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1. Introduction 

1.1 Nanotechnology in polymer science 

Nanotechnology is continuously expanded area of science, which contains the 

engineering of nanosized particles of different materials. It is the understanding and 

control of matter at the nanoscale, at dimensions between approximately 1 and 100 

nanometers, where unique phenomena enable novel applications. Matter can exhibit 

unusual physical, chemical, and biological properties at the nanoscale, differing in 

important ways from the properties of bulk materials or individual single atoms and 

molecules. Some nanostructured materials are much stronger or have different 

magnetic, electric or insulating properties compared to other forms or sizes of the same 

material. They may become more chemically reactive, reflect light better, or change 

color as their size or structure is altered. Although modern nanoscience and 

nanotechnology are relatively new, nanoscaled materials have been already used for 

centuries. Gold and silver nanoparticles created colors in the stained-glass windows of 

churches hundreds of years ago (Figure 1). Nanotechnology comprises nanoscale 

science, engineering and technology in fields such as chemistry, biology, physics, 

materials science, and engineering. Nanotechnology research and development 

involves imaging, measuring, modeling, and manipulating matter in particular using 

special effects on surfaces and interfaces. [1]  

 

Figure 1: stained-glass window [1] 
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In the polymer science and technology nanotechnology covers a broad range of topics. 

This includes microelectronics (which could now be referred to as nanoelectronics) as 

the critical dimension scale for modern devices is now below 100 nm. Other areas 

include polymer-based biomaterials, nanoparticle drug delivery, miniemulsion particles, 

fuel cell electrode polymer bound catalysts, layer-by-layer self-assembled polymer films, 

electrospun nanofibers, imprint lithography, polymer blends and nanocomposites. [2]  

Polymer nanocomposite research covers a wide range of nanofillers such as layered 

silicates (clays), carbon nanotubes/nanofibers, colloidal oxides, double-layered 

hydroxides, quantum dots, nanocrystalline metals, etc. [3] The majority of the research 

conducted to date has been performed with layered silicates as this area emerged with 

the recognition that exfoliated clays could yield significant mechanical property 

advantages as a modification of macromolecular systems. The achieved results were at 

least initially viewed as unexpected (“nano-effect”) offering improved properties over 

that expected from continuum mechanics predictions. More recent results have, 

however, indicated that while the property profile is interesting, the clay-based 

nanocomposites often obey continuum mechanics predictions. However, there are 

situations where nanocomposites can exhibit properties not expected with larger scale 

particulate reinforcements. Especially for polymer-clay nanocomposites, the surface 

effects are responsible for significant improvement of barrier, mechanical and 

rheological properties, dimensional stability, heat, flame and oxidative resistance. In 

comparison with traditional fillers (20-40 wt. % loading), 2-5 wt. % filling of layered clays 

is sufficient to achieve analogous or even higher material improvement [2]. Typically, 

organoclays can replace talc or glass fillers at a 3:1 ratio. For example, 5% of an 

organoclay can replace 15–50 wt. % of a filler like calcium carbonate reducing material 

costs and improving mechanical properties. Due to relatively low price, as compared to 

other nanoparticles, organoclays are the most dominant commercial nanomaterial to 

prepare polymer nanocomposites, accounting for nearly 70% of the volume used. 

Applications include adsorbents, rheological control agents, paints, grease, cosmetics, 

personal care products, oil well drilling fluids, etc. Among the clay minerals, smectites, 

especially montmorillonite, have been extensively used to prepare organoclays because 

of its excellent properties, such as high cation exchange capacity, swelling behavior, 

adsorption properties and large surface area. [2] 
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1.2 Polymer-clay nanocomposites 

In the broad field of nanotechnology, polymer matrix based nanocomposites have 

become an outstanding area of research and development in last decades. 

Nanocomposites are filled polymers with particles, where at least one dimension is in 

the order of nanometers. The shape of particles used in nanocomposites can be 

spherical, cylindrical or laminar. Maximal reinforcement is achieved using laminar or 

cylindrical particles because the reinforcing efficiency is highly dependent on the aspect 

ratio (the largest dimension divided by the smallest dimension of the particle).  

Conventional polymer composites are based on reinforcement of the polymer matrix by 

micrometer scaled particles. For example, isotactic polypropylene filled with talc, micro-

ground calcium carbonate, wood powder, possibly with other suitable filler, or epoxy and 

polyester resins filled with mineral particles offer an advantageous combination of 

mechanical properties and price. However, polymeric materials reinforced by 

nanoscaled particles exhibit significantly higher performance (improvement in 

processing and application properties) already at low level of filler loading. This 

advantage comes from immobilisation of polymer chains in close contact with inorganic 

filler possessing a large surface area [2]. Using this development strategy, polymers can 

be improved keeping their lightweight and ductile feature. Addition of nanoscaled 

particles to a broad range of polymers results in significant improvement in their 

biodegradability. On the other hand, performance of biodegradable and bio-based 

polymers can be improved in order to increase their application potential [4–30]. 

Generally, polymer nanocomposites with high dispersion grade reveal significant 

enhancement of matrix properties: higher elastic modulus, tensile strength, lower gas 

and liquid permeability, reduced flammability, heat and impact resistance, flame 

retardancy, electrical conductivity and enhanced rheological properties (higher melt 

strength and viscosity, which are required for example in foams processing). Metal and 

ceramic nanoparticles open possibilities to develop unique magnetic, electronic, optical 

or catalytic properties [2, 31–150]. 
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For example, uniaxial arrangement of inorganic platelets remarkably reduces gas and 

liquid permeability in perpendicular direction (Figure 2). 

 

Figure 2: Scheme of liquid and gas permeability decrease [31] 

 

Especially improvements in mechanical properties of nanocomposites can be used in 

automotive and general industrial applications. There is potential for utilization as mirror 

housing on different types of cars, door handles, engine covers, or belt covers. General 

applications include e.g. packaging, fuel cell, solar cell, fuel tank, plastic containers, 

impellers and blades for vacuum cleaners, power tool housing, or cover for portable 

electronic equipment like mobile phones and pagers [156]. 

 

1.2.1 Montmorillonite 

For preparation of polymer nanocomposites, layered silicate clays (especially 

montmorillonite, MMT) have been the most used nanofillers hitherto due to the financial 

acceptability and opportunity to achieve aspect ratios ideally up to 1000 (by clay platelet 

thickness of 1 nm). High reinforcement by addition of the layered silicate clays results 

from their large active surface area (in the case of montmorillonite 700-800 m2/g) [157]. 

The structure of MMT agglomerates (tactoids) as well of one primary plate is shown in 

figure 3. 
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Figure 3: Structure of montmorillonite tactoid and single platelet [32] 

 

MMT primary plate consists of two silica tetrahedral sheets and one aluminium 

octahedral sheet (Fig. 3, 4), forming one basic platelet. The binding force between the 

stacked platelets is based on Van Der Waals interactions, which relate to change in the 

interlayer distance depending on the humidity and the type of possible intercalating 

agent encountered within the interlayer distance of the clay. Its permanent negative 

charge is located mainly on the basal plane and the pH-dependent charge is located on 

the edge surfaces. At pH<p.z.c. (the point of zero charge): (a) the positively charged 

edge surface of MMT may interact attractively with negatively charged basal planes of 

other particles; and (b) anions may be simultaneously adsorbed by the positively 

charged edge surface and excluded by the negatively charged basal plane. Therefore, 

in the mechanisms of anion reactions with clay minerals, surface charge neutralization, 

quasicrystal formation, and the special heterogeneity of anion exclusion and adsorption 

should be taken into account. MMT has to be purified and separated from a low-grade 

natural bentonite. Bentonite is an important impure clay, aluminium phyllosilicate 

adsorbent, usually contains montmorillonite with structure a gibbsite layer placed 

between silica layers to produce the structural unit (Fig. 4). The replacements are 

specially within the octahedral layer (Mg2+, Fe2+) and to a much lesser degree between 

the silicate layer (Al3+/Si4+). The constitution of the clay is mainly related to the hydroxyl-
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aluminosilicate structure. The alliance between tetrahedral layers of silica and alumino 

octahedral sheets makes the crystal framework of clays. In their structure, Mg2+ or Fe2+ 

partly exchange Al3+ cations, and this replacement is followed by the inclusion of 

metals, such as Na, K, Mg, or Ca that give charge balance. The studied organoclays 

are different in the level of cation exchange capacity exchanged using organic counter 

ions [155]. 

