
VYSOKÉ UČENÍ TECHNICKÉ V
BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
FACULTY OF INFORMATION TECHNOLOGY

MODERN TECHNIQUES OF SOFT COMPUTING
AND THEIR SELECTED APPLICATIONS
MODERNÍ TECHNIKY SOFT COMPUTINGU A JEJICH VYBRANÉ APLIKACE

HABILITAČNÍ PRÁCE
HABILITATION THESIS

AUTOR PRÁCE
AUTHOR Ing. Zuzana KOMÍNKOVÁ OPLATKOVÁ, Ph.D.

BRNO 2012

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

HABILITAČNÍ PRÁCE

obor

Výpočetní technika a informatika
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

FACULTY OF INFORMATION TECHNOLOGY

téma

MODERN TECHNIQUES OF SOFT COMPUTING

AND THEIR SELECTED APPLICATIONS
MODERNÍ TECHNIKY SOFT COMPUTINGU A JEJICH VYBRANÉ APLIKACE

autor

Ing. Zuzana Komínková Oplatková, Ph.D.
FAKULTA APLIKOVANÉ INFORMATIKY

UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ

Brno 2012

Abstrakt

Předkládaná habilitační práce je zaměřena na problematiku z oblasti umělé

inteligence, především z oblasti soft computingu. Tato oblast je v posledních letech

velmi studována a zkoumána odborníky z různých oblastí. Nástroje soft computingu

pomáhají ve všech oblastech lidského života k získání optimálních výsledků

požadovaných zadání a řešené problematiky. Mezi tyto nástroje patří především

neuronové sítě, evoluční algoritmy, fuzzy logika a nadstavba evolučních algoritmů

tzv. symbolická regrese. Všechny uvedené prostředky umožňují řešit úlohy

v oblastech jako je řízení procesů, diagnostika, image processing, operační výzkum,

sledování finančních trhů a predikce vývoje burzovních kurzů a mnohé další.

Evoluční algoritmy jako genetické algoritmy, diferenciální evoluce, optimalizace

rojení částic, samoorganizující se migrační algoritmus a další se v dnešní době

používají k řešení velmi složitých a komplexních optimalizačních úloh. Rovněž se

používají k hledání optimálních struktur tzv. symbolické regrese, kde k řešení

používáme genetické programování, gramatickou evoluci či novější analytické

programování. Nástroje soft computingu se neustále rozvíjejí a vznikají nové.

Symbolickou regresí lze dokonce vytvářet i nové evoluční algoritmy nebo struktury

neuronových sítí.

Neuronové sítě jsou oblastí, která se od 80. let minulého století vyvíjí velkou

rychlostí pro své paralelní výpočetní, rozpoznávací a klasifikační možnosti. Lze je

s velkým úspěchem využít i v oblasti tzv. dobývání znalostí a data miningu, tedy

dolování dat a zjednodušování velmi složitých úloh.

Nosným tématem habilitační práce je metaevoluce, která znamená několik možností.

V kontextu této práce je nejčastěji použita v případě použití dvou evolučních procesů

použitých v symbolické regresi, jeden pro řízení symbolické regrese a druhý ve jejím

vnitřním procesu. Vedle metaevoluce habilitační práce spojuje principy a aplikace

evolučních algoritmů, symbolické regrese a neuronových sítí. Jednak jsou

představeny aplikace využívající jednotlivé techniky a metody samostatně a jednak

propojené aplikace – tedy sloučení více soft computingových technik, např.

vytváření evolučního algoritmu pomocí symbolické regrese nebo vytvoření pseudo

neuronové sítě pomocí symbolické regrese. Další představenou kombinovanou

metodou využívající propojení schopností uvedených metod je metaevoluce pro

syntézu techniky řízení chaotických systémů. Zde jsou použity dva evoluční

algoritmy, jeden pro řízení symbolické regrese a druhý ve vnitřním procesu

symbolické regrese.

Hlavním cílem habilitační práce je ukázat vlastnosti a možnosti použití moderních

soft computingových nástrojů jednak samostatně, ale také při jejich vzájemném

propojení. Mezi vybranými aplikacemi jsou popsány detailněji syntéza optimální

struktury řídící techniky pro systémy vykazující deterministický chaos a

stegoanalýza pomocí neuronových sítí. Dále je v práci uvedena aplikace vytváření

pseudo neuronové sítě pomocí symbolické regrese či okrajově evolučního algoritmu,

na kterém je vysvětlený jiný metaevoluční přístup. Mimo výše popsané aplikace se

také práce zaměřuje na problematiku úprav, vývoje a testování soft computingových

metod.

Abstract

The presented habilitation thesis is focused on the issuess of the field of artificial

intelligence, especially in the area of soft computing. This area has been studied and

examined by experts in various fields in recent years. Soft computing tools help to

obtain optimal results of required assignments and solved problems in all areas of

human life. These tools are mainly neural networks, evolutionary algorithms, fuzzy

logic and the superstructure of evolutionary algorithms called symbolic regression.

All of these techniques enable us to solve problems in areas such as process control,

diagnostics, image processing, operation research, monitoring of financial markets

and the prediction of exchange rates and much more.

Evolutionary algorithms such as genetic algorithms (GA), differential evolution

(DE), particle swarm optimization (PSO), self-organizing migrating algorithm

(SOMA) and others are used to solve very complicated and complex optimization

problems nowadays. They are also used to search for optimal structures called

symbolic regression, where methods such as genetic programming, grammatical

evolution or newer analytical programming are used. Soft computing tools are

constantly developed and new ones are created. Symbolic regression can even create

new evolutionary algorithms or neural network structures.

Neural networks is the area that has been developing for its high-speed parallel

computing, recognition and classification capabilities since 1980s. They can be used

with great success in the field of knowledge discovery and data mining, i.e. to

simplify very complex tasks.

The principal theme of this habilitation thesis is metaevolution which stands for

several possibilities. In the context of this thesis, the most often cases are two

evolutionary processes used in symbolic regression, one for the control of symbolic

regression and the other in the inner symbolic regression process. Beside

metaevolution, the thesis combines the principles and applications of evolutionary

algorithms, symbolic regression and artificial neural networks. Presented

applications using various techniques and methods are in the thesis presented both

separately and as connected applications, a merger of multiple soft computing

techniques such as the synthesis of an evolutionary algorithm by means of symbolic

regression or creating a pseudo neural network using symbolic regression. The other

combined technique utilizing interconnected capabilities of mentioned methods is a

metaevolution for the synthesis of chaotic system control technique.

The main aim of the habilitation thesis is to show the properties and possible

applications of modern soft computing tools both separately and also in their mutual

connection. Among the selected applications, the synthesis of the optimal structure of

the control technique for systems exhibiting deterministic chaos and steganalysis by

means of artificial neural networks are described in detail. Furthermore, the thesis

mentions creating pseudo neural networks by means of symbolic regression and

marginally the synthesis of an evolutionary algorithm for the explanation of another

metaevolutionary approach. Apart from the above described applications, the thesis

is also focused on adjustments, development and testing of soft computing methods.

Klíčová slova

Soft computing, metaevoluce, evoluční algoritmy, umělé neuronové sítě,
optimalizace.

Keywords

Soft computing, metaevolution, evolutionary algorithms, artificial neural networks,
optimization.

Citace

Komínková Oplatková Zuzana: Modern techniques of soft computing and their
selected applications, habilitační práce, Brno, FIT VUT v Brně, 2012

Acknowledgements

I would like to express my warm thanks to:

v my husband Aleš for his love and support,
v my colleagues and friends,
v my parents.

© Zuzana Komínková Oplatková, 2012
Práce je chráněna autorským zákonem a její užití bez udělení oprávnění autorem je
nezákonné, s výjimkou zákonem definovaných případů.

Content

© Zuzana Komínková Oplatková, 2012

8

Content
Content ... 8	

1	 Introduction .. 11	

PART 1 - Theoretical Background .. 16	

2	 Symbolic Regression ... 17	

2.1	 Genetic Programming ... 17	

2.2	 Grammatical Evolution ... 19	

2.3	 Analytic Programming .. 23	

2.3.1	 AP Versions ... 26	

2.3.2	 AP with Reinforced Evolution ... 27	

2.3.3	 Similarities and Differences ... 28	

3	 Evolutionary Algorithms ... 30	

3.1	 Self-Organizing Migrating Algorithm (SOMA) ... 31	

3.2	 Differential Evolution ... 35	

3.3	 Particle Swarm Optimization .. 37	

4	 Artificial Neural Networks .. 39	

5	 Metaevolution .. 43	

PART 2 - Selected Applications .. 45	

6	 Selected Applications .. 46	

7	 Metaevolution in Design of Evolutionary Algorithm .. 47	

8	 Metaevolution for Synthesis of Control Law for Chaotic Systems 51	

8.1	 Introduction ... 51	

8.2	 Methodology for Control by Means of AP ... 53	

8.3	 Settings ... 54	

8.4	 Cost Function Design ... 55	

8.5	 Selected Chaotic Systems Used in Simulations .. 57	

8.5.1	 Logistic Equation ... 57	

8.5.2	 Hénon Chaotic System .. 58	

8.5.3	 Synthesized Chaotic System .. 59	

8.5.4	 Lozi Map .. 60	

8.5.5	 Burger’s Map ... 61	

Content

© Zuzana Komínková Oplatková, 2012

9

8.5.6	 Delayed Logistic Equation ... 61	

8.5.7	 Cubic map .. 62	

8.6	 Results for p-1 Orbit – Stable State .. 63	

8.7	 Results for p-2 Orbit – Oscillation between Two Points 67	

8.8	 Results for p-4 Orbit – Oscillation between Four Points 70	

8.9	 Synthesis of Control Laws for Chaotic Systems – Conclusion 72	

9	 Synthesis of Pseudo Artificial Neural Networks ... 74	

9.1	 Pseudo ANN - Introduction .. 74	

9.2	 Pseudo ANN - Problem Design .. 75	

9.3	 Pseudo ANN - Results .. 76	

9.4	 Pseudo ANN - Conclusion .. 78	

10	 Steganalysis by Means of ANN ... 79	

10.1	 Motivation behind ANN Usage for Steganalysis 79	

10.2	 Steganalysis - Introduction ... 80	

10.3	 ANN Training Sets ... 83	

10.3.1	 Cover Images ... 83	

10.3.2	 Stego Images .. 84	

10.3.3	 Huffman Coding .. 84	

10.3.4	 Examples of Training Set Items ... 87	

10.4	 Brief Outlook of Steganography Tools ... 88	

10.4.1	 Outguess .. 88	

10.4.2	 Steghide ... 88	

10.4.3	 F5 Algorithm (CipherAWT) .. 89	

10.4.4	 PQ Algorithm ... 90	

10.5	 Results ... 90	

10.6	 Steganalysis by Means of ANN - Conclusion .. 92	

11	 Optimal Modelling of Dynamic Flight .. 94	

11.1	 Modelling of Flight - Introduction .. 94	

11.2	 Aircraft and Parameters .. 94	

11.3	 Settings and Aim of Simulations .. 96	

11.4	 Modelling of Dynamic Flight - Results .. 97	

11.5	 Optimal Modelling of a Dynamic Flight - Conclusion 100	

Content

© Zuzana Komínková Oplatková, 2012

10

12	 Chaotic Pseudorandom Number Generator in Algorithm PSO 101	

12.1	 Chaotic Pseudorandom Number Generator – Experiment Design 102	

12.2	 Benchmark Functions ... 102	

12.2.1	 First De Jong .. 102	

12.2.2	 Second De Jong ... 103	

12.2.3	 Rastrigin ... 103	

12.2.4	 Schwefel .. 103	

12.3	 Chaotic Pseudorandom Number Generator - Results and Analysis 104	

12.3.1	 The First De Jong Function ... 104	

12.3.2	 The Second De Jong Function ... 105	

12.3.3	 Rastrigin Function ... 106	

12.3.4	 Schwefel Function ... 106	

12.4	 Chaotic Pseudorandom Number Generator – Conclusion 109	

13	 Conclusion ... 111	

List of Figures .. 124	

List of Tables ... 126	

List of Symbols and Abbreviations ... 127	

Appendices .. 128	

Appendix 1 ... 129	

Appendix 2 ... 132	

1 Introduction

© Zuzana Komínková Oplatková, 2012

11

1 Introduction
The presented habilitation thesis is focused on the issues of the field of artificial

intelligence, especially in the area of soft computing. This area has been studied and

examined by experts in various fields in recent years. Soft computing tools help to

obtain optimal results of required assignments and solved problems in all areas of

human life. These tools are mainly neural networks, evolutionary algorithms, fuzzy

logic and the superstructure of evolutionary algorithms called symbolic regression

[111], [105], [45]. All of these techniques enable us to solve problems in areas such

as process control, diagnostics, image processing, operation research, monitoring of

financial markets and the prediction of exchange rates and much more.

Evolutionary algorithms are a group of algorithms that use their special

operators as mutation, crossover and other to find an ideal solution. Possible

candidates are defined by a cost function whose arguments are values of each

solution. The best one is in the global extreme – maximum or minimum [105], [45].

These evolutionary algorithms have been known for decades and have lived

through the advancement from weaker ones to more robust ones, which are used with

success in a lot of tasks nowadays. Since their first appearance there is quite a long

queue of representatives: genetic algorithms (GA) [45], [2], [12], differential

evolution (DE) [2], [47], [68], self-organizing migrating algorithm (SOMA) [110],

particle swarm optimization (PSO) [17], ant colony optimization [16], artificial

immune system [21], and more are used to solve very complicated and complex

optimization problems nowadays.

They are also used to search for optimal structures called symbolic regression,

where methods such as genetic programming (GP) [44], [43], grammatical evolution

(GE) [53], [52] or newer analytical programming (AP) [102], [108], [109], [104],

[57], [107], [103] are used. Also, some other approaches to the field of symbolic

regression can be found – either based only on evolutionary techniques or hybrid

ones. Interesting investigations using symbolic regression were shown by Johnson

[37] working on Artificial Immune Systems and Salustowicz in Probabilistic

Incremental Program Evolution (PIPE) [78] which generates programs from an

adaptive probability distribution over all possible programs. GADS is a forerunner of

1 Introduction

© Zuzana Komínková Oplatková, 2012

12

grammatical evolution which solves the approach to grammar [65], [64]. Also from

evolutionary algorithms artificial immune systems evolved the artificial immune

system programming for symbolic regression [37]. Approaches that differ in

representation and grammar are described in gene expression programming [24],

multiexpression programming [54], meta-modelling by symbolic regression and

pareto simulated annealing [92]. To the group of hybrid approaches belong mainly

numerical methods connected with evolutionary systems, e.g. [11]. One of novel

techniques is the transplant evolution that is closely associated with the conceptual

paradigm of AP and modified for GE. GE was also extended to include DE [99].

These techniques can produce a complex formula from basic functions according to

required behaviour of a function in the case of a mathematical data set, of an

electronic circuit, trajectory of robots, etc. Soft computing tools are constantly

developed and new ones are created. Symbolic regression can even create new

evolutionary algorithms [57] or neural network structures [107].

Neural networks is the area that has been developing for its high-speed parallel

computing, recognition and classification capabilities since 1980s. They can be used

with great success in the field of knowledge discovery and data mining, i.e. to

simplify very complex tasks [31], [98], [30], [22].

All above-mentioned techniques and their principles are capable to be

combined and to work in an optimal way for applications and solved tasks. The

motivation for this habilitation thesis is to present examples using various techniques

and methods, both separately and as connected applications that merge multiple soft

computing techniques. The author of this thesis is motivated to study theoretical

background of the soft computing methods and tries to adjust these useful

techniques.

The principal theme of this habilitation thesis is metaevolution which stands

for several possibilities – the tuning of algorithm parameters, tuning of algorithm

operators, synthesis of another evolutionary algorithm. Therefore one of the

presented tasks is the synthesis of a new optimization algorithm, evolutionary in

principle. The used principle is metaevolution which means that a new algorithm of

an evolutionary character is synthesized with another evolutionary algorithm and

symbolic regression. Metaevolution does not mean only the described procedure; it

1 Introduction

© Zuzana Komínková Oplatková, 2012

13

also means searching for optimal values of parameters or settings of particular

operators [57].

In the context of this thesis, another tack of metaevolution is used. It

implements two evolutionary algorithms within symbolic regression, one for the

control of symbolic regression and the other in an inner symbolic regression process.

The described method is demonstrated on an example with a synthesis of chaotic

system control technique.

The author is also interested in the area of deterministic chaotic systems and

chaos theory which belongs to soft computing as well. This thesis describes not only

the area of metaevolution but also the interconnection of soft computing techniques.

From the area of developing and/or tuning of EA, one of the presented applications is

aimed at using of deterministic chaos instead of a classical random generator in inner

processes of evolutionary algorithms.

The last but not least interesting area for the author is artificial neural networks.

This thesis therefore contains two practical applications of neural networks –

steganalysis and optimal modelling of dynamic flight. Both were an inspiration for

creating a pseudo neural network by means of metaevolutionary approach with

symbolic regression.

The main aim of the habilitation thesis is to show the properties and possible

applications of modern soft computing tools both separately and also in their mutual

connection.

The structure of this thesis is following:

PART 1 – Theoretical background

 Symbolic regression

o Genetic Programming

o Grammatical Evolution

o Analytic Programming

 Evolutionary algorithms

o Self-organizing Migrating Algorithm (SOMA)

o Differential Evolution

o Particle Swarm Optimization (PSO)

1 Introduction

© Zuzana Komínková Oplatková, 2012

14

 Artificial Neural Networks (ANN)

Metaevolution

PART 2 – Selected applications

 Selected applications – introduction

 From the field of symbolic regression

o Metaevolution in the design of evolutionary algorithms

o Metaevolution for the synthesis of control law for deterministic

chaotic systems

o Synthesis of Pseudo ANN – interdisciplinary connection

between symbolic regression and ANN

 From the field of ANN

o Steganalysis by means of ANN

o Optimal modelling of dynamic flight

 From the field of evolutionary techniques

o Chaotic number generator in PSO – interdisciplinary connection

between evolutionary techniques and deterministic chaotic

systems

The thesis starts with the area of symbolic regression and three particular

methods – GP was developed as the first technique of its kind. GE is another well-

known method in this area. The last described technique – analytic programming –

has been developed, tested and used for different tasks at the Institute of Information

Technologies which was transformed to the Faculty of Applied Informatics at Tomas

Bata University in Zlin in 2006.

Since symbolic regression comes from the principle of evolutionary

algorithms, next part is focused on the describition of evolutionary algorithms used

in the thesis. All three algorithms – differential evolution, self-organizing migrating

algorithm and particle swarm optimization were proved in a lot of benchmark tests as

suitable, relatively fast and capable of solving complex optimization tasks.

The following part deals with neural networks that are used in several

presented applications, either in practical ones or in their synthesis by means of

symbolic regression.

1 Introduction

© Zuzana Komínková Oplatková, 2012

15

The last part of the theoretical background describes metaevolutionary

approaches after which their application follows.

The first application was the first research study of the author in the area of

metaevolution. Since then there have been some issues connected with one approach

to metaevolution, the application of evolutionary algorithm synthesis is provided in

the first place. After this research, another kind of metaevolution has been studied for

a long period which is described in the second application – Metaevolution for the

synthesis of control law for deterministic chaotic systems. This approach together

with two practical applications of artificial neural networks inspired the author to

work on the synthesis of Pseudo ANN by means of symbolic regression. The last

application is dedicated to the interconnection between evolutionary computation and

chaotic systems studied during the synthesis of control laws which led to better

performance of evolutionary algorithms, here demonstrated on particle swarm

optimization. The chaotic system is used in PSO as a pseudorandom number

generator.

All applications discussed in this thesis are only a part of the author’s research

portfolio and it is supposed that the pontential of presented ideas will be developed

further in the future.

© Zuzana Komínková Oplatková, 2012

16

PART 1

–

Theoretical Background

2 Symbolic Regression

© Zuzana Komínková Oplatková, 2012

17

2 Symbolic Regression

In statistics, regression is a method of curve fitting, i.e. finding a curve that matches a

series of data points and possibly also other constraints. It is done by means of a

regression analysis. Two types of regression are used – linear and nonlinear, which

depend on data sets. The final formula, which fits data as close as possible, is done

using classic mathematical and statistical techniques [3], [10].

Symbolic regression in the context of this thesis means a synthesis of a final

formula from basic simple functions (e.g. Fig. 2.1, Fig. 2.2). This procedure can be

used for mathematical and also for non-mathematical fields.

This approach was firstly introduced by John Koza in genetic programming

[44], [43], then in grammatical evolution [53], [52] by Conor Ryan and the technique

used in the simulations performed for the publication purposes was developed by

Ivan Zelinka in analytic programming [102], [108], [109], [104], [57], [107], [103].

2.1 Genetic Programming
Genetic programming was introduced at the end of the 1980’s by John Koza [44],

[43]. He suggested a modification of genetic algorithm and he named it genetic

programming. In this concept a new population is bred not in a normal numerical

way but in an analytical way. It means that the solution of such breeding is not values

of parameters but a function itself.

According to genetic algorithms each value is similarly to nature called gene.

Genes in GP are not represented by integers or real values, parameters in a

chromosome string are functions themselves. In the simplest version there are

variables, constants, basic arithmetical functions and elementary functions. From this

group, a function, e.g. x*(1+x) can be made. This can be seen in a parse tree (Fig.

2.1), where the top is called the root of the tree.

Interpreting the parse tree is easy. During the run, the function x * (1 + x) is

evaluated through this tree from the bottom to the top.

2 Symbolic Regression

© Zuzana Komínková Oplatková, 2012

18

In GP, the operators of crossover and mutation are used as they are used in

genetic algorithms [45], [2], [12]. But here the individual contains basic operators,

not numerical values. Therefore whole parts of the tree are changed in the case of

mutation (Fig. 2.2) or crossover (Fig. 2.3).

*

x

0.12 z

x

Fig. 2.1: A parse tree

*

+

1.3

x

-

x y 0.12 z

x

*

x

0.12 z

x

Point of mutation

Mutation

Randomly generated string

Fig. 2.2: Mutation in Genetic Programming

Another approach to GP is enforcing dimensional constraints through formal

grammar. It restricts GP search space to dimensionally admissible laws [44].

2 Symbolic Regression

© Zuzana Komínková Oplatková, 2012

19

Parent 1: Crosspoints are marked by arrow Parent 2:
0,12z (1,3 + y-x) x (1-x)

*

x

1

-

x

*

x

1 x

*

+

0.12 z 1.3

*

-

x y

*

0.12 z

*
+

1.3 -

x y

-

Parent 1: After crossover Parent 2:
0,12z (1-x) x (1,3+y-x)

Fig. 2.3: Crossover in Genetic Programming

2.2 Grammatical Evolution
Grammatical evolution (GE) is another tool for doing symbolic regression by means

of computers. The advantage of this tool, compared to GP, is that GE can evolve

complete programs in an arbitrary programming language [53], [52] using a variable

– length binary string. It uses Backus Naur Form grammar definition for mapping

process to a program. GE performs the whole process on a variable – length binary

strings. A mapping process is employed to generate programs in any language by

using the binary strings to select production rules in the Backus Naur Form (BNF)

grammar definition. The result is the construction of a syntactically correct program

from a binary string that can then be evaluated by a fitness function.

2 Symbolic Regression

© Zuzana Komínková Oplatková, 2012

20

Variable-length binary string genomes are used with each codon representing

an integer value where codons are consecutive groups of 8 bits in order to make the

genetic code degenerate. The integer values are used in a mapping function to select

an appropriate production rule from the BNF definition. The numbers generated

always represent one of the rules that can be used at that time.

Below is an example of a BNF definition, where N is a set of nonterminals and

T is a set of terminals.

 N ={expr, op, pre_op, var}

 T = {Sin, + , - , / , * , X , 1.0}}

and can be represented as:

A) <expr> : : = <expr> <op> <expr> (0)

 | (<expr> <op> <expr>) (1)

 | <pre-op> (<expr>) (2)

 | <var> (3)

B) <op> : : = + (0)

 | - (1)

 | / (2)

 | * (3)

C) <pre-op> : : = Sin

D) <var> : : = X (0)

 | 1.0 (1)

In Table 2.1, the numbers of possibilities for each rule are given. The mapping

starts with reading codons of 8 bits [53] to generate a corresponding integer value

from which an appropriate production rule is selected by using the mapping function

(2.1).

2 Symbolic Regression

© Zuzana Komínková Oplatková, 2012

21

Table 2.1: The number of choices available from each production rule

RULE TYPE CHOICES

A 4

B 4

C 1

D 2

 Rule = (Codon integer value)
 MOD
 (Number of choices for the current non-terminal) (2.1)

Fig. 2.4 shows an example of an individual with content of integer values

generated from 8 bit binary number (codon).

220 40 16 203 101 53 202 203 102 55 220 202 19

.....

130 37 202 203 32 39 202 203 102

Fig. 2.4: An example of an individual for GE

The first codon is 220. If we apply eq. (2.1) we obtain value 0. That means we

use rule A with its terminal 0. It represents an inscription A.0. Our program looks

like

<expr><op><expr>

Then we continue with the left-most non-terminal which is <expr>. We take

the second codon from the individual and apply the formula (2.1) again, i.e. 40 MOD

4. We obtain 0. <expr> is replaced by <expr><op><expr>. The result is following

<expr><op><expr><op><expr>

2 Symbolic Regression

© Zuzana Komínková Oplatková, 2012

22

The next step starts again with <expr>. For the third time by reading codon we

obtain the rule A.0.

<expr><op><expr><op><expr><op><expr>

Now the left-most <expr> is determined by codon with value 203 which gives

the rule A.3 after applying the formula (2.1), thus non-terminal <var>.

<var><op><expr><op><expr><op><expr>

The next codon will then determine the value of var; there are 2 possibilities.

101 MOD 2 gives then rule D.1 which has the value 1.0. Our expression then results

in

1.0 <op><expr><op><expr><op><expr>

Next codon will then determine what <op> will become. We have 53 MOD 4

which is equal to 1. The first terminal in <op> means the operator minus. The next

<expr> has to be expanded by the codon 202 that is 202 MOD 4 = 2. We get

following

1.0 - <pre-op>(<expr>)<op><expr><op><expr>

Because <pre-op> has only one possibility, we obtain

1.0 – Sin (<expr>)<op><expr><op><expr>

Then we can continue similarly as before until we end with this final formula.

1.0 – Sin(x)*Sin(x) - Sin(x)*Sin(x)

2 Symbolic Regression

© Zuzana Komínková Oplatková, 2012

23

The program is finished when all non-terminals are replaced with terminals. If

codons run out earlier, then they are used cyclically from the beginning. The above

description is for mapping from codons to final formula in GE. During an

evolutionary process, mutation and crossover operators are used as in genetic

algorithms.

