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1. Zivotopis uchazecky

B Zivotopis uchazecky

Jméno: Ing. et Bc. Renata Stysova Rychtarikova, Ph.D.
Narozena: 3. brezna 1983 v Jihlavé

Trvalé bydlisté:  Vilova ¢tvrt 197, 373 33 Nové Hrady

Nérodnost: ceska

Rodinny stav:  vdand, jeden syn (nar. 2017)

B Vzdélani a kvalifikace

2011 Ph.D. (Biotechnologie) — spolecna akreditace UCHP AV CR a FPBT
VSCHT Praha

2006 Bc. (Uéitelstvi odbornych predmétii) — VSCHT Praha

2006 Ing. (Konzervace potravin a technologie masa) - FPBT VSCHT
Praha

2001 maturita (vSeobecné sedmileté studium) — Gymnéazium Otokara
Breziny v Teléi

B Zaméstnani

od 1/2023 Ministerstvo primyslu a obchodu CR, Praha — externi
hodnotitel projektd OP TAK a OP PIK — DPC
od 12/2012 Ustav komplexnich systémi FROV JU, Nové Hrady
— postupné postdoktorand, védecky pracovnik a akademicky
pracovnik v Laboratoii experimentalnich komplexnich systémi
8/2011-1/2013 FARMEKO, VOSZ a SOS, s.r.o., Jihlava — uéitel (Klinick4
biochemie, Mikrobiologie, toxikologie a hygiena, Biochemie a
biotechnologie, Farmakognosie)
7/2011 Safibra, s.r.o., Ri¢any u Prahy - vyzkumny a skolici pracov-
nik pripravy optickych biosenzoru
9/2006-6/2011 Ustav chemickych procesi AV CR, v. v. i., Praha —

védecky pracovnik—doktorand v Laboratori imobilizovanych bio-
materialti a optickych senzort

B Cestovni granty na konference

1. Ceskoslovenska mikroskopicka spole¢nost — EMC 2016, Lyon, Francie
(2016)

2. ESF-EMBO EMBO — ESF-EMBO Symposium, Sant Feliu de Guixols,
Spanélsko (2007)



Vyzkumné projekty
Hlavni feSitel

Navrh a ovéreni metody pro analyzu castic v provoznich ka-
palinach pomoci mikroskopu s pritokovou celou, MPO Inovacni
vouchery VI, 12/2022-7/2022, 587 tis. K¢, pro ASTOS Machinery a.s.,
As.

Testovani principt mikroskopického sledovani kvality navijeni
mikrospiraly wolframového vlakna pro zarovky, MPO Inovacni
vouchery VI, 12/2022-7/2022, 604 tis. K¢, pro dataPartner s.r.o., Ceské
Budéjovice.

Testovani principt mikroskopického sledovani kvality navijeni
mikrospiraly wolframového vldkna pro zZarovky, MPO Inovacni
vouchery, 12/2022-7/2023, 46 tis. K¢, pro dataPartner s.r.o0., Ceské Budé-
jovice.

Vyzkum v oblasti buné¢né imunity, otevieny téet FROV JCU
financovany ze soukromych zdrojt, 27 tis. K¢

Konsolidace software jednoduchého mikroskopu velmi vysokého
rozliseni NanoTruth, TACR Gamma, TG03010027, 4/2018-12/2019,
218 tis. K¢.

Spolufesitel-zodpovédny fesitel za FROV JU

Lamelovy sedimentaéni systém filtrace nové generace, TACR
Trend PP1 Technologicti lidfi, 1/2024-6/2026, rozpoc¢et FROV JU 6 328
tis. Ké (90% dotace) — spolupréce s firmami ASTOS Machinery a.s. a
MACHINERY DESIGN s.r.o. (Ing. Martin Valicek).

Vyvoj procesu hodnoceni kadaveréznich rohovkovych lamel po-
moci inovace mikroskopickych systémt pro celularni analyzu,
MPO Aplikace, 9/2021-5/2023, rozpocet FROV JU 3 218 tis. K¢ (85%

dotace) — spoluprace s firmami PrimeCell Bioscience a Narodnim centrem
tkani a bunék (MUDr. Sarka Sekorova, Mgr. Martina Tlamkova)

Clen fesitelského tymu

. Velka vyzkumna infrastruktura CENAKVA - LM2023038, MSMT

CR, 1/2023-12/2026.

Velki vyzkumna infrastruktura CENAKVA — LM2018099, MSMT
CR, 1/2018-12/2022.

Image HeadStart — Interreg V-A Rakousko-CR — ERDF ATCZ133,
1/2020-12,/2022

Individualizované pozorovani chovani pro bezpecnostni aplikace
— PoC 02-22 TACR GAMA TG 03010027, 1/2017-12/2019.



1. Zivotopis uchazecky

5. Jihoceské vyzkumné centrum akvakultury a biodiverzity hydro-
cenéz — LM2018099, 1/2019-12/2020.

6. Kompetenzzentrum MechanoBiologie — Interreg V-A Rakousko-CR
— ERDF ATCZ133, 3/2017-8/2020

7. Postdok JU - MSMT CR, 12/2012-6/2015

8. Jihoceské vyzkumné centrum akvakultury a biodiverzity hyd-
rocenéz (CENAKVA) - MSMT OP VaVpl CZ.1.05/2.1.00/01.0024,
2010-2013.

9. Jihoceské vyzkumné centrum akvakultury a biodiverzity hydro-
cenéz — udrzitelnost (CENAKVA II) - MSMT LO1205 pod programem
NPU I.

10. Rozvoj CENAKVA — MSMT CZ.1.05/2.1.00,/19.0380.

11. Distribuované ulozisté dat velkého objemu zaloZzené na znalost-
nim modelu pro biomedicinu, bezpecnost potravin a dalsi biolo-
gické aplikace - TA CR TA0101214, 2011-2015.

12. Singletovy kyslik produkovany senzitizatory na pevnych anor-
ganickych nosi¢ich: Fotodesinfekéni materidly a sondy - GA CR
203/06/1244, 2006-2008.

13. Optické chemické senzory (OPTISENS) — mezinarodni spoluprace
s Univerzitou v Mariboru, Slovinsko, MSMT KONTAKT MEB 090817,
3/2008-2009.

14. Interakce organicko-anorganickych nosi¢ti s imobilizovanym bio-
logickym materiadlem — MSMT, COST OC121, 3/2006-3/2009.

15. Struktura a syntetické aplikace komplexti prechodnych kovt — spo-
luprace s UFCH JH AV CR, UK a VSCHT, MSMT LC06070, 3/2006-2010.

16. Monitorovani a remediace znecisténi zivotniho prostiredi pokro-
¢ilymi organicko-anorganickymi materialy (MOREPIM) - MSMT
KONTAKT ME 892, 5/2007-2011.

17. Celobunéény opticky senzor (WOCOS) - MSMT KONTAKT ME
893, 5/2007-2011.

B Dalsi certifikaty a Skoleni

9/2022 Osvédceni ,Manazer kvality zkuSebni, kalibra¢ni a zdravotnické la-
boratofe — zakladni znalosti a dovednosti“ v rozsahu norem CSN
EN ISO/IEC 17025:2018, CSN EN ISO 15189:2013 a CSN EN ISO
19011:2019 (¢. 1257/2022)

11/2021 Osvédceni vybraného posuzovatele pro senzorickou analyzu v rozsahu
pozadavkt normy CSN ISO 8586:2015 (ev. ¢. 161121-4, platné 5 let)

9/2015 Biological Samples for Electron Microscopy, Ceské Budéjovice, Ing. J.
Nebesarova

10/2013 Microscopy and Image Analysis workshop, Vodnany, prof. Ch. Rouviére
a prof. C. Matthews



6/2009 COST865 2009 Summer School, Early Stage Researcher Training on
Bioencapsulation, Anzére, Svycarsko, prof. D. Poncelet

5/2008 Immunochemistry 2008, VSCHT Praha, prof. J. Daussant



2. Vlyjadreni vztahu k VUT a diivodii pro predloZeni ndvrhu ke jmenovani na VUT

. 2 \Vyjadreni vztahu k VUT a diavoda pro predlozeni
navrhu ke jmenovani na VUT

S dékanem FCH VUT prof. Michalem Veselym jsem spolupracovala na vydani
t¥1 jazykovych mutaci skript pro vyuku predmétu Chemie II na FROV JU:

1. Rychtérikova R., Stys D.: Moderni laboratorni cviceni z organické fyzikalni
chemie a analyzy. VUT Brno (2023), 50 stran, ISBN 978-80-214-6146-8,
elektronicky.

2. Rychtarikova R., Stys D.: Modern laboratory practices in physical organic
chemistry and analysis. VUT Brno (2023), 50 stran, ISBN 978-80-214-
6145-1, elektronicky.

3. Rychtarikova R., Stys D.: Moderne Laboriibungen in organischer phy-
sikalischer Chemie und Analytik. VUT Brno (2023), 52 stran, ISBN
978-80-214-6144-4, elektronicky.

Recenzent: doc. Ing. Josef Trogl, Ph.D.
Korektor némciny: Prof. Gottfried Koéhler

Ucebnice je zakladem inovace predmétu Chemie II a slouzi pro vyuku relevant-
nich laboratornich cviceni (pfevazné organickd chemie a spektroskopie malych
organickych molekul) v 1. ro¢niku denniho a kombinovaného bakaldrského
studia obori Ochrana vod a Rybarstvi na FROV JU. Je zalozena na dvou
originalnich komplexnich laboratornich cvic¢enich ze spektroskopie organickych
latek sestavenych autory. Laboratornim cvicenim predchézi teorie absorpc-
nich molekulovych spekter, elektrochemie, pufra a interakce organické latky
s prostfedim. V laboratornich cvic¢enich se vyuziva k pripravé pufri systém
méficich sond AquaSheriff komunikujici s uzivatelem pres webovou aplikaci.
Méfici systém byl vyvinut na UKS FROV Nové Hrady. Na vyvoji systému
AquaSheriff jsem se podilela zejména jako tester a sepsala jsem k nému navody.
Muj autorsky podil je 75 %.

Vzhledem ke skutecnosti, ze FROV JU, na které odborné a pedagogicky ptso-
bim, nemé akreditaci habilita¢niho rizeni v oboru Fyzikalni chemie, do néhoz
predlozend habilita¢ni prace spadd, obratila jsem se na FCH VUT.



B3 Doklady o dosazeném vysokoskolském vzdélani a
ziskanych prislusnych titulech



CESKA REPUBLIKA

VYSOKA SKOLA
CHEMICKO-TECHNOLOGICKAV PRAZE

stvrzuje, Ze

ING.RENATA RYCHTARIKOVA

narozena 3. btezna 1983 v Jihlave

ziskala vysokoskolské vzdélani studiem v doktorském studijnim programu P 2836
BIOCHEMIE A BIOTECHNOLOGIE

ve studijnim oboru 28 10Voo1

BIOTECHNOLOGIE

na Fakult potravindvské a biochemické technologic a obhdjila disertacni prici s nazvem
Antimikrobidlni tginky imobilizovanych porfyrint

Podle § 47 odst. 5 zékona ¢&. 111/1998 Sb, 0 vysokych skolich a 0 zméné a doplnéni dalsich zakon se ji ud&luje

akademicky titul DOKTOR, ve zkratce Ph. D., uvidéné za jménem

CISLO DIPLOMU 1151

\\

\
V Praze 16.listopadu 2011 rektor dékan fakulty
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0T

| Pedagogicka praxe

Predmét VS (typ studia) Rozsah Pocet Druh Pocet studentu
semestri
Fyzikalni biologie (Ph.D., denni, PfF JU)  3-tydenni kurz v aj, 1 ze 3 C, pov. 104+9+9
2 cvicicich, LS 2013-2018
Chemie II (Bc., denni, FROV JU) 2 h/tyden, od LS 2017 7 C, pov. 22414 +174+ 18+
244+ 12+ 22+ 22
Chemie IT (Bc., kombinované, FROV JU) 1 h/tyden, od LS 2017 7 C, L, pov. 54+4+5+4+2+
44+3+9
Bioinformatika (Ph.D., denni + kombino- tydenni kurz, 1 ze 4 vyu- 3 P,C,L,vol. 7+4+1+40
vané, ¢j a aj, FROV JU) ¢ujicich, od LS 2021
Zpracovani obrazu (Ph.D., denni + kom-  3-denni kurz, 1 ze 3 pred- 1 P, C, vol. 2
binované, FCHI VSCHT, LS 2019) nésejicich
Technické normy (Bc., denni, FROV JU) 2 h/tyden, jediny vyucu- 3 P, C, pov. 9+6+1
jici, garant predmétu, od
7S 2021
Technické normy (Bc., kombinované 2 h/tyden, jediny vyucu- 3 P, C, pov. 140
FROV JU, garant predmétu) jici, garant predmeétu, od
7S 2022
Modelovani prirodnich systémiu (Bc., 2 h/tyden, 1 ze 2 vyucuji- 1 C, vol. 10+04+0
denni + kombinované FROV JU) cich, od LS 2022

P — prednaska, C — cviceni, L — laboratore, pov. — povinné, vol. — volitelné, LS — letni semestr, ZS — zimni semestr



4. Pedagogicka praxe

V letech 2013-2014, kdy piisobil prof. Dalibor Stys na MSMT, vedla

vyzkumny tym.

Skolitel a Skolitel specialista VSKP
Dizertacni prace na PiF JU

Ganna Platonova: Contribution to information analysis in digital light
microscopy, predpokladand obhajoba 11/2024.

B Spoluautorka 2 publikaci s IF (Lonhus a kol., Sci. Rep. 2020; Platonova a kol.,
Photonics 2021)
B Nyni zaméstnana v UJF AV CR Rez

Ali Ghaznavi: Cell segmentation from wide-field light microscopy images
using CNNs, obhajeno 26. 6. 2023.

B Spoluautor 3 publikaci s IF (Ghaznavi a kol., Symmetry 2024; Ghaznavi a kol.,
Comp. Biol. Med. 2022; Lonhus a kol., Eur. Phys. J.-Spec. Top. 2021)

B Nyni postdok na Bundesanstalt fiir Materialforschung ung -priifung, Berlin, Né-
mecko

Kirill Lonhus: Investigating intrinsic behavioural parameters of autono-
mous objects based on motion, obhajeno 2. 2. 2022.

B Spoluautor 5 publikaci s IF (Lonhus a kol., Complex Intell. Syst. 2023; Platonova
a kol., Photonics 2021; Lonhus a kol., Eur. Phys. J.-Spec. Top. 2021; Lonhus a
kol., Sci. Rep. 2020; Lonhus a kol., Symmetry 2019), 1 recenzované publikace
(Mackova a kol., Vodni hospodafstvi 2022) a 7 aplikovanych vystupt

B Nyni védecky pracovnik FROV JU

Anna Zhyrova: State trajectory approach to the interpretation of self-
organization in the Belousov-Zhabotinsky reaction, obhajeno 24. 11. 2017.

B Spoluautorka 1 publikace s IF (Stys a kol., Eur. Phys. J.-Spec. Top. 2019),
3 prispévka v konferenénim sborniku na WOS a 1 prispévku v recenzovaném
konferenéniho sborniku

® Nyn{ zaméstndna v Robert Bosch, spol. s 1. 0., Ceské Budéjovice

Tomas Nahlik: Microscopy — Point Spread Function, Focus, Resolution,
obhajeno 15. 1. 2016

B Spoluautor 1 publikace s IF (Rychtarikovd a kol., Ultramicroscopy 2017), 3
prispévkl v konferenc¢nim sborniku na WOS, 3 ptispévkt v recenzovaném konfe-
renénim sborniku, 1 monografie a 4 softwaru

B Nyni odborny asistent VSTE Ceské Budéjovice

Bakalarské prace na Universita degli Studi di Padova

Alisa Plaksina: Caffeine-induced changes in a shoal behaviour of Tiger
Barb (Puntigrus tetrazona), obhdjeno 13. 10. 2021.

11



Bakalarské prace na FROV JU

Jan Kosek: Studium dynamiky zivych lidskych bunék v odezvé na bézné
kontaminanty vod s cilem vyvoje citlivého specifického analytického po-
stupu, obhéjeno 6. 6. 2023.

Eliska Pejcharova: Zmény hejnového chovani akvarijnich ryb v pfitomnosti
kontaminantu, obhédjeno 14. 6. 2022. Prezentovano na 2 konferencich.
Barbora Mackova: Zmény hejnové hierarchie ryb jako citlivy indikator
bioaktivnich latek, obhajeno 14. 6. 2021. Spoluautorka Mackova a kol.,
Vodni hospodarstvi 2022.

Miroslav Slivoné: Vliv béznych pesticidi na lidské bunky, obhajeno 1. 7.
2020.

Mezinarodni letni skoly FROV JU Nové Hrady

- 1- az 2-mésicni vyzkumné projekty z optické mikroskopie a zpracovani digital-
niho obrazu

1.
2.

10.

11.

12.

Alisa Plaksina (Universita degli Studi di Padova, 2021)

Olesya Nikitina (V. N. Karazin Kharkiv National University, Ukrajina,
2016)

Claudia del Carmen Diaz Arméas (Tecnico de Monterrey, Mexiko, 2016)
Raul Suarez Rodrigez (Universidad de Las Palmas de Gran Canaria,
Spanélsko, 2015)

Kateryna Akulich (V. N. Karazin Kharkiv National University, Ukrajina,
2015)

Marco Goméz (Tecnico de Monterrey, Mexiko, 2014)

Kevin Shi (University of Princeton, USA, 2013) — spoluautor 1 publikace
s IF (Rychtarikova a kol., Ultramicroscopy 2017)

Adam Charvéat (Gymnézium J. V. Jirsika, Ceské Budéjovice, 2014)
Lucie Draslarova (Cesko-anglické gymnézium, Ceské Budéjovice, 2014)
Markéta Novotna (Cesko-anglické gymnézium, Ceské Budéjovice, 2014) —
spoluautorka 1 recenzované publikace (Rychtérikova a kol., PURPLSOC
2014)

Magdalena Koutova, (Gymnazium Ceské a Olympijskych nadéji, Ceské
Budgjovice, 2013)

Marie Hyblova (Gymnézium Ceské a Olympijskych nadéji, Ceské Budéjo-
vice, 2013)

Kurzy a skoleni

Superresolution microscopy from brightfield images, Letni skoly FROV
JU Nové Hrady — 45-min prednéaska (aj), 13. 7. 2016

Konfokalni a superrozlisovaci mikroskopie, Jihocesky védecko-technicky
park, Ceské Budéjovice — 40-min prednaska, 23. 2. 2016

12



4. Pedagogicka praxe

8 COST Microscopy and Image Analysis Training Course, FROV JU Vodnany
— 120-min pfednaska (aj), 16.-20. 3. 2015

B Vyuka na VOS

8/2011-1/2014 - FARMEKO, VOSZ a SOS, Jihlava

® Farmakognozie (0/2/0) — prednasky pro denni i kombinované studium
Diplomovany farmaceuticky asistent

B Vyuka na SS

8/2011-1/2014 - FARMEKO, VOSZ a SOS, Jihlava

® Klinickd biochemie (0/1/3/4), Cviceni z klinické biochemie (0/0/3/4) —
teoretickd a praktickd vyuka pro obor Laboratorni asistent

® Mikrobiologie, hygiena a toxikologie (0/2/0/0)

® Biochemie a biotechnologie (0/0/3/0) — teoretickd vyuka pro obor Ekologie
a zivotni prostiedi

B vedeni skolniho kola Chemické olympiady

B piiprava elektronickych studijnich materidla

1-2/2006 — Sti¥edni pramyslova Skola masné technologie, Navratilova
15, Praha — pedagogickd praxe

B Obecné a anorganické chemie — teoreticka vyuka pro obor Prirodovédné
lyceum

® Mikrobiologie a Technologie masa — teoreticka vyuka pro obor Technologie
zpracovani masa a masnych vyrobku

13



B 5 0dborné a védecké staze

9/2019

10-11/2016

3-6, 9-12/2014

7-8/2012

11-12/2008, 8/2009

10/2008

7/2005

Ankara University, Faculty of Veterinary Medicine,
Department of Toxicology and Pharmacology, An-
kara, Turecko (doc. Begum Yurdakok Dikmen)

Téma: Teaching Activities Focused on the Veterinary Phar-
macology and Toxicology Field (tydenni stdz Erasmus+)

Donau University of Krems, Faculty of Health and
Medicine, Krems an der Donau, Rakousko (prof. M.
B. Fischer)

Téma: 3D Live Cell Imaging - a Technical Solution (mési¢ni
staz Aktion AT-CZ + tydenni stdz Erasmus+)

European Molecular Biology Laboratory, Advanced
Light Microscopy Facility, Heidelberg, Némecko (Dr.
Rainer Pepperkok a Dr. Yury Belyaev)

Téma: 3D Modelling of diffracting organelles inside the living
cells (6-mésicni stdz Postdok JU)

Univerzita Karlova v Praze, Matematicko-fyzikalni
fakulta, Ceska republika (RNDr. P. Gabriel)

Téma: Vyvoj optického senzoru pro méreni pH v kvasném
prumyslu (2-mésicni stéz)

University of Maribor, Faculty of Mechanical En-
gineering, Center of Sensor Technology, Maribor,
Slovinsko (prof. A. Lobnik)

Téma: Optické chemické senzory — OPTISENS — Priprava
senzoru pro méreni pH, paraoxonu a biogennich amini v
potravinach a Zivotnim prostiedi (MSMT KONTAKT)

Swedish University of Agriculture Sciences, Depart-
ment of Chemistry, Uppsala, Svédsko (prof. V. Kessler)
Téma: ,Biokompatibilni titanic¢ité hydrosoly a hydrogely s
navazanymi porfyriny* — Priprava materialu pro dezinfekci
ran a léébu rakoviny (2-tydenni COST865 STSM)

Coca-Cola HBC Ceska republika, Praha — Asistent
kontroly kvality — Kontrola kvality obalovych materiala (3-
tydenni staz)
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6. Seznam publikovanych praci a realizovanych inZenyrskych dél

B 6 Seznam publikovanych praci a realizovanych

inzenyrskych dél

B Clanek v ¢asopise WoS a Scopus

H-index 6, IF/SJR udévano pro rok publikace, * korespondujici autor

1.

Ghaznavi A., Rychtarikova R., Cisaf P., Ziaei M.M., Stys D.: Symmetry
Breaking in the U-Net: Hybrid Deep-Learning Multi-Class Segmentation
of HeLa Cells in Reflected Light Microscopy Images. Symmetry 16, 227
(2024). Q2; IF 2,7, cit. 1

1. Ning W et al: Constr Build Mater 434:136770 (2024).

Lonhus K., Stys D., Rychtarikova R.*: Quantification of Collective
Behaviour via Causality Analysis. Complex Intell. Syst. 9, 58075816
(2023). QL; IF 5

Ghaznavi A., Rychtarikova R.*, Saberioon M., Stys D.: Cell Segmen-
tation from Telecentric Bright-field Transmitted Light Microscopy Images
Using a Residual Attention U-Net: A Case Study on HeLa Line. Comp.
Biol. Med. 147, 105805 (2022). Q1; IF 6,7, cit. 14

Carrafini F et al: Lect Notes Comp Sci 14976:104-117 (2024).
Hattori S et al: Appl Sci 14(17):7958 (2024).
Wang Q et al: Electronics 13(17):3430 (2024).
Wu H et al: Opt Laser Technol 179:111311 (2024).
Asha SB et al: Expert Syst Appl 253:124309 (2024).
Gabdullin MT et al: Biotechnol Bioprocess Eng doi:10.1007/s12257-024-00130-5
(2024).
7. Dugue-Vazquez et al: Heliyon 10(5):26520 (2024).
8. Ghaznavi A et al: Appl Comput Geosci 100150 (2024).
9. Wu H et al: Int J Mol Sci 24(22):16028 (2023).
10. Yidong W et al: Laser Optoelectron Prog 60(14): 1410015 (2023).
11. Khani M et al: Phys Commun 61(5):102188 (2023).
12. Zang L et al: Sci Rep 12779 (2023).
13. Alabdaly AA et al: J Intell Fuzzy Syst 44(3):4759-4777 (2023).
14. Mohammed AA et al: Proceedings of the 14th Conference on ACM Multimedia
Systems, 451-457 (2023).

AR S

Platonova G., Stys D., Sou¢ek P., Lonhus K., Valenta J., Rychtéari-
kova R.*: Spectroscopic Approach to Correction and Visualization of

Bright-Field Light Transmission Microscopy Biological Data. Photonics
8(8), 333 (2021). Q2; IF 2,5, cit. 2

1. Bian Y et al: Cells 11:3670 (2022).
2. Moskovsky MN et al: Photochem. Photobiol. 99(1):29-34 (2022).

Lonhus K., Rychtarikova R., Ghaznavi A., Stys D.: Estimation of
Rheological Parameters for Unstained Living Cells. Fur. Phys. J.-Spec.
Top. 230(4), 1105-1112 (2021). Q2; IF 2,9; zvany
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10.

11.

12.

13.

Lonhus K., Rychtarikova R., Platonova G., Stys D.: Quasi-Spectral
Characterization of Intracellular Regions in Bright-Field Light Microscopy
Images. Sci. Rep. 10, 18346 (2020). Q1; IF 4,4.

Obsahem tiskové zpravy z 18. 11. 2020 s cca 30 medidlnimi vystupy vcetné
CT.

Urban J., Rychtéarikova R., Machéacek P., Stys D., Urbanové P., Cisaf
P.: Optimization of Computational Burden of the Point Information Gain.
Acta Polytech. 59(6), 593-600 (2019). Q3; SJR 0,213

Lonhus K., Stys D., Saberioon M., Rychtérikova R.: Segmentation of
Laterally Symmetric Objects: Application to Images of Collective Animal
Behavior. Symmetry 11(7), 866 (2019). Q2; IF 2,6; cit. 1

1. Zhang J, Liu C: Automatika 61(1):150-157 (2020).
Specialni propagace casopisem Symmetry.

Stys D., Rychtarikova R.*, Zhyrova A., Stys K.M., Jizba P.: Noisy
Hodgepodge Machine and the Observed Mesoscopic Behaviour in the Non-
Stirred Belousov-Zhabotinsky Reaction: Optimal Noise and Hidden Noise
in the Hodgepodge Machine. Fur. Phys. J.-Spec. Top. 227, 2361-2374
(2019). Q2; IF 1,7; zvany

Rychtarikova R.*, Urban J., Stys D.: Zampa s Systems Theory: a Com-
prehensive Theory of Measurement in Dynamic Systems. Acta Polytech.
58(2), 128-143 (2018). Q3; SJR 0,2; cit. 1

1. Khouzani MHR, Malacaria P: Entropy 20(9):675 (2018).

Rychtarikova R.*, Korbel J., Machacek P., Stys D.: Point Divergence
Gain and Multidimensional Data Sequence Analysis. Entropy 20(2), 106
(2018). Q2; IF 2,4; cit. 3

1. Lo W-C et al: Appl Sci 12:6602 (2022).
2. Dong C et al: J Phys Conf Ser 2010(1):012067 (2021).
3. Zhuo R, Bai Z: Lect Notes Electr Eng 675:657 (2020).

Rychtarikova R.*, Stys D.: Observation of Dynamics Inside an Unla-
beled Live Cell Using a Bright-Field Photon Microscopy: Evaluation of
Organelles’ Trajectories. IWBBIO 2017, Proceedings, Part 11, LNBI 10209,
Ortuno and Rojas (eds.), Springer, Switzerland, 2017, pp. 700-711. Q2;
SJR 0,3; cit. 1

1. Suzuki G et al: npj Syst. Biol. Appl. 7:31 (2021).

Rychtarikova R.*, Steiner G., Fischer M. B., Stys D.: Information
Limits of Optical Microscopy: Application to Fluorescently Labelled Tissue
Section. IWBBIO 2017, Proceedings, Part I, LNBI 10208, Ortuno and
Rojas (eds.), Springer, Switzerland, 2017, pp. 485-496. Q2; SJR 0,3
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14.

15.

16.

17.

18.

19.

20.

6. Seznam publikovanych praci a realizovanych inZenyrskych dél

Zhyrova A., Rychtarikova R., Stys D.: Recognition of Stages in the
Belousov-Zhabotinsky Reaction Using Information Entropy. IWBBIO
2017, Proceedings, Part I, LNBI 10208, Ortuno and Rojas (eds.), Springer,
Switzerland, 2017, pp. 335-346. Q2; SJR 0,3

Rychtarikova R.*, Nahlik T., Shi K., Malakhova D., Machacek P., Smaha
R., Urban J., Stys D.: Super-Resolved 3-D Imaging of Live Cells’ Organelles
from Bright-Field Photon Transmission Micrographs. Ultramicroscopy 179,
1-14 (2017). Q1; IF 2,9; cit. 1

1. Urbanova P, et al: Lect Notes Bioinf. 11465:142-153 (2019).

Rank 1 v oboru Mikroskopie, vybrano vydavatelstvim Elsevier mezi cca 30
fyzikalnich ¢lanka roku 2017 uréenych k dalsi propagaci. Obsahem tiskové

zpravy z 24. za¥i 2017 s cca 15 medidlnimi vystupy véetné CT.

Rychtarikova R.*, Korbel J., Machéacek P., Cisai P., Urban J., Stys D.:
Point Information Gain and Multidimensional Data Analysis. Entropy
18(10), 372 (2016). Q2; IF 1,8; cit. 8

1. Ragragui H et al: Groundw Sustain Dev 26:101281 (2024).

2. Grandhi A, Singh SK: 2023 7th Int Conf Trends Electron Inform (ICOEI) 1046-
1054 (2023)

Mohapatra S, Neha C: Eng Sci 21, 787 (2023).