 

→         

Figure 4: Bentonite mineral [154] 

 

The XRD pattern of natural Na-bentonite is plotted in Fig. 5. It can be seen that the clay 

is composed primarily of montmorillonite, with the characteristic peaks at d001 = 14.29 Å 

and d020 = 4.49 Å. The basal spacing, d001 = 14.29 Å, indicates a predominance of 

sodium which determines the sample mainly as sodium bentonite (Na-bentonite). The 

other peaks are impurities related to quartz and feldspar. [153] 
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Figure 5: XRD pattern of natural Na-bentonite [153] 

 

1.2.2 Intercalation by ion-exchange method 

To achieve high dispersion level and good adhesion with a non-polar polymer, chemical 

modification (intercalation) of MMT is required. Intercalation of natural Na+ type of MMT 

by organophilic molecules (organophilisation) is usually based on the ion-exchange 

method (Figure 6), where the natrium cation is generally replaced by organic compound 

having long alkyl chain. Such organically modified MMT is usually referred to as 

organoclay.  
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Cloisite Na
+
                                                Cloisite 30B 

Figure 7: TEM picture of natural clay (Cloisite Na+) and organoclay (Cloisite 30B) [152] 

 

Figure 6: Ion-exchange method for organoclays [33] 

 

 

 

 

 

 

 

 

 

 

The main advantage of intercalation is increase in interlayer distance (basal spacing, 

d001) of the clay (Fig. 6, 7). For this purpose, quaternary alkylammonium salts are the 

most used organic compounds to prepare organoclays. They are synthesized by 

complete alkylation of ammonia or amines. For practical and industrial uses, quaternary 

alkylammonium ions are preferred to primary alkylammonium ions because hydrolysis 

(alkylammonium/alkylamine equilibrium) is absent, and desorption of free alkylamine is 

strongly reduced. A further advantage is that the large amount of organic material (30–

40%) reduces the density of the dispersed particles. Currently, there is a significant 
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amount of research on modification of clay minerals with several kinds of quaternary 

alkylammonium salts (bromides or chlorides) in laboratory scale. In the case of the 

organoclays for polymer nanocomposites the kind of quaternary alkylammonium salt 

influences the affinity between the clay mineral and the polymer. For apolar polymers as 

polypropylene and polyethylene the clay minerals are modified with dialkyl 

dimethylammonium halides, while for polar polymers as polyamide the clay minerals are 

modified with alkyl benzyl dimethylammonium halides or alkyl hydroxyethylammonium 

halides. [3] The most used commercial organoclays are listed in Tab 1. [172] Today, the 

producer of these organo-modified clays is BYK-Chemie Ltd, Wesel, Germany / 

POLYchem Ltd, Markt Allhau, Austria, respectively. There are sometimes other 

commercial names or numbering, coming from previous suppliers, US Southern Clay 

Products, Inc., Gonzales, TX (Cloisite series) or Süd-Chemie AG, Moosburg, Germany 

(Nanofil series), which have, however, identical chemistry variations as mentioned in 

Tab. 1. 

Table 1: Characteristics of commercial organoclay fillers a 

 
Organoclay 
 

Organic 
modifier b 

Modifier 
concentration 
[mequiv/100 g 
clay] 

Moisture 
[%] 

Weight loss 
on ignition [%] 

Cloisite 6A 2M2HT  140 < 2 45 

Cloisite 15A 2M2HT  125 < 2 43 

Cloisite 20A 2M2HT  95 < 2 38 

Cloisite 10A 2MBHT  125 < 2 39 

Cloisite 25A 2MHTL8  95 < 2 34 

Cloisite 30B MT2EtOH  90 < 2 30 
a according to the manufacturer 
b quaternary ammonium chlorides: dialkyldimethyl- (2M2HT), alkyl(benzyl)dimethyl- 

(2MBHT), alkyl(2-ethylhexyl)dimethyl- (2MHTL8), alkylbis(2-hydroxyethyl)methyl- 

(MT2EtOH). Alkyls are a mixture of 65 % C18, 30 % C16 and 5 % C14, derived from 

hydrogenated tallow. 

Results presented in this thesis confirmed improvement of processing properties by 

addition of commercial organoclays to recycled PET. Nevertheless, a problem occurred 

with the thermal stability of commercial organic modifiers (quaternary ammonium salts) 

leading to the matrix degradation during melt mixing. The low thermal stability of 
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commercial organoclays resulted in chemical decomposition by α, β elimination (Fig. 8) 

[172].  

 

Figure 8: Chemical decomposition by α, β elimination 

 

With a view to reduce degradation processes and to enhance delamination in the 

system, selected commercial organoclays were modified by silanization with [3-

(glycidyloxy)propyl]trimethoxysilane, hexadecyltrimethoxysilane and (3-

aminopropyl)trimethoxysilane (Fig. 9). [174] 
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Figure 9: Silanization of commercial organoclays 

 

The epoxy functional groups attached to the silicate surface facilitated interactions 

between the filler and polymer matrix and reduced the adverse effect of the silicate 

hydroxyl groups. Moreover, the epoxy-silanized organoclay could be directly bound to 

polymer chains resulting in higher delamination of silicate platelets (Fig. 10).  

 

Figure 10: Epoxy-silanization vs. polymer chains 
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With the view of complete suppression of degradation reactions during compounding, 

the sodium montmorillonite was modified with spacers based on an imidazolium salt 

(Fig. 11). The “imidazolium organoclay” was further modified by silanization. 

 

Figure 11: imidazolium organoclay 

 

1.2.3 Exfoliation methods 

According to the dispersion of MMT platelets in the polymer matrix, three composite 

structures can be formed: 

a) conventional composites, 

b) intercalated nanocomposites, 

c) exfoliated nanocomposites. 

 

In the first case, the MMT tactoids are dispersed in the polymer matrix in micrometer 

scale with the tactoids acting as a micro-filler. On the other hand, intercalated (partially 

delaminated) systems show penetration of polymer chains into interlayer gallery of 

silicate platelets. Exfoliated (entirely delaminated) nanocomposite is characterized by 

homogeneous and uniform dispersion of silicate layers in the polymer (Figure 12). 
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Figure 12: Scheme of composite structures [34] 

 

Polymer/clay nanocomposites can generally be prepared by three methods (Figure 13): 

a) mixing during polymerisation („in situ“), 

b) melt mixing, 

c) mixing in solvent. 

 

Figure 13: Difference in methods of nanocomposites preparation [32] 
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Additionally, possibilities of nanoparticle dispersion by application of electric field, by 

ultrasonic mixing or direct chemical bonding of polymer chains onto the surface of 

silicate platelets have been studied [158]. 

Melt mixing (compounding) is the industrially most attractive method due to its 

technological simplicity (usage of common polymer processing machines in contrast to 

special equipment and procedures in chemical laboratories). Moreover, it is possible to 

use various polymers as a matrix (different molecular weight, branching degree, 

copolymers, etc.). The production efficiency of this method is considerably higher than 

that of the others (“melt mixing” proceeds in the order of minutes, as compared to 

several hours characteristic for “in-situ” and “solution” methods) [159, 160]. 

The principle of the melt mixing method consists in delamination of silicate platelets in 

the polymer melt by shear forces (in extruder or kneader) and thermodynamical 

interactions between polymer chains and organoclay (the affinity between clay and 

polymer is usually increased by modification of silicate with organic compounds, in the 

case of polypropylene matrix also a compatibilizer is admixed). During compounding, 

penetration of polymer chains into the silicate gallery (intercalation) facilitates 

delamination of individual platelets, resulting in better dispersion of silicate layers in the 

polymer matrix [157]. This procedure is also shown in Figure 13b. The whole process 

has to be controlled in order to prevent degradation of the polymer or the organic part of 

organoclay (by high shear forces, temperature, etc.). Knowledge of possible 

degradation mechanisms is crucial to assess their impact on processing and application 

properties [161–171]. Therefore, research in this thesis is devoted also to this issue, 

especially for nanocomposites using polymers with high melt temperature (above 

250°C) [172–174]. An example for complexity of melt mixing process using technical 

polymers is given with recycled PET matrix. On one hand, organoclays with nonpolar 

surface treatment (Fig. 14) lead to low level of dispersion (delamination) and, 

consequently, to low improvement of material (typically mechanical) properties.  
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Figure 14: WAXS patterns of the nanocomposites with nonpolar organophilization 

 

On other hand, organoclays with polar surface treatment (Fig. 15) revealed high 

dispersion grade (which would normally cause improvement in mechanical properties), 

but due to side reactions the mechanical properties were deteriorated. [172]. 
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Figure 15: WAXS patterns of the nanocomposites with polar organophilization 
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Exact data on delamination grade is given in Tab. 2. 

Table 2: WAXS analysis of organoclays in PET nanocomposites* 

Organoclay XRD peak position (°) Basal Spacing (Å) Δ d001 (Å) 

Cloisite 6A  2.8 (2.64)     31.5 (33.4) -1.9 

Cloisite 15A  2.9 (2.8)     30.4 (31.5) -1.1 

Cloisite 20A  3 (3.65)     29.4 (24.2) 5.2 

Cloisite 10A  3 (4.6)     29.4 (19.2) 10.2 

Cloisite 25A  3.1 (4.75)     28.5 (18.6) 9.9 

Cloisite 30B  2.9 (4.77)     30.4 (18.5) 11.9 

* manufacturer´s data for neat organoclays are given in parentheses 
 

 

Using the co-rotating twin-screw extruder as the continuous processing way is 

industrially preferred to melt mixing in a kneader (discontinuous process). It is obvious 

that for the successful dispersion of silicate plates in polymer melt by continuous 

processing the following two requirements have to be fulfilled: sufficient shear energy 

and enough residence time. However, these two effects are opposite in the extrusion 

process. With higher shear forces (e.g. usage of kneading blocks generating higher 

shear rate or increase in screw speed) the residence time is shortened. In this thesis is 

presented that both high shear rate as well as longer residence time can be matched by 

implementing a melt pump in front of an twin-screw extruder. The melt pump in 

extrusion technology is usually applied in order to control the pressure and throughput 

instability (melt pulsation) in extruder. In this thesis, the melt pump acts as an effective 

tool to control the residence time during compounding – example on polypropylene 

nanocomposites. Three different melt pump adjustments have been examined: 1) Δp 

negative, where the negative pressure difference between the outlet and inlet pressure 

of the melt pump has been set (pout - pin = -100 bar). In this way, a back pressure of 

polymer melt up to 9th extruder segment (approximately 30-40 cm before the melt 

pump) has been achieved. 2) Δp neutral, where the inlet and outlet pressure have been 
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kept at the same level (pout - pin = 0 bar) and 3) Δp positive with a positive pressure 

difference (pout - pin = 5 bar) has been set. For a comparison, all the tested compounds 

have been processed without the melt pump as well. The minimal residence time has 

been measured using a colour masterbatch as the time between granulat insertion into 

the hopper and colouring of the outgoing molten string. For characterization of material 

reinforcement by tensile force value (s. also chapter 1.3), Rheotens 71.97 equipment 

(Göttfert Ltd., Buchen, Germany) in combination with a capillary rheometer has been 

used. As extruder torque is important processing parameter (giving information about 

compounding efficiency), it was involved into analysis of material reinforcement. As can 

be seen on Fig. 16, the highest effect of the melt pump on increase in residence time 

and extruder torque occurs by adjustment of melt pump to maximal pressure difference; 

on the other hand, no significant differences between processing characteristics at 

neutral and positive melt pump operating modes have been observed.  

