study programme

Theoretical Electrical Engineering

Original title in Czech: Teoretická elektrotechnikaFaculty: FEECAbbreviation: DKC-TEEAcad. year: 2021/2022

Type of study programme: Doctoral

Study programme code: P0714D060005

Degree awarded: Ph.D.

Language of instruction: Czech

Accreditation: 28.5.2019 - 27.5.2029

Mode of study

Combined study

Standard study length

4 years

Programme supervisor

Doctoral Board

Fields of education

Area Topic Share [%]
Electrical Engineering Without thematic area 100

Study aims

The doctoral study program "Theoretical Electrical Engineering" is focused on the preparation of high-qualified scientific and research specialists in various areas of theoretical electrical engineering. Particularly, in the theory and applications of electromagnetism, electrical circuits, electro/magnetic measurement methods and signal processing methods. The preparation is supported by the provision of knowledge in related mathematical disciplines such as stochastic processes and statistical methods of systems investigation, systems analysis using functional equations, design of multi-criteria optimization methods, numerical methods for solution of continuous and discrete dynamical systems and others. The aim of the program is to provide a doctoral education to graduates of Master's degree in all these sub-disciplines, to deepen their theoretical knowledge and to develop practical expert skills and to educate them in the methods of scientific work.

Graduate profile

Graduates in doctoral study program "Theoretical Electrical Engineering" are able to solve scientific and complex technical innovation tasks in the field of electrical engineering at the theoretical level, as well as its practical use in research, development and production. To solve technical research and development tasks, they are equipped with a complex knowledge of the theory and application of electromagnetic field, electrical circuits, methods of measuring and signal processing and their physical and mathematical description. They are able to use modern computing, measuring and diagnostic techniques in a creative way.
Thanks to the high-quality theoretical education, practical expert skills and specialization in the chosen field, graduates of doctoral study are sought as specialists and executive staff in general electrical engineering. They will apply as researchers in basic or applied research, as specialists and leaders of teams in development, design and operation in research and development institutions and in electrical and electronic manufacturing companies operating in the field of advanced technologies.

Profession characteristics

Specialists and executive staff in general electrical engineering, researchers in basic or applied research, specialists and leaders of teams in development, design and operation in research and development institutions and in electrical and electronic manufacturing companies operating in the field of advanced technologies

Fulfilment criteria

The doctoral study is conducted according to the individual study plan. The individual study plan is prepared by the supervisor in cooperation with the doctoral student at the beginning of the study. The individual study plan specifies all the duties stipulated in accordance with the Study and Examination Rules at the Brno University of Technology, which the doctoral student must fulfill to successfully finish his studies. These responsibilities are scheduled throughout the whole study period; they are scored and they are evaluated at the end of given periods.
The student enrolls and takes examinations of the compulsory courses Numerical Computations with Partial Differential Equations and English for the state doctoral exam; at least two obligatory elective courses relating to the focus of his dissertation and at least two optional courses (English for Post-graduates; Scientific Citing; Solution of Innovational Tasks; Scientific publishing).
The student may enroll for the state doctoral exam only after taking all the exams prescribed by the individual study plan. Before the state doctoral exam, the student prepares a treatise on dissertation thesis, which describes in detail the goals of the thesis, a thorough evaluation of the state of knowledge in the area of the dissertation solved, or the characterization of the methods intended to apply in the solution.
The defense of treatise on dissertation thesis, which is reviewed, is part of the state doctoral exam. In the next part of the exam the student must demonstrate deep theoretical and practical knowledge in the field of electrical engineering, electromagnetic field, circuit theory, methods of measuring electrical and other physical quantities, processing and analysis of signals and mathematical modeling of technical processes. The state doctoral exam has a form of oral presentation and discussion on the treatise on dissertation thesis. In addition, it also includes a discussion on issues of thematic areas related to obligatory and obligatory elective courses.
The doctoral student can apply for the defense of dissertation thesis after passing the state doctoral exam and after fulfilling conditions for termination of the study, such as participation in teaching; scientific and expert activity (creative activity) and at least a monthly study or work internship at a foreign institution or participation in an international creative project.

