

BRNO UNIVERSITY OF TECHNOLOGY

FACULTY OF INFORMATION TECHNOLOGY

RANDOMIZED ITERATIVE

LOGIC SYNTHESIS ALGORITHMS

HABILITATION THESIS

AUTHOR ING. PETR FIŠER, PH.D.

BRNO 2012

RANDOMIZED ITERATIVE

LOGIC SYNTHESIS ALGORITHMS

HABILITATION THESIS

AUTHOR ING. PETR FIŠER, PH.D.

BRNO 2012

ABSTRACT
The logic synthesis is understood as a process of transforming a behavioral circuit description

(typically register-transfer level – RTL) into a logic level description, typically a network of logic

gates. By logic optimization we understand a process of refining this description to improve its

quality, be it the size, delay, power consumption, etc.

However, these two terms (logic synthesis and optimization) are often used interchangeably

or jointly in literature, and so they will be in this thesis.

Iteration at a high-level is proposed, as a more powerful, yet also more time-consuming

alternative to the standard, single-pass synthesis and optimization process. The high-level

attribute means that the iteration is performed over the whole synthesis process, not inside of one

single synthesis step (algorithm).

Processes based on high-level iteration offer a possibility of reaching better results at expense

of run-time. They are also adjustable in run-time: a trade-off between the result quality and

run-time can be established by needs of the designer.

Iterative nature of the optimization algorithms brings a notion of state space. Therefore, logic

optimization is viewed as a general combinatorial optimization problem in this thesis, in the sense

of the state space concept. Notions of state space states and moves are introduced as valid

optimization solutions and transformations from one to another, respectively.

Randomized versions of iterative algorithms offer higher iterative power. Locally optimum

results are more easily avoided at expense of unpredictability of the final results, introduced

by randomness.

Numerous iterative logic synthesis and optimization algorithms, even randomized, have been

published in literature. They have different state spaces; some of them offer a global view of the

problem. However, this work focuses only on several novel and original randomized iterative

algorithms developed by the author. Their basic principles are described and emphasis is put

on understanding the effect of both the randomness and iteration, and their degree necessary

to make the algorithms perform well. The influence of randomness on the algorithm iterative

power is studied as well.

Advantages and disadvantages of randomized iterative algorithms, compared to deterministic

single-pass ones, are investigated. It will be shown that randomized iterative algorithms are

capable of producing better results than deterministic single-pass ones, usually at expense

of run-time.

The unquestionable merit offered by randomized iterative algorithms is a possibility

of obtaining upper bounds of quality (e.g., of the size). These can be used, e.g., to evaluate the

efficiency of other logic synthesis algorithms (benchmarking). It will be shown that some circuits

can be simplified by orders of magnitude using iteration. If randomness is employed in addition,

further simplification is possible.

Note that the well-known randomized iterative algorithms, the simulated annealing and

evolutionary (genetic) algorithms are not studied here, since many studies on these topics were

already published. These techniques were also tried to be applied to logic optimization, with

various success. However, their properties and behavior are well known and, more importantly,

can be generalized to any combinatorial optimization process. Hence, new algorithms developed

just for purposes of logic synthesis and optimization are discussed here instead.

Also, sources of “external randomness” are explored. There are aspects that the synthesis

process should not be influenced with. Ordering of variables or coordinate statements in the

source file are such cases. However, this is not the case in practice. It will be shown that synthesis

is crucially influenced by these; design tools produce very poor, or conversely, very good results

under different orderings. Such kind of randomness is unknowingly introduced by, e.g., the

designer, who naturally does not know the internals of the tools and definitely does not care about

any, from his side meaningless reordering.

KEYWORDS
Logic synthesis, Boolean networks, multi-level optimization, two-level minimization,

optimization, state space, iteration, randomness, iterative power.

ACKNOWLEDGEMENT

Most importantly, I would like to express many thanks to Jan Schmidt, for supporting

my crazy ideas, for numerous fruitful discussions with him, for helping me see the direction, and

for all his great ideas and his wisdom. Without him, I would probably get lost in a void of visions,

without catching the relations and consequences.

Also many thanks to David Kovařík, for his hospitality, patience, and great Moravian wines he

serves in his wine-bar. Without Jan and David, many ideas presented in this work would probably

never emerge.

Last, but not least, I’d like to thank all the Californian IWLS workshop attendees, both from

academia and industry. I thank them for not expelling me from the logic synthesis community

because of my controversial research; my presentations there always brought amusement,

irritation, and (most importantly) a great interest, all at the same time. I thank them for beneficial

discussions, and for disclosing me their opinions and practical experiences. From this community,

special thanks to Alan Mishchenko from UC Berkeley, for his enthusiasm for my research and

for implementing several new commands in ABC that greatly helped me to conduct my research.

CONTENTS
1 Introduction .. 1

1.1 Logic Synthesis: Some History and State-of-the-Art ... 2

1.2 Logic Optimization and the State space Concept .. 3

1.3 Iterative Circuit Optimization .. 4

1.4 Randomness ... 5

1.5 Randomized Iterative Algorithms .. 6

1.6 Acceptance of Randomized Iterative Algorithms .. 6

2 Influence of The Source File Structure .. 8

2.1 Experimental Results ... 8

2.2 Commercial Tools .. 13

2.3 Solutions Analysis – Structural Difference .. 13

2.4 Discussion .. 14

3 Improving the Iterative Power by Permutation .. 16

3.1 Experimental Results ... 17

3.2 The Convergence Analysis .. 19

3.3 Asymptotic Completeness of the Algorithm .. 20

3.4 Conclusions .. 20

4 Resynthesis by Parts .. 21

4.1 Motivation .. 21

4.2 Preliminaries .. 21

4.3 Circuit Resynthesis by Parts .. 22

4.3.1 The Synthesis Process .. 22

4.3.2 Window Extraction Methods ... 23

4.4 Window Size Analysis and Experimental Results ... 25

4.4.1 Influence of the Window Size .. 25

4.4.2 Comparison with Standard Synthesis... 28

4.4.3 Iterative Power ... 29

4.5 Random Number Generator Granularity Effects ... 30

4.6 Asymptotic Completeness of the Algorithm .. 31

4.7 Conclusions .. 31

5 BOOM – The SOP Minimizer ... 33

5.1 Preliminaries .. 33

5.2 The BOOM Algorithm ... 33

5.2.1 Coverage-Directed Search ... 34

5.2.2 Implicant Expansion .. 36

5.2.3 Implicant Reduction ... 36

5.2.4 Covering Problem Solution .. 36

5.2.5 The Final Simplification .. 37

5.3 The Iterative Minimization .. 37

5.4 Comparison with ESPRESSO .. 38

5.4.1 MCNC benchmarks.. 38

5.4.2 Randomly Generated Benchmarks ... 39

5.4.3 Practical PLAs .. 41

5.5 Scalability ... 42

5.6 Solutions Analysis .. 43

5.7 Random Number Generator Granularity Effects .. 45

5.8 Asymptotic Completeness of the Algorithm .. 47

5.9 Conclusions .. 48

6 FC-Min – A SOP Minimizer .. 49

6.1 Preliminaries ... 49

6.2 FC-Min Principles .. 50

6.2.1 Find Cover Phase .. 50

6.2.2 Implicant Generation Phase .. 52

6.2.3 Implicant Expansion ... 54

6.2.4 Incremental Implicants Generation .. 54

6.3 The Depth Factor .. 55

6.4 High-Level Iteration of FC-Min ... 58

6.5 Comparison with ESPRESSO and BOOM .. 59

6.5.1 MCNC Benchmarks ... 59

6.5.2 Randomly Generated Problems – One Iteration ... 60

6.6 Randomly Generated Problems – Same Time .. 61

6.7 Influence of the number of outputs ... 62

6.8 FC-Min Scalability ... 63

6.9 Random Number Generator Granularity Effects .. 64

6.10 Asymptotic Completeness of the Algorithm .. 65

6.11 Conclusions .. 66

7 Final Conclusions And Discussion ... 67

References .. 69

List of Abbreviations and Acronyms ... 74

1

1 INTRODUCTION
As the complexity of integrated circuits (ICs) progressively increases following the Moore’s

Law, bigger and bigger emphasis is put on modularity of designs. Complex ICs are constructed

of smaller designs, like adders, multipliers, or custom cores. These are tailored together to form

the final design, usually in a hierarchical way (ALUs contain adders, CPUs contain ALUs,

systems on chip contain CPUs, etc.) The unquestionable advantage of such an approach is

a possibility of design reuse; efficient implementations of frequently used small design features

are known, or there are dedicated generators for them (like generic generators of adders). Then

there is no need for optimization of the logic in the overall synthesis process. This makes

synthesis of complex ICs fast and efficient.

However, the role of random logic is still pervasive. For example, controllers, arbiters, or other

custom logic must be synthesized “from scratch”, starting from their behavioral (e.g., RTL)

description. This is where the logic synthesis and optimization plays the most important role. Note

that the term random is used in a different context here – the logic is called random, since

no regular patterns can be detected in its features arrangement (network).

Logic synthesis is usually understood as a process moving from a behavioral circuit description

(RTL) to logic description (logic circuit – network of gates) [1]. By logic optimization we

understand a process of finding a “better” representation of the same logic circuit, i.e., it operates

at the same abstraction level. However, these two terms are often mixed up or used in connection,

for simple reasons: for example, one may argue whether a truth table is a behavioral or gate-level

description, or if an RTL code describing the circuit behavior using Boolean equations is still

RTL [1], when truth table terms and equations, respectively, can be converted to gates

in a straightforward way.

Even though logic synthesis and optimization is considered to be an already well-mastered and

mature process, the research in this area still continues. These are some of the major driving

forces:

1. Scalability. The volume of random logic progressively increases as well, thus the

synthesis must be able to cope with increasingly larger designs.

2. Low-power designs. Since there is an increasing need for low-power, which can be

achieved by, e.g. producing smaller designs, industry is keen to invest more resources

to maximally decrease the design size. Low-power can also be achieved by special design

techniques, which incorporate logic optimization too [2], [3].

3. Possibility of unexpectedly large results of high-level synthesis. Either the automated

HDL synthesis itself may produce very bad results, or the HDL designer (HDL code

programmer) may accidently describe the circuit in a bad way. Logic optimization should

be able to simplify the network then. Ideally, logic optimization should produce

(near-)optimum results independently of the initial description. It will be shown that

reality is far from this ideal.

4. Design reuse. If a particular logic is reused many times in the design, it is highly required

to optimize it as much as possible – an inefficiently synthesized small design feature may

cause a size explosion of the complete design, if reused many times. Therefore, designers

are keen to invest more effort to maximally optimize such components.

In many cases hardware designers may want to set a trade-off between the design quality (be it

area, delay, power consumption, etc.) and design time. Iterative processes offer such a possibility.

Particularly, the synthesis process may be iterated (repeated and refined by that), while the

solution quality gradually increases in time. Then the iteration can be stopped judging by the

designer’s requirements (design quality, synthesis run-time).

If the whole synthesis process is iterated, we speak about high-level iteration.

2

Generally, iterative algorithms can be divided into two classes: deterministic and randomized.

Deterministic algorithms typically rely on well elaborated control heuristics, while the

randomized ones usually try to explore larger state space by introducing stochastic effects.

This work focuses on randomized, high-level iterative algorithms developed for purpose

of logic synthesis and optimization. Several novel approaches to logic synthesis and optimization,

both two-level and multi-level, are presented. Basically, two aspects are studied:

1. The possibility of trade-off between the solution quality and run-time. Particularly, we

ask how the solution quality improves in time.

2. The effect of randomness. How does the randomness actually influence the synthesis?

How much randomness is needed to reach satisfactory solutions? Partial derandomization

is used to answer these questions.

1.1 LOGIC SYNTHESIS: SOME HISTORY AND STATE-OF-THE-ART

Basic principles of most of viable logic synthesis and optimization algorithms have been

established already in early 1960’s. Originally, the synthesis started with a two-level

Sum-of-Products (SOP) description of the circuit or a truth table, i.e., a kind of behavioral

description. The first algorithm minimizing SOP expressions was proposed by Quine and

McCluskey [4], [5]. Then it was replaced by ESPRESSO [6], which became a well-established

standard since 1980’s.

 After the SOP minimization, miscellaneous decomposition algorithms were applied to the

result, to produce factored forms minimizing the number of literals [2], [3], [7], [8], [9]. After that

the technology mapping process followed [2], [3].

In this “old book” approach, a high-level iteration was not possible, since transformation into

the initial description (SOP) would completely destroy the obtained structure and thus waste all

the effort.

All the referenced algorithms are based on SOP representations of functions (be it source

descriptions or functions describing network nodes). Such a representation is not canonical and

suffers from problems with scalability. Binary Decision Diagrams (BDDs) [10], [11] were

introduced in 1980’s, together with new, BDD-based algorithms, both for two-level [12], [13] and

multi-level synthesis [14], [15]. However, even though BDDs represent logic functions implicitly,

their size can easily blow up exponentially with the number of function’s inputs as well [10], [11].

Therefore, only small BDDs are enforced in practice (so called local BDDs [15]), or they are used

only for representing functions with a small number of inputs, e.g., for representing simple

network nodes [16], [17], [18], [19], [20]. But definitely, BDDs are an ultimate solution when

canonicity is required, or their special properties can be efficiently exploited by the synthesis

algorithm [14], [15].

Many logic synthesis algorithms were implemented in academic tools MIS [16], SIS [17], and

MVSIS [18] by Berkeley Logic Synthesis and Verification Group. In these tools, circuits are

internally described as Boolean networks, whose nodes are represented as SOPs or BDDs.

Recently, the research shifted towards a different representation of networks: the And-Inverter

Graphs (AIGs) [21], [22], [23], [24]. AIGs are more scalable and more uniform than standard

tabular (truth table, SOP, PLA) circuit representations and new, more flexible synthesis and

mapping algorithms may be applied upon these structures directly [24] - [29]. A synthesis tool

ABC [19], [20] implementing these algorithms came as a successor of SIS and MVSIS and its

development at UC Berkeley and other universities worldwide still continues.

ABC is presently the academic state-of-the-art. It is released as open-source software; new

features can be easily implemented therein. Experiences obtained from ABC then reflect

in industrial tools (EDA – Electronic Design Automation) development, since the authors of ABC

closely collaborate with EDA industry.

Once a concept of unified circuit representation (network of SOPs, AIG) is introduced, both

resynthesis and high-level iteration become possible. By resynthesis [29] we understand a single

3

synthesis process, where the forms of its input and output are the same, i.e., a process modifying

the circuit in some way, while keeping the format of its description (AIG, for example).

High-level iteration means repeating the whole synthesis process, i.e., it can be understood also

as a kind of resynthesis. The two necessary conditions for both (resynthesis and high-level

iteration) are that optimization procedures must (1) operate with one representation only and (2)

not destroy the circuit structure.

Synthesis in SIS is performed by executing several optimization steps, like node optimization

by ESPRESSO [6], simplification using network don’t cares [30], kernel and cube extraction [2],

[3], [31], etc. The same happens in ABC, but most of the synthesis and optimization is performed

upon AIGs. Algorithms like don’t-care based node simplification [32], AIG rewriting [24],

resubstitution, refactoring [25], [29], etc., are offered.

After that, technology mapping follows [2], [3], [26], [27], [33], [34], [35], usually

into standard cells (ASIC technology library) or FPGA look-up tables (LUTs).

All these algorithms are implemented as individual commands in SIS and ABC.

As a consequence, plenty of synthesis, optimization, and technology mapping commands are

available in these tools [17], [18], [19]. Unfortunately, it is impossible to determine a universal

and ultimate sequence of these commands to be executed. Therefore, different synthesis scripts

were proposed (e.g. “script.rugged” and “script.algebraic” in SIS, “resyn”

scripts, “choice” and “dch” in ABC). These scripts are supposed to produce satisfactory, but

definitely generally suboptimum results.

1.2 LOGIC OPTIMIZATION AND THE STATE SPACE CONCEPT

Logic optimization, when viewed as a general combinatorial optimization problem [36], [37],

is a search for a solution satisfying given constraints (functional equivalence with the origin) and

optimizing the cost (quality), be it area, delay, power consumption, etc.

States in the state space represent different solutions; moves (operations) in the state space are

transformations from one solution to another.

Most of the logic synthesis and optimization algorithms [2], [3], [6] are NP-hard [37],

therefore the state space size grows exponentially with the instance size (be it the number

of inputs, number of gates, signals). Using exact (optimum) algorithms is infeasible in practice,

both due to the size of present circuits and the size of the state space induced. Therefore, simple

greedy search algorithms are used [2], [3], [6], typically of the first-improvement or best-only

nature [36]. The search is typically driven by some deterministic heuristics, hoping that the

optimum (or at least near-optimum) solution will be obtained at the end.

Once the state space concept is introduced, we may ask what states are reachable by what

algorithms (synthesis processes). This means, we ask what solutions are obtainable. It often

happens that there are more different solutions of the same quality. So we ask: is it ever possible

to obtain all of them by a given algorithm, under given circumstances? What’s more, it could

happen that the optimum solution cannot be reached by a given algorithm (synthesis process)

at all. So we may ask whether a synthesis algorithm (search strategy) is complete in such sense

[38]. Actually, by completeness we understand an asymptotic convergence to a globally optimum

solution here; hence such an algorithm (state space search strategy) property will be denoted

as asymptotic completeness.

Such a completeness, in sense of a guarantee of obtaining the optimum solution [38] in an

infinite time, was e.g., proved for the simulated annealing algorithm [39], [40], [41], under

specific circumstances.

Indeed, the completeness may be prevented by two aspects: the state space (optimum solutions

are not present in the state space), and control (the algorithm needs not reach the optimum).

4

The notion of the state space and completeness of the logic optimization problem will be

addressed specifically in the following two subsections and discussed in following sections,

for particular algorithms.

1.3 ITERATIVE CIRCUIT OPTIMIZATION

The concept of iterative circuit optimization has been introduced in several different ways

in the past. Most probably the first occurrence of iteration was in the rule-based optimization

system LSS from IBM [42]. Here the logic network or the final mapped design indeed, is

repeatedly refined by applying local transformations, i.e., substituting identified circuit patterns

with different ones.

Another typical applications of iteration are algorithms based on simulated annealing (SA)

[43], [44] and evolutionary processes (genetic algorithms, GA) [45], [46], [47]. Iteration is the

conceptual basis of the algorithms.

By a low-level iteration we will understand a process, where the iteration is the basis of just a

single synthesis step (e.g., iteration inside of the ABC “dch” command [19] or all the

optimization processes mentioned in the paragraph above) or even its part only (e.g., the

Kernighan-Lin partitioning procedure [48] in a technology mapping process).

On the other hand, authors of ABC suggest iterating the whole synthesis process [19], [20].

Particularly, the two phases – the technology independent optimization and technology mapping –

are repeated several times, to improve the result quality. Structural hints obtained from the

technology mapping can be further refined by re-running the technology independent

optimization this way. Such an approach will be denoted as a high-level iteration.

When summarized, there may be several levels of iteration in the whole synthesis process, see

examples in Figure 1. Single synthesis steps may contain low-level iterative algorithms, like SA,

GA, Kernighan-Lin, etc. These steps, when combined, form the whole logic synthesis process that

can be iterated (repeated) too, i.e., at a high level.

Figure 1 . Levels of iteration

Essentially, any process that allows improving the result quality at expense of longer run-time

will be considered as an iterative circuit optimization. Here the notion of convergence comes

to importance. The solution quality should improve in time, not deteriorate. Next, the stopping

condition should be defined. This is the point where the process is terminated and a result is

returned. The stopping condition may be either a user-defined fixed number of iterations, timeout,

the required result quality, or possibly an adaptive mechanism that needs not the user’s

intervention.

5

Two cases of iterative processes can be encountered, and both will be discussed in this thesis:

1. A complete and final circuit is gradually improved by iteration. The quality of the current

result is known after completing each iteration, hence deciding on any chosen stopping

condition is easy.

From the state space point of view (see subsection 1.2), a new state is possibly reached

after every iteration. Therefore, the more iterations are performed, the larger state space is

explored.

2. Only bases (sources) for construction of the final solution are accumulated in course

of iteration, whereas the solution is formed once, at the end of the process. This is the case

of, e.g., BOOM (see Section 5).

Here the concept of the state space is not as clear as in the previous point. More solutions

are not generated by iteration. Instead, the size of the state space for the final, solution

producing phase is gradually increased by iteration. Actually, since the optimization

criterion cannot be computed after each iteration, we cannot consider the process as

solving an iterative combinatorial optimization problem here.

1.4 RANDOMNESS

Because of high complexities of present designs, using exact (optimum) logic synthesis and

optimization algorithms is not feasible. Therefore, approximate heuristic algorithms must be used

in practice, as in ABC or SIS (see Subsection 1.1). Even though the employed heuristics usually

produce solutions of sufficient quality, they do not guarantee optimum solutions and mostly

do not even guarantee the maximum relative error.

Apart from algorithms presented in this work, many other randomized approaches to logic

synthesis appeared. Simulated annealing [43], [44], evolutionary processes [45], [46], [47] are

apparent cases, since randomness is essential there for success. However, these won’t be

discussed here, since their properties and behavior are already well known. Moreover, their

application to logic synthesis is usually straightforward. Dedicated and newly developed logic

synthesis algorithms will be studied instead.

All of the algorithms and logic synthesis systems (SIS, ABC) mentioned in Subsection 1.1 are

fully deterministic; no random choices are made in the synthesis process. This brings a benefit

of reproducibility of results – two runs of the algorithm using the same data produce equal results.

However, the determinism may also involve inability of reaching different, possibly much better

results, when the process is run repeatedly.

And what’s more – even these deterministic algorithms mostly show hints of “unrecognized

randomness”. Particularly, the processes are usually greedy and they are not systematic [38].

Thus, some heuristic function is used to guide the search for the solution. Even though the

heuristics are usually deterministic, there are often multiple equally valued choices. In such

situations, the first occurrence is taken. Note that these choices are equally valued just at the point

of decision and they will most likely influence the subsequent decisions. Therefore, different

results could be produced, if different decisions were taken, without affecting the principles of the

algorithms. In other words, the results obtained by one single deterministic algorithm heavily

depend on its software implementation.

A typical example is traversing an AIG in a topological order, as e.g. in [24], [25].

The topological order is not unique, since there are usually more nodes in each topological level.

Therefore, there remains some freedom in choosing the order which the nodes will be

processed in. In ABC, nodes with the lowest ID (which is determined at the node creation instant)

are processed first. Therefore, even the nodes creation order may influence the size and topology

of the resulting AIG, which affects all the subsequently run processes.

Another example is the don’t care based node simplification, as implemented in SIS [17], [32].

