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Preface

This thesis presents thirteen research papers on computational photography which I have pub-
lished, with my colleagues, since 2007. Three articles address high dynamic range (HDR) imag-
ing. An analysis and evaluation of HDR tone mapping methods is shown, and two novel methods
for image and video tone mapping are proposed. Two papers concern themselves with color-

to-grayscale image conversions. A new adaptive perception-based conversion is presented, and
a thorough evaluation of existing color-to-grayscale image conversions is performed. Five of
the presented articles contribute to image and video quality assessment. A novel dynamic range
independent video quality metric is proposed, and an HDR video dataset for validation of such
metrics is published. New full-reference and a no-reference metrics for assessing image quality
are proposed, and an analysis of state-of-the-art image metrics is performed. Finally, three pa-
pers enable advanced image editing. The concept of visually significant edges is advocated and
implemented, and a new approach to multiscale image contrast editing is proposed. A newly
developed automatic photo-to-terrain registration method makes advanced model-based image
enhancements and manipulations possible.

Eight of the presented papers were published in impacted international journals including ACM
Transactions on Graphics and Computer Graphics Forum, and one paper was accepted to the
prestigious oral track at the Computer Vision and Pattern Recognition conference. The other
articles were published at established conferences in the field.

The thesis contains an introductory part, followed by a brief overview of the contributions pre-
sented in the articles, and it concludes with possible avenues for future work. Reprints of the
mentioned papers are enclosed in appendices.

Brno, October 6th, 2014 Martin Čadík
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Chapter 1

Introduction

If we knew what it was we were doing,

it would not be called research, would it?

Albert Einstein

Visual communication is ubiquitous in today’s world. With the advent of smart cell phones and
hand-held devices equipped with integrated cameras, today virtually everyone is a photographer.
Every day, we are taking photographs in larger quantities and often of higher technical qualities
than ever before. We share our photos, edit them, search them, archive them, enhance them,
capture them for some specific purpose, or we simply want to make our shots look nice.

Current digital cameras almost completely surpass traditional “chemical” photography. They do
not only capture light, they in fact compute pictures [Haye08]. That said, there is practically
no image that would not be computationally processed to some extent today. Visual computing
is ubiquitous. Unfortunately, images taken by amateur photographers often lack the qualities
of professional photos and some image editing is necessary. The main topic of this thesis is
computational photography (CP), see Figure 1.1, which develops methods to enhance or extend
the capabilities of the current digital imaging chain.

Computational 
Photography

Computer
Vision

Computer
Graphics

Image 
Processing

Hardware,
Optics

Figure 1.1: Computational photography methods use results of computer graphics, image pro-
cessing, computer vision, and optics to enhance or extend the capabilities of current photogra-
phy.

Image development and image processing have been extremely tedious in the past. The dark-
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8 CHAPTER 1. INTRODUCTION

room image processing based on photo-chemistry of silver halide crystals came with frequent
trial and error processes, and required a lot of experience. Professional photographers devel-
oped substantial skill in print processing. An example of such processes is dodging and burning
[Adam05], a completely manual and analog way to manipulate image brightness and contrasts
locally. Accordingly, in the past, image processing was devoted to a limited number of dedicated
professional photographers.

Digital image processing took the editing processes out from the darkness of the darkroom to
modern office desktops. The alterations of photographs are instantly visible and often reversible.
However, the use of current photo-editing software, like GIMP or Photoshop [GIMP, Phot], still
remains to a large extent the domain of experts. The path to an image to one’s liking is still long,
tedious and often manual. The aim of computational photography is to equip professionals with
handy tools to make this process quicker, smoother, and more intuitive.

On the other hand, amateur photographers and ordinary users require powerful and easy to use
solutions that can be used immediately, without any previous knowledge or training. In many
cases, the user does not even need to know that some processing is going on. This is the domain
of semi or fully automatic computational photography methods, which often involve advanced
computations to make images look more realistic, natural, or simply nicer.

As the number of pictures taken is often quite high and their quality varies significantly, it is
very important to be able to estimate it automatically. An indispensable area of computational
photography research is therefore quality assessment, where automated metrics for predicting
perceptual qualities of images and videos are developed. Furthermore, since the number of
proposed CP methods grows quickly, automatic evaluations of algorithms, and experimentation
in general, gains in importance. Particularly important are experiments involving real observers,
because many CP methods aim to mimic human vision and to reproduce the perception of human
observers.

The goal of computational photography is also to narrow down, or even to completely eliminate
limitations of existing cameras. New approaches which use computational power to alleviate
constraints imposed by physics are emerging every day. Moreover, many techniques dealing
with such limitations are already widely known, e.g. extending limited dynamic range, widening
field of view, extending depth of field, or image refocusing. Last but not least, computational
photography seeks out completely new applications and novel approaches to imaging.

This thesis presents several contributions to the field of computational photography research.
First, a summary of work on high dynamic range image and video processing (Chapter 2) is pre-
sented, followed by the efforts on color-to-grayscale conversions (Chapter 3). Then, image and
video quality assessment methods (Chapter 4) are described, and new advanced image editing
methods for automatic, as well as for manual image enhancements (Chapter 5), are shown. The
thesis concludes with prospects of future research.



Chapter 2

HDR Image Processing

There is a crack in everything.

That’s how the light gets in.

Leonard Cohen

One of the most developed areas of computational photography is high dynamic range imaging
(HDR), which is concerned with overcoming the limited dynamic range of a sensor or a display
device. A number of solutions have been published on HDR capture, storage, and reproduction
[Rein10], so the complete HDR image chain is available today, see Figure 2.1. However, HDR
displays are still rare and expensive, while printouts of photos are, and will be, a popular medium
in the future. Therefore, most of the work in this research was devoted to tone mapping methods

(TM), which aim to reproduce HDR images and videos on ordinary (low dynamic range, LDR)
display devices. The main problem of HDR tone mapping resides in the fact that an HDR image
can comprise a vast range of luminances, typically the whole range of a real-world scene, which
ordinary (LDR) devices cannot reproduce.

Tone mapping methods (sometimes called tone mapping operators, TMO) convert an HDR im-
age to an ordinary image while reducing (transforming) its dynamic range, see Figure 2.2. The
goal of many tone mapping methods is to perform the transformation in a way that corresponds
to human perception of the scene captured by the HDR image. Accordingly, many tone map-
ping methods mimic the behavior of the human visual system (HVS). One can classify existing
tone mapping approaches according to the performed transformation into two main categories:
Global tone mapping methods apply the tone reproduction curve (TRC), i.e. a transfer func-
tion. Therefore, they transform a particular value of the input luminance to one specific output
value. Local tone mapping methods (TMOs) may on the other hand reproduce a particular input
luminance to different output values, depending on the surrounding pixels.
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10 CHAPTER 2. HDR IMAGE PROCESSING

Figure 2.1: Traditional and high dynamic range image and video processing pipelines [Mysz08].

2.1 Evaluation of HDR Tone Mapping Methods Using Essential Per-

ceptual Attributes

Several dozens of tone mapping methods have been proposed over the last decade [Rein10].
However, since their merits and shortcomings were not immediately clear, their experimental
validation and evaluation was urgently needed. Consequently, a study was conducted on the
effects of basic image attributes for HDR tone mapping, and a survey was made of how different
methods reproduce these attributes [Cadi08b] (Appendix A). A scheme was proposed to detail
the relationships between essential image attributes, leading to the concept of an overall image
quality measure for HDR content. Two different subjective psychophysical experiments were
performed, and the results showed that the proposed relationship between image attributes cor-
relates with the choice or preference of the human observer. Finally, an evaluation of fourteen

existing tone mapping methods was presented, with regard to these image attributes.

An interesting and important outcome of the two conducted experiments is that almost all of the

HVS MODEL
(TMO)

HDR Image LDR Image
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2

Figure 2.2: High dynamic range tone mapping (TMO) often involves a model of human visual
system (HVS).



2.2. HYBRID APPROACH TO TONE MAPPING 11

studied image quality attributes can be evaluated without comparison to a real HDR reference.
With 14 tested methods and three real-world HDR scenes, the presented study was one of the
most comprehensive evaluations of tone mapping methods. Another important result of this
study is the finding that the proper global part of a tone mapping method is essential to obtain
good perceptual results for typical real world scenes.

2.2 Perception Motivated Hybrid Approach to Tone Mapping

The results of several subjective experiments, which are summarized in Section 2.1, have shown
high importance of preservation of global image attributes. Motivated by these findings, a con-
cept of a simple yet powerful general hybrid approach to tone mapping [Cadi07] (Appendix B)
has been proposed. In this approach, outputs of arbitrary global and local tone mapping meth-
ods are combined as follows: the global method is applied in order to reproduce overall image
attributes correctly. Simultaneously, an enhancement map is constructed to guide a local op-
erator to the critical areas of an image that deserve enhancement. Instead of inventing a new
and complex TM method, we propose a general framework that utilizes already known ideas
and combines existing and potentially forthcoming methods to obtain perceptually justifiable
results. Moreover, based on the choice of involved methods and on the manner of construction
of the enhancement map, it was shown that this approach is adaptable, and can easily be tailored
to miscellaneous goals of tone mapping.

Subsequently, Artusi et al. [Artu07] published the concept of a selective tone mapper, which
relies on a model of visual attention to direct local TMOs to perceptually important parts of an
image, while a global TM method is used for the remainder. Artusi et al. proposed a generic
GPU-aware implementation that can utilize any existing GPU TM method. In practice, this is
a nice implementation and a verification of the hybrid approach presented above: the authors
utilize a Canny edge detection to construct the enhancement map and then, in accord with the
hybrid approach, they apply a local TM method only to the identified important parts of the
image. This work also resulted in a patent [Artu10].

2.3 Temporal Tone Mapping:

Visual Maladaptation in Contrast Domain

Intense changes in illumination may cause loss in visual sensitivity, which is usually recovered
over a period of time. In fact, in the context of highly variant and temporally changing real-world
illumination, the human visual system (HVS) itself is virtually never fully adapted. Due to this
maladaptation, the visibility of some scene regions is reduced, although they would otherwise
be perfectly visible. Some tasks such as driving a car, piloting a ship or an airplane, etc., require
quick reaction times and undiverted attention. This may be simulated in safe conditions by
including the temporal HVS model to perceptually tone mapped HDR videos.
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Unfortunately, unlike tone mapping HDR images, there are only a few temporal tone mapping

methods available [Patt00, Iraw05, Boit14]. Additionally, existing methods either completely
neglect maladaptation, or they simulate only extremely simplistic cases while ignoring most
aspects of the HVS. An advanced HDR tone mapping, which renders an HDR video as seen by
a maladapted eye, was presented [Pajk10a] (Appendix C). The course of adaptation over time is
modeled by considering both neural mechanisms and pigments bleaching and regeneration. This
framework operates in the multi-scale contrast domain and models supra-threshold effects like
visual masking, while also accounting for contrast sensitivity and luminance (mal)adaptation.

To conclude, merits of high dynamic range imaging (HDRI) are currently widely recognized not
only in photography, but also in computer graphics, computer vision, and other areas of digital
imaging. Moreover, HDRI is becoming popular in interactive and real-time applications as
well. Finally, data visualizations, digital cinema industry, computer games and other interactive
applications gain new qualities thanks to HDRI.



Chapter 3

Color-to-Grayscale Image Conversions

All colors made me happy, even gray.

My eyes were such that literally they took photographs.

Vladimir Nabokov

Black-and-white photography has not lost any of its artistic appeal despite the wide availability
of color imaging processes. Accordingly, the conversion from color to grayscale is an important
piece of the computational photography puzzle. Furthermore, color images often have to be
converted to grayscale for reproduction, or for subsequent processing. To that end, color-to-

grayscale conversions basically perform a reduction of the three dimensional color data into
one dimension, see Figure 3.1. The aim of color-to-grayscale conversions is usually to produce
perceptually plausible grayscale results. Unfortunately, no analogous conversion is naturally
present in the human visual system (HVS). However, one may measure perceptual differences
between colors in subjective psychophysical experiments. Moreover, it is evident that some
loss of information due to the conversion is inevitable. The other goal is therefore to reproduce
maximum information from the original color image in the grayscale.

In conventional black-and-white photography, gray tones are determined by the spectral sen-
sitivity of the emulsion, and can be modified in an active way by selecting different filters to
enhance a specific part of the spectrum. This analog multispectral technique can now be em-
ulated digitally, and this approach to the problem can be considered as a global color-to-gray

conversion [Grun05]. Additionally, local approaches to color-to-grayscale conversion have been
proposed [Gooc05, Rasc05]. These are conceptually similar to local HDR tone mapping meth-
ods (Section 2.1), because they aim at preserving color contrasts by introducing chrominance
information locally into the luminance channel. Unfortunately, this may also lead to undesirable
artifacts, and high computational complexity.

13



14 CHAPTER 3. COLOR-TO-GRAYSCALE IMAGE CONVERSIONS

HVS MODEL
(Color-to-
grayscale)

Color
Image
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Figure 3.1: Color image to grayscale conversion often involves a model of human visual system
(HVS).

3.1 Perception-based Color-to-Grayscale Conversion

Existing color-to-grayscale conversions [Gooc05, Rasc05] were eminently computationally in-
tensive, which made them unsuitable for interactive conversions, especially with the ever in-
creasing spatial resolution of digital images. To that end, a new perceptually-plausible conver-

sion of color images to gray-scale, that operates in the gradient domain, was proposed [Neum07]
(Appendix D). Two novel and efficient ways to construct a gradient field from a color image were
developed. The first approach operates in the CIELab color space [Rein10], while the second
uses the Coloroid color system [Nemc87], which is based on a strong experimental background.
In this second approach, perceptually justifiable gray gradients equivalent to different color at-
tributes are formulated and acquired by means of efficient experimental arrangements.

However, using one of these new approaches, one receives an inconsistent gradient field from a
color image. As the inconsistent gradient field does not correspond to any real image, there is a
problem of finding how to transform it to an output grayscale image. To solve the gradient field

inconsistency, a new and efficient method was introduced. The algorithm converts inconsistent
gradients into a consistent field which can be directly transformed into an image by a simple
2D integration. The complexity of this new method, called gradient inconsistency correction,
is linear with respect to the number of pixels, making it suitable for high-resolution images.
Experiments report that in comparison to existing approaches [Gooc05, Rasc05], the proposed
method produces comparable results while being much faster to compute.

3.2 Perceptual Evaluation of Color-to-Grayscale

Image Conversions

Many color-to-grayscale conversions have been proposed in the literature, however, their per-
formance has not been objectively assessed yet. Accordingly, the strengths and weaknesses of
these methods were unknown, and there was no standard testing dataset available. A thorough
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evaluation of color-to-grayscale image conversions [Cadi08a] (Appendix E) was performed,
and a testing dataset consisting of 24 color images was made publicly available. Two subjective
experiments were conducted in which input images were converted to grayscale using 7 state-
of-the-art conversions, and evaluated by 119 human subjects using paired comparison [Mant12].
This new dataset, which was made publicly available1, is currently a widely recognized de facto

standard for evaluating and testing of newly proposed color-to-grayscale conversions.

By looking at the color-to-grayscale evaluation results and at the evaluation of HDR tone map-
ping methods presented in Section 2.1, peculiar similarities become notable. If the aim is the
natural reproduction of the original image, then simple global conversions perform efficiently on
average. Advanced local techniques excel in certain cases, but may introduce unnatural artifacts,
which reduce their robustness. The emotional or artistic dimension of color-to-grayscale conver-
sion of photographs has not been explored yet, however, it is assumed that example-based style
transfer techniques [Bae06, Aubr14] may be more efficient in such cases, in particular for ama-
teur photographers. Professionals, on the other hand, often rely on simple manual conversions
based on a weighted combination of color channels. The resulting grayscale image is, in this
case, obtained by tweaking sliders which brighten or darken the respective tones in the photo.
Accordingly, the main application of the methods presented above resides in fully automated
color-to-grayscale conversions of images where it is critical to preserve color contrasts, e.g. for
presentation or printing of business graphics and as a preprocessing step for further image edit-
ing. Finally, since color-to-grayscale conversion tightly couples the reproduction of brightness
and contrast, it is usually combined with tonal modification methods, either automated (Sec-
tion 2.1), or manual (Section 5.2).

1http://cadik.posvete.cz/color_to_gray_evaluation/
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Chapter 4

Image and Video Quality Assessment

The goal of graphics is not to control light, but to control our perception of light.

Light is merely a carrier of the information we gather by perception.

Jack Tumblin, James A. Ferwerda

The goal of image and video quality assessment (IQA, VQA) is to computationally predict
human perception of image and video quality. It is well known [Wang06, Wu05] that numerical
distortion metrics, like root mean squared error (RMSE), are not adequate for the comparison
of images, because they poorly predict the differences between the images as perceived by a
human observer. To solve this problem properly, various perceptual image and video quality

metrics (IQM, VQM) have been proposed [Wu05]. Image quality metrics traditionally comprise
a computational human visual system (HVS) model to correctly predict image difference as a
human would perceive it, be it a bottom-up [Mant11], or a top-down approach [Wang04]. Please
refer to vision science textbooks [Palm02] for more in-depth information on human perception,
and on HVS measurements related to masking, adaptation, contrast sensitivity, etc.

Image quality assessment is practical in various applications of computational photography. The
main applications of IQA lie in the areas of image quality monitoring (e.g. in lossy image com-
pression), benchmarking of imaging applications, and optimizing algorithms by tuning their
parameter settings. Furthermore, image quality metrics have also been successfully applied to
image database retrievals, evaluation of the perceptual impact of different computer graphics
and vision algorithms, etc.

4.1 Dynamic Range Independent Video Quality Assessment

Full-reference image and video quality metrics are based on measuring the errors (signal dif-
ferences) between a distorted image and the reference image, see Figure 4.1. The aim is to
quantify the errors in a way that simulates human visual error sensitivity. A great variety of
image quality metrics have been proposed in the literature [Wang06, Wu05]. Unfortunately, at

17



18 CHAPTER 4. IMAGE AND VIDEO QUALITY ASSESSMENT

HVS MODEL
(IQM)

Reference
Image

Distorted
Image Visualization of differences

predicted by model

Figure 4.1: Full-reference image quality metrics (IQM) model human visual system (HVS) in a
bottom-up or a top-down manner.

the time there was no available metric to compare HDR and LDR video sequences. Therefore,
a new dynamic range independent video quality metric [Aydi10a] (Appendix F) was designed
based on the computational bottom-up model of human perception. The implementation of this
video metric is publicly available online1 along with other IQMs, see Figure 4.2. According to
the website statistics, this metric is regularly used by other researchers for evaluation of novel
methods, which produce, enhance, or modify video sequences. To validate the metric and to
foster future research in the field, a new dynamic range independent dataset for evaluation of

video quality metrics was additionally published [Cadi11] (Appendix G).

Figure 4.2: Image and video quality assessment online. Left: The user uploads the distorted and
reference images or videos. Center: The HTML-based viewer enables viewing HDR images at
various exposures and gamma values. Right: Visualization of the distortion map generated by
the dynamic range independent metric.

1http://metrics.mpi-inf.mpg.de/
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4.2 New Datasets and Evaluation of Image Quality Metrics

Even though knowledge about the human visual system (HVS) is continuously expanded, many
unanswered questions and unverified hypotheses still remain. On that account, we are quite far
from having an accurate bottom-up model of the HVS. Therefore, additionally to the bottom-up
approaches shown above, top-down data-driven approaches to image quality assessment based
on machine learning have been explored. Machine learning techniques have recently gained
a lot of popularity and attention in many research areas. For such methods, it is of crucial
importance to provide a sufficient amount of training data. Unfortunately, no usable dataset
exhibiting localized distortion maps measured on human subjects is available thus far. Therefore,
two experiments [Cadi12] were performed (Appendix H) where observers used a brush-painting
interface to directly mark distorted image regions in the presence and absence of a high-quality
reference image. The resulting per-pixel image-quality datasets enabled a thorough evaluation
of existing full-reference IQMs. Furthermore, the dataset allowed to develop two new machine
learning-based metrics, described hereafter.

4.3 Data-driven Full-Reference Metric for Synthetic Images

Although many image quality metrics have been developed in the past, they were often tuned
for artifacts resulting from compression/transmission applications and have not been evaluated
in the context of synthetic computer generated image artifacts. The unique datasets described
above were utilized to develop a Learning-based Predictor of Localized Distortions (LPLD)

[Cadi13] (Appendix J). LPLD is currently the best performing full-reference metric for synthetic
images. The key element of the metric is a carefully designed set of features, which generalize
over distortion types, image content, and superposition of multiple distortions in a single image.
Additionally, two new datasets to validate this metric were created and made publicly available:
a continuous range of basic distortions encapsulated in a few images, and the distortion saliency
maps captured in the eye tracking experiment. The distortion maps are useful to benchmark
existing and future IQMs and associated saliency maps could be used, for instance, in perceptual
studies of human visual attention.

4.4 NoRM: No-Reference Image Quality Metric

So far, there was no available metric capable of predicting localized image distortions without
knowing the original image, referred to as a no-reference metric, see Figure 4.3. To fill this gap
in IQA, NoRM [Herz12] (Appendix I), a no-reference image quality metric for synthetic images
was proposed. NoRM uses a supervised learning algorithm to predict a perceptual distortion
map, which measures the probability of noticing the local distortions on the pixel-level. The
proposed metric achieves prediction performance comparable to full-reference IQMs. The qual-
ity of the results of NoRM is owed to rendering-specific features extracted from the depth map
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and the surface-material information.

DATA-DRIVEN

MODEL

(NoRM)

Distorted
Image

Visualization of differences

predicted by model

Figure 4.3: Data-driven no-reference image quality assessment metric (NoRM).

Despite many years of active research on image and video quality assessment, the developed
metrics are often still far from being comparable to human observers. Existing universal met-
rics are not sufficiently robust to become widespread. However, to overcome this issue, one
may develop specialized metrics tailored specifically to the particular problem. Recent exam-
ples of such metrics include the quality predictor for image completion [Kopf12], or similarity
measure for illustration style [Garc14]. Furthermore, measuring vaguely defined quantities like
interestingness of images [Gygl13] may be also feasible, perhaps thanks to the machine learning
algorithms. Finally, the important area of multispectral image and video comparison [Le M14]
remains currently almost unexplored.



Chapter 5

Advanced Image Editing

Every moment of searching is a moment of encounter.

Paulo Coelho

The majority of today’s photographs are being altered after the capture: either manually, au-
tomatically, or both. Image editing methods are therefore the essential building blocks of the
digital image processing chain. This section presents three different algorithms with broader ap-
plicability to image editing and computational photography. These algorithms have been tested
on several use case scenarios. However, it is believed that they have numerous other applications.

More specifically, visually significant edges (Section 5.1) were shown to be beneficial in content-
aware image resizing, tone mapping (Chapter 2), and HDR image stitching. The straightforward
use of visually significant edges in image quality assessment (Chapter 4) remains to be explored.

The concept of contrast prescription (Section 5.2), on the other hand, facilitates the implemen-
tation of an interactive tool which may be utilized in photoediting applications. It enables con-
venient multiscale editing of image contrasts, and its wide applications are limited only by the
creativity of the user (an artist, professional photographer, etc.). The use of contrast prescription
in manual HDR image tone mapping (Chapter 2) is illustrated, and it is believed that it would be
helpful in manual color-to-gray conversion (Chapter 3) as well.

Finally, an automatic photo-to-3D model alignment method (Section 5.3), which can register
images into a 3D digital model, is presented. This enables a multitude of previously unseen
or impossible applications such as adding haze or dehazing of photos, simulating changes in
lighting, novel view synthesis, expanding the field of view, adding new objects into images or
videos, and more.

21
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5.1 Visually Significant Edges

Edge detection is a traditional problem in image processing and as such it is a building stone
of many computational photography methods. Similarly, edge-aware image decompositions
[Farb08, Fatt09] form the core of numerous applications, such as image abstraction, detail en-
hancement and HDR tone mapping. The result of the entire process is therefore critically depen-
dent on the quality of edge computation. In visually significant edges [Aydi10b] (Appendix K),
the way of determining the location and strength of edges is revised. Contrary to the widely
used gradient magnitude-based edge strength model, the proposed algorithm accounts for visual
significance of the edges, by modeling HVS mechanisms, such as luminance adaptation, spatial
frequency sensitivity, and visual masking. The model was implemented using edge-aware image
decomposition based on second generation wavelets. Benefits of the visually significant edges
with respect to the gradient magnitude model in image retargeting, HDR image stitching and

tone mapping have been demonstrated (Appendix K). In general, the visually significant edges
provide qualitative improvements in applications utilizing edge strength at the cost of a modest
computational burden due to the implemented HVS model.

5.2 Contrast Prescription for Multiscale Image Editing

This section presents a contribution to interactive image editing techniques, called contrast pre-

scription [Pajk10b] (Appendix L). Contrast manipulation is a common process in digital pho-
tography. Recently developed multiscale image decompositions [Farb08, Fatt09] enable mod-
ifications of image contrasts at arbitrary scales. An important, but often ignored property of
multiscale frameworks is the interaction between contrast at individual scales. Indeed, contrast
modification in one band affects contrast in other bands, which is not intuitive for the user.

The concept of contrast prescription enables the user to lock the contrast in selected areas and
bands, and make it immune to contrast manipulations in other bands. Additionally, an extension
that allows the user to perform countershading, or halo editing was introduced. Countershading
has been used by painters for centuries as it may enhance the perceived contrast. This approach
is one of the few allowing control over such behavior. The hardware accelerated (GPU) imple-
mentation, combined with an intuitive user interface, provides real-time feedback to the user,
which renders the proposed tool yet handier.

5.3 Automatic Photo-to-Terrain Alignment

Having a sufficiently accurate match between a photograph and a 3D model offers new possi-
bilities for image enhancement. The goal of the proposed automatic photo-to-terrain alignment

method [Babo11] (Appendix M) is to register outdoor pictures and movies into a Google-Earth-
like 3D digital elevation model. Assuming the location of the photographer is known, the aim of
the method is to accurately find the orientation of the camera used to capture the image. To this
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extent, the orientation of the recording is calculated from an annotated 3D model by finding, in
an efficient and robust way, the best match between significant edges (e.g., silhouettes) in both
sources. While such an approach seems usually infeasible due to computational complexity, a
careful mathematical reformulation allowed the solution to be practical.

Figure 5.1: Relighting of the photograph using the 3D model. Left: input image, middle and
right: relighted results [Kopf08].

Such photo-to-terrain alignment could be used to transform photographs into a realistic virtual
3D experience. In particular, the system could be used to automatically highlight elements in the
image, such as the travel path taken, names of mountains, or other landmarks. The work could
further be used to augment the realism and level of detail of 3D applications by transferring
information from images and movies directly onto the 3D model. Furthermore, the proposed
photo-to-terrain alignment method produces a precise depth map of the queried photo, because
the used digital elevation models are very accurate. Such a depth map, and the whole 3D model,
can be utilized in many ways, as has been nicely illustrated by Kopf et al. for manually registered
photographs [Kopf08]. Applications in photographs range from dehazing and relighting, to
novel view synthesis, and overlaying with geographic information, see Figure 5.1. With the
advent of Kinect-like depth sensors, such model-based image enhancement and manipulation

approaches, besides their obvious strengths and benefits, will gain in importance.
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Chapter 6

Conclusions and Future Work

Be the change that you wish to see in the world.

Mahatma Gandhi

This thesis has presented several contributions to computational photography (CP). It has cov-
ered a broad spectrum of CP methods, ranging from HDR image processing over the automatic
visual quality assessment and color-to-grayscale conversions to model-based image and video
enhancements. However, hand in hand with research progress, the area of computational pho-
tography is continuously expanding [Rask09, Szel10].

Work on presented publications revealed a number of possible directions for future research
and development. Research in advanced visual attention models, in particular the top-down
and task-driven ones, may have the potential to push the limits of current image quality assess-

ment. Additionally, such models are likely to find many applications in related fields, including
robotics and machine vision. The area of color-to-grayscale conversions requires robust tempo-
ral methods, as well as extensive experimentation and evaluations using video sequences. The
technology of high dynamic range imaging is on the verge of being adopted by the market.
However, the success of this technology depends to a large extent on the availability of HDR
footage. Finally, the field of advanced photo enhancement awaits a boom of 3D model-assisted
techniques [Khol14].

Research in the area of computational photography is currently very popular, and dozens of new
methods are presented each year at major conferences on computer graphics, computer vision,
and image processing. Presently, events specific to computational photography exist as well. In
general, there are many unexplored research directions and accordingly, breakthrough ideas are
continuously emerging [Shih13, Ito14, Laff14]. The general topic, on the other hand, is already
quite well covered by textbooks [Rask09, Szel10], and is taught at leading technical universities
all over the world. Furthermore, some traditional approaches to computational photography, e.g.
panorama stitching, high dynamic range imaging, light fields or lumigraphs [Levo96, Gort96]
have reached maturity and are being utilized by a number of people, and some of them are even
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available on the market [Sphe, Lytr, Goog]. Not to mention basic algorithms like de-mosaicing
or moiré suppression, which currently form an integral part of most of existing cameras.

It is expected that computational photography will become ubiquitous in the near future. Com-
putational methods are, or will be present in hardware capture and display devices, internet ser-
vices and applications, advertising, as well as many other aspects of everyday life. In addition,
depictions that go beyond the capabilities of traditional imaging systems will be encountered in-
creasingly often. Photography will be less and less limited by the properties of capture devices
following examples of HDR technology (Section 2.1), lightfields [Lytr], and other achievements
of CP. This progress will enable powerful digital editing, previously impossible modifications,
as well as faithful reproductions of captured reality. However, despite a long history of photo
fraud and manipulation [Fari08], people still consider photography a reliable tool of documen-
tation. It will be interesting to observe how CP techniques will change the way people think of
photographs. Accordingly, research in image forensics [Fari08] will also gain in importance.

Looking even further ahead, it is realistic to expect that augmented reality solutions (Section 5.3,
[Meno14], [Goog], etc.) will become widespread, and mature enough to allow novel real-time
applications. This will be supported by the progress of computer vision in image understand-
ing, by computer graphics in acceleration of realistic image synthesis, and by advanced image
processing techniques. The progress of vision science in understanding and modeling the hu-
man visual system and perception mechanisms is also essential, as well as technical advances in
hardware capture devices and miniaturization.
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[Babo11] L. Baboud, M. Čadík, E. Eisemann, and H.-P. Seidel. Automatic Photo-to-terrain
Alignment for the Annotation of Mountain Pictures. In Proceedings of the 2011

IEEE Conference on Computer Vision and Pattern Recognition (CVPR Orals),
pp. 41–48, IEEE Computer Society, Washington, DC, USA, 2011.

[Bae06] S. Bae, S. Paris, and F. Durand. Two-scale Tone Management for Photographic Look.
ACM Transactions on Graphics, Vol. 25, No. 3, pp. 637–645, July 2006.

[Boit14] R. Boitard, R. Cozot, D. Thoreau, and K. Bouatouch. Zonal brightness coherency
for video tone mapping. Signal Processing: Image Communication, Vol. 29, No. 2,
pp. 229–246, Feb. 2014.
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[Pajk10b] D. Pająk, M. Čadík, T. O. Aydın, M. Okabe, K. Myszkowski, and H.-P. Seidel.
Contrast Prescription for Multiscale Image Editing. The Visual Computer Journal,
Vol. 26, No. 6-8, pp. 739–748, June 2010.

[Palm02] S. E. Palmer. Vision science – photons to phenomenology. The MIT Press, Cam-
bridge, 3rd Ed., 2002.

[Patt00] S. N. Pattanaik, J. Tumblin, H. Yee, and D. P. Greenberg. Time-dependent Visual
Adaptation for Fast Realistic Image Display. In Proceedings of the 27th Annual

Conference on Computer Graphics and Interactive Techniques, pp. 47–54, ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 2000.

[Phot] Photoshop Creative Cloud. Adobe Systems Incorporated, http://www.adobe.
com/en/products/photoshop.html. Accessed: Aug, 2014.

[Rasc05] K. Rasche, R. Geist, and J. Westall. Re-coloring Images for Gamuts of Lower Di-
mension. Computer Graphics Forum, Vol. 24, No. 3, pp. 423–432, 2005.

[Rask09] R. Raskar and J. Tumblin. Computational Photography: Mastering New Techniques

for Lenses, Lighting, and Sensors. A. K. Peters, Ltd., Natick, MA, USA, 2009.

[Rein10] E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and K. Myszkowski.
High Dynamic Range Imaging, Second Edition: Acquisition, Display, and Image-

Based Lighting. Morgan Kaufmann, 2nd Ed., June 2010.



BIBLIOGRAPHY 31

[Shih13] Y. Shih, S. Paris, F. Durand, and W. T. Freeman. Data-driven Hallucination of Dif-
ferent Times of Day from a Single Outdoor Photo. ACM Transactions on Graphics,
Vol. 32, No. 6, pp. 200:1–200:11, Nov. 2013.

[Sphe] Spheron VR. Spheron-VR AG, https://www.spheron.com/. Accessed: Jul,
2014.

[Szel10] R. Szeliski. Computer Vision: Algorithms and Applications. Springer-Verlag New
York, Inc., New York, NY, USA, 1st Ed., 2010.

[Wang04] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image Quality Assess-
ment: From Error Visibility to Structural Similarity. IEEE Transactions on Image

Processing, Vol. 13, No. 4, pp. 600–612, 2004.

[Wang06] Z. Wang and A. C. Bovik. Modern image quality assessment. Synthesis Lectures on

Image, Video, and Multimedia Processing, Vol. 2, No. 1, pp. 1–156, 2006.

[Wu05] H. R. Wu and K. R. Rao. Digital Video Image Quality and Perceptual Coding (Signal

Processing and Communications). CRC Press, Inc., Boca Raton, FL, USA, 2005.



32 BIBLIOGRAPHY



Appendices – Paper Reprints

33





Appendix A

Evaluation of HDR Tone Mapping

Methods Using Essential Perceptual

Attributes
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a b s t r a c t

The problem of reproducing high dynamic range images on media with restricted dynamic range has

gained a lot of interest in the computer graphics community. There exist various approaches to this

issue, which span several research areas including computer graphics, image processing, color vision,

physiological aspects, etc. These approaches assume a thorough knowledge of both the objective and

subjective attributes of an image. However, no comprehensive overview and analysis of such attributes

has been published so far.

In this contribution, we present an overview about the effects of basic image attributes in high

dynamic range tone mapping. Furthermore, we propose a scheme of relationships between these

attributes, leading to the definition of an overall image quality measure. We present results of subjective

psychophysical experiments that we have performed to prove the proposed relationship scheme.

Moreover, we also present an evaluation of existing tone mapping methods (operators) with regard to

these attributes. Finally, the execution of with reference and without a real reference perceptual

experiments gave us the opportunity to relate the obtained subjective results.

Our effort is not just useful to get into the tone mapping field or when implementing a tone mapping

method, but it also sets the stage for well-founded quality comparisons between tone mapping

methods. By providing good definitions of the different attributes, user-driven or fully automatic

comparisons are made possible.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamic range of visual stimuli in the real world is

extremely large. A high dynamic range (HDR) image can be

generated either synthetically or acquired from the real world, but

the conventional media used to present these images can only

display a limited range of luminous intensity. This problem, i.e.,

displaying high contrast images on output devices with limited

contrast, is the task of HDR imaging, and it is approached by HDR

tone mapping (TM). A number of different TM methods (opera-

tors) have been proposed in history [1,2]. However, also due to

their sheer number, the advantages and disadvantages of these

methods are not immanently clear, and therefore a thorough and

systematic comparison is highly desirable.

The field of TM assumes extensive knowledge of findings from

various scientific areas. In order to conduct a comparison of TM

methods, it is necessary to settle upon a set of image attributes by

which the images produced by the methods should be judged.

These attributes are not independent, and their interrelationships

and the influence on the overall image quality need to be carefully

analyzed. This is useful not just for comparing existing HDR

approaches, but for evaluating future ones as well. The human

visual system (HVS) is extremely complex and, besides highly

focused laboratory studies, there is a lack of comprehensive user

experiments we could build on.

In this contribution, we give a comprehensive list of most of

the important attributes involved in the evaluation of a TM

method, and we show which relationships exist between the basic

attributes by means of two different subjective testing methods.

Namely, we investigate the perceived quality of the images

produced by particular TM methods with and without the

possibility of direct comparison to the original real-world scenes.

The evaluation of the attributes and their relationships leads to

the definition of an overall image quality (OIQ). This metric can be

used to judge how well a given TM method is able to produce

naturally looking images. Furthermore, we present the most
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comprehensive comparison to date in terms of the number of TM

methods considered, including 14 different methods.

The article is organized as follows. In Section 2, we overview

the previous work on comparison of TM methods and other

related work. In Section 3, we introduce and describe the term

‘‘overall image quality’’. In Section 4, we give a survey of the most

important image attributes for TM, and we describe how different

methods reproduce these attributes. In Section 5 we propose a

new scheme of relationships between the image attributes. In

Section 6 we describe the two applied experimental methods

based on human observations, and finally in Section 7, we show

and discuss the results of these experiments. The survey of image

attributes and the relationships (Sections 4, 5) is extended from

[3] and incorporates our new findings.

2. Previous work

The history of evaluation of TMmethods is short. The following

works (the only ones, to our best knowledge) were published only

in the last few years. This is due to the recent increase in

published TM methods on the one hand, and due to the very high

time, implementation, human and other demands involved in

such an evaluation on the other hand. While this section surveys

the previous work, we relate our results to these works in

Section 7.5.

2.1. Experimental evaluations of TM methods

Drago et al. [4] performed a perceptual evaluation of six TM

methods with regard to similarity and preference. In their study,

observers were asked to rate a difference for all pairwise

comparisons of a set of four HDR images tone mapped with six

TM methods (24 images in total) shown on the screen. A

multidimensional perceptual scaling of the subjective data from

11 observers revealed the two most salient stimulus space

dimensions. The authors unfolded these dimensions as natural-

ness and detail and also identified the ideal preference point in

the stimulus space. These findings were then used for a final

ranking of the six TM methods.

In 2005, Yoshida et al. [5] compared seven TM methods using

two real-world architectural interior scenes. The 14 observers

were asked to rate basic image attributes (contrast, brightness,

details) as well as the naturalness of the images. The results of this

perceptual study exhibited differences between global and local

TM methods. Global methods performed better than local

methods in the reproduction of brightness and contrast; however,

local methods exhibited better reproduction of details in bright

regions of images.

Kuang et al. [6] tested eight TM algorithms using 10 HDR

images. The authors implemented two paired comparison psy-

chophysical experiments assessing the color and gray scale TM

performance, respectively. In these tests, 30 observers were asked

to choose the preferred image for each possible pair. The results

showed the consistency of TM performance for gray scale and

color images. In the continuation of this research, Kuang et al. [7]

removed two TM methods and added two new images to the

group of input stimuli. The authors examined the overall image

preference (using paired comparison performed on an LCD

desktop monitor) and preferences for six image attributes (using

a rating scale)—highlight details, shadow details, overall contrast,

sharpness, colorfulness, artifacts. The results show that shadow

details, overall contrast, sharpness and colorfulness have high

correlations with the overall preference. More recently and

parallel to our work, Kuang et al. [8] used three indoor scenes

and 19 subjects to evaluate seven TM algorithms. Using two

paired comparisons, the authors evaluated image contrast, color-

fulness and overall accuracy. The results showed that bilateral

filtering [9] generated more accurate results than other algo-

rithms. Results of the three experiments performed by Kuang and

colleagues are summarized in [10].

Ashikhmin and Goyal [11], parallel to our work, demonstrated

that using real environments is crucial in judging performance of

TM methods. The authors compared five TM methods using four

real-world indoor environments plus two additional HDR images.

Fifteen subjects were involved in three ranking experiments: first

two tests (preference and fidelity) were performed without

ground truth while the third (fidelity) was conducted with

reference (real scene). The results indicate that there is statisti-

cally no difference between preference and fidelity when there is

no reference (i.e., equivalence of liking and naturalness criteria).

However, the results show a difference in subject’s responses for

the fidelity test with reference and without reference.

2.2. Evaluations using HDR displays

Ledda et al. [12] ran an evaluation of six TM methods by

comparing to the reference scenes displayed on an HDR display.

This HDR display allowed authors to involve many (23) input

scenes. Subjects were presented three images at once (the

reference and two tone mapped images) and had to choose the

image closest to the reference. Statistical methods were used to

process subjective data and the six examined methods were

evaluated with respect to the overall quality and to the

reproduction of features and details.

In the field of HDR displays, Yoshida et al. [13] analyzed the

reproduction of HDR images on displays of varying dynamic

range. The authors ran two perceptual experiments to measure

subjective preferences and the perception of fidelity of real scenes.

Twenty-four participants, 25 HDR images and three real-world

scenes were involved in the experiments. An outcome of this work

is the analysis how users adjust parameters of a generic global TM

method to achieve the best looking images and the images that

are closest to the real-world scenes.

Akyüz et al. [14] investigated how LDR images are best

displayed on current HDR monitors. In two subjective experi-

ments, authors exhibited 10 HDR images to 22 and 16 subjects,

respectively. The results show that HDR displays outperform LDR

ones and that LDR data do not require sophisticated treatment to

produce a HDR experience. More surprisingly, results show that

tone mapped HDR images are statistically no better than the best

single LDR exposure.

2.3. Other related studies

Some exciting contributions were published in the domain of

image quality measurement of ordinary LDR images (see the book

by Janssen [15] for an overview on this topic). Rogowitz et al. [16]

conducted two psychophysical scaling experiments for the

evaluation of image similarity. The subjective results were

compared to two algorithmic image similarity metrics and

analyzed using multidimensional scaling. The analysis showed

that humans use many dimensions in their evaluations of image

similarity, including overall color appearance, semantic informa-

tion, etc.

We find related work also in the field of psychophysical color

research and photography, e.g., Fedorovskaya et al. [17] varied

chroma of four input images to determine its effect on perceived

image quality, colorfulness and naturalness. Results indicate that

the enhancement of colorfulness leads to higher perceptual

quality of an image. Savakis et al. [18] performed an experiment
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on image appeal in consumer photography. While image quality is

generally an objective measure, image appeal is rather subjective.

During the experiment, authors showed 30 groups of prints to 11

people. The task of each subject was to select such a picture from

each group that would receive the most attention in a photo

album. Moreover, subjects had to comment the positive and

negative attributes they used for the selection of the picture. The

results show that the most important attributes for image appeal

fall into the groups of composition/subject and people/expression,

leaving objective attributes less significant.

Jobson et al. [19] investigated contrast and lightness in visually

optimized LDR images. The authors approach the lightness as the

image mean and the contrast as the mean of regional standard

deviations. Inspecting these measures, the authors experimentally

show that visually optimized LDR images are clustered about a

single mean value and have high standard deviations, i.e., both the

lightness and contrast are improved with the latter being more

affected.

In a forthcoming paper, Mantiuk and Seidel [20] show an

application of their generic (black-box) TM operator to the

analysis of TM methods. The authors fit the generic operator to

12TM methods to visualize their characteristics using fitted

parameters of the generic operator. Moreover, they apply the

generic operator to HDR image compression. It is interesting to

observe that global TM methods result in less distorted recon-

struction than local ones, even though one would favor local

methods to preserve more information.

2.4. Our approach

Differently from the mentioned approaches, we adopt both a

direct rating (with reference) comparison of the tone mapped

images to the real scenes, and a subjective ranking of tone mapped

images without a real reference. This enables us to confront the

results from these two subjective experiments. Moreover, we

present a methodology for evaluating TMmethods using generally

known image attributes. With 14 methods in total, and three

typical real-world HDR scenes, the subjective studies carried out

to confirm this methodology also contain one of the most

comprehensive comparison of TM methods. We have already

presented [3] preliminary ideas of this project and we conducted

an initial pilot study to examine the experimental setup. It was

observed that the overall image quality is not determined by a

single attribute, but rather a composition of them. Next, we

assessed [21] the results concerning the indoor scenes. Encour-

aged by these findings, we conducted a full experiment (we

extended the input stimuli group by two additional, different

outdoor scenes), the results of which, including a thorough

discussion, new statistical methodology, etc. are presented in this

contribution.

3. Overall image quality

In this section, we motivate and describe a measure which is

useful for determining the performance of a particular TM

method.

The first question is whether it is possible at all to find an

optimal or ‘‘exact’’ method to tone map an arbitrary HDR input

image, based on human vision. Unfortunately, the answer seems

to be negative. Take for example a beach scene, where the

absolute illuminance is often above 50,000 lux. A captured

photograph of that scene, viewed under normal room illumination

(about 200 lux), can never reproduce the same amount of

colorfulness, because this is a psychophysiological effect that

depends on the absolute illuminance (vivid colors start to be

perceived above 2000 lux). Therefore, a natural reproduction is

only possible to a limited degree.

Another important question is the intent of the reproduction.

The classical perceptual approach tries to simulate the human

vision process and design the TM method accordingly. For

example, a scene viewed at night would be represented blurred

and nearly monochromatic due to scotopic vision. However, if it is

important to understand some fine details or the structure of the

visible lines in the result, i.e., the content of the image, the same

scene would be represented with full detail, which would be

called the cognitive approach. If the goal is only the pleasant

appearance of the image, we speak about an aesthetical approach.

Any given TM method will realize a mixture of these three

approaches, with a different weighting given to each [22].

In this contribution, we concentrate on the perceptual

approach, and aim to characterize the overall image quality (OIQ)

resulting from a TM technique in a perceptual sense. In addition,

we have chosen a number of important image attributes which

are typically used to characterize tone mapped images, and study

how well TM methods reproduce these attributes: brightness,

contrast, color, detail and artifacts. The chosen attributes are

mostly perceptual, but contain cognitive and aesthetics aspects as

well. Beyond these attributes, which are related to color and

spatial vision, there are some other important aspects and some

‘‘special effects’’ which can improve or modify the final appear-

ance. Since some of the attributes are not mutually independent

(as we will explain later), we propose a scheme of relationships

between them (Fig. 6). The goal of this work is to investigate the

influence these attributes have on overall image quality, based on

a subjective study.

4. Image attributes

In this section, we briefly survey particular image attributes for

TM, and we list some typical TM methods that attempt to

reproduce them correctly. As this part has the character of a

survey, an informed reader can skip directly to the experiments

described in Section 6.

4.1. Brightness

Brightness is a quantity that measures the subjective sensation

produced by the absolute amount of luminance [23]. More

specifically, brightness is the attribute of a visual sensation

according to which an area appears to emit more or less light

[24]. The magnitude of brightness can be estimated for unrelated

visual stimuli (since it is an absolute unit) as well as for related

visual stimuli. Lightness is defined as the attribute of a visual

sensation according to which the area in which the visual

stimulus is presented appears to emit more or less light in

proportion to that emitted by a similarly illuminated area

perceived as a ‘‘white’’ stimulus [24]. Lightness has thus meaning

only for related visual stimuli. As lightness is judged with

reference to the brightness of the ‘‘white’’ stimulus, it may be

considered a special form of brightness measure that could be

referred to as relative brightness [24]. In this study, we concern

ourselves with the quality of reproduction of an ‘‘overall’’

brightness of the inquired HDR scene.

Stevens and Stevens, see [25], proposed an expression for the

apparent brightness, but although the expression gives a con-

venient relationship between luminance and brightness for

simple targets, the overall brightness of an image is more

complex. A method by Tumblin and Rushmeier [26] attempts to

preserve the overall impression of brightness using a mapping

function that is based on the model by Stevens and Stevens [25].
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M. Čadı́k et al. / Computers & Graphics 32 (2008) 330–349332

38



This mapping function matches the brightness of a real-world

luminance to the brightness of a display luminance. Recently,

Krawczyk et al. [27] proposed a method which aims for an

accurate estimation of lightness in real-world scenes by means of

the so-called anchoring theory of lightness perception. The

method is based on an automatic decomposition of the HDR

image into frameworks (consistent areas). Lightness of a frame-

work is then estimated by the anchoring to the luminance level

that is perceived as white, and finally, the global lightness is

computed.

4.2. Contrast

Image contrast is defined in different ways, but it is usually

related to variations in image luminance. There exist various basic

formulae for computation of contrast, see the thesis by Winkler

[28] for an overview. Matkovic et al. [29] proposed a complex

computational global contrast measure called global contrast

factor that uses contrasts at various resolution levels in order to

compute overall contrast. In this study, we think about overall

contrast in a similar way.

Ward’s [30] initial TM method focuses on the preservation of

perceived contrast. This method transforms input luminance to

output luminance using a scaling factor. The computation of the

factor is based on Blackwell’s [31] psychophysical contrast

sensitivity model. BecauseWard’s method scales image intensities

by a constant, it does not change scene contrasts for display.

Almost the same principle of contrast preservation is exploited

also in other methods [32,33].

Advanced local TM methods (e.g., the method [34] or [35]) are

based on a multi-resolution decomposition of the image and

approximate contrast in a way similar to Peli [36], see Fig. 1.

Mantiuk et al. [37] proposed a framework for perceptual contrast

processing of HDR images. The authors define contrast as a

difference between a pixel and one of its neighbors at a particular

level of a Gaussian pyramid. This approach resembles the

gradient-domain method by Fattal et al. [38].

4.3. Reproduction of colors

The sensation of color is an important aspect of the HVS, and a

correct reproduction of colors can increase the apparent realism of

an output image. One important feature of the HVS is the capacity

to see the level of colors in a bright environment. This ability,

measured as color sensitivity, is reduced in dark environments, as

the light sensitive rods take over for the color-sensitive cone

system, see Fig. 2. As the luminance level is raised, the cone

system becomes active and colors begin to be seen. Furthermore,

the HVS has the capability of chromatic adaptation. Humans are

able to adjust to varying colors of illumination in order to

approximately preserve the appearance of object colors. See

Fairchild’s book [25] for more information on color appearance

modeling.

The TM method by Ferwerda et al. [32] captures changes in

threshold color appearance by using separate threshold versus

intensity (TVI) functions for rods and cones and interpolation for

the mesopic luminance range. Ward et al. [33] used a very similar

approach. Pattanaik et al. [39] proposed a comprehensive multi-

scale model that accounts for changes both in threshold color

discriminability and suprathreshold colorfulness. Using opponent

color processing, the model is able to handle changes in chromatic

and luminance-level adaptation as well. In their work, Reinhard

and Devlin [40] adapted a computational model of photoreceptor

behavior that incorporates a chromatic transform that allows the

white point to be shifted.

4.4. Reproduction of details

The reproduction of details is an issue mainly in very dark and

very bright areas, because truncation of values occurs most
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Fig. 1. Peli’s local band-limited contrast on three different spatial resolutions (top-left: original image).
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frequently in these areas as a result of the dynamic range

limitations of the output device. The simplest methods (e.g.,

linear scaling or clamping) will usually reduce or destroy

important details and textures (see Fig. 3). On the other hand,

the effort to reproduce details well is a potential cause of artifacts.

Several TM methods focus especially on the reproduction of

details. Tumblin and Turk’s LCIS method [41] produces a high

detail, low contrast image by compressing only the large features

and adding back all small details. The idea of compressing just the

large features and then adding subtle noncompressed details is

also used in the methods based on the bilateral [9] and trilateral

filter [42].

A different approach was presented by Ward [33]. Ward’s

method based on histogram adjustment aims to preserve visibility,

where visibility is said to be preserved if we can see an object on

the display if and only if we can see it in the real scene. Ward’s

method does not strive to reproduce all the details available, but

exploits the limitations of human vision to reproduce just the

visible details. Also, most local TM methods try to preserve detail

along with contrast.

4.5. Artifacts

As a consequence of tone mapping, artifacts may appear in the

output image. The artifacts degrade the overall quality of the

output image. Some local TM methods [43,44] exhibit typical halo

artifacts, see Fig. 4. These artifacts are caused by contrast reversals,

which may happen for small bright features or sharp high contrast

edges, where a bright feature causes strong attenuation of the

neighboring pixels, surrounding the feature or high contrast edge

with a noticeable dark band or halo.

Another possible artifact of TM methods stems from the

superficial handling of colors. Many TM methods use very simple

rules in handling of the colors, e.g., doing the HDR to LDR

transformation just for the luminance component with conse-

quential restoration of the color information. Apart from poor

values for the color reproduction image attribute, this can also

lead to visible color artifacts like oversaturation, see Fig. 4. Closely

related to color artifacts are quantization artifacts, especially in

dark regions, which stem from applying transformations (like

gamma correction) to a low precision representation of color

values.

4.6. Special attributes

The following image attributes show up just under special

conditions and we do not consider them in our current

experiments, in favor of the basic ones. Moreover, we avoided

testing of glare and visual acuity simulation, because these effects

are usually implemented in the same way as a postprocess after

the TM step. However, we present these attributes here to

complete the survey of image attributes for TM and it will be an

interesting task to include them in future special evaluations.

Visual acuity is the ability of the HVS to resolve spatial detail.

The visual acuity decreases in the dark, since cones are not

responding to such low light levels. It is interesting that

simulating this phenomenon, i.e., reducing the detail in an image,

actually enhances the perceptual quality of the image.

Owing to the scattering of light in the human cornea, lens

and retina, and due to diffraction in the cell structures on the

outer radial areas of the lens, phenomena commonly referred to as

glare effects [45] are seen around very bright objects, see Fig. 5.
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Fig. 2. Simulation of color sensitivity. Left: original image—no color sensitivity simulation. Right: simulation of the loss of color sensitivity in the dark.

Fig. 3. Reproduction of details in a very bright area. Left: global TM method exhibits the loss of details. Right: details preservation owing to mapping by a local method.
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Since the dynamic range of traditional output devices is not

sufficient to evoke such phenomena, we must simulate the

human response artificially to improve the perceptual quality of

the image.

5. Attribute relationships

In the previous section, we have surveyed the image attributes

that are important for TM and influence the overall quality of the

output image. These attributes are not independent, and we

present a description of their interrelationships in this section.

We propose the scheme shown in Fig. 6 to illustrate the

relationships between the attributes. The overall image quality, our

measure, is determined by all the attributes. It depends strongly

on the overall perceived brightness, i.e., highly illuminated scenes

should be reproduced bright, while dim scenes should appear

dark. Apparent contrast should also be reproduced well to make

the result natural. The reproduction of details or rather the

reproduction of visibility of objects is certainly essential to make

the output image appear natural. Furthermore, since we are

typically facing a limited display gamut, the reproduction of color

is an important factor for perceptual quality as well. The

simulation of visual acuity loss can significantly improve the

perceptual quality of dim or night scenes, while the simulation of

glare can enhance the perceptual quality of the dark scenes with

strong light sources. There is no doubt that the presence of

disturbing artifacts degrades perceptual quality. But there are also

important interrelationships of the attributes:

The perception of brightness is affected greatly by the contrast

arrangement (i.e., by the semantics of an image). Fairchild [25]

described the effect of image contrast on the perceived brightness

and concluded that the brightness typically increases with

contrast. It has been shown that brightness increases as a function

of chroma (Helmholtz–Kohlrausch effect). Moreover, the simula-

tion of color appearance at scotopic levels of illumination can

substantially change the perceived brightness. Finally, the simula-

tion of glare plays an important role for the brightness perception.

The glare simulation increases the apparent brightness of light

sources.

It was shown that contrast increases with the luminance

(Stevens effect, see [25]). Since we can identify the contrast at

different spatial resolutions, the perception of contrast is

obviously affected by the reproduction of details. The experi-

mental results of Calabria and Fairchild [46] confirmed that the

perceived contrast depends also on image lightness, chroma and

sharpness.
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Fig. 4. Halo artifacts and oversaturation. Left: HDR image after successful tone mapping without halo artifacts. Right: the same image after tone mapping using the local

method exhibiting a massive amount of halo artifacts. Both images exhibit oversaturation.

Fig. 5. Bloom (veiling luminance) simulation. Left: the original scene without bloom simulation. Right: the same scene with bloom simulation. Source HDR image courtesy of

Greg Ward.
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Fig. 6. The relationships between image attributes. The attributes we did not

evaluate in subjective perceptual experiments are in dashed boxes.
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Colors are related to brightness, because the colorfulness

increases with the luminance level (i.e., the Hunt effect [25]).

The reproduction of details is strongly affected by the

simulation of the visual acuity. Since there are available data that

represent the visual acuity (e.g., Shaler’s curve [32]), these data

place limits on the reproduction of fine details, and may also be

utilized to verify the perceptual quality of detail reproduction.

Furthermore, the visibility preservation diminishes the reproduced

details using a threshold function (e.g., the TVI). The simulated

glare can obscure otherwise reproducible details near strong light

sources.

Using subjective testing results, Spencer et al. [45] verified that

the simulation of glare can substantially increase the apparent

brightness of light sources in digital images.

In the scheme of relationships (Fig. 6), we can identify

attributes that represent limitations of the HVS: the simulation

of glare, the simulation of visual acuity and (in part) the

reproduction of color (in the sense of simulation of the scotopic

vision). These attributes enhance the perceptual quality of the

output image, but are not desirable when the goal is different, for

example when we aim to reproduce as many details as possible.

6. Subjective perceptual studies

We have conducted two separate and technically different

subjective perceptual studies: (1) a rating-based experiment with

reference real-world scenes and (2) a ranking-based experiment

with no references, see Fig. 7. These experiments were conducted

to encourage the proposed idea of an overall image quality

measure and to verify the correlations to and between the image

attributes shown in Fig. 6. Moreover, the execution of two

principally different studies gave us the opportunity to relate

the obtained subjective results. Finally, we used the results of

perceptual studies to evaluate the strengths and weaknesses of 14

TM methods.

Prior to the main experiments we have conducted a pilot study

to examine the setup and to verify that subjects were able to rate

‘‘soft-copy’’ images against the real scenes (i.e., rating experiment

verification). During this study we have also fine-tuned the

parameters of several TM methods, and we have refined

instructions given to subjects. Preliminary ideas of the project as

well as the results of our pilot study have been presented in [3].

It is worth noting that apart from the evaluation of the 14

involved TM methods, the results concerning the relations of

image attributes and overall perceptual quality of an image are

totally independent of any particular TM method or of the values

of its parameters (i.e., the 14 tone mapped images represent a

collection of natural input visual stimuli in our subjective

perceptual studies). We believe that the collection of images we

used is much more natural than the usual artificial stimuli used in

vision science for narrow perceptual studies, where images are

very simple derivations of an original LDR image (thresholding,

scaling, chroma variations or so).

6.1. Subjective testing setup

We arranged three representative HDR real-world scenes

for our experiments: a typical real-world indoor HDR scene, see

Table 3, a typical HDR outdoor scene, see Table 4, and a night

urban HDR scene, see Table 5. We acquired a series of 15 photos of

each scene using a digital camera (Canon EOS300D, Sigma DC

18-200) with varying exposure (fixed aperture f=11, varying

shutter speeds) from a locked-down tripod. The focal length was

around 50mm (crop factor equivalent) for all scenes—which

corresponds to the normal FOV of an observer. The HDR radiance

maps were recovered from the recorded series using the method

of Debevec and Malik [47]. The dynamic ranges of the resulting

HDR images of the indoor scene, outdoor scene and night

urban scene were about 105
:10ÿ1 cd=m2, 106

:101 cd=m2 and

103
:10ÿ3 cd=m2, respectively (numerical values as reported by the

pfsstat utility1 are summarized in Table 1), luminance

histograms are shown in Fig. 8.

We transformed these input HDR images using 14 different TM

methods, so that we obtained 14 LDR images2 per scene for

investigation. We attempted to include the largest possible

amount of methods (see [1,2] for an overview) into the evaluation,

and came up with the 14 techniques (see Table 2) to be included

into our experiment (abbreviations are used through the entire
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Fig. 7. Example of subjective perceptual experiments setups. Left: rating experiment with real references, Right: ranking experiment without references.

Table 1

Numerical luminance values (log10 cd=m
2) for the experimental HDR images

Min Max Mean Dynamic range

Night scene ÿ2.33 2.77 ÿ0.99 5.13

Indoor scene ÿ1.09 4.27 0.82 5.37

Outdoor scene 0.63 6.08 2.69 5.45

1 Available at http://www.mpi-inf.mpg.de/resources/pfstools/
2 All the tone mapped images as well as the original HDR images are available

on the web pages of the project: http://www.cgg.cvut.cz/�cadikm/tmo
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paper); for the resulting images see Tables 3–5. All the evaluated

methods were implemented by the first author with some

discussions and help from the original authors of these methods.

The sequence of 14 LDR TM images represented the input

visual stimuli for each observer, all the testings were performed

under controlled ambient luminance level. A total number of 20

subjects aged between 26 and 52 were involved in our experi-

ments. All participating subjects had normal or corrected-

to-normal vision and were nonexperts in the field of TM.

In the two experimental studies, we collected in total 3ðscenesÞ �

ð10þ 10ÞðsubjectsÞ � 6ðattributesÞ � 14ðmethodsÞ ¼ 5040 values of observa-

tion scores.