2.3 Analytic Programming
Basic principles of the AP were developed in 2001 [102], [108]. Until that time only

genetic programming (GP) and grammatical evolution (GE) had existed. GP uses

genetic algorithms (GA) while AP can be used with any EA, independently on an

individual representation. To avoid any confusion, based on the nomenclature

according to the used algorithm, the name - Analytic Programming was chosen, since

AP represents the synthesis of analytical solution by means of EA. Various

applications of AP are described in [102], [108], [109], [104], [57], [107], [103].

The core of AP is based on a special set of mathematical objects and

operations. The set of mathematical objects is a set of functions, operators and so-

called terminals (as well as in GP), which are usually constants or independent

variables. This set of variables is usually mixed together and consists of functions

with different number of arguments. Because of the variability of the content of this

set, it is termed the “general functional set” – GFS. The structure of GFS is created

by subsets of functions according to the number of their arguments. For example,

GFSall is a set of all functions, operators and terminals, GFS3arg is a subset containing

functions with only three arguments, GFS0arg represents only terminals, etc. The

subset structure presence in GFS is vitally important for AP. The hierarchy of GFS is

depicted in Fig. 2.5. It is used to avoid the synthesis of pathological programs, i.e.

programs containing functions without arguments, etc. The content of GFS is

dependent only on the user. Various functions and terminals can be mixed together

[102].

2 Symbolic Regression

© Zuzana Komínková Oplatková, 2012

24

BetaRegularized

LerchPhi

GFSall

User_function

GFS0arg

x

t !

GFS1arg

tan cos

sin

GFS2arg

mod

*

/

+

-

Fig. 2.5: Hierarchy in the GFS

The second part of the AP core is a sequence of mathematical operations used

for the program synthesis. These operations are used to transform an individual of a

population into a suitable program. Mathematically stated, it is mapping from an

individual domain into a program domain. The mapping consists of two main parts.

The first part is called Discrete Set Handling (DSH) (Fig. 2.6) [102] and the second

one stands for security procedures which do not allow synthesizing pathological

programs. The method of DSH, when used, allows handling arbitrary objects

including nonnumeric objects such as linguistic terms {hot, cold, dark…}, logic

terms (True, False) or other user defined functions. In the AP, DSH is used to map an

individual into GFS and together with security procedures creates the above-

mentioned mapping, which transforms an arbitrary individual into a program.

AP needs some EA [102] that consists of a population of individuals for its run.

Individuals in the population consist of integer parameters, i.e. an individual is an

integer index pointing into GFS. The creation of the program can be schematically

observed in Fig. 2.7. The individual contains numbers which are indices for GFS.

2 Symbolic Regression

© Zuzana Komínková Oplatková, 2012

25

Fig. 2.7 demonstrates an artificial example as to how a final function is created from

an integer individual via Discrete Set Handling (DSH).

{1.1234, - 5.12, 9, 332.11,!..}

{AND, OR, XOR!..}

Individual={1, 2, 3,!..}

CostValue=CostFunction(x1, x2, x3, x4)

{TurnLeft, Move, TurnRight!..}

YES

NO

Integer
index
 - alternative
parameter

Discrete set of
parameters

{SelectDE, CrossDE, SelectLeaderSOMA...}

Fig. 2.6: Discrete set handling

Individual = {1, 6, 7, 8, 9, 11}

Resulting Function by AP = Sin(Tan(t)) + Cos(t)

GFSall = {+, -, /, *, d / dt, Sin, Cos, Tan, t, C1, Mod,!}

GFS0arg = {1, 2, C1, ", t, C2} Mod(?)

Fig. 2.7: The main principle of AP

The number 1 in the position of the first parameter means that the operator plus

(+) from GFSall is used (the end of the individual is far enough). Because the operator

2 Symbolic Regression

© Zuzana Komínková Oplatková, 2012

26

+ must have at least two arguments, the next two index pointers 6 (sin from GFS)

and 7 (cos from GFS) are dedicated to this operator as its arguments. The two

functions, sin and cos, are one-argument functions, therefore the next unused

pointers 8 (tan from GFS) and 9 (t from GFS) are dedicated to the sin and cos

functions. As an argument of cos, the variable t is used, and this part of the resulting

function is closed (t has zero arguments) in its AP development. The one-argument

function tan remains, and there is one unused pointer 11, which stands for Mod in

GFSall. The modulo operator needs two arguments but the individual in the example

has no other indices (pointers, arguments). In this case, it is necessary to employ

security procedures and jump to the subset with GFS0arg. The function tan is mapped

on t from GFS0arg which is on the 11th position, cyclically from the beginning.

2.3.1 AP Versions

AP exists in 3 versions – basic without constant estimation, APnf – estimation

by means of a nonlinear fitting package in Wolfram Mathematica environment and

APmeta – constant estimation by means of another evolutionary algorithms; meta

implies meta-evolution.

APbasic stands for the version where constant estimation is done in the same

way as in genetic programming. If for example data approximation needs to estimate

coefficients in the approximated polynomial or move the basic curve from the axes

origin. In the APbasic the user has to assign a set of constant values into GFS. It means

a huge enlargement of the functional sets and deceleration of the evolutionary

procedure. Therefore two other strategies were adopted - APnf and APmeta.

These two versions of AP use the constant K which is indexed during the

evolution (2.2). When K is needed, a proper index is assigned – K1, K2, ... Kn (2.3).

Numeric values to indexed Ks are estimated (2.4) either via nonlinear fitting methods

in the Mathematica environment (www.wolfram.com) - APnf or via the second

evolutionary algorithm – APmeta.

 x2 + K
! K (2.2)

2 Symbolic Regression

© Zuzana Komínková Oplatková, 2012

27

 x2 + K1
! K2

 (2.3)

 x2 + 3.156
! 90.78 (2.4)

APmeta is a time consuming process and the number of cost function

evaluations, which is one of comparative factors, is usually very high. This fact is

given by two evolutionary procedures (Fig. 2.8).

 EAmaster ! program! Kindexing ! EAslave ! Kestimation ! final " solution

Fig. 2.8: Schema of AP procedures

EAmaster is the main evolutionary algorithm for AP, EAslave is the second

evolutionary algorithm inside AP. Thus the number of cost function evaluation

(CFE) is given by (2.5).

 CFE = EAmaster *EAslave (2.5)

Despite this fact, some simulations cannot be done with nonlinear fitting

methods in the Mathematica environment. The presented applications use the APmeta

in most cases.

2.3.2 AP with Reinforced Evolution

Analytic programming is capable of reinforced evolution. During evolution,

more or less appropriate individuals are synthesized. Some of these individuals are

used to reinforce the evolution towards a better solution synthesis. The main idea of

reinforcement is based on the addition of the just-synthesized and partly successful

program into an initial set of terminals (GFS0arg). Reinforcement is based on a user-

defined deciding criterion. This criterion adds an individual into the initial set of

terminals according to the value defined in the threshold. The threshold value is

dependent on a cost value and, according to previous testing, the threshold is set up

2 Symbolic Regression

© Zuzana Komínková Oplatková, 2012

28

to a suitable initial value. Such a value means that the individual stands for a partial

successful solution which should help increase the speed to find the final best

solution. To avoid having a lot of partial solutions in GFS, only one individual is

accepted for adding into GFS and the criterion value is decreased with each such

step.

For example, if the threshold is set to 5, and the fitness of all individuals

(programs in the population) is higher than 5, then the evolution is running on the

initially defined GFS. When the cost value of the best individual in the current

population is less than 5, then it is entirely added into the initial GFS and is marked

as terminal. From this moment, the evolution is running on the enriched GFS

containing the partially successful program. Due to this advantage, the evolution

process is able to synthesize final solutions much faster than the AP without

reinforcement. Simulations on different problems have repeatedly verified this fact.

It is quite similar to Automatically Defined Functions (ADF) for GP; however,

the set of functions and terminals in GP can contain more than one ADF (which

increases the complexity of the search space to the order of n!, at least theoretically).

GP has to have checking procedures for critical situations (self calling...) and if

arguments of this ADF are defined properly. This is not a problem of AP

reinforcement, the added item belongs to terminals, i.e., no function, no arguments,

no self calling, etc., and the cardinality of the initial GFS set increases only by one.

2.3.3 Similarities and Differences

Because analytic programming was partly inspired by genetic programming,

some differences as well as similarities between AP, GP and grammatical evolution

exist. Some of these are [102]:

o Synthesized programs (similarity): AP, as well as GP and GE, is able to

do symbolic regression in a general point of view. It means that the output

of AP is according to simulations, similar to programs from GP and GE.

o Functional set (similarity): APbasic operates in principle on the same set of

terminals and functions as GP or GE, while APmeta or APnf use a universal

constant K (difference), which is indexed after a program synthesis.

2 Symbolic Regression

© Zuzana Komínková Oplatková, 2012

29

o Individual coding (difference): coding of an individual is different. AP

uses an integer index instead of direct representation as is in canonical

GP. GE uses the binary representation of an individual, which is

consequently converted into integers for mapping into programs by means

of BNF.

o Individual mapping (difference): AP uses DSH while GP in its canonical

form uses direct representation in LISP and GE uses BNF.

o Constant handling (difference): GP uses a randomly generated subset of

numbers - constants, GE utilizes user determined constants and AP uses

only one constant K for APmeta and APnf, which is estimated by another

EA or by nonlinear fitting.

o Security procedures (difference): to guarantee the synthesis of non-

pathological functions, procedures are used in AP that redirect the flow of

mapping into subsets of a whole set of functions and terminals according

to the distance from the end of the individual. If pathological function is

synthesized in GP, synthesis is repeated. In the case of GE, when the end

of an individual is reached, the mapping continues from the individual’s

beginning, which is not the case in AP. It is designed so that a non-

pathological program is synthesized before the end of the individual is

reached (no later than the end is reached).

3 Evolutionary Algorithms

© Zuzana Komínková Oplatková, 2012

30

3 Evolutionary Algorithms

Evolutionary algorithms are a group of algorithms suitable for optimization that use

their special operators as mutation, crossover and others to find an ideal solution.

Possible candidates are defined by a cost function whose arguments are values of

each solution. The best one is in the global extreme – maximum or minimum [111],

[105], [45], [2].

Different fields of human activities need to optimize countless cases of difficult

tasks every day. Everybody wants to maximize profit and minimize cost. This means

that optimizing is in every task of industry, transportation, medicine, everywhere. For

these purposes, we need to have suitable tools that are able to solve very difficult and

complicated problems. As previous years proved, the use of artificial intelligence and

soft computing contribute to improvements in many activities.

This group covers a lot of different older and newer techniques that can be used

independently or with symbolic regression. Two of several possible divisions (Fig.

3.1, Fig. 3.2) of evolutionary techniques might be as follows [111], [105]. For the

purpose of this habilitation thesis, only three evolutionary algorithms, which were

used for performed simulations, are described below.

Enumerative Deterministic

Mixed Stochastic

Hill Climbing
Greedy
Branch and Bound
Depth - First
Broadth - First
Best - First
Calculus Based

Ant Colony Optimization !
Immune system methods!
Memetic Algorithms!
Scatter Search and Path Relinking!
Particle Swarm!
Genetic Algorithms!
Differential Algorithms!
SOMA!

Random Search Walk
Simulated Annealing
Monte Carlo
Tabu Search
Evolutionary Computation
Stochastic Hill Climbing!

Optimization algorithms

Fig. 3.1: The division of evolutionary algorithms – taken from [105]

3 Evolutionary Algorithms

© Zuzana Komínková Oplatková, 2012

31

Fig. 3.2: Another possibile of division of evolutionary algorithms – taken from [105]

3.1 Self-Organizing Migrating Algorithm

(SOMA)
SOMA works with groups of individuals (population) whose behavior can be

described as a competitive–cooperative strategy [110]. The construction of a new

population of individuals is not based on evolutionary principles (two parents

produce an offspring) but on the behavior of a social group, e.g. a herd of animals

looking for food. This algorithm can be classified as an algorithm of a social

environment. To the same group of algorithms, sometimes called swarm intelligence,

the Particle Swarm Optimization (PSO) algorithm can also belong. In the case of

SOMA, there is no velocity vector as in PSO, only the position of individuals in the

search space is changed during one generation, here called migration loop.

The rules are as follows: in every migration loop the best individual is chosen,

i.e. individual with the minimum cost value, it is called the Leader. An active

individual from the population moves in the direction towards the Leader in the

search space. The movement consists of jumps determined by the Step parameter

3 Evolutionary Algorithms

© Zuzana Komínková Oplatková, 2012

32

until the individual reaches the final position given by the PathLength parameter. For

each step, the cost function for the actual position is evaluated and the best value is

saved. At the end of the crossover, the position of the individual with the minimum

cost value is chosen. If the cost value of the new position is better than the cost value

of an individual from the old population, the new one appears in the new population.

Otherwise the old one remains there. The main principle is depicted in Fig. 3.3, Fig.

3.4 and Fig. 3.5 and the crossover is described by the equation (3.1):

xi, j
ML+1 = xi, j,START

ML + (xL, j
ML ! xi, j,START

ML) * t *PRTVectorj (3.1)

where:
1

,
+ML
jix - value of i–individual’s j–parameter, in step t in migration loop ML + 1,

ML
STARTjix ,, - value of i–individual’s j-parameter, Start position in actual migration

loop,
ML
jLx , - value of Leader’s j– parameter in migration loop ML,

t - step ∈ <0, by Step to, PathLength >,

PRTVector - vector of ones and zeros dependent on PRT. If a random number

from the interval <0, 1> is less than PRT, then 1 is saved to PRTVector, otherwise it

is 0.

Fig. 3.3: The basic principle of SOMA

3 Evolutionary Algorithms

© Zuzana Komínková Oplatková, 2012

33

Fig. 3.4: The basic principle of crossover in SOMA, PathLength is replaced here by
an older terminology Mass

There are four versions of SOMA – AllToOne, AllToOneRand, AllToAll, and

AllToAllAdaptive. In this thesis, a version AllToOne is used despite the fact that

AllToAll and AllToAllAdaptive can be much better in searching. They can search

for a wider area of solutions and the possibility of finding the global optimum is then

more probable. On the other hand, these two variations of SOMA need more time for

the successful end of evolution. Therefore for simulations, less time-consuming

computing of AllToOne was used in this thesis.

3 Evolutionary Algorithms

© Zuzana Komínková Oplatková, 2012

34

Fig. 3.5: SOMA example

PopSize

3 Evolutionary Algorithms

© Zuzana Komínková Oplatková, 2012

35

3.2 Differential Evolution
DE is a population-based optimization method that works on real-number-coded

individuals [17]. For each individual

! x i,G in the current generation G, DE generates a

new trial individual

! ! x i,G by adding the weighted difference between two randomly

selected individuals

! x r1,G and

! x r2,G to a randomly selected third individual

! x r3,G . The

resulting individual

! ! x i,G is crossed-over with the original individual

! x i,G . The fitness

of the resulting individual, referred to as a perturbed vector

! u i,G +1, is then compared

with the fitness of

! x i,G . If the fitness of

! u i,G +1 is greater than the fitness of

! x i,G , then

! x i,G is replaced with

! u i,G +1; otherwise,

! x i,G remains in the population as

! x i,G +1. DE is

quite robust, fast, and effective, with global optimization ability. It does not require

the objective function to be differentiable and it works well even with noisy and

time-dependent objective functions. The example of DE is in Fig. 3.6. Please refer to

(3.2) for notation of cross-over, and to [68] and [47] for the detailed description of

used DERand1Bin strategy and all other DE strategies.

 ui,G+1 = xr1,G + F * xr2,G ! xr3,G() (3.2)

3 Evolutionary Algorithms

© Zuzana Komínková Oplatková, 2012

36

 Fig. 3.6: A DE example

3 Evolutionary Algorithms

© Zuzana Komínková Oplatková, 2012

37

3.3 Particle Swarm Optimization
The PSO (Particle swarm optimization) algorithm is based on the natural behaviour

of birds and fish and was firstly introduced by R. Eberhart and J. Kennedy in 1995

[17], [16]. As an alternative to genetic algorithms [12] and differential evolution

[68], PSO proved itself to be able to find better solutions for many optimization

problems. The term “swarm intelligence” [17], [16] refers to the capability of particle

swarms to exhibit surprisingly intelligent behavior assuming that some form of

communication (even very primitive) can occur among the swarm particles

(individuals).

PSO is initialized by a population of randomly located particles. A velocity

vector, which indicates the direction of individual movement in the next step, is

generated to each individual. Then a value of cost function is calculated. The

individual with the best value (usually minimum) saves its current position in the

common memory of the population which means that individuals know where the

best solution is located. The best value found in a population is called gBest. At the

same time, every individual finds out if its current position is better than its previous

position. If so, the new position is stored in its own memory and is referred to as

pBest.

After gBest and pBest are found, the particle adjusts its velocity and changes

the position according to the equations (3.3) and (3.4). The influence of velocity,

pBest and gBest values is depicted in Fig. 3.7. Particles tend to go their own way or

to return to their best position or to adaptively follow the particle with the best value

in the population. The trends and real directions are visible in Fig. 3.7.

 vd t +1() = vd t()+ c1 * rand * pBesti,d ! xi,d t()()+ c2 * rand * gBestd ! xi,d t()() (3.3)

 xi,d t +1() = xi,d t()+ vd (3.4)

where

()1+tvd – a velocity of the particle in the next step

()tvd – a velocity of the particle in the current step

()1, +tx di – a position of the particle in the next step

3 Evolutionary Algorithms

© Zuzana Komínková Oplatková, 2012

38

()tx di , – a position of the particle in the current step

dipBest , – the best existing position of the particle

dgBest – the best found position in the population

rand – random number in the interval (0, 1)

21,cc – priority factors

Fig. 3.7: A velocity, pBest and gBest values influence in PSO

Particle velocities are associated with the maximum speed Vmax. If the velocity

of the particle exceeds this rate, a new speed is generated or the velocity vector is

reduced to the value of Vmax. This measure is here because of the particle’s tendency

to sharply increase its speed. Particles reach the borders of the searched area quickly

in that case. If a particle is outside permitted values its new position is generated.

The parameters of PSO:

Dimensions and permitted values are given by the optimized problem.

The number of particles is the size of the population.

Vmax sets a maximal value of the velocity up.

Priority factors c1, c2 partly influence the movement of particles. The priority

factor c1 gives preference to return to particle’s best own position before to follow

the best result of the population. On the contrary, the priority factor c2 tends to shift

particles to the best value of the population.

4 Artificial Neural Networks

© Zuzana Komínková Oplatková, 2012

39

4 Artificial Neural Networks

Artificial neural networks (ANN) are tools of artificial intelligence developed in the

first half of the 1940s. After Pitts – McCulloch model [31], [98], [30], [22] of neuron

(Fig. 4.1) and Rosenblatt’s first neural net, the perceptron, with a learning algorithm

were published, Minsky and Papert caused the temporal abandoning of ANN because

the perceptron was not able to solve nonlinear separable problems. Fortunately, in

1980s researches returned and the boom started [31], [98], [30], [22].

TF(wixi + bwb!)

x1
w1

xn

b

wn

wb

y

Fig. 4.1: A model of a neuron – TF (transfer function), x1 - xn (inputs to neural
network), b – bias, w1 – wn, wb – weights, y – output

Artificial neural networks are inspired by the biological neural nets and are

used for complex and difficult tasks. The most often usage is the classification of

objects because ANN are capable of generalization, hence the classification is natural

for them. Some other possibilities are in pattern recognition, control, filtering of

signals and also data approximation.

There are several types of artificial neural networks. They are mainly divided

into supervised and unsupervised neural networks. Supervised neural nets need a

training set with inputs and required outputs which help to train the neural network.

Unsupervised neural networks work on different basis. They try to group items in a

training set according to similar properties. The other difference is in settings of

layers, neurons in layers, types of transfer functions etc. In the case of this thesis, the

4 Artificial Neural Networks

© Zuzana Komínková Oplatková, 2012

40

supervised artificial neural nets were used. Simulations were performed with a

feedforward net with supervision. ANN needs a training set of known solutions to be

trained. The neural network works so that suitable inputs in numbers have to be

given to the input vector. These inputs are multiplied by weights which are adjusted

during the training. In the neuron the sum of inputs multiplied by weights are

transferred through a mathematical function such as sigmoid, saturated linear (Fig.

4.2), hyperbolic tangent, radial basis functions, etc. Therefore ANN can also be used

for data approximation.

Feedforward nets have different training algorithms; the well-known are

Backpropagation, Pruning algorithm, gradient methods, Levenberg-Marquardt [76]

and others. In the performed simulations, the Levenberg-Marquardt algorithm was

used.

�5 5

�1.0

�0.5

0.5

1.0

 �5 5

0.2

0.4

0.6

0.8

1.0

Fig. 4.2: A linear saturated function (left), Sigmoid function (right)

The single neuron units (Fig. 4.1) are connected to different structures to obtain
ANN (e.g. Fig. 4.3 -

Fig. 4.6). These networks were designed for different tasks.

Fig. 4.6 shows a different schema of a two layer neural net where the last

bottom neuron in the left input layer is bias equal to one.

4 Artificial Neural Networks

© Zuzana Komínková Oplatková, 2012

41

Fig. 4.3: One hidden layer neural net and one output, where
! =! TF[(wixi + bwb!)] and in this case)]([∑∑ += bii bwxwTF , where TF is for

example logistic sigmoid.

Fig. 4.4: One hidden layer neural net and one output, a different schema

4 Artificial Neural Networks

© Zuzana Komínková Oplatková, 2012

42

Fig. 4.5: Two hidden layer neural net, where ! =! TF[(wixi + bwb!)] and in this
case)]([∑∑ += bii bwxwTF , where TF is for example a logistic sigmoid. These pictures

are taken from Neural Networks Toolbox for Mathematica environment
(www.wolfram.com) as this tool was used during the simulations. Names are also

taken from this tool to avoid misunderstandings.

Fig. 4.6: Two hidden layer neural net, a different schema

5 Metaevolution

© Zuzana Komínková Oplatková, 2012

43

5 Metaevolution

Metaevolution is one of the main topics that underpin the whole thesis. The range,

which is covered by the technical term meta, is quite wide. Meta means going

beyond the basic term. The evolutionary algorithms described earlier in this thesis

are sometimes also called meta-heuristic [38]. According to [38] and [75], heuristic

is defined as a technique which seeks or finds good solutions to a difficult model.

Meta-heuristic goes beyond this to draw on ideas and concepts from another

discipline to help solve the artificial system that is being modelled.

Generally, metavolution means evolution of evolution. Metaevolutionary

techniques for optimization tasks belong to soft computing methods as well as

evolutionary algorithms [2], [57] and symbolic regression [57].

Metaevolution means several approaches [57], [15], [18], [38], [42], [55], [62].

This thesis is focused mainly on the third described approach and partly the second

one.

First attempts of researchers were in the usage of an evolutionary algorithm for

tuning or controlling of another evolutionary technique [19], [14], [89]. During this

process, usually the best types of evolutionary operators and settings of their

parameters were evolutionarily selected. Tuning of parameters is the usage of the

best-found values which will be set up at the initialization of the evolutionary

algorithm and used with the same values for a whole process. Compared to this,

parameter control adjusts the values during the evolutionary process. It is adapted

either by means of a predetermined rule or some kind of self-adaptation [89]. The

further performance was then tested and studied on given problems [42], [18].

Another approach is to let evolution create a structure and parameters of the

used evolutionary operators such as selection crossover or mutation. Diosan and

Oltean use Meta Genetic Programming [18] for the evolutionary design of

evolutionary algorithms [15]. In the thesis, this metaevolutionary approach is

described with the first application (chapter 7). Analytic programming is used here

with symbolic regression principles to breed a completely new structure of the

5 Metaevolution

© Zuzana Komínková Oplatková, 2012

44

optimization algorithm of evolutionary character which comes from the basic

selection of operators in the AP settings.

The last technique of metaevolution is discussed in several applications

presented in this thesis. This is the estimation of coefficients in symbolic regression

when two evolutionary algorithms help each other. One evolutionary algorithm

drives the main process of symbolic regression, in this case analytic programming,

and the second is used for the constant estimation. This meta approach of analytic

programming has to be used when the constants are not possible to estimate in

another manner because of the character of the problem. In data approximation tasks,

there can be used a technique from non linear fitting package, which is adopted in

Wolfram Mathematica environment, because the problem is designed so that the

found constants (e.g. coefficients of polynoms) move the basic shape of the curve

around the coordinate system. It is not possible to employ such a package in the case

of the synthesis of control laws for chaotic systems or Pseudo ANN. These

applications do not use the found result as a model which could be adjusted to some

“measured” values in the sense of interpolation but the found solution is used further

as a part of complex technique to find a quality of the solution and cost function

estimation.

© Zuzana Komínková Oplatková, 2012

45

PART 2

–

Selected Applications

6 Selected Applications

© Zuzana Komínková Oplatková, 2012

46

6 Selected Applications

The following applications are selected from the research area of the author. The first

of the following chapters shows a technique from the field of symbolic regression,

which is the main domain of the author. The chapter is focused on metaevolution for

breeding of a new algorithm where one evolutionary method creates another one.

The second chapter describes the metaevolution for the interdisciplinary task of

synthesis of control law for deterministic chaotic systems. This part of research area

has been the main field of research of the author during the last three years.

 The next section deals with metaevolution for synthesis of pseudo artificial

neural networks. The research is at the beginning, still opened and the work in this

field will also continue after the submission of this thesis.

As ANNs are also the area of the research, next two chapters are focused on

real applications – the steganalysis and optimal modelling of airplane behaviour by

means of ANN.

The author was participating also in the research that connects evolutionary

algorithms and deterministic chaotic systems together to explore the influence on the

evolutionary dynamics inside the PSO algorithm. Instead of a standard computer

pseudorandom number generator, the PSO algorithm used a pseudorandom number

generator based on selected chaotic systems for inner operators.

7 Selected Applications - Metaevolution in Design of Evolutionary Algorithm

© Zuzana Komínková Oplatková, 2012

47

7 Metaevolution in Design of

Evolutionary Algorithm

The objective was to try to create a new optimization algorithm, probably of

evolutionary character, which could be robust and effective to optimize difficult

problems in the world. This research has been started in the doctoral thesis of the

author. In this habilitation thesis, it is briefly described to show differences in the

metaevolution used in simulations performed after the submission of the doctoral

thesis.