Study plan creation

The doctoral studies of a student follow the Individual Study Plan (ISP), which is defined by the supervisor and the student at the beginning of the study period. The ISP is obligatory for the student, and specifies all duties being consistent with the Study and Examination Rules of BUT, which the student must successfully fulfill by the end of the study period. The duties are distributed throughout the whole study period, scored by credits/points and checked in defined dates. The current point evaluation of all activities of the student is summarized in the “Total point rating of doctoral student” document and is part of the ISP. At the beginning of the next study year the supervisor highlights eventual changes in ISP. By October, 15 of each study year the student submits the printed and signed ISP to Science Department of the faculty to check and archive.
Within the first four semesters the student passes the exams of compulsory, optional-specialized and/or optional-general courses to fulfill the score limit in Study area, and concurrently the student significantly deals with the study and analysis of the knowledge specific for the field defined by the dissertation thesis theme and also continuously deals with publishing these observations and own results. In the follow-up semesters the student focuses already more to the research and development that is linked to the dissertation thesis topic and to publishing the reached results and compilation of the dissertation thesis.
By the end of the second year of studies the student passes the Doctor State Exam, where the student proves the wide overview and deep knowledge in the field linked to the dissertation thesis topic. The student must apply for this exam by April, 30 in the second year of studies. Before the Doctor State Exam the student must successfully pass the exam from English language course.
In the third and fourth year of studies the student deals with the required research activities, publishes the reached results and compiles the dissertation thesis. As part of the study duties is also completing a study period at an abroad institution or participation on an international research project with results being published or presented in abroad or another form of direct participation of the student on an international cooperation activity, which must be proved by the date of submitting the dissertation thesis.
By the end of the winter term in the fourth year of study students submit the elaborated dissertation thesis to the supervisor, who scores this elaborate. The final dissertation thesis is expected to be submitted by the student by the end of the fourth year of the studies.
In full-time study form, during the study period the student is obliged to pass a pedagogical practice, i.e. participate in the education process. The participation of the student in the pedagogical activities is part of his/her research preparations. By the pedagogical practice the student gains experience in passing the knowledge and improves the presentation skills. The pedagogical practice load (exercises, laboratories, project supervision etc.) of the student is specified by the head of the department based on the agreement with the student’s supervisor. The duty of pedagogical practice does not apply to students-payers and combined study program students. The involvement of the student in the education process within the pedagogical practice is confirmed by the supervisor in the Information System of the university.

Issued topics of Doctoral Study Program

  1. Advanced methods of radiofrequency detection of partial discharges

    One of the key problems of high-power high-voltage transformers is the existence of partial discharges PD in their dielectric oil filling. Radiofrequency methods may provide an efficient tool for observing the PD activity. The possibility of PD-radiated UHF electromagnetic (EM) signal detection is crucial for successful methods application. This signal has a relatively low magnitude and its occurrence is accompanied by a strong impulse-like interference from other discharge processes. On the other side, the PD signal dispose with specific time and frequency properties, which can be utilized for its reliable detection and evaluation. The theme of the Ph.D. study is focused on the research of new approach to PD-radiated EM signals detection utilizing signal’s specific time and frequency properties. The goal is to deepen the knowledge in the problematic of reliable detection and identification of PD activity and increasing the reliability of the high-power high-voltage transformers.

    Tutor: Drexler Petr, doc. Ing., Ph.D.

  2. Aggregation operators in fuzzy logic

    Fuzzy logic is a form f many-valued logic or probabilistic logic. It has been applied to many fields, from control theory to artificial inteligence. The topic of the thesis is tu study new constructions and properties of fuzzy logic connectives via aggregation operators.

    Tutor: Hliněná Dana, doc. RNDr., Ph.D.

  3. Algebraic hyperstructures in autonomous driving

    The dissertation will study possible applications of algebraic hyperstructure theory for autonomous driving and traffic control. It will make use of rough sets, generalizations of automata theory and other algebraic tools used for modeling contexts in which multivalued results of algebraic operations and their approximate descriptions are needed.

    Tutor: Novák Michal, doc. RNDr., Ph.D.

  4. Analysis of image reconstruction methods in EIT

    The aim of this work is the analysis of mathematical models for image reconstruction obtained by the electrical impedance tomography from the viewpoint of applicability to individual engineering fields (chemical industry, geology, material engineering and diagnostics, etc.). The output of the work will be a theoretical analysis and optimization of limiting factors of methods in solving selected technical tasks including evaluation of measurement uncertainties (specific conductivity and position of inhomogeneities), computational demands, etc. Specifically, the work will focus on a) optimization of mathematical model parameters with respect to the actual parameters of the physical model, b) regularization methods, c) image processing methods (segmentation of inhomogeneity), d) adaptive meshing methods according to the ongoing results of reconstruction.