In the first experiment, based on rating (see Fig. 7—left), we

simultaneously presented an original (real-world) HDR scene and

the appropriate TM images of this scene to human observers. In

order to keep the illumination moderately constant, we performed

all the testing procedures at the same time of the day as the HDR

image was acquired, continually inspecting the illumination

conditions using an exposure meter. The TM images were shown

separately in random order on a calibrated monitor3 to a group of

10 subjects. The task of each subject was to express the overall

image quality, and the quality of reproduction of basic attributes—

overall brightness, overall contrast, reproduction of details, overall

reproduction of colors and the lack of disturbing image artifacts

for a particular image by ratings (on the scale 1–10, where 10

represents the best result, while 1 is the worst) with respect to

the actual scene. All subjects were verbally introduced to the

experiment and they were instructed to ‘‘Rate the images on how

close the particular image attribute matches in appearance to the

real-world scene’’ (attribute reproduction results) and to ‘‘Rate

the images on how close the overall match in appearance is to the

real-world scene’’ (overall image quality results). To avoid any

confusion, subjects were personally informed that we were

interested in quality of reproduction (not the amount or quantity)

of inquired image attributes (e.g., ‘‘Less detail in the image than in

the ground truth is bad, more detail in the image than in the

ground truth is bad as well, the closer to the ground truth

the better the score should be.’’) and that they should judge only

the particular attribute and avoid any influence of other

attributes. Subjects sat at the place of the camera at common

viewing distance from the display (approximately 60 cm) and they

were able to directly observe both the real scene and the display.

However, subjects were always instructed to take a few seconds to

adapt to each. The procedure took approximately 45min for one

observer and one scene. We chose the rating scale method in this

experiment to stimulate observers to do the direct comparison of

the TM image to the real scene.

In the second experiment, based on ranking (see Fig. 7—right),

we investigated what happens when subjects have no possibility

of directly comparing to the ground truth (or are not affected by a

previous experience with the real scene). A group of 10 observers

(different ones than in the first experiment), who have never seen

the real HDR scenes and had therefore virtually no idea about the

attributes of original scenes, was selected. The task of each subject

was to order (rank) image printouts resulting from the 14 methods

according to the overall image quality, and the quality of

reproduction of overall contrast, overall brightness, colors, details

and image artifacts. Similarly to the first experiment, all subjects

were verbally introduced to the experiment and they were
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Fig. 8. Luminance histograms (log10) of the experimental HDR images, from left: night scene, indoor scene, outdoor scene.

Table 2

Abbreviations of evaluated tone mapping methods

Abbreviation Method description Publication Global/Local

Ashikhmin02 A tone mapping algorithm for high contrast images [35] L

Chiu93 Spatially nonuniform scaling functions for high contrast images [43] L

Choudhury03 The trilateral filter for high contrast images and meshes [42] L

Drago03 Adaptive logarithmic mapping for displaying high contrast scenes [48] G

Durand02 Fast bilateral filtering for the display of HDR images [9] L

Fattal02 Gradient domain high dynamic range compression [38] L

LCIS99 Low curvature image simplifier [41] L

Pattanaik02 Adaptive gain control for HDR image display [49] L

Reinhard02 Photographic tone reproduction for digital images [34] L

Schlick94 Quantization techniques for visualization of HDR pictures [44] L

Tumblin99 Revised Tumblin–Rushmeier tone reproduction operator [50] G

Ward94 A contrast-based scalefactor for luminance display [30] G

Ward97 A visibility matching tone reproduction operator for HDR scenes [33] G

Linear Clip Manual linear clipping G

3 FSC P19-2, 1900 LCD display, with maximum luminance of 280 cd=m2 . We

used manufacturer’s ICC profiles (D65) for both the monitor and the camera to

perform the colorimetric characterization of the devices.
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Table 3

Strengths and weaknesses of evaluated TM methods—indoor scene

Method Image Brightness Contrast Details Colors Overall quality Method Image Brightness Contrast Colors Details Overall quality

Linear Clip 10.6 7.6 7.6 11.3 8.9 LCIS99 4.1 6.2 5.4 3.4 4.6

2.8 3.9 4.7 3.6 3.0 1.5 2.6 3.9 1.2 1.3

6.3 6.6 3.6 8.4 5.7 11.2 10.8 9.8 9.3 11.9

3.1 3.9 3.7 3.7 2.9 2.1 1.9 3.3 3.3 2.4

Ward94 7.7 8.1 5.3 9.6 9.7 Pattanaik02 11.1 8.9 12.4 8.6 6.8

3.0 4.0 1.9 2.4 3.7 3.6 3.6 2.5 3.3 3.3

7.1 9.7 6.8 9.8 7.9 8.2 8.2 9.4 8.1 7.6

2.7 2.2 2.5 2.5 3.4 4.5 3.9 3.5 3.5 3.2

Tumblin99 11.1 9.5 7.5 10.3 10.8 Choudhury03 5.2 5.9 7.0 5.4 2.2

1.6 3.3 3.9 1.9 3.1 1.5 2.3 2.6 1.4 3.6

9.0 9.6 6.9 10.4 8.0 10.2 8.8 9.6 7.7 10.4

1.8 3.5 1.9 1.9 2.5 2.2 2.5 2.3 2.3 2.0

Reinhard02 10.8 11.6 10.4 12.5 12.2 Drago03 10.9 9.5 6.9 9.0 8.9

1.9 2.7 2.8 1.4 1.1 1.5 1.8 3.9 3.0 1.5

11.9 12.1 11.8 12.6 11.9 7.5 5.8 5.1 6.5 7.2

1.9 2.6 1.7 1.8 2.3 2.2 1.9 2.3 2.3 1.7

Schlick94 3.8 7.1 6.2 5.6 9.3 Ashikhmin02 8.3 8.0 10.2 8.3 7.6

2.4 3.3 3.8 2.9 3.1 2.5 3.7 2.6 3.2 3.3

6.9 8.7 6.7 9.1 8.2 7.3 6.5 9.6 5.0 7.5

4.2 4.3 3.9 3.9 4.6 2.9 2.0 2.6 2.6 1.3

Ward97 8.8 9.8 8.1 10.3 11.5 Fattal02 3.2 5.4 7.4 5.0 5.8

2.5 3.3 3.2 2.3 1.8 1.0 3.6 4.2 1.8 2.4

10.4 9.7 9.4 10.0 10.8 3.7 3.8 8.2 2.4 3.4

2.3 2.1 1.9 1.9 2.2 2.7 2.6 2.7 2.7 3.4

Durand02 8.4 4.7 6.9 4.6 3.5 Chiu93 1.1 2.7 3.0 1.1 1.8

3.7 4.4 4.0 2.9 2.7 0.3 3.0 2.5 0.3 1.3

2.9 2.2 5.0 2.4 2.75 2.5 2.7 3.3 3.5 1.9

1.6 0.8 0.9 0.9 2.4 1.9 2.6 1.6 1.6 0.9

In bold: average ranking scores (1st line) and average rating scores (3rd line); in italics: standard deviations for ranking (2nd line) and for rating scores (4th line). The higher values represent the higher reproduction quality.
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Table 4

Strengths and weaknesses of evaluated TM methods—outdoor scene

Method Image Brightness Contrast Details Colors Overall quality Method Image Brightness Contrast Colors Details Overall quality

Linear Clip 12.3 13.2 12.5 13.4 13.2 LCIS99 9.4 7.9 8.8 7.9 7.8

2.2 0.9 1.9 0.5 0.9 2.2 1.6 1.5 2.0 1.7

10.3 10.7 9.4 10.1 11.8 7.8 7.8 8.7 8.5 7.7

3.1 2.9 3.6 3.6 2.5 3.3 3.2 2.6 2.6 3.0

Ward94 4.3 6.2 4.1 5.7 8.2 Pattanaik02 6.1 4.1 3.4 2.1 2.1

2.0 2.6 3.1 1.4 1.8 4.1 1.8 2.2 0.3 0.3

7.4 10.2 7.2 9.1 9.7 2.3 2.1 4.8 3.1 2.3

3.1 2.3 2.3 2.3 2.2 0.8 0.8 3.4 2.1 0.7

Tumblin99 12.4 12.7 12.5 13.6 12.9 Choudhury03 8.2 5.8 7.9 7.3 6.0

2.3 1.2 1.9 0.5 1.0 1.7 1.3 1.4 1.7 1.5

10.3 8.4 7.3 9.8 11.2 6.0 6.1 7.8 7.1 7.7

2.5 2.1 4.1 3.4 1.5 2.4 3.2 3.1 2.4 3.0

Reinhard02 9.2 10.6 9.0 10.1 7.9 Drago03 3.6 4.1 5.1 5.4 6.9

2.0 0.9 1.6 1.1 3.2 2.1 2.4 2.2 2.5 2.7

13.1 12.0 9.7 11.7 9.7 6.2 6.8 6.1 5.0 5.7

1.1 1.7 4.6 1.9 2.9 2.3 2.3 1.7 3.6 1.5

Schlick94 9.4 10.6 10.7 10.9 11.5 Ashikhmin02 8.7 6.9 7.7 6.8 4.9

2.7 1.6 2.6 0.5 1.4 2.5 1.8 2.2 1.5 1.3

10.6 10.3 9.7 9.8 11.1 6.6 6.0 7.9 7.1 5.2

2.0 2.6 2.7 2.2 2.3 2.4 2.1 4.1 2.3 2.5

Ward97 10.6 11.6 12.3 11.4 11.3 Fattal02 2.8 1.8 3.1 3.7 3.5

2.1 2.3 1.1 0.8 1.8 1.3 1.1 1.4 1.9 1.2

9.7 9.0 8.9 8.7 8.9 4.4 2.9 5.5 2.0 2.3

2.9 3.7 3.4 2.5 1.5 4.1 0.9 4.7 0.7 0.9

Durand02 3.6 6.0 4.8 5.6 7.7 Chiu93 4.4 3.5 3.1 1.1 0.3

2.0 2.9 2.6 1.3 1.6 3.8 3.0 2.3 0.3 1.1

7.8 10.4 7.0 9.0 10.1 2.9 2.6 5.3 4.4 1.8

3.4 2.5 2.0 2.4 2.7 2.2 2.6 5.1 3.8 0.5

In bold: average ranking scores (1st line) and average rating scores (3rd line); in italics: standard deviations for ranking (2nd line) and for rating scores (4th line). The higher values represent the higher reproduction quality.
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Table 5

Strengths and weaknesses of evaluated TM methods—night scene

Method Image Brightness Contrast Details Colors Overall quality Method Image Brightness Contrast Colors Details Overall quality

Linear Clip 11.3 12.8 13.2 12.2 12.9 LCIS99 6.5 6.2 5.8 6.1 5.7

3.6 1.2 1.3 2.7 1.0 2.3 1.5 0.9 2.7 0.5

10.0 9.8 8.8 10.4 10.2 7.6 6.9 7.5 6.5 7.7

3.0 2.1 3.3 2.9 3.1 2.2 2.9 2.1 2.0 2.6

Ward94 10.6 12.1 12.1 11.9 12.5 Pattanaik02 9.1 10.0 10.5 9.6 9.2

3.0 1.8 1.5 2.2 1.4 2.0 1.0 1.8 2.5 1.6

10.2 11.1 9.6 11.5 11.9 10.4 12.2 12.7 11.7 12.5

3.2 3.2 3.9 3.0 1.7 3.9 1.9 1.3 2.0 1.8

Tumblin99 7.4 7.6 8.1 8.4 8.8 Choudhury03 7.1 6.6 5.3 5.9 5.1

2.3 1.7 1.0 1.5 1.3 2.6 2.3 0.9 2.6 1.0

8.8 8.6 6.8 8.4 9.4 6.7 5.6 7.3 6.5 6.9

2.7 3.1 2.9 3.4 2.7 1.9 3.4 2.9 2.8 2.5

Reinhard02 9.1 9.0 9.4 9.7 9.3 Drago03 4.9 4.9 3.3 3.8 3.4

3.6 2.5 1.3 1.4 1.3 4.2 3.9 0.6 2.6 1.2

6.8 8.5 9.8 10.0 8.7 6.9 4.9 5.2 3.9 4.4

4.2 2.4 3.7 2.3 2.6 3.9 2.5 3.0 3.2 1.9

Schlick94 8.8 9.3 9.7 9.5 10.4 Ashikhmin02 5.1 3.6 3.6 4.5 3.3

2.6 2.1 1.3 1.8 1.7 3.4 1.1 1.0 2.7 1.0

7.5 10.9 9.5 9.3 8.8 8.2 4.8 8.5 5.2 4.8

3.1 1.8 2.5 1.9 1.9 3.2 2.2 4.4 2.6 2.3

Ward97 8.7 7.0 7.8 8.1 7.7 Fattal02 4.0 2.4 2.4 2.6 2.7

2.8 1.8 2.0 1.4 1.3 2.5 0.5 0.7 0.5 0.6

3.7 6.3 6.5 6.9 5.9 5.7 3.7 3.0 2.6 2.1

2.8 2.0 2.0 2.0 1.9 4.8 3.2 3.0 1.1 0.4

Durand02 11.4 12.5 12.8 11.7 13.0 Chiu93 1.0 1.0 1.0 1.0 1.0

2.5 1.4 0.4 2.2 0.6 0.0 0.0 0.0 0.0 0.0

8.9 10.9 8.9 10.9 11.0 3.9 1.1 1.2 1.3 1.1

3.7 2.5 2.9 2.2 2.4 5.0 0.2 0.3 0.6 0.2

In bold: average ranking scores (1st line) and average rating scores (3rd line); in italics: standard deviations for ranking (2nd line) and for rating scores (4th line). The higher values represent the higher reproduction quality.
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instructed to ‘‘Rank the printouts on how close the particular

image attribute matches in appearance to a hypothetical real-

world scene,’’ the idea being that when a human views an image,

she always forms a mental model of the original scene. Thus, the

description of image attributes was the same as in the first

experiment, but observers were instructed to ‘‘Imagine how the

original real-world scene would look like’’ and rank the printouts

accordingly. The procedure took approximately 35min for one

observer and one series of input images. The investigated

printouts were high quality color image printouts on a glossy

paper of the same 14 tone mapped images as in the first

experiment.4 Printouts were observed in an office under standard

illumination of approximately 550 lux.

7. Results and discussion

In order to make the results of the two conducted experiments

comparable, we converted the rating observation scores to the

ranking scale by computing the ranks of observations for each

person and attribute with adjustment for ties (if any values were

tied, we computed their average rank) prior to the following

evaluations. For example, a rating observation vector X is

converted to the rank vector X0 as follows:

X ¼ ð3 7 2 6 2 1 5 6 9 5 6 8 8 4Þ

X
0 ¼ ð4 11 2:5 9 2:5 1 6:5 9 14 6:5 9 12:5 12:5 5Þ

We analyzed the data using non-parametric statistical tests.5

Moreover, we also converted these rank order data using the

Thurstonian model (condition D) [51,52] to interval scales. Tables

3–5 show the numerical results separately for each scene, while

interval scales are shown along with standard errors in Fig. 9

(overall average results), in Fig. 11 (average values for each

experiment), and Fig. 13 (overall image quality ratings for each

input scene for each experiment). We describe and discuss the

obtained results in the following text: Sections 7.1 and 7.2

statistically prove that neither the experimental setup nor the

choice of scenes has a systematic influence on the results. In

Section 7.3 we discuss the results of examined TM methods. In

Section 7.5 we quantify the relationship between image attributes

proposed in Section 5. Finally, in Section 7.5 we compare our

results to results obtained in previous work.

7.1. Effects of input scenes and methods

First, we have to inquire if the input scene has a significant

systematic effect on the evaluation of the methods and image

attributes. We use Friedman’s nonparametric two-way analysis of

variance (ANOVA) test [53] for each image attribute indepen-

dently for ranking and rating data sets. We state the null

hypothesis H0 as follows: there is no significant difference

between observation values for the input scenes.

We summarize the results for all image attributes in Table 6. If

the value of Friedman’s statistics Q is higher than the tabulated

critical value Q crit, we reject the null hypothesis H0. For all the

cases we use a significance level of po0:05. As we can observe in

Table 6, we cannot reject the null hypothesis for any of the

attributes for both experimental setups. This means we were not

able to find a statistically significant difference between the three

input scenes and we can thus proceed with the evaluation

independently of the input scenes.

Next, we have to verify that there are significant differences

between the TM methods and the evaluation of TM methods thus

makes sense. We use Friedman’s analysis independently for

ranking and rating, with the null hypothesis H0: there is no

significant difference between observation values for 14 evaluated

methods.

The results are summarized in Table 7. Since all obtained Q

values are much higher than Q crit, we reject the null hypothesis for
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Fig. 9. Overall accuracy scores for all examined TM methods. Left to right: overall perceptual quality, reproduction of brightness, reproduction of contrast, reproduction of

details, reproduction of colors, lack of disturbing artifacts. In each chart the higher value represents the higher reproduction quality.

4 A HP Color Laserjet 3500 was used, with the manufacturer’s ICC profile to

perform colorimetric characterization, in order to achieve a reasonably comparable

color representation as in the first experiment.
5 Since we have non-normally distributed observation values (rank orders), we

use nonparametric tests throughout this paper.
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all attributes. This means we found significant differences

between the method scores for all attributes and both experi-

ments and we can proceed with the evaluation of TM methods.

7.2. Effect of the experimental setup

The next question is if there is a statistically significant

difference between the data obtained from the two different

experimental setups (two conducted psychophysical experiments).

Recall that in the rating experiment, observers were able to

directly rate the quality of image attributes against the real

reference (real HDR scene), while in the ranking experiment they

had to rank the images according to the quality of image

attributes without knowledge of the original scene, see Fig. 7.

The second experiment, even though without reference, was not a

simple preference experiment, since observers were instructed to

rank images according their mental model of the original real-

world scene. We chose two different evaluation methods because

unlike in the second experiment, in the first experiment we did

not want to show all the 14 images simultaneously with the

reference scene. We rather wanted to stimulate the observer to

rate a single image against the real reference, thus slightly

eliminating the ranking of tested images (this is, however, never

fully possible). The rating scale was chosen so that the scores were

in the interval ½1;10�.

To examine the differences between the rating and ranking

experiments6 for each attribute, we used the Kruskal–Wallis test

[53] (nonparametric version of one-way ANOVA). The critical

value for the test (n ¼ 14� 10� 3ÿ 1 ¼ 419 degrees of freedom)

is w
2
crit ¼ 467:73. All the obtained results of the test were much

smaller than the critical value, therefore we did not detect any

significant difference between experiments for any attributes

using the nonparametric ANOVA.

Since using the Kruskal–Wallis test we did not find any

statistically significant differences between the rating and ranking

experiments, we also applied another more rigorous test, the

profile analysis [54,55], to the observed data. Profile analysis is a

nonparametric test used to verify that changes in a particular

stochastic variable have the same tendency for several different

objects (rating and ranking experiments in our case). We state the

null hypothesis H0 as follows: the mean values of observation

vectors Xrati and Xrani
, whereXrati andXrani

is a vector of observed

values from the rating and ranking experiment, respectively, differ

just in shift (we say they have parallel profiles). According to the

profile analysis process, we compute the test quantity V�
t for each

variable t and we reject H0 if V�
t is higher than the computed

critical value V�
crit.

First, we calculated H0 for the ranking and rating results for the

profiles over the scenes for each image attribute separately. The

observation vectors were then: Arati ¼ ðAINDOORrati ;AOUTDOORrati ;

ANIGHTrati Þ and Arani
¼ ðAINDOORrani

;AOUTDOORrani
;ANIGHTrani

Þ where A

denotes a particular image attribute, and ADESK�i ;AWINDOW�i , and

ANIGHT�i are the observation values for the Desk, Window and

Night scene respectively. The obtained profile analysis results are

summarized in Table 8. These results show that we can not reject

H0 for any attribute, this means we did not find a significant

difference in profiles for each input scene for the rating and

ranking experiments.

Next, we averaged the scores for the input scenes for

each attribute for each experimental setup separately and

we performed another profile analysis over the following

vectors: Xrati ¼ ðOIQ rati ;Brirati ;Conrati ;Detrati ;Colrati ;Artrati Þ and

Xrani
¼ ðOIQ rani

;Brirani
, Conrani

, Detrani
;Colrani

;Artrani
Þ, where OIQ�i

,

Bri�i , etc., are averages over input scenes for image attributes

overall image quality, brightness, etc., for rating and ranking

experiments. The critical value is in this case V�
crit ¼ 2:6383 and

the resulting values are V�
OIQ ¼ ÿ0:3489, V�

Bri ¼ ÿ0:4791,

V�
Con ¼ 0:0565, V�

Det ¼ ÿ0:1409, V�
Col ¼ ÿ0:0404, V�

Art ¼ 0:1727.

Since the V�
crit is higher than the resulting V� for all image

attributes, profile analysis did not find a significant difference in

the rating and ranking observation data.

Finally, to account for all the factors (i.e., ‘‘subject (observer)’’,

‘‘TM method’’, ‘‘input scene’’ and ‘‘experimental setup’’) together

ARTICLE IN PRESS

Table 6

Results of two separate Friedman’s tests for the effect of input scenes

Q rating Q ranking

Overall quality 2.7984 4.5823

Brightness 2.2857 2.7648

Contrast 1.2857 0.3984

Details 0.1429 3.8353

Colors 1.2857 3.6545

Artifacts 0.1231 1.3740

Critical value Q crit ¼ 5:99

Table 7

Results of two separate Friedman’s tests for the effect of input methods

Q rating Q ranking

Overall quality 85.093 110.98

Brightness 72.772 83.494

Contrast 87.782 92.531

Details 56.826 89.617

Colors 91.939 111.91

Artifacts 75.833 92.768

Critical value Q crit ¼ 19:16

Table 8

Results of profile analysis

V�
INDOOR V�

OUTDOOR V�
NIGHT

Overall quality ÿ0.2016 0.0000 0.0000

Brightness 0.7928 0.0000 1.0296

Contrast 0.8021 0.3077 0.1156

Details ÿ0.1077 ÿ0.1287 0.4361

Colors 0.4008 ÿ0.7951 ÿ0.1773

Artifacts 0.0000 0.2068 0.0000

Critical value V�
crit ¼ 2:394

Table 9

Results of nonparametric MANOVA test

Source of variation SS df MS F p

Experimental setup ÿ0 1 ÿ0 ÿ0 � 1

Input scene 0 2 0 0 � 1

TM method 5936.1 13 456.62 49.96 � 0

Subject (observer) 0 9 0 0 � 1

Residual 7439.4 814 9.13

Total 13376 839

SS denotes sum of squares, df means degrees of freedom, MS denotes mean square,

F is F-value, and p is p-value for the null hypothesis.

6 Recall that the rating is converted to ranking by computing the ranks of

observations for each person and attribute with adjustment for ties.
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in one statistical test, we utilized the recently published

permutational multi-factorial MANOVA [56]. This test is a

nonparametric analogy of the parametric multi-factorial multi-

variate ANOVA [57]. Results of permutational MANOVA (summar-

ized in Table 9) show that the factors ‘‘subject’’, ‘‘input scene’’ and

‘‘experimental setup’’ are statistically not significant, i.e., scenes,

subjects and types of experiment do not have a significant effect

on the resulting scores. The only significant main effect is with the

factor ‘‘TM method’’, which means that there are significant

differences in responses of subjects depending on the type of the

TM method. This correlates with the results reported above, and

again justifies our experimental setup. Moreover, we also inquired

interaction effects and found a significant effect of ‘‘input

scene’’�‘‘TM method’’ (F ¼ 11:23, po0:001) which means that

the scores depend on the combination of scene and input method,

i.e., there probably exist methods whose performance differs for

particular input scenes.

In this section, we made a lot of effort to find a statistically

significant difference between the two experiments, but we have

not found one. This is a very interesting and important result,

because it suggests that for a perceptual comparison of TM

methods it is sufficient to use ranking without a reference as

experimental setup. This type of psychophysical testing is much

cheaper in terms of money and time than the setup with original

scene and ratings.

7.3. Evaluation of HDR TM methods

We should stress here again that all our evaluations are

targeted at the perceptual dimension of TM, i.e., the holy grail

is to reproduce the visual sensation of the real HDR scene as

closely as possible (as opposed to for example information

preservation). Moreover, since all the evaluated methods were

implemented personally by the first author of the paper,

the results in this section represent also the ‘‘achievability’’ of

the results. We do not claim that better results for a particular

method could not be achieved after a thorough parameter tuning.

We have tested three different HDR scenes with a variety of

characteristics, but other input scenes may potentially lead to

different results. We should also stress that our evaluation does

not reflect computation time, implementation difficulties and

other factors, that are also significant in practical applications of

TM methods.

The observed values represent the quality of reproduction of a

particular image attribute, and not its amount. For example the

average observation values for the reproduction of details show

the quality of reproduction of details, not the amount of details.

Subjects were instructed to rank/rate the images accordingly,

therefore too many or too few details are both rated worse than

the right amount of details.

7.3.1. Overall results

The overall results (see interval scores shown in Fig. 9) suggest

that the best overall quality is generally observed in images

produced by global TM methods (TM curves). Interestingly, the

average best score is achieved by the simplest possible approach,

the manual linear clipping of luminance values! However, this is not

such a surprising result, because also our previous pilot studies [3]

have shown the superiority of global approaches in the perceptual

dimension of TM. A possible explanation of this is also suggested by

our analysis (see Section 7.4): the proper reproduction of overall

image attributes (overall contrast, overall brightness, colors) is

essential for the natural perception of the resulting image, more so

than local attributes. The HVS is evidently highly sensitive to any

disruptive factors in the overall image attributes, far more than to

the absence of some image details. Recall that the group of six best-

rated TM methods contains just one local approach—the method

Reinhard02 [34], but an essential part of that method is basically a

global TM method with advanced parameter estimation.

The worst rated methods were Fattal02—the gradient-based

approach, which we believe is a good method, but not so for

perceptual applications, and an early local approach Chiu93. At

the bounds of the quality interval, the best and the worst methods

exhibit also the lowest variance, while the middle zone with often

uncertain judgments has higher variances. The observers have

typically the same opinion about the best/worst question, but

difficulties with the evaluation of some similar cases.

The plot of means of the overall image quality attribute

(obtained by a non-parametric MANOVA test [56]) with 95%

confidence intervals shows the categorization of TM methods

more clearly (see Fig. 10 (left)). As we may observe, there are no

statistically significant differences in the overall image quality for
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the first six methods, which are largely the global TM methods

(visualized in blue). The second group (black color) comprises in

fact deeply local TM approaches that operate averagely in the

perceptual dimension of HDR tone reproduction. Finally, in the

third group (red color) are perceptually not satisfactory methods.

In Fig. 10 (right) we show the dendrogram of distances of overall

image quality between the enquired methods. This graph also

shows the described clustering of the methods into three groups.

The evaluation of artifacts (the higher value the better quality,

i.e., the less amount of artifacts) shows another interesting result.

The approach by Reinhard et al. shows high variance in this

attribute, because it produced two relatively good images, but one

with very disturbing artifacts, see Table 4. Due to the nature of

Reinhard’s method, the artifacts could not be completely avoided.

7.3.2. Comparison of the two experiments

In Fig. 11 we show average results for the two performed

experiments separately. These results indicate how well the

methods performed in rating (with reference) and ranking

(without a reference) experiments. Similarly to overall results,

methods Chiu93 [43] and Fattal02 [38] performed constantly

worst in both experiments. In the rating experiment, Reinard02

[34] exhibits the best scores in all attributes but the artifacts,

where it is the third worst rated (alike in the ranking experiment).

In the ranking experiment, the linear clipping exhibits constantly

the best scores in all attributes.

Generally, the results exhibit similar trends for all the enquired

attributes as suggested by statistical analysis in previous sections.

The relations of two experiments for each image attribute are
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visualized in Fig. 12 along with linear fit and coefficients of

determination R2 (R2 is a measure of the global fit of the model;

R2 ¼ 1 would indicate that the fitted model explained all

variability, while R2 ¼ 0 indicates no linear relationship between

the results of our two experiments.) The highest agreement

between two experiments is for overall contrast, overall image

quality, and for the lack of artifacts attribute. The lowest

agreement is exhibited by the detail attribute and we deal with

this result in the next section.

7.3.3. Comparison of the results for input scenes

Statistical analysis as reported in Section 7.2 suggests that even

though our input scenes do not have a systematic effect on

obtained results, there probably exist methods whose perfor-

mance differs for particular scenes. To examine the effect of the

input scenes on the results further, we show the overall image

quality scores separately for each scene, see Fig. 13. We notice

rather similar trends in results for the two outdoor scenes

(outdoor and night scene), while the indoor scene exhibits a

slightly different pattern. Since there is a book with tiny writing

which dominates the indoor scene, perhaps, there is a higher

stress on reproduction of details in this case.

Notice that methods visualized in shades of blue color perform

very well for at least two scenes. Chiu93 and Fattal02 on the other

hand perform constantly poorly over all scenes in both tests.

Pattanaik02 shows interesting consistent behavior—it performs

very well for the night scene, averagely for the indoor scene, and

poorly for outdoor scene. In case of the indoor scene, LCIS99 and

Choudhury03 show the highest discrepancy between rating

and ranking experiments. In this case, subjects in the rating

experiment perhaps put more stress to the detail attribute to the

detriment of other attributes while subjects in the ranking

experiment not that much. This is in accordance with results

reported in Section 7.3.2, where the detail attribute exhibited the

lowest agreement.

7.4. Overall image quality and relationships of attributes

Beyond the discussed results, we analyzed the dependencies of

overall image quality on the quality of reproduction of the five

evaluated perceptual image attributes. Our investigations are

formulated by means of the experimental results in five-dimen-

sional functions, namely as the dependence of the overall image

quality on the brightness, the contrast, the color, the detail

reproduction and the artifacts attributes.

We used different methods to fit functions to the attribute

observation scores receiving the best approximation to the

independently observed overall image quality. Using the simplest

approach, multivariate linear regression, we obtained the following

result:

OIQ ¼ 0:07 � Briþ 0:37 � Conþ 0:06 � Det

þ 0:36 � Colþ 0:21 � Art, (1)

where OIQ is an overall image quality function, Bri, Con, Det, and

Col, represent the quality of reproduction of brightness, contrast,

details and colors, respectively, all in the interval of ½0;1�

(0 meaning the worst reproduction). Art denotes the artifacts

attribute in the interval of ½0;1� (1 meaning no artifacts). To state

how well the model explains the data, we computed the

coefficient of determination: R2 ¼ 0:76. The high value of R2

shows in our case that the linear regression approach is reason-

able (a satisfactory value of R2 for psychophysical experiments is

over 0:7). In the second step, we determined which of the

attributes actually contributed to the model. For this, we used the

p-values of each attribute:

pBri ¼ 0:8624; pCono0:0001; pDet ¼ 0:0390,

pColo0:0001; pArto0:0001.

The only p-value that is higher than the threshold 0.05 is the

brightness attribute, which means that the reproduction of

brightness does not significantly influence the model. Further-
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more, we can observe in Eq. (1) that the overall contrast has the

biggest weight factor and the detail reproduction the smallest

one. This result may look surprising, as one would expect details

to be more important. However, the global appearance of an

image seems to depend much more on the quality of reproduction

of other image attributes (contrast, color) and this confirms the

good results of global TM methods as described in Section 7.3.

The low factor of brightness reproduction deserves special

attention—it means that the brightness factor does not contribute

to the proposed linear model. This could be caused by the fact that

there is not a significant difference in reproduction of this

attribute between the methods. However, we have found a

significant difference in brightness already, see Section 7.1. To

have another guideline, we computed the Spearman correlation

coefficients between attributes, see the Table 10. These results

show that there is a significant correlation between the brightness

quality and the overall image quality. In the same time (not being

in contradiction), Eq. (1) suggests that the impact of brightness

quality spreads into the other attributes, it reveals itself only

indirectly. This effect is perhaps the best example that the basic

attributes are very coherent or inseparable. Incidentally, Eq. (1)

shows which attributes we should test if we want to compare TM

methods. There is no significant reason to evaluate the brightness

since its effect is included in other attributes. The detail quality

attribute shows a similar Spearman correlation coefficient and

weight factor in formula (1) as the brightness. However, because

of its very small p-value, it contributes directly to the overall

image quality, in contrast to the brightness.

Finally, we used multiple linear regression to examine the

image attribute relations (Fig. 6), with the following results:

Bri ¼ 0:35 � Conþ 0:26 � Det þ 0:13 � Colþ 0:0004 � Art

R2 ¼ 0:69; pCono0:0001; pDeto0:0001,

pColo0:0001; pArt ¼ 0:99.

Since the p-value of artifacts is over the 0.05 threshold, this

result implies that image artifacts do not contribute significantly

to the perception of brightness quality.

Con ¼ 0:22 � Briþ 0:14 � Det þ 0:49 � Colþ 0:12 � Art

R2 ¼ 0:67; pBrio0:0001; pDeto0:0001; pCol ¼ 0:001,

pArt ¼ 0:001,

Det ¼ 0:25 � Briþ 0:19 � Conþ 0:30 � Colþ 0:23 � Art

R2 ¼ 0:56; pBrio0:0001; pCono0:0001; pColo0:0001,

pArto0:0001,

Col ¼ 0:10 � Briþ 0:50 � Conþ 0:23 � Det þ 0:12 � Art

R2 ¼ 0:66; pBrio0:0001; pCono0:0001; pDeto0:0001,

pArto0:0001,

Art ¼ 0:08 � Briþ 0:23 � Conþ 0:34 � Det þ 0:27 � Col

R2 ¼ 0:39; pBri ¼ 0:99; pCono0:0001; pDeto0:0001,

pColo0:0001.

Due to rather small values of the coefficient of determination R2

we cannot make a deeper observation from the above equations.

However, they show evidence of the relations between the

attributes and their approximate weight factors. Moreover, it is

evident that the basic attributes are very hard to separate. As we

predicted in Section 5, there are cross effects, or more complex

basic factors, which are not directly observable. However, for the

amount of observation data we have, the linear regression
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Table 10

Spearman correlations between the qualities of reproduction of image attributes

OIQ Bri Con Det Col

Brightness (Bri) 0.58

Contrast (Con) 0.80 0.64

Details (Det) 0.66 0.60 0.66

Colors (Col) 0.80 0.59 0.77 0.67

Artifacts (Art) 0.65 0.43 0.55 0.55 0.56
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approach is very reasonable and satisfactory, since we would need

extremely large psychophysical experiments (with hundreds of

subjects) for nonlinear fits with cross effects of image attributes.

7.5. Comparison to other studies

In this section, we discuss and relate our results to other

studies. A complete direct comparison is not possible, because we

have evaluated more methods than the previous studies, and the

aims of particular studies were slightly different. We should

emphasize that our study was targeted at the natural reproduc-

tion of real scenes. Since our experimental input data are bound to

natural scenes, the global TM methods (and local methods with a

proper global part) were generally ranked better than the ‘‘detail-

hunting’’ and non-human vision-aware approaches.7 Our results

show that the quality of reproduction of overall brightness, overall

contrast and colors is much more important than the reproduc-

tion of details when naturalness is ranked in real scenes.

Still, the good performance of global methods is perhaps the

most surprising result of our study. However, this is in good

accord with a recent psychophysical evaluation performed by

Akyüz et al. [14], who show that outputs of sophisticated TM

methods are statistically no better than the best single LDR

exposure. Results of Yoshida et al. [5] also show distinctions

between global and local methods, more specifically global

methods performed better in the reproduction of brightness and

contrast, while local methods exhibited better reproduction of

details in bright regions of images. Even though Yoshida et al.

claim that local methods perform better, we do not interpret their

results so for the perceptual dimension, since (as one may see) in

their results for naturalness (i.e., overall image quality) the first

and the second best-rated (out of seven) methods are global TM

curves (Ward97 and Drago03). In the results of Ledda et al. [12],

two investigated global methods performed averagely, in favor of

the iCAM [58] and Reinhard02 methods, but note that these

methods are very strong in their global parts.8 Looking at the

results in the naturalness dimension reported by Drago et al. [4],

we do not see the distinction between global and local methods,

since Tumblin99 performs the best, but Ward97 is interestingly

rated the worst. However, we should recall that observers did not

have any reference in this experiment. Contrary to our results,

Kuang et al. [10] report that local methods outperform global

methods. However, basically the only global method that appears

in their experiments is Ward97 with quite compelling results. To

sum up: our results imply and we strongly believe that for a good

performance in a perception targeted TM task, the TM method

needs to have a significant global TM part. Then, the result may be

sometimes enhanced using a local part that does not vanish in the

global trend, e.g., [59].

The question of correlation between the accuracy and preference

experiments is also very interesting. Ashikhmin and Goyal [11]

demonstrate that using real environments is crucial in judging

performance of TM methods and clearly show that there is a

difference in subject’s responses for a fidelity test with reference

and without reference. Contrary to that, Kuang et al. [10] report a

very strong correlation between the accuracy and preference

experiments and state that one can use preference experiments in

place of accuracy experiments with a real-world reference. Our

results are perhaps closer to Kuang et al., since we did not detect

statistically significant differences between the two performed

experiments. However, our results do not exhibit as strong a

correlation as that of Kuang for overall image quality, and

specifically not for overall brightness and reproduction of the

detail attributes.

Comparing particular method performances is quite tricky, since

the results of TM methods may depend on implementation and

used parameters. Our results are in good agreement with the

evaluation performed by Drago et al. [4], where the Reinhard02

method was ranked the best and the Schlick94 method was also

ranked quite well. The difference is in Ward97 (histogram-based

approach), where authors deliberately omitted the human-based

ceiling function (we did not) and therefore the method favors the

reproduction of details at the expense of naturalness. The

consequences of Kuang et al. [6,8] are also similar to ours:

Fattal02 was considered not very natural while Reinhard02

(photographic mapping) was nearly the best ranked; we did not

test iCAM. The only difference is with Durand02 (bilateral filtering

method), which was ranked the best in Kuang’s study (in our

overall ranking Durand02 performed averagely). We believe this is

caused by the implementation of the bilateral filter, since Kuang

et al. use their specific modification of the original algorithm. In

accordance with the original method description [9], we have

compressed the base layer using a scale factor in the log domain.

More plausible global compression would result in a positively

better outcome, but we aimed to compare purely the original

approaches. This supposition is also supported by the conclusions

of Ledda et al. [12], where the bilateral filtering approach

performed the worst while other overlapping methods show

perfect agreement as well (in the overall similarity test). Similarly

to our results, in Yoshida et al. [5], the best-natural rated method

was Ward97, which is in accord with our results. The other results

could not be compared easily, since Yoshida et al. tested the values

(amount) of attributes while we inquired the reproduction quality

of attributes.

8. Conclusions

In this article, we presented an overview of image attributes for

TM that should facilitate access to the existing TM literature. Since

the attributes are intimately related, we have proposed a scheme

of relationships between them. Moreover, we have proposed a

measure for the overall image quality, which can be expressed as a

combination of these attributes based on psychophysical experi-

ments. We have verified the proposed ideas by means of two

different psychophysical experiments.

The presented overview of image attributes is helpful for

getting into the TM field, or when implementing or developing a

new TM method. On the other hand, the identification of the

relationships between the attributes is very useful for the

subjective comparison of TM methods. For example, we have

found that overall brightness need not really be observed when

the other attributes are available. It also simplifies the comparison

process by reducing the actual number of attributes that can be

used to evaluate a TM method. Finally, it represents the initial

effort to design a truthful, objective comparison metric for HDR

images.

Using the results of two different experimental studies, with

three typical real-world HDR scenes and 14 different TM methods

evaluated, this contribution presents one of the most compre-

hensive evaluations of TM methods yet. Although many interest-

ing results in the field of local TM methods have been published,

our results imply that the global part of a TM method is most
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7 Our results show that statistically, global techniques frequently outperform

local TM approaches, even though local methods are generally claimed to perform

better. Evidently this does not hold for all scenes, as can also be seen in our results.

However, this is also a trend which matches our subjective personal experience.
8 iCAM is generally a local method, but the adaptation values (for both

luminance and colors) are calculated using a heavily blurred source image (very

wide Gaussian), so that the method has a very strong global part and the method

behaves to a big extent close to a global one.
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essential to obtain good perceptual results for typical real-world

scenes.

An interesting and important result of the two different testing

methodologies used (rating with reference and ranking without

reference) is that almost all of the studied image quality attributes

can be evaluated without comparison to a real HDR reference.

The question remains how to numerically assess the quality of

reproduction of particular image attributes. Although some

approaches were proposed in literature [15,29], this area deserves

further investigation and perceptual verification. In the future, we

will conduct consequential tests targeted on individual image

attributes to be able to computationally assess the overall quality

of TM methods.
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M. Čadı́k et al. / Computers & Graphics 32 (2008) 330–349348

54



[44] Schlick C. An adaptive sampling technique for multidimensional ray tracing.
In: Brunet P, Jansen FW, editors. Photorealistic rendering in computer
graphics. Berlin: Springer; 1994. p. 21–9.

[45] Spencer G, Shirley P, Zimmerman K, Greenberg DP. Physically-based
glare effects for digital images. In: Proceedings of the 22nd annual conference
on computer graphics and interactive techniques. ACM Press; 1995.
p. 325–34.

[46] Calabria AJ, Fairchild MD. Perceived image contrast and observer preference I:
the effects of lightness, chroma, and sharpness manipulations on contrast
perception. Journal of Imaging Science & Technology 2003;47:479–93.

[47] Debevec PE, Malik J. Recovering high dynamic range radiance maps from
photographs. In: Whitted T, editor. SIGGRAPH 97 conference proceedings.
Annual conference series, vol. 31 ACM SIGGRAPH, Reading, MA: Addison
Wesley; 1997. p. 369–78. ISBN 0-89791-896-7.

[48] Drago F, Myszkowski K, Annen T, Chiba N. Adaptive logarithmic mapping for
displaying high contrast scenes. Computer Graphics Forum 2003;22(3).

[49] Pattanaik S, Yee H. Adaptive gain control for high dynamic range image
display. In: Proceedings of 18th spring conference on computer graphics, ACM
Press; SCCG ’02: 2002. p. 83–7.

[50] Tumblin J, Hodgins JK, Guenter BK. Two methods for display of high contrast
images. ACM Transactions on Graphics 1999;18(1):56–94.

[51] Thurstone LL. A law of comparative judgement. Psychological Review
1927;34:278–86.

[52] Torgerson WS. Theory and methods of scaling. New York, NY, USA: Wiley;
1958.

[53] Siegel S, Castellan NJ. Nonparametric statistics for the behavioral sciences.
2nd ed. London: McGraw-Hill; 1988.

[54] Lehmacher W, Wall KD. A new nonparametric approach to the comparison of
k independent samples of response curves. Biometrical Journal
1978;20:261–73.

[55] Rencher AC. Methods of multivariate analysis. 2nd Ed. Wiley series in
probability and statistics, 2002.

[56] Anderson MJ, ter Braak CJF. Permutation tests for multi-factorial analysis of
variance. Journal of Statistical Computation and Simulation 2003;73:85–113.

[57] Tabachnick BG, Fidell LS. Using multivariate statistics. 5th ed. Pearson
Education, Inc.; 2007.

[58] Fairchild MD, Johnson GM, Kuang J, Yamaguchi H. Image appearance
modeling and high-dynamic-range image rendering. In: Proceedings of the
1st symposium on applied perception in graphics and visualization, APGV ’04,
New York, NY, USA: ACM; 2004. p. 171.
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Table 3

Strengths and weaknesses of evaluated TM methods—indoor scene

In bold: average ranking scores (1st line) and average rating scores (3rd line); in italics: standard deviations for ranking (2nd line) and for rating scores (4th line). The higher

values represent the higher reproduction quality.

M. Čadı́k / Computers & Graphics 32 (2008) 716–719 717
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Table 4

Strengths and weaknesses of evaluated TM methods—outdoor scene

In bold: average ranking scores (1st line) and average rating scores (3rd line); in italics: standard deviations for ranking (2nd line) and for rating scores (4th line). The higher

values represent the higher reproduction quality.

M. Čadı́k / Computers & Graphics 32 (2008) 716–719718
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Table 5

Strengths and weaknesses of evaluated TM methods—night scene

In bold: average ranking scores (1st line) and average rating scores (3rd line); in italics: standard deviations for ranking (2nd line) and for rating scores (4th line). The higher

values represent the higher reproduction quality.

M. Čadı́k / Computers & Graphics 32 (2008) 716–719 719
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ABSTRACT

We propose a general hybrid approach to the issue of reproduction of high dynamic range images on devices with limited

dynamic range. Our approach is based on combination of arbitrary global and local tone mapping operators. Recent perceptual

studies concerning the reproduction of HDR images have shown high importance of preservation of overall image attributes.

Motivated by these findings, we apply the global method first to reproduce overall image attributes correctly. At the same time,

an enhancement map is constructed to guide a local operator to the critical areas that deserve enhancement. Based on the choice

of involved methods and on the manner of construction of an enhancement map, we show that our approach is general and can

be easily tailored to miscellaneous goals of tone mapping. An implementation of proposed hybrid tone mapping produces good

results, it is easy to implement, fast to compute and it is comfortably scalable, if desired. These qualities nominate our approach

for utilization in time-critical HDR applications like interactive visualizations, modern computer games, HDR image viewers,

HDR mobile devices applications, etc.

Keywords: Tone mapping, HDRI, dynamic range reduction.

1 INTRODUCTION

Merits of high dynamic range imaging (HDRI) are cur-

rently widely recognized in computer graphics, high-

quality photography, computer vision, etc. However,

HDRI becomes popular in interactive and real-time ap-

plications as well. Data visualization, computer games

and other interactive applications gain new qualities

thanks to HDRI. The reproduction of high dynamic

(HDR) data on the low dynamic (LDR) output devices

requires the reduction of dynamic range, commonly re-

ferred to as a tone mapping.

Many so-called tone mapping operators were pro-

posed in history [Dev02, Rei05]. We can classify the

existing approaches according to the transformation

they apply to convert input luminances to the output

values. Global tone mapping methods apply a tone

reproduction curve - e.g. a function. Therefore, they

transform particular value of the input luminance

to one specific output value. Local tone mapping

operators may on the other hand reproduce particular

input luminance to different output values depending

on the surrounding pixels.

Although many sophisticated local tone mapping op-

erators were published, these are typically not very

generic approaches and just a few of these methods is

suitable for interactive and computationally weak ap-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech Re-
public.

plications. Even worse, hardly any of them can be

marked as general and scalable. Besides, recent percep-

tual studies concerning the reproduction of HDR im-

ages [Yos05, Led05, Cad06, Cad07] have shown high

importance of preservation of global image attributes

(overall brightness, overall contrast).

Generally speaking, global methods reproduce over-

all image attributes well, they are fast to compute, and

easy to implement, but may wash away important de-

tails. Local approaches excel in reproduction of local

contrast (details), but they are computationally inten-

sive and may reproduce overall image attributes poorly,

see Figure 1. Motivated by the mentioned findings we

present a fast and simple yet powerful general hybrid

approach to tone mapping issue. This approach takes

advantages of both global and local tone mapping ap-

proaches to overcome mentioned limitations. More-

over, since the aims of tone mapping can differ among

particular applications, the proposed approach can be

easily tailored to the miscellaneous goals.

The paper is organized as follows. In Section 2, we

overview the previous work and we focus particularly

on linear tone mapping methods. In Section 3, we

introduce and describe generally the new hybrid tone

mapping idea. In Section 4, we present two exemplary

implementations of hybrid tone mapping approach and

show the results. Finally, in Section 5, we conclude and

give suggestions for future work.

2 RELATED WORK

The areas of high dynamic range imaging and the tone

mapping are currently quite complex. Refer to the state

of the art by Devlin [Dev02] or to the book by Reinhard

et al. [Rei05] for an overview. Since we concentrate

mainly on interactive applications and computationally
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Figure 1: Global methods reproduce overall image at-

tributes well, but wash away important details (left).

Local approaches excel in reproduction of details, but

may reproduce overall image attributes poorly (right).

efficient methods, we survey briefly the time-dependent

methods suitable for interactive applications.

2.1 Time-dependent Tone Mapping

Adaptation mechanisms of human visual system show

time-dependency. Human needs some time to adapt

to low luminance levels after entering the dark cinema

from the sunlit street, for example. However, involve-

ment of time-dependency is profitable also for non-

perceptual applications of tone mapping, since it avoids

flickering and other time-dependent artifacts.

Probably the first time-dependent tone mapping

method was presented by Pattanaik et al. [Pat00]. The

method is based on statical color model by Hunt that

is extended of time adaptation. Authors use global

s-shaped curve for mimicking the response of both

direct and inverse models of visual perception.

Durand and Dorsey [Dur00] used the global tone

mapping operator by Ferwerda et al. [Fer96] for inter-

active tone mapping. Authors model visual adaptation

course over the time for rods and cones.

Fairchild and Johnson [Fai03] adapted the iCAM

model [Fai02] to account for time-dependent adaptation

effects. The time-dependency provide two exponential

filters that modify adaptation level. The used model is

local (filtering using wide gaussian curve) and therefore

computationally intensive. Since the filtering kernel is

very large, the properties of the iCAM outputs resemble

global tone mapping results.

Ledda [Led04] proposed strictly local time-

dependent approach. The method is based on initial

effort by Pattanaik, but adds local processing using

bilateral filter. Time-dependency is modeled using

exponential filters for rods and cones.

The above surveyed time-dependent approaches ap-

ply either global curves and thus they destroy subtle

details or they apply local methods and thus they are

computationally demanding. Moreover, interactive ap-

plications often need to do some sort of load balancing,

however there is an unanswered question, how to scale

the time-dependent methods properly.

2.2 Linear Tone Mapping

As we have noticed, global methods reproduce over-

all image attributes well, see Figure 1. The group

of global methods comprise a subset of linear tone

mapping curves. Despite of the simplicity of linear

tone mapping curves, the approaches utilizing linear (or

close-to linear) mapping have many advantages that de-

serve our attention.

Since the linear methods scale image intensities by a

constant (scale factor), they do not change scene con-

trasts for display. This is probably the reason why these

methods show [Cad06, Cad07] to perform well in per-

ceptual reproduction of the overall image attributes.

Linear tone mapping methods transform the input

HDR image to the output image values using the scale

factor, Ld = m ·Lw, where m is the scale factor, Lw is

the input luminance, and Ld is the output value in the

interval of [0, 1].

The simplest linear approach is the maximum lumi-

nance mapping, where we map the maximal input lu-

minance to the maximal output value (e.g. to 1): m =
1

Lwmax
, where Lwmax is the maximal input luminance.

Since the maximal luminance is usually enormous in

case of HDR images, this approach produces typically

too dark and valueless results. Mean value mapping ap-

proach gives more reasonable outputs by mapping the

average input luminance to the average output scale:

m = 0.5 ·
1

Lavg
, where Lavg is the average input lumi-

nance.

Ward’s contrast based scale factor [War94] fo-

cuses on the preservation of perceived contrast. The

computation of the scaling factor is based on Black-

well’s [CIE81] psychophysical contrast sensitivity

model. Almost the same principle of contrast preser-

vation is exploited also in the work of Ferwerda et

al. [Fer96].

Another linear approach was introduced by Neumann

et al. [Neu98]. They propose the minimum informa-

tion loss method that tries to mimic the photographer’s

practice to lose a minimum amount of information. The

method automatically selects ideal clipping interval to

obtain a minimum of detail-lost areas. The automatic

selection of the interval is done by means of logarith-

mic image histogram.

Mapping using s-shaped curve [Pat00] is formally

not a linear approach, but practically it can produce re-

sults that are very close to the linearly mapped results.

S-shaped curves resemble transfer curves of classical

photographic media.
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Figure 2: Overview of the hybrid tone mapping ap-

proach.

3 HYBRID TONE MAPPING

We propose a general idea of new hybrid tone mapping

approach in this section, while two exemplary imple-

mentations are described in the next section. We do

not concern the inherent physically-induced issues of

real output devices (gamma correction, etc.), in this pa-

per.1 In the further text, we assume (without the loss of

generality) that the output device range is linear and is

limited to the interval of [0, 1]. Moreover, we do not

concern the reproduction of colors here. All of our pro-

posed methods aim to reduce dynamic range of the in-

put image and the color information is left untouched.

However, there is no obstacle to involve any method

with a specific color processing into hybrid tone map-

ping approach if desired.

The overview of general hybrid tone mapping frame-

work is shown in Figure 2. The process consists of

three steps. First, the input high dynamic range image

is transformed using global tone mapping curve. This

mapping produces the base of the output low dynamic

range image and (if necessary) outputs desired values

for the construction of an enhancement map. In the sec-

ond step, the enhancement map is constructed consid-

ering the aim of the tone mapping (see Figures 3, 6).

Finally, the enhancement map is used to guide a lo-

cal tone mapping method to reconstruct subtle details.

The locally enhanced details are then added back to the

globally transformed image to improve the final image

while maintaining good overall reproduction of image

attributes. Due to the enhancement map, the local tone

mapping method is applied merely to the critical areas

of the original image and therefore a lot of computa-

tional resources are saved.

3.1 Construction of Enhancement Map

Besides the choice of the involved methods, the manner

of the construction of the enhancement map is an essen-

tial heart of the hybrid tone mapping. The enhancement

map therefore has a profound effect on the properties of

the hybrid tone mapping approach as a whole.

The enhancement map is generally a map of float

numbers with the same dimensions as the original HDR

image. In the examples shown in section 4, the en-

hancement map is constructed using a sort of threshold-

1 Nevertheless, all the tone mapping results presented in this paper have

been gamma corrected finally, using the value of γ = 2.2 as usual.

Figure 3: Example of an enhancement map (orange

and green areas) for perceptually plausible hybrid ap-

proach. The luminances in orange-colored areas are

potentially clipped due to linear mapping, while the de-

tails in dark parts, green-colored areas, are lost due to

insufficient numerical precision.

ing of input luminance values. However, there is no ob-

stacle to construct the enhancement map in a different

way (for example based on input gradients, etc.). When

we use a linear transform function in a global part of hy-

brid mapping, the construction of the enhancement map

is very simple and effective. Since we know the analyt-

ical equation of the transfer curve, the clipping values

are then directly known and the enhancement map is

constructed effortlessly by thresholding. For the other

approaches (s-shaped curves, log scaling, etc.), we pro-

pose to use the clip values of 5th and 95th luminance

percentiles. However, the manner of the enhancement

map construction can reflect a special goal of imple-

mented method, as we show in section 4.3.

Due to the abrupt changes of the global mapping to

the local mapping (and vice versa), artifacts might ap-

pear on the borders of the enhancement map. To avoid

the artifacts, we propose to construct and apply the en-

hancement map as follows (we show the process for

only one clipping value Lclip):

EM(x,y)=

{

0 i f T MC(Lw)< Lclip

min(1,T MC(Lw)−Lclip) otherwise,

where EM(x,y) is the enhancement mask value, T MC()
is a global tone mapping method, Lw is the input lumi-

nance, and Lclip is the clipping luminance. The final

output value Ld is then computed as a weighted sum of

a global method and a local method outputs: Ld(x,y) =
EM(x,y) · T MO(Lw) + (1 − EM(x,y)) · T MC(Lw),
where T MO() is the involved local method.

If the computational time is not an issue, we can in-

volve more sophisticated criteria to the construction of

an enhancement map, e.g. the human visual system

properties. Using the visual attention model, for ex-

ample, we can pass the computational resources to the

visually important areas of the image. Another possi-
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bility is the usage of contrast sensitivity function (CSF)

during the construction of the enhancement map. In this

case, the effort of local method will be directed to the

areas, where the detail is (at least potentially) visible for

a human observer.

4 USE CASES AND RESULTS

The proposed idea of hybrid tone mapping is general

– virtually any combination of existing (and potentially

forthcoming) methods is possible. However, the choice

of the involved methods has to reflect the intent of the

resultant combination (f.e. an aesthetic view, a cogni-

tively rich depiction, or a perceptually plausible repro-

duction). A combination of methods that is excellent in

reproducing details can fail miserably when we aim in

reproducing the perceptual experience of an observer.

In this section, we show two different examples of the

hybrid approach: perceptually plausible approach and

cognitively rich approach. We show and discuss actual

outputs of these methods and we also exhibit the per-

formance values comparing to original local methods.

4.1 Fast Perceptually Plausible Approach

For such an interactive applications where the percep-

tually convincing reproduction is desired and where the

computational resources are limited (e.g. in computer

games), we propose fast and simple implementation of

hybrid tone mapping approach as follows.

At the post of global method, we use the linear map-

ping by Ward [War94]. This method was proven to give

reasonable results for natural scenes [Cad06, Cad07],

and the computational demands of the method are min-

imal. Since the global part is purely linear, we can con-

struct the enhancement map directly by thresholding

of input luminance values. The exact clipping values

are known: LclipLO = 0 and LclipHI = 1 for an original

method. We can modify the approach by shifting the

transform curve if desired (to allow the user to adjust

brightness or contrast), but even in this case, the clip-

ping values are easily found analytically. Pixels with

luminance values outside of the linear interval would

be clipped and therefore the information would be lost

there. Therefore, these pixels form the enhancement

map.

Having the enhancement map, we run the bilateral

filtering method [Dur02] just on the areas marked in

the map. Bilateral filter separates the original lumi-

nance map to the base layer and the detail layer. We use

the detail layer to enhance the result of the global tone

mapping method. For acceleration of the local filtering,

we utilize graphics hardware (GPU) [Fia06]. Figure 4

compares the transforms of the original methods and

the hybrid approach and Figure 5 shows the results in

the form of output images.

4.2 Time-Dependent Hybrid Mapping

It is usually advantageous to model the course of vi-

sual adaptation over the time for interactive applica-

tions. Time-dependency of tone mapping is twofold

profitable: it increases the perceptual quality on one

hand, and it also avoids temporal image artifacts on the

other hand.

The way of implementation of time-dependency is in-

fluenced by the goal of the whole tone mapping method

and it is not necessary to realize it at all, in some cases.

In accordance with other authors [Dur00, Pat00] we

use an exponential decay function in our perceptually

plausible hybrid approach (described in Section 4.1) to

model the light adaptation. We omit the simulation of

long-term dark adaptation due to its subtle and slow ef-

fect and due to efficiency reasons. We modulate the

adaptation level La(w) in the Ward’s method [War94] by

the exponential function for smooth transitions when

tone mapping a dynamic environment:
dLa(w)

dt
≈

La(w)−La(w)(t)

τ
,

where La(w) is the visual adaptation for static image,

La(w)(t) is the actual adaptation and τ = 0.1 is a time

constant that mimics the speed of adaptation.

Similar approach is amenable in many other hybrid

tone mapping implementations, since we can usually

smoothen the response of particular parameter of in-

volved global tone mapping method. If the computa-

tional cost is the main limitation, the time-dependency

may be omitted temporarily with reasonable loss of re-

production quality.

4.3 Cognitive Approach

As an example of cognitive (e.g. detail-oriented) hy-

brid tone mapping approach, we propose the combina-

tion of histogram adjustment global tone mapping op-

erator [War97] enhanced by locally applied bilateral fil-

tering [Dur02].

The histogram adjustment method grants most of the

available device contrast to the areas of abundant lu-

minance values in the input HDR image. Generally

speaking, large areas in an input image are given more

contrast (thus subtle details present at these areas may

become visible) at the expense of tiny areas. This ad-

vanced ’distribution of contrast’ is achieved thanks to

cumulative function derived from formerly constructed

image histogram. The cumulative function is then used

as a tone reproduction curve to transform input lumi-

nance to output values.

In accordance with the choice of involved methods,

we propose to construct also the enhancement map

seeking the same goal of cognitively rich (detailed) out-

put image. We detect the areas of small local contrast

on the chart of cumulative function constructed in the

previous step – these areas represent pixels, where the

detail is potentially vanished. We use the second deriva-

tive of cumulative function for this detection (note that
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Figure 4: Tone mapping transforms, left: global method [War94] maps input HDR values via linear function – note

the clipping of high luminances, middle: local method [Tum99] applies different transform to different pixels – the

reproduction of overall image attributes is poor, right: hybrid approach [War94, Dur02] combines merits of both

the global and local approaches.

Figure 5: top left: result of purely global method [War94] exhibits well reproduced overall contrast, however

shows the lack of subtle details, top right: result of the new hybrid approach [War94, Dur02] preserves the overall

contrast accurately, and adds the lost details. Bottom: close-ups of the book, note the reproduced details in the

hybrid approach result (bottom right).
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Perceptual method (Sec. 4.1) Cognitive method (Sec. 4.3)

Enhancement map [% of image pixels] Speedup [-] Enhancement map [% of image pixels] Speedup [-]

1.4e-3% 118,5 0.132 % 41,74

Table 1: Comparison of performances of two different implementations of hybrid tone mapping (average results

over 10 HDR images). The speedup value shows the acceleration of hybrid approach against the original, com-

pletely local approach.
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Figure 6: Cognitive hybrid approach. Left: cumulative function [War97] with detected areas for local enhance-

ment. We use the threshold of 0.1 for detection, e.g. L′

out < 0.1. Right: corresponding enhancement map

constructed from the cumulative function.

the the derivative is never a negative number in our

case). Sections that show low slope (low values of

the second derivation) are selected to construct the en-

hancement map (see Figure 6) – each pixel with the lu-

minance value within the boundary of a selected section

becomes a member of enhancement map.

Finally, we apply the local trilateral filtering

method [Cho03] on the original input pixels that are

present (or masked) in enhancement map. Similarly to

the bilateral filter, the trilateral filter produces blurred

image, but preserves significant luminance edges. We

obtain local details by dividing the original image by

the blurred image. Finally, we enrich the result of

histogram adjustment method by these details. See

Figure 7 (bottom line) where two renditions of one

input image are shown to compare the two presented

hybrid implementations.

4.4 Performance Results

Since one of the goals of the hybrid approach is the

reduction of computational complexity, we present here

the numerical performance results, see the Table 12.

