
BRNO UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering
and Communication

HABILITATION THESIS

Brno, 2020 Ing. ZDENĚK MARTINÁSEK, Ph.D.

BRNO UNIVERSITY OF
TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING
AND COMMUNICATION
FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

COUNTER MEASURE TECHNIQUES FOR
CRYPTOGRAPHIC ALGORITHMS
ELIMINATING POWER ANALYSIS ATTACKS
TECHNIKY PROTIOPATŘENÍ KRYPTOGRAFICKÝCH ALGORITMŮ
ELIMINUJÍCÍ ÚTOKY PROUDOVOU ANALÝZOU

HABILITATION THESIS
HABILITAČNÍ PRÁCE

AUTHOR Ing. Zdeněk Martinásek, Ph.D.
AUTOR PRÁCE

BRNO 2020

ABSTRACT
This habilitation thesis guides the reader through the power analysis fundamentals in-
cluding the countermeasure techniques. The text focuses on the practical aspects of the
protected implementations of cryptographic algorithms. The results and observations try
to support a more frequent realization of implementations utilizing the countermeasures
in future. This will be possible, because the readers will understand the underlying con-
cepts of the power analysis, how to protect the implementation and how to evaluate the
real leakage of the cryptographic device. In the first part of the thesis, the fundamentals
of the power analysis methods are provided. This knowledge introduces the basic building
blocks to understand the main principle of the power analysis attacks and countermea-
sure techniques. In the second part, the power analysis of protected implementations
is described from a practical point of view. In the last parts, we analyze which profiled
attack has the lowest sensitivity to modifications of the characteristics of leakages. This
is the contribution that reflects the real world situation because datasets often suffer
from errors. Another contribution is the proposal of the hardware implementation where
a hiding technique is utilized.

KEYWORDS
Power Analysis; Countermeasure; Side-Channel Analysis; DPA; DPA Contest; MLP

ABSTRAKT
Tato habilitační práce seznamuje zájemce s podstatou proudové analýzy včetně použí-
vaných metod protiopatření. Text práce se zaměřuje na praktické aspekty chráněných
implementací kryptografických algoritmů. Dosažené výsledky se snaží podpořit častější
budoucí výskyt implementací využívající techniky protiopatření. To bude možné, protože
zájemce porozumí principům proudové analýzy, způsobům jak zabezpečit implementaci
a ověření konečného vyzařování kryptografického zařízení. V první části práce, jsou před-
staveny základy proudové analýzy. Tyto znalosti představují základní stavební kameny
k pochopení používaných technik útoků a protiopatření. V druhé části je realizována
proudová analýza chráněných implementací kryptografickýh algoritmů, která je popsána
z praktického pohledu útočníka. Poslední část práce analyzuje, který profilující útok je
nejméně citlivý na výskyt chyb v proudových průbězích. Tento vlastní přínos reflektuje
skutečné situace z praxe. Další vlastní přínos spočívá v návrhu hardwarové implementace
symetrického šifrování využívající maskování.

KLÍČOVÁ SLOVA
Proudová analýza; protiopatření; analýza postranním kanálem; DPA; DPA Contest; MLP

MARTINÁSEK, Zdeněk. Counter measure techniques for cryptographic algorithms elim-
inating power analysis attacks. Brno, 2020, 144 p. Habilitation thesis. Brno University
of Technology, Faculty of Electrical Engineering and Communication, Department of
Telecommunications.

Vysázeno pomocí šablony ve verzi 3.03; http://latex.feec.vutbr.cz

http://latex.feec.vutbr.cz

DECLARATION

I declare that I have written the Habilitation Thesis titled “Counter measure techniques
for cryptographic algorithms eliminating power analysis attacks” independentlyand using
exclusively the technical references and other sources of information cited in the thesis
and listed in the comprehensive bibliography at the end of the thesis.

As the author I furthermore declare that, with respect to the creation of this Habil-
itation Thesis, I have not infringed any copyright or violated anyone’s personal and/or
ownership rights. In this context, I am fully aware of the consequences of breaking Regu-
lation S 11 of the Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended,
and of any breach of rights related to intellectual property or introduced within amend-
ments to relevant Acts such as the Intellectual Property Act or the Criminal Code, Act
No. 40/2009 Coll., Section 2, Head VI, Part 4.

Brno .
author’s signature

ACKNOWLEDGEMENTS

I would first like to thank my family, especially my wife Krisztina, daughter Julie
and son Zdeněk. I could not have done it without them and without their support.
Second, I would like to thank my dear parents for all their support.

Thanks go out to my colleagues at Brno University of Technology, especially
Prof. Kamil Vrba and Assoc. Prof. Václav Zeman for their assistance (academic,
scientific, and otherwise) through the course of this work.

Contents

Introduction 10

1 THESIS OVERVIEW 11
1.1 Motivation . 11
1.2 Goals . 12
1.3 Contribution and Relation to Author’s Publications 12
1.4 Structure . 15

2 Power Analysis Fundamentals 16
2.1 Profiling Power Analysis Attacks . 17

2.1.1 Standart Template Attack . 18
2.1.2 Template Attack Based on Machine Learning 22

2.2 Non-profiling Power Analysis Attacks 27
2.2.1 Correlation Coefficient . 30
2.2.2 Difference of Means . 33
2.2.3 Power Simulation Models . 34

2.3 Countermeasure Methods . 36
2.3.1 Hiding . 36
2.3.2 Masking . 39

2.4 Attacks on Countermeasure Methods 40
2.4.1 Attack on Hiding . 41
2.4.2 Attack on Masking . 44

3 Study of Protected Implementations 51
3.1 DPA Contest V4.1 . 52

3.1.1 Description of Countermeasures Implementation 53
3.1.2 Power Analysis Realized . 54

3.2 DPA Contest V4.2 . 60
3.2.1 Description of Countermeasures Implementation 61
3.2.2 Power Analysis Realized . 63

3.3 Robustness of Profiling Attacks . 77
3.3.1 Description of Scenarios and Testbed 77
3.3.2 Scenario 1: experimental results for mistakes 79
3.3.3 Scenario 2: experimental results for misalignments 80
3.3.4 Scenario 3: experimental results for noise 81
3.3.5 Scenario 4: experimental results for DC offset 83
3.3.6 Summary . 83

3.4 k-Nearest Neighbors in Power Analysis 84
3.4.1 Description of Scenarios and Testbed 92
3.4.2 Implemented Program . 95
3.4.3 Results Evaluation . 97
3.4.4 Summary . 107

4 Protected Hardware Implementation 109
4.1 State of the Art . 111
4.2 Contribution . 112
4.3 Preliminaries and System Architecture 113
4.4 Authentication Subsystem Implementation 115
4.5 FPGA Subsystem Implementation . 116
4.6 Summary . 121

5 Conclusion 124

Bibliography 126

Author’s selected publications since 2014 141

List of abbreviations 143

List of Figures
2.1 Power consumption of MOV instruction. 20
2.2 Example of template attack based on MLP. 26
2.3 Diagram of the general schema of DPA. 28
2.4 Result of DPA attack based on correlation coefficient. 31
2.5 Size of the correlation depending on the number of power traces. . . . 31
2.6 Example of PGE for the first key byte. 32
2.7 Example of resulting matrix R for Difference of Means. 34
2.8 Power consumption model of Hamming weight. 35
2.9 Main groups of Hiding methods. 37
2.10 Example of AES S-box shuffling. 38
2.11 Comparison of DPA attack efficiency result based on alignment traces. 41
2.12 Comparison of DPA attack efficiency result based on misalignment

traces. 42
2.13 Comparison of DPA attack efficiency based on traces with 𝑆𝑁𝑅 = 5. 43
2.14 Typical result of second-order DPA attack based Messerges approach

[100]. 45
2.15 Scheme of protected algorithm implemented [146]. 47
2.16 Example of power trace hardware masked implementation. 48
2.17 Result of GE of SODPA for 𝑘1, 𝑘9 and 𝑘13. 49
2.18 Result of SODPA attack based on correlation coefficient. 50
2.19 Size of the correlation depending on the number of power traces. . . . 50
3.1 Example of one power traces for DPA Contest V4.1. 53
3.2 Result of CPA for operation Plaintext blinding. 56
3.3 Block diagram of the proposed attack. 57
3.4 PGE for secret key of the DPA contest V4.1. 59
3.5 Example of the power trace. 61
3.6 Results of CPA for Mask loading operation. 65
3.7 Results of CPA for Shuffle loading operation. 65
3.8 Results of CPA for SubByte operation, shuffle values are known. . . . 66
3.9 Results of CPA for SubByte operation, shuffle values are unknown. . . 67
3.10 Results of the first CPA attack, shuffle values were known. 68
3.11 Size of the correlation depending on the number of power traces for

the first attack. 68
3.12 Results of the second CPA attack, shuffle values were unknown. . . . 68
3.13 Size of the correlation depending on the number of power traces for

the second attack. 68
3.14 Block diagram of the attack proposed. 69

3.15 Obtained results of the secret offset revelation. 72
3.16 Obtained results of the shuffle revelation. 72
3.17 Obtained results of secret key revelation. 75
3.18 Obtained results of DPA Contest evaluation. 76
3.19 Probability to retrieve the target value as a function of the number

of mistakes in profiling set (DPA Contest V4.2). 79
3.20 Probability to retrieve the target value as a function of the number

of misalignments in profiling set (DPA Contest V4.2). 80
3.21 Probability to retrieve the target value as a function of the number

of misalignments in attacking set (DPA Contest V4.2). 81
3.22 Probability to retrieve the target value as a function of the number

of misalignments in profiling and attacking sets (DPA Contest V4.2). 81
3.23 Probability to retrieve the target value as a function of the SNR in

profiling set (DPA Contest V4.2). 82
3.24 Probability to retrieve the target value as a function of the SNR in

attacking set (DPA Contest V4.2). 82
3.25 Probability to retrieve the target value as a function of the DC offset

applied on the leakages from the profiling set (DPA Contest V4.2). . 83
3.26 Chronology order of statistical techniques in power analysis attacks

[47]. 87
3.27 Example of 𝑘-NN classification. 90
3.28 Scatter plot of two interesting points that leak HW. 91
3.29 Detail of the scatter plot for HW0 and HW1. 91
3.30 Example of IPs for DS1. 93
3.31 Characteristics of DS1. 93
3.32 Example of IPs for DS2. 94
3.33 Characteristics of DS2. 94
3.34 Example of IPs for DS3. 94
3.35 Characteristics of DS3. 94
3.36 Block scheme of our testing program. 96
3.37 Classification results DS1. 101
3.38 Classification results DS2. 101
3.39 Classification results DS3. 101
3.40 Success rate of the secret offset revelation based on 100 power traces

of DS2. 103
3.41 Success rate of the secret offset revelation based on 250 power traces

of DS2. 103
3.42 Success rate of the secret offset revelation based on 500 power traces

of DS2. 103

3.43 Success rate of the secret offset revelation based on 1000 power traces
of DS2. 103

3.44 ROC analysis for individual bits of DS1. 106
3.45 ROC analysis for individual bits of DS2. 107
3.46 ROC analysis for individual bits of DS3. 107
4.1 Basic architecture of the proposed system. 114
4.2 NFB-200G2QL FPGA network card [136]. 116
4.3 Scheme of implemented components. 117
4.4 Block scheme of the IPsec component (used 2x in our implementation).118
4.5 The scheme of the application core of the encryption system. 119
4.6 Data flow diagram on the network card. 119
4.7 Result of the CPA attack for unprotected HW implementation. 122
4.8 Size of the correlation for unprotected HW implementation. 122
4.9 Results of the CPA attack for parallel HW implementation. 122
4.10 Size of the correlation for parallel HW implementation. 122

INTRODUCTION
Side-channel attacks analyze physical characteristics of cryptographic devices re-
lated to the execution of the implementation of a cryptographic algorithm. The
physical analysis aims to extract stored sensitive information such as the secret
key. From an industrial point of view, Side-Channel Analysis (SCA) leads to ex-
tremely effective and successful attacks against (certified and uncertified) industrial
products such as embedded computers, smart cards, tokens or secure cryptographic
algorithms such as symmetric AES (Advances Encryption Standard) or asymmetric
RSA (Rivest Shamir Adleman). The rationale is that there is a relationship between
the manipulated data, the executed operations and the physical properties observed
during the execution of the cryptographic device. The physical properties that can
be extracted are, for example, the execution time of a cryptographic algorithm, the
electromagnetic emanation or the power consumption of the device.

In this habilitation thesis, we focus on side-channel attacks based on the power
consumption called Power Analysis (PA) although our observation can be applied
similarly to other physical properties. The purpose of this habilitation thesis is to
provide description of countermeasure techniques that can be implemented in order
to protect cryptographic algorithms against these types of attacks. Moreover, the
thesis summarizes the author’s results achieved in the field of power analysis attacks
that aim to resilient implementations of cryptographic algorithms.

The text is structured in a way that a reader obtains basic theoretical knowledge
about power analysis in the first chapter. In the following chapter, the overview of
the countermeasure techniques is provided. The most important observations are
explained by theoretical and practical examples that are based on unprotected and
protected AES implementations on smart cards. It represents the expected peda-
gogical contribution of this thesis because a reader is able to understand the basic
principles of power analysis attacks and the usage of countermeasure techniques.
Based on this obtained knowledge, one is naturally able to propose a resilient imple-
mentation of any cryptographic algorithm. In the last sections, the main scientific
contribution of the thesis is provided. The main contribution lies in the finding
which profiled attack has the lowest sensitivity to modifications of the characteris-
tics of leakages and we propose the hardware implementation utilizing the hiding
technique in order to prevent power analysis attacks.

10

1 THESIS OVERVIEW
This chapter provides an overview of the thesis. Firstly, the motivation of the work
is presented in Sec. 1.1. Secondly, the thesis objectives and main goals are described
in Sec. 1.2. The contribution to current state, the relation to author’s publication
and pedagogical contribution is described in Sec. 1.3. Finally, the structure of the
thesis is outlined in Sec. 1.4.

1.1 Motivation
Nowadays, the provision of security services in modern communication systems is
crucial. The number and variety of electronic services utilizing various devices are
rapidly growing and the need for better protection is becoming more and more
pressing. Therefore, these deployed embedded systems and especially their security
play an important role in our everyday life. Some typical applications of these
systems are in critical domains like health care, banking sector, traffic management,
data-centres, power-grids, etc. Side channel attacks are powerful attacks that employ
the side channel leakage of embedded devices such as timing execution or power
consumption to obtain sensitive information.

Power analysis measures and analyses the power consumption of cryptographic
devices depending on their activity in order to obtain sensitive information, mostly
the secret key. The power analysis is very popular with attackers because it is
not necessary to possess any special device. Nowadays, power analysis represents
an extremely effective and successful type of attacks to break confidential crypto-
graphic algorithms such as AES [1, 113, 46], RSA (Rivest Shamir Adleman) [55, 35],
Elliptic-Curve [109, 103], Diffie-Hellman [26] post-quantum schemes[62, 115] and
cryptographic devices such as smart cards [24, 78]. Power analysis attacks can be
prevented by means of countermeasure techniques that are divided into two basic
groups: masking [104, 99] and hiding [27]. The goal of every countermeasure is to
make the power consumption of a cryptographic device independent of intermediate
values that are processed during its operation. However, these techniques can also
be attacked very easily [83, 113, 78], therefore it is important to pay attention to
correct implementations of countermeasures.

The motivation is evident, it is not enough to select a secure cryptographic al-
gorithm in order to fulfill the desired security service, but it is also crucial to realize
an implementation that does not leak sensitive information. The thesis describes
the fundamentals of the power analysis methods and the countermeasure techniques
including the possible attacks targeted on protected implementations from a prac-
tical point of view. The motivation is to raise awareness about power analysis and
to support realization of protected cryptographic algorithms in future.

11

1.2 Goals
Based on the above written facts, the main goal of the thesis is to describe the
fundamentals of the power analysis methods including the countermeasure tech-
niques. Moreover, we focus on practical aspects of the protected implementation
and description of the possible attacks. We want to support realization of protected
cryptographic algorithms in future, because the readers will understand the under-
lying concepts of power analysis, how to protect the implementation and how to
evaluate the real leakage of the cryptographic device. We contribute to this field by
proposing a protected hardware implementation which is the last important goal of
the thesis. The goals of the thesis are summarized below.

• The first goal of the thesis is to provide the basic theory regarding power
analysis and countermeasure techniques.

• The second goal of the thesis is to provide the basic theory regarding the
attacks targeting the countermeasure techniques.

• The third goal of the thesis is to provide theory regarding the attacks targeting
the protected implementation from a practical point of view. All realized ana-
lyzes are performed with the help of publicly available power traces, therefore
the obtained results can be easily verified by the readers.

• The fourth goal of the thesis is to propose a novel cryptographic algorithm that
is protected by hiding. The implementation utilizes the independent operation
and the hardware platform with a wide data-path.

1.3 Contribution and Relation to Author’s Publica-
tions

The thesis is written in a way to have both scientific and pedagogical contribution.
Therefore, it should serve the readers who are unfamiliar with the power analysis as
well as students to gain fundamental knowledge about the power analysis methods
including the countermeasure techniques. The theoretical chapter devoted to the de-
scription of the power analysis fundamentals allows the readers to easily understand
how these attacks work. A lot of figures and school examples are used in the theoret-
ical chapter in order to complement the text in an appropriate manner. In this way,
the readers can observe for example a direct impact of countermeasure techniques on
power consumption and, what is more important, on the resulting attack. Readers,
who are the future designers of cryptographic systems, can profit from the knowl-
edge obtained in order to design a more secure implementation and evaluate the
resilience of the final implementation. Power analysis, has been intensively studied

12

by the author in the last decade [92, 84, 87, 95, 90, 85, 86, 91, 89, 94, 97, 80]. In the
first two introductory subsections (Sec. 2.1 and Sec. 2.2), we build on the knowl-
edge obtained (from above written works) and on the results of the Ph.D. thesis [79].
The main contribution of the Ph.D. thesis was the proposal of the power analysis
attack based on a machine learning approach. The countermeasure methods were
not touched in the Ph.D. thesis, none of the results presented in this thesis was
published in the author’s Ph.D. thesis. Naturally, the author’s interests moved to
the countermeasure methods after successfully dealing with power analysis attacks.

The following theoretical subsections (Sec. 2.3 and 2.4) are based on current
results dealing with countermeasure methods [151, 157, 81, 148, 150, 156]. These
sections also represent the pedagogical contribution of the thesis and parts of the
chapter were used in a university textbook of the Information Security study pro-
gram at Brno University of Technology, where the author is involved [163, 162].
Moreover, the contents of these sections was also presented by the author at invited
lectures, for the Military Research Institute, Brno security meeting and the Smart
Cards & Devices Forum.

After these introductory chapters, the text describes outcomes of author’s own
research on resilience of protected implementations. This chapter contains various
results from selected author’s publications such as [151, 157, 93, 70, 83]. In the
first section (Sec. 3.1), pedagogical contribution is focused on power analysis of
protected implementations. In this section, we describe masking and hiding coun-
termeasure techniques including the power analysis from a practical point of view.
More precisely, Boolean masking and shuffling of the crucial operations of the AES
are attended in our education text as well as a short current state description. As an
elementary school example, we bring in to play the DPA Contest because it is world
wide known and freely available. Therefore, the reader can verify herself/himself
the obtained results which is the best way to understand the explained issues. Parts
of the chapter are used in the course System and Device Security of the Informa-
tion Security study program at Brno University of Technology, where the author is
involved.

The following sections (Sec. 3.2, 3.3 and 3.4) present the main scientific contri-
bution of the thesis. The text is a part of the author’s papers in the journals with
an impact factor, namely, Computers & Security [83], IET Information Security [70]
and Radioengineering [93]. In this part, we investigate the security of the improved
implementation of AES (V4.2). We used the basic power side-channel techniques,
in the same way as a potential adversary would do, and try to analyse the sensitive
information. Our analysis, focused on exploiting the first-order leakage, discovered
some mistakes. Based on the results, an adversary can launch a standard DPA at-
tack aimed at the S-box output in order to recover the whole secret key. Moreover,

13

we focus on finding which profiled attack (among conventional profiled attacks and
profiled attacks based on machine learning) has the lowest sensitivity to modifica-
tions of the characteristics of leakages. This is the contribution that reflects the real
world situation because datasets often suffer from various errors or distortions in the
measured leakages that may affect the efficiency of the attacks. This variability can
occur due to several factors such as human errors, instrument malfunction (due to
device ageing), variability across different devices or different acquisition campaigns.

In the last chapter (Chap. 4), we propose the hardware implementation where
four parallel AES cores and a 512 bit data-path are utilized in order to protect
the implementation. In fact, it is one way how to increase the noise of operations
because several independent operations are executed in parallel (hiding technique).
This section is the scientific contribution of the thesis and the amended version of
the text is a part of the author’s paper of the ASHES’18 ACM conference [154].
More details about the realized implementation are provided in the articles [153,
161, 159, 149, 160].

The contribution of the text can be summarized as follows.
• Pedagogical contribution: In the first two introductory sections (Sec. 2.1

and Sec. 2.2), we describe the fundamentals of the power analysis methods. In
particular, we explain the principle of profiling power analysis attacks utiliz-
ing the standard Gaussian approach, profiling based on machine learning and
non-profiling power analysis attacks based on the Correlation coefficient and
Difference of Means. This knowledge introduces the basic building blocks to
understand the main principle of the power analysis attacks. In order to design
a secure implementation, it is crucial to understand the essence of the attack.
The following theoretical section (Sec. 2.3) describes the basic countermeasure
techniques. However, these techniques can also be attacked very easily in prac-
tice, therefore it is crucial to pay attention to the correct implementation of
the countermeasure. This issue is addressed in Sec. 2.4 and in Sec. 3.1, where
we describe the masking and hiding countermeasure techniques including the
power analysis from a practical point of view. More precisely, the Boolean
masking and shuffling are attended in our education text as well as a short
current state description. As an elementary school example, we bring in to
play the DPA Contest because it is world wide known and freely available.
Therefore, the reader can verify herself/himself the obtained results. Parts
of the chapter were used in a university textbook of the Information Security
study program at Brno University of Technology, where the author is involved.
Moreover, the contents of the sections was presented by the author at invited
lectures for the Military Research Institute and the Smart Cards & Devices
Forum.

14

• Scientific contribution: Chap. 3 and Chap. 4 contain various results from
selected author’s publications in journals with an impact factor. In this part
(Sec. 3.2), we investigate the security of improved protected implementations.
Our analysis, focused on exploiting the first-order leakage, discovered some
lacks that an adversary can use and realize a standard DPA attack. More-
over, we focus on the finding which profiled attack has the lowest sensitivity
to modifications of the characteristics of leakages (3.3 and 3.4). This is the
contribution that reflects the real world situation because datasets often suffer
from errors or distortions in the measured leakages. In the last chapter (Chap.
4), we propose the hardware implementation where four parallel encryption
cores and a 512 bit data-path are utilized in order to protect the implemen-
tation. It is one possibility how to increase the noise of operations because
several independent operations are executed in parallel. The text presents the
full description of the architecture, simulation results and the results of the
practical implementation on the NFB-200G2QL network card based on the
Xilinx Virtex UltraScale+ chip.

1.4 Structure
The text of the thesis is structured into 5 chapters. Chap. 1 Thesis Overview gives
the general overview of the scope and goals of the thesis. The chapter contains text
describing the main motivation (Sec. 1.1), goals (Sec. 1.2), contribution (Sec. 1.3)
and text structure (Sec.0 1.4).

Chap. 2 Power Analysis Fundamentals provides readers with the fundamentals
of the power analysis methods, namely profiling power analysis attacks (Sec. 2.1)
and non-profiling power analysis attacks (Sec. 2.2). Moreover, the chapter provides
the description of basic countermeasure techniques, namely countermeasure methods
(Sec. 2.3) and attacks on countermeasure methods (Sec. 2.4).

In Chap. 3, the description of the practical attacks targeting protected im-
plementations is provided, all examples are based on a publicly available dataset
(power traces). Furthermore, the text contains the analysis of the current state of
the techniques utilized to protect AES implementations.

In Chap. 4, the proposal of a cryptographic algorithm that is protected by
hiding is described. The implementation utilizes the independent operation and the
hardware platform with a wide data-path. The text presents full description of the
architecture, simulation results and the results of the practical implementation on
the network card.

15

2 Power Analysis Fundamentals
This chapter that represents the pedagogical contribution of the thesis contains
the theory necessary for understanding the power analysis. Parts of the chapter
are used in a university textbook of the Information Security study program at
Brno University of Technology, where the author is involved [163, 162]. We provide
a brief overview of well know techniques that are utilized nowadays in order to
attack implementations of cryptographic protocols. We introduce basic approaches
of power analysis including the basic countermeasure methods.

The power analysis (PA) was introduced by Kocher and generally includes two
basic methods: simple PA and differential PA [58]. In the simple power analysis
(SPA), the adversary tries to determine the secret key directly from the measured
traces. A typical example is the attack on an asymmetric cryptographic algorithm
implementation [55]. On the other hand, the goal of the differential power analysis
(DPA) attacks is to reveal the secret key of the cryptographic device by using a
large number of power traces that were recorded while the device was encrypting or
decrypting input data.

From a different perspective, one can divide the power analysis attacks into two
main categories, namely profiling and non-profiling attacks. In profiling attacks,
the adversary needs physical access to a pair of identical (similar) devices that we
call the profiling device and the target device. Basically, these attacks consist of
two phases: the profiling phase and the attack phase. In the first phase (profiling),
the adversary analyzes the profiling device in order to approximate the leakage
behavior and in the second phase (attack), the adversary attacks the target device.
Typical examples are the Template-based Attack (TA) [21, 78, 24] and the Stochastic
Approach (SA) [129, 128]. Practical aspects of template attacks have been discussed
in [124, 42]. The profiling phase of TA was improved in [5, 7, 24]; in recent years, the
cryptographic community has been exploring the potential of TA based on machine
learning approaches [54, 68, 8, 69, 71, 81, 23, 50]. By contrast, non-profiling attacks
are one-phase attacks that perform the attack directly on the target device. The
adversary measures a set of power traces from known plain text and compares these
real power traces with hypothetical power consumption values. Such values were
previously calculated based on a secret key hypothesis and a power consumption
model [19, 2]. The comparison can be carried out by using diverse statistical methods
[78]. After the analysis, only the correct key hypothesis will show dependency
between the hypothetical and the actual power consumption measured.

16

2.1 Profiling Power Analysis Attacks
In the following, we use capital letters for random variables and small caps for their
realizations. We use sans serif font for functions (e.g., F) and calligraphic fonts for
sets (e.g., 𝒜). We denote the conditional probability of a random variable 𝐴 given
𝐵 with Pr [𝐴 | 𝐵]. Let 𝑙𝑦 be a leakage measured (power trace) on a device that
manipulates a target value 𝑦 (also known as label and class). Let 𝑙𝑗

𝑦 be the 𝑗-th
measured leakage associated with the target value 𝑦. Let 𝑙𝑦 (𝑡) be the 𝑡-th time
sample (also known as a feature) of the leakage trace 𝑙𝑦. This sample represents the
interesting point of a leakage. We consider contexts where each trace 𝑙𝑦 represents
a vector of 𝑛𝑠 interesting points.

𝑙𝑦 = [𝑙𝑦 (𝑡) ∈ R | 𝑡 ∈ [1; 𝑛𝑠]] . (2.1)

The samples are defined as the sum of a data-dependent leakage function (denoted
as 𝛿) and a random part representing the noise (denoted as 𝜖), that is:

𝑙𝑦 (𝑡) = 𝛿𝑡 (𝑦) + 𝜖𝑡. (2.2)

We will sometimes omit the subscripts for simplicity. The profiling set ℒPS (some-
times denoted as a training set or a learning set) represents a set of 𝑁𝑝 (profiling)
leakages measured on a device under control and similar to the target device. This
set of leakages allows during the profiling step to estimate a parameter 𝜃 used in
the profiled model (denoted A(ℒAS, 𝜃)) that returns, during the attack step, the
most probably target value 𝑦 based on an attacking set ℒAS (that contains attack
leakages) obtained by measuring the target device. Algorithm 1 summarises how
a profiled model A(·, ·) predicts the target value with a profiling and an attacking
sets.

Algorithm 1 How to predict the most likely target value associated with ℒAS.
Require: A profiling set ℒPS and an attacking set ℒAS

Ensure: The prediction 𝑦 of a profiled model A(·, ·)
1. Profiling step:

(a) Implement the crypto algorithm on a controlled device (similar to the
target device)

(b) Collect a set of profiling leakages for each target value on the controlled
device

(c) Estimate the parameter 𝜃 with the profiling set (denoted ℒPS)
2. Attack step:

(a) Collect a set of attack leakages (denoted ℒAS) on the target device
(b) 𝑦 = A(ℒAS, 𝜃)

17

2.1.1 Standart Template Attack

Side-channel attack based on templates is a typical example of the profiling attack
and exploits how the power consumption depends on the processed data. In template
attacks (TA), a multivariate normal distribution is used to characterize the power
traces of the profiling device. In other words TAs use the profiling set ℒPS in order
to estimate a leakage model per target value 𝑦 denoted as P̂rmodel

[︁
𝑙𝑦 | 𝜃𝑦

]︁
where 𝜃𝑦

represents the (estimated) parameters of the leakage probability density function.
During the attack step, template attacks use an attacking set ℒAS and select the
target value 𝑦 maximizing the product of posterior probabilities:

𝑦 = A(ℒAS, 𝜃) = argmax
𝑦

∏︁
𝑙∈ℒAS

P̂rmodel
[︁
𝑙 | 𝜃𝑦

]︁
· Pr[𝑦]

P̂rmodel[𝑙]
, (2.3)

where 𝜃 represents the set of parameters. We consider that the parameter 𝜃𝑦 corre-
sponds to the mean vector �̂�𝑦 and the covariance matrix Σ̂𝑦 of the Gaussian (leakage)
probability density function associated with the target value 𝑦 as proposed by the
seminal work of Chari et al. [22], i.e.:

P̂rmodel
[︁
𝑙 | 𝜃𝑦 = {�̂�𝑦, Σ̂𝑦}

]︁
= 1√︁

(2𝜋)𝑛𝑠 det(Σ̂𝑦)
𝑒− 1

2 (𝑙−�̂�𝑦)Σ̂−1
𝑦 (𝑙−�̂�𝑦)⊤

, (2.4)

where det(Σ̂) denotes the determinant of the matrix Σ̂. We call this conventional
template attack as the Classical Template Attack (CTA) in the following. Further-
more, we consider the Efficient Template Attack (ETA) suggested by Choudary et
al. [24] in which we pool the covariance matrices across all the target values. In
other words, ETA estimates one covariance matrix with all the leakages obtained
in the profiling set. As might be expected, the template that leads to the highest
probability indicates the correct prediction of the target value 𝑦:

argmax
∀𝑦

P̂rmodel
[︁
𝑙 | {�̂�𝑦, Σ̂𝑦}

]︁
. (2.5)

During the attack phase, some difficulties occur that are related to the covariance
matrix. First, the size of the covariance matrix grows quadratically with the number
of points in the trace. Therefore, we focus the profiling phase only on the interesting
points in power trace that leakage information. In this respect, the selection of
interesting points is a crucial aspect of every profiling power analysis attacks. Some
usual techniques utilized to localize interesting points are: Normalized Inter-Class
Variance (NICV) [13], Sum Of Squared pairwise Differences (SOSD) [36], Sum Of
Squared pairwise T-differences (SOST) [36], Principal Components Analysis (PCA)
[96, 9] or Pearson Correlation [78]. Second, the covariance matrix tends to be badly
conditioned [24]. This means, we run into numerical problems during the inversion,

18

which needs to be done in Eq. 2.4. Also, the values that are calculated in the
exponent tend to be very small, which often leads to more numerical problems. To
avoid the exponentiation, one can apply the logarithm to Eq. 2.4 and then, the
template which leads to the smallest absolute value of the logarithm indicates the
desire value:

ln P̂rmodel
[︁
𝑙 | 𝜃𝑦

]︁
= −1

2(ln((2 · 𝜋)𝑛𝑠 · det(Σ̂𝑦)) + (𝑙 − �̂�𝑦) · Σ̂−1
𝑦 · (𝑙 − �̂�𝑦)⊤), (2.6)

argmin
∀𝑦

⃒⃒⃒
P̂rmodel

[︁
𝑙 | {�̂�𝑦, Σ̂𝑦}

]︁⃒⃒⃒
. (2.7)

One can set the covariance matrix equal to the identity matrix to avoid problems
with the inversion of the covariance matrix. This essentially means that we do not
take the covariances between the points into account. A template that only consists
of a mean vector is called a reduced template. Setting the covariance matrix equal
to the identity matrix simplifies the multivariate normal distribution:

ln P̂rmodel
[︁
𝑙 | 𝜃𝑦

]︁
= −1

2(ln((2 · 𝜋)𝑛𝑠) + (𝑙 − �̂�𝑦) · (𝑙 − �̂�𝑦)⊤). (2.8)

Elementary Example of the Template Attack

In the previous text, template attacks that allow exploiting the data dependency
in power traces were introduced. Therefore, the following text describes a practical
example of these attacks. In this elementary example, we investigate how to ap-
ply the concept of a template attack that is aimed at a real cryptographic module
constituted by the micro-controller PIC16F84A. At first, the AES algorithm was im-
plemented into a cryptographic module using the assembly language. We measured
power traces that correspond with the AddRoundKey operation that is executed by
MOV and XOR instructions for various input data. Measured power traces of the MOV
instruction are depicted in Fig. 2.1. From the power traces we can observe the
following facts.

