Přístupnostní navigace
E-application
Search Search Close
Publication result detail
DIBLÍK, J.; MENCÁKOVÁ, K.
Original Title
Representation of solutions of higher-order linear discrete systems
English Title
Type
Paper in proceedings (conference paper)
Original Abstract
A linear discrete homogenous system of the order $(m+2)$: \Delta^2 x(k) + B^2 x(k-m)= f(k), k \in\bN_0 is considered where B is a constant n \times n regular matrix, m \in \bN_0 and x\colon \{ -m, -m+1, \dots\} \to \bR^n, f\colon\bZ_0^{\infty} \rightarrow \bR^n. Two linearly independent solutions are found as a special matrix functions called delayed discrete cosine and delayed discrete sine. Utilizing these matrix functions formulas for solutions are derived. An example illustrating results is given as well.
English abstract
Keywords
delayed cosine; delayed sine; discrete equation
Key words in English
Authors
RIV year
2018
Released
15.06.2017
Publisher
Univerzita obrany
Location
Brno
ISBN
978-80-7231-417-1
Book
Matematika, informační technologie a aplikované vědy
Pages from
1
Pages to
9
Pages count
URL
http://mitav.unob.cz
BibTex
@inproceedings{BUT137196, author="Josef {Diblík} and Kristýna {Mencáková}", title="Representation of solutions of higher-order linear discrete systems", booktitle="Matematika, informační technologie a aplikované vědy", year="2017", number="1", pages="1--9", publisher="Univerzita obrany", address="Brno", isbn="978-80-7231-417-1", url="http://mitav.unob.cz" }