The table shows average values measured at the group

of 10 input HDR images. The perception-targeted fast

hybrid approach is on average 3 times faster than the

cognitive method and more that 118 times faster than

the original bilateral filtering method. The reported

2 The performance values strongly depend on the selection and the im-

plementation of the involved methods and we therefore present the

average values for an overview.

speedup is gained thanks to the enhancement map.

Since the enhancement map contains usually just a

small portion of the original image pixels (as shown

in the table), the time-demanding local approach is

applied locally, to the small (necessary) part of the

image.

Generally speaking, our technique places very small

additional load to the system leaving large space for

other computations. This is very profitable in interac-

tive applications like the computer games, etc. How-

ever, note that besides the performance improvement,

hybrid tone mapping can enhance the quality of the out-

put image as well (see Figure 5).

In the imminent future, we can expect the need of

dynamic range reduction even on various portable de-

vices and on small and computationally elementary ma-

chines. The hybrid tone mapping will be reasonable in

this case as well, thanks to its good scalability. If we

face the lack of computational power, we can modify

(soften) the criteria of the construction of the enhance-

ment map. Depending on these criteria, we are able to

continuously balance the computational load spanning

from the complete locally enhanced method up to the

factual omitting of the local enhancement (e.g. purely

global tone reproduction). Finally, the other possibility

to decrease the time consumption is to omit the time-

dependent processing, as noted in Section 4.2.
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Figure 7: Further results of the new hybrid approach. Top left: pure global method [War94] without enhance-

ment washes away details seen through the window. Top right: hybrid approach [War94, Dur02] enhances the

image (note the revival of the birch twigs) without affecting the overall image attributes. Bottom left: hybrid

approach [War94, Dur02] – perceptually plausible reproduction of well-known Memorial church image, bottom

right: cognitive rendition of the same input image by hybrid combination of histogram adjustment and trilateral

filtering [War97, Cho03].

68



5 CONCLUSIONS AND FUTURE

WORK

We presented a novel hybrid approach to the issue of

reproduction of high dynamic range images on devices

with limited dynamic range of luminance (e.g. tone

mapping issue). In our approach, we combine results

of arbitrary global and local tone mapping operators.

Recent perceptual studies concerning the reproduction

of HDR images have shown high importance of preser-

vation of overall image attributes. Motivated by these

studies, we apply the global method first to reproduce

overall image attributes correctly. At the same time, we

construct an enhancement map to guide a local operator

to the critical areas that deserve enhancement.

We do not invent another complex tone mapping

method, but we rather propose a general framework that

utilizes already known ideas and combines existing and

potentially forthcoming methods. We have shown that

the presented hybrid approach can be easily tailored to

miscellaneous potential goals of tone mapping (e.g. to

get perceptually plausible images, to get detail-rich de-

pictions, etc.). Our experiences indicate that an imple-

mentation of proposed hybrid tone mapping approach

typically produces reasonable results, it is easy to im-

plement, fast to compute and it is comfortably scalable,

if desired. These qualities nominate our approach for

utilization in time-critical HDR applications like inter-

active visualizations, modern computer games, HDR

image viewers on mobile devices, etc.

The perception of image attributes depends partially

on the semantics of the input image or scene. Therefore

every, even a subtle modification of an image can af-

fect the quality of reproduction of an attribute (in both

positive and negative sense). In the future, we will con-

duct subjective perceptual experiments to uncover and

to quantify the effect of particular local enhancement

method (in relation to the manner of enhancement map

construction) on the quality of reproduction of image

attributes.
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Visual Maladaptation in Contrast Domain

Dawid Paja̧ka,b, Martin Čad́ıkb, Tunç O. Aydınb, Karol Myszkowskib, Hans-Peter Seidelb

aWPUT; bMPI Informatik

ABSTRACT

In this work we simulate the effect of the human eye’s maladaptation to visual perception over time through a
supra–threshold contrast perception model that comprises adaptation mechanisms. Specifically, we attempt to
visualize maladapted vision on a display device. Given the scene luminance, the model computes a measure of
perceived multi–scale contrast by taking into account spatially and temporally varying contrast sensitivity in a
maladapted state, which is then processed by the inverse model and mapped to a desired display’s luminance
assuming perfect adaptation. Our system simulates the effect of maladaptation locally, and models the shifting of
peak spatial frequency sensitivity in maladapted vision in addition to the uniform decrease in contrast sensitivity
among all frequencies. Through our GPU implementation we demonstrate the visibility loss of scene details due
to maladaptation over time at an interactive speed.

Keywords: maladaptation, visual perception, contrast processing, human vision, temporal adaptation, high
dynamic range

1. INTRODUCTION

It is consciously experienced by everyone that intense changes in illumination temporally cause a loss in visual
sensitivity that is later recovered over a time period. In fact, considering the highly variant and temporally
changing real world illumination, the human visual system (HVS) is virtually never fully adapted in practice.
Due to this maladaptation, the visibility of some scene regions are reduced which would otherwise be perfectly
visible if the HVS was fully adapted.

The temporal loss of visibility can often be tolerated in daily life, since a large fraction of sensitivity is
recovered relatively fast in just a few seconds through neural mechanisms, and most real world objects are
purposely designed to be strongly visible. However, some tasks require quick reaction times and undiverted
attention. For those the rate of adaptation may not be sufficient. For instance, a car driver entering a forest
highway after driving against the sun can be temporarily blinded for a short amount of time jeopardizing safety.
In fact, computational methods have been proposed to determine the magnitude of vehicle display visibility under
dynamic lighting conditions1,2 enabling the validation of vehicle ergonomics and safety at design time. A more
extreme case are fighter pilots who are exposed to much more drastic illumination changes, but regardless need
to maintain near instant reaction capability at all times. On the other hand, the quickly recovered sensitivity
may not be sufficient in environments containing low contrast objects. As an example, people often struggle
to find their seats if they enter a movie theatre after the session started, while during the course of the movie
the obstacles in the room become gradually visible due to the additional sensitivity recovery through the slower
adaptation mechanisms based on chemical processes.

The aforementioned examples can benefit greatly from faithfully simulating the effect of maladaptation on
visibility. Such a model should predict the visibility magnitude of both near– and supra–threshold scene details.
Recent luminance based models3–5 tend to explicitly focus on modeling maladaptation while ignoring other
HVS aspects such as contrast sensitivity and visual masking. The modeling of the latter mechanism6 requires a
contrast based approach involving a transducer function. Current contrast domain frameworks, however, often
do not account for luminance adaptation and contrast sensitivity, as well as the overall sensitivity loss and shift
in peak sensitivity due to maladaptation.

Further author information: e-mail: {dpajak, mcadik, tunc, karol, hpseidel}@mpi-inf.mpg.de
a Westpomeranian University of Technology, Szczecin; b Max Planck Institut Informatik, Saarbrücken
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An important consequence of maladaptation is the locality of resulting visibility loss in a scene. For instance,
looking outside the window in a dark room on a sunny day, one will eventually adapt to the bright illumination
outdoors and start seeing objects clearly. If at that instance the gaze is directed towards the interior, the observer
will not be able to discriminate objects that are visually less apparent. Thus, at any given time details in some
scene regions are less visible than others, as dictated by the current level of maladaptation. The problem is
that it is often not possible to predict the direction the gaze will be shifted towards, and thus the illumination
levels that will be observed in the next timestep. Similar to real–world scenes, the emerging HDR displaying
technology coupled with the ever increasing size of display devices is also prone to such local losses of visibility.
From an application perspective it is beneficial to simulate how the entire scene would look like under current
adaptation conditions, which is not possible using current methods relying on a single adaptation level for the
entire scene.

We present a system that renders a series of images of a scene as it would be seen by a maladapted eye over
time. Each separate image corresponds to the visual perception of the scene at a time step while the sensitivity
is recovered. The time course of adaptation is modeled by considering both neural mechanisms and pigment
bleaching and regeneration. Our framework operates in contrast multi–scale domain and models supra–threshold
effects like visual masking, while also accounting for contrast sensitivity and luminance (mal)adaptation usually
considered only in luminance domain frameworks. We also model the shifting of peak frequency sensitivity in
maladapted vision, which has not been considered by previous models. In the rest of the paper we first discuss
related work (Section 2), followed by a new model for simulation of human maladaptation in contrast domain
(Section 3). Next, we present, analyze and discuss the results of our system (Section 4) and finally we conclude
and suggest ideas for future research (Section 5).

2. BACKGROUND

Previous models of time-course adaptation often operate on luminance and are not able to simulate visual
phenomena locally. In this work, our goal is to simulate local maladaptation in contrast domain to account for
supra–threshold mechanisms of vision as well as near–threshold. There were a few elaborate models of contrast
perception proposed in history, but a vast majority of those were not concerned with the simulation of the
time–course of maladaptation.

Ferwerda et al.7 presented a computational model of visual adaptation. Their model captures the changes in
threshold visibility, color appearance, visual acuity, and sensitivity over time using Ward’s scaling tone mapping
approach.8 Ward’s mapping is enriched by an offset parameter that is a function of time. The visual acuity is
approximated by removing higher frequencies according to Schaler’s measurements. This is a simplistic approach
because human sensitivity to contrast also decreases for lower frequencies. A photoreceptor-based global time–
dependent tone mapping method presented by Pattanaik et al.4 is built on parts of an advanced Hunt’s model of
color vision.9 By means of the adaptation model the method accounts for time dependency of retinal adaptation
mechanisms for both cones and rods. However, as this adaptation model and the method itself are global they
can simulate neither local adaptation mechanisms nor human contrast sensitivity. Irawan et al.5 devised a model
of low vision that is able to simulate the performance of an impaired or aged human visual system. The model
is based on the combination of histogram adjustment10 and Pattanaik et al.’s4 global tone mapping methods.
Due to the maladapted threshold-versus-intensity function (tvia), it can mimic the viewer’s changing adaptation.
The method is able to simulate the effect of maladaptation, but only at the threshold level and only globally for
the whole image. However we are also interested in the supra–threshold effects of maladaptation in addition to
visual perception around the threshold level.

Pattanaik et al.3 proposed an advanced multiscale model of adaptation and spatial vision. As the model
is based on spatial decomposition it can predict spatial contrast sensitivity behavior. The authors proposed
gain functions that should be valid both for near– and supra–threshold luminance levels. However, the model
does not comprise the time course of adaptation and is therefore unable to simulate effects of maladaptation.
More recently, Mantiuk et al.11 proposed a multiscale framework for perceptual processing of contrast. The
method simulates supra–threshold perception (compression) of contrasts on multiple scales using transducer
functions. However, contrasts still need to be compressed in a response space and yet another and more artificial
compression is accomplished by the optimizer due to its weighting coefficients. The output of the optimization
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problem solver is therefore hard to calibrate for the correct reproduction of luminance perception. Moreover, the
method in fact does not simulate human adaptation.

HVS models involving maladaptation have been also been proposed in the context of detecting the visibility
loss on display devices due to dynamically changing illumination.12 While in this work temporal maladaptation is
modeled in the contrast domain, they consider global adaptation and only output a “visibility map” that depicts
distortions in the image structure similar to image quality assessment metrics, instead of rendering images of
the scene appearance in a maladapted state. Furthermore, they don’t model the change in spatial frequency
sensitivity due to maladaptation, which we discuss in detail in Section 3.2.

2.1 Human Contrast Sensitivity in Maladapted State

Vision literature concerning the modeling human spatial contrast sensitivity in an adapted state usually through
a contrast sensitivity function (CSF) is rich.13 Much work has also been done on temporal contrast sensitivity ,14

i.e. the sensitivity of HVS to the spatial frequencies over time, as this (and so called critical flicker frequency) was
crucial in the design of first CRT display devices. However, measurements of CSF in maladapted states are hardly
that obvious, perhaps due to the complicated testing and evaluation process. Maladapted luminance intensity
thresholds are measured only for simple stimuli without any variation of spatial frequency.15 Consequently, in
the rest of this section we discuss findings on the shape of CSF in maladapted conditions.

Figure 1. Measurements of maladapted contrast sensitivity. Left: the shape of CSF for steady (adapted) state and for
briefly pulsed (maladapted) stimulus, adapted from16, right: amplitude sensitivity functions during dark adaptation,
adapted from 17 (the right image shows the amplitude sensitivity functions (ASF); one can obtain CSF from ASF by
multiplying with the background luminance).

The encoding of contrast within the human visual system is thought to be mediated by two processing
streams: the magnocellular (M) and parvocellular (P) pathways.18 To investigate the effect of the pathways,
Lenova et al.19 and Alexander et al.16 measured contrast sensitivity using two different paradigms. In the
steady–pedestal paradigm, they briefly presented a test stimulus against a continuously presented adaptation
field. In the pulsed–pedestal paradigm, the test stimulus was presented simultaneously with the adapting field.
The steady–pedestal paradigm favors the M pathway, while the pulsed–pedestal paradigm favors the P pathway.
The measured mean contrast sensitivity function for control subjects for steady–pedestal has a low–pass shape,
while for the pulsed–pedestal it has a band–pass shape, see Fig. 1 (left).

On the other hand, Hahn et al.17 found the CSF to be invariant in shape during dark adaptation. Differently
from Leonova et al.19 who presented stimuli only briefly to observers during experimentation, Hahn et al.
measured a longer time course of dark adaptation ranging from seconds to hundreds of seconds, see Fig. 1
(right). This suggests that the transition from original to destination stimuli is very fast in terms of sensitivity
to spatial frequencies (as modulated by P pathway), but much slower in terms of overall sensitivity to contrast.
In other words, the shift in frequency sensitivity happens almost instantly and is retained during the time course
of adaptation to the destination stimulus.

In our method, we use Daly’s CSF20,21 and we were tempted to simulate the aforementioned transition
behavior by using current adaptation luminance as input parameter La of the maladapted observer. This
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approach, combined with the use of maladaptation ratio resulted in reasonable time course shape of the CSF.
(The maladaptation ratio is approximated as cvi(Lb)/cvia(Lb, La), where cvi and cvia are the contrast versus
intensity functions for adapted and maladapted eye, respectively, La is the current adaptation luminance, and Lb

is the current background luminance12). However, this method implies the assumption that the spatial frequency
sensitivity characteristics of the HVS remains constant in maladapted states, since the CSF we use was measured
for the adapted eye. We can neither calibrate nor justify this approach as we were not able to find a sufficient
amount of maladapted CSF experimental measurement data.

Therefore, in our model we incorporate the shift in frequency sensitivity due to maladaptation to the mal-
adaptation ratio approach. Following an abrupt illumination change, we instantly modify the shape of the CSF
to reflect the spatial frequency sensitivity in the target state, and then increase the sensitivities globally using the
maladaptation ratio over the time course of adaptation. Our method is supported by experimental evidence: the
sensitivity after sudden illumination change drops down drastically and when it is (at least partially) regenerated
the curve already has the invariant shape of the target (compare Fig. 1 right with Fig. 5 right).

3. SIMULATION OF VISUAL MALADAPTATION

The data flow of the proposed model for human contrast perception in maladapted states is illustrated in Fig. 2
for the steady–state. We assume that the input HDR image is calibrated in cd/m2 units. First, we construct
background luminance and local adaptation maps (Lb, La), which are used both for contrast processing and final
display purposes. The adaptation map is modified over time to model the temporal adaptation. Simultaneously,
we decompose the input image into the contrast representation (C) using the Laplacian pyramid.22 We then
process physical contrast by a model of maladapted scene observer depending on sensitivity to spatial frequencies
as well as on the current adaptation state to get the perceptual contrast responses (R). The response values are
transformed by inverse adapted display observer model to obtain physical display contrast. All contrast processing
steps are performed on multiple scales simultaneously. Consecutively, the physical contrast is converted to display
luminance map (Ld) and colors are processed (Icorr). Finally, the inverse display model produces the output
code values (Iout) that are shown on the display device.

Figure 2. Flow chart of the proposed method. See text for details.

3.1 Adaptation Map

The adaptation map La represents the actual state of local adaptation of the observer. The construction of the
local adaptation map is based on the actual background luminance map Lb and on the previous course of local
adaptation (see Section 3.4 for the details on temporal adaptation). Background luminance Lb is the actual
stimulus of an observer and is calculated for each input frame as the blurred image of input luminance (as the
contrast sensitivity function was measured for foveated vision we blur the luminance conformably to one visual
degree (1◦)10). To accomplish this we use the Gaussian filter with the kernel size K = 2d

p tan( π
360 ), where p is

the pixel size (in meters) and d is the observer’s distance from the display (in meters).

Similarly to Irawan et al.5 we model the adaptation due to human rods and cones separately. To obtain a
single response value, Hunt [9, Sec. 31.8.2] proposed to sum the achromatic cone and rod responses up. The
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Figure 3. Visual illustration of the local adaptation processing. Temporal behavior is modeled for rod L∗

ar and cone
L∗

ac adaptations separately, which are computed from adaptation maps (σbc, σcc, σnc, σbr, σcr, σnr) that model various
adaptation mechanisms. These adaptation maps are updated at each timestep using the current background luminance
map Lb. In maladaptation computation (see Sec. 3.2), a compound adaptation map L∗

a is obtained by adding adaptation
maps for rods and cones. HDR image courtesy of Paul Debevec.

current adaptation luminance L∗
a is therefore obtained (as also illustrated in Fig. 3) as a sum of cone (L∗

ac)
and rod (L∗

ar) adaptations: L∗
a = L∗

ac + L∗
ar, where L∗

ac = σbc · σcc · σnc and L∗
ar = σbr · σcr · σnr. Factor σb

accounts for the photopigment bleaching and regeneration: σb(Lb) = 1/p(Lb), where p(L) = I0/(I0 + L) and
I0 = 104 cd/m2. To model neural adaptation mechanisms, we calculate σn (fast neural adaptation) and σc (slow
neural adaptation) for rods and cones using the equations proposed by Irawan et al.5 Note however that our
implementation of human adaptation is local (i.e., we have the adaptation map) and all of the factors mentioned
above (L∗

ac, σbc, σcc, σnc, L
∗
ar, σbr, σcr, σnr) are not single values, but complete maps spanning the whole image.

For the subsequent processing (CSF filtering, cvi, cvia functions), we need to convert the adaptation values L∗
.

scaled in hypothetical perceptual adaptation units back into the physical units. In other words, we are searching
for an adaptation map La in physical luminance units that would evoke the actual maladapted state L∗

a in the
observer’s visual system. To do this, we numerically invert the function L∗

a and set La = L∗−1
a (L∗

a(L
∗
ac, L

∗
ar)).

Note that for the fully adapted observer this results in La = Lb as expected, but for the maladapted observer,
the behavior of this function is more complex (see Section 3.4).

Figure 4. Comparison of the effect of global and local adaptation. Left: global adaptation (using global values Lag and
Lbg), right: local adaptation (using local Lb and global Lag). Notice that local background luminance map allows to
simulate different sensitivity to spatial contrasts according to varying illumination in the scene.

For experimental visual analysis and illustration purposes we allow the use of the global adaptation value
Lag instead of the local adaptation map. We can calculate the global background luminance Lbg as a geometric
mean of the input luminance L for each pixel: Lbg = (ΠnL)1/n and similarly we obtain the global adaptation
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luminance Lag. Global Lag is useful for the analysis of static images, where it would be hard to change local
adaptation map La manually if a refence HDR image depicting the adaptation state is not present. Note that
in the rest of the figures the background luminance (Lb) is still local even in global adaptation (Lag) case (see
Fig. 4-right), with the exception of Fig. 4-left where we illustrate global adaptation Lag with global background
Lbg luminance for comparison.

3.2 Maladapted Spatial Sensitivity to Contrast

To account for sensitivity to spatial frequencies, we utilize the contrast sensitivity function (CSF) proposed by
Daly.20,21 The corresponding spatial frequency ρ (in c/deg) for each level l (starting from 1) of Laplacian pyramid
is obtained as ρ = K/2(l−1). The size of the image (in X × Y pixels) in visual degrees is i2 = max(X,Y )/K.
Given spatial frequency ρ in c/deg, observer distance d in meters, image size i2 in visual degrees, and current
background luminance level Lb (in cd/m2), and neglecting orientation and eccentricity we can calculate the
sensitivity Sa for contrast magnitudes C (in Weber’s units) for each pixel at each level l of pyramid:

Sal = CSF (ρ, θ, Lbl, i
2, d, Cl), (1)

where the coarser background luminance map Lb(l+1) is a downsampled from the finer scale map Lbl. We account
for maladaptation by computing the maladaptation fraction as given in:12

Sml = Sal ·
cvi(Lbl)

cvia(Lbl, Lal)
, (2)

where Sml is the sensitivity in the maladapted state, Sal is the sensitivity at the fully adapted state, Lbl is the
current background luminance and Lal is the current adaptation luminance. The subscript l indicates the scale
of each map.

Figure 5. Simulation of time-course of contrast sensitivity for a maladapted observer. Left: transition from dark to bright,
Right: transition from bright to dark environments (dark adaptation).

Fig. 5 shows the change in shape of CSF between two adapted states. In the left image, a subject is adapted
to a dark environment. Accordingly, her sensitivity to contrast is low and shifted to low spatial frequencies (blue
curve). After the exposition to a bright environment, the sensitivity rapidly shifts towards higher frequencies
(arrow 1), but due to the maladaptation (as one is blinded by strong light for some time) the sensitivity is still
very low (green curve). However, sensitivity is restored over time (arrow 2) to reach the final fully adapted state
for the bright environment (red curve). The process is similar for a subject adapted to the bright environment
(red curve in Fig.5 right). First, the sensitivity drops rapidly (arrow 1), shifts to the low frequencies (green curve)
and consecutively it regenerates (arrow 2) to the final dark–adapted state (blue curve). The described behavior
is in accord with psychophysical experiments conducted by Hahn and Geisler [17, Fig. 5, 6], who measured that
the CSFs are nearly identical throughout the course of dark adaptation. Naturally, the two processes differ in the
speed of the sensitivity regeneration and we describe our implementation of the temporal aspects of adaptation
below.
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Figure 6. Classical Campbell-Robson contrast sensitivity chart for dark adaptation. From left to right: (1) fully adapted
state in a relatively bright environment (adaptation luminance 112 cd/m2), (2) background luminance was decreased
to 2 cd/m2, the contrast sensitivity moves to lower frequencies, but due to maladaptation, it is basically very low, (3)
sensitivity regenerates according to dark adaptation time-course, (4) final fully adapted state (adaptation luminance 3
cd/m2). The curves show the thresholds observed from approximately 30 centimeters at original paper size.

3.3 Contrast Transduction

The visual sensitivity to a contrast patch of a certain spatial frequency decreases with the presence of other similar
frequency contrast. Daly’s Visible Differences Predictor (VDP)20 accounts for this effect known as visual masking
using a threshold elevation map. This approach trades off supra–threshold contrast interval for near–threshold
precision. Such a trade–off is not suitable to our purposes, as real–world scenes are expected to comprise contrast
well above the visibility threshold. Thus, in our model we employ the transducer function T described in23 based
on the premise that it is tuned for both near–and supra threshold precision. The contrast C at each scale is
processed separately as follows:

Ral|ml = T (C, Sal|ml) =
3.291 · [(1 + (Sal|mlC)3)1/3 − 1]

0.2599 · (3.433 + Sal|mlC)0.8
, (3)

where Ral|ml is adapted or maladapted human perceptual response to contrast, Sal|ml is the sensitivity at either
maladapted or fully adapted state. The constants are taken from Wilson’s work without any change. The
monotonically increasing behaviour of the transducer function enables a fast inversion through the use of a
lookup table stored in GPU memory.

3.4 Temporal Adaptation

Temporal adaptation can be modeled through two separate exponential decay functions; one for pigment bleach-
ing and regeneration and another for neural adaptation.5 For simplicity, we describe the adaptation process
generically, but recall (Sec. 3.1) that the final adaptation map L∗

a is combined from six values that possess
different time constants.

The time course of the neural adaptation mechanism from perceived luminance L∗
0 at time t = 0, to L∗

.

(where L∗
. is σcc, σnc, σcr, σnr) is modeled as follows:

L∗
. = L∗

b + (L∗
0 − L∗

b) e
−t

t0 . (4)

The contribution of neural adaptation to temporal recovery of visual sensitivity is modeled by updating the cvia
function at each time step using the current L∗

a. We set t0 to 0.08 seconds for cones, and 0.15 seconds for the
rods.5

Pigment bleaching and regeneration (modeled by σbc and σbr), unlike neural adaptation, are slow and not
symmetric for dark and bright adaptation. Assuming that the amount of signal transmitted by receptors is
proportional to p · L, the fraction of unbleached pigments p is computed as in Equation 5:

p = p(Lb) + (p0 − p(Lb)) e
−t

t0·p(Lb) . (5)

In the steady state, p(L) is I0/(I0+L) where I0 is 104 cd/m2. The time constant t0 is set to 110 and 400 seconds
for cones and rods, respectively.
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3.5 Luminance and Color Processing

The inverse transducer converts maladapted contrast responses Rm to the luminance values Lm. By summing
all the levels of the Laplacian pyramid we obtain the maladapted luminance map. This map represents the
hypothetical output of the display device that would evoke the same perception of contrast in a fully-adapted
display observer as the original HDR scene in the maladapted observer. However, to account also for the
luminance sensitivity, we transform Lm using the S–shaped function as follows:

Ld =
Lm

Lm + L̄∗
a

; L̄∗
a = (ΠnL∗

a)
1/n, (6)

where Ld is the output display luminance, Lm is the luminance value we obtained from of inverse observer
model, and L̄∗

a is a geometric average of the current adaptation luminance map. Note that the value of L∗
a

accounts for the current (mal)adaptation state and therefore the S–shaped function results in dark images for
dark adaptation scenario and bright images for adaptation to bright scenes, and the sensation will improve
according to the temporal adaptation as described above.

As our aim is the simulation of maladaptation in contrast domain (and not the simulation of color vision
phenomena), we perform only very simplified color processing. Simply put, all the above described processing
happens on achromatic channel only. However, as the local adaptation map La is calculated as a combination of
the human rod and cone responses (Lar, Lac, refer to Section 3.4) we can utilize them for color processing. In the
absence of a model of color perception specialized in maladapted HVS states, we desaturate the colors as follows:
Icorr = Is (for each color channel I separately) using the following saturation coefficient s = Lac/(Lac + Lar),
where Lac and Lar are current cone and rod adaptation map values, respectively.

3.6 Inverse Display Model

Our simple display model consists of three parameters, the maximum and minimum display luminance, and a
gamma value which we set to 1/2.2. The gamma corrected values Icorr are fitted to the luminance range of the
display by a simple linear mapping. Our interface allows the user to control the display luminance range, this
way a variety of display types can be approximated. For a more precise simulation of specific displays the linear
mapping can be replaced by the display response function.

4. RESULTS

In this section we discuss our results, implementation details, and the other possible uses of the model. Please
refer to supplemental materials (http://mpi-inf.mpg.de/~mcadik/maladaptation) for further results.

A visual verification of maladapted contrast sensitivity behavior (described in Sec. 3.2) is presented in Fig. 6.
We augmented the Campbell-Robson chart with a frame of uniform luminance and generated two different HDR
images (an initial and a final) to simulate the dark adaptation. The results show both the shift in peak frequency
and the drop and regeneration of absolute sensitivity as expected. As we want to illustrate only the contrast
processing in this figure, we simplify the equation (6) to Ld = Lm/(Lm + k), where k is set to 100 cd/m2.
Otherwise the maladapted images (the two middle images in Fig. 6) would be too dark to visualize. Compare
the output of our model in Fig. 6 with Fig. 5 and 1 (right).

In Fig. 7 we compare our results to the approach of Irawan et al.5 The reference method (upper row) is based
on global tone mapping function and global background luminance (Lbg), while our approach (bottom row)
operates on contrasts and utilizes local background luminance (Lb). In both cases global adaptation luminance
Lag is assumed. Therefore our method accounts for diverse perception of bright and dark areas of the scene. One
can notice a difference in the fully adapted state as well (Fig. 7-rightmost images): in our model, the stained
glass window is reproduced sharply and all the details are visible, while the dark area below the desk is blurred,
which is the expected behavior. Note that by considering local background luminance (Lb) we ignore changes
in the state of adaptation due to attending different image regions as a consequence of the saccadic eye motion.
We rather visualize the image appearance under the condition that the eye attends locally each respective region
without any gaze change. Thus, Fig. 7 (bottom row) presents a synthetic summary how each specific region
will be seen under this assumption, but the overall image appearance may not be presented precisely. Irawan
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Figure 7. Comparison of our method to the approach of Irawan et al.5 simulating the fast adaptation from a dark
environment (10−4 cd/m2) to the stained glass (17 cd/m2). Top row: method of Irawan et al. can not simulate differences
in perception of contrasts in bright and dark parts of the scene, however our method can (bottom row). Columns from
left to right: t = 0.01s, t = 0.02s, t = 0.05s, t = 0.1s, t = 60s (fully adapted state). HDR image courtesy of OpenEXR.

used another extreme approach by considering global background Lbg (Fig. 7 – upper row), in which case it is
implicitly assumed that through the gaze direction changes the eye adaptation tends to some average luminance
in the scene. Since the most dramatic changes in light adaptation take place during the time required just for
a couple of fixations this assumption is also not realistic in particular for video, while it is commonly used.
Thus, Fig. 7 (upper row) gives perhaps a better prediction of overall image impression (except that no frequency
processing is accomplished), but the local detail visibility might be better predicted in Fig. 7 (bottom row).

In Fig. 8 we illustrate an application of our approach to analysis of the visibility of a display and controls on
the panel in a flight control room. Left column shows fully adapted state, where all the details are well visible.
After the adaptation to the bright sky however, those details are not noticeable for some seconds.

Our system enables also to simulate even more complex scenario (see Fig. 9) where in lack of opposing
evidence we consider local adaptation La and background Lb maps, in which case each local region in the image

Figure 8. Rendering of the interior of an airport control tower. Left: fully adapted state (178 cd/m2). Right: maladaptation
due to a previous exposition to the bright sky (104 cd/m2), t = 0.5s. Compare the visibility of displays and controls in
close-ups (right pair). HDR image courtesy of Greg Ward.
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Figure 9. Simulation of maladaptation in a complex hypothetical scenario. Top row, from left to right: (1) fully adapted
state in a relatively bright living room (adaptation luminance 70 cd/m2), (2) rapid movement to a work-room (8 cd/m2),
time t = 0.02s, (3) sensitivity regenerates and aftereffects diminish (t = 0.1s), (4) in t = 0.5s the observer reached nearly
fully–adapted state, but some dark details are washed out, due to the dim illumination of the work–room. Bottom row:
states of adaptation maps La corresponding to the upper images. As the values in adaptation maps are HDR, they were
tone mapped using the global version of Reinhard’s24 TMO for the display purpose.

has also corresponding local adaptation. Imagine an observer who is adapted to relatively bright illumination
of a living room and then she instantly moves to her desk in a dim work–room. For a moment, while her sight
is being regenerated, she does not see the details in some parts of the scene due to the previous adaptation to
much brighter environment. The vision reaches the fully adapted state in some seconds, but due to the low
illumination of the work-room, the vision is still not sharp in dark parts of the scene.

4.1 Fast GPU Implementation

In order to get real–time performance, we moved perceptual (contrast transduction, calculation of maladaptation,
local cones and rods adaptation) and image processing (laplacian pyramid, tone-mapping) parts of the algorithm
to the GPU. For the purpose of real–time HDR movie processing we also had the radiance format decompression
realized on the GPU. Because of that, we are able to achieve interactive frame rates on mainstream hardware.
Our test system is based on Intel Core2 3.0Ghz CPU, 4GB of RAM and NVidia GTX260 GPU. The average
performance is around 75 fps for 1024x1024 HDR image. After processing the data we manually copy the
resulting texture to GUI surface. Displaying the image directly would improve the speed even further.

4.2 Simulating Maladaptation in LDR Images

Another possible application of our model is the simulation of maladaptation effects on contrast perception in
an ordinary (LDR) image, see Fig. 10. Let us assume that only an LDR image is available, but we want to know
how its appearance will be affected due to the maladaptation. It is possible to perform inverse tone mapping25

and derive a reasonable approximation of adaptation map. Having a scene referred HDR image as the adaptation
pattern, we can simulate appropriate HVS reaction for arbitrary LDR image as follows: we run the model for the
HDR image and we keep the contrast responses Ra for fully adapted observer and for a particular maladapted
state Rm, then we linearize the LDR image using inverse gamma correction and decompose it using Laplacian
pyramid. To simulate maladaptation in the LDR image, we multiply the values in the Laplacian pyramid as
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follows:

C ′
i,j,l = Ci,j,l ·

Rm
i,j,l

Ra
i,j,l

, (7)

where C is the current LDR contrast value for pixel i, j and level l of Laplacian pyramid. The final LDR image
with the simulated maladaptation effect is obtained by adding C ′ at all the levels of modified Laplacian pyramid.
In this special case we simulate only the effect of maladaptation to the perception of contrasts, as we omit the
luminance processing (i.e. we do not involve equation (6)).

Figure 10. Simulation of maladaptation in two different LDR images. In each pair: left: original LDR image. Right:
maladaptation simulation using the background luminance from the HDR image (200cd/m2) obtained by the inverse tone
mapping. Simulated adaptation luminance: 20cd/m2. HDR image courtesy of Allan Rempel et al.25

5. CONCLUSION

We presented an efficient, real–time visual maladaptation framework capable of rendering images of a scene as
perceived by a maladapted observer. Our model operates on contrast domain and accounts for supra–threshold
HVS mechanisms such as visual masking, as well as luminance adaptation and contrast sensitivity as a function
of spatial frequencies that have often been neglected by previous contrast domain methods. We also model
the shift in spatial frequency sensitivity due to maladaptation, which we found to have a significant effect
on scene visibility. We discuss a fast GPU implementation that enables interactive rendering of maladapted
images. Our system can potentially be used to simulate human vision in illumination conditions causing extreme
maladaptation in real–world scenarios such as driving.

5.1 Limitations and Future Work

As the model is not targeted for the simulation of HVS color processing, it mainly operates on the achromatic
channel only. Therefore it does not account for chromatic adaptation, color aftereffects and other phenomena of
color vision; but we believe those can be pertinently included, if necessary.

The model assumes to input a calibrated HDR image and by modeling of the HVS features it is accordingly
able to perform the HDR tone mapping task (for a calibrated HDR image). However, as the primary goal of
the model is the correct simulation of the HVS contrast processing, the results for some extremely high dynamic
range or not calibrated images can not outperform the results of specifically tuned tone mapping operators. Note
however, that the HVS is also unable to see all the details in the scene simultaneously for extremely high dynamic
ranges. From this point of view, the results of many “successful” tone mapping operators are not perceptually
correct, as indicated by recent experimental studies.26,27
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Abstract

The visualization of color images in gray scale has high practical and theoretical importance. Neither the existing

local, gradient based methods, nor the fast global techniques give a satisfying result. We present a new color to

grayscale transformation, based on the experimental background of the Coloroid system observations. We regard

the color and luminance contrasts as a gradient field and we introduce a new simple, yet very efficient method to

solve the inconsistency of the field. Having a consistent gradient field, we obtain the resultant image via fast direct

integration. The complexity of the method is linear in the number of pixels, making it fast and suitable for high

resolution images.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Picture Image Generation]: Display Algorithms,

Viewing Algorithms; I.4.3 [Image Processing and Computer Vision]: Enhancement-Filtering

1. Introduction

Nowadays, except for a few artistic and scientific applica-

tions, the vast majority of captured images are color pho-

tographs. On the other hand, many laser printers are still

black-and-white, and most of the pictures in daily newspa-

pers published in the world are predominantly gray-scale im-

ages. Thereby the practical importance of color to grayscale

transformations is clear. The theoretical challenge is also ev-

ident. The color to gray transformation is a mapping of a 3D

set with spatial coherences to a one dimensional (1D) space

and it necessarily leads to some information loss. What is the

best way? Which way gives the highest perceptual equiva-

lence? Does there exist a universal approach?

The solution requires the preservation of chromatic con-

trasts during the conversion to luminance contrasts and the

associated evaluation of the luminance and chrominance

† lneumann@silver.udg.es
‡ cadikm@fel.cvut.cz
§ nemcsics.antal@t-online.hu

Full color versions of the images and other materials are online:

http://www.cgg.cvut.cz/~cadikm/color_to_gray

changes (gradients) and values. The problem combines var-

ious aspects of color vision and spatial vision. How does

the visual effect of chrominance and luminance contrasts de-

pend on spatial frequencies?

The above questions do not have simple solutions, as

adaptive color to gray transformations are not generally

found in nature. We believe that global transformation ap-

proaches cannot give a full answer to the above questions, al-

though they appear to offer some fast and acceptable results.

The adaptive local methods hold the promise of a much bet-

ter solution, although they suffer from theoretical problems

in perceptual modeling and practical difficulties in numerical

calculations. In this paper, we present a perceptually-based

adaptive approach using the experimental background of the

Coloroid observations. We investigated the relative equiva-

lent luminance differences for a set of chromatic differences

at a given spatial frequency, using 10 × 10 cm solid color

samples. However, a comprehensive spatio-chromatic anal-

ysis still demands further investigation.

The paper is structured as follows. We review previous

work on color to gray image transformation in Section 2.

In Section 3, we describe the Coloroid color system and we

present our new observations based on the Coloroid. Sec-

c© The Eurographics Association 2007.
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tion 4 introduces an efficient gradient-based color to gray

transformation algorithm powered by a new gradient incon-

sistency correction method. Then, in Section 5, we show and

discuss the results of the presented transformation algorithm.

Finally, in Section 6, we conclude and suggest some ideas

for future research.

2. Related work

There are several approaches available in the literature that

aim to convert color images to grayscale. Strickland et

al. [SKM87] proposed a local color image enhancement

technique used to sharpen images based on saturation feed-

back. Zhang and Wandell [ZW96] devised a spatial exten-

sion of the CIELab color model (S-CIELab) that is useful

for measuring color differences between images. Using the

pattern-color separable transformation, the S-CIELab differ-

ence measure reflects both spatial and color sensitivity. Bala

and Eschbach [BE04] presented spatial color to gray trans-

formation that locally preserves the chrominance edges by

introducing high-frequency chrominance information into

the luminance channel. The method applies a spatial high-

pass filter to the chromatic channels, weighs the output with

a luminance dependent term, and finally adds the result to the

luminance channel. Grundland and Dodgson [GD05] pro-

posed the decolorize algorithm for contrast enhancing, color

to grayscale conversion. The method applies a global color

to grayscale conversion by expressing grayscale as a con-

tinuous, image dependent, piecewise linear mapping of the

RGB color primaries and their color saturation. The authors

calibrate the behavior of their method by using three param-

eters to control contrast enhancement, scale selection, and

noise suppression. The authors suggest image independent

default values for these parameters. Gooch et al. [GOTG05]

presented a Color2Gray algorithm which iteratively adjusts

the gray value of each pixel to minimize an objective func-

tion based on local contrasts between pixels. The method

applies three free parameters (θ, α, µ), but the authors do

not provide image independent default values. Moreover, the

complexity of the method is O(N4). Hence, the method is

very slow and it is difficult to apply to high resolution im-

ages. Rasche et al. [RGW05] presented a color to gray tech-

nique that aims to preserve the contrast while maintaining

luminance consistency. Authors approach the problem by

means of constrained multidimensional scaling which scales

badly with the number of colors, and therefore the color

quantization is suggested. However, due to the necessary

quantization of colors the method produces quantization-like

artifacts. Therefore, the usage of this method is very ques-

tionable for images with continuous tones (e.g. real-world

photos). Moreover, the time-demands are enormous (even a

low-res image transformation takes minutes) and depend on

the number of colors.

Figure 1: Left: shape of the Coloroid gamut at a fixed hue

value. Right: turquoise hue plane of the Coloroid space.

Figure 2: Left: 48 limit colors of the Coloroid system. Right:

curve of Coloroid limit colors in 3D.

3. The Coloroid system

The Coloroid is a color-order system and color space with

conversion formulas to and from CIE XYZ system. The

Coloroid system is based on huge number of observa-

tions [Nem01] and represents perhaps the most adequate tool

or “natural language” to describe harmony relationships and

other psychometric attributes between colors [NNN05]. The

experimental arrangement of the observations of the color

harmony relationships is an ideal tool to study the basic

questions of the color to gray transformation, especially to

find the chrominance-luminance equivalent attributes on a

relative scale.

Conditions of observations and basic concept of the Col-

oroid system differ from other color order systems. In typi-

cal Coloroid experiments, the observer is given a wide field

of view to observe a large set of often non-neighboring

color samples, and must give their responses relative quickly.

These conditions make it similar to an observation of a com-

plex image in the real life. Under these viewing conditions

the human vision system can distinguish a reduced num-

ber of colors, especially in the darker regions. The colors in

Coloroid can be obtained by additive mixture of the black,

white and the limit-color, by ratios s, w, and p, respectively,

where s+w+ p = 1. The limit-colors were the most satu-

rated solid-colors instead of spectral colors. Due to the very

great number of observations and also to the obtained good

correlations, we consider the basic concepts of Coloroid to

c© The Eurographics Association 2007.
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be axioms, which are valid for the above mentioned view-

conditions:

1. Surfaces of a constant Hue (A) form a plane, containing

the neutral axis and a hue dependent limit-color, unlike

most of the other systems that have curved hue-surfaces

(e.g. the Munsell system).

2. Saturation T = const ∗ ratio(p) of the limit-color, where

the constant depends on the hue.

3. Lightness V = 10 ∗ Y 1/2. Unlike the ds line-element

based spaces, the Coloroid does not contain a 3rd root

or a logarithmic formula here.

Fig. 2 (left) shows the circle of 48 limit-colors, while

Fig. 2 (right) shows the continuous 3D limit-color line.

Fig. 1 (left) demonstrates the typical shape of the Coloroid

gamut at a fixed hue value. The lightness of the most satu-

rated point depends on the hue according to Fig. 2 (right).

The two Coloroid gamuts represent two limit-color selec-

tions. The larger one corresponds to the spectrum and pur-

ple limit-colors and smaller to the most saturated solid-

colors, which will be used in our paper. Concepts and for-

mulas of Coloroid can be found in several basic publications

[Nem80,Nem87,Hun92], a deep survey of application areas

can be found in [Nem04].

3.1. Observations based on Coloroid

After the above short survey we present the experiments in

color to gray conversion. First, we studied the relative lumi-

nance difference of the hue pairs in an average sense. We

first selected seven basic colors, one from each Coloroid hue

group. For these seven basic colors, Table 1 shows the val-

ues of the Coloroid hues A, their characteristic wavelengths

λ and their angular degrees ϕ for the D65 white point in

the CIE xy chromacity diagram. The observers’ task was to

rank the color and gray samples, or to fit missing samples

into color series with short adaptation time (semi-adapted

eye) [Nem04]. The obtained 7 × 7 matrix (see Table 2) con-

tains the relative gray-equivalent differences. The matrix has

zero diagonal and it is anti-symmetric. The maximal value is

scaled to 10. The largest perceived difference is from the

A=50 blue hue to the A=10 yellow hue. For arbitrary (A1,

A2) saturations, we applied 4 linear interpolations, which

preserved the anti-symmetric property of the perceived dif-

ferences. In the Section 4.1.2, we describe how to generalize

the above hue-pair based gray change for arbitrary satura-

tions.

The second observation series aimed to formulate the

gray-equivalence of the saturation increase. We investigated

the effect of the saturation increase for all of the above hues

(A=10, 20, 30, 40, 50, 60, 70) at different constant luminance

levels (V=45, 65, 85). As above, all of the observations were

scaled to maximal value of 10. The unexpected fact is that

the equivalent gray difference changes non-monotonously!

For example, on the A = 60 hue page at the Coloroid-

A λ ϕ

10 570.836 58.040

20 582.640 32.898

30 602.717 5.533

40 -504.836 -46.209

50 450.000 -116.628

60 490.371 -174.503

70 536.295 103.890

Table 1: Definition of the seven basic Coloroid hues

A/A 10 20 30 40 50 60 70

10 0.0 -2.5 -5.0 -7.0 -10.0 -5.0 -2.0

20 2.5 0.0 -2.5 -5.0 -8.0 -3.0 1.5

30 5.0 2.5 0.0 -3.0 -5.0 -3.0 3.5

40 7.0 5.0 3.0 0.0 -2.5 1.0 4.0

50 10.0 8.0 5.0 2.5 0.0 4.0 8.5

60 5.0 3.0 3.0 -1.0 -4.0 0.0 3.0

70 2.0 -1.5 -3.5 -4.0 -8.5 -3.0 0.0

Table 2: Relative gray-equivalent differences of the basic

hue pairs

lightness V = 85 in the realistic range of saturations (T) for

solid and monitor colors we obtained:

Relative saturation difference 1 2 3 4 5

Relative ∆-gray 1 2 4 0 -5

In the above example, low saturation differences lead to

positive gray differences while high saturation differences

appear to lead to negative gray differences – a highly satu-

rated bright turquoise can be visualized by a gray decrease,

while the middle saturated one of nearly the same value re-

quires a gray increase. This relationship holds for the entire

gamut. We performed the interpolation between the seven

selected hues using the maximal absolute solid-color satura-

tion values of the 48 Coloroid pages. Thereafter, we apply

relative saturations at every hue and luminance level. The

relative saturation is defined to take on the maximal value

of 5 at the Coloroid gamut border [Nem04]. The relative

saturation is obtained using the Coloroid limit-colors. For

an arbitrary color, trilinear interpolation was applied, taking

proper account of the zero saturation of the black and white

points.

The two gray changes mentioned above are scaled on rel-

ative scales, independently. We made dozens of additional

observations, where two attributes were changed simultane-

ously, to calibrate the relative scales to each other using lin-

ear regression. For example, here are two color pairs from

this set of observations (where ∆-gray is the observed equiv-

alent absolute gray difference):

∆-gray=-1.0 (A1= 70.0, T1= 15.0, V1= 67.0)

(A2= 24.0, T2= 15.0, V2= 67.0)
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∆-gray=+4.0 (A1= 30.0, T1= 32.0, V1= 47.0)

(A2= 50.0, T2= 32.0, V2= 47.0)

4. Adaptive color to gray transformation

Our adaptive color to gray transformation method consists

of three steps. In the first step, we regard the color and lu-

minance contrasts as a gradient field which we construct us-

ing formulas described in section 4.1. Then, instead of us-

ing a Poisson solver or similar computationally-demanding

approach, we correct the gradient field using a newly in-

troduced fast and effective gradient inconsistency correction

method based on an orthogonal projection (section 4.2). Fi-

nally, we integrate the corrected gradient field and transform

the values to the display range to get the resulting image.

4.1. Formulas for building the gradient field

We propose two formulas for construction of the gradient

field. The first formula is simple to implement and operates

directly on the CIELab color data, while the advanced sec-

ond one takes the full advantage of the Coloroid color space.

4.1.1. A simple new CIELab based formula

In advance to the Coloroid formula, we studied an exten-

sion of Color2Gray method [GOTG05] to avoid the artifacts

and to reduce the computational costs. Based on the CIELab

values, the mentioned method computes the warm-cold hue

transient value multiplied by the chroma and finally modi-

fied by a stretched tanh (the "crunch") function to obtain the

chrominance. The used signed gray difference is either the

chrominance or the luminance value selected according to

the max function of their absolute values. However, this ap-

proach can result in a strongly non-consistent gradient field,

e.g. a large negative value can appear immediately after a

large positive one. To "blur" this kind of artifacts the method

requires a large neighborhood, and practically the complex-

ity of O(N4).

To overcome the mentioned shortcomings, we introduce

a non-max based, continuous function using the CIELab

space. Being the max the n = +∞ power-norm, we use

the 3rd power norm, which both preserves somewhat from

the max feature, but it is also near to the square-root. Let

A = wa ∗ a and B = wb ∗ a, where wa and wb in inter-

val [0.2..0.6] are weight factors to reduce the chrominance-

luminance ratio. The equivalent luminance has to be smaller

than a CIE color difference value, which can go over 200.

Our new formula is as follows:

∆ = (∆L
3 +∆A

3 +∆B
3)

1/3
. (1)

Formula (1) conveys directly the sign of the ∆ gray differ-

ence. In the worst "diagonal" colors, the difference from the

color difference value - using square-root of a and b - is neg-

ligible for the wanted purpose. See one of results of this ap-

proach on Figure 3; please note that in contrast to Gooch et

Figure 3: Comparison of our method using the CIELab for-

mula with the CIE Y equivalent and Gooch et al. Top left:

original color image, top right: CIE Y equivalent, bottom

left: the result of Gooch et al., bottom right: our adaptive

color to gray transformation result.

al., it takes just a fraction of a second to process this image

by our method and the result exhibits more details. The gra-

dient field was corrected with the method described in the

paragraph 4.2, using the 1-pixel neighborhood. The above

method can be simply extended with 4 weight factors, differ-

ent for positive and negative a and b (red-green and yellow-

blue) channels.

4.1.2. The Coloroid based formula

The XYZ color system coordinates to Coloroid coordinates

transformation and the Coloroid (ATV) based local gray-

change (gradient) formula have central importance in the

proposed method. Unfortunately, they cannot be given in a

closed form, since they contain tables of observations with

the appropriately accurate interpolation rules. Therefore, we

describe the structure of the formula and explain the mean-

ings of the terms here.

As the relative gray-equivalency of the hue changes is

given only for 7 basic hues (by the Tables 1, 2), we apply

a bilinear interpolation. In particular, we linearly interpolate

the ϕ values to derive the color hues [Hun92]. For an arbi-

trary hue-pair (A1, A2), we obtain this way a H value in the

interval of [-10,10]. The hue-term is additive in this model

and it depends sub-linearly on the saturation. In the gradi-

ent term, the H occurs with a weight factor of the following

form:

h(A1,T1,A2,T2) = wh ×H(A1,A2)×
√

u(T1rel)×u(T2rel),
(2)

where Trel is the relative saturation scaled to [0,5] for ev-

ery hue plane and at every luminance level, computed from

the maximal solid-color saturation. Equation (2) contains the

geometrical mean of the two u-factors, and therefore will be
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zero if at least one of the two colors is neutral. The u(x),
where x = 2×Trel , is defined as follows:

u(x) = 0.5× x, iff x < 0.5
u(x) =

√
x−0.5, otherwise.

The saturation dependent gray-equivalent change is more

complicated, since it depends on hue and on luminance too.

We have to evaluate the relative gray-change of both col-

ors. We made observations for the 7 basic hues (Table 1)

using the perceptually uniform Coloroid V values, at the lu-

minance levels of 45, 65 and 85. In the black and white point

the change is zero (V = 0 and V = 100). The suggested gray

change of a color (A,T ,V ) due to the saturation term is scaled

also to [-10,10], but with a different weighting. We made ad-

ditional observations to fit the two different scalings to each

other. The effect of growing saturation can result in a positive

or negative gray change for a fixed hue and luminance. We

use the ϕ values of the 7 basic hues and the data of the most

saturated solid colors [Nem04], that is a version of the 48

limit-colors, and furthermore the above mentioned 5 lumi-

nance levels. Let us notate S(A,T,V ) the gray-change-effect

of the saturation of one color. To compute S, we have to ob-

tain the Trel value first, as in the case of the hue. Then we

apply a trilinear interpolation using the neighboring ϕ, Trel ,
and V values. For two colors, the signed gray-change can be

obtained in the form:

S(A1,T1,V1,A2,T2,V2)=ws× [S(A2,T2,V2)−S(A1,T1,V1)].
(3)

The evident part of the gray gradient is the luminance dif-

ference, without weighting:

dL(L1,L2) = L2 −L1. (4)

The color difference (gradient) is then obtained by adding

the luminance (5), the saturation (3) and the hue (2) formu-

las:

∆1,2 = dL(L1,L2)+S(A1,T1,V1,A2,T2,V2)+h(A1,T1,A2,T2).
(5)

4.2. Gradient inconsistency correction method

Gradient domain imaging methods generally change the

original gradient field of an image, or generate an artificial

gradient field from a set of images. The key issue of that

approach is the backward transformation – e.g. to find an

image having the prescribed gradient field. An exact solu-

tion of the problem does not exist in general, there are only

best approximations. The set of manipulated artificial gra-

dient vectors is not a conservative consistent gradient field,

thereby the appropriate unknown image does not exists, and

we cannot obtain it via a 2D integration method.

Which image has the nearest gradient field to the given

inconsistent one? This question is behind the existing meth-

ods. The well known and widely used multigrid Poisson

solver, FFT method, or different iterative methods minimize

the sum of elementary quadratic error terms containing the

finite difference of unknown pixels and as constant the ap-

propriate given horizontal or vertical gradient values. Per-

haps the most efficient and elegant technique is the conju-

gate gradient method with locally adapted hierarchical basis

preconditioning [Sze06].

In this section, we approach the problem of inconsistent

gradient field with a new question. What is the nearest con-

sistent gradient field to an existing non-consistent one? Hav-

ing the nearest consistent gradients, the image can be ob-

tained by a simple two dimensional integration requiring

only one addition per pixel. For the sake of simplicity, we

will present here the non multi-resolution basic version with

an efficient over-projection.

The unknowns of the classical methods are the pixel lu-

minance values. Our new approach uses two times more un-

knowns, namely all of X and Y components of each gra-

dient vector (grad). The consistency has a simple pictorial

meaning: going around a pixel, the total gradient changes

have to be zero, see Figure 4 (left). Thereby, every pixel

with 4 of the gradient components defines an equation. The

total number of these equations is equal to the number of

pixels (N ×M). The number of unknown gradient terms is

L = (N − 1)× M + (M − 1)× N, which is approximately

2×N ×M.

The possible inconsistent gradient terms can be described

in the L ≈ N ×M dimensional space, while the nearest con-

sistent field is searched in the N×M dimensional linear sub-

space of the consistent gradient fields. The metric is simply

the Euclidean one, which defines the most natural way of

"nearest point". The problem in higher dimension is similar

to searching of the nearest point of a line or plane from an

outer point in the 3D space. Summing the appropriate set

of elementary equations with 4 gradient terms, we can ob-

tain the equation of arbitrary closed curves. On all of these

curves, or on all closed "Manhattan-lines" containing verti-

cal and horizontal elementary intervals, the sum of the gra-

dients has to be zero.

We remark an important feature of the new technique:

nearly all of gradient methods face the problem of the

contradiction of gradients on different resolution levels.

E.g. in HDRI, Fattal et al. [FLW02] constructed an artifi-

cial gradient field in a multi-scale way.However, this ap-

proach changes also the larger low dynamic range image

parts, which would have to remain invariant. Gooch et

al [GOTG05] applied "every pixel to every others" com-

parison in O(N4) time to avoid the resolution-contradiction

problem for a highly inconsistent gradient field and to ob-

tain a pleasant global appearance. Our new consistency-

correction method with the simple 1-neighbor gradients

gives the wanted appearance, and solves implicitly the

resolution-contradiction problem in a new way.
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Figure 4: Left: the sum of gradients around a pixel should

be zero, but it is not in the case of inconsistent gradient field.

Right: scheme of the orthogonal projection in 2D case.

4.2.1. The algorithm

To find the nearest point in higher dimensional space, or to

project a point orthogonally in a sub-space is generally a

time-demanding algorithm. In a lower dimension, the Gram-

Schmidt orthogonalization gives a closed form solution. For-

tunately, for sparse matrix problems an iterative method

tends to the nearest point with very simple elementary pro-

jection steps. Figure 4 (left) shows the pixel (middle point)

and two different ways around the pixel. The total changes

on these two ways have to be the same. After image manipu-

lation or for artificially prescribed gradient field this consis-

tency does not hold. The sum of gradients (E) on the closed

curve containing the blue and red parts has to be zero. If it

is non-zero, but |E| > ε, we have to change the values for

all of closed "1-pixel-ways", until all of E-values converge

to zero. In the app. 2×N ×M dimensional space of gradi-

ent components all of the 1-pixel-ways define an equation

(N ×M), containing only 4 non-zero coefficients:

gx(i, j)+gy(i+1, j)−gy(i, j)−gx(i, j+1) = E 6= 0,
N = (0, ..,0,+1,+1,−1,−1,0, ..,0),

gnew = g−1/4×E ×N,

(see Algorithm 1), where g is the vector describing the whole

gradient field. The orthogonal projection method converges

to the nearest point of a sub-space, in our case one of the

consistent gradient fields. This subspace is the common part

of all hyper-planes defined by the 1-pixel-way equations. If

we select the equation with maximal error, and project the

current gradients in the direction of N normal until reach-

ing this plane, or fulfilling the equation, we go nearer to the

wanted point according to the Figure 4 (right). The new dis-

tance Dk+1 can be expressed with the old one and with the

dk distance of the projection characterizing the local incon-

sistency:

D
2
k+1 = D

2
k −d

2
k .

With maximum error (E) selection, the method is more ef-

ficient, than with a cyclical correction of all of pixels, but this

latter does not require a structure, e.g. to build a Fibonacci-

heap to the quick max selection. On the other hand, the over-

projection (e.g. parameter ω in Alg. 1), which is less efficient

Algorithm 1 Inconsistency correction

correct (gradient_field grad, double ω, double ε) {

repeat

max_err=0;

for y = 1 to YRES-1 do

for x = 1 to XRES-1 do

err=grad.X[x][y]+grad.Y[x+1][y]-

-grad.Y[x][y]-grad.X[x][y+1]

if |err|>max_err then

max_err=|err|;
end if

s = 1/4 × err × ω;

grad.X[x][y]=-s + grad.X[x][y];

grad.Y[x+1][y]=-s + grad.Y[x+1][y];

grad.Y[x][y]=s + grad.Y[x][y];

grad.X[x][y+1]=s + grad.X[x][y+1];

end for

end for

until max_err < ε

}

locally, significantly increases the overall convergence also

in the non-multiresolution form of Algorithm 1 (the value of

ω = 1.8 is convenient for most images, while for ω = 1 we

get the original convergence rate).

Having the consistent gradient field, the final image is

constructed via simple 2D integration, as shown in Algo-

rithm 2. We believe the reader can implement this new sim-

ple, but efficient method very easily.

Algorithm 2 Double integration

integrate (gradient_field grad, output_image out) {

out[1][1] = 0;

for y = 1 to YRES do

if y>1 then

out[1][y] = out[1][y-1] + grad.Y[1][y-1];

end if

for x = 2 to XRES do

out[x][y] = out[x-1][y] + grad.X[x-1][y];

end for

end for

}

5. Results and discussion

We demonstrate the performance of our new color to gray

transformation on a variety of color images and photographs.

Figure 5 illustrates the mandatory color to gray transforma-

tion test containing largely isoluminant colors. We can ob-

serve from this figure how the classical approach results in a

constant luminance (see Figure 5 - center). On the contrary,

our approach (see Figure 5 - right) transforms the chromi-

nance difference into well noticeable luminance differences.
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The low contrast is due to the small visible differences in the

original color image, preserving the overall appearance.

Figure 6 exhibits how, beyond other changes, the bluish

image parts of the color image obtain a more realistic darker

appearance in the resulting graylevel image after applying

the proposed adaptive method. On the other hand, Figure 7

(top row) presents an obvious improvement of the final ap-

pearance in the details and visibility of the sky area. The sun

is well visible in our result, while it nearly disappears in the

classical gray conversion. Further examples are illustrated in

Figure 7 and in color plates.

The processing time of a color to gray transformation us-

ing our approach is in the order of seconds even for high-res

images (appr. 5 - 10 seconds per Megapixel), an appropriate

value of parameter ε (see Alg. 1) is 0.001 for most images.

We are currently working on the accelerated real-time ver-

sion applying the multi-scale solution.

Figure 5: An artificial isoluminant image. Left: original

color image, middle: CIE Y equivalent, right: our adaptive

color to gray transformation result.

6. Conclusions and future work

We presented a new fast and efficient perceptual color

to gray transformation method, based on a large number

of experiments and observations of the local luminance-

chrominance equivalency. Our method describes the

luminance-equivalent nature of the whole gamut in a gra-

dient domain, which (as we observed) often has an unex-

pected behavior with smooth changes. We propose two dif-

ferent formulas for the construction of the gradient field, first

Figure 6: Left: original color image, middle: CIE Y equiva-

lent, right: our adaptive color to gray transformation result.

one operating in the CIELab color space, while the advanced

second one takes the full advantage of the Coloroid color

space.

Moreover, we introduced a new gradient inconsistency

correction method for solving the gradient field translated

problem. The method has a linear complexity in the num-

ber of pixels and thereby it is suitable also for high resolu-

tion images. The method finds the most natural solution for

a given inconsistent gradient field, e.g. the nearest one in the

linear subspace of consistent gradient fields. The final im-

age is then obtained via simple and fast 2D integration and

clipping of the values.

In the future, we will systematically assess the algorithm

performance and we will provide more extensive experimen-

tation including subjective testing (the best transformation

requires judgment of photographers and painters). More-

over, we will involve the multiscale processing to make the

proposed method real-time.
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Abstract

Color images often have to be converted to grayscale for reproduction, artistic purposes, or for subsequent pro-

cessing. Methods performing the conversion of color images to grayscale aim to retain as much information

about the original color image as possible, while simultaneously producing perceptually plausible grayscale re-

sults. Recently, many methods of conversion have been proposed, but their performance has not yet been assessed.

