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ABSTRACT
Numerical modeling of horizontal centrifugal casting of rolls forms a central topic of
this work. It is a collection of author’s efforts to simulate the whole casting process
starting with pouring the liquid steel into a rotating cylindrical mould and finishing when
all the liquid becomes solid. The modeling part is preceded by a theoretical part giving
a background in rotating flows. A list of common issues encountered during the casting
process is provided, such as violent vibrations, unexplained microstructural variations
and flow related phenomena. In order to get a more general picture about the process,
the perspective of a research group from the foundry is supplied. In the second part,
several numerical models were presented in the order they were developed. The shallow
water model, also known as a 2.5D model, was suggested to accelerate calculations while
maintaining important features of the casting. Applying it through the Euler-Euler model
in ANSYS FLUENT was substituted by a more efficient and much faster approximate
Riemann solver. As an alternative, on request of the industry partner, a 2D free-surface
model based on full Navier-Stokes equations was assembled and incorporated within the
Graphical User Interface. The thesis is a compilation of the author’s articles on the topic
of horizontal centrifugal casting. It is possible to redevelop the numerical models as well
as to reproduce most of the numerical results thereof.

KEYWORDS
horizontal centrifugal casting; metallurgy; simulation; computational fluid dynamics;
free-surface flow; shallow water equations.

ABSTRAKT
Numerické modelování horizontálního odtředivého lití válců pro válcovací stolice před-
stavuje ústřední téma habilitační práce. Jedná se o sbírku autorova úsilí simulovat celý
proces od prvního kontaktu taveniny s formou po ukončenou fázi tuhnutí. Výpočtovou
část předchází část teoretická, v níž je na obecné úrovni popsáno proudění s vlivem ro-
tace. Dále se zde mluví o problémech, které se běžně při odstředivém lití oceli vyskytují,
např. náhlé vibrace, lokální změny v mikrostruktuře odlévaného materiálu nebo další jevy
související s prouděním. Teoretická část končí kapitolou věnující se dané tématice z po-
hledu průmyslového partnera. V druhé části práce je představeno několik výpočtových
modelů v pořadí, v jakém byly vyvinuty. Model založený na rovnicích mělké vody, též
známý jako 2,5D model, byl navrhnut za účelem snížení výpočtového času oproti běž-
ným komerčním softwarům. Řešení rovnic mělké vody bylo zprvu realizováno důmyslně
s pomocí Euler-Euler modelu uvnitř ANSYS FLUENTu, avšak později bylo vystřídáno
efektivnějším a přesnějším Riemannovým řešičem. Jako alternativa k němu byl na pod-
nět průmyslového partnera dovyvinut 2D model proudění s volnou hladinou založený
na Navier-Stokesových rovnicích, který byl později zahrnut do uživatelsky přívětivého
grafického rozhraní. Práce je kompilací autorových odborných článků na dané téma. Na
jejich základě je možné výpočtové modely a některé z výsledků zopakovat.
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horizontální odstředivé lití; metalurgie; simulace; výpočtové modelování proudění; prou-
dění s volnou hladinou; rovnice mělké vody.
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Introduction
The author of the present work started his scientific path in the field of the Com-
putational Fluid Dynamics (CFD) with modeling of an ejector-type cooling nozzle
back in 2005. In 2006, he joined as a PhD candidate the Heat Transfer and Fluid
Flow Laboratory at BUT BRNO where he further extended his background in CFD,
particularly in modeling of immiscible multiphase flows and heat&mass transfer phe-
nomena. He defended his doctoral thesis entitled "Effect of flow parameters of water
and air atomized sprays on cooling intensity of hot surfaces" after he got a postdoc-
toral position at the Chair of Simulation and Modeling of Metallurgical Processes
at Montanuniversitaet Leoben, Austria in 2011. Therein, he spent several years
in modeling of horizontal centrifugal casting, followed by developing linear solvers
for graphical processing units (GPU) and helping his colleague with a project on
the electro-slag remelting. In 2017, the author returned back at Brno University of
Technology BRNO, where he is involved in several CFD projects about, e.g. thermal
management systems of battery modules for electric vehicles, calculation of pressure
drop of heat exchangers with polymeric hollow fibers, Lattice-Boltzmann calcula-
tions with complex porous media, etc. Apart from that, he gives lectures "Advanced
use of ANSYS FLUENT" for PhD students.

This work is a logical outcome of the author’s research activites at the Chair in
Leoben between years 2010 and 2020. Funded by the Austrian COMET Compe-
tence Centre Programme (K2) and the industry partner, Eisenwerk Sulzau-Werfen,
R. & E. Weinberger AG, simulation and numerical modeling of horizontal centrifugal
casting of rolls for mills was done.

In fact, words "Simulation and Modeling" can have multiple meanings in this
respect. The R&D people from the foundry would probably name a few projects
involving simulation of modeling, however, with totally different topics of interest,
such as:

• simulation of residual stresses in the casting,
• thermodynamic simulations of (new) materials,
• Phase-Field and similar simulations of microstructure,
• macroscopic simulations of flow and heat transfer including solidification.

This work is solely focused on the last topic of a macroscopic simulation of the
whole casting process. Prior to that, various flow phenomena inherent to rotating
flows are highlighted in section 1.1. In the same section, a difference between the
horizontal and vertical centrifugal casting is discussed. The horizontal configuration
is further connected with the field of vibromechanics. Next, in section 1.2 the
topic of solidification is of a central importance. It is described as it was a view
point of someone from the casting community. It is explained why a structure of a
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horizontally centrifuged product is so much different compared to that obtained with
a vertical configuration. Actual problems e.g. related to defects etc. of the horizontal
centrifugal casting are listed. In addition, a sort of comments of the industry partner
are supplemented to inform the reader about his activies in a broader extent.

Section 1 is followed by various modeling efforts of the author in section 2. In
section 2.1, a numerical model of horizontal centrifugal casting is introduced, which
was based on the shallow water equations (SWE) and implemented via the Euler-
Euler model available in ANSYS FLUENT. In 2.2, drawbacks of the preceding efforts
are analysed and circumvented by choosing approximate Riemann solver over the
Euler-Euler model for obtaining more accurate solution of SWE. Despite having a
accurate solution of SWE, which can simulate the whole casting process in literally
three spatial diemnsions in a very reasonable amount of time, it was decided to
develop a full Navier-Stokes model for free-surface flows. The numerical model is
detailed in 2.3. In addition, the section also presents work which was devoted to
formation of a gap between the casting and the mold and consequently the heat
transfer coefficient at the interface. Before concluding the work, section 2.5 briefly
presents a user friendly graphical user interface that was prepared for the industry
partner. Main highlights of the horizontal centrifugal casting projects of the author
are provided in conclusions.
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1 A review on the centrifugal casting
Solidification is of central importance in many natural and industrial processes.
However, coupling of thermodynamics (generally departing from equilibria in ther-
mal and solutal gradients) and fluid dynamics makes the topic of solidification very
complex and challenging. Fortunately, solidification has been in the scope of re-
searchers for about one century and currently available mathematical models can
nowadays quantify most of the principles and phenomena occurring in various time
and length scales [1, 2]. However, there yet exist many vaguely or even not at
all explored topics, which without a doubt deserve more attention. The centrifugal
casting involves a complex interplay between fluid flow and solidification phenomena
which are discussed separately in sections 1.1 and 1.2 respectively.

1.1 Rotating flows
As will be discussed in section 1.2, flow phenomena present in the centrifugal casting
are inherently connected with the physics behind the rotating flows. Therefore, the
following text gives a concise overview of well-studied configurations with liquid
flows subjected to rotations. Prior to that, the governing equations of rotating flow
are introduced.

1.1.1 Equations of motion of non-isothermal rotating flow
Equations of motion of rotating flows can be formulated in inertial (stationary) as
well as non-inertial (rotating) frame of reference. Generally, it is preferred to work
with the rotating frame of reference as the definition of boundary conditions becomes
more convenient.

In the rotating frame of reference, the fluid is exposed to additional body forces
referred to as fictitious forces, also known as d’Alambert forces. The fictitious forces
are the centrifugal force, the Coriolis force, and the Euler force. In the equation of
isothermal fluid motion the forces are conveniently written as acceleration source
terms on the right-hand side of the well-known Navier-Stokes equations, which can
be written as:

∂�u

∂t
+ �u · ∇�u = − 1

ρ0
∇p + ν∇2�u − ∇Φ + �f

− �Ω × (�Ω × �r) − 2�Ω × �u − d�Ω
dt

× �r

(1.1)

Equations of isothermal fluid motion (or the Navier-Stokes equations) are written
for an incompressible Newtonian liquid. The first four terms on the right-hand side
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of Eq. (1.1) represent the gradient of the static pressure (p), the Newtonian viscous
term with the kinematic viscosity (ν), the gradient of the gravitational potential
(Φ), and additional body forces (�f) respectively. When the vector of gravitational
acceleration (�g) is constant in the given reference frame, the gradient of gravitational
potential can be rewritten as �gz, where z is the vertical coordinate.

Often, temperature and concentration gradients changes locally the fluid den-
sity (ρ), which leads to natural convection. Assuming that the density fluctuations,
denoted by ρ′, are small compared to the reference fluid density (ρ0), the Boussi-
nesq approximation can be used [3]. If a term with ρ0 is not a gradient, then it
is the leading-order term, and the corresponding ρ′ term can be neglected. The
opposite holds for the terms with gradients and thus, such ρ′ terms must be kept.
Practically, this means that only −ρ′/ρ0∇Φ and −ρ′/ρ0�Ω × (�Ω × �r) additionally
appear in Eq. (1.1). The resulting momentum equations for non-isothermal rotating
incompressible flow read:

∂�u

∂t
+ �u · ∇�u = − 1

ρ0
∇p + ν∇2�u − ρ′

ρ0
∇Φ + �f

− ρ′

ρ0
�Ω × (�Ω × �r) − 2�Ω × �u − d�Ω

dt
× �r

(1.2)

Details on derivation of the equations of motion of isothermal rotating flow can
be found e.g. in [4]. When the buoyancy is involved due to local density changes,
the equations must be modified, which is carefully discussed in [5]. Therein, the
importance of modifying the advection term by adding ρ′

ρ0
∇(1

2
�u2) to lhs of Eq. (1.2)

was argued. Equation (1.2) becomes

∂�u

∂t
+ �u · ∇�u = − 1

ρ0
∇p + ν∇2�u − ρ′

ρ0
∇Φ + �f

− ρ′

ρ0
�Ω × (�Ω × �r) − 2�Ω × �u − d�Ω

dt
× �r + ρ′

ρ0
∇(1

2
�u2)

(1.3)

There yet exist other approximations in the literature, especially those devoted
to problems of astrophysics such as stellar flows, accretation disks, etc. Among
them, the shearing sheet model and the anelastic aproximation are to be mentioned.
In [5], the author pointed out that the term ρ′

ρ0
∇(1

2
�u2) is considered in neither of the

approximations. The effect of including the term in the momentum equations was
demonstrated on examples with rotating cylinders. Furher, it was stated that the
term plays an important role either when there is global rotation or strong vortices
in the flow.

16



1.1.2 Typical configurations with rotating flows

The topic of the habilitation is the horizontal centrifugal casting. As the process
resembles the flow in a rotating cylinder, the well-known configurations and flow
phenomena in rotating cylinders are worth mentioning.

Laminar Taylor-Couette flow between cylinders

We start discussion with the isothermal Taylor-Couette flow between two cylinders.
Rotating Couette flow is a laminar flow between two vertical rotating cylinders. The
cylinders are close to each other, similar to the configuration shown in Fig. 1.1. The
flow is dominated by viscous effects while the inertial effects are negligible. Until
the critical Taylor number (Tacr) is reached, the flow remains completely azimuthal
and the analytical solution of the Navier-Stokes equations can be found. The Taylor
number (Tam) is defined according to the following formula:

Tam = Ωr0.5
m (b − a)1.5

ν
(1.4)

where rm = (a + b)/2 with a and b being radia of the smaller and larger cylinder
respectively. The solution has a practical use, namely the formula for the torque,
is used in some viscometers to determine the viscosity of a liquid. In Fig. 1.2, the

Fig. 1.1: Taylor-Couette flow between two cylinders.

physics behind the laminar Couette flow between the concentric cylinders is nicely
demonstrated on mixing and unmixing a high viscous liquid with three colored spots.
When performing several rotations in one direction, the colors get smeared. When
the rotations are reversed, the colored spots are recovered. The experiment clearly
confirms that the inertial effects are negligible.
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(a) initial condition (b) after several clockwise ro-
tations (mixing)

(c) after the same number
of rotations however counter-
clockwise (unmixing)

Fig. 1.2: Demonstration of negligible effect of inertia and dominancy of viscous effect
in a Taylor-Couette experiment [6].

Taylor-Couette flow at high Reynolds numbers

When the �Ω is increased, viscous forces and the radial pressure gradient fail to
dampen small flow disturbances and the unidirectional azimuthal flow is replaced
by a secondary flow, which is known as the Rayleigh instability. According to the
stability analysis, the flow is stable if the following condition is fullfiled:

d

dr
(ruφ)2 > 0, (1.5)

meaning that if the outer cylinder rotates faster, the flow is stable. If the inner
cylinder rotates faster, the flow is unstable. If the cylinders rotate in oppostite
directions, the flow is stable near the outer cylinder and unstable near the inner
cylinder. The most typical flow pattern of instabilities are toroidal vortices that
are known as the Taylor vortices or the Taylor vortex flow. The Taylor vortices are
schematically shown in Fig. 1.3a. With the inner cylinder rotating and the outer
one fixed, a sequence of well-established flow states is known. With the Reynolds
number increasing, the azimuthal flow and subsequently the Taylor vortex flow are
replaced with the wavy vortex flow. It is characterized by travelling waves and a
strong hysteresis. The fundamental frequency corresponds to the travelling circum-
ferential waves. Additional frequency appears at higher Reynolds numbers and it
is responsible for modulation of the travelling waves. In Fig. 1.3b and Fig. 1.3c,
the Taylor vortex flow and a transition to the wavy vortex flow respectively were
visualized in the experiment. Further increase of the Reynolds number leads to the
turbulent-like states, namely chaotic wavy vortex flow, wavy turbulent vortex flow,
and turbulent Taylor vortex flow.

Transitional pathway becomes more complicated when the outer cylinder co- or
counter-rotates. The transition comprises several interesting flow patterns such as

18



(a) Taylor vortex cells (b) Observation of stable
toroidal vortex structures

(c) Wavy pattern at higher
Reynolds numbers

Fig. 1.3: A schematic picture of Taylor vortex flow and photos from experiment [7].

spiral vortex flow, interpenetreting spirals, wavy interpenetrating spirals, intermit-
tent turbulent spots, and spiral turbulence.

In reality, the rotating cylinders are finite, thus having circular walls at extremi-
ties. When �Ω is perturbed, so-called Ekmann layer appears with some characteristic
features. In the boundary layer, viscous stresses cause imbalance of the pressure gra-
dient in the radial direction and the Coriolis force, thus leading to rotation of the
flow, as shown in Fig. 1.4. The Coriolis deflection relates to the geostrophic flow and
is particularly known from circulation patterns in the ocean gyres. The topic-related
keywords are the Ekmann transport, cyclone, anticyclone, upwelling, downwelling,
etc. Coriolis effects are also often studied with intracelestial problems.

Fig. 1.4: The Ekmann spiral.
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Thermal Taylor-Couette flow

In general, the Taylor-Couette flow is sensitive to the radial temperature gradient
that can have both stabilizing as well as destabilizing effect. The axial buoyant
forces compete with the centrifugal forces to generate the spiral vortex flow. The
Richardson number that characterizes the ratio between buoyant and centrifugal
forces is used to classify three distinct flow regimes: (1) centrifugal dominant, (2)
mixed-convection regime, and (3) buoyant dominant, which significantly destabilizes
the flow resulting in the formation of the helicoidal flow pattern. As remarked in [8],
many intriguing flow states may apppear depending on Reynolds numbers, Prandtl
number, Richardson number, length-to-gap ratio, and some other parameters. Com-
mon tools or quantities used in analysis are contour plots of azimuthal, axial and
radial velocities, and temperature. Further, turbulent kinetic energy, power spectral
density and spatial autocorrelation of velocity components. Similar to the isother-
mal Taylor-Couette flow, the importance of the Ekmann layer was demonstrated in
[9].

1.1.3 Horizontal vs. vertical cylinder

The orientation of the cylinder axis, i.e. whether it is horizontal or parallel, has
an influence on spatiotemporal flow structures. However, in the case of isothermal
Taylor-Couette flow between two cylinders, significant differences are not antici-
pated, especially when the centrifugal forces are large compared to the gravity. To
the best extend of our knowledge, we have not found any comprehensive research
in the public literature. When the inner cylinder is removed and �Ω is large enough
so that a liquid layer is formed around the circumference of the outer cylinder,
differences become eminent. With the outer cylinder held vertically, the shape of
the free-surface is a parabola. In the rotating frame of reference, the vector of the
gravitational acceleration is invariant with respect to time. The flow is stable, i.e.
disturbances are dampened. A rigid-body motion is observed. With the outer cylin-
der oriented horizontally, the gravitational acceleration rotates in the rotating frame
of reference, i.e. it acts as perturbation of the centrifugal acceleration. By no means
is the annular layer thickness uniform around the circumference of the cylinder and
so it is not the field of azimuthal velocities. The oscillatory motion of the annu-
lar layer was demonstrated on a drift of a marker placed on the free-surface. The
marker reveals a retrogade azimuthal streaming of the free-surface, as schematically
shown in Fig. 1.5b. In experiment, it was shown that the layer is thicker at the top
than it is at the bottom [10], as schematically shown in Fig. 1.5a. Consequently,
resulting from the continuity, the relative velocity is higher at the bottom than at
the top. The Ekmann pumping takes place at the ends of the cylinder because the
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centrifugal forces there are larger than in the bulk fluid. The liquid is centrifuged
outwards along the ends of the cylinder. Then, it turns to continue inwards to the
center of the cylinder. Eventually, two counter-rotating loops are formed. The axial
streaming is weak compared to the azimuthal streaming. The azimuthal streaming
is caused by production of vorticity in the Stokes layer. The basic azimuthal flow
is represented by a single azimuthal wave sitting at the top of the cylinder in the
non-rotating frame of reference. However, much more intriguing flow patterns may
appear related to instabilities generated in the Stokes layer. This phenomena de-
serve a separate section 1.1.4. From the view point of solidification and a casting
process, differences between the horizontal and vertical centrifugal casting will be
described later in section 1.2.

(a) A shape of free-surface in a par-
tially filled cylinder

(b) A retrogate oscillation motion of
a particle floating on the free-surface

Fig. 1.5: A schematic picture of azimuthal flow in a horizontally rotating cylinder

1.1.4 Inertial waves

A fluid rotating at �Ω supports formation of inertial waves [11] propagating through
the interior of the fluid, when a precession or a periodic variation of �Ω, also known as
longitudinal librations, are applied. In a cylinder with the horizontal axis of rotation,
the gravity force acts as an oscillating force in the rotating frame, therefore, the
problem could be looked at from the viewpoint of vibrational mechanics supporting
excitation of inertial waves. When the fluid is enclosed in a container, it is referred
to as inertial modes.

The presence of inertial waves was confirmed experimentally by observing a non-
monotonic behavior of the collapse limit of a liquid layer in a partially filled rotating
cylinder [12]. At some relative occupancies of the cylinder the collapse limit agreed
well with the theoretical limit, while it was greatly overestimated at some others.
The collapse limit Γm is defined as an inverse value of the square of Froude number
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equal to 1/3, calculated with the free-surface radius a. Equation 1.6 was theoretically
derived using the linear stability analysis in [13] and reads:

Γ = g

Ω2R
(1.6)

A clear example of non-monocity is shown in 1.6a. Each curve represents a
cylinder with the length L and radius b. The relative occupancy of the cylinder,
q, is given on the horizontal axis. The collapse limit Γm is plotted on the vertical
axis. The theoretical limit, Γm = 1/3 is also depicted. The local minima signify
deviations from the basic azimuthal flow i.e. secondary vortex structures, as can be
seen in 1.6b.

(a) A non-monocity of the collapse limit
of a liquid layer.

(b) Flow patterns visualized by granular
medium.

Fig. 1.6: Inertial waves in a partially filled horizontal cylinder, reprinted from [12]

Below the collapse limit i.e. when a liquid pool is formed in bottom of the
cylinder, interesting flow structures and instabilities occur. Formation mechanisms
however do not fall in the class of rotating flows; therefore, it is not further discussed.
This class of flows belongs to coating flows or rimming flows.

1.2 Horizontal centrifugal casting

In the casting process, the mold/chill is a cylinder rotating around its axis at �Ω.
This suggests the same flow phenomena as discussed in the previous section 1.1 on
rotating flows although the solidification interferes. In addition to buoyancy driven
by thermal-solutal gradients, the gradually solidifying melt interacts with the flow.
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Fig. 1.7: A shark-teeth pattern in the liquid pool formed at the bottom of a plexi-
glass cylinder rotating at low �Ω, the photo taken by BOHACEK J. at SMMP, MUL,
Leoben.

At this point, it makes sense to distinguish between columnar crystals growing
from the wall and equiaxed crystals nucleating and growing in the melt. To best illus-
trate characteristic features of the horizontal centrifugal casting, sometimes referred
to as horizontal spin casting (HSC), it is compared to the vertical spin casting.

With the axis of rotation being vertical, the latter is not suitable for casting long
products such as seemless tubes, rolls, etc. For the present work more importandly,
the vector of gravity acceleration �g is fixed in the rotating frame of reference and
a truly rigid motion is identified. As result, the melt solidifies exclusively from
the wall in a form of long columnar crystals growing towards the axis of rotation
(Fig. 1.8a). In contrast, the vector �g oscillates in the rotating frame, which leads to
the azimuthal flow, secondary flow, and consequently a better mixing. The better
mixing enhances the heat transfer, which supports the formation and growth of free
equiaxed crystals, as can be seen in Fig. 1.8b.

It is indeed the oscillatory �g and inherent vibrations induced by imperfections of
the mold and an unbalanced mass that are responsible for outstanding mechanical
properties of HSC cast products. Vibrations are sometimes introduced intentionally
in other casting techniques to refine the structure and thus improve the quality of
the product. Obviously, the HSC rig is simple and can deliver superior products.
However, there is a catch with it.

(i) In the horizontal centrifugal casting of work rolls a uniform thickness of the
liquid layer is essential. Considering the large momentum of the spinning
system, any disruption of the layer may result in a catastrophe. Therefore,
knowing the collapse limit is vital. In section 1.1, the non-monocity of the
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(a) Only columnar crystals. (b) Columnar and equiaxed crystals.

Fig. 1.8: Difference between vertical (left) and horizontal (right) centrifugal casting
of a transparent alloy; the courtesy of prof.Esaka [14].

collapse limit has been already. highlighted.
(ii) During a typical casting, vibrations of carrying rollers are continuously moni-

tored and normally stay at low levels, as can be seen in Fig. 1.9. Sometimes,
as the solidification proceeds, vibrations rise considerably. In such an event,
the rate �Ω must be quickly adjusted in order to calm the situation and prevent
potential risks. We believe that the progressing solidification is responsible for
an abrupt transition to a resonant flow regime.

(iii) Several theories have been proposed to explain banding (Fig. 1.10), an unde-
sired condition encountered in a horizontally cast products. The theories [15]
range from the influence of vibrations in producing independently nucleated
growth bands under conditions of constitutional supercooling leading to en-
trapment of solute rich liquid, to bands created by flow instabilities appearing
as sporadic surging of liquid metal restricted to lower rotation rates. Until
now, the origin of the banding has not yet been clearly identified. Herein,
an explanation from the perspective of vibromechanics is suggested. Liquid
oscillations and steady streaming generated by gravity field can form ripples of
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(a) An onset of vibrations at the moment
the first incoming melt touches the chill.
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(b) A frequency spectra of vibration with
harmonics corresponding to integer mul-
tiples of �Ω.

Fig. 1.9: Vibrations of a support roll holding a chill for horizontal centrifugal casting
of the outer shell of a work roll; the measurement conducted in Eisenwerk Sulzau-
Werfen in Tenneck, Austria.

equiaxed crystals (Fig. 1.11a), which may eventually ‘freeze’ and thus appear
in the final structure (Fig. 1.11b).

azimuthal

ra
di
al

ax
ial

Fig. 1.10: The banding phenomenon, a multi-layered structure, clearly visible on a
metallographic sample (the courtesy of Eisenwerk Sulzau-Werfen).

(iv) During the horizontal centrifugal casting, a typical structure is formed by fine
equiaxed crystals of martensite reinforced with MC carbides, where the letter
M stands for an alloying element, e.g. Vanadium. Interestingly, very long
(cm), isolated columnar crystals can be occasionally identified deteriorating
the cast quality, as shown in Fig. 1.12. The cause of such a columnar crystal
growth still remains unexplained.
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(a) A horizontally rotating cylinder com-
pletely filled with a water-glycerol solu-
tion seeded with glass spheres. Regu-
lar ripples formed at the boundary of
the sedimented granular medium can be
static or migrating in the cylinder frame
[16].

azimuthala
xi
al

(b) Regularly spaced annular waves vis-
ible on the solidified free surface (the
courtesy of Eisenwerk Sulzau-Werfen).

Fig. 1.11: Another possible explanation of banding phenomena in HSC products.

(v) The list of encountered issues with the horizontal centrifugal casting could be
certainly longer. As the cast alloys are often very complex and centrifugal
acceleration massively promotes buoyancy, the manufacturer must cope with
problems related to macrosegregation.

1.2.1 The view point of R&D in the plant

Although the author concentrates on the topics which were involved during his
spin casting projects, a more general viewpoint of a roll manufaturer is given here.
Naturally, the money is the key parameter in the plant. The R&D expenditures are
low (∼ 2%) compared to other types of business. The main goal is to deliver to the
customer a roll that is wear, breakage and crack resistant, and that can be easily
grinded, redressed and tested. In other words, the roll maker wants to increase the
life of the roll without adversly influencing the quality of the rolled product or the
mill performance [17].

In essence, the R&D is working with three different types of projects namely
development, strategic and competence projects. A development project is initiated
by customers needs. Typically, it is related to changes of chemical composition of
the roll material or the heat treatment. The goal is clearly defined and it should be
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Fig. 1.12: An undesired occurence of a long columnar MC crystal (the courtesy of
Eisenwerk Sulzau-Werfen).

fulfilled in a relatively short time. On the contrary, a strategic project foresees the
market situation in the future and it tries to develop or at least build up knowledge
about technologies of the highest potential significance. For example, remember
that the Chrome Steel roll has been replace by HSS rolls at all stands of HSM
stands. It is possible that the future will bring a roll made of ceramics (SiAlON),
which is currently limited by the size requirements [18]. Furthermore, engagement
of Cemented Carbide rolls may lead to significant performance improvements [19].
In addition to new materials, new processes may be the main topic of strategic
projects. For example, cladding is one such a processes in which two dissimilar metals
are bonded together by application of a high pressure. Remember that currently
the roll is made by combination of two processes: gravity casting of the core and
preceded by centrifugal casting of the outer shell. The Osprey process is another
technology that has a potential to eliminate problems related to segregation, large
grain sizes or brittle phases [20]. Unfortunately, the process requires complex and
expensive steps of preparing the input material, the powder. The process belongs
to Powder metallurgy. The main benefit is that the carbide size can be significantly
reduced when the melt is atomized and solidified at very high cooling rates.

Finally, concerning competence projects, the research is often conducted together
with university and simulation and modeling tools are involved. The topics worth
mentioning are modeling of life cycle of HSM work rolls, study on welding a wear
resistant coant on the roll, modeling of the phase transformation and residual stress
in a composite mill roll during heat treatment, simulation of the static core filling
after spin casting of the shell, and simulation of horizontal centrifugal casting.

Apart from that, duties of the R&D also include after sales consultance and
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performance follow up. The roll manufacturer keeps track records of his customers
and therefore, the rolls on different stands can be optimized with the help of the
roll history. The roll manufacturer is very well aware of the total cost of ownership
(TCO) of the customer; thus, the manufacturer is able to offer the best solution for
him [21].

For a careful reader it is easy to notice much broader scope of the R&D in roll
making than the topic of this work, which is mainly focused on numerical simulation
of horizontal centrifugal casting detailed in section 2.
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2 Numerical modeling of centrifugal casting
Horizontal centrifugal casting of a roll, also known as horizontal spin casting (HSC),
is an opaque process involving high temperatures (>1200°C) of a liquid steel and high
inertia moments of rotating system (∼100 tons rotating at ∼600 rpm). Concerning

(a) A slag removal after HSC (b) A filling process during HSC

Fig. 2.1: A schematic picture of azimuthal flow in a horizontally rotating cylinder

methods of investigation related to a complex flow field, a numerical simulation is
the first choice. In the plant an experiment would be very difficult to design namely
for the following reasons:

• The flowing media is a superheated liquid steel, which excludes intrusive ve-
locity measurement techniques.

• The liquid steel is situated in a steel mould rotating around its axis at around
600 rpm, which excludes attachment of expensive measurement devices or
significantly rises the need for devices sampling at high frequency.

• The liquid steel is enclosed partly by the steel mould and the endcores at both
extremities. Therefore, only a small portion of the free surface of the liquid
steel is optically accessible through a limited view angle.

At the laboratory scale, the water model would be also hard to design namely for
the reasons:

• Vibrations and mould deformations may significantly influence the resulting
structure. Unfortunately, both parameters are unlikely to be correctly ac-
counted for in the laboratory experiment.

• Thermal conditions cannot be reproduced.
• In order to take into account effects of solidifying liquid metal, a semi-transparent

alloy would have to be considered.
The numerical simulation of the horizontal centrifugal casting may take different

forms depending on the approach selected and the specific topic studied. For exam-
ple, while the Newton’s law is sufficient for sumulation of segregating MC carbides, it
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is necessary to consider 3D Navier-Stokes equations with free-surface tracking/cap-
turing algorithms to describe the flow field in detail. Furthermore, while the user
of commercial CFD software will most likely choose the Volume of Fluid (VOF)
model, another user will try to avoid resolving flow fields in the ambient air. The
user of common CFD packages will stick to Finite Volume Methods, while the user
of, e.g., ProCAST should have a background in Finite Element Methods.

The author of this work was given the project entitled "Simulation of Horizontal
Spin Casting" at the Chair of Simulation and Modeling Metallurgical Processes
(SMMP) at Montanuniversitaet Leoben in 2011. As ANSYS FLUENT was the main
tool for most of the SMMP members, it was selected also for the author’s task. He
started where his colleague ended with simulations in ANSYS FLUENT when he
decided to leave the Chair. The colleague performed two types of simulations. In
both of them, the VOF model was enabled to capture the position of the free-surface
of the melt. Initially, 2D axisymmetric simulations were considered together with
the built-in solidification model. A relatively small grid size allowed to complete
the solidification process in an acceptable amount of computational time. The 2D
result is shown at the top of Fig. 2.2. The 2D domain corresponds to an axial cut
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Fig. 2.2: Taylor-Couette flow between two cylinders.

through the outer shell as well as the permanent steel mould. Such model provides
approximate information on progress of solidification. However, the results are likely
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to be biased by the absence of the third dimension; thefore, the missing term with
the Coriolis acceleration in the momentum equations. Perhaps, that was the reason
why a full 3D model was set up. At the bottom of Fig. 2.2, the early stage of
centrifugal casting is shown. The colored surfaces represent the liquid steel. Unlike
the 2D model, this case suffered from a slow convergence. Moreover, the liquid
droplets were not picking up the speed of the rotating mould. Last but not least,
to simulate just fractions of seconds already took an enormous amount of time. At
that moment, the author of this group joined the group of Prof. A. Ludwig and
took over the project. At that time, Dr. A. Kharicha came up with an idea of so-
called shallow water equations (SWE) to combine, so to simply say, the calculation
performance of the 2D model and the accuracy of the 3D model.

Since then, the author further developed his idea, derived the equations and
implemented them in the commercial system ANSYS FLUENT. The section 2.1 is
dedicated to this topic.

2.1 Shallow water equations - Euler-Euler multiphase
approach

This section is compiled from two articles that were published in ISIJ International
and Journal of Fluid Engineering.

The first one entitled "Simulation of Horizontal Centrifugal Casting: Mold Filling
and Solidification" is primarily aimed at the casting community as it presents data
related to solidification such as details about the heat transfer, solidification model
including simplistic radiation and stochastic mould filling, and results about time
dependent thickness of solidifying shell. The solidification front is tracked by solving
1D heat conduction together with the Stefan problem in a dimensionless form. Two
cases were analyzed, namely the case A with a perfectly cylindrical mold and the
case B with a deformed mould. 3D solidification fronts are compared both in time
and space. Non-uniform distribution of the melt is found during the filling stage,
which will cause mass imbalance and consequent vibrations.

The second one entitled "Modified Shallow Water Equations with Application for
Horizontal Centrifugal Casting" is oriented on those who are more involved in pure
fluid dynamics. Shallow water equations (SWE) are described in detail including
the extra source terms resulting from vibrations and mould deformations. The main
objective was to investigate a response of the free surface of the liquid layer to various
initial conditions such as different rotation rate, thickness of the layer, vibrations
yes or no, bending of the mould axis and the initial perturbation.

In both articles, introductions concisely summarize efforts of others working on
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similar topics. Shallow water equations follow as the governing equations; however,
the process of implementing them in ANSYS FLUENT was not revealed to the
reader. The approach is concisely explained here. The most general Euler-Euler
model was selected from the multi-phase models available. The continuity and
momentum equations take the following form:

∂αi�u

∂t
+ �u · ∇(αi�u) = Si (2.1)

∂αi�u

∂t
+ �u · ∇(αi�u) = −αi

ρi

∇p + αiν∇2�u + �Fi (2.2)

In a general multiphase problem, the volume fraction of the phase i is denoted by
αi and ∑N

i αi = 1 where N is the total count of phases. The pressure p is shared by
the phases. The mass and momentum exchange between them happen through the
terms Si and �Fi respectively. In order to transform SWE into 2.1 and 2.2, a dummy
phase must be added to fulfill the condition that the total volume fraction equals
1. This is the only role of the dummy phase, say, air resting upon the liquid layer.
Then, αi stands for the thickness of the layer i. In 2.2, the pressure term becomes
meaningless as SWE put in balance hydrostatic and inertial forces. Hydrostatic
forces are hidden in �Fi.