Xin G et al: Entropy 25(1):48 (2023).

Zhang W et al: Proc Int Joint Conf AAMAS, 1629-1637 (2020).

Cui L, Lin Ch: Entropy 22(7):778 (2020).

Fang Y et al: Appl Intel 50(12):4281-4295 (2020).

Wang C et al: Entropy 19(2):65 (2017).

PN oUW

Stys D., Nahlik T., Machacéek P., Rychtarikova R., Saberioon M.: Least
Information Loss (LIL) conversion of digital images and lessons learned
for scientific image inspection. IWBBIO 2016, LNBI 9656, Ortuno and
Rojas (eds.), Springer, Switzerland, 2016, pp. 527-536. Q2; SJR 0,252

Cisar P., Nahlik T., Rychtarikova R., Machacek P.: Visual Exploration
of Principles of Microscopic Image Intensities Formation using Image
Explorer Software. IWBBIO 2016, LNBI 9656, Ortuno and Rojas (eds.),
Springer, Switzerland, 2016, pp. 537-544. Q2; SJR 0,3; cit. 1

1. Nahlik T: APLIMAT 2020 Proceedings 824-833 (2020).

Rychtarikova R.*: Clustering of Multi-Image Sets Using Rényi Infor-
mation Entropy. IWBBIO 2016, LNBI 9656, Ortuno and Rojas (eds.),
Springer, Switzerland, 2016, pp. 517-526. Q2; SJR 0,3

Stys D., Nahlik T., Zhyrova A., Rychtarikova R., Papéacek S., Cisar P.:
Model of the Belousov-Zhabotinsky Reaction. HPCSE 2015, LNCS 9611,
Kozubek, Blaheta, Sistek, Rozloznik, Cermak (Eds.), Springer, Switzerland,
2016, pp. 171-185. Q2; SJR 0,3; cit. 2

1. Tsompanas M-A et al: Biosystems 206:104447 (2021).
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21.

22.

23.

24.

25.

26.

2. Tsompanas M-A et al: Nonlin Dyn 104:4103 (2021).

Stys D., Urban J., Rychtarikova R., Zhyrova A., Cisai P.: Measurement
in Biological Systems from the Self-Organisation Point of View. IWBBIO
2015, Part II, LNCS 9044, Ortuno and Rojas (eds.), Springer, Switzerland,
2015, pp. 431-443. Q2; SJR 0,4

Barta A., Cisai P., Soloviov D., Soucek P., Stys D., Papacek S., Paut-
sina A., Rychtarikova R., Urban J.: BioWes — from Design of Expe-
riment, through Protocol to Repository, Control, Standardization and
Back-Tracking. IWBBIO 2015, Part II, LNCS 9044, Ortuno and Rojas
(eds.), Springer, Switzerland, 2015, pp. 426-430. Q2; SJR 0,4

Malakhova D., Stys D., Rychtarikova R.: Adjustment of Dynamic High
Resolution Images of Living Cells by Combination of an Optical Microscopy
in Transmitting Light, Atomic Force Microscopy and Image Information
Analysis. Chem. Listy 107(SI), Suppl. 3, S402-S404 (2013). Q4; IF 0,2

Rychtarikova R.*, Seisenbaeva G. A., Kuncova G., Kessler V. G.: Bi-
ocompatible Titania Hydrogels with Chemically Triggered Release of a
Photosensitive Dye. J. Sol-Gel Sci. Technol. 62(3), 370-377 (2012). Q1;
IF 1,7

Rychtarikova R.*, Sabata S., Hetflejs J., Kuncova G.: Photodynamic
Efficiency of Porphyrins Encapsulated into Polysilsesquioxanes. Chem.
Pap. 66(4), 269-277 (2012). Q3; IF 0,9; cit. 7

Elian C et al: Adv Funct Mater doi:10.1002/adfm.202407228 (2024).
Lesar A et al: Int J Mol Sci 21(15):5367 (2020).

Zhang W-Y et al: Chinese J Inorg Chem 34(12):2161-2171 (2018).

Ion RM et al: React Kinet Mech Cat 118(1):337-348 (2016).

Alves E et al: J Photochem Photobiol C-Photochem Rev 22:34-57 (2015).
Smolinska G et al: Int J Environ Sci Technol 12(1):61-72 (2015).

Deda DK et al: J Biomed Nanotechnol 9(8):1307-1317 (2013).

N ot

Rychtarikova R.*, Sabata S., Hetflejs J., Kuncova G.: Composites with
Photosensitive 5,10,15,20-Tetrakis( N-methylpyridinium-4-yl)porphyrin En-
trapped into Silica Gels. J. Sol-Gel Sci. Technol. 61(1), 119-125 (2012).
Q1; IF 1,7; cit. 11

Elian C et al: Adv Funct Mater doi:10.1002/adfm.202407228 (2024).
Rozga-Wijas K et al: Cellulose 30(1):1-20 (2023).

Mesquita MQ et al: Hadbook of Porphyrin Science 46:201-277 (2022).
Zhao L et al: Chemosphere 230:124552 (2020).

Li S et al: Gaofenzi Cailiao Kexue Yu Gongcheng/Polymer Mater Sci Eng
33(11):145-151 (2017).

Gonzales-Delgado JA et al: Int J Pharm 510(1):221-231 (2016).
Gonzales-Delgado JA et al: J Med Chem 59(10):4428-4442 (2016).
Spagnul C et al: J Photochem Photobiol B-Biol 150 SI:11-30 (2015).
Alves E et al: J Photochem Photobiol C-Photochem Rev 22:34-57 (2015).
Zhao L et al: J Hazard Mater 301:223-241 (2016).

Zucca P et al: J Mol Catal A-Chem 338 SI:2-34 (2014).
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27.

28.

29.
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Rychtarikova R.*, Kuncovd G.: Metoda vyhodnocovdni antimikrobidlni
aktivity pocitacovym prahovanim barev. Chem. Listy 105(6), 493—498
(2011). Q4; IF 0,5; cit. 1

1. Zigo F et al: Agriculture 10(6):245 (2020).

Rychtarikova R.*, Kuncova G.: Imobilizované fotosenzitizatory single-
tového kysliku a jejich G¢inek na mikroorganismy. Chem. Listy 103(10),
800-813 (2009). Q3; IF 0,7; cit. 4

1. Rana P et al: Coord Chem Rev 470(1):214698 (2022)

2. Sankhagowit S et al: Biochim Biophys Acta-Biomem 1838(10):2615-2624 (2014).

3. Pessoni L et al: Langmuir 29(32): 10264-10271 (2013).
4. Lacombe S, Pigot T: Photochemistry 38:307-329 (2011).

Sabata S., Hetflejs J., Rychtarikova R., Kuncova G., Lang K., Kubét
P.: Immobilization of Porphyrins in Poly(hydroxymethyl-siloxane). Chem.
Pap. 63(4), 438-444 (2009). Q3; IF 0,8; cit. 1

1. Piwovar K et al: Photosensitizers: Types, Uses and Selected Research 149-198
(2016).

Prispévek ve sborniku mezinarodni védecké konference

Stys D., Lonhus K., Karpov M., Rychtarikova R.: Visible Truth —
digitalni svételné mikroskopy (nejen) pro kontrolu kvality. CAE Forum
2023, Praha, Ceské republika, 14.-15. zaif 2023.

Rychtarikova R.*, Maleckovd D., Urban J., Barta A., Novotnd M.,
Zhyrova A., Nahlik T., Stys D.: Study of Human Perception with the Usage
of Information Entropy Analysis of Patterns, in PURPLSOC: Pursuit of
Pattern Language for Societal Challenges/PURPLSOC The Workshop
2014 1), Baumgartner and Sickinger (eds.), pp. 366-384, ISBN 978-3-7375-
5458-9, epubli GmbH (Verlag), 2015, Austria.

Zhyrova A., Rychtarikova R., Nahlik T., Stys D.: The Path of Aging:
Self-Organization in Nature and 15 Properties, in PURPLSOC: Pursuit
of Pattern Language for Societal Challenges/PURPLSOC The Workshop
2014 1), Baumgartner and Sickinger (Eds.), pp. 385-410, ISBN 978-3-7375-
5458-9, epubli GmbH (Verlag), 2015, Austria.

Rychtarikova R.*, Nahlik T., Smaha R., Urban J., Stys D. Jr., Cisaf P.,
Stys D.: Multifractality in Imaging: Application of Information Entropy
for Observation of Inner Dynamics Inside of an Unlabeled Living Cell
in Bright-Field Microscopy. In ISCS14, Sanayei et al. (eds.), Springer,
Switzerland, 2015, pp. 261-267.

Monografie

Rychtarikova R., Nahlik T.: System information approach to digital light
microscopy. FROV JU Ceské Budéjovice (2023), ISBN 978-80-7514-185-9.
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Clanek v casopise uvedeném v narodnim seznamu
recenzovanych casopisti

Maleckova D., Rychtarikova R., Urban J.: Obraz, informace, entropie
(Czech) Image, Information, Entropy: Image Analysis Using Rényi Entropy.
Prolnflow: ¢asopis pro informacni védy 11(2), 30-39 (2019).

Mackova B., Lonhus K., Rychtarikova R.*: Vyuziti zmén hejnové hie-
rarchie ryb pro citlivou indikaci bioaktivnich latek ve vodnim prostredi.
Vodni hospodarstvi 2, 21-26, 2022.

Vyznamné inzenyrské dilo vétSiho rozsahu

Prototyp

Lonhus K., Karpov M., Larin I., Rychtarikova R., Stys D., 2024: PADES.
Uplatnéno v ASTOS Machinery a.s., As.

Rychtarikova R., Stys D., Sekorova S., Spirka D., Tlamkova M., Kope¢-
kova K., 2023: Mikroskop Visible Truth UltraEasy.

Rychtarikova R., Stys D., Sekorova S., Spirka D., Tlamkova M., Kope¢-
kova K., 2023: Upraveny Zeiss Stemi 508.

Funkcéni vzorek

Lonhus K., Karpov M., Larin 1., Rychtarikova R., Stys D., 2024: Fi-
liqa 1.1. Uplatnéno v OSRAM Ceskd republika, s.r.o., Bruntdl.

Lonhus K., Karpov M., Larin 1., Rychtarikova R., Stys D., 2024: Fi-
liqa 0.1. Uplatnéno v OSRAM Ceskd republika, s.r.o., Bruntdl.

Lonhus K., Rychtarikova R., Stys D., 2021. Kapesni VIS (potencidlné
near UV-VIS-near IR) spektrofotometr.

Stys D., Rychtarikova R., 2021. Mikroskop Futurescope.
Rychtarikova R., Stys D., 2020. Mikroskop NanoTruth.

Ovérena technologie

Tlamkova M., Kopeckova K., Sekorova S., Spirka D., Rychtarikova R.,
Stys D., 2023: Postup hodnoceni a piipravy transplantatu z oéni rohovky.

Ostatni vysledky, které nelze zaradit do Zadného z definovanych druhi
vysledkd

Lonhus K., Rychtarikova R., Stys D., 2019. Metodika sbéru dat pro
detekci osob.
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6. Seznam publikovanych praci a realizovanych inZenyrskych dél

Software

Rychtarikova R., Stys D., 2020. CAMEX, http://auc.cz/software/
2020 . php#CAMEX.

Lonhus K., Rychtarikova R., Stys D., 2020. QSP, http://auc.cz/
software/2020 . php#QSP.

Lonhus K., Rychtarikova R., Stys D., 2020. FlowRec, http://auc.cz/
software/2020.php#FlowRec.

Rychtarikova R., Stys D., 2019. Control Software of the NanoTruth
microscope, http://auc.cz/software/2019.php#NanoTruth.

Cisai P., Urban J., Nahlik T., Rychtarikova R., Stys D., 2015. Image
Info Extractor Professional b9. http://www.auc.cz/software/2015. php.
Uplatnéno v Elya Solutions s.r.o.

Néhlik T., Rychtarikova R., Stys D., 2015. LIL Convertor, http://www.
auc.cz/software/2015.php. Uplatnéno v Elya Solutions s.r.o.

Rychtarikova R., Nahlik T., Stys D., 2015. Cell Segmentator, http:
//www.auc.cz/software/2015.php. Uplatnéno v Elya Solutions s.r.o.

Rychtérikova R., Nahlik T., Stys D., 2015. Organelle Extractor, http:
//www.auc.cz/software/2015.php. Uplatnéno v Elya Solutions s.r.o.

Odborné knihy a ucebnice

Rychtarikova R., Stys D.: Moderni laboratorni cvi¢eni z organické
fyzikélni chemie a analyzy. VUT Brno (2023), ISBN 978-80-214-6146-8.

Rychtarikova R., Stys D.: Modern laboratory practices in physical
organic chemistry and analysis. VUT Brno (2023), ISBN 978-80-214-6145-
1.

Rychtarikova R., Stys D.: Moderne Laboriibungen in organischer physi-
kalischer Chemie und Analytik. VUT Brno (2023), ISBN 978-80-214-6144-
4.

Rychtarikova R., Nahlik T.: Systémové informac¢ni pristup k digitdlni
svételné mikroskopii. FROV JU Ceské Budéjovice (2023), ISBN 978-80-
7514-193-4.
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Prednasky
Zvané prednasky

Stys D., Lonhus K., Karpov M., Rychtérikova R.: Visible Truth — digi-
talni svételné mikroskopy (nejen) pro kontrolu kvality. CAE Forum 2023,
Praha, Ceska republika, 14.-15. zaFi 2023.

Rychtarikova R.: Use of Intracellular Dynamics in Sensitive Detection
of Xenobiotics in Water. 1. Mezindrodni 6. Narodni veterindrni farmakolo-
gicky a toxikologicky kongres, Kayseri, Turecko, 4.—7. zari 2019.

Rychtarikova R.: Superresolution Using Ordinary Microscopes, Life
Science Meeting, Krems an der Donau, Rakousko, 18.—19. dubna 2018.

Stys D., Rychtarikova R.: Information Limits of Optical Microscopy,
Optics, Algos & Ice, Obergurgl, Rakousko, 17.—20. listopadu 2016.

Rychtarikova R., Stys D.: Low Discriminability Limits in Brightfield
Microscopy and Liquid Chromatography: Data Handling Aspects and
Imaging Examples, IBM Research Ziirich, Riischlikon, Svycarsko, 15. za¥{
2015.

Stys D., Rychtarikova R.: Chemical Self-Organisation modelling, Cellular
Automata and Low Noise Limits for Natural Processes, IBM Research
Ziirich, Riischlikon, Svycarsko, 14. zafi 2015.

Stys D., Rychtarikova R.: Measures in Information Space: Point In-
formation Gain Entropy Density and Rényi entropy in Image analysis,
Experiments with Fish Behavior, Swarm Intelligence, IBM Research Ziirich,
Riischlikon, Svycarsko, 14. zai{ 2015.

Rychtarikova R.: 3D Reconstruction of Diffracting Organelles inside
Living Cells, ALMF EMBL, Heidelberg, Némecko, 16. kvétna 2014.

Mezinarodni konference

Stys D., Rychtarikova R., Lonhus K.: Primary Sin of Multicolour Di-
gital Imaging and Its Partial Absolution via Proper Image Capture and
Calculation of Local Spectra in Visible Range. Sbornik abstrakti, prispé-
vek OI-0-2351, Konference Mikroskopie 2021, Ceské Budéjovice, Ceska
republika, 13.-15. zari 2021.

Rychtarikova R., Georg Steiner, Gero Kramer, Michael Fischer, Dalibor
Stys: Application of Rényi entropy-based 3D electromagnetic centroids to
segmentation of fluorescing objects in tissue sections. Entropy 2021: The
Scientific Tool of the 21st Century, 5.—7. kvétna 2021, Online.
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11.

12.

13.
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Rychtarikova R., Stys D.: An information-entropic approach to the
detection of observed object’s volume response in fluorescence microscopy.
Mikroskopie 2019, Lednice, Ceské republika, 13.-15. kvétna 2019.

Stys D., Machicek P., Rychtarikova R.: Tools for correct visual in-
spection of logical series of scientific images: LIL compression, Image
Explorer and VerCa calibration. Mikroskopie 2019, Lednice, Ceské repub-
lika, 13.-15. kvétna 2019.

Stys D., Stys K. M., Zhyrova A., Rychtarikova R.: Optimal Noise in the
Hodgepodge Machine Simulation of the Belousov-Zhabotinsky reaction,
Automata 2016, Curych, Svycarsko, 15.-17. ¢ervna 2016.

Zhyrova A., Rychtarikova R., Nahlik T.: Effect of Spatial Constrain
on the Self-Organizing Behavior of the Belousov-Zhabotinsky Reaction,
IWBBIO 2016, Granada, Spanélsko, 20.-22. dubna 2016.

Rychtarikova R., Stys D.: Correlative Light-Transmission Microscopy
in Bright-Field and Transmission Electron Microscopy — Preliminary
Results, Sbornik abstraktt konference CSMS (Book of Abstracts, CSMS
Conference, Lednice, Ceské republika, 3.-4. kvétna 2016.

Stys D., Zhyrova A., Nahlik T., Rychtarikova R.: Reaction-Diffusion Pro-
cesses, Cellular Automata, Interpretation of Chemical Self-Organisation,
High Performance Computing in Science and Engineering, Hotel Solan,
Bzové-Karolinka, Ceskéa republika, 25.-28. kvétna 2015.

Rychtarikova R.: High-Resolution 3D Reconstruction of Organelles from
Bright-Field Transmission Microscopic Images, IWBBIO, 15.-17. dubna
2015, Granada, Spanélsko.

Rychtérikova R., Nahlik T., Stys D.: Analysis of Living Cell 3D Inner
Structures from High-Resolution Bright-Field Microscopy, XIII Discussion
in Structural Molecular Biology, 19.-21. biezna 2015, Nové Hrady, Ceska
republika, abstract in Materials Structure, 22(1), 23 (2015).

Nahlik T., Rychtarikova R., Stys D.: Description of Algorithm for
Analysis and 3D Reconstruction of Living Cell Inner Structures from High-
Resolution Bright-Field Microscopy Images, XIII Discussion in Structural
Molecular Biology, Nové Hrady, Ceska republika, abstrakt v Materials
Structure, 22(1), 23 (2015).

Stys D., Urban J., Rychtarikova R., Zhyrova A., Cisatf P.: Measurement
in Biological Systems from the Self-Organisation Point of View, XIII
Discussion in Structural Molecular Biology, Nové Hrady, Ceské republika,
abstrakt v Materials Structure, 22(1), 23 (2015).

Rychtarikova R.: 3D Reconstruction of Light-Diffracting Organelles of
an Unlabelled Live Cell from Bright-Field Photon Transmission Microscopy

23



14.

— Peeling PSFs, Microscopy New Zealand Conference 2015, Dunedin, Novy
Zéland, 2.—4. inora 2015.

Rychtarikova R.: Multifractality in Imaging: Application of Information
Entropy for Observation of Inner Dynamics Inside of an Unlabeled Living
Cell in Bright-Field Microscopy, Interdisciplinary Symposium on Complex
Systems, Florencie, Italie, 15.—18. zari 2014.

Ceské konference

Rychtarikova R., Pejcharova E., Lonhus K.: Zmény hejnového chovani
akvarijnich ryb v pfitomnosti kontaminantu. XX. Toxikologickad konfe-
rence: Toxicita a biodegradabilita odpadu a latek vyznamnych ve vodnim
prostfedi. Vodiiany, Ceska republika, 24.-25. srpna 2022.

Stys D., Lonhus K., Karpov M., Larin 1., Rychtérikova R.: Kapesni
spektrofotometr UU “Spe. XX. Toxikologickd konference: Toxicita a biode-
gradabilita odpadt a latek vyznamnych ve vodnim prostiedi. Vodnany,
Ceska republika, 24.-25. 8. 2022.

Pejcharova E., Lonhus K., Rychtarikova R., Stys D.: Vysoce citliva a
specifickd biodetekce polutant. Elektronicky sbornik prezentaci z kon-
ference Pitna voda 2020-2021, ISBN 978-80-905238-4-5. Ed. Petr Dolejs
(WET Team).

Rychtarikova R., Lonhus K., Slivoné M., Stys D.: Citliva detekce novych
(i starych) polutantii zalozend na zméndach intracelularni pohyblivosti
zivocisnych bunék. Elektronicky sbornik prezentaci z konference Pitna
voda 2020-2021, ISBN 978-80-905238-4-5. Ed. Petr Dolejs (WET Team).

43 plakatovych sdéleni na mezinarodnich a narodnich
konferencich
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pol.

A) ODBORNA OBLAST

* korespondujici autor

bod.

[any

Recenzovany odborny ¢lanek (vysledek Jimp), Q1**)

Lonhus K., Stys D., Rychtarikova R.*: Quantification of Collective Behaviour via Causality Analysis.
Complex Intell. Syst. 9, 5807-5816 (2023).

40

Ghaznavi A., Rychtarikova R.*, Saberioon M., Stys D.: Cell Segmentation from Telecentric Bright-field
Transmitted Light Microscopy Images Using a Residual Attention U-Net: A Case Study on HeLa Line.
Comp. Biol. Med. 147, 105805 (2022).

40

Lonhus K., Rychtarikova R., Platonova G., Stys D.: Quasi-Spectral Characterization of Intracellular
Regions in Bright-Field Light Microscopy Images. Sci. Rep. 10, 18346 (2020).

40

Rychtarikova R.*, Nahlik T., Shi K., Malakhova D., Machacek P., Smaha R., Urban J., Stys D.: Super-
Resolved 3-D Imaging of Live Cells’ Organelles from Bright-Field Photon Transmission Micrographs,
Ultramicroscopy 179, 1-14 (2017).

40

Rychtarikova R.*, Seisenbaeva G. A., Kuncova G., Kessler V. G.: Biocompatible Titania Hydrogels
with Chemically Triggered Release of a Photosensitive Dye. J. Sol-Gel Sci. Technol. 62(3), 370-377
(2012).

40

Rychtarikova R.*, Sabata S., Hetflejs J., Kuncova G.: Composites with Photosensitive 5,10,15,20-
Tetrakis(N -methylpyridinium-4-yl)porphy-rin Entrapped into Silica Gels. J. Sol-Gel Sci. Technol. 61(1),
119-125 (2012).

40

Recenzovany odborny ¢lanek (vysledek Jimp), Q2**)

Ghaznavi A., Rychtirikova R., Cisaf P., Ziaei M.M., Stys D.: Symmetry Breaking in the U-Net: Hybrid
Deep-Learning Multi-Class Segmentation of HeLa Cells in Reflected Light Microscopy Images.
Symmetry 16, 227 (2024).

20

Platonova G., Stys D., Souéek P., Lonhus K., Valenta J., Rychtarikova R.*: Spectroscopic Approach to
Correction and Visualization of Bright-Field Light Transmission Microscopy Biological Data. Photonics
8(8), 333 (2021).

20

Lonhus K., Rychtarikova R., Ghaznavi A., Stys D.: Estimation of Rheological Parameters for Unstained
Living Cells. Eur. Phys. J.-Spec. Top. 230(4), 1105-1112 (2021).

20

Lonhus K., Stys D., Saberioon M., Rychtirikova R.: Segmentation of Laterally Symmetric Objects:
Application to Images of Collective Animal Behavior. Symmetry 11(7), 866 (2019).

20

Stys D., Rychtarikova R.*, Zhyrova A., Stys K.M., Jizba P.: Noisy Hodgepodge Machine and the
Observed Mesoscopic Behaviour in the Non-Stirred Belousov-Zhabotinsky Reaction: Optimal Noise and
Hidden Noise in the Hodgepodge Machine, Eur. Phys. J.-Spec. Top. 227, 2361-2374 (2019).

20

Rychtarikova R.*, Korbel J., Machagek P., Stys D.: Point Divergence Gain and Multidimensional Data
Sequence Analysis. Entropy 20(2), 106 (2018).

20

Rychtarikova R.*, Korbel J., Machacek P., Cisat P., Urban J., gtys D.: Point Information Gain and
Multidimensional Data Analysis, Entropy 18(10), 372 (2016).

20

Recenzovany odborny ¢lanek (vysledek Jimp), Q3**)

Rychtarikova R.*, Sabata S., Hetflejs J., Kuncova G.: Photodynamic Efficiency of Porphyrins
Encapsulated into Polysilsesquioxanes. Chem. Pap., 66(4), 269-277 (2012).

10

Rychtarikova R.*, Kuncova G.: Imobilizované fotosenzitizatory singletového kysliku a jejich ucinek na
mikroorganismy. Chem. Listy 103(10), 800-813 (2009).

10

Sabata S., Hetflejs J., Rychtarikova R., Kuncova G., Lang K., Kubat P.: Immobilization of Porphyrins in
Poly(hydroxymethyl-siloxane). Chem. Pap. 63(4), 438—444 (2009).

10

Recenzovany odborny ¢lanek (vysledek Jimp), Q4 **)

Malakhova D., Stys D., Rychtarikova R.: Adjustment of Dynamic High Resolution Images of Living
Cells by Combination of an Optical Microscopy in Transmitting Light, Atomic Force Microscopy and
Image Information Analysis, Chem. Listy 107(SI), Suppl. 3, S402—-S404 (2013).

Rychtarikova R.*, Kuncova G.: Metoda vyhodnocovani antimikrobialni aktivity po¢itacovym
prahovanim barev. Chem. Listy, 105(6), 493-498 (2011).




&)

Recenzovany odborny ¢lanek (vysledek Jsc) **)

Urban J., Rychtarikova R., Machagek P., Stys D., Urbanova P., Cisaf P.: Optimization of Computational
Burden of the Point Information Gain. Acta Polytech. 59(6), 593-600 (2019).

2.5

Rychtarikova R.*, Urban J., Stys D.: Zampa’s Systems Theory: a Comprehensive Theory of
Measurement in Dynamic Systems, Acta Polytech. 58(2), 128-143 (2018).

2.5

Rychtarikova R.*, Stys D.: Observation of Dynamics Inside an Unlabeled Live Cell Using a Bright-Field
Photon Microscopy: Evaluation of Organelles’ Trajectories. IWBBIO 2017, Proceedings, Part 11, LNBI
10209, Ortuno and Rojas (eds.), Springer, Switzerland, 2017, pp. 700-711.

2.5

Rychtarikova R.*, Steiner G., Fischer M. B., Stys D.: Information Limits of Optical Microscopy:
Application to Fluorescently Labelled Tissue Section. IWBBIO 2017, Proceedings, Part I, LNBI 10208,
Ortuno and Rojas (eds.), Springer, Switzerland, 2017, pp. 485-496.

2.5

Zhyrova A., Rychtarikova R., Stys D.: Recognition of Stages in the Belousov-Zhabotinsky Reaction
Using Information Entropy. IWBBIO 2017, Proceedings, Part I, LNBI 10208, Ortuno and Rojas (eds.),
Springer, Switzerland, 2017, pp. 335-346.

2.5

Stys D., Nahlik T., Machaéek P., Rychtirikova R., Saberioon M.: Least Information Loss (LIL)
conversion of digital images and lessons learned for scientific image inspection. IWBBIO 2016, LNBI
9656, Ortuno and Rojas (eds.), Springer, Switzerland, 2016, pp. 527-536.

2.5

Cisat P., Nahlik T., Rychtarikova R., Machacek P.: Visual Exploration of Principles of Microscopic
Image Intensities Formation using Image Explorer Software. IWBBIO 2016, LNBI 9656, Ortuno and
Rojas (eds.), Springer, Switzerland, 2016, pp. 537-544.

2.5

Rychtarikova R.*: Clustering of Multi-Image Sets Using Rényi Information Entropy. IWBBIO 2016,
LNBI 9656, Ortuno and Rojas (eds.), Springer, Switzerland, 2016, pp. 517-526.

Stys D., Néhlik T., Zhyrova A., Rychtarikova R., Papadek S., Cisai P.: Model of the Belousov-
Zhabotinsky Reaction. HPCSE 2015, LNCS 9611, Kozubek, Blaheta, Sistek, Rozloznik, Cermak (Eds.),
Springer, Switzerland, 2016, pp. 171-185.

2.5

Stys D., Urban J., Rychtirikova R., Zhyrova A., Cisai' P.: Measurement in Biological Systems from the
Self-Organisation Point of View. IWBBIO 2015, Part II, LNCS 9044, Ortuno and Rojas (eds.), Springer,
Switzerland, 2015, pp. 431-443.

2.5

Barta A., Cisat P., Soloviov D., Sougek P., Stys D., Papacek S., Pautsina A., Rychtarikova R., Urban J.:
BioWes — from Design of Experiment, through Protocol to Repository, Control, Standardization and Back
Tracking. IWBBIO 2015, Part II, LNCS 9044, Ortuno and Rojas (eds.), Springer, Switzerland, 2015, pp.
426-430.

2.5

Recenzovany odborny ¢lanek (vysledek Jost) **)

Maleckova D., Rychtarikova R., Urban J.: Obraz, informace, entropie (Czech) Image, Information,
Entropy: Image Analysis Using Rényi Entropy. ProInflow: ¢asopis pro informacni védy 11(2), 30-39
(2019).

2.5

Mackova B., Lonhus K., Rychtarikova R.*: Vyuziti zmén hejnové hierarchie ryb pro citlivou indikaci
bioaktivnich latek ve vodnim prostfedi. Vodni hospodarstvi 2, 21-26, 2022.

