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Abstract
This habilitation thesis brings thorough overview of the Laser-Induced Breakdown Spec-
troscopy (LIBS), theory and applications, with the aim on the approaches to the processing
of spectroscopic signal. Thus, its outline goes through the instrumentation (both abla-
tion and detection parts), laser-matter interaction, dynamics of ablation and laser-induced
plasma formation. This is done in order to show the origin of the data and to build up
the basis for consecutive processing part. Standard (univariate) as well as novel, advanced
chemometrics (linear and non-linear multivariate algorithms) ways in signal processing are
discussed. The perspective of data science and machine learning is connected to the basics
of plasma physics and analytical chemistry.

Body of publications of the author is summarized, discussed and put in the context with
the rest of the thesis. Finally, potential and further evolution of the field of LIBS is given
with respect to other reference and complementary techniques and mainly to the long-term
development of the LIBS technique by the spectroscopic community.

Abstrakt
Tato habilitační práce přináší zevrubný přehled o teorii a aplikacích spektroskopie laserem
buzeného plazmatu (z angl. Laser-Induced Breakdown Spectroscopy; LIBS), se zaměřením
na způsoby zpracování spektroskopických dat. V práci je postupně pojednáno o základní
instrumentaci (jak ablační, tak sběrné části), o interakci laserového záření s látkou, dynam-
ice laserové ablace a vzniku laserem buzeného plazmatu. Širší popis základních poznatků o
LIBS je podán záměrně proto, aby bylo zřejmé, co jest zdrojem spektroskopických dat a co
ovlivňuje jejich kvalitu. Část práce o zpracování spektroskopických dat je rozdělena na dva
základní směry: i) klasický přístup jednorozměrné statistiky a ii) pokročilé vícerozměrné
algoritmy (lineární i nelineární). Přístupy datové vědy a strojového učení jsou nakonec úzce
propojeny se základy fyziky plazmatu a analytické chemie.

Vědecké publikace autora jsou diskutovány v průběhu této práce a jejich přínos je
zasezen do diskutované problematiky. Nakonec je představena určitá vize o budoucím
směřování, ponciálu a rozvoji v oblasti techniky LIBS; toto je podáno s odkazem na vývoj
v referenčních technikách a na dlouhodobý vývoj ve světové komunitě zabývající se tech-
nikou LIBS.
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Preface

Our society is overloaded with data. Nowadays, anyone can effortlessly access desired infor-
mation. However, the information may be obtained from various sources with alterations
and no reference to the original source. It is getting hard to distinguish true informa-
tion from the fake one. All this results in redundant data with non-informative features.
Moreover, information is often distracting; showing a lot of noise.

The spectroscopic community also faces a similar issue. Contemporary progress in
analytical instrumentation enabled an enormous throughput in data collection. Numbers of
analyzed samples and obtained multivariate data reach limits of standard signal processing
procedures and even computing devices. Standard data handling and storage prior the
data mining itself demands unprecedented computing power. Thus, the big data revolution
is fully in its gears and biases the classical approach of analytical chemistry. The current
needs for signal processing challenge the potential of chemometrics.

In the motivation of the book entitled Statistics in spectroscopy, Mark and Workman
[1] stressed that “the field of spectroscopy had departed from the ‘classical‘ approach”. Data
are processed more often using multivariate algorithms that provide supreme performance
over the univariate ones. However, basic univariate algorithms can, in many cases, provide
the same performance and lead to comparable results if they are judiciously performed.

The data analysis has shifted from estimation of classical chemistry to prediction of
data science. This paradigm shift is polarizing the spectroscopic community and induces
a lot of controversy. Standard approaches of data science are accepted by spectroscopists
only very cautiously or they are being completely misused.

The main issue of today is a direct processing of raw untreated spectra by using chemo-
metric algorithms. This issue was also reflected by Hahn and Omenetto [2]: “the use
of sophisticated chemometric algorithms may lead to apparently successful discrimination
among samples in which the key identifiers are not related to the nature of the samples but
rather to contaminant and/or background features”. Multivariate algorithms are misused
as a black-box without any proper prior knowledge of the fundamentals of plasma physics
and analytical chemistry on one side and the limitations of mathematical apparatus on the
other. What is even more striking is the use of non-linear, more sophisticated statistical
algorithms (such as variations of neural networks) to discriminate statistically insignificant
data sets (low number of objects and/or variables, noisy spectra with poor signal-to-noise
ratio, etc.).

Discussed controversy in data handling and the whole paradigm shift has set a solid
motivation for my thesis in which I would like to dissect the standard and novel approaches
in signal processing. The goal of my thesis is therefore to bridge the gap between traditional
univariate approaches with strong background in plasma physics and analytical chemistry
on one side and advanced data science, heuristic approaches on the other. This topic has
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been of my paramount research interest and following chapters are based on an extensive
literature research and my own personal long-term experience.

The outline of my thesis has a logical structure that builds up from the fundamen-
tals of plasma physics through the understanding of emission signal to the univariate and
multivariate algorithms. I am convinced that it is absolutely necessary to understand sig-
nal (spectra) as a representation of its source (plasma and related sample). Thus, with
great excitement I follow the scientific work of many authors in the LIBS community who
are forging novel data processing algorithms together with the assumptions obtained from
plasma physics and analytical chemistry.

First of all, I give a brief historical overview of the evolution of spectroscopy, chapter 1.
The timeline shows an increasing frequency of technical inventions and scientific discoveries,
coming to the modern age of laser spectroscopy and computer science when it is getting
hard to keep up with the pace of contemporary state-of-the-art. Chapter 2 brings consider-
ations about the analytical chemistry and its two basic approaches: i) bulk and ii) surface
analysis. The second approach induced the invention of several analytical techniques that
are tangentially mentioned.

I would like to stress that in my work I focus exclusively on the elemental analysis of
sample surfaces using the Laser-Induced Breakdown Spectroscopy (LIBS) technique. In
spite of that, the conclusions that I draw from the literature research and my scientific
work are applicable to the processing of spectroscopic signal obtained using any other
complementary or reference analytical techniques. Background and motivation for LIBS
are introduced together with overview of basic instrumentation and related parameters,
chapter 2.1. Surely, the most crucial instrument is laser itself, being responsible for material
ablation and laser-induced plasma (LIP) formation. Properties of a laser pulse have direct,
the most significant, influence on the quality of LIP and obtained signal.

List of applications where we can fully exploit the benefits of LIBS are given in chapter
2.1.3. LIBS gained its status among other analytical techniques due to the high-repetition
rate analysis with multielemental capability. This is the main reason why it has been
intensively developed for elemental imaging (mapping) of large-scale sample sufaces. There
is, of course, no will to develop a one-for-all LIBS technique and substitute its analytical
counterparts. On the contrary, LIBS is used as a complementary technique extending
the information gain. Tandem approaches are described in chapter 2.2, where LIBS is
accompanied with mass spectrometry, Raman spectroscopy or computed tomography.

Chapter 3 delivers a complete overview of knowledge, fundamentals of plasma physics,
that is necessary to master prior the judicious data processing of spectroscopic data. The
matrix effect is described as a product of complex processes beyond laser-matter interaction.
Assumptions for consequent laser ablation of material to be stoichiometric and induced
plasma to be optically thin and in the local thermodynamic equilibrium are formed. In
the second part of this chapter, spectrum and its emission lines are described in detail.
Line emission and broadening mechanisms are bound to mathematical equations enabling
further computations of LIP properties, electron number density and temperature.

The core of my thesis is embedded in the processing of emission signal, chapter 4. To
the best of my knowledge there is no unified approach, algorithm, in data processing and
individual steps have no strict order. The data preprocessing can consist of many partial
steps or data can be processed directly in their raw format. Background subtraction, signal
estimation and standardization, and outliers filtering are influencing the data structure and
latent relationships within data sets and, thus, their impact on the analytical performance
is considered. In my authored and co-authored publications I have invested a great deal of
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interest into the individual steps of data preprocessing. Their impact on resulting figures
of merit have been shown.

Statistical analysis of obtained signal is also dissected. We have been among first re-
search groups to point out that typical LIBS data are not normally distributed. This limits
the implementation of basic statistics over obtained data sets and leads to biased results.
It was proved that normal distribution gets distorted and data rather follow the extreme
value distribution.

Univariate data analysis approaches are listed and critically commented. Basic quanti-
tative analysis is mentioned as one of the pain points and limitations of LIBS technique.
On the other hand, qualitative mapping and depth profiling are promising applications of
LIBS while fully exploiting its benefits.

Chemometrics are extensively exploited in LIBS data processing. I describe their appli-
cation for quantitative analysis of selected analytes as well as for classification of complex
sample matrices. Novel approach is being developed, the so-called multivariate mapping.
My co-authored publication have also targeted this issue when implementing linear and non-
linear algorithms. Lastly, I also raise discussion over potential data library/model transfer
which can trigger further development in the field of LIBS and related signal processing.

Robust models are of paramount interest to the data scientists and processing of LIBS
data is not excluded. Recently, we have introduced a benchmark data set to test the
capabilities of individual LIBS groups in classification of LIBS data. This benchmark data
set was evaluated during the EMSLIBS 2019 conference, held and organized by our LIBS
group in Brno. Finally, the figures of merit used to quantify the performance of the whole
analysis are listed.

In each chapter I complement current literature with my own scientific work. References
are given and the list of my publications is attached as Appendix A of this thesis. As a
conclusion, I also intended to predict the future development of the field of laser-based
spectroscopy and related data processing.

My scientific career is bound mainly to the Brno University of Technology; first being
affiliated to the Faculty of Mechanical Engineering and then also to the Central European
Institute of Technology. As a representative of Brno University of Technology I stayed
(2011-2014) at Federal Institute for Materials Research and Testing (Berlin, Germany) in
the group of prof. Ulrich Panne and Dr. Igor B. Gornushkin. Several years later (2017-
2018), I had the opportunity to become a Fulbright fellow at the University of Florida,
(Gainesville, Florida, US). On this journey, I have published 35 scientific articles with
impact factor and reached H-index 11 according to the Web of Science.

I have also pursued an academic career along the scientific one. My primary affiliation
is the Faculty of Mechanical Engineering at Brno University of Technology. At the Institute
of Physical Engineering, I gained the status of assistant professor and where I am involved
in teaching. The main lectured course is the Engineering Optics which focuses on laser
sources and Gaussian beams. My secondary courses target elementary physics and optics
in the undergraduate level.

Recently, in both career paths, my position shifted while being the leader of the lab-
oratory of Laser Spectroscopy. I am supervising undergraduate and doctoral students in
writing their theses and leading junior scientists in their research and development projects.

P.P.
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Chapter 1

Introduction to spectroscopy

Many texts regarding the history of optics and spectroscopy have been written1. Thus, I
will not bore the reader by an extensive description of consecutive historical events that led
us to the present state-of-the-art instrumentation and its application. Albeit, with respect
to our predecessors, the most important findings, especially bound to optical emission
spectroscopy, will be briefly mentioned.2

It is generally accepted that Sir Isaac Newton was the first one to use the term spectrum,
in his book Opticks from 1704. This term was used to describe his observation when a
thin ray of sunlight was dispersed by a prism to a specific rainbow-like structure, i.e. the
dispersion of white light into its constituent colors. Newton concluded that each colour of
light travels with a different velocity in a transparent media and is thus refracted under
different angles. This phenomenon is applied in spectroscopy when a characteristic radiation
of the emitter, i.e. light source, is studied. The spectrum of light was then a subject to an
intensive investigation and, in 1802, William Hyde Wollaston noticed dips in the intensity
of solar spectrum, i.e. the position of absorption lines, using an improved spectrometer
based on the Newton’s model.

In 1814, Joseph von Fraunhofer observed, independently on Wollaston, and assigned
absorption lines in the emission spectrum of the Sun, see Figure 1.1. A similar spectrum
can also be observed in the emission of other stellar objects. Those spectra are collectively
referred to as the absorption spectrum. Fraunhofer used spectral lines namely for measure-
ments of optical properties of transparent materials. In 1859, Gustav Kirchhoff and Robert
W.E. von Bunsen discovered that the position of lines in the spectrum (their wavelengths)
differ for individual materials. Those wavelengths coincided with the wavelength of absorp-
tion lines found in the solar and stellar spectra. It was thus obvious that the spectrum
is characteristic to each material and related to its atomic structure. In the meantime,
characteristic spectra of various materials were observed using excitation sources, such as
flame (Talbot in 1826) and spark (Volta in 1776). Those findings triggered the investi-
gation of characteristic optical emission of elements and was at the beginning of modern
spectroscopy.

The spectroscopy further evolved when, later on, the experimental findings were de-
scribed by theory. In 1860s, James C. Maxwell bound the behaviour of electric and mag-
netic field forming the electromagnetic waves by differential equations. In 1900, Max Planck

1This chapter was obtained mainly from following sources [3–5].
2At this point it is worth mentioning Jan Marek Marci (1595 – 1667), a Bohemian scientist and a

professor at the Charles university in Prague. His work included the theory that light changes colour only
by refraction and he also explained the origin of rainbow, in 1648.
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Figure 1.1: An example of the absorption lines in the spectrum of the Sun as observed by
J. von Fraunhofer, 1814. Obtained from [6]

changed the cornerstones of physics and stood at the beginning of quantum physics. In his
work, he brought a generalization of the energy in order to explain the phenomena occur-
ring in the black body radiation, i.e. to describe the distribution of its radiation. From this
point, the quantum physics developed dynamically and many groundbreaking theoretical
findings were delivered in the beginning of the 20th century. Selected historical milestones,
related namely to spectroscopy, are chronologically depicted in Figure 1.2.

The advancement in technology led to the invention of the first laser, in 1960, and the
first inductively coupled plasma instrument, in 1963. This is where the historical prologue
ends and phenomena (fundamentals of LIP, processing of obtained signal and applications
of LIBS) discussed in this thesis begin.
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Figure 1.2: This figure chronologically depicts the most important experimental and the-
oretical findings that were done from Newton’s work Opticks (1704) to the invention of
the laser (1960) and the inductively coupled plasma instrument (1963). Note that pre-
sented historical milestones, taken from [5], were selected only in respect to optical emission
spectroscopy and partly to optics and quantum mechanics. X-Ray spectroscopy was not
considered at all.
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Chapter 2

Spectroscopy in analytical
chemistry

This chapter describes techniques used for elemental analysis typically applied in analytical
chemistry and a comparison of their performance. The motivation for further development
and utilization of LIBS technique is stated, including the introduction to the LIBS instru-
mentation and applications. Considerations on the capability of hyphenated systems are
mentioned, forming future perspectives in materials’ chemical and structural characteriza-
tion.

Analytical chemistry The motivation to keep improving the analytical apparatus has
always been firm from pioneering beginnings, reviewed in chapter 1, to the present day. The
intense need drives researchers to understand natural processes in their full complexity. For
those purposes, various techniques of analytical chemistry are being developed in order to
identify and quantify the composition of matter with the highest possible accuracy.

The first issue of chemical analysis is the shift from sample to measurable signal response.
There are many alternative ways to provide sampling of the material; as reviewed in the
book of Skoog et al. [7]. Historically, most common sampling approach was devoted to
dilution of obtained material in acids. Due to the dilution step, classical wet chemistry
enabled only the analysis of sample bulk and the information about the distribution of
elements within was lost.

The second issue is embedded in the excitation of the signal regardless of the state
of matter. Basic excitation sources, flame and spark discharge, are being substituted by
modern laser sources offering a wide range of parameters and performance. Finally, new
capabilities of sampling, spot-by-spot analysis of sample surface, were gained after the intro-
duction of laser-ablation based techniques. This opened new perspectives for the chemical
analysis.

Spectroscopic techniques Spectroscopy is a vital tool of analytical chemistry and com-
plements the information obtained using optical microscopy and especially mass spectrom-
etry. I have to stress that this thesis deals solely with laser-based analytical methods,
especially Laser-Induced Breakdown Spectroscopy (LIBS), enabling qualitative and quan-
titative elemental analysis of sample surfaces. Wet chemistry prior to Inductively Coupled
Plasma Optical Emission Spectrospocy or Mass Spectrometry (ICP-OES/MS) are consid-
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ered only as reference techniques to LIBS, while Raman spectroscopy and Laser Ablation
Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) as complementary ones.

There are several basic parameters to quantify the performance of individual techniques
and related analytical systems:

∙ multielemental capability - simultaneous detection of various elements,

∙ sensitivity in the detection of trace elements,

∙ throughput related to the repetition rate,

∙ lateral resolution - number of measurements per unit area.

The output of aforementioned techniques is similar; series of signal responses originating
from various sources (e.g. an emission spectrum) is obtained from a single analysis. Thus,
it is possible to use mathematical and statistical methods and data processing algorithms
developed for an application of selected analytical technique and to transfer it to another
one. Such mathematical and statistical methods are collectively called chemometrics and
are described in detail in chapter 4.

2.1 Laser-Induced Breakdown Spectroscopy
This chapter brings preliminary motivation for the development and utilization of LIBS
as a method of analytical chemistry. Background of the LIBS technique and its history,
variety in instrumentation and applications are also briefly discussed.

2.1.1 Background

Laser-Induced Breakdown Spectroscopy (LIBS) is an analytical technique of atomic emis-
sion spectroscopy capable of real-time qualitative and quantitative elemental analysis of a
sample under investigation. A detailed description of LIBS technology, instrumentation,
theory and applications may be found in related books [8–10] and extensive review articles
[2, 11].

Constant development in instrumentation made LIBS a well-established technique with
complementary capabilities to its analytical counterparts. Over time, LIBS has trans-
formed from simply tinkered set-ups to a sophisticated instrumentation. LIBS systems are
now produced as compact hand-held devices, state-of-the-art laboratory setups and robust
stand-off systems. The sky was not a limit for LIBS and its most famous instrumental
variation became the ChemCam device on the Mars Curiosity Rover. [12–14]

LIBS has many benefits (namely repetition rate and multi-elemental capability) that are
fully exploited in large-scale elemental mapping and other applications, see chapter 2.1.3.
The biggest drawback of LIBS, i.e. the sensitivity to trace elements, is being continuously
mitigated with the advancement in technology. However, a necessity for no or minute
sample preparation became an unfortunate cliché. Surely, there is no need to prepare a
sample prior to the LIBS analysis, but this stands only in several applications. However,
the best performance is achieved for the analysis of flat surfaces of solid samples. [15]

Analyzing a sample and obtaining a set of spectra is only the beginning. Data handling
and signal processing is an inevitable part of each application and related elemental analysis.
The amount of data obtained in a single experiment is constantly rising resulting in bulky
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data sets. This phenomenon opens new challenges for further research while there is no
unified, robust approach in data processing.

In brevity, this intense demand on data processing defines the core (chapter 4) of my
thesis.

2.1.2 Instrumentation

During the decades of LIBS development, many diverse LIBS system have been introduced.
A relative simplicity of LIBS instrumentation led to a construction of compact hand-held

[16] and robust stand-off [17] analytical systems. The most famous LIBS system, the Chem-
Cam, is a part of the Mars Science Laboratory (MSL) on the Curiosity rover. [14] Industrial
LIBS systems were designed to achieve the most optimal cost-to-performance trade-off with
respect to given application and its well-known needs and limitations. [18] Lab-based LIBS
systems evolved without any restrictions and according to dreams of researchers enabling
the multi-laser pulse ablation and simultaneous multi-spectrometer detection. Finally, there
are also commercially available LIBS systems promoting LIBS between other standard an-
alytical methods and not-a-technique developed by connoisseurs.

A typical LIBS system may be divided into two essential parts: ablation and detection
units. Ablation unit consists of a laser and focusing optics which guide a laser pulse onto
the sample surface. Detection unit is further decomposed to collection optics, incl. optical
fibers, and a spectrometer equipped with a non-/intensified detector. More detailed infor-
mation about LIBS systems and individual parts are discussed by Noll [9]. Castle et al.
[19] studied variables influencing LIBS analysis and came to a conclusion that inter- and
intra-measurement precision is optimized under different conditions.

Lasers Laser source is the most essential part of each LIBS system and therefore it de-
serves special attention. Basic parameters of lasers influencing the laser-matter interaction
(see chapter 3.1) are:

∙ laser pulse duration (from ns to fs laser pulses),

∙ laser pulse wavelength (most often the harmonics of Nd:YAG),

∙ energy (from tenths to hundreds of mJ).1

∙ intesity profile of a laser pulse (typically Gaussian or flat-top),

∙ repetition rate (from units to hundreds of Hz).

Detection unit The detection unit is composed of spectrometers equipped with detectors
and other opto-mechanical parts. Basic parameters relevant to detection:

∙ optical throughput of the whole detection unit (influencing the analytical sensitivity
and limits of detection),

∙ resolving power of a spectrometer (𝜆/∆𝜆) and its spectral range,
1Energy alone is not considered to be a relevant variable when it comes to the laser-matter interaction

and laser ablation. Estimating the irradiance (the radiant flux received by unit area; in units of W.cm−2)
from laser energy and spot size is more appropriate. The irradiance is often confused with intensity, i.e.
power transferred per unit area.
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∙ readout time of the detector, its dark noise and quantum efficiency.

One of the biggest guiding principles of LIBS technology is its instrumentation flexibility.
However, it may be turned against itself into the biggest nightmare. Differences in existing
LIBS instrumentations (used laser sources, spectrometers and detectors, geometries in laser
ablation and emission collection) and their individual parameters lead to difficulties when
one wants to compare their analytical performance. Surely, the utilization of various figures
of merit (as listed in Chapter 4.5) is natural. However, compring two significantly different
LIBS systems (for instance, i) a low-cost system for the on-line detection of impurities in
plastics and ii) a high-end lab-based system) in terms of sensitivity to trace elements has
to be accepted cautiously.

2.1.3 Applications

In the last decade, LIBS has undergone a dynamic evolution and, from my personal point of
view, it finally became an established analytical method. However, it has been an arduous
journey when finding a suitable applications in order to fully make use of its potential.
Galbács [20] brought a concise review of LIBS applications regardless of the field of interest.

The benefits and namely the limitations of the LIBS technique have to be critically
evaluated when finding its suitable real-life applications. Especially, industrial applications
are demanding the performance-price trade-off to be maximally optimized. LIBS systems
find a place directly on production lines due to their instrumental simplicity and robustness.
The goal is to find an adequate distance from the sample in order to ensure the protection
of optical and opto-mechanical parts together with a sufficient solid angle for detection.

Industrial applications are ranging from the direct analysis of liquid steel slag, through
depth profiling of thin Zn-layers, to sorting of scrap material.[18, 21] Recently, sorting of
waste electronic and electrical equipment has been gaining particular attention [21, 22].
The increasing production and usage of plastics induced also new applications of LIBS
for sorting of plastic material and quality control with respect to the trace analysis of
toxic metals.[23] In civil engineering, LIBS outperforms other analytical methods in direct
detection of chlorine on the structure surface which is correlated to the level of concrete
corrosion.[24] Geology provides an endless number of sample matrices to be classified [25].
The robustness of LIBS instrumentation is proved by its in-situ implementation on conveyor
belts or stand-off devices; such as ChemCam device on Mars Curiosity rover [14].

LIBS is being intensively developed in biological applications and for a detection of
various chemical substances; this is also influenced by its unique capability to detect major
organic elements (i.e. C, H, O, and N). This advantage is employed in the classification
of artificial chemical products; such as plastics[23] or explosives[26]. Identification and
quantification of biological samples was studied in the case of bacteria [27], algae [28],
plants [29, 30], and food products [31].

Most recently, medical and clinical applications have been of a particular interest.[32–
34] LIBS is capable to provide elemental mapping of large scale areas with a high lateral
resolution, whole slide imaging. Elemental imaging provided by using LIBS is being ex-
ploited across applications, see a selection in Figure 2.1. This makes LIBS analysis a vital
alternative to current analytical solution with complementary performance.

In my personal opinion, mapping of large surface areas will become an essential part
of elemental analysis and will be a prominent advantage of LIBS method. Thus, a further
improvement in the LIBS performance, namely repetition rate, are inevitable.
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Figure 2.1: A) Photograph of the front side of a printed circuit board from a mobile phone
(left) and raster scan in false colours of spectroscopic signatures of tantalum (right). Ob-
tained from [21]. B) Cross section of a concrete sample (left) and element distributions
(standardized intensities) of sodium and chlorine (middle and right). Obtained from [35].
C) Aluminum accumulation in skin reactions to Al-adsorbed immunotherapies. Histopatho-
logical morphology of a cutaneous granuloma (left) with corresponding elemental images.
Obtained from [36].

2.2 Hyphenated Systems
Progress in instrumentation and data processing enables a less demanding utilization of
individual techniques. Their benefits are combined together in the so-called hyphenated 2

systems in order to overcome their individual drawbacks.
Nowadays, coupling of individual techniques is done by using separate systems. How-

ever, there are plenty of efforts to deliver instrumental solutions enabling a spectroscopic
analysis with more than one technique. Thus, hyphenated systems are getting an increasing
popularity and are being intensively developed. Hyphenated analytical systems have been
reviewed elsewhere [2, 20].

The utilization of more techniques for investigation of the same set of samples provides
more complex information as well as data that have to be processed. In this chapter, I
describe three main combinations that I deal with. Thus, I refer mainly to publications
that I have co-/authored. Despite that, obstacles to be overcome in the implementation of
selected combinations as well as in the consecutive data processing are rather general and
give foundations for further work.

There are other combinations that are being developed but they are out of scope of
this thesis and out of the capacities of RG1-6 at CEITEC. One of such combinations is
the laser ablation LIBS (LA−LIBS); it might be rather considered as a tandem system.
It is being developed by Prof. David W. Hahn from the University of Arizona, US-AZ

2Note that I have adopted the term hyphenated systems from [2]; it is used to describe systems where
LIBS is coupled together with other analytical techniques to enhance the power of obtained information.
The combinations of techniques that are using the same source3 should be called tandem systems; such as
LA−LIBS and LIBS−LA-ICP-MS.
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(formerly University of Florida, US-FL) [37]. In this case the matter is pre-ablated and the
aerosol is led to the interaction region where it is blasted with another laser pulse in order
to induce plasma and consecutively to detect its optical emission. Such sampling enables
to significantly mitigate matrix effect.

2.2.1 LIBS−LA-ICP-MS

In brevity, I describe the tandem LIBS−LA-ICP-MS technique. Their combination has
been developed for past decade [29]. LIBS is gaining a stronger position; maturing to be
an adequate source of information complementary to LA-ICP-MS.

Tandem utilization of both techniques is naturally centered around the source itself, the
laser ablation of matter. Both techniques share the same plasma plume but each of them
demands a different approach for spectroscopic feedback. In LIBS, plasma has to reach high
temperature and excitation while hovering over the ablation spot; this enables an effective
collection of characteristic emission. On the other hand in LA-ICP-MS, plasma plume is
dragged by a carrying gas away from the interaction region into the ICP itself.

The quality of a laser-induced plasma and its parameters that is demanded by both tech-
niques essentially differs. Contradictory experimental parameters force further restrictions
on the ablation process which then becomes a trade-off between pure LIBS and LA-ICP-MS.
This phenomenon was also of a paramount interest in our recent publication [38]; where
the process of laser ablation was investigated with respect to the quality of aerosol formed.
Moreover, the construction of the laser ablation cell enabling optical emission and mass
collection is then more challenging. Thus, potential benefits of LIBS−LA-ICP-MS tandem
is of intense discussions in the spectroscopic community.

From the analytical point of view, the combinaion of LIBS and LA-ICP-MS, both deliv-
ering elemental information, seems redundant. Yet still, both methods are developed into
one tandem system. In general, LIBS is used for a detection of halogens, light elements
(such as Li, Be, Mg) and macro-elements found in organisms (C, H, N, O, P, and S). LA-
ICP-MS provides a sensitive detection of trace elements, such as metals in cross-section of
soft tissues. The application of LIBS−LA-ICP-MS tandem was intensively studied by the
group of Dr. Limbeck from the Technical University of Vienna, [39–41].

2.2.2 LIBS−Raman

Raman spectroscopy provides information about the molecular composition of the investi-
gated sample. Briefly about Raman spectroscopy[42]; laser pulse illuminates the sample (or
a region on its surface) and excites chemical bonds between atoms. Those chemical bonds
then tend to vibrate and rotate. The frequency of laser photons is shifted by a certain
amount with respect to the inelastic scattering induced by the interaction between photon
and chemical bond. Molecular analysis is obtained from a detected optical spectrum, where
the Raman shift is related to the type of chemical bond as a sort of fingerprint.

The combination of laser-based spectroscopic techniques is, thus, evident. LIBS, as a
quasi-destructive technique, is applied after Raman scanning. The information obtained by
using LIBS and Raman systems is complementary (elemental and chemical composition).
Thus, the usage of LIBS−Raman hyphenated system provides complete chemical informa-
tion about the investigated sample. Moreover, the combination of LIBS and Raman into
one system with only one high-frequency pulsed laser is at hand since a Raman system
utilizing gated detectors was introduced [43]. Lin et al. [44] tracked the development of
LIBS and Raman hyphenated systems and foresaw its main future application in the field
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analysis. In our review article [28], the potential utilization of combined LIBS−Raman
systems, including LA-ICP-MS, was dissected with respect to the analysis of algae.

Applications of a LIBS−Raman system range from biology to mining. The biggest ad-
vantage that can be yielded from this system is when Raman spectroscopy detects changes
in the molecular composition of a system as a response to a change in elemental compo-
sition; and vice versa. This was demonstrated in my feasibility study [45] where the ratio
of saturated and unsaturated fatty acids in selected algal strains was indirectly related to
Pb-nutrition stress. In another study [46], analytical performances of LIBS and Raman
techniques were combined to achieve an improved detection of fluorine in a mineral sample.
The detection of fluorine is challenging for other techniques, also in LIBS it is most conve-
niently detected via a molecular band (CaF) that is formed in later stages of laser-induced
plasma formation. Raman spectroscopy was used to provide a reference analysis.

Lastly, Prochazka et al. [47] used LIBS−Raman hyphenated system for the classifica-
tion of bacteria. A significant improvement in classification accuracy was achieved when
LIBS and Raman spectra were merged together. Here, we arrive to the issue that has
not been solved yet - processing of merged data set. A similar approach was also used
by Hoehse et al. [48]; LIBS and Raman spectra were simply merged in their raw format
prior the classification of inks. However, this injudicious data processing step opens fur-
ther discussion. LIBS and Raman epectra significantly differ in their backround and peak
intensities, composition of spectral lines and bands, etc. This further extends requirements
of data pre-/processing raised in chapter 4.

2.2.3 LIBS−XCT

In the previous two chapters, a combination of laser-based spectroscopic techniques was
introduced, which provides complete elemental or even chemical information. A next step
dwells in structural information which might be reached by using tomographic techniques;
for instance X-Ray Computed Tomography (XCT).

Basically, a sample is exposed to X-Rays from consecutive directions resulting in im-
ages with varying degrees of absorption. Obtained images are then reconstructed using,
for instance, the Radon transform. The volumetric information is then disassembled into
individual parts via a tedious segmentation process. This serves as a basis for further in-
vestigation; XCT images are used to guide consecutive sample preprocessing in order to
provide chemical mapping of regions of interest.

To the best of my knowledge, one of the first pioneering works in this particular field
of development were delivered by Kaiser et al. [49, 50]. The synchrotron X-Ray source
was used in their early work to achieve structural information distributed in 3D images
of investigated objects. First, the uptake of toxic metals (Cd and Pb) in vegetal tissues
of various species was checked using synchrotron-XCT (distribution of metals in plants)
and consecutively using femtosecond LIBS (elemental analysis of hot-spots). [49] Second, a
deformation of snake vertebrae was investigated. [50] It was confirmed that the deformation
was a result of bone sickness; deficiency of calcium and abundance of phosphorus. In our
recent study [51], lab-based XCT was utilized to provide 3D imaging of a Pb-baring mineral.
Sample was fixed in epoxy and its surface was polished for LIBS analysis. LIBS map and
respective XCT slice were then compared to ascertain the presence and location of Pb in
the mineral, see Figure 2.2. After the segmentation of XCT data and confirmation by using
LIBS, total volume of Pb inclusions were determined.
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Finally, the work of Galmed et al. [52] delivered a combination of LIBS and XCT. In
this case, XCT served as a source of supplementary information in the investigation of LIBS
ablation craters.

Figure 2.2: A sample of images obtained by using LIBS−XCT hyphenated system; a)
chemical map of lead depicted as the intensity of spectral line Pb I 405.78 nm and b)
tomogram top cross section. The orientation and size of both images were adjusted to
fit together. The spots on the tomogram image with higher density (related to Pb) are
depicted in white. The X and Y axes in both images are in millimeters and the intensities
in the elemental map represented in the color bar are in arbitrary units. Obtained from
[51].
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Chapter 3

Theory of laser-induced plasma

Before I get to the discussion over the data processing, I would like to describe the source
of our signal (spectroscopic data) - the Laser-Induced Plasma (LIP). I believe that it is
absolutely crucial to understand its behavior and estimate its properties. Note that this is
in contract to the heuristic approach discussed later in the chemometrics chapter, chapter
4.4.

The motivation to this chapter may be postulated with the need for an accurate (quan-
titative) analysis. In order to achieve this, LIBS experiment has to meet following require-
ments [8]:

∙ a LIP has to be a product of a stoichiometric ablation,

∙ a LIP has to be found in the local thermodynamic equilibrium (LTE),

∙ spectral lines have to be optically thin.

Individual requirements will be step-by-step introduced and discussed in detail with refer-
ences to classic literature sources.

Note that in this chapter I chiefly consulted LIBS books by Miziolek et al. [8] and Noll
[9], LIBS-related reviews of Hahn and Omenetto [2, 11] and Russo et al. [53], and namely
books on plasma spectroscopy by Griem [54, 55], Ingle and Crouch [56], and Fujimoto [57].

3.1 Laser-induced plasma
Plasma is generally considered to be the fourth state of matter. As Fujimoto expresses in
the introduction to his book Plasma spectroscopy [57], plasma is an environment in which
the particles co-exist. It influences their quantum behaviour, which leads to variation in
their parameters and quality of detected spectral lines (intensities, spectral shift, etc.).
In turn, detected signal provides information about the plasma (plasma diagnostics) and
sample (qualitative and quantitative analysis).

Before I start with the introduction to the laser ablation, I would like to state several
assumptions and, thus, reduce the number of parameters involved in the laser-matter in-
teraction mechanisms. First, my thesis is focused solely on the analysis of solid samples
with pretreated flat surfaces. Second, laser ablation induced only by using nanosecond laser
pulses is considered. Laser sources generating nanosecond pulses are predominantly utilized
in typical LIBS experiments. Recently, femtosecond laser sources have become popular for
their supreme ablation performance and reducing costs. The femtosecond laser ablation
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undergoes significantly different mechanisms compared to the nanosecond one. The power
is transferred faster to the material resulting in the Coulomb explosion. Consult following
articles [58, 59] for a detailed description of femtosecond laser ablation.

Laser ablation LIBS is a laser-ablation-based technique and the sampling is provided
by using a pulsed laser source. Thus, in this section, I circle around the process of laser
ablation and optical breakdown.

The simplification of the LIBS principle and related laser ablation is depicted in Figure
3.1.[9] High power laser pulse is delivered to the sample surface 3.1(1), energy is coupled
to material during the duration of the pulse. Material starts to melt down and evaporate
into its surrounding environment 3.1(2-3). Still persistent laser pulse heats up the vapor
and luminous laser-induced plasma (LIP) is generated 3.1(4). Species within the plasma
plume undergo mutual collisions, get excited and emit characteristic radiation 3.1(4-7).
Plasma plume spreads freely into its ambient surroundings, cools down and decays 3.1(8).
An ablation crater is left after analysis on the sample surface. Species formerly forming a
LIP are removed from the interaction area naturally driven by their own motion or dragged
away by an external flow of gas.

Figure 3.1: The schematic principle of laser ablation and plasma formation occurring during
the LIBS analysis. LB = ablation laser pulse, S = sample, H = region of energy deposition,
V = material vapor, P = plasma, E = element-specific emission, CR = crater, PT =
particles. The times given depict the temporal evolution after the impact of laser pulse on
the sample surface. Obtained from [9].

Russo et al. [53] delivered a concise description of the laser ablation process with regards
to LIBS experimental parameters. Fast and dynamic mechanisms of laser ablation occur
over a short time period; typically, the duration of a nanosecond laser pulse. They defined
four thresholds with respect to the irradiance, the laser intensity coupled to material. Those
thresholds characterize different changes in the ablation mechanisms.1

Laser-matter interaction and consecutive laser ablation is a product of experimental
parameters (e.g. laser pulse wavelength, duration, and energy; ablation geometry and spot
size; physical and chemical properties of a sample under investigation; ambient environment;
etc.) Those parameters have a significant impact on the ablation and plasma formation, its

1The last two cases discussed in the review of Russo et al. [53] are not of interest to this thesis, since the
laser pulse duration and intensities are out of formerly defined scope. However, they predicted femtosecond
lasers to be significantly reducing the impact of the matrix effect and fractionation due to a fast LIP
formation through Coulomb explosion. In turn, those sources are more suitable for stoichiometric ablation.
As it turned out, the supreme performance of fs-lasers in LIBS was proved. [59]
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parameters and quality of detected spectra. Several laser-related parameters have already
been listed in chapter 2.1.2. The most important parameters seem to be the irradiance
as Hahn and Omenetto [11] commented: ”The ablation process has a complex convoluted
dependence on both the pulse energy and the pulse duration.“ Thus, it is necessary to consider
not only the total energy coupled to the interaction region but also the rate at which it was
done.

First of all, the irradiance has to reach a certain level in order to start the process of
ablation, i.e. ablation threshold.2 The absorption of photons by free or bound electrons
within the sample is considered to be the onset of laser ablation process. The energy is then
transferred from electrons to the lattice through mutual collisions and the lattice heats up.
The sample is irreversibly damaged3 when the melting temperature is exceeded. Species
from melted spot then get vaporized and the dense vapor forms a plume surrounded by
ambient environment.

The optical breakdown of solid materials is initiated by the inverse Bremsstrahlung
or multiphoton ionization, depending on the pressure/density of the vapor plume.[8, 53]
Both processes are followed by the avalanche or cascade ionization of the ablated material.
The ionization of the plasma plume is a result of the absorption of the laser energy by
evaporated electrons and collisions with atoms in the plasma plume. This takes place when
the electrons’ kinetic energy exceeds their ionization potential.

If the irradiance is further increased, the ionized plasma plume causes a shielding effect
and in turn reduces the ablation efficiency, see also [11]. Another increase of irradiance
leads to the critical thermodynamic point of the material, see [53]. When the sample surface
temperature approaches the critical temperature, vapor bubbles are generated within the
melted material. The ablation of melted material into vapor is then accompanied by an
ejection of melted droplets.

The expanding plasma plume absorbs laser intensity, grows and the atoms which are
inside get ionized. Laser wavelength has an impact on the coupling of the energy. Longer
wavelengths are easily absorbed by the plasma plume while the absorption is a function of
the square of the wavelength. Moreover, as Miziolek et al. [8] suggests, the laser wavelength
may have an impact on the ablation threshold. At this point I consider the plasma plume
to be fully generated. Further discussion over the evolution of LIP follows in the section
below.

Going back to the onset of laser ablation, the properties of ambient environment and
mainly the sample itself has to be mentioned. The pressure of various environments
surrounding the ablated material acts as a natural spatial confinement for the plasma
plume.[60] Under vacuum conditions4, the expansion of the plasma plume is not restricted
and the pear- or cigar-shape of the plume spreads freely into the surrounding space.

From another perspective, physical parameters of a sample and its chemical composition
contribute to the complexity of laser ablation mechanisms. The contribution of physical and
chemical properties is collectively described by the matrix effect. Surely, the cliché of no
sample preparation is fortunately forgotten. Jantzi et al. [15] delivered a thorough review
about strategies in preparation of various samples and their impact on consecutive LIBS

2Working with under-threshold irradiances enables to study laser-matter interaction and energy coupling,
as commented by Russo et al. [53].

3Due to the low amount of material ablated with one pulse (typically less then a microgram), the laser
ablation is considered to be quasi-non-destructive.

4Vacuum LIBS conditions are typically considered for reduced pressure to circa 1 mbar. Below this
pressure, a LIP expands dramatically when quickly losing energy.
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analysis. For the sake of brevity I consider the physical properties (surface roughness and
hardness) as uniform during the whole sample set and I will not consider them at all in this
thesis. However, chemical composition has a significant impact on the laser ablation.[8, 11]
Over decades, an extensive investigation is in continuous process in order to deliver means
to mitigate and overcome the matrix effect; one of them is also the signal standardization
discussed in chapter 4.1.2.

Finally, there is a necessity to reach stoichiometric ablation, i.e. to avoid any frac-
tionation. Fractionation biases the chemical analysis while the obtained LIP emission is
not characteristic of the sample composition. Russo et al. [53] states that the fractionation
occurring during laser ablation is a function of laser irradiance. The stoichiometric ablation
occurs for laser intensities over GW/cm-2, conditions met in a typical LIBS experiment.[8]
A more detailed discussion on the stoichiometry can be found in [61]

Evolution of Laser-Induced Plasmas The mechanisms of laser ablation as a function
of laser intensity and of the formation of a plasma plume were discussed above. The
complexity of laser-matter interaction significantly influences further expansion, evolution
and decay of a LIP. The pulsed laser ablation makes the processes involved in plasma
evolution dynamic and short in persistance. The description of evolutionary stages of a
LIP is bound to its thermodynamic properties, temperature and number density. Detailed
description can be found in [8, 9].

When the plasma plume is formed it immediately starts to expand from the interaction
region with velocities reaching 106 cm/s. The persistence of a LIP is in units to tens
of microseconds during which it emits analytically insignificant radiation (continuum and
Bremsstrahlung), which occurs namely in the beginning of LIP persistence. The temporally
resolved detection is optimized to avoid disturbing radiation and to reach the best possible
signal-to-noise or -background ratios. The gating is, however, a trade-off between intense
spectral lines sitting on high background or lower intensity spectral lines with mitigated
background contribution.

Imaging plasma morphology and their spatial-temporal evolution is of interest to many
researchers using various techniques, from high-speed photography through shadowgraphy
to tomography. Plasma created with pulsed sources show distinct inhomogeneity and tem-
perature and electron density gradients. The heterogeneity of elemental distribution within
plasmas is also present. Bai et al. [62] proved the inhomogeneity in elemental distribution
within a LIP using narrow spectral filters. The extension of this study shown the differences
in plasma generated under various ambient gases (air and argon). Eschlböck-Fuchs et al.
[63] provided a tomographic study using the Radon transform of double pulse LIPs. They
have shown that the two-pulse technique improved the spatial homogeneity of the plasma.
This is a promising result for further research of multi-pulse LIBS analyses.

Local Thermodynamic Equilibrium The species in the LIP are described by their
kinetic, excitation, ionization and radiative energies; all of them following respective distri-
bution (Maxwell, Boltzmann, Saha and Planck).[8] If all the distributions are determined
with the same temperature 𝑇 , then the plasma is found to be in a complete thermodynamic
equilibrium. Such ideal conditions can be met only for stationary, stable and homogeneous
plasma sources; none of which is the case of laser-induced plasmas.

Disequilibrium, a deviation from complete thermodynamic equilibrium, occurs and col-
lisions between species forming up the plume are a dominant mechanism. This is typical
for LIP sources, such as the case of LIBS plasmas. Those plasmas are found in the state
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called local thermodynamic equilibrium (LTE). The most frequently used criterion to ensure
the existence of LTE in a LIP is the McWhirter criterion [11]:

𝑛𝑒 ≥ 1.6 · 1012
√
𝑇 (∆𝐸)3, (3.1)

where 𝑛𝑒 (cm-3) is electron density, 𝑇 (K) is thermodynamic temperature and ∆𝐸 (eV) is
the highest possible energy transition for which the condition holds. This criterion demands
the collision rate to be at least ten times higher than the radiative rate.

The McWhirter’s criterion is used to ascertain whether the LIP is in LTE. However,
Hahn and Omenetto [11] stressed that the criterion was derived for stationary, homogeneous,
and optically thin plasmas. Therefore they urged to abandon this criterion as a proof of
LTE.

Optical thickness The last requirement stated in the beginning of this chapter that
demands further discussion is the optical thickness of a LIP.[9, 11]

A LIP is non-homogeneous with gradient distribution of temperature and electron den-
sity. This suggests that the core of a plasma plume has higher temperature compared to
plasma envelope. The excitation of species is then more frequent within the plume core.
Emitted radiation passes through the regions of cold plasma and can get absorbed by
species of the same element. This phenomenon is called self-absorption and is reflected in
the emission spectrum of the affected line by deviations from the theoretical line profile. A
dip in the center of the line appears for extreme cases of self-absorption, i.e. self-reversed
lines.

The rate of absorption is given by the self-absorption factor 𝐾𝜈 (no units) [11]:

𝐾𝜈 ≡ 𝜏𝜈
1 − exp [−𝜏𝜈 ]

, (3.2)

which is a function of the optical depth 𝜏𝜈 (no units):

𝜏𝜈 = 𝑘*𝜈 ℓ, (3.3)

where 𝑘*𝜈 (cm-1) is the absorption coefficient including the stimulated emission and ℓ (cm)
is the length of the plasma along the axis of observation/detection. If 𝜏𝜈 ≪ 1 than the
plasma is optically thin to the emission line of interest; otherwise the plasma is considered
to be optically thick.

The self-absorption is more significant in the case of resonant lines originating as the
transition from excited level to the ground state. Thus, resonant lines should be used only
cautiously for any further analysis. The influence of the optical depth with respect to
emission of spectral lines was studied by Aragon et al. [64] with perspective of estimating
the degree of their self-absorption.

3.2 Spectrum and emission lines
A spectral line is an intense peak in the detected continuum5 emission spectrum of a LIP.[8]
In LIBS plasmas only neutral and singly ionized atoms are present together with molecules
formed in later stages of LIP evelution. Spectroscopic analysis of detected spectrum pro-
vides qualitative and quantitative analysis of the sample composition.

5A result of Bremsstrahlung and electron-ion recombination.
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A spectrum of Laser-Induced Plasma As I have discussed, a LIP is considered as a
source of emission. This emission is detected over the spectral range of interest. Obtained
spectrum is a combination of atomic and ionic spectral lines lying on the background
continuum.

The emission mechanisms of electrons, ions and atoms are not strictly divided during
the LIP persistence and their spectral features are combined. If the stoichiometric ablation
is considered, the spectrum provides reliable qualitative and quantitative information about
the elemental composition of the sample under investigation. The quality of a LIP spectrum
depends on laser-matter interaction and experimental parameters as discussed above.

Typical LIP spectrum is:

∙ sparse - spectral features are overloaded with the background noise,

∙ redundant - each element can be detected on various wavelengths,

∙ time dependent - the composition of detected spectrum changes during the LIP
evolution,

∙ multi-elemental - wide range of elements is concurrently detected,

∙ chemical fingerprint - spectrum represents the sample from which the LIP origi-
nated.

Line emission The emission of a LIP is dependent on interrelated parameters that may
be factored out. The signal 𝑆 (counts) of an analyte atom or ion is then expressed as follows
(obtained from Miziolek et al. [8]; chapter 3):

𝑆 = 𝐴𝑗𝑖𝑓𝑖𝑛𝑡𝑓𝑒𝑥𝑐𝑓𝑑𝑒𝑡, (3.4)

where 𝐴𝑗𝑖 is the Einstein coefficient of the transition from the upper level 𝑗 to the lower
level 𝑖. 𝑓𝑖𝑛𝑡 is a function of parameters collectively describing the laser-matter interaction
and consecutive laser ablation of matter. 𝑓𝑒𝑥𝑐 describes mechanisms leading to the excita-
tion/ionization of atomic or ionic species of an analyte and their consequent emission. The
function 𝑓𝑑𝑒𝑡 characterizes the radiation environment and the optical thickness of a LIP.
This enigmatic equation shows that the detected spectral line carries not only the qualita-
tive and quantitative information about the sample composition but also other information
describing the properties of laser ablation and the properties of plasma itself.

More rigorous description of obtained signal is given by Noll [9]; chapter 9. The intensity
of line emission is given as:

𝐼𝑗𝑖 = 𝑁 𝑧
𝑎 𝐴𝑗𝑖

𝑔𝑗
𝑢𝑧𝑎(𝑇 )

e−
𝐸𝑗
𝑘𝑇 , (3.5)

where 𝑁 𝑧
𝑎 is the density of species 𝑎 with charge 𝑧; 𝑔𝑗 is the statistical weight of upper

level 𝑗; 𝑢𝑧𝑎(𝑇 ) is the partition function6 of species 𝑎 with charge 𝑧; and 𝐸𝑗 is the energy of
upper level 𝑗. This relation intrinsically contains the Boltzmann distribution relating the
population density of excited level 𝑗 of species 𝑎.

6The partition function 𝑢𝑧
𝑎(𝑇 ) of species 𝑎 with charge 𝑧 is expressed as follows [9]:

𝑢𝑧
𝑎(𝑇 ) =

𝑖=𝑛*∑︁
𝑖=1

𝑔𝑧𝑎,𝑖 exp [−
𝐸𝑧

𝑎,𝑖

𝑘𝑇
], (3.6)

where 𝑖 = 1 denotes the ground state and 𝑖 = 𝑛* the highest level which is still bound.
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The equation 3.5 is related to the line emission coefficient 𝜖𝜈.dΩ𝑗𝑖 as follows:

𝜖𝜈.dΩ𝑗𝑖 =
1

4𝜋
Γ(𝜈) ℎ𝜈𝑗𝑖 𝐼𝑗𝑖, (3.7)

where Γ(𝜈) is the line profile as a function of the frequency, ℎ𝜈𝑗𝑖 is the energy of the
transition from upper level 𝑗 to a lower one, 𝑖. The unit of 𝜖𝜈dΩ

𝑗𝑖 is W/(m3 sr s−1). The line
profile function Γ(𝜈) is normalized as follows:∫︁ +∞

−∞
Γ(𝜈)d𝜈 = 1. (3.8)

Line broadening From theory, the transition between energy levels is equal to exact
energy difference and, in turn, the line profile should be described with a delta function.
This is, however, not the case in real spectra obtained during spectroscopic analysis.

The line profile function Γ(𝜈) depends on the broadening mechanisms involved. Several
broadening mechanisms might be considered; they are in detail described elsewehere [9, 55–
57]. However, not all of them have relevant impact on the broadening of LIP spectral lines.

Natural broadening is a result of the uncertainty principle relating the lifetime of the
transition to the uncertainty in the energy, or intrinsically to the frequency/wavelength.
Radiative lifetime of a transition is inversely proportional to the Einstein coefficient as
𝜏𝑟 = 𝐴−1

𝑗𝑖 . The Einstein transition probabilities of atoms/ions in the LIP are in the range
from 106 s−1 to 108 s−1. The full width at half maximum (FWHM) of a spectral line is
then from 10−3 nm to 10−5 nm, respectively. Thus, natural broadening is usually negligible
in typical LIBS experiment.

Doppler broadening assumes that emitting species within the LIP are in constant move-
ment along the observation path. The emitter velocities follow the Maxwellian distribution;
for one-dimensional case the distribution becomes Gaussian. As adapted from Griem [55],
the line half-width induced by the Doppler broadening is then:

𝜈𝐷 =

√︂
2𝑘𝑇

𝑚

𝜈𝑚
𝑐
, (3.9)

where 𝑘 is the Boltzmann constant, 𝑐 is the speed of light, 𝜈𝑚 is the frequency at the line
center, 𝑇 is the temperature of the emitter and 𝑚 its mass. The FWHM is obtained as
∆𝜈𝐷 = 2

√
ln 2 𝜈𝐷. The line profile function Γ(𝜈𝐷) is then also Gaussian and reads:

Γ(𝜈𝐷) =
1√
𝜋𝜈𝐷

exp [−(
𝜈

𝜈𝐷
)2], (3.10)

where 𝜈 is the frequency detuning.
Pressure broadening represents a set of mechanisms that are contributing to the broad-

ening of a spectral line; literature sources provide a somewhat non-rigorous description
of involved mechanisms. Griem [55] introduces the pressure broadening as a Stark effect
caused by perturbers7 in the proximity of the emitter. On the other hand, Fujimoto [57]
describes the pressure broadening mechanism as a collision of plasma particles with emit-
ters. During this collision, electric field is induced at the emitter resulting in a frequency
shift.

7Electrons and ions nearby the emitting species are, in this case, collectively considered as perturbers.
They induce the so-called linear Stark effect. Their collective fields represented with plasma waves are
associated with the quadratic Stark effect.
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Pressure broadening results in the Lorentz line profile Γ(𝜈𝐿) as follows [55]:

Γ(𝜈𝐿) =
𝜈𝐿 / 𝜋

𝜈2𝐿 + (𝜈 − 𝑑)2
, (3.11)

where 𝜈𝐿 is the half width at half maximum (HWHM) and shift 𝑑. Finally, pressure
broadening is a dominant mechanism and, thus, is typically used in order to estimate the
electron density of a LIP. [56]

Instrumental broadening reflects the diffraction of collected plasma radiation on op-
tomechanical parts of the instrument itself. It may be estimated by using a certified light
source with known emission spectrum. However, in LIBS, usually it is not considered as
a contributing broadening mechanisms. More concise information on the investigation of
broadening mechanisms from the perspective of LIBS is given by Hahn and Omenetto [11].
The broadening mechanisms are divided according to a criterion whether or not the line
profile is homogeneously broadened.[56] Natural broadening is always homogeneous; but
Doppler and pressure broadening might also be inhomogeneous depending on the duration
of disturbance of energy levels.

Naturally, the broadening mechanisms occur concurrently and their contribution to the
overall broadening is combined. If the individual broadening mechanisms are statistically
independent then their combination is given as a convolution. The convolution of Gauss
and Lorentz line profiles is the Voigt profile that reads as [56]:

Γ(𝜈𝑉 ) = Γ(𝜈𝐷)𝑚 𝛿(𝑎, 𝜈𝑟), (3.12)

where Γ(𝜈𝐷)𝑚 is the maximum Doppler broadening given by relation 2
√
ln 2

𝜈𝐷
√
𝜋

. The quantity
𝛿(𝑎, 𝜈𝑟) is the Voigt integral expressed as:

𝛿(𝑎, 𝜈𝑟) =
𝑎

𝜋

∫︁ +∞

−∞

exp (−𝑦2)

𝑎2 + (𝜈𝑟 − 𝑦)2
d𝑦, (3.13)

where 𝑦 is an integration variable. 𝑎 is the damping parameter and gives the ratio of Lorentz
and Doppler half-widths:

𝑎 =
√

ln 2
𝜈𝐿
𝜈𝐷

, (3.14)

and 𝜈𝑟 is the relative frequency is respect to 𝜈𝐷:

𝜈𝑟 =
2
√

ln 2(𝜈 − 𝜈𝑚)

𝜈𝐷
. (3.15)

Discussed line profiles are depicted in Figure 3.2.

3.3 Thermodynamic properties of Laser-Induced Plasma
Estimation of plasma properties, electron density and plasma temperature, is a standard
application of spectroscopy.[55] In each case, many alternative approaches exist; their uti-
lization often demands the knowledge of the other parameters. This leads to iterative
estimation of electron density and temperature and consecutively improving their deter-
mination. However, it is more practical to compare obtained and synthetic spectrum. In
this case, synthetic spectrum is built based on chosen thermodynamic parameters until a
satisfactory fit is reached.

Overall, it is recommended to use multiple approaches and compare obtained values.
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Figure 3.2: Normalized Gauss and Lorentz profiles. Depicted together with the Voigt profile
as a product of the convolution of former two. The 𝑥-axis denotes frequency, 𝑦-axis denotes
line profile as a function of frequency. Obtained from [55].

Number density It is necessary to obtain at least one spectral feature (spectral line
width, absolute continuum intensity, absolute or relative line intensity) in order to determine
the electron number density of a LIP.[55]

As the first options, the Stark effect is beneficially utilized to estimate the electron
number density of a LIP. In this case, the pressure broadening is dominating mechanism
in the line profile broadening or its contribution to the overall broadening is estimated; for
instance, by means of deconvolution. As Hahn and Omenetto [11] highlighted, the linear
Stark effect is reflected in the broadening of hydrogen lines and the quadratic Stark effect
is considered for non-hydrogen spectral responses. They have also noted that all hydrogen
lines have already been used to solve this issue; e.g. H𝛼 = 656.285 nm, H𝛽 = 486.133 nm,
H𝛾 = 434.047 nm.

Stark broadening of a spectral line given as FWHM is following[9]:

∆𝜆𝑆𝑡𝑎𝑟𝑘 = 𝑊FWHM(
𝑛𝑒

1016
), (3.16)

where 𝑊FWHM is the electron impact half-width and 𝑛𝑒 is the electron number density.
This measure is temperature dependent and is tabulated in the book of Griem [54].

The second possible way of electron number density estimation is the Saha-Boltzmann
method. This method demands the LIP to be in an LTE.[8] When this condition is met
then the electron number density is obtained from the ratio of two spectral lines of the
same element with different ionization stages.
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Temperature As in the case of electron number density, there are alternative approaches
to the estimation of plasma temperature. It is, however, necessary to distinguish between
kinetic temperatures of electrons 𝑇𝑒, ions 𝑇𝑖 and atoms 𝑇𝑎, while these temperatures may
essentially differ.[55]

Assuming that the condition for LTE is satisfied, the plasma temperature can be esti-
mated from the spectral lines’ intensities of the same element and ionization stage. There
is only the need to choose spectral lines close to each other and with the biggest possible
energy difference of upper levels. The plasma temperature is then calculated as [8]:

𝑇 =
𝐸𝑖 − 𝐸𝑚

𝑘 ln
𝐼𝑛𝑚𝑔𝑗𝐴𝑗𝑖

𝐼𝑗𝑖𝑔𝑛𝐴𝑛𝑚

, (3.17)

where 𝜆𝑗𝑖 and 𝜆𝑛𝑚 are two lines of the same species with significantly differing upper energy
levels, 𝐸𝑗 ̸= 𝐸𝑛.

The Boltzmann plot method is the most popular approach in the determination of plasma
temperature. This method builds on the Boltzmann distribution describing the population
of individual energy levels of an element. The equation 3.5 may be further altered to the
so-called Boltzmann plot equation that reads as follows [8]:

ln
𝐼𝑗𝑖

𝑔𝑗 𝐴𝑗𝑖
= ln (

𝑁 𝑧
𝑎

𝑢𝑧𝑎(𝑇 )
) − 𝐸𝑗

𝑘𝑇
. (3.18)

When plotting the left-hand side of this equation as a function of 𝐸𝑗 , the slope has the
value of − 1

𝑘𝑇 .
More advanced approach relies upon the so-called Saha-Boltzmann distribution that

relates ionic and atomic populations of the same species. As in the former case, the distri-
bution relation can be altered to the form of a linear regression as follows[8]:

ln (
𝐼II
𝑗𝑖𝐴

I
𝑛𝑚𝑔I

𝑛

𝐼I
𝑛𝑚𝐴II

𝑗𝑖𝑔
II
𝑗

) = ln (
2(2𝜋𝑚𝑒𝑘𝑇 )3/2

𝑛𝑒ℎ3
) −

(𝐸𝑖𝑜𝑛 − ∆𝐸𝑖𝑜𝑛 + 𝐸II
𝑗 − 𝐸I

𝑛)

𝑘𝑇
, (3.19)

where superscripts I and II relate parameters to atomic and ionic species, 𝐸𝑖𝑜𝑛 is the first
ionization potential, ∆𝐸𝑖𝑜𝑛 is the lowering correction parameter and 𝑚𝑒 is the electron
mass.

26



Chapter 4

Processing the emission signal

This chapter is the core of my thesis and therefore I would like to put it into a wider context
including future perspectives and challenges in upcoming years.

In this chapter I discuss basic statistical apparatus describing obtained data (signal),
means of data preprocessing and its impact on results (figures of merit). I make conclusions
and recommendations that fit the LIBS experiment; however, this is not limiting factor for
their implementation in processing of data obtained using other analytical techniques. This
topic is also discussed in my articles, in the Appendix A of this thesis.

It has to be kept in mind that any data handling influences the structure of the data
(its eigenstructure) and relationships between data points [65].

Obtained data, i.e. individual spectra, are detected in their raw form which is then a
subject of further data handling and processing. Obviously, in raw spectra, the intensity is a
function of the wavelength. The manipulation with detected spectra follows algorithms that
are not strictly given and thus significantly differ between application or research groups,
or even both combined. Thus, there is no golden standard in data processing that could
be universally applied to any data obtained from various applications and LIBS systems.
Despite that, judicious data preprocessing can lead to improved analytical figures of merit
and is, therefore, important part of the complete analytical process.

4.1 Data Preprocessing
The list of preprocessing steps together with suggestions for their use is given namely in
review articles [65, 66]. Motto-Ros et al. [67] discusses the influence of individual data
processing steps and resulting nuances in final analytical performance that they induce.
In this section I suggest a set of preprocessing steps that are usually used by the LIBS
community and also Laser spectroscopy group at BUT. This algorithm is based on literature
research and my personal experience. I will consider raw data as data provided directly
from the commercial software of the spectrometer. Thus, I will not speak about a potential
use of echellograms and customized way of readout of the echelle spectrometer that I have
proposed in my recent study [68].

4.1.1 Background subtraction

The first step in data preprocessing that I suggest is to provide subtraction of spectral back-
ground from each spectrum individually. Background intensity related to Bremmsstrahlung
radiation was introduced in chapter 3.1.
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In the quantitative analysis, the background intensity of the close proximity to the ana-
lytical spectral line is subtracted from the intensity of this spectral line. Another challenge
is rising from the fact that the background level is not constant in the whole spectral range.
The background level is typically numerically estimated using mathematical algorithms.
Moreover, the background is covered with analytically valuable spectral lines. Thus, the
background subtraction has to be treated with care. In a systematic quantification study
[67], the background subtraction was considered as a critical step with significant impact
on final results.

