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Abstrakt

Uéelem piedkladané habilitacni prace je ukazat vysledky studia zaméfeného na vznik
poskozeni heterogennich materiald, zvlastné na problematiku modelovani vzniku a Sifeni
trhliny. Ve ¢tytech kapitolach jsou ukazany vysledky prace pomoci komentovanych autoro-
vych publikaci. V prvé kapitole je vénovana pozornost primé aplikace metody konecnych
prvki na odlisné typy materiali s cilem nalezeni kritickych parametri urcujicich cho-
vani material pii poskozovani. Druha kapitola kombinuje elastoplastické vypocéty pomoci
MKP a vybrané parametry pro tzv. pristup kritického ¢lanku. Tteti kapitola je vénovana
aplikaci mechaniky poskozeni a dvéma moznymi pristupy, jak modelovat vznik a Sifeni
trhliny pomoci tprav v systémech MKP. Posledni ¢tvrta kapitola je vénovana cemen-
tovym vldknovym kompozitim a hledani novych metod pro jejich pfesnéjsi modelovani
zejména v oblasti koncentratoru napéti, respektivé pred celem trhliny.

Jako autor chci podékovat viem byvalym kolegtim z Ustavu fyziky materialit AV CR,
v.v.i., kteri se podileli na publikacich. Pro vznik této prace byla dilezita dlouholeta spo-
lupréace s profesorem Jifim Valou z Ustavu matematiky a deskriptivni geometrie FAST
VUT, ktery mé zaméreni priblizil k problémtim stavebni mechaniky.

Summary

The purpose of the presented habilitation thesis is to show the results of a study focused
on the occurrence of damage heterogeneous materials, especially on the issue of modeling
crack formation and propagation. At four chapters the results of the work are presen-
ted using annotated author’s publications. In the first chapter attention is paid to the
direct application of the finite element method to different types of materials in order
to finding critical parameters determining behavior of materials at damage. The second
chapter combines elastoplastic calculations using FEM and selected parameters for the
so-called critical article approach. The third chapter is devoted to the application of da-
mage mechanics and two possible approaches to model the origin of a crack propagation
through modifications in FEM systems. The last fourth chapter is devoted to cement fiber
composites and the search for new methods for their more accurate modeling, especially
in the field stress concentrator, respectively ahead of the crack tip.

As an author, I would like to thank all former colleagues from the Institute of Physics
of Materials CAS, who participated in the publications. Cooperation with Professor Jifi
Vala from the Department of Mathematics and Descriptive Geometry of the Faculty of
Civil Engineering was important for the creation of this work, which brought my focus
closer to the problems of structural mechanics.

© Vladislav Kozak
Vysoké uceni technické v Brné, Fakulta stavebni, 2021.
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1 Uvod

S vyvojem novych zafizeni a komponent je v dnesni dobé stale vice spojovana otazka za-
jisténi bezpecnosti jejich provozu a predikce jejich zivotnosti. V pripadé konstrukci mtize
byt primo zavisla na vyskytu defekti, které mohou vzniknout jiz v etapé vyroby nebo
béhem provozu. Jednim z konceptii, které jsou vyuzivany v konstrukci a hodnoceni bez-
pecnosti, je soubor teorii a metod oznacovany jako lomova mechanika. Tento védni obor
spojujici v sobé mechaniku kontinua s materidlovym inzenyrstvim, popisuje chovani de-
fektt, napt. trhlin, v konstrukcich. Jedna se o komplikovany vztah defekt-napéti-material.
Lepsim pochopenim téchto vztahti 1ze dosahnout tispor u novych konstrukei nebo prodlou-
zeni zivotnosti stavajicich konstrukei.

Snahou lomové mechaniky je popis, poptipadé predikce chovani téles obsahujicich vadu
casto typu trhliny. Trhliny mohou v mnoha pripadech vést az k Gplnému poruseni kon-
strukce v dtsledku vzniku lomu. Existuji dva zakladni pristupy pro odvozeni podminek
okamziku iniciace nestabilniho sifeni trhliny. Podstatou prvniho je aplikovatelnost teorie
nejslabsiho ¢lanku, druhy model uvazuje kumulaci poskozeni v pribéhu zatézovani. Poru-
sovani konstrukénich material je chapano jako kontinualni proces, u kterého dochézi ke
vzajemnému prolnuti stadii plastické deformace, nukleace a iniciace trhlin. Koncové sta-
dium ve vyvoji porusovani téles, které je predmétem zkoumani lomové mechaniky je siteni
trhlin (nestabilni nebo stabilni). Cilem presentovanych praci bylo, jak zjistit vzdjemné
vztahy mezi fyzikalnimi zakonitostmi a vlastni fyzikalni podstatou procesu porusovani na
strané jedné a teorii mechaniky kontinua na strané druhé.

Soucasné studie se zamétuji na rozpracovani druhého z vyse uvedenych problémi. Je
jim zminéna transferabilita materidlovych charakteristik. Rozdilné lomové houzevnatosti
muzeme zmérit pfi odlisnych konfiguracich zkusebnich téles a defekti. Divodem nesou-
ladu je skutecny stav rozlozeni napéti v okoli defektu a rizny rozsah plastické deformace.
Nejenom tyto skutec¢nosti komplikuji pouziti lomové mechaniky v praxi, uvedenému pro-
blému je vénovana kapitola zaméfena na problematiku lokalniho pfistupu. Ta ukazuje
koncepci odlisnou od standardni lomové mechaniky a pokousi se definovat mechanismus
poruseni veli¢inami nepopisujicimi globalni napétové pole, ale veli¢inami vychézejicimi ze
znalosti rozloZeni napéti/deformace v celém télese.

Mezi efektivni nastroje, které prispivaji k objasnéni hledanych vztahi, patii modely, jez
vyuzivaji numerickych metod. V predlozené praci se vychazi vétsinou z pouziti metody ko-
nec¢nych prvka (dale MKP), mnohdy na hranicich pouzitelnosti klasickych software MKP,
detailnéji v kapitole pfimych a nepfimych aplikaci MKP. Nové metody prevazné v oblasti
modelovani poskozeni jsou soustiedény ve tieti kapitole, kterda je vénovana modelovani
Sifeni trhliny jak pomoci mechaniky poskozeni (pouZita modifikace Gursona-Tvergaarda-
Needlemana) ¢i pouziti koheznich prvka implementovanych pomoci uzivatelské subroutiny
do systému Abaqus. Pouzivani kompozitnich materiali s cementovou matrici a vyztuz-
nymi vlakny rozlicného ptivodu pro konstrukéni tcely si vynucuje vérohodnou vypoctovou
predikci jejich mechanickych vlastnosti, predevsim nebezpeci postupného vzniku mikro-
trhlin a makrotrhlin. V posledni kapitole komentovanych praci je ukdzana moznost de-



1. UVOD

terministické vypoctové predikce tohoto fyzikalniho procesu s vyuzitim kvazistatického
viskoelastického materidlového modelu a koheznich kontaktt, metody casové diskretizace
a rozsitené metody konecnych prvkia pro dvourozmeérné tlohy.

Prosazovani netradi¢nich materialt, konstrukei a technologii v modernim stavebnictvi
vyzaduje i nové pfistupy k vySetfovani jejich fyzikalnich vlastnosti, pfi nichz se nelze
spoléhat na ty osvédcéené. Simulace chovani materidlovych vzorki, konstrukénich prvki i
staveb jako celku se stava nezbytnou.



2 Teoretické zaklady

Tato kapitola si klade za cil uvést ctenare do fesené problematiky a naznacit nékteré
otazky, na které se autor této prace snazi navazat v kapitole vénované vlastnim vysledktim.

2.1 Pouziti metody metody konecnjch prvka na reseni
nestandardnich loh

Zde jsou specifikovany teoretické podklady pro prvni kapitolu vénovanou komentovanym
publikovanym pracim. Prvni skupina se zamétuje na specialni problémy modelovani cree-
pového chovani materiall, specialné na procesy probihajici pti stlacovani kovového prasku
¢i pri zatézovani kompoziti s kovovou matrici. Druhou skupinu predstavuji vlaknové lami-
naty GLARE, jez byly vyvijeny pro modernizaci letadel Airbus. Tteti skupina je vénovana
konvergenci elastoplastickych tloh pri zatézovani téles s ostrou trhlinou. Vsechny skupiny
pouzivaji k vypoctu standardni systémy, tj. Ansys a Abaqus. Na rozdil od néasledujicich
kapitol jsou tyto systémy pouzivany primo bez zasahovani do standardnich softwari.

7o

Hlinik

Prepleg

Obrazek 2.2: Struktura sklolaminatu GLARE, ptfevzato z en.wikipedia.org/GLARE.

Slinovani (anglicky sintering) je proces zhutniovani a formovani pevné hmoty materialu
teplem nebo tlakem, aniz by se roztavil do bodu zkapalnéni. Slinovani probiha prirozené
v loziscich minerald nebo jako soucast vyrobniho procesu pouzivaného s kovy, keramikou,
plasty a jinymi materidly. Jako zakladni fyzikalni procesy je nutno vyzvednout viskézni
tok pfes hranice zrn a diftizi po hranicich zrn, struktury jsou s uzavienou pérovitosti, jak
je naznaceno na obr. 2.1, pfi modelovani této tlohy se vychazelo z praci [27] a [9].

6



2. TEORETICKE ZAKLADY

Sklolaminatovy epoxid vyztuzeny hlinikem (GLARE, Glass Laminate Aluminum Re-
inforced Epoxy) je lamindt z kovového vldkna (FML, Fiber Metal Laminate) sloZeny
z nékolika velmi tenkych vrstev kovu (obvykle hliniku) prolozenych vrstvami preplegu ze
sklenénych vlaken, spojenych dohromady matrici, jako je epoxid. P¥i modelovani pomoci
MKP byla fesena otazka kritickych smérti naméhani a iniciace vzniku trhliny pfi nizko-
cyklové tinavé. Strukturu materidlu, nyni velmi vyuzivaného v letectvi, napiiklad v [39],
vidime na obr. 2.2.

V této kapitole je proveden i ivod do problematiky numerického vypoctu veli¢iny ozna-
¢ované v experimentalni oblasti jako lomova houzevnatost, ktera je spojovana s maximal-
nim napétim pred celem trhliny a v komentovanych pracich je ji vénovana vyznamna
pozornost. Ruzné konfigurace téleso/defekt vedou k rozdilnym napéfové/deformacnim
staviim (rozdilna troven plastické deformace), viz [28] a [35]. Z aplika¢nich davodt, viz
obr. 2.3, byla snaha zavést dvouparametrovou lomovou mechaniku tak, aby byla mozn4a
transformace stanovenych veli¢in na jednoparametrovy popis pomoci K, J. Podminky na
Spici trhliny, které lze témito veli¢inami popsat, jsou oznacovany jako stav small-scale
yielding (SSY) ¢i large-scale yielding (LSY), viz [10].

95% a_~7,
Cw as
5%~
/1
/
d;>adPas
J

Obrazek 2.3: Predikovany rozptyl lomové houzevnatosti, prevzato z Prilohy B1.

V réamci deformaéni teorie plasticity s predpokladem izotropniho zpeviiovani pro Mise-
sovu podminku plasticity byly uvazovany podminky rovinné deformace a rovinné napja-
tosti pro pripad plastického chovani materialu s mezi kluzu oy a exponentem deformacniho
zpevnéni n, jehoz vlastnosti jsou popsany ve formé mocninné zavislosti mezi napétim a
deformaci typu Ramberg-Osgood [].

2.2 Historie lokalniho pristupu

Tento pristup, zejména v pripadé stépného poruseni, koreluje pravdépodobnost poruseni
s distribuci napéti pred celem trhliny. Prestoze je vznik poruseni predikovan z lokalniho
napéti, jsou apriori v tzv. Weibullové napéti zahrnuty efekty jako: ztrata ,constraintu®
(nékdy v ceské literatuie oznacovan jako stisnéni, viz obr. 2.5), charakter zatéZovani,
tepelné indukovana napéti atd. Metodika lokalniho p¥istupu (dale LP) je silnym nastrojem
pro predikci Zivotnosti komponent. Nutnost peclivého a piesného uréeni napéti/deformace
v uvazovaném teélese je nezbytna.



2.2. HISTORIE LOKALNIHO PRISTUPU

Princip je zalozen na predpokladu, ze existuje maly, ale kone¢ny objem materialu, ktery
obsahuje mnozinu rovnomérné rozlozenych defekti [3] a [3]. Problém kiehkého poruseni se
redukuje na nalezeni kritického defektu. Uvahy dodrzuji piedpoklad iniciace prasknutim
kiehké ¢astice, respektive tzv. kritického ¢lanku. Necht existuje burika o objemu Vj, ktera
takovyto defekt obsahuje. Beremin [3] uvedl pravdépodobnost nalezeni trhliny o délce o
az lg + dly ve tvaru

p(lo)dly = /15 dly, (2.1)

kde a a 8 jsou materidlové charakteristiky. Jestlize v objemu V|, elementarni bunky ptsobi
napéti o, pak je mozné pravdépodobnost poruseni vyjadrit v integralnim formé

p(o) = /p(l())dl07 (2.2)

kde integrujeme od kritické velikosti defektu [.. Necht prvni materidlova charakteristika
je m = 20 — 2, potom po zavedeni o, obdrzime pravdépodobnost poruseni p(o) ve formé

p(o) = (o/ou)™, (2.3)

kde pro o, plati, Ze je to materidlova konstanta, pokud se neprojevi vliv teploty. Uvahy
se doposud tykaly jedné elementarni bunky. Pro popis chovani celého télesa je nutné najit
integralni vyjadreni pravdépodobnosti poruseni. Takto popsané chovani odpovidd mate-
maticky teorii slabého ¢lanku, ktera povazuje systém za fetéz, ktery se porusi v okamziku
poruseni jedné buriky. Po tpravé do formy

plo, V) =1—exp ((=V/Vo)(a/A)7), (2.4)

coZ je obecny zapis pravdépodobnosti poruseni jako funkce napéti, a po zavedeni Wei-
bullova napéti 1ze zapsat celkovou pravdépodobnost poruseni ve tvaru

pr=1—exp(—(ow/ou)™, (2.5)

kde Weibullovo napéti je dano vztahem

ow = / o7 AV V)™ (2.6)

Parametr m charakterizuje rozptyl a o, je napéti pro 63 % pravdépodobnost poruseni, dV/
je objem, kde ptisobi napéti o;. Tyto parametry jsou obvykle nezavislé na geometrii zku-
sebniho télesa. Elementarni objem Vj se ¢asto nahrazuje veli¢inou A, ktera je definovana
jako

A=V,7% (2.7)

Nezbytnym krokem pied zahdjenim vypoctu je pfesné stanoveni zavislosti skutecné na-
péti/skutecna deformace pifi zvolené teploté. Pro vypocet distribuce napéti/deformace
v testovanych télesech je mozné pouzit nékterou z implementaci metody konec¢nych prvkii,
napf. systémy Ansys, Abaqus aj. Dle [3], [1] & [8] jsou lokalni parametry nezavislé na
geometrii zkuSebniho télesa [26]. Posledni fazi procedury je itera¢ni proces hledani lokal-
nich parametri. Jednd se o hledéni 2 parametri (v pozdéjsich pracich 3, viz napiiklad
Priloha B6, nebot se zavadi prahovd hodnota napéti pro iniciaci poruseni) Weibullova
rozdéleni. To popisuje chovani materidlu v zavislosti na aplikovaném napéti o,,. Drive

8



2. TEORETICKE ZAKLADY

doporucovana metoda nejmensich ¢tvercii je pak pozd€ji zaménéna za metodu maximalni
vérohodnosti. V literature se vsak objevuji hodnoty lokalnich parametrii, které se navza-
jem ligi, srov. [14] a [19]. Kapitola zaméfena na komentaf vlastnich praci se bude vénovat
i tomuto nesouladu.

2200 T T T A
2100 A
< i
o
Pf = 95%
e .o

\

®
® 0.5 W/B=1

0.02 0.03 0.04
J/boy [-]

Obrazek 2.4: Princip pfenositelnosti lomové houzevnatosti, prevzato z Prilohy B2.

Jednou z prvnich praci, které se zabyvaly feseni problému vlivu geometrie na lomovou
houZevnatost v kontextu lokalniho p¥istupu, bylo experimentalné-vypoctové feseni [23],
kde byla snaha transferovat lomovou houZevnatost z téles o tloustce 5,2 a 9,6 mm na
téleso 20 mm; puvod této myslenky lze nalézt v [13]. Vyznamnym prvkem pii pouZiti
téchto modeld je inherentni zahrnuti ,constraint“ efektu na lomovou houzevnatost, viz
obr. 2.4. Pokud budeme sledovat jeho vliv [14], nap¥. zpisobeny poklesem poméru a/W,
na tvar zavislosti J — g,,, dojdeme k nasledujicimu zavéru, ze se zapornéjsim () ziskava
kiivka plossi charakter [33].

Definici parametru ,constraint“ a postup pro jeho urceni lze vypozorovat z obr. 2.5,
ossy se nékdy oznacuje o,.¢. Index 2 nebo 5 urcuje polohu, kde se parametr () pocita, oy
je mez kluzu.

2.3 Modelovani sifeni trhliny

V pribéhu Sedesatych let se postupné vytvarely teorie, které byly schopny popsat chovani
téles s trhlinou s uvazovanim plastické zony vétsiho rozsahu, a priblizit se tak realnéjsim
podminkam vznikajicich pti zatézovani téles s trhlinou.

V soucasnosti existuje nékolik postupti, které lze vyuzit k feseni problému simulace
siteni trhliny pomoci MKP. Mezi prvni a nejstarsi patii modelovani stabilniho riistu trh-
liny s vyuzitim metody uvoliiovani uzlid. Druhou moznost predstavuje metoda , mizeni“
elementt, v jejimz ramci jsou zahrnuty i nejnovéjsi pristupy vyuzivajici kohezni elementy;,
které jsou vlastné zobecnénim kontaktu. Podrobnéji budou rozebrany obé vyse zmiiované
metody.



2.3. MODELOVANI SIRENI TRHLINY

5 B LI I LI I L LI L T l_
4 \ i
i (Oij)gey 170 ]
— 3 A
R Q2 Q) ]
=3 B —!
g e |
6 o g
1 _

0 L 111 I | - 1111 I | - I 1111 | -
0 1 2 3 4 5 6

*6o/J []

Obrazek 2.5: Urceni parametru ,constraint”, prevzato z Prilohy Ab5.
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Obrazek 2.6: Definice modelu poskozeni Gurson-Tvergaard-Needleman.

Prvni Gpravu ptavodni Gursonovy rovnice navrhuje Tvergaard [37]. Na zdkladé vyhod-
noceni provedenych experimentii doporucuje zavést dva (resp. tii) volitelné parametry
01, G2, q3, obvykle ¢; = 1,5, g2 = 1, g3 = ¢3. Rozbor chovani téchto parametrii byl prove-
den v [10]. Zde oyg je skluzové napéti materidlu matrice, o, je stfedni (hydrostatické)
napéti a f je objemovy podil dutin. Rozdil mezi ptivodnim modelem a modifikovanym
je znazornén na obr. 2.6, schematicka situace pred celem trhliny na obr 2.7. Tvar tzv.
kompletniho modelu je zapsan v nasledujici rovnici, viz [6], nebo pfesnéji jako uzivatelska
procedura pro Abaqus ve [12]:

2 5.5, 3 20
o =2Y"Y 49 h (=" )-(1 H=0. 2.
302, + 2q; f cos <2 UYS> (I1+q3f°)=0 (2.8)

Zavedenim efektivniho objemového podilu dutin f* se tedy v této rovnici f transformuje
na f*, kde pro f vétsi nez f. se doplni rovnice (2.8) podle pfedpisu

10



2. TEORETICKE ZAKLADY

* _qu_fc .
fr=temp—p = 1) (2.9)

kde f. je kriticky objem, pii kterém dojde ke spojovani dutin, fr je objem dutin pfi
koneéném poskozeni a ff =1/¢.

Misesova podminka.

plasticity

Gursonova podminka

plasticity

4 6 5

L L4 L
—

L L L

y 1 3 2

X
Obrazek 2.8: Schematicky tvar kohezniho prvku pro 2D.

Problematice pfenositelnosti se vénoval [13], pozdéji [34] a [25], kalibraci [11]. Z aplika-
¢nich praci je tfeba upozornit na [20] a [44].

Dalsim typem prvka pro modelovani sifeni trhliny jsou prvky kohezni. Ty se ptivodné
vyvinuly z kontaktnich prvki a vyuzivaji myslenky separace materialu se vznikem novych
povrchii [30]. Prakticky se jednéd o uréity fenomenologicky popis, ktery nam charakteri-
zuje chovani materialu pomoci tzv. trakéné separacniho zakona, diky némuz pak mtzeme
predikovat lokalni poruseni; schematicky tvar kohezniho prvku pro 2D geometrii je na
obr. 2.8.

Existuje nékolik moznosti, jak implementovat kohezni zdkon do komerc¢niho systému
MKP. V predlozeném praci se vychazi z dlouholetych zkusenosti s komerénim systémem
Abaqus, ktery umoznuje relativné snadné psani vlastnich uzivatelskych procedur pro pii-
pad nékterych specialnich typt poskozovani, novych typt prvki, ¢i uzivatelskému ovladani
nékterych moznosti systému. Pravé moznost psani uzivatelské procedury UEL (User’s Ele-
ment) se stala zakladem pro vytvoreni a implementaci procedury pro trakéné separacni
zékon. Obecny tvar tohoto zdkona lze nalézt v [31] ¢i v [15]. Prvotni verze je uvedena na
obr. 2.9, tento trakéné separacni zakon byl dale modifikovan, jak bude uvedeno v kapitole
vénované komentafi k vybranym vlastnim vysledktim.
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2.4. VLAKNOVE KOMPOZITY PRO STAVEBNICTVI A XFEM
2.4 Vlaknové kompozity pro stavebnictvi a XFEM

Vldknocementové kompozity patii do tiidy perspektivnich betont s vyssi mechanickou
odolnosti proti vzniku trhlin. To umoznuje jemnéjsi a ekonomictéjsi konstrukei; je tedy
nutny novy pohled na vytvareni stavebnich konstrukci ¢i nahrazeni ocelové konstrukce.
Tyto konstrukce vystavené zatizeni mohou mit za nasledek napéti v télese prekracujici
pevnost materialu, a tim vést k postupnému selhani. Takové selhani jsou casto iniciovana
povrchovymi nebo blizkymi povrchovymi trhlinami, coz snizuje pevnost materialu.

Samostatny zavazny problém pritom predstavuje nastaveni materidlovych parametrt
na makroskopické trovni, podporené vhodnymi experimenty, jsou-li k dispozici aspon
néjaké informace o strukture materialu, napf. o nahodilych ¢ zdmérné preferovanych
smeérech vlaken; problémim tohoto druhu s diirazem na nedestruktivni ¢i malo invazivni
zkuSebni metody (zejména rentgenografické, tomografické a elektromagnetické, pracujici
se staciondrnim magnetickym ¢i s harmonickym elektromagnetickym polem) se podrobné
vénuje [1].

Pro praktické vypocty lze pouzit metodu ¢asové diskretizace a rozsitenou metodu konec-
nych prvki (anglicky eXtended Finite Element Method, zkracené XFEM), viz obr. 2.11,
pracujici s adaptivnim obohacovanim mnoziny bazovych funkei pobliz singularit [32]. Tato
metoda (véetné fady svych modifikaci s vlastnimi ndzvy a oznacenimi) m4 jiz pomérné
bohatou historii; o pokroku v poslednich letech se lze presvédcit porovnanim zaklada-
telskych praci [2] a [17] s [12] a [16]. Obecnéjsi postup pro ndhodné orientovana vlakna
predklada [5], pfiklad realného rozlozeni v dratkobetonu je v obr. 2.10.

Vznik mikrotrhlin [4] lze zohlednit zavedenim souéinitele poruseni na zakladé pfistupu
modifikujici pole napéti a pracujiciho s nelokalnim Eringenovym modelem [10], schema-
ticky diagram popisujici vypocet napéti pred ¢elem trhliny je znazornén na obr. 2.12.
O rozhranich mezi matrici a vlakny, ale i uvnitf matrice, pfipadné i vlaken, v zavislosti
na postupné aktivovanych makrotrhlinach, se vétsinou predpoklada, ze je lze popsat ko-
heznim modelem podle [30], [29] ¢ [22].

6,= AJss/2SQRT(Au,AU,)

AU
AU, AU,

Obrazek 2.9: Trakcné separacni zakon pro vlaknové kompozity.
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2. TEORETICKE ZAKLADY

Aplikace XFEM je schopna potlacit nevyhody v simulaci $ifeni soudrznych trhlin; musi
vsak zvladnout neexistenci ostré singularity na Spicce trhliny se slozitéjsim odvozenim
pozadovanych napéti z posunid. Kompletni vypocetni model by mél obecné zahrnovat
vznik a $ifeni trhlin, jejich premosténi vldkny, ztratu soudrznosti mezi vlakny a matrici,
jejich vzajemné klouzani tfenim a destrukei vlaken; specialni funkce jsou nutné napft. pro
singularity napéti v pifipadé otevirani a zavirani trhlin. Schema sifeni trhliny pfes ptivodni
prvky MKP je representovano na obr. 2.11.

Jednotny pristup preklenujici métritko pokryvajici elastické a plastické chovani spolu
s lomem a dal$imi defekty vede k konceptu strukturované deformace, viz [24].

Uvazovanim o modelech zalozenych na mikromechanice se ziskaji makro-konstitutivni
rovnice jednosmérnych nebo ndhodné rozlozenych vlaken vyztuzenych materialt s prihléd-
nutim k moznosti formovéani a Sifeni trhlin v matrici, jakoz i k oddélovani a laméani vlaken.
Vypoctovy model je nakonec pouzit v numerickych simulacich, aby bylo mozné nastinit
jeho spolehlivost pii hodnoceni jak fenoménu interakce vlakno-matice, tak schopnosti

Obrazek 2.10: Radiograficky snimek rozlozeni vldken v dratkovém kompozitu, prevzato
z Prilohy D1

DO DD
O OO0
DD DO 2
OO OO0 O /
\ DO DN
(SPARSPRRNPARS Y
D “ &
oy r( D
\ O \)\:J
Par i Y
\ U Ay
( Pary
\ hd

Obrazek 2.11: Schema siteni trhliny pro XFEM, zkratka HE oznacuje ,,Heaviside Enri-
chment“, CTE ,,Crack Tip Enrichment*.
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2.4. VLAKNOVE KOMPOZITY PRO STAVEBNICTVI A XFEM

predpovédi selhani lomu u vlaknovych kompoziti. Mechanické chovani kompoziti s kieh-
kou matrici vyztuzenych vlakny, s diirazem na cementové kompozity, bude zkoumano na
zakladé jak diskontinuitniho pfistupu, tak modifikovanych pristupt zalozenych na MKP.

V XFEM je sit nezavisld na vnitini hranici, jako jsou materidlova rozhrani a trhliny.
Tyto interni hranice obvykle zptisobuji slabé nebo silné diskontinuity pole proménnych,
které budou zohlednény v XFEM zaclenénim ,enrichment® funkci do standardni aproxi-
mace MKP. V ramci XFEM je aproximace v prvku pro viskoelastické téleso s trhlinou
vyjadfena rovnici ve tvaru dle [13]

W) = 3 Nw + 3 N H (xay + Y Nelx) Y eRock,  (2.10)

1ieCy j€Cs KeCrp m=1

kde C4, Cs, Cr jsou mnoziny bodi odpovidajici obr. 2.13, H(x) je Heavisidova funkce.
Zjednodusené teceno prvni ¢len odpovida standardni metodé konecnych prvki, druhy
realizuje vznik trhliny a treti kriterium vzniku, pficemz ®7} representuje lokalni situaci
pred celem trhliny.

T

Pt Fan)
FEF
Pant Panl
7

m mirm m
(SR N A
(o i B O 1 O
oo o g

m m mim mom
|
i S o O 6 Ot o O
[ [y
o O O 1 0, i O
{7 T = 3 ' g o 1
.2 o O O o S o O i
3 e ) 93 e

Obrazek 2.12: Vypocet napéti pred c¢elem trhliny pro nelokalni ptistup.

ANEICIE

> o | m o>
> > | > >

w)

A|{AJAIA|A

O O

Obrazek 2.13: Ilustrace ,enrichment funkce, prazdné kruhové uzly patii do Cy, plné do
C7 a plné hranaté do Cl.
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3 Vlastni vysledky - komentar publikovanych
praci

Habilitacni prace je sestavena jako komentai 26 vybranych ¢lankt publikovanych na me-
zinarodnich konferencich, v impaktovanych a recenzovanych casopisech. V nasledujici ka-
pitole budou komentovany prace, ktera jsou zatazeny v Ptiloze. Vysledky jsou rozdéleny
do ¢tyt oblasti. Spoleénym nosnym problémem pro vSechny kapitoly je vyuziti metody
konec¢nych prvki pro rtizné aplikace. Nejvétsi prostor je vénovan problematice modelovani
poskozeni pro nékolik druht materiali.

3.1 Primé aplikace MKP

Jak jiz bylo uvedeno v teoretické ¢asti, viz obr. 2.1, pfi feSeni tlohy Ptiloze Al se sna-
zime model zjednodusit pro jeho modelovani ve 2D. To vede na urceni ¢tyt zatézovacich
pripadi, vice viz Pfiloha Al; prvni dva jsou charakterizovany v obr. 3.1. Numerické vy-

Obrazek 3.1: Jednotkova bunka pro zatizeni 1 a 2.

poc¢ty diftznich poli na povrchu tetrakaidekahedronu se urcuji pro nasledujici pfipady: (i)
Jednosmérné prodlouzeni ve sméru [001]. V tomto pfipadé je jedinou nenulovou slozkou
rychlosti deformace é33. Cilem je vypocitat potfebna napéti ktera zptisobi tuto deformacni
rychlost. (ii) Smyk na (100) rovindch ve sméru [010]. Pak jsou pouze nenulové deformadéni
rychlost a slozky napéti €15 = ég1 a 019 = 09;. (iil) Izostatické zatézovani se stfedni rych-
losti deformace €, = ¢11 = ég9 = €33 vede k hydrostatickému napétovému stavu se stfedni
hodnotou o,,. (iiii) Creep ve sméru [001] bez péru, kdy predepiSeme slozky rychlosti defor-
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3.1. PRIME APLIKACE MKP

mace €33 = —2€1; = —2€99. Jak pozdéji ukazaly citace této prace, navrzeny model presnéji
charakterizuje chovani keramickych a kovovych praskt pti jednoosém zatézovani.

Na tuto praci navazuje Priloha A2, kdy se podarilo vytvorit funkéni model pro kompo-
zity s kovovou matrici zpevnénou kratkymi vldkny ¢i karbidy kifemiku. Jedna se o vhodny
material pro letectvi, zejména o nahrazeni titanu, ¢i automobilovy primysl, zvlasté pro
navrhy motort. Dilezitou tlohu zde hraje diftize po hranicich zrna a pokluzy po hrani-
cich. Priklady vysledki modelovani pro logaritmus koeficientu diftize po hranicich zrn D

log D= -31, log E = -18B log D = -33 ., log E = -18

Obrazek 3.2: Rozlozeni napéti g9y v oblasti stacionarniho creepu rtizné vlastnosti rozhrani
zpevnéni/matrice, prevzato z Prilohy A2.

a rychlost pokluzi E' jsou na obr. 3.2.
Problematice dal$ich druht kompoziti, tentokrat sklolaminatu GLARE, lze nalézt
v Priloze A3 a A7.

Central siot (r = 3 mm)| GLARE 2 Central hole (r = 7.5 mm)|
6 —

3
=z =
T 4 < 2 <
< e o, | |Al alloy (360 MPay)|
= alloy (360 MPa) | 5 %o’
o o 1 g % \
[= %
G w ) \
< > =)
o o k

LIRN

0

Obrazek 3.3: Ekvivalentni plastickd deformace ve Al vrstvé laminatu GLARE pro rizné
velikosti inicidtoru napéti, pfevzato z Ptilohy A3.

Vypocty spolecné s metalografii prokazaly, ze prvni mikrotrhliny v rozich na krajich
vnitinich Al vrstev. Béhem dalstho zatézovani vznikaji nové mikrotrhliny ve vnitinich
kovovych vrstvach nehledic na predchozi trhliny v materialu. Nakonec za¢nou vznikat
trhliny v povrchovych vrstvach, viz obr. 3.3 a 3.4.

V Ptilohdch A4, A5, A6 je hledédna kritickd zona pred c¢elem trhliny ¢i vrubem. Ta
mize byt ovlivnéna tvarem trhliny a urcuje lomové chovani komponenty. Je konfronto-
van deterministicky pfistup (princip kritického napéti Piiloha A4) s pravdépodobnost-
nim pristupem v Pfiloze A5 a A6. Numerické elastoplastické vypocty MKP slouzi jako
podpiirny néastroj pro interpretaci fyzikalni podstaty probihajicich mikromechanickych
procestu. Ukazalo se, ze tato lokalni zéna neni citlivd na zménu lomového mechanismu
a velikost kritického napéti lze brat jako materidlovou charakteristiku. Rovnéz pro ko-
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3. VLASTNI VYSLEDKY - KOMENTAR PUBLIKOVANYCH PRACI

rektnéjsi predikci lomového chovani je nutno vyuzivat moznosti viceparametrové lomové
mechaniky. Tu lze, zejména J, () ptistup, vyuzit i pro vysvétleni metod vyuzivajicich sta-
tistickych pristupii. Urceni téchto parametrti znamenalo presnéjsi vypocet pole napéti
a deformace pred celem trhliny, a tedy pro vysokou troven plastické deformace pouziti
deformacni teorie plasticity ¢i prodlouzeni zavislosti skute¢ného napéti na skutecné de-
formaci mimo hodnoty ziskané pfimym mérenim. Ptipad korektniho vypoctu lze najit
na obr. 3.5, kde je ukazan i pripadny rozptyl maximalniho hlavniho napéti o a vypocet
sconstraintu“ pro ruzné tloustky zkusebniho télesa. Symboly a, W, B oznacuji postupné
délku trhliny, sitku zkuSebniho télesa a jeho tloustku. Zajimavym zjisténim je, Ze o; pred
¢elem trhliny pro kratké trhliny a/W = 0,1 je vyrazné nizsi nez pro ostatni konfigurace.

Reseni problémi lomové mechaniky je zaloZeno na znalosti deformaéné-napétovych cha-
rakteristik pred celem trhliny. V pfipadé hodnoceni chovani komponent obsahujicich trh-
linu urcuje elasticko-plastickd lomova mechanika presné vztah mezi maximalnim piipust-
nym vnéjsim zatiZenim a parametry komponenty (rozméry télesa, materidlové vlastnosti,
velikost a polohu trhliny). MKP predstavuje vhodny nastroj pro ziskani piehledu roz-

iSide notches (r = 70 mm) ‘

1 Applied stress
+ 150 MPa
® 250 MPa
360 MPa
B 450 MPa
T 1

|- -[Al alloy (360 MPa) |

PLASTIC STRAIN (%)

50

0 10

40

. I ANGLE, © (degrees)
Obrazek 3.4: Aplikované napéti pro fesené tlohy laminatu GLARE, prevzato z Ptilohy

A3.
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Obrazek 3.5: J-Q diagram a maximéalni hlavni napéti versus vzdalenost od cela trhliny,

prevzato z Prilohy Ab.
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3.2. LOKALNI PRISTUP

loZeni poli deformaci a napétovych polich v analyzovaném modelu. Polomér zaobleni éela
trhliny se pohyboval kolem r = 0,01 mm.

3.2 Lokalni pristup

V prilohach B1 a B2 lze najit komentované vysledky vénované urcovani lokalnich para-
metrl na télesech s riznym polomérem vrubu a télesech s trhlinou. V pocatecnich pracich
jsme vychazeli z literarniho rozboru a pouzivali dvouparametrovy pristup, tj. pouziti pa-
rametri m a o,, pozdé€ji, zejména v B6 a B7, tfiparametrovy model zavedenim oy,. Ze
zavéra je nutno zdiraznit, Ze lokalni parametry jsou geometricky zavislé, a to s tendenci
klesajici polomér zaobleni — rostouci parametr m. Situace je vSak slozitéjsi, jak jiz bylo
zminéno; hlavnim problémem je stanoveni vlastni distribuce napéti. V oblasti podléha-
jici rozsahlé plastické deformaci dochézi k nukleaci mikrodefektii, které svoji existenci
méni napétové pole, viz tabulka 3.6. Na trovni soucasnych metod experimentalnich i vy-
poc¢tovych nejsme schopni tento efekt identifikovat. Proto jsou pro stanoveni lokalnich
parametri doporucovany télesa s malym gradientem napéti, u kterych je vétsi procesni
zona, a celkové je tak mozné ovlivnéni vypoctu okrajovymi podminkami nizsi. Doporu-
¢enéd velikost hrany pouzitych prvka pro MKP se stanovuje tak, aby v elementarni bunce
bylo tak 10 moznych vznikt defekt. To pro piipad A = 100 pm znamend velikost hrany
prvku méné nez 2 — 6 pym.

Priklad testi urcovani lokalnich parametr na rotacnich télesech s riznym polomérem
vrubu, oy oznacuje mez kluzu. Vétsina priloh oznacenych B1-B7 se vSak vénuje problému

T notch 0.2 mm
~11300 ~6500 ~3500
Th/'T0 m Tn m Cu m Cu
0 65.6 1340 64.6 1343 63.3 1350
1 65.6 1340 64.6 1343 63.3 1350
15 65.6 1340 64.6 1342 63.3 1350
U notch 0.7 mm
0 17.0 2485 16.9 2491 16.8 2506
1 17.0 2484 16.9 24901 16.8 2506
15 16.9 2489 16.9 2404 16.8 2508
U notch 1. mm
0 18.2 2117 17.8 2145 17.8 2146
1 18.2 2117 17.8 2146 17.8 2146
1.5 18.2 2120 17.8 2148 17.7 2149

Obrazek 3.6: Vliv velikosti sité a poloméru vrubu pro rota¢ni télesa, prevzato z Prilohy B1.

||||||||||||||||||| |||||||||||||||||||
3000 — m = 18, 20, 22, m 3000~ BLM-Ramberg 7
- 24, 26, 28 1 r 7
2500 | BLM
@ W
o [
= 2000 =
& 3
1500 |
1000
N P B B B NP B B B B
0 001 002 003 004 005 0 o001 002 003 004 005
Jba, Jibay

Obrazek 3.7: Diagram Weibulova napéti a navrzeni TSM pomoci MBL, prevzato z Pri-
lohy B3.
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3. VLASTNI VYSLEDKY - KOMENTAR PUBLIKOVANYCH PRACI

prenositelnosti lomovych charakteristik a lokalni parametry jsou urcovany na télesech
s trhlinou. Bylo zjisténo, ze prenos funguje pro télesa se stejnym tvarem koncentratoru
napéti. Technika tvorby diagramu TSM, (Toughness Scalling Method), viz obr. 3.7, je
testovana v Ptiloze B2 a B3; prehled je v Priloze B5, viz obr. 3.9.

10 ——— ——=
- SENB 7
08 1= )., 10 = 008 P
L J 0.08 Fazy —
— - N P
= a E 007 0.064 MPam N
o i Pesv =0064 MPam| £ oos| ~ = - T
04 — — = L J
= 005 -
B PCVN L |
02+ — D.04 N _
- - DD3 1 I 1 1 1 #l 1 1 H'I 1 1
ool 1 . 1 2 24 28 3
0.05 01 015 02 mil-1]

J [MPam]

Obrazek 3.8: Kalibrace lokalnich parametri, prevzato z Prilohy B3.

2400 =

1200 —

1 I 1 | 1
0 0.04 0.08 012
Jibe, [-]

Obrazek 3.9: Kalibrovany TSM diagram, prevzato z Pfilohy B5.

Kroky postupu kalibrace pouzité pro TSM jsou nasledujici, viz Piiloha B3 a obr. 3.8:

Vytvotit pravdépodobnostni diagram hodnoceni (P; = f(J.)) pro dvé geometrie.
Provézt vypocet MKP pro testované téleso a podminky SSY.

Weibullovo stanoveni napéti pro testované téleso a podminky SSY.

Oprava omezeni podle nejslabsi tloustky dle postupu ESIS E-1921.

Necht tg5y a t4 oznacuje tloustku pro SSY a pro konfiguraci A, pak je Jggy =
1.8 + (ta/tssy)?(J. — 1.8).

Uréime b. Vétsinou se predpoklada hodnota b = 2, coz znamend, ze korigovana
lomova houzevnatost vyhovuje Weibullovu rozdéleni s exponentem rovny dvéma.
Parametr 3 definuje hodnotu pii 63% pravdépodobnosti poruseni, coz vede na

NG o
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3.3. GTN MODEL A POUZITI KOHEZNICH PRVKU

Podle modelu $tépného lomu polykrystalickych kovii navrzeného v [18] a verifikova-
ného v prilohach B6 a B7 je hodnota prahového napéti oy, urcena minimalnim napétim
Comin odpovidajicim nestabilité prasklého nukleakéniho jadra. Potom lze prahovou hla-
dinu stresu popsat rovnici
o CCm'm
1+t

kde ¢ (tolerance) ~ 0,3 a (cmin pro oceli ~ 0,13.
Vysledné predikce jsou ukédzany na obr. 3.10 ¢i podrobnéji v prilohach B6 a B7. Jedna
se o pfenos z malého télesa s trhlinou (PCVN) na téleso standardnich rozmért (SENB).

(3.2)
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Obrazek 3.10: Predikované lomové houzevnatosti pro 2 typy oceli, prevzato z Prilohy B7.

3.3 GTN model a pouziti koheznich prvki

Hlavni diraz je kladen na moznost predikce chovani télesa s trhlinou za predpokladu
deformacné fizeného mechanismu porusovani. Tento kol ve skutec¢nosti predstavuje vy-
uziti hybridni metodologie spojujici numerické modelovani, experiment a mikroskopické
pozorovani v jeden pomeérné slozity celek. Experimentalni data pouzitda pro modelovani
lze nalézt prevazné v praci [10]. Vysledky predikce jak pro model GTN, tak pro pouziti
koheznich prvki, byly ovérovany pomoci experimentalné ziskanych tzv. J — Aa neboli
J — R kiivek.

Strucné feceno, prilohy C1 az C3 jsou zaméfeny na modelovani sifeni trhliny obéma
metodami. Vyuzivaji moznosti programovych systémi Abaqus a Warp3D a vénuji se
spiSe vlivu jednotlivych parametri v modelech na korektni predikei sifeni trhliny. Jako
modelovy material byla zvolena kovana ocel, kde diky tvarnému poruseni se mohlo vyuzit
obou predlozenych metod.

Piilohy C4 az C7 ukazuji modelovani sifeni trhliny pro jinou tiidu materialti. Jedna
se o kompozity zpevnéné vldkny SiC se skelnou matrici. Z velikostniho pohledu jsme
o fady niZe a zde navrh trakéné separacniho zakona vyzaduje jesté vice pochopeni fyzikalni
podstaty probihajicich déji. Proto byla vyvinuta uzivatelska procedura v jazyce Fortran,
ktera byla implementovana do komer¢niho systému Abaqus.

Na obr. 3.11 jsou prezentovany vysledky pro experimentalni ocel a je testovan vliv
parametru ¢ pro model GTN na tvar predikce, podrobnéji na obr. 3.12.

V Priloze C1 a C2 lze je uvedeno porovnani obou metod modelovani sifeni trhliny
pro experimentalni ocel, viz obr. 3.13. Za zasadni vysledek v pfipadé modelovani sifeni
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trhliny je povazovana nutnost kalibrace zakladnich parametr ¢; a g modelu GTN, coz
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Obrazek 3.11: Zkusebni CT téleso a predikce J-R kiivky pro experimentalni ocel, prevzato
z Prilohy C2 a C1.
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Obrazek 3.12: Vliv parametru ¢ a faktoru triaxiality h na hodnotu J, pfevzato z Ptilohy
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Obrézek 3.13: Urceni J - R krivky pro obé metody, pfevzato z Ptilohy C2.
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3.3. GTN MODEL A POUZITI KOHEZNICH PRVKU

lze pozorovat nejen na obr. 3.13; nutno je také poukéazat na presné modelovani zavislosti
skutecné napéti - skutecnad deformace, viz Priloha C2.

Pro ptipad modelovani kompoziti se skelnou matrici, jejichz piiprava je ukazana v Pri-
loze C5, byl pouzit specidlni tvar trakéné separac¢niho zakona, ktery byl matematicky
popsan v Piiloze C6. Priklad kalibrace trakéné separac¢niho zakona je podrobné popsan
v Priloze CA4.

ap=Jp/(AusKize) ((o+1)a)

— o(@)=(1-((Auz-Aup/Aug)®) Kiacap

| 02=1.5AJ55~Aut/Aug /Auq
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Crack opening Au Au [mm]

Obrazek 3.14: Kalibrace trakéné separacniho zédkona pro SiC, prevzato z Prilohy C4.

Material pouzity pro modelovani pfemostovacich napéti byl komeréné dostupny kom-
pozit z borosilikatové skelné matrice vyztuzené vlakny SiC' Nicalon (viz 3.15). Vlastnosti
sklenéné matrice, SiC' vldken a kompozitu byly néasledujici: Youngtiv modul 63, 198, 118
GPa, Poissoniiv ¢islo 0,22, 0,20, 0,21, pevnost v tahu 60, 2750, 600-700 MPa. Pro modelo-
vani rtstu trhlin byla pouZita néasledujici experimentalné stanovena data: Jy = 6200 J/m?,
Jss = 18500 J/m?, Au, = 0,1mm, Au; = 0,013 mm. Kalibrovana data a kone¢ny tvar
preklenovaciho zakona lze vidét na obr. 3.14.

Obrazek 3.15: Snimek mikrostruktury borosilikatového skla, prevzato z Prilohy C4.

Finalni modelovani pro kompozit s Si3 /N4, viz Ptiloha C7, je prezentovano na obr. 3.17.
Nasledujici tabulka 3.16 ukazuje rtzné modifikace testovanych kompoziti. V praci je
uveden vysledek modelovani pro variantu A a srovnani predikce pro standardni XFEM
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s vysledky ziskanymi pomoci koheznich prvka. Tvar kiivky pro specialné kalibrovany
trakéné separacni zadkon lépe vystihuji experimentalni pozorovani.

material GR12 | SKF GR25 | GR36
A B C D

Al [/m7] 64 77 67 108

Ac [um] 0.30 0.30 0.35 0.35

Ay [um] 0.08 0.055 | 0.045 | 0.045

dlg[)/m?] 21 24 24 25

Go [MPa] 1063 1590 1350 1590

Obrazek 3.16: Materidlové charakteristiky pro navrh trakéné separacniho zékona pro
Si3Ny, prevzato z Prilohy C7.
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Obrazek 3.17: Predikce J-R kiivky pomoci XFEM a koheznich prvki, prevzato z Prilohy
CT.

Na zakladé aplikace na konkrétni material Si3/N, lze konstatovat:
e Mechanismy pfemosténi trhlin mohou poskytnout podstatné zvyseni houzevnatosti.

e Saturace v kfivce J — R byla pro modelovani XFEM dosazena podstatné pozdéji,
obvykle pro délku trhlin vétsi nez 20 pm. Pouzity model XFEM byl bez zaclenéni
premostujiciho mechanismu.

e Saturace v kfivce J — R byla dosazena pro soudrzné modelovani obvykle pro trhlinu
pro délku v intervalu 10 - 15 um. Pravdépodobny je brzky zacatek skutecného
premosténi; kvili numerickym oscilacim mohou byt ziskané hodnoty K mensi.
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e Ziskané parametry pro trakéné separacni zadkon (pfemosténi) umoznily predikei J —
R; pro pfesnou piedpovéd se jevi jako nezbytné uréit alespon maximalni napéti o
experimentalné.

3.4 Modelovani poruseni stavebnich kompozit

Nedestruktivni testovani struktury materialu nabizi zpracovani obrazu (2D rentgenové, 3D
tomografické), stacionarni magnetické a nestacionarni elektromagnetické pfistupy. I v pfi-
padé vldknobetonu, nejcastéji pouzivaného kompozitu s (téméf) ndhodné distribuovanymi
vladkny pouzivanymi ve stavebnictvi, je kontrola nad objemovym podilem a orientaci vla-
ken dosud mozna pouze pii vyrobé cCerstvé vlaknobetonové smési. Pridani vlaken miize
vyznamné zlepsit mnoho technickych vlastnosti betonu, zejména lomové houzevnatosti,
pevnosti v tlaku, razové houzevnatosti a zivotnosti konstrukci. Navic v tahu také se zvy-
Suje pevnost, tinavova pevnost a schopnost odolat praskani.

Vypocétova homogenizace makroskopického materidlu [38] se opird o semi-analytické
sméSovaci vzorce pro specidlni tvary vlaken (piijatelné zejména pro jejich nizké objemové
podily), o dvouskalovou homogenizaci periodickych struktur nebo o alternativni vysledky
z asymptotické analyzy (G-konvergenci, H-konvergenci, I’-konvergenci atd.), az po velmi
obecné (deterministické i stochastické) vysledky pro o-konvergenci na homogenizac¢nich
strukturdch s ¢etnymi otevienymi problémy, srov. [32]. Zadouci je jednotny pfistup zo-
hledniujici makroskopické a mikroskopické méritko, pokryvajici elastické a plastické cho-
vani spolecné s degradaci a lomem.

Ptilohy D1 a D2 se tedy vénuji testovani a hledéni struktury vldknového kompozitu,
konkrétné dratkobetonu. Z hlediska modelovani metodou kone¢nych prvki je fesen zasadni
problém, tj. stanoveni reprezentativniho objemu RVE (v angli¢tiné Representative Volume
Element) pro korektni vypocet, jak naznacuje obr. 3.18.

Obrazek 3.18: Rentgenograficky snimek betonového vzorku o hrané 150 mm, axonomet-
ricky pohled na povrch a dovnitt vzorku, viz Piiloha D1.

Stejné jako u zjednoduseného modelového piikladu, vychéazejiciho z itvah podrobné roze-
branych v Pftiloze D3, mtizeme pro potiebu vypoctového modelovani vyjit z abstraktniho
(obecné nelinedrniho) kvazistatického problému

(G(0),v) + (A(u),v) = (F,v), (3-3)

kde zévorky odkazuji na jist4 duélni ptifazeni (v nejjednodussich pfipadech skaldrni sou-
¢iny) pro reflexivni a separabilni Banachovy prostory V, v € V' oznacuje potfebnou vir-
tualni velic¢inu, napiiklad posunuti vztazené k referencni konfiguraci. Tecka zde naznacuje
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parcialni derivaci podle ¢asu, F je linearni funkcional A(.) a G(.) jsou (spiSe specialni)
zobrazeni definované na V'; nasim cilem je, aby abstraktni funkce u, zobrazujici jisty ca-
sovy interval, spliiovala v kazdém case ¢ integralni rovnici (3.3) a mimoto vyhovovala
jistym predepsanym (zejména okrajovym a pocateénim) podminkédm. Hlavni obtiZnost
hypotetického pfimého pfistupu souvisi s nelinearitou A(.).

Rovnici (3.3) v8ak lze metodou ¢asové diskretizace (diky konvergenénim vlastnostem
Rotheho posloupnosti) pfevést na tvar

(G(us — us_1),v) + h {A(us_1, us),v) = (Fy,v), (3.4)

kde us a us_; aproximuji neznamou abstraktni funkci u v diskrétnich casech ¢t = sh a
t = (s — 1)h, stejné jako Fy v ptipadé nezndmé F'; zde s € {1,...,m} pro m = 7/h, kde 7
je délka uvazovaného ¢asového intervalu (0 < ¢ < 1), pficemz potfebujeme limitni piipad
h — 0, tedy m — oo. Po doplnéni nékterych dodateénych podminek a pouzitim normy
|| . || v prostoru V' dostaneme

el + D [l — wra|* < c (HUOH2 +hy ||Fr||2) , (3.5)
r=1 r=1

kde ¢ je genericka konstanta; odtud je mj. zfejma klesajici norma ||u,, — ty,_1|| pro m —
0.

Obrazek 3.19: Modelovani siteni trhliny pro prosté pouziti XFEM, viz Priloha D3.

Jelikoz (3.4) predstavuje v kazdém kroku linearni tlohu, ale stéle v nekonecénérozmér-
ném prostoru V', je nutna dalsi vypocetni diskretizace (kromé velmi specidlnich konfigu-
raci se znamymi analytickymi nebo semianalytickymi feSenimi). Takovou diskretizaci lze
naznacit podobné jako (2.10) ve tvaru

Ugi (2) = Usia () + Usip®p(T) + Ugice(T), (3.6)

kde prvni ¢len obsahuje standardni tvarovou funkci na €2, druhy ,enrichment“ tvarovou
funkci na © a treti kohezni ,enrichment* tvarovou funkci pro rozhrani.
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Pro vypocetni modelovani byl vybran vzorek s cementovou matrici a ocelovymi vlakny,
viz Ptiloha D3. Numerické vysledky ukazuji plosné sifeni trhlin v poruseném télese v za-
vislosti na umisténi vlakna a vlastnostech materidlu. Vyztuzny Gcinek vlaken hraje vy-
znamnou roli ve sméru Siteni trhlin, viz obr. 3.19: levy ukazuje pocatecni stav, pravy
rozbéhnutou trhlinu, ktera se vyhyba vlakntim.
cich kratka zamérné nebo kvazi-ndhodné orientované ocelové, keramické, resp. polymerni
vldkna s jejich primarnim potlacenim nékterych slozek napéti, je zaveden v Priloze D4 a
D5, pficemz podrobnéjsi matematicka formulace je v Ptiloze D5. Jeho numericky pristup
se opirda o upravenou metodu ,eXtended Finite Element“, kde 1ze pouzit jako kritérium
vzniku trhliny kohezni trakéni separacni zakon. To predstavuje implementaci néjakého
nelokalniho konstitutivniho vztahu napéti a napéti integralniho typu. Pak je vénovana
pozornost zejména Eringenovu modelu pro generovani multiplikativniho faktoru posko-
zeni, souvisejici kvazi-statické analyze, existenci slabého feseni odpovidajiciho okrajového
a pocatecniho hodnotového problému s parabolickym systémem parcialni diferencialni
rovnice a konvergenci algoritmu zalozeného na 3 typech Rotheho posloupnosti.

Obrazek 3.20: Mazarsuv model, viz Priloha D5.

Obrazek 3.21: Aplikace homogenizacnich postupti, viz Piiloha D5.
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Navrzeny postup tedy kombinuje moznosti nékolika pristupi pro modelovani siteni trh-
liny ve vlaknovych kompozitech. Priméarni je metoda XFEM, napéti pred celem trhliny se
prepocitava podle nelokalniho pristupu, v celém télese dle exponencialniho zakona poru-
Seni. Na néasledujicich obr. 3.20 a obr. 3.21 jsou prezentovany néekteré vysledky z Prilohy

D5.

27



4 Shrnuti dosazenych vysledki

Predlozena prace ukazuje moznosti metody konecnych prvkt pro modelovani rtznych
typ materialit s odliSnou mikrostrukturou. Vsechny tlohy maji spolecnou myslenku:
na zakladé pochopeni fyzikalni podstaty probihajicich procesti vyuzit mnohdy omezené
moznosti komercnich systémiti. Tam, kde to jde, provést modifikaci ¢i implementaci upra-
veného konstitutivniho vztahu nebo se pokusit naprogramovat novy prvek do systému.
Vétsina modelovanych tloh tesila problémy viskoelasticity, elastoplasticity ¢i zobecnéni
kontaktu. Komentované prace by vsak nevznikly bez spoluautorti, kteri se spise vénuji
experimentalni oblasti vyzkumu.

Problematika predikce lomového chovani pomoci Weibulova napéti o,, byla velmi per-
spektivni pro tfidu oceli vyuzivanych pro jaderny primysl. Bylo zjisténo, ze odvozeni
a pouziti téchto parametri musi probéhnout nezbytné pro télesa s podobnym tvarem
koncentratoru napéti. Pozdéji, dle vysledkit v publikovanych pracich, se ukazala spise
moznost pouzit o, pro prenositelnost namérenych hodnot lomové houzevnatosti na ma-
Ijch télesech na télesa standardni velikosti, tedy Tesit vliv velikosti a geometrie télesa na
vznik a Sifeni trhliny. Jedinym problémem se jevi velmi plochéa kiivka transformacniho
diagramu TSM. Zajimavé a praktické pro technickou praxi je zavedeni prahové hodnoty
napéti o,, ve vzorci pro vypocet o,,. Tento parametr vyzaduje dobré znalosti o pficinach a
mikromechanismech vzniku oblasti poskozeni pred c¢elem trhliny pro dany typ materialu.

Nasledujici kapitola pouzivajici model GTN pro tvarné poskozeni ukazala velmi dobré
vysledky pfi predikci J — R kiivky. Ziskané vysledky také prokazaly, ze nékteré parametry
tohoto modelu jsou zavislé na geometrii a velikosti télesa. Z hlediska konvergence byl také
otestovan a ovéren technicky postup pri navrhu tvart prvkt pouzitych pred celem trhliny,
coz lze nalézt v nékterych komentovanych pracich. Zaroven si autor této prace vyzkousel
postupy pro navrh trakéné separacniho zadkona a navrh a implementaci tzv. koheznich
prvki do systému na bazi metody konecénych prvki. Tyto zkuSenosti byly vyuzity pri
préaci s nékolika druhy vlaknovych kompozitl jak na bazi skelné, tak i cementové matrice.

Poskozeni vlaknovych kompozith je ve velké mite urceno chovanim trhliny na rozhrani
odlisnych materiali. To bylo ukazano jiz v ivodni kapitole pro tlohy v oblasti creepu a
snad nejvice v posledni kapitole vénované stavebnim kompozitim. Autor se zde pokusil
na zakladé dlouholetych zkuSenosti kombinovat nékteré znamé postupy; zatim ziskané
vysledky mohou byt motivaci pro nasledny vyzkum. Ukazuje se, Ze feseni téchto tloh je
z matematického pohledu velmi naroc¢né a feSitelnost ¢i konvergence vypoctovych algo-
ritmd pro komplexni chovani téchto tloh nebyla mnohdy formalné verifikovana. To by
opétovné mohlo byt namétem dalsiho vyzkumu v blizké budoucnosti.
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Abstract—Densification and creep by grain boundary diffusion is modelled for the late stage of sintering.
The grain structure is described as a regular array of tetrakaidekahedra with pores at each grain boundary
between next-nearest neighbors. The diffusion problem on the surface of the tetrakaidekahedron is solved
numerically using the heat-conduction option of the finite element code ANSYS. From the calculated
normal stresses on the boundary facets one assembles the macroscopic constitutive behavior. Since the
assumed grain shape is the Wigner—Seitz cell of the body-centered cubic lattice, the resulting viscosity
tensor has cubic symmetry. Isotropic bulk and shear viscosities are obtained by applying the procedures
developed for the elasticity theory of polycrystals. The resulting bulk viscosity is well approximated by
a closed-form solution developed previously. Due to the pronounced cubic anisotropy of the model, the
isotropic shear viscosity cannot be determined unambiguously. The model includes the effect of viscous
grain boundary sliding. The influence of surface diffusion on the sintering rate is also explored.

1. INTRODUCTION

The uniaxial pressing of ceramic or metallic powders
generally leads to powder compacts with inhomo-
geneous density distributions. Such inhomogeneities
result in shape distortions during sintering. There
have been attempts to predict the shape of the
sintered part by finite element simulation of the
pressing and sintering processes with the goal of
adjusting the shape of the pressing tools and the
pressing schedule such that the final part assumes the
required shape (e.g. [1-6]). The shape evolution
during sintering may depend sensitively on the consti-
tutive behavior under multiaxial stresses. Especially,
if the sintering material can be described as linear
viscous, the ratio of the shear to the bulk viscosity,
G /K, is an important factor. Classical sintering the-
ories (e.g. [7-9]) are usually not concerned with the
question of shear loading of material elements and
hence do not provide estimates of the shear viscosity
G. Only recently the problem was addressed in con-
nection with the desire to analyze stresses and distor-
tions during inhomogeneous sintering, either for
simple goemetries [10-13] or for complex parts [1-6].

In this paper, a model for closed porosity is
presented with grain boundary diffusion being the
assumed transport mechanism. This is justified for
fine-grained materials at not too high temperatures,
and in the absence of liquid phases. Grain boundary
sliding is described by a linear relation between shear
stress and sliding speed. Surface diffusion on the pore
surfaces is assumed to be fast enough that the pores

develop near-equilibrium shapes after pore closure.
However, the free energy dissipated by surface diffu-
sion is taken into account in the thermodynamic
balance equation. The resulting retardation of sinter-
ing is treated in Section 6.

Since grain boundary diffusion is governed by a
linear relation between displacement rate and stress,
the macroscopic constitutive equation will be a linear
viscous law. In the isotropic case the general form is

g Oy — O
“=36 T 03K
Here, ¢; and o, are the strain rate and stress tensors,
the prime denotes the deviator, g, is the mean (or
hydrostatic) stress, o, is the sintering stress, d,, is the
Kronecker symbol, and G and K are the shear and
bulk viscosities, respectively. The aim of a microme-
chanical model is to specify G, K, o,, which depend
on the relative density p, on the dihedral angle y and
on the arrangement of the grains. The dihedral angle
is defined by cos i = y,/(2y,), where y, and y, are the
surface the grain boundary energies per unit area,
respectively.

Micromechanical models were developed for open
porosity by various working groups assuming either
viscous flow of the grains [14, 15] or grain boundary
diffusion [16-18] as the governing transport mechan-
ism. The G/K ratio is obtained by these models as 0.6,
if the particle contacts are randomly oriented and if
they have no spatial correlation. If there is a short-
range order in the particle arrangement, for example
a body-centered cubic particle packing over small

M
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distances, the G /K ratio is found to be smaller, and
a value of 0.27 was advocated in [18). Experimental
values tend to be larger and often exceed the value
0.6, which is considered to be an upper bound in the
models. This is an unresolved problem.