Therefore, the strengths and weaknesses of color-to-grayscale conversions are not known. In this paper, we present

the results of two subjective experiments in which a total of 24 color images were converted to grayscale using

seven state-of-the-art conversions and evaluated by 119 human subjects using a paired comparison paradigm.

We surveyed nearly 20000 human responses and used them to evaluate the accuracy and preference of the color-

to-grayscale conversions. To the best of our knowledge, the study presented in this paper is the first perceptual

evaluation of color-to-grayscale conversions. Besides exposing the strengths and weaknesses of the researched

methods, the aim of the study is to attain a deeper understanding of the examined field, which can accelerate the

progress of color-to-grayscale conversion.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation–Display algorithms, viewing algorithms; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism–Color, shading, shadowing, and texture; I.4.3 [Image Processing and Computer Vision]: Enhancement–
Filtering; J.4 [Social and Behavioral Sciences]: Psychology

1. Introduction

Converting color images to grayscale is used for various rea-
sons, like for reproducing on monochrome devices, subse-
quent processing, or for aesthetic intents. Color-to-grayscale
conversions perform a reduction of the three-dimensional
color data into a single dimension, seen in Figure 1. It is
evident that some loss of information during the conversion
is inevitable, so the goal is to save as much information from
the original color image as possible. At the same time, the
aim is also to produce perceptually plausible grayscale re-
sults. Recently, various approaches to the color to grayscale
conversion problem have been proposed. While the prob-
lem’s complexity is currently recognized, the performance
of existing solutions is not. Even though researchers fre-
quently claim that their methods advance the field with re-

† cadikm@fel.cvut.cz http://www.cgg.cvut.cz/˜cadikm
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Figure 1: The color to grayscale image conversion.

spect to previous ones, it is important to evaluate the per-
formance of these algorithms in comparative, subjective ex-
periments and analyze their strengths and weaknesses. How-
ever, until now, there has not been an evaluation of color-to-
grayscale conversions involving a representative number of
subjects and input stimuli.

In this paper, we present the results of two subjective per-
ceptual experiments (preference and accuracy), for which
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seven state-of-the-art color-to-grayscale conversions were
evaluated by 119 human subjects. The set of inputs consisted
of 24 various color images. By means of statistical analysis
of the subjective experimental data, we assess the strengths
and weaknesses of the conversions, with respect to the pref-
erence and accuracy of color reproduction. The overall re-
sults show that the best score for accuracy is achieved by
the approach of Smith et al. [SLJT08], while the most pre-

ferred method is Decolorize [GD05]. The method of Bala
and Eschbach [BE04] was ranked the worst in both the ac-
curacy and preference experiments. Furthermore, we aim to
attain a deeper insight into the color-to-grayscale conversion
field.

The rest of this paper is structured as follows: In Section 2
we first survey the related work. In Section 3 we introduce
the two perceptual experiments that we have conducted. In
Section 4 we present, analyze and discuss the results of the
experiments. Finally, in Section 5 we conclude and suggest
some ideas for future research.

2. Related Work

In this section, we give an overview of current state-of-the-
art, color-to-grayscale conversions. Most of the described
methods are evaluated in our perceptual study (please, refer
to Section 3.1 and Table 1). We also survey existing evalua-
tions of color-to-gray conversions and related studies.

2.1. Color-to-Grayscale Image Conversions

The simplest and widely used approach to converting color
to grayscale is based on neglecting of the chrominance chan-
nels, e.g. taking a luminance channel as a grayscale repre-
sentation of the original color image. One of the possibili-
ties is to utilize the Y channel of the CIE XYZ [Fai05] color
space. This approach is simple and computationally effi-
cient, but it may fail for specific images, such as those with
isoluminant colors.

Bala and Eschbach [BE04] propose a spatial approach to
color-to-grayscale conversion. They preserve chrominance
edges locally by introducing high-frequency chrominance
information into the luminance channel. A spatial high-pass
filter is applied to the chromatic channels, the output is
weighted with a luminance-dependent term, and the final re-
sult is added to the luminance channel.

Grundland and Dodgson [GD05] propose the Decolorize

algorithm for contrast enhancement as well as converting
color to grayscale. They perform a global grayscale con-
version by expressing grayscale as a continuous, image-
dependent, piecewise linear mapping of the primary RGB
colors and their saturation. Three parameters are used to con-
trol contrast enhancement, scale selection and noise suppres-
sion, and image-independent default values for these param-
eters have been proposed [GD05].

A different approach was taken by Gooch et
al. [GOTG05], who introduced the local algorithm
known as Color2Gray. In this gradient-domain method, the
gray value of each pixel is iteratively adjusted to minimize
an objective function, which is based on local contrasts
between all the pixel pairs. The computational complexity
of this method is high (O(N4)), and can be improved by
limiting the number of considered differences (e.g. by color
quantization). Mantiuk et al. [MMS06] show an application
of their contrast processing framework to accelerate the
Color2Gray [GOTG05] method. In their approach, the
close neighborhood of a pixel is considered on fine levels
of a pyramid, whereas the far neighborhood is covered on
coarser levels. The authors claim that this enables them to
convert bigger images and perform computations faster.

Another conversion was introduced by Rasche et
al. [RGW05]. Their method aims to preserve contrast while
maintaining consistent luminance. The authors formulate an
error-function based on matching the gray differences to the
corresponding color differences. The goal is minimizing the
error function to find an optimal conversion. The authors
propose using color quantization to reduce the considerable
computational costs of the error-minimization procedure.

Queiroz and Braun [dQB06] have proposed an invertible

conversion to grayscale. The idea is to transform colors into
high-frequency textures that are applied onto the gray image
and can be later decoded back to color. The method is based
on wavelet transformations and on the replacement of sub-
bands by chrominance planes.

Alsam and Kolas [AK06] introduced a conversion method
that aims to create sharp grayscale from the original color
rather than enhancing the separation between colors. The ap-
proach resembles the method of Bala and Eschbach [BE04]:
first, a grayscale image is created by a global mapping to
the image-dependent gray axis. Then, the grayscale image is
enhanced by a correction mask in a way similar to unsharp
masking [GW02].

Neumann et al. [NČN07] proposed two local, gradient-
based, color-to-grayscale conversions. The first is a general-
ization of the CIELab formula [Fai05], which introduces a
signed power function to give a signum to the weighted Lab
components. The second technique aims to obtain the best
perceptual gray gradient equivalent by exploiting the Col-
oroid system and its experimental background. The gradient
field constructed using one of the techniques is corrected us-
ing a gradient inconsistency correction method. Finally, a 2D
integration yields the grayscale image.

A recent method by Smith et al. [SLJT08] combines
global and local conversions in a way similar to Alsam and
Kolas [AK06]. The method first applies global “absolute”
mapping based on the Helmholtz-Kohlrausch effect, and
then locally enhances chrominance edges using adaptively-
weighted multiscale unsharp masking. While the global
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conversion reference G/L implementation parameters
CIE Y [Fai05] G own implementation, C++ —
Bala04 [BE04] G + L own implementation, C++ N=3, K=1, B1=15, B2=40
Decolorize [GD05] G www.eyemaginary.com, Matlab effect=0.5, scale=25, noise=10−3

Color2Gray [GOTG05] L www.color2gray.info, command_line, C++ colors=256, θ=45, α=10, µ=full
Rasche05 [RGW05] L www.fx.clemson.edu/˜rkarl, c2g_i, C colors=256, exp=2, threshold=15
Neumann07 [NČN07] L www.cgg.cvut.cz/˜cadikm/color_to_gray, own impl., C++ ε = 10−5

Smith08 [SLJT08] G + L www.mpi-inf.mpg.de/resources/ApparentGreyscale, 1-scale, Gimp rad=5, amount=0.15, gamma=1

Table 1: Summary of the evaluated color-to-grayscale conversion methods. G and L stands for global and local, respectively.

mapping is image independent, the local enhancement rein-
troduces lost discontinuities only in regions that insuffi-
ciently represent the original chromatic contrast [SLJT08].
The goal of the method is perceptual accuracy, not the exag-
geration of discriminability.

2.2. Evaluations of Color-to-Grayscale Conversions

Apart from simple evaluations of the proposed methods sur-
veyed below, we are not aware of any subjective perceptual
evaluation study of color-to-grayscale conversions.

Bala and Eschbach [BE04] performed a small preference
experiment to evaluate the qualitative performance of their
conversion. The authors used three input color images that
were converted using their novel method and by the sim-
ple conversion that retains the luminance component. The
grayscale results were presented as hardcopy prints to six
observers. The subjects preferred the novel spatial conver-
sion approach (16 positive decisions out of total 6×3 = 18
comparisons).

Rasche et al. [RGW05] performed an accuracy exper-
iment (with reference images) to assess their color-to-
grayscale conversion. Six color images converted by the
standard mapping of luminance to gray and by Rasche’s
method were presented to a group of 17 observers. The re-
sults revealed that for one group of input images the perfor-
mance of the evaluated conversions was comparable, while
for the second group of images, Rasche’s method outper-
formed the traditional conversion.

3. Perceptual Experiments

In this section we describe the specific details of per-
ceptual experiments that we have conducted to evaluate
tested color-to-grayscale image conversions. We utilized the
psychophysical technique of paired comparisons [Dav88],
namely the two-alternatives forced choice (2AFC) experi-
ment paradigm. We performed two experiments: in the first
experiment (for accuracy), the grayscale images were pre-
sented along with the original (reference) color image, and
in the second experiment (for preference), the subjects saw
two grayscale images without any reference.

3.1. Evaluated Color-to-Grayscale Conversions

In total, we evaluated seven color-to-grayscale conversions,
summarized in Table 1. When available, we utilized the
codes provided by the authors for a particular conversion, but
otherwise we implemented the conversion personally. All
the conversions were run using default (constant) parameter
settings (please, refer to Table 1 for numerical values). We
decided to use constant parameters over all the input images
for several reasons: first, to ensure comparable conditions for
all the conversion methods involved; second, to reduce the
number of images that are presented to subjects; and lastly
not to bias the results by choice (tweaking of parameters) of
an experimenter or an author (as different people may have
a different sense of what is the best grayscale image).

3.2. Input Images

One of the advantages of a good-quality color-to-grayscale
conversion is to give compelling results over a wide range of
input images. We used 24 input color images in our study,
with various motifs, origins, gamuts, etc, (the collection of
these images is shown in Table 4 on Page 9). The images
depict plants (images 9, 13, 23), foliage (22), fruits & veg-
etables (1, 10), portraits (11, 16), various photos (3, 4, 14,
15, 19), paintings (6, 20), cartoons (5, 21), color testing im-
ages (2, 7, 8, 12, 17), and computational images (18, 24).
All the images were rescaled to maximally span 390×390
pixels for presentation purposes (to fit on the screen with the
reference image) and also for the computational demands of
several conversions.

3.3. Experimental Design

The evaluated images were displayed on a characterized and
calibrated monitor EIZO S1910, a 19-inch LCD display, in
native resolution 1280×1024 pixels. Calibration was per-
formed by X-Rite GretagMacbeth Eye-One Display 2 col-
orimeter to D65, 120 cd/m2, and colorimetrically charac-
terized by measured ICC profiles. The experimental images
were presented on a neutral gray background with a lu-
minance of 18% of the white point. The experimentation
room was neutrally painted, darkened (measured light level:
4 lux), and observers sat approximately 70 cm from the dis-
play. All testing was performed approximately in the same
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time of day (before noon) to avoid fatigue or other factors.
The total of 121 observers took part in our experiments. The
observers were both male and female between the ages of 18
to 41, and all of them reported to have normal, or corrected-
to-normal vision. Each subject was verbally introduced to
the problem before the experiment, as described in the fol-
lowing section.

3.4. Experimental Procedure

The design of the experiments followed the 2AFC ap-
proach [Dav88]. Specifically, we utilized the software
‘Ranker’ which is available at ranker.sourceforge.net.
Every grayscale image was compared with every other
grayscale image (see Table 5 on Page 10), i.e. for each in-
put color image, we have n(n−1)/2 = (7×6)/2 = 21 com-
parisons, where n = 7 evaluated conversions. With 24 input
color images, we would need 24 × 21 = 504 trials, which
would be prohibitive for each subject. Therefore, we ran a
pilot study to assess the reasonable amount of trials for one
observer (and to verify the setup as well). The pilot study in-
dicated that eight sets of grayscale images (21 comparisons
in each), i.e. the 168 trials, is an acceptable quantity for one
observer without experiencing exhaustion and loss of con-
centration. With eight randomly selected sets (balanced de-
sign), the whole experiment took approximately 20 minutes
per observer. The sequence of images and the position of im-
ages on the display (left or right) were randomized. The type
of the experiment (accuracy or preference) was also random-
ized, however for a given observer it remained constant.

Experiment with a reference (accuracy): every time, two
grayscale images were displayed along with the color orig-
inal in the middle. Observers were asked to select the one
of the two grayscale images that was closer in appearance to
the original color image, i.e. to select the image that better
reproduced the original. More specifically, the instructions
stated: “Your task is to select the grayscale image that better
matches the colors of the original color image.”

Experiment without a reference (preference): every time,
two grayscale images were displayed. Observers were in-
structed to select the grayscale image that they preferred.
Specifically, the instructions stated: “Your task is to select
the preferred grayscale image from the presented pair.” Gen-
erally, accuracy (with reference) experiments were slightly
more time-demanding with comparison to preference (with-
out reference) experiments, and took 20 to 30 minutes per
observer.

4. Results and Discussion

A total of 121 observers completed 20328 observations
(pair-wise comparisons). Based on a post-test questionnaire,
the results of two observers were excluded as outliers be-
cause of color vision deficiencies. In the following, we

Source of SS d. f . MS F p

Variation

conversion 105.6 6 17.6 185.4 ≈ 0
experiment 0 1 0 0 ≈ 1
input image 0 23 0 0 ≈ 1
conversion ×

experiment 2.8 6 0.5 4.9 10−4

conversion ×

input image 260.1 138 1.9 19.9 ≈ 0
experiment ×
image ≈ -0 23 ≈ -0 ≈ -0 ≈ 1

Residual 13.1 138 0.1
Total 381.5 335

Table 2: The results of multi-factorial ANOVA test (where

SS denotes Sum of Squares, d. f . means Degrees of Freedom,

MS denotes Mean Square, F is F value, and p is p-value for

the null hypothesis [TF07]).

present the results based on the observations of 60 partici-
pants who performed the accuracy experiment and 59 sub-
jects who took part in the preference experiment. For each
trial, the grayscale image chosen by an observer was given
a score of 1, the other a score of 0. The data were stored in
a 7×7 frequency matrix for each observer, where the value
in column i and row j represents the score of grayscale con-
version i compared with conversion j. We used Thurstone’s
Law of Comparative Judgments, Case V, to convert the data
into interval z-score (standard score) scales [Thu27,Eng00].

As the z-scores calculated from the observation data using
Thurstone’s law are normally distributed, we can utilize clas-
sical parametric statistics in the further analysis. To inquire
the significance of the input images, the experiments (accu-
racy and preference), and the conversions (i.e. the factors)
on the observation data, it is profitable to apply the multi-
factorial analysis of variance (ANOVA) test [TF07]. Multi-
factorial (n-way) ANOVA is able to consider all the factors
at once. The results of the n-way ANOVA are summarized
in an ANOVA table [MR99] (Table 2). The results show that
the only significant main effect is the conversion (because
the p-value is below the threshold of 0.05), which means
that there are significant differences in the performances of
the inquired conversions. Neither the experiment type, nor
the input image can alone explain the variability in the data.
However, two statistically significant interaction effects im-
ply that the observed scores depend on the combination of
the conversion and the input image, and (with the smallest
probability, but still with a statistical significance) on the
combination of the conversion and the type of the experi-
ment. This result suggests that the performances of the con-
versions depend on input images and on experiment type,
and it makes sense to show the results separately for each
input image and for each experiment. Finally, we performed
a multiple comparison test (Tukey’s honestly significant dif-
ferences [HT87]) over all the subjective data. This test re-
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Decolorize Smith08 CIE Y Color2Gray Rasche05 Neumann07 Bala04
0.544 0.487 0.158 0.149 -0.203 -0.317 -0.819

Figure 2: Overall performances of the inquired conversions. Results of the multiple comparison across all input images in both

experiments. The best result is the leftmost, any conversions that are underlined are considered perceptually similar.
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Figure 3: Overall results separately for the two experiments. Left: overall scores for both the accuracy and preference experi-

ments. Error bars show intervals of 95% confidence. Right: comparison of accuracy and preference experiments.

turns an overall ranking of the conversions with the indica-
tion of the statistical significance of the differences between
them (please, see Figure 2). The results show that the best
ranked conversion in our study is Decolorize, but it performs
statistically similar to Smith08; the worst ranked is Bala04.

4.1. Overall Accuracy and Preference Results

The overall scores were obtained by averaging the percent-
age matrices over all input images separately for the accu-
racy and preference experiments (please, see Figure 3). We
can see from the overall results that altogether the best score
in the accuracy experiment was achieved by Smith08, while
Decolorize produces the most preferred grayscale images.
Bala04 was ranked the worst in both the accuracy and pref-
erence experiments.

Comparing the overall accuracy and preference scores,
we see similar trends in the results of the experiments. The
calculated Pearson correlation coefficient [MR99] r = 0.97
and the coefficient of determination [MR99] R2 = 0.94 (Fig-
ure 3 right) indicate high similarity of the preference and
overall accuracy experiments. Notice that the CIE Y and
Smith08 methods exhibit almost unchanged performance in
both experiments. On the other hand, the rest of the methods
show certain differences in accuracy and preference experi-
ments. Specifically, Decolorize, Neumann07, and Rasche05
perform better in the preference experiment than in the ac-
curacy experiment. On the contrary Color2Gray and Bala04
perform better in the accuracy experiment than in the prefer-
ence experiment. Please refer to Section 4.3 for further anal-
ysis of accuracy and preference.

4.2. Results for Individual Images

Next, we examined the experimental data for all the color
images individually (please see the summarized results in
Table 3). We converted the observation data into z-scores
independently for each input image using the Thurstone’s
Law of Comparative Judgments. The ranking reported in Ta-
ble 3 is based on the calculated z-scores. The coefficient of
agreement between subjects u ranges from u = −1/(s− 1),
where s is the number of subjects, (which indicates no agree-
ment between subjects) to u = 1 (all subjects responded the
same). We show the results of the χ2 test on the coefficient
u, and the obtained p-values. The coefficient of consistency
of subject’s responses ζ ranges from ζ = 0 (no consistence)
to ζ = 1 (ideally consistent responses), we report the aver-
age ζ over the subjects for a given input image. The values
of u, ζ, χ2, and p were calculated in a similar way to Ledda
et al. [LCTS05].

The results of the χ2 test show that there is some agree-
ment between observers, seen by the reported statistical sig-
nificance (all the p-values of the null hypothesis are clearly
below the threshold). This means that there are differences
the in performances of the conversions, which is also re-
vealed by the ANOVA test reported above. The high values
of ζ suggest that each subject was fairly consistent in their
judgments. On the other hand, the agreement u amongst sub-
jects varies from high values (images 2, 8) to lower agree-
ment (for images 3, 9, 11), which indicates that the com-
plexity of judgments differ depending on the input image.

Table 3 shows that no conversion produces universally
satisfying results for all involved input images. Each of the
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Figure 4: The results for individual input images. Left: Accuracy-preference scores for all input images. Each point represents

a score of one color-to-gray conversion method for a particular input image. Right: Principal component analysis. The axes

represent the principal components and the points represent the principal component scores of one conversion for one input

image. The vectors show the values of principal component coefficients for the accuracy and preference variables.

seven tested conversions was ranked as worst for at least one
input image and, apart from Bala04, each conversion was
ranked as best for some input image. It is interesting to no-
tice that Decolorize exhibits exceptionally good results for
those input images that have rather narrow color gamuts or
a limited number of colors (i.e. the images 2, 5, 7, 8, 10, 17,
20), refer to Table 4. For such images it is possible that, the
image-dependent global mapping of Decolorize performs
very well. Contrarily, Smith08 excels at colorful images with
extensive color gamuts (4, 9, 15, 19, 22, 23), where the lo-
cally enhanced mapping based on the Helmholtz-Kohlrausch
effect outperforms other conversions. Of note, however, is
that the simple CIE Y conversion also performs quite well
for these input images and it is remarkably good in images
5, 16, 18, 19, and 21.

4.3. Accuracy vs. Preference

We calculated values of the correlation coefficient r and
the coefficient of determination R2 [MR99] to determine
the relationship between the accuracy and preference scores.
The high values of r and R2 for overall accuracy and pref-
erence scores (Figure 3, right) as well as for the scores
for individual images (Figure 4, left) imply that there is a
strong correlation between peoples’ judgments of the color-
to-grayscale conversion accuracy and the grayscale image
preference. This suggests that one aspect dominates subjec-
tive judgment – let us call it an overall perceptual quality
of color-to-grayscale conversion. The high values of corre-
lations are interesting, as one would expect tricky judgments
for grayscale pairs without the reference of some input im-
ages (e.g. 6, 7, 12, 17). The values of u and ζ, however, imply
that the subjects were rather consistent in their opinions.

The principal component analysis [TF07] results in two
principal components, where the first principal component
explains 96.4% of the data variance (Figure 4, right). As il-
lustrated, the first component (perhaps the overall quality of
the conversion) lies nearly perfectly in the axis of accuracy
and preference vectors. This result supports the above idea
that only one dimension prevails in our subjective data.

4.4. Comparison to Previous Work

We believe that the presented study is much more credible
than the two simple evaluations described in Section 2.2, as
the number of subjects, input images and evaluated conver-
sions is much higher. However, it is interesting and fair to
compare the results obtained with the results of the previous
evaluations.

In the preference experiment of Bala and Es-
chbach [BE04], Bala04 performed better than the mapping
retaining the luminance. The authors used three input
images (two of them are very similar to this study’s image14
and image21). In our preference experiment, CIE Y and
Bala04 performed similarly for image14, and Bala04
performed worse than CIE Y for image21. In our overall
results, Bala04 performed worse than CIE Y, which is not
consistent with findings of Bala and Eschbach. Besides
the higher number of observers in our experiment, the
discrepancy in the two studies is perhaps due to the different
experimental setups, since Bala and Eschnach presented
hardcopy prints and we utilized an LCD monitor.

Rasche’s [RGW05] results show that for four input im-
ages, the performance of Rasche05 is comparable to the
standard mapping of luminance. For another three images,
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u ζ (avg) χ2 p (21 d.f.) best ranking of scores worst

image1 (accuracy) 0.191 0.833 101.2 p<0.001 C Y S B D N R

image1 (preference) 0.290 0.832 136.8 p<0.001 C Y S D R B N

image2 (accuracy) 0.713 0.966 290.4 p<0.001 N D R C S Y B

image2 (preference) 0.804 0.981 324.9 p<0.001 D N R C S Y B

image3 (accuracy) 0.103 0.673 64.2 p<0.001 R Y B S N C D

image3 (preference) 0.134 0.696 74.4 p<0.001 S R Y B N C D

image4 (accuracy) 0.326 0.827 158.0 p<0.001 S Y N D C B R

image4 (preference) 0.585 0.893 254.4 p<0.001 S Y N D C B R

image5 (accuracy) 0.489 0.929 226.5 p<0.001 Y D S C B R N

image5 (preference) 0.561 0.946 245.0 p<0.001 D S Y R C B N

image6 (accuracy) 0.468 0.876 197.7 p<0.001 R D N C S Y B

image6 (preference) 0.550 0.891 228.9 p<0.001 R N D C S Y B

image7 (accuracy) 0.258 0.876 118.6 p<0.001 D Y R C B N S

image7 (preference) 0.425 0.925 199.5 p<0.001 D R Y C B N S

image8 (accuracy) 0.567 0.929 235.2 p<0.001 D N R C S B Y

image8 (preference) 0.667 0.977 273.1 p<0.001 D N R S C B Y

image9 (accuracy) 0.106 0.771 60.9 p<0.001 S D R Y B N C

image9 (preference) 0.199 0.737 96.3 p<0.001 S D Y R N B C

image10 (accuracy) 0.162 0.853 82.4 p<0.001 D S R Y N B C

image10 (preference) 0.484 0.861 204.1 p<0.001 D S Y R N B C

image11 (accuracy) 0.138 0.703 73.1 p<0.001 S R Y D C N B

image11 (preference) 0.186 0.737 91.2 p<0.001 S R D B Y N C

image12 (accuracy) 0.564 0.940 234.4 p<0.001 C N D S R B Y

image12 (preference) 0.552 0.956 252.8 p<0.001 C D N S R Y B

image13 (accuracy) 0.307 0.846 137.1 p<0.001 N Y S C D B R

image13 (preference) 0.146 0.803 82.1 p<0.001 D C Y S N B R

image14 (accuracy) 0.288 0.756 129.9 p<0.001 S Y C D N B R

image14 (preference) 0.173 0.671 90.2 p<0.001 D C S N Y B R

image15 (accuracy) 0.256 0.801 117.7 p<0.001 S R D C Y B N

image15 (preference) 0.247 0.786 124.8 p<0.001 S R Y C D N B

image16 (accuracy) 0.217 0.827 112.2 p<0.001 C S Y R D N B

image16 (preference) 0.372 0.868 169.4 p<0.001 Y S C D N R B

image17 (accuracy) 0.333 0.908 161.0 p<0.001 D S R N Y B C

image17 (preference) 0.391 0.929 177.2 p<0.001 D S N Y R B C

image18 (accuracy) 0.231 0.762 118.0 p<0.001 Y S C D B N R

image18 (preference) 0.247 0.736 119.6 p<0.001 Y S C D R N B

image19 (accuracy) 0.273 0.842 124.1 p<0.001 Y S C D B N R

image19 (preference) 0.409 0.867 192.6 p<0.001 S Y C D B R N

image20 (accuracy) 0.520 0.861 217.5 p<0.001 D C S N Y R B

image20 (preference) 0.530 0.895 243.7 p<0.001 D S C N Y R B

image21 (accuracy) 0.462 0.951 195.6 p<0.001 Y S D C N B R

image21 (preference) 0.538 0.977 224.3 p<0.001 Y D S C N B R

image22 (accuracy) 0.484 0.861 204.1 p<0.001 S C R D Y N B

image22 (preference) 0.491 0.880 206.6 p<0.001 S R C Y D N B

image23 (accuracy) 0.406 0.840 191.5 p<0.001 S C Y B R D N

image23 (preference) 0.390 0.832 176.8 p<0.001 S Y C R B D N

image24 (accuracy) 0.303 0.797 135.4 p<0.001 S C Y D R B N

image24 (preference) 0.296 0.837 145.4 p<0.001 D Y C S R B N

Table 3: The results for individual input images. Used abbreaviations: avg=average, d.f.=degrees of freedom, C =Color2Gray,

Y =CIE Y, D =Decolorize, B =Bala04, N =Neumann07, R =Rasche05, S =Smith08, notice that the used colors are equivalent

to the colors in Figure 4.
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the second one from the evaluated adjustments of parame-
ters of Rasche05 outperforms the traditional conversion. In
our experiment, the overall accuracy score of Rasche05 is
close to CIE Y, but it is worse than CIE Y with statistical
significance. Rasche05 outperforms CIE Y only for 11 of 24
input images (i.e. for images 2, 3, 6, 8, 9, 10, 11, 12, 15,
17, 22). The reason why Rasche05 performs worse in our
study than in the Rasche experiment is due to the fact that we
applied Rasche05 with constant parameters (alike the other
conversions, seen in Table 1). We admit that Rasche05 could
be ranked better after a thorough parameter tuning for each
image (and other conversions, too), however this was not the
objective of our study (please, refer to the discussion in Sec-
tion 3.1).

5. Conclusions and Future Work

We presented a perceptual evaluation of color-to-grayscale
image conversions. In two experiments, a total number of
119 subjects assessed the accuracy and the preference of
grayscale images produced by seven state-of-the-art conver-
sion methods. The inputs of the evaluated conversions repre-
sented the set of 24 color images of varying characteristics,
motifs, and acquisitions.

The results show that the Decolorize [GD05] and
Smith04 [SLJT08] conversions are overall the best ranked
approaches, and the approach of Bala04 [BE04] performed
the worst. However, the analysis of individual images reveal
that no conversion produces universally good results for all
the involved input images. Specifically, each of the seven
inquired conversions was ranked the worst for at least one
input image and, apart from Bala04, each conversion was
ranked the best for some input image. These results suggest
that there still exist areas for improvement of current con-
versions, especially in the robustness over various inputs.
Furthermore, we found a high degree of correspondence be-
tween the accuracy and preference scores. Specifically, the
results indicate that one dimension prevails in the subjects’
judgment of the quality of the grayscale results. We believe
that this is of particular importance and it is necessary to
conduct experimental subjective studies, such as the one pre-
sented, to validate and evaluate color-to-grayscale conver-
sions properly in order to expose their strengths and weak-
nesses, and to attain a deeper understanding of the examined
field.

The presented study does not reflect computational de-
mands, implementation difficulties, and other factors, which
can play an important role for practical use. Notice that
our results are valid for images presented on a screen, and
the tested conversions may perform differently for hardcopy
printouts or other media. Moreover, the desirable properties
of the color-to-grayscale conversion may sometimes depend
on the chosen application. In future work, we plan to imple-
ment all the conversions in the same platform to assess their
computational demands and their actual usefulness. We will

also research how to involve more input parameters of the
conversions so as to explore the parameter space.
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id color image color gamut gamut [min, max]
im

ag
e1 L* = [0.06151, 100]

a* = [-35.32, 77.37]
b* = [-10.55, 81.26]

im
ag

e2 L* = [38.67, 100]
a* = [-51.06, 0.6223]
b* = [-19.64, 52.48]

im
ag

e3 L* = [ 0, 100]
a* = [-15.18, 20.87]
b* = [-45.69, 38.37]

im
ag

e4 L* = [0.7095, 99.71]
a* = [-54.93, 40.19]
b* = [-66.35, 53.9]

im
ag

e5 L* = [ 0, 100]
a* = [-71.94, 84.66]
b* = [-92.34, 83.02]

im
ag

e6 L* = [14.67, 96.38]
a* = [-5.309, 38.68]
b* = [-41.72, 68.38]

im
ag

e7 L* = [64.75, 100]
a* = [-16.63, 30.27]
b* = [-36.28, 45.12]

im
ag

e8 L* = [42.24, 57.86]
a* = [-42.78, 79.86]
b* = [-87.36, 69.06]

im
ag

e9 L* = [0.4412, 100]
a* = [-21.38, 79.57]
b* = [-14.87, 91.16]

im
ag

e1
0 L* = [ 0, 100]

a* = [-25.91, 64.11]
b* = [-11.55, 81.48]

im
ag

e1
1 L* = [ 0, 100]

a* = [-28.37, 66.11]
b* = [-40.77, 52.23]

im
ag

e1
2 L* = [62.76, 71.36]

a* = [-41.11, 7.765]
b* = [-46.83, 73.57]

id color image color gamut gamut [min, max]

im
ag

e1
3 L* = [0.9717, 93.59]

a* = [-46.35, 71.04]
b* = [-38.17, 73.74]

im
ag

e1
4 L* = [1.72, 98.19]

a* = [-44.35, 74.49]
b* = [-29.15, 90.95]

im
ag

e1
5 L* = [5.421, 99.72]

a* = [-6.689, 64.22]
b* = [-17.33, 69.62]

im
ag

e1
6 L* = [ 0, 99.3]

a* = [-32.98, 60.36]
b* = [-17.39, 61.53]

im
ag

e1
7 L* = [56.07, 60.27]

a* = [-1.697, 61.24]
b* = [-38.39, 42.2]

im
ag

e1
8 L* = [ 0, 100]

a* = [-46.81, 82.9]
b* = [-112.1, 88.87]

im
ag

e1
9 L* = [ 0, 100]

a* = [-55.68, 83.98]
b* = [-81.79, 90.77]

im
ag

e2
0 L* = [8.564, 81.58]

a* = [-26.9, 65.64]
b* = [-33.65, 40.39]

im
ag

e2
1 L* = [3.012, 100]

a* = [-55.65, 78.98]
b* = [-47.86, 64.1]

im
ag

e2
2 L* = [3.13, 100]

a* = [-23.04, 31.68]
b* = [-22.23, 37.5]

im
ag

e2
3 L* = [0.7857, 98.24]

a* = [-35.58, 63.81]
b* = [-34.31, 87.03]

im
ag

e2
4

L* = [ 0, 99.9]
a* = [-34.36, 34.24]
b* = [-50.49, 35.87]

Table 4: The set of input images. Images courtesy of e-cobo.com (1), A. Gooch (2, 7, 8, 17), R. E. Barber (3), K. Rasche (4, 13,

22), imagekingdom.com (5), L. Neumann (6, 9, 12), Kodak (11, 14), UT Austin (15), Sony (16), Fujifilm (19), artcyclopedia.com

(20), M. Čadík (21), and K. Odhner (24).
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id color image CIE Y Color2Gray Decolorize Smith08 Rasche05 Bala04 Neumann07
im

ag
e1

im
ag

e2
im

ag
e3

im
ag

e4
im

ag
e5

im
ag

e6
i7

im
ag

e8
im

ag
e9

im
ag

e1
0

im
ag

e1
1

im
ag

e1
2

im
ag

e1
3

im
ag

e1
4

Table 5: The results of the evaluated color-to-grayscale conversion methods. Please, refer to the accompanying webpage:

http://www.cgg.cvut.cz/˜cadikm/color_to_gray_evaluation for the complete set of the full-resolution images.
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Video Quality Assessment for Computer Graphics Applications

Tunç Ozan Aydın∗ Martin Čadı́k∗ Karol Myszkowski∗ Hans-Peter Seidel∗

MPI Informatik

Figure 1: The proposed metric predicts the perceived quality of natural as well as rendered video sequences with respect to a reference, even
if the input videos have different dynamic ranges. Our work enables new applications including objective evaluation of video tone mapping
and HDR compression.

Abstract

Numerous current Computer Graphics methods produce video se-
quences as their outcome. The merit of these methods is often
judged by assessing the quality of a set of results through lengthy
user studies. We present a full-reference video quality metric1

geared specifically towards the requirements of Computer Graphics
applications as a faster computational alternative to subjective eval-
uation. Our metric can compare a video pair with arbitrary dynamic
ranges, and comprises a human visual system model for a wide
range of luminance levels, that predicts distortion visibility through
models of luminance adaptation, spatiotemporal contrast sensitivity
and visual masking. We present applications of the proposed metric
to quality prediction of HDR video compression and temporal tone
mapping, comparison of different rendering approaches and qual-
ities, and assessing the impact of variable frame rate to perceived
quality.

CR Categories: I.3.0 [Computer Graphics]: General; I.3.3
[Picture/Image Generation]: Display Algorithms—Viewing Algo-
rithms

Keywords: video quality metrics, high dynamic range video, hu-
man visual perception, temporal artifacts, subjective video quality
assessment

∗e-mail: {tunc, mcadik, karol, hpseidel}@mpi-inf.mpg.de
1A web service that implements the metric described in this paper can

be freely accessed at http://drim.mpi-sb.mpg.de.

1 Introduction

The contributions of newly proposed Computer Graphics tech-
niques are usually demonstrated through images, and more often
through videos, in which the merit of the technique is apparent.
The performance of, for example a new rendering method, can be
assessed by comparing sequences rendered on one hand using the
proposed method, and on the other hand a more precise, but slower
reference method. The point of this comparison could be to show
that the proposed method produces results comparable to the ref-
erence method, but much more efficiently. A similar evaluation
process is also common in other subfields such as High Dynamic
Range (HDR) Imaging. Evaluation of tone mapping operators, as
well as compression methods for HDR video both involve a com-
parison of, respectively the tone mapped and compressed video,
with the HDR reference sequence. In fact, assessment of the fidelity
of a video sequence to a reference is a task common to numerous
Computer Graphics techniques.

Formal subjective methods of video quality evaluation such
as [ITU-T 1999], where a Mean Opinion Score is computed by ob-
taining responses from multiple test subjects are often too laborious
to be used on large sets of data. For the same reason the use of such
methods in a feedback loop during development is not feasible; in
fact most authors perform subjective evaluation only after the devel-
opment of their algorithm is completed. Video Quality Metrics pro-
vide an objective means of comparing video sequences much faster
than subjective methods by trading off accuracy of the prediction
due to simplified modeling of visual perception. Simple metrics
like PSNR, that rely solely on image pixel statistics fail to predict
significant human visual system (HVS) properties like visual mask-
ing and contrast sensitivity. More sophisticated metrics [Winkler
2005; Seshadrinathan and Bovik 2010] on the other hand are not
designed for HDR content. In the light of the recent trends towards
HDR Imaging, the absence of HDR capable HVS models severely
limits the use of these metrics in Computer Graphics context. Re-
cently however, several image quality assessment metrics have been
proposed, either designed specifically for HDR images [Mantiuk
et al. 2005], or that can compare image pairs with arbitrary dy-
namic range [Aydın et al. 2008]. However, simply using image
quality metrics to evaluate each frame of a video sequence fails
to reflect the temporal aspects of Human Visual System’s (HVS)

108



mechanisms, typically resulting in underestimating the visibility of
temporal artifacts such as flickering (Sections 4, 5).

A video quality metric specifically designed for Computer Graph-
ics applications by addressing the aforementioned issues, could be
used as a practical diagnostic tool and a quick alternative to sub-
jective evaluation. We propose a dynamic range independent video
quality metric that can compare a video pair of arbitrarily different
dynamic ranges. The metric comprises a temporal HVS model, that
accounts for major effects like luminance adaptation, contrast sen-
sitivity dependency to both spatial and temporal frequencies, and
similarly visual masking computed in spatiotemporal visual chan-
nels (Section 3). Due to the absence of a visual attention model,
the metric predictions are conservative in the sense that they cor-
respond to the perception of an observer who scrutinizes the en-
tire video sequence. The results in Section 4 show that our metric
predicts distortion visibility more accurately than previous video
quality metrics and state-of-the-art image quality assessment meth-
ods applied to each video frame separately. The predictions of the
proposed metric are also validated through a subjective study (Sec-
tion 5). We show that our metric enables new applications of evalu-
ating HDR video tone mapping and compression methods. We also
demonstrate the comparison of videos rendered with different meth-
ods and quality settings, and assessment of the impact of dropped
frames to perceived quality (Section 6).

2 Background

In this section we summarize previous work on objective video
quality assessment and the use of video quality measures in Com-
puter Graphics applications, and give some background on the tem-
poral HVS mechanisms related to our metric.

2.1 Video Quality Assessment

Video quality assessment metrics often draw ideas from the more
developed image quality assessment field. It has been quickly ob-
served that simple statistics like signal-to-noise ratio are not neces-
sarily correlated with human vision, which motivated HVS-based
image quality metrics. Commonly used image quality metrics fo-
cus on near-threshold detection [Daly 1993], supra-threshold dis-
crimination [Lubin 1995], or functional differences [Ferwerda and
Pellacini 2003]. The proposed video quality metric makes use of
a near-threshold human visual system model to comply with the
needs of computer graphics applications.

The focus of the early work on video metrics has been extending
image quality assessment metrics with temporal models of visual
perception, resulting from the fact that frame-by-frame application
of image quality metrics is not sufficient. Van den Branden Lam-
brecht’s Moving Picture Quality Metric (MPQM) [1996] utilizes
a spatial decomposition in frequency domain using a filter bank
of oriented Gabor filters, each with one octave bandwidth. Addi-
tionally two temporal channels, one low-pass (sustained) and an-
other band-pass (transient) are computed to model visual masking.
The output of their metric is a numerical quality index between
1 − 5, similar to the Mean Opinion Score obtained through sub-
jective studies. In a more efficient version of MPQM, the Gabor
filter bank is replaced by the Steerable Pyramid [Lindh and van den
Branden Lambrecht 1996]. In later work targeted specifically to
assess the quality of MPEG-2 compressed videos [van den Bran-
den Lambrecht et al. 1999], they address the space-time nonsepa-
rability of contrast sensitivity through the use of a spatiotemporal
model. Another metric based on Steerable Pyramid decomposition
aimed towards low bit-rate videos with severe artifacts is proposed
by Masry and Hemani [2004], where they use finite impulse re-
sponse filters for temporal decomposition.

Similarly, Watson et al. [2001] published an efficient Digital Video
Quality metric (DVQ) based on the Discrete Cosine Transform. The
DVQmodels early HVS processing including temporal filtering and
simple dynamics of light adaptation and contrast masking. Later
they propose a relatively simple Standard Spatial Observer (SSO)
based method [Watson and Malo 2002], which, on the Video Qual-
ity Experts Group data set, is shown to make as accurate predic-
tions as more complex metrics. Winkler [1999; 2005] proposed a
perceptual distortion metric (PDM) where he introduced a custom
multiscale isotropic local contrast measure, that is later normalized
by a contrast gain function that accounts for spatiotemporal contrast
sensitivity and visual masking.

Seshadrinathan and Bovik [2007] proposed an extension to the
Complex Wavelet Structural Similarity Index (CW-SSIM [Wang
and Simoncelli 2005; Sampat et al. 2009]) for images to account for
motion in video sequences. The technique (called V-SSIM) incor-
porates motion modeling using optical flow and relies on a decom-
position through 3D Gabor filter banks in frequency domain. V-
SSIM is therefore able to account for motion artifacts due to quan-
tization of motion vectors and motion compensation mismatches.
Recently, the authors published the MOVIE index in a follow-up
work [Seshadrinathan and Bovik 2010], which outputs two sep-
arate video quality streams for every 16th frame of the assessed
video: spatial (closely related to the structure term of SSIM) and
temporal (assessment of the motion quality based on optical flow
fields). In Section 4 we compare our work with the MOVIE in-
dex and Winkler’s PDM, along with a frame-by-frame evaluation
by image quality metrics HDRVDP [Mantiuk et al. 2005] and the
dynamic range independent metric [Aydın et al. 2008] (henceforth
referred as DRIVDP).

2.2 Applications in Computer Graphics

The image quality evaluation with the use of HVS models has been
an important topic in realistic image synthesis, particularly for static
images [Rushmeier et al. 1995; Bolin and Meyer 1998]. More re-
cently spatiotemporal models of visual perception have been con-
sidered for reducing the rendering time of animation sequences
by exploiting limitations of the HVS. Myszkowski et al. [2000]
proposed the use of an Animation Quality Metric (AQM), which
utilizes image flow between a pair of subsequent frames to de-
rive the retinal velocity, which is an input parameter for the spa-
tiovelocity contrast sensitivity function (SVCSF) [Daly 1998]. Yee
et al. [2001] further extended this work by using a computa-
tional model of visual attention to predict which image regions
are more likely to be consciously attended by the observer, result-
ing in even more precise retinal velocity estimation. Both those
techniques lack explicit processing of intensities between subse-
quent images, which makes detection of temporal artifacts such
as flickering impossible. Such temporal information has been im-
plicitly accumulated by averaging photon density across frame se-
quences and then applying the AQM metric to the resulting anima-
tion frames [Myszkowski et al. 2001]. However, in this case only
temporal noise due to the photon density can be estimated, while
other temporal artifacts such as flickering of improperly sampled
textures or edge aliasing cannot be detected.

Schwarz and Stamminger [2009] propose a quality metric, which is
targeted specifically for detection of popping artifacts due to level-
of-detail (LOD) changes between frames. They assume the knowl-
edge of the point in time when the LOD is changed and compare
whether for that frame the differences for current and previous LOD
(the latter image must be specifically re-rendered) are visible taking
into account the SVCSF [Daly 1998]. Since temporal processing
over frames is ignored, the influence of the dynamically changing
scene and camera on the LOD change cannot be modeled prop-
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Figure 2: The computational steps of our metric. Refer to text for details.

erly. Clearly, an explicit 3D space-time contrast sensitivity function
(CSF) processing over a number of subsequent frames is required to
account for all possible temporal artifacts in a general setup, which
is one of the main goals of our work.

2.3 Temporal Aspects of Human Visual System

Temporal Visual Channels
A significant area of interest of vision research is the Lateral Genic-
ulate Nucleus (LGN), which is a portion of the brain inside the tha-
lamus. It is estimated that 90% of monkey retinal ganglion cells
send their axons to LGN layers, thus LGN is known as the primary
processing center of visual information. In general, retinal ganglion
cells can be divided intomidget (smaller, majority of ganglion cells,
sensitive to detail) and parasol (larger, faster output signals, sensi-
tive to movement, only ∼10%) cells. LGN, in turn contains par-
vocellular (small cell bodies) and magnocellular (large cell bodies)
layers. The axons of midget retinal ganglion cells terminate in the
parvocellular layers, while the parasol cells terminate in magnocel-
lular layers [Wandell 1995, p.124]. This structure suggests the exis-
tence of separate parvocellular and magnocellular visual streams.

Experiments have shown that the destruction of the cells in the par-
vocellular layers of a monkey’s LGN resulted in deteriorated per-
formance for a variety of tasks such as pattern detection and color
discrimination. Destroying the cells in the magnocellular layers,
however, did not affect the performance in the same tasks, but it was
observed that the animal became less sensitive to rapidly flickering
targets [Wandell 1995, p.126]. This leads to the conclusion that
the magnocellular pathway is specialized to process high tempo-
ral frequency information [Watson 1986]. Meanwhile, some work
has been done to find models that fit psychophysical measurements
of the temporal sensitivity of human subjects. While models with
many narrow band mechanisms, as well as three channels have been
proposed in the past, it is now believed that there is just one low-
pass, and one band-pass mechanism [Winkler 2005]. This theory
is consistent with the biological structure of the LGN, moreover
Friedericksen and Hess [1998] obtained a very good fit to large
psychophysical data using only a transient and a sustatined mech-
anism.

Practical Implications
Although the parvo– and magnocellular pathways carry different
types of information to the brain, the receptive fields of neurons
in the parvocellular pathway are not space-time separable [Wan-
dell 1995, p.143]. No clear anatomical separation between spatial
and temporal frequencies supports the psychophysical finding that
the contrast sensitivity is not separable along time and spatial di-
mensions. That leads to the space-time nonseparability of the
Contrast Sensitivity Function. Thus, spatial CSFs measured for
static stimuli cannot be extended linearly to account for the effect
of temporal frequency to sensitivity. Another direct consequence

of separate pathways for high and low temporal frequency contrast
is the spatiotemporal locality of inter-channel visual masking.
This suggests the use of 3D filter banks that span both spatial and
temporal dimensions. Faithful modeling of temporal aspects of the
HVS is vital in Computer Graphics applications, where flickering
is an important source of visual artifacts. In Section 3 we describe
how the proposed metric addresses these issues.

3 Video Quality Assessment

The recent proliferation of High Dynamic Range Imaging dictates
that the HVS model employed in a video quality metric for Com-
puter Graphics applications should be designed for all visible lumi-
nance levels. This requirement limits the use of earlier video qual-
ity metrics designed towards detecting compression artifacts in low
dynamic range (LDR) videos. Moreover, applications such as tone
mapping and compression of HDR video sequences require detect-
ing structural distortions where the reference video is HDR and the
test video is LDR. Consequently, in this work we use an HDR capa-
ble model that accounts for both major spatial and temporal aspects
of the visual system, and employ the dynamic range independent
distortion measures contrast loss and amplification introduced in
DRIVDP in addition to simply computing the visible differences
between reference and test videos. The HDR capability is a result
of the light adaptation computation through the JND space transfor-
mation and the 3D contrast sensitivity function, both explained in
more detail later in this section. In Computer Graphics applications
the main concern is often the existence of visible artifacts, rather
than the magnitude of visibility, since methods that produce clearly
visible artifacts are often not useful in practice. Consequently the
HVS model we use trades off supra-threshold precision for accu-
racy near the detection threshold.

The computational steps of our metric are summarized in Figure 2.
The input is a pair of videos Vref and Vtst with arbitrary dynamic
ranges, both of which should contain calibrated luminance values.
The luma values of LDR videos should be inverse gamma corrected
and converted to display luminance (In all examples we assumed
a display device with the luminance range 0.1 − 100 cd/m2 and
gamma 2.2). The HVS model is then applied separately to both
videos to obtain the normalized multichannel local contrast at each
visual channel, where the first step is to model the nonlinear re-
sponse of the photoreceptors to luminance, namely Light adapta-
tion. In our metric we apply the nonlinearity described in [Mantiuk
et al. 2005], which maps the video luminance to linear Just Notice-
able Differences (JND) values, such that the addition or subtraction
of the unit value results in a just perceivable change of relative con-
trast2.

2All externally referred derivations and formulas in the rest of the paper

are recollected in supplementary material for easy reference.
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Figure 3: Computation of the CSF 3D . The static CSFS(ρ, La) (a) is divided to CSFS(ρ, La = 100cd/m2) to obtain scaling coefficients
(b) that account for luminance adaptation in CSF 3D . The specific adaptation level is chosen to reflect the conditions where the spatiotem-
poral CSFT was measured (c). The scaling coefficients are computed for the current La (3 cd/m2 in this case), and multiplied with the

normalized CSFT to obtain the CSF 3D that accounts for spatial and temporal frequencies, as well luminance adaptation (d).

Contrast sensitivity is a function of spatial frequency ρ and tempo-
ral frequency ω of a contrast patch, as well as the current adaptation
luminance of the observer La. The spatiotemporal CSFT plotted
in Figure 3c shows the human contrast sensitivity for variations of
ρ and ω at a fixed adaptation luminance. At a retinal velocity v
of 0.15 deg/sec, the CSFT is close to the static CSFS [Daly
1993] (Figure 3a) at the same adaptation level (the relation be-
tween spatio-temporal frequency and retinal velocity is ω = vρ
assuming the retina is stable). This particular retinal velocity cor-
responds to the lower limit of natural drift movements of the eye
which are present even if the eye is intentionally fixating in a sin-
gle position [Daly 1998]. In the absence of eye tracking data we
assume that the observer’s gaze is fixed, but also the drift move-
ment is present. Accordingly, a minimum retinal velocity is set as
follows:

CSFT (ρ, ω) = CSFT (ρ, max(v, 0.15) · ρ). (1)

In addition to the drift movement, one could consider integrating
a visual attention model-based smooth pursuit eye motion (SPEM)
estimate [Yee et al. 2001] (which may not always be precise), or
actual eye tracking data to our metric, at the cost of introducing
user input and thus loosing objectivity of the approach.

On the other hand, the shape of the CSF depends strongly on adap-
tation luminance especially for scotopic and mesopic vision, and
remains approximately constant over 1000 cd/m2. Consequently,
using a spatiotemporal CSF at a fixed adaptation luminance results
in erroneous predictions of sensitivity at the lower luminance lev-
els that can be encoded in HDR images. Thus, we derive a “3D”
CSF (Figure 3d) by first computing a Luminance Modulation Fac-
tor (Figure 3b) as the ratio ofCSFS at the observer’s current adap-
tation luminance (La) with the CSFS at La = 100 cd/m2, which

is the adaptation level at which the CSFT is calibrated to the spa-
tiotemporal sensitivity of the HVS. This factor is then multiplied
with the normalized spatiotemporal CSF (nCSFT ), and finally the
resulting CSF 3D accounts for ρ, ω and La:

CSF 3D(ρ, ω, La) =
CSFS(ρ, La)

CSFS(ρ, 100)
nCSFT (ρ, ω). (2)

Ideally the CSF 3D should be derived from psychophysical mea-
surements in all three dimensions, since current findings suggest
that the actual contrast sensitivity of the HVS is linearly separa-
ble in neither of its dimensions. In the absence of such measure-
ments, we found that estimating luminance adaptation using a scal-

ing factor is better than the alternatives that involve an approxi-
mation by linear separation of spatial and temporal frequencies (as
discussed earlier in Section 2.3). The effect of luminance adap-
tation to spatiotemporal contrast sensitivity can approximately be
modeled by a multiplier (Figure 3b) except for very low temporal
frequencies [Wandell 1995, p.233].

The perceptually scaled luminance contrast is then decomposed
into visual channels, each sensitive to different temporal and spatial
frequencies and orientations. For this purpose we extend the Cor-
tex Transform [Watson 1987] that comprises 6 spatial frequency
channels each further divided into 6 orientations (except the base
band), by adding a sustained (low temporal frequency) and a tran-
sient (high temporal frequency) channel in the temporal dimension
(total 62 channels). The time (t given in seconds) dependent im-
pulse responses of the sustained and transient channels, plotted in
Figure 4-left, are given as Equation 3 and its second derivative, re-
spectively [Winkler 2005]:

f(t) = e−
ln(t/0.160)

0.2 . (3)

The corresponding frequency domain filters are computed by ap-
plying the Fourier transform to both impulse responses and are
shown in Figure 4-right.
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Figure 4: Impulse (left) and frequency (right) responses of the tran-
sient (red) and sustained (blue) temporal channels. The frequency
responses comprise the extended 3D Cortex Transform’s channels
in temporal dimension.

Combining all models discussed so far, the computation of visual
channels from the calibrated input video V is performed as follows:

Ck,l,m = F
−1

n

Vcsf cortexk,l × temporalm
o

and

Vcsf = F{jnd(V )} CSF 3D,

where the 3D Cortex Filter for channelCk,l,m is computed from the
corresponding 2D cortex filter cortexk,l at spatial frequency level
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k and orientation l, and the sustained and transient channel filters
temporalm. The function jnd denotes the light adaptation non-
linearity, and F is the Fourier Transform. The threshold elevation
due to visual masking is computed using the following nonlinear-
ity [Daly 1993]:

Tek,l,m =

"

1 +

„

0.0153
“

392.498|Ck,l,m
pu |

”slope
«4

#

1
4

, (4)

where Ck,l,m
pu indicates the channel with phase uncertainty and the

slope is linearly interpolated between 0.7 − 1 for visual channels
from low to high spatial frequencies.

45°

Σ

Figure 5: Practical illustration of achieving phase uncertainty in
2D. The Hilbert transform should be applied in multiple orienta-
tions to obtain a phase independent signal.

The dependency of the visual channels to signal phase contradicts
with the observation that the phase sensitivity of the HVS is very
limited. Phase uncertainty, while often not explicitly mentioned, is
a crucial component of many quality assessment metrics. If one
uses a decomposition consisting of spatially even filters, the fil-
ter responses would contain zero crossings at step edge locations.
This contradicts with human perception which exhibits a strong re-
sponse to step edges. Analogously, in the temporal dimension sud-
den changes in pixel intensity are perceived strongly. The effect
of phase uncertainty on complex stimuli is often a reduced amount
of detected distortions, due to the increased visual masking in step
edge locations. A common way of removing phase dependency of
a 1D signal is to use a quadrature pair of filters where one filter is
obtained by shifting the other’s phase by 90 degrees. Although the
phase shift can be computed in 1D by means of Hilbert transform,
the extension of the Hilbert transform to higher dimensions is not
trivial (Figure 5). Our implementation of phase uncertainty is an
extension of the quadrature cortex filters [Lukin 2009] to the tem-
poral domain. The spatial phase-shift is computed using an oriented
2D Hilbert Transform:

hS(ρx, ρy) = i sgn(p ρx + q ρy), (5)

where i is the imaginary unit, and the line given by the equation
p ρx + q ρy = 0 specifies the “direction” of the transform. Pa-
rameters p and q are selected such that the direction of the Hilbert
Transform coincides with the spatial orientation of the cortex chan-
nel. In the temporal dimension the phase shift can be achieved using
a 1D Hilbert Transform:

hT (ω) = i sgn(ω). (6)

The quadrature responses of spatiotemporal visual channels are
then computed as follows:

HS|T {Ck,l,m} = F
−1{hS|T

F{Ck,l,m}}. (7)

The phase independent channel Ck,l,m
pu used in the threshold eleva-

tion formula is computed by summing up the original signal with
all phase shifted responses in spatial and temporal dimensions as
illustrated in Figure 6.

Spatio-temporal 

Channel C
HS{C}

HT{C} HT{HS{C}}

Resulting

phase-independent 

channel 

Spatial phase shift

Σ

Figure 6: 3D phase uncertainty on a frequency plate image modu-
lated in temporal domain using a sinusoid function. The spatiotem-
poral channel C obtained by 3D Cortex Transform is used to com-
pute HS{C}, HT {C} and HT {HS{C}}, the phase shifted re-
sponse in spatial, temporal and both dimensions, respectively. The
combination of all four responses yields a spatiotemporaly phase
independent response constant along the entire sequence.

The detection probability of the normalized contrast response C at
each visual channel is computed using the following psychometric
function, separately for the reference and test images:

P (C) = 1− exp(−|C|3). (8)

The psychometric function relates the normalized contrast to de-
tection probability. Using this function, we compute the detection
probabilities of the following three types of distortions:

• Visible Difference

„

P k,l,m
∆

= P (
C

k,l,m
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−
C

k,l,m
ref
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ref

)

«

• Contrast Loss
“

P k,l,m

ց = P (Ck,l,m

ref )(1− P (Ck,l,m
tst )

”

• Contrast Amplification
“

P k,l,m

ր = P (Ck,l,m
tst )(1− P (Ck,l,m

ref )
”

The visible differences between video sequences convey more in-
formation than the other two types of distortions, but especially if
the input video pair has different dynamic ranges, the probability
map is quickly saturated by the contrast difference that is not neces-
sarily perceived as a distortion. In this case contrast loss and ampli-
fication are useful which predict the probability of a detail visible in
the reference becoming invisible in the test video, and vice versa.
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While additionally contrast reversal proposed in DRIVDP can be
easily computed within this framework, we found that this type of
distortion did not convey further information in the examples we
considered, and thus excluded from the metric output. Detection
probabilities of each type of distortions are then combined using a
standard probability summation function:

P̂∆|ց|ր = 1−
K

Y

k=1

L
Y

l=1

M
Y

m=1

“

1− P k,l,m

∆|ց|ր

”

. (9)

The resulting three distortion maps P̂ are visualized separately us-
ing an in-context distortion map approach where detection proba-
bilities are shown in color over a low contrast grayscale version of
the test video. We also found that an overall summary of the distor-
tion information conveyed through a 3D visualization is useful in
certain applications (Section 6.4).

4 Results

Figure 7: Predicted visible differences between selected stimuli
from the Modelfest data set and the background luminance, where
the stimuli is scaled at 1

4
, 1

2
, 1, 2 and 4 times the threshold contrast

(The same color coding is used throughout the paper for visualizing
distortion detection probabilities, unless noted otherwise).

In this section we compare the predictions of our metric with the
outcomes of the recent video quality metrics PDM [Winkler 2005]
and the MOVIE index [Seshadrinathan and Bovik 2010]. Although
not intended for videos, we also considered two recent HDR ca-
pable image quality metrics HDRVDP [Mantiuk et al. 2005] and
DRIVDP [Aydın et al. 2008], with which we evaluated each video
frame separately. To ensure that our metric is calibrated to psy-
chophysically measured detection thresholds, we computed the vis-
ible differences of the Modelfest data set at five different contrast
levels with the background luminance. The video for a stimulus
is generated by repeating it in all frames. As expected, the major-
ity of the stimuli produced no response below the threshold, and
a response with increasing magnitude for near– and above thresh-
old. Figure 7 shows the outcome for selected stimuli relevant to
our applications: a low and a high frequency noise, and a com-
plex image. The worst results were obtained for “GaborPatch9”
and “Gaussian26” for which our metric was too insensitive3.

The test video for this section is generated using an HDR image, to
which we added spatiotemporal random noise filtered with a Gaus-
sian to roughly mimic the artifacts that appear in rendered videos
in the absence of temporal coherency. The magnitude of the noise

3Refer to supplementary material for responses to all Modelfest stimuli.

Figure 8: Approximate perception of the reference and test scenes

has been modulated with the luminance levels of the relatively dark
image that depicts a sunset. The reference video is generated sim-
ilarly by repeating the same HDR image in all frames. The frames
in Figure 8, tone mapped using Pattanaik’s operator [2000], depict
the approximate appearance of the scene.

Figure 9: Metric comparison for LDR test and reference videos

First, we compare the distortion visibility prediction of our metric
with PDM and MOVIE index on this tone mapped LDR image pair.
Due to the random nature of the distortion, the frames of the dis-
tortion maps in this section are very similar, and thus we arbitrarily
choose a single representative frame4. In this case the outcome of
our metric and the PDM are similar (Figure 9).

Figure 10: MOVIE index for LDR videos. Note the different color
coding

The output of the MOVIE index on the other hand are a series of
spatial and a temporal distortion maps that are computed at every
16th frame. In Figure 10 we show the spatial distortion map at
the 3rd scale along with the temporal distortion map. While the
output format of the MOVIE index is not directly comparable with
other metrics discussed in this section, one can see that the spatial
map of structural distortions (Figure 10-left) closely correlates to
the distortions in the video sequence. However, due to the lack of a
mechanism to estimate threshold contrast, distortions are detected
even at the darker bottom half of the video.

Next, we test the metrics on the HDR test and reference videos.
Note that the HDR format is capable of encoding the actual scene
luminance unlike display-referred LDR videos in the previous case.
The MOVIE index is excluded from the remaining comparisons

4All original video sequences and corresponding distortion maps are pre-

sented in the supplementary video.
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Figure 11: Metric comparison for HDR test and reference videos.
The contrast amplification in DRIVDP is color coded with blue.

since its extention to HDR is not trivial. The difference in predic-
tions of our metric and PDM in this case is because the latter does
not model luminance adaptation. Consequently distortion visibil-
ity is underestimated due to artificially high thresholds in this low
luminance scene (Figure 11). The visible difference and contrast
amplification predicted by frame-by-frame evaluation of HDRVDP
and DRIVDP are also noticeably lower than ours due to the ab-
sence of a temporal model that accounts for the higher sensitivity
to flickering distortions compared to static distortions.

