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Abstrakt 

Předkládaná habilitační práce je zaměřena na problematiku z oblasti umělé 

inteligence, především z oblasti soft computingu. Tato oblast je v posledních letech 

velmi studována a zkoumána odborníky z různých oblastí. Nástroje soft computingu 

pomáhají ve všech oblastech lidského života k získání optimálních výsledků 

požadovaných zadání a řešené problematiky. Mezi tyto nástroje patří především 

neuronové sítě, evoluční algoritmy, fuzzy logika a nadstavba evolučních algoritmů 

tzv. symbolická regrese. Všechny uvedené prostředky umožňují řešit úlohy 

v oblastech jako je řízení procesů, diagnostika, image processing, operační výzkum, 

sledování finančních trhů a predikce vývoje burzovních kurzů a mnohé další.  

Evoluční algoritmy jako genetické algoritmy, diferenciální evoluce, optimalizace 

rojení částic, samoorganizující se migrační algoritmus a další se v dnešní době 

používají k řešení velmi složitých a komplexních optimalizačních úloh. Rovněž se 

používají k hledání optimálních struktur tzv. symbolické regrese, kde k řešení 

používáme genetické programování, gramatickou evoluci či novější analytické 

programování. Nástroje soft computingu se neustále rozvíjejí a vznikají nové. 

Symbolickou regresí lze dokonce vytvářet i nové evoluční algoritmy nebo struktury 

neuronových sítí. 

Neuronové sítě jsou oblastí, která se od 80. let minulého století vyvíjí velkou 

rychlostí pro své paralelní výpočetní, rozpoznávací a klasifikační možnosti. Lze je 

s velkým úspěchem využít i v oblasti tzv. dobývání znalostí a data miningu, tedy 

dolování dat a zjednodušování velmi složitých úloh. 

Nosným tématem habilitační práce je metaevoluce, která znamená několik možností. 

V kontextu této práce je nejčastěji použita v případě použití dvou evolučních procesů 

použitých v symbolické regresi, jeden pro řízení symbolické regrese a druhý ve jejím 

vnitřním procesu. Vedle metaevoluce habilitační práce spojuje principy a aplikace 

evolučních algoritmů, symbolické regrese a neuronových sítí. Jednak jsou 

představeny aplikace využívající jednotlivé techniky a metody samostatně a jednak 

propojené aplikace – tedy sloučení více soft computingových technik, např. 

vytváření evolučního algoritmu pomocí symbolické regrese nebo vytvoření pseudo 

neuronové sítě pomocí symbolické regrese. Další představenou kombinovanou 

metodou využívající propojení schopností uvedených metod je metaevoluce pro 



 

 

syntézu techniky řízení chaotických systémů. Zde jsou použity dva evoluční 

algoritmy, jeden pro řízení symbolické regrese a druhý ve vnitřním procesu 

symbolické regrese. 

Hlavním cílem habilitační práce je ukázat vlastnosti a možnosti použití moderních 

soft computingových nástrojů jednak samostatně, ale také při jejich vzájemném 

propojení. Mezi vybranými aplikacemi jsou popsány detailněji syntéza optimální 

struktury řídící techniky pro systémy vykazující deterministický chaos a 

stegoanalýza pomocí neuronových sítí. Dále je v práci uvedena aplikace vytváření 

pseudo neuronové sítě pomocí symbolické regrese či okrajově evolučního algoritmu, 

na kterém je vysvětlený jiný metaevoluční přístup. Mimo výše popsané aplikace se 

také práce zaměřuje na problematiku úprav, vývoje a testování soft computingových 

metod. 

 
 

Abstract 

The presented habilitation thesis is focused on the issuess of the field of artificial 

intelligence, especially in the area of soft computing. This area has been studied and 

examined by experts in various fields in recent years. Soft computing tools help to 

obtain optimal results of required assignments and solved problems in all areas of 

human life. These tools are mainly neural networks, evolutionary algorithms, fuzzy 

logic and the superstructure of evolutionary algorithms called symbolic regression. 

All of these techniques enable us to solve problems in areas such as process control, 

diagnostics, image processing, operation research, monitoring of financial markets 

and the prediction of exchange rates and much more.  

Evolutionary algorithms such as genetic algorithms (GA), differential evolution 

(DE), particle swarm optimization (PSO), self-organizing migrating algorithm 

(SOMA) and others are used to solve very complicated and complex optimization 

problems nowadays. They are also used to search for optimal structures called 

symbolic regression, where methods such as genetic programming, grammatical 

evolution or newer analytical programming are used. Soft computing tools are 

constantly developed and new ones are created. Symbolic regression can even create 

new evolutionary algorithms or neural network structures. 



 

 

Neural networks is the area that has been developing for its high-speed parallel 

computing, recognition and classification capabilities since 1980s. They can be used 

with great success in the field of knowledge discovery and data mining, i.e. to 

simplify very complex tasks.  

The principal theme of this habilitation thesis is metaevolution which stands for 

several possibilities. In the context of this thesis, the most often cases are two 

evolutionary processes used in symbolic regression, one for the control of symbolic 

regression and the other in the inner symbolic regression process. Beside 

metaevolution, the thesis combines the principles and applications of evolutionary 

algorithms, symbolic regression and artificial neural networks. Presented 

applications using various techniques and methods are in the thesis presented both 

separately and as connected applications, a merger of multiple soft computing 

techniques such as the synthesis of an evolutionary algorithm by means of symbolic 

regression or creating a pseudo neural network using symbolic regression. The other 

combined technique utilizing interconnected capabilities of mentioned methods is a 

metaevolution for the synthesis of chaotic system control technique.  

The main aim of the habilitation thesis is to show the properties and possible 

applications of modern soft computing tools both separately and also in their mutual 

connection. Among the selected applications, the synthesis of the optimal structure of 

the control technique for systems exhibiting deterministic chaos and steganalysis by 

means of artificial neural networks are described in detail. Furthermore, the thesis 

mentions creating pseudo neural networks by means of symbolic regression and 

marginally the synthesis of an evolutionary algorithm for the explanation of another 

metaevolutionary approach. Apart from the above described applications, the thesis 

is also focused on adjustments, development and testing of soft computing methods. 
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1 Introduction 
The presented habilitation thesis is focused on the issues of the field of artificial 

intelligence, especially in the area of soft computing. This area has been studied and 

examined by experts in various fields in recent years. Soft computing tools help to 

obtain optimal results of required assignments and solved problems in all areas of 

human life. These tools are mainly neural networks, evolutionary algorithms, fuzzy 

logic and the superstructure of evolutionary algorithms called symbolic regression 

[111], [105], [45]. All of these techniques enable us to solve problems in areas such 

as process control, diagnostics, image processing, operation research, monitoring of 

financial markets and the prediction of exchange rates and much more.  

Evolutionary algorithms are a group of algorithms that use their special 

operators as mutation, crossover and other to find an ideal solution. Possible 

candidates are defined by a cost function whose arguments are values of each 

solution. The best one is in the global extreme – maximum or minimum [105], [45]. 

These evolutionary algorithms have been known for decades and have lived 

through the advancement from weaker ones to more robust ones, which are used with 

success in a lot of tasks nowadays. Since their first appearance there is quite a long 

queue of representatives: genetic algorithms (GA) [45], [2], [12], differential 

evolution (DE) [2], [47], [68], self-organizing migrating algorithm (SOMA) [110], 

particle swarm optimization (PSO) [17], ant colony optimization [16], artificial 

immune system [21], and more are used to solve very complicated and complex 

optimization problems nowadays.  

They are also used to search for optimal structures called symbolic regression, 

where methods such as genetic programming (GP) [44], [43], grammatical evolution 

(GE) [53], [52] or newer analytical programming (AP) [102], [108], [109], [104], 

[57], [107], [103] are used. Also, some other approaches to the field of symbolic 

regression can be found – either based only on evolutionary techniques or hybrid 

ones. Interesting investigations using symbolic regression were shown by Johnson 

[37] working on Artificial Immune Systems and Salustowicz in Probabilistic 

Incremental Program Evolution (PIPE) [78] which generates programs from an 

adaptive probability distribution over all possible programs. GADS is a forerunner of 
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grammatical evolution which solves the approach to grammar [65], [64]. Also from 

evolutionary algorithms artificial immune systems evolved the artificial immune 

system programming for symbolic regression [37]. Approaches that differ in 

representation and grammar are described in gene expression programming [24], 

multiexpression programming [54], meta-modelling by symbolic regression and 

pareto simulated annealing [92]. To the group of hybrid approaches belong mainly 

numerical methods connected with evolutionary systems, e.g. [11]. One of novel 

techniques is the transplant evolution that is closely associated with the conceptual 

paradigm of AP and modified for GE. GE was also extended to include DE [99]. 

These techniques can produce a complex formula from basic functions according to 

required behaviour of a function in the case of a mathematical data set, of an 

electronic circuit, trajectory of robots, etc. Soft computing tools are constantly 

developed and new ones are created. Symbolic regression can even create new 

evolutionary algorithms [57] or neural network structures [107]. 

Neural networks is the area that has been developing for its high-speed parallel 

computing, recognition and classification capabilities since 1980s. They can be used 

with great success in the field of knowledge discovery and data mining, i.e. to 

simplify very complex tasks [31], [98], [30], [22].  

All above-mentioned techniques and their principles are capable to be 

combined and to work in an optimal way for applications and solved tasks. The 

motivation for this habilitation thesis is to present examples using various techniques 

and methods, both separately and as connected applications that merge multiple soft 

computing techniques. The author of this thesis is motivated to study theoretical 

background of the soft computing methods and tries to adjust these useful 

techniques.  

The principal theme of this habilitation thesis is metaevolution which stands 

for several possibilities – the tuning of algorithm parameters, tuning of algorithm 

operators, synthesis of another evolutionary algorithm. Therefore one of the 

presented tasks is the synthesis of a new optimization algorithm, evolutionary in 

principle. The used principle is metaevolution which means that a new algorithm of 

an evolutionary character is synthesized with another evolutionary algorithm and 

symbolic regression. Metaevolution does not mean only the described procedure; it 
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also means searching for optimal values of parameters or settings of particular 

operators [57].  

In the context of this thesis, another tack of metaevolution is used. It 

implements two evolutionary algorithms within symbolic regression, one for the 

control of symbolic regression and the other in an inner symbolic regression process. 

The described method is demonstrated on an example with a synthesis of chaotic 

system control technique.  

The author is also interested in the area of deterministic chaotic systems and 

chaos theory which belongs to soft computing as well. This thesis describes not only 

the area of metaevolution but also the interconnection of soft computing techniques. 

From the area of developing and/or tuning of EA, one of the presented applications is 

aimed at using of deterministic chaos instead of a classical random generator in inner 

processes of evolutionary algorithms.  

The last but not least interesting area for the author is artificial neural networks. 

This thesis therefore contains two practical applications of neural networks – 

steganalysis and optimal modelling of dynamic flight. Both were an inspiration for 

creating a pseudo neural network by means of metaevolutionary approach with 

symbolic regression.  

The main aim of the habilitation thesis is to show the properties and possible 

applications of modern soft computing tools both separately and also in their mutual 

connection.  

The structure of this thesis is following: 

 

PART 1 – Theoretical background 

  Symbolic regression 

o Genetic Programming 

o Grammatical Evolution 

o Analytic Programming 

  Evolutionary algorithms 

o Self-organizing Migrating Algorithm (SOMA) 

o Differential Evolution 

o Particle Swarm Optimization (PSO) 
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  Artificial Neural Networks (ANN) 

Metaevolution 

PART 2 – Selected applications 

  Selected applications – introduction 

  From the field of symbolic regression  

o Metaevolution in the design of evolutionary algorithms 

o Metaevolution for the synthesis of control law for deterministic                   

chaotic systems 

o Synthesis of Pseudo ANN – interdisciplinary connection       

between symbolic regression and ANN 

  From the field of ANN 

o Steganalysis by means of ANN 

o Optimal modelling of dynamic flight 

  From the field of evolutionary techniques 

o Chaotic number generator in PSO – interdisciplinary connection 

between evolutionary techniques and deterministic chaotic 

systems 

 

The thesis starts with the area of symbolic regression and three particular 

methods – GP was developed as the first technique of its kind. GE is another well-

known method in this area. The last described technique – analytic programming – 

has been developed, tested and used for different tasks at the Institute of Information 

Technologies which was transformed to the Faculty of Applied Informatics at Tomas 

Bata University in Zlin in 2006. 

Since symbolic regression comes from the principle of evolutionary 

algorithms, next part is focused on the describition of evolutionary algorithms used 

in the thesis. All three algorithms – differential evolution, self-organizing migrating 

algorithm and particle swarm optimization were proved in a lot of benchmark tests as 

suitable, relatively fast and capable of solving complex optimization tasks. 

The following part deals with neural networks that are used in several 

presented applications, either in practical ones or in their synthesis by means of 

symbolic regression.  
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The last part of the theoretical background describes metaevolutionary 

approaches after which their application follows.  

The first application was the first research study of the author in the area of 

metaevolution. Since then there have been some issues connected with one approach 

to metaevolution, the application of evolutionary algorithm synthesis is provided in 

the first place. After this research, another kind of metaevolution has been studied for 

a long period which is described in the second application – Metaevolution for the 

synthesis of control law for deterministic chaotic systems. This approach together 

with two practical applications of artificial neural networks inspired the author to 

work on the synthesis of Pseudo ANN by means of symbolic regression. The last 

application is dedicated to the interconnection between evolutionary computation and 

chaotic systems studied during the synthesis of control laws which led to better 

performance of evolutionary algorithms, here demonstrated on particle swarm 

optimization. The chaotic system is used in PSO as a pseudorandom number 

generator.  

All applications discussed in this thesis are only a part of the author’s research 

portfolio and it is supposed that the pontential of presented ideas will be developed 

further in the future. 
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2 Symbolic Regression 

In statistics, regression is a method of curve fitting, i.e. finding a curve that matches a 

series of data points and possibly also other constraints. It is done by means of a 

regression analysis. Two types of regression are used – linear and nonlinear, which 

depend on data sets. The final formula, which fits data as close as possible, is done 

using classic mathematical and statistical techniques [3], [10]. 

Symbolic regression in the context of this thesis means a synthesis of a final 

formula from basic simple functions (e.g. Fig.  2.1, Fig.  2.2). This procedure can be 

used for mathematical and also for non-mathematical fields.  

This approach was firstly introduced by John Koza in genetic programming 

[44], [43], then in grammatical evolution [53], [52] by Conor Ryan and the technique 

used in the simulations performed for the publication purposes was developed by 

Ivan Zelinka in analytic programming [102], [108], [109], [104], [57], [107], [103]. 

2.1 Genetic Programming 
Genetic programming was introduced at the end of the 1980’s by John Koza [44], 

[43]. He suggested a modification of genetic algorithm and he named it genetic 

programming. In this concept a new population is bred not in a normal numerical 

way but in an analytical way. It means that the solution of such breeding is not values 

of parameters but a function itself. 

According to genetic algorithms each value is similarly to nature called gene. 

Genes in GP are not represented by integers or real values, parameters in a 

chromosome string are functions themselves. In the simplest version there are 

variables, constants, basic arithmetical functions and elementary functions. From this 

group, a function, e.g. x*(1+x) can be made. This can be seen in a parse tree (Fig.  

2.1), where the top is called the root of the tree.  

Interpreting the parse tree is easy. During the run, the function x * (1 + x) is 

evaluated through this tree from the bottom to the top. 
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In GP, the operators of crossover and mutation are used as they are used in 

genetic algorithms [45], [2], [12]. But here the individual contains basic operators, 

not numerical values. Therefore whole parts of the tree are changed in the case of 

mutation (Fig.  2.2) or crossover (Fig.  2.3). 

* 

x 

0.12 z 

x 

 

Fig.  2.1: A parse tree 

 

* 

+ 

1.3 

x 

- 

x y 0.12 z 

x 

* 

x 

0.12 z 

x 

Point of mutation  

Mutation 

Randomly generated string 

 

Fig.  2.2: Mutation in Genetic Programming 

 

Another approach to GP is enforcing dimensional constraints through formal 

grammar. It restricts GP search space to dimensionally admissible laws [44].  
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Parent 1:                          Crosspoints are marked by arrow          Parent 2: 
0,12z (1,3 + y-x)                                                         x (1-x) 

* 

x 

1 

- 

x 

* 

x 

1 x 

* 

+ 

0.12 z 1.3 

* 

- 

x y 

* 

0.12 z 

* 
+ 

1.3 - 

x y 

- 

Parent 1:                                After crossover                               Parent 2: 
0,12z (1-x)                                                                                  x (1,3+y-x) 

 

Fig.  2.3: Crossover in Genetic Programming 

 

2.2 Grammatical Evolution 
Grammatical evolution (GE) is another tool for doing symbolic regression by means 

of computers. The advantage of this tool, compared to GP, is that GE can evolve 

complete programs in an arbitrary programming language [53], [52] using a variable 

– length binary string. It uses Backus Naur Form grammar definition for mapping 

process to a program. GE performs the whole process on a variable – length binary 

strings. A mapping process is employed to generate programs in any language by 

using the binary strings to select production rules in the Backus Naur Form (BNF) 

grammar definition. The result is the construction of a syntactically correct program 

from a binary string that can then be evaluated by a fitness function. 
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Variable-length binary string genomes are used with each codon representing 

an integer value where codons are consecutive groups of 8 bits in order to make the 

genetic code degenerate. The integer values are used in a mapping function to select 

an appropriate production rule from the BNF definition. The numbers generated 

always represent one of the rules that can be used at that time.  