    Tutor: Mikulka Jan, doc. Ing., Ph.D.

  5. Application of highly birefringent optical fibers for sensing of physical quantities

    Novel types of optical fibers allow applications of fiber-optic sensors in areas, where classical sensors are difficult to use. The example is a sensing of electric current or magnetic field, who can achieve extreme magnitudes or sensing under strong disturbing influences. It is possible to use special types of optical fiber with strong latent birefringence for the suppression of the disturbing influences. The potentially allow for design and development of robust sensor with minimized sensitivity to outer influences. The thesis will be focused on the research and development of sensing techniques utilizing highly birefringent fibers.

    Tutor: Drexler Petr, doc. Ing., Ph.D.

  6. Controllability problems for discrete equations with aftereffect.

    The aim is to solve some controllabity problems on relative and trajectory controllability for systems of discrete equations with aftereffect. It is assumed that criteria of controllability will be derived and relevant algorithms for their solutions will be constructed (including constructions of controll functions). Starting literature – the book by M. Sami Fadali and Antonio Visioli, Digital Control Engineering, Analysis and Design, Elsewier, 2013 and paper by J. Diblík, Relative and trajectory controllability of linear discrete systems with constant coefficients and a single delay, IEEE Transactions on Automatic Control, (https://ieeexplore.ieee.org/document/8443094) 2158 - 2165, 2019. During study a visit to Bialystok University, Poland, where similar problems are studied, is planned.

    Tutor: Diblík Josef, prof. RNDr., DrSc.

  7. Detection and Classification of Moving Objects

    The main task is to develop and test convenient algorithms to detect moving objects. Such algorithms should facilitate the detection and recognition of predefined bodies at high safety locations, including airports, nuclear power plants, and ammunition depots. After the character of the intruding object in motion has been specified, relevant disabling options will be outlined.

    Tutor: Marcoň Petr, doc. Ing., Ph.D.

  8. Fast reconstruction of electrical impedance tomography images

    This thesis will be focused on development of the methods for reconstruction of images obtained by electrical impedance tomography. The main emphasis will be placed on the methods of the signals of low SNR measurement as well as on the signal processing and reconstruction of the impedance inside the examined object. Considering the time-consuming calculation with respect to higher number of measuring electrodes or smoother FEM mesh, the work will follow on the current activities of DTEEE in solving the inverse problems and parallelization of computational algorithms and their distribution to the graphics card.

    Tutor: Mikulka Jan, doc. Ing., Ph.D.

  9. Fractional order systems and their applications in electrical engineering

    "Fractional calculus" is a theory of integrals and derivatives of arbitrary order, which unify and generalize the notion of integer order differentiation and n-fold integration. This generalized process is called "differintegration". Systems that can be described by differential equations of fractional order have many applications in electrical engineering. The doctoral thesis should contain both theory and applications and should move forward frontiers in both directions. Detailed topic of the thesis will be specified according to experience and preferences of the selected candidate. Preferred candidates should already have some experience with fractional derivatives and integrals.

    Tutor: Rebenda Josef, Mgr., Ph.D.

  10. General solutions to weakly delayed linear differential systems

    The aim will be to derive explicit formulas for general solutions to weakly delayed linear differential systems, to show if its reduction to linear systems of ordinary differential equations is possible, and prove results on conditional stability. To derive results, various mathematical tools will be used, one of them is the Laplace transform. Starting literature – the paper by D. Ya. Khusainov, D. B. Benditkis and J. Diblik, Weak delay in systems with an aftereffect, Functional Differential Equations, 9, 2002, No 3-4, 385-404 and recently published results. During study a visit to Bialystok University, Poland, where similar problems are studied, is planned.

    Tutor: Diblík Josef, prof. RNDr., DrSc.

  11. High Frequency Ion Thrusters

    Utilization of low and very low Earth orbits (LEO, resp. VLEO) for satellite operations would bring a wide range of benefits. The observation of Earth through the reduced thickness of the atmosphere leads to improved resolution, signal-to-noise ratio (SNR), and is enabling novel technologies and approaches. A high frequency ion thruster is a form of electric propulsion used for spacecraft propulsion. It creates thrust by accelerating ions using electricity. The different gasses with the different properties are using for the ionization. The gases are ionizing by the high frequency power. The antennas and cavity resonator makes the basis of the high frequency ion thrusters. The frequency tuning and impedance matching is necessary for the correct function of the high frequency structures. The main goal is to deepen knowledge about analysis and applications of the high frequency plasma sources.