 

Figure 16: Processing characteristics vs. tensile force 
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Values of residence time and average torque revealed the same trend, which has an 

important impact on the processing efficiency. The level of torque in extruder gives 

information about level of shear forces applied during compounding. It can be clearly 

seen that both residence time as well as shear forces can be increased at the same 

time using the melt pump. The applied shear energy can be controlled by the screw 

speed and the residence time by adjustment of the melt pump. In this way, efficiency of 

dispersive as well as distributive mixing in continuous compounding can be substantially 

increased, depending on construction of twin-screw extruder and the melt pump. The 

main benefit of the melt pump consists in approximately two-times higher residence 

time achievable. In this way, diffusion process of intercalation and subsequent 

delamination of silicate platelets in the polymer matrix is substantially prolonged.  The 

residence time is a dominant factor in production of satisfactory nanocomposites in 

extruders so the implementation of melt pump into compounding process introduces an 

interesting and technologically accessible method of continuous compounding 

enhancement employable in the field of polymer composites and blends. It should be 

mentioned that maximal residence time achieved in this study was limited by melt pump 

construction and torque limitation in extruder. By the usage of industry-scale processing 

equipment (allowing higher pressure in the melt pump and higher extruder torque) a 

further significant increase in residence time can be expected. Concerning the 

measurement of tensile force (level of melt strength) the same trends have been found 

as compared with measurements of processing parameters and more detailed 

description (also regarding effect of different screw geometries and screw speeds) can 

be seen in relevant paper included in this thesis. [175]  

 

1.3 Characterization of polymer nanocomposites 

Characterization of the nanocomposite materials is performed with aim to describe 

different aspects of polymer nanocomposites: 

a) dispersion grade of filler in the polymer matrix and filler orientation 

in relation to used processing parameters, 

b) effect of filler surface treatment on filler dispersion and nanocomposite 

properties, 



 
 

 
23 

 
 

c) physical and chemical interactions between modified filler and polymer chains, 

d) application potential of the nanocomposites. 

 

With the introduction of first commercial applications of polymer nanocomposites [176], 

relevant characterization techniques can be divided to analysis of material performance 

(mechanical & thermal analysis, barrier properties, flame retardancy, electrical & 

thermal conductivity, rheological properties, barrier properties, thermal stability, flame 

retardancy, biodegradation, drug delivery systems) and analysis of material structure. 

To the structural methods belongs X-ray diffraction (XRD), scanning electron 

microscopy (SEM), transmission electron microscopy (TEM), infrared spectroscopy (IR) 

or atomic force microscopy (AFM) [31–155]. Melt rheology describes mechanical 

response of the material in shear or elongational flow field and, therefore, can be used 

for structural as well as performance characterization. In order to use rheology for 

structural characterization, typical structural methods have to be used for establishment 

of relevant correlations (off-line measuring methods) or calibrations (on-line / in-line 

measuring methods), respectively.  

1.3.1 Off-line structural characterization 

The most used method for structural characterization of polymer nanocomposites is X-

ray diffraction (XRD), using scattering at different angles: small angle X-ray scattering 

(SAXS) and wide angle X-ray scattering (WAXS). Classical XRD is used to determine 

the degree of crystallinity in semi-crystalline polymers, phase composition and 

crystallographic texture of materials. These method utilities the fact that X-Rays are 

scattered by regularly arranged atoms to discrete scattering angles according to their 

average distances [177, 178].  

SAXS is a tool for studying structural features of rather large objects in the dimensions 

between some 100 nm and few nm – where measurable dimensions are strongly 

depending on the used instrument. “Any scattering or diffraction processes are 

characterized by a reciprocal law, which gives an inverse relationship between particle 

size and scattering angle” [179] – that means that large (in relation to used wavelength) 

objects, generally described as electron density fluctuation scatter to relatively small 

scattering angles. In condensed mater polymer science important parameters like the 
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long period, thickness of crystalline and amorphous domains, volume of pores and 

preferred orientation [180, 181] are determined by SAXS. In polymer nanocomposites 

the structure of physical network can be determined by using the SAXS method.  

SAXS in principle is analysing structural dimensions in the range between a few 100 

and 0.5 nm. The range is strongly depending on the equipment used. With laboratory 

instruments, dimensions between 70 and 0.4 nm are accessible. In semi crystalline 

polymers and polymer nanoclay composites many structural features are in the size 

between 10 to 20 nm (long period) and 2 to 5 nm (clay gap), perfectly matching the 

accessible range of small angle X-Ray scattering equipment. Regular arrangement of 

the clay platelets in dimensions between 2 and 5 nm leads to a diffraction peak at 

scattering angles between 1 and 3°. This is the most important feature in 

nanocomposite characterisation. The position of the peak is shifted from the initial state 

of the filler to lower scattering angles (= larger spacing) when intercalation occurs. The 

scattered intensity concentrated in the peak is directly proportional to the amount of 

scattering planes. When the concentration of clay in the polymer is known, the degree 

of exfoliation can therefore also be determined. The width of the reflexion is proportional 

to the “stacking height” of the clay tactoids, i.e. to the number of silicate platelets in one 

particle.  

For data analysis typically the 2D scattering patterns are averaged and corrected for 

background scatter. The scattering curves can be analysed applying a one-dimensional 

correlation function method Fehler! Verweisquelle konnte nicht gefunden werden. to 

calculate the interlayer distance d001 and thickness of the clay platelets (t) of the filler 

prior to compounding. The position and magnitude (I) of the clay period (cp) peak in the 

composite material are determined by peak fitting with a pseudo-Voight function. The 

clay period is then the sum of plate thickness and interlayer distance (cp = t + d001). 

Because t does not change during composite formation changes in cp are directly 

caused by changes in interlayer distance. Therefore cp can be used as a measure for 

intercalation. For comparison purposes a value Δ d001 is calculated and defined as: 

Δ d001 = cpS - cpN 

 



 
 

 
25 

 
 

where cpS is the clay period in nanocomposite sample and cpN is the clay period in the 

native state. 

The magnitude of the peak arising from the regular arrangement of clay platelets is 

directly proportional to the amount of scattering planes and therefore to the overall 

amount of clay stacks, when the distribution of stacks within the probed volume is 

random (as in powder). When exfoliation occurs, clay platelets are no longer arranged 

in stacks and do not contribute to the scattered intensity any more. The degree of 

exfoliation (XFS) is a relative measure to compare series of different compounding 

procedures. The factor XFS becomes zero when no intercalated material or 

agglomerates are in the material. Values >1 indicate the existence of additional 

agglomerates and/or intercalated clay material. 

From the peak width the so-called “Scherer size” (dS) can be calculated, which is a 

measure for the size of crystalline domains. Although it is only a rough approximation at 

small scattering angles, it is very useful for comparison of samples. It must be noted 

that it is a mean value, meaning that the smaller dimensions are favored by this 

evaluation. The staking number nS = dS/cpS is a measure for the average number of 

clay platelets stacked in the material. 

Whereas the average interlayer distance d001 has been widely applied as standard 

structural measurement concerning polymer nanocomposites at all, degree of 

exfoliation XFS and staking number nS have been established in the frame of project 

work within Austrian nanoinitiative. On example with 2 different screw geometries is is 

visible that changing the screw speed can lead to the same level of average interlayer 

dstance and staking number (in the case using Geometry 2, Fig. 17, 19) but different 

exfoliation degree (Fig. 18). [151] 
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Figure 17: Interlayer distance in dependency on screw geometry and speed 

 

Figure 18: Degree of exfoliation in dependency on screw geometry and speed 
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Figure 19: Staking number in dependency on screw geometry and speed 

 

Due to instrumental development during the last few years it is now possible to perform 

all types of characterizations also in-situ at elevated temperatures and under 

mechanical load. The in-situ techniques allow for characterization of structural details 

during melting and recrystallization process in native polymer as well as in composites. 

Relations between structural and mechanical properties can be determined by in-situ 

tensile testing. However, these approaches are difficult and expensive to apply in 

industrial scale manufacturing processes.  

1.3.2 On-line & in-line structural characterization 

Different spectroscopic techniques have already been tested for real-time monitoring of 

the extrusion process, such as ultrasound, Raman, UV-VIS (ultra-violet-visible) and NIR 

(near-infrared) spectroscopy, demonstrating possibility of process control without time 

consumption for off-line analyses and samples preparation. They works on principle of 

inserting optical probes in the main (in-line) or by-pass (on-line) polymer stream in 
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production line [183–191]. For the research in this thesis, in-line NIR spectroscopy in a 

combination with on-line extensional rheometry was used [192]. 