Shallow water equations can be implemented by using the Euler-Euler model,
which is available in most of the CFD packages including ANSYS FLUENT. How-
ever, the efficiency and accuracy is questionable as will be discussed in the next
section 2.2.
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In order to simulate the mold filling and solidification of the outer shell of large work rolls being cast by
horizontal centrifugal casting, the shallow water equations were adopted to solve the 2D average flow
dynamics of the melt spreading inside the cylindrical mold. The model accounts for centrifugal force,
Coriolis force, shear force, gravity and convective and diffusive energy transport. The solidification front
was tracked by fulfilling the Stefan condition. Radiative and convective heat losses were included from
both, the free surface and the outer wall of the mold. By introducing a stochastic factor to account for the
irregular filling jet behavior an uneven spreading of liquid from the center of the mold towards the extrem-
ities was predicted. Thus, the formation of the first solid layer also happens unevenly. However, when the
mold is covered everywhere with a solid layer, the solidification rate decreases and further filling increases
the height of the liquid layer. With increase liquid height the amplitude of the free surface waves also
increases.

KEY WORDS: horizontal centrifugal casting; work roll; shallow water equations; Coriolis force; Stefan con-
dition; mold deformation.

1. Introduction

The centrifugal casting process has two distinct branches,
the vertical and horizontal centrifugal (or spin) casting,
where vertical and horizontal define the placement of the
axis of revolution of the mold. The vertical centrifugal cast-
ing is commonly used for casting non-cylindrical parts such
as valves, propellers, sprockets etc. On the other hand,
cylindrical parts such as pipes, sleeves, tubes are cast using
the second technique provided that the length of the casting
is greater than the diameter and that the casting contains a
cylindrical bore through. The main difference between the
vertical and horizontal centrifugal casting is in the resultant
force acting on the melt. With a vertical mold axis the resul-
tant force is constant, whereas with a horizontal mold axis
the centrifugal force is periodically disturbed by the gravity
and by inherent vibrations. A common advantage of both
centrifugal casting processes dwells in obtaining superior
mechanical properties of the products compared to the con-
ventional gravity castings.1) Now, putting the vertical cen-
trifugal casting2) aside, the horizontal centrifugal casting can
be discussed in more details. A schematic of the process is
shown in Fig. 1. The filling starts with the relatively cold
mold (~433 K) already rotating at constant rpm (~680 rpm).
Solidification occurs immediately, when the melt firstly hits
the mold wall. A cloud of fine crystals nucleate close to the

mold. Due to the interaction between the forces of inertia
and the extreme shear force, nuclei are evenly distributed in
the bulk, where they mostly survive and continue growing,
which then results in a very fine structure throughout.3) Pos-
sible columnar crystals solidifying from the mold wall are
usually washed out by severe tangential forces and further
support the fine structure. Next, the centrifugal force can
easily exceed 100 G in magnitude, which helps to suppress
the shrinkage and pushes possible inclusions and impurities
towards the mold center due to the density difference. The
second phenomenon enhancing mechanical properties is the
inherent vibration, which promotes the solidification rate
and enhances turbulence. The angular frequency Ω  has to be
carefully chosen. Too low Ω  causes the liquid to fail to
adhere to the mold wall, which is known as “raining” i.e. a
curtain of metal droplets falling down from the top of the

* Corresponding author: E-mail: jan.bohacek@unileoben.ac.at
DOI: http://dx.doi.org/10.2355/isijinternational.54.266

Fig. 1. A schematic of the horizontal centrifugal casting of an outer
shell of a large work roll. (Online version in color.)
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mold.4) On the other hand, excessive angular frequencies
generally lead to inadmissible strong vibrations, which may
result in longitudinal cracks caused by the hoop stress in the
initially solidified shell. Besides, even for very little density
difference between two alloy elements a too high angular
frequency Ω  can result in significant segregation.5) For this
reasons, the angular frequency Ω  along with many other
process parameters such as the pouring temperature, pouring
rate, the way how the melt is poured etc. require an optimal
control.

Some papers written by other researchers on this topic
were oriented on the experimental trials, usually some cold
experiments; some papers were dealing with mathematical
models and numerical simulations. A paper6) describing var-
ious flow regimes during the horizontal centrifuging was
done to study the influence of the angular frequency Ω  and
the liquid height h on waves appearing on the free surface.
It was surprisingly found that with increasing the angular
frequency the free surface was more disturbed mainly due
to inherent mechanical vibrations. For low Ω  the free sur-
face formed purely cylindrical pattern. With increasing Ω  a
free surface pattern was passing through the regime with
helical waves, then orthogonal, and eventually “orange
skin” waves. Mathematical formulas were stated for vibra-
tions and axial deformation of the mold to analytically
investigate free surface patterns. Recently, in-situ experi-
ments were performed,7) in which the Succinonitrile-
1 mass% water alloy was poured in the rotating glass cell
and the movement of the equiaxed crystals was observed by
means of the high-speed camera. They found that the rela-
tive path of the arbitrarily chosen equiaxed crystal associat-
ed with a fix point on the mold oscillates and travels in the
anti-rotational direction. This phenomenon can be attributed
to the interaction between the inertia of the crystal and the
3D flow influenced by effects of the gravity and vibrations.
Very interesting experimental work8) comparing mechanical
properties of the Al–Si specimens cast using the centrifugal
and gravitational casting technique was done revealing that
the tensile and rupture strength was increased for the cen-
trifugal castings. The authors claimed that it is possible to
split effects of the centrifugal force into three separate
mechanisms: the centrifugal pressure, the inherent vibration,
and the fluid dynamics.

In addition to these experimental works, not many numer-
ical studies were devoted to the horizontal centrifugal cast-
ing. In,9) a full 3D simulation of the horizontal centrifugal
casting was performed in the commercial software STAR-
CD V4 using the VOF method to track the free surface. The
whole cylindrical domain was meshed with rather coarse
polyhedral elements, which allowed notably large time step
(~0.01). Only the flow was solved without taking into
account the heat transfer and solidification. Results from
simulations showed roughly how the melt is spreading dur-
ing the filling, but no details are given on how the filling
was realized and whether the model could capture some free
surface patterns or not. Next, a solidification model10) was
developed for a description of the centrifugal casting pro-
cess of a metal matrix composite reinforced by dispersed
ceramic particles. The numerical model ignored the flow,
but forces acting on the particles were taken into account by
means of solving ODE for the force balance. A planar solid-

ification front was considered. A study on a similar topic11)

was performed, in which the solidification of the centrifu-
gally cast particle reinforced metal matrix composite was
influenced by the particles travelling through the liquid met-
al matrix. From the force balance on the particle, they found
that the Coriolis force can be disregarded when the particle
diameter d or the angular frequency Ω  is small. In other
words, the Coriolis force can be only neglected when the
ratio between the coefficient 2ρPVΩ (related to the Coriolis
force) and the coefficient 6πμd (related to the drag force) is
much smaller than unity. In general, the Coriolis force can-
not be however neglected. A full 3D numerical model12) of
the horizontal centrifugal casting was recently introduced
simulating the interface between the metal and air recon-
structed by the VOF method for tracking free surfaces. The
main goal was to study the effect of two different filling sys-
tems on the temperature distribution on the outer wall of the
mold. It was found that with the filling arm moving to and
fro more uniform temperature distribution can be achieved
compared to the classical static filling. Another numerical
study13) concerning the horizontal centrifugal casting name-
ly casting of pipes was done using the commercial CFD
package FLOW3D. In order to avoid extremely low time
steps, momentum equations were solved in the rotating
frame of reference. However, due to a very small wall-to-
length thickness ratio, one simulation still took considerably
long time (~20 days).

Nowadays, the commercial CFD packages are along with
hyper-threading computing very powerful tools, which can
be successfully used to simulate many physical and engi-
neering processes. However, the importance of the proper
choice of the equations to be solved and how it should be
solved still remains inarguable. In this particular case of the
horizontal centrifugal casting of a work roll we believe it is
practically impossible to simulate the full casting process
(~35 min) by solving the full 3D Navier-Stokes equations
for two immiscible phases (the metal and air) in a reason-
able time. On the other hand, we are convinced that the main
features of the flow and the whole casting can be reliably
captured with the help of the 2D shallow water equations
(SWE).14,15) The original 2D SWE were derived from the 3D
N-S equations assuming that the pressure is strictly hydro-
static and that the vertical components in the momentum
equation for the radial direction can be ignored. For the
characteristic length scale much greater than the character-
istic height it is a very good approximation. In our system
the order of magnitude of the ratio between the characteris-
tic height (liquid metal height) and the characteristic length
scale is 0.01 and thus; the simplification by assuming a shal-
low water flow is reasonable. It is important to note that no
assumption is made about the amplitude of waves. The SWE
still retains the nonlinear convective terms from the N-S
equations. In general, the SWE are used for modeling pur-
poses in oceanography,16) river management,17) and meteo-
rology.

In this paper modified SWE are introduced for simulating
the average flow dynamics of the melt inside a horizontally
rotating mold. The flow is exposed to some sort of vibra-
tions induced by a poor roundness of the mold (or a mass
imbalance) and a mold deformation due to thermal effects.
The flow equations are coupled with a solidification model

35



© 2014 ISIJ 268

ISIJ International, Vol. 54 (2014), No. 2

assuming a microscopically planar solid-liquid interface.
The diffusive and convective energy transport is solved in
the liquid taking into account convective and radiative heat
losses from the free surface. A simple heat diffusion model
is applied in the solidifying shell and the mold. In Fig. 2, a
general configuration demonstrates aspects of the SWE
model such as a melt flowing over a solidifying shell, heat
transfer to the mold, and heat losses from the free surface
and the outer wall of the mold.

2. Model Description

The centrifugal force is evidently the most dominant
force (~100 G) always pushing the liquid towards the mold
wall. From observations during the real casting the liquid
perfectly adhered to the rotating mold even during first stages
of the filling. This suggests solving the flow in the rotating
frame of reference i.e. taking into account fictitious forces
such as the centrifugal force and Coriolis force. The SWE
were derived in the Cartesian coordinate system constructed
by unfolding the inner wall of the mold into the x-y plane,
where x and y denote the axial and the circumferential posi-
tion. Despite the cylindrical geometry, the Cartesian coordi-
nate system was chosen mainly due to the rather small ratio
between the liquid height h and the mold radius R. The mod-
el assumptions are summarized below:

• The momentum equation can be written in the rotating
frame of reference due to the high centrifugal force
(~100 G).

• The radial momentum is negligible compared to the
momentum in the axial and the tangential direction of
the cylindrical mold. Higher order terms in the asymp-
totic series of the static pressure can be neglected and
only the hydrostatic pressure is retained.

• A fully developed laminar flow is assumed; therefore,
a parabolic velocity profile is forced within the liquid
height h (Fig. 2) with a no slip boundary condition on
the underlying topography and zero stress on the free
surface.

• Surface tension effects can be neglected.
The continuity equation remains unchanged for our con-

figuration and takes the form:

, ............... (1)

where h is the liquid height, x and y denote the axial and tan-
gential direction, and u and v are respective components of
mass weighted average of the velocity. In the axial direction,
the velocity u is defined by:

. ............................ (2)

The mass weighted average v of the velocity in the tangen-
tial direction is computed analogically. The momentum
equations for both directions x and y are given by:

... (3)

and

, ... (4)

where the terms on the left hand side represent the inertia
forces including the centrifugal force Fc and Coriolis force
FC. On the right hand side, Fτ  denotes the shear force. Fg

stands for the gravity force (possibly perturbed by vibra-
tions). Obviously, the centrifugal force acts purely in the
radial direction, but its effect emerges in the momentum
equations for x and y direction. Thus, any acceleration act-
ing in the radial direction needs to be firstly expressed as the
integral of the equivalent hydrostatic pressure over the liq-
uid height h. Then the gradient of such an integral gives the
correct x and y components of the corresponding force.
Components of the centrifugal force exerted over the liquid
are defined by:18)

,................. (5)

where R is the inner radius of the mold and δ is the height
of the solidifying shell. For the derivation of the Coriolis
force dependent on the relative velocity we introduce an
additional assumption on the velocity profile within the liq-
uid height h. We expect the flow to be fully developed lam-
inar. Hence, a parabolic velocity profile was considered with
a no slip boundary condition on the wall and zero friction
on the free surface. In the case of a perfectly cylindrical
mold, the Coriolis force acts only radially and becomes:18)

............. (6)

From Eq. (6) it is clear that when the relative motion of the
liquid is in the rotational direction, the Coriolis force pushes
the liquid towards the mold wall and vice versa. Next, since
the relative velocity is maximal on the free surface and zero
on the underlying topography, the Coriolis force should be
more important at the free surface than on the solid relief.
This is indicated by the analytical constants 5/2 and 2 by the
terms with the gradient of the liquid height h and the solid
height δ, respectively. The assumption of a parabolic veloc-
ity profile is also used in derivation of the bed shear stress19)

for the Newtonian fluid. The shear force invoked by the bed
shear stress acting in the axial direction can be written as:

Fig. 2. A schematic of the SWE model. (Online version in color.)
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,................................ (7)

where μ is the dynamic viscosity (~0.006 Pa s) and ρ is the
density (~6 800 kg/m3). The shear force in the tangential
direction is defined using the same formula (Eq. (7)) except
that the velocity component u is replaced by the velocity
component v. The shear force Fτ plays an important role and
balances the centrifugal force, when the liquid height h
diminishes. Finally, the gravity force Fg has components in
both x and y directions; however, it is prevailing in the y
(tangential direction). In the axial direction the gravity force
Fgx becomes:

. ................. (8)

In the tangential direction, the component Fgy of the gravity
force becomes:

, ... (9)

where g is the gravitational acceleration (~9.81 m/s2) and t
is the current time. In Eqs. (8) and (9), the terms with the
slope of the free surface represent the gradient components
of the hydrostatic pressure integrated over the liquid height
h. In other words, in the SWE these terms correctly reflect
the effect of the radial component of the gravitational accel-
eration g, which has an impact on the flow in both, the axial
and the tangential, directions. As already discussed, the real
casting is accompanied by inherent vibrations, which are
induced by a poor circularity of the carrying rollers or the
tracks, and also by deformation of the mold axis due to
pouring the hot metal inside the mold. In the numerical
model, the vibrations are simply applied by perturbing the
gravity force, whereas the mold deformation modifies all
other forces except of the shear force Fτ . The mold defor-
mation was realized by assuming the axis following a sine
function with the nodes in the position of carrying rollers
and the antinode in the center of the mold representing the
lowest axial mode shape of a vibrating cylindrical shell.20)

Higher axial mode shapes were not considered in this study.
The exaggerated picture of such an imperfect mold is shown
in Fig. 3. Details on the derivation of the SWE including the
influence of the vibrations and mold deformation are given
in our papers.21,22) The first paper21) is focused on the inves-
tigation of free surface patterns influenced by vibrations and
axial mold deformations. Free surface patterns were studied
on the initially uniform distribution of the liquid height h.

Neither the solidification nor the mold filling were dis-
cussed. The second paper22) deals with the solidification of
the initially uniform thickness of the liquid and analyses the
effect of different heat transfer mechanisms on heat losses
from the free surface inside the mold. The mold filling was
not included in the model.

Concerning the solidification model, we assume that the
liquid solidifies exclusively from the mold wall and that
there is no slip and also no thermal resistance between the
solidifying shell and the mold. Further, it is known that for
Prandtl number less than unity, the hydrodynamically fully
developed flow is also thermally fully developed. In other
words, in our case we believe that the thermal diffusivity is
much stronger than the viscous forces; therefore, the ther-
mally fully developed flow is considered. Such a flow is
characterized by a parabolic temperature profile (Fig. 1).
Further assumptions for the solidification model can be
itemized as the following:

• A planar solid/liquid interface is considered between
the solid and the liquid (s/l). At the current stage of the
model, a possible mushy zone is not accounted for.

• The solidifying shell is perfectly attached to the inter-
nal mold wall; hence, it rotates with the same angular
frequency Ω  as the mold. In other words, there is no
velocity slip between the mold and the solidifying
shell.

• Although a separating refractory material (ZrO2) is
used to separate mold from the casting, a zero thermal
resistance is currently considered.

• Heat fluxes are dominant in the radial direction due to
the high pouring temperature (~1 755 K) and relatively
low initial temperature of the mold (~ 433 K). For this
reason, the heat diffusion equation is simplified and
solved only in the radial direction. Lateral heat fluxes
are neglected.

• Convective and radiative heat losses are modeled
inside and outside the mold. During the real casting the
mold fronts are insulated by sand cores; therefore, the
heat losses from the fronts are neglected.

In the liquid, the heat advection-diffusion equation (Eq.
(10)) is solved for the average temperature  given by:

. .......................... (9)

The heat advection-diffusion equation can be written as:

,

........................................ (10)

where α is the thermal diffusivity and ST is the source term
due to solidification and heat transfer to the mold. In the
present study the thermal diffusivity α is kept constant and
the same for the liquid, solid, and mold (~5.88e-06 m2/s). In
the future, the effective thermal diffusivity will be imple-
mented in order to account for the variable thermal resistance
due to the shell shrinkage23) and the insulating refractory
material (ZrO2). The s/l interface of the solidifying shell is
supposed to be planar fulfilling the Stefan condition24) given
by:Fig. 3. An exaggerated schematic of the deformed mold for Case B.

(Online version in color.)
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, ...................... (11)

where Lf is the latent heat (~250 kJ/kg), c is the velocity of
the s/l interface normal to the interface and the right hand
side denotes the net heat flux through the s/l interface. The
temperature of the s/l interface corresponds to the tempera-
ture of liquidus TLIQ (~1 586 K).The subscripts s and l
denote the solid and the liquid. The thermal conductivity k
is constant (~30 W/(m K)) and same for both, the solid and
liquid. The same holds for the density. The Stefan condition
is coupled with the 1D heat equation, which is solved
numerically on each quadrilateral element of the 2D grid
and in cylindrical coordinates has the following form:

. ....................... (12)

Equation (12) describes the heat conduction through the
solidifying shell to the mold. Only the 1D heat equation is
solved because the lateral heat fluxes are compared to the
radial heat fluxes negligible. The Dirichlet boundary condi-
tion is applied on the solid/liquid interface (Tl =1 586 K). On
the outer wall of the mold the Neumann boundary condition
is employed representing convective and radiative heat loss-
es (described below). The convective and radiative heat
transfer from the free surface inside the mold was taken into
account. The convective losses were simplified by considering
a constant heat transfer coefficient HTCin of 100 W/(m2K).
Outside of the mold convective heat losses were also account-
ed for, but due to higher circumferential velocity the heat
transfer coefficient HTCout was increased (~150 W/(m2K)).
The model of the radiative heat transfer inside the mold is
split into two parts. The first part denotes the heat losses via
extremities, whereas the second part denotes the heat
exchange inside the mold due to the fact that some regions
are hotter (or colder) than others. The theory of a black body
was applied to simplify the problem.25) The radiative heat
losses via extremities (mold openings) from each surface
element were formulated as the following:

,................. (13)

where A is the area of the quadrilateral free surface element,
σ is the Stefan-Boltzmann constant (~5.67e-08 W/(m2K4)),
T is the temperature of the free surface and Ta is the temper-
ature of the ambient (~323 K). Fw represents a geometrical
resistance or a view factor, which generally depends on the
distance between two radiating surfaces and angles between
them. Unfortunately, even for this simple case of a cylindri-
cal mold with two openings, the view factor Fw cannot be
determined analytically. A numerical approximation of the
view factor Fw is however feasible26) and is given by the
polynomial of the fourth order as the following:

,................ (14)

where x is the axial position, which is zero at one extremity.
The constants a, b, c, d, and e are –0.1539, 0.7795, –1.502,
1.34, and 0.4981. The constants were determined for the
specific case with the mold internal radius R=0.372 m and
the mold length L=3.2 m. However, the view factor Fw is
related to the actual shape of the free surface inside the
mold; therefore, it is time dependent. Qualitatively we can

say that as the liquid height h increased during the filling,
the radiative heat exchange inside the mold becomes more
important, whereas the radiative heat losses via extremities
diminish. On the other hand, the percentage rate of change
of the view factor Fw is small. Therefore, rather than apply-
ing computationally expensive approximation of the con-
stants in Eq. (13) every time step, we accepted a certain
error and used the time independent constants a, b, c, d, and
e. The summation rule applies for any enclosure; therefore,
the view factor Fw can be used to determine the radiative
heat exchange inside the mold, which takes the following
form:

, ..................... (15)

where Tw is the mean surface temperature, which is deter-
mined from the energy conservation inside the mold given
by:

. ..................... (16)

Using Eq. (15) the mean average temperature Tw becomes:

, .......................... (17)

in which we need to evaluate sums of FiwTi and Fiw over all
grid elements. The relation for the radiative heat losses from
the outer wall of the mold is much simpler, since the view
factor from an arbitrary surface element to the ambient is
always equal unity. The corresponding formula is given by:

. ...................... (18)

The filling of the mold was realized through a circular mass
source in the center of the mold. Since the SWE were solved
in the rotating frame of reference, the mass source had to
travel in the anti-rotational direction. From the observations
during the real casting the momentum of the impinging jet
presumably did not have an effect on the initial formation
of the liquid ring around the circumference (Fig. 4). In addi-
tion, the filling jet evidently did not have sufficient momen-
tum to penetrate through the initial liquid ring and come
closer to the mold extremities. Therefore, the momentum of
the filling jet was ignored in the simulations. The profile of
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Fig. 4. An early stage of the filling (t<5 s); a filling jet emitting
from the filling arm, splashing on the rotating inner wall of
the mold (R=0.372 m, Ω =71.2 rad/s), and forming a ring
around the mold circumference. (Online version in color.)
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the mass source for the filling jet was naturally approximat-
ed by a normal distribution with the standard deviation σ
estimated from the real casting observations (~90 mm). The
real footprint of the filling jet is however far away from a
smooth normal distribution. Therefore, the profile of the
impingement density was perturbed by means of a Box-
Muller transform around the center of the filling jet, which
is generally given by:

, .................. (19)

where U1 and U2 are randomly sampled numbers from the
interval (0, 1]. For a set of U1, U2 the resulting N number
follows a normal distribution. Using this algorithm the ele-
ments in the vicinity of the filling jet center were visited and
for each element a number of visits was counted. The ratio
between a number of visits and total number of tries gave a
strength s of the mass source term Sm, which takes the fol-
lowing form:

, ............... (20)

where the time dependent exponential function applies to
the variable mass flow rate during the first 5 seconds of the
casting, after which the mass flow rate is kept constant of
30 kg/s. Although the end of the filling was not reached in
the present simulation results, in the real casting the filling
is stopped at t=90 s.

Flow and thermal boundary conditions are summarized in
Table 1. Second order discretization schemes were used for
time and space. The algorithm was stable for the convective
condition CFL≤1. A computational domain for the flow
computation consisted of 160×117 (the mold length L × the
mold circumference 2πR) orthogonal quadrilateral elements.
The heat diffusion in the radial direction was performed on
200 equally spaced grid points. The grid size dependency
was tested on a 1D cold flow simulation (without the solid-
ification) of a collapsing liquid column hitting a solid obsta-
cle. The tested number of grid points was 100, 300, and
1 000 s. A wave speed was slightly overestimated for a small
number of grid points (100). For a larger number of grid
points a wave speed error can be neglected (Fig. 5).

3. Results and Discussion

The list of dimensions used in simulations is the follow-
ing: the length of the mold L of 3.2 m, the internal mold radi-
us R of 0.372 m, and the mold wall thickness of 0.203 m.
Material properties and other model settings were mentioned

in the previous section. As the initial conditions (t=0 s), we
considered an empty mold rotating in the positive direction
with the angular frequency Ω  of 71.2 rad/s. During the sim-
ulation the angular frequency Ω  was held constant, although
in the real casting especially during the filling a certain drop
in Ω  is always recorded. At both extremities reflective
boundary condition was applied for the flow and zero flux
for the enthalpy. Two types of simulations were carried out
differing only in the geometrical configuration. The Case A
simulation was performed assuming a perfectly cylindrical
mold i.e. Eqs. (1)–(4) were solved, whereas the Case B sim-
ulation was done for a slightly deformed mold with the
amplitude of 2 mm at the antinode (Fig. 3). The results are
presented on the inner mold wall unfolded in the horizontal
plane as depicted in Fig. 6.

In the early stage of the filling, when the mass flow rate
was still rising according to the exponential function given
in Eq. (19) and the cold mold wall was not exposed to the
hot liquid yet, the solidification rate is extremely high and
newly incoming liquid solidifies almost instantly. In Fig. 7,
the actual free surface situation is visualized by means of the
free surface temperatures at t=0.5 s. The liquid free surface
is depicted by the pear-shaped region, from where the posi-
tion of the jet center is clear (shown as a circle). The filling
jet is travelling in the anti-rotational direction. In the neigh-
boring zone the liquid solidified completely; thus, only the
solid can be seen. The rest of the surface was not touched
by the liquid metal, which is indicated by a significantly
lower temperature very close to the initial temperature of the

Table 1. Boundary conditions.

location for BC flow BC thermal BC

free surface of the liquid

Q (convection,
radiation)free surface of the solid (u(z), v(z)) = 0

dry inner wall of the wall –

outer wall of the mold –

s/l interface (u(z), v(z)) = 0 T=TLIQ

mold extremities Reflective wall
huGHOST = –hu Q=0 (adiabatic wall)

N U U2 21 2ln cos

S t
s

Am 30 2035 1. exp

u z

z

v z

z
, 0

Fig. 5. A free surface of the liquid after a collapse of the liquid
column with a wave reflection from the solid obstacle at
t=30 s; Initial state (t=0 s) shown in a smaller scale. (Online
version in color.)

Fig. 6. A cylindrical surface of the inner mold wall unfolded into
the horizontal plane.
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mold (~433 K). As the solidification and filling proceed, the
moving contact lines (where the mold is for the first time
being wetted by the metal) are travelling to both extremities
with an average speed of around 0.15 m/s. At around 2 sec-
onds the results of Case A deviate from that of Case B. In
Fig. 8, we compare the actual position of the moving contact
line of Case A and B at t=6 s. Obviously, in the case of the
perfectly cylindrical mold the moving contact lines remain
approximately parallel to the extremities (grey), which does
not apply to the case with a deformed mold. Even a very
small deformation of the mold (which was considered in
Case B), controls the spreading of the melt towards the
extremities. Note that we considered only one specific shape
of deformed mold. However, this will hold also for many
other shapes. The mold extremities are reached at around
10 seconds, however; the way how the extremities are
reached is completely different for a deformed mold com-
pared to an ideal non-deformed one. In the Case B nearly
symmetric bulges on both sides from the jet continue to
grow. Once the bulge touches itself after surrounding the
whole circumference, the liquid height increases in that
place and high centrifugal force generates a stream that
quickly fills up the empty space close to the extremities (see
Fig. 8 Case B). Note that the bulge is shifted slightly
upwards due to the Coriolis force, which accelerates the liq-
uid relatively moving in the rotating direction and deceler-
ates the liquid moving in the anti-rotational direction. As
shown in Fig. 8, in Case A it is small disturbances in the fill-
ing jet that are defining the shape of the contact line, and not
the deformation of the mold. In the early stage of the casting
(Fig. 7), the contact lines are relatively parallel to the
extremities. Later, instabilities occur and form regions with
bulges and depressions, which then in a random manner
proceed towards the extremities (see Fig. 10 of the real cast-
ing). To confirm this random behavior of the liquid spread-
ing, the Case A simulation was run three times. In Fig. 9,
the asymmetry of the liquid spreading is much more notable
for Case A. This asymmetry also causes that in some regions
the liquid solidifies completely. Later, a newly coming liq-
uid inundates the solid again and remelting occurs. Such an
occurrence of dry regions is shown in grey in Fig. 11 at
t=30 s. The liquid free surface is shown in white. Black dot-
ted arrows highlight the original filling streams whereby the
liquid is mainly transported towards the extremities. In Fig.

12, a complex wavy relief of the solid/liquid interface is
excavated after removing the liquid layer. The position of
the filling streams shown in the previous figure now corre-
sponds to the distinct valleys that are a consequence of a
reduced solidification rate due to the fresh hot liquid. The
same mechanism was applied along the footprint of the fill-
ing jet resulting in the formation a pool. Although the solid-
ification starts firstly in the mold center i.e. where the filling
jet firstly touches the wall, the shell is after some time

Fig. 7. Contours of the free surface temperature at the early stage
of the filling at t=0.5 s with the solid free surface, the liquid
free surface, and a dry wall of the mold.; the actual position
of the jet is shown as a circle. (Online version in color.)

Fig. 8. Position of the moving contact line for results of Case A
and Case B at t=6 s shown in grey and black, respectively.

Fig. 9. Actual positions of the contact lines for the Case A and
Case B at several time instants. The vertical arrows indicate
a tangential spreading of the bulge, whereas the horizontal
arrow shows the position and flow orientation of the future
dominating filling stream. (Online version in color.)

Fig. 10. A snapshot taken during the real casting at approximately
t=8 s showing uneven spreading of the melt towards the
extremity (a sand core); the filling rate of 30 kg/s, the
angular frequency Ω=30 rad/s, the mold radius R=0.372 m,
and the mold length L=3.2 m. (Online version in color.)
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(~30 s) thicker at the extremities. This is mainly caused by
the centered position of the filling jet, but also due to
increased radiative heat losses at the extremities. A time
evolution of the s/l interface profile (black) with the respec-
tive liquid free surface (grey) is shown along the mold axis
(dashed line in Fig. 11) for both Case A and Case B in Figs.
13 and 14, respectively. In Case B (Fig. 14), the profile of
the s/l interface is evidently much more symmetric than in
Case A (Fig. 13). Moreover, the pool formed in the center
is wider open, which is demonstrated by a two sided arrow
in Fig. 14. In addition, on the free liquid surface waves are

induced by interaction of the forces and the underlying
topography, which is more noticeable at later stages of the
casting (~60 s) when the liquid height is higher. Various
wave patterns appearing on the free surface are beyond the
scope of this paper. More details on this topic can be found
in our papers.21,22)

4. Conclusions

A complexity of a 3D flow during the horizontal centrif-
ugal casting of a large work roll was reduced with the aid
of the shallow water equations (SWE) by solving only the
axial and tangential velocity components, neglecting
momentum in the radial direction, but still resolving the
height of the liquid. Using the SWE we save a great amount
of the computational power, which consequently allows us
to perform parameter studies. The original SWE were mod-
ified to account for forces such as the centrifugal force, the
Coriolis force, the bed shear stress and the gravity. In addi-
tion, a deformation of the mold due to the thermal effects
was taken into account assuming a specific shape of the
mold (Fig. 3). A simple solidification model was added to
the flow equations assuming a dominant heat flow in the
radial direction and thus, solving only the 1D heat equation
the solid and the mold for each element of the 2D grid. The
Stefan condition was applied at the solid/liquid interface to
determine its speed. In the paper we focused on the early
stage of the casting including the modeling of the filling,
which was done by applying a randomly sampled mass
source resembling a normal distribution of the impingement
density around the jet center. Two different cases were stud-
ied, Case A representing a perfectly cylindrical mold and
Case B representing a slightly deformed mold. In both cas-
es, the filling jet was responsible for a delayed solidification
underneath, which led to the formation of a pool surround-
ing the circumference. The mold extremities were reached
approximately at the same time (~10 s) as during the real
casting. However, even in the real casting the liquid does not
move towards the extremities uniformly, the contact line
forms into finger-like patterns. In Case A, the contact line
was more disturbed by the filling jet, whereas in the B) sim-
ulation the shape of the contact line was rather controlled by
the deformed mold resulting in a more symmetric profile of

Fig. 11. Dry regions (grey) occurring due to uneven spreading of
the liquid towards the left and right extremity for Case A
at t=30 s; the liquid free surface shown in white with
dashed arrows highlighting the position of the filling
streams.

Fig. 12. A 3D relief of the solid/interface for Case A at t=30 s.
(Online version in color.)

Fig. 13. A time evolution of the solid/liquid interface (black) with
the respective liquid free surface (grey) along the axial
direction for Case A.