Below is an example of a BNF definition, where N is a set of nonterminals and 

T is a set of terminals. 

 N ={expr, op, pre_op, var} 

 T = {Sin, + , - , / , * , X , 1.0}} 

 

and can be represented as: 

A) <expr>  :  :  =  <expr> <op> <expr>  (0) 

    | ( <expr> <op> <expr> ) (1) 

    | <pre-op> (  <expr>  )  (2) 

    | <var>    (3) 

 

B) <op>     :  :  =  + (0) 

    | - (1) 

    | / (2) 

    | * (3) 

 

C) <pre-op>     :  :  =  Sin 

 

D) <var>     :  :  =  X (0) 

    | 1.0 (1) 

 

In Table 2.1, the numbers of possibilities for each rule are given. The mapping 

starts with reading codons of 8 bits [53] to generate a corresponding integer value 

from which an appropriate production rule is selected by using the mapping function 

(2.1). 
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Table 2.1: The number of choices available from each production rule  

RULE TYPE CHOICES 

A 4 

B 4 

C 1 

D 2 

 

 

 Rule = (Codon integer value)  
 MOD  
 (Number of choices for the current non-terminal) (2.1) 

 

Fig.  2.4 shows an example of an individual with content of integer values 

generated from 8 bit binary number (codon). 

 

220 40 16 203 101 53 202 203 102 55 220 202 19 

..... 

130 37 202 203 32 39 202 203 102 

Fig.  2.4: An example of an individual for GE 

 

The first codon is 220. If we apply eq. (2.1) we obtain value 0. That means we 

use rule A with its terminal 0. It represents an inscription A.0. Our program looks 

like 

<expr><op><expr> 

 

Then we continue with the left-most non-terminal which is <expr>. We take 

the second codon from the individual and apply the formula (2.1) again, i.e. 40 MOD 

4. We obtain 0. <expr> is replaced by <expr><op><expr>. The result is following 

 

<expr><op><expr><op><expr> 
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The next step starts again with <expr>. For the third time by reading codon we 

obtain the rule A.0. 

 

<expr><op><expr><op><expr><op><expr> 

 

Now the left-most <expr> is determined by codon with value 203 which gives 

the rule A.3 after applying the formula (2.1), thus non-terminal <var>.  

 

<var><op><expr><op><expr><op><expr> 

 

The next codon will then determine the value of var; there are 2 possibilities. 

101 MOD 2 gives then rule D.1 which has the value 1.0. Our expression then results 

in  

 

1.0 <op><expr><op><expr><op><expr> 

 

Next codon will then determine what <op> will become. We have 53 MOD 4 

which is equal to 1. The first terminal in <op> means the operator minus. The next 

<expr> has to be expanded by the codon 202 that is 202 MOD 4 = 2. We get 

following 

 

1.0 - <pre-op>(<expr>)<op><expr><op><expr> 

 

Because <pre-op> has only one possibility, we obtain 

 

1.0 – Sin (<expr>)<op><expr><op><expr> 

 

Then we can continue similarly as before until we end with this final formula. 

 

1.0 – Sin(x)*Sin(x) - Sin(x)*Sin(x) 
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The program is finished when all non-terminals are replaced with terminals. If 

codons run out earlier, then they are used cyclically from the beginning. The above 

description is for mapping from codons to final formula in GE. During an 

evolutionary process, mutation and crossover operators are used as in genetic 

algorithms. 

2.3 Analytic Programming 
Basic principles of the AP were developed in 2001 [102], [108]. Until that time only 

genetic programming (GP) and grammatical evolution (GE) had existed. GP uses 

genetic algorithms (GA) while AP can be used with any EA, independently on an 

individual representation. To avoid any confusion, based on the nomenclature 

according to the used algorithm, the name - Analytic Programming was chosen, since 

AP represents the synthesis of analytical solution by means of EA. Various 

applications of AP are described in [102], [108], [109], [104], [57], [107], [103]. 

The core of AP is based on a special set of mathematical objects and 

operations. The set of mathematical objects is a set of functions, operators and so-

called terminals (as well as in GP), which are usually constants or independent 

variables. This set of variables is usually mixed together and consists of functions 

with different number of arguments. Because of the variability of the content of this 

set, it is termed the “general functional set” – GFS. The structure of GFS is created 

by subsets of functions according to the number of their arguments. For example, 

GFSall is a set of all functions, operators and terminals, GFS3arg is a subset containing 

functions with only three arguments, GFS0arg represents only terminals, etc. The 

subset structure presence in GFS is vitally important for AP. The hierarchy of GFS is 

depicted in Fig.  2.5. It is used to avoid the synthesis of pathological programs, i.e. 

programs containing functions without arguments, etc. The content of GFS is 

dependent only on the user. Various functions and terminals can be mixed together 

[102].  
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BetaRegularized 

LerchPhi 

GFSall 

User_function 

GFS0arg 

x 

t ! 

GFS1arg 

tan cos 

sin 

GFS2arg 

mod 

* 

/ 

+ 

- 

 

Fig.  2.5: Hierarchy in the GFS 

 

The second part of the AP core is a sequence of mathematical operations used 

for the program synthesis. These operations are used to transform an individual of a 

population into a suitable program. Mathematically stated, it is mapping from an 

individual domain into a program domain. The mapping consists of two main parts. 

The first part is called Discrete Set Handling (DSH) (Fig.  2.6) [102] and the second 

one stands for security procedures which do not allow synthesizing pathological 

programs. The method of DSH, when used, allows handling arbitrary objects 

including nonnumeric objects such as linguistic terms {hot, cold, dark…}, logic 

terms (True, False) or other user defined functions. In the AP, DSH is used to map an 

individual into GFS and together with security procedures creates the above-

mentioned mapping, which transforms an arbitrary individual into a program. 

AP needs some EA [102] that consists of a population of individuals for its run. 

Individuals in the population consist of integer parameters, i.e. an individual is an 

integer index pointing into GFS. The creation of the program can be schematically 

observed in Fig.  2.7. The individual contains numbers which are indices for GFS. 
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Fig.  2.7 demonstrates an artificial example as to how a final function is created from 

an integer individual via Discrete Set Handling (DSH).  

 

{1.1234, - 5.12, 9, 332.11,!..} 

{AND, OR, XOR!..} 

Individual={1, 2, 3,!..} 

CostValue=CostFunction(x1, x2, x3, x4) 

{TurnLeft, Move, TurnRight!..} 

YES 

NO 

Integer 
index 
 - alternative 
parameter 

Discrete set of 
parameters 

{SelectDE, CrossDE, SelectLeaderSOMA...} 

 

Fig.  2.6: Discrete set handling 

 

Individual = {1, 6, 7, 8, 9, 11} 

Resulting Function by AP = Sin(Tan(t)) + Cos(t)  

GFSall = {+, -, /, *, d / dt, Sin, Cos, Tan, t, C1, Mod,!} 

GFS0arg = {1, 2, C1, ", t, C2} Mod(?) 

 

Fig.  2.7: The main principle of AP 

 

The number 1 in the position of the first parameter means that the operator plus 

(+) from GFSall is used (the end of the individual is far enough). Because the operator 
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+ must have at least two arguments, the next two index pointers 6 (sin from GFS) 

and 7 (cos from GFS) are dedicated to this operator as its arguments. The two 

functions, sin and cos, are one-argument functions, therefore the next unused 

pointers 8 (tan from GFS) and 9 (t from GFS) are dedicated to the sin and cos 

functions. As an argument of cos, the variable t is used, and this part of the resulting 

function is closed (t has zero arguments) in its AP development. The one-argument 

function tan remains, and there is one unused pointer 11, which stands for Mod in 

GFSall. The modulo operator needs two arguments but the individual in the example 

has no other indices (pointers, arguments). In this case, it is necessary to employ 

security procedures and jump to the subset with GFS0arg. The function tan is mapped 

on t from GFS0arg which is on the 11th position, cyclically from the beginning. 

2.3.1 AP Versions 

AP exists in 3 versions – basic without constant estimation, APnf – estimation 

by means of a nonlinear fitting package in Wolfram Mathematica environment and 

APmeta – constant estimation by means of another evolutionary algorithms; meta 

implies meta-evolution. 

APbasic stands for the version where constant estimation is done in the same 

way as in genetic programming. If for example data approximation needs to estimate 

coefficients in the approximated polynomial or move the basic curve from the axes 

origin. In the APbasic the user has to assign a set of constant values into GFS. It means 

a huge enlargement of the functional sets and deceleration of the evolutionary 

procedure. Therefore two other strategies were adopted - APnf and APmeta.  

These two versions of AP use the constant K which is indexed during the 

evolution (2.2). When K is needed, a proper index is assigned – K1, K2, ... Kn (2.3). 

Numeric values to indexed Ks are estimated (2.4) either via nonlinear fitting methods 

in the Mathematica environment (www.wolfram.com) - APnf or via the second 

evolutionary algorithm – APmeta. 

 x2 + K
! K  (2.2) 
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 x2 + K1
! K2

 (2.3) 

 x2 + 3.156
! 90.78  (2.4) 

APmeta is a time consuming process and the number of cost function 

evaluations, which is one of comparative factors, is usually very high. This fact is 

given by two evolutionary procedures (Fig.  2.8). 

 

 EAmaster ! program! Kindexing ! EAslave ! Kestimation ! final " solution   

Fig.  2.8: Schema of AP procedures 

 

EAmaster is the main evolutionary algorithm for AP, EAslave is the second 

evolutionary algorithm inside AP. Thus the number of cost function evaluation 

(CFE) is given by (2.5). 

 

 CFE = EAmaster *EAslave   (2.5) 

 

Despite this fact, some simulations cannot be done with nonlinear fitting 

methods in the Mathematica environment. The presented applications use the APmeta 

in most cases. 

2.3.2 AP with Reinforced Evolution 

Analytic programming is capable of reinforced evolution. During evolution, 

more or less appropriate individuals are synthesized. Some of these individuals are 

used to reinforce the evolution towards a better solution synthesis. The main idea of 

reinforcement is based on the addition of the just-synthesized and partly successful 

program into an initial set of terminals (GFS0arg). Reinforcement is based on a user-

defined deciding criterion. This criterion adds an individual into the initial set of 

terminals according to the value defined in the threshold. The threshold value is 

dependent on a cost value and, according to previous testing, the threshold is set up 
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to a suitable initial value. Such a value means that the individual stands for a partial 

successful solution which should help increase the speed to find the final best 

solution. To avoid having a lot of partial solutions in GFS, only one individual is 

accepted for adding into GFS and the criterion value is decreased with each such 

step. 

For example, if the threshold is set to 5, and the fitness of all individuals 

(programs in the population) is higher than 5, then the evolution is running on the 

initially defined GFS. When the cost value of the best individual in the current 

population is less than 5, then it is entirely added into the initial GFS and is marked 

as terminal. From this moment, the evolution is running on the enriched GFS 

containing the partially successful program. Due to this advantage, the evolution 

process is able to synthesize final solutions much faster than the AP without 

reinforcement. Simulations on different problems have repeatedly verified this fact.  

It is quite similar to Automatically Defined Functions (ADF) for GP; however, 

the set of functions and terminals in GP can contain more than one ADF (which 

increases the complexity of the search space to the order of n!, at least theoretically). 

GP has to have checking procedures for critical situations (self calling...) and if 

arguments of this ADF are defined properly. This is not a problem of AP 

reinforcement, the added item belongs to terminals, i.e., no function, no arguments, 

no self calling, etc., and the cardinality of the initial GFS set increases only by one. 

2.3.3  Similarities and Differences 

Because analytic programming was partly inspired by genetic programming, 

some differences as well as similarities between AP, GP and grammatical evolution 

exist. Some of these are [102]:  

o Synthesized programs (similarity): AP, as well as GP and GE, is able to 

do symbolic regression in a general point of view. It means that the output 

of AP is according to simulations, similar to programs from GP and GE. 

o Functional set (similarity): APbasic operates in principle on the same set of 

terminals and functions as GP or GE, while APmeta or APnf use a universal 

constant K (difference), which is indexed after a program synthesis. 
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o Individual coding (difference): coding of an individual is different. AP 

uses an integer index instead of direct representation as is in canonical 

GP. GE uses the binary representation of an individual, which is 

consequently converted into integers for mapping into programs by means 

of BNF. 

o Individual mapping (difference): AP uses DSH while GP in its canonical 

form uses direct representation in LISP and GE uses BNF. 

o Constant handling (difference): GP uses a randomly generated subset of 

numbers - constants, GE utilizes user determined constants and AP uses 

only one constant K for APmeta and APnf, which is estimated by another 

EA or by nonlinear fitting. 

o Security procedures (difference): to guarantee the synthesis of non-

pathological functions, procedures are used in AP that redirect the flow of 

mapping into subsets of a whole set of functions and terminals according 

to the distance from the end of the individual. If pathological function is 

synthesized in GP, synthesis is repeated. In the case of GE, when the end 

of an individual is reached, the mapping continues from the individual’s 

beginning, which is not the case in AP. It is designed so that a non-

pathological program is synthesized before the end of the individual is 

reached (no later than the end is reached). 
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3 Evolutionary Algorithms 

Evolutionary algorithms are a group of algorithms suitable for optimization that use 

their special operators as mutation, crossover and others to find an ideal solution. 

Possible candidates are defined by a cost function whose arguments are values of 

each solution. The best one is in the global extreme – maximum or minimum [111], 

[105], [45], [2].  

Different fields of human activities need to optimize countless cases of difficult 

tasks every day. Everybody wants to maximize profit and minimize cost. This means 

that optimizing is in every task of industry, transportation, medicine, everywhere. For 

these purposes, we need to have suitable tools that are able to solve very difficult and 

complicated problems. As previous years proved, the use of artificial intelligence and 

soft computing contribute to improvements in many activities.  

This group covers a lot of different older and newer techniques that can be used 

independently or with symbolic regression. Two of several possible divisions (Fig.  

3.1, Fig.  3.2) of evolutionary techniques might be as follows [111], [105]. For the 

purpose of this habilitation thesis, only three evolutionary algorithms, which were 

used for performed simulations, are described below. 

Enumerative Deterministic 

Mixed Stochastic 

Hill Climbing 
Greedy 
Branch and Bound 
Depth - First 
Broadth - First 
Best - First 
Calculus Based 

Ant Colony Optimization !
Immune system methods!
Memetic Algorithms!
Scatter Search and Path Relinking!
Particle Swarm!
Genetic Algorithms!
Differential Algorithms!
SOMA!

Random Search Walk 
Simulated Annealing 
Monte Carlo 
Tabu Search 
Evolutionary Computation 
Stochastic Hill Climbing!

Optimization algorithms 

 

Fig.  3.1: The division of evolutionary algorithms – taken from [105] 
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Fig.  3.2: Another possibile of division of evolutionary algorithms – taken from [105] 

3.1 Self-Organizing Migrating Algorithm 

(SOMA) 
SOMA works with groups of individuals (population) whose behavior can be 

described as a competitive–cooperative strategy [110]. The construction of a new 

population of individuals is not based on evolutionary principles (two parents 

produce an offspring) but on the behavior of a social group, e.g. a herd of animals 

looking for food. This algorithm can be classified as an algorithm of a social 

environment. To the same group of algorithms, sometimes called swarm intelligence, 

the Particle Swarm Optimization (PSO) algorithm can also belong. In the case of 

SOMA, there is no velocity vector as in PSO, only the position of individuals in the 

search space is changed during one generation, here called migration loop. 

The rules are as follows: in every migration loop the best individual is chosen, 

i.e. individual with the minimum cost value, it is called the Leader. An active 

individual from the population moves in the direction towards the Leader in the 

search space. The movement consists of jumps determined by the Step parameter 
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until the individual reaches the final position given by the PathLength parameter. For 

each step, the cost function for the actual position is evaluated and the best value is 

saved. At the end of the crossover, the position of the individual with the minimum 

cost value is chosen. If the cost value of the new position is better than the cost value 

of an individual from the old population, the new one appears in the new population. 

Otherwise the old one remains there. The main principle is depicted in Fig.  3.3, Fig.  

3.4 and Fig.  3.5 and the crossover is described by the equation (3.1): 

 

 

xi, j
ML+1 = xi, j,START

ML + (xL, j
ML ! xi, j,START

ML ) * t *PRTVectorj    (3.1) 

where:  
1

,
+ML
jix - value of i–individual’s j–parameter, in step t in migration loop ML + 1, 

ML
STARTjix ,, - value of i–individual’s   j-parameter, Start position in actual migration 

loop, 
ML
jLx , - value of  Leader’s  j– parameter in migration loop ML, 

t - step ∈ <0, by Step to, PathLength >, 

PRTVector - vector of ones and zeros dependent on PRT. If a random number 

from the interval <0, 1> is less than PRT, then 1 is saved to PRTVector, otherwise it 

is 0.  
 