• Several points within the power trace are proportional or inversely proportional
to the Hamming weight (HW) of the processed data (it depends on the type of
the data-bus, in our case, the power consumption is inversely proportional to
the Hamming weight because our micro-controller has a precharged data-bus).

• Moreover, 9 groups corresponding with the Hemming weight of processed data
are clearly distinguished and the distances between the groups are nearly equal.

• Therefore, we assume that it is possible to build templates that allow us to
classify MOV instructions according to the Hamming weight. These templates
allow us to deduce the Hamming weight of the processed data during the
attack phase.

19

Fig. 2.1: Power consumption of MOV instruction.

In this example, we need to built nine templates altogether to cover every Ham-
ming weight of processed data (8 bit micro-controller, 𝑦 = (0, . . . , 8)). Remember
that a template consists of a mean vector and a covariance matrix, ℎ𝑦 = (�̂�𝑦, Σ̂𝑦).
As pointed out before, the size of the covariance matrix grows quadratically with
the number of points therefore we have to identify the interesting points in order
to minimize the templates size. We localized the interesting points, for which the
power traces differ significantly, directly from Fig. 2.1. Finally, we took four of those
points in order to create the templates (𝑛 = (4091, 4105, 4119, 4134)). The example
of the template ℎ0 = (�̂�0, Σ̂0) that operates on data with the Hamming weight 0 is
given by the following equation:

Σ̂0 =

⎛⎜⎜⎜⎜⎜⎝
2, 94 −1, 45 0, 61 −0, 14

−1, 45 1, 02 −0, 65 0, 23
0, 61 −0, 65 1, 07 −0, 34

−0, 14 0, 23 −0, 34 0, 28

⎞⎟⎟⎟⎟⎟⎠ · 10−4, (2.9)

�̂�0 =
(︁
0, 47 0, 32 0, 17 0, 18

)︁
(2.10)

The profiling phase is finished when the desired templates are built. Now, we
examine how well these templates match to nine power traces, stored in the matrix
ℒAS, that have been acquired during the attack phase. The first power trace 𝑙0, i.e.
the first row of ℒAS, corresponds to the execution of the MOV instruction with data
of Hamming weight 0, the second power trace 𝑙1 corresponds to data with Hamming
weight 1, etc.

20

ℒAS =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0, 48 −0, 33 0, 18 −0, 19
0, 73 −0, 41 0, 23 −0, 24
0, 95 −0, 54 0, 30 −0, 31
1, 14 −0, 66 0, 37 −0, 36
1, 36 −0, 72 0, 41 −0, 39
1, 54 −0, 82 0, 47 −0, 43
1, 72 −0, 92 0, 50 −0, 45
1, 91 −1, 00 0, 59 −0, 50
2, 05 −1, 11 0, 65 −0, 55

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.11)

Now, we match our templates prepared in the profiling phase with the first power
trace 𝑙1 of ℒAS by computing the equation 2.8. The results are:

ln P̂rmodel(𝑙0; ℎ0) = 15, 05 (2.12)
ln P̂rmodel(𝑙0; ℎ1) = −28, 36 (2.13)
ln P̂rmodel(𝑙0; ℎ2) = −93, 40 (2.14)
ln P̂rmodel(𝑙0; ℎ3) = −166, 37 (2.15)
ln P̂rmodel(𝑙0; ℎ4) = −291, 90 (2.16)
ln P̂rmodel(𝑙0; ℎ5) = −543, 02 (2.17)
ln P̂rmodel(𝑙0; ℎ6) = −953, 24 (2.18)
ln P̂rmodel(𝑙0; ℎ7) = −2, 06 · 103 (2.19)
ln P̂rmodel(𝑙0; ℎ8) = −2, 50 · 104 (2.20)

The template ℎ0 fits best the first power trace 𝑙0, since this provides the lowest
absolute value. Indeed the trace 𝑙0 was acquired where the MOV instruction processed
data with the Hamming weight equal to 0. To finalize the attack phase explanation,
Tab. 2.1 summarizes calculation of the template matching in integer numbers for
every row of the matrix. We observe, that every of the 9 target values was revealed
correctly and our prepared templates can be utilized to uncover the HW of the
processed data.

It is obvious, that our example signified the basic utilization of a standard tem-
plate attack. Similarly, as in our simple example, an adversary is able to prepare
templates for various intermediate values. As an illustration, the output of the first
S-box of the AES algorithm is selected and 256 templates prepared in order to re-
veal the secret key are stored. Another typical example is a template preparation to
reveal mask values of a resilient implementation where countermeasure techniques
are implemented.

21

Tab. 2.1: Results of template matching of whole ℒAS.

𝑙0 𝑙1 𝑙2 𝑙3 𝑙4 𝑙5 𝑙6 𝑙7 𝑙8

ℎ0 15 -222 -702 -1233 -2216 -3051 -3822 -5410 -6337
ℎ1 -28 9 -47 -182 -368 -610 -940 -1264 -1646
ℎ2 -93 -8 11 -35 -121 -247 -410 -636 -865
ℎ3 -166 -58 4 8 -22 -85 -181 -318 -471
ℎ4 -292 -151 -38 5 8 -17 -71 -174 -300
ℎ5 -543 -329 -145 -45 -2 10 -20 -97 -208
ℎ6 -953 -625 -354 -177 -69 -4 9 -30 -110
ℎ7 -2067 -1429 -932 -568 -296 -113 -17 9 -36
ℎ8 -25016 -17357 -12407 -8642 -4826 -2606 -999 -163 13

2.1.2 Template Attack Based on Machine Learning

In recent years, the cryptographic community has explored new approaches in power
analysis based on machine learning (ML). In general, machine learning approaches
can be classified as supervised [61] and unsupervised learning [43]. Intuitively, in
supervised learning, the machine is presented with a set of training data with the
label and the goal is to determine the general function that associates the data with
the label. In unsupervised learning, the machine is presented with a set of unlabeled
data, and the machine tries to determine the hidden structure of the data. From
the description above, one can clearly see an analogy between machine learning
approaches and power analysis attacks. More specifically, profiling attacks are a
supervised learning problem, where ML techniques are used for a model creation of
the target device. The most commonly used techniques are listed in the following
text.

Support Vector Machines

Support Vector Machines (SVM) are the most successful techniques in classifica-
tion [28]. In a binary classification setting (e.g., y = -1 or y = 1), if the two classes
are separable, SVM compute from the profiling set a separating hyperplane 𝑤⊤𝑇 +𝑏

(where 𝑤 and 𝑏 are estimated values) allowing to estimate the target value 𝑦 from
a leakage 𝑙 according to the decision rule:

𝑦 = A(𝑙, 𝜃) =

⎧⎪⎨⎪⎩1 𝑤⊤𝑙 + 𝑏 > 0
−1 otherwise

, (2.21)

where 𝜃 = {𝑤 ∈ R𝑛𝑠 , 𝑏 ∈ R}, and {−1, 1} represents the space of target values.

22

In order to reduce the error due to noise in the profiling leakages, SVM select the
hyperplane with the maximal margin, where the margin is the sum of the distances
from the hyperplane to the closest profiling leakages of each of the two classes.
Cortes et al. [28] show that solving the following convex optimisation problem allows
to select the value of 𝑤 and 𝑏 that maximise the margin:

min
𝑤

1
2(𝑤⊤𝑤), (2.22)

subject to:
𝑦(𝑤⊤𝑙𝑗

𝑦 + 𝑏) ≥ 1 ∀𝑗, 𝑦 (2.23)

in the case of binary labels 𝑦 ∈ {−1, 1}. By introducing Lagrange multipliers
(denoted by 𝛼𝑗,𝑦 ∈ R), Cortes et al. show that the convex optimisation problem
can be solved with a linear weighted sum of the profiling leakages. As a result, the
decision rule becomes:

𝑦 =

⎧⎪⎨⎪⎩1 𝑤⊤𝑙 + 𝑏 > 0 ⇔
(︁∑︀

𝑙𝑗𝑦∈ℒPS
𝛼𝑗,𝑦 × 𝑦 × 𝑙𝑗

𝑦

)︁⊤
𝑙 + 𝑏 > 0

−1 otherwise
. (2.24)

In a compact manner, we write the decision rule as follows:

𝑦 =

⎧⎪⎨⎪⎩1 ∑︀
𝑙𝑗𝑦∈ℒPS

𝛼𝑗,𝑦 × 𝑦 × 𝜑
(︁
𝑙𝑗
𝑦, 𝑙
)︁

+ 𝑏 > 0
−1 otherwise

, (2.25)

where 𝜑 performs the product of two vectors. An interesting feature of the SVM
is that it is possible to adapt the classifier to nonlinear classification tasks by per-
forming a nonlinear transformation 𝜙 of the leakages, the decision rule becomes:

𝑦 =

⎧⎪⎨⎪⎩1 ∑︀
𝑙𝑗𝑦∈ℒPS

𝛼𝑗,𝑦 × 𝑦 × 𝜑
(︁
𝜙
(︁
𝑙𝑗
𝑦

)︁
, 𝜙 (𝑙)

)︁
+ 𝑏 > 0

−1 otherwise
. (2.26)

We suppose that 𝜅(·, ·) (called the kernel function) performs the transformation
𝜑 (𝜙 (·) , 𝜙 (·)) leading to the decision rule:

𝑦 =

⎧⎪⎨⎪⎩1 ∑︀
𝑙𝑗𝑦∈ℒPS

𝛼𝑗,𝑦 × 𝑦 × 𝜅
(︁
𝑙𝑗
𝑦, 𝑙
)︁

+ 𝑏 > 0
−1 otherwise

. (2.27)

Our experiments that are presented in the following section (Sec. 3.3) consider
a Radial Basis kernel Function 𝜅 (RBF), which is a commonly encountered solu-
tion. The radial basis kernel function maps the leakages into an infinite dimensional
Hilbert space in order to find a hyperplane that efficiently discriminates the leak-
ages. RBF is defined by a meta-parameter 𝛾 related to the complexity of the model.
In our experiments, we set 𝛾 equal to 1

𝑛𝑠
, which is a natural choice to compensate

23

the increase of the model complexity due to the increase of the number of points per
leakage. SVM can be generalised to multi-class problems. In our experiments (Sec.
3.3), we consider the “one-against-all” approach. In a one-against-all strategy, the
adversary builds one binary support vector machine for each target value in order
to separate leakages of that target value from leakages of other target values.

Random Forests

Random Forests (RF) represent a set of Decision Trees (DT). DT are structured as
diagrams made of nodes and directed edges, where nodes can be of three types: root
(i.e., the top node in the tree), internal and leaf. We consider DT in which (1) the
value associated to a leaf is a label, (2) each edge is associated to a test on the value
of a feature, and (3) each internal node has one incoming edge from a node called
the parent node and two outcoming edges to two nodes (called left child and right
child).

In the profiling step, the DT generator first associates the whole profiling set to
the root. Then the generator splits the set associated to the node in two subsets
(called left set and right set) based on a feature that most effectively discriminates
the set of leakages associated to different target values. Each newly created subset is
associated with a child node: the left set (respectively the right set) is associated to
the left child (respectively the right child). The tree generator repeats this process
on each derived subset in a recursive manner, until the gain to split the subset is
less than some threshold. Eventually, the learning algorithm assigns to each leaf the
majority class of leakages in that node. The tree construction may be followed by an
additional step called the pruning step in which the DT is simplified by substituting
a single leaf in place of a whole sub-tree. In the attack step, the model predicts the
label by applying the classification rules (represented by the conditions along the
path from the root to a leaf) to the unlabelled leakage to be classified.

RF were introduced by Breiman in 2001 to address the problem of instability
in large DT, where by instability we denote the sensitivity of a DT structure to
small changes in the profiling set (also known as the variance issue) [15]. In order
to reduce the variance, RF rely on the principle of models averaging by building
a number of DT and returning the most consensual prediction. This means that
the predicted output 𝑦 of an attack leakage is calculated through a majority vote
of the set of trees. RF are based on two aspects. First each tree is constructed
with a different set of profiling leakages through the boostrapping method. This
method builds a profiling set (called a bootstrap sample) for each DT by sampling
with replacement the original profiling set. Secondly, each tree is built by adopting
a random partitioning criterion. This idea allows to obtain decorrelated trees, thus

24

improving the accuracy of the resulting RF. More precisely, in conventional DT each
node is split using the best split among all features. In the case of RF, each node
is split using the best among a subset of features randomly chosen at that node.
In our practical experiments in power analysis attacks (Sec. 3.3), we consider a
subset of √

𝑛𝑠 features. Also, unlike conventional DT, the trees of the RF are fully
grown and are not pruned. In other words, each leaf contains leakages associated
to the same target value. This implies the null profiling error but a large variance
and consequently a small success rate for each single tree. The average of trees
represents a remedy to the variance issue, and allows the design of an overall more
accurate predictor.

Multilayer Perceptrons

We use MultiLayer Perceptrons (MLP) executing basic functions called neurons (also
known as perceptrons) that output values between −1 and 1. A neuron generates
the output value 𝑦 by executing the composition of two functions f and g, that is:

𝑦 = f (g (𝑥, 𝜃)) , (2.28)

where 𝑥 = [𝑥(0), 𝑥(1), ..., 𝑥(𝑁)] is the input vector, f (·) is a nonlinear function
(called the activation function), and g (·, 𝜃) is a linear function (parameterized by 𝜃)
allowing to transform a vector of real numbers to a scalar. Our experiments consider
the nonlinear weighted sum function, equation 2.28 can be rewritten as:

𝑦 = f (g (𝑥, 𝜃)) = f
(︃

𝑁∑︁
𝑖=0

𝑤(𝑖)𝑥(𝑖) + 𝜎

)︃
, (2.29)

where 𝜃 is represent with weights [𝑤(0), 𝑤(1), ..., 𝑤(𝑁)] and bias 𝜎. The MLP in-
crease the capacity of a neuron by grouping neurons in two or more layers. The
connection between the 𝑖-th neuron and the 𝑗-th neuron is defined by the weight
𝑤𝑗(𝑖) and 𝜎𝑗 (where 𝜃𝑗 = [𝑤𝑗(0), 𝑤𝑗(1), ..., 𝜎𝑗] is the parameter of the 𝑗-th neuron).
The first, the last and the middle layers are called respectively input, output and
hidden layers.

The input of a neuron in a (hidden or output) layer equals to the weighted output
of the neurons associated to the previous layer. In power analysis attacks, the input
layer contains 𝑛𝑠 neurons (i.e., one input neuron per feature) while the output layer
contains 𝑌 neurons (where 𝑌 is the number of possible target values). As a result,
based on one leakage 𝑙, each neuron from the input layer (1) manipulates one point
in the leakage 𝑙, and (2) forwards the result of the manipulation to the next layer.
Eventually, each neuron from the output layer provides a score for each target value
associated to the input leakage 𝑙, and the predicted value 𝑦 represents the target
value having the highest score.

25

The profiling step adjusts each parameter 𝜃𝑗 to achieve a desired output value.
For this, the network of neurons uses a supervised learning technique called the
backpropagation algorithm that minimizes for each leakage in the profiling set the
difference between the target value and the target value generated by the network.
For the sake of shortness, we refer to the book of Bishop [14] for a deeper introduction
to multilayer perceptrons and to [88, 92, 81] for a presentation of MLP in power
analysis. Our power analysis experiments use two-layers neural networks containing
200 neurons in the hidden layer and using the sigmoid function as the nonlinear
function f (·).

Elementary Example of Machine Learning Approach

As in the previous standard template attack,in this section we provide a practical
elementary example of a template attack based on machine learning. We chose the
MLP as a representative because it is the most used technique together with the SVM
approach. One more time, we utilize power traces that correspond with the AES
implementation on PIC16F84A and our attack reveals the HW of the MOV instruction
during the AddRoundKey operation. The profiling set ℒPS, same as attacking set
ℒPS, contains 500 power traces. Implementation of machine learning algorithms
can be accomplished in various environments. In Fig. 2.2, our implementation in
RapidMiner studio is depicted. We chose this implementation due its simplicity.

Fig. 2.2: Example of template attack based on MLP.

The result of the attack, or rather classification, in the context of machine learn-
ing, is mostly in a form of a confusion matrix. This matrix evaluates all guesses
carried out during the attack phase and it is often used together with the guessing
entropy as a metric of different side-channel attacks comparison [135, 34]. Inter-
ested readers can consult [132] to obtain additional explanation about performance
measurements for classification, e.g. confusion matrix, precision, recall.

26

The resulting confusion matrix corresponding with the HW revelation is shown
in Table 2.2. Each column of the table corresponds to the correct values of the
target (in this example HW of a byte) and each row corresponds to the predicted
values. For example, HW with zero value (the first column) was wrongly estimated
two times as 𝐻𝑊 = 1. This HW was classified 53 times correctly. On the other
hand, there was no wrong estimate for the HW values equal to 2, 3, 4, 5, 6, 7 and 8.
Accuracy of the classification was 99, 47%.

Tab. 2.2: Confusion matrix for HW classification utilizing the MLP.

true HW 0 HW 1 HW 2 HW 3 HW 4 HW 5 HW 6 HW 7 HW 8

pred. HW 0 53 2 0 0 0 0 0 0 0
pred. HW 1 1 57 0 0 0 0 0 0 0
pred. HW 2 0 0 71 0 0 0 0 0 0
pred. HW 3 0 0 0 69 0 0 0 0 0
pred. HW 4 0 0 0 0 56 0 0 0 0
pred. HW 5 0 0 0 0 0 58 0 0 0
pred. HW 6 0 0 0 0 0 0 72 0 0
pred. HW 7 0 0 0 0 0 0 0 69 0
pred. HW 8 0 0 0 0 0 0 0 0 67

2.2 Non-profiling Power Analysis Attacks
A setup of the Diferential Power Analysis (DPA) deploying the correlation coefficient
and the Hamming weight power consumption model represents a typical example
of non-profiled attacks. Therefore the following text describes the general schema
of the DPA attacks [78]. DPA requires a large amount of measured waveforms of
current consumption of cryptographic devices which encrypt or decrypt the input
data. DPA uses mathematical tools, namely the statistical analysis and techniques
to determine the secret key from measured power consumptions. The general schema
of DPA composed of five steps that are graphically shown in Fig. 2.3 [80]1.

In the first step of the DPA attack, the attacker determines the intermediate
value of the encryption algorithm, which is performed by a cryptographic device.
This internal value must be a function 𝑓(𝑑, 𝑘), where 𝑑 are known input data (typi-
cally plain text or cipher text) and 𝑘 represents a small part of the secret key, which
the attacker wants to establish (mostly the first byte).

1In the typical example of a DPA attack, the intermediate value is the output of the SBOX
operation in the first round of the AES algorithm. The figure follows this application

27

∙ ∙ ∙

∙
∙
∙ ∙ ∙

 ∙

∙ ∙ ∙

∙
∙
∙

256 keys (0 to 255)

2
0
0
 d

at
a

b
lo

k
s

H = (hi,j)200,256 hi,j = HW(vi,j)

∙ ∙ ∙

∙ ∙ ∙

∙
∙
∙ ∙ ∙

 ∙

∙ ∙ ∙

∙
∙
∙

5000 samples

2
5
6
 k

ey
s

v
al

u
e

(0
 t

o
 2

5
5
)

R = (ri,j)256,5000

∙ ∙ ∙

∙ ∙ ∙

∙
∙
∙

∙ ∙
 ∙

∙ ∙ ∙

∙
∙
∙

5000 samples

2
0
0
 t

ra
ce

s

T = (ti,j)200,5000

∙ ∙ ∙

Correlation

S
ea

rc
h
ed

 k
ey

 v
al

u
e

(S
ec

re
t

k
ey

)

The time moment in which the cryptographic

device works with intrinsic value

V = (vi,j)200,256 vi,j = S(di XOR ki)

R = corr (T,H)

The time moment in which the cryptographic

device works with intrinsic value

Searched correct key value

Fig. 2.3: Diagram of the general schema of DPA.

28

The second step of the DPA attack is a measurement of the power consumption
of the cryptographic device which is encrypting or decrypting different blocks of
data 𝐷. For all encryption and decryption operations, the attacker needs to know
the value of the processed data 𝑑, which is directly used for calculation of the
intrinsic value determined in the first step. Known values are written in the vector
d = (𝑑1, . . . , 𝑑𝐷)′, where 𝑑𝑖 indicates the result of the 𝑖-th block of the processed
input data. The attacker records the power consumption during performing these
operations. To each power consumption ti

′ = (𝑡𝑖,1, . . . , 𝑡𝑖,𝑇), where 𝑇 denotes the
duration of the power trace, corresponds one value of processed data 𝑑𝑖. The attacker
measures the power consumption of each block of processed data 𝐷, therefore the
traces can be written as a matrix T with dimensions 𝐷 × 𝑇 . Precision and correct
alignment of the measured power consumption (synchronization) is critical for DPA
attacks. In other words, it means that the value of the current consumption in any
column of the matrix must correspond to the same operation.

The third step is the calculation of a hypothetical intrinsic value for every possi-
ble key estimation 𝑘. Possible key values can be written as a vector k = (𝑘1, . . . , 𝑘𝐾),
where 𝐾 is the total number of possible keys. Individual elements of the vector are
called hypotheses or estimates of the key. The attacker is able to easily calculate
the hypothetical intrinsic value as a function 𝑓(𝑑, 𝑘) for all cryptographic opera-
tions 𝐷 and for all hypotheses keys 𝐾 from known data vector d and from the key
hypothesis. The result is the matrix V.

The fourth step is mapping hypotheses intrinsic values, it means matrix V, into
a matrix H which is representing the hypotheses values of the power consumption.
The simulation of power consumption is used for this purpose. The created model of
power consumption assigns for each hypothetical intrinsic value 𝑣𝑖,𝑗 a hypothetical
power consumption value ℎ𝑖,𝑗. The quality of the simulation strongly depends on
the knowledge of the attacker about the analyzed device. The better the simulation
of the attacker matches the actual power consumption characteristics of the device,
the more effective the DPA attack is.

In the fifth step, the hypothetical values of power consumption which depend on
keys hypotheses are compared with measured power traces. The result is a matrix
R. Each element 𝑟𝑖,𝑗 of the matrix R is the comparison between the columns hi

and tj. The comparison is based on statistical methods which are discussed in the
following chapter. All methods have the same main attribute that the higher the
value 𝑟𝑖,𝑗 is, the better the columns hi and tj match.

29

2.2.1 Correlation Coefficient

The correlation coefficient is one of the best known methods to determine the linear
relationship between two random variables. Therefore, it is also a suitable method
for performing DPA attacks. A very well defined theory exists for the correlation
coefficient which can be used to model the static properties of DPA attacks. The
correlation coefficient is defined by the covariance as follows:

𝜌(𝑋, 𝑌) = 𝐶𝑜𝑣(𝑋, 𝑌)√︁
𝜎2(𝑋) · 𝜎2(𝑌)

. (2.30)

It is a dimensionless quantity and it can only take values between plus and minus
one −1 ≤ 𝜌 ≤ 1. Value −1 of the correlation coefficient denotes indirect dependence
(change in one group is accompanied by an opposite change in the second group).
Value 0 indicates that detectable statistic dependence between values of the two
groups does not exist. If the correlation coefficient is equal to 1, it indicates a direct
dependence or a perfect correlation between the values of the two groups. Also 𝜌

is typically unknown and must be estimated. The estimator 𝑟 is defined by the
following equation:

𝑟 =
∑︀𝑛

𝑖=1(𝑥𝑖 − 𝑥) · (𝑦𝑖 − 𝑦)√︁∑︀𝑛
𝑖=1(𝑥𝑖 − 𝑥)2 ·∑︀𝑛

𝑖=1(𝑦𝑖 − 𝑦)2
. (2.31)

In DPA attacks, the correlation coefficient is used to determine the linear de-
pendence between the columns ℎ𝑖 and 𝑡𝑗 were 𝑖 = 1, . . . , 𝐾 and 𝑗 = 1, . . . , 𝑇 . The
result is a matrix R containing correlation coefficients and each value 𝑟𝑖,𝑗 is based
on elements of 𝐷 from the columns ℎ𝑖 and 𝑡𝑗. Using the previous definition of the
correlation coefficient, we can rewrite Eq. 2.31 as:

𝑟𝑖,𝑗 =
∑︀𝐷

𝑑=1(ℎ𝑑,𝑖 − ℎ𝑖) · (𝑡𝑑,𝑗 − 𝑡𝑗)√︁∑︀𝐷
𝑑=1(ℎ𝑑,𝑖 − ℎ𝑖)2 ·∑︀𝐷

𝑑=1(𝑡𝑑,𝑗 − 𝑡𝑗)2
, (2.32)

where ℎ𝑖 and 𝑡𝑗 indicate average values of the columns ℎ𝑖 and 𝑡𝑗 .

Elementary Example of DPA Attack

In the example, we consider a smart card based on the chip Atmel ATMega-163, and
we decided to choose the output byte of the first S-box of the unmasked software
AES implementation. This intermediate value is a function of the first byte of plain
text and the first byte of the secret key (the first step). In our test-bed, we recorded
the power consumption of the smart card during the first round of AES while it
has encrypted 300 different plain texts. This second step led to the matrix T that
contains power traces. The following step of the DPA attack lies in calculation of

30

Fig. 2.4: Result of DPA attack based on
correlation coefficient.

Fig. 2.5: Size of the correlation depending
on the number of power traces.

hypothetical intermediate values based on the 300 known plain texts. In other words,
we have to calculate 𝑣𝑖,𝑗 = 𝑆𝐵𝑂𝑋(𝑑𝑖 ⊕ 𝑘𝑗), where 𝑑1, . . . , 𝑑300 are the first bytes of
all plain texts and 𝑘𝑗 for 𝑗 = 0, . . . , 256 represents the key hypothesis. Resulting
matrix V has hence the size of 300×256 values. The fourth step comprises mapping
of the matrix V to the matrix of hypothetical power consumption values denoted as
H. In the example attack, we utilized a Hamming weight power simulation model
(power simulation models are explained in Sec. 2.2.3) because it corresponds to
the device under attack in the best way. During the last step, we calculated the
correlation coefficients between all columns of the matrix H and all columns of the
matrix T. The result of this calculation is a matrix R of correlation coefficients.

In practice, there exist several different ways how to visualize the resulting matrix
R. One of these ways is to display each row of the matrix in a single plot and the
plot with the highest peak is distinguished by using different colors. Naturally, this
marked plot should correspond with the correct key hypothesis. We present this
example in Fig. 2.4. It can be observed that there are very high peaks in the plot
only for the correct key hypothesis. In fact, all other values of R are significantly
smaller. This fact provides to the attacker basically two pieces of information. The
value of the first secret key byte and the time intervals where SubBytes operation
is performed for the first byte of the plain text. In our example, the first byte of the
secret key equals to 130 and the SubBytes operation is performed at 2 · 105 and at
2.7 · 105. Moreover, we observe that the chosen intermediate value is used in several
instructions. This is very typical for software implementations because after the
intermediate value is calculated, it is usually moved from a register to memory and
later it is loaded back from memory to the register for subsequent operations of the
algorithm.

31

Fig. 2.6: Example of PGE for the first key byte.

Frequently, in scientific and education literature, dependence of the correlation
coefficient on the number of power traces is depicted in a plot in order to demonstrate
the complexity of the attack realization. This complexity is given by the number of
power traces necessary to reveal the secret key with certainty. This plot is depicted
in Fig. 2.5. It is conspicuous that an attacker needs about 30 power traces in our
example attack (this observation applies also for the remaining key bytes).

To express the effectiveness of a DPA attack, one often utilizes a metric denoted
as guessing entropy (GE). Furthermore, the guessing entropy is a metrics suitable for
the evaluation of various implementations of power side-channel attacks. It describes
the amount of attacker’s work necessary to learn the complete key. Therefore the
subsequent sections employ this metric . The guessing entropy is defined as follows:
let g = [𝑝1, 𝑝2, . . . , 𝑝𝑁] contain the probabilities 𝑝1 ≥ 𝑝2, ≥ . . . , ≥ 𝑝𝑁 of all possible
key candidates after attack realization. Indices 𝑖 correspond with the correct key in
g. After the realization of 𝑆 experiments, one obtains a matrix G = [𝑔1, ..., 𝑔𝑆] and
a corresponding vector i = [𝑖1, . . . , 𝑖𝑆]. Then the guessing entropy determines the
average position of the correct key:

𝐺𝐸 = 1
𝑆

𝑆∑︁
𝑥=1

𝑖𝑥. (2.33)

In other words, the guessing entropy describes the average number of guesses, re-
quired for recovering the secret key [134, 49]. In the following text, we use this value
as a metric for individual key bytes revelation (sometimes, the value is denoted as
the partial guessing entropy PGE). The plot of PGE is depicted in Fig. 2.6. It
confirms that an attacker needs 29 power traces to reveal the firs key byte.

32

2.2.2 Difference of Means

The basis of statistical methods based on the difference of means is a comparison of
two measured groups by calculating the difference of the mean values of these groups.
A systematic description of the method is given in [58] and the optimization of this
method is described in [84]. This method uses a different technique to determine
the relationship between the columns of the matrices H and T.

The attacker creates a binary matrix H which divides the measured power traces
into two groups. Sequence of zeros and ones in each column H is a function of the
input data 𝑑 and estimates the key value 𝑘𝑖. In order to determine if the estimate of
the key 𝑘𝑖 is correct, the attacker can divide the matrix T into two sets of lines (two
sets of power consumption) by ℎ𝑖. The first set contains the lines of T, where the
index corresponds to the positions of zeros in the vector ℎ𝑖. The second set contains
the remaining rows of T. Subsequently, the attacker calculates the means of the
rows. Vector 𝑚

′
0𝑖 denotes the averages of the rows in the first set and 𝑚

′
1𝑖 denotes

the means of the second set. Estimation 𝑘𝑖 of the key is correct, if there is a marked
difference between 𝑚

′
0𝑖 and 𝑚

′
1𝑖. This difference indicates the relationship between

ℎ𝑐𝑘 and some of the columns T. As in the previous case, this difference indicates the
point at time, where the intrinsic values corresponding to ℎ𝑐𝑘 are processed. In other
moments, the differences between mean vectors are zero. The result of the attack is
the matrix R, where each row corresponds to the difference between vectors 𝑚

′
0𝑖 and

𝑚
′
1𝑖 for one estimate key value. Equations to calculate R according to the difference

of means method are given:

𝑚
′

1𝑖,𝑗 = 1
𝑛1𝑖

·
𝑛∑︁

𝑙=1
ℎ𝑙,𝑖 · 𝑡𝑙,𝑗, (2.34)

𝑚
′

0𝑖,𝑗 = 1
𝑛0𝑖

·
𝑛∑︁

𝑙=1
(1 − ℎ𝑙,𝑖) · 𝑡𝑙,𝑗, (2.35)

𝑛1,𝑖 =
𝑛∑︁

𝑙=1
ℎ𝑙,𝑖, (2.36)

𝑛0𝑖 =
𝑛∑︁

𝑙=1
(1 − ℎ𝑙,𝑖), (2.37)

R = M1 − M0, (2.38)

where 𝑛 is the number of rows of the matrix H, in other words, this parameter
represents the number of measured power consumptions. Fig. 2.7 depicts the result
of the differential power analysis based on Difference of Means. The attack aims at
the first byte of AES that was implemented on the smart card. Red color corresponds
with the correct guess key byte and the blue color represents the wrong key byte
guesses. It is clear, that the row of the matrix R with the highest peak corresponds
with the correct key guess.

33

Fig. 2.7: Example of resulting matrix R for Difference of Means.

2.2.3 Power Simulation Models

A really crucial process is the mapping of hypothetical intrinsic values to hypothet-
ical values of power consumption during the fourth step of the DPA attack (Sec.
2.2). For this purpose power simulation models are used. These models are mostly
easy because the attacker does not have any detailed knowledge about the device
under attack.

Hamming weight model (HW) is the basic power simulation model and it is
usually used when the attacker does not have any information about the netlist of
the device and about the processing data. Hamming weight equals to the number of
non-zero symbols in a symbol sequence. The attacker expects that the power con-
sumption is directly proportional to the number of non-zero bits in the processed
data. The data values that were processed before or after this value are ignored.
For this reason, the HW model is not suitable for simulation of the CMOS (Com-
plementary Metal–Oxide–Semiconductor) circuits but the experimental results from
practice show that the Hamming weight of currently processed data is dependent on
the power consumption of CMOS circuits and it can be used. The Hamming weight
model is depicted in Fig. 2.8 with blue color.

The second basic power simulation model is the Hamming distance model
(HD). The attacker expects that the power consumption is directly proportional to
the number of changed data values in the processed data. The HD model is very
suited to describe the power consumption of data buses. The attacker can map the
data which are transmitted via a data bus to the value of power consumption without
the knowledge of the device netlist. Power consumption, which is caused by a change

34

Fig. 2.8: Power consumption model of Hamming weight.

of the data bus value from 𝑣0 to 𝑣1 is proportional to 𝐻𝐷(𝑣0, 𝑣1) = 𝐻𝑊 (𝑣0 ⊕ 𝑣1).
Similarly, it can be applied to other buses such as the address buses.