Again, observability don’t cares are extracted by topological traversal of the network.

By introducing different ordering at each topological level, different results can be obtained.

6

Taking this into account, a simple way of randomization of deterministic processes is offered.

However, this won’t be the topic of this study.

From the state space point of view, deterministic algorithms seem to traverse only a very

limited portion of it. In an ideal case, they will find a way to the global optimum or to a solution

likely near to optimum, due to efficient pruning heuristics [6]. However, this needs not the

practice, as some results indicate [49], [50]. To solve this problem, we need either very

sophisticated heuristics (which is not likely), or to explore larger state space. Therefore, some

kind of diversification could help. And this can easily be accomplished by introducing

randomness.

One of the first attempts to use a randomized algorithm in logic synthesis in this sense was

proposed in [51]. The core optimization algorithm is deterministic; however it is suggested to be

run repeatedly, with random initial starting points. Getting stuck in a local optimum is avoided

this way and a larger space of solutions is explored.

1.5 RANDOMIZED ITERATIVE ALGORITHMS

The concepts of iteration and randomness, when combined, form a special class of logic

synthesis and optimization algorithms. Simulated annealing [43], [44] or evolutionary processes

[45], [46], [47] are apparent state-of-the-art cases, since both randomness and iteration are

involved here, from the very nature of the processes. Several other algorithms, where randomness

and iteration is exploited too, will be introduced and studied more thoroughly in the following

sections.

Up to the knowledge of the author, there was no research on randomness introduced at a high

level, i.e., randomness introduced “from outside”, in order to influence the whole synthesis

process, not only optimization. This will be the case of two of the presented processes. Iteration

at a high level was not thoroughly studied as well.

A common property of randomized iterative algorithms is the possibility of trade-off between

the run-time and solution quality. Moreover, coming from their random nature, the optimum

solution can be obtained in an infinite time, provided that the algorithms are designed properly

(they are asymptotically complete, see Subsection 1.2).

This is, of course, just a theoretical conclusion without any practical impact. However,

arbitrarily precise upper bounds (e.g., of size) can be obtained by randomized iterative algorithms.

These can be used, e.g., for testing the efficiency of other logic synthesis algorithms

(benchmarking), or to obtain estimations of a theoretical circuit complexity [52], [53], [54], [55].

Generally, randomness introduced into iteration helps the algorithm to keep the convergence

longer. Therefore, better results can be obtained, compared to deterministic iterative algorithms.

1.6 ACCEPTANCE OF RANDOMIZED ITERATIVE ALGORITHMS

As it was stated above, iterative synthesis allows the designer to set a trade-off between the

solution quality and design time. However, it is still not very well accepted by EDA industry (the

producers of the algorithms) [56]. Commercial tools are designed preferably for speed, since their

run-time is the bottleneck in the large ICs design. Nevertheless, if a significant quality

improvement were offered by iteration, it could be accepted. Current results do show such

a potential.

Conversely enough, iteration would be probably accepted by ICs design industry

(the consumers of the algorithms), if offered by EDA vendors [57]. Iterative processes would

be most likely used for low-power, low-area, and very high speed designs, where designers

struggle to improve the target quality criterion (power consumption, area, delay) by units

of per-cents or they try to fit into prescribed constraints.

7

Last, but not least, one application is in the design of small pieces of random logic, that are

to be frequently reused. These should be synthesized as precisely as possible, since even small

size (delay) differences may cause big differences in the final design.

Unfortunately enough, randomness is accepted by the EDA industry with the same disgust

as iteration [56]. Reproducibility of the results is one of the essential issues. However, we do not

speak about true randomness – it is just pseudo-randomness. Therefore, the reproducibility can be

easily ensured by, e.g., fixing the pseudo-random generator seeds, without losing any of the

mentioned benefits. Moreover, the seed can also be specified as one of the synthesis parameters.

Then, a possibility of obtaining different solutions will emerge, without losing the benefits of

reproducibility.

Then again, consumers of the EDA software (IC designers) need not be affected by introduced

randomness at all. Actually, they could even welcome it, as a novel possibility of generating

structurally different designs, i.e., several options they can choose from [57].

8

2 INFLUENCE OF THE SOURCE FILE STRUCTURE
It can be observed that many synthesis processes are not immune to the structure of the source

file, like the ordering of variables [58], [59] and ordering and syntax of HDL statements [60].

Therefore, different runs of one process with differently structured source file produce different

results. Possible reasons for it will be discussed in this Section and some quantitative results will

be given.

Typically, in the synthesis algorithms variables are processed in a lexicographical order, which

is defined a-priori, usually by their order in the source file. Then, different orderings of variables

may make heuristic algorithms run differently, possibly producing different (but definitely still

correct) results.

A typical and well known example of such a behavior are BDDs [10], [11]. Here the ordering

of variables is essential; the BDD size may explode exponentially with the number of variables

under a “bad” ordering [10]. Computing the optimum ordering of variables is NP-hard itself [61],

thus infeasible in practice. Even though there are efficient heuristics for determining a possibly

good variable ordering [62], they consume some time, whereas do not guarantee any success, and

thus they are usually not employed in practice. Typically, the default variable ordering in the

BDD manipulation package CUDD [63] (which is used in SIS and ABC too) is just equal to the

ordering of variables in the source file – no reordering technique is employed.

Another, and more important example, is the topological traversal of AIG nodes in algorithms

employed in ABC and SIS (see Subsection 1.4). Even different orderings of input and output

variables will involve different AIGs or differently arranged networks (in sense of their internal

representation).

Also the well-known two-level Boolean minimizer ESPRESSO [6] (which is used both in SIS

and ABC too) is sensitive to ordering of variables. There are many essential parts of the overall

algorithm, where decisions are made in a lexicographical way. Some decisions do not influence

the result quality; they just may influence the run-time (e.g., in the tautology checking process),

some do influence the result as well (e.g., the Irredundant phase) [6].

Therefore, even changing the variables ordering in the source file header (be it PLA [6]

for ESPRESSO or BLIF [64] for ABC) can significantly affect the algorithms runs and induce

different results. It will be documented in the following Subsection how serious differences there

are in practice.

Also, some commercial synthesis tools are sensitive even to the order of nodes (which are

coordinate RTL statements). This issue will be documented here as well. For an experimental

study of the influence of small modifications of the RTL code on the result, see [60].

2.1 EXPERIMENTAL RESULTS

The experimental evaluation of several basic optimization and technology mapping commands

in ABC [19], technology independent optimization scripts (which comprise of the basic synthesis

commands), and complete synthesis scripts, targeted to standard cells (the “strash; dch;

map” script) and look-up tables (4-LUTs), the “strash; dch; if; mfs” script, will be

presented here. Finally, results of ESPRESSO [6] and even ESPRESSO-EXACT are shown. The

dependency on both the input and output variables ordering will be studied.

No influence of the PLA terms ordering or nodes ordering in BLIF as observed in ESPRESSO

or any of the studied processes in ABC.

The ABC experiments were conducted as follows: 228 benchmarks from the IWLS and

LGSynth benchmarks sets [65], [66] were processed. Given a benchmark, its inputs and/or

outputs were randomly permuted in the source BLIF file [64] (or PLA for ESPRESSO), the

synthesis command was executed, and the number of AIG nodes, gates, LUTs or literals,

respectively, was measured. This was repeated 1,000-times for each circuit.

9

In order to compactly represent all the results, the maximum and average percentages of size

differences (minimum vs. maximum) were computed, over all the 228 circuits. The results are

shown in Table 1.

We can observe striking size differences (up to more than 95%), especially for the complete

synthesis processes. Even the numbers of literals obtained by ESPRESSO-EXACT differ, since

ESPRESSO-EXACT guarantees minimality of the number of terms only, nothing is guaranteed

for literals.

Table 1 . Influence of permutation of variables – summary results (1 iteration)

 Process Unit
Permuted inputs Permuted outputs Permuted both

max. avg. max. avg. max. avg.

Technology

independent

optimization:

commands

balance AIG 7.69% 1.04% 11.48% 1.60% 12.50% 2.27%

rewrite AIG 15.38% 0.68% 19.30% 2.41% 19.13% 2.78%

refactor AIG 12.07% 0.36% 29.73% 2.49% 29.73% 2.79%

resub AIG 2.50% 0.06% 20.83% 1.70% 20.83% 1.71%

Technology

independent

optimization:

scripts

resyn2 AIG 44.53% 4.60% 52.75% 5.58% 52.69% 7.38%

resyn3 AIG 13.56% 1.57% 22.50% 2.74% 22.66% 3.72%

choice AIG 34.40% 7.17% 38.14% 7.14% 36.17% 10.13%

dch AIG 60.53% 10.42% 40.39% 9.33% 60.50% 13.50%

Technology

mapping

map gates 17.09% 1.35% 12.28% 1.93% 17.09% 2.84%

fpga LUTs 0.00% 0.00% 5.26% 0.29% 5.26% 0.29%

if LUTs 0.00% 0.00% 2.88% 0.24% 2.88% 0.24%

Complete

synthesis

strash; dch;

map
gates 74.38% 8.67% 70.47% 10.52% 86.27% 13.40%

strash; dch;

if; mfs
LUTs 92.14% 11.50% 85.42% 12.60% 95.07% 14.81%

Two-level

optimization

ESPRESSO literals 34.90% 1.51% 11.82% 1.04% 42.95% 2.11%

ESPRESSO-

EXACT
literals 0.63% 0.02% 6.06% 0.23% 6.06% 0.24%

Next, detailed results for two particular circuits, apex2 and cordic [65] are shown in Table 2

and Table 3. For each process, the minimum, maximum, and average values are presented,

together with percentage differences between the minima and maxima. More precise results were

computed here; they were obtained from 10,000 runs. ESPRESSO is insensitive to ordering

of variables for these particular circuits, thus the results are not present.

When observing the results of the individual synthesis processes and the overall synthesis, the

behavior of the apex2 case is expectable. Almost all the synthesis processes were sensitive to the

ordering of variables, and the effect accumulates in the progress.

However, cordic is quite a striking example. This is incidentally the circuit responsible for the

maximum difference of LUTs counts in the complete synthesis process “strash; dch; if;

mfs” in Table 1. Solutions ranging from 27 to 687 LUTs were obtained. But, strangely enough,

the standalone synthesis processes (“strash”, ”dch”, ”if”, ”mfs”) are not significantly

sensitive to variables ordering (e.g., the mapping phase is completely immune). In quantitative

measures, the effects of individual processes can never be combined to obtain such differences

in the final design size. Therefore, we must conclude that some qualitative flaws occur in the

progress. There are hints that structural choices [67], [68] are responsible for this phenomenon.

Table 2 . Influence of permutation of variables – details for apex2

Process Unit

Permuted inputs Permuted outputs Permuted both

min. max. avg. % min. max. avg. % min. max. avg. %

Technology

independent

optimization:

commands

balance AIG 4162 4191 4174.2 0.69% 4155 4180 4170.6 0.60% 4150 4202 4176.3 1.24%

rewrite AIG 4129 4137 4132.7 0.19% 4132 4138 4134.8 0.14% 4128 4139 4133.4 0.27%

refactor AIG 4018 4018 4018.0 0.00% 4018 4027 4022.9 0.22% 4018 4027 4022.8 0.22%

resub AIG 4302 4317 4309.6 0.35% 4301 4308 4304.4 0.16% 4300 4322 4311.6 0.51%

Technology

independent

optimization:

scripts

resyn2 AIG 3360 3448 3399.9 2.55% 3389 3422 3407.4 0.96% 3351 3450 3403.3 2.87%

resyn3 AIG 3918 3945 3927.3 0.68% 3874 3930 3909.8 1.42% 3859 3948 3909.8 2.25%

choice AIG 4419 4522 4494.0 2.28% 4490 4508 4499.0 0.40% 4419 4524 4492.8 2.32%

dch AIG 2931 3194 3072.3 8.23% 3008 3143 3067.3 4.30% 2918 3198 3063.5 8.76%

Technology

mapping

map gates 4371 4401 4383.7 0.68% 4354 4383 4371.5 0.66% 4350 4402 4380.1 1.18%

fpga LUTs 2013 2030 2020.1 0.84% 2014 2020 2017.5 0.30% 2006 2029 2016.4 1.13%

if LUTs 2040 2040 2040.0 0.00% 2039 2040 2039.5 0.05% 2039 2040 2039.5 0.05%

Complete

synthesis

strash; dch; map gates 3221 3552 3378.7 9.32% 3292 3464 3360.5 4.97% 3202 3559 3369.8 10.03%

strash; dch; if; mfs LUTs 1502 1731 1631.0 13.23% 1587 1666 1628.3 4.74% 1508 1744 1631.2 13.53%

Table 3 . Influence of permutation of variables – details for cordic

Process Unit

Permuted inputs Permuted outputs Permuted both

min. max. avg. % min. max. avg. % min. max. avg. %

Technology

independent

optimization:

commands

balance AIG 2727 2735 2730.7 0.29% 2727 2728 2727.5 0.04% 2727 2735 2730.5 0.29%

rewrite AIG 989 991 990.0 0.20% 987 991 989.0 0.40% 987 991 988.9 0.40%

refactor AIG 1125 1129 1127.0 0.35% 1128 1128 1128.0 0.00% 1125 1129 1127.0 0.35%

resub AIG 2723 2723 2723.0 0.00% 2723 2723 2723.0 0.00% 2723 2723 2723.0 0.00%

Technology

independent

optimization:

scripts

resyn2 AIG 463 537 502.5 13.78% 487 492 489.5 1.02% 459 541 502.3 15.16%

resyn3 AIG 2677 2724 2695.0 1.73% 2685 2685 2685.0 0.00% 2677 2724 2696.0 1.73%

choice AIG 2440 2773 2764.0 12.01% 2770 2770 2770.0 0.00% 2440 2774 2761.8 12.04%

dch AIG 396 545 486.3 27.34% 448 518 482.8 13.51% 411 555 490.7 25.95%

Technology

mapping

map gates 2762 2772 2766.7 0.36% 2765 2766 2765.5 0.04% 2761 2772 2766.2 0.40%

fpga LUTs 930 932 931.0 0.21% 931 931 931.0 0.00% 930 932 931.0 0.21%

if LUTs 804 804 804.0 0.00% 804 804 804.0 0.00% 804 804 804.0 0.00%

Complete

synthesis

strash; dch; map gates 447 2409 567.1 81.44% 486 597 541.2 18.59% 460 2412 571.2 80.93%

strash; dch; if; mfs LUTs 27 687 335.5 96.07% 178 676 425.5 73.67% 34 689 318.4 95.07%

11

Distributions of frequencies of occurrence of solutions of a given size are shown in Figure 2

and Figure 3, for the apex2 and cordic circuits. The complete 4-LUT synthesis script (“strash;

dch; if; mfs”) was executed, for 100,000 different orderings of variables. The result

obtained using the original ordering is indicated by the bold vertical line.

We can see a Gaussian-like distribution for the apex2 circuit, or actually, a superposition

of two Gaussian distributions. Even the original ordering of variables falls to the “better” part

of the chart.

For the cordic circuit we can observe two completely isolated regions. There are apparently

two or more classes of similar implementations (similar in size, probably similar in structure too),

which synthesis produce depending on the ordering of variables. This phenomenon is still under

examination, reasons for it are discussable. Note that the apex2 case also shows hints of two

structurally different classes of solutions.

Figure 2 . Distribution of solutions – apex2, 1 iteration

Figure 3 . Distribution of solutions – cordic, 1 iteration

1500 1550 1600 1650 1700

0

200

400

600

800

1000

1200

F
re

q
u

e
n

c
y

LUTs

Original ordering

(1587 LUTs)

0 50 100 150 200 250 300 350 400 450 500 550 600 650

0

200

400

600

800

1000

1200 cordic

F
re

q
u

e
n

c
y

LUTs

Original ordering

(178 LUTs)

12

Since it is suggested to run the ABC synthesis scripts (or even the individual commands)

several times to improve the result quality, several selected synthesis processes were run in an

iterative way, for 20 iterations, to see if the striking size differences shown in Table 1 were caused

just by a “bad luck” and if the iterative process will converge to a stable solution, independently

of the ordering. The summary results are shown in Table 4.

We see that even though some peak values are slightly reduced (e.g., the “strash; dch;

if; mfs” process), some processes become even more sensitive to ordering of variables

(e.g., “refactor”). Generally, the average sensitivity increases by iteration.

Table 4 . Influence of permutation of variables – summary results (20 iterations)

Process Unit Permuted inputs Permuted outputs Permuted both

max. avg. max. avg. max. avg.

Technology

independent

optimization:

commands

balance AIG 18.75% 1.37% 10.74% 1.43% 18.75% 2.44%

rewrite AIG 9.62% 0.91% 26.61% 2.01% 26.61% 2.54%

refactor AIG 69.52% 0.97% 62.57% 2.40% 70.14% 2.87%

resub AIG 1.54% 0.04% 15.00% 1.24% 15.00% 1.25%

Technology

independent

optimization:

scripts

resyn2 AIG 73.96% 7.92% 74.06% 7.42% 78.45% 10.21%

resyn3 AIG 18.75% 1.84% 34.54% 2.76% 40.91% 3.90%

dch AIG 82.82% 20.49% 67.19% 18.75% 81.07% 23.72%

Technology

mapping

fpga LUTs 52.94% 10.34% 44.00% 6.90% 56.60% 12.00%

if LUTs 2.25% 0.04% 2.88% 0.25% 2.88% 0.25%

Complete

synthesis

strash;dch;

if; mfs
LUTs 88.89% 18.84% 78.71% 15.77% 85.71% 20.01%

Distributions of frequencies of the obtained solutions for the apex2 and cordic circuits, where

the LUT-mapping process was run for 20 iterations, are shown in Figure 4 and Figure 5,

respectively. Again, 100,000 different orderings of variables were tried.

We see that the result quality was significantly improved in both cases and has more steady

distribution, shifted towards more positive values. The area, where cordic was synthesized very

poorly, completely disappeared. But still, the original ordering of variables yields statistically

very inferior results.

Figure 4 . Distribution of solutions – apex2, 20 iterations

500 600 700 800 900

0

50

100

150

200

F
re

q
u

e
n

c
y

LUTs

Original ordering

(696 LUTs)

13

Figure 5 . Distribution of solutions – cordic, 20 iterations

2.2 COMMERCIAL TOOLS

Dependency of the result quality on the ordering of variables was observed in commercial

tools too. Two tools were studied and both were found to be very sensitive to the structure of the

HDL statements. Surprisingly enough, the tools were also sensitive to a mere reordering of the

gates instantiation, i.e., coordinate statements in the HDL code, which was not the case of any

examined process in ABC.

The experiment started with BLIF [64] descriptions and after permuting the variables (and

nodes in the BLIF file), each benchmark was converted to VHDL and processed by commercial

LUT-mapping synthesis. The numbers of 4-LUTs in the results was measured. Summary results

of the 228 benchmarks [65], [66] are shown in Table 5. Again, maximum and average differences

in the obtained LUT counts are shown.

Table 5 . Influence of permutation of variables and nodes – commercial tools

Tool Permuted inputs Permuted outputs Permuted nodes Permuted all

max. avg. max. avg. max. avg. max. avg.

#1 0.00% 0.00% 0.00% 0.00% 15.76% 0.21% 17.26% 0.22%

#2 43.62% 4.71% 52.19% 5.57% 38.81% 3.40% 66.62% 9.23%

2.3 SOLUTIONS ANALYSIS – STRUCTURAL DIFFERENCE

It was shown that solutions of different sizes can be obtained by permuting the variables. This

fact is documented in the four above histograms well enough. However, one may ask whether

frequent occurrences of one particular solution size represent only a single, frequently produced

solution, or there are many structurally different solutions of equal size. Surprisingly, the latter is

the case. This is documented by a histogram in Figure 6, for the cordic circuit, 20 iterations of the

LUT synthesis process (“strash; dch; if; mfs”). Numbers of both all (the complete

bars) and structurally different (solid bars) solutions were recorded. Actually, the complete bars

in Figure 6 correspond to Figure 5, only less orderings were exercised (10,000), due to the time

overhead caused by the structural equivalence checking process. As a result we see that the shape

of the histogram of structurally different solutions is completely the same as the one of all

solutions.

10 20 30 40

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Original ordering

(18 LUTs)

F
re

q
u

e
n

c
y

LUTs

14

To state some concrete data for this experiment: out of 10,000 random permutations, there

were 78 structurally different optimum 10-LUT solutions found and 7,616 different solutions

in total (which is 76%). Therefore, the potential of obtaining different solutions is very high.

Figure 6 . Distributions of different solutions – cordic, 20 iterations

2.4 DISCUSSION

We have seen that most of basic synthesis and optimization algorithms are not immune

to ordering of variables and statements in the source circuit description; the source file structure

sometimes significantly influences the synthesis result. One of the possible reasons for it is the

lexicographical processing of variables. This means, a particular ordering of variables is

introduced just by reading the input and construction of internal structures.

Let us note that, for the algorithms, any ordering of variables is as random as any other.

Therefore, a kind of randomness is introduced just by the very circuit specification, that may

arrive, e.g., from the RTL synthesis in practice. Also, the designer (HDL programmer) himself

introduces such randomness. We have seen striking examples, where the synthesized circuit size

was reduced up to 25-times just by reordering of variables. Even iteration will not help too much;

generally it even increases the difference between minimum and maximum result sizes.

Effects caused by different orderings of variables in BDDs [10], [11] will not be studied here,

since the conclusions would be apparent – it is a well-known fact that the BDD size may explode

exponentially with different variables ordering [10]. This is the reason why the contemporary

synthesis algorithms try to avoid BDDs completely, or to go down to so called local BDDs [15],

where the size explosion is prevented.

Actually, ABC uses global BDDs only rarely (e.g. for circuit collapsing and disjoint-support

decomposition [69]), or only in cases where the size explosion cannot happen because of the

limited number of inputs [70]. Therefore, BDDs are definitely not responsible for the result size

differences presented in this section.

0 10 20 30

0

500

1000

1500

2000

2500

3000

F
re

q
u

e
n

c
y

LUTs

15

Sensitivity to the ordering of nodes (gate instantiations) was not observed in ABC, however,

two studied commercial tools were sensitive to it. Any reasoning about this fact would be

speculation, therefore it will be left upon fantasy of the readers.

Now we still may ask two ultimate questions:

“What will happen, if I just reorder the variables in the source file header (ports and

signals definition) or reorder the statements?” and

“What shall happen, if I just reorder the variables in the source file header (ports and

signals definition) or reorder the statements?”

But next, we may also think about exploiting these facts to systematically improve logic

synthesis. The following section will be devoted to this idea.