There exist several available algorithms in the literature that can be used for the back-
ground subtraction purposes. Gornushkin et al. [69] used automatic background correction
based on polynomial fitting. The algorithm introduced by Galloway is based on iterative
wavelet transform [70]. Yaroshchyk and Eberhardt [71] applied moving minimum and Gaus-
sian smoothing. The analytical figures of merit were improved when data were preprocessed
using any of listed algorithms, this evidence may be found also in other studies [67, 72].

The comparison of listed algorithms was done in our recent work of Képeš et al. [73] by
the means of LOD estimated in univariate calibration. Selected algorithms were based ei-
ther on manual fitting, polynomial fitting of local minima (Gornshkin’s alg.; [69]), iterative
wavelet denoising (Galloway’s alg.; [70]), or moving minimum with Gaussian smoothing
(Yaroshchyk’s alg.; [71]), see Figure 4.1. As a conclusion to this work, it was found that
the difference between selected background subtraction algorithm is minimal and any back-
ground subtraction leads to significant improvement in observed figures of merit.

Note that the rise in the background intensity may be caused also by imperfectly re-
solved light. The detection of uranium might serve as perfect example. A typical spectrum
of uranium is characteristic for dense spectral lines. Due to lower resolution of conventional
spectrometers, the overload of non-resolved spectral lines leads increased background inten-
sity [74]. This phenomenon was also described in one of my co-authored publication [75].
Background subtraction may be accompanied with the smoothing process (Savitzky-Golay
algorithm, moving average, and other filters) in order to reduce the background noise.

Figure 4.1: Representative emission of Si I 250.7 nm line at 3 various gate delays. Raw
emission lines are shown including the estimated baselines by the four implemented algo-
rithms. The grey area represents the integrated intensity of the emission lines. The red
line shows the fitted curve, the blue line the measured spectrum. The X axes represent
wavelengths in nm, the Y axes intensity in counts. Obtained from [73].
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4.1.2 Signal standardization

As it was already stated in chapter 3.1, the signal obtained from pulse-to-pulse LIBS analysis
is not stable and fluctuates around a certain value. Of course, not only from the statistical
point of view, chapter 4.2, the fluctuation is naturally present in experimentally obtained
data. Its origin is bound to the laser-matter interaction and in turn to the matrix effect.
Therefore, any fluctuations in the stability of a laser source, sample local inhomogeneities or
fluctuation of other parameters involved in the laser-ablation process significantly influence
the consequently formed LIP and its thermodynamic parameters [2, 10]. Tognoni and
Cristoforetti [76] delivered a detailed review on the origin of noise and fluctuations in LIBS
analysis and suggested means of their mitigation.

Therefore, I suggest to perform a signal standardization (often inaccurately called nor-
malization)1 as a second step in the signal preprocessing. The signal standardization dis-
cussed in this chapter may be divided into two partial, yet connected issues:

∙ first, mitigating the fluctuation within a set of measurements obtained from one (ho-
mogeneous) sample,

∙ second, mitigating the impact of matrix effect on the analysis of a set of samples.
Both issues may be demonstrated on the calibration curve and related figures of merit,
standard deviation and linearity respectively, see also chapter 4.3 and 4.4. In any case, the
ablation process leads to the plasma with different properties (temperature and electron
density) which in turn influences the irradiated intensity at individual wavelengths.2

Several possible ways to mitigate the influence of a matrix effect and natural fluctuations
of the analytical system are frequently referenced in the literature. Hahn and Omenetto
[2] suggested to use the ablated mass, plasma temperature and electron density. Their
suggestion is based on the essential relation of laser-ablation and LIP formation process
with the laser-matter interaction parameters and matrix effect. Consequent estimation of
mass (volume) ablated by impact of each laser pulse is tedious and hardly applicable for
measurements involving hundreds and thousands of repetitions. Calculation of plasma tem-
perature and electron density is considered as inaccurate (up to 50% RSD as referenced by
Miziolek et al. [8]). Therefore, other approaches are being implemented in LIBS applica-
tion. I mention the example of the calibration curve because the signal standardization is of
paramount interest in the quantitative analysis, but may be used also in other applications.

The most frequent approach is to use internal standard, spectral line intensity of a
matrix element [2, 8–10]. Most dominant matrix element is used for the purposes of internal
standardization. There are 9 criteria for the selection of line pairs as identified by Barnett et
al. [78], including comparable ionization energies and atomic weights of elements and similar
excitation energies and non-self-absorbed intensities of spectral lines. Body and Chadwick
[79] proposed the ratio-ing of spectral line intensities by the total plasma emission for signal
standardization. It is also worth mentioning the approach using the acoustic signal [80, 81].

Zorov et al. [82] compared the impact of acoustic signal, total emissivity, electric current
and Mie scattering on the signal standardization. In another study, Castro and Pereira-
Filho [83] evaluated the influence of twelve standardization strategies on uni- and multi-
variate quantification. In my former article [84], I have compared seven standardization

1Note that the terminology related to internal and external standardization differs and may be found
contradictory, for instance referring to acoustic signal.

2Such phenomenon was beneficially used in my publication [77], in which the state of magnesium corrosion
and related changes in the hardness of ablated matrix were correlated with LIP temperature and ratios of
atomic and ionic magnesium lines.
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procedures and their impact on classification of three sample sets with different matrices
(steel, Al alloys, sedimentary ores). Obtained results indicated that there is no universal
approach and the most appropriate standardization procedure has to be selected individu-
ally in each application. Despite indefinite standardization algorithm available in the LIBS
community, the standardization of data prior to further data analysis (uni- and multivariate
quantification or classification) is advised [66].

4.1.3 Outliers filtering

After the signal standardization I suggest to filter any potential outliers left in the data
set.3 Spectra are treated individually in background subtraction and signal standardization
steps, but in this step spectra obtained on each sample are treated in respect to each other.
In theory, all spectra obtained from the analysis of a heterogeneous sample should be the
same; any spectral feature or characteristic of LIP and ablation process should correlate
across the data set. That is, however, not possible in reality when the analysis is burdened
with fluctuations coming from various sources as discussed in chapter 3.1.

The signal fluctuation (standard deviation of a spectral feature) can be significantly
mitigated using data processing algorithms. However, certain data points can strongly
deviate from rest of the data set; such data point is called as an outlier. At this step, it is
necessary to find a characteristic describing the data set that is robust and able to precisely
detect any outliers. Surely, the threshold level is still given by the operator/scientist.

Carranza and Hahn [85] rejected more than 60% of spectra based on the intensity values
of Fe II spectral lines. Lazic et al. [86] estimated the maximum intensity of a selected
spectral line and filtered up to 50% of outlying spectra. Sirven et al. [87] detected outliers
in the space of principal components, the outliers were considered as the most distant points
from the origin. Gornushkin et al. [88] proposed to use a simple linear correlation (Pearson’s
correlation coefficient) and to determine the level of similarity between two spectra (vectors
of intensity values). Spectra, showing the lowest correlation to their counterparts, are
discarded. Yaroshchyk et al. [89] determined the total emissivity of each spectrum (sum of
intensities over the whole detected spectral range), then 10% of spectra were considered as
outliers.

Mermet [90] defines the outliers according to their statistical distribution. In the case
that the data points follow Gaussian distribution it is possible to mark all points outside
the interval given by 3 times the standard deviation as outliers; discarding 0.1% of all data
points from the population. There are several tests that can be used to ascertain outliers,
for instance Dixon’s, Grubb’s and Hampel’s tests [7].

In my recent article [91], I have compared three characteristics used for outliers filtering:
i) total emissivity, ii) distance in the PC space, and iii) mutual linear correlation. Selected
approaches were compared by the means of classification performance improvement of steel
samples. First, it was found that each approach marks different data as outliers. Consequent
filtering creates additional nuances in the final results. Second, the total emissivity approach
led to the best improvement of classification accuracy. Thus, it may be stated that total
emissivity is a powerful spectral characteristic applicable for both, signal standardization
and outliers filtering.

3Of course, note that outliers filtering cannot be applied in the case of heterogeneous samples; for instance
in the elemental mapping.
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4.1.4 Line selection and intensity estimation

As a motivation for this section, in an ideal case the elemental composition of a sample
should be fully qualitatively and quantitatively estimated. Let’s consider that the line
selection and intensity estimation is the final step of the data preprocessing. Univariate
and multivariate quantitative analyses are subject of discussion in chapters 4.3.1 and 4.4.3

Basically, the qualitative analysis (identification of each spectral line) should be the
beginning of each LIBS analysis. It is, however, not necessary to identify all lines within
a spectrum; each element emits characteristic radiation on several wavelengths. Some
elements (Fe, Ti, U, etc.) emit characteristic radiation on hundreds of wavelengths. Iden-
tification of all spectral lines is thus tedious and irrelevant.

Let’s consider a set of emitters (atoms or ions of the same analyte in a LIP plume)
radiating characteristic signal on various wavelengths. Then, obtained spectral lines fully
characterize the analyte of interest (qualitative analysis of the sample). Due to their origin
from the same source (set of emitters), estimated intensities of those spectral lines and their
pulse-to-pulse fluctuation has to be highly correlated. This phenomenon was described in
detail, for instance, in my recent article [46]. This approach can be adapted in the decision
making process and increase its robustness; wrongly assigned spectral lines will show lower
correlation to other lines of the analyte.

A trained spectroscopist is able to swiftly localize and identify most prominent spectral
lines while using elemental databases [92, 93] to tackle this task. Unfortunately, there is still
no algorithm for spectral line localization and identification used in daily routine. Amato et
al. [94] proposed an algorithm for unassisted identification of elements in a LIBS spectrum.
Localization of the spectral line is, however, a challenging task complicated namely by
spectral interferences, potentially low intensities of analytical lines and high background
noise. Speaking about tools for localization of the most prominent spectral lines, neat
approach is to investigate loadings of the principal component analysis, see chapter 4.4.2,
or use variables importance in projection (VIP) as reviewed in my recent publication [65]
and mentioned further in the chapter 4.4.2.

A spectrum has unnecessarily high dimension (number of variables) in its raw form.
Taking advantage of the redundancy of spectral lines per element, it is necessary to identify
at least one line of an analyte to decide whether it is present in the sample. The limit
of detection dictates a threshold intensity that supports the presence of an analyte in the
sample with statistical significance. The absence of spectral lines of an analyte suggests
that

∙ selected spectral range is not adequate,

∙ the method is not sensitive enough (detected intensity is under the limit of detection),

∙ experimental apparatus is not suitable4 or

∙ any combination of aforementioned options.

At this point of discussion it is appropriate to list a set of recommendations that are
advised for accurate assignment of spectral lines to corresponding element:

4For instance, the detection of lines below 200 nm demands the absence of oxygen in the atmosphere in
the interaction chamber.
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Figure 4.2: The graphical representation of sources of potential bias in the estimation of
analytical signal. Obtained from [67].

∙ due to a relatively low temperature of LIP (see chapter 3.3), only the emission of
neutral and singly ionized species may be observed,

∙ the Einstein coefficient (the transition strength) should be over 106 s-1,

∙ upper level energy should not reach more then several eV (which in turn might be
related to the temperature of tens of thousands of K), and

∙ the presence of other spectral lines of the same element should be cross-checked.

Once the spectral line is assigned, another step is to estimate its intensity. The most
simple and often used approach is to consider the maximum peak intensity for further
analysis; finding a maximum intensity value in a wavelength range given by the position
of analytical line. This approach is convenient but oversees the shape of the spectral line.
Another possibility is to sum up the intensity in the selected wavelength range or to fit
the analytical spectral line with a mathematical function (Gaussian, Lorentzian or Voigt;
see chapter 3.2). Fitting a line with a mathematical function enables to estimate other
parameters (FWHM) and to judge on potential saturation of analytical line profile. Such
data preprocessing step is crucial and significantly influences the resulting figures of merit,
as concluded by Motto-Ros et al. [67] and schematically depicted in Figure 4.2.

It has to be kept in mind that only well selected spectral lines should be used in further
spectroscopic analysis5 (namely for the estimation of LIP temperature and electron density
and quantitative analysis). The line should be free from any potential self-absorption (not
to use a resonant line) or spectral interference.

5Speaking strictly about the univariate analysis. Unfortunately, recent trend in the LIBS analysis tends
to deviate from a decent spectroscopic practice and lacks any solid basics discussed in this chapter. In
chemometrics, the selection of spectral lines and handling of the data sets is so far accepted more freely.
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Finally, finding the best possible wavelength range is of crucial importance from the
sensitivity point of view. The sensitivity is typically lower for spectrometers (for instance
in the echelle configuration) with broader wavelength range; using such spectrometers may
be counter-effective and no signal from the element of interest is detected. Thus, it is
advisable to use Czerny-Turner spectrometers with shorter wavelength ranges. In this case,
prior knowledge of the sample and the analyte to be analyzed is absolutely necessary. I
have tackled this issue in one of my recent articles [95].

4.1.5 Organization of a data set

After the preprocessing, individual spectra are organized into a data matrix X with 𝑛×𝑝
dimensions; where 𝑛 is the total number of obtained spectra and 𝑝 is the number of vari-
ables/wavelengths organized as columns. When it comes to the clustering, classification, or
quantification; spectra from each sample are simply put together to a data matrix X. In the
case of latter two, the rows of the data matrix are assigned with the class membership or the
content of an analyte, respectively. The data set should be split before the classification or
quantification analysis. This step divides the original data into subsets (model, validation,
test) [66]. The data subsets have to be drawn cautiously in order to describe the variance
within the original data with comparable power [96].

In the case of mapping the so called data cube6 is created; rows are marked with a
𝑥,𝑦 position in the map and represent pixels in the image, see Figure 4.3. Data sets are
reshaped to a form fitting the consecutive analysis namely by multivariate algorithms.

As another step, column-wise mean-centering and scaling are of interest. First, the
mean-centering step in which the mean of each variable is subtracted and the center of
mass is shifted to the beginning of the coordinate system. Second, scaling variables of
different magnitudes may form a data set with their uniform impact on the model. When
both steps are applied it turns the distribution of each variable to have mean equal to
zero and its standard deviation equal to unity. Thus, those two steps are in the literature
collectively called Standard Normal Variate (SNV) and its influence on LIBS data processing
has already been investigated [98]. However, this step is not advised for data with significant
contribution of variables carrying only noise, e.g. raw spectra, [84].

Figure 4.3: Organization of a data set into the hyperspectral cube. Obtained from [97].
6Also called a hyperspectral cube, see [97]
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4.2 Statistics
First of all, it is necessary to adopt basic statistical terminology; for more detailed insight
I refer the reader to, for instance, Mark and Workman [1] and Skoog et al. [7], which was
used as a main source in writing following sections.

In the case of optical emission spectroscopy technique, a single measurement (such as
that from a LIBS experiment) is represented by a detected spectrum, also called an object
from statistical point of view. Each object is described by a set of parameters, characteristic
wavelengths. The set of parameters is unique for each LIBS instrument, which is given
namely by available wavelength range and spectral resolution to be detected.

Population is a complete collection of objects fully describing the studied system, in
our case emission of LIP, via available parameters. Through the LIBS experiment one
obtains a representative sample of objects that should satisfactorily describe the parent
population. Henceforth, I will call a representative sample of objects as a data set with
𝑛 spectra (objects) and 𝑝 characteristic wavelengths (parameters7, variables). Moreover,
the number of independent variables gives the number of degrees of freedom; independent
variables are spectral responses of a LIBS measurement. To complete this list, dependent
variables reflect properties of investigated sample and it is possible to construct a direct
relationship between them and independent variables (for instance as a curve of growth).
Any systematic change in the value of independent variable (intensity at certain spectral
wavelength) enables to estimate a change in the dependent variable (content of an analyte).

Each variable fluctuates in a certain interval; any measurement is burdened with an er-
ror (systematic or random) giving the span (usually finite) to this interval. The probability
of detecting a value from this interval range is non-uniform and is given by the distribution
of the parent population. Thus, representative sample (repetitive detection of analytical
line intensity) is drawn from its parent population and follows its distribution. Simply, the
distribution tells us how probable it is to detect any intensity value in a repeated experi-
ment. In the spectroscopic community, statistics are computed with non-tested assumption
that obtained values follow normal distribution. However, this assumption is not instantly
valid for all obtained variables and estimated statistical parameters tend to be biased. In
following chapters, I will describe this phenomenon in further detail.

4.2.1 Normal Distribution

The importance of normal (or Gaussian) distribution, not only in spectroscopy, cannot be
emphasized enough. Due to the general knowledge of the normal distribution, I do not give
any other references than Mark and Workman [1].

As discussed above, a parent population is usually described by a distribution dictating
the probability with which a value of a variable will be obtained. The probability density
of the normal distribution is given by following continuous function:

𝑓(𝑥|𝜇, 𝜎2) =
1

𝜎
√

2𝜋
𝑒−(𝑥−𝜇)2/2𝜎2

, (4.1)

where 𝜇 is the mean of the distribution (and also its median and mode), 𝜎 is the standard
deviation and 𝜎2 is the variance.

The mean and standard deviation are the fundamental characteristics used to describe
the nature of the normal distribution. In the case of the whole population of 𝑁 objects, the

7If the value of a parameter fluctuates then it is called a variable. Thus, I refer to measurement responses
only as variables.
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mean and variation (its root being the standard deviation) respectively, can be estimated
as:

𝜇 =
1

𝑁

𝑁∑︁
𝑖=1

𝑥𝑖, (4.2)

and

𝜎2 =
1

𝑁

𝑁∑︁
𝑖=1

(𝑥𝑖 − 𝜇)2, (4.3)

In the case of a representative sample drawn from its parent population (where 𝑛 <
𝑁), the mean and unbiased variation (once again, its root being the standard deviation)
respectively, can be estimated as:

�̄� =
1

𝑛

𝑛∑︁
𝑖=1

𝑋𝑖, (4.4)

and

𝑆2 =
1

𝑛− 1

𝑛∑︁
𝑖=1

(𝑋𝑖 − �̄�)2. (4.5)

Note, normal distribution characteristics are the most important and also the first statis-
tics computed over the data set. Fluctuation of an analytical signal (intensity values de-
tected at given wavelength) in the repeated (pulse-to-pulse) experiment is described by its
mean and standard deviation; estimated as statistics for representative sample of a popula-
tion. Moreover, the stability of the system, the measure of fluctuation, is estimated as the
relative standard deviation (𝑅𝑆𝐷, or the so called coefficient of variation when multiplied
by 100%):

𝑅𝑆𝐷 =
𝑆

�̄�
. (4.6)

This coefficient enables to understand the data from the context of both, mean and
standard deviation. There are also other statistical measures used to describe the perfor-
mance of the system and quality of the data. They are collectively called figures of merit;
I discuss them in detail in the chapter 4.5.

4.2.2 Extreme Value Distribution

Typically, normal distribution is instantly considered to describe the fluctuation of spec-
tral variables. This stands, especially, when repetitive (pulse-to-pulse) measurements are
taken. However, certain departures from the normal distribution may be encountered; the
mean might be shifted, leading to skewness of the probability density function. As Mark
and Workman [1] suggested, frequently the distribution becomes log-normal. In the case
of LIBS experiment, Michel and Chave [99] investigated the statistics of detected signal
and concluded that obtained data significantly deviate from the normal distribution and
follow rather the Extreme Value Distribution; Frechet’s modification of the extreme value
distribution to be precise.

Historically, there are three types of Extreme Value Distributions (Weibull, Gumbel,
and Frechet) unified in the so-called Generalized Extreme Value Distribution (GEVD) [100].
GEVD is defined by the following probability density function:

𝐺(𝑥) = 𝑒−[1+𝜉
(𝑥−𝜇)

𝜎
]
−1
𝜉
, (4.7)
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where 𝜇 is the location parameter in this case and 𝜎 is the scale parameter (analogous to
the mean and standard deviation characteristics of the normal distribution), and 𝜉 is the
shape parameter of the GEVD. Values of GEVD parameters can be obtained through the
maximum likelihood estimation.

Michel and Chave [99] urge the LIBS community to discontinue using mean and stan-
dard deviation (of normal distribution) as statistics characterizing the obtained spectro-
scopic data. They suggest the utilization of Extreme Value Distribution. However, their
manuscript did not get significant impact. There are also other ways how to avoid the
discrepancy in the estimation of normal statistics over spectroscopic data. One of them
lies in the design of experiment and accumulating spectra; this benefits from the central
limit theorem described in detail in the following paragraph. In spite of that, for analog
accumulated spectra, the central limit theorem was not found to be valid and data still
followed Extreme Value Distribution [99]. This might be due to high fluctuations occurring
during the pulse-to-pulse LIBS analysis, which is in agreement with theory of the central
limit theorem.

In the light of aforementioned research, we have run an experiment testing the righ-
teousness of implementation of normal distribution over GEVD; see manuscript by Klus et
al. [101] and Figure 4.4. Presented data did not fully support any of discussed distributions.
In fact, the distribution, which each line follows, seems to be based on more complicated
background involving quantum properties of spectral lines, dynamics of LIP and its proper-
ties, etc. The data were also preprocessed by various means of signal standardization; it was
shown that standardization influences the data but no pattern was apparent. The relation
between the estimated characteristics of both distributions were consistent throughout the
experiment; Gaussian distribution in respect to GEVD tends to overestimate the 𝜇 param-
eter. Finally, the central limit theorem was proved in our work, showing that accumulation
had a positive effect on the distribution of data, which tend to be Gaussian.

Based on our unpublished experimental data and theoretical assumptions, this shift from
normal to Extreme Value Distribution is given by non-linear relation between temperature
of LIP and intensity of detected signal of analytical line. However, this phenomenon needs
further investigation.

Concluding, the implementation of any of the two distributions, normal and GEVD, is
justifiable under certain conditions. The experimental design and data processing should
be done carefully with the feedback obtained from the statistical hypotheses tests.

4.2.3 Central Limit Theorem

The central limit theorem has already been tangentially mentioned. Its derivation and
proof can be found in Mark and Workman [1].8

Basically, if many objects are added together (summed, accumulated) then the resulting
distribution of individual variables tends to be Gaussian. Such assumption holds regardless
of the original distributions of the variables. This summation can be done also from the
pool of obtained data, as it was shown in our work [101]. The distribution of individual
variable values, that are summed together, need not be the same so long as their errors are
small. Then the distribution of this product of summation is getting closer to the normal
distribution with increasing number of summarized objects. However, two restrictions must
be met to the central limit theorem to be valid: i) the variance of any involved variable

8Historically, this proof was developed by P.S. de Laplace.
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Figure 4.4: The Gaussian distribution fit and General Extreme Value Distribution fit for
intensities of four spectral lines. The selection of lines is based on the Kolmogorov-Smirnof
test performance. Obtained from [101]

must be finite and ii) the variances of individual variables must correspond to each other,
so none of them is dominating over the others.

Gauss had significant impact on the normal distribution itself, he proved that if the
data are normally distributed then the fit of data provided by the least squares method
gives the maximum likelihood. This fact, in turn, proves that this fit is correct.

4.2.4 Hypothesis testing

From the statistics point of view, obtained data set is drawn from a certain population.
Thus, each data set, and its features, should be subjected to hypothesis testing. Hypothesis
testing is a standard data processing step in analytical chemistry where data points (i.e.
observations) are tested in respect to experimental model, for instance whether the mean
values of two populations are the same or not.9 Further decision are then made based on
results of hypothesis testing. For more detailed description of this topic refer the reader to
the book of Skoog et al. [7] and Massart et al. [102]. They also advise to use the statis-
tical tests cautiously, especially for data sets with low number of observations (below 50).
Moreover, from their perspective, ”the application of good judgement based on broad expe-
rience with an analytical method is usually a sounder approach than the blind application
of statistical tests“.

9Analysis of variance (ANOVA) is used for the simultaneous tests of multiple populations.[102]
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In general, applying statistics on obtained data sets usually demands that the obser-
vations follow normal distribution. This is, however, not valid as it is pointed out in the
chapter 4.2.1. Kolmogorov-Smirnof test is used to estimate if the set of observations follows
normal distribution. Such approach was used also in my co-authored publication [101]. In
this case, the null hypothesis is that the set of observations follows normal distribution, the
alternative hypothesis is that they are not normal.

In my recently co-authored publication [103], the difference between the control group
and group of samples exposed to up-conversion nanoparticles was estimated using the Mann-
Whitney U test. Potential outliers were estimated by using the Grubbs test.10 However, in
the LIBS community outliers filtering is provided using other algorithms, see chapter 4.1.3.

4.3 Univariate Data Analysis

4.3.1 Quantification

The most simple, yet neat and powerful, analysis that might be provided is a correlation
of obtained analyte signal (a dependent variable, intensity of an analytical line) with the
reference content of the analyte (independent variable) within the sample bulk. This leads
us to the univariate calibration, based on a calibration curve, which is established as a rela-
tionship between independent and dependent variables using a regression analysis; intensity
as a function of analyte content, see Figure 4.5. The concept of calibration is described
in detail in following books [7, 102, 104, 105] and articles [90, 106–108] that are used as
sources in this chapter and I recommend them for deeper study of this issue.

In analytical chemistry, various calibration approaches may be distinguished [7]. Ex-
ternal calibration establishes the calibration curve from external standard samples that
are independent from the sample of interest. Obviously, the matrix of an investigated sam-
ple and standard samples and the level of analyte content have to match. In the case of
internal calibration, a known content of an analyte is added to all samples (including
standards and blanks11).

Typically, the regression model describing the calibration curve, Figure 4.5, is a linear
function:

𝑦 = 𝑚𝑥 + 𝑏, (4.8)

where 𝑚 is the slope of the calibration curve and 𝑏 is the intercept of the curve on the y-axis.
Data points do not sit on the line but are deviated due to an error of the measurement,
see chapter 4.2 for deeper explanation of statistics beyond the typical LIBS analysis. The
deviation of a point in respect to the y-axis is called a residual 𝑆𝑆𝑖 and can be estimated
as:

𝑆𝑆𝑖 = 𝑦𝑖 − (𝑚𝑥𝑖 + 𝑏). (4.9)

In fact, the line interlaced through the data points is calculated using the least-squares
method, in which the sum of squares of residuals 𝑆𝑆𝑟𝑒𝑠𝑖𝑑 is minimized. The value of 𝑆𝑆𝑟𝑒𝑠𝑖𝑑

for 𝑁 data points is obtained from the equation:

𝑆𝑆𝑟𝑒𝑠𝑖𝑑 =

𝑁∑︁
𝑖=1

[𝑦𝑖 − (𝑚𝑥𝑖 + 𝑏)]2 (4.10)

10There are also other tests, such as the Q test recommended by Skoog et al. [7].
11An analytical blank is a matrix-matched sample that does not contain the analyte of interest.

38



Figure 4.5: An example of a linear calibration curve with a confidence band. Constructed
for the purposes of this thesis; unpublished data.

The closer the data points to the least-square line, the smaller the residuals. The total sum
of squares 𝑆𝑆𝑡𝑜𝑡 can be estimated from:

𝑆𝑆𝑡𝑜𝑡 = 𝑆𝑦𝑦 =
∑︁

(𝑦𝑖 − 𝑦)2 =
∑︁

𝑦2𝑖 −
(
∑︀

𝑦𝑖)
2

𝑁
(4.11)

Those two measures give another important quantity, the coefficient of determination 𝑅2,

𝑅2 = 1 − 𝑆𝑆𝑟𝑒𝑠𝑖𝑑/𝑆𝑆𝑡𝑜𝑡, (4.12)

which measures the fraction of observed variation in 𝑦 that is explained by the linear
relationship. The closer the 𝑅2 to unity, the better the linear model explains the variation
in 𝑦. [7]

In the case of linear relationship between the analytical response and the analyte content,
the 𝑅 is the Pearson correlation coefficient [107]:

𝑅 =

∑︀
(𝑥𝑖 − �̄�)(𝑦𝑖 − 𝑦)√︀∑︀

(𝑥𝑖 − �̄�)2
∑︀

(𝑦𝑖 − 𝑦)2
. (4.13)

Another figure of merit, the prediction ability 𝑄2, gives the ability of the calibration model
to predict the content values close to the reference value [66].

The analytical response to variations in the analyte content (content range) follows a
linear function; the linear dynamic range. However, this is valid only to a certain point
where the linear trend levels off. This point is often called the limit of linearity and its
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occurrence depends on several experimental parameters and selection of analytical line [2].
The non-linearity suggests that the response is saturated and the analytical line suffers
from the self-absorption. This phenomenon affects namely resonant spectral lines and their
use should be considered with care. The impact of selection of analytical line is discussed
for instance by Motto-Ros et al. [67] and in my publication [109] in which the importance
of matrix matched calibration is stressed.

The concept of the calibration curve is in some publications derived as a curve of growth
(COG; [110]).However, it has to be stressed that calibration curve can be related to COG
only if the atom number density is assumed to be linearly proportional to the analyte
content in sample bulk. From the theory [8], the COG describes the analyte intensity as
a function of the number density of ground state atoms, those are in turn related to the
analyte content.

4.3.2 Mapping

LIBS is used for the elemental analysis of solid sample surfaces in the majority of appli-
cations. This then enables to investigate heterogeneity of elemental distribution and, in
turn, bring additional information to researchers. This approach is collectively called the
elemental mapping12 or imaging13 and in recent years gains particular attention.

Elemental mapping is summarized in review articles regarding for instance biological
[29] and medical applications [32]. Also, the benefits of LIBS are intensively exploited in the
mapping of the heterogeneous composition of mineral samples [111]. In my co-/authored
articles, I have dealt with mapping of uranium [75] and fluorine in a mineral [46], and
Cd-QDs on filtration paper [112] and in leaves of Lemna minor L. [113], and distribution
of lanthanoid-based upconversion nanoparticles within an R. sativus plant [103], see Figure
4.6.

Most recently, high-end LIBS systems benefit from the advancement of instrumentation
(lasers, spectroscopes and detectors). The most crucial parameter14 is, especially in the case
of mapping, the repetition rate. The repetition rate dramatically influences the duration
of an analysis and mapping of large-scale sample surfaces then becomes tedious. Currently,
the repetition rate of routinely used LIBS system is 100 Hz [111]. A LIBS system has
a potential to reach repetition rate in the order of kHz [68, 114]. Overall, the repetition
rate is the main advantage of the LIBS technique in respect to its analytical counterparts.
Consider to map the surface area of 1×1 mm with a 10 micron resolution giving 10 000
spots, this will take almost 3 hours with 1 Hz repetition and a bit more than 3 min with
50 Hz15.

The elemental imaging throughput is limited by the instrumentation repetition rate
on one side and computing power able to process the multivariate data on the other [8].
Hence, dimensionality reduction is of great interest and reflects the need to process a spec-
trum line-by-line and estimate intensities of most prominent elemental lines. The issue of

12In the literature, a term “elemental imaging” can be found and in LIBS community are accepted as
equivalents. This is, however, in contrast to the usage of terms in Raman spectroscopy where mapping refers
to point-by-point analysis of the surface employing system with broad-range spectroscope and imaging to
the analysis of the whole surface at once using directly a short-band filter and detector.

13Vadillo and Laserna (in the Chapter 6 of [8]) define the term imaging as information provided by an
imaging method when the chemical identity is incorporated to spatial dimensions.

14Let sensitivity go aside for this time being; it is still the number one parameter and will be discussed
as well. Other parameter that is worth mentioning is the spatial resolution.

15the current capability of Laser spectroscopy group at CEITEC BUT.
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Figure 4.6: Left: a photograph of an R. sativus plant exposed to lanthanoid-based upcon-
version nanoparticles at the nominal concentration 1000 mg/mL. LIBS maps depicting the
distribution of Y I 437.49 nm (Middle) and Yb I 398.79 nm (Right). Obtained from [103].
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dimensionality reduction is further discussed in the section related to multivariate map-
ping, chapter 4.4.5. In the case of multivariate mapping, the dimensionality reduction is
provided by the variables downselection and estimation of intensities of several spectral
lines. Then only most prominent elements are printed in the maps and their distribution
is being investigated.

Albeit, the quantitative analysis of homogeneous samples is a standardized procedure,
the analysis provided from a large spot-size has strictly limited usage. It was the improve-
ment in the spatial (lateral) resolution that induced the paradigm shift, not only, in the
LIBS analysis using laser-ablation methods. Typically, the spot size of 10 microns is reached
as a reasonable trade-off between the ablated mass and analytical sensitivity. Sub-micron
resolution can be reached as proved by the group of N. Jakubowski [115] in the field of
LA-ICP-MS using a certain methodological trick16.

LIBS, as other laser-ablation based techniques, is a quasi-destructive technique. Thus,
there might be only one attempt in providing the analysis when, for instance, valuable
samples are under investigation. Choice of an adequate spectral region is of key importance
and prior knowledge of the sample is necessary [8]. Moreover, the sensitivity of analysis is
better when short-band high-throughout Czerny-Turner spectrometers are used [95].

To wrap this section up, the elemental mapping is one of the biggest opportunities of
LIBS to gain its position in between other analytical techniques and to exploit its potential.
Having a high repetition rate, LIBS may be used to provide overview analysis (2D elemental
mapping) after other non-destructive techniques (XRF, optical microscopy, etc.).

4.3.3 Depth Profiling

The elemental mapping can be extend by consecutive analyses of the same area. Ablation
of the surface layer-by-layer provides an insight into the sample bulk. The so-called depth
profiling is one of interesting features of laser-ablation based methods. The depth profiling
enables to selectively ablate thin layers of a sample surface when properly optimized. This
methodological approach enables to study an abrupt interfaces on the sample surface, thin
layers and coatings [8]. This is an indisputable advantage in respect to XRF which provides
analysis from deeper layers of the sample surface but without any estimation of the depth.

Gaudiuso [116] delivered a complex study of depth-profiling including considerations
about ablation stoichiometry and fractionation. This assumption is valid since the condi-
tions for laser-matter coupling are steadily changing with increasing depth of the crater.
Laser then ablates matter not only from the bottom of the crater but also from its sides.
Another influencing factor is the crater itself serving as a spatial container limiting the
free spread of a plasma plume. Presented results did not show typical decrease in signal
intensity with consecutive laser pulses. Thus, this study shows rather a way in which this
analysis should be further taken than any valid conclusions.

Depth profiling can be provided in a single spot or connected with mapping, 3D imaging.
Hou et al. [117] combined the ability of LIBS to provide depth profiling with the analysis
of light elements; the distribution of Li in Li-ion electrolytes was demonstrated using a fs
ablation. 50 layers were consecutively ablated and the ablation rate (depth resolution) was
700 nm. Gimenez et al. [118] run a feasibility study in 3D imaging of NPs injected in a
soft tissue, murine kidney. Distribution of Gd-NPs was detected in a kidney fixed in epoxy
and cut into a series of 200 micron slices; the depth resolution was then given not by the

16When the step size between two ablation spots is smaller than the diameter of an ablation spot.
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ablation rate but by the slice thickness. In my co-authored articles, the depth profiling of
historical painting models was done [119], see Figure 4.7.

Figure 4.7: LIBS depth profile of the sample n. 242 B, based on the lines of Pb I 405.781
nm (layer 3a) and Fe I 438.354 nm and Al I 396.152 nm (layer 1). Obtained from [119].

4.4 Chemometrics
Spectroscopic versus heuristic approach To quote Hahn and Omenetto [2] once
again: “advanced chemometric algorithms must be used with knowledge of what emission
features (e.g., atomic or molecular emission peaks) are providing the associated discrimina-
tion”. This points back to fundamental aspects of LIP and their understanding prior the
utilization of any multivariate algorithm.

Despite such clear statement, direct utilization of chemometric algorithms on raw LIBS
data (high-dimensional, redundant, noisy spectroscopic data etc.) became frequent ap-
proach applied by many research groups across the LIBS community. Spectra are not
inspected nor at least qualitatively analyzed, but simply introduced to chemometric al-
gorithms in their complete wavelength range without any pretreatment. This is usually
advocated with two basic reasons:

∙ using complete detected wavelength range (especially in the case of broad range spec-
trometers) might avoid losing any valuable information, and

∙ using raw spectra is considered as more convenient, non-demanding from the process-
ing point of view (also enabled by more powerful computers and computing clusters).

This seemingly ignorant approach is understandable from the perspective of computer
science. In computer science, the heuristic approach is usually applied. Data are processed
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without the tendency to obtain further knowledge about physical/chemical phenomena
involved or the way in which they were obtained.

Both fundamental approaches to data processing, that I have introduced, are polarizing
the spectroscopic community and are in a strict contrast. From my personal point of view,
those two approaches are extreme cases and further development will include combination
of both. We are thus experiencing a significant shift from the classical approach (statistics,
physics) which dictates to estimate mean value and variance of a variable to the computer
science approach which enables to predict behaviour of a variable under certain conditions.
[120]

Recently, in the LIBS community appeared a momentum driving further data-related
research for a unified, standardized approach to data processing that will be generally
accepted.17

Assumptions for a sensible model Building accurate and robust model (regardless of
its purpose - quantification or classification) demands its validation. For the validation of
a multivariate model, El Haddad et al. [66] advices to use leave-one-out or leave-many-
out techniques or to divide the data set to model and validation subsets. This step in
data processing is absolutely necessary while it mitigates the possibility of constructing an
over-fitted model and yielding biased results. Moreover, any data scientist should strive
for the highest possible degree of robustness and generalization during the creation of a
multivariate model

Basic literature There are also many books directly dedicated to chemometric algo-
rithms that are a valuable sources of information [102, 104, 121, 122].18 More detailed
introduction to the chemometrics19 related to LIBS can be found in books [10, 124] and
review articles [2, 65, 66].

There is a great variety of chemometric algorithms that can be implemented in the data
processing methodology. Their usage significantly differs and there is no consensus on the
universal approach. The methodology in data processing has to be optimized individually to
each application and used LIBS system. From the literature research it seems that the only,
generally valid, agreement is that non-linear more sophisticated chemometric algorithms
outperform the linear ones. However, the use of simple linear algorithms is satisfactory in
the majority of cases [65].

Structure of chemometrics chapter In this chapter I intend to convey basic ap-
proaches of chemometrics [102]; unsupervised and supervised learning.20 Unsupervised
learning is designed to find patterns within unlabeled data. I am concerned with unsu-
pervised learning in sections 4.4.1, 4.4.2, 4.4.4 and 4.4.5. In contrast to that, supervised
learning deals with data labeled by a particular information (e.g. content of an analyte in
the case of quantification or class membership in the case of classification). Advances in
supervised learning are summarized in sections 4.4.3, 4.4.4 and 4.4.6.

17Discussed problem was one of the reasons to deliver the benchmark data set designed to test various
approaches in classification of spectroscopic data ba using chemometrics. For more details see Chapter 4.4.6.

18To Czech speaking readers I also recommend books of prof. Meloun, for instance [123].
19Note that terms multivariate data analysis and machine learning are often used as equivalents of chemo-

metrics. Chemometrics is then accepted to be a subsection of computer science in a broader sense.
20Note, I have no ambition to discuss reinforcement learning.[125]
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Figure 4.8: The comparison of PCA (a) and SOM (b and c) visualization of selected
OREAS ore standards. a) Scores distributed in the space given by the first two principal
components; b) distance matrix showing the discrimination of data points (samples) to
three basic clusters and c) position of individual samples in the hexagonal matrix of SOM
neurons (color is related to distances between SOM neurons and size is related to number
of hits). Obtained and adapted from [128].

4.4.1 Visualization

The first and foremost step in the chemometrics is to give an overview of the data and
reveal mutual relationships (patterns, trends and outliers) between data points. Such step
is called data visualization (pattern recognition or exploratory data analysis).

The reason for visualization is to get fast awareness of the data and the quality of the
LIBS analysis prior any further data processing. Visualization may be done also in the
case of univariate analysis when the intensities of selected lines are cross-plotted. This
approach crashes when multidimensional data (high number of variables, wavelengths) are
considered; the number of cross-plots for 𝑝 variables reaches 𝑝(𝑝−1)

2 .
Due to the high dimension of the problem, it is beneficial to use statistical algorithms

that are designed to find the most prominent variables within the data set and in turn to
reduce the dimensionality. Clearly, it might be possible to find a new variable (let’s call
it a latent variable, or even better a principal component) that points in the direction of
the biggest variance within the data set. This principal component can easily substitute
multiple variables that described the original data set and were strongly correlated.

One of the most spread algorithms that is used for dimensionality reduction and visu-
alization is the Principal Component Analysis (PCA) [65]. There are also other algorithms
designed to provide visualization on a lower-dimensional scale, such as Independent Com-
ponent Analysis (ICA) [126], Sammons’s map [91], Kohonen’s Self-Organizing Maps (SOM)
[127], etc. The performance of introduced algorithms is often compared, see Figure 4.8, and
simultaneous utilization of various algorithms is advised.

From Figure 4.8 it is obvious that the visualization performance of both algorithms
(PCA and SOM) is similar; the presence of outliers (O162 and O110) is clear. I have used
only a limited number of data points, thus, their performance was not fully tested. More-
over, Lasue et al. [126] compared the performance of PCA and ICA for the visualization of
ChemCam data. They have stated a rationale for the utilization of ICA: ”From the physics
of LIBS plasma generation and emission, we can expect each elemental species to emit light
independently from others.“ This statement is, however, too bold and not fully true; in-
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dividual elemental species coexist in the same plasma plume and influence each other by
series of random collisions, are influenced by the presence of local electric fields, etc. Thus,
the emission of individual elements is not independent from others.

To briefly conclude, from the literature [65, 66], non-linear algorithms (SOM, Sammon’s
map) outperform the linear ones (PCA, ICA). Paradoxically, PCA is found to be the most
spread algorithm despite having the lowest performance. I will thus concentrate my further
discussion around PCA and PCA-related algorithms.

4.4.2 Dimensionality reduction

This chapter is a loos continuation of discussion given in the chapter 4.1.4. However, in this
case, manual and experienced selection of spectral lines is not considered in the first step.
Described statistical algorithms are judiciously used to guide the hand of a spectroscopist
and to ease his/her work.

Outputs derived from the PCA lead to fast, yet robust decision making. First, number
of principal components may be judged from the Cattell’s scree plot diagram. [65] From the
essence of PCA, the first few PCs describe the most valuable variance within the data set and
thus the latter PCs can be omitted from further data processing. This forms the first step in
the dimensionality reduction. Lower number of PCs is vitally used for further unsupervised
(clustering; section 4.4.4 and 4.4.5) and supervised analysis (quantification in section 4.4.3
and classification in section 4.4.4). Such step reduces dimension from thousands of original
spectral variables to units of latent variables; leaving behind redundant and non-informative
information.

Inspection of loadings plot reveals importance of individual variables forming the original
spectra. Weights assigned to individual variables enables to select the most prominent
spectral features responsible for the biggest variance within data set and in turn for the
discrimination between individual samples. Loadings plot is used to obtain fast quasi-
qualitative analysis when highlighting the most prominent spectral features. Then, only
the spectral lines with the highest weights are qualitatively investigated.

Basically, this step in data processing is still of intense discussion. De Lucia and Got-
tfried [129] compared the performance of the discriminant analysis algorithm when fed
with complete spectra and individual spectral features. It is noteworthy that they have
used variable importance in projection (VIP) algorithm to further evaluate impact of indi-
vidual variables. They have selected 38 spectral features (lines of C, H, N and O together
with molecular bands of CN and C2) from the complete range of explosive residue spectra.
Moreover, they have introduced ratios of spectral line intensities with respect to chemical
relationships (stoichiometric ratios) to increase the number of selected spectral variables
(177 in total). As a conclusion to their work, down-selecting the data or using the complete
range are two extreme cases that might be considered. They have advised to introduce
various ratios of spectral features in the down-selected model; however, this demands prior
knowledge of the sample and data set.

In other study, Putnam et al. [130] proved that variable selection together with construc-
tion of well-selected line intensity ratios is of a paramount importance in the classification.
They have used a data set comprising of 13 spectral lines and 67 line ratios which outper-
formed whole spectral range as well as 13 spectral lines alone in terms of classification of
bacterial spectra. Surely, the construction of various spectral line ratios is tedious and de-
mands firm understanding of the data set. This approach is potentially applicable only for
routine analysis when it does not demand any case-to-case alterations. Kumar Myakalwar
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et al. [131] explored simple utilization of narrow spectral ranges encompassing spectral lines
of selected analytes. They have shown that individual ranges surpassed the performance of
the classifier based on full range spectra.21

Finally I would like to comment my contribution to this issue. In my publication
[95], the attention was given to a moving narrow spectral window scanning across the
wide spectral range. Results proved the possibility to neatly assess the most prominent
spectral window on which further analysis may be focused. This enables the shift from a
low-sensitivity, broad range echelle spectrometer to high-sensitivity, narrow range Czerny-
Turner spectrometer. Noteworthy is also my publication about the direct utilization of
echellograms without the need for their conversion to spectra. In this way, dimensions
are reduced by six orders of magnitude. This work is a continuation and extension of an
approach suggested by Larsson et al. [132].

4.4.3 Multivariate quantification

In this chapter I put emphasis on the construction of a multivariate calibration model. Mul-
tivariate model then enables to make predictions of an analyte concentration (independent
variable) based on a set of detected spectra (dependent multivariate variables). Thus, this
discussion is an extension of chapter 4.3.1. The literature sources are books [102, 104] and
articles [65, 66].

Many chemometric algorithms have already been introduced for the purposes of con-
struction of a multivariate model [104], including simple cases of principal component re-
gression (PCR) and partial least squares regression (PLSR). PLSR is the most spread
algorithm for multivariate calibration across the LIBS community. [133]. Such algorithms
combine the data matrix X with a vector of analytes’ contents or other sample parameters
influencing the spectral response. Because of this construction, the multivariate models are
generally accepted to outperform the univariate ones.

Collection of responses from various elements and their spectral lines (ionic and atomic)
possesses more complex information about the sample itself and also the parameters of
a LIP. In turn, multivariate models mitigate to certain extent the influence of the matrix
effect. [66] This phenomenon is graphically depicted in Figure 4.9. The response of spectral
lines (in this case was selected Cu I 521.82 nm) to the changes in the analyte content
are strongly dependent on the content of major elements, resulting in different trends for
individual matrices (i.e. minerals). Matrix effect is then significantly suppressed by using
PCR and PLSR, both showing similar performances. Once again, judicious selection of
spectral features is recommended over blind utilization of complete spectral range.

In the presented use case, the analytical response to the increasing copper content
was burdened with the non-linearity resulting from the self-absorption for higher copper
contents in respective LIPs. Safi et al. [133] recommend cross-checking the performance of
a multivariate calibration model by using leave-one-out methods, etc. Surely, over-fitting
of a multivariate model is frequently found in the literature leading to biased results. This
issue is a result of the PLSR algorithm that forces the relation between independent variable
and its analytical response to be strictly linear. Unfortunately as we can see, it is not the
case of LIBS data.

21It is noteworthy that all three manuscripts used the partial least sqaure discriminant analysis (PLS-DA)
algorithm for classification of organic and inorganic material spectra. Such selection was not intentional,
however, proves the capability of LIBS to classify challenging samples with judicious data pretreatment and
simple chemometrics algorithm.
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Figure 4.9: Univariate calibration of LIBS system to the response of a copper in OREAS
samples (a). Multivariate regression based on Cu lines only (b) and Cu and matrix lines
(c). Obtained and adapted from [128].

Recent shift to the utilization of non-linear algorithms, especially neural networks, is of
no surprise. Their supreme performance in the prediction has already been demonstrated.
Motto-Ros et al. [134] developed artificial neural networks (ANN) for quantification of
multiple elements in rocks and soils. El Haddad et al. [135] used a series of ANN for the
quantitative analysis of lead in soils. Neural networks are at the dawn and awaiting full
exploitation of their performance capabilities in the analysis of LIBS data in near future.

An interesting use case of chemometric algorithms was suggested by Gottlieb et al. [136].
Certain elements suffer from their high ionization energy and low transition probability; e.g.
such is the case of halogens (i.e. fluorine and chlorine), sulfur, etc.). Together with their low
contents in the sample bulk their detection becomes a challenging task. However, in certain
cases (corrosion of concretes as discussed in [136]) the matrix is significantly influenced by
the presence of traces of investigated analyte. Moreover, the spectral information might be
recovered from the background noise and making the quantitative prediction possible for
lower contents.

Lastly, I would like to mention the publication by Yaroshchyk et al. [89]. They have
compared the performance of chemometric algorithms with respect to combination of vari-
ous sources of information (multiple spectrometers) in the prediction of iron in iron-bearing
ores. Typically, spectra from different sources are glued together; this is unfortunate while
the spectral lines intensities and background noise might significantly differ and thus influ-
ence the prediction. Serial partial least squares and multi-block partial least squares are
alternative regression algorithms that process data set from various sources separately, but
in parallel. In my personal opinion, this approach bears potential for its further exploitation
in spectroscopic analysis based on data obtained from significantly various sources (such as
LIBS and Raman spectroscopy).

4.4.4 Multivariate clustering and classification

To start with a motivation for this chapter, a LIBS spectrum is understood as an elemental
fingerprint representing the sample from which it was obtained. This neat consideration
leads us to a possible discrimination of individual samples based on their characteristic
spectra.

There are two possible cases [102]:

∙ the classes of modelled data are NOT KNOWN a priori then we speak about unsu-
pervised pattern recognition (clustering), or
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∙ the classes of modelled data are KNOWN a priori then we switch to supervised
pattern recognition (classification or discriminant analysis).

In both cases, matrix effect is beneficially used and practically contributes to the dis-
crimination of individual samples (represented by unique spectral fingerprints) from each
other.

Clustering Clearly, the inspection of scores cross-plotted in a PC space effortlessly re-
veals potential similarities between individual samples. They tend to cluster together with
respect to characteristic spectral fingerprints. Cluster analysis, thus, forms a simple way of
discovering latent relationships between obtained data.

The measure of relationship is, most frequently, estimated as their mutual correlation
by using the Pearson correlation coefficient. Gornushkin et al. [88] used linear correlation
algorithm (Pearson) to classification of glass samples of forensic interest. They point out
two problematic factors in the estimation of Pearson’s correlation coefficient; insufficient
number of observations and influence of non-correlated noise. While the first issue might be
solved with improved experimental design, the second one is of more further spectroscopic
interest and demands elaborate line selection a priori. Linear correlation between data
points was also used for outliers filtering, see more in chapter 4.1.3.

Another measure of relationship reflects the distance of scores (data points) in the mul-
tidimensional space. Euclidean, Manhattan or Mahalanobis metrics are usually used. [104]
The a priori dimensionality reduction of data matrix X by using PCA is provided in order
to speed up the process of inter-score distances estimations. Yueh et al. [137] introduced
hierarchical cluster analysis based on the distance estimation between spectra. Afterwards,
they depicted spectra of tissue samples via dendrogram, showing clear separation of individ-
ual organs. Andreason et al. [138] utilized k-means clustering, a non-hierarchical algorithm,
for unsupervised classification of geo-samples.

Due to the unsupervised learning, the utilization of aforementioned algorithms is rather
limited and the interest of spectroscopic community might be resurrected by the needs of
multivariate mapping, see chapter 4.4.5.

Classification Many LIBS research groups invested a lot of efforts into the classification
of various materials (from geological through steels and alloys to biological samples). LIBS
analysis is advantageous due to the characteristic multielemental information provided in
the so called fingerprint. Observing simultaneously light elements, majority of metals,
halogens and biologically relevant elements (i.e. C, H, N, O, P, and S) in one spectrum
opens unprecedented classification capabilities.

I have no ambition to cover all existing applications and alternative algorithms used
for classification of LIBS spectra; the list is endless. The biggest area of interest seems
to be the geology offering magnificent variety of minerals, ores and rocks to be classified.
[139, 140] This application is also connected with the ChemCam instrument on the Mars
Science Laboratory rover. It is noteworthy that the ChemCam team employs rather sim-
ple algorithm - partial least square discriminant analysis (PLS-DA) [141]. LIBS technique
excells over its analytical counterparts also due to the possibility of C, O, H and N detec-
tion. This enables classification of biological samples (algae [28], bacterial strains [142]),
explosives [129], plastics [23], etc.).

Most valuable publications bring a comparison of performance capabilities of various
classification algorithms. Moncayo et al. [143] delivered a comparison of SIMCA, PLS-DA,
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LDA, CART, ANN and SVM algorithms22 by means of classification accuracy, sensitiv-
ity, generalization and robustness. Once again, supreme performance of ANN over other
algorithms was proved.

Benchmark data set For the purposes of the classification contest organized under the
auspices of EMSLIBS 2019 organizing committee, we have created a benchmark data set.
[144] This data set consists in total of 12 classes, 138 samples, 690 000 spectra. Such data
set is unique in the spectroscopic community and until today it was not beaten, the best
accuracy reached slightly over 90 %.

The motivation for its construction was to provide a challenging data set to spectroscopic
community and evaluate the performance of data processing algorithms used by individual
research groups. The diversity in chemometric algorithms used for classification, together
with variations in data preprocessing, is enormous and has no unified framework. Obtained
results are still under evaluation and will be published in the conference proceedings.

4.4.5 Multivariate mapping

Elemental mapping23, as discussed in chapter 4.3.2, is becoming the key benefit of LIBS in
respect to its analytical counterparts. [32]

There are two assumptions defining this chapter:

∙ LIBS is applied to provide elemental mapping of large areas (relatively, in respect to
the spot and step sizes; i.e. the whole slide images) of heterogeneous samples (most
often geological samples),

∙ simple case of mapping the individual analytes (known a priori) is of no interest.

Contemporary state-of-the-art LIBS systems are capable of providing megapixel images
(up to 3 hours with 100 Hz repetition rate laser operation). Each spot size (pixel of a
map) is represented by a detected spectrum, i.e. multivariate information.24 The number
of variables in a raw spectrum is typically from 2048 (detectors mounted on Czerny-Turner
spectrometers) to over 40 000 (in the case of echelle spectrometers). In turn, the size of
data matrix can reach the magnitude of 1010. Moncayo et al. [97] organized data into
the so-called hyperspectral cube, see Figure 4.3 which takes inspiration from the field of
Hyperspectral imaging as descrbied in detail by Grahn and Geladi [145].

The amount of obtained data are extending the capacity of a typical desktop computer
which induces new challenges in their further processing. At this point, new approaches are
being implemented in the analysis of large-scale maps. The biggest potential possesses the
utilization of chemometric algorithms. Thus, the research focused is at revealing hidden
relationships in bulky data sets obtained from mapping of heterogeneous samples. Simple
dimensionality reduction and consecutive vizualization in the space of newly constructed
principal components reveals latent relationships between individual matrices forming the
heterogeneous samples. Judicious handling of data then leads to achieve more elaborate
description of a sample under investigation.

22SIMCA - soft independent modelling of class analogies; PLS-DA - partial least square discriminant
analysis; LDA - linear discriminant analysis; CART - classification and regression tree; ANN - artificial
neural networks; SVM - support vector machines

23In the literature, terms elemental mapping and elemental imaging are treated as equivalents. Note that
this is in contrast to the terminology used in Raman spectroscopy.

24Therefore I call this chapter Multivariate mapping.
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To the best of my knowledge, our publication [75] was one of the first pioneering studies
in LIBS community concerned about multivariate mapping. In this work, the uranium-
bearing mineral was investigated by using the PCA algorithms. Obtained results implied
that the presence/absence of uranium was so significant that the first PC was dominated
solely by the spectral lines of uranium. This point was proved by the correlation (estimating
the Pearson correlation coefficient) between maps of uranium and the first PC. In the
consecutive study [127], SOM was applied to the same data set and further relation between
zirconium, titanium, uranium and niobium were established based on the inspection of the
neuron map and composition of individual neurons.

In our case, the uniqueness of the sample was directly reflected in the composition of
PCs. Following publications, however, dealt more with the distribution of data points in
newly constructed PC space (with reduced dimensionality). The distribution of data points
suggests their mutual relationships as in the case of clustering, chapter 4.4.4. But, indi-
vidual clusters are not distinctly separated; they are interconnected forming a continuous
cluster with several centers having higher density of points. Those centers, if correctly
localized, lead directly to the pure spectra of individual materials (i.e. matrices) forming
the heterogeneous sample.

Separation of such structure was of interest to Romppanen et al. [146], who investi-
gated the possibility to use singular value decomposition algorithm to decompose rare earth
element ore data set. Obtained data set was then decomposed according to the position in
the 3D space given by the first three components; octants of the solid geometry. Gottlieb
et al. [35] utilized expectation-maximization-clustering algorithm for clustering of concrete
samples data showing great results in separating continuous clusters of heterogeneous data.
Moncayo et al. [97] then rediscovered the necessity to cluster individual data points and
relate them with corresponding matrices (minerals forming the sample), see Figure 4.10.

To conclude, the necessity to provide robust, yet simple and straight-forward algorithm
enabling discrimination of individual clusters stands still unbeaten.

4.4.6 Data libraries

This section is a loose continuation of the chapter 4.1.4. So far, extensive elemental line
libraries have been introduced. Their construction yielded from other analytical methods,
such as spark discharge, where qualitative elemental analysis of plasma radiation is under
investigation. Several elemental line databases may be accessed [92, 93].

Intensive work has already been invested in creation of data libraries relevant to classi-
fication purposes based on LIBS spectra. Creation of LIBS data libraries with pure spectra
dedicated to various materials is burdened with several drawbacks connected to parameters
of laser-matter interaction, laser ablation and matrix effects; see chapter 3.1. All those
aspects combined make the task of creation, implementation and data libraries transfer
between LIBS systems almost impossible. Clearly speaking, data library is strictly bound
the LIBS system on which it has been created.

The Mars Science Laboratory team of Roger Wiens started the creation of data libraries
for the ChemCam LIBS system. They have collected numerous geological samples and
ablated them with the ChemCam prior its Mars mission. In the case of a stand-off system,
the variation in the sample-to-instrument distance is critical. Mezzacappa et al. [147]
introduced distance corrections to ChemCam spectra. They are also aware of the need to
stabilize the fluctuation of LIBS instrument as given in their publication [148].
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Figure 4.10: a) scatter plot showing four manually selected clusters in the PC space formed
by crosplotting PC1 and PC4, b) image showing the distribution of selected clusters and
corresponding mineral, and c) representative spectra of selected clusters. Obtained from
[97].

Data library transfer is one of my recent research tasks that I have already presented
on several conferences; including EMSLIBS 2019 in Brno [149].

4.5 Figures of merit
The quality of obtained results may be evaluated using several basic metrics, i.e. figures of
merit. Each measurement is burdened with errors (random, systematic and gross)25 leading

25Gross errors are outliers and has to be discarded from the data set. Systematic errors has to be corrected
in the methodological approach. Random errors reflect fluctuation that is of analytical interest and needs
to be evaluated.

Figure 4.11: Projections of ore samples into PCA space based on the data set of echelle (a)
and Czerny-Turner spectra centered at 305 nm (b) and at 405 nm (c). Obtained from [68]
and adapted.
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to deviations of obtained results from the true (reference)26 value. The error reflects the
variation and fluctuations occurring in an analytical system and caused by an operator. The
figures of merit characterize the performance of an analytical instrument and compare it to
its counterparts. Herein, I will describe basic figures of merit connected to the quantitative
analysis and classification.

The terminology is anchored in the term accuracy of the analytical system. They
are sometimes used freely, however, I will refer to this term in relation with the Gold
book published by IUPAC27 [150]. Moreover, I used the book Fundamental of analytical
chemistry by Skoog et al. [7] as valuable source in this chapter.

As a motivation for following concept of figures of merit, an accurate analytical system
or method demands high precision and trueness.

4.5.1 Quantification

The measure of sensitivity is used to characterize the calibration curve, chapter 4.5. The
term sensitivity describes the change of analytical response per unit change of analyte
content. In other words, the steeper the slope of the calibration curve, the more sensitive
the calibration curve. The sensitivity is constant for the linear calibration line. To give
more sense the value of sensitivity, the analytical sensitivity, it is given as a ratio of the
calibration slope to the standard deviation. [7]

In the process of quantitative analysis it is necessary to estimate the least content that
can be detected or quantified with a certain statistical significance. The limit of detection
(LOD) is defined as [90, 106]:

𝐿𝑂𝐷 =
𝑘.𝑆𝐷𝐵

𝑚
, (4.14)

where 𝑆𝐷𝐵 is the standard deviation of the blank28, 𝑚 is the calibration slope and 𝑘 is the
confidence factor (for 𝑘 = 3 it corresponds to 98.3% confidence level). The estimated value
becomes the limit of quantification (LOQ) if the confidence factor is equal to 10 [90].

It is not a coincidence that the concept of 𝐿𝑂𝐷 is closely related to the signal to noise
ratio (𝑆𝑁𝑅)29:

𝑆𝑁𝑅 =
𝑦𝑖

𝑆𝐷𝐵
, (4.15)

where 𝑦𝑖 is the signal of the analytical line. Hahn and Omenetto [2] claim that the 𝑆𝑁𝑅 and
𝑆𝐵𝑅 can be used for the estimation of 𝐿𝑂𝐷 and recommends to use following equation30:

𝐿𝑂𝐷 = 𝑘.𝑐0
𝑆𝐷𝐵

𝑦𝑖
, (4.16)

where 𝑐0 is the content of the analyte in the investigated sample. This approach is also
called the one point calibration.

26Typically, ICP-MS/OES after acid digestion is considered as a technique providing reference analysis
to LIBS.

27The abbreviation IUPAC refers to the International Union of Pure and Applied Chemistry (IUPAC),
which is the World authority on chemical nomenclature and terminology.

28Background noise in the location of the analytical line or in its vicinity if the analytical blank is not
available.

29SNR, the standard deviation of the background noise in the vicinity of the analytical line, is often
introduced together with the signal to background ratio (SBR), mean value of the background.

30Taken from [2] - equation 10b on page 362 and modified.
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Figure 4.12: The graphical explanation of figures of merit.

