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Abstract

The habilitation thesis is oriented in the field of non-linear dynamical systems. It
is composed as commented proceedings of author’s most important research papers,
published in peer reviewed international conferences or international journals in the
years 2010 – 2018. The research papers are organized in two dominant topics, each
forming a single part of the thesis: The topics included are (1) Linearistion and
Modelling of Non-linear Power Amplifiers, (2) Advanced Modelling on Non-linear
Dynamical Systems. For completeness, also the educational activities of the author
are summarized in the thesis.
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(2017–2019).
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1. Introduction

It is common situation that nonlinear devices are simulated using computers. There can
be complex models modeling physical phenomenas of each electronic part. Models on
physical level are usually very complex and difficult to handle even with modern com-
puters. Another approach can be modeling systems in fact as a black-box device.

Another aspect of non-linear systems is the reduction and modeling of inconvenient
effects connected with a real characteristic of many real-world parts [2], especially the
modeling aspects connected with non-linear power amplifiers (PA) used in wireless com-
munications and broadcasting.

Power amplifiers are critical elements of mobile communication and broadcasting sys-
tems because their efficiency conditions the autonomy and the weight of mobile handset
batteries and their linearity influences on performance of the communication. In prac-
tice, PAs are not perfectly linear and present memory effects, i.e. the output signal is a
function of the current and of previous input signal values. And a compromise must be
achieved between the efficiency and the linearity of the PA [3].

The aim of this work is to bring new innovative solutions to improve the performance
of RF power transmitters.

The work conducted in this thesis is a part of work for the project AMBRUN (FUI
project with partners: Thales, TeamCast, Supélec and ESIEE Paris). The project aims
to improve the radio performance of the amplification of multiplexed signals using adap-
tive algorithms for dual applications: tactical communication and broadcasting VHF
band. The originality and ambition of the project lie in the bandwidths of processed
signals (above 40 MHz) the involved powers (up to 100W) and the non-stationarity of
tactical multiplex signals.

An increasing demands on communications system with every generation of devices.
One may observe, that in 1985 for AMPS systems the required bandwidth of signal was
30kHz. Comparing for example with the latest LTE Advanced, that can require 100MHz
of bandwidth. The LTE Advanced requires approximatively 3400 times larger bandwidth
than AMPS systems. That is also challenging in terms of signal processing.
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2. Generalities on Radio Frequency Power
Amplifiers

In this chapter we would like to introduce some generalities related with power ampli-
fiers. The following section brings overview of performance evaluation methods. Finally
the last section introduces generalities on linearization of power amplifiers.

2.1 Signal Crest Factor - PAPR

The crest factor of a signal is defined as the ratio between peak amplitude input and its
root mean square (RMS) value:

𝐶 =
|𝑥|𝑝𝑒𝑎𝑘

𝑥𝑟𝑚𝑠
. (2.1)

A derived measure from Crest factor is the peak-to-average power ratio (PAPR). The
PAPR is usually used in signal processing applications. It is defined as power ratio:

𝑃𝐴𝑃𝑅 =
|𝑥|2𝑝𝑒𝑎𝑘

𝑥2
𝑟𝑚𝑠

= 𝐶2. (2.2)

Usually the PAPR is expressed in decibels (dB). The knowledge of PAPR is impor-
tant, because it is a measure of the envelope dynamics.

The PAPR can be measured on radio-frequency (RF) or baseband complex envelope
signals. There is a 3dB difference between the two definitions.

Widely used Orthogonal Frequency-Division Multiplexing (OFDM) signals have quite
high PAPR (approx. 12dB in RF) unlike sine wave which has 3.01𝑑𝐵. The PAPR is an
important signal parameter for a PA, because it leads to using large back-off to preserve
linearity whilst the efficiency is degraded.

In order to have good efficiency, the operating point of PA needs to be set close to
saturation area, but the higher the operating point is, the worst the linearity. Usually we
need to set a certain compromise between linearity and efficiency. Therefore a back-off is
used. The value of the back-off is of the same order as the PAPR (𝐵𝑎𝑐𝑘−𝑜𝑓𝑓 ≈ 𝑃𝐴𝑃𝑅).
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2. Generalities on Radio Frequency Power Amplifiers

2.2 System performance evaluation: ACPR, EVM, NMSE
There are several parameters used to evaluate the influence of PA non-linearity on system
performance in the case of modulated signals, in particular ACPR and EVM.

2.2.1 Adjacent Channel Power Ration - ACPR

The imperfections and non-linearities usually results in some adjacent channel spectral
regrowth. This phenomenon can be quantified with the parameter ACPR that is defined
as a bandwidth limited ratio between the power in the main channel and the power in
one adjacent channel. Therefore we can define this property for left and right adjacent
channel. The right and left channel ACPRs are defined by:

𝐴𝐶𝑃𝑅𝑅[𝑑𝐵] = 10log

⎛⎝∫︀ 𝐵/2
−𝐵/2 𝑃𝑦(𝑓)𝑑𝑓∫︀ 3𝐵/2
𝐵/2 𝑃𝑦(𝑓)𝑑𝑓

⎞⎠ (2.3)

𝐴𝐶𝑃𝑅𝐿[𝑑𝐵] = 10log

⎛⎝ ∫︀ 𝐵/2
−𝐵/2 𝑃𝑦(𝑓)𝑑𝑓∫︀−𝐵/2
−3𝐵/2 𝑃𝑦(𝑓)𝑑𝑓

⎞⎠ ,
where 𝐵 represents the bandwidth of the signal and 𝑃𝑦(𝑓) is power spectral density.

2.3 Normalized Mean Square Error - NMSE
For the quantification of performance we can also use Normalized Mean Square Error
(NMSE)[5]. It is an estimator of the overall deviations between predicted and measured
values. For two complex vectors x and y of N samples the NMSE is defined as:

𝑁𝑀𝑆𝐸(x, y)[𝑑𝐵] = 10 log
(︃

(x − y)𝐻(x − y)
x𝐻x

)︃
. (2.4)

Where (.)𝐻 stands for transposed complex conjugation of vector also so-called Hermitian
transpose.

The NMSE is a global measure of quality. But it does not distinguish between linear
and non-linear distortion.

For example bad NMSE could be due to time shift between signals and/or bad gain
alignment.

2.4 Error Vector Magnitude - EVM
Error vector magnitude (EVM) is a measurement of performance in the presence of
impairments. The measured symbol location obtained after decimating the recovered
waveform at the demodulator output are compared with the ideal symbol locations of

6



2.4. Error Vector Magnitude - EVM

constellation points. EVM is defined as normalized average value of the vector error.
It is usually estimated on a window of 𝑁 samples. The measured symbol location is
given by 𝑤. However, the ideal symbol location (using the symbol map) is given by 𝑣.
Therefore, the resulting error vector is the difference between the actual measured and
ideal symbol vectors defined as 𝑒 = 𝑤 − 𝑣.

The EVM is calculated after compensation of simple constellation determination:
offset and complex gain. Analytically, RMS EVM is defined as:

𝐸𝑉𝑀 = 𝐸(|𝑣 − 𝑐1𝑤 − 𝑐0|2)
𝐸(|𝑣|2)

, (2.5)

where E(.) represents the average value, 𝑐0 and 𝑐1 are the optimal values of gain
and offset. Using ergodic properties, it is estimated on 𝑁 symbols by (in the case where
𝑐0 = 0 and 𝑐1 = 1):

𝐸𝑉𝑀 =
∑︀𝑁

𝑗=1

[︁
(𝐼𝑗 − 𝐼𝑚𝑒𝑎𝑠

𝑗 )2 + (𝑄𝑗 −𝑄𝑚𝑒𝑎𝑠
𝑗 )2

]︁
∑︀𝑁

𝑗=1 |𝐼2
𝑗 +𝑄2

𝑗 |
100%. (2.6)
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3. Generalities on post-OFDM
Modulation Techniques

In today communication systems orthogonal frequency division multiplexing signals (OFDM)
with cyclic prefix are widely used. It was proved that using multicarrier modulations
(MCM) is an efficient way of transmission and has better resistance to multi-path chan-
nels than single carrier modulations. In multi-carrier systems, information is commonly
transmitted through orthogonal pulses which overlap in time and frequency. On of the
main advantage is that these pulses occupy (mostly) only a small bandwidth. CP-OFDM
(Cyclic-Prefix OFDM) is the most prominent multicarrier scheme that is nowadays ap-
plied. It employs rectangular transmit and receive pulses, which greatly reduce the
computational complexity. Furthermore, the CP guarantees orthogonality in frequency
selective channels. Unfortunately of the biggest disadvantages of OFDM or CP-OFDM
is its poor spectral behavior, caused by the rectangular prototype filters. Furthermore
CP simplifies equalization in frequency-selective channels reducing the spectral efficiency.
Comparison between contemplated modulation can be seen in Fig.3.1.

3.1 Filter Bank Multi-carrier Modulation - FBMC
There does not exist a unique definition for FBMC-QAM. We can sacrifice frequency
localization, and have unsatisfying OOB emissions, or we can sacrifice orthogonality in
order to have a time-frequency localization. Due to properties of prototype filter in the
FBMC systems, offset quadrature amplitude modulation (OQAM) is used. Offset means
the in-phase and quadrature components are time staggered by half of symbol period.
The baseband model of FBMC/OQAM transmitter can be written

𝑥[𝑡] =
+∞∑︁

𝑚=−∞

𝑁−1∑︁
𝑘=0

(𝜃𝑘ℜ{𝑋𝑘[𝑚]}ℎ[𝑡−𝑚 𝑁 ] +

𝜃𝑘+1ℑ{𝑋𝑘[𝑚]}ℎ[𝑡−𝑚 𝑁 − 𝑁

2 ]) 𝑒𝑗 2𝜋
𝑁

𝑘(𝑡−𝑚𝑁) (3.1)

where 𝑋𝑘 is a modulation part of a symbol, 𝜃𝑘+1 is real part phase rotation vector for the
imaginary part 𝜃𝑘 respectively, ℎ[.] is general prototype filter for each sub-carrier with
impulse response length 𝐿 = 𝐾𝑁 with 𝐾 so-called overlapping factor and 𝑁 number of
sub-carriers.

There exists several approaches implementing FBMC modulator/demodulator such
as NK-IFFTs operating in parallel, two N-IFFTs and polyphase filtering and with lower
complexity single N-FFT and polyphase filtering. The last mentioned method was imple-
mented in this paper. The principle of computing the discrete inverse Fourier transform
of two real functions simultaneously is used. Such approach is beneficial because then
the concept can be easily reconfigured as OFDM transmitter.
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3. Generalities on post-OFDM Modulation Techniques

The input signal of IFFT can be expressed as ℜ{𝑋𝑘[𝑚]}𝜃𝑘 + 𝑗ℑ{𝑋𝑘[𝑚]}𝜃𝑘 where
multiplication with a vector 𝜃𝑘 = 𝑒𝑗 2𝜋

4 𝑘 in frequency domain induce circular shift of 𝑁
4

in the time domain. The principle is commonly named as folding scheme.

3.2 Generalised Frequency Division Multiplex - GFDM

The Generalized Frequency Division Multiplex (GFDM) is based on the circular shifted
prototype filter in time and frequency domain. Hence the OOB emission is significantly
suppressed. This fact allows that the modulation scheme is well suited for transmission
on non-contiguous frequency bands with strict spectral mask constraints.

Figure 3.1: Comparison of sectral properties: OFDM (blue curve), FBMC (red curve),
GFDM (green curve).

3.3 I/Q Imbalance Model for Wireless Transciever

I/Q imbalance is a performance-limiting issue in the design of direct conversion receivers.
IQ imbalances occur due to mismatches between the parallel sections of the transceiver
chain dealing with the in-phase (I) and quadrature (Q) signal paths. The local oscillator
(LO) generates a sinewave (can be influenced with offset, noise, gain change, etc.), and a
copy of that sine-wave that is delayed by 90 degrees (this principle is called quadrature
modulator). When the direct LO output is mixed with the original signal, this produces
the I signal, whereas when the delayed LO output is mixed with the original signal, that
produces the Q signal. In the analog domain, the delay is never exactly 90 degrees.
Similarly, analog gain is never perfectly matched for each of the signal paths. In this
paragraph, we would like to show that I/Q imbalance is in general imperfection that
have to be neglected.

10
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Suppose first that we can neglect the noise and thus the received passband signal in
the receiver path is identical to the transmitted signal with the baseband components

𝑦(𝑡) = 𝑦𝑟(𝑡) + 𝑗𝑦𝑖(𝑡), (3.2)

𝑦𝑅𝐹 (𝑡) = ℜ
{︁
𝑦(𝑡)𝑒𝑗𝜔𝑡

}︁
= 𝑦𝑟(𝑡)𝑐𝑜𝑠(𝜔𝑡) − 𝑦𝑖(𝑡)𝑠𝑖𝑛(𝜔𝑡). (3.3)

Multiplying the passband signal by the two local oscillator signals and passing through a
pair of low-pass filters, one obtains the demodulated baseband signals. After rearrange-
ments we can write the symmetrical model burdened by I/Q imbalance:

𝑦(𝑡)′
𝑟 = (1 + 𝜖) [𝑦𝑟(𝑡)𝑐𝑜𝑠(𝜑) − 𝑦𝑖(𝑡)𝑠𝑖𝑛(𝜑)]

𝑦(𝑡)′
𝑖 = (1 − 𝜖) [𝑦𝑖(𝑡)𝑐𝑜𝑠(𝜑) − 𝑦𝑟(𝑡)𝑠𝑖𝑛(𝜑)] , (3.4)

where 𝜖 is a gain imbalance and 𝜑 is a phase imbalance.
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4. Techniques For Analyzing And
Modeling Non-linear Systems

4.1 Introduction

This chapter presents the principals models that can be used for modelling PA or for
digital predistortion (DPD). It is composed of two main parts: first the description of
the models, then the methods for identification of the models. It focuses on models that
can be used in the case of PA linearization.

There are several models used in modeling the PA (or used for DPD) from the sim-
plest models modelling just the amplitude distortions to the most general form known
as Volterra series and its derivatives.

We may distinguish the models to three basic categories: memoryless or static, quasi-
static and dynamic (or memory) models. For memoryless models, the output at time 𝑡
only depends on input at time 𝑡 and it can be shown that the system introduces only
amplitude distortions. These amplitude distortions only depends on the magnitude of
the input signal. Quasi-static models can also model phase distortions depending on the
signal magnitude.

The third category is called dynamic, because these models are able to model mem-
ory effects.

4.2 Static and Quasi-static models

4.2.1 Memoryless RF Polynomial Series

One of the most straightforward models are the polynomial series. We can define the
RF model for power amplifier as:

𝑦𝑅𝐹 (𝑡) =
𝑁∑︁

𝑛=1
𝑎𝑛𝑥

𝑛
𝑅𝐹 (𝑡). (4.1)

The coefficients of models can be obtained from simple measurements such as 𝑃𝐿1𝑑𝐵,
IP3; etc. Let us establish the baseband equivalent model of the RF polynomial series.

Let us investigate the behavior in the presence of 𝑛-th order nonlinearity [11]:

13
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𝑥𝑛
𝑅𝐹 (𝑡) = 1

2𝑛

[︁
𝑥(𝑡)𝑒𝑗𝜔0𝑡 + 𝑥*(𝑡)𝑒−𝑗𝜔0𝑡

]︁𝑛
(4.2)

= 1
2𝑛

𝑛∑︁
𝑘=0

(︃
𝑛

𝑘

)︃
𝑥(𝑡)𝑘𝑥*(𝑡)(𝑛−𝑘)𝑒𝑗𝜔0(2𝑘−𝑛)𝑡.

We are interested by 𝑦𝑅𝐹 1(𝑡) that is the component at frequency ±𝑓0. So we look for
component for which:

(2𝑘 − 𝑛) = ±1. (4.3)

For 𝑛 even, (2𝑘 − 𝑛) never equals 1, therefore 𝜔0(2𝑘 − 𝑛) is always out of band. For
𝑛 odd the frequencies can be in-band. Hence (for −𝜔0) we may write:

𝑘 = 𝑛− 1
2 , (4.4)

(𝑛− 𝑘) = 𝑛− 1
2 + 1.

Then using (4.5) we may define:

𝑥(𝑡)𝑘𝑥*(𝑡)𝑛−𝑘 = 𝑥(𝑡)
𝑛−1

2 𝑥*(𝑡)
𝑛−1

2 +1 (4.5)
= |𝑥(𝑡)|𝑛−1𝑥(𝑡)*.

Similarly for frequency +𝑓0 for (2𝑘 − 𝑛) = 1 we obtain:

𝑥(𝑡)𝑘𝑥*(𝑡)𝑛−𝑘 = |𝑥(𝑡)|𝑛−1𝑥(𝑡). (4.6)

Using these results the baseband output is defined as:

𝑦(𝑡) =
𝑁∑︁

𝑛=1
𝑛 𝑜𝑑𝑑

𝑎𝑛

2𝑛−1

(︃
𝑛

(𝑛− 1)/2

)︃
|𝑥(𝑡)|𝑛−1𝑥(𝑡), (4.7)

setting

𝑏𝑛 = 𝑎𝑛

2𝑛−1

(︃
𝑛

(𝑛− 1)/2

)︃
. (4.8)

This explains why the baseband models are often defined with odd coefficients only.
They can be defined as:

𝑦(𝑡) =
𝑁∑︁

𝑛=1
𝑛 𝑜𝑑𝑑

𝑏𝑛𝑥(𝑡) |𝑥(𝑡)|𝑛−1 =
𝑁−1

2∑︁
𝑘=0

𝑏2𝑘+1𝑥(𝑡) |𝑥(𝑡)|2𝑘 , (4.9)
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where 𝑥 is the input baseband signal of the power amplifier, 𝑦 is the output baseband
signal of PA and 𝑏𝑛 are the polynomial coefficients.

Another explanation why equivalent baseband models contain only odd terms can
be done using Shimbo formula [12, 13]. For the rest of the thesis we will refer only to
baseband models of PA (the PA is followed by bandpass filter).

In practice including even order terms in baseband models can improve performance.

Several models corresponding to modeling the AM/AM and AM/PM characteristic
have been given, for example: Saleh, Rapp, quasi-static models. Their general expression
is given by:

𝑦(𝑡) = 𝐴(|𝑥(𝑡)|)𝑒𝑗𝜑(|𝑥(𝑡)|)𝑥(𝑡). (4.10)

We precise some of them in the following sections.

4.3 Dynamical Models Derived From Volterra Series

4.3.1 Polynomial series with memory

Polynomial memory series (PMS) were first presented in [27] and are widely used for
modeling the non-linearities [28, 11, 29]. They can be interpreted as a special case of
a generalized Hammerstein model. The presented series can model the memory effects.
In this model, all off-diagonal terms of the Volterra series are set to zero. The series is
defined as:

𝑦(𝑡) =
𝐾∑︁

𝑘=1

𝑄∑︁
𝑞=0

𝑏𝑘𝑞 𝑥(𝑡− 𝑞)|𝑥(𝑡− 𝑞)|𝑘−1

=
𝐾∑︁

𝑘=1

𝑄∑︁
𝑞=0

𝑏𝑘,𝑞Φ𝑘,𝑞(𝑥(𝑡)) = Φ(𝑡)b, (4.11)

where

Φ𝑘,𝑞(𝑥(𝑡)) = |𝑥(𝑡− 𝑞)|𝑘−1𝑥(𝑡− 𝑞), (4.12)
b = [𝑏1,0, 𝑏2,0, ..., 𝑏1,1, ..., 𝑏1,𝑄, ..., 𝑏𝐾,𝑄]𝑇 (4.13)

Φ(𝑡) = [Φ1,0(𝑥(𝑡)), ...,Φ𝐾,𝑄(𝑥(𝑡))]. (4.14)

Their structure is determined by 2 parameters: 𝐾 the non-linearity order and 𝑄 the
memory length. The number of coefficients is 𝐾(𝑄+ 1).

These models have good performance for applications with narrow or medium band-
widths. But they are often insufficient when large bandwidth applications are needed
because of their limitation in modeling memory effects. For large bandwidth applications
more complicated models are necessary.
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4.3.2 Dynamic Deviation Reduction Models

To overcome the complexity of the general Volterra series, an effective model pruning
method, called dynamic deviation reduction (DDR) [32, 33, 34] was proposed. It is based
on the fact that the effects of dynamics tend to fade with increasing nonlinearity order
in many real PAs, so that the high-order dynamics can be removed in the model, leading
to a significant simplification in model complexity.

Note that this dynamic-order truncation does not affect the nonlinearity or memory
truncation in the same way as in the classical series. In other words, it only removes
higher order dynamics, preserving the static nonlinearities and low-order dynamics[32].

The 2st-order dynamic truncation of the DDR-based baseband Volterra model in the
discrete time can be written as:

𝑦(𝑡) =
𝐾−1

2∑︁
𝑘=0

𝑄∑︁
𝑖=1

𝑔2𝑘+1,1(𝑖) |𝑥(𝑡)|2𝑘𝑥(𝑡− 𝑖)

+
𝐾−1

2∑︁
𝑘=1

𝑄∑︁
𝑖=1

𝑔2𝑘+1,2(𝑖) |𝑥(𝑡)|2(𝑘−1)𝑥2(𝑡)𝑥*(𝑡− 𝑖)

+
𝐾−1

2∑︁
𝑘=1

𝑄∑︁
𝑖1=1

𝑄∑︁
𝑖2=1

𝑔2𝑘+1,3(𝑖1, 𝑖2)|𝑥(𝑡)|2(𝑘−1) 𝑥*(𝑡)𝑥(𝑡− 𝑖1)𝑥(𝑡− 𝑖2)

+
𝐾−1

2∑︁
𝑘=1

𝑄∑︁
𝑖1=1

𝑄∑︁
𝑖2=1

𝑔2𝑘+1,4(𝑖1, 𝑖2)|𝑥(𝑡)|2(𝑘−1) 𝑥(𝑡)𝑥*(𝑡− 𝑖1)𝑥(𝑡− 𝑖2)

+
𝐾−1

2∑︁
𝑘=1

𝑄∑︁
𝑖1=1

𝑄∑︁
𝑖2=1

𝑔2𝑘+1,5(𝑖1, 𝑖2)|𝑥(𝑡)|2(𝑘−2) 𝑥3(𝑡)𝑥*(𝑡− 𝑖1)𝑥*(𝑡− 𝑖2). (4.15)

where 𝑥(𝑛) and 𝑦(𝑛) are the complex envelopes of the input and output of the PA,
respectively, and 𝑔2𝑘+1,𝑗 is the complex Volterra kernel of the system.

A simplified version of the model is defined by:

𝑦(𝑡) =
𝐾−1

2∑︁
𝑘=0

𝑄∑︁
𝑖=0

𝑔2𝑘+1,1(𝑖) |𝑥(𝑡)|2𝑘𝑥(𝑡− 𝑖)

+
𝐾−1

2∑︁
𝑘=1

𝑄∑︁
𝑖=1

𝑔2𝑘+1,2(𝑖) |𝑥(𝑡)|2(𝑘−1)𝑥2(𝑡)𝑥*(𝑡− 𝑖)

+
𝐾−1

2∑︁
𝑘=1

𝑄∑︁
𝑖=1

𝑔2𝑘+1,3(𝑖)|𝑥(𝑡)|2(𝑘−1) 𝑥(𝑡)|𝑥(𝑡− 𝑖)|2

+
𝐾−1

2∑︁
𝑘=1

𝑄∑︁
𝑖=1

𝑔2𝑘+1,4(𝑖)|𝑥(𝑡)|2(𝑘−1) 𝑥*(𝑡)𝑥2(𝑡− 𝑖). (4.16)
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4.3.3 Generalized Memory Polynomials

Another model including cross terms is the generalized memory polynomials (GMP)[35].
Inserting a delay of samples between the signal and its exponentiated envelope using
positive and negative cross-term time shifts we get:

𝑦(𝑛) =
𝐾𝑎−1∑︁
𝑘=0

𝐿𝑎−1∑︁
𝑙=0

𝑎𝑘,𝑙𝑥(𝑛− 𝑙)|𝑥(𝑛− 𝑙)|𝑘

+
𝐾𝑏∑︁

𝑘=1

𝐿𝑏−1∑︁
𝑙=0

𝑀𝑏∑︁
𝑚=1

𝑏𝑘,𝑙,𝑚𝑥(𝑛− 𝑙)|𝑥(𝑛− 𝑙 −𝑚)|𝑘

+
𝐾𝑐∑︁
𝑘=1

𝐿𝑐−1∑︁
𝑙=0

𝑀𝑐∑︁
𝑚=1

𝑐𝑘,𝑙,𝑚𝑥(𝑛− 𝑙)|𝑥(𝑛− 𝑙 +𝑚)|𝑘, (4.17)

where the structure of GMP models is determined by 8 parameters: 𝐾𝑎, 𝐾𝑏 , 𝐾𝑐

non-linearity orders, 𝐿𝑎, 𝐿𝑏, 𝐿𝑐 memory lengths and 𝑀𝑏, 𝑀𝑐 distances from the diag-
onal of Volterra series, and 𝑎𝑘,𝑙, 𝑏𝑘,𝑙,𝑚 and 𝑐𝑘,𝑙,𝑚 are the linear coefficients of the equation.

In order to reduce the complexity, it is not necessary in many cases to use all of
the coefficients. For example, odd-order nonlinearities usually dominate so that we may
only want to consider odd-order terms. Also additionally, depending on the signal band-
width and sampling rate, it may not be necessary to implement all cross-term time shifts.

4.4 Identification of Models

In this section we will focus on models with linear dependency with respect to their
coefficients. The interest of these models is that we will obtain a convex minimization
problem for the least-squares (LS) criteria for PA modeling and DPD with indirect learn-
ing architecture.

In order to identify the coefficients of PA model or DPD coefficients, we use LS
optimization criterion:

e = min
𝑏

||y − z||2 . (4.18)

We apply notations defined in Fig.4.1, where for PA modeling 𝑦(𝑡) is measured signal
(for DPD 𝑥(𝑡) is measured signal) and 𝑧(𝑡) is the output of the model. We consider here
only indirect learning approach for the DPD.

The ||.||2 represent the quadratic norm of vector and z is expressed as:

z = Ub, (4.19)

and where a z is a in vector with dimensions 𝑁 × 1:

z = [𝑧(0), ..., 𝑧(𝑁 − 1)]𝑇 . (4.20)
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Figure 4.1: Schematic of minimizing problem between measured and modeled signals.
The left schematic represents calculation of PA model. The right schematic represents
calculation of PA inverse model (note that the input 𝑥(𝑡) and output 𝑦(𝑡) notation is
swapped in order to meet error defined in (4.18).

y = [𝑦(0), ..., 𝑦(𝑁 − 1)]𝑇 . (4.21)

e = [𝑒(0), ..., 𝑒(𝑁 − 1)]𝑇 . (4.22)

As seen in equation (4.19) U is a matrix of size 𝑁 × 𝑁𝑐 (where 𝑁𝑐 represents number
of coefficients and for example for PMS 𝑁𝑐 = 𝐾(𝑄+ 1)):

U =

⎛⎜⎜⎜⎜⎝
Φ(0)
Φ(𝑡)

...
Φ(𝑁 − 1)

⎞⎟⎟⎟⎟⎠ . (4.23)

b a vector of size 𝑁𝑐 × 1
b = [𝑏0, ..., 𝑏𝑁𝑐−1]𝑇 . (4.24)

The optimization problem can be written:

minb(e𝐻e). (4.25)

4.4.1 Least Squares one-shot solution

The LS solution minimizing distance between each data point and the space of best fit
passing through the data points for (4.19). The criteria J can be expressed as:

J(b) = ||z − y| |2 = e𝐻e = (y − Ub)𝐻(y − Ub) (4.26)

= b𝐻U𝐻Ub − y𝐻Ub − b𝐻U𝐻y + y𝐻y

The solution of (4.27) can be obtained by calculating the gradient and setting it to 0.
The gradient is equal to:

𝜕J((b))
𝜕b = 2 U𝐻Ub − 2 U𝐻y, (4.27)
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The least square solution yields to:

U𝐻Ub − U𝐻y = 0. (4.28)

b = (U𝐻U)−1U𝐻y = U+y, (4.29)

where U+ denotes Moore - Penrose pseudo-inverse. The LS algorithm is in fact one-shot
solution for block of data.

LS one-shot solution is quite good in terms of performance. Nevertheless an interest
in adaptive algorithms grows (adaptive filtering, adaptive equalization, etc.). The prob-
lem with LS one-shot solution is, that it is not able to track PA variations. Therefore
adaptive algorithms have been proposed for the case of DPD identification either.

4.4.2 Damped Newton Algorithm

In many applications, adaptive estimation is performed on a block by block basis. There
exists method called Damped Newton Algorithm (DNA) that upgrades the LS solution
by adding possibility to control the speed of convergence depending on the preceding
error. The DNA works block by block and it adapts preceding vector of coefficients to
take into account the new block of data with a damping factor. In this section we will
describe DNA used for predistortion of PA. The approach for predistortion using DNA
was defined in [35].

+ 

- 

PA 

0

1

G

yz

ẑ

e

x

𝐳 = 𝐔𝐛 

𝒛 = 𝐘𝐛 

Figure 4.2: Schematic of DNA system.

The initialization vector b0 is usually chosen to use predistorter as a transparent
block as:

b0 = [1, 0, · · · , 0]𝑇 . (4.30)

According to notation in Fig.4.2 we can describe the algorithm for 𝑛 ∈ 1, 2, 3, ..., where
𝑛 represents the block number, with the following equation for block 𝑛 (each block has
𝑁 samples):

z = U b𝑛−1. (4.31)
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Equivalently as in (4.20-4.23) we define the output matrix Y from the signal 𝑦
𝐺0

as:
ẑ = Y b𝑛−1. (4.32)

Then we define the error vector e
e = z − ẑ. (4.33)

The coefficients b can be updated as:

b𝑛 = b𝑛−1 + 𝜇
(︁
Y𝐻Y

)︁−1
Y𝐻 e, (4.34)

where 𝜇 is a relaxation variable. When setting the relaxation variable 𝜇 = 1 the damping
is removed and the solution becomes the standard LS solution.