This is a metaevolutionary approach in context when evolutionary algorithm

breeds another evolutionary algorithm [57]. According to previous approaches,

metaevolution is determining the optimal evolutionary algorithm, the best types of

evolutionary operators and their parameter setting for a given problem. It basically

means that one evolutionary algorithm tunes another one [57]. But the approach used

for the synthesis a new algorithm is different. The metaevolution is used on a higher

level for creating a new algorithm completely not only for setting of its parameters

[57].

The simulations used different operators of known evolutionary algorithms

such as their mutation or crossover operators and found following notations for new

algorithms (7.1) – (7.4):

SOMAATORandWithoutPRT(SOMAATORandWithPRT(SOMAATORandWithPR
T(MutateDECurrentToBest(SelectSOMALeader)))) (7.1)

SOMAATOWithPRT(SOMAATOWithPRT(SOMAATORandWithPRT(CrossDEBi
n(SOMAATOWithPRT(SelectSOMARandLeader))))) (7.2)

CrossDEBin(SOMAATOWithPRT(MutateDECurrentToBest(SelectSOMALeader)))
 (7.3)

7 Selected Applications - Metaevolution in Design of Evolutionary Algorithm

© Zuzana Komínková Oplatková, 2012

48

 SOMAATOWithPRT(SelectSOMALeader) (7.4)

This kind of metaevolution used analytic programming in its basic version. No

coefficients were necessary to be estimated. All operators belong to GFS with one

argument and the functions of selection are part of the GFS with zero arguments, ie.

terminals.

The most difficult is the design of a cost function which represents suitability

and quality of the solution. In the case of creating a new evolutionary algorithm,

benchmarking on some test functions is necessary. During this research, two test

functions were used for simulations and the cost function tested whether or not a

found algorithm achieves the minimum in both test functions. The two benchmark

functions were the Sphere model, 1st De Jong as an example of a unimodal function

and Schwefel as an example of a multimodal function [105], [57] – Fig. 7.1 and Fig.

7.2.

�100 �50 50 100

2000

4000

6000

8000

10000

 Fig. 7.1: The DeJong function – unimodal (left – 2 arguments and right – 1
argument used)

�400 �200 200 400

�400

�200

200

400

 Fig. 7.2: The Schwefel function – multimodal (left – 2 arguments and right – 1
argument used)

7 Selected Applications - Metaevolution in Design of Evolutionary Algorithm

© Zuzana Komínková Oplatková, 2012

49

The 1st De Jong and Schwefel functions are in the analytical way as can be

seen in equations (7.5) and (7.6), where Dim means the number of arguments

(dimension of the problem). No other condition was applied.

f x() = xi
2

i=1

Dim

! (7.5)

f x() = !xi " sin xi()
i=1

Dim

(7.6)

The value of the cost function was designed so that firstly the generated

algorithm is verified as to the ability to find the minimum on the easy unimodal

function 1st De Jong. If the minimum is reached, the Schwefel function is tested.

Then the cost value is the output from the Schwefel. If there is no successful result

from the 1st De Jong, the output value is the absolute value of the 1st De Jong. The

values of benchmark function minimum in different dimensions are known. For

faster computation, the benchmark functions were used with 2 arguments. The future

research expects a better design of the cost function including more benchmark

functions and computations in a higher dimensional space.

After the results were obtained – the 4 above mentioned algorithms, more tests

on other benchmark functions were performed to find out how effective the found

evolutionary algorithms are. Here is only one table (Table 7.1) showing that

algorithms competed not only between themselves but also in dimensions - 2D, 20 D

and 100 D.

7 Selected Applications - Metaevolution in Design of Evolutionary Algorithm

© Zuzana Komínková Oplatková, 2012

50

Table 7.1: The winner for each benchmark function

 Algorithm 1

(7.1)

Algorithm 2

(7.2)

Algorithm 3

(7.3)

SOMAATO

(7.4)

2 D 1, 3, 4, 5, 6, 8,

10, 11, 12, 15,

16

5, 6, 7, 8, 10, 11,

12, 13, 15, 16

5, 6, 7, 8, 10,

11, 12, 13, 15,

16

2, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15,

16

20 D 1, 3, 4, 7, 11, 14,

15

5, 6, 8, 10, 12,

13, 16

2 9

100 D 12, 13, 14 1, 2, 3, 5, 7, 8,

15, 16,

 4, 6, 9, 10, 11

The numbers are for each benchmark problem as follows: 1 - 1st De Jong

function, 2 - 2nd De Jong function, 3 - 3rd De Jong function, 4 - 4th De Jong function,

5 - Rastrigin function, 6 - Schwefel function, 7 - Griewangk function, 8 - Sine

Envelope Sine Wave function, 9 - Stretched V sine wave function - Ackley, 10 -

Ackley test function, 11 - Ackley function, 12 - Egg Holder function, 13 - Rana

function, 14 - Pathological function, 15 - Michalewicz function, 16 - Master’s cosine

wave function.

If the same number appears in more cells on the same row it means that

algorithms finished in the same cost value. For more details, please refer to [57].

8 Selected Applications - Metaevolution for Synthesis of Control Law for Chaotic Systems

© Zuzana Komínková Oplatková, 2012

51

8 Metaevolution for Synthesis of

Control Law for Chaotic Systems

8.1 Introduction
The interest in the interconnection between evolutionary techniques and the control

of chaotic systems is spread nowadays. First steps were done in [106], [86], [81]

where the control law was based on the Pyragas method: Extended delay feedback

control – ETDAS [73]. These papers were focused on how to tune several parameters

inside the control technique for a chaotic system. Compared to previous research,

this chapter shows a possibility of how to generate the whole control law (not only to

optimize several parameters) for the purpose of stabilization of a chaotic system. The

synthesis of control is inspired by the Pyragas’s delayed feedback control technique

[39], [72]. Unlike the original OGY (Ott – Grebogi – York) control method [63], it

can be simply considered as a targeting and stabilizing algorithm together in one

package [46]. Another great advantage of the Pyragas method for evolutionary

computation is the amount of accessible control parameters which can be easily

tuned by means of evolutionary algorithms (EA). Apart from soft-computing

(artificial intelligence) methods, following methods of mathematical optimization are

commonly used: the simplex method (linear programming) [50], quadratic

programming [49], the branch and bound method [97] and NEH Heuristic. The

simplex method or linear programing is used generally for real-time and simple

optimizations, mostly with unimodal cost functions, whereas the branch and bound

method has proved highly successful for permutative constrained problems. NEH

heuristic was developed for the optimizations of scheduling problems. Previous

experiments with the connection of optimization problems and chaotic systems

proved the difficulty of this task due to the highly nonlinear and erratic cost function

surfaces, thus common mathematical optimization techniques could not be utilized.

8 Selected Applications - Metaevolution for Synthesis of Control Law for Chaotic Systems

© Zuzana Komínková Oplatková, 2012

52

In this research, instead of evolutionary algorithms (EA) utilization [40],

analytic programming (AP) is used. The control law from the proposed system can

be viewed as a symbolic structure that can be synthesized according to the

requirements for the stabilization of a chaotic system. The advantage is that it is not

necessary to have some “preliminary” control law and to estimate its parameters

only. This system will generate the whole structure of the law even with suitable

parameter values.

This research is focused on the research expansion and usage of analytic

programming for the synthesis of a whole control law instead of parameters tuning

for existing and commonly used control law method that is used to stabilize desired

Unstable Periodic Orbits (UPO) of chaotic systems. The research presented in this

chapter is focused on the stabilization of p-1 UPO – a fixed point (stable state) and

higher periodic orbits p-2 UPO (oscillation between two points) and p-4 UPO. Two

approaches were adopted for the stabilization – a simple evolutionary approach with

the cost function utilizing the position of the desired UPO and the blackbox

evolutionary approach utilizing special cost functions, thus without the knowledge of

the exact UPO position in the chaotic attractor. This means that EA is used to find

the best control parameter set up based only on the demanded type of chaotic system

behavior and not based on the position of UPO.

This research has been already published in book chapters, conference and

journal papers, e.g. [61], [55], [83], [84], [85], [87].

In this demonstration, analytic programming with meta version was used.

Metaevolution here means the usage of one evolutionary algorithm for main the AP

process and the second algorithm for coefficient estimation, as was explained above.

The SOMA algorithm was used for the main AP process and DE was used in the

second evolutionary process.

8 Selected Applications - Metaevolution for Synthesis of Control Law for Chaotic Systems

© Zuzana Komínková Oplatková, 2012

53

8.2 Methodology for Control by Means of

AP
The methodology used in these simulations is divided into two parts – control laws

for p-1 orbit (stable state) and higher periodic orbits p-2 and p-4 UPO (oscillation

between two, respectively 4 values). In the first case, the inspiration for preparation

of sets of basic functions and operators for AP was the simpler TDAS control

method (8.1) and its discrete form given in (8.2).

 ()[])()(txtxKtF −−= τ (8.1)

 ()nmnn xxKF −= − (8.2)

This means that only current output value xn and one previous xn!1 were used

in the set of basic functions together with constants, operators such as plus, minus

and power.

The latter case was inspired by the method ETDAS due to the recursive

attributes of the delay equation S utilizing previous states of the system. Therefore

the data set for AP was expanded and covers a longer system output history.

The original control method – ETDAS has the form (8.3).

 F(t) = K 1! R()S t !! d()! x(t)"# $%

 S(t) = x(t)+ RS t !! d() (8.3)

Where: K and R are adjustable constants, F is the perturbation; S is given by the

delay equation utilizing previous states of the system and dτ is a time delay. The

original control method – ETDAS in the discrete form has the form (8.4).

 Fn = K 1! R()Sn!m ! xn"# $%

 Sn = xn + RSn!m (8.4)

Where: m is the period of m-periodic orbit to be stabilized. The perturbation nF in

equations (8.4) may have arbitrarily large value which can cause the diverging of the

8 Selected Applications - Metaevolution for Synthesis of Control Law for Chaotic Systems

© Zuzana Komínková Oplatková, 2012

54

system. Therefore, nF should have a value between maxF− , maxF . In this thesis a

suitable maxF value was taken from the previous research [88].

8.3 Settings
The novelty of the meta-evolutionary approach represents the synthesis of a

feedback control law Fn (perturbation) inspired by the original ETDAS or TDAS

control method. The perturbation is the feedback to the system which helps to

stabilize it.

Therefore the basic set of elementary functions for AP was selected as follows.

The main items are several previous values (data) to current value in the controlled

chaotic system.

GFS2arg = +, -, /, *, ^

GFS0arg = datan-1 to datan, K (for p-1 orbit)

GFS0arg = datan-9 to datan, K (for p-2 orbit).

GFS0arg = datan-11 to datan, K (for p-4 orbit).

The following tables (Table 8.1, Table 8.2) contain the settings of evolutionary
algorithms for AP, the main procedure and also the meta approach algorithm.

Table 8.1: Parameters setting for SOMA used as the main algorithm in the meta-
evolutionary approach.

Parameter Value

PathLength 3

Step 0.11

PRT 0.1

PopSize 50

Migrations 4

Max. CF Evaluations (CFE) 5345

8 Selected Applications - Metaevolution for Synthesis of Control Law for Chaotic Systems

© Zuzana Komínková Oplatková, 2012

55

Table 8.2: Parameters setting up for DE used as the second algorithm in the meta-
evolutionary approach.

Parameter Value

PopSize 40

F 0.8

CR 0.8

Generations 150

Max. CF Evaluations (CFE) 6000

8.4 Cost Function Design
The examples of the results show two approaches to the cost function design –

simple and blackbox mode.

The first proposal for the cost function comes from the simplest Cost Function

(CF). The idea was to minimize the area created by the difference between the

required state and the real system output on the whole simulation interval – τi.

Because of the stabilization of an extremely sensitive chaotic system, another

universal cost function with the possibility of adding penalization rules had to be

used. It was synthesized from the simple CF and other terms were added. In this case,

it is not possible to use the simple rule of minimizing the area created by the

difference between the required and actual state on the whole simulation interval – τi,

due to many serious reasons, for example: including of initial chaotic transient into

the final CF value or degrading of the possible best solution by phase shift of higher

periodic orbit, which represents the oscillations between several values.

This CF is in general based on searching for a desired stabilized periodic orbit

and thereafter calculation of the difference between the desired and found actual

periodic orbit on the short time interval - τs (20 iterations) from the point where the

first minimal value of the difference between the desired and actual system output is

found. Such a design of CF should secure the successful stabilization of either p-1

8 Selected Applications - Metaevolution for Synthesis of Control Law for Chaotic Systems

© Zuzana Komínková Oplatková, 2012

56

orbit (stable state) or a higher periodic orbit anywise phase shifted. The CFBasic has

the form (8.5).

 CFBasic = pen1 + TSt ! ASt
t=!1

! 2

" , (8.5)

where:

TS - target state, AS - actual state

τ1 - the first min value of the difference between TS and AS, τ2 – the end of the

optimization interval (τ1+ τs)

pen1= 0 if τi - τ2 ≥ τs; pen1= 10*(τi - τ2) if τi - τ2 < τs (i.e. late stabilization).

The second type of the cost function (CF2) used in the simulations for the

stabilizing of the chaotic system was in the “blackbox mode”, ie. without the exact

numerical value of the target state. In this case, it is not possible to use the simple

rule of minimizing the area created by the difference between the required and actual

state on the whole simulation interval – τ or its arbitrary part.

This approach is based on searching for periodic orbits in a chaotic attractor

and stabilizing the system on these periodic orbits by means of applying the optimal

feedback perturbation nF . It means that this new CF did not take any numerical target

state into consideration but the selected target behavior of system. Therefore, this

kind of CF is based on the search for optimal feedback perturbation nF securing the

stabilization on any type of the selected UPO (p-1 orbit – stable state, p-2 orbit –

oscillating between two values etc.). The slight disadvantage of this approach is that

for each UPO (i.e. different behavior) a different CF is needed.

The results in this thesis show only one case with the blackbox mode, only for

demonstration. The other systems with the blackbox mode were published at

conferences or in journals.

The proposal of CF2 used in the case of p-2 orbit is based on the following

simple rule. The iteration y(n) and y(n+2) must have the same value. But this rule is

also valid for the case of – p-1 orbit, where in discrete systems, the iteration y(n) and

y(n+1) of the output value must be the same. Thus another condition had to be

8 Selected Applications - Metaevolution for Synthesis of Control Law for Chaotic Systems

© Zuzana Komínková Oplatková, 2012

57

added. It says that in the case of p-2 orbit there must be a difference between the n

and n+1 output iteration. Considering the fact of minimizing the CF, the value of this

condition had to be rewritten into this suitable form (8.6)

 () () cnyny +−+1
1 (8.6)

where: c – small constant 1.10-16 which was added to prevent the evolutionary

optimization from crashing because of division by zero which the suboptimal

solution stabilized at p-1 orbit returns. The CF2 has the form (8.7).

 () () () () cnyny
nynypCF

t +−+
+−++= ∑

= 1
121

0
2

τ
 (8.7)

 where: p1 = penalization. In the proposed CF2, penalization has to be

included because it should avoid finding solutions where the stabilization on

saturation boundary values {0, 1} or oscillation between them (i.e. artificial p-2

orbit) occurs. This penalization was calculated as the sum of the number of iterations,

where the system output reaches the saturation boundary value.

8.5 Selected Chaotic Systems Used in

Simulations

8.5.1 Logistic Equation

The Logistic equation (Logistic map) is a one-dimensional discrete-time example of

how complex chaotic behaviour (8.8) can arise from a very simple non-linear

dynamical equation. This chaotic system was introduced and popularized by the

biologist Robert May [48]. It was originally introduced as a demographic model as a

typical predator–prey relationship. The chaotic behaviour can be observed by varying

the parameter r. At r = 3.57 is the beginning of chaos. At r > 3.57, the system

exhibits chaotic behaviour. The example of this behaviour is depicted in the

bifurcation diagram – Fig. 8.1.

8 Selected Applications - Metaevolution for Synthesis of Control Law for Chaotic Systems

© Zuzana Komínková Oplatková, 2012

58

 xn+1 = rxn 1! xn() (8.8)

Fig. 8.1: The bifurcation diagram of the Logistic equation

8.5.2 Hénon Chaotic System

The second chosen example of a chaotic system was the two dimensional Hénon map

in the form (8.9).

xn+1 = a ! xn

2 + byn
yn+1 = xn

 (8.9)

This is a model invented with a mathematical motivation to investigate chaos.

The Hénon map is a discrete-time dynamical system which was introduced as a

simplified model of the Poincaré map for the Lorenz system. It is one of the most

studied examples of dynamical systems that exhibit chaotic behavior. The map

depends on two parameters, a and b, which for the canonical Hénon map have values

of a = 1.4 and b = 0.3. For these canonical values the Hénon map is chaotic [33].

The example of this chaotic behavior can be clearly seen in the bifurcation

diagram – Fig. 8.2, which was created by plotting of a variable x as a function of one

control parameter for the fixed second parameter.

8 Selected Applications - Metaevolution for Synthesis of Control Law for Chaotic Systems

© Zuzana Komínková Oplatková, 2012

59

 Fig. 8.2: The bifurcation diagram of the Hénon Map

8.5.3 Synthesized Chaotic System

The other selected example of chaotic systems was a synthesized system (8.10)

introduced in [103]. The experiments published in [103] were made for the purpose

of synthesizing various chaotic systems by means of analytic programming. The

presented approach of the synthesis of a whole control law suppresses the fact that

appeared in the previous research [88], that some of the synthesized systems are

barely controllable.

 xn+1 =
A 2A ! 2xn

2 ! 3xn A ! xn + Axn()()
!A + xn ! xn

2 (8.10)

This system exhibits chaotic behavior for the control parameter A in the ranges

<0.1, 0.13> and <0.8, 1.2> (see Fig. 8.3, Fig. 8.4).

Fig. 8.3: The bifurcation diagram for A = <0.8, 1.2>

8 Selected Applications - Metaevolution for Synthesis of Control Law for Chaotic Systems

© Zuzana Komínková Oplatková, 2012

60

Fig. 8.4: The bifurcation diagram for A = <0.1, 0.15>

8.5.4 Lozi Map

The Lozi map is a complex nonlinear discrete two-dimensional chaotic map. The

map equations are given in (8.11) and (8.12) and in the bifurcation diagram in Fig.

8.5. The parameters used in this thesis are: a = 1.7 and b = 0.5 as suggested in [91].

 Xn+1 =1! a Xn + bYn (8.11)

 Yn+1 = Xn (8.12)

Fig. 8.5: The bifurcation diagram for the Lozi map

8 Selected Applications - Metaevolution for Synthesis of Control Law for Chaotic Systems

© Zuzana Komínková Oplatková, 2012

61

8.5.5 Burger’s Map

The Burger’s map is a simple two-dimensional discrete chaotic system. The map

equations are given in (8.13) and (8.14) and in the bifurcation diagram in Fig. 8.6.

This map uses parameters a = 0.75 and b = 1.75 as suggested in [91].

 Xn+1 = aXn +Yn
2 (8.13)

 Yn+1 = bYn + XnYn (8.14)

Fig. 8.6: The bifurcation diagram for the Burger’s map

8.5.6 Delayed Logistic Equation

The Delayed logistic equation is a simple two-dimensional discrete system. It is a

two dimensional extension of the logistic equation [48]. The map equations are given

in (8.15) and (8.16) and in the bifurcation diagram in Fig. 8.7. The parameter used in

this thesis is A = 2.27 [91].

 Xn+1 = AXn 1!Yn() (8.15)

 Yn+1 = Xn (8.16)

8 Selected Applications - Metaevolution for Synthesis of Control Law for Chaotic Systems

© Zuzana Komínková Oplatková, 2012

62

Fig. 8.7: The bifurcation diagram for the Delayed logistic equation

8.5.7 Cubic map

The Cubic map is a simple one-dimensional discrete system very similar to the most

known and studied logistic equation [48]. The map equation is given in (8.17) and in

the bifurcation diagram in Fig. 8.8. The parameter used in this thesis is A= 3.0 as it

was also suggested in [91].

 Xn+1 = AXn 1! Xn
2() (8.17)

Fig. 8.8: The bifurcation diagram for the Cubic map

8 Selected Applications - Metaevolution for Synthesis of Control Law for Chaotic Systems

© Zuzana Komínková Oplatková, 2012

63

8.6 Results for p-1 Orbit – Stable State
The examples of new synthesized feedback control laws Fn (perturbation) for the

controlled logistic equation (8.18), the Hénon map (8.19), the evolutionary

synthesized system (8.20), the Lozi map (8.21), the Burger’s map (8.22), the Delayed

logistic equation (8.23) and the Cubic map (8.24):

 xn+1 = rxn 1! xn()+ Fn (8.18)

 xn+1 = a ! xn
2 + byn + Fn (8.19)

 xn+1 =
A 2A ! 2xn

2 ! 3xn A ! xn + Axn()()
!A + xn ! xn

2 + Fn (8.20)

Xn+1 = 1! a Xn + bYn + Fn (8.21)

Xn+1 = aXn +Yn
2 + Fn (8.22)

 () nnnn FYAXX +−=+ 11 (8.23)

 () nnnn FYAXX +−=+ 11 (8.24)

which were inspired by the original TDAS control method (8.2) are given in Table

8.4. The values for p-1 UPO (a fixed point) of unperturbed chaotic systems based on

the mathematical analysis of the system are depicted in Table 8.3.

8 Selected Applications - Metaevolution for Synthesis of Control Law for Chaotic Systems

© Zuzana Komínková Oplatková, 2012

64

Table 8.3: The values for p-1 UPO (a fixed point)

Chaotic system Value of p-1 UPO of unperturbed system

Logistic equation xF = 0.73842

Hénon map xF = 0.8

Evolutionary synthesized system xF = -1.0772

Lozi map xF = 0.4545

Burger’s map xF = 0.74999

Delayed logistic equation xF = 0.55947

Cubic map xF = -0.8165

Simulation outputs are depicted for all selected chaotic systems in Fig. 8.9.

The last four systems are not studied and used for the confirmation of the research

methodology so often. Therefore only one example is provided.

The identical minimal final CF value very close to zero for all selected

examples gives weight to the argument, that AP is able to synthesize various types of

control laws, securing the precise and fast stabilization with machine numerical

precision on the p-1 unstable periodic orbit of a real chaotic system.

In the case of the logistic equation, one interesting phenomenon occurred. AP

has found the notation of original TDAS [73] which was the inspiration for creating

the basic data sets for AP. For comparison, please refer to the first line in Table 8.4.

and the notation of the TDAS method in (8.2), where K is the gain constant for the

logistic equation, the recommended value is around -0.5.

In the case of the Hénon map, the stabilization on a real chaotic UPO was very

precise; the only difference across all simulation results was the speed of

stabilization. Nevertheless this quality parameter was not included in the CF this

time.

The results for the complicated evolutionary synthesized chaotic system give

weight to the argument that AP is able to synthesize various new control laws

securing very quick and full 100% stabilization even for artificially synthesized

systems.

8 Selected Applications - Metaevolution for Synthesis of Control Law for Chaotic Systems

© Zuzana Komínková Oplatková, 2012

65

Table 8.4: The simulation results for chaotic systems and stabilization at p-1 UPO

Nr.

Control Law with estimated

coefficients
CF Value UPO Value Figure

Logistic equation

1 Fn = !0.527311 xn!1 ! xn() 6.6613.10-16 0.73842 Fig. 8.9 a)

2 Fn = xn!1 ! xn() 0.352456 ! xn!11!xn!1() 6.6613.10-16 0.73842 Fig. 8.9 b)

Hénon map

1 Fn =
xn!1 ! xn !1.62925() xn!1xn ! xn2()

2xn!1
 1.3323.10-15 0.8 Fig. 8.9 c)

2 Fn = !
0.781971 xn!1xn ! xn

2()
xn!1

 1.3323.10-15 0.8 Fig. 8.9 d)

Evolutionary synthesized system

1
()()

2
1

11215597.0

−

−− +−=
n

nnnn
n x

xxxxF 0 -1.0772 Fig. 8.9 e)

2
() ()12

1

1

2
40013.3

−−

−

−−
−

=

nnnnn
n

n
n

xxxxx
x

xF
0 -1.0772 Fig. 8.9 f)

Lozi map

1
()

() nn

nn
n xx

xxF
8934.32 1

1

−
−

=
−

−

6.2992.10-15 0.4545 Fig. 8.9 g)

Burger’s map

1 ()()8298.397686.2001294.0 1 +++−= − nnnn xxxF 0 0.74999 Fig. 8.9 h)

Delayed logistic equation

1
()

851425.022
1

−+
−

−= −

nn

nnn
n xx

xxxF 0 0.55947 Fig. 8.9 i)

Cubic map

1 79938.7
0697.142

−
−=

n
nn x
xF 4.3087.10-10 -0.8165 Fig. 8.9 j)

8 Selected Applications - Metaevolution for Synthesis of Control Law for Chaotic Systems

© Zuzana Komínková Oplatková, 2012

66

 a)

b)

 c)

d)

 e)

f)

g)

h)

8 Selected Applications - Metaevolution for Synthesis of Control Law for Chaotic Systems

© Zuzana Komínková Oplatková, 2012

67

i)

j)

Fig. 8.9: Examples of results – the stabilization of chaotic systems by means of
control laws given in Table 8.4 – a), b) – the logistic equation, c), d) – the Hénon

map, e), f) - the evolutionary synthesized system, g)- the Lozi map, h) – the Burger’s
map, i) – the Delayed logistic equation, j) – the Cubic map

8.7 Results for p-2 Orbit – Oscillation

between Two Points
The simulations for p-2 were carried in both modes – the simple cost function and

blackbox mode. The simple cost function was used for the Hénon map and the

blackbox mode for the logistic equation and evolutionary synthesized systems. The

perturbed system notations can be found in (8.18) – (8.20). The synthesized control

laws for the three selected systems are provided in Table 8.5. The values for p-2

UPO (oscillation between two points) of unperturbed chaotic systems based on the

mathematical analysis of the system are depicted in Table 8.6. The relevant figures of

the simulation output are given in Fig. 8.10.

Both approaches were able to find the control laws that secure the fast

stabilization for p-2 orbit.

An interesting phenomenon was discovered for systems with the blackbox

mode of the cost function. The synthesized control laws are able to stabilize the

chaotic system on optional artificial periodic orbits as can be seen in Table 8.5 and

Fig. 8.10. This is caused by the fact that there was no information about the exact

8 Selected Applications - Metaevolution for Synthesis of Control Law for Chaotic Systems

© Zuzana Komínková Oplatková, 2012

68

position of p-2 orbit in the chaotic attractor transferred into the evolutionary process,

and the cost function was designed to operate on the basis of the selection of desired

system behaviour.

Table 8.5: The simulation results for chaotic systems and stabilization at p-2 UPO

Nr.