I assume that the true, or reference, value is known when the analysis is performed,
then the quality of quantitative analysis of an analyte may be characterized via following
figures of merit:

∙ Accuracy is the closeness of the measured, observed value to the true value. From
its definition, accuracy is defined by the trueness and precision of the measurement.

∙ Precision is related to the variability of results and is affected by random errors.
Precision is defined as the closeness of fit between obtained results. It is expressed by
the standard deviation of the results and is independent from the true value. High
precision leads to low standard deviations, i.e. mitigated random error.

∙ Trueness is the closeness of fit between the mean estimated from observed values
to the true value. The trueness might be related to bias31, which quantifies the
systematic error.

The performance of analytical system in a repeated experiment is of interest when the
optimized protocol is repeated between laboratories. The ability to repeat (for instance by
the same technician using the same analytical system) and reproduce (by different tech-
nician using the same or similar analytical system and following the same methodology)
the experiment gives repeatability, reproducibility, and robustness. Those measures are
quantified by the values of accuracy, precision and trueness. Thus, the accuracy may be
depicted as it is given in Figure 4.12.

Now, it is possible to predict the analyte content in the unknown sample once the
calibration model is built. It is also possible to compare predicted values to the reference
ones using a leave-one-out or leave-many-out (collectively referred to as cross-validation)
approach. This in turn enables to estimate other figures of merit [66], such as: root mean

31It is noteworthy that I have used bias as a figure of merit in my publication aimed at the estimation of
the copper content in the mineral samples of various matrices [109].
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square error (𝑅𝑀𝑆𝐸):

𝑅𝑀𝑆𝐸 =

⎯⎸⎸⎸⎷ 𝑛∑︀
𝑖=1

(�̄�− 𝑥𝑖)2

𝑛
, (4.17)

relative error (𝑅𝐸):

𝑅𝐸(%) =
1

𝑛

𝑛∑︁
𝑖=1

| �̄�− 𝑥𝑖 |
�̄�

× 100), (4.18)

maximum relative error (𝑀𝑅𝐸):

𝑀𝑅𝐸(%) = max(
| �̄�− 𝑥𝑖 |

�̄�
× 100). (4.19)

4.5.2 Classification

Classification is another analytical process in which the unknown samples are assigned to
different classes based on their characteristics (ratios of wavelength intensities or element
content). The quality of classification is assessed using the so called confusion matrix32,
Table 4.1.

Table 4.1: The confusion matrix for simple case of two classes in binary classification.
Obtained from [66] and modified.

confusion matrix true condition
positive negative

predicted condition positive true positive false positive
negative false negative true negative

To explain the cases described by the confusion matrix: true positive (TP) refers to the
case when a sample is correctly classified and similarly for the true negative (TN), if the
value is negative but it is predicted as positive then it is called false positive (FP) and vice
versa for the false negative (FN) case. The confusion matrix can be constructed also for the
case of more than two classes and is, thus, a powerful tool in estimation of the classification
performance of the LIBS system and consequent data processing algorithms.

It is possible to determine following figures of merit33 using the confusion matrix [66]:

∙ Overall accuracy (TP + TN)/(total population),

∙ Sensitivity = TP/(TP + FN) for a given class,

∙ Specificity = TN/(TN + FP) for a given class.

Those figures of merit are frequently used in the literature related to the multivariate
classification [65, 66]. It is worth mentioning that I have used those figures of merit for
classification purposes also in my publications [84, 91, 95].

To assign an unknown value as positive or negative (or to assign a sample to any of
model classes) it is necessary to define a threshold value. This threshold is called the
decision limit and can be varied by the operator. The decision limit, thus, defines the

32The confusion matrix is also called 2x2 contingency table [102]
33Note that those figures of merit might be expressed in fractions or percetages.
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sensitivity and specificity of the method. The Receiver Operating Characteristic (ROC)
is a curve constructed by cross-plotting true positive rate (sensitivity) versus false positive
rate (1 - specificity). ROC is used to assess the best possible performance (highest possible
sensitivity and specificity) of the method for various thresholds of the decision limit. The
diagonal line defines the method with a zero predictive value. Thus, the further the ROC
curve is from the diagonal, the more predictive it is. [102]
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Conclusion

To conclude my thesis with a single sentence, obtaining a spectrum is considered to be easy
while providing robust and judicious data processing demands interdisciplinary knowledge.

Continuous improvements in analytical instrumentation directly led to bulky data sets.
Their storage, handling and processing is becoming a challenge of contemporary LIBS
analysis considering the increasing demand on computing power. Classical approaches were
designed to lower amounts of data and therefore they cannot withstand the data overload
coming from state-of-the-art analysis. They can find place in well defined applications
where, for instance, quantification of an analyte based on matrix-matched model is of
interest. Those models break down and become inaccurate when the calibration sample set
does not fully cover heterogeneity in sample matrices, jitter and fluctuation of the system
is blurring the signal response, etc. Moreover, univariate algorithms provide insufficient
model power because the matrix effects and non-linear behavior in the signal response
are not considered. In spite of that I would like to stress that the use of univariate data
processing algorithms still finds its place in contemporary applications of LIBS and deserves
attention prior the use of more sophisticated approaches.

Classical, univariate algorithms are being abandoned and substituted with more and
more advanced multivariate statistical algorithms, chemometrics. This paradigm shift po-
larized the LIBS community and induced long-lasting discussion on further development of
the status quo of data processing. This discussion has been one heck of a seesaw recently.

To mitigate general anxiety related to the black-box-use of chemometrics, I recommend:

∙ to provide pre-flight optimization of the LIBS system to improve the signal to noise
ratios of analytes of interest,

∙ to collect sufficient number of calibration/model samples,

∙ to optimize and generalize the multivariate models to avoid over-fitting,

∙ and namely, to invest efforts in the understanding of data from the perspective of the
source (plasma physics and analytical chemistry).

The strictly data-driven approach has been, fortunately, recently enriched with thorough
knowledge of laser spectroscopy and laser-induced plasma itself, thus, gaining essential
touch with the source of data itself, i.e. laser-induced plasma. This, in turn, led to more
elaborated and unbiased results that reflected the investigated phenomenon more plausibly.
Multivariate data analysis thus became an inevitable part of data processing.

In my thesis I brought a road map navigating from classical chemical analysis to chemo-
metrics and neural networks used in computer science. Let this thesis be a starting point
when the goal of the data analysis is to establish robust, not-overfitted model with judi-
ciously selected spectral features based on the firm knowledge of the original sample and
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the structure of the data set together with a deeper understanding of plasma physics and
analytical chemistry.

Future perspectives
Having this opportunity I would like to give several remarks on future perspectives and
potential development of the LIBS technique and related fields.

Imaging of sample surface is of a paramount interest to the LIBS community. Currently,
many applications yield from the capability of LIBS to provide multi-elemental maps on
a large-scale with micro-resolution, which is its most vital advantage of them all. The
development of instrumentation is also enabling the transfer from 2D to 3D. Thus, handling
and processing of megapixel hyper-spectral images is crucial task that needs to be solved.

Hyphenated systems are getting popular, they enable more complex understanding of
a sample under investigation. I have shown several examples, when combination of LIBS
with LA-ICP-MS and LIBS with Raman spectroscopy are well known. On the other hand,
combination of LIBS with X-Ray Computed Tomography remains still unexplored and
possesses great potential for future RD endeavor. The main drawback is in the sample
preparation process and experimental approach, when the combination of bulk technique
(XCT) and surface technique (LIBS) demands further considerations.

Benchmark data set is a standard in data science. However, it was missing in the LIBS
community until 2019, when we have introduced it for the classification contest during
EMSLIBS 2019 symposium. Based on the results from our contest, it is clear that accurate
classification of challenging data set is possible only when data driven approach is judiciously
combined with thorough knowledge of data and their relation to the source of origin. I
believe that other groups will follow our example in construction of even more challenging
benchmark data sets. Hopefully, this will also induce the discussion for unified algorithm
in data processing generally accepted by the LIBS community.

Data library transfer has not yet been investigated. From my point of view, this issue
is a time bomb waiting for LIBS devices to be fully exploited, especially in the classification
regime. It was found that any minor fluctuations in the LIBS system performance or
alteration of the obtained data set lead to drastic changes in the multivariate model. Then,
utilization of such data sets biases multivariate models and obtained results. There are
several possibilities how to avoid this issue, however, their implementation is burdened
with the need for extensive measurement of the same sample set with various experimental
parameters.

The dawn of neural networks is upon the LIBS community. The supreme performance
of neural networks in terms of classification and quantification is indisputable. It is only
a matter of time when robust, generalized neural network models will be tuned up and
will substitute completely standard linear and non-linear chemometric approaches. Their
implementation has already been demonstrated on numerous feasibility studies. Yet still,
neural networks models demand more rigorous optimization in order to avoid over-fitting
on non-informative signal and background noise.
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My contribution to the state-of-the-art
At this point I would like to briefly comment on my contribution to the state-of-the-art by
the means of original scientific work published in impacted journals. To do so, I intended
to bridge the gap between analytical chemistry and plasma physics on one side and data
science on the other. In my authored and co-authored publications, I have targeted the
issue of data processing from several perspectives. I have divided my publications into
five categories, which I will comment in detail. Note that in the Appendix A I list my
co-/authored publications and further comment my most important publications having
the highest number of citations in Appendix B.

Data analysis is rather general class in which I have collected publications focused on
individual steps of data processing. As I have discussed in chapter 4.1, there is no recom-
mended algorithm for application of individual data processing steps. This depends on the
experience of the operator and his heuristic ability. Let my review publication [65] serve
as a collection of good practices found in LIBS literature and as a sort-of cookbook for
well-ballanced data processing.

The issue of Gaussianity, i.e. normal distribution of obtained signal, is often overlooked.
As it was shown in my co-authored publication [101], distribution of an analytical signal
oscillates from normal distribution to extreme value distribution. This depends on the
experimental conditions and quantum properties of studied spectral line. Finally, bundle of
publications dealt with impact of outliers [91], standardization approaches [84] and means
of background subtraction [73] on the classification accuracy.

Chemometrics form a center of mass of this thesis and they are also of my paramount
interest. Note that chemometric algorithms were also employed in aforementioned publi-
cations, namely PCA, SIMCA, and PLS-DA. In our pioneering study [151], a combination
of principal component analysis and linear discriminant analysis was used to discriminate
various brick samples with respect to their hardness (as a function of firing temperature).
Those samples were measured using table-top and stand-off system. A stand-off system
was used in my other study [95] where classification power of broad-range echelle spectra
and short-band Czerny-Turner spectra were compared.

To the best of my knowledge, we stood at the beginning of multivariate mapping.
In our research work we have fully exploited the potential of PCA [75] and SOM [127]
to visualize big data, hyper-spectral images of uranium and zirconium bearing rocks. In
both cases, the utilization of chemometrics enabled more efficient investigation of collected
data and revealed hidden connections between data (individual sample matrices). In my
other publication, I have shown that well-executed univariate analysis can provide similar
performance (quantitative accuracy) as linear multivariate algorithms (PCR and PLSR).
Proving my point that it is not absolutely necessary to always employ chemometrics but
that it is crucial to know data and their relation to original samples.

Laser ablation is a complex process influenced by numerous physical, chemical and
experimental parameters, as I have shown in chapter 3. We have contributed to the phe-
nomenon of NELIBS in which nanoparticles are applied on the sample surface and affect
the laser-matter interaction leading to significant enhancement of analytical signal. In our
publication [152] the effect of reduced pressure of ambient atmosphere on the signal en-
hancement was studied. In another publication [38], nanoparticles were used for the first
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time also in the LA-ICP-MS technique, the so-called NE-LA-ICP-MS. In this case, the
presence of nanoparticles during laser-matter interaction led to improved laser ablation
and fractionation.

Hyphenated systems possess great potential for further research in various applications.
Surely, the combination of analytical techniques enables more rigorous investigation of
samples. Together with my colleagues, I have contributed to recent state-of-the-art in
hyphenated system as reviewed in chapter 2.2.

The combination of LIBS and Raman spectroscopy represents a vital solution providing
complete chemical analysis of investigated samples. In my earlier works [28, 45], I have
described the utilization of LIBS, LA-ICP-MS and Raman spectroscopy in the analysis of
algae, potential classification of algal strains based on their spectral features and means of
quantification of un-/saturated fatty acids. Next publication [47] brought direct combina-
tion of LIBS and Raman spectroscopy in the classification of various bacteria nested on
agar. Higher classification accuracy was proved during joint LIBS−Raman experiment.

Most recently, the combination of LIBS and X-Ray Computed Tomography was devel-
oped; we have followed previous work where LIBS and synchrotron X-Ray radiation was
used. Our publication [51] delivered a study of Pb bearing mineral, when the presence of Pb
was validated by using LIBS and its location was marked in XCT data. Then, volumetric
XCT data were segmented and total Pb content in the whole rock was estimated.

Applications of LIBS that I have pursued are discussed only in brevity. In the following
publications we have intended to show the benefits of LIBS and fully exploited them in
different applications, such as:

∙ toxicology where nanoparticles were mapped on a large-scale in whole plants or their
parts [103, 112, 113],

∙ depth profiling, as a unique feature of laser-ablation techniques, was used to profile
paint layers [119],

∙ liquid analysis and the detection of toxic heavy metal was tested [153],

∙ braking tracks can be visualized using LIBS indirectly by the detection of Zn [154, 155],

∙ sulfur in concrete was detected due to the presence of He atmosphere of various
pressures [156],

∙ corrosion of Mg was quantified based on the ratios of ionic and atomic Mg spectral
lines [77],

∙ high-repetition rate analysis when LIBS proved its fast turn-around time [68, 114].
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Appendix A

List of authored publications

In this section I present a complete list of my 36 publications having 340 citations (including
self citations). I also add printed versions of the most cited ones together with a short
description of their novelty and contribution to the state-of-the-art, Appendix B. Note that
those ten publications form my H-index: 11, see the record in Figure A.1 obtained from
the Web of Science on Mar 3rd, 2020.

Figure A.1: The citation record of my publications obtained from Web of Science on Mar
3rd, 2020.
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Printed versions of most significant
authored publications
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My very first publication was dedicated to the feasibility of algae analysis using LIBS.
Despite any reasonable progress in this application, there is still considerable potential in
direct, in-situ utilization of LIBS.

There exist several approaches in the analysis of algal samples. They are grown and
harvested in the form of a dense suspension. Then, the analysis may be provided directly
in the liquid phase or after certain preparation, such as deposition on the filter paper. In
the publication, the liquid suspension was measured in two arrangements. First, surface of
the bulk liquid was analyzed. This approach brings more disadvantages than advantages,
namely focusing of the laser pulse on liquid surface is challenging. Moreover, orthogonal
double pulse LIBS was used in order to improve sensitivity and plasma stability. Second,
suspension was circulated in the specially designed vessel. Thin liquid jet was analyzed
using collinear double pulse LIBS.

Un-/saturated fatty acids are of interest in the algal analysis. Calibrating LIBS response
to fatty acid concentration will be a game-changer in this application.
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We report on the application of laser-induced breakdown spectroscopy (LIBS) to the determination of ele-
ments distinctive in terms of their biological significance (such as potassium, magnesium, calcium, and sodi-
um) and to the monitoring of accumulation of potentially toxic heavy metal ions in living microorganisms
(algae), in order to trace e.g. the influence of environmental exposure and other cultivation and biological
factors having an impact on them. Algae cells were suspended in liquid media or presented in a form of ad-
herent cell mass on a surface (biofilm) and, consequently, characterized using their spectra. In our feasibility
study we used three different experimental arrangements employing double-pulse LIBS technique in order to
improve on analytical selectivity and sensitivity for potential industrial biotechnology applications, e.g. for
monitoring of mass production of commercial biofuels, utilization in the food industry and control of the re-
moval of heavy metal ions from industrial waste waters.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

One of the most promising alternatives to satisfy the increasing
demands of the human population for energy sources is the produc-
tion of carbon-based fuels from plants. By the process of photosyn-
thesis plants convert the energy of solar radiation into the chemical
energy stored in the molecular building blocks of life (proteins, lipids,
carbohydrates, etc.), thus providing energy for most of the life forms
on Earth. Moreover, photosynthesis has a crucial impact on Earth's at-
mosphere as it generates oxygen while simultaneously using up car-
bon dioxide, a prominent greenhouse-effect gas responsible for global
climate changes.

In order to utilize photoautotrophic microorganisms (algae) for ef-
ficient biofuel, food industry, and bioremediation applications [1,2]
the optimal cultivation parameters have to be determined for each
given purpose, which results in a high production of oil in the selected
cell line, increased production of carotenoids/omega-3 oils and poten-
tial absorption of heavy-metals in the selected cell line, respectively.
This can be accomplished using small-scale photobioreactors that
allow precise monitoring and control of the culture irradiance, tem-
perature, pH, and gas composition in the medium. However, the abil-
ity to monitor the elemental composition of cells and consequently

the cellular response to external stimuli in real time (ratios/elemental
compositions of algal cells might be significantly changed over short
periods of time) is not provided. For this purpose qualitative/quantita-
tive information about elemental composition of the algal cells that
provides a deeper insight into the cellular physiology and enables
more efficient optimization of the selected parameters for specified
purposes outlined above is required. So far, only a few studies [3–6]
have been performed – using dedicated chemical techniques for
lipid determination – to analyze the effect of nutrient elements on
oil production/bioremediation. Thus, a fast and remote technique
which is capable to analyze elements in-situ within algal cells would
be of an advantage.

The technique of laser-induced breakdown spectroscopy (LIBS)
utilizes the high power densities employing focused radiation from
a pulsed, fixed-frequency laser in order to generate luminous plasma
from a sample (solid, liquid, and gaseous samples) [7]. In our experi-
ments we assume the stoichiometric ablation so that the plasma com-
position reflects the elemental composition of the ablated target.

Here we report on the application of a double-pulse LIBS tech-
nique to the analysis of important elements including heavy metal
ions in algal cells. The technique of double-pulse LIBS [8] was intro-
duced by K. Niemax and his co-workers from ISAS Dortmund in
1991 [9], and nowadays it is a common technique used in many
LIBS research laboratories. LIBS has been previously applied to the
analysis of biological samples [7,10–12], namely to the determination
of Sr in algal pellets [13].
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The realization of LIBS apparatus employing a water jet for
real-time, in situ and remote analysis of trace elements in liquid sam-
ples, which is potentially applicable to the analysis of pollutants in
water in harsh or difficult-to-reach environments and used in our ex-
periments, has been previously described [14–20].

Algal cells used for our investigations were present in liquid sus-
pension (as was mentioned above for the use within the photo-
bioreactor) or in a form of biofilm. Algal biomass in natural
environment may act as a bio-indicator of pollution. If some algal spe-
cies are selectively added into the polluted area, they might serve as a
bioremedation tool.

We have utilized the LIBS set up in the three following modifica-
tions to follow different applications demands:

(i) algal cells were suspended in a given volume of the liquid of in-
terest and analyzed using double-pulse LIBS employing a water
jet (wet procedure);

(ii) algal cells were suspended in a given volume of the liquid of in-
terest and analyzed using double-pulse LIBS employing bulk
liquid measurements (wet procedure);

(iii) algal biofilm was analyzed using double-pulse LIBS (dry
procedure).

Valuable information about elemental composition of the cells
brought by the LIBS technique can potentially help to elucidate im-
portant questions in algal biology (nutrition dynamics depending on
the cultivation conditions) and identify the algal strains which have
the potential for applications in metal-ion sorption (bioremediation),
in food industry (source of omega-3 oils and proteins [21]), or in a
biofuel industry. Here we would like to note, that bioremediation
can be beneficially combined with the production of biofuels [22].
For our experiments we have selected the two algal species—
Trachydiscus minutus (potential source of omega-3 fatty acids such
as EPA and DHA) [23] and Chlamydomonas sp. (potential candidate
for biofuel production) [24].

To the best of our knowledge these are the first LIBS measure-
ments utilizing setup with the liquid jet so that algae samples could

be measured in-vivo, on-line and in real-time. Obviously, this is the
area (real-world application) where LIBS technique can excel because
the measurements can be performed directly e.g. at the bioreactor or
remotely in difficult-to-reach environments at contaminated sites.

2. Experimental

As was mentioned above, in our investigations we used the three
different experimental arrangements using double-pulse LIBS tech-
nique. Firstly, for fast, remote and in situ analysis we focused the
laser beam onto the smooth vertical surface of a laminar jet stream
of the liquid similar to our previously published arrangement [17],

Fig. 1. a). Schematic diagram of LIBS system for ablation of biofilm. b) Schematic diagram of LIBS system employing laminar water jet setup.

Fig. 2. Schematic diagram of experimental setup for bulk liquid LIBS experiments in-
volving the two lasers. Ablation laser I (from the top) at 266nm and re-heating laser
pulse II (from the side) at 1064nm are shown.
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secondly, onto the water surface (bulk liquid), very much as when
routinely investigating solid targets. Thirdly, we set up a typical ar-
rangement found in the majority of LIBS laboratories where laser is
focused onto the surface of algal biofilm.

2.1. Preparation of algal samples for laser ablation experiments

The algal species were obtained from the Culture Collection of Au-
totrophic Organisms (CCALA), Institute of Botany, Academy of Sci-
ences of the Czech Republic. This collection maintains about 650
strains of microalgae and cyanobacteria, a substantial portion of
which are microorganisms from extreme environments. Recently,
great effort has been put to the screening of microalgal strains suit-
able for biotechnological exploitation with respect to specific metab-
olites and production characteristics.

T. minutus (Bourrelly) was cultivated in 300ml batch cultures at
room temperature (approx. 22°C), in a medium containing (in
mgl−1) N 150, P2O5 50, K2O 300, MgO 30, SO3 75, B 0.3, Cu 0.1, Fe 0.7,
Mn 0.4, Mo 0.04, and Zn 0.3, dissolved in 1:1 distilled and tap
water mixture. The incident PAR flux density estimate was be-
tween 100 and 300μmolphotonsm−2s−1. The cultivation apparatus
consisted of 1000ml Pyrex conical flasks fitted with a cotton plug,
which were occasionally shaken manually. Lighting was supplied with
two standard cool white 40W fluorescent tubes. Chlamydomonas sp.
was cultivated in 150ml Erlenmeyer flasks in BBM medium at room
temperature in daylight at a laboratorywindowwith occasionalmanual

mixing. The cells were harvested in the stationary phase and subjected
to the treatment with increased concentrations of some metal ions.

The culture aliquots were each supplied with solutions of CuSO4

10mgml−1 in 1:1000 (v/v) ratio, and the cultures were incubated
for 24hours with occasional shaking. The sedimented cells were
washed with distilled water and concentrated by a brief centrifuga-
tion. For biomass/biofilm formation the sediment was then trans-
ferred with spatula on the surface of a glass cover slip. The residual
water was left to evaporate in the room conditions in a semi-closed
dustproof container. Dried samples were subjected to the laser abla-
tion. In order to produce algal suspension the sedimented cells were
placed to a defined amount of liquid.

We would like to note that the question of biofilm definition has
been debated in many discussions. In our study we favor the simple
definition from a recently published review [25]—“a biofilm is a thin
coating comprised of living material.”

2.2. LIBS experimental setup utilizing water jet (algal suspensions) and
biofilm

Measurements of algal samples on two different setups for exper-
iments with samples in solid state, as biofilms, and in a form of liquid,
as the algal suspension, were performed at Brno University of Tech-
nology. We have employed setup with orthogonal pulses for biofilm
experiments because this configuration enables better mapping of
the sample [26,27] to setup with collinear pulses, which was used
for water jet analysis.

Fig. 3. a, b Details of LIBS spectra for the algae biofilm sample. (a) Batch 1 – Cu solution was not added to the batch—clearly only spectra of Mg and K are shown; (b) Batch 2 – algal
biofilm was prepared with adding Cu to the batch—both Cu lines are visible indicating accumulation of Cu within algae cells.
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2.2.1. Biofilm experiments
The double-pulse LIBS (DP LIBS) measurements were carried out

in a perpendicular geometry (Fig. 1a); this setup was previously de-
scribed by our group [26,27]. The ablation laser was directed normal
to the surface sample by mirrors and focused onto the sample surface
by a 30mm focal length glass triplet. The beam of the second laser
was directed parallel to the sample surface in the plasma using mir-
rors and focused on the plasma by the lens of 40mm focal length.
The setup involved the two Q-switched Nd:YAG lasers both operating
at 10Hz. The first laser LQ 529a (SOLAR, BY) which operated at the
second harmonic (532nm) with the pulse width of about 10ns was
used as the ablation source. The second laser Brilliant B (Quantel,
FR) operating at the first harmonic (1064nm) with pulse width of
about 6ns was used for reheating the plasma. The energy of the abla-
tion laser pulse was set on 12mJ per pulse and the energy of the sec-
ond laser was 110mJ per pulse, the laser focal diameter was ~80μm.

The sample was mounted on a stage with precision movements
(2μm resolution) inside the ablation chamber (Tescan, a.s. CZ). The
ablation spot was targeted and controlled by a CCD camera placed
outside of the ablation chamber.

2.2.2. Algal suspension
Setup for measuring liquid samples can be easily attached to DP

LIBS setup described above. Liquid measurements were performed
in home-made glass vessel instead of interaction chamber Fig. 1b.

Continuous and steady thin flow of liquid has been achieved for
liquid LIBS measurements. For this we used peristaltic pump (PCD
81, Kouřil, CZ) working at 100ml/min. Liquid sample was introduced
to the nozzle (diameter of 0.6mm) via silicone tubes and mounted to
the XY positioning stage (ThorLabs, US).

Pulses of both lasers were led through the optical system
(ThorLabs, US/Newport, UK) in the collinear geometry, employing
harmonic separator (Eksma Optics, LT) reflecting 1064nm and

transmitting 532nm. The lens with 75mm focal length focused the
laser beams into the thin flow of liquid and, consequently, luminous
micro-plasma was created.

In both above mentioned cases the LIBS plasma radiation was col-
lected with UV-NIR achromatic collimating mirror system, the CC52
(ANDOR, UK) and transported via a fiber optic system (25μm in di-
ameter) connected to a spectrometer in the Echelle configuration
(ME5000, Mechelle, ANDOR, UK). As a detector an ICCD camera
(iStar 734i, ANDOR, UK) was employed.

The time-resolved studies were performed by controlling follow-
ing parameters—the gate width tW (time during which the spectra
are integrated), the gate delay time td to reduce the effect of continu-
um signal in collected spectra (time delay after second laser pulse
after which the spectra are acquired by the detector), and the delay
between the two pulses Δt. The two lasers and ICCD camera were
triggered via a delay generator (DG535, Stanford Research System,
US). The best signal to noise ratio was obtained for the timing of op-
timized setup tW=16μs, td=1.5μs, and Δt=1.5μs.

The LIBS analysis was performed in the air at atmospheric pres-
sure. For each spectral window – obtained from the biofilm or from
algal suspension – 10 laser shots were averaged. The gain level on
an ICCD camera was set on 80.

2.3. LIBS experimental setup utilizing bulk liquid arrangement
(algal suspension)

The measurements of algal suspensions were performed at the
Department of Chemistry, Masaryk University in Brno employing
the orthogonal double-pulse LIBS setup (Fig. 2). The modified com-
mercially available laser ablation system (UP 266 MACRO, New
Wave, US), operating at the 266nm with energy of 12mJ per pulse,
was used as the ablation laser. The energy of the ablation laser was
set on 12mJ using dedicated software. For the second, re-heating

Fig. 4. a–d Segments of LIBS spectra, recorded from biofilm sample used in analysis highlighting individual elements—(a) Cu, (b) Mg, (c) K and (d) Na.
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laser pulse which propagated parallel to the sample surface a Nd:YAG
laser (Brilliant, Quantel, FR) at fundamental wavelength 1064nm
(with energy of 100mJ per pulse) was used. The laser beam was fo-
cused by the 120mm focal length lens to intersect the path of the first
laser beam and, consequently, to create microplasma placed 0.5mm
above the sample surface. The double pulse setup was controlled with
two delay generators (DG 645, Stanford Research Systems, US) in
order to provide the time synchronization of both lasers and the ICCD
detector.

Each spectrum from the bulk liquid arrangement was obtained
from single laser shot and with no gain set on the camera. As the op-
timal inter-pulse delay 600ns was set according to the highest
signal-to-noise ratio observed. The plasma emission was focused by
the 80mm focal length glass lens into the 3m long optical fiber and
transported into the entrance slit of Czerny-Turner spectrometer
(TRIAX 320, Jobin Yvon, FR; 2400g/mm; 50μm entrance slit)
equipped with ICCD detector (Horiba, Jobin Yvon, FR). The gate
delay time after second laser pulse and gate width of the detection
were as well optimized to maximal signal to noise ratio and were
set to 500ns and 10μs, respectively.

3. Results and discussion

In this study, two different algal species—T. minutus and
Chlamydomonas sp. were examined in terms of the elemental compo-
sition. We have detected magnesium, calcium, potassium, sodium,
and copper. The corresponding atomic emission lines utilized were
as follows: Mg lines at 279.5nm and 280.2nm, Ca lines at 393.3nm
and 396.8nm, K lines at 766.5nm and 769.8nm, Na lines 588.9nm
and 589.6nm and Cu lines at 324.7nm and 327.4nm.

3.1. Measurements on algal biofilm—metal-ion binding experiments

LIBS experiments were performed on algal biofilm in order to re-
veal elemental composition of a biological sample. We targeted the
dried biofilm (prepared according to the procedure described
above), so that “real-world” LIBS applications can be followed. As an
emerging issue, the mechanism of metal-ion binding to algae was
studied by LIBS on the two algal samples—firstly “batch 1” was pre-
pared following normal protocol and secondly “batch 2” was treated
with specified amount of Cu (as described above). Examples of the

Fig. 5. a, b (a) Overall view on the biofilm sample clearly showing ablated craters during LIBS analysis (in the middle of the sample, where 15 craters are located on the area of about
1×1cm); (b) an image of the crater obtained from the confocal laser scanning microscope for the crater parameters estimation—depth of about 70μm and the diameter of about
100μm.
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spectra acquired from “batch 1” and “batch 2” are shown in Fig. 3a
and b, respectively. The measured data clearly show the copper
binding capacity of Chlamydomonas sp. The copper binding capacity
was also measured for T. minutus (results are not shown) and was
found slightly lower when monitoring Mg/Cu ratios (Mg belongs
to the alkaline earth metals and its natural average concentration
in algal biomass is about 9mg/kg; Cu belongs to algal microelements
with natural concentration of about 0.02mg/kg [28]). Moreover,
from the differences in the ratios of Mg/K (K belongs to the alkali
metals and its natural average concentration is about 4mg/kg [28])
estimated for both the batches we can speculate that during the in-
cubation when Cu was added nutritional conditions within cells
have been changed, that could mean Mg was preferentially
absorbed in the cells. It could suggest that alkali metals and alkaline
earth elements were exchanged with microelements ions from the
added solution containing Cu. However, parameters such as concen-
tration of metal in solution, pH, temperature, cations, anions and
metabolic stage of the cells can affect above results. Also, a surface

effect image analysis would be very useful so that metal sorption
can be thoroughly investigated. Such studies are currently under
progression in our laboratories, exploiting LIBS and different imag-
ing approaches.

These preliminary finding suggests that the algal biomass under
our study might be potentially suitable for the removal of heavy
metal ions from e.g. polluted waters. This was, indeed, as presented
above, confirmed by our experiments which determined the binding
of Cu metal-ions by the presence of increasing levels of LIBS signal
for Cu lines. However, systematic studies are required to investigate
mechanism of biofilm sorption further using statistical and
chemometrics software, in order to improve on our analytical mea-
surements. Such studies are currently under development in our
laboratories, exploiting a selection of LIBS, Raman spectroscopy
and LA-ICP-MS approaches. Specifically, we aim to identify and
quantify elements within biofilms using LA-ICP-MS technique for
the purpose of cross-validation and Raman spectroscopy for algal
oil determination.

Fig. 6. a–f Segments of LIBS spectra, recorded from water jet and bulk liquid arrangements used in analysis highlighting individual elements—(a) Ca, (b) Cu, (c) K and (d) Mg for
water jet and (e) Cu, and (f) Mg for bulk liquid setup (spectral range was limited by using the Czerny–Turner spectrometer).
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Fig. 4 shows segments of LIBS spectra, recorded from biofilm sam-
ple presenting the capability of LIBS technique to detect different ele-
ments within the algal cells. In order to estimate the ablation
efficiency and the size of the ablation crater in the algal biofilm the
confocal laser scanning microscope (Olympus, LEXT OLS3100, JP) im-
ages were obtained. Fig. 5a shows the ablated biofilm with the detail
of the craters which were drilled during LIBS measurements. The ab-
lation crater detail is shown on Fig. 5b presenting the crated depth of
about 70μm and the diameter of about 100μm (the total thickness of
biofilm was estimated of about 150μm). This translates to an average
ablation rate to about 7μm per pulse, considering that LIBS analysis
was provided using 10 laser shots.

3.2. Measurements on algal suspension using water jet setup and bulk
liquid setup

Here, LIBS experiments were performed on liquid suspensions of
algal species. In the water jet example, shown in Fig. 6, biologically
relevant elements (Ca, K, Mg) are clearly visible confirming the feasi-
bility of the LIBS water jet setup for qualitative/semi-quantitative
analysis of algal suspension in liquids (T. minutus). The spectra
obtained from the experiments employing water jet setup suggest
the possibility to perform detailed semi-quantitative analysis, which
is now being investigated in our laboratories. Also, as described
above for measurements on biofilms, experiments with algae treated
with Cu were performed using the water jet. Fig. 6b displays two Cu
lines corresponding to copper that was adsorbed by algae. Conse-
quently, these results were confirmed utilizing the bulk liquid set
up; spectra are shown in Fig. 6e–f, confirming that both arrangements
are capable to measure traces of Cu in algae suspended in medium.
We would like to point out the differences in the LIBS spectra
obtained from the liquid jet and from the biofilm samples—intense
H and O lines are visible for the liquid jet (Fig. 6a–d) in contrary to
the strong lines of Ca for biofilm (Fig. 4).

The successful analysis of the elemental spectral signatures for the
two algal samples confirms that LIBS spectroscopy could be used for
fast on-line characterization of algal species within the industrial en-
vironment. Measurements of the selected ranges of interest (e.g. for
estimation of Mg/Cu, Ca/Mg, Mg/K ratios for semi-quantitative analy-
sis) can be acquired in a few seconds, depending on the selected
range and instrumentation. Thus, LIBS might be capable to offer a
real-time, in-situ recognition of algal species in the future. Conse-
quently, these (preliminary) results warrant more extensive investi-
gations with larger collections of algal strains to evaluate the power
of LIBS spectroscopy compared to other analytical methods. This re-
search is now being conducted in our laboratories.

4. Conclusion

In present study we have demonstrated that it is possible to per-
form LIBS analysis of macro- and micro-element concentrations in
algal samples using the water jet setup, bulk liquid arrangement
and by investigations utilizing biofilms. Additionally, the differences
recognized using LIBS technique in the spectra of two algal batches,
where one batch was exposed to medium containing elevated levels
of copper have been shown.

From our feasibility experiments LIBS proves to be a useful tool for
detecting absorption of pollutant elements by algae samples, which
might be in turn considered as potential candidates for bioremedia-
tion. The present study was undertaken as a proof of principle only,
and thus we only focused on selected results from the two algal spe-
cies. The results of our experiments conducted for samples of algal
suspensions and algal biofilms confirm LIBS as a fast, real-time tech-
nique for remote analysis.

As a natural development we plan to combine LIBS with a tech-
nique capable to analyze algal lipids (e.g. Raman spectroscopy) in

order to study the effects introduced by nutrient starvation – which
can be detected/monitored using LIBS – on the oil production in se-
lected algal samples. For this, we continue in our efforts to prove an-
alytical potential of combining LIBS with Raman spectroscopy.

We believe that LIBS technique will be of significant assistance to
research groups currently being involved in, or intending to join,
the quest of sustainable biofuel generation, algal food applications,
and bioremediation.
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My first review article had the biggest impact on the LIBS community. It has sum-
marized the utilization of laser-based spectroscopic techniques as perspective tools for the
detection of chemical composition of algae, investigation of their nutrition and classifica-
tion of individual algal strains. Spectroscopic techniques (LIBS, LA-ICP-MS and Raman
spectroscopy) were selected for their complementarity in terms of provided information and
possibility to implement them in a consequent experiment. A comprehensive review of algal
biomass analysis was focused on the application of spectroscopy in the fields of biofuels and
bioremediation.

As a fiesibility study, principal component analysis (PCA) was used for visualization of
four algal strains (Chlarydomonas reinhardti, Chlorococuum zurek, Desmodesmus quadratic,
Haematococcus pluralis.) Their full discrimination in LIBS spectra was observed based on
variations in intensities of selected spectral lines of Ca, K, Mg, and Na.
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Abstract: Algal biomass that is represented mainly by commercially grown algal strains has 

recently found many potential applications in various fields of interest. Its utilization has 

been found advantageous in the fields of bioremediation, biofuel production and the food 

industry. This paper reviews recent developments in the analysis of algal biomass with the 

main focus on the Laser-Induced Breakdown Spectroscopy, Raman spectroscopy, and partly 

Laser-Ablation Inductively Coupled Plasma techniques. The advantages of the selected 

laser-based analytical techniques are revealed and their fields of use are discussed in detail. 
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1. Introduction 

Expanding economies are still technologically dependent on crude oil, while the decreasing amount 

of oil deposits moves up prices of crude oil and related gasoline [1]. Trends are observed in searching 

for alternatives to fossil fuels. Another challenge lies in satisfying global energy needs in a way that 

would decrease the level of environmental pollution. This challenge can be faced with renewable energy 

sources [2]. Algae are a possible energy source which could solve both issues. Amongst prospective 

alternatives to fossil fuel, algae have become one of the most significant without competing for arable 

land [3–5]. Algae convert solar energy into lipids, carbohydrates and proteins via photosynthesis and 

then further processing of these primary metabolites can take place. Algae have a per-acre per-year yield 

that is 200 times higher than the best-performing plant/vegetable oils [6], while some algal strains are 

also capable of doubling their mass several times per day [7]. 

The complex study of algae as a future biodiesel and biomass feedstock was initiated by Williams 

and Laurens [3]. They summarized the collection of oil-producing microalgae. Great emphasis was 

placed on understanding the biochemistry of the algal strains and on the development of algal production 

systems. They pointed out the influence of the biochemical composition of the biomass  

(i.e., the lipid content) on the economics of the biofuel production. They concluded that algal biofuels 

are potential valuable alternative to “traditional” biofuels. However, the non-profitable economics 

(considering the oil prices in the 1990s) of the biofuel production caused the termination of the  

long-term research program funded by the U.S. Department of Energy [4]. The possible replacement of 

fossil fuels by algal biofuels is a matter of future research and commercialization of the production 

process [8,9]. Algae may provide an effective solution, but several challenging aspects need to be 

overcome [3,10,11], e.g., light use efficiency, high amount of oil production in the algal cell, daily crop 

harvest, effective algal biomass to 3rd generation biofuel conversion, and the improvement of the entire 

system economics [3]. 

Algae can be grown in open pond systems [6,12–14] and bioreactors [15] with a possibility of a daily 

harvest. Algal ponds can as well serve for waste water treatment [13,14], which should result in the cost 

reduction. Every algal strain has to be grown under optimized conditions to obtain high amounts of crop 

harvest per day, e.g., sufficient sunlight, nutrients, and protection against natural pests. Individual algal 

strains have different properties and react differently to the conditions in which they grow. On the other 

hand, algal strains can easily adapt to their new environment [3]. Bioremediation is the ability of the algal 

strain to grow in polluted water and even prosper to increase its yielded lipid content [16–18]. Algae can 

also be used as bio-indicators of water pollution level, e.g., to determine the presence of heavy  

metals [19,20]. In order to reduce expenses for algae cultivation, it is possible to use various sources  

for nutrient control, including the agricultural waste waters [5]. Environmental and climate changes  
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can be traced in coralline algae–in mineralized algae species that are an excellent record of this  

information [21]. 

It is noteworthy that algae may be also used in other fields with potential economic impact [22,23], 

such as the food, cosmetic and pharmaceutical industries. A review covering majority of literature 

sources concerning marine algae products was done by Blunt et al. [24]. One of the studies is focused on 

the possible processing of an algal cell in order to yield more products at once [25]. Cardozo et al. [22] 

report on the importance of algae in the food industry in numerous countries, where the emphasis has 

moved from wild harvests to farming and controlled cultivation in order to produce valuable products 

on a large scale. The investigation of the algal chemical composition and related products are nowadays 

promising research areas in the pharmaceutical industry. Algal products may be used in cancer [26] and 

HIV [27] treatment. In civil engineering, flat panel airlift reactors for lipid production by the algal strain 

Chlorella vulgaris were already installed [28]. The reactor was designed as the renewable energy stock 

based on the algal biomass production. Another step in this research and development is the construction 

of a building with a bioreactor facade in Hamburg, Germany [29], where the energy is supplied by the 

growth of the algal biomass. 

Despite the main aim of this article we briefly review the analysis of algae utilizing other techniques. 

Light Detection and Ranging (LIDAR) is an optical remote sensing technique that may be used for the 

analysis of larger areas [30]. Phytoplankton in the delta of the river Po was monitored utilizing 

fluorescence LIDAR systems placed on a van [31], oceanographic ship and airplane [32]. Laser-induced 

fluorescence has a long history of applications in the detection of marine algae; in the year 1972 a series 

of measurements was made employing a dye laser, ruggedized for airborne use [33].  

Algae are mainly composed of carbohydrates, proteins, nucleic acids, and lipids, where carbohydrates 

and lipids are responsible for the energy storage [3]. It was reported that the lipid content in the lipid 

bodies depends on the growth and the nutrient status of algae. Various techniques are employed for 

obtaining elemental or molecular information of an algal strain. For instance, nuclear magnetic 

resonance (NMR) spectroscopy was applied to the analysis of plants, fungi and algae by Martin [34]. A 

non-invasive in vivo measurement employing NMR spectroscopy revealed details of the nitrogen and 

carbon metabolism in real time [35,36]. NMR spectroscopy was utilized to give characteristic 

fingerprints of the lipid extractions from algal samples, while marine algal strains and samples from the 

Lagoon of Venice were compared [37]. Danielewicz et al. [38] studied the intact triacylglycerol 

composition of four microalgae species using MALDI-TOF-MS (matrix-assisted laser desorption and 

ionization time-of-flight mass spectrometry) and 1H-NMR spectroscopy. Moreover, MALDI-TOF-MS 

was employed in other studies for comparison of various algal strains [39–41]. 

The fast estimation of the algae lipid content is possible by employing Raman spectroscopy. Raman 

spectra—in the sense of a fingerprint—give information about the saturated and unsaturated fatty acids 

in the lipid body [42–45]. Samek et al. [42] showed that it is feasible to calculate the iodine value (IV) 

from Raman spectra. IV quantifies the degree of unsaturation and is mainly used in the biodiesel  

industry [46]. Moreover, the analysis of fatty acid composition in algae by gas chromatography—mass 

spectrometry (GC-MS) is also possible; however, it is a time-consuming technique [47,48]. 

Atomic spectroscopy techniques are in general the most commonly used for elemental analysis [49]. 

Inductively Coupled Plasma techniques, among others, have been the most commonly used technique 

in any field of interest. It was shown that Laser-Ablation Inductively Coupled Plasma Mass Spectrometry 
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(LA-ICP-MS) is an appropriate method for detection of environmental changes over the year (or even 

decades) in coralline algae [50–55]. This method is characterized by high spatial-resolution that is 

required to detect long-lived coralline algae, because seasonal growth increment widths range 

approximately from 230 to 330 μm/yr [50]. 

Winefordner et al. [49] proposed another laser-based technique, Laser-Induced Breakdown 

Spectroscopy (LIBS), as a future superstar for elemental analysis of various samples in any state of 

matter. LIBS has the added advantage that the analysis can be performed remotely, provided optical 

access can be established between the instrument and the target. When analyzing a sample with other 

techniques the sample has to be presented to the instrument. This of course is not the case of LIBS, 

because all interactions between the system and the target can be purely optical. Therefore, LIBS has an 

extremely competitive position and excels if remote, in-situ, real time analysis is required. For instance, 

in analyzing a water jet containing algal suspension where only optical access using either an optical 

fiber or a telescope can be used. The most appropriate applications are thus found to be those which 

prefer remote quantitative or qualitative analysis, without any physical contact with the sample. 

Moreover, the sample does not have to be prepared for analysis using solvents and any surface 

contaminants can be ablated off the sample before carrying out a measurement. This makes LIBS ideal 

for algal strain analysis where the target may be in the form of dried biomass as algal suspension. 

Specially engineered systems can be designed and assembled for each analytical problem allowing fast 

decisions to be made concerning the identification/analysis of target materials which can then be 

immediately analyzed, sorted and labelled. In this review, LIBS is critically evaluated and considered as 

a mature technique capable of competing with other techniques for elemental analysis.  

Furthermore, the combination of Raman spectroscopy (chemical composition) and LIBS (elemental 

composition) can be complementary, increasing the information power [56]. This combination of 

techniques, called a hyphenated or tandem approach, has been already successfully used for the analysis of 

minerals [57] and cultural heritage objects [58]. Hoehse et al. [59] constructed a LIBS-Raman system 

with a two-arm Echelle spectrometer equipped with single CCD camera. Pořízka et al. [60] used  

laser-based techniques (LIBS and Raman spectroscopy) in tandem for obtaining both elemental and 

molecular information of the algal strain Trachydiscus minutus. Raman spectroscopy can be used to 

obtain the molecular composition of the sample under study, e.g., information on the lipid content inside 

algal cells. The elemental composition can be observed employing LIBS or LA-ICP-MS. As was 

mentioned above, LIBS is an emerging technique for elemental analysis, with its main advantage being 

the possibility of fast in-situ measurement. It has to be noted that LA-ICP-MS or LA-ICP coupled to 

Optical Emission Spectrometry (LA-ICP-OES) can be advantageously used also to validate the LIBS 

outcomes, mainly in the first stages of the research and development of new LIBS applications. The 

classification of the algal strains based on their spectra, i.e., spectrochemical fingerprint in the sense of 

elemental or molecular composition, can be also provided by employing standard chemometric 

algorithms, such as principal component analysis (PCA) [61] and partial least squares (PLS) algorithms 

[61,62]. Chemometrics and their applications are further discussed in the text. 

In this review the literature was surveyed for recent developments and results in research utilizing 

selected laser-based techniques (mainly LIBS and Raman spectroscopy, partly LA-ICP-MS) for analysis 

of the algal biomass or calcified coralline algae. ICP-OES was used as a supervising technique for 

analyzing LIBS results with chemometric. 
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Using LIBS and Raman spectroscopy techniques, one is able to monitor in-situ, on-line and in real 

time the spectral evolution of the major/minor elements (LIBS) and in addition chemical composition 

of the sample (Raman spectroscopy). Moreover, in these approaches, knowledge about the relation 

between elemental/chemical composition and spatial location is achieved. This enables to measure  

time-course data so that monitoring changes of sample over time (which could be related to spatial 

position) introduced by environmental/nutritional influences. On the contrary, when other approaches 

are used for analysis where the part of a sample is dissolved/pelleted and consequently analyzed using 

for instance methods based on atomic absorption spectroscopy (AAS) or MALDI information about 

spatial location and time evolution is hard to obtain or even completely lost. 

2. Laser-Induced Breakdown Spectroscopy 

The spectrochemical analytical technique LIBS, which is based on generating a laser-induced plasma 

(LIP) by high energy laser pulses and subsequent time-resolved spectral analysis of the LIP emission, 

can be used to analyze materials in any state of matter [63–67]. A LIP spectrum containing atomic and 

ionic emission lines may provide qualitative and quantitative information about the elemental 

composition of the sample in real-time and in-situ. In recent years, LIBS technique has gained its position 

among other spectroscopic techniques due to its advantages; such as simple and robust instrumentation, 

fast and precise analysis, no need for the sample preparation, the capability of on-site application and 

remote/stand-off detection [49]. Due to the relative simplicity of the whole measurement process, a 

movable remote (or stand-off) system can be constructed and employed for the analysis of environmental 

samples [68,69]. 

The utilization of LIBS in various fields is summarized in the review articles [56,70–72]. The 

technique has already proved its capability for the analysis of biological samples [73,74] and in 

biomedical applications [75]. Review on the femtosecond (fs) LIBS (physics of the laser-induced plasma, 

applications and perspectives) was introduced in [76]. The utilization of fs-laser source in a LIBS 

measurement leads to significant suppression of the matrix effect. Though, there exist multi ways how 

to overcome the matrix effect occurring in ns-LIP [56], e.g., Laser-Ablation LIBS (LA-LIBS). 

To the best of our knowledge, only a few pioneering works have recently been performed in the 

analysis of algae employing LIBS. Surveying the literature for the LIBS measurements, multiple 

arrangements and several approaches can be found for direct measurements of algal strains. One 

possibility is to dry the algal biomass to produce a thin film [60] or to press dried algal biomass into the 

pellets [77,78]. Garcimuno et al. [77] measured natural watercourse algae with added standard solutions 

of Cu. The analytical figure of merit, limits of detection, were obtained and claimed to be in the units of 

ppm. Niu et al. [78] produced internal standards by adding known amount of Sr into dried biomass of 

two different algal strains, Chlorella and Sargasso. Both strains were standardized samples obtained 

from National Institute for Environmental Studies (NIES) in Japan. After drying, the algal powder was 

pressed into pellets, and measured by LIBS. The amount of Sr in the unknown sample was then 

successfully evaluated using the constructed calibration curves. The approach pressing the pellets prior 

the LIBS analysis, however, is time-demanding and not-applicable for in-situ and time-course  

analysis [77,78]. The most straightforward way is to measure the algae directly, in the water suspension. 

Pořízka et al. [60] observed the elemental composition of algal strain Trachydiscus minutus (Bourrelly) 
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measured with LIBS in three ways, (i) the algal sample was dried and deposited into the thin biofilm; 

(ii) the suspended algae was measured in the liquid jet; and (iii) in bulk (where laser-induced plasma 

was produced on the surface of the liquid). Elements of biological significance (Ca, K, Mg, and Na) 

were determined as well as the trace amounts of potentially toxic metal (Cu). The results of LIBS 

analysis of algal strains are listed in Table 1. 

Table 1. The list of articles focused on the analysis of algae employing LIBS. 

Algal Strain Ref. 
Pretreatment  

of Algae 

Matrix 

Elements 

Minor 

Elements 

Trace 

Element 
LOD (ppm) 

Trachydiscus minutus 

(Bourrelly) 
[60] 

dried biofilm. 

liquid jet, 

surface of bulk liquid 

Ca, K, Na, 

Mg 
- Cu - 

watercourse algae 

strain not specified 
[77] dried and pressed 

to pellets 

Mg, K, 

Na, Fe, Si 

Al, Mn, Ti, 

V 

Cu, Cr, 

Pb, Zn 
Cu: 9 ± 2 

Chlorella, NIES No. 3 

Sargasso, NIES No. 9 
[78] 

dried and pressed 

to pellets 
Ca - Sr - 

One consideration that needs attention when using LIBS for quantitative analysis are “matrix-effects”, 

and these have been the subject of much discussion in all branches of spectrochemical analysis. These 

are the effects on the spectra associated with the combined physical and chemical properties of the target 

which result in different dynamics of laser/matter interaction and consequent ablated mass values, 

plasma formation, and its properties. They cause outliers in calibration plots if the samples are not chosen 

with similar composition. Extreme cases are seen when calibration plots for the same element are 

obtained from totally different materials. To get around these problems the composition of the calibration 

samples should closely match, in the sense of matrix elements content, that of the material to be analysed. 

Otherwise a different analytical approach has to be followed. 

The composition of the sample, mainly in the sense of matrix or macro elements, is crucial  

in the laser/matter interaction and consecutive LIP formation and emission. The quantitative analysis  

of trace elements content in the algal samples is limited due to the significant influence of the matrix  

effect on the intensity of trace element lines. The same amount of an analyte in samples with various 

matrices may result in the significantly different intensity of corresponding spectral line. Then general 

calibration of the system for various matrices is therefore not possible. For this reason, the ways of 

compensating or even avoiding the matrix effect should be considered. The performance of LIBS  

in quantitative analysis may be improved by multivariate algorithms [64]. Though, multivariate 

algorithms, such as principal component regression (PCR) and partial least squares regression (PLSR), 

may compensate the matrix effect only to a certain extent. However, when the classification prior to the 

quantitative analysis is considered the main benefit may be to discriminate the samples based on their 

matrix elements content. Then the matrix effect may be suppressed while the calibration curve is 

constructed only for particular group, i.e., samples with limited range of variation in the composition of 

matrix elements. 

LIBS analysis of liquid samples is very challenging for the essential problem arising from the 

laser/liquid interaction. Improvement in the LIBS instrumentation for the measurements of samples in 

the form of liquid solutions and suspensions should lead to the improvement in the sensitivity and 
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repeatability of the technique. Moreover, the density of the liquid suspension has to be taken into account 

when different ratios (water to algae) affects also the matrix. The measurement can be performed in the 

matrix assisted mode, as was presented in [79], where algae were deposited on the surface which matrix 

is considered to be supreme, or simply measured in the form of dried biofilm [60]. With this approach the 

promising improvement in the sensitivity and repeatability of the LIBS setup is expected. This approach 

was adapted in our recent measurements [60] where alga Trachydiscus minutus (Bourrelly) was 

deposited on a microscope slide and dried. Thin film of algal biomass was then analyzed utilizing a 

double pulse LIBS (DP LIBS) technique. Elements of biological significance (Ca, K, Mg, and Na) were 

detected with the highest signal for Ca (II) doublet (393.4 and 396.9 nm). Furthermore, DP LIBS was 

utilized for higher sensitivity and lower amount of ablated mass. Moreover, table-top LIBS setup offers 

in general satisfying repeatability and reproducibility of the measurement with limits of detection under 

the ppm level. 

The ratio of algae to water content may be controlled if the algal strains are prepared under the 

laboratory conditions. Further problems arise when the algal strains are collected from their natural 

environment, which affects the elemental composition of an algal strain. Though, influence of 

environmental parameters could be helpful when the classification of the algal strains is of an issue, i.e., 

in the provenance study. Then, an algal strain may be classified when the composition of matrix elements 

(Ca, K, Mg, and Na) is affected by the surrounding environment. 

Despite the increasing popularity of LIBS within the spectroscopic groups dealing with various 

application fields, the use of LIBS for the analysis of algal biomass remains still unexplored. Published 

papers on the analysis of algae samples employing LIBS, however, proved the capabilities of this 

analytical technique. Both reproducibility and good sensitivity were reached when algal pellets were 

measured with additional trace amounts of toxic heavy metals. The approach for measuring algae in 

liquid suspension further strengthened the position of LIBS for in-situ measurement of biological 

samples—from a liquid jet the instrument (see further in the text) can directly measure in-situ, in  

real-time and on-line changes in algal elemental composition within the bioreactor. LIBS is a promising 

technique for analyzing the algae elemental composition of samples in-situ and in real-time, in their 

natural habitat. It can be useful for monitoring the cultivation process of algae and for evaluating 

environmental pollution. 

It should be noted that in different fields, e.g., in biofuel production, the elemental analysis of algal 

samples is not the primary objective with respect to the molecular analysis. As detailed in  

Section 2.2, LIBS, with certain limitations, is capable also of direct molecular analysis. Utilizing LIBS 

solely for elemental analysis, however, has applications in the analysis of drinking water, evaluation of 

the waste waters and its treatment control, the so-called bioremediation, trace elements detection in 

marine algae, etc. 
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2.1. Laser-Induced Breakdown Spectroscopy of Liquid Samples 

An effective LIBS arrangement using a vertical thin liquid flow for measurement of trace amounts in 

water solutions has already been used [60,80]. Thus, LIBS has proved its applicability for detection of 

trace elements in aqueous samples, but for the rapid in-situ and real-time analysis of biological samples 

suspended in water, i.e., algae, it is necessary to further develop LIBS systems, so that they are capable 

of measuring samples in the liquid state of matter. 

Despite the general problems with plasma generation in liquid samples, the capability of LIBS for 

analysis of liquid samples has been tested and improved for more than thirty years. A detailed literature 

survey on the analysis of liquids is beyond the scope of this review, however, more comprehensive 

review on the analysis of liquid can be found in [56]. Practically, three different approaches of liquid 

sample measurements can be employed: (1) creation of the plasma in a bulk of the liquid; (2) on the 

steady surface of the liquid; or (3) on the surface of a thin laminar jet. 

Both approaches, in bulk and on surface analysis, suffered from the sedimentation process when the 

suspended specimen in the liquid settled down to the bottom, making the sample inhomogeneous and 

the measurement irreproducible. This fact led to the introduction of the thin laminar vertical flow of a 

liquid [81–85]. Limits of detection found in selected articles are in the tenths or units of ppm for heavy 

metals (Pb, Cu, and Cr) and elements of biological significance, matrix elements of algae, (Ca, Na, Mg, 

and K). Preliminary LIBS measurements of algae suspended in liquid suspension utilizing the liquid jet 

and steady surface approaches were reported [60]. In this article, the peaks of Hα, Hβ and O lines were 

obtained with highest intensity. 

2.2. Laser-Induced Breakdown Spectroscopy for Molecular Analysis 

The analysis of a LIP emission provides information on the elemental composition of the sample. 

Molecular bands can be as well detected in a LIP radiation [56]. The molecular structural information 

of a sample is broken after the impact of a laser pulse. The newly formed LIP is composed of ions, 

atoms, and electrons. As the LIP cools down, ions recombine and molecules may be formed further in 

LIP temporal evolution. Consequently, the radiation corresponding to excitation states of molecular 

bands is detected. The molecular bands occur in later stages of the LIP formation. Debras-Guedón and 

Liodec [86] made series of measurements of molecular radiation, CN and AlO. However, CN bands 

were present in the plasma of carbon samples. Different timing of the LIBS experiment should be utilized 

for molecular analysis compared to conventional elemental analysis. Elements originating from the 

ambient gas surrounding the sample are as well ablated to create a consequent LIP. Those elements then 

react with the elements from the sample and form molecular bonds. Then, detected molecular radiation 

does not directly reflect the molecular structural information of the sample. Therefore, significant 

uncertainty may be introduced to the computation. Molecular analysis is not so frequent in LIBS 

applications, though this kind of analysis has already been tested. It was already proved that the CN band 

is a consequence of recombination among C2 in the plasma, i.e., ablated C from the sample, and N2 

originating from the ambient air [87]. Moreover, Baudelet et al. [88] in their work suggest the CN band 

as a reliable marker for the observation of biological samples. 
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Doucet et al. [89] coupled LIBS measurement with chemometrics (principal component regression 

and partial least squares regression) in order to obtain more reliable quantitative molecular prediction. 

In this work they analyzed 18 standardized pharmaceutical samples with emphasis on CN band emission. 

Kongbonga et al. [90] analyzed different types of oils and saccharose dissolved in water with an 

emphasis on direct detection CN (in the region 388 nm) and C2 (516.6 nm) bonds. The attempt to 

correlate the intensity of molecular band with the amount of fatty acid in the sample was done. However, 

no calibration curve was given due to a low range in the amounts of fatty acids. The detection of CN and 

C2 bonds together with the theory of the chemical processes involved in forming those molecular bands 

in LIP were presented by several authors [91–95]. In the wider context, the detection of molecular bonds 

(e.g., C2) utilizing LIBS could be correlated under well specified circumstances to the real amount of 

fatty acids. 

Utilization of laser-based methods, LIBS and Raman spectroscopy, for obtaining complete chemical 

information of algae has already been published [60]. In this work, the analysis of molecular information 

was delivered by Raman spectroscopy. Utilization of Raman spectroscopy with LIBS beneficially in 

tandem was already reviewed by Hahn and Omenetto [56] for various applications (such as archeology, 

cultural heritage, mineralogy and soil analysis). Nevertheless, based on the proposed theory, LIBS  

can—under well specified circumstances—provide both elemental and molecular information. There are 

several molecular bands (CN, C2, CO, CO2) which can be detected in the LIP radiation. The 

concentration of molecules within a LIP could be obtained when the LIBS measurement is supervised 

with Raman spectroscopy or GC-MS. Advanced statistical algorithms, such as PLS and PCR (principal 

components regression), could be used for that purpose. 

Concluding the LIBS section, LIBS instrument could be used in bioremediation and environmental 

pollution monitoring. The sensitivity of the technique is satisfactory with the detection limits in the units 

of ppm. However, a robust LIBS setup with good reproducibility has to be constructed. As it was 

concluded by Hahn and Omenetto [56], the LIBS device is capable of quantitative analysis, however it 

is considered to be the only vulnerable feature of LIBS, therefore further research should be concentrated in 

this direction. Moreover, the matrix effect is of an issue when the quantitative analysis of the trace 

element is needed [56,64]. Nevertheless, it is possible to avoid or compensate the matrix effect  

to a certain extent in many ways, e.g., LA-LIBS, fs-LIBS, matrix assisted LIBS, and chemometric 

algorithms. Despite its limitations, LIBS is capable of direct and fast in-situ analysis without any need 

of sample preparation. Moreover, it is possible to classify various samples based on their chemical 

fingerprint provided by LIBS. 

The performance of a LIBS device for in-situ analysis should be adapted to a case study rather than 

to a general use. Then, LIBS should be in the first stage of the research supervised with another technique 

(such as ICP-OES, GC-MS, etc.) to obtain the reference results and then to construct the supervised 

library of algal strains. Consequently, LIBS instrument can provide reliable real-time analysis. 

3. Laser Ablation Inductively Coupled Plasma Based Techniques 

To quantify the total content of elements in algal samples, numerous analytical techniques have 

recently been employed. Most of them, such as solution analysis by ICP-OES and ICP-MS, require 

sample decomposition and dissolution. The main drawback is the relatively demanding and laborious 
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sample pre-treatment. After rinsing in ultra-pure water to remove salts and oven-drying, the samples are 

homogenized, grinded and then weighed [96,97]. Some samples are extracted [98]. The next step is the 

decomposition procedure, usually the acid digestion [99] or microwave assisted acid digestion [98]. 