4.4.3 LMS algorithm

The Least Mean Square (LMS) algorithm is often used in adaptive systems due its sim-
plicity and relative precision. The algorithm works sample by sample. The algorithm
computes instantaneous error and then corrects the actual value of coefficients.

Using any of models defined before with linear relation with respect to their coeffi-
cients (for example PMS, OMPS, DDR) we note:

Φ(𝑛) = 𝑛𝑡ℎ 𝑟𝑜𝑤 𝑜𝑓 𝑚𝑎𝑡𝑟𝑖𝑥 U. (4.35)
Then the criterion function can be defined as:

min 𝐽(𝑛) = 𝑚𝑖𝑛 |𝑒(𝑛)|2 (4.36)
= 𝑚𝑖𝑛 |𝑦(𝑛) − Φ(𝑛)b(𝑛)|2 .

The estimated gradient vector becomes:

∇𝐽(𝑛) = 𝜕|𝑒(𝑛)|2
𝜕b(𝑛) (4.37)

Because
𝑒(𝑛) = 𝑧(𝑛) − Φ(𝑛)b(𝑛), (4.38)

applying equation (4.38) to equation (4.37) we get:
∇𝐽(𝑛) = −𝑒(𝑛)Φ𝐻(𝑛). (4.39)

Then using the steepest descent weight update equation we obtain iterative solution:
b(𝑛+ 1) = b(𝑛) + 𝜇𝑒(𝑛)Φ𝐻 , (4.40)

where parameter 𝜇 adjusts the compromise between convergence speed and the error
value after convergence.

Due to sensitivity to value 𝜇 that can lead to instability, the algorithm was modified
by using a normalization that improves stability of the algorithm. This algorithm is
so-called Normalized Least Mean Square (NLMS) defined as:

b(𝑛+ 1) = b(𝑛) + 𝜇 𝑒(𝑛) Φ𝐻

Φ Φ𝐻
(4.41)

Both LMS and NLMS suffers from low convergence speed and limited precision.
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4.4.4 RLS algorithm

For solving the LS criterion optimization problem recursive least squares (RLS) algorithm
can also be used. In its adaptive form it converges faster than LMS. Theoretically where
the forgetting factor is equal to 1, it achieves the optimal solution (Wiener solution) but
it is more complex than LMS. Now defining the input of the system:

x(𝑛) = [𝑥(𝑛), 𝑥(𝑛− 1), . . . , 𝑥(0)]𝑇 , (4.42)

and vector of desired output:

y(𝑛) = [𝑦(𝑛), 𝑦(𝑛− 1), . . . , 𝑦(0)]𝑇 . (4.43)

Then we define line vector Φ(𝑛) as before of size 1×𝑁𝑐 and matrix Θ of size (𝑛+1)×𝑁𝑐

as:

Θ(𝑛) =

⎛⎜⎝ Φ(0)
...

Φ(𝑛)

⎞⎟⎠ . (4.44)

Then the output of the system will be:

z(𝑛) = Θ(𝑛)b(𝑛). (4.45)

The instantaneous error at time 𝑛 is:

𝑒(𝑛) = 𝑦(𝑛) − Φ(𝑛)b(𝑛). (4.46)

Now defining the criterion function with a forgetting factor denoted as 𝜆:

minb 𝐽(𝑛) =
𝑛∑︁

𝑘=0
𝜆𝑛−𝑘 |𝑒(𝑘)|2

=
𝑛∑︁

𝑘=0
𝜆𝑛−𝑘 |𝑦(𝑘) − Φ(𝑘)b(𝑛)|2

= e𝐻Λe(𝑛) (4.47)

where:

Λ = diag
[︁
1, 𝜆, 𝜆2, . . . , 𝜆𝑛

]︁
(4.48)

To use recursive implementation we need to define the correlation matrix R(𝑛) by a
recurrence equation:

R(𝑛) = Θ𝐻(𝑛)ΛΘ(𝑛) (4.49)

=
𝑛∑︁

𝑘=0
𝜆𝑛−𝑘Φ𝐻(𝑘)Φ(𝑘)

=
𝑛−1∑︁
𝑘=0

𝜆𝑛−𝑘Φ𝐻(𝑘)Φ(𝑘) + Φ𝐻(𝑛)Φ(𝑛)

= 𝜆R(𝑛− 1) + Φ𝐻(𝑛)Φ(𝑛).

21



4. Techniques For Analyzing And Modeling Non-linear Systems

We define the cross-correlation vector of size 𝑁𝑐 × 1:

p(𝑛) = Θ𝐻(𝑛)Λy(𝑛) (4.50)

=
𝑛∑︁

𝑘=0
𝜆𝑛−𝑘Φ𝐻(𝑘)𝑦(𝑘)

=
𝑛−1∑︁
𝑘=0

𝜆𝑛−𝑘Φ𝐻(𝑘)𝑦(𝑘) + Φ𝐻(𝑛)𝑦(𝑛)

= 𝜆p(𝑛− 1) + Φ𝐻(𝑛)𝑦(𝑛).

Defining the recursive solution:

b(𝑛+ 1) = R−1(𝑛)p(𝑛) = P(𝑛)p(𝑛), (4.51)

where defining P(𝑛) = R−1(𝑛) and applying the inversion lemma to calculate R−1(𝑛)
yields to:

P(𝑛) = 𝜆−1P(𝑛− 1) − 𝜆−2P(𝑛− 1)Φ𝐻(𝑛)Φ(𝑛)P(𝑛− 1)
1 + 𝜆−1Φ(𝑛)P(𝑛− 1)Φ𝐻(𝑛) . (4.52)

Now defining the gain g(𝑛):

g(𝑛) = 𝜆−1P(𝑛− 1)Φ𝐻(𝑛)
1 + 𝜆−1Φ(𝑛)P(𝑛− 1)Φ𝐻(𝑛) (4.53)

Then applying (4.53) to P(𝑛) defined in (4.52) we get:

P(𝑛) = 𝜆−1P(𝑛− 1) − 𝜆−1g(𝑛)Φ(𝑛)P(𝑛− 1). (4.54)

To rewrite the recursive weight update algorithm:

g(𝑛) = 𝜆−1P(𝑛− 1)Φ𝐻(𝑛)
1 + 𝜆−1Φ(𝑛)P(𝑛− 1)Φ𝐻(𝑛)

P(𝑛) = 𝜆−1P(𝑛− 1) − 𝜆−1g(𝑛)Φ(𝑛)P(𝑛− 1)
𝑒(𝑛) = 𝑦(𝑛) − Φ𝑇 (𝑛)b(𝑛)

b(𝑛+ 1) = b(𝑛) + g(𝑛)𝑒(𝑛). (4.55)

We define initial conditions as p(0) = 0, R(0) = 𝛿I, where I is identity matrix. The
typical value of 𝛿 is usually set as a small positive value equal to 𝛿 = 10−3. Then we can
define:

P(0) = R−1(0) = 𝛿−1I. (4.56)

To show the relationship between LS solution and RLS algorithm lets set 𝜆 = 1, we get:

R(𝑛) = Θ𝐻(𝑛)IΘ(𝑛). (4.57)

p(𝑛) = Θ𝐻(𝑛)Iz(𝑛). (4.58)
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and using:

R(𝑛)b(𝑛) = p(𝑛)
Θ𝐻(𝑛)IΘ(𝑛)b(𝑛) = Θ𝐻(𝑛)Iz(𝑛). (4.59)

we get:

b(𝑛) =
(︁
Θ(𝑛)Θ𝐻(𝑛)

)︁−1
Θ(𝑛)z(𝑛). (4.60)

We recognize (4.60) for 𝑛 = 𝑁 the LS solution for the block of 𝑁 samples.

Introducing a forgetting factor 𝜆 leads to an adaptive algorithm. RLS converges
faster and is more precise than LMS. The RLS algorithm is more complex than LMS.
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5. Introduction

The idea of deterministic non-linear series has influenced thinking in many research fields
of science. Especially the paradigm of chaotic behavior. It is well known, that complex
dynamical mathematical objects show rich and surprising structures [1, 2, 3]. Most
catching for researchers over forty years in applied sciences is the fact that deterministic
systems provide striking explanation for irregular behavior and anomalies in many sys-
tems which does not seem to be implicitly stochastic[4].

With a recent massive progress in the overall personal computer performance it turns
out that even very complicated multi-level dynamical systems can be modeled and ana-
lyzed, in a reasonable amount of computational time. Many of these discovered events
have been recently observed and proved by means of the artificial experiments. The
excitement about chaos theory rises from the perception that it captures the complex
disorganized order of the real world [5]. Meaning that chaotic signal from the macro-
scopic point of view represents total disorder [6].

Looking closely certain deterministic properties can be revealed. The absence of long-
term predictability [7, 8] and the presence of infinitely many unstable periodical orbits
makes almost any chaotic subsystem an ideal candidate for the ultra-fast encrypted com-
munication channels. The basic obstacle to be removed in this area lies in the lack of
sophisticated algorithms for the higher-order dynamical motion quantification. Due to
the absence of closed-form analytical solution of the non-linear dynamical systems the
existing routines are based on the numerical analysis and linearizion of continuous vector
field near equilibrium points. On the other hand, great efforts are being made to exploit
ideas from chaos theory in cases where the system is not necessarily deterministic but
the data display more structure than can be captured by traditional methods.
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6. Mathematical Models and Time Series
Analysis

In this chapter several methods for analyzing the non-linear dynamical systems have
been presented. Fist section deals with mathematical model analysis. Such methods are
usually useful in the case of known mathematical models.

Otherwise in the case of having only measurements, different methods have to be
applied. Such method have been presented in second part of this chapter.

6.1 Mathematical Model Analysis
The dynamics of linear systems is governed by the paradigm that small causes lead to
small changes of a solution. Linear equations can lead to exponentially decaying (grow-
ing) or damped periodically oscillating solutions, where all irregular behavior has to be
introduced by some random external conditions.

Chaos theory has simply demonstrated that there is no need of being one of the pa-
rameters random or stochastic [9], to produce irregular and complicated behavior.

Usually the model of autonomous system is given by the set of ordinary differential
equations. The closed-form solution for such set of the equations is impossible to obtain
analytically. Actually for modern computer technology it is impossible to find a analyt-
ical solution, but even if the solution is be obtained, it probably won’t be intelligible.

6.1.1 Poincare Sections

The purpose of a Poincare section is to detect some sort of structure in the attractor. It
can be defined as an intersection of a state space orbit of a continuous dynamical system
with a certain lower dimensional subspace, transversal to the flow of the system.

A Poincare sections can be interpreted as a discrete dynamical system with a state
space that is one dimension smaller than the original continuous dynamical system.

𝑃 : 𝑈 → 𝑆, (6.1)

where 𝑃 is Poincare map for certain orbit on the Poincare section 𝑆 and 𝑈 is an open
and connected neighborhood of point on the orbit.
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6.1.2 Bifurcation Analysis

Bifurcation analysis is used to find certain points, where the system exhibits periodic,
aperiodic and chaotic behavior (be aware that there exist also different bifurcation anal-
ysis.).

One of the most used methods is made of marginal sight (set) of Poincare sections,
by perturbing chosen parameter of the mathematical model. Such typical plot can be
seen in the Fig.6.1.
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Figure 6.1: Bifurcation analysis of single Hindamarsch-Rose neural model.

6.1.3 Lyapunov Exponents

Detecting and quantifying chaotic behavior has become very important task for the non-
linear dynamical systems. Almost every article dealing with non-linear systems is using
Lyapunov exponents for its analysis [10, 11, 12].

These exponents are used to describe the average exponential rate of divergence or
convergence of near arbitrary trajectories in the phase state space. They are also called
characteristic exponents. Exponents can be regarded as a measure of sensitivity to initial
conditions.

Lyapunov exponents are real numbers that can be advantageously used to classify
non-chaotic and chaotic systems. If the system is in an unstable state, one can see that
two nearby trajectories of each are moving away faster than a polynomial rate. Any
system containing at least one positive Lyapunov exponent is defined to be chaotic. The
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LE can be defined as:

𝐿𝐸[x0, y0 ∈ 𝑇𝑥(𝑡)ℜ3] = lim
𝑡→∞

1
𝑡

‖𝐷𝑥𝜑(𝑡, x0)y0||
‖y0‖

, (6.2)

where 𝑇𝑥(𝑡) is a tangent space in the point on the fiducial trajectory and 𝐷𝑥𝜑(𝑡, x0)y0
is solution of the linearized system.

In order to preserve the orthogonal base of vectors in each iteration step, a Gram-
Smith orthogonalization procedure is added to the standard routine for LE calculation.

By sorting and indexing LEs in descending order the mentioned metric dimension
called Kaplan-Yorke dimension can be calculated as:

𝐷𝐾𝑌 = 𝑘 +
∑︀𝑘

𝑖=1 𝐿𝐸𝑖

‖𝐿𝐸𝑘+1‖
, (6.3)

where 𝑘 is the largest integer representing the 𝑘 + 1 state variables. This formula is
in accordance with two fundamental mechanisms of chaos generation, i.e. folding and
stretching of the state space trajectories.

From definition of the dissipative systems the sum of all LEs has to be negative. It
is obvious from that the most common approach for LE evaluation for three dimensional
dynamical systems described by ordinary differential equations is based on the numerical
integration of the twelve differential equations. The linearization matrix is calculated in
each point on the trajectory [13], thus it necessary to have the knowledge about Jacobi
matrix (JM) in the symbolic form.

The approach is based on the divergence of neighboring trajectories compared with
the fiducial trajectory. The solution was first presented in [14]. It is a method for
identifying just the largest Lyapunov exponent, since the quantifying property is sufficient
enough. Over time interval 𝑡2 − 𝑡1, the rate of divergence of two points that evolve from
a spacing 𝐷1 to a spacing 𝐷2, may be characterized by a quantity:

𝑄 =
𝑙𝑛
(︁

𝐷2
𝐷1

)︁
𝑡2 − 𝑡1

. (6.4)

Because the separation must be kept small comparing with the size of the attractor,
a new neighbor has to be set periodically for subsequent estimates of the divergence rate.
After n repetitions of stretching and re-normalizing the spacing the rates are weighted
by fraction of time between each re-normalization. Then they are added to yield an
experimental value for the largest Lyapunov exponent as:

𝜆1 =
𝑛−1∑︁
𝑖=1

⎧⎨⎩
[︃

(𝑡𝑖+1 − 𝑡𝑖)∑︀𝑛−1
𝑖=1 (𝑡𝑖+1 − 𝑡𝑖)

]︃ ⎡⎣ 𝑙𝑛
(︁

𝐷𝑖+1
𝐷𝑖

)︁
(𝑡𝑖+1 − 𝑡𝑖)

⎤⎦⎫⎬⎭ . (6.5)

Since
𝑛−1∑︁
𝑖=1

(𝑡𝑖+1 − 𝑡𝑖) = 𝑡𝑛 − 𝑡1, (6.6)
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we have

𝜆1 =
∑︀𝑛−1

𝑖=1

(︁
𝐷𝑖+1

𝐷𝑖

)︁
𝑡𝑛 − 𝑡1

. (6.7)
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Figure 6.2: The spectrum of Lyapunov exponents for the system (??).

The estimated spectrum of Lyapunov exponents for the Lorenz system ?? of ordinary
differential equations of third order is in the Fig.6.2.

This method cannot be used if the vector field is discontinuous, especially if the re-
peated jump functions are involved in the mathematical model [15], since JM contains
extreme values [16, 17, 10]. In the article, there are values in the matrix, both infinity
(positive as well as negative) and zero [10, 4].

If the transition between two states of the sign function is omitted the standard proce-
dure returns the incorrect results. It is because the linearized flow is uniquely determined
by three real negative eigenvalues and form stable node local geometry near the fiducial
point. Having this configuration each edge of the volume cube shrinks suggesting that
the system possess three negative LEs.

In practice the transition event is not neglected and the corresponding derivative
depends on the numerical integration step size. If the extreme values substituted into
the Jacobi matrix the entire procedure tends to diverge and fails.

6.2 Time Series Approach
One rarely has complete information about all of the degrees of freedom in a complex
dynamical system. There are quite few conventional approaches for analyzing time series.
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For example for quantifying the behavior, calculation of a correlation dimension can
be used. The correlation dimension gives us an estimate of the system complexity [18].
But the methods for dynamical analysis of experimental data have been still developing.

In order to estimate all variables, first the reconstruction of dynamics has to be done.
The standard method of reconstruction consists of estimating the degree of freedom,
called embedding dimension 𝑚, reconstruction of dynamics and of determination of cer-
tain invariant quantities.

6.2.1 Reconstruction Of Dynamics

The reconstruction of a vector state space which is equivalent to the generating state
space of the system from a scalar time series is the basis of almost all of the methods.
The simplest method to embed scalar data is usage of method of delays.

This can be done by reconstructing the pseudo phase-space from a scalar time series,
by using delayed copies of the original time series as components of the reconstruction
matrix. It involves sliding a window of length 𝑚 through the data to form a series of
vectors, stacked row-wise in the matrix. Each row of this matrix is a point in the recon-
structed phase-space. Setting {𝑋1 · · ·𝑋𝑛} represent the time series, the reconstruction
matrix is then represented as:

X =

⎛⎜⎜⎝
𝑋0 · · · 𝑋(𝑚−1)𝜏
... . . . ...
𝑋𝑛 · · · 𝑋𝑛+(𝑚−1)𝜏

⎞⎟⎟⎠ , (6.8)

where 𝑚 is the embedding dimension and 𝜏 is the embedding delay (in samples).
Fixing an optimal value of 𝑚 and 𝜏 requires domain specific knowledge about the time
series being analyzed.

6.2.2 Embedded Dimension

In fact there exists several methods for estimating the embedded dimensions. If the at-
tractor is embedded in spaces of increasingly higher dimension it exhibits an increasingly
complex structure as it unfolds. This process continues, until the structure’s correlation
dimension saturates. At this point the fully attractor is revealed.

Another possibility is take advantage of symplectic geometry process, performing
symplectic transforms [19].

6.2.3 Time Delay 𝜏

For choosing the time delay 𝜏 the geometrical argument has to be applied and the at-
tractor should be unfolded. It means that the extension of the attractor in all space
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dimensions should be roughly the same. Statistics such as fill factor or displacement
from diagonal are employed to evaluate this argument quantitatively.

Despite this definition the most natural approach is utilizing the autocorrelation func-
tion to the time series. It is intimately related to the shape of the state space attractor.
Investigating the ellipsoid set containing normally distributed points in the state space.

The lengths of semi-axes of the optimal approximation have been given by the square
root eigenvalues of the auto-covariance matrix. In the two dimensional space the two
eigenvalues are equal if the autocorrelation function vanishes at the time lag used for the
construction of the matrix.

Because there is no simple rule for choosing 𝜏 in all cases, investigators has to adjust
𝜏 until the results seems satisfactory. Autocorrelation based methods have the advantage
of short calculation time using the fast Fourier transform (FFT) algorithm.

𝑅𝑓𝑓 (𝜏) = (𝑓(𝑡) * 𝑓(−𝑡))(𝜏) =
∫︁ ∞

−∞
𝑓(𝑡)𝑓(𝑡− 𝜏)𝑑𝑡 ≈ 0. (6.9)

6.2.4 Demonstration of Time Series Analysis

For analyzing the time series the Lorenz equations [5] have been chosen as the generating
system. This system has bee chosen, because it is well known and it has been precisely
studied by many researchers [20].

Particularly the first variable was stored and the others were discarded. In the real
valued measurements, the system under study gives usually one observable, thus the
only information about the system, is noisy one-dimensional signal sampled with a fi-
nite precision [8]. According to Taken’s embedding theorem [21], we can use time series
𝑥1, 𝑥2, ..., 𝑥𝑛 to construct a trajectory matrix 𝑋𝑚×𝑑 by time delay coordinates method
described by (6.8).

The different attractors can be seen in Fig.6.3 for different embedded lag 𝜏 . The
most appropriate estimation to preserve the dynamics seems to be 𝜏 = 8.

To estimate the embedded dimension 𝑚 a symplectic geometry method is used to
determine the appropriate number of variables from a scalar time series. Symplectic
geometry has a certain measure and can keep the essential character of the primary time
series unchanged when performing symplectic similar transforms. More about this the-
ory can be found in [19]. When using the symplectic geometry approach, the embedded
dimension of Lorenz system was estimated to be 𝑚 = 4. In fact that is not exactly
correct result, but using higher order of system can also lead to same behavior.

Using method described in [14] for estimation of the largest Lyapunov exponent for
the time series, the exponent was estimated as 𝜆1 = 0.663. For comparison estimated
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Figure 6.3: Different lag 𝜏 𝑎) 𝜏 = 0, 𝑏) 𝜏 = 2, 𝑐) 𝜏 = 4, 𝑑) 𝜏 = 6, 𝑒) 𝜏 = 8, 𝑓) 𝜏 = 10,
𝑔) 𝜏12, ℎ) 𝜏 = 14, 𝑖) 𝜏 = 98.
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Abstract

The adaptive digital predistortion is currently widely used to compensate for the
nonlinearities. Usually the observing (feedback) path of the predistorter is required
to be very accurate. That means it is compensated for any radio frequency front-end
imperfections.

In this paper we demonstrate that recently proposed (real-valued) digital predis-
tortion algorithm employing only one of the signals in the quadrature pair implies the
reduced sensitivity of the predistorter adaptation to the I/Q modulator imbalance
in the feedback path. The lower sensitivity is demonstrated using both simulation
as well as by an experiment conducted using the mm-Wave setup with integrated
direct-conversion transceiver with important imbalances in both transmitting (Tx)
as well as in receiving (Rx) path.

7.1 Introduction
An efficiency and linearity are two important merits for the radio frequency (RF) power
amplifiers (PA’s). In order to maximize the efficiency, PA’s have to be operated close to
saturation, where they exhibit strong nonlinear behavior. One of the widely-employed
methods for PA linearization is a digital predistortion (DPD) based on the pre-processing
the signal by the inverse characteristics of PA, [1]. In order to track the changes of PA
characteristics adaptive baseband DPD system is required, the PA output has to be
monitored by the dedicated feedback (observation) path, where the part of the signal is
down-converted to the baseband in-phase (I) and quadrature (Q) components. More-
over, as has been widely demonstrated [2], the standard DPD adaptation algorithm is
sensitive to RF impairments, such as DC offset or I/Q modulator/demodulator imbal-
ances. Recently, the DPD adaptation algorithm, employing only one of the I and Q
signals from the quadrature pair of down-converted PA output has been proposed in
[3]. In this paper we demonstrate that such algorithm is not only beneficial due to its
lower hardware complexity, but we lower sensitivity on I/Q imperfections as well show.
The lower sensitivity is demonstrated using both simulation as well as by an experiment
conducted using the mm-Wave setup with integrated direct-conversion transceiver with
important imbalances in both transmitting (Tx) as well as in in receiving (Rx) path.
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7.2 Digital Predistortion
Digital predistortion is one of techniques used for overcoming the non-linear behavior
of PA. It is well known, [1] the non-linear regime is related with PA efficiency resulting
to several undesirable effects such as spectrum widening in the adjacent channel inter-
ferences or memory effects, etc. The most general form of predistorters are based on
Volterra series models. Nevertheless, for practical reasons, several less complex models
derived from Volterra series have been derived in the past. Overcoming the complexity
of the general Volterra series, an effective model pruning method, called dynamic de-
viation reduction (DDR) of 2nd-order was proposed and used in several recent papers
[4, 5, 6] to demonstrate its performance in DPD application. The overall model structure
determined by 2 parameters: the non-linearity order 𝐾 and the memory length 𝑀 . The
number of coefficients 𝑏 is thus 2𝑀𝐾+(𝐾+1

2 ))−𝑀 . Throughout this paper, we use such
model to describe the nonlinear function output, i.e., the output of the predistorter 𝑧(𝑡)
as:

𝑧(𝑡) =
𝐾−1

2∑︁
𝑘=0

𝑀∑︁
𝑖=0

𝑏2𝑘+1,1(𝑖) |𝑥(𝑡)|2𝑘𝑥(𝑡− 𝑖)

+
𝐾−1

2∑︁
𝑘=1

𝑀∑︁
𝑖=1

𝑏2𝑘+1,2(𝑖) |𝑥(𝑡)|2(𝑘−1)𝑥2(𝑡)𝑥*(𝑡− 𝑖)

+
𝐾−1

2∑︁
𝑘=1

𝑀∑︁
𝑖=1

𝑏2𝑘+1,3(𝑖)|𝑥(𝑡)|2(𝑘−1) 𝑥(𝑡)|𝑥(𝑡− 𝑖)|2

+
𝐾−1

2∑︁
𝑘=1

𝑀∑︁
𝑖=1

𝑏2𝑘+1,4(𝑖)|𝑥(𝑡)|2(𝑘−1) 𝑥*(𝑡)𝑥2(𝑡− 𝑖),

(7.1)

with 𝑥(𝑡) being the nonlinear function, i.e., predistorter input. The model coefficients
as well as its instantaneous input samples can be arranged into vector/matrix using
feedback signal 𝑦(𝑡). Using the indirect learning architecture [7] of DPD the criteria can
be written as:

x = Ub. (7.2)

7.3 Real-valued Feedback Signal
By splitting the real and imaginary parts, further denoted as (.)𝑟 and (.)𝑖, of equation
13.5 we get

x𝑟 + 𝑗x𝑖 = (U𝑟 + 𝑗U𝑖)(b𝑟 + 𝑗b𝑖), (7.3)

x𝑟 + 𝑗x𝑖 = U𝑟b𝑟 + 𝑗U𝑖b𝑟 + 𝑗U𝑖b𝑖 − U𝑖b𝑟. (7.4)

x𝑟 = U𝑟b𝑟 − U𝑖b𝑖 ∧ x𝑖 = U𝑖b𝑟 − U𝑟b𝑖 (7.5)

M𝑎 = [U𝑟 − U𝑖] ∧ M𝑏 = [U𝑖 U𝑟] (7.6)
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Θ𝑎 = [b𝑟 − b𝑖] ∧ Θ𝑏 = [b𝑟 b𝑖] (7.7)

Θ𝑎 =
(︁
M𝐻

𝑎 M𝑎

)︁−1
M𝐻

𝑎 x𝑟 ∧ Θ𝑏 =
(︁
M𝐻

𝑏 M𝑏

)︁−1
M𝐻

𝑏 x𝑖, (7.8)

where (.)𝐻 represents Hermitian transpose. In the equation (9) we may observe, that
on the right-hand side of the equation we have x𝑟 or x𝑖. But adventitiously using Itera-
tive learning control (ILC) we may interchange x and y. ILC, [8] is a widely-recognized
technique that can help to obtain the inverse of a system. Fundamentally the approach
divides the problem into the two steps – estimation of a model and predistortion. Thus,
instead of focusing on identifying the predistorter parameters, an iterative learning al-
gorithm is used to identify the optimal power amplifier (PA) model. Once the optimal
PA model is found (we used DDR2 as well), then the parameters of the predistorter are
estimated using standard modeling approach such as least squares.

7.4 I/Q Imbalance in Feedback Path
In this paragraph, we would like to show that DPD adaptation based on the real/in-
phase (or imaginary/quadrature) part of the demodulated signal is less sensitive to Rx
quadrature demodulator imbalances than DPD adaptation methods based on standard
LS criteria as eq. (13.5). Suppose first that we can neglect the noise and thus the received
passband signal in the feedback path of DPD is identical to the transmitted signal with
the baseband components 𝑦(𝑡) = 𝑦𝑟(𝑡) + 𝑗𝑦𝑖(𝑡):

𝑦𝑅𝐹 (𝑡) = ℜ
{︁
𝑦(𝑡)𝑒𝑗𝜔𝑡

}︁
= 𝑦𝑟(𝑡)𝑐𝑜𝑠(𝜔𝑡) − 𝑦𝑖(𝑡)𝑠𝑖𝑛(𝜔𝑡), (7.9)

Multiplying the passband signal by the two local oscillator signals and passing through a
pair of low-pass filters, one obtains the demodulated baseband signals. After rearrange-
ments we can write the symmetrical model burdened by I/Q imbalance:

𝑦(𝑡)′
𝑟 = (1 + 𝜖) [𝑦𝑟(𝑡)𝑐𝑜𝑠(𝜑) − 𝑦𝑖(𝑡)𝑠𝑖𝑛(𝜑)]

𝑦(𝑡)′
𝑖 = (1 − 𝜖) [𝑦𝑖(𝑡)𝑐𝑜𝑠(𝜑) − 𝑦𝑟(𝑡)𝑠𝑖𝑛(𝜑)] (7.10)

where 𝜖 is a gain imbalance and 𝜑 is a phase imbalance. In order to express the per-
formance of the real-valued DPD adaptation method (using only one of the I or Q
components) in contrast to the standard complex-valued adaptation method, we may
define the error ratio as:

𝐸 = 10log10

(︃∑︀𝑁
𝑛=1(y(𝑛) − y′(𝑛))(y(𝑛) − y′(𝑛))*∑︀𝑁

𝑛=1(ℜ {y(𝑛)} − ℜ {y(𝑛)}′)2

)︃
, (7.11)

with the analytic solution presented in Appendix of this paper. Where (.)* is complex
conjugation and ℜ(.) is real and ℑ(.) imaginary part and 𝑁 is length of a vector x.

7.4.1 Typical system

To better illustrate the practical benefits of real-valued method, the dependency of the
error ratio 𝐸 on the gain imbalance 𝜖 and the phase imbalance 𝜑 is shown in Fig.7.1. On
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an example of the selected practical values of imbalances, e.g. 𝜖 = 0.02 and 𝜑 = 0.35 °
the error ratio is equal to 𝐸 = 4.5 𝑑𝐵, that means that the proposed (i.e. real-valued)
adaptation method is approximately 6.5 times better in term of insensitivity to I/Q
mismatch.

Figure 7.1: Error ratio dependency as function of phase 𝜑 and gain 𝜖 imbalances.