For closed porosity, a three-dimensional model for
sintering and diffusion creep was developed by Pan
and Cocks [19] using a bounding theorem. Simi-
larities and differences between their.model and the
present model will be pointed out in the following
sections. One of the main differences is that Pan and
Cocks ignore the cubic anisotropy of the model and
derive the shear response for a special orientation
only. In this paper, the full anisotropic response is
derived and averaging methods are applied to find
isotropic averages for the shear viscosity.

2, DESCRIPTION OF THE MODEL

2.1. Geometry

The pore configuration analyzed in this paper is
shown in Fig. 1(a) in comparison with the one studied
by Pan and Cocks [19] [Fig. 1(b)]. Both approaches
use a periodic, body-centered cubic (b.c.c.) array of
tetrakaidekahedral grains, but Pan and Cocks place
the pores on the 24 grain corners, while we consider
pores on the six square facets of the grains. Their
choice corresponds to the classical picture [7], while
ours is motivated by the investigation of equilibrium
shapes of the open pore space and the evolution of
the pores at the transition to closed porosity [17].

2.2. Grain boundary diffusion

Grain boundary diffusion is described by the
equations

. QéD,
= V.0, )
Viji= _un (3)
kT
2 — ; 4
Vo, QoD, i, @

where the first gives the vector of the flux density, j;,
as a function of the gradient of the chemical poten-
tial, Qo,, the second is the continuity equation and
the third follows by combining the previous two. The
symbols are: u, is the relative displacement rate of
touching grains normal to the contact area, V, is the

7o

1. Alternative configurations of closed porosity.
(a) Present work, (b) Pan and Cocks [19].

Fig.
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gradient operator, ¢, is the normal component of the
stress acting on the grain boundary, Q is the atomic
volume, 6D, is the grain boundary diffusion co-
efficient, k is the Boltzmann constant and T is the
absolute temperature. The summation convention is
applied for repeated vector and tensor indices 7, j in
equation (3) and in the rest of the paper.

2.3. Grain boundary sliding

Grain boundary sliding at a rate 4, is assumed to
result in a tangential force

Fi=ndu, (&)

where A is the area of the grain facet (excluding the
area occupied by pores) and # is a viscosity coefficient
for sliding. In Section 4, the effect of viscous grain
boundary sliding is neglected, but it will be included
in Section 5.

3. THE SINTERING STRESS

The sintering stress, o, can be calculated in ad-
vance without solving the diffusion problem. A pre-
liminary expression for the sintering stress was
derived in [17] for the present configuration. How-
ever, since [17] was concerned primarily with open
porosity, an inaccuracy in the derivation of the
sintering stress for closed pores on two-grain junc-
tions remained undetected.

A porous polycrystalline solid is in equilibrium, if
the applied mean stress, which is then called the
sintering stress, balances the internal surface and
interface tension forces

0'st=’))1, dAb+'ys dAs (6)

where dV is a virtual change of the volume of the unit
cell, and dA4, and dA, are the associated changes of
the grain boundary area and surface area, respect-
ively.

For one unit cell 4,=444+ 34, and 4,=34,,
where 4, A, and A, are the areas of one hexagonal
and one square facet and of the surface of one pore,
respectively. After division of equation (6) by d¢ one
obtains time derivatives, which are given by the
geometrical relations

A= 3\/§a2ém
Ay =2a%,, — 2n sin® yrf
A, = 24n(1 — cos Y )ri
V=3Ve,. M

Here ¢, is the mean strain rate, a is the edge length
of the tetrakaidekahedron, which is related to its
volume by V = 8\/ 243, and r is the radius of curva-
ture of the pore surface, which is related to the
volume of one pore, V,, by

V,=F,(y)r’with F, = 2?71(2 —3cosy +cos’ ).
®
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With these relations equation (6) yields the sintering

stress
B2 /341 (3p\"
) + */; (—”) B9

2 (9F, p
“R n R

““R\am1-p

Here the relative density, p, was introduced, which is
related to the pore volume by 1 — p =3V, /V; Ris the
radius of the sphere having the same material volume
as a grain, i.e. ¥V =(@4n/3)R%/p. In [17] the second
term is missing from equation (9). This term results
from the fact that the surface of the whole unit cell
shrinks during densification, while the first term
accounts for the changes of the surface and grain
boundary areas at the pore tip.

4. SOLUTION OF THE DIFFUSION PROBLEM

4.1. Overview

The diffusion problem on the surface of the te-
trakaidekahedron is solved in the following way. The
macroscopic strain rate tensor is considered to be
known. Four different cases of prescribed straining
are treated in the (numerical) analysis. From the
strain rate the normal displacement rates on the grain
boundary facets are calculated. Further, the smallest
possible unit cells for the solution of the diffusion
equation (4) are identified and boundary conditions
are specified. Then equation (4) is solved numerically
using the heat-conduction option of the finite-element
program ANSYS. The normal displacement rate is
analogous to the heat production rate, the normal
stress is analogous to the temperature, and Q 6D, /kT
plays the role of the thermal conductivity. The finite
element program generates solutions for the distri-
bution of the normal stress, o,. Integrating (numeri-
cally) over the facets gives the forces transmitted by
each facet. From these forces the macroscopic vis-
cosity tensor is assembled by the same method that
was applied for open porosity in [15, 18]. Finally the
cubic viscosities are averaged to obtain isotropic
values.

4.2. Displacement rates

The normal displacement rate on a grain contact
area with unit normal vector #; is given by

Uy, = nr€; (10)

where r; is the vector connecting the grain centres.
The macroscopic strain rate tensor is considered to be
prescribed. The response of the material in terms of
stress is calculated in the following section.

The cubic axes of the tetrakaidekahedron are nor-
mal to the square facets, and we choose a Cartesian
coordinate system aligned with the cubic axes. Then
the normal unit vectors on the square facets are
{100}, and those on the hexagonal facets are (1 /\/ 3)
{111}. The notation with the parentheses implies all
possible permutations of the components including
+1 and —1. The vectors r; are all parallel to the

AMM 42/9—M
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corresponding #;, and their magnitude, for the hexag-
onal and square facets, respectively, is

) = zR(@>m an
p
2 Po 1/3
1=2R— (=) . 12
|7;] \/5(;1) (12)

Here p, is the density of the b.c.c. sphere packing, i.e.
Po=T \/ 3/8 =0.68. For p = p, the distance between
nearest neighbor spheres is 2R, and that between
next-nearest neighbors in 2/\/ 3 times larger.

4.3. Loading cases

The numerical calculations of the diffusion fields
on the surface of the tetrakaidekahedron are per-
formed for the following four loading cases.

(1) Unidirectional extension in [001] direction. In
this case the only nonzero strain rate component is
é;;. The aim is to calculate the stresses needed to
cause this strain rate. Equation (10) gives the normal
displacement rates on the grain facets. The result,
together with those of the other loading cases, will be
summarized at the end of this section.

The diffusion equation (4) is solved numerically
with these prescribed displacement rates on the unit
cell shown in Fig. 2. It comprises a quarter of a
hexagonal facet, a quarter of a square facet with (100)
orientation and an eighth of the square facet with
(001) orientation. These facets are shown in Fig. 3
tilted into the plane of drawing. The circular arcs
represent the edges of the pores, which were omitted
from Fig. 2 for simplicity.

The unit cell is chosen such that, because of the
symmetry of the problem, no matter flows across
the outer boundary, except into the pores. At the edge
of the pores, continuity of the chemical potential
demands that o, =2y,/r. This stress is set equal to
zero in the computation since it leads to an additive

X3 4 [001]

UNIT CELL
FOR CASES
1,3and 4

UNIT CELL
FOR CASE 2

Fig. 2. Unit cells for the treatment of the diffusion prob-
lems.
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Fig. 3. Unit cell for loading case (1). All facets are shown
in one plane.

term, the sintering stress, which is already known
from equation (9).

Further, at the border line between hexagonal and
square facets the normal components of the flux
density must obey j& 4 2j¢ = (, since at each edge
of the grain two equivalent hexagonal facets meet
with one square facet. In the numerical model this
requirement is met by doubling the “thickness” of the
hexagonal facet, i.e. by artificially doubling 6D, and
u,. Then the flux density is continuous and the stress
is calculated correctly. The resulting forces on the
grain facets and the cubic moduli are given later.

(2) Shear on (100) planes in [010] direction. The
only nonzero strain rate and stress components are
now é;,; =é¢, and 6, =0,. The resulting displace-
ment rates are obtained from equation (10) and they
are listed at the end of this section.

The unit cell for the numerical solution of the
diffusion equation must be larger than in the previous
loading case. It is shown in Fig. 2 and, plotted on a
plane, in Fig. 4, It comprises one half of a hexagonal
facet, a quarter of the square facet with (100) orien-
tation, and one eighth of the square facet with (001)
orientation. At the triple grain junctions, the flux
does not branch in this loading case, but flows
continuously from one facet to one of the others,
while the third does not exchange matter with the first
two. The boundaries on the right and at the bottom
of Fig. 4 are characterized by zero normal flux, while
at the boundaries on the left o, =0 because of the
symmetry of the loading. At the edges of the pores,
one prescribes ¢, =0 also.

(3) Isostatic loading. Isostatic loading with a mean
strain rate é, = ¢€,, = €, = ¢;; leads to a hydrostatic
stress state with mean stress o,,. This loading case
could be obtained by superposition from case (1), so
that a separate numerical analysis would not be
necessary. However, the redundance in numerical
calculations can be used to test their consistency. In
fact, the bulk moduli calculated from loading cases
(1) and (3) agree to within 0.01%.

In the numerical calculation the same unit cell was
used as in loading case (1), although a smaller cell
would have been sufficient because of the higher
symmetry.

DENSIFICATION IN THE FINAL STAGE OF SINTERING

Fig. 4. Unit cell for loading case (2). All facets are shown
in one plane.

(4) Creep in [001] direction without pores. In the
absence of pores, loading cases (1) and (3) cannot be
prescribed since the material is incompressible. in this
case, we prescribe the strain rate components
€3, = —2¢;, = —2¢,,. The unit cell for the finite el-
ement calculation is the same as in loading case (1).
An arbitrary stress value can be prescribed at any
location and we choose ¢, =0 in the center of the
square facets with normals in x, and x, directions.
The choice of the stress boundary condition specifies
the hydrostatic stress, which, however, plays no role
for deviatoric creep.

Summary of the displacement rates. The displace-
ment rates following from equation (10) for the four
loading cases are given in Table 1 in nondimensional
form, i,, which is defined by

1/3
0, = a,,zR<f’ﬁ> é
p

where ¢ means é;3, €),, €, and é;; in cases (1), (2), (3)
and (4), respectively.

13)

4.4. Finite element solution

Figure 5 shows the grids used in the finite element
solution of the diffusion equation (4) with the u,-
values and boundary conditions specified in the
preceding section. Eight-noded isoparametric quadri-
laterals are used with 3 x 3 integration points.

Table 1. Dimensionless displacement rates on square facets with
normals in x,-direction (sq3) or in x,- or x,-directions (sq!) or (sq2),
and on hexagonal facets (hex)

Loading case a6y 76l = g e
(1) €3#0 21/3 0 1/3
(2) é,#0 0 0 +2/3
3) én#0 213 21./3 1
@) ey = —2¢, 2//3 —1//3 (]
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Fig. 5. Finite element grids on the unit cells.

Computations were carried for four different pore
sizes r,,/(\/Za) =0, 0.1, 0.2 and 0.3; r, is the pore
radius in the grain boundary. Table 2 gives the
corresponding values of the area fraction of the
square gain facets covered by pores, w = nr2/a?, and
the corresponding relative densities, p; p and w are
related by

@ = 7 sin® ‘/,(wé(;}__‘p_))Z/S. (14)

Figure 6 shows the distribution of the normal
stress, g,, on the grain boundaries. The stress is given
in units of kTR% /(Q 6D, p). The iso-stress lines cor-
rectly exhibit kinks, where they intersect triple grain
lines with discontinuities in 6D, and %,. The flux
vector is normal to the isostress lines. Considering the
isostatic case [Fig. 6(c)], the isostress lines are nearly
circular, so that the flow is approximately radial
around the centers of the square and hexagonal
facets. Hence the approximation of radial flow made
in [18] is expected to yield good estimates for the bulk
viscosity (see Section 5.3).

Figure 6(d) shows the stress distribution under
creep conditions in the absence of pores. Again the
flow pattern on the square facet normal to the tensile
axis is nearly radial. Contrary to this (numerical)
observation, Pan and Cocks [19] assume a parallel
flow field to describe deviatoric creep. Hence it is not
surprising that their result for the strain rate is found

Table 2. Area coverage, w, and relative density, p, for which the
finite element calculations are carried out

rola w p (fory = 60°) p (fory =90°)
0 0 1 1
0.1 \/ 2 0.0628 0.9985 0.9969
0.2\/ 2 0.2513 0.9879 0.9749
0.3\/2 0.5655 0.9592 0.9152

to differ markedly from the numerical result shown
below.

Table 3 shows the dimensionless forces on the
boundary facets, which are obtained by integration of
the stress over the facets. The nondimensional force

F., is defined by
£ (o) KTRS
\p QdDyp

where ¢ has the same meaning as before, namely ¢;;,
€12, €n and &;; in the four loading cases. The slight
difference of the order 0.1% between sq3 and sql in
the isostatic case arises from the asymmetry of the
finite element grid. It can be considered as a measure
of the accuracy of the finite element results.

F,= (15)

4.5. Macroscopic stresses and viscosities

The macroscopic stresses are calculated most easily
by equating the work rates (per volume) done by the
macroscopic stresses and by the contact forces

1
a,-,e’-,:z—V;F},")uﬁ,"’. (16)
Here V =(4n/3)R%*/p is the volume of the te-
trakaidekahedron, including the pore space, the sum
extends over all facets of the grain, and the factor 1,2
is needed since each facet is shared by two grains.

The work rate on the left-hand side of equation
(16) can be written as ¢, where ¢ means 043, 20,, 30,
and 05, —o0), in the four loading cases, and ¢

was given earlier. Using the dimensionless forms of F,
and #, in equation (16) and dividing by ¢ gives the

stress
3 . 3
k

QoD p an
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a) Case 1 b) Case 2
0
0.049 0.014
0.028
0.042
i 0.056
0.035 0.07
0.021-, 0.084
o- 0.063 0.098
0.112
0.126
0.056
0.049
0.14
0.035
= 0.021
0
c) Case 3 d) Case 4
0.196
0.028
0.168 6 0.035
1
0.007 |
014 0.014 | —— 0.042
. 0.021 0.049
/—- 0.112 0.056
] 0056 0.063
= 0

Fig. 6. Lines of constant normal stress for the loading cases (1)(4). The lines are equidistant in stress.

where ¢ and ¢ have the above meaning. The term in
square brackets specifies the viscous moduli, as
shown next.

For cubic anisotropy, the linear viscous relations
are

Gy3=C) 1€ 0= Cpéy, (18)

Table 3. Dimensionless normal forces on grain facets

Loading case  r,/a Fea Fean = fead Foeo

(1) Uniaxial 0.1/2 0140405  0.120572 0.528873

extension 0.2/2 0046543  0.038928 0.271125

(6 % 0) 032 0009184  0.007761 0.129573

(2) Shear 0 0 0 +0.449787

(€1, #0) 0.1./2 0 0 +0.435817
0.2\/2 0 0 +0.393674
0.3,/2 0 0 +0.323005

(3) Isostatic  0.1,/2 0.381398  0.381631 1.586608
02,/2 0124438  0.124375 0.813366
03./2 0024694 0024712 0.388726

(4) Creep in

x; direction 0 0096127 0014112 0.107621

01, =2Cué, (19)
o, =3Ké, 20)
033 — 0 =%(Cu — Cp)éss 2N

for the four loading cases, respectively. The C;/s are
the cubic viscosities, and K = (C;; + 2C},)/3 is the
bulk viscosity.

Comparison of equations (18)+21) with equation
(17) shows that the expression in square brackets in
equation (17) gives Cy;, Cyu, K and (3/2)(C); — C}3)
if evaluated for the four loading cases. Additionally,
C,, can be obtained from loading case (1), either by
directly equilibriating the facet forces with oy, or by
superimposing the solution with ¢, #0, which is
obtained from case (1) by an exchange of x; and x,.
It remains to carry out the sum in equation (17)
over the six square facets and the eight hexagonal
facets of a tetrakaidekahedron to obtain the cubic
viscosities.
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5. RESULTS

5.1. The cubic viscosities

The procedure described above leads to the cubic
viscosities, which are given in dimensionless form
according to

. kTR?
C.=C, —n .
Y YQéD,p

The same normalization is used for X and G. Table
4 shows the results.

Apparently, the Cauchy relation, C,, = C, is not
fulfilled by the values shown in Table 4. This is
because the forces on the facets are not independent
but are coupled by the diffusion fluxes from one
boundary to another. In the case of open porosity
with isolated contacts the Cauchy relation is fulfilled
[18].

In an isotropic material 2Cy=C, — Cy,.
Inspection of Table 4 shows that the present model
yields a strong cubic anisotropy. The factor
2C,/(Cyy — Cy,) varies from 5.5 for the fully dense
material to 152 for r,/a = 0.3\/ 2, while for an
isotropic material the factor is 1.

22

5.2. Inclusion of sliding forces

So far grain boundary sliding was assumed to
occur freely without any resistance. Now sliding
forces as described by equation (5) are taken into
account. To achieve this one notes that the contri-
butions of normal and tangential forces on grain
facets are additive in their effect on the cubic viscosi-
ties [18]. The contribution of tangential forces can be
taken from the analysis of isolated grain contacts
(equation (20) of [18]). Only the contact area needs to
be adjusted to the situation of closed porosity. The
total cubic viscosities are then

N\ erps (G
12 =m ijz
44 Ca
4
1+——\/—§(1—w)

The first term arises from the normal forces with the
C,’s from Table 4, while the second arises from the
tangential forces. The voided area fraction of the
square facets, w, was related to the density in
equation (14).

Table 4. Dimensionless cubic viscosities and bulk viscosity

rpd CA'n éll K é« én —élz
0 w0 © © 0.05622 0.02050
0.1\/2 0.28166  0.27424  0.27671  0.05448 0.00742
0.2\/2 0.13486  0.13199  0.13295  0.04921 0.00287
0.3\/2 0.05955 0.05902  0.05920  0.04038 0.00053
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Table 5. Normalized bulk viscosities K = KQ 8D, p/(kTR?). Com-
parison of an analytical estimate with the numerical results

ryla= 0.1,/2 02./2 032
lg from equation (24) 0.282 0.139 0.065
K numerical 0.277 0.133 0.059

5.3. Comparison with an analytical estimate for K

In [18] the bulk viscosity was estimated by assum-
ing circular symmetric diffusive flow on all grain
facets. The result was

kTR? B W
=22 (dme-2re-2) @4
1snapbp( ho-gte 16) @49

with w from equation (14). Table 5 shows a compari-
son between the bulk viscosities calculated numeri-
cally and those calculated from equation (24).

The relative difference between the analytical and
numerical results is small. It ranges from less than
2% for small porositics to about 10% for the
largest pores considered. Hence, equation (24) can be
used as a convenient approximation for the bulk
viscosity.

5.4. Isotropic averages for G

To obtain the isotropic shear viscosity the methods
used in polycrystalline elasticity theory are applied, as
in the case of open porosity [18]. The results are
shown in Fig. 7 for the case that n =0. As a
consequence of the high anisotropy of the model
the bounds lie considerably apart. Kréner’s [20}
seif-consistent estimate, which lies between the
Hashin—Shtrikman [21] bounds, is considered to be
the best estimate. It is approximated by

G = 0.0300 — 0.0432r, /a (25)

which is shown in Fig. 7 as a straight dashed line.
The G /K ratio, calculated with the self-consistent
estimate for G, has the values 0, 0.065, 0.116 and

0.06 T T T T

A

NORM. SHEAR VISCOSITY G

0.05 - & -
0.04 |- -
0.03

0.02
Self consistent

0.01 HS low

0 0.1 0.2 0.3 0.4 0.5
NORM. PORE RADIUS rp/a
Fig. 7. Normalized cubic shear viscosities C, and

€, -G and_estimates for the normalized isotropic
shear modulus, G. HS = Hashin-Shtrikman bounds [21].
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0.197 for the values of r,/a =0, 0.1\/2, 0.2\/2 and
0.3\/2, respectively.

5.5. Uniaxial creep without pores

In order to compare the present results with those
of Pan and Cocks [19] for creep of fully dense
material, we consider uniaxial tension, i.e. the only
nonzero stress component is o,;. If one considers
the case with tension along one of the cubic axes,
one obtains the strain rate from equation (17)
with ¢ =0,, and the term in square brack-
ets = (3/2)(C,, — Cy;), which is taken from Table 4.
Then

Q6D,633
kTd’

Here the distance between opposite square facets, d,
was used, which is related to R by d = (4/\/ 3)Rpl?
for the fully dense material [from equation (12)]. Pan
and Cocks [19] use the same quantities and obtain a
numerical factor 153 instead of 272. (Their result in
[22], a factor 554, was numerically incorrect.) With
the self-consistent isotropic average of G, one obtains
the uniaxial creep rate

. 033 QoD a5,
“=36 =¥ e

@7)

Coble’s [23] classical analysis gave a numerical factor
148. A comparison of equations (26) and (27) shows
that the cubic axes are exceptionally soft directions
for tension, and the average creep rate is three times
smaller.

6. INFLUENCE OF SURFACE DIFFUSION ON
THE BULK VISCOSITY

The pore shape was assumed in this paper to be the
equilibrium shape consisting of spherical caps. This
assumption is certainly justified if surface diffusion is
very fast compared to grain boundary diffusion.
However, a recent (theoretical) observation [24] indi-
cated that an approximation based on equilibrium
pore shapes yields results with a wide range of
validity even for very slow surface diffusivities.

In [24] sintering of a hexagonal array of wires was
modelled numerically for arbitrary mean stresses, oy, ,
and for arbitrary ratios of §D,/6D, (Where 8D, is the
surface diffusion coefficient).

In analogy to cavity growth under tensile stresses
]25] it was found that equilibrium pore shapes prevail,
if the applied stress does not exceed a few times the
sintering stress, nearly irrespective of the value of
8D,/6D,. At higher compressive stresses and small
6D, /8Dy, ratios, the material flowing out of the grain
boundary into the pore forms extrusions. This is the
analogue to the crack-like mode of cavity growth
under high tensile stresses [25]. It appears that the
range of validity of the equilibrium mode is larger
under compressive than under tensile stress.
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In [24] an additional important finding was made,
which had not been discovered previously in connec-
tion with cavity growth. The numerical results for the
pore shrinkage rates can be reproduced accurately by
a quasi-equilibrium theory, which differs from the
conventional equilibrium theory solely by the contri-
bution of surface diffusion to the dissipation rate,
which was previously neglected. This additional dissi-
pative term may reduce the shrinkage rate by a large
factor compared to the conventional equilibrium
theory and it leads to accurate results (compared to
the numerical solutions), as long as the pore shape
globally resembles the equilibrium shape with poss-
ibly large deviations of the curvature near the pore
tip. This condition of near-equilibrium shapes is
fulfilled for nearly arbitrary 6D, /8D, ratios, including
very small ones, as long as the compressive stress does
not exceed a few times the sintering stress. In situ-
ations of inhomogeneous sintering this prerequisite is
always granted.

There is no obvious reason that this quasi-
equilibrium theory, which was verified in [24] for a
two-dimensional problem, should not be applicable
analogously to the present three-dimensional prob-
lem. The shrinkage rate is derived from the thermo-
dynamic principle that the negative rate of change of
the Gibbs free energy must be equal to the dissipation
rate due to the diffusive fluxes. The rate of change of
the Gibbs free energy is, for hydrostatic loading

_Gtol =3V0nuén — 2, J‘ kv, dS

—6(2/3 + Da%ny,. (28)

The first term results from the work rate of the
macroscopic stress, the second accounts for the
change of the surface area and of the grain boundary
area due to the pore shrinkage, and the third de-
scribes the change of the energy of the grain bound-
aries surrounding the shrinking unit cell as pointed
out in Section 3. The integral extends over the pore
surface area pertaining to one grain, and v, is the
velocity of the pore surface away from the center of
curvature due to the plating or removal of material.
The formulation of the capillary terms in equation
(28) is an equivalent alternative to the formulation in
Section 3.

Within the quasi-equilibrium approximation, the
integral on the pore surface is evaluated in the
same way as in the equilibrium theory, namely by
setting x =const, so that the integral becomes
{ kv, dS =V, and the sintering stress is obtained in
exactly the same form as in the equilibrium theory,
equation (9). As shown in [24] for the two-dimen-
sional case this approximation leads to accurate
results for the sintering rate in a wide range of
conditions.

The equality of the negative rate of the free energy
and the dissipation rate gives

3V(0y — 0, )én, =Ry + R, (29)
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where R, and R, are the contributions of grain
boundary diffusion and surface diffusion to the dissi-
pation rate. The evaluation of the dissipation rates is
described in the Appendix. The bulk viscosity is
obtained as a sum of two terms, one arising from
grain boundary diffusion K, and the other from
surface diffusion K
oD,
¥ Ig)

o kTR® [,
Q8D \ 0 oD,

where the hat indicates the normalized quantities, as
before. The first contribution was given in Table 4,
or, approximately by equation (24), while the latter is
derived in the Appendix with the result

30)

K=g+gw+go’ 31

with
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configuration on the viscosities. From their equation
(44) one obtains the bulk viscosity, which in our
notation is

nkTR? r
= ) 245m( ™
K 10895Dbp{ 5"<a)

—2.69+ 5.40(5‘12)2 - 3.53(%)4]. (35)

For spherical pores on the 24 grain corners, pore
radius and relative density are related by

be(La-p)”
I

a

(36)

Comparison of equations (24) and (35) shows that the
bulk viscosity is about four times smaller for the

—481ncos%— 124+ 6cosy + 14 cos’ y —9cos’ ¥ + cos®

(2 + cos ¥ )X (1 —cos iy )*

(32)

1
go(‘//)=§
1 3+cosy
8 R e T oA roosy) O
1 2
ga() = 2TV (34)

144 (1 + cos y)?

The g’s are only moderately dependent on . For
Y = 60°is g, = 0.088, g, = 0.052, g, = 0.0077. Also K,
does not vary strongly with ¥ nor with w, and a
typical value is K, = 0.102 for y = 60° and @ = 0.251,
This is the same order of magnitude as K, (which is
0.133 for v = 0.251 according to Table 4).

Hence the contribution of surface diffsuion to the
bulk viscosity can only be neglected, if dD,/6D, > 1,
but it contributes substantially if D,/6D, is of the
order 1, and it dominates if 6D,/0D, is small. As
pointed out earlier, equation (30) can be expected to
be a good approximation even for very small
0D, /6D, (< 1), unless the compressive stress becomes
too large. More precise criteria for the range
of validity are not yet available, but they can be
developed in analogy to the analysis of cavity growth
[25].

7. DISCUSSION

The preceding analysis of the densification and
creep process was based on a specific grain and pore
geometry with pores on the two-grain junctions be-
tween next-nearest grain neighbors. This geometry
was motivated by a previous investigation on the
evolution of equilibrium pore shapes [17], which
indicated that this configuration is more likely to
occur than the configuration with pores on the grain
corners. The latter configuration was investigated by
Pan and Cocks [19]. A comparison of their results
with ours illustrates the influence of the pore

configuration with pores on the 24 grain corners than
for that with pores on the six square facets; the
comparison is made for the same relative density, and
¥ =90° is used, i.e. F,=4mn/3.

Pan and Cocks [19] also consider the case of
deviatoric creep in the [001] direction. Their result for
the viscosities is, in our notation

2
G- Cp=— [0.209 — 441 (ﬁ>
a

18
+ 12.5(53)3 - 10.8(f£>4]. G7)
a a

Table 6 shows a comparison with our results for the
same relative densities.

The two models should agree for p = 1, when no
pores are present in either model. The difference
which actually occurs corresponds to the ratio
274/153 given previously and is probably due to the
inaccuracy caused by the flow pattern assumed by
Pan and Cocks for the deviatoric case.

Once pores are present, the difference between the
two models increases to about a factor 4 (for 0.3%
porosity) and a factor 16 (for 8.5% porosity). It is not
clear to what extent the difference is due to the
different configurations or to inaccuracies of Pan and
Cocks’ estimate. No estimate for C,, nor for the
isotropic average, G, is given by Pan and Cocks, so
that no comparison is possible.

Table 6. Values of C,, — C,, for two pore configurations; ¥ = 90° is

assumed
p=1 p=0999 p=09747 p=09152
Pan and Cocks 0.0365 0.0296 0.0177 0.00854
Present work 0.0205 0.0074 0.0029 0.00053
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8. CONCLUSIONS

Densification and creep by grain boundary diffu-
sion are described by a linear viscous constitutive
equation with compressibility and a sintering stress.
The bulk and shear viscosities and the sintering stress
are derived for a specific configuration of closed
porosity. The diffusion problem is solved numerically
using the finite element method. Since the assumed
grain geometry, a tetrakaidekahedron, implies a
b.c.c. symmetry, one primarily obtains cubic viscosity
constants.

From the cubic viscosities the isotropic bulk vis-

cosity, K, is easily obtained, since it is equal to the

cubic bulk viscosity. An analytical approximation for
K [18] is confirmed, which shows that K diverges
logarithmically, when full density is approached. To
calculate the isotropic shear viscosity, G, the methods
of polycrystalline elasticity theory are applied. How-
ever, the result remains somewhat ambiguous, since,
as a consequence of the pronounced anisotropy of the
model, the Hashin—Shtrikman bounds lie consider-
ably apart. If the self-consistent method is assumed to
give the best estimate, the G/K ratio drops from
about 0.22 at pore closure to 0 at full density. The
latter value is a necessary consequence of the fact that
the material becomes incompressible.

A comparison with an analysis of Pan and Cocks
[19), who studied a different pore configuration,
shows that the material becomes much more compli-
ant (i.e. K and G drop), if the same pore volume is
distributed on two times more, smaller and more
closely spaced pores.
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APPENDIX

Evaluation of the Dissipation Rate

It is the aim of this appendix to derive the contribution
of surface diffusion to the bulk viscosity. The dissipation
rate by grain boundary diffusion, R,, need not be evaluated,
since it leads to the bulk viscosity already derived in Sections
4 and 5 by other means. The dissipation rate by surface
diffusion is defined as

kT
R = 2ds
: QJDSJ;,]’

where j, is the surface flux density and the integral extends
over the six halves of the pores surrounding the unit cell.

The surface flux that yields a sequence of equilibrium pore
shapes with decreasing radius of curvature, , is derived by
considering the hatched volume shown in Fig. Al. In terms
of the angle a, the hatched volume is

(AD

u*=§(2—2cosa — sin? « cos Y)r. (A2)
Its value changes by the surface flux entering the hatched
volume and by the motion of the grains, the so-called
jacking effect

(A3)

. .
5% = —2nr sinaj, + Eﬂ nr?sin® a.

N

Fig. Al. Tllustration of the calculation of the surface flux
density.
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Combining these equations gives the flux density
Lr 2 . L Uy
Jo==] Rcota ——— +sinacosy)f +sina— | (A4)
2 sin a 2

The dissipation rate on the six half pore surfaces belonging
to one grain is

6kT [V .
R = QéDSL J22nr?sina da

If j; is inserted from equation (A4), one obtains R, in the

form
InkTrt[ L, u,\’
Rs= QéDs 10" +I,r7+12 E

where the I’s are integrals over a which can be evaluated in
closed form

(A3)

(A6)

I,= ——161ncos%—4+2cost[/

14 1
+ ?cos2 ¥ —3cos*y + 3 cos’y (A7)
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16 L2,
1,=2~?cosw +4cos z//—gcos V] (A8)
2 o
12=§—C05l// +§cos v. (A9)

Only isostatic loading is considered here. Then 7 and 4, are
determined by the mean strain rate

. Vem

u, = Q2V)\V%,. (AlD)
Hence R, océ?, and the contribution of surface diffusion to
the bulk viscosity is K, = R, /(9Vé2) with R, from equations
(A6)(Al1l). The result in the main text is obtained after r
is expressed by r, through r,=rsiny, r, is replaced by
a./(w/n), ais expressed by the volume V of the grain, Vis
expressed by the grain radius R, combinations of the I’s are
formed to give the g’s and equation (22) is used for the
normalization of X.
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Introduction

Discontinuous metal matrix composites, i.e. metals or solid solution
alloys reinforced with ceramic particulates or short fibers, are an important
class of structural materials. Although they do not belong to the heat or
creep resistant group, they frequently retain strength at high temperatures.
This holds particularly true for discontinuous aluminium alloy matrix
composites reinforced by silicon carbide particulates or short fibers. Hence,
they are candidates for replacing aircraft components now made of titanium or
for use at automobile engine components or, possibly, for other applications.
This dis why the high temperature c¢reep of these composites has been
extensively studied in the last decade [1-9].

However, our understanding of the rather unusual creep behavior in the
discontinuous aluminium and aluminium matrix composites is far from
satisfactory. Similarities in the different matrix materials suggest that very
strong applied stress, as well as very strong temperature dependence of the
creep strain rate usually observed, are not caused by the matrix, but rather
are determined by the particulate or short fiber reinforcement.

Several suggestions have been made to explain the unusual creep behavior
of discontinuous metal matrix composites. Some authors [6,10,11] suggested
direct 1load transfer as the source of such behavior. However, the 1load
transfer to the reinforcement still results in a creep law for the composite
which expresses the same stress and temperature dependence of the creep strain
rate as that for the matrix.

Other suggestions [12-14] involve some form of non-continuum (dislocation)
mechanics analysis to describe the effect of reinforcement and of course,
attempts have also been made to combine the "continuum mechanics load transfer
approach” with the "non-continuum (dislocation) mechanics approach" [9-15].

Once discontinuous reinforcement is introduced into the metallic matrix, a
great number of interfaces is created. Via these interfaces, stress directed
diffusjonal matter transport can take place and contribute to measured creep
strain rate, thus 1lowering the creep strength of the composite. Also,
interface sliding will contribute to the overall creep strain rate.
Consequently, in an extreme case, the creep strength of the composite may be
even lower than that of the matrix if the diffusional paths are not 1long
enough and the sliding interfaces are numerous; such can be the case of
reinforcement of a "subcritical" size.

Résler and Evans [16] seem to be the first to point out that the interface
reactions must be taken into account in any detailed analysis of creep
behavior of discontinuous (metal matrix) composites.

In the present paper, continuum mechanics analysis along the line of that
performed by Dragocne and Nix is extended, incorporating the above mentioned
processes of stress directed diffusional matter transport along
reinforcement/matrix interfaces and sliding.
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Theoretical Analysis

The strain and stress analysis of material is based on the assumption of
the plane strain and on the periodicity of geometric and physical charac-
teristics. Let us consider a domain

Q= (0,H) x (0,L) x (0,8)
and its stdomains

Q, = (0,n), x (0,1) x (0,8) ,

Q=00
in the 3-dimensional Euclidean space (the orthogonal system of coordinates x
is used), h,1,H,L,8 (h<H, 1<L) are positive numbers and M always means the
closure of a set M in this space. The following notation (the symbols (.,.)
for open fnd <.,.> for closed intervals are applied) is clear from Fig.1:

A = (0,H) x <L,L> x (0,8) , A, = <H,H> x (0,L) x (0,8) ,
W = (0,h) x <1,1> x (0,8) , W = <h,h> x (0,1) x (0,8) ,
Ty = (0,H)_x <0,0y x (0,8) ,  Ti=¢0,0 x (0,L) x (0,8) ,
¥y =W N , ¥y =w nI , ¥ =w nTI" .
Xz .
e ! e
/12 ! /10
re A?
",2
L |1 )
b
// 1“’ . P
—— “'/ //1 ’ - 1
X
h /J
 _H ] 8

Fig.1: Geometrical configuration

Let us assume that Q' and ©° contain a homogeneous isotropic material that
can be described by means of the serial viscoelastic model with one linear
elastic and one special power-law viscous component. Let § an% T be the spaces
of admissible hydrostatic and deviator%c stregses on 2 and Q°, and let V be
the space_of admissible velocities on Q@ and Q" respecting the plane strain

e (v) =0,
where the usual notation from the linear theory of elasticity

Vi je{1,2,3} 1 €(v) =% (avi/ax’+av'/ax’)
is applieg,_fogether with the boundagy conzditions2

Vx(Ez) =0, Vabel | Vl(a) = Vl(b) ,

v(r‘) = o, VabeA|l vi(a) =v (b)1' 2 0
Let @ be the space of admissible normal loads on w and w” continuous in ¥
satisfying Fhe boquary condition

qa(r’) = q(v°) =0, . . 2
and g the space of admissible tangential loads in directions x on w and x
on w°. (The more precise definitions, together with some existence results,
have been presented in [17]; a more thorough study concerning these
mathematical problems is being prepared.)

Let €°,¢° be the elastic and non-elastic strain parts (e = %ﬂfc) and u
the displacements (time integrals oflvelocgties v) on © and Q°. The con-
stitutive relations for materials in Q and Q° are given by

e

cc(u) = Ao + BT (Hooke law) ,

e(v) = cCcltl™ 't (Norton law) .
where A4,B,C,N are material parameters (in general, with different values on R
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and QZ). Let v/ be the traces of v' from @’ on w' and w® for every j € {1,2

and i € {1,2,3}; let us assume v = ¥, The properties of the interface w
and w” are gigpn by phenomenological relations
V. ~v = -a(Daqlaxj)/ax on W’ (equation of interface diffusion) ,
vil-pi= Ep on w' (equation of interface sliding) ,

where i,j € {1,2} and i#j, and D has close relation to the diffusion
coefficient on the interface and E characterizes the interface sliding. The
principle of virtual velocities together with these relations generate the
equations of evolution

Yv&es | [§Fa] - [¢,e(v)) =0,

YTeT ]| [E,Br] + [T, cltl” ] - [F,e(v)]l =0,

Vgeal {§gDg} - (gv) =0, (%)
YVDpeP | (p,Ep) - (P,v) =0, .

V7evV | [e¥)o+t] - (F,q)" - (¥,p)" = (¥,1) ,

where the time-variable function r (one constant for any fixed time) describes
the development of the normal external load; for illustration, if all stresses
are smooth eggug?, t@; last equation implies

Il(a +t°°) du® = Hér .

The unknown variables (with zero values in initial time) in (%) are the
hydrostatic and deviatoric stresses o and t (Ilt|l is the symbol for the norm
oft in the Euclidean space of Eeal square matrices of order 3), and the
vglocities v defined on @ and Q°, and the normal loads g defined on w and
w . All these variables are abstract functions mapping the time interval into
the corresponding one of the gunction spaces $,T,V,Q,P. For the 2- and 3-
. . 3 A
dimensional Lebesgue measures u°, i the short notation

{o, ]l = ¢ § 'y’ au’® for suitable functions oW,
Q

{d,Dq} =I'f:1(a&/ax‘)n(aq/ax1) au® + §_(8g/ex)D(aq/0x") au® ,
(EIIV)n - ;)la(vzx_vzz) duz + Sza(vu-v(&) duz i

v, q)" = ?l(sz‘-vzz)q au® + “}2(;“-912)q au®

(B, v)" = (flfo(v”-v”) ap® + ?zﬁ(vzl-vzz) ap®

(#,p)* = gi(?’”-vlz)p au® + 32(;2‘-622);: au® (#,r) = 1{1"72" dy®

is used.

As the standard finite element packages do not handle the system (%), and
we have no information about the available software solver of (%), the
original algorithm searching for an approximate solution of (%) was developed
and the corresponding PC programs [18] were written. The Rothe method of
discretization in time was used to find the solution of (%) as the 1limit of
the solutions of certain systems of integral equations containing only 5
time-independent unknown functions corresponding to 0,T,v,q,p. The integrals
in these equations were simplified with help of finite and boundary element
techniques; the resulting system of algebraic equations was solved by standard
numerical methods.

Results of modelling

Let us consider the material parameters A,B in the form

A= (1-2m)/e , B = (1+m)/e ,
where e is the Young modulus and m the Poisson coefficient, and let the
development of the external load be described by the relations

r = $(l-cos(at))r* for t =< t* ,

r =r* for t =z t*
vhere r*,t*,a« are certain time-independent parameters and t is the time
variable. The following figures show the results obtained by the above
mentioned software for the values of elastic and creep characteristics
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e = 470.10° Pa on Q , e = 68,3.10° Pa on £ ,
m= 0,17 on Q1 ’ m = 0,345 5 -1 -4 on Qz ,
c =0 on Q c=1,1.10 s 'Pa on _ ,
N=20 on Q' , N =4 on Qz,

and of interface q;ffus§on and sliding characteristics
D = 10" m's 'Pa~ where p € {26,28,30,31,32,33, 34, 36, 38,40} ,
E = 10" ms 'pa™ where y € {18,19,20,21,22} ,
for the geometrica& configuration giyen by the distaﬂges s
h=20,2.10"m, 1=0,510"m, H=20,5.10" m, L=1,0.10"m
(under the assumption of plane strain for arbitrary &§) and for the external
load development ;haracteristics

r* =8.10' Pa , t* = 10000 s , « = 0,0002% s .

The results are presented for times when the processes have become
stationary. Figure 2 shows the macroscopic creep rate for various values of D
and E. The upper and lower dashed lines correspond to the creep rate of non-
reinforced matrix and composite without diffusion and sliding at rein-
forcement/matrix interface (D = 0, E = 0), respectively. A Similar calculation
was performed by Dragone and Nix [6]. From the figure it can be seen that the
range of three orders of magnitude of D and E values decide significantly on
reinforcement effect. This can be positive (for low D and E) or negative (for
high D and E). The critical values of D and E (at which the dependence of
creep rate on D and E is strongest) can be shifted by changing the size of
reinforcement. Higher critical values of D and E correspond to larger rein-
forcement sizes.

Figures 3a-e show the steady state stress distribution e, In g}g.sa
relatively high values of D and E are chosen. The local values of ¢ are

.l:—l

'_mllzoo_..,,ﬁ.....,.......,.ﬁ......,.,,_
- Interface sliding parameter ,);
© [~ “
5 lOg b;4
o o 4
— I a) ~-18 e)]
o [ b) -19 ]
~ 800 ¢ -20 dr
g - d) -2l €]
% E e) -22
o r non-reinforced ]
B C matrix ]
400 -~ gfF-—-—-—---- .
2 [ ]
S ] == :
a [ D=0, E=0 ]
g [ ]
O PR W H N WO N AU Y TS NN T U T W Y YO WY WA TN YT SN T Y W O O U

5 —4l -36 -31 —26

M

Diffusion parameter log D

Fig.2: Steady state macroscopic creep rate for various
reinforcement/matrix interface properties
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Fig.3: Steady state distribution o®® for various
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higher in the matrix than in the reinforcement. Owing to very active mat-
rix/reinforcement interface diffusion and sliding, the stress component normal
to the matrix/reinforcement interface is nearly constant and the tangential
one is nearly 2zero. This results in nearly hydrostatic stress in the rein-
forcement. A decrease of D by two orders of magnitude causes the reinforcement
effect to become positive (Fig.3b). The next two figures (Figs.3c and 3d) show
a considerable change of stress distribution when E is lowered by four orders
of magnitude. Figure 3e for D = 0 and E = 0 was computed in standard finite
element method and it is similar to Fig.3d. The oscillations of the stress
field are significantly less in our computations than in those obtained by
Dragone and Nix [6]. The reason is that we used simple triangular finite
elements, while Dragone and Nix used more complicated finite elements designed
for smooth stress fields.

The present method may represent an important tool for Dbetter
understanding the creep behavior of discontinuous metal matrix composites.
Varying the size, the shape and the content of reinforcement, the structure of
the composite can be adjusted to have optimal creep properties.

Of course the method requires further improvement. First of all it is
necessary to introduce 1local hardening and softening terms into the creep
equation of the matrix. It may be expected that this would help to explain
some of the experimentally observed facts not yet interpreted. In the next
step, damaging processes associated with stress concentrations should be
addressed.

Summary

The continuum mechanics analysis of «creep behavior of metal matrix
composite is presented in this paper. The analysis includes elasticity, power
law creep and diffusional matter transport and sliding along the rein-
forcement/matrix interfaces. The solution of the problem requires development
of original mathematical and numerical methods. The present results indicate a
significant influence of reinforcement/matrix interface properties on macro-
scopic behavior of the composite as well as on stress distribution in the
composite under creep conditions.

Remark

The authors would appreciate any possibility of cooperation in the field
of the present theory.

References
[1] V.C.Nardone and J.R.Strife, Metall.Trans. 18A (1987) 109
[2] T.G.Nieh, K.Xia and T.G.Langdon, J.Eng.Mater.Technol. 110 (1988) 77
[3] T.Morimoto, T.Yamakoa, H.Lilholt and M.Taya, J.Eng.Mater.Technol. 110
(1988) 70
[4] K.T.Park, E.J.Lavernia and F.A.Mohamed, Acta Metall.Mater. 38 (1990) 2149
[S] F.A.Mohamed, K.T.Park and E.J.Lavernia, Mater.Sci.Eng. A 150 (1991) 21
[6] T.L.Dragone and W.D.Nix, Acta Metall.Mater. 38 (1990) 1941
[7] T.L.Dragone and W.D.Nix, Acta Metall.Mater. 40 (1992) 2781
[8] J.Cadek, V.Sustek and M.Pahutova, Mater.Sci.Eng., in press
[9] A.Dlouhy, N.Merk and G.Eggeler, Acta Metall.Mater., submitted for public-
ation
[10] V.C.Nardone and K.M.Prewo, Scr.Metall. 20 (1986) 43
[11] N.Sorensen, A.Needleman and V.Tvergaard, Mater.Sci.Eng. A 158 (1992) 129
[12] M.Volgesang, R.J.Arsenault and R.M.Fisher, Metall.Trans. 11A (1986) 379
[13] R.J.Arsenault and M.Taya, Acta Metall. 35 (1987) 651
[14] R.J.Arsenault, Key Eng.Mater. 79-80 (1993) 265
[15] N.Shi, B.Wilner and R.J.Arsenault, Acta Metall.Mater. 40 (1992) 284l
[16] J.Ré6sler and A.G.Evans, Mater.Sci.Eng. A 153 (1992) 438
[17] J.vala, Equadiff 8 (Comenius University Bratislava) Abstracts (1993) 222
[18] J.Vala and V.Kozdk, research report 845/992, Inst.Phys.Metall.Brno (1993)



A3 Vasek, A., Polak, J., Kozak, V., Fatigue crack initiation in fibre-metal laminate
GLAREZ2, Microstructure and Processing 234, (1997), 621-624, IF 0,896.



‘e

o<W VOV

ELSEVIER

Materials Science and Engineering A234-236 (1997) 621-624

MATERIALS
SCIENCE &
ENGINEERING

Fatigue crack initiation in fibre-metal laminate GLARE 2

A. Vasek *, J. Polak, V. Kozak

Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, 616 62 Brno, Czech Republic

Received 5 February 1997; received in revised form 7 March 1997

Abstract

Fatigue crack initiation in notched plates made of fibre-metal laminate GLARE 2 was studied under constant stress amplitude
loading using light and scanning electron microscope. Fatigue crack initiation mechanism observed in notched laminates was
found different from the mechanism typical for monolithic materials. Stress and plastic strain finite element calculation was used
to discuss the anomalous fatigue crack initiation in fibre-metal laminates. © 1997 Elsevier Science S.A.

Keywords: Fatigue crack initiation; GLARE 2; Finite element calculations

1. Introduction

Fibre-metal laminates (FML) are a new type of
structural materials used for light weight structures [1,2].
Application of FML GLARE 2 is motivated by its
excellent fatigue resistance and weight savings with
respect to the traditional Al-alloys. In structural parts
where the final failure may occur in the presence of a

relatively short crack (e.g. riveted lap joints or attach-
ment lugs), the period of crack initiation can determine

the fatigue life. Unlike the relatively frequent works
concerning behaviour of long-cracked FMLs (e.g. [3,4]),
studies focused to the fatigue crack initiation in this type
of material are still rare. The necessity to consider the
period of crack initiation for fatigue life prediction of
multi-layered FML structural parts has been emphasised
by Vasek and Vogelesang [5]. Different features of
fatigue crack initiation and early crack growth in
notched GLARE 2 with respect to monolithic Al-alloy
notched bodies were noted by Vasek et al. [6].

The aim of this paper is to show the results of a recent
study of fatigue crack initiation in GLARE 2 notched
plates and explain the anomalous initiation mechanism
in this type of material.

* Corresponding author. Tel: +420 5 7268344; fax: +420 5
41218657, e-mail: vasek@ipm.cz

0921-5093/97/$17.00 © 1997 Elsevier Science S.A. All rights reserved.
PIT S0921-5093(97)00294-3

2. Experimental

FML GLARE 2 consists of 0.3 mm thin high
strength 2024-T3 Al-alloy layers which alternate with
0.25 mm thin epoxy-resin layers reinforced by unidi-
rectional glass fibres (prepregs). The laminate plates
were prepared by a stacking up of total 12 Al-alloy
and 11 prepreg layers and by a subsequent curing in
an autoclave cycle at temperature 120°C under pres-
sure (10 bars) for 90 min. A total of three different
notches were milled in the rectangular plates of 200 x
50 mm: Central slot with radius r =3 mm and width
15 mm (K, = 3.2), central hole with radius r=7.5 mm
(K, =2.4) and two side notches with radius r =70 mm
and depth 7.5 mm each (K = 1.2). Specimen surface
in the notch area including the lateral side was me-
chanically polished to enable an observation of fa-
tigue cracks since their initiation.

The specimens were loaded in an electro-hydraulic
fatigue machine MTS under constant stress amplitude
control with a sine cycle and cycle ratio R =0.04.
Maximum net-section stress was 150, 250, 360 and
450 MPa in individual tests. During loading the notch
area was observed to find the first fatigue cracks. The
loading continued until a surface crack extended up
to 10 mm.



622 A. Vasek et al. / Materials Science and Engineering A234-236 (1997) 621-624

3. Results

SEM observation of the notch area from the lateral
side showed that nucleation of microcracks in inner
metal layers preceded the fatigue crack initiation on the
laminate surface. Cracks in the inner Al layers initiated
predominantly at the edge of the metal sheet adjacent
to the prepreg layer region where the unidirectional
fibres were cut by the notch (Fig. 1). In the notch root
area where the fibres are intact, the microcrack occur-
rence was relatively poor.

After test termination the specimens with developed
cracks were subjected to a successive layer-by-layer
milling-off procedure to reveal a distribution of fatigue
cracks in inner metal sheets. Number of cracks in
individual metal layers, their length and position were
measured. Lower number of cracks was found in the
surface layers than in inner ones, however average
crack length was higher in the surface layers (Fig. 2).

On the contrary to the common situation in a mono-
lithic material, where location of crack initiation is
expected in the notch root, fatigue cracks in GLARE 2
nucleate at a position which significantly deviates from
the notch root. The deviation was measured as an angle
® between the notch root position (®=0) and the
crack initiation position on the notch edge contour.
Deviation of crack initiation positions, ®, varied be-
tween 0 and 25° on both sides from the notch root
depending on the applied stress and notch radius. Most
probable position of crack initiation ®,, what is an
angle between the notch root and the position where
the crack occurrence is maximum, was evaluated. Fig. 3
shows that fatigue cracks in laminates with sharper
notches and under higher loads take place at higher
angles ©.

Al layer

prepreg|

i1

Fig. 1. Nucleation of microcracks at the edges of an inner Al layer of
GLARE 2 laminate.
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Fig. 2. Number of cracks and average crack length in individual Al
layers of notched GLARE 2 laminate (12 Al-alloy layers and 11
prepreg layers).

4. Finite element calculations

Through-thickness distribution of residual stresses
present in the in Al layers after thermal curing of the
laminate was modelled by means of elastic 3-dimen-
sional ANSYS finite element analysis using brick ele-
ments SOLID45. The results showed that residual
stresses in Al layers are positive and higher in inner
layers with respect to the outer ones. The maximum
residual stress was reached at the sheet edges.

Inner Al layer

Surface Al layer

Fig. 3. Fatigue cracks in a surface and central Al layer of the
laminate with two side notches. (o,,,, =250 MPa). Angle © defines
position of a crack at the notch contour.
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Fig. 4. Most probable position of fatigue crack initiation in notched
GLARE 2 laminates.

Elastic-plastic 2-dimensional ABAQUS finite ele-
ment analysis using shell elements (SR85 and STRI65)
was adopted to calculate monotonic plastic strain in
notched specimens. Plastic strain at the notch contour
was plotted in Fig. 4 versus angle ©. Relatively large
notch area in the GLARE 2 specimens undergoes
high plastic strain. The affected area is larger in lami-
nates with a smaller notch radius and under higher
applied stress Fig. 5.

5. Discussion

The presence of the residual stress, which is higher
in inner Al layers and reaching the maximum at the
sheet edge, increases the local plastic strain developed
by an applied load. First fatigue microcracks thus
initiate at the edge of inner Al sheets. The microc-
racks grow fast through the thickness of the sheet.
Growth of microcracks through the laminate thick-
ness is restricted by fibres in prepreg layers bridging
the crack from both sides. During further loading new
microcracks nucleate in inner metal layers indepen-
dently on the cracks already present in the laminate.
Later, some cracks arise also in the surface layer.
Conditions for crack growth are more favourable in
the surface layers where stress intensity factor is re-
duced only by one prepreg layer and cracks can prop-
agate easier than in inner metal layers. It results in a
lower number of cracks initiated in the surface layers.

The wide angle interval of crack initiation positions
corresponds to the relatively large area of high plastic
strain on the notch contour. Moreover some addi-
tional contribution to the local plastic strain has to be
taken into account. Steps on the prepreg surface made
by fibres broken-off during notch contour milling pro-

duce an increase in the local shear stress in the
prepreg layer which results in the high local stress and
strain concentration in the metal sheets. First steps
arise in some distance from the notch root and border
a small flat face with intact fibres. In this area the
crack initiation is less probable than in the area with
steps made by the cut fibres.

GLARE 2 }
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Fig. 5. Equivalent plastic strain in Al layers of GLARE 2 laminate at
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6. Conclusions

Scanning-electron and light microscopy study of fa-
tigue crack initiation in notched GLARE 2 specimens
loaded under higher stress amplitudes yield the fol-
lowing conclusions:

(I) Mechanism of fatigue crack initiation in
notched FMLs differs from that in monolithic materi-
als.

(2) Initiation of fatigue cracks in the laminate
surface is preceded by earlier nucleation of a number
of microcracks in inner metal layers.

(3) Fatigue cracks start to grow separately in in-
dividual metal layers. The number of cracks is higher
in the inner Al layers while the cracks grow faster in
the surface layers.

(4) Fatigue cracks are located in a wide interval
of angles ® on both sides form the notch root posi-
tion. Most probable crack initiation position varied in
the interval ® =5-20° depending on applied stress
and a notch radius.
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Abstract

A deterministic approach is used to analyze cleavage failure near the notch root by application of a local fracture
criterion. Micromechanism of fracture is assessed using finite element calculations. Two ferritic microstructures have
been selected; they differ significantly in the carbide thickness as the fracture data scattered widely. Local damage zones
are calculated from the notmal stress distributions and compared with those from the notch root to the location of
failure initiation. To this end, the static three-point bend Charpy V-notch specimens were used. M1crofractography.

identifies the local damage zone distances and their locations with reference to the prevailing mlcrostructures © 1999

Elsevier Seience B.V. All rights reserved.

1. Intrpduc‘tion

Stress triaxiality and plastic strain are knowhn to
affect the fracture initiation conditions [1]. The
stress criterion can be used to explain the onset of
unstable crack growth. Stress concentration near
notches introduces hydrostatic state of stress with
trends to cause embrittlement [2].

For low alloy structural steels in the lower shelf
region, it is generally known that crack starts to
propagate, when the local fracture stress oy is ex-
ceeded by the normal stress oy, ahead of the notch
[3]. In order for the cleavage micromechanism to
prevail in ferritic grain and/or carbide particles, the
local tensile stress would presumably have to be
higher over some characteristic distance. For
blunted notches, this condition can be depicted

*Corresponding author. Fax: +420 541218 657; e-mail:
idlouhy@ipm.cz

from the maximum on the normal stress distribu-
tion curve. For sharp notches such as crack, the
characteristic distance tends to play a demdmg role
[4]. ’
For the afore-mentioned steel, the origin of
fracture initiation is frequently associated with the
cleavage of ferritic subgrains. Microscopic cleav-
age initiation involves several successive events [5—
7]: slip induced separation of ferrite grains; inter-
or trans-granular cracking of carbide particles;
and microcracking of cleavage plane across sub-
grain boundaries. Fracture stress is defined as a
local material parameter characterizing the mi-
croscopic resistance against cleavage. Such a pa-
rameter was shown to be independent of
temperature, hydrostatic stress, and strain rate [5].
The value of this stress is strongly affected by the
microstructure [8—11] and the relations used for
quantifying the results.

Stochastic models have been developed in Refs.
[12-14] to explain the fracture characteristics in

0167-8442/99/$ — sce front matter © 1999 Elsevier Science B.V. All rights reserved.

PII:S0167-8442(99)00009-9
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relation to the distribution of brittle particles. The
different size crack nuclei in the changing stress
gradient field ahead a sharp crack appears to
compete with one another. The deterministic ap-
proach assumes that initiation corresponds to the
site of local maximum stress where microcracks
would presumably form in a small volume in the
plastic zone ahead of the crack. A sufficiently large
volume of material ahead of the crack could be
found to contain a particle that would nucleate
cleavage. That corresponds to ¢, > o¢, a condi-
tion for crack growth.

The aim of the present contribution is to de-
termine the local damage zone distance from the
normal stress distribution near the notch root.
Explained also is the relationships between this
distance as computed and those measured from
the fracture surface of two materials different
fracture behavior.

2. Background

The elastic and elastic—plastic normal stress
near the notch root tend to decrease with in-
creasing distance. Analysis has shown in Ref. [15]
such a behavior given in Fig. 1. Three zones may
be identified.

Region I — the normal stress is nearly constant

and/or increasing to a maximum o
Region II — an intermediate transition zone.

104 prrr T

-
o
©

Normal stress (MPa)

10?

Distance (mm)

Fig. 1. Variations of normal stress with distance from notch
root.

Region III — a pseudo stress singularity type of
distribution can be identified:

qF%&. (1)

The parameter K, characterizes the stress intensity
at the notch root zone III. It is associated with
failure initiation. The exponent a determines the
order of stress singularity for o,,. It has been
evaluated [16] for a wedge notch where an energy
density was defined as the governing fracture pa-
rameter. A local damage zone distance is defined
to represent the distance from the notch tip to the
boundary between zone II and III in Fig. 2. It is
denoted by X which is assumed to be:
e greater than the plastic zone diameter;
¢ cylindrical in shape and to coincide with the di-
ameter of the process volume; and
¢ localized in a high stress region in which the
stress gradient is not too high.
Let the relative stress gradient y be determined
by

1 do
XZma- (2)

It can be evaluated in terms of the distance from
the notch root for each normal stress distribution.
To emphasize, the local damage zone distance
should be localized in a region with a small gra-’
dient so that the minimum of y could be consid-
ered. It corresponds to the upper bound of zone II
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Fig. 2. Log-log plot of normal stress distribution for defining
the local damage zone.
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while the distance to the notch root corresponds to
the effective distance X.¢. The corresponding nor-
mal stress o, is as given in Fig. 2.

According to the present approach, fracture is
assumed to initiate from a notch when o > of
acting over the distance X that corresponds to the
minimum stress gradient curve, ymn. Since the
distance y might be affected by the microstruc-
ture, experimental results are needed to analyze the
assumed criterion.

3. Experimental procedures
3.1. Material characteristics

A CrMoV rotor steel is used for the experi-
ments. Its chemical composition can be found in
Table 1. Two types of microstructures are selected.

They consist of ferrite with fine carbides (FC-
bainite temperatured for 2 h at 680°C) and ferrite
with coarse carbides (CC-bainite tempered for 10 h
at 72°C). The microstructure material parameters
are given in Table 2. A more detailed of the ma-
terial description is given in Ref. [11]-In Table 2,
dac 1s the original austenitic grain size, dp the
packet size, and d, the mean value of the carbide
size. Here, d,(c) falls into the 95% percentile of
carbide diameter distribution. Moreover, HV10 is
the Vickers hardness, R, (0.2) the yield strength,
R,, the ultimate tensile strength, and CVN the
charpy V-notch impact energy at room tempera-
ture. FATT stands for the fracture appearance
transition temperature corresponding to the tem-
perature at which 50% of the fracture surface has a

Table 1
Chemical composition of CrMoV steel of rotor by wt% .
C Mn Si P . S Cr Mo V

0.23 064 028 0.022 0.028 123 0.55 0.16

Table 2
Microstructural parameters for CrMoV steel

fibrous appearance. Temperature dependency of

CVN the impact energy were also observed.
3.2. Mechanical testing

Tensile properties and true stress—strain curves
have been determined using cylindrical specimens
with a diameter of 6 mm. Data are taken for a
temperature range of —196 to 200°C at a cross-
head speed of 2 mm/min. The lower yield stress
value R.. corresponds to the 0.2% proof stress R;
(0.2). Temperature dependency of fracture tough-
ness is also evaluated for precracked three-point
bend specimen for a cross head speed of 1 mm/

~min. The dimensions are 25 mm thick with a

loading span of 120 mm. Refer to [11,17] for the
evaluation of the fracture properties. The Charpy
V-notch speciemn has a root radius of 0.25 mm.
The temperature in the lower shelf region corre-
sponds to that below the general yield transition
temperature fgy at which the fracture force and
general yield force coincide. Data for seven bend
specimens were obtained for. each material. Re-
corded are the maximum force Fy, the fracture
force Frr, and the general yield force Fgy for the
selected temperature of interest.