    Tutor: Drexler Petr, doc. Ing., Ph.D.

  12. Image modeling and reconstruction in EIT using tools of artificial intelligence and machine learning

    The aim of the dissertation is to create a model for image reconstruction in electrical impedance tomography using tools of machine learning and artificial intelligence. The output of the work will be a functional model and a sufficiently large set of data for learning such systems to recognize inhomogeneities of electrical impedance within an unknown environment. It is also assumed to create a laboratory model of a tomograph to obtain real data for the reconstruction of specific conductivity and possibly optimization of the proposed methods for subsequent applied research solved at UTEE.

    Tutor: Mikulka Jan, doc. Ing., Ph.D.

  13. Low level magnetic measurements

    Theme explores two key areas. The first is focused on continuing research into a comprehensive system of measurement methods and metrology for measuring low-level magnetic respectfully strongly disturbed environment in a narrow frequency band f = 0.1-30Hz. It is advisable to focus on methods of achieving the results of S / W <0.05 a signal reconstruction. The proposed methods are used for evaluation of small changes in magnetic fields. The second area of research continues to change human behavior and the overall response of the human body, its properties, and reactions to changes in the magnetic field. As a tool, the procedure is both deterministic and stochastic, with the latest mathematical tools and non-destructive measurement methods.

    Tutor: Fiala Pavel, prof. Ing., Ph.D.

  14. Machine Learning for Image Data Classification

    Práce je zaměřena na testování a vývoj algoritmů strojového učení pro klasifikaci obrazových dat. Dílčí úkoly zahrnují zpracování získaných fotometrických map a 3D modelů, klasifikaci a trénování algoritmů založených na geometrii a přiřazení sémantických informací k objektům.

    Tutor: Marcoň Petr, doc. Ing., Ph.D.

  15. Models of the structure of matter

    The work is focused on theoretical derivation of numerical models based on quantum mechanical models of materials and in combination with the stochastic, both deterministic and non-deterministic approach to formulate the determination of uncertainty for ordinary differential equations nanoelementární simple numerical model of the system, periodic system. Research continues on modifications so vytovřeného model based on numerical finite element, finite volume, boundary element method for static and dynamic models formulated using partial differential equations. The aim is to propose a numerical model as a powerful tool for the analysis and characterization of both periodic and nonperiodic structure and its geometry on the atomic and subatomic level verification on a single verifiable example, to examine the characteristics of the resulting numerical model and compared with the requirements for models for electrical discharge dynamics and evaluate the specified parameters. The topic is part of the grant CZ

    Tutor: Fiala Pavel, prof. Ing., Ph.D.

  16. Multispectral Imaging of Plants

    The project is aimed to investigate and test diverse techniques to enable evaluation of relevant multispectral camera images. In terms of concrete tasks and stages, the actual work will involve, in particular, extensive data acquisition via drone-based survey and the subsequent designing of suitable image processing methods to associate the data with appropriate plant specimens. The expected outcomes include, among other items, readily applicable plant health maps.

    Tutor: Marcoň Petr, doc. Ing., Ph.D.

  17. Nuclear quadrupole resonance techniques for material detection

    The thesis is focused on the development of techniques for detection of various materials (especially N and Cl based) using nuclear quadrupole resonance. Currently, this method seems to be very promising for the detection and classification of explosives, medicament and drugs. Problems of excitation of cores and subsequent scanning of resonating signal with the possibility of tuning is a relatively complex task both in terms of signal path requirements and in terms of excitation circuit design. Due to the low level of the resonating signal and the short relaxation, it is necessary to solve a number of technical problems. The issue is largely interdisciplinary.

    Tutor: Steinbauer Miloslav, doc. Ing., Ph.D.

  18. Numerical models of stochastic problems

    In the process of modeling there are unsolved problems in many large parametric task with an explicit description of the minimum parameters. In numerical modeling approaches, there are solutions to such models. With suitable formulation and preparation methods are becoming powerful tools in the scientific approach to solving both basic and applied research. The aim of doctoral study is to describe and articulate approaches to the solution of large systems with periodic rate of violations periodicities, on experiments to verify the nature of the models. Purposefully perform testing models nanomateriálových models, such as graphene structures, surface atomic layers with plasma applications.

    Tutor: Fiala Pavel, prof. Ing., Ph.D.