Fig. 14. A time evolution of the solid/liquid interface (black) with
the respective liquid free surface (grey) along the axial
direction for Case B; The two sided arrow demonstrates a
wider pool compared to Case A.
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the solid/liquid interface along the axial direction. Note that
in all simulations a zero thermal resistance was considered
in contact between the solidifying shell and the mold. In
practice, a refractory material such as ZrO2 is used to sepa-
rate the mold from the casting. At the same time, such coat-
ing can be used to passively control the heat transfer from
the casting by varying the coating thickness along the mold
axis. In the present paper only the outer shell (or one layer)
was concerned. As a next step we plan to include the second
layer (the intermediate layer), which serves as a blending
bridge between the outer shell and the gravitationally cast
core.
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Nomenclature
A: area of the quadrilateral free surface element

(m2)
c: speed of the solidifying front in radial direction

(m/s)
a, c, b, d, e: constant for the analytical expression of the

view factor (–)
d: diameter of a particle (m)
F: force (N.m/kg)

Fw: view factor (geometrical resistance)
h: liquid height (m)

HTC: heat transfer coefficient (W/(m2K))
k: thermal conductivity (W/(m.K))
L: length of the mold (m)

Lf : latent heat of fusion (J/kg)
N: randomly sampled number from a normal distri-

bution (–)
Q: heat flux (W)
r: radial position (m)
R: inner mold radius (m)
s: strength of the mass source (–)

Sm: mass source (kg/(m2s))
ST : heat source term (W/m2)

t: time (s)
T: temperature (K)

TLIQ: temperature of liquidus (K)
u: mass weighted average of velocity in axial direc-

tion (m/s)
U1, U2: numbers from interval (0, 1] (–)

v: mass weighted average of velocity in tangential
direction (m/s)

V: volume of a particle (m3)
x: axial position (m)
y: tangential position (m)
z: radial position (m)

α: thermal diffusivity (m2/s)
δ : solid height (m)
μ: dynamic viscosity (Pa.s)
ρ: density (kg/m3)
σ : Stefan-Boltzmann constant (W/(m2K4))
Ω : angular frequency of the mold (rad/s)

Indices:
a: ambient air
c: centrifugal force
C: Coriolis force
g: gravity

GHOST : ghost cell
i: cell index

in: inside the mold
l: liquid

out: outside the mold
P: particle

r1: radiative losses via extremities
r2: radiative heat redistribution inside the mold
s: solid
τ : bed shear stress
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Modified Shallow Water
Equations With Application
for Horizontal Centrifugal
Casting of Rolls
A numerical model based on the shallow water equations (SWE) was proposed to simu-
late the two-dimensional (2D) average flow dynamics of the liquid metal spreading inside
a horizontally rotating mold. The SWE were modified to account for the forces, such as
the centrifugal force, Coriolis force, shear force with the mold wall, and gravity. In addi-
tion, inherent vibrations caused by a poor roundness of the mold and the mold deforma-
tion due to temperature gradients were applied explicitly by perturbing the gravity and
the axis bending, respectively. Several cases were studied with the following initial condi-
tions: a constant average height of the liquid metal (5, 10, 20, 30, and 40mm) patched as
a flat or a perturbed surface. The angular frequency X of the mold (11150–3200) was
71.2 (or 30) rad/s. Results showed various wave patterns propagating on the free surface.
In early stages, a single longitudinal wave moved around the circumference. As the time
proceeded, it slowly diminished and waves traveled mainly in the axial direction. It was
found that the mean amplitude of the oscillations grows with the increasing liquid height.
[DOI: 10.1115/1.4030760]

1 Introduction

The horizontal centrifugal casting (HSC) is a casting process
that has several advantages over the traditional gravity casting
processes. The schematic of the HSC process is shown in Fig. 1.
Centrifugally cast products have a high degree of metallurgical
purity and homogeneous microstructure. A significant gain is
observed for the rupture strength, the rupture strain, the fatigue
resistance, and the Young’s modulus as discussed, e.g., by Shai-
lesh et al. [1]. These properties naturally depend on the centrifugal
force and thus, the best mechanical properties can be found at the
largest distance from the axis of rotation. However, a proper
selection of the angular frequency X has to be done in order to
prevent the so-called “metal raining,” i.e., metal droplets falling
down from the upper part of the mold due to a too weak centrifu-
gal acceleration. In the same time, excessive speeds can lead to
the appearance of longitudinal cracks caused by the hoop stress in
the initially solidified layer. From empirical knowledge, other
parameters have an important influence on the casting products, it
includes the pouring temperature, the pouring rate, the mold coat-
ing, etc. Recently, Chirita et al. [2] identified natural or forced
vibrations as possible additional factors to be taken into account.
Although mechanisms are not yet clear, the vibrations influence
the solidification structure and the level of porosity. Earlier, Chir-
ita et al. [3] observed a transition from the lamellar to the fibrous
morphology with the increase of the vibration amplitude. An

influence on the eutectic fraction was also observed. If the acceler-
ation related to the vibration reaches a critical magnitude, the
grains tend to coarsen. It is generally assumed that during the cen-
trifugal casting, the melt first solidifies on the mold wall, then due
to the turbulent flow, fragments are moved back into the melt and
stand as a new nucleation sites as described by Chang et al. [4]. It
is believed that vibrations can significantly enhance this grain
refining process.

In most of the scientific papers, numerical studies of the centrif-
ugal casting usually rely on commercial CFD packages. Certainly,
the most common approach for solving the free-surface flows is

Fig. 1 A schematic of the horizontal centrifugal casting of the
outer shell of a work roll
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the volume of fluid (VOF) method by Hirt and Nichols [5], which
is very robust and applicable to various free-surface flows.
Unfortunately, to accurately track the interface a very fine grid is
usually required and moreover, one has to solve the flow also in
the ambient phase, which is rather redundant in the case of the
HSC. In the paper by Keerthiprasad et al. [6], an effort for a com-
prehensive description of the flow dynamics of the melt inside the
horizontally rotating mold including the mold filling was done
using the VOF model (STAR-CD). Two phases were considered, the
liquid metal and the surrounding air. The time step was notably
large (�0.01 s), which implies a very rough calculation. Neverthe-
less, the results were found to be in quite good agreement with
experimental data. The VOF method was also used in work done
by Zagorski and Sleziona [7] to study the initial stage of mold fill-
ing during the vertical centrifugal casting of metal matrix compos-
ite reinforced with SiC. Additionally, a discrete phase model was
used to track SiC particles. The problem was solved as 2D axi-
symmetric with swirl component of velocity and all calculations
were terminated at 1 s of real-time. At a sufficiently high rotating
speed of the mold, the liquid metal rotates with the mold. There-
fore, it is convenient to solve the task in the rotating frame of ref-
erence, i.e., to take into account fictitious forces such as the
centrifugal and Coriolis force. This approach naturally allows
using much larger time steps resulting in a significant speed-up of
calculations. Recently, this solution strategy was adopted by
Kaschnitz [8], where the horizontal centrifugal pipe casting pro-
cess was solved using FLOW-3D. Although the flow algorithm does
not consider the flow within the ambient air, the normal computa-
tion still took around 20 days for a relatively rough mesh. To
overcome mesh-dependent results, the numerical model was tuned
by adjusting the viscosity, turbulent properties, and comparing nu-
merical results with the experiment. Next, the effect of fictitious
forces on the mold filling during the vertical centrifugal casting
was investigated again by using the VOF model [9]. They found
that the Coriolis force can cause remarkable variations in the flow
patterns in the casting-part-cavities of a large horizontal-section
area and directly connected to the sprue. Another recent study of
the mold filling was performed by Xu et al. [10], in which the
effect of the static and moveable filling on the temperature distri-
bution during the HSC of a work roll was studied. The second nat-
urally produces a more uniform temperature distribution, which
could lead to the elimination of the so-called sapling defects. The
flow algorithm is based on the VOF free-surface tracking method.
Since simulations were focused on the filling (�30 s), the full
HSC process (�35mins) was not of concern and the algorithm
performance or computational times were not discussed. Fjeld and
Ludwig [11] performed a numerical study of the casting of a work
roll core. The popular VOF method was employed to track the
interface between the liquid metal and air. The remelting of the
outer shell was mainly investigated (more details related to simu-
lations of multiphase phenomena are clearly discussed in the work
by Ludwig et al. [12]).

The aim of the present model is a development of an effective
flow algorithm for tracking the free surface of a thin liquid layer
inside a horizontally rotating cylindrical mold representing the
outer shell of a work roll. Numerical simulations are focused on
the investigation of wave patterns appearing on the free surface
due to the interaction of the inertia forces including fictitious
forces and other body forces, such as the gravity and forces result-
ing from mold vibrations. In the future, the current numerical
model will be extended to account for the solidification and the
heat transfer including the radiation inside the mold. From a long-
term perspective, we target on the simulation of the full HSC pro-
cess, i.e., the casting of both the outer (the high-speed steel) and
the intermediate (the gray cast iron) layer. The HSC process is fin-
ished after approximately 35mins when the mold is turned in the
vertical position and the gravity casting of the core takes place.
By comparing the HSC time (�35mins) with relatively high
velocities of the liquid metal (�1m/s), we can conclude that the
algorithm has to be extremely fast and efficient.

2 Numerical Model

The present model is based on the SWE. The SWE are widely
used for modeling purposes in oceanography and also meteorol-
ogy. Its original form can be found in the book by Leveque [13]
and are used for a mathematical description of the so-called grav-
ity waves. The SWE can be generalized to account for various
physical phenomena, such as the Coriolis force, flow over variable
topography, and bed shear stress, which are discussed, e.g., in
Dellar and Salmon [14] and Hirt and Richardson [15]. The SWE
usually refer to the modeling of the so-called gravity waves. In the
literature, the SWE can be found derived in the Cartesian coordi-
nate system as well as in the spherical coordinate system [16], but
no application of the SWE could be found for the cylindrical
geometry. Note that by using the SWE, the momentum equation
in the direction perpendicular to the underlying topography is
always omitted. In other words, under certain conditions a three-
dimensional (3D) problem can be transformed into a 2D problem,
which can still resolve the height in the vertical (or radial)
direction.

Here, we present a shallow water model for modeling the aver-
age flow dynamics of the thin liquid layer inside a horizontally
rotating mold (see Fig. 1). The SWE were derived in the rotating
frame of reference, i.e., fictitious forces were included in the
model. The SWE were further modified in order to account for the
variable topography representing the liquid/solid interface. The
solidification and heat transfer are, however, out of the scope of
this paper. A general situation is depicted in Fig. 2, in which the
parabolic velocity profile indicates the assumption of the fully
developed laminar flow.

Next, we assume a no-slip boundary condition (BC) with the
underlying topography. On the free surface, the friction with air
and surface tension effects is neglected. The liquid height h is
small compared to the internal radius R of the mold; therefore, the

Fig. 2 A schematic of a part of the HSC section
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problem can be still solved in the Cartesian coordinates (x, y) rep-
resenting the axial and tangential direction, respectively. Perhaps,
the most important assumption applies to neglecting all vertical
(or radial) components in momentum equations except the gra-
dients of the hydrostatic pressure. In the shallow water terminol-
ogy, this is often called the condition of the hydrostatic balance
discussed by Audusse et al. [17].

The continuity equation takes the form

@ hqð Þ
@t

þr � hq�uð Þ ¼ 0 (1)

where the liquid density q is a constant in the model (�6800kg/m3),
and �u is the mass flow averaged velocity of the liquid. The momen-
tum equations can be expressed in the vectorial form as follows:

@ hq�uð Þ
@t

þ �u � r hq�uð Þð Þ þ Fc þ FC ¼ �hrpþ hlr2�uþ Fs þ Fg

(2)

where the terms on the left-hand side represent the inertia forces
including the fictitious forces. The centrifugal force Fc is derived
from the centrifugal acceleration ac given by

ac ¼ X� X� rð Þ (3)

where r is the position vector. The centrifugal force Fc always
pushes the liquid outward. For a perfectly cylindrical mold, the
only nonzero component of the centrifugal acceleration ac is the
radial component acr. The radial component acr cannot be, how-
ever, applied directly in Eq. (2). It has to be first expressed as an
equivalent hydrostatic pressure. Then, the integral of the gradient
of this hydrostatic pressure over the liquid height h gives the axial
and tangential components of the centrifugal force Fc used in Eq.
(2). The same procedure is applied on all other body forces having
a nonzero radial component. A detailed derivation of the centrifu-
gal force Fc can be found in Appendix B. The Coriolis force FC is
derived from the Coriolis acceleration aC, which depends on the
relative velocity u and is given by

aC ¼ 2X� u (4)

Unlike the centrifugal force Fc, the Coriolis force FC either pushes
the liquid inward or outward depending on the orientation of the
relative velocity u. Note that this is only true for a perfectly cylin-
drical mold and the angular frequency X parallel to the mold axis.
For more details, see Appendix C. On the right-hand side of
Eq. (2), the first two terms represent the force resulting from the
static pressure difference and the viscous force derived from the
shear stresses in the plane (x, y), respectively. Note that the vis-
cous force does not account for the shear force with the mold due

to the no-slip BC imposed. The bed shear force with the mold
depends on the parabolic velocity profile and is applied separately
denoted by Fs (Appendix F). The last term in Eq. (2) refers to the
gravity force Fg, which in the rotating frame of reference is a vec-
tor rotating in the opposite direction of the rotating mold (�X).
The final formulas for Fg used in Eq. (2) are discussed in detail in
Appendix D. In addition to the free-surface BCs and the BCs on
the liquid/solid interface both described earlier, we apply a reflec-
tive wall at the mold extremities. In Fig. 3, this corresponds to the
boundaries parallel to the circumferential position. Finally, peri-
odic boundary conditions are used at the boundaries denoting the
axial position.

3 Vibrations and Mold Deformation

The HSC of work rolls is always accompanied by inherited
vibrations induced by a static imbalance of the mold, a poor circu-
larity of rolling tracks or carrying rollers, and also by an axial
deformation of the mold due to thermal expansion effects
(Martinez et al. [18]). Fundamental principles about vibrations of
cylindrical shells are stated in Love’s [19] and Donnell’s [20]
theory both based on the thin shell equations. Each object with a
certain mass and a stiffness including the cylindrical mold prefers
to oscillate at its natural frequencies fn. Each of these frequencies
is associated with a mode shape and a damping coefficient. The
natural frequency fn is a function of the mass and the stiffness,
which depends on the dimensions of the object and the Young’s
modulus. For geometrically simple objects, such as a beam or a
cantilever, a unique mode shape m exists for each natural fre-
quency fn. This is, however, not true for cylindrical shells, for
which a unique pair of mode shapes m and n exists for each natu-
ral frequency fn as discussed in Ref. [21]. The mode shape m
refers to a number of axial half waves, whereas the mode shape n
applies to a number of circumferential full waves (Fig. 4). For a
static cylinder, each mode shape is represented by a standing

Fig. 3 A schematic of the computational domain created by
unfolding the internal cylindrical surface of the mold into the
plane (x, y)

Fig. 4 Mode shapes of a vibrating cylindrical shell: (a) axial
mode shapes and (b) circumferential mode shapes
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wave oscillating around its nodes. However, in rotating cylindrical
shells mode shapes travel and lag behind the rotation of the cylin-
der, which is called the Bryan effect [22].

Experimentally, a link between mode shapes and the vibration
recorded during the real casting was found with the help of a fre-
quency spectrum of the acceleration of the arbitrary carrying
roller measured in a horizontal plane and perpendicular to the
mold axis. An example of the experimental data is shown in Fig. 5
for a particular casting with the angular frequency X of the rotat-
ing mold corresponding to 9Hz. The obvious harmonics are inte-
ger multiples of the angular frequency X, which implies a
qualitative connection with the mode shapes. Higher harmonics
correspond to more complicated mode shapes.

The present paper aims to study a response of the free surface
to a specific vibration mode. The study is simplified by only con-
sidering one pair of the axial and the circumferential mode shape.
We introduce the bending of the axis to reproduce the axial mode
shape (m¼ 1) (see Appendix A). The presence of the axis bending
modifies all body forces mentioned in Eq. (2) (a derivation of these
forces is detailed in Appendices B, C, and D). The circumferential
mode shape (n¼ 2) is applied directly by perturbing the gravity
with details given in Appendix E.

4 Results and Discussion

All simulations were run with constant physical properties of
the liquid metal (q¼ 6800 kg/m3 and l¼ 0.006 kg/m s). The mold
is 3.2m long and the inner mold radius is R¼ 0.372m. Two

different angular frequencies X were considered: 30 rad/s and
71.2 rad/s. Several liquid layer heights h were simulated (5, 10,
20, 30, and 40mm). An initial distribution of the liquid height h
was imposed. Two distinct initial liquid height distributions were
considered, either a flat surface with a constant liquid height h or
a surface perturbed by the following function:

h ¼ �h sin p x� qð Þ2
� �

þ sin r y� sð Þ2
� �h i

(5)

where �h is the mean liquid height. Constants p, q, r, and s are 10,
0.4, 12, and 0.3, respectively. The function given by Eq. (5) was
chosen in order to perturb the free surface with different wave-
lengths in both directions, x and y. Several cases (N1–N12) corre-
sponding to different model settings (Table 1) were calculated.
The time step was held constant (Dt¼ 0.001 s) so that the local
Courant number was always smaller than 0.1 for both angular fre-
quencies X used. Second-order schemes were used for the space
and time discretization.

Examples of an instantaneous shape of the free surface are
shown in the xy-plane representing the axial and tangential direc-
tion in Figs. 6 and 7. At early stage of the simulation, a single
wave travels along the cylinder circumference. In the case without
the axis bending, the longitudinal wave does not vary along the
axial direction (Fig. 6(a)). On the contrary, the longitudinal wave
immediately responds to the nonzero axis bending and varies
along the axial direction (Fig. 6(b)). In a fully developed flow
regime, the longitudinal wave is no longer visible and a complex
wave pattern is formed (Fig. 7). Without the axis bending, the
pattern of the free surface resembles annular waves (Fig. 7(a)),
whereas with the axis bending the pattern is more chaotic
(Fig. 7(b)).

The results were compared by means of the mean amplitude
defined as

�Ah ¼ hmax � hmin

2
(6)

where hmax and hmin are the maximum and the minimum liquid
height found in the entire computational domain. Such an

Fig. 5 A frequency spectrum of the horizontally accelerating
carrying roller perpendicular to the mold axis

Table 1 List of model settings for the cases N1–N12

X
(rad/s)

h
(mm) Vibrations

Axis
bending

Initial
perturbation

N1 71.2 5 Yes No Yes

N2 10

N3 20

N4 30

N5 40

N6 5 No

N7 10

N8 30 20

N9 Yes

N10 No No

N11 Yes

N12 Yes

Fig. 6 An instantaneous shape of the free surface at 4 s for N8
and N12, respectively. (a) A constant liquid height h along the
axial direction. (b) An influence of the axis bending on the lon-
gitudinal wave formed during the early stage of the simulation.
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amplitude, however, shows strong fluctuations (a thickly fluctuat-
ing signal in Fig. 8); therefore, the resulting data were convolved
with the Gaussian kernel (a line with a circle marker in Fig. 8) to
obtain the main evolution. The evolution of the mean amplitudes
is shown in Fig. 8 for the angular frequency X of 71.2 rad/s and in
Fig. 9 for X¼ 30 rad/s. Several general features can be drawn
from the results:

(1) Mean amplitudes never drop to zero within the calculated
time range (�180 s). Certain waves survive even for small
liquid heights.

(2) A single longitudinal wave is formed in early stages due to
the gravity and the inertia interaction no matter whether the
free surface was initially perturbed or not. As the velocity
field develops, the longitudinal wave diminishes within an
apparent relaxation time ranging from 20 s to 40 s.

(3) The higher the liquid height h, the higher is the mean
amplitude of the oscillations.

(4) In all final states, waves are traveling mainly in the axial
direction. This transfer of momentum from the circumfer-
ential and radial directions (gravity and vibrations) to the
axial direction is due to the rotational nature of the Coriolis
force.

Almost no influence of the initial perturbation on the final state
can be observed between the cases N1 and N6 (Fig. 8). Without
the perturbation case, N7 converges toward a relatively quite state,
with the perturbation the same case converges toward a state
where the oscillations are four times larger. At lower rotation
speed, a transition between a calm and dynamic sate occurs after
60 s real-time. In Fig. 9, notice the relatively low amplitude region
from 20 s to 60 s with a sudden transition to instability at 60 s.
N10 with no vibrations involved is significantly different com-
pared to N8. By comparing case N10 with cases N8 and N9, it can
be stated that vibrations amplify and stabilize the amplitude of
oscillations of the interface. The same behavior is found for the
cases N11 and N12 both with the axis bending and without and
with the vibrations, respectively. The origin of the stabilizing
effects of the perturbations is not yet clear. From Fig. 9, it is also
evident that the axis bending significantly reduces the time neces-
sary for the transition to instability.

A verification of the SWE model was done using the hydro-
static free-surface model discussed in detail, e.g., in the paper by
Casulli [23]. The hydrostatic free-surface model is an intermediate
step between the SWE model and a fully nonhydrostatic free-
surface model such as the VOF and the level set method [24].
Unlike these generally expensive nonhydrostatic free-surface
models, the hydrostatic free-surface model neglects effects of the

Fig. 7 A fully developed pattern at 100s for N8 and N12,
respectively. (a) A pattern resembling annular waves and (b) A
pattern disrupted by the presence of the axis bending.

Fig. 8 An evolution of the mean amplitude of the free surface
for X571.2 rad/s

Fig. 9 An evolution of the mean amplitude of the free surface
for X530 rad/s

Fig. 10 A verification of the SWE model; a comparison with
the hydrostatic free-surface model by Casulli [23]
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nonhydrostatic pressure. However, the efficiency of the algorithm
is greatly improved. On the other hand, when compared with the
SWE model, the complexity of the hydrostatic free-surface model
is increased by resolving horizontal velocity components along
the height of the liquid layer and reconstructing the vertical veloc-
ity components using the continuity equation. Here, the verifica-
tion was realized by comparing waves propagating after a
collapse of the liquid parabola. The initial liquid height was
defined by the following formula:

h0ðx; 0Þ ¼ 0:03þmaxð0; 0:03� 5ðx� 0:5Þ2Þ (7)

Other simulation settings were identical to those used in the afore-
mentioned simulations with the angular frequency X of 71.2 rad/s.
In Fig. 10, the dot-and-dash line represents the initial liquid height
(Eq. (7)) and the solid and the dash line show the wave pattern of
the hydrostatic free-surface model and the SWE model at 0.05 s,
respectively. The velocity vector field is naturally an output of the
hydrostatic free-surface model. Both wave patterns are in a good
agreement, despite a little phase error caused by the complete fric-
tion matrix used in the hydrostatic free-surface model.

5 Conclusions and Future Prospects

A shallow water model (SWE) for the flow of liquid metal layer
on the inside surface of a rotating cylinder was developed. The
objective was to study wave patterns of the free surface, wave
birth, propagation, and death. Besides, the aim was also to study a
response of the system on different initial conditions, i.e., the ini-
tial liquid height was either constant or perturbed using a sinelike
function. The main assumptions of the model are: The angular fre-
quency X of the mold is so high that the fluid is mainly rotating
with the cylinder. For this reason, the model was defined in the
rotating frame of reference. A parabolic velocity profile along the
liquid height was taken into account with a no-slip boundary con-
dition on the cylindrical wall. The model was further extended in
order to account for vibrations and an axis bending. The origin of
the vibrations and the axis bending was explained by means of the
natural frequencies and the corresponding mode shapes. It was
shown that despite extremely high centrifugal forces (�100G)
acting on a liquid layer, the interaction between the inertia, the
gravity, and the vibrations can lead to the formation of waves on
the free surface. The higher the liquid height, the more it is prone
to instabilities. The SWE model was successfully validated
against a more complex, well-established hydrostatic free-surface
model using a wave propagation test. In the future, a solidification
model will be included using two layers approach, one for the liq-
uid and one for the solidified layer by taking into account the heat
conduction inside the mold and also heat losses into the ambient
air. The magnitude of accelerations and flow velocities predicted
by the present model leads to the idea that strong fragmentation of
the solidified elements occurs. In order to take into account this
phenomenon, a three-layer model will be under consideration.
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Appendix A: Bending of Mold Axis

Since the SWE are solved in the rotating frame of reference, it
is convenient to introduce a global coordinate system CGðx0; y0; z0Þ
rotating with the angular velocity of the mold X. A deformation of
the mold axis (bending) is given by the following trigonometric
function with nodes exactly positioned in the carrying rollers:

B ¼ �A cos
px0

k

� �
(A1)

where k is the distance between the two coaxial rollers, A is the
maximum amplitude of the bending (in the simulations
A¼ 2mm), and B is the local amplitude, which is zero in the
nodes, negative toward the mold center, and positive toward
extremities (Fig. 11). The x0 coordinate is zero at the center of the
mold. The tangent c of the deformed axis is defined by the slope
of the B, which is given by

tan h ¼ @B

@x0

¼ A
p
k
sin

px0

k

� � (A2)

The tangent c is then defined as

c ¼
1

tan h
0

2
4

3
5 (A3)

and denotes the axial direction. Similarly, in the radial direction
we can define vector r pointing outward from the x0 axis

r ¼
R sin h cos a
�R cos h cos a
�R sin a

2
4

3
5 (A4)

where R is the inner radius of the mold, and the angle a defines
the tangential position in radians around the circumference as
follows:

a ¼ y

R
(A5)

where y is the circumferential position in meters. Finally, the cross
product c� r gives a vector d representing the tangential
direction

d ¼ c� r ¼
�R sin a tan h

R sin a
�R cos h cos aþ sin h cos a tan hð Þ

2
4

3
5 (A6)

The vectors c;d; and r are normalized.Fig. 11 Schematic of vectors
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Appendix B: Centrifugal Force

In order to determine the centrifugal acceleration ac for each
point inside the mold, we need to determine its distance from the
x-axis in vectorial form. Let us call this vector as r�. The vector r�
is defined as follows:

r� ¼
0

B� R cos h cos a
�R sin a

2
4

3
5 (B1)

The vector r� has the same orientation as the vector r, i.e., from
the mold center outward. The centrifugal acceleration ac is fully
defined by the angular velocity X and the vector r� by the formula

ac ¼ X� X� r�ð Þ (B2)

where X is a vector with nonzero component only in x-direction.

X ¼
jXj
0

0

2
4

3
5 (B3)

The resulting centrifugal acceleration ac points radially outward
from the mold axis and is defined as follows:

ac ¼
0

X2 B� R cos h cos að Þ
�X2R sin a

2
64

3
75 (B4)

The centrifugal acceleration ac defined in this way cannot be,
however, directly applied in the SWE model. The vector ac has to
be transformed into the local coordinate system given by vectors
c; r, and d denoting the axial, radial, and tangential direction,
respectively (Appendix A). The axial component aca of centrifu-
gal acceleration ac is obtained by projecting it into the axial direc-
tion given by vector c, which is done simply by applying dot
product as follows:

aca ¼ ac � c (B5)

Similarly, the tangential act and the radial acr components of cen-
trifugal acceleration ac are derived as follows:

act ¼ ac � d (B6)

and

acr ¼ ac � r (B7)

respectively. After evaluating the dot product of ac and r, the radial
component acr of the centrifugal acceleration ac finally becomes:

acr ¼ X2 R sin2 a� cos h cos a B� R cos h cos að Þ� �
(B8)

Note that acr stands for the radial component of the centrifugal
acceleration ac but only at the inner mold surface. In order to cal-
culate acr(z) as a function of radial distance z from the wall, R has
to be replaced by R� z. Then, Eq. (B8) becomes

acr zð Þ ¼ X2 R� zð Þ sin2 a
� X2 cos h cos a B� R� zð Þ cos h cos að Þ (B9)

Since the flow (continuity and momentum equations) is solved
using the SWE, acr from Eq. (B9) has to be first expressed as a
hydrostatic pressure ph. At an arbitrary point z0 within the liquid
layer, the hydrostatic pressure ph(z0) is defined by the following
formula:

phðz0Þ ¼ �q
ðz0
hþd

acr zð Þdz (B10)

where h and d denote the height of liquid metal and the height of
solid metal, respectively. Integration of Eq. (B10) results in rather
lengthy formula and is not mentioned here. For the special case,
when there is no axis deformation (B¼ 0 and h¼ 0), the hydro-
static pressure ph at z0 reduces to

phðz0Þ ¼ � 1

2
qX2 z0 � h� dð Þ 2R� z0 � h� dð Þ (B11)

Replacing z0 with z in Eq. (B10) and integrating the gradient of
the hydrostatic pressure ph(z) over the liquid height h gives us the
force Fc with the axial and tangential component, which then can
be applied as source terms in momentum equations. This force Fc

is given by

Fc ¼ �
ðhþd

d
rphðzÞdz (B12)

where rph(z) is the gradient of hydrostatic pressure ph(z). rph(z)
has two components, axial and tangential. (The same procedure is
also applied to other forces having a nonzero component in the
radial direction z.) Let us first analyze the axial component of the
force Fc and let us again start with the special case, when there is
no axis deformation (B¼ 0 and h¼ 0). (We suppress the sub-
scripts c here and below for clarity, since we need to add other
subscripts.) In this special case, the axial component of the force
F is simplified to

Frx ¼ �qX2h R� h� dð Þ @ hþ dð Þ
@x

(B13)

The tangential component Fry is the same except that x is replaced
by y

Fry ¼ �qX2h R� h� dð Þ @ hþ dð Þ
@y

(B14)

In the general case, when the axis is deformed (B 6¼ 0 and h 6¼ 0),
the formula for the force F gets inconveniently long; nevertheless,
for the sake of completeness it is given below. We again start with
the force component Frx exploded into several terms

Frx ¼ qX2ð Bbc� b2c2R� a2R
� �

h
@ hþ dð Þ

@x

� �

þ a2 þ b2c2
� �

h2
@ hþ dð Þ

@x

� �

þ a2 þ b2c2
� �

dh
@ hþ dð Þ

@x

� �

þ 1

2

@B

@x
bc h2
� �

þ 1

6

@c

@x
3Bb� 6b2cR
� �

h2
� �

þ 1

6

@c

@x
4b2c h3

� �
þ 1

6

@c

@x
6b2c dh2

� �Þ (B15)

where a, b, and c are substitutions for sin a; cos a; and cos h,
respectively. These substitutions are also used in the definition of
the force component Fry, which is given by
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Fry ¼ qX2ð Bbc� b2c2R� a2R
� �

h
@ hþ dð Þ

@y

� �

þ a2 þ b2c2
� �

h2
@ hþ dð Þ

@y

� �

þ a2 þ b2c2
� �

dh
@ hþ dð Þ

@y

� �

� @a

@y
aR h2

� �
þ 2

3

@a

@y
a h3
� �

þ @a

@y
a dh2
� �

þ 1

6

@b

@y
3Bc� 6bc2R
� �

h2
� �

þ 1

6

@b

@y
4bc2 h3

� �
þ 1

6

@b

@y
6bc2 dh2

� �Þ (B16)

Let us try to check the correctness of Eqs. (B15) and (B16) by set-
ting B and h again equal to zero (c ¼ cos h ¼ 1), which means the
mold axis is perfectly straight. Last four terms in Eq. (B15) cancel
out and the equation reduces to Eq. (B13). Regarding Eq. (B16),
last six terms also cancel out and the equation reduces to
Eq. (B14).

To summarize, the radial component of centrifugal acceleration
ac cannot be applied directly. It has to be expressed first as a
hydrostatic pressure, then gradient of this pressure has to be calcu-
lated in tangential and axial direction. Finally, both components
of pressure gradient have to be integrated over the liquid height h.
The corresponding results than represent momentum source terms
due to the radial component of centrifugal acceleration ac.

In addition to the radial component, the centrifugal acceleration
ac can generally have also components in the tangential and the
axial direction. The derivation of corresponding momentum sour-
ces is straightfoward and easier than in the previous case of acr,
since neither a computation of hydrostatic pressure nor its gradient
is needed. The momentum source term for the axial direction
resulting from the axial component of ac takes the following
form:

Fax ¼
ðhþd

d
qacadz (B17)

where aca is the axial component of the centrifugal acceleration
ac. Similarly, the momentum source term for the tangential direc-
tion resulting from the tangential component of ac is given by

Fty ¼
ðhþd

d
qactdz (B18)

After the integration of Eq. (B17), Fax becomes

Fax ¼ qX2 1

cj j ð Be� bdeRð Þ hð Þ

þ 1

2
bdeð Þ h2

� �
þ bdeð Þ dh2

� �Þ (B19)

where b, d, and e are substitutions for cos a; cos h; and tan h,
respectively. For a mold without the axis bending h¼ 0, then
tan h ¼ 0 and thus, Fax is zero. Similarly, after the integration of
Eq. (B18), Fty becomes

Fty ¼ qX2 aR

dj j ð Bþ befRð Þ hð Þ

� 1

2
befð Þ h2

� �
� befð Þ dh2

� �Þ (B20)

where a, b, e, and f are substitutions for sin a; cos a;
tan h; and sin h, respectively. In Eqs. (B19) and (B20), cj j and dj j
correspond to vectors defined in Eqs. (A3) and (A6), respectively,
i.e., those not normalized yet. Note again that for a mold without
the axis bending tan h ¼ 0 and thus, Fty is zero.