3.3. Fractography

For the CVN specimens tested below the gen-
eral transition temperature /gy, the distances be-
tween the fracture initiation sites and the notch
root were found using the scanning electron mi-
croscope (SEM). The location through the thick-
ness of the specimen was also obtained. Assessed
also is the effect of microstructure on cleavage
nucleation, i.e., the origin of failure initiation.
Microstructural parameters were determined by
SEM on sections perpendicularly to the fracture
surfaces. Thin foils and carbide extraction replicas
were also examined.

State Tempering dag (Wm)  d, (pm) d. (ym) d.(c) (pm) HVIO R, (0.2) Ry, (MPa) CVN impact FATT (°C)
(MPa) energy (J)

FC  680°C/2 h/AC 29 15 0.09 0.09 278 771 886 18 110

CC  720°C/10 WAC 29 12 0.17 0.17 200 S511 644 51 50
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4. Finite element calculations

The stress distribution near a V-shaped notch is
obtained from a finite element calculation for the
Charpy specimen at —80°C for FC and —150°C
for CC in the lower shelf region. The plane strain
condition is ‘assumed for the incremental elastic—
plastic analysis [17] with the Von Mises yield
condition. . The software package -corresponds to
ANSYS 5.1 (IPM) and CASTEM 2000 (LFM).
Determined are X, o and of (cleavage fracture
stress) while 7. and 7, ni, Were measured.

5. Discussion of results

5.1. Fracture behaviour of CVN bend specimens

Displayed in Fig. 3(a) and (b) are the variations
of the general yield force Fgy, the fracture force
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Fig. 3. Temperature dependency of forces obtained from CVN
specimen data. (a) FC microstructure, and (b) CC material.

Frr, and the maximum force Fp,, with tempera-
ture. The solid data points are those obtained.in
this study. For coarse carbides (CC), lower general
yield force Fy are obtained for lower general yield
transition temperature, /gy. Such a trend prevailed
for both materials. This includes the shift of the
transition region to higher temperatures and de-
crease of resistance against brittle fracture for the
CC material [11].

The afore-mentioned findings are supported by
the fractographic observations.

At lower magnification, the fracture surface of
the CVN bend specimen exhibited macroscopic
river patterns. For the microstructure with fine
carbides, this pattern originates from- a small spot
on the fracture surface, Fig. 4(a) which contains
one or a few cleavage facets. For microstructure
with coarse carbides, the river- patterns are
traced to the initiation region Fig. 5(a). In
both cases, the centre of the river pattern was
assumed to coincide with the origin of cleavage
initiation.

Fig. 4. Fracture appearance of CVN specimen. (a) FC material
at —80°C and (b) detail of nucleating facet.



G. Pluvinage et al. | Theoretical and Applied Fracture Mechanics 31 (1999) 149-156 153

Fig. 5. Fracture appearance of CVN specimen. (a) CC material
at —150°C and (b) detail of nucleating facet.

At higher level of magnification, four fracture
initiation sites could be identified:
(1) For the FC microstructure, no distinct initi-
ation site were found on one cleavage facet,
Fig. 4(b). The average facet size was about
20-30 pm. Dislocation micromechanisms of
cleavage were assumed.
(ii) Two or three facets arrangement were found
at the initiation site. A facets had no clear initi-
ation site. Cleavages starting from grain bound-
aries or triple points were assumed.
(iii) Facets with one large or with a few smaller
inclusions appear to be located in the middle of
the facet. :
(iv) Cleavage facets with carbide particles cor-
respond to an increase of metal content in par-
ticles in comparison with the matrices. The
presence of carbide were assumed to be the
cause of cleavage initiation. This is observed
in heavy temperature microstructures for coarse
carbides, Fig. 5(b).

With an increase of carbide diameter, signifi-
cant changes in the cleavage micromechanism and
macroscopic appearance of fracture surface were
observed. The fracture appearance changes mor-
phology with a single initiation site in Fig. 6(a) for
FC materials to one with more multiple initiation
sites in Fig. 6(b) for CC materials. The cause of
dislocation is assumed for initiation cleavage in
FC while carbide is the cause for cleavage in CC
materials. The former corresponds to the weakest
link concept. That is the failure of one weak link
leads to an unstable fracture. Fracture of materials
with the CC microstructure correlates well with the
concept of critical damage sites. With sufficient
number of damage sites activated, unstable cleav-
age failure will presumably follow.

5.2. Local damage zone

The critical of minimum stress gradient being
assumed to prevail in a localized region of high
stress. Eq. (2) has been applied to determine the
local damage zone distance X.¢. The corresponding
stress distributions are displayed in Fig. 7 on a
logarithmic scale for both materials. In both cases,
the value for X, is greater than the plastic zone
diameter. The local damage zone distance can be
found in Table 3 for steel with the finer carbides
(FC) and Table 4 for steel with the coarse carbide
particles (CC).

A comparison of the calculated local damage
distance with that measured are plotted in Fig. 8.
They are within a scatter band of +0.1 mm which

x
o £ 2
Notch - Notch NS
— N~ ] ~ MWL
o~ 2
/ ™
I
Fracture Fracture

(a) Fine carbides (b) Coarse carbides

Fig. 6. Initiation micromechanism. (a) FC material (weakest
link) and (b) CC material (damage accumulation).
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distance of initiation site /™ from notch root for CC material.

indicates that the agreement between analysis and
test is good. Referring to Fig. 9, the horizontal
scatter bars represent the width of initiation region
which corresponds to the distances #™® and r™ in
Fig. 6. In almost all cases, the mean and maximum
values are outside of the scatter band of £0.1 mm.
The solid data point in Fig. 9 represents the
weakest link micromechanism of initiation.

5.3. Damage zone stress

Damage zone o corresponds to the distance
X in Fig. 2. Their values are summarized in Ta-
bles 3 and 4. For comparison, the local tensile
stress o} (and the distance ™ and 7™ are also
given. This gives a correlation between X and 7,
as shown in Fig. 8.

For the FC microstructure, the mean value of
oer 18 1206 Mpa which compares well with the local
tensile stress of 1310 Mpa at fracture. Similarly,
for the CC microstructure, o, equals to 991 Mpa
and the local tensile stress is 1001 Mpa.

6. Conclusions

Experimental support is provided for the local
damage zone distance as 'a criterion of fracture
initiating from notches. Two microstructures are
considered for cleavage type of fracture. Stress
gradient near notches is found to play an impor-
tant role int he initiation of brittle fracture.

Good correlation is found for the calculated
and measured values of the local -damage zone
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Table 3 ‘
Fracture parameter data for FC material
Specimen number Frr (kN) 7. (mm) Xer (mm) a; (Mpa) ar (Mpa) o (=)
43 11.6 0.30 0.37 1109 924 0.89
22 12.5 0.29 0.40 1288 1000 091
27 13.5 0.35 0.41 1212 1120 0.92
45 14.7 0.47 0.44 1413 1270 0.94
36 14.9 0.47 0.45 1226 1300 0.94
25 15.6 0.41 0.46 1466 1400 0.95
20 16.0 0.45 0.47 1460 1430 0.96
Table 4
Fracture parameter data for CC material
Specimen number Frr (kN) ™ (mm) ¥ (mm) Xer (mm) a; (Mpa) aer (Mpa) o (=)
34 10.2 0.36 0.51 0.300 1089 990 0.85
10 11.6 0.29 0.44 0.360 1203 1070 0.89
8 12.0 0.41 0.61 0.380 1010 1110 0.9
7 13.1 0.45 0.61 0.407 1106 1230 0.93
13 13.3 0.35 0.52 0.426 1285 1250 0.93
15 13.7 0.34 0.52 0.436 1320 1290 0.95
9 14.4 0.35 0.436 1328 1360 0.96

distance. The data lie within a scatter band of £0.1
mm. The damage zone stress compares well with
the cleavage fracture stresses.

" The local damage zone does nor appear to be
sensitive to change in fracture mechanism from
one of the weakest link to that of damage accu-
mulation.
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PROBLEMS IN Q-PARAMETER CALCULATIONS

L. VLCEK, Z. CHLUP, V. KOZAK
Institute of Physics of Materials, Academy of Science of the Czech
Republic, CZ-61662 BRNO, Zizkova 22

Abstract: The present work deals with determination of the sensitivity detached parameters
describing fracture behaviour of body with crack with respect to the character change of true

. stress-strain curve. The typical low carbon cast steel stress-strain curve with dominant
region of Liiders deformation was exerted. This paper presents the consideration on the
change judgement of J-integral and Q-parameter as the base parameters of two parameters
fracture mechanics. The attention is paid on the influence of deformation hardening
exponent of the idealised true stress-strain material curve described by the Ramberg-Osgood
relation to Q-parameter. All computations are based on the 3D elastic-plastic analyses using
FEM and supported by mechanical tests. )

Keywords: stress-strain curve, deformation hardening, J-integral, Q-parameter, finite
element method

1. Introduction

It seems that for transferring fracture-mechanical data from test specimens to exposed
real constructions or to its monitored parts, it is necessary to use two-parameter fracture
approach. This requirement involved large investigations, which are considered of the
constraint influence near the crack tip to fracture behaviour. Recent extensive .
investigations on crack tip constraint effects provide a necessity of testing various
constraint configurations, such as shallow-cracked SEN(B) specimens. The present
paper is contributing to assessment of the influence of constraint effect near the crack
tip to fracture parameters. '

Determining static fracture toughness of SEN(B) specimens is one of the basic
fracture mechanics test. As a result of this test are significant values of static fracture
-toughness, which, depends upon temperature. It must be emphasised that the most
important values are critical K-value, in case of using linear-elastic fracture mechanics
and critical value of J-integral, in case of using elastic-plastic fracture mechanics.
Subsequently we confine our investigation to elastic-plastic material behaviour.

Standard assessments of elastic-plastic fracture behaviour in large engineering
structures using laboratory specimen data employ a one-parameter characterization of
loading and toughness, most commonly the J-integral or the corresponding value of .the
Crack Tip Opening Displacement (CTOD). Fracture: toughness measured on one
specimen size can be directly at some circumstances transformed to another geometry.
‘This approach can be valid only in the case of small scale yielding (SSY).
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Experimental measurements have shown significant elevations in the elastic-plastic
fracture toughness in the transition region for shallow crack specimens of ferritic steels.
This apparent increased toughness of ferritic steels has enormous practical implication
in defect assessment. Elastic-plastic stress fields along the crack front depend strongly
on the specimen geometry, size, loading mode and material flow properties. A more
realistic description of crack tip stress and deformations fields has been developed.
Approaches are based on two-parameter characterization of crack tip fields, such
T- stress and Q-stress. In both approaches, J sets the magnitude of near tip deformation,
while the second parameter characterizes the level of stress triaxiality. These J-T and
J-Q approaches retain contact with traditional fracture mechanics. Laboratory
measurements on the specimens with varying crack length (changing the relation a/W)
and with the same ligament showed increasing values of fracture toughness expressed
using J, versus decreasing crack length. Following the idea of Sumpter [1], Kirk and
Dodds [2] investigated several possibilities of J-integral and CTOD estimation for
SEN(B) specimens with shallow crack. Presented results summing up that critical
values of J-integral and CTOD obtained on SEN(B) specimens with different crack
length are comparable due to establishing parameter n, where J= Jq + J and
J,i= npUy/Bb. This parameter is depended on ratio a/W and represents the influence of
crack length on fracture toughness. For standard crack length is n, =2.

For fracture toughness valuation on the basis of two-parameter fracture mechanics

the evaluation of parameters, which expresses this constraint ahead the crack tip in our
case Q-parameter, is critical. Several approaches exist: "
a) On the base of experimentally determined dependence J. on a/W the Q calculation
comes after from numerically given stress fields received by FEM for every analysed
body separately. This approach is time consuming due to experimental work and next
modelling and computation.
b) Statistical approach using so called local approach [3]. We limit our focus to a stress
controlled, cleavage mechanism for material and adopt the Weibull stress (oy) as the
local parameter to describe crack-tip conditions. Unstable crack propagation occurs at a
critical value of (c,) which may be attained prior to or following some amount of
stable, ductile crack extension [4]. v
¢) Function J(Q) can be found on the basis of so called toughness scaling models. The
procedure focuses on an application of the micromechanical model to predict specimen
geometry and crack effects on the macroscopic fracture toughness J. Dodds [S] and
Anderson [6]. The procedure requires attainment of equivalent stressed volumes ahead
of a crack front for cleavage fracture in different specimens. The D-A model does not
reflect such variations, with equal weight attributed to all material volumes having
" 0y/0, > 0. This can be done e.g. on the base of Weibull stress, because the Weibull
stress incorporates both the effects of stressed volume (as in the D-A model) and the
potentially strong changes in the character of the near tip stress fields due to constraint
loss and ductile crack extension [7].

The present analyses are generally based on the FEM calculations. To obtain the
correct values of stress-strain fields using real materials model seems to be fundamental
for effective numerical analysis. As an experimental material manganese cast steel was
used (CSN 42 2707). Two procedures, how to approximate the stress-strain curve, were
used. The first model describes how to more precisely express the real curve
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(experimentally determined) using the incremental theory of plasticity. The curve can
be divided into three basic parts. The initial part is linear elastic, next is the part of
dominant Liiders deformation and the last part for deformation hardening. The second
model is based on the deformation theory of plasticity and constitutes continual
hardening material.

The change estimation -dependence of J integral and Q parameter on the material
stress-strain curve can be very expressive. Therefore this study describes a
computational framework to quantify the influence of the stress-strain approximation to
the J integral values and Q parameter. The stress is put onto the ability of using the
deformation theory of plasticity, which actually describes not correctly the materials
with dominant yield stress area, with comparison to incremental theory of plasticity.
The reason why to use this approximation is given by the capability of finite elements to
transport the high values of plastic strain. The next problem, which is solved, is the
selection of proper value of deformation hardening exponent to the stress-strain field
ahead the crack tip and to the force-displacement diagram.

2. Q-parameter Theory and its Determination

Two-parameter approaches to elastic-plastic fracture mechanics were introduced to
remove some of the conservatism inherent in the one-parameter approach based on the J
integral and to account for observed size effect on fracture toughness. This paper
presents the consideration on the change judgement of J-integral and Q-parameter as the
base parameters of two-parameter elastic-plastic fracture mechanics. Q-parameter is the
second parametér in two-parameter approach and it is used for describing constraint
effect near the crack tip. In accordance with [8], [9] Q-parameter is defined at point
0=0, r=2J/s, as the participation of difference stress field (o;)air and yield stress oo:

(o-ij' )dmr _ (o-ij )_(o-ij )ref
%o B oy

M

It is possible to say [10], [15] that difference stress field is constant in region r=<J/c,,
5J/oy> for @ < #/2. This stress value is difference between real stress fields, which are
obtained usually from numerical analyzes, and reference stress field. Different methods
of the Q-parameter computation are given by using different types of reference stress
fields. The most commonly used approaches for obtaining reference stress field values
are boundary layer method (BLM) [10], [12] and method that is based on using HRR
solution. The second one arises from works of Hutchinson [13], Rice and Rosengren
[14], who generalized Williams’ solution (for linear elastic material) into nonlinear
hardening material. Its behavior is determinated by deformation theory of plasticity.

2.1. HRR SOLUTION

Determination technique of the difference stress field is based on elastic-plastic solution
of the specimen with crack. Thus, the real stress (g;;) near the crack tip is given as an
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approximate stress in case that sufficiently fine mesh was used. In accordance with [9]
the difference stress field is given by the relation:

(05)y =05)-(04 )z @

i

where (0;)re is the reference field stress. Values of the reference stress are tabulated as
a function of stress intensity factor Kj, yield stress o, and deformation hardening
coefficient n. The value of the Q-parameter is:

_ (0' 60 )“ (0' 00 )HRR

Q €)

Advantage of this method is the fact that (Geo)urr Vvalues are tabulated, but only for a
small range of specimens with simple geometry. To the contrary the disadvantage of
this method could be the fact that the material behavior is not described well.

2.2. BOUNDARY LAYER METHOD (BLM)

BL method is suitable for any types of geometry configurations. This method is based
on analysis of the maximal principal stress ahead of the crack tip using finite element
method (FEM). The small local analyzed area with the crack is removed from the whole
body (Figure 1). The size of the area has to be chosen efficiently because of generating
small scale yielding (SSY) conditions on the boundary of this area. The boundary
conditions are given by displacements from elastic solution of the whole body [10]:

u=MFCOSQ(3-4V—cos0) 4)
E 2 2

v K1(1+V)\/Zsin-0-(3-4v—cosﬁ) Q)
E 2r 2

Figure 1. Schema of BL model
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where u, vare displacements in directions of X and Y in Cartesian system of
coordinates, K, is stress intensity factor,. which was determined from Rice’s J integral, E
is Young’s modulus and v is Poisson’s ratio.

As follows the elastic-plastic calculation for the whole body with crack is solved to
obtain values of the “real” stress. The difference stress field is given by:

(GIJ' )diﬁ“ = (al]' )_ (o-ij )ssy ) (6)

where (g) is real stress in the specimen, which is determined by using elastic-plastic
FEM solution and (o;)ssy is reference stress field, which is determined from BLM
calculation. In accordance with works of [9] and [10] there are two definitions
_ for Q-parameter computation:
_ (0'60 ) - (0' 96 )ssy _ (Gm )_ (‘7 m )ssy
Q=———, Op=—"—T"+
: G G
for 8=0, r=2J/0,, where (o) is stress in cylindrical system of coordinates and for 6 =0
it is the same value as (g,,) in Cartesian system of coordinates and

(7,8

Om ='§(O'xx to, +Gzz) )

where oy, 0y, 0, are stresses in particular axis in Cartesian system of coordinates.
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Figure 2. Schema of Q-parameter determination

The theory said that Q-parameter value is constant on defined interval, but in fact the
distance between Q) and Qs) have to be less than 10 % (see Figure 2).
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3. Problem and Aim Formulations

For numerical simulation it is necessary to determine model geometry, boundary and
load conditions, as well as the way of material model. Three sets of SEN(B) specimens
were tested and modelled. The geometry of the specimens is shown in Figure 3 and its
characteristic dimensions are in the TABLE I (all values are in mm).

TABLE 1. Dimensions of test specimen

a/W=0.1 a/W=0.2 a/W=0.5
L 120 140 250
B 25 25 25
w 26 30 50
a 2.5 7 25.25
1 104 120 200

Figure 3. The test specimen

The generalised material behaviour considered in this study is that typically found in
low carbon steels. The elastic part is followed by a perfect plateau (this part is
commonly called Liiders deformation) and part with work hardening (see Figure 4).
There are two ways in computational system Abaqus, which can be used for describing
material behaviour. The first one is to use deformation theory of plasticity. This material
model is trouble-free for numerical calculations. In that case Ramberg-Osgood well-
known relation defines material. The second one describes material by using
incremental theory of plasticity.

The main question is to show the influence of the stress-strain curve approximation
on the fracture parameters. The aim of presented work is confrontation of fracture
parameters, which are used for assessment pre-cracked bodies in three-point bending.
Attention is paid on the influence of deformation hardening exponent to the history of
the idealised true stress-strain material curve.
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4. Experiments and Modelling

As an experimental material C-Mn cast steel was used. This material was modelled as
homogenous and isotropic with elastic constants E=2,05.10° MPa and v=0.3. The
average value of yield stress was 360 MPa. The testing temperature was —100 °C.

In the case of using incremental theory of plasticity the curve o—€ was modelled by
23 points, which were connected to linear parts. These points belong to experimental
measured stress-strain curve.

In the case of using deformation theory of plasticity material was described by
Ramberg-Osgood relation: ‘

n
£
&_0o a[z_] (10)
€ Op Oo
where  n is hardening exponent,
a is hardening coefficient,
€y 1is yield strain,
op is yield stress. ,
750 1 I T | T | T
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E -=——-—- L ]
—-— RO
150 | -
- 4
0 I | ! | 1 | 1
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Figure 4. True stress-strain curve

All computations are based on 3D elastic-plastic analysis using FEM, concretely
Abaqus version 6.1. 3D model of specimen is shown in the Figure 5. It is only one
quarter of real body because of using two planes of symmetry. Models were meshed
with eight-node hybrid elements provided by the finite element code Abaqus. 15 680 of
elements (C3D8H) were used, which means 17884 nodes. The figure below (Figure 6)
shows the detail with the crack. All solutions have to be evaluated at a distance of cJ/cy
ahead of the crack tip (c=1-5). This region of interest is very small and stress and strain
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gradients are steep. Hence, a very fine mesh is required. Element size is increased as the
radial distance is increased from the crack front. .

Quter radius of the area (Figure 6) is 0.1 mm and the crack tip radius was 0.01mm.
Twelve elements were used for dividing this radius. Thus the characteristic element
length was 8,3.10* mm. Ten elements in the direction of thickness were used.

Figure 6. Detail of the crack tip

The real system consists of the specimen, the punch and rollers. These three parts are in
contact and that is why the contact between the specimen and punch and between rollers
was modelled. The length of elementary face and contact pressure were determined. 3D
contact solutions need a long time for computation and that a why the equivalent
pressure was applied on the equivalent face (Figure 7).



1600 L l LI B B ' LA l LI L

- ~ -~ ~ -
E 1200 N S e . ]
= [ N ]
o - M 1
g 800F \ ]
S L \ i
b L \ 4
o L \ 4
0 400 ) \ .
- Equivalent pressure 4
[ - —— -~ Contact pressure ]
0 i PR TN NN TN A TR YN N N | NN YO T A TR W NN O ]

0 04 0.8 1.2 1.6

Magnitude of elem. face a [mm]
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Four calculations were solved for range of value n in case of using deformation theory
of plasticity because of choosing the proper value n. In the Figure 8 there are force-
displacement curves for various numerical calculations. The bolt-dashed lines indicate
high and low experimental dependencies. It seems that all progressions for linear area
(force value to 40kN) are in good agreement with experimental values. To the contrary
force-displacement relations are rather different for area with overvalue forces.
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The selection of proper value n was based on comparing the relations between force and
displacement. After that value of hardening exponent n=8 was applied as the best fit, as
well as the value of hardening coefficient o=1. Hence the model of continual hardening
material was determined. Its behaviours are very similar as with real material with
Liiders strain region. Fracture forces were in interval 35, 65, 75 kN for specimens with
ratio a/W=0.5, 0.2, 0.1. In the case of modelling material behaviour by incremental
theory of plasticity fracture forces were too high and solutions were not converged
because of destruction of small elements near the crack tip due to achievement high
values of plastic strain. ,
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Figure 9. J-Q diagram

Results from numerical calculations are compared in the Figure 9. Apparently, there are
differences between Q-values due to using two ways of modelling the same material. In
this case, the incremental theory of plasticity could not be right because of numerical
errors, which appeared near the crack tip. It must be emphasised, that Q-parameter value
determined as odds between real stress from elastic-plastic solution and reference stress
normalized by yield stress value could be taken as parameter for assessment bodies with
crack, but only in case, that the same theory of plasticity and the same material stress-
strain curve will be used.

Relation in the Figure 10 was constructed for check calculation of the influence of
the specimen geometry to maximal principal stress near the crack tip distribution.
Distribution regions of maximal principal stresses from numerical calculations were
constructed for fracture forces interval. Essentially, when the applied force increases,
the global stress level increases as well. As to differences in maximal principal stresses
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between specimens, at first maximal principal stress increases when crack length
decreases (a =25 mm (a/W =0.5) and a =7 mm (a/W = 0.2)). After that the maximal
principal, stress decreases in case of specimen with shallow crack a=2.5mm
(a/W =0.1).
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Figure 10. Maximal principal stresses vs. crack tip distance
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Figure 12. Plastic deformation for standard (a/W=0.5) and small (a/W=0.1) specimens
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For better understanding stress trends ahead of the crack tip the relation between
maximal stress values and fracture force level was constructed (Figure 11). These
trends are given by changing boundary conditions near the crack tip. There are no
changes in the direction of specimen thickness, because the same thickness of specimen
and yield stress value is maintained. The same situation is in the direction of crack
propagation, because the same ligament is sustained too. The main serious change is
reducing material volume against of crack propagation direction. Plastic zone
monitoring is remarkably interesting for systematic and complex assessment in sphere
of elastic-plastic fracture mechanics. It stands to reason, that larger plastic zone
appeared in case of shallow crack due to higher fracture forces. The magnitude of the
plastic zone decreases with increasing crack length. Account of stress decreasing in case
of shallow crack is not unambiguous. But the main difference between standard and
small specimens is shown in the Figure /2. The plastic deformation is still closed in
material of standard specimen, but to the contrary plastic deformation flows on the
surface of small specimen and stress relaxation process is available.

5. Conclusions

It could be said that on the basis of numerical stress-strain analyses bodies with crack it
may be possible to determine suitable substitution of “real” material by continuously
hardening material model. This material model is trouble-free for all numerical
applications. Remarkably significant is the fact that using of deformation theory
reduced computational time more than ten times. Results obtained from incremental
method could be remarkably inaccurate arising high plasticity near the crack tip. It must
be stressed, that Q-parameter value determined as odds between real stress from elastic-
plastic solution and reference stress normalized by value 6, could be taken as parameter
for assessment bodies with crack, but only in the case, that the same theory of plasticity
and the same material stress-strain curve will be used in all solved problems. A new
important piece of knowledge is the fact that the maximal principal stress ahead of the
crack tip for the short crack specimen (a/W = 0.1) is markedly lower to the other crack
lengths. Geometric changes of specimens advert to possible change of the critical
fracture stress. This hypothesis was sustained by fractography analysis of fracture
surfaces, which extend approximately the same distances of initiation areas in all solved
geometries.
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INFLUENCE OF CONSTRAINT EFFECT ON TRANSFEREABILITY
OF FRACTURE MECHANICS CHARA CTERISTICS
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Summary: This paper presents the consideration on the change judgement of J-
integral and Q parameter as the base parameters of two-parameter elastic-plastic
Jfracture mechanics. An extensive set of non-linear 3D FEM analyses of SE(B)
specimens deals with crack front conditions, which are characterised in terms of
J-Q trajectories. Results of numerical s:mulatzons provide ”ejfecnve " thickness,
which can be used in statistical approaches.

1. Uvod

Mezi zakladni materidlové charakteristiky oceli patéi hodnota lomové houZevnatosti. Z
inZenyrského hlediska je houZevnatost vyznamnou vlastnosti konstruk&nich material, kterou
~ lze obecn€ definovat jako schopnost materidlu absorbovat energii pfed porudenim, a proto
jsou lomy podle energetické nérocnosti rozdéleny na houZevnaté a kiehké. Zavislost lomové
houZevnatosti na teploté lze na ose teplot obecné rozdélit na tii zakladni oblasti. Oblast
“dolnich prahovych hodnot (kiehké porudeni) prechézi v tranzitni oblast, po které nasieduje )
oblast hornich prahovych hodnot (tvamé porudeni). V kazdé oblasti je lomovéa houZevnatost
reprezentovana svou stfedni hodnotou, které odpovida piislusny rozptyl, pfiem# nejmensi
rozptyl hodnot lomové houZevnatosti pfipada na oblast dolnich prahovych hodnot a pri
posunu smérem k vy3§im teplotim se rozptylovy pas zvétSuje. V soudasné dob& obecnd-
.existuje nekolik pfistupt ve zpracovani naméfenych dat, jejichZ. spolednym cilem je co
nejpesn&ji popsat a vyhodnotit teplotni priib&h lomové houZevnatosti at jiZ- se jedna o
jednotlivé oblasti (CSN 42 03 47 1991, Wallin 2000) nebo o celou teplotm zavislost -
Moskovic 2001).

K velice Sasto pouZivanym materialiim v dosavadni technické praxi patii materiély
s nizkou a stfedni pevnosti. S vyhodou se oceli s nizkou a stfedni pevnosti pouZivaji na
vyrobu mostnich konstrukci a nejrizngjSich technologickych zafizeni. (zejména tlakové
nadoby urfené pro petrochemicky primysl). Stale v&tsi diileZitosti pak nabyva pouZiti t&chto
oceli v oblasti jaderné energetiky. Jedna se o vyrobu tlakovych nadob jadernych reaktord a
s nimi - souvisejicimi potrubnimi soustavami a v posledni dob& piedeviim o vyrobu
kontejnert, které jsou urécny pro pfepravu radioaktivniho materialu. Mechzmismy poruSovani
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téchto materialii spadajf zejména do tranzitni oblasti, ve které se mohou vyskytovat oba typy
lom@. Z hlediska hodnoceni lomového chovani je poruSeni materidlu kfehkym lomem
povazovano za velice vyznamne Trhlina se po prekrodeni své kritické velikosti zatne §ifit
bez potieby doddvané vnéj3i energic rychlostl zvuku vlivem akumulované elastické energie
celé soustavy. Predmétem pfedloZzené prace je zKouméni vlastnosti C-Mn oceli na odlitky,
kterd byla navrZena pro vyrobu kontejneru ureného k prepraveé radloaktwnxho materialu.
Vysledné byla stanovena lomova houZevnatost u téles s riiznou délkou trhliny namahanych
tiibodovym ohybem-télesa SE(B). Na ziklad¢ experimentalné zjisténé tranzitnf zavislosti
modelové oceli byla vytipovéna dolni st tranzitni oblasti, kde dochazi k poruseni v diisledku
nestabilniho §t&pného lomu. Hodnoty lomoyé houZevnatosti ve vySe zminéné oblasti jsou
reprezentovany hodnotami J-integralu, které vykazuji znadny rozptyl. Pro homogenni
materialy lomova - houZevnatost neni konstantou, ale obecné zdvisi i na geometrické
konfiguraci t&lesa s trhlinou, tedy na rozmérech zku3ebniho t€lesa, délce, poloze a orientaci
trhliny a zat&ovacich podminkach. Jiz dfive bylo prokézéno, Ze rozhodujicim aspektem pii
hodnoceni lomového chovani t&les je mikromechanismus poruSovani. V pfipad® poruseni -
nestabilnim §t€pnym lomem je za rozhodujici parametr brana velikost maximalniho hlavniho
nap&ti v urdité vzdalenosti pred Gelem trhliny, avSak za predpokladu, Ze mikromechanismus
tohoto lomu se ¥di podle teorie nejslabsiho &lanku: V souladu s poZadavkem komplexniho
hodnoceni vlastnosti. C-Mn oceli na odlitky byly kromé potrebnych experimentli provedeny
* numerické vypodty za pouZiti metody koneénych prvki. V ramci numerickych simulaci byly
vytvofeny vypodtové modely zaloZené na teorii kone&nych deformaci (finite strain) s cilem
nejvice se pfibliZit , realnému’ nesinguldmimu rozloZeni napetz pied Celem trhlmy Moznost
ziskani nesingulamiho pribéhu napetl pred Celem trhliny je v soucasnosti povazovana za
zakladni prcdpoklad pti posuzovani mikromechanismi poruSovani. PiestoZe je v piedloZené.
praci uvazovano poruscm nestabilnim $t&pnym lomem ukazuje se, Ze rozsah plastické zony
pied Celem trhliny je natolik velky, Ze neni moZné pouZit teorie linearni elastické lomové
mechaniky. VeSkeré numerické vypocty byly provedeny s uvaZovanim elasticko pIastlckeho
chovani materialu na prostorovych modelech. Cilem prace je (s vyuZitim MKP) posouzeni
pienositelnosti a korekce lomové mechanickych dat mezi standardnimi télesy pro statickou
zkousku tfibodovym ohybem, ktera spliiuji podminku malych plastlckych deformaci pied
Celem trhliny (podmmka SSY) a malymi télesy s trhlinou.

2. Material a metodika experimentu '

Pro experimentalni ucely byla pouZita nizkouhlikova manganova ocel na odhtky (CSN 42 27
07). Nejprve byly provedeny tahové zkousky na pomémych valcovych tymch s podatetni
mé&fenou délkou Ly = 30 mm a prim&rem zkouSené délky d = 6 mm. Pro mé&feni E)rodlouzem
bylo pouZito extenzometru. Rychlost pohybu pficniku byla vzdy 2 mm.min". Potfebna
zavislost skuteéného napéti na skute¢né deformaci (pro MKP vypodty) byla stanovena ze
ziskanych zaznam sily a prodlouzem ' : :

Nasledne byla uréena lomova houzevnatost u i typu zkuSebnich t&les s trhlinou pro
trlbodovy ohyb. Prvni typ pfedstavovala standardni t¥lesa s rozm&ry 25 x 50x 220 mm, pomér
délky trhliny k vy3ce télesa byl /W ~ 0.5. Pfedm&tem druh¢ho typu byla télesa o rozmérech
25 x 30 x 120 mm s pomérem a/W ~ 0.2. Télesa s rozméry 25 x 26 x104 mm a pomérem a/IW
~ 0.1 tvorily tieti typ zkuSebnich tles. Geometrie téles byla zam&mé zvolena tak, aby
jednotlivé typy téles byly mezi sebou geometricky podobne pfiGemZ ve viech zkoumanych
piipadech byIa zachovéna stejna velikost nosného prifezu zkuSebniho telesa-hgamentu
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Vsechny typy téles byly zkouSeny pfi rychlosti pohybu pfi¢niku 1 mm.min™. Tahové zkousky
1 zkouSky lomové houZevnatosti byly provadény v kryostatu za teploty —100°C v parach
tekutého dusiku. '

3. Vliv constraint na lomovou houZevnatost

Pfimym disledkem deformadng& zpevifujicich procesti v materidlu je vznik plastické
deformace v okoli &ela trhliny. Nésleduje intenzivni rist plastické deformace pred celem
trhliny, €imZ miZe dojit ke zmé&n& piivodnich podminek-b&Zné oznaCované jako podminky
malych plastickych deformaci (SSY-Small Scale Yeilding) na podminky nové-podminky
- velkych plastickych deformaci (LSY-Large Scale Yielding). Podminky LSY musi byt
chépény ve smyshu vztahu k rozm&riim trhliny, a tedy v Zadném piipadé nepfedstavuji vyskyt
plastické deformace ve velkém objemu materi4lu vzorku, Rozdil mezi obéma podminkami je
ilustrativn€ zobrazen na obr. 1. V takovém piipadé rozloZeni napétoveho pole jiz nelze popsat
pomoci jediného globalniho parametru (K faktorem p¥i uvaZovéni LELM nebo J-integralem
v ptipadé EPLM). Pro popis pole napéti se pouZiva dvouparametrova lomova mechanika,
V piipad€ aplikace EPLM je kritick4 hodnota J-integralu v okamZiku iniciace spojena vidy
s uritou hodnotou O parametru. Q parametr je chépén jako mira posuzujici stupefi triaxiality
napéti'na Cele trhliny vzniklé v disledku stisnéni plastické deformace a obecné je oznadovan
pojmem constraint (O'Dowd, Shih 1992). Byla navrZena J-Q formulace (O'Dowd, Shih
1991), kterd nam charakterizuje vlivy constraint na nap&tové pole, J je J-integral popisujici
deformaéni chovani a O je faktor vyjadfujici multiaxialitu napéti pfed Celem trhliny. Mé&feni -
lomové houZevnatosti na t&lesech s postupné se zkracujici délkou trhliny (klesajici pomg&r
- a/W) ukézala riist lomové houZevnatosti vyjadiené pomoci J,. Prakticky viechny modely
(napt. Al-Ani, Hancock 1991, Faleskog 1995) iniciace k¥ehkého porudeni pfedpokladaji, Ze
rozhodujici pro trigenerovani tohoto lomu je pritbéh a hodnota maximalniho hlavniho napéti.

oblast velkych plastickych pietvofeni
oblast koncepce J-integrélu

oblast koncepce K faktoru

oblast nedefinovatelna jednim parametrem

Obréazek 1 MozZné stupné zplastizovéni pred &elem trhliny: stav SSY(a), elasticko-plastické
podminky (b), stav LSY (c) '
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Rust J, je pék spojen s poklesem o7 u Cela trhliny (Dodds, Shih, Anderson, 1993). To
poukazuje na nezbytnost zavedeni dalSiho parametru, ktery vyjadfuje relaxaci maximalniho
hlavniho napéti u ¢ela trhliny. ‘ '

4. Numerické modelovani _

Refeni problémii lomové mechaniky je zaloZeno na znalosti deforma¢n&-nap&tovych
charakteristik pted &elem trhliny. V pfipadé hodnoceni chovani komponent obsahujicich
trhlinu, - elasticko-plasticka lomova mechanika pfesné urCuje vztah mezi maximalnim
 ptipustnym vn&j§im zatiZenim a parametry komponenty (rozméry t&lesa, materialové
vlastnosti, velikost a-poloha trhliny). Metoda koneénych prvki (MKP) predstavuje vhodny
nastroj pro ziskani prehledu rozloZeni poli deformaci a nap&tovych polich v analyzovaném
modelu. Pro fefeni problému byl zvolen programovy systém Abaqus 6.1. S vyuZitim dvou
rovin symetrie byla modelovéana ¢tvrtina realného télesa s trhlinou o poloméru zaobleni &ela »
= (.01lmm. Pro naslednou diskretizaci celé oblasti bylo zapotfebi 15680 prvki typu C3DS8,
" co¥ piedstavuje 17884 uzli. Charakteristickd délka prvku na Cele trhliny byla 8,3.10™* mm.
~Vegkeré vypoity byly provedeny az do hodnot lomovy sil, které odpovidaly jednotlivym
zkuebnim télesiim. Uniaxialni (tahovou) kiivku napéti-deformace popisuje Rambergova-
Osgoodova rovnice: '

e o (o) :
—= e | ©
& 0Oy - Loy

Material zkuSebnich t&les byl povaZovan za izotropni a homogenni s elastickymi konstantami

E=2,05.10° MPa, u=0.3. Stfedni hodnota meze kluzu byla gp=360 MPa a exponent
deformaéniho zpeviiovani n=8, koeficient deformacniho zpeviiovani a=/

a/W=0.5
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- Vysledkem analyz MKP modeli bylo ziskani prabéhi hodnot maximalniho hlavniho nap&ti
- pied Celem trhliny u viech typl modelovanych téles. Déle byly stanoveny hodnoty J-integralu
v celém pribéhu zatéZovani a hodnoty maximalnich posunuti uzlii ve sméru piisobiciho
zatizeni. VeSkeré vypocty byly nasledné porovnany s experimentalné ziskanymi zavislostmi
sila-pfemisténi sily s cilem ovéfeni spravnosti numerickych simulaci. I—Iodnoty Q parametru

byly stanoveny na zaklad€ definice (Shih, O’Dowd 1994); Q parametr je definovan v bode -

8=0, r=2J/ay jako podil diferencniho pole napéti a meze kluzu:

(GU )(’*1? = (o-u ) - (Jr}" )ref

Q= 2)
‘ Ty .9y
lecreném pole napéti 1ze podle (Nevalainem, Dodds 1995, Anderson 1995) voblasti r =
</70 : 5] A_ 0> apro ¢ < % povaZovat za konstantni. Jde o rozdil mezi skutednou napjatosti,

kterou ziskame z numerické analyzy, a referenénim polem napéti. Mezi nejb&Znéji pouZivany
ptistup vhodny k ziskani hodnot napéti referencniho pole patn metoda okrajové vrstvy
(Landes 1997, Nevalainem, Dodds 1995).
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Obrazek 3 J-Q zévislbst. ziskana pro tii konfigurace télesa a trhliny

Z obrazku 3 je patrné, Ze se zkracujici se délkou trhliny dochézi ke zvySovani hodnot Q
parametru. Divody zmén v jednotlivych pribézich hodnot O parametru je tfeba hledat
vsouvislosti s uritymi zmé&nami rozloZeni hlavnich napéti, ktera pfislusi jednotlivym
zkuSebnim télesim (tedy pomérim a/I¥). Byl pozorovan patrny pokles kiivky maximalniho
hlavniho nap&ti v zavislosti na vzdalenosti od ela trhliny ve smérm $ifeni u télesa s nejkratsi
délkou trhliny. Tento trend vyvoje je zplisoben zménou okrajovych podminek v okoli cela
trhliny. Ve sméru tloutky télesa k Zadné zméné nedochazi, protoZe je stéale stejnd. Obdobné -
je tomu ve sméru Sifeni trhliny, kde je vZdy stejné velikost nosného pfi¢ného prifezu. Jedinou
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zavaznou zménou je zmen3ovani mnoZstvi materialu v protisméru Sifeni trhliny se zkracujici
se jeji délkou. Napjatost v télese vznika teprve aZ jako disledek projevu plastické deformace.
Zietelné véti plasticka oblast u t€lesa s nejkrati délkou trhliny se dala o&ekévat v diisledku ,
vySSich zatéZovacich sil. S klesajici délkou trhliny se oblast stejnych hodnot plastické :
deformace prodluZuje a sklani smérem ke sméru ¥iteni trhliny. Velikost plastické zény se s

vzriistajici délkou trhliny zmensuje. U
t€les sa/W=0.1 a 0.2 je velikost
plastické zony pro nejniz8i lomové
sily srovnatelna. Vysv&tleni poklesu
napéti u téles s nejkrat¥i trhlinou ve
srovnani s ostatnimi t€lesy neni
([ jednoznalné; ale vie nasvédiuje tomu,
* Ze oblast plastické deformace u tohoto -

5E 7 J=30 MPamm

* - :‘_’"j;‘;‘:‘;:g; - : | t8lesa ,prorista® az na povrch, éimi
25F  — -« — aW=01 | dochézi kvEtsi relaxaci napdti, nez |
L o — | kdyz kdyby plastickd oblast zistala.
3 R WSS I R R ~uzaviend“ v télese. Vyse uvedené
0 04 02 2B [ . 04 %% metody numerického modelovani a -

_ ST poznatky ziskané na SE(B) t&lesech

R P S S AL R S e byly pouZity pro moZnosti hodnoceni

1 prenositelnosti lomov& mechanickych
. 1 dat znestandardnich t&les (a/W=0.1,
- 0= -0 .0 s0— 07 ! 1 0.2) na standardni tSlesa (a/W=0.5),
B | kterd spliiuji podminky malych -
1 plastickych deformaci (SSY). Na

05F = —h = e A

o I =50 MPamm zékladé mikromechanickych modeld
Ll _ (Anderson, Dodds 1991)
| — alW=0.5 aplikovanych pro popis procesu
Py R :m:gf poruSovani u &ela trhliny, lze
L ) transformovat  globdlni  parametr
R E S WS S R naméfeny na télese jedné geometriena -
0 0.1 0.2 03 0.4

2B oo ® t€leso jiné geometrie (tzv. Toughness
Scalling Model — TSM). _
DiileZitou otazkou spojenou s 3D

0 T T T T T -
. ! 4 modelovinim~ je stanoveni vlivu °
5L a b e, kone&nych rozméri télesa na hledané °
i - lomové charakteristiky. Jednd se
A¢- c o= s0m L0 0T 0 zejména o vliv konetné tloudtky
- télesa na priib&hy J-integralu tzn. urdit
o ™[ J=70 MPamm oblast dominance rovinné napjatosti
(RN) resp. rovinné deformace (RD).
N aP=0.5 Pro posouzeni vlivu kone&né tloustky
25l . :"N‘;‘,’:gf tlesa (efekt out of plane constraint)
| S na priibéhy hodnot Q parametru v
3 N R SR blizkosti ~ &ela  trhliny  byly
o 01 7 02 03 04 05 zkonstruovany zavislosti na obr. 4. Na

ZB L] svislych osach jsou vyneseny hodnoty

Obrazek 4 Pribhy O parametru po tloutce télesa. O parametru spodtené podle vztahu
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V3echny typy té[é-s- byly zkouSeny pfi rychlosti pohybu pfi¢niku 1 mm.min™’. Tahové zkousky
1 zkouSky lomové houZevnatosti byly provadény v kryostatu za teploty —100°C v parach
tekutého dusiku. '

3. Vliv constraint na lomovou houZevnatost

Pfimym disledkem deformatng zpevilujicich procesi v materidlu je vznik plastické
deformace v okoli Cela trhliny. Nasleduje intenzivni riist plastické deformace pred Zelem -
trhliny, ¢imZ miZe dojit ke zmén& plivodnich podminek-béZn& oznalované jako podminky
malych plastickych deformaci (SSY-Small Scale Yeilding) na podminky nové-podminky
~ velkych plastickych deformaci (LSY-Large Scale Yielding). Podminky LSY musi byt
chapény ve smyslu vztahu k rozm&rim trhliny, a tedy v Z4dném pripadé nepfedstavuji vyskyt

plastické deformace ve velkém objemu materilu vzorku. Rozdil mezi ob&ma podminkami je =~

ilustrativng zobrazen na obr. 1. V takovém pfipadé rozloZeni napétového pole jiz nelze popsat-
pomoci jediného globalniho parametru (K faktorem p¥i uvaZovani LELM nebo J-integralem
v ptipadé EPLM). Pro popis pole nap&ti se pouZiva dvouparametrova lomova mechanika.
V pfipad€ aplikace EPLM je kritick4 hodnota J-integrélu v okamziku iniciace spojena vZdy
s uritou hodnotou Q parametru. Q parametr je chapan jako mira posuzujici stupeii triaxiality
napéti'na Cele trhliny vzniklé v disledku stisn&ni plastické deformace a obecné je oznacdovan
pojmem constraint (O'Dowd, Shih 1992). Byla navrzena J-Q formulace (O'Dowd, Shih
1991), kterd ndm charakterizuje vlivy constraint na nap&tové pole, J je J-integral popisujici
deforma&ni chovani a Q je faktor vyjadiujici multiaxialitu napéti pfed Celem trhliny. Méfeni -
lomové houZevnatosti na t&lesech s postupn& se zkracujici délkou trhliny (klesajici pom&r
- /W) ukazala riist lomové houZevnatosti vyjadiené pomoci J.. Prakticky vSechny modely
(napt. Al-Ani, Hancock 1991, Faleskog 1995) iniciace kiehkého poruSeni predpokléadaji, Ze
rozhodujici pro trigenerovani tohoto lomu je priibéh a hodnota maximalniho hlavniho napéti.

oblast velkych plastickych pretvofent
- oblast koncepce J-integrélu

oblast koncepce K faktoru

oblast nedefinovatelna jednim parametrem

Obrazek 1 MoZné stupné zplastizovéni pred elem trhliny: stav SSY(a), elasticko-plastické
podminky (b), stav LSY (c)
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pouZity pro konstrukci TSM d1agramu szovani efektlvm tlou§t’ky se zatizemm u vsech
1ypu t8les neni prekvapivé. Vice zajlmavym se miZe jevit fakt, Ze nevétii efektivni tloustky
je dosazeno v pripads télesa s pomé&rem a/W=0.1, i kdyZ rozdily oproti ostatnim t€lesim jsou
velmi malé. Davody jsou shledany v geometrii pfi¢ného priifezu, Priibéh efektivni tloutky u
télesa s a/W=0.2 naznacuje 7e projevy ,out of plane constraint* jsou v cilovém chovani t€les
s trhlinou protikladem projeviim ,,in plane constraint“, a proto u ctvercovych priifezs mze
byt déle drZena oblast J-Q dominance ve sméru tloust’ky télesa.
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FATIGUE CRACK GROWTH AND DELAMINATION IN FIBER
METAL LAMINATE (GLARE)
DURING LOADING WITH POSITIVE MEAN STRESS

A. Chlupova', V. Kozak™

Abstract: The aim of the paper is to present the results of a study on the damage of fiber metal laminate
(GLARE) subjected to the low cycle fatigue loading with positive mean stress. The fatigue crack initiation
and growth was observed on the surface of notched specimens and then the individual layers of ‘fatigued
Specimens were removed by chemical etching and polishing to obtain data about cracks length and
delamination shape and area. Mechanism of initiation and crack growth in this type of materials differs
Jfrom homogeneous monolithic materials. The fatigue life in term of number of cycles to crack initiation
depending on amplitude of local plastic deformation and local stress in the notch root was evaluated.

Keywords: Fatigue, laminate, crack initiation, crack growth, delamination

1. Introduction

Fibre metal laminates (FMLs) were developed at Delft University of Technology in Netherlands
(Roebroeks 1991). These hybrid laminates consist of fibre reinforced plastic layers, so-called prepregs
alternating with metal sheets of aluminium alloy. This combination connects outstanding fatigue
resistance and high strength properties of glass fibre composite and ductility of metal layers.

FMLs can be strengthened by different kinds of fibres (Chlupova 2002). Material in this study
with commercial name GLARE contains as reinforcing fibres the high strength S-glass fibres. For the
metal sheets, the aluminium alloy 2024-T3 of thickness 0.4 mm is used (Prasilova 1998).

The concept of hybrid materials was developed primary for aviation applications (Vasek 1999) and
presently is used as a fuselage of Airbus A380 (Hinrichsen 2002); nevertheless it can have very wide
range of employment as a material for automotive and ship industry, wind power plants, sports, up to
unusual applications such as manufacturing of music instruments or prosthesis in medicine.

FMLs possess different kinds of properties and their anisotropy allows tailoring material exactly
according to the stress-strain fields acting in particular structural part (Chlupova et al. 2001). Basic
mechanical properties such as strength and stiffness are comparable to conventional materials. The -
other properties like impact and fire resistance, formability, manufacturability, reparability, weight -
savings, low costs of production etc. offer in many cases significant advantages and are in the centre
of attention (Yaghoubi 2012, Moussavi-Torshizi 2010, Park 2010). The drawback of this material can
be seen in the lack of knowledge, i.e. due to insufficient data and information about material
characteristics the designers aren’t able to make the right decisions at design of structural parts and
hesitate to apply FMLs for broader industrial applications. '

The aim of this work is to present results obtained at study of fatigue properties of one kind of
FML. Contrary to the monolithic metal materials the GLARE exhibits among others longer fatigue life
and extremely elongated stadium of fatigue crack propagation which makes this material safer and
damage tolerant. Zehnder in his work compared two types of materials: 1) homogeneous material and
2) layered material made of metal and plastics laminas without fibres, show that plastic layers operate
as a barrier and a kind of bridging element (Zehnder1997). The glass fibre layers in GLARE can

* Ing. Alice Chlupova, Ph.D.; Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22; 616
62, Bmmo; CZ, e-mail: prasil@ipm.cz _
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therefore even more improve the mentioned barrier and bridging effect. Glass fibre layers have very
positive effect on postponing of initiation and on retardation of propagation of already initiated fatigue
cracks. This fact elongates efficiently fatigue life and increases safety of structural parts made of this
kind of material (Prasilova 1998). ,

2. Experiment

Material used for investigation: GLARE 2 have unidirectional fibre orientation. Flat specimens
having dimensions 200x50mm and thickness: t = 1.4, 3.1 and 6.5 mm (i.e. with number of layers 3/2,
6/5 and 12/11) were provided with different kind of notches: specimens with central semicircular or
circular notch or two side shallow notches with stress concentration factor K, = 12,24 and 3.2.

The cyclic loading was performed in force control regime, i.e. different levels of stress amplitudes
were chosen with parameter of asymmetry of R = 0.04. Specimens were loaded by computer
controlled servohydraulic testing machine MTS 880 at room temperature. Maximum applied stress in
cycle Oy varied from 90 to 450 MPa in individual test.

Fatigue crack initiation and growth was observed in-situ on the surface of notched specimens. The
surface metal layer at the notch root area was mechanically grinded and polished before the loading to
facilitate observation of crack initiation and growth. Observation and measurement of crack length
during loading was performed using microscope QUESTAR QM-100 and CCD camera. The data
acquisition during loading was performed. Loading was terminated at length of surface layers about 10
mm or at number of cycles 10°. After test termination the destructive analysis was performed.
Individual layers of laminate were removed by means of chemical etching and mechanical grinding
and polishing. A level of material degradation inside of laminate was evaluated (ie. for cracks the
number, length, place and direction of growth were investigated; for delamination the size and shape
were assessed).

3. Results

FMLs are very complex material which means that damage in this type of material is even more
complex problem. The damage can occur at different levels as is seen in Fig. 1.

I fibre/matrix I I Lamina l l Iaminate J

Cracks in Damage of
matrix > interface
b ,
™ ’
Longitudinal Transversal s
’ I, i
= . 4
Fibre/matrix J ’l
delamination /> .
'
¢ Waviness of Yy~ Jpominea 1~ af Compressive
fibre _. j" damage
. " Tensile
Damage of fibre

Fig. I: Different types and levels of damage in hybrid laminates.

Mechanism of initiation and crack propagation differs from the mechanism of initiation in
homogeneous monolithic materials. Fatigue cracks initiate first in metal layers in inner layers of
laminate. The cracks initiated always at metal prepreg interface even in case of surface metal layer.
The latest is the initiation in surface layers nevertheless the crack growth on surface of specimen was
the fastest. The crack front in FMLs is not continuous, it is created by crack fronts in individual layers
laying usually not in one plane and with the maximum length on the surface of specimen. It is -
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different from the crack front in monolithic metal materials where it is continuous, in one plane and
curved with maximum length inside of material.

The initiation place is usually under some angle from the notch root (Fig. 2a). The deflection
depends on the type of notch and applied stress (in case of central circular hole it was about 7 to 12
degree at lower applied stresses and 5 to 20 degree for higher applied stresses). The wide range of
deflection angles of crack initiation place is connected mainly to: 1) fibre structure with intact fibres
directly in the notch root which prevent crack initiation and 2) cut fibres acting as defects are situated
at certain angle. Between areas of continuous and cut fibres i.e. outside the notch root there is a high
level of shear stress on fibre-matrix interface and high level of interlaminar elastic and plastic
deformations. The initiation in the notch root is therefore less probable (see Fig. 2b).

GLARE 2 (3/2) e crack in the outer metal layer .
/ \_ m:ck{n lhemnarmgtalisryer T T T T T T T T

delamination on the interface
A L

toot of the notch

area of high shear
stresses on the
layer interface

——

border of the plastically|
deformed area

andle @ svmmen
characterizes ~ Sufface
distancs batwe
the initiation
place and the
noteh reot

AF prasgreg Al procprsg M

Fig. 2: a) Deflection of crack initiation angle and
b) shear stress in the fibre reinforced lamina with circular notch.

Shortly after initiation the cracks are radial i.e. they grow perpendicularly to the edge of the notch.
After some propagation period (approximately when cracks reach length corresponding to the notch
radius) the cracks deflect to the direction perpendicular to applied loading. From comparison of
situation inside and on surface of laminate it is obvious that number of cracks in metal layers inside of
laminate is bigger and crack length is smaller.

Number of cycles to crack initiation N;, and to elongation to defined length N; were evaluated in
dependence on applied stress level. Obtained results for different notch and different thickness of
specimens from unidirectional material GLARE 2 are shown in Fig. 3.

500 T time to the initiation
[ GLARE 2 Kt layering
R =0.04 O 1.2 12/11
+ 3.2 12/11
= 400 i v 24 12/11
A AN 24 65
E < 2.4 3/2
— 300
] lifatime
E @ Kt layering
e L > @ 1.2 1211
200 1 ANS \ + 3.2 12/
\\S\ v 2.4 12011
[ + L A 24 85
100 ¢ 24 32
102 108 104 108 108

Fig. 3: Number of cycles to crack initiation and up to end of testing
Jor specimens with different lay-up and different notches.

Measured data were then used for finite element method calculation of local plastic deformation in
the notch root &,. At calculations in 2D analysis by means of ABACUS software the elasto-plastic
behaviour of metal layers and internal stresses in unidirectional laminate GLARE 2 were taken into
account (Chlupova, 2001). A plastic deformation in- metal layers was calculated according to
experimentally measured monotonic hardening curve of aluminium alloy 2024-T2, the residual
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stresses caused by laminate preparation method were taken into account. Results of FEM calculations
of plastic deformation for specimen with central circular notch are graphically represented in Fig. 4.

6 T I
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Fig. 4: Results of FEM calculations for specimen with central circular notch.

Calculated amplitude of local plastic deformation in aluminium layers in the notch root was then
displayed in dependence of number of cycles to initiation (see Fig. 5a). As it is seen from the plot, all
data points obtained for different stress concentration factors K, lie on one curve.

&, =0,036- N, o 1)

Amplitude of local plastic deformation in notch root can be therefore considered to be the
parameter determining number of cycles to fatigue crack initiation in notched specimens from the
material GLARE, similarly like in the case of homogeneous materials (Polak 1991).
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Fig. 5: Dependence of number of cycles to crack initiation (N;,) on a) amplitude of
local plastic deformation in the notch root and b) local peak stress
in aluminium layers the notch root of specimen.

.Local plastic deformation in the notch root is induced by local stress Opea, Which is given by
maximum applied stress G, The value of local stress can be calculated using stress concentration
factor in metal layers K, 5 and internal residual stress in metal layers o; 4 as follows:

O-peak = o-maxK1,A|' + o'r,AI (2)

In the Fig. 5b there is the dependence of number of cycles to initiation on calculated local peak
stress according to equation (2) for different thicknesses and different notch factors together with

approximation of data by power function:

O o =5285- N, 3)



Chlupovd A., Kozak V. _ 535

Relationship between Nin, K;a;, O;a and Op,, given by eq. (2) and (3) explains experimentally
observed lower number of cycles to crack initiation in thicker laminates. In laminates with higher
number of layers (12/11) due to curing cycle in autoclave the higher tensile residual stress in metal
layers are present, i.e it results in higher level of local stress in the notch root Gp, and consequently
the lower number of cycles to crack initiation. This trend is more pronounced for lower levels of
applied stress Gpax. :

Delamination is one kind of damage in laminates which is related to crack initiation and growth
(see Fig. 6a). Delamination for this type of material has nearly elliptical shape. The delamination size
can be thus characterised by ratio b/l, where 1 is crack length and b is the height of delamination in the
notch root. These two parameters are also axis of “half-ellipse” which can be used as a good
approximation of delamination shape. The appearance of delaminated areas on the resin rich surface of
prepreg after removing of metal layer with four cracks in specimen loaded at maximum applied stress
450 MPa are exhibited in Fig. 6b. i '

AR AR R

Fig. 6. a) Scheme of relationship between crack growth, delamination and
fibres bridging the opening crack; b) real shape and range of delamination.

As soon as the crack in metal layer is initiated simultaneously the delamination appears as a result
of shear stresses on layers interface. The size of delamination depends on many factors such as crack
length, crack growth rate, fibres properties and fibres volume fraction but predominantly on quality of
adhesion on interface. The presence of delamination of certain size is essential to create optimal
conditions for outstanding fatigue resistance; nevertheless a judging of effect of adhesion quality is
difficult due to its antagonistic influence on delamination. Strong adhesion results in small
delamination. In the extreme: in the case of no delamination, the length of fibres actively acting on
crack closure would be so small that crack wouldn’t open and crack would stop. On the other hand at
these conditions the loading of short part of fibres would be so enormous that it would cause the
failure of fibres. The right function of fibres and their bridging effect wouldn’t be thus possible. Weak
adhesion results in big delamination and significant decrease of bearing capacity. In the extreme: it
would cause debonding of laminate along the fibre-matrix interface. In that case the transfer of loading
through shear stresses from metal to prepreg layers and vice versa wouldn’t be possible.

4. Conclusions

Fatigue behaviour of fibre metal laminates containing as a reinforcing material glass fibres was
studied. It was found that FMLs exhibit different mechanism of initiation and growth of fatigue cracks
than homogeneous monolithic metallic materials. Cracks initiate first inside of laminate, exhibits
shorter period of crack initiation and strongly elongated period of crack growth. Number of cracks
initiated from the notch is higher and the place is transferred out of the root of notch.

The situation in"inner and outer layers of laminate differs slightly — the initiation in inside layers is
earlier, nevertheless the growth is stower than on surface. Prepreg acts as an effective barrier against
crack growth from one layer to another. Cracks thus grow separately and independently. Crack growth
was monitored in relation to growth direction and growth rate.



*

536 Engineering Mechanics 2012, #300

Relations for prediction of number of cycles to crack initiation and fatigue life of notched
specimens from laminate were specified. The dependence of initiation on local plastic deformation
and/or local stress in the notch root of metal layers was evaluated.

The delamination for both types of material (GLARE2 and GLARE 3) was found to be dependent
on type of material, crack length and location in the metal-prepreg interface closer or farther from the
specimen surface.

Delamination area is proportional to crack length, which induced it. Range of delamination is
affected by level of shear stresses at metal-prepreg interface. It was found that the shape of
delamination in material GLARE can be approximated by an ellipse. The higher is the level of
maximum applied stress the higher range of delamination it evokes. The proper function of laminate,
i.e. bridging effect of reinforcing fibres on growing crack, can be assured only by optimum strength of
adhesion which causes suitable delamination area.
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Abstract

Fracture toughness transition behavior of C-Mn cast steel intended for fabrication of large
transport and storage container for spent nuclear fuel (SKODA 440/84) has been carried out.
The fracture resistance has been assessed using data from static tests of the bend CVN and
pre-cracked (PCVN) specimens and from the axisymmetric notched tensile specimens. Local
material parameters have been calculated arising from Beremin approach. Accepting this
approach to the analysis of local criteria for cleavage fracture the location o, and shape
parameters m were calculated using FEM for notched tensile bars having various type of
geometry. The first one was the tensile specimen with the same circumferential notch the
same as for Charpy (CVN), the other three types were U geometry with radii 1; 0.7; 0.2 mm.
The fracture toughness scaling diagram based on the local approach has been generated.

1. Introduction

The aim of the paper can be seen in using the Beremin conception [1] of local approach to fracture
resistance assessment. The local approach uses internal microscale variables related to the material damage
evolution in order to predict initiation of macroscale cracks in an elastic plastic regime. This methodology
has been an invaluable complement for classical fracture mechanics which is based on a single parameter
for characterizing fracture but not reproduce the transitional behavior satisfactory. The local approach
consists of application of finite element calculation using very fine mesh to predict fracture. The use of
Weibull statistics for modeling of defect distribution over characteristic volume of material under a critical
state of stress allows the probability of general unstable fracture to be predicted. The main steps are
determination of the first principal stress at the experimentally obtained load level at fracture, calculation of
the Weibull stresses at fracture and an iterative maximum likelihood procedure for distribution parameters
of the Weibull stress. The effort is concentrated on (i) the use of notched tensile bars and (ii) small test
specimen (Charpy V notch or pre-cracked CVN) for fracture toughness temperature diagram determination
including scatter characteristics.

