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ABSTRACT 
The logic synthesis is understood as a process of transforming a behavioral circuit description 

(typically register-transfer level – RTL) into a logic level description, typically a network of logic 

gates. By logic optimization we understand a process of refining this description to improve its 

quality, be it the size, delay, power consumption, etc. 

However, these two terms (logic synthesis and optimization) are often used interchangeably 

or jointly in literature, and so they will be in this thesis. 

Iteration at a high-level is proposed, as a more powerful, yet also more time-consuming 

alternative to the standard, single-pass synthesis and optimization process. The high-level 

attribute means that the iteration is performed over the whole synthesis process, not inside of one 

single synthesis step (algorithm). 

Processes based on high-level iteration offer a possibility of reaching better results at expense 

of run-time. They are also adjustable in run-time: a trade-off between the result quality and 

run-time can be established by needs of the designer. 

Iterative nature of the optimization algorithms brings a notion of state space. Therefore, logic 

optimization is viewed as a general combinatorial optimization problem in this thesis, in the sense 

of the state space concept. Notions of state space states and moves are introduced as valid 

optimization solutions and transformations from one to another, respectively. 

Randomized versions of iterative algorithms offer higher iterative power. Locally optimum 

results are more easily avoided at expense of unpredictability of the final results, introduced 

by randomness. 

Numerous iterative logic synthesis and optimization algorithms, even randomized, have been 

published in literature. They have different state spaces; some of them offer a global view of the 

problem. However, this work focuses only on several novel and original randomized iterative 

algorithms developed by the author. Their basic principles are described and emphasis is put 

on understanding the effect of both the randomness and iteration, and their degree necessary 

to make the algorithms perform well. The influence of randomness on the algorithm iterative 

power is studied as well. 

Advantages and disadvantages of randomized iterative algorithms, compared to deterministic 

single-pass ones, are investigated. It will be shown that randomized iterative algorithms are 

capable of producing better results than deterministic single-pass ones, usually at expense 

of run-time. 

The unquestionable merit offered by randomized iterative algorithms is a possibility 

of obtaining upper bounds of quality (e.g., of the size). These can be used, e.g., to evaluate the 

efficiency of other logic synthesis algorithms (benchmarking). It will be shown that some circuits 

can be simplified by orders of magnitude using iteration. If randomness is employed in addition, 

further simplification is possible. 

Note that the well-known randomized iterative algorithms, the simulated annealing and 

evolutionary (genetic) algorithms are not studied here, since many studies on these topics were 

already published. These techniques were also tried to be applied to logic optimization, with 

various success. However, their properties and behavior are well known and, more importantly, 

can be generalized to any combinatorial optimization process. Hence, new algorithms developed 

just for purposes of logic synthesis and optimization are discussed here instead. 

Also, sources of “external randomness” are explored. There are aspects that the synthesis 

process should not be influenced with. Ordering of variables or coordinate statements in the 

source file are such cases. However, this is not the case in practice. It will be shown that synthesis 

is crucially influenced by these; design tools produce very poor, or conversely, very good results 

under different orderings. Such kind of randomness is unknowingly introduced by, e.g., the 

designer, who naturally does not know the internals of the tools and definitely does not care about 

any, from his side meaningless reordering. 
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1 INTRODUCTION 
As the complexity of integrated circuits (ICs) progressively increases following the Moore’s 

Law, bigger and bigger emphasis is put on modularity of designs. Complex ICs are constructed 

of smaller designs, like adders, multipliers, or custom cores. These are tailored together to form 

the final design, usually in a hierarchical way (ALUs contain adders, CPUs contain ALUs, 

systems on chip contain CPUs, etc.) The unquestionable advantage of such an approach is 

a possibility of design reuse; efficient implementations of frequently used small design features 

are known, or there are dedicated generators for them (like generic generators of adders). Then 

there is no need for optimization of the logic in the overall synthesis process. This makes 

synthesis of complex ICs fast and efficient. 

However, the role of random logic is still pervasive. For example, controllers, arbiters, or other 

custom logic must be synthesized “from scratch”, starting from their behavioral (e.g., RTL) 

description. This is where the logic synthesis and optimization plays the most important role. Note 

that the term random is used in a different context here – the logic is called random, since 

no regular patterns can be detected in its features arrangement (network). 

Logic synthesis is usually understood as a process moving from a behavioral circuit description 

(RTL) to logic description (logic circuit – network of gates) [1]. By logic optimization we 

understand a process of finding a “better” representation of the same logic circuit, i.e., it operates 

at the same abstraction level. However, these two terms are often mixed up or used in connection, 

for simple reasons: for example, one may argue whether a truth table is a behavioral or gate-level 

description, or if an RTL code describing the circuit behavior using Boolean equations is still 

RTL [1], when truth table terms and equations, respectively, can be converted to gates 

in a straightforward way. 

 

Even though logic synthesis and optimization is considered to be an already well-mastered and 

mature process, the research in this area still continues. These are some of the major driving 

forces: 

1. Scalability. The volume of random logic progressively increases as well, thus the 

synthesis must be able to cope with increasingly larger designs. 

2. Low-power designs. Since there is an increasing need for low-power, which can be 

achieved by, e.g. producing smaller designs, industry is keen to invest more resources 

to maximally decrease the design size. Low-power can also be achieved by special design 

techniques, which incorporate logic optimization too [2], [3]. 

3. Possibility of unexpectedly large results of high-level synthesis. Either the automated 

HDL synthesis itself may produce very bad results, or the HDL designer (HDL code 

programmer) may accidently describe the circuit in a bad way. Logic optimization should 

be able to simplify the network then. Ideally, logic optimization should produce 

(near-)optimum results independently of the initial description. It will be shown that 

reality is far from this ideal. 

4. Design reuse. If a particular logic is reused many times in the design, it is highly required 

to optimize it as much as possible – an inefficiently synthesized small design feature may 

cause a size explosion of the complete design, if reused many times. Therefore, designers 

are keen to invest more effort to maximally optimize such components. 

 

In many cases hardware designers may want to set a trade-off between the design quality (be it 

area, delay, power consumption, etc.) and design time. Iterative processes offer such a possibility. 

Particularly, the synthesis process may be iterated (repeated and refined by that), while the 

solution quality gradually increases in time. Then the iteration can be stopped judging by the 

designer’s requirements (design quality, synthesis run-time). 

If the whole synthesis process is iterated, we speak about high-level iteration. 
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Generally, iterative algorithms can be divided into two classes: deterministic and randomized. 

Deterministic algorithms typically rely on well elaborated control heuristics, while the 

randomized ones usually try to explore larger state space by introducing stochastic effects. 

This work focuses on randomized, high-level iterative algorithms developed for purpose 

of logic synthesis and optimization. Several novel approaches to logic synthesis and optimization, 

both two-level and multi-level, are presented. Basically, two aspects are studied: 

1. The possibility of trade-off between the solution quality and run-time. Particularly, we 

ask how the solution quality improves in time. 

2. The effect of randomness. How does the randomness actually influence the synthesis? 

How much randomness is needed to reach satisfactory solutions? Partial derandomization 

is used to answer these questions. 

1.1 LOGIC SYNTHESIS: SOME HISTORY AND STATE-OF-THE-ART 

Basic principles of most of viable logic synthesis and optimization algorithms have been 

established already in early 1960’s. Originally, the synthesis started with a two-level 

Sum-of-Products (SOP) description of the circuit or a truth table, i.e., a kind of behavioral 

description. The first algorithm minimizing SOP expressions was proposed by Quine and 

McCluskey [4], [5]. Then it was replaced by ESPRESSO [6], which became a well-established 

standard since 1980’s. 

 After the SOP minimization, miscellaneous decomposition algorithms were applied to the 

result, to produce factored forms minimizing the number of literals [2], [3], [7], [8], [9]. After that 

the technology mapping process followed [2], [3]. 

In this “old book” approach, a high-level iteration was not possible, since transformation into 

the initial description (SOP) would completely destroy the obtained structure and thus waste all 

the effort. 

All the referenced algorithms are based on SOP representations of functions (be it source 

descriptions or functions describing network nodes). Such a representation is not canonical and 

suffers from problems with scalability. Binary Decision Diagrams (BDDs) [10], [11] were 

introduced in 1980’s, together with new, BDD-based algorithms, both for two-level [12], [13] and 

multi-level synthesis [14], [15]. However, even though BDDs represent logic functions implicitly, 

their size can easily blow up exponentially with the number of function’s inputs as well [10], [11]. 

Therefore, only small BDDs are enforced in practice (so called local BDDs [15]), or they are used 

only for representing functions with a small number of inputs, e.g., for representing simple 

network nodes [16], [17], [18], [19], [20]. But definitely, BDDs are an ultimate solution when 

canonicity is required, or their special properties can be efficiently exploited by the synthesis 

algorithm [14], [15]. 

Many logic synthesis algorithms were implemented in academic tools MIS [16], SIS [17], and 

MVSIS [18] by Berkeley Logic Synthesis and Verification Group. In these tools, circuits are 

internally described as Boolean networks, whose nodes are represented as SOPs or BDDs. 

Recently, the research shifted towards a different representation of networks: the And-Inverter 

Graphs (AIGs) [21], [22], [23], [24]. AIGs are more scalable and more uniform than standard 

tabular (truth table, SOP, PLA) circuit representations and new, more flexible synthesis and 

mapping algorithms may be applied upon these structures directly [24] - [29]. A synthesis tool 

ABC [19], [20] implementing these algorithms came as a successor of SIS and MVSIS and its 

development at UC Berkeley and other universities worldwide still continues. 

ABC is presently the academic state-of-the-art. It is released as open-source software; new 

features can be easily implemented therein. Experiences obtained from ABC then reflect 

in industrial tools (EDA – Electronic Design Automation) development, since the authors of ABC 

closely collaborate with EDA industry. 

Once a concept of unified circuit representation (network of SOPs, AIG) is introduced, both 

resynthesis and high-level iteration become possible. By resynthesis [29] we understand a single 
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synthesis process, where the forms of its input and output are the same, i.e., a process modifying 

the circuit in some way, while keeping the format of its description (AIG, for example). 

High-level iteration means repeating the whole synthesis process, i.e., it can be understood also 

as a kind of resynthesis. The two necessary conditions for both (resynthesis and high-level 

iteration) are that optimization procedures must (1) operate with one representation only and (2) 

not destroy the circuit structure.  

 

Synthesis in SIS is performed by executing several optimization steps, like node optimization 

by ESPRESSO [6], simplification using network don’t cares [30], kernel and cube extraction [2], 

[3], [31], etc. The same happens in ABC, but most of the synthesis and optimization is performed 

upon AIGs. Algorithms like don’t-care based node simplification [32], AIG rewriting [24], 

resubstitution, refactoring [25], [29], etc., are offered. 

After that, technology mapping follows [2], [3], [26], [27], [33], [34], [35], usually 

into standard cells (ASIC technology library) or FPGA look-up tables (LUTs). 

All these algorithms are implemented as individual commands in SIS and ABC. 

As a consequence, plenty of synthesis, optimization, and technology mapping commands are 

available in these tools [17], [18], [19]. Unfortunately, it is impossible to determine a universal 

and ultimate sequence of these commands to be executed. Therefore, different synthesis scripts 

were proposed (e.g. “script.rugged” and “script.algebraic” in SIS, “resyn” 

scripts, “choice” and “dch” in ABC). These scripts are supposed to produce satisfactory, but 

definitely generally suboptimum results. 

1.2 LOGIC OPTIMIZATION AND THE STATE SPACE CONCEPT 

Logic optimization, when viewed as a general combinatorial optimization problem [36], [37], 

is a search for a solution satisfying given constraints (functional equivalence with the origin) and 

optimizing the cost (quality), be it area, delay, power consumption, etc. 

States in the state space represent different solutions; moves (operations) in the state space are 

transformations from one solution to another. 

Most of the logic synthesis and optimization algorithms [2], [3], [6] are NP-hard [37], 

therefore the state space size grows exponentially with the instance size (be it the number 

of inputs, number of gates, signals). Using exact (optimum) algorithms is infeasible in practice, 

both due to the size of present circuits and the size of the state space induced. Therefore, simple 

greedy search algorithms are used [2], [3], [6], typically of the first-improvement or best-only 

nature [36]. The search is typically driven by some deterministic heuristics, hoping that the 

optimum (or at least near-optimum) solution will be obtained at the end. 

Once the state space concept is introduced, we may ask what states are reachable by what 

algorithms (synthesis processes). This means, we ask what solutions are obtainable. It often 

happens that there are more different solutions of the same quality. So we ask: is it ever possible 

to obtain all of them by a given algorithm, under given circumstances? What’s more, it could 

happen that the optimum solution cannot be reached by a given algorithm (synthesis process) 

at all. So we may ask whether a synthesis algorithm (search strategy) is complete in such sense 

[38]. Actually, by completeness we understand an asymptotic convergence to a globally optimum 

solution here; hence such an algorithm (state space search strategy) property will be denoted 

as asymptotic completeness. 

Such a completeness, in sense of a guarantee of obtaining the optimum solution [38] in an 

infinite time, was e.g., proved for the simulated annealing algorithm [39], [40], [41], under 

specific circumstances. 

Indeed, the completeness may be prevented by two aspects: the state space (optimum solutions 

are not present in the state space), and control (the algorithm needs not reach the optimum). 
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The notion of the state space and completeness of the logic optimization problem will be 

addressed specifically in the following two subsections and discussed in following sections, 

for particular algorithms. 

1.3 ITERATIVE CIRCUIT OPTIMIZATION 

The concept of iterative circuit optimization has been introduced in several different ways 

in the past. Most probably the first occurrence of iteration was in the rule-based optimization 

system LSS from IBM [42]. Here the logic network or the final mapped design indeed, is 

repeatedly refined by applying local transformations, i.e., substituting identified circuit patterns 

with different ones. 

Another typical applications of iteration are algorithms based on simulated annealing (SA) 

[43], [44] and evolutionary processes (genetic algorithms, GA) [45], [46], [47]. Iteration is the 

conceptual basis of the algorithms. 

By a low-level iteration we will understand a process, where the iteration is the basis of just a 

single synthesis step (e.g., iteration inside of the ABC “dch” command [19] or all the 

optimization processes mentioned in the paragraph above) or even its part only (e.g., the 

Kernighan-Lin partitioning procedure [48] in a technology mapping process). 

On the other hand, authors of ABC suggest iterating the whole synthesis process [19], [20]. 

Particularly, the two phases – the technology independent optimization and technology mapping – 

are repeated several times, to improve the result quality. Structural hints obtained from the 

technology mapping can be further refined by re-running the technology independent 

optimization this way. Such an approach will be denoted as a high-level iteration. 

When summarized, there may be several levels of iteration in the whole synthesis process, see 

examples in Figure 1. Single synthesis steps may contain low-level iterative algorithms, like SA, 

GA, Kernighan-Lin, etc. These steps, when combined, form the whole logic synthesis process that 

can be iterated (repeated) too, i.e., at a high level. 

 

 

Figure 1 . Levels of iteration 

Essentially, any process that allows improving the result quality at expense of longer run-time 

will be considered as an iterative circuit optimization. Here the notion of convergence comes 

to importance. The solution quality should improve in time, not deteriorate. Next, the stopping 

condition should be defined. This is the point where the process is terminated and a result is 

returned. The stopping condition may be either a user-defined fixed number of iterations, timeout, 

the required result quality, or possibly an adaptive mechanism that needs not the user’s 

intervention. 
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Two cases of iterative processes can be encountered, and both will be discussed in this thesis: 

1. A complete and final circuit is gradually improved by iteration. The quality of the current 

result is known after completing each iteration, hence deciding on any chosen stopping 

condition is easy. 

From the state space point of view (see subsection 1.2), a new state is possibly reached 

after every iteration. Therefore, the more iterations are performed, the larger state space is 

explored. 

2. Only bases (sources) for construction of the final solution are accumulated in course 

of iteration, whereas the solution is formed once, at the end of the process. This is the case 

of, e.g., BOOM (see Section 5). 

Here the concept of the state space is not as clear as in the previous point. More solutions 

are not generated by iteration. Instead, the size of the state space for the final, solution 

producing phase is gradually increased by iteration. Actually, since the optimization 

criterion cannot be computed after each iteration, we cannot consider the process as 

solving an iterative combinatorial optimization problem here. 

1.4 RANDOMNESS 

Because of high complexities of present designs, using exact (optimum) logic synthesis and 

optimization algorithms is not feasible. Therefore, approximate heuristic algorithms must be used 

in practice, as in ABC or SIS (see Subsection 1.1). Even though the employed heuristics usually 

produce solutions of sufficient quality, they do not guarantee optimum solutions and mostly 

do not even guarantee the maximum relative error. 

Apart from algorithms presented in this work, many other randomized approaches to logic 

synthesis appeared. Simulated annealing [43], [44], evolutionary processes [45], [46], [47] are 

apparent cases, since randomness is essential there for success. However, these won’t be 

discussed here, since their properties and behavior are already well known. Moreover, their 

application to logic synthesis is usually straightforward. Dedicated and newly developed logic 

synthesis algorithms will be studied instead. 

 

All of the algorithms and logic synthesis systems (SIS, ABC) mentioned in Subsection 1.1 are 

fully deterministic; no random choices are made in the synthesis process. This brings a benefit 

of reproducibility of results – two runs of the algorithm using the same data produce equal results. 

However, the determinism may also involve inability of reaching different, possibly much better 

results, when the process is run repeatedly. 

And what’s more – even these deterministic algorithms mostly show hints of “unrecognized 

randomness”. Particularly, the processes are usually greedy and they are not systematic [38]. 

Thus, some heuristic function is used to guide the search for the solution. Even though the 

heuristics are usually deterministic, there are often multiple equally valued choices. In such 

situations, the first occurrence is taken. Note that these choices are equally valued just at the point 

of decision and they will most likely influence the subsequent decisions. Therefore, different 

results could be produced, if different decisions were taken, without affecting the principles of the 

algorithms. In other words, the results obtained by one single deterministic algorithm heavily 

depend on its software implementation. 

A typical example is traversing an AIG in a topological order, as e.g. in [24], [25]. 

The topological order is not unique, since there are usually more nodes in each topological level. 

Therefore, there remains some freedom in choosing the order which the nodes will be 

processed in. In ABC, nodes with the lowest ID (which is determined at the node creation instant) 

are processed first. Therefore, even the nodes creation order may influence the size and topology 

of the resulting AIG, which affects all the subsequently run processes. 

Another example is the don’t care based node simplification, as implemented in SIS [17], [32]. 

Again, observability don’t cares are extracted by topological traversal of the network. 

By introducing different ordering at each topological level, different results can be obtained. 



 

 
6 

Taking this into account, a simple way of randomization of deterministic processes is offered. 

However, this won’t be the topic of this study.  

 

From the state space point of view, deterministic algorithms seem to traverse only a very 

limited portion of it. In an ideal case, they will find a way to the global optimum or to a solution 

likely near to optimum, due to efficient pruning heuristics [6]. However, this needs not the 

practice, as some results indicate [49], [50]. To solve this problem, we need either very 

sophisticated heuristics (which is not likely), or to explore larger state space. Therefore, some 

kind of diversification could help. And this can easily be accomplished by introducing 

randomness. 

One of the first attempts to use a randomized algorithm in logic synthesis in this sense was 

proposed in [51]. The core optimization algorithm is deterministic; however it is suggested to be 

run repeatedly, with random initial starting points. Getting stuck in a local optimum is avoided 

this way and a larger space of solutions is explored. 

1.5 RANDOMIZED ITERATIVE ALGORITHMS 

The concepts of iteration and randomness, when combined, form a special class of logic 

synthesis and optimization algorithms. Simulated annealing [43], [44] or evolutionary processes 

[45], [46], [47] are apparent state-of-the-art cases, since both randomness and iteration are 

involved here, from the very nature of the processes. Several other algorithms, where randomness 

and iteration is exploited too, will be introduced and studied more thoroughly in the following 

sections. 