Appendix C: Coriolis Force

The general vector formula for the Coriolis acceleration aC is

aC ¼ �2X� u (C1)

where X is the angular velocity described in Appendix B and u is
the relative velocity defined in the global coordinate system
CGðx0; y0; z0Þ. The components of the Coriolis acceleration aC in
the global coordinate system CG are

aC ¼
0

aCy0

aCz0

2
64

3
75 (C2)

The x-component aCx0 is zero because the angular velocity X is
parallel to the x0 axis. The relative velocity u is computed in the
local coordinate system CLðc;d; rÞ with the following nonzero
components:

v ¼
ux

uy

0

2
64

3
75 (C3)

One of the assumptions of the SWE model is a negligible flux in
the radial direction and thus, the radial component uz of the rela-
tive velocity u is zero. In order to transform the Coriolis accelera-
tion aC into momentum source terms it is first projected onto the
vectors c;d; andr as it was done for the centrifugal acceleration ac
in Appendix B. After the projection the Coriolis acceleration aC
in the local coordinate system, CL becomes:

aC ¼
aCa
aCt
aCr

2
4

3
5 ¼

aC � c
aC � d
aC � r

2
4

3
5 (C4)

First, the axial component aCa of the Coriolis acceleration aC is
expressed as

aCa ¼ 0cx0 þ aCy0cy0 þ aCz00

¼ 2Xuycy0dz0 (C5)

after the substitution for cy0 and dz0 from Eqs. (A3) and (A6),
respectively, Eq. (C5) would expand into an inconveniently long
term; hence, it is not shown here. Similar relations can be found
for the tangential aCd and the radial aCr components of the Corio-
lis acceleration aC, given by

aCt ¼ 0dx0 þ aCy0dy0 þ aCz0dz0

¼ �2Xuxcy0dz0 (C6)
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and
aCr ¼ 0rx0 þ aCy0ry0 þ aCz0rz0

¼ 2X uydz0ry0 � uxrz0cy0 � uydy0rz0
� �

(C7)

respectively. The axial ux and the tangential uy components
(Eq. (C3)) of the relative velocity u of the liquid are functions of
the radial coordinate z and resemble the parabolic velocity profile
with the no-slip BC on the mold wall (or the solid) and the zero
stress on the free surface. The axial component ux(z) can be
expressed as a function of the radial coordinate z and the axial
component of the mass averaged velocity �ux as follows:

ux zð Þ ¼ � 3�ux d� zð Þ dþ 2h� zð Þ
2h2

(C8)

In a similar way, the tangential component uy(z) can be written.
Substituting uy(z) into Eq. (C5) and applying the same integral as
in Eq. (B17) lead to the momentum source term for the axial
direction resulting from the axial component of the Coriolis accel-
eration aC

FCax ¼ �2qXbf �uyh (C9)

where b and f are cos a and sin h, respectively. In the case without
the axis bending, sin h is zero and thus, the Coriolis force in the
axial direction FCax becomes zero. Comparing Eqs. (C5) and (C6)
reveals that the momentum source term FCty in the tangential
direction resulting from the tangential component of the Coriolis
acceleration aC is very much similar, given by

FCty ¼ 2qXbf �uxh (C10)

Note again that without the axis bending (sin h ¼ 0), the Coriolis
force in the tangential direction FCty also cancels out. In addition
to FCa and FCt, the radial component FCr is derived following the
same steps that were used for the derivation of the centrifugal
force (Appendix B). Final formulas of both components, FCrx and
FCry, are

FCrx ¼ �qhX

�
d

5

2
�uy
@h

@x
þ 2�uy

@d
@x

þ 5

4
h
@�uy
@x

� �

þ af
5

2
�ux
@h

@x
þ 2�ux

@d
@x

þ 5

4
h
@�ux
@x

� �

þ 5

4
ad�ux � f �uy
� �

h
@h
@x

�
(C11)

and

FCry ¼ �qhXðd 5

2
�uy
@h

@y
þ 2�uy

@d
@y

þ 5

4
h
@�uy
@y

� �

þ af
5

2
�ux
@h

@y
þ 2�ux

@d
@y

þ 5

4
h
@�ux
@y

� �
þ 5

4R
bf �uxhÞ (C12)

respectively. The constants a, b, d, and f stand for
sin a; cos a; cos h; and sin h. In the case without the axis bending,
Eqs. (C11) and (C12) reduce to a simple formula, given by

FCrx;y ¼ �qhX
5

2
�uyrhþ 2�uyrdþ 5

4
hr�uy

� �
(C13)

Appendix D: Gravity Force

The acceleration of gravity ag is written in the global coordinate
system CGðx0; y0; z0Þ as follows:

ag ¼
0

�g cos Xtð Þ
g sin Xtð Þ

2
4

3
5 (D1)

where t is the time in seconds, and g is the magnitude of the gravi-
tational acceleration. Note that the vector ag rotates against the
angular velocity X defined by Eq. (B3), which reflects the rotating
frame of reference used. The initial position of the global coordi-
nate system CG with respect to the acceleration ag is fixed, since
any possible phase shift u0 might play a significant role only dur-
ing the very first rotations of the mold. Momentum source terms
are derived in the same way as those for the centrifugal force and
the Coriolis force. After the projection of the vector ag onto the
unit vector in the axial direction c, the resulting axial component
aga multiplied by the liquid height h and density q leads to the
following source term:

Fgax ¼ �qhgf cos Xtð Þ (D2)

which becomes zero in the case without axis bending
(f ffi sin h ¼ 0). Similarly, the source term resulting from the
tangential component agt obtained by projecting it onto the unit
vector d is

Fgty ¼ qhg b sin Xtð Þ þ ad cos Xtð Þð Þ (D3)

When the axis bending is zero, after a few trigonometric opera-
tions it reduces to

Fgty ¼ �qhg sin Xtþ að Þ (D4)

Finally, the momentum source terms resulting from the radial com-
ponent agr are obtained by integrating the gradient of the hydro-
static pressure over the liquid height, multiplying it by the density
q, and switching the sign. Both, Fgrx and Fgry can be written as

Fgrx ¼ �qhg

�
bd cos Xtð Þ � a sin Xtð Þð Þ @ hþ dð Þ

@x

� 1

2
bf cos Xtð Þh @h

@x

�
(D5)

and

Fgry ¼ �qhgð bd cos Xtð Þ � a sin Xtð Þð Þ @ hþ dð Þ
@y

� 1

2R
ad cos Xtð Þ þ b sin Xtð Þð ÞhÞ (D6)

respectively. Without the axis bending, Eq. (D5) reduces to

Fgrx ¼ �qhg cos Xtþ að Þ @ hþ dð Þ
@x

(D7)

whereas Eq. (D6) simplifies to

Fgry ¼ �qhg cos Xtþ að Þ @ hþ dð Þ
@y

þ q
h2g

2R
sin Xtþ að Þ (D8)

Appendix E: Gravity Force Perturbed Due to the
Imperfect Roundness of the Mold

Vibrations induced in the horizontally rotating mold due to the
noncircularity of the mold or the carrying rollers are taken into
account by a time-dependent perturbation of gravity
g 1þ n cos xtþ b0ð Þð Þ, where n is a nonzero real number (in the
simulations n¼ 2), x is the angular frequency of the perturbation
(in the simulations x¼ 2X), and b0 is the phase (in the simula-
tions b0¼p/2). Labeling the perturbed gravity as gp, the accelera-
tion of the perturbed gravity agp in the global coordinate system
CGðx0; y0; z0Þ can be expressed as
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agp ¼
0

�gp cos Xtð Þ
gp sin Xtð Þ

2
64

3
75 (E1)

Comparing Eq. (D1) and Eq. (E1) leads to the conclusion that
exactly the same formulas as derived in Appendix D can be used
to determine components of the gravity force perturbed due to
the imperfect roundness of the mold provided that g in Eqs.
(D2)–(D7) is replaced by gp.

Appendix F: Bed Shear Force

The viscous term in Eq. (2) does not account for the shear force
with the mold (or the solidified metal shell) following from the
assumption of the parabolic velocity profile. The bed shear force
can be, however, easily derived from the 3D stress tensor s and
applied as an additional source term in both the axial and tangen-
tial direction. The stress tensor s can be expressed as a function of
the symmetric part of the velocity gradient tensor as follows:

s ¼ �l ruþruT
� �

(F1)

which is in exploded form given by

s ¼ �l

2
@ux
@x

@uy
@x

þ @ux
@y

@uz
@x

þ @ux
@z

@ux
@y

þ @uy
@x

2
@uy
@y

@uz
@y

þ @uy
@z

@ux
@z

þ @uz
@x

@uy
@z

þ @uz
@y

2
@uz
@z

2
66666664

3
77777775

(F2)

Generally, in momentum equations the viscous acceleration as is
expressed as a divergence of the stress tensor s divided by the
density q, which for the incompressible flow results in

as ¼ �r2u

¼ �
@2u

@x2
þ @2u

@y2
þ @2u

@z2

� �
(F3)

In Eq. (E3), the last term �@2u=@z2 is the missing part in the vis-
cous term in Eq. (2) representing components of a shear force act-
ing on a z-plane parallel to the axial and tangential direction,
respectively. In order to apply such a force in the SWE, we have
to first substitute for the velocity u from Eq. (C8) and integrate it
over the liquid height h. This leads to the final components Fsa

and Fst of the bed shear force in the axial and tangential direction

Fsa ¼ �3�
�ux
h

(F4)

and

Fst ¼ �3�
�uy
h

(F5)

respectively.
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2.2 Shallow water equations - approximate Riemann
solver

In the previous section 2.1, the idea behind shallow water equations (SWE) was in-
troduced. With ANSYS FLUENT in hand, it was enticing to exploit functionalities
of the most general multiphase model, the Euler-Euler model. The original shallow
water equations were modified to take into acount effects of centrifugal and Cori-
olis accelerations influenced by the presence of the underlying relief of a gradually
solidifying liquid metal.

Recall that the SWE were selected to merge advantages of 2D and 3D models.
Often, the SWE is referred to as a 2.5D model because a complex 3D free-surface flow
is retained but the z-velocity component is omitted from the governing equations.
Moreover, the pressure term only comprises the hydrostatic pressure. In other words,
the flow motion is controlled by balance between the inertial and hydrostatic forces.
The SWE is a set of hyperbolic partial differential equations. Shocks and rarefaction
waves appear on the free surface; therefore, numerical schemes should treat it in an
appropriate manner.

When the SWE were applied using the Euler-Euler model, as discussed in the
previous section 2.1, the following shortcomings were encountered:

• There was a necessity to consider an additional layer (air above the liquid
layer) to fulfill the condition that ∑

α = 1. Two extra momentum equations
had to be added, which increased the number of unknowns to be solved and
conseqently resulted in a slower convergence.

• More importandly, the Poisson’s equation had to be solved for the pressure
p. As an elliptic partial differential equation, it is much more computationally
demanding than solving the momentum equations. Note that the pressure p

does not appear in the SWE at all. Thus, when implementing it by using the
Euler-Euler model, it was a necessary burden dramatically slowing down the
calculation.

• Last but not least, often in the horizontal centrifugal casting of rolls, an inter-
mediate layer is centrifuged, which is located between the outer shell and the
core material. There would be three layers required in the Euler-Euler model.
After several tests, it was shown that our approach did not work for more than
two layers. Therefore, the intermediate layer could not be further considered.

• Finally, using the upwind discretization schemes for the convective term in the
momentum equations turn out to incorrectly handle wave patterns appearing
on the free surface of the liquid layer. It is known that the first order upwind
suffers from a numerical diffusion while the second order upwind produces
dispersive errors i.e. it brings energy into the system (Fig. 2.3).
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axial coordinate
tangential coord.

solid liquid

(a) An initial condition

(b) An approximate Riemann solver

dispersive errors

(c) ANSYS FLUENT (the Euler-Euler
model)

Fig. 2.3: An accuracy test of two solvers: A collapse of a liquid bump over a solid
paraboloid at a specific time.

Figure 2.3 shows a comparison between the Euler-Euler model in ANSYS FLU-
ENT and an approximate Riemann solver, which is the main subject of this section
2.2. In [22], it is argued that to solve a hyperbolic PDE correctly conservative
Godunov’s schemes should be considered. A system of hyperbolic PDEs are de-
composed into eigenvalues and eigenvectors in order to eventually end up with
an accurate discretization of the fluxes as well as explicit updating formulas. In
what follows, the article entitled "An approximate Riemann solver for shallow water
equations and heat advection in horizontal centrifugal casting" presents the modi-
fied shallow water equations with application to HSC. Apart from details about the
algorithm, five important topics are covered:

1. The Coriolis force is treated as a flux, not as a source term.
2. The stop&go mechanism is described for dealing with Non-Newtonian fluids.
3. Having a complicated solid bathymetry as well as various source terms, the

numerical algorithm is preserving the steady state.
4. The heat advection equation is added to the modified SWE as a part of the
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approximate Riemann solver.
5. Lastly, the solver is applied to simulate solidification of a single layer of the

liquid steel in the horizontally rotating mould. The model includes heat con-
duction in the mould and the mould filling.

The approximate Riemann solver of the modified SWE runs much faster (around 10
times) than the Euler-Euler equivalent mentioned earlier. Moreover, the precision is
also significantly better due to the explicit treatment of the hyperbolic system, due
to distinuguishing between shocks and rarefactions. It is recommended not to use
the Euler-Euler model to solve the SWE. Instead, the approximate Riemann solver
is as a rule of thumb preferred.

The article is supplemented with another article of the author entitled "An ap-
proximate Riemann solver for two layer shallow water equations in horizontal cen-
trifugal casting". It provides details about the derivation of an approximate Riemann
solver for two layers, for simplicity in one spatial dimension though. Results from
simulation of centrifugal casting of two layers is shown and compared with an ex-
periment. In one spatial dimension, the two layer SWE system breaks down into
four eigenspeeds, resulting in a much more complex system than the one layer sys-
tem has, namely only two external wave speeds. The two layer SWE solved by the
approximate Riemann solver developed herein is a robust approach, efficient and ac-
curate approach. The main limitation comes from the conditionally real eigenvalues,
namely the density of the bottom layer must be higher than that of the top layer.
In two spatial dimensions, an additional condition exists to keep real eigenvalues,
namely the one related to the Coriolis acceleration.

Although the approximate Riemann solver is very efficient as it can quickly
calculate the whole casting process (around 1 hour), it neglects some important
parts of physics, as particularly pointed out by the industry partner:

• Mixing between the layers cannot be captured. The two layers are immiscible
in the model. In fact, the upper layer must have a lower density than the layer
at the bottom, as already stated above.

• The SWE were derived in Cartesian coordinates; therefore, are valid small
ratios defined as the layer thickness over the mould radius.

• In the SWE, the velocity components represent average velocities over the
thickness of the layer. In the present work, a general parabolic velocity pro-
file was considered. This assumption is certainly violated with more realistic
complex flows.

• The buoyant flows due to density differences cannot be simulated.
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a b s t r a c t

An approximate Riemann solver was developed for solving modified shallow water equa-
tions (SWE) and energy transport describing the average flow dynamics of a single layer
spreading inside a horizontally rotating cylinder. The numerical model was particularly
developed for simulating the horizontal centrifugal casting (HSC) of the outer shell of a
work roll. The SWE were derived in the rotating frame of reference; therefore, fictitious
forces (the centrifugal force and the Coriolis force) were considered. In addition, other
forces such as the bed shear force, the force of gravity, the wind shear force and forces aris-
ing from the variable liquid/solid interface were taken into account. The Jacobian matrix of
the nonlinear hyperbolic system of PDEs was decomposed into a set of eigenvalues and cor-
responding eigenvectors using standard and corrected Roe averages. A Harten–Hyman
entropy fix was used to prevent expansion shocks (entropy violating solutions) typically
occurring during transonic rarefactions. Source terms were applied as a stationary discon-
tinuity and were physically bounded and well-balanced for steady states (producing non-
oscillatory solutions). Each wave was upwinded using the explicit Godunov’s method. The
high resolution corrections with flux limiters were used to achieve second order of
accuracy and dispersion free solutions at discontinuities. In addition to the Riemann solver,
a central scheme FV model was used to solve the heat diffusion inside the cylinder (mold)
and partially solidified liquid layer, coupled with the solidification model. Several
simulations were performed, results were analyzed and discussed.
� 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The present paper describes in detail an approximate Riemann solver for solving modified shallow water equations and
energy transport of a single liquid layer spreading inside a horizontally rotating cylinder. The horizontal centrifugal casting
(HSC) of the outer shell of a work roll is an industrial application of such a process. In brief, the HSC process (Fig. 1) can be
summarized as the following: A cylindrical mold is horizontally placed on four carrying rollers, from which two coaxial are
always driven, whereas other two are driving. While the mold is rotating at a high speed (�600 rpm), a liquid metal is poured
from the crucible via the statically mounted runner approximately in the center of the mold. Due to high centrifugal forces
the liquid metal spreads uniformly and creates a sleeve of a constant thickness. This particular process of casting a work roll
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takes approximately 35 min. Generally, a centrifugally cast product has a superior mechanical properties compared to con-
ventional gravitational castings [1].

Among other research papers published recently, mathematical models differ mainly in whether the flow was solved or
not. Numerical studies solving the flow dynamics were mostly using the VOF method [2] to capture the interface between
the liquid layer and the surrounding air. The simulations performed by Xu [3] were terminated at 30 s and thus; only the
filling stage of the casting could be analyzed. In the paper, the time dependent distribution of the surface temperature on
the external mold wall was obviously the main objective. The solidification model was not however mentioned in the text.
Another interesting paper by Kaschnitz [4] presented a HSC simulation of seamless pipes performed using the commercial
package FLOW3D. In order to avoid extremely low time steps, momentum equations were solved in the rotating frame of
reference. However, due to a very small wall-to-length thickness ratio, one simulation still took considerably long time
(�20 days). A commercial code (STAR-CD V4) was used also in a work done by Prasad [5]. The mesh inside the mold was
entirely constructed out of rather coarse polyhedral elements, which allowed notably large time steps (�0.01 s). Only the
continuity and momentum equations were solved for the flow. Heat transfer and solidification were not discussed in the
paper. Results from simulations showed roughly how the melt is spreading during the filling stage, however no details
are given on how the filling was imposed and whether the model could capture some free surface patterns or not. It can
be concluded that such multiphase (VOF) simulations can successfully resolve a flow field of the liquid metal during the
HSC process, however; only a limited period of time is usually concerned. Moreover, these simulations are solely covering
the topic of solidification of the liquid layer. On the other hand, several research papers can be found dealing with the com-
plete solidification of the liquid layer yet omitting the flow. The main object of consideration is a time dependent thickness of
the solidifying shell often influenced by a segregation of some element due to a density difference and extremely high cen-
trifugal pressure. For example in [6], Drenchev introduced a numerical model discussing some aspects of macrosegregation
of reinforcing particles in a metal matrix. The enthalpy equation was the primary equation to solve with thermal physical
properties determined from the segregation model. Since the flow (or the mold filling) was not included, the initial thickness
of the liquid layer was uniform and identical to the final thickness of the shell. Similar numerical models can be found in
[7,8]. The main bottleneck is the fact that the model lacks variances in the mold and shell temperatures due to the localized
filling, which in turn affects the local thickness of the solidified shell and the macrostructure pattern consequently.

In the present paper, a fruitful effort was made to develop a novel approach, which would take the flow into consideration
and still allow for a complete solidification of the shell in a reasonable computational time. The flow during the HSC process
can be characterized as a free surface flow, in which the thickness of the liquid layer is rather small compared to the length of
the mold. For this reason, it is rational to expect the momentum in the radial direction to be negligible compared to the
momentum in the axial and tangential direction. Taking the 3D Euler equations and the continuity equation leaving out
the momentum in the radial direction, integrating momentum and mass equations along the liquid height, and applying
kinematic boundary condition on the free surface one obtains the 2D shallow water equations (SWE) originally derived in
[9]. From the asymptotic series of the static pressure only the first term, the hydrostatic pressure is considered and terms
with higher derivatives are neglected. This as a hydrostatic condition is a leading order approximation to the static pressure
and is relevant for flows where a horizontal scale L is large compared to a characteristic height H. Note that no assumption is
made about amplitudes of waves on the free surface. All the nonlinearities are retained. The original SWE are strictly hyper-
bolic nonlinear PDEs. In the following text, the SWE are modified to describe the average flow dynamics of the liquid layer
inside the horizontally rotating cylinder. Next, an approximate Riemann solver is derived and carefully detailed. Several 1D
numerical tests are shown in order to demonstrate the capability of the Riemann solver. In addition, 2D numerical examples
are presented showing the simulation of the HSC process. Note that the approximate Riemann solver is used to solve the
SWE and the heat advection within the liquid layer. An additional central difference FV model is used to calculate the heat

Fig. 1. A schematic of the horizontal centrifugal casting.
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diffusion and solidification, which is not covered in the present paper. Details about the heat transfer and solidification
model are discussed in [10].

2. Theory

2.1. Original form of shallow water equations

The shallow water equations (SWE) are suitable for a numerical description of so-called gravity waves i.e. waves formed
and propagated under action of the gravitational acceleration. The SWE are typically applied in modeling of oceanography
[11] and river flows [12]. The SWE can effectively and accurately predict the speed and the amplitude of a propagating tsu-
nami, a tidal bore or any other wave until it breaks into a 3D flow structure [13]. In a 2D Cartesian coordinate system, the
continuity and momentum equations take the following form:

ht þ ðhuÞx þ ðhvÞy ¼ 0 ð1Þ
and

ðhuÞt þ hu2 þ 1
2
gh2

� �
x
þ ðhuvÞy ¼ 0

ðhvÞt þ ðhuvÞx þ hv2 þ 1
2
gh2

� �
y
¼ 0

ð2Þ

where h is the liquid height, g is the gravitational acceleration, and u, v are the mass-flow averaged velocity components in
the x- and y-direction, respectively. Note that the indices t, x, and y represent temporal and spatial derivatives. Usually, the
SWE are solved in the homogeneous form (1), (2). Sometimes, it is however necessary to include momentum source terms
such as the bed shear force, wind shear force, etc. In addition, some applications e.g. modeling of landslides require a mul-
tilayer approach. In that case, different SWE are used for each layer and coupling terms provide the desired interaction
between these layers [14].

2.2. Modified shallow water equations

The original SWE (1), (2) were modified to simulate the average flow dynamics of the liquid layer spreading inside a hor-
izontally rotating cylinder. During the observation of the real casting, the liquid melt seems to quickly pick up the speed of
the rotating mold [15]. Therefore, the choice of the rotating frame of reference is reasonably advocated and fictitious forces
such as the centrifugal force, Fc, and the Coriolis force, FC, have to be taken into account. Since h 	 R, the coordinate system
used for the derivation of the modified SWE is identical to that used in Section 2.1. In other words, the axial x, tangential h,
and radial r coordinates are mapped (Fig. 2) on the Cartesian plane ðx; h; rÞ ! ðx; y; zÞ as the following

x ¼ x; y ¼ Rh; z ¼ R� r ð3Þ
with R the radius of the cylinder. Note that this transformation is only possible when h 	 R. The centrifugal acceleration ac
acts purely in the radial direction,

ac ¼ X2ðR� zÞ ð4Þ
with 0 6 z 6 h and X the angular frequency of the mold. Like any other acceleration acting in the radial direction, also the
centrifugal acceleration ac contributes to the hydrostatic pressure p

p ¼ acqðh� zÞ ð5Þ
with h the liquid height, and q the liquid density. Then, the gradient of the hydrostatic pressure p can be added to the flux
function in (2) as the following:

ðhuÞt þ hu2 þ 1
2
X2Rh2 � 1

3
X2h3

� �
x

þ ðhuvÞy ¼ 0

ðhvÞt þ ðhuvÞx þ hv2 þ 1
2
X2Rh2 � 1

3
X2h3

� �
y

¼ 0
ð6Þ

Note that h3 	 Rh2 and therefore, the second term corresponding to the centrifugal acceleration ac can be neglected. The
momentum equations become:

ðhuÞt þ hu2 þ 1
2
X2Rh2

� �
x

þ ðhuvÞy ¼ 0

ðhvÞt þ ðhuvÞx þ hv2 þ 1
2
X2Rh2

� �
y

¼ 0
ð7Þ
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The centrifugal term 1=2X2Rh2 in (7) is the analogy to the gravity term 1=2 gh2 in (2). Despite describing the flow in a cylin-
drical geometry, note that we keep the 2D Cartesian coordinate system for the derivation of the modified SWE, which is jus-
tified by having h 	 R. To complete the fictitious force terms in (7), the Coriolis force has to be included. Assuming the radial
momentum is negligible and the cylinder rotating about its axis, only the radial component of the Coriolis acceleration aC is
nonzero

aC ¼ �2Xv ð8Þ
In addition, an assumption about the velocity profile in the radial direction is made. On the cylinder wall a no slip bound-

ary condition is considered i.e. uð0Þ ¼ 0 and vð0Þ ¼ 0. On the free surface, a zero stress boundary condition is considered i.e.
@uðhÞ=@z ¼ 0 and @vðhÞ=@z ¼ 0. Within 0 6 z 6 h, a parabolic velocity profile is constructed with the mass-flow averaged
velocity components u and v.

uðzÞ ¼ 3uzð2h� zÞ=ð2h2Þ ð9Þ
vðzÞ can be written analogously. Following the steps used for any acceleration acting in the radial direction, the gradient of
the corresponding hydrostatic pressure divided by the density q, denoted FC , reads

FC ¼ �5
2
Xhv

hx

hy

� 	
� 5
4
Xh2 vx

vy

� 	
ð10Þ

Later, it will be shown in the algorithm part that it is convenient to take a part of the Coriolis force as a flux function and
the rest leave as a source term. In addition to the fictitious forces, several more forces have to be included. Starting with the
force of gravity, one has to bear in mind the rotating frame of reference used and the rotating vector of the gravitational
acceleration ~gðtÞ consequently.

~gðtÞ ¼ ð0;�g sinðXtÞ;�g cosðXtÞÞ ð11Þ
with zero axial component and the tangential and the radial component different from zero. Taking the radial component of
acceleration first and again calculating the gradient of the corresponding hydrostatic pressure divided by the liquid density,
denoted Fg , reads

Fg ¼ �g cosðXtÞh hx

hy

� 	
ð12Þ

After adding the tangential component integrated over the liquid height h

Fig. 2. A sketch of the coordinate system transformation.
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Fg ¼ �g cosðXtÞh hx

hy

� 	
� g sinðXtÞ 0

h

� 	
ð13Þ

with t the physical time. Besides, it is no less important to examine various shear stresses that likely appear in the HSC pro-
cess. In the case of a viscous Newtonian fluid, the bed shear stress is derived from the assumption of a parabolic velocity
profile as the following:

sb ¼ sl ¼ 3l=h
u

v

� 	
ð14Þ

with l the dynamic viscosity. If sb only includes turbulent and dispersive effects, the bed shear stress takes the form

sb ¼ st ¼ qcf
ujuj
vjv j

� 	
ð15Þ

with cf the friction coefficient. In addition to the bed shear stress sb, the liquid can show other types of flow resistance such
as a yield stress syi. Different types of stresses can be lumped together by a single formula expressing the flow resistance
relation. More details about such relations can be found e.g. in [16]. Up to here, the liquid layer was in the contact with
the cylindrical wall. However, in the HSC process the solidification takes place from the cylindrical wall and therefore,
the underlying topography of the liquid layer varies in time and corresponds to the actual solid height, denoted b. The solid
height b naturally affects all the forces resulting from any acceleration acting in the radial direction.

Then, assuming the solid height b greater than zero, the centrifugal force Fc becomes:

Fc ¼ �X2Rh
hx

hy

� 	
�X2Rh

bx

by

� 	
ð16Þ

Unlike the first term applied inside the flux function (16), the second term with the gradient of the solid height b stays on
the right-hand side as a source term. The Coriolis force FC is altered by the solid height b as the following:

FC ¼ �5
2
Xhv

hx

hy

� 	
� 5
4
Xh2 vx

vy

� 	
� 2Xhv

bx

by

� 	
ð17Þ

Finally, the gravity force Fg as the last force being affected by the solid height b takes the form

Fg ¼ �g cosðXtÞh ðhþ bÞx
ðhþ bÞy

" #
� g sinðXtÞ 0

h

� 	
ð18Þ

2.3. Heat advection diffusion equation for modified SWE

The heat advection diffusion equation integrated over the liquid height h has to be solved simultaneously with the mod-
ified SWE. For the average temperature T of the liquid layer h the following transport equation holds:

hTt þ ðhuTÞx þ ðhvTÞy ¼ ðhaTxÞx þ ðhaTyÞy þ ST ð19Þ
with a the thermal diffusivity and ST the source term due to solidification and heat transfer to the mold.

2.4. Complete set of equations

The average flow dynamics of the liquid layer inside the horizontally rotating cylinder coupled with the advection diffu-
sion equation for the average temperature of the liquid layer T is mathematically described by the following system of
equations:

h

hu

hv
hT

2
6664

3
7775

t

þ

hu

hu2 þ 1
2X

2Rh2 þ 5
4Xvh

2

huv
huT

2
6664

3
7775

x

þ

hv
huv

hv2 þ 1
2X

2Rh2 þ 5
4Xvh

2

hvT

2
6664

3
7775

y

¼ S ð20Þ

with S the source terms given by:

S ¼

0
�X2Rhbx � 5

4Xh2vx � 2Xhvbx � g cosðXtÞhðhþ bÞx � 3 l
q

u
h � cf ujuj � syi

q

�X2Rhby � 2Xhvby � g cosðXtÞhðhþ bÞy � g sinðXtÞh� 3 l
q
v
h � cfv jvj � syi

q

ðhaTxÞx þ ðhaTyÞy þ ST

2
66664

3
77775 ð21Þ
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2.5. Heat diffusion, solidification, and mold filling

In addition to the average flow dynamics and heat transport of the liquid layer, the heat diffusion inside the cylinder and
the continuously solidifying liquid has to be solved with appropriate thermal boundary conditions at the walls and the free
surface. Convective and radiative heat losses are taken into account. The solidification of the liquid layer starts exclusively
from the inner wall of the cylinder as a moving planar liquid/solid interface. The 3D heat diffusion equation is solved on a
finite volume grid in the cylindrical coordinates along with the Stefan condition applied at the liquid/solid interface. The ini-
tially empty mold is continuously filled with the hot liquid approximately in the center of the mold. The heat diffusion, the
solidification, and the mold filling are out of the scope of this paper and are described in detail in [10].

3. Calculation

3.1. Approximate Riemann solver

The original SWE (1), (2) is a system of strictly hyperbolic non-linear PDEs, whereas (20) is a system of conditionally
hyperbolic PDEs due to the presence of the Coriolis term in the flux function. The benefit from applying the Coriolis term
in the flux function and not as a source term will be clearly demonstrated later by a 1D numerical test. The homogeneous
system of (20) can be symbolically written as

Q t þ AðQÞx þ BðQÞy ¼ 0 ð22Þ

with Q the vector of conserved quantities Q ¼ ½h; hu; hv ; hT 
T and A and B flux functions. The 2D set of Eq. (22) can be
broken down to two 1D sets of equations by the dimensional splitting [17].

Q t þ AðQÞx ¼ 0
Q t þ BðQÞy ¼ 0

ð23Þ

The fluxes AðQÞx and BðQÞy can be replaced by A0ðQ ÞQ x and B0ðQ ÞQ y respectively with A0ðQÞ and B0ðQÞ Jacobian matrices.

Both Jacobian matrices are diagonalizable with conditionally real eigenvalues kA;B and corresponding eigenvectors.

kA ¼ u�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h X2Rþ 5

2Xv
� �

;

r
uþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h X2Rþ 5

2Xv
� �r

; u; u
� 	

kB ¼ v þ 5
8Xh�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h X2Rþ 5

2Xv þ 25
64X

2h
� �r

; v þ 5
8Xhþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h X2Rþ 5

2Xv þ 25
64X

2h
� �r

; v; v
� 	 ð24Þ

The hyperbolicity of (20) is lost, when any of the eigenvalues (24) is a complex number. From (24), a critical velocity vc

can be calculated

vc ¼ �2=5XR; ð25Þ
below which the system of PDEs is no longer hyperbolic. In the HSC process, the order of magnitude of vc is 10 m/s, which
can hardly be reached due to the fact that the liquid rotates nearly at the same speed as the mold. Since the solution pro-
cedure is very similar for both, x and y, directions, only the y direction is detailed here. Each eigenvalue corresponds to a
finite wave speed at which the information travels through the domain. The first two waves from k are analogous to
nonlinear gravity waves in the original SWE and the last two waves are linearly degenerate. In the tangential ðyÞ direction,
the following set of equations is solved

Q t þ B0ðQÞQ y ¼ 0 ð26Þ
using an approximate Riemann solver. On each face of a 1D grid with a uniform spacing a 1D Riemann problem is solved in
order to get the wave strengths a each corresponding to its wave speed k and eigenvector r. The wave strengths are obtained
by solving the system of linear equations

ra ¼ DQ ð27Þ
with DQð¼ QR � Q LÞ the jump in Q over the cell face and r being a matrix of column eigenvectors r.

r ¼

1 1 0 0
u u 1 0
k1 k2 0 0
T T 0 1

2
6664

3
7775 ð28Þ

A linearization of u; v ; T; and h is required for both k and r. A Roe linearization [18] is applied in order to find special

averages û; v̂ ; T̂ and ĥ. The Roe averages of û; T̂ and ĥ are identical to those for the original SWE (1), (2), given by:
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û ¼
ffiffiffiffiffi
hL

p
uL þ

ffiffiffiffiffi
hR

p
uRffiffiffiffiffi

hL

p
þ

ffiffiffiffiffi
hR

p ; T̂ ¼
ffiffiffiffiffi
hL

p
TL þ

ffiffiffiffiffi
hR

p
TRffiffiffiffiffi

hL

p
þ

ffiffiffiffiffi
hR

p ; ĥ ¼ ðhL þ hRÞ=2; ð29Þ

whereas v̂ is modified by adding a correction to the original Roe average.

v̂ ¼
ffiffiffiffiffi
hL

p
vL þ

ffiffiffiffiffi
hR

p
vRffiffiffiffiffi

hL

p
þ

ffiffiffiffiffi
hR

p þ ðvR � vLÞð
ffiffiffiffiffi
hL

p
hR �

ffiffiffiffiffi
hR

p
hLÞ

2ðhR þ hLÞ
ffiffiffiffiffi
hR

p
þ

ffiffiffiffiffi
hL

p� � ð30Þ

After using the Roe averages in the matrix of eigenvectors r (28) the system of linear equations (26) is solved for the wave
strengths a.

a ¼ Dhk2 � Dhv
k2 � k1

; �Dhk1 � Dhv
k2 � k1

; Dhu� ûDh; DhT � T̂Dh
� 	T

ð31Þ

The centrifugal waves are connected by intermediate states hm and hvm (Fig. 3) as the following:

hm ¼ hL þ a1

hm ¼ hR � a2

hvm ¼ hvL þ a1k1
hvm ¼ hvR � a2k2

ð32Þ

Approximate Riemann solvers generally do not distinguish between a shock wave and a rarefaction and treat each wave
as a shock wave. To treat a subsonic or a supersonic rarefaction as a shock wave usually does not cause any troubles in the
solution especially in the case of a narrow rarefaction fan. However, if the rarefaction occurs in the transonic regime, one
widely reported problem is the entropy violation resulting in unphysical expansion shocks. In the present paper, the correct
solution is restored by applying the Harten–Hyman entropy fix [19].

The source term S (21) can be applied using several different methods. The fractional-step method [20] is a popular
method, in which we alternate between solving a homogeneous conservation law and a simple ODE. This approach is simple
to use and implement. However, if the solution is close to a steady state i.e. the gradient of the flux almost balances the
source term, which cannot be correctly captured by the fractional-step method. Moreover, the fractional-step method often
generates unphysical oscillations in the solution. In the present paper, only the source term S4 in the heat advection diffusion
equation (19) is solved using this method namely the BDF implicit method. The rest of the source term S (S1–S3) is directly
included in the Riemann solver as a singular source at each discontinuity without modifying the original solution vector of
conserved quantities Q. This approach is said to upwind the source term by means of projecting it onto the matrix of eigen-
vectors r and propagating it at the wave speeds k. As shown in Fig. 3, in the homogeneous case the centrifugal waves are
connected by the intermediate states hm and hvm, whereas in the nonhomogeneous case with the source terms the interme-
diate state hm is split into two intermediate states hLm and hRm separated by a stationary jump discontinuity corresponding to

Fig. 3. Solution of the Riemann problem at y ¼ 0 without the source term S3. Discontinuities k1 and k2 are connected by constant intermediate states hm and
hvm .
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the source term (Fig. 4). The momentum is conserved through the stationary discontinuity meaning that the centrifugal
waves k1 and k2 are still connected by a single intermediate state hvm (32), however modified by the effect of the source
term. In the tangential ðyÞ direction, the following set of nonhomogeneous equations is solved.