  19. Numerical solution methods of fractional control systems

    The aim of the dissertation thesis is modification of a numerical semi-analytical method based on Adomian decomposition method and integral transformations to solving initial value problems for fractional control systems in the sense of Caputo fractional derivative. Convergence analysis of the proposed method will be investigated as well.

    Tutor: Šmarda Zdeněk, doc. RNDr., CSc.

  20. Optical fiber sensing of electromagnetic transients

    The use of a magneto-optical effect in optical fibers is an attractive option for the design of magnetic field and electric current sensors. Their application is particularly interesting in the case of measurements of strong magnetic fields, or currents reaching values in the range of kiloamperes up to tens of megaamperes. In this context, their application in the diagnostics of plasma discharges in future fusion reactors is highly potential. For successful deployment of these sensors it is highly desirable to have the possibility of testing them during development. Many works have already dealt with the measurement of sensor properties. However, the necessary attention has not been paid to the possibility of testing the dynamic properties of the transducers in the nanosecond and sub-nanosecond regions. Moreover, together with the magnetic fields induced by currents of kiloamperes and above. The dissertation thesis will be devoted to the research of properties and testing of sensors in the nano and sub-nanosecond area. The design and development of a unique testing device is expected.

    Tutor: Drexler Petr, doc. Ing., Ph.D.

  21. Plasma and its numerical models

    The work is focused on theoretical derivation of numerical models based on PDR solution for plasma and discharge activity modeling. The approach will use both stochastic and deterministic methods to find and formulate corresponding numerical models of plasma discharge in chambers with inhomogeneous gas and precursor environments. It follows the research and modification of the model based on the finite element method, finite volume method, boundary elements for static and dynamic models formulated using partial differential equations. The aim of this work is to design a numerical model as a powerful tool for analysis and description of properties of specific chamber arrangement designed for plasma generation and its geometry at atomic and subatomic levels, verification on simple verifiable example. The analyzes will be verified by experiment, the research will be aimed at finding the parameters of the resulting numerical model and compared with the requirements placed on models designed for the dynamics of electric discharge and evaluate the given parameters. The topic is part of the grant.

    Tutor: Fiala Pavel, prof. Ing., Ph.D.

  22. Research of measuring methods for NQR spectroscopy

    The aim of this work is the research of methods for improving the properties of the experimental NQR spectroscope for range of 0.5 to 10 MHz. Suitable measurement methods for elimination of false signals and increase the sensitivity of the spectrometer and repeatability of measurements should be found. The result should be the design and implementation of spectrometer circuitry modifications to verify the effectiveness of the proposed methods.

    Tutor: Steinbauer Miloslav, doc. Ing., Ph.D.

  23. Research of properties and applications of noise electromagnetic fields

    Measuring and diagnostic methods based on the interaction of radiated electromagnetic (EM) field with test objects are currently mature and widely used technology. However, the vast majority of systems based on such approach use the concept of generating and evaluating EM fields with certain defined or swept frequency. In this case, it is necessary to take into account the possibility of reactive coupling of the measured object and the measuring device in the near field, which can detriorate the measurement. Conversely, if broadband stochastic signals (noise signals) were used for diagnostics, these problematic coupling could be suppressed. The topic of the study is focused on the research of the use of the concept of diagnostic of materials and electromagnetic structures by the noise field, especially in radiofrequency and microwave domain, its development and experimental verification.

    Tutor: Drexler Petr, doc. Ing., Ph.D.

  24. Spatial Analysis of the Force Load on a Deformed Developing Spine, and Corrective Force Modelling Applied to Minimize the Scope of a Scoliosis Surgery

    Spinal deformity in children (scoliosis) is a condition whose progression cannot be predicted. The results obtained via conservative therapy are problematic, and a certain degree of curvature requires surgical treatment, including the risk of repeated surgeries and complications. The presently used system of growing rods affects, on the average, 9 spinal segments; these become immobile and influence the excessive stress upon the free segments under fusion, resulting in earlier degenerative changes, back pain at a mature age, restrained bodily activity, and damage to the locomotor system. The project is conceived to propose a novel methodology for minimizing the spurious impacts of the surgical treatment of progressive spinal deformity upon child patients, with 3D modeling to define the mechanical stress distribution within the simulation of the planned intervention. The set of patients to be recruited includes individuals with idiopathic, symptomatologic, and congenital scoliosis progressing despite conservative therapy; all these subjects would otherwise undergo spinal surgery. The project aims to design a surgical solution to correct idiopathic, symptomatologic, and congenital spinal deformities by the osteotomy of 1 vertebra. It will exploit 3D modeling to define the stress on the spine, estimation of the spine development and intervertebral discs regeneration by MRI. The project will be carried out in collaboration with University Hospital in Brno Bohunice.