Up to the knowledge of the author, there was no research on randomness introduced at a high 

level, i.e., randomness introduced “from outside”, in order to influence the whole synthesis 

process, not only optimization. This will be the case of two of the presented processes. Iteration 

at a high level was not thoroughly studied as well. 

A common property of randomized iterative algorithms is the possibility of trade-off between 

the run-time and solution quality. Moreover, coming from their random nature, the optimum 

solution can be obtained in an infinite time, provided that the algorithms are designed properly 

(they are asymptotically complete, see Subsection 1.2). 

This is, of course, just a theoretical conclusion without any practical impact. However, 

arbitrarily precise upper bounds (e.g., of size) can be obtained by randomized iterative algorithms. 

These can be used, e.g., for testing the efficiency of other logic synthesis algorithms 

(benchmarking), or to obtain estimations of a theoretical circuit complexity [52], [53], [54], [55]. 

Generally, randomness introduced into iteration helps the algorithm to keep the convergence 

longer. Therefore, better results can be obtained, compared to deterministic iterative algorithms. 

1.6 ACCEPTANCE OF RANDOMIZED ITERATIVE ALGORITHMS 

As it was stated above, iterative synthesis allows the designer to set a trade-off between the 

solution quality and design time. However, it is still not very well accepted by EDA industry (the 

producers of the algorithms) [56]. Commercial tools are designed preferably for speed, since their 

run-time is the bottleneck in the large ICs design. Nevertheless, if a significant quality 

improvement were offered by iteration, it could be accepted. Current results do show such 

a potential. 

Conversely enough, iteration would be probably accepted by ICs design industry 

(the consumers of the algorithms), if offered by EDA vendors [57]. Iterative processes would 

be most likely used for low-power, low-area, and very high speed designs, where designers 

struggle to improve the target quality criterion (power consumption, area, delay) by units 

of per-cents or they try to fit into prescribed constraints. 
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Last, but not least, one application is in the design of small pieces of random logic, that are 

to be frequently reused. These should be synthesized as precisely as possible, since even small 

size (delay) differences may cause big differences in the final design. 

 

Unfortunately enough, randomness is accepted by the EDA industry with the same disgust 

as iteration [56]. Reproducibility of the results is one of the essential issues. However, we do not 

speak about true randomness – it is just pseudo-randomness. Therefore, the reproducibility can be 

easily ensured by, e.g., fixing the pseudo-random generator seeds, without losing any of the 

mentioned benefits. Moreover, the seed can also be specified as one of the synthesis parameters. 

Then, a possibility of obtaining different solutions will emerge, without losing the benefits of 

reproducibility. 

Then again, consumers of the EDA software (IC designers) need not be affected by introduced 

randomness at all. Actually, they could even welcome it, as a novel possibility of generating 

structurally different designs, i.e., several options they can choose from [57]. 
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2 INFLUENCE OF THE SOURCE FILE STRUCTURE 
It can be observed that many synthesis processes are not immune to the structure of the source 

file, like the ordering of variables [58], [59] and ordering and syntax of HDL statements [60]. 

Therefore, different runs of one process with differently structured source file produce different 

results. Possible reasons for it will be discussed in this Section and some quantitative results will 

be given.  

Typically, in the synthesis algorithms variables are processed in a lexicographical order, which 

is defined a-priori, usually by their order in the source file. Then, different orderings of variables 

may make heuristic algorithms run differently, possibly producing different (but definitely still 

correct) results. 

A typical and well known example of such a behavior are BDDs [10], [11]. Here the ordering 

of variables is essential; the BDD size may explode exponentially with the number of variables 

under a “bad” ordering [10]. Computing the optimum ordering of variables is NP-hard itself [61], 

thus infeasible in practice. Even though there are efficient heuristics for determining a possibly 

good variable ordering [62], they consume some time, whereas do not guarantee any success, and 

thus they are usually not employed in practice. Typically, the default variable ordering in the 

BDD manipulation package CUDD [63] (which is used in SIS and ABC too) is just equal to the 

ordering of variables in the source file – no reordering technique is employed. 

Another, and more important example, is the topological traversal of AIG nodes in algorithms 

employed in ABC and SIS (see Subsection 1.4). Even different orderings of input and output 

variables will involve different AIGs or differently arranged networks (in sense of their internal 

representation). 

Also the well-known two-level Boolean minimizer ESPRESSO [6] (which is used both in SIS 

and ABC too) is sensitive to ordering of variables. There are many essential parts of the overall 

algorithm, where decisions are made in a lexicographical way. Some decisions do not influence 

the result quality; they just may influence the run-time (e.g., in the tautology checking process), 

some do influence the result as well (e.g., the Irredundant phase) [6]. 

Therefore, even changing the variables ordering in the source file header (be it PLA [6] 

for ESPRESSO or BLIF [64] for ABC) can significantly affect the algorithms runs and induce 

different results. It will be documented in the following Subsection how serious differences there 

are in practice. 

Also, some commercial synthesis tools are sensitive even to the order of nodes (which are 

coordinate RTL statements). This issue will be documented here as well. For an experimental 

study of the influence of small modifications of the RTL code on the result, see [60]. 

2.1 EXPERIMENTAL RESULTS 

The experimental evaluation of several basic optimization and technology mapping commands 

in ABC [19], technology independent optimization scripts (which comprise of the basic synthesis 

commands), and complete synthesis scripts, targeted to standard cells (the “strash; dch; 

map” script) and look-up tables (4-LUTs), the “strash; dch; if; mfs” script, will be 

presented here. Finally, results of ESPRESSO [6] and even ESPRESSO-EXACT are shown. The 

dependency on both the input and output variables ordering will be studied. 

No influence of the PLA terms ordering or nodes ordering in BLIF as observed in ESPRESSO 

or any of the studied processes in ABC. 

The ABC experiments were conducted as follows: 228 benchmarks from the IWLS and 

LGSynth benchmarks sets [65], [66] were processed. Given a benchmark, its inputs and/or 

outputs were randomly permuted in the source BLIF file [64] (or PLA for ESPRESSO), the 

synthesis command was executed, and the number of AIG nodes, gates, LUTs or literals, 

respectively, was measured. This was repeated 1,000-times for each circuit. 
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In order to compactly represent all the results, the maximum and average percentages of size 

differences (minimum vs. maximum) were computed, over all the 228 circuits. The results are 

shown in Table 1. 

We can observe striking size differences (up to more than 95%), especially for the complete 

synthesis processes. Even the numbers of literals obtained by ESPRESSO-EXACT differ, since 

ESPRESSO-EXACT guarantees minimality of the number of terms only, nothing is guaranteed 

for literals. 

Table 1 . Influence of permutation of variables – summary results (1 iteration) 

 Process Unit 
Permuted inputs Permuted outputs Permuted both 

max. avg. max. avg. max. avg. 

Technology 

independent 

optimization: 

commands 

balance AIG 7.69% 1.04% 11.48% 1.60% 12.50% 2.27% 

rewrite AIG 15.38% 0.68% 19.30% 2.41% 19.13% 2.78% 

refactor AIG 12.07% 0.36% 29.73% 2.49% 29.73% 2.79% 

resub AIG 2.50% 0.06% 20.83% 1.70% 20.83% 1.71% 

Technology 

independent 

optimization: 

scripts 

resyn2 AIG 44.53% 4.60% 52.75% 5.58% 52.69% 7.38% 

resyn3 AIG 13.56% 1.57% 22.50% 2.74% 22.66% 3.72% 

choice AIG 34.40% 7.17% 38.14% 7.14% 36.17% 10.13% 

dch AIG 60.53% 10.42% 40.39% 9.33% 60.50% 13.50% 

Technology 

mapping 

map gates 17.09% 1.35% 12.28% 1.93% 17.09% 2.84% 

fpga LUTs 0.00% 0.00% 5.26% 0.29% 5.26% 0.29% 

if LUTs 0.00% 0.00% 2.88% 0.24% 2.88% 0.24% 

Complete 

synthesis 

strash; dch; 

map 
gates 74.38% 8.67% 70.47% 10.52% 86.27% 13.40% 

strash; dch; 

if; mfs 
LUTs 92.14% 11.50% 85.42% 12.60% 95.07% 14.81% 

Two-level 

optimization 

ESPRESSO literals 34.90% 1.51% 11.82% 1.04% 42.95% 2.11% 

ESPRESSO-

EXACT 
literals 0.63% 0.02% 6.06% 0.23% 6.06% 0.24% 

 

Next, detailed results for two particular circuits, apex2 and cordic [65] are shown in Table 2 

and Table 3. For each process, the minimum, maximum, and average values are presented, 

together with percentage differences between the minima and maxima. More precise results were 

computed here; they were obtained from 10,000 runs. ESPRESSO is insensitive to ordering 

of variables for these particular circuits, thus the results are not present. 

When observing the results of the individual synthesis processes and the overall synthesis, the 

behavior of the apex2 case is expectable. Almost all the synthesis processes were sensitive to the 

ordering of variables, and the effect accumulates in the progress. 

However, cordic is quite a striking example. This is incidentally the circuit responsible for the 

maximum difference of LUTs counts in the complete synthesis process “strash; dch; if; 

mfs” in Table 1. Solutions ranging from 27 to 687 LUTs were obtained. But, strangely enough, 

the standalone synthesis processes (“strash”, ”dch”, ”if”, ”mfs”) are not significantly 

sensitive to variables ordering (e.g., the mapping phase is completely immune). In quantitative 

measures, the effects of individual processes can never be combined to obtain such differences 

in the final design size. Therefore, we must conclude that some qualitative flaws occur in the 

progress. There are hints that structural choices [67], [68] are responsible for this phenomenon. 

 



 

 

Table 2 . Influence of permutation of variables – details for apex2 

 
Process Unit 

Permuted inputs Permuted outputs Permuted both 

min. max. avg. % min. max. avg. % min. max. avg. % 

Technology 

independent 

optimization: 

commands 

balance AIG 4162 4191  4174.2 0.69% 4155 4180  4170.6 0.60% 4150 4202 4176.3 1.24% 

rewrite AIG 4129 4137  4132.7 0.19% 4132 4138  4134.8 0.14% 4128 4139 4133.4 0.27% 

refactor AIG 4018 4018 4018.0 0.00% 4018 4027  4022.9 0.22% 4018 4027  4022.8 0.22% 

resub AIG 4302 4317  4309.6 0.35% 4301 4308  4304.4 0.16% 4300 4322  4311.6 0.51% 

Technology 

independent 

optimization: 

scripts 

resyn2 AIG 3360 3448  3399.9 2.55% 3389 3422  3407.4 0.96% 3351 3450  3403.3 2.87% 

resyn3 AIG 3918 3945  3927.3 0.68% 3874 3930  3909.8 1.42% 3859 3948  3909.8 2.25% 

choice AIG 4419 4522  4494.0 2.28% 4490 4508  4499.0 0.40% 4419 4524  4492.8 2.32% 

dch AIG 2931 3194  3072.3 8.23% 3008 3143  3067.3 4.30% 2918 3198  3063.5 8.76% 

Technology 

mapping 

map gates 4371 4401  4383.7 0.68% 4354 4383  4371.5 0.66% 4350 4402 4380.1 1.18% 

fpga LUTs 2013 2030  2020.1 0.84% 2014 2020  2017.5 0.30% 2006 2029 2016.4 1.13% 

if LUTs 2040 2040 2040.0 0.00% 2039 2040  2039.5 0.05% 2039 2040 2039.5 0.05% 

Complete 

synthesis 

strash; dch; map gates 3221 3552  3378.7 9.32% 3292 3464  3360.5 4.97% 3202 3559  3369.8 10.03% 

strash; dch; if; mfs LUTs 1502 1731 1631.0 13.23% 1587 1666  1628.3 4.74% 1508 1744  1631.2 13.53% 

Table 3 . Influence of permutation of variables – details for cordic 

 
Process Unit 

Permuted inputs Permuted outputs Permuted both 

min. max. avg. % min. max. avg. % min. max. avg. % 

Technology 

independent 

optimization: 

commands 

balance AIG 2727 2735  2730.7 0.29% 2727 2728  2727.5 0.04% 2727 2735 2730.5 0.29% 

rewrite AIG 989 991  990.0 0.20% 987 991  989.0 0.40% 987 991 988.9 0.40% 

refactor AIG 1125 1129  1127.0 0.35% 1128 1128 1128.0 0.00% 1125 1129 1127.0 0.35% 

resub AIG 2723 2723 2723.0 0.00% 2723 2723 2723.0 0.00% 2723 2723 2723.0 0.00% 

Technology 

independent 

optimization: 

scripts 

resyn2 AIG 463 537  502.5 13.78% 487 492  489.5 1.02% 459 541  502.3 15.16% 

resyn3 AIG 2677 2724  2695.0 1.73% 2685 2685 2685.0 0.00% 2677 2724  2696.0 1.73% 

choice AIG 2440 2773 2764.0 12.01% 2770 2770 2770.0 0.00% 2440 2774  2761.8 12.04% 

dch AIG 396 545  486.3 27.34% 448 518  482.8 13.51% 411 555  490.7 25.95% 

Technology 

mapping 

map gates 2762 2772  2766.7 0.36% 2765 2766  2765.5 0.04% 2761 2772  2766.2 0.40% 

fpga LUTs 930 932  931.0 0.21% 931 931 931.0 0.00% 930 932 931.0 0.21% 

if LUTs 804 804 804.0 0.00% 804 804 804.0 0.00% 804 804 804.0 0.00% 

Complete 

synthesis 

strash; dch; map gates 447 2409  567.1 81.44% 486 597  541.2 18.59% 460 2412  571.2 80.93% 

strash; dch; if; mfs LUTs 27 687  335.5 96.07% 178 676  425.5 73.67% 34 689 318.4 95.07% 
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Distributions of frequencies of occurrence of solutions of a given size are shown in Figure 2 

and Figure 3, for the apex2 and cordic circuits. The complete 4-LUT synthesis script (“strash; 

dch; if; mfs”) was executed, for 100,000 different orderings of variables. The result 

obtained using the original ordering is indicated by the bold vertical line. 

We can see a Gaussian-like distribution for the apex2 circuit, or actually, a superposition 

of two Gaussian distributions. Even the original ordering of variables falls to the “better” part 

of the chart. 

For the cordic circuit we can observe two completely isolated regions. There are apparently 

two or more classes of similar implementations (similar in size, probably similar in structure too), 

which synthesis produce depending on the ordering of variables. This phenomenon is still under 

examination, reasons for it are discussable. Note that the apex2 case also shows hints of two 

structurally different classes of solutions. 

 

Figure 2 . Distribution of solutions – apex2, 1 iteration 

 

Figure 3 . Distribution of solutions – cordic, 1 iteration 
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Since it is suggested to run the ABC synthesis scripts (or even the individual commands) 

several times to improve the result quality, several selected synthesis processes were run in an 

iterative way, for 20 iterations, to see if the striking size differences shown in Table 1 were caused 

just by a “bad luck” and if the iterative process will converge to a stable solution, independently 

of the ordering. The summary results are shown in Table 4. 

We see that even though some peak values are slightly reduced (e.g., the “strash; dch; 

if; mfs” process), some processes become even more sensitive to ordering of variables 

(e.g., “refactor”). Generally, the average sensitivity increases by iteration. 

Table 4 . Influence of permutation of variables – summary results (20 iterations) 

 
Process Unit Permuted inputs Permuted outputs Permuted both 

max. avg. max. avg. max. avg. 

Technology 

independent 

optimization: 

commands 

balance AIG 18.75% 1.37% 10.74% 1.43% 18.75% 2.44% 

rewrite AIG 9.62% 0.91% 26.61% 2.01% 26.61% 2.54% 

refactor AIG 69.52% 0.97% 62.57% 2.40% 70.14% 2.87% 

resub AIG 1.54% 0.04% 15.00% 1.24% 15.00% 1.25% 

Technology 

independent 

optimization: 

scripts 

resyn2 AIG 73.96% 7.92% 74.06% 7.42% 78.45% 10.21% 

resyn3 AIG 18.75% 1.84% 34.54% 2.76% 40.91% 3.90% 

dch AIG 82.82% 20.49% 67.19% 18.75% 81.07% 23.72% 

Technology 

mapping 

fpga LUTs 52.94% 10.34% 44.00% 6.90% 56.60% 12.00% 

if LUTs 2.25% 0.04% 2.88% 0.25% 2.88% 0.25% 

Complete 

synthesis 

strash;dch; 

if; mfs 
LUTs 88.89% 18.84% 78.71% 15.77% 85.71% 20.01% 

 

Distributions of frequencies of the obtained solutions for the apex2 and cordic circuits, where 

the LUT-mapping process was run for 20 iterations, are shown in Figure 4 and Figure 5, 

respectively. Again, 100,000 different orderings of variables were tried. 

We see that the result quality was significantly improved in both cases and has more steady 

distribution, shifted towards more positive values. The area, where cordic was synthesized very 

poorly, completely disappeared. But still, the original ordering of variables yields statistically 

very inferior results. 

 

Figure 4 . Distribution of solutions – apex2, 20 iterations 
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Figure 5 . Distribution of solutions – cordic, 20 iterations 

2.2 COMMERCIAL TOOLS 

Dependency of the result quality on the ordering of variables was observed in commercial 

tools too. Two tools were studied and both were found to be very sensitive to the structure of the 

HDL statements. Surprisingly enough, the tools were also sensitive to a mere reordering of the 

gates instantiation, i.e., coordinate statements in the HDL code, which was not the case of any 

examined process in ABC. 

The experiment started with BLIF [64] descriptions and after permuting the variables (and 

nodes in the BLIF file), each benchmark was converted to VHDL and processed by commercial 

LUT-mapping synthesis. The numbers of 4-LUTs in the results was measured. Summary results 

of the 228 benchmarks [65], [66] are shown in Table 5. Again, maximum and average differences 

in the obtained LUT counts are shown. 

Table 5 . Influence of permutation of variables and nodes – commercial tools 

Tool Permuted inputs Permuted outputs Permuted nodes Permuted all 

max. avg. max. avg. max. avg. max. avg. 

#1 0.00% 0.00% 0.00% 0.00% 15.76% 0.21% 17.26% 0.22% 

#2 43.62% 4.71% 52.19% 5.57% 38.81% 3.40% 66.62% 9.23% 

2.3 SOLUTIONS ANALYSIS – STRUCTURAL DIFFERENCE 

It was shown that solutions of different sizes can be obtained by permuting the variables. This 

fact is documented in the four above histograms well enough. However, one may ask whether 

frequent occurrences of one particular solution size represent only a single, frequently produced 

solution, or there are many structurally different solutions of equal size. Surprisingly, the latter is 

the case. This is documented by a histogram in Figure 6, for the cordic circuit, 20 iterations of the 

LUT synthesis process (“strash; dch; if; mfs”). Numbers of both all (the complete 

bars) and structurally different (solid bars) solutions were recorded. Actually, the complete bars 

in Figure 6 correspond to Figure 5, only less orderings were exercised (10,000), due to the time 

overhead caused by the structural equivalence checking process. As a result we see that the shape 

of the histogram of structurally different solutions is completely the same as the one of all 

solutions. 
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To state some concrete data for this experiment: out of 10,000 random permutations, there 

were 78 structurally different optimum 10-LUT solutions found and 7,616 different solutions 

in total (which is 76%). Therefore, the potential of obtaining different solutions is very high. 

 

Figure 6 . Distributions of different solutions – cordic, 20 iterations 
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We have seen that most of basic synthesis and optimization algorithms are not immune 

to ordering of variables and statements in the source circuit description; the source file structure 

sometimes significantly influences the synthesis result. One of the possible reasons for it is the 

lexicographical processing of variables. This means, a particular ordering of variables is 

introduced just by reading the input and construction of internal structures. 

Let us note that, for the algorithms, any ordering of variables is as random as any other. 