  
 

Fig.  3.3: The basic principle of SOMA 
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Fig.  3.4: The basic principle of crossover in SOMA, PathLength is replaced here by 
an older terminology Mass 

 

There are four versions of SOMA – AllToOne, AllToOneRand, AllToAll, and 

AllToAllAdaptive. In this thesis, a version AllToOne is used despite the fact that 

AllToAll and AllToAllAdaptive can be much better in searching. They can search 

for a wider area of solutions and the possibility of finding the global optimum is then 

more probable. On the other hand, these two variations of SOMA need more time for 

the successful end of evolution. Therefore for simulations, less time-consuming 

computing of AllToOne was used in this thesis.  
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Fig.  3.5: SOMA example 

 

 

 

 

 

 

PopSize 
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3.2 Differential Evolution 
DE is a population-based optimization method that works on real-number-coded 

individuals [17]. For each individual   

 

! x i,G  in the current generation G, DE generates a 

new trial individual   

 

! ! x i,G  by adding the weighted difference between two randomly 

selected individuals   

 

! x r1,G  and   

 

! x r2,G to a randomly selected third individual  

 

! x r3,G . The 

resulting individual   

 

! ! x i,G  is crossed-over with the original individual  

 

! x i,G . The fitness 

of the resulting individual, referred to as a perturbed vector  

 

! u i,G +1, is then compared 

with the fitness of  

 

! x i,G . If the fitness of   

 

! u i,G +1 is greater than the fitness of  

 

! x i,G , then 

  

 

! x i,G  is replaced with  

 

! u i,G +1; otherwise,   

 

! x i,G  remains in the population as  

 

! x i,G +1. DE is 

quite robust, fast, and effective, with global optimization ability. It does not require 

the objective function to be differentiable and it works well even with noisy and 

time-dependent objective functions. The example of DE is in Fig.  3.6. Please refer to 

(3.2) for notation of cross-over, and to [68] and [47] for the detailed description of 

used DERand1Bin strategy and all other DE strategies. 

 

 ui,G+1 = xr1,G + F * xr2,G ! xr3,G( )  (3.2) 
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 Fig.  3.6: A DE example 
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3.3 Particle Swarm Optimization 
The PSO (Particle swarm optimization) algorithm is based on the natural behaviour 

of birds and fish and was firstly introduced by R. Eberhart and J. Kennedy in 1995 

[17], [16]. As an alternative to genetic algorithms [12] and differential evolution 

[68], PSO proved itself to be able to find better solutions for many optimization 

problems. The term “swarm intelligence” [17], [16] refers to the capability of particle 

swarms to exhibit surprisingly intelligent behavior assuming that some form of 

communication (even very primitive) can occur among the swarm particles 

(individuals). 

PSO is initialized by a population of randomly located particles. A velocity 

vector, which indicates the direction of individual movement in the next step, is 

generated to each individual. Then a value of cost function is calculated. The 

individual with the best value (usually minimum) saves its current position in the 

common memory of the population which means that individuals know where the 

best solution is located. The best value found in a population is called gBest. At the 

same time, every individual finds out if its current position is better than its previous 

position. If so, the new position is stored in its own memory and is referred to as 

pBest. 

After gBest and pBest are found, the particle adjusts its velocity and changes 

the position according to the equations (3.3) and (3.4). The influence of velocity, 

pBest and gBest values is depicted in Fig.  3.7. Particles tend to go their own way or 

to return to their best position or to adaptively follow the particle with the best value 

in the population. The trends and real directions are visible in Fig.  3.7. 

 vd t +1( ) = vd t( )+ c1 * rand * pBesti,d ! xi,d t( )( )+ c2 * rand * gBestd ! xi,d t( )( )   (3.3) 

 xi,d t +1( ) = xi,d t( )+ vd  (3.4) 

where  

( )1+tvd   –  a velocity of the particle in the next step  

( )tvd   –  a velocity of the particle in the current step 

( )1, +tx di   –  a position of the particle in the next step 



3   Evolutionary Algorithms 

 

 
© Zuzana Komínková Oplatková, 2012 
 

38 

( )tx di ,   –  a position of the particle in the current step 

dipBest ,   –  the best existing position of the particle 

dgBest   –  the best found position in the population 

rand  –  random number in the interval (0, 1) 

21,cc  –  priority factors  

 

Fig.  3.7: A velocity, pBest and gBest values influence in PSO 

 

Particle velocities are associated with the maximum speed Vmax. If the velocity 

of the particle exceeds this rate, a new speed is generated or the velocity vector is 

reduced to the value of Vmax. This measure is here because of the particle’s tendency 

to sharply increase its speed. Particles reach the borders of the searched area quickly 

in that case. If a particle is outside permitted values its new position is generated. 

The parameters of PSO: 

Dimensions and permitted values are given by the optimized problem. 

The number of particles is the size of the population. 

Vmax sets a maximal value of the velocity up. 

Priority factors c1, c2 partly influence the movement of particles. The priority 

factor c1 gives preference to return to particle’s best own position before to follow 

the best result of the population. On the contrary, the priority factor c2 tends to shift 

particles to the best value of the population. 
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4 Artificial Neural Networks 

Artificial neural networks (ANN) are tools of artificial intelligence developed in the 

first half of the 1940s. After Pitts – McCulloch model [31], [98], [30], [22] of neuron 

(Fig.  4.1) and Rosenblatt’s first neural net, the perceptron, with a learning algorithm 

were published, Minsky and Papert caused the temporal abandoning of ANN because 

the perceptron was not able to solve nonlinear separable problems. Fortunately, in 

1980s researches returned and the boom started [31], [98], [30], [22]. 

 

TF( wixi + bwb! )

x1
w1

xn

b

wn

wb

y

 

Fig.  4.1: A model of a neuron – TF (transfer function), x1 - xn (inputs to neural 
network), b – bias, w1 – wn, wb – weights, y – output 

 

Artificial neural networks are inspired by the biological neural nets and are 

used for complex and difficult tasks. The most often usage is the classification of 

objects because ANN are capable of generalization, hence the classification is natural 

for them. Some other possibilities are in pattern recognition, control, filtering of 

signals and also data approximation.  

There are several types of artificial neural networks. They are mainly divided 

into supervised and unsupervised neural networks. Supervised neural nets need a 

training set with inputs and required outputs which help to train the neural network. 

Unsupervised neural networks work on different basis. They try to group items in a 

training set according to similar properties. The other difference is in settings of 

layers, neurons in layers, types of transfer functions etc. In the case of this thesis, the 
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supervised artificial neural nets were used. Simulations were performed with a 

feedforward net with supervision. ANN needs a training set of known solutions to be 

trained. The neural network works so that suitable inputs in numbers have to be 

given to the input vector. These inputs are multiplied by weights which are adjusted 

during the training. In the neuron the sum of inputs multiplied by weights are 

transferred through a mathematical function such as sigmoid, saturated linear (Fig.  

4.2), hyperbolic tangent, radial basis functions, etc. Therefore ANN can also be used 

for data approximation.  

Feedforward nets have different training algorithms; the well-known are 

Backpropagation, Pruning algorithm, gradient methods, Levenberg-Marquardt [76] 

and others. In the performed simulations, the Levenberg-Marquardt algorithm was 

used.  

�5 5
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Fig.  4.2: A linear saturated function (left), Sigmoid function (right) 

The single neuron units (Fig.  4.1) are connected to different structures to obtain 
ANN (e.g. Fig.  4.3 -  

Fig.  4.6). These networks were designed for different tasks.  

Fig.  4.6 shows a different schema of a two layer neural net where the last 

bottom neuron in the left input layer is bias equal to one.  
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Fig.  4.3: One hidden layer neural net and one output, where 
! =! TF[ (wixi + bwb! )] and in this case )]([∑∑ += bii bwxwTF , where TF is for 

example logistic sigmoid.  

 

  

 

Fig.  4.4: One hidden layer neural net and one output, a different schema 
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Fig.  4.5: Two hidden layer neural net, where ! =! TF[ (wixi + bwb! )] and in this 
case )]([∑∑ += bii bwxwTF , where TF is for example a logistic sigmoid. These pictures 

are taken from Neural Networks Toolbox for Mathematica environment 
(www.wolfram.com) as this tool was used during the simulations. Names are also 

taken from this tool to avoid misunderstandings. 

 

 

 

Fig.  4.6: Two hidden layer neural net, a different schema
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5 Metaevolution 

Metaevolution is one of the main topics that underpin the whole thesis. The range, 

which is covered by the technical term meta, is quite wide. Meta means going 

beyond the basic term. The evolutionary algorithms described earlier in this thesis 

are sometimes also called meta-heuristic [38]. According to [38] and [75], heuristic 

is defined as a technique which seeks or finds good solutions to a difficult model. 

Meta-heuristic goes beyond this to draw on ideas and concepts from another 

discipline to help solve the artificial system that is being modelled.  

Generally, metavolution means evolution of evolution. Metaevolutionary 

techniques for optimization tasks belong to soft computing methods as well as 

evolutionary algorithms [2], [57] and symbolic regression [57].  

Metaevolution means several approaches [57], [15], [18], [38], [42], [55], [62]. 

This thesis is focused mainly on the third described approach and partly the second 

one. 

First attempts of researchers were in the usage of an evolutionary algorithm for 

tuning or controlling of another evolutionary technique [19], [14], [89]. During this 

process, usually the best types of evolutionary operators and settings of their 

parameters were evolutionarily selected. Tuning of parameters is the usage of the 

best-found values which will be set up at the initialization of the evolutionary 

algorithm and used with the same values for a whole process. Compared to this, 

parameter control adjusts the values during the evolutionary process. It is adapted 

either by means of a predetermined rule or some kind of self-adaptation [89]. The 

further performance was then tested and studied on given problems [42], [18]. 

Another approach is to let evolution create a structure and parameters of the 

used evolutionary operators such as selection crossover or mutation. Diosan and 

Oltean use Meta Genetic Programming [18] for the evolutionary design of 

evolutionary algorithms [15]. In the thesis, this metaevolutionary approach is 

described with the first application (chapter 7). Analytic programming is used here 

with symbolic regression principles to breed a completely new structure of the 
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optimization algorithm of evolutionary character which comes from the basic 

selection of operators in the AP settings. 

The last technique of metaevolution is discussed in several applications 

presented in this thesis. This is the estimation of coefficients in symbolic regression 

when two evolutionary algorithms help each other. One evolutionary algorithm 

drives the main process of symbolic regression, in this case analytic programming, 

and the second is used for the constant estimation. This meta approach of analytic 

programming has to be used when the constants are not possible to estimate in 

another manner because of the character of the problem. In data approximation tasks, 

there can be used a technique from non linear fitting package, which is adopted in 

Wolfram Mathematica environment, because the problem is designed so that the 

found constants (e.g. coefficients of polynoms) move the basic shape of the curve 

around the coordinate system. It is not possible to employ such a package in the case 

of the synthesis of control laws for chaotic systems or Pseudo ANN. These 

applications do not use the found result as a model which could be adjusted to some 

“measured” values in the sense of interpolation but the found solution is used further 

as a part of complex technique to find a quality of the solution and cost function 

estimation. 
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6 Selected Applications 

The following applications are selected from the research area of the author. The first 

of the following chapters shows a technique from the field of symbolic regression, 

which is the main domain of the author. The chapter is focused on metaevolution for 

breeding of a new algorithm where one evolutionary method creates another one.   

The second chapter describes the metaevolution for the interdisciplinary task of 

synthesis of control law for deterministic chaotic systems. This part of research area 

has been the main field of research of the author during the last three years. 

 The next section deals with metaevolution for synthesis of pseudo artificial 

neural networks. The research is at the beginning, still opened and the work in this 

field will also continue after the submission of this thesis.  

As ANNs are also the area of the research, next two chapters are focused on 

real applications – the steganalysis and optimal modelling of airplane behaviour by 

means of ANN.  

The author was participating also in the research that connects evolutionary 

algorithms and deterministic chaotic systems together to explore the influence on the 

evolutionary dynamics inside the PSO algorithm. Instead of a standard computer 

pseudorandom number generator, the PSO algorithm used a pseudorandom number 

generator based on selected chaotic systems for inner operators. 
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7 Metaevolution in Design of 

Evolutionary Algorithm 

The objective was to try to create a new optimization algorithm, probably of 

evolutionary character, which could be robust and effective to optimize difficult 

problems in the world. This research has been started in the doctoral thesis of the 

author. In this habilitation thesis, it is briefly described to show differences in the 

metaevolution used in simulations performed after the submission of the doctoral 

thesis.  

This is a metaevolutionary approach in context when evolutionary algorithm 

breeds another evolutionary algorithm [57]. According to previous approaches, 

metaevolution is determining the optimal evolutionary algorithm, the best types of 

evolutionary operators and their parameter setting for a given problem. It basically 

means that one evolutionary algorithm tunes another one [57]. But the approach used 

for the synthesis a new algorithm is different. The metaevolution is used on a higher 

level for creating a new algorithm completely not only for setting of its parameters 

[57]. 

The simulations used different operators of known evolutionary algorithms 

such as their mutation or crossover operators and found following notations for new 

algorithms (7.1) – (7.4): 

 

SOMAATORandWithoutPRT(SOMAATORandWithPRT(SOMAATORandWithPR
T(MutateDECurrentToBest(SelectSOMALeader))))    (7.1) 

 

SOMAATOWithPRT(SOMAATOWithPRT(SOMAATORandWithPRT(CrossDEBi
n(SOMAATOWithPRT(SelectSOMARandLeader)))))    (7.2) 

 

CrossDEBin(SOMAATOWithPRT(MutateDECurrentToBest(SelectSOMALeader))) 
    (7.3) 
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 SOMAATOWithPRT(SelectSOMALeader) (7.4) 

This kind of metaevolution used analytic programming in its basic version. No 

coefficients were necessary to be estimated. All operators belong to GFS with one 

argument and the functions of selection are part of the GFS with zero arguments, ie. 

terminals.  

The most difficult is the design of a cost function which represents suitability 

and quality of the solution. In the case of creating a new evolutionary algorithm, 

benchmarking on some test functions is necessary. During this research, two test 

functions were used for simulations and the cost function tested whether or not a 

found algorithm achieves the minimum in both test functions. The two benchmark 

functions were the Sphere model, 1st De Jong as an example of a unimodal function 

and Schwefel as an example of a multimodal function [105], [57] – Fig.  7.1 and Fig.  

7.2. 
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 Fig.  7.1: The DeJong function – unimodal (left – 2 arguments and right – 1 
argument used) 
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 Fig.  7.2: The Schwefel function – multimodal (left – 2 arguments and right – 1 
argument used) 
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The 1st De Jong and Schwefel functions are in the analytical way as can be 

seen in equations (7.5) and (7.6), where Dim means the number of arguments 

(dimension of the problem). No other condition was applied.  

 

 

 

f x( ) = xi
2

i=1

Dim

!  (7.5) 

 

 

 

f x( ) = !xi " sin xi( )
i=1

Dim

#  (7.6) 

 

The value of the cost function was designed so that firstly the generated 

algorithm is verified as to the ability to find the minimum on the easy unimodal 

function 1st De Jong. If the minimum is reached, the Schwefel function is tested. 

Then the cost value is the output from the Schwefel. If there is no successful result 

from the 1st De Jong, the output value is the absolute value of the 1st De Jong. The 

values of benchmark function minimum in different dimensions are known. For 

faster computation, the benchmark functions were used with 2 arguments. The future 

research expects a better design of the cost function including more benchmark 

functions and computations in a higher dimensional space. 

After the results were obtained – the 4 above mentioned algorithms, more tests 

on other benchmark functions were performed to find out how effective the found 

evolutionary algorithms are. Here is only one table (Table 7.1) showing that 

algorithms competed not only between themselves but also in dimensions - 2D, 20 D 

and 100 D. 
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Table 7.1: The winner for each benchmark function  

 Algorithm 1 

(7.1) 

Algorithm 2 

(7.2) 

Algorithm 3 

(7.3) 

SOMAATO    

(7.4) 

2 D 1, 3, 4, 5, 6, 8, 

10, 11, 12, 15, 

16 

5, 6, 7, 8, 10, 11, 

12, 13, 15, 16 

5, 6, 7, 8, 10, 

11, 12, 13, 15, 

16 

2, 5, 6, 7, 8, 9, 10, 

11, 12, 13, 14, 15, 

16 

20 D 1, 3, 4, 7, 11, 14, 

15 

5, 6, 8, 10, 12, 

13, 16 

2 9 

100 D 12, 13, 14 1, 2, 3, 5, 7, 8, 

15, 16, 

 4, 6, 9, 10, 11 

 

The numbers are for each benchmark problem as follows: 1 - 1st De Jong 

function, 2 - 2nd De Jong function, 3 - 3rd De Jong function, 4 - 4th De Jong function, 

5 - Rastrigin function, 6 - Schwefel function, 7 - Griewangk function, 8 - Sine 

Envelope Sine Wave function, 9 - Stretched V sine wave function - Ackley, 10 - 

Ackley test function, 11 - Ackley function, 12 - Egg Holder function, 13 - Rana 

function, 14 - Pathological function, 15 - Michalewicz function, 16 - Master’s cosine 

wave function.  