Transport and storage containers for spent nuclear fuel have to ensure the safe enclosure of a
radioactive material and must meet stringent requirements on safety. They must ensure the storage of
radioactive material safely for expected container lifetime and also in the case of the most severe
accident loading and earthquake shock. The container should be highly resistant to temperature and
radiation embrittlement. Skoda Nuclear Machinery (Czech Republic) has introduced new design of a
container for spent nuclear fuel. The cast design is based on thick walled pipe with bolted lids, both
fabricated from cast low alloyed steel with ferritic microstructure.

For the safe enclosure of the radioactive material during transportation it must be shown that the crack
extension will not occur. For the safe storage additional embrittling effects should be taken into account.
Brittle fracture can occur under specific combination of temperature, mechanical and environmental
loading conditions. When assessing if the material satisfies the demand on container resistance against
catastrophic failure the following key problems have to be addressed from the fracture mechanical point
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of view: (i) the transferability of fracture toughness data measured on small specimens to the component
of much larger dimensions. And (ii) the prediction with a good probability of brittle fracture in case of
the most severe accident loading and in case of radiation embrittlement.

2. Theoretical background of the local approach

In the local approach to cleavage fracture, the probability distribution (Ps) for the fracture stress of a
cracked solid at a global level K; or J is assumed to follow a two-parameter Weibull distribution [1,2] in
the form:

GW m
P (o) =1—exp{— ") } "

the stress integral over the fracture process zone is denoted oy and is termed the Weibull stress. This

stress is defined by
1/m
o, = ij(jlde :
Vo )

where m is so-called Weibull slope, V, is a reference volume, the integral is computed over the plastic
zone, and o is the first principal stress. The parameters o, and m of the Weibull stress o at fracture are
material parameters, i.e. independent of the stress state of materials, but may depend on the temperature.
The first principal stress values are obtained from ABAQUS stress analysis and the Weibull stress is
integrated element by element.

The determination of two parameters m and oy has to be performed iteratively as ow depends on the
parameter m. This can be done by the least square method or preferably by the maximum likelihood
procedure, e.g. [2,3], ou can be determined by the following equation

o, = (;i(aw(j))m jl/m. @)

j=1

3. Material and experiment

Manganese cast steel has been utilized for experiments having a chemical composition in wt % given in
Tab. 1. Skoda Company has supplied the material as a component part produced for attest of the
container of nuclear spent fuel. To guarantee the microstructure of specimens used for the static test to be
the same as that of an inner part of cast body the computer simulation of cooling of semi-product has
been used. The heat treatment was done in the laboratory of SKODA Research Ltd. and as the result of
this modeling was the scheme how to cut this experimental plate in size 55 x 90 x 250 mm from which
three tested bodies were produced (in size 50 x 25 x 240 mm) for brittle fracture experiments. The size of
semi-product was the compromise between the cooling rate for cooling simulation and furnace capacity.

True stress-strain curves have been measured using cylindrical specimens with a diameter of 6 mm
being loaded over a temperature range of ~196°C to -60°C at cross-head velocity of 2 mm.min*. Standard
FEA — ABAQUS 5.8 was used to model elastoplastic behaviour for tensile notched specimens.

Fracture toughness data were measured using a standard 25 mm thick specimen with a/W ratio of 0.5
loaded in the 3-point bending. Small pre-cracked Charpy type specimens have been also tested in the
same temperature range. For one selected temperature in lower shelf region (below temperature Tgy at
which Fer and Fgy coincides on their temperature dependencies) a range of round tensile-notched bars
were tested to obtain data for statistical local approach procedure treatment.
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C Mn |Si P S Cr Ni Cu Mo |V Ti
CSN | Max 1 0,2 |[Max. |Max. [Max. |Max. [Max. |Max. [Max. |Max.

0,12 16 (05 |003 (0,02 |03 0,4 0,3 0,15 (0,03 0,05
melt |0,1 1,11 (0,36 |0,01 (0,015 |0,11 (0,28 |0,28 |0,03 |- -
plate |0,09 1,18 (0,37 |0,01 (0,025 |0,12 (0,29 |0,29 |0,03 (0,001 |0,002

W Sn Al Nb Co As Sb
0,01 | 0,055 | 0,038 | 0,004 | 0,012 | 0,012 | 0,0095

Plate

Table 1: The chemical composition of manganese cast steel.

4. Numerical modeling

Accepting the Beremin approach and ESIS methodology [4] to the analysis of local criteria for cleavage
fracture the location o, and shape parameters m were calculated using FEM for notched tensile bars
having various type of notch geometry (Table 2). The first one was the tensile specimen with the same
circumferential notch as for Charpy (CVN), the other three types were U-notch geometry with radii
1;0.7;0.2 mm. Statistics were made at least for 20 replicated experiments in all cases. The influence of
geometry and quality of mesh for FEM is presented in the Table 4 (Vo = (100e-6)° m®, ow/co = 1).

The intrinsic model for notched bars is proposed with respect to symmetry as a half of bar. The
axisymmetric elements CAX6 from Abaqus FEM [5] package are being used. In case of Charpy body
the C3D8I elements were applied and due to symmetry the fourth part of body was solved.
Approximately the same element size ahead the crack tip in the region 1 mm is being used because the
data from this region are mainly exerted for determination of Weibull stress. The radii of notch was
divided at least into 20 parts. The principal stress distribution at the maximum fracture force can be seen
in Figure 1.

Geometry | No. of elements | No. of nodes | No. of plastic No. of plastic Steps | CPU time
elements nodes. [min]
8243 16784 7625 12234 17 48
V notch
10279 20784 8747 16234 20 56
Ulmm
8755 17836 7765 15788 14 39
U 0.7 mm
11303 22966 9645 18496 15 54
U 0.2 mm

Table 2: FEM mesh for various geometry

For the following step of modeling the right setting of determined material characteristics of the cast
steel is necessary. As can be seen in [6], at tests temperatures the stress — strain curve has the region
where the Liiders deformation is dominating. Therefore the standard relations seems to be not
appropriate for the modeling. Incorrectness of standard Ramberg-Osgood or exponential description and
then necessity to use piecewise linear description expressed in case of modeling the body with a crack.
The dependence measurement the true stress true strain provides the information below the values of
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deformation 0.15-0.2. After some numerical tests and their comparison with experiments, the next
expression in Tab. 3 were applied.

Yield stress £<0,002434 — | o =695,6%c + 496 at-160°C
0,03981>
hardening £<0,03981 —0,9> | 5= 1151% g 02436

E =205 000 MPa

Yield stress £<0,0017512 — | o =5622%¢ + 361 at —100°C
0,02429>
hardening £<0,02429 — 0,9> | 5= 1110% g 291

E =205 000 MPa

Table 3: Material properties

The presented results for geometry which can be seen in Fig. 1 show the plastic size difference as to
region where the maximal principal stress is dominant. For the sharp notch the localization is close to
notch tip, but for the notch with big radius is distributed in bigger profile. To verify each experiment and
its numerical results the checkup of the elongation and the contraction was done. The example of this
procedure can be seen in Fig. 2.

Stress distribution ahead Stress distribution ahead
of notch tip U - 0.2mm of notch tip U - 0.7mm
1200 T 1200
@ 800 g 800
8 @
ﬁ o
g ol
= £
S 400 5 400
0 : : ! 0 I | |
0 1 2 3 4 0 1 2 3 4
distance [mm] distance [mm]

Fig. 1: Stress distribution ahead of notch tip

In case when the measured and computed values are compared the quality is different for various
geometry. This discrepancy can be explained by two factors. The first one is caused by the variability of
yield stress and length of Liiders deformation, the second one by the different level of plastic
deformation size. The both factors put forth at the same time by the comparison of data record force —
elongation for various tested body geometry. This discrepancy is due to own measurement of elongation
where the Liiders deformation plays the dominant role. This phenomenon was observed at experiments
for which the dependence force — contraction was measured. In case U notch 0.7 mm the accordance was
nearly perfect and we can raise a presumption that the computation in place of local deformation is less
sensitive with respect to variability of material characteristics given by static tensile test, especially for
the material in inhomogeneities such as can be found in cast steel.
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10

Unotch 1.0mm

Unotch 1.0mm

0 O SRR B 0 O R BN
-0.2 -0.16 -0.12 -0.08 -0.04 0 0 0.04 0.08 0.12 0.16

contraction [mm] elongation [mm]

0.2

Fig. 2: Elongation and contraction for U notch = 1 mm, the mean value is received from FEM, outer
values corresponds to the maximum and minimum of the fracture force

To determine the local parameters it is very important how to modify the base statistical data set.
After the surface fracture inspection it is needful to omit these experiments whose character is unmatched
to the weakest link theory. A selection is based on the usage of scanning digital camera and the following
processing on a personal computer. The investigation showed that the right criterion for selection can
come from the following relation cw= f (&), kde &= -2In (d/d,). Example of a such dependence is on the
Fig. 3. The reference volume Vo is prescribed in [4] to be 0.001 mm? This value relates to microstructure
dimensions as well to the element size of the FE mesh. The acceptable choice is this where the curve is
linear. It means that in our test set in case U notch with radius 1 mm and 0.7 mm the valid data are for
the deformation greater then 4 %, but for the specimen with U notch 0.2 mm from 0.3 %.

The next problem solved in this paper is if the quality of the FE mesh size has some influence on the
generated local parameters. As can be seen e.g. in Tab. 4, the influence of this is nearly insignificant.
Establishing ow/co the influence of process zone was tested. But this aspect is insignificant for the same
geometry too. Another problem is the difference in obtained local parameters for different notch
diameter. The quality of generated local parameters can be seen in Fig. 4.

U notch 0.2 mm
~11300 ~6500 ~3500
owmlco m Cu m Ou m Ou
0 65.6 1340 64.6 1343 63.3 1350
1 65.6 1340 64.6 1343 63.3 1350
15 65.6 1340 64.6 1342 63.3 1350
U notch 0.7 mm
0 17.0 2485 16.9 2491 16.8 2506
1 17.0 2484 16.9 2491 16.8 2506
15 16.9 2489 16.9 2494 16.8 2508
U notch 1. mm
0 18.2 2117 17.8 2145 17.8 2146
1 18.2 2117 17.8 2146 17.8 2146
1.5 18.2 2120 17.8 2148 17.7 2149

Table 4: The influence of the mesh size and of the used process zone
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Determination of valid data according
to strain value for U notch 0.7 mm
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mean strain[%)]
Fig 3: : The valid data determination, vo is given in mm?
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Fig 4: Probability of failure for m=18, 6,=2117 MPa

5. Local parameters and fracture toughness scaling diagram

The development of methodology for prediction of fracture behavior of components and structures has
great practical meaning and one can suppose the new European norms setting and standard procedures
for valuation of integrity of construction. E.g. using the Charpy pre-cracked specimens indicates to be
very perspective for valuation of material degradation in nuclear industry.

The soundness of structures is usually ensured on the basis of several relatively well accepted rules.
These rules are supposed to be able to assess the integrity for complex engineering applications on the
base of exact measurement in laboratory, evaluation of received data according to standards and their
transferability to components and structures. The most recent investment proved that e.g. the well-used
characteristics as the fracture toughness cannot be generally used to the arbitrary geometry of body. The
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new methods of experimental and theoretical fracture mechanics should be provide the right rules to
solve it. Based on this concept, some works from seventies and eighties years are trying to predict values
of Kic and relations between Kc and absorbed energy CVN. Values developed by linear or elastic plastic
fracture mechanics are used for assessment of defect tolerance from a global view. At present, latest
approaches can be characterized mostly by the knowledge of micromechanics and micromechanisms of
failure. More recently the approach to the problems has been developed. This is the local approach which
relies upon the fact that it is possible to model macroscopic fracture behavior of defected components in
terms of local fracture criteria. This statistical approach, the methodology of local material parameters
measurement using notched tensile specimens and some prediction of brittle fracture behavior prediction
were worked out during solution of this problem. It is important to emphasize that local approach
methodology has wider spectrum of approaches than were incorporated in Beremin model and others.

The results demonstrates the strong dependence of crack-tip field on the specimen geometry, mainly
induced by shallow cracks and remote loading — the constraint phenomena is being studied. As can be
seen in literature the Weibull stress o, seems be as a suitable near-tip parameter to describe the coupling
of the remote loading with a micromechanical model incorporating the statistics of microcracks (weakest
link philosophy). Then one can used it to prediction of critical parameters of the fracture initiation for the
various cracks length and geometry of body. The material parameters received then make possible to use
the J — Q stress field for the determination of the critical value of J integral J. versus Q parameter. This
dependence J. —Q, incorporating the probability of failure, is more precise then the result based on model
of critical fracture stress. The result received can more precisely describe the behavior of bodies with
cracks and better study the problems of transferability of some fracture parameter from one body
geometry to another.

The first one methodic of transferability of the fracture toughness was studied on the pre-cracked

Charpy specimens and standard bodies (1T). The Dodds and Anderson [7] have proposed to quantify the
relative effects of constraint variation on the cleavage fracture toughness in the form toughness-scaling
model . They approached lost of constraint by postulating the material volume ahead of the crack front
over which the principal stress exceeds a critical value as a local fracture criterion without respect for the
J integral value. The first one studies can be found out in same woks, where as principal can be
regarded: (i) the Dodds and Anderson approach , (ii) the Koppenhofer approach , (iii) the Minami and
others [8, 9, 10].
(i) The method is getting from the philosophy of diagram construction Jo/bo, versus Jre/ boo, Where b is
body thickness and o, is yield stress. The principle is to transfer from tested geometry, where the elasto-
plastic fracture toughness is measured, to small scale yielding state (SSY). (ii) These method demonstrate
the dependence of Weibull stress ow on the crack-tip stress triaxility and the transfer diagram ocw versus
computed value of Jee is being constructed. The idea is to used to same value of probability of failure. In
the beginning we have to determine the local parameters, m and oy, and compute o of bodies of various
geometry. (iii) This approach is modified Koppenhofer method and the construction In(In(1/Ps))) versus
ow IS generated.

The results demonstrates the strong dependence of crack-tip field on the specimen geometry, mainly
induced by shallow cracks and remote loading — the constraint phenomena is being studied. As can be
seen in [9] the Weibull stress ow seems to be as a suitable near-tip parameter to describe the coupling of
the remote loading with a micromechanical model incorporating the statistics of microcracks (weakest
link philosophy). Then one can use it in the prediction of critical parameters of the fracture initiation for
the various cracks length and geometry of body. The material parameters received [10,11] then make
possible to use the J — Q stress field for the determination of the critical value of J integral J. versus Q
parameter. This dependence J. —Q, incorporating the probability of failure, is more precise than the result
based on model of critical fracture stress [8]. The result received can more precisely describe the
behavior of bodies with cracks and better study the problems of transferability of some fracture
parameter from one body geometry to another. The transformation diagram for three SENB geometry and
pre-cracked Charpy was determined and is presented in Fig. 5 and the calculation matrix in Tab. 5.
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Geometry Size [mm)] Nodes Layers Calculation
Charpy a/W = 0.5 10x10x55 16300 15 11
Charpy a/W = 0.5 10x10x55 35400 30 1

a/Ww=0.1 25x26x104 27800 15

a/W =0.2 25x30x120 23900 15 10

a/W =0.5 25x50x200 16200 15 1

Geometry al a2 | a3 a4 | a5 ab ] a7 | a8 | a9 | al0 ] all
Charpy a/W =0.5 [465| 48 | 49 |495| 5 |5.05]| 5.1 |52 |525]| 5.3 |5.55

a/W=0.1 2 (222|123 (242527 |28 32| 3.7

a/W=0.2 47 | 5.5 6 [6.15]| 6.3 | 6.5 7 72 (74|76

a/W=10.5 25

Table 5: Calculation matrix

2200 T T T T T T A
2100 | A .
& i
&
Pf =95% _
e .o
0.5 W/B=1
N 1 N
0 0.01 0.02 0.03 0.04

J/bs [-]
Fig. 5: Fracture toughness scaling diagram for the manganese cast steel

Scatter band can be generally described as can be seen in Fig. 6. We can say that the bigger is the
crack length the bigger is the scatter band.

6. Conclusion

The main results obtained in this work can be summarized into the following points:

- The Beremin model with strain correction (slightly adapted) is used for the calculation of cw. The
iterative procedure using the maximum likelihood theory was applied and the geometry effect for
various notch radius of tensile bars is observed.

- The local parameters generated on the geometry with U notch 0.2 mm, V notch 0.25 mm and on the
Charpy specimen give practically the same values.
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The valid local parameters are received on test specimens with notch radius 0.7 and 1 mm, where the
character of maximum principle stress distribution has no influence on the microstructure
inhomogenities which can be found in the cast steel.

The fracture toughness scaling diagram based on the local approach for three geometry was
determined and used for the transformation of data received on small pre-cracked specimens. Other

experiments are currently being carried out to test this approach.
The influence of the crack length on the scatter band has been observed, prediction on a/W =0.5 and

SSY(small scale yielding) can be seen in the Fig.8.

95% a__73,
Ow as
5% /
/|
=
d;>aPas

Fig.6: Fracture toughness scaling diagram based on the Weibull stress
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Fig. 7: Detail of mesh tip
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Abstract

In this work, the use of the Weibull stress as a measure of the failure
probability of cracked body is tested. Fracture of large engineering structures
and conventional safety assessment and integrity of components and structures
still remains a top field of research in the experimental and the theoretical
fracture mechanics. Weibull stress seems to be a parameter for prediction of
cleavage failure of cracked bodies and the study is focused to assess the effects
of constraint loss on cleavage fracture toughness (J.). To quantify the relative
effects of constraint variation on the cleavage fracture toughness the form of
the toughness-scaling model based on the Weibull stress s,, is investigated.
Local material parameters have been calculated arising from Beremin
approach. It is based on weakest link assumption and incremental fracture
probability, which depends not only on the maximum principal stress, but also
on the equivalent plastic strain. Accepting this approach to the analysis of local
criteria for cleavage fracture the location s, and shape parameters m were
calculated using FEM for notched tensile bars having various type of geometry.
The aim of the paper can be seen in fracture toughness correction from various
specimen geometries to small scale yielding (SSY). The fracture resistance has
been assessed using data from static tests of the bend specimens and from the
axisymmetric notched tensile specimens. The standard finite element method
package Abaqus was applied and the manganese cast steel considered for
storage and transport container for spent nuclear fuel (SKODA) was selected
as an experimental material.



1 Introduction

Transport and storage containers for spent nuclear fuel have to ensure the safe
enclosure of a radioactive material and must meet stringent requirements on
safety. They must ensure the storage of radioactive materia safely for the
expected container lifetime and also in the case of the most severe accident
loading and earthquake shock. The container should be highly resistant to
temperature and radiation embrittlement. Skoda Nuclear Machinery (Czech
Republic) has introduced a new design of container for spent nuclear fuel. The
cast design is based on thick walled pipe with bolted lids, both fabricated from
cast low-alloyed steel with ferritic microstructure.

For the safe enclosure of the radioactive material during transportation it
must be shown that the crack extension will not occur. For the safe storage
additional embrittling effects should be taken into account. Brittle fracture can
occur under specific combination of temperature, mechanica and
environmental loading conditions. When assessing if the material satisfies the
demand on container resistance against catastrophic failure the following key
problems have to be addressed from the fracture mechanical point of view: (i)
the transferability of fracture toughness data measured on small specimens to
the component of much larger dimensions. And (ii) the prediction with a good
probability of brittle fracture in case of the most severe accident loading and in
case of radiation embrittlement.

2 Theoretical background of thelocal approach

Cleavage fracture is a sequential process involving crack initiation and
propagation. Crack nucleation occurs in most steels at brittle grain boundary
particles (e.g. carbides) due to stress concentration caused by the dislocations
pile-ups at these particles. This explains the experimental fact that local plastic
deformation always preceded cleavage fracture. The local approach for
cleavage is based on the weakest link concept (see Fig. 1) which postulates that
failure of the body of a materia containing a large number of statistically
independent volumes is triggered by the failure of one of the reference volume
[1]. In Ref. [2], the reference volume V, was identified as a material volume
related to likelihood of finding cracked carbide. In afinite element analysisit is
kept to be constant and to be computed Weibull stress independent of the finite
element mesh used the size of the element in the plastic zone ahead the crack
tip must be smaller that size of V,,.

In the local approach to cleavage fracture, the probability distribution (P)
for the fracture stress of a cracked solid at a global level K; or Jis assumed to
follow atwo-parameter Weibull distribution [1,2] in the form:
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The stress integral over the fracture process zone is denoted s,, and is termed
the Weibull stress. This stressis defined by
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where m is so-called Weibull slope, V, is a reference volume, the integral is
computed over the plastic zone, and s; is the first principal stress. The
parameters s, and m of the Weibull stress s,, at fracture are material
parameters, i.e. independent of the stress state of materials, but may depend on
the temperature.
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Figurel: Fundamentals of the local approach.




The determination of two parameters m and s, has to be performed
iteratively as s,, depends on the parameter m. This can be done by the least
square method or preferably by the maximum likelihood procedure, e.g. [2,3],
S, can be determined by the following eguation
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3 Local parametersand fracture toughness scaling diagram

The development of methodology for prediction of fracture behaviour of
components and structures has great practical meaning and one can suppose the
new European norms setting and standard procedures for valuation of integrity
of construction. E.g. using the Charpy pre-cracked specimens indicates to be
very perspective for valuation of material degradation in the nuclear industry.
The soundness of structures is usually ensured on the basis of severa
relatively well-accepted rules. These rules are supposed to be able to assess the
integrity for complex engineering applications on the base of exact
measurement in laboratory, evaluation of received data according to standards
and their transferability to components and structures. The most recent
investment proved that e.g. the well-used characteristics as the fracture
toughness couldn’t be generally used to the arbitrary geometry of body. The
new methods of experimental and theoretical fracture mechanics should
provide the right rules to solve it. Based on this concept, some works from the
seventies and eighties are trying to predict values of K, and relations between
K,c and absorbed energy CVN (e.g. [1]). Values developed by linear or elastic
plastic fracture mechanics are used for assessment of defect tolerance from a
global view. At present, the latest approaches can be characterized mostly by
the knowledge of micromechanics and micromechanisms of failure. More
recently the approach to the problems has been developed. This is the local
approach that relies upon the fact that it is possible to model macroscopic
fracture behaviour of defected components in terms of local fracture criteria.
This statistical approach, the methodology of local material parameters
measurement using notched tensile specimens and some prediction of brittle
fracture behaviour prediction were worked out during solution of this problem.
It is important to emphasize that local approach methodology has wider
spectrum of approaches than were incorporated in Beremin model and others.
The first one methodic of transferability of the fracture toughness was
studied on the pre-cracked Charpy specimens and standard bodies (1T). The
Dodds and Anderson [4] have proposed to quantify the relative effects of
constraint variation on the cleavage fracture toughness in the form toughness-
scaling model. They approached lost of constraint by postulating the material
volume ahead of the crack front over which the principal stress exceeds a



critical value as a loca fracture criterion without respect for the J integral
value. The first one studies can be found out in same works, where as principal
can be regarded: (i) the Dodds and Anderson approach, (ii) the Koppenhofer
approach, (iii) the Minami and others[5, 6, 7].

(i) The method is getting from the philosophy of diagram construction J/bs,
versus Je/ bs,, where b isbody thickness and s, isyield stress. The principleis
to transfer from tested geometry, where the elasto-plastic fracture toughness is
measured, to small scale yielding state (SSY). Schematic outline can be seen at
Fig. 2. (ii) This method demonstrates the dependence of Weibull stress s, on
the crack-tip stress triaxility and the transfer diagram s,, versus computed value
of Jee is being constructed. The idea is to use to same value of probability of
failure. In the beginning we have to determine the local parameters, m and s,
and compute s, of bodies of various geometry. (iii) This approach is modified
K oppenhofer method and the construction In(In(1/P))) versus s,, is generated.

Figure 2: Schematic outline of modified boundary layer method.

4 Material characteristics and experiments

Manganese cast steel has been utilized for experiments having a chemical
composition in wt % given in Table 1. Skoda Company has supplied the
material as a component part produced for attest of the container of nuclear
spent fuel. To guarantee the microstructure of specimens used for the static test
to be the same as that of an inner part of cast body the computer simulation of
cooling of semi-product has been used. The heat treatment was done in the
laboratory of SKODA Research Ltd. and as the result of this modelling the
scheme how to cut this experimental plate in size 55 x 90 x 250 mm from
which three tested bodies were produced (in size 50 x 25 x 240 mm) for brittle
fracture experiments. The size of the semi-product was the compromise
between the cooling rate for cooling simulation and furnace capacity.



True stress-strain curves have been measured using cylindrical specimens
with a diameter of 6 mm being loaded over a temperature range of —196°C to -
60°C at crosshead velocity of 2 mm.min™. Standard FEA — ABAQUS 5.8 [8]
was used to model elastoplastic behaviour for tensile-notched specimens.

Fracture toughness data were measured using specimens with a/w ratio of
0.5, 0.2, 0.1 loaded in the 3-point bending. The size of these specimensis given
in Table 2. For one selected temperature in lower shelf region (below
temperature Tgy a which Frr and Fgy coincides on their temperature
dependencies) a range of round tensile-notched bars were tested to obtain data
for statistical local approach procedure treatment.

CSN Max |1 0,2 Max [Max |Max |Max |Max |Max |[Max | Max
012 |16 0,5 0,03 0,02 |03 04 0,3 0,15 | 0,03 |0,05
melt 0,1 1,11 (036 |001 |0,015(011 |0,28 (0,28 |0,03 |- -
plate 009 118 (037 |001 [0,025]|012 |0,29 (0,29 |0,03 [0,001 0,002

Plate | 0,01 0,055 0,038 0,004 0,012 0,012 0,0095

Table 1: The chemical composition of manganese cast steel.

Geometry Size [mm)] Nodes Layers | Calculation
Charpy /W =0.5 | 10x10x55 16300 15 11
Charpy W =0.5 | 10x10x55 35400 30 1

aw=0.1 25x26x104 27800 15 9

aw =0.2 25x30x120 23900 15 10

aWw =05 25x50x200 16200 15 16

Table 2: Specimens used for determination of the TSM diagram.

5 Numerical determinations of local parametersand TSM

Accepting the Beremin approach and ESIS methodology [9] to the analysis of
local criteriafor cleavage fracture the location s, and shape parameters m were
caculated using FEM for notched tensile bars having various type of notch
geometry. The first one was the tensile specimen with the same circumferential



notch as for Charpy (CVN), the other three types were U-notch geometry with
radii 1; 0.7; 0.2 mm. Statistics were made at least for 20 replicated experiments
inall cases.

The intrinsic model for notched bars is proposed with respect to symmetry
as a half of bar. The axisymmetric elements CAX6 from Abagus FEM [8]
package are being used. In case of Charpy body the C3D8I elements were
applied and due to symmetry the fourth part of body was solved.
Approximately the same element size ahead the crackstip in theregion 1 mm is
being used because the data from this region are mainly exerted for
determination of Weibull stress. The radii of notch were divided at least into 20
parts. The quality FEM approximation can be seen from Table 3.

Geometry No. of No. of No. of No. of

elements nodes plastic plastic

elements nodes.
V notch 8243 16784 7625 12234
Ulmm 10279 20784 8747 16234
U0.7mm 8755 17836 7765 15788
U0.2mm 11303 22966 9645 18496

Table 3: FEM mesh for notched specimens.

To determine the local parameters it is very important how to modify the
base datistical data set. After the surface fracture inspection it is needful to
omit these experiments whose character is unmatched to the weakest link
theory. A selection is based on the usage of scanning digital camera and the
following processing on a personal computer. Some data were received using
scanning electron microscopy. In all cases carbides were found at the cleavage
origin; example can be seen in Fig. 3. The investigation showed that the right
criterion for selection can come from the following relation s = f (&), kde g,= -
2In (d/d,). The acceptable choice is this where the curve is linear. It means that
in our test set in case U notch with radius 1 mm and 0.7 mm the valid data are
for the deformation greater then 4 %, but for the specimen with U notch 0.2
mm from 0.3 %.

The material parameters received then make possible to use the J — Q stress
field for the determination of the critica value of J integral J. versus Q
parameter. This dependence J, —Q, incorporating the probability of failure, is
more precise than the result based on model of critical fracture stress [5]. The
result received can more precisely describe the behavior of bodies with cracks
and better study the problems of transferability of some fracture parameter from
one body geometry to another. The transformation diagram for three SENB
geometry and pre-cracked Charpy was determined and is presented in Fig. 5.
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Figure 3: A carbide particle observed at the cleavage origin.
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Figure 4: Probability of failure for m=18, s,=2117 MPa.
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Figure. 5: Toughness scaling diagram for the manganese cast stedl.
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6 Conclusion
The main results obtained in this work can be summarized into the following
points:

The Beremin model with strain correction (slightly adapted) is used for the
calculation of s,,.

The valid local parameters are received on test specimens with notch
radius 0.7 and 1 mm, where the character of maximum principle stress
distribution has no influence on the microstructure inhomogenities that can
be found in the cast steel. For more detailed information see [10].

The fracture toughness-scaling diagram based on the local approach for
three geometries was determined and used for the transformation of data
received on small pre-cracked specimens. Other experiments are currently
being carried out to test this approach.

The influence of the crack length on the scatter band has been observed,
prediction on W =0.5 and SSY can be seen in the Fig. 6.
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Constraint phenomena on the pre-cracked specimens:
numerical and experimental evaluation

Vladislav Kozak and Libor Vlcek

Institute of Physics of Materials, Czech Academy of Sciences, Brno,
Zizkova 22, 616 62 Brno, Czech Republic

ABSTRACT: An extensive investigation has been carried out on the sensitivity parameters
determination describing the fracture behaviour of body with crack with respect to the
character change of true stress-strain curve with dominant region of Lueders deformation.
The attention is paid on the influence of hardening exponent of deformation to the history
of the idealised true stress-strain material curve described by the Ramberg-Osgood
relation. Above mentioned tests are used for the correct Weibull stress determination,
which is as a measure of the failure probability of cracked body. The Weibull stress model
for cleavage fracture of cast steel requires calibration of two micromechanics parameters
(m, s,). Weibull stress seems to be a parameter for prediction of cleavage failure of
cracked bodies and the study is focused on the assessment of the effects of constraint loss
on cleavage fracture toughness (J.). Local material parameters have been calculated
arising from Beremin approach and calibration is based on the Gao and Ruggieri
approach. The aim of the paper can be seen in fracture toughness transfer and correction
from pre-cracked specimens to small scale yielding (SSY) represented by 1T (SENB)
specimens and their precise computation using FEM. The fracture resistance has been
assessed using data from static tests of the three point bend specimens.

Introduction

To quantify the effects of constraint variation on the cleavage fracture
toughness the form of the toughness-scaling model based on the Weibull
stress s is investigated. Method is based on weakest link assumption and
incremental fracture probability, which depends not only on the maximum
principal stress, but also on the equivalent plastic strain. It seems that for
transferring of fracture-mechanical data from test specimens to exposed real
constructions or to its monitored parts, it is necessary to use two-parameter
fracture approach. This requirement involved large investigations, which are
considered of the constraint influence near the crack tip to fracture
behaviour. Recent extensive investigations on crack tip constraint effects



provide a necessity of testing various constraint configurations, such as
shallow-cracked SEN(B) specimens.

Determining of static fracture toughness on SEN(B) specimens is one of
the basic fracture mechanics test. As a result of this test are significant
values of static fracture toughness, which depends upon temperature. It must
be emphasised that the most important values are critical K-value, in case of
using linear-elastic fracture mechanics and critical value of J-integral, in
case of using elastic-plastic fracture mechanics. Subsequently we confine
our investigation to elastic-plastic material behaviour.

More redlistic description of crack tip stress and deformations fields has
been developed. Approaches are based on two-parameter characterization of
crack tip fields, such T- stress and nondimensional Q-stress. In both
approaches, J sets the magnitude of near tip deformation, while the second
parameter characterizes the level of stress triaxiality. These JT and JQ
approaches retain contact with traditional fracture mechanics. Laboratory
measurements on the specimens with varying crack length (changing the
relation aW) and with the same ligament showed increasing values of
fracture toughness expressed using J. versus decreasing crack length.
Following the idea of Sumpter [1], Kirk and Dodds [2] investigated several
possibilities of J-integral and CTOD estimation for SEN(B) specimens with
shallow crack. For fracture toughness valuation on the base two-parameter
fracture mechanics the evaluation of parameters, which express the
constraint ahead the crack tip in our case Q-parameter, is critical. Several
approaches exist: (i) On the base of experimentally determined dependence
J. on aW the Q calculation comes after from numerically given stress fields
received by FEM for every analysed body separately. (ii) Statistical
approach using so called local approach [3]. We limit our focus to a stress
controlled, cleavage mechanism for material and adopt the Welbul stress
(sw) as the local parameter to describe crack-tip conditions. Unstable crack
propagation occurs at a critical value of (s\) which may be attained prior to
or following some amount of stable, ductile crack extension. Function J(Q)
can be found on the base so called toughness scaling models. The procedure
focuses on an application of the micromechanical model to predict specimen
geometry and crack effects on the macroscopic fracture toughness J. Dodds
[4] and Anderson [5]. The procedure requires attainment of equivalent
stressed volumes ahead of a crack front for cleavage fracture in different
specimens. This can be done e.g. on the base of Weibul stress, because the
Weibull stress incorporates both the effects of stressed volume and the
potentially strong changes in the character of the near tip stress fields due to
constraint loss and ductile crack extension [6].



Experiments and modeling

As an experimental material C-Mn cast steel was used. This material was
modelled as homogenous and isotropic with elastic constants E=2,05.10°
MPa and p=0.3. The average value of yield stress was 360 MPa. The testing
temperature was —100 °C. In case of using incremental theory of plasticity
the curve s- ewas modelled by 23 points, which were connected to linear
parts. These points belong to experimental measured stress-strain curve.

In case of using deformation theory of plasticity material was described
by Ramber-Osgood relation:
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where n is hardening exponent, a is hardening coefficient, e isyield strain
and spisyield stress.

TABLE 1: Test specimen geometry in mm

alW=0.1]a/W=0.2 | a/W=0.5| Pre- w
cracked
Charpy
L [120 140 250 55
B |25 25 25 10
W |26 30 50 10
| 104 120 200 40

Figure 1: 3PD test

All computations are based on 3D elastic-plastic analysis using FEM,
concretely Abaqus version 6.1 [7]. Example of 3D model is shown in the
Figure 2, where only one quarter of real body is turned over because of two
symmetry planes. Models were meshed with eight-node hybrid elements
included in Abagus. 15 680 of elements (C3D8H) were used it means 17884
nodes. The figure below (Figure 3) shows the detail around the crack. As
can be seen a very fine mesh is required. Element size is increased instantly
when the radial distance is increased from the crack front. Outer radius of
the area (Figure 3) was 0.1 mm and the crack tip radius was 0.01mm.
Twelve elements were used for dividing this radius. Thus, the characteristic



element length was 8,3.10% mm; at least ten layers of elements in the
direction of thickness were used.
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Figure 3. Detail of the crack tip

Four calculations were solved for range of value n in case of using
deformation theory of plasticity because of choosing the proper value n.
Selection of proper value n was based on comparing the relations between
force and displacement. After that value of hardening exponent n=8 was



applied as the best fit, as well as the value of hardening coefficient a=1.
Hence the model of continual hardening material was determined. Its
behaviours are very similar as with real material with Luders strain region.
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Figure 4. True stress strain curve and its approximation

Toughness scaling model based on Weibull stress

The local approach for cleavage is based on the weakest link concept that
postulates that failure of the body of a material containing alarge number of
statistically independent volumes is triggered by the failure of one of the
reference volume [3]. In the local approach to cleavage fracture, the
probability distribution (Pr) for the fracture stress of a cracked body at a
globa level K; or J is assumed to follow a two-parameter Weibull
distribution [1,8] in the form:
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The stress integral over the fracture process zone is denoted s,, and is
termed the Weibull stress. This stressis defined by
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where m is so-called Weibull slope, Vo is areference volume, the integral is
computed over the plastic zone, and s; is the first principal stress. The
parameters s, and m of the Weibull stress s,, at fracture are material
parameters, i.e. independent of the stress state of materials, but may depend
on the temperature.

The first one method of transferability of the fracture toughness was
studied on the pre-cracked Charpy specimens and standard bodies (1T).
Koppenhoefer and Dodds [9] have proposed to quantify the relative effects
of constraint variation on the cleavage fracture toughness in the form
toughness-scaling model (TSM). The first one studies can be found out in
the same works, where as principal can be regarded: (i) the Dodds and
Anderson approach, (ii) the Koppenhofer approach and others. The method
demonstrates the dependence of Welbull stress s, on the crack-tip stress
triaxility and the transfer diagram s, versus computed value of Jeis being
constructed. Theideaisto use to same value of probability of failure.
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Figure5: Diagram of Weibull stress determined by boundary layer method for both
approximation of true stress strain curve.

The steps of calibration procedure used for TSM:
-Rank probability diagram (P versus J;) for two geometry is generated.
-FEM computation for tested body and SSY conditions.
-Weibull stress determination for tested body and SSY conditions.
-Constraint correction according to weakest link based thickness
correction procedure of E-1921. Let ts, and ta denote thickness for the
SSY reference and configuration A, then Js (i)=1.8+( ta/ t$y)1’2(Jc(i)-
1.8). Results of this transformation can be seen in [10].
-Determine b. Assume that constrain corrected toughness values obey
Weibull distribution with fixed exponent of 2. Where b defines



toughness value at a 63.2 percent failure probability. Equating failure
probabilities |leads to

J 2_S_Wm (4)
) —(Su)

The plane-strain, boundary layer model [10] simplifies the generation of
numerical solution for stationary cracks under SSY conditions with varying
levels of constraint in Fig. 5, where the reference volume V, equals (100
mm)? for conveniencein all calculations.
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Figure 6: Diagram of Weibull stress determined by experimental datafor both
approximation of true stress strain curve.
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Figure 7. Toughness scaling diagram base dupon the Weibull stress with varying
Weibull moduli for both approximation of true stress strain curve.

For the materia considered in this paper bssy =0.064 MPam was
determined according data presented in Fig. 8. Calibrated m-values were



found out for numericall FEM model based on the incremental theory of
plasticity (very precise approximation of stress strain curve) m=24.1, for
numerical model based on the deformation theory of plasticity (ramberg-
Osgood) m=28.3. The estimation of calibrated m-value is clear from plot
giveninFig. 9.
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Figure 8. Rank probability diagram. Figure 9. Calibration of Weibull stress parameter.
Conclusions

The main results obtained in this work can be summarized into the

following points:

- The Beremin model [3] was used for the calculation of s, a reference
volume V,, = (100 nm)* was used for all computations.

- The fracture toughness-scaling diagram based on the local approach for
SSY specimen was determined and used for the transformation of data
received on small pre-cracked specimens. Other computations (see Tab.
1) are currently being carried out to test this approach.

- The cdlibration procedure based on the work Gao, Ruggieri and Dodds
presented in [8] has been applied on the cast manganese steel and
calibrated m-value was found to be m=24.1for one model and 28.3 for
the model base on the deformation theory of plasticity. The calibrated
m-value makes the BL estimate for the toughness of the constraint
corrected fracture toughness data experimentally received on PCVN
specimens.

- Cdibrated m-values is a bit differing to each other. It shows that a
precise approximation of stresstrain curve is very important.
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Abstract

The master curve (MC) concept has’been used for assessment of the fracture toughness transition behaviour of
C-Mn cast steel intended for fabrication of large containers for spent nuclear fuel (SKODA). Standard fracture
toughness tests using single edge notched bend specimens (SENB) with various crack lengths, the static tests of the
CVN specimens and the axisymmetric notched tensile specimens have been utilised. The transferability of results
received on the small pre-cracked Charpy specimens are tested here and the methodology MC is applied. For
determining the reference transition temperature, 7., which is taken as a basic material characteristic positioning the
MC on the temperature axis, the large (1T) specimens are required. Additionally, the small pre-cracked Charpy-type
specimens have been used for determining the fracture transition behaviour and for fracture toughness measurement
and prediction. © 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Transport and storage containers for spent nu-
clear fuel have to ensure the safe enclosure of a
radioactive material and must meet stringent re-
quirements on safety. They must ensure the stor-
age of radioactive material safely for expected
container lifetime and also in the case of the most
severe accident loading and earthquake shock.
The container should be highly resistant to tem-
perature and radiation embrittlement. Skoda Nu-
clear Machinery (Czech Republic) has introduced
a new design of container for spent nuclear fuel.
The cask design is based on thick walled pipe with

* Corresponding author. Tel.: + 420-5-4163-6364; fax:
+420-5-4121-8657. )
E-mail address: kozak@ipm.cz (V. Kozak).

bolted lids, both fabricated from cast low-alloyed
steel with ferritic microstructure (see Fig. 1).
The knowledge, assessment method of fracture
mechanics has increased to a point where certain
structural materials until now have not been con-
sidered for radioactive transport cask construc-
tions are being proposed for these applications.
For the safe enclosure of the radioactive material
during transportation it must be shown that the
extension of non-detected crack after fabrication
will not occur. For the safe storage additional
embrittling effects should be taken into account,
Brittle fracture can occur under specific combina-
tion of temperature, mechanical and environmen-
tal loading conditions. When assessing whether
the material satisfies the demand on container
resistance against catastrophic failure the follow-
ing key problems have to be addressed from the

0029-5493/02/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved.
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safety envelope

Fig. 1. Transport and storage cask SKODA 440/84.

fracture mechanics point of view: (i) the transfer-
ability of fracture toughness data measured on
laboratory specimens to the component of much
larger thickness and different geometry; and (ii)
the prediction with a good probability of the
brittle fracture initiation in cases of the most
severe  accident loading and  radiation
embrittlement.

2. Methodology

The methodology of master curve (MC)
(ASTM, E1921-97, 1997) is widely used currently
for transition behaviour evaluation of fracture
toughness. The verification of this concept has
been performed for steel of pressure vessel and
weldments (Yoon, 1995; Aurich et al., 1996; Holz-
mann and Dlouhy, 1997; Link and Joyce, 1995;
McCabe et al., 1997; Wallin, 1997a). For deter-
mining the reference transition temperature, T,
which is taken as a basic material characteristics
localising the MC on the temperature axis, the
large (1T) specimens are required. But there are

structures (plants) under operation for which the
transition behaviour of fracture toughness is of
great interest (reactor pressure vessels, rotors,
etc.) and application of MC concept would be
very useful here. For these components only small
specimens (Charpy V-notch) can be used for as-
sessment of degradation, however. The effort is
now concentrated on the application of small
pre-cracked Charpy specimens for these purposes
(Mayfield et al., 1995). Some works, mainly of
Wallin (1997b) have shown that the small pre-
cracked specimens can be used in determining
reference temperature, 7,, and thereby making
possible to apply MC concept for the integrity
assessment procedure of these components. Small
pre-cracked specimens and 1T SENB specimens
were used to measure fracture toughness over a
wide temperature range. Using the results ob-
tained the reference transition temperatures, T,
were determined for both types of specimens and
compared with each other. Having the T,, the
MC may be drawn. Its validity for the cast steel
has been discussed. Additionally, the prediction of
the fracture toughness scatter of large (1T) speci-
mens through those small pre-cracked ones using
Weibull stress concept has been also performed.

3. Material, experimental and calculation
procedures

3.1. Material characterisation

Manganese cast steel has been utilised for ex-
periments having chemical composition in wt%
given in Table 1. To guarantee the microstructure
of specimens used for the static test to be the same
as that of an inner part of cast body the computer
simulation of cooling of semi-product has been
used. The heat treatment was done in the labora-
tory of SKODA Research Ltd and as a result of
this modeling was the scheme to cut this experi-
mental plate in size 55 x 90 x 250 mm from which
three tested bodies were produced (in size 50 x
25 x 240 mm) for brittle fracture experiments.
The size of semi-product was the compromise
between the cooling rate for cooling simulation
and furnace capacity. Heat treatment was as fol-
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Table 1 )
The chemical composition of manganese cast steel

69

c Mn Si P S

Cr Ni Cu Mo A% Ti
CSN Max 1 0.2 Max. ‘Max. = Max. Max Max. Max. Max. Max.
0.12 1.6 0.5 . 0.03 0.02 0.3 0.4 S 03 0.15 0.03 0.05
Melt 0.1 1.11 0.36 0.01 0.015 0.11 0.28 0.28 0.03 - - )
Plate . 0.09 1.18 0.37 0.01 0.025 0.12 0.29 0.29 0.03 0.001 0.002
w Sn Al Nb Co As Sb
Plate 0.01 0.055 0.004 0.012 0.012 0.0095

0.038

lows: 930 °C/6 h/1.5 °Cmin '+ 900 °C/4 h/
20 °Cmin~" up to 600 °C/10 °Cmin~! up to
400 °C/air + 780 °C/4 h/20 °Cmin~' up to
550 °C/10 °C min—! up to 400 °C/air + 650 °C/
8 h/furnace opening.

True stress—strain curves have been measured
using cylindrical specimens with a diameter of 6
mm being loaded over a temperature range of
—196 to —60 °C at cress-head velocity of 2
mm min~!. Standard FEA—ABAQUs 5.7 was
used to model elastoplastic behaviour for tensile-
notched specimens.

Fracture toughness data were measured using a
standard 25 mm thick specimen with a/W ratio of
0.5 loaded in the three-point bending. Small pre-
cracked Charpy-type specimens have been also
tested in the same temperature range. For one
selected temperature in lower shelf region (below
temperature Ty at which Frr and Fsy coincides
on their temperature dependencies) a range of
round tensile-notched bars were tested to obtain
data “for statistical local approach procedure
treatment.

Accepting the Beremin approach (1983) for the
analysis of local criteria for cleavage fracture the
location ¢, and shape parameters m were calcu-
lated using FEM for notched tensile bars having
various types of notch geometry. The first one
was the tensile specimen with the same circumfer-
ential notch as for Charpy (CVN), the other three
types were U-notch geometry with radii 1, 0.7, 0.2

mm. Statistics were made for at least 20 replicated

experiments in all cases. The influence of geome-
try is presented in Table 2. Prediction was calcu-

lated for standard cell size recommended for the
cleavage fracture. Different size of process zone
describing the part of plastic zone has small influ-
ence on computed local parameters. Values used
for the MC are: m =18 (V, = (100 x 10~ ¢)* m?)
see Table 2 (the best fit). ,

The Beremin model with strain correction
(slightly adapted) is used for the calculation of a,,. -
The iterative procedure using the maximum-likeli-
hood theory was applied and the geometry effect
for various notch radii of tensile bars is observed.
The local parameters generated on the geometry
with U notch 0.2 mm, V notch 0.25 mm and on
the Charpy specimen give practically the same
values. The valid local parameters are received on
test specimens with notch radii of 0.7 and 1 mm,
respectively, where the character of maximum
principle stress distribution has no such influence
on the microstructure inhomogenities that can be
found in cast steel as in the cases of notches with
a smaller diameter. For local parameters determi-
nation is inevitable to use either the specimens
with notch diameter that satisfy slow gradient of
principal stress or the values must ‘be calibrated.

Table 2
Local parameters received for various geometries (the best fit)

Geometry V, = (100 x 10-6)3 -
: 3

V,.=0.25 mm g, =1409, m=45.4

U.=1.00 mm 0,=2117, m=18.2

U, =0.70 mm . 0, =2486, m=17.0
U, =0.20 mm o, = 1340, m=64.6
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Fig. 2. Tensile properties of the cast steel.

3.2. Tensile properties

The temperature dependence of common tensile
characteristics is given in Fig, 2. As seen the cast
steel examined exhibits relatively low values of
lower and upper yield stresses, respectively, and
with decreasing temperature these characteristics
increase very slowly (e.g. at — 100 °C Re is equal
to only 380 MPa). With respect to small pre-
cracked specimens this fact resulted in the neces-
sity to test small specimens at very low
temperatures in order to fulfil the validity condi-
tion for valid determination of K 7

The testing at very low temperature, far below
the expected reference temperature 7, determined
by means of larger 1T specimens, can lead to

- uncertainity in the determination of T, (Aurich et
al., 1996). ‘

3.3. Fracture behaviour of 1T SENB specimens

On the basis of preliminary measurement of the
fracture toughness using this type of specimen the
temperature of — 100 °C has been chosen for
determining the reference temperature 7,. Six
SENB specimens were used to measure the frac-
ture toughness values at this temperature. The K
results obtained are given in Fig. 3. This ﬁgure
serves as a check whether the basic assumption
included in ASTM Standard E1921 (1997) for

determining the reference temperature T, i.e.
whether the cast steel obeys the three parametric
Weibull distribution with the Weibull modulus m
being equal to 4,

Pf = 1 - exp[(KI - Kmin)/(Ko - Kmin)]m (1)

describing the fracture toughness scatter in transi-
tion region.

Therefore the dependence of In[ln (1/(1 —Pf))
versus In(K, — K,,;,) for six measured K, values
was plotted In Fig. 3. As seen, the obtained value
of modulus m is equal to 4.8. This value is slightly
different from the value 4. To determine this
dependence more precisely additional experiments
are in progress. However, in spite of the small
difference in m, for assessment of reference tem-
perature T, the procedure given in the ASTM

Standard E1921 (1997) was used for the present.

N 1/4
K0|: z (ch(i) - Knin)/(r - 03068):| + I{mm (2)
i=1

K ., =20 MPam'? one gets for KO the value
K, =85.6 MPam!? K I e 18 given by:

Teameny = (Ko = Kmag)[ln(z)]” * 4+ Kinin (3)
After substituting K, and K., the value of

2 T T | T | T
» , 2
/
1= /" m=4.0
=
AC O ]
= L 4
=
Al ]
20 —
8 I TR RS
32 B 3.‘6 4 T 44 4.8

. In(Kjc-20)

Fig. 3. Scatter of fracture toughness data.
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Fig. 4. Fracture toughness temperature diagram for 1T speci-
men.

K; =798 MPa m'2, Finally, utilising the
equation:
1 [K,  —=30
T — T_ 1 c(med) 4
° 0.019 n[ 70 ] @

the reference temperature 7, may be established
to be T,= —82 °C. .

The master curve for C—Mn cast steel investi-
gated is'described by:

K, =30+ 70exp[0.019(T + 82)] )

C(med)

Fig. 4 shows the master curve together with the
tolerance bounds 5 and 95%. In this diagram the
measured fracture toughness values in tempera-
ture range — 160 to —40 °C are plotted. Full
triangles represent data keeping the validity
condition:
= [(EbRe)/501">. , ©)

Jewimi)

The value of non-dimensional size limit
parameter in Eq. (6) was taken to be 50 instead of
30 in (ASTM Standard E1921-97, 1997) based on

the work of Ruggieri et al. (1998) and the discus-

sion in subcommittee of ASTM Session (1998)..
Some peculiarities of the fracture behaviour of

cast steel follow from Fig. 4:

e Only for the fracture toughness values being
below T, + 15 °C the-master curve methodol-

ogy may be used to predict the fracture tough-
ness behaviour. ‘ '

e At temperature 7, + 26 °C the sharp transition
of fracture toughness to much higher values of
K, occurs. But it must be emphasised that for
those specimens having these high values of
K, , the fracture was initiated by cleavage indi-
catcing that the C—Mn cast steel has large in-
trinsic resistance against ductile tearing.

3.4. Fracture behaviour of small pre-cracked
Charpy specimen—PCVN

For PCVN specimens the temperature depen-
dence of fracture toughness is given in Fig. 5. The
line representing the validity condition (Eq. (6)) is
plotted in the graph. Only a small number of
fracture toughness data, especially the data at the
temperature — 100 °C, those were intended for
establishing 7, fall below the line. Therefore data
not meeting the K T iy WETE first constraint ad-
justed, using Dodds and Anderson toughness scal-
ing model (Dodds and Anderson, 1991).

But only for data lying below the line labelled
K Jc(mx)DA this concept may be used, as this line;
represents the end of FE-3D calculation of Dodds
and Anderson model as performed by Nevalainén-
and Dodds (1995). All constraint adjusted ard

T T T @/ T T
400 - 1
PCVN a/W ~ 0.5

w
S
S
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O
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e
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3
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Fig. 5. Fracture toughness data from pre-cracked specimens.
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size corrected data using

B
LY cam 20 +(K, °(10) 2O)<B—1l:> F @
are plotted in Fig. 6 in which MC K, and
tolerance bounds for 5 and 95% are replotted All
fracture toughness data of small pre-cracked spec-
imens processed in such a way fall inside the
scatter band of larger 1T specimens, verifying so
the potency of utilising small pre-cracked speci-
mens for the fracture toughness evaluation in the
transition region. Additionally, the reference tem-
perature T, was established. The set of 12 PCVN
specimens ‘“was used, from which only two had
valid K 7 values (see Fig. 5) and were only size
corrected. The others were constraint adjusted
and size corrected. The data obtained are shown
in Fig. 6. Following the above-mentioned proce-
dure the reference temperature 7T, was estimated
to be —78 °C, which is in good agreement with
the value of T, = — 82 °C established by means
of larger 1T specimens.

It is to be noted, that the recommendation for
testing the PCVN specimens for the purpose of T,
determination given in ASTM Standard E1921-97
(1997) is effectively impossible for the cast steel
examined. To obtain valid K, data required for
PCVN specimens the testing would have to be
carried out'at very low temperatures (Fig. 5), well
below the expected reference temperature 7. This
aspect could lead to the uncertainty in the estima-
tion of T,. The above procedure involving con-
straint adjustment seems to be very promising and
should be verified with other steels.

zzoo_~ — 3 ]
2100 | A -
2000 ,,02  © 5% 95%
o -
% 1900 _ ./ ® @
DB 1800 o 05W/B=1
B e
1700 B
5 4
1600 Pf = 5% -
1500 : L
0 0.01 0.02 0.03 0.04
i/ bGo [-]

Fig. 7. Relation between local ¢, and the global J parameters
for various crack length (a /W) for SENB specimen and pre-
cracked Charpy.

Using data described in Table 2, the local ap-
proach methodology applied by Koppenhoefer
and Dodds (1997), was used to transfer values of
K, recelved on the Charpy pre-cracked specimens
to 1T specimens. After determining the local
parameters, as it is mentioned in the beginning of
the paper, it is important to compute variation of
o, as a function of J integral for both types of
specimens. Then from a given value of J integral *
in pre-cracked Charpy specimen it is necessary to
find its corresponding o,. This value has to be
transferred into the diagram for SSY specimen.
The transformation diagram was computed and
the data are plotted in Fig. 7, one can see the data
received on bodies with various crack length (a/
W), geometry of these bodies is described in Table
3. Having used the corrected data, calculating the
average values K T e and substituting into Eq.

Table 3
The geometry of bodies used for the fracture toughness dia-
gram determination .

Geometry Size (mm) Nodes Layers
* Charpy a/W=0.5 10x10x55 16300 15
Charpy a/W=0.5 10x10x55 35400 30
a/W=0.1 25%26x 104 27 800 15
alW=02 25% 30 x 120 23900 15
alW=0.5 25 x 50 x 200 16 200 15
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(4) one can get T, = — 80 °C as was presénted in
Holzmann et al. (1998).

4. Summary

The main conclusions are as follows:

e Master curve concept has been shown to be valid
in the lower transition range for C—Mn cast
steel.

e Fracture toughness was measured using small
pre-cracked Charpy specimens and results were
constraint and size corrected to the 1T SENB
specimens.

e Reference temperature 7, determined using con-
straint adjusted and size corrected invalid PCVN
data was slightly different from T, evaluated
using 1T SENB specimens.

e Fracture toughness transformation diagram
based on the Weibull stress o, for bodies with
various crack lengths has been determined.
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Appendix A. Nomenclature

., reference transition temperature where
K, =100 MPa m'? Co

Ty ‘tenclperat'ure, at which fracture force Fry

equals to general yield force Fgy

Frr fracture force

Fsy general yield force

m shape parameter from Beremin model

location parameter from Beremin model

o,  Weibull stress, o, =[1/V, fo7dV]'™

o, maximum principal stress

reference volume for Beremin model

K, fracture toughness at stable crack propa-
gation initiation (converted from J)

K, fracture toughness at unstable crack
propagation prior to 0.2 mm of crack
growth (converted from J))

K, fracture toughness at unstable crack

propagation, at, or greater than, 0.2 mm

crack growth (converted from .J,)
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Abstract

An extensive investigation has been carried out on the sensitivity parameters determination describing the fracture behaviour
of the body with a crack with réspect to the character change of the true stress—strain curve with the dominant region of
Lueders deformation. This paper presents the consideration on the change judgement of the J-integral and the constraint as the
base parameters of two-parameter fracture mechanics. The Weibull stress model for cleavage fracture originally proposed by
Beremin group requires calibration of two micromechanics parameters (m, o). The Weibull stress o, seems to be a parameter
for the prediction of cleavage failure of cracked bodies and the study is focused on the assessment of the effects of constraint

“loss on the cleavage fracture toughness (J;). To quantify the effects of the constraint variation on the cleavage fracture toughness
‘the form of the toughness-scaling model based on the Weibull stress o, is investigated. Local material parameters have been
calculated from Beremin approach and the calibration is performed on various approaches. Methods are based on the weakest
link assumption and the incremental fracture probability, which depends not only on the maximum principal stress, but also
on the equivalent plastic strain. The fracture resistance has been assessed using data from static tests of three point bend
specimens. '
© 2005 Elsevier B.V. All rights reserved.

1. Introduction failure of structural components. As the results of local-

ized character of failure mechanism and microstruc-

In the ductile-to-brittle transition region of ferritic
steels, transgranular cleavage fracture initiated by slip-
induced cracking of grain boundary carbides often trig-
gers the brittle fracture which results in catastrophic

* Corresponding author. Tel.: +420 532 290 364;
fax: +420 541 218 657.
E-mail address: kozak@ipm.cz (V. Kozdk).

0029-5493/$ — see front matter © 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.nucengdes.2005.05.006

tural inhomogeneity, the cleavage fracture toughness
is very sensitive to the local stress and its scatter is
very high. Determining of the static fracture tough-
ness on pre-cracked single-edge notched bend bars,
SE(B), is one of the basic fracture mechanics test. It
must be emphasised that the most important values are
critical K-value, in case of using linear-elastic fracture
mechanics and critical value of J-integral, in case of
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Nomenclature

Ky, the fracture toughness at stable crack
propagation initiation (converted from
J5)

Ky, the fracture toughness at unstable crack
propagation prior to 0.2mm of crack
growth (converted from J;)

Kj, the fracture toughness at unstable crack
propagation, at, or greater than, 0.2 mm
crack growth (converted from Jy)

m the shape parameter from Beremin
model

Vo the reference volume for Beremin model

Greek letters

ou the location parameter from Beremin
model

Ow Weibull stress

o1 the maximum principal stress

using elastic—plastic fracture mechanics. Subsequently,
we confine our investigation to elastic—plastic material
behaviour.

Laboratory measurements on the specimens with
varying crack length (changing the relation a/ W) and
with the same iigament showed increasing values of the
fracture toughness expressed using J. versus decreas-
ing crack length. This problem was studied in recent
works of Sumpter and Hancock (1991), Kirk et al.
(1994) who investigated several possibilities of J-
integral and CTOD estimation for SE(B) specimens
with shallow crack. Generally, this problem can be
solved on the base of two-parameter fracture mechan-
ics, which expresses the constraint ahead the crack tip;
in our case Q-parameter is critical. Several approaches
exist: (i) on the base of experimentally determined
dependence J on a/ W the Q calculation comes from
numerically given stress fields received by finite ele-
ment method for every analysed body separately. (ii)
Statistical approach using so called local approach
(Beremin, 1983). We limit our focus to a stress con-
trolled, cleavage mechanism for material and adopt the
Weibull stress (o) as the local parameter to describe
crack tip conditions. Unstable crack propagation occurs
at a critical value of (o) which may be attained prior

to or following some amount of stable, ductile crack
extension.

The aim of the paper can be seen in the fracture
toughness transfer and the correction from pre-cracked
specimens to small scale yielding (SSY) represented
by SE(B) specimens and their precise computation
using the finite element method. Some approaches
were tested, see Ruggieri (2002), Gao and Dodds
(2001), Kozik et al. (2001) and obtained results were
compared. The fracture resistance has been assessed
using data from static tests of the three points bend
specimens with varying crack length and temperature.
The Beremin model is used for the calculation of the
Weibull stress (o). The standard package Abaqus
for finite element method was applied and the man-
ganese cast steel was selected as an experimental
material.

2. Weibull fitting of data

Within this framework, it seems to determine first
if the weakest link assumption for the local approach
application is valid or not. Weakest link concept is
the key assumption and postulates that failure of the
body of a material containing a large number of sta-
tistical independent volumes is triggered by failure of
one of the reference volume (Beremin, 1983). Fractog-
raphy is indispensable for an appropriate interpretation
of the applied model and also to ensure that basic
assumption of the model with respect to the fracture
mode is justified. The following assumption character-
izes the microstructural and statistical model (Riesch-
Opermann and Diegele, 2003):

- There is alarge population of weak spots in the mate-
rial.

- The failure of the material starts from and is triggered
by the most dangerous weak spot.

- The weak spots are randomly distributed within the
material.

- The weak spot became active within the onset of plas-
tic deformation.

- The statistical effects of specimen size on Ky, in the
transition range are treated using the weakest link
theory applied to the three-parameter Weibull dis-
tribution of the fracture toughness. A limit on K,
values, relative to the specimen size, is specified to
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Fig. 1. Weibull plot for melt I, tolerance bounds are for 95% for
reliability, temperature range <—160, —90>°C.

ensure high constraint condition along the crack front
of the fracture (E1921-97).