Therefore, a kind of randomness is introduced just by the very circuit specification, that may 

arrive, e.g., from the RTL synthesis in practice. Also, the designer (HDL programmer) himself 

introduces such randomness. We have seen striking examples, where the synthesized circuit size 

was reduced up to 25-times just by reordering of variables. Even iteration will not help too much; 

generally it even increases the difference between minimum and maximum result sizes. 

Effects caused by different orderings of variables in BDDs [10], [11] will not be studied here, 

since the conclusions would be apparent – it is a well-known fact that the BDD size may explode 

exponentially with different variables ordering [10]. This is the reason why the contemporary 

synthesis algorithms try to avoid BDDs completely, or to go down to so called local BDDs [15], 

where the size explosion is prevented. 

Actually, ABC uses global BDDs only rarely (e.g. for circuit collapsing and disjoint-support 
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differences presented in this section. 
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Sensitivity to the ordering of nodes (gate instantiations) was not observed in ABC, however, 

two studied commercial tools were sensitive to it. Any reasoning about this fact would be 

speculation, therefore it will be left upon fantasy of the readers. 

 

Now we still may ask two ultimate questions: 

“What will happen, if I just reorder the variables in the source file header (ports and 

signals definition) or reorder the statements?” and 

“What shall happen, if I just reorder the variables in the source file header (ports and 

signals definition) or reorder the statements?” 

 

But next, we may also think about exploiting these facts to systematically improve logic 

synthesis. The following section will be devoted to this idea. 
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3 IMPROVING THE ITERATIVE POWER BY PERMUTATION 
The state-of-the-art high-level iterative process, as it can be used, e.g., in ABC, can be 

described as follows: first, an internal representation (SOP, AIG, network of gates, network 

of BDDs, etc.) for the technology independent optimization is generated from the initial 

description or the mapped network (e.g., from the BLIF file [64]). Then a technology independent 

optimization, followed by technology mapping is performed. The process is repeated (iterated), 

until the stopping condition (number of iterations, result quality, timeout, etc.) is satisfied, 

see Figure 7. 

The general aim of the process is to transform the initial circuit description into the target 

technology (ASIC library gates, FPGA LUTs), while trying to optimize the quality (size, delay, 

power consumption) of the solution. 

 

do { 

 generate_internal_representation 

technology_independent_optimization 

 technology_mapping 

} while (!stop) 

Figure 7 . The iterative resynthesis 

Assuming that each iteration does not deteriorate the solution, the solution quality improves 

in time. This needs not be true in practice, however. For such cases several options are possible: 

 

1. to hope that the overall process will “recover” from small deteriorations, 

2. to accept only improving (non-deteriorating) iterations, 

3. to record the best solution ever obtained and return it as the final result, 

4. combination of 1) and 3). 

 

The first and the last options are usually used in practice. 

 

Usually it happens that the iterative process quickly converges to a stable solution, which does 

not improve any more in time. In an ideal case it is the best possible solution (global optimum). 

However, usually this is not the case in practice; such an iterative process tends to get stuck in a 

local optimum [47], [59]. 

Just a slight modification of the algorithm from Figure 7 might help to escape local optima and 

thus improve the iterative power of the resynthesis [59]: 

 
do { 

 randomly_permute_variables 

generate_internal_representation 

technology_independent_optimization 

 technology_mapping 

} while (!stop) 

Figure 8 . The iterative resynthesis with random permutations 

Here only the randomly_permute_variables step was added, where the random 

reordering of variables (input, output, or both) is performed. This step can be executed in a time 

linear with the number of variables, hence it does not bring any significant time overhead. 

Note that, unlike in the previous section, the reordering of variables is performed in each 

iteration, not only at the beginning of the iterative synthesis process. Therefore, the permutations 

effects may accumulate. 
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3.1 EXPERIMENTAL RESULTS 

Very exhaustive experiments were performed in order to justify the benefit of using random 

permutation of variables in the high-level iteration process. There were processed 490 benchmark 

circuits, coming from academic IWLS and LGSynth benchmark suites [65], [66], as well as from 

large industrial designs from OpenCores [71] (having up to 100,000 LUTs after synthesis). The 

4-LUTs mapping process was chosen for testing purposes. However, the same behavior can be 

expected for any target technology. 

The most recent LUT-mapping synthesis script suggested by the authors of ABC was used: 

“strash; dch; if; mfs; print_stats –b” as a reference. Then, the ABC command 

“permute” randomly permuting both inputs and outputs was implemented and employed, 

yielding the script “permute; strash; dch; if; mfs; print_stats –b”. Both 

scripts were executed 20-, 100-, 1,000-, and 5,000-times for each circuit, while the best result ever 

obtained was recorded and returned as the solution (this is accomplished by the 

“print_stats –b” command). The numbers of resulting 4-LUTs and the delay (in terms 

of the length of the longest path – the circuit levels) were measured. 

Results for all the 490 circuits are shown in Figure 9 and Figure 10, for area (4-LUTs) and 

delay (levels), respectively. The scatter-graphs visualize the relative improvements w.r.t. 

no permutations used. Positive values indicate an improvement, the negative ones deterioration. 

The size of the original mapped circuit, in terms of 4-LUTs, is indicated on the x-axis. Two 

border cases, 20 and 5,000 iterations are shown here only. Results of 100 and 1,000 iterations lay 

in-between. 

We see that a significant improvement may be reached even when the process is run for 20 

iterations. However, also more deteriorating cases are observed. When iterated more, the results 

become more positive, especially for larger circuits. This is quite obvious, since these circuits 

usually converge slower (see Subsection 3.2). 

 

 

Figure 9 . Area improvements w.r.t the standard iterative process 
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Figure 10 . Delay improvements w.r.t the standard iterative process 

Summary statistics are shown in Table 6. Only 290 circuits, whose resulting implementation 

exceeded 100 LUTs, were accounted in these statistics, to make the practical impact more 

credible. The minimum, maximum and average percentage improvements for both area and delay 

are given. Also the percentages of cases, where the improvement is positive (“Better in”) and 

negative (“Worse in”), are shown. The complement to 100% of the sum of these two values 

represents cases where solutions of equal quality (LUTs, levels) were obtained. 

Table 6 . Summary statistics 

Iterations 20 100 1,000 5,000 

LUTs 

Minimum -12.8% -8.2% -5.4% -6.7% 

Maximum 46.5% 51.2% 74.6% 75.2% 

Average 1.0% 2.1% 4.9% 6.1% 

Better in 52.2% 64.9% 81.0% 82.6% 

Worse in 39.8% 28.8% 15.2% 13.9% 

Levels 

Minimum -33.3% -33.3% -25.0% -25.0% 

Maximum 22.2% 27.3% 40.0% 40.0% 

Average 0.6% 0.6% 1.6% 2.5% 

Better in 16.3% 13.8% 19.7% 23.9% 

Worse in 9.3% 5.5% 6.2% 5.5% 

 

We see that with an increasing number of iterations the results become more stable and tend 

to improve, both in area and delay. There is a positive average improvement obtained even for 20 

iterations run. For the 5,000 iterations case the average improvement reaches 6.1% in area and 

2.5% in delay. Also cases, where deterioration was obtained, are becoming rare (13.9% and 5.5% 

for area and delay, respectively). 
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Let us make a theoretical reasoning about the observed facts now. Assume the worst case, 

where the number of deteriorating (w.r.t. the process with no permutations used) solutions of one 

iteration of resynthesis is 50% (equal chance for both the improvement and deterioration). Then, 

also chances for improvement of the overall process would be 50%. However, in Table 6 we see 

that all the minimum improvements (maximum deteriorations) are much less than 50%, even for 

20 iterations. From these figures we can conclude that permutation always pays off. 

3.2 THE CONVERGENCE ANALYSIS 

Illustrative examples of convergence curves for the iterative synthesis with and without using 

random permutations for two of the LGSynth benchmark circuits [66] alu4 and apex2 are shown 

in Figure 11. The progress of the size reduction during 1,000 iterations was traced. 

Here we see an experimental justification of the presented theory. In general, it is not possible 

to say what method converges faster. Theoretically, both should converge equally fast. This can 

be seen, e.g., in the alu4 case, where the standard synthesis converges faster at the beginning, but 

then the convergence slows down. When the resynthesis without using permutations converges 

to a local minimum, the permutations will help to escape it (see the apex2 curves – here the local 

minimum was reached around the 300
th
 iteration, whereas the solution quality still improves after 

1,000 iterations when permutations are used). Similar behavior can be observed for most of the 

tested circuits. This confirms the theory – the permutations do increase the iterative power and 

helps to keep the convergence longer. 

 
 

Figure 11 . Convergence curves for the alu4 and apex2 circuits 
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3.3 ASYMPTOTIC COMPLETENESS OF THE ALGORITHM 

The notion of asymptotic completeness of iterative logic optimization algorithms (search 

strategies) was introduced in Subsection 1.2, in terms of possibility of obtaining the optimum 

solution and a guarantee of obtaining the optimum in an infinite time. 

Here the asymptotic completeness of the process strictly depends on completeness the basic 

logic synthesis algorithms used, i.e., the synthesis scripts used. However, permutation of variables 

definitely increases the size of the explored state space and in iterative optimization it helps 

to avoid local optima. Solutions that were not reached under a given ordering of variable can be 

reached when permutation is used. The cordic circuit is a striking example – it was observed that 

its optimum solution of 10 LUTs cannot be obtained by ABC from the non-reordered original 

BLIF (by the synthesis script used here, in any number of iterations). However, a mere 

permutation allows reaching this optimum. 

Generally, the resynthesis with permutations is at least as complete, as are the processes used 

in the overall synthesis. If there exists a path (under different variable orderings) from the source 

description to the optimum one, it is guaranteed to be found in an infinite time. 

3.4 CONCLUSIONS 

Experiments presented in this section have shown that the property of synthesis algorithms 

documented in Section 2 – dependency on the ordering of variables in the initial description – can 

be advantageously exploited to increase the iterative power of resynthesis.  

A positive average improvement in quality (both in area and delay) was obtained. Since 

introducing the permutations into the iterative process takes almost no time, we can conclude that 

employing random permutations definitely pays off – random permutations help avoiding local 

optima. Cases, where worse results are obtained, are relatively rare. 

Permutation also offers a possibility of obtaining many different solutions, possibly having the 

same quality (under any quality measure). This feature can be exploited in subsequent synthesis, 

e.g., a secondary quality criterion may be applied. 

More details can be found in [58] and [59]. 
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4 RESYNTHESIS BY PARTS 
A resynthesis method will be proposed in this section, where the circuit is iteratively 

resynthesized by parts only, instead of resynthesizing the circuit as whole – the resynthesis 

by parts. Such an approach may look weird and condemned to be less efficient than resynthesis 

of the whole circuit, since global information is lost. Surprisingly, this is not the case; it is 

possible to obtain remarkable improvements (more than 7-times smaller circuits), compared to the 

standard resynthesis. 

The reason for the success is, again, an increase of iterative power and introduction of more 

of diversity. New structures can be discovered by intentionally obscuring the structure of the 

whole network. 

Moreover, even a speed-up of the process may be achieved, because of 

1) resynthesizing smaller parts of the circuit is faster than resynthesizing the whole circuit, 

2) the process converges faster, thus results of a given quality can be achieved in a shorter 

time, compared to the classical iterative synthesis. 

Note that individual synthesis and optimization algorithms ([15], [24], [25], [28], etc.) process 

the network by parts as well, because of feasibility limits. However, these parts are relatively 

small, usually of a “constant” size (4-feasible cuts [24], [25], BDDs with a limited size [15], etc.). 

In the method proposed in this section, large network parts are resynthesized (up to 90-95%). 

For smaller parts the method is usually not so efficient. 

4.1 MOTIVATION 

There has been accidentally encountered an unexpected behavior of logic synthesis in ABC: 

the LGSynth circuit e64 [66] was divided into two halves (connected parts) and these were 

synthesized separately by ABC (by the “choice” script [19] followed by standard cells 

mapping – “map”). Then these two parts were merged together. The resulting circuit consisted 

of 522 gates. 

When the whole circuit was synthesized using the same process, the resulting circuit had 530 

gates. Moreover, the total run-time of this resynthesis was 2.33 seconds, while the total time 

of the resynthesis of the circuit halves (including the time needed for the circuit splitting) was 

1.73 seconds. 

This indicates that apparently “something is rotten in synthesis”. There must exist a case 

(a sequence of cut/window selections in processes of ABC [24]), where the resynthesis of the 

whole circuit would be conducted in the same way, as for the separated parts. Moreover, global 

information is lost in the latter case, thus it theoretically should produce worse results in general. 

However, the observed synthesis behavior is not an unusual case. There can be two possible 

explanations of this unlucky phenomenon: 

 low scalability of ABC processes. This means that bigger designs are processed less 

efficiently; 

 heuristics in ABC were accidentally well guided by dividing the circuit. 

Hence, possibilities of resynthesizing circuits by parts were investigated more thoroughly. The 

research resulted in a novel iterative resynthesis method, which will be presented in this section. 

4.2 PRELIMINARIES 

A Boolean network N (circuit) is a structure of connected single-output nodes forming 

an acyclic graph. The network connections, which are naturally inputs and outputs of gates, will 

be denoted as signals. 
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The network primary inputs (PIs) are signals that are driven by the environment; there is no 

node driving these signals in the network. The primary outputs (POs) are signals that drive the 

environment. Primary outputs may be driving network nodes as well. 

The size of the network, |N|, is the number of its nodes. Primary inputs and outputs are not 

considered as nodes.  

The fan-in of a node is the number of its inputs. Since each node input must be driven 

by exactly one node output in the network (or a PI), the fan-in term will also be used 

for enumerating the gates driving the respective node. The fan-out of a node is the set of nodes it 

drives. The transitive fan-in of a node is a set of nodes that influence the node, i.e., a set of nodes 

on a path from the PIs to the node. The transitive fan-out is a set of nodes that are influenced 

by the node, i.e., a set of nodes on a path from the node to POs. 

The distance of two network nodes is the number of signals one needs to pass to reach the 

other one. The level of a node is its maximum distance from any of the primary inputs. Primary 

inputs have the level equal to 0, by definition. 

A window is a connected subcircuit Nw of a circuit (Boolean network) N. Formally, it is a 

Boolean network Nw, Nw  N, whereas for every node ni  Nw there exists a path to every node 

nj  Nw, i ≠ j. In the following text, terms window, part, and subcircuit will be used 

interchangeably, since they have the same meaning in the formal sense. 

The aim of the resynthesis is to optimize the quality of the result, be it the network size 

(e.g. |N|), delay (e.g. the number of levels), etc. Let cost(N) of the network be the chosen quality 

criterion, for purposes of this section. 

4.3 CIRCUIT RESYNTHESIS BY PARTS 

Let us assume an iterative resynthesis process, i.e., a process which can improve the solution 

when it is run several times consecutively. Let a network N
1
 be obtained by running a resynthesis 

process P on N
0
, i.e., N

1
 = P(N

0
). Subsequent iterations of this process produce different networks, 

N
i
 = P(N

i-1
). In an ideal case, cost(N

i
) ≤ cost(N

i-1
) for every i. However, this may be not true 

in practice, depending on the executed process. 

The proposed iterative resynthesis by parts is based on dividing the processed network into 

two disjoint parts in each iteration, N
i
 = N

i
A  N

i
B, N

i
A  N

i
B = , nothing is said about |N

i
A| and 

|N
i
B| for now. Then one part (N

i
A) is resynthesized, to obtain a functionally equivalent network N

i
R. 

This network is then merged with the second part (N
i
B), to obtain a new network N

i+1
 = N

i
R  N

i
B. 

Obviously, networks N
i
 and N

i+1
 are functionally equivalent. 

4.3.1 THE SYNTHESIS PROCESS 

The basic and general principles of the proposed resynthesis process can be described as 

follows: 

 

Resynth_by_parts(Network N) { 

do { 

(NA, NB) = Extract_window(N); // extract the circuit part 

NR = resynthesize(NA); // run the resynthesis 

N’ = NR  NB; // put the network back 

if (cost(N’) ≤ cost(N)) N = N’; // any improvement? 

} while (!end()); 

} 

Figure 12 . The resynthesis by parts algorithm 
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At the beginning of every iteration, a part NA of the network (window) is selected and 

extracted from the original network N. NB then consists of the remainder of the original network; 

nodes included in NA are not present in NB. Primary inputs and outputs of N (and NB) are retained, 

primary inputs and outputs of NA are determined by the following rules (see Figure 13): 

(1) Gate inputs that are not driven by any gate in NA are assigned as NA primary inputs (PI1-PI5 

in the figure). 

(2) Gate outputs that do not drive any gate in NA are assigned as NA primary outputs (PO1, 

PO2). 

(3) Gate outputs that drive some gate in NB are assigned as NA primary outputs (PO3). 

(4) Gate outputs that are primary outputs of N are assigned as primary outputs of NA (PO4). 

 

 

 

Figure 13 . Window Selection 

The extracted window NA is then submitted to ABC synthesis. Any synthesis process may be 

used in general. In experiments presented here, one iteration of the “choice” script is used [19]. 

The resynthesized network NR is then merged with NB. If the resynthesis has brought any 

improvement, i.e., if the network cost is reduced with respect to the cost of the original network, 

the old network is discarded and the new one is considered for the next iteration. Thus, the 

resynthesis is greedy in the “first improvement” sense [36], [38]; solution non-improving 

iterations are discarded. 

Actually, there is a possibility of accepting any solution that ABC returns. Under the 

assumption that ABC will never deteriorate the network, these two alternatives become equal. 

However, usually this is not the case. Even though such a process usually converges to a stable 

solution as well, its convergence is naturally slower and produces worse results. Results of these 

experiments won’t be presented here, for brevity. 

The whole procedure is iterated, until the stopping condition is satisfied. In experiments 

presented here, a fixed number of iterations are used, for purposes of comparison. However, more 

sophisticated stopping criteria should be applied in practice. 

4.3.2 WINDOW EXTRACTION METHODS 

The Extract_window procedure is the essential step in the proposed resynthesis process. Two 

window extraction algorithms will be described into detail here. 

The algorithms are parameterized by the size of the window to be extracted. This parameter 

value crucially influences the performance of the whole resynthesis run. Details will be discussed 

in Subsection 4.4.1. 
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Random Extraction 

The Random Extraction algorithm is the most naive one. Nevertheless, it gives surprisingly 

good results. The window (NA) is gradually constructed by just randomly adding nodes, while 

keeping the window network connected. The algorithm is parameterized by the number of gates 

of the extracted network (size).  

The pseudo-code of the algorithm is shown in Figure 14. 

 

Random_extract(Network N, size) { 

n = random_node(N); // select random initial node (pivot) 

NA = {n};  

NB = N – {n}; // move it to the extracted network 

while (|NA| < size) { // until the required size is reached 

n = random_neighbor(NA, NB); // select random neighbor of any 

// node in NA from NB 

NA = NA  {n}; 

NB = NB – {n}; 

} 

return (NA, NB); 

} 

Figure 14 . Random window extraction algorithm 

Such the most naive approach can be easily modified to minimize the number of the extracted 

window PIs, POs, or both. However, no significant result quality improvement was observed [72], 

while the algorithm run-time was significantly increased. Therefore, these techniques were 

considered inefficient. 

RadiusExtract 

This algorithm intentionally looks for the most connected subcircuit. First, a pivot node is 

selected randomly in the network. Then nodes reachable in a given distance (radius) from the 

pivot are moved to NA. In particular, transitive fan-in and fan-out nodes of the pivot are selected, 

up to a given distance. The algorithm may also be parameterized by the maximum window size, 

as in the previous case. Thus, the algorithm can operate in two modes, or their combination: 

1. If the size parameter is set to infinity, all nodes in the given distance (radius) from the 

pivot node are extracted. The window size is unpredictable and heavily depends on the 

circuit interconnection density. 