The third well know power consumption model is the Zero-vale model (ZV).
This model expects that for each intermediate value equal to zero, we set the hy-
pothetical power consumption also to zero value. In all other cases, the model
assumes the hypothetical power consumption equal to one. It is clear, that the
attacker will need more power traces to realize a successful attack because only
one intermediate value leakages information. This model is typically used to at-
tack the hardware implementation of a cryptographic algorithm that utilized the
FPGA (Field-Programmable Gate Array) platform. The ZV model is depicted in
Fig. 2.8 with red color. Table 2.3 summarizes the most common applications of
power consumption models in power analysis attacks.

Tab. 2.3: Application of power consumption model in power analysis attacks.

Name Calculation in DPA Application
HW model ℎ𝑖,𝑗 = 𝐻𝑊 (𝑆(𝑑𝑖 ⊕ 𝑘𝑗)) Software implementation (smart card)
HD model ℎ𝑖,𝑗 = 𝐻𝐷((𝑑𝑖 ⊕ 𝑘𝑗), 𝑆(𝑑𝑖 ⊕ 𝑘𝑗)) CMOS microcontrollers
ZV model ℎ𝑖,𝑗 = 𝑍𝑉 (𝑆(𝑑𝑖 ⊕ 𝑘𝑗)) Hardware implementation FPGA

35

2.3 Countermeasure Methods
PA attacks can be prevented by means of countermeasure techniques. The goal of
every countermeasure is to make the power consumption of a cryptographic device
independent of intermediate values that are processed during its operation phase.
Generally, countermeasure techniques are divided into two basic groups: masking
[104, 99] and hiding [27]. In the masking approach, each intermediate value is
concealed by a random mask. By contrast, hiding tries to break the link between
the power consumption and the processed data values.

2.3.1 Hiding

Hiding utilizes two approaches to achieve the power consumption independent of
the intermediate values and independent of the operations that are performed. The
first approach is to build devices whose power consumption is random. In practice,
it means that in each clock cycle a random amount of power is consumed. The
second approach is to build devices whose power consumption is constant for all
operations and for all data values. The result is that equal amounts of power are
consumed in each clock cycle. In other words, the ideal goal of hiding is that the
power consumption is perfectly random or constant. However, this goal can not be
reached in practice but there are several methods how to get as close as possible
to this goal. The methods utilized are divided into two groups. The first group
of methods randomizes the power consumption by performing the operations of the
executed cryptographic algorithms at different times. These methods affect only the
time dimension of the power consumption. On the other hand, the second group
of methods affects only the amplitude dimension of the power consumption. These
methods directly change the power consumption characteristics of the performed
operations. The main approach of hiding methods are depicted in Fig. 2.9 where
power traces corresponding with Hamming weight 1 and 8 are ploted.

Time Dimension

In the second step of the DPA attacks, the power traces have to be correctly aligned.
If this condition is not fulfilled, the attack requires significantly more power traces
or does not work. Therefore, one can affect the time dimension to randomize the ex-
ecution of the cryptographic algorithms. In other words, the cryptographic module
performs the operations of the algorithms at different moments of time during each
execution. This behaviour of a cryptographic algorithm makes the power consump-
tion random. The more random the execution of an algorithm is, the more difficult
is the realization of the DPA attack. The most commonly utilized techniques to
randomize the algorithm execution are the random insertion of dummy operations

36

Fig. 2.9: Main groups of Hiding methods.

and the shuffling of operations. During the random insertion of dummy operations,
the dummy operations are randomly inserted before, during, and after the execution
of the cryptographic algorithm. Randomly generated number of dummy operations
is utilized during each algorithm execution. It is crucial of this method that the
total number of inserted operations is equal for all executions. It is clear that the
more dummy operations are used, more positions vary in time dimension, the more
random the power consumption is. On the other hand, the more dummy opera-
tions are inserted, the lower the throughput of the implementation is. In practice,
a compromise has to be found for individual implementation of specific devices. An
alternative to the method, one can use the operation shuffling. The main goal of
this method is to randomly change the order of the execution sequence of opera-
tions that can be performed in an arbitrary (random) order. The typical example
of this method is shuffling of S-box operations. This operation is realized in every
round and look-ups for individual bytes are independent of each other. Therefore,
the S-box operations for 16 bytes of the AES state can be performed in an arbi-
trary order. The main principle of shuffling AES S-box operations is depicted in
Fig. 2.10. The figure presents also the place affected by the countermeasure in the
power trace. The main advantage of shuffling is the fact, that this method does not
affect the throughput of the algorithm (minimally). The disadvantage of shuffling
lies in the fact that the number of operations that can be shuffled in a cryptographic
algorithm is limited because not every operation is possible to be executed in an
arbitrary order.

37

5

6

7

8

1 13

14

15

16

9

10

11

12

10 13 6 14

3 15 2 16

8 11 7 4

5 1 12 9

Standard order

Shuffling

Arbitrary order

2

3

4

Shuffling of AES S-box

P
o

w
er

 c
o

n
su

m
p

ti
o

n

Samples

Fig. 2.10: Example of AES S-box shuffling.

Amplitude Dimension

These methods try to change directly the amplitude of the power consumption of
the performed operations. The main goal is to obtain the power consumption of
the device either equal or random. In practice, these techniques apply reduction of
the signal-to-noise ratio (SNR) for operations executed. The SNR can be lowered
by increasing the noise or by lowering the useful signal (that leakages the sensitive
information). The simplest way to increase the noise of operations is to performer
several independent operations in parallel. The important fact is to utilize inde-
pendent operations. In practice, hardware platforms for cryptographic algorithms
with a wide data-path are a more suitable solution for this method. The wider the
data-path, the harder the attack is to realize. It is clear, because one point of a
power trace (time interval) depends on more operations and more data computed.
Another logical way to increase the noise is to utilize dedicated noise generators in
the device.

38

2.3.2 Masking

Masking methods randomize the intermediate values that are processed by the cryp-
tographic device in order to obtain the power consumption independent. The main
advantage of this approach is that it can be implemented at the algorithm level and
it is not necessary to affect the power consumption itself. Designers can implement
masking in software or in hardware. In other words, the dependency of interme-
diate values on power consumption is broken by a masking method, therefore the
attacker can not map the hypothetical intermediate value in the third step of the
DPA attack. For these reasons, masking techniques have been extensively discussed
in the scientific community. Numerous articles have been published that explain
different types of masking schemes. In a masked implementation of a cryptographic
algorithm, each intermediate value 𝑣 is concealed by a random value 𝑚 that is called
mask: 𝑣𝑚 = 𝑣 * 𝑚.

The mask 𝑚 is generated internally inside the cryptographic device during the
execution of the algorithm. Moreover masks vary for each execution, therefore uti-
lized masks are not known to the attacker. The operation * is typically defined
according to the cryptographic algorithm. Most often the operation is the Boolean
exclusive-or (denoted as ⊕), modular addition (denoted as +), or modular multi-
plication(denoted as 𝑥). In case of modular addition and modular multiplication,
the modulus is chosen according to the cryptographic algorithm. In practical im-
plementations, the masks are applied to the plain text (plain text blinding) or the
secret key (key whitening). It is clear that the implementation needs to be changed
in order to process the masked intermediate values and in order to keep track of
the masks. The result of the encryption realized with a masked implementation is
logically also masked. Therefore, the masks have to be removed at the end of the
encryption in order to obtain the cipher text. Masking scheme has to specify how
all intermediate values are masked, are changed throughout the algorithm and are
removed at the end of the algorithm. It is important that all intermediate values
are masked all the time and this must be fulfilled for intermediate values that are
calculated based on previous values. Table 2.4 summarizes the basic methods of
masking.

Tab. 2.4: Masking methods according to the operation.

Name Calculation of mask
Boolean masking 𝑣𝑚 = 𝑣 ⊕ 𝑚

Arithmetic modular addition masking 𝑣𝑚 = 𝑣 + 𝑚(𝑚𝑜𝑑 𝑛)
Arithmetic modular multiplication masking 𝑣𝑚 = 𝑣 × 𝑚(𝑚𝑜𝑑 𝑛)

39

2.4 Attacks on Countermeasure Methods
In previous section 2.3, we have introduced two types of hiding countermeasures.
In this section, we analyze the effectiveness of these countermeasures against DPA
attacks by determining their effect. As a metric of comparision, we utilize 𝜌𝑐𝑘,𝑐𝑡 that
is the correlation between the hypothetical power consumption for the correct key
hypothesis 𝐻𝑐𝑘 and the power consumption measured at the time sample 𝑐𝑡. This
is the time moment when the device processes the intermediate result at which the
DPA attack is targeted. The metric 𝜌𝑐𝑘,𝑐𝑡 determines the number of power traces that
are needed to perform successful DPA attacks, see Fig. 2.5, that shows the point
where the correct key hypothesis is separated from the others (25 power traces).
Suppose, the power consumption of a point of a power trace can be modelled as the
sum of the exploitable power consumption 𝑃𝑒𝑥𝑝, the switching noise 𝑃𝑠𝑤𝑁𝑜𝑖𝑠𝑒, the
electronic noise 𝑃𝑒𝑙𝑁𝑜𝑖𝑠𝑒, and the constant component 𝑃𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 [78]:

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑒𝑥𝑝 + 𝑃𝑠𝑤𝑁𝑜𝑖𝑠𝑒 + 𝑃𝑒𝑙𝑁𝑜𝑖𝑠𝑒 + 𝑃𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. (2.39)

In this assumption, the correlation 𝜌𝑐𝑘,𝑐𝑡 corresponds to 𝜌(𝐻𝑐𝑘, 𝑃𝑡𝑜𝑡𝑎𝑙). Masking
methods cause that attacked intermediate values are processed at a different time
in each power trace, i.e. 𝑐𝑡 is randomly distributed. The statistical distribution of
𝑐𝑡 depends on the way how the masking methods are implemented. If shuffling is
implemented, 𝑐𝑡 is typically uniformly distributed, on the other hand, if the random
insertion of dummy operations is implemented, 𝑐𝑡 is mostly binomial or uniformly
distributed. In the cases, where these methods are combined, the resulting distribu-
tion of 𝑐𝑡 is the superposition of the corresponding distributions. Independent of the
shape of the 𝑐𝑡 distribution, we denote the maximum of this distribution by 𝑝 and
power consumption that is located at this position by 𝑃𝑡𝑜𝑡𝑎𝑙. For DPA attacks that
target at misaligned power traces, the correlation for the correct key hypothesis can
be calculated as follows [78]:

𝜌(𝐻𝑐𝑘, 𝑃𝑡𝑜𝑡𝑎𝑙) = 𝜌(𝐻𝑐𝑘, 𝑃𝑡𝑜𝑡𝑎𝑙) · 𝑝

⎯⎸⎸⎷𝑉 𝑎𝑟(𝑃𝑡𝑜𝑡𝑎𝑙)
𝑉 𝑎𝑟(^𝑃𝑡𝑜𝑡𝑎𝑙)

. (2.40)

For countermeasures that affect the amplitude in order to lower the SNR of the
operations processing the attacked intermediate result reduces the correlation for
the correct hypotheses as follows:

𝜌(𝐻𝑐𝑘, 𝑃𝑡𝑜𝑡𝑎𝑙) = 𝜌(𝐻𝑐𝑘, 𝑃𝑒𝑥𝑝)√︁
1 + 1

𝑆𝑁𝑅

. (2.41)

40

Fig. 2.11: Comparison of DPA attack efficiency result based on alignment traces.

2.4.1 Attack on Hiding

The following text describes the comparison of the efficiency of DPA attacks based
on the metric 𝜌(𝐻𝑐𝑘, 𝑃𝑡𝑜𝑡𝑎𝑙) and the number of power traces. The efficiency of DPA
attack based on power traces that are correctly aligned is depicted in Fig.2.11.

It is obvious that in this scenario the attacker needs 25 power traces to reveal
the first byte of secret key. On other hand, the efficiency of DPA attacks based on
power traces that are masked in time domain is depicted in Fig.2.12. In this scenario,
the power traces are misaligned by a maximum of 30 samples. The misalignment

41

Fig. 2.12: Comparison of DPA attack efficiency result based on misalignment traces.

is uniformly distributed. In this scenario, the attacker can not reveal the value
of the first secret key byte even with the use of maximum 500 power traces. In
practice, the attacker realizes the visual inspection of the power traces measured
and can align the traces. If the alignment is successful, the correct key hypothesis
leads to the correlation and correct key revelation. The alignment of power traces is
usually done based on pattern matching. This means that a part of the first power
trace is selected as a pattern and the attacker tries to find this pattern in all other
power traces. In the last step, the power traces are aligned based on the identified
individual position of patterns.

42

In the last elementary comparison scenario, the signal-to-noise ratio is equal to
5 for the power traces measured. The efficiency of DPA attacks based on power
traces with noise is depicted in Fig.2.13. It is obvious that the attacker needs many
more power traces in order to reveal the secret key, 300 power traces were necessary.
Moreover, the correlation coefficient is lower than we estimated in equation 2.41.
The correlation coefficient is about 0.2.

Fig. 2.13: Comparison of DPA attack efficiency based on traces with 𝑆𝑁𝑅 = 5.

43

2.4.2 Attack on Masking

The use of masking schemes to counteract power analysis attacks is popular because
it can be implemented in software. Therefore it is not necessary to alter power
consumption characteristics themselves. Many researchers have studied the security
of masking schemes and their implementations and it has turned out that every
masking scheme can be attacked and the designers should combine masking with
hiding techniques. In the following text, we discuss different types of power analysis
attacks on masking schemes.

Generally, higher-order DPA attacks exploit the joint leakage of several interme-
diate values. In practice, the implementations of masking schemes conceal several
intermediate values by the same mask, typically for computational reasons. There-
fore, it is not necessary to study higher-order DPA attacks in general, but it is
sufficient to concentrate on higher-order DPA attacks that exploit the leakage re-
lated to two intermediate values. Therefore, the following text is focused only on
second-order DPA attacks. Second-order DPA attacks exploit the leakage of two
intermediate values that are related to the same mask. In a general case, this leak-
age cannot be exploited directly because the two intermediate values often occur in
different time intervals. Therefore, it is necessary to preprocess the power traces in
order to obtain power consumption values that depend on both intermediate values.

There are three cases of preprocesing of power traces:
• In the first case, the targeted intermediate values occur in different clock cycles.

In this case, the preprocessing has to combine two points within a power trace,
it is a typicall example for software implementations of masking schemes.

• In the second case, the targeted intermediate values occur within one clock
cycle thus preprocessing has to combine single points in the trace.

• The third case represents a situation where the targeted intermediate values
occur within a clock cycle and the power consumption characteristics allow
exploiting the leakage directly. The last two cases are typical for hardware
implementations.

It is really interesting, that higher-order DPA attacks were already mentioned in
Kocher’s [58]: “Of particular importance are high-order DPA functions that com-
bine multiple samples from within a trace.” Naturally, several researchers have tried
to implement attacks based on this very brief sketch and Messerges was the first
researcher to successfully report on a second-order DPA attack in [100]. However,
Oswald describes second-order DPA attacks from a practical point of view including
the preprocessing step in work [110].

44

The attack described in [100], targets the exclusive-or (short: XOR) operation of
a byte of the key and a byte of masked data. It is assumed that in the implementation
under attack, the mask is generated and subsequently exclusive-ored with the data
prior to the exclusive-or operation that involves the key byte:

𝑡 = 1 : 𝑚 = 𝑟𝑎𝑛𝑑() (generate mask-byte), (2.42)
𝑡 = 2 : 𝑥 = 𝑝 ⊕ 𝑚 (XOR mask with plain text-byte), (2.43)
𝑡 = 3 : 𝑦 = 𝑥 ⊕ 𝑘 (XOR masked plain text with key-byte). (2.44)

In the attack, the point in the power trace 𝑠𝑗[𝑡 = 1] that corresponds to the time
when the mask is generated (eq. 2.42) is subtracted from the point in the power
trace 𝑠𝑗[𝑡 = 3] that corresponds to the time when the masked data is XORed with
the key byte (eq. 2.43). The joint distribution of these two power samples allows
to derive the keybyte bit by bit. For every bit in the plain text byte the adversary
calculates the mean values 𝑆0 = ∑︀

𝑗 |𝑠𝑗[𝑡 = 1] − 𝑠𝑗[𝑡 = 3]| (if the plain text bit is 0)
and 𝑆1 = ∑︀

𝑗 |𝑠𝑗[𝑡 = 1] − 𝑠𝑗[𝑡 = 3]| (if the plain text bit is 1). If 𝑆0 − 𝑆1 > 1 then
the key bit is 1, otherwise it is zero. Example of the result for the first four bits of a
second-order DPA attack is depicted in Fig. 2.14. In the attack, it is mandatory to
use the absolute value of the differences, because otherwise the difference of means
is 0 in both cases. In addition, it is necessary that the mean values of the power
traces are roughly the same, otherwise the difference of means also does not lead to
conclusive results.

Fig. 2.14: Typical result of second-order DPA attack based Messerges approach
[100].

45

In paper [110] Elizabeth Oswald introduced easy-to-implement second-order DPA
(SODPA) attacks. The attacks are using the following assumption. Let 𝑎 be a value
∈ {0, 1}𝑛 and 𝐶(𝑎) denotes the power consumption of the value 𝑎. Then the power
consumption 𝐶 of the device at the time when 𝑎 is processed is proportional to the
Hamming-weight of the value 𝑎 : 𝐶(𝑎) ≈ 𝐻𝑊 (𝑎). We assume that the instanta-
neous power consumption of the device under attack depends linearly on the HW
of the processed data.
Observation - Let 𝑎 and 𝑏 are values ∈ {0, 1}𝑛, let ⊕ denote the exclusive-or oper-
ation, and let 𝐻𝑊 (𝑥) denote the Hamming-weight of 𝑥. Then the following relation
holds with probability one:

𝐻𝑊 (𝑎 ⊕ 𝑏) = |𝐻𝑊 (𝑎) − 𝐻𝑊 (𝑏)| . (2.45)

Consequently, we can correctly predict |𝐶(𝑎) − 𝐶(𝑏)| with 𝐻𝑊 (𝑎 ⊕ 𝑏) if 𝑎, 𝑏 ∈
{0, 1}. We can use this observation to mount second-order DPA attacks: In the first
step, the adversary chooses a point in a power trace, subtracts it from the rest of the
trace and takes the absolute value of the result. In the second step, the adversary
tests for all keys whether the HW of the exclusive-or of the two intermediate values
under attack correlates to the preprocessed power traces. Only for the correct key
and for the correct point, a peak will occur in the power trace. From generally
proposed attack we can mount it in the following way.

Elementary Example of SODPA

In this elementary example, we present the attack that is targeted on masked Key
Addition of AES. In this example, the cryptographic module is a chip containing
a hardware masked implementation of the AES algorithm [112, 146]. The masking
method used was based on the combination of additive and multiplicative masking
for masking the non-linear byte substitution operation (SubBytes). In general, the
SubBytes operation is the most difficult part of the AES encryption algorithm to
be masked. The reason is its non-linearity. The essence of the masking method
used is in the conversion of the SubBytes inversion from the 𝐺𝐹 (256) field (Galois
Field) to the inversion in the 𝐺𝐹 (4) field. The concrete specification of the hard-
ware implementation of the non-linear byte substitution is not important to run the
power analysis attacks. On the other hand, the knowledge of intermediate values
processed by the cryptographic module corresponding to the plaintext is essential.
Data processing is described by the scheme in Fig. 2.15. To run the attack, the
power traces corresponding to the whole process of encryption and decryption are
provided, together with the corresponding plaintext. An example of a power trace
is depicted in Fig. 2.16.

46

Fig. 2.15: Scheme of protected algorithm implemented [146].

47

Fig. 2.16: Example of power trace hardware masked implementation.

Altogether, 150, 000 power traces were provided to run the attack for the follow-
ing encryption key: 𝐾𝑠1 = [42, 138, 236, 244, 69, 67, 231, 207, 141, 31, 115, 14, 106, 251,

199, 152]. In the following text, the encryption key is denoted as 𝐾𝑠1 = {𝑘1, 𝑘2, . . . , 𝑘𝑁}
for 0 ≤ 𝑘𝑖 ≤ 255, 1 ≤ 𝑖 ≤ 16 and 𝑁 = 16 represents the key size. This scenario is
similar to the one described by Messerges in [100]. In this attack, we assume that
the plain text 𝑃 is concealed with a random mask 𝑀 : 𝑃 ⊕ 𝑀 . During the key
addition, the masked plain text is exclusive-ored with the key: 𝑃 ⊕ 𝑀 ⊕ 𝐾. The
manipulation of 𝑀 and the computation of 𝑃 ⊕ 𝑀 ⊕ 𝐾 occur some time during the
(initial) phase of the algorithm.

For the attack, we assume that we have recorded the power trace of the initial
phase of the algorithm. We use the value of the mask 𝑀 and the value 𝑃 ⊕𝑀 ⊕𝐾 of
the key addition in our attack. In the first step, we locate the sequence of key addi-
tion operations (to save computation time). We make an educated guess for the time
frame when 𝑀 and 𝑃 ⊕𝑀 ⊕𝐾 are computed. Based on the first analysis we choose
a specific time interval. In the second step, we predict |𝐶(𝑀) − 𝐶(𝑃 ⊕ 𝑀 ⊕ 𝐾)|
with 𝐻𝑊 (𝑃 ⊕ 𝐾) and perform a standard DPA attack. Note that the value of the
mask is unknown. For the prediction we used one byte of the plain text and we
guess one byte of the secret key utilizing the ZV model because the implementation
is realized in hardware.

48

Fig. 2.17: Result of GE of SODPA for 𝑘1, 𝑘9 and 𝑘13.

Using the SODPA attack based on the correlation coefficient, aimed at two in-
termediate results of mask loading and round key addition, using the ZV model and
150, 000 power traces, the key is estimated as:

𝐾𝑒 = [42, 138, 236, 244, 69, 67, 231, 207, 141, 31, 193, 14, 106, 251, 199, 202].

The attack reveals 14 bytes of the secret key and the wrongly estimated keys
𝑘11 and 𝑘16 were on positions 10 and 8 (marked with red color). The 𝐺𝐸 value
is estimated to be 18 attempts which are required by the attacker to obtain the
complete key in an ideal case. To provide a comparison to previous results, the GE
value plot for key bytes 𝑘2, 𝑘8, 𝑘14 is shown in fig. 2.17.

The result of SODPA and the dependency of the correlation coefficient on the
number of power traces for the second byte is shown in fig. 2.18 and 2.19 successively,
the correct key estimate is marked red. From the correlations plot, the sufficient
distance for the correct key estimate is clear. For most of correctly estimated keys,
the distance was sufficient. Based on the obtained result, it is clear that the SODPA
attacks are really easy to realize. However the attack needs much more computing
resources and many more power traces to reveal the secret key. In this case, even
the 150, 000 power traces were not enough to obtain the whole secret key.

49

Fig. 2.18: Result of SODPA attack based on correlation coefficient.

Fig. 2.19: Size of the correlation depending on the number of power traces.

50

3 Study of Protected Implementations
In this section, we describe masking and hiding countermeasure techniques including
the power analysis from a practical point of view. More precisely, Boolean masking
and shuffling of crucial operations of AES are attending in our scientific and educa-
tional text as well as a short current state description. As an elementary example,
we bring in to play the DPA Contest because it is wordwide known and freely avail-
able (meant power traces including plain and cipher text). Therefore, the reader can
verify himself the obtained results that is the best way to understand the explained
issues.

The first version of the DPA Contest was created by a research group of the
French technical university Telecom ParisTech already in 2008. The main goal
was to provide an objective way of comparison of various power analysis attacks.
Currently, the fourth version of DPA Contest is open1. Instinctively, an independent
comparison of power analysis attacks is problematic due to several reasons. We
attempt to categorize dominant causes:

• dissimilar measuring devices,
• non-identical implementations of the cryptographic algorithm,
• various cryptographic devices or various metrics of attack comparison.

DPA Contest is trying to minimize these factors by providing power traces of a
cryptographic device, that are measured under predetermined conditions. Moreover,
authors of DPA Contest provide software tools that are used for attack implemen-
tation and result evaluation. The main tool is called AttackWrapper that controls
the implemented attack, reads power traces and allows communication with other
tools. One can use any programming language C, C ++, Python, Perl, R-language
or Matlab to implement the attack. Other important tool called ComputeResults is
used to analyze the obtained results from AttackWrapper. In this way, independent
researchers have an opportunity to develop their own attacks and subsequently they
can make a comparison with other attacks.

This chapter contains various results from selected author’s publications such
as [151, 157, 93, 70, 83] that are focused on power analysis of protected implemen-
tations. The amended version of the text below is a part of the author’s papers
in journals with an impact factor, namely, Computers & Security [83], IET Infor-
mation Security [70] and Radioengineering [93]. The rest of the chapter contains
information from IEE conference papers [151, 157].

1http://www.dpacontest.org/v4/index.php

51

3.1 DPA Contest V4.1
In order to protect software implementations of AES, masking [20, 38] and shuffling
[46] are the most studied and used techniques. Shuffling represents a simple hiding
countermeasure which randomizes the operation order. In general, the SubBytes
operation is the most difficult part of the AES algorithm to mask due to its non-
linearity — we refer interested readers to the technical report [111] to delve into
methods that deal with this aspect of AES countermeasures. On the other hand,
various masking methods of the AES algorithm have been proposed [37, 112, 18,
110]. In any case, implementation of countermeasures brings overheads in terms
of memory and time, hence causing that researchers start to look for lightweight
approaches. One of such lightweight countermeasures is the Rotating Sbox Masking
(RSM), which is a type of Low-Entropy Masking Scheme [106, 144, 12]. The main
idea behind RSM consists in the usage of precomputed lookup tables [119] and, at
the same time, reducing the overhead by carefully choosing the limited mask set
[11]. This essentially allows to reuse S-boxes while reducing the computation of
mask compensation since only 16 possible masks are applied. The set of chosen
masks can be a public parameter; however, this set should be shifted by a random
offset before each encryption. We refer interested readers to works [106, 12, 39]
where more details of RSM and its security analysis are provided. RSM has been
studied by researchers worldwide under the framework of DPA Contest V4.1 [40].

In DPA Contest V4.1 a smart card based on the chip Atmel ATMega-163 is
used as a cryptographic device under attack. Masked algorithm AES-256 is imple-
mented and for masking a RSM is utilized [106, 102]. The method provides simple
implementation and low computational cost and, in addition, it should be resistant
versus first order power analysis attacks. Note that the goal of attacks in DPA Con-
test V4.1 is to reveal the first 128 bits of the secret key stored, therefore we focus
only on the first round of AES-256 in the following text. For all power traces mea-
sured, plain texts, secret key and the corresponding encrypted texts are provided by
default. Power traces were measured using the following testbed: electromagnetic
near-field probe Langer RF-U 5-2, digital scope Lecroy Waverunner 6100A, pream-
plifier Langer PA303 and Regulated Power Supply Agilent E3631A [40]. For DPA
Contest V4.1, 30, 000 power traces2 are available. An example of the power trace is
shown in Fig. 3.1.

2At the beginning of the contest, 100, 000 power traces were available.

52

Fig. 3.1: Example of one power traces for DPA Contest V4.1.

3.1.1 Description of Countermeasures Implementation

The RSM utilized 16 masks denoted as 𝑚 = {𝑚0, 𝑚1, . . . , 𝑚15}, which are publicly
available in order to mask the intermediate value. These masks are chosen in a way
that the leaked information about the currently processed data is minimal [106]. At
the beginning of each encryption process, a random value denoted as a secret offset
is drawn from 0 to 15. This value is unknown to the attacker and the mask set is
rotating according to this value. In the next step of the algorithm, for each 𝑖-th byte
of plain text 𝑝𝑖 and mask 𝑚

𝑖+offset the XOR (exclusive OR) operation is applied
according to the following equation (Plaintext Blinding):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑝0 . . . 𝑝12

𝑝1 . . . 𝑝13

𝑝2 . . . 𝑝14

𝑝3 . . . 𝑝15

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
⊕

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑚0+offset . . . 𝑚12+offset

𝑚1+offset . . . 𝑚13+offset

𝑚2+offset . . . 𝑚14+offset

𝑚3+offset . . . 𝑚15+offset

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑠0 . . . 𝑠12

𝑠1 . . . 𝑠13

𝑠2 . . . 𝑠14

𝑠3 . . . 𝑠15

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
= 𝑆𝑡𝑎𝑡𝑒. (3.1)

where the value 𝑖+offset is calculated modulo 16. Substitution SubBytes is replaced
with sixteen masked MaskedSubBytes𝑖(𝑠𝑗) = SubBytes(𝑠𝑗 ⊕ 𝑚𝑖) ⊕ 𝑚𝑖+1, where 𝑖 ∈
{1, 2, . . . , 16}. After the linear operation of the AES algorithm, additional operations

53

follow to ensure that the State entering into the next round is equal to:⎛⎜⎜⎜⎜⎜⎝MC ∘ SR ∘ SBox ∘

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑠0 ⊕ 𝑚0+offset+𝑟 ⊕ 𝑂𝑟

0 . . .

𝑠1 ⊕ 𝑚0+offset+𝑟 ⊕ 𝑂𝑟
1 . . .

𝑠2 ⊕ 𝑚0+offset+𝑟 ⊕ 𝑂𝑟
2 . . .

𝑠3 ⊕ 𝑚0+offset+𝑟 ⊕ 𝑂𝑟
3 . . .

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎠⊕

⊕

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑚0+offset+𝑟+1 . . . 𝑚12+offset+𝑟+1

𝑚1+offset+𝑟+1 . . . 𝑚13+offset+𝑟+1

𝑚2+offset+𝑟+1 . . . 𝑚14+offset+𝑟+1

𝑚3+offset+𝑟+1 . . . 𝑚15+offset+𝑟+1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(3.2)

where 𝑟 ∈ {1, . . . , 9} denotes the number of the round (AES-128) and 𝑂𝑟
𝑖 represents

the (𝑖 + 1)-th byte of the 𝑟-th subkey. SR and MC represent linear transformations
ShiftRow and MixColumns. The masking scheme for the last encryption round
(𝑟 = 10 for AES-128) ensures that the output equals to:⎛⎜⎜⎜⎜⎜⎝SR ∘ SBox ∘

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑠0 ⊕ 𝑚0+offset+𝑟 ⊕ 𝑂𝑟

0 . . .

𝑠1 ⊕ 𝑚0+offset+𝑟 ⊕ 𝑂𝑟
1 . . .

𝑠2 ⊕ 𝑚0+offset+𝑟 ⊕ 𝑂𝑟
2 . . .

𝑠3 ⊕ 𝑚0+offset+𝑟 ⊕ 𝑂𝑟
3 . . .

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎠⊕

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑚0+offset+𝑟+1 . . . 𝑚12+offset+𝑟+1

𝑚1+offset+𝑟+1 . . . 𝑚13+offset+𝑟+1

𝑚2+offset+𝑟+1 . . . 𝑚14+offset+𝑟+1

𝑚3+offset+𝑟+1 . . . 𝑚15+offset+𝑟+1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.(3.3)

The last mask is removed by the XOR operation. The principle of the masked RSM-
AES algorithm is shown in Alg. 2, where a basic knowledge of AES algorithm is
assumed (terms such as round, state, operation etc.) [1]. The original unprotected
version of the AES can be obtained by removing the lines marked using blue color.

3.1.2 Power Analysis Realized

In this section, we investigate the security of V4.1 implementation in practice. We
used the basic power side-channel techniques (described in Sec. 2) in the same way
as a potential adversary would do, and tried to analyse the sensitive information
and answer the question if the implementation is secure. Our analysis, focused on
exploiting the first-order leakage, discovered some lacks. The crucial one showed
that an adversary can prepare templates in order to reveal the mask and mount a
standard DPA attack aimed at the S-box output in order to recover the whole secret
key. We tested this observation on a public dataset, and implemented a successful
attack that revealed the secret key. In the final step of our analysis, we submitted
the attack to the DPA Contest to compare the results.

54

Algorithm 2 Pseudo code of RSM in DPA Contest V4.1.
Require: Plain text 𝑋; 16 bytes 𝑋𝑖, where 𝑖 ∈ ⟨0, 15⟩, Key schedule; 15 128-bit

constants RoundKey[𝑟], where 𝑟 ∈ ⟨0, 14⟩.
Ensure: Cipher text 𝑋; 16 bytes 𝑋𝑖, where 𝑖 ∈ ⟨0, 15⟩.