Control Law with estimated

coefficients
CF Value UPO Value Figure

Logistic equation

1 3
7

6

367.47
0535.50

−
−

− −
+
−−= n

n

n
n x

x
xF 198.68 0.98 – 0.44 Fig. 8.10 a)

2 464.19
1−= nn xF 149.06 0.94 – 0.21 Fig. 8.10 b)

Hénon map

1 ()700001.0523744.0 1 −+= − nnn xxF 1.39845.10-5 -0.56 – 1.26 Fig. 8.10 c)

2 () ()nnnnnnn xxxxxxF −+−= −−−−− 23348 87967.120375.0 1.70211.10-5 -0.56 – 1.26 Fig. 8.10 d)

Evolutionary synthesized system

1 ()nnnn
n

n xxxx
x

F −−⎟⎟⎠

⎞
⎜⎜⎝

⎛
++−−= −− 0874.086885.1

27
 50.4868 -2.45 – 0.12 Fig. 8.10 e)

2 () 266463.0873148.0468 −+++−= −−− nnnnn xxxxF 50.613 -2.45 – 0.12 Fig. 8.10 f)

Table 8.6: The values for p-2 UPO (oscillation between two points)

Chaotic system Values of p-2 UPO of unperturbed system

Logistic equation xF = 0.37 and 0.89

Hénon map xF = -0.56 and 1.26

Evolutionary synthesized system xF = -2.03 and 0.12

8 Selected Applications - Metaevolution for Synthesis of Control Law for Chaotic Systems

© Zuzana Komínková Oplatková, 2012

69

a)

0 50 100 150 200

0.2

0.4

0.6

0.8

Iteration

b)

0 50 100 150 200

0.2

0.4

0.6

0.8

1.0

Iteration
c)

d)

e)

0 50 100 150 200
- 2.5

- 2.0

- 1.5

- 1.0

- 0.5

0.0

Iteration

f)

0 50 100 150 200
- 2.5

- 2.0

- 1.5

- 1.0

- 0.5

0.0

Iteration

Fig. 8.10: Examples of results – the stabilization of chaotic systems by means of
control laws given in Table 8.5 – a), b) – the logistic equation, c), d) – the Hénon
map, e), f) - the evolutionary synthesized system

Most of common control methods were developed only for stabilization on real

UPO with low energy costs. The question of energy costs and more precise

stabilization will be included into the future research together with the development

of better cost functions, a different AP data set, and performing of numerous

8 Selected Applications - Metaevolution for Synthesis of Control Law for Chaotic Systems

© Zuzana Komínková Oplatková, 2012

70

simulations to obtain more results and produce better statistics, thus to confirm the

robustness of this approach.

8.8 Results for p-4 Orbit – Oscillation

between Four Points
Last simulations were carried out also for p-4 UPO when an oscillation between four

points appears. The perturbed system notations for the logistic equation and the

Hénon map can be found in (8.18) – (8.19). The synthesized control laws for the two

selected systems are provided in Table 8.7. The values for p-4 UPO (oscillation

between four points) of unperturbed chaotic systems based on the mathematical

analysis of the system are depicted in Table 8.8. The tests were performed under the

simple cost function, not in the blackbox mode. The relevant figures of the

simulation output are given in Fig. 8.11.

Table 8.7: Simulation results for chaotic systems and stabilization at p-4 UPO

Nr.

Control Law with estimated

coefficients
CF Value UPO Value Figure

Logistic equation

1 () ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

−−−

−

− +=
115805.35

1

2
225

nn

n

xx

nn
x
nn xxxF

0.1139
0.30, 0.80,

0.6, 0.91
Fig. 8.11 a)

2 6383.34

2
nx
nn xF −= 0.1007

0.3, 0.8,

0.6, 0.9
Fig. 8.11 b)

Hénon map

1 ()nnnnnn xxxxxF −−= −−−− 4378527409.0 0.0984
0.13, 1.45,

-0.86, 0.89
Fig. 8.11 c)

2
()

2
3

6

67

4742.399706.5
191.520174.04863.59

0667.10

−
−

−

−−

++

−−+

+=

n
n

n

n

nnn
n

x
x

x
x

xxxF

0.7095
0.13, 1.45,

-0.86, 0.89
Fig. 8.11 d)

8 Selected Applications - Metaevolution for Synthesis of Control Law for Chaotic Systems

© Zuzana Komínková Oplatková, 2012

71

Table 8.8: The values for p-4 UPO (oscillation between four points)

Chaotic system Values of p-2 UPO of unperturbed system

Logistic equation xF = 0.3038, 0.8037, 0.5995 and 0.9124

Hénon map xF = 0.139, 1.4495, -0.8594 and 0.8962

a)

b)

c)

d)

Fig. 8.11: Examples of results – stabilization of chaotic systems by means of
control laws given in Table 8.7 – a), b) – the logistic equation, c), d) – the Hénon
map

The presented simulation examples show two different results. First group has

low CF values indicating precise but unfortunately slow stabilization and sometimes

only temporary, together with a simple control law. The second group promises not

very precise (as the higher CF values denote) but very fast stabilization and relatively

complex notation of the chaotic controller. This phenomenon is caused by the design

of CF which was borrowed from the research focused on the simpler cases.

Satisfactory results were obtained for example for p-2 orbit.

8 Selected Applications - Metaevolution for Synthesis of Control Law for Chaotic Systems

© Zuzana Komínková Oplatková, 2012

72

8.9 Synthesis of Control Laws for Chaotic

Systems – Conclusion
The area presented in the chapter 8 introduces the usage of analytic programming for

the optimization of stabilization of selected chaotic systems.

Obtained results show that synthesized control laws provided better results than

the original control method which served as an inspiration. This fact reinforces the

argument that AP is able to solve these difficult problems and to produce a new

synthesized control law in a symbolic way securing desired behavior of a chaotic

system. Precise and fast stabilization gives weight to the argument that AP is a

powerful symbolic regression tool which is able to strictly and precisely follow the

rules given by the cost function and synthesize any symbolic formula. In the case of

this research, it means to synthesize some kind of a feedback controller for a chaotic

system.

The research never ends. The question of energy costs and more precise

stabilization will be included into the future research together with the development

of better cost functions, a different AP data set, and performing of numerous

simulations to obtain more results and produce better statistics, thus to confirm the

robustness of this approach.

Presented data and statistical comparison can be summarized as follows:

All simulations were performed at least 50x to obtain statistics. All cases have

found the solution for the stabilization of chaotic systems. As presented results show,

some cases give only temporary stabilization and some even stabilize the system on

artificial UPOs. The number of cost function evaluations for 32 millions per one

simulation means that the consumed time is really high. The future research will be

supposed to search for time efficiency and decreasing of the simulation time.

The other points compare the design of cost functions. The simple evolutionary

approach is easy to implement, it is very fast and gives satisfactory results. But the

quality of results is restricted by the limitations of the mathematical formulas, control

laws, models etc., for which the parameters are tuned by EA.

8 Selected Applications - Metaevolution for Synthesis of Control Law for Chaotic Systems

© Zuzana Komínková Oplatková, 2012

73

The Blackbox approach brings the advantage of avoidance of the mathematical

analysis of chaotic systems but in this case an interesting phenomenon was

discovered – stabilization on artificial UPOs. Since there was no information about

the exact position of orbits in the chaotic attractor transferred into the evolutionary

process and the cost function was designed to operate in the blackbox mode, the

evolution found satisfactory behaviour but not on the precise values.

Nevertheless the proposed blackbox mode approach is very advantageous and

simple to implement in the case of an unknown chaotic system or chaotic oscillations

in any system because of its ability to control the chaotic system or oscillations

without any previous demanding mathematical analysis, ie. without the knowledge of

the exact UPOs position. It can be used as a powerful tool to promptly check the

controllability of any new discrete chaotic system.

9 Selected Applications - Synthesis of Pseudo Artificial Neural Networks

© Zuzana Komínková Oplatková, 2012

74

9 Synthesis of Pseudo Artificial

Neural Networks

9.1 Pseudo ANN - Introduction
The interest in classification by means of some automatic process has been enlarged

with the development of artificial neural networks (ANN). They can be used also for

many other possible applications such as pattern recognition, prediction, control,

signal filtering, approximation, etc. All artificial neural networks are based on a

relation between inputs and output(s) that utilize mathematical transfer functions and

optimized weights from a training process. The setting-up of layers, number of

neurons in layers, estimating of suitable values of weights is a demanding procedure.

On that account, pseudo neural networks that represent the novelty approach using

symbolic regression with evolutionary computation is proposed in this chapter.

The evolutionary techniques have been recently commonly used for the

synthesis of artificial neural networks but in a different manner than is presented

here. One possibility is the usage of evolutionary algorithms for the optimization of

weights to obtain a ANN training process with a small or no training error result.

Some other approaches represent the special ways of encoding the structure of the

ANN either into the individuals of evolutionary algorithms or into the tools such as

Genetic Programming. But all of these methods still work with the classical

terminology and separation of ANN to neurons and their transfer functions [23].

The proposed technique uses symbolic regression and is similar to the

synthesis of the analytical form of the mathematical model between input(s) and

output(s) in a training set used in neural networks. Therefore it is called Pseudo

Neural Networks [62]. The proposed technique synthesizes the structure without a

prior knowledge of transfer functions and inner potentials. It synthesizes the relation

between inputs and output of a training set items used in neural networks so that the

items of each group are correctly classified according to the rules for the cost

function value.

9 Selected Applications - Synthesis of Pseudo Artificial Neural Networks

© Zuzana Komínková Oplatková, 2012

75

The example of the relation between two inputs and one output can be shown

in the mathematical form (9.1). It represents the case of only one neuron and a

logistic sigmoid function as a transfer function.

 y = 1
1+ e! x1w1+x2w2() (9.1)

where y – output

 x1, x2 – inputs

 w1, w2 – weights.

The aim of the proposed technique is to find a similar relation to (9.1). This

relation is completely synthesized by evolutionary symbolic regression – analytic

programming.

9.2 Pseudo ANN - Problem Design

The classification tools are usually tested on an XOR problem (Fig. 9.1). This is the

example of a non-linear separable problem, i.e. there is not possible to put a straight

line (linear function) as a border between two classes – red and green dots. This

chapter presents only the simulations for an XOR problem for two dimensions (two

inputs) as shown in Fig. 9.1.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 9.1: An example of an XOR problem, first class - red dots in left bottom and
right upper corner, second class - green dots in left upper and right bottom corner

9 Selected Applications - Synthesis of Pseudo Artificial Neural Networks

© Zuzana Komínková Oplatková, 2012

76

This classification problem is binary. Therefore the idea from the binary

transfer function was adopted into the rules for the cost function value. The result

value from the synthesized notation is 1 if the value is higher than 0.5, respectively 0

in the opposite case. This is necessary to be able to evaluate the error between

required values and obtained values.

The required values are following:

Red dots – input {0,0} output 1

 input {1,1} output 1

Green dots – input {0,1} output 0

 input {1,0} output 0

In the case of the performed simulations, 10-6 was used instead of absolute

zero. During the synthesis of pseudo ANN this approach shows better results then in

the case of absolute zero. Such values are sometimes recommended also for the

usage of classical artificial neural networks to avoid e.g. division by zero.

9.3 Pseudo ANN - Results
For performed simulations, APmeta version was used. The meta approach uses two

evolutionary algorithms, one for the main AP process, here the SOMA algorithm and

also DE, and the second for tuning parameters, here only DE was used. The settings

of EA parameters for both processes were based on numerous performed

experiments with APmeta (Table 9.1 and Table 9.2).

Table 9.1: SOMA settings for AP

PathLength 3

Step 0.11

PRT 0.1

PopSize 50

Migrations 4

Max. CF Evaluations (CFE) 5345

9 Selected Applications - Synthesis of Pseudo Artificial Neural Networks

© Zuzana Komínková Oplatková, 2012

77

Table 9.2: DE settings for AP and meta-evolution

PopSize 40

F 0.8

CR 0.8

Generations 150

Max. CF Evaluations (CFE) 6000

The basic set of elementary functions for AP was inspired by the items

contained in artificial neural nets:

GFS2arg= +, -, /, *, ^, exp

GFS0arg= x1, x2, K

The performed simulations were successful and the following figure (Fig. 9.2)

shows the found borders between the classes.

a) b)

c)

Fig. 9.2: Examples of solutions

9 Selected Applications - Synthesis of Pseudo Artificial Neural Networks

© Zuzana Komínková Oplatková, 2012

78

The following notation (9.2) is the solution for Fig. 9.2 c).

 y = exp
967.7328 + x1 + x1x2 +x2 +2.836.10-193-687.33578 + exp x 2() + x1

*

*exp exp x1x2()() -x2()-687.336+exp x2()+x1 x2

!

"
#
#

$

%
&
&

 (9.2)

where y – output

 x1, x2 – inputs

All found solutions were successful. However it is necessary to discuss some

critical points. It seems that green dots {1, 0} in Fig. 9.2 a) and b) belong to the

other class. The violet colour is not visible much in that part but the green dot is still

in the violet part. On the contrary, the red dot {0,0} seems to be in the violet part but

they are on the edge. Fig. 9.2 c) shows clear groups but the stripes are not suitable

for classification into the two groups. All these observed phenomena will be taken

into consideration during the future testing and cost value rules development.

9.4 Pseudo ANN - Conclusion
This chapter dealt with a novel approach – pseudo neural networks. Within this

approach, the classical optimization of the structure or weights was not performed.

The proposed technique is based on symbolic regression with evolutionary

computation. It synthesizes a whole structure in a symbolic form without a prior

knowledge of the ANN structure or transfer functions. It means that the relation

between inputs and output(s) is synthesized. As can be seen in the result section,

such approach is promising. For further tests, some observed critical points have to

be taken into consideration. Future plans will be focused on the better cost function

design and also on performing numerous simulations with more difficult tasks than

the presented one.

10 Selected Applications - Steganalysis by Means of ANN

© Zuzana Komínková Oplatková, 2012

79

10 Steganalysis by Means of ANN

10.1 Motivation behind ANN Usage for

Steganalysis
Steganalysis means the techniques used to discover the covert communication in

transferred data files. The very basic test, which is called the visual attack, uses

human senses such as sight for discovering irregularities in a represented medium.

Such test is limited by human individuality. Two people always have different

sensitivity to an examined object. Another steganalysis tool, called the structural

attack, is similar to the visual attack. It is computer based and focuses on discovering

irregularities in the data structure of a cover medium. Every computer data file has its

own characteristic structure. Embedding a message will leave a trace in such a

structure. The difference between a stego file (with hidden content) and a cover file

(an empty file without a message) is given by the quality of a steganographic tool.

The statistical attack has more scientific approach than two above mentioned one and

it is more complicated. In general, statistics is used for determining the level of

randomness, entropy of the redundant data or colour frequencies occurrence in stego

files.

The statistical steganalysis has been deeply described by many researchers, e.g.

by Niel Provos and Peter Honeyman [71] or [70]. Andreas Westfeld together with

Andreas Pfitzmann introduced their Chi-square statistical attack [100]. Jessica

Fridrich and her teams published many research papers on the JPEG steganalysis

[27], [26], [28] on conventional mathematical–statistical basis. There were more

people working on various steganalysis techniques. All above mentioned people have

been the most dedicated to this field.

The techniques described in the above mentioned papers have been powerful

and functional. They have only one disadvantage. They suffer from the false positive

classification. The reason is simple, the steganography classification is a

10 Selected Applications - Steganalysis by Means of ANN

© Zuzana Komínková Oplatková, 2012

80

mathematically complicated process and input steganograms (files with a message

inside) are strongly diversified.

The approach to the steganalysis proposed in the research in the thesis is based

on artificial intelligence, mainly artificial neural networks (ANNs). ANNs are known

as a strong tool for solving difficult classification tasks. ANNs have been

successfully implemented in many other projects focused on classification.

A big challenge for classification based on artificial intelligence was to deal

with the double compression of JPEG – a file that was the main source of false

positive classification. This research is focused on pin-pointing the stego image

classification by a new sampling methodology and the reduction of false positive

classification by means of a trained ANN classifier on pairs of cover-stego samples.

The research was published for example in [58], [41], [35].

10.2 Steganalysis - Introduction
With the spread of computers into human lives the need for security has arisen. The

field that covers the development of the impossibility of secret message decoding is

called Cryptography [29]. The other method connected with security hides

transmitted information because of the distraction of attention from messages which

contain very sensitive data. This method is called Steganography [7], [77], [51].

Hiding information is both useful and dangerous. Therefore it is important to develop

tools and methods for a forensic analysis to prevent the abuse of hiding methods for

criminal purposes.

Steganography is the art of hiding communication by embedding secret

messages into innocent file content, mainly into multimedia files. The carrier files in

steganography are called the “cover images”, while files with hidden information

embedded by some steganography technique are called the “stego files”.

Steganography can be misused. Unwanted leaking of “know-how” or other

confidential content is in the first place. An example of such a process can be

described as follows: imagine a company with employees and secret information,

e.g. a database with secret data that is located on a database server accessible from an

employee’s terminal. If an employee decides to steal the confidential data and uses a

10 Selected Applications - Steganalysis by Means of ANN

© Zuzana Komínková Oplatková, 2012

81

regular email to do so (as seen in Fig. 10.1) his/her action is revealed almost

immediately because he/she has a monitored services email account. When the

internal data is saved into a regular email and sent by the department email account

to a home computer then the email is checked.

Fig. 10.1: Message transport through a plain text email

There is an email monitor between the terminal and the email gateway which

scans all-outgoing emails for viruses as well as its body and attachments for any

internal business information. In the described case, the security monitor detects that

the email attachment contains sensitive data. The security department is immediately

informed about this incident and the employee is charged for the information fraud.

In Fig. 10.2 a similar scenario is shown. If the employee from this case decides

to steal confidential data from the employer’s database it is not a difficult task with

the use of a steganography tool. Steganography helps with the secure transfer of

secret messages compared to cryptography, which is strong in the usage of the key

for coding of messages. Steganography codes a message into images, a video file or

data stream. If a human eye sees a picture with steganographic content, it would not

recognize the secret message inside. This is the main aim – to hide information itself.

10 Selected Applications - Steganalysis by Means of ANN

© Zuzana Komínková Oplatková, 2012

82

Fig. 10.2: Message transport with steganography

The whole second scenario with a steganography tool is very easy. The

employee can use e.g. a Java application downloaded from the Internet because of

the company rules and forbidden instalations of any application on the employee’s

terminal or computer and Java is consider to be used for multi platforms. Then he/she

has to prepare images in the JPEG format and use a steganography Java application

that embeds a text file containing internal business information into the image files.

After that the images are sent to his/her personal email account. The outgoing server

does not recognize any danger of an information leak.

The main goal of steganography is to not attract any attention. Therefore it is

necessary to have a method for its detection because it is vulnerable. The research

deals with this particular phenomenon – the method of detection by means of

Artificial Neural Networks (ANN) [31], [98], [30], [22].

The steganalysis techniques employ different ways of detection such as

statistical methods, searching for specific signature of a steganography method [51].

Also the methods of artificial intelligence (AI) were used. The research field within

AI is connected with a support vector machine (SVM) [74], [13]. Some researches

10 Selected Applications - Steganalysis by Means of ANN

© Zuzana Komínková Oplatková, 2012

83

use ANN as the case of this research. SVM and ANN are similar tools but SVM is

usually used for lineary separable problems. The approach in the thesis is different in

the design of training sets. This thesis does not use pixel differences or joint features

of discrete wavelet transform and polynomial fitting errors or reversible data [77],

[74], [13]. The approach uses Huffman coding of bit word lengths extracted from

discrete cosine transformation coefficients.

10.3 ANN Training Sets
Training sets are necessary for the correct running of artificial neural nets. Within all

experiments supervised, ANNs were used. In this case, each item of a training set has

an output value which says if the image is with or without any hidden content.

The used training set consists of numbers obtained from Huffman coding [8].

Huffman coding was applied to adjustments and modifications of the basic 2183

images that were acquired for testing purposes from three digital cameras (Sony

DSC-P93, Olympus SP550UZ, Pentax K10D) in fine or superfine quality. The

lowest image resolution for this basic group is more then 2560x1600, the average

picture resolution is 3529x2458 pixels and the maximum picture resolution is

3872x2592 pixels with the average file size of 2616.6 kB and the maximum file size

of 4403.2 kB. The images from the basic set were resized to several sizes as

described below.

10.3.1 Cover Images

Cover samples, which are images without any hidden information, were created by

resizing the original digital images with the Linux tool ImageMagick [36] into

different file resolutions estimated by their common appearance on the Internet. The

entire image pool contains almost 22 000 images.

The list of all image resolutions used for the test group:

800x600, 1024x768, 1280x1024, 1440x900, 1680x1050, 1920x1440,

2560x1600 and one special group containing original files with resolution higher

then 2560x1600 pixels.

10 Selected Applications - Steganalysis by Means of ANN

© Zuzana Komínková Oplatková, 2012

84

10.3.2 Stego Images

All samples from the cover image pool were used for Outguess, Steghide and the PQ

algorithm. Due to the problems with the F5 java implementation, the input cover file

pool was reduced only to images up to the maximum resolution of 1680 x 1050

pixels in this case.

A secret message and an encryption password were generated by the Linux

pseudorandom number generator that collects environmental noise from device

drivers and other sources into the entropy pool. The amount of hidden information

was set up by the measurement of common length of short messages.

The list of all message lengths used for the stego test samples:

5, 10, 15, 30, 75, 150, 300 and 600 Bytes.

10.3.3 Huffman Coding

Huffman coding was designed by David Huffman in 1952. This method takes

symbols represented e.g. by values of discrete cosine transformation (which is one of

the methods how to present information such as colour, brightness etc. in pictures),

and codes it into a changeable length code so that according to statistics the shortest

bit representation is assigned to the symbols with the most frequent appearance [8]. It

has two very important properties – it is a code with minimal length and prefix code

that means that it can be decoded uniquely. On the other hand, the disadvantage is

that we have to know the appearance of each symbol a priori. In the case of pictures,

it is possible to work with estimation, which will be edited during the compression.

Fig. 10.3, Fig. 10.4, Table 10.1 and Table 10.2 show the differences between the

cover and stego images in DC or AC (direct or alternating part) class. The pictures

show the number of each bit word in the image.

Fig. 10.3: Huffman coding histogram – cover image (clear pictures)

10 Selected Applications - Steganalysis by Means of ANN

© Zuzana Komínková Oplatková, 2012

85

Fig. 10.4: Huffman coding histogram – stego image (coded picture)

Table 10.1: Huffman coding histogram – cover image

Length of the

word

[bits]

DC, Class 0 DC, Class 1 AC, Class 0 AC, Class 1

 1 0 3504 0 0

 2 1623 0 50871 18704

 3 3178 2060 69370 25155

 4 3435 2371 23902 9522

 5 342 527 30216 6311

 6 86 170 5642 4968

 7 0 31 7102 3032

 8 0 1 771 805

 9 0 0 2285 425

10 0 0 1022 204

11 0 0 522 115

12 0 0 345 40

13 0 0 74 49

14 0 0 20 8

15 0 0 0 6

16 0 0 50 13

10 Selected Applications - Steganalysis by Means of ANN

© Zuzana Komínková Oplatková, 2012

86

Table 10.2: Huffman coding histogram – stego image

Length of

the word

[bits]

DC, Class 0 DC, Class 1 AC, Class 0 AC, Class 1

1 0 0 0 0

2 4433 8312 59998 14595

3 13283 730 14904 2224

4 906 343 38276 2755

5 444 181 10142 1444

6 86 10 4742 925

7 0 0 4680 89

8 0 0 1943 428

9 0 0 2149 77

10 0 0 667 42

11 0 0 444 12

12 0 0 316 0

13 0 0 0 0

14 0 0 0 1

15 0 0 73 0

16 0 0 477 0

For the concept of the main principle, please refer to the following picture (Fig.

10.5). Each bit word can stand as a brick in the wall. It is possible to get two equally

big walls but each of them will be assembled from different bricks and brick sizes.

These two walls are of the same size but with a different structure (a different set of

bricks, some bricks appear more often then others). By the same analogy, the

differences in cover and stego files can be percieved. The objective is to compare the

different bit word length and different sizes of bricks in the walls for cover and

images affected by steganography.

10 Selected Applications - Steganalysis by Means of ANN

© Zuzana Komínková Oplatková, 2012

87

Fig. 10.5: Illustration of Huffman coding histogram – left) cover image, right) stego
image

The main goal of steganography is to not attract attention. Stego images appear

as ordinary pictures taken by a digital camera. But there are significant changes in

the structure of the stego images. The changes in the JPEG structure are relevant and

used in the case of the presented research for correct training of an artificial neural

network.

10.3.4 Examples of Training Set Items

Values obtained from Huffman coding were transferred into a training set, i.e. all
four columns from each table (Table 10.1 and Table 10.2) were joined to create a
training vector. An example follows.

{0,2178,49642,11918,7758,3614,2113,1328,181,0,0,0,0,0,0,0,0,37824,17026,9

608,6323,4486,2771,692,2,0,0,0,0,0,0,0,0,1184565,266816,406818,225770,85887,84

320,39638,27400,14811,6889,1516,0,0,105,5231,0,295156,155514,135282,76214,48

989,12495,16659,9154,3609,1601,94,0,868,625,208}

The vector contains 64 values – real numbers of bit words which represent

inputs into ANN. The ANN output neuron is only one and has the output value 0 or 1

(sigmoid function) or -1 and 1 (saturated linear function). The threshold for

determining the output class is in the middle of the interval – 0.5 in the case of 0 and

1 or 0 in the latter case.

10 Selected Applications - Steganalysis by Means of ANN

© Zuzana Komínková Oplatková, 2012

88

To use numbers in the interval <0,1> instead of the real quantities turned out as

an inappropriate way. There are too big differences between each position. On that

account, small numbers are not visible if expressed as a percentage in the interval

<0,1>. They would approximate zero. The result is that the input information into the

neural network is misrepresented.

10.4 Brief Outlook of Steganography Tools

10.4.1 Outguess

OutGuess is a universal steganography tool which is able to insert hidden

information into redundant bits of input data [90]. The type of input data is not

important for OutGuess at all because this software uses specific drivers for specific

graphic formats that extract redundant bits and writes these bits back after they are

changed. The version, which was used for the simulations, is able to work with the

JPEG and PNG formats. JPEG pictures were used in this thesis. OutGuess is

available under the Berkeley Software Distribution (BSD) license. OutGuess is hard

to detect by means of statistics calculation based on the frequency analysis. The

results of the statistical analysis are not able to reveal steganography content because

OutGuess finds out the maximal length of the message before the picture is inserted.