2.5

Odbornad kniha (vysledek B, za 1 stranu) **)

Rychtarikova R., Nahlik T.: System information approach to digital light microscopy. FROV JU Ceské
Budgjovice (2023), ISBN 978-80-7514-185-9, 124 str.

49.6

Stat ve sborniku (vysledek D) **)

Stys D., Lonhus K., Karpov M., Rychtarikova R.: Visible Truth — digitalni svételné mikroskopy (nejen)
pro kontrolu kvality. CAE Forum 2023, Praha, Ceska republika, 14.—15. zaii 2023.

Rychtarikova R.*, Maleckova D., Urban J., Barta A., Novotna M., Zhyrova A., Nahlik T., gtys D.:
Study of Human Perception with the Usage of Information Entropy Analysis of Patterns, in PURPLSOC:
Pursuit of Pattern Language for Societal Challenges/PURPLSOC The Workshop 2014 1), Baumgartner
and Sickinger (eds.), pp. 366384, ISBN 978-3-7375-5458-9, epubli GmbH (Verlag), 2015, Austria.




Zhyrova A., Rychtarikova R., Nahlik T., Stys D.: The Path of Aging: Self-Organization in Nature and 15
Properties, in PURPLSOC: Pursuit of Pattern Language for Societal Challenges/PURPLSOC The
Workshop 2014 1), Baumgartner and Sickinger (Eds.), pp. 385410, ISBN 978-3-7375-5458-9, epubli
GmbH (Verlag), 2015, Austria.

1
Rychtarikova R.*, Nahlik T., Smaha R., Urban J., gtys D. Jr., Cisai P., Stys D.: Multifractality in
Imaging: Application of Information Entropy for Observation of Inner Dynamics Inside of an Unlabeled
Living Cell in Bright-Field Microscopy. In ISCS14, Sanayei et al. (eds.), Springer, Switzerland, 2015, pp.
261-267. 1
10|Citace jinym autorem podle WoS
59 118
14|Ovérena technologie (vysledek Z)
Tlamkova M., Kope&kova K., Sekorova S., Spirka D., Rychtarikovi R., Stys D., 2023: Postup
hodnoceni a pfipravy transplantatu z ocni rohovky. 5
17|Prototyp (vysledek G)
Lonhus K., Karpov M., Larin 1., Rychtarikova R., gtys D., 2024: PADES. Uplatnéno v ASTOS
Machinery a.s., AS. 5
Rychtarikova R., Stys D., Sekorova S., Spirka D., Tlamkova M., Kopetkova K., 2023: Mikroskop
Visible Truth UltraEasy. 5
Rychtarikova R., Stys D., Sekorova S., Spirka D., Tlamkova M., Kope&kova K., 2023: Upraveny Zeiss
Stemi 508. 5
18|Funkeni vzorek (vysledek G)
Lonhus K., Karpov M., Larin 1., Rychtarikova R., Stys D., 2024: Filiga 1.1. Uplatnéno v OSRAM Ceska
republika, s.r.o., Bruntal. 5
Lonhus K., Karpov M., Larin 1., Rychtarikova R., Stys D., 2024: Filiqa 0.1. Uplatnéno v OSRAM Ceska
republika, s.r.o., Bruntdl. 5
Lonhus K., Rychtarikova R., Stys D., 2021. Kapesni VIS (potencialné near UV-VIS—near IR)
spektrofotometr.
Stys D., Rychtarikova R., 2021. Mikroskop Futurescope.
Rychtarikova R., Stys D., 2020. Mikroskop NanoTruth.
25|Ziskani externiho grantu (feSitel, spolufesitel)
Lamelovy sedimentalni systém filtrace nové generace, TACR Trend PP1 Technologi¢ti lidii,
1/2024-6/2026, rozpocet FROV JU 6328 tis. K¢ (90% dotace) — spoluprace s firmami ASTOS
Machinery a.s. a MACHINERY DESIGN s.r.0. (Ing. Martin Vali¢ek). 40
Vyvoj procesu hodnoceni kadaveréznich rohovkovych lamel pomoci inovace mikroskopickych
systémii pro celularni analyzu, MPO Aplikace, 9/2021-5/2023, rozpocet FROV JU 3 218 tis. K¢ (85%
dotace) — spolupréce s firmami PrimeCell Bioscience a Narodnim centrem tkani a bunék (MUDr. Sarka
Sekorova, Mgr. Martina Tlamkova) 40
Navrh a ovéfeni metody pro analyzu d{astic v provoznich kapalinach pomoci mikroskopu
s pritokovou celou, MPO Inovaéni vouchery VI, 12/2022-7/2022, 587 tis. K¢, pro ASTOS Machinery
a.s., AS. 40
Testovani principt mikroskopického sledovani kvality navijeni mikrospiraly wolframového vlakna
pro Zirovky, MPO Inovaéni vouchery VI, 12/2022—7/2022, 604 tis. K&, pro dataPartner s.r.0., Ceské
Budgjovice. 40
Konsolidace software jednoduchého mikroskopu velmi vysokého rozlieni NanoTruth, TACR
Gamma, TG03010027, 4/2018-12/2019, 218 tis. K¢&. 40
SOUCET 871.6
MINIMUM 600




B) PEDAGOGICKA OBLAST

pol. bod.
1|Za kazdy rok pedagogického plisobeni na vysoké $kole na plny Gvazek (Eastecné tvazky se scitaji)
12 300
5|Garantovani predméti (za kazdy rok)
od 9/2021 — Technické normy — semestralni Be. kurz pro obor Ochrana vod 15
6|Zavedeni nového pfedmétu nebo zasadni inovace pfedmétu
Chemie 2 — semestralni Bc. kurz pro obory Ochrana vod a Rybafstvi, celkova inovace predmétu,
zodpovédna za inovaci laboratornich cviceni 10
Bioinformatika/Bioinformatics — semestralni Bc. kurz pro obory Ochrana vodnich ekosystémd, zavadéni
nového pfedmétu v ramci nového studijniho oboru, zodpovédna za inovaci oblasti svételné mikroskopie 10
8|Vedeni ispésné obhajené bakalarské prace
Alisa Plaksina: Caffeine-induced changes in a shoal behaviour of Tiger Barb (Puntigrus tetrazona),
obhajeno 13. 10. 2021. 3
Jan Kosek: Studium dynamiky zivych lidskych bunék v odezve na bézné kontaminanty vod s cilem vyvoje
citlivého specifického analytického postupu, obhéjeno 6. 6. 2023. 3
Eliska Pejcharova: Zmény hejnového chovani akvarijnich ryb v pfitomnosti kontaminantu, obhajeno 14.
6.2022. 3
Barbora Mackova: Zmény hejnové hierarchie ryb jako citlivy indikator bioaktivnich latek, obhajeno 14. 6.
2021.
Miroslav Slivoné: Vliv béznych pesticidli na lidské bunky, obhajeno 1. 7. 2020.
12(Skolitel specialista studenta, ktery ziskal Ph.D.
Ali Ghaznavi: Cell segmentation from wide-field light microscopy images using CNNs, obhéjeno 26. 6.
2023. 10
Kirill Lonhus: Investigating intrinsic behavioural parameters of autonomous objects based on motion,
obhajeno 2. 2. 2022. 10
Anna Zhyrova: State trajectory approach to the interpretation of self-organization in the Belousov-
Zhabotinsky reaction, obhajeno 24. 11. 2017. 10
Tomas Nahlik: Microscopy — Point Spread Function, Focus, Resolution, obhajeno 15. 1. 2016 10
13|Ucebnice s ISBN (za 1 stranu)
Rychtarikova R., Nahlik T.: Systémové informacni pfistup k digitalni svételné mikroskopii. FROV JU
Ceské Budg&jovice (2023), ISBN 978-80-7514-193-4, 124 str. 49.6
14|Skripta s ISBN (za 1 stranu)
Rychtirikova R., Stys D.: Moderni laboratorni cviteni z organické fyzikilni chemie a analyzy. VUT
Brno (2023), ISBN 978-80-214-6146-8, 50 str. 20
Rychtarikova R., Stys D.: Modern laboratory practices in physical organic chemistry and analysis. VUT
Brno (2023), ISBN 978-80-214-6145-1, 50 str. 20
Rychtarikova R., Stys D.: Moderne Laboriibungen in organischer physikalischer Chemie und Analytik.
VUT Brno (2023), ISBN 978-80-214-6144-4, 52 str. 20.8
SOUCET 500.4
MINIMUM 200




8 Vyjadreni uchazecky k bodovému hodnoceni

Odborna oblast

V odborné oblasti (¢ast A) dosahuje uchazecka dle tabulky kvantifikovanych
hodnoticich oborovych kritérii FCH VUT 871.6 b. z povinnych 600 b.

Silnymi strankami této oblasti je

relativné vysoky pocet udélenych externich grantu jako PI nebo co-PI (srov-
nano dle vyse finanéni podpory) 1x TACR Trend 10, 1x MPO Aplikace,
2x MPO Inovac¢ni vouchery, 1x TACR Gama, a z toho vyplyvajici
vysoky pocet aplikovanych vysledkii (1x ovérend technologie, 3x prototyp
a 4x funkéni vzorek). Kromé téchto kvantifikovanych aplikovanych vystupu
zadatelka vykézala jesté 8x software (kap. 6).

vysoky podil prace uchazecky na publikacich. Véetné monografie, studijnich
opor a recenzovanych ¢lankt bez IF je uvadéna 19x jako prvni, 5x jako
posledni, 18x jako korespondujici, pfipadné 9x jako druhé autorka.

Slabsimi strankami této oblasti je

hrani¢ni poc¢et publikaci s IF (18 vs. 15 povinnych). Jednim z davodu je
relativné vysoky pocet ¢lanku publikovanych v recenzovanych technickych
sbornicich vydavatelstvi Springer (9x Q2 dle SJR, citovdno na WoS bez
IF). Dalsim diavodem je nizky pocet spoluautoru na publikacich, kdy na
praci spolupracoval s uchazeckou vétsinou pouze jeji nadiizeny, pripadné
dalsi 1-2 studenti.

hranicéni pocet citaci (59 dle Scopus vs. 50 povinnych). Duvodem je obecné
nizsi citovanost matematicko-fyzikalnich ¢lankda.

Pedagogicka oblast

V pedagogické oblasti (¢ast B) dosahuje uchazecka dle tabulky kvantifiko-
vanych hodnoticich oborovych kritérii FCH VUT 500.4 b. z povinnych 200

b.

Silnou strankou této oblasti je

® relativné vysoky pocet studijnich opor (1x ucebnice ve dvou jazykovych

mutacich, viz monografie; 1x skripta ve tfech jazykovych mutacich). Tyto
studijni opory byly zakladem inovace a zavadéni novych studijnich ptred-
mett na FROV JU a ZTF JU (viz polozka 6B).

Slabou strankou této oblasti je

nedostateény pocet povinné vykazovanych ukoncenych bakalarskych ¢i
diplomovych praci (5 vs. 6 povinnych). Nicméné uchazecka vykazuje 4
ukoncené doktorské prace jako skolitel-specialista, dalsi doktorska prace
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8. Vlyjadreni uchazecky k bodovému hodnoceni

bude pravdépodobné obhéjena do konce 11/2024 (kap. 3). Hlavnim du-
vodem je nizky pocet (v jednotkéch) student ukoncujicich kazdoroéné
na FROV JU bakalarské ¢i magisterské studium a vysoky pocet skolitelu.
Naopak FROV JU se prezentuje jako fakulta vyzkumna a vykazuje tedy

vysoky pocet studentit doktorského studia.
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B9 pit nejvyznamnéjSich publikaci

B Noisy hodgepodge machine and the observed mesoscopic
behavior in the non-stirred Belousov-Zhabotinsky reaction

D. Stys, R. Rychtarikova, A. Zhyrova, K. M. Stys a P. Jizba, Noisy hodgepodge
machine and the observed mesoscopic behavior in the non-stirred Belousov-

Zhabotinsky reaction, The European Physical Journal — Special Topics 227
(2019), 2361-2374.

Jednd se o zakladni fyzikdlné-chemicky vyzkum principti samoorganizace na
piikladu Bélousovy-Zabotinského reakce, jejiho experimentalniho méfeni a
matematického modelovani. Tato prace navazuje na predchozi publikace

® D. Stys, T. Nahlik, A. Zhyrova, R. Rychtarikova, S. Papacek a P. Cisa¥, Model of
the Belousov-Zhabotinsky reaction, In: Kozubek, Blaheta, Sistek, Rozloznik a Cermak
(Ed.) High Performance Computing in Science and Engineering (HPCSE) 2015, Lecture
Notes in Computer Science 9611, Springer, Switzerland (2016), pp. 171-185.

® A. Zhyrova, R. Rychtarikova a D. Stys, Recognition of stages in the Belousov-
Zhabotinsky reaction using information entropy: Implications to cell biology, In: Ortufio
a Rojas (Ed.) International Conference on Bioinformatics and Biomedical Enginee-
ring (IWBBIO) 2017, Part I, Lecture Notes in Computer Science 10208, Springer,
Switzerland (2017), pp. 335-346.

Do vsech predchozich modeli vnesli autofi ndhodnou slozku ($um) nevédomky,
pripadné zavadéli pouze jeden druh Sumu, a to gaussovsky. My jsme Sum cilené
modelovali pro jednotlivé procesy, ¢imz jsme dosahli velmi dobré shody modelu
s experimentem.
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Regular Article

Noisy hodgepodge machine and the observed
mesoscopic behavior in the non-stirred
Belousov—Zhabotinsky reaction”

Optimal noise and hidden noise in the hodgepodge machine

Dalibor Stys', Renata Rychtédrikova'*®, Anna Zhyrova', Krystof M. Stys',
and Petr Jizba?

! University of South Bohemia in Ceské Budgjovice, Faculty of Fisheries and Protection
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Abstract. In this paper, we have modified one of the simplest multi-
level cellular automata — a hodgepodge machine, so as to represent
the best match for the chemical trajectory observed in the Belousov—
Zhabotinsky reaction (BZR) in a thin layered planar setting. By
introducing a noise term into the model, we were able to transform the
central regular structure into the circular target pattern. We further
analyze influences of the neighborhood (diffusion process) and inter-
nal excitation type of noise. We find that the configurations of ignition
points, which give the target patterns, occur only in the interval of the
neighborhood excitation noise from 30% to 34% and at the internal
excitation noise of 12%. We argue that the BZR occurs on a semi-
regular grid — a chemical analogy to a Bénard cell in the viscous fluid,
and we discuss the size of the relevant elementary cell. In this way, the
BZR is a quintessential example of mesoscopic process, in particular,
it does follow neither the deterministic rules of the microscopic sys-
tem nor the tenet of Boltzmannian statistic physics that only the most
frequent events are observed.

1 Introduction

Properties of multi-level cellular automata [1,2] have been examined so far only spo-
radically. What is known, however, is that their state trajectory critically depends
on the number of available levels [3] and that they can be divided into a few-level

* Supplementary material in the form of one zip file available from the Journal web page at
https://doi.org/10.1140/epjst /e2018-800045-4
a e-mail: rrychtarikova@frov.jcu.cz
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automata and true multilevel automata [4]. The border between a few and true mul-
tilevel automata was examined only for the so-called square Moore neighborhood
and was found to be around 24 levels [3]. Such automata have apparently a sufficient
number of levels which allows the system to behave only according to the internal
evolution rule (e.g., ratio of constants) independently of the number of levels itself [4].

The hodgepodge machine [5] is a type of multi-level cellular automaton which mim-
ics well the final phase of the Belousov—Zhabotinsky reaction (BZR). The hodgepodge
machine is the simplest of the models which intends to mimic qualitatively the fea-
tures observed when the BZR is performed in a thin layer. In the context of this
paper it is important to mention the simulation of Garcia-Ojarvo and Schimansky-
Geier [6] who used the FitzZHugh-Nagumo model [7,8] for description of the rise and
decay of the excitation. The simulation was performed on a square lattice and may
be thus directly compared to the hodgepodge machine. When an adequate level of
the Gaussian noise was added, the coexistence of spirals and waves, similar to that in
the hodgepodge machine, was observed. The FitzHugh-Nagumo model was originally
developed for description of the electrical pulse in the neural system but may be also
interpreted in terms of a chemical simplified reaction-diffusion system of chemical
transformations.

In our simulations, we modified the model so that it was possible to start from
a few ignition points — situation observed in realistic experiments [4]. This enabled
us to examine influences of the ignition points as well as the early phases of the
trajectory. Eventually, we achieved such a behavior of the hodgepodge machine which
is qualitatively compatible with the BZR and consists from an early phase of large
center structures — octagons filled by complicated cross-like structures — and ends
with a mixture of spirals and waves [4]. The latter suggests that it could be some
conceptual overlap between our model and the discrete dynamic networks paradigm
proposed in [9].

Our aim here is to promote the idea that the BZR as a typical demonstration
of mesoscopic dynamics, i.e., it is neither microscopic, i.e. fully deterministic, nor
macroscopic, i.e. represented only by the most probable microstate. The paper is
structured as follows: In Section 2, we examine influences of noise on the outputs
from the noise-enriched hodgepodge machine (NHM) and discuss the relevance it
bears on the BZR. In Section 3, we present results of our simulations and show
that the conventional, i.e., “noise-free” hodgepodge machine is in fact a hidden-noise
cellular automaton. We also show that many details of the NHM find their direct
analogues in the BZR. We further explain the lag phase in the beginning of the
BZR using a chemical mechanism analogous to the formation of a regular grid by
a Bénard—Rayleigh convection process [10]. Various remarks and generalizations are
addressed in Section 4.

2 Materials and methods
2.1 Performance of the chemical reaction

The experiments were performed using the BZR recipe [11]. The reaction mixture
included 0.34-M sodium bromate, 0.2-M sulphuric acid, 0.057-M sodium bromide (all
from Penta), 0.11-M malonic acid (Sigma-Aldrich) as substrates and a redox indicator
and 0.12-M 1,10-phenanthroline ferrous complex (Penta) as a catalyst. All reagents
were mixed by hand directly in a 200-mm Petri dish in the sequence mentioned above
for 1min. A special thermostat, which was constructed from a Plexiglas aquarium
and a low-temperature circulating water bath-chiller, fixed a reaction temperature
at 26 °C.
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The chemical waves were recorded by a Nikon D90 camera in the regime of Time
lapse (10 s/snapshot) with exposure compensation +2/3 EV, ISO 320, aperture f/18,
and shutter speed 1/10 s. The original 12-bit NEF raw image format was losslessly
transformed to the 12-bit PNG format. The complete courses of the experiment are
provided in Videos S1 and S2.

The experiment on a re-started BZR was performed by a manual re-shaking of
the reaction vessel after reaching the state of dense waves. The photos of course of
the experiment were taken in the time interval of 2 s and consists of 9 cycles of the
lengths of 48, 25, 44, 24, 25, 18, 11, 15, and 32 images, respectively.

2.2 Noisy hodgepodge machine model

The NHM of the BZR is essentially the same as in [4] but with the addition of a noise
term. We adjusted Wilensky’s NetLogo model [12]: The model was run on a square
1-Mpx grid. Ignition centers in state(t = 0) € [0, mazxstate] were randomly set on the
grid as

state(t = 0) = random-exponential[meanPosition(maxstate + 1)], (1)

where maxstate is the maximally achievable number of levels of the cell state. Mul-
tiplication of each cell state by the meanPosition of the exponential distribution
ensured that the simulation started with a small number of the ignition points. Each
time step t proceeded in four possible ways:

— When a cell was at the state(t) = 0, so-called quiescent, it was “infected” by
surrounding cells according to the equation

a

state(t+1) = (1+ PTN) [prec <k> + prec (:2” (2)

1

where a and b is a number of cells at the state € (0, mazstate) and state =
maxstate, respectively, k1 and ks are characteristic constants of the process.

— When a cell was at the state(t) € (0, mazstate), its new state was calculated
as

state(t) + 22:1 statey, (t)
a+b+1

(1+IEN)+g(1+ EEN)

state(t + 1) = prec |: ,(3)

where state,(t) is a state of the nth cell in the Moore neighborhood, which
directly surrounds the examined cell, and g = 28 is another arbitrary constant.

— When a cell was at the state(t) > mazstate, then

state(t +1) = mazxstate. (4)
— When a cell achieved the state(t) = maxstate, then
state(t+1) = 0. (5)

In equations (1) and (2), the numerical precision (prec) of 10 decimal points allowed
us to realize up to 9 x 102 states. The individual white noises in equations (1) and
(2) were named
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— the phase transition noise (PTN): it affects the transition from the state 0 to
the first non-zero state,

— the internal excitation noise (IEN): it affects the change of the state due to
processes inside the cell, i.e., it influences the constant g [4], and

— the neighborhood (external) excitation noise (EEN): it affects processes related
to the values of neighboring cells.

The influences of these kinds of noise were tested by systematic changes of their values.
Examples of qualitatively different cases are described in some detail in the following
section and shown in Videos S3—S8. The full model is provided in Material S1.

3 Results

3.1 Modeling the Belousov—Zhabotinsky reaction in excitable media
and the constructive role of noise

The BZR behavior is not easily comprehensible in terms of the standard Law of Mass
Action (which represents the “canonical method” for interpretation of the chemical
reactivity) due to the fact that the reaction space is separated into regularly evolv-
ing/traveling structures and, thus, one has to consider a large number of interlocked
chemical processes. In this work, we report a new stochastic model of the BZR based
on the cellular automaton. The model retains some of the key features of the multi-
level hodgepodge machine but outperforms this hodgepodge machine in the ability to
faithfully mimic the onset stage of the BZR and in the potential to correctly describe
the morphology of the evolving wave-spiral patterns.

Figure la compares a late (ergodic) stage of the BZR (full data are accessible via
S1 Video) at our least spatially constrained (a 200-mm Petri dish) and roil (gentle
mixing at 1400 rpm using an orbital mixer) conditions with one of our Wilensky-like
model. The structures of the model, which are astonishingly similar to the experiment,
arise only at the particular ratio of the model constants independently of the height
of the noise. (The most regular spirals and waves, best comparable to the model, are
expected to arise in a very gently pre-mixed, homogenous solution of a thin layer in
a vessel of the unlimited size which does not spatially constrain evolving waves.) In
order to achieve this morphological similarity between the BZR and our simulation,
we implemented the following changes into the Wilensky model:

— the enlargement of the cellular grid to 1000 x 1000,

— start from a very few points which enabled to analyze the behavior of individual
centers of emanation,

— a sequence of switching the values of cell states from natural to decimal numbers
which extended the span of each cellular state,

— the addition of a uniform white noise to each automaton step which compen-
sated for our limited knowledge of precise underlying mechanism, and

— the extension of the number of achievable states mazstate and rate of the
internal cell excitation g up to 2000 and 280, respectively, to smooth the model
waves.

The first modification — usage of the larger grid — suppressed to some extent the
influence of the non-idealities of the periodic boundaries on the evolution of the model
system.
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Fig. 1. Tllustration of the key aspects of the B-Z model. (a) Comparison of the BZR (i)
with the simulation with the levels of noise 9%, 14% and 30% for process 1, 2a, and 2b,
respectively, and k1 = 3 and k2 = 3 (ii). Images were expanded so as to have comparable
widths of traveling waves. (b) Starting points of the simulations (steps 2, 4, 14, 16). The
noise-free simulation with natural number states, k1 = 3 and k2 = 3 in step 2000 (i), the
noise-free simulation with natural number states, k1 = 2 and k2 = 2 in step 2596 (ii) and
the process described under a in step 18400 (iii). (c¢) Final states (limit sets) of processes
defined in b. For all processes, g = 28 and maxzstate = 200. In the simulation, the black and
white corresponds to 0 and mazxstate, respectively. Original datasets are supplied in S1 File.
The unquestionably inspection of the data has to be done using the original data matrices
as demonstrated in Figure 1.

The second intervention into the Wilensky model was performed through a
random-exponential function for generation of the starting (ignition) points. This
modification, which was originally implemented to start the process from these few
centers (ignition points), quite surprisingly increased the morphological similarity
between the BZRs and the simulation. The results are depicted in Figures 1b and lc.
In Figure 1b, we present early simulation steps 2, 4, 14, and 16 in process 1 after the
ignition. For k1 = 3 and ko = 3, at least two non-zero points in a proper configuration
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a, b were required for the evolution of the waves in the simulation, since at least one
addend in process 1 has to be equal to 1. In this case, the early evolution yielded
octagons (Fig. 1b, i), while the final state was populated by spirals (Fig. lc, i). In
contrast, if k1 = 2 and ky = 2, then, e.g. state(t+ 1) = round(3) + round(2) = 1 and
the non-zero cell was surrounded by evolving wave of 8 cells in state(t + 1) = 1. This
early evolution resulted in squares with central circular objects (Fig. 1b, ii) which
further led to the filamentous structures (Fig. 1c, ii).

The next step softened the definition of the state by allowing 1 decimal place
in equations (1) and (2). This modification, however, neglected the condition of the
asymmetry for the ignition process and, as a consequence, the development of tra-
jectories could start from any non-zero. Thus, as such, this modification leads only
to fuzzy distribution of points. Indeed, increase of the number of decimal places did
not have any further effect.

In other words, the implementation of white noise compensated for the need of
multiple neighboring points for the realization of the waves’ ignition. The different
options for setting the ignition points occur randomly and are thus the noise them-
selves. By the term noise we understand a process with its own internal mechanism
which occurs at a rate faster than the rate of the main process (i.e., waves’ formation)
which it affects. Thus, the original hodgepodge machine was an unrecognized noisy
cellular automaton.

The only effect of higher number of decimal points were smoother edges in the
spiral shape.

The detailed comparison of the models and experiment is given in Figure 2a. The
sequence of simulated structures is the following:

— The simulation grid is filled with systems of square dense waves. This has not
been observed in the experiment and we interpret it as a lag phase, which
precedes the observed formation of circular waves.

— Circular structures emanate from the center of square waves.

— At the certain state, the simulation grid is nearly covered by large circular struc-
tures. A few spirals occur at places where the regular wavefront was distorted
and break into a first generation of spirals.

— The final state is similar to that in the simulation where the states are natural
numbers, k1 = 3, and ko = 3, however, the waves are about 2 grid elements
thicker.

Let us mention further key similarities between our simulation and actual
experiments (Figs. 2b and 2¢):

— The chemical waves do not interfere like material waves but merge.
— The chemical waves do not maintain the shape (as, e.g., solitons [13]).

— The morphology of interacting patterns (merger of patterns) in simulations has
comparable traits as in real experiments.

— Quantitative features of the limit sets, i.e., the last evolutionary stage of the
wave-spiral patterns can be set as close as possible to actual experimental data
by an appropriate choice of the parameter range.

3.2 Influence of the noise

In Figure 3, we show a sketch of the research on the increase of neighborhood and
internal kinds of excitation noise. Most cases gave a typical trajectory as shown in
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Fig. 2. Similarities between the trajectories of the simulation and of the BZR. (a) Selected
states of the simulation (i) and corresponding images from the course of the experiment (ii).
The early stage of the experiment corresponds to the lag phase of the experiment when no
waves evolve. For the later stages of the simulation, corresponding structures were found in
the experiment. (b) Sections of images which show wave merging. Similar behavior has not
been found for material waves and another wavelike structures and indicates that threshold-
range cellular automata (i) are proper models for phenomena observed in the BZR (ii).
(c) States in formation of spirals. In the simulation (i), the distortion of the dense waves
leads to their merging which is the source of formation of spirals. In the experiment (ii),
the source of the distortion is often a bubble of carbon dioxide. Otherwise, the formation of
spirals is similar to the experiment. For all processes, g = 28, mazstate = 200, k1 = 3 and
k2 = 3. In the simulation, the black and white corresponds to 0 and maxstate, respectively.

Figure 1. Images in Figure 3 show sections of the 1600th step of the simulation,
where the spiral-based structures prevail over the central circular target pattern. We
observed some remnants of the circular structures followed by spirals and waves evolv-
ing around them. However, both central circular structures and systems of spirals and
waves slightly differ. The exception occurred at neighborhood and internal excitation
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Fig. 3. Sections of steps 1600 of the simulations at different levels of external (the first
number) and internal (the second number) excitation noise. The Roman numeral II (bottom
middle) denotes the second experiment. Only at the internal and external (neighborhood)
excitation noise of 30% and 12% (bottom left), respectively, mutual geometries of initial
ignition points for which no spirals were formed were found. At any higher density of ignition
points and different geometries, spirals were formed even at these combinations of noises.

noise of 30% and 12%, respectively (bottom left and bottom middle), where, in some
cases, we did not observe any spirals. In contrast, the combination of neighborhood
and internal excitation noise of 30% and 16% (bottom right) resulted in the fast
evolution of spirals and waves which prevented the formation of circular waves.

3.3 Re-shaking experiment

Figure 4 shows the course of the experiment on the re-started BZR. The process
(cycle 1) started by the evolution of circular waves. Each sub-experiment was stopped
after reaching a phase of dense waves and the reaction vessel was re-shaken. This
process was repeated 9 times. Upon re-shaking, the waves gradually lost regularity
and became thicker, the diameters of target patterns increased (cycle &) and the waves
evolved mainly at the vessel’s border (cycle 4). Similar phenomena were observed in a



Non-Equilibrium Dynamics 2369

10/28 6/32 15/32
Fig. 4. Re-start of the B-Z reaction (9 cycles). The number ratio X/Y means the Xth image

from a Y-image series.

Petri dish of a smaller diameter. Further thickening of waves (cycle 5) led eventually
to merging of circular waves (cycle 6) up to a complete filling of circular waves’ centres
(cycle 9). The next mixing did not lead to re-formation of the red-colored state.