Other treatments such as the slurry sampling technique, acid leaching or the enzymatic hydrolysis can 

be used [100]. These procedures lead to a total dissolution of the biological materials. Due to the 

complete decomposition of biological materials, however, the spatially-resolved analysis of elements 

cannot be carried out. 

The solution ICP-OES technique was used to determine major (such as Ca, K, Mg) and trace elements 

(such as Zn, Cr, Co) in edible algae [97–100]. Using ICP-OES Michalak et al. [100] observed the 

differences of concentrations of elements of marine edible algae during the annual period in different 

parts of Baltic Sea. Perez et al. [21] utilized ICP-OES of algae from three different stations from 

Patagonia (Argentina) to detect the degree of contamination caused by human activities and to study the 

seasonal differences between Cd and Pb. ICP-OES is distinguished by ability of multi-elemental analysis of 

biological (algal) samples with relatively high-sensitivity and rapidness over wide concentrations  

ranges [98]. Better sensitivity can be acquired by solution ICP-MS. It is a very sensitive and precise 

analytical technique that allows simultaneous determination of trace and ultra-trace elements in algae 

with detection limits in the order of ng·g−1 [101]. Van Netten et al. [102] utilized ICP-MS to control heavy 

metals and radioactive isotopes in edible marine algae. The amounts of heavy metals in edible algae 

have to be controlled because of algal high affinity to heavy metals. Rodenas de la Rocha et al. [96] 

have also employed ICP-MS to analyze different elements in edible algae. 

The analysis of biological samples without laborious decomposition can be performed using  

LA-ICP-MS/OES. These analytical techniques are widely used for a trace elemental analysis of solid 

samples with high spatial resolution (typically below 20 µm [50]). Moreover, LA-ICP-MS allows also 

a multi-element analysis of biological samples with no or little sample preparation and enables rapid 

analysis in real time with high spatial resolution. This advantage enables the observation of the evolution 

of appropriate biological samples (e.g., calcified algae) during their lifetime, which aids in the 

understanding their life cycle (series) or living conditions. 

LA-ICP-MS was used on coralline red algae to detect climatic condition changes. Coralline red algae 

represent an ideal organism that occurs in mid- to high-latitude oceans. Their asset is their longevity and 

their incremental growth pattern. They are widely distributed in the coastal regions worldwide. Part of 

their skeleton is constituted of high content Mg-calcite. This skeleton grows over their lifespan. Coralline 

red algae do not suffer from the drawback of the ontogenetic growth trend [103]. Usually, to detect climatic 

condition changes, the most plentiful species of Clathromorphum from North Pacific Ocean are used; 

they can grow up to 850 years (based on radiometric dating). They can record climate information during 

an annual period [50–54]. 

The ratio of Mg/Ca is used to record temperature variation in different marine organisms [97,102]. 

For the detection of the sea-surface temperature Hetzinger [55] utilized coralline red alga, 

Clathromorphum nereostratum, which archives the environmental information of seawater with a high 

temporal resolution during its growth. Gamboa et al. [53] compared by LA-ICP-MS the Mg/Ca ratio in 

coralline red algae Clathromorphum compactum from two sites within the same region and showed that 

algae can be used as a recorders of past temperature variability. Halfar et al. [51] utilized 

Clathromorphum compactum to employ growth increment widths as a temperature proxy by  
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LA-ICP-MS. They investigated the relationship between the growth and the environmental parameters. 

Averaged results of multiple growth increments show strong correlations with annual sea surface 

temperature. They showed that the highest growth rates are observed during the summer months when 

the sea-surface temperatures and the light intensities are the highest. 

Chan et al. [52] and Hetzinger et al. [54] used LA-ICP-MS to study the Ba/Ca ratio variations in 

Clathromorphum nereostratum, and investigated temporal salinity changes. Gamboa et al. [53] utilized 

LA-ICP-MS to determine Mg/Ca ratios of Clathromorphum compactum to understand the North 

Atlantic Oscillation. Hetzinger et al. [50] investigated algal species Clathromorphum compactum and 

Clathromorphum nereostratum by LA-ICP-MS in order to compare the ratios of Mg/Ca, Sr/Ca, U/Ca 

and Ba/Ca. The temperature dependence of Sr/Ca and Mg/Ca ratios was evidenced. The results show 

that the Sr content into algal calcite is dependent on the seawater temperature. The relationship between 

Mg/Ca, U/Ca and Ba/Ca ratios and the sea surface temperature was not proved.  

The reported limits of LA-ICP-MS detection are under the ppm range, summarized in Table 2. For 

the analysis of algal samples, i.e., measuring the concentrations of 24Mg, 43Ca, and 137Ba, an Agillent 

7500ce Quadrupole ICP-MS coupled with a New Wave Research UP 213 laser ablation system  

(213 nm, ND:YAG laser) was used [51–53]. The carrier gas was helium and the utilized laser energy 

density was 6 J/cm2. The scan speed was 10 μm/s, the spot size was 65 μm, and the pulse rate was  

10 Hz. NIST SRM 610 (U.S. National Institute of Standard and Technology Standard Reference 

Material) glass reference material was utilized as an external standard [51,52]. 

Table 2. Limits of detection (LOD) obtained by LA-ICP techniques taken from  

selected references. 

Samples Isotope LOD [ppm] Reference 

Clathromorphum compactum, 
Clathromorphum nereostratum 

24 Mg 0.16 

[50] 

43 Ca 54.9 
88 Sr 0.04 
238 U 0.016 

137 Ba 0.13 

Clathromorphum compactum 
24 Mg 0.16 

[51] 43 Ca 54.9 

Clathromorphum nereostratum 

24 Mg 0.02 
[52] 43 Ca 5.47 

137 Ba 0.01 

Clathromorphum compactum 
24 Mg 0.16 

[53] 43 Ca 54.9 

LA-ICP-MS is a prospective method to study solid algal samples with high resolution and relatively 

low limits of detection. This method seems to be more suitable to detect coralline algae than LIBS 

because LA-ICP-MS has in general higher spatial resolution and can detect isotopes ratio. This is 

important in the study of coralline algae, because they are optimal organisms to archive and detect 

climatic conditions of the environment. On the other hand, LA-ICP-MS cannot be used to study algal 

suspensions, and needs reference methods to measure the total concentration of elements in the samples, 

or standard reference materials to quantify elemental concentration in the samples. 
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4. Raman Spectroscopy 

Raman spectroscopy (alternatively Raman tweezers–a combination of Raman microspectroscopy 

with optical trapping) is a powerful and robust technique for analyzing biochemical information and 

revealing the molecular composition of samples under study [42,104–113].  

Raman spectroscopy is based on the phenomenon of Raman scattering of monochromatic light (laser), 

which is the inelastic scattering of a photon. When there is monochromatic light incident on a target 

there are several possibilities for the incoming photons, if they have sufficient energy the molecules of 

the target can be raised to an excited electronic state and the photons absorbed, they can pass through 

the target without interacting or they can undergo elastic or inelastic scattering. Elastic scattering is the 

type of scattering that occurs most often when light is incident upon a target. In Raman spectroscopy 

however, inelastic scattering is exploited. In this case the molecule is excited to a virtual energy state, 

however this time when it relaxes it returns to a different vibrational energy state than the one that it 

started from. Therefore the energy of the photon emitted during the relaxation is different to the energy 

of the photon that caused the excitation in the first place. The scattered photon consequently has a 

different frequency than the excitation source and this is what produces the Raman spectrum, a plot of 

the frequency shift between incident and scattered light (see Figure 1). 

Figure 1. Raman spectrum of a lipid body within the algae (Trachydiscus minutus). From 

the ratio of intensities I1656/I1445 the iodine value (IV) can be estimated [42]. Here algal lipid 

content is close to IV ~ 230.  

 

Review articles on biological applications [114–118] and especially on algae [119] have been 

presented. The primary goal of this literature research is the utilization of Raman spectroscopy for 

obtaining the information about the amount of lipid content within the algal cell. Efficient production of 

algal strains with higher lipid yield could lead to lowering the prices of biofuels [3]. Therefore, techniques 

allowing for rapid characterization/identification of algae species are required, and specifically to determine 

the degree of unsaturation of constituent fatty acids in algal lipid bodies. Note that the third generation 
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biofuels technology is based on algae that contain high oil content. Also, concerning the modern fish 

industry, most fish consumed inland come from fish farms. In this aquaculture industry, as the number 

of fish farms grow (mainly control farmed salmon products), it becomes important to guarantee that the 

high content of precious omega-3 fatty acids find their way into fish oils. This therefore dictates some 

fish dietary requirements for dedicated aqua-cultural environment. Consequently, aquafarmers feed fish, 

soy, and chicken oil to fish, all of which could be eliminated using algal oil. This highlights algae as a 

potential source from which desired omega-3 fatty acids can be extracted [120]. 

In 1983, Brahma et al. [121] reported on the measurement of the marine algae phytoplankton, 

employing Raman spectroscopy. Algae were measured directly in the suspension and the emphasis was 

given to the observation of the carotenoid pigments and chlorophyll peaks. The application of Raman 

spectroscopy to the analysis of photo-synthetizing organisms, such as algae, is challenging due to the 

underlying strong fluorescence of omnipresent pigments that might obscure the characteristic Raman 

spectral features. Therefore, the use of Raman spectroscopy has been limited to relatively few algal 

species. Accordingly, the number of published papers is relatively small, but tends to increase in recent 

years. Because of being in an early stage of development, these publications on Raman spectroscopy of 

algae are scattered over a wide range of journals, for instance [42,122–127], with the majority of work 

published in the last five years. 

Algal strains, which could be promising candidates for biofuel production, have been so far 

investigated by five groups worldwide (see Table 3). The most widely studied species is Botryococcus 

braunii. The species with the highest iodine value (IV) was found to be Trachydiscus minutus. Thus far 

only two groups have been involved in systematic research on estimating the unsaturation degree/IV 

within algal samples (see Table 3).  

Table 3. The list of articles focused on the analysis of algae employing Raman spectroscopy. 

Algae Species Reference 
Estimate of the Degree of 

Unsaturation/Iodine-Value of Algal Oil 

Dunaliella tertiolecta [122,126] No 

Chlorella sorokiniana 
Neochloris oleoabundans 

[123] No 

Botryococcus braunii [124] No 

Botryococcus braunii 
Neochloris oleoabundans 

Chlamydomonas reinhardtii 
[125] Yes 

Trachydiscus minutus 
Botryococcus sudeticus 

Chlamydomonas sp. 
[42] Yes 

The pioneering work of Heraud et al. [122,126], performed in 2007 in Beardall’s laboratories at 

Monash University (Australia), was focused namely on in vivo Raman spectroscopy to predict the 

nutrient status of individual algal cells. They found that the Raman spectra of cells revealed a range of 

Raman bands mainly attributed to chlorophyll and carotene when 780 nm laser beam was used  

for excitation. 
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Preliminary feasibility studies on using Raman spectroscopy of algae were reported by  

Huang et al. [123]. They performed the study on two algal species, namely Chlorella sorokiniana and 

Neochloris oleoabundans, which could be seen as potential candidates for the biofuel production. 

Nitrogen-starved C. sorokiniana and N. oleoabundans samples were measured and Raman signals due 

to storage lipid (specifically triglycerides) were detected. The fluorescence background interrupted by 

sudden high-intensity fluorescence events was observed in the Raman signals from the algae. The 

fluorescence was acquired as a consequence of photo-bleaching of cell pigments due to prolonged 

intense laser light exposure; but the occurrence of the sudden high-intensity fluorescence bursts eluded 

full understanding. 

Weiss et al. [124] reported Raman spectroscopy on Botryococcus braunii algae. In this study, authors 

were focused mainly on mapping the presence and location of methylated Botryococcenes within the 

colony. Specific Raman spectroscopic characteristics for Botryococcenes of Botryococcus braunii have 

been identified. In vivo lipid profiling of oil-producing algae has been described, using single-cell  

laser-trapping Raman spectroscopy [125].  

Finally, Samek et al. [42] have recently demonstrated spatially resolved Raman spectroscopy to 

determine the effective IV in lipid storage bodies of individual algal cells. The Raman spectra were 

collected from different algal species immobilized in agarose gel, thus preventing them from moving 

out from the tightly focused region of the probe laser beam in order to maintain high spatial resolution 

within lipid bodies. The principal parameter characterizing the algal lipid is the degree of unsaturation 

of the constituent fatty acids and can be quantified by the IV. Crucially, the IV is conveniently estimated 

from information contained within the Raman spectra, with no need to add any chemicals to the cells. 

They used the characteristic peaks in the Raman spectra at 1656 cm−1 (cis C=C stretching mode) and 

1445 cm−1 (CH2 scissoring mode) as the markers defining the ratio of unsaturated-to-saturated carbon-carbon 

bonds of the fatty acids in the algal lipids (Figure 1). For the quantitative IV determination  

a calibration curve was generated based on pure fatty acids of known IV, when the IV differed 

significantly for the various algal species. These estimates based on Raman spectroscopy were validated 

using the established technique of gas chromatography mass spectroscopy (GC-MS); indeed, excellent 

agreement was found. 

As was mentioned above, the technique of Raman spectroscopy could be an excellent candidate to 

follow the food chain in the aquaculture industry, enabling one to monitor the IV within the food chain. 

Similarly, the same procedure of IV determination can be applied to monitor algae samples for biofuel 

production, where IV must be kept below a given limit. Moreover, it has been demonstrated [42] that 

various algal oils exhibit significantly different IV, which may have important implications for the 

food/pharmaceutical industry in obtaining 3-omega fatty acids. The main advantage of oils obtained 

from algae is that they are not contaminated by industrial toxins/antibiotics as some oils obtained from 

fish possibly could be due to the contaminated environment (industrial farmed fish or wild-caught fish). 

5. Chemometrics for the Recognition of Algal Strains 

The discussed spectroscopic techniques (LIBS, LA-ICP-MS, and Raman spectroscopy) are able to 

analyze extensive samples set, where each sample is represented by complex spectral information. 

Chemometric algorithms are used in many fields including spectroscopy, for data mining and pattern 
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recognition within the bulky data sets [61]. In general, chemometrics are used for both qualitative and 

quantitative analysis. 

Classification of the algal strain has already been performed. Zbikowski et al. [128] applied the factor 

analysis for the discrimination of algal strain collected in coastal and lagoon waters, based on their 

appearances in flame atomic absorption spectroscopy spectra (FAAS). The algal strains were collected 

in the Gulf of Gdansk in a short time period (2000–2003). Algal samples were then dried and digested 

with HNO3 acid. The contents of four macroelements (Ca, Mg, Na and K) and six heavy metals  

(Cd, Cu, Ni, Pb, Zn and Mn) were determined and used for further statistical analysis. The correlation  

between the concentrations of Cu, Pb and Zn in green algae and the sampling sites was observed.  

Heraud et al. [126,129] utilized Raman spectroscopy and Fourier transform infrared spectroscopy 

(FTIR), respectively. Chemometrics were then applied on the measured data set for accurately predicting 

the nutrient status of an independent individual algal strain. PCA was successfully applied as well on the  

near-infrared (NIR) and FTIR spectra [130]. Laurens and Wolfrum [130] used the NIR and FTIR spectra 

of biomass from four species to predict accurately the levels of exogenously added lipids.  

Salomonsen et al. [131] presented an extensive comparative study of alginate, a salt of alginic acid 

distributed widely in the cell walls of brown algae, using IR, Raman spectroscopy, NIR and NMR 

techniques. Chemometric algorithms, partial least squares discriminant analysis (PLS-DA) and PCA 

were then used to accurately predict the nutrient status of the cells from the Raman spectral data.  

Concluding, chemometric algorithms may be of help in handling bulky data sets and revealing latent 

variables and relations among the biological samples. As stated above, LIBS is capable of providing 

information about the overall elemental composition of the sample, the so-called chemical fingerprint. 

The composition of matrix elements Ca, K, Mg, and Na could differ according to the particular measured 

algal strain [60]. The classification of algal strains based on their spectra is possible while employing 

the standard chemometric algorithm, such as principal component analysis. To the best of our 

knowledge, chemometric algorithms have not been used so far for the analysis and discrimination of 

algal strain based on their LIBS measurements. Nevertheless, successful utilization of LIBS for 

classification of biological samples has already been published [88,132–135]. 

5.1. Discrimination of Four Algal Strains by LIBS 

Description of employed LIBS system, Figure 2, and related preparation of the four algal strains has 

already been published [60]. Four algal strains (Chlarydomonas reinhardti (ChR), Chlorococuum zurek 

(ChZ), Desmodesmus quadratic (DQ), Haematococcus pluralis (HP)) were prepared under the same 

laboratory conditions. The samples were measured in the form of liquid suspensions with LIBS device 

where thin liquid jet was utilized. In this experiment, ns-laser pulse (Solar LQ 529a; operated at  

532 nm, 10 ns, 50 mJ, ~65 GW/cm2) was focused with 75 mm planoconvex lens into a tight spot  

(100 µm). Radiation of a LIP was collected by using a large aperture collector-collimator (Andor CC52, 

F/2). Collected light was then spectrally resolved on the echelle grating (Andor Mechelle 5000; F/7, 

λ/Δλ = 6000) and detected by an ICCD (Andor iStar 734). The temporal gating of the LIBS experiment 

was as follows: the gate delay of 3 µs and the gate width of 10 µs. Each measurement consists of  

50 spectra in an accumulation while each measurement was 20 times repeated to obtain robust statistical 

dataset. A typical spectrum of an algal strain is depicted in Figure 3, where matrix elements (Ca, K, Mg, 
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and Na) are highlighted. During the data processing, the spectra were normalized to their integral 

intensities and averaged, and then four spectra per sample were obtained. Lines of matrix elements, listed 

in Table 4, were fitted with pseudo-Voigt profile and their intensities were calculated as the area under 

the peak with the background subtraction using custom MATLAB (version R2012a) software. Four 

spectra per each sample were organized as rows in the data matrix and its columns refer to individual 

variables. The range of each variable was normalized to unity and then mean-centered. The data matrix 

was analyzed with PCA to reveal possible latent variables among the data and to provide the 

discrimination of the samples (for detailed description of this procedure see further paragraph). This 

analysis was done employing MATLAB software customized with Self-Organizing MAP (SOM) 

toolbox [136] (Helsinki University of Technology, Finland) for multivariate analysis. 

Figure 2. Schematic diagram of the so called liquid LIBS system [60]. 

 

Table 4. Table of matrix elements utilized in multivariate analysis. 

Element Wavelength (nm) 

Mg (II) 279.5 
Mg (II) 280.3 
Ca (II) 393.4 
Ca (II) 396.8 
Na (I) 589 
Na (I) 589.6 
K (I) 766.5 
K (I) 769.9 

Working with the whole data set can result in a PC space where various samples may be assigned to 

one group. In other words, the least squares property of PCA algorithm highlights the most significant 

variation among the data. For this reason, the less significant variation is overshadowed, i.e., has lower 

impact on the classification in a newly constructed PC space. To overcome this problem one can utilize 

the approach suggested by Multari et al. [132] and used as well in related work by Ollila et al. [137]. 

There, any cluster is removed from the computation when it is successfully assigned to a distinct group 

in respect to the rest of the data set. Then the PCA algorithm is applied again on the reduced dataset. 

This leads to simplification of the variation in the dataset. In other words, the variation responsible for 
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the distinct separation of a group withdrawn from the computation is not present anymore. This results 

in the increase of the significance of a formerly less significant variation among the rest of the data. This 

process is repeated until all of the samples are successfully classified. By employing this algorithm for 

data classification we can proceed further in our investigation. 

Figure 3. Typical spectrum of algae with the emphasis given to the matrix elements  

(Mg, Ca, Na, and K).  

 

PCA was then applied on the data matrix constructed from the LIBS data. Two distinct groups  

are clearly visible when investigating resulted PCA scores in Figure 4a. The first two principal 

components describe 95% of overall variation among the data. This suggests that the discrimination of 

algal strains into three distinct groups is possible. However, data points representing algal strains DQ 

and HP are strongly overlapping. This may be a consequence of the similarity in the matrix elements 

and moderate repeatability of the LIBS measurement.  

PCA analysis of LIBS spectra, i.e., the clustering of the LIBS measurements, was then emulated by 

the PCA analysis of the ICP-OES measurement (not shown in this article). As in the case of LIBS 

measurement, the main emphasis was given to the signal intensities of the matrix element lines (namely 

Ca, K, Mg, and Na lines). The scores plot indicated that the composition of DQ and HP is more similar 

in the sense of matrix elements, i.e., the data points are closer to each other, than the composition of ChZ 

and ChR, whose data points are distinctly separated in the newly created PC space. Those results 

coincided with the results of PCA applied to the LIBS data, where LIBS measurements of ChR and ChZ 

are distinctly separated compared to the overlapping LIBS data of DQ and HP. Therefore, the 
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repeatability of the LIBS measurement under given conditions still could be improved for reliable 

classification using PCA. 

Figure 4. PCA of four algal strains based on their LIBS measurement: (a) scores; (b) loadings. 

 

6. Conclusions and Future Prospects 

Algae are considered to be promising alternative sources to corn and soybean for the next generation 

biofuel production. Third generation technology may be based on algal biomass, which is rich in 

polyunsaturated fatty acids. The algal biomass can be grown without competing for arable land (e.g., 

industrial waste waters can be used for the cultivation instead of the land suitable for growing food 

crops). Also, algae have the potential to decontaminate polluted water, because their cellular wall 

exhibits high affinity to metal cations. They are also widely used as a dietary supplement and in the drug 

industry. Moreover, calcified coralline algae can be utilized to detect climatic condition changes due to 

their longevity. 

A comprehensive review on the analysis of algal biomass was given, preferably for the application 

in the fields of biofuels and bioremediation. The main aim of this review is focused on laser-based 

techniques for elemental and molecular analysis. It was shown that further development of methods for 

monitoring the elemental/chemical composition of the algal biomass is necessary. Each individual algal 

strain has different properties and reacts differently with its environment. Current laser-based 

spectroscopy techniques presented here such as LIBS, Raman spectroscopy and LA-ICP-OES/MS 

represent powerful tools for fast and complete analysis of biological samples and with certain limitations, 

can be adopted for effective analysis of algae biomass.  

LIBS technique provides information primarily about the elemental composition. However limited 

information about the molecular structure can be also obtained. LIBS can serve as a robust, remote and 

rapid method for in-situ, on-line and real-time elemental analysis. Furthermore, portable LIBS equipment, 

employing a water jet, can be constructed for the fast elemental analysis or the algal identification in the 

field, mainly for the bioremediation application. Note that in the primary stage of the LIBS development 

LA-ICP-MS/OES can be also advantageously used to validate the LIBS outcomes. When the supervised 

spectral libraries are created, LIBS can stand alone as a robust, remote and rapid device for in-situ 

elemental analysis.  
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Raman spectroscopy (alternatively Raman tweezers – a combination of Raman microspectroscopy 

with optical trapping) is suitable for in vivo analysis of algae molecular composition in a non-destructive 

way. Recently, the primary goal of Raman spectroscopy was the determination of the lipid content within 

the algal cells. Spatially resolved Raman spectroscopy utilized for the determination of the iodine value, 

i.e., lipid storage composition in the algal bodies, has a potential importance, especially in regard to third 

generation biofuels technologies. Raman spectroscopy as the only from the presented methods does not 

influence viability of living cells and can be combined with optical tweezers to sort individual cells 

according to their lipid content for subsequent breeding. 

Chemometrics become more popular and irreplaceable in the spectral data mining. Chemometric 

algorithms may be an indispensable part of a robust analysis. Discrimination of different algal strains by 

LIBS or Raman spectroscopy using chemometric algorithms is also provided. 

Pioneering works combining some of these approaches (e.g., LIBS and Raman spectroscopy) have 

already been published and the results, which are discussed above, show that those approaches can open 

new directions of bioanalytical remote measurement of algae. 
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In this co-authored work, the capability of stand-off LIBS system was tested. Several
brick samples were measured at the distance of 6.2 m, having a spot-size of 1 mm. The emis-
sion was collected by a Newtonian telescope with a 10” mirror diameter. Obtained spectra
were processed with simple linear chemometric algorithms, namely principal component
analysis (PCA) for visualization and linear discriminant analysis (LDA) for classification.
The stand-off performance was compared to the one of a table-top LIBS system.

The visualization in the PC space revealed clear separation of individual brick samples
showing also a certain trend. This trend was attributed to the variation in the sample
matrix. Individual bricks were fired under different conditions (temperatures) which led
to variation in the sample hardness. Classification of the table-top LIBS system (100 %
accuracy) slightly outperformed the stand-off one (86 % accuracy).
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Focusing on historical aspect, during archeological excavation or restorationworks of buildings or different struc-
tures built from bricks it is important to determine, preferably in-situ and in real-time, the locality of bricks origin.
Fast classification of bricks on the base of Laser-Induced Breakdown Spectroscopy (LIBS) spectra is possible using
multivariate statistical methods. Combination of principal component analysis (PCA) and linear discriminant
analysis (LDA) was applied in this case. LIBSwas used to classify altogether the 29 brick samples from 7 different
localities. Realizing comparative study using two different LIBS setups — stand-off and table-top it is shown that
stand-off LIBS has a big potential for archeological in-field measurements.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Laser-Induced Breakdown Spectroscopy (LIBS) [1] is a method
capable of fast classification, qualitative and semi-quantitative analysis
of samples under investigation. Briefly, high energy laser pulse is fo-
cused on the sample surface, small amount of the sample is ablated
and luminous laser-induced plasma (LIP) is created. The persistence of
LIP is in the order of microseconds. When the plasma plume starts to
cool down the best conditions for realizing LIBS measurements occur
because intensive ionic and atomic emission lines can be observed in
the spectra. Plasma radiation is collected and transported to the spec-
trometer by an optical setup. The signal of elements can be processed
in real time using various chemometric analyses.

LIBS has a great potential in many fields (including industrial,
environmental, cultural heritage and extraterrestrial applications),
because of its particular advantages over other analytical methods,

like quasi-nondestructivity,minimumor no need of sample preparation,
relatively low instrumentation cost, experimental setup flexibility
including the possibility of in-situ measurements [2]. Moreover, LIBS is
a very promising technique for the elemental analysis of many types of
cultural heritage objects [3], such as pottery, sculptures, pigments of
paintings, glass, calcified tissues, geological samples ormetals; as proved
before [4–18].

For the analysis of historical walls or historic buildings the possibility
of in-situmeasurementhasmany advantages, including the preliminary
determination of the origin of brick clay and estimation of chemical
composition. The in-situ LIBS analysis of historical building material
was presented by Laserna et al. [19], dealing with analysis of the
Málaga cathedral walls with a man-portable LIBS and later in [20]
with a stand-off LIBS. Remote sensing is a great advantage in this
point, sometimes it might be even necessary. Stand-off LIBS could be
the solution. In our work we focus on the analysis of historical walls in
order to develop a simple and fast method for classification of bricks
in-situ.

Focusing on building materials Xia et al. [21] used successfully
multivariate analysis (partial least squares discriminant analysis
PLS-DA and the hybrid combination PCA–Adaboost) to classify LIBS
spectra of various materials for the purpose of concrete recycling.
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Generally, classification of bricks can be done by detailed investigation
of their chemical composition. This composition can be revealed by
LIBS, but it should be noted that due to the complicated brick matrices
the LIBS spectra are very complex. Much information is ignored during
the univariate analysis therefore multivariate methods were used with
a great success. The chosenmethod for our purpose is LDAwith a subset
of PCA scores as inputs.

PCA, method generally applicable as a classification method, was
applied here only to reduce the dimensionality in the data set and to
discover latent variables among samples. This linear transformation of
variables into lower number of so called principal components (PCs)
filters out the irrelevant information aboutmeasurements and removes
highly correlated variables [22]. Using scores of limited number of prin-
cipal components as inputs for LDA prevents the overfitting [23].

LDA is a multivariate statistical method for discrimination of objects
up to a finite number of categories, based on a certain subset of all ob-
jects (training set). The principle of this method is maximizing the
ratio of the between-class variance to thewithin-class variance. The de-
cision rules obtained by classification of training set are later applied to
the testing set [24,25]. LDA was applied on LIBS measurements before,
concerning alloys [26] and historical buildings [27]. The closest applica-
tion to ours was the classification of IR spectra by means of LDA with
principal components as inputs [28,29].

In our previouswork [30] combination of PCA and LDAwas introduced
as an effective method for classification of LIBS spectra of archeological
samples. The goal of work was to distinguish 7 types of materials (soil,
brick, mortar, ceramics, shell, bone, bear tooth, and human tooth).
Now, instead of classifying several different materials, we use the
same method for only one of them — bricks, to see how specific this
method can be among samples of similar composition, which differ in
locality of origin.

The methodology was tested on both, data obtained by stand-off and
table-top LIBS setup. The table-top arrangement used for experiment
was chosen with respect to possible construction of portable device for
in-field measurements. Lower pulse energy was used (as an alternative
for diode-pumped laser) and CCD detector— such a devicewould be por-
table, low-cost and still effective enough for this kind of classification.

2. Experimental

2.1. Samples

Set of samples consisted of 29 samples containing bricks from 7 lo-
calities. 9 samples were laboratory manufactured for testing (localities
Šlapanice, Hranice na Moravě and Tallinn) and the other 20 samples
come from an archeological experiment, where bricks were prepared
using different firing temperatures (localities Skalka u Velimi, Těšetice,
Strážovice, Pohansko). Samples are listed in Table 1.

All samples were measured using two setups

• stand-off LIBS setup at Central European Institute of Technology
(CEITEC), Brno University of Technology, Brno, Czech Republic,

• table-top LIBS setup at Department of Thermal Engineering, Tsinghua
University, Beijing, China.

2.2. Stand-off LIBS instrumentation

The experimental setupwas described in details elsewhere [31]. The
stand-off LIBS setup contains a pulsed Nd:YAG laser (Solar Laser Sys-
tems, LQ 916) working on its second harmonic frequency (532 nm).
Three-lens Galilean telescope optimized to have a focal spot with the
smallest spherical aberration at the distance of ~10 mwas used as a fo-
cusing system. The focusing system was projected to have the optimal
spot size in the middle of the expected range of utilization (5–15 m)
the stand-off LIBS apparatus is designed for. Using these parameters
the diameter of ablation spot was ~1 mm at the analysis distance of

6.2 m. The emission was collected by a Newtonian telescope (Sky-
Watcher, Synta), with a primary mirror diameter of 10″, and then
transported through the optical cable (500 μm in diameter) to the spec-
trometer in Echelle configuration (Andor, Mechelle 5000) coupled to
the ICCD detector (Andor, iStar 734i). The spectral resolution (λ/Δλ)
of the spectrometer (corresponding to 3 pixels FWHM) for a 50 μm in
diameter entrance slit used in these measurements is about 4000. Mea-
suring conditionswere optimized in order to get the best signal to noise

Table 1
List of samples.

Sample
number

Sample type
name

Locality Firing temperature
(°C)

Sample set

S1 SL Šlapanice 910 Training
S2 SL Šlapanice 950 Training
S3 SL Šlapanice 950 Test
S4 HR Hranice na Moravě 1050 Training
S5 HR Hranice na Moravě 1050 Test
S6 TA Tallinn 950 Training
S7 TA Tallinn 1050 Training
S8 TA Tallinn 1100 Training
S9 TA Tallinn 1060 Test
S10 SK Skalka u Velimi 1000 Training
S11 SK Skalka u Velimi 900 Training
S12 SK Skalka u Velimi 800 Training
S13 SK Skalka u Velimi 700 Training
S14 SK Skalka u Velimi 600 Test
S15 SK Skalka u Velimi 500 Training
S16 SK Skalka u Velimi 400 Training
S17 SK Skalka u Velimi 300 Training
S18 TE Těšetice 900 Training
S19 TE Těšetice 600 Training
S20 TE Těšetice 500 Test
S21 TE Těšetice 400 Training
S22 TE Těšetice 300 Training
S23 ST Strážovice 900 Training
S24 ST Strážovice 800 Training
S25 ST Strážovice 700 Test
S26 ST Strážovice 600 Training
S27 ST Strážovice 300 Training
S28 PO Pohansko 600 Training
S29 PO Pohansko 300 Test

Fig. 1. Stand-off LIBS results: clustering of localities on the first two principal components
(projection pursuit method) counted from whole spectra of all samples.
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ratio, the ICCD delay time and the gate width were set for 0.9 μs and
15 μs, respectively. Pulse energy was optimized to be 135 mJ per pulse
at repetition rate of 1 Hz. Crater diameter was 1 mm that corresponds
to power density of 3.4 GW·cm−2.

2.3. Table-top LIBS instrumentation

The LIBS measurements were realized using a Spectrolaser 4000
(XRF, Australia). The instrument and configuration are described else-
where [32]. The laser (Q-switched Nd:YAG laser, New Wave Research,
US) has a wavelength of 532 nm and a pulse width of 5 ns. The laser
pulse frequency is 1 Hz, and the gate time was fixed at 1 ms. The laser
energy was optimized to be 40 mJ per pulse, with a crater diameter of
0.5 mm power density corresponding to 4.0 GW·cm−2. Delay time

was set for 1.5 μs. The measuring conditions were optimized in order
to get the best signal to noise ratio. The detection system is composed
of four Czerny–Turner spectrometers and CCD detectors, which cover
the spectral range from 190 to 940 nm with a nominal resolution of
about 0.09 nm.

2.4. LIBS measurements

Each sample was measured at 10 spots. Surfaces were untreated be-
cause of maximal authenticity to in-field measurement; however, there
were always 6 burn-off pulses before spectra recording. Spectra retrieved
from the stand-off setupwere then accumulated intensities coming from
10 pulses per one spot whereas spectra retrieved from table-top setup
were the average intensities of the same number of pulses.

Fig. 3. Stand-off LIBS results: clustering of localities on scores of the second and the third
principal component (projection pursuit method) counted from whole spectra of all
samples.

Fig. 4. Stand-off LIBS results: dependence of the second principal component (projection
pursuit method) on firing temperatures of bricks.

Fig. 5. Table-top LIBS results: clustering of localities on scores of first two principal
components (projection pursuit method) counted from whole spectra of all samples.

Fig. 2. Stand-off LIBS results: clustering of localities on scores of thefirst and the third prin-
cipal component (projection pursuit method) counted fromwhole spectra of all samples.
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2.5. Statistical treatment

Experiment was as follows: 10 LIBS spectra per sample were
averaged and centered. The whole spectra (200–1000 nm in case of
stand-off, 190–950 nm in case of table-top LIBS) were used for PCA com-
puting. Then first 5 PCs were inputted into LDA in order to classify the
samples according to their locality of origin. 7 samples of 29 were
taken as test samples (one from each locality) and the other 22 samples
were used for training. Division into test and training set is obvious from
Table 1.

During principal component analysis the influence of bricks firing
temperature on LIBS spectra was observed. A strong temperature influ-
ence occurred in PCs computed fromwhole spectra. In PCs computed by
using only segments of spectra (with lines of selected elements)most of
this information was suppressed. This phenomenon was closely

investigated in order to find out how exactly the spectra are affected,
what is the reason and how we could possibly use it.

All computationswere done in the software R [33]. In case that base-
line subtractionwas done, “loess”method included in library “PROcess”
was used. For calculation of PCA a robust method was used (projection
pursuit method), which is included in library “rrcov”. For LDA it was
maximum likelihood method that was included in library “MASS”.

The same statistical treatment was used to process data from both,
stand-off and table-top LIBS setups and results were compared.

2.6. X-Ray Powder Diffraction instrumentation

X-ray Powder Diffraction (XRPD) was used in order to clarify the
structural and chemical changes occurring during firing of bricks. Five
samples from the same locality (ST) were examined. Analysis was
performed using Bruker D8 Advance diffractometer with copper tube
(λ Kα = 0.15418 nm), powered at 40 kV and 30 mA, 1-D position sen-
sitive detector, and programmable divergence slits at the conventional
Bragg–Brentano parafocussing Θ–Θ reflection geometry; step size —

0.02°2θ, time per step — 188 s, angular range 5–80°2θ. The measured
data was processed using a DIFFRAC plus software and an ICDD PDF 2
database.

3. Results and discussion

3.1. Principal component analysis

Let's focus on stand-off LIBS results first. After baseline subtraction,
PCA was applied on spectra. From scree plot, it was found out that the
first score carries most of the information (87.25% of total variability)
and about next 4 could be informative as well. First three of them are
plotted against each other in Figs. 1–3. Individual localities seem to cre-
ate well separated clusters. There are also visible certain continuities in
sample orders among some groups. These happen mostly within the
groups of samples SK and ST and in smaller extend in the group of TE
samples. It indicates a dependence of firing temperature of bricks (see
Table 1). For example S 27 in Figs. 1 and 3 lies far from other points re-
lated to ST. Its firing temperature was 300 °C so that a lot lower than of
other samples. For a better view into the problem of this finding, firing
temperature was plotted against first few principal components. The
dependence was not only confirmed, but also localized: the most

Fig. 7. Cut of stand-off LIBS spectra (with lines of Fe, Si, Ca): SK locality, without baseline subtraction.

Fig. 6. Table-top LIBS results: dependence of first principal component (projection pursuit
method) computed fromwhole spectra of all samples (no baseline pretreatment) onfiring
temperatures of bricks.
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significant dependence was observed on the second principal compo-
nent (Fig. 4), though in the PC 1, PC 3 and PC 5 were observable too.

If we look at the table-top results, scree plot shows first 3 PCs con-
taining most of the information. The first two principal components to-
gether account 75.51 + 20.23% of the total variability. When plotted
against each other, first fewprincipal components createwell separated
clusters of individual localities (see for example first two PCs shown in
Fig. 5). The firing temperature dependence on PCs was observed only
in spectra without baseline subtraction and was not so strong as in the
case of stand-off LIBS. Fig. 6 shows the first principal component (no
baseline subtraction) plotted against the firing temperature because
there was a slight influence on ST data.

3.2. Temperature influence in LIBS spectra

None of the lines itself seems to be the bearer of the information on
firing temperature. This dependence has more complex effect on spec-
tra. Going through the raw spectra related to particular localities it
was found out that this information is connected to the intensity of
lines as well as to the baseline height. This is obvious from Fig. 7,

where there is the cut of three SK samples spectra measured using
stand-off LIBS. At most of the wavelengths of SK samples spectra
(stand-off LIBS) the same phenomenon occurs: increasing the firing
temperature while decreasing baseline and maximum intensities.

Character of this dependence varies between classes of particular lo-
calities. ST stand-off LIBS spectra have slightly different patterns (Fig. 8).
The reason can be in the mineralogical composition of clays, conse-
quently in a degree of sintering or hardness of material. All this leads
to a different course of ablation and can cause changes like this in spec-
tra. Samples of SK weremade of marl; samples of ST were made of clay.

Influence of temperature observable in table-top LIBS spectra is
shown in Fig. 9 (the same range of wavelengths as in the case of
stand-off LIBS before). Again, the consequence of maximum intensities
according to firing temperature was almost the same in this range, as
everywhere else in the spectra. This consequence is slightly different
from ST samples (Fig. 10) and evidently very different to the spectra
measured on stand-off LIBS (see Figs. 7 and 8). In fact it was surprisingly
quite opposite of stand-off LIBS consequence.

The lines are not aswell resolved as in the case of stand-off LIBS. This
is caused by using Czerny–Turner spectrometer with CCD detector.

Fig. 9. Cut of table-top LIBS spectra (with lines of Fe, Si, Ca): SK locality, without baseline subtraction.

Fig. 8. Cut of stand-off LIBS spectra (with lines of Fe, Si, Ca): ST locality, without baseline subtraction.
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Another difference between spectra from these two setups is in the
baselines. The Echelle spectrometer recorded spectra where baselines
are less uniform. For that reason baseline subtractionwas not so effective
and the information about firing temperature of bricks appeared in prin-
cipal components. After subtraction of baseline from the table-top spectra
the firing temperature influence was suppressed.

Considering the assumption of hardness of material effecting the
spectra (via different course of ablation) the ratios of the ionic
magnesium lines at 280.27 nm to the neutral Mg lines at
285.21 nm were plotted against the firing temperature of bricks.
This approach was used on the base of [34], because bricks fired on
higher temperature should have higher hardness. Plasma created
by ablation of materials which differ in hardness has different
thresholds and thermodynamic properties. This will be reflected in
line ratios. Focusing on stand-off LIBS data, samples of SK locality
show the dependence (Fig. 11), which can be expressed by R2 =
0.86 and the samples of ST (Fig. 12) by R2 = 0.8. The spectra after

baseline subtraction were used to make these relations, but we con-
sider that the baseline shift is also caused by this effect. Even if MgII/
MgI ratios confirm this “dependence of hardness” theory, from base-
lines we weren't able to separate this influence.

Correlation of Mg II/MgI ratios and the firing temperature of bricks
significantly deteriorated when using the table-top LIBS data. This can
be caused by plasma conditions (lower energy, smaller crater) or by
measuring conditions (longer delay time, CCD detector).

3.3. X-ray Powder Diffraction

In order to elucidate the structural and chemical changes occurring
during brick manufactory XRPD analysis was performed. Samples of
ST weremeasured andmineralogical changes with increasing tempera-
ture are shown in Figs. 13 and 14. Between 300 °C and 600 °C pyrite

Fig. 11. Stand-off LIBS results: Dependence of MgII/MgI ratio on firing temperature of
bricks. Locality SK.

Fig. 12. Stand-off LIBS results: Dependence of MgII/MgI ratio on firing temperature of
bricks. Locality ST.

Fig. 10. Cut of table-top LIBS spectra (with lines of Fe, Si, Ca): ST locality, without baseline subtraction.
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decomposition and formation of hematite take place (Fig. 13) and also
dehydroxylation of kaolinite followed by formation of amorphous
metakaolinite, which usually starts below 500 °C and finishes up to
600 °C (Fig. 14). One of themajor claymineral constituents, illite, begins
to decompose at 600 °C (dehydroxylation and collapse of the crystal
structure takes place) what is observable due to shifted and split
peaks of illite and mica from 600 to 800 °C (Fig. 14). Decarbonation
starts at 600 °C: dolomite decomposes to calcite, MgO and CO2 and at
800 °C dolomite is completely decomposed (Fig. 13). Calcite decompo-
sition partly takes place simultaneously with the decomposition of
dolomite, starts at a slightly higher temperature — see scans of 600–
800 °C at Fig. 15. At 900 °C calcite is no longer present. Above 300 °C

and below 600 °C anhydrite II is formed (anhydrite II generally appears
at temperatures above 400 °C). The content of anhydrite II does not
change between 600 and 900 °C (Fig. 13). Anhydrite probably arises
from gypsum and bassanite. In the 300 °C scan, however, anhydrite III,
normally formed from bassanite at this temperature, is not present.
That could be attributed to material inhomogeneity. In the temperature
range of 600–800 °C also smectites and/or chlorite decompose (Fig. 14).

All these mineralogical changes affect the final properties of
bricks, the degree of sintering and consequently hardness of the ma-
terial. Using LIBS the combination of two factors affects the firing
temperature symptoms in spectra: the composition of clay and
measuring conditions.

Fig. 13. X-ray Powder Diffraction results: Locality ST. On X-axis: diffraction angle 2 Θ (degrees), on Y-axis: intensity (counts). Hem= hematite, Anh= anhydrite, Qtz = quartz, Py= pyrite,
Fsp = feldspar, Cal = calcite, Dol = dolomite.

Fig. 14. X-ray Powder Diffraction results: Locality ST. On X-axis: diffraction angle 2 Θ (degrees), on Y-axis: intensity (counts). Sme = smectite, Chl = chlorite, Ill = illite, Mca = mica,
Kln = kaolinite.
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3.4. Linear discriminant analysis

After PCA computations linear discriminant analysis follows as a
method chosen for estimation localities of bricks origin.

First comes the question of how many PCs should be used as inputs
for LDA. As referenced before in [30], Defernez and Kemsley [23] stated
that the onset of overfitting occurs when the dimensionality exceeds
(n − g) / 3, where n is the number of specimens (training samples)
and g is the number of groups (localities). This means that the number
of adjustable parameters for our data set should be 5.

The predictions made for test samples are listed in Table 2. Using
first 5 PCs computed from stand-off LIBS data, 6 of 7 test samples were
classified correctly, whereas using table-top LIBS data provides 7 correct
out of 7 predictions, which is a great success.

The wrong prediction appearing in the case of stand-off LIBS data
processing was made by substitution sample of locality HR for the PO
sample. Distribution of samples on PCA plots (Figs. 1 and 2) matches
with this misclassification. HR test sample No. 5 clusters there with
the PO samples on the first PC. The first PC was affected by firing tem-
perature in smaller extend, but still it is difficult to decide whether the
cause of the misclassification was this effect or simply the properties
of samples.

The effect of firing temperature on principal components caused
elongation of clusters of most localities (see Figs. 1–3 and 5). LDA is a
method applicable for processing such elongated clusters [35]. Figs. 15
and 16 describe the geometric illustration of LDA. Discriminant coordi-
nates display the primary differences between clusters and confirm that
elongation of most clusters was eliminated and so was the effect of fir-
ing temperature on classification. Nevertheless HR and PO samples are
still mixed together in case of stand-off LIBS and HR samples have
great dispersion even in the case of table-top LIBS. Considering the fact
that both groups consist of only two samples it is not easy to classify
them correctly.

4. Conclusion

Before real application of stand-off or portable LIBS device, respec-
tively, for archeological purposes there is a need to develop a fast and
simple methodology of data processing. Focusing on historic walls we
measured spectra of brick samples using two different LIBS setups

(stand-off and table-top) on which the proposedmethodology was test-
ed and compared.

With the aim of bricks classification according to the place of origin
via LDA, a robust PCA was applied on whole spectra (from about 200
to 1000 nm). PCA plots provided elongated clusters of particular locali-
ties, which showed signs of certain dependence in connection with
bricks firing temperature. This effect was closely investigated with the
prospect of estimation of firing temperature of unknown samples. This
closer look showed that realizing this vision can be possible only using
spectrometer with higher resolution and ICCD detector. On the other
hand, it is achievable in stand-off LIBS configuration.

After dividing the sample set into training and test samples, the first
five principal components were used as inputs and the prediction of lo-
calities were computed. Sample set contained 29 bricks from 7 different
localities. Higher number of samples would be better for this multivar-
iate statistic evaluation, but for methodology creation it was important
to have samples with all possible information known. Information on
firing temperature was confirmed to be valuable. To summarize the re-
sults of classification, LDA predicted one of 7 localities wrong in case of
stand-off LIBS data, all predictions were right in case of inputting table-
top LIBS spectra. LDA clusters had not showed the signs of elongation
so the firing temperature influence of classification was mostly
eliminated.

It is obvious that for classification of bricks the differences between
setups used had not much crucial effect. On the contrary, lower resolu-
tion of CCD detector (contained in table-top LIBS used) helped to im-
prove the LDA prediction compared to stand-off LIBS setup with
Echelle spectrometer. This shows that proposed methodology will be

Fig. 15. Stand-off LIBS results: clustering of localities on the first two LDA discriminant
coordinates.

Table 2
Thepredictions for test samples created by LDA (ML). In the third column there are predic-
tions given by LDAwhen stand-off LIBS data were put in, in the fourth when table-top LIBS
data were used. The incorrect predictions are marked in bold.

Test sample no. Real locality LDA prediction
stand-off LIBS

LDA prediction
table-top LIBS

3 SL SL SL
5 HR PO HR
9 TA TA TA
14 SK SK SK
20 TE TE TE
25 ST ST ST
29 PO PO PO

Fig. 16. Table-top LIBS results: clustering of localities on the first two LDA discriminant
coordinates.
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convenient for our purpose of brick spectra classification using both
setups and after creating a complex database of spectra it will definitely
help with fast classification in situ. The databases have to be created
separately for only one instrumentation and united measuring
conditions.
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This publication delivered consideration on the necessity of utilization of multivariate
algorithms and their supremacy over univariate ones. It was shown that judicious data pro-
cessing enables more accurate quantitative analysis than simple, black-box, implementation
of chemometrics. Such issue was discussed also in this thesis.

First, the sample set was measured with two slightly different instrumental setups, dif-
fering in the collection optics (side view versus top-view). This proved that minor changes in
the experimental settings can induce major changes in the data matrix structure, which was
observed when vizualizing the data in the PC space. Interestingly, the top-view arrange-
ment resulted in higher pulse-to-pulse fluctuation, expressed as the standard deviation.

Second, sample set of igneous rock distributed in three different matrices were measured
and the calibration of both systems to Cu content was constructed. Differences in sample
matrices led to the matrix effect of the laser ablation and divided the calibration curve
to three sections. Utilization of principal component regression (PCR) and partial least
squares regression (PLSR) were not able to suppress the matrix effect and the coefficient
of determination reached not-satisfying 79 %.

The data set was classified in the PC space using Gaussian clustering algorithm. Then,
individual data sets were subjected to univariate calibration. This methodological approach
resulted in the improvement of bias by the order of magnitude.
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In this work, the potential of laser-induced breakdown spectroscopy (LIBS) for discrimination and analysis of
geological materials was examined. The research was focused on classification of mineral ores using their LIBS
spectra prior to quantitative determination of copper. Quantitative analysis is not a trivial task in LIBS measure-
ment because intensities of emission lines in laser-induced plasmas (LIP) are strongly affected by the samplema-
trix (matrix effect). To circumvent this effect, typically matrix-matched standards are used to obtain matrix-
dependent calibration curves. If the sample set consists of a mixture of different matrices, even in this approach,
the corresponding matrix has to be known prior to the downstream data analysis. For this categorization, the
multielemental character of LIBS spectra can be of help. In this contribution, a principal component analysis
(PCA) was employed on the measured data set to discriminate individual rocks as individual matrices against
each other according to their overall elemental composition. Twenty-seven igneous rock samples were analyzed
in the formoffine dust, classified and subsequently quantitatively analyzed. Two different LIBS setups in two lab-
oratorieswere used to prove the reproducibility of classification and quantification. A superposition of partial cal-
ibration plots constructed from the individual clustered data displayed a large improvement in precision and
accuracy compared to the calibration plot constructed from all ore samples. The classification ofmineral samples
with complex matrices can thus be recommended prior to LIBS system calibration and quantitative analysis.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

With a steadily increasing consumption of mineral resources, it is
crucial to optimize the exploration of new ore deposits and the mining
process itself with reliable and rapid analytical methods for identifica-
tion of minerals. However, reliable in situ identification of minerals
can be very challenging. Currently, in-field identification of minerals is
typically based on visual examination of their physical properties by
an experienced geologist, which, however, can result in false positives
[1]. More advanced laboratory-based techniques, such as X-ray fluores-
cence (XRF) and inductively coupled plasma optical emission or mass
spectrometry (ICP-OES/MS) after wet digestion of samples [2] are not
always suitable due to their long turnaround times and analysis cost
per sample.

Laser-induced breakdown spectroscopy (LIBS) can meet the chal-
lenge as a field technique for the identification and analysis of various
minerals. LIBS became a popular technique in harsh environments due

to its fast and non-demanding measurement routine, minor need for
sample preparation, and low-cost instrumentation compared to other
atomic emission spectroscopic techniques. LIBS provides qualitative
and quantitative information about samples under investigation in
real-time and in situ with an inherent multielemental capability [3,4].
The observed LIBS spectrum reflects the entire elemental composition,
i.e. chemical fingerprint, of the sample.

The composition of igneous rocks differs with their provenance as
well as with the way of their alterations [5]. Alteration is the property
of a rock that explains its chemical and mineralogical changes in the
course of time. In geology, alteration is important because it may have
an effect on the grades of included elements (e.g. copper). Therefore,
rocks are classified in individual alteration types. Different mineral
ores and their alterations can be discriminated by examining their
chemical fingerprints, especially the relative abundance of matrix ele-
ments (e.g. Al, Ca, K, Na, and Si) [6]. Igneous rocks can be clustered
into individual groups forming a QAPF (quartz, alkali feldspar, plagio-
clase, and feldspathoid) diagram [5]. Different areas in this diagram
span up natural rock types; each rock type displays a certain continuous
variation of a mineral content [5,7]. Nota bene the exact classification of
mineral types does not rely on the knowledge of concentrations of only
one or two characteristic elements but has to be derived using the
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complete elemental fingerprint of the matrix. A well-established meth-
od for multidimensional classification of complex and large data sets is
the principal components analysis (PCA). It is, thus, expected that PCA
discrimination of samples represented by their LIBS spectra can emulate
the distribution of the rock types in the QAPF diagram.

Earlier applications of LIBS in geology were comprehensively
reviewed by Harmon et al. [8]. LIBS has already been used for quantita-
tive analysis of mineral samples including field-portable devices [1,
9–11]. Multivariate statistical approaches for the identification of differ-
ent kinds of rocks and minerals were employed using both laboratory
bench-top and stand-off LIBS systems [12]. Harmon et al. [13] demon-
strated the possibility of ascertaining the provenance of conflict min-
erals employing the partial least squares discriminant analysis (PLS-
DA) of LIBS spectra. Bousquet et al. [14] tested the hypothesis that the
most significant differences between soils comes from the varying
amounts of matrix elements. Further successful applications of PCA to
LIBS spectra can be found in [15–18].

In this work, the potential of LIBS for determination of copper in
mineral ores is investigated based on a preliminary identification of
ores according to their chemical compositions. This pre-discrimination
into individual classes of minerals allows for a reduction of the strong
influence of sample compositions on intensities of copper emission
lines induced by the mineral matrix. The principal component analysis
(PCA) is used for unsupervised classification of the mineral ores into
different groups prior to the quantitative determination of the copper
content. Partial calibration plots are constructed from these groups of
samples and compared to the calibration plot constructed from all
certified ore samples simultaneously.

2. Experimental

Representative samples were collected at the Sungung copper mine
located in East Azerbaijan, Iran. The sample set covers 27 samples
consisting of three igneous rock types (andesite, ANS; diorite, DIO, and
monzonite to quartz monzonite, KP) each consisting of different alter-
ations (Table 1). The samples were received from the Clausthal Univer-
sity of Technology in Clausthal, Germany, where they were analyzed by
ICP-MS after four acid digestions. The amount of copper ranged

between 0.06 and 0.79 weight percent. Apart from the chemical analy-
sis, the sampleswere classified into groups and arranged in theQAPF di-
agram by an experienced geologist who tested samples by visual
inspection. After this analysis and classification, the samples were ana-
lyzed with two different LIBS systems to ensure the independence of
the classification results upon the individual LIBS system and, thus, to
prove the robustness of the selected multivariate technique for unam-
biguous sample classification. Samples were measured in the form of a
fine dust pressed onto the surface of the double-sided sticky tape; this
approach was earlier suggested by Gornushkin et al. [19,20]. Samples
were placed on a motorized translational stage to provide a fresh spot
for every laser pulse.

System 1 consists of a high-energy Nd:YAG laser (Continuum
Spitlight-10, 10 Hz, 1064 nm, 10 ns) focused onto the samplewith an ir-
radiance of 30 GW cm−2 (the spot diameter is ≈250 μm) using a
100 mm focal length plano-convex lens. The radiation from the lumi-
nous plasma is collected using a large aperture collector-collimator
(Andor CC52, f/2) placed 250 mm above the interaction region at a
30° angle with respect to the laser axis. The collector is coupled to a
400 μm optical fiber that delivers light at the entrance slit of an echelle
spectrometer (LTB Aryelle Butterfly). The resolving power and spectral
range of the spectrometer are 15,000 and 300–600 nm, respectively.
The spectral information is recorded by an intensified CCD (Andor
iStar 734, 1024 × 1024 pixels with an effective pixel size of 13 × 13
μm). The ICCD operates at 120× gain and a binning of 2 × 2 pixels.
The individual timings of the experiment were previously optimized
and set to 2 μs gate delay and 10 μs gate width. The whole LIBS setup
is triggered by a delay generator (DG535, Stanford Research Systems).

The complementary LIBS system 2 consists of a diode-pumped solid
state (DPSS) laser (Quantel Ultra 100) operated at the fundamentalwave-
length of λ=1064 nm and 5Hz repetition rate. A short laser pulse (8 ns)
is focused using a 450 mm focal length plano-convex lens creating a spot
diameter ≈200 μm on the target surface with the irradiance 20 GW
cm−2. The plasma radiation is collected top-on (collinearlywith the laser
beam) by a toroidal mirror with 300 mm focal length and f/7. The radia-
tion is detected by a CCD (Andor Newton, 1024 × 256 pixels with an ef-
fective pixel size of 26 × 26 μm) attached to an echelle spectrometer
(LTB Aryelle 400)with a spectral working range of 200–600 nm, resolv-
ing power 15,000, and f/10. The spectrometer is equipped with an
optomechanical chopper to cut off the plasma continuum radiation dur-
ing the first 0.3 μs of the plasma evolution, the gate width is also deter-
mined by the chopper to ~400 μs. Timings of the LIBS system are
triggered by a delay generator (DG535), which is master triggered by
the output of a light guard inside the optomechanical chopper.

Recordedwith system 1, one spectrum consists of 10 accumulations,
20 spectra per sample; giving overall 200 laser pulses per sample. A
similar measurement routine is employed with system 2, i.e. 20 accu-
mulations and10 spectra per a sample, also giving 200 pulses per a sam-
ple. The 200 pulses per sample were chosen for satisfying statistics and
smoothing of effects caused by sample inhomogeneity.

Lines of copper as well as the rock forming matrix elements (Al, Ca,
Na, Cu, and Si; listed in Table 2) were extracted from the spectra for
further analysis. The custom software for spectral processing was writ-
ten in MATLAB (version R2012a). On each obtained spectrum, a Z-test
was carried out to remove possible outliers after which the spectra
were averaged. The Z-test was utilized to ensure that no outlier spectra
affected by local sample inhomogeneity are used in further data analy-
sis. The averaged spectra were normalized to their integral intensities
and mean-centered. The classification by PCA and multivariate regres-
sion by PLSR and PCR were performed on the preprocessed data using
the customized LIBRA software (KU Leuven, Belgium) [21].

3. Multivariate analysis

PCA is commonly used for classification of LIBS data [12,14,18,22].
PCA is a mathematical coordinate transformation method that

Table 1
list of samples.

Sample No. Rock type Alteration Cu (wt.%)

ANS1 Andesite ANS Phyllic 0.64
ANS2 Andesite ANS Phyllic 0.49
ANS3 Andesite ANS Phyllic 0.60
ANS4 Andesite ANS Phyllic 0.61
ANS5 Andesite ANS Phyllic 0.79
ANS6 Andesite ANS Phyllic 0.21
ANS7 Andesite ANS Phyllic 0.52
DIO1 Diorite DIO Potassic 0.40
DIO2 Diorite DIO Potassic 0.71
DIO3 Diorite DIO Potassic 0.73
DIO4 Diorite DIO Potassic 0.78
DIO5 Diorite DIO Potassic 0.32
DIO6 Diorite DIO Potassic 0.31
DIO7 Diorite DIO Potassic 0.30
DIO8 Diorite DIO Potassic 0.37
DIO9 Diorite DIO Potassic 0.73
KP1 Monzonite-quartz monzonite KP Potassic 0.24
KP2 Monzonite-quartz monzonite KP Potassic 0.18
KP3 Monzonite-quartz monzonite KP Potassic 0.21
KP4 Monzonite-quartz monzonite KP Phyllic 0.06
KP5 Monzonite-quartz monzonite KP Phyllic 0.51
KP6 Monzonite-quartz monzonite KP Phyllic 0.34
KP7 Monzonite-quartz monzonite KP Phyllic 0.45
KP8 Monzonite-quartz monzonite KP Potassic 0.48
KP9 Monzonite-quartz monzonite KP Potassic 0.71
KP10 Monzonite-quartz monzonite KP Potassic 0.56
KP11 Monzonite-quartz monzonite KP Potassic 0.30
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emphasizes variance in the data set and reduces redundancy [23–25]. A
data matrix X consists of individual spectra arranged in rows, with the
columns denoting the wavelengths/variables. The PCA algorithm
decomposes the data matrix into matrices of scores and loadings. The
scores are analogous to coordinates of the data points (sample spectra)
in a newly constructed PC space and the loadings are the transformation
coefficients that are indicative of variances at specific wavelengths. It is
expected that samples of the same rock typewill formone cluster, based
on the similarity among their spectra. Since the spectral resemblance
originates in similar elemental composition, the distribution of points
in the PC space should correlatewith the distribution in aQAPF diagram.

Principal components are conventionally used for multivariate quan-
tification in a principal component regression (PCR) algorithm [25]. A
PCA algorithm is applied to the data matrix X to truncate redundant
information and to form a new data matrix. Then the regression vector
y representing the content of an analyte in the samples is regressed
against the PC scores. In an alternative approach, a PCA is used to
model both the data and the regression vector (or matrix when more
variables are considered) simultaneously; such an algorithm is called
the partial least squares regression (PLSR) [25].

4. Results and discussion

No reliable calibration curve could be constructed from the complete
data set (consisting of LIBS spectra of 27 igneous rocks) due to a weak
overall correlation between intensities and concentrations, likely
caused by matrix effects. Therefore, we attempted the construction of
partial calibration curves for each individual rock type. First, all samples

were divided into three groups according to their class membership
(ANS, DIO, and KP; see Table 1), as determined by a geologist. Second,
PCA classification of the sample set based on the similarities in the com-
position of sample matrices (composition in the Al, Ca, Na, and Si) was
utilized. Then, partial calibration curves for each individual cluster
were constructed. The procedure was applied to the data obtained
with both LIBS systems in order to assess the independence ofmeasure-
ments on a particular instrument.