The three-parameter Weibull model is used to fit the
relationship between K, and cumulative probability
of failure, pr. The term py is the probability for failure
at or before K j, for an arbitrary chosen specimen from
the population of specimens. This can be calculated
from the following:

(D

(Kj, — Kmin)] b
(Ko = Kmin)

where b is a shape parameter, which is assumed at given
temperature to be close to 4. A scale parameter, Ko, is
data fitting parameter. On the base of above-mentioned
philosophy two sets of fracture toughness for melt I and
melt IT has been tested using the maximum likelihood
method (see Figs. 1 and 2). Data points are converted
to Weibull coordinates using:

1
Y—In<{ln | ——— 2
“{ " [(1 —pfa)” @

where
. i—-0.3)
R it 3
ps(d) N1 04) v 3
N is number of tested

specimens  and
Kimin =20 MPam'/2, P

2 T l T
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In(K,,-20)

Fig. 2. Weibull plot for melt II, tolerance bounds are for 95% for
reliability, temperature range <—160, —90>°C.

3. Material, experimental and calculation
procedures

To investigate the constraint effects on 3D crack-
front fields, detailed finite element analyses were per-
formed and as an experimental material C-Mn cast steel
was used. This material was modelled as homogenous
and isotropic with elastic constants E=2.05 x 10° MPa
and v=0.3. The values of yield stress can be seen
from Figs. 3 and 4. In case of using the incremen-
tal theory of plasticity the curve o—& was modelled

1200

1000 —

800 | —

o [MPa]
T

600 |— T=-100°C ]

400 —

200|||1||||>|

Fig. 3. True stress—strain curve for melt I.
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.Fig. 4. True stress—strain curve for melt II.

by 23 points, which were connected to linear parts.
These points belong to the, experimentally measured
stress—strain curve. In case of using the deformation
theory of plasticity the material was described by the
Ramber—Osgood relation:

£.=i+a(£> , @

€0 00 0

where n is a hardening exponent, « a hardening coeffi-
cient, &g a yield strain and oy is a yield stress.

All computations are based on the 3D elastic—plastic
analysis using a finite element method, in the con-
crete using Abaqus version 6.1 3D medel is shown in
Figs: 5 and 6, where only one quarter of real body is
thinking over because of two symmetry planes. Stan-
dard eight-node hybrid elements included in Abaqus
were used, for example in Figs. 5 and 6 (/W =0.1)
15,680 of elements (type C3D8H) (17884 nodes) were
utilized. Fig. 6 shows enlarged area around the crack.
. Ascan be seen a very fine mesh is required. An element
size is increased when the radial distance is retreated
from the crack front. Outer radius of the area was
0.1 mm and the crack tip radius was 0.01 mm. Twelve
elements were used for dividing this radius. Thus, the
characteristic element length was 8.3 x 104 mm; at
least 10 layers of elements in the direction of thickness
were used. ) ‘
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Fig. 6. Detail of the crack tip.

4. Weibull stress model

The local approach for cleavage fracture is based
on the weakest link concept that postulates that failure
of the body of a material containing a large number
of statistically independent volumes is triggered by the
failure of one of the reference volume V. The Beremin
cleavage model (Beremin, 1983) is phrased within a
two-parameter Weibull description of the failure prob-
ability by

pilow) = 1 — exp [— (‘;—W> ] . 5)

The volume integral over the fracture process zone
is denoted oy and is termed the Weibull stress. This
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stress is conventionally defined by:

Oy = [—% /U{”dV] , (6)

where m is so-called Weibull slope, Vj a reference (or
characteristic) volume, the integral is computed over
the plastic zone and o is the maximum principal stress.
“The parameters o, and m of the Weibull stress o, at
fracture are material parameters, i.e. independent of
the stress state of materials, but may depend on the
temperature. '

5. The toughness scaling model
5.1. Non-calibrated approach

The first method of the transferability of the frac-
ture toughness was tested on the pre-cracked Charpy
specimens and standard specimens with various a/ W
(Table 1). Koppenhoefer and Podds (1997) proposed
to quantify the relative effects of the constraint varia-
tion on the cleavage fracture toughness in the form of
toughness scaling model (TSM). The method demon-
strates the dependence of Weibull stress o, on the crack
tip stress triaxility and the transfer diagram oy versus
computed value of J is constructed. The idea of TSM
is to use to same value of probability of failure for both
specimen geometries, schematic diagram can be seen
in Fig. 4. The TSM created against the laboratory data
generated from tensile notched specimens can be seen
- in the following Fig. 7.

‘

5.2. The toughness scaling model generated using
boundary layer method

Local approach parameters for Beremin model were
calibrated against laboratory data using two and three-
dimensional large strain elastic-plastic finite element

Table 1
Test specimen geometry )
a/W:O.vl a/w:().? a/w=05 Pre-cragked Charpy
L 120 140 250 55
B 25 25 25 10
w 26 30 50 10
1 104 o120 200 40

2400 — —

Jbo, [-]

Fig. 7. The toughness scaling diagram uses m-value = 18 generated
on the notched tensile specimens for melt I at —100°C.

analysis (2D for SSY condition, 3D for three point
bending tests). The steps of calibration procedure used
for the toughness scaling model are following:

- Rank probability diagram (ps versus J;) for two
geometries is generated.

- The finite element analysis for tested specimens and
for SSY conditions (boundary layer method). .

- The Weibull stress determination for tested speci-
mens and for SSY conditions.

- Constraint correction according to weakest link
based thickness correction procedure of E1921-97.
Results of this transformation can be seen in Kozdk
et al. (2001).

- Determine 8. Assume that constrain corrected tough-
ness values obey Weibull distribution with fixed
exponent of 2, where 8 defines toughness value at a
63.2% of failure probability. Equating failure proba-
bilities leads to

J 2 - m
() =) ®

The plane-strain, boundary layer model simplifies
the generation of numerical solution for stationary
cracks under SSY conditions with varying levels of
constraint (for both approximation), where the refer-
ence volume Vj equals (100 wm)> for convenience in
all calculations. For the material considered in this
paper Bssy =0.064 MPam was determined according
data presented in Fig. 8. Calibrated m-values were
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Fig. 8. Determination of calibrated m-values for melt I at —100°C.
found out for numerical finite element analysis based

on the incremental theory of plasticity m=24.1. Size
and constraint corrected data can be seen in Fig. 9.

5.3. Calibration procedure for Weibull modulus
utilizes only one set of data. <

‘The last procedure described in Kirk et al. (1994) is

going out from the weakest link statistic for J-integral
from the Eq. (1). A central feature emerging from this
model is that, under SSY condition, the scatter in the
cleavage fracture toughness data is characterized by
b=2 for J; values.

1.0 & ]
0.8 -
0.6 - 4
i— - -
0.4 = —
02 ® SE(B) size corrected -
A PCVN
i v PCVN constraint corrected |
0.0 L—14® 1 : 1 \ | ) 1
0.05 0.1 0.15 0.2
Jo [MPam]

Fig. 9. Size and constraint corrected data for melt I at —100°C.
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Fig. 10. Weibull plots of experimental toughness values at —130°C

for melt I1.

- Cleavage fracture toughness values measured from
one set of high constraint standard specimens (con-
‘figuration A) define Jo of the statistical distribution
given by Eq. (1) (for J¢) as the basis for the calibra-
tion; this parameter is denoted J0

- Consider now a different constraint crack configura-
tion (configuration B) at the same temperature and
loading rate. Because m is assumed to be indepén-
dent of specimen geometry, the calibrated Weibull
modulus is the m-value that corrects the toughness
for configuration A to its equxvalent characteristic
toughness for configuration B, (JO to JO correctlon)
denoted JO TSM*

- By using a thickness correction based on the weakest
link statistic, parameter JA is simply scaled to the
characteristic toughness value for the configuration
B (with different thickness), denoted J@_WLM given
by:

Ba\®

JO WLM — = Jmin + (B ) (J() — Jmin) ®)
B

where Ba and B denote the specimen thickness.

- The calibrated m-value for the material is defined as
the value at which J& 1o = Jowim-

Fig. 10 provides a Weibull diagram of measured
toughness values for —130°C for SE(B) and pre-
cracked Charpy for melt II. The straight line indi-
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Fig. 11. Weibull stress o, for SE(B) at —130 °C for melt II.

cates the three-parameter Weibull distribution obtained
by the maximum likelihood analysis of the data
set With Jimin=0.0018 MPam_(Kpin =20 MPam'?).
The characteristic toughness value for SE(B) is
Jo=0.0557MPam and for the pre-cracked Charpy
Jo=0.138 MPam.

* The calibrated m-value was found to be very close to
m=16. The principle of the calibration procedure can
be seen in.Figs. 11 and 12, in the following Fig. 13 one
can see the result of the above-mentioned procedure,
the solid symbols in this plot indicate the received data

3200 T I T | [N I T ! T

2800 ;/’_
©
o /
E / .
bB

2400 —

Jo 7
2000 I N
0 0.05 0.1 0.15 0.2 0.25
J. [MPam]

Fig. 12. Weibull stress oy, for PCVN (pre-cracked Charpy) at
—130°C for melt II.
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Fig. 13. Corrected data (PCVN to SE(B)) according to Weibull stress
for m=16 at —130 °C for melt II.
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Fig. 14. Cleavage fracture prediction for the tested PCVN (pre-
cracked Charpy) specimen, data transformed to SE(B) specimen.

and the constraint influence. The dashed line indicates
only the size corrected data. The Weibull stress predic-
tion for SE(B) specimen using m = 16 agrees well with
the experimental data as can be seen in Fig. 14.

6. Conclusions

This paper describes three procedures, which can
be used for the toughness scaling model generation.
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First procedure is procedure without  calibration and
it is not too accurate. It is well-known that a direct
application m-values generated on the notch specimens
is controversial.

The procedure based on the small scale yielding
solution gives very good results, but it is necessary to
have a large amount of data and carry out a lot of com-
putations using finite element method.

The last procedure has its origin in the master curve
approach. It can be regarded to be a modified version of
the second procedure; however, before generating the
Weibull stress trajectories one needs to scale the Jo val-
ues. This approach is giving valuable data for the small
experimental data set. According to the author recom-
mendation the accuracy of this procedure is dependent
not on the thickness ratio but the configuration A and B
must have substantially different oy, versus J hlStOI'leS
computed for the same m-values.
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Abstract. The contribution is focused on a new methodology description for determination of
threshold stress 0, as the third parameter in Beremin local approach to cleavage fracture that is
using three-parameter Weibull statistics. Nature of the methodology lies in tensile testing of
rounded notched specimens at liquid nitrogen temperature and corresponding calculations. Reactor
pressure vessel steel was chosen as an example for the illustration.

Introduction

Local approach (LA) to cleavage fracture appears to be a part of fracture mechanics which is
based on theoretical background of both mechanical and physics of fracture. LA was established
mainly by Beremin group for solution of tasks associated with statistical size effect, scatter of
experimental data and prediction of temperature dependence for fracture toughness [1, 2]. Beremin
version of LA is based on the assumption that probability of cleavage initiation in metals and alloys
can be described sufficiently by Weibull distribution. Two alternatives of Beremin model can be
recognized (i) more or less simplified two-parametric approach and (ii) three-parametric one.
Applicability each of them strongly dependents on the calibration procedure of Weibull parameters
[1, 3]. Murdy was one of the first researchers, who suggested a comprehensive calibration
procedure [3]; nowadays a few different approaches to the procedure have been developed, a
detailed overview being available in [4]. The two-parametric Beremin model was established by
authors [2] which is only a first approximation because it supposes finite value of fracture
probability at negligible small loads, which is a contradiction to one of the main postulates of
original Beremin model - impossibility of any fracture (even cleavage) without a plastic
deformation (namely, at stress level less than yield stress) [5]. That reason motivated researchers
Petti and Dodds [6], Bakker and Koers [7], Xia and Chang [8] to introduce threshold stress as a
third parameter into Beremin model. The physical nature of threshold stress is a minimum level of
stress 1s necessary for a cleavage initiation. Several detailed discussions about the three-parameter
Weibull model and toughness scaling based on Weibull stress, were carried out in investigations [4]
and [9]. Possibility of invalid calibration of the shape parameter m and the scale parameter o, in
case of underestimation o, is one of the considerable conclusions; especially, it applies to the
shape parameter m, which will be systematically overestimated [9]. According to [10], rational
calibration procedure for o, remains an open issue nowadays.

The aim of the work is to establish a new technique for determination of threshold stress o, .

Theoretical background

According to the model of cleavage fracture of polycrystalline metals proposed in [11, 13],
the value of threshold stress is determined by the minimum stress &. . corresponding to instability
of a crack nucleus. Then threshold stress level can be described by the equation:

— é;C min (1)

9) - >
"ty
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where J:1 is a variation of microstresses (in case of polycrystalline iron J,,, #0.13), t=~3 is
probability tolerance.

As it was shown in [13], up to a factor 0.8-0.9 the value of threshold stress is equal to the
minimum level of cleavage fracture (figure 2) of metal R,,. (R, is the brittle strength) at the
uniaxial tension (figure 1). Factor 0.8 corresponds to low quality steel, 0.9 - to a high quality steel.
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Figure 1. Temperature dependence of the main Figure 2. Scale effect at cleavage fracture of iron:
mechanical characteristics of iron: §, is a R, is brittle strength, o, is threshold stress
fracture stress, o, 1is yield stress, y is

reduction in area

Such consequences enabled a new simplified procedure for determination of threshold
stresso,, as the value of minimum stress of cleavage fracture R,, of standard specimens at
uniaxial tension. According to results of investigations [14], ductile-to-brittle-transition range for
typical structural steels lies below 77K, and this means some methodological difficulties for
experimental determination of R,.. That's why the authors [14] ascertained experimentally a
possibility of determination R,,., as the value of nominal fracture stress for notched specimens at
2% plastic strain for wide range of structural steels. For this purpose, notched specimens with stress
concentration radius equal to 2 mm were utilized. It means that threshold stress can be determined
by uniaxial tensile testing of 5 notched specimens at 77K. Than

G4 =(0.8—0.9) Gxpy s (2)

where o, 1s nominal fracture stress of rounded notched specimens at residual strain value 2%.

Experimental

RPV steel 15SH2NMFAA was selected as the material for tests; the chemical composition
and mechanical properties of the steel are listed in Table 1 and 2, respectively.

Table 1. Chemical composition of RPV steel 1I5Ch2NMFAA

Material C, Mn, Si, Ni, | Mo, Cu, Cr, P, V,
[%o] [%o] [%o] [%] | [%] | [%] [0] | [%] | [%]
15Ch2NMFAA | 0.06 -0.15 0.48 -0.97 0.26-0.33 | 2.070 | 1.120 0.530 1.820 0.007 | 0.100
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Table 2. Mechanical properties of RPV steel ISCh2NMFAA

Material Yield Ultimate Reduction in Strain at Strain Work
T strength | strength . area fracture corresponding to hardening
o, ’ e, ultimate strength | exponent 77,
(K] [MPa] [MPa] [-] [-] Cute -]
[-]
15Ch2NMFAA 293 610 714 0.75 1.40 0.07 0.065

The tensile tests for the smooth rounded bar specimens were executed over the temperature
range from -196°C till room temperature (+20°C) to determine the materials flow properties. The
diameter of the gauge section of the smooth tensile specimen was 6 mm and the gage length was
30 mm. For the determination of o the tensile tests using the rounded notched bar specimens
were performed at -196 °C to obtain a nominal fracture stress and strain. In the notched specimens
the diameter of the smooth section was 8§ mm and the diameter of the notched section at a position
of minimum cross-sectional area was 5.2 mm, the notch root radius was 2 mm. The value of the

nominal fracture stress o, was calculated as:
onr =Pr/Ap, 3)

where Pg is load at fracture, 4, = 7d F2 /4 - is cross-sectional area after fracture.
The value of average strain in cross-section of notched specimen was estimated as follows:

) (4)

ep = In(

F

where . =(d,. /d,)’ - reduction in cross-sectional area, d.is a diameter of neck after fracture, d, -
is initial diameter of a specimen.
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Figure 3. The dependence o,;, of notched specimen of steel 15SCh2NMFAA on the average strain

in the minimum cross-section: o, is a nominal fracture stress corresponding to 2% strain

Discussion

According to obtained experimental results (figure 3) for investigated steel, the value of
Oy, 18 1400 MPa. Equation (2) gives the value of threshold stress o, = 1260 MPa. Threshold

stress 1s a material constant, and its value is determined by the distribution of ferrite grain sizes in
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pure iron or by the distribution of carbide sizes in most structural steels [11,12]. In the most cases,
the value of threshold stress o, is taken as 2o, , where o, is yield stress at test temperature for
Weibull parameters determination [14]. This approach has no physical basis; because of o, and o,
have a different physical nature. On the other hand, there is a need for precise determination of o, ;

high sensitivity of shape and scale parameters in Weibull distribution to the value of threshold stress
is the main reason. For example, authors [15] pointed out that for RPV steel A515-70 the shape
parameter m changes significantly at different values of o, : for o, = 0 the shape parameter gain

value m = 8, for o, = o, the value of m =5, and for o, =2 o, the value of m =2.5. Threshold stress

values o, for selected structural steels [16] were determined by proposed method and exhibited in

Table 3. For our RPV 15Ch2NMFAA steel the similar analysis is based on the standard CT
specimen data. The results are very close to literature findings, m parameter for 2 parametric local
approach was determined to be 7.4, for 3 parametric local approach and data in temperature range
<-90, -130> °C the shape parameter gains the value m = 1.9 (at o,, = 1260 MPa).

Table 3. The main mechanical characteristics of some structural steels at 293K

Material [15] Oy, Ot » n, CF> Gtho
[MPa] [MPa] -] [-] [MPa]

FeMn (ferrit) 317 481 0,190 1,350 1102
42CrMo4 (ferrit-perlite) 376 708 0,222 0,831 832
10Ch2MFA (tempered bainite) 491 606 0,109 1,549 1248
CrMoV (tempered bainite) 502 681 0,134 1,072 842
15Cr2NMFAA (tempered bainite) 610 714 0,065 1,400 1260
20CrNiMoV (tempered bainite) 676 801 0,097 0,836 1005
CrMoV (Tempered bainite) 779 904 0,095 0,999 1152
Lo8CrNiMo (bainite) 839 1038 0,108 0,727 1240
Lo17CrNiMo (bainite) 915 1306 0,152 0,692 1557
Conclusions

New simplified method for determination of threshold Weibull stress is offered, namely, by
uniaxial tensile tests cylindrical notched specimens at temperature 77K. Utilizing this method
ensures high accuracy of determination of Weibull parameters.
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Abstract

The physical nature of cleavage threshold stress Oy was considered and the technique for its experimental
determination was developed. By applying data for reactor pressure vessel steel and cast low-alloyed manganese
steel, it is shown that ignoring the value of Oy, gives rise to an 1.5-2 times overestimation of the shape parameter m.
Within the framework of the suggested alternative of the Local Approach, temperature dependences of fracture
toughness K- for probabilities of 5%, 50% and 95% were obtained for the steels. Accounting for the threshold
stress Gy, a correct quantification of the temperature effect on fracture toughness values K~ and proper prediction
of its scatter limits in transition region is possible. In particular, it is important to take into account the threshold
stress Gy, when predicting the lower envelope curve for fracture toughness Kjc, i.e. the Kj- value corresponding to
a total probability of 5%.
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Local Approach (LA) to cleavage fracture is an interdisciplinary concept enabling to predict unstable fracture of
a pre-cracked body, using a local criterion for initiating a cleavage fracture in the vicinity of a crack/notch. In
general, it was assumed that the LA would place fracture mechanics on a strong physical basis. Over the past three
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decades, a significant number of articles have been published and a lot of conferences have been focused on this
issue. However, the Local Approach didn’t receive the expected utilization. This is mainly due to unnecessarily
oversimplified description of the local cleavage event in conventional version of LA. Application of the Weibull
two-parameter distribution, i.e. neglecting the role of threshold stress Oy, appears to be one of the unjustified
simplifications of the LA to the cleavage fracture. According to experimental data, the value of Gy, for typical
structural steels is about 1000 MPa [Kotrechko et al. (2017)]; therefore, the threshold stress Gy, can’t be set equal to
zero. One of the indirect evidences of the crucial effect of the threshold stress magnitude on the fracture
characteristics is a significant change in the values of the Weibull distribution parameters at transition from two- to
three-parameter distribution [Ruggieri. (2001)].

Several detailed discussions about the three-parameter Weibull stress model and toughness scaling on Weibull
stress, were carried out by Gao et al. (1998) and Gao et al. (2000). Possibility of invalid calibration of shape
parameter m and scale parameter G, in case of neglecting Gy, has been found one of the considerable conclusions;

in particular in relation to the shape parameter m, which can be then will be systematically overestimated [Gao et al.
(2000)]. According to overview of Pineau (2006), rational calibration procedure for Gy remains an open issue

nowadays. In the work of Kotrechko et al. (2001),a two-scale version of LA was proposed, in which the probability
of cleavage initiation was determined by a sequential analysis of the processes of formation, instability and
propagation of the crack nuclei in a polycrystalline aggregate. This made it possible to ascertain the main physical
effects governing the cleavage fracture in metals and alloys, i.e. to create the physical basis of a LA.

Within the framework of two-scale version of LA this paper presents interpretation of the threshold cleavage
stress of a polycrystalline metal, an experimental technique for determining the Gy, value, as well as an analysis of

the effect of Gy, value on both the nature of the temperature dependence and scatter limits of fracture toughness of
structural steels.

1. Theoretical background

From a mathematical point of view, the key element of the LA to cleavage is the Weibull distribution. Correct
use of the Weibull distribution, and, accordingly, the choice of a procedure for parameters calibration of this
distribution requires accounting for the quantitative features of the cleavage initiation micromechanism in metals
and alloys. Most existing versions of the LA to cleavage account the fact that the crack nuclei (CN), which don't
exist initially in metal, but are continuously generated during its plastic deformation, are the cause for the cleavage
fracture. In a number of papers [Kotrechko (2001); Kotrechko (2013); Bordet (2005)], attention was focused on the
peculiarities of the cleavage nucleation stage in the metal. It lies in the fact that only freshly nucleated CN can
initiate cleavage. The crack nuclei that aren't unstable at the time of formation become blunt, and later don't
participate in the cleavage fracture initiation. The rate of CN generation per unit volume, p, depends on the plastic
strain level. This is important because the local plastic strain ahead of a crack / notch, may change by more than an
order of magnitude. In addition, temperature has a significant effect on p [Kotrechko (2013)]. From a mathematical
point of view, this means that the reference volume ¥, (V,=1/p) will not be constant, as accepted in the most

conventional models. Its magnitude is a function of the both local plastic strain € and temperature 7 . The
dependence was quantified by [Kotrechko (2013)], in analytical form, it may be approximated as follows:

&

p=p, —a (1—§J , e<e, 1)

p:po —b(é—— j 5 élmeé >EC
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where &, is the critical value of equivalent strain, corresponding to the maximum CN density; a and b are the

coefficients; €p,, is the maximum strain in approximation dependence (for ferritic steels typically e, =0.02 ;

a=1.498x10"m>; h=0.124x10"m>); &,,, <0.3-0.5.

p, =pc[ll-expl-ox, )|

3

o and p, are the coefficients which determined by a calibration procedure (typical values can reach:

a.~0.01-0.04 MPa ™! ;P = (1 - 8)>< 108m™ ); Ty is the thermal component of shear stress:

1y =0.5C exp|C,T+CTIné|

(4)

¢ is the plastic strain rate; for ferrite steels typically: C; =1033MPa; C, =—0.0068 K™'; C; =0.000415 K™

The threshold stress Oy, is the minimum stress of cleavage fracture. The crack nuclei have microscopic sizes, so,

they become unstable under the action of tensile microstresses. According to Kotrechko (2013):

_ gmn
o0 T3

)

where fcml " is the stress corresponding to crack nucleus instability of maximum length, which is most favourably

oriented relatively to the direction of normal stresses; /7, is the coefficient of variation of tensile microstresses &j;

(for iron and ferritic steels under tension /¢, ~0.13); the coefficient «3» before /:, means that Gy, is determined

with a probability of 0.997.

The idea of experimental determination of the threshold stress magnitude is based on the use of a statistical scale
effect for the cleavage stress. This effect manifests itself the tendency of the cleavage stress value Gy to approach

the level of threshold stress with increasing specimen volume (Fig. 1). The relatively high density of the crack nuclei

»n
=}

1,8}
16}
1,41
1,2}

1,0

0,8

V, - volume of standard

0,6 | tensile specimen )
0,01 1 100 10000 1000000
Volume, V (mm°)

Critical fracture stress, o, /R _(-)

Figure 1. Scale effect at cleavage fracture of iron: R, is the
brittle strength, &, is the threshold stress: circles designate the
computer simulation findings

formed in the iron and structural steels (& 1013m'3) gives rise
to the fact that starting from rather small volumes (2500
mm?) the value of oy slightly (up to 20%) exceeds the

threshold level Gy, . For experimental determination of Gy, ,

this enables utilisation of the minimum of the cleavage
fracture stress (brittle strength) R,,.of standard specimens at
uniaxial tension within the temperature range of the ductile-
to-brittle transition (Fig. 2). Unfortunately, ductile-to-brittle-
transition range for typical structural steels lies below the
nitrogen boiling point (-196 °C). This means some
methodological difficulties at experimental determination of
Ryc. In this meaning, a method for determining the value of

brittle strength, Ry,-, was developed for structural steels by

testing cylindrical specimens with an circumferential notch.
The parameters of the notched specimen were
experimentally ascertained (the maximum diameter is 8§ mm,

minimum - 5.2 mm, notch root radius - 2 mm), at which the nominal fracture stress for this particular specimen
geometry at 2% average strain in the minimal cross-section is equal to R),~ with an accuracy of 1 4%.
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Based on these ideas a technique was proposed for the experimental determination of the magnitude of threshold
stress of structural steels oy, [Kotrechko (2013)]. According to this technique:

Oy = (0.75 +0-95) XOpNp2 »

(6)

where the coefficient 0.75 corresponds to low strength steels, and the coefficient 0.95 — to high-strength ones; Gy
is the nominal fracture stress of notched tensile specimens at 2% average strain.
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Figure 2. Temperature dependence of the main
mechanical characteristics of iron: RMC is the

brittle strength; § r is the fracture stress, oy is

the yield stress, \y is the reduction in area.

For experimentally determining the value of Oy, it is enough to

test 5-6 notched tensile specimens at the boiling point of liquid
nitrogen (-196 °C) and to find the value of nominal fracture stress
O r at an average plastic strain in the notched section that is equal to

2%.
2. Results and discussion

Experimental studies were carried out on reactor pressure vessel
(RPV) steel and cast low-alloyed manganese steels. Determination of
the threshold stress values Oy, for these steels was performed

according to the technique described above. To ascertain the
parameters of Weibull distribution, standard pre-cracked specimens
CT-1T made of RPV steel and 1T SENB specimens made of cast low-
alloyed manganese steel were tested. The values of the shape
parameter m and scale parameter 0, were determined by a calibration
procedure. For this purpose, the experimental values Kj- of the
investigated steels were used (Fig. 3 (a and b)). The values m and
G, were ascertained for the Weibull three- and two-parameter
distribution, i.e., taking into account Gy, and at its zero value (see the

table). In addition, the values p, and o were determined. In this case:
Pe =4x10°m™ | «=0.024 MPa’'. Probability of the cleavage

initiation for the finite element was taken to be zero, if the value of p,
calculated from (2), became less or equal than 0.

Table. Mechanical properties and values of the Weibull distribution parameters

Three-parameter Two-parameter
oy oy . 0 (MP3) Weibull Weibull
Material e (- - o a g S
(MPa) (MPa) u v th distribution distribution
o, (MPa) m o, (MPa) m
RPV steel 610 714 0.07 0.75 1100 6835 54 4895 12.2
Cast steel 319 481 0.26 0.74 720 3700 8.0 3800 133

Here Oy is the yield stress; G, is the ultimate strength; e, is the uniform elongation; \y is the reduction in area;

Oy, is the threshold stress; m and G, are the shape and scale parameters (values Oy, G, ¢, and \y are given for

room temperature).

According to the data obtained, accounting for the threshold stress Gy, give rise to a significant (1.5-2 times)
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decrease in the magnitude of the shape parameter m. This is in good agreement with the data of Ruggieri (2001).
Based on these data, temperature dependences of fracture toughness K- for the studied steels were plotted (Fig. 3

(a and b)). The algorithm of calculations of fracture toughness and fracture probabilities is as follows:

1. For each jth stage of loading ij , the values of equivalent plastic strain &' and normal tensile stresses G@Y in

each i'" finite element were calculated using the finite elements method (software ABAQUYS).
2. Further, the probability of the cleavage initiation in i element was calculated:

P=l-ex _EX(MJ 7)
0

Gy

. 4 1. .
where V' is the finite element volume; V| is the volume per one crack nucleus (F=p', value of p' was
0
calculated according to equations (1), (2) and (3)).

3. Then, the total probability of cleavage initiation in specimen can be calculated:
n=N

B =70 ®)

pE
where N is the number of finite elements falling into the yield region.
The step size and the number of loading stages were chosen in such a way as to obtain K| values when the
probability of cleavage initiation B. is 5%, 50% and 95%.
Figures 3 (a and b) show the calculated temperature dependences of fracture toughness for RPV and cast steel. Also,
here are experimental data for Kj-. According to these data, the calculated dependences describe well both the
regularities of Kj- increase with increasing temperature 7 and the limits of its scatter at a constant T value. It
should be emphasized that in this case, the fact is taken into account that the increase in K- is not only due to a fall

in the yield strength, but also due to a decrease in the rate of generation of the crack nuclei in the vicinity of major
crack tip (dependences (3) and (4)). The latter has not been accounted in the conventional concepts of local

approach. This usually results in an underestimation of the slope of the Kj- temperature dependence. The higher the
strength of steel and the higher the temperature for which K. is determined, the greater the error due to ignoring
the temperature dependence of ;.
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Figure 3. The temperature dependences of fracture toughness for RPV steel (a) cast low-alloyed manganese steel (b): circles designate the
experimental evidence; lines are the calculation results.
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According to the obtained results, taking into account the crucial role of threshold stress Gy is especially
important for correct description of the scatter limits for fracture toughness K in transition region, as well as of its

temperature dependence for small values of the fracture probability (5%), i.e. for description of the lower envelope
of Kjc. As generally known, this is of paramount importance in predicting the integrity of the critical structural
elements (reactor pressure vessels, gas pipelines etc.)

Conclusions:

1. The relatively high density of the crack nuclei formed in iron and structural steels enables determining the value
of the threshold cleavage stress from the results of testing tensile specimens with a circumferential notch of a special
geometry.

2. Ignoring the threshold stress value gives rise to an overestimation of the shape parameter magnitude by 1.5 times
for cast steel and 2 times for RPV steel.

3. In the Local Approach, accounting for the magnitude of threshold stress is especially important for correctly
predicting the temperature dependence of the fracture toughness K- for low probabilities of fracture ( A =5% or

less). This is of considerable practical importance for predicting the integrity of critical structural elements.
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Abstract. The base of this paper is exact measurement of deformation and fracture material
characteristics in laboratory, evaluation of these parameters and their application in models of finite
element analysis modelling the fracture behaviour of components with defects. The base of the
work is dealing with ductile fracture of forget steel 42CrMo4. R-curve is modelled by 3D FEM
using WARP3D and Abaqus. Crack extension is simulated in sense of element extinction
algorithms. Determination of micro-mechanical parameters is based on combination of tensile tests
and microscopic observation. Input parameters for the next computation and simulation were
received on the base of image analysis, namely fy and f,. The possibility of transferring these
parameters to another specimen is discussed.

Introduction

Classical nonlinear fracture mechanics can be understood as a mechanic of fracture for materials
with inelastic deformations. It is covered by the classical theory of elastoplasticity and by the theory
of viscoplasticity and based on the incremental formulation. However, constitutive equations
presuppose stable behaviour to receive the convergence of modelled problem. It depends many
times on the quality of used mesh in FEM and a numerical algorithm implementation. Physical
reality of failure is often more complicated due to initiation, growth and nucleation of cavities; it
can be characterized as damage. This damage may lead to the initiation and growth of macrocracks
in a structure and to final damage of the whole structure or component. The term crack tip used in
the fracture mechanics is a mathematical idealization because in the process zone ahead the crack
tip new surfaces are coming up. Principally there are three approaches how to model damage,
separation of materials and fracture process [1, 2]: (a) On the assumption of a small process zone,
its influence is neglected and special fracture criteria are used, e.g. K, J and C’ ete. (b) We admit the
creation of the new surfaces (separation) in the local area, the rest of the body is modelled using a
standard element of continuum. The local area is described using cohesive models. (¢c) Damage is
being implemented in constitutive models and accumulation of damage is processed. The advance
approaches e.g. [3] enable to combine mechanics of continuum with the local behaviour of
collection of atoms or on the base of molecular dynamics [4].

Micromechanical models of ductile tearing based on the damage mechanics showed themselves
as a perspective way how to avoid numerical problems connected with the dependence of
characteristic parameters used in the classical fracture mechanics on the size and geometry of body.
The principal question is if the obtained parameters can be used without problems on the real
component and predict its integrity. The procedures which can be applied on the strategy in
modelling of the crack growth follow from the previous approaches. In contrast to crack growing of
elastic materials, where the crack initiation is directed to the catastrophic damage of component, the
presence of the ductile area leads to the stable crack growth. The crack growth can be simulated by
the following way: (i) using node release techniques, where the control of the crack growth is based
on the J, CTOD, CTOA (e.g. Siegele and Schmidt [5], Brocks [6]), (ii) using cohesive elements
(e.g. Needleman [7], Yuang [8], Li [9], (iii) using constitutive equations based on the damage
mechanics (e.g. Needleman [10], Brocks [11], Schmidt [12], Lemaitre [13]). Within the framework

All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of Trans
Tech Publications Ltd, www.scientific.net. (#551770539, Institute of Physics of Materials, Brno, Czech Republic-02/02/21,15:17:23)
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of the damage mechanics, the GTN [14] model is thought of as a micromechanical process like
initiation, growth and coalescence of voids. A major item of GTN model is the yield criterion which
extends von Mises yield criterion and can be expressed as:

C25550 o cosnl 392w | 27 _
(D—3 =3 +2q.f cosh(2 O'YSJ [1+q3f }—0 (1)
S fe=f
f*z _fu*_fc _
fomfm U1 f oy
(2)

The parameters qi, g2, qs are used to adjust the model, o, is hydrostatic stress, oys is yield stress, f
is void fraction, f; is the critical void fraction for coalescence, fr is the final value of f, f;, =1/q;.

Experiments and identification of material parameters

The basic micromechanical parameters are determined from the real tensile test combined with the
finite element calculations.

| f 0,0049  0,0073  0,0073  0,0083  0,0126  0,0131  0,0349 |

012345678910

Fig. 1: The tensile bar Fig. 2: Void distribution in the neck area of the round tensile bar

Fig. 3: Void fraction distribution for both GT and the
GTN model

VVF
{Awe. Crlt.: 75%)

+5.864=-02
+5.620=-02
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+5.131=-02
+4.887=-02
+4.643=-02
+4.398=2-02
+4.154=-02
+3.910=-02
+3.6865%=-02
+3.421=-02
+3.177=-02
+2.932=-02
+2.688=2-02
+2.4442-02
+2.199=-02
+1.355=-02
+1.71l0=-02
+1.4662-02
+1.222=-02
+3.7742-03
+7.331le-03
+4.887=-03
+2.4442-03
+0.000=2+00

One can see in Fig. 2 that the fr close to fracture surface
nearly reaches the value of 0.034. As can be seen in Fig.
3, this is the value when the whole specimen is broken
and this value was used for the next computations for
three point bending (3PB) modelling using the approach
of vanishing elements. Obtained results proved that the
plastic strain distribution and void fraction distribution
for the tensile tests are same for both GT and GTN
model. Therefore the GT model (without void
coalescence) can be used for 3PB modelling.
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The simulations with varying f, value (the initial value of f), fy is the nucleation parameter, are
presented in Fig. 4 (AL represents the elongation and Ad the contraction). In all computations
recommended values for nucleation were used (ex=0.3 and Sx=0.1) and q;=1.5, q>=1, q3=q12.

10 T T T I T T T { T T T

L GT model Fig. 4: The determination of f,
- f,=0,004
8 | The values f,=f\=0 represent the situation
where only the elements without damage are
used. For all finite element calculations the
material parameters have been determined
as E=210000 MPa, u=0.3 and actual true
stress-strain curve at the room temperature
has been used. The commercial code Abaqus
[16] and university code WARP3D [17]
were used for FEM modelling.

Ad[mm]
Modelling of stable crack propagation

In order to perform the numerical analysis the FEM mesh was generated using two planes of
symetry for the 3PB specimen (Fig. 5). In the region of the supposed crack propagation the
,»vanishing elements (described by the dependence true stress vs. true strain plus GT parameters)
were used with the characteristic size of 0.1 mm (and 0.05 mm for the second model). Number of
elements was 6654 (resp. 6904) of the type C3D8. The angle of initial blunting was 45°, maximum
increase of the crack length was 2.5 mm. The results of the FEM simulation are presented in Fig. 6

(q1=1.5, gz is varying, qs=q°).

EEEEEEEENEE RN

Fig. 5: FEM mesh for 3PB specimen and the detail of the
crack tip

Summary

- On the base of hybrid procedure (numerical modelling and experiment) the parameters of GT
model were determined.
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- Using the ,,vanishing elements” the ductile crack growth was simulated and the R-curve was
predicted. The coincidence of the predicted curve and experimental curve is very good; to receive
these results it is necessary to calibrate parameters q; and ¢, in GTN model. A more detailed
discussion can be found in [15].
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Chapter 11

Ductile Crack Growth Modelling
Using Cohesive Zone Approach

Vladislav Kozak

Abstract The paper studies the prediction of the crack growth of the ductile frac-
ture of forged steel 42CrMo4. Crack extension is simulated by means of element
extinction algorithms and two approaches have been compared. The first one is
based on the damage model Gurson-Tvergard-Needleman (GTN) (see [12]), the
second on the cohesive zone model with the exponential traction separation law.
The bulk of the paper is concentrated on the cohesive zone modelling. Determi-
nation of micro-mechanical parameters is based on the combination of static tests,
microscopic observation and numerical calibration procedures. The attention is paid
on the influence of initial value of J-integral and the slope of R-curve (J-Aa) which
is modelled by 3D FEM. Based on tensile test the static elastic-plastic characteriza-
tion of metals consist of the determination of the curve expressing the equivalent von
Mises stress as a function of equivalent plastic strain. For ductile materials capable
of undergoing large post-necking deformations, the exact material curve determi-
nation requires exact approach. The approximation suggested by Mirone [18] has
appeared to be promising and valid for the structural steels.

11.1 Introduction

An important issue when considering failure is the observation that most engineer-
ing materials are not perfectly brittle in the Griffith sense, but display some ductility
after reaching the strength limit, in which small-scale yielding, micro-cracking and
void initiation, growth and coalescence take place. If the process zone is sufficiently
small compared to structural dimension, linear elastic fracture mechanics can apply.
If not cohesive forces that exist in the fracture zone must be taken into account.

Vladislav Kozdk

Institute of Physics of Materials, Academy of Sciences of the Czech Republic, 616 62 Brno,
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The most powerful and natural way is to use cohesive zone model, which was in-
troduced by Dugdale [8] and modified by Barenblatt [2] for elastoplastic fracture in
ductile metals. For ductile fracture the most important parameters of the cohesive
zone model appear to be tensile strength and the work of separation or fracture en-
ergy. The cohesive model is a phenomenological model and most authors take their
own formulation for dependence of traction on the separation.

The crack tip, the term used very often in the fracture mechanics, is a math-
ematical idealization. In reality, a region of material degradation exists in some
process zone. In this zone the microbehaviour becomes important for constitutive
modelling. Most of the newer models developed and proposed are a bit different
from Barenblatt’s model in that they define the traction acting on the ligament as
a function of the opening and not on the crack tip distance as Barenblatt did. The
material separation and, thus, damage of the structure is described by interface ele-
ments in FE method. Using this technique, the behaviour of the material is split into
two parts: the damage free continuum with arbitrary material law, and the cohesive
interfaces between the continuum elements, which specify only the damage of the
material.

Principally there are four approaches how to model damage, predict separation
of materials and fracture process, e.g. [3] and [19]: (a) The process zone is small, its
influence is neglected and than only special fracture criteria are used, e.g. K, J and
C* etc. (b) We admit the creation of the new surfaces (separation) in the local area
and the rest of the body is modelled using standard continuum element. Only local
area is described using cohesive elements. (c) Damage is implemented in constitu-
tive models and accumulation of damage is processed. (d) The advance approaches,
e.g. [22] enable to combine mechanics of continuum with the local behaviour of
collection of atoms on the base of molecular dynamics [14].

Micromechanical models based on the damage mechanics showed themselves
as a perspective way how to avoid to numerical problems connected with the de-
pendence of characteristic parameters used in the classical fracture mechanics on
the size and geometry of body. The principal question is if the obtained parame-
ters can be used without problems on the real component and predict its integrity.
From it follow procedures which can be applied on the strategy in modelling of
the crack growth. In contrast to crack growing of elastic materials, where the crack
initiation is directed to the catastrophic damage of component, the presence of the
ductile area leads to the stable crack growth. Crack growth can be simulated by the
following way: (i) using node release techniques, where the control of the crack
growth is based on the J, CTOD, CTOA, e.g. [5, 23], (ii) using cohesive elements,
e.g. [17,21,26], and (iii) using constitutive equations based on the damage mechan-
ics, e.g. [4, 16, 21]. Within the framework of the damage mechanics the GTN [24]
model is thought of as a micromechanical process like initiation, growth and co-
alescence of voids. The constitutive equations which are used to describe ductile
fracture processes are based on the relatively simple models which are dependent
on many micromechanical parameters obtained experimentally.
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11.2 Determination of Cohesive Parameters

Since the cohesive model is a phenomenological model, there is no evidence, which
form is to be taken for the cohesive law, T'(8) (see Fig. 11.1).

Cohesive models can be used for normal and tangential separation as well for
mixed mode loading. Experiment in this paper were made only on a pure mode I
crack and therefore cohesive law for mode I was applied. Cohesive law has to be as-
sumed independently of specific material as a model of the separation process. The
exponential model is used by many authors for both the ductile and the cleavage
fracture [6]. An exponential relationship between the effective traction (T') provides
a decohesion model. The T-6 response follows an irreversible path with unloading
always direct to origin. This model represents all the features of the separation pro-
cess by: (1) the shape of the cohesive traction/separation curve (7-0), and (2) the
local material strength by the peak traction (T), and, the local ductility defined by
the work of separation (I) given by the area under (T-6) curve.

For the determination of the cohesive stress, Ty in the case of normal fracture a
hybrid technique has been developed. Using conventional elastic-plastic analysis,
the distribution of the axial stress across the notch section of the specimen geometry
is determined for the instant of the crack initiation in the centre of specimen. At
that event, the axial stress exhibits a maximum in the centre of specimen, which is
supposed to be equal to Tp. The case of the standard computation by Abaqus [1] can
be seen in the Fig. 11.2a and in the Fig. 11.2b (used load steps are in the Table 11.1).
Approximately twelve specimens have been used and mean value 2000 MPa was
determined as the Tj value (T = 2,000 + 50 MPa).

The standard CT specimens were used for J-integral determination according
the ASTM 1820-99a procedure. The experimentally determined value of J; was

S
195052070,
10,000050,%%0,

00302 20,%50930% 205220\

(d) 3 e) & & 8 o

Fig. 11.1 Cohesive laws proposed for various materials
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=2.,002e=03
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+1.668e+03
+1.585e+-03
t1.50le+t0

+2.486e+02
+1.651le+0Z2
+8.160e+01
-1.91lex00

Fig. 11.2a Stress distribution for notched tensile specimen
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Fig. 11.2b Axial stress distribution
Table 11.1 Load steps used in Fig. 11.2b
Step 3 6 10 13 16 24
F[N] 25042 8000.53 16003.4  22003.6  25001.9  29002.4

Step 31 34 37 43 45
F[N] 32502 336754  33217.3  31149.1  29999.7
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found to be J; = 115 & 5MPa.mm and this value was calibrated using numerical
procedure in WARP3D because of absence cohesive element carrying plasticity in
Abaqus [1]. FE mesh for CT specimen can be seen in Fig. 11.3. Set of computations
were applied to the calibration of the cohesive parameters used for J — R curve
prediction (Tp, J;). Various combinations for Ty and J; were tested. In the Fig. 11.4
the values J; are marked as Cohe_1, Cohe_2 a Cohe_3 (J; = 110, 120, 130) and

Fig. 11.3 FE mesh for CT specimen
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Fig. 11.4 J-R curve in the initial phase of the crack propagation
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Fig. 11.5 J-CTOD curve in the initial phase of the crack propagation (data obtained from CT
specimen)

received data were compared with the experimental values. The best correlation
was found for first value of J;. = 110MPa.mm. The calibration process can be seen
further in the Fig. 11.5. After this procedure the input data for stable crack growth
modelling have been received.

For simulation at given material curve the cohesive parameters seem to be: Ty =
2,000MPa and J; = 110 MPa.mm.

11.3 Stable Crack Growth Modelling Using Cohesive Elements

The experimental results of the SE(B) specimens were available in the form of
the J-R diagram (J-Aa). The characteristic mesh size of the cohesive element was
0.2 x 1.4 x Omm. Some material curves received by the standard material tests for
the same material show necessity of the diligent approach and accurate methods for
the material curve determination. The best coincidence with the experimental data
was in case of the material curve obtained from the tensile specimens and where the
Mirone approach [18] was applied.

Using the cohesive parameters received on the notched specimens (7p) and J; on
the CT specimens the numerical simulation of the stable crack growth was simulated
and J — R curve was predicted. By utilization of two symmetry planes (plane xy and
yz) for SE(B) specimen with a/W = 0.5 only one quarter of the real body was mod-
elled. The FE mesh consists from 8,560 nodes and 7,155 element C3D8 (Abaqus
2005). For application of nonlinear cohesive element, the package Warp3D [10] was
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necessary to use. In the same mesh generated in Abaqus [1] the next 180 cohesive
elements inter_8 were added. Owing to numerical instability the loading increment
from one step was decreased from 0.025 mm to 0.0025 mm (therefore more than
1,000 loading steps were applied).

Numerical modelling found strong dependence on the mesh size, especially on
the mesh size in the direction in the thickness of the body. Therefore 15 various
meshes for the FE modelling were applied. In Fig. 11.6 one can see detail of the
crack tip for FE mesh used for the application of the cohesive elements.

Fig. 11.6 The FE mesh and detail of the crack tip for SE(B) specimen
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Fig. 11.8 Modified tensile specimen — waisted

To determine material curve for characterization of the elastoplastic behaviour
of tested material the standard tensile experiments have been using for many years.
The relation O, (€.,) is found but the problem is the validity of this relation after
necking. According to many experimental observations in [18] the new approximate
curve in Eq. (11.1) was received for standard tensile specimens (see, Fig. 11.7) and
modified tensile specimens — waisted specimens (Fig. 11.8). This Eq.(11.1) was
used in our prediction of the material curve. At least 10 specimens were used in
both cases; the third curve [25] was determined by standard procedure without MLR
elongation. Material curves used for modelling can be seen in the Fig. 11.9 and
corresponding J-R curves in the Fig. 11.10. The higher values of deformation are
the fitted values.

MLRG (€oy — €x) = 1 —0,6058 (Epty — x)* 40,6317 (€1 — £N)°

11.1
~0,2107 (€t — &n)’* (b
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11.4 Stable Crack Growth Modelling Using GTN Model

The base micromechanical parameters are determined from the real tensile test com-
bined with the finite element calculations. Determination of micro-mechanical pa-
rameters is based on the combination of tensile tests and microscopic observation.
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Fig. 11.11 Void distribution in the neck area of the round tensile bar

The standard cylindrical specimens with a diameter of 6 mm have been tested at
room temperature at crosshead velocity of 2mm min~'. From the reason for the nu-
merical simulation the following data have been measured: force vs. elongation and
force vs. contraction using optical method. The tensile specimens have been anal-
ysed as a first. The methodology for the assessment of the micromechanical param-
eters requires the metallographic observation not only in the area of the local change
of the diameter but in the area of non-affected by the plastic deformation [15]. Half
of the tensile specimen has been bisected and a die head has been separated. The
two samples for optical microscopy have been prepared. Received photos have been
analyzed using image analysis. Void distribution in the neck area of the round tensile
bar can be seen in Fig. 11.11.

[T]0.0049 ] 0.0073 [ 0.0073 | 0.0083 | 0.0126 [ 0.0131 [ 0.0349 |

On the base of the received photos recording the contracted area it is possible
to submit that in this case of ductile process the coalescence of cavities is minimal.
Then the value of f;. is very close to value of fr and the critical conditions for ductile
damage is being received only by combination of growth and nucleation. One can
see in Fig. 11.11 that the ff close to fracture surface nearly reaches the value equal
0.034 and f, the value 0.005.

Major item of GTN model is the yield criterion which extends von Mises yield
criterion and can be expressed as:

2 8;Sij . 3 420m R
‘bzg cer%j +2q1f cos}l(iqzc—,/)_[“r%f 2]:0 (11.2)
f fe>f
.« . 11.3
! {fc—ﬁ;{; (f=fo) fe<f (-

The parameters q;, q2, q3 are used to adjust the model, Gy, is hydrostatic stress,
Oy is yield stress, f* is void fraction, f; is the critical void fraction for coalescence,
fr is the final value of f, f,* = 1/q;.

The void volume fraction, f, which is defined as the total volume of all cavities
to the volume of the body, is introduced as an internal variable to characterize the
damage. Its equation consists of two terms due to nucleation and growth:
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df = dfgrowtn + dfnue with £(t,) = fo, (11.4)

with f as the initial void volume fraction. The void growth rate is proportional to
the plastic volume dilatation rate and an empirical approach for nucleation of void
was proposed by [7, 11], suggested a normal distribution for void nucleation (for
strain-controlled nucleation) and then we can write:

dfpyer = Adep, (11.5)

where A represents the intensity of nucleation and €, is equivalent plastic deforma-
tion and A is given by

N 1 (e, —¢en 2
A—SNmexpl 2( S~ ) 1 (11.6)
en is the mean strain for nucleation, Sy is its standard deviation, fy is the volume
fraction of void nucleating particles.

The results following from the metallographic observation in question of the ab-
sence of the coalescence stadium have been verified on the base of the finite element
calculation too. An important query for the applicability of the model is whether or
not the micro-mechanical parameters are dependent on the mesh size. Material af-
fection was given by the true stress-strain curve, fy = 0.04 and the statistical model
of nucleation with recommended values €y = 0.3 and Sy = 0.1 was chosen see [20]
for all computations. As can be seen in Fig. 11.12, where the number of elements
in the neck area is varying, one can observe the discrepancy between Fig. 11.12a
and b. Next computations for more elements than 14 are giving the same curves as
in Fig. 11.12b.

The influence of the initial volume fraction on the slope of elongation-contraction
curve has been tested; it can be seen in Fig. 11.13. It is evident that the increasing
value of f implicates the increasing of the value of the plastic deformation in the
neck area. Reciprocally the volume fraction of void nucleating particles, fy, has
been tested and it is presented in [25].

In the framework of the stable crack growth modelling the 3D model of the stan-
dard specimen for three point bend test was created. Using two planes of symmetry
only one fourth of the real body was modelled. The problem of determination of
the proper mesh size ahead the crack tip was solved on the base of comparison ex-
perimentally determined force-COD curve and numerically received one (see [25]).
The characteristic mesh size was initially determined to 0.5 mm, but the coincidence
between experiment and the numerical data was not good. Having been used the
mesh where the characteristic mesh size for crack growth area had been selected to
0.1 mm the agreement between experiment and numerical model has been markedly
increased.

Using above mentioned micromechanical data and FEM software WARP3D [10]
the dependence of J-integral on the ductile crack length has been received. As can
be seen in Fig. 11.14 the computed curve and the experimental curve are nearly the
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Fig. 11.12a The influence of the mesh size on the curve elongation-contraction
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Fig. 11.12b The influence of the mesh size on the curve elongation-contraction

same, but the good correlation has been found due to varying of q, parameter. The
values q; = 1.5 and q» = 1 have been accepted for a long time as constants non-
dependent on the material behaviour. Faleskog [9] as the first referred to difficulties
following from the consideration of the independence of these parameters on the
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Fig. 11.13 The dependence of the elongation-contraction curve on the varying value fj

800IIIIIIIIIIIIIIIIIIIIIIII

600 —

J [MPamm]
N
o
S
I

200 + EXP
L O 0,=0,8 |
B O g,=0,82 FEM |
L A (,=0,85 i
G L1 11 I L1 11 I | I I | I I | I -
0 0.5 1 1.5 2 25
Aa [mm]

Fig. 11.14 J-R — curve

material. The new method of calibration q; and q, parameters is being discussed in
the latest work presented by Kim [13].

In our calibration the q; parameter is fixed and the dependence of q, (rep-
resenting the local triaxiality) on the slope of the R-curve is tested. In connec-
tion of the slope the attention has been paid on the ductile crack initiation. From
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physical-mechanical point of view the value of J; is appeared to be independent on
the geometry of the body. This value can be regarded as a material characteristic
and it has been determined numerically as the value when the first element van-
ished. This value can be denominate as a pseudo-physical and its dependence on the
q> parameter (in Fig. 11.15) and on the triaxiality factor h (in Fig. 11.16) has been
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Fig. 11.15 The dependence of J; gy on the qp parameter
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Fig. 11.16 The dependence of J; gy on the stress triaxiality factor




11 Ductile Crack Growth Modelling Using Cohesive Zone Approach 205

determined. As can be seen the decreasing of the local stress triaxiality leads to the
increasing of the initial value of J; pgp and for our experimental steel this initia-
tion value was markedly higher then for recommended value of q,. The value of J;
could be dependent on the geometry of the body (from the engineering approach)
and this finding in necessary to take into account in the case of transferability of the
experimentally determined data to the real components.

11.5 Conclusions

Using of the “vanishing elements” the ductile crack growth was simulated and the
R-curve (J-Aa) was predicted using damage and cohesive elements in case of a pure
mode I. The coincidence of the predicted curve and experimental curve is very good;

— To receive these results is necessary to calibrate parameters q; and q; in GTN
model.

— For modelling using cohesive elements the hybrid experimental and numerical
procedure is used for the calibration Ty and Ty.

— Stable crack growth modelling is strongly dependent on the quality of the FE
mesh. For the damage modelling the blunting crack tip is used; for the modelling
using cohesive elements the thickness of these separate elements is zero and the
exponential traction separation law (see Fig. 11.1b) was used. Obtained results
can be seen in Figs. 11.17 and 11.18.

7OOIIIIIIIIIIIIIIIIIIII
600 —
500 —
E 400 I
£ 400
S L
o
£ 300 [
S
200 — experiment ]
— FEM - cohesive model |
— FEM - GTN model
100 —
0IIIIIIIIIIIIIIIIIIIIIIII
0 0.5 1 1.5 2 25

Aa [mm]

Fig. 11.17 J-R curve generated by cohesive model and by GTN model
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Fig. 11.18 The reconstruction of the crack path

— The shape of the J-R curve is more determined by the material curve than by
the shape of the traction separation law. The exact determination of the material
curve is the key point for proper application of the cohesive zone model used for
the ductile fracture.

— Three separate tensile geometries were investigated, including waisted and
notched specimens. Waisted samples and standard tensile specimens were used
to determine the material curve. The notched specimens have been found very
suitable for the verification of the measured material curves. The shallow notch
of the waisted tensile specimen allows monitoring of the diametral contraction
during testing, so that the true stress could be accurately monitored. Agreement
of the computed curve (using Abaqus [1]) force — deflection and force — contrac-
tion for notched specimen was excellent. Notched specimens were used for 7y
determination and calibration.

— The standard CT specimens were used for J-integral determination according the
ASTM 1820-99a procedure and J; value has been calibrated through the best fit
of the calculated and measured J-R curve.
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Abstract. The micromechanical modelling encounters a problem that is different from basic
assumptions of continuum mechanics. The material is not uniform on the microscale level and the
material within an element has its own complex microstructure. Therefore the concept of a
representative volume element (RVE) has been introduced. The general advantage, compared to
conventional fracture mechanics, is that, in principle, the parameters of the respective models
depend only on the material and not on the geometry. These concepts guarantee transferability from
specimen to components over a wide range of dimensions and geometries. The prediction of crack
propagation through interface elements based on the fracture mechanics approach (damage) and
cohesive zone model is presented. The cohesive model for crack propagation analysis is
incorporated into finite element package by interface elements which separations are controlled by
the traction-separation law.

Introduction

The prediction of crack propagation through interface elements based on the fracture mechanics
approach (damage) and cohesive zone model is investigated. The contribution is concentrated on
qualification of the two approaches and their use for the prediction of the ductile crack growth in
42CrMo4 forged steel.

Two approaches have been selected for crack extension simulations, both built up on
element extinction algorithms. The first one is based on the damage model of Gurson-Tvergard-
Needleman (GTN) [1]. The other approach arises from the cohesive zone model [4]. Determination
of micro-mechanical parameters inevitable for modelling utilizes combination of results from static
tests, microscopic observations and numerical calibration procedures. The attention has been paid to
the influence of initial value of J-integral and the slope of R-curve which were modelled by 3D
FEM using WARP3D and Abaqus. The ductile tearing process consisting of void nucleation,
growth and subsequent coalescence has been represented by a traction separation law in case of the
cohesive zone model. Interface elements (cohesive elements) simulating the damage development
were implemented between the conventional continuum elements representing elastic-plastic
properties of the material. Two cohesive parameters, Ty (cohesive strength) and Iy (cohesive
energy) are supposed to describe damage and fracture of the representative volume element (RVE).
The tensile bars were used for determination of the cohesive strength, and the fracture mechanics
specimens (CT) for determination of the cohesive energy. The ductile crack initiation (J;) has to be
determined by appropriate experimental method like multiple specimens technique.

The separate problem supposes elastic-plastic characterization of the steel based on tensile
test. It consists mainly of the determination of the loading curve expressing the equivalent von
Mises stress as a function of equivalent plastic strain. For ductile materials capable of undergoing
large post-necking deformations, the determination of such material response curve determination
requires an exact approach. From a number of possible approaches the solution suggested by
Mirone [2] appears to be promising. The material curves introduced into calculation have been

All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of Trans
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nearly identical; however, an immaterial alteration may play a significant role in the final prediction
of the crack extension.

R-curves in terms of the J-integral approach play a key role in the structural integrity
assessment concept. Thus, it is important to know in depth about the effects contributing to
predictions of this curve.

Experiments and determination of material parameters

The basic micromechanical parameters for GTN model were determined from the measured tensile
test data combined with the finite element calculations; generally 9 material parameters have been
determined as described elsewhere [3]. The geometry parameters q;, qz, q3 were used to adjust the
model, f. is the critical void fraction for coalescence, fr is the final value of void fraction, fy is the
nucleation parameter, in all computations recommended values for nucleation were used (ex=0.3
and Sx=0.1).

To determine material curve for characterization of the elastic-plastic behaviour of tested
material the standard tensile test data have been using for many years. The relation of g4, (¢.r,) can
be determined but a key problem is the validity of this relation after necking. According to
observations [2] the new approximate curve, Eq. 1, was received for standard tensile specimens and
so-called waisted specimens.

2 3 4
MLRo (e, —&,)=1-0,6058(s,,, —&,)* +0,6317(¢,, —&,) —0,2107(s,,, — &, ) (1)
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Fig. 1: Comparison of tensile test curves obtained experimentally and by FEM modelling

The parameters for cohesive zone modelling. For the cohesive strength, Ty, in the case of fracture in
the normal direction, the hybrid technique has been developed [4]. Using conventional elastic-
plastic analysis, the distribution of the axial stress across the notch section of the specimen is
determined for the moment of the crack initiation in the centre of specimen. In that case, the axial
stress exhibits a maximum in the centre of specimen, which is supposed to be equal to Ty. The result
values were determined as the average values from a set of ten tested specimens.

The cohesive energy, I'y, has been determined by a fracture mechanics test with assumption
that I’y is equal to J; valued, i.e. the J-integral at initiation of stable crack extension. The procedure
can be taken from the standard test methods and numerical calibration as can be seen in Fig.2. The
standard CT specimens were used for the J-integral determination according the ASTM 1820-99a
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procedure. The calibration process was applied on three combinations of values Ty and J; marked in
Tab. 1 as cohe 1, cohe 2, cohe 3.

To [MPa] Ji[MPa.mm] | &y/2[mm]
Cohe 1 2000 110 0.0101
Cohe 2 2000 120 0.011
Cohe 3 2000 130 0.012

Table 1: Input parameters for traction-separation law calibration
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Fig.2: Traction separation law calibration by means of Ji-Aa data (for CT specimen)

Stable crack propagation modelling
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Fig.4: Ji-Aa curve prediction for cohesive model and GTN (SE(B) specimens)
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The experimental results of the SE(B) specimens were available in the form of the J-Aa curve. The
characteristic mesh size of the cohesive element was 0.2 x 1.4 x 0 mm’. The dependence of the J-
integral on the crack increment is illustrated in the Fig. 4. Some material curves received by the
standard tensile tests for the same material show necessity of the diligent approach and accurate
methods for the material curve determination. The best coincidence with the experimental data was
obtained in case of the material curve adjusted by means of Mirone method from the tensile test of
the standard specimen.