In the early phase and, namely, upon gentle mixing (as shown in Fig. 1) the circular
waves are highly regular. At later stages, upon re-shaking, the wavefronts became
undulated and more similar to those observed in the NHM simulation. Finally, the
waves thickened to the extent that the formation of structures was no more possible.

This experiment demonstrates that the depletion of reactants does not change
the shape of observed waves and their course (order) but causes thickening of the
traveling waves and shortens time to reaching the ergodic state. The ergodic state,
both in the experiment and in the model, is characterized by a coexistence of spirals
and waves.

3.4 Mesoscopicity and the size of the elementary spatial unit

When noise matters, an observed process is typically mesoscopic. It does follow nei-
ther the deterministic rules of the microscopic (or purely mechanical) system nor the
statistical-physics tenet of Boltzmannian statistic physics that only the most frequent
events are observed. The success of the simulation described in this article is based
on the existence of the minimal spatial element to which all processes are referred.
Indeed the simplest explanation is that the space is segregated into elementary units
similar to those observed in viscous fluids at temperature gradients, i.e., to the Bénard
cells [10]. With this hypothesis, we have examined the size of the elementary unit.
Figure 5 shows the analysis of wave profiles in the hodgepodge model. Figure 5a
shows the influence of the g/maxstate ratio on the final phase of the model in the
noise-free and discrete system when no decimal numbers are allowed. The g/mazstate
ratio corresponds to the number of timesteps of the simulation at which the maximal
excitation was achieved. The timestep may be also understood as a measure of the
ratio between a ” diffusive” process (the first term in Eq. (3)) and a zero-order chemical
reaction (the second term in Eq. (3)) when the first term is always realized in one
timestep. A low g/mazxstate ratio, i.e., a fast reaction process in comparison to the
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Fig. 5. Ratio of processes 2a and 2b determines the size of elementary unit and the type
of state trajectory. (a) Images of later states of simulation at different g/mazstate ratios,
k1 = 3, k2 = 3 and noise = 0. At g/maxstate = 1000/2000 (i), spirals evolve into forms
of ram’s horns. To the opposite, g/mazstate = 10/2000 (ii) does not form spirals. At
g/mazxstate = 1/2000 (iv), the process is fully diffusive. At g/maxstate = 280/2000 (iii),
the trajectory is almost identical to the experimental trajectory. (b) The intensity profiles of
waves at different g/mazstate ratios. Decrease of the g/mazstate ratio leads to the broad-
ening of waves. The intensity profile of the circular structure is very noisy. In the simulation,
the black and white corresponds to 0 and maxstate, respectively.
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diffusive one, leads to narrow waves and short spirals (e.g., Fig. 5a-iii). At a very low
g/maxstate ratio, waves do not fully develop and spirals do not arise (e.g., Fig. 5a-iv).

Figure 5b depicts several profiles of waves taken in the direction orthogonal to the
wave development. As shown, the formation of wave in the system with and without
the introduced noise, respectively, takes different times. In the noise-free processes
(e.g., at the g/maxstate of 28/200 and 280,/2000, upper), the wave is fully formed in
10 steps, while, in the simulation when noise is induced (see g/maxstate = 28/200),
the formation of the wave takes 13 steps. At g/maxstate = 100/2000 (lower left),
the waves are as broad so that they do not fully separate. For comparison, Figure 5b
includes the profile of the early circular wave (lower right).

The striking similarity of the simulation to real experiment intensity profiles of
dense waves (Figs. 1, 5 and 6) motivated us to guess the number of molecules per an
elementary spatial unit (i.e., the pixel of experimental wave). The number of elemen-
tary units per the width of the wave was in the range of 10-20. Since the average width
of the wave was 1.5 mm, the elementary unit had 0.07-0.15 mm. The solution above
the elementary unit had thickness and volume of 0.5 mm and 10~2 mm?3, respectively.
Then, the solution contained ca. 3x10™ and 10'° molecules of water and reactants
per elementary unit, respectively. This number lies within the thermodynamic limit.
The source of the mesoscopicity has to be sought in the physico—chemical dynamics.
It means that only a few energetic/re-organizational events occur within a given time.
Since an elementary spatial unit contains roughly 10'° molecules of reactants, it is
likely that we are dealing with a phase separation which gives rise to structures of an
analogous type as, e.g., in liquid crystals [13].

4 Conclusions

In the BZR, the target circular waves are always overcome by dense waves and spirals.
Dense waves are typically evolving at the border of a Petri dish due to the non-
idealities of the spatial geometry, while spirals evolve from the origin located at the
center from micro-bubbles (again from a spatial inhomogeneities).

The re-shaken experiment excludes any simple chemical interpretation of the
decay of observed structures. It is not the depletion of chemicals which leads to
the transformation of circular waves — target patterns — to dense waves and, finally,
to the mixture of spirals and dense waves. In the wide range of concentrations, when
the thickness of waves is not broader than the diameter of the Petri dish, the general
behavior of the BZR is qualitatively identical. The self-organization in the BZR is a
process which is separated from a concrete chemical reaction. This fact justifies the
search for a model of self-organization which would describe the reaction and ignore
the actual chemical process.

In the numerical simulations presented in this article, it has been found that,
at certain configurations of ignition points, there is a lower and upper limit of the
noise at which the whole simulation grid is filled with circular structures — target
patterns — and the spirals-waves phase never occurs. This happens when combination
of neighborhood (external) excitation noise (FEN) is from 30% to 34% with the
internal excitation noise (IEN) of 12%. The spatial inhomogeneity which lead to the
evolution of spirals and waves at unfavorable conditions is not properly described
by this model. However, at certain combinations of the geometry of ignition points,
spirals are formed even in this case.

The spirals are formed also in the original hodgepodge machine. This can be
observed in cases when the ignition constants ki and ks are bigger than 2. Our
interpretation of this fact is that the multitude of possible realizations of the ignition
points serves as a kind of noise. Thus, for the formation of spirals and waves, the
noise is a necessary condition. This noise is in fact the phase transition noise (PTN)
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Fig. 6. Analysis of traveling waves in the Belousov—Zhabotinsky experiment. (a) Figure
with identified wave profiles. (b) Intensity profile of the early circular wave (1) and later
dense wave (2). Three colors represent camera channels.

but of a very specific spatial distribution. In our numerical simulations this PT N was
mimicked by a combination of the proper ITEN and FEN.

Differences in structures and dynamics shown in the re-shaking experiment
(Fig. 4) — the undulation of circular waves, thickening, doubling of wavefront, etc.
— indicate that there exist numerous individual processes which play a réle in the
formation of the patterns in the BZR. All these processes have rates comparable to
the bottleneck process which determines the characteristic reaction time. Unfortu-
nately, at present it does not exist experimental procedure for identification of these
processes. We know a lot of chemicals but we do not know which breakage of indi-
vidual chemical bond or diffusion constant corresponds to the bottleneck process.
As described in [4], this is analogous to the thickening of the wave observed in the
“noise-free” hodgepodge machine due to the decrease of the g/maxstate ratio. Thus,
the model has a potential to explain this aspect of the experiment as well.

We conclude that the noisy hodgepodge machine — NHM - is one of the simplest
(if not the simplest) approximations to all natural processes occurring in a plane
and leading to formation of coexistence of spirals and waves as well as to diffusive
structures. It provides all basic stages observed in the experiment and indicates (and
restricts) possible geometrical and kinetic rules. The ratio of two slowest processes
close to 7:2 and the g/mazxstate value 1:7 lead to the best approximation of observed
reality [4]. In the experiment, we observe the dominant “hodgepodge” process com-
bined with a number of individual processes. The competing processes, occurring at
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a slower but comparable rate, have the character of noise which may be even spa-
tially non-isotropic. They are only roughly simulated by the white noise used in the
NHM. Using the different kinds of noise, the circular waves are stabilized and several
frequencies are observed.

In any case, the dynamical co-existence of spirals and dense waves is the ergodic
state in all observed cases. It is clear that the ergodic state is not a state of chemical
equilibrium. Even the homogenously blue color observed at the end of the re-shaking
experiment is not the chemical equilibrium state. It is still a dynamic state where the
blue waves cannot be observed. The true chemical equilibrium occurs only when all

Fe2t jons are oxidized and precipitated in the form of iron(III) oxide.

In summary, this article supports the hypothesis that the BZR consists of an
initial (lag) phase in which a regular grid of spatial cells is formed. Within this grid,
the process of chemical “communication” occurs due to diffusion between these cells.
Inside each of the cell develops a process whose chemical character may be, perhaps,
described by one of the schemes developed for oscillating process in the mixed vessel.

The earlier observation of Garcia-Ojarvo and Schimansky-Geier [6] who showed
that noise induces the formation of spirals in the FitzHugh-Nagumo model on a
regular grid was at least qualitatively identical to our observation of spirals and waves
at the late ergodic stage of the BZR. Possibly, the same mechanism of generation of
spirals and waves may be applied to the whole class of similar real excitable media
operating in “two-dimensional” conditions, e.g., in a sufficiently thin layer or in a
living cell monolayer. The ergodic pattern in the final phase of the systems of the
excitable media can be thus achieved either as a result of “noise” generated due to
two or more non-zero cells in the vicinity of the ignition point, or by introduction
of two different levels of flat (white) noise into “reaction” and “diffusion” element
of the excitable medium, respectively, or by the application of the Gaussian noise to
the resulted value. This fact that the same final ergodic state is achieved by three
different way demonstrates that the coexistence of spiral and waves is a final state
for a wide spectrum of noisy excitable media.

The stringent correspondence of the simulation on a discrete grid to the chemi-
cal experiment strongly supports the hypothesis on the formation of a grid of cells
analogous to the Bénard cells in viscous liquid [10] or to elementary cells in lig-
uid crystals [13]. This observation opens numerous new questions, namely, to which
extent the continuous differential equations are appropriate tools for description of
natural processes, at least those which lead to spirals or turbulences.
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Abstract: We introduce novel information-entropic variables—a Point Divergence Gain (Q,SHWO)
a Point Divergence Gain Entropy (Ix), and a Point Divergence Gain Entropy Density (Py)—which
are derived from the Rényi entropy and describe spatio-temporal changes between two consecutive
discrete multidimensional distributions. The behavior of Qﬁf"”l) is simulated for typical distributions
and, together with I, and P,, applied in analysis and characterization of series of multidimensional

datasets of computer-based and real images.

’

Keywords: point divergence gain (PDG); Rényi entropy; data processing

1. Introduction

Extracting the information from raw data obtained from, e.g., a set of experiments, is a
challenging task. Quantifying the information gained by a single point of a time series, a pixel
in an image, or a single measurement is important in understanding which points bring the most
information about the underlying system. This task is especially delicate in case of time-series and
image processing because the information is not only stored in the elements, but also in the interactions
between successive points in a time series. Similar, when extracting information from an image,
not all pixels have the same information content. This type of information is sometimes called local
information because the information depends not only on the frequency of the phenomenon but also
on the position of the element in the structure. The most important task is to identify the sources of
information and to quantify them. Naturally, it is possible to use standard data-processing techniques
based on quantities from information theory like, e.g., Kullback-Leibler divergence. On the other hand,
the mathematical rigorousness is typically compensated by an increased computational complexity.
For this end, a simple quantity called Point Information Gain and its relative macroscopic variables—a
Point Information Gain Entropy and a Point Information Gain Entropy Density—were introduced
in [1]. In [2], mathematical properties of the Point Information Gain were extensively discussed
and applications to real-image data processing were pointed out. From the mathematical point
of view, the Point Information Gain represents a change of information after removing an element of
a particular phenomena from a distribution. The method is based on the Rényi entropy, which has
been already extensively used in multifractal analysis and data processing (see e.g., Refs. [2-5] and
references therein).

Entropy 2018, 20, 106; doi:10.3390/€20020106 www.mdpi.com/journal/entropy
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In this article, we introduce an analogous variable to the Point Information Gain. This new
variable locally determines an information change after an exchange of a given element in a discrete
set. We use a simple concept of entropy difference between the original set and the set with the
exchanged element. The resulting value is called Point Divergence Gain Q&Hm) [6,7]. The main
idea is to describe the importance of changes in the series of images (typically representing a video
record from an experiment) and extract the most important information from it. Similar to the Point
Information Gain Entropy and the Point Information Gain Entropy Density, the macroscopic variables
called a Point Divergence Gain Entropy I, and a Point Divergence Gain Entropy Density P, are
defined to characterize subsequent changes in a multidimensional discrete distribution by one number.
The goal of this article is to examine and demonstrate some properties of these variables and use
them for examination of time-spatial changes of information in sets of discrete multidimensional data,
namely series of images in image processing and analysis, after the exchange of a pixel of a particular
intensity for a pixel at the same position in the consecutive image. The main reason for choosing
the Point Divergence Gain as the relevant quantity for the analysis of spatio-temporal changes is the
fact that it represents an information gain of each pixel change. One can also consider model-based
approaches based on the theory of random-fields, which can be more predictive in some cases. On the
other hand, the model-free approach based on entropy gives us typically more relevant information for
real data, where it is typically difficult to find an appropriate model. For the overview of model-based
approaches in the random field theory, one can consult, e.g., Refs. [8-10].

The paper is organized as follows: in Section 2, we define the main quantity of the paper,
i.e., the Point Divergence Gain and the related quantities and discuss its theoretical properties.
In Section 3, we show applications of the Point Divergence Gain to image processing for both
computer-based and real sequences of images. We show that the Point Divergence Gain can be
used as a measure of difference for clustering methods and detects the most prominent behaviour
of a system. In Section 4, we explain the presented methods and finer technical details necessary
for the analysis including algorithms. Section 5 is dedicated to conclusions. All image data, scripts
for histogram processing, and Image Info Extractor Professional software for image processing are
available via sftp://160.217.215.193:13332 /pdg (user: anonymous; password: anonymous.).

2. Basic Properties of Point Divergence Gain and Derived Quantities

2.1. Point Divergence Gain

Recently, a quantity called Point Information Gain (PIG, ng) [6,7] and its generalization based on
the Rényi entropy [2] have been introduced. We show how to apply the concept of PIG to sequence of
multidimensional data frames.

Let us assume a set of variables with k possible outcomes (e.g., possible colours of each pixel).
The l"[(,f) is a simple variable based on entropy difference and enables us to quantify an information
gain of each phenomenon. It is simply defined as a difference between entropy of an original

discrete distribution " "
k 1 k
P ={p j:lz{*n/-u/;}, @)

which typically describes a frequency histogram of possible outcomes. Let us also define a distribution,
where one occurrence of the i-th phenomenon is omitted, i.e.,

@0 _ [0 k _ n n;—1 ny
P {] }1:1 {n—l""'n—l'”"n—l ’ @

Thus, the Point Information Gain is defined as

10 =10(1) = 4 (P0) ~ e (P), Y
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where 7, is the Rényi entropy (Despite all computer implementations being calculated as log,,
the following derivations are written in natural logarithm, i.e., In.)

H,(P) = aljanpf‘. 4

The Rényi entropy represents a one-parametric class of information quantities tightly related
to multifractal dynamics and enables us to focus on certain parts of the distribution [11]. Unlike the
typically used Rényi’s relative entropy [3,4,11-17], the Point Information Gain r§j> is a simple,
computationally tractable quantity. Its mathematical properties have been extensively discussed
in [2]. On the same basis, we can define a Point Divergence Gain (PDG, QL(YH'")), where a discrete

distribution P() is replaced by a distribution

I—m) )k ny n—1 g+ 1 Ny
pli=m — fpl )},:1:{?""'T""’T""’?}’ &)
which can be obtained from the original distribution P, where the occurrence of the examined /-th
phenomenon (1; € N*) is removed and supplied by a point of the occurrence of the m-th phenomenon
(nm € Np). The main idea behind the definition is to quantify the information change in the subsequent
image, if only one point is changed. Analogous to the Point Information Gain r§f> , the Point Divergence
Gain can be defined as

leﬁm) = leﬁﬂl)(P) - (P(lﬁ»m)> — H,(P). ®)
Let us first show its connection to the Point Information Gain F,Ef). Since P() = pU=mm) it jg
possible to express the Point Divergence Gain as

o= (py = s, <P<Hm>) — <P<H'”'m>) + (P<Z)) — #,(P) =TV (P) — 1™ (Pl=m) (7

(1—m)

Let us investigate mathematical properties of the PDG. The ), can be rewritten as
Q&Zam) B (P(lﬁm)) — J,(P)
k (I—m)\*
_ 1 k (I—m)\* 1 k 1 Zle (P/- )
- 1—aln<.2(pf ) _l—aln ;pf 71—1xln vk pe - ®)
j=1 j=1 i=1 P]

By plugging the relative frequencies from Equations (1) and (5) into Equation (8), we obtain

- ’ . v
Q(Z%m) _ 1 In (71[ - 1)‘1 + (’Vlm + 1)11 + ijl,j#l,m 71;‘
(14 - v
=" ST
R (R R R a > ,,]
= n
1- k
ol Lj=11y
_ (np = 1)% = nf 4 (ny 4+ 1)* — njy, +1 )
1- kK pe
ol Lj=17
As seen in Equation (9), the variable ngﬁm) does not depend (contrary to the Fl(,f)) on n but
depends only on the number of elements of each phenomenon j. In Equation (9), let us design the

nominator Z}‘Zl n;‘, which is constant and related to the original distribution (histogram) of elements

and to the parameter «, as C,. It gives us the final form
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1 (= 1)% = nf + (nm +1)* —
Q(I‘”'") — 1 1
* T—a ™ Ca

" (10)

Equation (10) demonstrates that, for a particular distribution, QZ(XHM) is a function only of the
parameter « and frequencies of occurrences of the phenomena r; and 7, in the original distribution,
between which the exchange of the element occurs. Equation (10) further shows that if the exchange
of the element occurs between phenomena I and m of the same (similar) frequencies of occurrence
(i.e., n; = ny,), the value of Q<Hm> equals 0. If we remove a rare point and supply it by a high-frequency
point (i.e., n; < ny,), the value of Q(lﬁm)

low-frequency events as Q&l_)m)

is negative, and vice versa. Low values of parameter « separate
(I—m) =0
= 0. With respect to the previous discussion and

practical utilization of this notion, we emphasize that, for real systems with large n, the Q(I%m are
rather small numbers.

= 0, whereas high « emphasize high-frequency events as )y

or Q(Hm) < 0 and merge rare events into Q(H"Z)

In the 3D plots of Figure 1, we demonstrate Q&Hm)-transformations of four thoroughly studied

distributions—the Cauchy, Gauss (symmetrical), Lévy, and Rayleigh distribution (asymmetric;
all specified in Section 4.1)—for « = {0.5;1.0;2.0;4.0}, where each point presents the exchange
of the element between bins / and m (Algorithm 1). In this case, the (a)symmetry of the distribution is

always maintained.
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Figure 1. The (),-transformations of the discrete (a) Cauchy; (b) Gauss; (c) Lévy; and (d) Rayleigh
distribution for a = {0.5;1.0;2.0;4.0} (Section 4.1).
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Algorithm 1: Calculation of a point divergence gain matrix () for typical histograms.

Input: n-bin histogram h; «, wherea > 0 A # 1

Output: O,
1 Q, =zeros(n, n); % create a zero square matrix (Y of the size of n x n
2 Cy = sum(h.\x)); % calculate the constant C, for the given distribution and

3 forl =1tondo

4 if h(I) # 0 then

5 for] =1tondo
6 O, (I,m) =
log, (((h(I) = 1) a —h() & + (h(m) + 1) " —h(m) a)/Cx + 1)/ (1 — a);
7 end
8 else
9 ‘ 0, (1) =NaN;
10 end
1 % if the bin | of the histogram h is occupied, calculate Q at each position (I,m) according to

Equation (10), else set the not-a-number into the row I of the O matrix

12 end

Now we will consider the specific case & = 2 (collision entropy) for which Equation (10) can be
simplified to

ofl7™ = _in {é(ﬂm —m+1) +1] =—In { 2 (Ant=m 1) 41| 11)

[

For a specific difference Anx=y) = D, Equation (11) can be approximated by the 1st-order
Taylor sequence

2

(I—m) ~ — i _ (I—=m) _
of ln{CZ(D-Fl)—‘rl} 72(D+1)+02(An D)
2 2D 2D
- _ (I—m) _ ==
2D+2+02An +2D+2+C2 ln{c2 +Cz+1}. (12)

Equations (11) and (12) show that, for each unique An(*=Y), the QgHm) depends only on the

difference between the bins I and m, which the exchange of the element occurs between, and this
dependence is almost linear. In other words, this explains why, for all distributions in Figure 2,
the dependencies Qélﬁm) = f(nm, ny — n;) are planes.

For & — 1, the Rényi entropy becomes the ordinary Shannon entropy [18] and we obtain

(cf. Equation (4))

k k n. n; k n; n; n n n n
2z _ _ ] ] _ ] ] m m 1 1
ji’l(P)—f;pjlnpj—fgzln;—f;z ;ln;f7ln7f;ln; (13)
j= j=1 J=Lj#Lm
and
1 1 -1 -1 ko ni o onj
s pUomy = M E Lt L M=y =l oy g (14)
n n n n n n

j=1j#l,m
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The difference of these entropies (cf. Equation (9)) is gradually giving
(=my _ Hp+1 oy +1 w1 m—1 . nm  onon
(o " In " nlnn+n]nn+nlnn
1 1 -1 -1
nmn+ In(nm +1) + nmn+ Inn — In(n; —1) + m Inn+ %" Inny,
7n—mlnn+ ﬂlnnl ~ Mg
n n n
ny+1 m—-1 ny n N 1 n;
= —— ——S)lnn——1 1)— =1 1) — —1 -1
( + = m n)nn ” n(nm +1) nn(nm+) nn(n, )
=0
1
+ In(nj —1)+ —Inny + —Inn
1 m ny n—1
= —(npl In 1 . 1
n(nmnnerl—o—nl n,71+nnm+1) (15)

One can see that relation (15) is defined for n; € N\ {0,1} and n,, € N* and is approximately
equal to 0 for n;, ny;, > 0 (the Cauchy and Rayleigh distribution for « = 1 in Figure 3).
For n; € N* and n,, € Ny, from Equation (10), further implies:

1. Ifa=0,then Q™™ = 0.
2. Ifa — oo, then Qﬁlﬁ’”) — 0.
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Figure 2. The dependencies Oy = f (1, nyy — ny) for the discrete (a) Cauchy; (b) Gauss; (c) Lévy;
and (d) Rayleigh distribution at & = {0.5;1.0;2.0;4.0} (Section 4.1).
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Figure 3. The dependencies Q) = f(n;,ny,) for the discrete (a) Cauchy; (b) Gauss; (c) Lévy; and
(d) Rayleigh distribution at & = {0.5;1.0;2.0;4.0} (Section 4.1).

2.2. Point Divergence Gain Entropy and Point Divergence Gain Entropy Density

In this section, we introduce two new variables that help us to investigate changes between two
(typically consecutive) points of time series. A typical example can be provided by video processing,
where each element of a time or spatial series is represented by a frame. Let us have two data frames
I, ={a1,...,an} and Z,, = {by, ..., b, } (For simplicity, we use only one index which corresponds to a
one-dimensional frame. In case of images, we have typically two-dimensional frames and the elements
are described by two indexes, e.g., x and y positions.). At each positioni € {1,...,n},itis possible to
replace the value g; by the value of the following frame, i.e., b;. The resulting Q,g”" ~b) then quantifies
how much information is gained/lost, when, at the i-th position, we replace the value 4; for the value
b;. A Point Divergence Gain Entropy (PDGE, I,) is defined as a sum of absolute values of all PDGs for
all pixels, i.e.,

k
L(Z;Ty) = Z Tolmed Z M| Q™) (16)

I [\’]»

where 1y, denotes the number of present substitutions I — m, when we transform Z, — Z,.
The absolute value ensures that the contribution of the transformation of a rare point to a frequent
point (negative (),) and a frequent point to a rare point (positive (),) do not cancel each other
and both contribute to the resulting PDGE. Typically, appearance or disappearance of a rare point
(and replacement by a frequent value—typically background colour) carries important information
about the experiment. The PDGE can be understood as an absolute information change.
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Moreover, it is possible to introduce other macroscopic quantity—a Point Divergence Gain Entropy
Density (PDGED, P,), where we do not sum over all pixels, but only over all realized transitions I — m.
Thus, the PDGED can be defined as

k k
(1
Po(ZoTy) = Y. Y xil QY 17)
I=1m=1
where
1 21,
= 1
Xlm { 0, My = 0. (18)

Let us emphasize that two transitions a; — b; and ap — by, where the frequencies of the
occurrences of the phenomena a; and 4, are equal and of the phenomena b; and b, are equal as well,
give two unique values of the Q,g”" %) In the computation of the PDGED, this is arranged by a hash
function (Algorithm 2). We can understand the quantity PDGED as an absolute information change of

all realized transitions of phenomena m — I.

Algorithm 2: Calculation of a point information gain matrix (€2,) and values P, and I, for two
consecutive images of a time-spatial series.

Input: 2 consecutive images Iy and I, of the size m x n; «, wherea > 0 A o # 1

Output: O,
1 h = hist(I1); % create an intensity histogram h of the image Iy
2 Cp = sum(h.\a); % calculate the constant C,, for the given distribution and «
3 Oy =11.%0; % create a zero matrix Qg of the size of the I

4 hashMap = containers.Map; % declare an empty hash-map (the key-value array)

5 fori =1to (m x n) do
6 | (i) =logy((h(I1(i+1)) — 1)« —h(I1(i + 1)) a + (h(I2(i + 1)) a—
h(Ip(i +1))"a)/Cy +1)/(1 — a);

7 % for each element i of the image I, calculate a value Q) after replacement of the intensity
8 at the position i in the histogram of image 14 by the intensity at the same position in the
9 image I, (Equation (10))

10 v =1I(i); % read a value of the element (intensity) at the position i

11 checkSum = calcCheckSum(h, v);

12 % calculate checkSum using a hash-function effective enough (e.g., MD4, MD5, SHA1)

13 if not hashMap.isKey(checkSum) then

14 hashMap(checkSum) = Q,(i);

15 % if the hash-map does not contain the key, insert a new element with the key

16 checkSum, where the inserted value is the O at the position i

17 end

18 end

19 I, = sum(sum(abs(Qy)));

20 % calculate 1, as a sum of all elements in the matrix Q, (Equation (16))

21 P, = sum(abs(values(hashMap)));

22 % calculate Py as a sum of all elements in the matrix hashMap (Equation (17))
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If the aim is to assess the influence of elements of a high occurrence on the time-spatial changes
in the image series, it is recommended to use PDGE where each element is weighted by its number
of occurrences. If the aim is to suppress the influence of these extreme values, it is better to
compute PDGED.

Let us consider a time-series V, where each time step contains one frame, so V = {Z;,7,,... }.
The series V can be, e.g., a sequence of images (a video) obtained from some experiment, etc. For each
time step, it is possible to calculate Io(t) = Io(Zt; Zivs), resp. Pu(t) = Pu(Zy; Ziys), where s is the
time lag. Typically, we assume s = 1, i.e., consecutive frames with a constant time step.

3. Application of Point Divergence Gain and Its Entropies in Image Processing

The generalized Point Divergence Gain QECHV") in Equation (10) was originally used for

characterization of dynamic changes in image series, namely in z-stacks of raw RGB data of unmodified
live cells obtained via scanning along the z-axis using video-enhanced digital bright-field transmission
microscopy [6,7]. In these two references, this new mathematical approach utilizes 8- and 12-bit
intensity histograms of two consecutive images for pixel-by-pixel intensity weighted (parameterized)
subtraction of these images to suppress the camera-based noise and to enhance the image contrast
(In case of calibrated digital camera-based images, where the value of each point of the image reflects a
number of incident photons, or, in case of computer-based images, it can be sufficient to use a simple
subtraction for evaluation of time-spatial changes in the image series.).

For this paper, we chose other (grayscale) digital image series (Table 1) in order to demonstrate
other applications of the PDG mathematical approach in image processing and analysis. Moreover,
we newly introduce applications of the additive macroscopic variables Point Divergence Gain Entropy
I, and Point Divergence Gain Entropy Density Py.

Table 1. Specifications of image series.

Series Source Bit-Depth Number of Img. Resolution  Origin

Toy Vehicle [19] 8-bit 10 512 x 512 camera

Walter Cronkite [19] 8-bit 16 256 x 256 camera
Simulated BZ [20-22]  8-bit 10,521 1001 x 1001  computer-based *
Ring-fluorescence 12-bit 1058 548 x 720 experimental ?
Ring-diffraction 8-bit © 1242 252 x 280 experimental !

@ A set of a noisy hotch-potch machine simulation of the Belousov—-Zhabotinsky reaction [20-22] at 200 achievable
states with the internal excitation of 10, and phase transition, internal excitation, and external neighbourhood kind
of noise of 0, 0.25, and 0.15, respectively. b The microscopic series of a 6-um standard microring (FocalCheckTM,
cat. No. F36909, Life Technologies™ (Eugene, OR, USA)) were acquired using the CellObserver microscope
(Zeiss, Oberkochen, Germany) at the EMBL (Heidelberg, Germany). For both light processes, the green region
of the visible spectrum was selected using an emission and transmission optical filter, respectively. In case of
the diffraction, the point spread function was separated and the background intensities was disposed using
Algorithm 1 in [7]. ¢ The 12-bit depth was reduced using a Least Information Lost algorithm [23], which,
by shifting the intensity bins, filled all empty bins in the histogram obtained from the whole data series up
and rescaled these intensities between their minimal and maximal value.