1. % Draw a random offset, uniformly in [0,15].
2. 𝑋 = 𝑋 ⊕ Maskoffset % Plain text blinding
3. % All rounds
4. for 𝑟 ∈ ⟨0, 12⟩ do
5. 𝑋 = 𝑋 ⊕ RoundKey[𝑟]
6. for 𝑖 ∈ ⟨0, 15⟩ do
7. 𝑋𝑖 = MaskedSubBytesoffset+𝑖+𝑟(𝑋𝑖)
8. end for
9. 𝑋 = ShiftRows(𝑋)

10. 𝑋 = MixColumns(𝑋)
11. 𝑋 = 𝑋 ⊕ MaskCompensationoffset+1+𝑟

12. end for
13. % Last round
14. 𝑋 = 𝑋 ⊕ RoundKey[13]
15. for 𝑖 ∈ ⟨0, 15⟩ do
16. 𝑋𝑖 = MaskedSubBytesoffset+13+𝑟(𝑋𝑖)
17. end for
18. 𝑋 = ShiftRows(𝑋)
19. 𝑋 = 𝑋 ⊕ RoundKey[14]
20. % Cipher text damasking
21. 𝑋 = 𝑋 ⊕ MaskCompensationLastRoundoffset+14

The power analysis was carried out in the following steps:
• Localization of interesting points for crucial operation based on correlation

coefficients.
• Key observation of possible lacks.
• Attack proposal and implementation (experimental verification on public dataset).
• Attack submission and result comparison.
In order to locate points of interest, we utilized a differential power analysis

attack depending on the offset value for important operations of the algorithm:
Plain text Blinding and Masked SubBytes3. In other words, we chose the output
of above mentioned operations as the intermediate value of the DPA attack based

3Other methods e.g. NICV could be performed to localize points of interest and the results
would be identical.

55

Fig. 3.2: Result of CPA for operation Plaintext blinding.

on correlation coefficient (in the following test denoted as CPA) [78, 80]. The result
of the CPA analysis for Plain text blinding is shown in Fig. 3.2.

We can observe that this operation strongly leaks information about the mask
values, in other words, in a power trace, a lot of points exist that carry information
about the secret offset that must be kept secret. The algorithm for selecting the
points of interest localized and stored the 3 highest correlated points for every mask
value. Together 48 interesting points were chosen from the realized CPA. An inter-
esting remark is that selected points of individual masks loading were distributed
with constant distance of 4, 342 samples (e.g. Mask 0 𝑡 = (5222, 6777, 8777), Mask
1 𝑡 = (29564, 11119, 13119) and so on).

Based on the results obtained, we propose an attack that targets this operation.
The main idea lies in a combination of profiling and non-profiling power analysis
attacks. In the first step, the attack utilizes the templates based on MLP to reveal
mask values (secret offset). In the following step, DPA attack is performed (based
on correlation coefficient) that is aimed at MaskedSybBytes. Note that if the mask
values are uncovered to the attacker, from the point of power analysis it is practically
an unmasked AES implementation. The block diagram of the proposed attack is
depicted in Fig. 3.3.

56

MLP reveals
secret Offest Clasical DPA

Attack WrapperUsers's
parameters

Compute
Results

Result
evaluation

Power
Traces

2nd step1st step

Attack Implemented

Fig. 3.3: Block diagram of the proposed attack.

An MLP template attack was created and trained in Matlab using the Netlab
neural network toolbox [105]. We created a typical two-layer perception network
and we used optimized learning based on the scaled conjugate gradient algorithm.
A standard sigmoid was chosen as an activation function. The input layer contained
48 inputs corresponding with selected interesting points, hidden layer contained
1, 000 neurons and output layer had 16 neurons and we used 180 training cycles.
The learning set and test set consisted of 1, 500 and 1, 500 of power traces succes-
sively. Success rate of 99.7% was verified on the test set. After the MLP approach
was successfully created and tested, the second step of the attack was realized. The
complete attack implementation was investigated using 30 power traces of the pub-
licly available dataset for the first time. The obtained results calculated with tool
ComputeResults are summarized in Tab. 3.1.

This program provides following characteristics about the attack implemented:
• GSR > 80%: Minimum number of traces for the Global Success Rate (GSR)

to be above 80%.
• Min PSR > 80%: Minimum number of traces for the minimum Partial Success

Rate (PSR) to be above 80%.
• Max PGE < 10: Number of traces for the maximum Partial Guessing Entropy

(PGE) to be below 10.
• GSR stable > 80%: Number of traces for the Global Success Rate to be stable

above 80%.

57

Tab. 3.1: Attack results based on publicly available power traces.

GSR > 80%: 20
Min PSR > 80%: 20
Max PGE < 10: 17
GSR stable > 80%: 20
Min PSR stable > 80%: 20
Max PGE stable < 10: 17
GSR at trace 30: 1
Min PSR at trace 30: 1
Max PSR at trace 30: 1
Min PGE at trace 30: 1
Max PGE at trace 30: 1
Mean time / trace (ms): 560

• Min PSR stable > 80%: Number of traces for the minimum Partial Success
Rate to be stable above 80%.

• Max PGE stable < 10: Number of traces for the maximum Partial Guessing
Entropy to be stable below 10.

• Time/Trace: Mean time per trace on computer where attack is running (CPU
i5-3470 at 3.20 GHz with 16 GB of RAM).

Plots of PGE for individual key byte are depicted in Fig. 3.4. From the plots,
we can observe that almost every key byte was revealed successfully based only on
10 power traces with the exception of the key bytes 9 and 13. For these key bytes,
about 20 power traces were necessary. Our analysis employing a public data set
demonstrated that the attack was able to reveal the whole secret key from only 21
power traces. Evaluation of the attack based on private datasets is outlined in Tab.
3.2.

Tab. 3.2: Results obtained for DPA Contest evaluation.

Key Max Key found Max PGE Time/Trace
found PGE < 10 (stable) stable < 10 (ms)

23 19 28 19 1,100

The main outcome represents the confirmation of the attack functionality and
perfectibility, only 23 power traces were necessary to reveal the secret key. Our
attack shows that the RSM masking scheme based on the rotation of masks can be
easily broken in practice.

58

Fig. 3.4: PGE for secret key of the DPA contest V4.1.

59

3.2 DPA Contest V4.2
Participants of the contest have performed many attacks aimed at the original RSM
implementation (DPA Contest V4.1). Different techniques were used such as MIA
(Mutual Information Analysis) [144, 71], Collision on the S-box [64] or Recover-
ing the offset value based on TA [71]. We refer to work [11] that provides a deep
analysis of attacks executed during the DPA Contest V4.1. DPA Contest organiz-
ers improved the original RSM implementation by rewriting the code in assembly
language, using an individual mask for each S-box and combining the masking and
shuffling techniques. This improved implementation is denoted as V4.2 [11, 102].
The implementation was designed based on the knowledge of previous lacks, there-
fore this approach is devised to resist most of the proposed attacks to the original
implementation.

Even though the DPA Contest V4.2 has been open since September 2014, only
two attacks have been successfully performed so far [41]4. Considering the worldwide
importance of the DPA contest in the scope of cryptography, this fact is definitely
perceived as a proof of the improvement in the implementation resilience of the
V4.2 version. Certainly, many researchers have tried to mount attacks on the V4.2
without success. On August 19, 2015 four participants were written in the Hall of
fame and only one of them implemented two successful attacks5. In comparison,
in the previous version 31 participants were written in the Hall of fame with no
unsuccessful attack.

In our work we investigated the security of V4.2 implementation in practice.
We used the basic power side-channel techniques in the same way as a potential
adversary would do, and tried to analyze the sensitive information. Our analysis,
focused on exploiting the first-order leakage, discovered some lacks. The crucial one
showed that an adversary can mount a standard DPA attack aimed at the S-box
output in order to recover the whole secret key even when a shuffling technique is
implemented. We tested this observation on a public dataset, and implemented a
successful attack that revealed the secret key using only 35 power traces. In the
final step of our analysis, we submitted the attack to the DPA Contest to compare
results.

4This state of the contest was on July 2015 when the work was written and our attack was
implemented and submitted. Note, that the situation can change because the contest is current.

5Participants who reported their involvement in the competition are listed in the Hall of fame,
it dose not mean that they created a successful attack. Results of the attacks that were submitted
are summarized in the web-page table.

60

Fig. 3.5: Example of the power trace.

3.2.1 Description of Countermeasures Implementation

In the following text, we briefly introduce the RSM countermeasure V4.2 and the
target platform. We provide some relevant observations. The final implementation
of RSM V4.2 was written in assembly language and carefully checked to avoid most
of the identified pitfalls in the previous version [11]. The 128-bit key version of
AES was the selected one, therefore power traces contained a complete encryption
process that were acquired using the LeCroy WaveRunner6100A oscilloscope and
an EM probe. Figure 3.5 shows an example of a power trace where individual
encryption rounds of AES are clearly visible. The target platform was an 8-bit AVR
microcontroller Atmega163 embedded in a smartcard. RSM represents a boolean
masking scheme that uses 16 public masks6:

𝑀𝑖∈J0,15K = {0x03, 0x0c, 0x35, 0x3a, 0x50, 0x5f,
0x66, 0x69, 0x96, 0x99, 0xa0, 0xaf,

0xc5, 0xca, 0xf3, 0xfc}.

These masks are rotating according to the secret value called 𝑜𝑓𝑓𝑠𝑒𝑡 J0, 15K.
Altogether 16 masked S-boxes have to be pre-calculated based on mask values. The

6Mask set was updated on 20 July 2015, the original contained following masks: 𝑀𝑖∈J0,15K =
{0x00, 0x0f, 0x36, 0x39, 0x53, 0x5c, 0x65, 0x6a,0x95, 0x9a,
0xa3, 0xac, 0xc6, 0xc9, 0xf0, 0xff}.

61

masked S-boxes fulfill the following property:

𝑀𝑎𝑠𝑘𝑒𝑑𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠𝑜𝑓𝑓𝑠𝑒𝑡[𝑖]+𝑟(𝑋𝑖) =
= 𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠(𝑋𝑖 ⊕ 𝑀𝑖) ⊕ 𝑀𝑖+1,

(3.4)

which essentially is:

𝑀𝑎𝑠𝑘𝑒𝑑𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠𝑜𝑓𝑓𝑠𝑒𝑡[𝑖]+𝑟(𝐾𝑖 ⊕ 𝑀𝑖 ⊕ 𝑋𝑖) =
= 𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠(𝑋𝑖 ⊕ 𝐾𝑖) ⊕ 𝑀𝑖+1,

(3.5)

where the 𝑋J𝑋0, 𝑋1, . . . , 𝑋15K denotes 16-bytes plaintext, 𝐾J𝐾0, 𝐾1, . . . , 𝐾15K is 16-
bytes 𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦[𝑟] and 𝑟 ∈ J0, 9K denotes round of AES. To pass through the
linear layer of AES algorithm, the mask bytes have to be compensated by exclusive-
or (XOR), thanks to sixteen 128-bit precomputed constants. Mask compensation
constants are equal to:

𝑀𝑎𝑠𝑘𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛[𝑖] =
= 𝑆ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠(𝑀𝑖𝑥𝐶𝑜𝑙𝑢𝑚𝑛𝑠(𝑀𝑎𝑠𝑘[𝑜𝑓𝑓𝑠𝑒𝑡[𝑖]+

+(𝑟 + 1)])) ⊕ 𝑀𝑎𝑠𝑘[(𝑜𝑓𝑓𝑠𝑒𝑡[𝑖] + (𝑟 + 1)).
(3.6)

For the last round the compensation is different because there is no 𝑀𝑖𝑥𝐶𝑜𝑙𝑢𝑚𝑛𝑠

operation, thus mask compensation constants for the last round are equal to:

𝑀𝑎𝑠𝑘𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛𝐿𝑎𝑠𝑡𝑅𝑜𝑢𝑛𝑑[𝑖] =
= 𝑆ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠(𝑀𝑎𝑠𝑘[𝑜𝑓𝑓𝑠𝑒𝑡[𝑖] + 10])⊕

⊕𝑀𝑎𝑠𝑘[(𝑜𝑓𝑓𝑠𝑒𝑡[𝑖] + 10)].
(3.7)

The encryption of the RSM V4.2 works as follows:
1. Draw 16 of 4-bit (uniformly random, unknown) offset[] for the key blinding.
2. Draw 2 shuffle values based on shuffle functions for the first and the last round

denoted as Shuffle0 and Shuffle10: J0, 15K → J0, 15K bijective.
3. Calculate 𝐾𝑒𝑦𝐵𝑙𝑖𝑛𝑑𝑖𝑛𝑔 operation 𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦[0] ⊕ 𝑀𝑎𝑠𝑘[𝑜𝑓𝑓𝑠𝑒𝑡[]].
4. Perform all rounds — Do nine times 𝑟 ∈ J0, 8K:

(i) Calculate the 𝐴𝑑𝑑𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦 operation for every byte 𝑖 ∈ J0, 15K of state.
(ii) Then

𝑋𝑖 = 𝑀𝑎𝑠𝑘𝑒𝑑𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠𝑜𝑓𝑓𝑠𝑒𝑡[𝑖]+𝑟(𝑋𝑖); if 𝑟 = 0 then 𝑖 ∈ 𝑆ℎ𝑢𝑓𝑓𝑙𝑒0(J0, 15K),
in other cases 𝑖 ∈ J0, 15K.

(iii) Perform 𝑆ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠 and 𝑀𝑖𝑥𝐶𝑜𝑙𝑢𝑚𝑛𝑠.
(iv) Calculate XOR between the state array and 𝑀𝑎𝑠𝑘𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛[] con-

stant.

62

5. Perform the last round:
(i) Calculate the 𝐴𝑑𝑑𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦 operation.
(ii) Then

𝑋𝑖 = 𝑀𝑎𝑠𝑘𝑒𝑑𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠𝑜𝑓𝑓𝑠𝑒𝑡[𝑖]+𝑟(𝑋𝑖) where 𝑖 ∈ 𝑆ℎ𝑢𝑓𝑓𝑙𝑒10(J0, 15K).
(iii) Perform 𝑆ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠 and 𝐴𝑑𝑑𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦 operations.
(iv) Calculate XOR between the state array and the 𝑀𝑎𝑠𝑘𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛𝐿𝑎𝑠𝑡𝑅𝑜𝑢𝑛𝑑[]

constant, which automatically unmasks the state.

Remark 1: From the description above, the main security requirement is de-
duced to be keeping the offset and shuffle values secret from the adversary. Once
these values are revealed to the adversary, it is theoretically possible to mount
successful DPA or TA attacks. The same offset value for a set of traces means
that the same mask 𝑀𝑖 value was used. From the point of view of a DPA attack,
it is practically equivalent to have a totally unmasked implementation because
Pearson correlation 𝜌(𝑥 ⊕ 𝑀𝑖, 𝑦) simplifies 𝜌(𝑥, 𝑦). A similar situation occurs for
shuffle operation: when the value is revealed, the attacker can sort power traces
according to this value that accounts for individual bytes of state. In this man-
ner, the points of power consumption corresponding to the 𝑀𝑎𝑠𝑘𝑒𝑑𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠

operation are in one column in matrix that contains sorted power traces, there-
fore standard “vertical” DPA attack based on Pearson correlation works. In
other words, the 𝑀𝑎𝑠𝑘𝑒𝑑𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠 operations occur at the same time because
randomizing the operation order is suppressed. Based on these observations, we
focused our analysis only on secret offset and shuffle revelation including the
S-box operation.

3.2.2 Power Analysis Realized

Similarly as in DPA contest V4.1, the power analysis was carried out in the following
steps:

• Localization of interesting points for crucial operation based on correlation
coefficients.

• Key observation of possible lacks.
• Attack proposal and implementation (experimental verification on public dataset).
• Attack submission and result comparison.

At the beginning of our analysis, we performed classical differential power analysis
based on correlation coefficient (denoted as CPA) in order to localize operations and
interesting points (IP) that provided information about processed data. Please, take

63

into account that every input data is known to CPA in this case (secret key and plain-
text, offsets, shuffle) [78]. Based on the previous analysis, we focused on Mask load-
ing, Shuffle loading and SubByte operations. For the analysis, we used one dataset of
DPA Contest V4.2 that contains 5, 000 power traces corresponding with the first se-
cret key denoted as 𝑘007= [182, 88, 199, 29, 65, 215, 183, 52, 68, 150, 41, 171, 151] (dec-
imal notation).

The CPA results obtained for every 16 bytes of Mask loading are depicted in
Figure 3.6. In the figure we can observe that this operation takes place at the
beginning of the encryption (from 1.7 × 105 to 1.9 × 105 samples), strongly leaking
information about mask values. Note that the standard Hamming weight (HW)
model was deployed to calculate the hypothetical power consumption. In the next
section, we explain how we used the localized IPs to create and test the templates
to disclose masks (individual offset).

Remark 2: There are usually 256 different exploitable leakages in the case of
“standard” boolean masking but only 16 for RSM (considering one byte mask).
In the previous version of RSM implementation, it was fairly easy to perform
template attacks in order to recover the random offset (in this case the whole 128-
bit mask) because for each plaintext byte there was a leakage depending on the
operation 𝑋𝑖 ⊕ 𝑀𝑖, moreover the sequence of masks was known. Consequently,
it was necessary to guess only one of the 16 possibilities and the adversary was
able to reveal the whole 128-bit mask.

In the improved implementation, the offset is random for every plaintext
byte, therefore the adversary has to guess 1616 individual offsets (masks). More-
over, in our research, we focus on IPs that provide information related to the HW
of loaded masks, therefore we can assume that the useful information related to
the secret offset is very small. It is possible because the HW of every 16 mask
is equal to 4 × 2, 8 × 4 and 4 × 68. Such assumptions about the IP suitability to
reveal the secret offset must be verified in practice.

The CPA results obtained for every 16 bytes of Shuffle loading are depicted in
Figure 3.7. We can observe that this operation takes place from 2.0×105 to 2.8×105

samples, strongly leaking information about the shuffle value. As in the previous
case, we used these IPs to create and test the templates that disclosed shuffle.

7Please, note that datasets were updated on 6 July 2015 and since then each of them contains
5, 000 power traces corresponding to one secret key. Old data sets containing only 1, 000 power
traces are no longer available.

8In the origin mask set, the HW of 14 masks equal 4 besides two mask 0 and 255.

64

Fig. 3.6: Results of CPA for Mask loading operation.

Fig. 3.7: Results of CPA for Shuffle loading operation.

The result of S-box localization corresponding with every state byte is displayed
in Figure 3.8. Note that our CPA sorted power traces according to shuffle0 (to fulfill
the condition: the first Shuffle byte equals zero, the second equals one and so on)
in the first step and the correlation was calculated in the second step. Thus, only
approximately 300 power traces could be used from the first data set.

65

Fig. 3.8: Results of CPA for SubByte operation, shuffle values are known.

Figure 3.8 clearly shows that S-box operation takes place from 2.05 × 105 to
2.69 × 105 samples. It is a well known fact that the SubBytes operation is a perfect
target for a standard DPA attack due to its attributes, therefore masking and hiding
techniques are generally aimed at this operation. As described in previsions sections,
this fact also applies to the DPA Contest implementation. However, it is apparent
that the value of the first S-box byte is processed repeatedly (Figure 3.8). In fact,
two time intervals take place from 2.05×105 to 2.09×105 samples and from 2.70×105

to 2.76 × 105 samples. The same situation occurs in the case of other S-box bytes
and the second time interval where S-box values were proceed takes place from
2.70 × 105 to 2.92 × 105. We assumed that the second interval corresponded to
the following operation ShiftRows and it was not influenced by shuffling because
shuffling is applied only to the S-box operation in the first and last rounds. In other
words, we assumed that the standard CPA aimed at S-box output worked even if
the shuffle values were unknown. In order to confirm our assumption, we performed
another CPA aimed at S-box output with the difference that our program did not
consider shuffle0. Our algorithm simply calculated the CPA on the basis of the first
300 power traces from the first data set. Results obtained are depicted in Figure
3.9 and confirm our assumption. We observed no peaks corresponding with S-box
operation, but the second interval that involved information about S-box outputs
was almost unchanged (compare Figure 3.8 and Figure 3.9).

66

Fig. 3.9: Results of CPA for SubByte operation, shuffle values are unknown.

At the end of our analysis, we conducted experiments in order to confirm the
possibility of mounting a standard CPA attack, and to compare attack results de-
pending on the usage of shuffle and number of power traces. Similarly as in the
previous case, we implemented two of the standard CPA attacks to reveal the first
key byte based on 300 power traces (unknown key, known plaintext and offset). The
first attack utilized shuffle0 values and attacked the first time interval (peak from
2.066 × 105 samples). The second attack did not take shuffle0 into account and was
aimed at the second time interval (peak from 2.722 × 105 samples).

Results obtained are depicted in Figures 3.10, 3.11, 3.12 and 3.13. We can observe
that the correct key guess can be revealed without any problem using both attacks.
The most interesting fact is that the second attack implementation needed only 35
power traces to reveal the secret key byte and the adversary would need about 100
power traces to reveal the secret key in the first implementation. Therefore, an
implementation of the attack that uses shuffle values actually brings no advantage
for the adversary in practice. This fact represents an important lack (thread) of the
implemented algorithm because the adversary can use the CPA attack aimed at the
S-box without the knowledge of shuffle in order to reveal the secret key stored. In
fact, the adversary does not attack the S-box itself but the following operation that
is not shuffled. It means that the adversary can bypass the shuffling of the S-box in
a fairly easy way in a real power analysis attack.

67

Fig. 3.10: Results of the first CPA attack,
shuffle values were known.

Fig. 3.11: Size of the correlation depend-
ing on the number of power traces for the
first attack.

Fig. 3.12: Results of the second CPA at-
tack, shuffle values were unknown.

Fig. 3.13: Size of the correlation depend-
ing on the number of power traces for the
second attack.

Based on the identified pitfall, we proposed and implemented a simple PA attack
that consisted of two steps. In the first step, only secret offset values were revealed
using templates. In the second step, a standard DPA based on correlation coeffi-
cient was applied. The DPA was aimed at the S-box output in the first round of
AES. In fact, we deployed the outcomes from the previous sections and bypassed
shuffling, therefore the CPA attack pointed to the following operation that worked
with the same intermediate values as the S-box (in the second time interval). The
block diagram of the attack proposed including all necessary components of DPA
Contest is depicted in Figures 3.14. We implemented the attack in the MATLAB
environment. The main tool provided by the DPA Contest is called AttackWrapper,
it is an interface between implemented attacks and the power traces. Another im-

68

AttackWrapper

Compute Results

P
o

w
er

tr

ac
esUser’s

parameters

Result
evaluation

Attack Implemented

TA reveals
secret Offset

CPA attack

1st step 2nd step

Fig. 3.14: Block diagram of the attack proposed.

portant tool called ComputeResults is utilized to analyze the obtained results after
the application of the AttackWrapper. We built the standard templates and evalu-
ated their effectiveness at the beginning of the attack implementation. Calculation
of the probability density function was performed according the following Eq. 3.15
in attack phase:

𝑝(t; (m, C)𝑑𝑖,𝑘𝑗
) =

𝑒𝑥𝑝(−1
2 · (t − m)́ · C−1 · (t − m))√︁

(2 · 𝜋)𝑁𝐼𝑃 · 𝑑𝑒𝑡(C)
(3.8)

where (m, C) represents templates prepared in profiling phase based on multivariate
normal distribution that is fully defined by a mean vector and a covariance matrix.
The power trace measured from the target device is denoted as t and 𝑁𝐼𝑃 is the
number of interesting points. Generally, the adversary computes this probability
for every template created. Probabilities measure how well the templates fit to the
measured power trace t. Intuitively, the highest probability indicate the correct
template and because each template is associated with sensitive information (offset
or shuffle), the adversary obtains desire information.

At first, we created templates to determine the secret offset for individual bytes
(16 templates for 16 state bytes) based on interesting points that we localized. Each
template was built based on 100 interesting points that were most correlated with
mask loading operation. Generally, we used the first 4,000 power traces from DPA
Contest in order to create templates and the following 1,000 power traces to evaluate
their effectiveness (denoted as the test set). Moreover, we calculated confusion

69

Tab. 3.3: Confusion matrix of secret offset revelation for the first byte.

true → 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 TA precis
pred. ↓

0 56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,00
1 0 65 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0,92
2 0 0 64 0 0 0 0 0 0 0 0 0 0 0 0 0 1,00
3 0 0 0 56 0 0 0 0 0 0 0 0 0 0 0 0 1,00
4 1 6 0 0 62 0 0 0 0 0 0 0 0 0 0 0 0,90
5 0 0 0 0 0 71 0 0 0 0 0 0 0 0 0 0 1,00
6 3 0 0 0 0 0 60 0 0 0 0 0 0 0 0 0 0,95
7 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 1,00
8 1 0 0 0 0 0 0 0 55 0 0 0 0 0 0 0 0,98
9 2 0 0 0 0 0 0 0 0 66 0 0 0 0 0 0 0,97

10 1 0 0 0 0 0 0 0 0 0 70 0 0 0 0 0 0,99
11 0 0 0 0 0 0 0 0 0 0 0 59 0 0 0 1 0,98
12 0 0 0 0 0 0 0 0 0 0 0 0 63 0 0 0 1,00
13 0 0 0 0 0 0 0 0 0 0 0 0 0 61 0 0 1,00
14 0 0 1 0 0 0 0 0 0 0 0 0 0 0 47 0 0,98
15 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 60 0,97

TA recall 0,880,920,981,000,910,991,001,001,001,001,000,981,001,001,000,98 0,98

matrices9 to evaluate all guesses carried out by matching phase templates10. An
example of the confusion matrix corresponding with the offset revelation of the first
byte is shown in Table 3.3. The confusion matrix in Table 3.3 crosses predictions
with true values obtained from the whole test set classification. Each column of the
table corresponds to the correct values of the secret offset and each row corresponds
to the predicted values. For example, zero offset value (the first column) was wrongly
estimated once as offset 4, three times as offset 6 and so on. This offset was classified
64 times and only 8 guesses were wrong. On the other hand, there was no wrong
estimate for the third offset value and all 56 occurrences were matched correctly.

For the following analysis, we denote:
(i) True positive (𝑇𝑃): the template attack predicted the offset = 𝑋 and the

actual offset was 𝑋.
(ii) False positive (𝐹𝑃): the template attack predicted the offset = 𝑋 and the

actual offset was 𝑌 .
9The interested reader can consult [132] to obtain additional explanations about performance

measurements for classification, e.g. confusion matrix, precision, recall.
10It is usually more suitable to use guessing entropy as a metric to compare different key recovery

side-channel attack implementations [135], but we focused on offset revelation not the secret key,
therefore we used a confusion matrix, which is also often used during profiling PA attacks [34].

70

(iii) True negative (𝑇𝑁): the template attack predicted the offset = 𝑌 and the
actual offset was 𝑌 .

(iv) False negative (𝐹𝑁): the template attack predicted the offset = 𝑌 and the
actual offset was 𝑋

where 𝑋 ̸= 𝑌 ∧ 𝑋, 𝑌 ∈ J0, 15K represent offset value.
The precision rate is the ratio of correct guesses and all guesses made for indi-

vidual templates (see each row):

TA precis = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
. (3.9)

The recall rate of TA shows the ratio of correct guesses and all guesses made for the
correct offset (column of matrix):

TA recall = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. (3.10)

Naturally, the accuracy rate indicates the ratio of all correct guesses and the number
of all guesses made (in Table 3.3, the accuracy is marked bold):

Accuracy rate = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
. (3.11)

We present precision rate (Figures 3.15 a)) and recall rate (Figures 3.15 b))
of offset revelation using the boxplot. Input data is 16 columns and 16 rows of
confusion matrices corresponding with individual state bytes (a total of 16 times,
1, 000 template matchings were calculated). On each box, the central mark is the
median, the edges of the box are the 25th and 75th percentiles, the whiskers extend
to the most extreme data points not considered outliers, and outliers are plotted
individually. It can be observed that almost all offset values were classified with high
precis and recall approaching 100% for every state byte. Moreover, the remaining
group of offsets was also classified with high precis and recall, on average 97% (offsets
2, 6 and 7). Average accuracy of templates was equal to 98.96%. Based on results
obtained, we conclude that that the complete mask (individual offset values) can be
guessed with high probability.

In the following step, we created templates to determine the shuffle for individual
bytes based on interesting points that were localized in the previous section to
finish our analysis. We created and evaluated templates in the same way as in the
previous case (16 templates based on 100 interesting points for 16 state bytes). This
templates are not involved in our attack proposed but the results can be useful for
future research. Results of precision rate (Figures 3.16 a)) and recall rate (Figures
3.16 b)) of shuffle revelation are summarized in Figures 3.16. Similarly as in the
case of secret offset revelation, some of the shuffle values were easier to identify with
median precis and recall around 95% such as shuffle 0, 1, 3, 10, 12, 13, 14 and 15.

71

Fig. 3.15: Obtained results of the secret offset revelation.

Fig. 3.16: Obtained results of the shuffle revelation.

72

The remaining shuffle values were classified with median precis and recall from 80%
to 93%. Average accuracy of templates was equal to 92.41%. Based on the results,
we conclude that guessing shuffle is more difficult than guessing mask, however
it is possible in practice. In order to complete our analysis, Table 3.4 provides
the accuracy rate for individual state bytes of offset and shuffle revelation, results
confirmed previous assumptions.

Tab. 3.4: Accuracy rate for individual state bytes of offset and shuffle revelation.

State byte 0 1 2 3 4 5 6 7 8
Offset 0,98 0,99 0,98 0,99 1,00 0,99 0,99 0,99 1,00
Shuffle 0,95 0,93 0,95 0,96 0,85 0,87 0,92 0,87 0,88
State byte 9 10 11 12 13 14 15 𝜑

Offset 0,99 0,98 0,99 1,00 0,99 0,98 1,00 0,9896
Shuffle 0,90 0,96 0,91 0,96 0,93 0,98 0,96 0,9241

Remark 3: Templates showed that crucial values to keep secret can be dis-
covered by an adversary. Once these values are revealed to the adversary, it
is possible to mount standard DPA aimed at the first S-box output. We have
proved already that it is sufficient to guess mask values (secret offsets) in or-
der to perform successful DPA. A possible critic to the conducted attacks is that
wrongly estimated intermediate values resulting from poorly guessed offset could
decrease the correlation coefficient. In our experiments, the average accuracy of
offset revelation was considerably high (98.96%). Furthermore, the adversary
can use some of the preprocessing methods to increase the template accuracy
and, by extension, the attack efficacy.

Once the template creation was performed, we completed our test attack by im-
plementing the CPA attack (the second step) and we evaluated the attack using
100 power traces from the second public dataset. This dataset was measured for the
secret key 𝑘01 = [239, 56, 194, 175, 88, 42, 126, 107, 20, 37, 93, 19, 158, 157, 190, 252]
(decimal notation). Naturally, we deployed the second dataset because all previous
analysis that included the template creation were performed using the first dataset
(secret key 𝑘00). In order to prove the performance of the proposed attack, it is
necessary to use different power traces corresponding with the different secret key.
Results given by the tool Compute Results are summarized in Table 3.5.

73

Tab. 3.5: Result of attack implemented based on 100 power traces.

Min trace GSR > 80%: 35
Min trace Min PSR > 80%: 35
Min trace Max PGE < 10: 31
Min trace GSR stable > 80%: 35
Min trace Min PSR stable > 80%: 35
Min trace Max PGE stable < 10: 31
GSR at trace 100: 1
Min PSR at trace 100: 1
Max PSR at trace 100: 1
Min PGE at trace 100: 1
Max PGE at trace 100: 1
Mean time / trace (ms): 332

Metrics in the Table 3.5 are explained in the following list:
(i) Min. trace GSR > 80%: Minimum number of traces for the Global Success

Rate (GSR) to be above 80%.
(ii) Min. trace Min. PSR > 80%: Minimum number of traces for the minimum

Partial Success Rate (PSR) to be above 80%.
(iii) Min. trace Max. PGE < 10: Number of traces for the maximum Partial

Guessing Entropy (PGE)to be below 10.
(iv) Min. trace GSR stable > 80%: Number of traces for the Global Success Rate

to be stable above 80%.
(v) Min. trace Min. PSR stable > 80%: Number of traces for the minimum

Partial Success Rate to be stable above 80%.
(vi) Min. trace Max. PGE stable < 10: Number of traces for the maximum Partial

Guessing Entropy to be stable below 10.
(vii) Additional characteristics are analogical with the above listed characteristics

for the maximum number of power traces.
(viii) Time/Trace: Mean time per trace on the computer where attack is running

(CPU i5-3470 at 3.20 GHz with 16 GB of RAM).

74

Fig. 3.17: Obtained results of secret key revelation.

The PGE for individual key bytes is plotted in Figures 3.17. Almost all key
bytes were revealed successfully based on approximately 15 power traces with the
exception of key bytes 5 and 11. In order to reveal these bytes, the attack needed
29 and 35 power traces successively. Hence, based on the second public dataset, our
attack discovered the whole secret key by deploying a total of only 35 power traces.
Results confirmed the efficacy of the proposed attack methodology and we gave
proofs that the improved RSM masking scheme can be easily broken in practice.
Our attack was submitted to the DPA Contest V4.2 on 19 July 2015. Evaluation
based on 1, 000 power traces of each 16 private datasets was realized in September
2015. The attack was successful, we summarized obtained results of the evaluation
in the following Table 3.6 where the individual metrics represent the average value
that were obtained from 16 datasets tested. The PGE for individual key bytes is
plotted in Figures 3.18.

We carried out the basic power analysis of the improved RSM implementation
V 4.2. Our analysis discovered some potential lacks that an adversary could profit
to disclose the stored secret key. The main lack lies in the fact that the adversary
can attack the S-box output even when the shuffling technique is in use. We demon-
strated that the implementation of the shuffling technique provides no protection in
terms of vertical DPA attacks since the adversary does not attack the S-box itself

75

Tab. 3.6: Result of attack implemented based on 100 power traces.