Figure 12: Metric comparison for HDR reference and LDR test
videos

An even more striking difference can be observed in the final setup
where the distorted video tone mapped with Pattanaik’s operator is
compared with the reference HDR video (Figure 12). Here, both
PDM and and HDRVDP’s distortion maps are dominated by the
contrast difference due to the different dynamic ranges of the in-
put video pair. This is especially evident in HDRVDP’s prediction
where the spatiotemporal distortion appears to be completely ig-
nored. Moreover, DRIVDP predicts no visible detail amplification
at all, since it does not detect the distortion and is also not affected
by the different dynamic ranges of the input videos. The contrast
amplification predicted by our metric on the other hand correctly
identifies distortions where they are visible, and similar to DRIVDP
also ignores the changes due to dynamic range difference. Note also
that the predictions of our metric in all three scenarios are fairly
consistent.

5 Validation

We performed a subjective study to validate the prediction perfor-
mance of the metric5. The metric’s capability of working on video
pairs with different dynamic ranges, as well as the outcome in the
form of distortion maps containing spatial information, demanded
the creation of a new data set, since current public video quality
databases are limited to LDR videos, and the measured subjective
data is a single number indicating overall quality without any infor-
mation on spatial distribution of visible distortions. To that end, a
test set of 9 reference-test video pairs (1 LDR-LDR, 2 HDR-LDR,
and 6 HDR-HDR) were generated by adding temporally and spa-
tially varying artifacts (such as random noise, compression, tone
mapping and luminance modulation) to 6 different HDR scenes. A
BrightSide DR37-P HDR display was employed to properly dis-
play the scene luminance of both HDR and LDR videos. The par-
ticipants of the study were 16 subjects between ages 23 and 50, all
with near perfect or corrected vision. They were shown all video
pairs side by side on the HDR display, and were asked to mark
the visible differences (detail loss and amplification for HDR-LDR
stimuli) on a 16 × 16 grid displayed over the video using a graphi-
cal user interface (Figure 13).

Figure 13: The graphical user interface displays the test video
(left) side-by-side with the corresponding reference video. The sub-
jects mark regions where they notice visible differences on a 16 ×
16 grid (right). Both video frames are tone mapped, and the distor-
tions in the left frame are exaggarated for illustration purposes.

The marked regions for each trial were stored as distortion maps,
which were then averaged over all subjects to find the mean sub-
jective response. Next, the metric prediction for the corresponding
stimulus was computed, averaged over all frames, and downsam-
pled to the same resolution as the mean subjective response. For
each video pair, we computed the 2D correlation between the mean
subjective response and the metric prediction. The correlations var-
ied from 0.733 to 0.883, averaging to 0.809. The high correlation
between the metric predictions and subjective responses over a di-
verse test set including HDR and LDR stimuli with distortions of
various type and magnitude indicate that the proposed metric pro-
vides a reliable estimate of the video quality as a function of spatial
location. For comparison, we also evaluated the test set with PDM,
HDRVDP and DRIVDP (Figure 14). For almost all stimuli our
metric’s predictions were more accurate with respect to the subjec-
tive data, and the average correlations over all stimuli were found
as 0.257 for PDM, 0.528 for HDRVDP, and 0.563 for DRIVDP.

5Refer to the supplementary material for a detailed discussion of the

experiment.
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Figure 14: The comparison of the subjective data averaged over
participants with the predictions of our metric, PDM, HDRVDP
and DRIVDP for stimulus #2 and #4 in our test set (refer to the
supplementary material for the complete set of results).

6 Applications

The proposed method for objective quality assessment of a test
video with respect to a reference without any constraints on the dy-
namic range provides a faster alternative to subjective evaluation of
rendering methods, and also enables a computational comparison
of HDR video compression and tone mapping techniques. We also
show that our metric gives insight on the effect of dropped frames
to overall quality.

6.1 HDR Video Compression

While HDR content is becoming more commonplace, since it offers
higher fidelity compared to traditional media, it does so at the cost
of significantly increased file sizes. This is often not a problem for
images due to cheaply available storage. However, working with
long, high resolution videos quickly becomes prohibitively expen-
sive. Incidentally HDR video compression has become an active
topic of research. Figure 15 shows that our metric can be used to
detect compression artifacts in a video sequence compressed [Man-
tiuk et al. 2004] at various quality settings.

Figure 15: Visible differences between frames from the HDR video
and the corresponding compressed frames shown in three compres-
sion settings (Low – q=1, Medium – q=5, Very High – q=31). The
banding artifacts become clearly visible under extreme compres-
sion. Near the foliage at the bottom, banding artifacts are present
but not visible due to the low luminance

6.2 Temporal Tone Mapping

HDR display technology is still early in its development, thus it is
often necessary to reduce the dynamic range of the HDR content
such that it can be viewed on current display hardware. While the
goal of tone mapping is considered to be subjective, the fidelity of
the tone mapped video to the reference HDR is often a good indica-
tor of quality. In Figure 16 we show the results from selected frames

of a tone mapped HDR sequence computed with global [Drago
et al. 2003] and gradient based [Fattal et al. 2002] tone mapping
methods.

Figure 16: Selected frames from the tone mapped HDR sequences
and corresponding contrast amplification and loss maps. Each
frame of the reference HDR video is tone mapped separately. Fat-
tal’s gradient based operator enhances perceived contrast notably,
thus leading to highly detectable contrast amplification but little
contrast loss. Drago’s global operator on the other hand produces
a more “flat” image by amplifying contrast near the dark foliage in
the foreground and clipping brighter details near the horizon line.

Another interesting practical problem involves both temporal tone
mapping and compression. Consider a scenario where visual con-
tent is stored in a centralized media server in compressed HDR for-
mat. One may require to perform on-the-fly tone mapping to reduce
the video’s dynamic range to be suitable for the client machine’s
display device, which may range from an high-end LCD panel to
a limited CRT monitor. An obvious consideration in this case is
to make sure that tone mapping does not amplify previously invis-
ible compression artifacts. In Figure 17 we show such an example
where tone mapping adversely affects perceived quality of the com-
pressed HDR video, which is correctly detected by our metric.

Figure 17: Contrast amplification and loss predicted with respect
to the reference HDR sequence for the compressed (at medium
quality) and then tone mapped sequence using Drago’s operator.
Note the slightly increased contrast amplification and loss in the
tone mapped version of the compressed HDR video. As shown in
Figure 15, the artifacts generated in medium compression setting
for this scene are mostly not detectable in the HDR video, but they
become visible due to tone mapping applied later.
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6.3 Rendering

Our metric can be used to compare different rendering approaches.
Figure 18 shows the visible differences of a dynamic scene walk-
through rendered with indirect lighting using reflective shadow
maps [Dachsbacher and Stamminger 2005] with 1000 virtual point
light (VPL) sources, with respect to the reference sequence ob-
tained with the same amount of VPLs, however using a recent tech-
nique [Herzog et al. 2010] that utilizes spatio-temporal filtering.
Due to this filtering, there are virtually no visible artifacts in the
reference sequence, while the test technique produces visible flick-
ering during the entire sequence.

Figure 18: Visible differences between rendering techniques. Even
though the rendered frames are visually indistinguishable when
viewed side-by-side, the test method produces significantly visible
flickering artifacts, which is not the case for the reference method
with temporal coherency filtering. Our metric also detects the non-
uniform perception of these flickering artifacts, such as the percep-
tion of the artifacts on the ground masked by the moving checker-
board pattern (better visible in the supplementary video).

To complement the previous scene with mostly temporal distor-
tions, we show another example with artifacts of spatiotemporal
nature (Figure 19). Here, the squences are rendered using an
image-space horizon based ambient occlusion technique [Bavoil
et al. 2008] augmented with the screen space directional occlu-
sion (SSDO) [Ritschel et al. 2009] (48 × 32 and 12 × 10 polar
samples on the hemisphere for the reference and test sequences,
respectively) with directional light source sampled from an envi-
ronment map (128 and 96 samples, respectively) and percentage
closer filtering (PCF) shadow maps [Reeves et al. 1987] (64 and
16 samples, respectively). Visible differences are predicted mostly
near the boundaries of the elephant’s shadow.

6.4 Variable Frame Rate

Maintaining a high enough frame rate is desirable in applications
like rendering and video streaming, but at the same time is not al-
ways possible due to hardware or bandwidth limitations. In this
case, the visible differences between the low FPS video and the full
FPS reference is a good measure for the loss in perceived quality
due to low frame rate. Figure 20 shows that our metric can be used
to predict the perceived distortions caused by dropped frames in
a rendered walkthrough scene. The reference sequence was gen-
erated by Coherent Hierarchical Culling technique [Bittner et al.
2004] which never falls below 60 FPS for this scene. On the other
hand, the performance of the traditional view frustum culling drops
below 1 FPS at times. We also show an alternative 3D visualization

Figure 19: Visible differences (bottom row) between the high (top
row) and low quality (middle row) renderings are focused mostly
near shadow boundaries.

of this scene utilizing volume rendering that gives an overview of
the distortion data (Figure 21). Note that the perception of frame
freezes and drops has further aspects (e.g. judder) that are not ac-
counted for by our method.

7 Discussion

The running time of the proposed metric depends highly on the
resolution and length of the input videos, however in its current
state is intended to work offline (∼ 5 minutes for 512 × 512 × 64
sequence). In our experience, the main bottleneck in performance is
computing the 3D Fourier Transform of an 64 frames portion of the
video, where that specific number is chosen because the sensitivity
to temporal frequencies higher than 32 cy/sec is significantly low.
This approach also requires that the portions of the video being
processed should be kept in memory.

While our implementation runs in a standard workstation hardware
without problems, another approach that trades off efficiency for
prediction accuracy is to approximate the frequency domain Cortex
Transform with the Steerable Pyramid decomposition performed in
the spatial domain through polynomial approximations of the sec-
ond derivative Gaussian filters [Freeman and Adelson 1991]. The
filters that compute transient and sustained temporal channels can
also be approximated by 9-tap filters corresponding to the impulse
responses given in Figure 4 as described in Winkler’s book [2005].
As a result, the memory requirement can be reduced by a factor
of nearly 7, and the overall computation can be accelerated by ef-
ficiently computing convolution operations in graphics hardware.
The downside is the metric’s reduced prediction performance since
second derivative Gaussian filters are not perceptually justified and
our pilot implementation also indicated difficulties in calibration.

A limitation of our metric is the lack of a mechanism to model vi-
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Figure 20: The effect of dropped frames to perceived quality. One
should note, however, that our method does not compensate for
camera movements and assumes frames are perfectly aligned with
each other.

Figure 21: An alternative 3D visualization. The left slice shows a
volume rendering of the entire visible differences data. The right
slice shows only the differences with detection probability above
75% where the locations of the missing frames along the time axis
are better visible.

sual attention. In the absence of either a computational model, or
eye tracking data to predict the observer’s gaze direction, our met-
ric’s predictions are conservative in the sense that the possibility of
the observer focusing her attention to some other region than where
the sought artifact appears is not considered. Another limitation
of our metric is the requirement of a reference video for quality
evaluation, which may not be available in some applications. No
reference metrics, however, have limited utility since they are often
geared toward detecting a single type of distortion, and are gener-
ally not as accurate as full reference metrics.

8 Conclusion

We presented a video quality metric specifically designed for Com-
puter Graphics applications. Our method comprises an HVS model
built with spatiotemporal components that are designed for HDR
luminance levels. The capability of comparing video pairs with dif-
ferent dynamic ranges enables applications such as objective eval-
uation of HDR video compression and tone mapping, as well as

comparison of different rendering methods and predicting the ef-
fect of dropped frames to perceived quality.

The validation of video quality metrics is often performed by com-
paring the metric responses to standard image quality databases. In
the absence of such a collection of video pairs and corresponding
spatial distortion maps comprising stimuli with different dynamic
ranges and multitude of artifact types relevant to Computer Graph-
ics, we created a modest data set for validation purposes. A future
direction is to extend our initial effort to a standardized data set.
Another possible extention to our work is the inclusion of color
channels utilizing a color appearance model designed for HDR lu-
minance levels. Temporal inverse tone mapping evaluation is a nat-
ural application area of our metric, but it was not included in this
work since from the metric’s point of view, the difference between
forward and inverse tone mapping is merely swapping reference
(HDR) and test (LDR) videos. Nevertheless, the metric’s detection
performance of application specific banding artifacts deserves fur-
ther investigation.

Acknowledgements

Thanks to Robert Herzog for generating the rendered sequences, to
Oliver Mattausch for view frustum culling sequences, and to Rafal
Mantiuk for providing us with his HDR compression codes and
helping us running it. Thanks to Jens Kerber for his help with vol-
umetric visualizations, and to Makoto Okabe for editing and Glenn
Lawyer for dubbing the supplemental video. Thanks to all the stuff
members and students at MPI Informatik who participated in our
experiments. Pisa HDR image and RNL HDR video courtesy of
Paul Debevec.

References

AYDIN, T. O., MANTIUK, R., MYSZKOWSKI, K., AND SEIDEL,
H.-P. 2008. Dynamic range independent image quality assess-
ment. In Proc. of ACM SIGGRAPH, vol. 27(3). Article 69.

BAVOIL, L., SAINZ, M., AND DIMITROV, R. 2008. Image-space
horizon-based ambient occlusion. In SIGGRAPH ’08: ACM
SIGGRAPH 2008 talks, ACM, New York, NY, USA, 1–1.

BITTNER, J., WIMMER, M., PIRINGER, H., AND PURGATH-
OFER, W. 2004. Coherent hierarchical culling: Hardware oc-
clusion queries made useful. Computer Graphics Forum 23, 3
(Sept.), 615–624. Proceedings EUROGRAPHICS 2004.

BOLIN, M., AND MEYER, G. 1998. A perceptually based adaptive
sampling algorithm. In Proc. of Siggraph’98, 299–310.

DACHSBACHER, C., AND STAMMINGER, M. 2005. Reflective
shadow maps. In I3D ’05: Proceedings of the 2005 symposium
on Interactive 3D graphics and games, ACM, New York, NY,
USA, 203–231.

DALY, S. 1993. The Visible Differences Predictor: An algorithm
for the assessment of image fidelity. In Digital Images and Hu-
man Vision, MIT Press, A. B. Watson, Ed., 179–206.

DALY, S. J. 1998. Engineering observations from spatiovelocity
and spatiotemporal visual models. SPIE, B. E. Rogowitz and
T. N. Pappas, Eds., vol. 3299, 180–191.

DRAGO, F., MYSZKOWSKI, K., ANNEN, T., AND N.CHIBA.
2003. Adaptive logarithmic mapping for displaying high con-
trast scenes. Computer Graphics Forum 22, 3.

FATTAL, R., LISCHINSKI, D., AND WERMAN, M. 2002. Gra-
dient domain high dynamic range compression. In SIGGRAPH

117



’02: Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, ACM Press, 249–256.

FERWERDA, J., AND PELLACINI, F. 2003. Functional difference
predictors (fdps): measuring meaningful image differences. In
Signals, Systems and Computers, 2003. Conference Record of
the Thirty-Seventh Asilomar Conference on, vol. 2, 1388 – 1392
Vol.2.

FREDERICKSEN, R. E., H. R. F. 1998. Estimating multiple tem-
poral mechanisms in human vision. In Vision Research, vol. 38,
1023–1040.

FREEMAN, W. T., AND ADELSON, E. H. 1991. The design and
use of steerable filters. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on 13, 9, 891–906.

HERZOG, R., EISEMANN, E., MYSZKOWSKI, K., AND SEIDEL,
H.-P. 2010. Spatio-temporal upsampling on the GPU. In
I3D ’10: Proceedings of the 2010 symposium on Interactive 3D
graphics and games, ACM, New York, NY, USA, 91–98.

ITU-T. 1999. Subjective video quality assessment methods for
multimedia applications.

LINDH, P., AND VAN DEN BRANDEN LAMBRECHT, C. 1996. Ef-
ficient spatio-temporal decomposition for perceptual processing
of video sequences. In Proceedings of International Conference
on Image Processing ICIP’96, IEEE, vol. 3 of Proc. of IEEE,
331–334.

LUBIN, J. 1995. Vision Models for Target Detection and Recog-
nition. World Scientific, ch. A Visual Discrimination Model for
Imaging System Design and Evaluation, 245–283.

LUKIN, A. 2009. Improved visible differences predictor using a
complex cortex transform. GraphiCon, 145–150.

MANTIUK, R., KRAWCZYK, G., MYSZKOWSKI, K., AND SEI-
DEL, H.-P. 2004. Perception-motivated high dynamic range
video encoding. ACM Trans. Graph. 23, 3, 733–741.

MANTIUK, R., DALY, S., MYSZKOWSKI, K., AND SEIDEL, H.-P.
2005. Predicting visible differences in high dynamic range im-
ages - model and its calibration. In Human Vision and Electronic
Imaging X, vol. 5666 of SPIE Proceedings Series, 204–214.

MASRY, M. A., AND HEMAMI, S. S. 2004. A metric for con-
tinuous quality evaluation of compressed video with severe dis-
tortions. Signal Processing: Image Communication 19, 2, 133 –
146.

MYSZKOWSKI, K., ROKITA, P., AND TAWARA, T. 2000.
Perception-based fast rendering and antialiasing of walkthrough
sequences. IEEE Transactions on Visualization and Computer
Graphics 6, 4, 360–379.

MYSZKOWSKI, K., TAWARA, T., AKAMINE, H., AND SEIDEL,
H.-P. 2001. Perception-guided global illumination solution for
animation rendering. In SIGGRAPH ’01: Proceedings of the
28th annual conference on Computer graphics and interactive
techniques, ACM, New York, NY, USA, 221–230.

PATTANAIK, S. N., TUMBLIN, J. E., YEE, H., AND GREENBERG,
D. P. 2000. Time-dependent visual adaptation for fast realistic
image display. In Proc. of ACM SIGGRAPH 2000, 47–54.

REEVES, W. T., SALESIN, D. H., AND COOK, R. L. 1987. Ren-
dering antialiased shadows with depth maps. In SIGGRAPH ’87:
Proceedings of the 14th annual conference on Computer graph-
ics and interactive techniques, ACM, New York, NY, USA, 283–
291.

RITSCHEL, T., GROSCH, T., AND SEIDEL, H.-P. 2009. Approxi-
mating dynamic global illumination in image space. In I3D ’09:
Proceedings of the 2009 symposium on Interactive 3D graphics
and games, ACM, New York, NY, USA, 75–82.

RUSHMEIER, H., WARD, G., PIATKO, C., SANDERS, P., AND

RUST, B. 1995. Comparing real and synthetic images: some
ideas about metrics. In Rendering Techniques ’95, Springer,
P. Hanrahan and W. Purgathofer, Eds., 82–91.

SAMPAT, M. P., WANG, Z., GUPTA, S., BOVIK, A. C., AND

MARKEY, M. K. 2009. Complex wavelet structural similarity:
A new image similarity index. Image Processing, IEEE Trans-
actions on 18, 11 (Nov.), 2385–2401.

SCHWARZ, M., AND STAMMINGER, M. 2009. On predicting vi-
sual popping in dynamic scenes. In APGV ’09: Proceedings of
the 6th Symposium on Applied Perception in Graphics and Visu-
alization, ACM, New York, NY, USA, 93–100.

SESHADRINATHAN, K., AND BOVIK, A. 2007. A structural sim-
ilarity metric for video based on motion models. In Acoustics,
Speech and Signal Processing, 2007. ICASSP 2007. IEEE Inter-
national Conference on, vol. 1, I–869–I–872.

SESHADRINATHAN, K., AND BOVIK, A. C. 2010. Motion tuned
spatio-temporal quality assessment of natural videos. Image Pro-
cessing, IEEE Transactions on 19, 2 (Feb.), 335– 350.

VAN DEN BRANDEN LAMBRECHT, C., AND VERSCHEURE, O.
1996. Perceptual Quality Measure using a Spatio-Temporal
Model of the Human Visual System. In IS&T/SPIE.

VAN DEN BRANDEN LAMBRECHT, C., COSTANTINI, D., SICU-
RANZA, G., AND KUNT, M. 1999. Quality assessment of mo-
tion rendition in video coding. Circuits and Systems for Video
Technology, IEEE Transactions on 9, 5 (Aug), 766–782.

WANDELL, B. A. 1995. Foundations of Vision. Sinauer Associates,
Inc.

WANG, Z., AND SIMONCELLI, E. 2005. Translation insensi-
tive image similarity in complex wavelet domain. In Acoustics,
Speech, and Signal Processing, 2005. Proceedings. (ICASSP
’05). IEEE International Conference on, vol. 2, 573–576.

WATSON, A. B., AND MALO, J. 2002. Video quality measures
based on the standard spatial observer. In ICIP (3), 41–44.

WATSON, A. B., HU, J., AND III, J. F. M. 2001. DVQ: A digital
video quality metric based on human vision. Journal of Elec-
tronic Imaging 10, 20–29.

WATSON, A. B. 1986. Temporal sensitivity. In Handbook of
Perception and Human Performance, K. R. Boff, L. Kaufman,
and J. P. Thomas, Eds. John Wiley and Sons, New York, 6–1–
6–43.

WATSON, A. 1987. The Cortex transform: rapid computation of
simulated neural images. Comp. Vision Graphics and Image Pro-
cessing 39, 311–327.

WINKLER, S. 1999. A perceptual distortion metric for digital color
video. In Proceedings of the SPIE Conference on Human Vision
and Electronic Imaging, IEEE, vol. 3644 of Controlling Chaos
and Bifurcations in Engineering Systems, 175–184.

WINKLER, S. 2005. Digital Video Quality: Vision Models and
Metrics. Wiley.

YEE, H., PATTANAIK, S., AND GREENBERG, D. P. 2001. Spa-
tiotemporal sensitivity and visual attention for efficient rendering
of dynamic environments. ACM Trans. Graph. 20, 1, 39–65.

118



Appendix G

On Evaluation of Video Quality

Metrics: an HDR Dataset for

Computer Graphics Applications
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On Evaluation of Video Quality Metrics:

an HDR Dataset for Computer Graphics Applications

Martin Čad́ık, Tunç O. Aydın, Karol Myszkowski, Hans-Peter Seidel

MPI Informatik

ABSTRACT

In this paper we propose a new dataset for evaluation of image/video quality metrics with emphasis on applica-
tions in computer graphics. The proposed dataset includes LDR-LDR, HDR-HDR, and HDR-LDR reference-test
video pairs with various types of distortions. We also present an example evaluation of recent image and video
quality metrics that were applied in the field of computer graphics. In this evaluation all video sequences were
shown on an HDR display, and subjects were asked to mark the regions where they saw differences between test
and reference videos. As a result, we capture not only the magnitude of distortions, but also their spatial distri-
bution. This has two advantages: on one hand the local quality information is valuable for computer graphics
applications, on the other hand the subjectively obtained distortion maps are easily comparable to the maps
predicted by quality metrics.

1. INTRODUCTION

Experimental evaluation of computer graphics (CG) techniques is necessary to validate their impact on perceived
quality of resulting images. So far such image quality evaluation in CG is mostly performed informally without
referring to well-established subjective and objective methods, which are commonly used in other fields, such as
in image compression. In particular, CG field could benefit greatly from objective quality metrics due to the
simplicity of their use and low costs involved. This however, requires extensive perceptual validation of such
image and video quality metrics, which should be sensitive to image artifacts and distortions specific in CG.
Another important aspect of such validation is high dynamic range (HDR) of images that are often generated by
HDR rendering pipelines, which are today common in computer games (utilizing GPU or specialized consoles)
and computer-aided design systems (in particular dealing with realistic image synthesis).

To make the validation (or calibration) of image or video quality metric possible, one needs to design a set
of input stimuli (i.e. a dataset) and perform a user study which results in a set of subjective (mean) opinion
scores. Subjective studies are very laborious and may be stimuli dependent, thus the community benefits from
publicly available, standardized data sets. Therefore, a few datasets were published in the past.1–5

Unfortunately, none of the existing datasets is suitable for evaluation of video quality metrics in computer
graphics field, where the images and videos often exhibit high dynamic range of luminance values and specific
artifacts (see Figures 1, 2). Existing datasets are limited in dynamic range of the input stimuli (only low-
dynamic (LDR) range videos), in the distortions they cover (mostly compression-related artifacts), and in the
extent of subjective responses (usually the numerical rating of the quality of the stimulus). Few authors employed
a concept of image distortion maps6–8 in evaluation of image quality metrics, but this has not been done for
temporal distortions in videos so far. To overcome the above limitations, we propose and make publicly available∗

a new dataset for evaluation of image/video quality metrics with emphasis on applications in computer graphics.
Several aspects were influential while designing the dataset: (i) in addition to the assessmet of the quality of
LDR videos, the assessment of high-dynamic range videos, as well as comparing HDR videos with LDR videos
and vice versa, and (ii) the outcome of the subjective experiment in the form of distortion maps that show
quality prediction as a function of spatial position which is especially important for applications in computer
graphics. Furthermore, we show an example evaluation of recent image and video quality metrics that were

Further author information: e-mail: {mcadik, tunc, karol, hpseidel}@mpi-inf.mpg.de
Max Planck Institut Informatik, Saarbrücken

∗http://www.mpi-inf.mpg.de/resources/hdr/quality
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applied in the field of computer graphics. The goal of this evaluation was to examine the correlation between
the objective quality predictions computed by the video quality metrics, and the subjective responses obtained
by the experimental procedure. It is known9 that applications of image/video quality metrics into the field of
computer graphics are still far from maturity, we believe however, that the published dataset helps in validation
and improvement of existing, and the design of future metrics for computer graphics and other applications.

To that end the proposed dataset and the subjective study have the following unique features over previous
studies on video quality assessment:

• The test set includes LDR-LDR, HDR-HDR, and HDR-LDR reference-test video pairs with various types
of distortions.

• A BrightSide DR37-P HDR display (max. luminance ≈ 3000 cd/m2) was used for displaying the videos.

• The subjects were not asked to assess only an overall quality of the video, but to mark the regions where
they saw differences between test and reference videos, resulting in distortion maps similar to the metric
outcome.

In the remainder of this paper we describe the proposed dataset for evaluation of video quality metrics, the
experimental setup and procedure (Section 2), present an example evaluation of video quality metrics using the
dataset (Section 3) and discuss the results based on the correlation between the outcome of the subjective data
and corresponding predictions of state-of-the art video quality metrics.

Figure 1. An example of typical artifacts in rendered images and video sequences: an indoor scene rendered using
progressive photon mapping algorithm.10 Left: non-converged solution (2 iterations) exhibits low-frequency noise. Right:
fully converged solution.

2. DATASET FOR VIDEO METRIC EVALUATION

The proposed dataset consists of 9 reference-test video pairs (1 LDR-LDR, 2 HDR-LDR, and 6 HDR-HDR), they
are listed in Table 1. The video stimuli were generated by imposing temporally varying visual artifacts to HDR
scenes (Figure 3), such as HDR video compression artifacts and temporal random noise along with temporal
luminance modulation and tone mapping. The magnitudes of the visual artifacts were carefully selected so that
there were sub-, near- and supra-threshold distortions present in the experimental videos. In sequences #1-
#4, and #9 the temporal random noise was generated by filtering a three dimensional array of random values
between −0.5 and 0.5 by a Gaussian with standard deviations 20 (referred as ”high stddev”) and 5 (referred
as ”low stddev”) pixels along each dimension. The magnitude of noise was adjusted by multiplying with two
constants separately, such that the artifacts are barely visible in one setting (referred as ”low magnitude”), and
clearly visible in the other (referred as ”high magnitude”). In sequences #5 and #6, the HDR compression13
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Figure 2. An example of artifacts due to the tone mapping of HDR images and HDR video sequences. Left: global tone
mapping technique by Pattanaik et al.11 preserves overall image contrast, but results in severe loss of details. Right:
gradient-based technique of Fattal et al.12 is able to reproduce virtually all the image details, at the cost of an overall
contrast and contrast reversals (i.e. halo artifacts).

was similarly applied at two levels to the HDR scenes, where the luminance was globally modulated over time
by 0.5% of the maximum scene luminance to vary the visibility of image details over time. Videos generated
by applying tone mapping operators11,12 to each input HDR video frame were used in the dynamic range
independent comparisons (sequences #7 and #8).

All test videos consist of 60 frames, and should be presented at 24 fps. In order to faithfully reproduce the
luminance values on the HDR display, the response function of the display was measured using a Minolta LS-
100 luminance meter. The measurements consisted of 17 samples taken from the displayable luminance range.
The sample points were then fitted to a 3rd degree polynomial function, from which 100 points were resampled
and stored as a lookup table. Finally, the pixel values for the HDR videos were determined by cubic spline
interpolation between nearest two luminance levels. Furthermore, the displayed luminance of the HDR videos
were measured again at various regions, and whenever necessary, the scenes were slightly recalibrated to ensure
that the displayed luminance values match the actual scene luminance.

# Source Ref. DR Test DR Artifact Type of Test Video
1 Cars HDR HDR Noise - high magnitude, low stddev
2 Lamp HDR HDR Noise - high magnitude, low stddev
3 Desk HDR HDR Noise - low magnitude, low stddev
4 Tree HDR HDR Noise - high magnitude, high stddev
5 Cafe HDR HDR HDR compression - high quality, luminance mod.
6 Tower HDR HDR HDR compression - low quality, luminance mod.
7 Cafe HDR LDR Luminance modulation, Pattanaik’s tone mapping
8 Lamp HDR LDR Luminance modulation, Fattal’s tone mapping
9 Lamp LDR LDR Noise - low magnitude, low stddev

Table 1. List of the experimental stimuli. Refer to text for details.

The participants of the experimental study were 16 subjects of age 23 to 50. They all had near-perfect
or corrected to normal vision, and were näıve for the purposes of the experiment. Each subject evaluated the
quality of the whole test set through a graphical user interface displayed on a BrightSide DR37-P HDR display
(Figure 4). In the HDR-HDR, and LDR-LDR comparisons, the task was to mark the regions in the test video
where visible differences were present with respect to the reference video. In the HDR-LDR comparisons on
the other hand, the subjects were asked to assess the contrast loss and amplification. In the instruction phase
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Cars Lamp Desk Tree Cafe Tower
Figure 3. The video test set is generated from 6 calibrated HDR scenes (tone mapped for presentation purpose14). The
scene luminance was clipped where it exceeded the maximum display luminance. The displayed luminance of the videos
resulting from the scenes were between 0.1 and 3000 cd/m2.

before the experiment, the subjects were asked to mark a grid tile even if visible differences were present only
in a portion of that grid’s area. They were also encouraged to mark a grid tile in the case they cannot decide
whether it contains a visible difference or not. The subjects were placed 0.75 meters away from the display so
that a 512 × 512 image spanned 16 visual degrees and the grid cell size was approximately 1 visual degree. The
environment illumination was dimmed and controlled, and all subjects were given time to adapt to the room
illumination. There were no time limitations set for the experiment, but the majority of the subjects took 15-30
minutes for the entire test set.

The marked regions for each trial were stored as distortion maps with 16 × 16 resolution, which were then
averaged over all subjects to find the mean subjective response, see Figure 6 (first column). The descriptive
statistics of these maps are summarized in Table 2 (first column). Figure 5 shows the standard deviation for
each stimulus over the test subjects, separately for each grid tile. Over all images, the minimum and maximum
values are obtained as 0 and 0.51, the former indicating the tiles on which all subjects gave the same response,
and the latter indicating the tiles where approximately half of the subjects have marked.

Figure 4. The experiment was performed through a graphical user interface on the HDR display. Subjects were shown
reference and test videos side by side in a randomized order (right), and were asked to mark the relevant image locations
on a 16 × 16 grid according to the instructions (left). The interface and messages were disabled while the videos were
being shown. The interface allowed the subjects to watch the videos for an unlimited amount of iterations.

3. EXAMPLE EVALUATION

To illustrate the utilization of the proposed dataset, we show an evaluation of four state-of-the-art image/video
quality metrics: DRIVQM,15 PDM,16 HDRVDP,8 and DRIVDP.17 For each of the evaluated metrics the pre-
dictions for each stimulus were calculated, averaged over the whole 60 frames, and downsampled to the same
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Stimulus # Subjective Response DRIVQM PDM HDRVDP DRIVDP
[min, max]; avg; std [min, max]; avg; std [min, max]; avg; std [min, max]; avg; std [min, max]; avg; std

1 [0.000, 1.000]; 0.177; 0.276 [0.000, 0.850]; 0.128; 0.230 [0.000, 0.301]; 0.082; 0.079 [0.000, 0.019]; 0.001; 0.002 [0.075, 0.417]; 0.194; 0.058
2 [0.000, 1.000]; 0.201; 0.347 [0.000, 0.954]; 0.185; 0.282 [0.000, 0.813]; 0.061; 0.138 [0.000, 0.893]; 0.050; 0.157 [0.072, 0.799]; 0.218; 0.155
3 [0.000, 1.000]; 0.082; 0.242 [0.000, 0.307]; 0.015; 0.045 [0.000, 0.052]; 0.003; 0.008 [0.000, 0.889]; 0.163; 0.247 [0.006, 0.440]; 0.090; 0.078
4 [0.000, 1.000]; 0.124; 0.250 [0.001, 0.457]; 0.094; 0.115 [0.000, 0.024]; 0.007; 0.006 [0.000, 0.000]; 0.000; 0.000 [0.067, 0.240]; 0.137; 0.039
5 [0.000, 1.000]; 0.066; 0.186 [0.000, 0.420]; 0.026; 0.063 [0.000, 0.952]; 0.146; 0.207 [0.000, 0.866]; 0.074; 0.166 [0.040, 0.873]; 0.241; 0.199
6 [0.000, 1.000]; 0.399; 0.389 [0.072, 0.468]; 0.232; 0.103 [0.810, 0.984]; 0.965; 0.026 [0.180, 0.942]; 0.657; 0.202 [0.626, 0.928]; 0.789; 0.058
7 [0.000, 1.000]; 0.312; 0.392 [0.037, 0.984]; 0.451; 0.342 [0.838, 0.984]; 0.980; 0.018 [0.002, 0.953]; 0.448; 0.327 [0.031, 0.953]; 0.374; 0.288
8 [0.000, 0.812]; 0.108; 0.180 [0.041, 0.942]; 0.225; 0.146 [0.606, 0.984]; 0.971; 0.043 [0.005, 0.953]; 0.509; 0.274 [0.148, 0.884]; 0.406; 0.172
9 [0.000, 1.000]; 0.105; 0.238 [0.000, 0.502]; 0.054; 0.104 [0.000, 0.396]; 0.032; 0.066 [0.000, 0.211]; 0.006; 0.025 [0.067, 0.577]; 0.176; 0.097

Table 2. Descriptive statistics of distortion maps (depicted in Figure 6) for each input stimulus. Abbreaviations used:
min=minimal value, max=maximal value, avg=average value, std=standard deviation, of the distortion map averaged
over all subjects/metric responses for a particular stimulus (1-9).

0.2 0.4 0.6 0.8 1

Figure 5. Maps showing the standard deviations over subjects for each stimulus. The numbers refer to the first column
of Table 1.

resolution as the mean subjective response. In all the tests in this paper we used a frequency domain implementa-
tion of DRIVQM metric, precisely following the reference publication. We found that using this implementation
was still feasible for the frame sizes and durations of the video sequences in our dataset. For larger sequences
we also implemented an alternative version of the metric, where the frequency domain channel decomposition is
replaced by a Steerable Pyramid based spatial decomposition (described in Appendix A). A web service based
on this implementation is publicly available at http://drivqm.mpi-inf.mpg.de. The HDRVDP and DRIVDP
metrics are designed for image quality evaluation, thus the video stimuli were evaluated for each frame sepa-
rately. For each video pair, we computed the 2D correlation between the mean subjective response and the
metric prediction (Table 3) and used the results to evaluate the performance of the metrics. The Figure 6 shows
the mean subjective distortion maps along with the corresponding metrics predictions for visual inspection. The
descriptive statistics of these maps are summarized in Table 2.

For the purposes of generating the maps in Figure 6, in cases of PDM and HDRVDP we simply used the
distortion maps produced by those metrics. In the DRIVDP case however, the output of the metric is three
separate maps for contrast loss, amplification and reversal. Thus, it is not clear how to produce a single
distortion map for HDR-HDR and LDR-LDR stimuli. After experimenting with various methods for combining
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the distortion maps predicted by DRIVDP, we found that the combined map defined as:

P k,l,m

combined = 1− (1− P k,l,m

loss ) · (1− P k,l,m

ampl ), (1)

gives the best correlation with subjective data. Here, P k,l,m

loss|ampl
refer to the detection probability of contrast loss

and amplification at scale k, orientation l, and temporal channel m. The resulting map P k,l,m

combined corresponds
to the probability of detecting either contrast loss or amplification at a visual channel. Leaving contrast reversal
resulted in slightly improved correlations.

3.1 Discussion

As DRIVQM is the only evaluated metric that was designed specifically for the purposes of dynamic range-
independent video quality assessment of computer graphics sequences, it is not surprising that it overcomes the
other metrics in most cases. Highest correlations were obtained for the #2 HDR-HDR Lamp stimulus with high
magnitude, low standard deviation noise, and the #7 HDR-LDR Cafe stimulus with luminance modulation and
Pattanaik’s tone mapping (0.883 and 0.879, respectively). For these two cases, the magnitude of the probability
of detection predicted by the metric, and the average of the binary maps over subjects obtained experimentally
are also very similar. In other cases, either the magnitudes of the mean subjective maps were lower than
the corresponding detection probability magnitude predictions (such as #4 Tree HDR-HDR stimulus with high
magnitude, high standard deviation noise, and #9 Lamp LDR-LDR stimulus with noise), or a certain region with
visible distortions was missed out (#1 Cars HDR-HDR stimulus with high magnitude, low standard deviation
noise). For the remaining stimuli, a combination of both deviations can be observed in the metric predictions
and subjective responses. The worst prediction of DRIVQM is (#8, 0.733).

HDRVDP, while capable of evaluating the quality of HDR images, lacks any temporal processing and is
geared towards comparing images with the same dynamic range. The DRIVDP addresses the latter limitation,
but still suffers from the former. Consequently, DRIVDP’s predictions for the HDR-LDR stimuli (numbers 7
and 8) is slightly better than HDRVDP. PDM, on the other hand, is designed for the video stimuli, but lacks
the HDR and dynamic range independent mechanisms of HDRVDP and DRIVDP, producing the least average
correlation with the subjective responses. As shown in Table 3, DRIVQM significantly outperforms others in
most cases. The significant difference in average correlations over the entire test set (last row of Table 3) shows
that overall DRIVQMs predictions are clearly more accurate than others. The corresponding distortion maps
predicted by PDM, HDRVDP and DRIVDP are shown in Figure 6 columns 3 - 5 (averaged and downsampled
to 16 × 16 after the computation).

While the relation between the correlation values and distortion maps is obvious in most cases, the high
correlation of PDM for stimulus #3 deserves further explanation. While PDM correctly detects the distorted
regions in that stimulus in a spatial sense, the magnitude of detection probabilities are very low (refer to Table 2),
to the point that they are quantized by the visualization. Thus the map appears to be blank, but since the relation
with the subjective data is linear, the correlation is high.

4. CONCLUSION

The main goal of this work was to develop a dataset of video sequences accompanied by the corresponding
subjective data evaluating their quality in a local manner. Such locality is the key in computer graphics applica-
tions, where local image distortions should be detected and if possible corrected in rendering. Another important
aspect of such dataset is dynamic range of frames, where pairs of HDR, LDR and mixed LDR-HDR reference and
test videos, which are calibrated in terms of pixel luminance, are considered. We propose also a novel subjective
testing setup that involves an HDR display, which is suitable for reproducing luminance levels in the videos, as
well as interactive marking of local image regions where distortions are visible.

The dataset proved to be useful in calibrating and validating the DRIVQM,15 which has been developed
specifically for computer graphics applications. The dataset is publicly available (http://www.mpi-inf.mpg.
de/resources/hdr/quality) and our hope is that it can be used in other validation tasks.
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Stimulus # DRIVQM PDM HDRVDP DRIVDP
1 0.765 -0.0147 0.591 0.488
2 0.883 0.686 0.673 0.859
3 0.843 0.886 0.0769 0.865
4 0.815 0.0205 0.211 -0.0654
5 0.844 0.565 0.803 0.689
6 0.761 -0.462 0.709 0.299
7 0.879 0.155 0.882 0.924
8 0.733 0.109 0.339 0.393
9 0.753 0.368 0.473 0.617

Average 0.809 0.257 0.528 0.563

Table 3. Correlations of subjective responses with predictions of DRIVQM, PDM, HDRVDP, and DRIVDP. The last row
shows the average correlations over the test set, the best correlations for each stimulus are printed in bold text.

APPENDIX A. EFFICIENT IMPLEMENATATION OF DRIVQM

As we admit in the discussion section of the previous publication,15 executing DRIVQM becomes infeasible for
long video sequences due to the long processing time. Moreover, the 64-frames window size practically means
that for frame sizes larger than VGA the memory consumption is prohibitively large for an average desktop
computer. As suggested by the authors of the metric, we replace the frequency domain Cortex Transform by
the Steerable Pyramid18 with 6 levels (where each differ by one octave) and 6 orientations, and use Winkler’s19

9-tap approximation of the transient and sustained temporal mechanisms. The base band of the Steerable
Pyramid, analogous to Cortex Transform, does not have any orientations. For the purpose of accounting for
spatial phase uncertainty, the Hilbert transforms of the steerable filters provided by Freeman and Adelson’s
formulation are used, whereas temporal phase uncertainty is ignored. All other components of the DRIVQM
are left intact, including the extended Contrast Sensitivity Function. The updated implementation is more
efficient in memory consumption and running time, without any significant deviation in results from the original
implementation. A publicly available web service that uses our updated implementation can be found at http:
//drivqm.mpi-inf.mpg.de. The web service requires the users to upload the frames of their test and reference
video pair of either the same dynamic range, or different dynamic ranges. Users are allowed to change metric
parameters, such as the pixels per visual degree, frames per second and adaptation luminance. Once the setup
is complete, the metric is run on the uploaded video pair. Upon completion, the input video pair is immediately
deleted, and the user is provided with a link to the contrast difference, contrast loss, and contrast amplification
maps.
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Figure 6. Mean subjective response distortion maps and corresponding mean metric predictions pairs.
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Figure 1: State-of-the-art image quality metrics often fail in the prediction of the human-perceived distortions in complex images. Here, we
show the predicted detection probabilities (color-coded) for gradient-based tone mapping artifacts [Fattal et al. 2002] in a synthetic image.

Abstract

Reliable detection of global illumination and rendering artifacts in
the form of localized distortion maps is important for many graphics
applications. Although many quality metrics have been developed
for this task, they are often tuned for compression/transmission
artifacts and have not been evaluated in the context of synthetic
CG-images. In this work, we run two experiments where observers
use a brush-painting interface to directly mark image regions with
noticeable/objectionable distortions in the presence/absence of a
high-quality reference image, respectively. The collected data
shows a relatively high correlation between the with-reference
and no-reference observer markings. Also, our demanding per-
pixel image-quality datasets reveal weaknesses of both simple
(PSNR, MSE, sCIE-Lab) and advanced (SSIM, MS-SSIM, HDR-
VDP-2) quality metrics. The most problematic are excessive
sensitivity to brightness and contrast changes, the calibration for
near visibility-threshold distortions, lack of discrimination between
plausible/implausible illumination, and poor spatial localization of
distortions for multi-scale metrics. We believe that our datasets
have further potential in improving existing quality metrics, but also
in analyzing the saliency of rendering distortions, and investigating
visual equivalence given our with- and no-reference data.

CR Categories: I.3.0 [Computer Graphics]: General;

Keywords: Image quality metrics (IQM), perceptual experiments,
global illumination, noticeable and objectionable distortions

Links: DL PDF WEB DATA

∗e-mail: mcadik@mpi-inf.mpg.de, the complete dataset is available at:

http://www.mpii.de/resources/hdr/iqm-evaluation/

1 Introduction

Rendering techniques, in particular global illumination, are prone
to image artifacts, which might arise due to specific scene config-
urations, imbalanced scene complexity that might lead to a locally
varying convergence-rate of the solution, and numerous simplifica-
tions in the rendering algorithms themselves. With the proliferation
of 3D rendering services, where the user may often arbitrarily inter-
act with the content, the role of automatic rendering-quality control
gains in importance. Even in well-established industries such as
gaming a massive approach to automatic quality testing is desir-
able. In practice, objective image quality metrics (IQM) that are
successful in lossy image compression and transmission applica-
tions [Wang and Bovik 2006] are predominantly used in graphics,
including advanced attempts of their adaptation to actively steer
rendering [Rushmeier et al. 1995; Bolin and Meyer 1998; Rama-
subramanian et al. 1999]. Such objective IQM are trained to predict
a single value of mean opinion score (MOS) for image blockiness,
noise, blur, or ringing distortions. However, their performance for
other distortion types as well as their spatial localization within an
image has not been systematically validated so far.

The goal of this work is to generate a new rendering-oriented
dataset with localized distortion maps and use it for the evaluation
of existing IQM. For this purpose we prepare a set of images with
distortions that are typical for popular global illumination and ren-
dering techniques as well as the corresponding distortion-free ref-
erence images. Table 1 presents a summary of our stimuli. In two
separate experiments (Sec. 3) we ask the observers to locally mark
noticeable and objectionable distortions where the reference image
is either shown or hidden, respectively. We demonstrate that the ob-
servers can reliably perform both tasks, yielding high coefficients of
agreement (Sec. 4.1). In general, our results show a high correla-
tion between the observer marking for the with-reference and no-
reference datasets, but we also indicate the most common sources
of discrepancies in such marking (Sec. 4.2).

We use the with-reference dataset to evaluate the performance of
state-of-the-art full-reference (FR) IQM in detecting and localizing
rendering distortions (Sec. 5). We show that even advanced IQM
fail for some common computer graphics artifacts (e.g., Fig. 1).
Our data shows that in general no IQM performs better than any
other, even including the simple absolute difference (AD), which
is equivalent to the peak signal-to-noise ratio (PSNR) or mean-
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square-error (MSE) given our non-parametric metric performance
measures. Moreover, our analysis reveals some interesting weak-
nesses of FR IQM, including the lack of robustness to brightness
and contrast change, the inability to distinguish between plausible
and implausible illumination patterns, and poor localization of dis-
tortions due to multi-scale processing.

2 Related work

In this section we briefly characterize general purpose full reference
(FR) IQM which are central for our comparison against the subjec-
tive data. Also, we review major other developments in the eval-
uation of IQM performance. For more in depth discussion of the
image quality problem we refer the reader to the recent textbooks
[Wang and Bovik 2006; Wu and Rao 2005], and survey papers [Lin
and Kuo 2011; Pedersen and Hardeberg 2011].

2.1 Image quality metrics (IQM)

Full reference IQM can be categorized into different groups based
on the principles behind their construction [Wang and Bovik 2006;
Pedersen and Hardeberg 2011].

Mathematically-based metrics directly measure the difference of
pixel intensity. The root mean square error (RMSE) and peak
signal-to-noise-ratio (PSNR) are the most prominent examples of
metrics belonging to this category.

HVS-based metrics model early human vision characteristics such
as luminance adaptation, contrast sensitivity, visual masking, and
visual channels. The most prominent examples of such metrics in-
clude the Visible Differences Predictor (VDP) [Daly 1993] and
Visual Discrimination Model (VDM) [Lubin 1995]. VDP has also
been used in the evaluation of rendered image quality [Rushmeier
et al. 1995]. Recently, extensions of VDP have been proposed to
handle high dynamic range (HDR) images [Mantiuk et al. 2005;
Mantiuk et al. 2011].

Structure-based metrics detect structural changes in the image by
means of a spatially localized measure of correlation in pixel val-
ues. The Structural Similarity Index Metric (SSIM) is based on this
principle. In addition, it is sensitive to the differences in the mean
intensity and contrast [Wang and Bovik 2006, Ch. 3.2].

Other metrics combine the strengths of different metric categories.
For example, in sCIE-Lab [Zhang and Wandell 1998] spatial color
sensitivity is added to a standard color-difference measure in the
perceptually-uniform CIE-Lab color-space. In the Visual Signal-to-
Noise Ratio (VSNR) metric [Chandler and Hemami 2007] at first
an HVS-model is applied to eliminate distortions below the vis-
ibility threshold and then a simple mathematically-based metric is
used. Other modern metrics, such as the Visual Information Fidelity
(VIF) index [Wang and Bovik 2006, Ch. 3.3], rely on natural-scene
statistics and employ an information-theoretic approach to measure
the amount of information that is shared between two images.

2.2 Evaluation of image quality metrics

The comparison of IQM performance against data collected in
experiments with human subjects is required to evaluate metric
prediction accuracy and robustness for different types of visual
distortions. Standardized procedures for subjective image- and
video-quality evaluation have been developed by the International
Telecommunication Union [ITU-T-P.910 2008; ITU-R-BT.500-11
2002]. They rely on subjectively collected mean opinion score
(MOS) data, which is compared against a single number derived
from the error pooling over pixels. While such a procedure works

well for estimating the overall magnitude of distortions, informa-
tion on different distortion types, their possible interactions and
spatial distribution is not captured. In computer graphics applica-
tions the prediction of local distortion detectability by a human ob-
server is essential, and in this work we favor image distortion maps,
which capture such spatial information.

Mean opinion score (MOS) data. A number of databases of im-
ages with different distortion types and MOS subjective quality
scores is publicly available where LIVE [Sheikh et al. 2006] and
Tampere Image Database [Ponomarenko et al. 2009] are the most
prominent examples featuring both significant variety of distortions
and large number of stimuli, which have been judged by many
subjects (30–200). Lin and Kuo [2011] present a more complete
summary of such databases with detailed characterization of sup-
ported distortion types, which arise mostly in image compression
and transmission. Distortions covered by those databases that are
more relevant for graphics applications include blur, mean intensity
shifts, contrast changes, and various types of noise.

Image distortion maps. The spatial aspect of distortion detectabil-
ity has been addressed in calibration and performance evaluation

for HDR image [Mantiuk et al. 2005] and video [Čadı́k et al. 2011]
quality metrics. Thereby, the screen is divided into discrete blocks
of about 30×30 pixels and the subjects mark blocks with noticeable
distortions. Similar to our work, Zhang and Wandell [1998] used
a brush-painting interface for freely marking reproduction artifacts
due to half-toning or JPEG compression given the reference im-
age. The marked errors produced by 24 subjects have been pooled
for each distorted image and as a result image distortion maps with
the probability of error detection have been obtained. In our ex-
periments we enable pixel-precise distortion marking, which we
then average in downsampled images that are used in our analy-
sis. This improves the quality of the data compared to the heuristic-
driven pixel rejection used in [Zhang and Wandell 1998]. Unlike
that study, we focus exclusively on rendering-related artifacts, and
we consider both the with- and no-reference experiment scenarios.

In this work we extend our dataset [Herzog et al. 2012], which con-
sists of 10 stimuli exhibiting mostly supra-threshold distortions for
3 selected distortion types, with 27 new stimuli (refer to Table 1 and
the supplementary material for a more detailed summary of both
datasets). The new stimuli exhibit sub-threshold, near-threshold,
and supra-threshold distortions, which are often present in a single
image. In comparison to that previous work, the new dataset re-
duces the subject learning effect by mixing different types of distor-
tions within a single image, restricting their appearance to randomly
selected parts of an image and increasing the number of distortion
types to 12. This also let us test the metrics in more challenging sce-
narios, where the distortions are non-uniformly distributed across
an image. Moreover, while the previous dataset contained mostly
well visible distortions, the new images contain also low amplitude
distortions, which are near the visibility threshold. The new dataset
reinforces the quality and robustness of the subjective data, which
is achieved by stabilizing the distance to the screen using a chin-rest
and involving a large number of observers (35).

3 Localized image distortion experiment

The goal of the study is to mark areas in the images that contain no-
ticeable distortions and those that contain objectionable distortions.
The former will let us test how well the IQM predict visibility, while
the latter can tell how robust the metrics are to image modifications
that are not perceived as distortions. In addition, the analysis of
the experimental data alone, for both visible and detectable thresh-
olds, can reveal which image differences are seen as disturbing and
which are most likely ignored or interpreted as a part of the original
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Scene Distortion Type Mask Method (Ref.) Tonem. Settings Artifact (Ref.)

#1 Apartment VPL Clamp. no IGI (LC) [Rein.] 0.1·106 vpls (2·106 vpls)

#2 CG Figures Struc-Noise no IGI (PT) [Drag.] 106 vpls (97K spp)

#3 Disney Struc-Noise no IGI (PT) [Drag.] 106 vpls (43K spp)

#4 Kitchen Struc-Noise no IGI (PT) [Drag.] 106 vpls (380K spp)

#5 Red Kitchen Struc-Noise no IGI (PT) [Drag.] 106 vpls (200K spp)

#6 Sponza Above T. Alias. (Shadow) no GL (GL) [Rein.] Shadowmap-pcf 10242 (40962)

#7 Sponza Arches Alias. (Shadow) no GL (GL) [Rein.] Shadowmap-pcf 10242 (40962)

#8 Sponza Atrium Alias. (Shadow) no GL (GL) [Rein.] Shadowmap 10242 (40962)

#9 Sponza Tree Shad. Alias. (Shadow) no GL (GL) [Rein.] Shadowmap 10242 (40962)

#10 Sponza Trees VPL Clamp. no IGI (LC) [Rein.] 60·103 vpls (2·106 vpls)

#11 Apartment II Struc-Noise yes RC,RC (PPM) [Rein.] RC+PM phot.: 0.5·106 (3·109)

#12 Atrium Struc-Noise yes PPM (PPM) [Rein.] 5·109 (20·109) photons

#13 Bathroom Noise yes PPM,PPM (PPM) [Rein.] custom renderer

#14 Buddha Tonemap (Halo/Bright.) yes [Fat.’02] (γ=3.0) – PBRT / pfstools

#15 Chairs High/Med-freq Noise yes MCRT (MCRT) γ=2.2 backward RT [ITBT/Inspirer]

#16 City-d Alias. (Downsampl.) yes NN (–) γ=2.2 PBRT / Matlab

#17 City-u Upsampl. (Lanczos) yes NN,Lanczos (–) γ=2.2 PBRT / Matlab

#18 Cornell Alias./Struc-Noise yes RC (RC) γ=1.8 PBRT 1 spp (128 spp)

#19 Dragons Noise no RC (RC) γ=2.2 PBRT 16 spp (128 spp)

#20 Hall Brightness no MCRT (MCRT) γ=2.2 backward RT [ITBT/Inspirer]

#21 Icido Struc-Noise yes RC (PPM) [Rein.] RC+LC vpls: 0.5·106 (3·109)

#22 Kitchen II Struc-Noise/Bright. yes RC (PPM) [Drag.] RC+PM phot.: 0.5·106 (3·109)

#23 Livingroom Noise yes PPM,PPM (PPM) [Rein.] custom renderer

#24 MPII Tonemap. (Grad.) yes [Man.’06] (γ=4.5) – PBRT / pfstools

#25 Plants-d Alias. (Downsampl.) yes NN (–) γ=2.2 PBRT / Matlab

#26 Plants-u Upsampl. (Lanczos) yes NN,Lanczos (–) γ=2.2 PBRT / Matlab

#27 Room Teapot Struc-Noise yes RC (RC) γ=2.2 PBRT

#28 Sala Struc-Noise no RC (PPM) [Drag.] RC+PM phot.: 0.5·106 (5·109)

#29 Sanmiguel Aliasing/Bright yes RC,RC (RC) γ=2.2 PBRT 1 spp (16 spp)

#30 Sanmiguel cam3 Light leaking yes PM (RC) γ=2.2 PBRT

#31 Sanmiguel cam4 Alias./Struc-N./Bright. yes RC,RC (RC) γ=2.2 PBRT 1 spp (16 spp)

#32 Sibenik VPL Clamp. no RC (PPM) [Rein.] RC+LC vpls: 0.5·106 (2·109)

#33 Sponza Light leaking no PM (RC) γ=1.8 PBRT

#34 TT Alias./Noise/Struc-N. yes RC,RC (RC) γ=2.2 PBRT 1 spp (16 spp)

#35 Villa cam1 Noise/Struc-Noise yes RC,RC (PM) [Man.] PBRT

#36 Villa cam2 Alias./Struc-N./Bright. yes RC (PM) [Man.] PBRT

#37 Villa cam3 Struc-Noise yes RC (PM) [Man.] PBRT

Table 1: Our dataset, from left to right: the scene identifier, distortion

type(s), if manually blended by a mask, the rendering method (reference al-

gorithm and settings in parenthesis), tone mapping, and the relevant render-

ing parameters (if known) used to generate our image dataset (e.g., Fig. 2).

The tone mapping operators Fat., Rein., Drag., Man., Man.’06 correspond

to [Fattal et al. 2002], global version of [Reinhard et al. 2002], [Drago et al.

2003], [Mantiuk et al. 2008], [Mantiuk et al. 2006], respectively. GL stands

for an OpenGL based deferred-renderer using shadow maps with percent-

age closer filtering (PCF). IGI is an instant global illumination renderer,

which supports glossy virtual point lights (VPLs). RC stands for irradiance

or radiance caching either in combination with photon-maps (RC+PM)

[Křivánek et al. 2005] or lightcuts (RC+LC) [Herzog et al. 2009]. The ref-

erence solutions are computed either by pathtracing (PT) or bidirectional

pathtracing (Bi-PT) with a constant number of samples per pixel (spp), the

lightcuts algorithm (LC) [Walter et al. 2005] with 1% error threshold, or

progressive photon mapping (PPM) [Hachisuka et al. 2008]. Some images

were blended with artifacts of two different strengths or types, which is in-

dicated by the comma-separated method.

scene. In the following section we describe the design, procedure,
and results of the perceptual experiment that we conducted to gather
subjective labeling of artifacts in rendered images.

3.1 Stimuli

Table 1 summarizes the rendering algorithms and the distortions
that were introduced to the images. Stimuli #1 – #10 come from our
previous EG’12 dataset [Herzog et al. 2012], while in this work
we performed a similar but more extensive experiment (stimuli #11
– #37) in a more rigorous setup. The key differences between the
datasets are outlined in the Section 1, and they are further discussed
in the supplementary material.

All scenes were rendered into high-dynamic-range images and tone
mapped for display as indicated in Table 1. Each scene was ren-
dered using a high- and low-quality setting. In some cases a few dis-
tortions of different character were introduced by varying different
rendering parameters. Finally, the high quality image was in some
cases manually blended (column Mask in Table 1) with the cor-
responding low quality image to reveal the distortions in random-

ized regions. This additional level of randomness was necessary,
as many distortions appeared consistently either in low-illuminated
parts of the scene or near the edges. Without blending, the ob-
servers were likely to learn the typical locations for a particular
artifact and mark them regardless whether the artifact was notice-
able/objectionable or not. Some test scenes were blended with more
than one distorted image to contain distortions of very different
character (in those cases more than one Method appears in Table 1).
This was meant to test whether a metric can handle a mixture of
heterogeneous distortions and account for their impact on image
quality.

We now briefly summarize the distortions we have encountered in
various rendering algorithms, which are also listed in Table 1. We
restrict ourselves to typical global illumination (GI) related artifacts
and do not cover banding, tessellation, shadow bias or other more
specific artifacts that mostly arise in real-time rendering. For
more details about the nature of the individual rendering-specific
artifacts we refer the interested reader to our supplementary
material. Furthermore, for the later analysis and readability we
manually clustered the numerous distortion types into one of six
distortion categories which share a similar subjective appearance.

High-frequency noise is probably the most common error encoun-
tered in photo-realistically rendered images, which arises as a by-
product of all random sample-based integration techniques (e.g.,
path-tracing, progressive photon mapping [Hachisuka et al. 2008]).
Structured noise represents the class of distortions with correlated
pixel errors, which exhibit both noise and bias. These are for ex-
ample interpolation and caching artifacts commonly encountered in
approximate GI algorithms such as photon mapping [Jensen 2001],
instant radiosity [Keller 1997] as well as the popular (ir-)radiance
caching algorithm [Ward et al. 1988; Křivánek et al. 2005].
VPL clamping and light leaking: approximate GI algorithms sys-
tematically introduce local errors, often even intentionally, in order
to hide the more visually disturbing artifacts (noise). VPL clamping
in instant radiosity and light leaking in photon mapping and irradi-
ance caching fall into this category.
Brightness: another distortion we have noticed is a consistent
change in brightness in large regions of an image. Reasons for this
can be of systematic nature (e.g., wrong normalization, incorrect
material usage) or approximative nature (e.g., only one-bounce in-
direct light, no caustics, only diffuse VPLs are computed).
Aliasing is the result of insufficient super-sampling or missing pre-
filtering during rendering. Our examples comprise aliasing in syn-
thetic images including shadow maps, which we partially generated
by downsampling the reference image followed by upsampling to
the original resolution using the nearest neighbors approach.
Tone mapping can introduce disturbing artifacts, in particular if
local gradient-based tone mapping operators (TMO) are applied.
Therefore, we included examples of two gradient TMOs into our
test set: typical halo artifacts appear in the buddha (#14) scene (re-
fer to Fig. 1) [Fattal et al. 2002], and characteristic gradient “leak-
ing” is demonstrated in the mpii (#24) scene [Mantiuk et al. 2006].