3.1. Image Origin and Specification

Owing to the relation of the QgHm) to the Rényi entropy, the I and P, as macroscopic variables

can determine a fractal origin of images by plotting I, = f;(a) and P, = fp(«) spectra. If we deal
with an image multifractality, the dependency I, = f;(«) or the dependency P, = fp(«) shows a peak.
In case of a unifractality, these dependences are monotonous. It is demonstrated in Figures 4 and 5.
There can be no doubts that the origin of the simulated Belousov-Zhabotinsky reaction (Figure 4) is
multifractal. This statement is further strengthened by the courses of the dependencies I, = fj(«)
and P, = fp(«), where we can see peaks with maxima at « € (1,2). On the contrary, a pair of images
in Figure 5 (moving toys of cars) is a mixture of the objects of different fractal origin. In this case,
whereas the course of f;(«) is monotonous and thus shows a unifractal characteristics, the dependence
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fp(x) has a maximum at « = 0.6 and thus demonstrates some multifractal features in the image.

This is due to the fact that, since each information contribution is counted only once, the P, is more

sensitive to the phenomena, which occur less frequently in the image. The monotonic course of the

P, would be achieved only when a sequence of time-evolved Euclidian objects was transformed into
(I—m)

the values Q) .

A

Figure 4. The I, Py, and Q) for a pair of multifractal grayscale images. I. The I, and P, spectra, IL. 8-bit
visualization of Q,-values for « = {0.99;2.0}.

As mentioned in Section 2.2, the variables I, and P, measure absolute information change between
a pair of images and characterize a similarity between these images. Therefore, these variables can find
a practical utilization in auto-focusing in both light and electron digital microscopy. The in-focus object
can be defined as an image with the global extreme of I, or P,. In other characteristics, this image
fulfils the Nijboer-Zernike definition [24]: it is the smallest and darkest image in light or electron
diffraction or the smallest and brightest image in light fluorescence (Section 3.3).
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Figure 5. The I, Py, and (), for a pair of real-life grayscale images. L the I, and P, spectra; II. 8-bit
visualization of Q,-values for « = {0.99;2.0}.

3.2. Image Filtering and Segmentation

Segmentation is a type of filtering of specific features in an image. The parameter « and the

related value of Q&Hm) enable us to filter the parts of two consecutive images, which are either stable

or differently variable in time. This can be employed in a 3D image reconstruction by thresholding and

joining QEJ*’") =0 from two consecutive images or in image tracking via thresholding of the highest

and lowest QECH'") in a first image and the following image, respectively.

This is illustrated using simple examples in Figures 4 and 5 where the highest (red-coded) and

lowest (blue-coded) values of the QSCH'") show the position of the object in the second and the first

image of the image sequence, respectively. Compared with the Q(()l_;g}m), the variance between the

extremes of the ng—ém) is wider and the number of points Qg&;m) = 0is lower.

In digital light transmission microscopy, this mathematical method enabled us to find time stable
intracellular objects inside live mammalian cells from consecutive pixels that fulfilled the equality
Q,S(Hm) = 0 for a = 4.00 [6] or & = 5.00 [7]. In these cases, the high value of a ensured merging rare
points in the image, suppressing the camera noise that was reflected in the images and, thus, modelling
the shape of organelles. The rest of image escaped the observation. In the next paper [25], this method
was extended to widefield fluorescent data.
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As in the case of the Point Information Gain [2], the process of image segmentation of objects of
a certain shape can be further improved by usage of the surroundings of this shape from which the
intensity histogram is created for each pixel in the image.

3.3. Clustering of Image Sets

Finally, we used the Point Divergence Gain to detect the most relevant information contained in
a sequence of images, capturing, e.g., an experiment. For this end, we used I, or P, as quantities of
information change in the consecutive images and applied the clustering methods on them. The values
of I, or Py are small numbers (Section 2.1). Due to the computation rounding of small numbers of
the I, and the P, and for a better characterization of the image multifractality, in clustering, we use
a-dependent spectra of these variables than a sole number at one «.

The dependence of the label of the cluster on the order of the image in the series is the smoothest
for joint vectors [I, Py]. The similarity of these vectors (and thus images as well) is described in a space
of principal components, e.g., [26], and classified by standard clustering algorithms such as k-means++
algorithm [27]. In comparison to the entropies and entropy densities related to the Fﬁi), the clustering
using the I, and the P, is more sensitive to changes in the patterns (intensities) and does not require
other specification of images by local entropies computed from a specific type of surroundings around
each pixel.

The described clustering method was examined on z-stacks obtained using light microscopy.
The z-stacks were classified into 2-6 clusters (groups) when patterns of each image was described
by 26 numbers, i.e., by vectors [I,, Py] at 13 « (Figures 6a and 7a). These clusters were evaluated on
the basis of the sizes of intensity changes between images. These five classification graphs of the
gradually splitting clusters (Figures 6a and 7a, middle) further demonstrate the mutual similarity
among the micrographs in each data series. The typical (middle) image of each cluster is shown in
Figures 6b and 7b.

Firstly, we shall deal with a z-stack with 1057 images of a microring obtained using a widefield
fluorescent microscope. The results of clustering illustrate a canonically repetitive properties of
the so-called point spread function as the image of the observed object goes to and from its focus.
In this case, the image group containing the real focus of the maximal I, and P, at low & (Section 3.1)
is successfully determined by clustering into two clusters (Figure 6a). However, we will aim for a
description of the results for five clusters. The central Cluster 5 (94 images) can be called an object’s
focal region with image levels where parts of the object have their own focus. The in-focus cluster is
asymmetrically surrounded by Cluster 4 (131 and 53 images below and above Cluster 5, respectively),
which was set on the basis of the occurrence of the lower peaks of I, and P, at low «. Cluster 3
(190 and 150 images below and above the focus, respectively) is typical of constant I, and P, for all a.
Cluster 2 contains img. 176-214 and the last 126 images. These images are characteristic of constant I,
and decreasing/increasing Py at « > 2. Cluster 1 (the first 175 images) is prevalently dominated by
increasing I, and decreasing P, at high «.

Before the calculation of the I, and P,, the undesirable background intensities were removed
from the images obtained using optical transmission microscopy. The rest of each image was rescaled
into 8 bits (Section 4.2). The results of clustering of these images (Figure 7a) are similar to fluorescent
data (Figure 6a). The light transmission point spread function is symmetrical around its focus as
well but the pixels at the same x, y-positions below and above the focus have opposite, dark vs.
bright, intensities. Furthermore, the transitional regions between the clusters are longer than for the
fluorescent data. The central, in-focus, part of the z-stack (img. 427-561 in Cluster 4) with the highest
peaks of I, and P, is unambiguously separated using four clusters. The focus itself lies at the 505th
image. This central part of the z-stack is surrounded by eight groups of images which were, due to
their similarity, objectively classified into three clusters. Cluster 1 was formed by images 1-78, 376426,
and 562-661. These images show peaks of middle values of the I, and Py. Images 79-153, 292-375, and
662-703 were classified into Cluster 2 (dominated by the local minimum of the I, at & < 1). Cluster 3
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is related to the images with the lowest values of the I, together with the lowest values and local
peaks of the P, for « < 1 and for « < 1, respectively. This cluster contains images 154-291 and the last
537 images of the series.

a b
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Figure 6. The results of clustering of a z-stack of grayscale microscopic images of a microring
obtained using a fluorescence mode. (a) the dependencies of (upper) the P, and (lower) the
Iy vs. order of the image in the z-stack for « = {0.5;0.99;2.0;4.0} and (middle) clustering
(k-means, squared Euclidian distance, 2-6 groups) of the z-stack using connected spectra [Iy, Py]
for « = {0.1;0.3;0.5;0.7;0.99;1.3;1.5;1.7;2.0; 2.5, 3.0; 3.5; 4.0} (b) the typical (middle) group’s images
for clustering into five groups (in (a), middle). The original 12-bit images are visualized in 8 bits using
the Least Information Loss conversion [23].

Let us mention that, in the clustering process, the I, and P, can recognize outliers such as
incorrectly saved images or images with illumination artifacts.
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Figure 7. The results of clustering of a z-stack of grayscale microscopic images of a microring
obtained using a diffraction mode. (a) the dependencies of (upper) the Py and (lower) the I, vs.
{0.5;0.99;2.0;4.0} and (middle) clustering (k-means,

order of the image in the z-stack for « =

squared Euclidian distance, 2-6 groups) of the z-stack using connected spectra [Iy, Py] for a

{0.1;0.3;0.5;0.7;0.99;1.3;1.5;1.7;2.0;2.5;3.0;3.5;4.0}; (b) the typical (middle) group’s images for
clustering into 5 groups (in (a), middle). The original 12-bit images are visualized in 8 bits using
the Least Information Loss conversion [23].
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4. Materials and Methods

4.1. Processing of Typical Histograms

(1—m)

For the Cauchy, Lévy, Gauss, and Rayleigh distributions, dependences of the (), on the
number of elements in bins I and m were calculated for « = {0.1, 0.3, 0.5, 0.7, 0.99, 1.3, 1.5, 1.7, 2.0,
2.5,3.0, 3.5, 4.0} using a pdg_histograms.m Matlab® 2014 script (Mathworks, Natick, MA, USA).
The following probability density functions f(x) were studied:

1. Lévy distribution:
exp () xe (1,256, ce {57},
f(x) =round |10°——=—%|, xE€N, (19)
273 x€[1,85], c¢=3,

2. Cauchy distribution:

1 x € [—127, 127], c=7,
x) = round 1057} , X€ELZ, 20
) { T (1+x2) {x € [—44,44], c=35, @0

3.  Gauss distribution:

x€[-4,4, c=4 oc=1,
x€[-29,29], c¢=3, =10,
x€[-36,36, c=4, =10,
x€[~64,64, c=10, o =10,

f(x) = round [105exp(_202>:| , X€Z, (1)

oV2m
4. Rayleigh distribution:

2
f(x) = round {106%@@ (‘2%2)} , xeN, xe[,108, c=10, b=16. (22

In Figure 1, the Cauchy and Lévy distributions at ¢ = 7 and the Gauss distribution at parameters
¢ =10 and ¢ = 10 are depicted.

4.2. Image Processing and Analysis

Image analysis based on calculation of the Ql(,fﬁm), I, and P, is demonstrated on five standard

grayscale multi-image series (Table 1). All images were processed using Whole Image mode in an
Image Info Extractor Professional software (Institute of Complex Systems, FFPW, USB, Nové Hrady,
Czech Republic). A pair of images 5000-5001 of a simulated Belousov—-Zhabotinsky (BZ) reaction and
a pair of images motion01.512-motion02.512 were recalculated for 40 values of « = {0.1, 0.2, ..., 0.9,
0.99,1.1,1.2, ..., 4.0}. The rest of series were processed for 13 values of a = {0.1, 0.3, 0.5, 0.7, 0.99, 1.3,
15,1.7,2.0,2.5,3.0,3.5,4.0}. The transformation at 13 & was followed by clustering of the matrices
[Py, Ix] vs. Img. by k-means method (squared Euclidian distance metrics). Due to a high data variance
in the BZ simulation, the clustering was preceded by the z-score standardization of the matrices over «.
The resulted indices of clusters were reclassified to be consecutive (i.e., the first image of the series and
the first image of the following group are classified into gr. 1 and 2, respectively, etc.).

5. Conclusions

In this paper, we derived novel variables from the Rényi entropy—a Point Divergence Gain

QSHM), a Point Divergence Gain Entropy I, and a Point Divergence Gain Entropy Density P,. We have
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discussed their theoretical properties and made a brief comparison with the related quantity called

Point Information Gain T, [2]. Moreover, we have shown that the QLH"Z) and related quantities can

find their applications in multidimensional data analysis, particularly in video processing. However,

due to element-by-element computation, we can characterize time-spatial (4-D) changes much more

sensitively than using, e.g., the previously derived FQ. The Q,Scl_ml) can be considered as a microstate

of the information changes in the space-time. However, the Q&Hm), Iy, and P, show a property

that is similar to the I, and its relative macroscopic variables. Due to the derivation from the Rényi
entropy, they are good descriptors of multifractility. Therefore, they can be utilized to characterize
patterns in datasets and to classify the (sub)data into groups of similar properties. This has been
successfully utilized in clustering of multi-image sets, image filtration, and image segmentation,
namely in microscopic digital imaging.
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Quasi-spectral characterization
of intracellular regions

in bright-field light microscopy
images

Kirill Lonhus™, Renata Rychtarikova, Ganna Platonova & Dalibor Stys

Investigation of cell structure is hardly imaginable without bright-field microscopy. Numerous
modifications such as depth-wise scanning or videoenhancement make this method being state-of-
the-art. This raises a question what maximal information can be extracted from ordinary (but well
acquired) bright-field images in a model-free way. Here we introduce a method of a physically correct
extraction of features for each pixel when these features resemble a transparency spectrum. The
method is compatible with existent ordinary bright-field microscopes and requires mathematically
sophisticated data processing. Unsupervised clustering of the spectra yields reasonable semantic
segmentation of unstained living cells without any a priori information about their structures.
Despite the lack of reference data (to prove strictly that the proposed feature vectors coincide with
transparency), we believe that this method is the right approach to an intracellular (semi)quantitative
and qualitative chemical analysis.

List of symbols

Bin Set of pixels that form lines between pixels m and n

c Colour of a camera filter or an image channel; for colour camera ¢ = {red, green, blue}

C Number of image channels

Dy Central intensity gradient in pixel k € B,,, in calculation of G,

E Energy absorbed by a camera sensor during an exposure time t,

Ex Parameter in computation of G, which indicates if the pixel k is classified as an region edge
Variable which reflects a dependence between the spectral energy and the sensor response; f = 1

Fe(A) Spectral quantum efficiency of a camera filter ¢

E Spectral quantum efficiency of a pixel m

Gmn Measure of discontinuousness between pixels m and n

i Label of a discrete wavelength; i = {1,2,...,w}

iter Iteration

it_max Maximal iteration (predetermined)

I, Pixel intensity at colour channel ¢

k Pixel in the set B,,,;

L, Light effectively incoming onto a camera sensor, i.e. onto a camera filter

m,n Pixel labels

M; Intensity value in the image

N Number of pixels in the set N,,

Ny Set of pixels with the Euclidean distance to the pixel m equal or less than 7gp

q Parameter related to the degree of discontinuousness in spectral regions

r Position vector for a pixel at coordinates (x, y)

N Integral of the spectrum measured by the fibre spectrophotometer in each point S;

S(2) Light spectrum of a light source

te Camera exposure time
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T Thermodynamic temperature; kelvin [K]

Tm(4i) Transparency spectrum of pixel m at wavelength /;

Tn(A) Transparency spectrum of pixel n at wavelength 4;

T(x,y,4) Transparency spectrum of a medium at each pixel in general

Ty Bias parameter in computation of G; 7 = 0.9

TeD Threshold for the selection of the neighbourhood of pixel m, i.e., the Euclidean distance between

pixels m and n; Tgp = 1

u Change of a pixel position vector

w Number of discrete wavelengths

Xy Vertical and horizontal pixel coordinates

€ Parameter which reflects the studied pixel’s neighbourhood size in general
A Light wavelength; nanometer [nm]

Bright-field microscopy in videoenhancement mode shows an unprecedented success as a method of living object
investigation since it is cheap and non-intrusive in preparation of samples, and, in its innovative set-up, has
an excellent spatial and temporal resolution, which opens many possibilities for automation. Classical image-
processing techniques such as feature extraction or convolution neural networks do not work so well due to
huge variability in microworld data. It calls for image pre-processing techniques that would utilize all available
information to supply rich, physically relevant feature vectors in subsequent methods of analysis.

Indeed, classical bright-field microscopy measures properties of incoming light affected by a sample. If multi-
photon processes are negligible and, then, intensities are reasonable, a linear response model can be used. Then,
a medium observed in such a model can be fully characterized by a transparency spectrum T(7) defined for
each pixel. Such a spectrum can give ultimate information about the medium and boost subsequent machine
learning methods significantly.

The most convenient, classical way of obtaining such a spectrum is to modify a measuring device (micro-
scope). It is mostly done using single scanning interferometers?, matrices of them?, matrices of color filter arrays*,
or other adjustable media®®. Such technical arrangements can be further successfully coupled with machine
learning methods as well”. Purely instrumental methods are certainly the most correct but require sophisticated
equipment and are not fully compatible with typical bright-field techniques like depth-wise z-scanning. Due to
both hardware and algorithms, this makes these methods rather a separated group than a subtype of the bright-
field methods.

For classical bright-field microscopy, the most approaches rely on trained (or fitted) models based on a set
of reference images with known properties®. Most mature methods rely on the principal component analysis’
or sparse spatial features'’. Some of such techniques do not aim to full-spectral reconstruction but rather to a
more effective colour resolution (which has been very useful in distinguishing fluorescence peaks)'!. The main
disadvantage of such methods is the global approach, which is feasible only for homogeneous images. Most
“local” methods include different artificial neural networks'?. and can work well if they are trained with a refer-
ence dataset that is similar to the observed system. The data of this kind almost never occurs in microscopy due
to bigger variability of objects in microworld (for the reason that, e.g., known objects are artificial, an investigated
system is living, or the in-focus position can be ambiguous). This gives a cutting edge to physically inspired
methods which make no assumption about type of observed object and does not use special equipment except
of a classical bright-field microscope.

Theoretical model

For most biologically relevant objects multi-photon interactions can be neglected"’. Thus, a linear response model
can be used for description of the measurement process. The model consists of four entities (Fig. 1) which are
physically characterized as follows:

—_

Light source gives a light spectrum S(4), which is assumed constant and spatially homogeneous.

2. Medium is, in each point of the projection onto a camera sensor plane, characterized by an unknown trans-
parency spectrum T'(x, y, A).

Camera filter, where each camera channel ¢ is characterized by a quantum efficiency curve F(4).

4. Camera sensor is described (by purely phenomenological approach) by exposure time t, and energy load
curve I. = f(E), where I is the pixel sensor output (intensity) and E is energy absorbed by the pixel sensor
during the exposure time. We assume that the image is not saturated and, thus, f(E) can be approximated
linearly.

Rl

Mathematically, it can be expressed as

te  [max
Ie=f- / / S(2) - T(A) - Fe(2) - dA - dt, )
Jo Liin

where I, is the image intensity at a given pixel. All observable, biologically relevant, processes are slow compared
with the camera exposure time (usually in a few ms) and, therefore, the outer integral can be eliminated. More
importantly, let variable f, which reflects the dependence between the spectral energy and the sensor response,
be 1. The multiplication inside the internal integral is commutative, which allows us to introduce an effective
incoming light L.(Z) = S(4) - F¢(4). These all mathematical treatments give the reduced equation for the meas-
urement process as
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Figure 1. Measurement process model.
Jmax
I = / Le(2) - T(A) - dA. ()
J Zomin

Intentionally, this simple model does not include any properties of optics, sophisticated models of light-
matter interactions, and spatial components (focus, sample surface, etc.). The aim of the method is to describe
an observed object in the best way, with minimal assumptions on its nature or features.

Model extension for continuous media

In order to extract a transparency profile from the proposed model, one has to solve an inverse problem for a
system of three integral equations (in case of a 3-channel, RGB, camera). This cannot be solved directly, since
the model is heavily underdetermined. (In this text, by terms “transparency” and “spectrum” we mean “quasi-
transparency” and “quasi-spectrum” since this method determines only the properties of a microscopy image
which are similar to the transparency spectra but not the transparency itself).

Additional information can be squeezed from the physical meaning of the observed image—neighbouring
pixels are not fully independent. The observed object usually has no purely vertical parts (which is quite typical
for cell-like structures) and other Z-axis related changes are not fast'*. If this holds, the image can be treated
as a continuous projection of the object’s surface (in optical meaning) onto the camera sensor. In this case, the
neighbouring pixels correspond to neighbouring points in the object.

In addition, let us assume that the object’s volume can be divided into subvolumes in a way that the transpar-
ency spectra inside a subvolume will be spatially continuous (in L2 meaning). This assumption is quite weak,
because it can be satisfied only if the volumetric image has a subvolume of the size which is equal to the voxel size.

For biological samples which show almost no strong gradients of structural changes holds that the pixel
demarcates the projected image. Formally, this criterion can be expressed as

Jimas
/ |TF 7)) — TG+, 2)*dl < q Vil <e, (3)
Aomin

where 1 is a random vector and g, € are small numbers. This equation closely resembles the Lyapunov stability
criterion. The € reflects the neighbourhood size and q is related to the degree of discontinuousness. It can be
violated, if & crosses a border between objects, but not inside a single object.

Optimization procedure
For pixel m, the combination of optimization criteria in Eqgs. (2) and (3) gives (in discrete form)

C S w
Y Lo ()T (D)dA — Iy 1
Fy = Y o Jg QIO € 237 G Y[ Ton) = TaC P @)
c=1

neN,, i=1

where C is the number of channels, w is the number of discrete wavelengths, G, is a measure of discontinuous-
ness between pixels m and n. The N,, is a set of points, which have the Euclidean distance to the pixel m equal or
less than 7gp. Authors used 7gp = 1, but a larger neighbourhood may improve convergence speed. The integral
in the first part of Eq. (4) is supposed to be solved numerically. Authors used the Simpson integration method'®
with discretization||4;|| = 48.

The trickiest issue in Eq. (4) is calculation of discontinuousness measure G,,,. We defined it as

1
Gun =

[ t€=01+1&#01- 1 -7) 1 -Dp), 5)

" B

L

where Dy is a central gradient in pixel k, 73 is a bias parameter (authors used 7, = 0.9), and B, is a set of points,
which form lines between pixels m and n. The set of such points is calculated using the Bresenham algorithm'®.
The & indicates whether pixel k is classified as an edge. For this we used the Canny edge detection algorithm'”
applied to a gradient matrix smoothed by a 2D Gaussian filter with the standard deviation equal'® to 0.5.

Scientific Reports |

(2020) 10:18346 | https://doi.org/10.1038/s41598-020-75441-7 nature research



www.nature.com/scientificreports/

/ \ Mean-field controller
Create Create
Start Image smoothness smoothness  [€
map from img map from spctJ
Recalculate
tolerance
according
to the current
iteration
Making initial > ()
guess
7 Y
Sensor Effective
quantum incoming
efficiency light J

/ A 4 A 4 Y
\ Input preparation / ( Light j ﬁmoothnesq ( Guess j ﬁarameterq

v v ¥

Mean-field optimization of spectra

Finish iter +=1

thimization stage /

Figure 2. The flow chart of the method. The magenta lines denote the routes for the 1st iteration. The red and
blue lines show the direct and indirect feedback between iterations, respectively.

The gradient calculation is different for the first and further iterations. In the first iteration, there is no valid
spectral guess, and the gradients and the edge detection are calculated for the original image. The used edge
detection algorithm requires a single-channel (grayscale) image, however, the input image is RGB. We used the
principal component analysis (PCA)'*?* and retained only the first principal component in order to obtain the
maximal information on the grayscale representation of data.

In the non-first iterations, there is a spectral guess and, instead of the gradient, we used the cross-correlation
with zero lag: Dy = Ti_;(4) * Tk+1(4). The vertical and horizontal gradient were merged by the Euclidean norm.

For numerical optimization of Eq. (4), the covariance matrix adaptation evolution strategy (CMA-ES)*! was
proved to be a suitable robust global optimization method*. Due to the mean-field nature of the second part
of Eq. (4), the method is iterative with, usually, 2040 iterations to converge. In each iteration step and for each
pixel, the minimization is conducted until a predefined value of loss function is achieved. Different schedules
of tolerance changes can be applied, authors used the simplest one—linear decrease. The algorithm flow chart
is presented in Fig. 2.

Microscopy system and camera calibration

In order to obtain reasonable local spectra, we must ensure that camera sensor pixels have homogeneous
responses. From hardware point of view, they are printed as semiconductor structures and cannot be changed.
Therefore, we introduced a spectral calibration in the form of post-processing routine, which is designed for
obtaining equal responses from all camera pixels.

The first part of calibration is experimental and aimed at measuring each pixel’s sensitivity. We took a pho-
tograph of the background through a set of gray layers with varying transparency, covering a 2-mm thick glass
(type Step ND Filter NDL-10S-4). After that, we replaced the microscope objective by a fibre of a spectropho-
tometer (Ocean Optics USB 4000 VIS-NIR-ES) to record spectra corresponding to each of the filters, see Fig. 3a.

The second part is computational. For each pixel, we constructed a piece-wise function S(M), where § is an
integral of the spectrum measured by the fibre spectrometer in each point S; and M; is an intensity value in the
image. Between these points, the function S(M) is linearly interpolated, see Fig. 3d. For a colour camera that
we used, the algorithm is slightly different. Most of the RGB cameras are equipped with a Bayer filter, which
effectively discriminates 3 sorts of pixels. Each ‘sort’ has a different dependence of the quantum efficiency on
the wavelength, see Fig. 3b. These dependencies are usually supplied by the camera producer. In this case, the
recorded spectrum should be multiplied by the corresponding efficiency curve prior to the integration. The result
of the multiplication is shown in Fig. 3c.

The proposed method of calibration is universal, applicable to any camera producing raw data, and is not
based on any assumption about nature of image or underlying acquisition processes. The algorithm itself is
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Figure 3. (a) Light spectra of grayscale layers measured by a fibre spectrophotometer, (b) declared spectra

of RGB camera filters, (c) calculated spectra of incoming light reaching the blue camera channel. The integral
under the curve (c) was used as a calibration value for the construction of the calibration curve. (d) Calibration
curves for selected blue camera pixels lying in the same column (pixel indices are depicted).
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Figure 4. The method of quasi-spectra extraction was applied to a raw image of a live cell from a bright-

field wide-field light microscope (a) combined with the effective light spectra (b). The cost (d) and variation
coefficient (e) demonstrate a quite non-monotonous behaviour. This implies a self-organization of the model.
After the reconstruction of the transparency spectra, the image can be viewed under arbitrary illumination such
as the absolute black body with T = 5800 K (c). Comparison of the quality of U-Net supervised segmentation
for original (raw), contrast-enhanced, and quasi-spectral images (f) shows advantages of the proposed quasi-
spectral approach.

post-processing technique and requires calibration images and data from spectrometer. All results described
below were obtained after this image correction. The calibration and correction routines are implemented as a
native application and are freely available.

Results

The method essentially requires only three specific inputs: an image, incoming light spectrum, and camera filter
profiles. The camera filter profiles are usually supplied with the camera or can be measured directly using an
adjustable monochromatic light source. The incoming light spectrum is less straightforward, because the light
emitted by the source is somehow altered by the light path. A convenient way is to replace the objective inlet
by a cosine corrector with a spectrometer and measure the incident light spectrum. This implies that, in case of
any substantial changes in the optical path (e.g., like the objective replacement), the incoming light spectrum
has to be remeasured. In practice, it makes no problem to measure a set of spectra corresponding to a different
objective, iris settings, etc.

The proposed method appears to be quite robust to parametrization inaccuracies and errors. We used the
quantum efficiency curves supplied by the vendor and measured the spectrum, which is reaching the sample,
and obtained practically feasible results. The method can be applied to any bright-field microscope set-up. The
only condition is to access the camera primary signal immediately after the analog-to-digital conversion, before
some kind of thresholding, white-balancing, gamma correction, or another visual improvement is employed.

The sample has to obey three assumptions: localized gradients, reasonable flatness, and linear response.
If these assumptions hold, the obtained results will be in agreement with physical properties of the medium.
Most of relatively flat biological samples (e.g., a single layer of cells) fulfil all these criteria. In order to show
the capacity of the method, we used it for analysis of images of unstained live L929 mouse fibroblasts recorded
using a video-enhanced bright-field wide-field light microscope in time lapse and with through-focusing. For
determination of the best focal position in the z-stack, we used the graylevel local variance?*. The effective light
spectrum as the result of multiplication of the light source spectrum by the camera filter transparency curves is
shown in Fig. 4b. The original raw image is shown in Fig. 4a and looks greenish due to the prevalence of green
colour in incoming light spectrum.

As clearly seen in Fig. 4d and e, the method has a non-trivial convergence behaviour of the variation coef-
ficient (with the local maximum at iteration 2 and the local minimum at iteration 4) and of the cost. The behav-
iour of the iteration computing process is not related to changes in the schedule of tolerances. This behaviour in
iteration process is linearly decreasing until iteration 10, and then is kept constant and the iteration process is
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Figure 5. A live cell L929 in time lapse (a—c) at k-means clusterization, k = 10. The corresponding mean
spectra of classes for images (a,c) are shown in (d,e). These spectra are pretty much similar, despite the
different images. The gap criteria for the raw data and the relevant spectral counterparts are presented in (g).
Dimensionality reduction techniques, e.g., PCA, can be used for better visualization and digital staining (f).

stopped if the value of change is 0.01. We have not investigated the reason for this course deeply, but it is definitely
repeatable for all the tested measurements (e.g., Fig. S3b,c). A natural way of visual verification of an image of
transparency spectra is artificial illumination. We used a spectrum of the black body at T = 5800 K according
to the Planck Law (Figs. 4c, S3a). The transformed image is quite similar to the raw data, which supports the
method validity. To obtain such an image, we multiplied each pixel’s transparency spectra by the illumination
spectrum and the CIE standard matching curves. The integrals of the corresponding curves gave coordinates
in the CIE 1931 colour space.