2. If the radius parameter is set to infinity and the size specified, given number of nodes 

are extracted, whereas the minimum/maximum radius is not guaranteed. 

The pseudo-code of the algorithm is shown in Figure 15. 
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Radius_extract(Network N, radius, size) { 

 n = random_node(N);   // start with a random pivot 

 q.enqueue(n);    // use a queue, to ensure 

       // the FIFO behavior 

 while (!q.empty() && |NA| < size) { 

  n = q.pop(); 

  NA = NA  {n}; 

  for_each_neighbor(m NB, n) { // enqueue all neighbors of n 

 if (distance(n, m) ≤ radius) // not exceeding the radius 

  q.push(m); 

  } 

NB = NB – {n}; 

 } 

 return (NA, NB); 

} 

Figure 15 . The RadiusExtract algorithm 

4.4 WINDOW SIZE ANALYSIS AND EXPERIMENTAL RESULTS 

The ABC “choice” script followed by the “map” command, mapping the circuit into library 

gates was used for resynthesis in the following experiments. A library of all 2-input gates was 

chosen for simplicity of comparison and low granularity. The “map” command is followed 

by “sweep”, converting the network of gates into an AIG, so the form of the circuit description is 

retained. The original benchmark circuits [65] were also mapped into 2-input gates (without any 

optimization attempts), to generate starting points for the resynthesis. 

Let us note here that any synthesis process may be used, without any loss of generality. Any 

structure-non-destroying resynthesis procedure may be applied, as well as any technology 

mapping process (standard cells, LUTs, etc.) [72]. 

If not said otherwise, all the resynthesis processes were run for 5,000 iterations in the 

experiments. This value is a little bit overkill, since only 2 of the examined 228 circuits needed 

more iterations to converge [72] using the standard synthesis process. However, it enables us 

to compare rather stable solutions and measure the convergence of the processes more precisely. 

4.4.1 INFLUENCE OF THE WINDOW SIZE 

The influence of the window size on the result quality (in terms of the number of 2-input 

gates) will be investigated in this subsection.  

First, the influence of the window size, relative to the resynthesized circuit size will be 

examined, for the Random Extraction algorithm. The window size was varied from 10% to 100%, 

for all the 228 circuits. Average improvements obtained w.r.t. the state-of-the-art, i.e., the 

repeated resynthesis of the whole circuit, were computed. The results are shown in Figure 16. 
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Figure 16 . Influence of the window size – Random Extraction 

We can see that the maximum improvement is achieved for window sizes ranging from 80 to 

90% of the resynthesized circuit. If bigger windows are extracted, the quality of the result quickly 

drops. 

Notice that the 100% limit case exactly corresponds to the approach presented in Section 3. 

Even though the extracted network is equal to the original one, PIs and POs are randomly 

reordered, from the gradual nature of the algorithm (nodes are selected randomly, and thus also 

PIs and POs are randomly reordered, according the instant they appear in the window). The only 

difference is that in Section 3 even deteriorating solutions are accepted and the best solution ever 

obtained is returned as the final result. In resynthesis by parts only non-deteriorating solutions are 

accepted. 

The average improvement, as a function of the relative window size for the RadiusExtract, is 

shown in Figure 17. 

 

Figure 17 . Influence of the window size – RadiusExtract 

A similar behavior can be observed here: large windows produce inferior results. However, the 

maximum improvement is achieved for much smaller windows, compared to the Random 

Extraction method. This is because of the RadiusExtract method produces more compact 

windows. Conversely, in Random Extraction many “useless” gates are included in the window, 

thus the window naturally must be larger to obtain comparable results. 
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The dependency of the improvement ratio on the window radii is shown in Figure 18. Here we 

see clearly, that best results are obtained for radii ranging from 5 to 7. Higher radius values 

produce inferior results, in most cases because of the window starts spanning the whole circuit, 

i.e., results of 100% resynthesis are obtained. 

 

 

Figure 18 . Influence of the window size – RadiusExtract 

Now, when there are two metrics of window sizes and a clear dependency of the result quality 

on the window size is seen, we may ask if the metrics are related somehow.  

An experiment was performed to answer this question: the percentage window sizes generated 

by the RadiusExtract method were observed. The histogram of frequencies of window sizes, 

for the misex3 benchmark circuit [65] is shown in Figure 19. The radius was chosen to be 6, as the 

most promising one (see Figure 18). 

We can see clearly that the maximum of window sizes lie between 60-90%. Similar behavior 

can be observed for most of circuits. This fully conforms to the observation in Figure 17. 

Therefore, we can conclude that the algorithm behaves consistently, even when the influence 

of random factor is high. 

 

Figure 19 . Window sizes generated by RadiusExtract 
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It can also be observed that the extracted window sizes scale with the resynthesized circuit 

size, when having a constant radius. This is a rather surprising observation, since the window 

extraction procedure is strictly local. This could be probably explained by the fact that the 

extracted window often prematurely reaches “the borders” (i.e., PIs, POs) of the circuit 

for smaller circuits. The scatter graph illustrating the dependency is shown in Figure 20 for all the 

228 circuits resynthesized for 5,000 iterations, radius 6. 

 

Figure 20 . Extracted window sizes 

4.4.2 COMPARISON WITH STANDARD SYNTHESIS 

A comparison with the state-of-the-art, i.e., the iterative resynthesis of the whole and 

non-permuted circuit will be shown here. Results of 10 largest circuits from the 228 ones [65] are 

shown in Table 7. All the iterative processes were run for 5,000 iterations. 

After the benchmark name, its original size in terms of 2-input gates is given (“orig.”). Then 

the number of gates obtained by 100% resynthesis is shown (“100%”). The “conv. iters.” column 

gives the number of iterations ABC needed to reach the final solution, thus possibly converge to a 

stable solution. However, very high values indicate that probably even better solutions could be 

reached, if iterated further (more than 5,000 iterations). 

Numbers of gates obtained by the RadiusExtract and Random Extraction methods and 

percentage improvements w.r.t. the 100% resynthesis follow. 

The “eq. iters.” columns indicate the numbers iterations needed to reach a solution of at least 

the same size as the one obtained by 100% resynthesis. 

Radius 6 and 80% circuit parts were chosen, for the RadiusExtract and Random Extraction, 

respectively. The summary (for numbers of gates) and average (for percentages and #of iterations) 

results are presented in the last table row. 
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Table 7 . Benchmarks results 

name orig. 
100% Radius 6 Random 80% 

gates conv. iters gates impr. eq. iters gates impr. eq. iters 

s38584.1 11,210 9,752 1,342 9,692 0.6% 2,187 9,735 0.2% 1,138 

s38417 8,643 7,891 1,934 7,834 0.7% 808 7,883 0.1% 261 

prom1 6,220 5,829 3,769 5,548 4.8% 11 5,562 4.6% 48 

too_large 4,182 3,033 2,467 3,129 -3.1% N/A 2,746 9.5% 215 

misex3 3,539 2,645 4,147 2,362 10.7% 2,909 1,970 25.5% 179 

mainpla 3,472 3,091 4,215 3,027 2.1% 481 2,958 4.3% 19 

apex2 3,394 2,083 41 1,998 4.1% 3,165 1,786 14.3% 275 

des 3,158 2,915 1,233 2,815 3.4% 74 2,746 5.8% 39 

xparc 2,930 2,540 396 2,406 5.3% 108 2,363 7.0% 14 

seq 2,771 2,024 2,161 1,803 10.9% 1,157 1,707 15.7% 129 

Sum/avg. 136,755 117,215 398.2 110,923 7.3% 102.0 109,335 9.0% 49.5 

 

We can see that resynthesis by parts, both RadiusExtract and Random Extraction, almost 

always produces better results than 100% resynthesis. Moreover, also a possible speedup can be 

seen – resynthesis by parts reaches the same solution as 100% resynthesis in significantly less 

time (8-times, on average, for the Random Extraction case). 

The results obtained from all the 228 examined benchmarks are shown in Figure 21. The 

scatter-graph visualizes the improvement achieved by the resynthesis by parts (Random 

Extraction, 80%, 5,000 iterations), as a function of the original circuit size (in terms of 2-input 

gates). Notice the logarithmic x-axis. The highest improvements are achieved for mid-size circuits 

here, however significant improvements can be seen even for larger circuits. Improvement was 

achieved for a vast majority of circuits, the occasional deterioration was not higher than 7%. 

 

Figure 21 . Summary results 

4.4.3 ITERATIVE POWER 

As in the method presented in Section 3, the main cause of the observed success is an increase 

of the iterative power, w.r.t. the 100% resynthesis. Thus, the iterative power of the resynthesis 

by parts will be investigated into detail. 

The example analysis will be performed on the misex3 circuit [65]. This circuit belongs to the 

“hardest” ones, since even the 100% resynthesis converges rather slowly. In particular, it needs 

more than 4,000 iterations to converge to a stable solution. 

The Random Extraction was used, window size 80%. The resynthesis was run 20-times and 

the progress of the solution and the span in the result quality was observed. 
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The convergence curves are shown in Figure 22. The topmost curve belongs to the 

100% resynthesis case, the curves obtained from 20 re-runs of resynthesis by parts are seen 

below. We can see that the 100% resynthesis has never outperformed the resynthesis by parts. 

Even though the resynthesis process also tends to get stuck in a local minimum, it converges 

longer, which enables the synthesis reach much better results. 

Such a behavior can be observed for all circuits “difficult” for synthesis. For “easy” [49], [50] 

circuits the global optimum is found quickly by both methods indifferently. These circuits can be 

seen in Figure 21, on the 0% improvement line. 

 

Figure 22 . Convergence curves for misex3 

4.5 RANDOM NUMBER GENERATOR GRANULARITY EFFECTS 

Since the resynthesis by parts is a randomized process, we may ask how much randomness is 

indeed needed, to make it perform sufficiently [58]. Particularly, it is worth studying of how much 

is the process influenced by the random number generator granularity, i.e., the number 

of different values it produces. Note that the random number generator granularity studied here 

has nothing in common with the random number generator quality, i.e., its period. 

As a result, we will obtain some theoretical conclusions: we ask what will happen if a 

randomized algorithm will be rendered completely deterministic and if the algorithm could be 

deterministic, actually. 

For the purpose of this study, the algorithm was partially derandomized. Partial 

derandomization was made by modifying the random number generation function, so that it 

produces only 1, 2, 3, etc. distinct values, while still keeping its period. In the further text, the 

measure of randomness will be denoted as RF (randomness factor). For RF = 1, the degraded 

random number generator always produces one value, a constant 0. For RF = 2, two border values 

are produced (0 and the maximum), etc. For RF = infinity the unmodified random number 

generator is used. 

Note that this kind of derandomization has nothing to do with known derandomization 

techniques to derive a completely deterministic algorithm from a randomized one [74]. 

Derandomization used throughout this work will be understood just in sense of reducing the 

amount randomness, not removing randomness completely, or as an attempt for a design of a 

deterministic algorithm. 

 

Convergence curves for the “e64” [65] circuit, are shown in Figure 23. The Radius Extraction 

method with radius 6, 5,000 iterations was used. All the data was obtained by averaging results 

of 20 independent runs, to make the results more precise. 
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Here we see that for RF = 1 the process is rather insufficient and quickly converges to a local 

minimum, which is even worse than that of 100% resynthesis. However, even for RF = 2 the 

convergence curve approaches the RF = inf. one, for RF = 100 the curves already blend (not 

shown in the Figure). 

Let’s note that one may think that in the case of RF = 1 only a constant part of the circuit is 

resynthesized, leaving the rest of the circuit unmodified. However, this is not the case, because 

of the algorithm implementation. Even though the random number generator always selects the 

first network node (in terms of the program internal network structure) as the pivot, the extracted 

and resynthesized network is always appended to the end of the structure. Therefore, the next 

pivot will be the first node of the yet unprocessed network. Consequently, all nodes have a chance 

for resynthesis. And what’s more, all nodes have an equal chance for being processed (up to the 

given number of iterations limit, of course). Therefore, the case of RF = 1 becomes a systematic, 

deterministic, and fair way of resynthesis by parts. The results show that this is the worst possible 

way. 

 

The necessary random number generator granularity needed can be derived analytically as 

well. The random choice occurs in the pivot selection procedure only. Here the number of choices 

equals to the number of the network gates. Thus, the number of the initial network gates is the 

upper bound of the number of different values the random number generator needs to produce. 
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Figure 23 . Resynthesis by parts – derandomized (e64) 

4.6 ASYMPTOTIC COMPLETENESS OF THE ALGORITHM 

As in the previous section, completeness of the overall algorithm strictly depends 

on completeness of the basic synthesis algorithms used. But still, the size of the state space 

explored is extended even more, compared to using permutations only; structures that could 

mislead the basic synthesis algorithms can be theoretically avoided, by obscuring their parts.  

4.7 CONCLUSIONS 

The notion of high-level iterative randomized resynthesis based on permutation of variables 

was further extended to resynthesis by parts of the circuit. Even more randomness is introduced 

this way, which is documented by the presented results. Actually, the technique presented 

in Section 3 (introducing different variable orderings) can be understood as a special case 
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of resynthesis by parts, where 100% parts with random orderings of variables are resynthesized. 

Significant benefits over this simple method were shown here. 

As well as in the permutations-based approach, randomized nature of the algorithm allows 

generation of different solutions, which can be exploited by further synthesis. Moreover, the used 

resynthesis process can be “externally” influenced by cutting the circuit into parts, which, 

in consequence, can also force the process generate different structures. 

Values shown in Table 7 indicate that resynthesis by parts is able to reach results of equal 

quality as the 100% resynthesis in less iterations (compare the “conv. iters.” and “eq. iters.” 

columns).  

Concluded, the proposed method is able to produce better results than the iterative 

state-of-the-art and it produces them faster. 

The results suggest that resynthesis by parts is always able to produce results of at least equal 

size as the deterministic 100% resynthesis, when run long enough – the employed randomness 

and circuit separation successfully prevents getting stuck in local minima. 

All the experiments were performed using a constant limit of the number of iterations, which 

was for most of circuits apparently unnecessarily high. However, this was the intention – 

comparative and representative results are obtained this way; the behavior could be studied more 

thoroughly. In practice, an adaptive stopping mechanism should be applied. 

The scalability of the process is unquestioned. The window sizes scale with the design size 

linearly, thus the expected behavior of the resynthesis is retained even for large designs. 

If implemented optimally, the resynthesis by parts introduces only a negligible time overhead, 

compared to standard synthesis processes. Therefore, this proposed method is expected to perform 

at least as well as the state-of-the-art synthesis for any design sizes. 

 

Experiments have shown that the resynthesis by parts cannot be successfully performed as a 

deterministic process. However, only very little of randomness is necessary for a success. 

More details can be found in [72], [73], and [58]. 
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5 BOOM – THE SOP MINIMIZER 
Another example of a randomized iterative optimization process is a two-level (SOP) 

minimizer BOOM [75], [76]. Randomness is used when more equally valued decisions are 

available. 

Iteration is performed at a high level too, even though a solution needs not necessarily be 

obtained after every iteration (see Subsection 5.2). The two-level minimization is run repeatedly, 

whereas a new set of implicants covering the source function is produced in each iteration. Since 

the implicant generation phase is randomized, there is a big chance of producing different 

implicants in each iteration. The final solution is then constructed by combining all the obtained 

implicants. A solution may be generated already after the first iteration. However, the more 

implicants are available, the better solution can be obtained. Therefore, here we see a possibility 

of trade-off between the run-time and quality as well as in the algorithms described in Section 3 

and Section 4. 

The algorithm will be briefly described in the following subsections. 

5.1 PRELIMINARIES 

Let us have a set of m Boolean functions of n input variables F1(x1, x2, … xn), F2(x1, x2, … xn), 

… Fm(x1, x2, … xn). Values of input variables, for which Fi evaluates to 1 will be called the on-set 

Fi(x1, x2, … xn), values, for which Fi evaluates to 0 will be called the off-set Ri(x1, x2, … xn), and 

values, for which the value of Fi may be arbitrary (0, 1) will be called the don’t care set 

Di(x1, x2, … xn). BOOM needs to have the on-sets and off-sets of all m functions explicitly 

specified. The don’t care set is then specified implicitly, as the complement of the union of the 

on- and off-set. 

The on- and off-sets are described by sum-of-products (SOP) forms, or more particularly, by a 

truth table (in the PLA format [6], [66]). 

Enumerating the two care sets instead of the on-set and don’t care sets (which is usual, e.g., 

in the MCNC benchmarks [66] and also in ESPRESSO [6]), is more practical for problems with a 

large number of input variables, because here the size of the don’t care set greatly exceeds the two 

care sets in practical cases. The need of minimizing such functions ([77], [78], [79], [80], [81], 

[82]) was the motivation for developing BOOM. 

In the SOP form, the product terms will be denoted simply as terms or cubes in the further text. 

Terms having n literals will be denoted as minterms. The dimension of a term is the number of its 

non-assigned variables (DC variables), thus, it is computed as n-#of term literals. Minterms have 

the dimension equal to zero. 

The set of terms covering the on-sets of all functions will be denoted as the cover. 

The minimization task is to find the minimum cover, i.e., to produce SOP forms 

Gi(x1, x2, … xn), 1  i  m, while Fi  Gi and Gi  Ri = . The optimization (quality) criterion is 

usually the total number of SOP terms in Gi. Terms can also be shared among different Gi’s 

(group minimization). Secondary quality criteria are usually the number of SOP literals 

(occurrences of input variables in the SOP forms) and the output cost (the total number of terms, 

if no sharing of terms is allowed). In the AND-OR two-level implementation of the SOP, the 

number of literals reflects the complexity of the AND plane, the output cost reflects the 

complexity of the OR plane. 

5.2 THE BOOM ALGORITHM 

A self-explanatory pseudo-code of the overall algorithm is shown in Figure 24. Before 

executing the algorithm, the on-set of the source function must be provided. In case of one set 

missing, it is computed as a complement of the two other sets [6]. 
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The CD-Search (Coverage-Directed Search) is the vital phase of BOOM (Subsection 5.2.1). 

It produces the initial cover (set of implicants) of the source on-set (Fi). This is also the phase 

where randomness is used the most. These implicants are stored in the implicant pool. Here all the 

implicants ever obtained during the minimization process are accumulated. Internal structure 

of the pool does not allow duplicities, thus only unique terms are stored there [75], [83]. 

The implicants are further expanded (Subsection 5.2.2) to form prime implicants, while the 

original (non-prime) implicants are not discarded. Then all the implicants are reduced 

(Subsection 5.2.3) to obtain group implicants, i.e. implicants of more output functions. Again, no 

implicants are discarded; only the new ones are added to the pool. 

At the end of each iteration the pool is “purged” by resolving clear dominance relations [84]. 

Thereby, apparently redundant terms are removed. 

This process is repeated, until the stopping criterion is met. This is usually a user-specified 

maximum number of iterations, timeout, or the desired solution quality. 

The solution is then formed by solving the covering problem (Subsection 5.2.4) using all the 

implicants in the pool – an irredundant subset of implicants covering the on-sets of all functions is 

formed. 

Finally, the solution is tried for the final refinement (Subsection 5.2.5) to keep only necessary 

group implicants, which are then further expanded. This phase is similar to the ESPRESSO’s 

make_sparse procedure [6]. 

Note that the UCP solution and Sparse can be executed inside the main iteration loop too. This 

would be necessary, e.g., if the stopping condition should be determined based on the solution 

quality. Then BOOM can be considered as a fully high-level iterative process. Otherwise, when 

the stopping criterion is, e.g., a fixed number of iterations, the UCP and Sparse can be run only 

once, as in Figure 24. 