3.2 Participants and apparatus

A total of 35 observers (11 females and 24 males; age 19 to 52
years) took part in our experiments, and 21 of them completed the
no-reference followed by with-reference sessions. The first group
of 17 observers consisted of computer graphics students and re-
searchers (denoted as Experts in the further analysis), while 18 ob-
servers were naı̈ve to the field of computer graphics (denoted as
Non-experts). All observers had normal or corrected-to-normal vi-
sion, and they were naı̈ve as to the purpose of the experiment.
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The evaluated images were displayed on two characterized and
calibrated displays: 1) LCD Barco Coronis MDCC 3120 DL dis-
play (10-bit, 21-inch, 2048 × 1536 pixels), and 2) NEC MultiSync
PA241W display (10-bit, 24-inch, 1920 × 1200 pixels). The cal-
ibration was performed using the X-Rite i1 Display Pro colorime-
ter (to D65, 120 cd/m2, colorimetric characterization by means of
measured ICC profiles). The experimentation room was neutrally
painted, darkened (measured light level: 2 lux), and the observers
sat: 1) 71 cm from the Barco display, and 2) 92 cm from the NEC
display, which corresponds to 60 pixels per visual degree. The ob-
serving distance was enforced by using a chin-rest.
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Figure 2: Example reference and distorted images from our test
set along with the mean observer data and maps of Kendall’s u for
both experiments. (Please refer to supplementary material for all
the images.)

3.3 Experimental procedure

We performed two experiments: in the first (no-reference) experi-
ment, the observers saw only a distorted image exhibiting render-
ing artifacts, while in the second (with-reference) experiment the
distorted image was presented next to the high-quality reference-
image. In each experiment the sequence of images was randomized.
We asked the observers to freely mark the image regions where they
could see artifacts using a custom brush-paint interface. The brush
size could be reduced up to per-pixel resolution by the user.

Each observer was introduced to the problem before the experiment
as follows. In the no-reference experiment, the observers were in-
structed to label all the areas in the image with objectionable distor-
tions. In the with-reference experiment, the observers were asked
to mark those regions in the distorted image, where they could no-
tice any differences with respect to the reference image. Each ex-
periment took on average 30 minutes per observer. Note that the
subjective distortion maps for images #1 – #10 were taken from
our previous dataset [Herzog et al. 2012].

4 Analysis of subjective data

In this section we show that the data indicates high agreement be-
tween observers, giving evidence that the experimental method is
reliable. Then, we analyze differences between the with-reference
and no-reference experiments.

4.1 Inter-observer agreement

The experimental task of marking distortions seems challenging,
especially in the no-reference setup, so the variations between ob-
servers are expected to be high. If the task is deemed to be impos-
sible, we can expect to see little agreement in the distortion maps
produced by individual observers. To test the inter-observer agree-
ment, we compute Kendall’s coefficient of agreement (u) per pixel
[Salkind 2007]. The coefficient u ranges from u = −1/(o − 1),
which indicates no agreement between o observers, to u = 1 indi-
cating that all observers responded the same. An example of such
a map of coefficients for the sanmiguel cam3 (#30) scene is shown
in Fig. 2. The complete set of per-scene coefficients can be found
in the supplementary materials.

To get an overall indicator of agreement, an average coefficient u, is
computed for each scene. Such overall coefficient is skewed toward
very high values because most pixels did not contain any distortion
and were consistently left unmarked by all observers. Therefore, we
also compute a more conservative measure umask, which is equal
to the average u of only those pixels that were marked as distorted
by at least 5% of the observers.

The values of u and umask averaged across the scenes were 0.78
and 0.41 for the with-reference experiment, and 0.77 and 0.49 for
the no-reference experiment. These values are relatively high as
compared to the values typically reported in such experiments. For
example, Ledda et al. [2005] reported u between 0.05 and 0.43 for
the task of pairwise comparison of tone mapping operators. This
let us believe that the observers can reliably perform the distortion
marking task even without much experience or knowledge of the
underlying distortions.

4.2 With-reference and no-reference experiments

The main motivation for two experimental designs was to study the
relationship between noticeable (the with-reference experiment)
and objectionable distortions (the no-reference experiment). Fig. 3
shows the correlation of the probabilities of marking distortions for
both experiment designs. The Spearman correlation values are very
high: 0.88 for EG’12 and 0.85 for the new dataset, though these
values can be biased by a larger size of unmarked regions. Such
strong correlation is a further evidence that the task is well defined
and, even in the no-reference experiment, the observers perform
consistently and detect most distortions they would detect in the
with-reference experiment. The regression line for our dataset in
Fig. 3 indicates that fewer observers are marking the same distor-
tions in the no-reference experiment.

To get further insight, we analyze differences in individual images.
To find the regions that were marked systematically different be-
tween both with- and no-reference experiments, we perform the
non-parametric Kruskal-Wallis test between the results of both ex-
periments [Salkind 2007]. The test is run separately for each pixel,
resulting in the map of p-values as visualized in Fig. 4. Note that
although p < 0.05 should indicate that two pixels were marked
statistically significantly different in the two experiments, this is
only the case if each pixel is considered as an independent mea-
surement. Given the high spatial consistency of the markings, per-
pixels measurements are unlikely to be independent. However, such
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Figure 3: The relation between the probability of marking a re-
gion in the with- and no-reference experiments, plotted separately
for each dataset. Similar plots for individual scenes can be found
in the supplementary materials. The dashed line shows a linear
least-squares regression. The color map was generated from the
logarithm of the joint probabilities. The results of with- and no-
reference experiments are strongly correlated with fewer observers
marking the same regions in the no-reference experiment.

p-measure is a good indicator of relevant differences in the lack of
a suitable statistical test for our dense pixel-based measurements.

The comparison of with- and no-reference results in Fig. 4 shows
that the observers sometimes marked regions in the no-reference
experiment which were left unmarked in the with-reference experi-
ment. The buddha (#14) scene for example exhibits aliasing on the
pedestal of the statue (marked in red in Fig. 4 (left)), which was
not marked in the with-reference experiment because it was also
present in the reference image. However, there were only few such
cases in the entire dataset, which were all due to the imperfections
of the reference image. In the majority of the cases the observers
missed more differences when not seeing the reference image. For
example, the brightness change in the background of the buddha
statue caused by tone mapping (shown as green in Fig. 4 (left)) was
seldom marked in the no-reference experiment.

The number of differences between both experiments indicates that
both tasks are different. But at the same time, the high correlation

Kruskal-Wallis p-values with-reference mean no-reference mean

Figure 4: Differences between with- and no-reference results for
the buddha scene. The left image shows in green the pixels that
were missed in the no-reference experiments (false negatives) and in
red those that were marked despite the lack of a difference between
the test and reference image (false positives). Only those areas are
marked for which the p-values from the Kruskal-Wallis test is less
than 0.05. Observers missed in the no-reference experiment the
smooth gradient and brightness changes due to tone mapping, but
marked aliasing that was also present in the reference image.

values show that many artifacts are salient enough to be spotted in
both with- and no-reference conditions. Note that both experimen-
tal designs are still less conservative than a typical detection mea-
surement, which involves some form of temporal presentation of
co-located test and reference images, for example by sequentially
showing the test and reference images in the same screen location.
Please refer to the project webpage for such presentation of the dif-
ferences.

We performed a similar analysis to compare the differences be-
tween the expert and non-expert observers. However, we found
only a few isolated cases in all scenes where the experts spotted
more distortions, such as darkening of corners due to VPL clamp-
ing. More extensive discussions of these differences can be found
in the supplementary materials.

5 Evaluation of quality metrics

In this section we investigate the performance of existing IQM in
detecting distortions marked by the subjects in our experiments. At
first, we justify our metric selection and briefly characterize each
metric’s strength. Then, we present statistical tools that we used for
their performance analysis and discuss the outcome.

5.1 Image quality metric selection

Numerous IQM evaluations clearly show that it is impossible to
indicate a single metric that performs steadily well for all tested
stimuli [Lin and Kuo 2011; Larson and Chandler 2010]. The most
problematic cases include images with spatially varying artifacts of
different magnitude, as well as mixed distortion types and less com-
mon distortions [Lin and Kuo 2011]. Our dataset represents well
all such difficult cases. Our choice of metrics in this study is based
on the observation that metrics involving perceptual or statistical
modeling perform significantly better than PSNR [Wang and Bovik
2006; Lin and Kuo 2011]. Nevertheless, because of its popularity
for image quality evaluation in computer graphics, we also consider
a simple absolute difference (AD) metric that is directly related to
the commonly used RMSE and PSNR. We use absolute rather than
squared differences because our statistical analysis is robust to any
monotonic transformations, such as the quadratic power function.

Another popular choice in graphics is CIE-Lab, but here due to even
more favorable conformance with image distortion maps [Zhang
and Wandell 1998] we select its spatial extension sCIE-Lab. HVS-
based metrics are represented by HDR-VDP-2 [Mantiuk et al.
2011], which provides much improved predictions with respect to
its predecessors HDR-VDP [Mantiuk et al. 2005] and VDP [Daly
1993]. Also, we investigate the SSIM that is often reported as the
most reliable metric [Larson and Chandler 2010], as well as its
multi-scale version MS-SSIM [Wang et al. 2003], which accounts
for structural and contrast changes at different scales to compen-
sate for the variations of image resolution and viewing conditions.
MS-SSIM is reported as the best-performer in many IQM compari-
son studies [Sheikh et al. 2006; Ponomarenko et al. 2009]. Finally,
we include as a metric the Spearman rank-order correlation (sCor-
rel) computed over local 8× 8-pixel blocks, which can be regarded
as a subset of the SSIM functionality, to better understand the im-
portance of eliminated contrast and lightness factors.

Our metric selection is also representative with respect to compu-
tational complexity. AD and sCIE-Lab are attractive due to their
mathematical simplicity. On the other hand, HDR-VDP-2 is the
most complex but has been shown to successfully predict near-
threshold distortions. The medium complexity SSIM has been
demonstrated to meaningfully estimate the magnitude of supra-
threshold distortions, while its sensitivity to near threshold distor-
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tions seems to be more problematic due to the lack of explicit HVS
modeling. The sCIE-Lab prediction also conforms to the distor-
tion magnitude and its sensitivity to spatial color patterns is based
on the HVS-model. MS-SSIM seems to bridge the gap between
SSIM and HDR-VDP-2 by emphasizing on the structural differ-
ences while processing at multi-scale.

To account for the differences in viewing distance between our two
datasets, the parameters of the metrics that respect a viewing dis-
tance (HDR-VDP-2 and sCIELab) were adjusted accordingly, and
for the other metrics images were resampled to match the angular
resolution of 30 pixels-per-visual-degree.

5.2 Statistical measures of metric performance

It is important to recognize that, in contrast to other im-
age quality experiments, our measurements do not capture
the perceived magnitude of distortion. For that reason we
need to use different measures for the metric performance.
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Most image quality assess-
ment experiments measure
a single scalar differential-/
mean-opinion-score (DMOS/
MOS) per test image, shown as
the dashed red line in the plot
on the right. The non-parametric
correlation between a metric and
the MOS values is considered
as a measure of the metric’s
performance [Sheikh et al. 2006; Ponomarenko et al. 2009].
Unfortunately, there is no method to measure MOS efficiently for
each location in an image. Our experiments capture how likely
an average observer will notice local distortions, shown as the
continuous blue line. It is correlated with MOS in the limited range
where the psychometric function (blue line) does not saturate. If
this probability of detection is equal or close to either 0 or 1, we
have no information about the perceived magnitude of a distortion.

However, our data is well suited to benchmark the metrics ability
to spot problematic regions in terms of binary classification: mark-
ing the pixels that contain noticeable or objectionable distortions.
The performance of such classification is usually analyzed using
the receiver-operator-characteristic (ROC) [Baldi et al. 2000]. ROC
captures the relation between the size of regions that contain dis-
tortions and were correctly marked by a IQM (true positives), and
the regions that do not contain distortions but were still marked
(false positives). ROC captures the relation of these two quanti-
ties for a varying classification threshold. The metric that produces
a larger area under the ROC curve (AUC) is assumed to perform
better. To simplify considerations it is convenient to assume that a
certain percentage of observers need to mark the distortion to con-
sider it noticeable. In Fig. 5 (top-left) we present the results for
regions marked by 50% or more observers, but the supplementary
materials also include the data for the ≥25% and ≥75% criteria.

However, AUC values alone may give a wrong impression of the ac-
tual metric performance because usually only a small portion of the
pixels in the images of our experiments showed distortions. Thus,
the reference classification data is strongly unbalanced. For that
reason, in addition to ROC, we also plot Matthews correlation co-
efficient [Baldi et al. 2000], which is robust to unbalanced classi-
fication data. The coefficient indicates correlation of classification
data in the range from -1 to 1, where +1 represents a perfect pre-
diction, 0 no better than random prediction, and -1 indicates total
disagreement between prediction and observation.

5.3 Metric performance comparison

The key question is whether any of the IQM performs significantly
better than the others in terms of detecting noticeable or objection-
able graphics artifacts. The overall metric performance for both
datasets and the two experimental designs is summarized in Fig. 5.
Such summary, however, requires careful interpretation before any
winning or loosing metric can be indicated.

Generalization of ranking. Although the ranking in Fig. 5 is a
good summary of metric performance for a particular dataset, care
must be taken when extrapolating any conclusions outside our mea-
sured data. To test robustness of our ranking to randomization of
images, we computed the distribution of AUC by bootstrapping the
set of images used for each experiment. The procedure involved
computing AUC values 500 times, each time for a random set of
images selected from the original set, so that the number of images
was the same as in the original dataset and some of them could ap-
pear more than once (randomization with repetition) [Howell 2007,
ch.18]. The computed 500 AUC values resulted in the distribution,
which allowed for statistical testing. After applying Bonferroni’s
adjustment to compensate for multiple comparisons [Howell 2007,
p.377], we found no statistically significant differences between any
pair of the metrics in the EG’12 dataset, and only one significant
difference between the metrics on the extreme ranking positions in
the new no-reference dataset. This means that neither dataset pro-
vides conclusive evidence that any of the metrics is better than the
others in a general case, and we cannot generalize the presented
rankings to the entire population of images and distortions. The
main reason for this is that the individual metric performance dif-
fers significantly from image to image depending on the nature of
the underlying distortions. Therefore, no IQM is robust enough
to perform significantly better for the distortions contained in our
dataset.

It is important to note that our method of statistical testing differs
from the methods used in other IQM comparison studies, such as
[Sheikh et al. 2006] and [Ponomarenko et al. 2009]. The statis-
tical testing employed in these studies was meant to prevent false
hypothesis only due to the variance in subjective responses. The
results of those statistical tests show that the ranking of the metrics
is very likely to be the same for a different group of observers while
assuming that the same set of images and distortions is used. Our
testing is much more demanding as it requires the metric to perform
better for any set of images (taken from the original population) in
order to be considered better in the statistically sense.

Overall metric performance. Due to the unbalanced ratio of the
marked and unmarked regions, we refer to Matthews correlation
coefficient instead of the AUC values to assess the overall perfor-
mance of the metrics. The average values of the Matthews coeffi-
cient for all scenes as shown in Fig. 5 are low, ranging from 0.2 to
0.35 for the EG’12 dataset, and between 0.25 and 0.45 for the new
dataset. These values are much lower than Spearman’s rank order
correlation of 0.953 reported for the LIVE database [Sheikh et al.
2006] and 0.853 reported for the TID2008 database [Ponomarenko
et al. 2009] for the best metric (MS-SSIM). However, it must be
flagged that Spearman’s correlation, although also scaled from -1 to
1, is different to Matthews coefficient, as discussed in Section 5.2.
The low correlation values indicate that classifying distortions in
the distortion maps is a much more difficult task than correlating a
single value per image with the MOS. It also means that our dataset
is a more demanding and accurate test for IQM since it can point out
the areas where the metric’s performance could be improved. Fig. 6
summarizes the Matthews correlation coefficients between the met-
ric predictions and subjective responses in the with-reference ex-
periment. As can be seen the highest correlation is achieved for the
high-frequency-noise distortions, while for high-contrast structured
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Figure 5: The performance of quality metrics shown as ROC plots (top-left), Matthews correlation (bottom-left) and ranked according to the
area-under-curve (AUC) (right) (the higher the AUC, the better the classification into distorted and undistorted regions). The percentages
indicate how frequently the metric on the right results in higher AUC when the image set is randomized using a bootstrapping procedure.

noise with only localized appearance (e.g., in the kitchen (#4) and
red kitchen (#5) scenes) the correlation drops abruptly. Images with
mixed distortions seem to be problematic as well.

5.4 Analysis of image quality metric failures

The ranking plots in Fig. 5 reveal different performance of the met-
rics for both datasets. HDR-VDP-2 performed the best for the
EG’12 dataset, but was the second to the last in the new dataset.
Surprisingly, the simple non-parametric correlation metric sCorrel
performed the best for the new dataset, but at the same time it
was the worst metric for the EG’12 dataset. This unexpected re-
sult cannot be easily explained by looking at the aggregated results
and requires investigating individual images. In the following we
summarize our analysis of individual images and reveal the most
pronounced cases of metric failure.

Brightness and contrast change is a very common artifact of
many rendering algorithms, as discussed in Section 3.1, and also
the cause of failure of most advanced IQM. The best example of
that is the sala (#28) scene shown in Fig. 7. The brightness differs
significantly between the test and reference images for all surfaces,
but the observers marked only the floor and in a lesser extent the
walls, both affected by low-frequency noise. The noise was more

visible on the floor than on the walls because the floor lacked texture
and thus did not mask the noise. One metric that excelled in this
task was sCorrel, with Matthews correlation exceeding 0.6. This
is because non-parametric correlation is also invariant to non-linear
transformations of pixel values, including low-frequency brightness
changes. The second best performing metric, sCIELab, contains a
band-pass model of the CSF, which attenuates low-frequency varia-
tions and thus makes this metric more robust to brightness changes.
Although HDR-VDP-2 also includes a band-pass CSF model, it is
far too sensitive to contrast changes to disregard numerous supra-
threshold pixel modifications. Even MS-SSIM, which partially re-
lies on the measure of correlation, did not perform much better than
a random guess for this image. This shows that invariance to bright-
ness and contrast changes must be an essential feature of any IQM
that needs to reflect the observers’ performance in the side-by-side
comparison or non-reference tasks.

Visibility of low-contrast differences. For several scenes the test
images have been computed using instant global illumination (IGI)
while the reference images have been generated by path tracing,
which often features certain amount of stochastic per-pixel noise.
One example of such an image pair is the disney (#3) scene shown
in Fig. 8. While the stochastic noise in a well-converged image is
usually invisible, and thus remains unmarked in subjective experi-
ments, it clearly affects the absolute pixel values and image struc-
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Figure 6: Matthews correlation coefficient for predictions of HDR-VDP-2, SSIM, MS-SSIM, sCIE-Lab, sCorrel, and Absolute Difference with
respect to subjective responses (with-reference experiment). Results are grouped according to the type of artifact as indicated at the bottom.
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Figure 7: Scene sala (top), distortion maps for selected metrics
(2nd and 3rd rows), ROC and correlation plots (bottom). Most
metrics are sensitive to brightness changes, which often remain un-
noticed by observers. sCorrel is the only metric robust to these arti-
facts. Refer to the legend in Fig. 5 to check which lines correspond
to which metrics in the plots.

ture. Both AD and sCorrel metrics are sensitive to such differences,
so they report distortions regardless of their visibility. What makes
sCorrel insensitive to global brightness changes, makes it also in-
sensitive to the amplitude of the noise, which prevents this metric
from finding a reliable visibility threshold. For that reason both
metrics poorly correlate with subjective data, as seen in the plot
of Fig. 8. The metrics specifically tuned for near threshold sig-
nal detection, such as HDR-VDP-2, performed much better in this
task. This stresses the importance of proper visual system model-
ing, which improves the metric’s accuracy for the near-threshold
distortions.

Plausibility of shading. A similar kind of distortion can be seen
differently depending whether it leads to plausible or implausible
shading. For example, two scenes shown in Fig. 9 contain VPL
clamping and photon leaking distortions, respectively, near the cor-
ners. In the case of the sponza (#33) scene photon leaking results in
brightening of dark corners. This was marked as distortion by most
observers because bright patches are unlikely to be found in dark
corners. However, the VPL clamping in the sibenik (#32) scene

������������

����	��
�����	��
� ��������


����
��
����
��
�����������	
������������	
� ����������������

�
�

���
�

�� ���		�����		��

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

Marked by more than 50% of observers

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

M
a
tt
h
e
w

s
 c

o
rr

e
la

ti
o
n

True positive rate

Figure 8: Scene disney: simple metrics, such as sCorrel and AD,
fail to distinguish between visible and invisible amount of noise re-
sulting in worse performance.

resulted in the opposite effect, the corners were darkened. Such
distortion was marked by much fewer observers because darken-
ing could have resulted from self-shadowing and in fact appeared
realistic in the given context. All metrics failed to distinguish be-
tween these two cases. This suggests that robust IQM may require
a higher-level analysis of scene and illumination that could distin-
guish between plausible and implausible patterns of illumination.
This is difficult to achieve if images are the only source of informa-
tion, but could be possible if information about the 3D scene and its
shading were available [Herzog et al. 2012].

Spatial accuracy of the prediction map. Many sophisticated met-
rics perform often worse than the AD because they are unable to
precisely localize distortions. This is well visible in the dragons
(#19) scene shown in Fig. 10. The distortion maps for MS-SSIM
show visible differences that widely disperse from the edges of the
dragon figures into the background regions that do not contain any
physical difference. This problem affects mostly multi-scale met-
rics, such as MS-SSIM and HDR-VDP, but SSIM is also affected
because of its 8×8 sliding window approach, which limits the effec-
tive accuracy of the distortion map. This observation suggests that
the metrics should employ techniques that respect object bound-
aries and thus can produce more accurate distortion maps.
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Figure 9: Photon leaking and VPL clamping artifacts in scenes
sponza and sibenik result in either brightening or darkening of
corners. However, darkening is subjectively acceptable, whereas
brightening leads to objectionable artifacts.

6 Conclusions and future work

In this work we propose rendering-oriented datasets for image qual-
ity evaluation, which provide detailed distortion maps along with
the probability of their detection by human observers. We show
that objectionable distortions marked by the observers that did not
see the reference image are strongly correlated in terms of their
spatial location with the distortions marked in the presence of the
reference image. This may suggest that by further improvement
of full-reference IQM, we can achieve quality predictions similar
to no-reference human judgments, which should be an easier task
than the development of a no-reference IQM that directly mimics
the human perception. Full-reference perceptual experiments, on
the other hand, may potentially be approximated by a no-reference
experiment if a reference image is not available.

For existing full-reference IQM our datasets turned out to be very
demanding, and our analysis of metric failures suggests directions
for improvement. The relatively good performance of the simplis-
tic non-parametric correlation measure (sCorrel) clearly indicates
its importance. Although SSIM and MS-SSIM also incorporate a
correlation factor their performance is strongly influenced by their
excessive sensitivity to brightness and contrast changes. Clearly,
near-threshold contrast accuracy is important to disregard all non-
noticeable distortions. At the same time proper spatial distortion
localization is required, which is the problem for all multi-scale ap-
proaches, in particular, in the proximity of high contrast distortions.
In general, the performance of state-of-the-art IQM in graphics ap-
plications is not very consistent, and one should not be too reliant
on them. In particular the IQM originating in the image/video com-
pression community may not be the most suitable for graphics ap-
plications where the artifacts are often very distinct.

We believe that all those insights are essential towards improving
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Figure 10: Dragons scene contains artifacts on the dragon figures
but not in the black background. Multi-scale IQM, such as MS-
SSIM and HDR-VDP-2, mark much larger regions due to the dif-
ferences detected at lower spatial frequencies. Pixel-based AD can
better localize distortions in this case.

existing metrics or developing new ones, which we relegate as fu-
ture work. Upon the public release our datasets should be useful to
train such future metrics and compare their performance. However,
for a systematic and quantitative study of metric failures further ex-
periments are required.

Our datasets provide the probability of noticing distortions, which
could offer interesting insights on the saliency of artifacts in render-
ing. Such artifact saliency could be investigated in the context of
comparing a pair of images, searching for distortions within a sin-
gle image, as well as task-free image inspection. Similarly to the
concept of visual equivalence [Ramanarayanan et al. 2007], objec-
tionable distortions dictate less conservative requirements on image
quality, thus enabling further computational savings when used as
the measure of desirable quality.

Our published datasets could also be interesting for the broader vi-
sion science community, as the complex stimuli presented in our
experiments differ significantly from the usual “laboratory” ones
and enable inspection of higher-level vision tasks. However, more
experiments (based on photo-realistic images) are clearly needed
as well as a further study of cognitive factors in the quality assess-
ment, such as inattentional blindness or task fatigue. To this end,
a speculative question raised by our results is whether it is benefi-
cial and promising at all to model the early human vision processes
(bottom-up modeling) or whether we should concentrate on data-
driven approaches that are statistically trained on subjective results
(top-down modeling). The bottom-up approach may result in worse
than expected predictive power for complex images, while the top-
down approach is prone to over-training as image quality databases
will offer only very limited sample from the huge population of all
potential images and distortions. This study is a step towards com-
bining both approaches that enables training and testing the metrics
of any complexity on the per-pixel basis.
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Abstract

Synthetically generating images and video frames of complex 3D scenes using some photo-realistic rendering soft-

ware is often prone to artifacts and requires expert knowledge to tune the parameters. The manual work required

for detecting and preventing artifacts can be automated through objective quality evaluation of synthetic images.

Most practical objective quality assessment methods of natural images rely on a ground-truth reference, which

is often not available in rendering applications. While general purpose no-reference image quality assessment

is a difficult problem, we show in a subjective study that the performance of a dedicated no-reference metric as

presented in this paper can match the state-of-the-art metrics that do require a reference. This level of predictive

power is achieved exploiting information about the underlying synthetic scene (e.g., 3D surfaces, textures) instead

of merely considering color, and training our learning framework with typical rendering artifacts. We show that

our method successfully detects various non-trivial types of artifacts such as noise and clamping bias due to insuf-

ficient virtual point light sources, and shadow map discretization artifacts. We also briefly discuss an inpainting

method for automatic correction of detected artifacts.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Image Quality Assessment

1. Introduction

While photo-realistic rendering methods are getting more
advanced over time, various rendering artifacts still appear
as a problem in the results. These artifacts can be reduced or
completely avoided by fine-tuning the rendering algorithm’s
parameters through trial and error. But this manual process
is often time-consuming and requires some level of under-
standing about the inner machinery of the rendering method
in consideration. Analogous to the field of objective image
quality assessment where one can use computational qual-

ity metrics that predict the subjective quality evaluation, the
objective quality assessment of synthetic images is highly
beneficial because it eliminates the tedious manual labor re-
quired otherwise. Additionally, such a metric enables auto-
matic detection and elimination of rendered images of unac-
ceptable quality. To that end we propose an objective image

quality metric for realistic image synthesis based on a ma-
chine learning system trained with various types of render-
ing artifacts.

Building a quality metric for synthetic images has addi-
tional challenges over a metric for natural images. The met-
rics for natural images are often full-reference, namely they
rely on a non-distorted copy of the image for evaluating the
distorted (test) image. Unlike in applications like compres-
sion and watermarking, in rendering such a reference image
is often not available in practice and a metric for synthetic
images should detect and predict the strength of rendering
artifacts based solely on the test image. Although humans of-
ten detect distortions just as well without a reference, in con-
trast non-reference image quality metrics are usually inferior
in performance to full-reference metrics [WR05]. Thus, the
absence of a reference image is a significant constraint in
metric design.

The central idea of this paper is to leverage 3D scene in-
formation to compensate for the lack of a reference image
while detecting rendering artifacts. Any scene specific per
pixel data data beyond color, such as depth, texture and ma-
terial, is difficult, if at all possible, to obtain reliably in natu-

c© 2012 The Author(s)
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.
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ral images. This is not the case for rendered scenes, and we
show that taking full advantage of this additional informa-
tion enables non-reference quality assessment of synthetic
images with a prediction performance comparable to full-
reference metrics.

• a fully automatic metric that detects rendering artifacts
without a reference,

• a learning framework for common rendering artifacts that
also guides our artifact removal,

• a human visual system-inspired model that predicts the
perceived strength of rendering artifacts,

• a dataset of photo-realistic rendering artifacts including
subjective artifact probability detection maps.

In a subjective study, we show that the performance of our
metric matches the state-of-the-art in full-reference metrics.
Our metric could be employed in rendering farms, as well as
in controlling the rendering quality in client-server or cloud
computing settings. One could also use it as a diagnostic tool
for rendering quality, or in an optimization framework to find
optimal parameters for a rendering method.

2. Related Work

In this section we review previous work on non-reference

(NR) image/video quality assessment. First, we discuss the
NR metrics for imaging applications, and then, we present
rendering-specific solutions. For a detailed discussion of
the full-reference (FR) and reduced reference (RR) qual-
ity metrics we refer the reader to the recent textbooks
[Win05, WB06, WR05]. FR metrics tailored for computer
graphics and HDR imaging applications are summarized in
[RWD∗10, Ch. 10] and [MKRH11].

NR metrics in imaging applications The key difficulty in
developing NR metrics is the absence of a non-distorted ref-
erence image or some features representing it. Common ap-
proaches to compensate for this are (1) modeling distortion-
specific characteristics, (2) using natural scene statistics, and
(3) employing learning based classification methods.

Distortion-specific NR methods capitalize on the knowl-
edge of artifact type and its unique characteristics [WR05,
Ch. 3]. Examples include metrics for detecting blockiness
due to lossy JPEG and MPEG compression and ringing at
strong contrast edges [WB06], blurriness due to high fre-
quency coefficients suppression [CCB11, LH11], banding
(false contouring) at low gradient regions due to the ex-
cessive quantization [DF04]. There are some attempts of
building more general NR quality metrics, which evaluate a
combined contribution of individually estimated image fea-
tures such as sharpness, contrast, noise, clipping, ringing,
and blocking artifacts [WR05, Ch. 10]. The contribution of
all features including their simple interactions is summed up
with weights derived through fitting to subjective data.

Natural scene statistics [Sim05] derived from artifact-free

images can be helpful in detecting artifacts. Sheikh et al.
show that noise, blurriness, and quantization can be iden-
tified as deviations from these statistics [SBC05].

Image features extracted from distorted and non-distorted
images are used for training machine learning techniques
such as support vector machines (SVM) or neural networks.
Moorthy and Bovik [MB10] use generalized Gaussian dis-
tribution (GGD) to parametrize wavelet subband coefficients
and create 18-D feature vector (3 scales × 3 orientations ×
2 GGD parameters), which is used to train an SVM clas-
sifier based on perceptually calibrated distortion examples
from the LIVE IQA database. The classifier discriminates
between five types of mostly compression-related distortions
and estimates their magnitude. Saad et al. [SBC10] train a
statistical model to detect distortions in DCT-based contrast
and structure features.

Discussion: Our technique differs from previous work in
three ways: (1) we use depth buffer and albedo information
in addition to color, (2) our output is a distortion map rather
than a scalar value, and thus, we show spatial distribution of
distortions, and (3) our work specializes in rendering arti-
facts rather than compression/transmission related artifacts.

Rendering-specific NR metrics Some metrics in this cat-
egory rely on predicted reference images. In image-based
rendering the mis-registration error of pixels with respect to
the ground truth reference image is a good measure of visual
quality [KSGH09]. In 3DTV applications the lack of ground
truth can be compensated by reprojecting (warping) images
from different cameras to the mid-point view [KSGH09].
Also, when temporal frame replication is performed for re-
ducing the rendering cost or display hold-type blur, simi-
lar reprojection in temporal domain is feasible [MRT99]. In
contrast to these, our method is purely NR in that we do not
need to predict a reference. This is also the case for the recent
work of Berger et al. [BLL∗10] where specialized ghosting
detector explicitly works on an interpolated image.

Other work in computer graphics literature includes a
model of the elevation of contrast discrimination thresh-
old due to visual masking, which can be predicted based
on the texture pattern only [RPG99, WPG02]. An estima-
tor of bias, which mostly leads to blurred shading details,
has been proposed within the progressive photon mapping
framework [HJJ10]. This estimator relies strongly on in-
trinsic renderer information such as derivatives of estimated
lighting function, which becomes feasible only for density
estimation methods with smooth kernel functions. Our data-
driven approach aims for using less rendering specific and
easier to acquire data. Stokes et al. [SFWG04] introduced
a perceptual NR metric, which predicts the contribution of
the indirect illumination components towards perceived im-
age quality. While the metric cannot detect local artifacts,
similar to our metric it considers per pixel reflectance infor-
mation.

Ramanarayanan et al. [RFWB07] proposed metrics that

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.
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Figure 1: Example images with artifacts used for our no-

reference quality metric. Insets show magnified artifacts re-

gions, letters indicate the type of artifact (C: VPL clampling,

G: glossy VPL noise, S: shadow map aliasing). The num-

bered images correspond to the testset used in the user study.

utilize per object reflectance and surface bumpiness in-
formation for training SVM classifier on subjective data.
Their method measures the overall visual equivalence in-
stead of identifying problematic image regions. Křivánek et
al. [KFB10] investigated visual equivalence for instant ra-
diosity (virtual point light) algorithms and proposed a num-
ber of useful rendering heuristics, which were difficult to for-
malize into a ready to use computational model.

3. Overview

In this work, we are interested in automatically detecting
rendering artifacts, which are typical for global illumina-
tion solutions (Fig. 1), and that we briefly describe in Sec-
tion 4. We achieve this via a machine learning approach (see
Section 5) based on the discrimination of rendering-specific
features (Section 5.2) trained on our generated database of
synthetic image pairs (Section 5.1). The whole system is de-
picted in Fig. 2. Note that we do not intend to classify an
image as a whole but rather predict the locations of artifacts
in an image. Optionally, we can “clean” the image making
effective use of inpainting techniques (Section 7) based on
the same set of training image pairs and obtain a “pseudo-
reference” image, which is then used to perceptually nor-
malize the distortion map for the visibility of artifacts (Sec-
tion 8). We present our results in Section 9 and demonstrate
in a user study (Section 10) that our method is competitive
with state-of-the-art reference methods (VDPs). Finally, we
conclude with future prospects in Section 11.

4. Rendering-specific Artifacts

Photo-realistic rendering is still very time-consuming and
rendering a high-resolution, globally-illuminated image may
take several minutes to hours becoming even more critical
in the case of an animation. Therefore, many rendering al-
gorithms trade quality (bias) for speed and often leave it to

the user to find the right parameters, eventually resulting in
algorithm-specific artifacts, which are hard to control, i.e.,
the generated image might look fine partially but exhibits
strong degradations in small areas.

In our experiments we focused on artifacts inherent to
popular rendering algorithms, which comprise Instant Ra-

diosity [Kel97] with glossy virtual point lights (VPLs),
Lightcuts [WFA∗05], and OpenGL rasterization using PCF

shadow maps [RSC87], which produce VPL-based artifacts
(i.e., low-frequency noise), clamping bias (darkened cor-
ners), and shadow map aliasing (jaggy shadow boundaries),
respectively. Examples of images showing these artifacts are
given in Fig. 1. We exclude stochastic noise (pixel-variance),
e.g., anti-aliasing, path-tracing, from our study, which is
much easier to handle and well-studied in the rendering com-
munity [BM98, RPG99, TJ97, KA91]. We also do not dis-
cuss temporal artifacts, which are beyond the scope of this
work [YPG01].

5. Learning Rendering Errors from Examples

Computing the perceived image errors along with the final
pixel colors during the rendering process can be very helpful
for example to adapt the rendering. However, this is only fea-
sible for easily analyzable errors in very specific algorithms,
which often boils down to storing and evaluating lower order
statistics (e.g., variance in path-tracing). In general, estimat-
ing the visual error without a reference is a difficult and ill-
posed problem, which may easily become more demanding
than the rendering process itself. Another issue is that we
may not always have access to the renderer’s source code
or that we simply have not enough understanding of the un-
derlying problem and in particular how to quantify the vis-
ible error. This could be because the rendering problem is
hard to analyze or there are many hidden factors that have a
large impact on the final, perceived rendering quality, like for
example the shape of the geometry, local or global lighting
distribution, scene material, rendering parameters, or even
visual masking effects. All these thoughts have led to our
data-driven non-reference quality metric (NoRM).

5.1. Image Data Collection

The problem of understanding and classifying rendering arti-
facts in general is too complex to be tackled analytically and
we have chosen a data-driven approach that relies on ma-
chine learning. Since the space of artifacts even for one spe-
cific type is high-dimensional, we need many images with
“right” and “wrong” examples to train a classifier initially.
In general, while generating “clean” reference images may
be time-consuming, producing various kind of artifacts in
the rendered images is often trivial. Hence, we generated
a database of rendered images with positive and negative
example-images for each type of artifact (see some exam-
ples in Fig. 1). In contrast to image datasets used in computer
vision tasks, our database comprises:

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.
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Figure 2: Overview of the whole NoRM pipeline. Labels are semi-automatically extracted by differencing and thresholding

the image with its reference and then masking this residual with a coarse user mask. For training the classifier, these labels

are uniformly sampled with equal number of positive/negative samples at which we compute our multi-scale 3D features.

The resulting high-dimensional descriptors are fed to the classifier (SVM). After optimizing parameters and feature dimension

reduction via cross-validation, the classifier can predict artifacts in a new image. For artifact-prone pixels we inpaint reference

patches from the same training image pairs to generate a pseudo-reference that is finally used in our perceptual normalization.

• color image with reference,
• depth buffer,
• diffuse material buffer (textures),

which we refer to as a frame (see Fig. 3 for an example).

The reason why we restrict ourselves to this data – al-
though we could in principle extract more – is that this data
is relatively easy to dump and requires only little modifica-
tion, if at all, of the rendering software. Specifically, these
buffers are commonly stored in a deferred renderer. † Given
a frame we generate other useful data, which we need for
computing feature descriptors: screen-space normals from
linearized depth, and approximate lighting (irradiance) us-
ing the color and material buffer.

In order to focus on artifacts which are above the threshold
of visibility (and also on one specific type of artifacts) dur-
ing the learning stage, initially, a coarse mask is manually
painted over the tone mapped image. In the masked regions
we compute the error between the pixels in the reference and
the artifact-image via differencing. This way the user only
needs to provide a rough mask in which we label those pix-
els for which the error really exists, see Fig. 2. Finally, we
avoid that a few pixels are not assigned artifact labels (e.g.,
due to zero-crossings in the error signal) although neighbor-
ing pixels would indicate so. Therefore, we perform an ad-
ditional dilation plus erosion (morphological closing) on the
labels with a disc of pixel radius 2.

5.2. Features for Classification

Finding good descriptors or a combination of descriptors
that discriminate the feature space well is crucial for any

† The depth buffer is always present in a rasterizer and the mate-
rial buffer could be obtained by rendering the scene shot with only
ambient lighting or using a simple “eye-light shader”.

machine learning approach. We experimented with various
standard techniques to classify and discriminate artifacts
from the remaining “correct” pixels. Those feature descrip-
tors comprised local histograms of color and depth, HoG
(histogram of oriented gradients), multi-scale Hessian, and
frequency domain descriptors based on discrete cosine trans-
form (DCT). We applied these descriptors to compute fea-
tures for our depth, color and material buffer pixels. It turned
out that none of those techniques was discriminative enough
to give satisfying results and we had to dig more into the ren-
dering process itself exploiting scene and rendering-specific
knowledge, which we will describe further.

���������� �����	� 
	���
��� ����	����

Figure 3: Example of the data used as input for training.

5.2.1. Texture Removal

Instead of computing features in the material buffer and in-
creasing the dimension of the feature space, we partially re-
move the correlation of pixel color and texture to obtain the
approximate lighting (compare the left image in Fig. 4 with
Fig. 3). We only restrict ourselves to diffuse textures since
these usually convey the most information about material
structure in a synthetic scene. For diffuse surfaces in a scene
this provides us with information about irradiance instead of
pixel radiance, which is locally low-dimensional. Since the
color buffer is given as HDR image, we simply divide the
color pixels by the corresponding linearized material pixels.
Care has to be taken with material values clamped to zero
where the original lighting information in one or more color
channels is essentially lost. For such rare cases we diffuse
the lighting in the clamped color channels from spatially

c© 2012 The Author(s)
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Figure 4: Computing statistics of lighting in a local, con-

tiguous neighborhood (red patch) at different scales.

neighboring pixels, that are not affected by clamping. En-
tirely black material pixels are considered as light sources or
specular surfaces and the corresponding color pixels are not
altered. These heuristics worked well for our image database
but are certainly not always satisfactory when dealing with
complex glossy materials possibly consisting of several lay-
ered textures. For such a scenario the user can still provide
the lighting image instead of relying on an ill-posed decon-
volution of BRDF and lighting.

5.2.2. Screen-space ambient occlusion

Screen-space ambient occlusion (SSAO) has been developed
for the GPU to efficiently compute an approximate scalar
ambient-occlusion term sao(x) solely based on the depth
buffer. Essentially, ambient-occlusion computes the solid-
angle covered by the non-occluded environment (far field)
in the visible hemisphere of directions. Although SSAO is a
crude approximation in screen-space, it can deliver good re-
sults for pixels where the surrounding occluders are all vis-
ible in the depth buffer. Ambient occlusion is highly corre-
lated with the harmonic mean distance to the surrounding
surfaces, which is often taken as an upper bound for the ir-
radiance gradient of the indirect lighting [WRC88]. Since
many lighting artifacts are due to large indirect gradients,
the complement, 1− sao(x), is also a good indicator for po-
tential artifacts.

5.2.3. Rectified Tiles – Descriptors in Texture-space

In contrast to computer vision approaches, the presence of
exact depth per pixel allows us to “unfold” a local image re-
gion from the surface captured by the depth buffer and trans-
form it to its canonical view. This way, we are able to pre-
serve depth discontinuities and perspective when computing
local feature descriptors (e.g., histograms) and essentially re-
duce the dimensionality of the classification problem since
we can operate in 2D texture space‡. For computing the lo-
cal texture parametrization of the decals we use discrete ex-

ponential maps [SGW06] computed over the depth buffer,
which is based on Dijkstra’s graph-distance algorithm. An

‡ For 30.000 randomly extracted 16 × 16 pixel blocks from the
glossy VPL images we run PCA on rectified, non-rectified blocks
and captured 99.5% of the variance in 12 (10 for shadow map alias-
ing), 16 basis vectors out of 256, respectively.

example of the computed decal parametrization is shown in
Fig. 5. The so computed texture parametrization gives us the
mapping from 2D texture space to projected 2D image space
but we need the inverse mapping. Instead of directly “un-
wrapping” the surface colors via a splatting approach, we
first compute the inverse texture mapping (the displacement
field) via splatting and then use this (smooth) vector field
for gathering the surface colors [Sze10]. Since splatting may
lead to holes for overly stretched pixels, we fill the “defor-
mation vector field” using a push-pull approach [GGSC96].
This two-stage approach better preserves high-frequencies
in the colors and introduces only a small amount of blur due
to (bilinear) resampling when gathering the color via the in-
verse texture mapping. To this end, we use the computed
parametrization for computing histograms of oriented gradi-
ents (HoG) directly in texture space but also for the inpaint-
ing described in Section 7.

5.2.4. Joint-Bilateral Filtering

To detect high-frequency artifacts in the image we perform
frequency analysis. To eliminate the influence of edges and
discontinuities in the depth buffer we blur the image with
a joint-bilateral filter with weights steered by the depth and
surface normal differences of the pixels under the filter foot-
print. The Gaussian variance of the depth and normal filter is
automatically estimated from the 80-th and 91-th percentile
of the depth and normal angle histogram, respectively. Next,
we compute the residual as the filtered lighting subtracted
from the original lighting image. For each feature sample we
perform a local discrete cosine transform (8×8 DCT) in the
residual image within a weighted Gaussian window (Gabor
filter) at 2 different scales in a pyramid.

5.2.5. Local Statistics

Artifact image regions have different color distributions than
the reference counterpart and we compute the first four cen-
tral moments (mean, variance, skewness, kurtosis) in a local
window of 16×16 pixels in 3 different scales. Similar to the
joint-bilateral filtering, we only compute the statistics in a
window over pixels that correspond to a contiguous surface
in the depth buffer. In order to do so, we segment the depth
buffer in piecewise continuous image segments via k-means
clustering of pixels with respect to depth and surface normal
(see Fig. 4).

6. Classification and Feature Optimization

We have proposed and tested several standard as well as spe-
cialized features described above. However, many of those
features are not useful for our task or might be redundant.
Certainly, using too many features, it is likely that the model
overfits the training data and that we cannot provide enough
examples to train the classifier efficiently. Hence, we have to
select a subset from our feature pool such that the combined

c© 2012 The Author(s)
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feature is the most discriminative with respect to our artifact
type.

Before the optimization, we linearly rescale the extracted
feature vectors such that the 5th percentile of all data points
maps to 0 and the 95th percentile to 1. This way, we esti-
mate the feature bounds only from the “inlier” training data,
i.e., we only account for samples within a standard deviation
σ ≈ 1.5 if we assume data samples are Gaussian distributed.
Then, similar to [LSAR10], we use a greedy approach to se-
lect the “best” feature subset. The idea is to select the feature,
one at a time, that minimizes the cross-validation error mea-
sure (BER see below) computed over the training set and add
this feature to the current best feature set, which is initially
empty. This procedure is continued till the cross-validation
error of the classifier is increased when adding more fea-
tures (i.e., increasing the feature dimension). The resulting
features after this optimization starting with the entire fea-
ture pool are listed in Tab. 1. We use 10-fold cross-validation
over the feature descriptors (computed from subimages) and
split the randomly permuted training features into 90% train-
ing and 10% validation data and perform 5 iterations (i.e.,
evaluate the feature performance on half of the data set).

For the classifier we use a support vector machine (SVM)
with a radial basis function (RBF) kernel. The two main pa-
rameters of the SVM, the regularization parameter C, and the
RBF kernel width γ, are automatically computed by again
minimizing the cross-validation error in a hierarchical man-
ner (coarse-to-fine grid search). The best parameters for each
type of artifact can be found in Table 1.

When testing the classifier on new (unseen) images,
which may contain much fewer artifacts than non-artifact
pixels, the classification may result in high recogni-
tion rates (>90%) even when every pixel is classified
as “non-artifact”. To get a more sensible error mea-
sure, we chose the balanced error rate (BER): BER =
1
2

(

|{i | l(i)∈Ω+∧p(i) 6=l(i)}|
|Ω+|

+
|{i | l(i)∈Ω−∧p(i)6=l(i)}|

|Ω−|

)

, where

l(i) is the correct label, p(i) is the predicted label of sam-
ple i and Ω+, Ω− is the set of positive, and negative labeled
samples.
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Figure 5: Outline of the proposed inpainting algorithm

(without the material decorrelation) illustrated for one patch

including texture parametrization computed as described in

Section 5.2.3.

7. Artifact Correction via Inpainting

Certainly, detecting artifacts is appealing, but we would also
like to remove the artifacts to obtain a higher quality, accept-
able image, which we can utilize as a “pseudo-reference”,
see Section 8. In cases where the artifacts are minor and
cover only a small fraction of the image, this is possible. We
already described how to compute the likelihood of pixels
to be prone to artifacts of certain types using SVM classi-
fication. An obvious approach to artifact elimination is to
perform regression and learn the error function of the arti-
fact training images. However, our tests using support vec-
tor regression were unsatisfactory, perhaps because the error
function is often too noisy. Hence, we chose an approach
based on context-sensitive inpainting.

First of all, during the correction phase we only touch
those pixels that are classified as artifacts with a certain min-
imum strength. The main idea is to inpaint tiny images seam-
lessly into the detected artifact regions that match the local
configuration of this region. Again, we exploit the additional
information in the depth and material buffers to facilitate the
inpainting process. First, we only inpaint rectified images
that live in texture space, which we glue onto the contiguous
surface as described in Section 5.2.3. Second, we remove
the textures from the image before the inpainting process
(see Section 5.2.1). Nevertheless, the inpainting procedure
must still be able to preserve high-frequency edges (e.g.,
caustics, shadows) and must also hide the transition at the
inpainting boundary. The later is achieved via linear blend-
ing of the splatting result with the original image, where the
blending weights are computed from the binary artifact la-
bels (red pixels in Fig. 5), which we blur with a Gaussian
(σ = 3) after dilating them by a quarter of the patch size
(i.e., 4 pixels). We also experimented with Poisson image
blending [PGB03] but it produced sometimes unrealistically
looking color bleedings.

Now, we need to find artifact-free image blocks to be
painted into the local artifact region. Our inpainting operates
in LDR YCbCr color space and we only inpaint tone mapped
luminance (Y) while chroma (CbCr) is copied from a fil-
tered version of the artifact image. We use a joint-bilateral
filter as described in Section 5.2.4. For each artifact pixel a
local image block (16× 16 pixel) is extracted and rectified,
which is then used to construct an index to query a database
for the k-nearest neighbors (k-nn). This database is initially
generated from our training image pairs and contains tens
of thousands of rectified reference lighting patches together
with the artifact descriptor index. As a descriptor we use the
downsampled luminance (8×8) of the rectified artifact patch
multiplied with a Gaussian envelope to penalize off-center
pixels. In order to detect also large scale patterns, we use a
multi-scale search and extract image blocks from the first l

levels (l = 2) of a Gaussian pyramid. Therefore, the k re-
trieved reference patches are first upsampled (bicubic) to the
corresponding scale of the search descriptor, then cropped
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to our patch resolution, and blended according to their k-nn
distance norm (L1) before being warped to image space us-
ing the computed texture parametrization. Finally, after all
pixels are sampled, the material is added back and the image
is blended with the original image as described previously.
The main algorithm steps are illustrated in Fig. 5.

8. Perceptual Normalization of Image Contrast

While a binary metric that detects the presence or absence
of common rendering artifacts is useful, for most practical
purposes it is also desirable to predict the perceived strength
of these artifacts. The prediction of the perceived strength
of artifacts in no-reference metrics involves additional chal-
lenges due to the absence of a reference image (Ire f ). At
a conceptual level, full-reference metrics often assume that
the evaluated test image Itst is simply Ire f plus some distor-
tions D, and thus, D can be obtained by Ire f − Idst . Without
Ire f , obtaining D from Idst is not trivial. To that end, we take
advantage of the observation that the rendering artifacts we
consider are of medium to high frequency, and approximate
Ire f via inpainting Itst (Section 7).

Given a rendered image, we employ a multiscale lumi-
nance contrast perception model [MDK08] to compute the
hypothetical supra-threshold HVS response. The outcome of
this computation is perceptually linearized local contrast of
the input image. To do so, we first compute a 6-level Lapla-
cian pyramid of image luminance L. Then, a Wilson’s trans-
ducer [Wil80] function T is applied at each pyramid level
Lk. The transducer function operates on HVS-referred values
which take human spatial contrast and adaptation luminance
sensitivity into account. The luminance adaptation map is
approximated by the low-pass residue of the Laplacian pyra-
mid.

The process above is repeated separately for Ire f and Itst :
given the luminance differences Lk and HVS sensitivities
S, the transducers non-linearity models the contrast self-
masking properties of the visual system at each pyramid
level k. The differences of HVS responses scaled in Just No-
ticeable Difference (JND) units are then combined using a
Minkowski summation with exponent 2. Formulae and im-
plementation details are summarized in the supplementary
material.

9. Results

We have tested our method on a set of 24 images gener-
ated from several 3D scenes (subset shown in Fig. 1), com-
posed of 6 images containing glossy VPL artifacts, 12 im-
ages with shadow map artifacts, and 6 with VPL clamping
artifacts. These images were rendered with different soft-
ware: a GPU-based deferred renderer, an instant radiosity
(VPL) renderer, a pathtracer and lightcuts [WFA∗05] imple-
mentation, for producing the shadow map artifacts, glossy
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Figure 6: Additional depth and material information im-

proves the artifact detection significantly (4th image) com-

pared to pure image-based classification (3rd image).

VPL noise and clamping bias, and reference images, respec-
tively. Each image has a corresponding depthbuffer, diffuse
material buffer and a reference image. This small number of
images may seem too low compared with pure image classi-
fication. However, remember that we train the classifier only
on small multi-resolution subimages, which are also of low-
dimension due to our decorrelation with geometry and ma-
terial.

For training each artifact we extracted approximately
15.000 randomly sampled subimages (50% positive and
50% negative samples) from all images excluding the one
for present testing. The most discriminative features we have
found (which are also shown in Table 1) are: SSAO (Sec-
tion 5.2.2), rectified depth histograms of oriented gradients
(HoG) (see Section 5.2.3), rectified light HoG (i.e., color
without textures as described in Section 5.2.1), multi-scale
light, depth, and material statistics (i.e., variance, skewness,
kurtosis, Section 5.2.5), and frequency analysis of the dif-
ference of bilateral-filtered images (bilateral DCT) (Sec-
tion 5.2.4). SSAO is very effective in detecting clamping
bias but only in combination with other features since iso-
lated, it always predicts clamping even in reference images.
The most important feature overall is the (rectified) HoG for
color, which also slightly outperformed the bilateral DCT
feature. In general, having more information behind the pix-
els clearly improves classification as shown in Fig. 6. We
tested our descriptors on SVMs and approximate k-nearest
neighbor (k-nn) classifiers (with 5 k-nn). The difference is
quite diverse. For the shadow artifacts SVM clearly outper-
formed k-nn (approx. 10% smaller error) whereas for rela-
tively fuzzy artifacts, clamping and VPL noise, both meth-
ods performed similar. Therefore, in our results we only pro-
vide results for SVM.
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Figure 7: Mean ROC curves for the shadow map (left), VPL

clamping (center), and glossy VPL artifacts (right).

A visualization of our detected artifacts versus ground
truth user annotations is shown in Fig. 8. Further, numer-
ical results and statistics can be found in Table 1 and in
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the average receiver operating charateristics (ROC) curves
(Fig. 7) for the different artifact classes. The classification
works best for the shadow mapping artifacts. This is not sur-
prising as shadow aliasing has usually a distinctive regular
structure and high contrast, whereas the VPL clamping bias
and glossy noise is difficult to address locally and without
the global scene knowledge might be mistaken as shadow or
highlights, respectively. Moreover, the initial user labeling is
very subjective and any mistake (wrongly marked or missing
artifact label) confuses the classifier rendering the problem
much more complex and noisy, which also shows the down-
side of a data-driven approach. However, we highlight (in
Sections 8,10) how to transform the initial noisy classifica-
tion into a perceptualized output in form of a distortion map,
which is comparable with reference-based VDPs. Besides,
we should stress that some of our training examples (clamp-
ing bias) exhibit only subtle artifacts, which were even con-
fused by human subjects in our user study.

Class Features SVC

(C, γ)
Img.

#
Acc.

[%]
1-BER

[%]

S
ha

do
w Light-HoG-16×4×4, Light

Bilateral DCT, Depth (Skew)

31.1,0.036 #5 95.7 89.5
31.1,0.036 #6 96.2 84.7
31.1,0.036 #7 91.2 69.2
31.1,0.036 #8 86.6 90.4

C
la

m
pi

ng SSAO, Depth-HoG-16×2×2,
Light-HoG-16×3×3, Light
(Skew), Mat. (Var, Kurt)

10.3,0.027 #9 92.0 74.2

10.3,0.027 #10 91.6 58.8

V
P
L

no
is

e SSAO, Depth-HoG-16×2×2,
Light-HoG-16×3×3, Light:
(Var, Kurt), Depth: (Var,
Skew), Mat.: (Var, Skew)

9.2,0.02 #1 91.2 65.6
9.2,0.02 #2 85.0 68.2
9.2,0.02 #3 95.0 89.9
9.2,0.02 #4 75.8 71.6

Table 1: The classification accuracy (Acc) and balanced er-

ror rate (BER) for different artifacts together with classifica-

tion parameters (SVC) and the optimized feature set for each

artifact type. The 3 dimensions of the HoG feature define the

angular, spatial-X, and spatial-Y resolution of the histogram,

respectively. The statistics over local light, depth, material

(Mat.) regions are Variance (Var), Skewness (Skew), Kurto-

sis (Kurt). Corresponding predictions are shown in Fig. 8.

The inpainting procedure works well for diffuse surfaces
and even better for textured surfaces, which mask small
inpainting errors (see Fig. 8, 2 last rows). On glossy sur-
faces with smooth low-frequency gradients and color bleed-
ings inpainting seams may become visible but the overall
quality is still improved. In particular, the shadow map ar-
tifacts are easy to cure and are perceptually hard to dis-
tinguish from the reference. However, there are also a few
challenges. First, there is a tradeoff between patch size and
reconstruction quality. If the patches are too small the arti-
fact structure might be overlooked (e.g., for the shadow map
aliasing we need a larger window to recognize the “jaggy”
structure of the edge), whereas too large patches quickly in-
crease the search space (curse of dimensionality) and pro-
duce overly blurred results. Besides, the larger the variety of
image patches in the database, the better is the resulting in-
painting quality. Currently, we extract in total around 50.000

16×16 patch pairs from the first 2 pyramid levels of the ref-
erence and artifact images. The patches also compress well
and any dimension reduction (e.g., via PCA) would further
speed up the inpainting and reduce the memory footprint
considerably. Such improvements we leave as future work.

In general, the results of the inpainting procedure are sub-
jectively better than the original distorted images, but they
are not perfect and may still exhibit perceivable differences
to artifact-free images. However, the main purpose of the in-
painting step is to generate a pseudo-reference that makes
perceptual normalization possible resulting in clearly im-
proved quality of the distortion maps, as one may see in
Fig. 8 (row 8) as well as in correlation values (Table 2).

10. User Study

We performed a subjective user study to validate the pre-
diction performance of our metric. To our best knowledge
this was the first attempt to subjectively label locations of
visual artifacts caused by rendering techniques both in with-
and without- the reference setups. Furthermore, we per-
formed the comparison of existing full-reference metrics,
which were not validated for the detection of rendering ar-
tifacts before. In this section, we summarize the obtained
results, please refer to the supplementary material for a de-
tailed discussion of the user study.

In the experiment, we displayed the set of 10 rendered
test images (see Fig. 1) on a calibrated monitor to a group of
20 observers (15M/5F, aged 21–38, all of whom had normal
or corrected vision). The observers were asked to mark the
perceived artifact regions using a custom scribbling appli-
cation. We performed two experiments: with-the-reference,
where an image exhibiting rendering artifacts was presented
along with the reference image; and without-the-reference,
where subjects saw only the distorted image.

The marked regions for each trial were stored as distor-
tion maps, which were then averaged over all subjects to find
the mean subjective response. Next, the metric prediction for
the corresponding stimulus was computed. Besides our pro-
posed metric, we involved two full-reference metrics in the
evaluation. Results of the experiment are visually summa-
rized in Fig. 8. For the numerical analysis, we computed the
2D correlation between the mean subjective response and the
metric prediction (for each test image and each experiment
separately), as shown in Table 2.

Interestingly, the subjective distortion maps show appar-
ent agreement between the artifact perception experiments in
the presence and absence of the reference, which is corrobo-
rated by high correlation values (second column in Table 2).
The exceptions are images 9 and 10, where the perceptual
strength of clamping bias artifacts is rather low. The subjects
are seemingly able to mark strong artifacts quite accurately
without seeing the reference, while for perceptually weak ar-
tifacts, the reference is needed.
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Figure 8: Results of the user study for test images #1

and #5: average subjective artifact strenghts, and the com-

parison to predictions of current state-of-the art full refer-

ence metrics as well as the proposed no-reference technique.

(Please refer to the supplementary material for all the images.)

Distortion maps produced by classifier (NoRM) are bi-
nary, meaning the presence or absence of an artifact. These
distortion maps sometimes tend to show too many locations,
which may be correct, but the artifact severity is in reality
obviously not uniform. However, thanks to the inpainting
procedure, we are able to perform the perceptual normal-
ization step (Section 8), which makes the strength of de-
tected artifacts substantially closer to average subjective dis-
tortion maps. The prediction after the perceptual normaliza-
tion (NoRMperc.) is a continuous supra-threshold distortion
map calibrated in JND (just noticeable differences) units.

We compared the predictions of the proposed no-
reference metric NoRM, with the state-of-the-art
full-reference metrics HDR-VDP2 [MKRH11] and
SSIM [WBS∗04]. Neither HDR-VDP2 nor SSIM were
designed or calibrated to predict the strength of render-
ing artifacts, but the distortion maps they produce are
quite plausible. According to average correlations to the
subjective ground truth distortion maps, SSIM slightly
outperforms HDR-VDP2 (0.56 vs 0.535). The result of
our metric (0.534) is qualitatively quite similar, making
it competitive with current full-reference metrics in the
targeted application. Finally, the perceptual normalization
step makes predictions of NoRMperc. even closer to the
experimental ground truth, resulting in the highest average
correlation (0.586).

Image

#

subj.

no-ref.

HDR-

VDP2

SSIM NoRM NoRM

perc.