7.5 Measurement setup

The performance of the DPD adaptation based on the real-valued PA feedback has been
evaluated using the 60 GHz mm-wave measurement setup, with the block structure and
photo shown in Fig. 7.2. This setup is based on the Infineon BGT-60 evaluation board,
CompuGen 4302, a 4-channel 300 MSa/s arbitrary waveform generator board with 12-
bit resolutionand the CompuScope 12400, 2-channel data acquisition card with maximal
sampling speed of 400 MSa/s with 12-bit resolution. The sampling speed 250 MSa/s
was selected. The output of BGT-60 RF in-built PA is, after attenuation by a Quinstar
V-band attenuator visualized on the FSUP spectrum analyzer equipped with FS-Z75
harmonic mixer. A part of the PA output signal is fed back to BGT-60 receiver part
through the in-house fabricated directional coupler.

Figure 7.2: Photo of experimental setup for mm-Waves used for testing the digital pre-
distortion.
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7.6 Results

According to the data-sheet of BGT-60 chipset, the present I/Q demodulator exhibits
a phase error of 𝜑 = 2 ° and gain mismatch of 0.5 dB. The tests described below have
been carried out for the relatively narrow-band (12.5 MHz BW) QAM signals with 16
samples per symbol and root raised cosine shaping with roll-off 0.3. In order to asses the
sensitivity of the standard and real-valued feedback DPD adaptation methods, in the first
experiment, the I/Q imbalances were left uncompensated. The I/Q imbalance effect on
the AM/AM characteristic of the PA are clearly visible in Fig. 7.3. The standard indirect
learning DPD adaptation method failed to estimate DPD characteristics due to the
presence of I/Q imbalances, nevertheless the real-valued based DPD adaptation method
performed well. With the I/Q imbalances of RF front-end compensated (using approach
from [9]) both methods were able to find the stable solution of DPD, as demonstrated
in Fig. 7.3. The superior performance of the real-valued feedback DPD adaptation
(denoted as single-channel DPD) is confirmed as well.
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Figure 7.3: AM-AM characteristics without applied I/Q corrections and with applied
I/Q Tx and Rx corrections.

7.7 Conclusion

We have investigated the performance of a standard (i.e. using both real and imaginary
parts of feedback signal) least-squares solution of the digital predistorter coefficients cal-
culation in comparison with the recently proposed method, based on using either real
or imaginary part of feedback signal separately. We have demonstrated, both analyti-
cally as well as through the practical experiment with the direct conversion mm-wave
transceiver system, the lower sensitivity of this recent approach to the uncompensated
gain and phase imbalances in the predistorter feedback path. The reason of unsuccessful
calculation of DPD coefficients in case of I/Q imbalances can be due an inversion of
matrix made of observation samples (measurements).
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7.8 Appendix

After some manipulations, the instantaneous error ratio 𝐸(𝑛) defined in equation (7.11)
can be analytically expressed by equation (7.12). For our simulations (visualizations in
Fig. 7.1) we expect that the mean value of transmitted signals is close to zero, as can be
expected for both multi-carrier as well as single-carrier QAM signals.

𝐸(𝑛) = 10log
[(𝑦(𝑛) − (𝑦(𝑛) + 𝜖𝑦(𝑛)*)cos(𝜑) − 𝑗(𝜖𝑦(𝑛) − 𝑦(𝑛)*)sin(𝜑)] [𝑦(𝑛) − (𝑦(𝑛) + 𝜖𝑦(𝑛)*)cos(𝜑)]* + 𝑗(−𝑦(𝑛) + 𝜖𝑦(𝑛)*)sin(𝜑)

(1 − 𝜖) [cos(𝜑)ℑ(𝑦(𝑛)) − ℜ(𝑦(𝑛))sin(𝜑)] + ℜ {𝑦(𝑛) − (1 + 𝜖)cos(𝜑)ℜ(𝑦(𝑛)) + (1 + 𝜖)ℑ(𝑦(𝑛))sin(𝜑)}2 (7.12)
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Abstract

In this paper we would like to point out one open issue related with filtered bank
multi-carrier signals (FBMC). The experiment was trying to give an answer whether
the FBMC signals would keep their beneficial properties even whilst real non-linear
power amplifiers were employed. As one of the merits that have been used were
error vector magnitude (EVM) and adjacent channel power (ACP). Due to higher
sensitivity to angle rotations the digital predistortion have been employed in order
to evaluate the importance of linearization.

8.1 Introduction

In the vision of future radio systems where the amount of transfered data rises, the
demands for more efficient technologies arises. In today communication systems or-
thogonal frequency division multiplexing signals (OFDM) with cyclic prefix are widely
used [1]. It was proved that using multi-carrier modulations (MCM) is an efficient way
of transmission [2] and has better resistance to multi-path channels than single carrier
modulations. The key technologies that have been lately discussed for the future 5G net-
works are: non-orthogonal multiple access, millimeter frequencies, 3D massive MIMO,
cognitive spectrum radio sensing, ultra wideband signals, ultra dense networks (UDN)
with heterogeneous cells (HetNet), multiple technology carrier aggregation and filtered
bank multi-carrier (FBMC) signals [3], [4].

It was demonstrated that FBMC/OQAM signals are more sensitive to phase rota-
tions than OFDM ones [5]. It was also shown in [5] that the intrinsic interference in
FBMC/OQAM will increase the error probability. But in the case of perfect phase
correction the FBMC signal the performance is similar as OFDM [6]. Therefore the nat-
ural step is to try to use digital predistortion techniques for mitigating the non-linearity
and memory effects introduced by power amplifiers (PA). Consequently comparison with
OFDM adopted in 4G systems is from authors point of view a great interest.
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8.2 Brief description of FBMC/OQAM

Due to properties of prototype filter in the FBMC systems, offset quadrature amplitude
modulation (OQAM) is used. Offset means the in-phase and quadrature components
are time staggered by half of symbol period. According to the above definition and as
presented in [7] and [8] the baseband model of FBMC/OQAM transmitter can be written

𝑥[𝑡] =
+∞∑︁

𝑚=−∞

𝑁−1∑︁
𝑘=0

(𝜃𝑘ℜ{𝑋𝑘[𝑚]}ℎ[𝑡−𝑚 𝑁 ] +

𝜃𝑘+1ℑ{𝑋𝑘[𝑚]}ℎ[𝑡−𝑚 𝑁 − 𝑁

2 ]) 𝑒𝑗 2𝜋
𝑁

𝑘(𝑡−𝑚𝑁) (8.1)

where 𝑋𝑘 is a modulation part of a symbol, 𝜃𝑘+1 is real part phase rotation vector for the
imaginary part 𝜃𝑘 respectively, ℎ[.] is general prototype filter for each sub-carrier with
impulse response length 𝐿 = 𝐾𝑁 with 𝐾 so-called overlapping factor and 𝑁 number of
sub-carriers.

There exists several approaches implementing FBMC modulator/demodulator such
as NK-IFFTs operating in parallel, two N-IFFTs and polyphase filtering and with lower
complexity single N-FFT and polyphase filtering [7]. The last mentioned method was
implemented in this paper. The principle of computing the discrete inverse Fourier
transform of two real functions simultaneously is used [7]. Such approach is beneficial
because then the concept can be easily reconfigured as OFDM transmitter.

According to [8] the input signal of IFFT can be expressed as ℜ{𝑋𝑘[𝑚]}𝜃𝑘+𝑗ℑ{𝑋𝑘[𝑚]}𝜃𝑘

where multiplication with a vector 𝜃𝑘 = 𝑒𝑗 2𝜋
4 𝑘 in frequency domain induce circular shift

of 𝑁
4 in the time domain. The principle is commonly named as folding scheme [1].

8.3 Digital predistortion

In order to fulfill the increasing demands of higher data rates, higher energy efficiency of
power amplifiers, and better spectral efficiency, the digital predistortion system (DPD)
can be used. Unfortunately a drawback of higher efficiency needs is that the PAs are op-
erating in non-linear regime. Non-linearities of PAs usually introduces unwanted signal
properties such as compression, memory effects, spectrum regrowth in adjacent channels
and intermodulation products.

One of the possible technique for dealing with nonlinearities is usage of digital pre-
distorion (DPD). Usually the predistorter is inserted between power amplifier and trans-
mitter. The digital predistorter monitors output of a PA. The feedback path is usually
used for calculation of DPD coefficients [9].

The predistortion principles have been introduced many times, but so far no general
rule for choice of proper DPD have not been yet presented.

Demonstrating the DPD and overcoming the complexity of the general Volterra series,
an effective model pruning method, called dynamic deviation reduction (DDR) [10, 11,
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12] was used. A simplified version of the model is defined by

𝑧(𝑡) =
𝐾−1

2∑︁
𝑘=0

𝑀∑︁
𝑖=0

𝑔2𝑘+1,1(𝑖) |𝑥(𝑡)|2𝑘𝑥(𝑡− 𝑖)

+
𝐾−1

2∑︁
𝑘=1

𝑀∑︁
𝑖=1

𝑔2𝑘+1,2(𝑖) |𝑥(𝑡)|2(𝑘−1)𝑥2(𝑡)𝑥*(𝑡− 𝑖)

+
𝐾−1

2∑︁
𝑘=1

𝑀∑︁
𝑖=1

𝑔2𝑘+1,3(𝑖)|𝑥(𝑡)|2(𝑘−1) 𝑥(𝑡)|𝑥(𝑡− 𝑖)|2

+
𝐾−1

2∑︁
𝑘=1

𝑀∑︁
𝑖=1

𝑔2𝑘+1,4(𝑖)|𝑥(𝑡)|2(𝑘−1) 𝑥*(𝑡)𝑥2(𝑡− 𝑖).

(8.2)
where 𝑥(𝑛) and 𝑧(𝑛) are the complex envelopes of the input and output of the PA,

respectively, and 𝑔2𝑘+1,𝑗 is the complex Volterra kernel of the system.

For the calculation, explanation of principles and closer information the readers could
be referred to [11].

8.4 Experimental evaluation
In order to prove the concept, the experimental test-bench was assembled. The signal-
processing and additional post-processing has been done with Matlab that was communi-
cating with Rohde&Schwarz generator SMU200A and with real-time spectrum analyzer
Rohde&Schwarz FSVR. The generator was synchronized with analyzer using 10 MHz
reference signal and the beginning of test sequence was triggering the acquisition with
signal marker. Then in PC additional processing have been done (such as integer syn-
chronization based on correlation, fractional synchronization based on Farrow filters,
etc.). The generated FBMC signal had 1024 sub-carriers and prototype filter of fourth
order was used [13]. The total generated data sequence had 16384 samples. For the
OFDM signal, the same initial data with similar setup but rectangular filter was used.
The signal had oversampling ratio 4, sampling frequency 𝑓𝑠 = 20 𝑀𝐻𝑧, with carrier
frequency 𝑓𝑐 = 1 𝐺𝐻𝑧, and with inner OQAM modulation level 𝑀 = 4. Therefore
the total bandwidth of transmitted signals was 𝐵𝑊 = 5 𝑀𝐻𝑧. The equipment with
high dynamical ranges and low noise figures had to be threated very carefully for taking
advantage of FBMC properties.

Keeping higher accuracy of the measurements, each point od results was repeated
10 times and then the mean value was used. Also for credibility of the results three
different PAs have been used. The are denoted as: Tesla 1, Mini Circuits, Tesla 2 with
AM/AM and AM/PM characteristics given if Fig.13.4. We may see that the presented
PAs have different non-linear characteristics with different memory effects. For testing
the nonlinear order of DPD was chosen as 𝐾 = 13 and memory depth of 𝑀 = 1.
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We have been measuring ACP (Fig.14.2) at the output of PA with offset of 5.1 𝑀𝐻𝑧
and bandwidth of (5 MHz). The EVM Fig.8.3 after demodulation of all sub-carriers
(without quantification) is also evaluated. From the results presented in Fig.14.2 and
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Figure 8.1: Normalized AM/AM characteristics (Top) of three different PAs and corre-
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Figure 8.2: The experimentally measured ACP of FBMC and OFDM for three different
PAs depending on the input power 𝑃𝐼𝑁 .

Fig.8.3 we may observe that the FBMC signals have in general 10 dB lower ACP, but as
presented in Fig.8.3 the FBMC signals tend to be more sensitive to non-linear distortions
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Figure 8.3: The experimentally measured EVM before quantification depending on the
input power 𝑃𝐼𝑁 .

than OFDM. Further the figures also demonstrates the necessary need for using DPD.
The power spectrum densities can be seen in the Fig.9.6, where the green trace represents
FBMC signal without DPD, black signal is FBMC signal with DPD and blue curve is
OFDM signal without DPD.

Figure 8.4: The power spectrum density where green trace represents FBMC signal
without DPD, black signal is FBMC signal with DPD and blue curve is OFDM signal
without DPD. The signals were obtained at the output of PA denoted as Mini Circuits
with input power 𝑃𝐼𝑁 = −14𝑑𝐵𝑚.
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8.5 Conclusion

The FBMC signals are resolutely candidates for future 5G systems. In this brief pa-
per experimental study and comparison of FBMC and OFDM signals distorted by real
non-linear power amplifiers have been tested. In order to guarantee higher accuracy of
presented results three power amplifiers have been used. In this paper we have experi-
mentally proved that using FBMC signals, lower ACP can be achieved, however lower
resistance than OFDM signals to non-linear distortions must be taken into the account.
Using DPD systems the immunity of FBMC can be boosted for the undoubted cost of
higher complexity. The results indicates, that FBMC modulation can achieve in general
better ACP then OFDM signals. The EVM figures shows, that the DPDs can improve
the error rate. We tried to prove that the DPD is even more important for FBMC than
for OFDM signals.
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Abstract

In this paper we would like to point out one open issue related with filtered
bank multi-carrier signals (FBMC). The experiment was trying to calculate filter
coefficients for FBMC signals where non-linear power amplifiers were employed. As
one of the merits that have been used were error vector magnitude (EVM) and
adjacent channel power (ACP). We have demonstrated that proper calculation of
coefficients could improve the merits significantly.

9.1 Introduction
The future radio systems where the number of transfered data rises, the demands for
more efficient technologies also arises. In today communication systems orthogonal fre-
quency division multiplexing signals (OFDM) with cyclic prefix are widely used [1]. The
multi-carrier modulations (MCM) is an efficient way of transmission, that was proved in
[2] and it was also shown that MCM has better resistance to multi-path channels than
single carrier modulations.

Technologies that have been lately examined for the future 5G networks are: non-
orthogonal multiple access, millimeter frequencies, 3D massive MIMO, cognitive spec-
trum radio sensing, ultra wide-band signals, ultra dense networks (UDN) with hetero-
geneous cells (HetNet), multiple technology carrier aggregation and filtered bank multi-
carrier (FBMC) signals [3], [4].

It was shown that FBMC/OQAM signals are more sensitive to phase rotations than
OFDM ones [5]. In the case of perfect phase correction the FBMC signal the performance
could be similar as OFDM [6].

The natural step is to try to optimize the filter coefficients for mitigating the non-
linearity and memory effects introduced by power amplifiers (PA).

9.2 Brief description of FBMC/OQAM
Due to properties of prototype filter in the FBMC systems, offset quadrature amplitude
modulation (OQAM) is used. Offset means the in-phase and quadrature components
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are time staggered by half of symbol period. According to the above definition and as
presented in [7] and [8] the baseband model of FBMC/OQAM transmitter can be written

𝑥[𝑡] =
+∞∑︁

𝑚=−∞

𝑁−1∑︁
𝑘=0

(𝜃𝑘ℜ{𝑋𝑘[𝑚]}ℎ[𝑡−𝑚 𝑁 ] +

𝜃𝑘+1ℑ{𝑋𝑘[𝑚]}ℎ[𝑡−𝑚 𝑁 − 𝑁

2 ]) 𝑒𝑗 2𝜋
𝑁

𝑘(𝑡−𝑚𝑁) (9.1)

where 𝑋𝑘 is a modulation part of a symbol, 𝜃𝑘+1 is real part phase rotation vector for the
imaginary part 𝜃𝑘 respectively, ℎ[.] is general prototype filter for each sub-carrier with
impulse response length 𝐿 = 𝐾𝑁 with 𝐾 so-called overlapping factor and 𝑁 number
of sub-carriers. The filter impulse response of fourth order overlap (taken from the
PHYDAS [9]) can be written as:

ℎ(1 + 𝑖) = 1 − 2𝐻1 cos( 𝜋𝑖2𝑁 ) + 2𝐻2 cos(𝜋𝑖
𝑁

)

− 2𝐻3 cos(3𝜋𝑖
2𝑁 ), (9.2)

where filter coefficients are 𝐻1 = 0.972, 𝐻2 =
√

(2)
2 and 𝐻3 = 0.235.

There exists several approaches implementing FBMC modulator/demodulator such
as NK-IFFTs operating in parallel, two N-IFFTs and polyphase filtering and with lower
complexity single N-FFT and polyphase filtering [7]. The last mentioned method was
implemented in this paper. The principle of computing the discrete inverse Fourier
transform of two real functions simultaneously is used [7]. Such approach is beneficial
because then the concept can be easily reconfigured as OFDM transmitter. According
to [8] the input signal of IFFT can be expressed as ℜ{𝑋𝑘[𝑚]}𝜃𝑘 + 𝑗ℑ{𝑋𝑘[𝑚]}𝜃𝑘 where
multiplication with a vector 𝜃𝑘 = 𝑒𝑗 2𝜋

4 𝑘 in frequency domain induce circular shift of 𝑁
4 in

the time domain. The principle is commonly named as folding scheme [1]. The general
difference between OFDM and FBMC is more obvious from Fig13.1.

9.3 Problem statement
It was already experimentally proved [10], that FBMC modulator in the link with real
non-linear power amplifier will not keep it’s beneficial properties. Due to non-linear ef-
fects (such as amplitude and phase distortions), the modulator decrease in performance.
As we will further demonstrate, the build-in filter in FBMC can be used to compensate
some phenomenas.

9.4 Power Amplifier Model
In order to provide relevant results, the model was derived from designed power ampli-
fier with the ADL5610. It is a single-ended RF/IF gain block amplifier, that provides
broadband operation from 30 MHz to 6 GHz. The ADL5610 provides a low noise figure
of 2.2 dB with a very high OIP3 (at 900 MHz) of more than 38 dBm simultaneously,
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Figure 9.1: General difference between Orthogonal frequency division multiplexing sig-
nals (OFDM) with cyclic prefix (Top) and Filter Bank based Multicarrier (FBMC) trans-
mitter (Bottom).

which delivers a high dynamic range. The one-dB compression point is 20.4 dBm at 900
MHz.

First the power amplifier was measured using FBMC signal and then was modeled
with orthogonal polynomial memory series expressed as: [11]

𝑦(𝑡) =
𝐾∑︁

𝑘=1

𝑀∑︁
𝑚=0

𝑏𝑘,𝑚

𝑘∑︁
𝑙=1

(−1)𝑙+𝑘 ·

· (𝑘 + 𝑙)!
(𝑙 − 1)!(𝑙 + 1)!(𝑘 − 𝑙)! |𝑥(𝑡−𝑚)|𝑘−1𝑥(𝑡−𝑚),

(9.3)

where 𝐾 is polynomial order, 𝑀 is memory depth, 𝑦 is the output of PA and 𝑥 is the
input. The coefficients 𝑏𝑘,𝑚 were estimated using least-squares criterion.

9.5 A multi-criteria genetic algorithm
The genetic algorithms are well known, therefore further description is intensionally
skipped. The process starts by building a population, with individuals (solutions). The
populations of next generations are obtained through the application of mutation, selec-
tion and crossover operators.
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Figure 9.2: AM/AM charracteristics of measured power amplifier (top) and correspond-
ing AM/PM characteristics.

For a nontrivial multi-objective optimization problem, there does not exist a single
solution that simultaneously optimizes each objective. In that case, the objective func-
tions are said to be conflicting, and there exists a (possibly infinite) number of Pareto
optimal solutions. Pareto optimal solutions are considered equally good, therefore choice
based on estimation trade-offs has to be chosen.

The crucial parameters have been chosen as a merits of proper modulator- power am-
plifier - demodulator link. As the criteria function, the EVM and ACPR (left) was chosen.

9.6 Results

The results have been obtained only through numerical system simulations. Yet we may
expect the correspondence with measurements. In the Fig.9.3 we may see the Pareto
plot with compromise between two criteria. The results have been obtained with genetic
algorithm (build in procedure in Matlab) with population size (200). As we may see in
Fig.9.4 and Fig.9.5, the filter function changes the distribution of symbols.

From the Fig.9.6 we may see, that the optimized filter inside FBMC modulator
perform better in terms of adjacent channel power (𝐴𝐶𝑃𝑅𝐿 = −48𝑑𝐵). The associated
EVM was 0.31%.

62



9.6. Results

-52 -50 -48 -46 -44 -42 -40 -38

ACPR_L [dB]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
V

M
 [%

]
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Figure 9.4: Histogram for input amplitude of PA fist standard filter design (black) and
with optimized filter (red).

Using the optimization for our particular case the filter coefficients have been esti-
mated as follows: 𝐻1 = −0.14819, 𝐻2 = 0.14854 and 𝐻3 = −0.13068. The comparison of
standard filter (PHYDAS) and optimized can be seen in the impulse response (Fig.9.7).
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and output signal with optimized filter(red).

9.7 Conclusion
The FBMC signals are resolutely candidates for future 5G systems. In this paper we have
demonstrated, that proper optimization of filter inside FBMC modulator can improve
the performance in the case of link with non-linear power amplifier.

We have demonstrated that proper calculation of coefficients could improve the merits
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Figure 9.7: Impulse response of standard filter(black) and optimized (red).

significantly. As the results show, the filter optimization does not compensate non-linear
effects or memory effects (as in the case of digital predistortion). The filter changes a
distribution of symbols on order to compensate distortions.

Results have been obtained through numerical system simulations only. Yet we may
expect the correspondence with measurements. If the readers have any further questions,
please do not hesitate to contact the authors.
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Abstract

As the data throughput is still increased in the wireless communication systems,
it is required to efficiently utilise the radio frequency spectrum which usually requires
linear transmitters. Consequently methods as a digital predistortion (DPD) are
developed to linearise nonlinear power amplifiers. To extract precise parameters for
the DPD it is essential to finely synchronise measured feedback signal with the known
transmitted signal. In this paper we propose an analytical method for the fractional
sample period time synchronisation suitable for DPD signals. Finally benefits of
the proposed method are presented on results of its usage for the DPD linearisation
using a measurement test-bed.

10.1 Introduction
As wireless communication systems develop higher demand is placed on data throughput
and spectral and power efficiency. The higher data throughput and spectral efficiency is
usually achieved using spectrally efficient modulations. The most of these modulations
require usage of linear power amplifiers (PAs). These PAs are in principle low power
efficient and in opposite high power efficient PAs are nonlinear. A technique solving this
contradiction in modern communication systems is usage of a high power efficient non-
linear PA together with a digital predistorter (DPD). The DPD linearises characteristics
of the nonlinear transmitter while preserving high power and spectral efficiency.

The typical implementation of the DPD is depicted by its baseband model in Fig. 11.1.
The transmitter input and output signals are sampled, aligned, and processed to extract
the DPD parameters that would be used to predistort the source signal before trans-
mission to counteract the transmitter nonlinearities. However, the alignment accuracy
in DPD is limited by nonideal electronic components and the associated circuitry which
introduces unknown loop delay mismatch and thus degrades the overall linearisation
performance as shown in Fig. 10.2 and in [1]. This paper analyses the influence of the
accuracy of the timing of these signals on the performance of the predistorter. It con-
siders the case of an integer and a fractional delay (less than the sampling period). It is
shown that for a predistorter without memory, even very small fractional offset degrades
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performance significantly. The theoretical analysis by Liu [2] reveals that performance
degradation caused by the loop delay mismatch increases as well with the bandwidth of
the orthogonal frequency-division multiplexing (OFDM) signal.
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Figure 10.1: Baseband model of the digital predistorter

As a consequence of the delay mismatch degradation, a precise time synchronisation
method is required for the DPD implementation. Time synchronisation and recovery
have been already widely explored in the communication theory. An algorithm for sym-
bol timing recovery using baud-rate sampling is described in [3]. Later Armstrong and
Strickland presented an algorithm [4] to find a suitable strobe point and calculate sig-
nal values between the sample points by the interpolation. The Maximum-likelihood
estimation theory also provides a general framework for developing near-optimum syn-
chronisation schemes [5]. A synchronisation concept shown in [6] is based on a low-order
polynomial approximation of the likelihood functions using the Farrow-based interpo-
lator. Fu and Willson in [7], instead of approximating a continuous-time signal with
a conventional (algebraic) polynomial and computing the synchronised samples using a
Farrow structure, employed trigonometric polynomials.

In paper [8] there are presented two methods for signal alignment in a DPD system.
A frequency multiplication method was used for the coarse alignment and subsequently
the parabolic curve fitting method for the fine alignment.

In this paper we propose an analytical method for the fractional delay signal syn-
chronisation and present results of its application in a DPD system. In the final section
we provide experimental results of the proposed method.

10.2 Problem Observation

The described problem exists in all real systems. In coherent systems, where the clock
signals in the feedback (FB) are exactly same as the clock signals in the direct path
(DP), the clock phase skew can be well controlled by the design and is constant over
time. The clock skew therein can be easily compensated. A different situation arises in
incoherent systems where the clocks are not the same. It is to be noted that systems with
clocks derived from a reference system clock by different phase-locked loops (PLLs) are
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where B is the bandwidth of the signal and τ is the delay of
the signal.

IV. USED METHOD

To evaluate the influence of lag on the performance of
the predistorter we introduced fractional lags the output of
PA. Then we used signals with misaligned for DPD. Then
we measured the performance of DPD and compared to
results obtained without lag in the identification of DPD. For
performance evaluation we used normalized mean square error
NMSE between the output of the cascade DPD + PA and
the original signal. For two signals x input and y output it is
defined as

NMSE(x, y)[dB] = 10 log

∑ ||x− y||2∑ ||x||2 (9)

A unique aspect of our work is not only to correct the nonlin-
earities introduced by power amplifier, but also simultaneously
correct for memory effects, integer and fractional lag.

V. EXPERIMENTAL RESULTS

We present results measured on Doherty amplifier UHF
NXP LDMOS using BLF888A transistor (75W) used for
DVB-T applications(470 MHz to 860 MHz). As the useful
signal we have used OFDM-like signal with the oversampling
factor 8. The amplifier has been modeled with orthogonal
polynomials with nonlinearity order K = 7 and the memory
dept M = 3. We give here the results for a DPD with the same
order of non-linearity K = 7 and the memory M ranging from
0 to 10.

A. Case of integer delay

In the case of integer mismatch between output of the
digital to analog converters the performance of coefficients
estimation is affected. In the Fig.3 we have used orthogonal
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Fig. 3. Effect of integer delay for different memory length of the DPD.

polynomial model with memory as a predistorter. We have
introduced integer delay ranging from τ = −10 Ts ( where

Ts period of sampling frequency) to τ = 10 Ts. We see, that
the polynomials are able to compensate the integer delay equal
to memory order of predistorter. Also we can see, that the
polynomial models are not able to well compensate advance
of the signal. Such inconvenience can be overcomed by using
GMP models.

B. Case of fractional delay

The fractional delay (in the meaning of real multiples of
sampling periode Ts) can be introduced by mismatch of digital
to analog and analog to digital converters and by the delay of
power amplifier. Fig.4 shows the values NMSE with variable
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Fig. 4. Effect of fractional delay for different memory length of the DPD.

memory from 0 to 10 depending on the normalized fractional
delay (normalized by Ts) in the range between τ = −0.5 Ts
and τ = 0.5 Ts. We can see that the DPD is able to
compensate for the fractional offset and nonlinearities. The
usage of DPD with memory is very important and can increase
the performance of NMSE (20 dB). Unlike the case of integer
delay the memory is able to compensate fractional delay and
also fractional advance.

VI. CONCLUSION

We analyzed the influence of integer and fractional time
delay between the signals used for the calculation of a DPD
coefficients for predistortion. We have shown that the introduc-
tion of memory in the DPD can simultaneously compensate
the non-linearity and the fractional time lag with pretty good
accuracy (degradation of about 3 dB compared to a NMSE of
-47dB for zero offset of τ for the Doherty amplifier studied).
For the case of integer time delay the DPD can compensate
the same number of multiples of Ts as the memory depth
M . But for the case of integer advance, the PMS is not
able to compensate. But because the GMP is defined also
for advance cross.terms, the GMP can compensate both, the
integer advance and integer delay.

Figure 10.2: Effect of fractional delay for different memory length on normlised mean
square error (NMSE) of the DPD with PA modelled by orthogonal polynomials with
nonlinearity order 𝐾 = 7 and the memory depth 𝑀 = 3 [1]

considered as incoherent. A typical example of such system is an integrated transciever
with separated PLLs in the transmitter and the receiver, or a measurement test-bed
composed of a separated signal generator and an acquisition instrument. A simplified
block diagram of such test-bed is depicted in Fig. 10.3.

The generator clock has phase skew with respect to the acquisition instrument clock.
This skew is natural due to limited bandwidth of loop filters in PLLs and can vary over
time. If the acquired length of the signal is relatively short with respect to the change of
the clock phase skew, the phase skew can be assumed constant over the acquisition and
appears as fractional sample time offset. Particularly we have observed this behaviour
using high-end instruments from Rohde&Schwarz, the signal generator SMU 200A and
the real-time spectrum analyser FSVR used for the acquisition. The clock phase skew
spreads the amplitude-amplitude (AM/AM) characteristics as depicted in Fig. 10.4 and
the amplitude-phase (AM/PM) characteristics as in Fig. 10.5. This spread can be easily
misinterpreted as memory effect of the PA and it can be also partially compensated by
a DPD with a memory as described in [1].
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Figure 10.3: DPD test-bed with separated signal generator and acquisition instrument

10.3 Proposed Synchronisation Method
Let us assume that the PA is modelled by the polynomials and its baseband output 𝑦(𝑡)
is given as

𝑦(𝑡) =
𝐾∑︁

𝑘=1

𝑄∑︁
𝑞=0

𝑏𝑘,𝑞𝑥(𝑡− 𝑞𝑇𝑆)|𝑥(𝑡− 𝑞𝑇𝑆)|𝑘−1 (10.1)

where 𝑥(𝑡) is the PA input signal, 𝑇𝑆 is the sampling period, 𝐾 and 𝑄 represent the
maximum PA nonlinear order and memory length respectively, and 𝑏𝑘,𝑞 is a coefficient
of the PA polynomial model. The obtained FB signal is

𝑦𝐹 𝐵(𝑡) = 𝑦(𝑡− 𝜏) (10.2)

where 𝜏 is a delay caused by the physical measurement setup and the clock skew of the
instruments.