If the same number appears in more cells on the same row it means that 

algorithms finished in the same cost value. For more details, please refer to [57]. 
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8 Metaevolution for Synthesis of 

Control Law for Chaotic Systems 

8.1 Introduction 
The interest in the interconnection between evolutionary techniques and the control 

of chaotic systems is spread nowadays. First steps were done in [106], [86], [81] 

where the control law was based on the Pyragas method: Extended delay feedback 

control – ETDAS [73]. These papers were focused on how to tune several parameters 

inside the control technique for a chaotic system. Compared to previous research, 

this chapter shows a possibility of how to generate the whole control law (not only to 

optimize several parameters) for the purpose of stabilization of a chaotic system. The 

synthesis of control is inspired by the Pyragas’s delayed feedback control technique 

[39], [72]. Unlike the original OGY (Ott – Grebogi – York) control method [63], it 

can be simply considered as a targeting and stabilizing algorithm together in one 

package [46]. Another great advantage of the Pyragas method for evolutionary 

computation is the amount of accessible control parameters which can be easily 

tuned by means of evolutionary algorithms (EA). Apart from soft-computing 

(artificial intelligence) methods, following methods of mathematical optimization are 

commonly used: the simplex method (linear programming) [50], quadratic 

programming [49], the branch and bound method [97] and NEH Heuristic. The 

simplex method or linear programing is used generally for real-time and simple 

optimizations, mostly with unimodal cost functions, whereas the branch and bound 

method has proved highly successful for permutative constrained problems. NEH 

heuristic was developed for the optimizations of scheduling problems. Previous 

experiments with the connection of optimization problems and chaotic systems 

proved the difficulty of this task due to the highly nonlinear and erratic cost function 

surfaces, thus common mathematical optimization techniques could not be utilized.  
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In this research, instead of evolutionary algorithms (EA) utilization [40], 

analytic programming (AP) is used. The control law from the proposed system can 

be viewed as a symbolic structure that can be synthesized according to the 

requirements for the stabilization of a chaotic system. The advantage is that it is not 

necessary to have some “preliminary” control law and to estimate its parameters 

only. This system will generate the whole structure of the law even with suitable 

parameter values. 

This research is focused on the research expansion and usage of analytic 

programming for the synthesis of a whole control law instead of parameters tuning 

for existing and commonly used control law method that is used to stabilize desired 

Unstable Periodic Orbits (UPO) of chaotic systems. The research presented in this 

chapter is focused on the stabilization of p-1 UPO – a fixed point (stable state) and 

higher periodic orbits p-2 UPO (oscillation between two points) and p-4 UPO. Two 

approaches were adopted for the stabilization – a simple evolutionary approach with 

the cost function utilizing the position of the desired UPO and the blackbox 

evolutionary approach utilizing special cost functions, thus without the knowledge of  

the exact UPO position in the chaotic attractor. This means that EA is used to find 

the best control parameter set up based only on the demanded type of chaotic system 

behavior and not based on the position of UPO. 

This research has been already published in book chapters, conference and 

journal papers, e.g. [61], [55], [83], [84], [85], [87]. 

In this demonstration, analytic programming with meta version was used. 

Metaevolution here means the usage of one evolutionary algorithm for main the AP 

process and the second algorithm for coefficient estimation, as was explained above. 

The SOMA algorithm was used for the main AP process and DE was used in the 

second evolutionary process.  
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8.2 Methodology for Control by Means of 

AP 
The methodology used in these simulations is divided into two parts – control laws 

for p-1 orbit (stable state) and higher periodic orbits p-2 and p-4 UPO (oscillation 

between two, respectively 4 values). In the first case, the inspiration for preparation 

of sets of basic functions and operators for AP was the simpler TDAS control 

method (8.1) and its discrete form given in (8.2). 

 ( )[ ])()( txtxKtF −−= τ  (8.1) 

 ( )nmnn xxKF −= −  (8.2) 

This means that only current output value xn  and one previous xn!1  were used 

in the set of basic functions together with constants, operators such as plus, minus 

and power.  

The latter case was inspired by the method ETDAS due to the recursive 

attributes of the delay equation S utilizing previous states of the system. Therefore 

the data set for AP was expanded and covers a longer system output history. 

The original control method – ETDAS has the form (8.3). 

 F(t) = K 1! R( )S t !! d( )! x(t)"# $%   

 S(t) = x(t)+ RS t !! d( )  (8.3) 

Where: K and R are adjustable constants, F is the perturbation; S is given by the 

delay equation utilizing previous states of the system and dτ is a time delay. The 

original control method – ETDAS in the discrete form has the form (8.4). 

 Fn = K 1! R( )Sn!m ! xn"# $%  

 Sn = xn + RSn!m  (8.4) 

Where: m is the period of m-periodic orbit to be stabilized. The perturbation nF  in 

equations (8.4) may have arbitrarily large value which can cause the diverging of the 
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system. Therefore, nF  should have a value between maxF− , maxF . In this thesis a 

suitable maxF  value was taken from the previous research [88]. 

8.3 Settings 
The novelty of the meta-evolutionary approach represents the synthesis of a 

feedback control law Fn   (perturbation) inspired by the original ETDAS or TDAS 

control method. The perturbation is the feedback to the system which helps to 

stabilize it. 

Therefore the basic set of elementary functions for AP was selected as follows. 

The main items are several previous values (data) to current value in the controlled 

chaotic system.  

GFS2arg = +, -, /, *, ^  

GFS0arg = datan-1 to datan, K (for p-1 orbit)  

GFS0arg = datan-9 to datan, K (for p-2 orbit). 

GFS0arg = datan-11 to datan, K (for p-4 orbit). 

 

The following tables (Table 8.1, Table 8.2) contain the settings of evolutionary 
algorithms for AP, the main procedure and also the meta approach algorithm. 

 

Table 8.1: Parameters setting for SOMA used as the main algorithm in the meta-
evolutionary approach. 

Parameter Value 

PathLength 3 

Step 0.11 

PRT 0.1 

PopSize 50 

Migrations 4 

Max. CF Evaluations (CFE) 5345 
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Table 8.2: Parameters setting up for DE used as the second algorithm in the meta-
evolutionary approach. 

Parameter Value 

PopSize 40 

F 0.8 

CR 0.8 

Generations 150 

Max. CF Evaluations (CFE) 6000 

  

8.4 Cost Function Design 
The examples of the results show two approaches to the cost function design – 

simple and blackbox mode. 

The first proposal for the cost function comes from the simplest Cost Function 

(CF). The idea was to minimize the area created by the difference between the 

required state and the real system output on the whole simulation interval – τi.  

Because of the stabilization of an extremely sensitive chaotic system, another 

universal cost function with the possibility of adding penalization rules had to be 

used. It was synthesized from the simple CF and other terms were added. In this case, 

it is not possible to use the simple rule of minimizing the area created by the 

difference between the required and actual state on the whole simulation interval – τi, 

due to many serious reasons, for example: including of initial chaotic transient into 

the final CF value or degrading of the possible best solution by phase shift of higher 

periodic orbit, which represents the oscillations between several values.  

This CF is in general based on searching for a desired stabilized periodic orbit 

and thereafter calculation of the difference between the desired and found actual 

periodic orbit on the short time interval - τs (20 iterations) from the point where the 

first minimal value of the difference between the desired and actual system output is 

found. Such a design of CF should secure the successful stabilization of either p-1 
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orbit (stable state) or a higher periodic orbit anywise phase shifted. The CFBasic has 

the form (8.5). 

 

 CFBasic = pen1 + TSt ! ASt
t=!1

! 2

" , (8.5) 

where:   

TS - target state, AS - actual state 

τ1 - the first min value of the difference between TS and AS, τ2 – the end of the 

optimization interval (τ1+ τs) 

pen1= 0 if τi - τ2 ≥ τs; pen1= 10*( τi - τ2) if τi - τ2 < τs (i.e. late stabilization). 

 

The second type of the cost function (CF2) used in the simulations for the 

stabilizing of the chaotic system was in the “blackbox mode”, ie. without the exact 

numerical value of the target state. In this case, it is not possible to use the simple 

rule of minimizing the area created by the difference between the required and actual 

state on the whole simulation interval – τ or its arbitrary part. 

This approach is based on searching for periodic orbits in a chaotic attractor 

and stabilizing the system on these periodic orbits by means of applying the optimal 

feedback perturbation nF . It means that this new CF did not take any numerical target 

state into consideration but the selected target behavior of system.  Therefore, this 

kind of CF is based on the search for optimal feedback perturbation nF  securing the 

stabilization on any type of the selected UPO (p-1 orbit – stable state, p-2 orbit – 

oscillating between two values etc.). The slight disadvantage of this approach is that 

for each UPO (i.e. different behavior) a different CF is needed. 

The results in this thesis show only one case with the blackbox mode, only for 

demonstration. The other systems with the blackbox mode were published at 

conferences or in journals.  

The proposal of CF2 used in the case of p-2 orbit is based on the following 

simple rule. The iteration y(n) and y(n+2) must have the same value. But this rule is 

also valid for the case of – p-1 orbit, where in discrete systems, the iteration y(n) and 

y(n+1) of the output value must be the same. Thus another condition had to be 
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added. It says that in the case of p-2 orbit there must be a difference between the n 

and n+1 output iteration. Considering the fact of minimizing the CF, the value of this 

condition had to be rewritten into this suitable form (8.6)  

 ( ) ( ) cnyny +−+1
1  (8.6) 

where: c – small constant 1.10-16 which was added to prevent the evolutionary 

optimization from crashing because of division by zero which the suboptimal 

solution stabilized at p-1 orbit returns. The CF2 has the form (8.7). 

 

 ( ) ( ) ( ) ( ) cnyny
nynypCF

t +−+
+−++= ∑

= 1
121

0
2

τ
 (8.7) 

 where: p1 = penalization. In the proposed CF2, penalization has to be 

included because it should avoid finding solutions where the stabilization on 

saturation boundary values {0, 1} or oscillation between them (i.e. artificial p-2 

orbit) occurs. This penalization was calculated as the sum of the number of iterations, 

where the system output reaches the saturation boundary value. 

8.5 Selected Chaotic Systems Used in 

Simulations 

8.5.1 Logistic Equation 

The Logistic equation (Logistic map) is a one-dimensional discrete-time example of 

how complex chaotic behaviour (8.8) can arise from a very simple non-linear 

dynamical equation. This chaotic system was introduced and popularized by the 

biologist Robert May [48]. It was originally introduced as a demographic model as a 

typical predator–prey relationship. The chaotic behaviour can be observed by varying 

the parameter r. At r = 3.57 is the beginning of chaos. At r > 3.57, the system 

exhibits chaotic behaviour. The example of this behaviour is depicted in the 

bifurcation diagram – Fig.  8.1. 
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 xn+1 = rxn 1! xn( )  (8.8) 

 

Fig.  8.1: The bifurcation diagram of the Logistic equation 

 

8.5.2 Hénon Chaotic System 

The second chosen example of a chaotic system was the two dimensional Hénon map 

in the form (8.9). 

 
xn+1 = a ! xn

2 + byn
yn+1 = xn

 (8.9) 

 

This is a model invented with a mathematical motivation to investigate chaos. 

The Hénon map is a discrete-time dynamical system which was introduced as a 

simplified model of the Poincaré map for the Lorenz system. It is one of the most 

studied examples of dynamical systems that exhibit chaotic behavior. The map 

depends on two parameters, a and b, which for the canonical Hénon map have values 

of a = 1.4 and b = 0.3. For these canonical values the Hénon map is chaotic [33]. 

The example of this chaotic behavior can be clearly seen in the bifurcation 

diagram – Fig.  8.2, which was created by plotting of a variable x as a function of one 

control parameter for the fixed second parameter. 
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 Fig.  8.2: The bifurcation diagram of the Hénon Map  

 

8.5.3 Synthesized Chaotic System 

The other selected example of chaotic systems was a synthesized system (8.10) 

introduced in [103]. The experiments published in [103] were made for the purpose 

of synthesizing various chaotic systems by means of analytic programming. The 

presented approach of the synthesis of a whole control law suppresses the fact that 

appeared in the previous research [88], that some of the synthesized systems are 

barely controllable.  

 xn+1 =
A 2A ! 2xn

2 ! 3xn A ! xn + Axn( )( )
!A + xn ! xn

2  (8.10) 

 

This system exhibits chaotic behavior for the control parameter A in the ranges 

<0.1, 0.13> and <0.8, 1.2> (see Fig.  8.3, Fig.  8.4). 

 

 

Fig.  8.3: The bifurcation diagram for A = <0.8, 1.2> 
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Fig.  8.4: The bifurcation diagram for A = <0.1, 0.15> 

 

8.5.4 Lozi Map 

The Lozi map is a complex nonlinear discrete two-dimensional chaotic map. The 

map equations are given in (8.11) and (8.12) and in the bifurcation diagram in Fig.  

8.5. The parameters used in this thesis are: a = 1.7 and b = 0.5 as suggested in [91]. 

 

 Xn+1 =1! a Xn + bYn  (8.11) 

 Yn+1 = Xn  (8.12) 

 

 

Fig.  8.5: The bifurcation diagram for the Lozi map 
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8.5.5 Burger’s Map 

The Burger’s map is a simple two-dimensional discrete chaotic system. The map 

equations are given in (8.13) and (8.14) and in the bifurcation diagram in Fig.  8.6. 

This map uses parameters a = 0.75 and b = 1.75 as suggested in [91].  

 

 Xn+1 = aXn +Yn
2  (8.13) 

 Yn+1 = bYn + XnYn  (8.14) 

 

 

Fig.  8.6: The bifurcation diagram for the Burger’s map 

 

8.5.6 Delayed Logistic Equation 

The Delayed logistic equation is a simple two-dimensional discrete system. It is a 

two dimensional extension of the logistic equation [48]. The map equations are given 

in (8.15) and (8.16) and in the bifurcation diagram in Fig.  8.7. The parameter used in 

this thesis is A = 2.27 [91].  

 

 Xn+1 = AXn 1!Yn( )  (8.15) 

 Yn+1 = Xn  (8.16) 
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Fig.  8.7: The bifurcation diagram for the Delayed logistic equation 

 

8.5.7 Cubic map 

The Cubic map is a simple one-dimensional discrete system very similar to the most 

known and studied logistic equation [48]. The map equation is given in (8.17) and in 

the bifurcation diagram in Fig.  8.8. The parameter used in this thesis is A= 3.0 as it 

was also suggested in [91].  

  

 Xn+1 = AXn 1! Xn
2( )  (8.17) 

  

 

Fig.  8.8: The bifurcation diagram for the Cubic map 
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8.6 Results for p-1 Orbit – Stable State 
The examples of new synthesized feedback control laws Fn (perturbation) for the 

controlled logistic equation (8.18), the Hénon map (8.19), the evolutionary 

synthesized system (8.20), the Lozi map (8.21), the Burger’s map (8.22), the Delayed 

logistic equation (8.23) and the Cubic map (8.24): 

 

 xn+1 = rxn 1! xn( )+ Fn  (8.18) 

  

 xn+1 = a ! xn
2 + byn + Fn  (8.19) 

  

 xn+1 =
A 2A ! 2xn

2 ! 3xn A ! xn + Axn( )( )
!A + xn ! xn

2 + Fn  (8.20) 

  

 

 

Xn+1 = 1! a Xn + bYn + Fn  (8.21) 

  

 

 

Xn+1 = aXn +Yn
2 + Fn  (8.22) 

  

 ( ) nnnn FYAXX +−=+ 11  (8.23) 

  

 ( ) nnnn FYAXX +−=+ 11  (8.24) 

 

 

which were inspired by the original TDAS control method (8.2) are given in Table 

8.4. The values for p-1 UPO (a fixed point) of unperturbed chaotic systems based on 

the mathematical analysis of the system are depicted in Table 8.3. 
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Table 8.3: The values for p-1 UPO (a fixed point) 

Chaotic system Value of p-1 UPO of unperturbed system 

Logistic equation xF = 0.73842 

Hénon map xF = 0.8 

Evolutionary synthesized system xF = -1.0772 

Lozi map xF = 0.4545 

Burger’s map xF = 0.74999 

Delayed logistic equation xF = 0.55947 

Cubic map xF = -0.8165 

 

Simulation outputs are depicted for all selected chaotic systems in Fig.  8.9. 

The last four systems are not studied and used for the confirmation of the research 

methodology so often. Therefore only one example is provided. 

The identical minimal final CF value very close to zero for all selected 

examples gives weight to the argument, that AP is able to synthesize various types of 

control laws, securing the precise and fast stabilization with machine numerical 

precision on the p-1 unstable periodic orbit of a real chaotic system.  

In the case of the logistic equation, one interesting phenomenon occurred. AP 

has found the notation of original TDAS [73] which was the inspiration for creating 

the basic data sets for AP. For comparison, please refer to the first line in Table 8.4. 

and the notation of the TDAS method in (8.2), where K is the gain constant for the 

logistic equation, the recommended value is around -0.5. 

In the case of the Hénon map, the stabilization on a real chaotic UPO was very 

precise; the only difference across all simulation results was the speed of 

stabilization. Nevertheless this quality parameter was not included in the CF this 

time. 

The results for the complicated evolutionary synthesized chaotic system give 

weight to the argument that AP is able to synthesize various new control laws 

securing very quick and full 100% stabilization even for artificially synthesized 

systems. 
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Table 8.4: The simulation results for chaotic systems and stabilization at p-1 UPO 

 

Nr. 