As stated above, the presence of lines of matrix elements Al, Ca, K,
Na, and Si in LIBS spectra can help with reliable classification. Those
matrix elements are conventionally used in geochemistry to fully
discriminate igneous rocks against rock types[5]. Fifteen spectral lines
of these matrix elements were selected (see Table 1) for multivariate
analysis. The experimental system 1 does not cover a spectral range of
200–300 nm, where several silicon lines are located; only the Si
390.55 nm line was used to account for Si concentration. It was there-
fore expected that system 2, covering both the UV and VIS spectral
ranges, would yield the more reliable classification. No strong potassi-
um lines (at 766 and 769 nm) could be detected with either system
(Fig. 1).

4.1. Calibration without PCA classification

The calibration curves for copper are constructed using the Cu(I) line
at 521.8 nm for both LIBS systems data. This line is unlikely to get self-
absorbed because of the low concentration range of Cu (b1%) in ana-
lyzed samples and because of its high lower energy level of Ei =
3.82 eV. Prior to the analysis, spectra of each sample were first vector
normalized to the spectra total intensities and subsequently averaged
to obtain one spectrum per sample. Spectral lines selected for uni- and
multivariate analysis were fitted with pseudo-Voigt profile and the
area under such fitted line was adopted as the line intensity.

It has been proposed to use individual calibration curves for analysis
of individual rock types. Fig. 2 shows the combined (for all rock types)
and partial/individual (for each rock type) calibration plots The linear
regression performed on the whole data set (the combined plot) yields
in a coefficient of determination R2= 0.49; formeasurements with sys-
tem1 andonly R2=0.23 formeasurementswith system2. These low R2

values clearly indicate high uncertainty and low reliability of the
calibration.

On the contrary, the partial calibration plots (according to the rock
type), by showing different slopes, reveal higher values for coefficients
of determination, between 0.57 and 0.69 and between 0.68 and 0.87
for systems 1 and 2, correspondingly. Partial calibration curves for DIO
and KP rock types result only in a moderate improvement of the coeffi-
cient of determination, i.e. R2 ~ 0.6, for both LIBS systems. The coefficient
of determination for ANS rock type is higher with system 2, R2 = 0.87,
than with system 1, R2 = 0.57. Even though the partitioning of calibra-
tion curves in accordance with rock types led to an improved linear
regression, the accuracy of analysis with such low R2 partial calibration
curves is expected to be moderate. Also, it is known from linear

Table 2
List of elemental lines selected for analysis.

Elemental line λ (nm) Ei (eV) Ej (eV) Einstein coefficient
(108 s−1)

Al (I) 308.22 0 4.02 0.63
Al (I) 309.27 0.014 4.02 0.75
Al (I) 394.4 0 3.14 0.51
Al (I) 396.12 0.014 3.14 1.01
Ca (II) 393.37 0 3.15 1.47
Ca (II) 396.85 0 3.12 1.44
Ca (I) 422.7 0 2.93 2.18
Ca (I) 558.87 2.53 4.74 0.49
Na (I) 589 0 2.104 0.62
Na (I) 589.59 0 2.102 0.61
Si (I)⁎ 251.43 0 4.93 0.74
Si (I)⁎ 251.61 0.03 4.95 1.68
Si (I)⁎ 251.92 0.01 4.93 0.55
Si (I)⁎ 288.16 0.78 5.08 2.17
Si (I) 390.55 1.91 5.08 0.13
Cu (I) 324.75 0 3.82 1.37
Cu (I) 327.39 0 3.79 1.36
Cu (I) 515.32 3.79 6.19 0.6
Cu (I) 521.82 3.82 6.19 1.22

⁎ Elemental lines used only when data from system 2were utilized for multivariate
analysis and linearization.

Fig. 1. Experimental LIBS: (a) setup 1 and (b) setup 2.
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regression that a reduction of data points usually leads to an increase in
R2. It is obvious from Fig. 2 that, even though assigned to the same rock
type by a trained geologist, some points scatter strongly from the ob-
tained linear behavior. Especially the samples KP6 and ANS1 (see
Table 1 for assignment), which clearly appear misclassified in both ex-
periments (Fig. 2a and b), respectively.

The preliminary results of the multivariate quantitative analysis of
the whole data set using the partial least squares regression (PLSR)
and the principal components regression (PCR) are shown in Fig. 3.
The data matrix X was constructed from all copper lines plus selected
lines ofmatrix elements, listed in Table 2. Again, spectra from each sam-
plewere first normalized to the sumof their total intensity and then av-
eraged to obtain one spectrum per sample. The spectra were organized
as rows and individual variables (lines of copper and selected matrix
elements) were assigned to columns of the data matrix. The vector y
for regression consists of certified copper contents (Table 1). The
whole data set (all samples) was used simultaneously. Copper lines
were not expected to suffer from self-absorption in the limited range
of Cu concentrations in the samples (from 0.06 wt.% to 0.79 wt.%).
Therefore, the variations of interest were assumed to be linear and
were analyzed by linear multivariate regressions, PCR and PLSR [26].
In every step of the multivariate regression, all spectra of one sample
were left out from the PCR and PLSRmodel estimation and then the con-
tent of the analyte (Cu) in the left-out sample was predicted using the
model built from the remaining samples. The approach follows a

suggestion of Death et al. [27]. In their study, they proposed to introduce
matrix lines into the computation of latent variables to enhance inter-
group dissimilarities and improve the cost function.

PCR and PLSR regressions were applied on data sets obtained with
both LIBS systems. To avoid under- or overfitting of the model, up to
10 PCs were gradually added to the model and related mean square er-
rors of prediction (MSEP) were calculated. The optimal number of PCs
used for each particular model is given in the box in Fig. 3. In general,
a lower number of PCs is needed in PLSR caused by simultaneously
modeling both the data matrix X and the regression vector y. A slightly
lower number of PCs was needed for satisfactory regression models of
system 2 data. This may be a consequence of more variables reflecting
the Si content in the samples. In both cases, PLSR provided higher values
for R2, namely R2 = 0.76 for system 1 and R2 = 0.79 for system 2, re-
spectively, compared to R2=0.66 and R2=0.7 obtainedwith PCR. Nev-
ertheless, such low coefficients of determination can still not guarantee
a reliable quantitative analysis. Thus, multivariate calibration using the
whole data set has to be considered unsuccessful for such a wide varia-
tion in the composition of the sample set matrices as well as the narrow
range of copper concentrations.

4.2. Calibration after PCA classification

We attempted to classify the samples based on the similarities in
their matrix compositions. It was expected that calibration curves

Fig. 2. Calibration curves for selected copper line 521.8 nm: (a) system 1 data set and (b) system 2 data set. The dashed line refers to calibration plot for complete sample set (assigned as
“combined” in the legend of the plot).

Fig. 3. Quantification of Cu content using PCR and PLSR for (a) system 1 data and (b) system 2 data.
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constructed for each rock type individually would lead to improved lin-
earity and related accuracy/bias of quantitative analysis. The datamatrix
was constructed from the lines of matrix elements listed in Table 2, and
pretreated in the same manner as in the foregoing regression case. The
spectra of each sample measured by system 1 were averaged to give 5
data points per sample. Respectively, the individual spectra of each sam-
ple from system 2 were also averaged to give 5 data points per sample.
As stated before, the samples were classified by a geologist who
inspected their phenomenological properties. This approach relies
entirely on the experience and qualification of the geologist; in some
difficult cases, it might yield erroneous results. It is, thus, highly desir-
able to have a more robust and unsupervised classification technique,
for example, multielement PCA. The analysis can be utilized for matrix
assignment or identification of misassignment.

The results of the PCA analysis are shown in Figs. 4 and 5 as the 2D
projections of the data scores on the planes of the first three principal
components taken pair-wisely. The first three PCs covered 97.1%
(69.5% + 23.2% + 4.4%) of the total variance in the data obtained

with system 1 and 97.5% (60.1% + 32.9% + 4.5%) in the data obtained
with system 2. The Gaussian clustering algorithm, built in the MATLAB
Statistics Toolbox, was used to discriminate individual groups of sam-
ples according to their distributions in the PC space.

The clustering was done in the space spanning over the first three
PCs obtained. The Gaussian clustering algorithm requires the number
of modes to be set initially, thosemodes are simply n-dimensional mul-
tivariate Gaussian functions: if the k-th function is denoted asGk; n cor-
responds to the dimension of analysis space. The total number ofmodes
was set in accordance with the number of groups given by a geologist.
Furthermore,Gk is completely definedby themeanvector μ!k and covari-
ance matrix Σ̂k. Initial values of μ!k and Σ̂k were randomly distributed in
the analysis domain. The algorithm afterwards using maximal likeli-
hood iteratively optimizes values of μ!k and Σ̂k , parameters of a multi-
modal Gaussian distribution that is applied to the analyzed set of
points. To assure convergence, the optimization was performed 1000
times, each timewith new random values of μ!k and Σ̂k, the distribution
with the best likelihood was taken as a final answer. The ellipses in the

Fig. 4. PCA applied on the system 1 data: (a) first and second PC scores and (b) first and third PC scores.

Fig. 5. PCA applied on the system 2 data: (a) first and second PC scores and (b) first and third PC scores.
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clustering plots denote the projection of the volume that covers 99% of
the “mass” of the particular Gaussian mode, Gk; around its individual
center of mass. Some clusters can overlap for sampleswith similar com-
positions and further analysis is needed. One should note that Gaussian
clusteringwas used only for enclosing the points into separate groups. It
is worth mentioning that data points do not have to necessarily obey a
Gauss distribution in the PC space. Moreover, the number of PCs used
for the clustering was determined experimentally. In this case study,
we used only three principal components to classify the data set,
while four or more principal components did not lead to any improve-
ment to the clustering of data points. Note that the fourthprincipal com-
ponent carries only ~1% of total variation in the samples' composition
measured using both systems.

When PCA is applied to the system 1 data set, three distinct outliers
are observed (see Fig. 4). Those outliers (ANS1, ANS7, and DIO1) are
enclosed within one cluster and may be discarded from further classifi-
cation since the composition of their matrices does not correspond to
any other cluster in the data set. We may assume that such samples
were accidentally (wrongly) assigned by the geologist. Under this as-
sumption, the rest of the data set is clustered into two distinct groups.
The higher content of Si and Al in the KP rock type is responsible for
its separation from the cluster of ANS and DIO rock types, as indicated

in the loadings plot in Fig. 6a. In this figure, loading values for each
matrix element line of the first two principal components were cross-
plotted. In this way, the figure depicts how each element (via its ele-
mental lines) contributes to the discrimination of the samples using
PCA. In a parallel analysis, PCA was applied to the system 2 data set
and resulted in similar distribution of the data in newly constructed
PC space, Fig. 5, as in the foregoing case. However, in the system 2
case, the outliers (ANS1, ANS7, and DIO1) are more distant from the
rest of the data set. Except for several significantly outlying samples,
rock types ANS, DIO and KP are distinctly separated. This is most prob-
ably the consequence of more variables (Si lines from the 200 to
300 nm spectral region) introduced to the computation of PCs. Further-
more, the KP rock type is separated into two clusters according to the
alteration of the soil samples. Therefore, it can be concluded that one
Si line (390.55 nm) may not be sufficient for the direct classification of
samples in the system 1 data set. Nevertheless, the loadings plot in
Fig. 6a reveals similar grouping of matrix lines of Al, Ca, and Si that are
distributed along the first principal component as in the system 2's
case as depicted in Fig. 6b.

It is seen, while comparing the scores plots in Figs. 4 and 5 with the
loadings plots in Fig. 6, that the data tends to cluster according to spec-
tral lines of matrix elements. For instance, ANS rock type is on the left-

Fig. 6. First two PC loadings: (a) system 1 data and (b) system 2 data.

Fig. 7. Further classification of the system 1 data set: (a) classification of KP alterations and (b) discrimination of ANS and DIO.
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hand side of the PC scores plots, which suggests that this rock type has
higher content of Ca in its matrix compared to DIO and KP rock type.
Spectral lines of matrix elements determine clustering patterns in sub-
spaces of principal components and subsequent clustering of the data
is possible. The main reason to use only the lines of matrix elements
for classification is the reduction of data sets. The reduction of data ma-
trices additionally accelerates PCA calculations that can be helpful for
online analysis of data during the mining process. As suggested by
Death et al. [27], data points of individual samples are satisfactorily dis-
tributed in more distinct groups in the PC space while only the impor-
tant information is used, i.e. lines of matrix elements. Moreover, the
PCA results for data sets from systems 1 and 2 are comparable. Those
results support the reliability and reproducibility of measurements
with different LIBS setups.

The data set of system 1 was not separated in distinct groups as that
of system 2 (Fig. 4). Therefore, we additionally used an advanced
approach for data classification suggested by Multari et al. [28]. They
suggested discardingwell-discriminated (tightly clustered) data points,
i.e. samples/measurements, from the data matrix and then applying the
PCA and consequent clustering algorithms again on the reduced data
matrix. This step in the data analysis should emphasize the differences

between groups, which were formerly interfered. This procedure
could be repeated until only well discriminated groups remain in the
PC space. Based on the algorithm suggested by Multari et al. [28],
Fig. 7a shows the clustering of the KP rock type,whichwaswell discrim-
inated from the rest of the data in previous classifications. Therefore, we
applied PCA to this rock type solely. Data points were then clustered
according to the relevant rock alteration. Similarly, the PCAwas applied
to the reduced data matrices of ANS and DIO rock types (when the out-
liers were discarded). Fig. 7b depicts two clusters that are distinguished
from each other, i.e. enveloped with the according ellipses. The clusters
are projected onto the first two PCs and are oriented randomly over
each other in PC space. Furthermore, DIO rock type was treated with
the PCA once more to reveal two more outliers (DIO8 and DIO9; not
shown in Fig. 7.)

Thus, the PCA helps in the identification of outliers among thewhole
data set. The outliers (ANS1, ANS7, DIO1, DIO8, and DIO9) were dis-
carded from further quantitative analysis. After this, the partial calibra-
tion curves were re-plotted and are shown in Fig. 8. According to the
classification of rocks in geochemistry, the rock type and alteration
should correspond to each other. Therefore, a calibration curvewas con-
structed only for the potassic alteration of the KP rock type while the

Fig. 8. Separate calibration curves formed after PCA analysis (a) for system 1 data set and (b) for system 2 data set.

Table 3
Copper content calculated utilizing individual and combined calibration curves.

Sample Cu content/wt.%

certified System 1 System 2

Combined calibration Bias Partial calibration Bias Combined calibration Bias Partial calibration Bias

ANS2 0.49 0.38 ± 0.09 −21.9% 0.45 ± 0.08 −8.1% 0.96 ± 0.11 96.1% 0.43 ± 0.04 −11.9%
ANS3 0.6 0.6 ± 0.08 −0.3% 0.63 ± 0.07 5.7% 0.06 ± 0.06 −90.0% 0.71 ± 0.08 19.0%
ANS4 0.61 0.52 ± 0.06 −14.3% 0.55 ± 0.05 −9.2% 0.01 ± 0.05 −98.1% 0.62 ± 0.06 2.4%
ANS5 0.79 0.84 ± 0.09 6.0% 0.84 ± 0.08 6.4% 0.15 ± 0.05 −81.0% 0.7 ± 0.06 −10.8%
ANS6 0.21 0.14 ± 0.03 −32.7% 0.23 ± 0.02 10.2% 0.5 ± 0.01 136.8% 0.19 ± 0.03 −9.9%
DIO2 0.71 1.13 ± 0.07 59.5% 0.86 ± 0.05 21.0% 0.9 ± 0.12 26.1% 0.92 ± 0.08 29.2%
DIO3 0.73 0.64 ± 0.06 −12.4% 0.68 ± 0.05 −7.2% 0.58 ± 0.11 −20.1% 0.65 ± 0.07 −11.2%
DIO4 0.78 0.82 ± 0.06 5.4% 0.73 ± 0.04 −6.3% 0.67 ± 0.05 −13.9% 0.69 ± 0.03 −11.1%
DIO5 0.32 0.33 ± 0.03 2.9% 0.34 ± 0.02 6.6% 0.65 ± 0.02 104.2% 0.31 ± 0.03 −2.0%
DIO6 0.31 0.29 ± 0.07 −7.0% 0.33 ± 0.05 6.6% 0.18 ± 0.12 −40.6% 0.37 ± 0.05 19.4%
DIO7 0.3 0.16 ± 0.05 −45.3% 0.26 ± 0.05 −14.5% 0.77 ± 0.06 157.9% 0.26 ± 0.04 −13.9%
KP1 0.24 0.32 ± 0.04 34.1% 0.23 ± 0.03 −4.4% 0.51 ± 0.05 110.5% 0.26 ± 0.01 6.4%
KP2 0.18 0.16 ± 0.04 −12.8% 0.17 ± 0.04 −7.4% 0.38 ± 0.08 112.8% 0.16 ± 0.02 −11.8%
KP3 0.21 0.31 ± 0.06 47.2% 0.23 ± 0.04 8.2% 0.31 ± 0.03 49.1% 0.23 ± 0.01 11.7%
KP8 0.48 0.71 ± 0.08 48.7% 0.47 ± 0.05 −1.8% 0.91 ± 0.11 89.3% 0.44 ± 0.04 −9.2%
KP9 0.71 1.07 ± 0.15 51.3% 0.77 ± 0.09 8.5% 1.15 ± 0.13 62.0% 0.77 ± 0.07 7.9%
KP10 0.56 0.96 ± 0.16 71.7% 0.61 ± 0.1 9.4% 1.14 ± 0.19 104.2% 0.53 ± 0.06 −6.2%
KP11 0.3 0.49 ± 0.07 63.8% 0.33 ± 0.04 9.8% 0.49 ± 0.07 64.1% 0.29 ± 0.02 −3.8%

+max 63.3% +max 21.0% +max 136.8 +max 29.2
−max −45.3% −max 14.5% −max −98.1 −max −13.9%

161P. Pořízka et al. / Spectrochimica Acta Part B 101 (2014) 155–163



phyllic alteration was excluded from the calibration. The difference in
the composition of phyllic and potassic alteration of the KP rock type
was as well revealed in the PC space, as it is seen in Fig. 7a.

Significant improvements in the linearity of the partial calibration
curves are obtained for all the rock types (ANS, DIO, and KP) as can be
found in the comparison of Figs. 2 and 8. As a consequence of such
data pretreatment, the matrix effect may be avoided to such an extent
that it does not significantly affect the accuracy/bias of partial cali-
bration curves. The precision of the prediction can be estimated from
bias:

bias %ð Þ ¼ x−μ0

μ0
� 100;

where x is the measured/predicted result and μ0 is the reference value.
The improvement in prediction of copper concentrations using par-

tial calibration curves was additionally proved by the leave-one-
sample-out (LOSO)method described above. Table 3 provides the com-
parative results of LOSO using combined and partial calibration curves.
The reference (certified) values of Cu concentrations were obtained
from ICP-MS measurements. The bias was calculated for two methods
(using combined and partial calibrations) and for both LIBS systems.
As one sees from Table 3, the lower bias values, i.e. more accurate esti-
mation of the copper content, are observed when partial calibration
curves are used for the quantification. We used box plots to

schematically depict computed biases (Fig. 9) where the central solid
line stands for the median of each data range and the box shows the
central 50% of the data range. This figure visualizes what we expected,
the biases computed from partial calibration curves are much lower
compared to those computed from combined calibration curves. Based
on these results, it is recommended to discriminate the data set based
on the similarity in the sample matrices prior to the quantitative analy-
sis. Fig. 10a and b show the correlation plots of the predicted versus cer-
tified concentrations for the combined (a) and partial (b) calibration
curve methods. This visualization of the predicted copper contents
strengthens the recommendation to use the partial calibration curves
to obtain more reliable quantitative analysis, when the coefficient of
determination for the measurement is R2 = 0.955 for system 1 and
R2 = 0.949 for system 2, respectively.

Results from system 2 are less reliable/accurate, i.e. results are
observed with higher biases, compared to system 1. This difference
may arise from lower energy per pulse utilized to ablate material and
to create plasma. However, in both cases, the results prove that partial
calibration curves are more apt for reliable quantitative analysis. The
biases of predicted copper contents were ranging from −14.5% to 21%
for system 1 and from −13.9% to 29.2% for system 2, respectively. As
seen from the Figs. 9 and 10, the results for systems 1 and 2 are similar
when partial calibration curves are utilized. It may therefore be stated
that improved quantitative analysis using partial calibration plots
takes advantage of the discrimination of the samples based on dissimi-
larities in their matrices, i.e. in the composition of matrix elements (Al,
Ca, Na, and Si). Moreover, in both LIBS systems, different lasers (high-
energy Nd:YAG laser in system 1 and high-rate DPSS laser in system
2) were used as ablation sources as well as different collection optics
(side view collector-collimator in system 1 and toroid mirror in system
2). Those results prove the reproducibility of the LIBS measurement on
various systems, although similar spectrometers (LTB Aryelle with ICCD
detector in system 1 and CCD detector with chopper in system 2) were
utilized for the detection of plasma radiation.

5. Conclusion

Based on the presented study, LIBS can satisfy the needs of the min-
ing industry when LIBS measurements are processed with PCA. In our
study, two different LIBS systemswere utilized to compare the compat-
ibility of results obtained usingpartial calibration curves from suggested
processes for data analysis. It was demonstrated that PCA can be
employed for the classification of samples and the detection of outliers
prior to the construction of partial calibration curves. Although reducing
the overall number of samples, discarding identified outlier spectra is an

Fig. 9. The range bias depicted in box plots for the combined and partial calibration curves
constructed for both systems.

Fig. 10. Predicted Cu content for data of both LIBS systems from (a) combined calibration curves and (b) partial calibration curves.
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approach that can be afforded in caseswhere enough samplematerial is
available (as it is the case on mining sites). It is shown that discrimina-
tion of the samples into classes based on the differences in the content
of their matrix elements (Al, Ca, Na, and Si) improves the quality of
quantitative analysis. The bias in concentrations predicted from partial
calibration curves (constructed for individual rock types) was lower
than that obtained with the calibration curve constructed from the
whole data set. However, further measurements should be conducted
in order to create more robust data libraries. We strongly recommend
discriminating the igneous rocks based on the similarities in theirmatri-
ces, i.e. the composition of matrix elements Al, Ca, Na, and Si, prior to
any further quantitative analysis. A reliable quantitative analysis may
be provided only when the matrix effect affecting the LIBS measure-
ment is suppressed.
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Our research focus is also on the transfer of LIBS to industry and different applica-
tions, developing adaptations of LIBS systems and methodological protocols. One of such
applications is utilization of LIBS in forensics.

This publication brought a feasibility study of detection of visually unrecognizable brak-
ing tracks. The idea behind the detection is in the fact that ABS (active braking system)
improves the braking process of a vehicle by avoiding sliding on the road and thus there
is no visible braking track. In spite of that, hard braking leaves traces of tyre particles
on the road. They can be observed via the detection of zinc which is added to the tyre
composition during the production process.

This is a completely novel application in the LIBS community and successful feasibility
study led to a joint grant application and development of a unique robot LIBS system.
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The objective of this paper is a study of the potential of laser induced breakdown spectroscopy (LIBS) for detec-
tion of tire tread particles. Tire tread particles may represent pollutants; simultaneously, it is potentially possible
to exploit detection of tire treadparticles for identification of optically imperceptible braking tracks at locations of
road accidents. The paper describes the general composition of tire treads and selection of an element suitable for
detection using the LIBS method. Subsequently, the applicable spectral line is selected considering interferences
with lines of elements that might be present together with the detected particles, and optimization of measure-
ment parameters such as incident laser energy, gate delay and gate width is performed. In order to eliminate the
matrix effect, measurements were performed using 4 types of tires manufactured by 3 different producers. An
adhesive tapewas used as a sample carrier. Themost suitable adhesive tapewas selected from5 commonly avail-
able tapes, on the basis of their respective LIBS spectra. Calibration standards, i.e. an adhesive tape with different
area content of tire tread particles, were prepared for the selected tire. A calibration linewas created on the basis
of the aforementioned calibration standards. The linear section of this line was used for determination of the de-
tection limit value applicable to the selected tire. Considering the insignificant influence ofmatrix of various types
of tires, it is possible to make a simple recalculation of the detection limit value on the basis of zinc content in a
specific tire.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The ability to detect tire tread particles in real time and in-situ has
importance to a number of real world applications. Wide attention
was recently dedicated to a tire tread particles as a source of pollution
in environment. It was shown that tire treads contain heavy metals
such as Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb [1]. Concurrently with the in-
crease of road traffic, the level of environmental pollution increases
not only due to exhaust from combustion engines but also in connection
with tire tread particles. Tire tread particles are released mainly in con-
nection with vehicle speed changes; to a lesser extent, however, they
are released even in the course of continuous driving. The respective
particles consequently pollute air, soil and, subsequently, water sources
[1–4].

Another possibility of exploitation of fast detection of tire tread par-
ticles might pertain to detection of optically imperceptible braking
tracks. This thesis is based on the prerequisite that intense braking re-
sults in a higher level of abrasion of a tire tread than in the case of stan-
dard driving; therefore the average concentration of tire tread particles
on a road surface would be statistically higher at places where braking
was performed — in comparison with places where braking was not
performed. Introduction of modern braking assistance systems (Anti-
lock Braking System, Electronic Stability Control) results in low levels
of tire sliding during braking, and therefore braking tracks prove to be
visually very badly identifiable. This fact significantly impedes analyses
of accidents so it is essential to seek methods and procedures of identi-
fication of even such braking tracks.

At present there are twodifferent approaches to detection of tire tread
particles. One of them is their detection on the basis of identification of
polymers. For example, Gueissaz andMassonnet used pyrolysis in combi-
nation with gas chromatography andmass spectrometry (Py-GC/MS) [5]
for detection of tire tread particles. Another example of amethod used for
detection of tire tread particles on the basis of typical polymers is, for ex-
ample, infrared spectrometry (IR) [6].
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Another approach exploits detection of extractable organic zinc,
which is added to tires in the form of ZnO2 as a vulcanizing agent.
This approach was selected by numerous investigators. On the basis of
preparation of a sample andmethods such as AAS or ICP-OES it is possi-
ble to detect extractable organic zinc, which is present solely in tire
treads. An overview of methods focused on detection of tire tread parti-
cles including the respective references is listed in Table 1.

This paper suggests detection of tire tread particles using the LIBS
method, on the basis of zinc identification. The fundamental benefits
of thismethod include its speed and zero requirements as regards prep-
aration of samples. Simultaneously, it is possible to perform an in-situ
analysis at a distance of several meters. For an overview of properties
of the LIBS method – in comparison with methods mentioned in
Table 1 and some other – see [8,9].

The following sections describe the process of optimization of mea-
surement parameters such as incident laser energy, gatewidth and gate
delay with the objective of obtaining the maximum possible signal to
noise ratio applicable to the selected zinc spectral line. Furthermore,
the detection limit of the selected zinc line is determined for optimum
parameters using the created calibration standards. ICP-OES resp. ICP-
MS was selected as the reference method used for determination of
zinc content in the selected tires.

2. Experimental section

2.1. Physical and instrumental background of the laser-induced breakdown
spectroscopy (LIBS) method

LIBS is a quasi non-destructive method based on the principles of
atomic emission spectrometry. The scope of fundamental instrumenta-
tion for LIBS comprises a pulsed laser, a lens focusing the laser pulse on
the sample surface, optics collecting plasma radiation, a wavelength an-
alyzer and a detector. Detailed description of LIBS principle, methodolo-
gy and instrumentation is plentiful in the literature [8–12]. Here we
only summarize the basic principle.

A short laser pulse (fromdozens of fs to units of ns) featuring amajor
irradiance (several GW·cm−2) focused on the sample surface heats up,
melts, atomizes and ionizes a small amount of the sample. This complex
process as a whole leads to creation of radiatingmicro-plasma featuring
a high temperature. Even though ablation of the material continues
solely for several nanoseconds, the created plasma is specific for its
high electron density (1017–1019 cm−3), high temperature (6000–
20,000 K) and rate of expansion of approx. 106 cm·s−1. Radiation of
the micro-plasma may be subdivided into two parts — radiation origi-
nating from atomic emissions, and thermic and recombination continu-
um. The first component of the radiation, i.e. emission radiation, is
essential for analyses of samples using the LIBS method as it contains
chemical “fingerprints” of each element in the vaporized volume of
the sample. Therefore, scanning of the plasma is important following
elapse of hundreds on nanoseconds from the laser beam shot. Following
elapse of this timewe can observe sharp emission lines caused by tran-
sitions of electrons from higher energy levels to lower ones while con-
tinuous emissions caused by braking emissions and recombination

already prove to be negligible. Plasma radiation is, using reception op-
tics and a fiber optic cable, transported to the input of the spectrometer.
The obtained spectrum is recorded using a detector (e.g. CCD) and
displayed using a computer.

One of the advantages of this method is the possibility of creation
of chemical or element maps. The term of “chemical or element map”
refers to the spatial arrangement and relative concentrations of indi-
vidual elements on a heterogeneous sample [13,14]. LIBS is, consid-
ering its chemical mapping properties, frequently used and, in
principle, it allows – following completion of a spatially differentiat-
ed measurement – for creation of two-dimensional chemical maps
for all elements included in the sample. Spatial differentiation of
this method is limited solely by the size of the ablation crater featur-
ing the size of dozens of μm.

2.2. Applied instrumentation

Fig. 1 shows the experimental LIBS setup available at the Brno Uni-
versity of Technology. Thewhole setup consists of dual pulseNd:YAG la-
sers, an interaction chamber equipped with two reception optic
components and a camera used for sampleview, and two spectrometers.
However, solely the primary laser LQ 529a (SOLAR) shown on Fig. 1 no.
1 and spectrometer in the Czerny–Turner (Lot Oriel 260I) arrangement
were used for the experiments described below. The laser operates on
the frequency of 10Hz andwavelength of 532 nm,with the pulse length
of ~10 ns. The laser beam is led, using mirrors, into the interaction
chamber perpendicularly to the sample surface and focused on the sam-
ple using a glass triplet (focal distance: 32 mm).

The sample was placed on a handling device inside the interaction
chamber (Fig. 1 no. 7) and its position and location of analysis were
checked using a preview CCD camera (Fig. 1 no. 2). Plasma radiation
was collected using a doublet of lenses (f = 90 mm) and, using a fiber
optic cable (diameter: 1000 μm), it was led to the entrance of the spec-
trometer (Lot Oriel 260I) in the Czerny–Turner arrangement (Fig. 1 no.
8). An iCCD camera (iStar 734i, ANDOR) was used as a detector.

The gate delay (td) and gatewidth (tw)were controlled using a pulse
generator (DG535, Stanford Research System, US) and special electron-
ics developed in the laboratory of the Brno University of Technology. All
the aforementioned devices prove to be computer-controlled. All mea-
surements were performed in ambient atmosphere, with normal atmo-
spheric pressure.

2.3. Samples

2.3.1. Tire tread
Chemical compositions of tire treads prove to differ in the case of

various manufacturers; however, in general it may be stated that it is
based on natural or synthetic rubber, resp. a combination of them. Dur-
ing the process of vulcanization, other substances such as zinc oxide,
sulfur, filling compounds, reinforcing agents, softeners, antioxidants
and antiozonants are added into the rubber structure. Types and dosage
of individual additives are trade secrets of individual tiremanufacturers.

Table 1
Some analytical methods for tire tread particle detection.

Method Detection approach Sample preparation In-situ detection Reference

AAS Zn detection HNO3 to pH 2, sonicate, filter No [1]
XRF Zn detection No Yes [2]
EDX Multielem. analysis No Yes [3]
ICP-OES Zn detection HNO3 digestion, microwave digestion No [4]
Py-GC/MS Polymer detection No No [5]
NA Zn detection No No [6]
IR Polymer detection No No [7]

AAS = atomic absorption spectrometry; XRF = X-ray fluorescence; ICP-OES= inductively coupled plasma optically emission spectrophotometry; GC–MS= gas chromatography–mass
spectrometry; NA = neutron activation; IR = infrared spectrometry.
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Various combinations and ratios of carbon particles or silica (silicon
monoxide) are used as filling compounds.

In order to detect tire tread particles on the road, it was essential to
determine a suitable element which complies with the following
criteria:

- It is present in the tire in an amount detectable using the selected
method;

- It is improbable for it to be naturally present on the road in a detect-
able amount.

Zinc was selected as the most suitable element. Zinc oxide is added
into tire treads as an agent simplifying the process of vulcanization.
Zinc content in tire proves to range, as regards various patents and ex-
pert analyses, from 0.04 to 2.5% by weight; however, the arithmetic
mean and modus of these values is approximately 1% by weight [4].
The overview of Zn contents in different tires obtained by different an-
alytical methods published in literature is shown in Table 2. LIBS is gen-
erally capable of detection of heavy metals (for example Zn) under the
level of 1 mg·kg−1.

To control the influence of matrix effect dependent on different tire
compositions five different tires from different manufacturers were
measured using LIBS and the zinc content was controlled using refer-
ence technique. The tire brands and types and zinc contents are listed
in Table 3. As a reference technique to determine Zn content in tire
tread was employed inductively coupled plasma mass spectrometry
(ICP-MS) and inductively coupled plasma optical emission spectrome-
try (ICP-OES). Prior to the chemical analysis the tire tread particles
wereweighted on analyticalweights (63.9–70.9mg) andplaced in plas-
tic tubes together with 4 ml nitric acid (Sigma-Aldrich, puriss. p.a.,

≥69%). The plastic tubes were exposed to microwave digestion for
25 min at the temperature of 180 °C.

For the analysis of Matador Prima F, 185/60 R14 was employed ICP
spectrometer 7700x Agilent ICP-MS with collision cell (He) for the re-
maining set of tires was employed ICP-OES spectrometer iCAP 6500
Duo Thermo Scientific.

Fig. 2 shows that the signal intensity depends on the zinc content in
different tires linearly so it can be assumed that the matrix effect is
neglectable. AMatador Prima F, 185/60 R 14 tire was selected for exper-
iments described in this paper.

2.3.2. Adhesive tapes
A standard adhesive tape, resp. a dactyloscopic foil, is highly suit-

able for collection of tire tread particles. The use of an adhesive tape
for handling or collecting the powder samples was described, for
example, in [19–21] and the use of a dactyloscopic foil for collection
of tire tread particles from the road surface was described, for exam-
ple in [5].

In order to select the most suitable tape that is commonly avail-
able, several types of tapes were tested. The principal tape-related
requirement had been that such a tape could not contain Zn or an el-
ement in the case of which the spectral line might interfere with se-
lected Zn lines.

Four commonly available adhesive tapes and a dactyloscopic foil
were tested and a transparent adhesive tape for office use was selected
as the most suitable one, based on the above-mentioned requirements.
For a comparison of the spectrum of a transparent adhesive tape and
spectrum of the tire see Fig. 3.

2.3.3. Calibration standards
Samples containing the known weight of tire tread particles on a

specifically defined area were prepared for determination of the theo-
retical limit of detection and quantification of surface content of tire
tread particles.

Tire tread particles weremade by themeans of mechanical grinding
of the tire tread using a steel file. The size of particles was measured
using an optical microscope and ranger between 10 μm and 100 μm
(Fig. 4). The particle size and morphology described in literature proofs
differ depending on the particles origin from 10 μm to 300 μm [3,5]. Par-
ticles made in the above-mentioned manner were weighed and spread
on an adhesive tape (dimensions: 20 × 15 mm2). In order to preserve
the same area of all samples, the adhesive tape was placed on a paper
mask featuring exact dimensions.

Fig. 1. Table top LIBS experimental setup, 1—Nd:YAG laser LQ-529, SOLAR, 2—CCD camera for sampleview, 3—Collecting optics CC52, Andor, 4—spectrometer in echelle arrangement,
ME5000, Andor, 5—iCCD camera iStar 734i, Andor, 6—Nd:YAG laserBrilliant b, Quantel, 7—Interaction chamber, Tescan, 8—Spectrometer in Czerny–Turner arrangement, LOT Oriel
260I, 9—iCCD camera iStar 734i, Andor.

Table 2
Zn content in different tire treads measured with different analytical methods from
literature.

Zn Content (mg·kg−1) Analytical method References

8400 NA [6]
8400 AAS [1]
10,000 NA [15]
10,000 NA [16]
10,200 AAS [17]
12,600 ICP-OES [4]
15,500 ICP-OES [18]

NA=neutron activation; ICP-OES= inductively coupled plasma optically emission spec-
trophotometry; AAS = atomic absorption spectrometry.
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2.4. Optimization of measurement parameters

As it was specified above, the used experimental setup is
equipped with two spectrometers in different arrangements. One
of the spectrometers features the echelle (Mechelle 5000, Andor) ar-
rangement while the other one features the Czerny–Turner (260I,
Lot Oriel) arrangement. The spectrometer featuring the echelle ar-
rangement offers – in comparison with the spectrometer featuring
the Czerny–Turner arrangement – a more extensive range of mea-
sured wavelengths (from 200 to 850 nm) but a lower sensitivity.
Since the objective of the measurement was to obtain the lowest
possible detection limits for a specific element, resp. a specific emis-
sion line of an element, the Mechelle 5000 spectrometer was used
solely for primarymeasurements— for the purpose of determination
of suitable emission lines. Additional optimizations and measure-
ments were performed using the Lot Oriel 260I spectrometer.

In order to be able to consider practical implementation of this
method in the future, it is essential to strive for the simplest possible in-
strumentation and maintaining acquisition and operating costs on the
lowest possible levels. Due to this reason, solely the single-pulse LIBS
method (even though the device is equipped with two lasers) was
used for the analysis.

In the case of measuring LIBS spectra, the overall response of the
detector represents the aggregate of the sample emission signal and
continuous plasma radiation caused by recombination and brems-
strahlung (for the purpose of simplification, the detector noise is
not considered). As the continuous radiation does not carry any in-
formation pertaining to the content of the sample, the effort is fo-
cused on its minimisation by the means of timing detector
readings. As described in [12] and the respective list of references,
the most important parameter describing sensitivity of the LIBS

method is the signal/noise (S/N) ratio and signal/background (S/B)
ratio. In this paper, the element emission signal refers to any point
on the selected emission line which correlates with its area and
from the value of which the arithmetic mean of background mea-
sured in the close surrounding of the emission line is deducted. The
maximum value of the emission line (Zn I 330.25 nm) was selected
as the element emission signal and the surrounding of the emission
line selected for calculation of the background and noise is marked
in Fig. 5. Considering the fact that the sample was measured repeat-
edly for each setting, the emission signal represents the arithmetic
mean of the maximum emission line value across all the measured
spectra, for a specific setup. Background refers to the arithmetic
mean of surrounding of the emission line across all the measured
spectra, for a specific setup. Noise represents the standard deviation
from the background average value across all the measured spectra,
for a specific setup. Emission line Zn I 330.25 nm was selected in
order to prevent possible interference with emission lines of adhe-
sive tape (see Fig. 3). In order to prevent self-absorption the optical
opacity of plasmawas controlled using amirror behind plasma as de-
scribed in [22].

As many as 100 measurements were performed for each specific
setup in order to achieve statistically significant, robust results.

The first optimized measurement parameter was laser energy pulse
reaching the sample. The scope of measurement was selected in the
range of 20–120 mJ per pulse. The gate delay and gate width were con-
stant for all laser power settings and the respective valueswere selected
considering the past experience with LIBS measurements (td = 1.5 μs
and tw = 10 μs).

For the final charts depicting the signal/noise, resp. signal/back-
ground, ratio depending on the laser power see Fig. 6, resp. Fig. 7.
Based on both the charts it may be deduced that the optimum laser
power ranges between 80 and 100 mJ per pulse. The power of 90 mJ

Table 3
Tire brands and types of tire treads used for experiments. In the table are presented zinc contents and LIBS emission signals (for LIBS signal definition see Section 2.4) including standard
deviations. All samples were measured under same condition described below.

Tire brand and type Zn content
(mg·kg−1)

Standard deviation of Zn content
(mg·kg−1)

LIBS emission signal of Zn I 330.25 nm spectral
line (a.u.)

SD of LIBS emission signal
(a.u.)

Matador Prima F, 185/60 R14 3500 24 5689 211
Michellin Primacy HP 215/55 R16 4954 28 7139 303
Goodyear EfficientGrip 205/55 R16 1249 26 1983 353
Matador MP 55 Plus 165/80 R13 11,949 39 23,163 411
Michellin Primacy HP 235/55 R17 7384 46 11,780 231

Fig. 2. LIBS signal intensity of Zn I 330.25 nm vs zinc content in different tire types — see
Table 3. Each point is average from 5 measurements. Errors are presented in Table 3.
The red line in the graph is the linear fit. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Comparison of LIBS spectrums from tire tread and transparent adhesive tape. The
measurement parameters were kept constant on both samples. Laser energy was 91 mJ
per pulse, gate delay 1.6 μs, gate width 9 μs. It is clearly visible that transparent tape has
much lower signal in the area of interest than tire tread and Zn respectively.
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per pulsewas selected for themeasurement. For this power level, diam-
eter of the ablation crater measured using an optical microscope was
approximately 60 μm.

Another optimized parameter was the gate delay. For the signal/
noise, resp. signal/background, ratio pertaining to gate delay see Fig. 8,
resp. Fig. 9. The time range and sampling rate were selected in manner
that bestmapped the course of dependence. The increment of 10 nswas
selected in the range between 310 ns and 500 ns as accelerated cooling
of plasma and decreasing of intensity of continuous radiation occur in
this range, and emission lines become visible. Between 500 ns and
800 ns the increment was increased to 50 ns and from 800 ns to
7400 ns the increment was further increased to 200 ns. The last mea-
surement was performed separately, for the value of 8000 ns. Charts
in Figs. 8 and 9 clearly show that the optimum gate delay values range
between 1000 ns and 2000 ns. The selected (optimum) time value
was 1600 ns, which was used for all subsequent measurements.

The last optimized value was the time period during which plasma
radiation is detected (gate width). For the signal/noise, resp. signal/
background, ratio pertaining to gate width see Figs. 10 and 11. The in-
crement of used values was 0.5 μs in the range between 1 μs and
15 μs, and 1 μs in the range between 15 μs and 23 μs. The charts show
that the gate width influences the signal/noise ratio a hundred times
less than gate delay. The difference between the minimum and

maximum value of signal/noise ratio for gate delay was more than
100 times bigger while for gate width it was less than a double. This
fact is caused by gradual extinction of plasma as the time elapses from
the time of impact of the laser beam. After some time the increment
caused by atomic emissions proves to be negligible and solely the
level of noise increases. From charts in Figs. 10 and11 itmay be deduced
that the respective time is in the range of 8–10 μs. The time of 9 μs was
therefore selected for subsequent measurements.

3. Results and discussion

3.1. Calibration curve and theoretical detection limit value

The LIBS allows for determination of relative content of selected ele-
ments in various samples, resp. in various parts of a heterogeneous sam-
ple. In order to determine absolute content of the selected element, it is
necessary to create a calibration curve using standards containing the
known content of the selected element. This actually represents the

Fig. 4. Tire tread particles made by mechanical grinding on the adhesive tape. The size of
bar is 100 μm.

Fig. 5. Typical LIBS spectrum of tire tread, from spectrometer in Czerny–Turner arrange-
ment. The used background range is marked with gray. The emission signal is the maxi-
mum value of selected emission spectral line intensity. Spectral line of Zn I 330.25 nm
was used in this case.

Fig. 6. Signal to noise ratio for selected spectral line Zn I 330.25 nmas a function of incident
laser energy for tire tread. The parameters as gate delay and gate width were selected re-
garding to our experience with LIBS measurements and set as gate delay 1.5 μs and gate
width 10 μs. Each point in the graph is averaged from (an average of) 100 measurements.
The error bars represent standard deviation of signal to noise ratio.

Fig. 7. Signal to background ratio vs incident laser energy for tire tread. The parameters as
gate delay and gate width were selected regarding to our experience with LIBS measure-
ments and set as gate delay 1.5 μs and gate width 10 μs. Each point in the graph is average
from 100 measurements. The error bars represent standard deviation of signal to back-
ground ratio.
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ratio of intensity of the selected spectral line on content of the selected
element in the sample.

The aforementioned calibration standards were created for the
purpose of determination of theoretical detection limits. Five sam-
ples were created for each area density and each sample was mea-
sured across its whole area of 20 × 15 mm2 with an increment of
1 mm in both directions. 1 mm step was selected with regard to
the microscope observation in order to avoid mutual influence of ab-
lation craters. The Zn I average emission line signal (330.25 nm) was
subsequently regarded as the value of intensity. For the ratio be-
tween the Zn I emission line intensity (330.25 nm) and area density
of tire tread particles see Fig. 12.

The theoretical detection limit was calculated using the formula
(2) described in [23] and recommended for calculation of the detection
limit value in [12]

LOD ¼ k
sB
XB

 !
XB

b

 !
; ð2Þ

whereas k=3, sB represent noise of the background or blank, XB repre-
sents the average background intensity and b represents the slope of
linear section of the calibration curve. The element in the first bracket
describes the relative standard deviation (RSD) while the element in
the second bracket describes the background element concentration
(BEC). For linear section of the calibration curve see Fig. 12. The slope
of this line is b = 2476.44 while the blank noise value is sB = 151.03.
Thus, the detection limit value calculated using the aforementioned
values is approximately 0.18 mg·cm−2.

Since it has been shown that for different tire types and brands re-
spectively the Zn I (330.25 nm) spectral line intensity changes linearly
depending only on the zinc content (see Fig. 2). Thus, it is possible to de-
termine the LOD for any tire only from the linear part of calibration
curve, as it is shown in Fig. 12, and the zinc content in appropriate tire.

4. Ongoing work

The ongoingwork focuses onmeasurement on tire tread particles on
the road surface — braking tracks. These measurements are based on a

Fig. 8. Signal to noise ratio vs gate delay for tire tread and Zn I 330.25 nmemission spectral
line respectively. The laser energywas set on 91mJ and gatewidth on 10 μs throughout all
measurements. Each point in the graph is average from 100measurements. The error bars
represent standard deviation of signal to noise ratio.

Fig. 9. Signal to background ratio vs gate delay for tire tread and Zn I 330.25 nm emission
spectral line respectively. The laser energy was set on 91 mJ and gate with on 10 μs
throughout all measurements. Each point in the graph is average from100measurements.
The error bars represent standard deviation of signal to background ratio.

Fig. 10. Signal to noise ratio vs gate width for tire tread and Zn I 330.25 nm emission spec-
tral line respectively. The laser energy was set on 91 mJ and gate delay on 1.6 μs through-
out all measurements. Each point in the graph is average from 100 measurements. The
error bars represent standard deviation of signal to noise ratio.

Fig. 11. Signal to background ratio vs gatewidth for tire tread and Zn I 330.25 nmemission
spectral line respectively. The laser energy was set on 91 mJ and gate delay on 1.6 μs
throughout all measurements. Each point in the graph is average from100measurements.
The error bars represent standard deviation of signal to background ratio.
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unique mobile device allowing for performance of analyses outside a
laboratory —directly at the location of a road traffic accident. It is legiti-
mate to anticipate that the surface content of tire tread particles present
directly on the road on the spots of braking tracks will be higher than
on the rest of the road. Nevertheless, there are still a lot of challenges to
overcome in further experimental work, for instance the estimation of
the actual content of tire tread particles on the road surface for braking
from different speeds, temporal degradation of braking tracks, etc.

This research is supposed to lead to the development of a device
which is capable of automatic identification of braking tracks
(transported to a laboratory or directly on a road surface) and, based
on the respective data, determination of, for example, the initial speed
and position of a vehicle.
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Fig. 12. LIBS signal intensity of Zn I 330.25 nm vs area content of tire tread particles on the
transparent tape. The concentrationwas selected from 0 (blank), 0.6mg/cm2, 0.8mg/cm2,
1.4 mg/cm2, and 2 mg/cm2. Each point is average from 5 measurements and each mea-
surement is composed of 300 single shots each from fresh point on area 20 × 15 mm2

with equidistant step 1 mm in both directions. yP refers to the polynomial fit and yL to
the linear fit. The error bars represent standard deviation of intensity.
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We stood at the beginning of the multivariate mapping. This manuscript was among
the first in the LIBS community to discuss potentail utilization of chemometrics to reveal
hidden causalities in the data matrix obtained from the LIBS mapping of heterogenenous
sample.

Principal comonent analysis (PCA) was used to visualize large data matrix, with 42 000
variables, on a lower dimensional scale. Individual PCs were then printed not in typical
cross-plots but in the map, each score was attributed with a position in the map where it was
obtained. In our consequent study, Kohonen’s self organizing maps were used for similar
purposes. Both algorithms provide advanced capabilities in visualization and clustering
which can be used also in a non-conventional way.

The uranium bearing ore sample was mapped with LIBS. Spectral line response was
correlated with the first principal component, revealing a simple fact that the variance of
uranium content and its spectral fingerprint was so significant that it overshadowed other
elements, such as calcium, potassium, zirconium, et al.
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The goal of this work is to provide high resolution mapping of uranium in sandstone-hosted uranium ores using
Laser-Induced Breakdown Spectroscopy (LIBS) technique. In order to obtain chemical image with highest possi-
ble spatial resolution, LIBS system in orthogonal double pulse (DP LIBS) arrangement was employed. Owing to
this experimental arrangement the spot size of 50 μm in diameter resulting in lateral resolution of 100 μm was
reached. Despite the increase in signal intensity in DP LIBSmodification, the detection of uranium is challenging.
The main cause is the high density of uranium spectral lines, which together with broadening of LIBS spectral
lines overreaches the resolution of commonly used spectrometers. It results in increased overall background ra-
diationwith only fewdistinguishable uranium lines. Three different approaches in the LIBS data treatment for the
uranium detection were utilized: i) spectral line intensity, ii) region of apparent background and iii) multivariate
data analysis. By utilizingmultivariate statisticalmethods, a specific specimen features (in our case uranium con-
tent)were revealed by processing complete spectral information obtained frombroadband echelle spectrograph.
Our results are in a good agreement with conventional approaches such as line fitting and shownew possibilities
of processing spectral data inmapping. As a reference technique to LIBSwas employed X-ray Fluorescence (XRF).
The XRF chemical images used in this paper have lower resolution (approximately 1–2 mm per image point),
nevertheless the elemental distribution is apparent and corresponds to presented LIBS experiments.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The global demand for energy is rising and the future generationwill
need a range of options if greenhouse gas emissions are to be reduced
[1]. One of the basic source of energy comes from nuclear processes, es-
pecially uranium fission. Sufficiency of uranium reserves found on the
Earth can contribute to energy sustainability.

Uranium accumulations are formed in various ways, the most im-
portant include magmatic, hydrothermal and sedimentary processes,
which create a wide range of deposit types and formations. The wide-
spread hydrothermal types are sandstone-hosted uranium deposits
constituting approximately 18% of the world's known reserves. It is dis-
tributed in more than six hundred deposits [2,3] and contributes to

more than half of a current uranium production. Orebodies of this
type are commonly low tomedium grade (0.05–0.35% U) and the num-
ber of operating deposits (50) considerably exceeds other deposit types.
Rather than conventional methods (underground and opencast min-
ing), the chemical extraction (in-situ leaching) is chiefly used for eco-
nomic valuation [4].

Czech Republic does not belong any more to the world's most valu-
able uranium provinces, but especially in European and regional scale it
has considerable ore reserves. These are represented by
peneconcordant sandstone-hosted uraniumdeposits in theNorth Bohe-
mian Cretaceous Basin. These deposits are defined as U-Zr-P-Ti type and
represent a remarkable elemental as well as mineral associations, that
makes this area worldwide unique.

The study of ore mineralization is difficult for the size of mineral
phases (in μm), gel nature of components etc. and hence application of
traditional geological instruments such as optical microscopy, electron
microprobe, scanning electron microscopy or x-ray diffraction is often
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limited due to the low-grade ore, particle size or colloidal nature of ura-
nium and uranium-bearing phases [5]. These methods need extensive
sample preparation prior the analysis. Some analytical methods typical-
ly used for uranium detection and their capabilities are listed in Table 1.
However, for direct in-situ and/or stand-off detection, the aforemen-
tioned methods are inconvenient. Analytical method with great poten-
tial to satisfy above discussed demands is Laser-Induced Breakdown
Spectroscopy (LIBS). Thus this paper aims to study the possibilities of
LIBS concerning the detection of uranium precipitated in sandstones,
and consequently selects and also suggests new approaches enabling
fast and accurate chemical mapping of elements of interest.

The scopeof advantages of LIBS in comparison to othermethods rou-
tinely used for oremineralization studies comprisesmainly the relative-
ly simple and robust equipment, possibility to detect broad spectrum of
elements, no necessity of sample preparation, relatively high sensitivity
and possibility of spatially resolved measurements [17–19]. Moreover
LIBS is capable of in-situ and stand-off measurements [13,20]. Despite
unquestionable advantages of LIBS, the detection of some elements is
challenging due to various reasons. One of these difficult-to-detect ele-
ments is uranium. The main challenge in uranium detection is its com-
plex emission spectrum with very high density of spectral lines. As is it
stated in ref. [12] the number of uranium linesmeasured using a hollow
cathode discharge lamp exceeds 5000 in the range 384.8 to 908.4 nm.
Considering the spectral line broadening such linedensitymay cause in-
terference of spectral lines. In this paper it is suggested to use this fea-
ture of uranium emission spectrum to determine the relative content
of uranium in the studied specimen.

This approach enables obtaining and isolating optimal areas of the
samplewith ore-bearingmaterial. Moreover, elementalmapping brings
additional information as it gives us a basic idea about the distribution of
ore-phases and their possible associations (based on the correlation of
elements). Furthermore, it is an interesting mean of monitoring of the
ore-forming solutions fluxes, which create metallic accumulation with-
in the sandstones. This study is focused on multiple ways of data pro-
cessing concerning monitoring of spatial distribution of uranium only.

2. Experimental

2.1. Samples and sample preparation

Břevniště deposit is one of the uranium deposits of sandstone type
situated within geological structure called the Stráž block (in the area
of northern part of the Bohemian Cretaceous Basin). Unique association
of elements U-Zr-P-Ti characterizes the ore field and formsmostly fine-
grainedmineralization bonded to the Cenomanian sediments (especial-
ly sandstones and siltstones) [21]. These host rocks are composedmain-
ly from quartz, clay matrix and accessory minerals (such as oxides,
sulfides or carbonates). Mineralization formed in these rocks is a result
of infiltration of ore-forming solutions into the open or claymatrix filled
pores between quartz grains. Specific nature of this deposit consist in
the occurrence of uraniferous hydrozircon and leucoxenes s. l.

(alteration products and mixtures of Fe-Ti oxides) and partial colloidal
to meta-colloidal nature of ore minerals [22].

Preparation of samples included several specific steps, which are
necessary for application of different methods. Ten samples collected
at the site were cut, dried, and cemented with Araldite epoxy. For XRF
elemental mapping it was required to create a flat surface and circum-
ference of the sample. This was achieved by grinding an excess of
epoxy from the rock surface and cropping edges.

The final step comprised of the selection of most interesting sample
and its region respectively for the consecutive LIBS analysis, based on
the uranium content.

2.2. X-ray Fluorescence (XRF) analysis

Results described in this article were obtained with the XRF system
designed and operated at the Czech Technical University in Prague.
XRF system consists of an exchangeable X-ray source, a spectrometric
X-raydetector (Si-PIN), and a positioning stage for sample investigation.
The Si-PIN detector (Amptek Inc.) provided X-ray spectrometry in the
energy range approximately from 2 keV up to 30 keV. System utilizes
a beryllium window 25.4 μm in thickness and with a sensitive volume
of 6 mm2 × 0.5 mm. Window distance from the measured sample was
less than 1 cm. Sample stage is movable in both horizontal directions
with a step down to 10 μm and the maximum range of operation is ap-
proximately 50 cm.

This XRF analyzer was equipped with Au anode Mini-X X-ray tube
that was operated at the voltage of 35 kV and the current of 0.1 mA.
The X-ray beam was collimated with a narrow collimator and filtered
with 1mmof pure aluminum. The aperture diameter of the shipped col-
limator is 2 mm and the lateral resolution in scanning mode is 3 mm
(FWHM determined with knife-edge scan). Resulting lateral resolution
was achieved by adding copper collimators.

This technique was used for mapping of the largest possible surface
of ore samples to determine the most abundant spheres of occurrence
the elements of interest. At a lateral resolution 1–2 mm per image
point and dwell time from 8 to 20 s, it has been, in a relatively short
time, possible to examine the sample surfaces of roughly 2500–
4000 mm2.

2.3. Laser-Induced Breakdown Spectroscopy (LIBS)

The experimental double-pulse (DP) LIBS setupwas utilized in order
to reach high sensitivity, maintaining low crater diameter, subsequently
enabling high spatial resolution chemical mapping. High energy
Nd:YAG laser LQ 529A (Solar LS, Belarus), operating on its second har-
monic (532 nm, 12 ns pulse duration), was introduced into the LIBS in-
teraction chamber (AtomTrace, CZ) by a series of mirrors and then
focused by a 20 mm focal length glass triplet (Sill Optics, Germany)
collinearly with the sample surface normal. Secondary laser, Brilliant b
(Quantel, FR) operated at the fundamental wavelength (1064 nm, 8 ns
pulse duration), was introduced into the chamber perpendicularly
with respect to the first laser pulse axis using mirrors and then focused
into the emerging plasma with 40 mm focal length lens. Such arrange-
ment resulted in the orthogonal DP LIBS, where the first laser pulse

Table 2
Experimental parameters of DP LIBS measurements.

Parameter Value

Ablation laser energy (mJ) 30
Secondary laser energy (mJ) 80
Spot size (μm) 50
Interpulse delay (μs) 0.5
Gate delay (μs) 1.5
Gate width (μs) 20
Spatial resolution (μm) 100

Table 1
Some analytical methods utilized for uranium detection.

Method Stand-off detection Chemical mapping Reference

ICP-MS No No [6]
ICP-AES No No [6]
XRF No Yes [7]
Raman spectroscopy Yes Yes [8]
LIF Yes Yes [9,10]
Gamma ray spectroscopy Yes No [11]
LIBS Yes Yes [12–16]

ICP-MS – Inductively Coupled Plasma Mass Spectrometry; ICP-AES – Inductively Coupled
Plasma Atomic Emission Spectrometry; XRF – X-ray Fluorescence; LIF – Laser-Induced
Fluorescence, LIBS – Laser-Induced Breakdown Spectroscopy.
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served for ablation of the material and LIP creation and the second laser
pulse served for LIP signal enhancement. The ablation crater diameter
wasmeasured using opticalmicroscope. Radiation of luminous laser-in-
duced plasma (LIP) was collected with mirror optics CC52 (Andor, UK)
and via opticalfibre (Ø40 μm,Thorlabs, USA) fed to an echelle spectrom-
eter Mechelle 5000 (Andor, UK; 200–975 nm, F/7, 6000 λ/Δλ).

Spectrally resolved radiation was then recorded using ICCD camera
iStar 734i (Andor, UK; 1024 × 1024 pixels, effective pixel size
19.5 × 19.5 μm). The gate delay and gate width were controlled using
a pulse generator DG535 (Stanford Research System, US) and special
electronics developed in the laboratory of Brno University of
Technology.

Fig. 2. a) The difference in spectra for studied background range (590–595 nm). b) Region of emission spectrumwith uranium ionic line (409.01 nm) for both uranium-rich and uranium-
poor measurements. c) Full range LIBS emission spectrum of uranium-rich and uranium-poor part of sample.

Fig. 1.Maps of spatial distribution of selected elements in the sample of uraniumore provided using XRF analysis. A) photography of scanned sample (sized 70×44mm); B)distribution of
uranium content within the sample surface. Red square highlights the region for further LIBS analysis (15 × 15mm). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

145J. Klus et al. / Spectrochimica Acta Part B 123 (2016) 143–149



All the aforementioned devices were computer-controlled via
AtomTrace Suite software. Thanks to this software it was possible to au-
tomatically provide high resolution chemical maps [23] by synchroniz-
ing the ablation and the reheating lasers, the precision movements of
the sample holder and the detection system. This software allowed us
setting the number and the distance of the ablation craters in the x
and y direction. Moreover, via autofocus algorithm even samples with
3D topology can be scanned [24]. Chemical maps of selected elements
could be monitored online.

The main advantage of the DP LIBS technique is retaining low limits
of detection with small size of ablation craters [25]. The sample was
moved to provide fresh spot before consecutive DP LIBSmeasurements,
i.e. single pulse of the first ablation laser was introduced to each spot.
Experiment parameters were optimized to obtain highest signal to
background ratio (the optimization procedure was performed analo-
gously as it is described in [26], the selected spectral line was U II
409.01 nm and the background region was in the close proximity of
this line). All experimental parameters are listed in Table 2. Sample of
sandstonewasmappedwith spatial resolution 0.1mmand crater diam-
eter 50 μm. The mapped area was 15 × 15 mm, which resulted in a
chemical map of 150 × 150 locations.

2.4. Multivariate analysis

Typicalmodern experiments provide vast amount of data and LIBS is
not an exception; utilizing echelle spectrograph one can easily obtain
thousands of spectral variables within a single laser shot. Multiplied
by the map size the amount of information is enormous. Nevertheless,
bulky data sets can be statistically analyzed by means of multivariate
data analysis (MVDA) [27]. Fundamental methods of MVDA are pro-
jection methods, namely: principal component analysis (PCA) and
partial least squares projection to latent structures (PLS). The input
for PCA is matrix of sizes N × K, where N stands for number of objects
(in our case laser pulses/measurements) and K stands for variables
(spectra recorded on detector). Statistically, PCA finds projections
called principal components (PC) that approximate the data in the
least squares sense. There are as many PCs as is the rank of input
matrix.

To each PC a loadings vector is assigned, which defines the linear
combination of variables in the original K-space that PC represents. In
words of our application loadings vector represents information about
which spectral variable contributes themost to the formation of chosen
PC. PCA computes a scores vector representing projections of objects
into newly constructed space given by PCs. Moreover, each principal
component stands for certain portion of variance within the original
data set. First principal component describes the greatest portion of var-
iance within the data, and so on.When cross-plotting scores of selected
PCs, one can reveal hidden structures in data, such as clusters or outliers.
The sorting using PCA can be very useful for instance in the application
like chemical mapping of any inhomogeneous sample with unknown
composition. In order to select appropriate spectral line to estimate
the spatial distribution of certain element the data can be sorted in dif-
ferent clusters and only the representative of each cluster may be
analyzed.