Q t þ B0ðQÞQ y ¼ ½0 0 S3 0 
T ð33Þ
The wave speeds k remain unchanged, while the source strengths b are added to the wave strengths a

b ¼ S3
ðk2 � k1Þk1 ; � S3

ðk2 � k1Þk2 ; 0; 0
� 	T

ð34Þ

The intermediate states hLm, hRm; and hv�
m become

hLm ¼ hL þ a1 þ b1

hRm ¼ hR � a2 � b2

hv�
m ¼ hvL þ a1k1 þ b1k1

hv�
m ¼ hvR � a2k2 � b2k2

ð35Þ

Even in the less complex case, without the source terms, a Riemann solver linearized using the Roe average can fail com-
pletely. It can give a nonphysical solution such as a negative liquid height (h < 0) especially when the solution is close to a
vacuum state. Using modified wave speeds k defined according to HLLE solver, which is positively conservative, is a possible
remedy. Here, a different approach was however employed in which a minimum liquid height hmin was used to identify a
threshold for a dry cell. Then, any h < hmin and the corresponding velocity v were set to zero when solving the Riemann prob-
lem. Note that this procedure is used to determine the solution of the Riemann problem. It does not modify the vector of
conserved quantities Q . This approach has been recently advocated e.g. in [21]. When dealing with the source term in
(33), the positivity of both, hLm and hRm, needs to be checked and an adequate numerical limit has to be applied. In Fig. 5,
the limiting strategy is shown for hLm < 0. The source strength b1 has to be limited as the following

b1 ¼ �hm; b2 ¼ �b1k1=k2 ð36Þ
Similarly, in case that hRm < 0 the source strength b2 is modified

b2 ¼ hm; b1 ¼ �b2k2=k1 ð37Þ
In addition to the numerical limit due to the occurrence of the negative height [22], a physical limit is applied to prevent

incorrect evaluation of the friction source term [16] based on the fact that none of the friction terms cannot change the sign
of the intermediate state hvm (32). Therefore, in case that ðhvmÞðhv�

mÞ < 0 the following physical limit has to be applied.

b1 ¼ �hvm=k1; b2 ¼ hvm=k2 ð38Þ

Fig. 4. Solution of the Riemann problem at y ¼ 0 with the source term S3 as a stationary discontinuity. However, the stationary discontinuity appears only
in the liquid height h, separating intermediate states hLm and hRm . In the tangential momentum hv still a single intermediate state hv�

m exists altered by the
effect of the source term S3.
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3.2. Wave-propagation algorithm

After solving the Riemann problem at each face of the cell in the tangential ðyÞ direction, the complete information about
the wave speeds k (24), the matrix of eigenvectors r (28), the wave strengths a (31), and the source strengths b (34) is
obtained. To update the solution it is straightforward to apply the Godunov’s explicit updating formula, which is basically
the first order accurate upwind method. To reconstruct the vector of quantities in a cell ci;j only waves entering this cell
are used to update the solution, whereas waves leaving the cell ci;j have no effect. After performing nþ 1 time steps Dt,

the vector of quantities ðQÞnþ1
i;j reads

ðQÞnþ1
i;j ¼ ðQÞni;j �

Dt
Dy

BþðDQÞni;j�1=2 þ B�ðDQÞni;jþ1=2

� �
ð39Þ

with Dy the grid size in the tangential direction, BþðDQÞni;j�1=2 the right going fluctuations, and B�ðDQÞni;jþ1=2 the left going fluc-
tuation corresponding to the waves entering the cell ci;j from the left and right respectively, given by the following formulas

BþðDQÞni;j�1=2 ¼
X
p:kp>0

kprpðap þ bpÞ

B�ðDQÞni;jþ1=2 ¼
X
p:kp<0

kprpðap þ bpÞ
ð40Þ

evaluated at the cell faces f i;j�1=2 and f i;jþ1=2 respectively. Although the Godunov’s method is non-dispersive and does not pro-
duce phase errors in treating the wave speeds, it shows a great deal of a numerical diffusion. In order to avoid the numerical
diffusion and dispersion at the same time, so-called high resolution (HR) corrections with flux limiters can be applied,
increasing the order of accuracy by assuming a piece-wise linear Q instead of piece-wise constant. On smooth solutions
the HR corrections are second order accurate, while at sharp discontinuities, where the flux limiters are applied in order
to avoid an overshooting (or dispersion), it is only first order accurate. One of the advantages of this approach is that each
wave is upwinded and limited separately which contributes significantly to the overall accuracy of the algorithm. The HR
corrections are added to the Godunov’s updating formula (39) as the following:

ðQÞnþ1
i;j ¼ ðQÞni;j �

Dt
Dy

BþðDQÞni;j�1
2
þ B�ðDQÞni;jþ1

2

� �
� Dt
Dy

ðGÞni;jþ1=2 � ðGÞni;j�1=2

� �
ð41Þ

with G the correction term calculated at f i;j�1=2 and f i;jþ1=2 takes the form

G ¼ 1
2

X4
p¼1

jkpj 1� Dt
Dy

jkpj
� �

rpðap þ bpÞ/ðhpÞ ð42Þ

with /ðhpÞ the limiter function located within the TVD region [23]. In the present model, the MC flux limiter was considered
[24]. The stability region is controlled by the convective limit CFL (Courant–Friedrichs–Lewy) [25] and the time step Dt is
determined as the following:

Dt ¼ CFLDy=maxjkpj ð43Þ
In case that friction terms (14), (15) are used, CFL 6 1=2, else CFL can be increased up to 1.

4. Results and discussion

4.1. Grid size sensitivity study

The grid size sensitivity study was performed on a 1D grid, 2pR long, with a uniformly spaced grid points (100, 400, or
1000), aligned with the tangential direction i.e. with periodic boundary conditions applied. Eq. (33) was solved without the

Fig. 5. Negative liquid height h (hatched region) generated by the source strength b1. A numerical limit b1 ¼ �hm applied, forcing hLm to 0.
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heat advection, the Coriolis force, and the source term S except of the term �X2Rhby corresponding to the part of the
centrifugal force due to the variable topography b. The chosen initial liquid height h has a parabolic shape given by

hðy; t ¼ 0Þ ¼ f ðyÞ if f ðyÞ P 0
0 otherwise

�
ð44Þ

with f ðyÞ ¼ 0:1� 5ðy� 1:8Þ2. Also the solid height b has initially a parabolic shape

bðy; t ¼ 0Þ ¼ gðyÞ if gðyÞ P 0
0 otherwise

�
ð45Þ

with gðyÞ ¼ 0:02� 1ðy� 1:0Þ2.
The initial momentum of the liquid layer is zero (hvðy; t ¼ 0Þ ¼ 0). During t > 0, the parabolic liquid column collapses

with two shocks propagating to the left and right. The shocks travel through the periodic extremities, pass each other
and reflect from the solid obstacle. After 10 s corresponding to multiple reflections of the shocks from the solid obstacle
(approximately 20 reflections), the free surface pattern is compared for each grid size. From Fig. 6, it is obvious that after
10 s only a single moving discontinuity remains in the solution. For a larger number of grid points the wave speed error
can be neglected.

4.2. Preserving steady state over variable topography

It is well documented that the fractional-step methods for applying source terms can produce inaccurate results
especially when the solution is close to a steady state. In the present algorithm, the source terms are however completely
embedded inside the approximate Riemann solver and therefore, the well-balancing of the source term S is maintained. A
typical test was performed on the lake in rest with a variable topography b. The same equations, the same grid (400 grid
points), and initial conditions as in Section 4.1 were used for this test except of the initial distribution of the liquid height,
which was given by

hðy; t ¼ 0Þ ¼ 0:4� bðy; t ¼ 0Þ ð46Þ
In Fig. 7, the y-axis on the left and right shows the total height and velocity, respectively. At t ¼ 10 s, the velocity mag-

nitude is everywhere nearly zero, within the round-off error of the algorithm used.

4.3. Stop-and-go mechanism

Although the liquid layer is usually modeled as a Newtonian fluid, a more complicated rheological model might be
required when the liquid comprises e.g. a mixture of the liquid metal and free-floating equiaxed crystals. The stop-and-
go mechanism is applicable to a non-Newtonian liquid which refuses to flow until a certain level of stress, the yield stress
sy, is exceeded. Thus by applying a sufficiently large yield stress sy in the source term S, the algorithm should be capable of
stopping a moving liquid front, all velocities should ultimately decay to zero. The verification of the stop-and-go mechanism
was performed on a collapsing parabola given by (44) with f ðyÞ equal to

f ðyÞ ¼ 0:05� 5ðy� 1:2Þ2 ð47Þ

Fig. 6. Grid size sensitivity study showing a wave speed error for different number of grid points (100, 400, and 1000 g.p.).
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Other parameters and settings were the same as in Section 4.1 except that bðy; t ¼ 0Þ ¼ 0. The yield stress sy was defined
using the following formula

sy ¼ X2R tanðcÞ; ð48Þ
meaning that the front of the liquid layer in rest with the density q ¼ 1 should be inclined by angle c½rad
 at the liquid height
h ¼ 1. In other words, the liquid does not move and the centrifugal force exactly balances the yield stress
(qX2Rh@h=@y ¼ �sy), which is illustratively shown in Fig. 8.

Here, in the numerical test the angle c and the density q were set to 1� and 6800 kg/m3 respectively. In Fig. 9, the initial
conditions are shown in the upper left corner. In addition, the actual shape of the free surface and the corresponding velocity
field is shown at t ¼ 0:07 s. Despite a nonzero slope of the free surface in the central part, the liquid already stopped moving
there, whereas the fronts still propagate to the left and right. Finally, a steady state is shown at t ¼ 0:5 s, at which the cen-
trifugal pressure exactly balances the effect of the yield stress sy and therefore the liquid layer shows no movement.

4.4. Coriolis force effect

The Coriolis acceleration ac has the only nonzero component in the radial direction, pushing the liquid either towards or
outwards the cylinder wall depending on whether the liquid velocity v is positive or negative. The best demonstration of the
Coriolis effect is again on the collapsing parabola given by (44) with f ðyÞ equal to

f ðyÞ ¼ 0:01� 5ðy� 1:2Þ2 ð49Þ
Other parameters and settings were the same as in Section 4.1 except that bðy; t ¼ 0Þ ¼ 0. In Fig. 10, the dashed lines cor-

respond to the case with the Coriolis force at t ¼ 0:07 s. For a better comparison, also the case without the Coriolis force is
presented by solid lines. The Coriolis force obviously breaks the symmetry of the collapsing parabola. The liquid naturally
propagates faster to the right than to the left.

As shown in Section 2.4, the Coriolis force is put inside the flux function, on the left-hand side of (26), instead of applying
it fully as a source term. Both approaches have however their pros and cons. The Coriolis force inside the flux function can
turn the eigenvalues from real to complex numbers, meaning that the hyperbolicity can be lost. On the other hand, there is
no need for the space integration and any physical or numerical limit, which is generally required when dealing with source

Fig. 7. Preserving steady state over variable topography (a lake in rest). Magnitudes of velocity are nearly zero, within the bounds of the round-off error.

Fig. 8. A schematic of the force balance between the centrifugal force and the yield stress for the liquid height h and the liquid density q.
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terms. When treating the Coriolis force as a source term, the hyperbolicity is strictly preserved, however; the integration is
not clear because of the appearance of the velocity v in the source term. These two approaches are compared to each other in
Figs. 11 and 12. The initial conditions is again a liquid parabola given by (44) with f ðyÞ equal to

f ðyÞ ¼ 0:02� 0:25ðy� 1:5Þ2 ð50Þ
In the early stage (t ¼ 0:06 s) of the liquid spreading shown in Fig. 11, both approaches give almost identical results.

However, as the time t proceeds, spurious oscillations occur in the case of the Coriolis force applied as a source term and
gradually grow in time. Although the spurious oscillations extend over the whole domain, the wave speed error is still neg-
ligible. See the comparison in Fig. 12 at t ¼ 5 s.

4.5. Heat advection test

The average temperature T of the liquid layer is required for the heat diffusion and solidification model mentioned in
Section 2.5. Although hT is a conserved quantity (not T), the algorithm should be also able to recover T without any over/
undershooting especially near the dry cells. The heat advection test was performed on the collapsing parabola identical to
that used in Section 4.4. The average temperature T of the liquid was set to 100 �C. In order to generalize the numerical test,
the parabola was collapsing over a solid hump b given by (45) with gðyÞ equal to

gðyÞ ¼ 0:005� 0:25ðy� 0:8Þ2 ð51Þ
In Fig. 13, the liquid is just overtopping the hump b at t ¼ 0:08 s and the temperature T is obviously advected correctly,

without any over/undershooting.

Fig. 9. Initially static liquid parabola collapsing until the balance between the centrifugal pressure and the yield stress sy restored.

Fig. 10. Effect of the Coriolis force. Dashed and solid lines represent the case with and without the Coriolis force at t ¼ 0:07 s.
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4.6. Full simulation

In addition to the 1D numerical tests discussed in Sections 4.1–4.5, the full set of equations (20) (not only the tangential
direction) was solved on a 2D Cartesian grid with the axial and tangential dimension corresponding to the cylinder length L
and the cylinder circumference 2pR respectively. Eq. (20) were simultaneously solved with the heat diffusion and

Fig. 11. Coriolis force as a source (the solid line) and as a part of the flux function (the dashed line) at t ¼ 0:06 s.

Fig. 12. Coriolis force as a source (the solid line) and as a part of the flux function (the dashed line) at t ¼ 5 s.

Fig. 13. Heat advection test of a collapsing liquid parabola with the constant temperature of T ¼ 100 �C at t ¼ 0:08 s. The solution is free of under-
overshooting in the temperature T , especially near dry cells.
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solidification model mentioned in Section 2.5. In Fig. 14, the upper and the lower surface represent the actual shape of the
free surface of the liquid and the liquid/solid interface respectively at 20 s. Starting with the liquid/solid interface, approx-
imately in the center of the mold (cylinder), exactly bellow the footprint of the filling jet (Fig. 1), the solidification is sup-
pressed due to the newly incoming hot liquid and a trench is formed around the circumference. The actual position of
the filling jet is shown as a solid circle with a dashed arrow signifying the apparent velocity of the filling jet. As approaching
both extremities of the mold, the solidification rate increases due to the larger distance from the hot filling and increasing
radiative heat losses due to the growing view factor between the free surface and the mold opening. The liquid/solid inter-
face continues growing, until the liquid solidifies completely. In the same figure (Fig. 14), the waves are induced by the filling
jet and travel mainly in the axial direction, slightly inclined by the effect of the apparently traveling filling jet. The spacing
between waves is larger in the vicinity of the filling jet, where the liquid height h is large. On the contrary, the wave spacing
is small, when the liquid h is small. The wave spacing is directly linked with the speed of sound, which is proportional to the
square root of the liquid height h.

In Fig. 15, the 2D plot shows a time evolution of both, the liquid/solid interface and the free surface, along the axial direc-
tion and at the constant tangential position (y ¼ 1 m). The liquid/solid interface is not symmetric especially due to the off-
centered filling.

5. Conclusions

During the HSC process, a uniform film of liquid layer is formed around a circumference of the cylindrical mold horizon-
tally spinning around its axis of rotation. The liquid layer is not however motionless which is especially caused by the local-
ized filling, the uneven profile of the liquid/solid interface interacting with the gravity force. The liquid flow can be grouped
in the category of free surface flows, in which the momentum along the liquid height h is negligible compared to momentum
components in other directions, the axial and tangential. Instead of solving a complete set of Navier–Stokes equations, we
integrate them over the liquid height h and apply the kinematic boundary condition on the free surface. Only the first order

Fig. 14. Contours of the free surface, disturbed by wave patterns, and the liquid/solid interface with the trench formed due to the localized position of the
filling jet. At t ¼ 20 s, the actual position and the apparent velocity of the filling jet are shown as a solid circle and a dashed arrow.

Fig. 15. A time evolution of the free surface (dashed lines) and the liquid/solid interface (solid lines) along the axis of the cylindrical model at the tangential
position y ¼ 1 m at different times.
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approximation of the static pressure, the hydrostatic pressure, is considered, leading us to the set of modified shallow water
equations (SWE). The modified SWE derived in the present paper include forces such as the centrifugal force, the Coriolis
force, the bed shear stress, the yield stress, turbulent and dispersive effects, and variable topography representing the liq-
uid/solid interface. Unlike the original set of SWE, the modified SWE belong to the group of conditionally hyperbolic nonlin-
ear PDEs. In the hyperbolic system shocks and rarefactions propagate at finite wave speeds. In the present paper, an
approximate Riemann solver was developed the modified SWE together with the heat advection equation integrated over
the liquid height h. To update the solution in time, we adopted explicit updating formulas originally developed by
Godunov. The Godunov’s method is only first order accurate and due to the piece-wise constant approximation of data
the method possesses a significant numerical diffusion. We applied so-called high resolution corrections with flux limiters
(MC limiter) so that the order of accuracy was formally increased up to the second order. To update the solution in two space
dimensions, we used the simplest Godunov’s splitting algorithm to keep the efficiency of the code. In the approximate
Riemann solver, the eigenstructure of the SWE was explicitly calculated from the Jacobian matrices linearized with the help
of Roe averages. A special correction for the velocity related to the Coriolis force had to be applied in order to fulfill the Roe’s
linearization. The algorithm was however not depth-positive i.e. negative liquid heights can occur. To prevent negative
heights, a minimum liquid height hmin, a certain threshold, was defined below which all quantities were set to zero when
solving the Riemann problem. All the source terms were included in the Riemann solver as a stationary wave. When a tran-
sonic rarefaction was detected, the Harten–Hyman entropy fix was applied in order to prevent expansion shocks. The sta-
bility of the explicit algorithm was fully controlled by the convective limit CFL. If a rheological model is included, the
algorithm is stable for CFL 6 1=2. Otherwise, it is possible to use values of CFL up to 1.

The capabilities of the algorithm were tested on several 1D simulation. In the grid size sensitivity study (Section 4.1), the
wave speed error was qualitatively compared for three different grid sizes, showing only slight differences especially for a
larger number of grid points (400 and 1000 g.p.). In Section 4.2, preserving of steady state was verified on the benchmark –
the lake in rest with the variable topography b. All velocities were within the round-off error. Note that this is a typical exam-
ple where the fractional step method for applying a source term would fail. A next 1D numerical test (Section 4.3) was
focused on the stop-and-go mechanism applicable when e.g. a yield stress sy is considered. An initially patched parabola
was collapsing due to the centrifugal force winning over the effect of the yield stress sy until a balance between them
was restored and a new static shape of the liquid was formed. The main idea of applying any type of friction is a physical
limit saying that the friction cannot change the sign of the momentum within each intermediate state (hum and hvm). In
Section 4.4, the effect of the Coriolis force was described by means of 1D simulation performed in the tangential direction.
Two cases, with and without the Coriolis force, were compared. When only the centrifugal force is applied, the liquid is nat-
urally spreading in a symmetrical manner. Once the Coriolis force comes in the play, the liquid propagates faster when mov-
ing in the positive (rotational) direction and vice versa. In addition, a test was performed demonstrating how important is
putting the Coriolis force on the left-hand side of the momentum equation and treat it as a part of the flux function. After
letting the parabola to collapse, certain waves survive for a very long time because no other force makes them disappear. In
the case with the Coriolis as a source term, parasitic oscillations pollute the solution, which does not happen with the
Coriolis inside the flux function. The last 1D test (Section 4.5) targeted on testing the performance of the heat advection
model fully coupled with the modified SWE, both solved using the Riemann solver. Solving the heat advection equation along
with other transport equations (the SWE) using a Riemann solver is only sporadically discussed in the literature. The behav-
ior of the algorithm was checked especially near dry cells, where the over/undershooting in the temperature T would be
expected the most. The temperature field was advected correctly, including the region near dry cells. Finally, all the partic-
ular properties of the proposed algorithm discussed in Sections 4.1–4.5 were successfully combined in the simulation of the
HSC process, a real industrial application (Section 4.6).
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ABSTRACT 
 
An approximate Riemann solver was developed for solving the shallow water equations (SWE) and 
energy transport describing the average flow dynamics of two liquid layers spreading inside a hori-
zontally rotating cylinder. The numerical model was particularly developed for simulating the hori-
zontal centrifugal casting (HSC) of the outer layer and the intermediate layer of a work roll. The SWE 
were derived in the rotating frame of reference; therefore, fictitious forces (the centrifugal force and 
the Coriolis force) were considered. In addition, other forces such as the bed shear force, the force of 
gravity, and forces arising from the variable liquid/solid interface were taken into account. The mould 
filling was realized through a Gaussian mass source applied in the centre of the mould. In addition to 
the flow solver, the enthalpy equation with the appropriate boundary conditions was solved inside the 
mould, end cores, and the casting. The solidification progress was studied by means of plotting the 
time dependent solid shell thickness at selected locations. The calculations were successfully vali-
dated with the pyrometer and thermo-camera measurements.  
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INTRODUCTION 
In the present paper a numerical simulation of 
the horizontal centrifugal casting (HSC) of the 
outer layer and the intermediate layer of a work 
roll is concerned. In short, the HSC process can 
be outlined as the following: An initially empty 
cylindrical mould is from inside painted with the 
refractory material and laid on four carrying roll-
ers, from which two coaxial rollers are driven 
and the other two are driving. Prior to the cast-
ing, the mould is preheated to a desired temper-
ature and the driving rollers gradually bring the 
mould into the rotational motion. When the de-
sired rounds per minutes is reached the casting 
of the outer shell can start. A liquid metal is 
poured from the crucible via the statically 
mounted runner approximately in the centre of 
the mould. Due to high centrifugal forces 
(>100g) the liquid metal spreads uniformly and 

generates a sleeve of constant thickness. The so-
lidification front proceeds from the relatively 
cold wall of the mould. After some period of 
time, the outer layer is partially solidified and the 
pouring of the intermediate layer begins. The 
centrifuging continues until the solidification is 
completed inside both layers. 

Among other research papers published re-
cently, numerical models differ mainly in 
whether the flow was solved or not. All research 
papers we mention here deal with a single layer 
casting i.e., in none of them the casting of two 
layers is discussed. Most of the numerical stud-
ies solving the flow dynamics used the VOF 
method [1] to capture the interface between the 
melt and the surrounding air. Xu [2] introduced 
an interesting numerical model of the HSC pro-
cess. The full set of Navier-Stokes equations was 
solved along with the heat advection-diffusion 
equation. The main focus of the paper dwells in 
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studying different gating systems for the filling. 
Simulations were terminated at 30 seconds, 
when the filling was completed. The solidifica-
tion model is not discussed in the paper. Next in-
teresting paper on the HSC process namely on 
the centrifugal casting of seamless pipes was 
written by Kaschnitz [3]. In this case, a commer-
cial package FLOW-3D was used. In order to 
avoid extremely small time steps, momentum 
equations were solved in the rotating frame of 
reference. However, due to a very small wall-to-
length thickness ratio, one simulation still took 
considerably long time (~20 days).  

A commercial package (STAR-CD V4) was 
also used in a paper by Keerthiprasad [4]. An ef-
fort was spent on comparing the cold flow simu-
lations of the single layer HSC with the experi-
mental castings. The mesh inside the mould was 
entirely constructed out of rather coarse polyhe-
dral elements, which allowed notably large time 
steps (~0.01 s). Only the continuity and momen-
tum equations were solved for the flow. Heat 
transfer and solidification were not discussed in 
the paper.  

Results from simulations showed roughly how 
the melt is spreading during the filling stage, 
however no details are given on how the filling 
was imposed and whether the model could cap-
ture some free surface patterns or not. From the 
literature survey it can be concluded that when 
the main objective of the research paper is a sim-
ulation of the free-surface, the heat transfer and 
the solidification are usually ignored. The main 
reason for this is different characteristic times for 
the free-surface motion and the solidification. In 
addition to free-surface simulations, several re-
search papers can be listed, which neglect the 
flow, do not consider mould filling, or assume a 
static flat free-surface. Such works generally tar-
get on simulation of the solidification of the 
whole liquid layer, very often accompanied by a 
segregation of some element due to a density dif-
ference and extremely high centrifugal pressure. 
For example in [5], Drenchev introduced a nu-
merical model discussing some aspects of mac-
rosegregation of reinforcing particles in a metal 
matrix. The enthalpy equation was the primary 
equation to solve with thermal physical proper-
ties determined from the segregation model. 
Since the flow (or the mould filling) was not in-
cluded, the initial thickness of the liquid layer 

was uniform and identical to the final thickness 
of the shell. Similar numerical models can be 
found in [6, 7]. The main bottleneck is the fact 
that the model lacks variances in the mould and 
shell temperatures due to the localized filling, 
which in turn affects the local thickness of the 
solidified shell and the macrostructure pattern 
consequently. 

In the present paper, we introduce a novel ap-
proach for modelling of average flow dynamics 
of both, the outer and the intermediate, layers. 
These two layers are immiscible. Here, the two 
layer model is an extension of the single layer 
model detailed e.g. in [8, 9]. Moreover, the top 
layer has lower density than the bottom layer. In-
stead of solving the full set of Navier-Stokes 
equations with the advection equation for the 
volume fraction (VOF method), which is inher-
ently computationally expensive, we make as-
sumption that the flow obeys so-called two layer 
shallow water equations (SWE). The flow during 
the HSC process can be characterized as a free 
surface flow with the moving interface between 
two layers, in which the thickness of each layer 
is rather small compared to the length of the 
mould. For this reason, it is rational to expect the 
momentum in the radial direction to be negligi-
ble compared to the momentum in the axial and 
tangential direction. Taking the 3D Navier-
Stokes equations and the continuity equation 
leaving out the momentum equation in the radial 
direction, replacing the pressure term with the 
hydrostatic pressure, and integrating momentum 
and continuity equations along the liquid height 
of each layer, and applying kinematic boundary 
condition on the free surface and at the interface 
between two layers one obtains the two layer 2D 
shallow water equations [10]. The two layer 
SWE are conditionally hyperbolic non-linear 
PDEs. In our case the range of parameters pre-
serves hyperbolicity and for this reason, we cal-
culate the fluxes using the approximate Riemann 
solver. The two layer SWE are coupled with the 
heat advection-diffusion equation containing the 
latent heat source term due to solidification. The 
heat diffusion is also solved with the appropriate 
thermal boundary conditions inside the mould 
and both end cores. The numerical simulation is 
performed with the industrial input parameters. 
Results are validated against pyrometer and 
thermo-camera measurements. 
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1. THEORY 
1.1 Two layer shallow water equations 
In the present paper, the two layer shallow water 
equations are derived only in one dimension 
namely the axial direction  (Fig. 1). By replac-
ing the pressure term in the 2D Navier-Stokes 
equations for the axial and the radial direction 
with the hydrostatic pressure, applying the kine-
matic boundary condition at the free-surface and 
at the interface between each layer, and integrat-
ing both momentum equations and the continuity 
equation over the height of each liquid, one 
yields the set of two layer one dimensional shal-
low water equations in the axial direction. The 
hydrostatic pressure is equivalent to the centrif-
ugal pressure. In the plane defined by the radial 
and the axial direction, the Coriolis force as a 
next fictitious force does not have any non-zero 
component, as long as the rotation axis is coinci-
dent with the mould axis. Therefore, the Coriolis 

force does not appear in the momentum equa-
tions. The continuity equations for the outer 
layer (denoted by subscript 1) and the intermedi-
ate layer (denoted by subscript 2) take the form 

 0)()( 111 xt uhh  (1) 
 0)()( 222 xt uhh  (2) 

where h  is the height of a layer, and u  is the 
mass-flow averaged velocity of the correspond-
ing layer. In this paper, the notation t)(  stands 
for the partial time derivative and x)(  for the de-
rivative in x-direction. Note that since 21 hh
R , the axial and radial coordinates are mapped 
onto the Cartesian plane rx, → zx,  as the fol-
lowing 

 rRzxx    and    (3) 
 

 

 
Figure 1. Schematic of the HSC process depicting two liquid 
layers and solidified shell denoted by and , respec-
tively. 

 
The momentum equations for each layer are 
given by 
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with  the angular frequency of the mould, R  
the inner radius of the mould, b  is the height of 
the solid layer growing from the mould wall, 
the density of the liquid layer, b  and i  the bed 
shear stress and  the shear stress between the lay-

ers both derived by assuming a parabolic veloc-
ity profiles in each layer. The bottom shear stress 

b  and the shear stress i  between the layers are 
expressed by the following formulas 

 1
1

13 u
hb  (6) 

 12
2

23 uu
hi  (7) 

The momentum exchange between two layers is 
thus realized through two mechanisms. The first 
mechanism is hydrostatic, meaning that any 
slope of the layer 1 will influence the layer 2 and 
vice versa. The second mechanism is kinetic, 
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meaning that the moving layer 1 will drag the 
layer 2 and vice versa. Note that the two layer 
SWE are only applicable when the density of the 
layer 1 is larger than the density of the layer 2 at 
the top 21 . When 21  the heavier liq-
uid at the top will penetrate the lighter liquid at 
the bottom via the mechanism of Kelvin-Helm-
holtz instability [11]. In the HSC process, it is 
naturally desired that the density of the outer 
layer 1 is larger than the density of the interme-
diate layer 2 . 

1.2 Heat advection equation for each layer 
Due to the fact that the horizontal velocity field 
is solved by the SWE, the advection of the tem-
perature field has to be solved correspondingly. 
In other words, the mass-flow averaged veloci-
ties 1u  and 2u  are used to advect the temperature 
field averaged over the height of each layer. For 
each layer we therefore solve the advection 
equation given by: 

 0)()( 11111 xt TuhTh  (8) 
 0)()( 22222 xt TuhTh  (9) 

where T  is the temperature averaged over the 
liquid height. Note that the heat advection is 
solved together with the two layer SWE. The 
heat diffusion inside layers, the mould, and the 
end cores is solved in a fractional step approach 
along with the solidification. 

1.3 Heat diffusion, solidification, and mould fill-
ing 
After the average flow dynamics is solved to-
gether with the heat advection in each layer, the 
heat diffusion is solved with the appropriate 
thermal boundary conditions (Table 1). A refrac-
tory coating applied in the contact between the 
casting and the mould is taken into account via a 
thin wall model. In order to correctly mimic the 
latent heat release due to the solidification, the 
source of the latent heat is added to the heat dif-
fusion equation, which written in the cylindrical 
coordinates takes the following form: 

 trrrtp LfTkrTc )()( 1  (10) 

with r  the radial distance from the mould axis, 
k  the thermal conductivity of the actual material, 
L  the latent heat, and f  the liquid fraction. The 
term with the latent heat is potentially a stiff 

source term and special care has to be taken in 
order to avoid numerical instabilities and too ex-
pensive iterative algorithms. In the present paper 
we adopted an approach by Voller [12], which 
usually requires only a few iterations (~3) to con-
verge the solution. For each layer a different liq-
uid fraction-to-temperature relationship was 
used to mimic solidification of different materi-
als (shown later in Sec. 3). After the temperature 
field is obtained, the solid height b  is updated by 
using the new position of the solidification front 
corresponding to the isoline of solidus tempera-
ture. Note that the solid height b  appears in the 
SWE, Eqs. (4)-(5). 

The pouring of the outer and the intermediate 
layer is realized through the mass source term 
with the normal distribution placed in the mould 
centre. The initial momentum of newly incoming 
mass can be neglected when compared to the 
centrifugal pressure immediately exerted on the 
liquid body. 
 
2. CALCULATION 
All equations mentioned in Sec. 1 were solved in 
finite volume framework. The implicit backward 
Euler method [13] was applied to discretize the 
heat diffusion Eq. (10). The symmetric linear 
system of equations was solved with the help of 
the preconditioned conjugate gradient solver. 
The latent heat source term was split into an im-
plicit and explicit part, which very much im-
proved the convergence. Only a few iterations 
were necessary in order to drop residuals below 
the specified value. 

Due to the hyperbolicity of the SWE, explicit 
updating formulas were used namely the first or-
der Godunov’s scheme with the high resolution 
corrections (MC limiter) [14]. The fluxes were 
determined from the approximate solution of the 
Riemann problem. 

1.3 Approximate Riemann solver + fractional 
stepping 
Symbolically, the SWE can be written as the fol-
lowing 

 SQAQ xt )(  (11) 

where Q  represents the vector of conserved 
quantities ,,,,,, 2222211111

TThuhhThuhhQ A
the vector of flux functions, and S the vector of 
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source terms. Eq. (11) can be rewritten in the fol-
lowing form 

 SQQAQ xt )('  (12) 

where )(' QA  is the Jacobian matrix with condi-
tionally real eigenvalues. For the two layer 
SWE, a direct evaluation of the eigenspace is 
prohibitively very expensive. Instead, an ap-
proximation is more favourable. In the present 
paper, we expand about differences in the layer 
speeds and calculate first order approximations 
of eigenspeeds as 
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where 2,1 and 4,3  represent the external and in-
ternal eigenspeeds, respectively. The external ei-
genspeeds correspond to the speeds of free-sur-
face waves induced by the centrifugal pressure, 
whereas the internal waves are much smaller and 
correspond to waves due to the density and the 
velocity difference. The eigenspeeds 6,5  repre-
sent linearly degenerate waves passively carry-
ing jumps in 11Th  and 22Th . From Eq. (14) the 
condition  for the loss of hyperbolicity can be 
calculated 

 1
1 21

2

2
12

1

2 hhR
uu  (16) 

which is nearly the inverse of the Richardson 
number defining the transition to Kelvin-Helm-
holtz instability [15]. In the present paper, the 
hyperbolicity of Eq. (12) is however preserved 
and thus, an approximate Riemann solver can be 
used. By using the Jacobian matrix )(' QA  from 
Eq. (12), the eigenvalues, Eqs. (13)-(14), and op-
eration of linear algebra, the space of eigenvec-
tors can be obtained. The following system of 
linear equations has to be solved for each eigen-
speed  in order to calculate corresponding col-
umns of eigenvector space R . 
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The final form of each of the eigenvectors is 

 TTT 25431 ,,,,,1r . (18) 

Knowing the complete eigenspace of the hyperbolic 
system, Eq. (12), the strength of each wave  can be 
obtained by solving the linear system of equations 
[16] 

 QRα  (19) 

with Q  being the jump of conserved quantities 
Q  over the face of a finite volume element. Af-
ter that, the fluxes can be obtained [17]. So far, 
only the homogeneous case of Eq. (11) was dis-
cussed )0(S . The first two terms on the right 
hand side of Eqs. (4) and (5) are upwinded by 
means of projecting it onto the matrix of eigen-
vectors and propagating it at the eigenspeeds, 
which result in a stationary discontinuity. Close 
to the numerical cells that are nearly empty it is 
crucial to apply a physical limit preventing from 
the occurrence of negative heights. The station-
ary discontinuity modifies the wave strengths of 
the homogeneous case, which in turn changes the 
resulting fluxes. A fractional stepping had to be 
applied for the remaining terms of the source S
, namely all friction terms, as the following 
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11 )( ib
tuh  (20) 
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The main reason for this is that it is not yet clear 
how to handle physical limits. As long as the fric-
tion terms stay weak compared to the convective 
and the centrifugal pressure terms, the fractional 
stepping will maintain a reasonable accuracy. 
 