Control Law with estimated 

coefficients 
CF Value UPO Value Figure 

Logistic equation 

1 Fn = !0.527311 xn!1 ! xn( )  6.6613.10-16 0.73842 Fig.  8.9 a) 

2 Fn = xn!1 ! xn( ) 0.352456 ! xn!11!xn!1( )  6.6613.10-16 0.73842 Fig.  8.9 b) 

Hénon map 

1 Fn =
xn!1 ! xn !1.62925( ) xn!1xn ! xn2( )

2xn!1
 1.3323.10-15 0.8 Fig.  8.9 c) 

2 Fn = !
0.781971 xn!1xn ! xn

2( )
xn!1

 1.3323.10-15 0.8 Fig.  8.9 d) 

Evolutionary synthesized system 

1 
( )( )

2
1

11215597.0

−

−− +−=
n

nnnn
n x

xxxxF  0 -1.0772 Fig.  8.9 e) 

2 
( ) ( )12

1

1

2
40013.3

−−

−

−−
−

=

nnnnn
n

n
n

xxxxx
x

xF  
0 -1.0772 Fig.  8.9 f) 

Lozi map 

1 
( )

( ) nn

nn
n xx

xxF
8934.32 1

1

−
−

=
−

−

 
6.2992.10-15 0.4545 Fig.  8.9 g) 

Burger’s map 

1 ( )( )8298.397686.2001294.0 1 +++−= − nnnn xxxF  0 0.74999 Fig.  8.9 h) 

Delayed logistic equation 

1 
( )

851425.022
1

−+
−

−= −

nn

nnn
n xx

xxxF  0 0.55947 Fig.  8.9 i) 

Cubic map 

1 79938.7
0697.142

−
−=

n
nn x
xF  4.3087.10-10 -0.8165 Fig.  8.9 j) 
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 a) 

 

b) 

 
 c) 

 

d) 

 

 e) 

 

f) 

 
g) 

 

h) 
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i) 

 

j) 

 

 

Fig.  8.9: Examples of results – the stabilization of chaotic systems by means of 
control laws given in Table 8.4 – a), b) – the logistic equation, c), d) – the Hénon 

map, e), f) - the evolutionary synthesized system, g)- the Lozi map, h) – the Burger’s 
map, i) – the Delayed logistic equation, j) – the Cubic map 

 

8.7 Results for p-2 Orbit – Oscillation 

between Two Points 
The simulations for p-2 were carried in both modes – the simple cost function and 

blackbox mode. The simple cost function was used for the Hénon map and the 

blackbox mode for the logistic equation and evolutionary synthesized systems. The 

perturbed system notations can be found in (8.18) – (8.20). The synthesized control 

laws for the three selected systems are provided in Table 8.5. The values for p-2 

UPO (oscillation between two points) of unperturbed chaotic systems based on the 

mathematical analysis of the system are depicted in Table 8.6. The relevant figures of 

the simulation output are given in Fig.  8.10. 

Both approaches were able to find the control laws that secure the fast 

stabilization for p-2 orbit. 

An interesting phenomenon was discovered for systems with the blackbox 

mode of the cost function. The synthesized control laws are able to stabilize the 

chaotic system on optional artificial periodic orbits as can be seen in Table 8.5 and 

Fig.  8.10. This is caused by the fact that there was no information about the exact 
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position of p-2 orbit in the chaotic attractor transferred into the evolutionary process, 

and the cost function was designed to operate on the basis of the selection of desired 

system behaviour. 

 

Table 8.5: The simulation results for chaotic systems and stabilization at p-2 UPO 

 

Nr. 

Control Law with estimated 

coefficients 
CF Value UPO Value Figure 

Logistic equation 

1 3
7

6

367.47
0535.50

−
−

− −
+
−−= n

n

n
n x

x
xF  198.68 0.98 – 0.44 Fig.  8.10 a) 

2 464.19
1−= nn xF  149.06 0.94 – 0.21 Fig.  8.10 b) 

Hénon map 

1 ( )700001.0523744.0 1 −+= − nnn xxF  1.39845.10-5 -0.56 – 1.26 Fig.  8.10 c) 

2 ( ) ( )nnnnnnn xxxxxxF −+−= −−−−− 23348 87967.120375.0  1.70211.10-5 -0.56 – 1.26 Fig.  8.10 d) 

Evolutionary synthesized system 

1 ( )nnnn
n

n xxxx
x

F −−⎟⎟⎠

⎞
⎜⎜⎝

⎛
++−−= −− 0874.086885.1

27
 50.4868 -2.45 – 0.12 Fig.  8.10 e) 

2 ( ) 266463.0873148.0468 −+++−= −−− nnnnn xxxxF  50.613 -2.45 – 0.12 Fig.  8.10 f) 

 

 

Table 8.6: The values for p-2 UPO (oscillation between two points) 

Chaotic system Values of p-2 UPO of unperturbed system 

Logistic equation xF = 0.37 and 0.89 

Hénon map xF = -0.56 and 1.26 

Evolutionary synthesized system xF = -2.03 and 0.12 
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a) 
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0 50 100 150 200
- 2.5

- 2.0

- 1.5

- 1.0

- 0.5

0.0

Iteration  
 

Fig.  8.10: Examples of results – the stabilization of chaotic systems by means of 
control laws given in Table 8.5 – a), b) – the logistic equation, c), d) – the Hénon 
map, e), f) - the evolutionary synthesized system 

 

Most of common control methods were developed only for stabilization on real 

UPO with low energy costs. The question of energy costs and more precise 

stabilization will be included into the future research together with the development 

of better cost functions, a different AP data set, and performing of numerous 
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simulations to obtain more results and produce better statistics, thus to confirm the 

robustness of this approach. 

8.8 Results for p-4 Orbit – Oscillation 

between Four Points 
Last simulations were carried out also for p-4 UPO when an oscillation between four 

points appears. The perturbed system notations for the logistic equation and the 

Hénon map can be found in (8.18) – (8.19). The synthesized control laws for the two 

selected systems are provided in Table 8.7. The values for p-4 UPO (oscillation 

between four points) of unperturbed chaotic systems based on the mathematical 

analysis of the system are depicted in Table 8.8. The tests were performed under the 

simple cost function, not in the blackbox mode. The relevant figures of the 

simulation output are given in Fig.  8.11. 

 

Table 8.7: Simulation results for chaotic systems and stabilization at p-4 UPO 

 

Nr. 

Control Law with estimated 

coefficients 
CF Value UPO Value Figure 

Logistic equation 

1 ( ) ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

−−−

−

− +=
115805.35

1

2
225

nn

n

xx

nn
x
nn xxxF  

0.1139 
0.30, 0.80,  

0.6, 0.91 
Fig.  8.11 a) 

2 6383.34

2
nx
nn xF −=  0.1007 

0.3, 0.8,  

0.6, 0.9 
Fig.  8.11 b) 

Hénon map 

1 ( )nnnnnn xxxxxF −−= −−−− 4378527409.0  0.0984 
0.13, 1.45,  

-0.86, 0.89 
Fig.  8.11 c) 

2 
( )

2
3

6

67

4742.399706.5
191.520174.04863.59

0667.10

−
−

−

−−

++

−−+

+=

n
n

n

n

nnn
n

x
x

x
x

xxxF
 

0.7095 
0.13, 1.45,  

-0.86, 0.89 
Fig.  8.11 d) 
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Table 8.8: The values for p-4 UPO (oscillation between four points) 

Chaotic system Values of p-2 UPO of unperturbed system 

Logistic equation xF = 0.3038, 0.8037, 0.5995 and 0.9124 

Hénon map xF = 0.139, 1.4495, -0.8594 and 0.8962 

 

a) 

 

b) 

 
c) 

 

d) 

 
 

Fig.  8.11: Examples of results – stabilization of chaotic systems by means of 
control laws given in Table 8.7 – a), b) – the logistic equation, c), d) – the Hénon 
map 

 

The presented simulation examples show two different results. First group has 

low CF values indicating precise but unfortunately slow stabilization and sometimes 

only temporary, together with a simple control law. The second group promises not 

very precise (as the higher CF values denote) but very fast stabilization and relatively 

complex notation of the chaotic controller. This phenomenon is caused by the design 

of CF which was borrowed from the research focused on the simpler cases. 

Satisfactory results were obtained for example for p-2 orbit.  
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8.9 Synthesis of Control Laws for Chaotic 

Systems – Conclusion 
The area presented in the chapter 8 introduces the usage of analytic programming for 

the optimization of stabilization of selected chaotic systems. 

Obtained results show that synthesized control laws provided better results than 

the original control method which served as an inspiration. This fact reinforces the 

argument that AP is able to solve these difficult problems and to produce a new 

synthesized control law in a symbolic way securing desired behavior of a chaotic 

system. Precise and fast stabilization gives weight to the argument that AP is a 

powerful symbolic regression tool which is able to strictly and precisely follow the 

rules given by the cost function and synthesize any symbolic formula. In the case of 

this research, it means to synthesize some kind of a feedback controller for a chaotic 

system. 

The research never ends. The question of energy costs and more precise 

stabilization will be included into the future research together with the development 

of better cost functions, a different AP data set, and performing of numerous 

simulations to obtain more results and produce better statistics, thus to confirm the 

robustness of this approach. 

Presented data and statistical comparison can be summarized as follows: 

All simulations were performed at least 50x to obtain statistics. All cases have 

found the solution for the stabilization of chaotic systems. As presented results show, 

some cases give only temporary stabilization and some even stabilize the system on 

artificial UPOs. The number of cost function evaluations for 32 millions per one 

simulation means that the consumed time is really high. The future research will be 

supposed to search for time efficiency and decreasing of the simulation time.  

The other points compare the design of cost functions. The simple evolutionary 

approach is easy to implement, it is very fast and gives satisfactory results. But the 

quality of results is restricted by the limitations of the mathematical formulas, control 

laws, models etc., for which the parameters are tuned by EA.  
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The Blackbox approach brings the advantage of avoidance of the mathematical 

analysis of chaotic systems but in this case an interesting phenomenon was 

discovered – stabilization on artificial UPOs. Since there was no information about 

the exact position of orbits in the chaotic attractor transferred into the evolutionary 

process and the cost function was designed to operate in the blackbox mode, the 

evolution found satisfactory behaviour but not on the precise values. 

Nevertheless the proposed blackbox mode approach is very advantageous and 

simple to implement in the case of an unknown chaotic system or chaotic oscillations 

in any system because of its ability to control the chaotic system or oscillations 

without any previous demanding mathematical analysis, ie. without the knowledge of 

the exact UPOs position. It can be used as a powerful tool to promptly check the 

controllability of any new discrete chaotic system. 
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9 Synthesis of Pseudo Artificial 

Neural Networks 

9.1 Pseudo ANN - Introduction 
The interest in classification by means of some automatic process has been enlarged 

with the development of artificial neural networks (ANN). They can be used also for 

many other possible applications such as pattern recognition, prediction, control, 

signal filtering, approximation, etc. All artificial neural networks are based on a 

relation between inputs and output(s) that utilize mathematical transfer functions and 

optimized weights from a training process. The setting-up of layers, number of 

neurons in layers, estimating of suitable values of weights is a demanding procedure. 

On that account, pseudo neural networks that represent the novelty approach using 

symbolic regression with evolutionary computation is proposed in this chapter.  

The evolutionary techniques have been recently commonly used for the 

synthesis of artificial neural networks but in a different manner than is presented 

here. One possibility is the usage of evolutionary algorithms for the optimization of 

weights to obtain a ANN training process with a small or no training error result. 

Some other approaches represent the special ways of encoding the structure of the 

ANN either into the individuals of evolutionary algorithms or into the tools such as 

Genetic Programming. But all of these methods still work with the classical 

terminology and separation of ANN to neurons and their transfer functions [23]. 

The proposed technique uses symbolic regression and is similar to the 

synthesis of the analytical form of the mathematical model between input(s) and 

output(s) in a training set used in neural networks. Therefore it is called Pseudo 

Neural Networks [62]. The proposed technique synthesizes the structure without a 

prior knowledge of transfer functions and inner potentials. It synthesizes the relation 

between inputs and output of a training set items used in neural networks so that the 

items of each group are correctly classified according to the rules for the cost 

function value.  
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The example of the relation between two inputs and one output can be shown 

in the mathematical form (9.1). It represents the case of only one neuron and a 

logistic sigmoid function as a transfer function. 

 

 y = 1
1+ e! x1w1+x2w2( )  (9.1) 

where  y – output 

  x1, x2 – inputs 

  w1, w2 – weights. 

 

The aim of the proposed technique is to find a similar relation to (9.1). This 

relation is completely synthesized by evolutionary symbolic regression – analytic 

programming. 

 

9.2 Pseudo ANN - Problem Design 
 

The classification tools are usually tested on an XOR problem (Fig.  9.1). This is the 

example of a non-linear separable problem, i.e. there is not possible to put a straight 

line (linear function) as a border between two classes – red and green dots. This 

chapter presents only the simulations for an XOR problem for two dimensions (two 

inputs) as shown in Fig.  9.1.  

 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 

Fig.  9.1: An example of an XOR problem, first class - red dots in left bottom and 
right upper corner, second class - green dots in left upper and right bottom corner 
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This classification problem is binary. Therefore the idea from the binary 

transfer function was adopted into the rules for the cost function value. The result 

value from the synthesized notation is 1 if the value is higher than 0.5, respectively 0 

in the opposite case. This is necessary to be able to evaluate the error between 

required values and obtained values. 

 

The required values are following: 

Red dots  – input {0,0} output 1 

    input {1,1} output 1 

Green dots  – input {0,1} output 0 

    input {1,0} output 0 

 

In the case of the performed simulations, 10-6 was used instead of absolute 

zero. During the synthesis of pseudo ANN this approach shows better results then in 

the case of absolute zero. Such values are sometimes recommended also for the 

usage of classical artificial neural networks to avoid e.g. division by zero. 

9.3 Pseudo ANN - Results 
For performed simulations, APmeta version was used. The meta approach uses two 

evolutionary algorithms, one for the main AP process, here the SOMA algorithm and 

also DE, and the second for tuning parameters, here only DE was used. The settings 

of EA parameters for both processes were based on numerous performed 

experiments with APmeta (Table 9.1 and Table 9.2). 

 

Table 9.1: SOMA settings for AP 

PathLength 3 

Step 0.11 

PRT 0.1 

PopSize 50 

Migrations 4 

Max. CF Evaluations (CFE) 5345 
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Table 9.2: DE settings for AP and meta-evolution 

PopSize 40 

F 0.8 

CR 0.8 

Generations 150 

Max. CF Evaluations (CFE) 6000 

 

The basic set of elementary functions for AP was inspired by the items 

contained in artificial neural nets: 

GFS2arg= +, -, /, *, ^, exp 

GFS0arg= x1, x2, K 

 

The performed simulations were successful and the following figure (Fig.  9.2) 

shows the found borders between the classes. 

a)           b)   

 

c)  

Fig.  9.2: Examples of solutions 
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The following notation (9.2) is the solution for Fig.  9.2 c). 

 
 

 y = exp
967.7328 + x1 + x1x2 +x2 +2.836.10-193-687.33578 + exp x 2( ) + x1

*

*exp exp x1x2( )( ) -x2( )-687.336+exp x2( )+x1 x2

!

"
#
#

$

%
&
&

 (9.2) 

 

where  y – output 

  x1, x2 – inputs 

 

All found solutions were successful. However it is necessary to discuss some 

critical points. It seems that green dots {1, 0} in Fig.  9.2 a) and b) belong to the 

other class. The violet colour is not visible much in that part but the green dot is still 

in the violet part. On the contrary, the red dot {0,0} seems to be in the violet part but 

they are on the edge. Fig.  9.2 c) shows clear groups but the stripes are not suitable 

for classification into the two groups. All these observed phenomena will be taken 

into consideration during the future testing and cost value rules development. 

9.4 Pseudo ANN - Conclusion 
This chapter dealt with a novel approach – pseudo neural networks. Within this 

approach, the classical optimization of the structure or weights was not performed. 

The proposed technique is based on symbolic regression with evolutionary 

computation. It synthesizes a whole structure in a symbolic form without a prior 

knowledge of the ANN structure or transfer functions. It means that the relation 

between inputs and output(s) is synthesized. As can be seen in the result section, 

such approach is promising. For further tests, some observed critical points have to 

be taken into consideration. Future plans will be focused on the better cost function 

design and also on performing numerous simulations with more difficult tasks than 

the presented one. 
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10 Steganalysis by Means of ANN 

10.1 Motivation behind ANN Usage for 

Steganalysis 
Steganalysis means the techniques used to discover the covert communication in 

transferred data files. The very basic test, which is called the visual attack, uses 

human senses such as sight for discovering irregularities in a represented medium. 

Such test is limited by human individuality. Two people always have different 

sensitivity to an examined object. Another steganalysis tool, called the structural 

attack, is similar to the visual attack. It is computer based and focuses on discovering 

irregularities in the data structure of a cover medium. Every computer data file has its 

own characteristic structure. Embedding a message will leave a trace in such a 

structure. The difference between a stego file (with hidden content) and a cover file 

(an empty file without a message) is given by the quality of a steganographic tool.  