 

BOOM(F, R) { 

Pool = ; 
do { 

Cover = CD-Search(F, R); 

Pool = Pool  Cover; 

Pool = Pool  Cover.Expand(R); 

Pool = Pool  Cover.Reduce(F, R); 

Pool.Purge(); 

} while (!stop()); 

Solution = UCP_Solve(F, Pool); 

Solution.Sparse(F, R); 

return Solution; 

} 

Figure 24 . BOOM algorithm – pseudo-code 

5.2.1 COVERAGE-DIRECTED SEARCH 

The Coverage-Directed Search (CD-Search) is the first and the most important step of the 

BOOM algorithm. Here the initial cover of the on-set is generated. The main idea here is the 

top-down approach to generation of implicants. Classical SOP minimizers [6] start with the 

original cover, which is further refined. This may cause the algorithm to fail, if the original 

description is “unsuitable”, i.e., if a deep local optimum in the state space is given as the source. 

In BOOM, the implicants are not derived from the original cover directly; the original cover is 

used just as a “clue”. The off-set also serves just as a constraint. The algorithm starts with an 

n-dimensional cube (i.e., an all-DC term, a term with zero literals), which is obviously not 

an implicant of any function, unless the off-set is empty. This term is gradually reduced by adding 

literals to it, until it becomes an implicant (does not intersect the off-set). 
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The output functions Fi, 1  i  m, are processed separately, one by one – no group 

minimization is considered in CD-Search. Therefore, single-output functions will be assumed 

in this and the following subsection, and thus no ambiguity of terms like on-set, off-set, implicant, 

can occur. 

The search for terms is directed towards finding an implicant that covers as many on-set terms 

as possible – from this comes the algorithm name. The implicant generation starts with selecting 

the most frequent literal from the given on-set. It forms an (n-1) dimensional (1-literal) cube 

possibly covering most of the on-set terms. 

This cube is then checked against the off-set, by a simple pair-wise comparison of the cubes. 

If the cube does not intersect any off-set term, it is an implicant. If the off-set is intersected, 

another most frequent literal is added and the term is checked again. 

After each literal selection the terms that cannot be covered by any term containing the 

selected literal are temporarily removed from the on-set, for a more efficient search. These are the 

terms containing that literal with the opposite polarity.  

When an implicant is finally obtained, it is recorded (stored in the pool) and the on-set terms 

that are covered by this term are removed from the on-set. Thus, a reduced on-set containing only 

yet uncovered terms is obtained. Now the whole procedure is repeated from the beginning. The 

search for implicants continues, until the whole on-set is covered. 

The output of this algorithm is a set of product terms covering the whole on-set and not 

intersecting any off-set term. 

The basic CD-Search algorithm for a single-output function can be described by the 

pseudo-code shown in Figure 25. The on-set (F) and the off-set (R) are the inputs to the 

algorithm; the output is the sum of products (G) that covers F and does not intersect R. 

Note that this algorithm may be further enhanced by more sophisticated literal selection 

techniques whose description, however, exceed the scope of this text. For details see [75]. 

 

CD_Search(F, R) { 

G = ;    // G is being created 

do 

F’ = F;    // F’ is the reduced on-set 

t = 1;   // t is the term in progress 

do { 

v = most_frequent_literal(F’); 

t = t.Add(v); 

F’ = F’ – cubes_not_including(t); 

while (t  R  ); 

G = G  t; 

F = F - F’; 

until (F == ); 
return G; 

} 

Figure 25 . CD-Search 

The point, where randomness takes place, is the literal selection process. As stated above, the 

primary criterion is the maximum occurrence in the yet uncovered on-set. However, usually many 

equally valued choices occur in practice (see Subsection 5.7). Then one is chosen randomly. 

Note that one particular literal selection has a crucial impact on the execution flow of the rest 

of the algorithm, since literal-specific restrictions of the on-set are applied. Therefore, there is a 

big chance that many different solutions will be obtained, depending on random decisions. 

To introduce even more randomness to CD-search, mutations may be present. With a given 

probability, a mutation occurs. Then a literal with any non-zero frequency of occurrence 

is selected, instead of the literal with the maximum one. We have found experimentally, that 2-5% 

of mutations are beneficial. For details see [83].  
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5.2.2 IMPLICANT EXPANSION 

Implicants obtained by CD-Search need not be prime. Hence, they should be further expanded 

into primes, by removing literals and checking against the off-set. Basically, each term is 

processed separately and literals are tried for removal one by one. After each literal removal, the 

term is checked if it is still an implicant, again by comparing it with the off-set. When no literal 

can be removed without making the term intersect the off-set, it is a prime implicant. 

There may be several strategies of literal removal. Essentially, there are O(2
n
) possibilities 

of expansion; O(2
n
) different prime implicants can be obtained from one term. Performing such 

an exhaustive implicant expansion is usually infeasible in practice. 

Therefore, a simple greedy (and again randomized) strategy is used: all the literals are tried for 

removal sequentially, i.e., one by one, starting from a random position. One prime implicant is 

obtained from one non-prime this way and the algorithm time complexity is linear with n. This 

strategy may be further extended to multiple random restarts, where O(n) primes is produced, 

for a O(n
2
) complexity expense. 

5.2.3 IMPLICANT REDUCTION 

All the obtained prime implicants are tried for reduction by adding literals to them, in order 

to become implicants of more than one function (Fi, 1  i  m). The principle of the method 

of implicant reduction is similar to the implicant expansion one (Subsection 5.2.2) and, indeed, 

the CD-Search as well (Subsection 5.2.1). Literals are gradually added to the previously obtained 

implicants, until there is no chance that the term will become an implicant of more functions. This 

is checked by comparing the reduced term with off-sets of all functions (Ri, 1  i  m); if a term 

does not intersect the off-set of Fi, it is an implicant of Fi. 

Preferably, literals that prevent intersecting with most of the terms of the off-sets of all Fi 

(i.e., yielding reduced terms covering the least zeros in all the m functions) are selected. 

All implicants that were ever found in this phase are stored in the pool and outputs are 

assigned to them – it is checked for each term produced, what functions from Fi, 1  i  m it is an 

implicant of. 

Randomness is applied here as well, in the CD-Search manner. When there are two or more 

equally valued choices, one is taken randomly. 

5.2.4 COVERING PROBLEM SOLUTION 

All the different implicants are finally entering the unate covering problem (UCP) [37], [84] 

solution process. Here their subset is selected, to form an irredundant cover of the on-set 

(Fi, 1  i  m). The result of this phase may serve as a solution of the minimization problem. 

Even though very efficient exact UCP solvers exist ([85], [86]), there is still a danger 

of exponential run-time explosion, since the UCP problem is NP-hard [37]. This is emphasized 

even more by the solved problem sizes; typically thousands of implicants are entering UCP. 

Therefore, a simple greedy heuristic algorithm is used in practice [75]. 

First of all, simple dominance relations are resolved [84], to significantly prune the pool. Then, 

a greedy heuristic is applied. The solution is constructed by gradually adding implicants to it, until 

the whole on-set is covered. The heuristic has several decision stages, where the candidate 

implicants are gradually filtered out: 

1. Select implicants covering most of yet uncovered on-set terms. 

2. From these, select implicants covering on-set terms that are difficult to be covered (they 

are covered by the minimum of implicants). 

3. From these, select the ones with the least cost (the number of literals). 

4. If there are still more possibilities, choose one randomly. 

Here we see the randomness as well – when there are more than one decision at the last stage 

of the filtering process, one is taken randomly. 
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5.2.5 THE FINAL SIMPLIFICATION 

The solution obtained by UCP can be further slightly simplified. The number of terms must 

definitely stay unmodified; however, the number of literals and the output cost (see Subsection 

5.1) can still be reduced for multi-output functions with shared (group) implicants. 

Before the UCP phase is entered, each term is assigned a set of all functions (from Fi, 1  i  

m) which it is an implicant of. A particular (group) implicant can be necessary for obtaining a 

solution of one function, however it needs not be (but can be) present in a solution of another 

functions it is an implicant of too. Its presence in the final solution then just increases the output 

cost. 

 Therefore, the UCP is solved upon the obtained cover for each of the m functions separately, 

to find the set of really necessary implicants for each. As a result, the output cost is reduced. 

Moreover, when the “demands” on implicants were loosened now, it may happen that it will 

be possible to further expand them. Hence, the implicants in the solution are further tried 

for expansion (see Subsection 5.2.2). 

The result obtained by this phase is a prime and irredundant cover [6] of the on-sets of all the 

source functions. Moreover, it is prime and irredundant also in terms of the number of literals and 

the output cost. Of course, the minimality is not guaranteed, since all the employed algorithms 

were greedy. 

5.3 THE ITERATIVE MINIMIZATION 

As stated above, BOOM can be (but not necessarily) run in an iterative way, in order 

to improve the result quality. The more implicants are accumulated, the better final solution can 

be expected. 

The progress of iterating the process is illustrated in Figure 26. A randomly generated function 

of 20 input variables, 5 output variables, 200 care terms of average dimension 2 was minimized 

here. A random function was chosen for this experiment, in order to maximally suppress the 

influence of any possible singular behaviors of standard benchmark circuits ([66]). 

The graph shows the progress of minimization in course of iteration. The total number 

of implicants in the pool is depicted by the thin line (and the left x-axis) and the solution quality 

(UCP was solved after each iteration, for the example purposes), in terms of the total SOP literals 

is depicted by the bold line (and the right y-axis). 

We can observe that the number of implicants follows the saturation curve, while the solution 

improves in the progress. The deterministic result obtained by ESPRESSO [6] is indicated as a 

horizontal hairline. It can be seen that even though rather inferior solutions are produced in early 

iterations, BOOM overcomes ESPRESSO in the solution quality in the 144-th iteration. This 

result can be generalized for almost any non-trivial circuit. In cases where ESPRESSO does not 

produce optimum results, BOOM is able to obtain them for a possible expense of run-time 

(see Subsection 5.4). 
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Figure 26 . Iterative process in BOOM 

5.4 COMPARISON WITH ESPRESSO 

The performance of BOOM will be evaluated here, in comparison with ESPRESSO. Both 

random and practical benchmarks will be tested. 

All the BOOM experiments were run on a standard PC with a 900 MHz Athlon CPU and 

256 MB of RAM. 

5.4.1 MCNC BENCHMARKS 

The BOOM algorithm was tested on standard MCNC benchmarks [66] and the results and 

run-times were compared to ESPRESSO [6]. BOOM was run for one iteration only in this 

experiment, to illustrate its basic capabilities. Indeed, no more iteration was necessary to reach 

competitive results. 

The results of selected benchmarks are shown in Table 8. The benchmarks were also solved 

by ESPRESSO-EXACT in order to obtain the minimum solution for comparison. Note that the 

minimality criterion for ESPRESSO-EXACT is the number of terms only, and thus some “exact” 

solutions are even worse in the literals counts than those reached by ESPRESSO or BOOM. Some 

benchmarks were not solved by ESPRESSO-EXACT because of its extremely long run-times 

(blank entries in Table 8). ESPRESSO solutions that are equal to the exact ones are shaded in the 

ESPRESSO column. The column n/m/p describes the numbers of input/output variables and care 

terms of the benchmarks, the time columns indicate the computational time in seconds, the 

lit/out/terms columns show the quality of the results, i.e., the number of literals in the final SOP 

form, the output cost and the number of terms. The shadowed cells indicate that the benchmark 

was solved by BOOM in a shorter time than by ESPRESSO, or the same result was reached 

respectively. 

As the MCNC benchmark circuits mostly have a relatively low number of inputs and many 

care terms defined, the iterative features of BOOM couldn’t be fully exploited here. Thus, the 

results are not optimal comparing to ESPRESSO. However, BOOM is much more efficient 

for more complex problems (see the following Subsections), which ESPRESSO often cannot 

solve in a reasonable time. 
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Table 8 . Runtimes and minimum solutions for the standard MCNC benchmarks 

 ESPRESSO ESPRESSO-EXACT BOOM – 1it. 

bench n/m/p time lit/out/terms time lit/out/terms time lit/out/terms 

alu2 10/8/241 0.07 268/79/68 0.18 268/79/68 0.02 268/79/68 

alu3 10/8/273 0.08 279/70/65 0.19 278/74/64 0.02 279/68/66 

alu4 14/8/1184 0.59 4445/644/575 12.24 4495/648/575 1.02 4449/636/577 

b9 16/5/292 0.08 754/119/119 0.89 754/119/119 0.09 754/119/119 

br1 12/8/107 0.05 206/48/19 0.07 206/48/19 0.02 215/45/20 

br2 12/8/83 0.06 134/38/13 0.07 134/38/13 0.01 134/38/13 

chkn 29/7/370 0.14 1598/141/140 0.25 1602/142/140 0.41 1598/141/140 

cordic 23/2/2105 1.86 13825/914/914 3.59 13843/914/914 4.05 13825/914/914 

ex4 128/28/654 0.62 1649/279/279   14.01 1649/279/279 

e64 65/65/327 0.11 2145/65/65 0.11 2145/65/65 15.06 2145/65/65 

exep 30/63/643 0.17 1175/110/110 0.55 1170/108/108 3.66 1175/110/110 

ibm 48/17/499 0.11 882/173/173   0.82 882/173/173 

mark1 20/31/72 0.25 97/57/19 1.45 97/57/19 0.04 93/46/23 

misex2 25/18/101 0.07 183/30/28 0.06 183/30/28 0.10 183/30/28 

misex3c 14/14/1566 0.98 1306/253/197   0.59 1335/242/209 

misj 35/14/55 0.07 54/48/35   0.03 54/48/35 

shift 19/16/200 0.07 388/105/100   0.06 388/105/100 

spla 16/46/837 0.71 2558/643/251 6.65 1564/450/181 1.54 2821/517/285 

vg2 25/8/304 0.08 804/110/110 0.54 804/110/110 0.15 804/110/110 

x9dn 27/7/315 0.08 1138/120/120 0.49 1138/120/120 0.22 1138/120/120 

5.4.2 RANDOMLY GENERATED BENCHMARKS 

Randomly generated benchmarks (PLAs) were chosen for the following experiments 

for several reasons: 

 BOOM is efficient especially for functions with a large number of inputs and few care 

terms. Such are available in standard benchmark suites [66] only rarely; 

 PLAs coming from some practical problems, which BOOM was intended for [80], 

[81], mostly are of a random nature; 

 randomly generated benchmarks allow for scaling, thus also the scalability of BOOM 

can be determined. 

 
A set of problems having up to 200 input variables and up to 200 care terms was solved. The 

truth tables (PLAs) of these problems were generated randomly, while only the number of input 

variables and the number of care terms were specified. The number of outputs was set equal to 5, 

and the terms contained 20% of don’t cares (missing input variables in the terms). The on-sets and 

off-sets of each function were kept approximately of the same size. For each problem size 

(number of variables, number of terms), ten different samples were generated and solved and 

average values of the ten solutions were computed. 

The results are shown in Table 9, Table 11, and Table 11. Here the number of input variables n 

increases horizontally and the number of specified PLA terms p is increased vertically. The first 

row of each cell contains BOOM results, the second row shows ESPRESSO results. The quality 

criterion selected for BOOM was the sum of the number of literals and the output cost, which well 

approximates the final implementation cost using standard library gates. 

First, the minimality of the result was compared. BOOM was run iteratively, using the same 

run-time as ESPRESSO needed to obtain the solution. The results are shown in Table 9 and Table 
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11. These two tables contain results of the same experiment, only results details are given in Table 

11, whereas Table 9 contains the optimization criterion values (sum of the number of literals and 

the output cost). 

The numbers of iterations BOOM was run is shown in the parentheses in the first line entries, 

while the run-time is indicated in the ESPRESSO entries (second lines). 

We can see that for all but one problem size (shaded cell) BOOM found a better solution than 

ESPRESSO in the same time. 

 

Table 9 . Randomly generated PLAs – comparison of the result quality (same time as ESPRESSO) 

p / n 50 100 150 200 

50 
151 (58) 

176/3.89 

131 (90) 

149/10.29 

122 (147) 

133/24.87 

113 (199) 

128/41.99 

100 
370 (46) 

393/9.31 

297 (94) 

315/77.07 

278 (140) 

293/199.17 

264 (140) 

275/246.21 

150 
606 (43) 

639/54.76 

490 (101) 

509/282.80 

454 (116) 

458/646.20 

471 (64) 

429/1066.14 

200 
855 (51) 

895/162.62 

690 (116) 

704/730.91 

617 (207) 

629/1913.65 

579 (277) 

586/3372.66 

Entry format: BOOM: # of literals + output cost (# of iterations) 

 ESPRESSO: # of literals + output cost / time in seconds 

 

Table 10 . Randomly generated PLAs – comparison of the result quality) 

p / n 50 100 150 200 

50 110/41/25 (58) 

122/54/27/3.89 

96/35/23 (90) 

104/45/23/10.29 

90/32/21 (147) 

92/41/21/24.87 

84/29/20 (199) 

89/39/20/41.99 

100 284/86/52 (46) 

289/104/51/19.31 

229/68/42 (94) 

231/84/42/77.07 

217/61/40 (140) 

213/80/39/199.17 

207/57/38 (140) 

201/74/37/246.21 

150 474/132/76 (43) 

481/158/76/54.76 

389/101/63 (101) 

384/125/62/282.80 

362/92/61 (116) 

345/113/56/646.20 

381/90/64 (64) 

322/107/52/1066.14 

200 678/177/101 (51) 

686/209/101/162.62 

553/137/83 (116) 

539/165/81/730.91 

492/125/75 (207) 

480/149/72/1913.65 

469/110/71 (277) 

450/136/68/3372.66 

Entry format: BOOM: # of literals / output cost / # of terms (# of iterations) 

 ESPRESSO: # of literals / output cost / # of terms / time in seconds 

 
The second group of experiments was performed to compare the run-times. Again, the same 

randomly generated problems were solved, but this time BOOM was running until a solution 

of the same or better quality as ESPRESSO was reached. The quality criterion selected was again 

the sum of the number of literals and the output cost. The results given in Table 11 show that for 

all examples the same or better solution was found by BOOM in a shorter time than 

by ESPRESSO. Thus, even though iteration was employed, BOOM was faster than ESPRESSO. 

Moreover, the UCP problem was solved extra after each iteration in this experiment, in order 

to obtain a solution for comparison. Otherwise the stopping criterion couldn’t be computed. 
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Table 11 . Randomly generated PLAs – comparison of the run-time (same quality as ESPRESSO) 

p / n 50 100 150 200 

50 
170/0,64 (12) 

176/3,89 

145/1,89 (21) 

149/10,29 

131/14,52 (73) 

133/24,87 

126/3,26 (25) 

128/41,99 

100 
388/7,15 (23) 

393/19,31 

313/25,5 (48) 

315/77,07 

291/38,91 (56) 

293/199,17 

273/86,51 (83) 

275/246,21 

150 
631/20,38 (25) 

639/54,76 

506/153,84 (70) 

509/282,8 

456/374,68 (105) 

458/646,20 

427/974,40 (161) 

429/1066,14 

200 
890/71,97 (31) 

895/162,62 

697/467,63 (86) 

704/730,91 

625/1026,28 (149) 

629/1913,65 

582/1759,27 (220) 

586/3372,66 

Entry format: BOOM: # of literals + output cost / time in seconds (# of iterations) 

 ESPRESSO: # of literals + output cost / time in seconds 

5.4.3 PRACTICAL PLAS 

Results of some large practical examples that had to be minimized during a test pattern 

generator design for BIST [80], [81] will be shown in this subsection. In particular, the 

combinational logic transforming pseudo-random patterns into deterministic ones was designed. 

In all the cases BOOM was run for 100 iterations. The “Bench” column indicates the name 

of the benchmark circuit. In the “n/m/p” column there are listed numbers of its inputs, outputs and 

care terms. Then, the results obtained by BOOM and ESPRESSO are shown. The resulting PLA 

complexity, in terms of the sum of the number of literals and the output cost, is given in in the 

next column (“Size”). The shadowed cells indicate cases where BOOM outperformed 

ESPRESSO, both for the result quality and run-time. 