Summary

The cohesive parameters for ductile crack growth have been experimentally determined and
calibrated using finite element computation method. Obtained results have been compared with the
GTN method. This procedure consists of a specific traction-separation law of the cohesive model
and convenient method for determining the material parameters. The traction-separation law has
been characterized by the constant cohesive strength, Ty, which is preceded by a steep slope and by
the cohesive energy, 'y, which also characterizes the material properties in the process zone. From a
numerical point a view the following findings have been made:

e The shape of the J-4a curve and therefore the results of crack propagation modelling is
strongly controlled by the material curve (equivalent stress — equivalent strain curve). The
precise determination of the material curve is the key point of the correct modelling and
application of the cohesive elements. The sensitivity of the cohesive zone modelling on the
material curve is higher than in case of the GTN model.

e The strong dependence of the convergence and numerical stability on the mesh size was
found in both cases. The shape of the crack line for numeric stable solution is a bit different.
The crack line for the GTN model is blunted, the best shape is for 45° chamfer of the first
element. Thickness of the cohesive element is zero; therefore no bevel edge can be used.

e Determination of nine parameters for GTN model is more complicated procedure and more
dependent on the experimentally determined values.

e Using of the ,,vanishing elements” for the ductile crack growth simulation was tested and R-
curve was predicted. The coincidence of the predicted curve and experimental curve is very
good due to partial calibration of numerical q, parameter of the GTN model.

e The experimentally obtained values for the J; received on the CT specimens must be
numerically calibrated.

e The higher plasticity is in the crack tip the lower requirements are on the shape of the
traction-separation curve for the cohesive zone model.

Finally, good agreement between numerical simulations and experimentally measured J-R curve
was found.
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Abstract. Ceramic matrix composites reinforced by unidirectional long ceramic fibre are very
perspective materials. The only disadvantage of such materials is relatively high brittleness at room
temperature. The main micromechanism acting as toughening mechanism is the pull out. There are
other mechanisms as crack bridging, crack deflection etc. but the primer mechanism is mentioned
pull out which is governed by interface between fibre and matrix. The contribution shows a way
how to predict and/or optimise behaviour of composite by application of cohesive zone method
using the FEM numerical package Abaqus. The presented results from numerical calculations are
compared with experimental data.

Introduction

The prediction of crack propagation through interface elements based on the fracture mechanics
approach (damage) and cohesive zone model is investigated. From amount damage models the
cohesive models seem to be especially perspective for practical applications [1]. Thanks to
phenomenological character of cohesive models this model is adapting for various kinds of
materials and damages. Cohesive models (more often) cohesive zone model (CZM) is increasingly
being used to simulate fracture and fragmentation processes in metallic, polymeric, ceramic
materials and composites [2]. Base principle of CZM which is using cohesive elements for crack
and damage modelling is their damage while the classical continuum elements are undamaged. In
terms of modelling the separation of materials is realized using cohesive elements in the boundary
line between classical elements of continuum. Using cohesive models the behaviour of materials is
realized by two types of elements. The former is the element for classical continuum and the latter is
the connecting cohesive element. The separation of these connecting cohesive elements is computed
from the displacement of neighbouring continuum elements. Generally the separation is dependent
on the normal and shear stresses and their operation on the surface of separation elements [3].

The failure of composites has been investigated extensively from the micromechanical point of
view. When a crack propagates in a composite material in a direction perpendicular to that of
reinforced fibres, the failure process typically involves four basic mechanisms: matrix cracking,
fibre/matrix debonding, fibre breakage and fibre pull-out. Critical problems in application of these
materials are the interfaces between matrix and reinforcing fibres. The interface is very strip area
with primary key property including the fracture toughness, strength and fracture behaviour. This
interface plays the crucial role in stress transferring between reinforcement and matrix and so it
determines the mechanical and fracture behaviour. The separation is given by the common influence
between normal and tangential directions at the interface. Compound materials consist of two or
more constituents with different properties complementing other. The degrading properties of one
constituent are levelled off by better properties of the others. Damage evolution is sensitive to
morphological parameters of the microstructure such as volume fraction, size and spatial
distribution of reinforcements, interfacial strength and size defect. Significant improvement in
discrete crack modelling has been realized with the development of extended finite element method
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[X-FEM]. In this approach the domain is modelled by finite elements with no explicit meshing of
the crack surfaces. The location of the crack discontinuity can be arbitrary with respect to the
underlying finite element mesh and static or fatigue crack propagation simulation can be performed
without the need to remesh as the crack advances [4, 5]. Combination cohesive elements and X-
FEM approach seem be very perspective way how to model the crack growth.

Bridging law modelling

For glass fibre composites, the interfacial properties are controlled by the sizing, which is applied to
the glass fibres during manufacture. The change of sizing results in changes of these properties. This
leads to the influence to the mechanical properties such as strength and fracture toughness. The
concept of strength is used for characterising crack initiation in composite design, while fracture
toughness determines crack growth and damage development. Bridging occurs during cracking in
mode I crack growth along the fibre direction. This failure mode plays an important role during
delamination of fibre composites and cracks splitting around holes and notches. The fibre bridging
zone must be modelled as a discrete mechanism on its own; failure is not just controlled by the
cracking at the crack tip. The failure process can be described by a bridging law, which describes
the relationship between the crack opening displacement and the local bridging tractions resulting
from the bridging ligaments. This paper derives the necessary basics and equations to implement
these laws into the commercial finite element code ABAQUS with a cohesive user element.
Different numerical adjustments of the bridging law will be discussed in detail in oral presentation.
Crack aspects, such as crack opening shape and the influence of bridging law parameters, are
studied based on the numerical results.

Now consider the specimen having a crack with bridging fibres across the crack faces near the
tip. The bridging law ¢ = o(d) is then taken to be identical at each point along the bridging zone.
Since fibres will fail when loaded sufficiently, we assume the existence of a characteristic crack
opening 0y, beyond which the closure traction vanishes. Shrinking the path of the J integral to the
crack faces and around the crack tip gives

.
J = [0(8)ds+ Ty, (1)
0

where Jypp is the J integral evaluated around the crack tip (during cracking is equal to the fracture
energy of the tip, Jo). The integral is the energy dissipation in the bridging zone and 6* is the end-
opening of the bridging zone at the notch root. The bridging law can be determined by
differentiating Eq. (1)

x oJ
0(5)—5- (2)

Jr is the value of J during crack growth. Initially, the crack is unbridged. Thus, by Eq. (1), crack
growth initiates when Jg = J1p = Jo. As the crack grows, Jr increases in accordance with Eq. (1).
When the end opening of the bridging zone §" reaches &y, the overall R-curve attains its steady state
value Jg.

Bridging law implementation

There are a variety of possible methods for implementing cohesive laws within commercial finite
element programs. The most versatile is the development and programming of cohesive elements.
These elements are in most cases defined with zero thickness and prescribe stresses based on the
relative displacement of the nodes of the element. Similar work has also been undertaken with
spring elements (force-opening relation), although in this case there might be simplifications
required when calculating the equivalent nodal spring forces from the surrounding elements. The
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procedure is not straight forward when springs are connected to elements with non-linear shape
functions, such as 8-noded elements.

The constitutive expression can be expressed either with a linear displacement term for Au, or
with a coupled form, where Au is included with non-linear dependence. The preferred option
depends on the form of the constitutive equation (Eq. 3) and its numerical implementation:

. 5
Jp(0 ):Jo"'Mss(é._)m- 3)
0
Two points need to be addressed during the numerical adjustment: Removal of the stress
singularity at Au = 0 and incorporation of the initial fracture strength J, improved traction separation
law as can be seen in Fig. 1. Parameter a is in range <1, 100>, K¢,. =Jo/(Auycp)(ot1/a).

00=J0/(Au2Kfac)((a+1 )/OL)
o(8)=(1-((Auz-Au)/Auy)*)K G
b -~ 6,=1.5AJSQRT(Au,/Aug)/Au,
all
o |
k7] :
jo) I
£ '
U) [}
i) :
= ]
M ! <o - 6,=AJJ(2SQRT(AULAU,))
Jo ! AJss
Aug AU»] Au0

Crack opening Au

Fig.1: Traction separation (bridging) law modification

Experiments and determination of material parameters

The material used for the bridging stresses modelling was a commercially available SiC Nicalon
fibre reinforced borosilicate glass matrix composite (see Fig. 2). More information can be found in
[6]; especially the prediction of bridging stresses was valuable for the cohesive model application.
Properties of the glass matrix, SiC fibres and composite were: Young’'s modulus 63, 198, 118 GPa,
Poisson ratio 0.22, 0.20, 0.21, tensile strength 60, 2750, 600-700 MPa.

Fig. 2: Image of the microstructure
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Stable crack propagation modelling

For the crack growth modeling the following data determined experimentally were used: Jo = 6200
J/mz, Js = 18500 J/mz, Au, = 0,1 mm, Au; = 0,013 mm. Calibrated data and the final shape of the
bridging law can be seen on the following Fig. 3.
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Fig. 3: Traction separation law after calibration procedure

Summary

Special shape of the bridging law has been tested and implemented into the commercial finite
element package Abaqus. The cohesive parameters for crack growth have been experimentally
determined and calibrated. The traction-separation (bridging) law has been characterized by
bridging stress oy, steady state value Jg, crack growth initiates when Jr = Jpp = Jo. The following
findings have been made:

Crack propagation and its numerical stability are strongly controlled by slope of bridging
law. The precise determination of the law is the key point of the correct modelling and
application of the cohesive elements.

The strong dependence of the convergence and numerical stability on the mesh size was
found. Thickness of the cohesive element is zero; therefore the sharp crack tip is used.
Vanishing elements for the crack growth simulation were tested and numerical stable shape
of the traction separation law was suggested.
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The optimization of silicon oxycarbide (SiOC) synthesis (sol-gel/pyrolysis) is described, starting from
methyltriethoxysilane, dimethyldiethoxysilane, tetraethoxysilane, ethyltriethoxysilane and propyltriethoxysilane.
Variation of final elemental composition was tested via change of monomer ratios and combinations. The main
aim was to achieve low weight losses during cure and pyrolysis and high micromechanical properties. Gas
chromatography and mass spectroscopy was used to analyse the by-products of cure and pyrolysis, indicating
a prominent role of cyclosiloxane and polyhedral oligomeric silsesquioxane (POSS) oligomers. Best results were
obtained with high contents of methyltriethoxysilane in the monomers mixture.

PACS: 81.05.Je, 81.05.Mh, 82.30.Lp

1. Introduction

Silicon oxycarbide (SiOC) is a hard glass which is
structurally related to both silica (SiO2) and silicon car-
bide (SiC). It enjoys a considerable research interest, be-
cause of its high mechanical properties and refractori-
ness [1], interesting viscoelastic behavior at elevated tem-
peratures [1], and not least because of an improved oxi-
dation resistance [2-5] in comparison to SiC, due to much
more efficient surface passivation with SiO,.

[CH3Si0; 5], — Si0,C, + Hy + C,H,, + oligo(siloxane)
Scheme 1: Preparation of SiOC via siloxane pyrolysis

Attractive is the easy accessibility of SiOC via pyroly-
sis of siloxane resins (Scheme 1, review [6]. Even ideally
homogeneous SiOC can be considered a nanocomposite,
consisting of Si0s- and SiC-like structural units, as illus-
trated in Scheme 2. The highest SiOC homogeneity is
achieved via magnetron sputtering [7, 8]. Above 1100 °C,
SiOC undergoes a “micro’-phase separation into larger
nanometric domains of SiC embedded in SiOq [1, 9-12].
Typical SiOC also contains turbostratic graphite [1, 4, 9]
which is responsible for its black color. Only under
special synthesis conditions, completely graphite-free,
colorless SiOC can be prepared [13]. SiIOC synthesis via

* corresponding author; e-mail: strachota@imc.cas.cz

pyrolysis typically leads to porous products, so that it
is difficult to obtain large, well-shaped, monolithic pieces.

Scheme 2: Symbolic representation of SiOs (a), of the
denser SiC (b) and of SiOC (c) covalent networks

In previous work the authors prepared compact SiOC
composites with silicate fibers, using commercial silox-
ane resins (repeated soaking/pyrolysis) [14-16]. It was
demonstrated [17] that high amounts of iron oxide in
the fibers (basalt) lead to their good pull-out behavior.
Micromechanical properties of SiOC were also recently
investigated [18]. In this work the focus was of non-
expensive variation and optimization of SIOC synthesis
using common alkoxysilanes as starting compounds.

(326)
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2. Experimental
2.1. Chemicals

Methyltriethoxysilane, dimethyldiethoxysilane,
tetraethoxysilane, ethyltriethoxysilane and propyltri-
ethoxysilane, as well as catalyst sulfuric acid (HoSOy4
98%), sodium hydrogen carbonate and toluene were
purchased from Sigma-Aldrich and used without further
purification.

2.2. Synthesis of precursor resins

4 wt% H>SO,4 in water was mixed with the alkoxysi-
lane monomers so that the ratio H;O/OR (OR = alkoxy
groups from alkoxysilanes) was equal 2.25, 1.5 and 3. The
mixture was stirred for 5 min without heating (complete
homogenization and heat evolution is observed), there-
after it was stirred for 25 min on a heating plate at
130°C(evaporation of formed ethanol and of excess- and
condensation-water). Finally, the raw (liquid) product
was diluted by toluene to 50 wt%, and HySO, was neu-
tralised with NaHCOg3 (10% excess). The toluenic resin
solution was separated from the small aqueous phase
formed from HoSO4 and NaHCOg3 and stored in refriger-
ator.

2.8. Resin cure and pyrolysis

Resin solutions were put into a porcelain weigh dish
and first evaporated under air stream at room temper-
ature around 15 min, yielding a viscous paste. This
was further dried under vacuum at room temperature
for two hours, yielding dry non-cured resin (weight
determination). For cure, the resins were heated on air
at 90°C/ h up to 250°C, and thereafter this temperature
held constant for 4h. The pyrolysis of the cured silox-
anes to SIOC was carried out under nitrogen atmosphere
by heating from 250 to 420°C at 50°C/h, followed by
slower heating from 420°C till 1000°C at 10°C/h. The
cooling of the finished SiOC sample was performed at
50°C/h.

2.4. Weight Loss determination

The weight loss of samples after curing, or after cur-
ing and subsequent pyrolysis was measured by weighing
larger specimens (2 g) on an analytical balance, before
and after the respective heating program, averages of five
values were used. For recording thermogravimetric mass-
loss vs. temperature curves (TGA) a Kern EW device
was used, at a heating rate 90°C/ h, with air as purge
gas.

2.5. Pyrolysis / Gas Chromatography / Mass
Spectroscopy analysis

The cure and pyrolysis was followed using a Trace-
DSQII gas chromatograph (GC) with quadrupole mass
spectrometer from ThermoElectron, equipped with the
CDS Pyrobrobe 5000 pyrolysis chamber. For every
pyrolysis-GC-MS analysis, 2 mg of a powdered sample

were used. The pyrolysis was carried out in helium atmo-
sphere for 30 s, at 160, 200, 250, 300, 400, 500, 650, 750
and 1000°C. The silica column TR-5MS with a mod-
erately polar stationary phase was used for GC: Injec-
tion temperature was 250 °C, mobile phase (helium) flow:
1.5 mL/min, injection splitting was 1:10, GC program:
initial temperature: 35 °C, rate 5°C/min, final T": 300 °C.
Product mass spectra were assigned using a NIST library.

2.6. Micromechanical testing

The micromechanical analysis of SiOC samples was
performed using a ZWICK Z2.5 indentation tester,
equipped with the micro hardness head ZHU0.2 (200 N
load cell). The depth measurement resolution was 20 nm.
Experiments (repeated five times) were performed at 2 N
peak load, and in accordance with the Vickers hard-
ness test standard [19]. The unloading branch of loading
curves (force vs. indentation depth) yielded the universal
hardness HMs and the indentation elastic modulus Ejr.
The indents were also measured optically using a laser
confocal microcope LEXT OLS3100 (Olympus, Japan),
yielding Vickers hardness HV02.

3. Results and discussion

3.1. SiOC Synthesis procedure

Several alkoxysilane monomers (Scheme 3), were tested
in a well-controlled sol-gel synthesis of siloxane precursors
to silicon oxycarbide (SiOC).
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Scheme 3: Monomers: (a) = methyltriethoxysi-
lane, “T”, (b) = dimethyldiethoxysilane, “D”,

(c) = tetraethoxysilane, “Q”, (d) = ethyltriethoxysilane,
“TEt”, (e) = propyltriethoxysilane, “TPr”

The SiOC preparation consisted of three steps (Scheme
4): (1) First, alkoxysilane monomers were subjected to
an acid-catalyzed sol-gel process with water (hydrolysis
followed by gradual Si-OH group condensation to Si-O-
Si), under heating and evaporation of the formed alcohol.
OH-functional oligomeric siloxane resins were obtained,
whose further condensation was stopped by catalyst neu-
tralization and by dilution with toluene to a storable 50%
solution (well suited for fiber textures impregnation); (2)
In the second step, the precursor solution was dried and
subsequently cured at 250°C to yield an infinite net-
work; (3) Finally, the cured polysiloxane was pyrolysed
at 1000 °Cunder nitrogen to yield SiOC.
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Scheme 4: The employed preparative path to SiOC.

3.1.1. The examination of the sol-gel step

The effect of the amount of added water in step (1)
of Scheme 4 was studied first: lower than stoichiometric
amount leads to an incomplete hydrolysis of the alkoxysi-
lane. Until HyO : OR ratio of 0.5, a complete subsequent
cure to perfect polysiloxane is still possible (via OH-OR
condensation), but the steps (1) and (2) of Scheme 4
proceed slower, which could be eventually an advantage
(improved control of gas evolution and solidification).
H50:0R ratios of 1.5 (low), 2.25 and 3 (high excess) were
tested, taking into account evaporation losses (50%) of
water. The HoO:OR ratio of 2.25 led to optimal curing
behavior and was selected as standard. Optimal reaction
time for the sol-gel step (1) is around 70% of the time
of gelation. At lower conversions, the resins foam during
cure (usually not desired). At higher conversions, the
resin storability becomes problematic.

8.2. Weight loss of the silozane resins during cure and
pyrolysis

Weight losses during cure and pyrolysis are illustrated
in Figs. 1-3: Fig. 1 depicts a typical behavior during
cure (at 90°C/h). After the first scan, practically no
loss occurs during the second, until 270°C. Above this
temperature, weight loss is observed in any scan, indicat-
ing the start of pyrolysis reactions (strong above 400 °C).
The obtained resins were compared with the commercial
methylsiloxane “M130” from Lucebni zavody a.s. Kolin,
Czech Republic (loss after cure and pyrolysis: 20%).
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Fig. 1. Exemplary weight loss behavior during silox-
ane cure and the onset of pyrolysis near 300°C: full
squares: first heating, hollow squares: derivative of the
weight loss, full triangles: second heating, hollow trian-
gles: derivative of weight loss for second heating.

As illustrated in Figs. 2 and 3, the weight losses during
cure step and during pyrolysis step are similar in the

Reference

Fig. 2. Effect of bifunctional carbon-rich “D”-monomer
content on the weight loss behavior of siloxane resins
based on methyltriethoxysilane (trifunctional, “T”) and
dimethyldiethoxysilane (bifunctional, “D”).

>l () (b)
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%
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Fig. 3. (a) Effect of bifunctional carbon-rich “D’-
monomer content on the weight loss behavior of siloxane
resins based on tetraethoxysilane (tetrafunctional, “Q”)
and dimethyldiethoxysilane (bifunctional, “D”), (b) Ef-
fect of size of the alkyl substituent on triethoxysilane
units “T”, onto the weight loss of T2D1 resins.

best resins. In those with high weight losses, most of
the loss often occurs already during the cure. Generally,
high content of the carbon-rich repeat units “D” (from
dimethyldiethoxysilane) leads to high losses.

In the series methyltriethoxysilane/
dimethyldiethoxysilane (7/D) (Fig. 2), the resins
with “D”/”"T” (Scheme 3) monomer ratios 0, 0.25 and
0.33 display smaller (or same) weight losses than the
reference. The resin with D/T = 0 has a very strong
tendency to gelation, so that D/T = 0.25 (“T4D1”) was
ideal. The resins with D/T = 0.5 to 4 display high losses,
which increase with D content (suspected elimination of
cyclic D oligomers - confirmed by GC/M S below). The
Q/D series (Fig. 3a), in which the “T”-monomer was re-
placed by the cheaper and carbon-free tetraethoxysilane,
“Q” (Scheme 3), showed very promising low weight losses
at cure, especially for D/Q = 2 and 3. Q1D2 had a
high tendency to gelation, while Q1D3 is unproblematic.
Unfortunately, all the /D resins display too high
D-losses at pyrolysis.
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Scheme 5: Assignment of important components of py-
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Fig. 4. Gas chromatograms of gases escaping during

the cure of siloxane resins and their pyrolysis to SiOC.

Effect of alkyl groups on “T” (trialkoxysilane)
monomer on weight loss (Fig. 3b): The variation of
Si/O/C ratios via “D” (carbon-rich dimethyldiethoxysi-
lane) content in the T'/D and Q/D series was found to
be rather small, due to strong elimination of D. Hence,
the variation of carbon content was tested by introduc-
ing larger alkyl substituents on “T”. Larger alkyl groups
on T lead to higher losses than the methyl groups, but
the trend is not simple (Fig. 3 b): Ethyl groups cause a
twofold increase in weight loss, if compared with methy-
lated T2D1. n-Propyl groups yield a much better re-
sult, but the total loss is still higher by 30%. Obvi-
ously, the larger alkyl substituents favor the formation
of volatile oligomers of T' (see GC/MS below). With
increasing substituent size (n-propyl), radical crosslink-
ing and carbonization of these substituents reverse the
T-release trend. A butyl group could possibly achieve
improved weight losses, but reactive larger groups on T'
seem to be more promising.

3.8. GC-MS-study of pyrolysis by-products

The evolution of gaseous by-products during cure and
pyrolysis of precursor siloxane resins was followed via
gas chromatography coupled with mass spectroscopy
(GC/MS). Figure 4 shows chromatograms of fumes evolv-
ing from a T2D1 sample pyrolysed at T = 160°C to
1000°C (“T” corresponds to methyltriethoxysilane, “D”
to dimethyldiethoxysilane monomer, the numbers give
monomer ratios). Products marked in Fig. 4 were as-
signed via M S (Scheme 5). “D”-unit content led to release

of cyclic D—trimer (highly preferred) and D-tetramer
(marked as (2) and (3), boiling points: 134°C and 176 °C,
respectively). D-rich resins (T1D1, T1D2, T1D4, Q1D4
(Q = tetraethoxysilane) ) release cyclo-D3 and -D4 al-
ready during cure, indicating their formation during syn-
thesis. Above 400°C, cyclo-D evolves due to pyrolysis
(see literature [20, 21]). Above 400°C, methane and
propene were detected (marked (1)), as side products of
alkyl substituents pyrolysis. From moderate pyrolysis
temperatures (300°C) onwards, branched cyclic D — T-
oligomers marked as (4) were detected. Above 650°C,
spherical T-oligomers (POSS, marked (5)) evolve, espe-
cially strongly if ethyl-substituted “T” was used.
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Fig. 5. Micromechanical characteristics of SiOC

glasses in dependence of monomer composition: (a)
Martens hardness HMs, (b) Vickers hardness HVO0.2,
(¢) indentation Young modulus Err, “T” corresponds
to methyltriethoxysilane, “Q” to tetraethoxysilane, and
“D” to dimethyldiethoxysilane, numbers to monomer
ratios.

3.4. Micromechanical testing

The quality of the SIOC glasses prepared was evalu-
ated via micro-indentation. Regarding precursor com-
position, the mechanical properties showed similar but
much weaker trends like weight losses. In Fig. 5, the
Martens hardness HMs (a), the Vickers hardness HV0.2
(b) and the indentation Young modulus Ejr are com-
pared for SiOC made from T4D1, T3D1, T2D1, T1D1,
Q1D3 and from the reference“M130”. The series T4D1
to T1D1 shows a moderate but clear decrease of hard-
ness and modulus with increasing D content. This trend
seems to correlate more with density, rather than with
composition, because samples with high weight losses
were typically micro-porous (“micro-foaming”). Densi-
ties, determined by weighing thoroughly powdered sam-
ples on air and in water (after being soaked for one day),
range from 2.0 to 1.8 g/mL for T4D1 to T1D1 (before
pyrolysis: 1.2 g/mL). Interestingly, Q1D3 displays nearly
the same micromechanical properties like SiOC from the
reference, in spite of Q1D3 relatively high weight loss.
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4. Conclusions

Silicon oxycarbide (SiOC) glasses with varying element
ratio were prepared from mixtures of alkoxysilane co-
monomers. Combining simple monomers, linear carbon-
rich dimethyldiethoxysilane with branching carbon-poor
ones (methyltriethoxysilane or tetraethoxysilane) led to
rather narrow variation of final SIOC composition, due to
dimethyldiethoxysilane elimination upon pyrolysis. Sam-
ples with high weight losses were micro-porous. Larger
alkyl groups on triethoxysilane units led to formation
of volatile cage-like silsesquioxane oligomers, but also to
higher substituent carbonization, hence large and poly-
merizable substituents on trialkoxysilane units seem to
be most promising for future work.
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BRIDGING LAW SHAPE FOR LONG FIBRE COMPOSITES AND
ITS FINITE ELEMENT CONSTRUCTION*

VLADISLAV KOZAK ' AND ZDENEK CHLUP#

Abstract. Ceramic matrix composites reinforced by unidirectional long fibres are very perspec-
tive materials. Especially glass matrix composites reinforced by unidirectional long ceramic fibres
are very complicated materials for modelling thanks their common acting of various micromecha-
nisms like pull out, crack bridging, matrix cracking etc. Crack extension is simulated by means of
element extinction algorithms. The principal effort is concentrated on the application of the cohesive
zone model with the special traction separation law (bridging). Determination of micro-mechanical
parameters is based on the combination of static tests, microscopic observation and numerical cali-
bration procedures. The paper is oriented to the construction of the new type of element for FEM
program (Abaqus).

Key words. finite element method, cohesive elements, bridging law

AMS subject classifications. 74505, 74E30, 74E20

1. Introduction. Crack growth modelling achieved during last decade great
success and progress. The finite element and boundary element method, molecular
dynamic success and actually ”ab initio” computation found their use in the mate-
rial research long time ago. Some of mentioned methods are modified, e.g. parallel
approach implementation, which comes into their own in case of the multiprocessor
applications. In some cases only the small improvement of the standard procedures
is coming. The finite element method as a well known procedure has in this case the
special position. It seemed that the boundary of material and geometry nonlinearities
will be reached later. Procedures based on the fracture mechanics approach derived
benefit from knowledge of global parameters like the stress intensity factor and J in-
tegral are. These parameters were used with the combination of the remeshing ahead
the crack tip a bit later.

The special element implementation responding damage and crack growth intro-
duced so-called ”damage mechanics”. The cohesive elements are similar; the origin
can be found in the contact elements and is based on the vanishing elements and the
new surface creation [1]. The phenomenological description characterizing material
behaviour is realized using the traction-separation law, thanks this the local damage
is predicted. Many models published within last five years can be found in literature
for laminates, composites, long fibre composites etc.

Although the cohesive zone modelling is used more than one decade, the physical
interpretation of the cohesive zone is still discussed. This zone has practically zero
thickness which can be in contradiction of the classical fracture mechanic approach.
Characteristics of the physical cohesive zones peak traction, critical separation, work
of separation (Ty,dp,y) can be derived by the strain and stress analysis in narrow
bands [2]. Since the cohesive model is a phenomenological model, there is no evidence,
which form is to be taken for the cohesive law. Thus cohesive law has to be assumed

*This work was supported by Grant No.: P107/12/2445 of the Grant Agency of the Czech Re-
public.

TInstitute of Physics of Materials AS of CR, Brno Czech Republic (kozak@ipm.cz).

HInstitute of Physics of Materials AS of CR, Brno Czech Republic
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independently of specific material as a model of the separation process. Most authors
take their own formulation for the dependence of the traction on the separation. The
exponential model is used by many authors for both the ductile and the cleavage
fracture. The T — § response follows an irreversible path with unloading always direct
to origin. This model represents all the features of the separation process by: (1) the
shape of the cohesive traction-separation curve T' — §, (2) the local material strength
by the peak traction Ty, and the work of separation I'y given by the area under T'— ¢
curve.

Cohesive model use is realized by two types of elements. The first one is described
by the classical continuum; the second one is the linking cohesive element. The
separation of the cohesive element is computed from the displacement of the standard
element. In general terms the separation is dependent on the normal and shear
stress constituent and their operation on the linking element [3], [4]. Composite
damage modelling on the base of knowledge of crucial micromechanisms is one of
the good approaches how to ensure compliance to the prediction and experiment.
When the crack is propagates in the composite in the direction perpendicular to the
strengthen fibres, the damage is then determined by these basic micromechanisms:
matrix cracking, delamination of an interface fibre and matrix, fibre cracking, fibre
pull out [5]. The critical problem is to predict interface behaviour between the fibre
and the matrix. This interaction plays crucial role in the determination of the final
fracture toughness, fracture strength and the general fracture behaviour.

From the micromechanical point a view, every element has its own microstructure,
it comes out from the representative volume element (RVE) approach and the material
separation and damage is described and determined by the cohesive element. In this
manner we separate material behaviour into two distinctively different areas. Crack
propagation through the element is described by the fracture mechanic and by the
cohesive model. This model is simpler than the classical models and is parameters are
determined experimentally [6], [7], [8]. The cohesive models are widely used in case
of the crack growth and fragmentation simulation for metals, polymers and ceramics
8], [9):

Outstanding progress in the crack growth modelling has been achieved by onset
of the extended finite element method (X-FEM) in the last years. This method seems
be very perspective, no remeshing is used and crack growth goes through the element.
By this way one can avoid various numerical problems which is necessary to solve
by using the connection elements of interface type [10], [11]. Last innovation for the
crack growth modelling without remeshing is the combination of the extended finite
element method and application of the cohesive law as a controlling procedure for the
crack growth modelling.

2. Traction-separation law. For a general constitutive modelling of materials
whose fracture may be described by means of a cohesive crack, we need to define three
main ingredients: (1) The stress-strain behaviour of the material in absence of cohesive
cracks, as described by classical constitutive modelling. (2) The initiation criterion,
which determines the conditions in which a crack will form and the orientation of
the newly formed cohesive crack. (3) The evolution law for the cohesive crack, which
relates the stresses transferred between its faces to the relative displacement between
the crack lips.

The cohesive crack model may serve to predict structural behaviour or to analyze
experimental results. However, it can also be used to analyze certain wider aspects
of material or structural behaviour. This requires, in general, a certain type of spe-
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cialization: the type of softening curves and the range of sizes or geometries must be
selected and then a systematic analysis carried out from which general conclusions can
be drawn about the aspects that have been studied. In the particular model the cohe-
sive elements are surrounded by the classical elements. When the cohesive elements
are damaged the crack is extended over the boundaries of the classical elements. In
general, the crack is propagated only in areas where the cohesive elements are inserted
and the crack growth direction is predicted before the numerical computation.

In common for all cohesive laws: (a) comprises two material parameters dg, Tp ,
(b) after the material damage the stress becomes zero, T'(6 > ) = 0, for normal and
tangential separation (this condition is not exactly fulfilled for all cohesive laws). The
area below the traction-separation curve whether for tangential or for normal direction
gives us the energy dissipated by the cohesive element I'y. A schematic diagram for
the long fibre composite can be seen in Fig. 2.1. A leading edge up to maximal stress
looks like Dirac function; it is clear that from the numerical point a view this shape
of the traction-separation law is the source of instabilities and the numerical solution
probably is going to diverge. It is necessary this singularity smooth away for Au = 0,
respectively introduce the strength Jj.

Ty= 0,

Gbr

.= Agg/2(AUgAu,)"

Au, Au,

Fia. 2.1. A shape of the bridging law for long fibre composite.

3. Bridging law and FE modelling. Let us think over a body having crack
perpendicular to the direction of oriented fibres. If we found a relation between
the bridging stress oy, and fracture energy, then by means of fracture mechanics
one can predict crack growth and propagation. The bridging law in the form of
o = o(9) is identical in every point of bridging zone. In case of shock loading the
damage of fibres comes straightaway, therefore is inevitable to suppose an existence
of characterizing opening dg, which determines the moment when the bridging effect
is vanishing. Contrary of the crack resistance curve (R curve or J — A curve) the
bridging law is accepted such as the material characteristic. Fracture energy splitting
by means of J integral on the crack surface and the crack vicinity gives:

.
(3.1) J:/ o (8)d6 + Jrip,
0

where Jrrp is the J integral evaluated around the crack tip (during cracking is equal
to the fracture energy of the tip, Jy). The total energy is then dissipated in the
bringing zone and §* is the maximum opening of the bridging zone at the notch root.
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The bridging law can be determined by differentiating Eq. 3.1:

0Jr

95’

Jr is the value of J integral during the crack growth. Initially the crack is without
the bridging stress and the initiations starts when Jr = Jrrp = Jy. Special shapes of
the bridging law can be found in [12]. The shape of the bridging law can be described
by Eq. 3.3, it seems to be very suitable for the long fibre composites. When the end
opening of the bridging zone reaches Jy the steady state value of fracture energy is
reached, see Fig. 3.1,

(3.2) o (6%) =

6*
(3.3) hwﬂ:%+Ahd?f@
0

They are many shapes of the cohesive laws and many ways how to implement this
law in the commercial standard FEM package. The authors come out from the long-
standing knowledge of Abaqus system, where the user procedure UEL enables very
effectively implement the new element into this package and eventually to change the
shape of the bridging law. The function in Eq. 3.4 is declared in literature [12] and
[13] as a very convenient for the application on the long fibre composites

7AJSS § T2
(3.4) 0= S5

=Jo/ (AUKe ) (1) er)

o(8)=(1-((Au,-Au)/AU,))K 0

- - 5,51.5A (AU, /AU,) /AU,

Gy

<2~ - 6,=A J(2(AusAU,) )

AJss

Au,  Au, Aug
Au

Fic. 3.1. Optimized shape of the bridging law.

The Fig. 3.1 shows the optimized shape of the cohesive law, a leading edge in
the chart plays important role for the numerical stability of the interface element.
The element is made up of two quadratic line elements for 2D plane elements or
two quadratic plane elements for 3D. The node numbering is chosen according to
numbering according to Abaqus conventions. Two surfaces of the interface element
initially lie together in initial stage; it is in the unstressed deformation state. The
relative displacements of the element faces create normal and shear displacements
depending on the constitutive equation. Now we suppose the quadratic line element
for 2D simulations. This element has 12 degrees of freedom and the nodal displacement
vector is given by Eq. 3.5
(3.5) dy = (dt,d},d?,d?,...d5, do).

x Ty ey Ty xr Yy
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The plane interface element (for 3D) has 48 (3x16) degrees of freedom. The elements
ordering follows from the standard conventions, then the opening of the connection
element is determined as a difference in displacements between the top (TOP) and
bottom (BOT) nodes:

(3.6) Au = uTOF — BOT,

Then we can define the interface opening in terms of nodal displacements of paired
nodes:

(3.7) Auy = Pdy = [—Ioz6 | Loze]dn-

where Ig,6 is unity matrix with 6 rows and columns, uy is a 6x1 vector. From the
nodal positions the crack opening is interpolated to the integration points with the
help of standard shape functions. Let N;(§) be the shape function for node pair ¢ (i
= 1,2,3), where £ stands position in the local coordinate system —1 < ¢ < 1. The
relative displacement between the nodes within the elements is then given:

Ay (£)

where H (&) is matrix 2x6 containing the quadratic shape function. For 2D element
the shape of this matrix is following:

s mo= (" o M e N )

(3.8) Aug) = (A“x(@) — H(6)Auy,

1(§) 0 Na¢) 0 N3(§)

As a result, we get
(3.10) Au(§) = H()®dy = B(§)dn,

where B(£) has a dimension 2x12 and Aw(€) 2x1, thereby describing the continuous
displacement field in both direction within the element. For large deformations, the
element requires a local coordinate system to compute local deformations in normal
and tangential directions. It leads to use the middle points of two element faces. If the
coordinates of the initial configuration are given by the vector x and the deformation
state is defined by the vector d, the reference surface coordinates x& are computed

by linear interpolation between the top and bottom nodes in their deformed state:
1

3.11 &=
( ) XN B

(16006 | IGzS)(XN + dN)

The coordinates of the specific point are derived analogically such as in Eq. 3.8:
R

3.12 ey =" (5)> — H(&)xE.

312 © = (5elf) ) = 0<%

The differentiation of the vector of global coordinates with respect to local coordinates
and dividing its norm we obtain the unit length vector ¢;. The vector t,, perpendicular
to the vector t; is derived by the same way:

1 ox® oyt
3.13 t, = —<E o o

)"
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The norm of the vector is given by the standard definition:

(3.14) || = w )2+ ( )2-

The vectors t; and t,, represent the direction cosines of the local coordinates system
to global one, thus defining transformation tensor ©:

(3.15) O = [t1,tn].
This relates the local and global displacements as follows:
(3.16) Augp. = 0T Au.

Subsequently we can mark by symbol ¢;,. vector describing the bridging stress relates
to the local relative displacement with help of the constitutive relation for interface
(cohesive) element:

(3.17) tioe = <5_-;]> = Cloc(Auloc)Aul()C-

The constitutive relation can be expressed by linear displacement for Awu or more
complicated, where Au contains the nonlinear dependence. Just then in this is the
trick of good numerical construction and new finite element creation. Preferred pro-
cedure depends on the shape of the constitutive equation. In Eq. 3.4 we used the
nonlinear equation; it means that we come out from the relation:

(3.18) tloc = ( o1 ) = CrocAuy, %,
oN

Matrix Cj,e is a constant now and does not depend on the displacement. The element
stiffness matrix and the vector of the right hand side nodal force must be generated
for the users’ subroutine UEL. detJ is the Jacobian defined by the transformation of
the global coordinates to the element coordinates. Jacobian needs to be derived for
each integration point; in our case the Eq. 3.4 give us the stability of the computation.
The stiffness matrix K (12x12 for 2D, 48x48 for 3D) is defined:

el
(3.19) K = JaLNl,
od°
where
1
(3.20) o = / BTOt,.detIde.
With the derivation one can found:
1
(3.21) K=-W / B0 D,,.0" BdetJd¢.
—1
And the stiffness matrix D is defined:
athL
(3.22) Dioe = 9hu..
Or using Eq. 3.17
B 0C (Au)
(3.23) Dioe = GA—UA + C(Au)
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4. Main results. First material (A) used for the bridging stresses modelling
was a commercially available SiC Nicalon fibre reinforced borosilicate glass matrix
composite. Properties of the glass matrix, SiC fibres and composite were: Young’s
modulus 63, 198, 118 GPa, Poisson ratio 0.22, 0.20, 0.21, tensile strength 60, 2750,
600-700 MPa. The fracture toughness determined using the bodies with Chevron
notch were 24.6 MPam"®. Experimentally determined values were calibrated and the
final values are: Jo = 6200 J/m” (experiment), AJgs = 18500 J/m?*(experiment and
calibration), ugp = 0.1 mm (the end of the traction-separation law experiment), uy
= 0.013 mm (calibration), @ = 1 (tested in range (1,5)). The final shape for the
bridging law is in Fig. 4.1.

1000

800
5, =965MPa

600 Au, =3,05.10"3 mm

400

Obr [MPa]

200

0.02 0.04 0.06 0.08 0.1
Au [mm]

Fic. 4.1. Final shape of the bridging law for material A

Second material (B) used for the bridging stresses modelling was a Nextel 720
fibres reinforced fully pyrolyzed polysiloxane resin. Properties of the resin matrix,
Nextel fibres and composite were: Young’s modulus 70, 260, 180 GPa, Poisson ratio
0.22, 0.20, 0.21. The fracture toughness determined using the bodies with Chevron
notch were 5 MPam®®. Experimentally determined values were calibrated and the
final values are: Jo = 5010 J/m* (experiment), AJgg = 6050 J/m” (experiment and
calibration), ug = 0.05 mm (the end of the traction-separation law experiment), uy
= 0.01 mm (calibration), & = 1. The final shape for the bridging law is in Fig. 4.2.

Conclusions. The special finite element reflecting the bridging law for the long
fibre composites has been created. This interface element was implemented into the
standard Abaqus program using the user subroutine UEL. At the same time the
experimental techniques needed for obtaining the experimental data were tested. The
results can be characterized by following:

e The crack growth modelling for the long fibre composites is dependent on the
bridging law shape. The stability of the interface element strongly depends
on the first part of the bridging law, on the leading edge.

e The second key role is the mesh size, the application of the RVE seems to be
necessary.

e Obtained results of the numerical modelling and running analysis of the mi-
crostructure enables combine the extended finite element method with cohe-
sive zone method. The crack branching and crack creations modelling will be
closer the material reality.
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Fi1c. 4.3. Fracture surface of material A and B

Vanishing elements for the crack growth simulation were tested and numerical stable
shape of the traction separation law was suggested for SiC Nicalon fibres reinforced
borosilicate glass matrix composite and Nextel 720 fibres reinforced fully pyrolyzed
polysiloxane resin.
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Prediction of the Traction Separation Law of Ceramics Using Iterative
Finite Element Modelling
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Abstract. Specific silicon nitride ceramics, the influence of the grain size and orientation on the
bridging mechanisms was found. In ceramic matrix composites, crack-bridging mechanisms can
provide substantial toughness enhancement coupled with the same and/or increased strength. The
prediction of the crack propagation through interface elements based on the fracture mechanics
approach and cohesive zone model is investigated. From a number of damage concepts the cohesive
models seem to be especially attractive for the practical applications. Within the standard finite
element package Abaqus a new finite element has been developed; it is written via the UEL (user’s
element) procedure. Its shape can be modified according to the experimental data for the set of
ceramics and composites. The element seems to be very stable from the numerical point a view. The
shape of the traction separation law for four experimental materials is estimated via the iterative
procedure based on the FEM modeling and experimentally determined displacement in indentation
experiments, J-R curve is predicted and stability of the bridging law is tested.

Introduction

Crack growth modelling concepts achieved great success and progress during last decade. The finite
element and boundary element method, molecular dynamic success and actually "ab initio"
computation found their use in the material research long time ago. Some of the mentioned methods
have been modified, e.g. parallel approach implementation, which comes into their own in case of
the multiprocessor applications. In some cases only small improvement of the standard procedures
is coming. The finite element method as a well developed procedure has in this case a special
position. It seemed that the boundary of material and geometry nonlinearities has been reached
before. Procedures based on the fracture mechanics approach derived benefit from knowledge of
global parameters like stress intensity factor, e.g. Kj, and J -integral. These parameters were used
with the combination of the remeshing ahead the crack tip a bit later. The special elements
corresponding to damage and crack growth were implemented into the Abaqus package.

It is well recognised that the properties of ceramics can be profoundly enhanced by suitably
tailoring the microstructure based on intended applications and working conditions. Namely, the
effects of the targeted grain structure on the fracture toughness of silicon nitride were demonstrated
in [1, 2]. Similarly, the influence of boundary phase manipulation and the effect of grain bridging
on the strength and toughness were illustrated in [3]. In order to improve the lifetime of ceramic
components and realise cost and energy efficient manufacturing processes, two main issues have to
be addressed: (i) materials with increased functionality and optimum properties should be fabricated
and tailored for a wide diversity of requirements (materials design and optimisation); (ii) the
progress of degradation processes should be predicted and evaluated (damage analysis), focusing in
particular on damage mechanisms occurring under realistic operation. This knowledge leads to the
design of materials with superior performance in machine components.

Understanding the nature of crack growth in ceramic materials and its relation with the crack
resistance curve (R-curve) behaviour helps to improve the fracture resistance in ceramics [4]. A
rising R-curve behaviour occurs when the microstructure impedes the crack extension. Several
microstructural toughening/shielding effects might result in the favourable R-curve behaviour in

All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of Trans
Tech Publications Ltd, www.scientific.net. (#551770467, Institute of Physics of Materials, Brno, Czech Republic-02/02/21,15:15:50)
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ceramic materials. Such micromechanisms include: microcrack toughening, transformation
toughening, brittle particles toughening (including selfreinforcement used in Si3Nj4 ceramics), long
fibre reinforcement, and chopped fibers or whisker toughening, respectively. Crack-bridging
mechanisms can provide substantial toughness enhancement coupled with strength increase. The
initial steep rise in crack resistance is attributed to the formation of elastic bridges supposing the
reinforcing phase is experiencing no debonding. However, more recently it has been pointed out
that those mechanisms do not adequately account for the steep-rising crack resistance curves (R-
curves) observed for some materials [5]. Also, new methods have been proposed for determining
the bridging stresses [6] and a mechanism-based constitutive model have been presented for the
inelastic deformation and fracture of ceramics [7, 8]. Discrete damage model capable of capturing
fragmentation at two size scales is derived by combining a continuum damage model and a discrete
damage model for brittle failure [9, 10]. Many authors proposed that the bridging process can be
partitioned into five distinct regimes of resistance: propagation, kinking, arrest, stalling, and
bridging, e.g. [11].

Bridging law modelling

Now consider a specimen having a crack with bridging fibres across the crack faces near the tip.
The bridging law o = o(4u) is then taken to be identical at each point along the bridging zone.
Since fibres will fail when loaded sufficiently, we assume the existence of a characteristic crack
opening Auy, beyond which the closure traction vanishes. Shrinking the path of the J integral to the
crack faces and around the crack tip gives

Au'
J = [o(dulnu+Jy,, (1)

0
where Jrp is the J integral evaluated around the crack tip (during cracking is equal to the fracture
energy of the tip, Jy). The integral is the energy dissipation in the bridging zone and Au* is the end-
opening of the bridging zone at the notch root. The bridging law can be determined by
differentiating Eq. (1)
oJ
oAu’
Jg is the value of J during crack growth. Initially, the crack is unbridged. Thus, by Eq. (1), crack
growth initiates when Jr = Jrp = Jy. As the crack grows, Jy increases in accordance with Eq. (1).

When the end opening of the bridging zone Au* reaches Auy, the overall R-curve attains its steady
state value AJg,.

o(Au’) =

(2)

Bridging law implementation

The preferred option depends on the form of the constitutive equation (Eq. 3) and its numerical
implementation:

JR(Au*):JO+A.JSS(A” )2, 3)
Au,
AJ Au
Ay) = 2ss -2
oy, (Au) 2Au, (Auo) (4)

Incorporation of the initial fracture strength J, improved traction separation law as can be seen in
Fig. 1. Parameter « is lying in the range <1, 100>.
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o=dol (AUKp) (ot 1) ar)
o(8)=(1-((AuAU) AU,)*)K 265
== == 6,=1.5AJ,,SQRT(Au,/Aug)/Au,
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=~ - 6,=AJ J(2SQRT(AU AU, )

JO AJss

AU,  Au, Au,
Au

Figure 1: Shape of bridging law

Experiments and determination of material parameters

The fracture behaviour of short cracks was then observed by applying the indentation technique.
This methodology allowed to monitor crack behaviour when cracks are initiating and as well in the
stage of crack propagation. The detail of very short crack (having length of several grains) is shown
in Fig. 2. Strategy, how to find the best concordance between CTOD versus (4a) (experiment
versus FEM results) has been selected as follows: a) Increase oy, decrease Auy, minimize the
bridging, and shape — close to jump; b) Decrease oy, increase Auy, maximize the bridging, shape —
close to exponential behaviour with power law softening.

Stable crack propagation modelling

The data from Tab. 1 were used for the crack growth modelling (calibrated data). The shape of the
moving crack via the FEM can be seen on the following Fig. 3.

Table 1: Data for the bridging law

material A B C D

Al [J/m?] 64 77 67 108

Auy [pm] 0.30 0.30 0.35 0.35

Au; [um] 0.08 0.055 | 0.045 [ 0.045

Jo,  [J/m’] 21 24 24 25

o, [MPa] 1063 1590 1350 1590

Figure 3: FEM modeling, crack growth
2000 j 2000 j
5 I 7 |
E 1500 r E 1500 I
b_E : bs
§ 1000 [ % 1000 E
< 500 —ED 500 ] B o,=1590 MPa
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Crack opening Au [um] Crack opening Au [um]

Figure 4: Bridging law after iteration procedure for material A and B
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Summary

Special shape of the bridging law has been tested and implemented into the commercial finite
element package Abaqus and J - R curve was predicted. The following conclusions have been
made:

- Crack-bridging mechanisms can provide substantial toughness enhancement coupled with
the same strength level in ceramics.

- Saturation in J — R curve has been reached for XFEM modeling substantially later, usually
for the crack length greater than 20 um; XFEM model used was without incorporation of the
bridging mechanism.

- Saturation in J — R curve has been reached for cohesive modelling usually for the crack
length in interval 10 - 15 um. It is possible that early real bridging start is probable; due to
numerical oscillation the obtained values of K can be smaller.

- Obtained parameters for traction separation (bridging) law enabled J — R prediction, for
precise prediction seems be essential to determine at least maximum stress oy

experimentally.
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Figure 5: J-R curve prediction for XFEM and cohesive modelling
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Non-destructive detection of metal fibres
In cementitious composites

Jifi Vala, Leonard Hobst and Vladislav Kozak

Abstract—Development of non-destructive methods for the
control of metal fibers in cementitious composites concrete
is needed to certify the volume fraction of fibers and their
directions, crucial for the mechanical properties of a composite.
Based on the research experience of authors, namely on the Brno
University of Technology, the paper demonstrates advantages
and restriction of several useful classes of methods, namely
of i) the planar X-ray imaging, with the discrete fast Fourier
transform applied to image processing, ii) the magnetic approach,
utilizing the Hall probe and advanced considerations on material
homogenization (with certain electromagnetic alternative), iii)
the computed tomography, as an unique exact method for the
detection of volume fraction without breaking the sample, with
an information on (an)isotropy as a benefit.

Index Terms—Cementitious composites, non-destructive test-
ing, electromagnetic measurements, image processing, computa-
tional simulation.

I. INTRODUCTION

DVANCED building structures make frequently use of
materials as silicate composites, reinforced by metal
particles (e. g. steel-fibre-reinforced concrete), preventing the
tension stresses and strains as sources of undesirable micro- an
macro-cracking. Mechanical properties of such composites are
determined by the choice of fibre properties and their volume
fraction, location and orientation in the matrix, sensitive to
the technological procedures (as special compaction) and to
the early-age treatment — cf. [11], as well as by the bond/slip
interface relations — cf. [2]. The employment of the destruc-
tive approach relies usually on the separation of particles,
taken from the early-age matrix, alternatively obtained from
the crushed part of the existing structure, in the laboratory;
consequently the volume fraction of particles can be evaluated
accurately, whereas any information related to the original
orientation of particles is missing. Moreover, such experiments
with many structures are not allowed by technical standards.
This is a strong motivation for the employment of some reli-
able non- or (at least) semi-destructive measurement methods,
applicable in situ, handling homogeneity and isotropy and
detecting the volume fraction of fibres in the material structure.
Regardless of the significant progress in this research area in
the last decade (for more historical remarks and references see
[7]), no inexpensive, robust and reliable method is available,
thus all identification approaches rely on a) some indirect mea-
surements and b) non-trivial numerical analysis, to handle a
corresponding inverse problem — typically ill-posed, unstable,
etc., forcing artificial regularization. Since a) produce quite
J. Vala and L. Hobst are with the Brno University of Technology, Faculty
of Civil Engineering, Czech Republic, 602 00 Brno, Veveii 95.

V. Kozik is with the Institute of Physics of Materials, Academy of Sciences
of the Czech Republic, 616 62 Brno, Zizkova 22.
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other information than needed volume fractions and directional
distributions of fibres, typically digital images in pixels or
voxels, or electromagnetic quantities detected on the speci-
men surface, some calibration relations are needed, motivated
by the physical and geometrical similarity. Moreover, some
reasonable algorithm for the evaluation of effective material
properties, using the properties of matrix and particles and
the geometrical configuration, as input data, is needed: from
simple arguments from the mixture theory to complicated
physical and mathematical homogenization techniques (which
will be specified lated, in connection with electromagnetic
measurements).

In this paper we shall pay attention thanks to the research
experience of the authors from BUT (Brno University of
Technology), namely to three representative approaches:

1) the planar X-ray imaging, with the discrete fast Fourier

transform applied to image processing,

ii) the magnetic approach, utilizing the Hall probe and ad-
vanced considerations on material homogenization (with
certain electromagnetic alternative),

iii) the computed tomography, as an only exact method for
the detection of volume fraction without breaking the
sample, with an information on (an)isotropy as a benefit.

II. ANALYSIS OF X-RAY IMAGES

The radiographic approach, developed in [6] for a rather
large class of building materials, comes from the gray-scale
planar images and some of their post-processing modifications,
in particular:

1) the reduction of all fibres (whose length and thickness is
known) to one-pixel thick black curves, followed by the
simplified evaluation of their amount and orientation, by
(6],

2) the application of the two-dimensional fast Fourier trans-
form by [9], avoiding most artificial image changes,
where the same as in 1) can be identified with a special
diffraction process: for a the gray level at pixel coordi-
nates f(x,y), related to a square image containing N x N
pixels (with N tending to oo theoretically), the direct and
inverse Fourier transforms are

N—1N-1
F(u,v) = Z Z f(z,y) exp (—2mi(ux + vy)/N) ,

=0 y=0
N—-1N-1

N2f(z,y) = Z Z F(z,y)exp (2mi(ux + vy)/N)
u=0 v=0
and the power spectrum P(u,v) = |F(u,v)|* contain
the useful information, needed for the derivation of the
histograms of fibre directions.
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Fibre-XB1c: modified image

Fibre-XB1c: power spectrum

e
B0 998

Fig. 1. Evaluation of fibre orientation from the X-ray image: original image
(left upper photo), result of fibre localization (right upper image), power
spectrum P (left lower graph), resulting rose of fibre directions (right lower
graph).

i |

Fig. 2. X-ray machine EcoRay HF 1040 with digital recording to PC equip-
ment (left photo). PeMaSo-01 depth probe for magnetic measurements (right
photo).

Figure 1 presents an example of such MATLAB-supported
evaluation of fibre orientation in the fibre concrete specimen;
the utilized X-ray equipment is shown on Figure 2. In general,
the radioraphic analysis gets useful results related to pref-
erential orientations of fibres, although limited to data from
planar images, even from several views to cubic specimens.
The estimate of volume fraction of fibres is not very precise,
at least in the comparison with destructive tests.

III. NUMERICAL TREATMENT OF MAGNETIC
MEASUREMENTS

Magnetic measurements like [20] and [4] rely on the differ-
ent values of relative permeability of fibres and a matrix, with
possible alternative of electrical measurements and relative
permittivity. The special experimental configuration usually
tries to force a (nearly) stationary process, whose mathematical
description works with a differential operator close to the
classical Laplace one, to enable non-expensive software sim-
ulation. Figure 3 shows the geometrical configuration of such
process numerical simulation of such process in COMSOL:
the magnetic field is generated by several permanent magnets,

ISBN: 978-1-61804-241-5

drilled hele
{air) rectangle
for
simulation
~F
concroty air

Fig. 3. Radially symmetric geometrical arrangement of the magnetic exper-
iment(left scheme) and computational simplification, including finite / infinite
element mesh (right scheme).

Magnetic field strength H, logarithmic

Magpnetic field strength H, linear

gnetic field gtt P Hr, log N ic field g P
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Fig. 4. Results of COMSOL based finite/infinite element simulation of stat-
ionary magnetic field strength.
located in the drilled hole (thus this method could be classified
as low-invasive, not non-destructive completely), consequently
the Hall effect based probe from Figure 2 detects the magnetic
field strength. Figure 4 documents the numerical simulation
of such experiment, applying the COMSOL supported planar
finite / infinite element technique: the influence of the irregu-
larities caused by an artificial hall seems to be not substantial.
The comparative simulation, applying only selected functions
of pde toolbox from MATLAB, leads to the same conclusion.
The crucial problem is now to implement a correct evalua-
tion procedure for an effective relative permeability (or permit-
tivity) using the incomplete data on the material microstructure
and on relative permeability of fibres. For spherical particles
the classical Maxwell-Garnett mixing formula is available; the
generalization of [5] comes from the so-called Brugemann
approach and the repeated usage of similar ellipsoids as
reference volume elements, whereas [13] admits the presence
of multiple scattering, important for high volume fractions of
fibres. No additional physical assumption are needed, again for
periodic spheres, in [12]: the auxiliary problem, referring to the
mathematical theory of homogenization of elliptic operators,
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can be then analyzed (including the existence and uniqueness
of solution, the convergence of sequences of approximate
solutions, etc.) using the two-scale and similar convergence
theorems by [1]; the crucial (seemingly) explicit formula for
the evaluation of an effective parameter value, comes from
the method of oscillating test functions. In [21] the difficulties
with complex particle shapes are handled using the boundary
integral approach, thanks to the knowledge of general solutions
of the Laplace equation, with Heaviside characteristic func-
tions of particles; [10] admits a priori anisotropic structures.
Unfortunately, further generalization of this approach (namely
to non-periodic structure, avoiding all mixing tricks), lead to
non-trivial (partially still open) problems of mathematical anal-
ysis, namely to the convergence using probability measures by
[18], thus various alternative statistical approaches, as that with
Sobol sensitivity indices and Monte Carlo simulations by [8],
have been developed.

The unique material characteristics included here is the
magnetic permeability p [Vs/(Am)]; at least in the case of
silicate composites used in civil engineering p can be set to 1
for the pure matrix, but no relevant constant is guaranteed
by the producers of ferromagnetic fibres. In practice, the
dimensionless relative permeability p, = p/po, using the
well-known magnetic constant pg = 4m - 1077 Vs/(Am), is
usually considered; similarly the relative permeabilities p. for
the matrix and p for all fibres can be introduced. Fortunately,
for a sufficiently slow volume fraction £ of fibres (¢ < 0.05
in real experiments), following [5], under the assumption of
random orientation of fibres, we obtain an explicit monotone
and continuous dependence between y and £ in the form

o gt (1

3L(1—2L)(2—3L)
Hs — e NS>

where the factors

M 2(3L—1)%/((2—3L)(1+3L))
v-(52)

My ’

< ¢—v
L=-"_(209+1

TE ( o n§+19)

are determined using the ratio ¢ of lengths of a major and
(both) minor axes of ellipsoidal particles (clearly ¢ > 1) for
the simplifying notation ¥ = v/¢2 — 1 and My = (1+3L)u.+
(2—3L)ps, My = (143L)pyr+(2—3L) 5. In particular, for a
(theoretically) infinite length and zero diameter of particles we
receive L = 1/3. Unfortunately, all attempts to generalize this
result for more complicated distributions of fibre directions
lead to unpleasant non-analytical integrals, with the duty of
their non-trivial numerical evaluations.

Figure 6 documents the least squares based identification
of pu, for 3 input data sets with assumed p, = 1 for pure
concrete and uncertain s in all other cases, using the above
sketched formulae for an isotropic medium. the specimens
(unlike the situation in situ) were prepared with exact volume
fractions of fibres 0.5 %, 1 % and 1.5 %. Other experiments
with comparable results have been performed by the authors’
team with magnetic field induced by an electric coil. Moreover,
[3] presents a totally non-destructive equipment, applicable
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Fig. 5. Application of the least squares technique to the identification of
parameters £ and ps from magnetic measurements.

to the surface of a specimen (thus prefering fibres close to
such surface). All these result seem to give good estimates of
volume fractions (whose improvement using more advanced
mathematical analyis is possible), but the differentiating be-
tween system and random errors in distributions of fibre
directions is difficult.

IV. COMPUTED TOMOGRAPHY

A new approach to non-destructive analysis of structures
of cementitious composites, motivated by [14] and [19], has
been offered by the computed tomography (X-ray CT), gen-
erating 3-dimensional images from large series (slices) of 2-
dimensional radiographic images taken around a single axis
of rotation. The modern industrial tomograph, presented on
Figure 6, has been recently installed in the Central Euro-
pean Institute CEITEC of BUT. Unlike most tomographs for
medical applications, an analyzed specimen is fixed on the
manipulation table of the tomograph, between the radiation
source and the surface radiation detector, compound from a
matrix of mini-detectors. During the rotation of the table the
surface detector records successive changes of X-ray radiation;
consequently the specialized computer software is needed to
analyze the inner structure of a specimen.

Several types of fibre concrete specimens have been tested
using this equipment: whereas some cylindrical specimen is
visible on Figure 6, Figure 7 shows the cubic specimen,
similar to that from Figure 1, and demonstrates the ability
of the specialized software to recognize all fibres completely
unlike all approximate estimates from seperate planar images.
Consequently various forms of histograms or graphical or 3-
dimensional roses of directions similar to 2-dimensional ones
from Figure 1 can be created. However, this is rather time
consuming, expensive and not applicable to the fibre concrete
structures in situ. Nevertheless, this seems to be a useful
method to obtain a reliable reference basis for all numerical
simulation attempts with random positions and orientation of
fibres.

V. CONCLUSION

This paper should be understood as an introductory compar-
ative study to the most promisible non-destructive approaches
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Fig. 6. Tomograph GE phoenix,v|tome|x L 240 (left photo) and a cylindrical
specimen fixed in its manipulator (right photo).

Fig. 7. Cubic fibre concrete specimen, edge length 150 mm, required X-ray
tube voltage 300 kV: axonometric view on its surface (left upper image) and
inside its structure (right upper image). Axonometric projection of separated
fibres in the cube specimen (lower image).

to macroscopic identification of content and random location
of fibres in the structure of cementitious composites. However,
all introduced approaches have strong restrictions: serious
obstacles to get some reasonable estimate of volume fraction
of fibres, as the most requested parameter, in the case i),
expensive and fastidious experimental setting in the case iii),
interpretable as the more spohisticated upgrade of i), both
technical and computational difficulties in the case ii).

For the successful computational detection of volume frac-
tion and preferential orientation of fibers, making use of
their ferromagnetic properties, both under laboratory and in
situ conditions, the crucial point of all considerations is the
development of a homogenization procedure, specific to the
analyzed class of materials, including its formal verification
and its validity range. This leads to non-trivial problems of
both physical and mathematical analysis, whose validation
seems to be available thanks to the progress in the image
processing techniques, consequently their deeper study should
belong to the research priorities for the near future.
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Abstract: Mechanical properties of cementitious composites, reinforced by metal fibres, are conditioned by the
volume fraction and distribution of directions of fibres. However, their reliable non-destructive or low-invasive
experimental evaluation is a serious problem. The paper pays attention to threeclasses of such indirect methods.
The first class relies on the planar X-ray imaging, with the discrete fast Fourier transform applied to image process-
ing. The second one applies the magnetic approach, with certain electromagnetic alternative. The last one comes
from the computed tomography, as an unique exact method for the detection of volume fraction without breaking
the sample, with an information on (an)isotropy as a benefit. Examples related to all sketched method from the
experiments performed at the Brno University of Technology show the advantages and restrictions of particular
approaches.