This causes that the resulting image is not changed from the point of view of

frequency analysis as was described in [69].

10.4.2 Steghide

Steghide is steganography software that is able to hide data in various kinds of image

and audio files. The colour - respectively sample-frequencies are not changed thus

make the embedding resistant to the first-order statistical tests. Steghide uses a graph

theory approach to steganography. The embedding algorithm works roughly as

follows: At first, secret data is compressed and encrypted. Then a sequence of pixel

positions in the cover file is created based on a pseudorandom number generator

initialized with the passphrase (the secret data will be embedded in the pixels at these

positions). The positions that do not need to be changed (because they have already

10 Selected Applications - Steganalysis by Means of ANN

© Zuzana Komínková Oplatková, 2012

89

contained the correct value by chance) are sorted out. Then a graph-theory matching

algorithm finds pairs of positions so that exchanging their values has the effect to

embedding of the corresponding part of the secret data. If the algorithm cannot find

any more such pairs, all exchanges are actually performed. The pixels at the

remaining positions (the positions that are not the part of such a pair) are also

modified to contain the embedded data (but this is done by overwriting them, not by

exchanging them with other pixels). The fact that (most of) the embedding is done by

exchanging pixel values implies that the first-order statistics (i.e. how many times a

colour occurs in the picture) is not changed. For audio files the algorithm is the same,

except for that audio samples are used instead of pixels. The default encryption

algorithm is the Rijndael with a key size of 128 bits (which is AES - the advanced

encryption standard) in the cipher block-chaining mode [32].

10.4.3 F5 Algorithm (CipherAWT)

The F5 steganographic algorithm was introduced by German researchers Pfitzmann

and Westfeld in 2001 [101]. The goal of their research was to develop concepts and a

practical embedding method for JPEG images that would provide high

steganographic capacity without sacrificing security. Guided by their χ2 attack, they

challenged the paradigm of replacing bits of information in the cover-image with the

secret message while proposing a different paradigm of incrementing image

components to embed message bits. Instead of replacing the least significant bits

(LSBs) of quantized discrete cosine transform (DCT) coefficients with the message

bits, the absolute value of the coefficient is decreased by one. The F5 authors argue

that this type of embedding cannot be detected using their χ2 statistical attack.

The F5 algorithm embeds message bits into randomly chosen DCT coefficients

and employs matrix embedding that minimizes the necessary number of changes to

embed a message of certain length.

The F5 algorithm modifies the histogram of DCT coefficients, but some crucial

characteristics of the histogram are preserved, such as its monotonicity and

monotonicity of increments. The F5 algorithm cannot be detected using the χ2 attack

10 Selected Applications - Steganalysis by Means of ANN

© Zuzana Komínková Oplatková, 2012

90

because the embedding is not based on bit-replacement or exchanging any fixed pairs

of values [27].

10.4.4 PQ Algorithm

Perturbed quantization (PQ) steganography [25] is a quite successful data hiding

approach which current steganalysis methods fail to work for [90]. In other words,

PQ does not leave any traces in the form that the current steganalysis methods can

catch. However, linear dependency between image rows and/or columns in the

spatial domain is affected by PQ embedding due to random modifications on discrete

cosine transform (DCT) coefficients’ parities during data hiding.

In PQ steganography, the cover object is applied an information reducing

operation that involves quantization such as lossy compression, resizing, or A/D

conversion before data embedding. The quantization is perturbed according to a

random key for data embedding, therefore called “perturbed quantization”. PQ

steganography, which uses JPEG compression for information reducing operation, is

different from their DCT based counterparts. Since message bits are encoded by

changing DCT parities after quantization, the cover image can be thought of just as a

recompressed input image. To achieve high embedding rates, recompression is

realized by doubling the input quantization table with the assumption that

recompression of cover JPEG images does not draw any suspicion because of its

wide usage in digital photography [25]. Since the original cover image is

recompressed via embedding operation, its compressed version should be considered

as “stego” instead of the original image.

10.5 Results
All experiments were performed with a supervised feed forward net, which uses the

Levenberg-Marquardt training algorithm.

The testing of the proposed approach was performed with different settings of

neurons in one hidden layer net (number from 1 to 20) and 9 combinations of transfer

functions (logistic sigmoid, saturated linear and hyperbolic tangent for hidden layer

and output neuron). The tests were carried out for each stego algorithm individually.

10 Selected Applications - Steganalysis by Means of ANN

© Zuzana Komínková Oplatková, 2012

91

Experiments with only one general neural network for all stego algorithms and even

their detection have not been successful yet.

The whole data set was divided into training and testing sets. For training

14400 cover items and 135000 stego images were used. The exact number of testing

items is written in Table 10.3 for all testing stego algorithms.

All simulations used sixty four input neurons (obtained from Huffman coding)

and one output neuron that classifies the training item into the class of cover or stego

images. The following table (Table 10.3) shows the best results from the performed

experiments. These tables contain information about the number of cover and stego

images and misclassified items (= an item should contain stego content and ANN

output was a group of cover images and viceversa). The last two rows represent the

total error in the whole set of cover and stego images.

Table 10.3: Results of testing success for four steganographic tools

Type of

algorithm
OutGuess Steghide

F5

algorithm

PQ

algorithm

Nr. of hidden
neurons

12 1 15 1

type of function in
inner layer

logistic
sigmoid

logistic
sigmoid

saturated
linear

logistic
sigmoid

type of function in
output layer

saturated
linear

saturated
linear

hyperbolic
tangent

saturated
linear

Cover total 5246 5246 9746 22711

Cover errors 2 32 8 1

Cover % error 0.0381 0.61 0.0821 0.0044

Cover % success 99.9619 99.39 99.9179 99.9956

Stego total 135 891 142 772 77 314 126 599

Stego errors 0 3248 24 733

Stego % error 0 2.275 0.031 0.6106

Stego % success 100 97.725 99.969 99.3894

Total % error 0.0014 2.216 0.0368 0.5184

Total % success 99.9986 97.784 99.9632 99.4816

10 Selected Applications - Steganalysis by Means of ANN

© Zuzana Komínková Oplatková, 2012

92

Based on the presented results, it can be stated that the total error in

experiments was under 1 % for all algorithms except for the Steghide algorithm.

Compared to the earlier research [34], [60], [59] where the total error was almost

zero, the testing set consists of more items with more message payload etc. This

probably caused the worsening of the results. As the ANN output is a mathematical

function – mathematical dependency of inputs, it is possible to extract it into the

equation. This kind of equation can be used in stego detector software without the

knowledge of ANN structures. Such a mathematical equation needs only suitable

inputs, which are extracted from Huffman coding, and the output is obtained. The

notations of these equations are very complex they are therefore not presented here.

10.6 Steganalysis by Means of ANN -

Conclusion
This research introduces a method of steganalysis by means of neural networks. The

novelty is in the training set design. The training set consists of 64 inputs obtained

from Huffman coding extracted from discrete cosine transformation coefficients and

counting of bit words of the same lengths. During the simulations files with

embedded message by means of 4 steganographic algorithms – OutGuess, Steghide,

the PQ and F5 algorithm were tested. ANNs were able to detect the cover and stego

groups with less than 1 % error. The exception was the case of Steghide where the

error was around 2 %. According to the presented results, the proposed technique

was successful.

The optimization of consumed time in the broad area of computations is very

important and required in all fields. The research in the area of steganalysis by means

of ANN covers also datamining techniques used in the simulations for less time

consuming training. This was done through the ANN structure optimization. The

input dimension was reduced from sixty four to three neurons. Therefore also

number of weights, which were necessary to be trained, was reduced and the ANN

training phase was not so time consuming.

10 Selected Applications - Steganalysis by Means of ANN

© Zuzana Komínková Oplatková, 2012

93

The aim for the future is to develop a steganalysis detector. The detector might

be part of the outgoing email servers. This device will not decode the message itself,

since this research is focused only on the recognition of the use of steganography

tools (encoder) on analysed JPEG pictures.

11 Selected Applications - Optimal Modelling of Dynamic Flight

© Zuzana Komínková Oplatková, 2012

94

11 Optimal Modelling of Dynamic

Flight

11.1 Modelling of Flight - Introduction
This chapter is focused on how to solve the approximation of a real dynamic system

by a suitable analytic solution. There is a dynamic flight model which uses several

classes of large sets of aerodynamic lift, drag, speed, force, balance and mass data

[20], [96], [95], [94], [93]. The aircraft company and industry is able to work with

differential equations to obtain data. However, this takes a lot of time to obtain some

results. Therefore a need to find an analytical solution has arisen. Because the input

data and the “response”, ie. output data, are known, there are possibilities how to find

a suitable dependence between this data. One of the suitable techniques are artificial

neural networks (ANN) [31], [98], [30], [22].

11.2 Aircraft and Parameters
The following picture (Fig. 11.1) shows an example of an aircraft and its controls

and their influence on manoeuvrability and stability.

Fig. 11.1: A model of an aircraft

11 Selected Applications - Optimal Modelling of Dynamic Flight

© Zuzana Komínková Oplatková, 2012

95

The model, which is considered here, is an airplane dynamic behavioral

mockup describing the aircraft body movements as reaction to flight conditions

(altitude, mass, speed) and control positions. The important parts are:

Ailerons which control the roll of an airplane.

Elevators control the pitch of an airplane, ie. aircraft nose up or down.

Rudder controls the yaw, ie. side to side motion.

Roll is a banking turn of an airplane. Ailerons together with rudder cause the

flight-heading change.

Pitch is the up and down motion of an airplane. To climb, the elevators have to

move up, which pushes the nose up too.

Yaw is the side-to-side motion of an airplane. To cause an airplane to yaw to

the right, the rudder is deployed to the right. This pushes the tail to the left and the

nose to the right [20], [96], [95], [94], [93].

For the purposes of this simulation, following flight conditions such as altitude,

mass, speed, side wing were “frozen” as follows. For the future, these parameters

will be considered as input values too.

o Mass [kg] : 3000.000

o Speed TAS [m/s]: 200.000

o Altitude [m]: 3000.000

o Side Wind [m/s] : 0.000

The rest of the monitored variables were used as inputs to the neural network:

o PLA gas lever [l]

o aileron deflection [rad]

o elevator deflection [rad]

o rudder deflection [rad]

o angle of attack [rad]

o beta slip angle [rad]

o gamma roll angle [rad].

And in the case of modelling, we were interested only in three outputs out of

the seven:

o alpha derivative – pitch

11 Selected Applications - Optimal Modelling of Dynamic Flight

© Zuzana Komínková Oplatková, 2012

96

o beta derivative – yaw

o acceleration [m/s2].

There is numerical computational software in C++ language which can

produce the output data on the basis of given input data. It utilizes several databases

of design data for lift, drag, engines thrust, centre of gravity and aerodynamic centre

equations. Based on the input, the model calculates a row of polynomials to

approximate the intermediate values. Then the approximated inputs are inserted into

system of nonlinear differential equations and integrated with the modified Runge-

Kutta. The integration in the complex plane has been replaced with the quaternion’s

method of calculation. But the computation is quite slow because of numerous

derivation procedures inside the programme. Thus neural networks were used to

produce an analytic formula which can be easily and quickly recalculated. This

advantage of speed is absolutely necessary for example for autopilot systems in the

aircraft industry.

11.3 Settings and Aim of Simulations
During the simulations one hidden layer net was used with 4 neurons in the hidden

layer with a sigmoid transfer function. An output transfer function was used linear

function. The feedforward ANN with the Levenberg-Marquardt training algorithm

was used.

The seven inputs into the neural networks were as follows (in brackets the

notation in the Fig. 11.2): PLA gas lever [l], aileron deflection [rad] (AIL

deflection), elevator deflection [rad] (ELE deflection), rudder deflection [rad] (RUD

deflection), angle of attack [rad] (ATT angle), beta slip angle [rad] (SID slip angle)

and gamma roll angle [rad] (BNK angle).

The required outputs were only three: alpha derivative – pitch, beta derivative

– yaw, acceleration [m/s2].

From the C++ language time consuming model 76 samples were obtained with

the above inputs and outputs which serve as the training set. The required

dependency can be seen in (Fig. 11.2).

11 Selected Applications - Optimal Modelling of Dynamic Flight

© Zuzana Komínková Oplatková, 2012

97

Fig. 11.2: A model of a neural network with one hidden layer and its “real” inputs
and outputs

11.4 Modelling of Dynamic Flight - Results
For calculations 20 training iterations were set up. The following picture (Fig. 11.3)

shows the evolution of root mean square error (RMSE) during the training. At the

end of the training it was under 0.01 which is close to zero thus it can be stated that

the neural network is trained well. Also the following graphs (Fig. 11.4 - Fig. 11.6)

are the proof of this statement. They show the output data from each output neuron

compared to the required ones. On the x axis the order of input data in the training

set is shown and on the y axis is the corresponding output value for each neuron

(output parameter).

Fig. 11.3: RMSE dependent on training epochs (iterations)

PLA gas lever

AIL deflection

ELE deflection

RUD deflection

ATT angle

SID slip angle

BNK angle

 pitch

 yaw

acceleration

11 Selected Applications - Optimal Modelling of Dynamic Flight

© Zuzana Komínková Oplatková, 2012

98

Fig. 11.4: The first output parameter – Alfa derivative – proportional to the pitching
moment on the y axis dependent on the line in the training set, • red dots = original

data, • blue line = fitted function

Fig. 11.5: The second output parameter – Beta derivative – proportional to the
yawing moment on the y axis dependent on the line in the training set, • red dots =

original data, • blue line = fitted function

Fig. 11.6: The third output parameter – Velocity derivative – corresponding to the
acceleration on the y axis dependent on the line in the training set, • red dots =

original data, • blue line = fitted function

11 Selected Applications - Optimal Modelling of Dynamic Flight

© Zuzana Komínková Oplatková, 2012

99

As can be seen from the above figures the approximation was very precise.

Therefore there are the notations (11.1) – (11.3) for each output parameter (alpha

derivative – pitch, beta derivative – yaw, velocity derivative - acceleration) which are

based on the 7 inputs: aa - PLA gas lever [l], bb - aileron deflection [rad], cc -

elevator deflection [rad], dd - rudder deflection [rad], ee - angle of attack [rad], ff -

beta slip angle [rad] and gg - gamma roll angle [rad].

alpha derivative =

 (11.1)

beta derivative =

 (11.2)

acceleration =

(11.3)

11 Selected Applications - Optimal Modelling of Dynamic Flight

© Zuzana Komínková Oplatková, 2012

100

11.5 Optimal Modelling of a Dynamic Flight -

Conclusion
As this chapter shows neural networks can be used as an approximation tool in the

search for the quick model computational analysis/simulation/response on such

difficult problems that are represented with nonlinear systems of differential

equations with partially discontinuous functional dependencies.

The future research will be focused on the modelling of the complex behaviour

of the airplane, handling the obtained models themselves such as a deep analysis of

the model behavior, optimization, real time control etc., where the speed achieved by

the obtained analytical solution will assume high importance.

12 Selected Applications - Chaotic Pseudorandom Number Generator in Algorithm PSO

© Zuzana Komínková Oplatková, 2012

101

12 Chaotic Pseudorandom Number

Generator in Algorithm PSO

This chapter deals with the use of a chaotic system as a pseudorandom number

generator. The idea came from studying soft computing methods. More or less, all

are inspired by nature. Therefore a question arises – will two combined methods

inspired by nature produce better results? In this case, deterministic chaos and

evolutionary computation are the two used methods. An evolutionary algorithm is

used for optimization as usual and deterministic chaos is used as a pseudorandom

number generator inside the algorithm when needed.

Recently some studies have indicated that using chaotic number generators

may improve the performance of evolutionary optimization algorithms on such tasks

as a PID controller design [9] or fuzzy modelling of an experimental thermal-vacuum

system [1]. This study is focused on the investigation on the performance of the PSO

algorithm with the implemented chaotic Lozi map as a pseudorandom number

generator. The idea was published not only for PSO but also for DE [80], [80], [79],

[67].

A chaos driven pseudorandom number generator is used in the main PSO

formula (4.3) that determines new “velocity” and thus the position of each particle in

the next generation (or migration cycle). The parameter Rand, i.e. a random number

from the interval <0,1> is replaced with a chaotic generator (in this demonstration,

by the use of the Lozi map – chapter 8.5.4) within the Chaos PSO algorithm. The

generator selects the adapted value from each position of a huge array (from 500 000

to 1 000 000 values) generated by means of standard time iteration of the Lozi map.

The chaotic values can be both positive and negative, thus the absolute value is then

applied to all positions. To obtain a number from the interval <0,1> all values have

to be divided by the highest value from the array. When a PSO works the index to

the array is increased and an unused value on the indexed position is inserted instead

of classical computer generated random number all the time.

12 Selected Applications - Chaotic Pseudorandom Number Generator in Algorithm PSO

© Zuzana Komínková Oplatková, 2012

102

12.1 Chaotic Pseudorandom Number

Generator – Experiment Design
To compare the impact of using the Lozi map as a chaotic pseudorandom number

generator, performance tests were performed for both PSO with chaotic and non-

chaotic random number generator. The classic version of PSO with the inertia weight

modification is labelled PSO Weight. The proposed novel PSO enhanced by the Lozi

map with inertia weight is labelled PSO Lozi. As an algorithm for comparison the

DERand1Bin strategy of differential evolution (DE) was selected.

Basic PSO control parameters were set based on previous experiments and

literature [17], [16], [1] as follows:

Population size: 30, 50, 75, 100, 150, 200, 300, 400

Iterations / generations: 10 * dimension

wstart: 0.9

wend: 0.4

Dimension: 2, 5, 10, 20, 40

The algorithms were tested on 4 different benchmark functions. For the

statistical reasons, optimization for each dimension value was repeated 30 times.

12.2 Benchmark Functions
Following chapters contain the equations and the function minimums in the n-

dimensional space where Dim means the number of arguments (dimension of the

problem).

12.2.1 First De Jong

The First De Jong function is given by (12.1).

12 Selected Applications - Chaotic Pseudorandom Number Generator in Algorithm PSO

© Zuzana Komínková Oplatková, 2012

103

 f (x)= xi
2

i=1

Dim

! (12.1)

Function minimum:

Position for En: (x1,x2…xn) = En: (x1,x2…xn) = (0,0,…, 0)

Value for En: y = 0

12.2.2 Second De Jong

The Second De Jong function is given by (12.2).

 f (x)= 100 xi
2 -xi+1()2

+ 1-xi()2()
i=1

Dim!1

" (12.2)

Function minimum:

Position for En: (x1,x2…xn) = (1,1,…,1)

Value for En: y = 0

12.2.3 Rastrigin

The Rastrigin function is given by (12.3).

 f (x)= 10 xi
2 !10cos 2! xi()()

i=1

Dim

" (12.3)

Function minimum:

Position for En: (x1,x2…xn) = (0,0,…,0)

Value for En: y = 0

12.2.4 Schwefel

The Schwefel function is given by (12.4).

 f (x)= ! xi sin xi()()
i=1

Dim

" (12.4)

12 Selected Applications - Chaotic Pseudorandom Number Generator in Algorithm PSO

© Zuzana Komínková Oplatková, 2012

104

Function minimum:

Position for En: (x1,x2…xn) = (420.969, 420.969,…, 420.969)

Value for En: y = -418.983 * dimension

12.3 Chaotic Pseudorandom Number

Generator - Results and Analysis
The results of experiments and brief commentary on these results are in this section.

The Following tables (Table 12.1 - Table 12.8) contain the best, the worst and the

median of obtained final results for all 30 runs of evolutionary algorithms. For the

comparison of the algorithms, the best individual results are highlighted in bold in all

tables. The results of the PSO algorithm are also compared with the performance of

DE.

12.3.1 The First De Jong Function

The following tables (Table 12.1 and Table 12.2) contain the results for the 1st De

Jong function. The proposed implementation of the chaotic Lozi map to the PSO

algorithm seems to have improved the performance of the algorithm. The values for

PSO Lozi (chaos number generator) are in all cases better than the values for PSO

Weight (classic number generator). Furthermore those results are better or

comparable with those of DE. However PSO seems to be less efficient than DE in

solving higher dimension with the used setting.

Table 12.1: The results for the first De Jong function for Dim = 2, 5 and 10

 Dim = 2 Dim = 5 Dim = 10
 PSO

Weight PSO Lozi DE PSO
Weight PSO Lozi DE PSO

Weight PSO Lozi DE

The
worst
result

2.38.10-03 1.60.10-04 2.37.10-04 3.92.10-03 2.56.10-05 1.00.10-03 3.75.10-02 2.08.10-02 2.81.10-03

The
best
result

1.17.10-05 2.04.10-07 2.47.10-07 1.65.10-05 2.33.10-07 7.43.10-05 1.45.10-04 4.2.10-07 5.26.10-04

Median 2.01.10-04 2.35.10-05 2.31.10-05 1.74.10-04 2.81.10-06 1.9.10-04 6.25.10-03 6.30.10-04 1.18.10-03

12 Selected Applications - Chaotic Pseudorandom Number Generator in Algorithm PSO

© Zuzana Komínková Oplatková, 2012

105

Table 12.2: The results for the first De Jong function for Dim = 20 and 40

 Dim = 20 Dim = 40

 PSO
Weight PSO Lozi DE PSO

Weight PSO Lozi DE

The
worst
result

1.62 1.95 4.01.10-02 9.06 8.60 1.68

The
best
result

8.4.10-03 4.6. 10-02 1.04.10-02 2.40.10-01 2.43.10-03 6.57.10-01

Median 4.78.10-02 4.05.10-01 1.86.10-02 4.49 4.25 9.97.10-01

12.3.2 The Second De Jong Function

The results in the tables (Table 12.3 and Table 12.4) were obtained by optimizing the

2nd De Jong function. Almost similar trends as in the previous section (1st De Jong

function) can be seen in the results with the exception of having worse performance

of DE in comparison with PSO Lozi for the higher dimensions.

Table 12.3: Results for the second De Jong function for Dim = 2, 5 and 10

 Dim = 2 Dim = 5 Dim = 10
 PSO

Weight PSO Lozi DE PSO
Weight PSO Lozi DE PSO

Weight PSO Lozi DE

The
worst
result

2.70.10-02 1.59.10-02 5.58.10-02 1.64.10-01 1.15.10-02 3.7 1.92.10-01 1.70.10-02 1.90.101

The
best
result

6.30.10-05 2.91.10-05 2.06.10-04 1.25.10-03 5.10.10-05 6.2.101 3.35.10-03 8.64.10-05 7.7

Median 3.44.10-03 8.4.10-04 1.09.10-02 3.39.10-02 7.97.10-04 2.1 3.87.10-02 1.16.10-03 1.4.101

Table 12.4: The results for the second De Jong function for Dim = 20 and 40

 Dim = 20 Dim = 40

 PSO Weight PSO Lozi DE PSO Weight PSO Lozi DE

The
worst
result

2.60.10-01 3.172.10-01 5.2821.101 1.0324 1.3342 1.3381.102

The best
result 5.29.10-03 7.8609.10-04 2.5292.101 7.9342.10-02 2.2454.10-02 5.0176.101

Median 8.01.10-02 3.679.10-02 3.7204.101 3.7495.10-01 2.1875.10-01 7.7725.101

12 Selected Applications - Chaotic Pseudorandom Number Generator in Algorithm PSO

© Zuzana Komínková Oplatková, 2012

106

12.3.3 Rastrigin Function

In the case of the Rastrigin benchmark function there is no significant improvement

in the PSO performance, however both PSO algorithms were significantly worse for

Dim = 40 than those of DE (see Table 12.5 and Table 12.6).

Table 12.5: The results for the Rastrigin function for Dim = 2, 5 and 10

 Dim = 2 Dim = 5 Dim = 10

 PSO
Weight

PSO
Lozi DE PSO

Weight
PSO
Lozi DE PSO

Weight
PSO
Lozi DE

The
worst
result

2.4048 1.9933 1.7853 13.5637 9.9854 9.6667 25.1741 27.2665 26.7314

The
best
result

0.0032 0.0015 0.0056 1.0756 0.0022 0.1615 0.2599 3.0098 6.2952

Median 0.5399 0.3790 0.5707 6.5017 3.0761 4.0811 9.5158 10.4711 15.7813

Table 12.6: The results for the Rastrigin function for Dim = 20 and 40

 Dim = 20 Dim = 40

 PSO
Weight PSO Lozi DE PSO

Weight PSO Lozi DE

The
worst
result

74.9295 68.5083 75.9887 186.5780 192.4930 155.9540

The
best
result

27.4552 17.2733 18.7197 100.0440 47.8408 38.8948

Median 47.5319 46.6510 50.0244 152.0650 159.0090 119.5870

12.3.4 Schwefel Function

The presented results in Table 12.7 and Table 12.8 show increasing difference

between the values of median for PSO Weight and PSO Lozi together with

increasing dimension in favour of the Lozi map enhanced PSO. As in the previous

case, both algorithms were surpassed by DE (most significantly in higher

dimensions).

12 Selected Applications - Chaotic Pseudorandom Number Generator in Algorithm PSO

© Zuzana Komínková Oplatková, 2012

107

Table 12.7: The results for the Schwefel function for Dim = 2, 5 and 10

 dim = 2 dim = 5 dim = 10

 PSO
Weight

PSO
Lozi DE PSO

Weight
PSO
Lozi DE PSO

Weight
PSO
Lozi DE

The
worst
result

-673.39 -697.48 -702.79 -1191.59 -1262.01 -1635.06 -1915.02 -1980.15 -3174.74

The
best
result

-837.87 -837.94 -837.91 -1760.30 -1942.73 -1964.83 -2740.49 -3037.15 -3562.67

Median -820.35 -819.43 -816.07 -1458.34 -1525.28 -1842.63 -2234.00 -2561.77 -3372.21

Table 12.8: Results for the Schwefel function for Dim = 20 and 40

 dim = 20 dim = 40

 PSO
Weight PSO Lozi DE PSO

Weight PSO Lozi DE

The
worst
result

-2886.88 -3133.19 -5830.19 -4839.42 -6112.29 -9104.93

The
best
result

-5372.33 -5722.76 -6482.53 -8400.45 -9935.40 -11411.20

Median -3477.26 -4217.83 -6358.48 -6558.88 -7527.70 -10308.10

From the results presented in the tables (Table 12.1 - Table 12.8) it may be

stated, that the majority of results obtained by the proposed PSO Lozi algorithm were

better than the results of classic PSO Weight. The observed median of the final cost

function values for all 30 runs was better in 17 of 20 experiments - 4 benchmark

functions x 5 dimensions values (see Fig. 12.1).