1.3.2.1 In-line NIR spectroscopy & chemometrical modelling 

Near-infrared (NIR) spectroscopy is a non-destructive, optical method to determine 

information on the composition of samples. Like mid-infrared (MIR) spectroscopy, the 

NIR method measures the absorbance of light due to excitation of molecular vibrations 

of the substance under investigation. However, MIR, which exploits radiation in the 

wavelength range of 2500 to 25000 nm, measures the fundamental molecular 

vibrations, whereas NIR, operating in the spectral range between 780 and 2500 nm, 

detects the overtones and combinations of these vibrations (Figure 20).  

 

 

Figure 20: Spectral ranges of spectroscopic techniques [193] 
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NIR sample spectra (Figure 21).  
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Figure 21: Measurement principle of NIR spectroscopy [193] 

 

As the frequencies, at which the absorbances take place are depending on the energy a 

molecular structure requires to be stimulated, the position of the absorbance bands in 

the NIR spectrum provides the information for identification of substances and for the 

existence of specific chemical functionalities present in the sample. By evaluating the 

intensity of the features identifying a substance or chemical functionality (Figure 22), the 

amount/concentration of the respective analyte can be determined [194]. 

 

 

Figure 22: Information content of NIR spectra [193] 
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Regarding polymer materials, NIR spectroscopy has been tested for detection of 

different physical-chemical changes like examination of polymerisation or 

copolymerisation, moisture content, crystallinity, molecular weight, intermolecular 

interactions, tacticity, orientation, dispersion and alteration of particle size of fillers and 

density of polyethylenes. As described above, NIR spectroscopy in principle determines 

the chemical composition of samples. However, it is also capable of providing 

information on mechanical properties as these properties are generally linked to the 

chemical state of the sample. For example the strength of coatings often depends on 

the degree of polymerisation of polymers, which again can be monitored by determining 

the remaining amount of monomer functionalities which have not been converted by the 

polymerisation reaction. Furthermore, some parameters can be determined by NIR 

spectroscopy although neither a chemical conversion is the basis for the phenomenon 

nor does the analyte show any activity in the NIR. For example, ions dissolved in water 

can be determined to a certain degree although they are not IR active and do not cause 

any specific chemical reaction. The reason for this is the fact that the charged ions 

interact with the water molecules, influencing the strength of the O-H-bond and thereby 

shifting the water’s O-H absorbance peak.  

In polymer nanocomposites, the silicate platelets form different levels of 3D physical 

network. Generally, in the real nanocomposite systems both the intercalated as well as 

exfoliated structure persists. During the dispersion process, the both structures are 

formed by the physical bounds between the hydrophilic clay, hydrophobic polymer 

matrix and possibly compatibilizer. The number and type of interactions between 

polymer chains and organoclay depend on the experimental conditions and can be 

monitored with NIR spectroscopy [187–191]. 

Chemometrical modelling / multivariate data analysis 

For NIR spectroscopic applications it is very important to extract process relevant 

information from the measured NIR spectra. In the MIR range often methods like peak 

integration are used to evaluate the absorption strength of one specific species and thus 

to quantify the amount of this species in an unknown mixture. In practice the approach 

of evaluating single spectral lines can only be applied to MIR spectra where spectral 

lines of different species are well separated. In the NIR region typically the spectral 
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features of different species show strong overlapping. This results in the need for more 

sophisticated evaluation methods [195]. 

In this thesis, partial least squares (PLS) method is used to extract quantitative 

information from NIR spectra and to evaluate the data if the desired parameter can be 

measured using this technology. 

For example, NIR spectra are often used to estimate the amount of different compounds 

in a chemical sample. In this case, the so called “factors” are the wavelength specific 

measurements that comprise the spectrum. They can number in the hundreds but are 

likely to be highly collinear. The parameters of interest, the so called “responses” are 

typically component amounts that the researcher wants to predict in future samples. 

Such responses of interest can be the mechanical properties of the nanocomposite in 

dependency on material composition and processing conditions. 

PLS is a method for constructing predictive models when the factors are many and 

highly collinear. The emphasis is on predicting the responses and not necessarily on 

trying to understand the underlying relationship between the variables. For example, 

PLS is not usually appropriate for screening out factors that have a negligible effect on 

the response. However, when prediction is the goal and there is no practical need to 

limit the number of measured factors, PLS is a very useful tool. 

Usually, each spectrum is comprised of measurements at a 1,000 different frequencies; 

these are the factor levels, and the responses are the sample parameters of interest. 

Typically the parameters are related to chemical composition of the samples. Indirect 

effects can lead to models evaluating mechanical or physical parameters like hardness, 

stiffness or density. 

The PLS factors (the NIR spectra) are computed as certain linear combinations of the 

spectral amplitudes (eigenvectors or loadings), and the responses are predicted linearly 

based on these extracted factors. Thus, the final predictive function for each response is 

also a linear combination of the spectral amplitudes. PLS prediction is a function of all of 

the input factors and can be interpreted as contrasts between broad bands of 

frequencies [196]. 
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In research concluded in this thesis for evaluating the method of NIR spectroscopy for 

being able to measure a certain sample attribute (responses: e.g. E-modulus or tensile 

force) a straight forward approach was applied. NIR spectra of samples with varying but 

known responses were used. Then PLS was applied to generate a linear predictive 

model for calculating the responses from the measured NIR data (factors). By looking at 

special correlation parameters (like R2 and RMSECV – see below) of the resulting 

model it was possible to evaluate whether the model shows sufficient predictive ability 

or not. If the developed model shows sufficient correlation the method can be used to 

deliver measurement data about correlated properties of the material. Since the NIR 

method can be easily implemented to the extruder and the measurement time is in the 

region of seconds this enables a non-destructive real time monitoring of structural and 

application properties of the produced material. 

The correlation coefficient R2 shows the correlation of the NIR data with the investigated 

response parameter. Values of R2 are between 0 and 100. Typically models with R2 

values above 90 enable quantitative calculation of the response parameter of interest. 

Correlation coefficients above 60 allow qualitative evaluations. If R2 lies below 60 the 

response is not well pronounced in the factors (the spectral data) and thus cannot be 

evaluated with reasonable practical relevance. 

The root mean square error of cross validation (RMSECV) is estimated by calculating a 

predictive model by using all samples expected one. This model is applied to the left out 

sample for predicting the desired response parameter. RMSECV is calculated by doing 

this procedure for every sample and by summing up the root mean square errors of the 

deviations of the calculation results from the real values. This value is a measure for the 

measurement error of the developed NIR measurement method. 

In general the quality of the “real” response values is very important for the quality of the 

generated models. Outliers are strongly influencing the model generation and, 

consequently, the model describing parameters like R2 and RMSECV [195, 196]. 
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1.3.2.2 On-line extensional rheometry 

Generally, two methods of reinforcement assessment in polymer nanocomposites in the 

molten state can be used: analysis of melt elasticity using rotational rheometry or melt 

strength evaluation by extensional rheometry. In this thesis, commercial extensional 

rheometer Rheotens 71.97 was used. The advantage of Rheotens measurements 

consists in their simplicity without need of expensive scientific equipment and additional 

time for sample preparation. The principle of Rheotens measurement can be seen in 

Figure 23 and Figure 24. It is based on elongation of an extruded string by two or four 

rotating wheels connected with force transducer. The rotation speed is linearly 

increased up to when the molten string breaks. The tensile force applied to the wheels 

and the draw speed at break allow the calculation of the melt strength (stress at break): 

σb = Fb·vb / A0·v0 

σb … stress at break [Pa] 

Fb … draw force at break [N] 

vb … draw speed at break [mm·s-1] 

A0 … initial cross section of molten string (at the die outlet) [m2] 

v0 … extrusion speed of molten string (piston speed) [mm·s-1] 

 

 

Figure 23: Measurement performed by Rheotens equipment [197] 
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Figure 24: Principle of Rheotens measurement [197] 

 

In order to compare the melt strength level of different nanocomposite systems 

(revealing different magnitudes of vb), the tensile force at specific draw speed has been 

chosen as a comparative value (e.g. figure 25). 

 

Figure 25: Melt strength level comparison [197] 

 

The silicate platelets form different levels of 3D physical network in the polymer matrix 

depending on their structure (intercalated or exfoliated, figure 12). The different physical 

crosslinking and bonding between polymer chains and organoclay results in diversity of 

viscoelastic response. Individual nanoparticles act as entanglement- or crosslinking-

sites and raise the extensional stiffness of the composite, measured by the melt 

strength level. Depending on the degree of dispersion, this change is more or less 

pronounced compared to the unfilled polymer. Research in this thesis shows how the 
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extensional rheometry can be used for fast determination of material reinforcement for 

both off-line as well as on-line measuring principles [175, 192, 194, 197–203]. 

1.4 Viscoelasticity of polymer nanocomposites 

Comparing to typical characterization of individual polymer nanocomposite properties 

(like mechanical & thermal analysis, microscopy, X-ray diffractometry, barrier properties, 

electrical & thermal conductivity) [31–155], melt rheology has been established as a 

powerful tool to analyse dispersion of nanofiller in polymer matrix and to correlate it with 

processing and application properties [160, 173, 200, 201, 204–255]. Especially usage 

of rotational rheometry is very interesting, because knowledge of viscoelasticity enables 

assessment of nanocomposite structure, which is responsible for material performance. 