Key—Words: Cementitious composites, non-destructive testing, signal and image processing, computational simu-

lation.

1 Introduction

Advanced building structures make frequently use of
materials as silicate composites, reinforced by metal
particles (e.g. steel-fibre-reinforced concrete), pre-
venting the tension stresses and strains as sources of
undesirable micro- an macro-cracking. Mechanical
properties of such composites are determined by the
choice of fibre properties and their volume fraction,
location and orientation in the matrix, sensitive to the
technological procedures (as special compaction) and
to the early-age treatment — cf. [12], as well as by the
bond/slip interface relations — cf. [3]. The employ-
ment of the destructive approach relies usually on the
separation of particles, taken from the early-age ma-
trix, alternatively obtained from the crushed part of
the existing structure, in the laboratory; consequently
the volume fraction of particles can be evaluated ac-
curately, whereas any information related to the origi-
nal orientation of particles is missing. Moreover, such
experiments with many structures are not allowed by
technical standards. This is a strong motivation for the
employment of some reliable non- or (at least) semi-
destructive measurement methods, applicable in situ,
handling homogeneity and isotropy and detecting the
volume fraction of fibres in the material structure.
Regardless of the significant progress in this re-
search area in the last decade (for more historical re-

marks and references see [8]), no inexpensive, robust
and reliable method is available, thus all identifica-
tion approaches rely on a) some indirect measure-
ments and b) non-trivial numerical analysis, to handle
a corresponding inverse problem — typically ill-posed,
unstable, etc., forcing artificial regularization. Since
a) produce quite other information than needed vol-
ume fractions and directional distributions of fibres,
typically digital images in pixels or voxels, or elec-
tromagnetic quantities detected on the specimen sur-
face, some calibration relations are needed, motivated
by the physical and geometrical similarity. More-
over, some reasonable algorithm for the evaluation of
effective material properties, using the properties of
matrix and particles and the geometrical configura-
tion, as input data, is needed: from simple arguments
from the mixture theory to complicated physical and
mathematical homogenization techniques (which will
be specified lated, in connection with electromagnetic
measurements).

In this paper we shall pay attention thanks to the
research experience of the authors from BUT (Brno
University of Technology), namely to four represen-
tative approaches:

1. the planar X-ray imaging, with the discrete fast
Fourier transform applied to image processing,



2. the magnetic approach, utilizing the Hall probe
and advanced considerations on material homog-
enization with certain electromagnetic alterna-
tive,

3. the computed tomography, as an unique exact
method for the detection of volume fraction with-
out breaking the sample, with an information on
(an)isotropy as a benefit.

4. the finite element modeling, as a method for ex-
act electromagnetic field modelling based on the
random fibre generation and identification.

2 First class of methods: analysis of
X-ray images

The radiographic approach, developed in [7] for a
rather large class of building materials, comes from
the gray-scale planar images and some of their post-
processing modifications, in particular:

1) the reduction of all fibres (whose length and
thickness is known) to one-pixel thick black
curves, followed by the simplified evaluation of
their amount and orientation, by [7],

2) the application of the two-dimensional fast
Fourier transform by [10] and [15], avoiding
most artificial image changes, where the same
as in 1) can be identified with a special diffrac-
tion process: for a the gray level at pixel coordi-
nates f(z,y), related to a square image contain-
ing N x N pixels (with N tending to oo theoret-
ically), the direct and inverse Fourier transforms
are

N—-1N-1

Z Zf x,y) exp(—2mi(ux + vy)/N) ,
=0 y=0

N—-1N-1

- Z ZF x,y) exp(2mi(uz + vy)/N)
u=0 v=0

and the power spectrum P(u,v) = |F(u,v)|? contain
the useful information, needed for the derivation of
the histograms of fibre directions.

Figure 1 presents an example of such MATLAB-
supported evaluation of fibre orientation in the fibre
concrete specimen; the utilized X-ray equipment is
shown on Figure 2. In general, the radioraphic anal-
ysis gets useful results related to preferential orienta-
tions of fibres, although limited to data from planar
images, even from several views to cubic specimens.
The estimate of volume fraction of fibres is not very
precise, at least in the comparison with destructive
tests.

Fibre-XB1c: modified image

|\ 2081 3
Fibre-XB1c: power spectrum

Figure 1: Evaluation of fibre orientation from the X-
ray image (images from the left to the right): original
image, result of fibre localization, power spectrum P,
resulting rose of fibre directions.

Figure 2: X-ray machine EcoRay HF 1040 with digi-
tal recording to PC equipment (left photo). PeMaSo-
01 depth probe for magnetic measurements (right
photo).



3 Second class of methods: numer-
ical treatment of magnetic mea-
surements

Magnetic measurements like [23] and [5] rely on the
different values of relative permeability of fibres and a
matrix, with possible alternative of electrical measure-
ments and relative permittivity. The special experi-
mental configuration usually tries to force a (nearly)
stationary process, whose mathematical description
works with a differential operator close to the clas-
sical Laplace one, to enable non-expensive software
simulation. Figure 3 shows the geometrical configu-
ration of such process numerical simulation of such
process in COMSOL: the magnetic field is gener-
ated by several permanent magnets, located in the
drilled hole (thus this method could be classified as
low-invasive, not non-destructive completely), conse-
quently the Hall effect based probe from Figure 2 de-
tects the magnetic field strength. Figure 4 documents
the numerical simulation of such experiment, apply-
ing the COMSOL supported planar finite/ infinite el-
ement technique: the influence of the irregularities
caused by an artificial hall seems to be not substan-
tial. The comparative simulation, applying only se-
lected functions of pde toolbox from MATLAB, leads
to the same conclusion.

The crucial problem is now to implement a cor-
rect evaluation procedure for an effective relative per-
meability (or permittivity) using the incomplete data
on the material microstructure and on relative perme-
ability of fibres. For spherical particles the classi-
cal Maxwell-Garnett mixing formula is available; the
generalization of [6] comes from the so-called Bruge-
mann approach and the repeated usage of similar el-
lipsoids as reference volume elements, whereas [14]
admits the presence of multiple scattering, important
for high volume fractions of fibres. No additional
physical assumption are needed, again for periodic
spheres, in [13]: the auxiliary problem, referring to
the mathematical theory of homogenization of elliptic
operators, can be then analyzed (including the exis-
tence and uniqueness of solution, the convergence of
sequences of approximate solutions, etc.) using the
two-scale and similar convergence theorems by [2];
the crucial (seemingly) explicit formula for the eval-
uation of an effective parameter value, comes from
the method of oscillating test functions. In [24] the
difficulties with complex particle shapes are handled
using the boundary integral approach, thanks to the
knowledge of general solutions of the Laplace equa-
tion, with Heaviside characteristic functions of parti-
cles; [11] admits a priori anisotropic structures. Some
generalizations are available using the least squares

Figure 3: Radially symmetric geometrical arrange-
ment of the magnetic experiment(left scheme) and
computational simplification, including finite / infinite
element mesh (right scheme).

| =
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Magnetic field strength H, linear
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Figure 4: Results of COMSOL based finite/infinite
element simulation of stationary magnetic field
strength.



and conjugate gradient approches — cf.[21]. Unfor-
tunately, further substantial generalization of this ap-
proach (namely to non-periodic structure, avoiding
all mixing tricks), lead to non-trivial (partially still
open) problems of mathematical analysis, namely to
the convergence using probability measures by [20],
thus various alternative statistical approaches, as that
with Sobol sensitivity indices and Monte Carlo simu-
lations by [9], have been developed.

The unique material characteristics included here
is the magnetic permeability p [Vs/(Am)]; at least in
the case of silicate composites used in civil engineer-
ing 1 can be set to 1 for the pure matrix, but no rel-
evant constant is guaranteed by the producers of fer-
romagnetic fibres. In practice, the dimensionless rel-
ative permeability p, = u/po, using the well-known
magnetic constant iy = 47-1077 Vs/(Am), is usually
considered; similarly the relative permeabilities . for
the matrix and s for all fibres can be introduced. For-
tunately, for a sufficiently slow volume fraction & of
fibres (¢ < 0.05 in real experiments), following [6],
under the assumption of random orientation of fibres,
we obtain an explicit monotone and continuous de-
pendence between i and £ in the form

I (MC)3L(1—2L)(2—3L)
B Hs — He \Hs

)

where the factors
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are determined using the ratio ¢ of lengths of a major
and (both) minor axes of ellipsoidal particles (clearly
¢ > 1) for the simplifying notation ¢ = +v/¢? — 1
and My = (14 3L)ue + (2 — 3L)us, My = (1 +
3L)pr + (2 — 3L)ps. In particular, for a (theoreti-
cally) infinite length and zero diameter of particles we
receive L = 1/3. Unfortunately, all attempts to gen-
eralize this result for more complicated distributions
of fibre directions lead to unpleasant non-analytical
integrals, with the duty of their non-trivial numerical
evaluations.

Figure 6 documents the least squares based iden-
tification of p, for 3 input data sets with assumed
uyr = 1 for pure concrete and uncertain pg in all
other cases, using the above sketched formulae for
an isotropic medium. the specimens (unlike the sit-
uation in situ) were prepared with exact volume frac-
tions of fibres 0.5 %, 1% and 1.5 %. Other experi-
ments with comparable results have been performed
by the authors’ team with magnetic field induced by
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Figure 5: Application of the least squares technique
to the identification of parameters £ and s from mag-
netic measurements.

an electric coil. Moreover, [4] presents a totally non-
destructive equipment, applicable to the surface of a
specimen (thus prefering fibres close to such surface).
All these result seem to give good estimates of volume
fractions (whose improvement using more advanced
mathematical analyis is possible), but the differentiat-
ing between system and random errors in distributions
of fibre directions is difficult.

4 Third class of methods: computed
tomography

A new approach to non-destructive analysis of struc-
tures of cementitious composites, motivated by [16],
[22] and [1], has been offered by the computed to-
mography (X-ray CT), generating 3-dimensional im-
ages from large series (slices) of 2-dimensional ra-
diographic images taken around a single axis of ro-
tation. The modern industrial tomograph, presented
on Figure 6, has been recently installed in the Central
European Institute CEITEC of BUT. Unlike most to-
mographs for medical applications, an analyzed spec-
imen is fixed on the manipulation table of the tomo-
graph, between the radiation source and the surface
radiation detector, compound from a matrix of mini-
detectors. During the rotation of the table the surface
detector records successive changes of X-ray radia-
tion; consequently the specialized computer software
is needed to analyze the inner structure of a specimen.

Several types of fibre concrete specimens have
been tested using this equipment: whereas some
cylindrical specimen is visible on Figure 6, Figure 7
shows the cubic specimen, similar to that from Fig-
ure 1, and demonstrates the ability of the specialized
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Figure 6: Tomograph GE phoenix,v|tome|x L 240
(left photo) and a cylindrical specimen fixed in its ma-
nipulator (right photo).

software to recognize all fibres completely unlike all
approximate estimates from separate planar images.
Consequently various forms of histograms or graphi-
cal or 3-dimensional roses of directions similar to 2-
dimensional ones from Figure 1 can be created. How-
ever, this is rather time consuming, expensive and not
applicable to the fibre concrete structures in situ. Nev-
ertheless, this seems to be a useful method to obtain
a reliable reference basis for all numerical simulation
attempts with random positions and orientation of fi-
bres.

5 Fourth class of methods: FEM

modelling

The current trend of work in micromechaninics ad-
dresses the industry requirements to decrease the de-
pendence on experimental work, and complement it
with new numerical and/or analytical processes capa-
ble of providing quickly and efficiently the same in-
formation. A highly attractive process to simulate the
real behaviour of composite is through finite element
analysis. For that, a representative volume element
(RVE) of the materials needs to be defined and am
equivalent random distribution of fibres generated.
The first issue concerning the use of RVE is its
dimension. The RVE cannot be too large as this would

Figure 7: Cubic fibre concrete specimen, edge length
150 mm, required X-ray tube voltage 300 kV (images
from the left to the right): axonometric view on its
surface, axonometric view inside its structure, axono-
metric projection of separated fibres in the cube spec-
imen.

endanger the possibility to numerically to analyse it;
however, it cannot be too small either as it could not be
representative of composite material, see [25]. Trias et
al. [26] demonstrates that for long fibre composites a
value of 50x the fibre radius should be used.

The second issue involving the use of an RVE is
the spatial arrangement of reinforcements which nor-
mally is not periodic and is highly dependent upon
manufacturing process. [27] using homogenization
theory concluded that distribution of reinforcements
in the RVE does not affect to macroscopic response,
but it significantly affects the microscopic stress dis-
tribution and following damage in the matrix.

Good review of some numerical methods for the
finite mesh generation can be found in [28] and [29].
Digital image analysis provides a perfect replica of
the real composite, but can be extremely time and re-
source consuming as it requires specific software and
hardware. To generate a random distribution of fibres
is coupled with a statistical analysis and verified by
sets of experiments.

6 Conclusion

This paper should be understood as an introduc-
tory comparative study to the most promisible non-
destructive approaches to macroscopic identification



of content and random location of fibres in the struc-
ture of cementitious composites. However, all in-
troduced approaches have strong restrictions: serious
obstacles to get some reasonable estimate of volume
fraction of fibres, as the most requested parameter, in
the first case, expensive and fastidious experimental
setting in the third case, interpretable as the more so-
phisticated upgrade of the first one, both technical and
computational difficulties in the second case.

For the successful computational detection of vol-
ume fraction and preferential orientation of fibers,
making use of their ferromagnetic properties, both un-
der laboratory and in situ conditions, the crucial point
of all considerations is the development of a homog-
enization procedure, specific to the analyzed class of
materials, including its formal verification and its va-
lidity range. This leads to non-trivial problems of both
physical and mathematical analysis, whose validation
seems to be available thanks to the progress in the im-
age processing techniques, consequently their deeper
study should belong to the research priorities for the
near future.

Acknowledgements: The financial support of the
FAST-S-14-2490 research project at BUT is acknowl-
edged.

References:

[1] N. Baddour, Generalized Fourier diffraction the-
orem for tomography. Proceedings of the 6-th
WSEAS International Conference on Simulation,
Modelling and Optimization in Lisbon (Portu-
gal), 2006, pp. 411-416.

[2] D. Cioranescu and P. Donato, An Introduction
to Homogenization. Oxford University Press,
1999.

[31 V. M. C. F. Cunha, J. A. O. Barros and
J. M. Sena-Cruz, An integrated approach for
modelling the tensile behaviour of steel fibre re-
inforced self-compacting concrete. Cement and
Concrete Research 41, 2011, pp. 64-76.

[4] M. Faifer, L. Ferrara, R. Ottoboni and
S. Toscani, Low frequency electrical and mag-
netic methods for non-destructive analysis of
fiber dispersion in fiber reinforced cementitious
composites: an overview. Semnsors 13, 2013,
pp. 1300-1318.

[5] M. Faifer, R. Ottoboni, S. Toscani and L. Fer-
rara, Nondestructive testing of steel-fiber-
reinforced concrete using a magnetic approach.

IEEE Transactions on Instrumentation and Mea-
surement 60, 2011, pp. 1709-1711.

[6] S. Giordano, Effective medium theory for di-
electric ellipsoids. Journal of Electrostatics 58,
2003, pp. 59-76.

[7] L. Hobst, O. Anton, J. Voditka and J. Stucka,
Homogeneity detection of fibre-concrete struc-
tures by using radiographic technique. In:
Nondestructive Testing of Materials and Struc-

tures, Springer 2013, pp. 323-328.

[8] L. Hobst and P. Bilek, Various control meth-
ods developed for fibre concrete structures. Re-
cent advances in integrity, reliability and fail-

ure — 4-th International Conference in Funchal
(Madeira), 2013, pp. 721-730.

[9] Z.Kala, Geometrically non-linear finite element
reliability analysis of steel plane frames with ini-
tial imperfections. Journal of Civil Engineering
and Management 18, 2012, pp. 81-90.

[10] S. Kiarkkdinen and E. B. Vedel Jensen, Estima-
tion of fibre orientation from digital images. Im-
age Analysis and Stereology 20, 2001, pp. 199—
202.

[11] M. Y. Koledintseva, R.E. DuBroff and
R.W. Schwartz, Maxwell-Garnett rule for
dielectric mixtures with statistically distributed
orientations of inclusions. Progress In Electro-
magnetics Research 99, 2009, pp. 131-148.

[12] A. Krasnikovs, V. Zaharevskis, O. Kononova,
V. Lusi, A. Galushchak and E. Zaleskis, Fiber
concrete properties control by fibers motion
— investigation in fresh concrete during cast-
ing. Industrial Engineering — 8th International
DAAAM Baltic Conference in Tallin, 2012, Part
V: Materials Engineering, #10, 6 pp.

[13] G. Kristensson, Homogenization of spherical in-
clusions. Progress in Electromagnetic Research
42,2003, pp. 1-25.

[14] P. Mallet, C. A. Guérin and A. Sentenac,
Maxwell-Garnett mixing rule in the presence
of multiple scattering: derivation and accuracy.
Physical Review B 72, 2005, 14205/1-9.

[15] N. E. Mastorakis and N. S. Swamy, Spectral
transformations for two-dimensional filters via
FFT. IEEE Transactions on Circits and systems
— I: Fundamental Theory and Applications 49,
2002, pp. 827-831.

[16] P.J. M. Monteiro, C. Y. Pichot and K. Belkebir,
Computer tomography of reinforced concrete.
In: Materials Science of Concrete, Chapter 12,
American Ceramics Society, 1998.

[17] G. Nguetseng and N. Svanstedt, o-convergence.
Banach Journal of Mathematical Analysis 3,
2011, pp. 101-135.



[18] M. Pieper and P. Klein, Application of sim-
ple, periodic homogenization techniques to non-
linear heat conduction problems in non-periodic,
porous media. Heat and Mass Transfer 48, 2012,
pp- 291-300.

[19] M. Ya. Sushko, Effective permittivity of mix-
tures of anisotropic particles. Journal of Physics
D: Applied Physics 42, 2009, 155410: 9 pp.

[20] N. Svanstedt, Multiscale stochastic homogeniza-
tion of convection-diffusion equations. Applica-
tions of Mathematics 53, 2008, pp. 143-155.

[21] J. Vala, Least-squares based technique for iden-
tification of thermal characteristics of building
materials. International Journal of Mathematics
and Computers in Simulation 5 (2011), pp. 126—
132.

[22] G. Weidemann, R. Stadie, J. Goebbels and
B. Hillemeier, Computer tomography study of fi-
bre reinforced autoclaved aerated concrete. Ma-
terials Testing 50, 2008, pp. 278-285.

[23] H.-J. Wichmann, H. Budelmann and A. Holst,
Determination of steel fiber dosage and steel
fiber orientation in concrete. In: Nondestructive
Testing of Materials and Structures, Springer
2013, pp. 239-245.

[24] K. W. Whites and F. Wu, Effects of parti-
cle shape on the effective permittivity of com-
posite materials with measurements for lattices
of cubes. IEEE Transansactions on Microwave
Theory and Techniques 50, 2002, pp. 1723-
1729.

[25] L. Mishnaevsky Jr. and S. Schmauder, Contin-
uum Mesomechanical finite element modelling
in materials development a state-of-the-art re-
view. Applied Mechanics Reviews, 54, 1, 2001,
pp. 49-69.

[26] D. Trias, J. Costa, A. Turon and J. Hurtado, De-
termination of the critical size of a statistical rep-
resentative volume element (SRVE) for carbon
reinforced polymers. Acta Mater, 2006, 54, 13,
pp. 3471-3484.

[27] S.Schmauder and L. Mishnaevsky Jr., Microme-
chanics and nanosimulation of metals and com-
posites. Springer, 2008, 430 pp.

[28] D. Raabe, Computational materials science:
The simulation of materials microstructures and
properties. Wiley, 1998.

[29] A. R. Melro, P. P. Camanho and S. T. Pinho,
Generation of random distribution of fibres in
long fibre reinforced composites. Composites
Science and Technology, 68, 2008, pp. 2092—
2102.



D3

Vala, J., Kozak, V., Computational analysis of quasi-brittle fracture in fibre reinforced
cementitious composites, In 9th International Conference Materials Structure &

Micromechanics of Fracture (MSMF9), Procedia Structural Integrity, Amsterdam:
Elsevier, (2019), 328-333.



Available online at www.sciencedirect.com
Structural Integrity

A ScienceDirect Procedi(]

Procedia Structural Integrity 23 (2019) 328-333

www.elsevier.com/locate/procedia

9th International Conference on Materials Structure and Micromechanics of Fracture

Computational analysis of crack formation and propagation in
quasi-brittle fibre reinforced composites

Jifi Vala?, Vladislav Kozak""

“Brno University of Technology, Faculty of Civil Engineering, Institute of Mathematics and Descriptive Geometry, 602 00 Brno, Veveri 331/95,
Czech Republic
bInstitute of Physics of Materials, Academy of Sciences CR, 616 62 Brno, Zizkova 513/22, Czech Republic

Abstract

Prediction of quasi-brittle behaviour of structural components from fibre reinforced composites under mechanical loads should
incorporate such physical processes as elastic, resp. plastic deformation, crack initiation, crack propagation in a matrix, pull out
of fibres and rupture of fibres. The computational model for the practically most important case of cementitious composites
containing short intentionally or quasi-randomly oriented steel, ceramic, resp. polymeric fibres with its primary import of sup-
pression of tensile stresses in a matrix will be introduced. Its numerical approach relies on the modified extended finite element
technique (XFEM), open to the implementation of the cohesive traction separation law.
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1. Introduction

The fibre cementitious composites are in the class of perspective concrete, which increase the mechanical crack
resistance, allow for a more subtle and economical construction; thus a new look at creating construction rigs re-
placing the steel structure is needed. Engineering structures subjected to loading may result in stresses in the body
exceeding the material strength and thus results in the progressive failure. Such failures are often initiated by surface
or near surface cracks, reducing the strength of the material. In quasi-brittle materials like rocks or concrete this is
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manifested by fracture process zones, in brittle materials like glass or welds in metal structures by discrete crack
discontinuities, in elasto-plastic ductile metal or similar materials by shear (localization) bands, see Sumi (2014).
Advanced building structures frequently use silicate composites reinforced by metal, plastic or other fibres, prevent-
ing undesirable micro- an macro-cracking effects. Mechanical behaviour of such composites is conditioned by the
suitable choice of fibre properties, their concentration, localization and orientation in a silicate matrix, influenced by
their early-age treatment, see Komarkova et al (2017).

Non-destructive testing of material structure is offered by image processing (2D radiographic, 3D tomographic,
etc.) and stationary magnetic and non-stationary electromagnetic approaches. The macroscopic material homogeni-
zation, Vala (2016), relies then on the semi-analytical mixing formulae for special particle shapes (acceptable name-
ly for their low volume fractions), two-scale homogenization of periodic structures, or alternative results from the
asymptotic analysis (G-convergence, H-convergence, [ -convergence, etc.), up to very general (both deterministic
and stochastic) results for o-convergence on homogenization structures, with numerous open problems uncovered by
Roubicek (2013). A unified scale-bridging approach covering elastic and plastic behavior together with fracture and
other defects results in concept of structured deformation, see Morandotti (2018). The dissipative particle dynamics,
Steinhauser (2008), referring up to the atomistic or molecular scale, can be adopted to handle certain super-particles;
this results in the discrete element method, applied namely in soil, rock and concrete mechanics, in the analysis of
granular materials and in the dynamic process of initiation and propagation of micro-cracks. The inheritance from
dissipative particle dynamics, manifested in the limited offer of particle shapes and sizes, can be overcome with help
of two- or three-dimensional reference volume elements, using the combination of finite and discrete element ap-
proaches, Munjiza (2004). An autonomous problem is the reliable identification of material parameters at various
scales: the relevant computational approaches, Vala (2014), typically suffer from mathematical ill-possedness, nu-
merical instability and need of artificial regularization, together with uncertain or insufficient input data. These diffi-
culties have to be overcome by careful organization of experiments and various special problem-oriented algorithms,
Shen et al (2010), Buljak et al (2013).

The extensive use of brittle matrix composite materials requires also appropriate computational models to de-
scribe, with adequate accuracy, their mechanical behaviour. From a micromechanical model some macroscopic
constitutive equations are derived for intentionally or random oriented fibres Park et al (2010), Brighenti et al
(2013), Cerrone et al (2014), Sanjayan et al (2015), accounting for such physical processes as matrix/fibre debond-
ing and fibre rupture. One of possible ways is to adopt a discontinuous-like FE approach to a lattice model, see
Brighenti & Scorza (2012). An alternative approach refers to special constitutive relations, inspired by continuum
mechanics, where crack opening and contact surface sliding are included into the model of plastic damage, using
smeared cracking, Jirasek (2011), Edalat-Behbahani et al (2017), together with mesh objective strain localization due
to material softening, referring to the thermodynamically irreversible continuum damage mechanics, Le et al
(2019), compatible with Nair (2009, especially Chap.14) and open to more general analysis working with tensor
calculus and differential geometry, Epstein (2007), Clayton (2015), in particular that leading to a smeared represen-
tation of the crack path, Kaliske et al (2012). At least for the practically significant application of self-compacting
concrete, supported by both experimental methods and numerical simulations, smeared cracking can be combined
with Monte Carlo simulations, which results in the Variational Multiscale Cohesive Method, Su et al (2010), whose
various implementations differs in the choice of basis functions.

Another approach to the same problems presents the eXtended Finite Element Method (XFEM briefly), Khoei
(2015), covering both strong geometrical discontinuities (in function values) and weak ones (in gradients), with the
aim of enrichment of the approximation space by all needed types if (especially locally) discontinuous functions, and
similar approaches, derived from the Partition of Unity Method, namely the Partition of Unity Finite Element Meth-
od, Babuska & Melenk (1997), the Generalized Finite Element Method, Duarte et al (2001), or the Discontinuous
Galerkin XFEM, Aduloju & Truster (2019). Especially XFEM adds some degrees of freedom in relevant regions
during the computation, typically along all curves and surfaces of discontinuities and in singular points, exploiting
the Moving Least Squares technique: the usual extrinsic XFEM works with additional variables and functions,
whereas the intrinsic XFEM developed by Fries & Belytchko (2006) tries to avoid them, only with one additional
shape function in each relevant node. However, although no singularity exist at the tip of cohesive crack, the stresses
obtained by differentiation of the displacement are not accurate, and cannot be used to predict accurately the growth
of the tip, Ferté et al (2016), Li & Chen (2017).
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A possible approach to simulate the propagation of cracks is the application of softening material formulations to
continuum elements leading to a smeared representation of the crack path. An alternative discrete approach imple-
ments the cohesive finite elements, Kozdk & Chlup (2011), Kozék et al (2017), Vala (2017); in this case the crack
path must be known a priori, or all element interfaces have to be taken into account, which forces many new degrees
of freedom, accompanied also by the risk of non-physical reduction of effective stiffness. The application of XFEM
is able to suppress such drawbacks in the simulation of propagation of cohesive cracks; however, it must handle the
non-existence of a sharp singularity at the crack tip, with more complicated derivation of required stresses from
displacements. In general the complete computational model should involve the formation and propagation of
cracks, their bridging by fibres, the loss of cohesion between fibres and matrix, their mutual sliding with friction and
the fibre destruction; special functions are necessary e.g. for stress singularities in the case of crack opening and
closing. The two-phase composite model of matrix and inclusion, based on the Eshelby solution and on the Mori-
Tanaka homogenization scheme, can be adapted to the directional propagation of microcracks, generalized also for
long fibres by Bouhala et al (2013), Mihai & Jefferson (2017). Random spatial variability of material parameters can
be handled using the stochastic simulation of damage, Elias et al (2015).

2. Physical, mathematical and computational background

The formulation of the related mathematical problem, incorporating reasonable physical and engineering simpli-
fications as the starting point for a derivation of the effective computational algorithm, comes from the principles of
classical thermodynamics, namely from the 1st one of conservation of scalar quantities as energy, (linear and angu-
lar) momentum and mass and from the 2nd principle concerning the irreversibility of natural processes, here namely
of the damage formation and propagation, which must be respected by semi-empirical (motivated from available
information on material micro- and mesostructure) constitutive relationships, together with reasonable initial and
boundary conditions. As with a simplified model example (useful just for this short paper), coming from such con-
siderations, we can start with the an abstract (in general nonlinear) quasi-static problem

(G(),v)+( A(w),v) =(F,v) (1

where the brackets refer to some dualities for reflexive and separable Banach spaces V (in particular, to scalar prod-
ucts in Hilbert spaces) for any time t from some time interval I =[0, 7] for a positive 7 (the limit case 7 —»o0is not
forbidden, but not discussed here), v €V denotes a virtual quantity, e.g. the displacement related to the reference
configuration, the dot means O/0f, Fis a linear functional and A(-), G(-)are (rather special) mappings defined on
V'; we are seeking for an () mapping I to V coinciding with some prescribed #, € V for t =0 (a Cauchy initial
condition) formally. However, our real aim is to find u € V satisfying (1) with the vanished 1st additive term; the
main difficulty of the hypothetical direct approach comes from the nonlinearity of A(-). Whereas G(-) can be taken
G(*), an coercive operator A(-)may be useful to be decomposed as A.(:,-), linear in the 2nd variable and compact
(if possible) in the 1st one, to apply the existence theory for weakly continuous (or pseudomonotone) operators.
Consequently (1) can be transferred (accounting for the convergence properties of Rothe sequences) to

(Glu, —u,_),0)+h{A(u_,,u,),0)=h(E,,v) )

with u_, u_, approximating an unknown u for t =shand t=(s—1)h, as well as F,in the case of known F (with
certain final value); here s €{L,...,m} with m=17/h, considering the limit passage & — 0(thus #1—>00).Under some

additional assumption we are allowed to come from (2) to the estimate, working with the norm ”" inV,

o+ S - <c{Jalf 133 | ®

where Cis some generic constant; (3) then manifests the decrease of ||um U, | , etc., with 111—>o0to zero.

In particular, following Pike & Oskay (2005) (with several straightforward generalizations, working with geo-
metrical and physical linearization of elastic matrix and fibre behavior and with a macroscopic view to matrix crack-
ing, let us consider an open set (typically a domain) in the 3-dimensional Euclidean space R®with an external
boundary 0Q2, decomposed to 2 disjoint parts @ (for homogeneous Dirichlet boundary conditions) and y (for non-

E
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homogeneous Neumann ones). Let (2 consist of 2 disjoint parts (open sets again): 2, occupied by a silicate matrix,
and ), by metal fibres, with contact surfaces & : the symbol [] refers to the difference between function traces on
k from particular sides. It is also useful to introduce the fractured zone ® of () separately. Then, using the Einstein
summation indices i,j,k,1€{1,2,3}, ();in the sense 0/0x,and the small strain tensors 6}4(U)=(Z)i/j+v].ll. )/2, etc.,
the energy conservation with the unknown displacements u(x,t)= (1, (x,t),u,(x,t),u,(x,t)), the virtual ones
u(x,t) =(v,(x,t),0,(x,t),0,(x,t)), the prescribed surface loads g(x,t) =(q,(x,t),4,(x,t),q5(x,t)) and the prescribed
volume loads g(x,t) =(g,(x, ), & (x, ), 5 (x, 1)) reads as (1) utilizing
(A-(@,u)(8), 0) = [ (1=, wlx, 1) e, (0w, DG ()2, (o) + [ [, DD/l (x, Do, (1))

Q

(G(a)(t), v) = [ alx)e; ((x, D)Cyy (W), (0()x . (F(E),0) = [ g,(x, o, (x)de+ [g,(x, o, (0)ds(x),  (4)

whereas u(-,#) =(0,0,0) on &, compatible with a priori known initial displacements u(-,0)on @; tocan be taken as
uhere (W #uis admitted because of the computational linearization of (2)).

Serious complications are brought into (1) through constitutive relations, namely those accounting for the signifi-
cant irreversible processes. Seemingly (1), supplied by standard linearized strain-stress relations, working with the
symmetric 4th-order tensors C of stiffness characteristics (compound from 2 Lamé constants for each material, i.e.
fibres and matrix, in the simplest isotropic homogeneous case) and the scalar viscous characteristic ¢« (often artifi-
cial, referring to the Kelvin viscoelastic model) can be handled using the standard theory of linear differential equa-
tions of evolution of parabolic type assuming zero-valued  and constant @ . Consequently, using the standard nota-
tion of Lebesgue, Sobolev, Bochner, etc. spaces by Roubicek (2013), taking V as the subspace of all
@ e W"(Q, R) satisfying @ =(0,0,0) for traces on @, under reasonable requirements to such characteristics (such
as positive ¢, positive definite C, sufficiently smooth 0Q, some Lebesque integrability of ¢ and Hausdorff inte-
grability of g in relevant function spaces, needed in embedding and trace theorems, we are able to verify the exist-
ence of a unique solution 1,1 € [*(I,V) completely, as well as the convergence of the algorithm induced by (2).
Much weaker results (for more general Banach spaces) are available (and complicated, frequently non-constructive
proofs occur) in more general cases; this stimulates the proper analysis of the characteristics @and ® and their as-
sessment in (4). Here @ refers to certain nonlocal damage function, zero-valued outside ®, motivated by some scale-
bridging considerations, whereas @ refers to the interface potential on &, accounting for the physical deterioration
on cohesive interfaces, describing the relationship between the surface traction and material separation between the
surfaces, crucial for the reliable study of matrix/fibre debonding.

Since (2) refers in every time step to a linear problem, but still in an infinite-dimensional space, an additional
computational discretization (except very special configurations with known analytical or semi-analytical solutions)
is needed. Such discretization of (2) can be sketched as

usi (x) = usialf//a (x) +usibl//h (x) +usicl//c (x) > (5)

containing the standard finite element shape functions i/ (x) on (2, the fractured zone enrichment shape functions
¥, (x) on ®and the cohesive interface enrichment shape functions ¥/.(X) onk ; a,band care considered as the Ein-
stein summation indices over all corresponding shape function sets here. The favourite choice for the implementa-
tion of (5) is uy, ~u,(x,), u, ~u,(x,),u, ~u (x,) (ie. just the displacement values in selected points in the
role of unknown parameters), corresponding to ¥, (x), ¥, (x) and ¥, (x) with small compact supports near X, , X, and
X, . The optimized choice of both X, , x, and x and ¥, (x), ¥, (x)and . (x), together with the strategy of numerical
integration and mesh refinement, determine the efficiency and the robustness of relevant algorithms and stimulate
the development of special problem-oriented XFEM (or similar) algorithms.

3. Illustrative example
For computational modelling, a specimen with cementitious matrix and steel fibres has been chosen. Numerical

results demonstrate the planar crack propagation in a cracked body, depending on the fibre location and material
characteristics. The stiffening effect of fibres plays a significant role for the direction of crack propagation.
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Figure 1 shows the results of modelling of crack propagation applying the modified XFEM approach, namely the
maximum principle stress in various stages of such propagation. The left figure corresponds to the initial state with-
out any crack, the central figure shows the crack passing the stiffening fibres, the right one the similar case with
different shear moduli (2x higher in the horizontal direction).

Fig. 1. Modelling of crack propagation applying the modified XFEM approach.

4. Conclusions and generalizations

A model based on FEM and its XFEM modification based on the properties of fibre cementitious composites has
been presented. Some criteria for crack propagation coming from both the critical stress values and both the
cohesive law ahead the crack tip have been tested. The proposed approaches should contribute to the prediction of
fracture behaviour of fibre cementitious composites and to the potential design of constructive structural parts.
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ABSTRACT

Prediction of quasi-brittle behaviour of structural components from fibre reinforced composites under mechanical loads should incorporate such physical processes as
elastic, resp. plastic deformation, crack initiation, crack propagation in a matrix, pull out of fibres and rupture of fibres. The computational model for the practically
most important case of cementitious composites containing short intentionally or quasi-randomly oriented steel, ceramic, resp. polymeric fibres with its primary
import of suppression of tensile stresses in a matrix will be introduced. Its numerical approach relies on the modified eXtended Finite Element Method, open to the
implementation of the cohesive traction separation law. This paper introduces the implementation of some integral-type nonlocal constitutive strain-stress relation. It
pays attention namely to the Eringen model for the generation of the multiplicative damage factor, to the related quasi-static analysis, to the existence of a weak
solution of the corresponding boundary and initial value problem with a parabolic system of partial differential equation and to the convergence of an algorithm
based on 3 types of Rothe sequences. Thus, the article combines the possibilities of the two procedures for modeling crack propagation. Microstructural behavior is
contained in the Eringen model, the effect of macro behavior in modified finite element method XFEM.

1. Introduction

The fibre cementitious composites are in the class of perspective
concrete, which increase the mechanical crack resistance, allow for a
more subtle and economical construction; thus a new look at creating
construction rigs replacing the steel structure is needed. Engineering
structures subjected to loading may result in stresses in the body ex-
ceeding the material strength and thus results in the progressive failure.
Such failures are often initiated by surface or near surface cracks, re-
ducing the strength of the material. In quasi-brittle materials like rocks
or concrete this is manifested by fracture process zones, in brittle ma-
terials like glass or welds in metal structures by discrete crack dis-
continuities, in elasto-plastic ductile metal or similar materials by shear
(localization) bands see [69]. Advanced building structures frequently
use silicate composites reinforced by metal, plastic or other fibres,
preventing undesirable micro- an macro-cracking effects. Mechanical
behaviour of such composites is conditioned by the suitable choice of
fibre properties, their concentration, localization and orientation in a
silicate matrix, influenced by their early-age treatment — see [35]. Non-
destructive testing of material structure is offered by image processing
(2D radiographic, 3D tomographic, etc.) and stationary magnetic and
non-stationary electromagnetic approaches. The macroscopic material
homogenization by [70] relies then on the semi-analytical mixing for-
mulae for special particle shapes (acceptable namely for their low
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volume fractions), two-scale homogenization of periodic structures, or
alternative results from the asymptotic analysis (G-convergence, H-
convergence, I'-convergence, etc.), up to very general (both determi-
nistic and stochastic) results for o-convergence on homogenization
structures, with numerous open problems uncovered by [61]. A unified
scale-bridging approach covering elastic and plastic behavior together
with fracture and other defects results in concept of structured de-
formation — see [48].

The dissipative particle dynamics by [68], referring up to the ato-
mistic or molecular scale, can be adopted to handle certain super-par-
ticles; this results in the discrete element method, applied namely in
soil, rock and concrete mechanics, in the analysis of granular materials
and in the dynamic process of initiation and propagation of micro-
cracks. The inheritance from dissipative particle dynamics, manifested
in the limited offer of particle shapes and sizes, can be overcome with
help of two- or three-dimensional reference volume elements, using the
combination of finite and discrete element approaches — see [52]. An
autonomous problem is the reliable identification of material para-
meters at various scales: the relevant computational approaches typi-
cally suffer from mathematical ill-possedness, numerical instability and
need of artificial regularization, together with uncertain or insufficient
input data. These difficulties have to be overcome by careful organi-
zation of experiments and various special problem-oriented algorithms
— see [62] and [8]. The extensive use of brittle matrix composite
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materials requires also appropriate computational models to describe,
with adequate accuracy, their mechanical behaviour. From a micro-
mechanical model some macroscopic constitutive equations are derived
for intentionally or random oriented fibres by [54], accounting for such
physical processes as matrix / fibre debonding and fibre rupture. One of
possible ways is to adopt a discontinuous-like FE approach to a lattice
model - see [7].

An alternative approach refers to special constitutive relations, in-
spired by continuum mechanics, where crack opening and contact
surface sliding are included into the model of plastic damage, using
smeared cracking by [28] and [29], together with mesh objective strain
localization due to material softening, referring to the thermo-
dynamically irreversible continuum damage mechanics, by [42], in
particular that leading to a smeared representation of the crack path by
[32]. At least for the practically significant application of self-com-
pacting concrete, supported by both experimental methods and nu-
merical simulations, smeared cracking can be combined with Monte
Carlo simulations, which results in the Variational Multiscale Cohesive
Method by [65], whose various implementations differs in the choice of
basis functions.

Another approach to the same problems presents the eXtended
Finite Element Method (XFEM briefly) by [44] and [33], covering both
strong geometrical discontinuities (in function values) and weak ones
(in gradients), with the aim of enrichment of the approximation space
by all needed types if (especially locally) discontinuous functions, and
similar approaches, derived from the Partition of Unity Method (PUM),
namely the Partition of Unity Finite Element Method by [3], the Gen-
eralized Finite Element Method by [16], or the Discontinuous Galerkin
XFEM, by [1]. Especially XFEM adds some degrees of freedom in re-
levant regions during the computation, typically along all curves and
surfaces of discontinuities and in singular points, exploiting the Moving
Least Squares technique: the usual extrinsic XFEM works with addi-
tional variables and functions, whereas the intrinsic XFEM developed
by [26] tries to avoid them, only with one additional shape function in
each relevant node. However, although no singularity exist at the tip of
cohesive crack, the stresses obtained by differentiation of the dis-
placement are not accurate, and cannot be used to predict accurately
the growth of the tip see [24] and [42]. A possible approach to simulate
the propagation of cracks is the application of softening material for-
mulations to continuum elements leading to a smeared representation
of the crack path. An alternative discrete approach implements the
cohesive finite elements by [37]; in this case the crack path must be
known a priori, or all element interfaces have to be taken into account,
which forces many new degrees of freedom, accompanied also by the
risk of non-physical reduction of effective stiffness.

The application of XFEM is able to suppress such drawbacks in the
simulation of propagation of cohesive cracks; however, it must handle
the non-existence of a sharp singularity at the crack tip, with more
complicated derivation of required stresses from displacements. In
general the complete computational model should involve the forma-
tion and propagation of cracks, their bridging by fibres, the loss of
cohesion between fibres and matrix, their mutual sliding with friction
and the fibre destruction; special functions are necessary e. g. for stress
singularities in the case of crack opening and closing. The two-phase
composite model of matrix and inclusion, based on the Eshelby solution
and on the Mori-Tanaka homogenization scheme, can be adapted to the
directional propagation of microcracks, generalized also for long fibres
by [6] and [47]. Random spatial variability of material parameters can
be handled using the stochastic simulation of damage cf. [18].

In this paper, exploiting a substantially extended a revised text of
[72], we shall pay attention namely to the quasi-brittle damage, rea-
listic for a large class of building materials and composites, with a
primarily elastic behaviour. The presence of above sketched effects
forces the implementation of some nonlocal strain-stress constitutive
relation. Following [13,25,27,29,56], etc., we shall come out from the
well-known Eringen model [20] and [21], although numerical results
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referring to its pure version are not quite satisfactory, as observed by
[60], and its ill-possedness has been recently discovered by [22], except
the homogeneous Dirichlet problems and certain simplified 1-dimen-
sional formulations cf. [74], contesting the incomplete existence results
by [2]. The remedy suggested by [20] relies on the additive linear
combination of the classical local and the nonlocal Eringen model;
unlike this, we shall utilize the Eringen approach to the setting of the
multiplicative damage factor only, as demonstrated by [29] heur-
istically.

2. A first model problem

For simplicity, to avoid technical difficulties, let us suppose that Q is
a union of a finite number of domains with Lipschitz boundaries, whose
exterior boundary 4Q in #* consists of 2 disjoint parts ® (for homo-
geneous Dirichlet boundary conditions) and T' (for non-homogeneous
Neumann boundary conditions), whereas all interior boundaries,
needed for matrix / particle interfaces, generate a set A (where certain
nonlinear Robin conditions occur); let ® have a non-zero measure on 4Q
(to avoid insufficient support). Let us consider the Cartesian coordinate
system x = (X, %, x3) in #° and the time ¢t € I where I = [0, T] for some
final time T'; the limit passage T — oo will be allowed, too. We shall also
use the Hamilton operator V = (3/0x, 8/9%, 3/0x3), and the dot sym-
bols instead of d/dt for brevity. As the reference variable, let us choose
the displacement u(x, t) = (uy(x, t), ux(x, t), us(x, t)) for any x from Q,
as well as from dQ or A (in the sense of traces), and arbitrary time t € I.
For a fixed time ¢ and any admissible displacement
v(x) = (v (x), v2(x), v3(x)) let us introduce the strain tensor ¢(v) in the
form ¢;(v(x)) = (v;;(x) + v;,;(x))/2 where i, j € {1, 2, 3} and the stress
tensor o of the same type; any comma followed by an index k € {1, 2, 3}
@i or j here) must be understood as d/dx; applied to the preceding
variable.

We shall start with the heuristic formulation of a model problem,
using the standard notations of the linearized theory of elasticity. Let us
set the Cauchy initial condition u(.,0) = 0 on Q. Moreover, let us con-
sider some volume loads f(x, t) = (f,(x, t), f,(x, 1), f;(x, t)) and some
surface loads g(x, t) = (g, (x, 1), g,(x, t), & (x, t)) where x€ Q, x €T
and t € I. The physical principle of energy conservation can be then
reduced to the Cauchy equilibrium condition on Q X I

gjj +f =0 @

for any i € {1, 2, 3} and an Einstein summation index j € {1, 2, 3}; the
Neumann boundary condition on Q X I is

gijn = §; 2)

with i and j as in (1), whereas the Dirichlet one degenerates tou = 0 on
© x I. Here oy = oy; everywhere for arbitrary i, k € {1, 2, 3}, as usual in
the theory of Boltzmann continuum. The constitutive relation between
o and ¢(u), motivated by the classical Kelvin viscoelastic model (con-
taining parallel Hooke and Newton components), on Q X I reads

g = aCynea (@) + (1 = 2)Cyraga (u) 3)

for any i, j € {1, 2, 3} and Einstein summation indices i, j € {1, 2, 3};
here Cjiy = Cjiy = Cyix = Ciyy refer to 21 independent material char-
acteristics in the empirical Hooke law (expressible using 2 Lamé coef-
ficients for isotropic materials, or using the Young modulus and the
Poisson ratio alternatively), a forces some energy dissipation in such
non-closed physical process and Z refers to the above announced da-
mage factor, whose reasonable design determines both the well-poss-
edness and the practical validity of the computational model.

Following [29] (slightly generalized, to enable the comparison with
other approaches), & in (3), as a function of t € I, can be set as the
maximal value of

w(l.Z (@ t)l) = w(l.eZ (COe(u(.,t)l);

here |.I; refers to the norm in #* and
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A W)) = f 2 (x, D)w ) dx .
Q 4

for any x € Q and integrable functions .#" (real-valued) and w
(#3-valued) in the needed sense. In particular, .#" can be taken as a
radial basis function (RBF) (or its interpolation or approximation), as
reviewed by [63]. Let us also notice that [22] needs to have .7 as a
symmetric positive kernel, whereas [58] formulates 5 requirements to
X, satisfied by the Gaussian error-like distributions by [23]

A (x, x) = exp(—Ix—x12)/(4n))/(87n)*/?

automatically where the parameter 7 should be either set by appro-
priate experiments or evaluated from the theory of atomic lattice.
The approach of [38] and [39] relies on the theory of dislocations,
Burgers vectors, etc., and constructs % (x, x) using the Green functions
of certain bi-Helmholtz equation, i. e. the generalized Helmholtz
equation of the 4th order, exploiting the Bessel function depending on
appropriate real constants, whose number can be reduced to 2 in the
isotropic case — cf. [36] and [49]; this can be identified with the higher-
order strain-gradient formulation in the thermodynamic framework by
[41]. However, such considerations may be not realistic especially for

concrete-like composites with a complicated non-deterministic struc-
ture in general.

Unlike this, [29] introduces
A (x, x) = exp(=Ix — xk)/p(x))

(supplied by an additional normalization step); here p(x) (constant in
the first guess) scales the internal length depending on Ix—x|; with the
closest x € 0Q. The details of evaluation of p(x) are are not unified:
namely [29] takes y(x) as a piecewise linear function, unlike its ex-
ponential improvement by [28]. As a quite different example, [56]
refers to the (rather complicated) Wendland RBF of the 5th order; for
some classes of still other choices (as bell- or conical-shape) cf. [57].
To see the damage progress utilizing &, we need now to introduce @
properly. Following [29], to force the objectivity, let us set w in (4) as a
vector of principle stress values o, with k € {1, 2, 3}, i. e. gV = gy,
using arbitrary indices i, k € {1, 2, 3} and j € {1, 2, 3} in the role of an
Einstein summation index where vy generate an orthonormal matrix
from #*3 (on Q locally). Consequently we can take w in (4) as
(a1, 03, 03), to obtain certain o, = .o/ (W) on Q; an admissible form of .o/

will be discussed later. An appropriate formula for the evaluation of @
on Q is then

woy) =1— exp(—m)
& — &

()

for o,/E > ¢, zero otherwise; here E is the (always positive) Young
modulus on Q and ¢, and ¢ are 2 dimensionless parameters (also po-
sitive in practice) controlling the peak stress and the slope of the soft-
ening part of the strain-stress dependencies.

An useful special relation of this type for an isotropic medium is
presented in [29]:

_ [ 2 2
(01, 0z, 03) = /031 + T4z + Oj3

where o043, 04, and o,; come from the right-hand side of (4) with
scalar inputs oy, 0, and o3, whereas various choices of .#" (standard
averaging, distance-based averaging, etc.) are allowed. Thus, for certain

reference ¢,, the linear elastic relation o, = Eg, valid for e, < ¢
changes to

£y — &
o = Eeg exp| ——2—2
g — &

in the case of stiffness decrease ¢, > ¢, as evident from the illus-
trative Fig. 1.

Let us notice that the slight modification of (5) inserting the mul-
tiplicative factor 1 — ¢ with a (usually small) positive ¢ < 1 to its right-
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Fig. 1. Stress-strain curve with softening for an isotropic damage model by
[29].

hand side, prevents all attempts to explain the total loss of stiffness from
the linearized theory. This might be seen as a computational trick only;
however, the initiation and development of macroscopic cracks can be
expected in this case, as introduced in Section 4.

More generally (in the brief notation), we have 2 = &(u) finally,
with a rather complicated mapping €. Assuming ¢ as above, we receive
Z € [g, 1] in all cases. In such sense we shall understand the mod-
ification of the principle of energy conservation (6), implementing all
constitutive relations to obtain (7).

To complete the formulation of a model problem, (6) must be
supplied by appropriate constitutive relations for o, 2 and .7, coupling
these quantities with u. In the 1st case we are allowed to use the clas-
sical linear Hooke law o = Ce(u) on Q x I with C € L= Q)55 the
announced symmetry, usual in the Boltzmann (non-polar) continuum,
means Cyyy = Cjy = Cyix = Cyyyj for any i, j, k, I € {1, 2, 3}. Let us notice
that this (in general) admits 21 independent scalar components of C
from L*(Q), whereas the additional assumption of isotropy leads to
their reduction to 2 Lamé coefficients. One more assumption
Cijajan > ca;a; for all a € /?53;,‘"3 with i, j, k, | taken as Einstein sum-
mation indices and with a positive ¢ independent of the choice of x € Q
will be needed later; the existence of a positive ¢ satisfying
Cijaijby < Cajjby for all a,be /]:yj‘f is  evident. Thus
WIE = WP + le() 2 with le(W)lc = ICY2%(v)| for each v € V generates
still another norm in V.

It is natural to assume u € L*(I,V,V*) (thus u e I*’(1, V),
ueI*(, V), Vue I*(H?), ¢(u) € I*(H},), etc.), o€ [*(H},) and
2 € [0, 1 — ¢] with some prescribed real non-negative ¢ < 1, together
with the volume forces f € L?(I, H) and surface forces g € L*(I, Zr).
Thus the principle of energy conservation reads

ale®), &) + (), 1 — 2)o)

Z(V, f) + <V, g>F+<5v’ f)A 6)

on I for any virtual displacements v € V; here ¢ refers to the possible
matrix / particle jumps in traces of v and .7~ € L?(I, Z,) introduces the
interface tractions. The remaining positive factor a occurs in the 1st
left-hand-side additive terms only, forcing some energy dissipation in
such non-closed physical process. The homogeneous Cauchy initial
condition u(.,0) = (0, 0, 0) on Q is supposed; therefore it is reasonable
to consider the zero-valued f (.,0) and g(.,0), too, with some final values
f(.T) and g(.,Tp) with Ty < T, unchanged for any ¢t € [T, T].

The 2nd case must be handled using the nonlocal approach. Let us
consider a kernel .#" € [?(Q x Q) and an operator .«7: [*(Q) — L*(Q),
introduced by (4); for an isotropic material it can take the very special
form by [41], working with 2 additional material coefficients again.
Such operator is always compact, as verified (using 2 independent ap-
proaches) by [15], pp. 80 and 81 . This result can be extended to
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¢(v) € H?, replacing w € L?(Q) (taking the symmetry of ¢ into account,
too), naturally, following [22], as well as to Ce(v) € H?. Let us consider
a continuous bounded non-decreasing function of a non-negative real
variable returning values from [0, 1 — ¢] such that w(a) = 0 for suffi-
ciently small a > 0 (where no damage occurs yet). To express the da-
mage progress, using o, ¢(u) € L?(I, H?), for any fixed t € I then Z in
(6) can be set, following [29], as the maximal value of

w(l.eZ (@(,t)le) = (1. (COe(,t))le)

with ¢ € [0, t] where ||, denotes the standard norm in Z}; slight
modifications, replacing |.I; by some alternative norm, and / or
switching to another rotating local orthogonal coordinate system, e. g.
working with the triples of principal strains and stresses by [27], are
possible.

In the 3rd case we are allowed to express .7 by its components as
T = ¢,.j (6u)du; for any i € {1, 2, 3}, using the Einstein summation with
j € {1, 2, 3}, assuming that all real continuous cohesion functions @y of
3 real non-negative variables satisfy $;(0,0,0) =0 and the spectral
norm of ¢(a) in #3*3 has its upper bound x independent of a € #3;
moreover, the components of ¢ (a) tend to zero with a sufficiently large
norm of a in #* in practice (because all cohesion vanishes on large
gaps). Let us remark that the components of .7~ are frequently for-
mulated in some local coordinate system, related to the normal and
tangential directions on A, which simplifies these relations namely in
the isotropic case, as discussed by [56], deriving du from differentiation
of certain interface potential. Thus we can rewrite (6) as

a(e), Ce(@)) + (), (1 — €))Ce(w))

=, f) + (v, gr+{dv, ¢ (Su))a )

on] foranyveV.

3. Existence and convergence properties

We shall use the standard notation of Lebesque, Sobolev, Bochner,
etc. (abstract) function spaces, as introduced by [61] and [71]. Namely
we shall need the Hilbert spaces H = 1?(Q),
V={ew?2(Q)32v=(0,0,0)on ® and Z=1IL?@QUA)> and the
corresponding scalar products: (.,.) both in H and H X H, (. ,.) in Z and
(. ,)r or {. ,.)A the same ones restricted to Z- = L*(T')* or Z, = L*(A)>.
Later we shall need also some symbols for standard norms, namely |. |
bothin H and H X H, |I. lin V, |.Ir in Zr and |.|, in Z,. We shall use the
upper star symbols for dual spaces, C for continuous embeddings, € for
compact embeddings and =~ for the identification of a space with its
dual (following the Riesz representation theorem). Then in the Gelfand
triple V. C H = H* C V* both inclusions are dense, with the guaranteed
embedding W22(I, V, V*) C C(I, H). Moreover L?(I, V)* =~ L*(I, V*)
holds (thus L*(I, V) is reflexive), together with other useful relations
HeV (the Sobolev embedding theorem), Z€V (the trace theorem),
forcing vlr < TIvll, wly < Zlvll for any v € V with a positive T in-
dependent of v, and W%22(1, V, V*)€L*(I, X) with X € {H, Z} (the
Aubin - Lions lemma). Clearly IvI* = [v? + |VvI* for any v € V; an al-
ternatively norm in V is generated by le(v)? because
le)? < IVvI2 < IvI? and le(v)? > RIvI? with a positive & independent
of v (the Korn inequality).

Let us remark that the hypothetical reverse approach, starting from
(6) or (7), with the aim to obtain the strong formulation, would be more
delicate: it must be understood in the distributive sense, or needs some
non-trivial additional regularity assumptions. However, we shall need
the following regularization (compactness) property of .#", taken from
L2(Q x Q), following (4): if {wk}; is some sequence converging weakly
to w in H then, taking w = ./(w) and Wk = .«/(w¥), up to a sub-
sequence, {w*}32, converges strongly to w in H. Indeed, {w*(x)}}>,
converges locally to w(x) for almost every x € Q; by the Lebesgue
dominated convergence theorem is then sufficient to verify the
boundedness of {wX}2, in H, which is guaranteed by the weak
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convergence (thus also the boundedness) of {wX}2,, by the Fubini
theorem (on multiple integrals) and by the Cauchy - Schwarz in-
equality; for all details see [15], p. 81 . An important consequence is
that for a continuous w (not just for the special one by (5)) and for any
fixed t €1 we are able to guarantee the strong convergence of
{€(,t))}, to &u(.,t)) provided that {u¥(.,t)}3>, converges weakly to
some u(.,t) in V.

Let us divide I into a finite number m of subsets
I"={tel: (s—1)t < t<st} with s € {1, ---,m}, with the final aim
m — oo; T(m) = T/m is considered here, omitting its argument m for
brevity. Let us consider the Clément quasi-interpolation f™ of f in
L*(I, H) and g™ of g in L*(I, Z,), defined as

froy =7t [ fHdt

(s—=1)t

g =7 [ gdr

(s—1)1

fort € I", s € {1, ---,m}. For an unknown u we can also introduce some
um, @™ and o™ as u"(t) =ul,+ (¢ — (s — D)W —ur,) (linear
Lagrange splines), #"(t) = u)" (standard simple functions) and
um™(t) = ul", (retarded simple functions), which generates 3 different
types of the Rothe sequences; uy* = (0, 0, 0).

The discrete variant of (7) for a fixed m then reads

a(e), Ce(@™) + (), 0 — €W™)Ce(@™)

=0, f™) + (v, g")r + (dv, FBU™)) ®)
on I; its linearity is evident from its form

a(e), Ce(uy" — wy))
+ e, 1 — ) Ce(wy)) 9)
=7, f7)+t(w.g " )r + (v, d(Sus ),

rewritten step-by-step on IJ". Let us set v = u." in (9). Using the Cauchy
- Schwarz inequality, taking an arbitrary positive @, we have

(e@™), Ce(u™) = le™Z > cAlluI?

2(e ("), Ce(ug™ — ugy)

=le@™EZ + le@™ = u™ ) = le@™ 2,
le™ — um DR > chRlu — ul" 12,

2Qu, £ L 2 < wiu P+ @ P,
2w, g™y < 2l lg™ I < 2N lig" |-

< w2 P + w g,

2(8u.”, Sum )n < 2xldut Iz 16U I

< 2T w1 < T2 12+ Nu 12).

Thus for any fixed r € {1, ---,m}, summing over s € {1, ---,r}, we
receive

,
acllu"P + acf Y ™ — ul, 1P

s=1

+ ™ (w) w112
g (10)

r r
< tw? Z ™2 + ot Z g 7
s=1 s=1

where M(w) =2(1 —¢)ck — (1 + T)w. Since, up to some multi-
plicative constants, the right-hand-side additive terms of (10) are just
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the squares of norms of f™ in L*>(I, H) and of g" in L?>(I, Z) and those
left-hand-side ones correspond to the squares of norms of @™ in L*(I, V)
and of vTu™ = JT(@" — u™) in L?(I, V), we have {a™}}_; and {i"™}5_,
bounded in L?*(I, V) for any M (w) > 0 directly; otherwise this follows
from the discrete Gronwall lemma - cf. [61], p. 26 , and [15], p. 99 .
Moreover, using the notation [.] for the integration over I here, re-
formulating (8) with w € L2(I, V) as

af(ew), Ce(@™))]
=—[(ew), @ — €@™)Ce(@™)]
= [w, fM] = [w, g™],

using the same estimates as above, we can see that the upper bound for
[(w, w™)] is just the norm of w in L*(I, V), multiplied by a positive
constant; thus we have {#"}5_, bounded in L*(I, V*), too. Consequently
the Eberlein - Shmul'yan theorem by [15], p. 67 , implies, up to sub-
sequences, the weak convergence of {#™}5_; and {fi"}5_, to some & and
o in L*(I, V) and of {#™%_; to some uX in L*(I, V*).

To verify that both i and & can be identified with u, as well as u*
with u, let us start with the obvious estimate

lu —all < llu — u™l + llu™ —a™l + la™ — all
= llu — u™ + zllu™l + lla™ — all

on I. Passing m — oo, the 2nd additive term vanishes due to the
boundedness of /711"l and the 1st and 3rd ones tend to zero due to the
convergence properties in L*(I, H) C L®(I, H); this identifies u with a.
The same arguments can be repeated to identify & with ©, too.
Moreover, the integration by parts

[w, w9l = lim [(w, 2™)]
= — lim [, u™)] = —[(4, w)]

is valid for any w from the space of distributions C5°(I); this is sufficient
to identify u* with u, as derived by [9], p. 49 . Thanks to the compact
embeddings we obtain the convergence properties for m — oo: {uf5n_;
has its weak limit u in L*(I, V), and its strong limit u in L?(I, X) for
X € {H, Z}, the same holds for {#™}5%_,, whereas {"}%_; has its weak
limit & in L*(I, V*). Therefore, taking the continuity of w and ¢ into
account, we are allowed to come from (8) to (7).