In ideal case, some of the PCs or their combination can be associated
with physical or chemical property of the sample, so called hidden var-
iable, which is not directly measured. An example of these hidden vari-
ables can be the different mineralization of geological samples or ores.
This paper shows that thefirst PC is associatedwith the presence of ura-
nium in ore.

We have utilized software R [28], namely the prcomp function
from package stats for purposes of LIBS data analysis and MVDA. As
an option of the function prcomp the data were mean centered and
not scaled. A set of functions from package ggplot2 was used for
map visualizations.

3. Results and discussion

In the first step of the analysis, XRF was utilized in order to get infor-
mation about spatial distribution of selected anomalous elements. In
Fig. 1 is depicted spatial distribution of uranium. Based on thismeasure-
ment, the most analytically interesting part of the sample (with highest
content of uranium), was selected for further LIBS analysis. This region
is highlighted in the Fig. 1A and B with red square. Selected region
was then measured by the means of DP LIBS. Typical DP LIBS emission
spectra of uranium-rich and uranium-poor part of sample are depicted
in the Fig. 2a–c.

The elemental mapping of the sample with fine spatial resolution is
enabled using DP LIBS system. Afterwards, obtained data set, consisting
of 150 × 150 measurements, was analyzed using four different ap-
proaches. In the first instance, the intensity of selected spectral ionic

Fig. 3. Loadings of first four PCs. In PC1 is apparent contribution from seeming background
- uranium.

Table 3
Pair-wise correlation of individual LIBS and XRF chemical maps (depicted in Fig. 1 and
Fig. 4).

U II line
Sum of
background PC 1

Predicted
PC1 XRF

U II line 1 0.910312 0.94653 0.94644 0.80039
Sum of background 0.910312 1 0.95479 0.95440 0.77935
PC 1 0.94653 0.95479 1 0.99997 0.79633
Predicted PC1 0.94644 0.95440 0.99997 1 0.79634
XRF 0.80039 0.77935 0.79633 0.79634 1
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line U II detected at 409.01 nm (depicted on Fig. 2b) was fitted with
pseudo-Voigt profile and the integral intensity under the fitted line
was considered as analytical signal, with no further normalization.
This was done on each spectra in the whole data set and responses for
individual spectra were distributed in a map depicted in Fig. 4a. This
spectral line was selected considering the obtained limits of detection
of uranium in ores using different uranium spectral lines published in
ref. [12]. During optimization measurements it was noticed that the U
II line detected at 409.01 nm was the only well-resolved uranium line
found throughout the whole LIBS spectrum (ranging from 200 to
900 nm).

Chinni et al. [12] proved that typical uranium spectrum consists of
more than 5000 lines in the range 384.8 to 908.4 nm. Considering the
spectral line broadening and resolution of commonly used spectrome-
ters uranium lines are rather not spectrally resolved but interfere with
one another. This results in seeming increase in the overall background
(Fig. 2a). This effectwas described in detail by Chinni et al. [12] compar-
ing high resolution spectra of a uranium hollow cathode lampwith LIBS
spectra of uranium using Czerny-Turner and Echelle spectrographs.
Thus analysis of uranium employing typical LIBS setup is challenging.
That means that the presence of uranium in the sample could be associ-
ated with the background intensity increase (Fig. 2a). Based on this as-
sumption, short region of spectra (590–595 nm) without any
interfering spectral lines of other elements present in the sample
throughout the whole data set was identified. This spectral region was
selected with respect to XRFmeasurements and known sample compo-
sition respectively. In this region it was expected only the “background”
intensity enhancement when certain content of uranium was present.

Therefore in the whole data set, background intensity was integrated
over selected spectral region and considered as new analytical signal.
Analyzed background signal was then plotted as can be seen in Fig. 4b.
Both figures given so far have good visual and numerical correlation
see Table 3.

Concerning MVDA, the PCA was applied on whole data matrix
(where rows were individual measurements and columns spectral var-
iables) and new space of coordinates was established. Naturally, the
greatest variability was attributed to the first principal component, in
this case over 82%. Then, scores of this first principal component (PC1)
were plotted in a map similarly as in previous cases, Fig. 4c. It is appar-
ent that the resulting map describes the spatial distribution of sample
components regarding their spectral response. As it is stated in the
study of Chinni et al. [12], uranium affects spectral response of LIP in
the whole spectral range. From this assumption we derived the ap-
proach of spectral data treatment which to the best of our knowledge
was not used before, at least in LIBS community. It is expected that
this variability is mostly associated with the occurrence of uranium in
region of interest, i.e. ablation spot. Considering the PC1 loadings
(Fig. 3) this assumption seems to be legitimate (see the typical echelle
background in PC1 in comparison to PC2, PC3 or PC4). As can be seen,
the distribution correlates with both previous cases (see Table 3).
Thus, it may be stated that the meaning of first latent variable, i.e. first
PC, corresponds to the uranium distribution on the sample surface.

It is computationally extensive to apply PCA on such bulky data ma-
trix of dimensions 22500 × 26000 (locations × spectral variables), de-
manding more than 33 GB of RAM. In order to simplify the computing
process it was tested a simplified procedure of PCA. Part of the original

Fig. 4.Maps of uranium spatial distribution depicted as a) intensity of U II@ 409.01 nm line, b) sumof background intensity in the region from590 to 595 nm, c) scores of PC1 andd) scores
of predicted PC1 respectively.
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data, the matrix was used to train the PC loading and scores. It was esti-
mated that first 50 × 50 data points are representative for the variability
within the rest of the data matrix based on inspection of Fig. 3a–c.
Therefore, PCA was applied on reduced data matrix (50 × 50 data
points) and a new system of coordinates was obtained. Variation in
the first principal component constructed from reduced data set was
above 85%. Afterwards, whole original data matrix was introduced
into the computationwith pre-estimated loading vector and new scores
matrix was predicted for the whole data set. This approach resulted in
less extensive computation (operation memory and turn-around
time). Finally, predicted scores of first principal component were plot-
ted in Fig. 4d.

From the loadings of first principal component it is clear that the
scores are not associated solely to the uranium content. As well deter-
mination of spatial distribution of selected element based on detection
of the single spectral line and background intensity respectively can't
be accepted unquestioningly. Therefore the pair-wise correlation of
each LIBS chemical mapwith XRF map was performed. Since the lateral
resolution of XRF chemical map is only 1–2 mm (in comparison to
0.1 mm for LIBS) the resolution of LIBS chemical maps was decreased
accordingly. The lower resolution was achieved by summing of appro-
priate points in LIBS chemical map. The results of correlation for partic-
ular chemical maps are presented in Table 3.

Each of the previous computation algorithms was done using lab-
made R script. To prove the mutual visual correlation of all presented
maps in Fig. 4, numerical correlation was computed. It is clearly given
in Table 3 that overall pair-wise correlation of presented LIBS maps is
over 90% and LIBS to XRF correlation is approximately 80%. It is not sur-
prising that maps constructed using scores of principal component and
predicted scores based on trained principal components correlate at the
level reaching almost unity.

4. Conclusion and ongoing work

In this studywe showed the possibility of high dimensionalmapping
bymeans of MVDA. Themeasurements were performed using orthogo-
nal DP LIBS. By utilizing multivariate methods we were able to process
the complete spectral information acquired by broadband echelle spec-
trograph and obtain the scores of PCs from all spectra. The scores of PC1
were plotted considering their position on the sample. The resulting
map describes the spatial distribution of the sample components re-
garding the spectral response. Considering the papers dealing with ura-
nium detection we expected that strongest variations in spectral
response are associated with presence of uranium. Results obtained
using conventional ways of LIBS data analysis (map of surface selected
spectral line), and those suggested for the purposes of uranium moni-
toring (plotting sum of selected region of background intensity as well
as scores of principal components) are in a good agreement, pair-wise
correlation over 90%. XRF method was used as a reference technique
to provide reliable analysis of spatial distribution of uranium in the sam-
ple. The pair-wise correlations of above described LIBS maps and urani-
um map obtained via XRF are approximately 80% (see Table 3).
Considering the differences between LIBS and XRF the correlation
seems to be satisfactory to prove our assumption about PC1 and back-
ground association to uranium distribution.

Moreover, as a new approach stated in this article, multivariate anal-
ysis was found viable for large datasets of raw spectral information,
where appropriately chosen part of data covered enough variation to
predict the whole map information and brought a new insight into
the problem. MVDA and conventional results are in goodmutual agree-
ment. It can be seen in Table 3 that the sum of background spectral re-
gion is slightly better correlated to MVDA analysis than the intensity
of uranium ionic line, this suggests that spectrometer resolution is low
and the background is more sensitive to uranium abundance than the
intensity of ionic line.

Ongoing work will be focused on the study of principal components
themselves, their mutual dependence or connection to the physical or
chemical properties of the sample. Possibly, the information about ele-
ment association within the specimen can be extracted or devised
using MVDA.
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Another publication from the body of work related to the rigorous investigation of data
preprocessing approaches. From my point of view, the outliers filtering is the very first step
that should be done. Naturally, it is necessary to filter gross errors from the data set and
mitigate the bias that they would induce.

In this publication, a set of steel standards was selected for their busy spectra which
complicates the data processing itself. Obtained data were processed in their full format
without any extraction of intensities of spectral lines. Nonlinear Sammon’s maps were used
for visualization.

Three different approaches were selected to detect outliers within obtained data:

∙ spectra of each sample were project to the principal component analysis (PCA) space
(first three components) and their distance to origin was calculated and ordered from
lowest to highest;

∙ Pearson’s correlation coefficient was calculated, 50 % of spectra with highest mutually
correlated spectra were left for further consideration;

∙ total intensity of each spectrum was estimated and then ordered, marginal 50 % (25
% of lowest and 25 % of highest total intensities) were discarded.

In this case, 50 % of all data were considered as outliers. Such extreme case led to more
significant changes in the data matrix. It was shown, that each approach selected different
data points as outliers. Thus, I recommend to use more alternative approaches to compare
their results.

My personal favourite is, without any surprise, the utilization of PCA.
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In this manuscript we highlight the necessity of outlier filtering prior the multivariate classification in Laser-In-
duced Breakdown Spectroscopy (LIBS) analyses. For the purpose of classification we chose to analyse BAM
steel standards that possess similar composition of major and trace elements. To assess the improvement in fig-
ures ofmerit we compared the performance of three outlier filtering approaches (based on Principal Component
Analysis, linear correlation and total spectral intensity) already separately discussed in the LIBS literature. The
truncated data set was classified using Soft Independent Modelling of Class Analogies (SIMCA). Yielded results
showed significant improvement in the performance of multivariate classification coupled to filtered data. The
best performance was observed for the total spectral intensity filtering approach gaining the analytical figures
ofmerit (overall accuracy, sensitivity, and specificity) over 98%. It is noteworthy that the results showed relative-
ly low sensitivity and high specificity of the SIMCA algorithm regardless of the presence of outliers in the data
sets. Moreover, it was shown that the variance in the data topology of training and testing data sets has a great
impact on the consequent data classification.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Laser-Induced Breakdown Spectroscopy (LIBS) [1–4] is a technique
based on Atomic Emission Spectroscopy gaining its popularity due to
its advantages (e.g. multi-elemental capability, fast turn-around time,
no need for sample preparation) as can be seen from comprehensive re-
viewarticles across applications [5–11]. This technique is based on spec-
tral analysis of collected Laser-Induced Plasma (LIP) radiation.

LIBS system is capable of a spectrochemical analysis of fast repetitive
measurements. Each sample is then represented by a vast number of col-
lected LIP spectra. The assumption is given that all spectra represent the
sample theywere obtained from. Each LIP spectrum carries characteristic
information, i.e. chemical fingerprint, about the elemental composition of
the investigated interaction spot on the sample surface. Yet similarly to
other laser-ablation based techniques, LIBS is significantly affected by
changes in properties of laser-matter interaction, i.e. the matrix effect. It
is therefore necessary either to filter the spectral outliers from the data
set, or to normalize the LIP signal a priori.

Significant changes in the laser-matter conditions are assigned to var-
iations in chemical composition and physical properties of the sample

matrix. Local inhomogeneity together with fluctuating performance of
the analytical system influence the laser-matter interaction and, in turn,
the LIP dynamics and its properties. Consecutive classification and quan-
tification would be then biased, giving lower accuracy, sensitivity, etc.
Thus, some detected spectra are not representative of the rest of the
data set and should be regarded as outliers. El Haddad [6] et al. highlights
the necessity of thorough data pre-treatment prior to any further data
analysis. This data pre-treatment dictates among others to detect and
omit outlying data. Several works dealt with the spectral outliers filtering
and consequently with the improvement of the analytical figures of
merits. Variousmetrics are utilized in order tofilter out the outliers giving
non-unified protocol for the data pre-treatment.

Mermet et al. [12] studied the influence of sample inhomogeneity and
other sources of signal fluctuation on the precision of LIBS analysis at the
micro scale. They concluded that the outliers foundbyHampel test hadno
impact on the performance of their LIBS system, since the internal stan-
dardization was efficient enough to mitigate any sources of fluctuation.
Numerous studieswereundertaken to reduce or to avoidmatrix effect oc-
currence due to fluctuation in the laser-matter conditions in a typical LIBS
experiment. To reduce fluctuations in LIP signal, normalization of the
spectrum to its total intensity, internal standard, or unity may be utilized
[11,13]. Those approaches are mainly effective in those cases when sam-
ples of the same matrix are of interest.
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Yaroshchyk et al. [14] introduced the algorithm based on variations
in the total sum of spectral intensity (Total Energy, TE), where spectra
with the value of TE higher than two standard deviations from the
mean value were discarded, giving the reduction of data set by maxi-
mum 10%. Carranza and Hahn [15] established a filtering algorithm on
selected Fe II lines to reduce the shot-to-shot variability in the LIBS anal-
ysis of aerosols. Due to the phenomenon of moving breakdown, they
discarded 60–70% of spectra. In the research introduced by Lazic et al.
[16] the biggest improvement in the analytical performance of LIBS ap-
plied to various states ofmatterwas achievedwhen 50%of datawerefil-
tered out.

In the articles concerning multivariate classification and quantifi-
cation the multivariate algorithms were adapted also for outliers fil-
tering. It is generally accepted in the LIBS literature that multivariate
algorithms may compensate for the matrix effect to a certain extent
[6]. This can lead to mitigation of fluctuations in LIBS data set. How-
ever, the outliers persist even after multivariate data treatment as
proved by Braga et al. [17]. Gornushkin et al. [18] noted that linear
correlation and Principal Component Analysis (PCA) are the most
frequently utilized algorithms in LIBS data processing. Each sample
may be represented by a signature spectrum and all spectra from
the same sample must mutually correlate nearly perfectly. For that
reason, they estimated the correlation threshold at 99% for outliers
filtering, when the whole spectral set was regarded as the input for
linear correlation only. This approach gave the possibility to reflect
mutual differences of all spectral variables, which can be beneficial
for filtering. The authors also stressed out, that spectra truly
representing each sample can be obtained via a great number of rep-
etitions giving a solid basis for statistics.

Sirven et al. [19] listed aspects of outliers filtering in their manuscript.
In basic cases the selected line ratios can be used to classify the samples,
but not to detect potential outliers. Therefore also in complex cases,
when diverse sample matrices are under investigation, more sophisticat-
ed algorithms are needed. The authors proposed utilization of multivari-
ate algorithm, PCA, which takes into account mainly the distinct
variations among variables describing data points (spectra). Also, it pro-
vides visualization of the data set in newly constructed space describing
the biggest amount of latent variation, i.e. principal components (PCs).
This approach readily shows the spectra mutually similar as they group
to a cluster as well as outliers, i.e. abnormally different spectra. It is then
straightforward to discard the outlying data points from the data set. In
their work, 30% of spectral outliers per each matrix were filtered out
based on visual inspection of loadings and PC scores plot. PCAwas utilized
for outlier filtering also in other studies [20−22].

In this manuscript we aim to compare the effect of outliers filtering
approaches on the consequent classification of a truncated data set.
For those purposes we selected the PCA, linear correlation and total
spectral intensity approaches. The spectra were obtained from LIBS
measurement of BAM steel standards. After filtering, Soft Independent
Modelling of Class Analogies (SIMCA) algorithm was applied on the
data set (constructed from the whole spectra with no masking or nor-
malization). The improvement in analytical performance of LIBS
coupled with SIMCA after outliers filtering was observed and compared
via yielded figures of merits values.

2. Experimental

2.1. Samples

The sample set consisted of ten certified steel standards, provided in
the frame of LIBS 2008 contest by BAM (Federal Institute forMaterials Re-
search and Testing, DE). The compositions of BAM standards are listed in
Table 1. The samples surfaces were finely polished by 3 μm and 1 μm di-
amond pastes (Urdiamant, CZ) prior to LIBS analysis. The sample surface
was wiped with ethanol after the diamond paste polishing. The sample

surface was polished in order to reduce any potential fluctuations in LIP
signal due to the surface roughness.

2.2. LIBS system

Measurements were performed utilizing the Sci-Trace device includ-
ing the LIBS Interaction Chamber (both by AtomTrace, CZ) under the at-
mospheric pressure. A laser pulse (LF 121, Sol Instrument, BY; flashlamp
pumped Nd:YAG, 1064 nm, 9 ns pulse duration) was introduced into
the chamber by a set of mirrors (NB1-K13, Thorlabs, USA). The laser
pulse of 90 mJ was focused on the sample surface into a tight spot
(Ø ~ 100 μm)with a 40mmanti-reflex coated focal length lens (Thorlabs,
USA). Radiation of luminous LIP was collected with the reflective optics
CC52 (Andor, UK), the axis of collection optics was levelled from the fo-
cusing optics axis by the angle of 70°. Then the collected radiationwas in-
troduced into an echelle spectrometer Mechelle 5000 (Andor, UK; 200–
975 nm, F/7, 6000 λ/Δλ) via optical fibre (Ø40 μm, Thorlabs, USA). Spec-
trally resolved radiation was recorded using ICCD detector iStar 734i
(Andor, UK; 1024 × 1024 pixels, effective pixel size 19.5 × 19.5 μm)
with temporally gated detection. Timing of the experiment was con-
trolled using a pulse generator DG535 (Stanford Research System, US)
and a signal inhibitor developed in the Laboratory of laser spectroscopy
(Brno University of Technology, CZ). The whole system was operated
using AtomChamber software (AtomTrace, CZ).

Optimization of the system to the best signal-to-background ratio re-
sulted in the values of temporal gating of the ICCDas follows: gate delay of
2.5 μs and gatewidth of 5 μs. The samples in the formof chipped cylinders
were analysed by a series of 100 consecutive laser pulses with the irradi-
ance of 130 GW/cm2. The sample was moved before each measurement
by the step of 200 μm to provide fresh spot for each laser pulse.

2.3. Data processing

Especially in the analysis of iron and its alloys, the broadband LIBS
emission spectra offer a high number of variables that can be beneficially
utilized formulti-variate classification and quantification. Thus, we decid-
ed to work with the complete spectral range and not to select any partic-
ular regions or spectral lines of iron andotherminor and trace elements. It
is also beneficial to couple the whole spectral range into the multivariate
algorithm, since alsominor spectral lines could contribute significantly to
the analysis. The obtained data set was organized into a data matrix X,
where rows represented individual measurements and columns were
assigned to variables/wavelengths. The spectra were not normalized,
though it was proved in several studies that spectra normalization can
compensate forfluctuations in LIP signal. This is actually anunwanted fea-
ture in our study. The data matrix X was just mean centred along the
columns.

In the filtering step, three approaches based on PCA, linear correlation
and total spectral intensity were selected. In all cases we intended to
show extreme example and thus 50% of measurements per sample

Table 1
composition of BAM steel standards in wt.%, content of iron is a supplement to 100 wt.%.

BAM Ni Mn Cr C Si Mo Co

C1 12.55 0.74 12.35 0.092 0.46 – –
C2 6.124 0.686 14.727 0.0103 0.374 0.0138 –
C3 12.85 0.722 11.888 0.0345 0.463 0.0304 –
C4 10.2 1.4 18.46 0.019 0.27 0.265 0.116
C5 20.05 0.791 25.39 0.086 0.57 – 0.054
C6 9.24 1.38 17.31 0.066 0.405 0.092 0.053
C7 10.2 1.311 17.84 0.0141 0.48 2.776 0.0184
C8 8.9 1.7 17.96 0.143 1.41 – 0.018
C9 5.66 0.89 14.14 0.05 0.21 1.59 0.22
C10 10.72 1.745 16.811 0.0201 0.537 2.111 0.0525
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were discarded, i.e. 50% of data were considered as outliers. It is a well-
known fact that the number of repetitions/measurements and their fluc-
tuation inserted in the multivariate algorithm affect its performance.
Thus, in order to be consistent regarding also the multivariate analysis
of the non-treated original data set we randomly selected 50 of the orig-
inal 100 measurements per sample. So the dimensions of data matrices
(filtered and non-filtered) as well as the results assessed from SIMCA
models are more comparable throughout the whole study. Moreover,
50 spectra were randomly divided into training and testing sets by the
ratio 3:2, in spite of the advice by El Haddad et al. [6] to divide the data
set to training, validating and testing sets.We judged the optimal number
of principal components for the SIMCA classification from the scree plots1

of the individual PCA models, as commented below. Thus, no validation
data set was assembled in this study.

PCA as rather visualization technique cannot be solely used for the
classification. However, it considers linear relationship within the data
and thus it is sensitive to outliers, data points strongly deviating from
the rest of the data set. The goal of PCA [25] is to reduce the dimensional-
ity of the data matrix X and to visualise the highest amount of variability
carried by the original data in low-dimensional space. Forfiltering, PCA al-
gorithmwas applied individually on spectra of each sample. In other pub-
lications [19–22], PCA filtering is based either on visual inspection of
loadings and scores plots, or on clustering of the data in the PC space
using unsupervised algorithms.

In this work, while assuming the Gaussian distribution of data, we uti-
lized ametric given by the Euclidean distance of a data point to the centre
of PC space constructed by thefirst three principal components. The num-
ber of three PCs was estimated from the scree plot and was valid for all
partial data sets. Then, the spectra with higher distance than the selected
threshold (the median of all Euclidean distances) were regarded as out-
liers and omitted from further computation.

A simple hypothesis exists that spectra/measurements from the same
sample have to correlate almost perfectly [18], assuming that the sample
is homogeneous. Therefore the threshold value for mutual linear correla-
tion should be over 99%. Nevertheless, this thresholdmay change accord-
ing to the targeted application or after inspection of data set fluctuations.
In the case of linear correlation approach we also stood with the median
rule, assuming theGaussian distribution in the data. The linear correlation
was estimated for each sample individually. A stepwise correlation of
spectrum to the rest of the spectra set was estimated and the correlation
matrix was constructed. Medians were estimated for all columns of this
correlation matrix. Those values were ordered and quartiles were calcu-
lated. Those spectra with medians in first the two quartiles (having
lower correlation coefficients) were considered as outliers and thus
discarded.

The last utilized filtering algorithmwas suggested by Yaroshchyk et al.
[14] and is based on summing the total intensities of spectra (Total Ener-
gy, TE). The TEs of all spectra per sample were computed and ordered ac-
cording to their values. Then, spectra with the TE distributed in the first
and the fourth quartile were discarded from the data set as being poten-
tial outliers. This was repeated for each sample. As it is obvious from
above mentioned statistics, the data sets were truncated and only 50%
of measurements were left for further computation after utilization of
any outliers filtering method. All the above mentioned approaches uti-
lized for outliers filtering are graphically depicted in the Appendix.

For the classification purposes we chose unsupervised SIMCA algo-
rithm [19,24,25], which is one of themost popular pattern recognition al-
gorithms in the LIBS community. In SIMCA, each sample set is individually
modelled using PCA algorithm. Then, the distance of the unknown/test

spectrum to the centre of each PCA model is computed. This spectrum
is then assigned to the class with the minimal distance. Since 50% of
data were omitted from the classification, each sample was represented
only by 50 spectra, giving total number of 500 spectra. For the training
set, 30 spectra per sample were randomly selected (using a generator of
random numbers) and assessed into the training data matrix X. We esti-
mated the number of principal components from the scree plots. This
judgement was assessed from PCA models of 1000 randomly selected
data sets. Hence, the obtained number of three principal components is
valid regardless of the data set selection. Afterwards, testing data set con-
structed from 20 spectra per sample was inserted into the PCA models
and their class memberships were determined.

The confusion matrix was built from obtained classes of unknown
spectra and the overall accuracy, sensitivity, and specificity were es-
timated. The detailed definitions of confusion matrix and individual
figures of merit can be found elsewhere [6]. The overall accuracy is
calculated as the ratio of the sum of true positives (all testing spectra
correctly classified) to total number of testing spectra. The sensitivi-
ty is given by the ratio of true positive to condition positive (the sum
of true positive and false negative) for the considered class. The spec-
ificity is the ratio of true negative to the condition negative (true
negative summed with false positive). Both sensitivity and specifici-
ty were estimated step by step solely for each class (samples). Then
the total sensitivity and specificity were presented as the arithmetic
mean of all sensitivities and specificities, respectively, for the whole
data set. Finally, the performances of filtering approaches were com-
pared based on the classification figures of merit.

The multivariate analysis of the data and visualization was
assessed using R software packages [23], namely ‘caret’ for PCA,
‘rrcovHD’ for SIMCA and ‘MASS’ for Sammon's map.

3. Results and discussion

The sample set was investigated using PCA prior to any classification
analysis. With this approach the data points (spectra) can be visualized
inmore simplifiedmanner andonly themost important spectral informa-
tion is used. As can be seen in Fig. 1, the samples C1 and C5 are completely
distinguished from the rest of the dataset. The rest of the samples partly
overlapwhatwill confuse their further accurate classificationwithnopar-
ticular data pre-treatment. There is also notable fluctuation in data points
of samples fromC2 to C7,which are dispersedmainly across thefirst prin-
cipal component. This elongated shape of clusters is assigned to random
fluctuation of possible laser-matter interaction conditions. Fluctuations
of total intensities of spectra per samplewere reaching up to 30%. Regard-
less of the obstacles visible in the visualized data, this preliminary partial
clustering in PC space (covering only 28.1% of overall variation in the
data) is a promising starting point for further multivariate data analysis.

The scattering of data points observed in Fig. 1 is attributed to wave-
length variables fluctuation and is visualized via principal component
loadings, depicted in Fig. 2. The original wavelength range (from 200 to
900 nm) was cut for easier visualization and depicted only from 250 to
600 nm. The sensitivity of the spectrometer and camera is rapidly de-
creasing below 250 nm, showing low intense and thus less significant
spectral lines. The range over 600 nm does not contain many significant
lines contributing to the clustering of the data points, as proved by PCA
loadings. The raw spectra set is composed from vast number of variables
present namely in the depicted range and contains the most redundant
information on its boundaries. This redundancy was not truncated from
the data matrix for further SIMCA classification. As expected, lines with
major contribution to scattering of the data in the first three principal
components belong to Fe, Cr, and Ni. The majority of lines was attributed
namely to Fe; the ionic lines below 280 nm and the atomic lines in the
range from340 to 400nm. The lines of Co II at 241.63 nm(not highlighted
in the figure), Mn I at 403.08 nm, Mo I at 550.65, and Si I lines at
288.15 nm and 390.55 nm were also detected, but with lower loadings

1 Scree plot [24] is a bar chart where x-axis represents individual principal components
ordered in increasing order, y-axis then represents the total variability described by re-
spective principal component, i.e. its eigenvalue. The function is naturally exponentially
decreasing, havingmaximum in thefirst principal component. Steep part of this curve rep-
resents the most important principal components. At certain point the curve bands and
continues inmoreflatmanner. This point is generally accepted as a good estimate for prin-
cipal components number used for modelling and classification of the data.
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values due to lower concentration ranges in the samples. The observed
lines were cross-checked with the NIST online database [26].

The topology of the original data, total number ofmeasurements and
samples, and number of outliers significantly influence the performance
of any utilizedmultivariate algorithm in an exploratory data analysis. To
demonstrate this phenomenonwe randomly selected 50 spectra of each
sample from the complete data matrix. Then SIMCA was coupled to
truncated data and figures of merit were estimated. This protocol was
run 1000 times to achieve robust statistics. Clearly, via such protocol it
is possible to randomly pick up data set consisting only of outliers in
the worst case. In the best case, no outliers will be selected leading to
perfect classification and classmembership assignment. This is reflected
in figures ofmerit depicted in Fig. 3. The random selection of the spectra
results in theworst case in poor overall accuracy of 69.5% suggesting the
data set consists mostly from outliers. On the other hand the best case
reaches 96% of overall accuracy concluding that well filtered data set
can give convincing class membership assignment. Note that the medi-
an value of total accuracy is 84.5%. The histograms in Fig. 3 b) and c) in-
dicate moderate sensitivity (i.e. assigning the unknown spectra to
correct class) and good specificity (i.e. rate of assignment of spectra to
false class) of SIMCA classification. This stands regardless of the pres-
ence and number of outliers in the truncated data set.

Prior to any further multivariate analysis, each sample spectra were
independently treated to filter the outliers using three different filtering

algorithms. At this point we intended to highlight the distribution of
outliers in the original data space marked by each approach. For exam-
ple, the data of sample C5 is plotted in the two dimensional space
assessed by Sammon's map, see Fig. 4. We utilized Sammon's map, as
it was found to be the best representation of LIBS data in a 2D space
by Lasue et al. [27]. This non-linear algorithm finds the globalminimum
of the stress function by iteration [28], while conserving the original to-
pology of raw data to the maximum extent. Note that we firstly
intended to plot the original data in a PC space. However, this step
could be regarded as data manipulation since we use PCA also for data
filtering.

Naturally, each algorithm filters different data points from the set
as potential outliers, as it is depicted in Fig. 4. Thus, it is reasonable to
expect that consequent multivariate analyses will essentially differ.
The closest circle of data points is highlighted by PCA approach suggesting
the best classification after such filtering. On the other hand, the data
points highlighted by TE approach are distributed in the tightest cloud
around the centre of the first component in Sammon's map. Therefore,
the outlier filtering based on linear correlationmay seem as the least fea-
sible one. The threshold considered for data filtering is set to filter 50% of
data points regardless of the outliers filtering approach. This approach
was selected only for demonstration purposes and to supply the same
amount of data using each filtering algorithm into the SIMCA classifica-
tion. Clearly, such threshold can be too strict for the utilization in real

Fig. 1. Visualization of the whole data set in the space of a) the first and second principal component, b) the first and third principal component.

Fig. 2. Loadings of first two principal components showing the most significant lines responsible for clustering of individual data points.
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samples analysis. Other metrics can be used and their thresholds varied
according to the needs of particular application.

In the last step of our exploratory data analysis, the original data ma-
trix was treated by selected filtering algorithms and truncated as
commented above. The selection of training and testing data sets after
outliers filtering was repeated 1000 times to achieve robust statistics.
Then, we compared the improvement in classification figures of merit
yielded from filtered data with respect to data from raw spectra. To esti-
mate the improvement factor we regarded only themedians from the re-
peated classification of raw and filtered data. The significant
improvement namely in overall accuracy and sensitivity is apparent
from the results presented in Fig. 5. The overall accuracy and sensitivity
were improved frommoderate 85% tomore than 95% for allfiltering algo-
rithms. As already stated above, the specificity was coherently very good,
reaching 98% regardless of the data set topology. Comparing the improve-
ment yielded utilizing individual filtering algorithms, the best perfor-
mance was observed in the case of total spectral intensity. In that case,
all figures of merit reached more than 98% in median. On the other
hand, the relatively worst performance yielded the PCA filtering algo-
rithm reaching only 95% for overall accuracy and sensitivity. It is worth
highlighting thatmaximumvalues for accuracy, sensitivity and specificity
are equal to 1, therefore they are overlapped in the Fig. 5.

These results are in a slight disagreement with the results observed in
Fig. 4, where better performance of PCA filtering approaches is suggested.
It was also expected that the performance of the linear correlation and
total intensity approach would distinctly differ. The Euclidean distance
was computed from three PCs, as optimized from the scree plots, hence
the higher number of PCs could compensate better for the peak intensity
fluctuation. Regarding the metric used for linear correlation filtering, in
the first step each spectrum of the sample is correlated with the others
and then the median of mutual correlations is estimated. Median of
each spectrum is considered as the metric for outliers filtering. However,
potentially outlying spectrum may yield relatively higher median value
and thus nominate itself among representative spectra used for classifica-
tion. This can lead to a biased data matrix and relatively lower figures of
merit for linear correlation. On the other hand, total intensity is to a cer-
tain level insensitive to the fluctuation of the individual peaks and for
this reason it ismore applicable.Moreover, it is noteworthy that relatively
high fluctuation in total intensity in spectra was observed, up to 30%. This
leads to the conclusion that normalization of the spectra could improve
the statistics of multivariate classification. However, the thorough study
of this phenomenon is behind the scope of this paper. This we aim to

investigate in our followingwork, where we intend to compare the influ-
ence of various normalization techniques on the multivariate classifica-
tion. We also aim on the comparison of results gained from full spectra
and data matrices composed only from prominent peak intensities of
major and minor elements.

4. Conclusion

Firstly, we assessed the impact of the fluctuation of the original topol-
ogy in LIBS data (i.e. presence of different number of outliers) on the per-
formance of classification. 50 spectra per sample were randomly selected
and truncated matrices were coupled to SIMCA. It was shown that for in-
stance the overall accuracy may vary from 69.5% to 96%, judged from
1000 repetitions. That suggested the necessity of prior data treatment
and outliers filtering. Moreover, the figures of merit significantly depend
on the data set and its fluctuation. The fluctuation can cause an overlap
in data points and thus confuse the classification itself. For this reason it
is necessary to carefully evaluate the data set and set the threshold for
outliers accordingly.

The main aim of this work was to study the influence of various out-
liersfiltering approaches on the performance ofmultivariate classification
algorithmcoupledwith LIBS data. Naturally, each approach treats thedata
and filters outliers in its own way. This results in different compositions

Fig. 3. Figures of merit: a) overall accuracy, b) sensitivity, and c) specificity obtained from the SIMCA classification of 1000 times randomly selected data sets.

Fig. 4.Data of sampleC5depicted infirst twocomponentswithmarkeddata points left for analysis (in salmon-pink) andoutliers (in cyan)filteredusing a) PCA, b) linear correlation, and c)
total intensity approach. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Figures ofmerits (overall accuracy, sensitivity, and specificity) yielded for data after
applying individual filtering approaches compared to those obtained for the randomly
selected data.
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Appendix A. Appendix

Graphical representation of individual approaches in outliers filtering. The figures are plotted for the C10 steel CRM.

1) Principal Component Analysis

ED refers to the Euclidean distance

2) Linear Correlation

(topologies) of truncated data sets. Since the composition of training and
testing matrices affects the performance of multivariate algorithm, the
training and testing sets were randomly selected for 1000 times from
the truncated data sets. The presented results suggest the utilization of
total spectral intensity for effective outliers filtering. The obtained figures
of merit (overall accuracy, sensitivity, and specificity) reached in their
median values more than 98%. The poorest performance yielded the
PCA filtering approach. Yet still the total improvement after filtering is al-
most comparable varying from 95 to 98% in median. However, the im-
provement using any filtering approach is significant compared to
randomly selected data. Thus, it is advisable to always filter the outliers
prior to any multivariate analyses. Our results also show that SIMCA per-
formance gained low sensitivity (median at 85%) and high specificity
(median at 98%) regardless of the presence of the outliers in the data.

It is also reasonable to suggest obtaining higher repetition of LIBSmea-
surements per sample in order to achieve robust statistics. The data has to
be treated to filter the outliers. However certain fluctuation in the data
has to be present to increase the probability of correct classification of
the unknown spectra/data. This means that it is not possible to classify
the unknown sample without any natural variation in training data.
Those contradictory conditions put emphasis on the right number of
data points per sample or the filtering threshold value. In our case, the fil-
tering of outliers was done in an extreme case and 50% of the data were
discarded from further computation. Such threshold may be too strict
for other applications, where its value should be selected cautiously.

The outliers filtering approach based on total spectral intensity
yielded the best performance due to vast fluctuations in LIP total inten-
sity, i.e. data with relatively high instability. Therefore, it has to be noted
that it was not our goal to investigate the sources of fluctuations. The
measured spectra were regarded strictly as exemplary data and served
only as a tool to make a point about the difference in outliers filtering
approaches and the consequent improvement in the classification per-
formance. The selection of normalization procedures and their impact
on outliers as well as on the classification performance is the goal of
the ongoing work. Also, the prominent peaks selection for further nor-
malization will be investigated.
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This is the most significant contribution from the series of publications oriented on more
rigorous preprocessing of spectroscopic signal. Its scientific scope dwells in the investigation
of different standardization approaches on the consecutive classification accuracy. The
scientific merit of this work was enhanced by the analysis of three sample matrices (steel,
aluminum alloys, and sedimentary ores) having different composition (sparsity) of typical
spectra.

First, the impact of column-wise data preprocessing (mean centering, scaling, and their
combination) was shown. Note that obtained spectra were manipulated in their raw form
without extraction of intensity of any spectral line. As it was expected in this approach,
scaling of raw spectra showed unwanted influence on the data when the significance of
the background noise was unified with the significance of informative spectral variables.
Therefore, it was suggested to avoid scaling of complete spectra.

Second, row-wise data preprocessing was investigated. Seven different approaches were
suggested, reflecting the most typical ways of signal standardization. Naturally, the results
shown that the best possible standardization has to be selected according to the sample
matrix and, thus, there is no universal approach.
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Impact of Laser-Induced Breakdown Spectroscopy
data normalization on multivariate classification
accuracy

P. Poř́ızka,*abc J. Klus,abc A. Hrdlička,ac J. Vrábel,b P. Škarková,a D. Prochazka,abc

J. Novotný,abc K. Novotnýac and J. Kaiserabc

Multivariate data analysis (MVDA) is getting popular across the spectroscopic community. To assess

accurate results, the obtained data should be preprocessed prior to utilization of any MVDA algorithm.

The process of data normalization or “internal standardization” is widely used across a broad range of

applications. In this manuscript we investigate the utilization of Laser-Induced Breakdown Spectroscopy

(LIBS) coupled with MVDA. However, many articles regarding the use of MVDA on data from LIBS do not

provide any information about the data pretreatment. This work describes the impact of LIBS data

normalization approaches on MVDA classification accuracy. Also, the impact of classical data

preprocessing (mean centering and scaling) exploiting the prior utilization of MVDA was studied. This

issue was investigated exploiting simple soft independent modelling of class analogies algorithm. The

findings were generalized for three sample matrices (steel, Al alloys, and sedimentary ores). Furthermore,

the selection of an appropriate normalization algorithm is not trivial since the spectrum of each sample

matrix is composed of a different number of elements and corresponding elemental lines.

Introduction

Laser-Induced Breakdown Spectroscopy (LIBS)1–4 is gaining its
position among other analytical techniques owing to its
advantages such as instrumental simplicity, capability of real-
time analysis of samples in any state of matter, ability to detect
a broad range of elements, and namely the possibility of in situ
stand-off measurements. In LIBS analysis, the laser pulse is
focused onto a tight spot on the sample surface (solids and
liquids) or on its bulk (liquids and gases), and so a small
amount of material is ablated and luminous Laser-Induced
Plasma (LIP) is created. LIP radiation is then detected and
spectrally resolved. The obtained LIP spectrum provides quali-
tative and quantitative information about the chemical
composition of the sample. Each element is represented by
a unique set of spectral lines and thus the detected LIP spec-
trum is considered to be the so-called chemical ngerprint of
the investigated sample.

LIBS has already been utilized in various applications as it is
reected in a number of review articles.5–14 However as any other
laser-ablation based analytical technique, LIBS is strongly

affected by the matrix effect; efforts to mitigate its inuence
have been undertaken.15 The matrix effects can be divided into
processes taking place during (i) the ablation of the material
and LIP formation and (ii) the spatial and temporal evolution of
the LIP.4 This makes the quantitative analysis challenging. On
the other hand, the matrix effect is benecial for classication
of samples based on LIBS spectra differences. The issue of
classication has recently gained particular attention in the
LIBS community.4–6,8,11,12

Improvements in the instrumentation have led to the
increased repetition rate of LIBS analysis. Laser sampling has
certain advantages (no sample pretreatment, spatially and
depth resolved analysis, no loss of volatile components or
contamination during digestion, etc.) over conventional tech-
niques, such as inductively coupled plasma aer acid diges-
tion.16 However, during the pulse to pulse LIBS analysis, it is
necessary to reduce any possible signal uctuations. Several
studies have already aimed at the investigation of uctuation
sources. Hahn and Omenetto4 proposed the variation in laser–
matter interaction (local inhomogeneity due to the chemical
composition and/or physical parameters) as the main source.
This leads to changes in the ablation mechanism and its effi-
ciency inuencing in turn the temperature and number density
of particles in LIP. Nonetheless, the aim of this manuscript does
not target deeper investigation of the origin of signal uctua-
tion, but only its mitigation.

The normalization strategies of LIBS signal uctuations are
of concern mainly for quantitative analysis. The individual
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approaches and their efficiency were thoroughly reviewed in
other studies.4,16,17 The most common normalization strategies
utilize the total emission signal or the line of the matrix
element. Zorov et al.16 also dealt with an acoustic signal, emis-
sion detected by the photodiode, electric current and Mie-
scattering for signal normalization. Moreover, they also
proposed the utilization of multivariate normalization
regarding the complex process of laser sampling. In this
approach more than one reference signal is used as a correction
factor for mitigation of the signal uctuation. The correlation
between the LIP signal and its acoustic signal was also studied
in another study.18 However, in this work, we target only
straightforward and univariate approaches applicable to in situ
analysis. This includes working with the detected optical signal
and its features.

The presented work is aimed only at the classication of
materials exploiting LIBS data coupled with chemometric
algorithms. Therefore, the issue of multivariate quantication
is not of interest due to its different nature of data processing.
Despite that, the recently published manuscript by Castro and
Pereira-Filho17 regarding LIBS data normalization prior to
univariate and multivariate quantitative analyses is noteworthy.
Twelve normalization strategies were established, based namely
on spectral intensity summation, matrix line standardization,
or their adaptations. Their work concerns the quantication of
the analyte content in steel andmetallic alloys. The feasibility of
multivariate classication of LIBS data was also introduced,
however missed any reference to signal normalization. Similar
normalization strategies were also investigated in the work of
Sarkar et al.19 on the analysis of boron isotopic composition.

The boom of chemometrics in the eld of LIBS lasted over
the past decade, albeit it led to the introduction of various
overall methodologies inmultivariate data processing. Different
spectra preprocessing algorithms (normalization, outliers
ltering, variable selection, etc.) and methods (linear and non-
linear) were exploited. This has resulted in a non-unied way of
chemometric utilization across the LIBS community.

LIBS technique is becoming very popular for sample classi-
cation. Broad range LIBS spectra contain a vast number of
characteristic variables describing individual samples. Multi-
variate data analysis (MVDA) algorithms are utilized for the
purpose of robust data processing. Even though MVDA algo-
rithms are able to compensate for the signal uctuation to
a certain extent; normalization and outlier ltering strategies
are still utilized a priori. Outlier ltering approaches include the
utilization of Principal Component Analysis (PCA), linear
correlation, and total energy. The effectivity of individual
approaches was investigated together with comprehensive
literature research in our recent publication.20

Therefore, outlier ltering was not concerned in this study. It
is worth mentioning that the multivariate classication yielded
the best performance aer outlier ltering using the total
energy approach.

Gornushkin et al.21 found out that raw data is much more
suitable for correlation (MVDA outlier ltering) than treated
ones, since any articial manipulation with data leads to loss of
certain crucial information and, as a result, poorer correlation.

Other authors also utilized raw spectra that were not treated
with any particular normalization or preprocessing22,23 or used
only averaging.24 However prior to that, the data normalization
approach on multivariate classication was partially provided
in several studies with a positive impact on the gures of merit.

Forni et al.25 normalized the selected and truncated spectral
regions to zero mean and unit variance. This normalization
enhances the relative importance of low signal spectra and
allows better discrimination between the emission lines and
any noise or apparatus response. Munson et al.26 used total
spectra, intensity of selected peaks or intensity ratios for the
classication of bacterial specimens. Mean-centering was used
prior to PCA or SIMCA in the case of total spectra; scaling was
used in the case of selected spectral regions, discrete wave-
lengths, or line intensity ratios. The variable weighting algo-
rithm was provided, the rst principal component loading was
multiplied by the original spectra to enhance the mutual
differences/variability within the dataset. Weighting schemes
were also exploited in the work of Hark et al.27 Gottfried et al.28

normalized spectra of geological origin, however the normali-
zation approach was not specied. Aerwards the spectra were
mean-centered.

To mitigate the uctuation in the signal intensity due to the
changes in laser pulse energy, the two most oen utilized
approaches are (i) normalization to total energy and (ii)
normalization to matrix line. Larsson et al.29 concluded that
normalization of LIBS data resulted only in visual effects in the
PCA score-plots with no signicant effect on predictability by
the PLS-DA models. However, normalization improved the
predictability, provided that the amount of variables was
considerably reduced. Despite that, normalization to total
energy (total intensity of the particular spectrum) resulted in
improvement of analytical gures of merit.30–35Normalization to
matrix line was exploited in studies of Moncayo et al.36 (Ca II 393
nm in bone samples), Koulejev37 (Al I line 396 nm in the case of
Al alloys and O in the case of minerals), and Yueh38 (Ca I line 422
nm for normalization of tissues sample spectra). Sirven et al.39

normalized rock spectra to intensity of O I 777 nm, since the
content/line intensity is the most abundant in any rock sample/
spectrum.

The overall literature research gives a non-unied method-
ology with diverse normalization approaches of LIBS spectra
prior to MVDA analysis across different applications (sample
matrices). Certain conclusions derived in particular articles are
contradictory to each other; this can result in misapplied
normalization strategies of LIBS data.

In this work we aim at comparing the inuence of several
normalization strategies on the improvement of classication
performance. The selected gure of merit is the overall accu-
racy; as suggested by El Haddad et al.;5 which refers to the ratio
of the sum of true positives (all testing spectra correctly classi-
ed) to the total number of testing spectra. For the purpose of
thorough investigation of normalization phenomenon we chose
three different sample matrices (steel, Al alloys, and sedimen-
tary ores). Those samples signicantly differ in the composition
of matrix and minor elements, total number of spectral vari-
ables and number of spectral variables per each element.

J. Anal. At. Spectrom. This journal is © The Royal Society of Chemistry 2016
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Experimental
Samples

Three sample matrices with distinct composition in spectral
features were selected for the analysis; steel and cast-iron, Al
alloys and sedimentary ore certied referencematerials (CRMs).
Each sample matrix is represented by signicantly different
composition of characteristic spectral features, their number
and spectroscopic properties. This approach will enable
complex investigation of the impact of normalization strategies
on the performance of classication accuracies. Detailed
experimental settings are listed in Table 1.

(A) Steel and cast-iron samples. Steel and cast-iron samples
were collected from various producers. Sample PT-24-6 was
obtained from SPL Bohumı́n (CZ). Various grades and types of
steel (C45, E335GC, i11SMn30, i16MnCrS5, MU 100, MU 128,
MU 52-60, MU 54-51, MU 57-71, MU 85-133, MU A53-81, MU
B82-253, S235JRC, and S355J2C) were provided by
Královopolská steel, s.r.o. (CZ). The aforementioned steel
samples were measured 100 times. Steel and cast-iron samples
from the rst and the second LIBS round robin test organized by
Federal Institute for Materials Research and Testing (BAM, GE;
BAM1 C1, BAM1 C10, BAM1 C2, BAM1 C3, BAM1 C4, BAM1 C5,
BAM1 C6, BAM1 C7, BAM1 C8, BAM1 C9, BAM1 S1, BAM1 S2a,
BAM1 S2b, BAM2 C1, BAM2 C2, BAM2 C3, BAM2 C4, BAM2 C5,
BAM2 C6, BAM2 C7, BAM2 UNKN1, BAM2 UNKN2, and BAM2
UNKN3) were measured 200 times. Unknown BAM samples
were analyzed using ICP-OES aer acid digestion in an external
laboratory (Lithea, s.r.o., CZ), and the content of minor
elements was estimated.

All steel sample surfaces were nely polished by using 3 mm
and 1 mmdiamond paste (Urdiamant, CZ) prior to LIBS analysis.
The sample surface was wiped with ethanol aer the diamond
paste polishing. The sample surface was polished in order to
reduce any potential uctuations in the LIP signal due to the
surface roughness. The samples from the second round robin
test were delivered in the form of powders and chunks and thus
analyzed as deposited on the sticky tape. The samples were
moved prior to each consecutive laser pulse to provide a fresh
spot for analysis.

(B) Al alloys CRMs. Gleich aluminium standards (AW2017,
AW2030, AW6082, and AW7075), BAM standards (GE; BAM 308,

BAM 310, BAM 311, EB313, EB316, and EB317), and MBH
standards (MBH Analytical Ltd., UK; MBH E2 7, MBH E5 7, and
MBH G12 H5) were measured. The sample surfaces were nely
polished by using 3 mm and 1 mm diamond paste (Urdiamant,
CZ) prior to LIBS analysis. The sample surface was wiped with
ethanol aer the diamond paste polishing. The sample surface
was polished in order to reduce any potential uctuations in the
LIP signal due to the surface roughness. Each sample was
measured 200 times, 1 laser pulse per spot.

(C) Sedimentary ores CMRs. 50 sedimentary ores samples
(OREAS, AU; OREAS 100a, OREAS 101a, OREAS 132a, OREAS
132b, OREAS 133a, OREAS 133b, OREAS 134a, OREAS 134b,
OREAS 13b, OREAS 140, OREAS 141, OREAS 142, OREAS 14P,
OREAS 151b, OREAS 152b, OREAS 153b, OREAS 170a, OREAS
170b, OREAS 172, OREAS 201, OREAS 202, OREAS 203, OREAS
250, OREAS 251, OREAS 252, OREAS 36, OREAS 38, OREAS 401,
OREAS 402, OREAS 405, OREAS 406, OREAS 45d, OREAS 45e,
OREAS 601, OREAS 602, OREAS 603, OREAS 604, OREAS 605,
OREAS 700, and OREAS 701) were delivered in the form of ne
powder and then pressed into pellets with a manual hydraulic
press. The matrices of this sample set differ and thus also the
composition of individual matrix elements varies. Each sample
was represented by a single pellet, which was measured 100
times, 1 laser pulse per spot and 100 spots per sample giving
100 representative spectra per sample.

LIBS system

The samples were analyzed using the Sci-Trace LIBS system
(AtomTrace, CZ) including the LIBS interaction chamber
(AtomTrace, CZ), the chamber was thoroughly described else-
where.40 In the Sci-Trace device, the laser pulse (10 ns, 532 nm;
CFR 400, Quantel, FR) is led to the interaction chamber by using
a series of mirrors (NB1-K13, ThorLabs, US) and focused onto
a tight spot in the interaction region on the sample surface by
using a triplet lens (25.4 mm focal length, Sill Optics, GE). The
laser is delivered collinearly with the surface normal, the
collection optics axis is positioned under the angle of 60� to the
surface normal. The LIP radiation is collected by using an
objective (100 mm CaF2 and 75 mm UVFS lenses; ThorLabs,
US). Collected light is introduced via the optical ber (400
microns core diameter; Thorlabs, US) on the entrance slit of an
echelle spectrometer (200–900 nm wavelength range; EMU 65,
Catalina Scientic, US). The light is spectrally resolved and
imaged with an EMCCD detector (Falcon Blue, Raptor Photonic,
IR). Measurement settings for each matrix are given in Table 1,
these were kept constant throughout the whole analysis of each
sample set. The AtomChamber soware (AtomTrace, CZ) was
used for system operation. The LIBS system was in each case
preliminary optimized to the best Signal-to-Noise Ratio (SNR).
However, it was already preliminary proved that there is no
particular need for system optimization in the case of multi-
variate classication.

Data processing and methods

Detected spectra were preliminary processed using Atom-
Analyzer (AtomTrace, CZ) soware, then for multivariate

Table 1 LIBS system parameters

Sample matrix Steel CRMs
Al alloy
CRMS

Sedimentary
ore CRMs

Laser energy [mJ] 50 50 50
Spot size [mm] �100 �100 �100
Irradiance [GW cm�2] �64 �64 �64
Step [mm] 200 200 200
Gate delay [ns] 1000 1500 500
Gate width [ms] 50 50 50
Accumulations per spot 1 1 1
No. of spectra per sample 100 or 200 200 100
Number of samples 38 13 40
Total no. of spectra 7100 2600 4000

This journal is © The Royal Society of Chemistry 2016 J. Anal. At. Spectrom.
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analysis and plotting the gures the free soware R was used,
namely libraries ‘rrcovHD’, ‘caret’, and ‘ggplot’. The computa-
tion was run on a standard personal computer with 16 GB RAM.

The spectrometer and the detector provide wide range
spectra (from 200 to 900 nm). However the intensity detected
under 250 nm (spectral efficiency) rapidly vanishes and over 700
nm there are no signicant spectral features usable for classi-
cation, except potassium atomic lines at 766.49 and 769.89
nm. Beyond this limit, there are mainly oxygen and nitrogen
lines but they were also sacriced regardless of the sample
matrix. Therefore, the spectra were truncated prior to any
further processing to a nal range of 250 to 700 nm. Another
reason was also lower dimensions of datamatrices and thus less
demanding computation.

Samples of each matrix were measured separately and then
each case study (matrix) was naturally processed individually.
Each sample was represented by a set of 100 or 200 spectra. Half
of the spectra per sample were randomly selected (using
a random number generator) and assigned for training set, the
rest of the spectra per sample were saved for testing purposes.
Two data matrices (training and testing) were organized, where
rows were individual measurements/spectra and columns were
variables (intensities on respective wavelengths). Samples in
both data matrices were organized under each other and
named, as given above in the Samples section, for classication
purposes. El Haddad et al.5 suggested to divide the original
dataset into three sub-data matrices (training, validation, and
testing). However in our work we do not aim at the validation of
optimal number of Principal Components (PCs) prior to clas-
sication. On the other hand, we varied the number of PCs from
1 up to 20 (or to 10 respectively, see further in the text) to
visualize the trend in yielded classication accuracy.

The whole spectra sets of each matrix were visualized using
the PCA.41 This MVDA algorithm is based on the least squares
approach, where only the most important information is used.
PCA is effective for data visualization where multivariate infor-
mation is projected to newly constructed, low-dimensional
space described by PCs. Each PC consists of scores (data points
representing original spectra) and loadings (rotation of original
data space to newly established one). PCA describes the total
variability of the entire dataset, it does not distinguish between
group-to-group variability and within-group variability.6 It
works well when the variability within the group or sample is
much smaller than the variability among the samples.

So Independent Modelling of Class Analogies (SIMCA)41

was used for supervised classication of the sample sets. In
SIMCA, PCA is applied to training data of each sample sepa-
rately. Model is then considered as series of PCA models.
Spectra from the test set are one-by-one applied to the model
and distance to each PCA model is estimated. The testing
spectrum is assigned to the samples with the smallest distance
to the center of its PCA model. The number of principal
components used for establishing the model was varied. SIMCA
was selected because of its simplicity, thus its performance is
more inuenced by the topology and uctuation in the data
than in the case of other linear or even non-linear MVDA algo-
rithms. It is also expectable that the utilization of another more

advanced algorithm (based for instance on neural networks)
could lead to higher accuracies.5

Raw spectra organized in the data matrices were treated with
various approaches in row-wise (over spectra individually) or
column-wise (over variables individually) manner. Firstly,
column-wise (applied on each variable/wavelength individually)
data preprocessing (mean centering and/or scaling) was
studied, since they are recommended data preprocessing
approaches prior to MVDA in the literature.41 In mean
centering, the mean value is subtracted from each column. This
moves the center of mass to the origin of the coordinate system.
In scaling, values in each column are divided by their respective
standard deviation.

Secondly, row-wise (applied on each spectrum individually)
signal normalization was provided. The normalization strate-
gies were selected with respect to in situ applications. We have
selected several most oen utilized normalization strategies. In
the total energy case, spectral variables were divided by the sum
of all intensities detected in the respective spectrum. A similar
approach is in the maximum peak intensity when the spectral
features are divided by the maximum peak value, the intensity
integral in the whole range of the peak was not considered. [0,1]
data scaling approach was obtained when the minimal value
was subtracted from the spectrum and then this spectrum was
divided by its maximum peak intensity. For matrix line
normalization, several matrix lines per spectrum were selected
and the respective spectra were divided by this value. We also
utilized row-wise mean centering and scaling, provided in the
same manner as in the column-wise case. Row-wise scaling
equalizes to a certain extent the differences in total intensities
of individual spectra.

The methodology for spectral line intensity estimation, as
described elsewhere,42 was utilized, if the intensity of any
spectral line was necessary. The intensity of the line was
considered as the sum of intensities in the range of this spectral
line with background subtraction. The level of background was
estimated in a close proximity to the selected spectral line.

Results and discussion
Data projection

In this work we investigated the inuence of (i) column-wise
variable mean centering/scaling and (ii) row-wise spectra
normalization. However, rstly the topology of LIBS data of
individual matrices was checked. For these purposes training
spectra (column-wise mean centered) of all samples were
investigated using PCA scores and loadings. Processed data
were visualized in a truncated PC space using rst two principal
components. This simple step enables visualization of similar-
ities and differences among individual sample sets and shows if
they overlap or if they are discriminated from each other. The
distribution of steel and cast-iron samples in the PC space (PC 1
¼ 20.2%, PC 2¼ 9.2%, and PC 3¼ 3.9% of total variability in the
data) shows distinct separation of certain samples, Fig. 1a. The
data points of each sample are ordered in compact clusters.
Despite the bigger number of samples and more complicated
resolution of the color scale, the samples are well distinguished

J. Anal. At. Spectrom. This journal is © The Royal Society of Chemistry 2016
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in the gure. The elongated shape of sample clusters is attrib-
uted to the uctuation in spectral intensities, i.e. uctuation of
LIP and its properties. Samples are rather distinguished what
could suggest easier classication. In the case of steels and cast-
irons, a high number of detected lines are apparent. PCA
loadings are composed mainly from lines of major elements
(Fe, Cr, and Ni), Fig. 1b. The majority of lines was attributed
namely to Fe; ionic lines below 280 nm and atomic lines in the
range of 340 to 400 nm. Lines of Co II at 241.63 nm (not high-
lighted in the gure), Mn I 403.08 nm, Mo I 550.65, and Si I lines
288.15 nm and 390.55 nm were also detected, but with lower
loading values due to lower concentration ranges in the
samples. The detailed list of lines is given in the loading gure.

The PCA scores of Al alloy CRMs are plotted in Fig. 2a
showing more overlapping clusters in the newly constructed
PC space (PC 1 ¼ 13.7%, PC 2 ¼ 4.5%, and PC 3 ¼ 1.8% of total
variability in the data). The individual PCs describe a less
amount of variability in the data as in the case of steel and
cast-iron samples. This could lead to more confusing classi-
cation and moderate gures of merit. PC loadings of Al
alloys, Fig. 2b, are dominated by the Al doublet at 394.4 and
396.15 nm, which overshadows the rest of the loadings.
However, lines of minor and trace elements (Cu, Fe, Mg, Pb, Si,
Ti, and Zn) were found contributing to the classication less
signicantly. Lines of Cr and Ni were not detected. The list of
lines is given in Fig. 2b.

Fig. 1 PCA analysis yielded from steel and cast-iron samples LIBS data: (a) scores and (b) loadings.

This journal is © The Royal Society of Chemistry 2016 J. Anal. At. Spectrom.
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The clustering of sedimentary ore CRMs is depicted in the
space of rst two PCs, see Fig. 3a. The elongated shape of clusters
and outliers are also present as in the previous cases. The color
scale is hard to read due to the high number of samples.
However, distinct clustering of certain samples from the rest of
the dataset is clearly visible. First three principal components
carry 21.2% of total variability (PC 1¼ 8.4%, PC 2¼ 6.6%, and PC
3 ¼ 6.2%). Lower differences in percentages of individual PCs
suggest a more complex dependence of loadings on various
variables (elemental lines). Loadings of rst three PCs are shown
in Fig. 3b, giving also the list of most signicant lines (Na, Ca, Al,
Fe, Mn, and Cr) or lines of matrix elements (Ca, Na, Al, Mg, and

Si). The highest loading values possess the sodium doublet at
589.00 and 589.59 nm and the doublet of calcium ionic lines at
393.37 and 396.85 nm. Lines with considerable high loading
values were also highlighted in the gure; Mn I 403.08, 403.31,
403.45, and 403.57, Fe I lines 427.18, 430.79, 432.58, and 438.35
nm (more lines of Fe are present in the spectra but not high-
lighted), and Cu I t 324.7 and 327.4 nm. Lines of Mg I 382.94,
383.23, and 383.83 nm, Zn I 472.215 and 481.05 nm, and Cr I
425.44 and 427.48 nm were less signicant. Potassium, another
matrix element, having an intense doublet at 766.49 and 769.89
nm was not utilized in classication due to the limited spectral
window truncated for less demanding computation. In the case

Fig. 2 PCA analysis yielded from Al alloy CRM LIBS data: (a) scores and (b) loadings.
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of sedimentary ores, no clear matrix element is present, except
for sodium and calcium thanks to their relatively high loading
values. The introduction of more matrix elements (with
a number of elemental lines and strongly varying quantum
properties) makes the data normalization challenging.