Min trace GSR > 80%: 104
Min trace Min PSR > 80%: 99
Min trace Max PGE < 10: 107
Min trace GSR stable > 80%: 119
Min trace Min PSR stable > 80%: 119
Min trace Max PGE stable < 10: 107
GSR at trace 1,000: 1
Min PSR at trace 1,000: 1
Max PSR at trace 1,000: 1
Min PGE at trace 1,000: 1
Max PGE at trace 1,000: 1
Mean time / trace (ms): 2,300

Fig. 3.18: Obtained results of DPA Contest evaluation.

but the following operation that is not shuffled. Based on this principle, we proposed
and performed a successfully attack, which consisted of two steps: in the first step,
the secret offset is discovered using templates; in the second step, the CPA attack is
performed. Our attack disclosed the secret key on the basis of only 35 power traces.

76

3.3 Robustness of Profiling Attacks
In this section, we focus on profiled attacks introduced as the strongest leakage
analysis in an information theoretic sense [22]. Several papers highlighted that the
characteristics of leakages vary across the measured leakages [25, 30, 125, 140]. More
precisely, real world datasets often suffer from errors or distortions in the measured
leakages that may affect the efficiency of the adversary. The variability can be due
to several factors such as human errors, instrument malfunction (due to the device
ageing), variability across different devices or different acquisition campaigns. The
impact of these issues on the success of an attack can be reduced with pre-processing
techniques, but cannot be entirely removed [140]. In this section, we aim to verify
which profiled attack (among conventional profiled attacks and profiled attacks based
on machine learning) has the lowest sensitivity to modifications of the characteristics
of leakages. For this purpose, we rely on several scenarios among which:

1. leakages associated to a wrong target value in the profiling set,
2. misaligned leakages in the profiling and/or attacking sets,
3. fluctuation of the signal-to-noise ratio in the profiling and/or attacking sets,
4. an increased mean of leakages (called DC offset) in the profiling or in the

attacking sets.
All our results are based on distortions and errors applied on real datasets down-
loaded from the public DPA contests V4.1 [40] and V4.2 [41]. Seting of the profiling
method is standard and it is described in section 2.1.

3.3.1 Description of Scenarios and Testbed

We consider a wide range of cases grouped in four scenarios that are listed in the
following:

• Scenario 1: we increase the number of leakages from the profiling set associ-
ated to wrong target values. This scenario can be the illustration of a problem
in the protocol used in order to build the dataset as already seen in the DPA
Contest V4.1.

• Scenario 2: we increase the number of misaligned leakages (from the profiling
set and/or from the attacking set). Each (temporal) misaligned leakage is
randomly time-shifted from 1 to 6 points from the original leakage. This
scenario can be due to a dysfunction in the power supply, an unstable clock,
a lack of a good trigger signal or due to countermeasures such as frequency
changing, voltage changing and random delay interrupts.

• Scenario 3: we increase the level of noise on leakages from the profiling set
and from the attacking set. This scenario represents a context in which several

77

devices (executed near the measurement) influence the environmental noise.
• Scenario 4: we increase the mean value of the leakages by adding a constant

value (called the DC offset) in the profiling set and then in the attacking
set. The DC offset can be the result of (1) a difference between the profiling
device (used to build the profiling set) and the target device, or (2) a difference
between the acquisition campaign during the profiling and attacking step.

Based on these scenarios, we test the robustness of five profiled attacks that were
described in section 2.1. DPA Contest represents an international framework that
allows researchers to compare their side-channel attacks under the same conditions.
The contest version 4.1 provides leakages associated to the execution of an im-
plementation of AES (128-bit key) protected with a low-entropy Boolean masking
scheme called Rotating Sbox Masking (RSM). Regarding RSM, the algorithm was
deeply described in sections 3.1 and 3.2, we refer interested readers to the work of
Bhasin et al. [12] to get more information. Few months after the beginning of the
DPA Contest V4.1, the organizers provided an improved implementation of RSM
(denoted as version 4.2) to avoid most of the identified pitfalls in the previous ver-
sion. In the following text, for the clarity, we essentially plot the results based on
the DPA Contest V4.2. Nevertheless, we obtain the same conclusion based on the
dataset provided by the DPA Contest V4.1. The DPA Contest team used a LeCroy
WaveRunner6100A oscilloscope with an EM probe in order to acquire a set of leak-
ages from an 8-bit AVR microcontroller Atmega163. Based on the acquired dataset,
we aim to show the sensitivity of profiled attacks by targeting the secret offset of
RSM (having an entropy of 4 bits). However, our experiments can be generalized to
other sensitive information (e.g., the secret key) and other cryptographic primitives
which represent an interesting future work.

In order to build our datasets based on the set of leakages provided by the DPA
Contest, we select the features in the traces that (1) linearly correlate the most with
the mask value11, and (2) are distant each other from at least a certain number
of samples (a number denoted as surroundings in the following). Note that in the
following, we will express the signal-to-noise ratio in decibels (dB). In each scenario
we vary the number of points per leakage (from 20 to 100 points per leakage) denoted
𝑛𝑠, the number of leakages in the profiling set (from 500 to 4000 leakages) denoted
𝑁𝑝, and the surroundings parameter (from 0 to 2). However we provide figures
related to the most informative settings for a reason of simplification and space. We
use an attacking set that contains 1000 power traces in order to evaluate the quality
of attacks. We consider the first order succes rate as a metric of comparison12.

11Note that an adversary targeting the offset or the mask value leads to the same result in our
case: the (Pearson) correlation between them equals to one.

12Defined as the probability that the model returns the right mask value from one attack leakage.

78

0 10 20 30 40 50 60 70 80 90 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

su
cc

es
s

ra
te

mistakes percents in the profiling set

CTA
ETA

SVM
MLP

RF

(a) 𝑁𝑝 = 500, 𝑛𝑠 = 50, surroundings = 0

0 10 20 30 40 50 60 70 80 90

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

su
cc

es
s

ra
te

mistakes percents in the profiling set

CTA
ETA

SVM
MLP

RF

(b) 𝑁𝑝 = 4000, 𝑛𝑠 = 50, surroundings = 0

Fig. 3.19: Probability to retrieve the target value as a function of the number of
mistakes in profiling set (DPA Contest V4.2).

3.3.2 Scenario 1: experimental results for mistakes

Figure 3.19 shows the probability of each profiled attack to return the target value
when varying the percentage of leakages in the profiling set associated to wrong
target values. ETA are the method of choice when there is no mistake in the profiling
set. CTA provide the worst results overall due to the high number of parameters to
estimate leading to a high sensitivity to errors in the profiling set. It is worth to note
that all the methods succeed to have a better success than a random model (i.e., a
success rate higher than 1

16) even with more than 80% of mistakes in the profiling
set. More precisely, profiled attacks based on machine learning model outperform
conventional profiled attacks in the majority of cases (and provide similar results in
the other cases) when the percentage of errors is high (especially with the dataset of
the DPA Contest V4.2). For example, based on Figure 3.19(b), with 80% of mistakes
in the profiling set provided by the DPA Contest V4.2, SVM reach a success rate
of 0.887 while the ETA achieve a success rate of 0.578. The rationale of this result
is that (1) the increase of mistakes is equivalent to a reduction of the number of
leakages in the profiling set leading to be in a high dimensionality context, and (2)
it has been shown that machine learning based attacks outperform template attacks
in a high dimensionality context [68, 73].

79

0 10 20 30 40 50 60 70 80 90 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
su

cc
es

s
ra

te

disaligment percents in the profiling set

CTA
ETA

SVM
MLP

RF

(a) 𝑁𝑝 = 500, 𝑛𝑠 = 50, surroundings = 0

0 10 20 30 40 50 60 70 80 90 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

su
cc

es
s

ra
te

disaligment percents in the profiling set

CTA
ETA

SVM
MLP

RF

(b) 𝑁𝑝 = 4000, 𝑛𝑠 = 50, surroundings = 0

Fig. 3.20: Probability to retrieve the target value as a function of the number of
misalignments in profiling set (DPA Contest V4.2).

3.3.3 Scenario 2: experimental results for misalignments

Misaligned leakages are easier to exploit (compared to mistakes in the profiling set)
since the signal related to target values still persist for several instants. Figure 3.20
shows the success rate of each model when varying the percentage of misalignments
in the profiling set. ETA still provide the best results when the percentage of mis-
alignments is low. On the contrary, CTA underperform all the profiled attacks. Note
also that machine learning based attacks provide a higher success than ETA when
increasing the percentage of misalignments. For example, based on the DPA Contest
V4.2 and with 80% percentage of misalignments in the profiling set, Figure 3.20(b)
shows that ETA have a success of 0.32 while SVM, MLP and RF reach a success
rate higher than 0.95. However, an increase of the surroundings parameter or of the
number of points per leakage allow to increase the success of ETA and, as a result,
reduce the sensitivity of template attacks to misalignments in the profiling set.

Figure 3.21 shows the results of attacks when leakages from the attacking set
are misaligned. The success rate of each model decreases with the percentage of
misaligned leakages in the attacking set. Furthermore, the five models perform
similarly.

Figure 3.22 shows the results when we vary the percentage of misaligned leakages
in the profiling and attacking sets. Three observations can be made:

1. CTA have the worst success rate,
2. ETA and machine learning models perform similarly on the DPA Contest V4.1,
3. machine learning models outperform ETA on the majority of cases based on

the DPA Contest V4.2.

80

0 10 20 30 40 50 60 70 80 90 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
su

cc
es

s
ra

te

disaligment percents in the attacking set

CTA
ETA

SVM
MLP

RF

(a) 𝑁𝑝 = 500, 𝑛𝑠 = 50, surroundings = 0

0 10 20 30 40 50 60 70 80 90 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

su
cc

es
s

ra
te

disaligment percents in the attacking set

CTA
ETA

SVM
MLP

RF

(b) 𝑁𝑝 = 4000, 𝑛𝑠 = 50, surroundings = 0

Fig. 3.21: Probability to retrieve the target value as a function of the number of
misalignments in attacking set (DPA Contest V4.2).

0 10 20 30 40 50 60 70 80 90 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

su
cc

es
s

ra
te

disaligment percents in the attacking/profiling set

CTA
ETA

SVM
MLP

RF

(a) 𝑁𝑝 = 500, 𝑛𝑠 = 50, surroundings = 0

0 10 20 30 40 50 60 70 80 90 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

su
cc

es
s

ra
te

disaligment percents in the attacking/profiling set

CTA
ETA

SVM
MLP

RF

(b) 𝑁𝑝 = 4000, 𝑛𝑠 = 50, surroundings = 0

Fig. 3.22: Probability to retrieve the target value as a function of the number of
misalignments in profiling and attacking sets (DPA Contest V4.2).

Regarding the last observation, the success rate of models appears to be related to
the sum of (1) the outcomes based on misalignments in the profiling set, and (2) the
results based on misalignments in the attacking set.

3.3.4 Scenario 3: experimental results for noise

Our third scenario focuses on an increase of the signal-to-noise ratio. Figure 3.23
plots the outcomes when varying the signal-to-noise ratio in the profiling set. ETA
outperform all the models in low and high signal-to-noise ratio while CTA under-

81

1 10 20 30

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

su
cc

es
s

ra
te

SNR in the profiling set

CTA
ETA

SVM
MLP

RF

(a) 𝑁𝑝 = 500, 𝑛𝑠 = 50, surroundings = 0

1 10 20 30

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

su
cc

es
s

ra
te

SNR in the profiling set

CTA
ETA

SVM
MLP

RF

(b) 𝑁𝑝 = 4000, 𝑛𝑠 = 50, surroundings = 0

Fig. 3.23: Probability to retrieve the target value as a function of the SNR in pro-
filing set (DPA Contest V4.2).

1 10 20 30

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

su
cc

es
s

ra
te

SNR in the attacking set

CTA
ETA

SVM
MLP

RF

(a) 𝑁𝑝 = 500, 𝑛𝑠 = 50, surroundings = 0

1 10 20 30

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

su
cc

es
s

ra
te

SNR in the attacking set

CTA
ETA

SVM
MLP

RF

(b) 𝑁𝑝 = 4000, 𝑛𝑠 = 50, surroundings = 0

Fig. 3.24: Probability to retrieve the target value as a function of the SNR in at-
tacking set (DPA Contest V4.2).

perform all the models in a high signal-to-noise ratio. Figure 3.24 shows the results
when varying the signal-to-noise ratio in the attacking set. In a low level of noise,
ETA outperform or have similar results than machine learning based attacks. In
a high level of noise, the models have similar results except SVM that provide the
worst result overall.

82

0.0 1.6 3.2 4.8 6.4 8.0 9.6 12.0 14.4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

su
cc

es
s

ra
te

DC offset in the profiling set

CTA
ETA

SVM
MLP

RF

(a) 𝑁𝑝 = 500, 𝑛𝑠 = 50, surroundings = 0

0.0 1.6 3.2 4.8 6.4 8.0 9.6 12.0 14.4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

su
cc

es
s

ra
te

DC offset in the profiling set

CTA
ETA

SVM
MLP

RF

(b) 𝑁𝑝 = 4000, 𝑛𝑠 = 50, surroundings = 0

Fig. 3.25: Probability to retrieve the target value as a function of the DC offset
applied on the leakages from the profiling set (DPA Contest V4.2).

3.3.5 Scenario 4: experimental results for DC offset

The last scenario analyzes a variation between the profiling and the attacking sets
due to a DC offset (i.e., a drift of the global mean of leakages). In a context with
a low DC offset applied to the DPA Contest V4.1, ETA provide the best results.
However, an increase of the DC offset in the profiling set leads machine learning
models (especially a model based on MLP) to outperform ETA.

The results of ETA change when considering the DPA Contest V4.2. Figure 3.25
shows the success of attacks when increasing the value of the DC offset in the profil-
ing set using leakages from the DPA Contest V4.2. We obtain similar results when
varying the DC offset in the attacking set. ETA reach the best success compared
to other models. Note that this result can be due to the fact that the amplitude of
the leakages from the DPA Contest V4.2 differs from leakages provided by the DPA
Contest V4.1. In other words, these results highlight that ETA outperform machine
learning based attacks when the DC offset is low.

3.3.6 Summary

Obtained results are consistent with the no free lunch theorem explaining that the
best model for all scenarios does not exist [141]. Nevertheless, the good results of ma-
chine learning algorithms compared to (efficient) template attacks can be explained
with the bias-variance theorem recently introduced in the side-channel literature [67].

83

The bias-variance framework decomposes the error rate (that is inversely pro-
portional to the success rate) of an attack in three weighted terms among which
the bias and the variance terms. The values of the variance and the bias relate to
the attack complexity: a strategy with a high variance means a high sensitivity to
the profiling set while an attack with a high bias indicates a high systematic error
compared to the best attack independently of the size of the profiling set.

The bias-variance decomposition shows that (i) CTA have a high variance (i.e., a
high sensitivity to the profiling set) due to a high complexity (related to the number
of parameters to estimate), (ii) ETA reduce the complexity of template attacks by
reducing the number of estimated parameters, and (iii) machine learning models can
vary the variance according to a meta-parameter. For example, SVM compensate
the increase of the model complexity due to the increase of the number of points
per leakage by reducing the variance term through the modification of the meta-
parameter 𝛾. As a result, the learning models can handle a larger error in the
profiling set (that increases the complexity to learn) while keeping a lower variance
term compared to template attacks.

Obtained results underline that efficient template attacks represent the best mod-
els when (1) there is no (or a low) variability in the profiling set and in the attacking
set, and (2) the level of noise varies between leakages. Overall, classical template
attacks provide the lowest success to retrieve the target value. However, profiled at-
tacks based on machine learning gain interest for evaluators of cryptographic devices
(1) when the number of mistakes (i.e., the number of leakages incorrectly associated
to a target value) in the profiling set increases, (2) when the leakages are misaligned
in the profiling and/or attacking sets, and (3) when the leakages from the profiling
set and from the attacking set differ from a high DC offset. In summary, our re-
sults are of practical importance for evaluators using tools to analyze the leakages
of devices.

3.4 k-Nearest Neighbors in Power Analysis
Machine learning (ML) as a scientific discipline explores the construction of algo-
rithms that can improve their performance based on previous experiences or train-
ings [4]. Most of the machine learning problems deal with the classification of various
input data. In general, machine learning approaches can be classified as supervised
[61] and unsupervised learning [43]. Intuitively, in supervised learning, the machine
is presented with a set of training data with the label and the goal is to determine
the general function that associates the data with the label. In unsupervised learn-
ing, the machine is presented with a set of unlabeled data, and the machine tries to
determine the hidden structure of the data.

84

From the description above, one can clearly see an analogy between machine
learning approaches and power analysis attacks. More specifically, profiling attacks
are a supervised learning problem, where ML techniques are used for a model cre-
ation of the target device. Generally, the model created is based on the multivariate
normal distribution in the power analysis. This fact is based on the following simple
analysis of a power trace: one can analyze power consumption measured by looking
at a single point of a power trace (we look at the power consumption of a crypto-
graphic device at a fixed moment of time). For this point, we can determine the
probability distribution that is dependent on the processed data. Generally, it is
difficult to make a statement about the data dependency of the power consump-
tion of cryptographic devices. However, for most cryptographic devices, it is valid
to approximate the distribution of the data dependency of the power consumption
by a normal distribution. Moreover, power consumption of cryptographic devices
is mostly proportional to the Hamming weight or the Hamming distance of data
processed. In these cases, the distribution is composed of nine normal distributions
with different means and the standard deviation is approximately the same. In order
to consider the correlation between more points in the power trace, it is necessary
to model a power trace measured as a multivariate normal distribution which con-
stitutes a generalization of the normal distribution to higher dimensions. We refer
to the book [78] where the authors deal with the complete analysis of statistical
characteristics of power traces. On the other hand, non-profiling attacks can be
seen as an unsupervised learning. Instead of statistical methods, one can apply ML
in order to find the desired structures in the data. In this text, we do not take into
account this application of ML.

In recent years, the cryptographic community has explored new approaches in
power analysis based on machine learning. In the field of power analysis, the possi-
bility of using neural networks was first published in [122]. Naturally, this work was
followed by other authors, e.g. [63], who dealt with the classification of individual
power prints. These works are mostly oriented towards reverse engineering based
on power print classification. Yang et al. [143] proposed MLP in order to create a
power consumption model of a cryptographic device in CPA. Lerman et al. [66, 68]
compared a template attack with a binary machine learning approach, based on
non-parametric methods.

Hospodar et al. [52, 53] analyzed the SVM on a software implementation of a
block cipher. Heuser et al. [49] created the general description of the SVM attack
and compared this approach with the template attack. In 2013, Bartkewitz [8]
applied a multi-class machine learning model which improves the attack success
rate with respect to the binary approach. Moreover, they used (linear) SVM as a
preprocessing tool for feature selection, similar as Brank [101]. Recently, Lerman et

85

al. [69] proposed a machine learning approach that takes into account the temporal
dependencies between power values. This method improves the success rate of an
attack in a low signal-to-noise ratio with respect to classification methods. Another
SVM-based attack was presented in [44] where the authors used SVM to recover the
secret key (bit by bit) by exploiting the leakage in the key permutation round.

Lerman et al. [71] presented a machine learning attack against a masking coun-
termeasure, using the dataset of the DPA Contest V4. The method of power anal-
ysis based on a multi-layer perceptron was first presented in [92]. In this work,
the authors used a neural network directly for the classification of the AES secret
key. In [81], this MLP approach was optimized by using the preprocessing of the
power traces measured. Lerman et al. [72] introduced a semi-supervised a Template
Attack, that combines supervised and unsupervised learning. The method was con-
firmed by the experiments on an 8-bit microcontroller and by a comparison with a
template attack. The authors proposed an unsupervised learning approach for PA
in [23] aimed on DES algorithm. Heyszlet et al. [50] introduced an unsupervised
cluster classification algorithm 𝑘-means to attack cryptographic exponentiation of
a public key cryptographic system and recover secret exponents without any prior
profiling. Note that the algorithm 𝑘-means should not be confused with the 𝑘-
nearest neighbor algorithm. Zhanget et al. [145] proposed a DPA attack based on
the correlation coefficient using Genetic Algorithm. Perin et al. [116] presented the
attack based on a clustering algorithm that attacks the randomized exponentiation
of the RSA algorithm. In work [6], the 𝑘-NN algorithm was briefly mentioned as a
possible mutual information estimator. At the end of 2014, Dirmanto presented a
small but concise overview of machine learning approaches in power analysis [54].
The survey paper summarizes the main theoretical aspects [54]. During the CHES
2015 conference, Whitnall presented an unsupervised clustering algorithm (K-means
clustering) in order to recover a nominal power model [140]. The model was used in
a key recovery attack, with minimal requirements in the profiling phase and more-
over the approach was effective and robust across an extensive set of distortions.
Work [47] contains a survey of machine learning approaches in power analysis. The
main milestones in power analysis attacks based on the ML approach are depicted
in Fig. 3.26.

Recently, the researchers focus on deep learning techniques that are usable in
power analysis attacks. Convolutional neural networks were presented in [17, 76].
The work [10] presented a survey of deep learning approaches in power analysis
attacks. How to select a suitable algorithm was presented by Lerman [74]. Semi-
supervised SCA based on collaborative learning was proposed in [75] (SVM clasifier
was utilized). Mahmoud et al. [77] presented a hybrid power side-channel and
modeling attack on strong Physical Unclonable Functions. Simpler models such

86

Fig. 3.26: Chronology order of statistical techniques in power analysis attacks [47].

as Bayes classification that lead also to good results were presented in [117]. The
hierarchical classification where the goal is to explore the natural clustering of the
leakage in order to arrange the class variables was described in [118]. It is clear, that
feature selection is crucial for an attack success based on ML. There is only a single
paper that systematically compares the effectiveness of proposed techniques from
the side-channel domain [48]. Papers [126, 127] present attacks against an FPGA
implementation based on various neural networks. Shortly after the publication of
the ASCAD data set, Timon exploited the database for non-profiled deep learning
[137].

In previous works, individual machine learning (ML) approaches are compared
mostly with a template attack or a stochastic attack (SA) [52, 53]. ML approaches
have not been compared yet. The work [71] can be mentioned as an exception,
where SVM and RF are compared with the TA and the SA. In this section, we
try to make an extensive comparison of machine learning algorithms in PA. We
focus only on the usage of the individual ML algorithms in profiling attacks where
ML techniques are used for a model creation of the target device. We do not
consider other possible applications such as structure searching, preprocessing or
feature selection. For our research, we implemented a verification program that
always chooses the optimal settings of the individual ML models in order to obtain
the best classification accuracy. Our research was based on three datasets, the
first dataset containing the power traces of an unprotected AES implementation

87

where we classify one byte of the secret key. The second and third datasets were
independently prepared from public datasets of power traces corresponding to the
masked AES implementation (DPA Contest V4 [40]) where we classify the secret
offset. We decided to use the first order success rate as a metric of the comparison
because our two datasets were focused on mask classification and Guessing entropy
is not suitable in this case13. Furthermore, we compared all ML approaches with
a template based attack. In this research, we wanted to answer particularly these
questions:

• Which ML algorithm is the most suitable for profiling PA attacks?
• Are there any generally appropriate settings of the ML algorithms that can be

used by the potential attacker for PA attacks?
• How big is the influence of the number of power traces and interesting points

on the classification results of individual ML algorithms?
Nowadays, the method using the SVM is considered to be the most effective ma-

chine learning algorithm in the power analysis. In many concrete attacks, in which
an adversary has only a limited number of power traces available, the SVM is better
in comparison with the classical template attack or the stochastic attack. Based
on the results obtained, we propose a power analysis method based on the k-NN
algorithm as the most effective method. Even there is no “intelligence”, the algo-
rithm shows great application potential in PA, because the usage of the algorithm
provides some advantages for the attacker in comparison with the other machine
learning approaches and the classic power analysis attack. Moreover, we describe
the general scheme of this method in profiling power analysis attacks.

In the previous section, we have already provided relevant references that deal
with the well-known ML approaches in power analysis attack (such as SVM, MLP
and RF). Therefore, the following text focuses only on the description of the ap-
proach proposed based on the 𝑘-NN algorithm. We provide the general scheme of
this method in profiling power analysis attacks.

Preliminaries: a learning set Y (sometimes denoted as a training set) and a
test set X with 𝑛 and 𝑚 instances represent power traces measured in the context of
the power analysis. Each instance y𝑖 where 𝑖 = 1, . . . , 𝑛 and x𝑗 where 𝑗 = 1, . . . , 𝑚 in
the learning and training sets contains one assignment (a class label that determines
which class the concrete instant belongs to) and several attributes y𝑖 = 𝑦1, . . . , 𝑦𝑁 ,
x𝑗 = 𝑥1, . . . , 𝑥𝑁 (features and observed variables respectively). These attributes
represent the interesting points of power traces in time (samples). The learning set

13It is usually more suitable to use Guessing Entropy as a metric to compare different key
recovery side-channel attack implementations [135], but we focused on the offset revelation using
two datasets and on the secret key recovery using one dataset. Therefore, we used a confusion
matrix and a success rate, which are also often used during profiling PA attacks [34].

88

is used in the profiling phase of the profiled attack and the test set is used during
the attack phase. In the profiling power analysis attack, the label represents the
desired byte value of the secret key i.e. together 256 possible variants (0 to 255).
From the perspective of ML, we can see this problem as a multiclass classification
where ML classifies the instance into 256 possible classes. The second method
that is often used is to transfer this problem into the multi-label classification.
The multi-label classification represents the problem of finding a model that maps
inputs xj to binary output vectors yi. There are two main methods for tackling the
multi-label classification problem: problem transformation methods and algorithm
adaptation methods [138, 123, 44]. Problem transformation methods transform the
multi-label problem into a set of binary classification (two classes 0 or 1) that can
be realized by single-class classifiers (such as binary relevance or label powerset).
Algorithm adaptation methods adapt the algorithms to directly perform a multi-
label classification (Multilabel Neural Networks). In machine learning, the k-Nearest
Neighbors algorithm is a non-parametric method used for classification and belongs
to the simplest machine learning algorithms [3]. The training phase of the algorithm
consists only of storing the learning set into the memory. In the classification phase,
𝑘 is a user-defined constant (typically small), and a point of the test set is classified
by assigning the label which is the most frequent among the 𝑘 training samples
nearest to that classified point. If 𝑘 = 1, then the object is simply assigned to the
class of that single nearest neighbor.

A typical example of k-NN classification is shown in Fig. 3.27. The test sample
denoted as a gray square should be classified either to the first class of the white
stars or to the second class of the black circles. If the classification process takes
into account the three nearest points 𝑘 = 3, the test sample is assigned to the
second class, because there are 2 stars and only 1 circle inside the selected area
(solid line inner circle). If 𝑘 = 5, the test sample is naturally assigned to the first
class because 3 black circles and 2 stars are in the selected area (dashed line outer
circle). Commonly used distance metrics for continuous variables are defined as:

𝑑(x, y) =

⎯⎸⎸⎷ 𝑁∑︁
𝑖=1

(𝑥𝑖 − 𝑦𝑖)2, Euclidean, (3.12)

𝑑(x, y) =
𝑁∑︁

𝑖=1
|𝑥𝑖 − 𝑦𝑖| , Manhattan, (3.13)

where 𝑖 represents the number of attributes in the learning set. The overlap metric
and Hamming distance are other possible metrics for discrete variables. The best
choice of 𝑘, that strongly depends on the learning set, is very important. Generally, a
large 𝑘 reduces the effect of the noise on the classification but makes the boundaries
between the classes less distinct. A suitable 𝑘 can be selected by various heuristic

89

?

x

y

Fig. 3.27: Example of 𝑘-NN classification.

techniques, for example the hyperparameter optimization [31]. The following text
describes the power analysis method based on k-NN.

Profiling Phase - In the attack based on k-NN, we assume that we can charac-
terize the profiling device by labeling measured data. One can implement a certain
part of the cryptographic algorithm and execute the sequence of instructions on a
profiling device with different data 𝑑𝑖 and different key values 𝑘𝑗, and record the
power consumption. After measuring 𝑛 power traces, we create the matrix Y𝑛 that
contains power traces corresponding to the pair (𝑑𝑖, 𝑘𝑗). According to the key value,
we add a label to the matrix Y𝑛. In case of byte classification, the label can be
expressed by four columns where every row represents a class using the binary ex-
pression 00000000 to 11111111 (every possible byte value from 0 to 255). The matrix
Y𝑛 represents a learning set which is stored in the memory.

Attack Phase - During the attack phase, the adversary uses the stored learning
set together with the measured power trace from the target device (denoted as
t = [𝑥1, . . . , 𝑥𝑁]) to determine the secret key value. Let’s assume that for our 𝑘-NN
algorithm we chose the following parameters: 𝑘 = 5 and the Euclidean distance.
The classification takes three steps:

• at the beginning, the algorithm calculates Euclidean distances of all stored
training vectors yn to vector t:

𝑑(x, yn) =

⎯⎸⎸⎷ 𝑁∑︁
𝑖=1

(𝑥𝑖 − 𝑦𝑖)2. (3.14)

• In the second step, 5 closest training points are found according to the dis-
tances calculated.

• In the last step, the class is selected based on the majority vote.

90

Fig. 3.28: Scatter plot of two interesting
points that leak HW.

Fig. 3.29: Detail of the scatter plot for
HW0 and HW1.

The result of this classification is the most probable class based on training set Y.
Since each training instance yn is associated with a secret key value, the adversary
obtains the information about the secret key stored in the target device.

In the following text, we provide a simple example of the attack based on 𝑘-
NN using the real data of power consumption (we used only two dimensions i.e.
two interesting points were selected) in order to demonstrate the suitability and
simplicity of the approach proposed. Let’s assume that the adversary wants to de-
termine a Hamming Weight (HW) of processing data or a secret key value. During
the profiling phase, the adversary measures 2, 560 power traces, 10 for every byte
value (it means that 10 power traces correspond to the HW = 0, 80 power traces
correspond to the HW = 1, and so on). In power traces, the adversary chooses two
interesting points that leak information about HW. The profiling phase is finished
by storing the points into the memory of a computer. Fig. 3.28 shows scatter plot of
two chosen interesting points. The division of the two-dimensional space into nine
groups according to the HW is clearly visible. We can approximate this data de-
pendency of the power consumption by a two variable normal distribution (we refer
interested readers to consult the statistical analysis in book [78]). In these cases,
the distribution is composed of nine normal distributions. In the attack phase, the
adversary measures the power trace from the target device and puts the same inter-
esting points to the 𝑘-NN algorithm. Fig. 3.29 shows the process of classification
for an unknown point that is marked with a black star and for parameter 𝑘 = 5. All
five nearest neighbors points belong to the distribution marked with blue color that
corresponds to the HW= 0. The adversary obtains the desired information that the
HW of processed data is 0. Similarly, the adversary can continue with additional
power traces in order to reveal the desired sensitive information.

91

It is obvious, if we focus on two points of the power consumption at fixed time in
our example, and realize measurements of power consumption repetitively for con-
stant data then the points measured will appear more or less in the same (group). A
similar situation occurs for different data processed by a cryptographic device, there-
fore the points are in clusters. A widely known fact is that the 𝑘-NN algorithm is one
of many algorithms that are robust, simple and suitable for classification problems.
Using this simple example, we wanted to demonstrate the classification problem
during the power analysis attacks and a simple application of ML algorithms.

3.4.1 Description of Scenarios and Testbed

The following text summarizes the most important facts about the experimen-
tal setup and the verification program (implemented attacks). We created three
datasets in order to test the chosen machine learning approaches. Based on the
state of the art, we chose SVM, MLP, 𝑘-NN, DT (Decision trees), RF and LDA
(Linear Discriminant Analysis).

The first dataset (DS1) is focused only on the first byte classification of the
secret key. The dataset is prepared from power traces of the unprotected AES-
128 implementation in our testbed. The cryptographic module was represented by
the PIC 8-bit micro controller, and for the power consumption measurement we
used the CT-6 current probe and the Tektronix DPO-4032 digital oscilloscope. We
used standard operating conditions with 5 V power supply. Stored power traces
had 100 000 samples and covered the AddRoundKey and SubBytes operations in
the initialization phase of the algorithm. The implementation was realized in the
assembly language and the executed instructions of the examined operation were
exactly the same for every key byte (identical power prints). Therefore, it was
possible to use the place, where the first byte is processed, in order to create a
model with which it was possible to determine the whole secret key byte by byte.
We verified this assumption experimentally and it is naturally conditioned by the
excellent synchronization of measured power traces. Finally, we chose 5 interesting
points based on the standard CPA method (we used the well known CPA method
to localize interesting points in our whole research). Every of our chosen interesting
points leaked information about the Hamming weight of the processed data. We
chose points that had a distance at least one clock cycle from each other. This
restriction for having IPs not too close avoids the numerical problems when inverting
the covariance matrix during the template-based attack.

An example of power traces selected is depicted in Fig. 3.30. Overall character-
istics of IPs selected are depicted in Fig. 3.31 using a box plot. On each box, the
central mark is the median, the edges of the box are the 25th and 75th percentiles,

92

Fig. 3.30: Example of IPs for DS1. Fig. 3.31: Characteristics of DS1.

the whiskers extend to the most extreme data points not considering outliers, and
the outliers are plotted individually. It can be observed that the first dataset does
not include almost any noise. Consequently, our first dataset represents a matrix
2560×13 where the last 8 values are labels. Each label is expressed by four columns
where every row represents a class using the binary expression from 00000000 to
11111111.