Table 12 . Output Decoder design examples 

  BOOM ESPRESSO 

Bench n/m/p Size Time [s] Size Time [s] 

d_c1355 (1) 41/18/13 63 0.69 74 0.19 

d_c1355 (2) 41/21/14 70 0.74 85 0.26 

d_c1908 33/3/29 34 0.49 36 0.12 

d_c2670 (1) 233/32/60 226 165.95 626 4,838.62 

d_c2670 (2) 233/31/52 122 159.06 520 2,329.44 

d_c2670 (3) 233/36/104 319 740.18 689 24,710.07 

d_c7552 (1) 207/48/81 393 807.84 746 27,574.93 

d_c7552 (2) 207/72/207 779 23,933.46 - > 24 h 

d_s420.1 (1) 34/6/42 44 0.75 52 1.58 

d_s420.1 (2) 34/5/33 39 0.75 49 0.95 

d_s838 (1) 67/24/61 71 3.15 117 27.94 

d_s838 (2) 67/15/46 58 1.65 88 14.94 

d_s953 (1) 45/2/25 9 0.13 14 0.11 

d_s953 (2) 45/4/45 21 0.42 21 0.16 

d_s1196 32/4/48 59 2.12 74 1.04 

d_s1238 (1) 32/5/60 93 9.71 137 3.15 

d_s1238 (2) 32/4/58 57 5.23 73 0.53 

d_s5378 (1) 214/3/36 24 2.81 31 6.58 

d_s5378 (2) 214/2/22 14 0.66 14 1.70 

d_s9234 (1) 247/77/216 1310 18,835.60 - > 24 h 
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  BOOM ESPRESSO 

Bench n/m/p Size Time [s] Size Time [s] 

d_s9234 (2) 247/38/99 373 266.78 505 17,298.00 

d_s9234 (3) 247/23/52 129 29.09 216 659.25 

d_s13207.1 (1) 700/8/96 177 93.65 191 1,251.00 

d_s13207.1 (2) 700/58/197 587 1,550.25 633 190,038.74 

d_ s15850.1 (1) 611/96/313 395 3,416.40 - > 24 h 

d_ s15850.1 (2) 611/48/180 157 516.30 240 37,818.65 

d_s38417 1664/1454/520 1518 1,923.00 - > 24 h 

d_s38584.1 (1) 1664/464/307 316 321.90 - > 24 h 

d_s38584.1 (2) 1664/464/45 22 46.60 62 20,361.71 

d_b04 (1) 77/9/37 49 1.75 57 4.19 

d_b04 (2) 77/4/29 18 0.32 22 0.58 

d_b05 (1) 35/7/33 57 2.94 98 0.85 

d_b05 (2) 35/2/15 8 0.07 9 0.06 

d_b07 (1) 50/5/41 23 2.01 24 3.43 

d_b07 (2) 50/1/24 2 0.02 2 0.80 

d_b12 (1) 126/11/128 190 118.14 236 379.93 

d_b12 (2) 126/7/66 91 15.52 115 18.27 

 

It can be seen that BOOM outperformed ESPRESSO in the result quality in all the cases and 

mostly in the run-time as well. In some more complex cases (hundreds or up to thousands inputs) 

ESPRESSO did not return a result in more than one day, thus the measurement was terminated. 

5.5 SCALABILITY 

All the algorithms used in BOOM have polynomial time complexity (no more than quadratic), 

with all the instance size measures (number of inputs, outputs, and care terms). An experimental 

evaluation will be shown here, to see real time complexities. 

The average time needed to complete one pass of the algorithm for varying sizes of the input 

truth table (PLA) was measured. The truth tables were generated randomly, all the specified terms 

were minterms. Single-output functions were considered in this experiment. 10 instances of each 

size were solved and average times were computed. 

Figure 27 shows the growth of the average run-time as a function of the number of input 

variables (20-300), for different numbers of minterms (20-300 as well). It can be seen that the 

time complexity is almost linear. 

The fact that the time complexity grows linearly with the number of input variables (while 

keeping the number of defined terms) expresses the main advantage of the BOOM algorithm. 

As the size of the Boolean space of the function grows exponentially with the number of input 

variables, the time complexity of most of the common minimization algorithms (ESPRESSO) 

grows exponentially too. In BOOM there is no chance for an exponential time grow, as there are 

no algorithms with an exponential complexity used. This allows BOOM to very efficiently 

minimize functions with an extremely large number of inputs. 
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Figure 27 . Time complexity (1) 

The run-time dependency on the number of specified terms is shown in Figure 28. Again, the 

number of input variables was varied from 20 to 300 and figures for different numbers 

of specified minterms (20-300) were measured. We see that BOOM run-times grow more than 

linearly with the number of terms, which was expected. Indeed, the dependencies confirm the 

theoretical O(p
2
) complexity. 

 

Figure 28 . Time complexity (2) 

5.6 SOLUTIONS ANALYSIS 

As BOOM is randomized, different solutions are obtained from its different runs. As well as 

in Subsection 2.3, the counts of different solutions will be investigated, more thoroughly in this 

case. 
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The following experiment was performed: a subset of MCNC benchmarks [66] was processed, 

BOOM was run for 200 iterations (to ensure very quality results), 20% CD-Search mutations [83] 

(to increase the variety of solutions), repetitively 100-times for each circuit.  All different 

solutions ever obtained (even in course of the iteration) were recorded. Note that all the results 

were prime and irredundant covers. 

The detailed solutions analysis is shown in Table 13. For each benchmark, the total number 

of different solutions and different solutions with the best quality (number of literals here) are 

shown. Then, numbers and percentages of solutions, whose quality is less than 5% (10%, 20%, 

respectively) worse than the best solution are shown. 

We can observe that for most of the circuits only one “best” solution was obtained, which was 

probably the optimum one. Of course, symmetric circuits, like max512, sym10, Z9sym [66] have 

adequate numbers of P-equivalent solutions [87]. 

However, a plentiful of different near-optimum solutions can be observed. This is illustrated 

in Figure 29 for the ex1010 circuit. Such a behavior can be observed for most of the tested 

circuits. 

 

Table 13 . Different solutions counts for BOOM 

benchmark solutions best solutions  5%  10%   20% 

add6 2598 1 19 (1%) 218 (8%) 2580 (99%) 

alu2 114 1 38 (33%) 73 (64%) 105 (92%) 

alu3 1444 1 204 (14%) 495 (34%) 1133 (78%) 

amd 2 1 1 (50%) 1 (50%) 1 (50%) 

b12 212 1 26 (12%) 88 (42%) 212 (100%) 

b9 929 1 52 (6%) 154 (17%) 319 (34%) 

bench 4283 50 2599 (61%) 3803 (89%) 4213 (98%) 

co14 1 1 1 (100%) 1 (100%) 1 (100%) 

dc1 1 1 1 (100%) 1 (100%) 1 (100%) 

dc2 16 1 1 (6%) 7 (44%) 16 (100%) 

ex1010 17020 1 293 (2%) 6144 (36%) 16172 (95%) 

ex7 909 2 47 (5%) 143 (16%) 315 (35%) 

exep 2343 2 2139 (91%) 2334 (100%) 2343 (100%) 

f51m 315 1 19 (6%) 70 (22%) 296 (94%) 

ibm 1242 1 45 (4%) 169 (14%) 700 (56%) 

in7 43 4 4 (9%) 18 (42%) 34 (79%) 

inc 24 2 8 (33%) 11 (46%) 24 (100%) 

jbp 1166 1 97 (8%) 429 (37%) 829 (71%) 

life 1 1 1 (100%) 1 (100%) 1 (100%) 

log8mod 37 2 19 (51%) 30 (81%) 37 (100%) 

luc 4 2 4 (100%) 4 (100%) 4 (100%) 

m1 9 1 2 (22%) 2 (22%) 9 (100%) 

m2 141 1 87 (62%) 135 (96%) 141 (100%) 

max512 1131 122 682 (60%) 947 (84%) 1129 (100%) 

misj 15 1 1 (7%) 1 (7%) 1 (7%) 

mlp4 338 2 25 (7%) 138 (41%) 328 (97%) 

newcwp 2 1 1 (50%) 1 (50%) 2 (100%) 

newtpla2 25 1 4 (16%) 7 (28%) 9 (36%) 

p3 20 2 2 (10%) 2 (10%) 18 (90%) 
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benchmark solutions best solutions  5%  10%   20% 

p82 12 1 6 (50%) 9 (75%) 12 (100%) 

radd 344 1 3 (1%) 11 (3%) 80 (23%) 

rckl 214 1 214 (100%) 214 (100%) 214 (100%) 

rd73 1 1 1 (100%) 1 (100%) 1 (100%) 

risc 1 1 1 (100%) 1 (100%) 1 (100%) 

root 1163 3 249 (21%) 902 (78%) 1163 (100%) 

ryy6 8499 1 566 (7%) 2649 (31%) 7406 (87%) 

shift 414 1 230 (56%) 313 (76%) 414 (100%) 

soar 1043 1 9 (1%) 59 (6%) 506 (49%) 

sqn 113 1 23 (20%) 93 (82%) 113 (100%) 

sym10 875 100 147 (17%) 242 (28%) 483 (55%) 

t1 8 1 1 (13%) 1 (13%) 7 (88%) 

test1 2937 1 1463 (50%) 2449 (83%) 2864 (98%) 

test4 9702 4 58 (1%) 1116 (12%) 9666 (100%) 

vg2 2 1 1 (50%) 1 (50%) 2 (100%) 

vtx1 1149 4 929 (81%) 1009 (88%) 1103 (96%) 

x1dn 8 1 1 (13%) 1 (13%) 1 (13%) 

x2dn 5 1 1 (20%) 4 (80%) 5 (100%) 

x9dn 741 1 634 (86%) 675 (91%) 731 (99%) 

z4 395 1 37 (9%) 202 (51%) 381 (96%) 

Z5xp1 153 1 61 (40%) 137 (90%) 153 (100%) 

Z9sym 3178 99 751 (24%) 1329 (42%) 2541 (80%) 

 

Figure 29 . Distribution of solution qualities for ex1010 

5.7 RANDOM NUMBER GENERATOR GRANULARITY EFFECTS 

The influence of the random number generator granularity in the minimization process 

is illustrated in Figure 30. Here BOOM was partially derandomized, in the way described 

in Subsection 4.5 and the progress of the implicants number growth was traced. The same 
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function as in Section 5.3 was minimized (randomly generated, 20 input variables, 5 output 

variables, 200 care terms of average dimension 2). 

The final result quality obtained after 1,000 iterations for different RFs is shown in Table 14 

and the progress of the result quality during the 1,000 iterations is visualized by Figure 31. The 

values were obtained by averaging 20 BOOM runs (for each RF value). 
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Figure 30 . Derandomized BOOM – implicants number growth 
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Figure 31 . Derandomized BOOM – result quality 

Table 14 . Derandomized BOOM – result quality 

RF Literals 

1 1695 

2 669 

3 650 

10 648 

100 649 

infinity 647 
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We can see that when the capabilities of the random number generator are limited, the number 

of generated implicants grows slower and the solution quality drops as well. For RF = 1 the 

iterative process does not work at all, since equal implicants are generated in each iteration.  

But even for RF = 2 the implicant generation rate starts to follow the saturation curve and 

for RF = 3 the rate nears the rate of RF = infinity. For RF > 10 there is no noticeable difference 

from the fully randomized algorithm. Regarding the result quality, RF = 1 definitely lacks here. 

For RF > 1 there are only slight differences in quality. 

The above observations can be backed up by the fact that in CD-Search there are usually only 

few “equal” choices to decide between. A histogram and a pie-chart of the distributions of the 

number of CD-Search choices (for our example circuit, fully randomized algorithm run, and 200 

iterations) are shown in Figure 32. In 40% of cases there are no options. There are 2 options 

in less than 20% of cases, and the distribution curve sinks exponentially. The average number 

of choices was 3.35. 

                                        

                                        

                                        

                                        

                                        

                                        

0 5 10 15 20 25 30
0

20000

40000

60000

80000

100000

120000

140000

2

19%

3

12%

4

8%

5

5%
1

40%

> 5

16%

F
re

q
u

e
n

c
y

Choices
 

Figure 32 . Numbers of choices 

From the theoretical point of view, the maximum number of possible choices in every step 

equals to the number of different function’s literals, i.e., twice the number of input variables, 

which is 40 in our case. However, the maximum of choices encountered in the example was 31 

only. 

The number of possible random decisions in the subsequent phases (implicant expansion and 

reduction) is bounded by the number of variables. Only the number of decisions in the UCP phase 

is not limited; it grows with the number of processed implicants. 

Concluded, BOOM needs not too much of randomness for its successful run. Even 

for functions with a higher number of variables, the number of possible decisions cannot reach 

millions. However, it definitely cannot be completely determinized. 

5.8 ASYMPTOTIC COMPLETENESS OF THE ALGORITHM 

In general, the overall BOOM algorithm (search strategy) can be declared as asymptotically 

complete, mostly because of mutations used in the CD-Search phase. Any implicant can be 

generated by application of mutations and if an exact covering problem is used [85], [86], also 

any optimum solution can be obtained. 

Completeness, in sense of ability of obtaining any valid solution, is discussable. Nevertheless, 

it relies on the covering problem solving algorithm only. Therefore, any desired solution can be 

obtained, if the algorithm is modified properly. Of course, the solution must consist of prime 
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implicants only. If this condition is undesirable, a kind of relaxation must be applied in the 

implicants generation process. 

5.9 CONCLUSIONS 

Another application of randomized high-level iterative algorithms was shown here – the SOP 

minimizer BOOM. It starts with on- and off-set sets descriptions of a function and produces a 

minimized SOP form covering the on-set and not intersecting the off-set. 

BOOM was found to be well scalable, its run-times do not grow significantly with the instance 

sizes and generally they are relatively small. Therefore, BOOM can be efficiently iterated, 

without a significant run-time increase. 

When iterated, a valid solution can be obtained in every BOOM pass (iteration), if the 

covering problem is solved at the end of each iteration. 

Because of the randomized nature of the algorithm, the solutions may differ. Moreover, even 

better solutions can be obtained by combining the generated solutions and solving the covering 

problem. 

It was shown that BOOM is able to outperform the state-of-the-art SOP minimization tool 

ESPRESSO, mostly because of iteration – even though inferior results are usually obtained in the 

first iteration for complex problems, better solutions than ESPRESSO produces are obtained after 

several iterations of BOOM, moreover usually in a shorter time – even though iteration is used. 

As in the previous algorithm, randomness allows obtaining many different solutions. This 

feature was exploited, e.g., in [88]. 

It was shown that both randomness and iteration are necessary for a successful BOOM run, 

at least for non-trivial problems, where the optimum solution is not already generated in the first 

iteration. However, partial derandomization affects BOOM only slightly; very few random 

numbers are required to make BOOM perform well. 
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6 FC-MIN – A SOP MINIMIZER 
The second iterative randomized two-level minimizer discussed will be FC-Min [89], [90]. Its 

novelty and uniqueness consist in a special solution generation process. In contrast to other 

approaches, FC-Min finds a rectangle cover of ‘1’s in the output part of the truth table first, and 

then group implicants are subsequently derived from this cover. No prime implicants of single 

functions are computed; only the necessary implicants needed to cover the whole on-set are 

produced. 

As group implicants are highly important especially for functions with many outputs, this 

makes FC-Min superior to other minimizers for such problems. On the other hand, FC-Min is not 

suitable for problems with a small number of output variables; for a single-output function, as an 

extreme case, the cover is generated purely at random. Here the FC-Min algorithm cannot 

outperform the others (ESPRESSO, BOOM).  

Randomness is employed in FC-Min in a special way too. In all the above-mentioned 

approaches (Sections 3 - 5) randomness was used when more than one equally valued choice were 

available. Conversely, randomness is used in FC-Min to ensure its probabilistic execution. The 

mentioned rectangle cover (which is an NP-hard problem [37] too) is generated greedily and 

almost ad-hoc, whereas optimality of its solutions is controlled by a random factor. Indeed, highly 

sub-optimal solutions must be often submitted to the subsequent phase, since optimality of the 

rectangle cover is in contrast with its feasibility for the next phase. Details will be given 

in Subsection 6.3. 

Iteration is in FC-Min used both at low and high level. The low-level iteration is employed 

in the probabilistic Find Cover phase (see Subsection 6.2.1); high-level iteration can be used 

in the same way as in BOOM: different implicants obtained in each iteration are cumulated and 

the covering problem is solved at the end. 

6.1 PRELIMINARIES 

The general notation will be retained from the previous Section. However, a notation of input 

and output matrices must be introduced here, for simplicity of the further explanations. 

Let us have a multi-output Boolean function of m output variables of n input variables. This 

function will be denoted as a source function. The input variables will be denoted as xi, 0  i < n, 

the output variables as yj, 0  j < m. Such a multi-output function will be described by a 

sum-of-products (SOP) form, particularly by a PLA [6]. The m output values of the care terms 

(both minterms and terms of higher dimensions may be used) are defined by a truth table. To the 

minterms that are not present in the truth table are implicitly assigned don’t care values. I.e., the 

multi-output function is specified by its on-set and off-set as in the BOOM case. Don’t cares can 

also be specified in the truth table explicitly. 

The part of the truth table representing the terms (cubes) will be denoted as an input matrix I, 

the rows of the input matrix will be denoted as input vectors. The part defining output values 

of the terms will be called an output matrix O; similarly, the rows of this matrix as output vectors. 

Each row of the output matrix defines values of the output variables for the values of input 

variables specified by the corresponding row in the input matrix. Two notations for the I matrix 

rows will be used interchangeably in the text: 

1. an n-dimensional binary vector describing values of respective input variables, 

2. an I matrix term (cube) describing a set of literals. 

 

The number of I matrix columns corresponds to the number of input variables n, the number 

of O matrix columns is equal to the number of output variables m, the number of I and O matrix 

rows will be denoted as p. The I matrix may contain values ‘1’ (input variable in its positive 

phase), ‘0’ (input variable complemented), and ‘-‘ (input variable not present). The O matrix may 
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contain values ‘0’ (function’s output value 0), ‘1’ (function’s output value 1), and ‘-‘ (output 

don’t care – any output value is allowed). 

 

The SOP minimization task is the same as in BOOM (see Subsection 5.1): to find the 

minimum cover of the on-set. The optimality may be measured as the number of product terms 

in the solution, the number of literals, the output cost, or their combination. Terms can be shared 

between more output functions. Then the respective term is accounted only once. 

6.2 FC-MIN PRINCIPLES 

There are two major phases of this algorithm: the Find Cover phase (which gave name 

to FC-Min) and the Find Implicants phase. After that, the implicants should yet be expanded 

in order to reduce the total number of literals. The number of terms cannot be reduced any more 

after the Find Implicants phase. The individual phases will be described in the following 

Subsections. 

6.2.1 FIND COVER PHASE 

First, let’s state some basic definitions [3], [37]. 

 

Definition 1  

A rectangle (R, C) of a matrix M, M[i, j]  {‘0’, ‘1’, ’-‘}, is a subset of rows R and columns 

C, such that M[i, j]  ‘0’ for each i  R and j  C. 

 

  '0' ,:,  jiCjRi M  (1) 

The size of a rectangle |(R, C)| is the number of ‘1’s covered by it. Note that DCs (’-‘) can be 

included in the rectangle, however they do not contribute to its size for the purpose of the 

algorithm. 

 

Definition 2  
A set of rectangles R = {(R

k
, C

k
)} forms a rectangle cover of a matrix M, if all ‘1’ M matrix 

values are included in (covered by) at least one rectangle in this set. The cover needs not be 

disjoint; one ‘1’ may be covered by more than one rectangle. More formally, for a matrix M 

of dimensions (p, m), it holds: 

  kk CjRikjimjpi  : '1' ,:, M  (2) 

The size of a rectangle cover |R| is the cardinality of the set R, i.e., the number of rectangles. 