The statistical attack has more scientific approach than two above mentioned one and 

it is more complicated. In general, statistics is used for determining the level of 

randomness, entropy of the redundant data or colour frequencies occurrence in stego 

files.  

The statistical steganalysis has been deeply described by many researchers, e.g. 

by Niel Provos and Peter Honeyman [71] or [70]. Andreas Westfeld together with 

Andreas Pfitzmann introduced their Chi-square statistical attack [100]. Jessica 

Fridrich and her teams published many research papers on the JPEG steganalysis 

[27], [26], [28] on conventional mathematical–statistical basis. There were more 

people working on various steganalysis techniques. All above mentioned people have 

been the most dedicated to this field. 

The techniques described in the above mentioned papers have been powerful 

and functional. They have only one disadvantage. They suffer from the false positive 

classification. The reason is simple, the steganography classification is a 
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mathematically complicated process and input steganograms (files with a message 

inside) are strongly diversified.  

The approach to the steganalysis proposed in the research in the thesis is based 

on artificial intelligence, mainly artificial neural networks (ANNs). ANNs are known 

as a strong tool for solving difficult classification tasks. ANNs have been 

successfully implemented in many other projects focused on classification. 

A big challenge for classification based on artificial intelligence was to deal 

with the double compression of JPEG – a file that was the main source of false 

positive classification. This research is focused on pin-pointing the stego image 

classification by a new sampling methodology and the reduction of false positive 

classification by means of a trained ANN classifier on pairs of cover-stego samples. 

The research was published for example in [58], [41], [35]. 

10.2 Steganalysis - Introduction 
With the spread of computers into human lives the need for security has arisen. The 

field that covers the development of the impossibility of secret message decoding is 

called Cryptography [29]. The other method connected with security hides 

transmitted information because of the distraction of attention from messages which 

contain very sensitive data. This method is called Steganography [7], [77], [51]. 

Hiding information is both useful and dangerous. Therefore it is important to develop 

tools and methods for a forensic analysis to prevent the abuse of hiding methods for 

criminal purposes.  

Steganography is the art of hiding communication by embedding secret 

messages into innocent file content, mainly into multimedia files. The carrier files in 

steganography are called the “cover images”, while files with hidden information 

embedded by some steganography technique are called the “stego files”.  

Steganography can be misused. Unwanted leaking of “know-how” or other 

confidential content is in the first place. An example of such a process can be 

described as follows: imagine a company with employees and secret information, 

e.g. a database with secret data that is located on a database server accessible from an 

employee’s terminal. If an employee decides to steal the confidential data and uses a 
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regular email to do so (as seen in Fig.  10.1) his/her action is revealed almost 

immediately because he/she has a monitored services email account. When the 

internal data is saved into a regular email and sent by the department email account 

to a home computer then the email is checked. 

 

Fig.  10.1: Message transport through a plain text email 

 
There is an email monitor between the terminal and the email gateway which 

scans all-outgoing emails for viruses as well as its body and attachments for any 

internal business information. In the described case, the security monitor detects that 

the email attachment contains sensitive data. The security department is immediately 

informed about this incident and the employee is charged for the information fraud. 

In Fig.  10.2 a similar scenario is shown. If the employee from this case decides 

to steal confidential data from the employer’s database it is not a difficult task with 

the use of a steganography tool. Steganography helps with the secure transfer of 

secret messages compared to cryptography, which is strong in the usage of the key 

for coding of messages. Steganography codes a message into images, a video file or 

data stream. If a human eye sees a picture with steganographic content, it would not 

recognize the secret message inside. This is the main aim – to hide information itself.  



10   Selected Applications - Steganalysis by Means of ANN 

 

 
© Zuzana Komínková Oplatková, 2012 
 

82 

 

Fig.  10.2: Message transport with steganography 

 
The whole second scenario with a steganography tool is very easy. The 

employee can use e.g. a Java application downloaded from the Internet because of 

the company rules and forbidden instalations of any application on the employee’s 

terminal or computer and Java is consider to be used for multi platforms. Then he/she 

has to prepare images in the JPEG format and use a steganography Java application 

that embeds a text file containing internal business information into the image files. 

After that the images are sent to his/her personal email account. The outgoing server 

does not recognize any danger of an information leak. 

The main goal of steganography is to not attract any attention. Therefore it is 

necessary to have a method for its detection because it is vulnerable. The research 

deals with this particular phenomenon – the method of detection by means of 

Artificial Neural Networks (ANN) [31], [98], [30], [22]. 

The steganalysis techniques employ different ways of detection such as 

statistical methods, searching for specific signature of a steganography method [51]. 

Also the methods of artificial intelligence (AI) were used. The research field within 

AI is connected with a support vector machine (SVM) [74], [13]. Some researches 
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use ANN as the case of this research. SVM and ANN are similar tools but SVM is 

usually used for lineary separable problems. The approach in the thesis is different in 

the design of training sets. This thesis does not use pixel differences or joint features 

of discrete wavelet transform and polynomial fitting errors or reversible data [77], 

[74], [13]. The approach uses Huffman coding of bit word lengths extracted from 

discrete cosine transformation coefficients.  

10.3 ANN Training Sets 
Training sets are necessary for the correct running of artificial neural nets. Within all 

experiments supervised, ANNs were used. In this case, each item of a training set has 

an output value which says if the image is with or without any hidden content.  

The used training set consists of numbers obtained from Huffman coding [8]. 

Huffman coding was applied to adjustments and modifications of the basic 2183 

images that were acquired for testing purposes from three digital cameras (Sony 

DSC-P93, Olympus SP550UZ, Pentax K10D) in fine or superfine quality. The 

lowest image resolution for this basic group is more then 2560x1600, the average 

picture resolution is 3529x2458 pixels and the maximum picture resolution is 

3872x2592 pixels with the average file size of 2616.6 kB and the maximum file size 

of 4403.2 kB. The images from the basic set were resized to several sizes as 

described below. 

10.3.1 Cover Images 

Cover samples, which are images without any hidden information, were created by 

resizing the original digital images with the Linux tool ImageMagick [36] into 

different file resolutions estimated by their common appearance on the Internet.  The 

entire image pool contains almost 22 000 images.   

The list of all image resolutions used for the test group: 

800x600, 1024x768, 1280x1024, 1440x900, 1680x1050, 1920x1440, 

2560x1600 and one special group containing original files with resolution higher 

then 2560x1600 pixels. 
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10.3.2 Stego Images 

All samples from the cover image pool were used for Outguess, Steghide and the PQ 

algorithm. Due to the problems with the F5 java implementation, the input cover file 

pool was reduced only to images up to the maximum resolution of 1680 x 1050 

pixels in this case.  

A secret message and an encryption password were generated by the Linux 

pseudorandom number generator that collects environmental noise from device 

drivers and other sources into the entropy pool. The amount of hidden information 

was set up by the measurement of common length of short messages.   

The list of all message lengths used for the stego test samples: 

5, 10, 15, 30, 75, 150, 300 and 600 Bytes. 

10.3.3 Huffman Coding 

Huffman coding was designed by David Huffman in 1952. This method takes 

symbols represented e.g. by values of discrete cosine transformation (which is one of 

the methods how to present information such as colour, brightness etc. in pictures), 

and codes it into a changeable length code so that according to statistics the shortest 

bit representation is assigned to the symbols with the most frequent appearance [8]. It 

has two very important properties – it is a code with minimal length and prefix code 

that means that it can be decoded uniquely. On the other hand, the disadvantage is 

that we have to know the appearance of each symbol a priori. In the case of pictures, 

it is possible to work with estimation, which will be edited during the compression. 

Fig.  10.3, Fig.  10.4, Table 10.1 and Table 10.2 show the differences between the 

cover and stego images in DC or AC (direct or alternating part) class. The pictures 

show the number of each bit word in the image. 

 
Fig.  10.3: Huffman coding histogram – cover image (clear pictures) 
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Fig.  10.4: Huffman coding histogram – stego image (coded picture) 

 

Table 10.1: Huffman coding histogram – cover image 

Length of the 

word 

[bits] 

DC, Class 0 DC, Class 1 AC, Class 0 AC, Class 1 

 1  0 3504 0 0 

 2  1623 0 50871 18704 

 3  3178 2060 69370 25155 

 4  3435 2371 23902 9522 

 5  342 527 30216 6311 

 6  86 170 5642 4968 

 7  0 31 7102 3032 

 8  0 1 771 805 

 9  0 0 2285 425 

10  0 0 1022 204 

11  0 0 522 115 

12  0 0 345 40 

13  0 0 74 49 

14  0 0 20 8 

15  0 0 0 6 

16  0 0 50 13 
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Table 10.2: Huffman coding histogram – stego image 

Length of 

the word 

[bits] 

DC, Class 0 DC, Class 1 AC, Class 0 AC, Class 1 

1 0 0 0 0 

2 4433 8312 59998 14595 

3 13283 730 14904 2224 

4 906 343 38276 2755 

5 444 181 10142 1444 

6 86 10 4742 925 

7 0 0 4680 89 

8 0 0 1943 428 

9 0 0 2149 77 

10 0 0 667 42 

11 0 0 444 12 

12 0 0 316 0 

13 0 0 0 0 

14 0 0 0 1 

15 0 0 73 0 

16 0 0 477 0 

 
 

For the concept of the main principle, please refer to the following picture (Fig.  

10.5). Each bit word can stand as a brick in the wall. It is possible to get two equally 

big walls but each of them will be assembled from different bricks and brick sizes. 

These two walls are of the same size but with a different structure (a different set of 

bricks, some bricks appear more often then others). By the same analogy, the 

differences in cover and stego files can be percieved. The objective is to compare the 

different bit word length and different sizes of bricks in the walls for cover and 

images affected by steganography. 
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Fig.  10.5: Illustration of Huffman coding histogram – left) cover image, right) stego 
image 

The main goal of steganography is to not attract attention. Stego images appear 

as ordinary pictures taken by a digital camera. But there are significant changes in 

the structure of the stego images. The changes in the JPEG structure are relevant and 

used in the case of the presented research for correct training of an artificial neural 

network. 

10.3.4 Examples of Training Set Items 

Values obtained from Huffman coding were transferred into a training set, i.e. all 
four columns from each table (Table 10.1 and Table 10.2) were joined to create a 
training vector. An example follows. 

 

{0,2178,49642,11918,7758,3614,2113,1328,181,0,0,0,0,0,0,0,0,37824,17026,9

608,6323,4486,2771,692,2,0,0,0,0,0,0,0,0,1184565,266816,406818,225770,85887,84

320,39638,27400,14811,6889,1516,0,0,105,5231,0,295156,155514,135282,76214,48

989,12495,16659,9154,3609,1601,94,0,868,625,208} 

 

The vector contains 64 values – real numbers of bit words which represent 

inputs into ANN. The ANN output neuron is only one and has the output value 0 or 1 

(sigmoid function) or -1 and 1 (saturated linear function). The threshold for 

determining the output class is in the middle of the interval – 0.5 in the case of 0 and 

1 or 0 in the latter case.  
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To use numbers in the interval <0,1> instead of the real quantities turned out as 

an inappropriate way. There are too big differences between each position. On that 

account, small numbers are not visible if expressed as a percentage in the interval 

<0,1>. They would approximate zero. The result is that the input information into the 

neural network is misrepresented. 

10.4 Brief Outlook of Steganography Tools 

10.4.1 Outguess 

OutGuess is a universal steganography tool which is able to insert hidden 

information into redundant bits of input data [90]. The type of input data is not 

important for OutGuess at all because this software uses specific drivers for specific 

graphic formats that extract redundant bits and writes these bits back after they are 

changed. The version, which was used for the simulations, is able to work with the 

JPEG and PNG formats. JPEG pictures were used in this thesis. OutGuess is 

available under the Berkeley Software Distribution (BSD) license. OutGuess is hard 

to detect by means of statistics calculation based on the frequency analysis. The 

results of the statistical analysis are not able to reveal steganography content because 

OutGuess finds out the maximal length of the message before the picture is inserted. 

This causes that the resulting image is not changed from the point of view of 

frequency analysis as was described in [69]. 

10.4.2 Steghide 

Steghide is steganography software that is able to hide data in various kinds of image 

and audio files. The colour - respectively sample-frequencies are not changed thus 

make the embedding resistant to the first-order statistical tests. Steghide uses a graph 

theory approach to steganography. The embedding algorithm works roughly as 

follows: At first, secret data is compressed and encrypted. Then a sequence of pixel 

positions in the cover file is created based on a pseudorandom number generator 

initialized with the passphrase (the secret data will be embedded in the pixels at these 

positions). The positions that do not need to be changed (because they have already 
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contained the correct value by chance) are sorted out. Then a graph-theory matching 

algorithm finds pairs of positions so that exchanging their values has the effect to 

embedding of the corresponding part of the secret data. If the algorithm cannot find 

any more such pairs, all exchanges are actually performed. The pixels at the 

remaining positions (the positions that are not the part of such a pair) are also 

modified to contain the embedded data (but this is done by overwriting them, not by 

exchanging them with other pixels). The fact that (most of) the embedding is done by 

exchanging pixel values implies that the first-order statistics (i.e. how many times a 

colour occurs in the picture) is not changed. For audio files the algorithm is the same, 

except for that audio samples are used instead of pixels. The default encryption 

algorithm is the Rijndael with a key size of 128 bits (which is AES - the advanced 

encryption standard) in the cipher block-chaining mode [32]. 
 

10.4.3 F5 Algorithm (CipherAWT) 

The F5 steganographic algorithm was introduced by German researchers Pfitzmann 

and Westfeld in 2001 [101]. The goal of their research was to develop concepts and a 

practical embedding method for JPEG images that would provide high 

steganographic capacity without sacrificing security. Guided by their χ2 attack, they 

challenged the paradigm of replacing bits of information in the cover-image with the 

secret message while proposing a different paradigm of incrementing image 

components to embed message bits. Instead of replacing the least significant bits 

(LSBs) of quantized discrete cosine transform (DCT) coefficients with the message 

bits, the absolute value of the coefficient is decreased by one. The F5 authors argue 

that this type of embedding cannot be detected using their χ2 statistical attack. 

The F5 algorithm embeds message bits into randomly chosen DCT coefficients 

and employs matrix embedding that minimizes the necessary number of changes to 

embed a message of certain length.  

The F5 algorithm modifies the histogram of DCT coefficients, but some crucial 

characteristics of the histogram are preserved, such as its monotonicity and 

monotonicity of increments. The F5 algorithm cannot be detected using the χ2 attack 
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because the embedding is not based on bit-replacement or exchanging any fixed pairs 

of values [27]. 

10.4.4 PQ Algorithm 

Perturbed quantization (PQ) steganography [25] is a quite successful data hiding 

approach which current steganalysis methods fail to work for [90]. In other words, 

PQ does not leave any traces in the form that the current steganalysis methods can 

catch. However, linear dependency between image rows and/or columns in the 

spatial domain is affected by PQ embedding due to random modifications on discrete 

cosine transform (DCT) coefficients’ parities during data hiding. 

In PQ steganography, the cover object is applied an information reducing 

operation that involves quantization such as lossy compression, resizing, or A/D 

conversion before data embedding. The quantization is perturbed according to a 

random key for data embedding, therefore called “perturbed quantization”. PQ 

steganography, which uses JPEG compression for information reducing operation, is 

different from their DCT based counterparts. Since message bits are encoded by 

changing DCT parities after quantization, the cover image can be thought of just as a 

recompressed input image. To achieve high embedding rates, recompression is 

realized by doubling the input quantization table with the assumption that 

recompression of cover JPEG images does not draw any suspicion because of its 

wide usage in digital photography [25]. Since the original cover image is 

recompressed via embedding operation, its compressed version should be considered 

as “stego” instead of the original image. 

10.5 Results  
All experiments were performed with a supervised feed forward net, which uses the 

Levenberg-Marquardt training algorithm.  

The testing of the proposed approach was performed with different settings of 

neurons in one hidden layer net (number from 1 to 20) and 9 combinations of transfer 

functions (logistic sigmoid, saturated linear and hyperbolic tangent for hidden layer 

and output neuron). The tests were carried out for each stego algorithm individually. 
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Experiments with only one general neural network for all stego algorithms and even 

their detection have not been successful yet.  

The whole data set was divided into training and testing sets. For training 

14400 cover items and 135000 stego images were used. The exact number of testing 

items is written in Table 10.3 for all testing stego algorithms. 

All simulations used sixty four input neurons (obtained from Huffman coding) 

and one output neuron that classifies the training item into the class of cover or stego 

images. The following table (Table 10.3) shows the best results from the performed 

experiments. These tables contain information about the number of cover and stego 

images and misclassified items (= an item should contain stego content and ANN 

output was a group of cover images and viceversa). The last two rows represent the 

total error in the whole set of cover and stego images. 