The wavelength range depicted in loading images was trun-
cated up to 600 nm for better readability. It is worth mentioning
that lines of Ha 656 nm, O I 777 nm, nitrogen triplet (Ni I 742.364,
744.229, and 746.831 nm), Ca (ionic 393.37 and 396.85 nm, and
atomic at 422.67 nm) and Na I lines (589 and 589.59 nm) are
present in each spectrumwith certain intensity, regardless of their
content in the sample composition. The atmospheric elements are
detected due to ablation of ambient air surrounding the sample
surface. Ca and Na signals can be observed in any spectrum,

resulting from any possible surface contamination during the
handling of the sample. All observed and abovementioned lines
were cross-checked with the NIST online database.43

Each sample, regardless of the matrix, contains several data
points outlying from the rest of the respective cluster in the PC
space. This strengthens the need for outlier ltering prior to any
further data processing. However, this was not provided since
omitting outliers from the dataset would lead to signicant
improvement in the classication accuracy, as proved in our
recent manuscript.20 Filtering of the outliers changes the
topology of the data space and creates more distinct and less
overlapping clusters. This was unwanted in our present
research since potentially outlying data points were welcomed
for the possibility of classication confusion.

Fig. 3 PCA analysis yielded from sedimentary ore CRM LIBS data: (a) scores and (b) loadings.

This journal is © The Royal Society of Chemistry 2016 J. Anal. At. Spectrom.
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Individual sample matrices are representing various
compositions of major, minor, and trace elements. Those
elements are characterized by different numbers of emission
lines. In general, the variation in elemental composition char-
acterized by a lower number of spectral lines is overshadowed
by the variation of elements with more spectral lines. The
amount of variation described by each variable has a great
impact on the clustering/classication. As presented in loading
gures of all samples, the major/matrix elements possess the
highest loading values. Thus the changes in matrix lines are
chief contributors to the classication of data.

Column-wise data preprocessing

At rst, the impact of column-wise (over each variable individ-
ually) data preprocessing (mean centering and/or scaling) of
raw data (without any normalization) on the classication
accuracy was investigated, see Fig. 4. In general, the accuracy is
increasing with the number of PCs, varied from 1 to 20. This
trend is valid to a certain point where the accuracy levels off and
the increase is insignicant for higher number of PCs.
Regardless of the sample matrix there is an optimal number of 3
to 5 principal components. It is an interesting phenomenon
that classication of raw data, mean centered data and scaled
data yields similar classication accuracies over the whole
range of PCs. However, the utilization of mean centering and
scaling results in signicantly lower accuracies. The worst
performance was obtained in the case of Al alloy CRMs.

The Al alloy case was selected, because of its poorest
performance, to describe the signicant classication confu-
sion aer mean centering with scaling preprocessing. Loadings
estimated from the PCA analyses of preprocessed LIBS data are
depicted in Fig. 5; (a) raw data, (b) mean centered data, (c)
scaled data, and (d) mean centered and scaled data. The total
amount of variation described by the rst three principal
components is (a) 33.9%, (b) 20.8%, (c) 5.4%, and (d) 2.5%.
However as presented above, the decreasing trend has no
impact on the classication, except the case of mean centering
together with scaling. Scaling of data (raw or mean centered)
introduces an unwanted increase in signicance of loadings
attributed to noise, Fig. 5c and d. Aer this data preprocessing
approach the orders of echelle spectrograph are highlighted in
the loadings, as depicted in Fig. 5d. Aer mean centering and
scaling the persisting valuable information vanishes and LIBS
spectra are useless for any classication.

Therefore, we do not recommend using scaling for data
processing regardless of the matrix to be analyzed when typical
full range LIBS spectra are of interest. This algorithm simply
equalizes the importance of all variables (including noise).
Spectral lines should be rstly tted and treated separately.
Data matrix composed only from the line emission signal
should be constructed prior to scaling.

Row-wise data normalization

Based on the aforementioned results, no column-wise data
preprocessing (raw data) was chosen for further analysis. Raw
data of each sample matrix were normalized with a priori

selected normalization approaches: (i) total intensity, (ii)
normalization to maximum peak intensity, (iii) [0,1] normali-
zation, (iv) mean centering, (v) scaling, and (vi) normalization to
intensity of selected matrix element spectral line. SIMCA was
applied on the data aer row-wise normalization. Overall
accuracy estimated from the obtained confusion matrix was

Fig. 4 Impact of column-wise data preprocessing (scaling and mean
centering) on the classification accuracy of (a) steels and cast-irons, (b)
Al alloy CRMs, and (c) sedimentary ore CRM LIBS data. Accuracies
obtained from raw, scaled, and mean centered data are partly over-
lapping in the figure.
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Fig. 5 PCA loadings yielded from Al alloy CRM LIBS data after (a) no data preprocessing, (b) mean centering, (c) scaling and (d) mean centering
and scaling.
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considered for comparison of data preprocessing impact on
classication. The range of PCs used in SIMCA was limited to
10. From this point further no signicant increase was obtained
in previous analyses, Fig. 4. Thus no increase was expected
even aer row-wise normalization (each spectrum treated
individually).

In the case of steel and cast-iron samples, good classication
accuracy was predicted from the distinct clustering of data in
PC space, Fig. 1a. Only a minimal difference between individual
normalization approaches is evident, see Fig. 6a. The trend is
also similar for all approaches, suggesting the optimal number
of 3 or 4 PCs. This region is highlighted in the gure. The best
performance was yielded for classication of row-wise mean
centered and raw data. Normalization to the total intensity of
the spectrum is also worth mentioning showing reasonable
accuracies with respect to the other matrices. The worst
performance was obtained for classication of data normalized
to selected spectral line intensities. This result is in disagree-
ment with the general approach used for the improvement of
conventional quantitative analysis. In spite of the fact that iron
is the major element, such normalization demands higher
quantum states of both spectral transitions (matrix line used for
normalization and line to be normalized) to be similar.
However, this condition cannot be naturally met for all the lines
present in the spectra.

Classication accuracies of aluminum alloy spectra aer
individual normalization approaches are presented in Fig. 6b.
Signicantly different impact of each normalization approach
was obtained. This is a result of the nature of Al alloy spectra,
where a low number of elemental lines (signal) versus total
number of variables (including noise) are present. Moreover,
the data points are more overlapped in the PC space, shown in
Fig. 2a, suggesting more challenging classication. This
sample matrix is therefore more sensitive to data treatment.
The best performance was yielded for classication of data
aer total intensity normalization. Considerably high classi-
cation accuracy is also shown in row-wise scaling normali-
zation, what is in contrast to column-wise scaling results.
Once more the worst results were obtained for the normali-
zation using matrix line intensities, attributed to the
phenomenon described above.

Classication accuracies aer individual normalization
preprocessing of sedimentary ore LIBS data are depicted in
Fig. 6c. For most of the cases, the trend levels off between three
to four PCs. However, the trend for raw data and mean centered
data levels off rstly with 2 PCs and then rises and reaches the
maximum accuracy for 9 PCs. Omitting those normalization
methods from the investigation, the best performance is ob-
tained for [0,1] normalization. The rest of selected normaliza-
tion methods show moderate gures of merit, overreaching
92.5% of overall accuracy. The matrix lines selected were Ca I
line 422.7 nm and Na I 589 nm. Those atomic lines showed high
loading values and thus were considered as important for
classication purposes. Their performance in data normaliza-
tion shows good accuracy when three PCs are considered. For
more PCs, the accuracy decreases and normalization to line
intensity gets ineffective.

Regardless of the sample matrix and number of PCs, utili-
zation of raw data and row-wise mean centered data gives
almost the same accuracies. For LIBS users it can be work saving

Fig. 6 Impact of row-wise LIBS data normalization on overall classi-
fication accuracy estimated using SIMCA for (a) steels and cast-irons,
(b) Al alloys CRMs, and (c) sedimentary ore CRMs.
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to know that the normalization to any single line does not lead
to better classication efficiency. Taking more lines or total
spectral intensity can be benecial or comparable with analysis
of raw data.

Conclusion and ongoing work

In this manuscript we assessed the impact of row-wise and
column-wise preprocessing of the data matrix prior to multi-
variate classication, utilizing SIMCA. Different normalization
approaches were chosen, with the aim of their exploitation for
LIBS in situ analysis. Data were provided by the LIBS analysis of
various sample matrices (steel and cast-iron, Al alloy, and
sedimentary ores) representing different numbers of matrix and
minor elements as well as signicantly different numbers of
detected emission lines. Thus, the presented results may be
accepted in a general manner, since they are not aimed only at
one case study. The estimation of number of PCs used in MVDA
algorithms is also of great issue. The presented results show the
best performance of SIMCA with 3 to 5 PCs in spite of the
sample matrix and data preprocessing approach.

Column-wise scaling of raw or mean centered data is not
advised when classical LIBS spectra (including signal and noise)
are under investigation. This approach equalizes the impact of
noise with the signal on classication accuracy, as proved by
loading plots. For scaling, spectral line intensities should be rstly
estimated and organized into a data matrix without contribution
of variables carrying background noise. Spectral line selection and
their utilization in MVDA algorithms (for instance impact of
differing the number of lines per sample) are behind the scope of
this manuscript and will be addressed in the ongoing work.

Row-wise data preprocessing, i.e. normalization of indi-
vidual spectra, has to be selected according to the sample
matrix. Spectra are composed from elements represented by
various numbers of spectral lines. Moreover, each spectral line
has a different impact on classication, as shown in loadings
plots. In general, normalization to matrix line intensity brings
no improvement and is not recommended regardless of the
sample matrix.
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This publication is from the body of work dedicated to study the toxicity of nanoparti-
cles. Toxicology is well established field where standard procedures are set to monitor the
processes induced in plant tissues with varying contents of selected chemical compounds.
The interest lies in the mechanisms beyond uptake, transport, distribution, and storage
of novel materials and their influence on the growth, development and nutrition of model
plant tissues.

LIBS opens new perspective in toxicology when providing a platform for large-scale
mapping of whole plants or its parts (roots, stems, leaves). This is not possible by using
standard analytical techniques; most often, ICP-OES is used for assessment of bulk chemical
composition. Map of distribution of selected analyte within the plant tissue is then a result
of LIBS analysis.

Our work has shown that LIBS is fully matured technique that yields important infor-
mation about the investigated sample - toxicity of nanoparticles on living organisms.
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A B S T R A C T

The purpose of this study was to determine the toxicity of two different sources of cadmium, i.e. CdCl2 and Cd-
based Quantum Dots (QDs), for freshwater model plant Lemna minor L. Cadmium telluride QDs were capped with
two coating ligands: glutathione (GSH) or 3-mercaptopropionic acid (MPA). Growth rate inhibition and final
biomass inhibition of L. minor after 168-h exposure were monitored as toxicity endpoints. Dose-response curves
for Cd toxicity and EC50168h values were statistically evaluated for all sources of Cd to uncover possible dif-
ferences among the toxicities of tested compounds. Total Cd content and its bioaccumulation factors (BAFs) in L.
minor after the exposure period were also determined to distinguish Cd bioaccumulation patterns with respect to
different test compounds. Laser-Induced Breakdown Spectroscopy (LIBS) with lateral resolution of 200 µm was
employed in order to obtain two-dimensional maps of Cd spatial distribution in L. minor fronds. Our results show
that GSH- and MPA-capped Cd-based QDs have similar toxicity for L. minor, but are significantly less toxic than
CdCl2. However, both sources of Cd lead to similar patterns of Cd bioaccumulation and distribution in L. minor
fronds. Our results are in line with previous reports that the main mediators of Cd toxicity and bioaccumulation
in aquatic plants are Cd2+ ions dissolved from Cd-based QDs.

1. Introduction

Quantum dots (QDs) are fluorescent semiconductor nanocrystals,
commonly made up by a 3–6 nm diameter core of CdS, CdSe, PbSe,
CdTe or a range of other metals, and coated by an organic polymer
(Chan et al., 2002). The use of QDs has been increasing because of their
great potential to replace traditional organic dyes as labels for tagging
and imaging in biological systems (Jamieson et al., 2007). The main
advantage of QDs in comparison to organic dyes or fluorescent proteins
is that QDs are brighter, more stable against photobleaching, and can be
excited for multicolor emission with a single light source (Bailey et al.,
2004; Resch-Genger et al., 2008). However, analogously to other
classes of nanomaterials, QDs may eventually find their way into the
environment. In contact with aqueous media, Cd-based QDs have been
shown to leach ionic Cd (Xu et al., 2010) which has been ranked the 7th
out of 275 compounds, including organic chemicals, in the 2015
Priority List of Hazardous Substances (Agency for Toxic Substances and
Disease Registry, 2015). Therefore, it is of a high importance to assess

the toxicity of Cd-based QDs to environmental organisms, which may
come into contact with QD-containing products when they are dis-
carded.

Quantum dot toxicity is ascribed either to the induction of reactive
oxygen species (ROS) formation or to the direct release of Cd ions; in
most cells, these reactions cause cellular changes culminating in DNA
damage (Gomes et al., 2011). Several studies have researched toxic
effects of Cd-based QDs and/or possibility for their bioaccumulation in
freshwater organisms, such as microorganisms (Gomes et al., 2011);
algae – Chlamydomonas reinhardtii Dangeard (Domingos et al., 2011)
and Phaeodactylum tricornutum Bohlin (Xu et al., 2010); and in-
vertebrates – Hydra vulgaris (Ambrosone et al., 2012), Leptocheirus
plumulosus (Jackson et al., 2012), Daphnia magna (Lee et al., 2009) and
Elliptio complanata (Gagné et al., 2008; Peyrot et al., 2009). Free Cd
released from QDs was shown to bioaccumulate in algae (Domingos
et al., 2011) and amphipods (Jackson et al., 2012); to alter the synthesis
of metallothioneins and trigger oxidative stress and DNA damage in
mussels (Gagné et al., 2008; Peyrot et al., 2009); to cause cytotoxicity in
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algae (Xu et al., 2010); and to generate ROS in daphnids (Lee et al.,
2009). Although studies on the distribution of Cd-based QDs in plants
(core/shell QDs: CdSe/CdZnS and CdSe/ZnS) by detection of their
fluorescence in different parts of plants have also been conducted
(Navarro et al., 2012; Wang et al., 2014; Koo et al., 2015), they focused
on the potential of core/shell QDs for uptake, translocation, or trans-
formation, but not on the evaluation of toxicity values. To the best of
our knowledge, no toxicity studies with QDs have been conducted in
aquatic plants, except in green algae (Xu et al., 2010; Domingos et al.,
2011). Given the hazardous potential of QDs, it is very important to
address these knowledge gaps in plant ecotoxicology.

The free floating macrophyte Lemna minor L. (Lemnoideae, Araceae)
is a common aquatic ecotoxicity test organism: it is a bioindicator
species for the detection and monitoring of metal pollution
(Garnczarska and Ratajczak, 2000) and also metal bioaccumulator. L.
minor has already been used as a model organism in toxicity and
bioaccumulation studies of several types of nanoparticles (NPs), e.g. Ag
(Gubbins et al., 2011; Jiang et al., 2012; Oukarroum et al., 2013;
Üçüncü et al., 2014), CuO (Shi et al., 2011; Perreault et al., 2014), C60

(Santos et al., 2013), Al2O3 (Juhel et al., 2011), TiO2 (Song et al., 2012;
Li et al., 2013), and ZnO (Hu et al., 2013) NPs, but not yet Cd-based
QDs. The effects of Cd2+ on L. minor have been studied with the use of
Cd salts: CdCl2 (Razinger et al., 2008; Tkalec et al., 2008; Balen et al.,
2011) and less typically CdSO4 (Drost et al., 2007) or Cd(NO3)2 (Kwan
and Smith, 1991). These studies have shown that Cd accumulates in L.
minor and causes adverse effects, such as decreased growth, reduced
levels of photosynthetic pigments, impaired chloroplast ultrastructure,
increased activities of antioxidant enzymes, increased lipid peroxida-
tion and decreased chlorophyll and protein contents (Razinger et al.,
2008; Tkalec et al., 2008; Balen et al., 2011). As Cd is known to leach
from Cd-based QDs (Xu et al., 2010) and dissolved ions are the main
mediators of nanoparticle toxicity to organisms (Ivask et al., 2015),
similar Cd bioaccumulation and toxicity as in the case of Cd can be
expected upon exposure of L. minor to Cd-based QDs.

In this study we focused on several major goals. The first objective
was to measure the toxic effects of different Cd compounds in L. minor,
i.e. Cd salt and two types of Cd-based QDs (QDs capped by glutathione,
GSH-QDs, or by 3-mercaptopropionic acid, MPA-QDs), where CdCl2
served as a positive control for Cd toxicity to L. minor. After 168-h
exposure two toxicity endpoints were monitored in L. minor : growth
rate inhibition and final biomass inhibition according to the OECD 221
norm (OECD, 2002). The second objective was to determine the total
content of Cd in plants and to distinguish how different sources of Cd
are accumulated in L. minor fronds by using a conventional method for
metal detection, ICP-OES. In this part, CdCl2 served as a reference
compound to test the hypothesis that L. minor bioaccumulates Cd ions
that leach from Cd-based QDs (Xu et al., 2010). The third objective was
to demonstrate that Laser-Induced Breakdown Spectroscopy (LIBS) is a
useful tool for mapping the elemental distribution in L. minor fronds, as
well as to monitor whether there are differences in the bioaccumulation
patterns of Cd salt or Cd-based QDs. In the recent years, LIBS has been
developed as an alternative and fast method for investigation of spatial
distribution of elements; its applicability in plant samples has been
summarized in three extensive reviews (Kaiser et al., 2012; Pořízka
et al., 2012; Santos et al., 2012). However, LIBS has so far been used
only for the detection of nano Ag in root tissues of Vicia faba L.
(Krajcarová et. al, 2017), therefore further studies of its applicability for
the detection of NPs in plants are needed. The fourth objective was to
inspect L. minor fronds by transmission electron microscopy (TEM) to
determine if QDs are able to penetrate cell walls and become accu-
mulated in plant tissue or they are only adsorbed on frond surface. We
discuss possible hazardous potential of QDs in aquatic environment for
L. minor as a bioindicator species. We also show that LIBS technique is a
successful alternative to conventional analytical methods due to the
ability to map large areas of samples in short time with sufficient re-
solution.

2. Materials and methods

2.1. Quantum dot synthesis and analysis

Two types of QDs were synthesized – GSH-QDs and MPA-QDs. The
methods of preparation were based upon extensive instructions avail-
able in Lišková et al. (2011) and Řezáčová et al. (2015). Quantum dot
properties were analyzed as follows: the nominal average particle size
was determined by FEI Tecnai F20 electron microscope (Thermo Fisher
Scientific, Waltham, Massachusetts, USA); zeta potential was measured
with Zetasizer Nano ZS (Malvern Instruments, Malvern, UK) and Cd
content in QDs was measured by ICP-OES spectrometer iCAP 6500 Duo
(Thermo Fisher Scientific, Waltham, Massachusetts, USA).

2.2. Toxicity experiment with L. minor

2.2.1. Experimental setup
Laboratory stock culture of L. minor was used. Seven days before

testing, sufficient colonies were transferred aseptically into fresh sterile
modified Steinberg medium (ISO, 2005) and cultured under the test
conditions. No contaminating organisms (such as algae) were present.

Lemna test was performed according to the OECD (Organization for
Economic Co-operation and Development) Test No. 221: Lemna sp.
Growth Inhibition Test using Steinberg medium (OECD, 2002). Toxicity
tests were carried out in 200 mL beakers filled with 150 mL solution
which consisted of the dilution series of test compounds in the Stein-
berg medium. Presence of EDTA in Steinberg medium was proven not
to influence the metal uptake (Drost et al., 2007). L. minor plants were
exposed to three Cd-containing compounds: GSH-QDs, MPA-QDs and
CdCl2·2.5H2O (hereafter referred to as CdCl2). For both GSH-QDs and
MPA-QDs, the nominal test concentrations were 0, 0.01, 0.05, 0.1, 0.5,
1.0, 2.5, 5.0, 7.5, 10, and 15 mg compound/L; for CdCl2, the nominal
test concentrations were 0, 0.01, 0.05, 0.1, 0.5, 1.0, 2.5, 5.0, 7.5, and
10 mg compound/L.

One exposure group consisted of seven test replicates (beakers) for
each test compound at each exposure concentration. There was one
control group for each test compound. Before the exposure, the beakers
were inoculated with four plants with three fronds each, which resulted
in 12 fronds per beaker. The test was carried out for seven days (168 h)
at the temperature of 24±2 °C and light intensity of 8000 lx. pH of the
Steinberg medium was 6.8±0.1. The test was considered valid if the
number of fronds in controls had grown eightfold.

Immediately after the exposure, the number of all L. minor fronds
(both healthy and necrotic) was counted in each vessel as “all fronds”
and “green fronds” (fronds without any evidence of necrosis or da-
mage). The number of “green fronds” was used for the calculation of L.
minor growth rate (µ) and growth rate inhibition (% Ir) for six replicates
of each exposure group. Then each exposure group was divided into
three parts for various analyses. Three replicates per exposure group
were dedicated to the assessment of Cd bioaccumulation, another three
replicates to the assessment of final biomass inhibition, and one re-
plicate to the investigation of Cd spatial distribution in fronds and QD
adsorption on the plant surface.

Plants from the seventh replicate of each exposure group were
thoroughly washed in deionized water. Three or four fronds per beaker
were used for LIBS spatial distribution mapping experiments and two
fronds per beaker for TEM analyses. For LIBS measurements, fronds
were carefully dried, molded and glued by epoxide glue onto a glass
slide. For TEM analyses, frond cross-sections were prepared and pho-
tographed.

2.2.2. Toxicity parameters
After the exposure period, the number of L. minor fronds in each

beaker was counted. For all the tests, the L. minor growth rate µ was
used as the first toxicity endpoint. The plant growth rate was calculated
on the basis of frond numbers as:
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where Ft0 is the number of fronds at the start of the exposure and Ft7 is
the number of fronds at the end of the exposure (OECD, 2002). From a
mathematical perspective, µ is based on the assumption of exponential
growth and gives an average of the growth during the time period from
t0 to t7. Growth rate inhibition (% Ir) was then calculated in relation to
the control mean:

= × −
I

μ μ
μ

% 100
( )

r
control sample

control (2)

The final biomass was determined on the basis of fresh biomass
present in each test vessel at the start and at the end of the exposure.
The starting biomass is determined on the basis of a sample of fronds
taken from the same batch used to inoculate the test vessels. The mean
percent inhibition in final biomass (%Ib) was calculated for controls and
each treatment group as follows:= × −I b b

b
% 100 ( )

b
c t

c (3)

% Ib is percent reduction in biomass; bC was calculated as {ln(final
biomass/starting biomass)} for the control group and bT as {ln(final
biomass/starting biomass)} in the exposure group (OECD, 2002). These
calculations were done for three replicates from each test concentra-
tion. Final fresh biomass was determined immediately after the ex-
posure. Before weighing, plants were centrifuged at 2349×g for 10 min
(NF 800 & 800R Multi-Purpose Centrifuge –Nüve A.Ş., Ankara, Turkey)
separately for each test concentration.

2.3. Analyses of QD adsorption on L. minor surface and Cd content and
distribution in fronds

2.3.1. Cd bioaccumulation in L. minor (ICP-OES)
Cd bioaccumulation was determined from three replicates at each

tested concentration. All the plants from each replicate (beaker) were
separately and adequately washed in deionized water, and dried at
60 °C to constant mass.

To quantify the uptake of Cd by L. minor , the bioaccumulation
factor (BAF) was calculated from the amount of Cd in the biomass and
the concentration of Cd in the medium after the exposure:=BAF m

C
Cd

Cd (4)

mCd is the mass of Cd in dried L. minor mass (mg/kg) and cCd is the
concentration of Cd in the test medium (mg/kg) (Kalčíková et al.,
2016).

The total Cd content in L. minor was measured by ICP-OES spec-
trometer iCAP 6500 Duo (Thermo Fisher Scientific, Waltham,
Massachusetts, USA). Before the analysis, the samples were decom-
posed in a microwave lab station (Ethos One, Milestone, Bergamo,
Italy) under the following time and temperature regime: 15 min of
heating to 200 °C; 20 min of decomposition at 200 °C; and 10 min of
cooling to 110 °C. All plants from one replicate were pooled and di-
gested as a single sample in 7 mL of conc. HNO3 (≥ 65%, p.a. purity,
Sigma Aldrich, Steinheim, Germany) and 1 mL of conc. H2O2 (≥ 30%,
p.a. purity, Sigma Aldrich, Steinheim, Germany).

2.3.2. Spatial distribution of Cd in L. minor fronds (DP-LIBS)
The modified laser system UP-266 MACRO (New Wave Research,

Fremont, CA, USA) equipped with software-controlled movement in x
and y directions was used. Glass slides with glued plant samples were
placed into a lab-made holder. Two Nd: YAG lasers were arranged in
the orthogonal reheating configuration. The first laser (UP-266
MACRO) that operated at the fourth harmonic frequency (266 nm) with
the energy 10 mJ per pulse irradiated the sample surface and created a

micro plasma. The second laser (Q-Smart, Quantel Laser, Les Ulis,
France) at fundamental wavelength 1064 nm with energy 100 mJ per
pulse was focused with 80 mm focal length glass lens to intersect the
path of the first laser beam 0.5 mm above the sample surface and finally
to create the coincident spark. Both lasers operate with the pulse length
of ~5 ns. The energy of the laser was measured with laser power/en-
ergy meter (Nova, Ophir Optronics Ltd., Jerusalem, Israel). The plasma
emission was collected and transported with 3 m long optical fiber into
the Czerny-Turner spectrometer (TRIAX 320, Horiba Jobin Yvon Inc.,
Edison, NJ, USA) with 0.1 mm entrance slit and optical grating with
2400 grooves/mm. The spectral resolution of the spectrometer with this
grating was 0.050 nm. The LIBS spectrum was detected with ICCD de-
tector (PI MAX 3, Princeton Instruments, Trenton, NJ, USA). Both lasers
were externally triggered by two delay generators (DG 645, Stanford
Research System, Sunnyvale, CA, USA) which allowed the time syn-
chronization of flash lamps and Q-switches of both laser and also setting
of ICCD detection delay.

For our samples the optimal inter-pulse delay of 500 ns (the delay of
the second laser pulse after the first one), detection delay of 1000 ns
and detection integration time of 10 µs were established. The raster
covered an area from 14 × 15 points (the smallest fronds) to 29 × 18
points (the largest fronds) in size with lateral resolution of 200 µm.
Each laser pulse reached through the whole “depth” of the frond. The
intensity of analytical emission line Cd I at 508.58 nm was evaluated as
the maximum line intensity after appropriate background subtraction.
The background was estimated as the mean of the detected signal
(range 507.8–508.2 nm) in close proximity to the selected analytical
line. No further intensity normalization or correction was used. The
measured data allowed the construction of 2D maps showing the spatial
distribution of Cd element in selected fronds. All evaluations were
conducted in the R statistical package (“ggplot2” and “signal” library;
“ggplot2” and “signal” library; R Development Core Team, 2015 De-
velopment Core Team, 2015).

2.3.3. Adsorption of QDs on the L. minor surface (TEM)
Frond samples were prepared as described in Li et al. (2013). Fronds

were fixed in 2.5% glutaraldehyde (Grade I, 25% in H2O, specially
purified for use as an electron microscopy fixative; Sigma Aldrich,
Steinheim, Germany) – 0.1 M sodium cacodylate trihydrate buffer (≥
98%; Sigma Aldrich, Steinheim, Germany) for 3 h. After three washing
steps in 0.1 M cacodylate buffer, samples were post-fixed in 1% OsO4

solution (≥ 98%; Sigma Aldrich, Steinheim, Germany) in the same
buffer for 2 h. The specimens were then dehydrated in ethanol, treated
with acetone and embedded in epoxy resin Durcupan™ ACM (Sigma
Aldrich, Steinheim, Germany). Ultrathin sections were cut at 60 nm on
an ultramicrotome Leica EM UC6 (Leica Microsystems Inc., Buffalo
Grove, US) and placed on 50 mesh formvar-coated nickel grids. Selected
ultrathin sections were contrasted with 2.5% uranyl acetate (p.a., La-
chema, Brno, Czech Republic) for 10 min and alkaline Reynolds lead
citrate solution (p.a., Penta, Chrudim, Czech Republic) for 6 min.

4 µL of freshly prepared QDs solutions were applied onto glow
discharged Electron Microscope (EM) grids and left to dry in ambient
atmosphere. Cu 400 mesh EM grids coated by homemade 20 nm con-
tinuous carbon film were glow discharged in nitrogen atmosphere at
12 nA.

Samples of QDs as well as frond cross-sections were transferred to
an FEI Tecnai F20 electron microscope (Thermo Fisher Scientific,
Waltham, Massachusetts, USA) operating at 200 kV using basic room
temperature sample holder. Micrographs were recorded using Eagle 4 K
× 4 K CCD under low-dose mode (~ 20 e-/Å2). Focus values for mi-
crograph acquisition ranged from 3 to 4 µm. Nominal magnifications
were 29,000; 50,000 and 100,000, which resulted in pixel size of 3.78;
2.22; 1.12 Å/pixel.
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2.4. Data analysis

Toxicity data were fitted by the Hill equation to curves of dose (Cd
concentration cCd) vs. response (growth rate inhibition and final bio-
mass inhibition). The fitted curves were compared by ANOVA using R
statistical package (“nlme” and “car” library; “nlme” and “car” library;
R Development Core Team, 2015 Development Core Team, 2015).
Calculated F-values were used for the evaluation of significant differ-
ences (F-values> 0.05; *). For the data from bioaccumulation experi-
ment (BAF and mCd), only the linear approximations of BAF and mCd

dependencies on Cd concentration (cCd) were performed to obtain these
data at the same x axis positions (approximately same concentrations).
Those were then compared by Mann-Whitney T-test using R statistical
package to evaluate significant differences (p-values< 0.05; *).

3. Results and discussion

3.1. Quantum dot properties

MPA-QDs contained (23.19±0.06) % m/m of Cd (ICP-OES). Their
nominal average particle size was 4.0–5.4 nm (TEM) and zeta-potential
was (−45±10) mV while GSH-QDs of the nominal average particle
size 4.0–4.4 nm (TEM) contained (22.99± 0.05) % m/m of Cd (ICP-
OES) and exhibited zeta-potential of (−45±14) mV.

Aggregation of both QD types at different pH values was studied in
our previous paper (Škarková et al., 2017). In the pH range from 9.8 to
5, the hydrodynamic diameter and zeta potential did not significantly
change for MPA-QDs. In the pH range from 5 to 2, MPA-QDs started to
agglomerate and form clusters of 500 nm diameter at pH 4 and even of
1.500 nm at pH 3 (Škarková et al., 2017). The aggregation was not
investigated in detail for GSH-QDs, but their behavior is expected to be
the same as that of MPA-QDs. In our toxicity test described here, pH
values of Steinberg medium before and after the test were in the range
from 6.6 to 6.9, so the presence of any QD aggregates or clusters were
not expected.

Cd concentrations in test medium before and after the exposure are
listed in Table 1. Additionally, recoveries for measured versus nominal
Cd concentrations before the toxicity tests were calculated. Recoveries,
except at the two lowest concentrations, were within the range from
97% to 133%. Only the measured Cd concentrations (Table 1) were
used in our calculations and in the figures.

3.2. Toxicity of Cd-based QDs and CdCl2 to L. minor

Fig. 1 shows the dependence of growth rate inhibition and final
biomass inhibition (calculated from fresh biomass) on Cd concentration
(cCd) plotted for each test compound: GSH-QDs (Fig. 1a), MPA-QDs
(Fig. 1b), and CdCl2 (Fig. 1c). To evaluate the differences in the toxicity
of tested compounds, our data were first fitted by the Hill equation
(Gadagkar and Call, 2015) to the dose-response curves of growth rate
inhibition and final biomass inhibition. Then the fitted curves were
compared to each other by ANOVA. No significant differences were
obtained between the dose-response curves of L. minor growth rate
inhibition or final biomass inhibition parameters to both types of QDs
(F « 1 in all four cases). However, both toxicity endpoints showed that
CdCl2 was significantly more toxic than GSH-QDs (F = 47.9* for
growth rate inhibition and F= 4.7* for final biomass inhibition) as well
as MPA-QDs (F = 23.2* for growth rate inhibition and F = 22.8* for
final biomass inhibition).

The mechanism of in vivo toxicity of Cd-based QDs is still unclear,
but recently published studies have inclined that the main responsible
agents are Cd2+ ions, which can be (a) released from the particle core
in the exposure medium, (b) adsorbed on the particle surface, or (c)
released inside the organisms upon internalization into cells
(Ambrosone et al., 2012; Chen et al., 2012). Positive relationship be-
tween the Cd2+ release rate from QDs and cytotoxicity has already been

confirmed in alga P. tricornutum (Xu et al., 2010). Our results are in line
with these predictions since (a) no “particle-specific” toxic effects of
QDs were detected, and (b) QDs were less toxic than CdCl2 at ap-
proximately the same nominal Cd exposure concentrations (Table 1),
probably because the concentration of Cd2+ leached into the test
medium from QDs (Xu et al., 2010) was smaller than the concentration
of Cd2+ in the test media spiked with CdCl2. At the same time, the
assumption of Cd2+-mediated QD toxicity implies that GSH and MPA
ligands did not protect QDs from dissolution in the test medium, si-
milarly as already shown by Kirchner et al. (2005). The (cyto)toxicity of
QDs can be decreased by using stable and effective coating material
such as ZnS and SiO2 shells, which prevent Cd2+ release from QD core
(Kirchner et al., 2005; Xu et al., 2010; Chen et al., 2012). However, a
study on alga C. reinhardtii (Domingos et al., 2011) has found that
toxicity of CdTe-QDs and free Cd2+ ions may be mediated by different
physiological mechanisms, which was corroborated by different whole
transcriptome profiles using RNA-Seq analysis. Further experiments are
needed to elucidate whether the toxicity mechanism of QDs is different
than that of CdCl2 also for L. minor.

Based on the dependences from Fig. 1, EC50168h values for all test
compounds and for both toxicity endpoints (growth rate inhibition and
final biomass inhibition) were calculated (Table 2). The observed
EC50168h values for growth rate inhibition were in the range from 0.31
to 0.53 mg/L for all sources of Cd. Our results are comparable to pre-
vious studies with Lemna, where EC50168h for CdSO4 were determined
to be 0.43 mg/L by Drost et al. (2007) and for CdCl2 to be 0.21 mg/L
(Basile et al., 2012), while EC50240h for Cd(NO3)2 was reported to be
0.32 mg/L (Kwan and Smith, 1991). However, it can be seen in Table 2
that the EC50168h values with the 95% confidence interval did not
overlap. Based on the EC50168h values only, one could conclude that all
three compounds have different toxicity to L. minor. However, Hill
equation utilized for experimental data fitting showed no significant
differences between the dose-response toxicity curves of both types of
Cd-based QDs. This finding reveals that a single data point could be
inconclusive; it is thus necessary to evaluate the response of L. minor to
compounds throughout the whole exposure range in order to reliably
estimate the toxicity trends.

3.3. Bioaccumulation of Cd in L. minor

The dependences of BAF and mCd on Cd concentration (cCd) are
shown in Fig. 2. Mann-Whitney T-test for approximate linear depen-
dence curves was used to evaluate the differences among the test
compounds. No significant differences were found between both types
of QDs, as well as between CdCl2 and GSH-QDs or CdCl2 and MPA-QDs
(p-values> 0.05 in all cases). These results indicate that the Cd
bioaccumulation pattern by L. minor was similar regardless of the test
compound.

Bioaccumulation is known to be a nonlinear process, so BAF is
generally the highest at low concentrations and decreases with in-
creasing metal concentrations (Gregor, 2004). BAF results were re-
calculated for EC50168h growth rate inhibition (Table 2) to compare
them better with published values for Cd salts. For the tested com-
pounds, BAF values for EC50168h growth rate inhibition ranged from
4463 to 6607 (Table 2) and the uptake of Cd was inversely proportional
to its concentration in the solution; this trend was observed for both
sources of Cd (Table 1). The same trend as in our study was reported
also by Basile et al. (2012): mCd values in L. minor increased with in-
creasing Cd concentrations (from CdCl2) while BAF values decreased
with increasing Cd concentrations and ranged from 717 at the Cd ex-
posure concentration 0.02 mg/L to 13,991 at the Cd exposure con-
centration of 0.0002 mg/L. The dependence of BAF values on the Cd
exposure concentration were confirmed also in a study on L. trisulca L.
treated with CdSO4 (Prasad et al., 2001). However, after 3-day exposure
of L. minor to CdSO4, BAF for Cd was reported to be 1371 for EC50
value of growth rate inhibition (Drost et al., 2007); although this value
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is lower than the one found in our study, it may be ascribed to the
shorter exposure time.

The similarities of BAF values in our study to those reported in the
literature for various Cd salts during the same exposure duration, and
no significant differences between BAF values for CdCl2 and QDs
strongly suggest that only Cd2+ ions and not whole QDs were bioac-
cumulated by L. minor. Our results are in line with the study of Koo
et al. (2015) where Cd from QDs with unstable surface coating (poly-
ethylenimine, PEI) was bioaccumulated in Arabidopsis thaliana (L.)
Heynh due to QD destabilization in the hydroponic medium and direct
uptake of free Cd2+ ions. Our quantitative bioaccumulation data were
also corroborated with Cd spatial distribution analyses by LIBS, which
are described in the next chapter.

3.4. Distribution of Cd in L. minor and adsorption of QDs on L. minor
surface

Two-dimensional maps of Cd element spatial distribution were
constructed for each frond after the analysis with LIBS. Fig. 3 comprises
photographs of fronds before the measurements and LIBS maps for all
tested Cd compounds at the nominal exposure concentrations 0.1, 1 and
10 mg/L. Our findings were as follows: (a) no differences in the dis-
tribution of Cd in the fronds of L. minor exposed to CdCl2 and those
exposed to both types of Cd-QDs were found; (b) spatial distribution of
Cd was independent of the tested concentration; (c) the intensity of the
LIBS signal increased with increasing nominal concentrations of Cd for
all test compounds; (d) the only part of L. minor where Cd accumulation
was notably higher than in other tissues was the node of the plant; any

other preferences (lateral or middle veins, apex or daughter frond) for
the accumulation of Cd were not observed. TEM photographs of frond
cross-sections (Fig. 4) demonstrate no visible surface attachment of QDs
or their aggregates as well as no presence of QDs inside plant tissues.

The LIBS and TEM findings collectively support the common pre-
sumption (Xu et al., 2010) that Cd bioaccumulation in L. minor is due to
uptake of free Cd2+ ions released from QDs core into test medium and
not due to internalization of intact QDs. Our results are in good
agreement with studies on C. reinhardtii (Domingos et al., 2011) as well
as on A. thaliana (Navarro et al., 2012), where it was shown that
polymer-coated (carboxylate-terminated) core/shell CdSe/ZnS-QDs
were not internalized and translocated as intact QDs within 7 days of
exposure. Unlike its constituent ions, the QDs were evidently not taken
up and were generally adsorbed onto the plant root surfaces (Navarro
et al., 2012).

Laser-Induced Breakdown Spectroscopy was already successfully
used for element mapping in plants with similar lateral resolution and
demonstrated to be a good choice for this type of analysis. However,
only one investigation (Kaiser et al., 2007) has so far focused on spatial
Cd mapping in dried sunflower (Helianthus annuus L.) leaves with si-
milar spatial resolution (crater diameter after laser pulse was approxi-
mately 100 µm), but with different LIBS instrumentation (femtosecond
laser, Ti: sapphire, single pulse mode, wavelength 795 nm). Our present
study is therefore the first successful demonstration of the use of Nd:
YAG laser LIBS (nanosecond lasers, Nd: YAG, double pulse mode, wa-
velength 266 nm and 1064 nm) for mapping Cd distribution in dried
aquatic plant tissues.

Table 1
Nominal concentrations of tested compounds (mg compound/L), nominal concentrations of Cd in tested compounds (mg Cd/L), and measured concentrations of Cd before and after the
test (mg Cd/L). Recovery (in %) was calculated for measured concentration before the test in comparison to calculated Cd nominal concentration before the test. All data with standard
deviations are averages of three replicates for each concentration. Mark (-) stands for “below LOD” and (/) for “not calculated”.

Nominal CCOMPOUNDS (mg/L) Nominal CCd (mg/L) Real CCd Real cCd Recovery before the test (%)

Before the test (mg/L) After the test (mg/L)

GSH-QDs
15 3.449 3.743± 0.003 3.59± 0.05 112
10 2.299 2.569± 0.003 2.44± 0.04 115
7.5 1.724 1.927± 0.003 1.82± 0.01 115
5 1.150 1.284± 0.002 1.22± 0.02 115
2.5 0.575 0.742± 0.001 0.68± 0.02 133
1 0.230 0.281± 0.002 0.21± 0.02 126
0.5 0.115 0.128± 0.001 0.073± 0.004 115
0.1 0.023 0.0257±0.0001 0.0046±0.0001 115
0.05 0.011 0.0129±0.0003 – 116
0.01 0.002 0.0026±0.0005 – 117
0 0 – – /
MPA-QDs
15 3.479 4.116± 0.004 3.34± 0.03 118
10 2.319 2.613± 0.003 2.21± 0.03 113
7.5 1.739 1.988± 0.003 1.68± 0.02 114
5 1.160 1.277± 0.002 1.20± 0.08 110
2.5 0.580 0.606± 0.001 0.55± 0.005 104
1 0.232 0.248± 0.001 0.22± 0.003 107
0.5 0.116 0.1129±0.001 0.078± 0.002 97
0.1 0.023 0.0234±0.0004 0.0107±0.0003 102
0.05 0.012 0.0129±0.0003 0.0043±0.0002 108
0.01 0.002 0.0033±0.0001 – 165
0 – – – /
CdCl2
10 4.923 5.528± 0.005 5.50± 0.05 112
7.5 3.692 4.103± 0.002 4.06± 0.03 111
5 2.461 2.769± 0.006 2.75± 0.03 113
2.5 1.231 1.337± 0.004 1.30± 0.02 109
1 0.492 0.543± 0.005 0.49± 0.01 110
0.5 0.246 0.269± 0.002 0.21± 0.01 109
0.1 0.049 0.060± 0.001 0.027± 0.002 122
0.05 0.025 0.031± 0.000 0.008± 0.001 124
0.01 0.005 0.012± 0.000 – 240
0 – – – /
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4. Conclusion

In summary, toxicity/bioaccumulation/spatial element distribution
of two different sources of Cd (CdCl2 and Cd-based QDs) in the aquatic
model organism L. minor was tested. Several measured endpoints did

not differ between the plants exposed to different types of Cd com-
pounds. As observed by LIBS and ICP-OES analyses, CdCl2, MPA-QDs
and GSH-QDs showed the same bioaccumulation pattern in L. minor
fronds, which quantitatively depends on Cd concentration but spatially
independent both on Cd concentration and its source. Inspecting L.
minor fronds with TEM revealed no visible surface attachment of QDs or
their aggregates as well as no presence of QDs inside plant tissues.
These results strongly point to the conclusion that Cd accumulated by L.
minor originated from dissolved Cd2+ ions that were released into test
medium from QD core; they also suggest that employed coatings did not
stabilize QDs against dissolution. Our results are in line with the current
findings of other researchers studying the response of algae and plants
to Cd-based QDs (Xu et al., 2010; Domingos et al., 2011; Navarro et al.,
2012; Koo et al., 2015).

However, comparing the dose-response dependences growth rate
inhibition and final biomass inhibition of L. minor to Cd concentration
for different Cd compounds revealed that toxicity of QDs to L. minor was
comparable, but significantly lower than that of the CdCl2. It was pre-
sumed that the concentration of dissolved Cd2+ ions was lower than the
concentration of Cd2+ in the CdCl2-spiked test media. Our results show
that MPA-QDs and GSH-QDs may be toxic to L. minor due to unstable
coatings that do not prevent leaching of Cd2+ from QD core, but less
toxic than CdCl2 at approximately the same total Cd exposure con-
centrations.
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I have reviewed the utilization of the Principal Component Analysis (PCA) for the pro-
cessing of Laser-Induced Breakdown Spectroscopy data. The article reflects the utilization
of PCA and its variations (PCR and SIMCA) across applications and also gives overall
comparison of the performance of selected PCA-based algorithms with their counterparts.
The scope covers the data preprocessing, visualization, dimensionality reduction, model
building, classification, quantification and non-conventional multivariate mapping. A list
of recommendations is given as a conclusion to this article; namely:

∙ having a solid theoretical background in laser spectroscopy, statistics (incl. MVDA
algorithms),

∙ optimizing experimental design and obtaining statistically valuable dataset,

∙ applying information-sensitive preprocessing steps,

∙ implementing sophisticated MVDA algorithms with awareness of over-training and
providing detailed report on their implementation.

Those recommendations may be transferred also to data obtained using other analytical
techniques.
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A B S T R A C T

An implementation of a fast, robust, and effective algorithm is inevitable in modern multivariate data analysis
(MVDA). The principal component analysis (PCA) algorithm is becoming popular not only in the spectroscopic
community because it complies with the qualities mentioned above. PCA is, therefore, often used for the pro-
cessing of detected multivariate signal (characteristic spectra). Over the past decade, PCA has been adopted by
the Laser-Induced Breakdown Spectroscopy (LIBS) community and the number of scientific articles referring to
PCA steadily increases. The interest in PCA is not caused only by the basic need to obtain a fast data visualization
on a lower dimensional scale and to inspect the most prominent variables. Most recently, PCA has also been
applied to yield unconventional data analyses, i.e. processing of large scale LIBS maps. However, a rapid de-
velopment of LIBS-related instrumentation and applications has led to some non-uniform methodologies in the
implementation and utilization of MVDA, including PCA. Thus, in this work, we critically assess and elaborate on
the approaches to utilize PCA in LIBS data processing. The aim of this article is also to derive some implications
and to suggest advice in data preprocessing, visualization, dimensionality reduction, model building, classifi-
cation, quantification and non-conventional multivariate mapping. This review reflects also other MVDA algo-
rithms than PCA and consequently, presented conclusions and recommendations can be generalized.

1. Introduction

Sample characterization using Laser-Induced Breakdown
Spectroscopy (LIBS) technique has been dynamically advancing in re-
cent years. The parameters of conventionally utilized analytical in-
strumentation (lasers, spectrometers, and detectors) are being con-
stantly improved. Moreover, the complicated or basic lab-built systems
have been transformed to the sophisticated and commercially available
systems, which enable an effortless and fast spectroscopic analysis.
Contemporary state-of-the-art LIBS systems are capable of a high-end
performance analysis (repetition rate, resolution, sensitivity). The high-
end performance of LIBS is in certain cases superior to the performance
of its analytical counterparts or reference techniques, such as Laser-
Ablation Inductively Coupled Plasma (LA-ICP) based techniques, X-ray
Fluorescence (XRF), etc.

LIBS is a well-established technique in many different applications,
such as biology [1–4], geology [5], and industry [6]. The reason is the
simplicity and robustness of the LIBS instrumentation together with its

capability of a fast-throughput multielemental analysis. Its potential has
been repeatedly demonstrated by its high-end lab-based [7], in-situ and
stand-off [8,9], and even extraterrestrial [10,11] utilization.

LIBS is one of the atomic emission spectroscopic techniques
[6,12,13] based on the laser ablation sampling. Thorough articles were
published with the aim to review the basic theory of the Laser-Induced
Plasma (LIP) formation [14–16] and LIBS in general [17–20].

The introduction covering the basic theory about LIBS technique
was brief because this review article targets namely the aspects of data
processing. The reader should follow referenced books and review ar-
ticles for more detailed background of LIBS theory prior to any further
data processing through MVDA algorithms. As it was emphasized by
Hahn and Omenetto [17]: “advanced chemometric algorithms must be
used with knowledge of what emission features (e.g. atomic or molecular
emission peaks) are providing the associated discrimination.”

A typical LIBS system is able to provide a high number of mea-
surements (given by its repetition rate) when each measurement is
described by a high number of variables (especially in the case of
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echelle spectrometers). Note that the high repetition rate systems are
mentioned for their leading edge in the LIBS applications, however,
obtaining large number of measurements is not strictly related to LIBS
systems with high repetition rate. The collected LIP spectrum is rich in
information and represents the sample from which it originated, i.e. the
chemical/spectral fingerprint of the sample [21,22]. The processing of
large scale datasets is a demanding task which can be accomplished by
using the so-called multivariate data analysis (MVDA; often related to
as chemometric, exploratory data analysis or pattern recognition). It is
noteworthy that unique LIP spectra are strongly affected by the matrix
effect [19] which requires special attention when it comes to the con-
ventional univariate calibration and quantitative analysis. On the con-
trary, the relation to the sample matrix enables a classification of
samples according to their spectral fingerprints using simple MVDA
algorithms. When processing large datasets, there are two more re-
quirements to be met, namely, to process the data in the least possible
time and in the most efficient manner. Efficiency can be measured by
the conservation of variance during the dimensionality reduction, the
sensitivity to outliers and the specificity to discriminate between in-
dividual matrices of analytes.

MVDA algorithms are massively spread throughout the LIBS com-
munity and are used in a number of applications. It may be stated that
the future of the LIBS data analysis lies in the implementation of MVDA
algorithms. The use of multivariate algorithms for processing of spec-
troscopic data has already been well documented [23–26]. Moreover,
several review articles [5,17,27,28] dealt solely with the multivariate
processing of LIBS data. A full chapter in the LIBS book by Cremers and
Radziemski [12] was also dedicated to this topic. Based on the litera-
ture survey, the most popular MVDA algorithm in the LIBS community
is the Principal Component Analysis (PCA). This simple linear algo-
rithm provides powerful means of data visualization and pattern re-
cognition on a lower-dimensional scale.

Based on our thorough literature research, the methodological ap-
proaches in the processing of LIBS data through MVDA algorithms
significantly differ. This is given i) by the needs of a particular appli-
cation, ii) by the uniqueness of the data acquisition and data size, iii) by
the data topology, iv) by the variety of MVDA algorithms and also v) by
the internal methodology of each research group. Consequently, there is
not a unified approach and it might not exist in the future. Moreover, a
wide range of MVDA algorithms together with the available software
for the processing of data creates an option to perform a reachable and
easy-to-use analysis. This might lead to the misguided implementation
of these algorithms and software, i.e. when their use leads to aesthetic
improvement of low-quality data (high fluctuation, low sensitivity, etc.)
[29]. Nevertheless, it has to be stressed that a stable and optimized
analytical system providing a reproducible high-performance analysis
(high-quality data) should be the cornerstone of any experimental
work. The same is valid for the understanding of the theory of i) LIBS
(e.g. laser-ablation and plasma dynamics and its properties) and ii)
MVDA algorithms and their considerate and judicious implementation
in the data analysis process [17].

In this work we bring a summary of the most common approaches in
the implementation of PCA in LIBS data analysis for: low-dimensional
visualization, clustering, outliers filtering, variable selection, quantifi-
cation, classification, and non-conventional multivariate mapping.
Additionally, general suggestions for the data preprocessing and the
model building, as well as a comparison with the performance of other
MVDA counterparts, are given.

2. Multivariate data analysis

2.1. Data preprocessing

Prior to an implementation of any MVDA algorithm such as PCA and
its variations, it is strongly advised to preprocess the obtained data
[28,30]. Detected multivariate signal in its raw state is burdened with

unwanted background signal, fluctuation in the experimental para-
meters, etc. It has to be kept in mind that the data structure is changing
during the data handling. This leads to consecutive changes in the
performance of MVDA algorithm applied to the final data [31]. In
general, there is a whole list of data preprocessing algorithms that
should be considered prior to any MVDA. The order of the im-
plementation of individual preprocessing steps is not given, therefore
we propose the following one based on our experience and data pro-
cessing algorithms found throughout the literature research. For the
sake of briefness, individual steps are reviewed only tangentially. Re-
ferences to relevant, more detailed literature are given.

First of all, we advise to collect a high number of representative
spectra per each sample to get robust statistics. Obtained data (the
sample from the parent distribution) are organized into the data matrix
X with n rows (n is the total number of spectra from all investigated
samples) and p columns (variables related to wavelengths or even
processed intensities of spectral lines). Harrington [32] also suggests
checking the structure of the matrix and its rank.

Background subtraction mitigates the contribution from the back-
ground noise and any non-gated background continuum radiation. Van
Veen and de Loos-Vollebregt [33] reviewed and compared several al-
gorithms for the background correction of optical emission signal in ICP
applications. Smoothing the spectrum is a possible way of correction
[34]. Both preprocessing steps truncate certain amount of information
that could be sacrificed for the sake of improved performance [35].
Most often, time-resolved detectors are used in order to avoid unwanted
background from the continuum emission. Contrary to that, Myakalwar
et al. [36] proved that it is possible to classify samples based on non-
gated spectra detected using low-cost Czerny-Turner spectrometers and
time-integrated detectors.

Row-wise spectra normalization, i.e. internal standardization
[37–39] might reduce the influence of any potential fluctuations and
dependence on the sample matrix. Most common ways of internal
standardization (to matrix line intensity, to total spectral intensity, etc.)
are described and compared in the aforementioned publications [40].
However, Colao et al. [41], with reference to Sirven et al. [42], sug-
gested avoiding the utilization of matrix element for internal standar-
dization, especially in cases when the content of the matrix element
significantly changes throughout the sample set. Sirven et al. [43]
proposed to use the background intensity as an alternative to the con-
ventionally used standardization procedures. This approach was also
applied in other works [41,44]. To mention another possibility for
signal normalization, Death et al. [45] normalized spectra to regions of
minimal variance. By contrast, they used the total spectral intensity in
their further work [46].

The row-wise standardization is often followed by the column-wise
mean centering and scaling. Column-wise mean centering is required to
fulfill the underlying mathematical assumptions used to derive certain
MVDA algorithms. In that case, mean value of each column (variable) is
subtracted and thus moving the center of mass of data points (so-called
scores) towards the beginning of a coordinate system. In the column-
wise scaling, each variable is divided by its standard deviation and thus
provides a sort of standardization of variables, i.e. the significance of
variables is then unified. The process of mean centering and scaling is
also referred to as standard normal variate (SNV). The whole process
assumes that data follow the Gaussian distribution. However, this is not
the case of LIBS data where data are also found under extreme value
distribution [47,48]. Doucet et al. [49] compared impact of mean-
centering and scaling on the performance of the principal component
regression (PCR) and the partial least squares regression (PLSR) quan-
tification. Porizka et al. [39] investigated the impact of column-wise
mean centering and scaling in the case of steel, Al alloys and sedi-
mentary ores data. They concluded that column-wise scaling should be
avoided in the case of raw, unprocessed spectra that include back-
ground noise.

Detected spectra contain raw information described as the intensity
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versus wavelength. In the most ideal case, the individual spectral lines
should be assigned to elements and their relative intensities should be
quantitatively processed prior to any exploratory data analysis. That
leads to the significantly lower dimension of the variables based on the
sample composition (i.e. content of individual analytes). The intensity
estimation of the spectral line may be done in several ways [6,12,13].
Deriving the intensity of the analyte is more convenient from the per-
spective of further processing of the data matrix X by MVDA algo-
rithms, i.e. the lower the rank of X, the faster the computation response.
This approach is not so straightforward due to the necessary calibration
of the system to individual analytes and related sample matrices. To
make the preprocessing simple and convenient, the spectra are mostly
kept in their raw state when introduced to MVDA, as it is evident in
many publications, see Section 3.3.

Spectral lines are usually manually assigned by comparing the wa-
velengths to spectral libraries [50,51]. Those libraries contain a high
number of spectral lines and the decision making is mostly up to the
researcher who has an incomplete list of parameters (ionization, energy
levels, Einstein coefficients or degeneracy levels). Apart from that, li-
braries specially dedicated to the LIBS purposes with limited selected
spectral lines also exist [52,53]. The automatic approach in line as-
signment was also demonstrated by Amato et al. [54].

To deliver a complete set of steps in the data processing, we in-
troduce also a brief discussion on the subsetting of the data set and an
estimation of figure of merits. This is, however, not directly related to
the implementation of PCA itself, but leads to PCA-based algorithms
used in the classification (Soft Independent Modelling of Class
Analogies - SIMCA) and quantification (Principal Component
Regression - PCR). In the process of quantitative analysis and classifi-
cation, the model is built using a training subset of the original data.
Then the robustness of this model is cross-validated by a testing subset
of data, usually complementary to the training subset. The dissection of
the original data set into the subsets demands special attention. On one
hand, the data set should be split into the set for modelling and for
testing as suggested by Gottfried in the chapter dedicated to chemo-
metrics [12], i.e. the “split-sample design” [32]. On the other hand, El
Haddad [28] recommends to use another independent subset of original
data - a validation subset - for the validation of the model in order to
avoid its under- or over-fitting. Naturally, a model performs better
when similar data are in both the training and the test sets. Never-
theless, Anderson et al. [55] avoided the over-optimistic assessment of
results by assigning the similar spectra only to either the training or the
test set. They tested five different ways to select the training set. The
testing part should be followed by an estimation of figures of merit.

Porizka et al. [56] repeated the random selection of the model and
test data subsets and showed slight differences in resulting figures of
merit. This study supported the urgent need for an elaborate selection
of data in order to cover the natural fluctuation within the original
dataset. The figures of merit serve mainly as a metric for comparison of
LIBS systems and approaches suggested by individual research groups.
Individual figures of merit are summarized elsewhere [17,28]. The
original body of work by Voigtman [57] should be studied prior to the
estimation of LODs.

2.2. Principal component analysis

If we consider investigating p-dimensional space by the 2D projec-
tions of pairs of variables then we will have to depict 1

2
p(p− 1) scatter

plots. However, that is a tedious and misleading process. As a response
to this, PCA was introduced by Pearson in 1901 [58] with the aim to
find lines and planes that could fit the set of points in the p-dimensional
space. Later on, in 1933, Hotelling [59] derived the algebraic form of
PCA similar to the one of Factor Analysis (FA). In both cases, PCA can
be generalized to an algorithm as it is known today, i.e. visualizing
complex multivariate data on a low-dimensional scale. Moreover, the
suggested dimensionality reduction retains the most of the variance

carried by the original data. From that essence, PCA is used as an ef-
fective tool for the exploratory data analysis and pattern recognition.
PCA provides a dimensionality reduction of the original data set by the
generalization of the original variance. This is done by a transformation
of the original high-dimensional space (wavelength as variables) into a
smaller set of independent variables, i.e. principal components (PCs).
The data projection by PCA concerns only the variances between the
objects and their structure and it is unsupervised, i.e. there is no direct
relation to, for instance, a sample class or the content of investigated
analyte. From the geometric point of view [60], there is a line (the first
principal component) going through the center of gravity of n points in
the p-dimensional space and carrying the information of the highest
variance within the respective data set.

The PCA algorithm is based on the covariance or correlation matrix,
depending on the utilized algorithm, and therefore the data should
satisfy certain assumptions [61]. Two main assumptions are i) line-
arity: all variables should be linearly correlated and ii) normal dis-
tribution: each variable should follow the normal distribution. How-
ever, both main assumption are not met in the LIBS experiment. The
linearity of spectral response (intensity of analytical line versus analyte
content) breaks at certain point. This issue is, for instance, well de-
scribed in the review by Hahn and Omenetto [17]. The normality of
data distribution was disproved by Klus et al. [48]. However, this fact is
not considered throughout the LIBS literature. Thus, we will proceed
with our review regardless of validity of mentioned assumptions.

PCA essentially provides three outputs: i) variance, ii) loadings and
iii) scores. It is possible to create a PCA model of the original data
matrix in several ways: the power method, Singular Value
Decomposition (SVD), Nonlinear Iterative Partial Least Squares
(NIPALS), etc. To overcome the problems of non-linear data, the kernel
[62] or robust [63,64] PCA algorithms may be used, showing improved
figures of merit in comparison with typical PCA. Other algorithms, for
instance the Discriminant Function Analysis (DFA) [65–67], In-
dependent Component Analysis (ICA) [68] and Self-Organizing Maps
(or Kohonen Maps) [69] present an alternative to PCA and might be
applied for the projection and visualization on a low-dimensional scale.
Topological Data Analysis (TDA) is also promising in the data analysis,
yet, to the best of our knowledge, still not applied for the visualization
of LIBS data.

2.2.1. Variance and selecting the number of PCs
The data points are distributed in the k-dimensional (k being the

number of constructed PCs) space and the data set may be described by
a parameter called variance [70]. Considering the sample of points from
a given population, the variance is given as a sum of standard devia-
tions from the sample mean divided by the total number of objects
minus one. Thus, as it is summarized by Kendal [60], the sum of ei-
genvalues may be estimated as the sum of squares of the distances of all
the objects (data points, scores) from their mean. This sum may be
assigned S, then the ith PC carries a portion of λi/S of the original data
set's total variation.

PCs are arranged in descending order with respect to the variation
that they carry. Therefore, only a first few of them are capable to sa-
tisfactorily describe the original data set. However, the judicious esti-
mation of the optimal number of PCs depends on many factors, such as
the structure and topology of the original data, the application in which
they are going to be used and mainly the experience and expertise of
the researcher. For that reason, the records of the number of PCs in
published articles differ. Most often the optimal number is found to be
in units of PCs but also extreme cases in tens of PCs exist, which is
rather doubtful. In general, finding the optimal number of PCs leads to
the tradeoff between the robustness and over-training of the model.

There are several ways where to cut-off the non-informative PCs
[71]. The first one is the variance explained criteria [72] which gives a
threshold to cumulative variance. Most often, the threshold is set to
90% or 95%. This threshold is set by the operator and can be varied at
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his will. The Cattell's scree plot [73] depicts the explained variance versus
the PCs. The plot is in descending manner and the cut-off is advised to
be done in the elbow of the diagram, i.e. in the place where the steep
part of the diagram levels-off and flattens. The Kaiser's criterion [74]
dictates to cut-off PCs with the eigenvalue lower than 1. This is enabled
by the fact that the average of all eigenvalues is equal to unity.

