Detail předmětu

Rovnice matematické fyziky I

FSI-9RF1Ak. rok: 2020/2021

Parciální diferenciální rovnice - základní pojmy. Rovnice prvního řádu.
Klasifikace a kanonický tvar rovnic druhého řádu. Odvození vybraných rovnic matematické fyziky, formulace počátečních a okrajových úloh.
Klasické metody: metoda charakteristik, Fourierova metoda řad, metoda integrální transformace, metoda Greenovy funkce. Principy maxima.
Vlastnosti řešení eliptických, parabolických a hyperbolických rovnic.

Zajišťuje ústav

Výsledky učení předmětu

Základy teorie parciálních diferenciálních rovnic a přehled o možnostech jejich využití při matematickém modelování. Dovednost sestavit matematický model konkrétních vybraných fyzikálních situací a v jednoduchých případech spočítat řešení.

Prerekvizity

Řešení algebraických rovnic a soustav lineárních rovnic, diferenciální a integrální počet funkce jedné a více proměnných, obyčejné diferenciální rovnice.

Doporučená nebo povinná literatura

Arsenin, V. J.: Metody matematičeskoj fyziky i specialnyje funkcii, Nauka, Moskva 1974, překlad do slovenštiny: Matematická fyzika. Základné rovnice a špeciálne funkcie. Alfa, Bratislava, 1977. (RU)
J. Franců: Parciální diferenciální rovnice. Akad. nakl. CERM, Brno 2011 (CS)
V. J. Arsenin: Matematická fyzika, Alfa, Bratislava 1977 (SK)
Sobolev, S. L.: Partial differential equations of mathematical physics Pergamon Press, Oxford 1964 (EN)
T. A. Bick: Elementary boundary value problems. Marcel Dekker, New York 1993 (EN)

Plánované vzdělávací činnosti a výukové metody

Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny.

Způsob a kritéria hodnocení

Zkouška se skládá z praktické a teoretické části.
Praktická část: řešení zadaných příkladů
1. rovnice prvního řádu,
2. rovnice druhého řádu, klasifikace a převedení na kanonický tvar
3. formulace počáteční okrajové úlohy pro rovnici vedení tepla v tyči
nebo kmitání struny a její řešení Fourierovou metodou řad.
Teoretická část: 3 otázky z probrané teorie.

Jazyk výuky

čeština, angličtina

Cíl

Cílem kurzu je seznámit posluchače s parciálními diferenciálními rovnicemi,
zejména rovnicemi matematické fyziky, jejich základními vlastnostmi a jejich
použitím v matematickém modelování, naučit formulovat počáteční a okrajové
úlohy modelující vybrané konkrétní fyzikální situace. Seznámit s klasickými
metodami řešení a naučit řešit jednoduché úlohy matematické fyziky.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

V případě absence student si musí doplnit zameškanou látku samostudiem ze skript.

Zařazení předmětu ve studijních plánech

  • Program D4F-P doktorský

    obor D-FMI , 1. ročník, letní semestr, 0 kreditů, doporučený

Typ (způsob) výuky

 

Přednáška

20 hod., nepovinná

Vyučující / Lektor

Osnova

1. Úvod, rovnice prvního řádu.
2. Rovnice druhého řádu, klasifikace a kanonický tvar.
3.-4. Odvození vybraných rovnic matematické fyziky a formulace počátečních a okrajových úloh.
5. Metoda charakteristik.
6. Fourierova metoda řad.
7. Metoda integrální transformace.
8. Metoda Greenových funkcí.
9. Principy maxima a harmonické funkce.
10. Souhrn, srovnání vlastností řešení hyperbolických, parabolických a eliptických rovnic.