 

Example 

An example of a (minimum) rectangle cover is shown in Figure 33. for a binary matrix 

of 5 columns (let they be named y0 - y4) and 10 rows (numbered 0-9). The cover consists of six 

rectangles, R1 – R6. The sets of columns in the respective rectangles can also be represented 

by binary vectors, as depicted in Figure 33. 
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{y -y0 4

 

Rectangle (i) Ri Ci 

R1 {4, 6, 8} {y3, y4}  00011 

R2 {1, 2, 7} {y1, y2}  01100 

R3 {8, 9} {y0, y2}  10100 

R4 {3} {y1, y3}  01010 

R5 {0, 1} {y0, y1}  10000 

R6 {4, 7} {y2, y4}  00101 
 

Figure 33 . Example of a rectangle cover 

 

 

In the Find Cover phase we find a rectangle cover of the on-set of the source multi-output 

function, i.e., the rectangle cover of the O matrix. By this we try to find potential implicants that 

could be included in the solution. The main idea will be described later. 

Finding the optimum rectangle cover is an NP-hard problem [37], moreover the problem is 

constrained by the implicant validation procedure (see Subsection 6.2.2). For this reason, exact 

methods or commonly used heuristic algorithms cannot be efficiently used, hence a special 

probabilistic greedy heuristic was developed. 

The heuristic is based on a gradual search for rectangles consisting of maximum ‘1’s. First, the 

row containing most of yet uncovered ‘1’s is selected as a basis for a rectangle. Then rows are 

being greedily appended to the rectangle, while the number of covered ‘1’s increases, or at least 

does not decrease. The search may also be terminated at any time, with a given probability. 

For details see Subsection 6.3. 

The algorithm producing one rectangle is described by the following pseudo-code: 

 
FindRectangle(O) { // O is the O matrix of dimensions (m, p) 

 R = ; // empty row set 

 C = {0, ..., m}; // set of all columns 

 do { 

  v = row_with_maximum_x_for(0  i < p) 

  where x = (|R|+1)*|C  O[i]| - |R|*|C|; // potential increase 

of covered ‘1’s 

  if ( v < 0 ) break; // no further increase possible. Terminate 

  R = R  {v}; // include v into C 

  C = C  O[v]; // reduce C 

 } while (random() < DF); // enforced random termination 

 return (R, C); 

} 

Figure 34 . Find rectangle algorithm 

Example 

The construction of the first rectangle in our example (Figure 33) will be shown here. The row 

no. 8 with four ‘1’s is selected as the basis. Then, the current rectangle is: 

 

(R
1
, C

1
) = ({8}, {y0, y2, y3, y4}) 

|(R
1
, C

1
)| = 1  4 = 4 (3) 
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 Now we continue the search for a next row to add in order to increase the number of covered 

‘1’s. In the example, when the row no. 4 is added, the number of covered ‘1’s increases to 6. 

 

(R
1
, C

1
) = ({4, 8}, {y2, y3, y4}) 

|(R
1
, C

1
)| = 2  3 = 6 (4) 

 

Next, there are two equally valued candidate rows to add - no. 6 and no. 7. Addition of one 

of these rows to the rectangle would not increase the number of covered ‘1’s, however it will not 

decrease it either. Let us assume the row no. 6 is chosen (if two or more equal choices happen, 

a random decision is made). 

 

(R
1
, C

1
) = ({4, 6, 8}, {y3, y4}) 

|(R
1
, C

1
)| = 3  2 = 6 

(5) 

 

No further row additions non-decreasing the size of the rectangle are possible, thus the 

rectangle generation is terminated. 

After finding one rectangle, the O matrix ‘1’s that are covered by it are substituted by ‘-‘ 

values and we continue the search for other rectangles until all the ‘1’s in the output matrix are 

covered. This basic algorithm is greedy; no backtracking is involved. Thus, the asymptotic 

complexity of the overall algorithm is O(m.p
2
), since at most p rectangles can be produced by this 

algorithm. 

 

6.2.2 IMPLICANT GENERATION PHASE 

Rectangles obtained in the Find Cover phase represent potential group implicants of the 

minimized multi-output function. The structure of the terms (meaning literals in the terms) is not 

known yet; the rectangles define just the sets of ‘1’s the implicants must cover. However, the size 

of the rectangle cover directly determines the number of implicants in the final solution.  

This second minimization step consists in finding implicants covering exactly the same sets 

of O matrix ‘1’s as the rectangles do. 

 

Theorem 

Let R be a rectangle cover of the O matrix. The minimum term covering the set of ‘1’s that 

a rectangle (R
k
, C

k
)  R covers is constructed as a minimum supercube of all I matrix rows 

(terms) indexed by the set R
k
. Here the minimum is understood in terms of its dimension (i.e., the 

cube has maximum of literals). 

 

Proof 

For any single element of R
k
, ri  R

k
, the source function term represented by the ri-th I matrix 

row naturally covers all ‘1’s covered by R
k
, by definition of the truth table. Let this term be 

denoted ti. A term ti, j covering ‘1’s covered by two elements of R
k
, ri and rj  R

k
, i  j, must 

include both ti and tj, i.e., ti  ti, j and tj  ti, j. Therefore, ti, j = ti  tj, i.e., it is a supercube of ti and 

tj. This can be inductively extended for all R
k
 elements. 

 

 

Next, the term obtained from the intersection must not intersect the off-set of any function 

indexed by elements of C. If the minimum supercube does so, the rectangle must be invalidated, 

since no adequate term is possible to generate. 
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Example 

Let us assume a 5-input and 5-output incompletely specified function defined by 10 minterms, 

in form of a truth table. The input variables are named x0 - x4, output variables y0 - y4. The rest out 

of the total 32 minterms are don’t cares. The truth table is shown in Figure 35. The output matrix 

is the same as in Figure 33, therefore we will refer to the Find Cover phase solution (see 

Subsection 6.2.1). 

 

x0-x4 y0-y4 
0 11010 10000 

1 10000 11100 

2 01001 01100 

3 01111 01010 

4 00110 00111 

5 01110 00000 

6 10110 00011 

7 00001 01101 

8 10101 10111 

9 11100 10100 

Figure 35 . The FC-Min example function 

The way of computation of the minimum implicants t1 – t6 derived from the rectangles R1 - R6 

is shown in Figure 36. The respective I matrix rows are indicated in brackets. 

 

t1  R1 t2  R2 t3  R3 t4  R4 t5  R5 t6  R6 

 

(4) 00110 

(6) 10110 

(8) 10101 

    -01— 

 

(x1’x2) 

 

(1) 10000 

(2) 01001 

(7) 00001 

    --00- 

 

(x2’x3’) 

 

(8) 10101 

(9) 11100 

    1-10- 

 

 

(x0x2x3’) 

 

(3) 01111 

    01111 

 

 

 

(x0’x1x2x3 x4) 

 

(0) 11010 

(1) 10000 

    1-0-0 

 

 

(x0x2’ x4’) 

 

(4) 00110 

(7) 00001 

    00--- 

 

 

(x0’x1’) 

Figure 36 . Implicants generation 

Since none of the generated terms intersects off-sets of functions they implicate, all of them 

are valid. The solution of the example is a PLA shown in Figure 37. The output matrix of the 

result is derived from the rectangles columns, see the table in Figure 33. 

The case where invalid implicants are generated will be discussed in Subsection 6.2.4. 

Note the difference of the PLA descriptions in Figure 35 and Figure 37. In Figure 35 terms not 

specified in the table were implicitly assigned as DCs. In Figure 37 the minimization result is 

shown, i.e., the table corresponds to the final PLA (SOP) implementation. Thus, minterms not 

specified in the table implicitly belong to the off-set. 

 
t1: -01-- 00011 

t2: --00- 01100 

t3: 1-10- 10100 

t4: 01111 01010 

t5: 1-0-0 10000 

t6: 00--- 00101 

Figure 37 . Implicant generation phase solution 

 

Note that the asymptotic complexity of the implicant validation procedure is polynomial with 

the number of inputs - O(n
2
.p), since the off-set is explicitly specified. 
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6.2.3 IMPLICANT EXPANSION 

The Implicant generation phase produces minimum implicants, i.e., a set of valid implicants 

covering all ‘1’s in the output matrix and having maximum of literals. These implicants can be 

further expanded by removing literals (i.e., ‘0’ and ‘1’ values from the input matrix), as long as 

the expanded terms do not intersect the off-set of functions they implicate. Even though the 

validity of possible expansions is checked in a polynomial time (the offset is explicitly specified), 

there is an exponential number of sequences of expansions. Therefore, a simple heuristic is used. 

The terms are expanded by a “pecking out” method allowing us to make a balanced expansion 

of the terms: all literals in the matrix are tried for removal in a random order. If the expanded 

term does not intersect the off-set, the removal is kept permanent, otherwise the literal is not 

removed and the search continues until all literals are processed. 

The expanded matrix, which is the final solution of the leading example, is shown in Figure 

38. Literals that have been removed by the implicant expansion phase are shadowed. 

 
t1: -01-- 00011 

t2: --00- 01100 

t3: --10- 10100 

t4: ---11 01010 

t5: 1-0-- 11000 

t6: 00--- 00101 

y0 = x2x3’ + x0x2’ 

y1 = x2’x3’ + x3x4 + x0x2’ 

y2 = x2’x3’ + x2x3’ + x0’x1’ 

y3 = x1’x2 + x3x4 

y4 = x1’x2 + x0’x1’ 

Figure 38 . FC-Min – the final solution 

After the expansion is performed, it may happen that some terms become redundant, i.e., the 

on-set covered by them is already covered by other (those expanded) terms. Therefore, a covering 

problem is solved at the end, to obtain an irredundant cover. The same procedure as 

in Subsection 5.2.4 is used. 

6.2.4 INCREMENTAL IMPLICANTS GENERATION 

Until now it was assumed that each term created as the minimum supercube of I matrix terms 

is a valid implicant of all output functions it should implicate (these are directly determined by the 

implicant’s respective rectangle rows). However, this is definitely not the rule. Since the Find 

Cover phase computes rectangles independently of the I matrix, it may happen that the generated 

implicants intersects the offset. 

 

Example 

Let us assume a possibly obtained rectangle in our leading example (Figure 33), R
7
 = ({4, 8}, 

{y2, y3, y4}). Actually, this is the rectangle obtained in the second step of generation of R
1
. The 

minimum supercube of I matrix terms {4, 8} is (-01--) = x1’x2. This term must implicate 

functions y2, y3, and y4. However it does not, since it intersects the off-set of y2 (see Figure 35, row 

no. 6). For this reason, this term (or, better, the rectangle R
7
) cannot be included into the solution. 

 

(4) 00110 

(8) 10101 

    -01-- 

x1’x2 

Figure 39 . Example of an invalid implicant 

 

 

If such a rectangle was produced, it would be impossible to find implicants for the computed 

rectangle cover. Therefore, the cover must be recomputed. One possibility is to split the cover 

in order to make supercubes of fewer terms. This approach leads to a rapid growth of the number 

of terms in the final solution. 
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Another possibility is to recompute the whole cover, thus repeat the phases until a valid 

solution is found. Such an approach causes a great growth of the run-time and also the algorithm 

often locks in an infinite loop. 

It was found that the best way of solving this problem is an incremental implicant generation. 

In this approach the two main FC-Min phases are not separated; once one rectangle is generated, 

its respective minimum implicant is produced immediately and, if it is not valid, only the last 

rectangle is discarded and a different one is looked for. 

This is the low-level iteration basis. The single implicant generation process is iterated, until a 

valid one is found. In each iteration implicants are generated in a randomized way, while their 

statistical properties can be influenced by a parameter, see the following Subsection. 

The whole algorithm can be described by the following pseudo-code. The inputs of the 

algorithm are the input matrix I and the output matrix O, the output is a matrix S, representing the 

solution (PLA, SOP). 

 
FC_Minimize(I, O) { 

S = ; 
do { 

do { 

(R, C) = FindRectangle(O); 

t = GenerateMinimumTerm(I, (R, C) ); 

} while !IsValid(t, I); 

S = S  t; 

} while !AllCovered(); 

Expand(S); 

return S; 

} 

Figure 40 . The FC-Min minimization algorithm 

6.3 THE DEPTH FACTOR 

Finding rectangles consisting of maximum of ‘1’s is advantageous for the minimization, 

however the more rows the rectangle has, the smaller is the probability of validity of an implicant 

induced by it. Moreover, even the algorithm in Figure 40 may end up in an infinite loop, in case 

of repeated generation of one single non-valid rectangle. Thus, the greedy FindRectangle 

algorithm is driven by a depth factor (DF). Since the rectangles are produced row by row, after 

each row addition we may decide, whether to extend the cover to more rows, or to terminate the 

rectangle generation, even if it could grow yet bigger. The decision is made at random with a 

probability given by DF, see Figure 34. For instance, when DF = 0.5, there is 50% probability 

of the search termination after each row addition. For DF = 0, the search is terminated 

immediately after one row selection, thus a single-row rectangle is always produced. Here the 

FC-Min phase is downgraded to a mere gradual selection of all the I matrix rows into the solution, 

thus no minimization is performed in the Find Cover phase. Having a source function of p terms, 

the solution will consist of p implicants created just by expansion of the input terms. 

For DF = 1, the search for rows continues until there are no candidates increasing the cover 

size. Hence, it is very likely that the algorithm will end up in an infinite loop, since rectangles 

having maximum of rows will be deterministically produced. 

Note that for DF < 1, there is always a non-zero probability of producing a single-row 

rectangle. Such a rectangle always induces a valid implicant (which is equal to the respective 

I matrix row). Therefore, the algorithm can never get stuck in an infinite loop. 

Now it becomes apparent why the algorithm does not perform well for single-output functions. 

Imagine a single-output function and DF = 1. Then the cover will consist of one rectangle 

spanning over all rows. The implicant induced by this rectangle apparently cannot be valid (unless 

the function is a tautology). For smaller DFs, the solution will be produced. However, note that 

when there is more candidate rows in the FindRectangle function (see Figure 34), one is 
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selected randomly. For single-output functions, any row increases the cost function exactly 

by one, thus all rows are equally valued candidates. Therefore, for smaller DFs, implicants are 

generated purely at random, independently of the source function terms. Therefore, good solutions 

can be hardly expected. 

Since the depth factor significantly influences the generation of the cover, the choice of the DF 

value is crucial for reaching desirable solutions in a reasonable time. There are two aspects that 

DF influences: 

 Higher values of DF force the algorithm to generate “deeper” terms, i.e., terms that 

span over many source on-set terms. These terms are consequently implicants of less 

output variables, since the cardinality of R gradually decreases in the rectangle 

generation process (see Figure 34). These rectangles are often not valid, thus they have 

to be frequently recomputed in the process (see Figure 40). This involves a rapid 

increase of the Find Cover phase run-time. 

 Higher values of DF also induce producing less terms in the Find Cover phase. This 

means, the final solution may be possibly consisted of less terms, and definitely less 

terms will be processed in the Implicant Expansion, Covering problem solution and 

also in the overall minimization process, if high-level iteration (see Subsection 6.4) 

is applied. This could, conversely, reduce the total minimization run-time. 

 

Therefore, a thorough analysis of the overall algorithm behavior is required, to select the 

“optimum” value of DF. 

The ratio of the total number of rectangle computations (trials) to the number of valid 

rectangles (hits) as a function of DF is shown in Figure 41, for a randomly generated PLA 

of 50 inputs, 10 outputs and 2,000 defined on-set minterms. A random function was selected so to 

suppress any possible structural singularities appearing in standard benchmark circuits. However, 

the conclusions presented in this subsection can be generalized for any circuit. 

It can be seen that the ratio grows hyperexponentially with DF (notice the logarithmic y-axis), 

and so does the Find Cover phase run-time, since it grows linearly with the number of rectangle 

computations. 

Figure 42 shows the numbers of terms obtained in the Find Cover phase (upper curve) and 

terms in the final solution (lower curve). The curves sink linearly with increasing DF, while the 

maximum reduction of 32% was obtained in this case (the original function had 2,000 terms). 

Notice here that the Find Cover phase basically determines the number of terms in the final 

solution; very slight improvement in the terms number is obtained by the Implicant Expansion 

and Covering problem solution phases. 

However, this is not the case of the literals number. A similar graph, now displaying the 

numbers of literals, is shown in Figure 43. The minimization effect of the Find Cover phase can 

be seen clearly. For DF = 0, all the minimization effort is left for the Implicant Expansion phase 

(notice that the original function had 100,000 literals). For large DFs, the Find Cover phase does a 

big deal of the job, so the Implicant expansion improves the result quality only slightly. 

The most important consequence of the above-mentioned observations is the influence of DF 

on the overall minimization run-time. Since the Implicant expansion phase is relatively 

time-consuming, the less implicants are expanded, the better. The Find Cover phase and the 

overall run-times for varying DF are shown in Figure 44. Even though the Find Cover phase 

run time grows hyperexponentially with DF, there is an apparent minimum in the overall run-time 

between DF = 0.85 – 0.95. Therefore, the trade-off between the run-time and solution quality can 

be found in this DF region. If high minimization effort is required, the DF may be increased, 

at expense of a rapid run-time growth. 
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Figure 41 . Ratio of the trials to the hits 
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Figure 42 . Terms obtained after Find Cover (upper curve) and terms in the final solution (lower curve) 

                                        

                                        

                                        

                                        

                                        

                                        

0.0 0.2 0.4 0.6 0.8 1.0

0

10k

20k

30k

40k

50k

60k

70k

80k

90k

100k

L
it

e
ra

ls

DF

 

Figure 43 . Literals obtained after Find Cover (upper curve) and in the final solution (lower curve) 
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Figure 44 . Minimization run-time 

6.4 HIGH-LEVEL ITERATION OF FC-MIN 

Since all the FC-Min phases are randomized, high-level iteration can be used in the same way 

as in BOOM (see Section 5), with the same effects. Particularly, Find Cover is the phase 

producing implicants, which are stored in the implicant pool. Then they are expanded 

(by  expansion methods described in Subsections 5.2.2 and 6.2.3). This process is iterated and the 

covering problem is solved at the end. 

The influence of the depth factor (DF) on the run-time is worth studying here.  

Figure 45 illustrates the influence of the depth factor DF on the implicants growth rate. The 

sample problem solved was a randomly generated function of 20 input and 5 output variables, 

with 200 terms defined. The average dimension of the terms was 2. 

When increasing DF, many different implicants are generated in each iteration step, allowing 

a faster implicants growth. However, more implicants involve a more time consuming covering 

problem solution phase. Therefore, a trade-off between the run-time and result quality must be 

found again. 
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Figure 45 . Influence of DF on the implicant growth rate 

6.5 COMPARISON WITH ESPRESSO AND BOOM 

The performance of FC-Min will be evaluated here, in comparison with ESPRESSO [6] and 

BOOM [75], [76]. Standard benchmarks and randomly generated problems were processed. 

All the BOOM experiments were run on a standard PC with a 900 MHz Athlon processor and 

256 MB of RAM. 

6.5.1 MCNC BENCHMARKS 

As well as BOOM, the FC-Min algorithm was tested on standard MCNC benchmarks [66] and 

compared the results and run-times with ESPRESSO [6]. 

Table 15 shows the results of the suggested MCNC benchmarks [66] and those where FC-Min 

has reached a better result than ESPRESSO (the bottom part of the table). The column n/m/p 

describes the numbers of input and output variables and the number of defined terms of the 

particular benchmark. The ESPRESSO and FC-Min columns indicate the run-times in seconds 

and the numbers of literals of the resulting SOP forms, the output costs (the number of inputs into 

all output OR gates), and the numbers of product terms. The shadowed cells indicate the shorter 

FC-Min run-time or equal or better result quality obtained, respectively. 

The depth factor set to 0.5 and only one iteration were sufficient to obtain satisfactory results 

for these circuits. 