The second dataset (DS2) is focused on the mask classification and consists
of 1 000 power traces. DS2 is prepared from electromagnetic traces that are freely
available on the website of the DPA Contest V4 [40]. The masked block-cipher
AES-256 in encryption mode without any mode of operation is implemented on the
target cryptographic device Atmel ATMega-163-based smart card. The implemented
masking scheme is a variant of the Rotating Sbox Masking [106, 102]. According
to the authors, this masking scheme keeps performance and complexity close to the
unprotected scheme and is resistant to several side-channel attacks. Sixteen masks
that are incorporated in the computation of the algorithm are public information.
The offset value, which is drawn randomly at the beginning of the computation, is a
secret value. Mask values are rotating according to the offset value [106, 102]. Each
stored trace has 435 002 samples associated to the same secret key and corresponds
to the first and to the beginning of the second round of the AES algorithm. For
DS2, we chose only the points that are most correlated with the secret offset value.
We realized classical CPA for operation Plaintext blinding that is dependent on
the offset value in order to locate the interesting points. We chose the 3 highest
correlated points for every mask value, together 48 interesting points were selected.
In other words, DS2 represents a matrix 1 000 × 52 where the last four values are
labels. In our case, the label value corresponds with the offset value 0 to 15. An
example of power traces selected is depicted in Fig. 3.32. The overall characteristics
of the interesting points selected are depicted in Fig. 3.33 using a box plot.

93

Fig. 3.32: Example of IPs for DS2. Fig. 3.33: Characteristics of DS2.

Fig. 3.34: Example of IPs for DS3. Fig. 3.35: Characteristics of DS3.

The third dataset (DS3) was created by Liran Lerman during preparation of
the attack in the DPA Contest V4 [71]. This DS is focused on the mask classification
and we used the first 1 000 traces of 1 500 available. The author chose 50 interesting
points according to the computed Pearson correlation between each instance of 1 500
traces and the offset value. In other words, our DS3 represents a matrix 1 000 × 54
where the last four values are labels. Again, the label value corresponds with the
offset value 0 to 15 (sixteen possible variants). We refer to the work [71] for more
information about the original dataset. An example of power traces selected is
depicted in Fig. 3.34. The overall characteristics of interesting points selected are
depicted in Fig. 3.35. A well-known fact is that noise always poses a problem
during the power consumption measurement. Every stored power trace from DS1
was calculated as an average power trace from ten power traces measured using the
digital oscilloscope to reduce electronic noise. We refer to website [40] to consult
the level of noise in DS2 and DS3.

94

3.4.2 Implemented Program

Figure 3.36 shows the main principle of the verification algorithm implemented14.
The main part of the implemented program is the block denoted as Optimize
Parameters. This block finds the optimal values of the selected parameters for the
tested machine learning algorithms. In other words, it executes each model for all
combinations of user selected values of the parameters and then delivers the optimal
parameter values as a result. Selected specific parameters are described in more
details in the next section. The second important block of the program is the Cross-
validation. Cross-validation (CV) is a standard statistical method to estimate the
generalization error of a predictive model. In 𝑙-fold cross-validation, a training set
is divided into 𝑙 equal-sized subsets. Then a model is trained using the other (𝑙 − 1)
subsets and its performance is evaluated on the current subset. This procedure is
repeated for each subset. In other words, each subset is used for testing exactly once.
The result of the cross-validation is the average of the performances obtained from
𝑙 rounds. In verification program, we used the typical 10-fold cross-validation. We
repeated the CV four or eight times in the Loop, because we created four or eight
models for individual bit classification depending on the dataset. In other words, in
our program we chose the multi-label classification where a model maps inputs xj

to binary outputs vectors yi using single-class classifiers. The verification program
returned two output values: the best parameters of the learning models and the
obtained accuracy using these parameters. The accuracy was described using the
typical confusion matrix.

The original implemented program contained a block called Forward selec-
tion that selected individual attributes of DSs. In each round, this block can add
attributes and the performance is estimated using the inner operators, e.g. a cross-
validation. This configuration allows us to get the best results of machine learning
algorithms depending on individual parameters setting and attributes selected. In
this way, we tested the influence of the number and the combination of selected
attributes on the classification results. It is obvious, that time required to solve the
program implemented strongly depends on the number of selected parameters of
individual ML approaches. One can test an infinite number of parameters in theory,
but it has no sense to do so in practice. For example, it is really unnecessary to
test the 𝑘-NN algorithm for 𝑘 > 11, because the results are worse and the advan-
tages of the algorithm are reduced (based on long years practical experience with
ML approaches). For these reasons, we chose only a limited number of parameters
that are relevant and important for testing individual ML algorithms. Selection of
parameters was realized based on our experience and knowledge with ML.

14We use Rapid Miner for implementation [51].

95

Data set 1:

key classification

2560 power
traces

Optimize Parameters

Models - Loop 8X or 4X

10 fold Cross Validation

SVM

Decision trees

MLP

k-NN

Training and testing

Best parameters

Accuracy

Data set 2:

mask classification

1000 power
traces

Data set 3:

mask classification

1000 power
traces

Others ...

Forward selection

Fig. 3.36: Block scheme of our testing program.

In order to test the SVM approach, we chose the complexity parameter from 0
to 50, epsilon from 0.1 to 1 and types of kernel radial, linear, polynomial. Together
it made 3, 333 combinations. We selected three parameters: the depth from 1 to
100, the confidence from 1.0𝑒−7 to 0.5 and the criterion set to gain the ratio, in-
formation gain, gini index and accuracy (484 combinations) to test decision trees
(DT). The MLP approach was tested by the following parameters: one hidden
layer, type of the activation function, number of training cycles from 1 to 1 000,
learning rate, neural network momentum both from 0 to 1 and normalization true
or false (5 324 combinations). During the testing of the k-NN algorithm, we se-
lected different types of metrics: Euclidean, Camberra, Manhattan and Chebychev
distance, Correlation, Cosine, Dice, MaxProduct, Overlap and Jaccard similarity,
parameter 𝑘 = 1, 3, ..., 11 and a weighted vote (true or false). Together, only 132
combinations were tested. Testing Random forest (RF) model involved these
parameters: the depth from 1 to 100, the confidence 1.0𝑒−7 to 0.5, criterion set to
gain ratio, information gain, gini index and accuracy, and the last parameter was
the number of trees from 1 to 500 (5 324 combinations). As the last tested machine
learning algorithm, we involved the linear discriminant analysis LDA in default
setting.

96

In order to complete our comparison, we implemented the classical Template
attack. We were interested in the comparison of effective template attack based on
pooled covariance matrix [24], therefore we calculated the pool covariance matrix as
an average value of all covariance matrices and we calculated the probability density
function (equation (3.15)) with this matrix. Implementations of template attacks
were done according to the equation (3.15):

𝑝(t; (m, C)𝑑𝑖,𝑘𝑗
) =

𝑒𝑥𝑝(−1
2 · (t − m)́ · C−1 · (t − m))√︁

(2 · 𝜋)𝑁𝑃 · 𝑑𝑒𝑡(C)
(3.15)

where (m, C) represents templates prepared in the profiling phase based on the mul-
tivariate normal distribution that is fully defined by a mean vector and a covariance
matrix. The measured power trace from the target device is denoted as t and 𝑁𝐼

is the number of interesting points. In the following text, a classical template and a
template attack based on the pooled covariance matrix are denoted as 𝑇𝑐𝑙𝑠 and 𝑇𝑝𝑜𝑜𝑙

respectively. In the first experiment, we did not include a reduced template attack,
because if the adversary does not consider the covariance matrix, he loses infor-
mation about the relationship between the interesting points. All template attack
implementations were realized in the Matlab environment.

3.4.3 Results Evaluation

The implemented program provided two outputs: accuracy and best parameters
selected for individual ML algorithms. In order to calculate the accuracy, a typical
confusion matrix was used. Interested readers can consult [132] to obtain additional
explanation about performance measurement of classification, e.g. confusion matrix,
precision, recall. Examples of confusion matrices of DS1 classification for SVM-rbf
and k-NN algorithms are shown in Tab. 3.7 and 3.8. In the confusion matrix,
accuracy is the arithmetic mean of the accuracy obtained from the 8 × 10 cross-
validation for individual models. The 𝜎 value represents their standard deviation.
The value denoted as mikro is actually the accuracy computed from the confusion
matrix. In other words, it is the success rate calculated for all 20 480 experiments
carried out on DS1. It is not possible to present every obtained confusion matrices
in this paper, therefore we present the results based on the mikro value of the success
rate.

In our first experiment, we verified that the influence of the block Forward
selection on the resulting success rate is very low. It is clear, if the selection
of interesting points is done in a correct way, the algorithm chooses always the
maximum of attributes. This conclusion is natural and not surprising, because
selection of the interesting points from power traces is crucially important during

97

Tab. 3.7: Example of confusion matrix for SVM-rbf based on DS1, parameters se-
lected: rbf kernel, C=50, epsilon 0.46.

Accuracy: 96.15% 𝜎= 4.45%
mikro: 94.38%

bit value: 0 1
pred. 0: 9640 551
pred. 1: 600 9689

Tab. 3.8: Example of confusion matrix for k-NN based on DS1, parameters selected:
Euclidian distance, weighted vote false and k=5.

Accuracy: 99.58% 𝜎= 0.63%
mikro: 99.20%

bit value: 0 1
pred. 0: 10161 (TN) 84 (FN)
pred. 1: 79 (FP) 10156 (TP)

the profiled attacks, and we used the well know and verified CPA method in order
to localize interesting points during the dataset preparation. Based on the results
obtained, we skipped this block and always chose the maximum of attributes in the
following experiments.

In the second experiment, we were searching for the best success rate corre-
sponding to the parameters of the selected machine learning algorithm on our three
datasets. In this way, we got the best possible success rates for machine learn-
ing algorithms and we could compare machine learning algorithms according to the
highest value. Tab. 3.9 summarizes the success rate obtained in percentage. The
penultimate rows provide the average values of the success rate calculated from three
values obtained and the last rows provide the differences between the average value
and the maximal obtained average value. From the results, one can confirm that
differences between optimized ML algorithms are negligible. Note, that the SVM
with the rbf kernel had the best success rate of all SVM kernels for all datasets.
The algorithm k-NN classified the DS1 with the highest success rate from all MLs
tested (DS1 has the lowest value of noise). The SVM-rbf was the best ML classifier
of the DS2 and DS3. Generally, the template attack based on the pooled covariance
matrix15 was the best in average success rate based on all tested datasets, but if we
focus on the ML, the SVM-rbf together with k-NN were the best with almost the
same success rate. The difference was only 0.45% and we can consider the differ-

15Results of template-based attack are informative, because template attacks were aimed at the
whole byte classification.

98

Tab. 3.9: The highest possible success rate of tested ML algorithms [%].

k-NN SVM SVM SVM DT
linear rbf poly

DS1 99.20 85.57 94.38 86.93 94.10
DS2 97.65 92.65 99.02 97.92 83.00
DS3 88.05 89.50 92.95 90.12 79.85

𝜑 94.97 89.24 95.45 91.66 85.65
Δ 0.64 6.37 0.16 3.95 9.96

RF MLP LDA 𝑇𝑐𝑙𝑠 𝑇𝑝𝑜𝑜𝑙

DS1 90.24 93.52 85.17 98.44 98.83
DS2 85.48 98.92 93.08 95.60 99.60
DS3 74.95 92.20 89.45 47.00 88.40

𝜑 83.56 94.88 89.23 80.35 95.61
Δ 12.05 0.73 6.38 15.26 0.00

ence negligible taking into account the number of experiments (together 28 480 of
individual bit classification). MLP was the third best algorithm with only 0.57%
difference from SVM-rbf. We can conclude that the SVM-rbf, MLP and k-NN are
the most suitable candidates for profiling power analysis attacks.

The following text summarizes the parameters selected for individual machine
learning algorithms during the second experiment.

Parameters selected for DS1:
• MLP: training cycle 475, momentum 0.0, learning rate 0.4, normalization true.
• SVM-linear: C=0.5, epsilon 0.001.
• SVM-rbf: C=50, epsilon 0.46.
• SVM-poly: C=2.5, epsilon 0.46.
• k-NN: 𝑘 = 5, weighted vote false, Euclidian distance.
• DT: maximal depth 39, confidence 1𝑒−7, no pruning true, criterion gini index.
• RF: number of trees 300, maximal depth 29, criterion gini index.
Parameters selected for DS2:
• MLP: training cycle 720, momentum 0.0, learning rate 0.3, normalization true.
• SVM-linear: C=17.5, epsilon 0.82.
• SVM-rbf: C=45.0, epsilon 0.28.
• SVM-poly: C=12.5, epsilon 0.28.
• k-NN: 𝑘 = 5, weighted vote false, numerical measure OverlapSimilarity, kernel

type multiquadric.
• DT: maximal depth 31, confidence 0.4, no pruning true, criterion gini index.
• RF: number of trees 500, maximal depth 70, criterion gini index.

99

Parameters selected for DS3:
• MLP: training cycle 640, momentum 0.6, learning rate 0.3, normalization true.
• SVM-linear: C=7.5, epsilon 0.91.
• SVM-rbf: C=45.0, epsilon 0.28.
• SVM-poly: C=4.0, epsilon 0.37.
• k-NN: 𝑘 = 5, weighted vote false, numerical measure OverlapSimilarity, kernel

type multiquadric.
• DT: maximal depth 71, confidence 0.05, no pruning false, criterion gini index.
• RF: number of trees 500, maximal depth 29, criterion gini index.
We can recognize some similarities of the parameters selected. Definitely, good

choices for an attacker can be either MLP with one hidden layer and normalization
true, SVM-rbf with parameters C = 45 and epsilon 0.28 or we suggest the k-NN
with 𝑘 = 5 and Euclidian distance.

Practically, we can optimize every ML algorithm (using individual parameter
settings) to get almost identical classification results. The biggest difference between
the tested algorithms lies in the required time that is needed to find the best setting
of the concrete ML algorithm. For example, finding the best parameters of the
SVM algorithm with poly kernel takes approximately eight days using parameters
selected and the DS1. The difference is enormous in comparison with 6 minutes and
35 seconds that was necessary for 𝑘-NN optimization for the same DS1. In order
to demonstrate this feature, Tab. 3.10 summarizes the time consumption of one
executed 10-cross validation for implemented ML algorithms.

Tab. 3.10: Time consumption of 10-cross validation [s].

k-NN SVM SVM SVM DT
linear rbf poly

DS1 0.2 185 320 2 075 18
DS2 0.3 45 4 4 20
DS3 0.3 10 12 315 26

RF MLP LDA 𝑇𝑐𝑙𝑠 𝑇𝑝𝑜𝑜𝑙

DS1 5 750 320 1 530 530
DS2 890 275 1 30 30
DS3 750 90 1 27 27

The time required to calculate one 10-cross validation for k-NN was less than 1s
and 320s for SVM-rbf. Naturally, the attacker has to calculate so many numbers of
CV as is the number of the tested parameters, therefore the time needed is directly
proportional to the number of the tested parameters and the learning time. In
our case, we tested only 132 combinations of the parameters for k-NN, but 1 111

100

Fig. 3.37: Classification results DS1. Fig. 3.38: Classification results DS2.

Fig. 3.39: Classification results DS3.

combinations for SVM with poly kernel. The algorithm 𝑘-NN is really easy, therefore
it is not necessary to test many parameters and the algorithm does not include a
learning phase. These are the main reasons why in terms of time consumption, the
k-NN algorithm provides the best performance in our implementation16.

The fourth experiment examines the classification success rate based on the
number of power traces. For this purpose, we prepared new datasets from the
original three DSs that differed in the number of power traces. From the first DS1,
we created 10 datasets each containing one more power trace that corresponds to
each key value. In other words, datasets created have from 256 to 2 560 power traces
with step 256. From DS2 and DS3, we created again 10 datasets containing 100 to
1 000 power traces with step 100. Data prepared were classified successively using
the implemented program. The obtained results are depicted in Fig. 3.37, Fig. 3.38
and Fig. 3.39.

16Note, that our test was performed on datasets containing 1 000 and 2 560 power traces.

101

Displayed graphs confirm the theoretical assumption of the increasing success
rate with the increasing number of power traces in the profiling phase. The success
rate is precipitously increasing until the maximal value and after that the value of
the success rate stays almost constant. An interesting fact is that the number of
power traces required to achieve the maximum value was comparable for all ML
algorithms (especially for the best three, SVM-rbf, MLP and k-NN). Generally,
about 500 power traces of DS1, 300 power traces of DS2 and 200 power traces of
DS3 were necessary to achieve the maximal value. From a comparison of Fig. 3.38
and Fig. 3.39, we can see the influence of choosing the interesting points because
these DSs were prepared based on identical power traces and aimed at the secret
offset classification (in other words, datasets differ only in the method of selecting
interesting points). The shift of the maximum success rate values around 10% is
obvious. During the DS3 classification, the classic template attack provides really
low values of calculated probabilities, therefore the first order success rate was worse
when compared with other approaches.

In our fifth experiment, we investigate the success rate of the mask revelation
depending on the number of interesting points and the number of power traces.
Moreover, we investigate the influence of multiclass classification. In comparison
with our previous experiments, we modified the program in such a way that ML
classified 256 classes (whole byte classification). In other words, ML and TA classi-
fied secret offset directly (not successively bit by bit). For this purpose, we prepared
datasets based on DS2 that differed in the number of power traces and interesting
points. We prepared learning sets that contain 100, 250, 500 and 1, 000 of power
traces successively and a test set that contains 1 500 instances in order to test pro-
filing attacks. Figures 3.40, 3.41, 3.42 and 3.43 report the success rate to predict
the right offset value as a function of the number of interesting points selected for
the best profiled attacks: SVM-rbf, NN, 𝑘-NN, 𝑇𝑐𝑙𝑠 and 𝑇𝑝𝑜𝑜𝑙. The experiments de-
scribed in [92, 81] implemented MLP approach in Matlab using Netlab. In order to
extend our research on testing different implementation, we involved also the MLP
approach implemented in Netlab [105] (denoted MLP_Matlab) and we included to
this experiment a reduced template attack denoted as 𝑇𝑟𝑒𝑑. The reduced template
attack is calculated according to the equation (3.15) but the covariance matrix is
equal to the identity matrix (reduced templates contain only the mean vector). One
can extract the following observations. First, as expected, the higher the number of
traces in the learning set, the higher the accuracy. For example, maximal success
rate achieved was 70% and 99% for learning sets containing 100 and 1 000 power
traces respectively. Second, the number of the selected points in each trace influ-
ences the success rate: the higher the number of interesting points, the higher the
success rate of all attack implementations.

102

Fig. 3.40: Success rate of the secret offset
revelation based on 100 power traces of
DS2.

Fig. 3.41: Success rate of the secret offset
revelation based on 250 power traces of
DS2.

Fig. 3.42: Success rate of the secret offset
revelation based on 500 power traces of
DS2.

Fig. 3.43: Success rate of the secret offset
revelation based on 1000 power traces of
DS2.

The main finding is that the rise in the success rate of the attacks based on ML
occurs much earlier than for every TA attack. We can observe success rates of 72%
for MLP and 7% for TAs for 20 interesting points and 1 000 power traces. It is
remarkable that if the learning set is small (in our experiment less than 1 000 power
traces), the classic template attack is practically inapplicable. It provides the suc-
cess rate somewhere around 7%. This is caused by the numerical problems that are
connected with the covariance matrix. These numerical problems occur during the
inversion which needs to be done in equation (3.15). In our case, the values calcu-
lated were very small and that lead to bad classification results. The obtained results
confirmed that generally the ML approach is much more effective profiling power
analysis attack in terms of a small number of power traces and interesting points.

103

It is pretty surprising that the MLP_Matlab approach is better in comparison with
the second implementation. It is caused by more precise settings. The fact is that
the template attack based on the pooled covariance matrix and the ML approaches
(NN and SVM) are practically the same for larger learning sets. The obtained suc-
cess rates were 99.9% and 99.6% for 𝑇𝑝𝑜𝑜𝑙 and MLP respectively. Furthermore, the
results obtained confirmed that 𝑘-NN is more similar to the classic template attack.
The success rate lies between 𝑇𝑐𝑙𝑠 and 𝑇𝑝𝑜𝑜𝑙. This approach is much more efficient
than the classic template attack for smaller datasets, on the other hand, 𝑇𝑝𝑜𝑜𝑙 is
better, because it considers the relation between the interesting points selected. In
practice, the 𝑘-NN approach corresponds with the reduced template attack, that
does not take the covariance matrix into account. Naturally, we realized the same
experiment for DS3, and we evaluated the results obtained. Not surprisingly, the
results were practically the same, therefore we did not include them in the text.

In our last experiment, we performed ROC (Receiver Operator Characteristic)
analysis for the chosen profiled attacks based on machine learning algorithms. This
method is commonly used in medical decision making, and in ML in order to illus-
trate the performance of a binary classifier as its discrimination threshold is varied.
Therefore, ROC graphs are useful to organize and, select classifiers and to visualize
their performance. The creation of the ROC curve is described in the following text.
The results of accuracy for individual models are calculated based on the confusion
matrices (see section 3.4.3 and example in Table 3.8 for 𝑘-NN). The numbers along
the major diagonal represent the correct decisions, and the numbers off diagonal
represent the errors, the confusion between the various classes. In other words, the
columns of the table correspond to the correct values of the class (in our case bit
value 1 or 0) and the rows correspond to the predicted values.

For the following analysis, we denote:
• True positive (𝑇𝑃): the model predicted bit value 1 and the actual bit value

was 1.
• False positive (𝐹𝑃): the model predicted 1 and the actual value was 0.
• True negative (𝑇𝑁): the model predicted 0 and the actual value was 0.
• False negative (𝐹𝑁): the model predicted 0 and the actual value was 1.
The sensitivity of a classifier is estimated as:

sensitivity = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. (3.16)

The specificity of a classifier is estimated as:

specificity = 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
. (3.17)

Generally, ROC graphs are two-dimensional graphs where sensitivity is plotted
on the 𝑌 axis and 1 − specificity is plotted on the 𝑋 axis, therefore they depict

104

relative tradeoffs between benefits (𝑇𝑃) and costs (𝐹𝑃). It is well known that the
best possible prediction model would yield the point (0, 1) in the upper left corner
of the ROC space. This point is also called the “perfect classification”, because it
represents 100% sensitivity (no 𝐹𝑁) and 100% specificity (no 𝐹𝑃). The perfect
classier produces a curve that runs vertically upwards from the origin (0, 0) up to
the point (0, 1) and from this point horizontally to the right. A completely random
guess (considering binary classification with the success rate of 50%) would give a
line along a diagonal from the origin (0,0) to the top right corner (1,1).

Based on previous results we involved MLP, SVM-rbf, 𝑘-NN, DT and RF into the
ROC analysis. We implemented ML using optimal parameters that were discovered
using the second experiment (please consult in Section 3.4.3 - part of the second
experiment). We calculated ROC based on whole datasets prepared and 10-fold cross
validation. The results of ROC analysis corresponding with each bit classification
of DS1 are depicted in Fig. 3.44.

The semitransparent areas indicate the standard deviation that results over the
different cycles of 10-fold cross validation. Solid lines indicate the average results
of the cross validation performed. It can be observed that some of the bits of
the secret key can be perfectly distinguished. This group includes the first bit,
the third bit and the eighth bit. In these cases, each model provides an almost
perfect classification. Moreover, the remaining group of bits was also classified with
high performance, but the differences between ML models were more significant.
It is remarkable that the ROC curve plot of 𝑘−NN was the closest to the perfect
classifier for each remaining bit and the second-best model was the SVM-rbf. The
model based on 𝑘−NN provided a perfect classification even though other models
did not (classification of bits 4, 5, 6 and 7). On the other hand, it was interesting
that according to the ROC comparison, MLP was the worst for DS1. Naturally, the
observation corresponds with the results of the second experiment (please consult
this observation in Tab. 3.9). Based on our experiments and experience with MLP
in profiled power analysis attacks, we concluded that it is caused by a small number
of interesting points17.

The results of ROC analysis corresponding with each bit classification of DS2
are depicted in Fig. 3.45 and show that each 4 bits of the secret offset were classi-
fied with a great performance. Based on ROC plots of 𝑘-NN, SVM-rbf and MLP,
it can be observed that these models are really close to the perfect classification.
The difference between these models is really negligible for DS2. ROC curves cor-
responding with each bit classification of DS3 are depicted in Fig. 3.46. As in the

17Since 2010, we have implemented mainly the MLP approach instead of the standard template
attack in our profiling power analysis attacks that have been conducted in research and DPA
Contests.

105

Fig. 3.44: ROC analysis for individual bits of DS1.

previous case, 𝑘-NN, SVM-rbf and MLP provided the best plots in ROC space.
Moreover, the influence of the most crucial step of profiling PA, that lies in select-
ing the interesting points, is demonstrated by comparing Fig. 3.45 and Fig. 3.46,
because the datasets DS2 and DS3 were prepared from identical raw power traces.
In Fig. 3.46, the plots of ROC curves are more distant from (0,1), therefore the
selection was performed less precisely and the model created provided lower perfor-
mance. We conclude that if the selection of interesting points is properly performed,
every possible distinguisher will provide more or less similar results regardless of the
underlying technique deployed (either classic templates or machine learning after
optimization).

106

Fig. 3.45: ROC analysis for individual bits of DS2.

Fig. 3.46: ROC analysis for individual bits of DS3.

3.4.4 Summary

In this research section, we provided an extensive comparison of widely used ma-
chine learning algorithms in power analysis such as SVM, decision tree, and MLP
including the new approach based on k-NN. We implemented a verification program
that chose optimal settings of the parameters of individual machine learning algo-

107

rithms in order to obtain the best classification accuracy. Based on the obtained
results, we can consider SVM-rbf, MLP and k-NN as the most suitable candidates
for profiling power analysis attacks (in terms of classification accuracy). Generally,
we can optimize every ML algorithm using parameter settings to get almost identical
classification results. On the other hand, optimization of individual ML algorithms
can be time consuming (possible differences can be enormous based on the selected
parameters and algorithms, for example 6 minutes and 35 seconds was needed for
𝑘-NN optimization and 8 days for SVM-poly optimization).

Moreover, we investigated a success rate of the masks revelation depending on
the number of interesting points and the number of power traces. As expected, the
higher the number of traces and points in the learning set, the higher the accuracy
of every power analysis attack implemented. The main finding was that the sharp
rise in success rate of the ML attacks (MLP and SVM) occurs much earlier than for
every TA attack. We can conclude that the ML approach is a much more effective
profiling power analysis attack for a small number of power traces and interesting
points. In other words, it is better to use profiling power analysis attacks based on
the MLP if the adversary has only a limited number of measured power traces than
to realize attacks based on templates.

From all realized experiments, we see a really good potential of the 𝑘-NN algo-
rithm. The approach proposed based on the simplest k-NN algorithm can provide
important advantages to the attacker compared with other profiling attacks. We
summarize these observations in the following points:

• the basic principle of the method is very simple, the profiling phase constitutes
only storing of measured data in the memory (the attacker has to realize this
in any case),

• it is not necessary to prepare (calculate) templates, the attacker can save time
and memory,

• the 𝑘-NN approach is implemented by default in many program environments,
therefore it is not a problem for the attack implementation,

• the success rate is comparable with the template attack, the 𝑘-NN approach
corresponds with the reduced TA that does not consider the covariance matrix,

• the attacker can use more interesting points compared with TA where it is
limited due to memory limitations resulting from the covariance matrix,

• the k-NN does not include a learning phase compared with other MLs, there-
fore the attacker can work more efficiently (fast response to all changes related
to the power traces measured, number of interesting points, size etc.).

108

4 Protected Hardware Implementation
The simplest way to increase the noise of operations is to perform several inde-
pendent operations in parallel (the background of hiding techniques is described in
section 2.3.1). The important fact is to utilize independent operations and a hard-
ware platform for cryptographic algorithms with a wide data-path. This section
presents a hardware implementation proposal where four parallel AES cores and a
512 bit data-path are utilized in order to protect the implementation. This section
is a scientific contribution of the thesis and the amended version of the text below
is a part of the author’s paper at the ASHES’18 ACM conference [154].

We present the architecture and implementation of our encryption system de-
signed for 200 Gbps FPGA (Field Programmable Gate Array) network cards uti-
lizing the IPsec (IP security) protocol. To our knowledge, our hardware encryption
system is the first that is able to encrypt network traffic at the full link speed of
200 Gbps using a proven algorithm in a secure mode of operation, on a network
device that is already available on the market. Our implementation is based on the
AES (Advanced Encryption Standard) encryption algorithm and the GCM (Ga-
lois Counter Mode) mode of operation, therefore it provides both encryption and
authentication of transferred data. The design is modular and the AES can be
easily substituted or extended by other ciphers. We present the full description
of the architecture of our scheme, the VHDL (VHSIC Hardware Description Lan-
guage) simulation results and the results of the practical implementation on the
NFB-200G2QL network cards based on the Xilinx Virtex UltraScale+ chip. We
also present the integration of the encryption core with the IPsec subsystem so that
the resulting implementation is interoperable with other systems.

The demands on communication systems are tremendous and continuously grow-
ing as new online services are being introduced. The speed of communication net-
works rose from recent hundreds of Mbps to hundreds of Gbps. The fastest modern
network adapters allow communication at the speed of 200 Gbps over a single net-
work interface. As an example, the network card NFB-200G2QL [136] offers 2×100
Gbps with full duplex technology for end users. The very recent appearance of smart
infrastructures, such as smart grids, smart cities and IoT networks, even changed the
paradigms of communication. While during the last decade the developers focused
on novel solutions for high-speed backbone networks with only a few endpoints, the
situation is different today.

We face the problem of connecting millions of simple devices that all communi-
cate over the network, sometimes with only a single central node. That is the case
for sensor networks, cloud infrastructures and smart grid infrastructures, to name a
few examples. As a result, it is not sufficient to provide only fast network devices

109

but also devices that can handle millions of simultaneous individual connections. To
fulfill the ever-growing demands on both speed and flexibility, hardware-accelerated
solutions are usually used. Typically, fast network cards based on FPGA chips are
employed. By using hardware acceleration, a throughput of hundreds of Gbps can
be achieved on a single device [136].

In recent years, cybersecurity also started to play a crucial role. To assure
the security of communication networks, cryptographic mechanisms that are able
to provide data confidentiality, integrity and authenticity need to be implemented.
In most systems, mechanisms based on symmetric cryptography, in particular the
AES encryption algorithm standardized by NIST (National Institute of Standards
and Technology) [1], are used thanks to their proven security and high efficiency.
However, encryption algorithms are usually too complex for high-speed implemen-
tations, so the performance of the whole communication chain is usually limited by
the encryption subsystem. To avoid overloading the central CPUs of the systems
and speed up the communication systems, the security functions are more and more
offloaded to FPGA network cards.

In this paper, we describe the full architecture of the FPGA encryption sub-
system that is able to encrypt data at the full line speed of 200 Gbps. We use the
standard AES encryption algorithm in the GCM block cipher mode of operation [29]
that is recommended by NIST. By using the GCM mode, we are able to assure both
the confidentiality and authenticity of transferred data. Our system is modular,
the choice of the encryption algorithm is open and other algorithms than AES can
be used. In addition to the pipelined high-speed encryption core, we also present
the architecture of the supporting modules, in particular those allowing the inte-
gration with the IPsec-based implementations. IPsec is the most common standard
for creating VPN tunnels in high-speed networks, so its support makes our solution
interoperable with other products. Furthermore, we enhance our implementation
by adding the support of tamper-proof devices used for the storage and handling
of sensitive cryptographic material, particularly digital certificates and pre-shared
keys (PSK).

To prove the practical impact of our design, we present the first results obtained
from the implementation on the new NFB-200G2QL FPGA network cards based
on the Xilinx Virtex UltraScale+ chip [142]. We present the results of the VHDL
simulation, the frequencies required to achieve 200 Gbps, the hardware utilization
and other implementation aspects.

110

4.1 State of the Art
The idea of using hardware for accelerating encryption is not entirely new. There
are several implementations of block ciphers already available on FPGA cards. Lem-
sitzer et al. [65] described the implementation of AES in the GCM mode on FPGA
Virtex-4 cards and achieved 15.3 Gbps throughput back in 2007. Soliman et al.
[133] used parallelisation techniques to speed up the AES on a Virtex-5-based card
and achieved almost 74 Gbps. The authors in article [121] reach a throughput of
73.737 Gbps based on a clock frequency of 576.07 MHz. More recent papers from
2014 [32] and 2017 [33] describe architectures based on Virtex-5 and Spartan chips
providing speeds up to 86 and 113 Gbps respectively. Some papers, such as [60],
focus more on the efficiency and lightweight design of the implementation than its
performance. However, the above mentioned results remain only theoretical because
the frequency is higher than 300 MHz, which is not practically achievable on FP-
GAs currently available on the market. Smekal et al. [131] describe an encryption
scheme and its implementation on Virtex-7 cards that is able to encrypt 5.1 Gbps
traffic on a frequency of 100 MHz. Article [45] focuses on AES-GCM, but there is no
real HW implementation. The paper presented in [16] describes an architecture for
highly parallel implementations of AES-GCM with a throughput of 482 Gbps using
a single Xilinx Virtex Ultrascale. Nevertheless, the firmware and real implementa-
tion are missing. The article in [82] presented a 100 Gbps AES-GCM encryption
system working at a frequency of 100 MHz but due to a flaw in the basic architec-
ture it is not possible to realize the implementation on a FPGA card1. Vliegen et
al. [139] implemented side-channel-protected AES-GCM system on Virtex-7. The
architecture provides a throughput of 15.24 Gbps at a clock frequency of 119 MHz,
however, the work is more focused on the implementation of the Boolean masking
countermeasure scheme and does not take into account the application in IPsec. In
many other cases, the authors describe the implementation of the AES algorithm,
not taking into account that the cipher must work in a mode of operation to be
practically secure.