 Fig. 12.1: PSO Weight and PSO Lozi results

12 Selected Applications - Chaotic Pseudorandom Number Generator in Algorithm PSO

© Zuzana Komínková Oplatková, 2012

108

On the y-axis, there is the number of dimensions where the better value was

achieved.

The analysis of the results presented here shows an interesting phenomenon,

that the performance of DE in comparison with both PSO algorithms is sometimes

much better (especially in the case of the Schwefel function). Further, the rest of the

chapter presents the investigation of this phenomenon. Based on the previous

experience, the PSO algorithm is able to achieve better results for higher population

size (NP). To prove this theory an experiment was set-up:

Population size: 30, 50, 75, 100 (Schwefel function only), 150, 200, 300, 400

Iterations / generations: 200

wstart: 0.9

wend: 0.4

Dimension: 20

Benchmark functions: Schwefel, 1st De Jong

Results are shown in the following tables (Table 12.9 and Table 12.10).

 Table 12.9: A mean value for 30 runs; the Schwefel function; Dim = 20;
generations = 200

NP 30 50 75 100 150 200 300 400
PSO
Weight -3697.63 -3873.62 -4140.99 -4255.84 -4329.57 -4866.41 -5316.41 -5377.72
PSO
Lozi -4340.06 -4560.42 -5032.82 -5241.78 -5801.99 -5998.05 -6174.55 -6225.63

DE -6100.9 -5737.68 -5649.1 -5500.01 -5635.55 -5651.5 -5673.33 -5651.23

Table 12.10: A mean value for 30 runs; the 1st De Jong function; Dim = 20;
generations = 200

NP 150 200 300 400

PSO Weight 7.33004.10-06 3.4528.10-07 3.7368.10-09 2.60345.10-10

PSO Lozi 2.7701.10-06 4.1212.10-08 3.66273.10-11 1.0319.10-14

DE 4.25565.10-07 4.94665.10-07 6.1166.10-07 7.07218.10-07

12 Selected Applications - Chaotic Pseudorandom Number Generator in Algorithm PSO

© Zuzana Komínková Oplatková, 2012

109

From Table 12.9 and Table 12.10, it is clear that the increase in the size of

population (NP) led to significant improvement in the performance of both PSO

algorithms with inertia weight. Nevertheless the performance of DE showed the

opposite trend. The presented results in this section support the claim, that using the

Lozi map as a chaotic number generator could lead to the improvement of the

performance of the PSO algorithm thus to achieve better or at least similar results

when comparing PSO algorithms with another evolutionary algorithm - DE.

12.4 Chaotic Pseudorandom Number

Generator – Conclusion
This chapter proposes and investigates the enhanced PSO algorithm with inertia

weight and with a chaos number generator. The Lozi map was used as chaotic system

for a number generator in the main formula of the PSO algorithm. Four different test

functions were used to demonstrate the performance and behaviour of the proposed

algorithm also in comparison with a classic non-chaotic version and one strategy of a

differential evolution. The primary aim of this work was not to develop a new type of

pseudorandom number generator, which should pass many statistical tests, but to try

to combine natural chaotic dynamics and evolutionary algorithm inspired by nature

to observe the performance.

Based on the presented results it can be stated that the Lozi map used as the

number generator seems to have a significantly positive effect on the speed of

convergence of the algorithm. The research with other chaotic maps and also with

the differential evolution has been already done and all simulations give better results

in the analysed benchmark functions. Furthermore, all obtained results point to the

fact that they are very sensitive to the selection of the chaotic system that is used as a

pseudorandom generator. Any change in the selection of a chaotic system or its

parameter adjustment can cause a radical improvement of the evolutionary algorithm

performance, however on the downside it can cause the worsening of observed

parameters and subsequently the behavior of the algorithm as such.

12 Selected Applications - Chaotic Pseudorandom Number Generator in Algorithm PSO

© Zuzana Komínková Oplatková, 2012

110

Chaos driven evolutionary algorithms seems to be a promising area of research

with many open questions to be answered. One of the questions can be the

examination of the impact of chaotic system parameters on the generation of

pseudorandom numbers, and thus its influence on the results obtained using a

selected evolutionary algorithm. One of possible approaches to this issue is to use

meta-evolution which will be done in the future.

13 Conclusion

© Zuzana Komínková Oplatková, 2012

111

13 Conclusion

The submitted thesis gives an overview of modern techniques of soft computing and

its selected applications, which is the author interested in. The main thread is

connected with a metaevolutionary approach in symbolic regression and their

applications for benchmark or for real tasks.

Firstly, an introduction into several methods such as evolutionary algorithms

(DE, SOMA, PSO), methods of symbolic regression (GP, GE, AP) and artificial

neural networks is described. All these methods were used either separately or

combined together for solving of complex tasks such as metaevolution for the

synthesis of new optimization algorithms, metaevolutionary approach with AP for

synthesis of a whole control law for deterministic chaotic systems, steganalysis by

means of ANN, optimal modelling of a dynamic flight, synthesis of pseudo artificial

neural networks and a chaotic generator used in evolutionary computation.

All these techniques and described applications can serve to other scientists as

an inspiration for their work. The community connected with soft computing

techniques is huge in the world but small in our country. Therefore, the author has to

cooperate and discuss the results of her work with colleagues from abroad during

conferences and visits or with invited lecturers within the Erasmus programme. The

author has been accepted by the research community, which is documented by

publication activities, by the best paper awards (see the two best paper awards in the

Appendix 1 and list of author’s publication in Appendix 2), by serving as a member

of international committees of conferences and editorial boards of journals.

The discussed techniques and methodology in proposed applications will serve,

hopefully, as an inspiration for experts in various fields. Soft computing tools, their

combinations, their adjusted versions help to obtain optimal results of required

assignments and solved problems in all areas of human life such as process control,

diagnostics, image processing, operation research, medicine, monitoring of financial

markets and the prediction of exchange rates and others.

The author proposed combinations of soft computing methods to produce

better results and methodology for the usage of meta approach techniques with

13 Conclusion

© Zuzana Komínková Oplatková, 2012

112

symbolic regression, evolutionary computation and artificial neural networks. The

presented ideas and applications are only part of the author’s research portfolio. The

published techniques and applications within conference, journals and book chapters

are transferred into lectures and laboratories/seminars of special courses focused on

artificial intelligence that cover theoretical backround as well as examples of

applications (not only) from the area of soft computing which allows students to have

the latest news from this field.

The future plans of the author is to continue with the adjusting, development

and combining of the described techniques for obtaining better results, optimizing

the computational time and mainly optimizing the cost functions themselves. The

design of the cost function is the crucial moment of all simulations and solving of

complex tasks. The further plans will be to find and add suitable conditions to the

cost functions which secure the smooth evolutionary process and provide the best

results as possible.

References

© Zuzana Komínková Oplatková, 2012

113

References
[1] Araujo, E., Coelho, L.: Particle swarm approaches using Lozi map chaotic

sequences to fuzzy modelling of an experimental thermal-vacuum system, Applied

Soft Computing, v.8 n.4, p.1354-1364, September, 2008

[2] Back T., Fogel D. B., Michalewicz Z.: Handbook of evolutionary algorithms,

Oxford University Press, 1997, ISBN 0750303921

[3] Chiang, C.L: Statistical methods of analysis, World Scientific, 2003, ISBN 981-

238-310-7

[4] Coelho L.D., Mariani, V.C.: An efficient cultural self-organizing migrating

strategy for economic dispatch optimization with valve-point effect, Energy

Conversion And Management, Volume 51, Issue 12, pp 2580-2587, 2010, ISSN:

0196-8904

[5] Coelho L.D.: Self-Organizing Migrating Strategies Applied to Reliability-

Redundancy Optimization of Systems, IEEE Transactions On Reliability, Volume

58, Issue 3, pp 501-510, 2009, ISSN: 0018-9529.

[6] Coelho L.D.: Self-organizing migration algorithm applied to machining

allocation of clutch assembly, Mathematics and Computers in Simulation, Vol. 80,

Issue 2, 2009, pp 427-435.

[7] Cole E., Krutz D. R.: Hiding Sight, United States of America: Wiley Publishing,

Inc., 2003. 321 p. ISBN 0-471-44449-9.

[8] Cormen T. H., Leiserson Ch. E., Rivest R. L. and Stein C.: Introduction to

Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001. ISBN 0-262-

03293-7. Section 16.3, pp. 385–392.

[9] Davendra D., Zelinka I., Senkerik R.: Chaos driven evolutionary algorithms for

the task of PID control, Computers & Mathematics with Applications, Volume 60,

Issue 4, 2010, pp 1088-1104, ISSN 0898-1221.

[10] David A. Freedman: Statistical Models: Theory and Practice, Cambridge

University Press (2005)

[11] Davidson J.W., Savic D.A., Walters G.A.: Symbolic and numerical regression:

experiments and applications, Informatics and Computer Science – An international

Journal, Vol. 150, Elsevier, USA, 2003, pages 95 – 117, ISSN:0020-0255

References

© Zuzana Komínková Oplatková, 2012

114

[12] Dawis L.: Handbook of Genetic Algorithms, International Thomson Computer

Press, 1996, ISBN 1850328250

[13] Der-Chyuan Lou, Chen-Hao Hu, Chao-Lung Chou, Chung-Cheng Chiu:

Steganalysis of HMPD reversible data hiding scheme, Optics Communications,

Volume 284, Issue 23, 1 November 2011, pp. 5406-5414, ISSN 0030-4018

[14] Deugo D., Ferguson D.: Evolution to the xtreme: Evolving evolutionary

strategies using a meta-level approach, Proceedings of the 2004 IEEE congress on

evolutionary computation, IEEE Press, Portland, Oregon, pp. 31–38, 2004

[15] Dioşan, L., Oltean, M.: Evolutionary design of evolutionary algorithms. Genetic

Programming and Evolvable Machines, Vol. 10, Issue 3, p. 263-306, 2009

[16] Dorigo M.: Ant Colony Optimization and Swarm Intelligence, Springer, 2006,

ISBN 3540226729

[17] Eberhart R., Kennedy J.: Swarm Intelligence (The Morgan Kaufmann Series in

Artificial Intelligence), Morgan Kaufmann, 2001, ISBN 1558605959

[18] Edmonds, B.: Meta-genetic programming: Co-evolving the operators of variation,

Elektrik, Vol. 9, Issue 1, pp. 13-29, 2001

[19] Eiben A.E., Michalewicz Z., Schoenauer M., Smith J.E.: Parameter control in

evolutionary algorithms, pp. 19–46, Springer, 2007

[20] Etkin B., Lloyd D. R.: Dynamics of flight – Stability and Control. John Wiley &

Sons, 1996

[21] Farmer J.D., Packard N., Perelson A.: The immune system, adaptation and

machine learning, Physica D, vol. 2, pp. 187—204, 1986

[22] Fausett L. V.: Fundamentals of Neural Networs: Architectures, Algorithms and

Applications, Prentice Hall, 1993, ISBN: 9780133341867

[23] Fekiac J., Zelinka I., Burguillo J. C.: A review of methods for encoding neural

network topologies in evolutionary computation, ECMS 2011, Krakow, Poland,

ISBN: 978-0-9564944-3-6

[24] Ferreira C.: Gene Expression Programming: Mathematical Modeling by an

Artificial Intelligence, Springer, 2006, ISBN: 3540327967

[25] Fridrich J., Goljan M., Soukal D.: Perturbed quantization steganography,

Multimedia Systems, Volume 11, Issue 2, pp 98-107, Springer – Verlag, 2005,

ISSN: 0942-4962

References

© Zuzana Komínková Oplatková, 2012

115

[26] Fridrich, J., Goljan, M., and Hogea, D.: New Methodology for Breaking

Steganographic Techniques for JPEGs. Submitted to SPIE: Electronic Imaging

2003, Security and Water-marking of Multimedia Contents. Santa Clara, California,

2003

[27] Fridrich, J., Goljan, M., and Hogea, D.: Steganalysis of JPEG Images: Breaking

the F5 Algorithm, 5th Information Hiding Workshop, Noordwijkerhout, The

Netherlands, Oct. 2002. URL:

http://www.ws.binghamton.edu/fridrich/Research/f5.pdf. Last accessed: 2003-12-

24.

[28] Fridrich, J.: Feature-Based Steganalysis for JPEG Images and Its Implications for

Future Design of Steganographic Schemes. In Proceedings of Information Hiding,

2004, pp.67~81

[29] Goldwasser S., Bellare M.: Lecture Notes on Cryptography. Cambridge,

Massachusetts [MIT]: [s.n.], 2001. 283 p.,online

http://cseweb.ucsd.edu/~mihir/papers/gb.pdf

[30] Gurney K.: An Introduction to Neural Networks, CRC Press, 1997, ISBN:

1857285034

[31] Hertz J., Kogh A. and Palmer R. G.: Introduction to the Theory of Neural

Computation, Addison – Wesley 1991

[32] Hetzl S.: Steghide (1) - Linux man page [online]. [cit. 2008-05-21]. available

from WWW: <http://steghide.sourceforge.net/documentation/manpage.php>.

[33] Hilborn R.C.: Chaos and Nonlinear Dynamics: An Introduction for Scientists and

Engineers, Oxford University Press, 2000, ISBN: 0-19-850723-2.

[34] Holoska J., Oplatkova Z., Senkerik R., Zelinka I.: Comparison Between Neural

Network Steganalysis and Linear Classification Method Stegdetect, CIMSim 2010,

Bali, Indonesie, IEEE, ISBN: 978-0-7695-4262-1

[35] Hološka, J., Oplatková, Z., Zelinka, I., Šenkeřík, R.: Steganografie jako hrozba

úniku kritických obchodních informací a její detekce pomocí umělých neuronových

sítí, FAMily media, s. r. o., Security magazín, Praha, 2010, 33-37, ISSN 1210-872

[36] ImageMagick - http://www.imagemagick.org/script/index.php

[37] Johnson Colin G., Artificial immune systems programming for symbolic

regression, In C. Ryan, T. Soule, M. Keijzer, E. Tsang, R. Poli and E. Costa,

References

© Zuzana Komínková Oplatková, 2012

116

editors, Genetic Programming: 6th European Conference, LNCS 2610, p. 345-353,

2003, ISSN 0302-9743

[38] Jones D.F., Mirrazavi S.K., Tamiz M.: Multi-objective meta-heuristics: An

overview of the current state-of-the-art, European Journal of Operational Research,

Volume 137, Issue 1, 16 February 2002, Pages 1-9, ISSN 0377-2217.

[39] Just W.: Principles of Time Delayed Feedback Control, In: Schuster H.G.,

Handbook of Chaos Control, Wiley-Vch, 1999, ISBN 3-527-29436-8.

[40] Kalczynski P. J., Kamburowski J.: On the NEH heuristic for minimizing the

makespan in permutation flow shops, Omega, vol. 35, 1, 2007, pp. 53-60.

[41] Kominkova Oplatkova Z., Holoska J., Senkerik R., Steganography content

detection by means of feedforward neural network, International Journal of

Innovative Computing and Applications, Vol. 5, No. 1, (accepted for publication

2012), ISSN 1751-648X.

[42] Kordík P., Koutník J., Drchal J., Kovářík O., Čepek M., Šnorek M.: Meta-

learning approach to neural network optimization, Neural Networks, Vol. 23, Issue

4, p. 568-582, 2010, ISSN 0893-6080.

[43] Koza J. R. et al.: Genetic Programming III; Darwinian Invention and problem

Solving, Morgan Kaufmann Publisher, 1999, ISBN 1-55860-543-6

[44] Koza J. R.: Genetic Programming, MIT Press, 1998, ISBN 0-262-11189-6

[45] Kvasnička V., Pospíchal J., Tiňo P.: Evolučné algoritmy, STU Bralislava, 2000,

ISBN 80-227-1377-5

[46] Kwon O. J.: Targeting and Stabilizing Chaotic Trajectories in the Standard Map,

Physics Letters A, vol. 258, 1999, pp. 229-236.

[47] Lampinen J., Zelinka I.: New Ideas in Optimization – Mechanical Engineering

Design Optimization by Differential Devolution, Volume 1. London: McGraw-hill,

1999, 20 p., ISBN 007-709506-5

[48] May R.M.: Stability and Complexity in Model Ecosystems, Princeton University

Press, 2001, ISBN: 0-691-08861-6.

[49] Murty K. G.: Linear complementarity, linear and nonlinear programming, Sigma

Series in Applied Mathematics, Berlin: Heldermann Verlag, 1988, ISBN 3-88538-

403-5.

References

© Zuzana Komínková Oplatková, 2012

117

[50] Murty K. G.: Linear programming, New York: John Wiley & Sons, 1983, ISBN

0-471-09725-X.

[51] Nissar A., Mir A.H.: Classification of steganalysis techniques: A study, Digital

Signal Processing, Volume 20, Issue 6, December 2010, Pages 1758-1770, ISSN

1051-2004.

[52] O'Sullivan J., Ryan C.: An Investigation into the Use of Different Search

Strategies with Grammatical Evolution, Proceedings of the 5th European

Conference on Genetic Programming, p.268 - 277, 2002, Springer-Verlag London,

UK, ISBN:3-540-43378-3

[53] O’Neill M., Ryan C.: Grammatical Evolution. Evolutionary Automatic

Programming in an Arbitrary Language, Kluwer Academic Publishers, 2003, ISBN

1402074441

[54] Oltean M., Grosan C.: Evolving Evolutionary Algorithms using Multi Expression

Programming, The 7th European Conference on Artificial Life, September 14-17,

2003, Dortmund, Edited by W. Banzhaf (et al), LNAI 2801, pp. 651-658, Springer-

Verlag, Berlin, 2003

[55] Oplatkova Z., Senkerik R., Zelinka, I., Holoska, J.: Synthesis of Control Law for

Chaotic Logistic Equation: Preliminary Study, IEEE 4th International Conference

on Mathematical Modelling and Computer Simulation, 2010, pp. 65-70, ISBN-

ISSN 978-0-7695-4062-7

[56] Oplatková Z., Zelinka I.: Investigation on Evolutionary Synthesis of Movement

Commands, Modelling and Simulation in Engineering, Volume 2009, Article ID

845080, 12 pages, Hindawi Publishing Corporation, 2009, ISSN: 1687-559.

[57] Oplatkova Z.: Metaevolution: Synthesis of Optimization Algorithms by means of

Symbolic Regression and Evolutionary Algorithms, Lambert Academic Publishing

Saarbrücken, 2009, ISBN: 978-3-8383-1808-0

[58] Oplatkova, Z., Holoska J., Prochazka M., Senkerik, R., Jasek, R.: Optimization of

Artificial Neural Network Structure in the Case of Steganalysis, In: Springer Series

"Inteligent Systems" - "Handbook of Optimization", (Ivan Zelinka, Vaclav Snasel,

Ajith Abraham(Eds.)), pp. 821 - 824, 2012, ISBN 978-3-642-30503-0

[59] Oplatkova, Z., Holoska, J., Zelinka, I., Senkerik, R.: Detection of Steganography

Inserted by OutGuess and Steghide by means of Neural Networks, AMS2009 Asia

References

© Zuzana Komínková Oplatková, 2012

118

Modelling Symposium 2009, IEEE Computer Society, Piscataway, 2009, ISBN

978-0-7695-3648-4

[60] Oplatkova, Z., Holoska, J., Zelinka, I., Senkerik, R.: Steganography Detection by

means of Neural Networks, IEEE Operations Center, Nineteenth International

Workshop on Database and Expert Systems Applications, Piscataway, 2008, 571-

576, ISBN 978-0-7695-3299-8

[61] Oplatková, Z., Šenkeřík, R., Bělašková, S., Zelinka, I.: Synthesis of Control Rule

for Synthesized Chaotic System by means of Evolutionary Techniques, VUT v

Brně, 16th International Conference on Soft computing, Brno, Czech Republic,

2010, 91-98, ISBN-ISSN 978-80-214-4120-0

[62] Oplatková, Z., Šenkeřík, R.: Classification with Pseudo Neural Networks Based

On Evolutionary Symbolic Regression. In 2011 International Conference on P2P,

Parallel, Grid, Cloud and Internet Compting. Piscataway: IEEE Operations Center,

2011, s. 396-401. ISBN 978-0-7695-4531-8.

[63] Ott E., Greboki C., Yorke J.A.: Controlling Chaos, Phys. Rev. Lett. Vol. 64,

1990, pp. 1196-1199.

[64] Paterson N., Livesey M.: Distinguishing genotype and phenotype in genetic

programming, In Koza, Goldberg, Fogel & Riolo, eds. Late Breaking Papers at GP

1996, MIT Press, 1996, ISBN 0-18-201-031-7

[65] Paterson N.: Genetic Programming with context sensitive grammars, doctoral

thesis, University of St. Andrews, 2003

[66] Pluhacek M., Budikova V., Senkerik R., Oplatkova Z., Zelinka I.: On The

Performance Of Enhanced PSO algorithm With Lozi Chaotic Map – An Initial

Study, In: Proceedings of the 18th International Conference on Soft Computing,

MENDEL 2012, pp. 40 - 45, 2012, ISBN 978-80-214-4540-6.

[67] Pluhacek M., Budikova V., Senkerik R., Oplatkova Z., Zelinka I.: Extended

Initial Study on the Performance of Enhanced PSO Algorithm with Lozi Chaotic

Map, In Proceedings of Nostradamus 2012: International conference on prediction,

modeling and analysis of complex systems, Springer Series: “Advances in

Intelligent Systems and Computing”, Vol. 192, 2012, pp. 167 – 178, ISBN: 978-3-

642-33226-5.

References

© Zuzana Komínková Oplatková, 2012

119

[68] Price K., Storn R. M., Lampinen J. A.: Differential Evolution: A Practical

Approach to Global Optimization, (Natural Computing Series), Springer; 1 edition.

2005

[69] Provos N.: Defending Against Statistical Steganalysis, 10th USENIX Security

 Symposium. Washington, DC, August 2001

[70] Provos, N. , Honeyman, P.: Hide and Seek: An Introduction to Steganography.

IEEE Security & Privacy 1(3): 32-44 (2003)

[71] Provos, N., Honeyman, P.: Detecting Steganographic Content on the Internet.

CITI Technical Report 01-11, 2001

[72] Pyragas K.: Continuous control of chaos by self-controlling feedback, Physics

Letters A, 170, pp. 421-428, 1992

[73] Pyragas K.: Control of chaos via extended delay feedback, Physics Letters A,

vol. 206, 1995, pp. 323-330.

[74] Qingzhong Liu, Andrew H. Sung, Mengyu Qiao, Zhongxue Chen, Ribeiro B.: An

improved approach to steganalysis of JPEG images, Information Sciences, Volume

180, Issue 9, 1 May 2010, pp. 1643-1655, ISSN 0020-0255

[75] Reeves C.: Modern Heuristic Techniques for Combinatorial Problems, McGraw-

Hill, New York, 1995

[76] Reitermanova Z.: Feedforward Neural Networks – Architecture Optimization and

Knowledge Extraction, WDS'08 Proceedings of Contributed Papers, Part I, 159–

164, 2008, MATFYZPRESS, ISBN 978-80-7378-065-4

[77] Sabeti V., Samavi S., Mahdavi M., Shirani S.: Steganalysis and payload

estimation of embedding in pixel differences using neural networks, Pattern

Recognition, Volume 43, Issue 1, January 2010, pp. 405-415, ISSN 0031-3203.

[78] Salustowicz R. P., Schmidhuber J.: Probabilistic Incremental Program Evolution,

Evolutionary Computation, vol. 5, nr. 2, 1997, pp. 123 – 141, MIT Press, ISSN

1063-6560

[79] Senkerik R., Davendra D, Zelinka I., Pluhacek M., Oplatkova Z., An

Investigation On The Differential EvolutionDriven By Selected Discrete Chaotic

Systems, In: Proceedings of the 18th International Conference on Soft Computing,

MENDEL 2012, pp. 157 - 162, 2012, ISBN 978-80-214-4540-6.

References

© Zuzana Komínková Oplatková, 2012

120

[80] Senkerik R., Davendra D., Zelinka I., Pluhacek M., Oplatkova Z., An

Investigation on the Chaos Driven Differential Evolution: An Initial Study, In:

Proceedings of the Fifth International Conference on Bioinspired Optimization

Methods and Their Applications, BIOMA 2012, pp. 185 - 194, 2012, ISBN 978-

961-264-043-9.

[81] Senkerik R., Zelinka I., Davendra D., Oplatkova Z.: Utilization of SOMA and

differential evolution for robust stabilization of chaotic Logistic equation,

Computers & Mathematics with Applications, Volume 60, Issue 4, 2010, pp. 1026-

1037.

[82] Senkerik R., Zelinka I., Oplatkova Z.: Evolutionary Techniques for Deterministic

Chaos Control, CISSE’08, In Proc. IETA 2008, International Joint Conferences on

Computer, Information, and Systems Sciences, and Engineering, 5-13 December

2008, ISBN 978-90-481-3655-1.

[83] Senkerik, R., Oplatkova Z., Zelinka I., Davendra D., Jasek R.: Synthesis Of

Feedback Controller For Chaotic Systems By Means Of Evolutionary Techniques,

The Fourth Global Conference on Power Control and Optimization, 2010, pp. 1-7.

[84] Senkerik, R., Oplatkova, Z., Zelinka, I., Davendra, D., Jasek, R.: Application of

Evolutionary Techniques for Optimization of Chaos Control – Introduction of Three

Approaches, In: Springer Series "Inteligent Systems" - "Handbook of

Optimization", (Ivan Zelinka, Vaclav Snasel, Ajith Abraham(Eds.)), p. 801-820,

2012, ISBN 978-3-642-30503-0..

[85] Senkerik, R., Oplatkova, Z., Zelinka, I., Davendra, D.: Synthesis of feedback

controller for three selected chaotic systems by means of evolutionary techniques:

Analytic programming, Elsevier Science Ltd., Mathematical and Computer

Modelling, Oxford, 2011, ISSN 0895-7177, DOI: 10.1016/j.mcm.2011.05.030.

[86] Senkerik, R., Zelinka, I., Davendra, D., Oplatkova, Z: Evolutionary Design of

Chaos Control in 1D, In. Zelinka I., Celikovski S., Richter H., Chen G.:

Evolutionary Algorithms and Chaotic Systems, SpringerVerlag Berlin, 2010,

pp.165 - 190, ISBN 9783642107061.

[87] Senkerik, R., Zelinka, I., Davendra, D., Oplatkova, Z.: Evolutionary Optimization

Of Henon Map Control – A Blackbox Approach, International Journal of

Operational Research, 2012, Vol. 13, No. 2, pp. 129 - 146.