Table 10.3: Results of testing success for four steganographic tools 

Type of 

algorithm 
OutGuess Steghide 

F5 

algorithm 

PQ 

algorithm 

Nr. of hidden 
neurons 

12 1 15 1 

type of function in 
inner layer 

logistic 
sigmoid 

logistic 
sigmoid 

saturated 
linear 

logistic 
sigmoid 

type of function in 
output layer 

saturated 
linear 

saturated 
linear 

hyperbolic 
tangent 

saturated 
linear 

Cover total 5246 5246 9746 22711 

Cover errors 2 32 8 1 

Cover  % error 0.0381 0.61 0.0821 0.0044 

Cover  % success 99.9619 99.39 99.9179 99.9956 

Stego total 135 891 142 772 77 314 126 599 

Stego errors 0 3248 24 733 

Stego  % error 0 2.275 0.031 0.6106 

Stego  % success 100 97.725 99.969 99.3894 

Total % error 0.0014 2.216 0.0368 0.5184 

Total % success 99.9986 97.784 99.9632 99.4816 
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Based on the presented results, it can be stated that the total error in 

experiments was under 1 % for all algorithms except for the Steghide algorithm. 

Compared to the earlier research [34], [60], [59] where the total error was almost 

zero, the testing set consists of more items with more message payload etc. This 

probably caused the worsening of the results. As the ANN output is a mathematical 

function – mathematical dependency of inputs, it is possible to extract it into the 

equation. This kind of equation can be used in stego detector software without the 

knowledge of ANN structures. Such a mathematical equation needs only suitable 

inputs, which are extracted from Huffman coding, and the output is obtained. The 

notations of these equations are very complex they are therefore not presented here. 

 

10.6 Steganalysis by Means of ANN - 

Conclusion 
This research introduces a method of steganalysis by means of neural networks. The 

novelty is in the training set design. The training set consists of 64 inputs obtained 

from Huffman coding extracted from discrete cosine transformation coefficients and 

counting of bit words of the same lengths. During the simulations files with 

embedded message by means of 4 steganographic algorithms – OutGuess, Steghide, 

the PQ and F5 algorithm were tested. ANNs were able to detect the cover and stego 

groups with less than 1 % error. The exception was the case of Steghide where the 

error was around 2 %. According to the presented results, the proposed technique 

was successful.  

The optimization of consumed time in the broad area of computations is very 

important and required in all fields. The research in the area of steganalysis by means 

of ANN covers also datamining techniques used in the simulations for less time 

consuming training. This was done through the ANN structure optimization. The 

input dimension was reduced from sixty four to three neurons. Therefore also 

number of weights, which were necessary to be trained, was reduced and the ANN 

training phase was not so time consuming.  
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The aim for the future is to develop a steganalysis detector. The detector might 

be part of the outgoing email servers. This device will not decode the message itself, 

since this research is focused only on the recognition of the use of steganography 

tools (encoder) on analysed JPEG pictures. 
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11 Optimal Modelling of Dynamic 

Flight 

11.1 Modelling of Flight - Introduction 
This chapter is focused on how to solve the approximation of a real dynamic system 

by a suitable analytic solution. There is a dynamic flight model which uses several 

classes of large sets of aerodynamic lift, drag, speed, force, balance and mass data 

[20], [96], [95], [94], [93]. The aircraft company and industry is able to work with 

differential equations to obtain data. However, this takes a lot of time to obtain some 

results. Therefore a need to find an analytical solution has arisen. Because the input 

data and the “response”, ie. output data, are known, there are possibilities how to find 

a suitable dependence between this data. One of the suitable techniques are artificial 

neural networks (ANN) [31], [98], [30], [22].  

11.2 Aircraft and Parameters 
The following picture (Fig.  11.1) shows an example of an aircraft and its controls 

and their influence on manoeuvrability and stability.  

 

Fig.  11.1: A model of an aircraft 
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The model, which is considered here, is an airplane dynamic behavioral 

mockup describing the aircraft body movements as reaction to flight conditions 

(altitude, mass, speed) and control positions. The important parts are: 

Ailerons which control the roll of an airplane. 

Elevators control the pitch of an airplane, ie. aircraft nose up or down. 

Rudder controls the yaw, ie. side to side motion. 

Roll is a banking turn of an airplane. Ailerons together with rudder cause the 

flight-heading change. 

Pitch is the up and down motion of an airplane. To climb, the elevators have to 

move up, which pushes the nose up too. 

Yaw is the side-to-side motion of an airplane. To cause an airplane to yaw to 

the right, the rudder is deployed to the right. This pushes the tail to the left and the 

nose to the right [20], [96], [95], [94], [93]. 

 

For the purposes of this simulation, following flight conditions such as altitude, 

mass, speed, side wing were “frozen” as follows. For the future, these parameters 

will be considered as input values too. 

o Mass [kg] :    3000.000 

o Speed  TAS [m/s]:     200.000 

o Altitude  [m]:    3000.000 

o Side Wind [m/s] :      0.000 

The rest of the monitored variables were used as inputs to the neural network: 

o PLA gas lever [l] 

o aileron deflection [rad] 

o elevator deflection [rad] 

o rudder deflection [rad] 

o angle of attack [rad] 

o beta slip angle [rad] 

o gamma roll angle [rad]. 

And in the case of modelling, we were interested only in three outputs out of 

the seven:  

o alpha derivative – pitch 
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o beta derivative – yaw 

o acceleration [m/s2]. 

 
There is numerical computational software in C++ language which can 

produce the output data on the basis of given input data. It utilizes several databases 

of design data for lift, drag, engines thrust, centre of gravity and aerodynamic centre 

equations. Based on the input, the model calculates a row of polynomials to 

approximate the intermediate values. Then the approximated inputs are inserted into 

system of nonlinear differential equations and integrated with the modified Runge-

Kutta. The integration in the complex plane has been replaced with the quaternion’s 

method of calculation. But the computation is quite slow because of numerous 

derivation procedures inside the programme. Thus neural networks were used to 

produce an analytic formula which can be easily and quickly recalculated. This 

advantage of speed is absolutely necessary for example for autopilot systems in the 

aircraft industry.   

11.3 Settings and Aim of Simulations 
During the simulations one hidden layer net was used with 4 neurons in the hidden 

layer with a sigmoid transfer function. An output transfer function was used linear 

function. The feedforward ANN with the Levenberg-Marquardt training algorithm 

was used. 

The seven inputs into the neural networks were as follows (in brackets the 

notation in the Fig.  11.2): PLA gas lever [l], aileron deflection [rad] (AIL 

deflection), elevator deflection [rad] (ELE deflection), rudder deflection [rad] (RUD 

deflection), angle of attack [rad] (ATT angle), beta slip angle [rad] (SID slip angle) 

and gamma roll angle [rad] (BNK angle).  

The required outputs were only three: alpha derivative – pitch, beta derivative 

– yaw, acceleration [m/s2]. 

From the C++ language time consuming model 76 samples were obtained with 

the above inputs and outputs which serve as the training set. The required 

dependency can be seen in (Fig.  11.2). 
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Fig.  11.2: A model of a neural network with one hidden layer and its “real” inputs 
and outputs 

11.4 Modelling of Dynamic Flight - Results 
For calculations 20 training iterations were set up. The following picture (Fig.  11.3) 

shows the evolution of root mean square error (RMSE) during the training. At the 

end of the training it was under 0.01 which is close to zero thus it can be stated that 

the neural network is trained well. Also the following graphs (Fig.  11.4 - Fig.  11.6) 

are the proof of this statement. They show the output data from each output neuron 

compared to the required ones. On the x axis the order of input data in the training 

set is shown and on the y axis is the corresponding output value for each neuron 

(output parameter). 

 

Fig.  11.3: RMSE dependent on training epochs (iterations) 

 

PLA gas lever 

AIL deflection 

ELE deflection 

RUD deflection 

ATT angle 

SID slip angle 

BNK angle 

        pitch 

 

       yaw 

 

acceleration 
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Fig.  11.4: The first output parameter – Alfa derivative – proportional to the pitching 
moment on the y axis dependent on the line in the training set, • red dots = original 

data, •  blue line = fitted function 

 

 

Fig.  11.5: The second output parameter – Beta derivative – proportional to the 
yawing moment on the y axis dependent on the line in the training set, • red dots = 

original data, •  blue line = fitted function 

 

Fig.  11.6: The third output parameter – Velocity derivative – corresponding to the 
acceleration on the y axis dependent on the line in the training set, • red dots = 

original data, •  blue line = fitted function 
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As can be seen from the above figures the approximation was very precise. 

Therefore there are the notations (11.1) – (11.3) for each output parameter (alpha 

derivative – pitch, beta derivative – yaw, velocity derivative - acceleration) which are 

based on the 7 inputs: aa - PLA gas lever [l], bb - aileron deflection [rad], cc - 

elevator deflection [rad], dd - rudder deflection [rad], ee - angle of attack [rad], ff - 

beta slip angle [rad] and gg - gamma roll angle [rad]. 

 

alpha derivative = 

 

 (11.1) 

beta derivative = 

 

 (11.2) 

acceleration = 

 

(11.3) 
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11.5 Optimal Modelling of a Dynamic Flight - 

Conclusion 
As this chapter shows neural networks can be used as an approximation tool in the 

search for the quick model computational analysis/simulation/response on such 

difficult problems that are represented with nonlinear systems of differential 

equations with partially discontinuous functional dependencies.  

The future research will be focused on the modelling of the complex behaviour 

of the airplane, handling the obtained models themselves such as a deep analysis of 

the model behavior, optimization, real time control etc., where the speed achieved by 

the obtained analytical solution will assume high importance. 



12   Selected Applications - Chaotic Pseudorandom Number Generator in Algorithm PSO 

 

 
© Zuzana Komínková Oplatková, 2012 
 

101 

12 Chaotic Pseudorandom Number 

Generator in Algorithm PSO 

This chapter deals with the use of a chaotic system as a pseudorandom number 

generator. The idea came from studying soft computing methods. More or less, all 

are inspired by nature. Therefore a question arises – will two combined methods 

inspired by nature produce better results? In this case, deterministic chaos and 

evolutionary computation are the two used methods. An evolutionary algorithm is 

used for optimization as usual and deterministic chaos is used as a pseudorandom 

number generator inside the algorithm when needed.  

Recently some studies have indicated that using chaotic number generators 

may improve the performance of evolutionary optimization algorithms on such tasks 

as a PID controller design [9] or fuzzy modelling of an experimental thermal-vacuum 

system [1]. This study is focused on the investigation on the performance of the PSO 

algorithm with the implemented chaotic Lozi map as a pseudorandom number 

generator. The idea was published not only for PSO but also for DE [80], [80], [79], 

[67]. 

A chaos driven pseudorandom number generator is used in the main PSO 

formula (4.3) that determines new “velocity” and thus the position of each particle in 

the next generation (or migration cycle). The parameter Rand, i.e. a random number 

from the interval <0,1> is replaced with a chaotic generator (in this demonstration, 

by the use of the Lozi map – chapter 8.5.4) within the Chaos PSO algorithm. The 

generator selects the adapted value from each position of a huge array (from 500 000 

to 1 000 000 values) generated by means of standard time iteration of the Lozi map. 

The chaotic values can be both positive and negative, thus the absolute value is then 

applied to all positions. To obtain a number from the interval <0,1> all values have 

to be divided by the highest value from the array. When a PSO works the index to 

the array is increased and an unused value on the indexed position is inserted instead 

of classical computer generated random number all the time. 
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12.1 Chaotic Pseudorandom Number 

Generator – Experiment Design 
To compare the impact of using the Lozi map as a chaotic pseudorandom number 

generator, performance tests were performed for both PSO with chaotic and non-

chaotic random number generator. The classic version of PSO with the inertia weight 

modification is labelled PSO Weight. The proposed novel PSO enhanced by the Lozi 

map with inertia weight is labelled PSO Lozi. As an algorithm for comparison the 

DERand1Bin strategy of differential evolution (DE) was selected. 

Basic PSO control parameters were set based on previous experiments and 

literature [17], [16], [1] as follows: 

 

Population size: 30, 50, 75, 100, 150, 200, 300, 400 

Iterations / generations: 10 * dimension 

wstart: 0.9 

wend: 0.4 

Dimension: 2, 5, 10, 20, 40 

 

The algorithms were tested on 4 different benchmark functions. For the 

statistical reasons, optimization for each dimension value was repeated 30 times. 

 

12.2 Benchmark Functions 
Following chapters contain the equations and the function minimums in the n-

dimensional space where Dim means the number of arguments (dimension of the 

problem). 

12.2.1 First De Jong 

The First De Jong function is given by (12.1). 
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 f (x)= xi
2

i=1

Dim

!   (12.1) 

Function minimum: 

Position for En: (x1,x2…xn) = En: (x1,x2…xn) = (0,0,…, 0) 

Value for En: y = 0 

 

12.2.2 Second De Jong 

The Second De Jong function is given by (12.2). 

 

 f (x)= 100 xi
2 -xi+1( )2

+ 1-xi( )2( )
i=1

Dim!1

"  (12.2) 

Function minimum: 

Position for En: (x1,x2…xn) = (1,1,…,1) 

Value for En: y = 0 

 

12.2.3 Rastrigin 

The Rastrigin function is given by (12.3). 

 

 f (x)= 10 xi
2 !10cos 2! xi( )( )

i=1

Dim

"  (12.3) 

Function minimum: 

Position for En: (x1,x2…xn) = (0,0,…,0) 

Value for En: y = 0 

 

12.2.4 Schwefel 

The Schwefel function is given by (12.4). 

 f (x)= ! xi sin xi( )( )
i=1

Dim

"  (12.4) 
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Function minimum: 

Position for En: (x1,x2…xn) = (420.969, 420.969,…, 420.969) 

Value for En: y = -418.983 * dimension 

12.3 Chaotic Pseudorandom Number 

Generator - Results and Analysis 
The results of experiments and brief commentary on these results are in this section. 

The Following tables (Table 12.1 - Table 12.8) contain the best, the worst and the 

median of obtained final results for all 30 runs of evolutionary algorithms. For the 

comparison of the algorithms, the best individual results are highlighted in bold in all 

tables. The results of the PSO algorithm are also compared with the performance of 

DE. 

12.3.1 The First De Jong Function 

The following tables (Table 12.1 and Table 12.2) contain the results for the 1st De 

Jong function. The proposed implementation of the chaotic Lozi map to the PSO 

algorithm seems to have improved the performance of the algorithm. The values for 

PSO Lozi (chaos number generator) are in all cases better than the values for PSO 

Weight (classic number generator). Furthermore those results are better or 

comparable with those of DE. However PSO seems to be less efficient than DE in 

solving higher dimension with the used setting. 

 

Table 12.1: The results for the first De Jong function for Dim = 2, 5 and 10 

  Dim = 2 Dim = 5 Dim = 10 
 PSO 

Weight PSO Lozi DE PSO 
Weight PSO Lozi DE PSO 

Weight PSO Lozi DE 

The 
worst 
result 

2.38.10-03 1.60.10-04 2.37.10-04 3.92.10-03 2.56.10-05 1.00.10-03 3.75.10-02 2.08.10-02 2.81.10-03 

The 
best 
result 

1.17.10-05 2.04.10-07 2.47.10-07 1.65.10-05 2.33.10-07 7.43.10-05 1.45.10-04 4.2.10-07 5.26.10-04 

Median 2.01.10-04 2.35.10-05 2.31.10-05 1.74.10-04 2.81.10-06 1.9.10-04 6.25.10-03 6.30.10-04 1.18.10-03 
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Table 12.2: The results for the first De Jong function for Dim = 20 and 40 

 Dim = 20 Dim = 40 

 PSO 
Weight PSO Lozi DE PSO 

Weight PSO Lozi DE 

The 
worst 
result 

1.62 1.95 4.01.10-02 9.06 8.60 1.68 

The 
best 
result 

8.4.10-03 4.6. 10-02 1.04.10-02 2.40.10-01 2.43.10-03 6.57.10-01 

Median 4.78.10-02 4.05.10-01 1.86.10-02 4.49 4.25 9.97.10-01 

 

12.3.2 The Second De Jong Function 

The results in the tables (Table 12.3 and Table 12.4) were obtained by optimizing the 

2nd De Jong function. Almost similar trends as in the previous section (1st De Jong 

function) can be seen in the results with the exception of having worse performance 

of DE in comparison with PSO Lozi for the higher dimensions. 

 

Table 12.3: Results for the second De Jong function for Dim = 2, 5 and 10 

  Dim = 2 Dim = 5 Dim = 10 
 PSO 

Weight PSO Lozi DE PSO 
Weight PSO Lozi DE PSO 

Weight PSO Lozi DE 

The 
worst 
result 

2.70.10-02 1.59.10-02 5.58.10-02 1.64.10-01 1.15.10-02 3.7 1.92.10-01 1.70.10-02 1.90.101 

The 
best 
result 

6.30.10-05 2.91.10-05 2.06.10-04 1.25.10-03 5.10.10-05 6.2.101 3.35.10-03 8.64.10-05 7.7 

Median 3.44.10-03 8.4.10-04 1.09.10-02 3.39.10-02 7.97.10-04 2.1 3.87.10-02 1.16.10-03 1.4.101 

 

Table 12.4: The results for the second De Jong function for Dim = 20 and 40 

 Dim = 20 Dim = 40 

 PSO Weight PSO Lozi DE PSO Weight PSO Lozi DE 

The 
worst 
result 

2.60.10-01 3.172.10-01 5.2821.101 1.0324 1.3342 1.3381.102 

The best 
result 5.29.10-03 7.8609.10-04 2.5292.101 7.9342.10-02 2.2454.10-02 5.0176.101 

Median 8.01.10-02 3.679.10-02 3.7204.101 3.7495.10-01 2.1875.10-01 7.7725.101 
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12.3.3 Rastrigin Function 

In the case of the Rastrigin benchmark function there is no significant improvement 

in the PSO performance, however both PSO algorithms were significantly worse for 

Dim = 40 than those of DE (see Table 12.5 and Table 12.6).  