    Tutor: Mikulka Jan, doc. Ing., Ph.D.

  25. Special methods of measurement of magnetic properties of materials

    The aim of the dissertation thesis will be the design of new and significant improvement of existing methods enabling to determine its material properties for material samples. The focus will be on the measurement of anisotropic magnetization characteristics with the necessary support of numerical methods. For example, new metallic materials in 3D printers exhibit significant anisotropy. Another area will be the measurement of materials with low magnetic susceptibility. Different methods give different results, so the aim will be to compare and unify the results. A special area is the measurement of magnetic liquids. The force methods will also require optimization in FEM.

    Tutor: Drexler Petr, doc. Ing., Ph.D.

  26. Stochastic differential equations in electrical engineering

    By adding some randomness to the coefficients of an ordinary differential equation we get stochastic differential equations. As an example of that is the equation, that describes the current in an RL circuit with stochastic source. Then the solution of the equation is a random process. The subject involves creating stochastic models, numerical solutions of stochastic differential equations and examinations of the statistical estimates of the solutions.

    Tutor: Kolářová Edita, doc. RNDr., Ph.D.

  27. Surface treatment by plasma discharge in HV technology

    The aim of this work is a summary of research activities in the area of theoretical description and modeling of the effect of plasma discharge on surfaces of selected MV devices that should show specific electrical properties after treatment. The surface properties are determined by the macro, micro and nanoscopic state of the surface of the dielectric material, possibly treated with precursors of inorganic or organic character. The plasma-treated surface will exhibit altered properties from the region of in particular spacing distances at the air-surface interface or in contact with other solid material at a critical electric field strength value. The work will deal with both theoretical description of expected phenomena and numerical models and their analyzes with the part in which the models and analyzes will be verified experimentally.

    Tutor: Fiala Pavel, prof. Ing., Ph.D.

  28. The Theory of Nonlinear Acoustics in Relation to Inhomogeneous Locally Periodic Structures

    Nonlinear acoustics is a comparatively modern research discipline, whose primary focus lies within the propagation of acoustic waves in a nonlinear environment, modelling of the parametric acoustic field, and applications stemming from these areas. In this branch of science, major problems currently awaiting effective solution include, above all, the analytical description and numerical modelling of a non-linear environment. These two subdomains are complemented with another task element, namely the design of inhomogeneous, locally periodic structures, which enable us to target acoustic waves into a beam and to create nonlinear components, such as acoustic diodes. Further, the discussed research discipline may comprise a number of potential application subregions, for example, contactless material testing. Within the doctoral thesis, the student will characterize and analyze amplitude modulated acoustic waves of final amplitudes, and they will also provide an analysis of parametrically excited acoustic fields. In the wider context, one of the central aims of the thesis is to employ inhomogeneous periodic structures, methods for input signal processing, and carrier wave modulation to deepen the present knowledge of nonlinear acoustic interactions in liquids.

    Tutor: Mikulka Jan, doc. Ing., Ph.D.

  29. Transport of heat by turbulent flows in cryogenic helium gas in Rayleigh-Bénard Convection experiments

    Turbulent flows are found almost everywhere in Nature (think air travel, flow of air around cars, explosions of supernovae, dynamics of quantum vortices in superfluid helium at temperatures close to absolute zero…). One important feature is the enhancement of heat transport in a layer of fluid. To give an illustration of the magnitude - In an atmospheric boundary layer of 1 km height, the turbulent heat transfer increases by at least 5 orders of magnitude compared to the one by molecular diffusion without turbulent air flow. Detailed understanding of this has an obvious value for understanding Earth’s climate or important technological applications such as processes in cooling blankets in nuclear engineering or the storage of renewable energy in liquid metal batteries. Turbulent heat transport can be modelled and studied in laboratory conditions, however the highest intensity turbulence experiments (approaching the conditions relevant e.g. in our planetary atmosphere), as the Rayleigh Benard convection (RBC) experiments in cryogenic helium gas done in our laboratory at the Institute of Scientific Instruments in Brno involve so-called non-Oberbeck-Boussinesq (NOB) effects occurring due to temperature- and pressure-dependence of the working fluid properties, like density, viscosity, or heat conductivity. These are not sufficiently understood, as even the best current numerical simulations work so far only with constant properties, thus the value for understanding large-scale natural phenomena is limited. In collaboration with the team of prof. J. Schumacher at TU Ilmenau, we are working on novel efficient codes involving NOB effects and plan a systematic and careful comparisons with cryogenic helium experiments at ISI Brno. The PhD student will learn deeply about turbulent heat transport and will be able to analyze, compare and interpret data from two different sources – cryogenic helium RBC experiments performed in Brno and massively parallel direct numerical simulations preformed in Ilmenau. The student can also get involved in designing the electronics and instrumentation for data harvesting in upgrades of the ISI experimental apparatus. The interpretation will be done in collaboration with prof. L. Skrbek from MFF UK Prague and prof. K. Sreenivasan at New York University, USA.