References

© Zuzana Komínková Oplatková, 2012

121

[88] Senkerik, R., Zelinka, I., Oplatkova, Z.: Optimal Control of Evolutionary

Synthesized Chaotic System, 15th International Conference on Soft Computing

MENDEL 2009, 2009, pp. 220 – 227.

[89] Smith J., Fogarty T.: Operator and parameter adaptation in genetic algorithms,

Soft Computing, Vol. 1, Issue 2, pp. 81–87, 1997

[90] Software OutGuess, www.outguess.org

[91] Sprott, J. C.: Chaos and Time-Series Analysis, Oxford University Press, 2003

[92] Stinstra E., Rennen G., Teeuwen G.: Meta-modelling by symbolic regression and

Pareto Simulated Annealing, Tilburg University, Netherlands, nr. 2006-15, ISSN

0924-7815

[93] Tupý, J., Oplatková, Z., Zelinka, I.: Neural Differentiation in Modeling, Vysoké

učení technické v Brně, Fakulta strojního inženýrství, MENDEL 2009 15th

International Coference on Soft Computing, Brno, Czech Republic, 2009, 154-159,

ISBN-ISSN 978-80-214-3675-6

[94] Tupy, J., Zelinka, I.: Evolucni algoritmy pri stabilizaci bezpilotnich prostredku

(UAV). In Civilni bezpilotni systemy 2008. Praha : Odborná společnost letecká

České republiky, 2008, s. D3.

[95] Tupy, J., Zelinka, I.: Evolutionary algorithms in aircraft trim optimization. In

Nineteenth International Workshop on Database and Expert Systems Applications.

Piscataway : IEEE Operations Center, 2008, s. 524-530.

[96] Tupy, J., Zelinka, I.: Search for equilibrium state flight. In CISSE 2008.

University of Bridgeport, Conecticut, USA, University of Bridgeport, Bridgeport,

CT 06604, USA, 2008, s. 1-15.

[97] Voutsinas T. G., Pappis C. P.: A branch and bound algorithm for single machine

scheduling with deteriorating values of jobs, Mathematical and Computer

Modelling, vol. 52, 1-2, 2010, pp 55-61.

[98] Wasserman P. D.: Neural Computing: Theory and Practice, Coriolis Group, 1980,

ISBN: 0442207433

[99] Weisser, R., Osmera, P., Matousek, R.: Transplant evolution with modified

schema of differential evolution: Optimization structure of controllers, International

Conference on Soft Computing MENDEL, Brno, Czech Republic, 2010

References

© Zuzana Komínková Oplatková, 2012

122

[100] Westfeld, A., Pfitzmann, A.: Attacks on Steganographic Systems. In Proceedings

of Infor-mation Hiding - Third International Workshop. Springer Verlag, September

1999.

[101] Westfeld, A.: High Capacity Despite Better Steganalysis (F5––A Steganographic

Algorithm). In: Moskowitz, I.S. (eds.): Information Hiding. 4th International

Workshop. Lecture Notes in Computer Science, Vol.2137. Springer-Verlag, Berlin

Heidelberg New York (2001) 289–– 302

[102] Zelinka et al.: Analytical Programming - a Novel Approach for Evolutionary

Synthesis of Symbolic Structures, in Kita E.: Evolutionary Algorithms, InTech

2011, ISBN: 978-953-307-171-8

[103] Zelinka I., Chen G., Celikovsky S.: Chaos Synthesis by Means of Evolutionary

Algorithms, International Journal of Bifurcation and Chaos, Vol 18, No 4, 2008, pp.

911 – 942, DOI: 10.1142/S021812740802077X

[104] Zelinka I., Oplatkova Z., Nolle L.: Boolean Symmetry Function Synthesis by

Means of Arbitrary Evolutionary Algorithms-Comparative Study” International

Journal of Simulation Systems, Science and Technology, Volume 6, Number 9,

August 2005, pages 44 - 56, ISSN: 1473-8031.

[105] Zelinka I., Oplatková Z., Šeda M., Ošmera P., Včelař F.: Evoluční výpočetní

techniky - principy a aplikace, BEN, Praha, 2008, 550 s., ISBN 80-7300-218-3

[106] Zelinka I., Senkerik R., Navratil E.: Investigation on evolutionary optimization of

chaos control, Chaos, Solitons & Fractals, Volume 40, Issue 1, 2009, pp. 111-129.

[107] Zelinka I., Varacha P., Oplatkova Z.: Evolutionary Synthesis of Neural Network,

Mendel 2006 – 12th International Conference on Softcomputing, Brno, Czech

Republic, 31 May – 2 June 2006, pp. 25 – 31, ISBN 80-214-3195-4

[108] Zelinka I.: Analytic Programming by Means of Soma Algorithm. ICICIS’02,

First International Conference on Intelligent Computing and Information Systems,

Egypt, Cairo, 2002, ISBN 977-237-172-3

[109] Zelinka I.: Analytic Programming by Means of Soma Algorithm. Mendel ’02, In:

Proc. 8th International Conference on Soft Computing Mendel’02, Brno, Czech

Republic, 2002, 93-101., ISBN 80-214-2135-5

References

© Zuzana Komínková Oplatková, 2012

123

[110] Zelinka I.: SOMA – Self Organizing Migrating Algorithm, In: New Optimization

Techniques in Engineering, (B.V. Babu, G. Onwubolu (eds)), chapter 7, 33,

Springer-Verlag, 2004, ISBN 3-540-20167X

[111] Zelinka I.: Umělá inteligence v problémech globální optimalizace, BEN, Praha,

2002, ISBN 80-7300-069-5

List of Figures

© Zuzana Komínková Oplatková, 2012

124

List of Figures

Fig. 2.1: A parse tree .. 18	
Fig. 2.2: Mutation in Genetic Programming .. 18	
Fig. 2.3: Crossover in Genetic Programming .. 19	
Fig. 2.4: An example of an individual for GE ... 21	
Fig. 2.5: Hierarchy in the GFS ... 24	
Fig. 2.6: Discrete set handling ... 25	
Fig. 2.7: The main principle of AP ... 25	
Fig. 2.8: Schema of AP procedures .. 27	
Fig. 3.1: The division of evolutionary algorithms – taken from [113] ... 30	
Fig. 3.2: Another possibile of division of evolutionary algorithms – taken from [113] 31	
Fig. 3.3: The basic principle of SOMA ... 32	
Fig. 3.4: The basic principle of crossover in SOMA .. 33	
Fig. 3.5: SOMA example ... 34	
Fig. 3.6: A DE example ... 36	
Fig. 3.7: A velocity, pBest and gBest values influence in PSO ... 38	
Fig. 4.1: A model of a neuron ... 39	
Fig. 4.2: A linear saturated function (left), Sigmoid function (right) ... 40	
Fig. 4.3: One hidden layer neural net and one output. ... 41	
Fig. 4.4: One hidden layer neural net and one output, a different schema .. 41	
Fig. 4.5: Two hidden layer neural net .. 42	
Fig. 4.6: Two hidden layer neural net, a different schema ... 42	
Fig. 7.1: The DeJong function – unimodal (left – 2 arguments and right – 1 argument used) 48	
Fig. 7.2: The Schwefel function – multimodal (left – 2 arguments and right – 1 argument used) 48	
Fig. 8.1: The bifurcation diagram of the Logistic equation ... 58	
Fig. 8.2: The bifurcation diagram of the Hénon Map .. 59	
Fig. 8.3: The bifurcation diagram for A = <0.8, 1.2> ... 59	
Fig. 8.4: The bifurcation diagram for A = <0.1, 0.15> ... 60	
Fig. 8.5: The bifurcation diagram for the Lozi map ... 60	
Fig. 8.6: The bifurcation diagram for the Burger’s map .. 61	
Fig. 8.7: The bifurcation diagram for the Delayed logistic equation ... 62	
Fig. 8.8: The bifurcation diagram for the Cubic map .. 62	
Fig. 8.9: Examples of results – the stabilization of chaotic systems 1-p UPO 67	
Fig. 8.10: Examples of results – the stabilization of chaotic systems 2-p UPO 69	
Fig. 8.11: Examples of results – stabilization of chaotic systems 4-p UPO ... 71	
Fig. 9.1: An example of an XOR problem ... 75	
Fig. 9.2: Examples of solutions ... 77	

List of Figures

© Zuzana Komínková Oplatková, 2012

125

Fig. 10.1: Message transport through a plain text email ... 81	
Fig. 10.2: Message transport with steganography ... 82	
Fig. 10.3: Huffman coding histogram – cover image (clear pictures) ... 84	
Fig. 10.4: Huffman coding histogram – stego image (coded picture) .. 85	
Fig. 10.5: Illustration of Huffman coding histogram – left) cover image, right) stego image 87	
Fig. 11.1: A model of an aircraft .. 94	
Fig. 11.2: A model of a neural network with one hidden layer and its “real” inputs and outputs 97	
Fig. 11.3: RMSE dependent on training epochs (iterations) .. 97	
Fig. 11.4: The first output parameter – Alfa derivative .. 98	
Fig. 11.5: The second output parameter – Beta derivative .. 98	
Fig. 11.6: The third output parameter – Velocity derivative .. 98	
Fig. 12.1: PSO Weight and PSO Lozi results ... 107	

List of Tables

© Zuzana Komínková Oplatková, 2012

126

List of Tables

Table 2.1: The number of choices available from each production rule ... 21	
Table 7.1: The winner for each benchmark function ... 50	
Table 8.1: Parameters setting for SOMA used as the main algorithm .. 54	
Table 8.2: Parameters setting up for DE used as the second algorithm ... 55	
Table 8.3: The values for p-1 UPO (a fixed point) .. 64	
Table 8.4: The simulation results for chaotic systems and stabilization at p-1 UPO 65	
Table 8.5: The simulation results for chaotic systems and stabilization at p-2 UPO 68	
Table 8.6: The values for p-2 UPO (oscillation between two points) ... 68	
Table 8.7: Simulation results for chaotic systems and stabilization at p-4 UPO 70	
Table 8.8: The values for p-4 UPO (oscillation between four points) ... 71	
Table 9.1: SOMA settings for AP ... 76	
Table 9.2: DE settings for AP and meta-evolution .. 77	
Table 10.1: Huffman coding histogram – cover image ... 85	
Table 10.2: Huffman coding histogram – stego image .. 86	
Table 10.3: Results of testing success for four steganographic tools .. 91	
Table 12.1: The results for the first De Jong function for Dim = 2, 5 and 10 104	
Table 12.2: The results for the first De Jong function for Dim = 20 and 40 105	
Table 12.3: Results for the second De Jong function for Dim = 2, 5 and 10 105	
Table 12.4: The results for the second De Jong function for Dim = 20 and 40 105	
Table 12.5: The results for the Rastrigin function for Dim = 2, 5 and 10 ... 106	
Table 12.6: The results for the Rastrigin function for Dim = 20 and 40 ... 106	
Table 12.7: The results for the Schwefel function for Dim = 2, 5 and 10 ... 107	
Table 12.8: Results for the Schwefel function for Dim = 20 and 40 ... 107	
Table 12.9: A mean value for 30 runs; the Schwefel function; Dim = 20; generations = 200 108	
Table 12.10: A mean value for 30 runs; the 1st De Jong function; Dim = 20; generations = 200 108	

List of Symbols and Abbreviations

© Zuzana Komínková Oplatková, 2012

127

List of Symbols and

Abbreviations

AP Analytic Programming

ANN Artificial Neural Networks

CF Cost Function

CFE Cost Function Evaluations

CV Cost value

DE Differential Evolution

Dim Dimensionality of given problem (number of arguments)

EA Evolutionary Algorithms

GFS0arg Functions with 0 arguments in GFS, i.e. constants and

variables

GFS1arg Functions with 1 argument in GFS (e.g. Sin, Cos, Tan..)

GFS2arg Functions with 2 arguments in GFS (e.g. +,-,/….)

GFS3arg Functions with 3 arguments in GFS

GFS General Functional Space

GA Genetic Algorithms

GP Genetic Programming

GE Grammatical Evolution

Population Matrix NP x number of arguments of an individual

APmeta Metaevolutionary approach in Analytic Programming

PopSize Number of individuals in population

PSO Particle Swarm Intelligence

SOMA Self-Organizing Migrating Algorithm

UPO Unstable Periodic Orbit

Appendices

© Zuzana Komínková Oplatková, 2012

128

Appendices

Appendix 1. Awards for author’s publications
Appendix 2. List of author’s publications

Appendices

© Zuzana Komínková Oplatková, 2012

129

Appendix 1

Best paper award for:

Oplatková, Z., Zelinka, I.: Creating evolutionary algorithms by means of

analytic programming - design of new cost function, European Council for

Modelling and Simulation, ECMS 2007, Germany, 2007, 271-276, ISBN-ISSN 978-

0-9553018-2-7

Best paper award for:

Šenkeřík, R., Zelinka, I., Davendra, D., Oplatková, Z.: Advanced Targeting

Cost Function Design For Evolutionary Optimization Of Control Of Logistic

Equation, University of Technology, The 3rd Global Conference on Power Control

and Optimization, Sarawak, Malaysia, 2010, 1-6, ISBN-ISSN 978-983-44483-1-8

Appendices

© Zuzana Komínková Oplatková, 2012

130

frr
\ t

'
. = ,rsfr

rIE
G g
F .l-' = c)

r

r hvz
=
E
{n<
t h\.,/\vn<
n, \ i . , p ,

r€ i l
r N i l ,
I s 9 l
" S E 2 ' ,

. P Or \ E Q :

['s fr it
r Q H S rf N # H l: t€ E :
I s < lr s i rI ,\ HI
r s - l l

\,,
Ftl
r hvz
Fts
f r l

n<
t \v

ot
=

E
IJJo-
o-
l-
@
IUm

'/.-* n
v4=:l-.-J-'

' E E . . -
/ I \ L " - : ' \ \ r
tl-'r I'rtL-
H I I I - - /+.'vFl '!f i | l t L \y

R L '

tHt _ \7-] \ -

r+AY' " -

Lv .9
A 6
f u E

"Ry -o a
N E E

\ _ F 6
F I E , O)
\ t n E . =
/ o 6 :

. A o A i ,
K I N L J P\ a g S
e , , = P t -
- | s ld ,P

1{ trJ d. :=
\ # r Q

s =
A \ g 6l J / - o\ c(U

f f i aE v O -; \ g
V , f. a u^ V I
Ir L'.r'l

oTlt- V
gt -tA
Ett ; ^J Y \ - t t
E l l r , l r -F - \ .
H T - E I I '

' Df-a - t -

\ W E , \ J l\ - F { t u vW
.:#l

, q F f r w . - r y - . q '

' r -
o

H t l
r - (o
: r ' oi i f 5

?

J ,

, .

Fl
E't
F{
F
r-I
FItv
ft
Fl
,J
Fr

n
r.l\J
F{
il

Appendices

© Zuzana Komínková Oplatková, 2012

131

r l

sEi
oo

TtrEgo
c
F.
O.cn

6l

OE
IH|
lsltEl
lEl

ta

8i
,qfir

EE
T FL i i
6 \ J
F ogH
et ,-\z p

tl
{ lYl

",.S1

\

c
.9oo
O .\<

E X E
E .N E E
f e o o Ngg sF
F,E H B
EHE$
EgESI- rFo o c i . 6s . E E E8 F R f f
I F : *
S EE $g E s €
Egsg

€lt { l
G l lel
H Io l
0l
Gl lF{l
+ r la lo ltrl

i 8 e! v '
; * =

li"$$'$
F Er-€
{-r;
l- ;
- l?
J - o

U3

I
I

, 9 9
T t E

5 .EE
EEg
* ; E
E F 3o g R
E E >
TEEs L oF O l r

* T
lf e'r
I

I
-lrlEruoloa (nd

Appendices

© Zuzana Komínková Oplatková, 2012

132

Appendix 2

List of publications - Zuzana Komínková Oplatková

status to 3rd December 2012

Overview of total number:

Textbooks: 2

Books: 3

Chapters in books: 8

Editor of books: 2

Journals with impact factor: 5

Journals: 13

Editor of konference proceedings: 2

Conference proceedings: 76

Overview of databases records:

ISI / WoS

Number of records: 33

Number of citations: 8

Number of citations without self-citations: 4

H-index: 2

SCOPUS

Number of records: 39

Number of citations: 38

Number of citations without self-citations: 18

H-index: 3

Google Scholar

Number of records: 79

Appendices

© Zuzana Komínková Oplatková, 2012

133

Number of citations WITh self-citations: 256

H-index: 10

References in details:

Textbooks – education texts

1. Oplatková Z., Volná E.: Analytické programování, distanční opora, Ostravská
univerzita, 2012
2. Zelinka I., Oplatková Z., Šenkeřík R.: Applications of artificial intelligence –
czech edition, Aplikace umělé inteligence (aneb vybrané statě z evolučních
algoritmů), Tomas Bata University in Zlin, Czech Republic, 2010, ISBN 978-80-
7318-898-6.

Books

1. Hološka J., Komínková Oplatková Z.: Steganalysis by means of Artificial
Neural Networks, Lambert Academic Publishing, Saarbrücken, 2012, ISBN 978-3-
659-30172-8
2. Oplatková, Z.: Metaevolution: Synthesis of Optimization Algorithms by
means of Symbolic Regression and Evolutionary Algorithms, Lambert Academic
Publishing, Saarbrücken, 2009, ISBN 978-3-8383-1808-0.
3. Zelinka, I., Oplatková, Z., Ošmera, P., Šeda, M., Včelař, F.: Evoluční
výpočetní techniky - principy a aplikace (Czech editon – Evolutionary computation
techniques), BEN - technická literatura, Ben - technická literatura, Praha, 2008,
ISBN 80-7300-218-3.

Chapter in books

1. Oplatkova, Z., Holoska J., Prochazka M., Senkerik, R., Jasek, R.,
Optimization of Artificial Neural Network Structure in the Case of Steganalysis , In:
Springer Series "Inteligent Systems" - "Handbook of Optimization", (Ivan Zelinka,
Vaclav Snasel, Ajith Abraham(Eds.)), pp.	 821	 -‐	 824, 2012, ISBN 978-3-642-30503-
0
2. Senkerik, R., Oplatkova, Z., Zelinka, I., Davendra, D., Jasek, R., Application
of Evolutionary Techniques for Optimization of Chaos Control – Introduction of
Three Approaches , In: Springer Series "Inteligent Systems" - "Handbook of
Optimization", (Ivan Zelinka, Vaclav Snasel, Ajith Abraham(Eds.)), p. 801-820,
2012, ISBN 978-3-642-30503-0.
3. Senkerik, R., Davendra, D., Zelinka, I., Oplatkova, Z., Influence of Chaotic
Dynamics on the Performance of Differential Evolution Algorithm, In: Springer
Series " Emergence, Complexity and Computation", (Ivan Zelinka, Ali Sanayei,
Hector Zenil, Otto E. Rössler (Eds.)), in press, ISSN 2194-7287.
4. Senkerik R., Oplatkova Z., Zelinka I., Davendra D., Jasek R., Application of
Analytic Programming for Evolutionary Synthesis of Control Law - Introduction of
Two Approaches , In: Springer Series "Studies in Computational Intelligence" -
"Advances in Intelligent Modelling and Simulation: Simulation Tools and

Appendices

© Zuzana Komínková Oplatková, 2012

134

Applications", (Aleksander Byrski, Zuzana Oplatkova, Marco Carvalho and Marek
Kisiel Dorohinicki (Eds.)), pp. 253 – 268, 2012, ISBN 978-3-642-28887-6.
5. Volná E., Janošek M., Kocián V., Kotyrba M., Oplatková Z.: Robotics
System – Applications, Control and Programming. In Dutta Ashish: Methodology for
System Adaptation based on Characteristic Patterns. Intech – Open Access Publisher.
2012. ISBN 978-953-307-941-7.
6. Oplatková Z., Šenkeřík R.: Applications of Artificial Intelligence, In
(Šilhavý, Radek; Šilhavý, Petr; Prokopová, Zdenka (Eds.)): Computer Science and
Software Techniques in 2011, Šilhavý s. r. o., pp. 29-42, 2011, ISBN 978-80-
904741-0-9.
7. Zelinka, I., Davendra, D., Šenkeřík, R., Jašek, R., Oplatková, Z.: Analytical
Programming - a Novel Approach for Evolutionary Synthesis of Symbolic
Structures. In Evolutionary Algorithms. Rijeka : InTech, 2011, pp. 149-176. ISBN
978-953-307-171-8.
8. Šenkeřík, R., Zelinka, I., Davendra, D., Oplatková, Z.: Evolutionary Design
of Chaos Control in 1D in Zelinka I., Celikovski S., Richter H., Chen G.:
Evolutionary Algorithms and Chaotic Systems, Springer-Verlag Berlin, Heidelberg,
pp. 165-190, 2010, ISBN 978-3-642-10706-1

Editor of books

1. Byrski A., Oplatkova Z., Carvalho M. and Dorohinicki M. K. (Eds.): Springer
Series "Studies in Computational Intelligence" - "Advances in Intelligent Modelling
and Simulation: Simulation Tools and Applications", Springer, 2012, ISBN: 978-3-
642-28887-6.
2. Computer Science and Software Techniques in 2011, ISBN 978-80-904741-
0-9

Journals with impact factor

1. Kominkova Oplatkova, Z., Senkerik, R., Zelinka, I., Pluhacek, M., Analytic
Programming in the task of Evolutionary Synthesis of Controller for High Order
Oscillations Stabilization of Discrete Chaotic Systems, Computers & Mathematics
with Applications, (Accepted for publication, 2012), ISSN 0898-1221, IF: 1.747
(2011)
2. Pluhacek, M., Senkerik, R., Davendra, D., Kominkova Oplatkova, Z., On the
Behaviour and Performance of Chaos Driven PSO Algorithm with Inertia Weight,
Computers & Mathematics with Applications, (Accepted for publication, 2012),
ISSN 0898-1221, IF: 1.747 (2011)
3. Senkerik, R., Oplatkova, Z., Zelinka, I., Davendra, D.: Synthesis of feedback
controller for three selected chaotic systems by means of evolutionary techniques:
Analytic programming, Mathematical and Computer Modelling, Vol. 57, No. 1 - 2,
2013, pp. 57 – 67, ISSN 0895-7177, DOI: 10.1016/j.mcm.2011.05.030, IF: 1.346
(2011)
4. Senkerik, R., Oplatkova, Z., Zelinka, I., Davendra, D., Jasek, R.: Performance
Comparison of Differential Evolution and SOMA on Chaos Control Optimization

Appendices

© Zuzana Komínková Oplatková, 2012

135

Problems. International Journal of Bifurcation and Chaos. Vol. 22, No. 8, 2012, 16 p,
ISSN: 0218-1274, DOI: 10.1142/S021812741230025X, IF: 0.755 (2011)
5. Senkerik,	 R.,	 Zelinka,	 I.,	 Davendra,	 D.,	 Oplatkova,	 Z.:	 Utilization	 of	 SOMA	
and	 Differential	 Evolution	 for	 Robust	 Stabilization	 of	 Chaotic	 Logistic	 Equation,	
Computers	 &	 Mathematics	 with	 Applications,	 Vol.	 60,	 No.	 4,	 2010,	 1026-‐1037,	
ISSN	 0898-‐1221, DOI:	 10.1016/j.camwa.2010.03.059, IF: 1.472 (2010)

Journals

2012

1. Kominkova Oplatkova Z., Holoska J., Senkerik R., Steganography content
detection by means of feedforward neural network, International Journal of
Innovative Computing and Applications, Vol. 5, No. 1, 2013, ISSN 1751-648X.
2. Senkerik, R., Zelinka, I., Davendra, D., Oplatkova, Z. Evolutionary
Optimization Of Henon Map Control – A Blackbox Approach, International Journal
of Operational Research, 2012, Vol. 13, No. 2, pp. 129 – 146, ISSN: 1745-7645.
3. Senkerik R., Oplatkova Z., Zelinka I., Davendra D., Evolutionary Chaos
Controller Synthesis for Stabilizing Chaotic Hénon Maps. Complex Systems, 2012,
Vol. 20, No. 3, pp. 205-214, ISSN 0891-2513.