Evaluation of the asset of the proposed method of the quasi-spectral reconstrunction (Fig. 5a-e) for clusteriza-
tion against the raw data is quite tricky, because we have no ground truth. But, nevertheless, there are numerous
methods of quality estimation for unsupervised learning?!. Such methods are usually used for determination of
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the optimal number of clusters in datasets. Our aim is slightly different—to compare the accuracy of the clus-
terization for two datasets with different dimensionality. This naturally yields a choice of metric—cosine—since
this metric is normalized and not affected by magnitude to such an extent as the Euclidean metric. Another
fact that can be utilized from the data is that each single image provides 10°-10° points. It enables us to use a
distribution-based method for estimation of clustering accuracy. One of the most general method from this fam-
ily is gap statistics®*, which is reported to perform well and robust even on noisy data, if a sufficient number of
samples is present®’. As the clusterization method itself, we used k-means with 10 clusters and the cosine metric.
Figure 5g shows gap criteria for time-lapse raw images and relevant spectral counterparts. The proposed method
leads to better and more stable clustering concurrently. We also investigated different dimensionality reduction
techniques (namely PCA'?, Factor Analysis®’, and NNM?), which can be applied before the clustering, but these
techniques did not bring any improvement in cluster quality. Despite that, these techniques can be used, e.g., for
digital staining and highlighting the details in objects, see Fig. 5f.

In order to verify the benefits of the clusterization of the obtained spectra using k-means against the direct
image clusterization, simple phantom experiments on microphotographs of oil-air and egg protein-air interface,
respectively, were conducted. These phantom experiments showed that the spectral clusterization resulted in
both a higher cluster accuracy and a lower variation. Moreover, in order to prove the capacity of the method, we
applied supervised segmentation, namely a classical semantic segmentation network, U-Net?. It is a symmetric
encoder-decoder convolution network with skip connections, designed for pixel-wise segmentation of medical
data. One of the strongest advantage of this network is a very low amount of data needed for successful learn-
ing (only a few images can be sufficient for this purpose). We employed 6 images for the network training and
1 image for the method validation. To avoid the data overfitting in the training phase, aggressive dropout (0.5,
after each convolution layer) and intensive image augmentation (in detail in Suppl. Material 1) was rendered.
We compared the performance of the U-Net network for the original raw images, contrast-enhanced images,
and spectral images (Fig. 4f). The results of segmentation for the spectral images showed a significantly (> 10%)
increased accuracy, intersection over union (IoU) 0.9, and a faster convergence speed (8 epochs vs. 40 epochs
for contrast-enhanced images). The results were stable to changes in the training and test sets (even when using
a single validation image or a set of augmented images derived from validation as mentioned above).

Discussion

The primary aim of the method is, in the best possible way, to characterize individual cell parts physically (by
a colour spectrum) and, consequently, identify them as different cell regions. Currently, the standard approach
for the recognition of organelles is fluorescent (or other dye) staining. In unstained cells, identity of an organelle
is guessed from its shape and position. Our approach gives the promise to be able to identify the organelles
according to their spectra. However, in order to obtain the same spectra for cells of different samples, full repro-
ducibility of the whole experiment such as optical properties of a Petri dish, thickness and colour of cultivation
medium has to be ensured.

An important issue that we have not investigated yet is the influence of sample thickness. The question
remains what is the identity of the spectrum if the sample has a non-zero thickness. In Rychtarikova et al.!, we
showed that the position of the effective focus differs even with the usage of a fully apochromatic lens. This is
the biggest complication in interpreting the spectrum. In case of a relatively thick and homogeneous organelle it
can be assumed that, in the centre of the focus, the contribution from geometrically different levels are similar.
The full answer to this question would be given by a complete 3D analysis that has to be theoretically based on
completely new algorithms and is currently out of the possibilities of our computing capacity. To this point,
however, we allow to claim that the thickness of the sample affects mainly the integrals below the spectra, not the
shapes of the spectra themselves. The usage of the cosine metric, which is, in effect, the angle between distance
vectors and is insensitive to the magnitude, would help to mitigate this problem.

It is worth mentioning that, for some real-life biological samples, the measurement model can be violated.
We implicitly assume that light intensity reaching the camera chip is always lower than at the time of its produc-
tion by a light source. The transparency coefficient is bounded by the range [0, 1]. Indeed, this is not always true
because the sample can contain light-condensing objects (most of these objects are bubbles or vacuoles) which act
as micro-lenses. It does not break the method generally but, due to inability to fulfil Eq. (2), the local optimiza-
tion gives an abnormally high cost. Such objects should be eliminated from a subsequent analysis because their
quasi-spectra are unreliable. After excluding those dubious regions (which occupy only a very small part of the
image, provided they are present at all), the rest of the image can be analysed in an ordinary way.

The obtained quasi-spectra should not be considered as object features but are rather imaging process fea-
tures. Due to the model-free nature of the method, the obtained classes reflect the observed data, not the internal
structures of the objects. We think that the convenient bridge between the observed, phenomenological, spectra
and the structure is machine learning, since it shows advantage of enormously good statistics (10°~10° samples
per image) and compensate influence of the complicated shape.

Conclusions

This novel method of extraction of quasi-spectra aims at a very challenging problem, which cannot be solved
precisely even in theory: some information is irrecoverably lost. The method arises from very general assump-
tions on the measurement system. The method does not rely on any light-media interaction model or physi-
cal properties of the system, which makes this method quite universal. The obtained spectra are applicable in
practice for visualization and automatic segmentation task. We intentionally did not consider questions of voxel
spectrum, Z-stack spectral behaviour, and meaning of the compromised focus in order to keep the method and
its application simple. We pose the described method as an ultimate information squeezing tool, which is a
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nearly model-free way how to compress the colour and spatial information into representation of the physically
relevant features. We believe that, in the future, the method will find its use in robust, mainly qualitative, (bio)
chemical analysis.

Microscopy data acquisition

Sample preparation. A 1929 (mouse fibroblast, Sigma-Aldrich, cat. No. 85011425) cell line was grown at
low optical density overnight at 37 °C, 5% CO, and 90% RH. The nutrient solution consisted of DMEM (87.7%)
with high glucose (>1gL™), fetal bovine serum (10%), antibiotics and antimycotics (1%), L-glutamine (1%),
and gentamicin (0.3%; all purchased from Biowest, Nuaill¢, France).

Cells fixation was conducted in a tissue dish. The nutrient medium was sucked out and the cells were rinsed
by PBS. Then, the cells were treated by glutaraldehyde (3%) for 5 min in order to fix cells in a gentle mode (with-
out any substantial modifications in cell morphology) followed by washing in phosphate buffer (0.2 mol L™,
pH 7.2) two times, always for 5 min. The cell fixation was finished by dewatering the sample in a concentration
gradient of ethanol (50%, 60%, and 70%) when each concentration was in contact with the sample for 5 min.

The time-lapse part of the experiment was conducted with living cells of the same type.

Bright-field wide-field videoenhanced microscopy. The cells were captured using a custom-made
inverted high-resolved bright-field wide-field light microscope enabling observation of sub-microscopic objects
(ICS FFPW, Nové Hrady, Czech Republic)!. The optical path starts by two Luminus CSM-360 light emitting
diodes charged by the current up to 5000 mA (in the described experiments, the current was 4500 mA; accord-
ing to the LED producer, the forward voltage was 13.25 V which gave the power of 59.625 W) which illuminate
the sample by series of light flashes (with the mode of light 0.2261 s—dark 0.0969 s) in a gentle mode and enable
the videoenhancement®. The microscope optical system was further facilitated by infrared 775 nm short-pass
and ultraviolet 450 nm long-pass filters (Edmund Optics). After passing through a sample, light reached an
objective Nikon (in case of the live cells, CFI Plan Achromat 40x, N.A. 0.65, W.D. 0.56 mm; in case of the fixed
cells, LWD 40x, Ph1 ADL, co/1.2, N.A. 0.55, W.D. 2.1 mm). A Mitutoyo tubus lens (5x) and a projective lens
(2x) magnify and project the image on a JAI camera with a 12-bpc colour Kodak KAI-16000 digital camera chip
0f 4872 x 3248 resolution (camera gain 0, offset 300, and exposure 293.6 ms). At this total magnification, the size
of the object projected on the camera pixel is 36 nm. The process of capturing the primary signal was controlled
by a custom-made control software. The z-scan was performed automatically by a programmable mechanics
with the step size of 100 nm.

Microscopy image data correction and visualization. The acquired image data were corrected by
simultaneous calibration of the microscope optical path and camera chip as described in Suppl. Material 1. In
this way, we obtained the most informative images on spectral properties of the observed cells.

For visualization, very bright pixels which correspond to light-focusing structures in the sample (mostly bub-
bles that act as micro-lenses) and violate the assumptions of the model of the proposed quasi-spectral method
were detected (as 99% percentile of intensities) and treated as saturated. After their elimination, the rest of
intensities was rescaled to the original range.

Data availability

The software for quasi-spectral characterization of images, the relevant Matlab codes, the software for image
calibration, the U-Net segmentation package, and testing images are available in the supplementary materials
at the Dryad Data Depository™.
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Current biological and medical research is aimed at obtaining a detailed spatiotemporal map of a live
cell's interior to describe and predict cell’s physiological state. We present here an algorithm for com-
plete 3-D modelling of cellular structures from a z-stack of images obtained using label-free wide-field
bright-field light-transmitted microscopy. The method visualizes 3-D objects with a volume equivalent to
the area of a camera pixel multiplied by the z-height. The computation is based on finding pixels of un-
changed intensities between two consecutive images of an object spread function. These pixels represent
strongly light-diffracting, light-absorbing, or light-emitting objects. To accomplish this, variables derived
from Rényi entropy are used to suppress camera noise. Using this algorithm, the detection limit of ob-
jects is only limited by the technical specifications of the microscope setup-we achieve the detection of
objects of the size of one camera pixel. This method allows us to obtain 3-D reconstructions of cells from
bright-field microscopy images that are comparable in quality to those from electron microscopy images.
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1. Introduction

Bright-field microscopy is a classical method, favored for its
convenience and ability to observe the physiology and morphol-
ogy of unlabelled living cells and tissues. It avoids potentially com-
plicated sample preparation procedures and visual artifacts due to
complex optical paths and, in addition, is non-destructive. How-
ever, the main issue that hinders the segmentation and analysis of
bright-field microscopy images [1-8] is the low contrast of struc-
tures in the focal plane caused by distortions from an object spread
function (OSF), which is unknown for most objects. These distor-
tions are particularly relevant in a biological context, as biologi-
cal specimens are significantly thicker than the depth-of-field of
typical bright-field microscope lenses [9] and also have particu-
lar physicochemical properties that lead to optical inhomogeneities
and further complicate the OSF. Its analysis is in addition com-
plicated by the dynamic nature of living cells, which causes spa-
tiotemporal changes in the image. Finally, the discretization per-
formed during image capture may also produce inaccuracies. The
resulting standard bright-field microscopy image represents multi-
ple processes and exhibits a multifractal character.

* Corresponding author.
E-mail address: rrychtarikova@frov.jcu.cz (R. Rychtarikova).

http://dx.doi.org/10.1016/j.ultramic.2017.03.018
0304-3991/© 2017 Elsevier B.V. All rights reserved.

These issues impose several constraints on the type of algo-
rithm and microscope appropriate for this task:

1. It is necessary to obtain the most real and natural images
possible in order to discover the spectral properties of a
cell’s spread function. This can be carried out using a high-
resolution camera equipped with an image sensor overlaid
with a Bayer filter, capturing RAW files in a higher-bit colour
depth and processing them using an non-interpolating algo-
rithm [10,11]. Precise microscope mechanics should ensure
the smallest possible movement along the z-axis.

2. The analytical method must be able to recognize sponta-
neous and random processes that underlie self-organization
and multifractality [12]. Extracting the information from an
image using Rényi entropy [13] parametrized by o (o > 0
and o # 1) serves as an appropriate basis for this task.

3. The method must be sensitive to diffraction, which is the
main interactive process between light and cellular struc-
tures. Properties of the light wavefront that arises from
diffraction and is projected at the objective lenses are de-
scribed in full by Mie scattering theory [14]. Under the con-
dition that the size of a particle is much larger than the
wavelength of light, ray tracing techniques (geometry op-
tics) provide a sufficient model for the characterization of
the shape of the particle. Then, the behaviour of light at the
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Table 1
Microscope setup.
Cell Series Camera Piezo?
Number of img.®  Step (nm)  Time (min:s)  Offset  Gain  Exposure (ms)
MG63-a 93 (155) 119 03:35.4 0 268 3327 Yes
MG63-b 128 (201) 150 10:22.7 266 347 2466 No
1929 173 (358) 158 11:09.0 221 336 2632 No

2 If yes, the image series underwent image alignment (registration).
b The original number of image in the series before z-step selection is parenthesized.

interface of the strong diffracting object can be described
by the phenomenon of total external light reflection and
diffraction (Supplementary Fig. 1b).

4. The method must recognize the focus of the cell in its
spread function. According to the Extended Nijboer-Zernike
(ENZ) theory [15-17], the focus of a fluorescent and light-
diffracting object is located at the position of the highest
and lowest energy density, respectively (Supplementary Fig.
1a).

Here, we demonstrate a novel mathematical approach to reach
superresolution in bright-field microscopy. This method, validated
using atomic force microscopy, was applied to 3-D reconstructions
and spectral and dynamic analysis of organelles and OSFs from z-
stacks of bright-field microscopy images of live mammalian cells.

2. Results

The method is demonstrated on two cells of MG-63 human os-
teosarcoma (labelled a and b) from different cultivation batches
and a cell of 1929 mouse adipose tissue; the z-stacks of 12-bit
bright-field microscopic RAW files were collected with an average
z-step of 119, 150, and 158 nm, respectively. The detailed scanning
conditions are described in Table 1. The z-stacks underwent im-
age pre-processing such as vertical image registration (the MG63-a
cell) and the removal of defective (dead and hot) camera pixels
(the MG63-b and 1929 cells) to avoid image defects, which, in ad-
dition, demonstrates the robustness of the method.

The overall preview of the image processing of the z-stack
of the input data—12-bit RAW files with a cell of interest and
background—with respect to the items mentioned above is shown
in Fig. 1a and discussed in detail in the following sections.

2.1. Segmentation of a cell’s focal region

In the first step, a cell of interest was segmented from its back-
ground by identifying green pixels whose intensities remain un-
changed for each two consecutive RAW files (Algorithm 1, Fig. 1b).
The intensities of the green pixels in each Bayer mask quadruplet
were averaged to give quarter-resolved grayscale images [10,11],
which were then subtracted. The unchanged intensities (i.e. zero
values in the differential image) concurrently higher than 0 and
lower than a 0.95-fold intensity mode of the cell-free second im-
age contributed to the cumulative binary mask. In the focal region,
these unchanged dark green pixels are the primary contributors to
the cumulative binary mask (Supplementary video 1).

This binary mask was further processed by standard mor-
phological operations—dilating the image (a 3 pixels disk-shaped
structuring element), filling image holes (corresponding, in the
original image, to the fluorescent objects and positive light inter-
ferences in the Airy diffraction pattern [18]), and filtering the cell
of interest according to its specific features (in our case, as an ob-
ject of the maximal size)—resulting in a final binary mask. The fi-
nal binary mask of the cell was rescaled by a factor of two and
applied to the whole z-stack of the original RAW files in order to
distinguish a sum of point spread functions of the cell.

Computation of the binary mask from RAW files’ red and blue
pixels did not give the desired results. Due to the high frequency
of consecutive pixels with constant intensities, the image of the
cell merged with its background. The reason for this may be found
either in light absorption in the infra-red and ultra-violet regions
[19] or in lower photon quantum efficiency of the respective cam-
era filters [20]. Therefore, in all segmentations, the green intensity
wide range histogram was used.

The next step consists of selecting the focal sub-stack of the cell
and assessing cell topography. The focal region of the z-stack was
determined via clustering point information gain entropy density
(Eq) spectra [21] obtained for all RAW files of the separated cell.
The variable E, [bit] was derived from the Rényi entropy as

- 1 ilog Y%
Sal = 2 ’
-« j=1 Z?:l pl]){l
where p; and p; ; are the probabilities of occurrence of intensity
j in an intensity histogram of the Ith image in the z-stack with
and without an elerrklent of the intensity i, respectively. The addi-
&
tive term 1 log, %
j=1Pj1
bit) and can determine an information contribution of intensity j
to the intensity histogram obtained from either the whole image
(a global measure E, yy) or its part (local measures). For image
processing of the presented cells, we used local values evaluated
from pixels either on the vertical-horizontal cross (Eg,c) or on a
9 pixels circle around the examined pixel (Z g ). The kind of lo-
cal information was chosen according to the distribution of inten-
sities in the image. Whereas the z-stacks of the MG63-a and L929
cells suffered from cross camera noise, the images of the MG63-
b cell did not (Supplementary videos 2 and 3). In the latter case,
the 9 pixels circular type of surroundings approximately traced the
borders of intracellular structures.

For the overall multifractal characterization of the images, Eq-
spectra were calculated for a set of o« = {0.1, 0.3, 0.5, 0.7, 0.99, 1.3,
1.5, 1.7, 2.0, 2.5, 3.0, 3.5, 4.0}, for each colour channel separately.
While the values FaJv, and consequently Eaj, for the red and blue
channels (indexed p and g, respectively) were computed by elim-
inating one element of intensity j from the respective intensity
histogram, these values for the green pixels (indexed ;) were ob-
tained via eliminating two elements that were relevant to the in-
tensities of the Bayer mask quadruplet.

Matrices composed of vectors that specify each image [ in the
z-stack via a-dependent subvectors of the respective information
context in the respective colour channel, i.e.

(1)

is called a point information gain (I,

E(l) = [Ea,Wh,Rv Eot,Wh,G; Eot.Wh,Bv Eoz,Cr.R’ Ea,Cr.G’ Eoc.Cr,B] (2)
for series of the MG63-a and L929 cells and

—
=

B = = = = = =
~=n = [‘-‘OLWh.R* “o ,Wh,G> “a,Wh,B> “aCrR> “aCr,G, “a,rB,
= o =
Sy Circle,Rs S Circle,G» E‘uACircle.E] (3)

for the series of the MG63-b cell, were standardized with z-scores
and underwent k-means clustering (squared Euclidean distance
metric, 50 iterations) into two groups (Algorithm 2). Due to the
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Fig. 1. Scheme of the algorithm for 3-D reconstruction of organelles inside a live cell from bright-field photon microscopy (illustrated on stable homogenous diffracting
organelles inside the MG63-a cell). (a) Total overview of the algorithm. A1 - 2-D cell segmentation from the original input z-stack images (in 12-bit RAW files, Algorithm 1);
B - calculating E,, (PIED) spectra, where c is a colour channel, for each z-stack image; C1 - selection of the focal region of the z-stack according to E,-spectra (Algorithm 2);
C2 - calculation of the cell topography (Algorithm 3); C4 - comparison of the z-stack region with the AFM profile of the cell (Supplementary Fig. 4); D - calculating @, x, y, ¢
(PDG) values from two consecutive z-stack images; A2 - characterization of the background of each image as a mode of its R-, G-, and B-intensity histograms, respectively; C3
- selection of background values in the focal plane (complementary to the image of the cell in the focal region); E1, E2, E3 - 3-D organelle segmentation and reconstruction
(the output of Algorithm 4) from the focal region of the cell, including its ey, x y, c-images and background values. (b) Detailed scheme of the cell segmentation (A1 process
in panel a, Algorithm 1). (c) Detailed scheme of organelle segmentation (Algorithm 4). A - non-interpolating demosaicing of the RAW files of the segmented cell (input
1); C2 - removing undesirable objects via comparison of the cell intensity histogram with the mode of the background histogram (input 3); C3 - application of the binary
topological envelope (input 4) to each z-stack; B - creation of a binary mask via overlapping of @, = 0 values from two consecutive images; C1 - 2-D segmentation of
organelles and OSFs; D - 3-D reconstruction of organelles; E - 3-D stacking of 2-D organelle segments. Image processing was performed in 12-bpc intensity depth and is

visualized in 8 bpc.

spectral properties of the OSF, this clustering properly selected a
focal region of the cell from the rest of the z-stack.

In Algorithm 2, the sub-stack of the focal region was chosen as
a cluster with a RAW file whose average intensity of green pixels
is the inflection point of the dependence of the average intensity
of green pixels on the position of the RAW file in the z-stack. To
smooth the dependence, a fourth-order polynomial was used. This
part of the algorithm assumes that in the focal region the inten-
sities over the z-stack change significantly, whereas the intensities
of blurred images remain relatively constant.

The topological envelope of the cell (explained as a binary im-
age at each z-level, Algorithm 3) was evaluated from the focal
sub-stack of RAW files as the absolute value of the subtraction of
the unblurred and blurred green pixels at the same z-level after
non-interpolating de-mosaicing of green pixels of RAW files. The
blurring of each particular image was performed with a filter cre-
ated from a 10 pixels disk-shaped structural element. After that,
the pixels of interest at each z-level were chosen as those brighter
than twelve times the maximal intensity of the subtracted image.
These pixels underwent a morphological closing (a 3 pixels disk-
shaped structuring element), removing the undesirable pixels via
morphological erosion and dilation, and computation of the binary
convex hull around the rest of the binary objects. A subsequent di-
lation of the binary convex hull (a 20 pixels disk-shaped structur-
ing element) ensured extension and rounding of the cell bound-
aries.

From each series, a multiplication of the number of images in
the focal region by the respective average scanning step (Table 3)
gave us a height of the part of the OSF that is occupied by the cell,
i.e. 5.6, 3.6, and 5.4 pm for the MG63-a, MG63-b, and L929 cells,
respectively. The shapes and the heights of the cells (Fig. 3b and
Supplementary Figs. 2 and 3b) obtained from the bright-field mi-
croscopy images using the presented algorithm are in agreement
with live cell imaging using atomic force microscopy [22] (Supple-
mentary Fig. 4 and Supplementary information 1). In the MG-
63 cell line, hill-shaped cells with a protuberant nuclei, of the
size of 52 + 1.1 and 4.0 £ 1.0 um on different substrates, pre-
vail. L929 cells are approximately 0.4 pm lower and flatter. Similar
results have been depicted in scanning microscopy images and de-
scribed in literature [23-26]. For the microscopy experiments, the
dish bottoms were not treated.

2.2. Classification, segmentation, and investigation of
properties of organelles

This section describes how to extract information about the 3-D
shapes and dynamics of organelles from a focal region of a z-stack
of bright-field optical transmission micrographs of a detached cell.
The sub-stacks of the MG63-a, MG63-b, and L1929 cells were ob-
tained with average z-step sizes of 116, 156, and 147 nm and with
a scanning frequency of 0.440, 0.213, and 0.298 img. s~!, respec-
tively (Table 3).
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Algorithm 1

creating a binary mask to segment a cell of interest from a bright-field optical transmission z-stack.

x1, x2, yl, y2 as coordinates of the background region;

cl as a threshold constant of the background (¢l = 0.95);

image dilating element (c2 = 3);

size than the RAW file

INPUT:

n RAW files of with cell of interest;

c2 as a size of the structural

BM as a zero matrix of the quater
OUTPUT:

CellBM as a binary mask of the cell of interest
for i = 1:(n—1)

rawl = readIm(i);

raw2 = readlm(i+1);

% read the (i)th and (i+1)th RAW file ,

Gl = demosaicG(rawl);

G2 = demosaicG (raw2);

respectively

% create a quater—resolved image by averaging two green pixels of

each Bayer mask’s quadruplet in the (i)th and (i+1)th RAW file ,

respectively
m = findMode (G2(x1:x2, yl:y2));

% find the

intensity mode of the background in the (i+1)th image

In order to maximize and analyze the change in the OSF's vol-
ume, we have previously derived a information-entropic variable
point divergence gain [10] (PDG: g xy,c bit), which evaluates
the information divergence for all pixels between two consecutive
RAW files in the focal section of the z-stack:

k o
2j=1 Pile
Wy | xyc = 1_a IOgZ k

o s
Jj=1 pi,(l+1)‘x‘y.c

(4)

where [ is the order of an image in the focal region of the z-scan,
and x and y are coordinates of the particular pixel in the image I.
Probabilities p; ; . and p; (41).xy,c describe the frequencies of oc-
currence of colour intensities in the image (I) and in the same im-
age after exchanging the pixel at coordinates (x, y, I) for the pixel at
(x,y, (14 1)). The gy, x y, --values for pixels of each colour in the
RAW file’s quadruplet were calculated in the same way as the Ey-
values in Eq. (4): red and blue channels of the resulting quarter-
resolved @, y y, gp-Matrices were computed after exchanging one
pixel of the respective colour, whereas the green channel was ob-
tained after exchanging two green pixels of the respective pixel
quadruplet.

Compared to the simple subtraction of two consecutive images,
calculating @y 4, , --values classifies the image pixels with respect
to their probability of occurring in volume and also introduces dy-
namics into the examined system. Zero values of wy x y, ¢ COI-
respond to pixels with relatively high occurrences in the image,
and thus ones that do not change in a z-step. These represent sta-
ble, large, non-moving objects at a high image resolution and the
smallest possible z-step, mainly organelles down to the size of one
voxel. The more extremely negative or positive values of we x y, ¢
show pixels with the highest change from image to image, which
correspond mainly to moving objects. Other wg  ,, -values detect
either sums of point spread functions of organelles or organelles
themselves, which are composed of lower-occurrence intensities at
the given z-level and, concurrently, whose OSFs are divergent over
distances smaller than the size of the z-step.

Here, coefficient o represents multifractality and defines dis-
tribution. Low values of o merge frequently-occurring wy x y, -
values and separate rare pixels—the most dynamic organelles in
this case. High « values give wider distributions of wy x y, -
values. A suitable value of this parameter must be always derived
or estimated with regards to the multifractal character of the given
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intensity distribution. We decided to use « equal to 5 (MG63-a)
and 6 (MG63-b, L929), at which value the images of the organelles’
OSFs, mainly in the green channel, are adequately condensed af-
ter camera noise and another defects in the image are suppressed
(Figs. 2a, 3¢, and Supplementary Figs. 2 and 3a). At zero wg 4 y, ¢
of a higher-order «, we already observe a strong combination of
intensities of light-interferences in the image. As the size of the z-
step increases, larger «-values must be used to merge the correct
image intensities.

Analysis of wy x y, ~~values in each colour channel showed that
there is mainly autofluorescence projected in the blue channel. The

Algorithm 2 selecting the focal region using E, values.

green channel further displays diffraction. The red channel shows
also the contribution of near infra-red absorption. The application
of each colour channel can be viewed when zero wy x y, ~-Values
are compared with original images (Fig. 2b) and provide a potential
for classification and recognition of organelles with the respect to
their composition, without the usage of any labelling technique (cf.
[27]).

Because computing g x y, -Values for three consecutive
z-stack images gives information about the shape and dynamics
of organelles in the middle image, a binary mask for segmenting
objects in a z-level was created by thresholding and uniting

INPUT:
n RAW files of cell of interest;
pied as a matrix of the
number of alpha) x n
OUTPUT:

focReg as a matrix specifying

pied = zscore (pied);

images which belong to

size of (number of colour image channels x

the focal region

% calculate a z—score for each sample (image) spectrum over alphas

idx = cluster (pied, 2);
Y% cluster samples (images)
Euclidian
image) into vector idx
% find a focal plane of the
intensity

averInt = zero(n, 1);

% create a zero matrix averlnt for the storage of RAW files ’

intensities

for i = 1:n
rawCell = readIm(i);
G = demosaicG(rawCell);

averInt(i) = nonzeroMean (G);

into 2 groups (via k—means algorithm with

distance ) and assign a number of group to each sample (

series as the image of the average darkest

average G-

(continued on next page)
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Algorithm 2 (continued)

end

% calculate the average

intensity of G-channel for each image in the z—

stack (omit a black background from the calculation)

fitInt = smoothCurve (averInt) ;

% fit

the dependency of average G—intensity on the position in

the z—

stack by a smooth curve (a polynom of order 4)

inflex = findInflexion (fitInt);
% find an inflexion point

the best focused image in
idxInflex = findIdx (idx == inflex);
% find the number of cluster in

image at the position of the

focReg = findRegion(idx == idxInflex);

% find the focal region as the number of cluster with the image,

corresponds to the

of the smoothed curve,

inflexion point

which corresponds to

the z—stack

idx matrix, which corresponds to the

inflexion point

which

of the intensity curve

identical g, x y, -values from two consecutive @y x y, c-matrices
(input 2 in Fig. 1c). This mask was applied to the respective
quarter-resolved image of the cell (input 1 in Fig. 1c), which was
obtained by adapting the Bayer quadruplet’s pixels of red, blue and
average green to the respective colour channel. The subsequent
matching of the respective binary topological mask (input 4 in
Fig. 1c) with the image of the detached objects selected objects
relevant for the given z-level (Algorithm 4).

The last part of the algorithm (input 3 in Fig. 1c) filtered
irrelevant intensities from the images, which completely de-
scribe the spectral properties of the cell’s image. For each colour
channel, strongly light-diffracting or absorbing organelles were
detached as those darker than the cell-free background. In con-
trast, light-emitting organelles were reconstructed from intensities
brighter than the background (Fig. 1-B1- B3, Algorithm 4).

In this paper, we demonstrate a novel method for 3-D re-
construction and examination of large homogeneous non-moving

cellular objects, which are projected at the most frequent value of
Wg, %y, ¢ = 0 (Fig. 3¢ and Supplementary Figs. 2 and 3c). Apart
from the large homogeneous non-moving objects (e.g. nucleoli
in diffraction), the method detected objects of the size of a few
voxels [28], which might be shown to be real objects by video-
enhanced microscopy or correspond to other frequent intensities
remaining constant through a z-step.