3. RESULTS AND DISCUSSION 
The numerical model was verified against the 
pyrometer and the thermo-camera measurements 
conducted during the industrial HSC process. 
The important dimensions and the main process 
parameters are summarized in Table 1. The 
physical properties are listed in Table 2. The sim-
ulation was performed on a structured grid with 
around 20 000 volume elements. The calculation 

79



 

- 6 - 

was terminated by the user at 3300 s of physical 
time. 

Table 1. Dimensions and process parameters 
Parameter value  unit 
Length of mould 3.78 m 
Inner radius of mould 0.424 m 
Mass flow rate of outer layer 75 kg/s 
Start of filling outer layer 0 s 
Mass flow rate of outer layer 9.7 kg/s 
Ambient temperature 25 °C 
HTCa at outer surfaces 40 W/m2/K 
HTC at roller tracks 500 W/m2/K 
a heat transfer coefficient 

 
Table 2. Physical properties of materials 
 Outer 

layer 
Intermediate 
layer 

mould end core coating 

Specific heat [J/kg/K] 430 450 490 650  
Thermal conductivity [W/m2/K] 22 25 58.6 2.3 2.5 
Density [kg/m3] 7700 7200 7850 2200  
Latent heat [kJ/kg] 280 200 a   
Dynamic viscosity [Pa s] 0.006 0.006    
a blank entries are irrelevant i.e. not used in the numerical model 

 
The simulation results were compared with the 
pyrometer and thermo-camera measurements. 
The pyrometer was used to record the free-sur-
face temperature of the casting. The aiming po-
sition of the pyrometer was located approxi-
mately in 1/3rd of the mould length. In addition, 
the thermo-camera was recording the outer tem-
perature of the mould. From the thermo-camera 
pictures the average temperature of the mould 
wall was calculated and used for the comparison. 
In Fig. 2, cooling curves from several castings of 
the same work roll obtained from the pyrometer 
are shown in thin solid lines. The cooling curve 
from the simulation is shown in a thick solid line. 
On a second y-axis, average temperatures of the 
external mould wall are compared. Simulation 

and experimental data are in a quite good agree-
ment. Next, Fig. 3 shows the computational do-
main with the volume elements partially visible. 
At ~35 min., temperature contours are given 
along with important lines such as the free-sur-
face line, the interface between the outer and in-
termediate layer, and isolines of liquidus and sol-
idus temperatures. 

In Fig. 3, the actual height 2h  of the intermedi-
ate layer is not uniform due to the intermediate 
layer spreading from the mould centre towards 
the end cores and the intermediate layer interact-
ing with the outer layer through the friction and 
centrifugal pressure terms.  
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Figure 2. Comparison of cooling curves obtained from simulation and experiments  

(solid line – pyrometer, dashed line – thermo-camera). 

 

Figure 3. Temperature distribution in the outer and intermediate layer at ~35 min. 
 

4. CONCLUSION 
A simple algorithm was introduced allowing the 
calculation of the whole HSC process of the 
outer and intermediate layer of a work roll (~55 
min) in a reasonable enough time, while still re-
solving main aspects of the flow. The Navier-
Stokes equations were substituted by the two 
layer shallow water equations. The solidification 
(remelting) was solved with the help of the en-
thalpy method in finite volume framework con-
sidering the prescribed liquid fraction-to-tem-
perature relationships. The numerical model was 
successfully verified against the pyrometer and 

thermo-camera measurements. The mixing due 
the density differences cannot be captured by the 
present approach, which can be marked as a main 
drawback of the model. 
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2.3 (Non-)hydrostatic free-surface model to model
Efforts concerning simulation of the horizontal centrifugal casting of thw work roll
are summarized in 2.4. It started with 2D Volume of Fluid model in ANSYS FLU-
ENT in 2009. It came to an end, temporarilly, with the own free-surface flow solver
in 2018. It is about to continue again in autumn of 2021, being again funded by the
Austrian COMET; however, there will be a new postdoc coming.

2D Volume of Fluid
ANSYS FLUENT

3D Volume of Fluid
ANSYS FLUENT

SWE by Euler-Euler model
ANSYS FLUENT

SWE approximate Riemann solver
for a single liquid layer

for two layers...

Hydrostatic free-surface model 
for a single and two liquid layers

Non-hydrostatic free-surface model 
for a single layer

Fig. 2.4: A chronological chart of HSC solver developments

In order to address the drawbacks of the SWE model, as summarized in the
previous section 2.2, the free-surface model was developed according to the original
paper by Casulli [23]. The free-surface model was published in the article entitled
"A (non-)hydrostatic free-surface numerical model for two-layer flows" and it is given
on subsequent pages. It was derived from the 3D Navier-Stokes equations and the
continuity equations by applying the kinematic boundary condition on the free-
surface and the moving interface between the layers. The central idea is splitting
of the pressure term into the hydrostatic and hydrodynamic part. Four different
examples are shown:

1. The shallow water equation provide a good approximation when waves on
the free-surface are long. In the opposite case, the hydrodynamic part of the
pressure plays an important role; hence, should not be ignored.

2. In configuration with two liquid layers, the SWE provide accurate results as
long as the densities of the liquids are similar. In the opposite case, the wave
speeds of the Riemann solver namely those responsible for the momentum
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transfer between the layers cannot be correctly approximated. Therefore, the
Casulli’s approach should be preferred.

3. Free-surface buoyant free-surface flow is shown on two examples. In the first
one, the cooling is applied on the free surface. In the second one, the cooling is
applied at the bottom wall. The latter is compared against ANSYS FLUENT.

4. Finally, the HSC simulation was performed with data from the plant. Results
were successfully verified with the temperature measurements.

On request of the industry partner, the solver was wrapped into a graphical user
interface. More details are given in section 2.5.

To the present time, the algorithm can handle non-hydrostic flow (e.g. the
buoyant effects) only with a single layer. When the case with two layers is to be
solved, only the hydrostatic option works reliably. It is to be noted that to maintain
the stability of the algorithm, the time step must be chosen such that the radial
component of the velocity does not lead to crossing more than one computational
cell. It should be also noted, although the algorithm can handle non-hydrostatic
free-surface flows, it is not capable of simulating 3D liquid splashing or breakup of
the main flow into smaller droplets.
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a b s t r a c t 

A semi-implicit (non-)hydrostatic free-surface numerical model for two layer flows is de- 

rived from the Navier–Stokes equations by applying kinematic boundary conditions at 

moving interfaces and by decomposing the pressure into the hydrostatic and the hydrody- 

namic part. When the latter is ignored, the algorithm conveniently transforms into a solver 

for a hydrostatic flow. In addition, when the vertical grid spacing is larger than the layer 

depths, the algorithm naturally degenerates into a solver for the shallow water equations. 

In this paper, the presented numerical model is developed for the horizontal centrifugal 

casting, a metallurgical process, in which a liquid metal is poured into a horizontally ro- 

tating cylindrical mold. The centrifugal force pushes the liquid metal toward the mold wall 

resulting in a formation of a sleeve with a uniform thickness. The mold gradually extracts 

the sensible and the latent heat from the sleeve, which eventually becomes solid. Often a 

second layer of another material is introduced during the solidification of the first layer. 

The proposed free-surface model is therefore coupled with the heat advection-diffusion 

equation with a stiff latent heat source term representing the solidification. The numeri- 

cal results show a good agreement with measurements of temperatures performed in the 

plant. A validation of the proposed model is also provided with the help of using other 

numerical techniques such as the approximate Riemann solver for the two layer shallow 

water equations and the volume of fluid method. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Quite a few numerical models have been derived from the Navier–Stokes (N–S) equations to study free-surface flows. 

The main task of these models is to account for the interface separating fluid domains and being generally in motion. 

A typical fluid flow problem may involve one, two or more immiscible fluids. No matter the numerical method used, 

calculation steps can be summarized as: (a) set the boundary conditions at the interface; (b) advance the interface in 

time; (c) identify the position of the interface. According to [1,2] , the most common numerical methods in this field are 
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Fig. 1. A scheme of the horizontal centrifugal casting process with a computational domain and coordinates shown below it. 

level-set [3,4] , volume-of-fluid (VOF) [5] , phase-field [6,7] , particle method (marker-and-cell) [8] , and the interface tracking 

[9] . Depending on the viewpoint of the observer—Eulerian or Lagrangian—interface capturing (VOF) and interface tracking 

approach can be distinguished respectively [10] . A main advantage of the earlier over the latter is that the topology of 

the interface is inherently treated, which allows for a description of much more complex interfaces. On the other hand, 

since the exact position of the interface is not exactly known, the treatment of boundary conditions, discontinuities across 

the interface and mass conservation still remain a challenge. For comparable grid sizes, interface tracking methods yield 

more accurate representation of the interface. Free-surface flows with less complicated interface topologies are generally 

solved by interface tracking methods, in which all grid points are treated either in a Lagrangian fashion or in an Arbitrary 

Lagrangian-Eulerian (ALE) approach [11] , at which only the grid points close to the free-surface are being relocated. The 

ALE approach is advantageous when the liquid layer thickness goes to zero. In that case, the entire thickness of the layer 

is contained within a single cell along the vertical direction. Therefore, the 3D N–S equations collapse into the 2D shallow 

water equations (SWE) [12,13] due to the hydrostatic pressure assumption commonly applied within the interface cell. 

In the present paper, a numerical model of horizontal centrifugal casting (HCC) process is introduced. In the HCC process 

[14–18] , the liquid metal is poured inside a horizontal cylindrical mold rotating at high rates. Centrifugal forces push the 

liquid metal toward the wall of the mold with the radius R , resulting in a uniform thickness of the layer. The relatively 

cold mold extracts the heat from the liquid metal; therefore, solidification gradually proceeds toward the free-surface of 

the layer ( Fig. 1 ). Often, when the liquid metal is partially solidified, an additional liquid of a different material is poured 

in. Most of the numerical studies solve the heat diffusion equation with a phase change source term. In order to account 

for the heat advection due to the flow, the thermal conductivity is artificially increased in the liquid region [19] . Several 

works in this area can be also found dedicated to the flow simulation, from which some of them rely on commercial CFD 

packages [20] and some on in-house codes, for example [21,22] . 

In the HCC, as a simple, nearly flat, free-surface and rather a weak effect of the surrounding air on dynamics of the 

liquid layer can be anticipated, an interface tracking approach is adopted here, inspired by Casulli [23–25] and further 

extended to account for two immiscible liquid layers. A robust finite difference-finite volume algorithm is derived from the 

non-hydrostatic N–S equations and it is suitable for structured and also unstructured grids provided the orthogonal layering 

of elements in the radial direction ( Fig. 2 ). Due to the geometry configuration of the HCC, the cylindrical coordinates 

are used. Therefore, the axial, radial, and tangential axis notation can be seen throughout this paper. The pressure term 

is conveniently decomposed into the hydrostatic and the hydrodynamic part, which makes the algorithm very efficient 

especially when dealing with hydrostatic or nearly hydrostatic flows. The convective term and the axial viscous term are 

discretized explicitly using the reconstruction of the Lagrangian trajectory, especially popular in atmosphere modeling 

[26,27] . The resulting algorithm is mass conservative. In addition, when only a single layer of volume elements is consid- 

ered, the algorithm degenerates into the shallow water equations. The proposed formulation can inherently handle drying 

and flooding of dry surfaces. In a subsequent step, the flow algorithm is followed by a stable finite volume scheme for 

the heat advection-diffusion equation with the solidification source term. Consequently, temperature differences result in 

thermal convection, which is in the N–S equations realized through a baroclinic pressure term. 

In the next sections, the governing equations are firstly introduced, followed by detailed steps of the algorithm. Finally, 

results are presented in the form of numerical examples, some of them verified against temperature measurements from 

the plant and some against other numerical techniques. 
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Fig. 2. Two-dimensional structured orthogonal staggered grid; (a) fluctuations of the free-surface/the interface confined within a single layer of cells in the 

radial direction; (b) the free-surface surpassing more than one layer of cells; (c) the interface surpassing more than one layer of cells. 

2. Governing equations 

For the sake of clarity, not losing generality, the algorithm is presented in a two-dimensional axisymmetric form, for 

the axial and the radial coordinate, x and r , respectively. (The size of the tangential sector is 1 rad.) Conservation of 

mass, momentum, and energy are governed by transport equations. Starting with the momentum equations, due to the 

high rotation rate � they are written in the rotating frame i.e. fictitious forces must be accounted for. In the cylindrical 

coordinates the momentum equations can be written as: 

∂u 

∂t 
+ u 

∂u 

∂x 
+ w 

∂u 

∂r 
= −∂ p 

∂x 
+ ν

[
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(
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∂r 

)]
− ν

K 
u (1) 

∂w 
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∂w 
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∂w 

∂r 
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ρ0 

�2 r + ν

[
∂ 2 w 

∂ x 2 
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r 

∂ 

∂r 

(
r 
∂w 

∂r 

)
− w 

r 2 

]
− ν

K 
w, (2) 

where u and w are the axial and radial components of velocity and p the normalized pressure respectively. The kinematic 

viscosity and the density, which may depend on temperature T ( ρ = ρ( T )), are denoted by Greek symbols ν and ρ . The 
permeability, K , is a part of the momentum sink due to the drag of solidifying dendrites and is defined as a function of 

the primary dendrite arm spacing and the liquid fraction, g l [28,29] . Such momentum sink is only active in the solidifying 

region. The normalized pressure p is defined as a ratio between the pressure and a constant reference density ρ0 . The tan- 

gential component of the Coriolis acceleration is the only one different from zero. As the tangential dimension is omitted in 

this study, the Coriolis term does not appear in (1) - (2) . Compared to the centrifugal force, expressed by the second term on 

the rhs of (2) , the force of gravity is small and can be thus neglected. In fact, it cannot be present in (2) due to the rotating 

frame used and the two-dimensional ( x , r ) case. The mass conservation obeys the incompressibility condition, given by: 

∂u 

∂x 
+ 

1 

r 

∂ ( rw ) 

∂r 
= 0 (3) 
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In addition, the energy transport equation represented by the heat advection–diffusion equation takes the following 

form: 

ρc p 

(
∂T 

∂t 
+ u 

∂T 

∂x 
+ w 
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∂r 

)
= 
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(
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∂x 

)
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r 

∂ 

∂r 

(
rk 

∂T 

∂r 

)
− ρL f 

∂ g l 
∂t 

(4) 

where c p , k , and L f are the specific heat, the thermal conductivity, and the latent heat respectively. In order to describe 

deformations of the free-surface and the interface between the outer and the inner layer (in the following text referred 

to as the interface) combining kinematic boundary conditions and the continuity Eq. (3) integrated over the depth of each 

layer gives a set of free-surface equations, written as: 

∂ V 1 
∂t 

+ 

R −H 1 ∑ 

R 

urdr = 0 (5) 

∂ V 2 
∂t 

+ 

R −H 1 −H 2 ∑ 

R −H 1 

urdr = 0 , (6) 

where H and V are the local depth of the layer and its corresponding volume calculated for the element size dx . The indices 

[...] 1,2 signify the outer and the inner layer respectively. 

In (1) - (2) , the pressure p is decomposed into the sum of the hydrostatic and the hydrodynamic part q . Unlike the 

hydrostatic pressure induced by the gravitational acceleration, its centrifugal counterpart is a nonlinear function of radial 

position r . If the depths H 1,2 are �R , it is advisable to replace the centrifugal term �2 r with �2 R , where R is the radius of 

the cylindrical wall ( Fig. 2 ). This strategy is also convenient in order to avoid lengthy formulas and thus maintain readability 

of the present text. Then, the pressure p 1,2 scaled by the reference density of each layer ρ01,02 takes the following form: 

p 1 = �2 R 

(
r − R + H 1 + 

ρ02 

ρ01 

H 2 

)
+ �2 R 

R −H 1 −H 2 ∑ 
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dr + q (7) 

p 2 = �2 R ( r − R + H 1 + H 2 ) + �2 R 

R −H 1 −H 2 ∑ 

r 

ρ02 − ρ2 

ρ02 

dr + q. (8) 

Due to the variable density ρ( T ), it is common to further split the hydrostatic pressure into the barotropic component, 
represented by the first terms of (7) - (8) , and the baroclinic component, represented by the terms with integrals. The 

atmospheric pressure is set to zero, thus not appearing in (7) -( 8 ). Eqs. (7) - (8) are substituted into (1) -( 2 ) for each layer 

separately. Note that the gradient of the hydrostatic pressure cancels out with the centrifugal term ρ/ ρ0 �
2 R in (2) ; 

therefore, only the hydrodynamic part q remains. 

3. Numerical algorithm 

The spatial discretization of the physical domain is realized by dividing it into N x N r orthogonal structured cells with 

a axial and radial size, �x and �r . Unlike �x being fixed, the radial size �r is only constant in the bulk, equal to the 

difference between the outer and the inner level surface ( Fig. 2 ). At the free-surface and the interface it is calculated as a 

difference between the outer level surface and the free-surface or the interface respectively. Cell centers are consecutively 

numbered with indices i , j . The field variables are stored in a staggered manner. While the velocities are defined at the cell 

faces using half indices, other scalar fields such as the hydrodynamic pressure q , the temperature T , and the liquid fraction 

g l are located at the cell centers. Finally, the depth and the volume of each layer are indexed along the axial coordinate as 

H i and V i respectively. 

Here, a semi-implicit Eulerian–Lagrangian fractional step scheme is adopted in order to arrive at stable and efficient 

numerical algorithm. The pressure is discretized by the θ-method [30] . In a predictor step, the preliminary velocity field and 
positions of the free-surface and the interface are calculated by neglecting the implicit contribution of the hydrodynamic 

pressure q . Secondly, the Poisson’s equation is solved for the pressure q in a corrector step, which is finally used to correct 

the preliminary quantities obtained in the predictor step. The resulting velocity field is mass conservative. 

3.1. Predictor step 

By discretizing (1) e.g. for the inner layer (2) using a semi-implicit finite-difference scheme, the axial velocity component 

u at radial faces i + 1 / 2 , j yields the following form: 
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Discretization of (1) for the outer layer (1) is an analogy. The tilde symbol denotes a preliminary unknown calculated in 

the predictor step going to be later updated in the corrector step. The current and the old time step are denoted by n + 1 

and n superscripts. The implicit factor θ is used to split both, the barotropic and the hydrodynamic pressure, into an 

implicit and an explicit contribution scaled by θ and (1 − θ ) respectively. The implicit factor θ has to be chosen in the 

range 1 / 2 ≤ θ ≤ 1 . In the predictor step, only the barotropic part of the pressure p 2 (8) is treated implicitly multiplied by 

the implicit factor θ and appears as a second term on the rhs of (9) . The implicit hydrodynamic part q of the pressure p 2 
is considered separately in the corrector step. The explicit part of the barotropic and the hydrodynamic pressure multiplied 

by (1 − θ ) is hidden in the term F u n 
i + 1 / 2 , j , see the third term on the rhs of (11) . The baroclinic pressure, the term with 

an integral in (8) , is handled fully explicitly and is also hidden in the term F u n 
i + 1 / 2 , j , see the last term on the rhs of (11) . 

In addition, since the layer depths are significantly smaller than the axial scale, axial viscosity terms are treated explicitly 

and also enter the term F u n 
i + 1 / 2 , j . Finally, the lhs of (1) is discretized by reconstructing the Lagrangian trajectory. The total 

derivative of the axial velocity component u can be written as the following: 

du 

dt 
= 
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�t 

, (10) 

where u ∗
i + 1 / 2 , j is the interpolated axial velocity component recorded at time t n at the end of the Lagrangian trajectory and 

again goes inside the term F u n 
i + 1 / 2 , j and can be expressed as 
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Similarly to (1) , (2) can be discretized as 
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where F w 

n 
i, j+ 1 / 2 is again the finite difference operator similar to that in (9) . It comprises axial viscous terms, the interpolated 

radial velocity component w 

∗
i, j+ 1 / 2 , and the explicit contribution of the hydrodynamic pressure q . In the predictor step, since 

the implicit contribution of the hydrodynamic pressure is neglected, the momentum equations (9) and (12) are independent 

of each other and can be therefore solved separately. Eq. (12) forms a symmetric tridiagonal system, which can be easily 

solved by preconditioned conjugate gradient method [31] . Unlike (12) , Eq. (9) cannot be readily solved, as it is coupled to 

the unknown layer depths ˜ H 
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. In order to determine ˜ H 
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, the preliminary field of the axial velocity component ˜ u n +1 
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must satisfy discrete versions of free-surface equations (5) - (6) for each layer. 
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where M and N , 1 ≤ M ≤ N ≤ N r , may vary both in time and space and denote the radial index j of the interface cell and 

the free-surface respectively. After multiplying the momentum equation (9) by �r n 
i + 1 / 2 , j and substituting for the pressure 

p from (7) -( 8 ) for the outer (1) and the inner layer (2) respectively, we will arrive at the set of linear equations, which 

written in matrix notation take the following form 
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where ˜ U 

n +1 
i +1 / 2 , G 
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i + 1 / 2 are column vectors and A 
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i + 1 / 2 is a tridiagonal coefficient matrix. Explicit terms are 
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i + 1 / 2 . Implicit terms are reflected in A 

n 
i + 1 / 2 . In each layer, barotropic parts of the hydrostatic pressure (7) -( 8 ), 

namely the terms with ˜ H 2 , differ only by the scale of density ratio ρ02 / ρ01 , which is included in the column vector �
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The operator [ ∗] signifies a piecewise-element multiplication. Omitting the subscripts and the superscripts, the vectors 
˜ U , �R , � are defined as the following: 
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Although it is straightforward to construct the coefficient matrix of implicit terms A and the vector of explicit terms G 

using (9) , they are too long to be shown here. The coefficient A matrix is a tridiagonal positive definite matrix. Note that 

the size of vectors ˜ U , G , �R , � and the matrix A may vary or even disappear depending on actual layer depths H 1,2 . 

Similarly to (9) , (13) and (14) can also be written using vector notation as 
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Formal substitution for ˜ U 

n +1 
i + 1 / 2 from (15) into (17) and (18) yields 
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n +1 
1 ,i −1 

))
− θ�2 R 

�t 2 

�x 

([
( R ∗ �R 2 ) 

T A 

−1 ( � ∗ �R ) 
]n 
i + 1 / 2 

(
˜ H 

n +1 
2 ,i +1 − ˜ H 

n +1 
2 ,i 

)
−

[
( R ∗ �R 2 ) 

T A 

−1 ( � ∗ �R ) 
]n 
i −1 / 2 

(
˜ H 

n +1 
2 ,i 

− ˜ H 

n +1 
2 ,i −1 

))
− θ�t 

([
( R ∗ �R 2 ) 

T A 

−1 G 

]n 
i + 1 / 2 −

[
( R ∗ �R 2 ) 

T A 

−1 G 

]n 
i −1 / 2 

)
− ( 1 − θ ) �t 

([
( R ∗ �R 2 ) 

T U 

]n 
i + 1 / 2 −

[
( R ∗ �R 2 ) 

T U 

]n 
i −1 / 2 

)
(20) 

91



J. Bohacek et al. / Applied Mathematics and Computation 319 (2018) 301–317 307 

V1

V2Nx

V2 =
V1Nx

Fig. 3. A visualization of the system of coupled equations (19) - (20) for ˜ V n +1 
1 ,i 

and ˜ V n +1 
1 ,i 

with an illustrative demonstration of vanishing depth of each layer. 

In order to allow us to solve (19) and (20) for V 1,2 , the layer depths H 1,2 has to be firstly replaced by axisymmetric 

relations linking H 1,2 with V 1,2 , which read 

H 1 = R −
√ 

R 2 − 2 V 1 
�x 

, H 2 = R − H 1 −
√ 

( R − H 1 ) 
2 − 2 V 2 

�x 
(21) 

As the formulas given by (21) are nonlinear, a linearization technique is applied and (21) become 

H 

n +1 
1 = H 

n 
1 + H 

′ n 
1 

(
V n +1 1 −V n 1 

)
, H 

n +1 
2 = H 

n 
2 + H 

′ n 
2 

(
V n +1 2 −V n 2 

)
, (22) 

where H 

′ n 
1 
and H 

′ n 
2 
are H 

′ n 
1 

= 

1 

�x 

√ 

R 2 − 2 V n 
1 

�x 

and H 

′ n 
2 

= 

1 

�x 

√ 

( R −H n 
1 
) 2 − 2 V n 

2 
�x 

respectively. 

In (19) and (20) , we substitute for ˜ H 

n +1 
1 , 2 

from (22) and rearrange implicit and explicit terms. Due to the properties 

of the matrix A , the terms ( R 

∗�R 1 ) 
T A 

− 1 ( �∗�R ), ( R 

∗�R 1 ) 
T A 

− 1 �R , ( R 

∗�R 2 ) 
T A 

− 1 ( �∗�R ), and ( R 

∗�R 2 ) 
T A 

− 1 �R are 

non-negative. Therefore, (19) and (20) constitute a nine-diagonal system of linear equations for ˜ V n +1 
1 , 2 

, which is schemat- 

ically drawn for a general configuration with dry regions in Fig. 3 . The system is strictly diagonally dominant, generally 

non-symmetric due to the coupling bands and can be solved by biconjugate gradient (stabilized) method [32] . 

Before solving (15) for axial velocities ˜ U 

n +1 
i + 1 / 2 , it is recommended to replace ˜ H 

n +1 
1 , 2 

with ˜ V n +1 
1 , 2 

using (22) in order to 

maintain mass conservation. After having determined preliminary fields ˜ u , ˜ w , and ˜ V 1 , 2 , the predictor step is finished and 

we may proceed to the corrector step. 

3.2. Corrector step 

After the predictor step, it is necessary to calculate hydrodynamic pressure q in a way that the continuity equation (3) is 

fulfilled. New fields u , w , and V 1,2 are found by correcting the preliminary fields ˜ u , ˜ w , and ˜ V 1 , 2 using the continuity equation 

given by (3) and the following fractional step equations 

u n +1 
i + 1 / 2 , j = 

˜ u n +1 
i + 1 / 2 , j − θ

�t 

�x 

(
q n +1 
i +1 , j − q n +1 

i, j 

)
(23) 

w 

n +1 
i, j+ 1 / 2 = 

˜ w 

n +1 
i, j+ 1 / 2 − θ

�t 

�x 

(
q n +1 
i, j+1 − q n +1 

i, j 

)
(24) 

In each bulk cell i.e. a cell other than that at the free-surface, the discretized form of the continuity equation can be 

expressed by 

u n +1 
i + 1 / 2 , j r 

n 
i + 1 / 2 , j �r n i + 1 / 2 , j − u n +1 

i −1 / 2 , j r 
n 
i −1 / 2 , j �r n i −1 / 2 , j + w 

n +1 
i, j+ 1 / 2 r 

n 
i, j+ 1 / 2 �x − w 

n +1 
i, j−1 / 2 r 

n 
i, j−1 / 2 �x = 0 (25) 

At the free-surface, the incompressibility condition can be written as 

( V 1 + V 2 ) 
n +1 
i = ( V 1 + V 2 ) 

n 
i + θ�tw 

n +1 
i,N−1 / 2 r 

n 
i,N−1 / 2 �x 

− θ�t 
(
u n +1 
i + 1 / 2 ,N r 

n 
i + 1 / 2 ,N �r n i + 1 / 2 ,N − u n +1 

i −1 / 2 ,N r 
n 
i −1 / 2 ,N �r n i −1 / 2 ,N 

)
(26) 

Assuming the pressure p being hydrostatic in the free-surface cells, the following condition applies 

�2 R ( r − R + H 1 + H 2 ) = �2 R 
(
r − R + 

˜ H 1 + 

˜ H 2 

)
+ q (27) 
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In order to be applied in (26) , the hydrostatic condition (27) needs to be however reformulated in terms of replacing H 

with V at timestep n + 1. Using geometrical relations, (27) can be transformed into 

V 1 + V 2 = 

˜ V 1 + 

˜ V 2 + �x 

(
R − ˜ H 1 − ˜ H 2 − q 

2 �2 R 

)
q 

�2 R 
(28) 

Similarly to (21) , (28) is also non-linear and thus, a linearization is again applied to it. Then, ( V 1 + V 2 ) 
n +1 
i 

in (26) can 

be substituted with the linearized form of (28) . Substituting (23) -( 24 ) into (25) and (26) , keeping terms with q on the lhs, 

and moving all other to the rhs, yields the system of Poisson’s equations approximated by finite differences. The properties 

of the system are dependent on the geometric configuration of the free-surface and the interface. When fluctuations of 

both, the free-surface and the interface, stay within two distinct radial layers or within a single radial layer of cells, the 

system of Poisson’s equations is diagonally dominant and symmetric. On the contrary, when the fluctuations of either of 

them become larger and spread over more than one radial layer of cells, the system is still diagonally dominant, no longer 

symmetric though. Both scenarios are depicted in Fig. 2 . Concerning the scenario shown in Fig. 2 b, the incompressibility 

condition for the highlighted free-surface cell takes slightly different form than (26) , given by 

( V 1 + V 2 ) 
n +1 
i 

= ( V 1 + V 2 ) 
n 
i + θ�tw 

n +1 
i,N−1 / 2 r 

n 
i,N−1 / 2 �x 

− θ�t 

(∑ 

r 

u n +1 
i + 1 / 2 ,r r 

n 
i + 1 / 2 ,r �r n i + 1 / 2 ,r −

∑ 

s 

u n +1 
i −1 / 2 ,s r 

n 
i −1 / 2 ,s �r n i −1 / 2 ,s 

)
, (29) 

where indices r , s are schematically explained in Fig. 2 b. In Fig. 2 b, the shaded cells are also considered as free-surface cells 

and therefore; the pressure p inside them is hydrostatic. This implies that the hydrodynamic pressure q is shared among all 

such free-surface cells at a given axial position i + 1. This approach greatly simplifies assembling of the system of Poisson’s 

equations as well as improves the convergence rate of finding the solution. A similar situation can be encountered at the 

interface, when its fluctuations surpass a single radial layer of cells ( Fig. 2 c). The incompressibility condition, given by (25) , 

has to be modified and takes the following form ∑ 

r 

u n +1 
i + 1 / 2 ,r r 

n 
i + 1 / 2 ,r �r n i + 1 / 2 ,r −

∑ 

s 

u n +1 
i −1 / 2 ,s r 

n 
i −1 / 2 ,s �r n i −1 / 2 ,s + w 

n +1 
i,M+ 1 / 2 r 

n 
i,M+ 1 / 2 �x − w 

n +1 
i,M−1 / 2 r 

n 
i,M−1 / 2 �x = 0 , (30) 

where r , s are again schematically explained in Fig. 2 c. In addition, a similar assumption is applied to the hydrodynamic 

pressure q at pseudo-interface cells at a given axial position i + 1 such that it is constant. 

Once the field of the hydrodynamic pressure q is determined, axial velocities u can be corrected using (23) . In order to 

ensure divergence free velocity field, radial velocities w should be determined using the incompressibility condition rather 

than (24) . By setting w 

n +1 
i, 1 / 2 

to zero, such condition can written in the following form 

w 

n +1 
i, j+1 / 2 = 

1 

r n 
i, j+ 1 / 2 �x 

(
w 

n +1 
i, j−1 / 2 r 

n 
i, j−1 / 2 �x − u n +1 

i + 1 / 2 , j r 
n 
i + 1 / 2 , j �r n i + 1 / 2 , j + u n +1 

i −1 / 2 , j r 
n 
i −1 / 2 , j �r n i −1 / 2 , j 

)
(31) 

Note that in free-surface cells and interface cells, the incompressibility condition may differ from (31) . Finally, V 1,2 are 

recomputed using the following formulas 

V n +1 1 = V n 1 − �t 

( 

M ∑ 

j=1 
r n i + 1 / 2 , j �r n i + 1 / 2 , j u 

n +1 
i + 1 / 2 , j −

M ∑ 

j=1 
r n i −1 / 2 , j �r n i −1 / 2 , j u 

n +1 
i −1 / 2 , j 

) 

(32) 

V n +1 2 = V n 2 − �t 

( 

N ∑ 

j= M+1 
r n i + 1 / 2 , j �r n i + 1 / 2 , j u 

n +1 
i + 1 / 2 , j −

N ∑ 

j= M+1 
r n i −1 / 2 , j �r n i −1 / 2 , j u 

n +1 
i −1 / 2 , j 

) 

(33) 

and the radial elements �r are updated using the new values of V 1,2 from (32) -( 33 ). 

The heat advection–diffusion equation (4) is discretized in a finite volume framework as the following 

ρi, j c pi, j 
(
�xr n +1 

i, j 
�r n +1 

i, j 

)
T n +1 ,m +1 
i, j 

+ �t 
[(

ρi, j+ 1 / 2 c pi, j+ 1 / 2 �xr n i, j+ 1 / 2 w 

n +1 
i, j+ 1 / 2 T 

n +1 ,m +1 
i, j+ 1 / 2 − ρi, j−1 / 2 c pi, j−1 / 2 �xr n i, j−1 / 2 w 

n +1 
i, j−1 / 2 T 

n +1 ,m +1 
i, j−1 / 2 

)
+ 

(
ρi + 1 / 2 , j c pi + 1 / 2 , j r n i + 1 / 2 , j �r n i + 1 / 2 , j u 

n +1 
i + 1 / 2 , j T 

n +1 ,m +1 
i + 1 / 2 , j − ρi −1 / 2 , j c pi −1 / 2 , j r n i −1 / 2 , j �r n i −1 / 2 , j u 

n +1 
i −1 / 2 , j T 

n +1 ,m +1 
i −1 / 2 , j 

)
−

( 

k i, j+ 1 / 2 �xr n +1 
i, j+ 1 / 2 

T n +1 ,m +1 
i, j+1 − T n +1 ,m +1 

i, j 

�r n +1 
i, j+ 1 / 2 

− k i, j−1 / 2 �xr n +1 
i, j−1 / 2 

T n +1 ,m +1 
i, j 

− T n +1 ,m +1 
i, j−1 

�r n +1 
i, j−1 / 2 

) 

−
( 

k i + 1 / 2 , j r n +1 i + 1 / 2 , j �r n +1 
i + 1 / 2 , j 

T n +1 ,m +1 
i +1 , j − T n +1 ,m +1 

i, j 

�x 
− k i −1 / 2 , j r n +1 i −1 / 2 , j �r n +1 

i −1 / 2 , j 
T n +1 ,m +1 
i, j 

− T n +1 ,m +1 
i −1 , j 

�x 

) ] 

= ρi, j c pi, j 
(
�xr n i, j �r n i, j 

)
T n i, j + S m +1 

i, j 
(34) 
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Both the thermal diffusion and the advection term are treated implicitly. At the cell faces, physical properties are 

determined using the upwind method, which naturally ensures the boundedness for the temperature field. The term, S m +1 
i, j 

, 

represents the latent heat source term due to solidification and, as explained later, a special scheme is required for S m +1 
i, j 

. 