2011

4. Oplatková, Z., Zatloukal, J., Šenkeřík, R.: Software Mathematica with GUI
for Applications with Artficial Neural Networks, Aplimat – Journal of Applied
Informatics, 2011, Vol. 4., No. 2, pp. 435-442, ISSN 1337-6365.
5. Bělašková S., Oplatková Z.: Application of Software Mathematica in
Mathematics, Aplimat – Journal of Applied Informatics, 2011, Vol. 4., No. 1, p. 335-
340, ISSN 1337-6365

 2010

6. 	 Senkerik,	 R.,	 Zelinka,	 I.,	 Oplatkova,	 Z.:	 Evolutionary	 Techniques	 for	
Control	 of	 Discrete	 Chaotic	 Logistic	 Equation,	 Journal	 of	 Communication	 and	
Computer,	 Vol.	 7,	 No.	 2,	 pp.	 70-‐77,	 ISSN	 1548-‐7709.
7. Hološka, J., Oplatková, Z., Zelinka, I., Šenkeřík, R.: Steganografie jako
hrozba úniku kritických obchodních informací a její detekce pomocí umělých
neuronových sítí, FAMily media, s. r. o., Security magazín, Praha, pp. 33-37, 2010,
ISSN 1210-8723

 2009

8. Oplatková, Z., Zelinka, I.: Investigation on Evolutionary Synthesis of
Movement Commands, Hindawi Publishing Corporation, Modelling and Simulation
in Engineering, New York, 2009, N/A, ISSN 1687-5591
9. Hološka, J., Oplatková, Z., Zelinka, I., Šenkeřík, R.: Steganografie jako
hrozba úniku kritických obchodních informací a její detekce pomocí umělých
neuronových sítí, Fakulta aplikované informatiky, Univerzity Tomáše Bati ve Zlíně,
Trilobit, Vol 1., Zlín, 2009, ISSN 1804-1795

Appendices

© Zuzana Komínková Oplatková, 2012

136

2008

10. Oplatková, Z., Zelinka, I., Šenkeřík, R.: Santa Fe Trail for Artificial Ant by
means of Analytic Programming and Evolutionary Computation, United Kingdom
Simulation Society, International Journal of Simulation, Systems, Science and
Technology, Nottingham, 2008, pp. 20 - 33, Vol. 9, No. 3, ISSN 1473-8031.
11. Zelinka,	 I.,	 Senkerik,	 R.,	 Oplatkova,	 Z.:	 Evoluční	 řízení	 a	 syntéza	
deterministického	 chaosu,	 Československý	 časopis	 pro	 fyziku,	 Vol.	 58,	 No.	 6,	
2008,	 pp.	 316-‐325,	 ISSN:	 0009-‐0700.
12. Zelinka, I., Šenkeřík, R., Oplatková, Z.: Evolutionary identification of
dynamical systems, United Kingdom Simulation Society, International Journal of
Simulation, Systems, Science and Technology, Nottingham, 2008, pp. 47-59, Vol. 9,
No. 3, ISSN 1473-8031

2005

13. Zelinka, I., Oplatková, Z., Nolle, L.: Analytic Programming - Symbolic
Regression by Means of Arbitrary Evolutionary Algorithms, IJSST, International
Journal of Simulation, Systems, Science and Technology, Great Britain, 2005, pp.
44-56, ISSN 1473-8031

Editor of Conference Proceedings

1. Zelinka, I., Oplatková, Z., Orsoni A.: 21st European Conference on Modelling
and Simulation – Simulations in United Europe, 2007 held on Prague, Czech
Republic, printed in Germany, ISBN 978-0-9553018-2-7
2. Louca L. S., Chrysanthou Y., Oplatková Z., Al-Begain K.: 22nd European
Conference on Modelling and Simulation, 2008 held on Nicosia, Cyprus, printed in
Germany, ISBN 0-9553018-5-8

Conference Proceedings

2012

1. Oplatkova Z., Holoska J., Senkerik R., Artificial Neural Networks for
Detection Cover and Stego Images, In: Proceedings of the Fifth International
Conference on Bioinspired Optimization Methods and Their Applications, BIOMA
2012, pp. 281 - 290, 2012, ISBN 978-961-264-043-9.
2. Oplatkova, Z., Senkerik, R., Zelinka I., Davendra D., Utilization Of Analytic
Programming For The Stabilization Of High Order Oscillations Of Chaotic Hénon
Map. In Proceedings 26th European Conference on Modelling and Simulation ECMS
2012, pp. 410-418. ISBN 978-0-9564944-4-3.
3. Oplatkova Z., Senkerik R.: Metaevolution with Analytic Programming, 2nd
Computer Science On-line Conference in 2012, Silhavy s.r.o., Vsetin, p. 2-13, 2012,
ISBN 978-80-904741-1-6

Appendices

© Zuzana Komínková Oplatková, 2012

137

4. Senkerik, R., Oplatkova, Z., Davendra, D., Zelinka, I., Evolutionary and
Meta-evolutionary Approach for the Optimization of Chaos Control, In Proceedings
of ICAISC 2012, Swarm and Evolutionary Computation, Springer Series “Lecture
Notes in Computer Science”, Volume: 7269, 2012, pp. 350 – 358, ISBN: 978-3-642-
29352-8.
5. Senkerik R., Davendra D., Zelinka I., Pluhacek M., Oplatkova Z., An
Investigation on the Chaos Driven Differential Evolution: An Initial Study, In:
Proceedings of the Fifth International Conference on Bioinspired Optimization
Methods and Their Applications, BIOMA 2012, pp. 185 - 194, 2012, ISBN 978-961-
264-043-9.
6. Senkerik R., Davendra D, Zelinka I., Pluhacek M., Oplatkova Z., An
Investigation On The Differential EvolutionDriven By Selected Discrete Chaotic
Systems, In: Proceedings of the 18th International Conference on Soft Computing,
MENDEL 2012, pp. 157 - 162, 2012, ISBN 978-80-214-4540-6.
7. Senkerik R., Oplatkova Z., Zelinka I., Evolutionary Synthesis of Rules for
Stabilization of Selected Discrete Chaotic Systems, In: Proceedings of the 18th
International Conference on Soft Computing, MENDEL 2012, pp. 150 - 156, 2012,
ISBN 978-80-214-4540-6.
8. Senkerik R., Davendra D., Zelinka I., Oplatkova Z., Pluhacek M.,
Optimization of the Batch Reactor by Means of Chaos Driven Differential Evolution,
In Proceedings of SOCO 2012: Soft Computing Models in Industrial and
Environmental Applications, Springer Series: “Advances in Intelligent Systems and
Computing”, Vol. 188, 2012, pp. 93 – 102, ISBN: 978-3-642-32922-7.
9. Senkerik R., Oplatkova Z., Zelinka I., Evolutionary Synthesis of Control
Rules by means of Analytic Programming for the Purpose of High Order Oscillations
Stabilization of Evolutionary Synthesized Chaotic System, In Proceedings of
Nostradamus 2012: International conference on prediction, modeling and analysis of
complex systems, Springer Series: “Advances in Intelligent Systems and
Computing”, Vol. 192, 2012, pp. 191 – 202, ISBN: 978-3-642-33226-5.
10. Senkerik R., Davendra D., Zelinka I., Oplatkova, Z., Influence of Chaotic
Dynamics to the Performance of Evolutionary Algorithms – An initial study. In
Proceedings of 10th International Conference on Numerical Analysis and Applied
Mathematics ICNAAM 2012, AIP Conf. Proc. Vol. 1479, 2012, pp. 627-630, ISBN:
978-0-7354-1091-6.
11. Pluhacek M., Budikova V., Senkerik R., Oplatkova Z., Zelinka I., Extended
Initial Study on the Performance of Enhanced PSO Algorithm with Lozi Chaotic
Map, In Proceedings of Nostradamus 2012: International conference on prediction,
modeling and analysis of complex systems, Springer Series: “Advances in Intelligent
Systems and Computing”, Vol. 192, 2012, pp. 167 – 178, ISBN: 978-3-642-33226-5.
12. Pluhacek M., Budikova V., Senkerik R., Oplatkova Z., Zelinka I., On The
Performance Of Enhanced PSO algorithm With Lozi Chaotic Map – An Initial
Study, In: Proceedings of the 18th International Conference on Soft Computing,
MENDEL 2012, pp. 40 - 45, 2012, ISBN 978-80-214-4540-6.
13. Zelinka I., Skanderova L., Davendra D., Senkerik R., Oplatkova Z.,
Evolutionary Dynamics and Complex Networks, In: Proceedings of the 18th
International Conference on Soft Computing, MENDEL 2012, pp. 88 - 93, 2012,
ISBN 978-80-214-4540-6.

Appendices

© Zuzana Komínková Oplatková, 2012

138

14. Zelinka I., Skanderova, L., Davendra D., Senkerik R., Oplatkova, Z.,
Controlling Complexity. In Proceedings of 10th International Conference on
Numerical Analysis and Applied Mathematics ICNAAM 2012, AIP Conf. Proc. Vol.
1479, 2012, pp. 654-657, ISBN: 978-0-7354-1091-6.

 2011

15. Oplatková, Z., Zatloukal, J., Šenkeřík, R.: Software Mathematica with GUI
for Applications with Artficial Neural Networks, Aplimat 2011, STU, Bratislava,
Slovak Republic, 2011, ISBN 978-80-89313-51-8.
16. Oplatkova Z., Senkerik R., Zelinka I., Jasek R.: Comparison of Two Cost
Functions For Evolutionary Synthesis of Control Law for Higher Periodic Chaotic
Logistic Equation. In 5th International Conference on Mathematical Modeling and
Computer Simulation. IEEE. 2011. ISBN 978-0-7695-4414-4. p. 26-31.
17. Oplatková, Z., Šenkeřík, R.: Classification with Pseudo Neural Networks
Based On Evolutionary Symbolic Regression. In 2011 International Conference on
P2P, Parallel, Grid, Cloud and Internet Compting. Piscataway : IEEE Operations
Center, 2011, s. 396-401. ISBN 978-0-7695-4531-8.
18. Oplatková, Z., Hološka, J., Zelinka, I., Šenkeřík, R., Jašek, R.: Steganalysis
of PQ Algorithm by means of Neural Networks. In Proceedings 25th European
Conference on Modelling and Simulation ECMS 2011. Krakov, Poland : ECMS,
2011, s. 446-451. ISBN 978-0-9564944-2-9.
19. Oplatková, Z., Šenkeřík, R., Zelinka, I., Davendra, D. Jašek, R.: Evolutionary
Synthesis of Controller for Stabilization of Synthesized Chaotic System Oscillations.
In MENDEL 2011 17th International Conference on Soft Computing. Brno: VUT
Brno, Czech Republic, 2011, s. 73-79. ISBN 978-80-214-4302-0.
20. Kotyrba M., Oplatkova Z., Volna E., Senkerik R., Kocian V., Janosek M.:
Time Series Pattern Recognition via SoftComputing. In International Conference on
P2P, Parallel, Grid, Cloud and Internet Computing, Workshop SMECS 2011. IEEE.
2011. ISBN 978-0-7695-4531-8. p. 384-389.
21. Bělašková S., Oplatková Z.: Application of Software Mathematica in
Mathematics, Aplimat 2011, STU, Bratislava, Slovak Republic, 2011, ISBN 978-80-
89313-51-8
22. Prochazka M., Oplatkova Z., Holoska J., Gerlich V.: Optimization of Neural
Network Inputs by Feature Selection Methods. In 25th European Conference on
Modelling and Simulation. European Council for Modelling and Simulation. 2011.
ISBN 978-0-9564944-2-9. p. 440 – 445.
23. Skála, R., Oplatková, Z., Šenkeřík, R.: Diagnostics of Machining Center by
means of Neural Networks. In MENDEL 2011 17th International Conference on Soft
Computing. Brno : VUT Brno, Czech Republic, 2011, s. 207-212. ISBN 978-80-214-
4302-0.
24. Šenkeřík, R., Oplatková, Z., Zelinka, I., Jašek, R.: Evolutionary Synthesis Of
Control Law For Higher Periodic Orbits Of Chaotic Logistic Equation. In
Proceedings 25th European Conference on Modelling and Simulation ECMS 2011.
Krakov, Poland, ECMS, 2011, s. 452-458. ISBN 978-0-9564944-2-9.

Appendices

© Zuzana Komínková Oplatková, 2012

139

25. Šenkeřík, R., Oplatková, Z., Zelinka, I., Davendra, D., Jašek, R.: Synthesis Of
Feedback Control Law For Stabilization Of Chaotic System Oscillations By Means
Of Analytic Programming – Preliminary Study. In Proceedings of The Fifth Global
Conference on Power Control and Optimization. Melville : American Institute of
Physics, 2011, s. 1-6. ISBN 978-983-44483-4-9.
26. Šenkeřík, R., Oplatková, Z., Zelinka, I., Davendra, D., Jašek, R.: Synthesis Of
Feedback Controller For Stabilization Of Chaotic Hénon Map Oscillations By Means
Of Analytic Programming. In Proceedings of EMSS: The European Modelling &
Simulation Symposium 2011. Genova : University of Genova, Italy, 2011, s. 593-
597. ISBN 978-88-903724-4-5.
27. Šenkeřík, R., Oplatková, Z., Zelinka, I.: Investigation on Evolutionary Chaos
Controller Synthesis for Hénon Map Stabilization. In International Conference on
Numerical Analysis and Applied Mathematics 2011. Melville : American Institute of
Physics, 2011, s. 1027-1030. ISBN 978-0-7354-0954-5.

2010

28. Oplatková, Z., Šenkeřík, R., Zelinka, I., Hološka, J.: Synthesis of Control
Law for Chaotic Logistic Equation - Preliminary Study, IEEE, 4th International
Conference on Mathematical Modelling and Computer Simulation, Pretoria, 2010,
65-70, ISBN-ISSN 978-0-7695-4062-7
29. Oplatková, Z., Šenkeřík, R., Bělašková, S., Zelinka, I.: Synthesis of Control
Rule for Synthesized Chaotic System by means of Evolutionary Techniques, VUT v
Brně, 16th International Conference on Soft computing, Brno, Czech Republic, 2010,
91-98, ISBN-ISSN 978-80-214-4120-0
30. Oplatková, Z., Šenkeřík, R., Zelinka, I., Hološka, J.: Synthesis of Control
Law for Chaotic Henon System - Preliminary Study, ECMS, Simulation Meets
Global Challenges, Germany, 2010, 277-282, ISBN-ISSN 978-0-9564944-0-5
31. Hološka, J., Oplatková, Z., Zelinka, I., Šenkeřík, R.: Comparison Between
Neural Network Steganalysis And Linear Classification Method Stegdetect, IEEE,
2nd International Conference on Computational Intelligence, Modelling and
Simulation, Pretoria, 2010, 15-20, ISBN-ISSN 978-0-7695-4262-1
32. Procházka, M., Oplatková, Z., Hološka, J.: Datamining Optimization of
Steganalysis by means of Neural Network, Univerzita Tomáše Bati ve Zlíně, Fakulta
aplikované informatiky, Internet, bezpečnost a konkurenceschopnost organizací.
Řízení procesů a využití moderních teerminálových technologií, Zlín, Czech
Republic, 2010, 319-324, ISBN-ISSN 978-83-61645-16-0
33. Peleteiro, A., Burguillo-Rial, J., Oplatková, Z., Zelinka, I.: EPMAS:
Evolutionary Programming Multi-agent Systems, ECMS, Simulation Meets Global
Challenges, Germany, 2010, 27-33, ISBN-ISSN 978-0-9564944-0-5
34. Šenkeřík, R., Zelinka, I., Davendra, D., Oplatková, Z.: Advanced Targeting
Cost Function Design For Evolutionary Optimization Of Control Of Logistic
Equation, University of Technology, The 3rd Global Conference on Power Control
and Optimization, Sarawak, Malaysia, 2010, 1-6, ISBN-ISSN 978-983-44483-1-8
35. Šenkeřík, R., Oplatková, Z., Zelinka, I., Davendra, D., Jašek, R.: Synthesis Of
Feedback Controller For Chaotic Systems By Means Of Evolutionary Techniques,

Appendices

© Zuzana Komínková Oplatková, 2012

140

Curtin University, Proceeding of Fourth Global Conference on Power Control and
Optimization, Sarawak, Malaysia, 2010, 1-7, ISBN-ISSN 978-983-44483-32
36. Šenkeřík, R., Davendra, D., Zelinka, I., Oplatková, Z.: Chaos Driven
Differential Evolution in the Task of Chaos Control Optimization, IEEE Control
Systems Society, 2010 IEEE World congress on Computational Intelligence, 2010,
1408-1415, ISBN-ISSN 978-1-4244-6910-9
37. Zelinka, I., Davendra, D., Snášel, V., Jašek, R., Šenkeřík, R., Oplatková, Z.:
Preliminary Investigation on Relations Between Complex Networks and
Evolutionary Algorithms Dynamics, IEEE, International Conference on Computer
Information Systems and Industrial Management Applications, 2010. CISIM 2010.,
Krakow, Poland, 2010, 148-153, ISBN-ISSN 978-1-4244-5612-3
38. Šenkeřík, R., Zelinka, I., Oplatková, Z.: Evolutionary Techniques for
Deterministic Chaos Control, in Iskander M., Kapila V., Karim M. A.: Technological
Developments in Education and Automation, Springer Berlín, 2010, 391-396, ISBN
978-90-481-3655-1

2009

39. Oplatková, Z., Hološka, J., Zelinka, I., Šenkeřík, R.: Odhalování
steganografie pomocí neuronových sítí, Univerzita Tomáše Bati ve Zlíně, Internet,
competitiveness and Organisational Security in Knowledge Society, Zlín, Czech
Republic, 2009, ISBN-ISSN 978-80-7318-828-3
40. Oplatková, Z., Hološka, J., Zelinka, I., Šenkeřík, R.: Detection of
Stegoimages by F5 Programme by means of Neural Networks, VUT Brno, 15th
International Conference on Soft Computing MENDEL 2009, Brno, Czech Republic,
2009, 186-191, ISBN-ISSN 978-80-214-3884-2
41. Oplatková, Z., Hološka, J., Zelinka, I., Šenkeřík, R.: Detection of
Steganography Inserted by OutGuess and Steghide by means of Neural Networks,
IEEE Operations Center, AMS2009 Asia Modelling Symposium 2009, Piscataway,
2009, 11-17, ISBN-ISSN 978-0-7695-3648-4
42. Tupý, J., Oplatková, Z., Zelinka, I.: Neural Differentiation in Modeling,
Vysoké učení technické v Brně, Fakulta strojního inženýrství, MENDEL 2009 15th
International Coference on Soft Computing, Brno, Czech Republic, 2009, 154-159,
ISBN-ISSN 978-80-214-3675-6
43. Zelinka, I., Šenkeřík, R., Oplatková, Z., Davendra, D.: Evolutionary
Identification of Chaotic System, International Federation of Automatic Control, 2nd
IFAC Conference on Analysis and Control of Chaotic Systems, Soul, Korea, 2009,
1-8, ISBN-ISSN 1474-6670
44. Šenkeřík, R., Zelinka, I., Oplatková, Z.: Evoluční techniky v řízení
deterministického chaosu, Univerzita Tomáše Bati ve Zlíně, Internet,
competitiveness and Organisational Security in Knowledge Society, Zlín, Czech
Republic, 2009, 1-6, ISBN-ISSN 978-80-7318-828-3
45. Šenkeřík, R., Zelinka, I., Oplatková, Z.: Comparison of Evolutionary
Algorithms in the Task of Chaos Control Optimization ? Extended study: Complex
Targeting CF, IEEE Control Systems Society, 2009 IEEE Congress on Evolutionary
Computation, Reseach Publishing Service - Chennai, 2009, 2825 - 2832, ISBN-ISSN
978-1-4244-2959-2

Appendices

© Zuzana Komínková Oplatková, 2012

141

46. Šenkeřík, R., Zelinka, I., Oplatková, Z., Davendra, D.: Evolutionary
Synthesis and Control of Chaotic Systems, International Federation of Automatic
Control, 2nd IFAC Conference on Analysis and Control of Chaotic Systems, Soul,
2009, 1-6, ISBN-ISSN 1474-6670
47. Šenkeřík, R., Zelinka, I., Oplatková, Z.: Optimal Control of Evolutionary
Synthesized Chaotic System, VUT Brno, 15th International Conference on Soft
Computing MENDEL 2009, Brno, Czech Republic, 2009, 220 - 227, ISBN-ISSN
978-80-214-3884-2
48. Šenkeřík, R., Zelinka, I., Oplatková, Z.: Design of Advanced Targeting Cost
Function for Evolutionary Optimization of Chaos Control, ECMS Sp., 23rd
European Conference on Modelling and Simulation, Madrid, Spain, 2009, 122 - 128,
ISBN-ISSN 978-0-9553018-8-9
49. Šenkeřík, R., Zelinka, I., Oplatková, Z.: Evolutionary Blackbox Control of
Logistic Equation, EUCA, European Control Conference 2009, San Ramon, 2009,
2652 - 2657, ISBN-ISSN 978-963-311-369-1

2008

50. Oplatková, Z., Zelinka, I.: Applications of Symbolic Regression with
Evolutionary Computation, University of Bielsko-Biala, European Workshop on
Intelligent computational Methods and Applied Mathematics, Bielsko-Biala, Poland,
2008, ISBN-ISSN N
51. Oplatková, Z., Zelinka, I.: Higher Dimensional Cost Function for Synthesis
of Evolutionary Algorithms by means of Symbolic Regression, IEEE Operations
Center, Second Asia International Conference on Modelling and Simulation,
Piscataway, 2008, 486-492, ISBN-ISSN 0-7695-2799-X
52. Oplatková, Z., Hološka, J., Zelinka, I., Šenkeřík, R.: Detection of
Steganography Content Inserted by Steghide by means of Neural Networks, Vysoké
učení technické v Brně, Fakulta strojního inženýrství, MENDEL 2008 14th
International Coference on Soft Computing, Brno, Czech Republic, 2008, 166-171,
ISBN-ISSN 978-80-214-3675-6
53. Oplatková, Z., Hološka, J., Zelinka, I., Šenkeřík, R.: Steganography Detection
by means of Neural Networks, IEEE Operations Center, Nineteenth International
Workshop on Database and Expert Systems Applications, Piscataway, 2008, 571-
576, ISBN-ISSN 978-0-7695-3299-8
54. Zelinka, I., Oplatková, Z., Šenkeřík, R.: Evolutionary Synthesis of Complex
Structures, IEEE Operations Center, Nineteenth International Workshop on Database
and Expert Systems Applications, Piscataway, 2008, 571-576, ISBN-ISSN 978-0-
7695-3299-8
55. Zelinka, I., Oplatková, Z., Šenkeřík, R.: Evolutionary Scanning and Neural
Network Optimization, IEEE Operations Center, Nineteenth International Workshop
on Database and Expert Systems Applications, Piscataway, 2008, 571-576, ISBN-
ISSN 978-0-7695-3299-8
56. Šenkeřík, R., Zelinka, I., Oplatková, Z.: Performance Comparison of
Evolutionary Algorithms in the Task of Optimization of Chaos Control, IEEE
Operations Center, Nineteenth International Workshop on Database and Expert

Appendices

© Zuzana Komínková Oplatková, 2012

142

Systems Applications, IEEE, Piscataway, 2008, 514 - 518, ISBN-ISSN 978-0-7695-
3299-8
57. Šenkeřík, R., Zelinka, I., Oplatková, Z.: Evolutionary Techniques for
Deterministic Chaos Control, IEEE Computer Society, International Joint
Conferences on computer, Information, and Systems Sciences, and Engineering,
Bridgeport, USA, 2008, 500 - 505
58. Prokopová, Z., Oplatková, Z.: Simulation and Robust Control of Continuous
Time Circulating Reactor, ECMS, 22nd European Conference on Modelling and
Simulation, Nicosia, Cyprus, 2008, 519-524, ISBN-ISSN 978-0-9553018-5-8

2007

59. Oplatková, Z., Zelinka, I.: Santa Fe Trail for Artificial Ant with Analytic
Programming and Three Evolutionary Algorithms, IEEE Computer Society, AMS
2007, Phuket, Thailand, 2007, 334-339, ISBN-ISSN 0-7695-2845-7
60. Oplatková, Z., Zelinka, I.: Creating evolutionary algorithms by means of
analytic programming - design of new cost function, European Council for
Modelling and Simulation, ECMS 2007, Germany, 2007, 271-276, ISBN-ISSN 978-
0-9553018-2-7
61. Oplatková, Z., Zelinka, I.: Symbolic regression and evolutionary computation
in setting an optimal trajectory for a robot, IEEE Computer Society, workshop ETID
2007 in DEXA 2007, Germany, 2007, 168-172, ISBN-ISSN 978-0-7695-2932-5
62. Oplatková, Z., Zelinka, I.: Learning of robots via symbolic regression and
evolutionary computation, Vysoká škola báňská - Technická univerzita, WETDAP
2007 - Znalosti 2007, Ostrava, Czech Republic, 2007, 27-34, ISBN-ISSN 978-80-
248-1332-5

2006

63. Oplatková, Z., Zelinka, I.: Santa Fe Trail for Artificial Ant with Simulating
Annealing – Preliminary Study, European Council for Modelling and Simulation,
20th European Conference on Modelling and Simulation, Germany, 2006, 56-61,
ISBN-ISSN 0-9553018-0-7
64. Oplatková, Z., Zelinka, I.: Investigation on Artificial Ant using Analytic
Programming, The Association for Computing Machinery, Genetic and Evolutionary
Computation Conference, USA, 2006, 949-950, ISBN-ISSN 1-59593-186-4
65. Oplatková, Z., Zelinka, I.: Setting an Optimal Trajectory by means of
Analytic Programming, Faculty of Mechanical Engineering in Zenica, 10th
International Research/Expert Conference & Trends in the Development of
Machinery and Associated Technology, TMT 2006, Zenica, Bosna a Hercegovina,
2006, 673-676, ISBN-ISSN 9958-617-30-7
66. Oplatková, Z., Zelinka, I.: Creating Evolutionary Algorithms by means of
Analytic Programming – Preliminary Study, FSI, VUT Brno, 12th International
Conference on Soft Computing, Czech Republic, 2006, 19-24, ISBN-ISSN 80-214-
3195-4
67. Zelinka, I., Vařacha, P., Oplatková, Z., Volná, E.: Structural Synthesis of
Neural Network by means of Analytic Programming, FSI, VUT Brno, 12th

Appendices

© Zuzana Komínková Oplatková, 2012

143

International Conference on Soft Computing, Czech Republic, 2006, 25-30, ISBN-
ISSN 80-214-3195-4
68. Zelinka, I., Vojtěšek, J., Oplatková, Z.: Simulation Study of the CSTR
Reactor for Control Purposes, European Council for Modelling and Simulation, 20th
European Conference on Modelling and Simulation, Germany, 2006, 479-482,
ISBN-ISSN 0-9553018-0-7

2005

69. Oplatková, Z.: Optimal Trajectory of Robots Using Symbolic Regression,
IAC, IAC 2005, International Congress, Fukuoka, Japan, 2005, CDROM, ISBN-
ISSN
70. Oplatková, Z., Zelinka, I.: Investigation on Shannon - Kotelnik Theorem
Impact on SOMA Algorithm Performance, ESM, European Simulation
Multiconference 2005, Riga, Latvia, 2005, 66-71, ISBN-ISSN 1-84233-112-4

2004

71. Oplatková, Z.: Analytic Programming - Boolean Symmetry Problems by
Means of Evolutionary Algorithms, Ústav informatiky SAV, Ústav informatiky,
Bratislava, Slovak Republic, 2004, 38-41, ISBN-ISSN 80-969202-0-0
72. Zelinka, I., Oplatková, Z., Včelař, F.: Logical Function Synthesis by Means
of Arbitrarry Evolutionary Algorithms-Comparative Study, VUT FSI, 10 th
International Conference on Soft Computing, Brno, Czech Republic, 2004, 77-82,
ISBN-ISSN 80-214-2676-4
73. Zelinka, I., Oplatková, Z.: Boolean Parity Function Synthesis by Means of
Arbitrary Evoutionary Algorithms - Comparative Study, SCI 2004, SCI 2004,
Orlando, USA, 2004, 231-236, ISBN-ISSN 980-6560-13-2
74. Zelinka, I., Oplatková, Z., Nolle, L.: Boolean Symmetry Function Synthesis
by means of Arbitrary Evolutionary Algorithms – Comparative Study, Society for
Modeling and Simulation International, European Simlulation Multiconference,
Magdeburg, Germany, 2004, 143-148, ISBN-ISSN 3-936150-35-4
75. Zelinka, I., Oplatková, Z., Včelař, F.: Symbolic Regression by means of
Arbitrary Evolutionary Algorithms – Comparative Study, Technical University in
Brno, Czech Republic, Mendel 2004 – International conference on Softcomputing,
Brno, 2004, 77-82, ISBN-ISSN 80-214-2676-4

2003

76. Zelinka I., Oplatková Z.: Analytic Programming – Comparative Study, The
second International Conference on Computational Intelligence Robotics and
Autonomous Systems CIRAS, 2003, Singapore, ISSN 0219-6131

	

