Publication detail

Atomic Layer Deposition as a General Method Turns any 3D-Printed Electrode into a Desired Catalyst: Case Study in Photoelectrochemisty

BROWNE, M. PLUTNAR, J. POURRAHIMI, A. SOFER, Z. PUMERA, M.

Original Title

Atomic Layer Deposition as a General Method Turns any 3D-Printed Electrode into a Desired Catalyst: Case Study in Photoelectrochemisty

Type

journal article in Web of Science

Language

English

Original Abstract

3D-printing technologies have begun to revolutionize many manufacturing processes, however, there are still significant limitations that are yet to be overcome. In particular, the material from which the products are fabricated is limited by the 3D-printing material precursor. Particularly, for photoelectrochemical (PEC) energy applications, the as-printed electrodes can be used as is, or modified by postfabrication processes, e.g., electrochemical deposition or anodization, to create active layers on the 3D-printed electrodes. However, the as-printed electrodes are relatively inert for various PEC energy applications, and the aforementioned postfabrication processing techniques do not offer layer conformity or control at the angstrom ngstrom/nano level. Herein, for the first time, atomic layer deposition (ALD) is utilized in conjunction with metal 3D-printing to create active electrodes. To illustrate the proof-of-concept, TiO2 is deposited by ALD onto stainless steel 3D-printed electrodes and subsequently investigated as a photoanode for PEC water oxidation. Furthermore, by tuning the TiO2 thickness by ALD, the activity can be optimized. By combining 3D-printing and ALD, instead of other metal deposition techniques, i.e., sputtering, rapid prototyping of electrodes with controllable thickness of the desired material onto an as-printed electrodes with any porosity can be achieved that can benefit a multitude of energy applications.

Keywords

3D-printing; atomic layer deposition; photoelectrochemical water splitting; TiO2

Authors

BROWNE, M.; PLUTNAR, J.; POURRAHIMI, A.; SOFER, Z.; PUMERA, M.

Released

1. 7. 2019

ISBN

1614-6832

Periodical

Advanced Energy Materials

Year of study

9

Number

26

State

Federal Republic of Germany

Pages from

1900994

Pages to

1900994

Pages count

10

URL

BibTex

@article{BUT158492,
  author="Michelle P. {Browne} and Jan {Plutnar} and Amir Masoud {Pourrahimi} and Zdeněk {Sofer} and Martin {Pumera}",
  title="Atomic Layer Deposition as a General Method Turns any 3D-Printed Electrode into a Desired Catalyst: Case Study in Photoelectrochemisty",
  journal="Advanced Energy Materials",
  year="2019",
  volume="9",
  number="26",
  pages="1900994--1900994",
  doi="10.1002/aenm.201900994",
  issn="1614-6832",
  url="https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.201900994"
}