the augmented signal contains infor-
mation only of the cepstrum and not of the derivatives. These are
derived through the Jacobian G? as per (12) and (13).

3. EXPERIMENTAL PART

Our features are 20 MFCC coefficients (with C0) including first and
second derivatives, extracted in 25 ms long windows every 10 ms.
A diagonal UBM with 512 components is trained with data com-
ing from NIST SRE ’04, °05, ’06, and °08 evaluations. The 400-
dimension iVector extractor is trained with data coming from NIST
SRE ’04, °05, *06, *08, Fisher, and Switchboard. A simplified PLDA
(sPLDA) [17] with 200-dimension speaker factors is trained with the
same dataset as the iVector extractor. Previously the iVectors are
centered, whitened, and length-normalized [18]. Two training meth-
ods are tested for SPLDA, the clean, where only clean data are used,
and the multistyle, where noisy data of 20, 15, and 8 dB are also in-
cluded. The enrollment and test data is the same subset of the PRISM
dataset used in [7, 8, 12]. It includes additive noise from different
scenarios at three different SNRs of 20, 15, and 8 dB. Experiments
are reported in terms of equal error rate (EER) and minimum of de-
cision cost function (minDCF) as defined in [19], only on females.
The SNR in enrollment and test is always the same.

In our approach, mean updates of the noise parametes n and h
are obtained in the odd iterations of the EM algorithm, while the
covariance update of n is obtained in even iterations. The reason to
do it in this way is that the covariance update depends on the mean
update. We have swept over several number of iterations for noise-
adapted UBM training to find optimal performance. The results are
obtained for the first iteration, in which only means are updated, and
then every other iteration, in order to complete full updates of means
and covariance.

In tables 1 and 2, the results of four different systems are com-
pared for the clean sSPLDA and the multistyle SPLDA. They are a
system without noise compensation, a system with the same iVec-
tor configuration and CMVN, an sVTS system, and an sUT system.
Some interesting conclusions can be found in the results. First, the
multistyle SPLDA gives better performance than the clean sPLDA,
as already observed in [8, 12]. Second, both the sVTS and the sUT
techniques outperform CMVN, and of course, the case without noise
robustness. For sVTS, iteration 3 seems to be optimal for both the
clean and multistyle SPLDA. The reader should note that in every
iteration the utterance-dependent log-likelihood (LLK) function of
the noise-adapted UBM is increased, but this increase in LLK does
not guarantee an increase in the recognition performance. We be-
lieve that more than 3 iterations overfit the data and the updates stop
being useful. On the other hand, for sUT more iterations seem to
be more useful. With the clean sPLDA iteration 7 seems to be opti-
mal for all SNRs. For the case with multistyle SPLDA, the addition
of noisy data in the sSPLDA training makes the training to converge
faster, and the best results are obtained with 3 iterations, except for
the case of 8 dBs, for which the best results are obtained in iteration
5. The sUT gives better performance than the sVTS in the noisiest
case, with an SNR of 8dBs. Recall that UT is an alternative to better
model nonlinear distortions in the MFCC domain caused by noise,
and thus, the higher the noise level, the larger the nonlinear effect,
the worse the first order VTS approximation, and the larger the bene-
fit obtained with sUT. In terms of EER and for SNR=8 dBs, with the
clean sPLDA a 6.89% relative improvement is obtained with sUT



\ EER(100%) | minDCF10
SNR | clean | 20dB | 15dB | 8dB | | clean | 20dB | 15dB | 8 dB
No Robust | 1.059 | 4.179 | 14.008 | 22.135 | | 0.249 | 0.489 | 0.859 | 0.946

CMVN | 0772 | 2.143 | 3.167 | 7.750 | | 0.182] 0.317 | 0.488 | 0.717
sVTSit1 |0.851 | 1.864 | 3.029 | 7.262 | | 0.197 | 0.286 | 0.451 | 0.728
sVTSit3 | 0912 | 1.591 | 2.607 | 6.689 | |0.172 | 0.252 | 0.409 | 0.659
sVTSit5 |0.842 | 1.765 | 2.696 | 6.478 | | 0.180 | 0.284 | 0.415 | 0.697
sVISit7 |0.788 | 1.809 | 2.594 | 6.357 0.190 | 0.298 | 0.412 | 0.693
sUTit1 | 0811|2093 | 3.343 | 8.120 | | 0.191 | 0.310 | 0.455 | 0.714
sUTit3 | 0.712 | 1.956 | 3.189 | 6.805 | |0.154 | 0.323 | 0.466 | 0.699
sUT it 5 0971 | 1.978 | 2.899 | 6.279 0.182 | 0.322 | 0.444 | 0.728
sUT it 7 0.970 | 1.877 | 2.819 | 5919 0.190 | 0.304 | 0.423 | 0.682
Table 1. Results for the clean sPLDA
\ EER(100%) [ minDCF10
SNR | clean | 20dB | 15dB | 8dB | | clean | 20dB | 15dB | 8 dB

No Robust | 0.802 | 1.994 | 10.296 | 11.942 | | 0.216 | 0.327 | 0.791 | 0.970

CMVN | 0.694 | 1786 | 2.304 | 4.261 | | 0.177 | 0.278 | 0.381 | 0.635
SVISit1 |0.859 | 1521 | 2261 | 4459 | |0.182| 0.245 | 0319 | 0.583
SVTSit3 |0.846 | 1.447 | 1918 | 4292 | |0.169 | 0.233 | 0.338 | 0.584
SVISit5 |0.794 | 1.673 | 2.104 | 4.450 | |0.179 | 0275 | 0.388 | 0.626
SVISit7 |0.848 | 1.790 | 2.281 | 4514 | |0.184 | 0.276 | 0.388 | 0.627
sUTit1 | 0844 | 1.564 | 2311 | 4.284 | |0.191] 0.263 | 0.334 | 0.573
sUTit3 | 0717 | 1412 | 1.940 | 4.087 | |0.155| 0.241 | 0.327 | 0.568
sUTit5 | 0879 | 1.675 | 1.975 | 3.670 | |0.148 | 0.250 | 0.306 | 0.556
sUTit7 | 0932 | 1.639 | 2.074 | 3.708 | |0.180 | 0.260 | 0.320 | 0.582

Table 2. Results for the multistyle sPLDA

over sVTS, and in the multistyle case the relative improvement is
of 14.50%, taking in both cases the optimal iterations of each tech-
nique. As final remark, note that the sVTS results are slightly dif-
ferent to the ones published in [12] because the feature extraction is
different, and because in this work the VAD of noisy files is com-
puted with the noisy speech, whereas there it was computed from
the clean signal.

4. CONCLUSIONS

In this paper, the UT is presented for a speaker recognition task as
an alternative to the first order VTS to approximate the nonlineari-
ties caused by noise in the model space. The UT samples in the clean
space, transforms the sampled features with the nonlinear function
that relates clean and noisy MFCCs, and obtains the mean and co-
variances of the noise-adapted UBM in the transformed space. Un-
like first order VTS, which is a linear approximation, the UT is ex-
pected to be more accurate when the distortions are far from being
locally linear. The results show improvements for very low SNRs.
In terms of EER, a 6.89% relative improvement is obtained for a
SPLDA trained with only clean speech, and a 14.50% for a sSPLDA
trained with clean and noisy speech. To avoid the high computa-
tional load of the iVector modelling in the proposed noisy environ-
ment, a simplified version is followed, where the sufficient statistics
are normalized with their corresponding utterance-dependent noise-
adapted UBM. Finally, it is also concluded that the noise-adapted
UBM calculation converges faster in sVTS than in sUT.
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