There were 120 benchmark problems solved, plus 19 so-called “hard” MCNC benchmarks. 

As a result, 86 (72%) of them were solved by FC-Min in a shorter time than by ESPRESSO. 

In 103 cases (86%) FC-Min reached the same or better result (better results, in terms of the 

number of literals were obtained in 8 cases) and in 80 cases (67%) the same or better result was 

reached in a shorter time than by ESPRESSO. 
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Table 15 . FC-Min - MCNC benchmarks 

 ESPRESSO FC-Min (DF = 0.5) 

benchmark n/m/p time lit/out/terms time lit/out/terms 

b12 15/9/72 0.08 149/59/42 0.01 148/58/43 

cordic 23/2/2105 1.86 13825/914/914 8.08 13825/914/914 

cps 24/109/855 0.33 1890/946/163 1.30 1890/946/163 

duke2 22/29/404 0.09 751/245/86 0.14 751/245/86 

ex1010 10/10/1304 0.50 1974/746/284 0.44 1976/742/284 

ex4 128/28/654 0.62 1649/279/279 2.98 1649/279/279 

misex2 25/18/101 0.07 183/30/28 0.01 183/30/28 

misex3c 14/14/1566 0.98 1306/253/197 0.61 1306/255/197 

pdc 16/40/822 0.83 828/432/136 0.32 912/520/145 

rd84 8/4/511 0.12 1774/296/255 0.15 1774/296/255 

spla 16/46/837 0.71 2558/643/251 0.84 2648/749/260 

alu4 14/8/1184 0.59 4445/644/575 1.49 4443/644/575 

clip 9/5/271 0.10 630/162/120 0.05 621/162/120 

dc2 8/7/101 0.05 207/52/39 0.01 206/51/39 

in4 32/20/603 0.17 2151/411/212 0.61 2145/411/212 

m4 8/16/329 0.16 640/518/105 0.06 640/509/105 

newxcpla1 9/23/93 0.07 197/86/39 0.01 196/86/39 

opa 17/69/382 0.11 559/540/79 0.17 560/524/79 

soar 83/94/779 0.94 2454/549/353 8.01 2445/549/353 

x6dn 39/5/310 0.08 641/177/82 0.04 640/177/82 

6.5.2 RANDOMLY GENERATED PROBLEMS – ONE ITERATION 

The second set of problems on which FC-Min was tested were randomly generated functions, 

functions with no special properties (no aggregated ones in the output matrix, etc.) With a help 

of such problems we can easily observe the properties and scalability of the algorithm. As well as 

for BOOM, one of the reasons why FC-Min was developed was a need to synthesize the 

combinational logic for built-in self-test, namely the output decoder transforming the LFSR 

patterns into test patterns pre-generated by an ATPG tool. Both the LFSR and ATPG patterns 

mostly have a random nature, and thus the randomly generated benchmarks simulate these 

practical problems very well [80], [81]. 

Problems with a varying number of input variables and terms were generated, the number 

of outputs was fixed to 15. These artificial benchmarks were solved by FC-Min, BOOM and 

ESPRESSO to compare the performance. Here only one iteration of BOOM and FC-Min was 

performed, the FC-Min depth factor was set to 0.9. 

The results of the minimization are shown in Table 16. The number of inputs increases in the 

horizontal direction (n), the number of care terms in the vertical direction (p). Each of the cells 

contains average values of ten problems of the same size that were solved, to ensure steady 

statistical values. The first row of each cell in the table contains results obtained by ESPRESSO, 

the second one the result obtained by BOOM and the third one by FC-Min. The first number 

in each line indicates the run-time in seconds, the second one the number of literals in the SOP 

form, the output cost follows and the last value indicates the number of product terms. 

We can see that in all the cases FC-Min completed the minimization in a significantly shorter 

time than ESPRESSO and BOOM, while the result quality is comparable. 
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Table 16 . Randomly generated problems – one iteration 

p / n 25 50 100 150 

50 2.27/232/341/49 

1.30/413/220/87 

0.27/315/305/59 

11.34/219/318/48 

1.40/428/156/94 

0.29/304/241/58 

46.35/202/301/46 

1.59/412/121/90 

0.34/293/195/56 

94.64/203/303/47 

1.73/371/96/84 

0.41/283/181/54 

100 10.22/577/687/98 

2.59/998/506/168 

0.50/716/648/110 

100.14/537/576/91 

2.56/1103/342/190 

0.51/718/491/113 

369.45/510/569/90 

3.02/1050/244/186 

0.64/676/413/106 

883.24/488/554/88 

3.53/943/186/168 

0.79/647/372/102 

125 14.44/772/849/123 

3.51/1333/650/211 

0.66/952/846/137 

148.96/710/728/114 

3.49/1468/449/237 

0.65/927/642/137 

756.21/666/704/110 

4.23/1408/317/231 

0.86/880/519/131 

2146.03/652/674/108 

4.82/1252/243/211 

1.09/829/473/124 

150 23.35/973/1005/147 

4.71/1691/785/255 

0.86/1182/1007/163 

283.88/892/869/136 

4.63/1849/563/285 

0.84/1164/779/164 

1111.23/833/800/129 

4.72/1761/378/278 

1.04/1098/638/157 

3422.94/798/773/126 

5.65/1613/295/256 

1.33/1039/573/148 

Entry format: time [s] / # of literals / output cost / # of terms 

Lines: ESPRESSO, BOOM, FC-Min 

6.6 RANDOMLY GENERATED PROBLEMS – SAME TIME 

Next, the same set of problems was solved, but taking advantage of the high level iteration this 

time. The functions were minimized by ESPRESSO first, and then both by BOOM and FC-Min, 

while the run-time was set to meet the run-time that ESPRESSO needed to reach a solution. 

The results are shown in Table 17. The format of the table is retained from the previous 

example, except of that only the ESPRESSO run-time is shown, while the number of iterations 

(to meet that time) is given in the parentheses for BOOM and FC-Min. 

Here FC-Min gives much better results than ESPRESSO, especially for problems with many 

input variables. For most of these problems FC-Min outperformed BOOM as well, due to a 

relatively high number of outputs (15). 

However, for problems with a low number of output variables BOOM is faster and the result 

quality is better too. Thus, for an efficient minimization we have to decide whether to use BOOM 

or FC-Min, judging by the number of outputs. 
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Table 17 . Randomly generated problems – same time as ESPRESSO 

p / n 25 50 100 

50 

2.15/233/346/49 

340/246/70(2) 

290/264/58(8) 

10.80/218/324/48 

294/189/61(7) 

252/185/50(28) 

51.96/204/309/47 

247/139/53(27) 

214/150/43(81) 

75 

5.62/400/513/74 

525/381/95(3) 

465/394/83(13) 

34.37/370/463/70 

466/276/86(12) 

404/279/71(47) 

154.71/357/438/68 

423/218/79(35) 

357/223/62(99) 

100 

11.24/581/673/99 

768/528/127(4) 

659/543/110(19) 

84.48/546/586/92 

665/358/111(16) 

571/365/92(63) 

416.29/520/564/90 

600/287/102(44) 

498/301/80(118) 

125 

17.75/773/845/123 

1010/616/160(4) 

868/674/138(22) 

157.19/706/722/113 

872/459/137(17) 

745/456/115(71) 

895.25/657/700/110 

765/359/122(52) 

650/374/99(137) 

Entry format: ESPRESSO: time [s] / # of literals / output cost / # of implicants 

   next lines: # of literals / output cost / # of implicants (iterations) 

Lines: ESPRESSO, BOOM, FC-Min 

6.7 INFLUENCE OF THE NUMBER OF OUTPUTS 

As it was stated above, FC-Min is efficient (in terms of both the run-time and result quality) 

for functions with many output variables. Conversely, its quality lacks for single-output functions, 

where the solution is generated purely at random. This issue will be studied here experimentally. 

Randomly generated functions with 50 input variables, 200 specified terms of the average 

dimension 0.5 were minimized both by FC-Min and ESPRESSO and the result qualities (number 

of solution terms) was compared. The ratio of these two values, as a function of output variables, 

is shown in Figure 46. Averages from 20 runs (20 different randomly generated functions for each 

output variables count) were computed. 

We can see that for single-output functions FC-Min produces very inferior results, more than 

twice the size of ESPRESSO (ESPRESSO produced results 45% the size of the FC-Min results). 

This lack in quality decreases with the increase of the number of outputs (m), for m > 5 the ratio 

becomes steady. Let’s note that FC-Min does not reach the quality of ESPRESSO, because only 

one FC-Min iteration was conducted, for purpose of credibility of the results. If FC-Min was run 

for more iterations, a variety of (almost random, in the single-output functions case) implicants 

would be generated and the minimization problem would be left to the covering problem solution 

phase. Much better results would be definitely obtained, but they would not precisely reflect the 

properties of FC-Min, or particularly, the Find Cover phase. 
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Figure 46 . Influence of the number of output variables 

6.8 FC-MIN SCALABILITY 

Since FC-Min is a probabilistic randomized algorithm, it is difficult to determine its time 

complexity analytically. In order to estimate the time complexity of the method, FC-Min was run 

on a large number of randomly generated problems with one parameter varying each time, while 

the minimization times were recorded. 

The following figures show the time dependencies on the number of input variables (Figure 

47), output variables (Figure 48) and the number of care terms (Figure 49). Values of the fixed 

parameters are indicated in the figures, the depth factor was set to 0.9. 

No exponential growth of time can be observed in any of the curves, thus the method can be 

scaled to very large problems while the run-time remains minimal. 

 

Figure 47 . Time complexity as a function of the number of inputs 
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Figure 48 . Time complexity as a function of the number of outputs 

 

Figure 49 . Time complexity as a function of the number of the care terms 

6.9 RANDOM NUMBER GENERATOR GRANULARITY EFFECTS 

Random nature of the Find Cover algorithm guarantees that the search will ever stop. Next, 

decreased randomness (random number generator granularity, see Subsection 4.5) decreases the 

variety of implicants generated by FC-Min. When FC-Min is run iteratively, this will involve a 

reduced implicants growth rate, as in the BOOM case. However, since the algorithm termination 

condition is continuous (random() generates real numbers here), much higher granularity is 

required for a successful algorithm run. This is documented by Figure 50. A randomly generated 

function having 20 inputs, 5 outputs, and 200 terms was minimized, DF was set to 0.8. The values 

were obtained by averaging 20 runs. The growth of the number of implicants during 1,000 

iterations, for different randomness factors (RFs, see Subsection 4.5) is shown. We can see that 
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even for RF = 100 the implicants number grows rather slowly, compared to RF = infinity. 

For DF = 1 the algorithm got stuck, which was expectable. 

The solution quality is affected in the same way. RF of at least 1,000 is required, in order 

to approach the solution quality of the fully randomized process. The progress of the solution 

quality (number of literals) is depicted in Figure 51. 

 

Figure 50 . Derandomized FC-Min – implicants number growth 
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Figure 51 . Derandomized FC-Min – solution quality 

6.10 ASYMPTOTIC COMPLETENESS OF THE ALGORITHM 

The completeness of the FC-Min search strategy is discussable. It is complete (up to the UCP 

solution algorithm completeness), if the I matrix contains minterms only. This is because of even 

though not any implicant can be generated in the Find Cover phase in general, the randomized 

Implicant Expansion phase is able to produce any prime implicant. Indeed, there is a non-zero 

probability that the Find Cover phase will leave any I matrix minterm untouched, thus any prime 

implicant can be obtained just by expanding the I matrix. 

If terms of higher dimensions are present in the source, it may happen that some solutions will 

not be reached. An example of such a case is generating a consensus of two terms [6]. It requires a 
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reduction of one term, which is not performed in FC-Min. However, if an implicant reduction 

phase was included (see Subsection 5.2.3) in the overall process, FC-Min would be 

asymptotically complete too. 

6.11 CONCLUSIONS 

The last randomized iterative logic optimization algorithm presented was FC-Min, another 

SOP minimizer. FC-Min is especially efficient for functions with a large number of output 

variables; for single-output functions its behavior is completely chaotic. 

Iteration is performed both on low and high level here. As for the high-level iteration, FC-Min 

can be run in the same way as BOOM; a valid solution is obtained in every iteration, whereas 

each iteration produces different solutions. The solution can be then combined by solving the 

covering problem. Since FC-Min is well scalable too, high-level iteration does not introduce any 

significant run-time overhead. 

Low-level iteration and randomness are employed in the implicants generation phase. 

Randomness is in FC-Min used in a completely different way: the implicants generation phase run 

is probabilistic, the termination criterion of the Find Cover phase is driven randomly, with a given 

probability. This allows this phase generate any solution at all. In combination with low-level 

iteration, randomness offers a possibility of setting a trade-off between the solution quality and 

run-time. 

 

As well as for BOOM, it was shown that FC-Min is able to outperform the state-of-the-art 

SOP minimization tool ESPRESSO – even though inferior results are usually obtained in the first 

iteration for complex problems, better solutions than ESPRESSO produces are obtained after 

several iterations of FC-Min. 

 

In contrast to the algorithms mentioned in the previous sections, in the case of FC-Min the 

minimum required random number generator granularity cannot be analytically computed. In fact, 

any loss of randomness involves a loss of efficiency here. Zero randomness makes the algorithm 

end up in an infinite loop. 

For more details see [89], [90], and [58]. 

Note that BOOM and FC-Min were later combined to form a universal SOP minimizer 

BOOM-II [91], [92]. However, description of BOOM-II is beyond the scope of this work, since 

its behavior, in terms of iteration and randomness, is retained from BOOM and FC-Min.  
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7 FINAL CONCLUSIONS AND DISCUSSION 
Several different applications of randomness and iteration to logic synthesis and optimization 

were introduced and discussed. Logic optimization was understood as a general combinatorial 

optimization process; the notion of state space was introduced and discussed for particular 

algorithms. 

Levels of iterations were defined. Iteration, as a part of single logic synthesis and optimization 

steps, was denoted as low-level. Conversely, the high-level iteration meant repeating the whole 

synthesis process, in order to improve the result quality in time. 

 

Sources of “external randomness” were explored and its effects were documented. All 

examined logic synthesis tools (both commercial and academic) were found to be sensitive 

to ordering of variables in the source file submitted to the synthesis, commercial tools were even 

sensitive to the ordering of statements (code lines) in the source file. This means, results 

of different qualities (in terms of area) are obtained, if just functional equivalence non-disturbing 

perturbations of source code statements are applied. Possible reasons for such a behavior were 

discussed. 

 

This fact was then further exploited in a method systematically improving the result quality. 

Randomness was non-violently introduced into the standard iterative synthesis process, so that 

standard synthesis tools can be used. This can be accomplished by randomly permuting variables 

before every iteration. A kind of diversification is introduced this way; locally optimum solutions 

are more likely escaped. As a result, the iterative power of the whole iterative synthesis process is 

increased, yielding systematically better solutions (both in area and time). 

 

Even more diversification and randomness was introduced into the standard synthesis process, 

by synthesizing the circuit by parts. Randomly selected continuous parts of the circuit were 

extracted and submitted to synthesis separately. This enables producing a larger variety 

of different results, possibly due to obscuring misleading structures to the synthesis. 

Even higher result quality was obtained, in terms of area. Experiments have shown that the 

process behaves rather consistently; the reached improvement was not a “lucky coincidence”, i.e., 

the synthesis process is robust. 

The amount of randomness (in terms of the random number generator granularity, not its 

quality) necessary to make the algorithm perform well was studied. It was shown that not much 

of it is actually required, however definitely the algorithm cannot be run in a deterministic way. 

Results obtained by deterministic runs were very inferior. 

The minimum necessary random number generator granularity was analytically derived 

for this algorithm, as the number of nodes in the initial network. 

 

Next, two randomized iterative sum-of-products (SOP) forms minimizers were introduced. 

In both cases, randomness is used to generate a variety of different implicants of the source 

function. These are accumulated in progress (high-level iteration) and the final solution is 

constructed using all of them, by solving the covering problem. The more implicants are found, 

the better solution can be obtained. 

The first SOP minimizer, BOOM, does not require too much randomness to perform well. 

Actually, the minimum necessary random number generator granularity was analytically derived 

as well, as the number of variables in the minimized function. 
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In case of the second minimizer, FC-Min, randomness is additionally employed to drive its 

probabilistic run. Every single implicant is generated in a probabilistic way, finding a trade-off 

between its quality (ability to cover more on-set terms) and validity. If an invalid implicant 

is generated, the generation process is re-run. With no randomness employed, either very poor 

solutions are obtained, or the process never terminates. As the probability function is continuous, 

the amount of randomness has been found crucial here; the algorithm performs well only with lots 

of randomness employed. 

 

All of the proposed algorithms have one thing in common: giving the possibility of obtaining 

better solutions, at expense of run-time. Therefore, generally it can be concluded that if there is 

enough time for synthesis, and/or results obtained by a conventional synthesis do not meet the 

designer’s constraints (area, power consumption, delay, etc.), randomized iterative processes are a 

possible choice. 

 

Unfortunately, iteration is not generally accepted by EDA vendors (i.e., producers of the EDA 

software). The major objection is the run-time increase. However, sometimes one can improve the 

result by orders of magnitude by applying several iterations only. 

Conversely, hardware (ICs) designers (i.e., consumers of the EDA software) are not so strictly 

against iteration.  Often they would be willing to spend more design time to reach better results, 

especially when low-power or low-area designs are required. 

The main objection against randomness is the inability of reproducing the results; two runs 

of a randomized algorithm will return different results. However, in practice this may not be true 

as well. We are not speaking about true randomness; it is pseudo-randomness, actually. Thus, 

results can easily be reproduced by fixing the pseudo-random number generator seed. Also, the 

seed may be specified as a synthesis parameter (among the others, like optimization effort, etc.), 

enabling the designer produce possibly different solutions upon his wish. 

 

Besides of acceptance, randomized iterative algorithms offer a possibility of obtaining upper 

bounds of complexity of circuits. This could be exploited in many areas, especially in research; 

lower bounds show the way and determine the target of synthesis. 

 

To conclude, here are summarized the main features (pros & cons) of randomized iterative 

algorithms: 

 they may be time-consuming, 

 return unpredictable results (as the standard synthesis does too, actually), 

 enable exploring a larger (possibly arbitrarily large) state space, 

 increase the iterative power of algorithms (w.r.t. standard iterative processes), 

 can be used to obtain upper bounds of the circuit complexity (or delay, power, etc.), 

 enable discovering different solutions of one problem instance, possibly of the same 

quality. Then a secondary quality criterion can be applied over these results, 

 offer a trade-off between quality and run-time. 
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LIST OF ABBREVIATIONS AND ACRONYMS 
ABC – A system for sequential synthesis and verification 

AIG – And-Inverter Graph 

ALU – Arithmetic and Logic Unit 

ASIC – Application Specific Integrated Circuit 

ATPG – Automatic Test Patterns Generator 

BDD – Binary Decision Diagram 

BIST – Built-In Self-Test 

BOOM – Boolean Minimizer 

CD-Search – Coverage-Directed Search 

DC – Don’t Care 

EDA – Electronic Design Automation 

ESPRESSO - Heuristic logic minimizer 

FC-Min – Find-Cover based Boolean Minimizer 

FPGA – Field Programmable Logic Array 

GA – Genetic Algorithm 

HDL – Hardware Description Language 

IC – Integrated Circuit 

LFSR – Linear Feedback Shift Register 

LSS – An IBM system for production logic synthesis 

LUT – Look-Up Table 

MVSIS – Multivalued SIS 

NP – Non-Deterministically Polynomial 

RTL – Register Transfer Language 

VHDL – VHSIC Hardware Description Language 

VHSIC – Very-High-Speed Integrated Circuit 

PI – Primary Input; Prime Implicant 

PO – Primary Output 

PLA – Programmable Logic Array 

SA – Simulated Annealing 

SIS – Sequential Interactive System 

SOP – Sum-of-Products 

UCP – Unate Covering Problem 