    Tutor: Drexler Petr, doc. Ing., Ph.D.

  30. Tuned nanostructure

    One of the current areas of research are working on sophisticated nano-structures. The work is focused in the design, modeling and experimentation with tuned nanostructures in 10-500THz. There are three goals. The first one is the field of numerical modeling of structures. Based on the real properties of nanomaterials to create a numerical model and analyze the structure. The second area focuses on the design methods and methodologies of verification of the results by experiments, measurement and verification of assumptions expected from theoretical model. Modeling using finite element method, finite volume (such as ANSYS, ANSOFT, MAXWELL etc.) to propose a model of behavior dynamics of matter. The third area of ​​research is focused in the field of technology. This is expected to focus research on technology for implementation of the proposed structures and their feasibility in the experimental part of the topic. Results will be used for research of special tuned periodic structures. Topics can be solved in isolation, is not a precondition for any one candidate. The topic is part of the grant announced by CZ.

    Tutor: Fiala Pavel, prof. Ing., Ph.D.

  31. Use of plasma nanotechnologies for the design of new lithium-ion battery electrode materials

    Thesis is focused on the research, description, modeling and experimental verification of plasma nanotechnology allowing to modify the functional properties of the surface of an electrode system materials of an lithium-ion accumulators, including 3D micro and nanoporous structures thanks to the excellent conformation of processes. Found technology will also be applicable for material structuring design and pore and nanotubes at the material boundaries. This research will focus among other things on the possibilities of the design and creating multilayered systems. The aim of this work is to propose nanostructure of new material types for lithium-ion accumulator electrodes by means of evaluation of numerical analyzes and experimental realization / verification of the proposed structures using a combination of steps utilizing the potential of modern nanotechnologies, including plasma processes. The work is a part of the grant project with the planned financial support of the doctoral student.

    Tutor: Fiala Pavel, prof. Ing., Ph.D.

  32. Vizualization of quantum and classical turbulent flows of superfluid and gaseous helium by a novel optical method via laser-induced fluorescence of long-living molecular excimers He2*

    Turbulent flows are found almost everywhere in Nature (think of air travel, flow of air around cars, explosions of supernovae, dynamics of quantum vortices in superfluid helium at temperatures close to absolute zero…). One important feature is the enhancement of heat transport in a layer of fluid. To give an illustration of the magnitude - In an atmospheric boundary layer of 1 km height, the turbulent heat transfer increases by at least 5 orders of magnitude compared to the one by molecular diffusion without turbulent air flow. Detailed understanding of this, has an obvious value for understanding Earth’s climate or important technological applications such as processes in cooling blankets in nuclear engineering or the storage of renewable energy in liquid metal batteries. Turbulent heat transfer can be modelled and studied in laboratory conditions, however the highest intensity turbulence experiments (approaching the conditions relevant e.g. in our planetary atmosphere), as the Rayleigh Benard convection (RBC) experiments in cryogenic helium gas done in our laboratory at the Institute of Scientific Instruments in Brno nowadays measure only temperature fluctuations and lack a suitable visualization technique, allowing to measure the flows velocity field. In collaboration with the group of prof. W. Guo at National High-Magnetic Field Laboratory in Florida, who apply a novel and groundbreaking method using laser-induced fluorescence (LIF) of long-living metastable excimers of helium-4 in the regime of superfluid quantum turbulence, we plan to develop an apparatus for visualization of classical turbulent heat transfer by RBC in gas. The work on the PhD student will involve measurements and large data analysis of the experiments in Florida and/or design of the novel apparatus to be built at ISI Brno. The student can also get involved in designing the electronics and instrumentation for data harvesting in upgrades of the ISI experimental RBC apparatus.