In the case of highly dispersed systems, a 3D physical network formed by nanofiller and 

polymer chains is achieved. This phenomenon can be investigated by the analysis of 

the melt elasticity in the system using rotational rheometry [160, 173, 200, 201, 204–

255]. 

The magnitude of storage modulus (real part of complex modulus, G´) reflects level of 

elasticity (entanglement of polymer chains) in material during oscillating flow and is 

directly related to imaginary part of complex viscosity. The G´ modulus is increasing 

with the filler loading. The G´ secondary plateau, which occurs at low frequencies and 

high concentration of the filler, reflects structures with much longer relaxation times than 

those of neat matrix. The curve of this plateau is dependent on filler concentration, 

particles size and rheological history of material. The G´ secondary plateau seems to be 

in relation to yield stress because both phenomena reflect level of physical network 

stability in the system [253]. 

The loss (viscous) modulus G´´ (imaginary part of complex modulus) reflects energy 

dissipation to heat (the level of viscous properties resulting from slippage of polymer 

chains) and is directly related to real part of complex viscosity. The ratio of the loss 

modulus to the storage modulus tan δ (loss factor, tan δ = G´´ / G´) provides information 

about damping ability of the material. The complex viscosity η* gives information about 

overall material resistance (complex modulus) to flow as a function of frequency in 

terms of η* = G* / ω.       
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Using rotational rheometry, the physical network in polymer nanocomposites has been 

characterized by dynamic measurements in oscillatory shear flow concomitant with G´ 

and G´´ secondary plateau formation (pseudo-solid-like behavior) with the silicate 

loading in the range of 3 - 5 wt. % [160, 173, 200, 201, 204–255], (Figure 26).  
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Figure 26: Comparison of viscoelastic properties of the matrix and the nanocomposite with 
Cloisite 6A [172] 

 

Rheological properties of polymer nanocomposites (poly-ε-caprolactone, PA-6) 

prepared by “in situ” method (polymer chains were chemically bonded on the surface of 

silicate) were firstly described by Krishnamoorti and Giannelis [211]. “Solid-like” 

response has been observed also in conventional polymer composites, where the 

“yielding” phenomenon reflected very strong interactions between the polymer and filler 

[239]. In this thesis, “rubber-like” behavior typical for well dispersed polymer 

nanocomposites was also detected for complex polymer composites, where synergic 

effect of different fillers on formation of 3D physical network was revealed [213, 249] 

(Figure 27). 
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Figure 27: Storage modulus of the PET matrix and composites [213] 
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Figure 28: The viscosity curves of the PET matrix and nanocomposites [172] 

 

The melt viscosity trend of nanocomposites is similar to other filled polymer systems: a 

significant increase (comparing to neat matrix) in the range of low shear rates and a 

subsequent decrease with shear rate rise (Figure 28). This “shear thinning” (yielding) 

phenomenon is attributed to destruction of physical network and re-arrangement of 

silicate platelets in flow direction with raising shear rate.  
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One of unconventional rheological approaches presented in this thesis is usage of the 

van Gurp-Palmen (vGP) plot (dependency of loss angle δ on complex modulus |G*|) for 

analysis of spatial structures in polymer nanocomposites [200, 201, 250, 256]. In 

original work [225, 230], polymer samples with rather linear chain structure exhibited a 

continuous shaped curve. On the contrary, long chain branched (LCB) polymers 

showed a developed bump between the |G*| minimum and the 90° plateau. 

For example, in polyethylene nanocomposite blend, systems prepared with Cloisite20 

organoclay and Cloisite20/nanoscaled ZnO showed spatial structure similar to 

mentioned LCB polymers with even two bumps or peaks (in the case of mixture with 

Cloisite20), indicating complex 3D structure made of filler and polymer chains. On the 

other hand, the polyethylene (CA9150) matrix and nanocomposite blend with only 

nanoscaled ZnO exhibited behaviour similar to linear chain structure (Figure 29).  

 

Figure 29: The van Gurp-Palmen plot of PE nanocomposite blends [256] 

 

Another approach for description of viscoelastic damping behaviour is so called “Cole-

Cole” figure, in which imaginary part of complex viscosity over the real part is plotted. 

This figure has been widely used to assess miscibility/homogeneity of polymer blends 

and composites in the way that a smooth, semi-circular shape can be interpreted by 

better compatibility and homogeneity, respectively [229, 235]. Usage of this analysis for 

a polyethylene nanocomposite blend is shown in figure 30. 
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Figure 30: The Cole-Cole plot of PE nanocomposite blends [256] 

 

The polyethylene CA9150 matrix and nanocomposite with ZnO showed semi-circle 

shapes, reflecting rather high homogeneity of the system. However, for the analysis of 

polymer nanocomposites performance, not only homogeneity but also reinforcement 

effect should be addressed. Using Cole-Cole plot, it can be said, that systems prepared 

with Cloisite20 and Cloisite 20/ZnO revealed deviation from semi-circle shape and, 

therefore, are rather not homogeneous. Nevertheless, no information about 

reinforcement level can be obtained from this figure and this problem is actually 

concomitant with each previously described rheological analysis based on damping 

behaviour. Therefore, new rheological approach based on rigidity behaviour is 

presented in this thesis. This approach uses evaluation of new rheological parameter 

(cotg δ), which was called as storage factor (analogically to loss factor tan δ). In order to 

reduce the values of storage factor to one representative magnitude (cumulative 

storage factor, CSF) for one nanocomposite sample, G´ as well as G´´ values of each 

sample were integrated over the measured frequency range according following 

equation: 
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It was proved that cumulative storage factor reflects reinforcement in polymer 

nanocomposites in the shear flow, similarly to melt strength parameter in the 

elongational flow. Moreover, calculation of further cumulative rheological parameters (in 

the same principle as calculation of CSF) enables new opportunities of using rheological 

data from shear flow for structural analysis of complex multiphase polymer systems 

[200, 250, 256].  

An example of using CSF value is given concerning nanocomposites with recycled PET. 

According to typicall rheological evaluation (viscosity and storage modulus curves, 

respectively) it would be difficult to recognize what organoclays led to the real 

reinforcement of the polymer matrix (Fig. 31, 32).  

 

Figure 31: Complex viscosity of PET-R nanocomposites 
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Figure 32: Storage modulus of PET-R nanocomposites 

 

However, the CSF plotted over CCV in Fig. 33 shows clearly differences in material 

reinforcement between various CPNs. It can be seen that CSF values can be divided 

into three groups: CSF of the neat polymer matrix, CPNs with lower CSF values (10A, 

30B) and CPNs with higher CSF values (6A, Na+). It means that effective material 

reinforcement was reached only in CPN systems using 6A and Na+.  



 
 

 
42 

 
 

 

Figure 33: CSF plotted over CCV 

 

This is result of complex physical and chemical reactions, which occur during the 

processing. On one side, physical interactions based on electrostatic forces between 

polymer and clay mineral result into formation of differently organized structures 

(combination of agglomerated, delaminated and exfoliated structure) depending on 

achieved 3D network. On the other side, processing of PET CPNs is concomitant with 

different chemical reactions (e.g. chain scission, Hofmann elimination) that lower CPN 

mechanical performance. Using cumulative storage factor, it can be clearly said which 

organoclays leads to effective material reinforcement (effect of 3D physical network is 

higher than effect of chemical degradation) and vice versa. 

Résumé 

Research in this thesis shows contribution to preparation, processing and 

characterization of polymer nanocomposites. Concerning preparation, organoclays with 

increased temperature stability and interlayer distance (modification by silanization and 

imidazole salt) have been developed. In the field of processing, advanced compounding 

was established, using specific adjustment of melt pump in combination with twin-screw 
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extruder. Addressing characterization of polymer nanocomposites, in-line NIR 

spectroscopy as well as novel rheological parameter (cumulative storage factor) have 

been successfully tested in combination with advanced evaluation of small angle X-ray 

scattering (additional parameters for description of clay delamination). Incorporation of 

new results into broad research in the field of polymer nanocomposites can be found 

more in detail in the following scientific papers, being the part of this thesis. 
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2. Objectives of the conducted research 

Research concluded in this thesis is divided into 3 chapters: 

2.1 Preparation of polymer nanocomposites 

In this chapter (manuscripts 1 – 5), conventional analysis approaches based on 

rotational rheometry have been used for correlations with structural and application 

properties of nanocomposites. The main effort was focused on evaluation of melt 

viscosity and melt elasticity (rubber-like behaviour) for better understanding of thermal 

and structural changes during the processing and consequent application of polymer 

nanocomposites. For this reason, new approaches for increase of thermal stability of 

organoclays, fillers combinations and structural parameters were developed.  

 

2.1.1 Manuscript 1 

“Effect of 3D structures on recycled PET/organoclay nanocomposites” 

Kráčalík, Milan; Mikešová, Jana; Puffr, Rudolf; Baldrian, Josef; Thomann, Ralf; 

Friedrich, Christian (2007): In: Polym. Bull. 58 (1), S. 313–319. DOI: 10.1007/s00289-

006-0592-5. 

