Course detail

Geographical Information Systems 2

FAST-NEA042Acad. year: 2020/2021

Geographic Information System (GIS), its purpose, function and structure; GIS and CAD relationship; geographic topographic object, homeomorphism, information and database systems, data mining (genetic algorithms, neural networks), fundamentals of graph theory, data models in GIS (raster, vector, matrix data), topology in GIS, digital terrain models, data models in GIS; GIS standardization (metadata, data quality, errors in data), ontology, big data, multi-criteria analysis, map algebra, Web-GIS, spatial analysis, reverse engineering, BIM.


Institute of Geodesy (GED)

Learning outcomes of the course unit

Basis knowledge needed for GIS design.
Ability to create a GIS project in Geomedia Intergraph and Arc/Info Systems.


computer skills, basic databases, statistics, applied mathematics


Not applicable.

Recommended optional programme components

Not applicable.

Recommended or required reading

Not applicable.

Planned learning activities and teaching methods

Not applicable.

Assesment methods and criteria linked to learning outcomes

Not applicable.

Language of instruction


Work placements

Not applicable.

Course curriculum

1. Introduction, definition of GIS, history, structure, relation to other fields, geographic object, GIS processing chain, mathematical basis of geo-database (homeomorphism).
2. Theory of information. Information Systems (IS), definitions and types of IS, UML diagrams, ISKN structure, IS in state administration (system of 4 basic registers), GeoInfoStrategie.
3. Database systems. Relational and object data model, relational algebra, SQL language. Spatial data structures, SQL spatial queries, deductive databases.
4. Data mining, methods (cluster analysis, artificial neural networks, genetic algorithms).
5. Fundamentals of graph theory. Definitions, basic concepts, structure storage patterns, basic graph algorithms used in GIS (minimal framework, minimum path between two nodes, task of Chinese letterhead, Hamilton path). Planar charts, chart coloring.
6. Topology. History, mathematical and pragmatic approach. Topology according to DIGEST standard.
7. Data models in GIS. Raster, vector, matrix data. Data sources for GIS in the Czech Republic and abroad.
8. Issues of processing large volume data (Big Data).
9. Metadata, data quality, data errors. INSPIRE directive, ontology.
10. Digital terrain models. Definitions, algorithms of creation and optimization, issues of 3D imaging.
11. Map algebra, GIS on-line, web map services, web portals.
12. Spatial analysis. History, Measurement and Classification Functions, focal Functions, Overlay Function, joining Functions.
13. Multi-criteria analysis, methods, applications, reverse engineering, Building Information Modelling (BIM).


Understanding of information systems and databases with connection to spatial identification.

Specification of controlled education, way of implementation and compensation for absences

Extent and forms are specified by guarantor’s regulation updated for every academic year.

Classification of course in study plans

  • Programme NPC-GK Master's, 2. year of study, winter semester, 5 credits, compulsory

Type of course unit



26 hours, optionally

Teacher / Lecturer


26 hours, compulsory

Teacher / Lecturer