For these signals we define their Fourier transforms as

ℱ{𝑥(𝑡)} = 𝑋(𝑗𝜔) = |𝑋(𝑗𝜔)|𝑒𝑗𝜙𝑥(𝜔) (10.3)

and similarly 𝑌 (𝑗𝜔) for 𝑦(𝑡) and 𝑌𝐹 𝐵(𝑗𝜔) for 𝑦𝐹 𝐵(𝑡). Based on Eq. 10.2 and the property
of the Fourier transform it is possible to write

𝑌𝐹 𝐵(𝑗𝜔) = 𝑌 (𝑗𝜔)𝑒−𝑗𝜔𝜏 . (10.4)
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Figure 10.4: Influence of delay 𝜏 on AM/AM characteristics of PA using quadrature
amplitude modulation (QAM) 16 signal with sampling period 𝑇𝑆

As the PA model (Eq. 10.1) contains only power of the magnitude, for 𝑞 = 0 it
preserves the phase of the original signal. If the memory effect of the PA is minimal and
negligible, it can be shown using Eq. 10.4 that

𝜏𝜔 = 𝜙𝑥(𝜔) − 𝜙𝐹 𝐵(𝜔). (10.5)

For practical reasons the Eq. 10.5 is modified and the phase difference is taken from the
interval (−𝜋, 𝜋⟩

𝜏𝜔 = 𝑃 (𝜙𝑥(𝜔) − 𝜙𝐹 𝐵(𝜔)) (10.6)

where 𝑃 (·) is a function defined as

𝑃 (𝜙) =
{︃
𝜙 mod 2𝜋, if (𝜙 mod 2𝜋) <= 𝜋

(𝜙 mod 2𝜋) − 2𝜋, otherwise.
(10.7)

The left side of Eq. 10.6 represents a line going through the origin and with the
direction 𝜏 . For real signals, 𝜏 can be found using the method of least squares and for
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Figure 10.5: Influence of delay 𝜏 on AM/PM characteristics of PA using QAM16 signal
with sampling period 𝑇𝑆

the discrete time signals is expressed as

𝜏0 =

𝜔𝑚𝑎𝑥∑︀
𝜔𝑚𝑖𝑛

𝜔𝑃 (𝜙𝑥(𝜔) − 𝜙𝐹 𝐵(𝜔))
𝜔𝑚𝑎𝑥∑︀
𝜔𝑚𝑖𝑛

𝜔2
(10.8)

where 𝜔𝑚𝑖𝑛 and 𝜔𝑚𝑎𝑥 are lower and upper limits for least squares calculation. These
limits should be set according to the frequency range of the signal 𝑥(𝑡). Eq. 10.8 expects
𝜏 ∈ ⟨−𝑇𝑆/2, 𝑇𝑆/2⟩ which can be achieved by cross-correlation methods. The extension
of the method for multiple 𝑇𝑆 is possible by unwrapping the phase difference.

When the time offset 𝜏0 is obtained, the fractional sample time shift in spectrum
domain is straightforward.

𝑦(𝑡) = ℱ−1{𝑌𝐹 𝐵(𝑗𝜔)𝑒𝑗𝜔𝜏0} (10.9)

The above describe approach does not change the shape of the AM/PM characteristics
as Eq. 10.9 is not dependent on the magnitude of the input signal. It only improves the
spread caused by the signal synchronisation offset. At the same time the method does
not expect the IQ rotation of the signal phase which occurs due to the modulator and
demodulator clock phase skew; therefore it is often convenient to determine 𝜏0 for signal
magnitudes instead of complex signals.
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10.4 Experimental Results

The proposed method has been experimentally verified on our measurement test-bed
shown in Fig. 10.6. The test-bed consists of the signal vector generator SMU 200A,
real-time spectrum analyser FSVR, both from Rohde&Schwarz, and a radio-frequency
power amplifier. The reference clock for both instruments is an internal oscillator of the
signal generator.

Figure 10.6: Photography of our test-bed for DPD measurements

The DPD used for the linearisation is based on the simplified 2nd-order dynamic
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deviation reduction (DDR) based Voltera series model [9] and its output is given by

𝑥(𝑛) =
𝐾′−1

2∑︁
𝑘=0

𝑄′∑︁
𝑞=0

𝑏′
2𝑘+1,1,𝑞|𝑧(𝑛)|2𝑘𝑧(𝑛− 𝑞)

+
𝐾′−1

2∑︁
𝑘=1

𝑄′∑︁
𝑞=1

𝑏′
2𝑘+1,2,𝑞|𝑧(𝑛)|2(𝑘−1)𝑧2(𝑛)𝑧*(𝑛− 𝑞)

+
𝐾′−1

2∑︁
𝑘=1

𝑄′∑︁
𝑞=1

𝑏′
2𝑘+1,3,𝑞|𝑧(𝑛)|2(𝑘−1)𝑧(𝑛)|𝑧(𝑛− 𝑞)|2

+
𝐾′−1

2∑︁
𝑘=1

𝑄′∑︁
𝑞=1

𝑏′
2𝑘+1,4,𝑞|𝑧(𝑛)|2(𝑘−1)𝑧*(𝑛)𝑧2(𝑛− 𝑞)

(10.10)

where 𝑧(𝑛) is an input signal to be predistored, 𝐾 ′ and 𝑄′ are the maximum DPD
nonlinear order and memory length respectively, and 𝑏′

𝑘,𝑖,𝑞 is a coefficient of the DPD
model.

The measurements were performed first with coarse cross-correlation synchronisation
only and later with application of the proposed method. The maximum nonlinear order
of the DPD was set 𝐾 ′ = 7 and memory length 𝑄′ = 0. Fig. 10.7 shows the improvement
of the AM/AM characteristics for the PA before and after linearisation by usage of the
proposed method. The improvement of the AM/PM characteristics of the linearised PA
is shown in Fig. 10.8.

Fig. 10.9 shows the phase difference (Eq. 10.6) and fitting of a line with direction 𝜏0.
The vertical lines in this picture depict the frequency interval ⟨𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥⟩ which is used
for the calculation of 𝜏0 using Eq. 10.8.

10.5 Power Amplifiers with Phase Distortion
Presence of phase distortion of the PA does not influence the performance of the proposed
synchronisation method. Phase distortion in spectrum domain spreads the signals phase
difference, but it preserves the direction of the fitted line. The time delay obtained using
least squares is therefore insensitive to the phase distortion. Fig. 10.10 depicts a result
of the synchronisation on the AM/PM characteristics of a PA with phase distortion.
These characteristics were obtained by simulations only as there was no real suitable PA
available for measurements.

10.6 Conclusion
In this paper we have proposed the analytical method for fractional sample period time
synchronisation using spectrum domain. It has been presented that the method, due
to its properties, is suitable for time synchronisation in DPD systems suffering from
incoherent sampling, e.g. integrated transcievers with separated PLLs in receiver and
transmitter. The main advantage of the proposed method is that it is analytical and
thus much faster than optimisation methods. We have shown application of our method
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Figure 10.7: Measured AM/AM characteristics of the PA before and after linearisation
with and without fractional sample period time synchronisation

in linearisation process using laboratory instruments and a real PA. The experimental
measurements have shown its very good synchronisation capabilities. The simulation
results have shown its outstanding performance in synchronisation of the phase distorted
signals. The method is provided as a Matlab function on github.com/jankralx/fract_
tsync.
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Figure 10.10: AM/PM characteristics of the PA model with phase distortion with and
without fractional sample period time synchronisation. Signals without synchronisation
are mutually shifted in time by 𝜏/𝑇𝑆 = 0.48.
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Abstract

Digital predistorters (DPD) are used in modern communication systems to lin-
earise nonlinear power amplifiers (PA) and maximise power efficiency. For their func-
tion, a feedback signal from the PA output is required. A conventional DPD uses
a quadrature mixer and two analogue-to-digital converters (ADC) which consume
additional power and increase system complexity. In this paper we have proposed an
innovative technique which allows to use a nonquadrature RF mixer with one ADC
in the feedback path. The DPD adaptation is noniterative and based on favoured
indirect learning architecture. Firstly, the forward PA model is estimated and sub-
sequently it is used to train DPD coefficients. We have verified and compared the
proposed method with other DPD architectures in simulations. The results show
that the proposed architecture can achieve the same results as a DPD with complex
feedback samples and the other real-valued feedback architectures.

11.1 Introduction

Modern communications systems are evolved to fulfil still increasing demand for data
throughput. Designers of these systems need to use higher frequency bandwidths, effi-
cient modulations schemes, and at the same time they are required to minimise power
consumption of the transceivers. Nowadays efficient modulations schemes are mostly
linear, as the orthogonal frequency-division multiplexing (OFDM), the filter bank mul-
ticarrier (FBMC), and all their variants, require usage of linear power amplifiers (PA).
The PAs are most power efficient when they operate close to saturation in nonlinear
region where they cause degradation of the transmitted signal quality and interference
in neighbours channels induced by the frequency spectrum regrowth.

One of the technique commonly used to allow PA operation in nonlinear region is
utilisation of a baseband digital predistorter (DPD). Typical configuration of the trans-
mitter with the DPD is depicted in Fig. 11.1. The DPD uses a local feedback to identify
characteristics of the PA nonlinearity and introduces a nonlinear inverse to the transmit-
ted signal. The PA nonlinearity cancels the intentionally introduced nonlinear inverse
and the transmitted signal is very close to the desired.
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Figure 11.1: The diagram of the conventional baseband DPD

The correct function of the DPD is conditioned by a sufficient system bandwidth
which has to be at least three times up to five times the communication bandwidth [1, 2].
In wideband communication systems this requirement implies need for two high-speed
analogue-to-digital converters (ADCs) in the feedback path. These high-speed ADCs are
usually power hungry and increase design complexity and price. The last research in the
field shows the interest to relax demands on these ADCs. Liu [3], and Huang [4] focused
on lowering of the ADC sampling frequency. Wang in the papers [5, 6] and Zhang in [7]
extended the undersampling DPD for multiband and wideband transmitters. Zhang et al.
followed different approach in their papers [8, 9] and presented a DPD with the feedback
ADCs replaced by high-speed digital-to-analogue converters (DACs) accompanied with
high-speed comparators which allowed them to reduce system power consumption.

Chani-Cahuana et al. in the paper [10] proposed an architecture with a single ADC
and an RF mixer instead two ADCs with a quadrature mixer. Their DPD is based on
a real-valued feedback and uses the iterative learning control (ILC) algorithm which they
had presented in [11]. Besides the reduced power consumption and system complexity,
the real-valued feedback provides an advantage of reduced sensitivity to in-phase and
quadrature (IQ) imbalances of the feedback quadrature mixer [12].

In this paper we propose an innovative DPD architecture with real-valued feedback
path based on work of Morgan [13] and Landin [14]. Firstly a forward PA model is ex-
tracted using real-valued feedback and subsequently the DPD with the indirect learning
architecture (ILA) is trained using the forward PA model. We compare the proposed
approach with a real-valued feedback DPD based on the iterative direct learning archi-
tecture (DLA), because it usually provides better performance than ILA [15]. The most
recent paper [16] by Guan partially covers the DLA DPD with a real-valued feedback.
Additionally our paper provides some comparisons for the DLA which Guan did not
covered in [16].
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11.2 DPD with Real Valued Feedback Using Forward PA Model
Consider a PA modeled by memory polynomial model (MP) [17]. The discrete baseband
PA output 𝑦 is given as [17]

𝑦(𝑛) =
𝐾∑︁

𝑘=1

𝑄∑︁
𝑞=0

𝑏𝑘,𝑞𝑥(𝑛− 𝑞)|𝑥(𝑛− 𝑞)|𝑘−1 (11.1)

where 𝑥 is the PA input, 𝑏𝑘,𝑞 is a coefficient of the PA model, and 𝑃 and 𝑄 represent the
maximum PA nonlinearity order and memory length respectively. The product 𝑥(𝑛 −
𝑞)|𝑥(𝑛− 𝑞)|𝑘−1 is often called a basis waveform or a basis function. We denote it as

𝜑
(𝑥)
𝑘,𝑞(𝑛) = 𝑥(𝑛− 𝑞)|𝑥(𝑛− 𝑞)|𝑘−1. (11.2)

The input samples 𝑥, model coefficients 𝑏𝑘,𝑞, and the basis waveforms 𝜑𝑘,𝑞(𝑛) can be
arranged into vectors and a matrix

φ
(𝑥)
𝑘,𝑞 =

[︁
𝜑

(𝑥)
𝑘,𝑞(0) 𝜑

(𝑥)
𝑘,𝑞(1) . . . 𝜑

(𝑥)
𝑘,𝑞(𝑁)

]︁𝑇
x =

[︁
𝑥(0) 𝑥(1) . . . 𝑥(𝑁)

]︁𝑇
y =

[︁
𝑦(0) 𝑦(1) . . . 𝑦(𝑁)

]︁𝑇
b =

[︁
𝑏1,0 𝑏1,1 . . . 𝑏1,𝑄 𝑏2,0 . . . 𝑏𝐾,𝑄

]︁𝑇
U𝑥 =

[︁
φ

(𝑥)
1,0 φ

(𝑥)
1,1 . . . φ

(𝑥)
1,𝑄 φ

(𝑥)
2,0 . . . φ

(𝑥)
𝐾,𝑄

]︁𝑇
where b is column vector with 𝐾(𝑄 + 1) rows, and the size of the matrix U𝑥 is 𝑁 ×
𝐾(𝑄+ 1). Eq. 11.1 can be rewritten into matrix form

y = U𝑥b. (11.3)

Eq. 11.3 can be split into the real and imaginary parts, denoted as (.)𝑟 and (.)𝑖

respectively, as
y𝑟 + 𝑗y𝑖 = (U𝑥𝑟 + 𝑗U𝑥𝑖)(b𝑟 + 𝑗b𝑖)

y𝑟 + 𝑗y𝑖 = U𝑥𝑟b𝑟 + 𝑗U𝑥𝑖b𝑟 + 𝑗U𝑥𝑟b𝑖 − U𝑥𝑖b𝑖

y𝑟 = U𝑥𝑟b𝑟 − U𝑥𝑖b𝑖 ∧ y𝑖 = U𝑥𝑖b𝑟 + U𝑥𝑟b𝑖

and by matrix reordering we get two matrix equations

y𝑟 =
[︁
U𝑥𝑟 −U𝑥𝑖

]︁ [︃b𝑟

b𝑖

]︃
∧ y𝑖 =

[︁
U𝑥𝑖 −U𝑥𝑟

]︁ [︃b𝑟

b𝑖

]︃
. (11.4)

To get the PA coefficients b, it is sufficient to solve only one of the two equations in
Eq. 11.4. Advantageously each equation requires only real or imaginary samples of the
amplifier output y. Since the matrix X is fully known, as it consists of samples given by
transmitted signal 𝑥, b can be obtained as the Least Squares (LS) solution of Eq. 11.4
using real feedback samples [︃

b𝑟

b𝑖

]︃
= (A𝐻

𝑥 A𝑥)−1A𝐻
𝑥 y𝑟 (11.5)
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or imaginary feedback samples [︃
b𝑟

b𝑖

]︃
= (B𝐻

𝑥 B𝑥)−1B𝐻
𝑥 y𝑖 (11.6)

where
A𝑥 =

[︁
U𝑥𝑟 −U𝑥𝑖

]︁
B𝑥 =

[︁
U𝑥𝑖 U𝑥𝑟

]︁
. (11.7)

Once the PA model is obtained, we can use it to calculate PA model output ỹ [13, 14]
as

ỹ = U𝑥b (11.8)

and by application of ILA, doing the post-inverse to the PA output, we get the DPD
coefficients in the vector b′, of the same dimension as b, as LS solution of

x = U𝑦b′ (11.9)

which yields
b′ = (U𝐻

𝑦 U𝑦)−1U𝐻
𝑦 x (11.10)

where the matrix U𝑦 is given by samples 𝑦 in the same way as the matrix U𝑥 is given
by samples 𝑥.

Further, we will denote the proposed method as real-valued forward model indirect
learning architecture (R-FM-ILA) and its complex variant using conventional DPD ar-
chitecture (Fig. 11.1) as forward model indirect learning architecture (FM-ILA).

11.3 Real Valued Feedback DPD Using DLA
DLA is an iterative method which tries to directly solve 𝐺(𝐷(𝑧)) = 𝑦 with 𝐺 being a
transfer function of the PA and 𝐷 a transfer function of the DPD. The solution 𝐷(𝑧) =
𝐴−1(𝑦) is a nonlinear problem and can be solved by the Gauss-Newton method which
can be defined for DPD as [18]

b′(𝑚+ 1) = b′(𝑚) − 𝜇e(𝑚) (11.11)

where 𝑚 is the iteration cycle, b′(𝑚) and b′(𝑚+1) are current and new DPD coefficients,
𝜇 is the iteration step size, and e(𝑚) is the coefficient error vector for the 𝑚-th iteration
given as the LS solution of

z − y = U𝑧e. (11.12)

Following similar steps of splitting real and imaginary parts of Eq. 11.12 as in Sec-
tion 11.2 a vector e can be obtained using only real samples of the PA output 𝑦𝑟 as[︃

e𝑟

e𝑖

]︃
= (A𝐻

𝑧 A𝑧)−1A𝐻
𝑧 (z𝑟 − y𝑟) (11.13)

or imaginary feedback samples[︃
e𝑟

e𝑖

]︃
= (B𝐻

𝑧 B𝑧)−1B𝐻
𝑧 (z𝑖 − y𝑖) (11.14)
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with A𝑥 and B𝑥 defined in Eq. 11.7. Back substitution of the vector e into Eq. 11.11
yields the new DPD coefficients[︃

b′
𝑟(𝑚+ 1)

b′
𝑖(𝑚+ 1)

]︃
=
[︃
b′

𝑟(𝑚)
b′

𝑖(𝑚)

]︃
− 𝜇(A𝐻

𝑧 A𝑧)−1A𝐻
𝑧 (z𝑟 − y𝑟). (11.15)

DLA using only real feedback samples will be further referred as real-valued direct
learning architecture (R-DLA).

11.4 Simulation Procedures
We have implemented and simulated various DPD architectures to evaluate their lin-
earisation performance. Compared architectures are ILA, DLA, FM-ILA, R-DLA, R-
FM-ILA, and system without DPD. For ILA, DLA and FM-ILA we have used the model
depicted in Fig. 11.1 and for real-valued variants the model from Fig. 11.2. At both cases
the PA has been modeled by memory polynomial model (Eq. 11.1) with 𝑃 = 7, 𝑄 = 1
and coefficients extracted from measurements of a real PA. We have used FBMC signal
with 1024 subcarriers, 18 frames in one transmission window, further referred as itera-
tion. Sampling frequency has been set 6 times higher than the communication channel
bandwidth 𝐵.
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Figure 11.2: The diagram of the baseband DPD with real-valued feedback

All the architectures have been used in the iterative way which means that the DPD
coefficients were trained on a signal after transmission through the PA without the pos-
sibility to use the PA twice – first for DPD coefficients training and second for linearised
transmission.

For all the architectures one iteration consists of:

1. generation of a random-data FBMC signal 𝑧 (same signal for all DPD architec-
tures),

2. predistortion of the desired signal 𝑧 with current DPD coefficients b′(𝑚) to get the
PA input 𝑥,
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3. amplitude signal adjustment to set the desired PA output power,

4. modelling the PA and calculating its output 𝑦,

5. evaluation of the output metrics,

6. calculation of new DPD coefficients b′(𝑚+ 1).

The critical operation is setting of the PA reference gain. Maximum signal amplitude in
the system without DPD was set that the PA provided the same output power in the
communication channel as the system with ILA. As this topic is out of the context, we
will rather refer the interested reader into work of Jardin and Baudoin [19] where this
problem is analysed. The calculation of new DPD coefficients (last step) varies based on
the architecture.

The brief procedure for ILA (Fig. 11.3) is:

1. adjusting the maximum Euclidean norm of the 𝑥 and 𝑦 as ||𝑥|| ≤ 1, ||𝑦|| ≤ 1 for
the following calculations,

2. solving coefficients b′(𝑚+ 1) of the post-distorter as
b′(𝑚+ 1) = (U𝐻

𝑦 U𝑦)−1U𝐻
𝑦 x.

3. coefficients of the post-distorter are used as the DPD coefficients in the next iter-
ation.

PA

DPD

Training

DPD

DPD

coefficients

xz

y

Figure 11.3: Schematic diagram of the ILA DPD

The procedure for DLA (Fig. 11.4) is:

1. adjusting the maximum Euclidean norm of the 𝑧 and 𝑦 as ||𝑧|| ≤ 1, ||𝑦|| ≤ 1 for
the following calculations,

2. compensation of the phase part of the PA complex gain,

3. solving new DPD coefficients using the desired signal 𝑧 and the feedback 𝑦 as
d(𝑡+ 1) = d(𝑡) − 𝜇(U𝐻

𝑧 U𝑧)−1U𝐻
𝑧 (z − y).
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The compensation of of the phase part of the PA complex gain in the 2nd step improves
DLA convergence for selected PA. We compensate by a constant phase for the selected
PA. If the initial coefficients are set close to the optimum, the phase IQ the phase
part of the PA complex gain compensation is not required. However we have achieved
reasonable convergence speed with the phase IQ rotation correction, initial coefficients
set to b =

[︁
0.5 0 0 . . .

]︁𝑇
and initial step size 𝜇 = 0.8. The step size is lowered after

the DPD coefficients converged close to the solution.
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y

Figure 11.4: Schematic diagram of the DLA DPD

Finally the procedure for FM-ILA (Fig. 11.5) is:

1. adjusting the maximum Euclidean norm of the 𝑥 and 𝑦 as ||𝑥|| ≤ 1, ||𝑦|| ≤ 1 for
the following calculations,

2. estimating the forward PA model coefficients as
b = (U𝐻

𝑥 U𝑥)−1U𝐻
𝑥 y

3. calculating the forward model output as ỹ = U𝑥 b

4. solving coefficients b′(𝑚+1) of the post-distorter which distorts the forward model
output ỹ to get the PA input x as b′(𝑚+ 1) = (U𝐻

𝑦 U𝑦)−1U𝐻
𝑦 x.

5. coefficients of the post-distorter b′(𝑚+ 1) are used as the DPD coefficients in the
next iteration.

Procedures for the Real-valued feedback methods R-DLA and R-FM-ILA are slightly
modified as described in Section 11.3 and 11.2.

All related Matlab source codes are provided at www.github.com/jankralx/rfm_
ila.

11.5 Simulation Results
The linearisation performance has been qualified based on the normalised mean square
error (NMSE) and the adjacent channel power ratio (ACPR). We evaluated NMSE as
𝑁𝑀𝑆𝐸 = 10 log10[(z − y)𝐻 (z − y) (z𝐻z)−1] and ACPR for the 1st adjacent channel
which is 1𝐵 wide and with 1.1𝐵 offset, and for the 2nd adjacent channel which is 1𝐵
wide too and with 2.2𝐵 offset. ACPRs from the left and right channels are averaged
separately for the 1st and 2nd adjacent channels and presented as a single value per the
adjacent channel.
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Figure 11.5: Schematic diagram of the FM-ILA DPD

We have simulated all architectures with the DPD modelled by the MP model. Al-
though we have tried also the simplified 2nd-order dynamic deviation reduction (DDR2)
based Voltera series model [20], for our simulation setup, MP model outperformed DDR2.
We believe that DDR2 basis functions, given as a product of the signal with its delayed
copy, and increased DDR2 sensitivity to the magnitudes of signals greater than one cause
suboptimal linearisation compared to the MP model.

Provided results are thus for the MP model with 𝐾 = 7, 𝑄 = 3. The simulation
executed 220 iterations. Average frequency spectrum, NMSE and ACPR have been
evaluated after 20 iterations, after the DLA and R-DLA converged.

Fig. 11.6 shows AM/AM characteristics for the R-FM-ILA with the trained DPD
coefficients. Blue circles represents the characteristics of the PA got from the feedback
signal and orange dots stand for the characteristic of the estimated forward PA model.
Reader can see that the PA has a certain memory which is mostly compensated by the
predistorter.

Average frequency spectra of PA outputs are shown in Fig. 11.7. The spectra for all
the DPD architectures are almost the same and well improved due to the spectrum for
the system without the DPD.

NMSE evolution in iteration cycles is depicted in Fig. 11.8. In the first iteration
ILA, FM-ILA, and R-FM-ILA (further together denoted as ILA-based systems) are not
trained yet and therefore provide the same NMSE as the system without DPD. DLA and
R-DLA start with lower NMSE which is caused by the lowered output power given by
first coefficient set to 0.5. In the second iteration ILA, FM-ILA and R-FM-ILA achieve
almost the optimum predistortion. The output power of the system without the DPD is
lowered to be the same as for the system with the ILA DPD. In the third step we would
like to point out a little improvement for ILA-based systems. This improvement is caused
by better estimation of DPD coefficients using a linearised PA and a predistorted PA
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Figure 11.6: AM/AM characteristics for R-FM-ILA DPD

input. We have verified this assumption in the FM-ILA and R-FM-ILA system. If the
post-distorter in the ILA part of FM-ILA or R-FM-ILA was trained using the desired
signal 𝑧 instead of predistorter output 𝑥, obtained NMSE would be ≈ 1.5 dB higher.
Note the NMSE-evolution peak for DLA and R-DLA which the optimisation process
needs to pass in order to achieve the solution. Convergence speed of DLA and R-DLA
highly depends on the initial coefficients, step size 𝜇 (set as described in Section 11.4)
and the desired signal 𝑧. Higher convergence speed could be achieved but with lower
probability of convergence.

Detailed comparison of average NMSE and ACPR for all architectures is given in
Tab. ??. ILA-based systems provide the same linearisation performance based on the
evaluated metrics. DLA and R-DLA are slightly better than ILA-based.

11.6 Conclusion

In this paper we have proposed an innovative DPD architecture using real-valued feed-
back samples and employing forward PA model estimation denoted as R-FM-ILA. The
proposed method has been verified and compared to the state-of-the-art DPD methods in
the simulations. We have shown that the R-FM-ILA can achieve the same linearisation
performance as its complex variant and the ILA DPD and very similar results as complex
DLA and R-DLA. Its main advantage over the DLA and R-DLA is noniterative calcu-
lation and related unnecessary setting of the initial solution and step size. Additionally
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Figure 11.7: Frequency spectra of the PA output signal

Table 11.1: NMSE and ACPR in 1st and 2nd adjacent channels

DPD architecture NMSE (dB) ACPR-1st (dB) ACPR-2nd (dB)

No DPD -19.9 -29.6 -46.5
ILA -40.5 -49.6 -60.3
DLA -40.8 -49.8 -60.7

R-DLA -40.7 -49.7 -60.7
FM-ILA -40.5 -49.6 -60.3

R-FM-ILA -40.5 -49.6 -60.3

it allows usage of an RF mixer and one ADC instead of a quadrature mixer with two
ADCs which decreases power consumption, system complexity and transmitter price.
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Abstract

Novel multicarrier waveforms, such as, Filter Bank Multi Carrier promise lower
out-of-band emissions compared to the currently used Orthogonal Frequency Di-
vision Multiplex technique. Unfortunately, the power amplifier nonlinearity in the
transmitter can significantly degrade the FBMC spectrum wiping-out the differences
between these two approaches. In order to compensate for nonlinearities and mem-
ory effects introduced by power amplifiers, the digital predistortion is a widely used
technique, but also the predistortion itself can significantly be influenced by the
transceiver imperfections. This paper thus laid great emphasis on the evaluation
of transceiver imperfections and uncertainties on the overall performance of digital
predistortion driven with FBMC signals.

12.1 Introduction

Communication signals with high order modulations and non-constant envelope are used
to fulfill ever-increasing demands for high data rates in contemporary communication
systems. Such modulation formats are sensitive to various transmitter imperfections,
such as, the power amplifier (PA) nonlinearities. Meanwhile, in order to achieve high
transmitter efficiency, it is desirable to operate the power amplifiers close to their satura-
tion point. Combination of these circumstances results in significant nonlinear distortion
of the transmitted signals resulting in increased bit error rate and spurious transmission
into adjacent channels.

One of the candidate waveforms for the fifth generation (5G) of communication sys-
tems is the Filter Bank Multi Carrier (FBMC) modulation, that is supposed to replace
currently used Orthogonal Frequency Division Multiplexing (OFDM) technology. The
impact of PA nonlinearity on FBMC signals has been investigated with the use of Buss-
gang theorem in [1] considering a widely accepted Saleh PA model. There, it has been
established that OFDM and FBMC lead to similar performance in case of amplitude dis-
tortions, but a serious FBMC performance decrease is observed under phase distortions.
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Digital predistortion (DPD) is one of the most commonly used technique for the compen-
sation of PA nonlinearities. the principle of DPD consists in distorting the transmitted
signal with a nonlinearity corresponding to PA inverse characteristic. The inverse func-
tion can be implemented in several ways differing in complexity as well as in linearization
performance.

In order to account for memory effects, many approaches derived from Volterra series
have been proposed such as polynomials with memory or generalized memory polyno-
mials. Predistortion of FBMC signals is a very recent topic. In [2], the authors propose
a DPD modeled by a multilayer perceptron neural network. In [3], we have performed
experiments with DPD based on orthogonal polynomials for three different PA’s. Simi-
larly to other multi-carrier techniques, FBMC suffers from a high Peak to Average Power
Ratio (PAPR) of the signal to transmit. In the last two decades, many methods for
PAPR reduction have been proposed for the OFDM case [4]. These can be, with nec-
essary modifications [5] due to the overlapping symbol structure of FBMC, tailored to
the FBMC case. To ease-up the work of DPD, the combination of DPD with PAPR
reduction is advantageous, [6].