The OSFs of light-diffracting objects are substantially smaller
than those of light-emitting objects, which implies that transmis-
sion microscopy has an advantage over fluorescent microscopy
in biological experiments (Supplementary Fig. 1a). The consis-
tently smaller number of detected objects in the green channel
is probably caused either by the mathematical averaging of two
green pixels of the Bayer mask quadruplet during the calculation
of Wy x y, c-values or by the broader green spectrum (caused by
technical reasons, as noted above) decreasing the probability of
occurrence of the same intensity between two consecutive pixels.

Table 2
Image processing of the presented cells.
Cell Coordinates of background  Selection of focus 3-D imaging
X1, X2, Y1, V2 Local E, a for g xy, ¢ R, G, B threshold
MG63-a 4, 268, 652, 894 Cross 5
MG63-b 26, 322, 1296, 1618 Cross, 9 pixels circle 6 1250, 2300, 1500

1929 144, 792, 803, 1268 Cross

6 1000, 1700, 1170
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3. Discussion

Knowing the distribution and mutual interactions of
biomolecules can help determine the morphological and physio-
logical state of a cell. Since the 17th century [29], observations of
intracellular processes have been provided by microscopic tech-
niques based on different physical principles. Imaging based on

Algorithm 3 obtaining the topography.

fluorescent microscopy has been a leading technique for defining
the subcellular location of proteins for decades. However, fluo-
rescent protein tagging technology suffers from some limitations,
including the need for a physiological level of light-emitting pro-
tein production, mislocalization artifacts, relatively low resolution,
and the necessity to intervene in the cell’s physiological state
after insertion of a dye [30]. The breakage of the Abbe diffraction

INPUT:

n RAW files of a cell of interest;

¢ as a threshold constant

(c 12)
OUTPUT:

envelope as a binary matrix with a

cell

BM = resizelm (logical (readlm (1)), 0.5);

% create a binary image of the cell

comparison to the original image

= zeros(size (BM, 1), size (BM, 2)

envelope

% create a zero matrix of the size

envelope (:,:,2) BM;

% save
matrix

envelope

BM = erodeBW(BM, strel(’disk’, 10));

% erode the original binary mask wi

)

subtraction

BM([1:10, end—10:end], :) 0;

BM(:, [1:10, end—10:end]) 0;

% remove the edges of the bw—image

for i = 3:n

rawCell readIm (i) ;

Cell demosaicG (rawCell); % demosaic

the binary mask of the original cell

to remove the edges of the cell

of the blurred and unblurred

levels of the topological set of the

which is of a quater resolution in

B

length (flr));

>

of the whole z—stack

into the second layer of the

th a structural element (a 10—px disk
in a image obtained via a

input image

which touch

the edges of the picture

a G-channel

(continued on next page)
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Algorithm 3 (continued)

filtCell = filterIm (Cell);

% filter the image Cell with a circular averaging filter

the 10—px radius) to create a blurred image of the

(pillbox of

cell

difCell = abs(double(Cell) — double(filtCell));

% calculate absolute values in the
a focal image and its
cutDifCell = difCell .x double (BM);

% cut the edges of the

thresh = findMax (cutDifCell)/c;
% calculate a threshold for the
as a ratio of the maximal value
cutDifCell and input constant c

thCutDifCell = cutDifCell > thresh;

image,

selection

which is a subtraction of

blurred version

cell using a binary mask BM;

of the immovable objects

the subtractive image

% threshold the values in the subtractive image higher than the

threshold thresh

closeObjects = closeBW (thCutDifCell);

% perform image closing (with a 3px disk

threshold image)

bigObjects = filterObjects (closeObjects):

% remove small objects in the closed

envelope (:,:,1) = uniteObject(bigObjects);

% unite the rest

envelope (:,:,i) = envelope(:,:,1)

% apply
gradually smaller

end

.+ envelope (: ,:

the previous envelope

structural element on the

image

of objects and create an envelope

=1

to the current one to make the mask

limit [31] in fluorescent microscopy was achieved by the invention
of super-resolved fluorescent imaging, which was awarded the
2014 Nobel prize in chemistry [32]. On the other hand, contrast
techniques in optical microscopy such as phase contrast [33],
differential interference contrast [34], digital microscopic hologra-
phy [38], interferometric microscopy [35], and optical coherence

tomography [36] require the insertion of an optical element into
the optical path of the microscope, which distorts the image of
the observed biological specimen and makes image interpretation
much more difficult. Electron microscopy (in both transmission
and scanning modes) is an ancillary method in cell biology [37],
since it may only be used to observe dried samples after a prepa-
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Table 3
Characterization of the focal regions.

Cell Coordinates of position = Number of img.  Average step  z-Height  Time Img. frequency
X1, X2, Y1, Y2 (nm) (nm) (min:s)  (s7)
MG63-a 55, 1928, 1, 2278 49 116 5568 1:51.3 0.440
MG63-b 1, 2436, 139, 3248 24 156 3588 1:52.2 0.213
L929 767, 1798, 341, 1432 38 147 5436 2:07.7 0.298
a @05,18,x,y6 =0 @2,0,18xy6 =0 4.0,18,y6 = 0 @5.0,18x,y6 =0

b Previous original RGB @s.0,18xyR = 0

@s5.0,18,x,,G = 0 @s.0,18,x,yB = 0

C Previous Following @5.,0,21,x,y,RGB,neg

a)S.O,Zl,x,y,RGB, pos

Fig. 2. Details of wg x y, c-images of a focal plane of a z-stack of live cell from bright-field transmission optical microscopy computed using two consecutive images (illus-
trated on the interior of a MG63-a cell). (a) Zero values of @, x ,, c-transformed images with points that show unchanged information at « equal to 0.5, 2.0, 4.0, and 5.0,
respectively. The original section of the cell is identical to that of b. (b) An original RGB section of the cell (visualized in 8 bpc) and its values wq, 15, y,c = O for the red,
green, and blue channels. Autofluorescent organelle 1 shows spectral characteristics in all colour channels. Organelle 2 (nucleolus) diffracts in the green and red channels and
has weak autofluorescence due to its content of nucleolic acids. Organelle 3 bound to the nucleolar envelope is detectable only in the blue and green channels. (¢) Move-
ment of an organelle demonstrated on 8-bit images transformed from the original wsg, 21, x, y, ree-values in double precision floating point format (some ws,j x, y, ree-values
are merged into one intensity of the wsg, 21, x y, rcs-image). White and black pixels in the wsg, 21, x, y, res, neg-image (e.g., the highest and the lowest negative g x y, c-values,
respectively) correspond to the position of the organelle in the previous and following original RGB images of the cell, respectively (and vice versa for the wsyg, 21, x y, rcB, neg~
image). The sizes of the sections in a-b is 23.732 x 19176 um? and 4.352 x 5.372 pm? in ¢ (68 nm? px~'). (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

ration time of several days. However, the resolution obtained
by electron microscopy may go down to a few nanometers. The
newest imaging method—atomic force microscopy, e.g. [39]—is
a kind of non-optical topographical technique that reaches high
resolution but does not provide the possibility of fully imaging
intracellular composition and interactions. Connecting the benefits
of these different imaging methods can be achieved by combining
them; for instance, correlative light electron microscopy (CLEM,
e.g. [40]) is the most well-known and commercially available
example of combined imaging.

This article reports a method to comprehensively analyze the
information provided by label-free bright-field photon transmis-
sion microscopy (calibrated and validated by AFM [22]), which de-
tects minute objects of Nobelish resolution [30,32] in a living cell.
We do not develop a quantum physical theoretical foundation of

the origin of information in the image. We instead follow the Ex-
tended Nijboer-Zernike Theory [15-17], which claims that the fo-
cus is at the position of the lowest/highest density of electromag-
netic radiation. Provided that two points of the same energy de-
tected by a digital camera chip lie above each other, they are con-
sidered to be a light-diffracting or light-emitting object. The extent
of the detection as well as of the reliability of the interpretation is
heavily limited by the microscope’s optical and mechanical proper-
ties. The resolution limit is not influenced by the camera sensitivity
but by the number of photons. A high number of photons enables
objects to be localized (known as discriminability) [28,41]. It is an
analogy to super-resolved fluorescence microscopy, where the limit
is based on a few photons.

We demonstrate some of the extraordinary properties of an
image of elementary light-diffracting, light-emitting, or light-
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dark

§

bright

f / /
R WL U

Fig. 3. 3-D reconstruction of a MG63-a cell. (a) An original 2-D image of the segmented MG63-a cell from the center of the focal region (obtained using Algorithms 1-2
and visualized in 8 bpc). (b) Isocontours of the topological space of the occurrence of the MG63-a cell in its OSF (calculated using Algorithms 1-3 in Methods). (¢) 3-D
reconstruction of the large non-moving objects in the MG63-a interior (found using Algorithms 1-4 in Methods). The dark objects (upper row) represent strongly light-
diffracting and light-absorbing objects or pixels of destructive light interference (visualization of ranges of intensities 465-884, 1152-2169, and 593-1082 in the R, G, and B
channels, respectively). The bright objects (lower row) represent autofluorescent objects or pixels of positive light interference (visualization of ranges of intensities 865-2519,

2137-3445, and 1063-3310 in the R, G, and B channels, respectively).

absorbing objects. Objects of the size of one camera pixel are de-
tected. To re-phrase this observation in the terminology of the
depth-of-focus in digital microscopy: the depth of focus is a step
along the z-axis within which the information contained in one
camera pixel remains within this pixel and is not transferred into
the neighbouring pixel. Our results demonstrate that such a def-
inition is very sharp. It means that each point in the image of
g x y, « Will be equal to 0. The fact that we have observed only
a few points at wy |  y, . = 0 indicates that objects’ spread func-
tions, which give rise to the image in these camera points, have
homogeneous intensity over more than one z-level. The latter con-
clusion indicates that objects detected with wgy x ,, = 0 at all «
values are located within the volume of the voxel. For these ob-
jects, the information obtained by our approach is equivalent to a
3-D reconstruction constructed from electron microscopy images.
The detection limit of other objects, which gives rise to a certain

distortion in the optical paths, is solely technical. It is due to me-
chanical precision in the z-step and x-y reproducibility, the size
of the camera pixel, the objective magnification, a simple optical
path, homogeneous illumination, the scanning frequency, the dis-
tribution of camera noise, the bit depth of the camera, and image
storage and computational capacity.

4. Methods

Cell cultivation

MG-63 (human osteosarcoma, Serva, cat. No. 86051601) and
1929 (mouse fibroblast, Serva, cat. No. 85011425) cell lines were
grown at low optical density overnight at 37 °C in a synthetic
dropout media with 30% raffinose as the sole carbon source. The
nutrient solution for the MG-63 cells consisted of: 86% EMEM,
10% newborn-calf serum, 1% antibiotics and antimycotics, 1% L-
glutamine, 1% non-essential amino acids, 1% NaHCO3 (all compo-
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nents were purchased from PAA Laboratories). During microscopy
experiments, cells were cultivated in a Bioptech FCS2 Closed
Chamber System.

Microscopy

Microscopy of a living MG-63 cell culture was performed us-
ing a versatile sub-microscope: a nanoscope developed for the
Institute of Complex Systems FFPW by the company Optax Ltd.
(Czechia). The optical path consisted of two Luminus 360 light
emitting diodes, a condenser system, a firm sample holder, and an
40x objective system made of two complementary lenses that al-
low a change of distance between the objective lens and the sam-
ple. The UV and IR light was blocked by a 450 nm long-pass filter
and a 775 nm short-pass filter (Edmund Optics), respectively. Next,

Algorithm 4 2-D segmentation of objects.

a projective lens magnified the image onto a Kodak KAI-16000
camera chip with 4872 x 3248 resolution and 12-bit colour depth.
The size of the original camera pixel using primary magnification
was 34 x 34 nm?2. The z-scan was performed automatically by a
programmable piezomechanic (servo) motor. The scanning condi-
tions are presented in Table 1 and Supplementary data 1.

Image processing algorithm

The relevant stacks of micrographs (ca. 2/3 of the original z-
stack) were selected from the original z-stacks using the “ILCZ”
(MG63-b, 1L929) tag from the Exif metadata of each image using
the file pngparser.exe (in imagesinfo.txt in Supplementary mate-
rial available via ftp connection [42]). For the MG63-a cell, the
same process was performed using Matlab® scripts: RellmgSelec-

INPUT:

rawCell2 as the second RAW file of a cell of interest from two

consecutive images;

PDGIC and PDG2C as matrices of point divergence gain values

calculated

for the respective colour channel of two consecutive images,

respectively ;

m as an intensity mode of the background in the respective colour

channel of the second image;

envelope2 as a binary envelope of the cell at the second z—level

level as a value of PIED (level = 0 for large non—moving objects)

OUTPUT:

darkl and brightl as 2D segments of organelles of different

properties

Cell2 = demosaicC(rawCell2);

% create a quater—resolved image of the cell in its

spectral

respective colour

channel via non—interpolating algorithm\cite{Tkacik}

PDG1C0 = PDGIC == level;

PDG2C0

PDG2C == level;

% in each PDG matrix,

OrgBM = (PDGICO + PDG2C0) > 0;

threshold values

level

% from positive values in the summed binary images with thresholded

levels ,

create a binary mask for the export of objects organelles

(continued on next page)
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Algorithm 4 (continued)

Cell2bright = Cell2; % duplicate the matrix Cell2
Cell2(Cell2 >=m) = 0;
% select autofluorescent objects (and positive interferences)

Cell2bright (Cell2bright <=m) = 0;

% select diffraction and absorption (and negative interferences)
darkl = (Cell2 .x uint(OrgBM)) .x uint(envelope2);
brightl = (Cell2bright .x uint(OrgBM)) .x uint(envelope2);
% apply the binary mask with organelles and that with the topology to
the debayerized image of the cell
tion.m and Shift.m (for image alignment). The average steps and Acknowledgements

total scanning times are described in Table 1.

The bulk of the image processing and analysis of the bright-
field optical micrographs were carried out with Matlab® R2014b
software fortified by Image Processing and Statistics Toolboxes
(Mathworks, USA) using an OrganelleExtraction script package (ICS
FFPW, USB, Czechia). The variables Point Information Gain Entropy
Density (Eq, PIED) and Point Divergence Gain (wgyj x y, o PDG)
(Egs. 1 and 3) were computed using Image Info Extractor Profes-
sional v.b11 software (ICS FFPW, USB, Czechia; a GBRG Bayer grid)
and stored in double precision floating point format in Matlab®
structure arrays. The differences in image processing of the cells
are shown in Table 2. The basic algorithms for segmentation of
cells and intracellular objects are written below. The optimized m-
files, software, and original and processed data are available via ftp
connection [42].
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Supplementary information

Supplementary information 1. 3-D shapes and heights of
MG63 and L929 cells obtained using an atomic force microscope
Axio Observer.Al, Zeiss in contact mode.

Supplementary Fig. 1 (a) left - The Extended Nijboer Zernike
simulation of fluorescence (parameters NA = 0.5, d = 0.2 pym, A =
0.2 pm, m = 0, n = 0). right - A real (measured) object spread
function of a 0.22 pm bead in diffraction with sections of RGB
images. The central sections of object spread functions show the
positions of focus. (b) A model of phenomena of geometric op-
tics that occur during the interaction of light with an object. The
main process is diffraction. In the case of total diffraction of light
at the sample interface, it can be considered that the intensities of
the sample interior are black and constant, whereas the intensities
of light interferences around the sample are brighter and change
more in space.

Supplementary Fig. 2. 3-D reconstruction of a MG63-b cell. (a)
An original 2-D image of the segmented MG63-b cell from the cen-
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ter of the focal region (obtained using Algorithms 1-2 and visu-
alized in 8 bpc). (b) Isocontours of the topological space of the
occurrence of the MG63-b cell in its OSF (calculated using Algo-
rithms 1-3 in Methods). (¢) 3-D reconstruction of the large non-
moving objects in the MG63-b interior (found using Algorithms
1-4 in Methods). The dark objects (upper row) represent strongly
light-diffracting and light-absorbing objects or pixels of destructive
light interference (visualization of ranges of intensities 647-921,
1216-1741, and 747-1030 in the R, G, and B channels, respectively).
The bright objects (lower row) represent autofluorescent objects or
pixels of positive light interference (visualization of ranges of in-
tensities 910-1475, 1723-2584, and 1026-1495 in the R, G, and B
channels, respectively).

Supplementary Fig. 3. 3-D reconstruction of a L1929 cell. (a)
An original 2-D image of the segmented L929 cell from the cen-
ter of the focal region (obtained using Algorithms 1-2 and visu-
alized in 8 bpc). (b) Isocontours of the topological space of the
occurrence of the MG63-b cell in its OSF (calculated using Algo-
rithms 1-3 in Methods). (¢) 3-D reconstruction of the large non-
moving objects in the L929 interior (found using Algorithms 1-4
in Methods). The dark objects (upper row) represent strongly light-
diffracting and light-absorbing objects or pixels of destructive light
interference (visualization of ranges of intensities 445-763, 676-
1257, and 533-920 in the R, G, and B channels, respectively). The
bright objects (lower row) represent autofluorescent objects or pix-
els of positive light interference (visualization of ranges of intensi-
ties 757-1102, 1247-1630, and 908-1212 in the R, G, and B chan-
nels, respectively).

Supplementary Fig. 4. Live cell imaging using an atomic force
microscope Axio Observer.Al, Zeiss in contact mode. (a) 3-D im-
ages and heights of a MG63 (similar to presented cells MG63-b
and L929). (b) Average size of MG63 and L929 cells spreading on
a mat coated with either fibrinogen or fibronectin. The standard
deviations were calculated from 8 cells for the MG63 cell line on
both substrates, 6 cells for the L929 cell line on fibrinogen, and 3
cells for the L929 cell line on fibronectin.

Supplementary data 1. Image pre-processing of bright-field
transmission z-stacks, including information about the positions of
images in the z-stacks. The gray sections correspond to the focal
regions. Average values of z-positions and scanning times are re-
ported inTables 2 and 3.

Supplementary video 1. The creation of a binary mask for seg-
mentation of cells over the whole z-stack of 12-bit RAW files from
bright-field optical transmission (described in Algorithm 1, demon-
strated on the MG63-a cell). The white points correspond to the
zeros in a differential image calculated from the dark green pixels
of two consecutive images. With an increasing number of z-levels,
white points gradually accumulate in the binary image. The high-
est amount of these points is achieved in the focal region (z-levels
36-84). After passing the algorithm through the whole z-stack, the
binary image underwent the morphological operations of dilation,
filling holes, and filtering cells.

Supplementary video 2 The points of unchanged intensity be-
tween two consecutive images in the focal region of the z-stack
of 12-bit RAW files from bright-field optical transmission of the
MG63-a cell. The white points were found by overlapping two dif-
ferential images calculated from the green channels of three con-
secutive images (instead of @y x y, ¢ = 0 in Algorithm 4). Without
merging levels of similar intensities in histograms of original im-
ages due to the Rényi entropy, no organelles were detected. The
algorithm only highlighted the cross camera noise (of dark green
intensities, cf. Supplementary video 2). The course of the video
for the MG63-b cell was similar.

Supplementary video 3 The points of unchanged intensity be-
tween two consecutive images in the focal region of the z-stack of
12-bit RAW files from bright-field optical transmission of the L929

cell. The points were found by overlapping two differential images
calculated from the dark green pixels of three consecutive images
(instead of wyj, x y, = 0 in Algorithm 4). Since the z-stack of im-
ages is noise-free, some organelles were already detected via sim-
ple subtraction of consecutive images (cf. Supplementary video 3).

The image data, Matlab® codes, and other software are available
via ftp connection [42].
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B Cell segmentation from telecentric bright-field transmitted light
microscopy images using a Residual Attention U-Net: A case
study on Hela line

A. Ghaznavi, R. Rychtarikova, M. Saberioon a D. Stys, Cell segmentation
from telecentric bright-field transmitted light microscopy images using a Residual
Attention U-Net: A case study on HeLa line, Computers in Biology and Medicine
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Jedna se o ¢lanek, u néhoz jsem spoluautorkou, ktery dosahl relativné (vzhledem
k mym publikacim) nejvyssiho poctu citaci v asopise s relativné nejvyssim IF.

Clanek popisuje pouziti metody umélé inteligence k segmentaci savéich
neznacenych bunék z velkych dat porizenych mikroskopii v prochazejicim svétle.
Na tento ¢lanek navazuje podobna publikace o vyuziti umélé inteligence pri
segmentaci bunék z dat z reflexni svételné mikroskopie

B A. Ghaznavi, R. Rychtarikova, P. Cisai, Mohammad Mehdi Ziaei a D. Stys, Symmetry
breaking in the U-Net: Hybrid deep-learning multi-class segmentation of HeLa cells in
reflected light microscopy images, Symmetry 16 (2024), 227.

Uvedené metody segmentace digitalné-obrazovych dat mohou urychlit a zpresnit
vystupy fyzikdlné-chemickych méreni uvniti zivé neznacené bunky.
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Living cell segmentation from bright-field light microscopy images is challenging due to the image complexity
and temporal changes in the living cells. Recently developed deep learning (DL)-based methods became popular
in medical and microscopy image segmentation tasks due to their success and promising outcomes. The main
objective of this paper is to develop a deep learning, U-Net-based method to segment the living cells of the
Hela line in bright-field transmitted light microscopy. To find the most suitable architecture for our datasets,
a residual attention U-Net was proposed and compared with an attention and a simple U-Net architecture.

The attention mechanism highlights the remarkable features and suppresses activations in the irrelevant
image regions. The residual mechanism overcomes with vanishing gradient problem. The Mean-IoU score
for our datasets reaches 0.9505, 0.9524, and 0.9530 for the simple, attention, and residual attention U-Net,
respectively. The most accurate semantic segmentation results was achieved in the Mean-IoU and Dice metrics
by applying the residual and attention mechanisms together. The watershed method applied to this best —
Residual Attention — semantic segmentation result gave the segmentation with the specific information for
each cell.

1. Introduction threshold-based segmentation methods [2]. However, in low-contrast

images, cells placed close together or flat cell regions can be segmented

Image object detection and segmentation can be defined as a proce-
dure to localize a region of interest (ROI) in an image and separate an
image foreground from its background using image processing and/or
machine learning approaches. Cell detection and segmentation are
the primary and critical steps in microscopy image analysis. These
processes play an important role in estimating the number of the cells,
initializing cell segmentation, tracking, and extracting features neces-
sary for further analysis. In the text below, the segmentation methods
were categorized as (1) traditional, feature- and machine learning
(ML)-based methods and (2) deep learning (DL)-based methods.

1.1. Traditional cell segmentation methods
Traditional segmentation methods have achieved impressive re-
sults in cell boundary detection and segmentation, with an efficient

processing time [1,2]. These methods include low-level pixel process-
ing approaches. The region-based methods are more robust than the

* Corresponding author.

as blobs. Rojas-Moraleda et al. [1] proposed a region-based method
on the principles of persistent homology with an overall accuracy of
94.5%. The iterative morphological and Ultimate Erosion [3,4] suffer
from poor segment performance when facing small and low-contrast
objects. Guan et al. [5] detected rough circular cell boundaries using
the Hough transform and the exact cell boundaries using fuzzy curve
tracing. Compared with the watershed-based method [6], this method
was more robust to the noise and the uneven brightness in the cells.
Winter et al. [7] combined the image Euclidean distance transforma-
tion with the Gaussian mixture model to detect elliptical cells. This
method requires solid objects for computing the distance transform.
The target objects’ large holes or extreme internal irregularities make
the distance transform unreliable and reduce the method performance.
Buggenthin et al. [8] identified nearly all cell bodies and segmented
multiple cells instantly in bright-field time-lapse microscopy images by
a fast, automatic method combining the Maximally Stable Extremal
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Regions (MSER) with the watershed method. The main challenges for
this method remain the oversegmentation and poor performance for
out-of-focus images.

The machine learning methods have expanded due to the mi-
croscopy images’ complexity and the previous methods’ low perfor-
mance to detect and segment cells. The ML methods can be classified
into two groups: supervised vs unsupervised. The supervised methods
produce a mathematical function or model from the training data to
map a new data sample [9]. Mualla et al. [10] utilized the Scale
Invariant Feature Transform (SIFT) as a feature extractor and the
Balanced Random Forest as a classifier to calculate the descriptive
cell keypoints. The SIFT descriptors were invariant to illumination
conditions, cell size, and orientation. Tikkanen et al. [11] developed
a method based on the Histogram of Oriented Gradients (HOG) and
the Support Vector Machine (SVM) to extract feature descriptors and
classify them as a cell or a non-cell in bright-field microscopy data.
The proposed method is susceptible to the number of iterations in the
training process as a crucial step to eliminating false positive detections.

The unsupervised ML algorithms require no pre-assigned labels or
scores for the training data [12]. The best known unsupervised methods
are clustering methods. Mualla et al. [13] segmented unstained cells
in bright-field micrographs using a combination of a SIFT to extract
key points, a self-labelling, and two clustering methods. This method
is fast and accurate but sensitive to the feature selection step to avoid
overfitting.

1.2. Deep learning cell segmentation methods

In the last decade, Deep Learning has emerged as a new area of
machine learning. The DL methods contain a class of ML techniques
that exploit many layers of non-linear information processing for super-
vised or unsupervised feature extraction and transformation for pattern
analysis and classification. The Deep Convolutional Networks exhibited
impressive performance in many visual recognition tasks [14]. Song
et al. [15] used a multiscale convolutional network (MSCN) to extract
scale-invariant features and graph-partitioning method for accurate
segmentation of cervical cytoplasm and nuclei. This method signifi-
cantly improved the Dice metric and standard deviation compared with
similar methods. Shibuya et al. [16] proposed the Feedback U-Net using
the convolutional Long Short-Term Memory (LSTM) network for cell
image segmentation, working on four classes of Drosophila cell image
dataset. However, the proposed method suffered from a low accuracy
rate depending on the segmented class. Thi et al. [17] proposed a
convolutional blur attention (CBA) network. The network consists of
down- and upsampling procedures for nuclei segmentation in standard
challenge datasets [18,19]. The authors achieved a good value of the
aggregated Jaccard index. The reduced number of trainable parameters
led to a reasonable decrease in the computational cost. Xing et al. [20]
also proposed an automated nucleus segmentation method based on a
deep convolutional neural network (DCNN) to generate a probability
map. However, the proposed mitosis counting remains laborious and
subjective to the observer.

One of the most popular models for semantic segmentation is Fully
Convolutional Network (FCN) architectures. The FCN combines deep
semantic information with a shallow appearance to achieve satisfactory
segmentation results. The convolutional networks can take the arbitrary
size of input images to train end-to-end, pixel-to-pixel, and produce an
output of the corresponding size with efficient inference and learning
to achieve semantic segmentation in complex images, including mi-
croscopy and medical images [21,22]. Ronneberger et al. [23] proposed
a training strategy that relies on the strong use of data augmentation
by applying U-Net Neural Network, contracting the path to capture
context, and expanding the path symmetrically to achieve a precise
localization. This method was optimized with a low amount of training
labelled samples and efficiently performed electron microscopy image
segmentation. Long et al. [24] proposed an enhanced U-Net-based
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architecture called light-weighted U-Net (U-Net+) with a modified en-
coded branch for potential low-resources computing of nuclei segmen-
tation in bright-field, dark-field, and fluorescence microscopy images.
However, the proposed method did not achieve higher accuracy in the
Mean-IoU metric. Bagyaraj et al. [25] proposed two automatic deep
learning networks called U-Net-based deep convolution network and
U-Net with a dense convolutional network (DenseNet) for segmentation
and detection of brain tumour cells. The authors achieved remarkable
results by applying the DenseNet architecture.

As described above, traditional ML methods are not much efficient
to segment cells in a microscopy image with a complex background,
particularly bright-field microscopy tiny cells [8,11,13]. These methods
cannot build sufficient models for big datasets. On the other hand,
some Convolution Neural Networks (CNNs) require a vast number of
manually labelled training datasets and higher computational costs
compared with the ML methods [21,26].

Deep learning-based methods have delivered better outcomes in
segmentation tasks than other methods. Therefore, the main objective
of this research is to propose a highly accurate and reasonably computa-
tionally cost deep learning-based method to segment human HeLa cells
in unique telecentric bright-field transmitted light microscopy images.
The U-Net was chosen since it is one of the most promising methods
used in semantic segmentation [23]. Different U-Net architectures such
as Attention and Residual Attention U-Net were examined to find the
most suitable architecture for our datasets.

Human Negroid cervical epithelioid carcinoma line HeLa [27] was
chosen as a testing cell line for described microscopy image segmen-
tation. The reason for choosing is that HeLa is the oldest, immortal,
and most used model cell line ever. Hela is cultivated in almost all
tissue and cell laboratories worldwide and utilized in many fields of
medical research, such as research on carcinoma or testing the material
biocompatibility.

The processed microscopy data are specific to high-pixel resolution
in rgb mode and requires preprocessing to suppress optical vignetting
and camera noise. The data shows unlabelled living cells in their phys-
iological state. The cells are shown in-focused and out-of-focus. Thus,
the obtained segmentation method is applicable in a 3D visualization
of the cell.

2. Materials and methods
2.1. Cell preparation and microscope specification

Human HelLa cell line (European Collection of Cell Cultures, Cat. No.
93021013) was cultivated to low optical density overnight at 37 °C,
5% CO,, and 90% relative humidity. The nutrient solution consisted
of Dulbecco’s modified Eagle medium (87.7%) with high glucose (>1
g L~1), fetal bovine serum (10%), antibiotics and antimycotics (1%),
L-glutamine (1%), and gentamicin (0.3%; all purchased from Biowest,
Nuaille, France). The HeLa cells were maintained in a Petri dish with
a cover glass bottom and lid at room temperature of 37 °C.