16

3 IMPROVING THE ITERATIVE POWER BY PERMUTATION
The state-of-the-art high-level iterative process, as it can be used, e.g., in ABC, can be

described as follows: first, an internal representation (SOP, AIG, network of gates, network

of BDDs, etc.) for the technology independent optimization is generated from the initial

description or the mapped network (e.g., from the BLIF file [64]). Then a technology independent

optimization, followed by technology mapping is performed. The process is repeated (iterated),

until the stopping condition (number of iterations, result quality, timeout, etc.) is satisfied,

see Figure 7.

The general aim of the process is to transform the initial circuit description into the target

technology (ASIC library gates, FPGA LUTs), while trying to optimize the quality (size, delay,

power consumption) of the solution.

do {

 generate_internal_representation

technology_independent_optimization

 technology_mapping

} while (!stop)

Figure 7 . The iterative resynthesis

Assuming that each iteration does not deteriorate the solution, the solution quality improves

in time. This needs not be true in practice, however. For such cases several options are possible:

1. to hope that the overall process will “recover” from small deteriorations,

2. to accept only improving (non-deteriorating) iterations,

3. to record the best solution ever obtained and return it as the final result,

4. combination of 1) and 3).

The first and the last options are usually used in practice.

Usually it happens that the iterative process quickly converges to a stable solution, which does

not improve any more in time. In an ideal case it is the best possible solution (global optimum).

However, usually this is not the case in practice; such an iterative process tends to get stuck in a

local optimum [47], [59].

Just a slight modification of the algorithm from Figure 7 might help to escape local optima and

thus improve the iterative power of the resynthesis [59]:

do {

 randomly_permute_variables

generate_internal_representation

technology_independent_optimization

 technology_mapping

} while (!stop)

Figure 8 . The iterative resynthesis with random permutations

Here only the randomly_permute_variables step was added, where the random

reordering of variables (input, output, or both) is performed. This step can be executed in a time

linear with the number of variables, hence it does not bring any significant time overhead.

Note that, unlike in the previous section, the reordering of variables is performed in each

iteration, not only at the beginning of the iterative synthesis process. Therefore, the permutations

effects may accumulate.

17

3.1 EXPERIMENTAL RESULTS

Very exhaustive experiments were performed in order to justify the benefit of using random

permutation of variables in the high-level iteration process. There were processed 490 benchmark

circuits, coming from academic IWLS and LGSynth benchmark suites [65], [66], as well as from

large industrial designs from OpenCores [71] (having up to 100,000 LUTs after synthesis). The

4-LUTs mapping process was chosen for testing purposes. However, the same behavior can be

expected for any target technology.

The most recent LUT-mapping synthesis script suggested by the authors of ABC was used:

“strash; dch; if; mfs; print_stats –b” as a reference. Then, the ABC command

“permute” randomly permuting both inputs and outputs was implemented and employed,

yielding the script “permute; strash; dch; if; mfs; print_stats –b”. Both

scripts were executed 20-, 100-, 1,000-, and 5,000-times for each circuit, while the best result ever

obtained was recorded and returned as the solution (this is accomplished by the

“print_stats –b” command). The numbers of resulting 4-LUTs and the delay (in terms

of the length of the longest path – the circuit levels) were measured.

Results for all the 490 circuits are shown in Figure 9 and Figure 10, for area (4-LUTs) and

delay (levels), respectively. The scatter-graphs visualize the relative improvements w.r.t.

no permutations used. Positive values indicate an improvement, the negative ones deterioration.

The size of the original mapped circuit, in terms of 4-LUTs, is indicated on the x-axis. Two

border cases, 20 and 5,000 iterations are shown here only. Results of 100 and 1,000 iterations lay

in-between.

We see that a significant improvement may be reached even when the process is run for 20

iterations. However, also more deteriorating cases are observed. When iterated more, the results

become more positive, especially for larger circuits. This is quite obvious, since these circuits

usually converge slower (see Subsection 3.2).

Figure 9 . Area improvements w.r.t the standard iterative process

18

Figure 10 . Delay improvements w.r.t the standard iterative process

Summary statistics are shown in Table 6. Only 290 circuits, whose resulting implementation

exceeded 100 LUTs, were accounted in these statistics, to make the practical impact more

credible. The minimum, maximum and average percentage improvements for both area and delay

are given. Also the percentages of cases, where the improvement is positive (“Better in”) and

negative (“Worse in”), are shown. The complement to 100% of the sum of these two values

represents cases where solutions of equal quality (LUTs, levels) were obtained.

Table 6 . Summary statistics

Iterations 20 100 1,000 5,000

LUTs

Minimum -12.8% -8.2% -5.4% -6.7%

Maximum 46.5% 51.2% 74.6% 75.2%

Average 1.0% 2.1% 4.9% 6.1%

Better in 52.2% 64.9% 81.0% 82.6%

Worse in 39.8% 28.8% 15.2% 13.9%

Levels

Minimum -33.3% -33.3% -25.0% -25.0%

Maximum 22.2% 27.3% 40.0% 40.0%

Average 0.6% 0.6% 1.6% 2.5%

Better in 16.3% 13.8% 19.7% 23.9%

Worse in 9.3% 5.5% 6.2% 5.5%

We see that with an increasing number of iterations the results become more stable and tend

to improve, both in area and delay. There is a positive average improvement obtained even for 20

iterations run. For the 5,000 iterations case the average improvement reaches 6.1% in area and

2.5% in delay. Also cases, where deterioration was obtained, are becoming rare (13.9% and 5.5%

for area and delay, respectively).

19

Let us make a theoretical reasoning about the observed facts now. Assume the worst case,

where the number of deteriorating (w.r.t. the process with no permutations used) solutions of one

iteration of resynthesis is 50% (equal chance for both the improvement and deterioration). Then,

also chances for improvement of the overall process would be 50%. However, in Table 6 we see

that all the minimum improvements (maximum deteriorations) are much less than 50%, even for

20 iterations. From these figures we can conclude that permutation always pays off.

3.2 THE CONVERGENCE ANALYSIS

Illustrative examples of convergence curves for the iterative synthesis with and without using

random permutations for two of the LGSynth benchmark circuits [66] alu4 and apex2 are shown

in Figure 11. The progress of the size reduction during 1,000 iterations was traced.

Here we see an experimental justification of the presented theory. In general, it is not possible

to say what method converges faster. Theoretically, both should converge equally fast. This can

be seen, e.g., in the alu4 case, where the standard synthesis converges faster at the beginning, but

then the convergence slows down. When the resynthesis without using permutations converges

to a local minimum, the permutations will help to escape it (see the apex2 curves – here the local

minimum was reached around the 300
th
 iteration, whereas the solution quality still improves after

1,000 iterations when permutations are used). Similar behavior can be observed for most of the

tested circuits. This confirms the theory – the permutations do increase the iterative power and

helps to keep the convergence longer.

Figure 11 . Convergence curves for the alu4 and apex2 circuits

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

L
U

T
s

Iteration

alu4

Standard synthesis

Synthesis with permutations

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

L
U

T
s

Iteration

apex2

Standard synthesis

Synthesis with permutations

20

3.3 ASYMPTOTIC COMPLETENESS OF THE ALGORITHM

The notion of asymptotic completeness of iterative logic optimization algorithms (search

strategies) was introduced in Subsection 1.2, in terms of possibility of obtaining the optimum

solution and a guarantee of obtaining the optimum in an infinite time.

Here the asymptotic completeness of the process strictly depends on completeness the basic

logic synthesis algorithms used, i.e., the synthesis scripts used. However, permutation of variables

definitely increases the size of the explored state space and in iterative optimization it helps

to avoid local optima. Solutions that were not reached under a given ordering of variable can be

reached when permutation is used. The cordic circuit is a striking example – it was observed that

its optimum solution of 10 LUTs cannot be obtained by ABC from the non-reordered original

BLIF (by the synthesis script used here, in any number of iterations). However, a mere

permutation allows reaching this optimum.

Generally, the resynthesis with permutations is at least as complete, as are the processes used

in the overall synthesis. If there exists a path (under different variable orderings) from the source

description to the optimum one, it is guaranteed to be found in an infinite time.

3.4 CONCLUSIONS

Experiments presented in this section have shown that the property of synthesis algorithms

documented in Section 2 – dependency on the ordering of variables in the initial description – can

be advantageously exploited to increase the iterative power of resynthesis.

A positive average improvement in quality (both in area and delay) was obtained. Since

introducing the permutations into the iterative process takes almost no time, we can conclude that

employing random permutations definitely pays off – random permutations help avoiding local

optima. Cases, where worse results are obtained, are relatively rare.

Permutation also offers a possibility of obtaining many different solutions, possibly having the

same quality (under any quality measure). This feature can be exploited in subsequent synthesis,

e.g., a secondary quality criterion may be applied.

More details can be found in [58] and [59].

21

4 RESYNTHESIS BY PARTS
A resynthesis method will be proposed in this section, where the circuit is iteratively

resynthesized by parts only, instead of resynthesizing the circuit as whole – the resynthesis

by parts. Such an approach may look weird and condemned to be less efficient than resynthesis

of the whole circuit, since global information is lost. Surprisingly, this is not the case; it is

possible to obtain remarkable improvements (more than 7-times smaller circuits), compared to the

standard resynthesis.

The reason for the success is, again, an increase of iterative power and introduction of more

of diversity. New structures can be discovered by intentionally obscuring the structure of the

whole network.

Moreover, even a speed-up of the process may be achieved, because of

1) resynthesizing smaller parts of the circuit is faster than resynthesizing the whole circuit,

2) the process converges faster, thus results of a given quality can be achieved in a shorter

time, compared to the classical iterative synthesis.

Note that individual synthesis and optimization algorithms ([15], [24], [25], [28], etc.) process

the network by parts as well, because of feasibility limits. However, these parts are relatively

small, usually of a “constant” size (4-feasible cuts [24], [25], BDDs with a limited size [15], etc.).

In the method proposed in this section, large network parts are resynthesized (up to 90-95%).

For smaller parts the method is usually not so efficient.

4.1 MOTIVATION

There has been accidentally encountered an unexpected behavior of logic synthesis in ABC:

the LGSynth circuit e64 [66] was divided into two halves (connected parts) and these were

synthesized separately by ABC (by the “choice” script [19] followed by standard cells

mapping – “map”). Then these two parts were merged together. The resulting circuit consisted

of 522 gates.

When the whole circuit was synthesized using the same process, the resulting circuit had 530

gates. Moreover, the total run-time of this resynthesis was 2.33 seconds, while the total time

of the resynthesis of the circuit halves (including the time needed for the circuit splitting) was

1.73 seconds.

This indicates that apparently “something is rotten in synthesis”. There must exist a case

(a sequence of cut/window selections in processes of ABC [24]), where the resynthesis of the

whole circuit would be conducted in the same way, as for the separated parts. Moreover, global

information is lost in the latter case, thus it theoretically should produce worse results in general.

However, the observed synthesis behavior is not an unusual case. There can be two possible

explanations of this unlucky phenomenon:

 low scalability of ABC processes. This means that bigger designs are processed less

efficiently;

 heuristics in ABC were accidentally well guided by dividing the circuit.

Hence, possibilities of resynthesizing circuits by parts were investigated more thoroughly. The

research resulted in a novel iterative resynthesis method, which will be presented in this section.

4.2 PRELIMINARIES

A Boolean network N (circuit) is a structure of connected single-output nodes forming

an acyclic graph. The network connections, which are naturally inputs and outputs of gates, will

be denoted as signals.

22

The network primary inputs (PIs) are signals that are driven by the environment; there is no

node driving these signals in the network. The primary outputs (POs) are signals that drive the

environment. Primary outputs may be driving network nodes as well.

The size of the network, |N|, is the number of its nodes. Primary inputs and outputs are not

considered as nodes.

The fan-in of a node is the number of its inputs. Since each node input must be driven

by exactly one node output in the network (or a PI), the fan-in term will also be used

for enumerating the gates driving the respective node. The fan-out of a node is the set of nodes it

drives. The transitive fan-in of a node is a set of nodes that influence the node, i.e., a set of nodes

on a path from the PIs to the node. The transitive fan-out is a set of nodes that are influenced

by the node, i.e., a set of nodes on a path from the node to POs.

The distance of two network nodes is the number of signals one needs to pass to reach the

other one. The level of a node is its maximum distance from any of the primary inputs. Primary

inputs have the level equal to 0, by definition.

A window is a connected subcircuit Nw of a circuit (Boolean network) N. Formally, it is a

Boolean network Nw, Nw  N, whereas for every node ni  Nw there exists a path to every node

nj  Nw, i ≠ j. In the following text, terms window, part, and subcircuit will be used

interchangeably, since they have the same meaning in the formal sense.

The aim of the resynthesis is to optimize the quality of the result, be it the network size

(e.g. |N|), delay (e.g. the number of levels), etc. Let cost(N) of the network be the chosen quality

criterion, for purposes of this section.

4.3 CIRCUIT RESYNTHESIS BY PARTS

Let us assume an iterative resynthesis process, i.e., a process which can improve the solution

when it is run several times consecutively. Let a network N
1
 be obtained by running a resynthesis

process P on N
0
, i.e., N

1
 = P(N

0
). Subsequent iterations of this process produce different networks,

N
i
 = P(N

i-1
). In an ideal case, cost(N

i
) ≤ cost(N

i-1
) for every i. However, this may be not true

in practice, depending on the executed process.

The proposed iterative resynthesis by parts is based on dividing the processed network into

two disjoint parts in each iteration, N
i
 = N

i
A  N

i
B, N

i
A  N

i
B = , nothing is said about |N

i
A| and

|N
i
B| for now. Then one part (N

i
A) is resynthesized, to obtain a functionally equivalent network N

i
R.

This network is then merged with the second part (N
i
B), to obtain a new network N

i+1
 = N

i
R  N

i
B.

Obviously, networks N
i
 and N

i+1
 are functionally equivalent.

4.3.1 THE SYNTHESIS PROCESS

The basic and general principles of the proposed resynthesis process can be described as

follows:

Resynth_by_parts(Network N) {

do {

(NA, NB) = Extract_window(N); // extract the circuit part

NR = resynthesize(NA); // run the resynthesis

N’ = NR  NB; // put the network back

if (cost(N’) ≤ cost(N)) N = N’; // any improvement?

} while (!end());

}

Figure 12 . The resynthesis by parts algorithm

23

At the beginning of every iteration, a part NA of the network (window) is selected and

extracted from the original network N. NB then consists of the remainder of the original network;

nodes included in NA are not present in NB. Primary inputs and outputs of N (and NB) are retained,

primary inputs and outputs of NA are determined by the following rules (see Figure 13):

(1) Gate inputs that are not driven by any gate in NA are assigned as NA primary inputs (PI1-PI5

in the figure).

(2) Gate outputs that do not drive any gate in NA are assigned as NA primary outputs (PO1,

PO2).

(3) Gate outputs that drive some gate in NB are assigned as NA primary outputs (PO3).

(4) Gate outputs that are primary outputs of N are assigned as primary outputs of NA (PO4).

Figure 13 . Window Selection

The extracted window NA is then submitted to ABC synthesis. Any synthesis process may be

used in general. In experiments presented here, one iteration of the “choice” script is used [19].

The resynthesized network NR is then merged with NB. If the resynthesis has brought any

improvement, i.e., if the network cost is reduced with respect to the cost of the original network,

the old network is discarded and the new one is considered for the next iteration. Thus, the

resynthesis is greedy in the “first improvement” sense [36], [38]; solution non-improving

iterations are discarded.

Actually, there is a possibility of accepting any solution that ABC returns. Under the

assumption that ABC will never deteriorate the network, these two alternatives become equal.

However, usually this is not the case. Even though such a process usually converges to a stable

solution as well, its convergence is naturally slower and produces worse results. Results of these

experiments won’t be presented here, for brevity.

The whole procedure is iterated, until the stopping condition is satisfied. In experiments

presented here, a fixed number of iterations are used, for purposes of comparison. However, more

sophisticated stopping criteria should be applied in practice.

4.3.2 WINDOW EXTRACTION METHODS

The Extract_window procedure is the essential step in the proposed resynthesis process. Two

window extraction algorithms will be described into detail here.

The algorithms are parameterized by the size of the window to be extracted. This parameter

value crucially influences the performance of the whole resynthesis run. Details will be discussed

in Subsection 4.4.1.

PI1

PI2

PI5

PI4

PO1

PO3
PO2

PO4

NA

24

Random Extraction

The Random Extraction algorithm is the most naive one. Nevertheless, it gives surprisingly

good results. The window (NA) is gradually constructed by just randomly adding nodes, while

keeping the window network connected. The algorithm is parameterized by the number of gates

of the extracted network (size).

The pseudo-code of the algorithm is shown in Figure 14.

Random_extract(Network N, size) {

n = random_node(N); // select random initial node (pivot)

NA = {n};

NB = N – {n}; // move it to the extracted network

while (|NA| < size) { // until the required size is reached

n = random_neighbor(NA, NB); // select random neighbor of any

// node in NA from NB

NA = NA  {n};

NB = NB – {n};

}

return (NA, NB);

}

Figure 14 . Random window extraction algorithm

Such the most naive approach can be easily modified to minimize the number of the extracted

window PIs, POs, or both. However, no significant result quality improvement was observed [72],

while the algorithm run-time was significantly increased. Therefore, these techniques were

considered inefficient.

RadiusExtract

This algorithm intentionally looks for the most connected subcircuit. First, a pivot node is

selected randomly in the network. Then nodes reachable in a given distance (radius) from the

pivot are moved to NA. In particular, transitive fan-in and fan-out nodes of the pivot are selected,

up to a given distance. The algorithm may also be parameterized by the maximum window size,

as in the previous case. Thus, the algorithm can operate in two modes, or their combination:

1. If the size parameter is set to infinity, all nodes in the given distance (radius) from the

pivot node are extracted. The window size is unpredictable and heavily depends on the

circuit interconnection density.

2. If the radius parameter is set to infinity and the size specified, given number of nodes

are extracted, whereas the minimum/maximum radius is not guaranteed.

The pseudo-code of the algorithm is shown in Figure 15.

25

Radius_extract(Network N, radius, size) {

 n = random_node(N); // start with a random pivot

 q.enqueue(n); // use a queue, to ensure

 // the FIFO behavior

 while (!q.empty() && |NA| < size) {

 n = q.pop();

 NA = NA  {n};

 for_each_neighbor(m NB, n) { // enqueue all neighbors of n

 if (distance(n, m) ≤ radius) // not exceeding the radius

 q.push(m);

 }

NB = NB – {n};

 }

 return (NA, NB);

}

Figure 15 . The RadiusExtract algorithm

4.4 WINDOW SIZE ANALYSIS AND EXPERIMENTAL RESULTS

The ABC “choice” script followed by the “map” command, mapping the circuit into library

gates was used for resynthesis in the following experiments. A library of all 2-input gates was

chosen for simplicity of comparison and low granularity. The “map” command is followed

by “sweep”, converting the network of gates into an AIG, so the form of the circuit description is

retained. The original benchmark circuits [65] were also mapped into 2-input gates (without any

optimization attempts), to generate starting points for the resynthesis.

Let us note here that any synthesis process may be used, without any loss of generality. Any

structure-non-destroying resynthesis procedure may be applied, as well as any technology

mapping process (standard cells, LUTs, etc.) [72].

If not said otherwise, all the resynthesis processes were run for 5,000 iterations in the

experiments. This value is a little bit overkill, since only 2 of the examined 228 circuits needed

more iterations to converge [72] using the standard synthesis process. However, it enables us

to compare rather stable solutions and measure the convergence of the processes more precisely.

4.4.1 INFLUENCE OF THE WINDOW SIZE

The influence of the window size on the result quality (in terms of the number of 2-input

gates) will be investigated in this subsection.

First, the influence of the window size, relative to the resynthesized circuit size will be

examined, for the Random Extraction algorithm. The window size was varied from 10% to 100%,

for all the 228 circuits. Average improvements obtained w.r.t. the state-of-the-art, i.e., the

repeated resynthesis of the whole circuit, were computed. The results are shown in Figure 16.

26

Figure 16 . Influence of the window size – Random Extraction

We can see that the maximum improvement is achieved for window sizes ranging from 80 to

90% of the resynthesized circuit. If bigger windows are extracted, the quality of the result quickly

drops.

Notice that the 100% limit case exactly corresponds to the approach presented in Section 3.

Even though the extracted network is equal to the original one, PIs and POs are randomly

reordered, from the gradual nature of the algorithm (nodes are selected randomly, and thus also

PIs and POs are randomly reordered, according the instant they appear in the window). The only

difference is that in Section 3 even deteriorating solutions are accepted and the best solution ever

obtained is returned as the final result. In resynthesis by parts only non-deteriorating solutions are

accepted.

The average improvement, as a function of the relative window size for the RadiusExtract, is

shown in Figure 17.

Figure 17 . Influence of the window size – RadiusExtract

A similar behavior can be observed here: large windows produce inferior results. However, the

maximum improvement is achieved for much smaller windows, compared to the Random

Extraction method. This is because of the RadiusExtract method produces more compact

windows. Conversely, in Random Extraction many “useless” gates are included in the window,

thus the window naturally must be larger to obtain comparable results.

0% 20% 40% 60% 80% 100%

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

Im
p

ro
v
e
m

e
n

t

Window size (percentage of the resynthesized circuit)

0% 20% 40% 60% 80% 100%

0%

1%

2%

3%

4%

5%

6%

7%

8%

Im
p

ro
v
e
m

e
n

t

Window size (percentage of the resynthesized circuit)

27

The dependency of the improvement ratio on the window radii is shown in Figure 18. Here we

see clearly, that best results are obtained for radii ranging from 5 to 7. Higher radius values

produce inferior results, in most cases because of the window starts spanning the whole circuit,

i.e., results of 100% resynthesis are obtained.

Figure 18 . Influence of the window size – RadiusExtract

Now, when there are two metrics of window sizes and a clear dependency of the result quality

on the window size is seen, we may ask if the metrics are related somehow.

An experiment was performed to answer this question: the percentage window sizes generated

by the RadiusExtract method were observed. The histogram of frequencies of window sizes,

for the misex3 benchmark circuit [65] is shown in Figure 19. The radius was chosen to be 6, as the

most promising one (see Figure 18).

We can see clearly that the maximum of window sizes lie between 60-90%. Similar behavior

can be observed for most of circuits. This fully conforms to the observation in Figure 17.

Therefore, we can conclude that the algorithm behaves consistently, even when the influence

of random factor is high.