In this manuscript, evaluation of melt viscosity and elasticity revealed reinforcing effect 

of different commercial organoclays on recycled polyethyleneterephthalate, which was 

concomitant with degradation reactions during the processing. Relevant degradation 

mechanisms and their association with nanofiller dispersion were discussed. Structural 

evaluation has been done using wide-angle X-ray scattering and transmission electron 

microscopy. According to structural analysis, the highest level of dispersion revealed 

system filled with Cloisite 30B. However, this nanocomposite showed the lowest level of 

melt elasticity as compared with mixtures filled with other commercial organoclays. With 

this discovery, a broad discussion in relevant scientific community has been started with 

the view to develop new kinds of organoclays with enhanced thermal stability, which 

could be used not only for obtaining high dispersion grade, but also for improvement of 

material performance, especially for technical thermoplastic polymers with high melt 

temperature (above 250°C). 
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2.1.2 Manuscript 2 

“Recycled PET nanocomposites improved by silanization of organoclays” 

Kráčalík, Milan; Studenovský, Martin; Mikešová, Jana; Sikora, Antonín; Thomann, Ralf; 

Friedrich, Christian et al. (2007): In: J. Appl. Polym. Sci. 106 (2), S. 926–937. DOI: 

10.1002/app.26690. 

This is the first manuscript describing new approach for thermal stability improvement of 

commercial organoclays for application in polymers with high melt temperature (above 

250°C). Based on the knowledge from manuscript 1, the most suitable commercial 

organoclays were modified with different functional groups ([3-

(glycidyloxy)propyl]trimethoxysilane, hexadecyltrimethoxysilane and (3-

aminopropyl)trimethoxysilane). This modification was based on silanization of hydroxyl 

groups on the edge of silicate platelets. Thermogravimetrical measurements confirmed 

significant enhancement of thermal stability of silanized organoclays compared to their 

commercial versions. Using rotational rheometry, it was possible to compare the effect 

of organoclay stability improvement on degradation mechanisms during the processing 

and on final structure & application properties, which were analysed by X-ray diffraction, 

TEM, DSC and mechanical testing. According to rheological measurements, usage of 

Cloisite 25A modified with ([3-(glycidyloxy)propyl]trimethoxysilane led to high thermal 

stability during processing with recycled PET, as the values of melt viscosity were 

higher than those of pure PET matrix in the whole range of measured frequencies. For 

all other nanocomposites, starting at specific frequency, values of melt viscosity were 

lower than those of pure PET matrix, indicating presence of degradation mechanisms 

(e.g. hydrolytic degradation of PET, thermal decomposition of quaternary ammonium 

tethers by Hofmann elimination) during the processing. 
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2.1.3 Manuscript 3 

“Recycled PET-organoclay nanocomposites with enhanced processing 

properties and thermal stability” 

Kráčalík, Milan; Studenovský, Martin; Mikešová, Jana; Kovářová, Jana; Sikora, Antonín; 

Thomann, Ralf; Friedrich, Christian (2007): In: J. Appl. Polym. Sci. 106 (3), S. 2092–

2100. DOI: 10.1002/app.26858. 

This is the first manuscript describing new approach for surface modification of natural 

clays for application in polymers with high melt temperature (above 250°C). For this 

purpose, recycled as well as virging PET matrix was used. New thermally stable 

modifier based on imidazole was synthetized and used for surface treatment of sodium 

montmorillonite. This thermally stable organoclay was then additionally modified by 

silanization using knowledge from manuscript 2. Using rotational rheometry it was 

proved that nanocomposites with novel organoclays revealed no degradation 

mechanisms during the processing. This was confirmed as the viscosity values of 

nanocomposites using recycled as well as virgin PET matrix were higher than the pure 

matrix in the whole measured frequency range. The silanized version of imidazole 

organoclay revealed further improvement of processing stability for recycled PET. 

Rheological investigation was supported by structural (X-ray diffraction, TEM) as well as 

mechanical and thermal (DSC) testing. Especially mechanical testing revealed 

interesting stiffness/toughness combination, which was not possible to achieve in PET 

nanocomposites using commercial organoclays. 
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2.1.6 Manuscript 4 

“Effect of glass fibers on rheology, thermal and mechanical properties of 

recycled PET” 

Kráčalík, Milan; Pospíšil, Ladislav; Šlouf, Miroslav; Mikešová, Jana; Sikora, Antonín; 

Šimoník, Josef; Fortelný, Ivan (2008): In: Polym. Compos. 29 (8), S. 915–921. DOI: 

10.1002/pc.20467. 

In this paper, synergic effects of two fillers in recycled PET matrix were investigated. It 

was revealed that interface interactions between glass fibers, talc and PET matrix lead 

to strong physical 3D network demonstrated by rheological measurements (existence of 

rubber-like behaviour as in the case of well dispersed polymer nanocomposites). The 

highest level of fiber-matrix interfacial adhesion was obtained with the fiber filling 20 %. 

According to rheological study, the highest melt strength was achieved at the 30 % 

loading of fibers. A significant increase in the complex viscosity and storage modulus 

with glass fibers and talc loading was observed at low frequencies, where the 

viscoelastic liquid of recycled PET changed into a solid-like behaviour. In all the 

mixtures, filling with fibers and talc exhibited an enhancing effect on rheological 

properties of the composites. On the contrary, processing under production-scale 

conditions led to formation of air bubbles together with the moderate loss of melt 

strength and viscosity, compared with analogous system processed on the pilot-plant 

scale. A correlation between the fiber content on linear viscoelastic flow characteristics 

and dispersion level (SEM) of the prepared composites was found. Mechanical 

characterization of composites filled with 20 % of glass fibers revealed the highest 

toughness, while the 30 % fiber loading resulted in the highest level of stiffness, tensile 

strength and flexural modulus. Thermal characterization of composites revealed an 

increase in glass transition temperature and decrease in total crystallinity with fibers 

loading. Unusual thermal behaviour of composites prepared under lab-scale conditions 

was attributed to crystallization of PET chains on the surface of glass fibers. 
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2.1.7 Manuscript 5 

“Recycled poly(ethylene terephthalate) reinforced with basalt fibres. Rheology, 

structure, and utility properties” 

Kráčalík, Milan; Pospíšil, Ladislav; Šlouf, Miroslav; Mikešová, Jana; Sikora, Antonín; 

Šimoník, Josef; Fortelný, Ivan (2008): In: Polym. Compos. 29 (4), S. 437–442. DOI: 

10.1002/pc.20425. 

Using know-how from manuscript 4, synergic effect of talc on performance of recycled 

PET/basalt fibers composite was tested. It was proved that multiphase systems with talc 

addition revealed enhanced melt viscosity and melt elasticity (existence of rubber-like 

behaviour as in the case of well dispersed polymer nanocomposites) comparing to 

typical composites. In the systems containing talc, the recycled PET matrix adhered 

significantly more to the surface of the reinforcing fibers. Their linear viscoelastic 

properties reflected structural changes (variations of basalt concentration and talc 

addition) in composites. Higher values of the complex viscosity a storage modulus 

confirmed an increase in interfacial filler-matrix adhesion. Addition of talc and higher 

concentration of basalt fibers in composites resulted in better mechanical performance, 

manifesting itself mostly by tensile strength, stiffness, flexural modulus and toughness. 

The values of extensibility were independent of talc and fiber loading. The system filled 

with talc and 30 % of fibers showed the highest reinforcement. Concerning thermal 

properties, the results of differential scanning calorimetry revealed interesting 

thermodynamical behaviour unusual for recycled PET-glass fiber composites or 

recycled PET-organoclay nanocomposites. The composites without talc addition 

showed a decrease in the first crystalline fraction (ΔHmf) with higher fiber content. This 

behaviour can be associated with steric hindrance of fiber excess to the growth of 

crystalline nuclei during heterogeneous crystallization. 
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2.2 Processing of polymer nanocomposites 

In this chapter (manuscripts 6 – 10), the research is focused mainly on investigation of 

processing of polymer nanocomposites and usage of in-line characterization methods 

for structural and performance assessment directly during the processing. New 

technological approaches for processing and new evaluation methods for 

characterization of polymer nanocomposites are introduced. 

2.2.1 Manuscript 6 

“Advanced compounding. Extrusion of polypropylene nanocomposites using the 

melt pump” 

Kracalik, Milan; Laske, Stephan; Gschweitl, Michael; Friesenbichler, Walter; Langecker, 

Günter Rüdiger (2009): In: J. Appl. Polym. Sci. 113 (3), S. 1422–1428. DOI: 

10.1002/app.29888. 

This is the first manuscript describing possibility to increase the shear rate as well as 

residence time simultaneously in continuous processing of polymer nanocomposites. 

This was reached by specific arrangement of the melt pump in compounding process, 

so that the in-line pressure of the melt pump was higher than the outlet pressure. It was 

shown that assembling the melt pump in front of an open compounder the residence 

time was prolonged nearly two-times applying a negative pressure difference of -100 

bar in the melt pump. This additional melt shearing led to significant increase in material 

reinforcement, investigated by extensional rheology. Higher shear screw geometry and 

screw speed led to higher melt reinforcement as compared to lower shear screw 

configuration and screw speed, respectively. This novel technological approach opened 

new research field to study effects of shear force and residence time on processing and 

application properties of polymer nanocomposites. Different processing parameters 

(screw geometry, screw speed, melt pump adjustment, extruder torque, extruder 

pressure profile) were analysed and correlated with melt strength level. The level of melt 

strength was compared by magnitudes of tensile force measured by extensional 

rheometer. 
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2.2.2 Manuscript 7 

„FT-NIR as a determination method for reinforcement of polymer 

nanocomposites“ 

Laske, Stephan; Kracalik, Milan; Feuchter, Michael; Pinter, Gerald; Maier, Günther; 

Märzinger, Wolfgang et al. (2009): In: J. Appl. Polym. Sci. 114 (4), S. 2488–2496. DOI: 

10.1002/app.30765. 