Time-lapse image series of living human HeLa cells on the glass Petri
dish were captured using a high-resolved bright-field light microscope
for observation of microscopic objects and cells. This microscope was
designed by the Institute of Complex System (ICS, Nové Hrady, Czech
Republic) and built by Optax (Prague, Czech Republic) and Image-
Code (Brloh, Czech Republic) in 2021. The microscope has a simple
construction of the optical path. The light from two light-emitting
diods CL-41 (Optika Microscopes, Ponteranica, Italy) passes through
a sample to reach a telecentric measurement objective TO4.5/43.4-
48-F-WN (Vision & Control GmbH, Shul, Germany) and an Arducam
AR1820HS 1/2.3-inch 10-bit RGB camera with a chip of 4912 x 3684
pixel resolution. The images were captured as a primary (raw) signal
with theoretical pixel size (size of the object projected onto the camera
pixel) of 113 nm. The software (developed by the ICS) controls the
capture of the primary signal with the camera exposure of 2.75 ms.
All these experiments were performed in time-lapse to observe cells’
behaviour over time.
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2.2. Data acquisition

Different time-lapse experiments on the HeLa cells were completed
under the bright-field microscope (Section 2.1). The algorithm pro-
posed in [28] was fully automated and implemented in the microscope
control software to calibrate the microscope optical path and correct all
image series to avoid image background inhomogeneities and noise.

After the image calibration, we converted the raw image represen-
tations to 8-bit colour (rgb) images of resolution (number of pixels)
quarter of the original raw images. We employed quadruplets of Bayer
mask pixels [29]: Red and blue camera filter pixels were adopted
into the relevant image channel and each pair of green camera filter
pixels’ intensities were averaged to create the green image channel.
Then, images were rescaled to 8-bits after creating the image series
intensity histogram and omitting unoccupied intensity levels. This bit
reduction ensured the maximal information preservation and mutual
comparability of the images through the time-lapse series.

The means denoising method [30] minimized the background noise
in the constructed RGB images at preserving the texture details. After-
wards, the image series were cropped to the 1024 x 1024 pixel size.
The steps described above gave us 500 images from different time-lapse
experiments. The image dataset is accessible at the Dryad [31].

The cells in the images were labelled manually by MATLAB (Math-
Works Inc., Natick, Massachusetts, USA) as Ground-Truth (GT) single
class masks with the dimension of 1024 x 1024 (Fig. 1). The labelled
images (512 x 512 pixels) were used as training (80%), testing (20%),
and evaluation (20% of the training set) sets in the proposed U-Net
networks.

2.3. U-Net model architectures

The U-Net [23] is a semantic segmentation method proposed on
the FCN architecture. The FCN consists of a typical encoder—decoder
convolutional network. This architecture includes several feature chan-
nels to combine shallow and deep features. The deep features are used
for positioning, whereas the shallow features are utilized for precise
segmentation. The architecture of the simple U-Net was chosen (Fig. 2)
for training the model with the specific size of input images.

The first layer of the encoder part consists of the input layer,
which accepts RGB images with the size 512 x 512. Each level in the
five-“level” U-Net structure includes two 3 x 3 convolutions. Batch
normalization follows each convolution, and “LeakyReLu” activation
functions follow a rectified linear unit. In the down-sampling (encoder)
part (Fig. 2, left part), each “level” in the encoder consists of a 2 x 2
max pooling operation with the stride of two. The max-pooling process
extracts the maximal value in the 2 x 2 area. By completing down-
sampling in each level of the encoder part, convolutions will double
the number of feature channels.

In the up-sampling (decoder) section (Fig. 2, right part), the height
and width of the existing feature maps are doubled in each level from
bottom to top. Then, the high-resolution deep semantic and shallow
features were combined and concatenated with the feature maps from
the encoder section. After concatenation, the output feature maps have
channels twice the size of the input feature maps. The output decoder
layer at the top with a 1 x 1 convolution size predicts the probabilities
of pixels. Padding in the convolution process allowed to achieve the
same input and output layers size. The computational result, combined
with the Binary Focal Loss function, becomes the energy function of the
U-Net.

Between each Encoder—-Decoder layer in the simple U-Net (Fig. 2),
there is a connection combining the down-sampling path with the up-
sampling path to achieve the spatial information. Nevertheless, at the
same time, this process brings also many irrelevant feature represen-
tations from the initial layers. The self-attention U-Net architecture
(Fig. 3-A) with an impressive performance in medical imaging [32] was
applied to prevent this problem and improve semantic segmentation
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result achieved by standard U-Net. As an extension to the standard
U-Net model architecture, the attention gate at the skip connections
between encoder and decoder layers highlights the remarkable features
and suppresses activations in the irrelevant regions. The advanced func-
tion of an attention mechanism is to map a set of key—value pairs and a
query to an output. The key, query, values, and outputs are vectors. The
compatibility function of the query, together with the corresponding
key, is computed to be assigned by weights. Then, weighted sums of the
values are computed and generate the output. The weights represent
the relative importance of the inputs (the keys) for a particular output
(the query) [33]. In this way, the attention gate improves the model
sensitivity and performance without requiring complicated heuristics.

The attention gate (Fig. 3-B) has two inputs: x' and g. Input x/
comes from the skip connection from the encoder layers. Since coming
from the early layers, input x' contains better spatial information.
Providing x/ is an output from layer /, a feature activation can be
formulated as

M=o (Y @k, (6))
cEF

by applying a rectified linear unit o;(x],) = max(0,x], ) repeatedly,

where i and ¢ correspond to spacial and channel dimensions, respec-

tively, and F, denotes the number of feature maps in layer / and ®

indicates the convolution operation.

Input g - a gating signal — comes from a deeper network layer
and contains a better feature representation and contextual information
to determining the focus region. Attention coefficients a« € [0,1]
determine, extract, and preserve the valuable features corresponding
to the important part of the image regions. The attention part weights
different images’ parts. This process will add the weights to the pixels
based on their relevance in the training steps. The image’s relevant
parts will get higher weights than the less relevant parts. The output
of the attention gate is the multiplication of the input feature maps xf.‘c
and the achieved attention coefficient a:

Pl = v @ W] X[ + W] g + b)) +b,,. @

a/ = 03(phy, (%] 8 O, )

where parameter o, represents the sigmoid activation function and
0, contains parameters including linear transformations W, and W,,
function y and bias terms b, and by [32]. The achieved weights are
also trained in the training process and make the trained model more
attentive to the relevant regions.

Another architecture used in this study and developed based on the
U-Net models (originally for nuclei segmentation [34]) is the Residual
U-Net. The simple U-Net architecture was built based on repetitive
Convolutional blocks in each level (Fig. 4-B). Each of these Convo-
lutional blocks consists of the input, two steps of the convolution
operation followed by the activation function and the output. On the
other hand, we face the vanishing gradient problem when dealing
with very deep convolutional networks. The residual step was applied
to update the weights in each convolutional block incrementally and
continuously (Fig. 4-C) to enhance the U-Net architecture performance
by overcoming the vanishing gradient problems.

In the traditional neural networks, each convolutional blocks feed
the next blocks. The other problem in a DCNN-based network, such
as stacking convolutional layers, is that a deeper structure of these
kind of networks will affect generalization ability. To overtake this
problem, the skip connections — the residual blocks — improve the
network performance, with each layer feeding the next layer and layers
about two or three steps apart (Fig. 4-C). The Residual and Atten-
tion U-Net architecture were connected to build more effective and
high-performance models from our datasets and improve segmentation
results.

The watershed algorithm based on morphological reconstruction
[35] was applied after completion of the semantic segmentation by
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Train Image Ground Truth

Fig. 1. Examples of the train sets and their ground truths. The image size is 512 x 512.

U-Net methods described above. The U-Net semantic segmentation was achieved by subtraction of the particular foreground region from
results were first transformed into a binary image using the Otsu the background. The watershed method applied to the unknown re-
method [36]. After that, the background was determined using ten gions separated the cell borders. The watershed segmentation further
iterations of binary dilation. The simple Euclidean distance transform helped to solve the over- and under-segmented regions and specify each

defined the foreground of eroded cell regions. The unknown region separated cell by, e.g., cell diameters, solidity, or mean intensity. The
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Fig. 2. Architecture of the proposed simple U-Net model.

Table 1

Number of the trainable parameters and the run time for each U-Net model.
Network Run time Training parameter
U-Net 3:42:18” 31,402,501
Attention U-Net 4:04:23” 34,334,665
Residual Att U-Net 4:11:24” 39,090,377

segmentation results were optimized using the marked images. Wrongly
detected residual connections between different cell regions were cut
off, which improved the method accuracy. Fig. 5 presents a general
diagram of the proposed U-Net based methods. The U-Net models are
hosted on the GitHub [37].

2.4. Training models

The computation was implemented in Python 3.7. The framework
for deep learning was Keras, and the backend was Tensorflow [38].
The whole method, including the Deep Learning framework, was trans-
ferred and executed on the Google Colab Pro account with P100 and
T4 GPU, 24 Gb of RAM, and 2 vCPU [39]. After data preprocessing
(Section 2.2), The primary dataset was divided into training (80%)
and test (20%). A part (20%) of the training set was used for model
validation in the training process to avoid over-fitting and achieve
higher performance. Among a 500-image dataset of the mixture of
under-, over-, and focused images, 320 images were randomly selected
to train the model, and 80 images were chosen randomly to validate the

process. The rest of the 100 dataset images were considered for testing
and evaluating the model after training.

Before the training, the images were normalized: the pixel values
were rescaled in the range from O to 1. Since all designed network
architectures work with a specific input image size, all datasets were
resized to 512 x 512 pixel size. Data augmentation parameters were
also applied in training all three U-Net architectures. The optimized
values of the hyperparameters used in the training process are written
in Table 2. The “rotation range” represents an angle of the random
rotation, “width shift range” represents an amplitude of the random
horizontal offset, “height shift range” corresponds to an amplitude of
the random vertical offset, “shear range” is a degree of the random
shear transformation, “zoom range” represents a magnitude of the
random scaling of the image. Early stopping hyperparameters were
applied to avoid over-fitting during the model training. The patient
value was considered as 15. The activation function was set to the
LeakyRelu, and the Batch size was set to 8. To optimize the network,
we chose the Adam optimizer and set the learning rate to 1073,

Semantic image segmentation can be considered as a pixel classifi-
cation as either the cell or background class. The Dice loss was used
to compare the segmented cell image with the GT and minimize the
difference between them as much as possible in the training process.
One of the famous loss functions used for semantic segmentation is the
Binary Focal Loss (Eq. (4)) [40]:

Focal Loss = —a,(1 — p,)" log(p,), “)

where p, € [0,1] is the model’s estimated probability for the GT class
with label y = 1; a weighting factor «, € [0, 1] for class 1 and 1 — a, for
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indicate height, width, and number of channels, respectively.

class —1; y > 0 is a tunable focusing parameter. The focal loss can be
enhanced by the contribution of hardly segmented regions (e.g., cells
with vanished borders) and distinguish parts between the background
and the cells with unclear borders. The second benefit of the focal loss
is that it controls and limits the contribution of the easily segmented
pixel regions (e.g., sharp and apparent cells) in the image at the loss
of the model. In the final step, updating the gradient direction is under
the control of the model algorithm, dependent on the loss of the model.

2.5. Evaluation metrics

The proposed semantic segmentation models were evaluated by
different metrics (Egs. (5)-(9)), where TP, FP, FN, and TN are true
positive, false positive, false negative, and true negative metrics, respec-
tively [41]. The metrics were computed for all test sets and explained
as mean values ( Table 3).
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Table 2

Hyperparameters setting for all three U-Net models.
Parameter name Value
Activation function LeakyRelu
Learning rate 1073
Batch size 8
Epochs number 100
Early stop 15
Step per epoch 100
Rotation range 90
Width shift range 0.3
Height shift range 0.3
Shear range 0.5
Zoom range 0.3

Overall pixel accuracy (Acc) represents a per cent of image pixels
belonging to the correctly segmented cells. Precision (Pre) is a propor-
tion of the cell pixels in the segmentation results that match the GT. The

Recall (Recl) represents the proportion of cell pixels in the GT correctly

identified through the segmentation process. The F1-score or Dice sim-
ilarity coefficient states how the predicted segmented region matches
the GT in location and level of details and considers each class’s false
alarm and missed value. This metric determines the accuracy of the
segmentation boundaries [42] and have a higher priority than the Acc.
Another essential evaluation metric for semantic image segmentation
is the Jaccard similarity index known as Intersection over Union (IoU).
This metric is a correlation among the prediction and GT [21,43], and
represents the overlap and union area ratio for the predicted and GT
segmentation.

Acc = Correctly Predicted Pixels TP + TN ©)
"~ Total Number of Image Pixels TP + FP + FN + TN
Pre — Correctly Predicted Cell Pixels TP ©)
"= Total Number of Predicted Cell Pixels _ TP + FP
Recl = Correctly Predicted Cell Pixels TP e
" Total Number of Actual Cell Pixels TP + FN
Dice = 2 X Pre X Recl _ 2 x TP 8)

Pre + Recl ~ 2 x TP + FP + FN
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3. Results

All three models were well trained and converged after running
100 epochs based on training/validation loss and Jaccard plots per
epochs (Fig. 6). The hyperparameter values listed in Table 2 were
selected to tune for the best training performance and stability. Then,
the test datasets were used to evaluating the achieved models. All
trained models were assessed (Table 3) using the metrics in Egs. (5)
and (9).

Training the model with the simple U-Net method took the shortest
run time with the lowest trainable number of parameters (Table 1).
Compared with the Attention U-Net and Residual Attention U-Net,
the run time difference is not huge in terms of increasing trainable
parameters. The computational cost also did not increase dramatically
compared with the acceptable improvement in the model performance.
Fig. 7 presents the segmentation results achieved by three different U-
Net models. The simple U-Net segmentation result did not distinguish
some vanished cell borders (Fig. 7-A, black circle). The Attention U-Net
(Fig. 7-B) detected cells with the vanish borders more efficiently than
the simple U-Net. However, the Attention U-Net segmentation suffers
from under-segmentation in some regions (visualized by the yellow
circle). The outcome of the Residual Attention U-Net method (Fig. 7-
C, red circle) achieved more accurate segmentation of the vanished
cell borders. The watershed binary segmentation after the Residual
Attention U-Net networks separated and identified the cells with the
highest performance (Fig. 7).

As seen in Mean-IoU, Mean-Dice, and Accuracy metrics (Table 3),
the Attention U-Net model showed better segmentation performance
than the simple U-Net model in the same situation. The segmentation
results were further slightly improved after applying the residual step
into the Attention U-Net.

4. Discussion

The analysis of bright-field microscopy image sequences is chal-
lenging due to living cells’ complexity and temporal behaviour. We
have to face (1) irregular shapes of the cells, (2) very different sizes
of the cells, (3) noise blobs and artefacts, and (4) vast sizes of the
time-lapse datasets. Traditional machine learning methods, including
random forests and support vector machines, cannot deal with some of
these difficulties in terms of higher computational cost and longer run
time for huge time-lapse datasets. The traditional methods suffer from
low performance in vanishing and tight cell detection and segmentation
and are sensitive to training steps [11,44]. The DL methods have been
rapidly developed to overcome these problems. The U-Net is one of
the most effective semantic segmentation methods for microscopy and
biomedical images [23]. This method is based on the FCN architecture
and consists of encoder and decoder parts with many convolution
layers.

The image data used to train the Residual Attention model are
specific in the way of acquisition. Firstly, the optical path was cali-
brated to obtain the number of photons that reaches each camera pixel
with increasing illumination light intensity. This gave a calibration
curve (image pixel intensity vs the number of photons reaching the
relevant camera pixel) to correct the digital image pixel intensity.
This step ensured homogeneity in digital image intensities to improve
the quality of cell segmentation by the neural networks. We work
with the low-compressed telecentric transmitted light bright-field high-
pixel microscopy images. The bright-field light microscope allows us
to observe living cells in their most natural state. Due to the object-
sided telecentric objective, the final digital raw image of the observed
cells is high-resolved and low-distorted, with no light interference halos
around objects.

The procedure compressed the raw colour images to ensure the
least information loss at the quarter-pixel-resolution decrease of the
image. The final pixel resolution of the images inputting into the neural
network is higher (512 x 512) than in the case of any other neural
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Results for metrics evaluating the U-Net Models. Green values represent the highest segmentation accuracy for the

related metric.

Network Accuracy Precision Recall m-IoU m-Dice

U-Net 0.957418 0.988269 0.961264 0.950501 0.974481
Attention U-Net 0.959448 0.985663 0.965736 0.952471 0.975511
Residual Att U-Net 0.960010 0.986510 0.965574 0.953085 0.975840

Table 4

Performances of the proposed networks and other networks proposed for microscopy
and medical applications. Green highlighted value represent the highest segmentation
accuracy in term of mentioned metric.

Models ToU Dice Acc
proposed U-Net 0.9505 0.9744 0.9574
proposed Att U-Net 0.9524 0.9755 0.9594
proposed ResAtt U-Net 0.9530 0.9758 0.9600
U-Net [23] 0.9203 0.9019 0.9554
U-Net [45] 0.7608 - 0.9235
U-Net+ [24] 0.567 - -
DenseNet [25] - 0.911 -
SegNet [45] 0.7540 - 0.9225
Attention U-Net [32] - 0.840 0.9734
Residual Attention U-Net - 0.9081 0.9557
[46]

Residual U-Net [47] - 0.8366 -
Residual Attention U-Net - 0.9655 0.9887

[48]

network datasets. By preserving high image resolution as much as
possible, the demands on the neural network’s computational memory
and performance parameters were increased.

As our microscope and acquired microscopy data are unique, and
were not used before in similar research, it is hard to compare the
results with other works. Despite this, the performances of the pro-
posed U-Net-based models were compared with similar microscopy and
medical works (Table 4). Our first model was based on a simple U-
Net structure and achieved the Mean-IoU score of 0.9505. We assume
that better value of the Mean-IoU will be achieved after the hyper-
parameter optimization (Table 2). Ronneberger et al. [23] achieved
0.920 and 0.775 Mean-IoU scores for U373 cell line in phase-contrast
microscopy and HeLa cell line in Nomarski contrast, respectively. Pan
et al. [45] segmented nuclei from medical, pathological MOD datasets
with 0.7608 segmentation IoU accuracy score using the U-Net.

We further implemented an attention gate into the U-Net structure
(so-called Attention U-Net) to further improve the U-Net model per-
formance by weighing the relevant part of the image pixels containing
the target object. In this way, the Mean-IoU metric was improved to
0.9524. The achieved IoU score represents a noticeable improvement
in the trained model performance compared with the simple U-Net
model. To the best of our knowledge, not many researchers have
applied the Attention U-Net to microscopy datasets, but recent papers
are prevalently about its application to medical datasets. Microscopy
and medical datasets have their complexity and structure, complicating
the comparison of the method performances. Applying the Attention
U-Net, pancreas [32] and liver tumour [46] medical datasets showed
0.840 and 0.948 Dice metric segmentation accuracy, respectively.

The proposed model performance were improved by one step and
obtained the Residual Attention U-Net to overcome the vanishing gra-
dient problem and generalization ability. As a result, the segmentation
accuracy was slightly improved by reaching the Mean-IoU of 0.953.
The Residual Attention U-Net showed the Dice coefficient of 0.9655 in
the testing phase of medical image segmentation [48]. The Recurrent
Residual U-Net (R2U-Net) achieved the Dice coefficient of 0.9215 in
the testing phase of nuclei segmentation [34]. Patel et al. [47] applied
the Residual U-Net to bright-field absorbance image and achieved the
Mean-Dice coefficient score of 0.8366. Long et al. [24] applied the
enhanced U-Net (U-Net+) to bright-field, dark-field, and fluorescence

microscopy images and achieved the Mean-IoU score of 0.567. The
U-Net with a dense convolutional network (DenseNet) was applied to
detect and segment brain tumour cells [25] with the Dice score of 0.911
and the Jaccard index of 0.839.

5. Conclusion

Microscopy image analysis via deep learning methods can be a
convenient solution due to the complexity and variability of this kind
of data. This research aimed to detect and segment living human HeLa
cells in images acquired using an original custom-made bright-field
transmitted light microscope. Three types of deep learning U-Net ar-
chitectures were involved in this research: the simple U-Net, Attention
U-Net, and Residual Attention U-Net. The simple U-Net (Table 1) has
the fastest training time. On the other hand, the Residual Attention U-
Net architecture achieved the best segmentation performance (Table 3)
with a run time slightly higher than the other two U-Net models.

The Attention U-Net is a method to highlight only the relevant ac-
tivations during the training process. This method can reduce the com-
putational resource waste on irrelevant activations to generate more
efficient models. The best segmentation performance was achieved
due to the integration of the residual learning structure (to overcome
the gradient vanishing) together with the attention gate mechanism
(to integrate a low and high-level feature representation) into the U-
Net architecture. After extracting semantic segmentation binary results
(Table 3), the watershed segmentation method was applied to separate
the cells from each other, avoid over-segmentation, label the cells
individually, and extract vital information about the cells (e.g., the total
number of the segmented cells, cell equivalent diameter, mean intensity
and solidity). Nevertheless, future works are still essential to expand
the knowledge on multi-class semantic segmentation with different and
efficient CNN’s architecture and combine the constructed CNN models
in the prediction process to achieve the most accurate segmentation
result.
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B 10 Anotace tii témat pro verejnou pedagogickou
prednasku

B Téma 1: Analyza struktury Zivé buriky s vyuZitim informaéni
entropie

Nejobecnéjsi mozny predpoklad o obrazku, a to bez ohledu na jeho ptvod, je,
ze je multifraktalni. Za tcelem popisu mikroskopického digitalniho obrazu jsme
vyvinuli principidlné novou informacni analyzu, jak zkoumat informaci nesenou
obrazovym bodem (pixelem) v multifraktdlnim datovém souboru. Vypocet
pouziva pro danou pravdépodobnostni distribuci P jednoparametrovou, a-
zéavislou, Rényiho entropii. Ta je zobecnénou Shannonovou entropii, ktera
je analogii fyzikalni Gibbsovy-Boltzmannovy entropie. Takto jsme odvodili
veli¢iny informaéni p¥ispévek bodu (PIG,) [1, 2], divergentni pispévek bodu
(PDG,) [3] a z nich odvozené kumulativni veli¢iny entropii a hustot entropii.

Obrazova analyza digitdlnich mikroskopickych snimku metodou PI/DG
nam umoznila pochopit jejich strukturu, nové definovat pojmy ,,3D elektromag-
neticky centroid“ a redefinovat pojmy ,,ohniskova rovina“ a ,hloubka ostrosti.
To nam usnadnilo interpretaci jevl pozorovanych svételnym mikroskopem. K
detekei vysoce strukturované ohniskové roviny v mikroskopickych snimcich lze
vyuzit klastrovani kumulativnich veli¢in. Pro méreni v dynamickych systémech
lze k vyjadreni casoprostorové zmény vyuzit veli¢inu divergentni piispévek
bodu (PDG,) a jeho kumulativni veli¢inu entropii a hustotu této entropie.

Vyuziti vypocétu informacné-entropickych metod pro kolokalizaci ohnis-
kovych rovin, trojrozmérnou rekonstrukci a vyhodnocovani dynamiky bude
predstaveno na ruznych datovych sériich jednotlivych bunék a tkani pochazeji-
cich z fluorescencni, transmisni i reflexni svételné mikroskopie.

Literatura:

1. R. Rychtéarikova, J. Korbel, P. Machac¢ek, P. Cisaf, J. Urban a D. Stys.
Point Information Gain and multidimensional data analysis. Entropy 18(2),
372, 2016.

2. R. Rychtéarikova. Clustering of multi-image sets using Rényi information
entropy. In: Orturnio a Rojas (Ed.) International Conference on Bioinforma-
tics and Biomedical Engineering (IWBBIO) 2016, Part I, Lecture Notes
in Computer Science 9656, Springer, Switzerland (2016), pp. 517-526.

3. R. Rychtarikova, J. Korbel, P. Machacek a D. Stys. Point Divergence Gain
and multidimensional data analysis. Entropy 20(2), 106, 2018.
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B Téma 2: Analyza struktury Zivé buiiky s vyuzitim kvazispektralni
analyzy

Studium bunécéné struktury je stézi predstavitelné bez svételné mikroskopie ve
svetlém poli. Modernizace této metody, predevsim vyuziti digitalni kamery a
s tim souvisejici moznost videozesileni obrazu, ¢ini tuto metodu jesté prinosnéjsi
[1]. To vyvolava otdzku, jakou maximalni informaci lze z digitdlnich snimku ve
svétlém poli ziskat. Za timto tcelem jsme vyvinuli bezmodelovou, fyzikalné
podlozenou metodu rekonstrukce (kvazi)spekter pro kazdy pixel surovych ob-
razovych dat z digitdlni kamery jakéhokoliv (transmisniho, reflektanéniho nebo
fluorescenéniho) svételného mikroskopu [2]. Tato metoda zahrnuje vystupy
radiometrické kalibrace [3] a je zaloZena na predpokladu plynulosti zmény svétel-
ného spektra v prostoru, dokud neni detekovana hrana jako ndhla zména barvy.
Shlukovani spekter bez dalsich vnesenych predpokladi poskytuje objektivné
podlozenou sémantiku segmentace nezbarvenych zivych bunék bez jakychkoliv
apriornich znalosti o jejich strukturach. Jinymi slovy, (kvazi)spektralni analyza
maximalné vytézuje veskeré znalosti o experimentu, tedy znalost spektra dopa-
dajiciho zareni, transmisnich spekter barevnych filtri, heterogenity zobrazeni
optickou drahou stanovenou kalibraci, a nakonec samotnou priméarni datovou
sadu — pocet fotont zachycenych senzorem v kazdém bodé jeho plochy.

Znalost kvazispekter 1ze vyuzit k/ke (1) interpolaci obrazu v 32rozmérném
prostoru, pricemz interpolované hodnoty jsou v technickém smyslu spravnéjsi
nez puvodni hodnoty pocitané pro ¢tvefici pixeli kamerového senzoru; (2)
klastrovani oblasti obrazu podle spekter, a nikoliv podle intenzit; (3) vizualizaci,
kterd je obracenym postupem vypoctu (kvazi)spekter a je mozné ji provadét
pro ruzné svételné zdroje znamych spekter a pro jednotlivé vinové délky. Lze
také (4) vizualizovat jednotlivé spektralnich klastry, a tedy fyzikalné chemické
vlastnosti v daném misté objektu.

Vyuziti metody rekonstrukce (kvazi)spekter bude predstaveno na digitél-
nich svételné mikroskopickych snimcich riiznych typt bunék a tkani.

Literatura:
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B Téma 3: Analyza bun&&né dynamiky neznaéené Zivé buiiky

Kvantitativni analyza jedné bunky je vychozim krokem k pochopeni kom-
plexnich stochastickych procestt bunécné signalizace a stavu a dalsiho osudu
celé bunécéné populace, ktera je ve své podstaté morfologicky i fyziologicky
heterogenni [1]. Méfenim vnitrobunééné dynamiky lze potencidlné studovat
naptiklad tc¢inky toxickych latek na bunky a ziskané poznatky pouzit k vybéru
vhodné bunécné populace jako biosenzoru cytotoxickych latek. Pro vyhodno-
ceni vnitrobunécéné dynamiky bunky z primarnich snimkt svételné mikroskopie
v jasném poli jsme navrhli dva fyzikdlné podlozené zpusoby: primé méreni
trajektorii organel [2] a méfeni celkového toku vnitrobunééné hmoty [3].
svétlolomnych organel. Organely byly v sérii snimku bunky detekovany jako
nulové hodnoty informac¢niho prispévky bodu (PIG) [4] v zeleném obrazovém
kanalu. Takto byla datova série pfevedena na binarni obraz. Trasovani organel
bylo usnadnéno zpracovanim vysokofrekvenc¢nich dat, kdy binarni zobrazeni
kazdé jednotlivé organely v nasledujicim snimku prekryvalo jeji zobrazeni
v predchozim snimku série. Trajektorie pohybu kazdé organely byla prepocitana
na rychlost pohybu a jeji horizontalni a vertikdlni slozku. Tyto hodnoty vektort
byly vyjadreny jak v daném casovém okamziku, tak jako hodnoty kumulativni,
a to pro jednotlivé organely i celou buriku.

Algoritmus [3] je ve srovnani s algoritmem [2] obecnéjsi a komplexnéji
popisuje vnitrobunécnou dynamiku. Umoznuje odhadnout mikroreologické a
mikrofluidni parametry vnitrobunééného toku hmoty. Vypocet toktt hmoty je
zjednodusen prepoc¢tem primarniho signalu Bayerovy masky kamery svételného
mikroskopu na jednokanalovy, Sedoténovy snimek. Prvnim krokem je detekce
castic a jejich trasovani v sekvenci snimkt. Jako nejvhodnéjsi metoda se pro
tento cel prokizala metoda SURF (Speeded-Up Robust Features). Pomoci
simulace ndhodné prochazky a vypoctu relativni chyby rychlosti jsou trajektorie
¢astic oddéleny na ty vykazujici primy pohyb od téch majici pohyb Brownuv
nahodny. Z primého pohybu ¢astic je rekonstruovano rychlostni pole toku hmoty
a vypoc¢itdna mapa vnitrobunécné (kvazi)viskozity. Z ndhodného pohybu je
vyjadiena mapa vnitrobunééné (kvazi)difuze.
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