1 0.903 0.725 0.674 0.628 0.662
2 0.908 0.579 0.538 0.558 0.590

3 0.828 0.778 0.643 0.682 0.727
4 0.913 0.495 0.469 0.298 0.436
5 0.769 0.542 0.602 0.677 0.748

6 0.772 0.669 0.742 0.638 0.767

7 0.857 0.390 0.374 0.383 0.479

8 0.805 0.618 0.692 0.607 0.657
9 0.510 0.418 0.231 0.416 0.320
10 0.186 0.134 0.637 0.450 0.470

Average 0.745 0.535 0.560 0.534 0.586

Table 2: Correlations of subjective responses in with-
the-reference experiment with subjective responses in no-
reference experiment and with the predictions of HDR-

VDP2, SSIM, NoRM and NoRM after the perceptual nor-

malization. The last row shows the average correlations over

the test set. The best correlations (excluding the no-reference

subjective experiment) for each stimulus are printed in bold.

11. Conclusions and Future Work

In this paper, we proposed a novel learning based no-

reference image quality metric for computer-generated im-
ages, which, as shown in our user study is competitive in
performance with state-of-the-art visual difference predic-
tors that do require a reference. Our work enables detecting
and partially removing rendering artifacts. An important re-
sult of this work is that the depth and partial material infor-
mation used in conjunction with color data drastically im-
proves the classification, and even the inpainting procedure
(see Fig. 6). We also present the first comparative subjective
study of quality metrics on synthetic images.
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Exploring further sources of information as well as clas-
sification techniques is a natural future direction. Also, a
more challenging problem is quality assessment of the im-
ages with multiple types of artifacts. In the future we would
like to investigate the classification of combined artifacts us-
ing a multi-class classifier and imposing a smoothness prior
on the classified labels which could be facilitated by adopt-
ing e.g., Markov random fields using belief propagation in
order to spatially smooth the labels while incorporating the
correlations between different artifacts.
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Martin Čadík∗⋄ Robert Herzog∗ Rafał Mantiuk◦ Radosław Mantiuk⊲ Karol Myszkowski∗ Hans-Peter Seidel∗
∗MPI Informatik Saarbrücken, Germany ◦Bangor University, United Kingdom
⋄Brno University of Technology, Czech Republic ⊲West Pomeranian University of Technology, Poland

Abstract

In this work, we present an analysis of feature descriptors for objective image quality assessment. We explore a

large space of possible features including components of existing image quality metrics as well as many traditional

computer vision and statistical features. Additionally, we propose new features motivated by human perception

and we analyze visual saliency maps acquired using an eye tracker in our user experiments. The discriminative

power of the features is assessed by means of a machine learning framework revealing the importance of each

feature for image quality assessment task. Furthermore, we propose a new data-driven full-reference image quality

metric which outperforms current state-of-the-art metrics. The metric was trained on subjective ground truth

data combining two publicly available datasets. For the sake of completeness we create a new testing synthetic

dataset including experimentally measured subjective distortion maps. Finally, using the same machine-learning

framework we optimize the parameters of popular existing metrics.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Image Quality Assessment

1. Introduction

Image quality evaluation [WB06, PH11] is one of the fun-
damental tasks in imaging pipelines, in which the role of
synthesized images continuously increases. Modern render-
ing tools differ significantly in terms of the employed algo-
rithms, e.g., global illumination techniques, which are prone
to a great variability of visual artifacts [MKRH11]. Typically
such artifacts are of local nature, and their visual appearance
differs from more uniformly distributed image blockiness,
noise, or blur that arise in compression and broadcasting ap-
plications. Existing objective image quality metrics (IQM)
are specialized in predicting the level of annoyance caused
by such globally present artifacts, and conform well with
a single quality value, which is derived in mean opinion
score (MOS) experiments with human observers [SSB06].
While some of the objective IQMs such as structural simi-
larity index (SSIM) [WB06, Ch. 3], Sarnoff visual discrim-
ination model (VDM) [Lub95], or the high-dynamic range
visual difference predictor (HDR-VDP) [MKRH11] can lo-
cally predict perceived differences, they are not always reli-
able in rendering [ČHM∗12]. Clearly, a need arises for novel

∗ e-mail: mcadik@mpi-inf.mpg.de, project webpage:
http://www.mpii.de/resources/hdr/metric/

metrics that can locally predict the visibility of numerous
rendering artifacts, which are simultaneously present in a
single image.

Many traditional IQMs can be modeled with a generic
two-stage processing: (1) extraction of carefully designed
features from the image, and (2) pooling of those features
to correlate the aggregated value with subjective experi-
ment data. At the feature extraction stage typically multi-
resolution filtering with optional perceptual scaling is per-
formed (VDM, HDR-VDP), or alternatively local pixel
statistics are computed (SSIM). At the pooling stage the
Minkowski summation of feature differences with respect to
the reference solution (VDM, HDR-VDP), or the product of
feature differences with optionally controlled non-linearity
of each component (SSIM) are considered. However, such a
limited feature set might not be sufficient to correctly predict
the multitude of rendering-specific distortion types, espe-
cially given the variety of image content and nonuniformly
distributed, mixed distortion types in a single image. An-
other limiting factor is the rigid form of the pooling models,
which prevents the adaptation to local scene configurations
and artifact constellations.

In this work, we propose a novel data-driven full-

reference metric, which outperforms existing metrics in the

c© 2013 The Author(s)
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prediction of visible rendering artifacts. First, we system-
atically analyze the features used in IQMs, and then intro-
duce a great variety of other features originating from the
fields of computer vision [TM08] and natural scene statis-
tics (NSS) [SBC05]. Additionally, we propose a few custom
features including saliency data captured with an eye tracker
(Section 3). We select the best suited features based on their
discriminative power with respect to the rendering artifacts
(Section 4). Our feature selection ensures that any distor-
tion type we investigate is covered by a sufficiently large
subset of supporting features. Instead of the feature pool-
ing used in IQMs, we refer to machine learning solutions
(Section 5), which learn an optimal mapping from the se-
lected feature descriptors to a local quality map with respect
to the perceptually measured ground-truth data [HČA∗12]
and [ČHM∗12] (jointly referred in this paper as the LOCCG
dataset for LOCalized Computer Graphics artefacts). This
way our metric implicitly encapsulates highly non-linear be-
havior of the human visual system (HVS) that was learned
from the perceptual data. To evaluate its generalization per-
formance we also test our metric on an independent synthetic
dataset, which we designed as a comprehensible tool that is
suitable for evaluating other local quality metrics as well. At
last, we use the same methodology to improve the perfor-
mance of SSIM and HDR-VDP in rendering applications,
by carefully tuning the weights associated with the features
at the pooling stage (Section 6).

2. Previous Work

In this section we focus on quality metrics, which employ
machine learning tools. While the metric proposed in this
paper belongs to the category of full-reference (FR) met-
rics as it requires a non-distorted copy of the test image,
in our discussion we refer also to non-reference (NR) and
reduced-reference (RR) metrics, where data-driven approach
is more common. For a more general discussion and applica-
tions of quality metrics we refer the reader to [WB06,PH11],
more graphics oriented insights concerning FR metrics can
be found in [MKRH11, ČHM∗12].

The utility of machine learning methods in image qual-
ity evaluation has mostly been investigated for NR metrics.
Typically it is assumed that the distortion type is known in
advance, and then based on the correlation of its amount
with human perception the image quality prediction is re-
ported. The blind image quality index (BIQI) [MB10] intro-
duces a distortion-type classifier to estimate the probability
of distortions that are supported by the metric, and then a
distortion-specific IQM is deployed to measure its amount.
NSS features are employed, whose correlation with subjec-
tive quality measure for each distortion is known, and an
SVM classifier is used for the quality prediction. NSS fea-
tures expressed as statistics of local DCT coefficients are
used in BLIINDS [SBC10], which can handle multiple dis-
tortions as well. Overall, the performance similar to the FR

PSNR metric (peak signal-to-noise ratio) is reported for the
LIVE dataset [SWCB06], but both BIQI and BLIINDS have
trouble for JPEG and Fast Fading (FF) noise distortions. Bet-
ter results have been reported in [LBW11] when instead of
NSS-based features, the more perceptually relevant features:
phase congruency, local information (entropy), and gradi-
ents are used. Better performance than BIQI and BLIINDS
is also reported for the learning-based blind image quality
measure (LBIQ) [TJK11] where complementary properties
of features stem from NSS, texture and blur/noise statistics.

In RR IQM that are used in digital broadcasting a chal-
lenge is to select a representative set of features, which are
extracted from an undistorted signal and transmitted along
with the possibly distorted image. Redi et al. [RGHZ10]
identify the color correlograms as suitable feature descrip-
tors for this purpose, which enable the analysis of alterations
in the color distribution as a result of distortions.

Machine learning in FR IQM remains mostly an uninves-
tigated area. Narwaria and Lin [NL10] propose an FR metric
based on support vector regression (SVR), which uses sin-
gular vectors computed by a singular value decomposition
(SVD) as features that are sensitive for structural changes
in the image. Remarkably, the proposed metric shows good
robustness to untrained distortions and overall outperforms
SSIM.

All discussed IQMs have successfully been tested with the
LIVE database [SWCB06] (and two other similar databases
[NL10]), where a single value with the quality score (MOS)
is available for each image. Such testing strategy precludes
any conclusions concerning the accuracy of artifact localiza-
tion and its visibility in the distortion map, which is the goal
of this work. While the number of images available in LIVE
approaches one thousand, the diversity of distortions is lim-
ited to five major classes with the emphasis on compression
distortions, noise, and blur, which structurally differ signif-
icantly from rendering artifacts. For each stimulus only one
distortion is present, which makes the metric performance
evaluation for distortion superposition less reliable.

Machine learning solutions have been used in the context
of rendered image quality assessment. Ramanarayanan et
al. [RFWB07] employed an SVM classifier to predict visual
equivalence between a pair of images with blurred or warped
environment maps that are used to illuminate the scene, but
problematic regions in the image cannot be identified. Her-
zog et al. [HČA∗12] proposed a NR metric (NoRM), which
is trained independently for three different rendering distor-
tion types. The metric can produce a distortion map, and
the lack of reference image is partially compensated by ex-
ploiting internal rendering data such as per pixel texture and
depth. In this work we focus on solutions that are based
merely on images, and can simultaneously handle more than
one artifact. We utilize perceptual data derived in [HČA∗12]
(a part of the LOCCG dataset) to train our FR metric and we
compare its performance with respect to NoRM.

c© 2013 The Author(s)
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3. Features for Image Quality Assessment

Many FR (i.e. the undistorted reference image needs to be
available) IQMs have been developed that claim to predict
localized image distortions as observed by a human [WB06].
It was shown that there exists no clear winner and each met-
ric has its pros and cons for image distortions measured on
synthetic ground-truth datasets [ČHM∗12]. For better under-
standing of which parts of the varying metrics are important
for predicting image distortions, we decompose those met-
rics into their individual features and analyze their strength
by means of a data-driven learning framework. Moreover,
we introduce new complementary features commonly used
in information theory and computer vision [TM08]. Finally,
we acquire saliency maps using an eye tracker and include
these as a feature into our framework for the analysis of
the importance of visual attention. We implemented 32 fea-
tures of various kinds and origins spanning 233 dimensions
which, in our opinion, is an exhaustive set (see Table 1).

3.1. Features of Traditional Image Quality Metrics

In our analysis we include features inspired by popular
IQMs, including absolute difference (ad), SSIM [WB06,
Ch. 3], HDR-VDP-2 [MKRH11], and sCIE-Lab [ZW97].
For those metric features that are only computed at a single
scale (e.g., SSIM, ad), we additionally include their multi-
scale variants. This is achieved by decomposing the feature
maps into Gaussian or Laplacian pyramids (without subsam-
pling). Despite its simplicity, ad (or PSNR andMSE) are still
frequently used quality predictors. In contrast, SSIM mea-
sures differences using texture statistics (mean and variance)
rather than pixel values. It is computed as a product of three
terms:

SSIM(x,y) = [lum(x,y)]α · [con(x,y)]β · [struc(x,y)]γ, (1)

which are a luminance term lum, a contrast term con, and
a structure term struc (see Fig. 8) computed for a block of
pixels denoted by x and y. We include each SSIM term as a
separate feature: ssim lum, ssim con and ssim struct. Simi-
larly, we include all frequency bands of HDR-VDP-2 differ-
ences and their logarithms (more details in Section 6.2), and
denote them as hdrvdp band and hdrvdp band log.

We also introduce a few variations of the SSIM contrast
components, which we found to be well correlated with sub-
jective data. The standard contrast component is expressed
as: con(x,y) = 2σx σy+C2

σ2
x+σ2

y+C2
, where σx and σy are the per-block

variances in the test and reference images, and C2 is a pos-
itive constant preventing division by zero. The product in
the nominator introduces a strong non-linear behavior; the
increase of contrast (variance) and decrease have different
effect on the value of the component. Marginally better re-
sults can be achieved if the contrast difference is expressed

as: conbal(x,y) =
(σx−σy)

2
√

σ2
x+σ2

y+ε
, where ε is a small constant

Feature Name Dim. Multi Import. Import. Import. Import.

scale multi-dim. multi-dim. scalar scalar
(greedy) (stacking) (dec. trees) (AUC)

1 ad [Sec.3.1] 11 ✓

2 bow [Sec.3.2] 32 1.0 1.0
3 dense-sift diff [BZM07] 1 0.72047 0.86216
4 diff [Sec.3.3] 11 ✓ 0.48596 0.66906
5 diff mask [Sec.3.3] 1 0.19609 0.85772
6 global stats [Sec.3.3] 5
7 grad dist [Sec.3.3] 1
8 grad dist 2 [Sec.3.3] 1 0.32785 0.66382 0.85919
9 Harris corners [HS88] 12 ✓ 0.76699
10 hdrvdp band [MKRH11] 6 ✓ 0.68933 0.85035
11 hdrvdp band log 6 ✓

12 hog9 [DT05] 62 0.46443
13 hog9 diff [Sec.3.2] 1 0.32178 0.67821
14 hog4 diff [Sec.3.2] 1
15 location prior [Sec.3.4] 2
16 lum ref [Sec.3.3] 11 ✓ 0.58963
17 lum test [Sec.3.3] 11 ✓ 0.21429
18 mask entropy I [Sec.3.3] 1 0.40419 0.52820 0.99389 0.86358
19 mask entropy II [Sec.3.3] 5 ✓ 1.0 0.67035 0.86676
20 patch frequency [Sec.3.4] 1 0.41590
21 phase congruency [Kov99] 10 ✓ 0.19712
22 phow diff [BZM07] 1
23 plausibility [Sec.3.4] 1 0.32051
24 sCorrel [Sec.3.3] 1 0.18956 0.8496
25 spyr dist [Sec.3.3] 1 0.85793
26 ssim con [WBSS04] 11 ✓ 0.8496
27 ssim con inhibit [Sec.3.1] 1 0.44840 0.84517
28 ssim con bal [Sec.3.1] 1
29 ssim con bal max [Sec.3.1] 1
30 ssim lum [WBSS04] 11 ✓ 0.58791
31 ssim struc [WBSS04] 11 ✓ 0.18681 0.53080 0.65608 0.86484
32 vis attention [Sec.3.5] 1

Metric performance (AUC) 0.880 0.897 0.916 0.892

Table 1: Left to right: implemented features, their dimen-

sionality, scale selection, estimated normalized importance

for best joint features, and one-dimensional sub-features

(only the best sub-feature importance is reported for scalar

selection methods), see Section 4. The importance of the se-

lected features is color-coded (from blue to green to red).

For each set we show the performance (area under the ROC

curve for the LOCCG dataset) of a data-driven metric uti-

lizing only the selected features (Section 5). Notice that only

ten best features in each column are reported for clarity.

(0.0001). We denote this feature as ssim con bal. The de-
nominators in these expressions are effectively responsible
for contrast masking, which reduces sensitivity to contrast
changes with increasing magnitude of the contrast. Such
masking can be determined by the image of higher contrast

(test or reference): conbalmax(x,y) =
(σx−σy)

max(σx,σy)+ε
. We de-

note this feature as ssim con bal max. Finally, we observed
that individual distortions are more noticeable when isolated,
rather than uniformly distributed over an image. This ef-
fect can be captured by the inhibited contrast feature (ssim

con inhibit): coninhibit(x,y) =
con(x,y)
con(x,y)

,where con(x,y) is the
mean value of the contrast term in the image.

3.2. Computer Vision Features

Much research on features comes from the field of computer
vision. Therefore, we analyze popular features from com-
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puter vision in the mutual spirit “what’s good for computer

vision may also help human vision” and vice versa. In par-
ticular, we consider the following features for image quality
assessment: bag-of-visual-words (bow) [FFP05], histogram-
of-oriented-gradients with 9 orientation bins (hog9) [DT05],
the Euclidean distance between hog9 (coarse version hog4),
dense-SIFT [BZM07], pyramid-histogram-of-visual-words
[BZM07] computed for test and reference images denoted as
hog9 diff (hog4 diff ), dense-sift diff, phow diff, respectively,
Harris corners [HS88], and phase congruency [Kov99].

Bag-of-visual-words (bow) is perhaps the most com-
monly used feature in computer vision with a whole field
of research devoted to it. Briefly, the typical bow feature ex-
traction pipeline consists of two steps: first, the computation
of a dictionary of visual words and second, encoding an im-
age with a histogram by pooling the individual dictionary re-
sponses on the image. The strength (and weakness) of bow is
that it ignores the location of sub-image parts making it in-
variant to global image constellation and thus requiring less
training data in supervised learning.

We compute the bow feature on the error-residual image,
i.e., difference between test and reference image. To gener-
ate the dictionary we use a set of artifact-reference image-
pairs and randomly extract normalized pixel patches of size
np× np pixels (np = 8) from all residual images. Then, we
run k-means clustering on the patches using the L2-distance
metric to generate k = 200 clusters from which we then ex-
tract a smaller dictionary (kd = 32) by iteratively removing
the cluster with the highest linear correlation. The remain-
ing clusters form the visual words of the dictionary. To en-
code a new image-pair using our dictionary, we first compute
the correlation of the error-residual image with each visual
word and for each pixel we store the index of the visual word
with the maximum response, which is pooled to build a his-
togram of kd bins. In contrast to the traditional bow we do
not compute one histogram for the entire image but a his-
togram for each pixel by pooling the responses in a local
window (4×np pixels) weighted by a Gaussian with σ = np.

3.3. Statistical Features

As shown in [ČHM∗12] and [WBSS04] simple statistics
may be powerful features for visual perception. We include
both local and global statistics for an image. As local statis-
tics we compute non-parametric Spearman correlation per
6× 6 pixel block (sCorrel), parametric correlation is cap-
tured by the SSIM structure term (ssim struc), the gradient
magnitude distance (grad dist) between test and reference
image, the sum of squared distances between test and refer-
ence image decomposed in a steerable pyramid (spyr dist),
and visual masking computed by a measure of entropy (mask
entropy I), which is computed per 3× 3 pixel block as the
ratio of the entropy in the residual-image block x−y to the

entropy in the reference-image block y:

Hmask(x,y) =
∑i, j p(xi j− yi j) log2 p(xi j− yi j)

∑i, j p(yi j) log2 p(yi j)
, (2)

where p(xi j − yi j), p(yi j) is the probability of the value
of pixel (i, j) in the normalized residual-, reference-image
block, respectively. We also include a multi-scale version of
this feature with larger window size (5×5) denoted as mask
entropy II. For completeness we also add the luminance of
the pixel in the test image (lum test) and reference image
(lum ref ), as well as the signed difference (diff ) at varying
image scales as individual scalar features.

In order to see whether global image distortions influence
the perception of local artifacts, we add global distortion
statistics to our analysis that is computed over the entire im-
age. Specifically, we compute the mean, variance, kurtosis,
skewness, and entropy of the distortions in the entire image,
which are grouped into one feature class denoted as global
stats in Table 1.

0.2 0.4 0.6 0.8 10

Figure 1: Plausibility (middle) and the patch frequency fea-

ture (right) for the apartment image in LOCCG dataset. Note

how repeating structures in the image (e.g., edges and tex-

ture on the floor) receive high values.

3.4. High-level Visual Features

The features described so far are “memory-less” and only
of local nature meaning that the information content is re-
stricted to a small image region around the sample point.
However, the perception of image distortions is largely de-
pendent on the higher-level human vision following Gestalt
laws and learned scene understanding. While a simulation of
higher-level human vision is computationally intractable, we
added a few features that mimic the global impact of local
distortions on the perception of artifacts that is beyond local
pixel statistics.

In the LOCCG dataset we observed that some artifacts are
subjectively less severe than others depending on the likeli-
hood that such an artifact pattern could also occur in ref-
erence images (e.g., darkening in corners). We denote such
a phenomenon as artifact plausibility. In order to approxi-
mately model artifact plausibility we make use of a larger
independent dataset of reference photos (the LIVE and La-
belme datasets [SWCB06,RTMF07]) from which we sample
random sub-images referred to as patches of size 16× 16
pixels in a pre-process. Since we are mainly interested in
the structural similarity of patches, we make patches con-
trast and brightness invariant by subtracting the mean lu-
minance and dividing by the standard deviation. Moreover,
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to make later searching efficient, we map these contrast-
normalized patches to a truncated DCT basis (12 out of 255
AC-coefficients). For this pool of random patches we build
an index data structure for efficiently searching the nearest
neighbors. Then, for each sample point in a distorted image
we extract a patch following the same steps as in the pre-
process and query the k-nearest neighbor patches (k= 16) in
this database using the L1-distance. Given the distance to the
k-th nearest neighbor, we compute an estimate of the proba-
bility density for the query patch in the world of all images,
which becomes a new feature denoted as plausibility.

Inspired by non-local means filtering, we additionally es-
timate the occurrence frequency of a local image patch by
searching for the most similar patches contained in the same
image rather than in an independent database as for the plau-
sibility feature. This way, patches with common structure
(e.g., edges, repeating texture) receive higher values than
patches with rare patterns in the same image, see Fig. 1. This
feature is denoted as patch frequency.

We are also interested in analyzing whether the distribu-
tion of the locations of artifacts within an image has an effect
on the visibility of local artifacts. Therefore, we compute the
first central moments of the artifact distribution in the image,
i.e., we compute the mean, variance, kurtosis, and skewness
of the artifact distance to the center of the image, which is
summarized as location prior in Table 1.

3.5. Visual Saliency (Eye Tracking)

Another potentially important cue for the perception of lo-
cal artifacts may be saliency. To estimate its importance for
image quality assessment, we explicitly modeled saliency
by employing an eye tracker in a user experiment. Low-
resolution saliency maps were generated from the recorded
gaze points per image that represent the mean visual explo-
ration, which is stored as a feature denoted by vis atten-

tion. In the experiment, we were showing images from the

0.2 0.4 0.6 0.8 10

Figure 2: The new visual attention dataset (examples for

scene dragons). For each image from the original LOCCG

dataset (left), we measure the average saliency map (right).

LOCCG dataset to observers. The observers were asked to
remember the details of the image without any top-level task.
The eye tracker collected the gaze data for each image pre-
sented for 12 seconds. The answers to these questions were
not analyzed and did not affect the results. We calibrated the

eye tracker before each set of 5 images to increase the ac-
curacy of the gaze estimation. The observers were asked to
use the chin rest to stabilize the head position relative to the
display. The experiment was conducted for 13 observers of
age 20 to 43 years (12 males and 1 female).

The gaze data represents the positions of the gaze points in
screen coordinates. For an individual observer we computed
the fixation points based on the I-DT technique [Wid84]
(with dispersion and duration equal to 100 pixels and 250 ms
respectively). The fixation maps were blurred using a low-
pass Gaussian filter (σ=20 pixels) to create the saliency maps
called heat maps. These maps were averaged and normalized
for all observers to prepare one heat map per stimulus image,
see Fig. 2.

Our experimental setup consisted of a P-CR RED250 eye
tracker controlled by the proprietary SMI iViewX software
(version 2.5) running on a dedicated PC. The RED250 eye
tracker was mounted under a 22" Dell E2210 LCD display
with screen dimensions 47.5× 30 cm and a native resolu-
tion of 1680×1050 pixels (60Hz). The results shown in Ta-
ble 1 indicate that the measured visual saliency maps do not
improve the prediction results for the LOCCG dataset. The
dataset of the visual attention maps for computer graphics
images, however, is interesting for future research and we
make it publicly available at the project webpage.

4. Feature Selection

As the number of features we implemented is high (see Ta-
ble 1), the natural questions we should answer are: first, how
significant are particular features to the task of visual distor-
tions prediction, and second, what features should be com-
bined in a joint feature descriptor to give best generalization
performance of the new IQM. Optimal feature-subset selec-
tion by exhaustive searching is computationally intractable
and we experimented with different methods for feature se-
lection where each method provides new information about
the strength of individual features.

ROC Analysis One of the easiest ways to rank features
is according to area-under-the-curve (AUC) values of their
ROC curves [ČHM∗12]. Such AUC values are shown in
the last column of Table 1. The values show that the dense-
sift, masking entropy, and the structural component of SSIM
(ssim struct) provide the largest predictive power when used
alone, though the differences between the best features are
moderate. Although ROC analysis identifies strong features,
it neither accounts for the correlation of features nor can it
detect complementary features that when combined yield the
best performance. For that purpose, we attempt three differ-
ent feature selection strategies.

Greedy Feature Selection This procedure follows in
principle the approach proposed in [LSAR10]: among the
set of all possible features, we iteratively select the one that
gives the smallest cross-validation error when adding it to
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M. Čadík et al. / Learning to Predict Localized Distortions in Rendered Images

the pool of selected features and training a classifier on it.
The process is continued until adding new features to the
pool does not improve the cross-validation error. Here, for
classification we use a non-linear support vector machine
[CL11] with radial basis function (RBF) kernel with hyper-
parameters optimized by a grid-search.

Decision Forests Another common approach for feature
selection is to analyze decision trees [Bre01], which we
also use for our metric described in Section 5. Ensembles
of decision trees are natural candidates for feature selec-
tion [Bre01, TBRT09] since they intrinsically perform fea-
ture selection at each node of the tree. The expected fre-
quency that a single feature is chosen for a split in a random
tree and the trees impurity reduction due to the node split
indicates the relative importance of that feature to the tree
model [TBRT09]. This type of feature selection differs from
the others in the sense that it only provides an importance
weight of the scalar components of individual features.

Stacked Classifiers To this end, we also analyzed the im-
portance of individual features by an embedded SVM clas-
sifier with L1-regularization [BM98]. To analyze the non-
linear discriminative power of individual features, we build
a 2-level stack of classifiers [Bre96b] where the first level
consists of k non-linear classifiers (SVM) [CL11], one for
each feature, that compute the artifact probability based on
a single feature. These probability values are fed forward
as k independent input features to the second level, which
is a single linear classifier w2 ∈ R

k. The classifier w2 is
then trained on a disjoint training set using a SVM with
L1-regularization, which results in a sparse vector w2 that
can be interpreted as a joint feature importance – the higher
the absolute weight wi = |w2(i)|, i ∈ {1, ..,k} the more dis-
criminative the ith feature. Using this procedure the average
weights computed on LOCCG dataset with leave-one-out
cross-validation are shown in Table 1.

4.1. Feature Selection Results

All feature selection strategies produce a reasonable feature
sub-set that generalizes well when tested with leave-one-out
cross-validation on trained decision tree ensembles as shown
in the last row of Table 1. Although, the ROC analysis does
not exploit correlation of features and selects only the best
1-dimensional features the resulting combined feature sub-
set is still performing well. However, when comparing the
feature scores (last 4 columns in Table 1) one can observe
some discrepancies in the selected feature sets, which re-
sult from slightly different objectives of the methods and
correlation among the features. For example decision trees
can be considered as ensembles of many weak classifiers
based on scalar features, whereas the greedy and the stack-
ing approach operate on multi-dimensional features, and the
ROC analysis ignores feature combinations altogether. Fur-
ther, correlation among individual features can produce dif-
ferent sets that, when carefully observed, may actually be
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Figure 3: Optimal parameters of the decision forest. Left:

classification error versus number of decision trees t. Right:

optimal splitting threshold qe based on cross-validation.

similar. An example are the features hog9 diff and dense-sift
diff, which are highly correlated and chosen mutually exclu-
sively by either method. Also, the signed difference (diff )
is highly correlated with ad and is also a linear combina-
tion of lum test and lum ref and therefore not selected in
the greedy approach but for the stacking and decision forest.
Nevertheless, in agreement with the majority of the meth-
ods, the SSIM structure component (ssim struc), the bag-of-
words (bow), the masking entropy (mask. entropy I/II), and
the signed difference at multiple image scales (diff ) can be
considered as important features for our task of classifying
distortions. Further, we can also rule out certain features that
either do not improve performance or are simply redundant.
These include absolute difference (ad), global image statis-
tics (global stats), location of artifacts (location prior), and
visual attention (vis attention). In particular, all high-level
and global visual features (Section 3.4) perform rather weak
in our analysis. However, this does not necessarily conclude
their ineffectiveness but rather our too simplistic modeling
of the complex high-level human vision.

5. Data-Driven Metric

We experimented with different classification methods in-
cluding Naive Bayes classifiers, linear and non-linear sup-
port vector machines [CL11], and decision trees [Bre01].
For our data-driven metric we obtained the best results (in
terms of ROC area-under-curve) with ensembles of bagged
decision trees [Bre01], which we refer to as decision for-

est. Decision forest is a powerful classification and regres-
sion tool that is scalable and known for its robustness to
noise. Having constructed several random trees by boot-
strapping [Bre96a], an observation is classified by traversing
each tree from root node to a leaf, which contains the pre-
dicted label (artifact/no-artifact) that is averaged across all
trees. The path through the tree is determined by comparing
single sub-features against learned thresholds in each node.
The pruned tree depth and the number of trees controls the
accuracy of the classification. Using a cross-validation pro-
tocol we empirically set the number of trees to t = 20 and the
average tree depth to 10 (implicitly controlled by a quadratic
error tolerance threshold qe = 0.25 for the node-splitting),
which yields good generalization performance (see Fig. 3).
We train our metric using the 10 best features as derived in
Section 4 (shown in the last but one column of Table 1).
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Figure 4: Quantitative results for quality metrics on

LOCCG dataset shown as ROC (top left) and Matthews cor-

relation (top right). The bigger the area under the curve

(AUC), the better. AUCnewMetric=0.916, AUCSSIM=0.858,

AUCHDRVDP2=0.802, AUCMSSSIM=0.786, AUCAD=0.832,

AUCsCIELab= 0.783, AUCsCorrel=0.880, AUCNoRM=0.644.

Bottom: ranking according to AUC (the percentages indi-

cate how often the metric on the right results in higher AUC

when the image set is randomized using a bootstrapping pro-

cedure similar to [ČHM∗12]).

5.1. Results

We train our new data-driven metric described above on
the LOCCG dataset, which consists of 35 annotated image-
pairs that exhibit a variety of computer graphics distortions
that are difficult to predict by existing FR IQMs [ČHM∗12].
Since the size of the LOCCG dataset is rather small and the
images are very diverse showing (combination of) different
artifacts and scenes, we do not split it into a train and test set.
We instead evaluate our method in a leave-one-out cross val-
idation fashion; i.e., we train it on n− 1 images and test on
the n-th image repeating this process n times. In addition, we
validate our metric on a new uncorrelated dataset that is de-
scribed in Section 5.1.1. We compare the trained metric to 7
state-of-the-art and baseline methods as shown in the quan-
titative analysis in Fig. 4. Our new metric outperforms all
existing FR IQMs on the LOCCG dataset in terms of AUC
in Fig. 4 (the higher the AUC the better). Also, the visual re-
sults agree with the ground-truth annotation as shown in the
color-coded distortion maps for three images of the LOCCG
dataset in Fig. 5. Please refer to the supplementary material
for all results and a more detailed analysis.

For completeness, we include results of the NR metric
NoRM. However, this method was not originally intended to
be used for detecting general, mixed image distortions and is
tuned for only specific artifacts assuming the depth maps and
other cues of the scenes to be available for feature computa-
tion. Unfortunately, depth and texture maps are not available
in many cases in the LOCCG dataset, and we run NoRM
only with color features rendering its performance poor.

We implemented our new metric and feature computation

in MATLAB for which the code is available at the project
webpage. Reporting the overall computation time of the un-
optimized MATLAB code, the data preprocessing and fea-
ture computation time per image (800×600) is in the order
of a few minutes, the time for training the decision forest on
our selected feature set based on 100.000 samples takes less
than 1 minute, whereas the distortion prediction using our
trained decision forest requires only ≈ 0.5 sec.

5.1.1. Results for New Synthetic Dataset

Even though we report the result for cross validation to avoid
over-training, we may expect that some distortions appear-
ing in different images are correlated and the metric just
learns the distortions that are specific for that data set. To
test against this possibility, we measured another dataset.

The new Contrast-Luminance-Frequency-Masking
(CLFM) dataset was measured using a similar procedure
as in [ČHM∗12]. 13 observers provided localized markings
for the visible differences in 14 image pairs. The dataset
was designed to cover a wide range of problematic cases
for image quality assessment in possibly few images. Such
problematic cases included increments of different size
and contrast, edges shown at different luminance levels,
random noise patterns of different frequency and contrast,
several cases of contrast masking, image pairs with pixel
misalignment and noise patterns generated with a different
seed for the test and reference image (see example stimuli
in Fig. 6). The CLFM dataset is available at the project
webpage.

Fig. 7 shows the result of the tested metrics for the new
dataset. Note that our new metric was trained on the LOCCG
dataset and none of the new dataset images was used for
training. From the shape of the ROC curves, it is clear that
the CLFM dataset is extremely challenging and the metrics
mispredict in many cases. But it is interesting to notice that,
on average, the proposed metric has the highest AUC value.

Figure 6: CLFM: our synthetic validation dataset for test-

ing of IQMs perceptual-masking prediction. Top row: test

images containing (from left to right) increments of different

size, edges at different luminance levels, and band-limited

noise patterns organized in a CSF-like chart. Bottom: sub-

jective data for the corresponding images. (Best viewed in

electronic version.)
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Figure 5: Comparison of distortion maps predicted by the proposed method with the state-of-the-art metrics for the red kitchen,
and sponza tree shadows scenes. From left: subjective ground-truth, prediction of the new metric, SSIM, HDR-VDP-2, and

sCorrel. Please see the complete set of results in the supplementary material.

The performance expressed as Matthew’s correlation coef-
ficient is very steady throughout the range of true positive
rates, while many other metrics exhibit significant “dips”.
This means that the new metric is less prone to loss of per-
formance in the worst-case scenario.

It is encouraging to observe that learning the “real-world”
distortions (e.g. based on the LOCCG dataset) may enable
decent prediction performance even for the synthetic dataset
like CLFM. This is different from the “traditional” approach
to modeling quality metrics, where the synthetic cases are
used to train the metric and the assumption is made that
these will generalize for complex “real-world” cases. Inter-
estingly, this correlates with our experience – when we used
synthethic CLFM data for training, it did not lead to better
predictions of LOCCG than traditional metrics.

6. Optimizing Existing Metrics

The stack of classifiers described in the last paragraph of
Section 4 can be used to optimize the parameters of tradi-
tional metrics for the testing datasets. We show the results
for two metrics (SSIM and HDR-VDP-2) on the LOCCG
dataset as an illustration of this approach.
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Figure 7: Quantitative results for the new syn-

thetic dataset (CLFM) for our metric trained on the

LOCCG dataset. AUCnewMetric=0.805, AUCSSIM=0.695,

AUCHDRVDP2=0.772, AUCMSSSIM=0.714, AUCAD=0.733,

AUCsCIELab=0.763, AUCsCorrel=0.624.

6.1. Training SSIM

The stucture similarity metric (SSIM) consists of 3 terms
that were introduced in Eq. (1). The sensitivity or importance
of the individual terms is controlled by the parameters α, β,
and γ, which are set to 1 by default.

We optimize those 3 parameters on the LOCCG dataset
with cross-validation to give the best possible prediction by
employing a linear support vector machine [CL11] that com-
putes the optimal 3D weight vector w= [α∗

,β∗
,γ∗]T for the

3 SSIM terms in the log domain log(SSIM∗)= α∗ · log(l)+
β∗ · log(c)+γ∗ · log(s) =wT ·dlcs by minimizing the convex
objective function:

argmin
w

∑
i

max(0,1− yi ·wT ·dlcsi )2+λ‖w‖22, (3)

where yi are the ground-truth labels in the dataset that are set
to−1 or 1 if the distortion for the i-th training sample is vis-
ible or not, respectively, and dlcsi ∈ R

3 is the corresponding
precomputed vector of the SSIM terms. The regularization
is controlled with λ = 1.

0.2 0.4 0.6 0.8 10

Figure 8: An illustration of the features of SSIM for the sala
scene where darker pixels represent more visible distortions.

From left: luminance, contrast, and structure term.

We run this optimization 35 times with randomized set
of input images to assess the stability and quality of the
coefficients obtained. Interestingly, the results (Fig. 9, left)
show a clear tendency towards higher weighting of the struc-
ture and contrast components than the luminance compo-
nent (α = 0.2, β = 2.8, γ = 3.5). This implies that the
structural and contrast components are more important than
the luminance for computer graphics artifacts, which agrees
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with the results presented in Section 4. Please notice that
the performance improvement of the new weighted metric
(SSIMlearned) compared to the original SSIM in Fig. 10. An
illustration of improvement of the distortion maps is shown
in Fig. 11.

Figure 9: The results of the optimization of SSIM (left) and

HDR-VDP-2 (right) metric parameters. The red mark is the

median, the edges of the box are the 25th and 75th per-

centiles, the whiskers extend to extreme data points not con-

sidered outliers, and outliers are plotted individually. The

notches show 5% level intervals of the median significance.

6.2. Training HDR-VDP-2

Visible differences predictor for high-dynamic-range images
(HDR-VDP-2) [MKRH11] is a perceptual metric that mod-
els low-level human vision mechanisms, such as light adap-
tation, spatial contrast sensitivity and contrast masking. The
predicted probability of detecting differences between test
and reference images is modeled as psychophysical detec-
tion task separately for each spatial frequency band. The
cumulative probability is computed as probability summa-
tion, which corresponds to summing logarithms of probabil-
ity values from all bands. To introduce learning component
to the HDR-VDP-2, we weighted the logarithmic probabili-
ties before summation. After learning, which used the identi-
cal method as for the SSIM (Section 6.1), we found the opti-
mum band weights to be (in decreasing frequency): w1=6.2,
w2=12.1, w3=14.2, w4=9.6, w5=1.7, w6=10.2 (Fig. 9, right).
Please notice the significant performance gain of the new
weighted metric (HDR-VDP-2learned) compared to the orig-
inal HDR-VDP-2 in Fig. 10. The improved distortion maps
can be found in Fig. 11.

7. Conclusions and Future Work

In this work we proposed a novel data-driven full-reference
image quality metric, which outperforms existing IQMs in
detecting perceivable rendering artifacts and reporting their
location in a distortion map. The key element of our met-
ric is a carefully designed set of features, which general-
ize over distortion types, image content, and superposition
of multiple distortions in a single image. We also propose
easy to use customizations of existing metrics SSIM and
HDR-VDP-2 that improve their performance in predicting
rendering artifacts. Finally, as the outcome of this work
two new datasets have been created, which are potentially
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Figure 10: Comparison of the overall results of op-

timized and original SSIM and HDR-VDP-2 met-

rics. Left: ROC, right: Matthews correlations. The

bigger the area under the ROC curve (AUC),

the better. AUCSSIM=0.858, AUCSSIMlearned
=0.872,

AUCHDRVDP2=0.802, AUCHDRVDP2learned=0.883. The

result of newMetric (red) is shown here for comparison.

useful for the imaging and computer graphics communi-
ties. The Contrast-Luminance-Frequency-Masking (CLFM)
dataset contains a continuous range of basic distortions en-
capsulated in a few images, with the distortion visibility an-
notated in a perceptual experiment. The distortion saliency
maps captured in the eye tracking experiment could be used
for further studies on visual attention, for example as a func-
tion of rendering distortion type and its magnitude.

The main limitation of our work is the size of the training
dataset, and we expect that the performance of our metric
can be still improved when a larger dataset is available. Fur-
thermore, it would be interesting to explore other supervised
learning techniques, e.g. [GRHS04], both for feature selec-
tion and for FR metric prediction. The eye-tracking features
deserve further exploration too: for example the combination
of eye-tracking data with other features like absolute differ-
ence could indicate where people gaze due to severe artifact.
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Abstract

Numerous computer graphics methods make use of either explic-
itly computed strength of image edges, or an implicit edge strength
definition that is integrated into their algorithms. In both cases, the
end result is highly affected by the computation of edge strength.
We address several shortcomings of the widely used gradient mag-
nitude based edge strength model through the computation of a hy-
pothetical human visual system (HVS) response at edge locations.
Contrary to gradient magnitude, the resulting “visual significance”
values account for various HVS mechanisms such as luminance
adaptation and visual masking, and are scaled in perceptually lin-
ear units that are uniform across images. The visual significance
computation is implemented in a fast multi–scale second genera-
tion wavelet framework, which we use to demonstrate the differ-
ences in image retargeting, HDR image stitching and tone mapping
applications with respect to gradient magnitude model. Our results
suggest that simple perceptual models provide qualitative improve-
ments on applications utilizing edge strength at the cost of a modest
computational burden.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation; I.4.6 [Segmentation]:
Edge and Feature Detection; I.4.2 [Enhancement]: Filtering

Keywords: edge strength, visual perception, HDR

1 Introduction

Localizing significant variations in image luminance and chromi-
nance, i.e. edge detection, has been a classical problem in image
processing. Similarly, edge aware image decompositions have been
used in numerous computer graphics applications such as image ab-
straction, detail enhancement and HDR tone mapping. In both con-
texts, the essential component is an edge model, which in the former
case is used to produce a map of image edges, and in the latter case
is integrated into the image decomposition algorithm that purposely
avoids smoothing near strong edges.

The edge model serves two purposes: determining the location and
strength of edges. The majority of the methods proposed for edge
detection involve smoothing and differentiation to locate edges. A
measure of edge strength is essential, since typically the result of
these methods is “too many” edges, and the output is only compre-
hensible after the removal “less important” edges thorough thresh-
olding. Incidentally, gradient magnitude based edge models are
conveniently used in all but the most specialized edge detectors,
because one can locate edges by computing local maxima of the
gradient magnitude, as well as simply use the magnitude value at
the edge location as a rough estimate of edge strength.

While existing methods are capable of localizing edges in a seman-
tically meaningful way, their performance is directly influenced by
the edge strength model they employ. The focus of this work is the

∗e-mail: tunc@mpi-inf.mpg.de
†mcadik@mpi-inf.mpg.de
‡karol@mpi-inf.mpg.de
§hpseidel@mpi-inf.mpg.de

computation of edge strength rather than edge localization and se-
mantics. Our central idea is that the magnitude of image edges as
perceived by the human eye, or the “visual significance” of an edge,
should be the guideline for edge strength computation. In that re-
spect, gradient magnitude as an edge strength measure encapsulates
the well known property of the Human Visual System (HVS) being
sensitive to luminance differences, but ignores other aspects such as
visual masking and luminance adaptation. Earlier research [Ferw-
erda et al. 1997] has demonstrated how image contrast is masked by
other contrast patches that are of similar spatial frequencies. Except
perhaps simple stimuli designed for experimental purposes, visual
masking is expected to occur in virtually any complex image and
often to have a strong influence on perception. Disregarding the
non–linear perception of luminance, especially in HDR images, of-
ten leads to overestimations in bright image regions. As a simple
counter–measure, one can operate in log–luminance space [Fattal
et al. 2002] that better approximates perceived intensity in bright
image regions, but fails to model the perception of lower luminance
values that is not linear in log–space.

We present an edge aware image decomposition framework based
on second generation wavelets [Fattal 2009] that uses visual signif-
icance as its edge strength metric. The contribution of this work is
the use of an HVS model to estimate visual significance as a mea-
sure of edge strength, instead of gradient magnitude that is com-
monly used in computer graphics applications. The HVS model
computes physical contrast at edge locations, and scales it through
a cascade of simple and well known models of luminance adapta-
tion, spatial frequency perception and visual masking. The com-
puted visual significance is approximately scaled in perceptually
linear units, which implies that similar edge strength values across
multiple images correspond to similar perceived strengths. In this
paper, we first summarize related work (Section 2), then discuss
the edge awoiding decomposition framework (Sec. 3) and the HVS
model (Section 4), than we validate the model (Sec. 5) and show
that the use of visually significant edges results in qualitatively bet-
ter outcomes in image retargeting, panorama stitching and HDR
tone mapping over gradient magnitude based approaches (Sec. 6).

2 Background

In this section we discuss related work on edge detection, computer
graphics applications that utilize edge models, and HVS models for
contrast perception. Due to the purely 2D nature of our technique,
we do not discuss any line drawing techniques that are capable of
localizing edges in a semantically meaningful way, but require 3D
information about depicted objects.

Edge Detection
Edge Detection has been one of the fundamental problems in com-
puter vision. In an early approach, Marr and Hildreth used the zero
crossings of the Laplacian operator motivated by its rotational sym-
metry [Marr and Hildreth 1980]. Later Canny focused on finding
an optimal differential operator that localizes sharp intensity edges
(which he approximated with the first derivative of a Gaussian),
and introduced the use of non-maxima suppression and hysteresis
thresholding [Canny 1986]. Canny’s method proved to be very re-
liable over the years and is still widely used. A notable improve-
ment over earlier edge detectors is the use of multi-scale analysis
to detect smooth edges as well as sharper edges (see [Pellegrino
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et al. 2004] for an overview). The steerable pyramid decomposi-
tion, while designed for general purpose feature detection, is shown
to perform better at small peaks of intensity by combining even and
odd filter responses [Freeman and Adelson 1991]. Lindeberg pro-
posed an automatic scale selection method where the scale of edges
is determined by finding the maximum of a strength measure over
scales [Lindeberg 1996]. This method is later employed in George-
son’s third derivative operator [Georgeson et al. 2007], which pro-
vides a more compact response than the first derivative. Some effort
has also been made to detect color edges [Ruzon and Tomasi 1999].
For a detailed summary of edge detection techniques we refer the
reader to [Ziou and Tabbone 1997].

Applications
Edge detection has found various applications in computer graphics
such as guidance over image editing operations [Elder and Gold-
berg 2001], stylization and abstraction of photographs [DeCarlo
and Santella 2002] and texture flattening [Perez et al. 2003]. The
notion of edge importance understood as its “lifetime” (essentially
its presence) over increasing scales in the scale-space framework
similar to [Lindeberg 1996] has been used for stylized line drawings
and structure-aware image abstraction [Orzan et al. 2007]. Edge-
preserving techniques such as the bilateral filter have been used to
decompose an image into a base and detail layers and applied to
HDR tone mapping [Durand and Dorsey 2002]. Recently, Farb-
man et al. [Farbman et al. 2008] proposed another decomposition
with multiple detail layers and presented applications to scale selec-
tive feature enhancement and image abstraction. Fattal [2009] later
showed that comparable results can be achieved much faster us-
ing a second generation wavelet decomposition with a specialized
weighting function that avoids edges. Another approach to edge
preserving filtering is detecting the edge strength by computing the
gradient of the input image, and reconstructing the image through
anisotropic diffusion [Perona and Malik 1990]. This method de-
couples edge detection and smoothing, but it is inefficient due to
the iterative processing. This method has later been modified by
an edge strength measure based on curvature change [Tumblin and
Turk 1999]. Gradient domain operators such as [Fattal et al. 2002;
Mantiuk et al. 2006], while not explicitly stated, also utilize edges
since gradient magnitude operator is essentially an edge detector.
Mantiuk et al.’s [2006] method has additionally a perceptual com-
ponent in the form of a simple contrast transducer.

Contrast Perception
The HVS characteristics involved in contrast perception are quite
complex and have been investigated in numerous psychophysical
studies. Even in the simple case of detection experiments, where
the task is to distinguish a sine wave grating from the uniform back-
ground, the resulting detection threshold depends on many factors
such as the background (adaptation) luminance, the grating’s spatial
frequency, orientation, spatial extent, and eccentricity with respect
to the fovea. These characteristics are modeled by contrast sensitiv-
ity functions (CSF) [Daly 1993; Barten 1999]. Other characteristics
of contrast perception are observed in the discrimination experi-
ments, whose goal is to determine how the presence of one mask-
ing sine [Legge and Foley 1980] or square [Whittle 1986] grating
affects the discriminability of another test grating. In some experi-
ments, it turned out that the maskers of weak contrast actually facil-
itate the discriminability of test grating, and the corresponding dis-
crimination thresholds are even smaller than the detection threshold
as measured by the CSF. For high contrast (suprathreshold) maskers
an elevation of discrimination thresholds can be observed. This be-
havior is modeled by transducer functions [Legge and Foley 1980;
Wilson 1980; Mantiuk et al. 2006], which convert physical contrast
of an image to a hypothetical HVS response. Various transduc-
ers have been successfully incorporated into the HVS models used
in many computer graphics applications including texture mask-

ing simulation [Ferwerda et al. 1997], image appearance model-
ing [Pattanaik et al. 1998], perception-based rendering [Bolin and
Meyer 1998], and tone mapping and contrast enhancement [Man-
tiuk et al. 2006; Mantiuk et al. 2008]. Often, transducer functions
limit their modeling to intra–channel masking assuming a certain
contrast patch is solely masked by other contrast patches at the same
spatial frequency and orientations. A more comprehensive model
by Watson and Solomon [Watson and Solomon 1997] also com-
prises masking from adjacent frequencies (inter–channel masking),
in effect contrast patches are subject to masking from other contrast
patches within a certain neighborhood. The neighborhood masking
model in JPEG2000 is a simpler implementation of the same prin-
ciple [Zeng et al. 2000].

3 Edge Avoiding Framework

Objects appear differently depending on the scale of observation,
and thus visual significance of image features depends on the im-
age scale. Consequently, many image processing tools including
edge detection algorithms adopted multi–scale approaches. This
has been physiologically justified by the finding that each simple
retinal cell responds to a certain bandwidth of spatial frequencies
[Wandell 1995, Chapter 6].

Recent work [Fattal 2009] demonstrates use of second generation
wavelets computed through the lifting scheme [Sweldens 1997] in
the context of edge avoiding multi–scale image decomposition. In
this section we give an overview of these concepts, for a detailed
discussion refer to [Jansen and Oonincx 2005]. Contrary to regular
wavelets, second generation wavelet bases do not have to be merely
translates and dilates of a single pair of scaling and wavelet func-
tions. This generalization enables data dependent filtering through
the use of a weighting function that utilizes the information ob-
tained from the local neighborhood changes the shape of wavelet
bases accordingly. In the context of edge avoiding wavelets (EAW)
the weighting function assigns lower weights to locations contain-
ing strong edges, thus the wavelet bases effectively “avoid” those
locations.

The data dependent filtering achieved by wavelet bases not rely-
ing on translation and dilation comes at the cost of prohibiting
the use of Fourier analysis for wavelet calculation. This issue has
been addressed by a discrete wavelet transform named the lifting
scheme [Sweldens 1997]. The basic idea behind the lifting scheme
is to split a signal into fine and coarse samples, predict fine samples
from coarse samples and compute the details by subtracting fine
samples from their prediction, and update coarse samples using the
details. Fig. 1 illustrates the computation in 1D (using Uytterho-
even’s coloring scheme [Uytterhoeven et al. 1997]). Advantages of
the lifting scheme are fast, in place computation and easily invert-
ible decomposition.

One can achieve edge aware behavior by simply executing a
weighting function at each location that assigns weights accord-
ing to the edge strength at the local neighborhood. If the goal is to
avoid edges, i.e. obtaining detail components free of strong edges,
this can be achieved by the function ω in Equation 1, where m and
n are intensities at the current location and some neighboring pixel,
respectively:

ω(m,n) =
1

(|ν(m,n)|α + ǫ)
. (1)

The control parameter α is set to 0.8 as suggested in [Fattal 2009].
Divisions by zero are prevented by setting ǫ to 10−5. We will use
the function ν later for the estimation of visual significance; in the
original implementation it simply returns the difference of n and
m. Such a decomposition is useful in contrast editing applications
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such as detail enhancement and image abstraction, since halo arti-
facts are prevented due to the absence of strong edges in detail com-
ponents. The opposite goal of extracting solely strong edges can
be achieved by simply using the inverse of ω. The detail compo-
nents of the resulting decomposition closely resemble the outcome
of multi–scale edge detectors, which we utilize in context aware
image retargeting and panorama stitching applications (Section 6).
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Figure 1: Illustration of the lifting scheme on a 1D signal. The
signal is decomposed into fine and coarse parts by designating odd
pixels as fine, and even pixels as coarse components. The fine com-
ponent is predicted from the coarse component using weights com-
puted by the edge aware function ω, or simply by linear interpola-
tion. The difference between the original fine component and the
predicted fine component gives the details. The details are then
used to update the coarse component. The same process is then
iterated on the updated coarse signal.

The straightforward extension to the second dimension is to repeat
the 1D computation at both dimensions (Fig. 2a). If an edge pre-
serving weighting function is used, the results of this 2D decom-
position are analogous to X and Y gradients, and thus fit naturally
into the edge detection pipeline. Another splitting method by [Uyt-
terhoeven et al. 1997] with lower anisotropy produces better results
coupled with an edge avoiding weighting function (Fig. 2b).
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Figure 2: The lifting scheme can be extended by repeating the 1D
computation in X and Y directions (a), or using a lower anisotropy
red-black quincunx lattice (b). Only the prediction step is illus-
trated for brevity.

4 Human Visual System Model

We extend the EAW framework (Section 3) with an HVS model,
where we modify the weighting function (Equation 1) that penal-
izes strong differences of image pixel values by computing visual

significance of the luminance differences. The HVS model takes
physical image luminance as input, therefore 8-bit images should be
mapped to display luminance and HDR images should be calibrated
to scene luminance before processing. The luminance contrast C
is approximated in the EAW framework by dividing the fine sam-
ples by the local mean of the predictions of immediate neighbors
K (2 and 4 for X-Y splitting and red-black splitting, respectively):

C =
Fine

( 1

K
)
∑

K
Predictionk

− 1. (2)

Repeated at each scale, this formulation is similar to the low–pass
contrast in [Mantiuk et al. 2006]. The advantage of a contrast based
edge strength measure over a gradient based measure is illustrated
in Fig.3
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Figure 3: Edge strength predictions utilizing physical contrast ac-
count for the effect of background luminance level. The perceived
strength of step edges 200-201 cd/m2 and 50-51 cd/m2 (left) are
predicted to be the same by the gradient based method, whereas
a contrast based method correctly predicts the weaker perceived
strenght of the first profile.

Note that the contrast C is computed solely using physical lumi-
nance. As the next step we scale C by computing the sensitivity
of the visual system to obtain contrast in perceptually linear units.
Two prominent factors that affect contrast sensitivity are its spa-
tial frequency (ρ), and the adaptation luminance (La). These effects
can easily be observed in the Campbell-Robson chart. We use the
CSF from the Visible Differences Predictor [Daly 1993] with cor-
rections as indicated in [Aydın et al. 2008, Equations (10, 11)] to
obtain the perceptually linearized contrast C′ = C · CSF (ρ, La).
Fig. 4 shows an example where the difference in edge preserving
smoothing is mainly due to the scaling of contrast by the CSF. This
behavior is typical in HDR images, where the contrast magnitudes
at very bright and very dark image regions are overestimated by the
frameworks without perceptual components. As a result, the edges
of the bright window are avoided unlike the edges at the window’s
frame (Fig. 4 center). The CSF’s scaling results in a more uniform
smoothing over edges with similar magnitude of visibility (Fig. 4
right).

Visual masking is the decrease in visibility of a contrast patch in
the presence of other contrast patches of similar spatial frequen-
cies. One way of modeling this effect is by computing a thresh-
old elevation map for each visual channel, which when divided
by the contrast at that channel accounts for the increase in detec-
tion thresholds (thus, decrease in sensitivity). This method trades
off accuracy at supra–threshold contrast levels for better prediction
near the threshold, and has been used in image quality assessment
metrics for distortion detection. On the other hand, the transducer
model is focused on perception of supra–threshold contrasts and
thus preferred in discrimination tasks. The model relies on a trans-
ducer function that is constructed by iteratively summing up con-
trast detection thresholds. The use of a transducer function in com-
puter graphics context is demonstrated in [Ferwerda et al. 1997].
A more comprehensive transducer model [Watson and Solomon
1997] also comprises masking from adjacent frequency channels
(inter–channel masking). In this model, since the lower frequency
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Figure 4: The effect of luminance adaptation. The original HDR
image (left), smoothing with EAW method (center), and smooth-
ing with EAW method using visually significant edges (right). The
strength of edges of the bright window are overestimed by EAW
method in the absence of a model of luminance adaptation. All im-
ages are tone mapped [Reinhard et al. 2002] for display purposes.

Masked coefficient

Intra-channel neighborhood

Inter-channel neighborhood

Figure 5: An illustration of neigborhood masking on detail layers
of a multi–scale decomposed image.

channels contain information from the spatial neighborhood, a con-
trast patch at a certain location is effectively masked by neighbor-
ing contrast patches (See Fig. 5 for an illustration of neighborhood
masking.)
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Figure 6: The visual masking due to the random noise modulated
by image luminance in the test stimulus (left), results in lower per-
ceived edge strength then the gradient magnitude (center), as pre-
dicted by our method (right).

While the visual masking due to the local neighborhood is of-
ten not significant for isolated test stimuli, natural images tend to
have “busy”, textured regions where the visibility of edges are no-
tably lesser than non–textured regions. To account for that, our ν
function (Equation 1) comprises the point–wise extended masking
model [Zeng et al. 2000] which, in addition to a compressive non–
linearity, also accounts for visual masking from the local neighbor-
hood K:

R =
sign(C′)|C′|0.5

(1 +
∑

K
|C′

k|
0.2)

. (3)

The effect of visual masking on a simple stimulus is illustrated in
Fig. 6. Figure 7 shows that the involvement of the point–wise ex-
tended masking model results in a perceptually uniform smoothing
near high–masking regions. Computation of the hypothetical HVS
response R is the final step in function ν in EAW the framework.

Figure 7: The effect of contrast masking in a complex image.
The original image (left), smoothing with EAW method (center),
and smoothing with EAW method using visually significant edges
(right). The masking model reduces the strength of the facial hair
edges due to the presence of hair in the local neighborhood.

5 Model Calibration – Perceptual Experiment

To validate and calibrate the proposed edge perception model, we
conducted a simple threshold-level perceptual experiment. The mo-
tivation for this is twofold: first, we aim to calibrate the imple-
mented supra-threshold transducer model described above (Equa-
tion 3) for threshold stimuli; second, as noted by [Whittle 1986],
discrimination thresholds for spatially separated patches should not
be generalized for perceiving edges, thus there is a lack of usable
experimental data. Furthermore, the used CSF curves [Daly 1993]
reflect measurements using the Michelson’s definition of contrast,
which is slightly different from the implemented definition contrast
(Equation 2).

In our experiment, two adjacent grayscale patches were presented
on a calibrated display device. The luminance of the left patch
is kept constant during each trial, whereas the luminance of the
right patch was modulated according to the responses of the sub-
ject. Each subject was asked whether there is a visible edge be-
tween the two patches or not. The luminance of the right patch
was decreased if the response was positive, and increased if the
response was negative. The step sizes were determined by follow-
ing the PEST procedure [Taylor and Creelman 1967]. A random
noise pattern was presented for 1s between stimuli to avoid after-
images, memory effects, etc. Each trial ended once the standard
deviation of the subject’s last 6 responses were below the minimum
step size (0.01cd/m2) or if there were more than 30 responses col-
lected. The experiment comprised 10 trials for each subject, where
the initial luminance of the left patch at each trial is selected by
randomized sampling from the luminance range 1.5− 400cd/m2.
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Figure 8: Perceptual experiment. Left: measured edge detection
luminance thresholds as a function of adaptation luminance La,
right: model predictions before (red crosses) and after the calibra-
tion (green crosses). An ideal model response is constatntly 1 JND
for the threshold data (dashed line).

The stimuli were displayed on a calibrated Barco Coronis MDCC
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3120 DL, a 10-bit 21-inch hi-precision LCD display, in its native
resolution 2048×1536 pixels, the maximal display luminance was
440cd/m2. The display response was measured by the Minolta
LS-100 luminance meter. The experimentation room was darkened
(measured light level: 1 lux), and observers sat approximately 70
cm from the display. The total of 22 observers took part in our ex-
periment. The observers were both male and female and all of them
reported to have normal, or corrected-to-normal vision. Each sub-
ject was verbally introduced to the problem before the experiment.

The measured edge perception thresholds, see Fig. 8 (left), were ap-
proximated by the second order polynomial function (blue curve).
Using the polynomial function, we generated 100 input threshold
stimuli as the inputs for model calibration procedure. We assume
that the model output for each stimulus at the threshold level should
be R=1 JND. Therefore, we run the model for each of 100 input
stimuli to obtain the error function, see Fig. 8 (right). The threshold
prediction of the uncalibrated model (red crosses) was quite solid,
so that we decided to perform the calibration by means of a sim-
ple linear function which should not affect the performance of the
model for supra-threshold stimuli. The calibration was achieved by
dividing the masking model by the calibration fuction (blue curve
in Fig. 8 (right)):

R′ =
R

0.0002 La + 0.2822
, (4)

where La is the adaptation luminance in cd/m2.