Briefly, when the phase change takes place within a narrow range of temperatures denoted as the liquidus temperature 

and the solidus temperature, the source term is stiff and the algorithm should be able to prevent numerical oscillations of 

the solution, namely permanent switching between the liquid and the solid during two subsequent iterations. In order to 

achieve convergence between the temperature T and the liquid fraction g l , (34) must be solved iteratively for a number of 

iterations, each denoted by the letter m . An appropriate discretization of S m +1 
i, j 

may be of the following form [33] 

S m +1 
i, j 

= −ρi, j L f 
(
�xr n +1 

i, j 
�r n +1 

i, j 

)dF 
dT 

T n +1 ,m +1 
i, j 

+ ρi, j L f 
(
�xr n +1 

i, j 
�r n +1 

i, j 

)[
g n l,i, j − g m 

l,i, j + 

dF 

dT 
F −1 

]
, (35) 

where dF 
dT 

and F − 1 are respectively the slope of the temperature dependent liquid fraction curve and the inverse of the 

liquid fraction g l , both evaluated at g 
m 

l,i, j 
from previous iteration. After solving (34) with S m +1 

i, j 
given by (35) , it is necessary 

to update the liquid fraction g m +1 
l,i, j 

using the following formula 

g m +1 
i, j 

= g m 

i, j + 

dF 

dT 

(
T n +1 ,m +1 
i, j 

− F −1 
)

(36) 

When the convergence is reached, g n +1 
i, j 

is set equal to g m +1 
i, j 

and we may proceed to the next time step. 

Until here, the boundary conditions were not discussed except for those related to movement of the free-surface and 

the interface, known as the kinematic boundary conditions. Imposing other flow-related boundary conditions is quite 

straightforward. Along the normal direction to fixed walls, a zero flux is applied for both the velocity component and the 

hydrodynamic pressure. In addition, the tangential component of velocity is set zero there. Although not used in this study, 

discretization of the radial viscous term in the momentum equation for the axial component of velocity may be for example 

realized through the Manning −Chezy formula [34] . Similar formulas may be applied at the free-surface to mimic a stress 
resulting from a relative motion between the liquid layer and the surrounding gas. It is also possible to design an empirical 

formula for the viscous stress at the interface between the layers. In the present study namely in the numerical examples, 

viscous stresses are directly determined using the physical viscosity and dimensions of the finite-difference grid. At the 

free-surface, a zero stress is considered. In addition, the boundary conditions are also required for the heat-advection diffu- 

sion equation given by (4) . Here, at the free-surface a Robin-type boundary condition is imposed to account for a convective 

heat transfer. At the walls, either a Neumann-type boundary condition or a coupled boundary condition is considered. 

Concerning the properties of the method, it should be pointed out that by skipping the corrector step and setting the 

initial value of the hydrodynamic pressure q 0 
i, j 

to zero a hydrostatic velocity field is obtained. This feature of the method 

is beneficial in cases, when the type of flow is known in advance or can be estimated to be approximately hydrostatic. In 

such cases, computational costs drop significantly, as it is no longer necessary to solve the set of Poisson’s equations for the 

hydrodynamic pressure q , which is the most computationally expensive part of the algorithm. 

The presented method can deal with two immiscible layers, from which the inner (top) layer must be lighter ( ρ2 < 

ρ1 ) than the outer (bottom) layer. Opposite scenarios, when ρ2 ≥ ρ1 and the Rayleigh–Taylor instability is expected to 

happen, cannot be however handled. Another important feature of the method is related to the layer depths H 1,2 extending 

only over a single layer of cells along the radial direction. The algorithm conveniently transforms into the shallow water 

equations, often used in oceanography and meteorology e.g. in modeling of geostrophic flows. 

When it comes to implicit coupling of the free-surface/interface position and the velocity field, the method turns out to 

be unconditionally stable for 1 / 2 ≤ θ ≤ 1 . Therefore, the time step is independent of the free-surface/interface wave speeds 

and radial viscosity terms. Due to explicit treatment of the axial viscosity terms, a time step restriction however exists and 

is given by [35] . 

�t ≤ �x 2 / ( 4 ν) (37) 

As long as the axial grid size �x stays much larger, the time step restriction (37) stays rather weak. Currently, there ap- 

pears to be a second restriction of the time step related to the radial velocity w , namely the radial velocity of the free-surface 

and the interface, and solving the heat advection–diffusion equation (34) . As the algorithm requires both the free-surface 

and the interface not to cross more than one layer of cells in radial direction, the following convective limit CFL applies 

�t n +1 ≤ min 

(
�r 

H 

n +1 
1 

− H 

n 
1 

, 
�r 

H 

n +1 
1 

+ H 

n +1 
2 

− H 

n 
1 

− H 

n 
2 

)
(38) 

where �r is the radial size of the background grid cell rather than the radial size of the actual element. The last stability 

limit (38) could be possibly removed by splitting the time step �t into a number of equal-size substeps and use a 

subcycling when solving (34) . 
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4. Numerical examples and discussion of results 

This section demonstrates the capabilities of the proposed method on several numerical examples. Some examples are 

compared with results of other numerical techniques and some are verified against experimental data. 

4.1. Example 1: single-layer hydrostatic vs. full model 

The first example is intended to show that when the ratio of radial and axial characteristic scales is small ( �1) , the 

flow is nearly hydrostatic. Therefore, it is possible to omit the hydrodynamic pressure q from the momentum equations. 

In the present method it is realized by setting the initial value q 0 
i, j 

to zero and skipping the corrector step. Here, two 

different single-layer cases ( a ) and ( b ) are considered with a short and a long wave initial disturbance of the free-surface 

respectively, given by the following formulas 

(a ) : H 

0 
1 (x ) = 0 . 06 + max ( 0 . 02 − 5 ( x − 0 . 5 ) 

2 
, 0 ) 

(b) : H 

0 
1 (x ) = 0 . 06 + max ( 0 . 02 − 5 ( x − 5 ) 

2 
, 0 ) (39) 

In addition to the free-surface, fixed walls with no-slip condition are bounding the finite-volume grid with 100 × 100 

cells. Physical properties such as the density and the dynamic viscosity are set to 770 0 kgm 

−3 and 0.0 06 Pas respectively. 
The size of the time step �t is adjusted during the calculation in order to maintain CFL = 0.95. The implicitness factor θ
is set to 0.55. At t = 0 s, the free-surface is described by (39) . Later, due to the g-force (100 g ) the parabolic disturbance 

collapses and waves propagate toward the left and the right wall. The g-force is a term often used by centrifugal casting 

community to express the centrifugal acceleration �2 R as a multiple of the gravitational acceleration g . The g-force of 100 g 

is a typical value encountered during the centrifugal casting. In Fig. 4 a and b, the scenarios are depicted respectively for the 

case ( a ) and ( b ). The contours represent a distribution of the hydrodynamic pressure q . While the hydrostatic assumption 

is obviously justified in the case ( a ), in the case ( b ) such assumption is clearly incorrect, meaning that the hydrodynamic 

pressure has to be accounted for. As a result, the hydrostatic model, greatly saving the computational resources, should only 

be used, when the ratio of radial and axial characteristic scales << 1. Otherwise, it is necessary to consider the full model 

with the hydrodynamic pressure included. 

4.2. Example 2: two-layer hydrostatic model vs. shallow water equations 

Here, a test case with two layers is suggested with initial conditions shown in Fig. 5 . Gradients of the hydrostatic 

pressure again serve as a driving force for a fluid motion and also provide a momentum coupling between the layers. The 

coupling is also realized through a viscous stress term. A simulation work was performed using the hydrostatic model, 

followed by the numerical verification conducted with the help of the radially averaged shallow water equations solved 

using the approximate Riemann solver with high resolution corrections [36] developed earlier by the authors [37] . Initially, 

the bottom layer is flat, whereas the top layer is disturbed with a parabolic hump. Initial conditions are patched on the 

domain using the following formulas 

the bottom layer : H 

0 
1 (x ) = 0 . 045 

the top layer : H 

0 
2 (x ) = 0 . 015 + max ( 0 . 03 − 500 ( x − 0 . 05 ) 

2 
, 0 ) (40) 

The densities, ρ1 and ρ2 , are set to 7700 kgm 

−3 and 7600 kgm 

−3 respectively. The dynamic viscosities are identical, 
equal to 0.006 Pas. In Fig. 5 , it is shown that both techniques produce almost identical results at t = 0 s. Later, the 

deviations will certainly grow. The reader should be reminded that it is difficult to say, which algorithm is more accurate 

namely for the following reasons. Unlike the hydrostatic model discretized on a two-dimensional finite-volume grid, the 

SWE model requires only one (axial) space dimension. On the other hand, the approximate Riemann solver physically 

correctly decomposes the hyperbolic PDEs into a set of discontinuities moving with certain wave speeds. The solution is 

found using TVD updating formulas with limiters, upwinding each discontinuity separately. One significant drawback of the 

two-layer approximate Riemann solver for the SWE is a way of determining the wave speeds, namely the one representing 

the momentum transfer between the layers. It was shown that when ρ2 is significantly smaller than ρ1 , than such a wave 

speed is not correctly approximated [38] . In Fig. 5 , the layer densities are quite similar and both methods deliver almost 

identical results. In Fig. 6 , ρ2 �ρ1 such that ρ1 = 7700 kgm 

−3 and ρ2 = 10 0 0 kgm 

−3 , the results are hardly comparable 
due the erroneous wave speed approximation in the SWE model. Only the hydrostatic model thus gives a physically 

reasonable propagation of waves (solid lines in Fig. 6 ). 

4.3. Example 3: thermal convection 

This example shows two cases with the thermal convection. In both cases, the free-surface is initially disturbed by the 

following function 

H 

0 
1 (x ) = 0 . 03 + 0 . 005 sin (2 πx/L ) (41) 
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Fig. 4. An initial parabolic perturbation of the free-surface producing waves propagating to the left and to the right; (a) a short wave case t = 0.125 s; (b) 

a long wave case ( ∼hydrostatic) at t = 1.25 s. 

where L ( L = 0.1m) denotes the axial dimension of the computational domain. In the first case, the thermal convection is 

induced by cooling applied at the free-surface, numerically represented by a constant heat transfer coefficient htc . Remain- 

ing boundaries are treated as adiabatic walls. The characteristic time of the free-surface motion is set close to that of the 

thermal convection, so that both phenomena can be observed at the same time. Material properties and other parameters 

are listed in Table 1 . As the time proceeds, due to the cooling the liquid close to the free-surface becomes heavier and starts 

sinking toward the bottom. The instability, also known as the Rayleigh–Bénard instability, is triggered by oscillations of 

the free-surface. Eventually, the gravity waves, dictating the actual shape of the free-surface, are taken over by the thermal 

convection in this case. In Fig. 7 , thermal convection patterns interacting with the free-surface are shown at time t = 1 s. 

In the second case, the cooling of the same intensity htc is applied at the bottom, while the cooling at the free-surface 

is stopped. In order to promote rising plumes of the colder liquid within the bulk of the hot liquid, the sign of the 
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Fig. 5. The present numerical model vs. the approximate Riemann solver for the shallow water equations with two layers of similar densities ( ρ1 = 

7700 kgm 

−3 , ρ2 = 7600 kgm 

−3 ) at t = 0.014 s. 
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Fig. 6. The present numerical model vs. the approximate Riemann solver for the shallow water equations with two layers of significantly different densities 

( ρ1 = 7700 kgm 

−3 , ρ2 = 10 0 0 kgm 

−3 ) at t = 0.014 s. 

Table 1 

Physical properties and parameters used in Example 3. 

Property/parameter name Symbol Value Unit 

Grid N x × N y 100 × 100 –

Convective time step limit CFL 0.95 –

Implicitness factor θ 0.55 –

Gravitational acceleration g 10 m s −2 

Density ρ 7700 kg m 

−3 

Dynamic viscosity μ 0.006 Pa s 

Thermal conductivity k 20 W m 

−1 K −1 

Specific heat c p 500 J kg −1 K −1 

Heat transfer coefficient htc 10 kW m 

−2 K −1 

Ambient temperature T a 2 5 °C 
Reference temperature T ref 1 450 °C 
Thermal expansion coefficient β 0.001 K −1 

thermal expansion coefficient β has to be switched so that the colder liquid becomes lighter( β → −β). Other material 
properties and parameters are identical to those summarized in Table 1 . In Fig. 8 , again a snapshot of the temperature field 

reflecting the thermal convection is presented at time t = 1 s. In addition, the position of the free-surface is also plotted at 

t = 0.25 s. The dashed lines indicate the position of the free-surface calculated using the volume of fluid model available 

in ANSYS FLUENT 14.5 with the properties and parameters given in Table 1 . Note that here β is referred to as a thermal 
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Fig. 7. An example of a thermal convection induced by the cooling applied at the free-surface, initially disturbed by (41) , at t = 1 s. 

Fig. 8. Thermal convection at t = 1 s induced by the cooling applied at the bottom wall. A free-surface calculated by the present numerical model (solid 

line) compared to that obtained using ANSYS FLUENT 14.5 (dashed line). 

expansion coefficient. It could however also represent a solutal expansion coefficient. In that case the corresponding 

advection-diffusion equation would be solved for the concentration and not for the temperature. 

4.4. Example 4: horizontal centrifugal casting (HCC) 

A simulation of the HCC process, shortly described in Section 1 , is presented here. The results are validated against in 

terms of comparing calculated and measured temperatures. A pyrometer and a thermo-camera were used to continuously 

record temperatures of a single point at the free-surface of the casting and the outer wall of the cylindrical mold respec- 

tively. The simulation was set up using a multi-region approach. The numerical model, detailed in the section Numerical 

algorithm, was employed only in the fluid region indicating the room for the casting. The solid regions such as the mold 

and both end cores were also discretized using finite-volume grids; however, only the heat diffusion equation was solved 

there for the temperature T with appropriate material properties and boundary conditions, which are due to confidentiality 

of industry data only roughly introduced in Table 2 . The heat transport was solved simultaneously in all regions; therefore, 

there was no need for otherwise typical Neumann–Dirichlet coupling at the common walls. 
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Table 2 

Physical properties and other parameters used in Example 4. 

symbol value Unit 

Simulation settings 

Total number of cells N x × N r ∼100k –

Convective time step limit CFL 0.95 –

Implicitness factor θ 0.55 –

Thermal boundary conditions 

Free-surface htc fs 0 W m 

−2 K −1 

Mold and end core walls htc m , en 40 W m 

−2 K −1 

Ambient temperature T a 25 °C 
First layer 

Casting length h 3 m 

Layer thickness H 1 0.1 m 

Outer radius R 0.4 m 

Density ρ 7600 kg m 

−3 

Dynamic viscosity μ 0.006 Pa s 

Thermal conductivity k 22 W m 

−1 K −1 

Specific heat c p 600 J kg −1 K −1 

Reference temperature T ref 1450 °C 
Filling temperature T fill 1450 °C 
Thermal expansion coefficient β 0.0 0 01 K −1 

Latent heat L f 280 kJ kg −1 

Solidus temperature T s 1165 °C 
Liquidus temperature T l 1322 °C 
Liquid fraction – Linear –

Second layer 

Layer thickness H 2 0.15 m 

Density ρ 7200 kg m 

−3 

Dynamic viscosity μ 0.006 Pa s 

Thermal conductivity k 25 W m 

−1 K −1 

Specific heat c p 450 J kg −1 K −1 

Reference temperature T ref 1450 °C 
Filling temperature T fill 1420 °C 
Thermal expansion coefficient β 0.0 0 01 K −1 

Latent heat L f 200 kJ kg −1 

Solidus temperature T s 1080 °C 
Liquidus temperature T l 1250 °C 
Liquid fraction – Linear –

Mold 

Rotation rate � 70 rad s −1 

Mold thickness mt 0.2 m 

Density ρ 7850 kg m 

−3 

Thermal conductivity k 60 W m 

−1 K −1 

Specific heat c p 490 J kg −1 K −1 

End cores 

Density ρ 2200 kg m 

−3 

Thermal conductivity k 10 W m 

−1 K −1 

Specific heat c p 200 J kg −1 K −1 

Coating 

Thermal conductivity k 5 W m 

−1 K −1 

Coating thickness ct 0.004 m 

A layout of the computational domain is obvious from looking at Fig. 9 , with the mold at the top, the end cores 

at both sides, and the casting region in the center. In addition, temperature contours are shown inside both layers at 

v t ≈ 35min along with isolines of liquid fraction, namely g l = 0.01 (solid line) and g l = 0.99 (dash line). The marker at 

the free-surface denotes the target point of a single channel IR thermometer, at which the temperature was recorded with 

frequency of 100 Hz. The IR thermometer (Infratherm ISQ 5) was calibrated to a single temperature of ∼ 1450 ◦C and it 
was mounted at a fixed position schematically shown in Fig. 9 . In Fig. 10 , the calculated cooling curve (thick solid line) 

quite reasonably follows IR thermometer curve (thin solid line) obtained by averaging temperature records from several 

castings of the same product. The error bars corresponds to relative errors of ± 5%. The sudden jump of the temperature at 

t = 33 min is caused by pouring the second layer. During the pouring, the IR thermometer measurement was interrupted; 

data is therefore not available. The experimental data is also missing at the early stage of the casting namely during the 

pouring of the first layer. In addition to IR thermometer measurements, a thermal camera (FLIR ThermaCAM 540; frequency 

0.1 Hz) was employed to monitor temperatures of the entire surface of the mold visible from outside ( Fig. 11 ). For compar- 

ison with the numerical results, only a single value of temperature was however used, obtained by averaging temperature 

field along the black solid line shown in Fig. 11 . Looking at the evolution of the average temperature of the outer mold 

surface in Fig. 10 , it can be concluded that the calculated and the measured data are in a good agreement. Relative errors 
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Fig. 9. Results of horizontal centrifugal casting simulation namely temperature contours and isolines of the liquid fraction g l = 0.01(solid line) and g l = 

0.99(dashed line) demarcating the mushy zone at t = 35min. The circle marker denotes the target point of the pyrometer. In addition to the casting region, 

the mold and two end cores are visible. 

Fig. 10. Cooling curves calculated using the present numerical model plotted against those obtained from the pyrometer and thermo-camera measure- 

ments. 

Fig. 11. Thermal camera image taken at around 35min. 
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of thermal camera measurements are expected to fall into a typical range ± 2% [39] . Although the numerical results were 

successfully compared against two different kinds of temperature measurement techniques, further verifications are still 

required mainly for the following reasons. Excellent match of temperatures of the outer surface of the mold cannot be con- 

sidered as a conclusive and sufficient verification, as it is located far from the casting and at the same time it is very much 

influenced by the accuracy of the thermal boundary condition imposed there. Concerning IR thermometer measurements, 

these were performed exclusively at a single location at the free-surface. The reader should be reminded of two things. 

Firstly, the flow was solved in x − r plane and thus some features, peculiarities caused by the Coriolis force may have been 

missed. Secondly, in this study the solutal transport was not taken into account. However, during the real casting the solutal 

convection will be quite pronounced especially due to significant centrifugal forces, providing a good mixing in the liquid. 

5. Conclusions 

A semi-implicit finite-difference/volume-based model has been proposed to numerically investigate a free-surface flow 

of a single or two immiscible liquid layers, with a special focus on the horizontal centrifugal casting process. The numerical 

model is based on valuable and comprehensively processed works done by Casulli [23–25] . Here, the governing equations 

and the numerical algorithm were derived in the cylindrical coordinate system in two space dimensions, namely the axial 

and the radial coordinates. Switching to the Cartesian coordinate system is straightforward and in fact, it eventually results 

in a simpler algorithm, as all the linearization steps described earlier in section Numerical algorithm drop out. The main 

idea of the algorithm is to split the pressure term into the hydrostatic pressure and the hydrodynamic pressure. The 

algorithm is divided into two steps, the predictor step and the corrector step. The pressure is discretized by the θ-method, 
allowing the user to set the level of its implicitness. Both explicit and implicit contributions of the hydrostatic pressure are 

included in the predictor step. While the explicit part of the hydrodynamic pressure is applied there also, the implicit part 

is determined separately in the corrector step. The convective term, the axial viscous terms, the gradient of the baroclinic 

pressure are discretized explicitly in the predictor step. Preliminary fields of the layer depths and velocity obtained in 

the predictor step are subsequently updated in the corrector step. In addition to the flow, the heat advection-diffusion 

equation is solved in a fractional step. When the solidification is taken into account through the latent heat source term, 

generally several iterations ( ∼ 3 ) are needed to reach a convergence between the liquid fraction g l and the temperature T . 

Concerning the stability, due to the implicit discretization of the gradient of the hydrostatic pressure the proposed algorithm 

is unconditionally stable with respect to the free-surface/interface wave speed. Yet a certain restriction on the time step 

exists due to the explicit discretization of the axial viscous terms. As long as the axial grid spacing is large compared to the 

radial one, such a time step restriction is rather weak. In addition, the time step is restricted also by the convective limit 

( CFL ) arising when solving the heat advection-diffusion equation. In that case, the free-surface or the interface should not 

cross more than one computational cell in the radial direction within a single time step ( CFL < 1). 

As shown in the numerical examples, the algorithm can be easily modified into a hydrostatic model by setting the initial 

value of the hydrodynamic pressure to zero and skipping the corrector step. It was also mentioned that when the liquid 

layer(s) fits into a single layer of radial computational cells, the algorithm naturally converts into a solver for the single 

or the two-layer shallow water equations. The algorithm has been successfully validated against the experimental data 

obtained during the horizontal centrifugal casting process. 
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2.4 Air gap modeling
During the horizontal centrigugal casting, the liquid steel is pressed towards the wall
of the mould by extreme centrifugal forces (100G). In spite of it, a perfect contact
can get lost when the solid shell is formed which can withstand such forces. Due
to the temperature dependent density the solid shell gradually shrinks. The air gap
is formed and acts as a thermal resistance for the heat transfer between the mould
and the solidifying shell. Moreover, it can potentially be a source of inadmissible
vibrations of the whole casting machine.

The formation of an air gap as well as its effect on heat transfer and solidification
is disccused in the following article entitled "Heat Transfer Coefficient at Cast-Mold
Interface During Centrifugal Casting: Calculation of Air Gap". Numurical models of
other research groups generally rely on explicit time-dependent formulas to describe
the heat resistance caused by the air gaps. The introductory part of the author’s
article reveals that researchers interestingly apparently inherited one formula from
each other, some of them just rewrote it into a different form.

After Introduction, a shrinkage model was developed based on the equilibrium
equation for radial and tangential stresses, the Hooke’s law with thermoelastic term
and plastic strains. The differential equation for the total displacement was solved
in the solidifying shell as well as in the mould. It was coupled with solving the heat
conduction equation with solidification.

It is very important to make the following note. The numerical model was derived
as a axisymmetric one in the radial-tangential plane. However, imagine when the air
gap is formed, the solidifying shell must touch the mould at one point. Such event
will lead to a mass imbalance and subsequent vibrations. Moreover, the contact
point may theoretically either remain static in the rotating frame of reference or it
can azimuthally travel. These phenomena naturally cannot be captured with the
present model.

In addition to that, a research was done focused on finding time-dependent for-
mulas for the heat transfer coefficient in the air gap. Results of our simulations agree
qualitatively well with the explicit formulas. For this reason, the GUI presented in
the next section 2.5 only uses the explicit formula for the thermal resistance at the
cast-mould interface.
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Heat Transfer Coefficient at Cast-Mold Interface
During Centrifugal Casting: Calculation of Air Gap

JAN BOHACEK, ABDELLAH KHARICHA, ANDREAS LUDWIG, MENGHUAI WU,
and EBRAHIM KARIMI-SIBAKI

During centrifugal casting, the thermal resistance at the cast-mold interface represents a main
blockage mechanism for heat transfer. In addition to the refractory coating, an air gap begins to
form due to the shrinkage of the casting and the mold expansion, under the continuous influence
of strong centrifugal forces. Here, the heat transfer coefficient at the cast-mold interface h has
been determined from calculations of the air gap thickness da based on a plane stress model
taking into account thermoelastic stresses, centrifugal forces, plastic deformations, and a
temperature-dependent Young’s modulus. The numerical approach proposed here is rather
novel and tries to offer an alternative to the empirical formulas usually used in numerical
simulations for a description of a time-dependent heat transfer coefficient h. Several numerical
tests were performed for different coating thicknesses dC, rotation rates X, and temperatures of
solidus Tsol. Results demonstrated that the scenario at the interface is unique for each set of
parameters, hindering the possibility of employing empirical formulas without a preceding
experiment being performed. Initial values of h are simply equivalent to the ratio of the coating
thermal conductivity and its thickness (~ 1000 Wm�2 K�1). Later, when the air gap is formed, h
drops exponentially to values at least one order of magnitude smaller (~ 100 Wm�2 K�1).

https://doi.org/10.1007/s11663-018-1220-0
� The Author(s) 2018. This article is an open access publication

I. INTRODUCTION

HORIZONTAL centrifugal casting is an important
industrial process used especially for the production of
high-quality seamless tubes and outer shells of work
rolls. In this process, the effect of centrifuging is twofold.
First, it is the fictitious centrifugal force making the
production of axisymmetric hollow castings even possi-
ble by pushing the molten metal against the inner wall of
the cylindrical mold. Second, the interaction between
inertial forces and the vector of the gravitational
acceleration induces the so-called pumping effect,
responsible for thorough mixing,[1] the growth of fine
equiaxed grains, and superior mechanical properties of
the cast.[2,3]

As with many other industrial processes, horizontal
centrifugal casting has been studied with increased

attention, with the help of various numerical techniques,
in order to gain a better understanding of the process
and underlying physical phenomena. While some of the
numerical studies concentrate more on simulating flow
dynamics, such as the mold filling, waves propagating
over the free surface, and complex buoyant flow
patterns inside the molten metal,[4–11] others focus more
on heat transfer and solidification, often assuming
coupling with simple segregation models.[12–14] The
latter is naturally more frequent within the centrifugal
casting community. Solidification is usually modeled by
means of applying the enthalpy method with appropri-
ate rules for a liquid fraction evolution in the mushy
zone. In order to construct useful and realistic heat
transfer models, precise and accurate material properties
and boundary conditions are necessary. Heat transfer
coefficients are usually imposed at boundaries, generally
being determined from empirical formulas for the
Nusselt number. Materials properties are generally
temperature dependent and must be specified for all
zones, i.e., the casting, the mold, and the coating. The
thickness of the coating, a kind of a refractory material,
such as ZrO2, is usually small (~ 1 mm); therefore, in
numerical models, it is often simplified by an assump-
tion of the thin-wall (zero-capacity) model. The coating
is applied on the inner surface of the mold in order to
insulate the mold from high temperatures and also to
control to a certain extent the solidification rate. The
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general consensus is that it tends to stick firmly to the
mold surface. A time-dependent scenario at the contact
between the casting and the coating attached to the
mold surface is perhaps one of the weakest points of all
currently available heat transfer models.

Only during the first seconds of the casting, the molten
metal is in perfect contact with the coating, as pointed out
in Reference 15. Immediately after that, a so-called
microscopic air gap is formed, whose properties such as
thickness and temporal growth are strongly influenced by
a surface roughness of the mold and the coating
eventually. Earlier studies[16] show that the importance
of the surface roughness has been for many years
underestimated. Furthermore, in the literature (e.g.,
Reference 17), there are interesting numerical works
available, taking into account the surface roughness and
trying to evaluate the effective thickness of the micro-
scopic air gap by using simple geometrical operations. As
time proceeds, the first layer of the solid has enough
strength to withstand the metallostatic pressure, whereby
the air gap thickness gradually grows and the microscop-
ically thin contact is permanently lost. Such an air gap is
often referred to as the macroscopic air gap. Please note
that while the cast-mold contact has been extensively
studied in static castings and a large body of experimental
evidence of microscopic and macroscopic air gap behav-
ior has been presented, it is not yet clear whether at least
qualitatively the same observations would apply to the
centrifugal casting. Unlike static casting, extreme cen-
trifugal forces are exerted on the liquid metal being cast,
which strive to delay the subsequent air gap formation.
We deduce that the high centrifugal pressure may be able
to significantly reduce the microscopic air gap. Further-
more, we also believe—and this has been proven in this
article—that once the macroscopic air gap is formed, the
centrifugal force has a negligible impact on its growth.

In order to cope with time-dependent thermal resis-
tance induced by the formation of an air gap, various
approaches have been adopted in earlier numerical
studies of centrifugal casting. Naturally, a simplest
approach would be an assumption of a perfect contact
formed throughout the entire casting, which was used,
e.g., by Xu et al.,[18] Gao and Wang,[19] and Cook
et al.[20] Bohacek et al.[21] pointed out the importance of
an air gap in their findings and conclusions, yet in the
numerical model, it was not taken into account.
Humphreys et al.[22] calculated the heat transfer at the
interface by employing a ‘‘virtual wall’’ technique with
cumulative thermal resistances; however, they did not
provide parameters to calculate them. Chang et al.[23]

used arbitrary values of heat transfer coefficients at the
interface, constant during the casting and increasing for
higher rotation rates. Other researchers, such as Kang
et al.[24] and Kang and Rohatgi,[25] have also used
time-independent heat transfer coefficients. Ebisu[26] and
Kamlesh[27] assumed an exponential decay of the radia-
tive heat flux through the interface as follows:

q ¼ q0e
�bs tð Þ; ½1


where q0, b, and s(t) are the initial heat flux through
the interface, a damping coefficient, and the current

solidified thickness, respectively. A similar approach
was adopted by Lajoye and Suery[28] and was later
widely used by other authors such as Raju and
Mehrotra,[29] Drenchev et al.,[30] Panda et al.[31]

Instead of the heat flux, a time-dependent heat transfer
coefficient h was considered at the interface and
defined by the following formula:

h ¼ h0
hf
h0

� �sðtÞ=d
; ½2


where h0, hf, and d are the initial and the final heat
transfer coefficient and the casting thickness, respec-
tively. Naturally, Eqs. [1] and [2] are not equivalent.
However, it is worth noting that when the heat flux q
was replaced with the heat transfer coefficient h,
Eqs. [1] and [2] would become identical provided that
the damping coefficient was defined as

b ¼ � 1

d
log

hf
h0

� �
: ½3


Recently, Nastac[32] applied a different approach
based on calculating an equivalent convective heat
transfer coefficient h to simulate the effect of the coating
and the air gap, which can be written as

h ¼ hakC
kC þ dCha

; ½4


where kC, dC, and ha represent thermal conductivity
and thickness of the coating and the heat transfer coef-
ficient between the casting and the coating, which is
defined as follows:

ha ¼ h0 þ hf � h0ð Þ 1� min 1;
t0
t

� �h ic� �
; ½5


where t0, t, and c stand for the time to initiation of
solidification, the current time, and a constant expo-
nent. Table I summarizes the values of h adopted by
the aforementioned authors. Obviously, all of the
aforementioned approaches contain at least one
unknown parameter, which needs to be adjusted, e.g.,
by means of an experiment. Although especially the
choice of the function given by Eq. [2] appears to be a
reasonable solution, a careful fine-tuning of hf is
required in order to reflect, or at least approximate,
real-life conditions. According to Vacca et al.,[33] who
performed a valuable experimental study of the heat
transfer coefficient at the interface involving the
inverse task, values of the heat transfer coefficient
adopted in centrifugal casting simulations are unreli-
able and usually arbitrary. A similar approach com-
bining a simulation and experiment was employed by
Susac et al.[34] and Sahin et al.[35] The inverse task is,
however, in general, computationally very intensive.
Moreover, time-dependent experimental data are nec-
essary at least at one point, located close to the cast-
mold interface. While the inverse task cannot be prac-
tically applied in a typical centrifugal casting simula-
tion, it is an excellent tool for validating other
numerical models or determining constants in
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empirical models. In Reference 36, the inverse task,
the inverse heat conduction problem (IHCP), was
solved by a popular nonlinear estimation technique,
originally developed by Beck.[37] The casting material,
A356 Al alloy, was cast into a carbon steel mold. The
IHCP proved that the heat transfer to the mold can be
significantly improved by applying the pressure load
during solidification in terms of restoring a contact
between the mold and the casting.

In Reference 38, the research concerns the simulation
of trip continuous casting. An engineering approach was
employed to approximate the thermal resistance at the
strip-mold interface from the heat transferred to the
cooling water. The water flow rate and temperature were
recorded at different positions along the length of the
strip for this purpose. At selected points in the liquid
pool, the calculated cooling curves agreed strongly with
those obtained from Inconel (American Special Metals,
Corp., Miami, FL) sheathed thermocouples.

In addition, a direct measurement of the macroscopic
air gap can be performed by using linear variable
differential transformers (LVDTs). However, this tech-
nique during the centrifugal casting is limited to static
castings due to high rotations of the mold during
centrifugal casting. For example, in Reference 39, the
heat transfer coefficient at the cast-mold interface of a
static casting was determined from the inverse task. The
air gap thickness was measured with the help of the
LVDTs. Finally, a correlation was found, defining the
heat transfer coefficient as a function of the air gap
thickness. The effect of the surface roughness of the
mold was analyzed. As expected, during formation of
the microscopic air gap, findings showed that the smaller
degree of roughness provides stronger contact with the
mold and that the heat transfer coefficient is, therefore,
higher. Consequently, the smaller the surface roughness
of the mold, the earlier the macroscopic air gap occurs.
On the other hand, the ultimate heat transfer coefficient,
when solidification is nearly complete, is insignificantly
influenced by the surface roughness.