Figure 19 . Window sizes generated by RadiusExtract

0 2 4 6 8 10 12 14 16 18 20 22

-2%

0%

2%

4%

6%

8%

Im
p

ro
v
e
m

e
n

t

Radius

20% 40% 60% 80% 100%

0

100

200

300

400

500

600

misex3

F
re

q
u

e
n

c
y

Window size (percentage of the resynthesized circuit)

28

It can also be observed that the extracted window sizes scale with the resynthesized circuit

size, when having a constant radius. This is a rather surprising observation, since the window

extraction procedure is strictly local. This could be probably explained by the fact that the

extracted window often prematurely reaches “the borders” (i.e., PIs, POs) of the circuit

for smaller circuits. The scatter graph illustrating the dependency is shown in Figure 20 for all the

228 circuits resynthesized for 5,000 iterations, radius 6.

Figure 20 . Extracted window sizes

4.4.2 COMPARISON WITH STANDARD SYNTHESIS

A comparison with the state-of-the-art, i.e., the iterative resynthesis of the whole and

non-permuted circuit will be shown here. Results of 10 largest circuits from the 228 ones [65] are

shown in Table 7. All the iterative processes were run for 5,000 iterations.

After the benchmark name, its original size in terms of 2-input gates is given (“orig.”). Then

the number of gates obtained by 100% resynthesis is shown (“100%”). The “conv. iters.” column

gives the number of iterations ABC needed to reach the final solution, thus possibly converge to a

stable solution. However, very high values indicate that probably even better solutions could be

reached, if iterated further (more than 5,000 iterations).

Numbers of gates obtained by the RadiusExtract and Random Extraction methods and

percentage improvements w.r.t. the 100% resynthesis follow.

The “eq. iters.” columns indicate the numbers iterations needed to reach a solution of at least

the same size as the one obtained by 100% resynthesis.

Radius 6 and 80% circuit parts were chosen, for the RadiusExtract and Random Extraction,

respectively. The summary (for numbers of gates) and average (for percentages and #of iterations)

results are presented in the last table row.

29

Table 7 . Benchmarks results

name orig.
100% Radius 6 Random 80%

gates conv. iters gates impr. eq. iters gates impr. eq. iters

s38584.1 11,210 9,752 1,342 9,692 0.6% 2,187 9,735 0.2% 1,138

s38417 8,643 7,891 1,934 7,834 0.7% 808 7,883 0.1% 261

prom1 6,220 5,829 3,769 5,548 4.8% 11 5,562 4.6% 48

too_large 4,182 3,033 2,467 3,129 -3.1% N/A 2,746 9.5% 215

misex3 3,539 2,645 4,147 2,362 10.7% 2,909 1,970 25.5% 179

mainpla 3,472 3,091 4,215 3,027 2.1% 481 2,958 4.3% 19

apex2 3,394 2,083 41 1,998 4.1% 3,165 1,786 14.3% 275

des 3,158 2,915 1,233 2,815 3.4% 74 2,746 5.8% 39

xparc 2,930 2,540 396 2,406 5.3% 108 2,363 7.0% 14

seq 2,771 2,024 2,161 1,803 10.9% 1,157 1,707 15.7% 129

Sum/avg. 136,755 117,215 398.2 110,923 7.3% 102.0 109,335 9.0% 49.5

We can see that resynthesis by parts, both RadiusExtract and Random Extraction, almost

always produces better results than 100% resynthesis. Moreover, also a possible speedup can be

seen – resynthesis by parts reaches the same solution as 100% resynthesis in significantly less

time (8-times, on average, for the Random Extraction case).

The results obtained from all the 228 examined benchmarks are shown in Figure 21. The

scatter-graph visualizes the improvement achieved by the resynthesis by parts (Random

Extraction, 80%, 5,000 iterations), as a function of the original circuit size (in terms of 2-input

gates). Notice the logarithmic x-axis. The highest improvements are achieved for mid-size circuits

here, however significant improvements can be seen even for larger circuits. Improvement was

achieved for a vast majority of circuits, the occasional deterioration was not higher than 7%.

Figure 21 . Summary results

4.4.3 ITERATIVE POWER

As in the method presented in Section 3, the main cause of the observed success is an increase

of the iterative power, w.r.t. the 100% resynthesis. Thus, the iterative power of the resynthesis

by parts will be investigated into detail.

The example analysis will be performed on the misex3 circuit [65]. This circuit belongs to the

“hardest” ones, since even the 100% resynthesis converges rather slowly. In particular, it needs

more than 4,000 iterations to converge to a stable solution.

The Random Extraction was used, window size 80%. The resynthesis was run 20-times and

the progress of the solution and the span in the result quality was observed.

100 1000 10000

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Im
p

ro
v
e
m

e
n

t

Original circuit size

30

The convergence curves are shown in Figure 22. The topmost curve belongs to the

100% resynthesis case, the curves obtained from 20 re-runs of resynthesis by parts are seen

below. We can see that the 100% resynthesis has never outperformed the resynthesis by parts.

Even though the resynthesis process also tends to get stuck in a local minimum, it converges

longer, which enables the synthesis reach much better results.

Such a behavior can be observed for all circuits “difficult” for synthesis. For “easy” [49], [50]

circuits the global optimum is found quickly by both methods indifferently. These circuits can be

seen in Figure 21, on the 0% improvement line.

Figure 22 . Convergence curves for misex3

4.5 RANDOM NUMBER GENERATOR GRANULARITY EFFECTS

Since the resynthesis by parts is a randomized process, we may ask how much randomness is

indeed needed, to make it perform sufficiently [58]. Particularly, it is worth studying of how much

is the process influenced by the random number generator granularity, i.e., the number

of different values it produces. Note that the random number generator granularity studied here

has nothing in common with the random number generator quality, i.e., its period.

As a result, we will obtain some theoretical conclusions: we ask what will happen if a

randomized algorithm will be rendered completely deterministic and if the algorithm could be

deterministic, actually.

For the purpose of this study, the algorithm was partially derandomized. Partial

derandomization was made by modifying the random number generation function, so that it

produces only 1, 2, 3, etc. distinct values, while still keeping its period. In the further text, the

measure of randomness will be denoted as RF (randomness factor). For RF = 1, the degraded

random number generator always produces one value, a constant 0. For RF = 2, two border values

are produced (0 and the maximum), etc. For RF = infinity the unmodified random number

generator is used.

Note that this kind of derandomization has nothing to do with known derandomization

techniques to derive a completely deterministic algorithm from a randomized one [74].

Derandomization used throughout this work will be understood just in sense of reducing the

amount randomness, not removing randomness completely, or as an attempt for a design of a

deterministic algorithm.

Convergence curves for the “e64” [65] circuit, are shown in Figure 23. The Radius Extraction

method with radius 6, 5,000 iterations was used. All the data was obtained by averaging results

of 20 independent runs, to make the results more precise.

0 1000 2000 3000 4000 5000

0

500

1000

1500

2000

2500

3000

3500

misex3

100% resynthesis

20x Random Extraction, 80%

Iteration

G
a
te

s

31

Here we see that for RF = 1 the process is rather insufficient and quickly converges to a local

minimum, which is even worse than that of 100% resynthesis. However, even for RF = 2 the

convergence curve approaches the RF = inf. one, for RF = 100 the curves already blend (not

shown in the Figure).

Let’s note that one may think that in the case of RF = 1 only a constant part of the circuit is

resynthesized, leaving the rest of the circuit unmodified. However, this is not the case, because

of the algorithm implementation. Even though the random number generator always selects the

first network node (in terms of the program internal network structure) as the pivot, the extracted

and resynthesized network is always appended to the end of the structure. Therefore, the next

pivot will be the first node of the yet unprocessed network. Consequently, all nodes have a chance

for resynthesis. And what’s more, all nodes have an equal chance for being processed (up to the

given number of iterations limit, of course). Therefore, the case of RF = 1 becomes a systematic,

deterministic, and fair way of resynthesis by parts. The results show that this is the worst possible

way.

The necessary random number generator granularity needed can be derived analytically as

well. The random choice occurs in the pivot selection procedure only. Here the number of choices

equals to the number of the network gates. Thus, the number of the initial network gates is the

upper bound of the number of different values the random number generator needs to produce.

0 1000 2000 3000 4000 5000

0

100

200

300

400

500

600

RF = 5

RF = 3

RF = inf.

RF = 2

RF = 1

100% resynthesis

G
a
te

s

Iteration

Figure 23 . Resynthesis by parts – derandomized (e64)

4.6 ASYMPTOTIC COMPLETENESS OF THE ALGORITHM

As in the previous section, completeness of the overall algorithm strictly depends

on completeness of the basic synthesis algorithms used. But still, the size of the state space

explored is extended even more, compared to using permutations only; structures that could

mislead the basic synthesis algorithms can be theoretically avoided, by obscuring their parts.

4.7 CONCLUSIONS

The notion of high-level iterative randomized resynthesis based on permutation of variables

was further extended to resynthesis by parts of the circuit. Even more randomness is introduced

this way, which is documented by the presented results. Actually, the technique presented

in Section 3 (introducing different variable orderings) can be understood as a special case

32

of resynthesis by parts, where 100% parts with random orderings of variables are resynthesized.

Significant benefits over this simple method were shown here.

As well as in the permutations-based approach, randomized nature of the algorithm allows

generation of different solutions, which can be exploited by further synthesis. Moreover, the used

resynthesis process can be “externally” influenced by cutting the circuit into parts, which,

in consequence, can also force the process generate different structures.

Values shown in Table 7 indicate that resynthesis by parts is able to reach results of equal

quality as the 100% resynthesis in less iterations (compare the “conv. iters.” and “eq. iters.”

columns).

Concluded, the proposed method is able to produce better results than the iterative

state-of-the-art and it produces them faster.

The results suggest that resynthesis by parts is always able to produce results of at least equal

size as the deterministic 100% resynthesis, when run long enough – the employed randomness

and circuit separation successfully prevents getting stuck in local minima.

All the experiments were performed using a constant limit of the number of iterations, which

was for most of circuits apparently unnecessarily high. However, this was the intention –

comparative and representative results are obtained this way; the behavior could be studied more

thoroughly. In practice, an adaptive stopping mechanism should be applied.

The scalability of the process is unquestioned. The window sizes scale with the design size

linearly, thus the expected behavior of the resynthesis is retained even for large designs.

If implemented optimally, the resynthesis by parts introduces only a negligible time overhead,

compared to standard synthesis processes. Therefore, this proposed method is expected to perform

at least as well as the state-of-the-art synthesis for any design sizes.

Experiments have shown that the resynthesis by parts cannot be successfully performed as a

deterministic process. However, only very little of randomness is necessary for a success.

More details can be found in [72], [73], and [58].

33

5 BOOM – THE SOP MINIMIZER
Another example of a randomized iterative optimization process is a two-level (SOP)

minimizer BOOM [75], [76]. Randomness is used when more equally valued decisions are

available.

Iteration is performed at a high level too, even though a solution needs not necessarily be

obtained after every iteration (see Subsection 5.2). The two-level minimization is run repeatedly,

whereas a new set of implicants covering the source function is produced in each iteration. Since

the implicant generation phase is randomized, there is a big chance of producing different

implicants in each iteration. The final solution is then constructed by combining all the obtained

implicants. A solution may be generated already after the first iteration. However, the more

implicants are available, the better solution can be obtained. Therefore, here we see a possibility

of trade-off between the run-time and quality as well as in the algorithms described in Section 3

and Section 4.

The algorithm will be briefly described in the following subsections.

5.1 PRELIMINARIES

Let us have a set of m Boolean functions of n input variables F1(x1, x2, … xn), F2(x1, x2, … xn),

… Fm(x1, x2, … xn). Values of input variables, for which Fi evaluates to 1 will be called the on-set

Fi(x1, x2, … xn), values, for which Fi evaluates to 0 will be called the off-set Ri(x1, x2, … xn), and

values, for which the value of Fi may be arbitrary (0, 1) will be called the don’t care set

Di(x1, x2, … xn). BOOM needs to have the on-sets and off-sets of all m functions explicitly

specified. The don’t care set is then specified implicitly, as the complement of the union of the

on- and off-set.

The on- and off-sets are described by sum-of-products (SOP) forms, or more particularly, by a

truth table (in the PLA format [6], [66]).

Enumerating the two care sets instead of the on-set and don’t care sets (which is usual, e.g.,

in the MCNC benchmarks [66] and also in ESPRESSO [6]), is more practical for problems with a

large number of input variables, because here the size of the don’t care set greatly exceeds the two

care sets in practical cases. The need of minimizing such functions ([77], [78], [79], [80], [81],

[82]) was the motivation for developing BOOM.

In the SOP form, the product terms will be denoted simply as terms or cubes in the further text.

Terms having n literals will be denoted as minterms. The dimension of a term is the number of its

non-assigned variables (DC variables), thus, it is computed as n-#of term literals. Minterms have

the dimension equal to zero.

The set of terms covering the on-sets of all functions will be denoted as the cover.

The minimization task is to find the minimum cover, i.e., to produce SOP forms

Gi(x1, x2, … xn), 1  i  m, while Fi  Gi and Gi  Ri = . The optimization (quality) criterion is

usually the total number of SOP terms in Gi. Terms can also be shared among different Gi’s

(group minimization). Secondary quality criteria are usually the number of SOP literals

(occurrences of input variables in the SOP forms) and the output cost (the total number of terms,

if no sharing of terms is allowed). In the AND-OR two-level implementation of the SOP, the

number of literals reflects the complexity of the AND plane, the output cost reflects the

complexity of the OR plane.

5.2 THE BOOM ALGORITHM

A self-explanatory pseudo-code of the overall algorithm is shown in Figure 24. Before

executing the algorithm, the on-set of the source function must be provided. In case of one set

missing, it is computed as a complement of the two other sets [6].

34

The CD-Search (Coverage-Directed Search) is the vital phase of BOOM (Subsection 5.2.1).

It produces the initial cover (set of implicants) of the source on-set (Fi). This is also the phase

where randomness is used the most. These implicants are stored in the implicant pool. Here all the

implicants ever obtained during the minimization process are accumulated. Internal structure

of the pool does not allow duplicities, thus only unique terms are stored there [75], [83].

The implicants are further expanded (Subsection 5.2.2) to form prime implicants, while the

original (non-prime) implicants are not discarded. Then all the implicants are reduced

(Subsection 5.2.3) to obtain group implicants, i.e. implicants of more output functions. Again, no

implicants are discarded; only the new ones are added to the pool.

At the end of each iteration the pool is “purged” by resolving clear dominance relations [84].

Thereby, apparently redundant terms are removed.

This process is repeated, until the stopping criterion is met. This is usually a user-specified

maximum number of iterations, timeout, or the desired solution quality.

The solution is then formed by solving the covering problem (Subsection 5.2.4) using all the

implicants in the pool – an irredundant subset of implicants covering the on-sets of all functions is

formed.

Finally, the solution is tried for the final refinement (Subsection 5.2.5) to keep only necessary

group implicants, which are then further expanded. This phase is similar to the ESPRESSO’s

make_sparse procedure [6].

Note that the UCP solution and Sparse can be executed inside the main iteration loop too. This

would be necessary, e.g., if the stopping condition should be determined based on the solution

quality. Then BOOM can be considered as a fully high-level iterative process. Otherwise, when

the stopping criterion is, e.g., a fixed number of iterations, the UCP and Sparse can be run only

once, as in Figure 24.

BOOM(F, R) {

Pool = ;
do {

Cover = CD-Search(F, R);

Pool = Pool  Cover;

Pool = Pool  Cover.Expand(R);

Pool = Pool  Cover.Reduce(F, R);

Pool.Purge();

} while (!stop());

Solution = UCP_Solve(F, Pool);

Solution.Sparse(F, R);

return Solution;

}

Figure 24 . BOOM algorithm – pseudo-code

5.2.1 COVERAGE-DIRECTED SEARCH

The Coverage-Directed Search (CD-Search) is the first and the most important step of the

BOOM algorithm. Here the initial cover of the on-set is generated. The main idea here is the

top-down approach to generation of implicants. Classical SOP minimizers [6] start with the

original cover, which is further refined. This may cause the algorithm to fail, if the original

description is “unsuitable”, i.e., if a deep local optimum in the state space is given as the source.

In BOOM, the implicants are not derived from the original cover directly; the original cover is

used just as a “clue”. The off-set also serves just as a constraint. The algorithm starts with an

n-dimensional cube (i.e., an all-DC term, a term with zero literals), which is obviously not

an implicant of any function, unless the off-set is empty. This term is gradually reduced by adding

literals to it, until it becomes an implicant (does not intersect the off-set).

35

The output functions Fi, 1  i  m, are processed separately, one by one – no group

minimization is considered in CD-Search. Therefore, single-output functions will be assumed

in this and the following subsection, and thus no ambiguity of terms like on-set, off-set, implicant,

can occur.

The search for terms is directed towards finding an implicant that covers as many on-set terms

as possible – from this comes the algorithm name. The implicant generation starts with selecting

the most frequent literal from the given on-set. It forms an (n-1) dimensional (1-literal) cube

possibly covering most of the on-set terms.

This cube is then checked against the off-set, by a simple pair-wise comparison of the cubes.

If the cube does not intersect any off-set term, it is an implicant. If the off-set is intersected,

another most frequent literal is added and the term is checked again.

After each literal selection the terms that cannot be covered by any term containing the

selected literal are temporarily removed from the on-set, for a more efficient search. These are the

terms containing that literal with the opposite polarity.

When an implicant is finally obtained, it is recorded (stored in the pool) and the on-set terms

that are covered by this term are removed from the on-set. Thus, a reduced on-set containing only

yet uncovered terms is obtained. Now the whole procedure is repeated from the beginning. The

search for implicants continues, until the whole on-set is covered.

The output of this algorithm is a set of product terms covering the whole on-set and not

intersecting any off-set term.

The basic CD-Search algorithm for a single-output function can be described by the

pseudo-code shown in Figure 25. The on-set (F) and the off-set (R) are the inputs to the

algorithm; the output is the sum of products (G) that covers F and does not intersect R.

Note that this algorithm may be further enhanced by more sophisticated literal selection

techniques whose description, however, exceed the scope of this text. For details see [75].

CD_Search(F, R) {

G = ; // G is being created

do

F’ = F; // F’ is the reduced on-set

t = 1; // t is the term in progress

do {

v = most_frequent_literal(F’);

t = t.Add(v);

F’ = F’ – cubes_not_including(t);

while (t  R  );

G = G  t;

F = F - F’;

until (F == );
return G;

}

Figure 25 . CD-Search

The point, where randomness takes place, is the literal selection process. As stated above, the

primary criterion is the maximum occurrence in the yet uncovered on-set. However, usually many

equally valued choices occur in practice (see Subsection 5.7). Then one is chosen randomly.

Note that one particular literal selection has a crucial impact on the execution flow of the rest

of the algorithm, since literal-specific restrictions of the on-set are applied. Therefore, there is a

big chance that many different solutions will be obtained, depending on random decisions.

To introduce even more randomness to CD-search, mutations may be present. With a given

probability, a mutation occurs. Then a literal with any non-zero frequency of occurrence

is selected, instead of the literal with the maximum one. We have found experimentally, that 2-5%

of mutations are beneficial. For details see [83].

36

5.2.2 IMPLICANT EXPANSION

Implicants obtained by CD-Search need not be prime. Hence, they should be further expanded

into primes, by removing literals and checking against the off-set. Basically, each term is

processed separately and literals are tried for removal one by one. After each literal removal, the

term is checked if it is still an implicant, again by comparing it with the off-set. When no literal

can be removed without making the term intersect the off-set, it is a prime implicant.

There may be several strategies of literal removal. Essentially, there are O(2
n
) possibilities

of expansion; O(2
n
) different prime implicants can be obtained from one term. Performing such

an exhaustive implicant expansion is usually infeasible in practice.

Therefore, a simple greedy (and again randomized) strategy is used: all the literals are tried for

removal sequentially, i.e., one by one, starting from a random position. One prime implicant is

obtained from one non-prime this way and the algorithm time complexity is linear with n. This

strategy may be further extended to multiple random restarts, where O(n) primes is produced,

for a O(n
2
) complexity expense.

5.2.3 IMPLICANT REDUCTION

All the obtained prime implicants are tried for reduction by adding literals to them, in order

to become implicants of more than one function (Fi, 1  i  m). The principle of the method

of implicant reduction is similar to the implicant expansion one (Subsection 5.2.2) and, indeed,

the CD-Search as well (Subsection 5.2.1). Literals are gradually added to the previously obtained

implicants, until there is no chance that the term will become an implicant of more functions. This

is checked by comparing the reduced term with off-sets of all functions (Ri, 1  i  m); if a term

does not intersect the off-set of Fi, it is an implicant of Fi.

Preferably, literals that prevent intersecting with most of the terms of the off-sets of all Fi

(i.e., yielding reduced terms covering the least zeros in all the m functions) are selected.

All implicants that were ever found in this phase are stored in the pool and outputs are

assigned to them – it is checked for each term produced, what functions from Fi, 1  i  m it is an

implicant of.

Randomness is applied here as well, in the CD-Search manner. When there are two or more

equally valued choices, one is taken randomly.

5.2.4 COVERING PROBLEM SOLUTION

All the different implicants are finally entering the unate covering problem (UCP) [37], [84]

solution process. Here their subset is selected, to form an irredundant cover of the on-set

(Fi, 1  i  m). The result of this phase may serve as a solution of the minimization problem.

Even though very efficient exact UCP solvers exist ([85], [86]), there is still a danger

of exponential run-time explosion, since the UCP problem is NP-hard [37]. This is emphasized

even more by the solved problem sizes; typically thousands of implicants are entering UCP.

Therefore, a simple greedy heuristic algorithm is used in practice [75].

First of all, simple dominance relations are resolved [84], to significantly prune the pool. Then,

a greedy heuristic is applied. The solution is constructed by gradually adding implicants to it, until

the whole on-set is covered. The heuristic has several decision stages, where the candidate

implicants are gradually filtered out:

1. Select implicants covering most of yet uncovered on-set terms.

2. From these, select implicants covering on-set terms that are difficult to be covered (they

are covered by the minimum of implicants).

3. From these, select the ones with the least cost (the number of literals).

4. If there are still more possibilities, choose one randomly.

Here we see the randomness as well – when there are more than one decision at the last stage

of the filtering process, one is taken randomly.

37

5.2.5 THE FINAL SIMPLIFICATION

The solution obtained by UCP can be further slightly simplified. The number of terms must

definitely stay unmodified; however, the number of literals and the output cost (see Subsection

5.1) can still be reduced for multi-output functions with shared (group) implicants.

Before the UCP phase is entered, each term is assigned a set of all functions (from Fi, 1  i 

m) which it is an implicant of. A particular (group) implicant can be necessary for obtaining a

solution of one function, however it needs not be (but can be) present in a solution of another

functions it is an implicant of too. Its presence in the final solution then just increases the output

cost.