As the masking model (Equation 3) was verified in JPEG 2000 ap-
plications, we did not calibrate it for supra-threshold data. How-
ever, we believe that the supra-threshold performance is also im-
proved as a consequence of the threshold calibration, and the preci-
sion of the model is more than sufficient for various applications as
illustrated in the next section.

6 Applications

In the previous sections we showed that the use of visual signifi-
cance results in smoothing that better correlates perceived strength
of edges. However, applications like image abstraction through
edge preserving smoothing or detail enhancement produce images
whose quality is judged aesthetically. Thus, despite the obvious dif-
ferences between the perceptual and non–perceptual methods, one
can not objectively prove that a visually significant edge model pro-
duces better results. In this section we present three applications
that rely on importance of image features, and thus the improve-
ment through a perceptual model can be demonstrated through ex-
amples. All results are generated using the extended EAW frame-
work. The edge maps used in image retargeting and panorama
stitching are generated by using the inverse of Equation 1 as dis-
cussed in Section 3.

6.1 Image Retargeting

Several techniques were recently proposed to allow content-aware
image and video retargeting [Avidan and Shamir 2007; Wang et al.
2008; Rubinstein et al. 2009]. The central part of those approaches
is usually an importance map (energy function) that describes the
importance of areas in the image. Using the map, the retarget-
ing operator then preserves the important areas at the expense of
less-important ones. Several possibilities of the importance map
construction were proposed [Avidan and Shamir 2007], however a
simple Sobel operator was utilized in many cases.

The visually significant edges are a natural candidate to construct
such importance map in a perceptually more convincing way. We

show the results of seam carving image resizing operator [Avidan
and Shamir 2007] using traditional importance map and the new
map calculated by our technique in Figures 9 and 10. The tradi-
tional technique removes more visually significant areas than when
we build importance map using our method. Our results indicate
that the difference between both methods is especially significant
if the visually significant details are located in dark image regions.
While the perception of brighter details (> 100 cd/m2) can be
approximated by a simple compressive logarithmic function, our
method has the advantage of faithfully modeling perception in all
luminance levels and taking masking into account, and thus overall
produces more reliable results (Fig. 10 (c) and (d)). In fact, the suc-
cess of particular importance map construction varies with the input
images and the absence of a universal retargeting operator led to the
proposal of a hybrid approach combining several techniques [Ru-
binstein et al. 2009]. Our results suggest that visual significance
can be guideline in importance map computation and can provide a
basis for more sophisticated retargeting operators.

An advantage of our approach is that it allows perceptually based
retargeting on not just ordinary, but also high dynamic range im-
ages. In images consisting of mostly bright regions (> 100 cd/m2)
a simple logarithmic non-linearity may be sufficient to approximate
the perception of luminance. However, this method is less precise
in darker regions where Weber’s law doesn’t hold (compare Fig. 10
(f) and (g)). Moreover, visual masking may have a significant effect
in images contating many details (Fig. 9).

That said, we found that first producing a tone mapped “dual” im-
age, and then performing the retargeting on the original HDR image
using the edge strengths computed on the dual image to work well
in some cases. However, the type of tone mapping operator and
suitable parameter setting is an open question, and requires manual
interaction in comparison to our fully automated method.
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Figure 9: HDR image shrinking by seam carving (150 pixels hori-
zontally). First row left: original HDR image. Middle: result when
the Sobel operator is used for importance map construction. Right:
result using the proposed visually significant edges. Images are
tone mapped [Drago et al. 2003] for the display purposes. Second
row: edge strength maps. Left: edges detected by Sobel operator in
the input HDR image. Right: visually significant edges – note the
differences in absolute values and in the ratios of edge strenghts
(due to the JND scaling), and the structural differences in the edge
map (due to the masking).
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Figure 10: HDR image shrinking (400 pixels horizontally) by seam carving. First row: (a) original HDR image, (b) Sobel operator
overestimates the strength of edges in the sky, which results in carving of the visually important palm tree, (c) results are similar if the Sobel
operator results are compressed by the logarithm function, (d) the proposed method results in less distorted image appearance, especially
evident at the tree’s body. Images are tone mapped [Drago et al. 2003] for the display purposes. Second row: (e,f,g) corresponding edge
strength maps.

6.2 HDR Tone Mapping

As mentioned in experimental evaluations [Kuang et al. 2007;

Čadı́k et al. 2008], the goal of tone mapping is manifold: some
tone mapping operators are focused on compressing the image lu-
minance while preserving the overall scene appearence. For exam-
ple, the outcome of such an operator applied to a dark scene would
not reproduce the details that are not visible by the human eye due
to insufficient lighting. The other group of tone mapping operators
on the other hand focuses on preserving as many scene details as
possible irrespective of their visibility magnitude.

The tone mapping from the original edge avoiding framework [Fat-
tal 2009] can be classified as strictly detail preserving. In the spirit
of previous decomposition-based approaches [Tumblin and Turk
1999; Fattal et al. 2002; Durand and Dorsey 2002; Farbman et al.
2008], the technique flattens the coarsest scale of the EAW image
decomposition by factor β and the other scales are progressively
compressed so that the wavelet coefficients in a coarser scale are
decreased more than in a finer scale (by factor γk, where k is the
scale). This corresponds to an observation that the coarser scales
often contain very high magnitude differences and should be there-
fore compressed much more than the finer scales (details) that we
usually aim to preserve. The technique operates on logarithm of the
input luminance that can be thought of as a simple approximation
of human luminance perception, but having not accounted for other
prominent perceptual phenomena (e.g. the perception of contrast),
the results look unnatural, see Fig. 11 (left).

The results produced by the technique mentioned above may be
suitable for certain scenarios (e.g. the best reproduction of de-
tails), but not for reproducing the appearance of a scene. However,
we can achieve much better results (in this sense) by replacing the
logarithm function with the perceptual framework proposed in this
paper. We thus obtain image decomposition coefficients that are
closer to the human visual system response (accounting for phe-
nomena described in Section 4) and those are then compressed in
a same way as above for the display purpose. As expected, the re-
sults are then more natural renditions of the original HDR images
and preserve the scene appearence, see Fig. 11 (right).

6.3 Panorama Stitching

An HDR panorama generation approach proposed by Ward [2006]
makes use of edge maps to stitch adjacent images of a scene. In this
method images are decomposed into two layers: a low pass layer
that corresponds to 1/16th of the image’s original resolution and
a high frequency layer. The low frequency layers of adjacent im-
ages are blended together using a sinusoidal weighting function,
whereas the high frequencies are spliced at locations containing
strong edges. The method is guided by a compound edge map E
obtained as a combination of edge maps of pairs of overlapping im-
ages (Eleft, Eright). We adopted the following technique to con-
struct the compound edge map:

E = max(Eleft · Eright, 0). (5)

In other words: if there is a strong edge in the left image, but
not in the right image, then this is possibly due to a misalignment
and should not be preferred for splicing. On the other hand, loca-
tions containing strong edges with the same sign in both images are
strong candidates for splicing.

For panorama stitching application, we inverted the neighbor-
hood masking in our model, so that it amplified the masked
edges. This is motivated by observation that the masked edges
also mask the seams so that they are less disturbing in the fi-
nal panorama. We empirically found that multiplying R with
(2 ·Neighborhood masking)2 to work well in practice. We com-
pare the results obtained using our technique and the traditional
Sobel operator in Fig. 12. The source images were inverse tone
mapped prior to processing by simple contrast stretching.

7 Conclusion

We presented a method that localizes image edges and scales their
strength proportionally to their visual significance. We discussed a
simple and efficient HVS model that accounts for prominent fea-
tures of the visual system such as luminance adaptation, spatial fre-
quency sensitivity and visual masking. In our experience the visual
significance computation in EAW framework increases the compu-
tation time by 30− 50%.

The HVS model is integrated into the edge avoiding wavelet frame-
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Figure 12: An HDR panorama stitched from three different, not precisely aligned pictures using Ward’s technique [Ward 2006]. Top: the
result obtained using Sobel operator, Bottom: the result using the proposed visually significant edges. The images are tone mapped [Reinhard
et al. 2002] for display purposes.

work which provides a convenient basis for edge preserving image
decomposition, and also extraction of edges by inverting the edge–
stopping citerion. The choice of the framework is not crucial for
specialized applications that rely either solely on image decomposi-
tion or edge extraction. For example, the HVSmodel can be applied
to multi–scale image gradients for the former type of applications,
or to an image pyramid obtained through bilateral filtering for the
latter type of applications. The wavelet framework is convenient in
the sense that it can serve both purposes in one framework, and is
faster than others in decomposition.

The main limitation of this work is the absence of models for higher
level mechanisms of the visual system such as gestalt properties and
prior knowledge. Unfortunately modeling those mechanisms is not
trivial because of their complexity and consequently the hardness
of designing reproducible experimental setups to determine their
effects.

In the light of recent work [Cole et al. 2008] that shows luminance
edges are in fact prominent image features, we believe that the visu-
ally significant edges are good candidates for determining the rich-
ness of detail in images. Such a measure, combined with others
such as image brightness, overall contrast and colorfulness can pro-
vide a good estimate of image quality in the absence of a reference
image (no–reference image quality assessment). As a future direc-
tion we would like to investigate the possibility of designing such a
metric that utilizes visually significant edges.
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Image Editing
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Abstract Recently proposed edge-preserving multi-scale

image decompositions enable artifact-free and visually ap-

pealing image editing. As the human eye is sensitive to con-

trast, per-band contrast manipulation is a natural way of im-

age editing. However, contrast modification in one band usu-

ally affects contrasts in other bands, which is not intuitive

for the user. In practice, the desired image appearance is

achieved through an iterative editing process, which often

requires fine tuning of contrast in one band several times. In

this article we show an analysis of properties of multiscale

contrast editing frameworks and we introduce the concept

of contrast prescription, which enables the user to lock the

contrast in selected areas and bands and make it immune to

contrast manipulations in other bands.
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Fig. 1 An application of prescription idea in multiscale contrast ma-

nipulation. Enhancement of medium/high frequency contrast bands

produces saturation of some image features existing in lower bands.

Prescribing the contrast of unmodified bands prevents the saturation

and at the same time allows to effectively increase the contrast accord-

ing to user’s request
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1 Introduction

Contrast editing is a common post-processing step in digital

photography, usually aimed towards improving the photo-

graph’s aesthetical appeal. Research on contrast editing has

been focused on two main issues: developing versatile, yet

computationally efficient frameworks that produce artifact-

free results, and developing user interfaces that provide in-

tuitive interaction with these underlying frameworks. Com-

mon to all state-of-the-art contrast editing methods is the

involvement of a multiscale image decomposition, through

which the image contrast can be edited in an arbitrary num-

ber of scales. This tendency is not surprising; since the hu-

man visual system (HVS) comprises mechanisms to per-

ceive contrast in multiple spatial frequencies, editing fine

and coarse image details separately feels only natural for the

end user.

In a multiscale framework, a perfect separation between

individual scales such that no two scales have any overlap,

can theoretically be achieved by using frequency domain

filters with sharp cutoffs. However this simple approach is

never applied in practice since it results in heavy ringing ar-

tifacts, which can only be avoided by a smooth transition

between filters of different scales. As a direct result, an im-

portant, but often ignored property of multiscale frameworks

is the interaction between contrast at individual scales. Thus,

enhancing the contrast of, for example, medium frequency

details, indirectly affects the appearance of fine and coarse

details due to the overlap between the filters of the neighbor-

ing scales in frequency domain. The central idea of this work

is “contrast prescription”, where the user selects a certain

image region for which the contrast at each unmodified scale

is locked (“prescribed”), and thus the image details with the

desired spatial frequency can be edited independently.

The practical implication of contrast prescription is a

more intuitive contrast editing experience. While a set of

user controls (often sliders) that control the contrast ampli-

tude at different scales gives the impression of being orthog-

onal to each other, in reality the changes at one scale propa-

gates to others; an effect which we call “leaking” of contrast.

These leaks can effectively be prevented by prescribing the

contrast in the image region being edited, which frees the

user from iteratively adjusting interface controls to confine

the contrast change to the desired scale.

We show that contrast prescription can be implemented

in multiple state-of-the-art contrast editing frameworks. Our

GPU implementation combined with an intuitive user in-

terface comprising brush and slider controls provides real-

time feedback. In this work we focus on editing both low-

dynamic range (LDR) and high-dynamic range (HDR) im-

ages using ordinary (LDR) display devices. In the rest of

the paper we discuss related work on contrast editing and

multiscale image decompositions (Sect. 2), give details on

the related consequences of multiscale editing (Sect. 3) and

how we address them (Sect. 4). Next, we discuss details on

the extension of multiple frameworks to handle contrast pre-

scription (Sect. 5), and finally present our results (Sect. 6).

2 Related work

Multiscale image decompositions such as the Laplacian

pyramid [3, 11] have been successfully applied to many im-

age processing tasks, including image editing. The practical

advantage of considering multiple scales for image editing

is the ability to modify the appearance of coarse and fine

details separately [17]. On the downside, enhancing fine de-

tails disproportionally to coarser details leads in the extreme

case to the well-known halo artifacts, resulting in unnatural

images often considered not to be aesthetically pleasing.

Edge-preserving image decompositions, on the other

hand, minimize halo artifacts by avoiding smoothing across

strong edges. The edge-preserving behavior is accomplished

through non-linear filters such as weighted least squares

[14], anisotropic diffusion [2, 24], or the bilateral filter [27].

Motivated by the anisotropic diffusion, [28] proposed a hi-

erarchical approach called LCIS for HDR tone mapping

purposes. The bilateral filter has been widely used in HDR

tone mapping as well [5], but also in image fusion [6, 9],

example-based transfer of photographic look [1], among

others. However, the extra complexity of the filters con-

fine applications of Bilateral filtering to work offline. The

performance issue has been addressed by introducing the

“Bilateral grid” as a data structure built on Bilateral fil-

ter, which enables real-time, multiscale edge-aware image

manipulations [4]. The edge-preserving behavior has been

further improved by a weighted least squares (WLS) based

framework [7], and later another framework based on edge

avoiding wavelets [8] has been shown to achieve similar

quality results much faster, due to the involvement of the

linear time lifting scheme. The principle idea of preserv-

ing edges during decomposition has also been used in con-

trast processing of HDR images [21]. This method relies on

performing image editing by first scaling perceptually lin-

earized image gradients, and then reconstructing the image

from the new gradient values. Recently, Subr et al. [25] pro-

posed another edge-preserving image decomposition based

on local extrema.

One consequence of multiscale image editing is the in-

creased complexity of the editing process from the user’s

perspective. In fact, interfaces for intuitive image manipu-

lation have been an active topic of research [15, 16, 18]. In

our work we used an intuitive brush based interface, using

which we were able to generate results in the paper in ses-

sions lasting a fewminutes. This was achieved also thanks to

the real-time feedback of the underlying contrast processing

framework.
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3 Consequences of band modification in multiscale

image decomposition

Contrast can vaguely be described as the difference between

the intensity of an image location with the intensity of some

neighborhood around that location, normalized again by the

intensity of the same neighborhood. A mathematical formu-

lation of this quantity is possible for simple luminance pat-

terns (such as a foreground–background stimulus with lumi-

nance profile defined by a step function) where contrast can

be defined as Weber’s ratio:

W = (Lmax − Lmin)/Lmin, (1)

or the logarithmic ratio

G = log(Lmax/Lmin), (2)

where Lmax and Lmin are the intensities of the foreground

and the background, respectively. For a sinusoidal lumi-

nance pattern, contrast can be computed using Michelson’s

formulaM = (Lmax − Lmin)/(Lmax + Lmin) with Lmax and

Lmin being the sinusoid’s peak points. Note that choos-

ing among these “simple” contrast definitions is contextual,

since they can trivially be converted to one another if re-

quired.

Natural images, however, are much more complex than

mere step or sinusoidal intensity patterns, in that they con-

tain various details at multiple scales. Consequently, the

computation of the aforementioned “simple” contrast mea-

sures is not clear since Lmax and Lmin are not well-defined.

Peli [23] defines contrast in complex images as the ratio of

the bandpass image to the low-pass image at multiple scales

Ci =
Kσ(i) ∗ I − Kσ(i+1) ∗ I

Kσ(i+1) ∗ I
, (3)

where ∗ denotes the convolution operation between linear
luminance and a low-pass Gaussian kernel Kσ(i) at scale

i, and σ(i) = 2i/
√
2 denotes standard deviation, which ac-

counts for frequency band cutoff.

In this paper, we use a multiscale contrast representation,

where each contrast sub-band is calculated as a ratio be-

tween successive (i and i + 1) Gaussian-like1 smoothings

of the image I :

Gi =
smoothingOperator(I, i)

smoothingOperator(I, i + 1)
. (4)

To simplify the computations, the decomposition is per-

formed on the logarithm of luminance (roughly approximat-

ing the non-linear perception of luminance), for which the

1In practice, any type of low-pass (and also edge-preserving) filter can

be used as a replacement of Gaussian filter.

ratio can be replaced with a simple subtraction. Such a dif-

ference then gives the logarithmic ratio between an image

location at some scale and the mean of its neighborhood,

as shown in (2). This representation has also the advantage

of being computationally more efficient then Peli’s contrast,

therefore most of the multiscale image editing frameworks

[8, 19] follow this simple band decomposition scheme.

The selection of smoothing operator is usually the key

factor in the overall performance and quality of a decompo-

sition framework. Marr and Hildreth [22] define two main

requirements that need to be met for the good smoothing

filter. The first is that every multiscale decomposition re-

quires the filter spectrum to be smooth and band-limited in

the frequency domain. This allows to reduce the range of

scales over which intensity changes take place. We can de-

sign a band-pass filter that would be perfectly localized in

the frequency domain (sharp cutoff or brick-wall type of fil-

ter). However, processing an image with such a filter will

induce well known ringing artifacts. Non-oscillating low-

frequency parts of the image will yield in global oscillations

in the output band representation. To prevent such artifacts,

one needs to put the second requirement, a spatial localiza-

tion constraint on the filter characteristics. This requirement,

much more important from image editing point-of-view, can

be interpreted in a way that every pixel in the filtered image

should be computed from a weighted average of nearby pix-

els. The constraints above are contradicting in a sense that

we are able to increase the spatial locality (reduce ringing)

at the cost of frequency domain performance (reduced band-

pass behavior).

A good example of such a trade-off in filter design is

the Gaussian low-pass filter. It is non-negative and non-

oscillatory, hence causes no ringing. The response in the fre-

quency domain is a Gaussian function itself with the mean

focused around the middle frequency of the band. This fea-

ture has an important consequence when applied in multi-

scale image processing. Such filter is inevitably causing an

energy leakage between bands: the energy (modification)

in one band leaks out to neighboring bands in the succes-

sive multiscale image manipulations. We show an illustra-

tive band manipulation example exploiting Gaussian filter

in Fig. 2 (left column), where single sub-band modifica-

tion generates undesired energy leaking in neighboring sub-

bands (Fig. 2, middle column). The energy leakage is pre-

vented when ideal band-pass filter is used (identified by box

function in frequency domain), however it results in ringing

artifacts as described above. In Fig. 3 we compare the en-

ergy leakage of Gaussian-based image decomposition with

this “ideal” band-pass decomposition.

The uniform smoothing behavior of the Gaussian filter,

which leads to halo artifacts if sub-bands are independently

modified, is addressed by so-called edge-preserving smooth-

ing operators. They preserve sharp edges by excluding pix-

els across image discontinuities from consideration, which
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Fig. 2 Step function contrast enhancement. Input function is decom-

posed into 4 frequency bands and a DC component. Each band is vi-

sualized using Peli’s definition for the physical contrast. We simulate

detail enhancement by multiplying the C3 band by 4. Decomposing the

modified signal again shows that the contrast change of modified band

is not proportional to the applied multiplier (middle column). Further-

more, due to Gaussian filter energy leaking property, all neighboring

bands have been modified. Contrast prescription during the computa-

tion of modified signal (right column), locally limits the energy leaking

and allows for better preservation of the contrast values in unaffected

bands

Fig. 3 Comparison of energy leakage of a Gaussian based decomposi-

tion with an ideal band-pass filter based decomposition. Input impulse

signal is decomposed into 8 DoG (Difference-of-Gaussians) bands.

While modifying the band we measure the signal magnitude change at

each scale, which leads to piecewise linear approximation (blue plot).

Due to non-ideal band-pass characteristics of the Gaussian filter, boost-

ing the middle band results in uncontrolled amplification of features

in neighboring scales (blue plot). The energy distribution of DoG de-

composition resembles Gaussian function itself, but is not symmetric

in logarithmic frequency scale. On the contrary, ideal band-pass filter

satisfies the localization requirement in frequency domain (red). How-

ever, when applied to discrete image edges, creates undesired ringing

effect in the spatial domain

avoids dividing the energy of the same edge across multi-

ple sub-bands. However, due to imperfect localization in the

spatial and frequency domain of the low-pass filter, these

halo-free decompositions are still affected by the inter-band

energy leakage during band manipulation.

We are not aware of any practical image decomposition

scheme which is free of inefficiencies of Gaussian-like low-

pass filtering mentioned here. To address this problem we

introduce contrast prescription which restores unmodified

bands physical contrast (i.e. Peli’s contrast) during image

reconstruction process (see Fig. 2, right column).

4 Contrast prescription

To overcome the inconvenient effect of energy leakage in

multiscale based contrast editing applications, we introduce

a simple and efficient contrast prescription idea. Our proof-

of-concept implementation allows to directly manipulate

spatial selection of entire range of image scales. We de-

fine prescription-enabled editing as a manipulation in which

all unmodified sub-bands are prescribed to keep their con-

trast values constant. As there are no assumptions made

on the type of chosen multiscale decomposition method,

the contrasts in prescribed sub-bands are restored while the

pyramid-like decomposition is integrated back to the output

179



Contrast prescription for multiscale image editing 743

image. Adopting contrast representation from (4), the inte-

gration is performed by simple addition of all sub-bands:

log(Iout) =
N∑

i=1
multi · Gi, (5)

where multi denotes per pixel contrast multiplier for band i

and · is an element-wise multiplication operator. Note that
multipliers are applied to the logarithmic contrast represen-

tation, which is equal to computing a power function on the

linear contrast values. In practice, this prevents too strong

darkening of the image which otherwise would happen in

linear space. However such an operation, in case of detail

enhancement, tends to oversaturate the already well-visible

details. Our prescription algorithm can counteract this sce-

nario by selectively modulating the contrast values of over-

saturated pixels. The overall contrast restoration algorithm

is shown as pseudo-code in Fig. 4.

Although we store sub-band contrast in a logarithmic ra-

tio representation, in order to compute contrast changes dur-

ing successive band manipulations, we utilize Peli’s phys-

ical contrast measure, as it is a metric that can be reliably

applied to complex images and by definition takes into ac-

count inter-band dependencies. We employ local sub-band

physical contrast ratio to correct the contrast values affected

by the cross-band energy leaking. The contrast correction

algorithm starts from the lowest frequency band. According

to (3), if the band-pass image is constant, the only way to

change contrast is to modify the low-pass image of the same

band. As we perform interactive multiscale contrast manip-

ulation, the aforementioned situation takes place quite often.

In order to correct for this, we simultaneously compute two

1: ContrastRestore(MultiScaleMultipliers mult, Multi-

ScaleDecomposition G)

2: N ← height(G) // sub-band count

3: I0 ← GN // log(DC)

4: I1 ← GN // log(DC)

5: for i ← N − 1 downto 1 do

6: for all pixels do

7: R ←multi · 10(I0−I1)·β // corrected multiplier

8: W ← 10|Gi | − 1
9: I0 ← I0 + Gi

10: I1 ← I1 + sign(Gi) · log(W · R + 1)
11: end for

12: end for

13: Iout ← I1

Fig. 4 Contrast restoration algorithm. We simultaneously integrate

two pyramids using previous and current band multipliers. The inte-

gration incorporates a correction fraction for I1 (output) that locally

restores contrast in prescribed bands. The I0 image serves as a pre-

scribed sub-band adaptation luminance reference which is required for

computing the correction factor

low-pass images I0 and I1 (approximated background lumi-

nance), which let us estimate for each sub-band how the con-

trast has changed. Initially both images are the same, so no

correction is applied. However, as we move further, adding

up a new sub-band components (Line 9–10 of Fig. 4), the

difference between background luminance values becomes

more apparent, and directly affects the Peli contrast for pre-

scribed bands. We modify the mult set to reflect the back-

ground luminance change and locally correct for the sup-

pression or enhancement of prescribed sub-band contrast.

Given a linear low-pass image I1 and its prescribed coun-

terpart I0, we perform pixel-wise scaling of mult (line 7)

by (
I0
I1

)β ratio, which for β = 1 corresponds to restoring

Peli’s contrast for a certain pixel. The β scaling parame-

ter provides a non-linear control over the performance of

contrast restoration. As the sub-band contrast is stored in a

low-pass logarithmic format, before changing the contrast

value we need to convert it to an intermediate notation for

which the linear band-pass signal is expressed in the nom-

inator. For this purpose, we use the Weber fraction com-

puted as W = 1L/L = 10|G| − 1. After modifying the con-
trast we apply simple transformation to get back to low-pass

logarithmic contrast: G = sign(G) · log(W + 1). Corrected
mult multipliers are stored in a separate location, so they

can be used in construction of reference contrast pyramid G

in user’s future edits. After applying the contrast restoration

formula for all sub-bands we output the image to the display.

The bottom-up approach is motivated by the fact that the

most of the energy leaking is due to the large signal am-

plitudes of low-frequency bands. This is supported by the

findings in natural image statistics [10]: most of the im-

age energy is focused around low-frequency bands, which is

known as the power law for the amplitudes of frequencies.

5 Extension of edge-preserving decompositions

In this section we discuss extending recent edge-stopping

multiscale decomposition frameworks with contrast pre-

scription. Furthermore, we introduce supplementary exten-

sion that allows the user for counter-shading (halo editing).

5.1 Weighted least squares decomposition

The contrast prescription algorithm can be implemented in

WLS optimization framework in a straightforward manner.

The basic idea behind the WLS based decomposition is to

keep the complete frequency domain representation of each

edge at only one scale. The multiscale image decomposi-

tion is achieved by iterative application of an edge-stopping

image smoothing operator, which is tuned in subsequent it-

erations to preserve edges of successively larger contrast. In

order to convert such a representation to contrast sub-bands,
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we employ (4). The smoothing operator is designed as a

Poisson-class linear optimization which minimizes the en-

ergy function that penalizes the image gradients (smoothing

effect) in the whole image except near strong edges (edge-

stopping effect). Due to the existence of high frequency

edges in the band-pass image, the WLS filter requires the

bands to be stored as full-resolution images.

The weighting function, responsible for edge-stopping

behavior is expressed as:

wn(m) =
1

|Ln − Lm|α + ǫ
, (6)

where wn denotes an edge weight between pixel value Ln

and its neighbor Lm (α is a model parameter and ǫ pre-

vents division by zero). Contrast restoration mechanism (see

Fig. 4) is applied directly on the WLS multiscale image de-

composition and the resulting image is obtained by adding

up the sub-bands.

5.2 Second generation wavelet decomposition

Recent work [8] showed the application of second gen-

eration wavelets to edge-preserving image decomposi-

tion. Here, the image is decomposed using edge avoiding

wavelets (EAW)—second generation wavelets constructed

with a weighting function similar to (6). The computation

of second generation wavelet decomposition is performed

using the lifting scheme [26].2

Our wavelet implementation is based on aWeighted Red-

Black decomposition (WRB) [29]. After transforming the

image into wavelet representation we cannot directly use the

wavelet scaling function coefficients to apply our contrast

prescription algorithm. In order to recover DoG-like decom-

position of the image, we compute N inverse wavelet trans-

formations. Each inverse transformation sets all scaling co-

efficients to zero, except the ones which describe features at

scale i. Such an algorithm performs an edge-aware interpo-

lation (upsampling) of selected sub-band components. The

output image is a full-resolution sub-band which roughly

corresponds to the results obtained by the WLS framework

mentioned above. As we show in Sect. 6 our GPU imple-

mentation of wavelet decomposition is very fast; the entire

process takes less than 5 ms on mainstream hardware.

5.3 Perceptual contrast processing framework

Mantiuk et al. [21] presents a framework in which the inter-

band dependencies are tightly integrated in the inhomoge-

neous Laplace equation and the prescription algorithm can-

not be applied in the form described earlier. In this frame-

work, especially suitable for processing HDR images, the

2We refer the reader to Jansen and Oonincx [12] for a detailed discus-

sion on second generation wavelets.

final image is a result of least square optimization (com-

puted using a Poisson solver) and is not reproduced by

simple addition of sub-bands. In order to make our ap-

proach applicable we implement contrast restoration as a

post-processing step. We use two separate decompositions

to track the changes before and after manipulations, con-

structed by the EAW algorithm described earlier due to its

efficiency. Contrast prescription is then realized using sub-

band contrasts obtained from these external decompositions.

5.4 Interactive halo editing

The use of counter-shading to enhance the perceived con-

trast has been known by painters for ages [20]. More re-

cently, [13] proposed an automatic technique for improving

contrast perception in digital images by modulating bright-

ness at the edges. In our technique, we allow the user to

control the halo effect (counter-shading) manually. This is

implemented inside the edge-preserving decomposition by

means of a minor modification in the weighting function (6)

used by both decomposition frameworks. By modulating α

coefficient, which is responsible for edge-stopping behavior

of decomposition scheme, we can suppress or enhance halo

effect near the edges. When α is close to 0, the weights are

becoming more spatially uniform, thus the smoothing oper-

ator resembles regular Gaussian-like filter. This results in a

decomposition that, in case of a local manipulation, is af-

fected by the halo effect. For each sub-band, we define the

α pixel-wise. To modify these coefficients we use the same

approach as for updating contrast multipliers (see Sect. 6).

6 Results

In this section we present results of a comparison of

prescription-enabled editing with regular one on a number

of images. Our proof-of-concept software3 was tested on

a mainstream PC equipped with Intel Core2 Duo 3.0 Ghz

CPU and NVidia GTX260 GPU. We compared the per-

formance of decompositions presented here. In most cases

the decomposition can be done off-line, as a preprocess-

ing step before actual editing session. However, features

like halo editing require recreating the sub-bands every

time we modify edge weights. Consequently, we chose

wavelet decomposition as our benchmark implementation

since it is significantly faster than other schemes and the

results we obtained are comparable. For a 1 MPixel im-

age, the forward wavelet transform coupled with gener-

ation of 8 full-resolution contrast bands takes less than

5 ms. Hence, the framework runs at interactive speeds even

3The implementation comprises of a platform independent Java UI and

native GLSL image processing library.
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1: UpdateMultipliers(MultiScaleMultipliers mult, Im-

age mask)

2: N ← height(mult) // sub-band count

3: for i ← 1 toN − 1 do

4: B =GetBandMultiplier(i)
5: for all pixels do

6: multi ←max(0,multi +mask · B)

7: end for

8: mask=mask ↓ 2
9: end for

Fig. 5 Contrast multipliers update. The GetBandMultiplier(i) func-

tion returns [0,1] normalized value which indicates mask scaling fac-
tor for band i. It can be either user-defined by setting up scale range

sliders or computed in fully automatic manner

for large images. In case of Poisson solver, on the other

hand, each iteration takes about 3 ms, depending on the

amount of modification applied. Note that edits are per-

formed iteratively on a small parts of the image. There-

fore, the solver is initialized with a good quality solution,

which only needs to be corrected in some selected regions.

On average our conjugate gradient based solver requires

about 10 iterations to converge. The test software binaries

are available for Windows/Linux and can be downloaded

from (http://mpi-inf.mpg.de/~dpajak/prescription).

Our implementation allows the user to intuitively manip-

ulate the contrast multipliers. Brushing over selected areas

creates a smooth amplitude mask with Gaussian-like fall-

off, which is then used to update per band, per pixel multipli-

ers (see Fig. 5). We decided to implement brush based inter-

face as it is still considered to be the most common tool used

for manual image retouching. However, this interface can be

easily extended by introducing more automated, diffusion-

based segmentation as in [19]. For a novice user, manip-

ulating bands with scale range sliders can be challenging.

Therefore, we include a brushing mode where band multi-

pliers (see Fig. 5) are computed automatically by measuring

image energy4 for current selection. This approach will al-

ways try to selectively boost the bands with smallest energy

value.

6.1 Contrast prescription

We demonstrate our approach by performing a set of exem-

plary, yet typical, contrast editing sessions. First, we show

a simple scenario, where only one band range is modified

and then we stage more complex manipulation to show how

bands interact with each other.

In Figs. 1 and 6, we perform single modification of fine

image details using WRB Wavelet decomposition scheme

4Modulo of a gradient for gradient domain frameworks and absolute

amplitude of band-pass contrast for multi-scale decompositions.

Fig. 6 Example of contrast enhancement based on WRB wavelet

decomposition for α = 0.8 (6) and β = 1.0 (Fig. 4). Boosting

fine/medium scales in the ceiling area causes saturation of some im-

age features and results in unnatural appearance. Despite the extreme

boost, contrast restoration allows to regain natural look of modified

area and get the requested detail enhancement

Fig. 7 Comparison of regular and prescription-enabled image editing

in WLS framework (α = 1.2). Amplification of coarse features attenu-
ates contrasts in higher bands. Contrast restoration algorithm success-

fully recovers fine details and boosts coarse image features at the same

time

with parameters α = 0.8 and β = 1.0. In both figures, we

used the same band range multiplier for prescribed and non-

prescribed operation. Due to the energy leakage, features ex-

isting across multiple scales are over saturated and by com-
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paring against the source image we see that their contrast

enhancement is spatially inconsistent. Prescription counter-

acts these situations and allows for more uniform and con-

trollable contrast modification. Note that it is cumbersome

to achieve such a result with a series of separate edits since

the restoration is spatially local and highly non-linear.

Figure 7 shows an opposite scenario, where user scales

low-frequency bands. The modification causes the loss of

visibility of trees and plant pot details. Prescription of con-

trasts in upper bands allows to achieve both goals, increasing

the global contrast and maintaining the detail visibility.

In Fig. 8, the image is initially modified by enhancing fine

details around the plant area. Next, we boost low-frequency

bands, which reduces the visibility of previous edits. Also,

high signal amplitudes of low-frequency content exposes

the energy leakage issue, resulting in an over-saturated im-

age and decreased perception of unmodified contrasts bands.

Contrast prescription visibly restores the details and reduces

the saturation while still allowing for large enhancement of

low-frequency contrasts.

Finally, we illustrate the complete editing session result,

Fig. 10, where we manipulate contrasts in order to transfer

Fig. 8 Contrast editing session in WLS decomposition framework

(α = 1.2). Contrast prescription prevents the loss of details in unmod-
ified sub-bands, as a result, previously modified fine details are pre-

served

the style of a professional photographer to a plain picture of

the same location. Despite the obvious difference in source

material we managed to properly reflect the style using only

local, prescription-enabled contrast modifications.

6.2 Interactive halo editing

As described in Sect. 5.4, we enhanced each of the imple-

mented decomposition frameworks to allow interactive halo

manipulation. Figure 9 illustrates simple, low-frequency

halo suppression case. Although the local modification of

edge-stopping filter behavior usually requires repeating the

decomposition, we show that an efficient hardware imple-

mentation can deliver an interactive solution even in case of

Poisson solver based frameworks.

7 Conclusions and future work

In this work, we analyzed the properties of multiscale im-

age representations used in interactive image editing appli-

cations. Direct consequence of Gaussian-like filters com-

monly used to construct such representations (including

edge-aware decompositions), is the effect that we call “en-

ergy leaking”. When the user modifies one sub-band, part

of the “energy” of this modification in effect leaks out to

the other sub-bands in successive manipulations. This can

affect the perception of already edited parts of the image

and leads to non-intuitive, iterative way of image editing.

Moreover, change in one band can result in oversaturation

of another band (also possibly previously edited), e.g. when

user boosts overall contrast, the tiny details might be lost.

To overcome those limitations inherently imposed by all ex-

isting multiscale image editing frameworks, we propose the

concept of contrast prescription, where once edited parts of

the edited image retain their prescribed values. The aim is

to restore the visibility of each sub-band contrast and limit

the effects of cross-band energy leakage. Consequently, re-

duced number of decomposition related artifacts, allows for

more intuitive and controllable multiscale contrast manipu-

lation. To illustrate the concept, we show simple, but effi-

cient and interactive extension of three state-of-the-art mul-

tiscale frameworks.

Fig. 9 Halo editing example with a Poisson solver based decompo-

sition framework [21]. The original castle scene is modified by ele-

vating high/medium frequency bands. To artificially modulate contrast

along the edges, e.g. for better decomposition of foreground from back-

ground, one might locally allow the halo effect to be visible
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Fig. 10 Practical demonstration of prescription-enabled contrast edit-

ing (center). We modified the source image (left) to reflect the style and

feeling of pictures taken by Ansel Adams (right). As the artist style was

based mostly on manual dodging and burning we had to perform ex-

treme band manipulations that applied without prescription would re-

sult in heavy artifacts. The entire session was about 8 minutes long and

included only contrast manipulations on WLS based decomposition

So far, we assumed editing using an ordinary (LDR) dis-

play device—in this case the illumination stayed almost con-

stant and the effect of image editing on the user’s visual

adaptation was very subtle. However, when editing on an

HDR display device, the change of user’s adaptation due to

the display luminance is not negligible any more and it can

significantly bias user’s perception. Modeling of apparent

contrast is required to compensate for this effect which sug-

gests a possible extension to this work.
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Appendix M

Automatic Photo-to-Terrain Alignment

for the Annotation of Mountain

Pictures

L. Baboud, M. Čadík, E. Eisemann, and H.-P. Seidel. Automatic Photo-to-terrain Alignment for
the Annotation of Mountain Pictures. In Proceedings of the 2011 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR Orals), pp. 41–48, IEEE Computer Society, Washington,
DC, USA, 2011.
CVPR Oral, acceptance rate 3.5%
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Abstract

We present a system for the annotation and augmen-

tation of mountain photographs. The key issue resides

in the registration of a given photograph with a 3D geo-

referenced terrain model. Typical outdoor images contain

little structural information, particularly mountain scenes

whose aspect changes drastically across seasons and vary-

ing weather conditions. Existing approaches usually fail on

such difficult scenarios. To avoid the burden of manual reg-

istration, we propose a novel automatic technique. Given

only a viewpoint and FOV estimates, the technique is able to

automatically derive the pose of the camera relative to the

geometric terrain model. We make use of silhouette edges,

which are among most reliable features that can be detected

in the targeted situations. Using an edge detection algo-

rithm, our technique then searches for the best match with

silhouette edges rendered using the synthetic model. We de-

velop a robust matching metric allowing us to cope with the

inevitable noise affecting detected edges (e.g. due to clouds,

snow, rocks, forests, or any phenomenon not encoded in the

digital model). Once registered against the model, pho-

tographs can easily be augmented with annotations (e.g.

topographic data, peak names, paths), which would other-

wise imply a tedious fusion process. We further illustrate

various other applications, such as 3D model-assisted im-

age enhancement, or, inversely, texturing of digital models.

∗{lbaboud, mcadik, hpseidel}@mpi-inf.mpg.de
†elmar.eisemann@telecom-paristech.fr

1. Introduction

The internet offers a wealth of audio-visual content

and communities such as Flickr and YouTube make large

amounts of photos and videos publicly available. In many

cases, an observer might wonder what elements are visible

on a certain shot or movie. Especially for natural scenes,

the answer to this question can be difficult because only

few landmarks might be easily recognizable by non experts.

While the information about the camera position is (at least

roughly) known in many cases (photographer’s knowledge

or camera GPS), the camera orientation is usually unknown

(digital compasses have poor accuracy).

The principal requirement is then the accurate alignment

(registration) of a given photograph or video with a 3D geo-

referenced terrain model. Interestingly, such a precise lo-

calization would be useful in many contexts. Services such

as Google StreetView could be extended in an automatic

fashion to natural environments by exploiting user-provided

shots. Further, the photo can be used to texture virtual ter-

rains such as those in Google Earth. Also, annotations, de-

rived from an annotated 3D terrain model, could be added

automatically (highlighting important landmarks) which is

of interest when describing or planning a field trip. Be-

cause of such applications, cameras start being equipped

with GPS in order to automatically track photo locations.

We will focus on a special class of content taken in

mountain regions, and provide a solution to automatically

derive the orientation that was used for a given shot, assum-

ing that the viewpoint location is known accurately enough,

as well as the cameras’s intrinsic parameters (e.g. field-of-

view). It is often complicated or even impossible to access
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these regions with cars or robots, making user-provided im-

ages an interesting way to collect data. Furthermore, users

also benefit from our solution, as it enables them to enhance

(and even augment) their photos with supplementary data.

The input of our approach is a single photograph or a

video and an indication of where it was taken. Our algo-

rithm then automatically finds the view direction by query-

ing the position against a reference terrain model that we

assume to have at disposition. The latter is a smaller con-

straint because satellites can provide very reliable terrain

elevation maps even for less accessible regions. Once the

view is matched, we can transfer information from the ref-

erence model into the photo.

Our main contribution is the robust matching algorithm

to successfully find the view orientation of given photo.

This task is far from trivial and many previous approaches

attempting to match up an image and 3D content can exhibit

high failure rates (Section 2). The reason why our algo-

rithm (Section 3) provides a working solution is that we can

exploit the special nature of terrains. Mountain silhouettes

are relatively invariant under illumination changes, seasonal

influence, and even quality of the camera, therefore we de-

tect these features and make them a major ingredient in our

matching metric (Sections 4, 5, 6). Finally, we illustrate the

robustness and usefulness of our approach with several of

the aforementioned application scenarios (Section 7) before

concluding (Section 8).

2. Previous Work

The problem of matching appears in several areas of re-

search, but proves difficult in most cases. Advances in cam-

era engineering (i.e. digital compass and GPS receivers)

can facilitate the task in the future, but such data is neither

available in most current cameras nor present in video se-

quences. Furthermore, even when available, such informa-

tion is not reliable enough for an accurate pose estimation

and will not be in a long time because the satellite infras-

tructure would need to change drastically to allow the pre-

cision we seek. Usually, existing GPS and compass-based

applications only present distant abstracted depictions (e.g.

Peakfinder (http://peakfinder.ch), Google Skymap) without

considering the actual view content. The same holds for

augmented reality applications, such as the Wikitude World

Browser (http://www.wikitude.org). In a reasonable time

frame only initial estimates of a camera pose, but not the

final fine-tune registration will be available. In the context

we target, orientation must be known accurately to properly

discriminate distant peaks, wereas position accuracy is less

crucial (negligible parallax).

Registration comes in many variants, usually, instead

of matching an entire image, a first step is to restrict the

search to a small set of feature points. Such feature-based

(SIFT [13], SURF [1]) techniques work robustly for im-

age to image registration, but are less usable for image-

to-model registration [23]. Nonetheless, for applications

such as panorama stitching [19], feature-based techniques

work well and currently dominate. Unfortunately, our case

is more difficult because we have to consider very differing

views in a natural scene which exhibits many similar fea-

tures or features that might depend heavily on the time of

the year (e.g. snow borders). This constraint also renders

statistical methods [24], that are widely used in medical im-

age registration, less successful.

The difficulty of this task is also underlined in the photo-

tourism approach [17]. Indoor scenes and landmark shots

are handled automatically, while outdoor scenes have to

be aligned against a digital elevation map and a user has

to manually specify correspondences and similarity trans-

forms to initiate an alignment. Similarly, Deep Photo [9]

requires manual registration and the user has to specify four

or more corresponding pairs of points.

In our experience, even simpler tasks, such as hori-

zon estimation [6], tend to fail in mountain scenes. Sim-

ilarly, advanced segmentation techniques [7, 16] proved

futile. Maybe for these reasons, existing photogramme-

try approaches for mountain imagery, such as GIPFEL

(http://flpsed.org/gipfel.html), strongly rely on user inter-

vention.

Robust orientation estimation is a necessary component

of localization algorithms for autonomous robots. During

missions on moon or mars, it is impossible to rely on stan-

dard GPS techniques, but satellite imagery can deliver a ter-

rain model. Many of these algorithms rely on the horizon

line contour (HLC) which is the outline of the terrain and

specific feature points thereon that are matched with ex-

tracted terrain features [2, 21, 8]. Peaks of the HLC are

often used as features, but might not correspond to actual

peaks in the terrain due to partial occlusion (clouds, fog, or

haze), terrain texture (e.g. snow), or an incorrect sky detec-

tion (see Fig. 3). The latter is very difficult, but particu-

larly crucial for HLC approaches, especially when estimat-

ing visibility between peaks in the query image [8]. Learn-

ing techniques [8, 14] can often lead to successful segmen-

tations, but they depend on the training set and implicitly

assume similar query images (e.g. same daytime). Further-

more, even if successful, the localization of peaks in a photo

is error prone [2] and can lead to a deviation in the estimate.

Hence, sometimes only virtual views are tested [21], or an

accurate compass is supposed [20].

Instead of peaks, using all occluding contours leads to

more robustness, but previous solutions [18] needed an ac-

curate orientation estimate and assumed that the query im-

age allows us to well-detect all occluding contours. As for

the HLC, this property rarely holds because haze, fog or

lighting variations often occlude crucial features. Our ap-

proach does not penalize missing contours, and the detec-
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Figure 1. Overview of the proposed technique.

tion robustness does not suffer from false positives.

Interestingly, despite their negative effect on contour de-

tection, haze and fog potentially encode monocular depth

information [3] The assumptions on reflectance properties

and fog/haze are relatively general and some assumptions

such as a ground plane [3] fail in our context. Consequently,

the resulting depth estimates are usually coarse and proved

insufficient for our purposes.

The area of direct image to model registration is less de-

veloped, and most techniques assume some structural ele-

ments (e.g. straight lines, planes) in the input image [10, 5].

Unfortunately, mountain scenes are highly unstructured

making matching very challenging which lead us to develop

our approach.

3. Problem setup

Given a photograph, our goal is to estimate its pose rel-

atively to an accurate 3D terrain model based on a digital

elevation map (DEM). We assume that the camera’s field of

view is known, as well as an estimate pv of the viewpoint

position (accuracy is discussed in Section 7). Given these

hypotheses, we are looking for the rotation g̃ ∈ SO(3) that
maps the camera frame to the frame of the terrain. The set

of images that can be shot from pv is entirely defined by a

spherical image f centered at pv against which we need to

match the query photo.

We target outdoor scenes that do not allow to rely on

photogrammetry information, as it can vary drastically. In-

stead, we rely on silhouette edges that can be obtained easily

from the terrain model and can be (partially) detected in the

photograph. In general, the detected silhouette map can be

error prone, but we enable a robust silhouette matching by

introducing a novel metric (Section 4).

Because a direct extensive search on SO(3) using this

metric is very costly, we additionally propose a fast prepro-

cess based on spherical cross-correlation (Section 5). It ef-

fectively reduces the search space to a very narrow subset,

to which the robust matching metric is then applied. The

resulting algorithm is outlined in Fig. 1.

3.1. Spherical parameterization

We start by defining some basic notations. The cam-

era frame has its Z axis pointing opposite to the viewing

direction, with X (resp. Y ) axis parallel to the horizon-

tal (resp. vertical) axis of the image. The terrain frame

has its Z axis along the vertical. Rotations of SO(3) are
parameterized with the ZYZ Euler angles, i.e. an element

g ∈ SO(3) is represented by three angles (α, β, γ) so that

g = RZ(α)RY (β)RZ(γ), where RY and RZ are rotations

around axes Y and Z.

Figure 2. Terrain (xT , yT , zT ) and camera (xC , yC , zC ) frames.

The synthetic spherical image of the terrain model from

pv will be denoted f , and the spherical representation of the

photograph will be denoted p. The corresponding silhouette

sets will be denoted EF and EP .

4. Robust silhouette map matching metric

We first address the more costly, but precise fine-

matching. In the targeted situation, i.e. on photographs of

mountainous scenes, results produced by available edge-

detection techniques usually contain inaccuracies which can

be classified as following (see also Fig. 3):

• some of the silhouette edges are not detected;

• some detected edges are noisy;

• many detected edges are not silhouette edges.

The noisy edges prevent us from using traditional edge

matching techniques that often rely on features that are as-

sumed to be present in both images. However the specificity

of our problem allows us to derive a robust matching metric.
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Figure 3. Types of edges detected in mountain scenes: silhouettes encoded (blue) or not encoded in the terrain model (red), noise and

non-silhouette edges (green). Reference (i.e. synthetic) silhouettes (gray) are not always detected.

Our main observation relates to the topology of

silhouette-maps: a feasible silhouette map in general con-

figuration can contain T-junctions, but no crossings. Cross-

ings appear only in singular views, when two distinct sil-

houette edges align (Fig. 4). Consequently, a curve detected

as an edge in the photograph, even if not silhouette, usually

follows a feature of some object and thus never crosses a

silhouette. This only happens if some object, not encoded

in the terrain model, occludes it. The probability for such

events remains low, which will render the method more ro-

bust despite potentially low-quality edges.

Figure 4. Specific topology of terrain silhouettes: separate edges

meet with T-junctions (green), crossings (red) are singular.

To evaluate the likelihood of a given orientation g, the

two edge sets (from photo and model) are overlayed accord-

ing to g. Each edge ep from EP is considered independently

and tested against EF . To account for noise, any potential

matching with an edge ef must be scanned within some tol-

erance εe. When ep enters the εe-neighborhood of an edge

ef ∈ EF , four distinct cases can happen, as depicted by

Fig 5. A threshold ℓfit is used to distinguish the case where

ep is following ef from the case where it crosses it.

Figure 5. The four possible situations for edge-to-edge matching.

For a single edge ep, the matching likelihood value is

computed as follows:

• parts where ep stays outside the εe-neighborhood of

elements of EF count as 0;

• if ep enters the εe-neighborhood of an element ef ∈

EF and exits it after traversing over a length ℓ:

– if it exits on the same side or if ℓ > ℓfit, the

fitting energy ℓafit is added;

– else, a constant penalty cost ccross is subtracted.

The non-linearity implied by an exponent afit > 1 in-

creases robustness: long matching edges will receive more

strength than sets of small disconnected segments of the

same total length. Finally, the matching likelihood for EP
under the candidate rotation g is obtained by summing the

values of each of the (accordingly displaced) individual

edges of EP .

In practice the computation is performed as follows:

first, EF is rasterized with a thickness εe into a sufficiently

high-resolution spherical image; second, the EP edges are

warped according to g, traversed and tested against the ras-

terized EF for potential intersections. The cost of this sim-

ple approach is O(mn), where m is the resolution of the

rasterized EF and n the total number of segments of EP .

Interestingly, the metric relies on all the information

available in the detected edges: even non-silhouette edges

help to find the correct match by preventing actual silhou-

ette edges from crossing them (Fig. 6). Therefore it would

theoretically be possible to find the correct matches even if

all silhouette edges were missed.

Figure 6. Detected non-silhouette edges also help the matching

process: a pose of a reference silhouette (blue) is prevented if it

crosses many detected edges (red).

Although this metric allows robust matching (see Sec-

tion 7), it requires a dense 3D sampling of SO(3), leading to
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prohibitive computation times. We avoid this problem with

an effective search space reduction preprocess, presented

now.

5. Spherical cross-correlation for search space

reduction

To address the problem of the high cost implied by a

dense sampling of SO(3), we move to the Fourier domain.

It is well known that the cross-correlation between two n×

n images can be computed in O(n2 log n) using the fast

fourier transform (FFT). This has recently been extended

to spherical images [11]. The spherical cross-correlation of

two complex-valued spherical functions f and p is defined

on SO(3) as:

∀g ∈ SO(3), f ⋆ p (g) =

∫

S2

f(ω)p(g−1ω)dω,

and can be evaluated inO(n3log(n)) for n2-sampled spher-

ical functions via FFT algorithms on SO(3) [11].
We could directly apply this to our problem by sam-

pling the two silhouette-maps on the sphere and computing

the cross-correlation of these two binary-valued maps (1 on

edges, 0 elsewhere). The main problem here is that it com-

pletely disregards the relative orientation of edges. With

our noise-prone detected edge-maps, the maximum cross-

correlation value would be found where most edges overlap,

which would only work if the detected edge-map contained

all and only the silhouette edges.

5.1. Angular similarity operator

Our goal is to integrate edge orientations in the cross-

correlation. The orientation information can be kept by

rasterizing EF as a 2D real-valued vector field f(ω) =
(fx(ω), fy(ω)), being the tangent vectors of the edges

where they appear, and zero elsewhere (Fig. 8). We define

the angular similarity operator M(f ,p) as follows:

M(f ,p) = ρ2fρ
2
p cos 2(θf − θp),

where (ρf , θf ) and (ρp, θp) are the polar representations of
f and p (see Fig. 7). The value produced by this operator is:

1. positive for (close to) parallel vectors,

2. negative for (close to) orthogonal vectors,

3. zero if one of the vector is zero.

The matching likelihood between two spherical func-

tions f and p can be expressed as:
∫

S2

M(f(ω),p(ω))dω,

so that values of ω where edges closely match are counted

positively while those where edges cross almost perpendic-

ularly are counted negatively. Furthermore, values of ω

where either f or p has no edge do not affect the integral.

1

-1

1

-1

F

P

θθ

CC VCC

Figure 7. Left: M(f ,p) as a function ofp (for a fixed f ). Classical

cross-correlation (CC) disregards orientations, wereas our vector-

field cross-correlation (VCC) properly penalizes crossings.

5.2. Spherical 2D-vector fields cross correlation

In order to be used as a matching likelihood estimation,

this integral would need to be evaluated for any candidate

rotation g, by rotating p accordingly. However, now that p

values are vectors, we need to take the effect of the rotation

into account. Because we defined the transformation of the

camera relative to the world frame, we can show that the

expression of p under a rotation g = (α, β, γ) is:

Rγ+π
2
.p(g−1w) with Rθ =

[

cos θ − sin θ
sin θ cos θ

]

.

The formula stems from the fact that in the ZYZ euler an-

gles parametrization we are using, the γ angle corresponds

to the rotation of the camera around its viewing direction

(the π
2 offset reflects that a horizontally-looking camera

with a zero γ value is tilted by π
2 ).

Our operator needs to be modified as follows to take the

rotation of p into account:

Mg(f ,p) = ρ2fρ
2
p cos 2(θf − (θp + γ +

π

2
)),

and for a candidate rotation g we then define the matching

likelihood between f and p as follows:

VCC(f ,p)(g) =

∫

S2

Mg(f(ω),p(g
−1ω))dω.

5.3. Efficient computation

Using the representation of 2D vectors as complex

numbers, VCC can be expressed as one spherical cross-

correlation operation. Indeed, M(f ,p) can be rewritten as

follows,

M(f ,p) = Re
{

f̂2p̂2
}

,

where

f̂ = ρfe
iθf and p̂ = ρpe

iθp .

This leads to the following VCC formulation:

VCC(f, p)(g) = Re

{
∫

S2

f̂2(ω)
(

ei(γ+
π
2
)p̂(g−1ω)

)2
dω

}

= −Re
{

e−i2γ f̂2 ⋆ p̂2 (g)
}

.
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Projection of original image

Rendered panorama with silhouette edges

Edge detector output Thresholded edges Processed orientation vectors

Correct alignment

Figure 8. Detection and processing of edges into orientation vectors (blue frame), used to find the optimal registration (red frame).

In other words, we expressed the computation as a cross-

correlation between f̂2 and p̂2, that is weighted by −e−i2γ

and reduced to its real part. The dominant cost of the match-

ing space reduction is therefore the cross-correlation com-

putation, i.e. O(n3 log n).

6. Implementation details

Terrain model We experimented with two terrain

datasets: 1) coverage of the Alps with 24 meters spaced

samples (http://www.viewfinderpanoramas.org); 2) Na-

tional Elevation Dataset (USGS, http://ned.usgs.gov), cov-

ering the United States at thrice bigger resolution. Exper-

iments showed the importance of considering the Earth’s

curvature when rendering the synthetic panoramas.

Image processing The input photograph is first remapped

to a rectilinearly projected RGB image with known FOV,

using the camera’s intrinsic parameters (read from the at-

tached EXIF data, assisted by a camera database if neces-

sary). We then apply the compass edge detector [15], pa-

rameterized by a radius σ, producing separate maps for edge

strengths (Fig 3) and orientations, that are easily combined

into a vector field of tangent vectors (Fig. 8). This edge de-

tector has the particularity of fully exploiting the color in-

formation, unlike classical ones that handle only grayscale

images. The result is then thresholded (parameter τ ) to keep

only significant edge. The edge map EP (a set of vector-

ized lines) is finally extracted by thinning [12] and vector-

ization [4]. The following parameters were used without

further need of dynamic adaptation: σ = 1, τ = 0.7.

Panorama processing Generating silhouettes from the

3D terrain data is a classical computer graphics problem for

which several options exist. Exploiting the GPU, we ap-

ply raycasting to render the silhouettes into a 2D cylindrical

image, which is then vectorized into an edge map EF .

Efficient matching Because SO(3) has three dimen-

sions, the robust matching metric still needs to be evaluated

on many sampled rotation candidates, even after the search

space reduction process. Nonetheless, each evaluation be-

ing independent, the overall process is highly parallelizable

making a GPU mapping possible that cuts down the com-

putation time from several hours to a few seconds.

7. Results

Our approach was implemented on a Dell T7500 work-

station equipped with two six-core Intel Xeon processors,

one GeForce GTX 480 GPU, and 23GB RAM. With our

simple implementation, the overall process takes around

2 minutes, critical parts being compass edge detection

(around 1 min.), spherical cross-correlation (less than one

minute, with sampling bandwidths of 1024 for S2 and 256

for SO(3)) and final matching metric evaluation (around 20

s. with the GPU implementation). Of a collection contain-

ing 28 photographs randomly chosen from Flickr, 86%were

correctly aligned by our technique (interestingly, VCC was

already maximized at the correct orientation for 25% of the

tested examples). We examined two different mountainous

regions (Alps in Europe and Rocky Mountains in USA) and

found that our approach performs similarly. The matching

is generally very accurate, i.e. below 0.2◦ (Fig. 1, 9 and 10).
Small deviations mostly correspond to imperfections of the

3D model. Experimentally, an accuracy below a few hun-

dred meters for the viewpoint is sufficient.

7.1. Applications

Annotations Our solution enables us to mark a certain

peak in all given photos if it is visible. This is a difficult and

tedious task that often can only be performed by experts.
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Figure 9. An example of annotated panorama image superposed on synthetic panorama.

By testing the visibility of the corresponding mountain in

the 3D terrain model, we can easily decide what part of it

shows in the photograph, and how far it is from the camera

position. Some results are illustrated in Fig. 9 and 10.

Piz Git (3240m)

Bietschhorn (3921m) Mönch (4093m)

Großes Fiescherhorn (4026m)
Lauteraarhorn (4028m)

Großes Grünhorn (4038m)

Aletschhorn (4182m)

Finsteraarhorn (4254m)

Schreckhorn (4062m)

Eiger (3960m)
Jungfrau (4144m)

Aig. d’Argentiere (3864m)

Figure 10. Annotated photo created using the proposed technique.

Augmented reality We can also achieve augmented

views of the mountain landscape. Here, we add paths, land-

marks and other 3D objects into the 3D terrain model. By

transferring only the visible pixels of these models, we can

add them into the photograph. Furthermore, we can relight

them according to the shot. For this, we can either rely on

the time stamp of the photo to deduce the position of the sun

and weather conditions from according databases. Alterna-

tively, we can optimize the sun position and illumination by

comparing the lit terrain model to the captured photo. We

rely on a simple model with a point light (sun) and ambient

occlusion (sky). The optimization process is 1D and con-

verges quickly.

Texture transfer Using our approach, photo collections

can also easily be used to transfer texture information into a

3D mountain model such as those of Google Earth. Having

found the corresponding camera view, it is enough to apply

a projective texture mapping (including a shadow map test)

to derive which part of the scene was actually visible and

could benefit from the image content.

Photo navigation Similarly to photo tourism [17], we can

add the photos into the 3D terrain model to enable an intu-

itive navigation. This allows illustrating or preparing hikes,

even when relying on photos of others.

Image Enhancement and Expressive Rendering Using

the underlying 3D terrain model, we can enhance an ex-

isting image or achieve non-photorealistic effects. E.g.,

we can perform informed model-based image dehazing

(Fig. 11), enhance certain objects, or even mix the view with

geological data (e.g. using USGS metadata).

Video Matching On a frame-by-frame basis, we can also

optimize video sequences. Which is relatively fast because

the search space is reasonably reduced by assuming a slow

displacement. One could also initialize the search with the

frame that gave the highest response in the first search step,

but in practice, we found that unnecessary 1.

8. Conclusions and Future Work

We presented a solution to determine the orientation of

mountain photographs by exploiting available digital ele-

vation data. Although this is a very challenging task, we

showed that our approach delivers a robust and precise re-

sult. The accuracy of our solution enabled various inter-

esting applications that we presented in this paper. Our

technical contributions, such as the camera pose estimation

based on edge-to-silhouette matching could find application

in other contexts of more general matching problems.

In the future, we want to explore other cues (e.g. the at-

mospherical scattering, aerial perspective) that might help

us in addressing more general environments and improving

the edge detection part for these scenarios [22].

1Refer to supplemental movie for video matching examples.
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Figure 11. Application to image contrast enhancement: the original image (left) is modulated by the diffuse lighting component computed

on the synthetic model (particularly profitable for distant mountains, whose contrast is affected by atmospheric effects).
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