The predistortion performance is affected by impairments of other RF components,
such as, the IQ modulators, filters or the coupler in the feedback path of DPD. Several
papers have discussed the effects of individual impairments and described methods for
their compensation, e.g. [7] in the case of IQ mismatch. The pre-correction of anti-
aliasing filter has been proposed in [8]. In those studies, the effect of RF transmitter
impairments to DPD performance have been investigated and described for the case of
individual impairments [9]. in this paper, we summarize their joint effect for practical
values of RF impairments. We also investigate the influence of other uncertainties in the
transmitter/feedback chain of DPD system, such as, the fractional sampling mismatch
or unknown gain in the feedback path. Moreover, these analysis are done for FBMC
input signals and direct conversion transmitter architectures. The paper is structured as
follows. In section II, we briefly discuss the problem statement, i.e. the basics of FBMC
and DPD techniques with the parameters used. In section III we point out the considered
RF impairments and mismatches and we present the simulation results of their effect on
DPD method applied to FBMC modulated signals. The conclusion then rounds up the
paper.

12.2 Problem statement

12.2.1 Filter Bank Multi Carrier modulator

In the general multicarrier modulator, the output time-domain signal can be expressed
as [10]:

𝑥(𝑡) =
∞∑︁

𝑛=−∞

𝑆−1∑︁
𝑠=0

𝑋𝑛,𝑠𝑔𝑛,𝑠(𝑡), (12.1)

where 𝑋𝑛,𝑠 are symbols located on the 𝑠-th subcarrier at time instant 𝑛 and 𝑔𝑛,𝑠(𝑡) is a
basis (synthesis) function derived from a prototype filter 𝑝(𝑡) by the frequency and the
time shift, such as:
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𝑔𝑛,𝑠(𝑡) = 𝑝(𝑡− 𝑛𝑇 )𝑒𝑗2𝜋𝑠𝐹 (𝑡−𝑛𝑇 )𝑒𝑗 𝜋
2 (𝑛+𝑠). (12.2)

Here 𝐹 and 𝑇 denote for the frequency and time separation.
Various prototype filters, including raised cosine, Hermite polynomials or PHYDYAS

filters have been proposed. Similarly to the case of its predecessor, widespread in the 4-th
generation of mobile communications - OFDM, the main part of the FBMC transmitter
is the IFFT block. The filtering is then usually implemented using a polyphase network.
Comparative study of various prototype filters have been published in [11], where the
influence of the filter impulse response on the performance in doubly dispersive channels
has been analyzed and compared to the case of OFDM, corresponding to the rectangular
prototype filter. Due to the non-rectangular filtering operation, FBMC signals provide
much lower adjacent channel emissions than is the case of OFDM (rectangular prototype
filter corresponds to sinc in the frequency domain).

In order to deal with the overlapping of neighboring subcarriers caused by FBMC
prototype filter, the information is sent in the interleaved way on the real/imaginary
parts of IFFT inputs. Such approach is denoted as O-QAM/FBMC [12]. Similarly to
OFDM, in this case it holds that 𝑇𝐹 = 1 and thus O-QAM/FBMC achieves the same
spectral efficiency as OFDM, but with basis pulses localized in both time and frequency
domain. Throughout our experiments, O-QAM/FBMC signal employing PHYDYAS
filter with coefficients 𝑝1 = 0.972, 𝑝2 =

√
(2)
2 and 𝑝3 = 0.235 [12] was used.

Recently [13, 14], several implementations of FBMC links based on the low-cost soft-
ware defined radios, such as USRP, have been set-up, although the front-end parameters
of the devices used (low dynamic range, nonlinearity, quadrature modulator imbalances)
do not allow to fully exploit the FBMC advantages.

12.2.2 Digital predistortion subsystem

The typical digital predistortion chain consists of following main components: digital-
to-analog (DAC) and analog-to-digital (ADC) data converters, filters and up/down con-
verters. The signal is amplified over non-linear PA. Current technology and software
radio in particular, can be used for digital predistortion implementation. Such radios
usually use direct-conversion approach, also known as a homodyne receiver. Although
the simplification by performing only a single-frequency conversion reduces the basic cir-
cuit complexity, other issues emerge. Unfortunately the IQ imbalance is one of the most
performance-limiting issues in such a concept.

As stated above, in this paper we investigate the influence of various imperfections
and uncertainties on digital predistortion (IQ imbalance, gain mismatch, fractional delay,
number of bits of data converters, etc.) applied in the direct-conversion-based software
defined radios as illustrated on Fig. 12.1.

For the consecutive simulations, a PA model and DPD model based on the orthogonal
polynomial memory series (OMPS) [15] has been extracted from the measurements of
a PA driven with FBMC signal described above. More details regarding DPD can be
found in [15, 18]. The output of PA modeled using OMPS with nonlinear order 𝐾 and
memory 𝑀 can be expressed as:
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Figure 12.1: Overview of DPD implemented in the direct-conversion transceiver.

𝑦(𝑡) =
𝐾∑︁

𝑘=1

𝑀∑︁
𝑚=0

𝑏𝑘,𝑚

𝑘∑︁
𝑙=1

(−1)𝑙+𝑘 ·

· (𝑘 + 𝑙)!
(𝑙 − 1)!(𝑙 + 1)!(𝑘 − 𝑙)! |𝑥(𝑡−𝑚)|𝑘−1𝑥(𝑡−𝑚),

(12.3)

where 𝐾 is polynomial order, 𝑀 is memory depth, 𝑦 is the baseband output of PA
and 𝑥 is the baseband input.

In our case, the complex coefficients 𝑏𝑘,𝑚 were estimated using least-squares criterion
considering order 𝐾 = 5 and memory depth 𝑀 = 0. This lead to OMPS coefficients
𝑏𝑃 𝐴 = [0.5 + 1.1𝑖; −0.1 − 0.2; −0.03 − 0.03𝑖; −0.004 − 0.002𝑖; 0.003 − 0.004𝑖]. Note that
the OMPS were used for digital predistortion as well.

In order to evaluate the performance of DPD we used difference between Adjacent
Channel Power Ratio (ACPR) of power amplifier output without DPD and ACPR of
PA output with DPD. The adjacent channel power ratio of a wireless communication
signal describes the ratio between the integrated power in the carrier channel relative to
the adjacent channel. If the bandwidth of the signal is 𝐵𝑊 then the adjacent channel
can be defined as ±𝐵𝑊

2 ± 𝐵𝑊 . In the following we denote such difference as ACPR
Improvement. To achieve the best linearization performance, the structure of DPD, i.e.
its nonlinearity order and memory depth, were individually adjusted by exhaustive search
for each imperfection under investigation.

12.3 Digital Predistortion Chain Imperfections

In the architecture of DPD shown in Fig. 12.1, several analogue circuit components are
necessary. Due to the technological constraints, the imperfections of such components
are the source of signal distortions leading to DPD performance degradation. In the

96



12.3. Digital Predistortion Chain Imperfections

following paragraphs we would like to investigate sensitivity of predistortion as a whole
to the imperfections of RF components used in the homodyne architecture.

Σ

Ki

-Kq

Kq

sin(ψ)

cos(ψ)

I

Q

I’

Q’

Figure 12.2: IQ Imbalance model.

12.3.1 Forward/Feedback path IQ Imbalance

IQ imbalances occur due to mismatch between the parallel sections processing the In-
phase (I) and Quadrature (Q) signal paths. The IQ mismatch with cross-mixing compo-
nent can be modeled similarly to a real-valued model used in [16]:[︃

𝐼 ′

𝑄′

]︃
=
[︃

𝐾𝑖 0
−𝐾𝑞𝑠𝑖𝑛(𝜓) 𝐾𝑞𝑐𝑜𝑠(𝜓)

]︃ [︃
𝐼
𝑄

]︃
, (12.4)

where 𝐾𝑖 and 𝐾𝑞 represent the mismatched gains (amplitude imbalance - can be put
either inside I or Q branch), 𝜓 is a phase imbalance, 𝐼 and 𝑄 are non-distorted in-phase
and quadrature signals and 𝐼 ′, 𝑄′ are distorted signals. The visual representation of such
model can be seen in Fig. 12.2.

As shown in Fig. 12.1, DPD contains the quadrature up- and down-conversion in the
forward and feedback path, respectively. In Fig. 12.3 and Fig. 12.4 we have evaluated
DPD system sensitivity on the gain imbalance. In fact the 𝐾𝑖 = 1 𝑑𝐵 means that the
gain 𝐾𝑖 is 1 𝑑𝐵 higher than 𝐾𝑑.The performance of DPD degrades significantly with
increasing gain imbalance, but as expected, it does not depend whether we model the
gain mismatch in I or Q branch and the results shown in both figures are similar. In the
Fig. 12.5 there is a phase imbalance influence. For the sake of simplicity the DC offset
is omitted.

As can be seen, the low gain imbalance is important. For the phase imbalance, higher
tolerance is allowed. Nevertheless, ACPR degradation of almost 20 dB can be expected
for current IQ converters with the phase imbalance values close to 0.1 degrees.
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Figure 12.3: Influence of gain 𝐾𝑖 on DPD performance.
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Figure 12.4: Influence of gain 𝐾𝑞 on DPD performance.

12.3.2 Forward/Feedback path Gain

The forward gain 𝐺𝑓 represents the scaling due to the DAC in the DPD forward path
and 𝐺𝑓𝑏 represents the improper attenuation and scaling of the signal in DPD feedback
path. In practical systems, there is a back-off corresponding at least to PAPR of the
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Figure 12.5: Influence of phase imbalance 𝜓 on DPD performance.

transmitted signal. On the contrary, when using simulations, the signals are usually
normalized to |1|, guaranteeing the optimal values for DPD adaptation. The gain error
of an ADC or DAC indicates how well the slope of an actual transfer function matches
the slope of the ideal transfer function.

The gain mismatch effect on DPD is evaluated in Fig. 12.6. The improper gain choice
leads to wrong PA output power, therefore the difference between the main channel power
of the system without DPD and the system with DPD is also compared here.
As demonstrated, the proper gain selection in the feedback and forward paths is crucial
to maintain DPD performance and to guarantee the required nominal PA output power.

12.3.3 Forward/Feedback path Number of Bits

The impact of data converters precision was also investigated. For the picture of ef-
fect, the selected bit precision is represented by additive white Gaussian noise (AWGN)
corresponding to system dynamics only. As the amplitude of the AWGN is increased,
the signal-to-noise ratio decreases. This results in increased uncertainty in time domain.
From the results shown on Fig. 12.7 we may observe that the bit precision of the feed-
back ADC is less affecting DPD performance than in the case of the forward DAC.

12.3.4 Fractional delay in the DPD chain

In order to extract OMPS coefficients for a model from eq. 14.12, the baseband samples
at the PA input 𝑥 have to be perfectly time-matched to the samples of PA output 𝑦.
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Figure 12.6: Influence of improper gains 𝐺𝑓 - forward and 𝐺𝑓𝑏 - feedback (top) and
resulting deviation of the main channel signal power (bottom).
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Figure 12.7: Influence of data converters resolution.

The same condition holds for the DPD adaptation as well. The fractional delay (in the
meaning of irrational multiples of sampling period 𝑇𝑠) can be introduced by mismatch
of digital to analog and analog to digital converters and by the physical delay of the
analogue components, such as the power amplifier. The effect of fractional delay was
introduced in our simulation model by the interpolation using Farrow filters [17].
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Figure 12.8: Influence of fractional delay on DPD performance.

The system sensitivity to fractional delay is displayed in Fig. 12.8. Note also that
we expected that the integer delay between the signals can be perfectly estimated and
compensated using e.g. well-known correlation techniques [18].

12.3.5 Power spectrum densities in the typical scenario

Even considering the excellent typical values (for example of state-of-the-art direct quadra-
ture modulator STQ-2016) imperfections as 𝐾𝑖 = 0.2 𝑑𝐵, 𝐾𝑞 = 0 𝑑𝐵, 𝜓 = 0.5 𝐷𝑒𝑔,
perfectly compensated fractional delay 𝜏𝑓𝑟𝑎 = 0, no uncertainty in the forward gain
𝐺𝑓 = 1 nor feedback gain 𝐺𝑓𝑏 = 1 and the use of 16 𝑏𝑖𝑡𝑠 ADC and DAC converters,
DPD performance degrades significantly. In such a case, DPD using OMPS (𝐾 = 17,
𝑀 = 0) will gain only 25 𝑑𝐵 of ACPR improvement instead of ideal achievable improve-
ment of 65 𝑑𝐵 in case of no imperfections. In Fig. 12.9 we may see power spectrum
density comparison of ideal (green) and such a typical (violet) DPD system.

12.4 Conclusion

In this brief paper we have evaluated the influence of imperfections (IQ imbalances, data
converters resolutions) and uncertainties (fractional delay in the feedback path, unknown
gains) present in the direct-conversion-based transceivers on the performance of the Dig-
ital Pre Distortion system driven with a typical Filter Bank Multi Carrier signal. As
we may see from the simulations, the sensitivity of DPD to imperfections is extensive.
For our configuration, we have demonstrated that tuned homodyne system can improve
only 25 𝑑𝐵 of ACPR and the advantage of FBMC approach over OFDM, i.e., the lower
out-of-band emissions, can rapidly be smeared-out. Note that although such ACPR im-
provement surely depends on many factors, the results presented give a picture about
the main limitations.
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Figure 12.9: Power spectrum density of: blue - Output of PA without DPD, orange -
reference transmitted FBMC signal, green output of PA with ideal DPD and violet - PA
output with typical values of chain imperfections.

One solution to overcome the detrimental effects of transceiver imperfections to DPD
performance would be precise imperfection compensation. Alternatively, the transceiver
would drive the power amplifier directly with the signal just after D/A conversion and
the feedback path would directly use A/D converted RF signal. Such idealized scheme is
unfortunately not completely realizable due to the contemporary technology limits and
can be currently employed hardly even for frequencies below 2 𝐺𝐻𝑧. As an example
16 𝑏𝑖𝑡𝑠, 2.8 𝐺𝑆𝑃𝑆 DAC (AD9135) and 12 𝑏𝑖𝑡𝑠, 2 𝐺𝑆𝑃𝑆 ADC (AD9625) are available
on the market. Such setup would provide ACPR improvement of 41 𝑑𝐵, that already
outperforms the homodyne architecture.
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Abstract

In this paper we presented a reduced complexity digital predistortion of multiple
power amplifiers. The reduction was based on using only one feedback path. First
the theoretical basics were presented. Then the experiment in this paper was trying
to give an answer whether the predistortion can be used with limited number of
feedback paths. As a test signal we have used a FBMC which was considered as a
potential candidate for future 5G systems.

13.1 Introduction

For the future radio systems where the amount of transfered data rises, the requirements
for more efficient technologies arises. In modern communication systems orthogonal fre-
quency division multiplexing signals (OFDM) with cyclic prefix are established as the
most popular type of multi carrier modulation [1]. But using cyclic prefix e.g. for
LTE 10MHz loses of data-rates are about 16%. It was proved that using multi-carrier
modulations (MCM) is an efficient way of transmission [2] and has better resistance to
multi-path channels than single carrier modulations. The key technologies that have
been lately discussed for the future 5G networks are: non-orthogonal multiple access,
millimeter frequencies, 3D massive MIMO, cognitive spectrum radio sensing, ultra wide-
band signals, ultra dense networks (UDN) with heterogeneous cells (HetNet), multiple
technology carrier aggregation and filtered bank multi-carrier (FBMC) signals [3], [4].

FBMC systems are basically a subclass of multicarrier (MCM) systems. While its
basic principle, dividing frequency spectrum into many narrow subchannels, may not
be new, MCM systems have seen wide adoption in recent years (LTE, WLAN). FBMC
modulation can be considered as an evolved OFDM. While FBMC is a step in the right
direction it is still not optimal as many issues are arising when applying practical sys-
tem settings [5]. Unfortunately MIMO extension is still not straightforward if maximal
spectral efficiency is desired.
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Power Amplifiers for FBMC Systems

One of problems of MIMO digital predistortion (DPD) is its required complexity of
feedback path. We can expect that the power amplifiers in the transmission path are
quite similar, but yet we need the same number of feedback paths as the number of
channels. This paper deals with reduced complexity of feedback path even when one of
the power amplifier shows failure in the terms of reduced gain.

The paper is organized as follows: the first section brings the introduction to FBMC
modulation, then we present the digital predistortion followed by a problem of multiple
transmission channels statement. The forthcoming section presents the tested power
amplifiers ensued by experimental evaluation. Finally we conclude in the last section.

13.2 FBMC Modulation

There exists several types of FBMC, but so-called staggered multi-tone (SMT) exhibits
higher spectral efficiency and is more heavily promoted. To achieve a time-frequency effi-
ciency of 1 SMT needs to stagger the multi-carrier symbols in time, therefore offset-QAM
(OQAM) has to be applied. Filtering functionality is based on a per subcarrier basis.
Which means, the frequency response of the filter needs to be rather tight, requiring long
filter lengths (relative to the length of a single symbol). Typically filter lengths of three
or four times the symbol [6]. The general modulation can be described as:

𝑥[𝑡] =
+∞∑︁

𝑚=−∞

𝑁−1∑︁
𝑘=0

(𝜃𝑘ℜ{𝑋𝑘[𝑚]}ℎ[𝑡−𝑚 𝑁 ] +

𝜃𝑘+1ℑ{𝑋𝑘[𝑚]}ℎ[𝑡−𝑚 𝑁 − 𝑁

2 ]) 𝑒𝑗 2𝜋
𝑁

𝑘(𝑡−𝑚𝑁), (13.1)

where 𝑋𝑘 is a modulation part of a symbol, 𝜃𝑘+1 is real part phase rotation vector for the
imaginary part 𝜃𝑘 respectively, ℎ[.] is general prototype filter for each sub-carrier with
impulse response length 𝐿 = 𝐾𝑁 with 𝐾 so-called overlapping factor and 𝑁 number
of sub-carriers. The filter impulse response of fourth order overlap (taken from the
PHYDAS [7]) can be written as:

ℎ(1 + 𝑖) = 1 − 2𝐻1 cos( 𝜋𝑖2𝑁 ) + 2𝐻2 cos(𝜋𝑖
𝑁

)

− 2𝐻3 cos(3𝜋𝑖
2𝑁 ), (13.2)

where filter coefficients are 𝐻1 = 1, 𝐻2 = 0.972, 𝐻3 =
√

(2)
2 and 𝐻4 = 0.235.

Due to filtering properties, the dynamical range (adjacent channel power ratio resp.)
of FBMC signal is huge. We may expect to have the the ACPR corresponding to dy-
namical range of DACs. The general difference and compatibility with OFDM systems
can be seen in Fig. 13.1.
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Figure 13.1: General difference between Orthogonal frequency division multiplexing sig-
nals (OFDM) with cyclic prefix (Top) and Filter Bank based Multicarrier (FBMC) trans-
mitter (Bottom).

13.3 Digital predistortion

Digital predistortion is one of the techniques used for overcoming the non-linear behavior
of PA [8]. As already published in [9] the non-linear regime is related with PA efficiency,
but also with spectrum widening, memory effects, etc. Generally as predistorters the
Volterra based models are used. Demonstrating the DPD and overcoming the complex-
ity of the general Volterra series, an effective model pruning method, called dynamic
deviation reduction (DDR) [10, 11, 12] was used. A simplified version of the model is
defined by:

𝑧(𝑡) =
𝐾−1

2∑︁
𝑘=0

𝑀∑︁
𝑖=0

𝑔2𝑘+1,1(𝑖) |𝑥(𝑡)|2𝑘𝑥(𝑡− 𝑖)

+
𝐾−1

2∑︁
𝑘=1

𝑀∑︁
𝑖=1

𝑔2𝑘+1,2(𝑖) |𝑥(𝑡)|2(𝑘−1)𝑥2(𝑡)𝑥*(𝑡− 𝑖)

+
𝐾−1

2∑︁
𝑘=1

𝑀∑︁
𝑖=1

𝑔2𝑘+1,3(𝑖)|𝑥(𝑡)|2(𝑘−1) 𝑥(𝑡)|𝑥(𝑡− 𝑖)|2

+
𝐾−1

2∑︁
𝑘=1

𝑀∑︁
𝑖=1

𝑔2𝑘+1,4(𝑖)|𝑥(𝑡)|2(𝑘−1) 𝑥*(𝑡)𝑥2(𝑡− 𝑖).

(13.3)

With the DPD input 𝑥(𝑡) matrices can be arranged as follows:

Φ𝑘,𝑖(𝑥(𝑡)) = [|𝑥(𝑡)|2𝑘𝑥(𝑡− 𝑖),
... |𝑥(𝑡)|2(𝑘−1)𝑥2(𝑡)𝑥*(𝑡− 𝑖),
... |𝑥(𝑡)|2(𝑘−1) 𝑥(𝑡)|𝑥(𝑡− 𝑖)|2,
... |𝑥(𝑡)|2(𝑘−1) 𝑥*(𝑡)𝑥2(𝑡− 𝑖)],

g = [𝑔1,0, 𝑔2,0, ..., 𝑔1,1, ..., 𝑔1,𝑀 , ..., 𝑔𝐾,𝑀 ]𝑇

Φ = [Φ1,0(𝑢(𝑡)), ...,Φ𝐾,𝑀 (𝑢(𝑡))].
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Their structure is determined by 2 parameters: 𝐾 the non-linearity order and 𝑀 the
memory length. The number of coefficients 𝑔 is 2𝑀𝐾 + (𝐾+1

2 )) −𝑀 . The problem can
be expressed in matricial notations with:

z = [𝑧(0), 𝑧(1), ..., 𝑧(𝑆 − 1)]𝑇

x = [𝑥(0), 𝑥(1), ..., 𝑥(𝑆 − 1)]𝑇

e = [𝑒(0), 𝑒(1), ..., 𝑒(𝑆 − 1)]𝑇 .
Using the indirect learning architecture of [REF] DPD the criteria can be written as:

𝐽 = min
𝑔

||ẑ − z||2 , (13.4)

where ẑ is feedback path and the forward is similarly arranged as:
z = Ug. (13.5)

Then the Least-squares (LS) solution of (13.5) can be written:
g = (U𝐻U)−1U𝐻z = U+z, (13.6)

where (.)𝐻 represents Hermitian transpose and U+ denotes Moore - Penrose pseudo-
inverse.

13.4 Problem statement
In the case of multiple transmitters (that are especially involved in the MIMO systems)
the problem complexity with DPDs increase linearly with number of transmitters, be-
cause with standard architecture of DPD the same number of feedback channels have
to employed as displayed in the Fig.13.2. Each channel have to have at least 3 times
larger bandwidth (meaning increased sampling frequency) for capturing the non-linear
phenomenas. Each channel coefficients have to be estimated separately which is not an
easy task on FPGAs. Such criteria drastically increase the overall complexity. The
practical question related with MIMO DPD is if we could reduce the number of feedback
paths assuming certain similarities between PAs. Therefore we would like to investigate
the case where only one feedback path is employed and taken as a reference as shown in
Fig.13.3.

The knowledge of PA gain is important. The gain of PA with feedback 𝑠21𝐹 𝐵 is
considered as a reference. Then we may calculate using the gain of actual predistorted
PA scattering parameters 𝑠21𝑎𝑐𝑡, the difference 𝑠Δ to a reference 𝑠21𝐹 𝐵:

𝑠Δ(𝑓𝑐) = 𝑠21𝐹 𝐵(𝑓𝑐)
𝑠21𝑎𝑐𝑡(𝑓𝑐)

, (13.7)

because the scattering parameters are a function of frequency, we have chosen only 𝑓𝑐 -
a carrier frequency. Then the estimation yields to:

g = 𝑠Δ(𝑓𝑐)U+z. (13.8)
It is obvious from (13.8) that the coefficients for PAs without feedback g𝑚𝑜𝑑 can be

calculated as:

g𝑚𝑜𝑑 = 1
𝑠Δ(𝑓𝑐)

g. (13.9)
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Figure 13.2: Standard layout for MIMO digital predistortion transmitter with 𝑁 chan-
nels.
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Figure 13.3: Proposed simplified layout for MIMO digital predistortion transmitter with
𝑁 channels.

13.5 Power Amplifier

Concerning the evaluation of proposed simplification, five power amplifiers have been
designed. Each PA is made of the ADL5610, a single-ended RF/IF gain block amplifier,
that provides broadband operation from 30 MHz to 6 GHz. The ADL5610 provides a
low noise figure of 2.2 dB with a very high OIP3 (at 900 MHz) of more than 38 dBm
simultaneously, which delivers a high dynamic range. The one-dB compression point is
20.4 dBm at 900 MHz.

The ADL5610 provides a gain of 18 dB, which is stable over frequency, temperature,
and power supply, and from device to device. The amplifier is offered in the industry-
standard SOT-89 package and is internally matched to 50 Ω at the input and output,
making the ADL5610 easy to implement in a wide variety of applications. The only
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external parts required are the input and output ac coupling capacitors, power supply
decoupling capacitors, and bias inductor.

In order to guarantee dispersion of designing process, the components have been or-
dered from three different suppliers. The PA with failure is made with much higher
capacitive load at the output that should simulate capacitive short circuit. It can be
seen in the measured 𝑆21 parameters, where the capacitive load behaves for higher fre-
quencies as a short circuit. We believe, that such process is a good example of practical
performance degradation.

13.6 Experimental evaluation
In order to prove the concept, the experimental test-bench was assembled. First the gain
characteristics of PAs have been measured network analyzer E5071C (with E-Cal set
N4433A) in the range of 50 MHz to 6 GHz as shown in Fig.13.6. The signal-processing
and additional post-processing has been done with MATLAB that was communicat-
ing with Rohde&Schwarz generator SMU200A and with real-time spectrum analyzer
Rohde&Schwarz FSVR. The generator was synchronized with analyzer using external
10 MHz reference signal and the beginning of test sequence was triggering the acquisi-
tion with signal marker. Then in PC additional processing using MATLAB have been
done (such as integer synchronization based on correlation, fractional synchronization
based on Farrow filters, etc.). The generated FBMC signal had 1024 sub-carriers and
prototype filter of fourth order was used [7]. The total generated data sequence had 16384
samples. The signal had oversampling ratio 2, sampling frequency 𝑓𝑠 = 100 𝑀𝐻𝑧, with
carrier frequency 𝑓𝑐 = 2.4 𝐺𝐻𝑧, and with inner OQAM modulation level 𝑀 = 4. There-
fore the total bandwidth of transmitted signals was 𝐵𝑊 = 24 𝑀𝐻𝑧. The equipment
with high dynamical ranges and low noise figures had to be threated very carefully for
taking advantage of FBMC properties [13, 14, 15].

In the Fig. 13.4 we may see the AMAM characteristics of measured power amplifiers.
It also shows, that 4 PAs have nearly similar characteristics (alike shape of nonlinearities),
but the one with the failure (violet). The same can be observed in the power spectrum
density in the Fig.14.1.

At least the setup was assembled as in the Fig. 13.3. The PA1 was used as a reference
PA with feedback. Then the predistortion of other PA have been done on blind having
only the knowledge of 𝑠21 parameters. The measured screenshot from spectrum analyzer
can be found in the Fig.13.7. We may see, that the predistortion improve the ACPR for
about 8 dB for all PAs.

13.7 Conclusion
In this paper we have presented a problem with multiple transmitting channels employ-
ing digital predistortion. Standard solution e.g. having feedback for each channel is
complex and expensive. We have proposed a solution when the knowledge of scattering
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Figure 13.4: AMAM characteristics for four power amplifiers with similar parameters
and one PA with degraded performance (violet curve).
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Figure 13.5: Normalized power spectrum density (PSD) for output of four non-linear
power amplifiers with similar parameters and one PA with degraded performance (violet
curve).
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parameters and one PA with degraded performance (violet curve).
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Figure 13.7: Screenshot of real-time spectrum analyzer FSVR with DPD (with feedback
on the PA1) orders 𝐾 = 5 and 𝑀 = 1. Trace 1 is PA1 without DPD and traces with
DPD are: trace 2 is PA1 (black), trace 3 is PA2 (green), trace 4 is PA3 (orange), trace
5 is PA4 (light blue) and trace 6 is PA with failure (violet).

parameters (𝑠21) of each amplifier can reduce the number of feedbacks. In order to prove
the concept, we have build five different PAs using part from different suppliers providing
an essential variance of properties. One PA was intensionally designed with capacitive
load at the output simulating failure.

In this paper we have demonstrated that in the case of very close behavior of PAs we
may reduce the complexity, keeping the performance of DPD quite high.
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Abstract

We consider the problem of periodic nonuniform sampling of a multiband signal
and its reconstruction from samples in the feedback path of a digital predistortion
system in order to decrease the sampling rate, hence to increase the bandwidth
of digital predistortion system. Such considerations are particularly important in
context of the wideband multiband linearization system design.

14.1 Introduction
There is a long history investigating sampling theory. The most fundamental work of
Whittaker-Kotelnikov-Shannon is widely known and it states that a low-pass signal ban-
dlimited to the frequency range (−𝑓𝑚𝑎𝑥, 𝑓𝑚𝑎𝑥) can be perfectly reconstructed from its
uniform time samples taken no less than on Nyquist rate 𝑓𝑛𝑦𝑞 = 2𝑓𝑚𝑎𝑥 [1]. Another
pioneering work sets a lower bound of sampling density on the sampling scheme required
for a perfect reconstruction [2]. For multiband signals this fundamental lower bound is
given by the Lebesgue measure of spectral support of Fourier transform of the signal
[3]. Landau’s bound is often lower than Nyquist rate due to sparsity of such signals[4].
From the practical point of view, the sub-Nyquist sampling is very important in many
applications such as magnetic resonance imaging, where it is impossible to collect many
samples, synthetic aperture radars, or spectral sensing [5, 6] where the sparsity is suc-
cessfully exploited.