It is important that the loadings of retained PCs are investigated
after the cut-off in order to check the information that they carry. It is
reasonable to expect that the loadings of higher orders' PCs will de-
scribe only noise. Defernez and Kemsley [75] stress a potential misuse
of MVDA algorithms by the overfitting of the model. In other words, the
higher the number of components the better the MVDA analysis. But
from a certain number of components the model gets over-trained and
fails in predictions of unseen data. It has higher, yet illusive perfor-
mance, giving the results that may be deceptive.

2.2.2. Loadings
The relation between the newly constructed PCs and the original

data are represented by loadings values. Geometrically, the loadings
describe a projection of the original space in the direction of the highest
variation. Thus, the composition of each PC loading describes the most
significant lines contributing to each latent variable. This information is
fundamentally important in the line selection and related dimension-
ality reduction, see Section 3.3.

The loadings matrix P has (m, p) dimensions. Loadings are usually
plotted against the wavelengths. But in some articles [44,76,77] load-
ings were presented in the form of cross-plots, showing the relation of
each wavelength variable in respective PCs.

2.2.3. Scores
When a PCA model of the original data is constructed, a certain

number of PCs is selected giving a k-dimensional space. The scores are
coordinates of the original objects in this newly constructed low-di-
mensional space. In contrast to the original space, which is organized in
arbitrary order (determined by the experiment), PCs are organized
according to the structure of the dataset (described by the variance).
Thus, plotting of the most significant PCs quickly shows the structure of
the dataset. The information from scores can be used in many appli-
cations as described in following sections.

The pattern recognition approach is based on the fact that the
spectra which are mutually similar group together and form a joint
cluster. Of course, it is supposed that, prior to the multivariate visua-
lization, the spectra of each sample are highly correlated, having si-
milar spectral fingerprint, and thus should share the same cluster. The
size of the cluster is related to the fluctuation in the measurement
(analytical system instability, local sample inhomogeneity, etc.). It may
be stated that the higher the fluctuation, the broader the distribution of
points in the cluster. Yet still, this projection is unsupervised and any
conclusion drawn from this subspace (such as clustering or classifica-
tion) reflects the real structure of the data, regardless of their origin, i.e.
relation to individual sample.

3. PCA in LIBS

Advances in instrumentation development enable measurements
with higher repetition rates, broader spectral ranges and better re-
solutions. Nowadays, an analysis results in datasets with thousands of
variables [78] and millions of spectra [7]. Thus, the state-of-the-art
LIBS system routinely provides big datasets (high number of spectra
and variables) and so it is crucial to manage an effective and fast-re-
sponse data processing. The MVDA algorithms must be applied into the
analytical data correctly and with information-sensitivity.

When it comes to the exploratory analysis of spectroscopic data,
PCA is the most often used algorithm. The first goal is to find simila-
rities and patterns in the data that can lead to more complex conclu-
sions about the sample set under investigation, i.e. clustering. However,

PCA is an unsupervised learning algorithm and thus the projection
created by PCA has to be carefully evaluated. Moreover, PCA deals with
the overall variation in the data and may be overloaded with the
fluctuation or outliers present in the data set. Consequently, PCA might
not be able to accurately cluster individual samples [27].

PCA and its alterations (PCR and SIMCA) have already been suc-
cessfully implemented to the analysis of LIBS data in many applications.
De Lucia and Gottfried [27] brought a brief review on the utilization of
chemometrics in a LIBS data analysis of hazardous and geological
materials, especially focused on the endeavors of the US Army Research
Laboratory. Harmon et al. [5] reviewed a combination of LIBS and
MVDA algorithms in geology. Some more general reviews on processing
of LIBS data through MVDA algorithms [17,28] were also published.

3.1. Data visualization

Structure, topology and quality of the data should be of interest
prior to any further analysis. Therefore, a simple step of data visuali-
zation in a lower dimensional space is of great advantage. Most often,
PCA is used solely for the visualization purposes and understanding of
the fundamental relationship within the data, prior to the classification
and quantification by other algorithms. However, De Lucia et al. [79]
concluded a necessary condition for obtaining a meaningful clustering
of LIBS data via PCA. This is that PCA is convenient when the intraclass
variability is lower than the interclass variability, i.e. the discrimination
gets worse when the intraclass fluctuation increases. Thus, other MVDA
algorithms different from the PCA were also used for the low-dimen-
sional visualization. Sirven et al. [80] showed that data in the PC space,
i.e. their distances to the center of their respective cluster, follow a
normal distribution. This is, however, in contrast to what was published
in aforementioned articles [47,81] assuming the data to follow rather
Extreme Value Distribution (EVD) over the normal distribution. Lazic
et al. [82] suggested improving the linearity of data prior the creation
of multivariate models.

The clustering of data points in the space given by selected original
variables or PCs reflects the differences in unique and characteristic
spectral fingerprints of individual sample matrices. In certain studies,
the loading values were depicted directly in the PC space to show the
significant variables in each PC [83,84]. It is obvious that a clustering of
samples with distinct differences in their composition of matrix ele-
ments is quite effortless. Goode et al. [85] used PCA and the hier-
archical cluster analysis (HCA) to show the possibility of clustering of
LIBS data from various alloys and steel samples. Erdem et al. [86] used
PCA to study archaeological pottery from eastern Turkey, suggesting
some correlations between the composition of pottery and local
sources. Gregoire et al. [87] used PCA to visualize polymer samples
prior their classification by PLS. Vitkova et al. [88] explored clustering
of data from various solid samples with PCA and then applied LDA and
SVM for classification.

When LIBS is used in geological applications, it results in a large
amount of data for the consequent MVDA analysis. Gottfried et al. [83]
studied the topology of the minerals spectra in the PC space prior their
classification using PLS-DA. Their spectra showed significant differ-
ences in detected spectral lines and relative intensities. A similar phe-
nomenon was shown by Porizka et al. [89]. They presented a study
describing, among other things, the differences in the visualization of
minerals by PC space based on the broadband echelle spectra
(200–1000 nm) and narrowband Czerny-Turner spectra (60 nm cen-
tered around 305 nm and 405 nm), see Fig. 1. The distinct separation
and compactness of data clusters was retained. But the eigensystem, i.e.
structure, of the data matrices changed accordingly to the composition
of variables in the selected wavelength ranges. This is natural for data
obtained by using different LIBS systems and/or under varying analy-
tical settings.

Clustering and classification of material based on already estab-
lished data libraries would be of great interest to many research groups.
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Lanza et al. [90] provided a discrimination of carbonate minerals in the
PCA space; data were measured using the MSL Curiosity. Moreover,
such analysis naturally leads to a provenance study. McManus et al.
[91] used PCA for a provenance study of gemstones from 3 US states.
The major concern of their provenance study was a diverse database
covering varieties of geological materials including complex metadata
(including original GPS locations of collected samples). That was,
however, a very bold idea that would be hardly met in reality. Alvey
et al. [92] executed an extensive provenance study of 157 garnet mi-
nerals from 92 world-wide locations and arranged them in a reduced PC
space.

Studying organic material and polymers is also of considerable in-
terest, however, the discrimination of related data depends only on the
ratios and relative intensities of major elements (C, H, N, and O) and
molecular bands (CN and C2). This aspect makes the classification of
such samples very challenging, moreover, some more sophisticated and
non-linear algorithms are needed. Despite that, De Lucia and Gottfried
[93] showed a possibility to discriminate spectra of explosives samples
in PC space (3 PCs accounting for 92% of variance). Labbe et al. [94]
presented a PCA of biological samples where the first two principal
components stood for 99% of variance; the first PC represented 98%
and the second only 1% of total variance. The influence of the substrate
on the bacterial spectra was also studied [84,95]. It was shown that
PCA was capable to discriminate bacteria of different strains, even
when the samples were analyzed on different surfaces. During the
sampling of thin films (such as bacteria strains spread on the substrates)
a certain amount of the substrate itself was also ablated and its char-
acteristic radiation contributed to the detected spectra. Therefore, it
was necessary to filter this contribution out because it had no particular
analytical meaning and could be confusing for the consecutive MVDA.

Another interesting conclusion concerns the analysis of biological
samples and polymers by LIBS in general. Spectra of those samples
reflect compositions that form complex molecules namely in C, H, N
and O in the samples. Thus, the techniques providing molecular in-
formation (such as Raman spectroscopy) are more suitable for this kind
of analysis. Despite that, LIBS proved to be a powerful alternative.
Landström et al. [96] applied PCA directly on echellograms (CCD
images of plasma characteristic radiation spectrally resolved via an
echelle spectrometer) to discriminate biological and chemical warfare
agents.

Tandem systems (such as the complementary LIBS and Raman
spectroscopy techniques) are often used to gain more information
(elemental and molecular composition) from the sample [97]. This, in
turn, improves the MVDA algorithms' performance. Hoehse et al. [98]
used PCA to visualize inks and pigments measured by LIBS and Raman
spectroscopy, and a similar analysis was done by Prochazka et al. [99]

on bacteria samples. In both cases, the LIBS and Raman spectra were
simply merged together. Naturally, the combination of LIBS and Raman
spectra improved the visualization and classification of samples.

It is also worth mentioning that PCA was used for a visualization of
biological warfare agents based on the typical 1D spectra (intensity vs.
wavelength) and 2D echellograms (images downloaded directly from
the CCD detector on an echelle spectrometer) [100]. Porizka et al. [78]
further developed the concept of echellograms proposed by Larsson
et al. [100]. They proved the possibility to use directly the truncated
information obtained from a CCD detector and to accelerate the data
processing. In this kind of analysis it is not necessary to slow down the
computing process by downloading and transforming the echellograms
to spectra. Transforming a large amount of data is the bottleneck of the
analysis when it comes to a potential utilization of echelle spectro-
meters in the high-repetition rate experiments. In fact, only a limited
number of pixels from the whole megapixel image is necessary. Such an
approach may lead to a significant enhancement of the repetition rate
with an intensified detection of broadband spectra (using echelle
spectrometers and sCMOS detectors).

Lasue et al. [101] compared PCA, ICA and Sammon's map (SM) for a
visualization of ChemCam data. Of course, non-linear SM proved its
supremacy over the other algorithms but this supremacy appeared only
because of inconsiderably selected figures of merit. They used the stress
function by applying the distances between points of the same cluster
(the stress value of 26% for PCA, 17% for ICA and 4% for SM).
Nevertheless, this indicator (stress value) is unfair because the SM
model of the original data space is provided by finding the global
minimum of the stress function. Moreover, no optimization of the
number of PCs or ICs is done and the methods are compared strictly in
the 2D space. Harmon et al. [102] used PLS-DA latent variable to study
the clustering distribution of minerals spectra. Klus et al. [103] used
SOMs in a similar analysis to show clustering of spectra of similar mi-
nerals in the grid of a self-organized map.

3.2. Multivariate elemental mapping

Mapping of elements and their distribution on the sample surface by
using LIBS is a well-known method [1]. In the elemental mapping, a
location on the sample surface, i.e. on the map, is represented by a
relative intensity of selected spectral line of the element or even by the
content of this element. But, most recently, the application of PCA has
transformed the data analysis from a basic visualization in a reduced
dimensional space to more sophisticated approaches. When the scores
of selected PCs are depicted in the map (hereinafter referred to as
multivariate map) it can represent a distribution of elements' combi-
nations or even of individual matrices. This approach gives an

Fig. 1. This figure depicts a difference in PCA projection based on data from a) broad-range echelle spectra (200–1000 nm), and short-band (60 nm window) Czerny-
Turner spectra at b) 305 nm central wavelength and c) 405 nm central wavelength. Data represent 28 sedimentary rocks in four different matrices. Obtained from
[89] with permission provided by Elsevier and Copyright Clearance Center, license number: 4347640902794. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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additional insight into a sample composition and a relation of in-
dividual phases (depending on the sample and the structure of original
data). The meaning of PCs is then described as the original data by
respective loadings and their spectral structure. The surface mapping of
heterogeneous samples surfaces is in the spotlight of geological ana-
lysis, while it enables an elaborate understanding of individual phases
and their distribution on the sample surface. This is due to the con-
venience in sample form (hard solid matrix) and its fast, straightfor-
ward preparation (cutting and polishing). Nevertheless, this approach
in multivariate mapping of geological-sample surfaces may spread also
to other applications.

Amador-Hernandez et al. [104] used LIBS to analyze printed elec-
trodes in 3D. The mapping of the surface was provided in 25×13 spots
and 10 consecutive layers. Intensities of Ag, Al, Au, C, Pd, Pt, and Ti
spectral lines were estimated and proceeded to a PCA for further di-
mensionality reduction of data from layers 1, 3, 6 and 10. Cluster
analysis (k-means clustering) was then applied on selected PCs, sepa-
rately on data from each individual layer. From each layer, up to 3 PCs
covering joint variance from 88.6% to 94.1% were selected. Data points
were then assigned to a defined number of classes and depicted in the
map showing the distribution of materials rather than elements in the
investigated layers. In their following study [105], authors further
worked with the same data set showing only PC scores biplots with
distinct clusters.

In the work by Klus et al. [81], the distribution of uranium content
in a sandstone-hosted uranium ore was investigated using maps of ur-
anium line distribution (U II 409.01 nm), variation in the intensity of
background (find out more about this in [106]), and values of the first
principal component. All the maps showed a high degree of mutual
numeric correlation. Thus it was found out that the first principal
component (with 82% of variance) is namely representative of the ur-
anium content variation. Another step in the MVDA analysis was done
in order to reduce the original data set for PCA modelling and in turn to
reduce demands on the computing power and computing time. The
original data set was truncated to ∼11% (randomly selected spectra)
which resulted in creation of a model. The PC scores of the rest of the
data set were then predicted based on the PCA model. A predicted map
which was consequently created correlated well with other maps. This
approach turned out to be a promising way of data set truncation with
preserving the information carried by the original data.

Romppanen et al. [107] employed the PCA algorithm (SVD in fact)
in their study of the rare earth elements distribution on the surface of
yttrium-bearing ore minerals. They depicted maps of first 4 PCs (cov-
ering together 99.5% of variance). Individual PCs were related via their
loadings to four sets of elements (Al and Ca; Ca, Y, Fe, and Al; Si, Fe,
and Y; Fe and Y respectively to each PC). In the next step, data points
were plotted in the PC space given by 3 components (PC 2–4) showing
the clusters of individual matrices. It was assumed that spectra would
cluster in this 3D space based on their similarities. Data points were
then colored by their position in this artificial directional cube and
replotted in the map. Finally, the individual clusters were assigned to
minerals present in the sample. Despite a rather demanding data pro-
cessing, the obtained results represented well individual minerals with
a focus on yttrium distribution.

Moncayo et al. [108] performed a study similar to those already
mentioned. They tested the performance of PCA in an analysis of
megapixel elemental maps - a data set compiled of more than 1 million
LIP spectra, see Fig. 2. The sample was highly heterogeneous and
contained matrices of turquoise, pyrite and silica-bearing mineral. It
was once again shown that the stand-alone PCA is capable to dissect the
multidimensional signal and to assign various minerals (matrices) to
individual PCs. The contribution of Si and Ti-bearing minerals was
found. Those minerals were present in low amounts and distributed on
the sample surface. They were present in high order PCs.

The presented PCA approach, or the mapping using MVDA algo-
rithms in general, may be further extended by using other linear (ICA,

TDA) and even non-linear (SOM) MVDA algorithms. Special attention
will be given to SOM because they provide a powerful alternative to
PCA [69]. Klus et al. used SOM for multivariate mapping of U-Zr-Ti-Nb
in sandstones-hosted uranium ores [103]. The total number of 22,500
spectra was modeled, based on their similarities, into 900 neurons.
Neural responses were then correlated with individual spectra and de-
picted in the original map. That showed the isolation of individual
matrices (Si-, Ti- and U-based minerals) and also the affiliation of dif-
ferent elements (U, Zr, and Nb). A similar work was done by Pagnotta
et al. [109] in the study of ancient mortars. LIBS maps of selected
elements were processed through the SOM algorithm to achieve a
segmentation of different materials present on the sample surface.

Another non-conventional utilization of PCA was presented by
Lanza et al. [110]. They used a combination of depth-profiling LIBS
data with PCA for the study of weathered surfaces of basaltic rocks. The
PC scores showed a clear dependence on the depth-profile along the
first PC. The investigation of PC loadings suggested that the amount of
Ca, Na and Mg was increasing when going through the weathered layer
and vice-versa the content of Mn and Ba was decreasing. Such an ap-
plication proves the versatility and flexibility of the data analysis done
by using PCA.

The additional value of multivariate mapping implemented to the
LIBS applications is the fast response and robust processing of MVDA
algorithm. Multivariate mapping may be a new, progressive way in the
exploratory data analysis, enabling to process large data sets without
prior knowledge. Inferred information is clear and can be directly used
for deciphering of the contribution of different matrices and their mu-
tual relations.

3.3. Dimensionality reduction

A typical size of obtained data matrix (n× p, i.e. number of objects
vs. number of variables) varies from experiment to experiment. First of
all, the total spectra set is given by the number of samples and the
number of detected spectra per sample and are usually collected ad hoc
for feasibility studies. Total number of spectra per sample set is rather
low, in many cases not even reaching 100 samples and 1000 spectra, as
it is demonstrated by data collected from reviewed articles and depicted
in the Fig. 3. The reason for that is that the experiment is usually done
using low repetition rate LIBS systems and obtaining large data sets is
thus tedious. From a statistical point of view, large data sets are more
convenient. With higher repetition rates the number of objects (ob-
tained spectra) can grow over thousands. In the case of aforementioned
multivariate elemental mapping, Section 3.2, the number of objects was
in the range of 105 to 106; giving millions of pixels in the elemental
map.

The total number of variables depends on the spectrometer used
during the experiment. Going to extremes, the number of variables can
reach over 40,000 with echelle spectrometers. Overall, the improve-
ment in the instrumentation results in higher number of objects and
variables. This is a shift in the paradigm and a new challenge for data
processing.

In the most extreme case, the size of the data matrix obtained during
a LIBS experiment can be in the range of 106 objects× 104 variables.
Processing such data matrix is then demanding on computing power
and improvement in this aspect is beneficiary. Therefore, in following
chapters, we are going to dissect individual approaches in data pro-
cessing with special attention to a dimensionality reduction in objects
and variables.

3.3.1. Dimensionality reduction in variables
The literature research does not reveal any decisive viewpoint

which would indicate how the number of variables should be reduced,
or if the reduction should be done at all. Keeping the whole spectral
range without any selection of spectral lines and processing of peak
intensities can lead to increased computation demands. It also

P. Pořízka et al. Spectrochimica Acta Part B 148 (2018) 65–82

70



introduces a lot of noise and some correlated, redundant variables into
the model. It is indisputable that the background information may be
beneficial in certain extreme cases. Klus et al. [81] proved the im-
portance of background signal in the multivariate mapping of uranium.
The detection of uranium is challenging due to the high density of lines
that exceed the resolution of a typical spectrometer. Thus, its content in
the sample may be correlated with systematic variations of background
signal.

The utilization of echelle spectrometer gives the possibility to detect
abundant broad-range spectra. Such analysis can be provided also using
broad-range Czerny-Turner spectrometers, however with significantly
lower resolution compared to their echelle counterparts. In general,
such spectrometers are beneficially utilized in the LIBS experiments and
provide extensive data sets for MVDA. On the contrary, Colao et al. [41]
suggested selecting the most significant lines and a related proper wa-
velength range when using a short-band Czerny-Turner spectrometer. A
similar study was introduced by Porizka et al. [89]. It was shown that
the utilization of short-band Czerny-Turner spectrometer instead of
broad-range echelle spectrometer leads to the same classification power

when the spectral window is judiciously selected. Moreover, limits of
detection of selected analytes improved in this experiment. Sirven et al.
[111] used PCA to discriminate between three types of soil prior further
classification and a quantitative analysis by ANN. They showed that a
short spectral window, 10 nm, is sufficient for the discrimination of
data in the PC space. However, shorter band widths led to a low per-
formance.

Another possible way is to filter out the background noise by
thresholding. The level of threshold may be set by the 3σ limit of de-
tection. This approach is not universal and does not consider low in-
tensities of the trace and minor elemental lines. Moreover, detected
intensity below 3σ level is not accepted by the spectroscopic commu-
nity as an analytical signal and should not be used in further data
processing. Thus, there is no reason to associate this under limit in-
tensity as a contribution from any particular element. Sahoo et al. [112]
set manually the threshold to filter the noise from the spectra. Kong
et al. [113] compared the classification performance after dimension-
ality reduction by a selection of spectral lines and a reduction into PCs.
A similar comparison was provided by Lee et al. in the case of classi-
fication of salts using LIBS [114] and tandem LIBS and LA-ICP-MS
techniques [115].

Especially in the case of broad-range echelle spectra, the number of
the informative lines might be overloaded by the number of variables
representing only the background noise. In the worst scenario, such
data could lead to a confusion of the learning method, such as PCA, and
consequently to its poor performance and to biased results [116].
Bousquet et al. [76] applied PCA on the full spectra, regardless of any
information carried by the background and considering good SBR and
SNR. This fact may be acceptable assuming that the systematic change
in strong spectral lines intensities will simply overshadow the con-
tribution from randomly fluctuating background noise. On the contrary,
in their former study [44], they recommended to select only a small
part of the spectra, i.e. relevant information from matrix element lines
(68 lines in total; 4 for Al, 10 for Ca, 31 for Fe, 3 for K, 4 for Mg, 2 for

Fig. 2. This figure depicts the processing of a megapixel elemental map. Data were collected throughout the analysis of a heterogeneous turquoise mineral. a) Scatter
plot of PC4 vs. PC1 with highlighted clusters of data points; clusters represent a similarity in spectral fingerprint of the highlighted spectra. b) Clustered data are
further depicted in the pseudo-colored map to respective location demonstrating the distribution of individual matrices within the heterogeneous sample. c) Spectral
fingerprints of selected matrices: pyrite, turquoise and silicate. Obtained from [108] with permission provided by Royal Society of Chemistry and Copyright
Clearance Center, license number: 4347680572130. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 3. This figure depicts the total number of spectra over total number of
samples collected from 70 articles reviewed in this paper.
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Mn, 11 for Ti, and 3 for Si). Darby Dyar et al. [117] showed that PLSR
was unsuccessful in the quantification of sulfur while using the whole
spectral range. This was then confirmed by the investigation of PCA
loadings where the contribution of sulfur was overshadowed by other
more significant lines. However, from the perspective of this review,
this could be avoided or mitigated by the selection of spectral lines and
their scaling prior to MVDA. The scaling could then lead to the en-
hancement of the sulfur significance in the eigensystem of the data
matrix.

A rigorous wavelength selection and manual elemental line as-
signment is time consuming and tedious. Automatic algorithms de-
signed especially for LIBS applications are still rather lab-made and
commercially not available. Processed line intensities combined with
their ratios can be used but this process demands prior knowledge of
the sample composition. However, the qualitative analysis concerns the
“usual suspects” and an experienced spectroscopist can predict the
composition in major elements and identify the most common spectral
lines typically detected in LIP spectra. Sirven et al. [80] also suggested
selecting only spectral lines of major elements because they are sup-
posed to dominate the MVDA performance. The suggestion was then
not to consider the spectral lines from minor and trace elements. On the
contrary, in their other work [42], they recommended to include
spectral lines of trace elements in the data set. Moreover, they com-
pared the classification power of the system based on spectra with the
artificially lowered resolving power (from the original 10,000 to final
2800). After a variable down selection, the physical interpretation of
the loadings was much easier. They reduced the number of variables to
41 lines of 10 elements based on the PC loadings in consecutive steps of
a global PCA approach. Then the number of variables was limited even
to 10 lines (one line per each element) with a high classification ac-
curacy proving that a low number of variables is not limiting when they
are judiciously selected.

Gottfried et al. [83] used PCA for a significant feature identification
of mineral spectra, naturally lines of Ca, Si, Na, and K together with Sr,
Li, and Mg were identified. Lewis et al. [84] cross-plotted loadings of
PCs to see the impact of individual variables on the variance describing
the data set. Then, variables with a low impact were discarded from
further computation. The authors showed that the contribution of Ca,
Mg and trace elements had a significant impact on the analysis of
bacteria. Pereira et al. [118] used PCA loadings to select major con-
stituents, macro- and micro-nutrients responsible for the discrimination
of spectra from LIBS analysis of plants, citrus leaves.

Munson et al. [119] investigated various approaches in di-
mensionality reduction in order to improve the classification capability
between bacterial and chemical warfare agents. They used a) six lines
(P, C, H, and O) and combination of their ratios and b) simple masks
omitting the whole spectral range except the regions around selected
lines. The approach using various ratios of line intensities brings a way
to artificially increase the number of information-carrying variables.
This may in turn improve the performance of MVDA algorithms.
Moreover, the selection and processing of spectral lines enables to scale
the variables and thus to unify their impact on the performance of
MVDA. Anderson et al. [55] used five different approaches to improve
the quantitative performance of PLSR. This was achieved via pre-se-
lection of training and test subsets using PCA prior to k-means and
hierarchical clustering, and SIMCA. They have simulated the Mars
conditions (ChemCam system, pressure, distance) for over than 220 ore
samples. They used the full spectral ranges despite the statement which
claims the improved performance after variable selection. Anabitarte
et al. [120] used kernel PCA to reduce dimensions prior to SVM in order
to detect Al impurities in steel coatings. A relatively high number of 100
PCs was used in this study, then this number was further reduced to 8,
5, 3 and 1 PC showing that at least 3 PCs were necessary to achieve
accurate results.

Selecting the right number of PCs is also of great interest in this
case. This has to be done in order to avoid any overtraining and biased

results. Typically, the high number PCs cover mostly only noise and,
therefore, are usually omitted from computation. Marcos-Martinez
et al. [121] stated that PCA for dimensionality reduction actually led to
a decrease of the ANN's analytical performance. However, this is in
contrast with aforementioned papers and should be accepted with care.

Variable Importance in Projection (VIP) presents a powerful way to
identify the most prominent lines. The VIP is connected to factors
provided by PLS models of the original data [122]. De Lucia et al. [123]
studied the influence of the number of variables versus the whole
spectra approach in the classification process of explosives spectra
through PLS-DA. The set of variables was chosen by VIP having a score
higher than 1.0. Naturally the contribution of C, H, N, O and molecules
of C2 and CN were the most significant in the analysis of explosives.
After this selection, the number of selected variables was extended by
their ratios, sums and combinations. It is noteworthy that this process is
not fully correct from the mathematical point of view and should be
approached cautiously. Regardless of our comment, this process was
done twice, in the first case they got 40 variables and in the second case
177 variables. In the latter case, the ratios and combinations of vari-
ables followed stoichiometry and relative amounts of C, H, N, and O in
the molecular bonds of analyzed samples. It was shown that the latter
model had performed better than the first one, which proves the ne-
cessity to incorporate a higher degree of variability. The whole spectra
model gave the best results, however, its performance was doubted by
the authors due to the fact that the VIP procedure indicated a possible
classification by factor not related to the contribution of C, H, N and O.
Fink et al. [124] used a genetic algorithm to select variables prior to
PCR and PLSR of analytes (such as Sb, Sn, and Ti) in plastic samples.
They selected from 9 to 87 variables or the whole spectral ranges (up to
200 nm) for the PCR and PLSR models. The performance of the models
based on the whole spectral ranges was significantly inferior. This once
again proved the necessity to preprocess the data appropriately prior to
any MVDA.

Corsi et al. [125] introduced an interesting way of the dimension-
ality reduction, similarly it was suggested in Section 3.1. The content of
11 elements within the archaeological samples (copper-based artefacts)
was estimated by the Calibration Free (CF) LIBS [126]. The reduced
data set (13 objects described by 11 variables) was then introduced into
the PCA (66.3% of joint variance in the first two PCs). This is in contrast
to typical analysis of raw LIP spectra.

PCA provides the dimensionality reduction of the original data set
to a smaller set of independent variables but preserving the most of the
variance. This essential feature of PCA may then be used primarily for
data processing while the lower number of variables can fully represent
the original data set. It is necessary to overcome the curse of di-
mensionality and select a right number of latent variables [127]. Then
the selected number of PCs can be further used for classification and
quantification purposes. A review of articles in which the authors im-
plemented the reduced PC space for an exploratory data analysis and
consecutive unsupervised classification is given in Section 4.

3.3.2. Dimensionality reduction in objects
The distinct separation of individual data points in PCA space sug-

gests that samples can be classified based on characteristic LIBS spectra.
However, PCA focuses on variances among data. Thus, any significantly
different data overload the discrimination power of PCA and some
smaller differences among the rest of the data are mitigated.

Multari et al. [128] suggested an approach to overcome this pro-
blem. Any well-discriminated and distinctly outlying cluster of data
(spectra of a sample) is removed from the data set. Consequently, PCA
is applied once again on the truncated data set when the differences
between the formerly overlapped data points in the PC space are now
revealed. This step-by-step approach may be regarded as a sort of di-
mensionality reduction in the sense of number of objects. This in turn
reduces the variation in the data and changes significantly the data
structure and topology. A US patent was issued [129] claiming
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aforementioned data processing steps. Before this patent, Sirven et al.
[42] suggested a so-called global PCA that works in step-by-step mode
for estimation of geographical origin of uranium ores, see Fig. 4. This
algorithm was used for a mitigation of the number of data and a con-
sequent implementation of MVDA to reduced space; this was done si-
milarly to the approach patented by Multari. This successive approach
was then adopted by Colao et al. [41] for the identification of historical
building materials.

Anderson et al. [55] studied a possibility to reduce the number of
samples in order to reduce the computation burden. Only samples lying
furthest from a cluster center were selected and used for a furthest-
neighbor clustering tree. Other samples were discarded from modelling.
Thus, this approach retains the biggest amount of variation in the data
and at the same time avoids redundancy. The authors also reduced the
original data set by PCA prior to the construction of a dendrogram.
Despite their efforts, the most reliable results were obtained when they
used the full training sets, covering quite a large amount of variation
and diversity. Fink et al. [124] claimed to use PCA to select the samples
with the highest statistical leverage for the calibration purposes.
However, this process was not further commented.

3.3.3. Outliers filtering
It is crucial to preprocess the data prior to any further im-

plementation of MVDA algorithms, Section 3.1. Outliers filtering should
be also considered; especially when the internal standardization is not
sufficiently effective in mitigating the fluctuations of analytical signal.

In that respect PCA is a powerful candidate because its essence is being
sensitive to high order of variation, which might lead to detection of
outliers.

In general, it could be assumed that spectra detected from a shot-to-
shot analysis of the homogeneous sample should possess a high degree
of mutual correlation. Each spectrum is described by a unique set of
values, i.e. descriptors, (correlation coefficient, Euclidean distance to
the center of PC space, total energy of the spectrum, intensity of matrix
lines, etc.). Selected descriptors represent analyzed spectra and relate
them to the rest of the data set. The descriptors also enable a com-
parison of analyzed spectra with the rest of the data set. Those values
are then compared and thresholded (either visually or numerically)
which leads to a truncated data set with more similar spectra. This high
mutual correlation may be demonstrated by a compact cluster of points
in the PC space. The threshold level should be set carefully. Harder
filtering should be avoided because it significantly influences the to-
pology of the data, especially in the case of modelling. Fluctuation is
natural to certain extent and describes the response of analytical system
[32]. Therefore, only the most outlying points should be filtered.

Signal fluctuation is of great concern in LIBS and is a result of many
independent parameters influencing the laser-matter interaction, which
is usually concluded as the matrix-effect. The source of fluctuation is
laser temporal instability, local heterogeneities on the sample surface,
etc. The process of material ablation and consecutive plasma formation
is therefore not stable from shot-to-shot perspective. The properties of
laser-induced plasma (described by its temperature and electron den-
sity) are significantly affected together with emitted analytical signal.
Those aspects increase the standard deviation (variance) of data points
in the p-dimensional space and decrease the performance of the MVDA
technique, which is then reflected in the resulting figure of merits.

Outliers filtering is a possible preprocessing step mitigating the
analytical signal fluctuation. But, as it is typical in LIBS applications,
the experimental parameters and protocols in data processing are op-
timized ad hoc and various approaches and algorithms are used. This
leads also to non-unified ways of outliers filtering such as linear cor-
relation [130], dendrogram [112], Student's t-test after the computa-
tion of the Mahalanobis distances of individual spectra in the original
data space [131], total energy of each spectrum [132], or intensity of
matrix lines [133,134]. PCA for outliers filtering was introduced into
the processing of LIBS data by Sirven et al. [80]. They used basic visual
thresholding and omitted up to 30% of spectra prior to a rocks classi-
fication in a preflight ChemCam testing. In their further work [42] they
judged outliers based on the abnormal value of their residual fit.
Myakalwar et al. [36] used a dendrogram after the PCA dimensionality
reduction in order to detect outliers in the analysis of pharmaceutics.
Porizka et al. [77] improved the quantitative analysis of Cu in igneous
rocks by filtering based on the distribution of data points in the PCA
space. Prochazka et al. [99] applied PCA on the set of measurements of
the same sample. In the space given by PC1 and PC2, the most outlying
points (those with the biggest distance from the weighted center) were
omitted and PCA was recalculated. This procedure was repeated until
the selected number of the most similar measurements remained.

Porizka et al. [56] compared impact of three different approaches
for outliers filtering (PCA, linear correlation, and total energy) on
classification based on the selected figures of merit (overall accuracy,
sensitivity, and specificity). Any of those approaches leads to an im-
provement in the classification accuracy. The total energy proved its
supremacy over PCA and the linear correlation. It is, however, neces-
sary to mention that the case study involved only steel samples. It was
also found that each approach led to filtering of different data points
(spectra), see Fig. 5. That, in turn, affected the topology of filtered data
and also the differences in resulting figures of merit. Therefore, it
should be advised to compare different approaches when samples of
other matrices (other than steel) are subjected to LIBS.

It needs to be stressed that outliers filtering should be applied only
to the classification or quantification (calibration and regression) of

Fig. 4. This figure shows the capability to provide a provenance study. The
distribution of yellow cake spectra in PC space suggests a possibility to classify
samples according to their location of origin. Moreover, PCA was calculated
three times; first for the complete data set (top figure) and then separately for
both highlighted regions (bottom figures). This approach demonstrates the in-
creased performance of PCA when the number of objects is reduced. Thus, the
PCA algorithm is not overloaded with variance from a high number of sample
matrices. Obtained from [42] with permission provided by Royal Society of
Chemistry and Copyright Clearance Center, license number: 4347711143996.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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homogeneous sets of samples. In the case of multivariate elemental
mapping, it is naturally counterproductive to omit outliers from a data
set which describes heterogeneous samples. In that particular case,
outliers are mostly the subject of the analysis, for instance the detection
of gold in ores [135].

3.4. Regression

A problem of modelling a continuous variable is called a regression
analysis. The extensive theory and examples of univariate calibration
may be found in books dedicated to LIBS [13]. The Principal Compo-
nent Regression (PCR) is an adaptation of the PCA for the purposes of a
multivariate regression [30].

In regression analysis, or calibration, two variables are correlated
via an equation describing this relationship. The most basic concept
deals with the relation of the elemental line's intensity and the content
of the analyte. Having an option to incorporate the information from
more variables at once opens new possibilities in the regression ana-
lysis, i.e. the multivariate regression. This suggests that more than one
variable contribute to the response related to the content of the analyte.
In the regression, the data matrix X is supplied with a vector c de-
scribing the known concentration of an analyte in each object. Note that
this vector may be related to any parameter characterizing each sample
and in turn may affect the quality and structure of LIP and related
emission spectra (such as sample hardness, roughness, etc.).

Bousquet et al. [44] concluded that the univariate calibration of Cr
in soil samples does not provide good results due to a vast variation of
matrices. Instead of a single univariate calibration, several calibration
curves have to be constructed. For the classification, they suggest to use
PCA directly and to separate samples according to their location in the
PC space. Choi et al. [136] analyzed 21 samples with distinctly different
matrix and used PCA for visualization prior to the univariate calibra-
tion. Of course, a significant impact of the matrix effect was evident in
the PC space and also in the structure of univariate calibration that was
split according to each individual sample matrix. Thus, for the regres-
sion analysis, the samples should be of the same matrix in order to
provide the best possible results. Porizka et al. [77] used PCA to filter
the outliers and then to classify samples according to their matrix. The
univariate calibration of Cu in soil samples was then assessed giving
lower bias. In fact, the matrix effect was not mitigated but completely
avoided using this kind of data processing. They also compared PCR
and PLSR to the univariate calibration after classification proving that a
multivariate data analysis was not a necessary step in data analysis.
Regardless of this finding, it is generally accepted and proved in the
LIBS literature that multivariate algorithms may compensate the matrix
effect to certain extent and may influence the LIBS analysis itself
[43,137].

Wisbrun et al. [138] brought a pioneering study on calibration of
heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) in soils, sand, and sewage
sludge using PCR. They selected and weighed 50 spectral lines of

analytes prior to a PCR computation; only two PCs were used. They also
estimated limits of detection of tens of ppm. Death et al. [45] performed
a quantitative analysis of six elements (Al, Fe, K, Mn, P, and Si) in iron
ores by applying PCR based on a maximum number of ten PCs forming
a model of short band spectral region (centered at 250, 400 or 750 nm).
This analysis showed results in good agreement with referenced values.
An example of PCR used for the modelling and prediction in the
quantification process of Si is shown in Fig. 6. In their further work,
Death et al. [46] used PCR for quantification of elements in three sets of
samples from Australia and West Africa showing good calibration re-
sults. Tripathi et al. [139] used PCR to predict the content of plutonium
oxide surrogates (CeO2, Fe2O3, Cr2O3, MoO3, NiO).

Most often, the results of PCR are compared with those of PLSR, the
latter is generally considered to have better performance. Both algo-
rithms are collated across various applications of LIBS. Fink et al. [124]
analyzed a set of polymers. They also showed the improvement of one
order of magnitude in the detection limits when comparing the per-
formance of multivariate and univariate algorithms. Doucet et al. [140]
compared PCR and PLSR to find out which one performs better in a
quantitative analysis of elements (Cu, Fe, Mg, Mn, Si, and Ti) in 260
aluminum alloys. Data were obtained using a LIBS system with Pa-
schen-Runge spectrometer focused on 11 elemental lines (no matrix line

Fig. 5. This figure depicts a distribution of data points filtered using a) PCA, b) linear correlation, and c) total intensity approach. Depicted in the first two
components of Sammon's map, data left for further data processing are marked in salmon-pink and outliers are marked in cyan. The Figure was obtained from [56]
with permission from Elsevier and Copyright Clearance Center, license number: 4347640902794. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 6. This figure shows a PCR calibration model constructed from 16 samples
and validated by 15 samples unknown to the model. The sample set was col-
lected from iron ores and the quantification study was in this case focused on
the Si content. This figure also demonstrates a good performance of PCR when
the sample set is well chosen; the coefficient of determination was estimated to
0.99 and average relative errors were estimated to 2.5% for model and 5.6% for
prediction. Obtained from [45] with permission provided by Elsevier and
Copyright Clearance Center, license number: 4347691418259. (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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of aluminum). They stressed that it is necessary to linearize the data
prior the implementation of MVDA algorithms. This data pretreatment
resulted in a dramatic improvement of figures of merit. In their fol-
lowing study [49] they compared PCR and PLSR used for a quantifi-
cation of pharmaceutical tablets and their composition through the
emission of molecular bands (CN, CH, C2). Yaroshchyk et al. [132]
provided a calibration and quantification of Fe in ore pellets using PCR,
PLSR and variations of PLSR (serial PLSR and multi-block PLSR). The
data were obtained using a LIBS system with two spectrometers cov-
ering two separate spectral ranges in UV and VIS, resulting in two
different datasets. In the case of PCR and PLSR, the considered data set
was either from UV range, VIS range, or merged UV and VIS ranges. S-
PLSR and MB-PLSR were able to work with both ranges (UV and VIS) at
once without merging. Thus, S-PLSR and MB-PLSR present another way
to process data from different spectrometers or even techniques, con-
sidering hyphenated systems (such as LIBS and Raman). Devandag et al.
[141] compared the performance of univariate (6 various spectral lines)
and multivariate (PCR and PLSR) calibration for the purpose of a
quantitative analysis of Mn in glass matrix. One order of magnitude
improvement in detection limits was obtained with the utilization of
MVDA.

3.4.1. PCR counterparts
PCR is not so massively utilized due to its relatively low perfor-

mance compared to other algorithms. Despite that we deliver articles
where PCA was used as the first step of an analysis for visualization
prior to any MVDA regression. Sirven et al. [43] investigated the in-
fluence of matrix effect on the performance in a quantitative analysis of
Cr by PLSR and ANN. In another study [111] they used PCA prior to
ANN for a quantification of Cr in soil. El Haddad et al. [137] visually
inspected the ICP-OES data through PCA in order to check their clus-
tering. As a result, no clusters in PC space were observed which directly
implies that the chemical composition of samples obtained through the
ICP-OES analysis does not significantly differ. It might be stated that on
a certain level the samples collected from various places of the mine
could be considered similar. Martin et al. [142] used PCA for dis-
crimination of four wood species. PLSR was then used for a quantitative
analysis of Cu and Zn. Martin et al. used PCA (scores and loadings) prior
to a quantitative study using PLSR of the forensic samples [143] and
nuclear materials (Ce, Cs, and Sr) [144]. Anderson et al. [145] used
PCA for a visualization and loadings inspection prior the comparison of
PLSR and ANN performance in quantitative analysis of soils for the
ChemCam instrument. Bacterial contamination of food was assessed by
a combination of PCA and PLSR [146]. Bilge et al. used PCA for a vi-
sualization of LIBS data from meat [147] and milk [148] samples prior
to a quantitative analysis by PLSR. Moncayo et al. [149] visualized milk
samples prior to their quantitative analysis done by ANN.

It is worth mentioning that PLSR was used in other applications,
such as a quantification of components in geo-samples under Martian
conditions [150], of micronutrients in pellets of plant material [151], of
loss on ignition in iron ore [152] and of Cl in concrete [153].

3.5. Clustering and classification

The PCA model transforms the original data space and provides a
low-dimensional visualization of the data. This projection provides only
the unsupervised pattern recognition. Despite that, general relation-
ships between data may be observed. The most basic kind of analysis is
the clustering of data points according to their mutual similarities. The
level of similarity is determined using a metric set by the Pearson
correlation coefficient or by the distance (Euclidean, Manhattan or
Mahalanobis) between data points in the k-dimensional space (k is the
number of PCs, k < m). Resulting values are often organized in a

dendrogram (a result of hierarchical clustering) and utilized for the
discrimination of objects based on their characteristic spectra.

In contrast to the unsupervised pattern recognition (clustering),
there is the supervised approach of classification. In the case of the
latter, data matrix X is extended with a vector describing the class
membership of individual objects. Afterword, a model is constructed
using a MVDA algorithm and then unknown data are classified. For
those purposes, the PCA-based algorithm may be used - Soft
Independent Modelling of Class Analogyies (SIMCA). The concept of
soft modelling enables to classify one object to more groups at the same
time or to leave the object unclassified. At this point we would like to
emphasize that MVDA algorithms classify the obtained spectra, not the
samples themselves. Only after a careful validation of obtained statis-
tical results, a classification of the real samples might be considered.
Therefore, it is important to include figures of merit describing the
performance of the classification process.

This section overviews articles that deal with a classification of LIBS
data through i) the implementation of classification algorithms after the
dimensionality reduction by PCA or ii) the direct utilization of the
SIMCA algorithm. In contrast to quantification, an application of LIBS
technique benefits from the strong matrix-dependence when it comes to
classification. Possession of an extensive data library, i.e. collection of
unique spectra covering the diversity of materials, is absolutely crucial
in order to provide a reliable classification. No data library is currently
available commercially, and even if it was, the transfer between dif-
ferent LIBS systems is not possible yet. Therefore, each research group
is building its own database. Bohling et al. [154] suggested an approach
where it would be possible to further extend an already existing model
with new measurements.

The most challenging-to-build database seems to be the collection of
various minerals and ores. Though, the application of LIBS to geology is
one of the most promising in terms of LIBS potential (in-situ analysis).
For instance, it is expected that MVDA discrimination of samples can
emulate the distribution of the igneous rock types in the so-called QAPF
and TAS diagrams and therefore can provide a routine provenance
study. The provenance study of minerals was claimed in the patent
[155] utilizing the PCA and other MVDA algorithms. The feasibility of
LIBS combined with MVDA for the classification of geological samples
is also demonstrated by the Curiosity rover equipped with the
ChemCam device [156].

PCA is usually utilized only for a brief inspection of the spectra and
a visualization of hidden patterns within the data set. Therefore, the
preliminary exploratory data analysis using PCA is followed by an ap-
plication of linear and non-linear MVDA algorithms for classification
and quantification purposes. Nevertheless, distinct clusters in the PCA
scores plot suggest that it is possible to use simple algorithms and that
the use of advanced non-linear methods is in certain cases (low number
of samples) unnecessary. Thus, in several articles the classification of
samples was demonstrated only by a visual inspection of the PCA scores
plot [44,76,77,111]. Samuels et al. [116] presented a discrimination of
biological samples, such as bacterial spores, molds, pollens and the
protein ovalbumin. They proved that it is possible to separate bio-
samples by applying unsupervised multivariate method (PCA) on their
typical LIP spectra (full echelle range). PCA can also suggest the class of
the new object (spectrum, set of spectra representing a sample) in a
visual way by projecting it into a model given by PCs subspace [80]. Yet
they concluded that in this approach there were insufficiencies, such as
lacking any supervised process and related figures of merit.

A rather pioneering work by Fink et al. [124] claimed a clustering of
spectra from plastic samples in the PC space (3 PCs covering 96% of
variance) and suggested their potential classification. Hybl et al. [157]
presented a discrimination of biological aerosols from natural back-
ground by PCA. 12 samples in four classes were analyzed by a broad-
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band LIBS system and 30 most prominent lines were selected. Data
points in the PC space indicated possible inter-class but no intra-class
discrimination, i.e. the system showed a low specificity. However, as
the authors stated, this work did not push the limits of chemometrics
due to the simplicity of the presented data, i.e. the number of sample
classes was quite low. Baudelet et al. [158] demonstrated the possibility
to discriminate between individual bacteria using their Ca, Na and K
signals obtained from a fs ablation. De Lucia et al. [159] showed a
classification between explosive and non-explosive organic materials in
the PCA space. Only first PC (70%) was used and a threshold was ap-
plied in order to discriminate between samples. Xia and Bakker [160]
compared the performance of PCA-Adaboost (a hybrid PCA designed
for classification) and PLS-DA in a real-life application of LIBS pro-
viding a sorting of materials. Considering the significantly different
matrices that are subject to classification, the estimated optimal
number of 100 PCs for PCA-Adaboost and 80 latent variables for PLS-
DA is rather disturbing - especially when a good separation of clusters
was shown in the space of 3 PCs.

3.5.1. Classification after dimensionality reduction by PCA
PCA is first used to reduce the number of dimensions, which can get

over 30,000 of variables (i.e. wavelengths in the detected spectrum) in
the case of LIBS data. Then, only the most descriptive PCs are kept in
the model. This step preserves only the most valuable information and
mitigates the contribution of fluctuations and noise within the data.
Thus, this preprocessing step increases the prediction power of the
model on which other algorithms are applied to yield a sample classi-
fication. This approach was successfully used also in other techniques,
such as Raman spectroscopy [161], Fourier Transform Infrared [162],
and X-ray fluorescence [163]. Yet, it has to be stressed that this ap-
proach is unsupervised and the classification results may be biased.

Samek et al. [164] applied the Mahalanobis distance on the reduced
PC space as a metric to classify teeth caries. In another work [165] they
used the same approach to classify solid standards. Yueh et al. [166]
used PCA (11 PCs) followed by HCA to classify murine soft tissue
samples (brain, kidney, liver, lungs, muscle, and spleen). PCA was used
to reduce the original multivariate data to a lower number of variables
while preserving the latent variance at the same time. Obtained results
were compared with the performance of the PLS-DA and ANN applied
on the original dataset. Moderate results were found regardless of the
utilized algorithm. A higher number of measurements encompassing
the system fluctuation and improved outliers filtering was suggested.

Gottfried et al. [167] used PCA for a visualization of several ha-
zardous materials (explosives and bacteria). Three PCs constituted
99.39% of total variance in the model based on 6 ratios of the most
significant elemental lines (C, O, H and N). Then simple classification
was done directly in the PC space by drawing ellipses and counting
positive and false hits.

Unnikrishnan et al. [168] used PC scores for a clustering based on
Mahalanobis distance and also used spectral residuals for the classifi-
cation of plastics where the diagnostic threshold of classification was
estimated using Youden's index plot and Receiver Operating Char-
acteristics (ROC). Spectra were masked except for three 15 nm spectral
regions including lines from C, H, and CN. Poor SNR and SBR which
were due to the composition of the samples (C, H, N, and O) spoiled the
classification accuracy. Pokrajac et al. [169] introduced PCA to LIBS
spectra of four proteins. After the PCA dimensionality reduction they
implemented various classifying algorithms (kNN, LDA, SVM, and
ANN). They found the best classification performance for a relatively
high number of PCs (from 12 to 41). That is rather extreme taking into
consideration the total number of samples, spectra per sample, and
spectral lines per spectrum. This fact might be caused by a low number

of informative spectral lines with poor SBR and SNR despite the broad
wavelength range (200–950 nm) of echelle spectrometer. On the con-
trary to this finding, they claimed that the optimal number was 6 PCs,
as they estimated from the Cattell's scree plot.

Porizka et al. [77] used PCA for the dimensionality reduction and
following classification in the space of first three PCs (covering up to
97.5% of total variance) applying the Gaussian clustering algorithm.
The Gaussian distribution of points in each cluster was assumed but not
statistically tested. After the clustering, they did a univariate quanti-
tative analysis. Vitkova et al. [170] presented a classification of 29
brick samples using LDA after PCA reduction. They used the table-top
and stand-off LIBS systems. In PCA scores plots, the firing temperature
of bricks was evident. This leads to the matrix effect influencing the
quality of LIP spectra. Merk et al. [171] tested the PCA and PLS-DA
capability to provide a fast turnaround time in metal scrap sorting, and
they reached a repetition rate 25 samples per second.

Amador-Hernandez et al. [104,105] used PCA prior to unsupervised
k-means clustering for class assignment and consecutive multivariate
mapping of printed electrodes. In other articles, PCA was used for a
dimensionality reduction prior to hazardous material analysis through
neural networks [154], classification of proteins by SVM [172], clas-
sification of geological samples by k-means clustering [55], classifica-
tion of wood samples [173], classification of bricks utilizing stand-off
system and LDA [88], classification of soils by PLS-DA [174], salts by
PLS-DA [175], and classification of explosives by kNN [112]. Pontes
et al. [176] used the successive projection algorithm (SPA), genetic
algorithm (GA), and stepwise formulation (SF) for a dimensionality
reduction prior to LDA classification. The findings were then compared
to SIMCA.

3.5.2. Supervised classification using SIMCA
SIMCA is one of the simplest classification algorithms and its con-

cept was developed in 1970s by Wold and Sjöström [177]. In the
modelling step, each class of objects is individually modeled using PCA;
each PCA model can be described by a different number of PCs. Then,
unknown or test data (for cross-validation) are projected in the multi-
dimensional spaces represented by individual PCA models and their
distances to the center of gravity of individual models are calculated.
The geometric distance can be also converted to statistical probabilities.
Finally, membership of the unknown or test data is assigned to a class
which has the smallest (or under threshold) distance to the model.

Sirven et al. [42] presented a classification and a provenance study
of uranium ores using SIMCA. They did such a supervised classification
twice, first time, they used 41 lines and second time only 10 lines (one
spectral line per element). In both cases, good figures of merit were
obtained. They also suggested that supervised classification algorithms
could provide more accurate results than the unsupervised ones, such as
hierarchical clustering, k-means clustering, etc. Clegg et al. [178] con-
cluded that both PCA and SIMCA algorithms will be beneficial for the
Mars rover and related exploration. SIMCA was employed with a sa-
tisfactory accuracy of 88.1%. Colao et al. [41] used SIMCA to classify
35 unknown samples based on 10 reference samples. In other works,
they used SIMCA to classify citrus leaves [118] and pharmaceutical
tablets [131].

SIMCA is popular for its simplicity but it is generally accepted that it
has lower performance than other methods. Thus it is usual to accom-
pany SIMCA with other methods and compare their performance.
Sirven et al. [80] showed that PLS-DA (with a classification rate of
85.9%) was more sensitive than SIMCA (with a classification rate of
77.5%) in the classification of rocks. However, SIMCA proved to be
more robust and effective in the classification of a few similar samples.
Therefore, the authors suggested using SIMCA at the beginning of the
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ChemCam operation and the utilization of PLS-DA was planned for later
stages when the library has grown. Moreover, they improved the clas-
sification rate to 100% when the SIMCA and PLS-DA algorithms were
combined. Duchene et al. [179] showed similar results in the classifi-
cation of archaeological material. Gottfried et al. [180] used PCA
(99.27% of joint variance in 3 PCs) to visualize spectra of explosives
based on 6 elemental line ratios. Then PCA of 29 variables (9 intensities
of spectral lines and molecular bands and their ratios) was done.
Classification of four samples was provided via SIMCA models using 5
to 8 PCs and via PLS-DA model using 17 latent variables. However, no
figure of merits were provided which made the comparison of both
MVDA algorithms difficult. Anderson et al. [55] compared SIMCA with
other techniques in the classification of igneous rocks and showed
SIMCA's lower performance.

3.5.3. SIMCA counterparts
Some more sophisticated and even non-linear algorithms were used.

Godoi et al. [181] compared SIMCA, PLS-DA and KNN for a classifi-
cation of toys, however their goal was to estimate the toxicity, i.e. the
amount of Cd and Pb. Dingari et al. [182] compared the performance of
SIMCA, PLS-DA and SVM, showing that a non-linear SVM algorithm
provides higher classification performance than its linear counterparts.
Myakalwar et al. [36] used SIMCA-derived models to provide an
average correct classification rate of 88% of non-gated pharmaceutics
spectra, whereas PLS-DA and ANN reached 100%. Moncayo et al. [183]
compared 7 MVDA algorithms (including SIMCA and LDA done after
PCA dimensionality reduction) for a classification of 55 bone samples of
5 individuals, see Fig. 7. They proved that ANN, due to its non-linear
nature, provides the most sensitive and robust results.

PLS-DA is a very frequently used alternative to SIMCA for the
classification of LIBS data [83,156]. Remus et al. [184] recommended
using PLS-DA rather than PCA related algorithms because the latter
were not capable to fully discriminate samples coming from different
locations, i.e. to provide a provenance study. This obvious superiority of
PLS-DA over PCA was summarized by Barker and Rayens [185].

Classification and feasibility of the provenance of conflict minerals
were proved based on the conflict minerals' characteristic spectral fin-
gerprints using PLS-DA [102]. Explosive residues were analyzed using
LIBS as a thin films spread on some organic and inorganic substrates,
consequently the collected spectra were classified by PLS-DA [186]. It is
worth mentioning that other MVDA algorithms were also used for
classification, such as linear and rank correlation [187], Linear Dis-
criminant Analysis (LDA) [88], ICA [68], ANN [188–190], DFA
[67,191,192], Graph Theory Method [193].

An interesting application of SIMCA arises due to its rather low
performance (and in turn quite a high sensitivity to changes in the to-
pology and structure of the data). Thus, SIMCA tends to be more biased
than other MVDA algorithms (PLS-DA, SVM, SOM, ANN, etc.). Because
of that, SIMCA can be utilized to study the effects of preprocessing
(normalization, outliers filtering, etc.). It compares the changes in the
data structure by resulting classification figures of merit [39,56].

For the sake of completeness, the combination of LIBS and Raman
data aids to get a correct classification. Three data sets were created: i)
LIBS, ii) Raman, iii) LIBS and Raman. Hoehse et al. [98] compared
performance of SIMCA, PLS-DA and SVM in the classification inks and
pigments. Prochazka et al. [99] used SOM to classify 6 bacterial strains.

4. Summary of publications (Table 1)

Fig. 7. This figure shows the overall performance of selected MVDA algorithms
in classification of 25 bone samples; selected figures of merit are success rate
(cyan), robustness (green) and accuracy (red). It is obvious that simple SIMCA is
outperformed by other, sophisticated (even non-linear) algorithms.
Abbreviations: PLS-DA – Partial Least Squares Discriminant Analysis, LDA –
Linear Discriminant Analysis, CART – Classification and Regression Tree, BLR –
Binary Logistic Regression, SVM – Support Vector Machines, NN – Neural
Networks. Obtained from [183] with permission provided by Elsevier and
Copyright Clearance Center, license number: 4347691418259. (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Table 1
This table summarizes overview of literature related to implementation of PCA in LIBS.

The way of PCA implementation

Visualization [4,43,44,78,79,83–88,90–96,99–101,110,111,116–118,131,136,137,141–43,145,147–149,157,168,170,173,183]
Classification [36,39,41,42,55,76–78,80,89,98,112,118,119,124,125,131,136,154,160,164–166,171–174,176,178,179,180–183]
Regression (PCR) [45,46,49,77,124,132,138,139–141]
Variable down-selection [42,111,166]
Dimensionality reduction [55,77,88,95,112,114,120,154,164–166,169,170,174,175,183]
Outliers filtering [42,56,77,80]
Multivariate mapping [81,104,105,107]

Application of LIBS
Archaeology and forensics [41,86,88,125,143,170,179]
Miscellaneous applications [98,104,105,114,115,141,160,175]
Biology [4,76,84,94,95,99,100,116,118,119,142,146,147,148,149,157,164,166,169,172,173]
Geology [39,42–45,46,55,76–78,80,81,83,89,90–92,101,107,110,111,117,132,137–139,143,145,174,176,178]
Explosives and chemicals, nuclear materials [79,93,96,112,119,144,154,159,167,180,186]
Pharmaceutics [36,49,131,182]
Polymers [87,124,168,181]
metals [39,56,85,113,120,140,171]
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5. Conclusion and future prospects

Based on the literature survey, LIBS combined with MVDA algo-
rithms proved the capability to classify unknown samples and quantify
analytes in many applications. However, the majority of reviewed ar-
ticles represented only feasibility and preliminary studies. The impact
of presented alterations in data pre-processing and MVDA algorithms
on the resulting figures of merit was demonstrated on a limited number
of samples, with a low number of spectra per sample, etc.

Generally, LIBS is on its rise and the hand-held as well as the table-
top commercial systems attract more and more attention. The hand-
held LIBS systems are used namely for the classification of steels and
alloys, and for quantitative analyses. MVDA algorithms also penetrate
this sector and will be decisive in terms of the performance and the
resulting figures of merit.

Processing of LIBS data has undergone several dynamic develop-
ments in recent years. An increasing number of samples and detected
representative spectra demands the implementation of MVDA algo-
rithms in a more sophisticated way. The goal is to provide fast and
robust data processing with desired selectivity and specificity, sig-
nificantly reducing the dimensionality and information redundancy, yet
retaining the most valuable information within the data matrix.
Considering the trends and historical evolution, it seems that a progress
in the data analysis will be continually made in the future. The im-
plementation of MVDA algorithms will become a vital part of a routine
LIBS analysis.

Historically, PCA and its variations were abundantly applied for
multivariate analysis of LIBS data, such as visualization, clustering,
classification, regression and recently also for multivariate surface
mapping. It was also shown that both basic and advanced analyses of
LIBS data can be provided using only PCA and its variations (SIMCA,
PCR). Thus, when judicious experimental design and data preproces-
sing is provided, there is no need for switching to a more sophisticated
MVDA algorithm (such as PLSR, PLS-DA, SVM, SOM, ANN, etc.).
Therefore, it may be stated that PCA is essentially rooted in the LIBS
community. Articles summarized in this review reflect the crucial issues
that have to be considered when MVDA is of interest. Even though this
review article was primarily aimed at PCA algorithm and its im-
plementation for processing of LIBS data, the majority of presented
suggestions, recommendations and conclusions can be considered in
implementation of any other MVDA algorithm.

The reviewed articles represent mostly feasibility studies and pre-
liminary results proving some capacities of LIBS technique. This was
caused by the fact that there are no available data libraries, researches
therefore established ad hoc libraries which were based most often only
on limited number of collected samples. The analytical approach is
different in every research group due to different applications, data
structure, and experience of each group in relation to MVDA and the
associated algorithm implementation. There are many contradictory
suggestions and recommendations in the literature, which implies that
there is no established receipt for a correct data analysis and it may not
exist. Despite that, the data preprocessing and application of MVDA
algorithms should follow several guidelines:

- Theoretical background - firm knowledge of the basic processes
occurring in LIP and affecting the characteristic signal is the key.
The MVDA algorithm should not be used as a “black box”.

- Experimental design - an optimized LIBS system and a coherent
experimental design should deliver high-quality data, both re-
peatable and reproducible.

- Robust dataset - a statistically significant number of objects (i.e.
spectra) describing the selected number of samples is important to
cover a possible variation in the studied sample matrix and the
fluctuation in the analysis itself.

- Preprocessing - well balanced data preprocessing should improve
the data. At the same time, retaining the most of the variability

within the dataset is desirable.
- MVDA – an optimization of the selected algorithm (avoiding over-
fitting) and an estimation of figures of merit should be done by using
a model, validation and test subsets.

- Detailed report - the whole process (starting with samples, going
through LIBS analysis and data collection, preprocessing and finally
MVDA) should be described in detail. Figures of merit have to be
estimated; this enables the means for a potential comparison with
results of other research groups.

Looking at the issue from a future perspective, it will be necessary to
deliver an optimized data processing algorithm. In the ideal case, this
algorithm should enable to reduce the number of objects, which would
decrease response time of the modelling and prediction step. All the
same, it would be sensitive to the data and would conserve the in-
formation from matrix, minor, and trace elements. To summarize, the
algorithms should be sensitive to outliers and should provide a high
degree of specificity.
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