As a numerical alternative of estimating the air gap
thickness, one could suggest ignoring stresses built up in
the casting and the mold and using the thermal expansion
coefficient to calculate the shrinkage simply by assuming
displacements, independent of direction, i.e., uniform rate
of deformation of control volume. This technique was
applied, e.g., by Taha et al.,[40] for a static casting.
Accuracy and reliability are, however, doubtful due to
the missing thermal stresses, which may significantly alter
total displacements. In addition, unlike static castings,
extreme forces in the centrifugal casting process act on
the casting, leading to yielding of the material especially
at early stages. In addition, for this reason, the afore-
mentioned approach should be avoided. A strategy that
incorporates a more complete and holistic model of
physics was outlined by Kron,[41] who suggested taking
into account vacancies formed due to the thermal
expansion of the mold and the material being cast, as
well as elastic stresses acting as a consequence of
thermally induced strains. Kron et al.[42] developed the
thermomechanical model, based on the plane stress
model, assuming elastic materials. They showed that the
model predicts accurately the casting scenario only for
grain-refined alloys such as Al-4.5 pct Mg. When the
solid grains are surrounded by liquid, the material
becomes more ductile and consequently the microscopic
air gap is suppressed. On the other hand, in the
non-grain-refined case, the elastic thermomechanical
model does not perform particularly effectively. However,
one may wish to interpret these findings, the important
message of Reference 42 could be formulated as follows:
The peak value of the heat transfer coefficient is larger for
the grain-refined alloy due to ductile suppression of the
microscopic air gap, but since the formation of the
macroscopic air gap starts earlier in this case, total
solidification times are almost identical. Lagerstedt, a
colleague of Kron, pointed out in the future work
chapter of his doctoral thesis[43] that including plasticity
in the stress model probably should be the next step in
developing an accurate shrinkage model.

Table I. Values of h Adopted by Different Authors

Authors Type of h Value (W m�2 K�1)

Xu et al.[18] — perfect contact
Gao and Wang[19] — perfect contact
Cook et al.[20] — perfect contact
Bohacek et al.[21] — perfect contact
Humphreys et al.[22] — not available
Chang et al.[23] constant 1000 to 2600
Kang et al.,[24] Kang and Rohatgi[25] constant 1000
Ebisu[26] variable not available
Kamlesh[27] variable not available
Lajoye and Suery[28] variable 400 to 80,000 (1/10)*
Raju and Mehrotra[29] variable 100 to 10,000 (1/10)
Drenchev et al.[30] variable 420 to 84,000 (1/10)
Panda et al.[31] variable 50 to 5000 (1/10)
Nastac[32] variable 90 to 6000 (3/100)
Vacca et al.[33] variable (exp.) 50 to 870 (6/100)

*hf/h0 ratio.
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In Reference 44, Schwerdtfeger et al. underlined the
importance of the displacement reference. Classically, in
stress theory, the displacement is the distance of a
specified atom from the position it had assumed when
the entire solid body was stress free. Such a situation,
however, does not occur during solidification; therefore,
they recommended defining the displacement as the
distance of a specified atom from the position where it
was at the moment of solidification. Consequently, one
should work with stress rates and strain rates rather than
with stresses and strains. In their study, plastic deforma-
tions were also considered and added to the elastic ones
by assuming an empirical strain-hardening equation.

Nowadays, most of the commercial software available
on the market, including MAGMASOFT (MAGMA in
Aachen, North Rhine-Westphalia, Germany), PRO-
CAST (ESI Group, Paris, France), and THERCAST
(TRANSVALOR S.A., Mougins, France), offers mod-
ules for thermomechanical calculations, and often the
user can choose from several elastic-plastic models. In
Reference 45, in conclusion, Kron et al. stated that an
accurate modeling of the air gap formation can only be
realized through fully coupled thermomechanical models.
They highlighted that the prediction of the air gap, done
with the commercial codes, is not satisfactory, suggesting
that the solidification shrinkage in the air gap vicinity
should be relaxed by the liquid and, therefore, contribute
more to a cavity formed in the top of the casting or to the
porosity. In conclusion, the entire strain model needs to
be defined more precisely. Difficulties associated with air
gap modeling were summarized in Reference 46 as the
following. High-temperature elastic constants are gener-
ally hard to obtain. Defining material properties of the
mushy zone remains a challenging topic. Currently, a
transition model is available described by the Percolation
theory. Next, obtaining proper values of rheological
parameters in the power law equation is difficult. Finally,
other difficulties or discrepancies, common to all numer-
ical models, are related to oversimplifying assumptions
and numerical errors.

In the article by Nayak and Sundarraj,[47] it was
shown that while it is accurate enough to assume a
constant value of the interface heat transfer coefficient
during the entire casting into the sand mold, it is not the
case with the metal mold. Furthermore, the rate of gap
formation significantly affects the solidification process.

The cast-mold interface, namely, the coating and an air
gap, represents a significant blockage for the heat transfer
and solidification. The thermal resistance of the coating is
often negligible compared to that of the air gap.
Therefore, a thermal resistance of such an interface has
to be carefully determined in order to allow reliable and
trustworthy numerical simulations. Existing empirical
formulas describing the heat transfer scenario at the
interface should only be applied when validated against
experimental data. The formation of an air gap depends
on many factors such as material and mechanical
properties of the casting and the mold, the coating
properties, and the process parameters (initial tempera-
tures, the pouring temperature, the casting geometry, and
the rotation rate). Obviously, setting up a generalized and
unique formula for the heat transfer coefficient at the

interface a priori would be very hard, if not impossible. In
the present article, we target developing a simple,
computationally cheap, and robust algorithm for calcu-
lating the air gap at the cast-mold interface during the
centrifugal casting, which could be used as an alternative
to often doubtful empirical formulas. A schematic of the
configuration at the interface is shown in Figure 1.

II. NUMERICAL MODEL

During the centrifugal casting of cylindrical parts, it is
reasonable to assume that fields of variables and other
properties are uniform in the tangential direction. In
fact, also, axial variations will be often small and,
therefore, could be neglected, too. This finding directly
suggests using a plane stress model. Although different
variations of plane stress models have been used in
diverse industrial applications, such as autofrettage of
gun barrels, strain-hardened pressure vessels, and mul-
tilayer seamless pipes, in the past,[48–51] they have rarely
been employed in air gap thickness calculations. Espe-
cially, concerning the centrifugal casting, to the best of
our knowledge, not a single match was found in the
literature survey.
Radial and tangential stresses, rr and rt, are coupled

through the equilibrium equation:

drr
dr

þ rr � rt
r

þ qX2r ¼ 0; ½6


where q, X, and r are the density, the rotation rate,
and the radial coordinate, respectively. When only
elastic deformations are considered, stresses are cou-
pled with strains via the Hooke’s law with the ther-
moelastic term. Such a relationship takes the following
form:

et ¼ 1
E rt � mrr½ 
 þ aT;

er ¼ 1
E rr � mrt½ 
 þ aT;

½7


where m, E, a, and T are Poisson’s ratio, Young’s mod-
ulus, the thermal expansion coefficient, and the tem-
perature, respectively. Strains and total radial
displacements are related through the following laws:

et ¼ u

r
; er ¼ du

dr
: ½8


It would, however, be incorrect to only consider
elastic strains. Since the casting in a semisolid state can
easily yield under strong centrifugal forces, plastic
deformations also must be taken into account. Then,
total strains can be conveniently expressed as a sum of
elastic and plastic strains as follows:

et ¼ 1
E rt � mrr½ 
 þ aTþ ept ;

er ¼ 1
E rr � mrt½ 
 þ aTþ epr ;

½9


where ept and epr represent plastic strains in correspond-
ing directions. In addition, it is also physically mean-
ingful to consider a temperature-dependent Young’s
modulus. Substituting total strains in Eq. [9] with dis-
placements from Eq. [8], and by combining the
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resulting equations with Eq. [6], we can arrive at the
following ordinary differential equation for the total
displacement u in the casting:

d2u

dr2
þ 1

r

du

dr
1þ r

1

E

dE

dr

� �
� u

r2
1� rm

1

E

dE

dr

� �

¼ a 1þ mð Þ dT

dr
þ T

1

E

dE

dr

� �
� qrX2 1� m2

� � 1
E

þF ept ; e
p
r

� �
withF ¼ 1

E

dE

dr
epr þ mept
� �þ depr

dr
þ m

dept
dr

þ 1� m
r

epr �
1� m
r

ept :

½10

In the mold, Eq. [10] is considerably simplified

because one assumes a constant Young’s modulus and
pure elastic deformations. The differential equation for
the total displacement u in the mold becomes

d2u

dr2
þ 1

r

du

dr
� u

r2
¼ a 1þ mð Þ dT

dr
� qrX2 1� m2

� � 1
E
: ½11


Note that in Eqs. [10] and [11], subscripts […]S and
[…]M denoting the mold and the casting are omitted for
the sake of brevity. Equations [10] and [11] can be solved
provided that plastic strains epr and ept are known. In
order to determine them, a universal stress-strain curve,
usually assumed to be equivalent to the stress-strain
curve obtained from the uniaxial loading test, must be
known in advance. The universal stress-strain curve
relates two scalar quantities: the effective stress r and
the effective plastic strain ep. Several models of the
effective stress r exist. Here, the von Mises stress,

calculated by assuming a principal stress loading, was
used in the following form:

r ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rr � rtð Þ2þr2r þ r2t

q
: ½12


The von Mises stress r is coupled with the increment

of the effective plastic strain dep by the Prandtl–Reuss
(Levy–Mises) flow rule as follows:

depr ¼ dep

r
rr � 0:5rtð Þ ½13


and

dept ¼ dep

r
rt � 0:5rrð Þ: ½14


Knowing or assuming dep, the plastic strains depr and
dept can be easily calculated and then used in Eq. [10] to
extrapolate the total displacement u. In Eqs. [13] and

[14], the increment of the effective plastic strain dep is
used and not the effective plastic strain ep, which means
that the plastic strain history (or the loading path) is
very important. Correspondingly, a progressive load
must be also applied in the simulation. Here, such
loading is automatically realized by a time-dependent
temperature field and a gradual progress of
solidification.
In the present study, a temperature-dependent, per-

fectly elastic-plastic material is used, as shown in
Figure 2. At a given temperature, the material deforms
elastically until a certain threshold of the effective stress,
known as the yield strength, is reached, at which point
the material starts yielding with no further increase of
the effective stress. Instead of the elastic-perfectly plastic
material, any kind of other material could be used such
as a strain-hardening or a strain-softening material.
In the following text, we summarize all the facts,

assumptions, and solution strategy necessary to run a
successful numerical simulation and obtain a reasonable
air gap.

Fig. 1—Schematic of the configuration at the cast-mold interface. In
the case of perfect contact, the air gap disappears.
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Fig. 2—Uniaxial stress-strain curves of elastic-perfectly plastic
material used in the present study.
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Facts:

(1) The mold constantly expands during the entire
casting process.

(2) The casting also expands but only during the early
stage of casting. Later, the strength of the solidified
part of the casting is sufficient to withstand cen-
trifugal forces; therefore, the casting contracts.
Consequently, the air gap forms.

Assumptions:

(1) The mold undergoes purely elastic deformations. (In
reality, it may not be true, especially in the vicinity
of the cast-mold interface. At the initial stage of
casting, extreme stresses may occur, causing a type
of damage known as ‘‘fire cracks,’’ to the inner part
of the mold.)

(2) Mechanical properties of the mold material are
constant. Thermophysical properties may vary with
the temperature.

(3) The casting may deform both elastically and plasti-
cally. A temperature-dependent, perfectly elas-
tic-plastic material is assumed (Figure 2).

(4) Mechanical properties (Young’s modulus E and
yield strength Y) of the casting material are tem-
perature dependent. Thermophysical properties may
also vary with the temperature.

(5) Only the radiative and the conductive heat transfer
mechanisms are expected within the air gap. The
convective mechanism is neglected due to the small
size of the air gap.

In addition to Eqs. [10] and [11], we also need to solve
the heat conduction for the temperature T. In the
cylindrical coordinate system, it takes this form in the
mold:

qMcpM
@T

@t
¼ 1

r

@

@r
kM

@T

@r

� �
; ½15


where qM, cpM, and kM are the density, specific heat,
and thermal conductivity of the mold material, respec-
tively. Similarly, in the casting, it can be written as

qScpS
@T

@t
¼ 1

r

@

@r
kS

@T

@r

� �
þ qSLf

@gs
@t

; ½16


where qS, cpS, and kS are density, specific heat, and
thermal conductivity of the casting material, respec-
tively. The last term is a latent heat source term due to
the phase change, in which Lf and gs represent the
latent heat and the solid fraction, respectively. In the
present study, a simple linear relationship is considered
between the solid fraction gs and the temperature T.
Other relationships, however, could also be considered
(e.g., the lever rule or the Gulliver–Scheil equation).
The heat conduction equations, Eqs. [15] and [16], are
coupled via the heat flux at the cast-mold interface. A
thin-wall model, also known as a zero-capacity model,
was used to numerically simplify the situation at the
interface by considering only a thermal resistance,

exerted by the coating and possibly the air gap. Then,
the heat flux at the interface reads as

q ¼ kifc
TS � TM

drM þ drS
; ½17


kifc ¼ kSkMkCka drM þ drSð Þ
kCka drMkS þ drSkMð Þ þ kSkM dCka þ dakCð Þð Þ ;

½18

where kifc, kC, and ka denote the effective thermal con-
ductivity, the thermal conductivity of the coating, and
the air gap, respectively. Other quantities are explained
in Figure 1. The air gap thermal conductivity ka is, in
fact, the sum of the thermal conductivity of air ka,phys
and a thermal conductivity, which is equivalent to the
radiative heat transfer through the air gap, given by

ka ¼ ka;phys þ rda T0
S þ T�� �

T02
S þ T�2� �

; ½19

where r is the Stefan–Boltzman constant
(5.67 9 10�8 W m�2 K�4). The temperatures T’S and
T* must be given in Kelvin. Note that without the air
gap (da = 0), Eq. [18] is still valid and represents the
effective thermal conductivity only in the presence of
the coating. The reader should be reminded that in this
study, the black body radiation model has been taken
for its simplicity and convenience. However, when tar-
geting more accurate results, considering gray bodies is
better justified and Eq. [19] would then become

ka ¼ ka;phys þ rda T0
S þ T�� �

T02
S þ T�2� �

1=eS þ 1=eC � 1ð Þ�1;

½20

where eS and eC are emissivity coefficients of both sur-
faces enclosing the air gap, which belong to the casting
and the coating, respectively. Using Eq. [20]. instead
of Eq. [19] will naturally reduce the radiative heat
transfer. In reality, the air between the casting and the
shell may, as a participating gas, further reduce the
radiative heat transfer. A description of the corre-
sponding mathematical model can be found, e.g., in
Reference 52.
Concerning thermal boundary conditions, both the

free surface of the casting and the outer surface of the
mold are considered to be adiabatic:

dT
dr

rið Þ ¼ 0;

dT
dr

roð Þ ¼ 0:
½21


In simulations focused on a comparison with exper-
imental data, thermal boundary conditions, however,
should be specified more precisely, e.g., with the help of
existing empirical formulas for the Nusselt number[53,54]

in rotating geometries.
In addition to Eq. [21], boundary conditions have to

be specified also for Eqs. [10] and [11]. Here, we have to
distinguish between two cases: a perfect contact or an air
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gap. In the case of the contact, appropriate boundary
conditions take the following form:

rrS rið Þ ¼ 0
uS Rð Þ ¼ uM Rð Þ
rrM roð Þ ¼ 0:

½22


Otherwise (the air gap),

rrS rið Þ ¼ 0
rrS Rð Þ ¼ 0
rrM Rð Þ ¼ 0
rrM roð Þ ¼ 0:

½23


Differential equations for total displacements,
Eqs. [10] and [11], and temperature, Eqs. [15] and [16],
were all solved using the finite difference method with
second-order accurate central difference schemes for
derivatives (including points at the boundaries). In the
radial direction, the casting and the mold were divided
into NS and NM uniformly spaced grid points with the
dimensions drS and drM of 1 mm (Figure 1). The same
grids with uniform spacing were used for both quantities
u and T. For Eqs. [15] and [16], the implicit backward
Euler method was used for time-stepping. In addition,
an iterative approach was necessary for heat conduction
equations due to temperature-dependent thermophysi-
cal properties, the nonlinear heat flux q at the cast-mold
interface (Eq. [17]), and especially the stiff, latent heat
source term. Treatment of the latent heat source term
was realized by using a semi-implicit method proposed
by Voller and Swaminathan.[55] A detailed description of
the discretization can be found in Reference 56.
Although systems of equations are unconditionally
stable, the time-step size should be small enough so
that the loading rate still allows finding correct and
physically meaningful increments of plastic strains.
Here, the time-step of 0.1 seconds was found to be
reasonable.

Solution strategy:

(1) Initialize fields of temperature, solid fraction, plastic
strains, stresses, and air gap thickness.

(2) For time tn+1, solve heat conduction equations,
Eqs. [15] and [16], coupled by the heat flux at the
interface (Eq. [17]), with the air gap thickness da
from the previous time tn and obtain new tempera-
ture T and solid fraction gs fields. In our numerical
tests, usually between two and five iterations were
necessary to drop scaled residuals below 10 9 10�8

for the latent heat source term and the nonlinear
heat flux q, respectively. The residuals were calcu-
lated according to the following formula:

res ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
P

i Ti � Told
i

� �2q
P

i T
old
i

½24


where N is the total number of cells (NS+NM). Ti

and Told
i are the current temperature and the

temperature from the previous iteration both taken at
the grid point with the index i
(3) Use Figures 3 and 4 to find new values of yield

strength Y and Young’s modulus E of the casting
material.

(4) Assume an air gap. For time tn+1, solve Eq. [11] for
total displacements u of mold with the boundary
conditions for the radial stress rrM in Eq. [23].
Similarly, for time tn+1, solve Eq. [10] for total
displacements u of the casting with the boundary
conditions for the radial stress rrS in Eq. [23] and
the plastic strains epr and ept from the previous time tn.

(5) If the total displacement of the casting at the inter-
face is greater than that of the mold, the casting and
the mold are in perfect contact, i.e., no air gap is
formed. Otherwise, the cast-mold contact is lost and
the air gap is formed. If the earlier is true (perfect
contact), recalculate Eqs. [10] and [11] with the
boundary conditions given in Eq. [22]. Otherwise,
evaluate the air gap thickness as

da ¼ uM Rð Þ � uS Rð Þ ½25

(6) In the casting, evaluate radial and tangential stresses

by using the following explicit formulas, which can
be obtained by straightforward manipulations of
Eqs. [8] and [9]:

rrS ¼ E
1�m2

du
dr

� epr

� �
þ m u

r � ept
� �h i

� aE 1
1�v T;

rtS ¼ E
1�m2

u
r � ept
� �þ m du

dr
� epr

� �h i
� aE 1

1�v T:
½26


(7) Using Eq. [26] in Eq. [12], calculate von Mises
stresses r in the casting and compare them with yield
stresses Y obtained from the stress-strain curve
(Figure 3). Then, identify only the points P that
yield P ¼ r � Yð Þ.

(8) For the points P, new increments dep of the effective
plastic strain ep must be calculated so that

r� Y ¼ 0 ½27

This is realized through an optimization loop, in which

Eq. [27] is the objective function and dep is constrained
to values greater than zero. Then, one iteration
sequence could have the following form: Estimate

increments dep; using Eqs. [13] and [14], calculate
increments deprand dept and update the plastic strains

eprande
p
t epr ¼ epr þ depr ; e

p
t ¼ ept þ dept

� �
; solve Eq. [10] for

new displacements u in the casting and get new stresses
(Eq. [26]); and recalculate von Mises stresses r and
repeat until the convergence of Eq. [27] is attained. In
the present article, a nonlinear least-squares optimiza-
tion algorithm, known as the trust-region-reflective
algorithm,[57,58] was applied. In order to reduce disper-

sive errors of dep appearing due to complex loading
and, consequently, yielding on a discrete grid, the Sav-
itzky–Golay filter[59] was applied on a temporally over-

laid dep signal.
(9) Proceed to the next time-step.
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III. RESULTS AND DISCUSSION

As the main objective of the present study is to
propose and test a novel approach of calculating an air
gap rather than numerically analyzing a particular
process, material and mechanical properties used in
the simulations only roughly correspond to those of real
materials (Table II). The geometry, initial conditions,
and other casting parameters are given in Table III.

First, numerical tests were performed for different
coating thicknesses (0.5, 1, 2, and 4 mm) and all other
parameters were fixed. Total displacements u of the
mold and the casting at the interface are shown as a
function of time t in Figure 5. As one would expect,
initially, the mold and the casting are in contact. At a
certain moment, they detach and their displacements
follow different paths. This is clearly shown by bifur-
cating curves in Figure 5. A difference between the
casting and the mold displacement corresponds to the

air gap thickness da. Obviously, the air gap appears
earlier in the case of a thin coating than that of a thick
one. Consequently, the heat transfer coefficient h at the
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Fig. 3—Temperature-dependent yield strength of the casting
material.[60] The dashed line represents data reconstructed using the
extrapolation until the temperature of solidus Tsol.
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Fig. 4—Temperature-dependent Young’s modulus of the casting
material.[60] The dashed line represents data reconstructed by means
of extrapolation until the solidus temperature Tsol.

Table II. Properties of Materials Used in the Simulations

Material Property Value Unit

Casting[…]S a 5 9 10�6 K�1

q 7860 kg m�3

cp 500 J kg�1 K�1

m 0.5 —
E Fig. 4 Pa
gs linear between Tliq and Tsol —
k 22 W m�1 K�1

Lf 280 kJ kg�1

Tliq 1593 (1320) K (�C)
Tsol 1438 (1165) K (�C)
Y Fig. 3 Pa

Mold […]M a 5 9 10�6 K�1

m 0.5 —
q 7850 kg m�3

cp 490 J kg�1 K�1

E 200 9 109 Pa
k 58.6 W m�1 K�1

Coating kC 2 W m�1 K�1

Air ka,phys 0.02 W m�1 K�1

Table III. Geometry, Initial Conditions, and Other Casting
Parameters

Property Value Unit

X 71 rad s�1

d 65 mm
dC 2 mm
L 165 mm
R 400 mm
Tfill 1623 (1350) K (�C)
Tmold 433 (160) K (�C)
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Fig. 5—Total displacements u at the cast-mold interface for different
coating thicknesses of 0.5, 1, 2, and 4 mm. Bifurcation corresponds
to the first appearance of the air gap.
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interface will drop faster in the case of a thin coating
than that of a thick one, which can be seen in Figure 6.
The heat transfer coefficient h was simply calculated as

h ¼ q

TS � TM
¼ kifc

drM þ drS
: ½28


For each configuration (dC = 0.5, 1, 2, and 4 mm),
the time evolution of the heat transfer coefficient h is,
therefore, unique. Ultimately, it seems that after
300 seconds, the heat transfer coefficients are almost
identical, close to 200 W m�2 K�1.

Similar tests with similar outputs were performed for
different values of the rotation rate X (50, 71, and 90 rad
s�1). Naturally, the higher the centrifugal force, the
better the contact between the casting and the mold.
Concerning the elastic deformations of the mold,
displacements u are larger at higher rotation rates X
(Figure 7). Higher centrifugal forces are also responsible
for stronger and longer yielding of the partly solidified
casting, which delays a formation of the air gap.
Consequently, at a given instance, the heat transfer
coefficient h is higher in the case of a higher rotation rate
X (Figure 8).

A similar study was carried out for different values of
solidus temperature Tsol such that Tliq � Tsol = 10 K,
50 K, 100 K, and 200 K (10 �C, 50 �C, 100 �C, and 200
�C). Although it is a somewhat intuitive, one could
confidently state that the smaller the difference is, the
earlier the air gap occurs. Again, we provide total
displacements and heat transfer coefficients at the
interface in Figures 9 and 10, respectively. Since coating
parameters are fixed this time, initial heat transfer
coefficients are all identical, equal to 1000 W m�2 K�1.
Later, they significantly deviate. While the curves
referring to mold displacements at the interface have a
similar trend, indicating a continuous thermoelastic
expansion of the mold, those corresponding to casting
displacements exhibit more complex scenarios due to the
combination of plastic and elastic deformations. In

Figure 9, e.g., the dash-dot line representing Tliq � Tsol

= 200 K (200 �C) indicates the yielding of the casting
material within the entire time span simulated. On the
contrary, the dash line Tliq � Tsol = 50 K (50 �C)
displays only slight yielding in the beginning, immedi-
ately followed by thermoelastic contraction.
Although the quantities calculated at the interface,

such as the air gap thickness da and the heat transfer
coefficient h, are of primary interest here, the numerical
model also provides other quantities such as stresses and
elastic/plastic strains. In Figure 11, a typical example of
temperature and strains appears at 50 seconds. The gray
zone on the right represents the mold. The rest on the
left belongs to the casting. A temperature drop can be
seen at the interface due to a large thermal resistance. As
the time proceeds, total strains grow quite uniformly
throughout the entire thickness of the mold. The same
applies also to the casting but only at the early stage.
Later, when the casting is partly solidified and the yield
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Fig. 6—Heat transfer coefficients h at the cast-mold interface for
different coating thicknesses of 0.5, 1, 2, and 4 mm. Before the air
gap is formed, h is constant defined as kCdC.
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Fig. 7—Total displacements u at the cast-mold interface for different
values of rotation rate X such that X = 50, 71, 90 rad s�1.
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Fig. 8—Heat transfer coefficients h at the cast-mold interface for
different values of rotation rate X such that X = 50, 71, and 90 rad
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strength Y increased, total strains start dropping and the
casting contracts consequently.

In addition to strains (Figure 11), stresses are shown
in Figure 12. A typical distribution of stresses can be
seen in the mold. While the radial stresses are exclusively
compressive, the tangential stresses are compressive
close to the inner surface of the mold and become tensile
as they approach the outer surface of the mold. The
greatest stresses the mold must withstand are naturally
located at the inner surface due to a sudden temperature
loading. In this particular case (Figure 12), they do, in

fact, reach the yield strength of the material. After
several casting cycles, a thermal loading would most
likely lead to the formation of fire cracks.[61] Concerning
stresses in the casting, at the early stage of solidification,
they are within the temperature-dependent envelope of
the yield strength. The (semi-)solid part of the casting
close to the mold can already hold some stresses,
whereas the liquid part remains stress free. At later
stages of the casting, the stresses in the casting are well
below the yield strength and only the elastic loading is
present. When the casting procedure is finished and the
temperature field becomes uniform, residual stresses
remain in the casting. An analysis of stresses and strains
is, however, beyond the scope of the present article.
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Fig. 9—Total displacements u at the cast-mold interface for different
values of solidus temperature Tsol such that Tliq � Tsol = 10 K, 50
K, 100 K, and 200 K (10 �C, 50 �C, 100 �C, and 200 �C).
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Fig. 10—Heat transfer coefficients h at the cast-mold interface for
different values of solidus temperature Tsol such that Tliq � Tsol =
10 K, 50 K, 100 K, and 200 K (10 �C, 50 �C, 100 �C, and 200 �C).

Fig. 11—Distribution of strains and temperature in the radial
direction for the case with the coating thickness dC of 2.0 mm at 50
s. The zones in white and gray stand for the casting and the mold,
respectively.

Fig. 12—Distribution of radial and tangential stresses for the case
with the coating thickness dC of 2.0 mm at 50 s.
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IV. CONCLUSIONS

In centrifugal casting simulations, exponential func-
tions are generally used to describe the heat transfer
coefficient at the cast-mold interface, varying due to the
air gap formation. Such functions contain empirical
constants, which must be carefully specified. Unfortu-
nately, this is not an easy task. An experiment alone is
not sufficient to determine such constants, and compu-
tationally expensive inverse methods should be
employed, which is, however, rarely the case. A litera-
ture survey performed here reveals an expansive scatter
of data used in current and previous research. In the
present study, we offer an alternative of calculating an
air gap thickness and the corresponding heat transfer
coefficient at the interface. The heat transfer model is
coupled with a plane stress model, taking into account
thermoelastic stresses, centrifugal forces, plastic defor-
mations, and a temperature-dependent Young’s modu-
lus. Several numerical tests were performed for different
coating thicknesses dC, rotation rates X, and solidus
temperatures Tsol. Results were analyzed in the sense of
comparing heat transfer coefficients at the interface and
air gap thicknesses as a function of time. The numerical
model developed here helps demonstrate that the
scenario at the interface is unique for each set of
parameters. Therefore, deploying any of the exponential
functions that explicitly describe the thermal resistance
at the cast-mold interface will always give rise to the
question about the actual value of empirical constants
used in that particular function. Although the material
properties taken for this study do not strictly correspond
to any particular material, they are obviously not far
from material properties of common steels and coatings,
and the results obtained here appear to be entirely
reasonable and meaningful. In the near future, we plan
to verify the current numerical approach against the
results obtained from the inverse task run with the
experimental data. Finally, possible room for improve-
ment of the presented model remains. For example,
some kind of implicit coupling between the heat transfer
model and the plane stress model would be beneficial
and might even be necessary in order to maintain
numerical stability (or suppress unphysical oscillations
of calculated displacements), especially at higher cooling
rates, e.g., when an air gap is being just formed. In
addition, the optimization loop involved in the loading
step, i.e., the process of calculating the plastic strains
could also be further improved.
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NOMENCLATURE

[…]C Subscript referring to the coating
[…]M Subscript referring to the mold
[…]S Subscript referring to the casting
cp Specific heat (J kg�1 K�1)
d Casting thickness (mm)
da Air gap thickness (mm)
dC Coating thickness (mm)
E Young’s modulus (Pa)
gs Solid fraction
h Heat transfer coefficient at the interface

(W m�2 K�1)
h0 Initial heat transfer coefficient at the interface

(W m�2 K�1)
hf Final heat transfer coefficient at the interface

(W m�2 K�1)
ha Heat transfer coefficient between the casting

and the coating (W m�2 K�1)
k Thermal conductivity (W m�1 K�1)
ka Effective thermal conductivity of the air gap

(W m�1 K�1)
ka,phys Thermal conductivity of air (W m�1 K�1)
kC Thermal conductivity of the coating

(W m�1 K�1)
kifc Effective thermal conductivity of the control

volume built of the mold, coating, air gap, and
casting (W m�1 K�1)

L Thickness of the mold (m)
Lf Latent heat of solidification (J kg�1)
N Number of grid points
P Set of yielding points
q Heat flux through the interface (W m�2)
q0 Initial heat flux through the interface (only

coating present) (W m�2)
r Radial distance (mm)
ri Inner radius of the casting (mm)
ro Outer radius of the mold (mm)
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R Inner radius of the mold–radius of the
interface (mm)

s Solidified thickness of the casting (mm)
t Time (s)
t0 Time of solidification initiation (s)
T Temperature (K (�C))
Tfill Initial temperature of the liquid metal-filling

temperature (K (�C))
Tliq Liquidus temperature of the casting material

(K (�C))
Tmold Initial temperature of the mold (K (�C))
Tsol Solidus temperature of the casting material (K

(�C))
T* Temperature between the coating and the air

gap (Fig. 1) (K (�C))
T’M Temperature between the mold and the

coating (K (�C))
T’S Temperature between the casting and the air

gap (K (�C))
u Radial displacement (mm)
Y Yield strength (Pa)

GREEK SYMBOLS

a Thermal expansion coefficient (K�1)
b Damping coefficient
c Constant exponent
er Total strains in radial direction (mm mm�1)
et Total strains in tangential direction (mm mm�1)
epr Plastic strains in radial direction (mm mm�1)
ept Plastic strains in tangential direction (mm mm�1)
ep Effective plastic strain (mm mm�1)
e Radiative emissivity
m Poisson’s ratio
q Density (kg m�3)
rr Radial stress (Pa)
rt Tangential stress (Pa)
r von Mises (effective stress) (Pa)
r Stefan–Boltzmann constant (W m�2 K�4)
X Rate of rotation (rad s�1)
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2.5 Software for industry
As mentioned in section 2.3, a Graphical User Interface (GUI) was developed in
MATLAB. The (non-)hydrostatic solver forms the core of the GUI. The post-
processing must be done in PARAVIEW with templates. The GUI is simple to
control and intuitive. From the following figures, the workflow becomes apparent.

Fig. 2.5: The GUI’s main panel.

Fig. 2.6: Step 1: solver options
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Fig. 2.7: Step 2: setting up the dimensions and the mesh.

Fig. 2.8: Step 3: reading material from database (or creating a new material).
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Fig. 2.9: Step 4: imposing initial and boundary conditions.

Fig. 2.10: Step 5: Run simulation and save data in vtk format.
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Conclusions
The present thesis hopefully coherently delivers to the reader knowledge about the
horizontal centrifugal casting of rolls collected during projects funded by the Aus-
trian COMET Competence Centre Programme between years 2010 and 2020. The
research was mainly focused on development of numerical models of the whole cast-
ing process.

Theoretical background, practical aspects and common problems served as a first
input for model developments.

When 3D Volume of Fluid models prepared in ANSYS FLUENT turned out to
be computationally very expensive, the idea about modifying shallow water equa-
tions (SWE) emerged. A trick of solving SWE by using the Euler-Euler model was
applied. Despite having a comprehensive model of horizontal centrifugal casting,
several drawbacks were identified, which eventually led to development of more ac-
curate and much faster approximate Riemann solver. The main advantage was that
a 3D scenario about spreading the liquid metal along with a gradually solidifying
shell could be captured in a fair amount of time. However, some missing parts of
physics and a certain pressure by the industry partner resulted into a development
of a 2D free-surface model based on the full Navier-Stokes equations, which was
eventually incorporated into a user-friendly graphical-user interface. The code was
further extended to consider a shrinkage of the solidifying shell.

The numerical model is able to capture various wave patterns on the free-surface
that interacts with the solidifying liquid metal. The numerical model amply demon-
strates the oscillating trajectory of an equiaxed crystal carried by the melt. The
numerical can simulate the whole horizontal centrifugal casting process including
pouring the outer (first) layer as well as the intermediate (second) layer until solid-
ification is finished.

The present work hopefully stands as a good starting point for someone who is
going to start with CFD simulations of horizontal centrifugal casting or simulations
of rotating rotating flows in general.
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List of symbols, quantities and abbreviations
�Ω angular velocity (rad · s−1)

p static pressure (Pa)

Φ gravitational potential (m2 · s−2)

ν kinematic viscosity (m2 · s−1)

�g gravitational acceleration (m · s−2)

z vertical coordinate (m)

�f body forces (m · s−1)

ρ fluid density (kg · m−3)

ρ0 reference fluid density (kg · m−3)

ρ′ fluid density fluctuations (kg · m−3)

Ri Richardson number (-)

Tam Taylor number (-)

Tacr critical Taylor number (-)

lhs left-hand side
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