In modern wireless communication systems, a demand for speed is rapidly growing.
One of the solutions delivering higher data rates is to widen the bandwidth of signals.
Broadening the bandwidth is usually connected with unwanted non-linear effects of power
amplifiers (PA) [7]. An example of very high bandwidth system is the second-generation
satellite digital video broadcast DVB-RCS2 return channel via satellite air interface,
which can be used for supporting future demands for Tbit/s traffic requirements [8].

To mitigate the non-linearity and memory effects introduced by the power ampli-
fiers (PA), the natural step is to use the digital predistortion (DPD) techniques. In
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order to create an adaptive digital predistortion, the feedback path is used [9]. There
exist a thumb rule, that the bandwidth of the feedback path should be at least three
times larger than the bandwidth of the transmitted signal. There are works dealing with
band-limited feedback path [10, 11]. In case of sparse wideband concurrent multiband
signals, most conventional wideband digital predistortion techniques require the use of a
very high-speed analog-to-digital converter (ADC) in the feedback path. We note that
problem of reconstruction using sub-band filter banks is fundamentally different.

In the literature there are several works dealing with sparse signal reconstruction
such as Xampling [12] using the modulated wideband converter which multiplies the
analog signal by a bank of periodic waveforms resulting in overlayed spectrum and then
digital reconstruction is performed. Over the recent years multi-coset (MC) sampling has
gained fair popularity and several methods of implementing the MC sampling have been
proposed. MC sampling is a periodic non-uniform sampling technique which samples
the signal at a rate lower than the Nyquist rate [4]. The most famous architecture is
composed of several parallel branches, each with a time shift followed by an uniform
sampler operating at the sampling rate lower than the Nyquist rate [3, 4]. In [13], the
authors used the Synchronous Mutlirate Sampling - the uniform samplers operating at
different rates. Recently, the dual-sampling architecture has been presented for multi-
coset sampling [14], where a subset of the synchronous mutlirate Samplers was used (in
fact only two uniform samplers).

14.2 Multicoset sampling
Numerically the non-uniform sampling is realized as follows. The analog signal 𝑥(𝑡) is
sampled at Nyquist rate. Then the Nyquist grid is divided into successive segments of 𝐿
samples each. In each segment only 𝑝 samples, described by the set Δ, out of 𝐿 are kept.
From the parallel structure described in [4] we may write the reconstruction formula
from its multicoset samples as:

𝑥(𝑡) =
𝑝∑︁

𝑖=1

∞∑︁
𝑗=−∞

𝑥((Δ𝑖 + 𝐿𝑗)𝑇 )𝜑𝑖(𝑡− ((Δ𝑖 + 𝐿𝑗)𝑇 ), (14.1)

where sampling period 𝑇𝑠 = 𝐿𝑇 , and Δ𝑖 represents shifting in time. Functions 𝜑𝑖

(𝑖 = 1, ..., 𝑝) are the interpolation filters [4]. The Fourier transform, 𝑋𝑖(𝑒𝑗2𝜋𝑓𝑇 ) of the
sampled sequence 𝑦𝑖[𝑛] is related to the Fourier transform, 𝑋(𝑓), of the unknown signal
𝑥(𝑡) by the following matrix form of under-determined system:

𝑦(𝑓) = AΔs(𝑓), 𝑓 ∈ 𝐵0 =
[︂
− 1

2𝐿𝑇 ,
1

2𝐿𝑇

]︂
. (14.2)

𝑦(𝑓) is a vector of size 𝑝 x 1 whose 𝑖-th element is given by:

𝑦𝑖(𝑓) = 𝑋𝑖(𝑒𝑗2𝜋𝑓𝑇 ). (14.3)

AΔ is a matrix of size 𝑝 x 𝐿 whose (𝑖, 𝑙)-th element is given by:

[AΔ]𝑖𝑙 = 1
𝐿𝑇

𝑒
𝑗2𝜋𝑙Δ𝑖

𝐿 , 1 ≤ 𝑖 ≤ 𝑝, 0 ≤ 𝑙 ≤ 𝐿− 1 (14.4)
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and 𝑠(𝑓) represents the unknown vector of size 𝐿 x 1 with 𝑙-th element given by:

𝑠𝑙(𝑓) = 𝑋(𝑓 + 𝑙

𝐿𝑇
), 𝑓 ∈ 𝐵0, 0 ≤ 𝑙 ≤ 𝐿− 1. (14.5)

14.2.1 Multicoset reconstruction

For a given signal 𝑥(𝑡), its spectral support 𝛤 is defined as the set of frequencies where
the Fourier transform 𝑋(𝑓) does not vanish. The spectral span [𝛤 ] is defined as the
smallest interval containing 𝛤 . The total number of spectral support is denoted as 𝑞
(the number of active cells). Spectral index k is a set of indexes of a sub-cells that are
contained in 𝛤 :

k = [𝑘𝑖, ..., 𝑘𝑞] , 0 ≤ 𝑖 ≤ 𝑞, (14.6)

where the reduced signal vector of size 𝑞 x 1 with 𝑖-th element given by is:

z𝑖(𝑓) = 𝑋(𝑓 + 𝑘𝑖

𝐿
) (14.7)

and the reduced measurement matrix of size 𝑝 x 𝑞 whose (𝑖, 𝑙)-th element then can be
expressed as:

[AΔ(𝑘)]𝑖𝑙 = 1
𝐿𝑇

𝑒
𝑗2𝜋𝑘𝑙Δ𝑖

𝐿 , 1 ≤ 𝑖 ≤ 𝑝, 1 ≤ 𝑙 ≤ 𝑞. (14.8)

Similarly as in equation (14.2) we may write:

y(𝑓) = AΔ(𝑘)z(𝑓), (14.9)

with the solution by Moore-Penrose pseudoinverse:

z(𝑓) = (A𝐻
ΔAΔ)−1A𝐻

Δy(𝑓). (14.10)

14.3 Digital predistortion and PA model
In order to compensate the non-linearities or to model the PA, the orthogonal polynomial
memory series (OMPS) have been proposed in [15]. The output of DPD system using
OMPS with nonlinear order 𝐾 and memory depth 𝑀 can be expressed as:

𝑦(𝑡) =
𝐾∑︁

𝑘=1

𝑀∑︁
𝑚=0

𝑏𝑘,𝑚

𝑘∑︁
𝑙=1

(−1)𝑙+𝑘 · (14.11)

· (𝑘 + 𝑙)!
(𝑙 − 1)!(𝑙 + 1)!(𝑘 − 𝑙)! |𝑥(𝑡−𝑚)|𝑘−1𝑥(𝑡−𝑚),

where 𝐾 is polynomial order, 𝑀 is memory depth, 𝑥 and 𝑦 are the baseband input and
output of the DPD.

During our simulations described below, we have used the memory-less PA model
based on OMPS (memory depth 𝑀 = 0). The model of PA was extracted from the
experimental measurements. In our case, the complex coefficients 𝑏𝑘,𝑚 were estimated
using the least-squares criterion considering polynomial order 𝐾 = 5. This lead to OMPS
coefficients 𝑏𝑃 𝐴 = [0.5 + 1.1𝑖; −0.1 − 0.2; −0.03 − 0.03𝑖; −0.004 − 0.002𝑖; 0.003 − 0.004𝑖].
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14.4 Simulations

We have used the concurrent multiband signal with 4 sub-bands and the total bandwidth
of 500 MHz, therefore the Nyquist sampling frequency is 𝑓𝑛𝑦𝑞 = 1 GHz as shown in Fig.
14.1. Each sub-band has the bandwidth of 25 MHz. The optimal reconstruction assumes
that the number of sub-bands and the maximum bandwidth the band can have, are
known. The value of 𝐿 = 128 was used.

In order to evaluate the performance of OMPS DPD and sensitivity to the sampling
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Figure 14.1: Power spectral densities for the proposed sub-Nyquist feedback DPD.

frequency, we used Adjacent Channel Power Ratio (ACPR) measured at center frequency
25 MHz with channel bandwidth 25 MHz. ACPR for PA output without DPD and
ACPR for PA output with DPD is shown in Fig. 14.2 as a function of the sampling
rate. ACPRs at different frequency allocations have also been simulated. The values
have been similar to the case localized at 25 MHz. To achieve the best linearization
performance, the structure of DPD, i.e., its nonlinearity order 𝐾 and memory depth 𝑀 ,
were individually adjusted by exhaustive search for each sub-Nyquist sampling frequency
under investigation. In Fig. 14.3, we show a normalized mean square error (NMSE)
between the PA output signal and the signal reconstructed from its non-uniformly-spaced
samples as a function of the sampling frequency.

14.5 Conclusion

We have proposed a new sub-Nyquist technique based on the multicoset non-uniform
samplers for multiband Digital PreDistortion of the wideband sparse signals. The mul-
ticoset signal processing algorithm is used in the feedback path of DPD system. We
have demonstrated its functionality and ACPR/NMSE performance on the case of the
signal containing four sub-bands, each having 25 MHz bandwidth. Therefore the Landau
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Figure 14.3: Normalized mean square error between PA output and reconstructed signal
for different multiples of 𝑓𝑛𝑦𝑞 = 1GHz.

sampling frequency is 100 MHz. Although in classical DPD systems, the signals have
to sampled at least 3-times faster than the Nyquist rate is, in our experiment ACPR
improvement of 12 dBm is achievable by OPMS DPD even for the sampling frequency
of 0.6 𝑓𝑛𝑦𝑞 (note that on the frequency 360 MHz the ACPR improvement would be more
significant) .
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15. New class of chaotic systems with
circular equilibrium

Originally published as:
Gotthans, T., Petržela, J.: New class of chaotic systems with circular equi-
librium. In Nonlinear Dynamics, 2015, 2015.

Abstract

This paper brings a new mathematical model of the third-order autonomous
deterministic dynamical system with associated chaotic motion. Its unique property
lies in the existence of circular equilibrium which was not, by referring to the best
knowledge of the authors, so far reported. Both mathematical analysis and circuitry
implementation of the corresponding differential equations is presented. It is shown
that discovered system provides a structurally stable strange attractor which fulfills
fractal dimensionality, geometrical density and is bounded into a finite state space
volume.

15.1 Introduction
It is well known that chaotic dynamics is not restricted only to complicated and strongly
nonlinear vector fields [1] but can be observed also in the case of algebraically simple
systems with six terms including nonlinearity [2]. Recent progress in overall performance
of the personal computers and possibility of multi-grid calculation allows to implement
fast-to-be-calculated quantifier of the dynamical motion inside a procedure for chaos
or hyper-chaos localization [3]. Doing this we can start searching for irregular behav-
ior of arbitrary-order nonlinear dynamical system. Such process begins with analytical
definition of dimensionless mathematical models and continues with specification of the
internal system parameters which are so far unknown. Since coexistence of multiple
different attractors is possible in such systems the initial conditions are randomly and,
more importantly, repeatedly chosen. Each time a routine come across vector field which
provides the so-called folding and stretching mechanism the dynamical system is remem-
bered for consequent numerical analysis.

This work has been primarily motivated by two recently published research papers
where a group of dynamical systems with very specific properties have been presented.
In paper [4] a class of the dynamical systems without equilibrium has been presented.
Similarly paper [5] introduces several dynamical systems with a line equilibrium. Both
works can be considered as a breakthrough idea since chaos is often put into the context
of the singular saddle-type fixed points; the most common configuration of the vector
field contains two [6] or three[7] of them. From this point of view a system with circular
equilibrium (CES) represents somehow future logical progress.
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15. New class of chaotic systems with circular equilibrium

Figure 15.1: 3D perspective view of the chaotic attractor without initial transient motion
and associated plane projections for a) 𝑑 = −0.15, b) 𝑑 = −0.12, c) 𝑑 = −0.10 with
equilibrium half-circle located in plane 𝑧 = 0.

Figure 15.2: A contour-surface plots of the largest Lyapunov exponent (LE) for two
variable parameters while remaining two are fixed at default values (15.3). The positive
value of LE stands for chaotic solution.
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Figure 15.3: Cross-sections of basin of attraction, from left to right 𝑧 = −1, 𝑧 = −0.5,
𝑧 = 0, 𝑧 = 0.5, 𝑧 = 1 (white color represent unbounded solutions, black areas are fixed
points and gray regions denote chaotic motion).

15.2 Mathematical models under inspection

As previously mentioned first step towards discovery of new chaotic dynamics goes
through a choice of dimension-less set of three first-order differential equations

𝑑𝑥

𝑑𝑡
= 𝑎 · 𝑧

𝑑𝑦

𝑑𝑡
= 𝑧 · 𝑓1(𝑥, 𝑦, 𝑧)

𝑑𝑧

𝑑𝑡
= 𝑥2 + 𝑦2 − 𝑟2 + 𝑧 · 𝑓2(𝑥, 𝑦, 𝑧), (15.1)

where 𝑟 became radius of circular equilibrium and 𝑎 marks free parameter. Of course
a predefined form (15.1) is not unique for CES; it is only the most straightforward
realization of system containing fixed points which form a circle located on the plane
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15.2. Mathematical models under inspection

𝑧 = 0. The nonlinear functions 𝑓1 and 𝑓2 can contain a variety of terms; eventually it
seems that several quadratic polynomials are sufficient to generate necessary geometrical
structure of a vector field. In particular search routine reveals following smooth functions

𝑓1(𝑥, 𝑦, 𝑧) = 𝑏 · 𝑥+ 𝑐 · 𝑧2

𝑓2(𝑥, 𝑦, 𝑧) = 𝑑 · 𝑥, (15.2)

where 𝑏, 𝑐 and 𝑑 are remaining free constants. The numerical values of all free parameters
are following

𝑎 = −0.1 𝑏 = 3 𝑐 = −2.2 𝑑 = −0.1 𝑟 = 1, (15.3)

for which a chaotic attractor evolves. To prove it Mathcad and build-in fourth-order
Runge-Kutta integration method has been employed with final time 5000 and time step
equals to 0.1 as demonstrated by means of Fig. 15.1.

The initial conditions can be taken as x0 = (0, 0, 0)𝑇 . Typical property of this
dynamical system is long spiral-type transient behavior and dissipative dynamical flow
given by parameter 𝑑.

Figure 15.2 demonstrates the regions of chaotic solution in the hyper-space of the
internal system parameters where a concept of the largest Lyapunov exponent (LE) is
adopted. The LEs are calculated using Jacobi matrix (16.4) as presented in [8]. In
order to get better insight into global dynamics only a fragments of this hyper-space
are demonstrated. The dark blue color in the topographically-scaled graphs should be
understood as limit cycle, green as a weakly chaotic system and yellow denotes chaotic
motion. Discovered dynamical system possess several attractors, see the basins of at-
traction provided in Fig. 15.3.

Dynamical motion in the close neighborhood of the equilibrium circle is determined
by the eigenvalues and associated eigenspaces established along this structure [9]. In the
case of (15.1) and (15.2) a state-dependent linearization matrix can be established as

J(x) =

⎛⎜⎝ 0 0 𝑎
𝑏 · 𝑧 0 𝑏 · 𝑥+ 3 · 𝑐 · 𝑧2

2 · 𝑥+ 𝑑 · 𝑧 2 · 𝑦 𝑑 · 𝑥

⎞⎟⎠ (15.4)

A local behavior along the equilibrium circle is determined by the so-called eigenvalues,
i.e. roots of the parameterized characteristic equation

𝜆 (𝑥) = 𝜆3 − 𝑑 · 𝑥 · 𝜆2 − (15.5)
− 2 · 𝑥 ·

(︁
𝑎± 𝑏

√︀
𝑟2 − 𝑥2

)︁
· 𝜆 = 0.

One eigenvalue is zero and the remaining two depend on a position on the equilib-
rium circle. Obviously there always exist a center manifold and dynamical motion in
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15. New class of chaotic systems with circular equilibrium

the neighborhood of this circle can be decomposed into different configurations of the
remaining two-dimensional subspace. Its nature can be clarified by means of Fig. 15.4.

After huge efforts it turns out that even simpler system without nonlinear function
𝑓2 can get very close to the situation where it exhibit chaotic motion, in detail

𝑑𝑥

𝑑𝑡
= 𝑧

𝑑𝑦

𝑑𝑡
= 𝑧 · 𝑓(𝑥, 𝑦, 𝑧)

𝑑𝑧

𝑑𝑡
= 𝑥2 + 𝑦2 − 𝑟2, (15.6)

and this expression can be marked as canonical polynomial CES.

Figure 15.4: A local behavior of the discovered system: a) two remaining eigenvalues and
the associated two-dimensional subspace: red (saddle-type), blue (stable spiral), green
(unstable spiral), b) dynamical motion with initial conditions near equilibrium circle
(outside), c) dynamical motion with initial conditions near equilibrium circle (inside).

15.3 Experimental verification

To illustrate that dynamical system (15.1) and (15.2) provides chaotic attractor with
certain degree of the structural stability it has been implemented as a lumped electronic
circuit. For network synthesis we choose a concept based on integrator block schematic
[10], [11]. Final network is given in Fig. 15.5 where route-to-chaos scenario can be
traced via a change of the external dc voltage supply 𝑉 𝑑. Since desired chaotic attractor
is bounded into relatively small state space volume the dynamical ranges of used ac-
tive devices can be also reduced. Thus a four-channel four-quadrant analogue multiplier
MLT04 has been chosen for implementation of the quadratic terms. The supply voltage
for these devices is symmetrical ±5 𝑉 . Voltage limitation of this active device occurs for
values outside of ±2.5 𝑉 range. Thus strange attractors which occupy bigger volumes in
the state space can not be realized by the proposed circuitry. For mathematical opera-
tions integration and summation a basic inverting voltage-mode two-ports with voltage
feedback operational amplifier TL084 are utilized. In this case a supply voltage is raised
to symmetrical ±15 𝑉 . The time constant of the ideal integrators is chosen to be only
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𝜏 = 𝑅𝐶 = 10−4𝑠 such that parasitic properties of the utilized active elements can be
neglected. The individual state variables are easily measurable at the output nodes of
the lossless integrators. Sixth multiplier is used in order to control bifurcation parame-
ter 𝑑 via external dc voltage source and can be removed for further network simplification.
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Figure 15.5: Circuitry realization of CES.

If active devices can be considered as close enough to ideal and by assumption of a
fundamental transformation of the coordinates (−𝑥, 𝑦,−𝑧) → (𝑢1, 𝑢2, 𝑢3) the describing
differential equations became

𝑑𝑢1
𝑑𝑡

= − 𝑢3
𝑅1𝐶

𝑑𝑢2
𝑑𝑡

= 𝑢3
𝑅6𝐾3𝐶

(︂
𝑅2
𝑅3

𝑢1 + 𝑅2
𝑅5𝐾1

𝑢2
3

)︂
,

𝑑𝑢3
𝑑𝑡

= 1
𝐶

(︃
𝑢2

1
𝑅7𝐾2

+ 𝑢2
2

𝑅8𝐾4
− 𝑉𝑟

𝑅9
− 𝑢1𝑢3𝑉𝑑

𝑅4𝐾5𝐾6

)︃
(15.7)
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15. New class of chaotic systems with circular equilibrium

where 𝐾𝑖 = 5/2 is internally trimmed scaling factor of 𝑖-th multiplier. The set of
values for circuit realization can be calculated by a comparison of the individual terms
of (15.7) with system (15.1) having functions (15.2) with numerical values (15.3), in detail

𝑉𝑟 = 𝑟2 = 1𝑉 𝑉𝑑 = −𝑑
𝑅1 = −𝑅

𝑎 = 10𝑘Ω 𝑅2 = 𝑅9 = 𝑅 = 1𝑘Ω
𝑅3 = 𝑅

𝑏 = 333Ω 𝑅4 = 𝑅
𝐾5𝐾6

= 160Ω
𝑅5 = −𝑅

𝐾1𝑐 = 182Ω 𝑅6 = 𝑅
𝐾3

= 400Ω
𝑅7 = 𝑅

𝐾2
= 400Ω 𝑅8 = 𝑅

𝐾4
= 400Ω.

(15.8)

If natural frequency components of the chaotic waveforms need to be moved behind
1 MHz the non-ideal and parasitic properties of the used active elements need to be
analyzed. Unlike others especially input and output admittances in the form of a paral-
lel combination of resistor and capacitor as well as roll-off nature of a transfer function
typical for both MLT04 and TL084 should be respected. These unwanted features can
introduce several error terms into describing differential equations causing deformation
of the desired chaotic attractor or its geometrical collapse. Note that only three inte-
grated circuits are required for design of the proposed chaotic oscillator. The circuit
was evaluated by circuit simulator Orcad Pspice and the voltage spectrum and plane
projections can be seen in Fig. 15.6.

The circuit was designed on breadboard and in experimental setup digital oscilloscope
HP54603B was used for attractor visualization, see Fig. 15.7. Based on the computed
riddled basins of attraction serious problems have to be expected during measurement.
Before documentation of each particular routing-to-chaos scenario predefined initial con-
ditions needs to be imposed into the oscillator. However this additional circuitry is not
provided.

15.4 Conclusion

In this short paper a novel dynamical system with circular equilibrium is uncovered,
numerically confirmed as well as experimentally measured. Brief nature of this paper
leaves the place for upcoming deeper investigation of the class of dynamical system with
circular equilibrium. It is believed that brute-force method which combines stochastic
search routine with objective function in the form of precise motion quantifier is powerful
tool which can be utilized for discovering interesting dynamical systems with prescribed
features. As indicated by new publications [6], [12] research in this particular area will
proceed in the near future.
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Abstract

It is recognized that simple systems of third-order autonomous nonlinear dif-
ferential equations can exhibit behavior known as chaos. In this paper we present
a new class of chaotic flow with square shaped equilibrium. This unique property
referring to the best knowledge of the authors was not yet described. Such system
belong to a newly introduced category of chaotic systems that could be important
and potentially interesting in engineering applications. The mathematical model is
provided with its circuitry equivalent proving its structural stability of strange at-
tractors. First the circuit is simulated with PSpice and subsequently is assembled
measured.

16.1 Introduction

Over past three decades, finding chaotic systems is attracting attention of many re-
searchers. Generating chaotic attractors may help to understand better dynamics of real
world systems. After many years of intensive research, several chaotic systems have been
revealed. The recent development in the chaotic domain have presented systems with-
out any equilibrium points [9], rare flows with a stable equilibrium [12], systems with
line equilibrium points [3], systems without equilibrium [2] or more system with circular
equilibrium [1]. In fact recently many chaotic systems with unique equilibrium points
have been presented [5], [14], [10], [13]. Yet many undiscovered systems exists. The goal
of this work is not only present a new system with unique property, but mainly to ex-
tend the general knowledge. In this paper we introduce unpresented rare category with
infinite number of equilibrium points - system with square equilibrium. This category
due to PWL (piecewise linear) vector field is a challenging topic [4], [7]. According to
paper [11] our system satisfies at least two conditions from three of novelty. Our goal
was to focus on systems with Euclidean dimension equal to three.
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16. Simple Chaotic Flow with Circle and Square Equilibrium

16.2 Mathematical Model
As presented in the paper [1] possible simpler mathematical model with circle equilibrium
may exist. One of simple flows can be expressed as follow

�̇� = 𝑧

�̇� = −𝑧
(︁
𝑎𝑦 + 𝑏𝑦2 + 𝑥𝑧

)︁
�̇� = 𝑥2 + 𝑦2 − 1, (16.1)

where 𝑎 and 𝑏 are constants. Setting 𝑎 = 5, 𝑏 = 3 and with initial condition 𝑖𝑐 = (0, 0, 0)𝑇

a chaotic motion can be observed. Linearizing system by pieces (PWL) proposed in (16.1)
a system with square equilibrium can be obtained. Despite the novelty of the system
with the circle equilibrium was already published, we will further focus on the linearized
version that have unique properties. The equations can be rewritten as

�̇� = 𝑧

�̇� = −𝑧 (𝑎𝑦 + 𝑏|𝑦|) − 𝑥|𝑧|
�̇� = |𝑥| + |𝑦| − 1, (16.2)

where 𝑎 and 𝑏 have same values as in the system described by (16.1). The proposed
system (16.2) is a set of linear equation and therefore an analytical solution for each
linearized region could be obtained. Then if the solution reaches a boundary region, it
can be used as initial condition for a next analytical solution. Unfortunately such ap-
proach is unpractical due to its complexity. It is obvious that such system (16.2) could
be modified in order to have rectangular equilibrium by modifying the last state equation
as �̇� = | 𝑥

𝛼2 |+ | 𝑦
𝛽2 |−1. It is not our goal, due to higher complexity than (16.2), to analyze

such enhancement.

The fix points of system (16.2) can be obtained by solving �̇� = 0, �̇� = 0, and �̇� = 0,
that is

𝑥 = R

𝑦 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−1 − 𝑥, if − 1 < 𝑥 ≤ 0
1 + 𝑥, if − 1 < 𝑥 ≤ 0
1 − 𝑥, if 0 < 𝑥 < 1
−1 + 𝑥, if 0 < 𝑥 < 1

𝑧 = 0 (16.3)

Dynamical motion in the close neighborhood of the equilibrium circle is determined
by the eigenvalues and associated eigenspaces established along this structure [1]. In or-
der to estimate the Jacobian matrix, the derivatives of state variables are necessary. The
derivation of |.| can be obtained in many ways, for example as condition statement (step
function), or 𝑥

|𝑥| . Alternatively for the simplicity we use sgn(.) where for 0 the function is
not differentiable. Note that in the equations the statements can be always substituted.
In the case of (16.2) a state-dependent linearization matrix can be established as
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16.2. Mathematical Model

Figure 16.1: Numerical integration. The individual state projections (corresponding to
top left: 𝑎 = 5 and 𝑏 = 3, top right: 𝑎 = 10 and 𝑏 = 3, bottom left: 𝑎 = 3.5 and
𝑏 = 3 and bottom right: 𝑎 = 5 and 𝑏 = 4). The black quadrangle represents a square
equilibrium. In the figures, there are also marked Poincare sections (Red).

J =

⎛⎜⎝ 0 0 1
−|𝑧| −𝑎 · 𝑧 − 𝑏 · 𝑧·sgn(𝑦) −𝑎 · 𝑦 − 𝑏 · |𝑦| − 𝑥·sgn(𝑧)

sgn(𝑥) sgn(𝑦) 0

⎞⎟⎠ (16.4)

A local behavior along the equilibrium circle is determined by the so-called eigenvalues,
i.e. roots of the parameterized characteristic equation

𝑑𝑒𝑡(J − 𝜆) = −𝜆2(𝑎 · 𝑧 + 𝜆) + 𝑠𝑔𝑛(𝑥) · [𝑎 · 𝑧 + 𝜆+ 𝑏 · 𝑧 · 𝑠𝑔𝑛(𝑦)] −
𝑠𝑔𝑛(𝑦) · {𝑏 · 𝜆|𝑦| + |𝑧| + 𝜆 [𝑎 · 𝑦 + 𝑏 · 𝑧 · 𝜆+ 𝑥 · 𝑠𝑔𝑛(𝑧))]} = 0. (16.5)

Considering the plane of equilibrium lies in the plane 𝑧 = 0. The eigenvalues are as
follow
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16. Simple Chaotic Flow with Circle and Square Equilibrium

𝜆1 = 0
𝜆2,3 = ±

√︁
sgn(𝑥) − 𝑎 · 𝑦 · sgn(𝑦) − 𝑏 · |𝑦| · sgn(𝑦))

(16.6)

The behavior along square equilibrium located as noted in 16.3 can be seen on the
figure 16.2. Pure pair of imaginary eigenvalues represents a unstable center equilib-
rium. That means there are concentric periodic orbits around the equilibrium lines.
Such phenomena can be also observed in Fig.16.3. The pair of two purely real eigen-
values can be referred as unstable saddle. Three dimensional Bogdanov-Takens equi-
librium (𝜆1,2,3 = 0) are also present and are located at (𝑥, 𝑦, 𝑧) = (0.5,−0.5, 0) and
(𝑥, 𝑦, 𝑧) = (0.825, 0.175, 0).
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Figure 16.2: For the values 𝑎 = 5 and 𝑏 = 3 with 𝑖𝑐 = (0, 0, 0)𝑇 the behavior of eigenvalues
𝜆2,3 along the square equilibrium.

The dynamical motion near equilibrium square can be seen in the Fig.16.3. We
may see that the negative value of state variable 𝑥 creates periodic motion along the
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16.3. Experimental Verification

equilibrium. After reaching some point, chaotic motion can be observed (it can be
considered as a very long transient). Therefore initial conditions have to be chosen
carefully.
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Figure 16.3: Dynamical motion (blue curve) with initial conditions (red dots) near equi-
librium square (black).

The dynamics of the new system (16.2) is discovered by varying the parameter 𝑎
while fixing other parameter 𝑏 = 3. The bifurcation diagram and the corresponding
largest Lyapunov exponent (LLE) and Kaypan-Yorke dimension are displayed in Fig.
16.4 varying the variable 𝑎 in the range < 3, 10 >. They indicate that the new system
can generate chaotic behavior for quite large range of 𝑎.

16.3 Experimental Verification
It has been widely accepted to demonstrate structural stability of proposed dynamical
system with lumped circuit synthesis and measurements. Synthesis of the electronic cir-
cuits is not only a way how to accurately model the nonlinear dynamical systems, but
also a way how to evaluate overall structural stability of examined system.

There exist several ways how to practically realize chaotic oscillators [8]. Most of these
techniques unambiguous and have been already published. To synthesize circuit from
differential equations system (reference), integrator synthesis was chosen. After thinking
about how to reduce the complexity of the nonlinear network a very simple circuitry
has been revealed. Only few basic building blocks are necessary: inverting integrators
(TL084), summing amplifier (TL084), three multipliers (AD633) and diodes (1N4148)
(for absolute value modeling). The analog multiplier has all nodes not displayed in the
Fig. 16.6 connected to ground. First the proposed topology is verified with PSpice 16.0
circuit simulator and then it is experimentally measured as seen in Fig.16.5.
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16. Simple Chaotic Flow with Circle and Square Equilibrium

Figure 16.4: Kaplan-Yorke dimension (top), biffurcation diagram of parameter 𝑎 (middle)
and it corresponding LLE.