An overview of existing FPGA implementations and their implementation prop-
erties is given in Table 4.1. In particular, it is important to compare our implemen-
tation to those solutions that take into account a proper mode of operation and the
integration of the algorithm in a larger system, consisting of firmware that supports
e.g. IPsec.

1Parallel pipelined architecture proposed in the paper is not practically functional due the
calculation of the Galois field multiplication needs input data every clock cycle.

111

Tab. 4.1: Comparison of current work.

Reference A
ES

G
C

M

IP
se

c

Fr
eq

ue
nc

y
[𝑀

ℎ
𝑧]

T
hr

ou
gh

pu
t

[𝐺
𝑏𝑝

𝑠]

Fi
rm

wa
re

Ye
ar

Lemsitzer et al.[65] 3 3 7 120 15.3 3 2007
Nguyen et al. [108] 3 7 3 112 3.15 7 2018
Korona et al. [59] 3 7 3 100.65 10.23 7 2017
Soliman et al. [133] 3 7 7 557 74 7 2011
Farashahi et al. [32] 3 7 7 671 86 7 2014
Farooq et al. [33] 3 7 7 886.64 113.5 7 2017
Koteshwara et al. [60] 3 3 7 50 0.417 3 2017
Shou et al. [121] 3 7 7 576.07 73.7 7 2009
Smekal et al. [131] 3 7 7 100 5.1 3 2016
Vliegen et al. [139] 3 3 7 119 15.24 7 2017
Buhrow et al. [16] 3 3 7 314 482 7 2015
Henzen et al. [45] 3 3 7 233 119.3 7 2010
Martinasek et al. [82] 3 3 7 200 102.4 7 2017
Our work 3 3 3 200 200 3 2018

4.2 Contribution
We provide the full description of the architecture and the implementation results of
a system that differs from all the existing systems mainly in the following aspects:

• Speed: our system is able to encrypt or decrypt 200 Gbps traffic at full line
speed, at an operating frequency of 200 MHz (i.e. a realistic operating fre-
quency for state-of-the-use FPGAs). Compared to the state-of-the-art imple-
mentations, our proposal is almost twice faster and, more importantly, prac-
tically implementable on off-the-shelf hardware.

• Security: we describe not only the implementation of the AES core, but
also of all the necessary supporting mechanisms, such as the authenticated
key agreement and expansion, the GCM mode of operation and the IPsec
integration. These mechanisms are necessary for a practical deployment.

• Flexibility: our architecture is modular, thus replacing the encryption algo-
rithm is fast and easy.

• Usability: our results are not only theoretical, they have very practical im-
pacts. To prove the usability in the real world, we show the implementation of
our encryption subsystem on the off-the-shelf 200 Gbps NFB-200G2QL FPGA

112

network card from Netcope Technologies [136]. This makes our solution the
first demonstrable 200 Gbps AES-GCM implementation on a commercial net-
work card, ready for being used in a realistic network setting.

4.3 Preliminaries and System Architecture
In most real-world applications, end users utilize high-speed encryption systems as
encryption and decryption gateways. For this reason, our system is compliant with
the IPsec protocol in order to achieve easy deployment in practice. Before the basic
architecture is introduced, we briefly define the fundamental terms and concepts
that are used in the IPsec protocol.

IPsec ensures data encryption, authentication and integrity of each IP packet
in a communication session by utilizing the ESP (Encapsulating Security Payload)
[57] and AH (Authentication Headers) [56] modes. ESP and AH rely on various
symmetric cryptographic primitives and keys to provide security services. The end
station can use different ciphers and keys for different data connection sessions. In
IPsec terminology, the choice of ciphers and keys is defined as a Security Association
(SeAs) and each station handles a special database where this information is stored.
In fact, SeAs require two databases: a security policy database (SPD) and a security
association database (SAD). The SPD stores the security requirements and policy
requisites that should be met. The SAD contains the individual parameters of each
active SeA. The initial entry in the database is often inserted by the Internet Key
Exchange (IKE) protocol [130]. At the beginning of the communication between two
entities, the IKE protocol selects the most secure cryptographic algorithm supported,
authenticates the entities during the next step and establishes the set of secret
keys for authentication and encryption services. Authentication can be realized by
employing digital certificates (X.509) or pre-shared keys (PSK). The outcome of the
IKE protocol is a SeA record that includes supported cryptographic algorithms and
established keys (also referred to as master keys MKs) from which all the necessary
keys are derived.

The architecture of our system is depicted in Fig. 4.1 and consists of two main
subsystems, the Authentication Subsystem and the FPGA Subsystem. At the be-
ginning of the communication between user A and B, an initial record in the SAD
is created by a software application and a smart card2. For this purpose, the IKE
version 2 (IKEv2) protocol is implemented that provides authentication based on

2The use of a smart card is optional and recommended for critical applications. The security
of the smart card (e.g., to side-channel attacks) is out of the scope of this paper.

113

Smart Card
(Pub.,Priv., PSK)

strongSwan
and own plugin

A
u

th
en

ti
ca

ti
o

n

Su
b

sy
st

em

FPGA Subsystem

API

IKEv2

IPSec - formatting

Virtual
interface

Data

Mode of operation

AES (core)AES KE

IPSec

strongSwan
and

Application

API

VR

USER A USER B

Data

Virtual
interface

Smart Card
(Pub.,Priv., PSK)

A
u

th
en

ticatio
n

Su

b
system

FPGA Subsystem

IPSec – formatting and
SAD/SDP

AES (core)

Mode of operation GCM

MKE,MKA, selected
primitives

MKE,MKA, selected
primitives

IPSec – formatting and
SAD/SDP

AES
(core)

Mode of operation
GCM

IPSec – formatting and
SAD/SPD

AES

Mode of operation
GCM

IPSec – formatting and
SAD/SPD

AES

Mode of operation
GCM

strongSwan
and own plugin

Fig. 4.1: Basic architecture of the proposed system.

digital certificates or pre-shared keys. An important aspect of the final system secu-
rity is to keep private keys and the pre-shared keys secret. In our system proposal,
this crucial requirement is accomplished by employing a smart card as a SAM (Se-
curity Access Module). The smart card never discloses the sensitive material to an
external application, compared to standard operating systems, in which the sensi-
tive material is mostly stored in configuration files in plain. That poses a risk which
prevents systems based on a standard OS from being used, e.g., in critical infras-
tructures of governments. The authentication using a smart card is realized only at
the beginning of the communication and takes less than 20 ms. After this action,
the system makes use only of the FPGA Subsystem performing IPsec formatting,
encryption/decryption and rekeying operations. For this reason, the usage of the
smart card is not an obstacle in reaching the desired speed of 200 Gbps. At the end
of the authentication phase, the generated data including the master encryption key
denoted as MKE (Master Key Encryption), a master key for authentication denoted
as MKA (Master Key Authentication) and the specification of cryptographic prim-
itives are forwarded through an API (Application Programming Interface) to the
FPGA Subsystem. The result of the authentication phase is the record in the SAD.

114

In our implementation, the encryption process is realized by the AES-GCM
algorithm. The FPGA subsystem receives the user’s data through a virtual interface
(VI). Data are formatted according to the IPsec specification and encrypted. The
FPGA subsystem consists of three individual components that are described in more
detail in Sect. 4.5. The receiving entity operates analogically. The data stream is
decrypted in FPGA and forwarded to VI.

4.4 Authentication Subsystem Implementation
In the first step of our research, we analysed the available implementations of IPsec
and IKE. We selected strongSwan as the appropriate library for the implementa-
tion that fulfills all the requirements: open-source software, support of the IKEv2
protocol and the support of PKCS#11. The main purpose of the authentication
subsystem is to provide secure mutual authentication and key establishment be-
tween two communication parties using smart cards (i.e. to create the initial record
in SAD).

The authentication subsystem supports two types of authentication methods in
which smart cards play the role of the SAM:

• Public Key Infrastructure (PKI)-based smart card authentication:
smart cards supporting PKCS#11 (e.g., CardOS smart cards) store digital
certificates and PKCS#15 file structures and provide authentication and key
establishment based on certificates and PKI. The software application (in this
case, the strongSwan IKEv2 implementation) loads a digital certificate from
the smart card via a pkcs11 plugin using the OpenSC and pcsc-lite libraries.
Certificates (X.509) are used for mutual authentication and key establishment.
The certificates and private keys are generated by external software, such as
openssl, and are securely installed into the smart cards using the pkcs15-init
utility. The private keys can be also generated directly on the smart card device
by the pkcs15-init utility. Nevertheless, due to the recently discovered attacks
[107] on several smart cards, we recommend the external key generation. All
smart cards that support OpenSC and pkcs15-init utilities should be protected
by PIN.

• Pre shared keys (PSK)-based smart card authentication: because the
PSK is stored in a plain text in the default implementation of strongSwan, we
developed our own implementation written in the Java programming language
for Java cards. Our Java card applet runs on Java cards with Java Card OS
JCAPI 2.2.2 or higher. The Java Card application uses the PSK to verify
authentication parameters exchanged by IKE_SeA_INIT and IKE_AUTH
phases. Based on the IKE parameters, the software application written in

115

the C programming language (in this case, the modified strongSwan library
with our plug-in utilizing library pcsc-lite-devel for communication with
programmable smart cards via APDU) establishes an encryption key (MKE),
authentication key (MKA) and selects cryptographic primitives.

The communication between the smart card and the application is provided via
Application Protocol Data Unit (APDU) messages. The smart card is physically
connected to the Universal Serial Bus (USB) reader by the ISO/IEC 7816 contact
interface.

4.5 FPGA Subsystem Implementation
For the final implementation, we selected the NFB-200G2QL FPGA network card
that is a product of Netcope Technologies. The board is based on the FPGA chip
Xilinx Virtex UltraScale+ with 2× QSFP28 cages supporting 2×100G Ethernet
ports and offering three modules of QDRIIIe SRAM (Static Random Access Mem-
ory) memory. The network card is connected to a host computer via 2× Peripheral
Component Interconnect Express (PCIe) bus generation 3.0 x16 for high-speed data
transfer. The theoretical throughput of one PCIe bus is 128 Gbps. The NFB-
200G2QL card handles network data at a speed of 200 Gbps over two PCIe buses
for various Ethernet frame lengths3. Therefore, the PCIe buses do not represent the
bottleneck in the system. The Virtex UltraScale+ chip provides 1 728 000 system
logic cells, contains 788 160 Look-Up-Tables (LUTs) and 1 576 320 Flip-Flop (FF)
registers. The actual appearance of the network card is depicted in Fig. 4.2.

Fig. 4.2: NFB-200G2QL FPGA network card [136].

3Interested readers can obtain more detailed information in technical documenta-
tion https://www.netcope.com/getattachment/91efe95a-644f-4cd0-9a2f-6443d532910c/Improving-
DPDK-Performance.aspx

116

In order to implement the FPGA subsystem, we used the Netcope Development
Kit (NDK) as a platform for a high-speed application development. NDK provides
a set of integrated tools and interfaces that makes the development of individual
applications much easier. The integral part of the NDK are drivers, libraries and
kernel modules that provide communication between the hardware part running on
the FPGA card and a user software application running on a host computer (in our
case, the authentication subsystem based on the strongSwan and a smart card). We
implemented three individual components in the application core of the NDK:

• The first component is labeled IPsec. This component implements packet
formatting and IPsec databases (SAD and SPD).

• The second component is GCM. That is the implementation of the operation
mode according to the NIST recommendation 800-38D [29].

• The last implemented component is AES which consists of all functions of the
Advanced Encryption Standard supporting key lengths of 128 and 256 bits.

The block diagram of the NDK framework including our components is depicted in
Fig. 4.3.

Fig. 4.3: Scheme of implemented components.

117

Fig. 4.4: Block scheme of the IPsec component (used 2x in our implementation).

The final implementation of hardware components was realized using the VHDL
language. The functionality was verified using the Xilinx’s Vivado simulator tool
in version 2017.4. The implementation of the AES and GCM components has been
fully described in our past paper [82] including the verification using the test vectors
[98], the results obtained confirmed the correctness of the implementation. Therefore
this section focuses mainly on the description of the IPsec component.

The block diagram of our IPsec hardware implementation is depicted in Fig. 4.4.
The main components of packet processing are two components labeled as PARSER
and DEPARSER that provide parsing and deparsing of the network data stream
according to the IPsec specification. The function of these components is based on
HFE (Header Field Extractor), which is a function of the NDK [120]. In the first
step, the PARSER obtains Ethernet and IP headers and these values are stored
in the FIFO (First In First Out) shift register (labeled as ETH & IP HDR FIFO
and NEXT_HDR FIFO). The PARSER forwards the source and destination IP ad-
dresses to the SAD/SPD database where a decision is made on the encryption/de-
cryption process. The implementation of the databases is based on Cuckoo hashing
[114] and is realized directly on-chip utilizing BRAM (Block Random Access Mem-
ory). Access to the database takes one clock cycle and the limitation is ten thousand
records in each table. If no match is found for IP addresses in the database, the
network traffic is forwarded to NOT ENC PIPE and passes through the FPGA net-
work card without further processing. If a match is found, the traffic is forwarded to
the Encryption/Decryption block. This component consists of four AES-GCM_pipe
components that provide mainly data alignment, padding and encryption or decryp-
tion.

118

Fig. 4.5: The scheme of the application core of the encryption system.

The block diagram of this component is depicted in Fig. 4.5. The encrypted or
decrypted output data are connected to demultiplexer and the DEPARSER assem-
bles new headers together with the encrypted payloads. In the last step, the IPsec
packet is forwarded to the output port. Fig. 4.6 presents the data flow diagram of
our testbed. In fact, we have to instantiate two IPsec components to achieve the
required speed of 200 Gbps. Since the IPsec component works in one direction,
achieved speed of 200 Gbps is unidirectional. Due to resource utilization of the
components of the NDK, it is not possible to instantiate more than two IPsec com-
ponents on used FPGA chip. As a consequence, either 200 Gbps of unidirectional
encryption (or decryption) or 100 Gbps of encryption and 100 Gbps of decryption
can be performed, depending on the mode of instantiated IPsec components.

NFB-200G2QL

 IPsec 4x
GCM AES

 IPsec 4x

GCM AES

100 Gbps

100 Gbps

FLU

FLU

NDK
Xilinx
Virtex
UltraScale+

100 Gbps

100 Gbps

Fig. 4.6: Data flow diagram on the network card.

Vivado was used to synthesize the final firmware of the whole system. The
resulting firmware for a network card consists of the following parts: IPsec, AES
and GCM. In addition, the firmware includes components of the NDK framework
that arrange communication through network interfaces and the PCI Express bus.

119

Tab. 4.2: Utilization and performance per component.

Component Frequency LUT FF Throughput
(MHz) [-] [-] (Gbps)

AES 378 10 125 2 946 48.38
GCM 245 8 973 1 238 31.36

AES (norm.) 4 200 9 920 1 282 25.6
GCM (norm.) 4 200 3 640 1 475 25.6

IPsec 200 8 457 6 913 25.6
SAD/SPD 200 2 308 1 078 25.6

NDK 200 99 713 85 437 204.8

The utilization of the Virtex UltraScale+ chip is summarized in Table 4.2. Fre-
quency denotes the maximum frequency at which the unit is able to run. Moreover,
we determine and investigate the maximum throughput 𝑇 of individual components
as follows:

𝑇 = 𝑓 * 𝑁𝑏 (4.1)

where 𝑓 denotes the maximum frequency and 𝑁𝑏 represents the width of the data
bus in bits. For example, the implementation of the AES component can work at
the maximum frequency of 378 MHz and the width of the data bus is 128 bits, thus
the maximum throughput of the encryption could be 48.38 Gbps according to the
equation 4.1.

However, for a practical deployment, the crucial limitation factor is the max-
imum frequency of the slowest hardware component. In our case, the limitation
factor is the NDK that works on the frequency of 200 MHz. To achieve the full
throughput of 200 Gbps using 200 MHz components, we had to deploy eight parallel
AES-GCM components within two IPsec components (Fig. 4.6 and Fig. 4.4). Table
4.3 summarizes resource utilization of all components including NDK synthesized
for Virtex UltraScale+XCVU7P chip. The proposed system takes 80.5 % of avail-
able LUT resources (Logic + Memory), which is close to the maximum occupation
in practice, given that the routing would become congested with a larger percentage
of occupation. Altogether, the system makes use of 10.5 % of the available flip-flops
and 31.1 % of the available BRAM. The final architecture was easily synthesizable
on the chip using the available resources. The encryption/decryption is fully func-
tional at a speed of 200 Gbps, using a frequency of 200 MHz. Therefore it is not
necessary to increase the frequency or to choose any other, possibly more powerful
and expensive, chip.

4Normalized implementation for frequency 200 MHz.

120

Tab. 4.3: Hardware Utilization.

LU
T

as
Lo

gi
cs

LU
T

as
M

em
or

y

R
eg

ist
er

as
Fl

ip
Fl

op

BR
A

M

Available 394 560 394 560 1 576 3201 440

AES 8×
79 360 32 10 256

—
20.1 % <0.1 % 0.7 %

GCM 8×
29 120 2 072 11 800

—
7.4 % 0.5 % 0.7 %

IPsec 2×
72 796 7 255 56 447 131
18.4 % 1.8 % 3.6 % 9.1 %

SAD/SPD
4 616 130 2 156 88
1.2 % <0.1 % 0.1 % 6.1 %

NDK
99 713 20 961 85 437 229
25.3 % 5.3 % 5.4 % 15.9 %

Total
285 605 30 450 166 096 448
72.4 % 8.1 % 10.5 % 31.1 %

4.6 Summary
We presented the architecture and the results of the practical implementation of a
hardware encryption system that is able to encrypt data at 200 Gbps on a single
device. To the best of our knowledge, this is currently the fastest implementation of
a practically demonstrable secure authenticated encryption scheme on a commercial
FPGA network card. Our design is extremely efficient and requires clocking at
only 200 MHz, which is very promising for a future speed increase. Besides the
theoretical design and practical implementation results, we also provided details
about the integration with the necessary supporting modules, namely the IPsec
subsystem and the authentication subsystem based on smart cards.

Final hardware implementation was realized utilizing the NFB-200G2QL FPGA
network card, therefore it was not possible to measure the real power consumption.
However, we created the power traces based on the simulation to observe the the-
oretical leakage of the realized hardware implementation. In the following text, we
describe the main findings. In order to prove the functionality of masking proposed

121

Fig. 4.7: Result of the CPA attack for un-
protected HW implementation.

Fig. 4.8: Size of the correlation for unpro-
tected HW implementation.

Fig. 4.9: Results of the CPA attack for
parallel HW implementation.

Fig. 4.10: Size of the correlation for par-
allel HW implementation.

scheme, we realized the power analysis of unprotected (non parallel) AES hardware
implementation. In the next step, we compare the obtained results with power
analysis targeted at hardware implementation proposed protected by hiding. Note
that no masks are utilized during the encryption/decryption process only the four
parallel AES core are implemented.

Same as in the previous examples, we attack the non-linear byte substitution
(SubBytes) of the AES in the first round. The power traces corresponding to the
whole process of encryption were created by simulation. Created power traces to-
gether with the corresponding plain text and cipher text were imported to the
Matlab where the power analyses based on correlation coeficient were realized.
Altogether, 600, 000 power traces were created for the encryption key: 𝐾𝑠1 =
[42, 138, 236, 244, 69, 67, 231, 207, 141, 31, 115, 14, 106, 251, 199, 152].

Obtained results are depicted in Figures 4.7, 4.10, 4.9 and 4.10. We can observe
the following facts. The correct key guess for unprotected implementation can be
revealed without any problem based on 250 000 power traces (Fig. 4.7 and 4.10).
If we compare the results for protected implementation (Fig. 4.9 and 4.10), the

122

attacker can not reveal the value of the first secret key byte even with the use of
maximum 600 000 power traces. We demonstrate results for the first secret key byte,
however the identical situation occurs for remaining bytes of the encryption key. We
can conclude that proposed countermeasure techniques works and brings resistance
of the implementation at least for 600 000 power traces. In practice, the attacker
can measure more power traces to try reveal the secret. However, success is not
guaranteed if leakage is suppressed by parallel processing. It would be appropriate
to repeat the power analysis of protected implementation based on 2 million power
traces.

123

5 Conclusion
This habilitation thesis guides the reader through the power analysis fundamentals
including the countermeasure techniques. Moreover, the thesis focuses on practical
aspects of the protected implementation and description of the possible attacks. The
results and observations try to support the realization of protected cryptographic
algorithms implementation in future. This will be possible, because the readers
will understand the underlying concepts of the power analysis, how to protect the
implementation and how to evaluate the real leakage of the cryptographic device.
The expected contribution of the thesis is both pedagogical and scientific.

The pedagogical contribution is mostly addressed in Chap. 2. In the first
two introductory sections (Sec. 2.1 and Sec. 2.2), we describe the fundamentals
of the power analysis methods. In particular, we explain the principles of profiling
power analysis attacks utilizing the standard Gaussian approach, profiling based on
machine learning and non-profiling power analysis attacks based on the Correlation
coefficient and Difference of Means. This knowledge introduces the basic building
blocks to understand the main principle of the power analysis. In order to design
the secure implementation, it is crucial to understand the essence of the possible
attacks. The following theoretical section (Sec. 2.3) describes the basic counter-
measure techniques that are divided into two basic groups: masking and hiding.
However, these techniques can also be attacked very easily in practice, therefore
it is crucial to pay attention to the correct implementation of the countermeasure.
This issue is addressed in Sec. 2.4 and in Sec. 3.1, where we describe masking
and hiding countermeasure techniques including the power analysis from a practi-
cal point of view. More precisely, the Boolean masking and the shuffling of crucial
operations of AES is attended in our education text as well as a short current state
description. As an elementary example, we bring in to play the DPA Contest be-
cause it is world wide known and freely available. Therefore, the reader can verify
the obtained results which is the best way to understand the explained issues. Parts
of the chapter are used in a university textbook of the Information Security study
program at Brno University of Technology, where the author is involved. Moreover,
the contents of the sections was presented by the author at invited lectures, for the
Military Research Institute and the Smart Cards & Devices Forum.

The scientific contribution is addressed mainly in Chap. 3 and Chap. 4.
These chapters contain various results from selected author’s publications that were
published in journals with an impact factor. In this part (Sec. 3.2), we investigate
the security of improved protected implementations of AES. Our analysis, focused
on exploiting the first-order leakage, discovered mistakes that can be misused in
order to recover the whole secret key. Moreover, we focus on finding which profiled

124

attack has the lowest sensitivity to modifications of the characteristics of leakages
(3.3 and 3.4). This is the contribution that reflects the real world situation because
datasets often suffer from errors or distortions in the measured leakages. In the last
chapter (Chap. 4), we propose the hardware implementation where hiding is based
on four parallel encryption cores and a 512 bit data-path. The text presents the full
description of the architecture, simulation results and the results of the practical
implementation based on the Xilinx Virtex UltraScale+ chip. All defined goals of
the habilitation thesis were fulfilled.

125

Bibliography
[1] Federal information processing standards publication (FIPS 197). Advanced

Encryption Standard (AES), 2001.

[2] Akkar, M.-L., Bevan, R., Dischamp, P., and Moyart, D. Power anal-
ysis, what is now possible... In Advances in Cryptology - ASIACRYPT 2000
(2000), T. Okamoto, Ed., vol. 1976 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, pp. 489–502.

[3] Altman, N. S. An Introduction to Kernel and Nearest-Neighbor Nonpara-
metric Regression. The American Statistician 46, 3 (1992), 175–185.

[4] Anderson, J. R., Michalski, R. S., Carbonell, J. G., and Mitchell,
T. M. Machine learning: An artificial intelligence approach, vol. 2. Morgan
Kaufmann, 1986.

[5] Archambeau, C., Peeters, E., Standaert, F.-X., and Quisquater,
J.-J. Template attacks in principal subspaces. In Cryptographic Hardware and
Embedded Systems - CHES 2006, L. Goubin and M. Matsui, Eds., vol. 4249 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2006, pp. 1–
14.

[6] Aumonier, S. Generalized correlation power analysis. In Proceedings of the
Ecrypt Workshop Tools For Cryptanalysis (2007), vol. 518.

[7] Bar, M., Drexler, H., and Pulkus, J. Improved template attacks. In
COSADE 2010 - First International Workshop on Constructive Side-Channel
Analysis and Secure Design (2010), pp. 81–89.

[8] Bartkewitz, T., and Lemke-Rust, K. Efficient template attacks based
on probabilistic multi-class support vector machines. In Smart Card Research
and Advanced Applications (2013), S. Mangard, Ed., vol. 7771 of Lecture Notes
in Computer Science, Springer Berlin Heidelberg, pp. 263–276.

[9] Batina, L., Hogenboom, J., and van Woudenberg, J. G. J. Get-
ting more from pca: First results of using principal component analysis for
extensive power analysis. In Proceedings of the 12th Conference on Topics in
Cryptology (Berlin, Heidelberg, 2012), CT-RSA’12, Springer-Verlag, pp. 383–
397.

[10] Benadjila, R., Prouff, E., Strullu, R., Cagli, E., and Dumas, C.
Study of deep learning techniques for side-channel analysis and introduction

126

to ASCAD database. ANSSI, France & CEA, LETI, MINATEC Campus,
France. Online verfügbar unter https://eprint. iacr. org/2018/053. pdf, zuletzt
geprüft am 22 (2018), 2018.

[11] Bhasin, S., Bruneau, N., Danger, J.-L., Guilley, S., and Najm, Z.
Analysis and Improvements of the DPA Contest v4 Implementation. In Secu-
rity, Privacy, and Applied Cryptography Engineering (2014), R. Chakraborty,
V. Matyas, and P. Schaumont, Eds., vol. 8804 of Lecture Notes in Computer
Science, Springer International Publishing, pp. 201–218.

[12] Bhasin, S., Danger, J.-L., Guilley, S., and Najm, Z. A low-entropy
first-degree secure provable masking scheme for resource-constrained devices.
In Proceedings of the Workshop on Embedded Systems Security (New York,
NY, USA, 2013), WESS ’13, ACM, pp. 7:1–7:10.

[13] Bhasin, S., Danger, J.-L., Guilley, S., and Najm, Z. Side-channel
leakage and trace compression using normalized inter-class variance. In Pro-
ceedings of the Third Workshop on Hardware and Architectural Support for
Security and Privacy (New York, NY, USA, 2014), HASP ’14, ACM, pp. 7:1–
7:9.

[14] Bishop, C. M. Neural Networks for Pattern Recognition. Oxford University
Press, Inc., New York, NY, USA, 1995.

[15] Breiman, L. Random forests. Machine Learning 45, 1 (2001), 5–32.

[16] Buhrow, B., Fritz, K., Gilbert, B., and Daniel, E. A highly parallel
AES-GCM core for authenticated encryption of 400 Gb/s network protocols.
In 2015 International Conference on ReConFigurable Computing and FPGAs
(ReConFig) (Dec 2015), pp. 1–7.

[17] Cagli, E., Dumas, C., and Prouff, E. Convolutional neural networks
with data augmentation against jitter-based countermeasures. pp. 45–68.

[18] Canright, D., and Batina, L. A Very Compact "Perfectly Masked" S-
box for AES, booktitle = Proceedings of the 6th International Conference
on Applied Cryptography and Network Security. ACNS’08, Springer-Verlag,
pp. 446–459.

[19] Chari, S., Jutla, C., Rao, J. R., and Rohatgi, P. A cautionary note
regarding evaluation of AES candidates on smart-cards. In In Second Advanced
Encryption Standard (AES) Candidate Conference, pp. 133–147.

127

[20] Chari, S., Jutla, C. S., Rao, J. R., and Rohatgi, P. Towards sound ap-
proaches to counteract power-analysis attacks. In Proceedings of the 19th An-
nual International Cryptology Conference on Advances in Cryptology (1999),
Springer-Verlag, pp. 398–412.

[21] Chari, S., Rao, J., and Rohatgi, P. Template attacks. In Cryptographic
Hardware and Embedded Systems - CHES 2002 (2003), B. Kaliski, Koç, and
C. Paar, Eds., vol. 2523 of Lecture Notes in Computer Science, Springer Berlin
Heidelberg, pp. 13–28.

[22] Chari, S., Rao, J. R., and Rohatgi, P. Template attacks. In Cryp-
tographic Hardware and Embedded Systems - CHES 2002, 4th International
Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers
(2002), pp. 13–28.

[23] Chou, J.-W., Chu, M.-H., Tsai, Y.-L., Jin, Y., Cheng, C.-M., and
Lin, S.-D. An unsupervised learning model to perform side channel attack. In
Advances in Knowledge Discovery and Data Mining, J. Pei, V. Tseng, L. Cao,
H. Motoda, and G. Xu, Eds., vol. 7818 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2013, pp. 414–425.

[24] Choudary, O., and Kuhn, M. G. Efficient template attacks. In Smart
Card Research and Advanced Applications - 12th International Conference,
CARDIS 2013, Berlin, Germany, November 27-29, 2013. Revised Selected
Papers (2013), pp. 253–270.

[25] Choudary, O., and Kuhn, M. G. Template attacks on different devices.
In Constructive Side-Channel Analysis and Secure Design - 5th International
Workshop, COSADE 2014, Paris, France, April 13-15, 2014. Revised Selected
Papers (2014), pp. 179–198.

[26] Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., and
Verneuil, V. Horizontal correlation analysis on exponentiation. In In-
ternational Conference on Information and Communications Security (2010),
Springer, pp. 46–61.

[27] Coron, J.-S., and Goubin, L. On boolean and arithmetic masking against
differential power analysis. In Proceedings of the Second International Work-
shop on Cryptographic Hardware and Embedded Systems (London, UK, UK,
2000), CHES ’00, Springer-Verlag, pp. 231–237.

[28] Cortes, C., and Vapnik, V. Support-vector networks. Mach. Learn. 20, 3
(Sept. 1995), 273–297.

128

[29] Dworkin, M. J. Recommendation for block cipher modes of operation:
Galois/Counter Mode (GCM) and GMAC. Special Publication (NIST SP)-
800-38D (2007).

[30] Elaabid, M. A., and Guilley, S. Portability of templates. J. Crypto-
graphic Engineering 2, 1 (2012), 63–74.

[31] Everitt, B., Landau, S., Leese, M., and Stahl, D. Cluster Analysis.
Wiley series in probability and statistics. Wiley, 2011.

[32] Farashahi, R. R., Rashidi, B., and Sayedi, S. M. FPGA based fast
and high-throughput 2-slow retiming 128-bit AES encryption algorithm. Mi-
croelectronics Journal 45, 8 (2014), 1014 – 1025.

[33] Farooq, U., and Aslam, M. F. Comparative analysis of different AES
implementation techniques for efficient resource usage and better performance
of an FPGA. Journal of King Saud University - Computer and Information
Sciences 29, 3 (2017), 295 – 302.

[34] Fei, Y., Luo, Q., and Ding, A. A statistical model for DPA with novel
algorithmic confusion analysis. In Cryptographic Hardware and Embedded Sys-
tems – CHES 2012, E. Prouff and P. Schaumont, Eds., vol. 7428 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2012, pp. 233–250.

[35] Fouque, P.-A., Kunz-Jacques, S., Martinet, G., Muller, F., and
Valette, F. Power Attack on Small RSA Public Exponent. In Cryptographic
Hardware and Embedded Systems - CHES 2006, 8th International Workshop
(2006), vol. 4249 of Lecture Notes in Computer Science, Springer, pp. 339–353.

[36] Gierlichs, B., Lemke-Rust, K., and Paar, C. Templates vs. stochastic
methods. In Cryptographic Hardware and Embedded Systems - CHES 2006
(2006), L. Goubin and M. Matsui, Eds., vol. 4249 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, pp. 15–29.

[37] Golic, J., and Tymen, C. Multiplicative masking and power analysis of
AES. In Cryptographic Hardware and Embedded Systems CHES 2002 (2003),
B. Kaliski, c. Koc, and C. Paar, Eds., vol. 2523 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, pp. 198–212.

[38] Goubin, L. A sound method for switching between boolean and arithmetic
masking. In Proceedings of the Third International Workshop on Crypto-
graphic Hardware and Embedded Systems (London, UK, UK, 2001), CHES
’01, Springer-Verlag, pp. 3–15.

129

[39] Grosso, V., Standaert, F.-X., and Prouff, E. Low entropy masking
schemes, revisited. In Smart Card Research and Advanced Applications (2014),
A. Francillon and P. Rohatgi, Eds., vol. 8419 of Lecture Notes in Computer
Science, Springer International Publishing, pp. 33–43.