    Tutor: Drexler Petr, doc. Ing., Ph.D.

1. round (applications submitted from 01.04.2021 to 15.05.2021)

  1. Advanced methods of low-level measurements

    The research work will focus on the issue of light air ions. It is necessary to know their mobility and concentration in the interiors of buildings and therapeutic caves to evaluate the effects on human health. Recently, their significant antibacterial and antiviral effect usable in building interiors has also come to the fore. It is assumed that the work will focus on improving the methodology of measuring light air ions, eliminating the influence of interfering signals and noise in the measurement of very small currents. In the field of applications, especially for the measurement of light air ions in environments with high humidity in caves. The evaluation will include mutual correlation with other meteorological variables, radon, seismic waves and atmospheric electricity.

    Tutor: Drexler Petr, doc. Ing., Ph.D.

  2. Using Artificial Intelligence Algorithms to Control a Drone

    Práce je zaměřena na vývoj metod strojového učení a jejich testování za účelem autonomního řízení dronu. Pro správnou volbu řídicích signálů je nutné zpracovávat obrazová data v reálném čase. Algoritmy tedy musí pracovat rychle a adaptabilně.

    Tutor: Marcoň Petr, doc. Ing., Ph.D.

Course structure diagram with ECTS credits

Any year of study, winter semester
AbbreviationTitleL.Cr.Com.Compl.Hr. rangeGr.Op.
DKC-ET1Electrotechnical materials, material systems and production processescs4Compulsory-optionalDrExK - 39yes
DKC-EE1Mathematical Modelling of Electrical Power Systemscs4Compulsory-optionalDrExK - 39yes
DKC-ME1Modern Microelectronic Systemscs4Compulsory-optionalDrExK - 39yes
DKC-RE1Modern electronic circuit designcs4Compulsory-optionalDrExS - 39yes
DKC-TK1Optimization Methods and Queuing Theorycs4Compulsory-optionalDrExS - 39yes
DKC-FY1Junctions and nanostructurescs4Compulsory-optionalDrExK - 39yes
DKC-TE1Special Measurement Methodscs4Compulsory-optionalDrExK - 39yes
DKC-MA1Statistics, Stochastic Processes, Operations Researchcs4Compulsory-optionalDrExK - 39yes
DKC-AM1Selected chaps from automatic controlcs4Compulsory-optionalDrExK - 39yes
DKC-VE1Selected problems from power electronics and electrical drivescs4Compulsory-optionalDrExK - 39yes
DKX-JA6English for post-graduatesen4ElectiveDrExCj - 26yes
DKC-RIZSolving of innovative taskscs2ElectiveDrExK - 39yes
DKC-EIZScientific publishing A to Zcs2ElectiveDrExK - 26yes
Any year of study, summer semester
AbbreviationTitleL.Cr.Com.Compl.Hr. rangeGr.Op.
DKC-TE2Numerical Computations with Partial Differential Equationscs4CompulsoryDrExK - 39yes
DKC-TK2Applied cryptographycs4Compulsory-optionalDrExK - 39yes
DKC-MA2Discrete Processes in Electrical Engineeringcs4Compulsory-optionalDrExK - 39yes
DKC-ME2Microelectronic technologiescs4Compulsory-optionalDrExK - 39yes
DKC-RE2Modern digital wireless communicationcs4Compulsory-optionalDrExK - 39yes
DKC-EE2New Trends and Technologies in Power System Generationcs4Compulsory-optionalDrExK - 39yes
DKC-FY2Spectroscopic methods for non-destructive diagnostics cs4Compulsory-optionalDrExK - 39yes
DKC-ET2Selected diagnostic methods, reliability and qualitycs4Compulsory-optionalDrExK - 39yes
DKC-AM2Selected chaps from measuring techniquescs4Compulsory-optionalDrExK - 39yes
DKC-VE2Topical Issues of Electrical Machines and Apparatuscs4Compulsory-optionalDrExK - 39yes
DKX-JA6English for post-graduatesen4ElectiveDrExCj - 26yes
DKC-CVPQuotations in a research workcs2ElectiveDrExK - 26yes
DKC-RIZSolving of innovative taskscs2ElectiveDrExK - 39yes
Any year of study, both semester
AbbreviationTitleL.Cr.Com.Compl.Hr. rangeGr.Op.
DKX-QJAEnglish for the state doctoral examen4ElectiveDrExK - 3yes