Figure 16.5: PSpice simulated Monge’s projections for the proposed circuit (-X Y blue
curve and -X Z violet curve).

The individual state variables are easily measurable at the output nodes of the lossless
integrators.

The state variables represented by voltages have been measured by Rohde&Schwarz
RTM 1052 oscilloscope. The screenshots can be found in Fig. 16.7, 16.8 and 16.9.
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Figure 16.6: Circuitry realization of proposed system.

Figure 16.7: Measurements on individual state variables. (corresponding to 𝑎 = 5 and
𝑏 = 3).

16.4 Conclusion

In this paper first the three-dimensional system with circular equilibrium was presented
as a initial system. Applying PWL a system with square equilibrium was presented (its
version with rectangular equilibrium was outlined). From the computational point of
view the system is quite interesting mainly in the regions of interest. After providing
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16. Simple Chaotic Flow with Circle and Square Equilibrium

Figure 16.8: Measurements on individual state variables. (corresponding to 𝑎 = 5 and
𝑏 = 2.2).

Figure 16.9: Measurements on individual state variables. (corresponding to 𝑎 = 5 and
𝑏 = 4).

Figure 16.10: Numerical integration. The individual state projections (corresponding to
𝑎 = 5 and 𝑏 = 3).

the numerical analysis we present the behavior around regions of square equilibrium.
Then the calculations of Lyapunov exponents, Kaplan-Yorke dimension together with
bifurcation analysis is provided.

Finally we present analog circuit in order to evaluate structural stability of proposed
system. The circuit was first simulated, assembled and then measured. By comparing
the measurements with numerical simulations we may see that there is quite agreement.

Authors believe that system with square equilibrium was never presented and is pre-
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Figure 16.11: Numerical integration. The individual state projections (corresponding to
𝑎 = 5 and 𝑏 = 4).

sented in it’s simplest form. If the reader have any questions, please do not hesitate to
contact the authors.
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librium. In JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS,
2017.

Abstract

This review paper describes different lumped circuitry realizations of the chaotic
dynamical systems having equilibrium degeneration into a plane object with topo-
logical dimension of the equilibrium structure equals one. This property has limited
amount (but still increasing, especially recently) of third-order autonomous deter-
ministic dynamical systems. Mathematical models are generalized into classes to
design analog networks as universal as possible capable to model rich scale of asso-
ciated dynamics including the so-called chaos. Reference state trajectories for the
chaotic attractors are generated via numerical analysis. Since used active devices
can be precisely approximated by using third-level frequency dependent model it is
believed that computer simulations are close-enough to capture real behavior. These
simulations are included to demonstrate existence of chaotic motion.

17.1 Introduction
Different configurations of lumped analog circuits capable to model continuous chaotic
dynamics attract significant interest of researchers and engineers for the last four decades.
The reason for this can be found in several unique properties of a strange attractor such as
complex geometrical structure, fractal dimension, attractor is dense in a finite state space
volume while chaotic waveforms are extremely sensitive to changes of internal system
parameters. Since there is no closed-form analytic solution of the describing differential
equations chaotic behavior can be predicted towards neither near nor far future. All these
mentioned features cause chaotic oscillators much harder to be practically implemented
if compared to conventional analog networks such as amplifiers, modulators, converters,
mixers, harmonic or functional generators, etc.

Most existing papers dealing with construction of chaotic oscillators utilize general
design approach based on concept of analog computers. This method is universal, can be
applied to arbitrary set of the ordinary differential equations and was successfully tested
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on mathematical model of jerk function [1]-[3], simplified model of isolated neuron [4],
general class of autonomous nonlinear systems with smooth and piecewise-linear vector
field [5], n-scroll spiral attractors [6], four-dimensional [7] and hyperchaotic systems [8].
Integrator-based design approach can be easily combined with single or multiple dig-
ital feedback two-ports (supplemented by A/D and D/A converters) that implements
complex nonlinear transfer function, see paper [9] for realization of labyrinth chaos. An-
other type of chaotic oscillators represents interconnection of higher-order admittance
two-terminal element with nonlinear resistor. Pioneering studies in this area has been
done on famous Chua´s oscillator where admittance network is fully passive [10]-[12] and
individual state variables are voltages across grounded capacitors and current flowing
through inductor. Generalization of this design process leads to assumption that struc-
ture of the admittance network can realize non-positive real function if contains various
active elements, check examples given in [13]-[15]. Chaotic signals can be successfully
generated by coupling two harmonic oscillators with the common LC tank [16]-[18] as well
as tank composed of parallel resonant combination of a linear resistor and a frequency
dependent negative resistor [19]. Since fundamental component for evolution of strange
attractor is harmonic waveform chaotic oscillator can be constructed by slight modifi-
cation (only single diode is included) of standard oscillator having frequency-dependent
passive feedback two-port with losses compensated by amplifier such as Wien-bridge
concept [20]. As consequence chaos can be observed as unwanted oscillations in high-Q
analog frequency filters like KHN biquadratic filtering section [21]. Nonlinearity natu-
rally missing in a mathematical description of functional block (filter, amplifier, etc.)
can be very simple [22], sometimes in the form of amplitude stabilization mechanism.
Signum-type nonlinearity responsible for evolution of chaos can be realized by the logic
elements as demonstrated in [23].

To simplify experimental verification procedure voltage-mode circuits are preferred
over current-mode flow-equivalents. Reason for this is not only in fact that node voltages
can be easily captured by oscilloscope. There is also a much bigger platform of integrated
active elements that process voltages; are cheap and widespread over the market stocks.
Besides dynamical systems designed by using discrete components there were successful
efforts to construct chaotic oscillators fully- or partially-integrated using available MOS
technology [24]-[27]. Interesting implementation of grid spiral attractors using Arduino
open source integrated development environment is presented in paper [28] together with
application of chaos in the selected secure communication issues.

Early ideas about emergence of chaotic oscillations were closely related to harmonic
oscillators where losses in resonant sub-circuit are compensated by using one or several
negative resistance elements [29]. Such structures have single or multiple fixed points
with saddle-spiral local vector field geometry and stability index lower than dynamical
system dimension. From the viewpoint of chaos generation, it was long time believed that
there are always two mechanisms acting in a continuous vector field exhibiting chaos.
The so-called stretching property is responsible for the exponential divergence rate of the
neighborhood state orbits and is generated by an unstable hyperbolical fixed point; this
property creates waveform sensitivity. Second mechanism is trajectory folding and keeps
attractor inside a finite volume of the state space. Thus, local instability together with
at least one nonlinear scalar function of some state variable should be incorporated into
the describing mathematical model. However, this statement has been recently violated
by several interesting papers where chaotic systems with completely different formations
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of equilibrium structure and vector field geometry have been discussed. Please remember
that upcoming list of the references is by no way complete survey; it should only help
the readers to start their own study on this emerging topic.

The best way how to proceed with this study is provided in fundamental paper
[30] where many simple chaotic flows are discussed. It is shown that complex dynamical
motion is not restricted to the complex mathematical models with many algebraic terms.
Paper [31] presents possibility to interchange saddle-spiral equilibrium with saddle-node
without qualitative change of global behavior. Chaotic dynamical system having only one
unstable node fixed point is discussed in [32] and chaotic flow with one non-hyperbolic
fixed point is a topic of paper [33]. Further intensive research demonstrates that chaos is
not restricted to dynamical systems with several saddle-type fixed points but also systems
having single fixed point with associated real-valued eigenvalues which corresponds to
three eigenvectors in the local vector filed geometry. Surprisingly chaotic attractors can
be hidden also in the case of the deterministic dynamical systems without equilibrium
as shown in work [34]-[40]. Even more interesting discoveries are chaotic systems having
only a stable fixed point; for further study consult papers [41]-[43]. One step forward
reveals that scenario for strange attractor evolution can be achieved in dynamical flows
with several stable fixed points; see [44]. Surprisingly, deformation of the singular fixed
points into higher-dimensional objects does not preclude evolution of a strange attractor.
A significant number of research articles have been devoted to mathematical model with
chaotic behavior and equilibrium in form of surface objects such as one or several lines
(two parallel) [45]-[47], hyperbola [48], circle [49] and ellipse, square [50], other conic-
sectioned equilibrium [51] or a general curve equilibrium [52]-[54]. However, it seems
that only portion of line, circle or square is responsible for chaos generation. Based on
these recent discoveries in the field of nonlinear dynamic theory it is not a breath-taking
fact that three-dimensional equilibrium structure such as cube can also lead to evolution
of chaos [55]. Systematic procedure towards the chaotic dynamics with any number of
equilibria is described in [56]. Different route-to-chaos scenarios can be observed in the
mathematical model of chaotic system with a variable equilibrium [57]. To end this part
of review procedure for finding arbitrary-dimensional dynamical systems with the chaotic
nature can be algorithmized. Suitable form of a starting mathematical model is briefly
described in paper [58] together with some examples. Chaotic attractors associated with
dynamical system with degenerated equilibria are often referred as the hidden attractors
[59]-[61]. It is because basin of attraction does not include vicinity of equilibrium.

The main motivation for this work is to extend and complete list of the current-mode
realizations of chaotic systems published in [62]. Simplicity of models predestinates them
for the circuit realizations dedicated for various exhibitions, educational or basic research
purposes (for example bifurcation sequences can be traced and captured).

17.2 Mathematical Background

As already mentioned the most often configuration of vector field with associated chaotic
motion is composed of single, two or three fixed points. Typical situation for multi-scroll
and multi-grid spiral attractors is symmetrical vector field composed by repetition of the
several affine segments. Trajectory in each segment spirals away from saddle-focus fixed
point; there is just one such point per region. Some special cases of mathematical models
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describing thermo-dynamical systems and chemical reactions do not exhibit fixed points
at all. Since system is closed without external driving forces it always contains a nonzero
energy for time evolution. The main aim of this paper is to address question if the chaotic
dynamics with a non-conventional equilibrium formation can be implemented as hybrid-
mode or the fully current-mode electronic circuits (where all state variables are currents).
Evidently, strange attractor must be structurally stable and robust to be experimentally
observable. Asked question about robustness of dynamical system remains unanswered in
the case of the electronic circuits for signal processing applications (masking, modulation
and demodulation) since these do not naturally exhibit equilibrium degenerations.

Consider general mathematical description of a third-order autonomous deterministic
dynamical system in the form of first-order ordinary differential equations, namely

𝑑

𝑑𝑡
= 𝑓(𝑥), 𝑥 = (𝑥 𝑦 𝑧)𝑇 , 𝑥 ∈ ℜ3, (17.1)

where x represents a state vector and f(x) is a continuous smooth nonlinear function.
Expected degeneration of the fixed points means that nonlinear problem f(x)=0 does not
lead to the singular solutions but to some plane object; curve that can be parameterized.

New chaotic dynamical systems can be discovered by using a three-step brute-force
numerical procedure. First step is definition of a mathematical model which belongs to
general class (1), has prescribed form of equilibrium and contains only polynomial terms.
Second step is declaration of free parameters of analyzed mathematical model which will
be adjusted during a stochastic optimization routine. Last step is stochastic optimization
sometimes replaced by tabularized calculation of fitness function. However, dimension of
scanned space directly corresponds to the amount of free system parameters and can be
significant. Due to the possibility of existence of several attractors (including non-chaotic
and trivial solution) the initial conditions should be generated randomly and many times.
This approach is capable to uncover attractors excited by equilibrium as well as hidden
attractors. Search routine employs repeated computation of some precise and fast-to-be-
calculated chaos quantifier such as the largest Lyapunov exponent (LE) obtained from
differential equations or small data sets [63]-[65], metric dimension like Kaplan-Yorke or
capacity. Nevertheless, the latter case is time consuming and should be applied if parallel
processing/computing becomes available. Gradient algorithms are useless because there
is no analytic formula for chaos detection. A successive application of this algorithm is
demonstrated via few examples in papers [66]-[68]. Proposed algorithm can be used for
detection of chaotic motion in real physical system; both continuous [69] and discrete.

17.2.1 System with line equilibrium

Speaking in terms of the dynamical motion of lumped electronic circuit these systems are
evolutionary insensitive if the initial conditions accurately satisfy known line equation.
This situation leads to the state variables which are frozen with no further time changes
of the network quantities. If covering mathematical model is unbalanced by at least one
constant term this line generally need not to cross over zero, i.e. origin of the state space.
If we look on the individual points of this line the associated eigenvalues, the stability
indexes and the local geometry can change along this line. Of course, a requirement for
dynamical flow to be dissipative is still working.
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Two known members form this group of the dynamical systems in which formula for
equilibrium represents a line segment. First can be described by expression

𝑑𝑥

𝑑𝑡
= 𝑎𝑧,

𝑑𝑦

𝑑𝑡
= 𝑧 𝑓1(𝑥), 𝑑𝑧

𝑑𝑇
= 𝑧 𝑓2(𝑥) + Ψ(𝑥), (17.2)

together with a line equation substitution 𝜓(x)=b· x-y+c leading to a chaotic system
with line equilibrium with so far hypothetical form of the scalar functions f1(x) and
f2(x). Slightly less general but for upcoming analog circuit design more convenient form
is canonical, i.e. without function f2(x)

𝑑𝑥

𝑑𝑡
= 𝑎𝑧,

𝑑𝑦

𝑑𝑡
= 𝑧 𝑓1(𝑥), 𝑑𝑧

𝑑𝑇
= Ψ(𝑥), (17.3)

Line equilibrium is primary subject of interest in contribution [45]. Presented systems
represent alternatives to dynamics given by equations (2) and (3) in the sense there is no
linear transformation of coordinates which can form a bridge between these two groups.
These dynamical systems can be generalized into class

𝑑𝑥

𝑑𝑡
= 𝑦,

𝑑𝑦

𝑑𝑡
= −𝑥+ 𝑦 𝑓1(𝑥), 𝑑𝑧

𝑑𝑇
= −𝑥+ 𝑦 𝑓1(𝑥) − 𝑦 𝑓3(𝑥), (17.4)

Equilibrium line is given implicitly as one of the coordinate axes of the state space
and can be expressed as 𝑥𝑒 = (00𝑧)𝑇 . Let’s pick up for example first two dynamical
systems from a group in paper [45]. These can be characterized by (4) together with
functions

𝑓1(𝑥) = 𝑧, 𝑓2(𝑥) = 1 + 𝑎𝑦 + 𝑏𝑧, 𝑓3(𝑥) = 0, (17.5)

and the numerical values of the system parameters equal a=15 and b=1. Typical
strange attractor can be observed for the initial conditions 𝑥0 = (0.200)𝑇 and is demon-
strated by means of Fig. 1. Second dynamical system with line equilibrium can be
expressed as

𝑓1(𝑥) = 𝑧, 𝑓2(𝑥) = 𝑎𝑦 + 𝑏𝑧, 𝑓3(𝑥) = 1, (17.6)

with the internal system parameters equal 𝑎 = 17 and 𝑏 = 1. Corresponding strange
attractor generated by using initial conditions 𝑥0 = (00.40)𝑇 is given in Fig. 2.

Other member that belongs to this class of the dynamical systems with a single line
equilibrium and associated chaotic behavior has auxiliary functions

𝑓1(𝑥) = 𝑧, 𝑓2(𝑥) = −𝑥+ 𝑎𝑦 + 𝑏𝑧, 𝑓3(𝑥) = 1, (17.7)

with the internal system parameters a=18, b=1 and the initial conditions 𝑥0 =
(0 − 0.40.5)𝑇 . Strange attractor is visualized in Fig. 3. Similarly, line equilibrium is
obtained for

𝑓1(𝑥) = 𝑧, 𝑓2(𝑥) = 𝑎𝑦 + 𝑏𝑧, 𝑓3(𝑥) = 𝑧, (17.8)

and chaotic attractor can be observed for choice of the system parameters 𝑎 = 4,
𝑏 = 0.6 and a set the initial conditions 𝑥0 = (0.20.70)𝑇 as demonstrated in Fig. 4.

Finally, following choice of auxiliary functions
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Figure 17.1: Three-dimensional perspective projections of a typical chaotic attractors
observed in system with line equilibrium given by functions (5a), visualization of equi-
librium line and Poincaré section defined by z=0.

Figure 17.2: 3D rainbow-scaled projections of a typical chaotic attractors observed in dy-
namical system with line equilibrium given by functions (5b), visualization of equilibrium
line and Poincaré section given by z=0.

𝑓1(𝑥) = 𝑧, 𝑓2(𝑥) = 𝑦 + 𝑏𝑧, 𝑓3(𝑥) = −𝑎𝑦, (17.9)

also leads to chaos if system parameters are fixed on the numerical values 𝑎 = 0.04,
𝑏 = 0.1 and a set of the initial conditions is 𝑥0 = (0.80.80)𝑇 , see Fig. 5 for attractor
visualization.

Geometrical structures of the chaotic attractors produced by the dynamical systems
with line equilibrium mentioned above are similar. Note that mathematical model defined
by (4) with the additional functions (5a-e) are also closely related. It is because all cases
are discovered using the same numerical approach with the same starting mathematical
model with many quadratic terms [70]. From the viewpoint of practical realization of (4)
with terms (5) universal circuit with few switchable linear feedbacks can be constructed.
In paper [45] there are few dynamical systems that do not directly fit into mathematical
model with general description (4) but still preserves line equilibria located on plane z=0.
However, it can be shown that circuit implementations, either voltage-mode or current-
mode, have the same number of the active elements and a final network complexity.
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Figure 17.3: 3D perspective projections of a typical chaotic attractor observed in sys-
tem with line equilibrium given by functions (5c), visualization of equilibrium line and
Poincaré sections defined by plane z=0.

Figure 17.4: Three-dimensional perspective projections of a typical chaotic attractor
observed in dynamical system with line equilibrium given by functions (5d), visualization
of equilibrium line and Poincaré sections z=0.

Figure 17.5: Three-dimensional perspective projections of a typical chaotic attractor
observed in dynamical system with line equilibrium given by functions (5e), visualization
of equilibrium line and Poincaré sections z=0.

149



17. Current-mode network structures dedicated for simulation of
dynamical systems with plane continuum of equilibrium

All dynamical systems defined above are dissipative, i.e. associated dynamics is not
time reversible. Divergence of the flow can be calculated as

Δ𝑉 = 𝑓1(𝑥) + 𝑦
𝛿𝑓1(𝑥)
𝛿𝑦

− +𝑥𝛿𝑓2(𝑥)
𝛿𝑧

− 𝑦
𝛿𝑓3(𝑥)
𝛿𝑧

(17.10)

For system having auxiliary functions (5) we get following volume element exponential
contraction rates ∇V≈z–b·x for (5a-c,e) and ∇V≈z–b·x–y for (5d). Examples of the
chaotic time-reversible flows are provided in [71].

Quite recently, chaotic mathematical models with multiple line equilibrium have been
proposed. One such example can be found in report [47] and can be described in general
form (2) together with the following functions

𝑓1(𝑥) = 𝑏𝑦2 + 𝑐𝑥𝑧, 𝑓2(𝑥) = −𝑥𝑦,Ψ(𝑥) = 𝑦2 − 1, (17.11)

and the internal parameters a=0.6, b=0.3 and c=0.5. Solution dx/dt=0 considering
(2) and (7) leads to a couple of parallel equilibrium lines located at xe=(x ±1 0)T,
corresponding attractor is shown in Fig. 6 where a set of the initial condition was equal
to x0=(1 0 0)T. Note that these lines are infinite in state space while strange attractor
is bounded in small volume element such that only fraction of these lines is responsible
for its formation.

Divergence of flow can be established using formula

Δ𝑉 = 𝑧
𝛿𝑓1(𝑥)
𝛿𝑦

+ 𝑓2(𝑥) + 𝑧
𝛿𝑓2(𝑥)
𝛿𝑧

+ Ψ(𝑥)
𝛿𝑧

= 2𝑏𝑦𝑧 − 𝑥𝑦, (17.12)

Numerical integrations demonstrated in this paper were done by using Mathcad and
build-in fourth-order Runge-Kutta method. Final time was chosen to be tmax=10000
with a time step tΔ=0.01. Initial conditions can be chosen accordingly to relevant pub-
lications where also the bifurcation diagrams, different plots of the Lyapunov exponents
vs system parameter and calculated Kaplan-Yorke dimensions can be found. These pa-
pers reveal possibility to see route-to-chaos scenarios via a continuous change of a single
constant term. In circuit practice, this term can be represented by external dc voltage
or current control source. By performing this change the regions of chaos alternate with
windows characterized by periodic solution.

17.2.2 Model with hyperbolic and parabolic equilibrium

One logical step further in searching for the chaotic systems with equilibrium located on
plane is hyperbolic and parabolic equilibrium structure. Both cases are provided in [47]
and a comprehensive study of another different “hyperbolic” case can be found in [48].
First one can be expressed as (2) with the auxiliary functions

𝑓1(𝑥) = 𝑧2 − 1, 𝑓2(𝑥) = 𝑦2 − 𝑧2, 𝑓3(𝑥) = 𝑥2 − 𝑦2 − 1, (17.13)

and internal parameter a=-1. Corresponding strange attractor arise for a set of the
initial conditions x0=(0 -0.6 0)T and is illustrated in Fig. 7.

Second dynamical system can be described by general expression (2) with functions

𝑓1(𝑥) = −𝑧2, 𝑓2(𝑥) = 𝑧 − 𝑥𝑦,Ψ(𝑥) = 𝑥2 + 𝑦, (17.14)

150



17.2. Mathematical Background

Figure 17.6: Chaotic attractor observed in system characterized by functions (7), i.e.
with a pair of line equilibrium.

and parameter a=-2 where interesting strange attractor can be observed if set of
the initial conditions equals x0=(0 10 0)T. Geometrical structure of a corresponding
strange attractor is demonstrated using perspective view in Fig. 8. For both systems
equilibrium curve is located on the horizontal plane z=0. Note that state attractor of
this “parabolic” system occupies large state space volume which can cause problems for
circuitry implementation due to the limited dynamical ranges of used active elements.

Figure 17.7: Three-dimensional rainbow-scaled projections of a typical chaotic attractors
observed in system having hyperbolic equilibrium, visualization of equilibrium curve and
Poincaré section defined by plane z=0.

17.2.3 Model having circular and elliptical equilibrium

Very first example which belongs into class of autonomous dynamical systems having a
circular equilibrium has been discovered recently [49] and can be expressed in form (2).
First equation defines a two-dimensional subspace (z=0) where degenerated equilibrium
structure can be found; it is z=0 plane again. Equilibrium circle can be unfolded and local
bifurcations along this circle can be examined. Third equation covers the implicitly given
formula for equilibrium geometry 𝜓(x) extended by additional vector field deformation
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Figure 17.8: Three-dimensional color-scaled projections of a typical chaotic attractors
observed in dynamical system with parabolic equilibrium, visualization of equilibrium
curve and Poincaré section given by plane z=0.

and/or scaling factor f2(x). Desired equilibrium is achieved if 𝜓(x) is equation of a circle
and chaotic behavior can be observed for the remaining functions

𝑓1(𝑥) = 𝑏𝑥− 𝑐𝑧2, 𝑓2(𝑥) = −𝑑𝑥,Ψ(𝑥) = 𝑥2 + 𝑦2 − 𝑟, (17.15)

Obviously, this mathematical model possesses complementary pair of chaotic attrac-
tors. Original one can be observed for a value choice a=-0.1, b=3, c=2.2, d=0.1 and
radius of equilibrium circle r=1. Mirrored attractor appears after the trivial inversions
of the system coordinates. Note that a vector field ready for evolution of the chaotic
attractor becomes strongly polynomial (up to cubic term) and five four-quadrant analog
multipliers will be necessary for design of this chaotic oscillator. Typical strange attrac-
tor generated by this dynamical system in the case of the initial conditions x0=(0.3 0
0)T is shown in Fig. 9.

In order to define canonical (algebraically simplest) system a deformation factor can
be assumed zero reducing the dynamical system (2) into a more practical expression with
a single scalar function f1(x) covering polynomial nonlinear terms. Thus, we return to
(3). One such example can be described by following set of auxiliary functions

𝑓1(𝑥) = −𝑏𝑥𝑦 − 𝑦𝑧 + 𝑐𝑧2,Ψ(𝑥) = 𝑥2 + 𝑦2 − 𝑟, (17.16)

where chaotic motion can be observed for the parameters a=0.4, b=0.8, c=1.3 and set
of the initial conditions x0=(0.3 0 0)T, check Fig. 10 for shape of this strange attractor.

Another example of dynamical system with circle equilibrium can be found in [47].
This system belongs into class (2) with functions

𝑓1(𝑥) = −𝑦2 − 𝑥𝑧, 𝑓2(𝑥) = 𝑦2 − 𝑏𝑧2 + 𝑥,Ψ(𝑥) = 𝑥2 + 𝑦2 − 𝑟, (17.17)

and parameters a=1, b=2 and radius r=1. Corresponding strange attractor for the
initial conditions x0=(0 0.9 0.4)T is provided in Fig. 11. Both attractors are small in
the state space and can be easily realized as the lumped electronic circuits. It should be
noted that above mentioned systems with circular equilibrium can produce completely
dissimilar chaotic attractors with completely different cross-sections.
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Since circle is a special case of ellipse dynamical system described by expression (2)
needs only a minor modification to possess elliptical equilibrium, namely

𝑓1(𝑥) = 𝑏𝑥− 𝑐𝑧2, 𝑓2(𝑥) = −𝑑𝑥,Ψ(𝑥) =
(︂
𝑥

𝑟1

)︂2
+
(︂
𝑦

𝑟2

)︂2
− 𝑟, (17.18)

where variables r1 and r2 state for minor and major semi-radius of an equilibrium
ellipse respectively. Let introduce symmetrical ellipse deformation ratio 𝜎=1/r1=r2 as
arbitrary real positive number. Then we can make a nonsingular transformation of the
coordinates which changes system (2) with functions (10) into same system (2) with
functions (13); x→x´·𝜎, y→y´/𝜎, z→z´ where x´, y´, z´ are the new state variables.
Values of the internal parameters associated with (2) and (13) needs to be recalculated
using simple formulas (results provided for choice 𝜎=5) a=-0.1/𝜎=-0.02, b=3·𝜎2=75,
c=2.2·𝜎=11, d=0.1·𝜎=0.5.

Figure 17.9: Perspective rainbow-scaled projections of a typical chaotic attractor ob-
served in dynamical system taken from paper [49] with circular equilibrium, visualization
of equilibrium line and Poincaré section given by z=0.

Figure 17.10: 3D color-scaled visualization of a typical chaotic attractor observed in
system with circular equilibrium taken from [47], equilibrium structure (black curve)
and return map with cross-section z=0 (black dots).
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For such values chaotic attractor is provided by means of Fig. 12 for the initial
conditions shifted towards new basin of attraction, lets pick for example x0=(0 4.5 0)T.

Circuit-level simulations again uncover possibility to see the route-to-chaos scenarios
via continuous change of a single model/network parameter; and its value can be adjusted
by external dc voltage or current control source. By performing this change the regions of
chaos wanders with the windows showing limit cycles having various shapes and periods.
The main problem here is that initial conditions should be precisely adjusted and imposed
into the chaotic oscillator; all three state variables at the same time.

Figure 17.11: 3D plot of a typical chaotic attractor observed in a system with circular
equilibrium taken from [47], equilibrium structure (black curve) and return map with
cross-section defined by plane z=0 (black dots).

Figure 17.12: Perspective rainbow-scaled projections of a typical chaotic attractor ob-
served in a dynamical system with elliptical equilibrium, compare the horizontal axis
scales with state space shown in Fig. 9.

17.3 Circuitry Implementation and Verification
The proposed circuit design procedure is based on first Kirchhoff’s law applied on nodes
with the grounded linear capacitors. This means that each differential equation de-facto
represents sum of the currents. Necessary mathematical operations are realized by using
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active building blocks capable to process currents instead of voltages. Advantage of such
concept is that sum of the individual terms in the differential equations can be done by a
single node. Typical property of a current-mode realization is low input and high output
impedances of used active devices. Some commercially available as well as promising
but so far hypothetical active elements dedicated for current-mode signal processing are
provided in overview article [72].

The most promising active element is a second-generation current conveyor (CCII±)
described by three terminal equations VX=VY, IY=0 and IZ=±IX. Positive type CCII+
is commercially available under notation AD844 and package also contains output voltage
buffer. This device was already implemented for design of analog chaotic oscillator, see
examples [73]-[75]. Negative variant CCII- can be found in the markets under notation
EL2082; current gain of this device can be adjusted in range between zero (Vgain=0V)
and two (Vgain=2V) using external dc voltage source Vgain. Multiple-output second
generation current conveyors (MOCCII) will be implemented by using appropriate num-
ber of CCII+ (each current output requires one active element) to preserve dynamical
system ready for immediate design; on the contrary to a brief paper [62] where these
devices were used without hesitation. Well established operational trans-admittance
amplifiers with single (OTA) or multiple (MOTA) current outputs are other examples of
handy active devices. Currently both are commercially available (unfortunately limited
offer) as the integrated circuits under various denotations such as LM13600, LM13700,
CA3080, LT1228, MAX435, MAX436, OPA660 and OPA860 (both with voltage buffer),
etc. Last but not least, differential voltage current conveyor (DVCC) can be used if
multiple mathematical operations are needed. This device has three inputs with the
circuit quantities satisfying IY1=IY2=0, VX=VY1–VY2 and a single output terminal
characterized by IZ=IX. More current outputs can be achieved by connection of several
CCII± as it is in the case of MOCCII. Thanks to publications [76]-[78] where DVCC has
been both designed and applied this device is no longer hypothetical; although probably
not supposed for mass fabrication in the near future. Basic behavior of DVCC can be
modeled by input buffers, and standard differential amplifier. Output of this sub-circuit
forms node X where some load is supposed to be connected. Current passing through
this load can be copied into output Z terminal by using single CCII+. To date, very
few research papers have been dedicated to design of the chaotic oscillators with last
promising current-mode active element named accordingly to fundamental operation as
current differencing transconductance amplifier (CDTA) [79]-[81].