This is the first manuscript describing possibility to use FT-NIR method for prediction of 

polymer nanocomposites properties. It was proved that using chemometrical evaluation 

of FT-NIR data enables prediction of rheological properties (melt strength level) in 

dependency on processing parameters (typical compounding process vs. inclusion of 

the melt pump, variations in screw speed and screw geometry). NIR spectroscopy was 

shown to be a qualitative and predominantly quantitative method for monitoring 

nanocomposite quality of all sample groups investigated, although the extruded sample 

material had to be cooled down, granulated and processed to plates for measurements 

with the off-line NIR system. As the unknown changes in the samples caused by these 

postprocessing procedures negatively affect the calculated chemometric models, it was 

decided to measure the quality of the nanocomposites in-line without any additional 

processing, to prevent any negative effect on the material structure or reinforcement 

level. Extensional rheometry and NIR measurements were intended to be done 

simultaneously on the extruder to collect spectral and mechanical data in samples with 

the same processing history. 
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2.2.3 Manuscript 8 

“In-line characterization of polypropylene nanocomposites using FT-NIR” 

Witschnigg, Andreas; Laske, Stephan; Kracalik, Milan; Feuchter, Michael; Pinter, 

Gerald; Maier, Günther et al. (2010): In: J. Appl. Polym. Sci. 8, n/a-n/a. DOI: 

10.1002/app.32024. 

Using the know-how from manuscript 7, chemometrical modelling was applied for 

prediction of rheological (melt strength level), structural (interlayer distance) and 

application (Young´s modulus) properties. For the first time, in-line FT-NIR mit on-line 

rheometry was combined simultaneously for material characterization during 

compounding of polymer nanocomposites. The Young’s Modulus, the interlayer 

distance and the tensile force exhibited good correlation with NIR data analyzed by PLS 

algorithm. It was proved that near infrared spectroscopy is a quantitative method for 

monitoring nanocomposite quality although the measurements were partially done at 

different aggregate states and samples with different processing history caused by 

sample preparation. Therefore important parameters like crystallization could not be 

considered by the NIR measurements. It was evident that the different aggregate states 

(melt state vs. semicrystalline solid state) and the postprocessing procedures (cooling 

down, heating up, molding and cooling down again) cause for example preferential 

orientations, affecting the chemometric models negatively. Nevertheless this work 

showed that it is possible to determine the Young’s modulus, the interlayer distance and 

the tensile force with sufficient precision for quantitative evaluation with near infrared 

spectroscopy. Therefore NIR spectroscopy was found to be suitable for inline quality 

control and characterization of nanocomposites in real time and directly in the melt state 

during production, leading to a faster composite optimization process with reduced 

rejections and costs. This approach opened new opportunity to speed up development 

of tailor-made materials based on polymer nanocomposites. 

 

 

 

 



 
 

 
123 

 
 

 

 



 
 

 
124 

 
 

 



 
 

 
125 

 
 

 



 
 

 
126 

 
 

 



 
 

 
127 

 
 

 



 
 

 
128 

 
 

 



 
 

 
129 

 
 

 



 
 

 
130 

 
 

2.2.4 Manuscript 9 

“Influence of induced shear work on the properties of polyolefine nanocomposite 

pipes” 

Witschnigg, Andreas; Laske, Stephan; Kracalik, Milan; Holzer, Clemens (2012): In: 

Polym. Eng. Sci. 52 (5), S. 1155–1160. DOI: 10.1002/pen.22146. 

In this work, a closer look to calculation of shear energy generated by different 

processing routes (single- vs. double-pass compounding, pipe extrusion) of polymer 

nanocomposites was done. An attempt was taken to calculate the shear energy for 

different processing techniques and make them comparable. It was shown that the 

shear energy generated during injection molding cannot be separated from the strain 

energy in the die and in the tool and, therefore, is present in the calculated energy 

values in high extent, which is compensating the effect of the extrusion processes. This 

was responsible for the incomparableness of the combined shear and strain energy 

from injection molding with the normalized shear energy values of single and twin screw 

extrusion. Nevertheless, the shear energy comparison between the two extrusion 

processes showed good compliance with the measured properties. This calculation 

supplemented previous rheological results, in which effect of shear energy and 

residence time on processing and application properties of nanocomposites was 

estimated using extensional rheometry. 
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2.2.5 Manuscript 10 

“Determining the ageing of polpropylene nanocomposites using rheological 

measurements” 

Laske, Stephan; Witschnigg, Andreas; Mattausch, Hannelore; Kracalik, Milan; Pinter, 

Gerald; Feuchter, Michael et al. (2012): In: Applied Rheology 22 (2), 24590-1 - 24590-9. 

DOI: 10.3933/ApplRheol-22-24590. 

In this manuscript, results of shear as well as extensional rheometry were used to 

describe the effect of ageing on polymer nanocomposites properties. It was shown that 

36 months after production, melt viscosity, melt elasticity and melt strength were 

significantly reduced, due to photo-oxidative degradation of polypropylene matrix and 

due to re-agglomeration of the nanofiller. The deterioration in material properties was 

more pronounced in highly-filled systems (15 wt.% and 20 wt.% of organoclay, 

respectively) comparing to typical (5 wt.% of organoclay) nanocomposite. Generally, the 

long-term stability was massively influenced by the size of the reactive filler surface 

(interface) monitored by the clay content and the degree of exfoliation. With increasing 

clay content as well as a higher degree of exfoliation the possible interface to the 

polymer matrix is increasing, leading to a faster and higher material degradation. 

Additionally, the results of the rheological experiments revealed two degradation 

mechanisms. Firstly, the chain splitting caused by photo-oxidative degradation resulted 

to a loss in molecular weight shown by the decreased zero shear viscosity (Newtonian 

plateau). This chemical factor is mainly influenced by the interface between polymer 

and the particles. When using nanofillers, this effect is intensified because of the 

nanoscale particles and the resulting significantly increased interface. 

The second factor was the weakened 3D network displayed in the range of higher 

angular frequencies by a decrease of the complex viscosity (shear thinning range) as 

well as a higher loss in tensile force respectively melt strength. This physical factor 

can be explained by the reverse diffusion of the polymer chains out of the clay gallery 

and/or reagglomeration of the nanoparticles, when the distance between the layers is 

too small to overcome the interparticular forces. This can happen in intercalated as 

well as high-filled systems. 
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2.3 Characterization of polymer nanocomposites 

In this chapter (manuscripts 11 – 17), new structural and rheological analysis 

approaches for characterization of typical as well as complex polymer nanocomposites 

are presented. It was proved that shear as well as extensional rheometry can be used 

for fast assessment of reinforcement in polymer-clay nanocomposites. Concerning the 

fact that rheological experiments can be performed on-line in the compounding process, 

an interesting way to gain first information about material performance in dependency 

on mixture composition and processing protocol was introduced. Furthermore, 

establishment of new rheological parameter (cumulative storage factor) enabled 

characterization of reinforcement in polymer matrix taking into account possible 

chemical and physical interactions during the processing. Regarding structural analysis, 

average agglomerate size was introduced as new parameter gained from SAXS 

measurement. 

2.3.1 Manuscript 11 

„ Effect of organoclay chemistry and morphology on properties of poly(lactic 
acid) nanocomposites “ 

Kracalik, Milan (2017): In: Plastics, Rubber and Composites, 2017, 46 (9), 389-395, 
https://doi.org/10.1080/14658011.2017.1373489. 

In this paper, new parameter, average agglomerate size, could be gained from SAXS 

measurement. This structural parameter complementary to the interlayer distance, 

provides with quantitative information about dispersion state. In this way, the 

nanocomposite structure is completely characterized and some other usually used 

techniques like transmission electron microscopy (TEM) or scanning electron 

miscroscopy (SEM) do not have to be applied as they generate only qualitative 

information not allowing reliable comparison of dispersion state. 
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2.3.2 Manuscript 12 

„Estimation of reinforcement in compatibilized polypropylene nanocomposites by 
extensional rheology“ 

Laske, Stephan; Kracalik, Milan; Gschweitl, Michael; Feuchter, Michael; Maier, Günther; 
Pinter, Gerald et al. (2009): In: J. Appl. Polym. Sci. 111 (5), S. 2253–2259. DOI: 
10.1002/app.29163. 

 

This is the first manuscript describing material reinforcement of complex polymer 

nanocomposites by elongational rheology. For polypropylene-clay nanocomposites it 

was shown that higher admixture of compatibilizer results in higher dispersion grade 

(interlayer distance measured by SAXS, optical comparison by TEM), but this trend was 

not valid for rheological and mechanical properties, where too high compatibilizer 

admixture led to lowering the rheological/mechanical performance. The reason was in 

molecular weight of the compatibilizer (maleic acid grafted PP), which was significantly 

lower than that of PP matrix – therefore, with too high compatibilizer admixture, the 

effect of reinforcement coming from higher dispersion grade was lower than effect of 

average molecular weight decrease coming from compatibilizer. In this way, extensional 

rheometry was proved to be fast method for analysis of effective material reinforcement 

taking into account both the dispersion grade of nanofiller as well as possible changes 

in average molecular weight of polymer matrix. 
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2.3.3 Manuscript 13 

“Effect of the Mixture Composition on Shear and Extensional Rheology of 

Recycled PET and ABS Nanocomposites” 

Kracalik, Milan; Laske, Stephan; Witschnigg, Andreas; Holzer, Clemens (2012): In: 

Macromol. Symp. 311 (1), S. 33–40. DOI: 10.1002/masy.201000122. 