 Therefore, the UCP is solved upon the obtained cover for each of the m functions separately,

to find the set of really necessary implicants for each. As a result, the output cost is reduced.

Moreover, when the “demands” on implicants were loosened now, it may happen that it will

be possible to further expand them. Hence, the implicants in the solution are further tried

for expansion (see Subsection 5.2.2).

The result obtained by this phase is a prime and irredundant cover [6] of the on-sets of all the

source functions. Moreover, it is prime and irredundant also in terms of the number of literals and

the output cost. Of course, the minimality is not guaranteed, since all the employed algorithms

were greedy.

5.3 THE ITERATIVE MINIMIZATION

As stated above, BOOM can be (but not necessarily) run in an iterative way, in order

to improve the result quality. The more implicants are accumulated, the better final solution can

be expected.

The progress of iterating the process is illustrated in Figure 26. A randomly generated function

of 20 input variables, 5 output variables, 200 care terms of average dimension 2 was minimized

here. A random function was chosen for this experiment, in order to maximally suppress the

influence of any possible singular behaviors of standard benchmark circuits ([66]).

The graph shows the progress of minimization in course of iteration. The total number

of implicants in the pool is depicted by the thin line (and the left x-axis) and the solution quality

(UCP was solved after each iteration, for the example purposes), in terms of the total SOP literals

is depicted by the bold line (and the right y-axis).

We can observe that the number of implicants follows the saturation curve, while the solution

improves in the progress. The deterministic result obtained by ESPRESSO [6] is indicated as a

horizontal hairline. It can be seen that even though rather inferior solutions are produced in early

iterations, BOOM overcomes ESPRESSO in the solution quality in the 144-th iteration. This

result can be generalized for almost any non-trivial circuit. In cases where ESPRESSO does not

produce optimum results, BOOM is able to obtain them for a possible expense of run-time

(see Subsection 5.4).

38

0 100 200 300 400 500
0

1000

2000

3000

4000

5000

6000

7000

Espresso cross-point

S
o

lu
tio

n
 lite

ra
lsIm

p
li
c
a
n

ts

Iteration

0

200

400

600

800

1000

1200

1400

1600

Figure 26 . Iterative process in BOOM

5.4 COMPARISON WITH ESPRESSO

The performance of BOOM will be evaluated here, in comparison with ESPRESSO. Both

random and practical benchmarks will be tested.

All the BOOM experiments were run on a standard PC with a 900 MHz Athlon CPU and

256 MB of RAM.

5.4.1 MCNC BENCHMARKS

The BOOM algorithm was tested on standard MCNC benchmarks [66] and the results and

run-times were compared to ESPRESSO [6]. BOOM was run for one iteration only in this

experiment, to illustrate its basic capabilities. Indeed, no more iteration was necessary to reach

competitive results.

The results of selected benchmarks are shown in Table 8. The benchmarks were also solved

by ESPRESSO-EXACT in order to obtain the minimum solution for comparison. Note that the

minimality criterion for ESPRESSO-EXACT is the number of terms only, and thus some “exact”

solutions are even worse in the literals counts than those reached by ESPRESSO or BOOM. Some

benchmarks were not solved by ESPRESSO-EXACT because of its extremely long run-times

(blank entries in Table 8). ESPRESSO solutions that are equal to the exact ones are shaded in the

ESPRESSO column. The column n/m/p describes the numbers of input/output variables and care

terms of the benchmarks, the time columns indicate the computational time in seconds, the

lit/out/terms columns show the quality of the results, i.e., the number of literals in the final SOP

form, the output cost and the number of terms. The shadowed cells indicate that the benchmark

was solved by BOOM in a shorter time than by ESPRESSO, or the same result was reached

respectively.

As the MCNC benchmark circuits mostly have a relatively low number of inputs and many

care terms defined, the iterative features of BOOM couldn’t be fully exploited here. Thus, the

results are not optimal comparing to ESPRESSO. However, BOOM is much more efficient

for more complex problems (see the following Subsections), which ESPRESSO often cannot

solve in a reasonable time.

39

Table 8 . Runtimes and minimum solutions for the standard MCNC benchmarks

 ESPRESSO ESPRESSO-EXACT BOOM – 1it.

bench n/m/p time lit/out/terms time lit/out/terms time lit/out/terms

alu2 10/8/241 0.07 268/79/68 0.18 268/79/68 0.02 268/79/68

alu3 10/8/273 0.08 279/70/65 0.19 278/74/64 0.02 279/68/66

alu4 14/8/1184 0.59 4445/644/575 12.24 4495/648/575 1.02 4449/636/577

b9 16/5/292 0.08 754/119/119 0.89 754/119/119 0.09 754/119/119

br1 12/8/107 0.05 206/48/19 0.07 206/48/19 0.02 215/45/20

br2 12/8/83 0.06 134/38/13 0.07 134/38/13 0.01 134/38/13

chkn 29/7/370 0.14 1598/141/140 0.25 1602/142/140 0.41 1598/141/140

cordic 23/2/2105 1.86 13825/914/914 3.59 13843/914/914 4.05 13825/914/914

ex4 128/28/654 0.62 1649/279/279 14.01 1649/279/279

e64 65/65/327 0.11 2145/65/65 0.11 2145/65/65 15.06 2145/65/65

exep 30/63/643 0.17 1175/110/110 0.55 1170/108/108 3.66 1175/110/110

ibm 48/17/499 0.11 882/173/173 0.82 882/173/173

mark1 20/31/72 0.25 97/57/19 1.45 97/57/19 0.04 93/46/23

misex2 25/18/101 0.07 183/30/28 0.06 183/30/28 0.10 183/30/28

misex3c 14/14/1566 0.98 1306/253/197 0.59 1335/242/209

misj 35/14/55 0.07 54/48/35 0.03 54/48/35

shift 19/16/200 0.07 388/105/100 0.06 388/105/100

spla 16/46/837 0.71 2558/643/251 6.65 1564/450/181 1.54 2821/517/285

vg2 25/8/304 0.08 804/110/110 0.54 804/110/110 0.15 804/110/110

x9dn 27/7/315 0.08 1138/120/120 0.49 1138/120/120 0.22 1138/120/120

5.4.2 RANDOMLY GENERATED BENCHMARKS

Randomly generated benchmarks (PLAs) were chosen for the following experiments

for several reasons:

 BOOM is efficient especially for functions with a large number of inputs and few care

terms. Such are available in standard benchmark suites [66] only rarely;

 PLAs coming from some practical problems, which BOOM was intended for [80],

[81], mostly are of a random nature;

 randomly generated benchmarks allow for scaling, thus also the scalability of BOOM

can be determined.

A set of problems having up to 200 input variables and up to 200 care terms was solved. The

truth tables (PLAs) of these problems were generated randomly, while only the number of input

variables and the number of care terms were specified. The number of outputs was set equal to 5,

and the terms contained 20% of don’t cares (missing input variables in the terms). The on-sets and

off-sets of each function were kept approximately of the same size. For each problem size

(number of variables, number of terms), ten different samples were generated and solved and

average values of the ten solutions were computed.

The results are shown in Table 9, Table 11, and Table 11. Here the number of input variables n

increases horizontally and the number of specified PLA terms p is increased vertically. The first

row of each cell contains BOOM results, the second row shows ESPRESSO results. The quality

criterion selected for BOOM was the sum of the number of literals and the output cost, which well

approximates the final implementation cost using standard library gates.

First, the minimality of the result was compared. BOOM was run iteratively, using the same

run-time as ESPRESSO needed to obtain the solution. The results are shown in Table 9 and Table

40

11. These two tables contain results of the same experiment, only results details are given in Table

11, whereas Table 9 contains the optimization criterion values (sum of the number of literals and

the output cost).

The numbers of iterations BOOM was run is shown in the parentheses in the first line entries,

while the run-time is indicated in the ESPRESSO entries (second lines).

We can see that for all but one problem size (shaded cell) BOOM found a better solution than

ESPRESSO in the same time.

Table 9 . Randomly generated PLAs – comparison of the result quality (same time as ESPRESSO)

p / n 50 100 150 200

50
151 (58)

176/3.89

131 (90)

149/10.29

122 (147)

133/24.87

113 (199)

128/41.99

100
370 (46)

393/9.31

297 (94)

315/77.07

278 (140)

293/199.17

264 (140)

275/246.21

150
606 (43)

639/54.76

490 (101)

509/282.80

454 (116)

458/646.20

471 (64)

429/1066.14

200
855 (51)

895/162.62

690 (116)

704/730.91

617 (207)

629/1913.65

579 (277)

586/3372.66

Entry format: BOOM: # of literals + output cost (# of iterations)

 ESPRESSO: # of literals + output cost / time in seconds

Table 10 . Randomly generated PLAs – comparison of the result quality)

p / n 50 100 150 200

50 110/41/25 (58)

122/54/27/3.89

96/35/23 (90)

104/45/23/10.29

90/32/21 (147)

92/41/21/24.87

84/29/20 (199)

89/39/20/41.99

100 284/86/52 (46)

289/104/51/19.31

229/68/42 (94)

231/84/42/77.07

217/61/40 (140)

213/80/39/199.17

207/57/38 (140)

201/74/37/246.21

150 474/132/76 (43)

481/158/76/54.76

389/101/63 (101)

384/125/62/282.80

362/92/61 (116)

345/113/56/646.20

381/90/64 (64)

322/107/52/1066.14

200 678/177/101 (51)

686/209/101/162.62

553/137/83 (116)

539/165/81/730.91

492/125/75 (207)

480/149/72/1913.65

469/110/71 (277)

450/136/68/3372.66

Entry format: BOOM: # of literals / output cost / # of terms (# of iterations)

 ESPRESSO: # of literals / output cost / # of terms / time in seconds

The second group of experiments was performed to compare the run-times. Again, the same

randomly generated problems were solved, but this time BOOM was running until a solution

of the same or better quality as ESPRESSO was reached. The quality criterion selected was again

the sum of the number of literals and the output cost. The results given in Table 11 show that for

all examples the same or better solution was found by BOOM in a shorter time than

by ESPRESSO. Thus, even though iteration was employed, BOOM was faster than ESPRESSO.

Moreover, the UCP problem was solved extra after each iteration in this experiment, in order

to obtain a solution for comparison. Otherwise the stopping criterion couldn’t be computed.

41

Table 11 . Randomly generated PLAs – comparison of the run-time (same quality as ESPRESSO)

p / n 50 100 150 200

50
170/0,64 (12)

176/3,89

145/1,89 (21)

149/10,29

131/14,52 (73)

133/24,87

126/3,26 (25)

128/41,99

100
388/7,15 (23)

393/19,31

313/25,5 (48)

315/77,07

291/38,91 (56)

293/199,17

273/86,51 (83)

275/246,21

150
631/20,38 (25)

639/54,76

506/153,84 (70)

509/282,8

456/374,68 (105)

458/646,20

427/974,40 (161)

429/1066,14

200
890/71,97 (31)

895/162,62

697/467,63 (86)

704/730,91

625/1026,28 (149)

629/1913,65

582/1759,27 (220)

586/3372,66

Entry format: BOOM: # of literals + output cost / time in seconds (# of iterations)

 ESPRESSO: # of literals + output cost / time in seconds

5.4.3 PRACTICAL PLAS

Results of some large practical examples that had to be minimized during a test pattern

generator design for BIST [80], [81] will be shown in this subsection. In particular, the

combinational logic transforming pseudo-random patterns into deterministic ones was designed.

In all the cases BOOM was run for 100 iterations. The “Bench” column indicates the name

of the benchmark circuit. In the “n/m/p” column there are listed numbers of its inputs, outputs and

care terms. Then, the results obtained by BOOM and ESPRESSO are shown. The resulting PLA

complexity, in terms of the sum of the number of literals and the output cost, is given in in the

next column (“Size”). The shadowed cells indicate cases where BOOM outperformed

ESPRESSO, both for the result quality and run-time.

Table 12 . Output Decoder design examples

 BOOM ESPRESSO

Bench n/m/p Size Time [s] Size Time [s]

d_c1355 (1) 41/18/13 63 0.69 74 0.19

d_c1355 (2) 41/21/14 70 0.74 85 0.26

d_c1908 33/3/29 34 0.49 36 0.12

d_c2670 (1) 233/32/60 226 165.95 626 4,838.62

d_c2670 (2) 233/31/52 122 159.06 520 2,329.44

d_c2670 (3) 233/36/104 319 740.18 689 24,710.07

d_c7552 (1) 207/48/81 393 807.84 746 27,574.93

d_c7552 (2) 207/72/207 779 23,933.46 - > 24 h

d_s420.1 (1) 34/6/42 44 0.75 52 1.58

d_s420.1 (2) 34/5/33 39 0.75 49 0.95

d_s838 (1) 67/24/61 71 3.15 117 27.94

d_s838 (2) 67/15/46 58 1.65 88 14.94

d_s953 (1) 45/2/25 9 0.13 14 0.11

d_s953 (2) 45/4/45 21 0.42 21 0.16

d_s1196 32/4/48 59 2.12 74 1.04

d_s1238 (1) 32/5/60 93 9.71 137 3.15

d_s1238 (2) 32/4/58 57 5.23 73 0.53

d_s5378 (1) 214/3/36 24 2.81 31 6.58

d_s5378 (2) 214/2/22 14 0.66 14 1.70

d_s9234 (1) 247/77/216 1310 18,835.60 - > 24 h

42

 BOOM ESPRESSO

Bench n/m/p Size Time [s] Size Time [s]

d_s9234 (2) 247/38/99 373 266.78 505 17,298.00

d_s9234 (3) 247/23/52 129 29.09 216 659.25

d_s13207.1 (1) 700/8/96 177 93.65 191 1,251.00

d_s13207.1 (2) 700/58/197 587 1,550.25 633 190,038.74

d_ s15850.1 (1) 611/96/313 395 3,416.40 - > 24 h

d_ s15850.1 (2) 611/48/180 157 516.30 240 37,818.65

d_s38417 1664/1454/520 1518 1,923.00 - > 24 h

d_s38584.1 (1) 1664/464/307 316 321.90 - > 24 h

d_s38584.1 (2) 1664/464/45 22 46.60 62 20,361.71

d_b04 (1) 77/9/37 49 1.75 57 4.19

d_b04 (2) 77/4/29 18 0.32 22 0.58

d_b05 (1) 35/7/33 57 2.94 98 0.85

d_b05 (2) 35/2/15 8 0.07 9 0.06

d_b07 (1) 50/5/41 23 2.01 24 3.43

d_b07 (2) 50/1/24 2 0.02 2 0.80

d_b12 (1) 126/11/128 190 118.14 236 379.93

d_b12 (2) 126/7/66 91 15.52 115 18.27

It can be seen that BOOM outperformed ESPRESSO in the result quality in all the cases and

mostly in the run-time as well. In some more complex cases (hundreds or up to thousands inputs)

ESPRESSO did not return a result in more than one day, thus the measurement was terminated.

5.5 SCALABILITY

All the algorithms used in BOOM have polynomial time complexity (no more than quadratic),

with all the instance size measures (number of inputs, outputs, and care terms). An experimental

evaluation will be shown here, to see real time complexities.

The average time needed to complete one pass of the algorithm for varying sizes of the input

truth table (PLA) was measured. The truth tables were generated randomly, all the specified terms

were minterms. Single-output functions were considered in this experiment. 10 instances of each

size were solved and average times were computed.

Figure 27 shows the growth of the average run-time as a function of the number of input

variables (20-300), for different numbers of minterms (20-300 as well). It can be seen that the

time complexity is almost linear.

The fact that the time complexity grows linearly with the number of input variables (while

keeping the number of defined terms) expresses the main advantage of the BOOM algorithm.

As the size of the Boolean space of the function grows exponentially with the number of input

variables, the time complexity of most of the common minimization algorithms (ESPRESSO)

grows exponentially too. In BOOM there is no chance for an exponential time grow, as there are

no algorithms with an exponential complexity used. This allows BOOM to very efficiently

minimize functions with an extremely large number of inputs.

43

Figure 27 . Time complexity (1)

The run-time dependency on the number of specified terms is shown in Figure 28. Again, the

number of input variables was varied from 20 to 300 and figures for different numbers

of specified minterms (20-300) were measured. We see that BOOM run-times grow more than

linearly with the number of terms, which was expected. Indeed, the dependencies confirm the

theoretical O(p
2
) complexity.

Figure 28 . Time complexity (2)

5.6 SOLUTIONS ANALYSIS

As BOOM is randomized, different solutions are obtained from its different runs. As well as

in Subsection 2.3, the counts of different solutions will be investigated, more thoroughly in this

case.

0 50 100 150 200 250 300

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

0,55

0,60

0,65

0,70

0,75

0,80

300

260

220

180

140

100

60
20

T
im

e
[s

]

Input variables

0 50 100 150 200 250 300

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

0,55

0,60

0,65

0,70

0,75

0,80

300

260

220

180

140

100

60

20

T
im

e
[s

]

Terms

44

The following experiment was performed: a subset of MCNC benchmarks [66] was processed,

BOOM was run for 200 iterations (to ensure very quality results), 20% CD-Search mutations [83]

(to increase the variety of solutions), repetitively 100-times for each circuit. All different

solutions ever obtained (even in course of the iteration) were recorded. Note that all the results

were prime and irredundant covers.

The detailed solutions analysis is shown in Table 13. For each benchmark, the total number

of different solutions and different solutions with the best quality (number of literals here) are

shown. Then, numbers and percentages of solutions, whose quality is less than 5% (10%, 20%,

respectively) worse than the best solution are shown.

We can observe that for most of the circuits only one “best” solution was obtained, which was

probably the optimum one. Of course, symmetric circuits, like max512, sym10, Z9sym [66] have

adequate numbers of P-equivalent solutions [87].

However, a plentiful of different near-optimum solutions can be observed. This is illustrated

in Figure 29 for the ex1010 circuit. Such a behavior can be observed for most of the tested

circuits.

Table 13 . Different solutions counts for BOOM

benchmark solutions best solutions  5%  10%  20%

add6 2598 1 19 (1%) 218 (8%) 2580 (99%)

alu2 114 1 38 (33%) 73 (64%) 105 (92%)

alu3 1444 1 204 (14%) 495 (34%) 1133 (78%)

amd 2 1 1 (50%) 1 (50%) 1 (50%)

b12 212 1 26 (12%) 88 (42%) 212 (100%)

b9 929 1 52 (6%) 154 (17%) 319 (34%)

bench 4283 50 2599 (61%) 3803 (89%) 4213 (98%)

co14 1 1 1 (100%) 1 (100%) 1 (100%)

dc1 1 1 1 (100%) 1 (100%) 1 (100%)

dc2 16 1 1 (6%) 7 (44%) 16 (100%)

ex1010 17020 1 293 (2%) 6144 (36%) 16172 (95%)

ex7 909 2 47 (5%) 143 (16%) 315 (35%)

exep 2343 2 2139 (91%) 2334 (100%) 2343 (100%)

f51m 315 1 19 (6%) 70 (22%) 296 (94%)

ibm 1242 1 45 (4%) 169 (14%) 700 (56%)

in7 43 4 4 (9%) 18 (42%) 34 (79%)

inc 24 2 8 (33%) 11 (46%) 24 (100%)

jbp 1166 1 97 (8%) 429 (37%) 829 (71%)

life 1 1 1 (100%) 1 (100%) 1 (100%)

log8mod 37 2 19 (51%) 30 (81%) 37 (100%)

luc 4 2 4 (100%) 4 (100%) 4 (100%)

m1 9 1 2 (22%) 2 (22%) 9 (100%)

m2 141 1 87 (62%) 135 (96%) 141 (100%)

max512 1131 122 682 (60%) 947 (84%) 1129 (100%)

misj 15 1 1 (7%) 1 (7%) 1 (7%)

mlp4 338 2 25 (7%) 138 (41%) 328 (97%)

newcwp 2 1 1 (50%) 1 (50%) 2 (100%)

newtpla2 25 1 4 (16%) 7 (28%) 9 (36%)

p3 20 2 2 (10%) 2 (10%) 18 (90%)

45

benchmark solutions best solutions  5%  10%  20%

p82 12 1 6 (50%) 9 (75%) 12 (100%)

radd 344 1 3 (1%) 11 (3%) 80 (23%)

rckl 214 1 214 (100%) 214 (100%) 214 (100%)

rd73 1 1 1 (100%) 1 (100%) 1 (100%)

risc 1 1 1 (100%) 1 (100%) 1 (100%)

root 1163 3 249 (21%) 902 (78%) 1163 (100%)

ryy6 8499 1 566 (7%) 2649 (31%) 7406 (87%)

shift 414 1 230 (56%) 313 (76%) 414 (100%)

soar 1043 1 9 (1%) 59 (6%) 506 (49%)

sqn 113 1 23 (20%) 93 (82%) 113 (100%)

sym10 875 100 147 (17%) 242 (28%) 483 (55%)

t1 8 1 1 (13%) 1 (13%) 7 (88%)

test1 2937 1 1463 (50%) 2449 (83%) 2864 (98%)

test4 9702 4 58 (1%) 1116 (12%) 9666 (100%)

vg2 2 1 1 (50%) 1 (50%) 2 (100%)

vtx1 1149 4 929 (81%) 1009 (88%) 1103 (96%)

x1dn 8 1 1 (13%) 1 (13%) 1 (13%)

x2dn 5 1 1 (20%) 4 (80%) 5 (100%)

x9dn 741 1 634 (86%) 675 (91%) 731 (99%)

z4 395 1 37 (9%) 202 (51%) 381 (96%)

Z5xp1 153 1 61 (40%) 137 (90%) 153 (100%)

Z9sym 3178 99 751 (24%) 1329 (42%) 2541 (80%)

Figure 29 . Distribution of solution qualities for ex1010

5.7 RANDOM NUMBER GENERATOR GRANULARITY EFFECTS

The influence of the random number generator granularity in the minimization process

is illustrated in Figure 30. Here BOOM was partially derandomized, in the way described

in Subsection 4.5 and the progress of the implicants number growth was traced. The same

46

function as in Section 5.3 was minimized (randomly generated, 20 input variables, 5 output

variables, 200 care terms of average dimension 2).

The final result quality obtained after 1,000 iterations for different RFs is shown in Table 14

and the progress of the result quality during the 1,000 iterations is visualized by Figure 31. The

values were obtained by averaging 20 BOOM runs (for each RF value).

0 200 400 600 800 1000

0

1000

2000

3000

4000

5000

6000

7000

8000
RF = inf.

RF = 10

RF = 3

RF = 1

RF = 2

Im
p

li
c
a
n

ts
 i
n

 p
o

o
l

Iteration

Figure 30 . Derandomized BOOM – implicants number growth

0 200 400 600 800 1000

0

200

400

600

800

1000

1200

1400

1600

1800

RF = inf.