[40] Guilleyho, S. DPA contest v4, 2013. Available at http://www.dpacontest.
org/v4/rsm_doc.php.

[41] Guilleyho, S. DPA contest v4.2, 2013. Available at http://www.
dpacontest.org/v4/42_doc.php.

[42] Hanley, N., Tunstall, M., and Marnane, W. Using templates to
distinguish multiplications from squaring operations. International Journal of
Information Security 10, 4 (2011), 255–266.

[43] Hastie, T., Tibshirani, R., and Friedman, J. Unsupervised learning.
In The Elements of Statistical Learning (2009), Springer Series in Statistics,
Springer New York, pp. 485–585.

[44] He, H., Jaffe, J., and Zou, L. Side channel cryptanalysis using machine
learning.

[45] Henzen, L., and Fichtner, W. FPGA parallel-pipelined AES-GCM core
for 100G ethernet applications. In 2010 Proceedings of ESSCIRC (Sept 2010),
pp. 202–205.

[46] Herbst, C., Oswald, E., and Mangard, S. An AES smart card imple-
mentation resistant to power analysis attacks. In Applied Cryptography and
Network Security, Second International Conference, ACNS 2006, volume 3989
of Lecture Notes in Computer Science (2006), Springer, pp. 239–252.

[47] Hettwer, B., Gehrer, S., and Güneysu, T. Applications of machine
learning techniques in side-channel attacks: a survey. Journal of Cryptographic
Engineering (04 2019).

[48] Heuser, A., Picek, S., Jovic, A., and Legay, A. On the relevance of
feature selection for profiled side-channel attacks.

[49] Heuser, A., and Zohner, M. Intelligent machine homicide - breaking
cryptographic devices using support vector machines. In COSADE (2012),
pp. 249–264.

[50] Heyszl, J., Ibing, A., Mangard, S., De Santis, F., and Sigl, G. Clus-
tering algorithms for non-profiled single-execution attacks on exponentiations.

130

http://www.dpacontest.org/v4/rsm_doc.php
http://www.dpacontest.org/v4/rsm_doc.php
http://www.dpacontest.org/v4/42_doc.php
http://www.dpacontest.org/v4/42_doc.php

In Smart Card Research and Advanced Applications (2014), A. Francillon and
P. Rohatgi, Eds., vol. 8419 of Lecture Notes in Computer Science, Springer
International Publishing, pp. 79–93.

[51] Hofmann, M., and Klinkenberg, R. RapidMiner: Data mining use cases
and business analytics applications. CRC Press, 2013.

[52] Hospodar, G., Gierlichs, B., De Mulder, E., Verbauwhede, I.,
and Vandewalle, J. Machine learning in side-channel analysis: a first
study. Journal of Cryptographic Engineering 1, 4 (2011), 293–302.

[53] Hospodar, G., Mulder, E., Gierlichs, B., Vandewalle, J., and
Verbauwhede, I. Least squares support vector machines for side-channel
analysis. In COSADE 2011 - Second International Workshop on Constructive
Side-Channel Analysis and Secure Design (2011), pp. 293–302.

[54] Jap, D., and Breier, J. Overview of machine learning based side-channel
analysis methods. In Integrated Circuits (ISIC), 2014 14th International Sym-
posium on (Dec 2014), pp. 38–41.

[55] Joye, M., and Olivier, F. Side-channel analysis. In Encyclopedia of
Cryptography and Security, 2nd Ed. 2011, pp. 1198–1204.

[56] Kent, S. IP Authentication Header. RFC 4302, Dec. 2005.

[57] Kent, S. IP Encapsulating Security Payload (ESP). RFC 4303, Dec. 2005.

[58] Kocher, P. C., Jaffe, J., and Jun, B. Differential power analysis.
In CRYPTO ’99: Proceedings of the 19th Annual International Cryptology
Conference on Advances in Cryptology (London, UK, 1999), Springer-Verlag,
pp. 388–397.

[59] Korona, M., Skowron, K., Trzepiński, M., and Rawski, M. FPGA
implementation of IPsec protocol suite for multigigabit networks. In 2017
International Conference on Systems, Signals and Image Processing (IWSSIP)
(May 2017), pp. 1–5.

[60] Koteshwara, S., Das, A., and Parhi, K. K. Fpga implementation and
comparison of AES-GCM and deoxys authenticated encryption schemes. In
2017 IEEE International Symposium on Circuits and Systems (ISCAS) (May
2017), pp. 1–4.

[61] Kotsiantis, S. B. Supervised machine learning: A review of classifica-
tion techniques. In Proceedings of the 2007 Conference on Emerging Artificial

131

Intelligence Applications in Computer Engineering: Real Word AI Systems
with Applications in eHealth, HCI, Information Retrieval and Pervasive Tech-
nologies (Amsterdam, The Netherlands, The Netherlands, 2007), IOS Press,
pp. 3–24.

[62] Koziel, B., Azarderakhsh, R., and Jao, D. Side-channel attacks on
quantum-resistant supersingular isogeny Diffie-Hellman. In International Con-
ference on Selected Areas in Cryptography (2017), Springer, pp. 64–81.

[63] Kur, J., Smolka, T., and Svenda, P. Improving Resiliency of Java Card
Code Against Power Analysis. In Mikulaska kryptobesidka, Sbornik prispevku
(2009), pp. 29–39.

[64] Kutzner, S., and Poschmann, A. On the Security of RSM - Presenting 5
First- and Second-Order Attacks. In Constructive Side-Channel Analysis and
Secure Design (2014), E. Prouff, Ed., vol. 8622 of Lecture Notes in Computer
Science, Springer International Publishing, pp. 299–312.

[65] Lemsitzer, S., Wolkerstorfer, J., Felber, N., and Braendli, M.
Multi-gigabit GCM-AES architecture optimized for FPGAs. In Cryptographic
Hardware and Embedded Systems - CHES 2007 (Berlin, Heidelberg, 2007),
P. Paillier and I. Verbauwhede, Eds., Springer Berlin Heidelberg, pp. 227–238.

[66] Lerman, L., Bontempi, G., and Markowitch, O. Side channel attack:
an approach based on machine learningn. In COSADE 2011 - Second Inter-
national Workshop on Constructive Side-Channel Analysis and Secure Design
(2011), pp. 29–41.

[67] Lerman, L., Bontempi, G., and Markowitch, O. The bias-variance
decomposition in profiled attacks. J. Cryptographic Engineering 5, 4 (2015),
255–267.

[68] Lerman, L., Bontempi, G., and o. Markowitch. Power analysis attack:
an approach based on machine learning. International Journal of Applied
Cryptography 3, 2 (2014), 97–115.

[69] Lerman, L., Bontempi, G., Taieb, S. B., and Markowitch, O. A time
series approach for profiling attack. In Security, Privacy, and Applied Cryptog-
raphy Engineering - Third International Conference, SPACE 2013, Kharagpur,
India, October 19-23, 2013. Proceedings (2013), pp. 75–94.

[70] Lerman, L., Martinasek, Z., and Markowitch, O. Robust profiled
attacks: should the adversary trust the dataset? IET Information Security
11, 4 (2017), 188–194.

132

[71] Lerman, L., Medeiros, S. F., Bontempi, G., and Markowitch, O.
A machine learning approach against a masked AES. In Smart Card Research
and Advanced Applications - 12th International Conference, CARDIS 2013,
Berlin, Germany, November 27-29, 2013. Revised Selected Papers (2013),
pp. 61–75.

[72] Lerman, L., Medeiros, S. F., Veshchikov, N., Meuter, C., Bon-
tempi, G., and Markowitch, O. Semi-supervised template attack. In
Constructive Side-Channel Analysis and Secure Design - 4th International
Workshop, COSADE 2013, Paris, France, March 6-8, 2013, Revised Selected
Papers (2013), pp. 184–199.

[73] Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., and
Standaert, F. Template attacks vs. machine learning revisited (and the
curse of dimensionality in side-channel analysis). In Constructive Side-Channel
Analysis and Secure Design - 6th International Workshop, COSADE 2015,
Berlin, Germany, April 13-14, 2015. Revised Selected Papers (2015), pp. 20–
33.

[74] Lerman, L., Veshchikov, N., Markowitch, O., and Standaert, F.-
X. Start simple and then refine: Bias-variance decomposition as a diagnosis
tool for leakage profiling. IEEE Transactions on Computers 67, 2 (2017),
268–283.

[75] Liu, B., Ding, Z., Pan, Y., Li, J., and Feng, H. Side-channel attacks
based on collaborative learning. In International Conference of Pioneering
Computer Scientists, Engineers and Educators (2017), Springer, pp. 549–557.

[76] Maghrebi, H., Portigliatti, T., and Prouff, E. Breaking crypto-
graphic implementations using deep learning techniques. pp. 3–26.

[77] Mahmoud, A., Rührmair, U., Majzoobi, M., and Koushanfar, F.
Combined Modeling and Side Channel Attacks on Strong PUFs. IACR Cryp-
tol. ePrint Arch. 2013 (2013), 632.

[78] Mangard, S., Oswald, E., and Popp, T. Power Analysis Attacks:
Revealing the Secrets of Smart Cards (Advances in Information Security).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

[79] Martinasek, Z. Kryptoanalyza postrannimi kanaly. PhD thesis, Vysoke
uceni technicke v Brne, fakulta elektrotechniky a komunikacnich technologii,
2013.

133

[80] Martinasek, Z., Clupek, V., and Trasy, K. General scheme of differ-
ential power analysis. In Telecommunications and Signal Processing (TSP),
2013 36th International Conference on (July 2013), pp. 358–362.

[81] Martinasek, Z., Hajny, J., and Malina, L. Optimization of power anal-
ysis using neural network. In Smart Card Research and Advanced Applications,
A. Francillon and P. Rohatgi, Eds., vol. 8419 of Lecture Notes in Computer
Science. Springer International Publishing, 2013, pp. 94–107.

[82] Martinasek, Z., Hajny, J., Malina, L., and Matousek, D. Hardware-
accelerated encryption with strong authentication. Security and Protection of
Informationl 1, 9 (5 2017), 59–73.

[83] Martinasek, Z., Iglesias, F., Malina, L., and Martinasek, J. Crucial
pitfall of DPA contest V4.2 implementation. Secur. Commun. Networks 9, 18
(2016), 6094–6110.

[84] Martinasek, Z., Macha, T., Raso, O., Martinasek, J., and Sil-
havy, P. Optimization of differential power analysis. PRZEGLAD ELEK-
TROTECHNICZNY 87, 12 (2011), 140 – 144.

[85] Martinasek, Z., Macha, T., and Stancikk, P. Power side channel infor-
mation measurement. In Research in telecommunication technologies RTT2010
(September 2010).

[86] Martinasek, Z., Macha, T., and Zeman, V. Classifier of power side
channel. In Proceedings of NIMT2010 (September 2010).

[87] Martinasek, Z., and Machu, P. New side channle in cryptography. In
Proceedings of the 17th Conference Student EEICT 2011 (April 2011).

[88] Martinasek, Z., Malina, L., and Trasy, K. Profiling Power Analy-
sis Attack Based on Multi-layer Perceptron Network. Springer International
Publishing, Cham, 2015, pp. 317–339.

[89] Martinásek, Z., Nečas, O., Zeman, V., and Martinásek, J.
Diferenciální elektromagnetická analýza. Elektrorevue - Internetový časopis
(http://www.elektrorevue.cz 2011, 60 (2011), 1 – 6.

[90] Martinasek, Z., Petrik, T., and Stancik, P. Conditions affecting the
measurement of power analysis. In Research in telecommunication technologies
RTT2011 (September 2011).

134

[91] Martinásek, Z., Petřík, T., and Stančík, P. Parametry ovlivňující
proudovou analýzu mikroprocesoru vykonavajícího funkci addroundkey. Elek-
trorevue - Internetovy časopis (http://www.elektrorevue.cz 2011, 51 (2011), 1
– 6.

[92] Martinasek, Z., and Zeman, V. Innovative method of the power analysis.
Radioengineering 22, 2 (2013).

[93] Martinasek, Z., Zeman, V., Malina, L., and Martinasek, J. k-
Nearest neighbors algorithm in profiling power analysis attacks. Radioengi-
neering 25, 2 (2016), 365–382.

[94] Martinasek, Z., Zeman, V., Sysel, P., and Trasy, K. Near
electromagnetic field measurement of microprocessor. PRZEGLAD ELEK-
TROTECHNICZNY 89, 2a (2013), 203 – 207.

[95] Martinasek, Z., Zeman, V., and Trasy, K. Simple electromagnetic
analysis in cryptography. International Journal of Advances in Telecommuni-
cations, Electrotechnics, Signals and Systems 1, 1 (2012), 1 – 6.

[96] Martinez, A. M., Mart’inez, A. M., and Kak, A. C. PCA versus LDA.
IEEE Transactions on Pattern Analysis and Machine Intelligence 23 (2001),
228–233.

[97] Martinásek, Z., Člupek, V., Zeman, V., and Sysel, P. Základní
metody diferenciální proudové analýzy. 1–10.

[98] McGrew, D., and Viega, J. The Galois/counter mode of operation
(GCM). submission to NIST Modes of Operation Process 20 (2004).

[99] Mesquita, D., Techer, J.-D., Torres, L., Sassatelli, G., Cambon,
G., Robert, M., and Moraes, F. Current mask generation: a transistor
level security against dpa attacks. In SBCCI (2005), pp. 115–120.

[100] Messerges, T. Using Second-Order Power Analysis to Attack DPA Resis-
tant Software. In Cryptographic Hardware and Embedded Systems - CHES
2000 (2000), Koç and C. Paar, Eds., vol. 1965 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, pp. 238–251.

[101] Mladenic, D., Brank, J., Grobelnik, M., and Milic-Frayling, N.
Feature selection using support vector machines. In The 27th Annual Inter-
national ACM SIGIR Conference (SIGIR 2004) (2004), pp. 234–241.

135

[102] Moradi, A., Guilley, S., and Heuser, A. Detecting hidden leakages.
In Applied Cryptography and Network Security (2014), I. Boureanu, P. Owe-
sarski, and S. Vaudenay, Eds., vol. 8479 of Lecture Notes in Computer Science,
Springer International Publishing, pp. 324–342.

[103] Mukhtar, N., Mehrabi, M. A., Kong, Y., and Anjum, A. Machine-
Learning-Based Side-Channel Evaluation of Elliptic-Curve Cryptographic
FPGA Processor. Applied Sciences 9, 1 (2019), 64.

[104] Muresan, R., Vahedi, H., Zhanrong, Y., and Gregori, S. Power-
smart system-on-chip architecture for embedded cryptosystems. In Proceedings
of the 3rd IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis (New York, NY, USA, 2005), CODES+ISSS
’05, ACM, pp. 184–189.

[105] Nabney, I. T. NETLAB: algorithms for pattern recognition. Advances in
Pattern Recognition. Springer-Verlag New York, Inc., New York, NY, USA,
2002.

[106] Nassar, M., Souissi, Y., Guilley, S., and Danger, J.-L. RSM: A small
and fast countermeasure for AES, secure against 1st and 2nd-order zero-offset
SCAs. In Design, Automation Test in Europe Conference Exhibition (DATE),
2012 (March 2012), pp. 1173–1178.

[107] Nemec, M., Sys, M., Svenda, P., Klinec, D., and Matyas, V. The
Return of Coppersmith’s Attack: Practical Factorization of Widely Used RSA
Moduli. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (2017), ACM, pp. 1631–1648.

[108] Nguyen, T. T., Nguyen, V. C., Huynh, T. V., Luong, Q. Y. H., and
Dang, T. H. Performance enhancement of encryption and authentication
IP cores for IPSec based on multiple-core architecture and dynamic partial
reconfiguration on FPGA. In 2018 2nd International Conference on Recent
Advances in Signal Processing, Telecommunications Computing (SigTelCom)
(Jan 2018), pp. 126–131.

[109] Oswald, E. Enhancing simple power-analysis attacks on elliptic curve cryp-
tosystems. In International Workshop on Cryptographic Hardware and Em-
bedded Systems (2002), Springer, pp. 82–97.

[110] Oswald, E., Mangard, S., Herbst, C., and Tillich, S. Practical
second-order dpa attacks for masked smart card implementations of block ci-
phers. In Topics in Cryptology CT RSA 2006, D. Pointcheval, Ed., vol. 3860 of

136

Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2006, pp. 192–
207.

[111] Oswald, E., Mangard, S., and Pramstaller, N. Secure and
Efficient Masking of AES - A Mission Impossible?, 2004. Elisa-
beth.Oswald@iaik.tugraz.at 12573 received 4 Jun 2004.

[112] Oswald, E., Mangard, S., Pramstaller, N., and Rijmen, V. A Side-
Channel Analysis Resistant Description of the AES S-Box. In Fast Software
Encryption (2005), H. Gilbert and H. Handschuh, Eds., vol. 3557 of Lecture
Notes in Computer Science, Springer Berlin Heidelberg, pp. 413–423.

[113] Oswald, M. E., Mangard, S., Herbst, C., and Tillich, S. Practical
Second-Order DPA Attacks for Masked Smart Card Implementations of Block
Ciphers. In Topics in Cryptology - CT-RSA 2006 (2006), D. Pointcheval, Ed.,
vol. 3860 of Lecture Notes in Computer Science, Springer, pp. 192 – 207.

[114] Pagh, R., and Rodler, F. F. Cuckoo hashing. Journal of Algorithms 51,
2 (2004), 122 – 144.

[115] Park, A., Shim, K.-A., Koo, N., and Han, D.-G. Side-channel attacks
on post-quantum signature schemes based on multivariate quadratic equa-
tions. IACR Transactions on Cryptographic Hardware and Embedded Systems
(2018), 500–523.

[116] Perin, G., Imbert, L., Torres, L., and Maurine, P. Attacking ran-
domized exponentiations using unsupervised learning. In Constructive Side-
Channel Analysis and Secure Design (2014), E. Prouff, Ed., vol. 8622 of Lecture
Notes in Computer Science, Springer International Publishing, pp. 144–160.

[117] Picek, S., Heuser, A., and Guilley, S. Template attack versus bayes
classifier. Journal of Cryptographic Engineering 7, 4 (2017), 343–351.

[118] Picek, S., Heuser, A., Jovic, A., and Legay, A. Climbing down the
hierarchy: hierarchical classification for machine learning side-channel attacks.
In International Conference on Cryptology in Africa (2017), Springer, pp. 61–
78.

[119] Prouff, E., and Rivain, M. A Generic Method for Secure SBOX Im-
plementation. In Information Security Applications (2007), S. Kim, M. Yung,
and H.-W. Lee, Eds., vol. 4867 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, pp. 227–244.

137

[120] Pus, V., Kekely, L., and Korenek, J. Design methodology of con-
figurable high performance packet parser for FPGA. In 17th International
Symposium on Design and Diagnostics of Electronic Circuits Systems (April
2014), pp. 189–194.

[121] Qu, S., Shou, G., Hu, Y., Guo, Z., and Qian, Z. High throughput,
pipelined implementation of AES on FPGA. In 2009 International Symposium
on Information Engineering and Electronic Commerce (May 2009), pp. 542–
545.

[122] Quisquater, J.-J., and Samyde, D. Automatic code recognition for smart
cards using a Kohonen neural network. In Proceedings of the 5th conference
on Smart Card Research and Advanced Application Conference - Volume 5
(Berkeley, CA, USA, 2002), CARDIS’02, pp. 6–6.

[123] Read, J., Pfahringer, B., Holmes, G., and Frank, E. Classifier chains
for multi-label classification. Machine Learning 85, 3 (2011), 333–359.

[124] Rechberger, C., and Oswald, E. Practical template attacks. In Infor-
mation Security Applications (2005), C. Lim and M. Yung, Eds., vol. 3325 of
Lecture Notes in Computer Science, Springer Berlin Heidelberg, pp. 440–456.

[125] Renauld, M., Standaert, F., Veyrat-Charvillon, N., Kamel, D.,
and Flandre, D. A formal study of power variability issues and side-channel
attacks for nanoscale devices. In Advances in Cryptology - EUROCRYPT
2011 - 30th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings
(2011), pp. 109–128.

[126] Saeedi, E., Hossain, M. S., and Kong, Y. Side-channel information
characterisation based on cascade-forward back-propagation neural network.
Journal of Electronic Testing 32, 3 (2016), 345–356.

[127] Saeedi, E., Kong, Y., and Hossain, M. S. Side-channel attacks and
learning-vector quantization. Frontiers of Information Technology & Elec-
tronic Engineering 18, 4 (2017), 511–518.

[128] Schindler, W. On the optimization of side-channel attacks by advanced
stochastic methods. In Public Key Cryptography - PKC 2005, 8th International
Workshop on Theory and Practice in Public Key Cryptography, Les Diablerets,
Switzerland, January 23-26, 2005, Proceedings (2005), vol. 3386 of Lecture
Notes in Computer Science, Springer, pp. 85–103.

138

[129] Schindler, W., Lemke, K., and Paar, C. A stochastic model for differ-
ential side channel cryptanalysis. In Cryptographic Hardware and Embedded
Systems - CHES 2005, 7th International Workshop, Edinburgh, UK, August
29 - September 1, 2005, Proceedings (2005), pp. 30–46.

[130] Sheffer, Y., and Fluhrer, S. Additional Diffie-Hellman Tests for the
Internet Key Exchange Protocol Version 2 (IKEv2). RFC 6989, July 2013.

[131] Smekal, D., Frolka, J., and Hajny, J. Acceleration of AES encryption
algorithm using field programmable gate arrays. IFAC-PapersOnLine 49, 25
(2016), 384 – 389. 14th IFAC Conference on Programmable Devices and
Embedded Systems PDES 2016.

[132] Sokolova, M., and Lapalme, G. A systematic analysis of performance
measures for classification tasks. Information Processing and Management 45,
4 (2009), 427–437.

[133] Soliman, M. I., and Abozaid, G. Y. FPGA implementation and perfor-
mance evaluation of a high throughput crypto coprocessor. Journal of Parallel
and Distributed Computing 71, 8 (2011), 1075–1084.

[134] Standaert, F.-X., Malkin, T., and Yung, M. A unified framework for
the analysis of side-channel key recovery attacks. In EUROCRYPT (2009),
pp. 443–461.

[135] Standaert, F.-X., Malkin, T. G., and Yung, M. A unified framework
for the analysis of side-channel key recovery attacks. In Proceedings of the
28th Annual International Conference on Advances in Cryptology: the The-
ory and Applications of Cryptographic Techniques (Berlin, Heidelberg, 2009),
EUROCRYPT ’09, Springer-Verlag, pp. 443–461.

[136] Technologies, N. Netcope FPGA boards. Available at https://www.
netcope.com/en/products/fpga-boards.

[137] Timon, B. Non-profiled deep learning-based side-channel attacks with sensi-
tivity analysis. IACR Transactions on Cryptographic Hardware and Embedded
Systems 2019, 2 (Feb. 2019), 107–131.

[138] Tsoumakas, G., and Katakis, I. Multi-label classification: An overview.
Int J Data Warehousing and Mining 2007 (2007), 1–13.

[139] Vliegen, J., Reparaz, O., and Mentens, N. Maximizing the throughput
of threshold-protected AES-GCM implementations on FPGA. In 2017 IEEE

139

https://www.netcope.com/en/products/fpga-boards
https://www.netcope.com/en/products/fpga-boards

2nd International Verification and Security Workshop (IVSW) (July 2017),
pp. 140–145.

[140] Whitnall, C., and Oswald, E. Robust Profiling for DPA-Style Attacks.
In Cryptographic Hardware and Embedded Systems - CHES 2015 - 17th Inter-
national Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings
(2015), pp. 3–21.

[141] Wolpert, D., and Macready, W. G. No free lunch theorems for opti-
mization. IEEE Trans. Evolutionary Computation 1, 1 (1997), 67–82.

[142] Xilinx. Virtex ultrascale+, https://www.xilinx.com/products/silicon-
devices/fpga/virtex-ultrascale-plus.html, (online).

[143] Yang, S., Zhou, Y., Liu, J., and Chen, D. Back propagation neural
network based leakage characterization for practical security analysis of cryp-
tographic implementations. In Information Security and Cryptology - ICISC
2011 (2012), H. Kim, Ed., vol. 7259 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, pp. 169–185.

[144] Ye, X., and Eisenbarth, T. On the vulnerability of low entropy masking
schemes. In Smart Card Research and Advanced Applications (2014), A. Fran-
cillon and P. Rohatgi, Eds., vol. 8419 of Lecture Notes in Computer Science,
Springer International Publishing, pp. 44–60.

[145] Zhang, Z., Wu, L., Wang, A., and Mu, Z. Improved leakage model
based on genetic algorithm. IACR Cryptology ePrint Archive 2014 (2014),
314.

[146] Zhao, J., Zeng, X., Han, J., and Chen, J. Simplified AES Algorithm
Resistant to Zero-Value power analysis and its VLSI Implementation. In Solid-
State and Integrated Circuit Technology, 2006. ICSICT’06. 8th International
Conference on (2006), IEEE, pp. 1937–1940.

140

Author’s selected publications since 2014
[147] Lerman, L., Martinasek, Z., and Markowitch, O. Robust profiled

attacks: should the adversary trust the dataset? IET Information Security
11, 4 (2017), 188–194.

[148] Malina, L., Clupek, V., Martinasek, Z., Hajny, J., Oguchi, K., and
Zeman, V. Evaluation of Software-Oriented Block Ciphers on Smartphones.
In Revised Selected Papers of the 6th International Symposium on Foundations
and Practice of Security - Volume 8352 (Berlin, Heidelberg, 2013), FPS 2013,
Springer-Verlag, p. 353–368.

[149] Malina, L., Popelova, L., Dzurenda, P., Hajny, J., and Marti-
nasek, Z. On feasibility of post-quantum cryptography on small devices.
IFAC-PapersOnLine 51, 6 (2018), 462 – 467. 15th IFAC Conference on Pro-
grammable Devices and Embedded Systems PDeS 2018.

[150] Martinasek, Z., Clupek, V., and Trasy, K. Acoustic attack on key-
board using spectrogram and neural network. In 2015 38th International Con-
ference on Telecommunications and Signal Processing (TSP) (2015), pp. 637–
641.

[151] Martinasek, Z., Dzurenda, P., and Malina, L. Profiling power analysis
attack based on MLP in DPA contest V4.2. In 39th International Conference
on Telecommunications and Signal Processing, TSP 2016, Vienna, Austria,
June 27-29, 2016 (2016), IEEE, pp. 223–226.

[152] Martinasek, Z., Hajny, J., and Malina, L. Optimization of power anal-
ysis using neural network. In Smart Card Research and Advanced Applications,
A. Francillon and P. Rohatgi, Eds., vol. 8419 of Lecture Notes in Computer
Science. Springer International Publishing, 2013, pp. 94–107.

[153] Martinasek, Z., Hajny, J., Malina, L., and Matousek, D. Hardware-
accelerated encryption with strong authentication. In Security and Protection
of Information (june 2017), no. 1, pp. 1–10.

[154] Martinasek, Z., Hajny, J., Smekal, D., Malina, L., Matousek, D.,
Kekely, M., and Mentens, N. 200 Gbps Hardware Accelerated Encryp-
tion System for FPGA Network Cards. In Proceedings of the 2018 Workshop
on Attacks and Solutions in Hardware Security (New York, NY, USA, 2018),
ASHES ’18, Association for Computing Machinery, p. 11–17.

141

[155] Martinasek, Z., Iglesias, F., Malina, L., and Martinasek, J. Crucial
pitfall of DPA contest V4.2 implementation. Secur. Commun. Networks 9, 18
(2016), 6094–6110.

[156] Martinasek, Z., and Malina, L. Profiling power analysis attack based
on multi-layer perceptron network. In MMCTSE (2014). in print.

[157] Martinasek, Z., Zapletal, O., Vrba, K., and Trasy, K. Power analy-
sis attack based on the MLP in DPA contest v4. In 38th International Confer-
ence on Telecommunications and Signal Processing, TSP 2015, Prague, Czech
Republic, July 9-11, 2015 (2015), IEEE, pp. 154–158.

[158] Martinasek, Z., Zeman, V., Malina, L., and Martinasek, J. k-
Nearest neighbors algorithm in profiling power analysis attacks. Radioengi-
neering 25, 2 (2016), 365–382.

[159] Smekal, D., Hajny, J., and Martinasek, Z. Comparative analysis of dif-
ferent implementations of encryption algorithms on FPGA network cards. In
15th IFAC Conference on Programmable Devices and Embedded Systems PDeS
2018 (IFAC-PapersOnLine, may 2018), no. 6, IFAC-PapersOnLine, pp. 312–
317.

[160] Smekal, D., Hajny, J., and Martinasek, Z. Hardware-accelerated
Twofish core for FPGA. In 2018 41st International Conference on Telecom-
munications and Signal Processing (TSP) (2018), pp. 1–5.

[161] Smekal, D., Hajny, J., Martinasek, Z., Malina, L., Vrba, K., and
Matousek, D. Vysokorychlostní šifrování se silnou autentizací na platformě
FPGA. In Sborník MKB 2017 (december 2017), pp. 45–53.

[162] Zeman, V., and Martinasek, Z. Kryptografie v informatice. University
textbook, UTKO, FEKT, VUT v Brně, UTKO, FEKT, VUT v Brně, january
2015.

[163] Zeman, V., and Martinasek, Z. Ochrana informací šifrováním pro inte-
grovanou výuku vut a VŠB-TUO. University textbook, UTKO, FEKT, VUT
v Brně, UTKO, FEKT, VUT v Brně, january 2015.

142

List of abbreviations
AES Advances Encryption Standard
AH Authentication Headers
APDU Application Protocol Data Unit
API Application Programming Interface
BRAM Block Random Access Memory
CTA Classical Template Attack
CMOS Complementary Metal–Oxide–Semiconductor
CPA Diferential Power Analysis based on Correlation coefficient
CV Cross-Validation
DC Direct Current
DH Diffie-Hellman
DPA Differential Power Analysis
DS Data Set
DT Decision Trees
EC Elliptic-Curve
ESP Encapsulating Security Payload
ETA Efficient Template Attack
FF Flip-Flop
FIFO First IN First OUT
FN False Negative
FP False Positive
FPGA Field-Programmable Gate Array
GCM Galois Counter Mode
GE Guessing Entropy
GF Galois Field
GSR Global Success Rate
HD Hamming Distance
HFE Header Field Extractor
HW Hamming Weight
IKE Internet Key Exchange
IP Interesting Points
IPsec Internet Protocol Security
LDA Linear Discriminant Analysis
LTU Look-Up-Tables
MIA Mutual Information Analysis
MK Master Key
MKA Master Key Authentication

143

MKE Master Key Encryption
ML Machine Learning
MLP MultiLayer Perceptrons
NDK Netcope Development Kit
NICV Normalized Inter-Class Variance
NIST National Institute of Standards and Technology
OS Operation System
PA Power Analysis
PCA Principal Components Analysis
PCIe Peripheral Component Interconnect Express
PGE Partial Guessing Entropy
PKI Public Key Infrastructure
PSK Pre-Shared Keys
PSR Partial Success Rate
RF Random Forests
ROC Receiver Operator Characteristic
RSA Rivest Shamir Adleman
RSM Rotating Sbox Masking
SA Stochastic Approach
SeA Security Association
SAD Security Association Database
SAM Security Access Module
SCA Side-Channel Analysis
SNR Signal-to-Noise Ratio
SODPA Second-Order Differential Power Analysis
SOSD Sum Of Squared pairwise Differences
SPA Simple Power Analysis
SPD Security Policy Database
SRAM Static Random Access Memory
SVM Support Vector Machines
TA Template-based Attack
TN True Negative
TP True Positive
USB Universal Serial Bus
VHDL VHSIC Hardware Description Language
VI Virtual Interface
XOR Exclusive-OR
ZV Zero-vale model

144

	Introduction
	THESIS OVERVIEW
	Motivation
	Goals
	Contribution and Relation to Author’s Publications
	Structure

	Power Analysis Fundamentals
	Profiling Power Analysis Attacks
	Standart Template Attack
	Template Attack Based on Machine Learning

	Non-profiling Power Analysis Attacks
	Correlation Coefficient
	Difference of Means
	Power Simulation Models

	Countermeasure Methods
	Hiding
	Masking

	Attacks on Countermeasure Methods
	Attack on Hiding
	Attack on Masking

	Study of Protected Implementations
	DPA Contest V4.1
	Description of Countermeasures Implementation
	Power Analysis Realized

	DPA Contest V4.2
	Description of Countermeasures Implementation
	Power Analysis Realized

	Robustness of Profiling Attacks
	Description of Scenarios and Testbed
	Scenario 1: experimental results for mistakes
	Scenario 2: experimental results for misalignments
	Scenario 3: experimental results for noise
	Scenario 4: experimental results for DC offset
	Summary

	k-Nearest Neighbors in Power Analysis
	Description of Scenarios and Testbed
	Implemented Program
	Results Evaluation
	Summary

	Protected Hardware Implementation
	State of the Art
	Contribution
	Preliminaries and System Architecture
	Authentication Subsystem Implementation
	FPGA Subsystem Implementation
	Summary

	Conclusion
	Bibliography
	Author’s selected publications since 2014
	List of abbreviations