 

Table 12.5: The results for the Rastrigin function for Dim = 2, 5 and 10 

  Dim = 2 Dim = 5 Dim = 10 

 PSO 
Weight 

PSO 
Lozi DE PSO 

Weight 
PSO 
Lozi DE PSO 

Weight 
PSO 
Lozi DE 

The 
worst 
result 

2.4048 1.9933 1.7853 13.5637 9.9854 9.6667 25.1741 27.2665 26.7314 

The 
best 
result 

0.0032 0.0015 0.0056 1.0756 0.0022 0.1615 0.2599 3.0098 6.2952 

Median 0.5399 0.3790 0.5707 6.5017 3.0761 4.0811 9.5158 10.4711 15.7813 

 

Table 12.6: The results for the Rastrigin function for Dim = 20 and 40 

 Dim = 20 Dim = 40 

 PSO 
Weight PSO Lozi DE PSO 

Weight PSO Lozi DE 

The 
worst 
result 

74.9295 68.5083 75.9887 186.5780 192.4930 155.9540 

The 
best 
result 

27.4552 17.2733 18.7197 100.0440 47.8408 38.8948 

Median 47.5319 46.6510 50.0244 152.0650 159.0090 119.5870 
 

12.3.4 Schwefel Function 

The presented results in Table 12.7 and Table 12.8 show increasing difference 

between the values of median for PSO Weight and PSO Lozi together with 

increasing dimension in favour of the Lozi map enhanced PSO. As in the previous 

case, both algorithms were surpassed by DE (most significantly in higher 

dimensions). 
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Table 12.7: The results for the Schwefel function for Dim = 2, 5 and 10 

  dim = 2 dim = 5 dim = 10 

 PSO 
Weight 

PSO 
Lozi DE PSO 

Weight 
PSO 
Lozi DE PSO 

Weight 
PSO 
Lozi DE 

The 
worst 
result 

-673.39 -697.48 -702.79 -1191.59 -1262.01 -1635.06 -1915.02 -1980.15 -3174.74 

The 
best 
result 

-837.87 -837.94 -837.91 -1760.30 -1942.73 -1964.83 -2740.49 -3037.15 -3562.67 

Median -820.35 -819.43 -816.07 -1458.34 -1525.28 -1842.63 -2234.00 -2561.77 -3372.21 
 

Table 12.8: Results for the Schwefel function for Dim = 20 and 40 

 dim = 20 dim = 40 

 PSO 
Weight PSO Lozi DE PSO 

Weight PSO Lozi DE 

The 
worst 
result 

-2886.88 -3133.19 -5830.19 -4839.42 -6112.29 -9104.93 

The 
best 
result 

-5372.33 -5722.76 -6482.53 -8400.45 -9935.40 -11411.20 

Median -3477.26 -4217.83 -6358.48 -6558.88 -7527.70 -10308.10 
 

From the results presented in the tables (Table 12.1 - Table 12.8) it may be 

stated, that the majority of results obtained by the proposed PSO Lozi algorithm were 

better than the results of classic PSO Weight. The observed median of the final cost 

function values for all 30 runs was better in 17 of 20 experiments - 4 benchmark 

functions x 5 dimensions values (see Fig.  12.1).  

 

 Fig.  12.1: PSO Weight and PSO Lozi results  



12   Selected Applications - Chaotic Pseudorandom Number Generator in Algorithm PSO 

 

 
© Zuzana Komínková Oplatková, 2012 
 

108 

On the y-axis, there is the number of dimensions where the better value was 

achieved. 

The analysis of the results presented here shows an interesting phenomenon, 

that the performance of DE in comparison with both PSO algorithms is sometimes 

much better (especially in the case of the Schwefel function). Further, the rest of the 

chapter presents the investigation of this phenomenon. Based on the previous 

experience, the PSO algorithm is able to achieve better results for higher population 

size (NP). To prove this theory an experiment was set-up: 

Population size: 30, 50, 75, 100 (Schwefel function only), 150, 200, 300, 400 

Iterations / generations: 200 

wstart: 0.9 

wend: 0.4 

Dimension: 20 

Benchmark functions: Schwefel, 1st De Jong 

Results are shown in the following tables (Table 12.9 and Table 12.10). 

 

 Table 12.9: A mean value for 30 runs; the Schwefel function; Dim = 20; 
generations = 200 

NP 30 50 75 100 150 200 300 400 
PSO 
Weight -3697.63 -3873.62 -4140.99 -4255.84 -4329.57 -4866.41 -5316.41 -5377.72 
PSO 
Lozi -4340.06 -4560.42 -5032.82 -5241.78 -5801.99 -5998.05 -6174.55 -6225.63 

DE -6100.9 -5737.68 -5649.1 -5500.01 -5635.55 -5651.5 -5673.33 -5651.23 

 

Table 12.10: A mean value for 30 runs; the 1st De Jong function; Dim = 20; 
generations = 200 

NP 150 200 300 400 

PSO Weight 7.33004.10-06 3.4528.10-07 3.7368.10-09 2.60345.10-10 

PSO Lozi 2.7701.10-06 4.1212.10-08 3.66273.10-11 1.0319.10-14 

DE 4.25565.10-07 4.94665.10-07 6.1166.10-07 7.07218.10-07 
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From Table 12.9 and Table 12.10, it is clear that the increase in the size of 

population (NP) led to significant improvement in the performance of both PSO 

algorithms with inertia weight. Nevertheless the performance of DE showed the 

opposite trend. The presented results in this section support the claim, that using the 

Lozi map as a chaotic number generator could lead to the improvement of the 

performance of the PSO algorithm thus to achieve better or at least similar results 

when comparing PSO algorithms with another evolutionary algorithm - DE. 

12.4 Chaotic Pseudorandom Number 

Generator – Conclusion 
This chapter proposes and investigates the enhanced PSO algorithm with inertia 

weight and with a chaos number generator. The Lozi map was used as chaotic system 

for a number generator in the main formula of the PSO algorithm. Four different test 

functions were used to demonstrate the performance and behaviour of the proposed 

algorithm also in comparison with a classic non-chaotic version and one strategy of a 

differential evolution. The primary aim of this work was not to develop a new type of 

pseudorandom number generator, which should pass many statistical tests, but to try 

to combine natural chaotic dynamics and evolutionary algorithm inspired by nature 

to observe the performance. 

Based on the presented results it can be stated that the Lozi map used as the 

number generator seems to have a significantly positive effect on the speed of 

convergence of the algorithm. The research with other chaotic maps and also with 

the differential evolution has been already done and all simulations give better results 

in the analysed benchmark functions. Furthermore, all obtained results point to the 

fact that they are very sensitive to the selection of the chaotic system that is used as a 

pseudorandom generator. Any change in the selection of a chaotic system or its 

parameter adjustment can cause a radical improvement of the evolutionary algorithm 

performance, however on the downside it can cause the worsening of observed 

parameters and subsequently the behavior of the algorithm as such. 
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Chaos driven evolutionary algorithms seems to be a promising area of research 

with many open questions to be answered. One of the questions can be the 

examination of the impact of chaotic system parameters on the generation of 

pseudorandom numbers, and thus its influence on the results obtained using a 

selected evolutionary algorithm. One of possible approaches to this issue is to use 

meta-evolution which will be done in the future.  



13   Conclusion  

 
© Zuzana Komínková Oplatková, 2012 
 

111 

13 Conclusion  

The submitted thesis gives an overview of modern techniques of soft computing and 

its selected applications, which is the author interested in. The main thread is 

connected with a metaevolutionary approach in symbolic regression and their 

applications for benchmark or for real tasks.  

Firstly, an introduction into several methods such as evolutionary algorithms 

(DE, SOMA, PSO), methods of symbolic regression (GP, GE, AP) and artificial 

neural networks is described. All these methods were used either separately or 

combined together for solving of complex tasks such as metaevolution for the 

synthesis of new optimization algorithms, metaevolutionary approach with AP for 

synthesis of a whole control law for deterministic chaotic systems, steganalysis by 

means of ANN, optimal modelling of a dynamic flight, synthesis of pseudo artificial 

neural networks and a chaotic generator used in evolutionary computation. 

All these techniques and described applications can serve to other scientists as 

an inspiration for their work. The community connected with soft computing 

techniques is huge in the world but small in our country. Therefore, the author has to 

cooperate and discuss the results of her work with colleagues from abroad during 

conferences and visits or with invited lecturers within the Erasmus programme. The 

author has been accepted by the research community, which is documented by 

publication activities, by the best paper awards (see the two best paper awards in the 

Appendix 1 and list of author’s publication in Appendix 2), by serving as a member 

of international committees of conferences and editorial boards of journals. 

The discussed techniques and methodology in proposed applications will serve, 

hopefully, as an inspiration for experts in various fields. Soft computing tools, their 

combinations, their adjusted versions help to obtain optimal results of required 

assignments and solved problems in all areas of human life such as process control, 

diagnostics, image processing, operation research, medicine, monitoring of financial 

markets and the prediction of exchange rates and others. 

The author proposed combinations of soft computing methods to produce 

better results and methodology for the usage of meta approach techniques with 
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symbolic regression, evolutionary computation and artificial neural networks. The 

presented ideas and applications are only part of the author’s research portfolio. The 

published techniques and applications within conference, journals and book chapters 

are transferred into lectures and laboratories/seminars of special courses focused on 

artificial intelligence that cover theoretical backround as well as examples of 

applications (not only) from the area of soft computing which allows students to have 

the latest news from this field. 

The future plans of the author is to continue with the adjusting, development 

and combining of the described techniques for obtaining better results, optimizing 

the computational time and mainly optimizing the cost functions themselves. The 

design of the cost function is the crucial moment of all simulations and solving of 

complex tasks. The further plans will be to find and add suitable conditions to the 

cost functions which secure the smooth evolutionary process and provide the best 

results as possible. 
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Appendix 2 

List of publications -  Zuzana Komínková Oplatková  

status to 3rd December 2012 

 

Overview of total number:   

Textbooks: 2 

Books: 3 

Chapters in books:  8 

Editor of books: 2 

Journals with impact factor: 5 

Journals: 13 

Editor of konference proceedings: 2 

Conference proceedings: 76 

 

Overview of databases records: 

 

ISI / WoS 

Number of  records: 33  

Number of citations: 8 

Number of citations without self-citations: 4 

H-index: 2 

 

SCOPUS 

Number of records: 39  

Number of citations: 38 

Number of citations without self-citations: 18 

H-index: 3 

 

Google Scholar 

Number of records: 79  
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Number of citations WITh self-citations: 256 

H-index: 10 

 

 

References in details: 
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1. Oplatková Z., Volná E.: Analytické programování, distanční opora, Ostravská 
univerzita, 2012 
2. Zelinka I., Oplatková Z., Šenkeřík R.: Applications of artificial intelligence – 
czech edition, Aplikace umělé inteligence (aneb vybrané statě z evolučních 
algoritmů), Tomas Bata University in Zlin, Czech Republic, 2010, ISBN 978-80-
7318-898-6. 

Books 

1. Hološka J., Komínková Oplatková Z.: Steganalysis by means of Artificial 
Neural Networks, Lambert Academic Publishing, Saarbrücken, 2012, ISBN 978-3-
659-30172-8 
2. Oplatková, Z.: Metaevolution: Synthesis of Optimization Algorithms by 
means of Symbolic Regression and Evolutionary Algorithms, Lambert Academic 
Publishing, Saarbrücken, 2009, ISBN 978-3-8383-1808-0. 
3. Zelinka, I., Oplatková, Z., Ošmera, P., Šeda, M., Včelař, F.: Evoluční 
výpočetní techniky - principy a aplikace (Czech editon – Evolutionary computation 
techniques), BEN - technická literatura, Ben - technická literatura, Praha, 2008, 
ISBN 80-7300-218-3. 

Chapter in books 

1. Oplatkova, Z., Holoska J., Prochazka M., Senkerik, R., Jasek, R., 
Optimization of Artificial Neural Network Structure in the Case of Steganalysis , In: 
Springer Series "Inteligent Systems" - "Handbook of Optimization", (Ivan Zelinka, 
Vaclav Snasel, Ajith Abraham(Eds.)), pp.	  821	  -‐	  824, 2012, ISBN 978-3-642-30503-
0 
2. Senkerik, R., Oplatkova, Z., Zelinka, I., Davendra, D., Jasek, R., Application 
of Evolutionary Techniques for Optimization of Chaos Control – Introduction of 
Three Approaches , In: Springer Series "Inteligent Systems" - "Handbook of 
Optimization", (Ivan Zelinka, Vaclav Snasel, Ajith Abraham(Eds.)), p. 801-820, 
2012, ISBN 978-3-642-30503-0. 
3. Senkerik, R., Davendra, D., Zelinka, I., Oplatkova, Z., Influence of Chaotic 
Dynamics on the Performance of Differential Evolution Algorithm, In: Springer 
Series " Emergence, Complexity and Computation", (Ivan Zelinka, Ali Sanayei, 
Hector Zenil, Otto E. Rössler (Eds.)), in press, ISSN 2194-7287. 
4. Senkerik R., Oplatkova Z., Zelinka I., Davendra D., Jasek R., Application of 
Analytic Programming for Evolutionary Synthesis of Control Law - Introduction of 
Two Approaches , In: Springer Series "Studies in Computational Intelligence" - 
"Advances in Intelligent Modelling and Simulation: Simulation Tools and 
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Applications", (Aleksander Byrski, Zuzana Oplatkova, Marco Carvalho and Marek 
Kisiel Dorohinicki (Eds.)), pp. 253 – 268,  2012, ISBN 978-3-642-28887-6. 
5. Volná E., Janošek M., Kocián V., Kotyrba M., Oplatková Z.: Robotics 
System – Applications, Control and Programming. In Dutta Ashish: Methodology for 
System Adaptation based on Characteristic Patterns. Intech – Open Access Publisher. 
2012. ISBN 978-953-307-941-7. 
6. Oplatková Z., Šenkeřík R.: Applications of Artificial Intelligence, In 
(Šilhavý, Radek; Šilhavý, Petr; Prokopová, Zdenka (Eds.)): Computer Science and 
Software Techniques in 2011, Šilhavý s. r. o., pp. 29-42, 2011, ISBN 978-80-
904741-0-9. 
7. Zelinka, I., Davendra, D., Šenkeřík, R., Jašek, R., Oplatková, Z.: Analytical 
Programming - a Novel Approach for Evolutionary Synthesis of Symbolic 
Structures. In Evolutionary Algorithms. Rijeka : InTech, 2011, pp. 149-176. ISBN 
978-953-307-171-8. 
8. Šenkeřík, R., Zelinka, I., Davendra, D., Oplatková, Z.: Evolutionary Design 
of Chaos Control in 1D in Zelinka I., Celikovski S., Richter H., Chen G.: 
Evolutionary Algorithms and Chaotic Systems, Springer-Verlag Berlin, Heidelberg, 
pp. 165-190, 2010, ISBN 978-3-642-10706-1 
 

Editor of books 

1. Byrski A., Oplatkova Z., Carvalho M. and Dorohinicki M. K. (Eds.): Springer 
Series "Studies in Computational Intelligence" - "Advances in Intelligent Modelling 
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642-28887-6. 
2. Computer Science and Software Techniques in 2011, ISBN 978-80-904741-
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Journals with impact factor 
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with Applications, (Accepted for publication, 2012), ISSN 0898-1221, IF: 1.747 
(2011) 
2. Pluhacek, M., Senkerik, R., Davendra, D., Kominkova Oplatkova, Z., On the 
Behaviour and Performance of Chaos Driven PSO Algorithm with Inertia Weight, 
Computers & Mathematics with Applications, (Accepted for publication, 2012), 
ISSN 0898-1221, IF: 1.747 (2011) 
3. Senkerik, R., Oplatkova, Z., Zelinka, I., Davendra, D.: Synthesis of feedback 
controller for three selected chaotic systems by means of evolutionary techniques: 
Analytic programming, Mathematical and Computer Modelling, Vol. 57, No. 1 - 2, 
2013, pp. 57 – 67, ISSN 0895-7177, DOI: 10.1016/j.mcm.2011.05.030, IF: 1.346 
(2011) 
4. Senkerik, R., Oplatkova, Z., Zelinka, I., Davendra, D., Jasek, R.: Performance 
Comparison of Differential Evolution and SOMA on Chaos Control Optimization 
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Problems. International Journal of Bifurcation and Chaos. Vol. 22, No. 8, 2012, 16 p, 
ISSN: 0218-1274, DOI: 10.1142/S021812741230025X, IF: 0.755 (2011) 
5. Senkerik,	  R.,	  Zelinka,	   I.,	  Davendra,	  D.,	  Oplatkova,	  Z.:	  Utilization	  of	  SOMA	  
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Journals 

2012 

1. Kominkova Oplatkova Z., Holoska J., Senkerik R., Steganography content 
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Editor of Conference Proceedings 
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