Reason why modern devices should be considered for design is that it can simplify
final network (level of simplification depends on the mathematical model), make one-
to-one-correspondence between mathematical model parameter and circuit parameter or
to provide external electronical adjustability of system parameter. The latter advantage
will be considered as essential requirement for final realization of chaotic oscillator. In
other words, if network topology is chosen correctly a smooth change of external dc
voltages can be used to trace different route-to-chaos scenarios. Moreover, it is still
believed that a current-mode signal processing is advantageous from the viewpoint of
better frequency response. Although only theoretically, high frequency currents can be
processed without spurious attenuation (without filtering effect of the active elements).
In most cases supply voltage of the current-mode integrated circuits is symmetrical.

The active devices will be firstly considered close-enough to the ideal which means in
the case of current signal processing that input impedance is zero and output impedance is
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infinite. It means that output current is distributed into the rest of circuit no matter what
kind of load is involved. Next step is that input impedance is modeled by basic resistance
connected in series with inductance while output impedance is composed by resistance
with high-frequency value degradation caused by capacitor connected in parallel.

It should be noted that many upcoming network realizations does not contain resistors
and are suitable for full on-chip implementations using common CMOS technology.

17.3.1 Chaotic oscillators

Circuit synthesis belongs to tasks having multiple correct solutions. Design engineer can
construct many completely different analog circuits that behave identically as a given
mathematical model. Some of these realizations can be celebrated because of simplicity,
the others can benefit from minimal number of elements and the rest of realizations can
have the one-to-one relations between model parameters and circuit variables. Remember
that we are focused on the current-mode circuits only; it means that all state variables
are currents. In some realizations of chaotic oscillators initial conditions needs to be
imposed into proper network branches. This requirement can be rather problematic to
satisfy in the case of current-mode operational regime. Here, voltage-mode is probably
the better idea.

Oscillator with line equilibrium

Dynamical system with general line equilibrium expressed as (2) can be modeled by a
current-mode network provided in Fig. 13. Covering differential equations are following

𝑑 𝑖𝑥
𝑑𝑡

= 𝑔𝑚1
𝐶1

𝑖𝑧,
𝑑 𝑖𝑦
𝑑𝑡

= 𝑔𝑚2
𝐶2

𝜀1𝑖𝑧𝑓1(𝑖𝑥, 𝑖𝑦, 𝑖𝑧),

𝑑 𝑖𝑧
𝑑𝑡

= 𝑔𝑚3
𝐶3

[︂
𝜀2𝑖𝑧𝑓2(𝑖𝑥, 𝑖𝑦, 𝑖𝑧) + 𝛾1𝑖𝑥 − 𝑖𝑦 + 𝑉𝑐

𝑅𝑐

]︂
(17.19)

where 𝑓1(𝑖𝑥, 𝑖𝑦, 𝑖𝑧) and 𝑓2(𝑖𝑥, 𝑖𝑦, 𝑖𝑧) are fully current-mode nonlinear scalar transfer
functions, 𝜀k is transfer factor of k-th current multiplier and𝛾i is multiplication factor
of i-th CCII-. Quite common situation is that required current gain factor 𝛾i of some
multiplier is much bigger than it is allowed by a manufacturer of EL2082. This obstacle
can be removed simply by a cascading sufficient number of CCII-. This interconnection
is done by using Z→X current terminals. Simultaneously it is assumed that reaching
output-Z current saturation is out of question for the employed conveyors finishing cas-
cade similarly as going out of dynamical range for linear operation which is allowed for
input-X current. Since integrated analog multiplier EL4083 has balanced current out-
puts and only one is actually used circuit designer should take care of remaining output;
i.e. connect optimal-valued resistor to terminate unused output.

For each designed oscillator working capacitors can be chosen the same C1=C2=C3
as well as resistors R1=R2=R3 without the loss of generality; for the frequency compo-
nents falling into acoustic range time constant 𝜏=R·C=10410-7=1ms has been chosen.
External dc voltage Vc represents equilibrium line offset and can be both positive and
negative. However, a slight change of an equilibrium structure can dramatically influence
observed state attractor. Of course, Vc and Rc together with associated CCII+ can be
interchanged by dc source of a constant current.
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Figure 17.13: Current-mode implementation of a general dynamical system having line
equilibrium expressed as (2) using three MOTA, three CCII± and two black-boxes with
desired current-mode transfer characteristics.

Circuit conception of a dynamical system (3) is illustrated in Fig. 14 and following
state equations can be derived leading to canonical realization with line equilibrium

𝑑 𝑖𝑥
𝑑𝑡

= 1
𝐶1𝑅1

𝑖𝑧,
𝑑 𝑖𝑦
𝑑𝑡

= 1
𝐶2𝑅2

𝜀1𝑖𝑧𝑓1(𝑖𝑥, 𝑖𝑦, 𝑖𝑧)

𝑑 𝑖𝑧
𝑑𝑡

= 1
𝐶3𝑅3𝑅𝑐

[𝑅𝑥𝑖𝑥 −𝑅𝑦𝑖𝑦 + 𝑉𝑐] , (17.20)

where the gain factors of CCII- are set to be unity. Obviously, a voltage source Vc
cannot be replaced by dc current source and designed chaotic oscillator contains only one
black-box with a prescribed nonlinear current transfer function. Note that MOCCII+ is
realized by four CCII± and whole circuit can be directly constructed and experimentally
verified.

Mathematical models provided in [45] have slightly different circuit representations;
for clarification compare formulas (5), structure given in Fig. 15 and the state equations
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Figure 17.14: Canonical current-mode realization of a dynamical system (15) using six
CCII+, four CCII- and single DVCC; two-port with transfer function f1 can be arbitrary
still preserving line equilibrium.

in the upcoming form

𝑑 𝑖𝑥
𝑑𝑡

= 1
𝐶1𝑅1

𝑖𝑦,
𝑑 𝑖𝑦
𝑑𝑡

= 1
𝐶2𝑅2

[−𝛾1𝑖𝑥 + 𝜖1𝑖𝑦𝑖𝑧]

𝑑 𝑖𝑧
𝑑𝑡

= −1
𝐶3𝑅3

𝜀2𝑖𝑥

(︂
𝛾2𝑖𝑦 + 𝛾3𝑖𝑧

𝑉𝑐

𝑅𝑐

)︂
. (17.21)

During simulations the circuit parameters was set to following constant values

(17.22)
𝑔𝑎𝑚𝑚𝑎1 = 𝑔𝑎𝑚𝑚𝑎3 = 1, 𝛾2 = 15, 𝜀1 = 𝜀2 = 1, 𝑉𝑐 = 1, 𝑅𝑐 = 10𝑘Ω (17.23)

From experimental perspective these values should not represent a realization prob-
lem. Individual state variables are, as in previous cases, currents flowing through resistors
R. This complete analog chaotic oscillator requires seven CCII+, four CCII- and two four-
quadrant current multipliers. Remember that current gain 15 needs to be implemented
by a cascading additional four CCII-.

By taking concrete form of a dynamical system (4) network provided in Fig. 16 can
be constructed where only three MOTA, a couple of CCII- and a pair of the current-mode
multipliers are utilized. The corresponding state equations are following
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𝑑 𝑖𝑥
𝑑𝑡

= 𝑔𝑚1
𝐶1

𝑖𝑦 + 1
𝑅1

𝑖𝑛𝐶1
,
𝑑 𝑖𝑦
𝑑𝑡

= 𝑔𝑚2
𝐶2

[−𝑖𝑥 + 𝜀1𝑖𝑦𝑖𝑧] + 1
𝑅2

𝑖𝑛𝐶2
𝑖𝑥,

𝑑 𝑖𝑧
𝑑𝑡

= 𝑔𝑚3
𝐶3

[−𝜀2𝑖𝑥(𝛾1𝑖𝑦 + 𝛾2𝑖𝑧) − 𝑖𝑦] + 1
𝑅3

𝑖𝑛𝐶3
𝑖𝑧, (17.24)

where Rink represents input resistance of k-th OTA (for upcoming analysis of the par-
asitic features). During simulations the circuit parameters was set to following constant
values

𝑔𝑚1 = 𝑔𝑚2 = 𝑔𝑚3 = 100𝜇𝑆𝛾1 = 17, 𝛾2 = 1, 𝜀1 = 𝜀2 = 1. (17.25)

Since maximum gain of EL2082 equals two a cascade of five these active devices
should be utilized to achieve desired current gain 𝛾1; in such case, total theoretical gain
of 32 can be reached. Of course, in the case of on-chip implementation high current gain
is not a big problem since transfer constants of the current mirrors can be adjusted simply
by the aspect ratios (W/L) of employed mosfet transistors. Be aware that CCII- as well
as OTA blocks must operate in linear regime; nonlinear part of the vector field must be
generated in prescribed form only by the current multipliers. Note that if parameter b
of original mathematical model is fixed to unity and only parameter a is supposed to
be variable second CCII- can be completely removed further simplifying final oscillator.
Also, note that parasitic properties of the active elements have not been considered. In
practice their influences need to be minimized.

Figure 17.15: Current conveyor based current-mode network topology described by set
of differential equations (16).
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Figure 17.16: OTA based representation of a second chaotic dynamical system taken
from publication [45].

Oscillators with conical-shaped equilibrium

Algebraic complexity of the describing mathematical model (9a) implies that circuitry
implementation will be complicated as well, see Fig. 17. This analog oscillator is covered
by the following ordinary differential equations

𝑑 𝑖𝑥
𝑑𝑡

= −𝛾1
𝐶1𝑅1

𝑖𝑧,
𝑑 𝑖𝑦
𝑑𝑡

= 𝜀2
𝐶2𝑅2

𝑖𝑧

(︂
𝜀1𝑖

2
𝑧 − 𝛾5

𝑉𝑑

𝑅𝑑

)︂
,

𝑑 𝑖𝑧
𝑑𝑡

= 1
𝑅3𝐶3

𝜀5𝛾2𝑖𝑧(𝜀1𝑖
2
𝑧 + 𝜀3𝛾4𝑖

2
𝑦) + 𝜀3𝛾3𝑖

2
𝑥 − 𝜀4𝛾4𝑖

2
𝑦 − 𝛾6

𝑉𝑐

𝑅𝑐
, (17.26)

where state variables can be considered both voltages and currents, i.e. 𝑖𝑥 = 𝑢𝑧/𝑅1,
𝑖𝑦 = 𝑢𝑦/𝑅2 and 𝑖𝑧 = 𝑢𝑧/𝑅3. External voltages 𝑉𝑐 and 𝑉𝑑 can be used as natural bifurca-
tion parameters. Note that eleven CCII± and five current multipliers are necessary for
a chaotic oscillator.

Mathematical model (9b) can be realized analogically using the same building blocks
as shown in Fig. 18. Set of the differential equations can be derived directly from this
analog system in the form

𝑑 𝑖𝑥
𝑑𝑡

= −𝛾1
𝐶1𝑅1

𝑖𝑧,
𝑑 𝑖𝑦
𝑑𝑡

= − 𝜀1𝜀2
𝐶2𝑅2

𝑖3𝑧,

𝑑 𝑖𝑧
𝑑𝑡

= 1
𝑅3𝐶3

𝜀4𝜀5𝛾2𝑖𝑥𝑖𝑦𝑖𝑧 + 𝜀3𝛾3𝑖
2
𝑥 + 𝛾4𝑖𝑦 + 𝜀1𝑖

2
𝑧, (17.27)
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Figure 17.17: Current conveyor based current-mode network topology capable to model
chaotic behavior associated with dynamical system (20) having hyperbolic equilibrium,
one bipolar output current multiplier is required.

where external voltages 𝑉𝑐 and 𝑉𝑑 can be used as suitable bifurcation parameters.
Typical strange attractor can be observed for example for the choice

𝑅1 = 𝑅2 = 𝑅3 = 𝑅𝑟 = 10𝑘Ω, 𝑉𝑟 = 1𝑉, 𝛾1 = 0.1, 𝛾2 = 0.03
𝛾3 = 0.5, 𝛾4 = 2, 𝜀1 = 0.35, 𝜀2 = 12.5, 𝜀3 = 𝜀4 = 𝜀5 = 1. (17.28)

Note that proposed collection of values should not represent serious realization prob-
lems. If directly unreachable constant 𝜀2 can be lowered to 1.25 while 𝑅2 changes to
1kΩ.

Electronic system with elliptical-type equilibrium

Similarly, describing state equations of autonomous analog network capable to model
dynamical system with circular equilibrium are following

𝑑 𝑖𝑥
𝑑𝑡

= −𝛾1
𝐶1𝑅1

𝑖𝑧,
𝑑 𝑖𝑦
𝑑𝑡

= − 𝜀1𝜀2
𝐶2𝑅2

𝜀1𝑖𝑧(𝑖𝑥 + 𝜀2𝑖
2
𝑧)

𝑑 𝑖𝑧
𝑑𝑡

= 1
𝑅3𝐶3

[︂
𝜀3𝑖𝑥𝑖𝑧 + 𝜀4𝑖

2
𝑥 + 𝜀5𝑖

2
𝑦 − 𝛾1

𝑉𝑟

𝑅𝑟

]︂
, (17.29)
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Figure 17.18: Current conveyor based current-mode chaotic circuit capable to model
behavior associated with system (21) having parabolic equilibrium, single bipolar output
current multiplier is need.

where circle radius can be changed directly by the external voltage Vr or, more
precisely, by transfer gain 𝛾1. Careful adjustment is required here since global behavior
is extremely sensitive to this value. Corresponding network can be found in Fig. 19.
Unfortunately, MOCCII+ is not off-the-shelf active component; thus, previous design
cannot be used for immediate laboratory experimentation and transformation into CCII±
only based network is necessary. After a slight modification, a chaotic oscillator shown
in Fig. 20 has been achieved. This circuit is covered by a set of the ordinary differential
equations

𝑑 𝑖𝑥
𝑑𝑡

= −𝑔𝑚1
𝐶1

𝑖𝑧,
𝑑 𝑖𝑦
𝑑𝑡

= −𝑔𝑚2
𝐶2

𝜀1𝑖𝑧(𝑖𝑥 + 𝜀2𝑖
2
𝑧)

𝑑 𝑖𝑧
𝑑𝑡

= 1
𝑅3𝐶3

[︂
𝜀3𝑖𝑥𝑖𝑧 + 𝜀4𝑖

2
𝑥 + 𝜀5𝑖

2
𝑦 − 𝛾1

𝑉𝑟

𝑅𝑟

]︂
, (17.30)

For computer-aided verification most circuit can be fixed on circuit-reasonable numerical
values such as

𝑔𝑚1 = 10𝜇𝑆, 𝑔𝑚2 = 4𝜇𝑆, 𝑔𝑚3 = 100𝜇𝑆,𝑅𝑦 = 𝑅𝑟 = 1𝑘Ω
𝑅𝑥 = 10𝑘Ω, 𝜀1 = 𝜀3 = 𝜀4 = 1, 𝜀2 = 0.1, 𝜀5 = 0.8, 𝑉𝑟 = 1𝑉. (17.31)
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For these values the ratio between minor/major axes of ellipse r1/r2 is enhanced to
1/3. In any case, only a fraction of ellipse provides a vector field geometry responsible for
evolution of this strange attractor. However, such fraction still represents infinite number
of the equilibrium points. Major and minor radius of an equilibrium ellipse equals inverse
square root of current gain factors 𝜀3 and 𝜀4 respectively. Numerical studies reveal that
global behavior of this dynamical system is extremely sensitive to both radiuses and
chaos quickly disappears for values far away from unity; a solution became unbounded
leading to the state space attractor limited only by the saturation levels of the used
active devices (in fact applied supply voltages).

Note that only transfer factors of the used current multipliers are supposed to control
chaotic motion. Since EL4083 is the only commercially available current multiplier so
far (but without chance to adjust gain) this circuit should be considered for on-chip
CMOS realization and fabrication. Extreme sensitivities of a specific strange attractor
to external currents can turn to be advantageous if these circuit quantities are generated
by some sort of sensors; for example, caused by the chemical changes in some liquid.

Canonical dynamical system having elliptical equilibrium can be also implemented
in various current-mode conceptions. One of them can be described by state equations

𝑑 𝑖𝑥
𝑑𝑡

= 𝑔𝑚1
𝐶1

𝑖𝑧,
𝑑 𝑖𝑦
𝑑𝑡

= −𝑔𝑚2
𝐶2

𝜀1𝑖𝑧𝑓1(𝑖𝑥, 𝑖𝑦, 𝑖𝑧)

𝑑 𝑖𝑧
𝑑𝑡

= 𝑔𝑚3
𝐶3

(︂
𝛾1𝜀2𝑖

2
𝑥 + 𝛾2𝜀3𝑖

2
𝑦 − 𝑉𝑟

𝑅𝑟

)︂
, (17.32)

where Vr=1V is fixed constant and value Rr should be chosen accordingly to impedance
normalization factor. Major and minor radius of an equilibrium ellipse equals inverse
square root of current gain factors 𝜀2 and 𝜀3 respectively. This so far unfinished analog
circuit where two-port with arbitrary transfer function is given as black-box is provided
by means of Fig. 21.

Finally, network structure with only CCII± and current multipliers can be derived
as shown in Fig. 22. Straightforward analysis leads to the following describing formulas

𝑑 𝑖𝑥
𝑑𝑡

= −𝛾1
𝐶1𝑅1

𝑖𝑧,
𝑑 𝑖𝑦
𝑑𝑡

= 𝜀2𝑖𝑧
𝐶2𝑅2

(︁
𝜀1𝑖

2
𝑧 + 𝑖𝑥

)︁
𝑑 𝑖𝑧
𝑑𝑡

= 1
𝐶3𝑅3

(︂
𝜀3𝜀5𝛾2𝑖𝑥𝑖𝑧 + 𝜀4𝛾4𝑖

2
𝑥 + 𝜀3𝛾3𝑖

2
𝑦 − 𝛾1

𝑉𝑟

𝑅𝑟

)︂
. (17.33)

Numerical values of the circuit parameters leading to the evolution of a typical strange
attractor can be chosen as follows

𝑅1 = 𝑅2 = 𝑅3 = 𝑅𝑟 = 10𝑘Ω𝛾1 = 0.07, 𝛾2 = 1, 𝑉𝑟 = 1𝑉
𝜀1 = 0.5, 𝜀2 = 4, 𝜀3 = 0.66, 𝜀4 = 1.52, 𝜀5 = 0.1. (17.34)

17.3.2 Orcad Pspice circuit simulations

Orcad Pspice simulator has been utilized for demonstration that chaotic solution is nei-
ther numerical artifact nor transient motion but regular solution. To preserve a limited
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Figure 17.19: Current-mode circuit realization of system (23) with circular equilibrium
using MOCCII+ elements.

length of this paper only strange attractors are visualized. These are in a very good
accordance with the theoretical expectations, i.e. with the numerically integrated state
trajectories. Since chaotic oscillators are always nonlinear circuits simulation scenarios
are restricted to time-domain analysis; final time was chosen to be 100ms and maxi-
mum step size 1𝜇s with respect to a time constant. Achieved waveforms are sufficiently
smooth and long enough such that the calculated frequency spectra of the generated
signals (using fast Fourier transform) have required resolution.

First simulation results given in this section are related to dynamical system with line
equilibrium (16) with values (17). Chaotic waveforms in time and frequency domain are
provided in Fig. 23 (up to frequency component 150kHz) and selected plane projections
of a typical strange attractor are shown in Fig. 24.

Second simulation results are bounded to a dynamical system with a line equilibrium;
namely which is described by the differential equations (18) together with the numerical
values (19). Generated chaotic signals in time and frequency domain are shown by means
of Fig. 25 while corresponding plane projections of a state attractor are given in Fig. 26.
The state variables are naturally currents but for attractor visualization purpose voltages
across grounded capacitors are considered. Note that the chaotic waveforms generated
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Figure 17.20: Current-mode circuit realization of a dynamical system (24) with circular
equilibrium structure.

by this dynamical system have several dominant peaks in the frequency domain.
Third circuit which was verified by simulation is specified by the equations (24) with

the numerical values (25). Resulting chaotic waveforms plotted in time and frequency
domain (visualization provided up to 2kHz) are shown in Fig. 27. Corresponding Monge
projections can be found in Fig. 28.

Fourth analog chaotic oscillator which undergoes verification through simulation is
given by the differential equations (27) together with a parameter choice (28). Generated
chaotic signals in time and frequency domain (wideband linear-scaled axis 0 to 200kHz
is visualized) are shown in Fig. 29. Same waveforms plotted as the plane projections are
provided by means of Fig. 30.

17.4 Concept of Generalized Parasitic and Its Analysis

Fast dynamical motions and short transients can be found quite problematic in the case
of circuit implementation of prescribed dynamics. Mathematically speaking such situ-
ation corresponds to a right-hand-side of the differential equations multiplied by a big
number. If considering parasitic properties of the used active elements error terms will
necessarily appear in a set of describing differential equations. This can also cause nasty
phenomena such as significant increase of a network order, reducing degrees of freedom
by bounding two accumulation elements, it can lead to a structural instability of a chaotic
attractor or completely damage prescribed state attractor. Since chaotic orbit is typi-
cally surrounded in hyperspace of the internal system parameters by unbounded solution
(i.e. solution going to ± infinity) this attractor collapses into a large limit cycle with a
squared quasi-radius defined by the saturation levels of used active devices (these ranges
are slightly reduced supply voltages). Deep inspection of published papers dealing with
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Figure 17.21: General concept of a chaotic oscillator with elliptical equilibrium where
function f1 can be arbitrary.

continuous-time chaotic oscillator design reveals that authors usually little care about
the parasitic properties of used active elements and how these factors influence expected
strange attractor. Of course, there are few exceptions like [75] where authors nicely
explain how frequency limitations of AD844 affects construction and verification of the
multi-scroll chaotic oscillator. Anyhow theoretically such qualitative analysis can solve
this problem: Is desired chaotic pattern structurally stable such that generated wave-
forms have potential for the practical applications? If such stability cannot be satisfied
to some degree desired chaotic attractor is not experimentally observable. The major
problem here is that neither largest LE nor geometrical dimension is monotonic function
with respect to the parasitic element values. Considering this it means that common
worst-case analysis or systematic gradient optimization methods do not represent cor-
rect approach to determine structural stability of the state space attractors in the case
of the nonlinear vector field.

Let’s imagine that parasitic properties of the individual active devices are considered
separately. Each such parameter has unknown value and forms one edge of hyperspace
scanned by optimization routine. This idea is wrong both from viewpoint of visualization
and enormous time demands required for calculation. To quantify influence of non-ideal
properties of the active devices on the desired strange attractors a new term generalized
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Figure 17.22: Fully current-mode chaotic oscillator with elliptical equilibrium ready for
experimental measurement; design requirements are eight CCII+, four CCII- and five
current-mode multipliers.

Figure 17.23: Chaotic signals in time domain (lower picture) and calculated frequency
components (upper picture).

parasitic can be defined. It means that parasitic effects which have the same nature are
swept and applied on mathematical model of chaotic dynamical system together in group.
The most important generalized parasitic effect is additional dissipation (caused by finite
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Figure 17.24: Plane projections iy and iz vs ix of typical chaotic attractor generated by
analog circuit given in Fig. 15, described by differential equations (16) with numerical
values (17).

Figure 17.25: Chaotic signals in time domain (lower picture) and calculated frequency
components (upper picture).

Figure 17.26: Plane projections iy and iz vs ix of a typical chaotic attractor generated by
circuit provided in Fig. 16, described by the differential equations (18) with numerical
values (19).

input resistances of CCII±, OTA, DVCC blocks or output resistances of these elements),
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Figure 17.27: Chaotic signals in time domain (lower picture) and calculated frequency
components (upper picture).

Figure 17.28: Plane projections iy and iz vs ix of a typical chaotic attractor generated
by circuit given in Fig. 20, described by the differential equation (24) with numerical
values (25).

Figure 17.29: Chaotic signals in time domain (lower picture) and calculated frequency
components (upper picture).

parameter uncertainty, roll-offs (caused by low-pass nature of CCII± or OTA transfers)
and component tolerances. Demonstration example how to deal with mentioned reality
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Figure 17.30: Monge projections iy and iz vs ix of a typical chaotic attractor generated
by the analog circuitry depicted in Fig. 22, described by the differential equations (27)
and using numerical values (28).

is provided in Fig. 31 where generalized parasitic analysis is put into the context with the
so-called Kaplan-Yorke dimension of observed state attractor. In this plot, colored points
are rainbow-scaled such that red denote strongly chaotic attractor, yellow represents
weakly chaotic system, green and blue stands for limit cycles. Horizontal grid is sparse
such that it is easy to recognize nominal (ideal) system state. This idea is applied on
the selected state equations. Note that this method is capable to find “more chaotic”
system.

Since one basic error term never compensate the other analyzed parasitic properties
tend to have accumulating nature. For example, each OTA block connected to a working
capacitor enlarges time constant by associated parasitic input capacitance while its input
resistance is responsible for increased dissipation of dynamical flow. If dissipation is too
high (above critical value) desired strange attractor collapse into the simpler geometrical
structure, i.e. limit cycle or fixed point. In CCII based chaotic oscillators input resistance
of X-terminal is connected in series with working resistor causing again a time constant
enlargement effect. Roll-off effect of each OTA trans-conductance as well as each CCII
current transfer constant (both should be ideally constant over full frequency scale) also
has a devastating impact on a desired state attractor.

17.5 Conclusions

First part of this contribution can be considered as a comprehensive review showing
process of discovering mathematical models with exotic types and shapes of equilibrium;
beginning with the simplest dissipative flows [82] to the hyperchaotic systems with three-
dimensional equilibrium structures or a chaotic dynamic where attractor can be changed
from hidden to self-excited [83] by changing values of the internal system parameters.

Main part of this paper is focused on current-mode circuit realizations and consequent
simulations of the hidden chaotic oscillators with the degenerated equilibrium structures.
It completes current research studies where voltage-mode operational regime is preferred
over current-mode designs. It is also for the first time when fully current-mode circuitry
realization of a dynamical system with circular and elliptical equilibrium is reported;
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Figure 17.31: Graphical illustration of a generalized parasitic concept for a system (2)
with functions: a) choice (5a), b) choice (5b), c) set (5d), d) set (5e), e) set (7), f)
uncertainty of parameter a and additional dissipation for (9a).

although existence of a desired strange attractor is proved only by Orcad Pspice circuit
simulations using datasheet-based level-three models of the active devices.

Last idea behind this paper is suggestion to adopt a concept of one-dimensional LE
(used for calculation of a metric dimension of state attractor) for case-specific sensitivity
analysis: to determine robustness of the designed chaotic oscillator to preserve prescribed
strange attractor. The most devastating parasitic properties of utilized active elements
are specified and proposed procedure is demonstrated via example.
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18. Educational Activities

Education is an inseparable part of an academic career. Having the opportunity of give
knowledge to students in my everyday work is a great honor and privilege that I truly
appreciate. In this Chapter, I will describe my activities in education of the university
students, high school students and even retired listeners.

18.1 Education in Bachelor’s, Master’s and Docrotal’s Courses
During my career, I have been involved in teaching different courses at the Faculty of
Electrical Engineering and Communication, Brno University of Technology.

• Communication Systems (BKSY) - 2012

• Theory of Electronic Circuits (MTEO) - 2013

• Field Programmable Gate Arrays (MPLD) - 2014–2016

• Advanced Radio Communication Systems and Their Components (MARC) - 2014–
2018

• Measurements in Radioelectronics (MREM) - 2016–2017

• ARM Microprocessors (MPOA) - 2016–2017

• Modern Wireless Digital Communication (DRE2) - 2014–2018

18.2 Other activities
The following subsections summarize educational activities beyond regular Bachelor or
Master level courses.

18.2.1 Lectures at High Schools

The Department of Radio Electronics has been working hard to increase the awareness
of the attractive study program Electronics and Communication among high school stu-
dents. Due to the decrease of the number of applicants in recent years, the obvious target
is to approach the students in person and reveal a part of the topics they can study at
Brno University of Technology.

In frame of these activities, I gave lectures following high schools in the years 2014–
2017 (school names in Czech) and motivating students (as well teachers) in being inter-
ested in software defined radios:

• Středńı pr̊umyslová škola Třeb́ıč;
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• Středńı pr̊umyslová škola Olomouc;

• Středńı škola technická a ekonomická Brno;

18.2.2 Lectures for the University of 3rd Age

Since 2016, I have been involved in the courses offered by Brno Univerisity of Technology
to pensioners. I joined prof. Václav Ř́ıčný during fall 2016 in lecturing the course
Car Electronics, intended as an overview of the operation principles, parameters and
recommendations for modern vehicles (electronics standards, communication protocols,
radars, etc.). Out of several topics of the course, I have been lecturing:

• Hybrid Cars;

• Electric and Sport Cars;

• Future Car Technologies;

• Final Discussion.

All the lectures have been very interactive due to the nature of students – their keen
attitude and many times a deep knowledge is a strong motivation for the lecturer himself.

18.2.3 Student Competition Golden Transistor

At Brno University of Technology, department of Radioelectronics we are organising reg-
ular student competition. The principle is simple. Students (one or team) can submit
their work and compete against their colleges. The jury, representatives from companies
and academic institutions, is subsequently named. Then the team should present and
defend their work (same principle as an faire show) to individual members of committee
as well as to regular spectators.

I am responsible for founding this event and I am regularly organising together with
Dr. Jǐŕı Miloš, Dr. Peter Barćık and with support of prof. Tomáš Kratochv́ıl, this beau-
tiful competition (since 2016). On top of expert knowledge and gaining an engineering
experience, I believe this event allows to students practising their presentations skills
and can enrich their partnering activities. If the reader is interested, more about this
competition can be found in http://zlatra.sdelovacka.cz.

18.2.4 Open Day Events

At university open day events I am usually actively joining the exhibition showing and
promoting the genius of software defined radios. Severally I have prepared some sample
exhibits (such as LTE Mobile Cell, GPS Hijack, Air traffic monitoring, Listening to
wireless microphone, etc.). This event gives me feedback about general knowledge (and
I am usually surprised with high level) about wireless technologies.
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