Using knowledge from manuscript 12 (correlation between extensional rheometry and 

mechanical testing), different analyses of data from rotational rheometry were presented 

and compared with data obtained from extensional rheometry for ABS and PET 

nanocomposites. Evaluation of viscoelastic damping behaviour revealed that the 3D 

silicate network in polymer melt is very sensitive to shear deformation and after 

reaching the angular frequency of about 1 rad/s, the original polymer-clay structure in 

the ABS-R nanocomposite melt persist no more. In the PET-R nanocomposites both, 

the delamination effect (formation of 3D structure) as well as degradation phenomenon 

(chain scission, generation of low-molecular products) have been detected by dynamic 

rheological experiments. Using extensional rheometry, effect of organoclay surface 

treatment on the melt strength level of different ABS-R as well as PET-R 

nanocomposites has been investigated. It was shown for ABS nanocomposites that 

despite very small differencies visible in data from rotational rheometry, it was possible 

to make clear comparison between different samples using data from extensional 

rheometry. In addition to PP nanocomposites (manuscript 13), suitability of extensional 

rheometry for reinforcement characterization was further proved for ABS and PET 

nanocomposites. 
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2.3.4 Manuscript 14 

“Elongational and shear flow in polymer-clay nanocomposites measured by on-
line extensional and off-line shear rheometry” 

Kracalik, Milan; Laske, Stephan; Witschnigg, Andreas; Holzer, Clemens (2011): In: 
Rheol Acta 50 (11-12), S. 937–944. DOI: 10.1007/s00397-011-0545-2. 

Using knowledge from manuscripts 12 and 13, different attempts for correlation 

between data of shear and extensional rheometry were tested. It was found out that 

inverse parameter to loss factor (tan δ) measured by rotational rheometry can be 

effectively used for description of reinforcement in polymer nanocomposites, similarly to 

melt strength level measured by extensional rheometry. In order to reduce the values of 

cot δ to one representative magnitude for one nanocomposite sample (cumulative 

storage factor, CSF), G´ as well as G´´ values of each sample were integrated over the 

specific frequency range as follows: 

Plotting the CSF values together with melt strength level of nanocomposites in 

dependency on screw speed, the same trends for results of extensional as well as 

shear rheometry have been found. In this way, it was shown that CSF can be correlated 

with values of melt strength level, i.e. that 3D physical network in polymer 

nanocomposites is reflected in the same way in both shear as well as elongational flow. 
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2.3.5 Manuscript 15 

“Rheology of multiphase polymer systems using novel “melt rigidity” evaluation 
approach” 

Kracalik, Milan (2015): In: AIP Conference Proceedings (1662). DOI: 
10.1063/1.4918890. 

Continuing the work from manuscript 14, complex LDPE nanocomposites with 

nanoclay, nano-scaled TiO2 and compatibilizer were tested by novel rheological 

analysis approach. The values of cot δ were called as storage factor (analogically to 

commonly used loss factor tan δ) and the integrated values of cot δ were called as 

cumulative storage factor. Then, further cumulative parameters were calculated (e.g. 

cumulative complex viscosity, cumulative complex modulus) in order to test different 

evaluation approaches. The cumulative storage factor plotted over cumulative complex 

viscosity exhibited high linear dependency and could be directly correlated with trends 

of storage modulus and complex viscosity curves in terms of dispersion grade 

association. This was not the case for the plot of cumulative storage factor in 

dependency on cumulative complex modulus, exhibiting rather lower coefficient of linear 

regression together with some discrepancies concerning correlation with trends of 

storage modulus and complex viscosity curves. The cumulative storage modulus in 

dependency on cumulative complex viscosity revealed high coefficient of linear 

regression but some discrepancies concerning correlation with trends of storage 

modulus and complex viscosity curves. However, plot of cumulative storage modulus in 

dependency on cumulative complex modulus exhibited both high coefficient of linear 

regression as well as high correlation with trends of storage modulus and complex 

viscosity curves in terms of dispersion grade association. 
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2.3.6 Manuscript 16 

“Assessment of reinforcement in polymer nanocomposites using cumulative 
rheological parameters” 

Kracalik, Milan (2017): In: Epitoanyag – Journal of Silicate Based and Composite 
Materials 69 (4), S. 116–120. DOI: 10.14382/epitoanyag-jsbcm.2017.21. 

In this manuscript, new analysis method based on cumulative rheological parameters 

was tested for nanocomposites with LDPE, nanoclay and nano-scaled ZnO. The 

cumulative storage factor (CSF) plotted over cumulative complex viscosity (CCV) 

showed clearly other trend as trends obtained from conventional rheological analysis. 

For CA9150 matrix it could be seen that viscosity value is high, but reinforcement level 

represented by CSF (comparing to all nanocomposites) is low. Comparing to CA9150, 

the nanocomposite with 5% of ZnO revealed lower value of viscosity, but higher value of 

reinforcement, followed by nanocomposite with 2.5/2.5 wt.% of Cloisite20/ZnO and 

finally followed by nanocomposite with 5wt.% of Cloisite20 showing the highest 

reinforcement and approximately same level of viscosity. In this way, it was possible to 

separate contribution of “internal reinforcement” coming from internal friction (high 

molecular weight and viscosity values, respectively) – represented by viscosity values – 

and “external reinforcement” coming from 3D physical network between polymer chains 

and nanofiller particles – represented by CSF values. This separation was not possible 

to analyze using conventional evaluation methods based on damping behaviour. If only 

polymer nanocomposites were compared, there was high correlation between CSF and 

CCV values, giving possibility to compare previously described “external reinforcement” 

not only for cases of nanocomposites using one polymer matrix, but also for cases of 

nanocomposites based on polymer blends. 
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2.3.7 Manuscript 17 

“Recycled clay/PET nanocomposites evaluated by novel rheological analysis 
approach” 

Kracalik, Milan (2017): In: Applied Clay Science, 2018, 166, 181-184, 
https://doi.org/10.1016/j.clay.2018.09.007. 

This manuscript proved the application of cumulative storage factor for reinforcement 

characterization in complex polymer nanocomposites (e.g. with PET), where the 

material improvement is dependent on both, clay dispersion grade as well as extent of 

degradation reactions during the processing. The CSF plotted over cumulative complex 

viscosity (CCV) shows clearly differencies in material reinforcement using various 

organoclays. It can be seen that CSF values can be divided into three groups: CSF of 

the neat polymer matrix, CPNs with lower CSF values (10A, 30B) and CPNs with higher 

CSF values (6A, Na+). It means that effective material reinforcement was reached only 

in systems using 6A and Na+. This is result of complex physical and chemical reactions, 

which occur during the processing. 
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3. Summary 

Research in this thesis concludes three aspects: polymer nanocomposites preparation, 

processing and characterization, where rotational as well as extensional rheometry is 

used for comparison with other measuring techniques.  

The first aspect is focused on usage of conventional approaches in rheology for 

description of 3D physical network generated in polymer nanocomposites and for 

investigation of physical and chemical interactions during the processing. For this 

reason, new approaches for thermal stability increase of nanofillers as well as methods 

for structural investigation and filler/additives combinations were tested. The most 

important results in this part are development of new thermally stable organoclays for 

applications in polymers with melt temperature above 250°C, establishment of new 

structural parameter (average tactoid size) from SAXS data and detection of synergic 

effects of fillers and nanofillers combination on formation of 3D physical network on 

composites/nanocomposites. 

The second aspect is devoted to relationships between rheology and processing 

parameters in compounding of polymer nanocomposites. Therefore, new technological 

approaches for compounding and on-line as well as in-line process characterization 

methods in combination with melt rheology were investigated. The main results in this 

part are establishment of new compounding technology for nanocomposites production 

(possibility to increase shear rate and residence time simultaneously), establishment of 

extensional rheometry (on-line) and FR-NIR spectroscopy (in-line) for real-time 

monitoring of dispersion grade and material properties during compounding process of 

nanocomposites and contributions to analyses of shear rate/residence time and material 

ageing on nanocomposite performance. 

The third aspect describes the development of novel rheological analysis approach for 

separation of different physically-chemical interactions, which can take place 

simultaneously in processing of complex polymer nanocomposites, where more nano-

scaled fillers or/and more polymer matrices are presented. The most important results in 

this part are establishment of extensional rheometry for fast characterization of 

reinforcement in polymer nanocomposites, creation of correlations between rheological 

parameters in shear and elongational flow, which were consequently used for 
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development of new rheological parameter (cumulative storage factor) for description of 

reinforcement in complex polymer nanocomposites.  

Combination of all presented research aspects can be generally used for better 

understanding of dispersion process in multiphase polymer systems and, consequently, 

for faster development of new functional materials based on polymer composites and 

blends. Especially the research part dealing with development of thermally stable 

organoclays and real-time monitoring of dispersion process will be used for future work, 

because the kinetics of dispersion process in polymer-clay nanocomposites including all 

relevant thermo-mechanical aspects and physical/chemical interactions has not still 

been completely understood. 