RF = 3
RF = 2

RF = 1

L
it

e
ra

ls

Iteration

Figure 31 . Derandomized BOOM – result quality

Table 14 . Derandomized BOOM – result quality

RF Literals

1 1695

2 669

3 650

10 648

100 649

infinity 647

47

We can see that when the capabilities of the random number generator are limited, the number

of generated implicants grows slower and the solution quality drops as well. For RF = 1 the

iterative process does not work at all, since equal implicants are generated in each iteration.

But even for RF = 2 the implicant generation rate starts to follow the saturation curve and

for RF = 3 the rate nears the rate of RF = infinity. For RF > 10 there is no noticeable difference

from the fully randomized algorithm. Regarding the result quality, RF = 1 definitely lacks here.

For RF > 1 there are only slight differences in quality.

The above observations can be backed up by the fact that in CD-Search there are usually only

few “equal” choices to decide between. A histogram and a pie-chart of the distributions of the

number of CD-Search choices (for our example circuit, fully randomized algorithm run, and 200

iterations) are shown in Figure 32. In 40% of cases there are no options. There are 2 options

in less than 20% of cases, and the distribution curve sinks exponentially. The average number

of choices was 3.35.

0 5 10 15 20 25 30
0

20000

40000

60000

80000

100000

120000

140000

2

19%

3

12%

4

8%

5

5%
1

40%

> 5

16%

F
re

q
u

e
n

c
y

Choices

Figure 32 . Numbers of choices

From the theoretical point of view, the maximum number of possible choices in every step

equals to the number of different function’s literals, i.e., twice the number of input variables,

which is 40 in our case. However, the maximum of choices encountered in the example was 31

only.

The number of possible random decisions in the subsequent phases (implicant expansion and

reduction) is bounded by the number of variables. Only the number of decisions in the UCP phase

is not limited; it grows with the number of processed implicants.

Concluded, BOOM needs not too much of randomness for its successful run. Even

for functions with a higher number of variables, the number of possible decisions cannot reach

millions. However, it definitely cannot be completely determinized.

5.8 ASYMPTOTIC COMPLETENESS OF THE ALGORITHM

In general, the overall BOOM algorithm (search strategy) can be declared as asymptotically

complete, mostly because of mutations used in the CD-Search phase. Any implicant can be

generated by application of mutations and if an exact covering problem is used [85], [86], also

any optimum solution can be obtained.

Completeness, in sense of ability of obtaining any valid solution, is discussable. Nevertheless,

it relies on the covering problem solving algorithm only. Therefore, any desired solution can be

obtained, if the algorithm is modified properly. Of course, the solution must consist of prime

48

implicants only. If this condition is undesirable, a kind of relaxation must be applied in the

implicants generation process.

5.9 CONCLUSIONS

Another application of randomized high-level iterative algorithms was shown here – the SOP

minimizer BOOM. It starts with on- and off-set sets descriptions of a function and produces a

minimized SOP form covering the on-set and not intersecting the off-set.

BOOM was found to be well scalable, its run-times do not grow significantly with the instance

sizes and generally they are relatively small. Therefore, BOOM can be efficiently iterated,

without a significant run-time increase.

When iterated, a valid solution can be obtained in every BOOM pass (iteration), if the

covering problem is solved at the end of each iteration.

Because of the randomized nature of the algorithm, the solutions may differ. Moreover, even

better solutions can be obtained by combining the generated solutions and solving the covering

problem.

It was shown that BOOM is able to outperform the state-of-the-art SOP minimization tool

ESPRESSO, mostly because of iteration – even though inferior results are usually obtained in the

first iteration for complex problems, better solutions than ESPRESSO produces are obtained after

several iterations of BOOM, moreover usually in a shorter time – even though iteration is used.

As in the previous algorithm, randomness allows obtaining many different solutions. This

feature was exploited, e.g., in [88].

It was shown that both randomness and iteration are necessary for a successful BOOM run,

at least for non-trivial problems, where the optimum solution is not already generated in the first

iteration. However, partial derandomization affects BOOM only slightly; very few random

numbers are required to make BOOM perform well.

49

6 FC-MIN – A SOP MINIMIZER
The second iterative randomized two-level minimizer discussed will be FC-Min [89], [90]. Its

novelty and uniqueness consist in a special solution generation process. In contrast to other

approaches, FC-Min finds a rectangle cover of ‘1’s in the output part of the truth table first, and

then group implicants are subsequently derived from this cover. No prime implicants of single

functions are computed; only the necessary implicants needed to cover the whole on-set are

produced.

As group implicants are highly important especially for functions with many outputs, this

makes FC-Min superior to other minimizers for such problems. On the other hand, FC-Min is not

suitable for problems with a small number of output variables; for a single-output function, as an

extreme case, the cover is generated purely at random. Here the FC-Min algorithm cannot

outperform the others (ESPRESSO, BOOM).

Randomness is employed in FC-Min in a special way too. In all the above-mentioned

approaches (Sections 3 - 5) randomness was used when more than one equally valued choice were

available. Conversely, randomness is used in FC-Min to ensure its probabilistic execution. The

mentioned rectangle cover (which is an NP-hard problem [37] too) is generated greedily and

almost ad-hoc, whereas optimality of its solutions is controlled by a random factor. Indeed, highly

sub-optimal solutions must be often submitted to the subsequent phase, since optimality of the

rectangle cover is in contrast with its feasibility for the next phase. Details will be given

in Subsection 6.3.

Iteration is in FC-Min used both at low and high level. The low-level iteration is employed

in the probabilistic Find Cover phase (see Subsection 6.2.1); high-level iteration can be used

in the same way as in BOOM: different implicants obtained in each iteration are cumulated and

the covering problem is solved at the end.

6.1 PRELIMINARIES

The general notation will be retained from the previous Section. However, a notation of input

and output matrices must be introduced here, for simplicity of the further explanations.

Let us have a multi-output Boolean function of m output variables of n input variables. This

function will be denoted as a source function. The input variables will be denoted as xi, 0  i < n,

the output variables as yj, 0  j < m. Such a multi-output function will be described by a

sum-of-products (SOP) form, particularly by a PLA [6]. The m output values of the care terms

(both minterms and terms of higher dimensions may be used) are defined by a truth table. To the

minterms that are not present in the truth table are implicitly assigned don’t care values. I.e., the

multi-output function is specified by its on-set and off-set as in the BOOM case. Don’t cares can

also be specified in the truth table explicitly.

The part of the truth table representing the terms (cubes) will be denoted as an input matrix I,

the rows of the input matrix will be denoted as input vectors. The part defining output values

of the terms will be called an output matrix O; similarly, the rows of this matrix as output vectors.

Each row of the output matrix defines values of the output variables for the values of input

variables specified by the corresponding row in the input matrix. Two notations for the I matrix

rows will be used interchangeably in the text:

1. an n-dimensional binary vector describing values of respective input variables,

2. an I matrix term (cube) describing a set of literals.

The number of I matrix columns corresponds to the number of input variables n, the number

of O matrix columns is equal to the number of output variables m, the number of I and O matrix

rows will be denoted as p. The I matrix may contain values ‘1’ (input variable in its positive

phase), ‘0’ (input variable complemented), and ‘-‘ (input variable not present). The O matrix may

50

contain values ‘0’ (function’s output value 0), ‘1’ (function’s output value 1), and ‘-‘ (output

don’t care – any output value is allowed).

The SOP minimization task is the same as in BOOM (see Subsection 5.1): to find the

minimum cover of the on-set. The optimality may be measured as the number of product terms

in the solution, the number of literals, the output cost, or their combination. Terms can be shared

between more output functions. Then the respective term is accounted only once.

6.2 FC-MIN PRINCIPLES

There are two major phases of this algorithm: the Find Cover phase (which gave name

to FC-Min) and the Find Implicants phase. After that, the implicants should yet be expanded

in order to reduce the total number of literals. The number of terms cannot be reduced any more

after the Find Implicants phase. The individual phases will be described in the following

Subsections.

6.2.1 FIND COVER PHASE

First, let’s state some basic definitions [3], [37].

Definition 1

A rectangle (R, C) of a matrix M, M[i, j]  {‘0’, ‘1’, ’-‘}, is a subset of rows R and columns

C, such that M[i, j]  ‘0’ for each i  R and j  C.

  '0' ,:,  jiCjRi M (1)

The size of a rectangle |(R, C)| is the number of ‘1’s covered by it. Note that DCs (’-‘) can be

included in the rectangle, however they do not contribute to its size for the purpose of the

algorithm.



Definition 2
A set of rectangles R = {(R

k
, C

k
)} forms a rectangle cover of a matrix M, if all ‘1’ M matrix

values are included in (covered by) at least one rectangle in this set. The cover needs not be

disjoint; one ‘1’ may be covered by more than one rectangle. More formally, for a matrix M

of dimensions (p, m), it holds:

  kk CjRikjimjpi  : '1' ,:, M (2)

The size of a rectangle cover |R| is the cardinality of the set R, i.e., the number of rectangles.



Example

An example of a (minimum) rectangle cover is shown in Figure 33. for a binary matrix

of 5 columns (let they be named y0 - y4) and 10 rows (numbered 0-9). The cover consists of six

rectangles, R1 – R6. The sets of columns in the respective rectangles can also be represented

by binary vectors, as depicted in Figure 33.

51

{y -y0 4

Rectangle (i) Ri Ci

R1 {4, 6, 8} {y3, y4}  00011

R2 {1, 2, 7} {y1, y2}  01100

R3 {8, 9} {y0, y2}  10100

R4 {3} {y1, y3}  01010

R5 {0, 1} {y0, y1}  10000

R6 {4, 7} {y2, y4}  00101

Figure 33 . Example of a rectangle cover



In the Find Cover phase we find a rectangle cover of the on-set of the source multi-output

function, i.e., the rectangle cover of the O matrix. By this we try to find potential implicants that

could be included in the solution. The main idea will be described later.

Finding the optimum rectangle cover is an NP-hard problem [37], moreover the problem is

constrained by the implicant validation procedure (see Subsection 6.2.2). For this reason, exact

methods or commonly used heuristic algorithms cannot be efficiently used, hence a special

probabilistic greedy heuristic was developed.

The heuristic is based on a gradual search for rectangles consisting of maximum ‘1’s. First, the

row containing most of yet uncovered ‘1’s is selected as a basis for a rectangle. Then rows are

being greedily appended to the rectangle, while the number of covered ‘1’s increases, or at least

does not decrease. The search may also be terminated at any time, with a given probability.

For details see Subsection 6.3.

The algorithm producing one rectangle is described by the following pseudo-code:

FindRectangle(O) { // O is the O matrix of dimensions (m, p)

 R = ; // empty row set

 C = {0, ..., m}; // set of all columns

 do {

 v = row_with_maximum_x_for(0  i < p)

 where x = (|R|+1)*|C  O[i]| - |R|*|C|; // potential increase

of covered ‘1’s

 if (v < 0) break; // no further increase possible. Terminate

 R = R  {v}; // include v into C

 C = C  O[v]; // reduce C

 } while (random() < DF); // enforced random termination

 return (R, C);

}

Figure 34 . Find rectangle algorithm

Example

The construction of the first rectangle in our example (Figure 33) will be shown here. The row

no. 8 with four ‘1’s is selected as the basis. Then, the current rectangle is:

(R
1
, C

1
) = ({8}, {y0, y2, y3, y4})

|(R
1
, C

1
)| = 1  4 = 4 (3)

52

 Now we continue the search for a next row to add in order to increase the number of covered

‘1’s. In the example, when the row no. 4 is added, the number of covered ‘1’s increases to 6.

(R
1
, C

1
) = ({4, 8}, {y2, y3, y4})

|(R
1
, C

1
)| = 2  3 = 6 (4)

Next, there are two equally valued candidate rows to add - no. 6 and no. 7. Addition of one

of these rows to the rectangle would not increase the number of covered ‘1’s, however it will not

decrease it either. Let us assume the row no. 6 is chosen (if two or more equal choices happen,

a random decision is made).

(R
1
, C

1
) = ({4, 6, 8}, {y3, y4})

|(R
1
, C

1
)| = 3  2 = 6

(5)

No further row additions non-decreasing the size of the rectangle are possible, thus the

rectangle generation is terminated.

After finding one rectangle, the O matrix ‘1’s that are covered by it are substituted by ‘-‘

values and we continue the search for other rectangles until all the ‘1’s in the output matrix are

covered. This basic algorithm is greedy; no backtracking is involved. Thus, the asymptotic

complexity of the overall algorithm is O(m.p
2
), since at most p rectangles can be produced by this

algorithm.



6.2.2 IMPLICANT GENERATION PHASE

Rectangles obtained in the Find Cover phase represent potential group implicants of the

minimized multi-output function. The structure of the terms (meaning literals in the terms) is not

known yet; the rectangles define just the sets of ‘1’s the implicants must cover. However, the size

of the rectangle cover directly determines the number of implicants in the final solution.

This second minimization step consists in finding implicants covering exactly the same sets

of O matrix ‘1’s as the rectangles do.

Theorem

Let R be a rectangle cover of the O matrix. The minimum term covering the set of ‘1’s that

a rectangle (R
k
, C

k
)  R covers is constructed as a minimum supercube of all I matrix rows

(terms) indexed by the set R
k
. Here the minimum is understood in terms of its dimension (i.e., the

cube has maximum of literals).



Proof

For any single element of R
k
, ri  R

k
, the source function term represented by the ri-th I matrix

row naturally covers all ‘1’s covered by R
k
, by definition of the truth table. Let this term be

denoted ti. A term ti, j covering ‘1’s covered by two elements of R
k
, ri and rj  R

k
, i  j, must

include both ti and tj, i.e., ti  ti, j and tj  ti, j. Therefore, ti, j = ti  tj, i.e., it is a supercube of ti and

tj. This can be inductively extended for all R
k
 elements.



Next, the term obtained from the intersection must not intersect the off-set of any function

indexed by elements of C. If the minimum supercube does so, the rectangle must be invalidated,

since no adequate term is possible to generate.

53

Example

Let us assume a 5-input and 5-output incompletely specified function defined by 10 minterms,

in form of a truth table. The input variables are named x0 - x4, output variables y0 - y4. The rest out

of the total 32 minterms are don’t cares. The truth table is shown in Figure 35. The output matrix

is the same as in Figure 33, therefore we will refer to the Find Cover phase solution (see

Subsection 6.2.1).

x0-x4 y0-y4
0 11010 10000

1 10000 11100

2 01001 01100

3 01111 01010

4 00110 00111

5 01110 00000

6 10110 00011

7 00001 01101

8 10101 10111

9 11100 10100

Figure 35 . The FC-Min example function

The way of computation of the minimum implicants t1 – t6 derived from the rectangles R1 - R6

is shown in Figure 36. The respective I matrix rows are indicated in brackets.

t1  R1 t2  R2 t3  R3 t4  R4 t5  R5 t6  R6

(4) 00110

(6) 10110

(8) 10101

 -01—

(x1’x2)

(1) 10000

(2) 01001

(7) 00001

 --00-

(x2’x3’)

(8) 10101

(9) 11100

 1-10-

(x0x2x3’)

(3) 01111

 01111

(x0’x1x2x3 x4)

(0) 11010

(1) 10000

 1-0-0

(x0x2’ x4’)

(4) 00110

(7) 00001

 00---

(x0’x1’)

Figure 36 . Implicants generation

Since none of the generated terms intersects off-sets of functions they implicate, all of them

are valid. The solution of the example is a PLA shown in Figure 37. The output matrix of the

result is derived from the rectangles columns, see the table in Figure 33.

The case where invalid implicants are generated will be discussed in Subsection 6.2.4.

Note the difference of the PLA descriptions in Figure 35 and Figure 37. In Figure 35 terms not

specified in the table were implicitly assigned as DCs. In Figure 37 the minimization result is

shown, i.e., the table corresponds to the final PLA (SOP) implementation. Thus, minterms not

specified in the table implicitly belong to the off-set.

t1: -01-- 00011

t2: --00- 01100

t3: 1-10- 10100

t4: 01111 01010

t5: 1-0-0 10000

t6: 00--- 00101

Figure 37 . Implicant generation phase solution



Note that the asymptotic complexity of the implicant validation procedure is polynomial with

the number of inputs - O(n
2
.p), since the off-set is explicitly specified.

54

6.2.3 IMPLICANT EXPANSION

The Implicant generation phase produces minimum implicants, i.e., a set of valid implicants

covering all ‘1’s in the output matrix and having maximum of literals. These implicants can be

further expanded by removing literals (i.e., ‘0’ and ‘1’ values from the input matrix), as long as

the expanded terms do not intersect the off-set of functions they implicate. Even though the

validity of possible expansions is checked in a polynomial time (the offset is explicitly specified),

there is an exponential number of sequences of expansions. Therefore, a simple heuristic is used.

The terms are expanded by a “pecking out” method allowing us to make a balanced expansion

of the terms: all literals in the matrix are tried for removal in a random order. If the expanded

term does not intersect the off-set, the removal is kept permanent, otherwise the literal is not

removed and the search continues until all literals are processed.

The expanded matrix, which is the final solution of the leading example, is shown in Figure

38. Literals that have been removed by the implicant expansion phase are shadowed.

t1: -01-- 00011

t2: --00- 01100

t3: --10- 10100

t4: ---11 01010

t5: 1-0-- 11000

t6: 00--- 00101

y0 = x2x3’ + x0x2’

y1 = x2’x3’ + x3x4 + x0x2’

y2 = x2’x3’ + x2x3’ + x0’x1’

y3 = x1’x2 + x3x4

y4 = x1’x2 + x0’x1’

Figure 38 . FC-Min – the final solution

After the expansion is performed, it may happen that some terms become redundant, i.e., the

on-set covered by them is already covered by other (those expanded) terms. Therefore, a covering

problem is solved at the end, to obtain an irredundant cover. The same procedure as

in Subsection 5.2.4 is used.

6.2.4 INCREMENTAL IMPLICANTS GENERATION

Until now it was assumed that each term created as the minimum supercube of I matrix terms

is a valid implicant of all output functions it should implicate (these are directly determined by the

implicant’s respective rectangle rows). However, this is definitely not the rule. Since the Find

Cover phase computes rectangles independently of the I matrix, it may happen that the generated

implicants intersects the offset.

Example

Let us assume a possibly obtained rectangle in our leading example (Figure 33), R
7
 = ({4, 8},

{y2, y3, y4}). Actually, this is the rectangle obtained in the second step of generation of R
1
. The

minimum supercube of I matrix terms {4, 8} is (-01--) = x1’x2. This term must implicate

functions y2, y3, and y4. However it does not, since it intersects the off-set of y2 (see Figure 35, row

no. 6). For this reason, this term (or, better, the rectangle R
7
) cannot be included into the solution.

(4) 00110

(8) 10101

 -01--

x1’x2

Figure 39 . Example of an invalid implicant



If such a rectangle was produced, it would be impossible to find implicants for the computed

rectangle cover. Therefore, the cover must be recomputed. One possibility is to split the cover

in order to make supercubes of fewer terms. This approach leads to a rapid growth of the number

of terms in the final solution.

55

Another possibility is to recompute the whole cover, thus repeat the phases until a valid

solution is found. Such an approach causes a great growth of the run-time and also the algorithm

often locks in an infinite loop.

It was found that the best way of solving this problem is an incremental implicant generation.

In this approach the two main FC-Min phases are not separated; once one rectangle is generated,

its respective minimum implicant is produced immediately and, if it is not valid, only the last

rectangle is discarded and a different one is looked for.

This is the low-level iteration basis. The single implicant generation process is iterated, until a

valid one is found. In each iteration implicants are generated in a randomized way, while their

statistical properties can be influenced by a parameter, see the following Subsection.

The whole algorithm can be described by the following pseudo-code. The inputs of the

algorithm are the input matrix I and the output matrix O, the output is a matrix S, representing the

solution (PLA, SOP).

FC_Minimize(I, O) {

S = ;
do {

do {

(R, C) = FindRectangle(O);

t = GenerateMinimumTerm(I, (R, C));

} while !IsValid(t, I);

S = S  t;

} while !AllCovered();

Expand(S);

return S;

}

Figure 40 . The FC-Min minimization algorithm

6.3 THE DEPTH FACTOR

Finding rectangles consisting of maximum of ‘1’s is advantageous for the minimization,

however the more rows the rectangle has, the smaller is the probability of validity of an implicant

induced by it. Moreover, even the algorithm in Figure 40 may end up in an infinite loop, in case

of repeated generation of one single non-valid rectangle. Thus, the greedy FindRectangle

algorithm is driven by a depth factor (DF). Since the rectangles are produced row by row, after

each row addition we may decide, whether to extend the cover to more rows, or to terminate the

rectangle generation, even if it could grow yet bigger. The decision is made at random with a

probability given by DF, see Figure 34. For instance, when DF = 0.5, there is 50% probability

of the search termination after each row addition. For DF = 0, the search is terminated

immediately after one row selection, thus a single-row rectangle is always produced. Here the

FC-Min phase is downgraded to a mere gradual selection of all the I matrix rows into the solution,

thus no minimization is performed in the Find Cover phase. Having a source function of p terms,

the solution will consist of p implicants created just by expansion of the input terms.

For DF = 1, the search for rows continues until there are no candidates increasing the cover

size. Hence, it is very likely that the algorithm will end up in an infinite loop, since rectangles

having maximum of rows will be deterministically produced.

Note that for DF < 1, there is always a non-zero probability of producing a single-row

rectangle. Such a rectangle always induces a valid implicant (which is equal to the respective

I matrix row). Therefore, the algorithm can never get stuck in an infinite loop.

Now it becomes apparent why the algorithm does not perform well for single-output functions.

Imagine a single-output function and DF = 1. Then the cover will consist of one rectangle

spanning over all rows. The implicant induced by this rectangle apparently cannot be valid (unless

the function is a tautology). For smaller DFs, the solution will be produced. However, note that

when there is more candidate rows in the FindRectangle function (see Figure 34), one is

56

selected randomly. For single-output functions, any row increases the cost function exactly

by one, thus all rows are equally valued candidates. Therefore, for smaller DFs, implicants are

generated purely at random, independently of the source function terms. Therefore, good solutions

can be hardly expected.

Since the depth factor significantly influences the generation of the cover, the choice of the DF

value is crucial for reaching desirable solutions in a reasonable time. There are two aspects that

DF influences:

 Higher values of DF force the algorithm to generate “deeper” terms, i.e., terms that

span over many source on-set terms. These terms are consequently implicants of less

output variables, since the cardinality of R gradually decreases in the rectangle

generation process (see Figure 34). These rectangles are often not valid, thus they have

to be frequently recomputed in the process (see Figure 40). This involves a rapid

increase of the Find Cover phase run-time.