Let us remark that the presence of &(.) in (9) and (8) brings sig-
nificant difficulties to most consideration on the uniqueness, regularity,
etc., of the solution of (7), including its quasi-static character, as usual
in the (both physically and geometrically) linearized elasticity; one can
expect some disturbing effects namely for ¢ decreasing to zero, corre-
sponding to the total loss of stiffness of some part of Q. For example, the
artificial evolutionary term with « > 0 should vanish thanks to the
setting v = u)" — u,",, the difference of (9) and the same equation with
s — 1 instead of s, provided that s > 1. If f and g are still (nearly)
unchanging in time, then the decisive right-hand-side additive term,
stemming from (9), reads (e (u," — ul,), (€(w",) — €W ))Ce ().
However, to obtain le (™) in (8) and l¢ (it)| in (7) decreasing to zero, one
needs additional continuity assumptions, related to a rather compli-
cated general form of &(.).

4. A second model problem

Le us remind that our previous considerations are valid literally only
if, from the macroscopic point of view, in the structure of a deformable
body, only a (typically cementitious) matrix and some finite particles
(usually stiffening ones, e. g. metal fibres), using the common notation
Q can be distinguished; the opening / closing of macroscopic cracks is
allowed only on internal interfaces A, whereas the effect of micro-
cracking relies on certain damage factor; this is compatible with [29]
and [56]. We shall now demonstrate that the same approach can handle
initiation and development of macroscopic cracks inside Q, too, using
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nearly the same existence and convergence theory.

Up to now, Q here consists of a finite number of certain simply
connected subdomains Q,, whose boundaries in %#* generate A, ® and
I'. Moreover, following [37], let us consider the decomposition of Q, to
a finite number of subdomains Q. Let us assume that all such sub-
domains have Lipschitz boundaries and the properties of their inter-
faces are prescribes in the same sense as above, i. e. not only for matrix
/ particle interfaces, but also for certain mutual grain ones. Thus ® and
T geterated by Q) (instead of Q,) stay unchanged, whereas A can be
much more rich. Consequently all derivations of Section 3 can be per-
formed with the analogous results. The more detailed analysis of such
configurations with several examples have been prepared for [73] re-
cently.

5. Some generalizations

Let us start with the remark that, being ready to overcome some
technical difficulties in proofs, numerous assumptions in our model
problem could be weakened, e. g. the choice of f and g would be able to
use the embeddings L9 (Q)eV (the Sobolev embedding theorem) and
L*¥(I) €V (the trace theorem) for any positive ¢ and ¢ instead of those
with € = 4 for H and € = 2 for Z; even the boundary of Q need not to be
just the Lipschitz one, as analyzed by [10], generalizing the deep
classical results of [46]. Still other generalizations, e. g. the linear
growth of selected material characteristics instead of their bounded-
ness, could be enables using the results of [61], pp. 7, 201, 210 and 213
, applying the weak star convergence, the formal introduction of very
weak soulutions and the Alaoglu - Bourbaki theorem (or the Banach
selection principle), some general dualities instead of scalar products
above, etc., although some complicated non-constructive proof steps,
combining the properties of Rothe sequences with the Faedo - Galerkin
arguments, obstruct the development of relevant computational algo-
rithms.

Most extensive calculations concentrate on the matrix / particle
interfaces and in their vicinity. To avoid this phenomenon, various
continuum “smeared crack" approaches have been developed; the
concepts and history of such research activities from the late 1960s to
recent achievements can be assessed by [4], [55] and [74]. In some
very simplified formulations more numerical stable exact or funda-
mental solutions can be implemented then those generated by Green
functions, e. g. in the special problem of [40], coupling the Timoshenko
beam on elastic medium with the Eringen model of nonlocal Euler -
Bernoulli nanobeams. The cooperation of plasticity and damage is also
available, following [53].

Nevertheless, the theory of linear elasticity in the simple quasi-static
context as the basis of all our considerations has some limitations,
namely for real physical processes far from such simplification, gen-
erating various nonlinear contributions to corresponding differential
equations. Thus the implementation of infinitely many potential crack
surfaces, as well as the total loss of stiffness due to microcracking, does
not seem to be overcome in a simple way.

Alternative research directions rely on the computational peridy-
namics, avoiding all gradient evaluations — cf. [19], [31] and [43], or
on statistical physics, handling extremal dynamics in random threshold
systems — see [59]. Numerous open questions still occur in the case of
multiple scale bridging, i. e. of the computational homogenization at
several (typically macro- and micro-) levels, namely for the non-peri-
odic problems.

6. Assertion of XFEM

Computational analysis of initiation and time development of frac-
ture in brittle and quasi-brittle materials and composites needs to
handle i) weak discontinuities, such as material interfaces, ii) strong
discontinuities, related to cracks, and iii) near-tip behaviour of basic
characteristics of (elastic, plastic, etc.) fracture mechanics. This
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represents a serious problem, in addition to those connected with the
convergence of Rothe sequences, as discussed above; for extensive
historical remarks cf. [67].

Namely [5] relies on the strain smoothing technique, including fi-
nite order piecewise polynomials, applied to simple elements, divided
into subcells. [12] pays attention to an important partial problem of
effective computation of integrals of polynomials over finite-dimen-
sional simplices and general polytops, up to software implementation
details. A special hexahedral cutting algorithm for the 3-dimensional
geometrical configuraion is designed and implemented in [14]. [17]
introduces the so-called Finite Cell Method (FCM) as certain combina-
tion of the (in general) higher-order FEM and the fictious domain
technique, with application just to tetrahedral grids. For the tetrahedral
version of FCM, [64] develops a flexible ad hoc integration technique.
[30] attempts to extend such approach to arbitrarily broken elements,
connected with various modifications of PUM in the sense of [66], as
the Generalized Finite Element Method or XFEM (as introduced above);
optimization of the Gauss - Legendre quadrature points and weights
becomes then a rather complicated auxiliary problem. In particular, the
detailed results on generalized Gaussian rules on arbitrary (2-dimen-
sional) polygons are derived in [51] and [50]. Three general ap-
proaches are employed to handle integrals of homogeneous functions
over arbitrary polytops in [11]: a) tessellation of the domain into
simplices, b) application of the generalized Stokes theorem to reduce
the volume integral to a surface one, c) utilization of some moment
fitting method. Useful results on multilinear and quasilinear forms with
homogeneous polynomials come from [34]. An alternative approach of
[45], starting with orthogonal polynomials, generates some other
classes of weighted quadrature rules.

Switching back to (9), upgraded due to the considerations from
Section 4, we are able to convert it into the form

a(eWn), Ce(ups — Ups_1))

+ 7(en), (1 — E(upg—1)) Ce (uj-1)

=T, f7)+7(Vh & )r 11
+ {6, ¢ (Sups_1))a
onl" (s € {1, ---,m},m € {1, 2, ---} again), for all v, from certain V},.

Here h is some positive number, characterizing the element size in the
FEM decomposition of Q, thus the limit passage 4 — 0 is needed; V}, is
then an appropriate approximation of V, converging to V in some
reasonable sense, especially in the norm
}ll_r%llvh—vll =0 12)
for any v € V provided that Vj, C V. Consequently u;; should be found
in V,, too. More generally, (12) can be modified using v;" instead of v,
with certain image v;* of v, € Vj, into V such that
. *

}ll_r%llvh -l =0. 13)

Various XFEM and similar approaches differs in the choice of V}, for
(11) and its potential modification (robust, effective and non-expensive
if possible) with increasing s, i. e. in the adaptive mesh and choice of
test functions strategy.

Let us remind that (3) can be understood as certain regularization of
progressive microcracking in above mentioned materials in order to
obtained objective results; for monotonic loading the steady-state ver-
sion of (3) relies on its vanishing 1st right-hand-side additive term. In
such sense a modified nonlocal regularization method described in [27]
that takes the stress state into account has been used as a default
nonlocal approach for our solution. The question arises to try to com-
bine some advantages of nonlocal approach and a modified finite ele-
ment method. The simple and uncomplicated solution was used for the
numerical modelling in the following section, referring to the im-
plementation of the two-dimensional XFEM application containing
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Fig. 2. Schematic diagram of crack propagation, stress in elements in enriched
zone is determined via damage model.

Fig. 3. Modelling of crack propagation applying the XFEM approach.

Fig. 4. Modelling of crack propagation for low value of damage parameter.

single or multiple cracks. In comparison to the classical finite element
method, XFEM provides significant benefits in the numerical modelling,
based on the enrichment of the FE model with additional degrees of of
freedom that are tied to the nodes of the elements intersected by the
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Fig. 5. Modelling of crack propagation for exponential damage parameter.

crack, e. g. on a special adaptive choice of V}, respecting (13), see Fig. 2.

7. Numerical computations

To demonstrate the practical implementation of most considerations
from previous sections in some details, let us introduce the 2-dimen-
sional crack propagation in a steel fibre reinforced cementitious spe-
cimen, using the above introduced quasi-static approach together with
the XFEM technique and user implemented subroutine for Abaqus.
Crack initiation and growth was tested in a plate with hole, where the
uniform stress was applied. To describe the material, the following data
for modelling were used: elastic modulus of the hardened paste E = 3.2
GPa, Poisson constant u = 0.3, tensile strength o, = 10MPa; elastic
modulus of steel fibres E = 190GPa, Poisson constant u = 0.3.

Some crack development is visible on Fig. 3 showing the results of
modelling of crack propagation by XFEM. For computational modelling,
a specimen with cementitious matrix and steel fibre has been chosen.
Both figures demonstrates the planar crack propagation in a body with
fibres. The left figure shows the crack propagation passing the stiffening
fibres, the second one the similar case with different shear moduli (2x
higher in the horizontal direction). The stiffening effect of fibres plays a
significant role for direction of crack propagation.

Another crack development is presented by Figs. 4 and 5 for simple
combination of above mentioned approaches, which is nonlocal and
XFEM approach. Fig. 4 describes the situation for damage parameter &
below 0.1, Fig. 5 was obtained for its exponential dependence varying
from 0.1 to 0.3.

8. Conclusion

The extensive use of fibre reinforced cementitious materials requires
appropriate computational models to describe, with adequate accuracy,
their mechanical behaviour. A possible choice of such model has been
introduced in this paper, including the development of both micro- and
macrocracks, working with the adaptive XFEM discretization modified
with damage law, mainly for monotonic loading in elastic visco-plastic
regime has been introduced in this paper. Its mathematical verification
has been discussed, including numerous references to still open pro-
blems. Simplified numerical computations demonstrate some ad-
vantages of such approach for engineering practice, although its deeper
analysis, covering more complex 3-dimensional simulations, can be
seen as the research challenge for the near future.
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Abstract. Most building materials can be characterized as quasi-brittle composites with
a cementitious matrix, reinforced by some stiffening particles or elements. Their massive
exploitation motivates the development of numerical modelling and simulation of behaviour
of such material class under mechanical, thermal, etc. loads, including the evaluation of
the risk of initiation and development of micro- and macro-fracture. This paper demon-
strates the possibility of certain deterministic prediction, applying the dynamical approach
using the Kelvin viscoelastic model and cohesive interface properties. The existence and
convergence results rely on the semilinear computational scheme coming from the method
of discretization in time, using several types of Rothe sequences, coupled with the extended
finite element method (XFEM) for practical calculations. Numerical examples refer to ce-
mentitious samples reinforced by short steel fibres, with increasing number of applications
as constructive parts in civil engineering.
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1. INTRODUCTION

Study of behaviour of quasi-brittle composites under mechanical, thermal, etc.
loads belongs to research priorities in civil engineering, utilizing such composites as
constructive parts of buildings and engineering structures. These parts are often
made from a material with a cementitious matrix, reinforced by some stiffening (e. g.

various metal, glass or plastics as polyethylene or polypropylene fibres), with the
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aim to reduce the danger of cracking in tension: cf. [22] for the fibre reinforced
concrete technology, [30] for the review of steel fibre reinforced composites (as the
most frequently applied ones) and [25] for certain simplified methodology of com-
putational design of such fibre composites, with the relevant software support [12].
However, a proper computational prediction of strain, stress, etc. development in
such composites cannot be based on simple calculations well-known from linear elas-
ticity and related fracture mechanics. Following [54], two stages of damage can be
recognized: i) formation of micro-fractured zones, reducing the stiffness of a struc-
ture, ii) creation of macro-cracks, whose later opening and closing is conditioned by
the cohesive characteristics of new interfaces. At least the following scales should be
distinguished: matrix particles (at 1073 m), hardening fibres (at 1072 m) and labo-
ratory samples (at 107! m) or real structures in situ (even greater). Consequently
a reasonable setting of material parameters on the macroscopic scale, supported by
appropriate experiments, producing some (typically incomplete) data on material
structure, as random or intentionally oriented fibre directions, may be complicated
in general. Selected problems of this kind, preferring non-destructive or low-invasive
testing approaches, namely direct photographic, roentgenographic and tomographic
ones, and indirect electromagnetic ones, relying on certain changes in stationary
magnetic or harmonic electromagnetic fields, are discussed in [57], with numerous
further references.

Various arguments on the non-negligible non-deterministic character of both in-
put data and relevant physical processes motivate some authors to the attempts to
handle the evolution of damage by stochastic considerations, genetic algorithms or
other soft computing approaches like [53], [14] or [41], by statistical physics using
[48], or by computational peridynamics, avoiding all gradient evaluations, following
[38], [15] and [27]. Unlike such approaches, in this paper we shall try to develop
a rather simple deterministic physical, mathematical and computational model, up
to its software implementation, based on the principle of energy conservation from
classical mechanics, incorporating the kinetic and deformation energy, similarly to
[37], together with certain energy dissipation (structural and mass damping).

However, the detailed description and computational analysis of particular micro-
cracks cannot be performed easily in most engineering applications. The thermody-
namic approach of [51] and [40], especially in Part 4.3, introduces additional internal
variables to displacements and temperature and combines a fully implicit discretiza-
tion, based on both Galerkin and Rothe methods, with the analysis of nonlinear
Nemytskii operators and enthalpy transformation to verify the existence of certain
energetic solution of a needed initial and boundary value problem. In our paper,
initiation and development of particular micro-cracks will be incorporated using the



damage zone representation by [21] and [28], utilizing numerous ideas of [47], adopt-
ing the nonlocal model from [16]. This model was later reformulated by [17] and
is frequently referred as the Eringen one in the last 2 decades. Fortunately the re-
cent result [18] on the ill-possedness of the nonlocal approach [17], referring to the
incomplete existence analysis of [1], for boundary conditions significant in practical
applications, is not addressed to our formulation, as explained by [58]. Moreover,
according to [55], such conception can be considered as a suitable procedure for
a multi-scale approach, avoiding any interpolation between macro- and micro-scale
variables. For the strain-stress relations we shall work with the viscoelastic Kelvin
law, generating the so-called structural damping, accompanied by the mass damping
due to the Rayleigh model in the sense of [43].

The above sketched considerations will be incorporated in our model problem. As
its natural generalization, we shall consider also a finite set of matrix / fibre interfaces,
as well as of interfaces inside the matrix, or even inside any fibre, depending on the
process of activation of macro-cracks. All such interfaces will be assumed to satisfy
the cohesive model, developed by [46], [32], [6] (for various types of fibre composites),
[33] (for ceramics) and [36] (for a rather general class of damage propagation).

For most existence and convergence proofs we shall use the method of discretiza-
tion in time, based on the convergence properties of Rothe sequences, following
[49], devoted to linear problems. Moreover we need to handle 2 types of nonlinear
terms, coming from i) and ii), as introduces above. For practical evaluations of fully
discretized problems we shall prefer the extended finite element method (XFEM),
working with the adaptive enrichment of the set of base functions near geometric sin-
gularities. This method, including numerous modifications with their special names
and specific notations, as generalized finite element method (GFEM) or partition of
unity method (PoUM), has its own rich history; the progress in several decades can
be traced from the comparison of pioneering works [2], [3] and [19] with the later
monograph [31] and the recent articles [37] and [56].

However, we shall pay attention namely to the convergence properties independent
of the choice of XFEM adaptive strategies, as discussed by [29].

2. PHYSICAL AND MATHEMATICAL PRELIMINARIES

For our first model problem, let us consider a domain 2 in the 3-dimensional Eu-
clidean space R3, whose exterior Lipschitz boundary 9¢) consists of 2 disjoint parts ©
(for homogeneous Dirichlet boundary conditions) and T" (for non-homogeneous Neu-
mann boundary conditions), © having a non-zero measure on 92 (to avoid insuffi-
cient support). Let R? be supplied by a Cartesian coordinate system x = (1, 22, x3).
Moreover we shall work with the time ¢ € I from an interval I = [0,7] with some



final time value 7', assumed as finite here. For the brevity of notation we shall work
with the Hamilton operator V = (9/0z1,0/0x2,0/0x3) and with upper dots instead
of 9/8t. Moreover any comma followed by k € {1,2,3} will be seen as 9/9x ap-
plied to the preceding variable: e.g. 2¢;;(v) = v;; + vj,; with 4,5 € {1,2,3} can
be understood as the definition of linearized strain, applicable to any differentiable
virtual displacement v(z) = (v1(x), va(z),v3(x)), related to an initial configuration.
The Einstein summation rule for indices 4, j, k,1 € {1,2,3} will be active, too.

The introduction of Lebesgue, Sobolev and Bochner spaces of functions on 2 and
09 and abstract functions mapping I to them is compatible with [50]. To present our
approach as simple as possible now, we shall work namely with the special Hilbert
spaces H = L3(Q)3, Z = L*(00)3, Zr = L*(T)3 and V = {v € WH2(Q)3: v =
O on O}, supplied with norms denoted by |.| both in H and H x H, |.|r in Zr and
I .|l in V, as well as with scalar products (.,.) both in H and H x H, together with
{.,.)r in Zp; O means the zero vector from R3 here. Slight natural generalizations
(which may bring technical difficulties in proofs), motivated by much more detailed
references from [50], are left to the curious reader. We shall also utilize upper star
symbols for dual spaces, C for continuous embeddings, € for compact embeddings,
= for the identification of a space with its dual in the sense of the Riesz representation
theorem.

The following properties of the above introduced spaces (for all notations see [50]
again) will be needed:

Lemma 2.1 (Sobolev embedding). V' € H. Consequently: from any weakly
convergent sequence in V a strongly convergent subsequence in H can be selected.

Proof. See [50], p. 16, and [13], p. 40. a

Lemma 2.2 (trace operator). V € Z; |[v|2 < %||v||? for any v € V with a positive
¥ independent of v. Consequently: from any weakly convergent sequence in V a
strongly convergent subsequence in Z can be selected.

Proof. See [50], p. 17, and [13], p. 275. |

Lemma 2.3 (Korn). There holds |e(v)|? > &]|v||? for any v € V with a positive
£ independent of v. Consequently: to the standard norm |[v||*> = |v]? + |Vv|? an
alternative norm is generated by |e(v)|? in V.

Proof. For the inequality see [50], p.22. The consequence follows from the obvious
estimate, referring to linear elasticity, &||v|? < |e(v)]? = (vij +v;i)(vij + v5.4)/4 <
vivig = [Vol? < [lof|*. O



Lemma 2.4 (Eberlein- Shmul’yan). All spaces H, V, L*(I,H) and L*(I,V) are
reflexive. Consequently: from any bounded sequence in such space a weakly conver-
gent subsequence can be selected.

Proof. For H and V see [50], p.15. L%(I, H) can be interpreted as L?(2 x I) with
the quite similar result. For the details on duality pairing L?(I,V)* = L?(I,V*) see
[50], p.201. For the consequence cf. [50], pp.5 and 210, with [13], p. 67. O

Lemma 2.5 (Gelfand triple). In the triple V.C H & H* C V* both inclusions
are dense; WH22(1,V,V*) Cc C(I, H).

Proof. See [50], p.190; W122(I,V,V*) here denotes a Bochner- Sobolev space of
abstract functions from L?(I, V) with time derivatives belonging to L2(I,V*). 0O

Lemma 2.6 (Aubin-Lions). W122(I,V,V*) € L*(I, X) with X € {H, Z}.

Proof. See [50], p. 194. O

3. A MODEL PROBLEM WITH MICRO-CRACKS

Let us introduce a displacement in a deformable body (a priori uknown), occu-
pying the domain Q, u(z,t) = (uy(z,t),us(z,t),us(x,t)), related to the reference
initial configuration (at ¢ = 0), such that the homogeneous Cauchy initial conditions
ui(x,0) = uz(z,0) = ug(z,0) = 0 and @4 (x,0) = uz(z,0) = ug(x,0) = 0 are satisfied
for almost every x € Q. We shall assume that v € V = Wh222([ V,V, V*); thus
u(.,t),u(.,t) € V and u(.,t) € V* for any t € I — cf. (3.22) in the proof of Theorem
3.1, including the identification of particular limits below. Both initial conditions
can be written as

(3.1) u(.,0)=0, 4(.,00)=0 onQ.

Analogous simplified notations will be used for further functions, too. Let us remark
that just the zero-valued w(.,0) and «(.,0) in (3.1), referring to certain stationary
initial status, are considered in numerous engineering applications; if needed, the
following considerations can be repeated for a non-homogeneous form of (3.1) without
substantial difficulties.

For an arbitrary v € V the energy conservation for our model problem can be
presented as

(3.2) (v, pit) + B(v, pu) + a(e(v),6) + (e(v),(1 —=D)0o) = (v, f) + (v,g9)r on I

where p € L>°(Q) is the material density and o € L2(I, L?(Q)3%3) refers to all stress

sym

components. Its symmetry comes from the assumptions on Boltzmann continuum;



for much more general considerations of this type, including constitutive laws, cf.
[4], p.18. The energy dissipation in (3.2), driven by the prescribed body forces
f € L*(I, H) and surface forces g € L*(I, Z}), is taken into account using the positive
damping factors « for structural damping due to the parallel Kelvin viscoelastic
model, and the real non-negative factor 8 for mass damping, compatible with the
Rayleigh damping model by [43]. We shall assume that p > po on € for some positive
constant pg. Finally © can be presented as some local damage factor with values
between 0 and 1 — ¢, using an additional positive constant ¢; ©® = 0 holds always
for ¢ = 0 (no micro-cracking is present). This factor should depend on o, or e(u)
directly, non-increasing in time ¢ € I, which can be guaranteed by its evaluation in
the form

(33 D(u)(t) = max D. (u(6)

etc., for particular t € I. Its practical design, namely the form of the continuous map-
ping D, from V to L*>(Q), based on the nonlocal Eringen theory, will be discussed
later.

Let us notice that the strong formulation corresponding to (3.2) can be derived, at
least in the sense of distributions, from integration by parts. Following the approach
of [58] (where the quasi-static case is discussed in all details), for each i (respecting
the brief notation o5 ; forcing divergence do;;/0x;, etc.) we receive

(34) p(uz + ﬁuz) — 04,5 = f,' on () x I,
0V = gi OIlFXI7

u; =0 on©Ox]T

where v = (v1,v9,r3) means the local unit normal vector associated with I'". In
addition to the 1st evolution equation of (3.4), referring to the classical Cauchy
equilibrium condition, we can see both an explicit Neumann boundary condition in
the 2nd equation and a Dirichlet one in the 3rd equation.

The local stress-strain relation can be taken in the simple form

(3.5) o= (1-9)Ce(u) + aCe(1)

with C' € L“(Q)(S?;fng)x(sxg), containing (in general) 21 material parameters, C(z)
being positive definite in the sense Cjri(z)a;jar > Coasja;j, involving some positive
constant Cy. In particular, for an isotropic homogeneous medium, setting o = 0
formally (the needed generalization with « > 0 is straightforward) and zero-valued
D (no damage occurs yet), using the Kronecker symbol ¢;; = 1 for i = j, 0 otherwise,



we have 0;; = 2X1g;;(u) + A20;jexk,(u) with only 2 positive Lamé factors A; and Ag;
frequently they are expressed as A1 = pE/(1+p)/(1-2p), 2Xe = E/(1+p), utilizing
the well-known Young modulus F and the Poisson ratio u; such characteristics will
be referenced e. g. from Section 5.

Inserting (3.5) into (3.2), taking (3.3) into account (without explicit highlighting),
we obtain

(3.6) (v, pii) + B(v, pti) + a(e(v), Ce(w))
+ (e(v), (1 =) Ce(u)) = (v, f) + (v, 9)r onI.

Let I be divided into a finite number m of subsets I;* = {t € I: (s — 1)7 <t < s7}
where s € {1,...,m}, with the final aim m — oo; 7(m) = T/m is considered
(the argument m will be omitted formally). We are able to work with the Clément
quasi-interpolation f™ of f in L?(I,H) and g™ of g in L?(I, Zr), assuming t € I,
se{l,...,m}, i.e. f(t) = f7 and g™ (¢t) = g where

1 ST 1 ST
Y A LCE e IOTE

This yields

m . l m ST ) ,
(37) oM=L s@aer < s ag

s—1 (s—1)T

= N s@ad < ok dc,

s—1 (s—1)T

which will be needed later, cf. (3.17).

For any unknown u™, introducing the differences Dul* = ul* — u7*, with s €
{1,...,m}, taking u§* = O and Du{* = O formally, due to (3.1), we can set some
linear Lagrange splines
t—(s— 1)1
—

(3.8) u™(t) =ult, + Dul?

and standard and retarded simple functions

(3.9 am(t) =uy, u™(t) =uit,

s

for t € I'™. Let us recall that «™(¢t) and @™(t) for m € {1,2,...} by (3.8) and
(3.9) are just 2 classical sequences of Rothe, as introduced in [49]. To handle the 1st
additive term of (3.6) properly, we need also certain quadratic interpolation

(t=(s=D71)% 2 m
272 D

t—(s—1)7

3.10 Uum(t) =ul"
( ) ( ) Ugs—_1 + o

(Dug' + Dug" ) +



where D?u™ = Du™—Du™ ;. Thus we are able to rewrite (3.6) in its time-discretized

form

(3.11) (0, pU™) + B(v, pi™) + a(e(v), Ce(@™))
+ (e(0), (1 =D™) Ce(@™)) = (v, ™) + (v,9™)r

where ©™ refers to the evaluation of © with @™, instead of u by (3.6); this is a
simple function with certain values ul* ;, denoted ®7 ; for brevity, cf. (3.12). For
any step-by-step evaluation with s € {1,...,m}, taking ¢t € I only, (3.11) gets the
form

L (0, p0%u) + L (0, pDur) + £ (2(v), Ce(Du))
T T T

+ (e(v), (1 =9Ly) Ce(u)) = (v, ") + (v, 9")r

(3.12)

The following theorem guarantees the solvability of (3.6) assuming (3.1), utilizing
the computational construction of sequences by (3.12).

Theorem 3.1. Let us consider a damage factor by (3.3). There exist a solution
u € V satisfying (3.6) for any v € V together with the Cauchy initial condition (3.1).
Moreover u, 4 € C(I,H) and, up to subsequences,

(3.13) {U™}>°_,  converges weakly to ii in L*(I,V*),
{a™}°_,  converges weakly to w in L*(I,V),
{a™ (1)} m=
{a™(t)}o_,  converges weakly to w inV for anyt eI,
{a™ ()}

{a™(t)}oo_y  converges strongly to u in H for any t € I,

converges weakly to 4 in H for any t € I,
converges weakly to w inV for anyt € I,

{U™}_,  converges strongly to @ in L*(I, H),

using the sequences {u™}>°_, {a™}o0_,, {a™}°_, and {U™}S0_,, induced by (3.8),
(3.9) and (3.10), for the time-discretization scheme (3.11).

Proof. Let us choose v = Du?" in (3.12), with the aim to derive some a priori bounds

for the above introduced sequences generated by U™, u™, a™ and @™ with integer

m. We receive

«
(D pD*u7) + D (Dug, pou) + & ((Dug), Co(Du))

(e(Dug), (1 =Dy) Ce(u)) = (Duf, £§) + (Du, g )r

1
(3.14) =
_|_



The same results remain true with arbitrary r € {1,..., s}, instead of s. Using the
obvious relation 2a(a — b) = a® — b? + (a — b)?, valid for any real a and b, the sum
of all equations (3.14), understanding r, as well as p € {1,...,s — 1} (needed in
the following 6Gth left-hand-side additive term exclusively), as Einstein summation
indices, is then

1 m m 1 m m
(3.15) T(Dus , pDu) + TTg(Dzur , pD*u])

3
DN

+ 2wz, ppup) + L e(Dup), = (Duy)
(), (1= D7) O=(u)) + g (), (D — Dy )e(uy))
+ 5 (DU, (1= D )C(Dur)) = (Duf', £7) + (Dl g7

All left-hand-side additive term are non-negative, namely the 6th one thanks to (3.3),
thus the 2nd, 3rd and 6th ones can be bounded by zero from below. The more precise
estimates for the 1st, 4th and 5th terms, applying Lemma 2.3 to the 4th and 5th

ones, are

1 Po 2
1 —(Du™, pDu"") > —|Du"
(3.10 S (Duz o) = L% Du?
CoR
® c(up), c=(Dup)) > s, pu 2,
). (- o)) = SR .

Using the Cauchy - Schwarz and the Young inequalities, the 1st and 2nd rigth-hand-
side terms of (3.14) then admit the estimates

€ T
(3.17) (Dup, f7) < (DU < o= | Duy [P+ o0, £
2T 2¢
€ T
< 757“7" D ™2 75r7‘ m2,
< o Dur 4 L 1f7
€ T
Du™. g™ < |Du™ m <76erm2 767% m |2
< Up s Gy >F = | Uy |F|g7‘ |F = o | Uy |F+ % |gr |F
€T m T m
< 5Ol D[P+ 58l I
T 2¢

where € is an arbitrary positive constant; the constant ¥ in the last inequality comes
from Lemma 2.2. Comparing (3.16) and (3.17) with respect to (3.7), we obtain

1 1
(3.18) =5 DU + =0 | Duy || + fJus|® < ¢
T T



where ¢ is some positive constant independent of 7 (as well as of m, s, etc.). The
evident consequences of (3.18) are

(3.19) {a™}°_, is bounded in L*(I,V),
{a™(t)}o°_; is bounded in H for any t € I,
{a™(t)}o>_, is bounded in V for any t € I,
{a™(t)}oo_, is bounded in V for any ¢t € I,

Moreover, from (3.11), converted to the form

(3.20) (v,pU™) = — B(v, pi™) — a(e(v), Ce(@™))
— (e(v), (1 =D™) Ce(@™)) + (v, f™) + (v,9™)r,

we are able to derive an additional estimate for U ™ using the dual space to L?(I,V),
as suggested by [50], p. 205; cf. also the comment to the proof of Lemma 2.4. Taking
]| < 1, (v, pU™) in (3.20) can be bounded from its right-hand side again, using
the Cauchy - Schwarz inequalities and further arguments similarly to (3.17), together
with the knowledge of all results (3.19); thus we have (v, pU™) < ¢ for some positive
constant ¢ and consequently

(3.21) {pU™}>°_, is bounded in L*(I,V*).

Let us notice that (3.21) remains true without the positive multiplier p € L> ().
From (3.21) and (3.19) we can now conclude, following Lemma 2.5, up to subse-
quences,

(3.22) {U™}_,  converges weakly to u” in L*(I,V*),

{a™}>°_,  converges weakly to @ in L2(I,V),

{a™(t)}°_,  converges weakly to v’ in H for any t € I,
{a™(t)},o_; converges weakly to @ in V for any t € I,
{a™(t)}oo_,  converges weakly to @ in V for any t € I,

{a™(t)}oo_;  converges strongly to % in H for any ¢t € I,

{U™}°_,  converges strongly to u® in L?(I, H),

etc., where v, 4, v/, @ and % are some elements of corresponding spaces; see Lemma
2.6 for the last proposition, too. The strong convergence of {@m}fﬁ:l, seemingly as
in that for {@™(¢)}5°_; in the 6th proposition of (3.22), is inherited from the formal
introduction of ® here and will need more detailed analysis.
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In particular, considering ¢ € I, by Lemma 2.6 u®(t) coincides with fot u” (&) d&;
also further limits can be unified. The 2nd and 3rd propositions (3.22) manifest
the weak convergence of the same sequence both to @ and to u’ e.g. in L?*(I, H),
. The obvious estimate maxicy (Ju™(t) — @™ (t)], Ju™(t) — a™(t)|) <
maXee (1. my [Dui'| < y/er, referring to (3.18), implies u = % = % and @ = u’ where
u(t) = fot u/(£) d¢. Thus it remains to identify « with i only, as the most delicate
task. Let us work with symbols [.] for integration over I for brevity. The following

thus &« = u

integration by parts, inspired by [50], p. 210, can be helpful:

(3.23) [(w, )] = Yim [(w,0™)] = ~ lim_[(e,U™)]
= — Tim [(i, 0" —i™)] ~ lim [(s, ™)
= — Tim [(w, 0" —i™)] — [(ub, @)

is valid for each w from the space of distributions C§°(I). Moreover for arbitrary

telI™ se{l,...,m}, we can write
rm < m t_(S_l)T m 1 m m 1 m
(324) U — U = #DQUS + ?(DUS + Dusfl) — ;DUS
t— (S_ 1)T 2. m 1 m m
= TD Ug —+ E(Dus_l 7D'LLS )
t—(s—1/2 ..
— (S _ / )TDQ’U,T:(t—(S—l/Q)T)Um.
T

Let us remind that 0 < ¢ — (s — 1/2)7 < 7/2 here. Thus, inserting (3.24) into the
result of (3.23), the limit in its 1st additive term vanishes, whereas the 2nd additive
term is sufficient to identify «” with i, etc., as explained by Buncure [7], p.49. Thus
the modified form of (3.22) is just (3.13); also the convergence of {D™}°_, can work
with u. This enables the limit passage from (3.11) to (3.6) finally; u, % € C(I, H)
follows from Lemma 2.5. O

Let us recall that the crucial step for the design of a model with micro-cracks is the
reasonable choice of the damage factor ®. Here we shall demonstrate how to express
it as an appropriate function of o, with certain regularizing properties. This can be
done using some kernel (typically radial basis or similar) operator K € L?(Q2 x ),
introduced as

(3.25) A(w(z)) = / K(z,z)w(z)dz
Q
for z € Q and w € H by [17]. From the mathematical point of view, such nonlocal

approach to engineering mechanics relies on the properties of compact linear oper-
ators, discussed in [13], Part 2.2, in details; for its computational implementation
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cf. [5] and [39], The following regularization (compactness) property of the kernel
K, taken from L?(Q x ), is useful: if {w"}2°, is some sequence converging weakly
to w in H then, taking @ = A(w) and Wk = A(w*), up to a subsequence, {@*}2°,
converges strongly to w in H. Two different ways of verification of this result can be
found in [13], pp. 80 and 81.

The needed generalization, introduced by [20], for w € L*(Q)3%3, or that for
w € H, referring to principal stresses by [23], Part 1.5, is straightforward. Namely
[34] works with K (z, %) = K(|x—2|3) where | . |3 means the norm in R? and K(|z—7|3)
is obtained using Green functions of a special bi-Helmholtz equation; for certain class
of brittle fracture this can be traced up to atomistic considerations, working with dis-
location and disclination defects. However, for more complicated material structures
such transparent theory is not available; e.g. for practical computational simula-
tions of behaviour of fibre-reinforced concrete structures under mechanical loads [12]
recommends the “generalized Mazars model” with several heuristic parameters, re-
specting anisotropy together with different behaviour under tension and pressure like
[28] and [24], inspired by [44], [45] and [21].

Thus we are ready, using o from (3.5), for any fixed time £ € I, to derive (at least
theoretically) all nonlocal stress values

(3.26) (&) = Ao (),

belonging to L?(0)3X3. Thanks to (3.26), it remains only to set

(3.27) 9. (u(§)) = w(lo(§)lsx3) ,

taking w as some real continuous non-decreasing function (containing some additional
experimentally validated parameters typically) for the right-hand side of (3.3); | . |3x3
here means the norm in R3*3. Clearly the resulting damage factor D, obtained from
(3.3) with (3.27), depends on u from (3.2) in a rather complicated way. Nevertheless,
such formulation of (3.3) together with (3.25) enables us to exploit the results on
Nemytyskii mappings by [13], p.134: if some sequence converges weakly to u € V
for a fixed t € I, together with the sequence or corresponding time derivatives con-
verging to u, then, thanks to (3.5), the operator A generates a weakly convergent
sequence to & € H, after the regularization (3.26) the same, up to a subsequence,
converges strongly to & € H, etc. Consequently, thanks to the continuity of w by
(3.27), we are allowed to come to the strong limit of the corresponding sequence
induced by (3.3), which may be helpful to overcome the nonlinearity of our model
problem. However, the design of a sufficiently general class of functions w admitting
all above sketched mathematical considerations and applicable in engineering prac-
tice (regardless of both physical and geometrical linearizations, connected with the
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existence of a positive ¢) cannot be seen as a closed problem; for some particular
examples cf. [28] and [58].

4. IMPLEMENTATION OF MACRO-CRACKS

Instead of one domain {2, as introduced in the Section 3, let us consider a union
of a finite number of adjacent domains, denoted by {2 again, whose boundary 02
consists of 3 parts: of 2 exterior ones, analogical to I' and O, and of a set of internal
interfaces A. Such notion of interfaces can cover both potential locations of macro-
cracks, as well as existing interfaces between particular components of a composite,
e.g. between a cementitious matrix and stiffening fibres in building applications.

For simplicity, let us consider a material specimen occupying an open set = with
its boundary 0= in the 3-dimensional Euclidean space R3, compound from a finite
number of domains 2 with their boundaries 92, in the following sense:

a) The union of closures of all domains € is identical with the closure of the
domain  in R3.

b) Every boundary 0Qy consists of a part belonging to = (external boundary)
and from that non-belonging to = (internal boundary); the 1st one will be
denoted by ¥, the 2nd one by Ay. (Some of them can be empty.) Cohesive
interface conditions will be applied later on Ay.

c) Every boundary part ¥y is the union of its disjoint subsets Oy and I'y.
(Some of them can be empty.) Homogeneous Dirichlet boundary conditions
will be then prescribed on ©« (supported boundary part), unlike Neumann
boundary conditions (inhomogeneous in general) on I'y (unsupported bound-
ary part).

d) The unions of above introduced sets Oy, I'x and Ay are certain sets Q, T’
and A. Similarly the union of all Q4 generates an open set  (i.e. £ without
interior boundaries) with its boundary 0.

We shall also work with the notation dv(z) for the differences of triples of values
v(x) from the neighbour domains Qy; the same notation is applicable to arbitrary
0(z,t), dependent also on t € I, replacing v(z) here.

One can notice that such rather extensive list of assumptions tries to save the
validity of Lemmas 2.1, ..., 2.6, to be able to adopt the proof of Theorem 3.1
without serious difficulties. The potential modification of this approach for another
finite dimension than 3 (namely as 2 in illustrative examples) is left to the patient
reader. Evidently a model problem with macro-cracks could be studied separately;
however, we shall now try to implement macro-cracking to the results of Section 3
directly.
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All notations need certain extensions. Namely we shall utilize also the Hilbert
space Zy = L?(A)?, its norm |. |5 and its scalar product (.,.)s. For the analysis
of potential opening and further behaviour of cracks let us consider such surface
tractions 7 € L2(I, Z,) that

(4.1) T = \ou)

on A x I; possible forms of a just introduced function A can be found in [32] and
[33]. Especially A(du) = Ao du with a real constant A\g — oo forces du — O on A, i.e.
the continuity of u without no active macro-cracking. In general we shall assume the
Lipschitz continuity of A in the sense

(4.2) IAG0)]a < Au|ov]a

for any v € V and a positive \,. For certain finite N independent of v from (4.2) we
have:

(4.3) |6v|a < NVE|v], IA(60)|a < MNVE||v| .

The existence of N comes from b), d) above: traces by the analogy of Lemma 2.2
are related to any Q0 at most N-times, from corresponding cohesive boundary parts
A . In the proof of Theorem 4.1 below we are allowed to take only ¥ instead of N2%T
formally, without any loss of generality.

Thus we obtain the slight modification of (3.2)

(44) (v, pit) + B(v, pit) + a(e(v),6) + (e(v), (1 — D) o)
= (v, f)+ (v,g)r + (6v,T)a onl.

Inserting (4.1) into (4.4), we receive the analogy of (3.2)

(4.5) (v, pit) + B(v, pir) + a(e(v),0) + (e(v), (1 —D) o)
= (v, f) + (v, )1 + (Jv, \(Su))a on I.

In most following equations, unlike (4.4) extending (3.2) and (4.5) extending (3.6),
we shall discuss only additional rigth-hand-side terms for brevity. In particular, this
means (6v, A(J2™))a, in (3.11), (v, A(0uT* 1))a in (3.12); no improved linearization
will be considered, although the evaluation of A(.) is typically less complicated as
that of ©(.). Such approach will be useful in the proof of the following theorem, too.
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Theorem 4.1. Let us consider a damage factor by (3.3) and a cohesive inter-
face by (4.1), (4.2). There exist a solution u € V satisfying (4.5) for any v € V
together with the Cauchy initial condition (3.1). Moreover u,u € C(I,H) and, up
to subsequences, (3.13) remains valid.

Proof. All common ideas are the same as in the proof of Theorem 3.1. The above
announced additional terms are (§Du", A(dul" 1)) A in (3.14) and (§Du!™, A(dul™ 1)) a
in (3.15) (involving the sum over r € {1,...,s}). The extension of (3.17), making
use of (4.3), reads

(4.6) (8Du MFuy)a < [8Duplowry[r < =8 SDw [ + 58|50,
T €

X T%
< 761% Du™ 2 767”7” m 2.
e M ] R M

The last rigth-hand-side additive term of (4.6) causes the modification of (3.18)
1 m|2 1 m||2 2 2
(4.7) 3| Dud 7+ 0 [ Du |7+ Jlus[” < e+ eroprun”

However, the 2nd right-hand-side additive term can be removed from (4.7), using the
Gronwall lemma by [13], p.99; its simple discrete version from [9] is sufficient here.
Thus we come back to (3.18), with some larger value of ¢. All remaining steps can be
then performed following the proof of Theorem 4.1 with obvious modifications. [J

5. COMPUTATIONAL STRATEGY WITH ILLUSTRATIVE EXAMPLES

The computational scheme (3.12) by Section 3, including its extension by Section 4,
for the evaluation of u?*, s € {1,...,m} refers to the numerical analysis of m elliptic
problems of infinite dimension. In practical calculations, instead of v in (3.12) from
an infinite-dimensional space V', we consider a finite number n of test functions ¢
where ¢ € {1,...,n} refers to a new Einstein summation index; the approximation
of u from (3.12) with n unknown parameters can be then constructed as
(5.1) ug' (z) = ui" o} (x)
for any z from  or its suitable approximation. Consequently, step-by-step with
se€{l,...,m}, by (3.12) and (5.1) we choose ¢} as particular elements from a basis
of certain finite-dimensional space V", approximating V (which can be a subspace
of V in a special case).

Typically ¢}' are functions with small compact support, applicable in 2, as well as
on O, I and A, or their approximations, to create a sparse system of linear algebraic

nm
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equations, and uY" refer to nodal displacement values. The guarantee of solvability
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of such system, together with the convergence properties for n — oo, depend on
certain (semi-)regularity of such decomposition due to the XFEM-based adaptive
enrichment functions, namely near geometric singularities. Here we shall apply the
approach of [29] to demonstrate the possibility of effective numerical simulations.

FIGURE 1. Principal stresses in the pure cement paste.

As an illustrative 2-dimensional example, the test task is a relatively simple body
with an a priori crack of a circular shape (fulfilling the plane strain condition). A
uniform load was applied to the surface of this a priori crack, and thus the formation
of the following cracks emanating from this stress concentrator is assumed using

FIGURE 2. Principal stresses near 1 or 2 stiffening fibres.
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F1GUrE 3. Nonlocal handling of stress near the crack tip.

XFEM. The basic calculation system was the commercial software Abaqus 2018,
into which a user subroutine in the Fortran 90 language was implemented, realizing
the modelling of matrix damage using exponential law, based on the planar element
CPEA4. The following basic input data corresponding to reinforced cement paste were
used for this task: the Young modulus F = 3.2 GPa, the Poisson constant y = 0.3
and the tensile strength 10 MPa — cf. the discussion under (3.5) on some special
structures of C. For approximately 20 mm long and 3 mm thick circular steel fibres,
the Young modulus E = 190 GPa and the same Poisson constant p = 0.3 were used.

All figures show some typical distribution of principal stresses under plain strain
conditions. Figure 1 shows the distribution for quasi-static loads in certain repre-
sentative time for the pure cement paste. In the initial period, four germs of initial
cracks are formed evenly distributed along the circular initiator. The germs closer
to the plane of symmetry are running first as expected. Directions that are not
blocked by the fibres will run. Figure 2 presents the comparable result near 1 or
2 stiffening fibres, where reinforcing metal fibres are introduced into the structure.
The influence of fibre blocking and their orientation is clear. Directions that are not
blocked by the fibres will run. Figure 3 demonstrates the non-local handling of stress
near the crack tip. Its left part attempts to illustrate the algorithm used to calcu-
late the stress concentrators in front of the crack tip. This picture has a schematic
character, indicates how the stresses are calculated with the help of a non-local ap-
proach. The question is from which distance from the crack front it is appropriate
to calculate the stress distribution ahead the crack tip. Figure 4 reflects the Mazars
model, evaluating the stress by certain exponential formula (cf. [44] and [21]). The
former Mazars model has gaps in the modelling of the behaviour of concrete during
loading; the new formulation was proposed to improve behaviour in bi-compression

17



and shearing. It was reached by introduction of one new internal variable into the
classical Mazars model. It corresponds to the maximum of equivalent deformation
reached during loading. The damage factor is dependent on the stress concentra-
tion in front of the local crack, therefore the real stress value is essential for the
prediction of the crack growth, especially the non-local approach can give credible
direction of damage. Figure 5 tries to implement some homogenized material struc-
ture with “smeared cracks”, inspired by [28], where reinforcement has the influence
to the whole structure. XFEM approach reflects the increasing strength of structure.

FIGURE 4. Application of Mazars model.

F1GURE 5. Application of crack homogenization.

6. SOME MODIFICATIONS AND GENERALIZATIONS

Numerous computational tools in fracture mechanics ignore the first couple of
additional terms in (3.2), which switches to a quasi-static problem where the time
evolution of damage relies on the 3rd additive term; even in our illustrative examples
the 1st and 2nd terms are not dominant. Clearly the 2nd condition (3.1) is not appli-
cable. Some estimates from Sections 3 and 4 degenerate, namely the 1st inequality
(3.16) to 0 = 0. Thus less regular results in comparison with the above discussed
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dynamic case can be expected and their derivation cannot be repeated quite easily.
The remedy is to seek for u € W122(I,V,V*), instead of u € WH222([, V,V,V*);
all details of such approach can be found in [58].

Other seemingly useful generalization ideas can rely on the removal of too strict
assumptions, e.g. that on the Lipschitz boundary for Lemmas 2.1, ... 2.6, thus also
for Theorems 3.1, 4.1. Indeed, results like [26] (on Sobolev embeddinng on arbitrary
domains), [7] (on improved trace operators), etc. offer this way. However, we have
ignored it here, at least from three reasons: i) the original version of this paper,
prepared for the (rarely physical) discussion at the seminar PANM (Programs and
Algorithms of Numerical Mathematics) in Hejnice (Czech Republic) in June 2020
was intended to be as reader-friendly as possible, ii) numerous technical difficulties
in proofs have to be overcome, often those occurring in practical modelling and
simulation software tools exceptionally, iii) such generalizations do not handle more
significant limitations of our approach: iii-1) the nonlocal damage factor implemented
into certain linearized model, working with small strains and linearized empirical
constitutive (strain-stress) relations in the case of micro-cracking, iii-2) the careful
description of geometrical properties of 2, A, etc., admitting the macroscopic cracks
only at a finite number of prescribed interfaces. Because of iii-1) we are not able to
detect a total loss of stiffness in some part of Q2 properly, whereas iii-2) may not cover
some practical XFEM techniques correctly. Certain inspiration for a future (much
more complicated) proper finite-strain formulation can be found in [40], Part 4.2.4,
in confrontation with [11] and [35], together with the scale-bridging using structured
deformation, following [10], [42] and [52].

7. CONCLUSION

We have demonstrated the possibility of simultaneous deterministic study of dy-
namics of micro- and macro-cracking in quasi-brittle composites, using the stan-
dard linearized viscoelastic model with two nonlinear terms, covering i) the nonlocal
evaluation of damage factor ® for micro-cracking and ii) the cohesive behaviour of
macroscopis cracks. Some unclosed problems occur even in such linearized theory,
namely in the physically and mathematically proper interpretation of ®, ad hoc
implemented in available software packages.

The limitations of the presented approach, sketched in the preceding section, can
be seen as motivations for continuing research in the near future. Its possible aim of
high practical importance can be the development, verification and validation of the
computational tool for prediction of quasi-brittle behaviour of structural components
from fibre reinforced composites under mechanical loads, with methodology based on
the physical model incorporating most significant physical processes, namely elastic
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and plastic deformation, crack initiation and propagation in a matrix and alternative

debonding and rupture of fibres.

(1]
2]

7]

(8]

(9
[10]
(11]
[12]
13]
(14]
(15]
[16]

[17)
(18]

(19]
[20]
(21]
[22]

23]
24]

[25]

REFERENCES

S. Altan: Existence in nonlocal elasticity. Arch. Mech. 41 (1989), 25-36.

1. Babuska, J. M. Melenk: The partition of unity method. Int. J. Numer. Methods Eng. 40
(1997), 727-758. Zbl 0949.65117, MR1429534.

T. Belytchko, T. Black: Elastic crack growth in finite elements with minimal remeshing. Int.
J. Numer. Methods Eng. 45 (1999), 601-620.

A. Bermidez de Castro: Continuum Thermomechanics. Birkhauser, Basel, 2005.

G. S. Bhatia, G. Arora: Radial basis function methods for solving partial differential equations
— a review. Indian Journal of Science and Technology 9 (2016), #45/1-17.

L. Bouhala, A. Makradi, S. Belouettar, H. Kiefer-Kamal, P. Fréres: Modelling of failure in
long fibres reinforced composites by X-FEM and cohesive zone model. Composites Part B 55
(2013), 352-361.

J. K. Bunkure: Lebegue-Bochner spaces and evolution triples. Int. J. Math. Appl. 7 (2019),
41—52.

A. Cianchi, V. Mazya: Sobolev inequalities in arbitrary domains. Adv. Math. 293 (2016),
644-696. MR4074620.

D. S. Clark: Short proof of a discrete Gronwall inequality. Discrete Appl. Math. 16 (1987),
279-281.

G. Del Piero, D. R. Owen:. Structured deformations of continua. Arch. Rat. Mech. Anal. 124
(1993), 99-155.

G. Dal Maso, G. Lazzaroni: Crack growth with non-interpenetration: a simplified proof for
the pure Neumann problem. Discrete Contin. Dyn. Syst. 31 (2011), 1219-1231.

L. Dlouhy, S. Pouillon: Application of the design code for steel fibre-reinforced concrete into
finite element software. Beton 116 (2020), 8-13.

P. Drdbek, J. Milota: Methods of Nonlinear Analysis — Applications to Differential Equations.
Birkhauser, Basel, 2013. Zbl 1264.35001, MR3025694.

J. Elids, M. Vorechovsky, J. Skocek, Z. P. BaZant: Stochastic discrete meso-scale simulations
of concrete fracture: comparison to experimental data. Eng. Fract. Mech. 135 (2015), 1-16.
E. Emmrich, D. Puhst: Measure-valued, weak solutions to the nonlinear peridynamic model
in nonlocal elastodynamics. Nonlinearity 28 (2015), #285/1-25.

A. C. Eringen: Theory of Nonlocal Elasticity and Some Applications. Princeton University
Press, 1984, technical report 64.

A. C. Eringen: Nonlocal Continuum Field Theories. Springer, New York, 2002. Zbl 1023.74003.
A. Evgrafov, J. C. Belido: From nonlocal Eringen’s model to fractional elasticity. Mathematics
and Mechanics of Solids 24 (2019), 1935-1953. Zbl 1425.74093.

T.-P. Fries, T. Belytschko: The intrinsic XFEM: a method for arbitrary discontinuities without
additional unknowns. Int. J. Numer. Methods Eng. 68 (2006), 1358-1385.

Z. Gao, L. Zhang, W. Yu: A nonlocal continuum damage model for brittle fracture. Eng.
Fract. Mech. 189 (2018), 481-500.

C. Giry, F. Dufour, J. Mazars: Stress-based nonlocal damage model. Int. J. Solids and Struct.
48 (2011), 3431-3443.

S. Grija, D. Shanthini, S. Abinaya: A review of fibre reinforced concrete. International Journal
of Civil Engineering and Technology 7 (2016), 386-392.

K. Hashiguchi: Elastoplasticity Theory. Springer, Berlin, 2014.

P. Havlasek, P. Grassl, M. Jirdsek: Analysis of size effect on strength of quasi-brittle materials
using integral-type nonlocal models. Eng. Fract. Mech. 157 (2016), 72-85.

A. Hoekstra: Design methodologies for steel-fibre-reinforced concrete and a new methodology
for a real time quality control. Beton 116 (2020), 44-49.

20



[26]
27)

(28]

[29]
[30]
[31]
[32]
(3]
[34]
[35]
[36]
[37]
[38]
[39]

[40]
[41]

42]

[43]
[44]

[45]

[46]
(47)
(48]
[49]

[50]

C. O. Horgan: Eigenvalue estimates and the trace theorem. J. Math. Anal. Appl. 69 (1979),
231-242.

A. Javili, R. Mosarata, E. Oterkus: Peridynamics review. Math. Mech. Solids 24 (2019),
3714-3739. MR4000179.

M. Jirdsek: Damage and smeared crack models, in: Numerical Modeling of Concrete Cracking
(G. Hofstetter, G. Meschke, eds.). Springer: CISM International Centre for Mechanical Sciences
532, Udine, 2011, 1-49.

M. Kaliske, H. Dal, R. Fleischhauer, C. Jenkel, C. Netzker: Characterization of fracture
processes by continuum and discrete modelling. Comput. Mech. 50 (2012), 303-320.

P. Kawde, A. Warudkar: Steel fibre reinforced concrete: a review. International Journal of
Engineering Sciences and Research Technology 6 (2017), 130-133.

A. R. Khoei: Extended Finite Element Method: Theory and Applications. J. Wiley & Sons,
New York, 2015.

V. Kozak, Z. Chlup: Modelling of fibre-matrix interface of brittle matrix long fibre composite
by application of cohesive zone method. Key Engineering Materials 465 (2011), 231-234.

V. Kozdk, Z. Chlup, P. Padélek, I. Dlouhy: Prediction of the traction separation law of
ceramics using iterative finite element modelling. Solid State Phenomena 258 (2017), 186-189.
M. Lazar, G.A. Maugin, E. C. Aifantis: On a theory of nonlocal elasticity of bi-Helmholtz
type and some applications. Int. J. Solids and Struct. 43 (2006), 1404-1421.

G. Lazzaroni: Quasistatic crack growth in finite elasticity with Lipschitz data. Ann. Mat. Pura
Appl. 190 (2011), 165-194.

X. Li, J. Chen: An extensive cohesive damage model for simulation arbitrary damage propa-
gation in engineering materials. Comput. Methods Appl. Mech. Eng. 315 (2017), 744-759.
X. Li, W. Gao, W. Liu: A mesh objective continuum damage model for quasi-brittle crack
modelling and finite element implementation. Int. J. Damage Mech. 28 (2019), 1299-1322.

R. W. Macek, S. A. Silling: Peridynamics via finite element analysis. Finite Elem. Anal. Des.
43 (2007), 1169-1178.

Z. Majdisovd, V. Skala: Radial basis function approximations: comparison and applications.
Appl. Math. Modell. 51 (2017), 728-743. Zbl 07166287, MR3694560.

A. Mielke, T. Roubi¢ek: Rate-Independent Systems. Springer, New York, 2015.

M. Moradi, A. R. Begherieh, M. R. Esfahani: Constitutive modeling of steel fiber-reinforced
concrete. Int. J. Damage Mech. 29 (2020), 388-412.

M. Morandotti: Structured deformation of continua: theory and applications. Mathematical
Analysis of Continuum Mechanics and Industrial Applications II — Proceedings of CoMFoS16
(Continuum Mechanics Focusing on Singularities) in Kyushu (2016), Springer, Singapore, 2018,
125-136.

N. Nakamura: Extended Rayleigh damping model. Frontiers in Built Environment 2 (2016),
#14/1-13.

R. H. J. Peerlings, R. de Borst, W, A. M. Brekelmans, M. Geers: Gradient enhanced damage
modelling of concrete fracture. Int. J. Numer. Anal. Methods Geomech. 3 (1998), 323-342.
G. Pijaudier-Cabot, J. Mazars, Damage models for concrete, in: Lemaitre Handbook of Ma-
terials Behavior Models (J. Lemaitre, ed.), Section 6.13, 500-512. Academic Press, London,
2001.

M. G. Pike, C. Oskay: XFEM modeling of short micro-fiber reinforced composites with cohesive
interfaces. Finite Elem. Anal. Des. 106 (2005), 16-31.

Yu. Z. Povstenko: The nonlocal theory of elasticity and its application to the description of
defects in solid bodies. Journal of Mathematical Sciences 97 (1999), 3840-3845.

P. Ray: Statistical physics perspective of fracture in brittle and quasi-brittle materials. Phil.
Trans. R. Soc. A 377 (2019), #20170396/1-13.

K. Rektorys: The Method of Discretization in Time and Partial Differential Equations. D. Rei-
del, Dordrecht, 1982. Zbl 0505.65029, MR0689712.

T. Roubicek: Nonlinear Partial Differential Equations with Applications. Birkhduser, Basel,
2005. Zbl 1087.35002, MR2176645.

21



[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

T. Roubic¢ek: Thermodynamics of rate-independent processes in viscous solids at small strains.
SIAM J. Math. Anal. 42 (2010), 256-297. Birkh&user, Basel, 2005. Zbl 1213.35279, MR2596554.
M. Silhavy: The general form of the relaxation of a purely interfacial energy for struc-
tured deformations. Mathematics and Mechanics of Complex Systems 5 (2017), 191-215. Zbl
1447.49026, MR3669123.

X.T. Su, Z.J. Yang, G.H. Liu: Monte Carlo simulation of complex cohesive fracture in
random heterogeneous quasi-brittle materials: a 3D study. Int. J. Solids Struct. 47 (2010),
2336-2345. Zbl 1194.74313.

Y. Sumi: Mathematical and Computational Analyses of Cracking Formation. Springer, Tokyo,
2014.

E. Svenning, F. Larsson, M. Fagerstrém: A two-scale modeling framework for strain local-
ization in solids: XFEM procedures and computational aspects. Comput. Struct. 219 (2019),
43-54. Zbl 1386.74129.

R. F. Swati, L. H. Wen, H. Elahi, A. A. Khan, S. Shad: Extended finite element method
(XFEM) analysis of fiber reinforced composites for prediction of micro-crack propagation and
delaminations in progressive damage: a review. Microsyst. Technol. 25 (2019), 747-763.

J. Vala: Structure identification of metal fibre reinforced cementitious composites. Algoritmy
— 20th Conference on Scientific Computing in Podbanské (2016), Proceedings, STU Bratislava,
2016, 244-253.

J. Vala, V. Kozdk: Computational analysis of quasi-brittle fracture in fibre reinforced cemen-
titious composites. Theor. Appl. Fract. Mech. 107 (2020), #102486/1-8.

Authors’ addresses: Jiri Vala, Vladislav Kozdk: Brno University of Technology, Faculty
of Civil Engineering, Institute of Mathematics and Descriptive Geometry, Brno, Czech
Republic, e-mail: vala. j@fce.vutbr.cz, kozak.v@fce.vutbr.cz.

22



	vKozak
	Abstrakt
	Obsah
	Úvod
	Teoretické základy
	Použití metody metody konečných prvků na řešení nestandardních úloh
	Historie lokálního přístupu
	Modelování šíření trhliny
	Vláknové kompozity pro stavebnictví a XFEM

	Vlastní výsledky - komentář publikovaných prací
	Přímé aplikace MKP
	Lokální přístup
	GTN model a použití kohezních prvků
	Modelování porušení stavebních kompozitů

	Shrnutí dosažených výsledků
	Literatura
	Publikace autora 1990-2021
	Vybrané články komentované v práci

	PrilohaA
	A1
	A1_new
	A2
	A2_new
	A3
	A3_new
	A4
	A4_theoret
	Scan_A41
	Scan_A42
	Scan_A43
	Scan_A44
	Scan_A45
	Scan_A46
	Scan_A47
	Scan_A48

	A5
	A5_problems
	Scan_A51
	Scan_A52
	Scan_A53
	Scan_A54
	Scan_A55
	Scan_A56
	Scan_A57
	Scan_A58
	Scan_A59
	Scan_A510
	Scan_A511
	Scan_A512
	Scan_A513
	Scan_A514

	A6
	A6_influ
	A61
	A62
	A63
	A64
	A65
	A66
	A67
	A68

	A7
	A7_fat
	A71
	A72
	A73
	A74
	A75
	A76


	prilohaB
	B1
	B4_paper056
	B2
	B3_cmem2001
	B3
	B7_ecf14paper
	B4
	B6_ned2001
	Scan_B1
	Scan_B2
	Scan_B3
	Scan_B4
	Scan_B5
	Scan_B6
	Scan_B7

	B5
	B8_ned2005
	Scan_BB1
	Scan_BB2
	Scan_BB3
	Scan_BB4
	Scan_BB5
	Scan_BB6
	Scan_BB7
	Scan_BB8

	B6
	B1_SSP.258.281
	B7
	B2_new

	PrilohaC
	C1
	C14_MSF.482.335
	C2
	C2_chapter11
	C3
	C15_MSF.567-568.145
	C4
	C12_KEM.465.231
	C5
	C10_a120z2p25
	C6
	C6_new
	C7
	C11_SSP.258.186

	prilohaD
	D1
	D1_AdvanMECHANICS-20
	D2
	D6_WSAS_valahobstkozak
	D3
	D5_new
	D4
	D4_new
	D5
	D7_JVala&VKozakAM21revised2x