 Higher values of DF also induce producing less terms in the Find Cover phase. This

means, the final solution may be possibly consisted of less terms, and definitely less

terms will be processed in the Implicant Expansion, Covering problem solution and

also in the overall minimization process, if high-level iteration (see Subsection 6.4)

is applied. This could, conversely, reduce the total minimization run-time.

Therefore, a thorough analysis of the overall algorithm behavior is required, to select the

“optimum” value of DF.

The ratio of the total number of rectangle computations (trials) to the number of valid

rectangles (hits) as a function of DF is shown in Figure 41, for a randomly generated PLA

of 50 inputs, 10 outputs and 2,000 defined on-set minterms. A random function was selected so to

suppress any possible structural singularities appearing in standard benchmark circuits. However,

the conclusions presented in this subsection can be generalized for any circuit.

It can be seen that the ratio grows hyperexponentially with DF (notice the logarithmic y-axis),

and so does the Find Cover phase run-time, since it grows linearly with the number of rectangle

computations.

Figure 42 shows the numbers of terms obtained in the Find Cover phase (upper curve) and

terms in the final solution (lower curve). The curves sink linearly with increasing DF, while the

maximum reduction of 32% was obtained in this case (the original function had 2,000 terms).

Notice here that the Find Cover phase basically determines the number of terms in the final

solution; very slight improvement in the terms number is obtained by the Implicant Expansion

and Covering problem solution phases.

However, this is not the case of the literals number. A similar graph, now displaying the

numbers of literals, is shown in Figure 43. The minimization effect of the Find Cover phase can

be seen clearly. For DF = 0, all the minimization effort is left for the Implicant Expansion phase

(notice that the original function had 100,000 literals). For large DFs, the Find Cover phase does a

big deal of the job, so the Implicant expansion improves the result quality only slightly.

The most important consequence of the above-mentioned observations is the influence of DF

on the overall minimization run-time. Since the Implicant expansion phase is relatively

time-consuming, the less implicants are expanded, the better. The Find Cover phase and the

overall run-times for varying DF are shown in Figure 44. Even though the Find Cover phase

run time grows hyperexponentially with DF, there is an apparent minimum in the overall run-time

between DF = 0.85 – 0.95. Therefore, the trade-off between the run-time and solution quality can

be found in this DF region. If high minimization effort is required, the DF may be increased,

at expense of a rapid run-time growth.

57

0.0 0.2 0.4 0.6 0.8 1.0

1

10

100

T
ri

a
ls

 /
 h

it
s
 r

a
ti

o

DF

Figure 41 . Ratio of the trials to the hits

0.0 0.2 0.4 0.6 0.8 1.0

0

200

400

600

800

1000

1200

1400

1600

1800

2000

T
e
rm

s

DF

Figure 42 . Terms obtained after Find Cover (upper curve) and terms in the final solution (lower curve)

0.0 0.2 0.4 0.6 0.8 1.0

0

10k

20k

30k

40k

50k

60k

70k

80k

90k

100k

L
it

e
ra

ls

DF

Figure 43 . Literals obtained after Find Cover (upper curve) and in the final solution (lower curve)

58

0.0 0.2 0.4 0.6 0.8 1.0

1

10

100

1000

Overall runtime

Find Cover phase runtime

R
u

n
ti

m
e
 [

s
]

DF

Figure 44 . Minimization run-time

6.4 HIGH-LEVEL ITERATION OF FC-MIN

Since all the FC-Min phases are randomized, high-level iteration can be used in the same way

as in BOOM (see Section 5), with the same effects. Particularly, Find Cover is the phase

producing implicants, which are stored in the implicant pool. Then they are expanded

(by expansion methods described in Subsections 5.2.2 and 6.2.3). This process is iterated and the

covering problem is solved at the end.

The influence of the depth factor (DF) on the run-time is worth studying here.

Figure 45 illustrates the influence of the depth factor DF on the implicants growth rate. The

sample problem solved was a randomly generated function of 20 input and 5 output variables,

with 200 terms defined. The average dimension of the terms was 2.

When increasing DF, many different implicants are generated in each iteration step, allowing

a faster implicants growth. However, more implicants involve a more time consuming covering

problem solution phase. Therefore, a trade-off between the run-time and result quality must be

found again.

59

Figure 45 . Influence of DF on the implicant growth rate

6.5 COMPARISON WITH ESPRESSO AND BOOM

The performance of FC-Min will be evaluated here, in comparison with ESPRESSO [6] and

BOOM [75], [76]. Standard benchmarks and randomly generated problems were processed.

All the BOOM experiments were run on a standard PC with a 900 MHz Athlon processor and

256 MB of RAM.

6.5.1 MCNC BENCHMARKS

As well as BOOM, the FC-Min algorithm was tested on standard MCNC benchmarks [66] and

compared the results and run-times with ESPRESSO [6].

Table 15 shows the results of the suggested MCNC benchmarks [66] and those where FC-Min

has reached a better result than ESPRESSO (the bottom part of the table). The column n/m/p

describes the numbers of input and output variables and the number of defined terms of the

particular benchmark. The ESPRESSO and FC-Min columns indicate the run-times in seconds

and the numbers of literals of the resulting SOP forms, the output costs (the number of inputs into

all output OR gates), and the numbers of product terms. The shadowed cells indicate the shorter

FC-Min run-time or equal or better result quality obtained, respectively.

The depth factor set to 0.5 and only one iteration were sufficient to obtain satisfactory results

for these circuits.

There were 120 benchmark problems solved, plus 19 so-called “hard” MCNC benchmarks.

As a result, 86 (72%) of them were solved by FC-Min in a shorter time than by ESPRESSO.

In 103 cases (86%) FC-Min reached the same or better result (better results, in terms of the

number of literals were obtained in 8 cases) and in 80 cases (67%) the same or better result was

reached in a shorter time than by ESPRESSO.

0 1000 2000 3000 4000 5000

0

1000

2000

3000

4000

5000

6000

Im
p

lic
a

n
ts

 i
n

 p
o

o
l

Iteration

DF growing from 0.10 to 0.90

(9 curves)

60

Table 15 . FC-Min - MCNC benchmarks

 ESPRESSO FC-Min (DF = 0.5)

benchmark n/m/p time lit/out/terms time lit/out/terms

b12 15/9/72 0.08 149/59/42 0.01 148/58/43

cordic 23/2/2105 1.86 13825/914/914 8.08 13825/914/914

cps 24/109/855 0.33 1890/946/163 1.30 1890/946/163

duke2 22/29/404 0.09 751/245/86 0.14 751/245/86

ex1010 10/10/1304 0.50 1974/746/284 0.44 1976/742/284

ex4 128/28/654 0.62 1649/279/279 2.98 1649/279/279

misex2 25/18/101 0.07 183/30/28 0.01 183/30/28

misex3c 14/14/1566 0.98 1306/253/197 0.61 1306/255/197

pdc 16/40/822 0.83 828/432/136 0.32 912/520/145

rd84 8/4/511 0.12 1774/296/255 0.15 1774/296/255

spla 16/46/837 0.71 2558/643/251 0.84 2648/749/260

alu4 14/8/1184 0.59 4445/644/575 1.49 4443/644/575

clip 9/5/271 0.10 630/162/120 0.05 621/162/120

dc2 8/7/101 0.05 207/52/39 0.01 206/51/39

in4 32/20/603 0.17 2151/411/212 0.61 2145/411/212

m4 8/16/329 0.16 640/518/105 0.06 640/509/105

newxcpla1 9/23/93 0.07 197/86/39 0.01 196/86/39

opa 17/69/382 0.11 559/540/79 0.17 560/524/79

soar 83/94/779 0.94 2454/549/353 8.01 2445/549/353

x6dn 39/5/310 0.08 641/177/82 0.04 640/177/82

6.5.2 RANDOMLY GENERATED PROBLEMS – ONE ITERATION

The second set of problems on which FC-Min was tested were randomly generated functions,

functions with no special properties (no aggregated ones in the output matrix, etc.) With a help

of such problems we can easily observe the properties and scalability of the algorithm. As well as

for BOOM, one of the reasons why FC-Min was developed was a need to synthesize the

combinational logic for built-in self-test, namely the output decoder transforming the LFSR

patterns into test patterns pre-generated by an ATPG tool. Both the LFSR and ATPG patterns

mostly have a random nature, and thus the randomly generated benchmarks simulate these

practical problems very well [80], [81].

Problems with a varying number of input variables and terms were generated, the number

of outputs was fixed to 15. These artificial benchmarks were solved by FC-Min, BOOM and

ESPRESSO to compare the performance. Here only one iteration of BOOM and FC-Min was

performed, the FC-Min depth factor was set to 0.9.

The results of the minimization are shown in Table 16. The number of inputs increases in the

horizontal direction (n), the number of care terms in the vertical direction (p). Each of the cells

contains average values of ten problems of the same size that were solved, to ensure steady

statistical values. The first row of each cell in the table contains results obtained by ESPRESSO,

the second one the result obtained by BOOM and the third one by FC-Min. The first number

in each line indicates the run-time in seconds, the second one the number of literals in the SOP

form, the output cost follows and the last value indicates the number of product terms.

We can see that in all the cases FC-Min completed the minimization in a significantly shorter

time than ESPRESSO and BOOM, while the result quality is comparable.

61

Table 16 . Randomly generated problems – one iteration

p / n 25 50 100 150

50 2.27/232/341/49

1.30/413/220/87

0.27/315/305/59

11.34/219/318/48

1.40/428/156/94

0.29/304/241/58

46.35/202/301/46

1.59/412/121/90

0.34/293/195/56

94.64/203/303/47

1.73/371/96/84

0.41/283/181/54

100 10.22/577/687/98

2.59/998/506/168

0.50/716/648/110

100.14/537/576/91

2.56/1103/342/190

0.51/718/491/113

369.45/510/569/90

3.02/1050/244/186

0.64/676/413/106

883.24/488/554/88

3.53/943/186/168

0.79/647/372/102

125 14.44/772/849/123

3.51/1333/650/211

0.66/952/846/137

148.96/710/728/114

3.49/1468/449/237

0.65/927/642/137

756.21/666/704/110

4.23/1408/317/231

0.86/880/519/131

2146.03/652/674/108

4.82/1252/243/211

1.09/829/473/124

150 23.35/973/1005/147

4.71/1691/785/255

0.86/1182/1007/163

283.88/892/869/136

4.63/1849/563/285

0.84/1164/779/164

1111.23/833/800/129

4.72/1761/378/278

1.04/1098/638/157

3422.94/798/773/126

5.65/1613/295/256

1.33/1039/573/148

Entry format: time [s] / # of literals / output cost / # of terms

Lines: ESPRESSO, BOOM, FC-Min

6.6 RANDOMLY GENERATED PROBLEMS – SAME TIME

Next, the same set of problems was solved, but taking advantage of the high level iteration this

time. The functions were minimized by ESPRESSO first, and then both by BOOM and FC-Min,

while the run-time was set to meet the run-time that ESPRESSO needed to reach a solution.

The results are shown in Table 17. The format of the table is retained from the previous

example, except of that only the ESPRESSO run-time is shown, while the number of iterations

(to meet that time) is given in the parentheses for BOOM and FC-Min.

Here FC-Min gives much better results than ESPRESSO, especially for problems with many

input variables. For most of these problems FC-Min outperformed BOOM as well, due to a

relatively high number of outputs (15).

However, for problems with a low number of output variables BOOM is faster and the result

quality is better too. Thus, for an efficient minimization we have to decide whether to use BOOM

or FC-Min, judging by the number of outputs.

62

Table 17 . Randomly generated problems – same time as ESPRESSO

p / n 25 50 100

50

2.15/233/346/49

340/246/70(2)

290/264/58(8)

10.80/218/324/48

294/189/61(7)

252/185/50(28)

51.96/204/309/47

247/139/53(27)

214/150/43(81)

75

5.62/400/513/74

525/381/95(3)

465/394/83(13)

34.37/370/463/70

466/276/86(12)

404/279/71(47)

154.71/357/438/68

423/218/79(35)

357/223/62(99)

100

11.24/581/673/99

768/528/127(4)

659/543/110(19)

84.48/546/586/92

665/358/111(16)

571/365/92(63)

416.29/520/564/90

600/287/102(44)

498/301/80(118)

125

17.75/773/845/123

1010/616/160(4)

868/674/138(22)

157.19/706/722/113

872/459/137(17)

745/456/115(71)

895.25/657/700/110

765/359/122(52)

650/374/99(137)

Entry format: ESPRESSO: time [s] / # of literals / output cost / # of implicants

 next lines: # of literals / output cost / # of implicants (iterations)

Lines: ESPRESSO, BOOM, FC-Min

6.7 INFLUENCE OF THE NUMBER OF OUTPUTS

As it was stated above, FC-Min is efficient (in terms of both the run-time and result quality)

for functions with many output variables. Conversely, its quality lacks for single-output functions,

where the solution is generated purely at random. This issue will be studied here experimentally.

Randomly generated functions with 50 input variables, 200 specified terms of the average

dimension 0.5 were minimized both by FC-Min and ESPRESSO and the result qualities (number

of solution terms) was compared. The ratio of these two values, as a function of output variables,

is shown in Figure 46. Averages from 20 runs (20 different randomly generated functions for each

output variables count) were computed.

We can see that for single-output functions FC-Min produces very inferior results, more than

twice the size of ESPRESSO (ESPRESSO produced results 45% the size of the FC-Min results).

This lack in quality decreases with the increase of the number of outputs (m), for m > 5 the ratio

becomes steady. Let’s note that FC-Min does not reach the quality of ESPRESSO, because only

one FC-Min iteration was conducted, for purpose of credibility of the results. If FC-Min was run

for more iterations, a variety of (almost random, in the single-output functions case) implicants

would be generated and the minimization problem would be left to the covering problem solution

phase. Much better results would be definitely obtained, but they would not precisely reflect the

properties of FC-Min, or particularly, the Find Cover phase.

63

Figure 46 . Influence of the number of output variables

6.8 FC-MIN SCALABILITY

Since FC-Min is a probabilistic randomized algorithm, it is difficult to determine its time

complexity analytically. In order to estimate the time complexity of the method, FC-Min was run

on a large number of randomly generated problems with one parameter varying each time, while

the minimization times were recorded.

The following figures show the time dependencies on the number of input variables (Figure

47), output variables (Figure 48) and the number of care terms (Figure 49). Values of the fixed

parameters are indicated in the figures, the depth factor was set to 0.9.

No exponential growth of time can be observed in any of the curves, thus the method can be

scaled to very large problems while the run-time remains minimal.

Figure 47 . Time complexity as a function of the number of inputs

0 100 200 300 400 500

0

2

4

6

8

10

12

14

16

18

Outputs: 15

Terms: 200

T
im

e
 [

s
]

Inputs

64

Figure 48 . Time complexity as a function of the number of outputs

Figure 49 . Time complexity as a function of the number of the care terms

6.9 RANDOM NUMBER GENERATOR GRANULARITY EFFECTS

Random nature of the Find Cover algorithm guarantees that the search will ever stop. Next,

decreased randomness (random number generator granularity, see Subsection 4.5) decreases the

variety of implicants generated by FC-Min. When FC-Min is run iteratively, this will involve a

reduced implicants growth rate, as in the BOOM case. However, since the algorithm termination

condition is continuous (random() generates real numbers here), much higher granularity is

required for a successful algorithm run. This is documented by Figure 50. A randomly generated

function having 20 inputs, 5 outputs, and 200 terms was minimized, DF was set to 0.8. The values

were obtained by averaging 20 runs. The growth of the number of implicants during 1,000

iterations, for different randomness factors (RFs, see Subsection 4.5) is shown. We can see that

0 20 40 60 80 100 120 140 160 180

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

Inputs: 20

Terms: 200

T
im

e
 [

s
]

Outputs

0 200 400 600 800 1000 1200

0

10

20

30

40 Inputs: 20

Outputs: 20

T
im

e
 [
s
]

Terms

65

even for RF = 100 the implicants number grows rather slowly, compared to RF = infinity.

For DF = 1 the algorithm got stuck, which was expectable.

The solution quality is affected in the same way. RF of at least 1,000 is required, in order

to approach the solution quality of the fully randomized process. The progress of the solution

quality (number of literals) is depicted in Figure 51.

Figure 50 . Derandomized FC-Min – implicants number growth

0 200 400 600 800 1000

500

600

700

800

900

1000

1100

1200 Randomness factors increasingly:

2

3

5

10

100

1000

infinity

L
it

e
ra

ls

Iteration

Figure 51 . Derandomized FC-Min – solution quality

6.10 ASYMPTOTIC COMPLETENESS OF THE ALGORITHM

The completeness of the FC-Min search strategy is discussable. It is complete (up to the UCP

solution algorithm completeness), if the I matrix contains minterms only. This is because of even

though not any implicant can be generated in the Find Cover phase in general, the randomized

Implicant Expansion phase is able to produce any prime implicant. Indeed, there is a non-zero

probability that the Find Cover phase will leave any I matrix minterm untouched, thus any prime

implicant can be obtained just by expanding the I matrix.

If terms of higher dimensions are present in the source, it may happen that some solutions will

not be reached. An example of such a case is generating a consensus of two terms [6]. It requires a

0 200 400 600 800 1000

0

500

1000

1500

2000

2500

3000

3500

4000

RF = inf.

RF = 10,000

RF = 1000

RF = 100

RF = 10

RF = 3

RF = 2Im
p

li
c
a
n

ts
 i

n
 p

o
o

l

Iteration

66

reduction of one term, which is not performed in FC-Min. However, if an implicant reduction

phase was included (see Subsection 5.2.3) in the overall process, FC-Min would be

asymptotically complete too.

6.11 CONCLUSIONS

The last randomized iterative logic optimization algorithm presented was FC-Min, another

SOP minimizer. FC-Min is especially efficient for functions with a large number of output

variables; for single-output functions its behavior is completely chaotic.

Iteration is performed both on low and high level here. As for the high-level iteration, FC-Min

can be run in the same way as BOOM; a valid solution is obtained in every iteration, whereas

each iteration produces different solutions. The solution can be then combined by solving the

covering problem. Since FC-Min is well scalable too, high-level iteration does not introduce any

significant run-time overhead.

Low-level iteration and randomness are employed in the implicants generation phase.

Randomness is in FC-Min used in a completely different way: the implicants generation phase run

is probabilistic, the termination criterion of the Find Cover phase is driven randomly, with a given

probability. This allows this phase generate any solution at all. In combination with low-level

iteration, randomness offers a possibility of setting a trade-off between the solution quality and

run-time.

As well as for BOOM, it was shown that FC-Min is able to outperform the state-of-the-art

SOP minimization tool ESPRESSO – even though inferior results are usually obtained in the first

iteration for complex problems, better solutions than ESPRESSO produces are obtained after

several iterations of FC-Min.

In contrast to the algorithms mentioned in the previous sections, in the case of FC-Min the

minimum required random number generator granularity cannot be analytically computed. In fact,

any loss of randomness involves a loss of efficiency here. Zero randomness makes the algorithm

end up in an infinite loop.

For more details see [89], [90], and [58].

Note that BOOM and FC-Min were later combined to form a universal SOP minimizer

BOOM-II [91], [92]. However, description of BOOM-II is beyond the scope of this work, since

its behavior, in terms of iteration and randomness, is retained from BOOM and FC-Min.

67

7 FINAL CONCLUSIONS AND DISCUSSION
Several different applications of randomness and iteration to logic synthesis and optimization

were introduced and discussed. Logic optimization was understood as a general combinatorial

optimization process; the notion of state space was introduced and discussed for particular

algorithms.

Levels of iterations were defined. Iteration, as a part of single logic synthesis and optimization

steps, was denoted as low-level. Conversely, the high-level iteration meant repeating the whole

synthesis process, in order to improve the result quality in time.

Sources of “external randomness” were explored and its effects were documented. All

examined logic synthesis tools (both commercial and academic) were found to be sensitive

to ordering of variables in the source file submitted to the synthesis, commercial tools were even

sensitive to the ordering of statements (code lines) in the source file. This means, results

of different qualities (in terms of area) are obtained, if just functional equivalence non-disturbing

perturbations of source code statements are applied. Possible reasons for such a behavior were

discussed.

This fact was then further exploited in a method systematically improving the result quality.

Randomness was non-violently introduced into the standard iterative synthesis process, so that

standard synthesis tools can be used. This can be accomplished by randomly permuting variables

before every iteration. A kind of diversification is introduced this way; locally optimum solutions

are more likely escaped. As a result, the iterative power of the whole iterative synthesis process is

increased, yielding systematically better solutions (both in area and time).

Even more diversification and randomness was introduced into the standard synthesis process,

by synthesizing the circuit by parts. Randomly selected continuous parts of the circuit were

extracted and submitted to synthesis separately. This enables producing a larger variety

of different results, possibly due to obscuring misleading structures to the synthesis.

Even higher result quality was obtained, in terms of area. Experiments have shown that the

process behaves rather consistently; the reached improvement was not a “lucky coincidence”, i.e.,

the synthesis process is robust.

The amount of randomness (in terms of the random number generator granularity, not its

quality) necessary to make the algorithm perform well was studied. It was shown that not much

of it is actually required, however definitely the algorithm cannot be run in a deterministic way.

Results obtained by deterministic runs were very inferior.

The minimum necessary random number generator granularity was analytically derived

for this algorithm, as the number of nodes in the initial network.

Next, two randomized iterative sum-of-products (SOP) forms minimizers were introduced.

In both cases, randomness is used to generate a variety of different implicants of the source

function. These are accumulated in progress (high-level iteration) and the final solution is

constructed using all of them, by solving the covering problem. The more implicants are found,

the better solution can be obtained.

The first SOP minimizer, BOOM, does not require too much randomness to perform well.

Actually, the minimum necessary random number generator granularity was analytically derived

as well, as the number of variables in the minimized function.

68

In case of the second minimizer, FC-Min, randomness is additionally employed to drive its

probabilistic run. Every single implicant is generated in a probabilistic way, finding a trade-off

between its quality (ability to cover more on-set terms) and validity. If an invalid implicant

is generated, the generation process is re-run. With no randomness employed, either very poor

solutions are obtained, or the process never terminates. As the probability function is continuous,

the amount of randomness has been found crucial here; the algorithm performs well only with lots

of randomness employed.

All of the proposed algorithms have one thing in common: giving the possibility of obtaining

better solutions, at expense of run-time. Therefore, generally it can be concluded that if there is

enough time for synthesis, and/or results obtained by a conventional synthesis do not meet the

designer’s constraints (area, power consumption, delay, etc.), randomized iterative processes are a

possible choice.

Unfortunately, iteration is not generally accepted by EDA vendors (i.e., producers of the EDA

software). The major objection is the run-time increase. However, sometimes one can improve the

result by orders of magnitude by applying several iterations only.

Conversely, hardware (ICs) designers (i.e., consumers of the EDA software) are not so strictly

against iteration. Often they would be willing to spend more design time to reach better results,

especially when low-power or low-area designs are required.

The main objection against randomness is the inability of reproducing the results; two runs

of a randomized algorithm will return different results. However, in practice this may not be true

as well. We are not speaking about true randomness; it is pseudo-randomness, actually. Thus,

results can easily be reproduced by fixing the pseudo-random number generator seed. Also, the

seed may be specified as a synthesis parameter (among the others, like optimization effort, etc.),

enabling the designer produce possibly different solutions upon his wish.

Besides of acceptance, randomized iterative algorithms offer a possibility of obtaining upper

bounds of complexity of circuits. This could be exploited in many areas, especially in research;

lower bounds show the way and determine the target of synthesis.

To conclude, here are summarized the main features (pros & cons) of randomized iterative

algorithms:

 they may be time-consuming,

 return unpredictable results (as the standard synthesis does too, actually),

 enable exploring a larger (possibly arbitrarily large) state space,

 increase the iterative power of algorithms (w.r.t. standard iterative processes),

 can be used to obtain upper bounds of the circuit complexity (or delay, power, etc.),

 enable discovering different solutions of one problem instance, possibly of the same

quality. Then a secondary quality criterion can be applied over these results,

 offer a trade-off between quality and run-time.

69

REFERENCES
[1] D. Gajski and R. Kuhn, Guest Editor’s Introduction: New VLSI Tools, in Computer,

Vol. 16, No. 12, 1983, pp. 11-14.

[2] G. D. Hachtel and F. Somenzi, Logic Synthesis and Verification Algorithms, Boston, MA,

Kluwer Academic Publishers, 1996, 564 p.

[3] S. Hassoun and T. Sasao, Logic Synthesis and Verification, Boston, MA, Kluwer Academic

Publishers, 2002, 454 p.

[4] W.V. Quine, “The Problem of Simplifying Truth Functions,” in The American

Mathematical Monthly, vol. 59, No. 8, 1952, pp. 521-531.

[5] E.J. McCluskey, “Minimization of Boolean functions,” in The Bell System Technical

Journal, Vol. 35, No. 5, Nov. 1956, pp. 1417-1444.

[6] R.K. Brayton et al., Logic Minimization Algorithms for VLSI Synthesis, Boston, MA,

Kluwer Academic Publishers, 1984, 192 p.

[7] R. L. Ashenhurst, “The Decomposition of Switching Functions,” in Proc. of the

International Symposium on the Theory of Switching, Part I, 29, 1957, pp. 74–116.

[8] H. A. Curtis, A New Approach to the Design of Switching Circuits, Van Nostrand,

Princeton, N.J., 1962, p. 653.

[9] J. P. Roth and R. M. Karp, “Minimization over Boolean Graphs,” in IBM Journal

of Research and Development, Apr. 1962, pp. 227–238.

[10] S. B. Akers, “Binary Decision Diagrams,” in IEEE Transactions on Computers, vol. C-27,

No. 6, June 1978, pp. 509-516.

[11] R. E. Bryant, “Graph Based Algorithms for Boolean Function Manipulation,“ in IEEE

Transactions on Computers, Vol. 35, No. 8, August 1986, pp. 677-691.

[12] O. Coudert and J.C. Madre, “Implicit and Incremental Computation of Primes and Essential

Primes of Boolean functions,” in Proc. of the 29
th
 Design Automation Conference (DAC),

Anaheim, CA, USA, June 1992, pp. 36-39.

[13] O. Coudert, „Doing Two-Level Logic Minimization 100 Times Faster,“ in Proc. of the 6
th

ACM-SIAM Symposium on Discrete Algorithms, San Francisco, California, USA, 1995,

pp. 112-121.

[14] K. Karplus, “Using If-Then-Else DAG’s for Multi-Level Logic Minimization,”

Univ. California, Santa Cruz, UCSC-CRL-88-29, Nov. 1988, p. 21.

[15] C. Yang and M. Ciesielski, “BDS: A BDD-Based Logic Optimization System,” in IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 21,

No. 7, 2002, pp. 866-876.

[16] R. K. Brayton, Richard Rudell, Alberto Sangiovanni-Vincentelli, and Albert R.Wang,

“MIS: a Multiple-Level Logic Optimization System,” in IEEE Transactions on

Computer-Aided Design, Vol. 6, No. 6, Nov. 1987, pp. 1062–1081.

[17] E.M. Sentovich et al., “SIS: A System for Sequential Circuit Synthesis,” Electronics

Research Laboratory Memorandum No. UCB/ERL M92/41, University of California,

Berkeley, CA 94720, 1992, p. 52.

[18] M. Gao, Jie-Hong Jiang, Y. Jiang, Y. Li, S. Sinha, and R.K. Brayton, “MVSIS,” in Notes

of the International Workshop on Logic Synthesis, Tahoe City, June 2001.

[19] Berkeley Logic Synthesis and Verification Group, “ABC: A System for Sequential

Synthesis and Verification” [Online]. Available: http://www.eecs.berkeley.edu/alanmi/abc/.

[20] R. Brayton and A. Mishchenko, “ABC: An Academic Industrial Strength Verification

Tool,” in Proc. of the 22
nd

 International Conference on Computer Aided Verification,

Edinburgh, UK, July 15-19, 2010, LNCS 6174 6174, Springer 2010, pp. 24-40.

70

[21] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust Boolean Reasoning

for Equivalence Checking and Functional Property Verification,” in Transactions

on Computer-Aided Design of Integrated Circuits and Systems, Vol. 21, No. 12, December

2002, pp. 1377-1394.

[22] P. Bjesse and A. Boralv, “DAG-Aware Circuit Compression For Formal Verification,”

in Proc. of IEEE/ACM International Conference on Computer-Aided Design (ICCAD),

2004, pp. 42-49.

[23] A. Biere, “AIGER”, [Online]. Available: http://fmv.jku.at/aiger/.

[24] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “DAG-Aware AIG Rewriting: a Fresh

Look at Combinational Logic Synthesis,” in Proc. of the 43
rd

 Design Automation

Conference (DAC), San Francisco, CA, USA, 2006, pp. 532-535.

[25] A. Mishchenko and R. K. Brayton, “Scalable Logic Synthesis Using a Simple Circuit

Structure,” in Proc. of the 15
th
 International Workshop on Logic and Synthesis (IWLS),

Vail, Colorado, USA, June 7 - 9, 2006, pp. 15-22.

[26] A. Mishchenko, S. Chatterjee, and R. Brayton, “Improvements to Technology Mapping

for LUT-based FPGAs,” in IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, Vol. 26, No. 2, February 2007, pp. 240-253.

[27] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton, “Combinational and Sequential

Mapping with Priority Cuts,” in Proc. of International Conference on Computer-Aided

Design (ICCAD), November 5-8, 2007, San Jose, CA, USA, pp. 354-361.

[28] A. Mishchenko, R. K. Brayton, and S. Chatterjee, “Boolean Factoring and Decomposition

of Logic Networks,” in Proc. of International Conference on Computer-Aided Design

(ICCAD), November 2-5, 2008, San Jose, CA, USA, pp. 38-44.

[29] R. K. Brayton et al., “SAT-based Logic Optimization and Resynthesis,” in Proc.

of International Workshop on Logic Synthesis (IWLS), 2007, pp. 358-364.

[30] A. Saldanha, A. Wang, R.K. Brayton, and A. L. Sangiovanni-Vincentelli, “Multi-Level

Logic Simplification using Don’t Cares and Filters,“ in Proc. of the 26
th
 Design Automation

Conference (DAC), Las Vegas, Nevada, USA, 25-29 June 1989, pp. 277–282.

[31] R.K. Brayton and C. McMullen, “The Decomposition and Factorization of Boolean

Expressions,” in Proc. of the International Symposium on Circuits and Systems (ISCAS),

May 1982, pp. 49–54.

[32] H. Savoj and R.K. Brayton, “The Use of Observability and External Don’t Cares for the

Simplification of Multi-Level Networks,” In Proc. of the 27
th
 Design Automation

Conference (DAC), Orlando, Florida, USA, 1990, pp. 297–301.

[33] R. J. Francis, J. Rose, and K. Chung, “Chortle: A Technology Mapping Program

for Lookup Table-Based Field Programmable Gate Arrays,” in Proc. of the 27
th
 Design

Automation Conference (DAC), Orlando, Florida, USA, June 24-28, 1990, pp. 613-619.

[34] J. Cong and Y. Ding, “FlowMap: An Optimal Technology Mapping Algorithm for Delay

Optimization in Lookup-Table Based FPGA Designs,” in IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, Vo. 13, No. 1, January 1994,

pp. 1-12.

[35] P. Pan and C.-C. Lin, “A New Retiming-Based Technology Mapping Algorithm for

LUT-Based FPGAs,” in Proc. of ACM/SIGDA 6
th
 International Symposium on Field

Programmable Gate Arrays (FPGA), February 22-24, 1998, Monterey, CA, USA,

pp. 35-42.

[36] G. Ausiello et al., Complexity and Approximation, Springer, Nov. 1999, p. 524.

[37] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to the Theory

of NP-Completeness, W. H. Freeman & Co. New York, USA, 1990, p. 338.

[38] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving,

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1984, p. 382.

71

[39] S. Anily and A. Federgruen, “Simulated Annealing Methods with General Acceptance

Probabilities,” in Journal of Applied Probability, Vol. 24, No. 3, Sep. 1987, pp. 657-667.

[40] S. B. Gelfand and S. K. Mitter, “Analysis of simulated annealing for optimization,” in Proc.

of 24
th
 IEEE Conference on Decision and Control, Dec. 1985, pp.779-786.

[41] B. Hajek, “Cooling Schedules for Optimal Annealing,” in Mathematics of Operations

Research, Vol. 13, No. 2, May 1988, pp. 311-329.

[42] J. A. Darringer et al., “Logic Synthesis through Local Transformations,” in IBM Journal

of Research and Development, vol. 25, no. 4, July 1981, pp. 272-280.

[43] J.M. Sanchez and J. Lanchares, “Multilevel Logic Synthesis Using Algorithms Based

on Natural Processes,” in Proc. of the 20
th
 International Conference on Microelectronics,

12-14 Sep. 1995, pp. 823-828.

[44] A. Kuehlmann, P. Färm, and E. Dubrova, “Logic Optimization Using Rule-Based

Randomized Search,” in Proc. of Asia and South Pacific Design Automation Conference

(ASP-DAC), Shanghai, China, 18-21 Jan. 2005, pp. 998-1001.

[45] K. Ohmori and T. Kasai, “Logic Synthesis Using a Genetic Algorithm,” in Proc. of IEEE

International Conference on Intelligent Processing Systems, Beijing, China, 1997,

pp. 137-142.

[46] Z. Vašíček and L. Sekanina: “Formal Verification of Candidate Solutions for

Post-Synthesis Evolutionary Optimization in Evolvable Hardware,” in Genetic

Programming and Evolvable Machines, Springer, Vol. 12, No. 3, March

2011, pp. 305-327.

[47] P. Fišer, J. Schmidt, Z. Vašíček, and L. Sekanina, “On Logic Synthesis of Conventionally

Hard to Synthesize Circuits Using Genetic Programming,” in Proc. of the 13
th
 IEEE

Symposium on Design and Diagnostics of Electronic Systems (DDECS), Vienna, Austria,

14.-16.4. 2010, pp. 346-351.

[48] B.W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for Partitioning Graphs,”

in Bell Systems Technical Journal, Vol. 49, 1970, pp. 291–307.

[49] P. Fišer and J. Schmidt, “A Difficult Example or a Badly Represented One?” in Proc.

of 10
th
 International Workshop on Boolean Problems (IWSBP), Freiberg, Germany,

19.-21.9.2012, pp. 115-122.

[50] P. Fišer and J. Schmidt, “The Observed Role of Structure in Logic Synthesis Examples,”

in Proc. of the 18
th
 International Workshop on Logic and Synthesis, Berkeley (IWLS), CA,

USA, 31.7.-2.8.2009, pp. 210-213.

[51] D. Brand, “Hill Climbing with Reduced State Space,” in Proc. of IEEE International

Conference on Computer-Aided Design (ICCAD), 7-10 Nov. 1988, pp. 294-297.

[52] A.N. Kolmogorov, “Three Approaches to the Quantitative Definition of Information,”

in Problems Information Transmission, Vol. 1, No. 1, 1965, pp. 1–7.

[53] R. Smolensky, “Algebraic Methods in the Theory of Lower Bounds for Boolean Circuit

Complexity,” in Proc. of the 19th annual ACM symposium on Theory of computing

(STOC), ACM, New York, NY, USA, 1987, pp. 77-82.

[54] A. Razborov, “Lower Bounds for the Size of Circuits of Bounded Depth with Basis

{, },” in Math. notes of the Academy of Sciences of the USSR, No. 41, 1987, pp.

333-338.

[55] R. Beigel and J. Tarui, “On ACC,” in Proc. of 32
nd

 Annual IEEE Symposium on

Foundations of Computer Science, IEEE Computer Society Press, Washington, DC, 1991,

pp. 783-792.

[56] [Personal communication with EDA industry]

[57] [Personal communication with ASIC design industry]

72

[58] P. Fišer and J. Schmidt, “How Much Randomness Makes a Tool Randomized?,” in Proc.

of the 20
th
 International Workshop on Logic and Synthesis (IWLS), San Diego, California,

USA, 3.-5.6.2011, pp. 136-143.

[59] P. Fišer and J. Schmidt, “On Using Permutation of Variables to Improve the Iterative

Power of Resynthesis,” in Proc. of the 10
th
 International Workshop on Boolean Problems

(IWSBP), Freiberg, Germany, 19.-21.9.2012, pp. 107-114.

[60] A. Puggelli, T. Welp, A. Kuehlmann, and A. Sangiovanni-Vincentelli, “Are Logic

Synthesis Tools Robust?,” in Proc. of the 48
th
 ACM/EDAC/IEEE Design Automation

Conference (DAC), 5-9 June 2011, pp. 633-638.

[61] B. Bollig and I. Wegener, “Improving the Variable Ordering of OBDDs is NP Complete,”

in IEEE Transactions on Computers, Vol. 45, No. 9, September 1996, pp. 993–1002.

[62] R. Rudell, “Dynamic Variable Ordering for Ordered Binary Decision Diagrams,” in Proc.

of the International Conference on Computer-Aided Design (ICCAD), Santa Clara, CA,

1993, pp. 42-47.

[63] F. Somenzi, “CUDD: CU Decision Diagram Package Release 2.4.1,” University

of Colorado at Boulder, http://vlsi.colorado.edu/~fabio/CUDD [Online].

[64] Berkeley Logic Interchange Format (BLIF), University of California, Brekeley, 2005.

[65] K. McElvain, “IWLS93 Benchmark Set: Version 4.0,” Mentor Graphics, May 15, 1993,

p. 6.

[66] S. Yang, “Logic Synthesis and Optimization Benchmarks User Guide,” Technical Report

1991-IWLS-UG-Saeyang, MCNC, Research Triangle Park, NC, January 1991, p. 45.

[67] A. Mishchenko, S. Chatterjee, R. Brayton, X. Wang, and T. Kam, “Technology Mapping

with Boolean Matching, Supergates and Choices,” ERL Technical Report, EECS Dept., UC

Berkeley, March 2005, p. 7.

[68] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam, “Reducing Structural

Bias in Technology Mapping,” in IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, Vol. 25, No. 12, December 2006, pp. 2894-2903.

[69] V. Bertacco, S. Plaza, “Disjoint Support Decompositions from BDDs through Symbolic

Kernels,” in Proc. of Asia and South Pacific Design Automation Conference (ASP-DAC),

Shanghai, China, 2005, pp. 276-279.

[70] V. N. Kravets and P. Kudva, “Implicit Enumeration of Structural Changes in Circuit

Optimization,” in Proc. of the 41
st
 Design Automation Conference (DAC), San Diego,

California, USA, 7-11 July 2004, pp. 438-441.

[71] http://opencores.org

[72] P. Fišer and J. Schmidt, “It Is Better to Run Iterative Resynthesis on Parts of the Circuit,”

in Proc. of the 19
th
 of International Workshop on Logic and Synthesis (IWLS), Irvine,

California, USA, 18.-20.6.2010, pp. 17-24.

[73] P. Fišer and J. Schmidt, “Improving the Iterative Power of Resynthesis,” in Proc. of 15
th

IEEE Symposium on Design and Diagnostics of Electronic Systems (DDECS), Tallinn,

Estonia, 18.-20.4.2012, pp. 30-33.

[74] P. Raghavan, “Probabilistic Construction of Deterministic Algorithms: Approximating

Packing Integer Programs”, in Journal of Computer and System Sciences, Vol. 37, No. 2,

1988, pp. 130-143.

[75] P. Fišer and J. Hlavička, “BOOM - A Heuristic Boolean Minimizer,” in Computers and

Informatics, Vol. 22, 2003, No. 1, pp. 19-51.

[76] J. Hlavička and P. Fišer, “BOOM, a Heuristic Boolean Minimizer,” in Proc. of

International Conference on Computer-Aided Design (ICCAD), San Jose, California, USA,

4.-8.11.2001, pp. 439-442.

73

[77] M. Chatterjee and D.K. Pradhan, “A Novel Pattern Generator for Near-Perfect Fault

Coverage,” in Proc. of the 13
th
 IEEE VLSI Test Symposium (VTS), 30 Apr.-3 May 1995,

pp. 417-425.

[78] N.A. Touba, E.J. McCluskey “Altering a Pseudo-random Bit Sequence for Scan-Based

BIST,” in Proc. of International Test Conference (ITC), 1996, pp. 167-175.

[79] Y. Tang et al. “X-Masking During Logic BIST and Its Impact on Defect Coverage,”

in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 14, Issue 2,

February 2006, pp. 193-202.

[80] P. Fišer and J. Hlavička, “Column-Matching Based BIST Design Method,” in Proc. of the

7
th
 IEEE Europian Test Workshop (ETW), Corfu, Greece, 26.-29.5.2002, pp. 15-16.

[81] P. Fišer and H. Kubátová, “Pseudo-Random Pattern Generator Design for Column

Matching BIST,” Microprocessors and Microsystems journal, Dependability and Testing

of Modern Digital Systems special issue, Elsevier, vol. 32, Issues 5-6, August 2008, pp.

340-350.

[82] V. Gherman et al. “Efficient Pattern Mapping for Deterministic Logic BIST,” in Proc.

of the International Test Conference (ITC), 26-28 Oct. 2004, pp. 48-56.

[83] P. Fišer and J. Hlavička, “On the Use of Mutations in Boolean Minimization,“ in Proc.

of Euromicro Symposium on Digital Systems Design (DSD), Warsaw, Poland, 4.-6.9.2001,

pp. 300-305.

[84] O. Coudert, “On solving covering problems,” in Proc. of the 33
rd

 Design Automation

Conference (DAC), 3-7 Jun, 1996, pp. 197-202.

[85] E. Goldberg, L. Carloni, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli, “Negative

Thinking by Incremental Problem Solving: Application to Unate Covering,” in Proc.

of International Conference on Computer-Aided Design (ICCAD), Washington DC, USA,

1997, pp. 91-98.

[86] L. P. Carloni, E. I. Goldberg, T. Villa, R. K. Brayton, and A. L. Sangiovanni-Vincentelli,

“Aura II: Combining Negative Thinking and Branch-and-Bound in Unate Covering

Problems,” in Proc. of International Conference on Very Large Scale Integration: Systems

on a Chip, 1999, pp. 346-361.

[87] M. A. Harrison, Introduction to Switching and Automata Theory, McGraw-Hill, 1965,

p. 499.

[88] A. Bernasconi, V. Ciriani, P. Fišer, and G. Trucco, “Weighted Don't Cares,” in Proc. of the

10
th
 International Workshop on Boolean Problems (IWSBP), Freiberg, Germany,

19.-21.9.2012, pp. 123-130.

[89] P. Fišer, J. Hlavička, and H. Kubátová, “FC-Min: A Fast Multi-Output Boolean

Minimizer,“ in Proc. the 29
th
 Euromicro Symposium on Digital Systems Design (DSD),

Antalya, Turkey, 1.-6.9. 2003, pp. 451-454.

[90] P. Fišer and H. Kubátová, “Boolean Minimizer FC-Min: Coverage Finding Process,”

in Proc. of the 30
th
 Euromicro Symposium on Digital Systems Design (DSD), Rennes,

France, 31.8.-3.9. 2004, pp. 152-159.

[91] P. Fišer and H. Kubátová, “Two-Level Boolean Minimizer BOOM-II,” in Proc. of the 6th

International Workshop on Boolean Problems (IWSBP), Freiberg, Germany, 23.-24.9.2004,

pp. 221-228.

[92] P. Fišer and H. Kubátová, “Flexible Two-Level Boolean Minimizer BOOM-II and Its

Applications,” in Proc. of the 9
th
 Euromicro Conference on Digital Systems Design (DSD),

Cavtat, Croatia, 30.8.-1.9.2006, pp. 369-376.

74

LIST OF ABBREVIATIONS AND ACRONYMS
ABC – A system for sequential synthesis and verification

AIG – And-Inverter Graph

ALU – Arithmetic and Logic Unit

ASIC – Application Specific Integrated Circuit

ATPG – Automatic Test Patterns Generator

BDD – Binary Decision Diagram

BIST – Built-In Self-Test

BOOM – Boolean Minimizer

CD-Search – Coverage-Directed Search

DC – Don’t Care

EDA – Electronic Design Automation

ESPRESSO - Heuristic logic minimizer

FC-Min – Find-Cover based Boolean Minimizer

FPGA – Field Programmable Logic Array

GA – Genetic Algorithm

HDL – Hardware Description Language

IC – Integrated Circuit

LFSR – Linear Feedback Shift Register

LSS – An IBM system for production logic synthesis

LUT – Look-Up Table

MVSIS – Multivalued SIS

NP – Non-Deterministically Polynomial

RTL – Register Transfer Language

VHDL – VHSIC Hardware Description Language

VHSIC – Very-High-Speed Integrated Circuit

PI – Primary Input; Prime Implicant

PO – Primary Output

PLA – Programmable Logic Array

SA – Simulated Annealing

SIS – Sequential Interactive System

SOP – Sum-of-Products

UCP – Unate Covering Problem

